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1.1 Background

Rail-based transportation has a long history dating back to 6th century BC. It was one
of the most revolutionary inventions since the wheel. Over the centuries, the technology
has drastically improved. Today, all over the world, governments are investing heavily in
developing urban-rail/main-line/high-speed railway infrastructure. Particularly, the high-
speed railways line lengths have already reached 60,000 km and have also started operating
with a maximum speed of 350 km/h, which is bound to increase in the near future.

Under the premise of improving carrying capacity, energy efficiency, and maximum
speed limit, how to guarantee safety has become an important issue in the railway trans-
portation. The three main factors that affect the safety of railway travel is the driver, the
train and the environment. Wherein, the performance of driver plays a significant role.

1.2 Challenges for safe railway operations

During a train journey, drivers are required to be attentive and vigilant continuously for
long hours. Such requirements of long working hours with irregular shift schedules, de-
mands high psychological and cognitive awareness. Due to monotony of the job, train
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drivers are susceptible to lack of awareness and fatigue. In efforts to improve transporta-
tion safety and to optimise railway operation, railways use ADAS, which allows informa-
tion exchange between railway system and the train driver via signals of the dashboard
screens. The train driving advises are generated by considering information not only from
the railway control center but also from the driver fatigue detection systems.

1.2.1 Time-delayed driver advisory signals problem

ADAS obtains information about the driver, the train and the environment from various
sensors. However, it is possible that the sensors may miss to collect the driver, the train or
the environment state data. The information about the state may arrive with a time-delay
to the control computing systems. Further it may happen that the ADAS algorithms
induce time-delay while processing the sensory information to generate driving advise.
Thus, in this thesis, considering the aperiodic sensor data availability problem, we are
addressing train dynamics stability challenge during varying driver behaviour.

Figure 1.1: Driver-in-the-loop train control scheme

1.3 Research objectives and challenges

The ultimate goal of train dynamics stability is to have it "in spite of external factors",
so that railway travel safety and ride comfort can be guaranteed. Due to involvement of
human-machine interaction, a combined knowledge of psychology, mechanical engineering,
computer science, control theory, etc. is needed to reach the goal. Similar to many other
research papers available in the literature, the stability analysis of the error dynamics
is the main focus of this thesis. From control theory stand point, the difficulty of train
dynamics stability analysis is rooted in three main problems.
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1. The non-linear dynamics of the train motion makes accurate modelling and analysis
of the train control problem difficult. Several issues arise while considering non-linear
modelling of the train. The train model can be single-point or multi-point model,
i.e. it can be either considered as a lumped mass or as many masses interacting via
connected links. Similarly, the choice to consider a dynamic or a static model, i.e. the
choice to consider (or not) the rail-wheel contact dynamics, the aerodynamic drag
on all the train compartments and the track gradient, is another point of discussion.
Ignoring the non-linearity in train dynamics modelling may lead to imprecise models,
which can eventually result in stability issues and uncertainties.

2. Train driving is considered as an structured process. It broadly involves interaction
of a professional driver with the train and the environment via ADAS. Further,
it also depends on driver’s habits and interpretation of ADAS signals. It is clear
that the stability of train dynamics, when a driver acts as an active element will
be different compared to an autonomous train. The driver prompts the train to
follow the desired path with a desired speed trajectory by manipulating main inputs:
brake/accelerator handles. Hence, it is necessary to consider an interacting system
architecture with an appropriate driver model for the stability study.

3. The driver’s actions are observable but the process of the decision making is unknown
and is also difficult to model. The actions depend both on the internal and the
external conditions to the driver, such as driver mental state and also on advisory
signals information from ADAS. Thus, it is imperative to include an appropriate
ADAS model interacting with driver model for the closed-loop system stability study.

1.4 Thesis contributions

Technological:
One of the principle impediments to deploy large scale ADAS assistance for public railway
transportation is the industrial demand to provide strong guarantees of stability and
performance of the ADAS for the long journeys. There are two ways to address this issue:

1. Either by performing field experimentation of all possible situations, and further
adaptation of the ADAS for each case or,

2. Theoretical stability guarantees based on a detailed ADAS-Driver-Train model while
considering degraded environment and perturbations.

This PhD aims to achieve the latter by using the concept of "approximate computing".
Through this approach we first approximate existing ADAS and other auxiliary systems
using deterministic or machine-learning based grey box models and then consider some
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realistic degraded situations to derive stability conditions for the driver-in-the-loop ADAS-
Driver-Train architecture.

As a technological contribution, the thesis work aims to provide proper stability as-
sessment framework for low to mid Technology Readiness Level (TRL) ADAS-centred
Hardware-in-the-Loop (HIL) and Driver-in-the-Loop (DIL) research projects to improve
the time to market of such innovative devices.

Scientific:
In the control theoretic context, the stability of ADAS-Driver-Train system given delay in
the driver and the train state sensor measurements and a varying driver behaviour, can be
addressed as a perturbed sampled-data system stability problem in the presence of time-
varying sampling. The objective then is to propose abstract models that approximate the
train as a controlled system and ADAS-Driver as the controller to enforce the driver-in-
the-loop system stability.

Figure 1.2: Driver-in-the-loop train control with delays

For this purpose, we proposed three modelling abstractions. Considering low com-
plexity levels, the first two abstraction are proposed for a cruise driving context. The
abstraction considers a sampled-data LTI system to model the train cruise dynamics, a
time-varying gain to model driver dynamics and a state-feedback controller to model the
ADAS dynamics. Then, for the second abstraction, we improved over ADAS representa-
tion by considering it as a feed-forward NN controller. Further, for the third abstraction,
we improved upon the Driver-Train interaction model by a Takagi–Sugeno (T-S) non-linear
system model, a NN controller for ADAS and a more advanced driving context.

In order to derive closed-loop stability conditions for a time-varying sampled ADAS-
Driver-Train system, the sampled-data system is transformed to a time-delay system to
benefit from delay-dependent stability tools of time-delay systems theory. The delay-

jaina
Highlight
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dependent tools were essential because they allow to estimate maximum delay in the
sensor measurements before which closed-loop system stability is guaranteed. Next, we
summarise the scientific contribution of the thesis.

1. The choice of ADAS-Driver-Train model in the three abstractions has a trend of
growing from being simple to complex representation. As per our literature survey,
modelling them together has never been addressed before.

2. For each of the three abstractions, a novel time-dependent Lyapunov-Krasovskii
Functional (LKF) is proposed to derive delay-dependent closed-loop stability con-
dition. Namely, the three time-dependent LKF’s have Wirtinger inequality-based,
augmented LKF-based and derivative of Wirtinger inequality-based novel terms.

3. Further, in order to upper bound the integral terms of the three LKF derivative of
the three abstractions, some recent developments of the field have been utilised i.e.
Jensen, affine Bessel-Legendre and again Jensen inequality respectively.

4. The first two abstractions propose L2-stability conditions, while the third propose
exponential stability condition. The L2-stability conditions help to understand the
impact of driver behaviour variation on train cruise dynamics stability, while the
exponential stability conditions goes a bit further to understand the rate at which
train dynamics stability is affected.

Societal:
Considering the ADAS design approach presented in this thesis, driver working conditions
will be improved by automating low value repetitive tasks and letting drivers focus on
high value operations. Moreover it will also help increase ADAS acceptability and ease in
large scale ADAS deployment.

Given an estimate of permissible maximum delay in the driver and the train state
measurement, the stability of a train dynamics can be guaranteed. Thus it will help im-
prove safety and performance of railway transport and in general of public transportation
systems. Particularly, it will help provide safe, comfortable, punctual and energy efficient
train journey for the benefit of the society.

All in all, the framework investigated in this PhD bridges control theoretical stability
assessment analysis with safety analysis for industrial transportation systems.

1.5 Outline of thesis

Given that, the train dynamics stability study without the driver-in-the-loop is incomplete.
Thus an appropriate stability paradigm is required to introduce driver in the train control
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loop. This calls for assuming the availability of a driver model in the analysis that enables
us to close the ADAS-Driver-Train loop.

Hence, the focus of this thesis is two fold: firstly, to consider the effects of the driver
behaviour variation on the train dynamics, and secondly, to provide stability margins for
the ADAS-Driver-Train system stability. The rest of the thesis is organised as follows:

Chapter2:
The second chapter begins by presenting a literature survey of the most important existing
methods in train modelling and control. Some relevant publications with a focus on
reference trajectory optimisation are also presented. It then elaborates upon train driving
challenges, railway measures to aid driver and the publications on advisory train control
with driver-in-the-loop. Next, the chapter presents a review of the most important driver
modelling methods and a discussion on the choice of an appropriate driver model. Finally,
in the last portion, it discusses the problems surrounding ADAS design, i.e. delayed and
specially unreliable sensor measurements.

Chapter3:
In the third chapter, we argued that the stability problem of driver-in-the-loop train
dynamics can be addressed as stability problem of a time-varying sampled LTI system
represented as time-delay system. Next, we presented a literature survey of various tools
to study time-delay system stability. We emphasised upon the choice of LKF approach,
the effective over-approximation of integral terms of LKF derivative and the applica-
tion of convex-embedding to derive less conservative delay-dependent stability conditions.
Further, we identified that affine Bessel-Legendre inequality based over-approximation
of derivative of time-dependent augmented LKF can provide least conservative delay-
dependent conditions. Thus we explored stability conditions in that direction.

Chapter4:
In the fourth chapter, we presented main contribution of the thesis, i.e. three modelling
abstractions and their corresponding stability theorems to address the problem of stabil-
ity of driver-in-the-loop train system with varying driver behaviour and unreliable sensor
measurements. The three abstractions are presented in three sections. Each section be-
gins with presenting the system description and then presents choice of LKF, positive
and negative definiteness of LKF and LKF derivative, derivation of the delay-dependent
stability conditions in the form of Linear Matrix Inequality (LMI) and finally concludes
by presenting the Theorem. In the last section, an algorithm is presented to obtain the
maximum delay utilising the three Theorems.



1.6. Publications 7

Chapter5:
In the fifth chapter, we implemented the proposed approaches in the ADAS-Driver-Train
system context. For simulation purposes, we studied three scenarios. Namely, interaction
of a driver and train without an ADAS, i.e. no driver advisory signals; interaction via an
ADAS, however, driver advisory signals are only based on delayed train state measure-
ments and finally interaction via an ADAS, however, driver advisory signals are based
on both delayed driver and train state measurements. We tested each abstraction with
the three scenarios and estimated the maximum allowable delay in driver and train state
measurements. Further, we compared the results of each abstraction and presented con-
cluding remarks. Particularly, we ascertained the ability of NN over state-feedback based
ADAS to handle the delayed measurements and provide smoother train dynamics.

Chapter6:
In the sixth and last chapter, we presented concluding remarks and further proposed a
few directions for future research.

1.6 Publications

The research exposed in this thesis can be found in the following publications:

International conferences

1. A.K. Jain, D. Berdjag, C. Fiter and P. Polet, "Stability of Neural-network based
Train Cruise Advisory Control with Aperiodical Measurements", IFAC Confer-
ence on Embedded Systems, Computational Intelligence and Telematics in Control
(CESCIT), Valenciennes, France, June 2021.

2. A.K. Jain, C. Fiter, D. Berdjag and P. Polet. "Investigating Stability for Driver
Advisory Train Cruise Control System with Aperiodically Sampled Measurements",
23rd IEEE International Conference on Intelligent Transportation Systems (ITSC),
Rhodes, Greece, September 2020.

3. A.K. Jain, C. Fiter, D. Berdjag and P. Polet, "Exponential Stability Criteria for
Neural Network based Control of Non-linear Systems", IEEE American Control
Conference (ACC), Denver, United states of America, June 2020.

National Conferences

1. A.K. Jain, D. Berdjag, P. Polet, and C. Fiter, "Approximate Computing Control
Approaches using Neural Networks", in National Conference on Modelling, Analysis
and Control of Dynamical Systems (JN GDR-MACS), Bordeaux, France, June 2019.
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2.1 Introduction

In this chapter, we will introduce the problem of "delay in driver advisory signal generation
by ADAS due to delay in driver and train state measurement", a challenge to safety of
long journey rail-based transportation. In order to address the problem, we propose a
solution to assess closed-loop stability of Driver-Train system, while considering delayed
driver and train state measurements.

In an effort to legitimise our problem statement, we first present different modes of
railway transportation, i.e. main-line/high-speed/heavy-haul/urban-rail trains. Next, we
present two important entities to regulate railway traffic operation, i.e. railway traffic
control center and train operation. Then, we delve deeper into train operation and present
different automation levels. We particularly emphasise the importance of speed profile
optimisation and speed control for train automation.

Irrespective of the automation level both speed profile optimisation and speed control
are important to achieve real-time objective of safety, punctuality and energy efficiency.
Although, this objective can be achieved either by a driver or by ATC, we argue that
ATC as a train controller is relatively easy to implement for urban-rail (usually operate at
higher automation level) but is not easily implementable in main-line/high-speed/heavy-
haul train. Thus, we argue that the presence of driver is indispensable in long journey
rail-based transportation.

Having reasoned indispensability of driver presence during long train journeys, we then
present driving activity and driving challenges during a train operation. We particularly
highlight attention and vigilance issues due to driver fatigue. We then present a literature
review on traditional and modern techniques to address these issues. We further present
literature review on ADAS based optimal driver advisory signal generation by utilising
information about driver and train state. As a driver-in-the-loop train control stability
study will require driver models for simulation, we then present a detailed literature review
of driver models and further argue about our choice of driver model.

Given the presence of such ADAS system, we present the problem of unreliable driver
and train state measurements during driver fatigue detection that eventually affect driver
advisory signal generation. Having presented the problem, we then propose our approach
to ascertain the safety of rail-based transportation system, i.e. by assessing closed-loop
stability of Driver-Train system, while considering delay in driver and train state measure-
ments. In conclusion, we reiterate the purpose of this chapter, i.e. to provide sufficient
arguments to bring the unreliable sensor measurement problem faced in driver advisory
signal generation to control theory framework and provide inputs for ATC or ADAS design.
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2.2 Railway operation

Over the last century, the rise in popularity of rail-based transportation over other modes
of transportation such as road or aviation-based is because, rail-based transport offers
a cost-effective goods transportation as well as comfortable passenger travel over long
journeys. Owing to cost-effectiveness, today, in many countries, rail-based transportation
is playing an important role in driving sustainable economic growth.

Until recently, the rail-based transportation broadly involved the main-line and the
urban-rails (tram, metro, subway, etc). The main-line railways addressed the demand to
commute and to transport goods between the cities cost-effectively, while the demand to
commute faster within the city was conveniently fullfilled by the urban-rails. Owing to
increasing demand to commute faster between the cities, the new high-speed railways were
invented. Since the Japanese Shinkasen (1964), there has been considerable advancement
of the high-speed train technology, and the demand to commute faster and cost-effectively
between the cities has been made possible and attractive.

Considering the number of humans opting for the services, safety requirements become
stringent in main-line/high-speed/heavy-haul railways, since any accident can result in
many casualties and loss of time/money. How to ensure safe and efficient operation for
a rail-based transportation is an issue of utmost importance in rail-based transportation
system management. In order to better understand safety issues, let us first understand
how rail-based transportation system operates.

The railway operation management generally involves an extensive planning stage,
which broadly consists of planning of timetable, allocation of rolling stock and assigning
of crew duties. These plans are usually carried out a long time before the real-time opera-
tions, so that the real-time objectives of cost-effective, safe, and on-schedule movement is
conveniently achieved. The timetable usually specifies the time and cost optimal conflict-
free trips of all the trains. In particular, for each train, the timetable specifies the arrival,
departure and wait time at each station in the trip.

With the given timetable, the plan has to be executed for each single train. In order to
achieve the real-time objectives, railway operation management involves two fundamental
entities, the railway traffic control center and the train operator. The two entities can
be described explicitly by using the concept of two control loops, an outer and an inner
control loop as shown in Fig. 2.1 ([Yin et al. 2017]).

2.2.1 Outer control loop: Railway traffic control

In daily operations, the timetable is usually disrupted by various kind of perturbations
(e.g., equipment failure, extreme weather). These perturbations may cause delays or even
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Figure 2.1: Inner and outer control loop

in-feasibility of the original timetable. Therefore, one basic task in daily railway operation
management is to reschedule/adjust the timetable with real-time train information and
perturbation time estimations. The objective is to minimise the negative effects of unex-
pected disturbances. This activity is performed in the outer control loop i.e. at railway
traffic control center by personals called dispatchers.

Dispatchers supervise the status of traffic and infrastructures, detect deviations and
conflicts, and develop a conflict-free rescheduled plan in real-time to make support deci-
sions to train operators to achieve real-time objectives. As shown in Fig. 2.1, the inputs
needed by the outer control loop consist of the original railway transport plan (i.e., a
timetable, rolling stock plans, crew duties) and the real-time information about trains
(i.e. position/speed) and potential disturbances/disruptions. The output of the outer
loop is the rescheduled plan that is typically related to the choices of new arrival and de-
parture time at each station or in an extreme case, rerouting of the trains. In particular,
this task involves estimating and communicating allowable maximum speed during the
trip, for each train, to adhere to the scheduled arriving/departure time.

In order to better understand the outputs of outer loop, let us consider a scenario:
the railway traffic control of two trains, as shown in Fig. 2.2. In this scenario, the two
trains are running at a distance on the rail track from station A to station B. During
this movement, the train operator (either a driver or automatic controller) is assisted
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Figure 2.2: Signals from outer to inner control loop

by the dispatcher through the signalling system. For a rail-based transportation system
utilising fixed-block technology, a rail track is divided into several blocks. When a train
approaches a new block, the train position is detected and sent to the dispatcher by track-
side signalling or by in-cabin signalling (depending on the grade of signalling). In return,
depending on the rescheduled plan, dispatcher sends the route specificity back to the train.

Figure 2.3: a) Signalling tools, b) Track-side signals

With the development of railways, the method of this information exchange has been
evolving. But the basic idea is: if the block is occupied (as in the case of Train 2 in
Fig. 2.2), a braking point and a braking curve signal information is sent to stop the
train at a safe stopping point. On the contrary, if the block is clear (as in the case of
Train 1 in Fig. 2.2) a green signal, i.e. authority to enter the block is given. In addition
to moving authority signal, a new travel distance, a new maximum velocity and a new
braking curve information is provided for the current block. During the train travel period,
the dispatcher/block manager is required to insure that only a single train is travelling in
a block, while the train operator (either a human or automatic controller) is required to
respond to these signals instantly.
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Figure 2.4: ETCS a) Level 1 b) Level 2 c) Level 3

Conventionally for the main-line railways, dispatchers send signals with track-side sig-
nalling system. The moving authority for a block is communicated to the train drivers
through track-side signals (Fig. 2.3b) using the signalling tools (Fig. 2.3a). However, for
a high-speed train, the track-side signals are not usable at speeds more than 200km/h.
Because the track-side signals may not be observed in time. For this reason, in-cabin
signalling is used for high-speed train operation. In Europe, European Train Control
System (ETCS) as part of European Rail Traffic Management System (ERTMS) is im-
plemented to fulfil the purpose of signalling. Such a system is partly installed beside the
track and partly installed on-board trains. It has three operation levels, depending on the
up-gradation of the track and the on-board equipment status, as shown in Fig. 2.4.

• Level 1 involves continuous supervision of train movement while a non-continuous
communication between train and track-side (normally by means of balise). Track-
side signalling is necessary and train detection is performed by the track-side equip-
ment such as track circuits or axle counters.

• Level 2 involves continuous supervision of train movement with continuous commu-
nication, which is provided by Global System for Mobile Communications – Rail-
way (GSM-R), between both the train and track-side. Track-side signalling is op-
tional in this case, and train detection is performed by the track-side equipment,
which is not in the scope of ERTMS.

• Level 3 signalling system also provides continuous train supervision with continuous
communication between the train and track-side but with the main difference from
Level 2 is that, the train location and integrity is managed within the scope of the
ERTMS system, i.e. there is no need for track-side signalling or train detection
systems on the track-side other than balises.

Today, most of the high-speed trains in Europe use Level 2 or Level 3 ETCS signalling
system to make train and track state information available to the driver inside the cabin.
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2.2.2 Inner control loop: Train operation

The inner control loop is where, signals from the outer control loop are considered and exe-
cuted. The signalling system is an important link to communicate the scheduled plan from
the railway traffic control center with the dynamic train. With the scheduled/rescheduled
plan, the train operator focuses on following the signals to achieve cost-effective, safe and
time-optimal train movement on each block. The train operator does that by determining
the appropriate train control commands, i.e. accelerating, cruising, coasting or braking.

The inputs to the inner control loop are the scheduled/rescheduled plan and the real-
time information about the train as shown in Fig. 2.1. In particular, the in-cabin dash-
board show current train speed, maximum speed-limit for the current block, allowable
travel distance, tentative arrival time to the next stop, train dynamics, track information,
etc. An in-cabin dashboard proposed by authors [Zhu et al. 2016] is as shown in Fig. 2.5.

Figure 2.5: a) Train operation in a simulated environment b) In-cabin dashboard

The outputs of the inner loop are the traction/braking commands, which accelerate,
cruise, brake or coast the train. The train operator has to adjust the speed considering
factors such as track visibility, adhesion to track (to avoid slip), occupancy of the next
block etc, in order to achieve the real-time objective. A typical speed-distance trajectory
of a train is shown in Fig. 2.6. The red curve indicate the speed-limit signals from railway
traffic control center and the black curve is the actual train operation speed during the
journey from station A to station B. The four phases in a train journey, i.e. accelerating,
cruising, braking and finally coasting can be seen.

It is worth mentioning that an active participation from both these control loops
is necessary for achieving comfortable (i.e. minimising jerk, train vibration or abnormal
train motion), cost-effective (influenced by train operation strategies), safe (i.e. respecting
speed-limits) and time-optimal operation (i.e. respecting arrival/departure times). The
railway traffic control center has to actively supervise status of all the trains in a rail
network, and orchestrate the real-time train movements, by providing speed-limit signals,
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Figure 2.6: A typical speed-distance trajectory

while the train operators have to actively make the speed control commands respecting
the speed-limit signals about restricted or free block movement and other environmental
factors. Assuming that the railway traffic control center is actively updating the speed-
limit signals information, then the responsibility to achieve the real-time objectives lie
solely on the train operator. A nominal train operator will achieve the real-time objectives
otherwise it will succumb to achieve degraded objectives. Thus the train operator’s actions
are central for the safe operation of the entire railway traffic.

2.3 Automatic Train Control (ATC)

Conventionally main-line railways are driven by drivers with the help of dispatchers of
railway traffic control. The dispatchers/block managers are needed to be aware of which
circuit the train is running on, and eventually prevent other trains from entering the
same track circuits. Since, this process required strict supervision by the train drivers
and the dispatchers for prolonged period, it was impossible to optimise the infrastructure
occupation, increase in transport capacity or reduce the headway time, which were the
requirements in the urban-rail context. As a possible solution, communication based train
control system were developed for urban-rail systems.

With the development of communication, control and computation technologies in the
last several decades, ATC is considered as a viable solution to help in train operation
in urban-rail systems. ATC aims at automating train control, supervision and traffic
management with the help of an integrated signalling system (similar to ERTMS for main-
line/high-speed railway system). ATC mainly include three subsystems, Automatic Train
Protection (ATP), Automatic Train Operation (ATO) and Automatic Train Supervision
(ATS), partly installed on-board and partly on the track-side as illustrated in Fig. 2.7
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([Yin et al. 2017]). The functions of these subsystems are the following:

Figure 2.7: ATC system in railways

• ATS system is responsible for monitoring the train movement to ensure that the
trains conform to an intended schedule and traffic pattern. The aim is to avoid/re-
duce time loss resulting from system abnormalities/equipment malfunctions by per-
forming the tasks such as train status monitoring, train operations logging and
generating train statistics report automatically. In events of disturbance, ATS also
does reschedule creation and subsequent route selection automatically.

• ATP system is a fail-safe system, responsible for the safe movement of individual
trains. ATP imposes speed-limits on the movement of trains to comply with safety
requirements. In particular, it maintains a safe operating distance between the trains
and also guarantees a maximum braking distance. If a train exceeds the speed-limits,
ATP is programmed to execute emergency braking automatically.

• ATO system considers inputs from other subsystems, and computes a speed pro-
file with appropriate traction/braking strategy to ensure smooth acceleration to the
running speed, speed regulation and precise train stopping at the destination plat-
form. ATO does so, by automatically manipulating the train traction and braking
commands. Thus, ATO is key to the train operational efficiency, i.e. for safety,
comfort, time and energy-efficiency.

The three subsystems of ATC work together to ensure the cost-effective, safe and
time-optimal running of urban-rail system. At the start station, according to the train
schedule, ATS gives train state, route and schedule information to ATO. In particular,
ATO will get information such as, departure and arrival time, train speed profile, and
dwell time at next station. Considering this information, ATO generates speed profile and
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tracking/braking strategy to accelerate the train to the cruise speed, then later allow the
train to coast until it receives brake signal from track-side system (e.g. parking beacon).
Finally, under station stopping mode, ATO applies brakes dynamically, until the next
station is reached. ATO ensure that the train’s final position at the platform enables
the door to open automatically. During this entire trip ATP monitors the real-time train
running status to ensure a safe distance between trains by providing warnings.

Owing to the automatic generation of real-time decision of optimised accelerating,
cruising, coasting and braking commands, ATC improve the efficiency of urban-rails oper-
ation. A significant reduction in energy consumption, lowered carbon emissions, increased
transport capacity, improved quality of services (safety, riding comfort and punctuality)
and reduction of manual labour has been made possible with urban-rail automation using
ATC. Nevertheless, most of the main-line/high-speed/heavy-haul trains run at a lower
automation level. The International standard, [IEC62290-1 2014] defines five Grades of
Automation (GoA) levels of ATC, i.e. from GoA0 to GoA4, with GoA0 as non-automated.
The level arise from apportioning responsibility for given basic functions of train operation
between the driving staff and the ATC system.

• GoA1 is essentially manual train operation level that need the drivers to operate
the trains manually and rely on the track-side signalling system. At this level of
automation, the trains are certainly equipped with ATP system. Although, actual
ATO technology can run as a GoA2 automation level on urban-rail network or even
on ERTMS equipped tracks but will run as GoA1 automation level on the rest of
the network. The ATO in GoA1 can be considered as an ADAS providing speed
advice to help drivers drive efficiently. Most of the urban-rail/main-line/high-speed
trains run under GoA1. GoA1 is the focal point interest for the present research.

• At GoA2 level, i.e. Semi-Automatic Train Operation (STO), acceleration/braking
commands are automated with the help of ATO. The driver is responsible only for
door control and for any emergency situations. In Europe, some of the main-line
railways are running at GoA2 level using the ERTMS [IRJ 2018], [EU 2018].

• GoA3 level is termed as Driverless Train Operation (DTO), i.e. there is no driver in
the cabin of the train. Instead, there is only a member of operation staff for the safe
departure of train. Most of existing ATO systems in urban-rail generally achieve
GoA2 or GoA3 automation level [UITP 2018].

• The highest level of train operation automation is the Unattended Train Operation
(UTO), i.e. GoA4, in which there is completely no driver or operation staff, and the
trains are operated fully automatically. As of 2018 there are more than 1000 km of
urban-rail running at GoA4 automation level worldwide [UITP 2018] and recently
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world’s first driver-less bullet train, went into service in China, [Wilson 2020].

Figure 2.8: Grades of Automation

Irrespective of the GoA, when the train is at the start station, the on-board computer
receive the confirmation messages involving status of train doors, status of on-board &
track-side ATP equipment and the relevant travel information of the next segment, to
generate a recommended speed profile. For trains at GoA1 level, the recommended speed
is shown to a driver through a screen, while for automation levels GoA2 or higher, the rec-
ommended speed is used by control algorithms programmed in on-board ATO computers.
In both these scenarios the recommended speed profile is updated using real-time infor-
mation about train position and speed data by on-board (odometers), track-side sensors
(balises, if ERTMS tracks) and track-side signals (sent by dispatchers).

Figure 2.9: Train operation

The driver/ATO compares the real-time train speed information with the recom-
mended speed at the current position to determine the control command, so that the
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train precisely track the recommended speed profile. The driver additionally uses knowl-
edge from tables/graphics to determine the appropriate control action so that the low level
control loops (that dispatch the command through different actuators) work effectively.
Thus, speed profile optimisation and speed control are two complementary and necessary
actions needed to achieve train operation efficiency. A schematic, illustrating both this
actions, is shown in Fig. 2.9. Several researchers have contributed to development of speed
profile optimisation and speed control algorithms. In the next sections, we will present a
literature review on both these topics.

2.3.1 Speed profile optimisation

The optimisation of speed profile is a problem with multiple objectives and constraints.
The speed profile optimisation should not only consider the speed-limits but a series of
other factors including track gradient, track curvature, traction efficiency and regenerative
energy for meeting the needs of practical operation environments. The optimised speed
trajectories basically defer by the accelerating, cruising, coasting and braking distance. In
literature several authors have proposed methods to obtain optimised train speed profiles.
Based on mathematical formulation, [Yang et al. 2016] classified the methods into three
categories, i.e., analytical, numerical and evolutionary algorithm.

2.3.1.1 Analytical algorithms

The analytical algorithms are typically based on the optimal control theory and solved by
Pontryagin Maximum Principle (PMP). The problem can be formulated either as contin-
uous/discrete input to the train optimal control models, i.e. braking/traction forces can
be varied either continuously or discretely. The solution obtained is optimal and exact
in nature, in-spite of a relatively complicated process. Commonly, these algorithms deal
with two objectives, i.e. minimising energy consumption and adhering to punctuality, nev-
ertheless, under simplified environmental condition. The simplification of environmental
condition for modelling is a requirement, as these algorithms usually require good proper-
ties of the objective function. For example, the objective of comfort is usually left behind
as these methods cannot handle complex train dynamic models, variable speed-limits or
variable external conditions such as variable track gradients or track curvature.

2.3.1.2 Numerical algorithms

Numerical algorithms, involves Dynamic Programming (DP), Sequential Quadratic Pro-
gramming (SQP), Lagrange Multiplier (LM) method, Pseudo Spectral (PS) method and
also Mixed Integer Linear Programming Method (MILP). These methods have relatively
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less requirements for simplified objective function i.e. they can also consider constraints
for comfort and can even make a trade-off between optimisation performance and com-
putational time. Generally the computation speed of these algorithms is slow. They
are even prone to find a local optimal solution. Nevertheless, the accuracy of the so-
lution can be guaranteed by using numerical solvers ([Atamturk & Savelsbergh 2005],
[Linderoth & Ralphs 2005]) for sufficient computation time. In practice, a method with
less computation time is preferred, so as to provide quick real-time energy-efficient speed
updates to the driver.

Type Publication Algorithm

Analytical
Algorithm

[Howlett et al. 1994]

PMP
[Howlett 2000]

[Khmelnitsky 2000]
[Liu & Golovitcher 2003]

[Su et al. 2013]
[Albrecht et al. 2016]

Numerical
Algorithm

[Ko et al. 2004] DP
[Howlett et al. 2009] NA

[Miyatake & Matsuda 2009] SQP
[Miyatake & Ko 2010] SQP
[Dominguez et al. 2012] NA
[Rodrigo et al. 2013] LM
[Wang et al. 2013b] PS

[Calderaro et al. 2014] DP
[Wang & Goverde 2016] PS

Evolutionary
Algorithm

[Chang & Sim 1997] GA
[Wong & Ho 2004] GA
[Ke et al. 2011] ACO

[Kim & Chien 2011] SA
[Sicre et al. 2012] GA
[Lu et al. 2013] GA, ACO, DP
[Li & Lo 2014] GA
[Liu et al. 2015] TS

Table 2.1: Publications on train speed profile optimisation



22 Chapter 2. Railway transportation system

2.3.1.3 Evolutionary algorithms

Compared with the former two kinds of methods, evolutionary algorithms, such as Genetic
Algorithm (GA), Ant Colony Optimisation (ACO), Tabu Search (TS), or Simulated An-
nealing (SA) have least requirements for train models for speed profile optimisation. Nev-
ertheless, most of these algorithms can not guarantee the optimality and convergence of
the solutions. Even the methods cannot provide theoretical benchmarks for evaluating the
solutions. Therefore, most of these evolutionary algorithms use practical case studies or
real-world train trajectory as benchmarks for evaluating the performance of the solutions.

Some of the recent literature related to these three categories is listed in Table 2.1. For
further information, reader can refer to [Mcclanachan & Cole 2012], where authors gave a
detailed review of current train speed optimisation methods for heavy-haul trains.

2.3.2 Train model

In order to develop train speed control strategies, the first essential requirement is to have
an approximate train dynamics model. Train dynamics approximation may vary based on
the problem statement. For example, in this thesis, we address only longitudinal dynamics
of the train without considering rail-wheel dynamics. We preferred this context as we want
to develop preliminary results of train longitudinal dynamics stability for unreliable driver
and train state measurements. For this context, the existing literature on train dynamics
modelling for ATO development considers a train to be modelled either as single-point
or as multi-point system. In the next subsection we will present the two train operation
models and continue with a review of train control strategies from the literature.

Figure 2.10: Single-point train model
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2.3.2.1 Single-point model

The single-point model is the most commonly used model in solving train operation prob-
lems. For this modelling approach, a train consisting of multiple carriages and locomotives
is simplified as a single-point mass. The train force diagram is as shown in Fig. 2.10. The
longitudinal motion of single-point modelled train with a continuous control rate and
continuous output can be characterised by Newton equation as:

mv̇(t) = u(t)− f(v(t))− g(p(t)),

ṗ(t) = v(t),
(2.1)

where m is the mass of the train, p(t) and v(t) represent the train position and speed
at time t respectively, u(t) denotes the traction/braking force applied on the train either
by ATO or by a driver, f(v(t)) = m(k0 + k1v(t) + k2v(t)2) represents aerodynamic drag
and rolling mechanical resistances given by the Davis formula [Rochard & Schmid 2000],
and g(p(t)) represents the track gradient/track curvature type resistances with respect to
train position p(t). Through this model, the multiple carriages that make up a train are
represented by a single-point with identical position and speed.

2.3.2.2 Multi-point model

A single-point train model can achieve good result in developing ATO methods for urban-
rail transit systems. However, such simplified model lacks to represent complexity and
non-linear dynamics arising in other types of trains. For instance, in the heavy-haul
context, in which trains are long and consists of many carriages and locomotives, have
larger and different running resistances on each carriage. In such scenario, the positions
and speeds of the different carriages cannot be considered same.

In addition, due to long length of the train, there exist delay for a braking signal to
reach the last carriage (around 3 secs). Such a delay was easily neglected while modelling
of short trains using single-point model. But it cannot be considered negligible while
modelling long trains. On the other hand, since the couplers that connect adjacent car-
riages are not perfectly rigid, the in-train forces among the connected carriages become
an important factor to be considered. This helps researchers to study coupler failure issue
in heavy-haul trains.

In [Gruber & Bayoumi 1982], the author’s considered the in-train forces and also the
different position/speed for each carriage to study the coupler failure issue in heavy-haul
trains (Fig. 2.11). The authors proposed that if we consider a train that consists of n
carriages with n− 1 couplers connecting the adjacent carriages, a multi-point train model
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Figure 2.11: Multi-point train model

can be formulated as a non-linear multi-input multi-output model given as,


m1v̇1 = u1(t)− k∆p1,2 − f1(v1(t))− g1(p1(t))

miv̇i = ui(t)− k(∆pi,i+1 −∆pi−1,i)− fi(vi(t))− gi(pi(t)), i = 2, · · · , n− 1

mnv̇n = un(t) + k∆pn−1,n − fn(vn(t))− gn(pn(t))

(2.2)

where, pi, vi,mi, ui, denote position, velocity, weight, traction/braking force of the
ith carriage, respectively; ∆pi,i+1 represents the relative spring displacement between the
neighbouring carriage i and i+1; fi(vi(t)) = mi(k0 +k1vi(t)+k2v

2
i (t)) denotes the aerody-

namic & rolling mechanical resistances and gi(pi(t)) represents the additional resistances
with respect to train position, i.e. due to track gradient/curvature etc.

We can observe, in this model, the behaviour of couplers between two adjacent carriages
is approximately described by a linear spring with stiffness coefficient k, and each carriage’s
speed and position are modelled specifically. In [Chou et al. 2007], such a multi-point train
model is validated against experimental data collected on a heavy-haul trains with 200
carriages. Having presented the two models, in the next section, we present a literature
review on train speed control based on these models.

2.3.3 Speed control

In literature several train speed control strategies are proposed for ATO improvement. The
train control strategy depend on the type of the train, the mission and also on the external
environmental conditions. For example speed control strategy for main-line, urban-rail and
high-speed trains are different. Also, ideally, depending on the running conditions such as
track curvature, track gradients, drag resistance, weather condition, mechanical wear, the
control strategy for speed tracking should change.
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2.3.3.1 PID based speed control

Irrespective of type of train or the running condition, the most widely and commonly
used train speed control method of ATO is the PID controller with multiple degree of
freedom (cascade PID). In an ATO, PID is used as a high level control (running at 5Hz)
to continuously calculate the error between the measured train speed and recommended
speed. PID controller adjusts the control command for the low level control, actuators
(running at 10Hz), to minimise the speed tracking error over time.

In literature, we find several papers such as [Bing et al. 2009], [Xiangxian et al. 2010],
[Guo & Ahn 2020], utilising PID control strategy because it provides relatively good track-
ing performance in wide variety of implementations. However, during catching/maintain-
ing the reference speed using low level traction/braking channels in a changing environ-
ment, two major issues arise with the use of PID controller: how to get the best PID
coefficients, and how to reduce the frequent switching of PID control commands.

Figure 2.12: Train speed control using PID

• The first issue of PID coefficient estimation is addressed either by empirical tuning
methods, such as [Wu et al. 2014a] or based on judgement gained through repeated
field tests. The classical methods usually require a train model to tune the coeffi-
cients. However, during daily operations, the parameters of the models are often af-
fected by external factors (e.g. mechanical wear, varying resistance), that inevitably
reduce the performance of PID controller with fixed coefficients.

• The second issue of frequent control command switches raises concern over increased
energy consumption for train operation. In order to tackle this issue, the speed error
threshold is used to separate activity-/dead- zone at high level control, which does
not allow the train to accelerate sharply during accelerating phase.

In recent years, a lot of researchers developed methods to solve these problems. A
comprehensive review of train control methods is presented in [Scheepmaker et al. 2017].
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Apart from the aforementioned classical control method, the other train speed control
methods are classified into three categories, model-free, data-based, and model-based con-
trol. In the next subsection, we present a literature review of these methods.

2.3.3.2 Model-free speed control

The model-free speed control methods take advantage of empirical knowledge and pro-
fessional experience of drivers. The idea is to represent the knowledge and experience of
drivers in mathematical form as a series of rules. During 1960s, Fuzzy set theory was
originally introduced by [Zadeh 1965], which was later used to develop fuzzy logic con-
trol based expert system, as a model-free control approach. The method has been widely
accepted for ATO development.

In [Yasunobu et al. 1983], authors, first used fuzzy set to represent driver skills and
challenged use of linearised control for a relatively non-linear automatic train operation
system. In [Oshima et al. 1988], authors improved the results by utilising predictive fuzzy
control for subway ATO development. In [Ke et al. 2011], authors proposed to opti-
mise train speed trajectory using MAX–MIN ant system while considering track gradient,
speed/acceleration/jerk limits and did the train acceleration regulation by using a fuzzy-
PID gain scheduler to meet the speed reference signals for mass rapid transit systems.

In literature, we can also find references that consider fuzzy control for heavy-haul
or high-speed railways. In [Dong et al. 2013], authors proposed extended fuzzy logic con-
troller for high-speed train. [Wang & Tang 2017] proposed fuzzy Model Predictive Con-
trol (MPC) for optimal high-speed train operation. In contrast to above studies that
used single-point model, in this work authors used multi-point model for control design
and provided sufficiency conditions for existence of controller by set of LMI. Further,
[Cao et al. 2019] presented real application of fuzzy predictive control technology for ATO.

2.3.3.3 Data-based speed control

Data-based methods are those that rely solely on historical train operation data to develop
train speed control models. Unlike the model-free approach such as fuzzy logic or other
model-based control approaches (presented in next subsection), data-driven approaches do
not need to develop mathematical model of the driver experience or develop sophisticated
train model from the mechanical analysis of train motors and wheel-rail frictions, for
developing train speed control algorithms. However, these approaches need a lot of I/O
data to learn from, which implies a lot of history data and acquisition trial runs. A detailed
review of data-driven approaches for train control is presented in [Yin et al. 2019]. The
authors used historical I/O train control data to develop model such as linear regression,
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non-linear regression and Deep Neural Network (DNN) models, as shown in Fig. 2.13.

Figure 2.13: Train speed control using data-driven approaches

Some other works in data-driven approaches include [Yin et al. 2014], where author
proposed an expert system in conjunction with reinforcement learning for both online
speed profile optimisation and train speed control. In [Yin et al. 2016], same authors pro-
posed smart train operation algorithm based on expert knowledge, but with a classification
and regression algorithm for heavy-haul train. In [Wang et al. 2019c], authors proposed
an automatic operation of heavy-haul train to address the safety and efficiency issue aris-
ing due to imprecise train dynamics and pneumatic brake model during steep gradient
journey using K Nearest Neighbour (KNN).

In [Song & Song 2011], author proposed a neuro-adaptive fault-tolerant control algo-
rithm to account for various factors such as input non-linearities, actuator failures, and
uncertain impacts of in-train forces in the system.

Iterative Learning Control (ILC) is another data-based method used for design of
adaptive ATO controllers. The trains are required to run frequently on the same track as
per their schedule. In the journey, they usually encounter similar external conditions such
as tunnels (signalling), slopes (track gradient) and bridges (track curvature). ILC method
en-cashes this information for designing the tracking controller to improve train operation
performance, iteratively. In [Chen et al. 2019], authors proposed such an ILC controller for
a linear time-varying train model with external perturbations, for discrete automatic train
operation. In [Huang et al. 2019], authors proposed design of adaptive ILC while using
multi agent modelling approach for high-speed trains, to handle the unknown time-varying
parameters and lumped uncertainties caused by varying resistive and coupler forces.
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2.3.3.4 Model-based speed control

The model-based train speed control methods involve design of optimal/robust speed
controller using train models. These methods try to deal with problems such as non-
linearity of train dynamics (due to unknown/variable in-train/resistance forces) while
considering uncertainty in train model parameter to guarantee speed tracking accuracy.
However, these approaches need high cost field trials to validate train model parameters.

Single-point model:
In literature, several train speed control strategies are developed in this category. The
authors have frequently considered both single-point and multi-point train model to de-
sign the strategies. We, at first, cite some works involving use of single-point model. In
[Howlett 1996], author proposed an optimal control strategy to minimise the fuel consump-
tion considering non-constant track gradient, a given trip time and assuming that only
certain discrete throttle settings are allowed. [Khmelnitsky 2000] also considered variable
grade profile but subject to arbitrary speed-limits thus focusing on comfort factor. The
maximum principle is first applied to obtain the optimal operation sequences analytically
and then a numerical algorithm is employed to find the optimal velocity profile.

In [Liu & Golovitcher 2003], authors provided analytical solution to problem of find-
ing energy optimal control for a train moving along a route with given track profile,
traction/braking characteristics, speed-limits and required trip time using maximum prin-
ciple. [Dong et al. 2010] presented in detail, the development and simulation of train con-
trol system for high-speed trains using numerical modelling. [Su et al. 2015] considered
optimising control strategy of the accelerating train by utilising the regenerative energy
of braking train (on the opposite track) using numerical algorithm to reduce the energy
consumption and even to adjust the departure time of the accelerating train.

The aerodynamic and mechanical resistance parameters of a train model may not
be exactly determined or may also change with varying external circumstances in real-
world application. In this context, [Gao et al. 2013], considered the resistance parameters
k0, k1, k2, g(.) as uncertain values and designed an adaptive controller using Radial Basis
Function Neural Network (RBF-NN), which could estimate the unknown system param-
eters on-line and generate control while considering actuator saturation. [Yao et al. 2019]
developed robust adaptive non-singular terminal sliding mode control methodology for
ATO, to solve the position and the velocity tracking control problem considering model
uncertainty due to unknown resistance parameters and external resistances.

Multi-point model:
Several authors have also considered multi-point model to develop train control strate-
gies. In [Gruber & Bayoumi 1982], author considered a heavy-haul train as a non-linear
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spring connected system and developed sub-optimal train control strategy (piece-wise lin-
ear switching control) to minimise a quadratic criterion consisting of coupler forces and
velocity deviations from reference values. In [Zhuan & Xia 2008], authors considered a
multi-point model for a heavy-haul train and proposed an output regulation with mea-
surement feed-back and optimal scheduling, in order to deal with the problem of unavail-
ability/immeasurable property of the train state.

In [Zhang & Zhuan 2014], author considered a multi-point model of a heavy-haul train
and proposed a MPC for overall optimisation (i.e. energy consumption, velocity tracking,
and operation safety) over long horizon. In [Zhang & Zhuan 2015], same authors tried
to improve the MPC approach, by modifying the cost function by adding two penalty
factors, i.e. brake force and coupler damping. The improved cost function helped reduce
the energy waste incurred by braking and also alleviated the cyclic vibration of couplers.

In [Song et al. 2011b], authors considered a multi-point high-speed train model with
uncertain resistive forces from friction and aerodynamic drag, input non-linearities
and saturation limitation in traction/braking notches, and proposed a computation-
ally inexpensive robust adaptive controller design for speed and position tracking. In
[Song et al. 2011a], by considering the uncertain resistive forces and the traction/brak-
ing non-linear dynamics for a high-speed train, an integrated adaptive and back stepping
control was designed for the speed and position tracking of high-speed trains.

Cruise control:
In high-speed/heavy-haul railways, the travel distances are usually long and the trains are
mostly running at the cruise speed. Thus several authors researched particularly about
cruise control of trains during train operation.

In [Yang & Sun 2001], authors designed a H2/H∞ cruise controller to satisfy a
mixed design objective of speed command tracking and perturbation attenuation. In
[Chou & Xia 2007], a closed-loop cruise controller was developed using Linear Quadratic
Regulator (LQR) technique and a fencing concept is used to improve the velocity
tracking, energy usage and in-train force management of the heavy-haul train. In
[Zhuan & Xia 2006], authors designed an optimal cruising controller off-line to minimise
the in-train forces and used electronic pneumatic braking systems to minimise time-delays
in control commands. In [Marino et al. 2013], a fault-tolerant control scheme was proposed
to address motor speed sensor faults problem for train cruise control.

Further, [Faieghi et al. 2014] dealt with the robust cruise control problem of high-speed
trains with unknown train model parameters and in the presence of external disturbances
by Lyapunov-based controller to achieve asymptotic error tracking. In [Li et al. 2015], suf-
ficient condition for the existence of the robust output feed-back cruise control law is given
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in terms of LMIs for a multi-point modelled high-speed train, to track the desired speed,
to stabilise the spring displacement between adjacent carriages and finally to guarantee a
prescribed H∞ disturbance attenuation level.

In [Li et al. 2014], authors designed robust controller for a time-varying measured high-
speed train to guarantee reference tracking, to maintain equilibrium spring displacement
and to attenuate wind gust disturbance, by providing sufficient LMI stability conditions. In
[Li et al. 2016], author proposed optimal guaranteed cost control for speed tracking with
an adequate level of train performance over admissible uncertain resistance coefficients
and control constraints. Further in [Wang et al. 2019b], author considered the data loss
phenomenon in the wireless communication channels between the heavy-haul train and
the railway control center and designed a Lyapunov stability theory based robust optimal
MPC controller to ensure velocity tracking ability, energy-efficiency and operational safety
with a prescribed H∞ disturbance attenuation level under the control constraints.

2.4 ATC challenges for long journey trains

In the Section 2.3, we saw that, in literature various methods are proposed to make
urban-rail/main-line/high-speed/heavy-haul train operation automatic with the help of
ATO. However, compared to urban-rails, implementation of these strategies to real-time
operation of main-line/high-speed/heavy-haul trains face challenges. In the following, we
present the challenges with ATC implementation in long journey trains.

1. Compared with urban-rail transit networks, in which each line is a relatively enclosed
system, i.e. independent from each other and each train moves like a "shuttle”
on the fixed tracks, the long journey railway networks are relatively open systems
with heterogeneous trains. The trains usually have inter mingled circulation plans,
i.e a train may travel on different railway tracks according to its circulation plan.
Therefore, the ATC framework design for these open systems would be definitely
more constrained than that of urban-rail systems.

2. The large and complex track layout for these trains brings operational constraints
such as signalling or interlocking of routes. In Europe, many high-speed trains cross
more than one region or nation, thus will require synchronisation of multiple installed
signalling systems along the track-side from ERTMS of different countries.

3. The new generation of ATC for high-speed railways is needed to respect the scal-
ability and interpret-ability of the train control systems [Bienfait et al. 2012]. Dif-
ferent from urban-rails, in which the main functions of ATC are clearly defined by
city specific operating companies, there is currently no uniform standard to clarify
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the essential functions of ATO in main-line/high-speed/heavy-haul railways (usually
travel among different countries) to achieve the operational goals.

4. An automatic country-wide train network can facilitate time-efficient mobility, green
transportation and cost-effective travelling similar to urban-rail network but the
required investment in the rolling stocks and infrastructures are huge.

5. For main-line/high-speed/heavy-haul trains, speed tracking is difficult since the train
dynamics involve extremely high-speeds and different external environment. The
aforementioned survey also indicate that for such complex high-speed train dynamics
novel control methods have to be researched.

In consideration of above arguments, it is highly likely that drivers will be the train oper-
ators for main-line/high-speed/heavy-haul railway transportation for some time to come.
Under this premise, we study train operation safety issues in the railway transportation
while considering the driver-in-the-loop. In the coming sections, we present the activities
that the driver has to perform and understand the possible reasons of failure to deliver
the real-time objectives and ensure safety of the railway transportation.

2.5 Driving activity

Train driving is principally a cognition activity. The driver needs to observe, process and
memorise the information coming from the in-cabin dashboard and the environment, in
order to anticipate the events, and plan a sequence of train control actions. In order
to understand driving activity in-depth, we present various in-cabin equipment, in-cabin
signals, driver’s information acquisition modalities, driving aids and driving requirements.

In-cabin equipments:
In the cabin, the driver has access to a number of monitoring and control functions such
as power/brake lever, emergency brakes, screen for monitoring/signalling/troubleshooting
train status, selecting the driving mode, “dead man” functions such as a push button or
a pedal under his foot (used to monitor driver state of consciousness in real-time through
out the trip), radio (for communicating with the railway control centre), microphone (for
communicating with the passengers), horn, and other functions such as air conditioning
control, control board for opening the doors or activating the lights.

Signal types:
While utilising the monitoring and control function of the train, the driver also has to
pay attention to the signals coming from railway traffic control. This particular activity is
necessary to ensure travel safety and traffic regulation, by maintaining sufficient headway
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separation between trains. In practice, drivers are communicated by visual signals (com-
bined with audible alerts) to slow down or to stop. The visual signals can have up to four
different states, [McLeod et al. 2005]:

• green (meaning it is safe to proceed to the next signal),

• double yellow (expect to stop at the signal after the next one),

• single yellow (expect to stop at the next signal),

• red (stop at this signal).

These coloured light signals are used to provide earlier warning of the state of upcoming
signals for drivers. Further, the in-cabin visual signals (of the state of the upcoming signal)
are supported with an audible alert from the Automatic Warning System (AWS). The
modern AWS system issues two audible warning to discriminate between the signal states:

• ‘clear’ (indicated by a bell or simulated chime at around 1200Hz) sounds, if the
driver is approaching a green signal and

• ‘warning’ (indicated by a steady alarm or horn sound at around 800Hz) sounds, if
the signal is showing any other aspect apart from green.

Once the visual signal is acknowledged (by pressing a button), a visual reminder of the
state of the upcoming signal is kept displaying inside the cabin. If the driver fails to
acknowledge the visual signal with the audible warning, a ‘full service’ brake application
is made automatically. Thus, during the trip, in order to achieve the real-time objective,
driver needs to manage his attention among all these multiple source of information.

Information acquisition modalities:
Driver receives the information through several modes, i.e. visual, audio, vestibular and
haptic [Rachedi 2015].

• The visual mode, evidently, the most important mode, gives precise information of
in-cabin dash board indicators.

• The audio mode draws driver attention to the system malfunction alerts and also
informs about the physical interaction of the train and the environment.

• The vestibular mode informs about the train dynamics. Through this mode, driver
feels the information about the linear and the angular acceleration of the train
through the otolithic receptors and the internal canals of the ears respectively.

• The haptic mode informs through tactile information (skin deformation) or kines-
thetically (muscle, tendon and joint activities), the train control strategy or other
system malfunction alerts.
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With several source of information, train control becomes quite a challenging task.

Driving activity analysis:
From the perspective of ecological perception, the train driver is in a relatively unique and
paradoxical situation. Seated at the front of a fast moving train, the driver is enclosed in
an extremely powerful and compelling optic flow [Gibson 1979]. A phenomenon, in which,
information from environment is directly (i.e. without requiring cognition) available from
pattern/motion perception and actions are taken without the need for thought/calcula-
tion/conscious decision-making to control the timing and co-ordination of train movement.

However, apart from a very few situations (such as approaching signals), the infor-
mation that their senses would normally draw on for train control, is of no relevance to
their driving task. In addition, the driver has no control over directional movement and
thus the control of speed is entirely mediated by cognitive processes such as perception
of signs, and route knowledge. Thus the driver is required to balance the cognitive use of
the speedometer and the direct use of the optic flow in estimating train speed.

Further, in order to manage the tasks, driver needs to develop strategy on the go. It is
because strategy helps during very high/low workload or when subject to other influences.
In order to have a strategy, driver needs to have situation awareness. Loss of situation
awareness may lead to surprises [Sarter & Woods 1998], i.e. a red visual signal with AWS
warnings has to be acknowledged and appropriate braking strategy has to be initiated.

Therefore, at a given time, according to the context and the situation, the driver
has to execute the tasks efficiently while considering the organisational and technological
constraints posed by the complex socio-technical system [Rasmussen et al. 1994].

Driving aids:
Recognising the critical role that situation and the environment play in cognitive per-
formance, many artefacts are used in order to properly distribute/direct driver cognition
[Hutchins 1995]. For example, in order to avoid crossing red visual signal with AWS warn-
ing, the placement of a prominent AWS magnet in the middle of the track is used, to cue
the driver in advance of a warning sounding. Other environmental cues include use of
Train Protection and Warning System (TPWS) antennas, hot axle box detectors, other
incidental AWS sounds (relays clicking) and a myriad of other track-side artefacts.

The knowledge and experience of a route that drivers develop over time also supports
anticipation and future-orientated behaviour [Hollnagel 1998]. Route knowledge allows
the driver to think ahead, and helps control the allocation of cognitive and perceptual
resources based on expectations about the future. It also helps the driver in spotting and
interpreting cues and other information. A driver with the route knowledge has more
subjectively available time and a greater cognitive control over his performance.
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Driving requirements:
The study conducted by the Rail Safety and Standards Board (RSSB) emphasise on the
importance of the state of driver cognition at a specific time (‘Now’) in a specific situation
and a specific context for a nominal train operation, [McLeod et al. 2005]. That means, a
driver is required to be "attentive" and "vigilant" during the train operation.

• The attentiveness is also referred to ‘dynamic selective attention’. In real situations,
particularly in the case of vision (though also in hearing), attention needs to be
directed to one source of information at a time. To some extent attention can be
shared between two or more tasks, although performance will usually be degraded.

• On the other hand, vigilance is typical used for ‘watch-keeping’ tasks, where an
observer tries to detect signals that arrive at infrequent intervals during which noth-
ing much happens. Often to promote vigilance, driver is supported by an occa-
sional message, that requires an answer. The experimental Pro-Active AWS system
[Dore 1998], provided a means to achieve this, by requiring an ‘answer’ to the signal
ahead, from the driver.

The attention and vigilance requirements are necessary, not just for better environmental
perception and information processing, but also to take decisions and execute actions.

• The AWS, which is used to support visual signals to draw the driver’s attention, is
also sometimes used for a number of non-signal related events such as emergency,
temporary or permanent speed-limits, and certain level crossings. The driver has to
correctly interpret which of more than one possible condition the audible alert refers
to, and therefore what behaviour is appropriate.

• In situations where the in-cabin visual reminder can refer not to the immediate past
signal, but to a signal some time prior to that. The driver need to be cautious and
need to have an active memory to judge the visual reminders correctly.

• Sometimes it also happens that the time period over which any AWS indication is
‘active’ in conveying information about the track ahead, can vary from a few seconds
to possibly many minutes. The driver need to display patience and gather enough
information to develop expectation of the coming situation.

In the high-speed driving scenario, trains normally do not stop at the intermediate stations
until it reaches a specific station. During the long term handling drivers choose a driving
method to not only reduces in-train forces acted on the coupling systems between neigh-
bouring carriages, but also makes the actual travelling time stick to the nominal scheduled
considering various track condition and in-cabin dashboard signals. The handling strategy
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primarily relies on their own experience and judgement. Due to long train operating time
(>8h), the driving task usually becomes stressful and laborious.

From the actual observations of manual driving, it is noticed that the sophisticated
drivers tend to exert control commands intermittently when adjusting the train speed to
get rid of sliding and slipping [Wang et al. 2019a]. Once the train enters into the cruise
stage, it is relatively easy to maintain the target speed due to the large inertia. Under this
situation, experienced drivers only apply the tracking/braking force occasionally to avoid
the waste of energy. Such situation may give rise to driver fatigue and eventually loss of
driver attention/vigilance, which is unsafe for railway operations.

2.6 Driving challenges

The issue with driving is that, despite extremely powerful and compelling attention-getting
devices combined with a highly visible visual reminders and signalling cues, experienced
train drivers might pass signal at danger (SPaD) [Yan et al. 2018]. A SPaD is said to occur,
when a train passes the headway limit or a stop sign and moves into a section of track
where it has no authority. The driver miss to allocate it’s attention resource to determine
the immediate priority and expectations, which eventually affects the driving strategy.
Although, the chosen strategy will depend, to a large extent on the drivers training,
experience and confidence, but it will certainly affect train operation performance.

Several factors can potentially influence the driver’s understanding/belief about the
current state of the world and therefore how an AWS alarm is interpreted. These include:

• expectations about the current location,

• the nature of the alarm (bell or horn),

• the driver’s interpretation of the nature of the preceding alarm,

• visibility of signals and magnets on the track ahead,

• by what time or by what location the train speed to be achieved.

Changes in any of these factors can potentially lead to a change in the driver’s inter-
pretation of a particular AWS alarm. In combination or when put into the wider context
including factors such as the driver’s level of fatigue, emotional state, values and belief
system, they have the potential to cause the driver to misinterpret what an AWS alarm
refers to and what action to take. In the next subsection, we present various factors that
influence degradation of driver "attention" and "vigilance".
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2.6.1 Driver attention

Broadly, loss in driver attention is divided into two general categories: (1) insufficient
attention and (2) misdirected attention, relating to the activation and selective aspects of
attention respectively, [Engstrm & Monk 2013].

Insufficient attention occurs when the cognitive resources allocated by the driver fails
to match that demanded by tasks critical for safe driving. While misdirected attention
occurs when the demands of task’s currently critical for safe driving are not matched due
to the allocation of cognitive resources to other safety-/non- critical tasks.

The taxonomy of the inattention states that, insufficient attention usually occur due
to internal factors, while misdirected attention occur due to external factors.

• The internal factors are most often linked to mental fatigue. Sleepiness due to lack of
sleep quality/quantity, disrupted sleep patterns, sleep disorders due to shift working,
lack of sleep recovery time between high work shift lengths lead to compressed work
periods and contributes to driver insufficient attention [Filtness & Naweed 2017].
Severe sleepiness are typically accompanied by behavioural impairment, which im-
pact driver’s reaction time.

• On the other hand, external factors, such as physical fatigue, which occur while
operating the socio-technical system induce misdirected attention. For example,
sometimes, driver may focus on non-safety critical activities, i.e. by being distracted
due to in-cabin or environmental factors.

In a growing body of research, such as [Raats et al. 2020], has shown that trust and
confidence in technology also plays an important role in influencing the way driver interact
with technology-based systems. If the system is regarded as untrustworthy, it will tend to
be used incorrectly or is not paid enough attention.

2.6.2 Driver vigilance

The factors that affect driver vigilance are also categorised into factors internal and ex-
ternal to the driver, [Fletcher et al. 2005].

• The internal factors comprise driver personality traits such as humour, introversion
or extroversion, sensitivity, time of the day (circadian rhythm), the stimulants etc.

Long train driving hours require high levels of mind concentration on highly
monotonous sections of track with minimal input requirements. Such task feature
represents high risk of mental/physical fatigue as the monotonous section require
sustained vigilance. Moreover, drivers need to control dynamics of relatively long
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(upto 10 km), heavy carriages for long distance without the liberty to take regular
breaks for recovery, thereby lowering vigilance and reducing the ability to react.

• The external factors comprise, complexity or monotone nature of the task
and the environment (such as noise, vibrations or temperature) of the cabin
[Cabon et al. 1993]. The monotonous nature of task promotes track/task hypnosis,
i.e. an uneventful driving, where a lack of novelty promotes automatic responses,
while the complexity of the task increases the cognitive load.

In modern multi-aspect signalling there is a tendency to shorten the block sections.
When train traffic is dense on a track, a train will often come upon a quick succession
of double or single yellow aspects. At every signal, the driver will get an AWS
warning, which he has to cancel. In such conditions, the risk of frequent cancelling
action degenerate into a reflex action and promote a behaviour of "looking without
seeing". Thus, driver can and most often do avoid being vigilant to these signals.

The degree of impact of internal and external factor on driver vigilance are different.
The impact even change for different driver. In general, the noise, the vibration or the
rhythm circadian have little impact on driver vigilance compared to the mental/physical
fatigue, monotony or complexity of task.

2.6.3 Impact of driver fatigue

In the previous subsection, we saw various factors that affect driver attention and vigilance
levels. The effect is usually visible through changes in driver behaviour, driver physiology
and also through driver performance.

• Owing to driver fatigue, the driver is observed to have some characteristic be-
haviour sequence for different duration. Some observed symptoms related to driver
behaviour include, repeated yawning [Zyla & Skotniczny 1996], nodding of head,
reduction in head movement, slow reaction to external stimuli [Kosinski 2008], fre-
quent change of position, frequent touches of face and eyes, frequent blinking of eyes
[Schleicher et al. 2008].

• Among physiological changes, it has been observed that the activity of certain part
of the brain increases. The sympathetic activity in the brain, which characterises
wakefulness/vigilant behaviour, increases, while there is decrease in parasympathetic
activity in the brain. Other symptoms include increase in cardiac rhythm, loss of
memory, loss of concentration.

• It is also reported that fatigue induced loss of attention and vigilance, directly im-
pacts driving performance. Some observable events include jerky increase/decrease
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of the train speed, decrease in capacity to follow the in-cabin signals, the increase in
time to perform a task, the increase in reaction speed/time to in-cabin signals.

In order to tackle the issue arising due to driver fatigue, driver fatigue detection systems
are installed. In the next section, we will present methods used for driver fatigue detection.

2.7 Driver fatigue detection

Driver attention monitoring is important for safe driving. Although, the primary pur-
pose to detect driver fatigue, is to generate alert signals but driver monitoring also
helps in, driver workload estimation [Xing et al. 2018a], driver activity identification
[Xing et al. 2018b], secondary task identification [Zhao et al. 2017] and driving style recog-
nition [Martinez et al. 2018]. Many techniques are presented in literature to detect driver
fatigue. Based on the type of data used, [Sikander & Anwar 2019] categorise the tech-
niques into four groups as shown in Fig. 2.14.

Figure 2.14: Methods of driver fatigue detection

2.7.1 Biological feature based

Biological signs offer good indication of early onset of fatigue and can be utilised to
alert driver well on time. Biological signals are categorised into heart, brain, eyes and
skin based signals. Changes in biological signals such as Electrocardiography (ECG),
Electroencephalography (EEG), Electro-oculography (EoG), and Surface Electromyogra-
phy (sEMG) are detected to ascertain driver fatigue.

• ECG signals are detected by sensors embedded in the steering wheel or the seat
belt or even in the driver seat, to measure variation in parameters such as Heart
Rate (HR) and Heart Rate Variability (HRV), [Hu et al. 2009].
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• EEG signals, which comprise either Gamma (30-42Hz), Beta (13-30Hz), Alpha (8-
13Hz), Theta (4-8Hz) or Delta (0.5-4Hz) waves, depending on the driver state, are
recorded using flat electrodes attached to the scalp of the driver, ([Lin et al. 2006b],
[Chouvarda et al. 2007]).

• EoG signal, which is actually corneo-retinal potential difference between the back
and front of the eye, is used to measure the movement of the eye using electrodes
attached to left and right side of the eye, [Zhu et al. 2014].

• sEMG signal sensors such as electrodes are placed on the neck, back,
shoulders and wrists to record electric potential generated by muscle
cells to predict muscular fatigue ([Critchley et al. 2000], [Katsis et al. 2004],
[Balasubramanian & Adalarasu 2007]).

These signals are processed using different techniques, such as model-based techniques,
[Lin et al. 2008] or data-based techniques such as NNs, [Akin et al. 2008], Support Vector
Machines (SVM) [Shen et al. 2008], [Yeo et al. 2009]. Although, biological sensors are
highly accurate to observe minute changes of the state of the driver, but owing to intrusive
nature of these sensors, fatigue detection is susceptible to driver natural movements.

2.7.2 Facial feature based

Features exhibited on the drivers face and through head movements show some of the
most obvious symptoms of fatigue. Facial feature based fatigue detection systems are
broadly divided into eyes, mouth and face/head based systems. Facial features such as
eye blink frequency/closure rate/closure duration, Percent of time the eyes are Closed
(PERCLOS) [Orazio et al. 2007], gaze direction [Friedrichs & Yang 2010], yawn count
[Wang et al. 2004], face/head position [Vural et al. 2007] and nodding frequency are ob-
served to asses driver fatigue. The non-intrusive sensors such as camera is used to extract
features from eye, mouth and face images to detect driver state.

Several authors have contributed to this field of research. [Bergasa et al. 2006],
[Senaratne et al. 2007], [Damousis & Tzovaras 2008], used rule-based methods such as
fuzzy logic inference system, while data-based techniques such as NN were used by
[Suzuki et al. 2006], Dynamic Bayesian Networks (DBN) by [Sun et al. 2007], SVM
by [Hu & Zheng 2009] and image filtering techniques such as Gabor Wavelets by
[Fan et al. 2007], [Fan et al. 2010], to detect the anomaly. Although these methods use a
non-intrusive sensor, the results from these methods depend on the resolution of images,
require complex computation and require high illumination for accuracy of detection.
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2.7.3 Vehicular feature based

Fatigue reduces driver’s ability of situational awareness, which ultimately reflects in driving
performance. Particularly, for road-based transportation, the deviation in features such
as lane crossing and steering wheel angle are considered as indicators of deteriorating
driving ability [Takei & Furukawa 2005]. These features are popularly used by various
automobile companies to design fatigue detection systems. For rail-based transportation,
unusual activities such as pressure changes on brake and accelerator [Ersal et al. 2010],
load distribution on the driver’s seat [Furugori et al. 2005] and train speed are considered
for fatigued driver indications [Rachedi 2015]. The purpose to measure these signals is to
assess time-delay in reaction of the driver.

In literature, various techniques are used to process these signals. Some authors
use model-based methods, [Zhong et al. 2007]; others used data-based methods such
as NN, [Sayed & Eskandarian 2001], [Eskandarian & Mortazavi 2007], random forest al-
gorithm [Torkkola et al. 2004], Gaussian Mixture Models (GMM) [Wakita et al. 2005],
Hidden Markov Models (HMM) [Farid et al. 2006], DBN [Yang et al. 2009], KNN algo-
rithm [Krajewski et al. 2017]. Commonly, the methods use real-time signal data about
brake pressure and train speed/acceleration signal over a time horizon to compute fea-
tures for detection of driver reaction time-delay. Compared with facial feature, such as
PERCLOS, vehicular feature metrics are more robust for fatigue detection.

2.7.4 Subjective reporting

As a subjective reporting tool, Karolinska Sleepiness Scale (KSS), [Svensson 2004], is used
as a self assessment questionnaire to record the fatigue levels of drivers. KSS is a nine point
assessment list, where 1 represents highest level of vigilance while 9 represents lowest level
of vigilance (high level of sleepiness). The driver is asked to report fatigue level and also
the factors responsible for his loss of attention and vigilance after the driving. Authors,
[Bekiaris & Amditis 2001] and [Ingre et al. 2006] found that there is definite correlation
between driver loss of attention and vigilance during driving and KSS results. Further, in
order to scientifically prove it, authors, [Craig et al. 2006], and [Kaida et al. 2006] showed
that the results even correlate with the results of previous methods. Since the question-
naire data was recorded after long driving hours, therefore, the technique is less suitable
for real-time detection and prevention.

2.7.5 Discussion

In order to mitigate driving fatigue, railways take several measures such as, work rosters or
shift/sleep/fatigue management systems. However, fatigue during long driving hours such
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as, cruise periods, is natural and unavoidable. In this view, a considerable amount of effort
is put to implement above methods in developing fatigue detection systems. The built
systems may also be required to fulfil additional purpose of assessing driver’s expected
actions or evaluate variability in driver’s execution.

Currently, a number of commercial driver attention/vigilance monitoring systems ex-
ist. These systems are mostly based on a combination of facial and vehicular feature
based system. It is because, many researchers such as [Eskandarian & Mortazavi 2007],
[Lee & Chung 2012], [Sultan et al. 2013], have affirmed that a combination of features
can drastically increase the accuracy of fatigue detection. The authors argue that, in the
events of noisy driver facial feature signals, the vehicle feature data helps in detecting
driver state. The information redundancy makes it possible to compensate for the loss of
one of the sensors used. Several other authors have also contributed to this research by
processing the combined signals using data-based methods such as NN [Cabon et al. 1993],
DBN [Yang et al. 2010], [Cheng et al. 2012] or by using rule-based methods such as fuzzy
logic [Khushaba et al. 2011], [Picot et al. 2012], [Abichou et al. 2015].

In general these systems collect facial image and train state data for some minutes
(usually 3-4 min), then compute the facial and vehicular features to decide the state of
the driver, [Friedrichs & Yang 2010]. In one such recent study, using the collected data,
[Sun et al. 2015] computed facial features such as PERCLOS, eye blink frequency, mean
of eye-opened level & yawning frequency and also the vehicular features such as non-
steering percentage, percentage of on center driving, standard deviation of steering wheel
angle/vehicle speed and frequency of abnormal lane deviation. Then, a multi source data
fusion model based on Takagi-Sugeno fuzzy NN was developed to combine information
from both the driver and the train to provide the probability of loss of attention. The
prediction accuracy during field experiments was observed to be 93 %. Fig. 2.15 shows
the PERCLOS and EEG signals. Both the signals are definitely correlated. However,
PERCLOS, which computes a moving average on 2-5min of data has less noise than EEG,
which is a bit fast and accurate to detect driver state.

Inspite of high detection accuracy, the applicability of these combined approaches
is contextual. It is because they require appropriate environmental conditions such as,
proper in-cabin lighting or ambient temperature. The detection robustness also change
with inter-individual variation, as each driver has different driving style. Moreover, the
real-time data collection and processing methods demand time, which induce time-delays
in driver state detection. The aim of driver fatigue detection is to help driver to be
vigilant, but the delays in detection will in turn affect generation of alarms/advises by
Driver Advisory Systems (DAS).



42 Chapter 2. Railway transportation system

Figure 2.15: Output of driver fatigue detection system

2.8 Driver advisory system (DAS)

In Section 2.7 we presented, a monitoring subsystem of ADAS, i.e. driver fatigue detection
system. In this section we will presented DAS, which is used to enable safe and eco-
driving. The monitoring device detects/predicts the driver state, while DAS generates
driver alerts/advises to support the driver, [Filtness & Naweed 2017].

During the journey, a train driver is not only required to ensure safety margins (a
minimum braking distance) and guarantee punctuality, but is also required to achieve
energy-efficiency and minimise wear by eco-driving. One approach to fulfil this require-
ment is by the use of DAS. DAS assist train driver by delivering optimised energy-efficient
speed advisory signals for train operation based on static or real-time railway operation in-
formation. The driver is required to be attentive and follow the recommended speed from
DAS. DAS systems are broadly distinguished between two types, Stand-alone Driver Advi-
sory System (S-DAS) and Connected Driver Advisory System (C-DAS) [Yang et al. 2013].

S-DAS:
S-DAS calculates driver advise predominantly based on static time table and track profile
data. Particularly, S-DAS requires data such as track profile and time left to the next
station from the static time table. S-DAS does not need to establish a real-time interface
with the global time management system by the railway traffic controller. Today, most
of the DAS systems in operation are S-DAS type. For example, Computer Aided Train
Operation (CATO), a state of the art DAS, developed by Trans-rail in association with
Swedish transportation for mining enterprise, [Leander et al. 2013].

In literature, several authors have contributed in development of S-DAS systems.
Notably, in [Dong et al. 2018], authors proposed a traction-distance-based algorithm for
optimising train trajectory and advisory information, which was further evaluated on
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an experimental platform including train driving simulation and prototype S-DAS. In
[Li et al. 2018], proposed dynamic speed trajectory optimisation design for developing
S-DAS. The authors first proposed an offline trajectory optimisation using the GA to
optimise the energy-efficient trajectory, then constructed an online optimisation to dy-
namically adjust the trajectory when a driving deviation occurs. In [Zhu et al. 2018],
authors proposed Intelligent Driver Advisory System (iDAS) to assist train drivers im-
prove driving performance under disturbance situations. iDAS used online optimisation
techniques, which considered on-the-way train status information.

C-DAS:
On the contrary, C-DAS has the capability to accommodate current traffic condition.
C-DAS provides a medium upon which dispatchers decisions from the railway traffic con-
troller can be communicated to the drivers, dynamically during the journey. Particularly,
the dispatchers send speed-limits in real-time for C-DAS to define the optimum driving
style and for train to adhere to the schedule. Further, the information about train loca-
tion and speed regulation is communicated back to the railway traffic control to enhance
the quality of traffic regulation decisions by the dispatchers. It is this enabler function
of C-DAS that delivers the flexibility to change the timetable according to railway traffic
control needs, i.e. enabling both communication and active correction to the driver.

There are several commercially available C-DAS products. One such product is the
Energy-miser DAS system, invented by Scheduling and Control Group (SCG) at the Uni-
versity of South Australia and Transportation Technology Group (TTG). While consider-
ing static-data such as, track profile (speed-limits, gradients, curves), train characteristics
(weight, length, motoring/braking performance etc.) & train scheduled and the real-time
measurement such as, train speed & location using Global Positioning System (GPS), it
can calculate instantaneous optimal train driving profiles for driver recommendation.

Several authors proposed the development of C-DAS systems. In [Yang et al. 2013],
authors shared experience of developing and deploying CATO C-DAS in Sweden. In
[Zhu et al. 2016], authors proposed design methodology for developing C-DAS using smart
phone. C-DAS has unlocked a number of opportunities for optimising operational effi-
ciency by integrating DAS with railway traffic control. However, some researchers such
as [Wang et al. 2013a], and [Xiang et al. 2015], have proposed that C-DAS with a driver
behaviour adaptive speed advisory model can be a successful tool to understand/enhance
driver’s ability to read/respond to the generated advises and facilitate eco-driving.

In a recent study at our lab, authors, [Ladelfa et al. 2019], designed Cooperative Eco-
Driving Rail Control System (CEDRICS). CEDRICS generate speed advises on-line, while
also considering real-time driver behaviour information. In order to generate speed recom-
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mendation, CEDRICS solves an optimal control problem that minimises the energy con-
sumption under constraints such as speed/acceleration/jerk limitation, travel time since
last advice, distance to destination, varying track gradient etc. The optimal control prob-
lem considers both the model of the train and the driver. In order to consider real-time
driver performance to generate driving advises, the parameters of the driver model were
updated recursively, using the information about applied traction force. The developed
system was also tested on a full scale train driving simulator [UPHF 2014]. The human-
machine interface of CEDRICS system is as shown in Fig. 2.16. A visual transmission
mode in the form of head-up-display system can be seen on the windshield. The strategic
placement of the transmission mode is to reduce the driver’s head movements, to avoid
additional workload, and also to increase the driver behaviour detection.

A C-DAS with a driver adaptive speed advisory functionality is beneficial for eco-
driving, however, a delay in driver/train state measurements or a delay in signals from the
railway control center will jeopardise it’s intended benefits. Such delays in detection and
transmission may promote false alarms/advises generation by ADAS and will induce driver
distraction or even increase cognitive load. Moreover false alarms/advises may hinder
ADAS acceptance by the drivers, which raise rail-based transportation safety issues.

Figure 2.16: a) Human machine interface, b) Advisory signals

2.9 Driver modelling

In the previous section, we highlighted the problem of unreliable driver and train state
measurements in generating driver advisory signals. In order to facilitate the study of
train dynamics stability in presence of varying driving behaviour and the aforementioned
time-delayed measurements, models for driver and train are necessary. The train models
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were presented in the Section 2.3.2. In this section, we will present different driver models.

In the context of automatic control, the driver model should give a formal represen-
tation of the driver that can conveniently describe the observed driving process and also
could be used for simulation of Driver-Train interaction. It would be beneficial if the rep-
resentation is also usable to predict driver actions or to verify the stability of Driver-Train
interacting system or to develop shared control for the Driver-Train systems.

Figure 2.17: Factors influencing driver behaviour modelling

2.9.1 Significant factors for driver modelling

Since early 1950s, several researchers, from different disciplines ranging from psychol-
ogy, ergonomics to automatic control, have tried to better understand driving be-
haviour and attempted to describe it in the form of a model. Early research, such as
[McRuer & Jex 1967], mainly focused on modelling air-pilots. They broadly categorised,
factors influencing driving and subsequently driver modelling into 3 types, namely, task,
environment and internal to driver related factors.

2.9.1.1 Task related factors

The task related factors include the type of information coming from the radio block center,
the display modality of the information and the control elements available for the driver
to act on the information, as shown in Fig. 2.17. These factors have a direct and explicit
link with the task, and have a major effect on the dynamics of driver behaviour. For
example, the information coming from radio block center can be about speed-limit, which
can be communicated either via visual or audio or both interface. Further, considering
speed-limit and other sensory information, C-DAS computes speed advisory signals, that
can either be shown as a set point or an increase/decrease arrow. The driver can then
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either use a physical device, such as a speed control knob or accelerator pedal to control a
variable of the train state (either speed or direction). The influence of task related factors
in driver modelling is evident from this example. With the change in human-machine
interface, there is change in nature of the information obtained and subsequent change in
time needed to process this information, which will ultimately change the execution time
and the corresponding model representing the process.

2.9.1.2 Environment related factors

The environment related factors include, factors internal to train cabin, such as the hu-
midity, atmospheric conditions, luminosity, sound and vibrations in the driver’s cabin, or
factors external to train such as the rail track condition, weather. These factors influence
the driver in carrying out the task and should ideally be considered in driver modelling.

2.9.1.3 Factors internal to driver

The factors internal to driver that affect driver behaviour include, psychological state
(mental fatigue, motivation), experience (anticipating and predicting element) and physi-
cal state (physical fatigue due to workload). Drivers are also found to have a non-linear be-
haviour [Tustin 1947] and to have a reaction time-delay to external stimulus. For example,
a driver usually acquire information to a certain threshold before reacting (reaction thresh-
old of the human eye is 50 micrometer). This information acquiring, processing and trans-
mitting time by the driver leads to visual reaction time-delay between 180-200 ms and audi-
tory reaction time-delay of 140-160 ms in ideal conditions [Woodworth & Shlosberg 1954].
Although, the impact of these factors change from one driver to another and also from
one situation to another. Ideally such factors should also be considered in modelling, to
represent inter-individual variability and intra-individual unpredictability.

Modelling of the driver is usually strategic, i.e. objective driven. Although, all the
above mentioned factors contribute to driver modelling, the relative relevance of these
factors change with the context of application. The contextual objectives lead to simplified
driver models with limited area of validity. For example, in this thesis, the objective is to
stabilise only a single degree of freedom of the train motion. In the next subsection, we
present methods proposed in the literature to model a driver.

2.9.2 Driver modelling: literature review

The literature on driver models can be classified into three groups, behaviour, cognitive
and data-based models [Abuali & Abouzeid 2016]. The classification also represent the
progression of driver model development (in that order).
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• The behavioural models subgroup is sensory-motor level or low-level modelling. This
subgroup try to present the driver control of train aspect analytically, i.e. by using
continuous-time or discrete-event control theory.

• The cognitive models subgroup include qualitative models to represent the mental
activities of the driver, i.e. possible driving errors or possible risks taken.

• The data-driven models subgroup represent the driver’s activity based on past driver
and train state measurements. This subgroup use statistical techniques or artificial
intelligence on past qualitative or quantitative driving data.

Next, we detail the three subgroups with some example models.

2.9.2.1 Behaviour models

Behaviour models are further classified into three categories, cybernetic, event and hybrid
models. Cybernetic models represent the continuous dynamics of driver behaviour in the
form of linear/non-linear/quasi-linear analytical models. The parameters of the models
are adapted to the task variables in the classical control form such as PID or in the modern
control form such as robust/optimal form. Event models allow the driver behaviour to
be represented discretely/qualitatively/sequentially in the form of finite state machines
such as finite state automata or petri nets. Hybrid models, on the other hand, allow for
integration of continuous and discrete description of driver behaviour.

a. Cybernetic models

Cybernetic models are best known and most used in the literature. These models are
derived using analytical tools of control theory and form one or several control loops to
represent driver behaviour dynamics. They may be expressed as a transfer function or as
a differential equation. The model parameters can even be adjusted/adapted to design a
satisfactory closed-loop control. Such driver representation are either used to design haptic
feed-back controller or to close the Driver-Train control loop for simulation purposes.

Over the past 70 years, several authors have contributed to development of cy-
bernetic driver models. The key developments include [Tustin 1947]’s linear model,
[Mcruer & Krendel 1962]’s crossover or feed-back model to represent driver compensation
and prediction behaviours, [McRuer & Jex 1967]’s second order delayed transfer function
to represent neuro-muscular delay and [Donges 1978], [Mcruer 1980] & [Macadam 2003]’s
feed-forward model to represent driver anticipation by perception organs.

Recently more descriptive models were proposed by authors such as by
[Sentouh et al. 2009] and [Saleh et al. 2013], to model automobile drivers, for various
ADAS applications such as shared steering control, lane keeping and even detection of
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distraction. Considering this model, in [Gordon 2009], author even presented analytic
stability results, providing specific relationships between minimum preview, speed and
driver reaction time-delay for a straight line path following case in automobile driving.
For a recent literature review please refer [Mulder et al. 2018].

As an integral part of Driver-Train system, driver is like a black box, that posses a
limited information processing bandwidth. In the closed-loop, driver acquires information
from the environment using different sense organs, which is used to either compensate,
anticipate or pursuit the speed by manipulating the control handle. A simplistic view of
driver could be: the inputs to the black box are the state of the train and speed-limits,
while the outputs are the necessary corrective actions of acceleration/braking to change
the dynamics of the train. A state of the art cybernetic model, considering all essential ele-
ments, i.e. neuro-muscular/proprioceptive and sensory perception to characterise different
driver behaviours in a manual control is as shown in Fig. 2.18 ([Mulder et al. 2018]).

Figure 2.18: Principle internal signals of the driver with adaptation and learning blocks

Driver essential elements:

• The neuro-muscular system captures the interplay between the driver and the train.
This level is in itself a complex control system which can operate in open or in closed
loop combination, as can be seen in Fig. 2.18. The neuro-muscular system comprises
on one side the limb (lower or upper) muscles & the dynamics of the manipulator as
the feed-forward of the control loop. On the other side the neuro-muscular spindle
& the organ tendons also act as neuro-muscular feed-back.
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• The eyes represents the sensory perception system of the operator. They are con-
sidered both in feed-forward as well as in feed-back control loop. The vision system
helps to identify the position of the limbs of the driver as well as provide information
of external environment. Thus, the perception helps in three types of driver inputs
to the system:, i.e. compensation (feed-back), pursuit and preview/prediction/an-
ticipation (feed-forward) behaviour.

A sample cybernetic driver model for lane keeping application is as shown in Fig. 2.19
([Mars & Chevrel 2017]). The parameters Kp, Kc, TI , τp, Kr, Kt, Tn and v are the visual
anticipation gain, the visual compensation gain, the visual compensation time constant,
the processing delay, the gain of the internal model of steering compliance, the gain of the
stretch reflex, the neuro-muscular time constant and the vehicle speed respectively.

Figure 2.19: Cybernetic driver model

Driver essential behaviour: ([Rachedi 2015])

• The compensation behaviour signifies that the driver either reacts in response to the
train state or in response to error between the target signal and the train state. In
this behaviour, the control is in a closed-loop and is exercised continuously in order
to minimise errors in the presence of disturbances. The driver intervenes only when
the random disturbances appear or when the tracking errors or the train outputs
are displayed to the driver.

• The pursuit behaviour is added to that of compensation, when the command inputs
can be distinguished from the train outputs on the display or when the environment
is displayed (for example in the case of following a trajectory). This behaviour adds
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open-loop control to the closed-loop error compensating action. The performance of
the control is clearly improved compared to a pure compensation behaviour.

• The preview behaviour considers the experience and knowledge of train driving, the
working environment and the external environment. The driver can predict varia-
tions in the objective and variations in the result, which is also called as anticipation
behaviour. With this skill, the driver can therefore produce skilful, discreet, correctly
timed, measured and ordered neuro-muscular commands in order to have train states
exactly as desired. The driver is trained for a type of action and acts by reflex to
obtain the final result. Responses/control commands are somehow learned, condi-
tioned and triggered in relation to situations. This behaviour acts in open-loop, and
it adds to the compensation behaviour.

The combination of compensation, pursuit and preview/anticipation/prediction allows
the driver to have additional information to flexibly control the train dynamics, while
countering his own physiological limitations (such as sensory and neuro-muscular delays).
The driver estimates/predicts a low train speed command by foreseeing the route, for
example, speed adjustment before start of uphill/downhill. The driver even adapts his
behaviour according to the dynamics of the technological system and to the changes of
the environment. This characteristic is represented by learning block in the Fig. 2.18.

b. Event models

Event models are based on the theory of discrete-event systems proposed by
[Ramadge & Wonham 1989]. The most widely used tools to model driver behaviour as a
discrete dynamics are Petri nets and Finite state machines (automatons).

Petri nets:
The work of [Aigner & McCarraghar 1996], is one the earliest attempt to model human
activity as an event model. The author stated that by choosing discrete-event formalism,
complex process such as, supervising a partially autonomous system, can be modelled in an
efficient and systematic manner. In [Thiruvengada & Rothrock 2007], author proposed an
affordance based colour petri net model to represent driver behaviours for driving task on
highway system. In [Wu et al. 2011], authors also proposed a deadlock-free and conflict-
free colour petri net model to describe the cooperative behaviour of driver and vehicle
co-pilot, while developing an ADAS system.

Finite state machines:
In [Lauffenburger 2002], authors proposed an automaton to build a sequential representa-
tion of turn negotiation driving task as a function of the vehicle speed. In [Kim et al. 2010],
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authors again used automatons to describe the driver actions in a freeway exit situation
based on affordance theory. In [Rachedi et al. 2013], authors proposed a model to detect
human errors during unexpected tramway departure situations. Some other work include
[Berdjag et al. 2014] and [Berdjag et al. 2015] that focus on detecting human errors dur-
ing train driving. A sample petri net model [Wu et al. 2011] and finite state automaton
model ([Kim et al. 2010]) is as shown in Fig. 2.20.

Figure 2.20: a) Petri net model b) Finite state automaton for driver-vehicle system

c. Hybrid model

During a journey, driving behaviour is often found to be a switching control law instead of
a complex continuous control law. In this view, hybrid models try to capture both continu-
ous and discrete dynamics of driver behaviour, [Kiencke et al. 1999]. In [Kim et al. 2005],
authors developed a piece-wise linear driver behaviour model, to express the relationship
between the driver’s sensory information and the braking operation during stopping ma-
noeuvre. In [Sekizawa et al. 2007], authors proposed a stochastic switched Auto-regressive
Exogenous (ARX) model, for modelling and identification of other vehicle driving be-
haviours for obstacle avoidance application. In [Mikami et al. 2010], authors proposed
Probability Weighted Auto-regressive Exogenous (PRARX), to develop an intersection
safety system. The model was used to track other driver intentions, to eventually predict
other vehicle behaviours and potential outcomes of the situation.

In [Buntins et al. 2013], authors first proposed to use hybrid automata formalism to
model driver behaviour to capture driver behaviour on a highway. While applying the
model, authors were successful in qualitatively predicting vehicle lane change and overtak-
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ing actions of the driver. In another such work, [Schwarze et al. 2013], described driving
behaviour as a result of an optimisation process within the formal framework of hybrid
automata, with a focus on highway driving.

2.9.2.2 Cognitive model

Cognitive modelling represents driving activity as a problem-solving approach. The ap-
proach incorporates information perception, situation analysis and final decision making.
This model family include information processing models, error models and risk models.

a. Information processing models
The most famous cognitive modelling of human-machine interaction is proposed by
[Rasmussen 1983]. In this model, author divides complexity of information processing
into three hierarchical levels: the knowledge-based, the rule-based, and the skill-based. In
driving context, an equivalent classification is proposed by [Michon 1985], showing that
the most suitable structure for driver modelling is the hierarchy of tasks. The proposed
model has three levels: tactical, operational and strategic corresponding to the knowledge,
rules and skills of Rasmussen model.

b. Error models
Error modelling makes it possible to understand the judgement used by the driver in the
choice of actions and their execution. It also makes it possible to integrate the anticipation
aspect. Among several error models, we cite:

• The Goals, Operators, Methods and Selection of Rules (GOMS) model provides a
modelling framework to analyse human-machine interaction. It allows to represent
the cognitive, perceptual and neuro-muscular tasks of the operator, [Degani 1996].

• The Cognitive Simulation Model of the Driver (COSMO) allows the computer sim-
ulation of the cognitive processes involved in car driving, [Bornard 2012].

• The Adaptive Component of Rational Thought (ACT-R) is a unified theory of human
behaviour based on data from cognitive psychology, which provides models that think
and act like humans, [Liu & Wu 2006].

The scenarios in which such models may be useful include: suppose at a distance on
the front-right side of the car/train a pedestrian appear to be walking across the road.
Thus in this urgent situation, the sequence of event or the total reaction time can be
divided into perception time, response selection time and device response time. Each time
has various different choices available with some probability. The experimental results will
highlight the probabilities of the choices and will thus provide a model.
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c. Risk models
Risk models are the cognitive models with good information processing capabil-
ity and performance. They are frequently proposed for the railway sector. In,
[Hamilton & Clarke 2005], the model identifies the integration of different sources of in-
formation as the main function of the railway driver to achieve the objective and the
sub-objectives of driving. A driver performance model interacting with an automatic alert
system has been developed by [McLeod et al. 2005]. This model describes the understand-
ing of the pilot’s state of knowledge at a precise moment and a specific situation/context.
The utility of such model is demonstrated by application to the following studies:

• Research on the effect of train speed on driver interaction with signals and signs.

• Calculation of minimum reading times for signals.

• Development of a human factors Signals Passed at Danger (SPaD) hazard checklist,
and a method to resolve conflicts between signal sighting solutions.

• Research on the demands imposed on drivers by ETCS driving.

Following above presentation, we can conclude that cognitive models are more useful
in human centred ADAS analysis and design than in the management of critical/risky
situations. This analysis is necessary for understanding driving difficulties, possible human
errors and also for the study of the level of interaction between the ADAS and the driver.
This family of models is thus used to help design ADAS adaptable to the driver’s needs.

2.9.2.3 Data-based model

Data-based models are constructed using the driver or the machine state measurement data
from actual driving scenarios. Artificial intelligence or statistical techniques are commonly
used to build this type of model. These models provide the formal and quantitative
representation, not only for describing driver behaviour, but also for qualifying them and
predicting future actions. In order to qualify any driver behaviour as normal/abnormal
from measurements/observations, two modelling solutions are proposed in the literature,
[Ali & Abouzeid 2016].

• The first is to either define a model for the abnormal behaviours and show that the
observed behaviours are similar to this known model of behaviour or,

• The second is to define a model for normal behaviours and show that the observations
are different from this known model of behaviour, [Singh et al. 2009].

The first option is not always possible, because it is difficult to generate a list of
abnormal behaviours in systems characterised by a large number of degrees of freedom such
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as Driver-Train system. For the construction of this type of models, [Boussemart 2013]
proposes four paradigms.

1. The first being the use of categorised qualitative data, i.e. the behaviour of a driver
is recorded as a set, containing several types of actions to categorise the actions.

2. The second being the interpret-ability of the results, i.e. the models which offer
a good recognition and prediction rate are not sufficient. They must also have a
descriptive capacity to interpret driver behaviour.

3. The third being, the use of temporal information because they provide exploitable
training data to construct these models. This is especially important in system types
where life is critical, where time is of the essence. However, taking into account time
is sometimes not necessary, because it adds an additional constraint to the modelling.

4. The fourth is the unsupervised learning. In the majority of cases, not all driver
behaviour is always known. The behaviour vary from one operator to another and
also according to the situation, which means that apriori information is sometimes
neither available nor representative.

Next, we present methods from literature to construct these models for drivers.

a. Fuzzy logic
In [Badamchizadeh et al. 2010], authors presented a hierarchical fuzzy system for takeover
manoeuvre to represent different driver’s way of speed and steering angle control. The
fuzzy rules are created by means of expert questionnaire data of effects of parameters
such as climate, road and vehicle conditions on driving capabilities. In [Shaw 1993], au-
thors proposed a fuzzy logic based model of the driver to perform target compensation
and tracking tasks. The model is obtained by using I/O data of vehicle dynamics con-
trol by the driver and is later experimentally tested for different driving scenarios. In
[Oza 1999], authors used DBN to predict the actions of the ego-vehicle and other-vehicle
driver behaviour. In [Gindele et al. 2010], authors proposed a DBN to estimate other ve-
hicle behaviours and anticipate their future trajectories for safe decision making/motion
planning behaviour of ego-vehicle.

b. Neural network
In literature, several authors used NN to model human actions, [Delice & Ertugrul 2007].
In [Gingrich et al. 1992], authors used NN to capture the knowledge of process operators
to improve lack of efficiency arising due to different operators. Similar studies have been
conducted for drivers, such as in [Zhang et al. 2006], where authors addressed the problem
of uncertainty in subjective judgements of driver by considering a NN based model to pre-
dict driver behaviour. In [Olabiyi et al. 2017], authors proposed a driver action/anomaly
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prediction solution to find patterns that consistently precede an anomaly. For this pur-
pose, authors trained a Recurrent Neural Network (RNN) using features extracted across
multi-modal sensory inputs to mitigate the effects of unsafe driving behaviours, by predict-
ing driver actions at least 5 sec ahead. In [Okamoto & Tsiotras 2019], authors proposed a
machine learning based driver model to develop haptic-shared ADAS system while using
a new unknown input estimation algorithm, a necessary requirement for low-cost driving
simulators that are not equipped with torque sensors. In [Qian et al. 2010], authors used
SVM to detect whether the driver is a legitimate owner of the vehicle or not from the
driver behaviour models.

c. Hidden markov models
In [Pentland & Liu 1999], authors used HMMs for classifying and accurately pre-
dicting driving tasks based on the driver’s preparatory movements. Further, in
[Sathyanarayana et al. 2008], authors proposed a hierarchical framework for the modelling
of driver behaviour and also two different and complementary approaches based on HMMs
have been developed. Some authors even combined above approaches and proposed so
called hybrid methods. In [George 2008], authors proposed driver behaviour models for
manual tracking tasks based on fuzzy neuro inference systems. Similar work has been
identified in [Ertugrul 2008].

2.10 Unreliable measurements problem

To summarise, in the previous sections we reasoned that unlike ATC for urban-rail trans-
port, main-line/high-speed/heavy-haul trains will need a driver and simultaneously a
ADAS based train control. We also concluded that while driver-in-the-loop is benefi-
cial, the driver fatigue can induce safety issues during cruising period. In practice, several
methods are used to detect driver fatigue using fatigue detection systems and to generate
speed advisory signals using C-DAS system. However the advise generated by C-DAS
system may not be reliable, due to delay in driver and train state detection. Such delays
in detection may promote false alarms/advises by C-DAS, which may hinder ADAS ac-
ceptance by the drivers or may induce driver distraction or even increase their cognitive
load, which raise rail-based transportation safety issues.

Considering above arguments, in this thesis, we want to address the ADAS-Driver-
Train closed-loop stability issue. We propose a C-DAS assisted train control schematic
as shown in Fig. 2.21. The driver-in-the-loop train control stability is investigated in the
presence of varying driver behaviour and with delayed driver and train state measurements.
The delay in driver state measurement and communication to the advisor is primarily due
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to unreliability of the collected data and secondly due to data processing time required by
the camera images processing algorithms (often considered as primary sensor to capture
driver state details). The delay in train state measurement (usually speed) may arise due
to faulty carriage speed sensors.

We recall the data flow of driver-in-the-loop system. At first, the speed-limit commands
sent by the radio block center are compared with the current train speed and the difference
is given to the C-DAS system. In addition to this, the state of the driver, as detected
by the driver fatigue detection system (camera as detector in the schematic), is also sent
to the C-DAS system (advisor in the schematic). The C-DAS system considers both this
signal, i.e. the speed difference, the driver state and other train-track related information
to optimise the speed trajectory and generate the recommended speed advises. The driver
then considers this recommended speed advise to correct the train speed. Considering this
scenario, how to assess driver-in-the-loop train control stability is what we study.

Figure 2.21: Driver-in-the-loop train control

In the previous section, we presented various methods to represent driver behaviour.
Broadly, we discussed behavioural, cognitive and data-based models. Particularly in be-
havioural models we presented cybernetic models (compensation, pursuit & preview mod-
elling), event models (petri nets & finite state machines) and hybrid models; in cognitive
models we presented information processing models, error models & risk models and in
data-based models we presented fuzzy-logic, neural-network & hidden markov models.
Since, in this thesis, we want to study impact of driver and train state measurement de-
lays on the driver-in-the-loop train control stability, we identified cybernetic driver models
to be the most suitable. Ideally, we should consider a complete cybernetic driver model,
that incorporate all three elements of driver behaviour, namely, compensation, pursuit
and preview. But considering the complexity of the problem being studied, we preferred
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to consider only the simplest elements, i.e. compensation behaviour of the driver.

Thus, in this thesis, we propose to study the stability of the driver-in-the-loop train
control by considering control theoretic modelling approach for ADAS-Driver-Train system
and explore the design of driver’s state aware ATC.

Figure 2.22: Driver-in-the-loop train control with delays

The closed-loop system with the driver-in-the-loop is as shown in Fig. 2.22. Here we
consider that some external disturbance d(t) is affecting the driver behaviour and y(t) as
the train state measurement. The red arrow represent that both the driver and the train
state are measured with a time-delay. We want to study the stability of the train speed,
given that their is variation in the driver state.

2.11 Conclusion

This chapter has exposed the operation of railways by describing individual function of
railway traffic control and train operation. Emphasising the importance of train opera-
tion for rail-based transportation safety, we described in detail about train speed profile
optimisation and train speed control for different mode of railways, i.e. urban-rail/main-
line/high-speed/heavy-haul and also for train operation at different level of automation.
We argued that although ATC is easier to implement for urban-rails, it is quite challenging
to implement it on other type of railways. Thus, ascertaining the importance of driver in
a main-line/high-speed/heavy-haul railways, we delved deeper into activity of driver, to
understand challenges of train driving. We further discussed how issue of driver fatigue is
addressed using ADAS subsystems such as driver fatigue detection system and DAS. We
further emphasised shortcoming of ADAS based driver advise generation.

Under this premise, we formulated stability of driver-in-the-loop train cruise control
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problem with delayed driver and train state measurement. We proposed to choose a
sampled-data control theoretic problem formulation method, owing to the resemblance of
Driver-Train system as a time-varying sampled NCS. Further, we also stressed on choice
of cybernetic driver model for simulation purposes. In the following chapter, we intend
to present overview of recent research direction about stability of sampled-data modelled
NCS system. In the process we will be presenting the tools available to study stability of
time-varying sampled systems.
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Overview of Networked Control
System (NCS) stability
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3.1 Introduction

In this chapter, we first introduce NCSs and the main network-induced imperfections and
constraints and then emphasis upon the issue of our concern, i.e. variable sampling/-
transmission interval. In order to study the stability of NCS, we consider a sampled-data
LTI system based representation. Thus, we then introduce sampled-data LTI system with
main mathematical definition.

Next we recall general concept of stability of a system in Appendix B. We then for-
mulate the stability of sampled-data LTI system, which is further elaborated according
to sampling type: constant and time-varying sampling. Because of relevance of time-
varying sampling to our context, we then present a literature review of approaches to
study stability of time-varying sampled systems.
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Having reasoned the choice of time-delay system based representation for time-varying
sampled LTI system stability study, we then present time-delay approach with Lyapunov
techniques. We emphasis upon the choice of LKF and convex-embedding based approach
to estimate maximum time-delay in system state measurement.

Next we present the steps involved to design a LKF functional and further present a lit-
erature review to obtain delay-dependent LMI-based stability conditions. Particularly, we
present model transformation and integral inequality based approach to over-approximate
the derivative of the LKF.

In literature, integral inequality approaches were shown to accurately upper-bound
LKF derivative. Thus, considering this advantage, we present and compare approximation
capability of various integral inequality approaches, such as Jensen, Wirtinger and Bessel-
Legendre inequality.

Finally, we argue the choice of our research direction about time-dependent LKF with
augmented terms in addition to an affine Bessel-Legendre inequality to accurately approx-
imate LKF derivative for a best estimate of maximum time-delay in system measurements.
Moreover, since ADAS-Driver-Train is likely be a non-linear sampled-data system type,
thus, a theorem for linearized model around the equilibrium is presented.

Please note that the sections presented in this chapter are inspired from vari-
ous literature reviews such as [Fiter 2012], [Zhang et al. 2016c], [Hetel et al. 2017] and
[Liu et al. 2019].

3.2 NCS: an introduction

In the last chapter we presented how driver advises are generated based on speed profile
optimisation algorithms using driver and train state measurements. We also highlighted
the fact that data from several sensors may not be available periodically/synchronously
and may lead to irreliable driver advise generation, which may eventually hamper safety,
energy efficiency and punctuality of the railway operation.

In literature, such similar feed-back control systems wherein the control loops are closed
through a real-time network are called NCSs [Zhang et al. 2001]. The defining feature of
an NCS is that, information such as reference trajectory, control input, system output
etc., is exchanged using a shared communication network among different components of
the control system, i.e. sensors, controller, actuators, etc., which in usual scenario, are
distributed at physically different locations. Fig. 3.1 ([Zhang et al. 2001]) illustrates a
typical setup and the information flows of a NCS.

The idea that we are pursuing, i.e. to study the stability of the Driver-Train system
with driver-in-the-loop, is consistent to a NCS. Fig. 3.2 illustrates a Driver-Train system
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Figure 3.1: A typical NCS setup and information flow

setup and it’s corresponding information flow. In contrast to the traditional point-to-point
architecture, the presence of a communication network in the feed-back control loop makes
the stability analysis of a Driver-Train system challenging. The main network-induced
imperfections and constraints can be categorised in the following five types, variable
sampling/transmission intervals; communication/network induced delays; communication
scheduling; multiple-packet transmissions and packet loss/dropout [Heemels et al. 2010],
[Zhang et al. 2016c].

Figure 3.2: A Driver-Train NCS setup and information flow

Variable sampling: The point-to-point architecture is the traditional communi-
cation architecture for control systems. Conventionally, for such digitally/computer con-
trolled system, it is assumed that the output are sampled at equal-distance, i.e. the
samples are taken periodically in time. However, when a continuous-time signal has to be
transmitted over a network, the signal must be first sampled, encoded in a digital format,
transmitted over the network, and finally the data must be decoded at the receiver side.
This process is significantly different from the usual constant/periodic sampling in digital
control and may induce variable sampling/transmission intervals. Thus, the assumption
of equal-distance sampling may not be appropriate in NCS analysis.

Network-induced delay: This issue caters to sensor-to-controller delay or controller-
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to-actuator delay, that occurs while exchanging data among devices connected to the
shared medium. The delay may be constant/time-varying/random and can degrade the
performance or can even destabilise the control systems (if designed without consider-
ing the delay). The delay depends on the network characteristics such as network load,
typologies, routing schemes, etc.

Figure 3.3: Challenges to study stability of NCS system

Communication scheduling: In NCSs, the performance of control loops not only
depend on the design of the control algorithms, but also rely on the real-time scheduling
of the shared network resource. The communication constraint impose that, per transmis-
sion, only one node can access the network and send its information. Hence, how often
the system should be scheduled to transmit the data by the system and with what priority
the packet should be sent out, is also needed to be considered.

Quantization: Due to limited transmission capacity of the network, data transmit-
ted in practical NCS should be quantized before they are sent to the next network node.
The multiple-packet transmission of the system output helps to consider bandwidth and
packet size constraints of the network. Nevertheless such signal transmission methods
impose challenges, because, while arbitration of the network medium with other nodes on
the network, there are chances, that all/part/none of the packets miss to arrive at the
time of control calculation, thus generating irreliable control advise.

Packet dropouts: In comparison to standard digital control, NCSs also suffer from
unreliable transmission path problem, i.e. in addition to transmission delay, some data
packets can even be lost during transmission.

To summarise, the unreliable and time-dependent levels of jitter, delays, losses or
network-induced imperfections can jeopardise the stability, safety and performance of the
units in a physical environment. Thus, the development of robust stability theory to study
the effect of these issues on the performance of a NCS has been an active interest of control
engineering researcher’s community.

In [Zhang et al. 2001], author states that there are two main approaches for accommo-
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dating all of these issues in NCS stability study. One way is to design the control system
without regards to the aforementioned issues, i.e. no sensor/actuator or transmission
delay, no data loss/quantisation, and no scheduling issues, but, design a communication
protocol that minimises the likelihood of these events. The other approach is to treat the
network protocol and network traffic as given conditions and study stability that explicitly
take the above-mentioned issues into account.

In this thesis, we develop stability analysis strategies by the second approach, but only
considering the first issues, i.e. variable sampling/transmission interval. We assume that
the other four issues are non-existent while formulating the control system in the form of
delay-differential equations. The assumption is justifiable since the driver and the train
state are available to the ADAS with a variable time-delay. In the following section, we
present the sampled-data representation of a simplified NCS and further elaborate upon
the intricacies involved in finding stability of the NCS system.

3.2.1 NCS as sampled-data system

Figure 3.4: Sampled-data system

A simplified NCS can be represented as a sampled-data system, i.e. with a continuous-
time system dynamics and a discrete-time controller, connected by a single sensor/actuator
combination, as represented by the block diagram in Fig. 3.4. Here, the blocks S1 and
A1 can correspond to a sensor/sampler/analog-to-digital converter and a actuator/zero-
order-hold/digital-to-analog converter respectively.

Definition 3.1: A general sampled-data system can be written in the form,

ẋ(t) = f(t, x(t), u(t)), ∀t ≥ 0,

u(t) = g(tk, x(tk)), ∀t ∈ [tk, tk+1), k ∈ N,
(3.1)

where t is the time-variable, x : R+ → Rnx is a measured system "state-trajectory",
u : R+ → Rnu the "input" or "control signal", and the scalars tk, for k ∈ N, monotonically
increasing sequence of positive real numbers that satisfy, 0 = t0 < t1 < · · · < tk < · · · and
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limk→∞ tk =∞, and the sampling law is defined as

tk+1 = tk + hk (3.2)

where hk represents the kth sampling interval. In the Section 3.2, we discussed that there
can be two source of network transmission delays: sensor-to-controller and controller-
to-actuator. We consider that such delays are negligible, but assume that the sensor
acts in a time-driven fashion (i.e., sampling occurs at the times (tk for k ∈ N) and that
both the controller and the actuator act in an event-driven fashion (i.e., they respond
instantaneously to the kth system state sample x(tk), to effectively calculate and implement
u(tk) at the system input). Under these assumptions, the delay in sampling is captured
by a single delay hk and the input signal u(t) becomes a piece-wise constant signal.

The sensor/sampler/analog-to-digital converter, ideally should follow a clock, as in
the classical periodic sampling paradigm, or can have a more complex scheduling protocol
which may take into account the memory of the last sampled sensor signal. Nevertheless, as
we are considering the first issue, they do not perform as desired and produce variation in
sampling time. The digital controller operates with a sampled version of the system state
signal, xk, k ∈ N, obtained at discrete sampling instants tk using a sensor/sampler/analog-
to-digital converter. Note that, here we do not explicitly consider controller induced delay.

It is important to note that with these systems, the discrete-time dynamics introduced
by the (digital) controller implies that during the time between two sampling instants,
the system is controlled in open-loop (i.e. without updating the feed-back information).
Therefore, the sampling time plays an important role in the stability of the system, and
appropriate tools have to be used. The study of stability of such sampled-data systems has
been addressed in several areas of research in control theory. While significant advances
on this subject have been presented in the literature review, [Hetel et al. 2017], the prob-
lems related to both the fundamentals of such systems and the derivation of constructive
methods for stability analysis remain open, even for the case of linear system.

3.2.2 Sampled-data LTI systems

The model of sampled-data systems for NCS provided in Definition 3.1 is very general. In
this thesis, rather than dealing with non-linear train dynamics, we will be focusing on a
linearised time-invariant train dynamics. Thus, let us first understand stability of linear
time-invariant sampled-data systems with a simple state-feedback in closed-loop.

Definition 3.2: A sampled-data LTI system can be written in the form,

ẋ(t) = Ax(t) +Bu(t), ∀t ≥ 0,

u(t) = −Kx(tk), ∀t ∈ [tk, tk+1), k ∈ N,
(3.3)
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where, t is the time-variable, x : R+ → Rnx the measured system "state-trajectory",
u : R+ → Rnu the "input", or "control signal", the scalars tk, for k ∈ N, are the sampling
instants which satisfy 0 = t0 < t1 < · · · < tk < · · · and limk→∞ tk = ∞. A ∈ Mnx(R)

is the "state matrix", B ∈ Mnx,nu(R) is the "input gain matrix", and K ∈ Mnu,nx(R) is
the "control gain matrix". The sampling law is defined as

tk+1 = tk + hk (3.4)

where hk represents the kth sampling interval. The definition 3.2 presents the case of
an "ideal" sampled-data LTI systems. However, throughout this thesis, additional phe-
nomenon such as exogenous perturbations will also be considered. In such case, the asso-
ciated system equations will be provided. In the absence of perturbations, the evolution
of the system’s state between two consecutive sampling instants tk and tk+1 is given by

x(t) = eA(t−tk)x(tk) +

∫ t−tk

0
eAsdsBu(tk)

= Ad(t− tk)x(tk) +Bd(t− tk)u(tk)

= [Ad(t− tk)−Bd(t− tk)K]x(tk)

= Λ(t− tk)x(tk), ∀t ∈ [tk, tk+1), k ∈ N,

(3.5)

with the matrix functions Ad, Bd, and λ defined on R+ as Ad(σ) = eAσ, Bd(σ) =∫ σ
0 eAsdsB, and Λ(σ) = Ad(σ) − Bd(σ)K = eAσ −

∫ σ
0 eAsdsBK. Thus, using this no-

tation and the notation hk in equation (3.4) for the sampling intervals, the discrete-time
model of the sampled-data LTI system at instants tk can be obtained as,

xk+1 = Ad(hk)xk +Bd(hk)uk = Λ(hk)xk, ∀k ∈ N, (3.6)

where, xk ≡ x(tk), uk ≡ u(tk). Ad(hk), Bd(hk) and Λ(hk) are the "state matrix", the
"input matrix", and discrete-time "transition matrix" of the discrete-time model respec-
tively. Such a model belongs to the class of discrete-time Linear Parameter Varying (LPV)
systems [Kamen & Khargonekar 1984] and captures the behaviour of (3.3) system only at
sampling times, without consideration of the inter-sample behaviour.

Earlier in this section, we discussed about the problems arising due to delays in sensor
measurement. In the control theoretic context, the same challenges can be said to be
arising due to existence of both a continuous and a discrete dynamics in sampled-data
LTI system. Thus the problem of delayed sensor measurements can be rewritten as:
determine if the sampled-data LTI system is stable for any time-varying sampling interval
hk with values in a bounded subset Ω ⊆ R+.

Remark 3.3: In this thesis, we intend to find solutions which maximise the stable
time-varying sampling interval hk. The solutions will help us quantitatively ascertain
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driver-in-the-loop closed loop stability upto a maximum sampling interval h̄ of the time-
varying/random measurements from the faulty sensors. As we are only considering the
deterministic aspects of the sampling problem for sampled-data LTI systems, the case
when sampling intervals are random variables, i.e., given by a probability distribution,
will not be discussed here.

Remark 3.4: In the Driver-Train system stability context, we want to find: up to what
sensor measurement delay limit, or colloquially speaking maximum of time-varying sam-
pling interval, h̄, the stability of the closed-loop system can be ascertained. During this
study, some stability performances will be taken into account, such as speed of convergence
of the system’s state, or the robustness with respect to possible exogenous perturbations
(varying driver behaviour). We will even adapt the proposed tools for different controllers,
such as, linear (state-feedback) and non-linear (NN), to derive solution for time-varying
sampling stability problem.

3.3 Stability of sampled-data LTI systems under time-

varying sampling

3.3.1 Preliminaries

In order to study the stability of an NCS represented as a sampled-data LTI system,
it is imperative to understand what is stability of a system. Thus, in order to aid the
reader we recalled some fundamental concepts for system stability and the classical tools
such as Lyapunov stability approach, for both continuous-time and discrete-time system
representation in Appendix B.

The first and easiest way to study sampled-data LTI systems is to consider the case
when the sampling interval is constant or colloquially speaking, periodic sampling, i.e.
hk = T . Stability of sampled-data LTI systems with constant sampling period was exten-
sively studied using discrete-time approach, [Zhang et al. 2001], [Ahmadi & Parrilo 2008],
[Skaf & Boyd 2009], [Hetel et al. 2011].

However, some problems still remain open, since the proposed solutions remain conser-
vative regarding the continuous-time analysis of such systems, or regarding the robustness
with respect to exogenous perturbations. For more results regarding robust stability and
optimal control of sampled-data LTI systems both with continuous as well as discrete-time
approach, please refer [Chen & Francis 1991] and [Åström & Wittenmark 1996].

While in the last fifty years an intensive research has been dedicated to the analysis
and design of sampled-data LTI systems under periodic sampling, the study of systems
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with time-varying sampling intervals is quite underdeveloped. During the real-time control
of a physical systems, it is impossible to maintain a constant sampling rate. In the case of
embedded and networked systems, as discussed in Section 3.2, the problem is evident, as
delays naturally appear during the measurement/transmission of the information, during
the computation of the control, or because of scheduling issues.

From control theoretic point of view, the variations in the sampling interval bring up
new challenges. To aid the reader in understanding the challenges, we briefly presented the
time-varying sampling stability problem in Appendix B. Succinctly, time-varying sampling
can destabilise the closed-loop system, [Wittenmark et al. 1995], [Li et al. 2010]. Con-
sidering the difficulty of the problem, several works in the last two decades have been
concerned with the stability analysis of sampled-data LTI systems with time-varying sam-
plings with bounded-values, (hk ∈

[
h, h̄

]
).

In literature, different approaches are used to model such aperiodically sampled sys-
tems, namely discrete-time approach, time-delay approach, hybrid modelling approach,
Input/Output modelling approach.

• In the Section 3.2.2 we presented the sampled-data LTI system integration over
constant sampling interval for discrete-time approach. With time-varying sam-
pling, the same system can be modelled as a discrete-time uncertain system (uncer-
tainty due to time-varying sampling and preferably small network-delays, if present),
[Nilsson 1998], [Zhang et al. 2001], [Robert et al. 2010], [Simon et al. 2017].

• The sampled-data LTI system can also be modelled as a time-delay system, where
continuous-time system is controlled by delayed control input. This approach allows
to study both slow and fast-varying sampling [Mikheev et al. 1988].

• Hybrid systems modelling is another approach, widely studied in literature, for simul-
taneous modelling of both continuous and discrete dynamics present in sampled-data
LTI system, [Sivashankar & Khargonekar 1994], [Naghshtabrizi et al. 2007].

• Input/Output connection based modelling is another technique, which is inspired
from the stability study from a robust control point of view, i.e. the sampling error
is considered as a perturbation with respect to a nominal continuous-time control
loop, [Zames 1966], [Zhou et al. 1996] etc.

A detailed review of stability study of sampled-data system using these approaches can
be found at [Hetel et al. 2017] and of NCS systems can be found at [Liu et al. 2019].
The purpose of the driver-in-the-loop train system stability studies is to estimate the
acceptable maximum delay in sensor measurement updates without the closed-loop system
goes unstable. Contrary to only qualitative results provided by the emulation approach
about existence of sufficiently small periodic/aperiodic sampling stability properties of
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sampled-data LTI systems [Karafyllis & Kravaris 2009], the above approaches do give the
opportunity to estimate the set of sampling intervals for which the stability properties are
still guaranteed.

Among these approaches, for sampled-data LTI systems, discrete-time approach are
known to lead to less conservative results in terms of estimating maximum delay in sam-
pling (either periodic/aperiodic) [Donkers et al. 2011]. Nevertheless, compared to time-
delay systems based modelling, it fail to consider properties of sampling, i.e. slow or even
fast-varying delays. Thus, considering this advantage, we preferred to represent our prob-
lem using time-delay approach. In the following, we will provide a structural overview
of the progress made on the stability analysis problem from time-delay system’s point of
view. Without being exhaustive, which would be neither possible nor useful, we bring
together results from diverse communities and present them in a unified manner.

3.3.2 Time-delay approach with Lyapunov techniques

Time-delay based modelling of sampled-data system was initiated by [Mikheev et al. 1988].
In this approach, the discrete-time dynamics induced by a digital controller is considered
as a piece-wise continuous time-delay,

tk = t− (t− tk) = t− h(t), ∀t ∈ [tk, tk+1), k ∈ N,

where, h(t) ≡ t− tk is the induced delay. The LTI system with sampled-data (3.3) is then
re-modelled as an LTI system with time-varying delay,

Figure 3.5: Sampling seen as piece-wise continuous time-delay



3.3. Stability of sampled-data LTI systems under time-varying sampling 69

ẋ(t) = Ax(t) +Bu(t), ∀t > 0,

u(t) = −Kx(t− h(t)), ∀t > 0,
(3.7)

where the delay h(t) is piece-wise linear, satisfying for t 6= tk, and h(tk) = 0. The delay
indicates the time that has passed since the last sampling instant. For time-delay systems,
the future evolution of the state depends not only to the current state x(t) but is actually
a function of the past states of the system until, x(t − h(t)). Because of this property
time-delay systems are also called as infinite dimensional systems.

An illustration of a typical system state, x(t), the piece-wise linear time-delay, h(t)

and the sampled-state representative, x(t − h(t)) evolution is shown in Fig. 3.5. Such
representation permits to analyse not only systems with known sampling induced delay-
derivative, i.e. slow-varying delay (ḣ(t) ≤ 1), but also for systems with fast-varying
delay (ḣ(t) > 1), by using the classical tools ([Richard 2003], [Fridman & Shaked 2003b],
[Mounier & Rudolph 2003], [Zhong 2006]).

Stability of such time-delay modelled systems is a fundamental issue from both theo-
retical and practical points of view. Indeed, as it can be seen in Appendix B, the presence
of time-delays can be detrimental to the stability of the practical system. In order to
better understand tools used to study stability of time-delay systems and determine the
maximum delay interval h̄, let us first understand general time-delay systems.

Definition 3.5: A time-delay system can be defined as the following retarded functional
differential equation:

ẋ(t) = f(t, xt), ∀t ≥ 0,

xt0(θ) = φ(t0 + θ), ∀θ ∈ [−h̄, 0],
(3.8)

where, f : R+ × C0([−h̄, 0] → Rnx) → Rnx (continuous in both arguments and locally
Lipschitz in the second argument), φ ∈ C0([−h̄, 0] → Rnx) (C0 is the set of continuous
functions mapping the interval [−h̄, 0] → Rnx , with h̄ > 0, the maximal delay), and
xt ∈ C0([−h̄, 0]→ Rnx), which represents the state function and is defined by:

xt(θ) = x(t+ θ), ∀θ ∈ [−h̄, 0]. (3.9)

It is assumed that there exists a unique solution to the above differential equation and
there is a unique equilibrium point : xe = 0. In [Gu et al. 2003], authors even provided
some Lipschitz conditions for the existence and unicity of solutions. Under existence
and unicity of the solution, [Dambrine 1995] shown that the equilibrium state defined by
ẋ(t) = 0 is a constant function xt(θ) ≡ xe, thus the expression "equilibrium point" is
justified. Moreover, if the equilibrium point is not 0, we can come down to it by using a
simple change of coordinates as in the delay-free case.
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In the general case of time-delay systems, it is difficult to apply classical Lyapunov
stability theory from Theorem B.3 (Appendix B), because the derivative dV (x)

dt will depend
on the past values of the state: xt. We can also ascertain this fact by considering the
sampled-data LTI system equation in (3.7). The closed-loop system ẋ(t) = Ax(t) −
BKx(t − h(t)), ∀t > 0, is an infinite-dimensional delay-differential equation, i.e. system
dynamics is not only dependent on current state but also on former states.

To overcome this issue, two different stability approaches, better suited to time-delay
systems, have been developed. Both of them make use of a wider class of functions or
functionals as Lyapunov candidates.

1. The first approach is called Lyapuonv-Razumikhin [Razumikhin 1956], which uses
vector x(t) and time-dependent "energy" function V ≡ V ((t, x(t)), to approach the
"infinite-dimensional" problem using a "finite-dimensional" tool.

2. The second approach is called Lyapunov-Krasovskii [Krasovskii 1963], a most pop-
ular generalisation of the direct Lyapunov method for time-delay system. This ap-
proach uses V ≡ V (t, xt) functionals, which depend on xt. Thus the functional
differential equation is seen as evolving in an Euclidean space.

The introduction of Lyapunov-Razumikhin approach in stability theory was advanta-
geous as it reduced the conservatism with respect to the classic Lyapuonv stability theory,
and made possible to work with simple Lyapunov-Razumikhin Function (LRF)s. Initially,
the derived stability conditions were delay-independent, (i.e. stability property was robust
and holds for all positive and finite values of the delays). Later, checkable delay was explic-
itly introduced in the equations to get delay-dependent stability conditions [Briat 2015].

In spite of the advantages, the use of Lyapunov-Razumikhin functions is very often con-
sidered as leading to conservative stability conditions. In order to overcome this drawback,
Lyapunov-Krasovskii techniques were proposed. At the cost of more sophisticated struc-
ture, this technique could provide less conservative delay-dependent conditions. Thus, as
an effect the conditions can estimate a less conservative maximum delay h̄, beyond which,
the system becomes unstable. For this reason, we choose to use LKF approach to develop
delay-dependent conditions to study stability of Driver-Train system in the presence of
sensor-delays. In the next subsection, let us understand the LKF approach.

3.3.2.1 Lyapunov-Krasovskii approach

The Lyapunov-Krasovskii approach is an extension of the Lyapunov theory to functional
differential equations. Here, we are searching for positive functionals V ≡ V (t, xt) which
are decreasing along the trajectories of (3.8).
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Theorem 3.6: (Lyapunov-Krasovskii (from [Gu et al. 2003])) Consider three con-
tinuous non-decreasing functions α, β, γ : R+ → R+, such that α(θ) and β(θ) are strictly
positive for all θ > 0, and α(0) = β(0) = 0. Assume that the vector field f from (3.8)
is bounded for bounded values of its arguments. Further, if there exists a continuously
differentiable function V : R+ × C0([−h̄, 0]→ Rnx)→ R+ such that:

α(‖φ(0)‖) ≤ V (t, φ) ≤ β(‖φ‖c), (3.10)

with ‖.‖ any norm of Rnx , and ‖.‖C is associate norm on C0([−h̄, 0] → Rnx), defined by
‖φ‖C = maxθ∈[−h̄,0]‖φ(θ)‖, and if

V̇ (t, φ) ≤ −γ(‖φ(0)‖), (3.11)

then the origin of the system (3.8) is uniformly stable. If, in addition, γ(θ) > 0 for all
θ > 0, then the functional V is called the LKF, and the origin of the system (3.8) is
uniformly asymptotically stable. If in addition lims→∞ α(s) = +∞, then the origin of the
system (3.8) is globally uniformly asymptotically stable. The functionals that are usually
considered, have the following form [Kolmanovskii & Shaikhet 1996]:

V (t, φ) = φT (0)P (t)φ(0) + φT (0)

(∫ 0

−h̄
Q(t, s)φ(s)ds

)
+

(∫ 0

−h̄
Q(t, s)φ(s)ds

)T
φ(0)

+

∫ 0

−h̄

∫ 0

−h̄
φT (s)R(t, s, p)φ(p)dsdp+

∫ 0

−h̄
φT (s)S(s)φ(s)ds,

(3.12)

where, P , Q, R, and S ∈ Mnx(R). P (t) and S(s) ∈ S+∗
nx

, and R satisfies R(t, s, p) =

RT (t, s, p). It was proved in [Kolmanovskii & Shaikhet 1996] that the existence of such a
LKF is necessary and sufficient condition to ensure the system’s stability in the case of LTI
systems with time-varying delay (i.e. when the system (3.8) is considered with f(t, xt) =

Ax(t) +Adx(t− h(t)). An analytical description of fitting matrices functions Q, R and S
has also been presented in [Kharitonov & Zhabko 2003]. In practice ([Niculescu 2001a]),
these matrices terms are considered constant, and we search functional of the type:

V (t, φ) = φT (0)Pφ(0) + 2φT (0)

(∫ 0

−h̄
Qφ(s)ds

)
+

∫ 0

−h̄

∫ 0

−h̄
φT (s)Rφ(p)dsdp+

∫ 0

−h̄
φT (s)Sφ(s)ds,

(3.13)

Although more conservative, this form of LKFs with constant matrices allow to de-
rive LMI stability conditions, which make it easier to look for solutions. In recent
works concerning time-delay systems, the conservatism has been reduced by consider-
ing P , Q, R and S matrices as piece-wise constant functions [Gu 1997], [Gu et al. 2003],
[Fridman & Shaked 2005], [Fridman 2006].
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The advantage of the Lyapunov-Krasovskii approach is that it essentially enlarges the
class of Lyapunov candidates. It was shown in [Driver 1977] for the constant delay and in
[Kolmanovskii & Myshkis 1999] for the general time-varying delay, that the existence of
LRF implies the existence of a LKF. For general time-delay systems, Lyapunov-Krasovskii
approach introduce delay, h(t) and often unknown delay-derivative, ḣ(t), in the derivative
of dV (t,xt)

dt . However, in the context of sampled-data LTI system, ḣ(t) = 1. The introduc-
tion of delay h(t) in the equations eases derivation of delay-dependent/sampling interval
dependent stability conditions. The approach may also be extended to control design and
to the case of systems with parameter uncertainties and perturbations. In the Section
3.3.4, we will present LKF functionals for time-delay modelled sampled-data LTI systems.

3.3.3 Convex-embedding approach

An appropriate choice of LKF may lead to a less conservative delay-dependent condi-
tion. However, it may not provide an estimate of the system’s performance in between
sampling instants. For this purpose, in this subsection, we will introduce an approach
called "convex-embedding", a technique based on convexification of the transition ma-
trix between sampling times in order to derive stability conditions, [Hetel et al. 2006],
[Fujioka 2009a], [Cloosterman et al. 2010], [Gielen et al. 2010]. Particularly, this approach
is based on the property of describing the evolution of system’s state x(t) with respect to
the sampled-state x(tk) and the time t− tk:

x(t) = Λ(t− tk)x(tk), ∀t ∈ [tk, tk+1), k ∈ N,

and on the study of the transition matrix operator Λ defined in (3.5). In the case of
sampled-data LTI system (3.3) with time-varying sampling intervals with values in

[
h, h̄

]
with h > 0, the classic Lyapunov theory in discrete-time can be used with a simple
quadratic Lyapunov function V (x) = xTPx, so as to obtain sufficient stability conditions
under the form of parameter-dependent LMIs:

Λ(θ)TPΛ(θ)− P ≺ 0, ∀θ ∈
[
h, h̄

]
. (3.14)

These stability conditions involve infinite number of LMIs, since they depend on parameter
θ that takes value in the line segment

[
h, h̄

]
. The idea of convex-embedding approach is to

reduce these conditions down to a finite number, by designing a polytopic approximation
of the operator Λ. Thus, the set of matrices:

Λ ≡ {Λ(h)|h ∈
[
h, h̄

]
}, (3.15)

can be over-approximated as follows:
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Λ ⊆ Co{Fi}i∈{1,··· ,N} =

{ N∑
i=1

αiFi | α =


α1

...
αN

 ∈ A}, (3.16)

where, Fi ∈ Mnx,nu , ∀{1, · · · , N} are suitably constructed matrices, N is the number of
vertices in the polytopic over-approximation, and:

A = {α ∈ RN |αi ≥ 0, ∀i ∈ {1, · · · , N}, and
N∑
i=1

αi = 1}. (3.17)

The properties of the over-approximating convex set Co{Fi}i∈{1,··· ,N} makes it possible
to derive a finite number of sufficient stability conditions from (3.14), by writing simple
LMIs over the polytope vertices:

F Ti PFi − P ≺ 0, ∀{1, · · · , N}. (3.18)

Moreover, a continuous-time approach to the stability analysis of sampled-data LTI sys-
tems based on convexification arguments has been proposed in [Hetel et al. 2011]. It is
based on the parameter-dependent LMI:[

Λ(θ)

I

]T [
ATP+AP −PBK

∗ 0

][
Λ(θ)

I

]
≺ 0, ∀θ ∈

[
h, h̄

]
, (3.19)

and the same convexification tools. Several over-approximation methods to design the
polytope vertices Fi from (3.16) are used in the literature. For example, gridding and
norm bounding in [Skaf & Boyd 2009], [Donkers et al. 2011], Taylor series expansion in
[Hetel et al. 2006], [Hetel et al. 2007a], [Hetel et al. 2011] Real-Jordan form decomposi-
tion in [Olaru & Niculescu 2008], [Wouw et al. 2010], [Cloosterman et al. 2010], or the
Cayley-Hamilton theorem in [Gielen et al. 2010], [Goebel et al. 2012].

The main advantage of the convex-embedding approach for the stability analysis of
sampled-data LTI systems is that it is intuitive, tractable and provides less conservative
conditions. Also, it was proved using various numerical benchmarks [Fiter et al. 2012],
that convex-embedding allow for approaching the stability condition (3.14) as close as
desired, by increasing N of the over-approximation algorithm [Fiter et al. 2015]. The main
drawback of the method is that with increase in numerical precision the computational
complexity and computational time increases.

3.3.4 Delay-dependent analysis of sampled-data LTI systems

In the Subsection 3.3.2 we presented different approaches for stability of general time-delay
systems. In this subsection, we want to focus particularly on LKF approach so as to obtain
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delay-dependent conditions for sampled-data LTI system. In the case of sampled-data
systems [Fridman et al. 2004], [Naghshtabrizi et al. 2008], [Seuret 2009], [Fridman 2010],
[Seuret 2012], the induced delay has a known derivative ḣ(t) = 1, ∀t ∈ [tk, tk+1), k ∈ N.
This property enables to simplify the LKFs to derive less conservative stability conditions.
However, the choice of LKF is crucial for deriving stability criteria [Fridman 2014b].

The derivation of stability conditions using LKFs needs quite elaborate developments.
The process usually involve 4 basic steps as following.

• Step 1 is to propose a LKF candidate.

• Step 2 is to compute LKF derivative and identify integral terms.

• Step 3 is to over-approximate the integral terms (using inequalities), to replace them
by simpler expressions and obtain delay-dependent sufficiency conditions of stability.

• Finally, Step 4 is to over-approximate the delay-dependent terms (using convex-
embedding) by simpler expressions which are either constant or h̄ dependent.

In order to give a glimpse of the procedure, we present the history of development
for the derivation of LMI stability conditions for the case of sampled-data LTI systems
(3.3) with the associated time-delay model (3.7). In order to derive a less conservative
stability criteria both Step 1 and Step 3 are crucial. In this view, we can find various LKF
proposition and various approaches to approximate the integral terms.

3.3.4.1 Model transformation approach

The early development used model transformation approach to facilitate approximation
of the integrals of the LKF derivative. This approach employs Leibniz-Newton formula,

x(t− h(t)) = x(t)−
∫ t

t−h(t)
ẋ(s)ds. (3.20)

to transform system (3.7) (while substituting ẋ(s) by the right-hand side of (3.7)) to,

ẋ(t) = (A−BK)x(t) +BK

∫ t

t−h(t)
[Ax(s)−BKx(s− h(s))] ds, (3.21)

which facilitate generation of the cross-terms in the derivative of the LKF.
In order to obtain first delay-dependent conditions in terms of LMI, the cross-terms

are bounded using Young’s inequality, [Li & Souza 1997], [Kolmanovskii & Richard 1999],
[Park 1999]. Note that this transformation is valid for t− h(t) ≥ t0. The stability of the
transformed system (3.21) guarantees the stability of the original system, but not vice
versa. It is because the later system is not equivalent to original system, as it possess
some addition dynamics, [Gu et al. 2003], [Kharitonov & Niculescu 2003].
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In literature, various model transformation approaches are proposed, namely, ’pa-
rameterised first-order transformation’, [Kolmanovskĭı et al. 1998], ’second-order transfor-
mation’, [Kolmanovskii & Richard 1999], ’neutral transformation’, [Niculescu 2001b], and
’descriptor model transformation’, [Fridman 2001], [Fridman & Shaked 2002].

The first delay-dependent conditions treated only the slow-varying delays (ḣ(t) ≤
1), whereas the fast-varying delay (ḣ(t) > 1) were analysed via LRFs. The authors,
[Fridman & Shaked 2003a], for the first time, analysed systems with fast-varying delays
by using LKF via the descriptor model transformation introduced in [Fridman 2001]:

0 = −ẋ(t) + (A−BK)x(t) +BK

∫ t

t−h(t)
ẋ(s)ds. (3.22)

The descriptor system (3.22) is equivalent to (3.7) in the sense of stability. In
the descriptor approach, ẋ(t) is not substituted by the right-hand side of the differen-
tial equation. Instead, it is considered as an additional state variable of the resulting
descriptor system (3.22). Therefore, the novelty of the descriptor approach is not in
V (x(t)) = xT (t)Px(t) + · · · (P > 0), but in V̇ ,

d
dt

[
xT (t)Px(t)

]
= 2xT (t)Pẋ(t) + 2

[
xT (t)P T2 + ẋT (t)P T3

]
×[

−ẋ(t) + (A−BK)x(t) +BK
∫ t
t−h(t) ẋ(s)ds

]
,

(3.23)

where P2 ∈ Rnx×nx and P3 ∈ Rnx×nx are "slack variables". This leads to V̇ ≤
−γ(‖x(t)‖2 + ‖ẋ(t)‖2), γ > 0. The descriptor method is beneficial as it brought free-
weighting matrices P2 and P3 into the Lyapunov-based analysis. Later, [Suplin et al. 2005]
and [Gouaisbaut & Peaucelle 2006a] shown that Finsler’s lemma leads to the same slack
matrices. The descriptor method is advantageous because it helps to obtain less conser-
vative conditions (even for systems without delay) for uncertain systems. It even provides
"unifying" LMIs for the discrete-time and the continuous-time systems, i.e. they have
almost the same form and the same advantages ([Fridman & Shaked 2006]). The design
can even be obtained for systems with either state, input or output delays by choosing
P3 = εP2 with a tuning scalar parameter ε ([Suplin et al. 2007]).

3.3.4.2 Integral inequality approach:

In spite of benefits of model transformation and cross-term bounding, most of the recent
LKF based results rather use application of Jensen’s inequality.

1) Jensen inequality for time-independent LKF:
The choice of Jensen’s inequality owes to it’s accuracy, i.e. it provides strict upper
bound to the integrals. Thus, compared to over-approximation of integral terms using
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model transformation and cross-term bounding, the over-approximation using integral in-
equality was shown to reduce conservatism [Gouaisbaut & Peaucelle 2006b], [Briat 2011],
[Seuret & Gouaisbaut 2013]. Let us see.

Lemma 3.7: (Jensen’s Inequality from [Gu et al. 2003]) Given R > 0, θ ≥ 0, and
a differentiable function x : [t− θ, t]→ Rnx , the following inequality holds:

J(ẋt, θ) = −
∫ t

t−θ
ẋ(s)Rẋ(s)ds ≤ −1

θ

(
x(t)− x(t− θ))TR(x(t)− x(t− θ)

)
(3.24)

The first LKFs based LMI conditions for systems with fast-varying delays (ḣ(t) >

1) were derived in [Fridman & Shaked 2003a] via the descriptor method. The authors
differentiated xT (t)Px(t) as in (3.23) along system (3.7) with maximum sampling period,
h̄. To “compensate”

∫ t
t−h(t) ẋ(s)ds in (3.23), authors considered the double integral term,

VR(ẋt) ([Fridman & Shaked 2003a]) in the LKF, as V (x(t), ẋt) = xT (t)Px(t) + VR(ẋt).

V (x(t), ẋt) = xT (t)Px(t) +

∫ 0

−h̄

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ,R > 0 (3.25)

During the differentiation of LKF V (x(t), ẋt), the authors first advantageously
converted the term VR(ẋt) to

∫ t
t−h̄(h̄ + s − t)ẋT (s)Rẋ(s)ds) and then computed

an approximate derivative as −
∫ t
t−h(t) ẋ

T (s)Rẋ(s)ds + h̄ẋT (t)Rẋ(t), while ignoring

−
∫ t−h(t)

t−h̄ ẋT (s)Rẋ(s)ds. Further using Jensen’s inequality as −
∫ t
t−h(t) ẋ

T (s)Rẋ(s)ds ≤
− 1
h̄

∫ t
t−h(t) ẋ

T (s)R
∫ t
t−h(t) ẋ(s)ds and descriptor approach authors obtain,

d

dt
V (x(t), ẋt) ≤ 2xT (t)Pẋ(t) + h̄ẋT (t)Rẋ(t)− 1

h̄

∫ t

t−h(t)
ẋT (s)R

∫ t

t−h(t)
ẋ(s)ds

+ 2
[
xT (t)P T2 + ẋT (t)P T3

] [
−ẋ(t) + (A−BK)x(t) +BK

∫ t

t−h(t)
ẋ(s)ds

]
≤ ηT (t)Ψη(t)

≤ −ε(‖x(t)‖2 + ‖ẋ(t)‖2), ε > 0,

(3.26)

where, η(t) = col{x(t), ẋ(t), 1
h̄

∫ t
t−h(t) ẋ(s)}, if

Ψ =


Φ P − P T2 + (A−BK)TP3 h̄P T2 BK

∗ −P3 − P T3 + h̄R h̄P T3 BK

∗ ∗ −h̄R

 ≺ 0,

Φ = P T2 (A−BK) + (A−BK)TP2.

(3.27)
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Note that Ψ ≺ 0 yields that the eigenvalues of −h̄BK are inside of the unit circle.
Nevertheless, in the example ẋ = −x(t − h(t)) with −BK = −1, the simple delay-
dependent conditions, presented above, cannot guarantee the stability for h̄ ≥ 1, which is
far from the analytical bound 1.5. This shows the conservatism of the simple conditions.

In [He et al. 2007], author further improved upon these simple delay-dependent con-
dition and proposed improved delay-dependent conditions, by utilising relation not only
between the time-varying delayed/exact delayed state x(t − h(t)) and the current state
x(t)) but also the relation between x(t−h(t)) and the delay upper-bounded/marginally de-
layed state x(t− h̄). With these developments, the widely used state-derivative dependent
LKF for delay-dependent stability of the form,

V (x(t), ẋt) = xT (t)Px(t) + h̄

∫ 0

−h̄

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ

+

∫ t

t−h̄
xT (s)Sx(s)ds+

∫ t

t−h(t)
xT (s)Qx(s)ds,

(3.28)

where P > 0, R ≥ 0, S ≥ 0, Q ≥ 0, was constructed.
This functional with Q = 0 leads to delay-dependent conditions for systems with fast-

varying delays (ḣ(t) > 1), whereas for R = S = 0 it leads to delay-independent conditions
(for systems with slow-varying delays, ḣ(t) ≤ 1). The above V (x(t), ẋt) with S = 0

was introduced in [Fridman & Shaked 2003a], whereas the S-dependent term was added
in [He et al. 2007]. Contrary to the simple delay-dependent conditions, which ignored
the term

∫ t−h(t)

t−h̄ ẋT (s)Rẋ(s)ds, the author here, while differentiating V (x(t), ẋt) given by
(3.28), employed the representation,

−h̄
∫ t

t−h̄
ẋT (s)Rẋ(s)ds = −h̄

∫ t−h(t)

t−h̄
ẋT (s)Rẋ(s)ds− h̄

∫ t

t−h(t)
ẋT (s)Rẋ(s)ds, (3.29)

and applied Jensen’s inequality to both the terms on the right hand side to obtain,

− h̄
∫ t

t−h̄
ẋT (s)Rẋ(s)ds ≤ − h̄

h(t)
eT1 Re1 −

h̄

h̄− h(t)
eT2 Re2,

where, e1 = x(t)− x(t− h(t)), e2 = x(t− h(t))− x(t− h̄).

(3.30)

Here, for h(t) = 0 and h(t) = h̄, the following limits are satisfied:

lim
h(t)→0

− h̄

h(t)
eT1 Re1 = −h̄ lim

h(t)→0
h(t)ẋT (t)Rẋ(t) = 0

lim
h(t)→h̄

− h̄

h̄− h(t)
eT2 Re2 = 0.

(3.31)

In [He et al. 2007], the right-hand side of (3.30) was upper-bounded by −eT1 Re1 −
eT2 Re2, which is conservative. The convex analysis of [Park et al. 2011b] allowed to avoid
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this restrictive bounding. The novelty of this method consists in merging the non-
convex terms into a single expression to derive an accurate convex inequality. Several
others methods are proposed to upper-bound the right-hand side, such as reciprocally
convex combination lemma ([Park et al. 2011b]), Moon’s inequality ([Lee & Kwon 2002]),
relaxed reciprocally convex combination lemma ([Zhang et al. 2016a]) and its extension
([Zhang et al. 2017b]). More insights on the relationship between these inequalities can
be found in [Seuret et al. 2018].

Note that the existing methods in the framework of time-delay approach are based on
some Lyapunov-based analysis of systems with uncertain and bounded fast-varying delays.
Therefore, these methods cannot guarantee the stability, if the delay is not smaller than
the analytical upper-bound on the constant delay that preserves the stability. However, it
is well-known that in many systems the upper-bound on the sampling that preserves the
stability may be higher than the one for the constant delay, see examples in [Louisell 1999].

2) Jensen inequality for time-dependent LKF:
Consider for example the sampled-data LTI system ([Papachristodoulou et al. 2007]),

ẋ(t) = −x(tk), t ∈ [tk, tk+1), k ∈ N.

It is well-known that the equation ẋ = −x(t−T ), with constant delay T is asymptotically
stable for T ≤ π/2 and unstable for T > π/2. Although, for fast-varying delay, it is
stable for h̄ < 1.5 and there exists a destabilising delay with an upper-bound greater than
1.5. This means that all the existing methods via time-independent Lyapunov functionals
cannot guarantee the stability of this system for sampling intervals greater than π/2.

It is easy to check, that in the case of pure (uniform) sampling, the system remains
stable for all constant samplings less than 2 and becomes unstable for samplings greater
than 2. Therefore, it was felt necessary to develop new Lyapunov functional-based tech-
niques for sampled-data control to improve the results. Inspired by the construction of
discontinuous Lyapunov functions in [Naghshtabrizi et al. 2008] for the impulsive systems,
time-dependent Lyapunov functionals were introduced in [Fridman 2010] for the analysis
of sampled-data systems in the framework of time-delay approach.

The main idea is that, compared to the classical fast-varying delay approach, where
the delay-derivative is assumed to be unknown and arbitrary varying, the proposed
LKFs allow to take into account the particular saw-tooth evolution of the sampling
induced delay, ḣ(t) = 1, ∀t ∈ [tk, tk+1). Thus, for the stability analysis of sampled-
data LTI systems (3.7), the time-independent term

∫ 0
−h̄
∫ t
t+θ ẋ

T (s)Rẋ(s)dsdθ used in
[Fridman et al. 2004], [Park & Ko 2007] is advantageously replaced by the time-dependent
term (tk+1 − t)

∫ t
tk
ẋT (s)Rẋ(s)ds, which provide time-dependent LKF V̄ (t) = V (t, xt, ẋt).
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The function V̄ (t) may be discontinuous at sampling time, but it is not allowed to grow
in the jumps as shown in Fig. 3.6. The proposed time-dependent Lyapunov functional
reduces conservatism and provide a fair compromise between accuracy and complexity,
to finally lead to qualitatively new results for time-delay systems, allowing a superior
performance under the time-varying sampling, when compared with the constant delay.
The stability of system (3.7) with time-varying sampling is thus based on the following:

Figure 3.6: Discontinuous in time Lyapunov functional

Theorem 3.8: (Lyapunov-Krasovskii (from [Kolmanovskii & Myshkis 1992]))

Consider three continuous non-decreasing functions, α, β, γ : R+ → R+, such that,
α(θ) and β(θ) are strictly positive for all θ > 0, α(0) = β(0) = 0. Assume that the
vector field f from (3.8) follows f(t, 0) = 0 for all t ∈ R+ and that f maps R× (bounded
sets in C0

[
−h̄, 0

]
) into bounded sets of Rnx , i.e. the vector field is bounded for bounded

values of its arguments. Further, if there exists a continuous positive-definite functional
V : R+ ×W[−h̄, 0]× L2(−h̄, 0)→ R+, such that:

α(‖φ(0)‖) ≤ V (t, φ, φ̇) ≤ β(‖φ‖W), (3.32)

for all φ ∈ W
[
−h̄, 0

]
, t ∈ R+, where ‖.‖ is any norm of Rnx , the symbol Lp(a, b), p ∈ N

denotes a space of functions φ : (a, b)→ Rnx with the norm ‖φ‖Lp =
[∫ b
a ‖φ(θ)‖pdθ

]1/p
and

the symbol W[a, b] denote the space of functions φ : [a, b] → Rnx , which are absolutely
continuous on [a, b], and have square integrable first order derivatives, with the norm

‖φ‖W = maxθ∈[a,b]‖φ(θ)‖+
[∫ b
a ‖φ̇(θ)‖2dθ

]1/2
. Then, if the derivative along (3.8) system’s

solutions is non-positive as,

V̇ (t, xt, ẋt) ≤ −γ(‖xt(0)‖), (3.33)
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that trivial solution is said to be uniformly stable. If, in addition, γ(θ) > 0 for all
θ > 0, then the origin of the system is uniformly asymptotically stable. If, in addition
lims→∞ α(s) = ∞, then the origin of the system is globally uniformly asymptotically
stable. Further, if there exist three positive numbers ᾱ, β̄, γ̄ such that:

ᾱ‖xt(0)‖2 ≤ V (t, xt, ẋt) ≤ β̄‖xt‖2W . (3.34)

Let the function V̄ (t) = V (t, xt, ẋt) be continuous from the right for x(t) satisfying (3.7),
absolutely continuous for t 6= tk and satisfy limt→t−k

V̄ (t) ≥ V̄ (tk), then, the origin x = 0

of the system (3.7) is,

• asymptotically stable, if
V̄ (t) ≤ −γ̃‖x(t)‖2,

holds for t 6= tk and for some scalar γ̃ > 0;

• exponential stable, if
V̄ (t) + 2γV̄ (t) ≤ 0,

for t 6= tk, and then V̄ (t) ≤ e−2γtV̄ (0), which implies that ‖x(t)‖2 ≤ e−2γt β
α‖x0‖2W .

In such a case, the equilibrium point xe of system (3.7) allows a decay rate γ.

Remark 3.9: In the case of sampled-data LTI systems, in [Fridman et al. 2004] the
Theorem 3.8 is even extended to linear systems with a discontinuous saw-tooth delay by
use of the Barbalat lemma ([Barbalat 1959]).

3) Wirtinger inequality ([Hardy et al. 1934]):
In literature, alternative to the use of Jensen’s inequality, the integral terms are also over-
approximated using Wirtinger’s inequality ([Liu et al. 2010], [Seuret & Gouaisbaut 2013],
[Gyurkovics 2015]). This is because, the use of Wirtinger inequality could provide a
larger lower bound to over-approximate the non-negative integral term.

Lemma 3.10: (Wirtinger Inequality (from [Liu et al. 2010])) Let z : [a, b]→ Rnx

be an absolutely continuous function with ż ∈ L2(a, b) and with z(a) = 0. Then, for any
nx × nx - matrix R > 0, the following inequality holds:∫ b

a
z(t)TRz(t)dξ ≤ 4(b− a)2

π2

∫ b

a
ż(t)TRż(t)dξ (3.35)

In [Liu & Fridman 2012], author proposed a novel discontinuous in time LKF based
on the extension of the Wirtinger inequality to the vector case. Further refinements
with additional free-weighted matrices were also developed in [Lee et al. 2014], where
the authors considered a discretized version of Wirtinger inequality, [Zeng et al. 2015].
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In [Selivanov & Fridman 2016], an extension of Wirtinger inequality of Lemma 3.10 for
Lyapunov-based exponential stability analysis was presented. Based on this extended
Wirtinger inequality, a novel discontinuous LKF with a Wirtinger-based discontinuous
term was constructed, V̄ (t) = xT (t)Px(t) + V̄R(t, xt, ẋt), P > 0, R > 0, ∀t ∈ [tk, tk+1):

V̄R = h̄2e2αh̄
∫ t
tk
e2α(s−t)ẋ(s)TRẋ(s)ds− π2

4

∫ t
tk
e2α(s−t)(x(s)− x(tk))

TR(x(s)− x(tk))ds.

(3.36)

Since [x(s)− x(tk)]s=tk = 0, by Lemma 3.10, we have V̄R ≥ 0. Moreover, V̄R vanishes
at t = tk. Hence, the condition limt→tk V̄ (t) ≥ V̄ (tk) holds. This new method leads to
numerically simplified LMI condition for the stability analysis, and can be also applied
to performance analysis such as exponential stability [Selivanov & Fridman 2016], input-
to-state stability and L2-gain analysis, [Liu & Fridman 2012]. The application of the
Wirtinger-based inequality to the case of triple integral-type of LKFs is also considered in
[Park et al. 2015a].

4) Bessel-Legendre inequality:
In order to avoid the over-approximation of the derivative of LKF, improve-
ments based on Bessel’s inequality and Legendre polynomials were introduced in
[Seuret & Gouaisbaut 2014]. In [Seuret & Gouaisbaut 2015], authors also show that the
canonical Bessel-Legendre inequality can produce larger delay upper bound, h̄.

Lemma 3.11: (Bessel-Legendre Inequality (from [Zhang et al. 2018b])) Let z :

[a, b] → Rnx be an absolutely continuous function. Then, for a non-negative number N
and any nx × nx - matrix R > 0, the following inequality holds:∫ b

a z(s)
TRz(s)ds ≥

∑N
i=0

2i+1
b−a Ω̃T

i RΩ̃i

=
∑N

i=0
2i+1
b−a Ω̂T

i RΩ̂i

(3.37)

where,
Ω̃ :=

∫ b
a L̃i(s)z(s)ds, Ω̃ :=

∫ b
a L̂i(s)z(s)ds

L̃i(s) :=
∑i

k=0(−1)k

(
i

k

)(
k + i

k

)(
b−s
b−a

)k
,

L̂i(s) :=
∑i

k=0(−1)k

(
i

k

)(
k + i

k

)(
s−a
b−a

)k
.

(3.38)

As a special case, i.e. for N = 1 and N = 2, the canonical Bessel-Legendre inequal-
ity includes both, the Wirtinger-based inequality and its improvement, i.e. the proper
auxiliary-function-based inequality ([Park et al. 2015b]) respectively. The underlying idea
of Bessel–Legendre inequality is to provide a generic and expandable integral inequality
which is asymptotically (in the sense that N → ∞) not conservative. Notice that Ω̃i
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depends on the Legendre polynomial and (b − a) also appears in the inverse form in
the inequality (3.37). To overcome this inconvenience, [Zhang et al. 2018a], developed
an affine form of the canonical integral inequality, also called free-matrix based integral
inequality, for stability analysis of time-delay systems. In [Chen et al. 2017a], authors
even proved that the integral inequality and it’s affine version provide an equivalent lower
bound for the related integral term.

Lemma 3.12: (Affine Bessel-Legendre Inequality(from [Lee et al. 2018])) Let
x(s) | s ∈ [a, b] → Rnx be a continuous function. Then, for a non-negative integer N , a
positive integer c, an arbitrary vector ζ ∈ Rcnx , R ∈ Snx

+ , and a matrix F ∈ Rcnx×(N+1)nx

with appropriate dimensions, the following inequality holds:

−
∫ b
a ẋ

T (s)RẋT (s)ds ≤ (b− a)ζTFR−1
N F T ζ + He

{
ζTFL(a, b)

}
, (3.39)

where,

RN = diag {R, 3R, · · · , (2N + 1)R} ,
L(a, b) = col {L0(a, b), · · · ,LN (a, b)} ,

Lk(a, b) =

{
x(b)− x(a) if k = 0

x(b)− (−1)kx(a)−
∑k

l=1 p
k
l

l!
(b−a)l

Il−1(a, b) for k ∈ N
,

pkl = (−1)l+k

(
k

l

)(
k + l

l

)
,

Il(a, b) =
∫ b
a

∫ b
s1
· · ·
∫ b
sl
x(sl+1)dsl+1 · · · ds1.

(3.40)

In the preceding discussion we saw that the estimate of the LKF derivative mainly
depends on, how integral terms in the LKF derivative are approximated. However, such
an estimate sometimes is not enough for a less conservative stability criterion. In both
[Zhang et al. 2017c] and [Zhang et al. 2017a], it has been proven that Wirtinger-based
inequality can produce a tighter estimate on the LKF derivative compared to Jensen, but
both of these stability criteria are of the same conservatism if the LKF is not augmented.

The choice of LKF in Step 1 is crucial. The key feature of an augmented Lyapunov
functional as introduced in [He et al. 2005], [Lin et al. 2006a] is that it augments some
terms in (3.28) such that more information about the delayed states is exploited to enhance
the feasibility of derived LMI stability criterion. For example, in [He et al. 2005], the first
two terms xT (t)Px(t) and

∫ t
t−h(t) x

T (s)Qx(s)ds in (3.28) are augmented, respectively, by


x(t)

x(t− h̄)∫ t
t−h̄ x(s)ds


T

P


x(t)

x(t− h̄)∫ t
t−h̄ x(s)ds

 , ∫ t

t−h(t)

[
ẋ(s)

x(s)

]T
Q

[
ẋ(s)

x(s)

]
. (3.41)
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Recent research such as [Seuret & Gouaisbaut 2018], [Zhang et al. 2018a] shows that
using an augmented LKF and the N-order Bessel–Legendre inequality indeed can yield a
better stability criteria with less conservatism. Some other forms of LKF are also proposed
in literature to reduce the sources of conservatism arising due to the choice of the LKF
in Step 1, such as, [Ariba & Gouaisbaut 2009], [Park et al. 2011a], [Shao & Han 2012],
[Seuret et al. 2013] and [Fridman 2014a]. The reduction of the conservatism induced by
the over-approximations of delay-dependent terms of Step 4, has also been considered by
several authors, such as [He et al. 2007], [Shao 2009], with [Park et al. 2011b], as the most
accurate over-approximation of delay-dependent terms.

The research on LKFs for sampled-data LTI systems is still a wide open domain. Cur-
rently, an important effort is dedicated to finding better LKFs and better over approxi-
mations of the derivatives. Note that providing improvements (in terms of conservatism
reduction) at one step usually requires changes at all the others steps. For this reason, the
derivation of constructive stability conditions may be quite an elaborate analytical pro-
cess. We have even observed above that the design of LKFs may not be intuitive, which
makes it difficult to identify the source of conservatism of the approach. The employed
upper-bounding techniques can sometimes be the cause to introduce heavy conservatism.
Thus there are possibilities to improve upon the upper-bounds, that are introduced when
checking the sign of the derivative V̇ , so as to properly condition the problem in a tunable
and solvable way (e.g. tuning non-linear to linear LMI) and propose better LKFs.

3.3.5 Linearly approximated sampled-data system

The ADAS-Driver-Train interaction is certainly a non-linear type. However, the study
of stability/stabilisation of sampled-data system with linear model and controller is often
easier to address than the non-linear case. For such non-linear sampled-data system, local
stability can be deduced from the property of a linearized model around the equilibrium
([Hou et al. 1997], [H. & Michel 2000]). Consider the following non-linear system:

ẋ(t) = F (t, x(t), u(t)), ∀t ≥ 0,

y(t) = H(x(t))
(3.42)

with a discrete-time controller:

x(tk+1)c = F cd (tk, x(tk)
c, y(tk)), ∀t ∈ [tk, tk+1), k ∈ N,

u(tk) = Hc
d(x(tk)

c, y(tk)),
(3.43)

where t is the time-variable, x : R+ → Rnx is a measured system "state-trajectory",
u : R+ → Rnu the "input" or "control signal", and the scalars tk, for k ∈ N, monotonically
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increasing sequence of positive real numbers that satisfy, 0 = t0 < t1 < · · · < tk < · · · and
limk→∞ tk =∞, and the sampling law is defined as

tk+1 = tk + hk (3.44)

where hk represents the kth sampling interval. The closed-loop system can be represented
as a set of equations:

ẋ(t) = f(t, x(t), x(tk), x(tk)
c), ∀t ∈ [tk, tk+1),

x(tk+1)c = g(tk, x(tk), x(tk)
c), k ∈ N,

(3.45)

where, f(t, x(t), x(tk), x(tk)
c) = F (t, x(t), Hc

d(x(tk)
c, H(x(tk)))) and g(tk, x(tk), x(tk)

c) =

F cd (tk, x(tk)
c, H(x(tk))). For f(x, v, w) and g(v, w), let A = ∂f

∂x |0, A0 = ∂f
∂v |0, B = ∂f

∂w |0,
C = ∂g

∂w |0 and D = ∂g
∂v |0. Thus, the system (3.45), can be represented as the following

linearised system,

ẋ(t) = A0x(t) +Ax(tk) +Bx(tk)
c, ∀t ∈ [tk, tk+1),

x(tk+1)c = Cx(tk)
c +Dx(tk), k ∈ N.

(3.46)

Now, integrating the system over a sampling interval and letting z(tk)
T =[

x(tk)
T , x(tk)

cT
]
leads to the following linear time-varying discrete-time system,

zk+1 = Ω(hk)zk,∀k ∈ N, (3.47)

with Ω(hk) =

[
eAhkx(tk) +

∫ hk
0 eAsdsA0

∫ hk
0 eAsdsB

D C

]
. The following theorem estab-

lishes conditions for the stability of the non-linear system (3.45) under arbitrary variations
of the sampling interval.

Theorem 3.13: (Time-varying sampling stability(from [H. & Michel 2000]))
Assume that, for every possible sequence σ = {tk}, k ∈ N defined in (3.44), one has
hk = tk+1 − tk ≤ h̄, and for any k ∈ N, ‖Ω(hk)‖2 < q < 1, where hk and q are constant
scalars. Then the equilibrium point

[
xTxcT

]
= 0 of system (3.45) is exponentially stable.

The nature of the result is in the spirit of the Lyapunov’s first method ([Khalil 2002]),
as it permits to guarantee the stability of the equilibrium of the non-linear system, by
studying the stability of its linearisation at the origin. In the same way, it remains qual-
itative and it does not provide any estimate of the domain of attraction. However, the
result does not require the sampling intervals to be small.

3.4 Conclusion

This chapter exposed the problem of finding stability of sampled-data LTI systems with
time-varying sampling. We addressed the problem by first presenting an overview of
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various sampled-data modelling approaches from the literature. Recognising the ability
to handle both slow and fast varying delays, we choose to elaborate time-delay approach.
We then recalled various tools to study time-delay system stability, but, emphasised on
use of time-dependent LKF to derive delay-dependent stability conditions for time-varying
sampled LTI systems.

From the literature review to derive delay-dependent stability conditions, it appeared
that, integral inequality based approaches are more accurate than model transformation
approach to over-approximate integral terms of LKF derivative. Further, among vari-
ous integral inequalities, the affine Bessel-Legendre inequality is considered better than
Wirtinger-based or Jensen inequality. In addition, to derive further less conservative
stability condition for sampled-data LTI system, the design of time-dependent LKF by
augmented Lyapunov functional was highly recommended.

Thus, in the following chapter, we will introduce the theoretical contributions of the
PhD, which will allow us to solve stability of Driver-Train system with sensor measurement
delay problem through time-delay based modelling of sampled-data LTI system with time-
varying sampling. We intend to propose novel stability criteria for time-varying sampling
using the latest development in the field, i.e. use of both affine Bessel-Legendre inequality
and Wirtinger-based inequality with augmented Lyapunov-Krasovskii functionals.
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4.1 Introduction

In the previous chapter, several basic concepts and some research directions pertaining to
time-delay modelling approach based stability of sampled-data LTI system were presented.
It was reasoned that the problem of finding stability of Driver-Train system with aperiodic
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sensor measurement can be formulated as time-delay system to benefit from the LKF based
delay-dependent techniques in estimation of maximum sensor measurement delay.

However, in order to do that, an appropriate model should be used to represent ADAS-
Driver-Train non-linear system. In order to simplify the problem, we focused our study
on driver’s interaction with ADAS during cruise phase. ADAS takes into consideration
input data from the environment, the driver and the train coming in the form of images,
speed or position data at different frequency, to generate driver advises in the form of,
either audio, visual or haptic modality.

As a first abstraction, we considered a model-based approach for driver and train mod-
elling and used a state-feedback controller to represent ADAS. The driver was modelled as
a time-varying compensating system (no anticipation or delays), while the train as a non-
linear system with various dynamical resistive forces. The proposed modelling abstraction
is as shown in Fig. 4.1. In order to simplify the problem, we considered cruise control
scenario and thus linearised the Driver-Train system. Moreover, we considered variation
in the driver model parameters to study robustness of closed-loop system stability.

Figure 4.1: Linearised system with state-feedback control

The last few decades have witnessed the use of artificial NN in many real-
world applications, [Chiddarwar & Babu 2011]. The literature review also shows a
general trend in the study of modelling of driver behaviour, [Gingrich et al. 1992],
[Zhang et al. 2005], [Lin et al. 2005], [Khodayari et al. 2012], [Wei et al. 2013], intelligent
train operation, [Yin et al. 2014], and even train modelling, [Okamoto & Tsiotras 2019]
using application of such artificial intelligence approaches. Recently DNN tech-
niques have also been implemented to predict driver behaviour, [Olabiyi et al. 2017],
[Kuefler et al. 2017], [Phillips et al. 2017], [Zyner et al. 2018], and to optimise train oper-
ation [Wang et al. 2019c], and even for train modelling [Li et al. 2019], [Yin et al. 2019].
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In control engineering domain also, NN has found use, both in system identifica-
tion as non-linear black-box modelling, [Nechyba & Xu 1994] and also in control de-
sign, such as classical, [Cong & Liang 2009], optimal [Sahoo & Narayanan 2018], robust
[Zhong et al. 2013] or even adaptive controller design [Yang et al. 2017]. Such a trend is
because of the ability of NNs to approximate with some degree of accuracy the non-linear
dynamics of systems with unknown governing first principles. Rather NNs address the
mathematical modelling problem using only observed I/O data and learning algorithms.

In literature, to meet varying needs of robustness and stability study, several kinds
of NN and their corresponding learning algorithms have been proposed [Liu et al. 2017].
Particularly, feed-forward, a NN with static I/O mapping schemes that can approximate a
continuous function to an arbitrary degree of accuracy, and RNN, a NN with each neuron
connected bidirectionally to every other neuron, are popular.

In [Jain et al. 2019], these different NN architectures were tested for their efficiency in
approximate control computation. Specifically, they were compared with Finite Impulse
Response (FIR) filter in generating a jerk-free reference trajectory for a robotic arm. The
study suggested that NN outperformed FIR in better complexity/accuracy compromise.
Thus, as a second modelling abstraction, for the case of ADAS-Driver-Train system, a NN
is considered to generate driving advise depending on driver behaviour dynamics.

The relative easiness of implementation and the accuracy of the obtained results have
made feed-forward NN quite popular for both system identification and approximate con-
trol computation. Thus, considering the capability of feed-forward NNs to approximate
non-linear functions, we proposed the second abstraction as shown in Fig. 4.2, for the
closed-loop system stability study.

Figure 4.2: Linearised system with NN control
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For these two abstractions, we propose to study L2-stability of perturbed sampled-data
LTI systems. The L2-stability conditions try to design a ADAS-Driver-Train stable system
while limiting the impact of time-delayed measurement of driver behaviour variation. L2-
stability is considered over L∞-stability because we are interested in reducing the long-
term energy impact rather than the maximum amplitude of the driver behaviour variation.
In literature, for L2-stability setting, various techniques have been proposed for stability
analysis of both constant and time-varying sampled LTI systems [Kao & Lincoln 2004],
[Kao & Rantzer 2007], [Mirkin 2007], [Fujioka 2009b], [Fiter et al. 2015].

Although a large amount of works have been presented on stability analysis
of time-varying sampled LTI system using convex-embeddings, [Hetel et al. 2006],
[Hetel et al. 2007b], [Fujioka 2009a], [Skaf & Boyd 2009], [Wouw et al. 2010],
[Donkers et al. 2011], [Hetel et al. 2011], none of them have included robustness
with respect to perturbations while considering a state-feedback or a NN controller
in addition to a time-varying gain. In fact, including both the exogenous unknown
perturbations and a state-feedback or a NN controller with additional time-varying gain
in the stability analysis is not a simple matter.

The chapter is thus organised as follows. In Section 4.2, L2-stability of state-feedback
controlled perturbed sampled-data LTI system under time-varying sampling is considered.
For this scenario, Section 4.2.1 formulates the problem. Then, Section 4.2.2 provides tools
for the robust stability analysis regarding time-varying sampling and presents the L2-
stability results. Finally, Section 4.2.3 summarises the contributions in this approach.

Next, in Section 4.3, L2-stability of NN controlled perturbed sampled-data LTI system
under time-varying sampling is considered. For this scenario, Section 4.3.1 formulates the
problem. Then, Section 4.3.2 provides tools for the robust stability analysis regarding time-
varying sampling and presents the L2-stability results. Finally, Section 4.3.3 summarises
the contributions in this approach.

The first and second abstractions are simplified approximations of ADAS-Driver-Train
system, during a cruise control scenario. However, driver behaviour variation and delay
in sensor measurements may happen outside this context. Thus, to better approximate
the system, for the third abstraction, we represent Driver-Train dynamics as a T-S time-
varying system and ADAS as a NN controller. Then, we studied exponential stability to
improve the agility of ADAS-Driver to stabilise the train.

Thus, in Section 4.4, exponential stability of NN controlled non-linear sampled-data
systems under time-varying sampling is presented. For this scenario, Section 4.4.1 formu-
lates the problem. Then, Section 4.4.2 provides tools for the exponential stability analysis
regarding time-varying sampling and also presents the exponential stability results. Sec-
tion 4.4.3 summarises the contributions of this approach. In the last Section 4.5, we
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present algorithm allowing to find the maximum sampling period h̄ offline for the three
stability results. Lastly, Section 4.6 presents the chapter’s conclusion.

4.2 Stability of perturbed sampled-data LTI system with a

state-feedback control

Following the previous discussion, in this section, we consider the first modelling ab-
straction, i.e. a sampled-data LTI system with a state-feedback controller and a time-
varying gain. The gain variation is considered to be bounded by a convex polytope
(K(t) ∈ Co{K1, · · · ,Kq}). Further, it is considered to vary with an unknown exogenous
perturbation, d(t) ∈ L2. The stability criteria aims to guarantee robustness with respect
to this perturbation. Note that no other assumption is made about the perturbation. In
particular, the perturbation is not required to be bounded or state-bounded (i.e. there is
no need of a scalar δ < 0 such that ‖d(t)‖ ≤ δ or ‖d(t)‖ ≤ δ‖x(t)‖). Considering these
assumptions, we provide tools to perform robust stability analysis regarding time-varying
sampling. For this application, we ensure system’s finite-gain L2-stability for given gain
γ1, γ2, thanks to Lyapunov-Krasovskii stability conditions and convexification arguments.

4.2.1 Problem formulation

We consider the linear time-invariant system,

ẋ(t) = Ax(t) +Bu(t)

z(t) = Cx(t)

}
,∀t ≥ 0, (4.1)

where x = [x1, · · · , xnx ]T ∈ Rnx is the state vector, u = [u1, · · · , unu ]T ∈ Rnu denotes
the control input vector, and z(t) ∈ Rnz is the controlled output. A ∈ Rnx×nx , B ∈
Rnu×nu , C ∈ Rnz×nx are known constant system matrices. The control is designed as a
piece-wise constant state-feedback multiplied by a time-varying gain (relative to d(t)),

u(t) = ū(t) +K(d(t))(G1x(tk) +G2d̂(tk)), ∀t ∈ [tk, tk+1), k ∈ N, (4.2)

with d(t), d̂(tk) ∈ Rr as the unknown and the estimated exogenous disturbances, G1 ∈
Rl×nx , G2 ∈ Rl×r as state-feedback gains, K(d(t)) a time-varying gain (in the next chapter
we will use it as a variation in driver behaviour) and with tk the kth sampling and actuation
time. Note that we have considered no delay between the sampling and actuation times.
Further, the sequence of sampling times (tk)k≥0 is assumed to satisfy 0 = t0 < t1 < · · · <
tk < · · · , limk→∞ tk =∞, 0 < tk+1 − tk ≤ h̄, and the sampling law is defined as,

tk+1 = tk + hk, (4.3)
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with a variable sampling step hk, that we aim to maximise. Moreover, here we considered
the gain K(d(t)) to be varying in a convex polytope as,

K(d(t)) ∈ Co{K1, · · · ,Kq}, (4.4)

with Ki ∈ Rnu×l, ∀i ∈ {1, · · · , q}. Since K(d(t)) varies in a convex polytope, it is
represented as,

K(d(t)) =

q∑
i=1

ai(d(t))Ki, (4.5)

where,
∑q

i=1 ai(d(t)) = 1, ai(d(t)) ∈ [0, 1], ∀i ∈ {1, · · · , q}. We denote S, the closed-loop
system {(4.1), (4.2), (4.3)} and the corresponding closed-loop schematic as in Fig. 4.3.

Figure 4.3: Closed-loop system schematic

The closed-loop system can also be rewritten as,{
ẋ(t) = Ax(t) +BK(d(t))G1x(tk) +BK(d(t))G2w1(t) +Bw2(d(t)),

z(t) = Cx(t),
(4.6)

with tk ≤ t < tk+1, k ∈ N, w1(t) = d̂(tk)−dnom and w2(d(t)) = (K(d(t))−Knom)G2dnom

as small perturbations. Note, here dnom and Knom are nominal value of exogenous dis-
turbance and its corresponding nominal gain. In this modelling abstraction, due to the
unknown exogenous disturbance w1(t) and w2(d(t)) (a refinement of d(t)), the system S

is studied from L2-stability point of view, which is recalled in the following definition.

Definition 4.1: (from [Fridman 2010]) A linear system F is said to be finite-gain
L2-stable from w to Fw with an induced gain less than γ, if F is a linear operator from
L2 to L2 and if there exist positive real constants γ and η such that for all w ∈ L2,

‖Fw‖L2 ≤ γ‖w‖L2 + η. (4.7)
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The work in the present section aims at estimating maximum sampling period, h̄, with
tk+1 − tk ≤ h̄, while ensuring the finite-gain L2-stability of S from w1(t) → z(t) and
w2(d(t))→ z(t), with a gain less than a fixed γ1 ≥ 0 and γ2 ≥ 0 respectively. To this aim,
we will use the following lemma:

Lemma 4.2: (Adapted from [Fridman 2010]) Assume that there exist real constants
γ1, γ2 ≥ 0 and a positive continuous function V : t ∈ R+ → V (t) ∈ R+, differentiable for
all t 6= tk, k ∈ N that satisfy,

V̇ (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (t)w2(t) ≤ 0, (4.8)

along S. Then, S is L2-stable from w1(t)→ z(t) and w2(t)→ z(t) with gain less than γ1

and γ2 respectively.

Proof: Let t >> 0 and k ∈ N such that t ∈ [tk, tk+1). Integrating (4.8) over [0, t] gives

V (t)− V (tk) + V (t−k )− V (tk−1) + · · ·+ V (t−0 )− V (0)

+
∫ t

0 [z(s)T z(s)− γ1w1(s)Tw1(s)− γ2w2(s)Tw2(s)]ds ≤ 0.

Since V (t) ≥ 0 and V (tk) = V (t−k ) for all k ∈ N (V is assumed to be continuous), we get:

∫ t
0 z(s)

T z(s)ds ≤ γ1

∫ t
0 w1(s)Tw1(s)ds+ γ2

∫ t
0 w2(s)Tw2(s)ds+ V (0).

Using the positivity of z(s)T z(s), one can show that z(s) = Sw1(s) ∈ L2, z(s) =

Sw2(s) ∈ L2, and by having t → ∞, one can see that L2-stability conditions (4.7) is
satisfied with η =

√
V (0).

Our objective in this section is to compute largest sampling interval h̄ while ensuring
the expected L2-stability for a fixed γ1, γ2 ≥ 0. We will thus provide a stability analysis of
the system for a given state-feedback gain G1, G2, and a convex polytope for time-varying
gain K(d(t)). All these studies are based on a quite general class of LKF, based on
Wirtinger inequality, which take into account the delays (in the case of delayed systems),
the perturbations and the sampling (the maximum sampling period h̄ dependent terms).

4.2.2 L2-stability results

In this subsection, we propose stability analysis of system S with a given state-feedback
gain G1, G2, a convex polytope for time-varying gain K(d(t)) and a sampling (4.3).

4.2.2.1 Stability analysis of the perturbed sampled-data LTI system

We consider the following LKF, which depends on, the actual state x(t), the sampled-state
x(tk), the delayed state xt and the delayed state derivative ẋt (defined for a maximum
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sampling period h̄ as xt(θ) = x(t+ θ), ẋt(θ) = ẋ(t+ θ), ∀θ ∈ [−h̄, 0]):

V (t, x(t), xt, ẋt, k) = x(t)TPx(t) +
∫ t
tk
x(s)TQx(s)ds+ (tk+1 − t)

∫ t
tk
ẋ(s)TZẋ(s)ds

+h̄2
∫ t
tk
ẋ(s)TUẋ(s)ds− π2

4

∫ t
tk

(x(s)− x(tk))
TU(x(s)− x(tk))ds

+(tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
,

(4.9)

defined for all t ∈ [tk, tk+1) and k ∈ N, with matrix Ω defined as:

Ω =

[
X+XT

2 −X +X1

∗ −X1 −XT
1 + X+XT

2

]
, (4.10)

where, matrices P, Q, Z, U ∈ Snx
+ and X, X1 ∈ Rnx×nx are of appropriate dimensions.

The new aspect of LKF (4.9) compared to previous works, [Naghshtabrizi et al. 2008],
[Fridman 2010], [Jiang & Seuret 2010], [Jiang et al. 2010], [Seuret 2012], on systems with
time-varying samplings, is the fact that it involves the application of the Wirtinger in-
equality [Hardy et al. 1934]. The functional V is time-dependent, i.e. continuous over the
the sampling interval t ∈ [tk, tk+1), but it is discontinuous at times tk as:

limt→t−k
V (t, x(t), xt, ẋt, k − 1) = xT (tk)Px(tk) +

∫ tk
tk−1

x(s)TQx(s)ds

+h̄2
∫ tk
tk−1

ẋ(s)TUẋ(s)ds− π2

4

∫ tk
tk−1

(x(s)− x(tk))
TU(x(s)− x(tk))ds

, (4.11)

and limt→t+k
V (tk, x(tk), xtk , ẋtk , k) = xT (tk)Px(tk). (4.12)

Note that, this is because V̄ has two discontinuous term
∫ t
tk
x(s)TQx(s)ds and

h̄2
∫ t
tk
ẋ(s)TUẋ(s)ds− π2

4

∫ t
tk

(x(s)−x(tk))
TU(x(s)−x(tk))ds. These terms do not increase

along the jumps at tk, but actually vanish. Thus inequality limt→t−k
V (t, x(t), xt, ẋt, k) ≥

V (tk, x(tk), xtk , ẋtk , k) holds. This new LKF is well adapted to the stability analysis of
systems with time-varying sampling. In the following, as in [Fridman 2010], we denote

V̄ (t) = V (t, x(t), xt, ẋt, k) for all t ∈ [tk, tk+1), k ∈ N. (4.13)

The L2-stability analysis is based on Lemma 4.2 and is divided into two main steps.

• First, we prove that V̄ is continuous over R+\{tk, k ∈ N} and differentiable for all
t ∈ [tk, tk+1), and provide conditions for its positive definiteness.

• Then, we differentiate V̄ , upper-bound the obtained result and derive the L2-stability
conditions.
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4.2.2.2 LKF’s required properties

To begin with, we propose the following lemma, which ensures LKF functional’s continuity,
piece-wise differentiability, and positivity conditions.

Lemma 4.3: The function V̄ defined in (4.13) is continuous over R+\{tk, k ∈ N} and
differentiable for all t 6= tk, k ∈ N. If its matrix parameters satisfy P, Q, Z, U ∈ Snx

+ ,
X, X1 ∈ Rnx×nx and [ [

P 0

0 0

]
+ h̄Ω

]
� 0, (4.14)

then V̄ is also positive definite, and there exists scalar β > 0 such that V̄ ≥ β‖x(t)‖2 for
all t ≥ 0.
Proof: V̄ is defined on R+, differentiable over each time interval [tk, tk+1), and is designed
to satisfy,

V̄ (t−k ) = limt→t−k
V̄ (t) = x(tk)

TPx(tk) +
∫ tk
tk−1

x(s)TQx(s)ds

+h̄2
∫ tk
tk−1

ẋ(s)TUẋ(s)ds

−π2

4

∫ tk
tk−1

(x(s)− x(tk))
TU(x(s)− x(tk))ds

(4.15)

and V̄ (t+k ) = limt→t+k
V̄ (t) = x(tk)

TPx(tk) for all k ∈ N. It is therefore continuous and
differentiable over R+\{tk, k ∈ N}. Now, we can say that V̄ is positive definite if, and
only if, for all k ∈ N, t ∈ [tk, tk+1):[

x(t)

x(tk)

]T [ [
P 0

0 0

]
+ (tk+1 − t)Ω

][
x(t)

x(tk)

]
≥ 0, (4.16)

with equality if and only if x(t) = x(tk) = 0,∫ t

tk

x(s)TQx(s)ds+ (tk+1 − t)
∫ t

tk

ẋ(s)TZẋ(s)ds ≥ 0, (4.17)

and h̄2

∫ t

tk

ẋ(s)TUẋ(s)ds− π2

4

∫ t

tk

(x(s)− x(tk))
TU(x(s)− x(tk))ds ≥ 0. (4.18)

Note that equation (4.18) can be shown to be the extension of the vector case of
Wirtinger inequality [Liu et al. 2010] (see Theorem A.2 in Appendix A). Further as, 0 ≤
tk+1 − t ≤ h̄, remarking that the right part of (4.17) and the middle matrix term in the
right part of (4.16) is linear with respect to ρ = tk+1 − t, one can use Theorem A.3 (in
the Appendix A) and show that a sufficient condition for V̄ to be positive definite is that,
for all k ∈ N, t ∈ [tk, tk+1):

x(t)TPx(t) > 0, for all x(t) 6= 0 (4.19)
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and

[
x(t)

x(tk)

]T [ [
P 0

0 0

]
+ h̄Ω

][
x(t)

x(tk)

]
≥ 0, for all

[
x(t)

x(tk)

]
6= 0. (4.20)

The condition (4.20) is ensured by assuming that P is positive definite. Furthermore,
if P � 0, then there exists scalar β > 0, such that for all k ∈ N and t ∈ [tk, tk+1),[[

P 0

0 0

]
+h̄Ω

]
� β

[
I 0

0 0

]
. Thus, V̄ (t) ≥ β‖x(t)‖2, for all t ∈ [tk, tk+1), ∀k ∈ N. There-

fore, there exists a scalar β, such that V̄ (t) ≥ β‖x(t)‖2 for all t ≥ 0, which ends the proof.
�

4.2.2.3 L2-stability conditions

Having proposed conditions to ensure V̄ ’s continuity, differentiability, and positivity, now,
in order to analyse the L2-stability of system S, we will refer to Lemma 4.2. The lemma
is needed to provide conditions to satisfy

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ 0,∀t 6= tk,∀k ∈ N. (4.21)

In order to analyse this L2-stability condition, we study the restriction of ˙̄V on any
interval [tk, tk+1), k ∈ N. We compute

˙̄V (t) = He
{
x(t)TPẋ(t)

}
+ x(t)TQx(t) + (tk+1 − t)ẋ(t)TZẋ(t)

−
∫ t
tk
ẋ(s)TZẋ(s)ds+ h̄2ẋ(t)TUẋ(t)− π2

4

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

] .

(4.22)

Using the Jensen inequality [Gu et al. 2003] (see Theorem A.1 in Appendix A), we
compute an upper-bound of the integral term:

−
∫ t

tk

ẋ(s)TZẋ(s)ds ≤ −(t− tk)v1(t)TZv1(t), (4.23)

with, v1(t) =
1

(t− tk)

∫ t

tk

ẋ(s)Tds =
x(t)− x(tk)

t− tk
. (4.24)

Here, v1(t) is well defined by continuity in t = tk, as when t → tk, v1(t) → ẋ(tk).
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Using majoration (4.23) in ˙̄V (t), equation (4.22) leads to,

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ He

{
x(t)TPẋ(t)

}
+x(t)TQx(t) + zT (t)z(t)− γ1w

T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) + (tk+1 − t)ẋ(t)TZẋ(t)

−(t− tk)v1(t)TZv1(t) + h̄2ẋ(t)TUẋ(t)− π2

4

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

] .

(4.25)

Further we apply the descriptor method from [Fridman 2010]. In order to do so, we
consider equalities (4.26) and (4.27),

0 = He
{[
x(t)TY T

1 + ẋT (t)Y T
2 + x(tk)

TT T
]

[−x(t) + x(tk) + (t− tk)v1(t)]
}
, (4.26)

0 = He
{[
x(t)TP T2 + ẋ(t)TP T3

]
×

[−ẋ(t) +Ax(t) +BK(d(t))G1x(tk) +BK(d(t))G2w1(t) +Bw2(d(t))]}
, (4.27)

with some nx × nx arbitrary matrices P2, P3, Y1, Y2 and T . These equalities are added
to the right hand side of equation (4.25). The purpose is to get the system dynamics into
the Lyapunov condition and consider ẋ(t) in the extended state vector. Thus,

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ He

{
x(t)TPẋ(t)

}
+x(t)TQx(t) + zT (t)z(t)− γ1w

T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) + (tk+1 − t)ẋ(t)TZẋ(t)

−(t− tk)v1(t)TZv1(t) + h̄2ẋ(t)TUẋ(t)− π2

4

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]
+He

{[
x(t)TY T

1 + ẋT (t)Y T
2 + x(tk)

TT T
]

[−x(t) + x(tk) + (t− tk)v1(t)]
}

+He
{[
x(t)TP T2 + ẋ(t)TP T3

]
×

[−ẋ(t) +Ax(t) +BK(d(t))G1x(tk) +BK(d(t))G2w1(t) +Bw2(d(t))]} .
(4.28)

Let us now introduce the augmented state vector ζ(t) ∈ R4nx+nw1+nw2 :

ζ(t) =
[
xT (t), xT (tk), v

T
1 (t), ẋT (t), wT1 (t), wT2 (d(t))

]
. (4.29)

Then, by considering K(d(t)) to be in the convex polytope as in (4.5), there exist matrices
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M
(0)
i , M (1) and M (2) for all i ∈ {1, · · · , q} such that:

M
(0)
i =



M
(0)
i,A M

(0)
i,B 0 M

(0)
i,C M

(0)
i,D M

(0)
i,E

∗ M
(0)
i,F 0 M

(0)
i,G 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ M
(0)
i,H M

(0)
i,I M

(0)
i,J

∗ ∗ ∗ ∗ −γ1I 0

∗ ∗ ∗ ∗ ∗ −γ2I


, (4.30)

M (1) =



0 0 0 M
(1)
A 0 0

∗ 0 0 M
(1)
B 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ Z 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


, (4.31)

M (2) =



0 0 Y T
1 0 0 0

∗ 0 T T 0 0 0

∗ ∗ −Z Y2 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


, (4.32)

with,
M

(0)
i,A = Q− π2

4 U −
X+XT

2 + P T2 A+ATP2 − Y1 − Y T
1 + CTC,

M
(0)
i,B = π2

4 U − (−X +X1) + P T2 BKiG1 + Y T
1 − T,

M
(0)
i,C = P − P T2 − Y2 +ATP3,

M
(0)
i,D = P T2 BKiG2,

M
(0)
i,E = P T2 B,

M
(0)
i,F = −π2

4 U − (−X1 −XT
1 + X+XT

2 ) + T T + T,

M
(0)
i,G = Y2 +GT1 K

T
i B

TP3,

M
(0)
i,H = h̄2U − P T3 − P3,

M
(0)
i,I = P T3 BKiG2,

M
(0)
i,J = P T3 B,

M
(1)
A = X+XT

2 ,

M
(1)
B = (−X +X1)T .

Using these matrix notation, we can rewrite (4.28) as,
˙̄V (t) + zT (t)z(t)− γ1w

T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t))

≤
∑q

i=1 ai(d(t))ζ(t)TM
(0)
i ζ(t) + (tk+1 − t)ζ(t)TM (1)ζ(t) + (t− tk)ζ(t)TM (2)ζ(t).

(4.33)
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Since
∑q

i=1 ai(d(t)) = 1, ai(d(t)) ∈ [0, 1], ∀i ∈ {1, · · · , q}, equation (4.33) can be rewritten
as:

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t))

≤
∑q

i=1 ai(d(t))
[
ζ(t)TM

(0)
i ζ(t) + (tk+1 − t)ζ(t)TM (1)ζ(t) + (t− tk)ζ(t)TM (2)ζ(t)

]
,

≤
∑q

i=1 ai(d(t))
[
ζ(t)T

[
M

(0)
i + (tk+1 − t)M (1) + (t− tk)M (2)

]
ζ(t)

]
.

(4.34)
Since equation (4.34) is linear in the variable t, it is possible to reduce the number of
conditions to be checked to a finite number by applying Theorem A.3 (in the Appendix
A), with the variable ρ = t ∈ [tk, tk+1). Then, the two obtained inequalities are both linear
in the variable tk+1 − tk. Thus we can use once again Theorem A.3 (in the Appendix A)
with the variable ρ = tk+1−tk ∈ [0, h̄] to prove that if the four inequalities ζ(t)TΞiζ(t) � 0

are satisfied for all ζ(t) ∈ R4nx+nw1+nw2 and i ∈ {1, · · · , q}, with Ξi defined as

Ξi =


M

(0)
i ,

M
(0)
i + h̄M (1),

M
(0)
i + h̄M (2),

M
(0)
i + h̄M (1) + h̄M (2),

(4.35)

then, V̇ (t) + ‖z(t)‖2 − γ1‖w1(t)‖2 − γ2‖w2(d(t))‖2 ≤ 0 for all t ∈ [tk, tk+1), k ∈ N.
Note that we considered any sampling sequence hk = tk+1 − tk ∈ [0, h̄]. Therefore, the
L2-stability results we obtained will be valid for any sampling sequence satisfying (4.3).
Further, since we have shown that V̇ (t) ≤ −‖z(t)‖2 + γ1‖w1(t)‖2 + γ2‖w2(d(t))‖2 for all
t ∈ [tk, tk+1), k ∈ N, if we have V (t0) = 0, we find∫ t

t0

[
z(t)T z(t)− γ1w1(t)Tw1(t)− γ2w2(d(t))Tw2(d(t))

]
dt < 0. (4.36)

Therefore, we will have the following theorem.

Theorem 4.4: Consider scalars γ1, γ2 > 0 with matrices G1 ∈ Rl×nx , G2 ∈ Rl×r,
Ki ∈ Rnu×l, i ∈ {1, · · · , q} and a maximum sampling interval h̄. Then, the perturbed
system S is finite-gain L2-stable from w1(t) → z(t) and w2(d(t)) → z(t) with L2 gain
less than γ1 and γ2 respectively, for any sampling sequence satisfying (4.3), if there exist
matrices P, Q, Z, U ∈ Snx

+ and arbitrary matrices X, X1, Y1, Y2, T, P2, P3 ∈ Rnx×nx

such that (4.20) and (4.35) satisfy, for all i ∈ {1, · · · , q}.

Remark 4.5: if w1 and w2 satisfies zT (t)z(t)− γ1w
T
1 (t)w1(t) − γ2w

T
2 (d(t))w2(d(t)) ≥ 0,

and if the LMIs (4.35) are strict, the sampled-data system S is asymptotically stable for
any sampling sequence satisfying (4.3). Indeed, in such a case, ˙̄V is negative definite and
there is a β > 0 such that V̄ (t) ≥ β‖x(t)‖2 for all t ≥ 0, k ∈ N and x(t) ∈ Rnx . In the
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unperturbed case, d(t) = dnom = 0 and K(d(t)) = Knom, thus, we get w1(t) = 0 and
w2(d(t)) = 0. In this case, it is sufficient to verify that ˙̄V (t) < 0, and thus the term
zT (t)z(t) = γ1w

T
1 (t)w1(t) + γ2w

T
2 (d(t))w2(d(t)) and the rows/columns corresponding to

w1(t) and w2(d(t)) are removed from the LMIs (4.35).

Remark 4.6: When searching for solutions of LMIs (4.20) and (4.35), one needs to
remove the zero rows/columns that may appear in (4.35) since LMI solvers search for
strict solutions. Indeed, one can see that M (0)

i and M (1) in Ξi are independent of v1.

4.2.3 Discussions

In this section we proposed a stability analysis allowing to estimate maximum sam-
pling period, h̄ while ensuring L2-stability for perturbed sampled-data LTI with a state-
feedback controller. The study was based on a new class of LKF involving application of
Wirtinger inequality. The application of Wirtinger inequality was advantageous in over-
approximating the integral term and eventually maximising the time-varying sampling
interval h̄ while ensuring the system L2-stability.

Nevertheless, in the literature review presented in the last chapter, it was positively
argued that the application of canonical Bessel-Legendre inequality can provide a better
lower bound for the over-approximation of the integral terms and also a larger maximum
sampling interval, h̄. This was owing to the fact that the canonical Bessel–Legendre
inequality can provide a generic and expandable integral inequality which is asymptotically
(in the sense that N →∞) not conservative.

In recent years, however, most researchers focused only on its special cases, such
as N = 1, [Seuret & Gouaisbaut 2013] and N = 2 [Park et al. 2015b]. It is proven in
[Zhang et al. 2017a] that a tighter bound of the integral term in the LKF derivative is not
the solely responsible, for deriving a less conservative stability criterion. Nevertheless, in
recent research such as [Seuret & Gouaisbaut 2018], [Zhang et al. 2018a], it was proved
that by using an augmented LKF plus the N-order Bessel–Legendre inequality indeed can
yield stability criteria with less conservatism and higher maximum sampling period, h̄.

Furthermore, we realised a state-feedback based explicit modelling of ADAS is far
from reality. Thus, to better approximate ADAS behaviour and improve upon our ADAS
model, we sought use of artificial intelligence based approach. This lead us to propose a
NN form of driver advisor. Recognising the ease of implementation, approximate control
computation accuracy, ability to model non-deterministic and highly non-linear dynamic
systems and robust training methods, we considered feed-forward NN controller.

A NN controlled perturbed sampled-data LTI system gave us the opportunity to im-
prove results from previous modelling abstraction, to maximise sampling period hk while
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maintaining L2-stability of the closed-loop system with respect to exogenous disturbance
d(t). Considering the above arguments, in the next section, we will be presenting new L2-
stability results for a NN controlled perturbed sampled-data LTI system by considering
an augmented LKF with N = 2, Bessel-Legendre inequality and convexity arguments.

4.3 Stability of perturbed sampled-data LTI system with a

neural-network control

4.3.1 Problem formulation

We again consider a linear time-invariant system,

ẋ(t) = Ax(t) +Bu(t)

z(t) = Cx(t)

}
,∀t ≥ 0, (4.37)

where x = [x1, · · · , xnx ]T ∈ Rnx is the state vector, u = [u1, · · · , unu ]T ∈ Rnu de-
notes the control input vector, and z(t) ∈ Rnz is the controlled output. A ∈ Rnx×nx ,
B ∈ Rnu×nu , C ∈ Rnz×nx are known constant system matrices. However, the control is
designed as a piece-wise constant three layer fully-connected feed-forward neural-network
(TLFCFFNN) based controller multiplied by a time-varying gain as follows.

u(t) = ū(t) +K(d(t))η(tk), ∀t ∈ [tk, tk+1), k ∈ N, (4.38)

with d(t), d̂(tk) ∈ Rr as the unknown and the estimated exogenous disturbance, K(d(t))

a time-varying gain, η(tk) is the NN control and with tk the kth sampling and actuation
time. Further, the sequence of sampling times (tk)k≥0 is assumed to satisfy 0 = t0 < t1 <

· · · < tk < · · · , limk→∞ tk =∞, 0 < tk+1 − tk ≤ h̄, and the sampling law is defined as,

tk+1 = tk + hk, (4.39)

with a variable sampling step hk, that we aim to maximise. Here again we considered the
gain K(d(t)) to be varying in a convex polytope as,

K(d(t)) ∈ Co{K1, · · · ,Kq}, (4.40)

with Ki ∈ Rnu×l, ∀i ∈ {1, · · · , q}. Since K(d(t)) varies in a convex polytope, it is
represented as,

K(d(t)) =

q∑
i=1

ai(d(t))Ki, (4.41)

where,
∑q

i=1 ai(d(t)) = 1, ai(d(t)) ∈ [0, 1], ∀i ∈ {1, · · · , q}. We denote S as the closed-
loop system, {(4.37), (4.38), (4.39)} and the corresponding closed-loop schematic as given
in Fig. 4.4. Next, we will present NN architecture.
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Figure 4.4: Closed-loop system schematic

4.3.1.1 Neural-network control

The input-output based relationship of a discrete-time TLFCFFNN is defined as,

Yd(tk) =

nh∑
j=1

gd,jtf

(
nx∑
i=1

mj,iXi(tk) + bj

)
, d ∈ {1, ..., nout}, (4.42)

where mj,i, denotes the connection weight between the jth hidden node and the ith input
node, gd,j denotes the connection weight between the dth output node and the jth hidden
node, bj denotes the bias for the jth hidden node, tf (.) denotes the activation function,
nx, nout and nh denotes the number of input, output and hidden nodes respectively,
X(tk) = [X1(tk), · · · ,Xn(tk)]

T denotes the sampled input vector X at the sampled time
tk. The structure of TLFCFFNN is as shown in Fig. 4.5.
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Figure 4.5: TLFCFFNN-based controller
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Thus, based on the I/O relationship given in (4.42), a sampled-data TLFCFFNN-based
controller with nout = nunx is defined as,

η(t) =


Y1(tk) Y2(tk) · · · Ynx(tk)

Ynx+1(tk) Ynx+2(tk) · · · Y2nx(tk)
...

...
. . .

...
Y(nu−1)nx+1(tk) Y(nu−1)nx+2(tk) · · · Ynunx(tk)




X1(tk)

X2(tk)
...

Xnx(tk)


∑nh

l=1 tf (
∑nx

i=1ml,iXi(tk) + bl)
, (4.43)

for all t ∈ [tk, tk+1), which can be further rewritten as,

η(t) =

∑nh
j=1 tf (

∑nx
i=1mj,iXi(tk)+bj)



g1,j g2,j · · · gnx,j

gnx+1,j gnx+2,j · · · g2nx,j

...
...

. . .
...

g(nu−1)nx+1,j g(nu−1)nx+2,j · · · gnunx,j





X1(tk)

X2(tk)
...

Xnx(tk)


∑nh

l=1 tf (
∑nx

i=1ml,iXi(tk)+bl)
,

(4.44)

or η(t) =

nh∑
j=1

Mj(X(tk))GjX(tk), (4.45)

where, Gj =


g1,j g2,j · · · gnx,j

gnx+1,j gnx+2,j · · · g2nx,j

...
...

. . .
...

g(nu−1)nx+1,j g(nu−1)nx+2,j · · · gnunx,j

 , (4.46)

Mj(X(tk)) =
tf (
∑nx

i=1mj,iXi(tk) + bj)∑nh
l=1 tf (

∑nx
i=1ml,iXi(tk) + bl)

∈ [0, 1], (4.47)

with the property
∑nh

j=1Mj(X(tk)) = 1. It is assumed that the activation function tf (.) is
chosen such that tf (

∑nx
i=1mj,iXi(tk) + bj) > 0 and

∑nh
l=1 tf (

∑nx
i=1ml,iXi(tk) + bl) 6= 0 at

any time to satisfy the property above.

Remark 4.7: Please note, that the expression of NN control given by equation (4.45) has
Mj(X(tk)) term, which acts as a scaling factor, due to the assumption

∑nh
j=1Mj(X(tk)) =

1. The assumption also serves the purpose to bound the connection weight between input
nodes and the hidden nodes, mj,i and the bias bj with the help of activation function
tf (.). The choice of activation function ensures that the value of Mj(X(tk)) always lies
between [0, 1]. Thus, we consider boundedness of weights implicitly, contrary to work such
as, [Sahoo et al. 2016], where the authors consider the bounds on weights explicitly.
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Now, if we consider the input vector for the NN as X(tk) = [X1(tk) X2(tk)]
T =[

x(tk) d̂(tk)
]T

, then, the control signal can be re written as,

u(t) = K(d(t))
[∑nh

j=1Mj(X(tk))
[
G1,jx(tk) +G2,j d̂(tk)

]]
(4.48)

where, K(d(t)) ∈ Co{K1, · · · ,Kq} withKi ∈ Rnu×l, ∀i ∈ {1, · · · , q}, x(tk) ∈ Rnx , d̂(tk) ∈
Rr, G1,j ∈ Rl×nx and G2,j ∈ Rl×r respectively. Here, x(tk) is the system state at time
tk and d̂(tk) is the estimated exogenuous disturbance at time tk. Then, the dynamic
behaviour of the closed-loop linear system with the presented TLFCFFNN-based controller
and a time-varying gain, K(d(t) can be written as:

ẋ(t) =
∑nh

j=1Mj(X(tk))
[
Ax(t) +BK(d(t))G1,jx(tk)

+BK(d(t))G2,jw1(t) +Bw2(d(t))
]
,

z(t) = Cx(t),

(4.49)

when tk ≤ t < tk+1, k ∈ N, with w1(t) = d̂(tk) − dnom and w2(d(t)) = (K(d(t)) −
Knom)G2,jdnom as small perturbations. Note, here dnom and Knom are nominal exogenous
disturbance and its corresponding nominal gain. Compared to the previous modelling
abstraction, we can observe an additional non-linear term,

∑nh
j=1Mj(X(tk)) introduced in

the control expression. It serves the purpose to change the weights of the delayed state
measurement, x(tk) and the delayed estimate of the disturbance, d̂(tk). Next, considering
the unknown exogenous disturbance w1(t) and w2(d(t)), the system S is studied from
L2-stability point of view, which was as recalled in the Definition 4.1.

Our objective in this subsection is to compute largest sampling interval h̄ which ensures
the expected L2-stability for a fixed γ1, γ2 ≥ 0. We will thus provide a stability analysis
of the system for a given NN controller gain G1,j , G2,j , and a convex polytope for time-
varying gain K(d(t)). Compared to the Section 4.2, these studies are based on another,
quite general class of LKF, based on Bessel-Legendre inequality, while taking into account
the delays (in the case of delayed systems), the perturbations and the sampling (the
maximum sampling period h̄ dependent terms).

4.3.2 L2-stability results

In this subsection, we propose stability analysis of system S with a given NN gain G1,j ,
G2,j , a convex polytope for time-varying gain K(d(t)) and a sampling (4.39).

4.3.2.1 Stability analysis of the perturbed sampled-data LTI system

We consider the following LKF, which depends on, the actual state x(t), the sampled-state
x(tk), the delayed state xt and the delayed state derivative ẋt (defined for a maximum
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sampling period h̄ as xt(θ) = x(t+ θ), ẋt(θ) = ẋ(t+ θ), ∀θ ∈ [−h̄, 0]):

V (t, x(t), xt, ẋt, k) = η1(t)TPη1(t) +
∫ t
tk
η2(t, s)TQη2(t, s)ds

+(tk+1 − t)
∫ t
tk
ẋ(s)TZẋ(s)ds+ (tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
,

(4.50)
defined for all t ∈ [tk, tk+1) and k ∈ N, with η1(t) = col

{
x(t), x(tk),

∫ t
tk
x(s)ds,

1
t−tk

∫ t
tk

∫ t
s x(r)drds

}
, η2(t, s) = col

{
ẋ(s), x(s), x(t), x(tk),

∫ t
s x(r)dr

}
, with matrix Ω de-

fined as:

Ω =

[
X+XT

2 −X +X1

∗ −X1 −XT
1 + X+XT

2

]
, (4.51)

where, matrices P ∈ S4nx
+ , Q ∈ S5nx

+ , Z ∈ Snx
+ and X, X1 ∈ Rnx×nx are of appropriate

dimensions. Compared to (4.9), the new aspect of LKF (4.50), is the fact that it involves
application of augmented terms η1(t) and η2(t, s), inspired from [Park & Park 2018]. How-
ever, similar to (4.9), the functional V is also time-dependent, i.e. it is continuous over
the sampling interval t ∈ [tk, tk+1) and is discontinuous at times tk as:

limt→t−k
V (t, x(t), xt, ẋt, k − 1) = ηT1 (tk)Pη1(tk) +

∫ tk
tk−1

η2(t, s)TQη2(t, s)ds , (4.52)

and limt→t+k
V (tk, x(tk), xtk , ẋtk , k) = ηT1 (tk)Pη1(tk). (4.53)

Note that, this is because V̄ has one discontinuous term
∫ t
tk
η2(t, s)TQη2(t, s)ds. This

term do not increase along the jumps at tk, but actually vanishes. Thus the inequality
limt→t−k

V (t, x(t), xt, ẋt, k) ≥ V (tk, x(tk), xtk , ẋtk , k) holds. This new LKF is also well
adapted to the stability analysis of systems with time-varying sampling. For ease in
notation in the following, we denote

V̄ (t) = V (t, x(t), xt, ẋt, k) for all t ∈ [tk, tk+1), k ∈ N. (4.54)

Based on L2-stability definition of Lemma 4.2, the analysis will have same two steps.

• First, we prove that V̄ is continuous over R+\{tk, k ∈ N} and differentiable for all
t ∈ [tk, tk+1), and provide conditions for its positive definiteness.

• Then, we differentiate V̄ , upper-bound the obtained result and derive the L2-stability
conditions.

4.3.2.2 LKF’s required properties

As a necessary first step, we propose the following new lemma, which ensures the LKF
functional’s continuity, piece-wise differentiability, and positivity conditions.
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Lemma 4.8: The function V̄ defined in (4.54) is continuous over R+\{tk, k ∈ N} and
differentiable for all t 6= tk, k ∈ N. If its matrix parameters satisfy P ∈ S4nx

+ , Q ∈
S5nx

+ , Z ∈ Snx
+ , X, X1 ∈ Rnx×nx and[

P + h̄

[
Ω 02nx×2nx

02nx×2nx 02nx×2nx

] ]
� 0, (4.55)

then V̄ is also positive definite, and there exists scalar β > 0 such that V̄ ≥ β‖x(t)‖2 for
all t ≥ 0.
Proof: V̄ is defined on R+, differentiable over each time interval [tk, tk+1), and is designed
to satisfy,

V̄ (t−k ) = limt→t−k
V̄ (t) = η1(tk)

TPη1(tk) +
∫ tk
tk−1

η2(t, s)TQη2(t, s)ds

and V̄ (t+k ) = limt→t+k
V̄ (t) = η1(tk)

TPη1(tk) for all k ∈ N. It is therefore continuous and
differentiable over R+\{tk, k ∈ N}. Now, we can say that V̄ is positive definite if, and
only if, for all k ∈ N, t ∈ [tk, tk+1):

ηT1 (t)

[
P + (tk+1 − t)

[
Ω 02nx×2nx

02nx×2nx 02nx×2nx

] ]
η1(t) ≥ 0, (4.56)

with equality if and only if x(t) = x(tk) = 0 and∫ t

tk

η2(t, s)TQη2(t, s)ds+ (tk+1 − t)
∫ t

tk

ẋ(s)TZẋ(s)ds ≥ 0. (4.57)

Further as 0 ≤ tk+1 − t ≤ h̄, remarking that the right part of (4.57) and the middle
matrix term in the left part of (4.56) is linear with respect to ρ = tk+1 − t, one can use
Theorem A.3 (in the Appendix A) and show that a sufficient condition for V̄ to be positive
definite is that, for all k ∈ N, t ∈ [tk, tk+1):

η1(t)TPη1(t) > 0, for all η1(t) 6= 0 (4.58)

and ηT1 (t)

[
P + h̄

[
Ω 02nx×2nx

02nx×2nx 02nx×2nx

] ]
η1(t) ≥ 0, for all η1(t) 6= 0. (4.59)

The condition (4.59) is ensured by assuming that P is positive definite. Furthermore,
if P � 0, then there exists a scalar β > 0, such that for all k ∈ N and t ∈ [tk, tk+1),[
P+h̄

[
Ω 02nx×2nx

02nx×2nx 02nx×2nx

]]
� βI. Thus, V̄ (t) ≥ β‖x(t)‖2, for all t ∈ [tk, tk+1), ∀k ∈ N.

Therefore, there exists a scalar β, such that V̄ (t) ≥ β‖x(t)‖2 for all t ≥ 0, which ends the
proof. �
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4.3.2.3 L2-stability conditions

Having proposed conditions to ensure V̄ ’s continuity, differentiability, and positivity, now,
in order to analyse the L2-stability of the system S, we will again refer to Lemma 4.2.
The lemma is needed to provide conditions to satisfy,

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ 0,∀t 6= tk,∀k ∈ N. (4.60)

In order to analyse the L2-stability condition, we study the restriction of ˙̄V on any
interval [tk, tk+1), k ∈ N. We compute:

˙̄V (t) = He
{
η1(t)TP η̇1(t)

}
+ η2(t, t)TQη2(t, t) + He

{∫ t
tk
η2(t, s)TQ∂η2(t,s)

∂t ds
}

+(tk+1 − t)ẋ(t)TZẋ(t)−
∫ t
tk
ẋ(s)TZẋ(s)ds

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

] .

(4.61)
Using the affine Bessel-Legendre inequality [Lee et al. 2018] (see Theorem A.4 in Ap-

pendix A), we compute an upper-bound of the integral term:

−
∫ t
tk
ẋT (s)ZẋT (s)ds ≤ (t− tk)ζT (t)FZ−1

N F T ζ(t) + He
{
ζT (t)FL(tk, t)

}
, (4.62)

where, we consider N = 2, L(tk, t) = col {L0(tk, t),L1(tk, t),L2(tk, t)} and write L(tk, t) =

%fζ(t) with ζ(t) ∈ R7nx+nw1+nw2 as the augmented state vector:

ζ(t) = col
{
x(t), x(tk),

1
(t−tk)

∫ t
tk
x(s)ds, 1

(t−tk)2

∫ t
tk

∫ t
s x(r)drds,

∫ t
tk
x(s)ds,

1
(t−tk)

∫ t
tk

∫ t
s x(r)drds, ẋ(t), w1(t), w2(d(t))

}
.

(4.63)

Here, ζ(t) is well defined by continuity in t = tk, as when t→ tk, ζ(t)→ ζ(tk). Com-
pared to equation (4.23), the upper-bound of integral term in (4.62) is less conservative,
[Zhang et al. 2018c]. Using majoration (4.62) in ˙̄V (t), equation (4.61) leads to

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ He

{
η1(t)TP η̇1(t)

}
+η2(t, t)TQη2(t, t) + He

{∫ t
tk
η2(t, s)TQ∂η2(t,s)

∂t ds
}

+ (tk+1 − t)ẋ(t)TZẋ(t)

+(t− tk)ζT (t)FZ−1
N F T ζ(t) + He

{
ζT (t)FL(tk, t)

}
−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]

+(tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]+ zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)).

(4.64)
Further, we apply the descriptor method from [Fridman 2010]. Here we consider equal-

ity (4.65), (4.66) and (4.67). The right hand side expression of the equations,

0 = He {ζ(t)Y1 [((t− tk)e3 − e5] ζ(t)} , (4.65)
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0 = He {ζ(t)Y2 [((t− tk)e4 − e6] ζ(t)} , (4.66)

0 = He
{[
x(t)TP T2 + ẋ(t)TP T3

] [
−ẋ(t) +

∑nh
j=1Mj(X(tk)) [Ax(t)

+BK(d(t))G1,jx(tk) +BK(d(t))G2,jw1(t) +Bw2(d(t))]]} ,
(4.67)

with some arbitrary matrices P2, P3 ∈ Rnx×nx and Y1, Y2 ∈ Rcnx×nx are added into the
right hand side of equation (4.64) expression. The purpose is to get system dynamics into
the Lyapunov condition and consider ẋ(t) in the extended state vector. Thus,

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t)) ≤ He

{
η1(t)TP η̇1(t)

}
+η2(t, t)TQη2(t, t) + He

{∫ t
tk
η2(t, s)TQ∂η2(t,s)

∂t ds
}

+ (tk+1 − t)ẋ(t)TZẋ(t)

+(t− tk)ζT (t)FZ−1
N F T ζ(t) + He

{
ζT (t)FL(tk, t)

}
−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]

+(tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]+ zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t))

+He {ζ(t)Y1 [(t− tk)e3 − e5] ζ(t)}+ He {ζ(t)Y2 [(t− tk)e4 − e6] ζ(t)}
+He

{[
x(t)TP T2 + ẋ(t)TP T3

] [
−ẋ(t) +

∑nh
j=1Mj(X(tk)) [Ax(t) +BK(d(t))G1,jx(tk)

+BK(d(t))G2,jw1(t) +Bw2(d(t))]
]}
.

(4.68)

Then, by considering K(d(t)) to be in the convex polytope as in (4.41), there exist matrix
Φij

[t−tk] for all i ∈ {1, · · · , p} and j ∈ {1, · · · , nh} such that:

Φij
[t−tk] = %Tq0Q%q0 − %Tψ0Ω%ψ0 + eT1 C

TCe1 − γ1e
T
8 e8 − γ2e

T
9 e9 + He

{
%Tp1P%p2

+%Tq1Q%q2 + F%f + Y1%y1 + Y2%y2 +
[
eT1 P

T
2 + eT7 P

T
3

]
× [−e7 +Ae1

+BKiG1,je2 +BKiG2,je8 +Be9]}
%q0 = col {e7, e1, e1, e2, e0} ,
%ψ0 = col {e1, e2} ,
%ψ1 = col {e7, e0} ,
%p1 = col {e1, e2, e5, e6} ,
%p2 = col {e7, e0, e1, e1 − e4} ,
%q1 = col {e1 − e2, e5, (t− tk)e1, (t− tk)e2, (t− tk)e6} ,
%q2 = col {e0, e0, e7, e0, e1} ,
%f = col {e1 − e2, e1 + e2 − 2e3, e1 − e2 + 6e3 − 12e4} ,
%y1 = col {(t− tk)e3 − e5} ,
%y2 = col {(t− tk)e4 − e6} ,
ei =

[
0n×(i−1)n In 0n×(c−i)n

]
, i = 1, · · · , c,

e0 = [0n×cn] .

(4.69)
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Using these matrix notation, we can rewrite (4.68) as,

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t))

≤
∑nh

j=1Mj(X(tk))
∑q

i=1 ai(d(t))ζ(t)TΦij
[t−tk]ζ(t) + (t− tk)ζ(t)TFZ−1

N F T ζ(t)

+(tk+1 − t)ζ(t)T
(
eT7 Ze7 + He

{
%Tψ0Ω%ψ1

})
ζ(t).

(4.70)

Since,
∑q

i=1

∑nh
j=1Mj(X(tk)ai(d(t)) =

∑nh
j=1Mj(X(tk)) =

∑q
i=1 ai(d(t)) = 1, as

Mj(X(tk)) ∈ [0, 1], ∀j ∈ {1, · · · , nh}, ai(d(t)) ∈ [0, 1], ∀i ∈ {1, · · · , q}, equation (4.70)
can be rewritten as:

˙̄V (t) + zT (t)z(t)− γ1w
T
1 (t)w1(t)− γ2w

T
2 (d(t))w2(d(t))

≤
∑nh

j=1

∑q
i=1Mj(X(tk))ai(d(t))ζ(t)T

[
Φij

[t−tk] + (t− tk)FZ−1
N F T

+(tk+1 − t)
(
eT7 Ze7 + He

{
%Tψ0Ω%ψ1

}) ]
ζ(t).

(4.71)

Similar to equation (4.34), since equation (4.71) is also linear in the variable t, we
follow similar steps to reduce the number of conditions to be checked to a finite number,
i.e. by applying Theorem A.3 (in the Appendix A) with the variable ρ = t ∈ [tk, tk+1). We
thus obtain two inequalities, both linear in the variable tk+1− tk. We, then, use Theorem
A.3 (in the Appendix A), with the variable ρ = tk+1 − tk ∈ [0, h̄] to prove that if the two
inequalities ζ(t)TΞijζ(t) � 0 are satisfied for all ζ(t) ∈ R7nx+nw1+nw2 , i ∈ {1, · · · , q} and
j ∈ {1, · · · , nh}, with Ξij defined as,

Ξij =


[

Φij

h̄

√
h̄F

∗ −ZN

]
,[

Φij
0 + h̄eT7 Ze7 + h̄He

{
%Tψ0Ω%ψ1

} ]
,

(4.72)

then, V̇ (t) + ‖z(t)‖2 − γ1‖w1(t)‖2 − γ2‖w2(d(t))‖2 ≤ 0 for all t ∈ [tk, tk+1), k ∈ N. Note
that we considered any sampling sequence hk = tk+1 − tk ∈ [0, h̄]. Therefore, the L2-
stability results we obtained will be valid for any sampling sequence satisfying (4.39).
Further, since we have shown that V̇ (t) ≤ −‖z(t)‖2 + γ1‖w1(t)‖2 + γ2‖w2(d(t))‖2 for all
t ∈ [tk, tk+1), k ∈ N, if we have V (t0) = 0, we find∫ t

t0

[
z(t)T z(t)− γ1w1(t)Tw1(t)− γ2w2(d(t))Tw2(d(t))

]
dt < 0. (4.73)

Therefore, we will have the following theorem.

Theorem 4.9: Consider scalars c, N, γ1, γ2 > 0 with matrices G1,j ∈ Rl×nx , G2,j ∈ Rl×r,
j ∈ {1, · · · , nh}, Ki ∈ Rnu×l, i ∈ {1, · · · , q} and a maximum sampling interval h̄. Then,
the perturbed system S is finite-gain L2-stable from w1(t) → z(t) and w2(d(t)) → z(t)

with L2 gain less than γ1 and γ2 respectively, for any sampling sequence satisfying (4.39), if
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there exist matrices P ∈ S4nx
+ , Q ∈ S5nx

+ , Z ∈ Snx
+ and arbitrary matrices X, X1, P2, P3 ∈

Rnx×nx , F ∈ Rcnx×(N+1)nx , Y1, Y2 ∈ Rcnx×nx such that (4.59) and (4.72) satisfy, for all
i ∈ {1, · · · , q} and j ∈ {1, · · · , nh}.

Remark 4.10: It can be seen from Theorem 4.9 that the LMI’s for L2-stability depend
only on the NN parameters from hidden nodes to outer nodes, i.e. G1,j and G2,j but
not on inner nodes to hidden nodes, i.e. mj,i, ∀i ∈ {1, · · · , nx}, ∀j ∈ {1, · · · , nh}. Thus
we can see that system stability do not depend on the trained NN parameters rather it
depends on NN parameter that can be tested by LMI’s.

Remark 4.11: Compared to Theorem 4.2, the stability conditions provided by Theorem
4.9 are aimed at the perturbed system S with a given NN gain G1,j , G2,j , a convex
polytope for time-varying gainK(d(t)) and a sampling satisfying (4.39). The key difference
involve the application of an augmented time-dependent LKF and a better choice of upper-
bounding the integral term, i.e. using affine Bessel-Legendre inequality.

4.3.3 Discussions

In this section we proposed a stability analysis allowing to estimate maximum sampling
period h̄, while ensuring L2-stability for perturbed sampled-data LTI with a NN controller.
The study was based on a new class of LKF involving use of a form of Bessel-Legendre
inequality. The application of affine Bessel-Legendre, in addition to augemented Lyapunov
functional, was advantageous in over-approximating the integral term and eventually max-
imising the time-varying sampling interval h̄ while ensuring the system L2-stability.

However, we realised there is still room for improvement in the ADAS-Driver-Train
modelling. The assumption that a ADAS-Driver-Train model be linear in nature is
an over simplification of the problem. Thus, we searched for other modelling meth-
ods. In the literature, fuzzy logic theory has been well recognised as a powerful tool to
represent the non-linearities in dynamical systems, [Liu et al. 2013], [Wang et al. 2016],
[Chen et al. 2017b], [Wang et al. 2018], [Niu et al. 2018]. In particular, due to features
such as structural simplicity and universal function approximation capability, T-S mod-
els, [Takagi & Sugeno 1985], have received tremendous research efforts in the past few
decades, [Lam et al. 2000], [Precup et al. 2010], [Vrkalovic et al. 2017], [Choi et al. 2017].

The aforementioned reason led us to consider T-S model to represent the Train.
We particularly considered a fuzzy parameter varying system, [Zhao et al. 2014],
[Wei et al. 2018]. Such system can fruitfully represent non-linear time-varying systems
by combining the advantages of both the T-S fuzzy system and the LPV system. This
representation not only overcomes the disadvantage of the traditional T-S fuzzy system in
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handling time-varying systems, but also expands the scope of application of LPV system
theory, [Zhang et al. 2016b].

We propose a third modelling abstraction as shown in Fig. 4.6. In the next section
we will present a T-S model with NN controller based modelling abstraction for stability
study of ADAS-Driver-Train system in the presence of delayed sensor measurements.

Figure 4.6: Non-linear parameter varying system with NN control

4.4 Stability of non-linear sampled-data system with neural-

network control

4.4.1 Problem formulation

In this modelling abstraction, the Driver-Train non-linear system is represented using the
T-S model, [Takagi & Sugeno 1985]. These models have the advantage of exactly repre-
senting a non-linear system in a certain domain of validity. The domain is a polytope
whose vertices are composed of linear subsystems (based on the sector non-linearity ap-
proach). Inside this domain, the non-linear system is exactly represented by a combination
of several linear subsystems triggered together with non-linear functions called member-
ship functions, wi(x(t)).

4.4.1.1 Takagi-Sugeno system model

This class of non-linear continuous-time system is described by,

ẋ(t) =

p∑
i=1

wi(x(t))(Aix(t) +Biu(t)), (4.74)
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where x = [x1, · · · , xnx ]T ∈ Rnx is the state vector and u = [u1, · · · , unu ]T ∈ Rnu denotes
the control input vector. Ai ∈ Rnx×nx and Bi ∈ Rnx×nu are known constant system
matrices, respectively, p is a non-zero positive integer, and wi has the following properties:

p∑
i=1

wi(x(t)) = 1, and wi(x(t)) ∈ [0, 1], ∀i ∈ {1, · · · , p}. (4.75)

The control is designed as a piece-wise constant sampled-data controller such that

u(t) = u(tk), ∀t ∈ [tk, tk+1), k ∈ N, (4.76)

with tk is the kth sampling and actuation time. Note that similar to the modelling ab-
straction of the previous sections, we have considered no delay between the sampling and
actuation times. Further, the sequence of sampling times (tk)k≥0 is assumed to satisfy
0 = t0 < t1 < · · · < tk < · · · , limk→∞ tk =∞, 0 < tk+1 − tk ≤ h̄, and the sampling law is
defined as,

tk+1 = tk + hk (4.77)

with a variable sampling step hk, that we aim to maximise. In order to fulfil this aim,
we consider a NN controller, equation (4.46). Please note, for this stability analysis
we consider X(tk) = x(tk) and η(t) = u(t). We denote S as the closed-loop system,
{(4.74), (4.77), (4.45)} and the corresponding closed-loop schematic as given in Fig. 4.7.

x(t)

x(tk)u(tk)

- -

6

�

u(t)
Continuous,

T ime− varying
Non− linear System

Zero− order
Hold

Aperiodic

Sampler

Discrete− Time
TLFCFFNN based

Controller

Figure 4.7: Closed-loop system schematic

Then, the dynamic behaviour of the non-linear continuous-time system with the pre-
sented NN controller in closed-loop can be written as:

ẋ(t) =

p∑
i=1

nh∑
j=1

wi(x(t))Mj(x(tk))(Aix(t) +BiGjx(tk)), (4.78)

when tk ≤ t < tk+1, k ∈ N, by utilising the following property,
p∑
i=1

wi(x(t)) =

nh∑
j=1

Mj(x(tk)) =

p∑
i=1

nh∑
j=1

wi(x(t))Mj(x(tk)) = 1. (4.79)
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In order to have faster convergence rate of the system states to the steady state, the
system S is studied from exponential stability point of view, which is recalled in the
following definition:

Definition 4.12: (from [Fridman 2010]) Consider a non-linear system ẋ(t) =

f(x(t)), ∀t ≥ t0 with f : Rnx → Rnx . Then, an equilibrium point of the system, xe
is said to be exponentially stable, if there exist three scalars α, λ, δ > 0 such that,

‖x(t0)− xe‖ < δ ⇒ ‖x(t)− xe‖ ≤ α‖x(t0)− xe‖e−2λ(t−t0), ∀t ≥ t0. (4.80)

The work in the present section aims at estimating the largest sampling interval h̄,

tk+1 − tk ≤ h̄, (4.81)

while ensuring the exponential stability of S with a decay-rate λ. To this aim, we recall
the following lemma:

Lemma 4.13: (from [Fridman 2010]) Assume that there exist real constants λ ≥ 0 and
a positive continuous function V : t ∈ R+ → V (t) ∈ R+, differentiable for all t 6= tk, k ∈ N
that satisfy,

V̇ (t) + 2λV (t) ≤ 0, (4.82)

along S. Then S is exponential stable with decay-rate λ.
Proof: Let t >> 0 and k ∈ N such that t ∈ [tk, tk+1). Integrating (4.82) over [0, t] gives,∫ t

tk
1

V (t)d(V (t)) ≤ −2λ
∫ t
tk
dt.

Since V (t) ≥ 0 and V (tk) = V (t−k ) for all k ∈ N (V is assumed to be continuous), we
get V (t) ≤ e−2λ(t−tk)V (tk), for all t ∈ [tk, tk+1), k ∈ N. Furthermore, taking into account
the fact that V (t) is decreasing during the sampling instants, we further obtain,

V (t) ≤ e−2λ(t−tk)V (tk) ≤ e−2λ(t−tk)V (t−k )

≤ e−2λ(t−tk−1)V (tk−1) ≤ e−2λ(t−tk−1)V (t−k−1) ≤ · · ·
≤ e−2λ(t−t0)V (t0)

and thus V (t) ≤ e−2λ(t−t0)V (t0). Now, if we have ∃c1, c2 > 0, c1‖x(t)‖2 ≤ V (t) ≤ c2‖xt‖2W
for all t ≥ 0, we can conclude that,

‖x(t)‖ ≤
√
c2

c1
e−λ(t−t0)‖x0‖W , ∀t ≥ 0,

which ends the proof. �
Considering this approach, our objective is to compute largest sampling interval h̄

which ensures the expected exponential stability for a fixed decay-rate λ. We will thus
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provide a stability analysis of the system (4.78) for a given NN controller gain Gj and
a given maximum sampling interval h̄. Please note, all these studies are based on a
quite general class of LKF, based on derivative of Wirtinger inequality, which take into
account the delays (in the case of delayed systems), the perturbations and the sampling
(the maximum sampling period h̄ dependent terms).

4.4.2 Exponential stability results

In this section, we propose exponential stability analysis of system S for a given NN
controller gain Gj and the samplings satisfying (4.77).

4.4.2.1 Stability analysis of non-linear sampled-data systems

We consider the following LKF, which depends on the actual state x(t), the sampled-state
x(tk), the delayed state xt and the delayed state derivative ẋt (defined for a maximum
sampling period h̄ as xt(θ) = x(t+ θ), ẋt(θ) = ẋ(t+ θ),∀θ ∈ [−h̄, 0]):

V (t, x(t), xt, ẋt, k) = x(t)TPx(t) +
∫ t
tk
e2λ(s−t)x(s)TQx(s)ds

+(tk+1 − t)
∫ t
tk
e2λ(s−t)ẋ(s)TZẋ(s)ds

+h̄2
∫ t
tk
e2λ(s−t)ẋ(s)TUẋ(s)ds

+(h̄2λ2 − π2

4 )
∫ t
tk
e2λ(s−t)(x(s)− x(tk))

TU(x(s)− x(tk))ds

+2h̄2λ
∫ t
tk
e2λ(s−t)(x(s)− x(tk))

TUẋ(s)ds

+(tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
,

(4.83)
defined for all t ∈ [tk, tk+1) and k ∈ N, with matrix Ω defined as:

Ω =

[
X+XT

2 −X +X1

∗ −X1 −XT
1 + X+XT

2

]
. (4.84)

Matrices P, Q, Z, U ∈ Snx
+ and X, X1 ∈ Rnx×nx are of appropriate dimensions.

Compared to (4.9) and (4.50), the new aspect of LKF (4.83) is the fact that it involves
the application of the derivative of the extended form of the Wirtinger inequality (terms
with h̄). The LKF includes classical e2λ(s−t) terms to follow the definition of deriving
exponential stability conditions. Further, the functional V is continuous over the sampling
interval t ∈ [tk, tk+1), however, it is discontinuous at times tk as:

limt→t−k
V (t, x(t), xt, ẋt, k − 1) = xT (tk)Px(tk)

+
∫ tk
tk−1

e2λ(s−t)x(s)TQx(s)ds+ h̄2
∫ tk
tk−1

e2λ(s−t)ẋ(s)TUẋ(s)ds

+(h̄2λ2 − π2

4 )
∫ tk
tk−1

e2λ(s−t)(x(s)− x(tk))
TU(x(s)− x(tk))ds

+2h̄2λ
∫ tk
tk−1

e2λ(s−t)(x(s)− x(tk))
TUẋ(s)ds

, (4.85)
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and limt→t+k
V (tk, x(tk), xtk , ẋtk , k) = xT (tk)Px(tk). (4.86)

Note that this is because V has two discontinuous term
∫ t
tk
e2λ(s−t)x(s)TQx(s)ds and

h̄2
∫ t
tk
e2λ(s−t)ẋ(s)TUẋ(s)ds + (h̄2λ2 − π2

4 )
∫ t
tk
e2λ(s−t)(x(s) − x(tk))

TU(x(s) − x(tk))ds +

2h̄2λ
∫ t
tk
e2λ(s−t)(x(s) − x(tk))

TUẋ(s)ds. These terms do not increase along the jumps
at tk. In fact they vanish after the jumps. Thus the limit limt→t−k

V (t, x(t), xt, ẋt, k) ≥
V (tk, x(tk), xtk , ẋtk , k) holds. Thus, the proposed LKF is well adapted for exponential
stability analysis of systems with time-varying sampling. In the following, we denote

V̄ (t) = V (t, x(t), xt, ẋt, k) for all t ∈ [tk, tk+1), k ∈ N. (4.87)

The exponential stability analysis based on Lemma 4.13 is thus divided into two steps.

• First, we prove that V̄ is continuous over R+\{tk, k ∈ N} and differentiable for all
t ∈ [tk, tk+1), and provide conditions for its positive definiteness.

• Then, we differentiate V̄ , upper-bound the obtained result and derive the exponential
stability conditions.

4.4.2.2 Continuity, piece-wise differentiability, and positivity condition

Again, as a necessary first step, we propose Lemma 4.14 to ensure the functional’s conti-
nuity, piece-wise differentiability, and positivity properties. Please note, Lemma 4.14 and
Lemma 4.3 do seem similar, however, because V̄ is different, the steps involved to reach
V̄ positive-definiteness conditions are different.

Lemma 4.14: The function V̄ defined in (4.87) is continuous over R+\{tk, k ∈ N} and
differentiable for all t 6= tk, k ∈ N. If its matrix parameters satisfy P, Q, Z, U ∈ Snx

+ and
X, X1 ∈ Rnx×nx , [ [

P 0

0 0

]
+ h̄Ω

]
� 0, (4.88)

then V̄ is also positive definite, and there exists a scalar β > 0 such that V̄ ≥ β‖x(t)‖2

for all t ≥ 0.

Proof: V̄ is defined on R+, differentiable over each time interval [tk, tk+1), and is designed
to satisfy,

V̄ (t−k ) = xT (tk)Px(tk) +
∫ tk
tk−1

e2λ(s−t)x(s)TQx(s)ds

+h̄2
∫ tk
tk−1

e2λ(s−t)ẋ(s)TUẋ(s)ds

+(h̄2λ2 − π2

4 )
∫ tk
tk−1

e2λ(s−t)(x(s)− x(tk))
TU(x(s)− x(tk))ds

+2h̄2λ
∫ tk
tk−1

e2λ(s−t)(x(s)− x(tk))
TUẋ(s)ds

(4.89)
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and V̄ (t+k ) = limt→t+k
V̄ (t) = x(tk)

TPx(tk) for all k ∈ N. It is therefore continuous and
differentiable over R+\{tk, k ∈ N}. Now, we can say, V̄ can be positive definite if, and
only if, for all k ∈ N, t ∈ [tk, tk+1):[

x(t)

x(tk)

]T [ [
P 0

0 0

]
+ (tk+1 − t)Ω

][
x(t)

x(tk)

]
≥ 0, (4.90)

with equality if and only if x(t) = x(tk) = 0,∫ t

tk

e2λ(s−t)x(s)TQx(s)ds+ (tk+1 − t)
∫ t

tk

e2λ(s−t)ẋ(s)TZẋ(s)ds ≥ 0, (4.91)

and,
h̄2
∫ t
tk
e2λ(s−t)ẋ(s)TUẋ(s)ds

+(h̄2λ2 − π2

4 )
∫ t
tk
e2λ(s−t)(x(s)− x(tk))

TU(x(s)− x(tk))ds

+2h̄2λ
∫ t
tk
e2λ(s−t)(x(s)− x(tk))

TUẋ(s)ds ≥ 0.

(4.92)

Note that the equation (4.92) is a derivative of the extension of the vector case of
Wirtinger inequality [Liu et al. 2010] (see Theorem A.2 in Appendix A). i.e.

d

dt

[
e2λ(s−t)

(
h̄2

∫ t

tk

ẋ(s)TUẋ(s)ds− π2

4

∫ t

tk

(x(s)− x(tk))
TU(x(s)− x(tk))ds

)]
≥ 0.

(4.93)
Further as, 0 ≤ tk+1 − t ≤ h̄, remarking that the right part of (4.91) and the middle

matrix term in the left part of (4.90) is linear with respect to ρ = tk+1 − t, one can use
Theorem A.3 (in Appendix A) and show that a sufficient condition for V̄ to be positive
definite is that, for all k ∈ N, t ∈ [tk, tk+1):

x(t)TPx(t) > 0, for all x(t) 6= 0, (4.94)

and

[
x(t)

x(tk)

]T [ [
P 0

0 0

]
+ h̄Ω

][
x(t)

x(tk)

]
≥ 0, for all

[
x(t)

x(tk)

]
6= 0. (4.95)

The condition (4.95) is ensured by assuming that P is positive definite. Further-
more, if P � 0, then there exists scalar β > 0, such that for all k ∈ N, t ∈ [tk, tk+1),[[

P 0

0 0

]
+h̄Ω

]
� β

[
I 0

0 0

]
. Thus, V̄ (t) ≥ β‖x(t)‖2 for all t ∈ [tk, tk+1), ∀k ∈ N. There-

fore, there exists a scalar β, such that V̄ (t) ≥ β‖x(t)‖2 for all t ≥ 0, which ends the proof.
�

4.4.2.3 Exponential stability conditions

Having proposed the conditions to ensure V̄ ’s continuity, differentiability, and positivity,
now, in order to analyse the exponential stability of system S, we will refer to Lemma
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4.13. The lemma is needed to provide conditions that satisfy,

˙̄V (t) + 2λV̄ (t) ≤ 0, ∀t 6= tk,∀k ∈ N. (4.96)

In order to analyse this exponential stability condition, we study the restriction of ˙̄V

on any interval [tk, tk+1), k ∈ N. We compute:
˙̄V (t) + 2λV̄ (t) = He

{
x(t)TPẋ(t)

}
+ 2λx(t)TPx(t) + x(t)TQx(t)

+(tk+1 − t)ẋ(t)TZẋ(t)−
∫ t
tk
e2λ(s−t)ẋ(s)TZẋ(s)ds

+h̄2ẋ(t)TUẋ(t) + 2h̄2λ(x(t)− x(tk))
TUẋ(t)

+(h̄2λ2 − π2

4 )

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]
−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]

+(tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]
+2λ(tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
.

(4.97)
Notice, because of presence of e2λ(s−t), it is not possible to apply Wirtinger and Bessel-

Legendre inequality directly. However, since max(s − t) = h̄,∀t ∈ [tk, tk+1), we compute
an upper-bound of the integral term:

−
∫ t

tk

e2λ(s−t)ẋ(s)TZẋ(s)ds ≤ −e2λh̄

∫ t

tk

ẋ(s)TZẋ(s)ds, (4.98)

Next, using the Jensen inequality [Gu et al. 2003] (see Theorem A.1 in Appendix A),
we compute an upper-bound of the right hand side of (4.98):

−
∫ t

tk

ẋ(s)TZẋ(s)ds ≤ −(t− tk)v1(t)TZv1(t), (4.99)

with, v1(t) =
1

(t− tk)

∫ t

tk

ẋ(s)Tds =
x(t)− x(tk)

t− tk
. (4.100)

Here, v1(t) continuity is well defined at t = tk. It is because, when t → tk, v1(t) →
ẋ(tk). Using majoration (4.98) and (4.99) in ˙̄V (t), equation (4.97) leads to

˙̄V (t) + 2λV̄ (t) ≤ He
{
x(t)TPẋ(t)

}
+ 2λx(t)TPx(t) + x(t)TQx(t)

+(tk+1 − t)ẋ(t)TZẋ(t)− (t− tk)e2λh̄v1(t)TZv1(t) + h̄2ẋ(t)TUẋ(t)

+2h̄2λ(x(t)− x(tk))
TUẋ(t)− (h̄2λ2 − π2

4 )

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]
+2λ(tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
.

(4.101)
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Further we apply the descriptor method from [Fridman 2010]. In order to do so, we
consider equality (4.102) and (4.103),

0 = He
{[
x(t)TY T

1 + ẋT (t)Y T
2 + x(tk)

TT T
]

[−x(t) + x(tk) + (t− tk)v1(t)]
}
, (4.102)

0 = He
{[
x(t)TP T2 + ẋ(t)TP T3

]
×[

−ẋ(t) +
∑p

i=1

∑nh
j=1wi(x(t))Mj(x(tk))(Aix(t) +BiGjx(tk))

]} , (4.103)

with some nx × nx arbitrary matrices P2, P3, Y1, Y2 and T . These equalities are added
to the right hand side of equation (4.101) expression. The purpose is to get the system
dynamics into the Lyapunov condition and consider ẋ(t) in extended state vector. Thus,

˙̄V (t) + 2λV̄ (t) ≤ He
{
x(t)TPẋ(t)

}
+ 2λx(t)TPx(t) + x(t)TQx(t)

+(tk+1 − t)ẋ(t)TZẋ(t)− (t− tk)e2λh̄v1(t)TZv1(t) + h̄2ẋ(t)TUẋ(t)

+2h̄2λ(x(t)− x(tk))
TUẋ(t)− (h̄2λ2 − π2

4 )

[
x(t)

x(tk)

]T [
U −U
∗ U

][
x(t)

x(tk)

]

−

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+ (tk+1 − t)He


[
x(t)

x(tk)

]T
Ω

[
ẋ(t)

0

]
+2λ(tk+1 − t)

[
x(t)

x(tk)

]T
Ω

[
x(t)

x(tk)

]
+He

{[
x(t)TY T

1 + ẋT (t)Y T
2 + x(tk)

TT T
]

[−x(t) + x(tk) + (t− tk)v1(t)]
}

+He
{[
x(t)TP T2 + ẋ(t)TP T3

]
×[

−ẋ(t) +
∑p

i=1

∑nh
j=1wi(x(t))Mj(x(tk))(Aix(t) +BiGjx(tk))

]}
.

(4.104)

Let us now introduce the augmented state vector ζ(t) ∈ R4nx :

ζ(t) =
[
xT (t), xT (tk), v

T
1 (t), ẋT (t)

]
. (4.105)

Then, there exist matrices M (0)
ij , M (1) and M (2) for all i ∈ {1, · · · , p} and j ∈ {1, · · · , nh}

such that:

M
(0)
ij =


M

(0)
ij,A M

(0)
ij,B 0 M

(0)
ij,C

∗ M
(0)
ij,D 0 M

(0)
ij,E

∗ ∗ 0 0

∗ ∗ ∗ M
(0)
ij,F

 , (4.106)

M (1) =


M

(1)
A M

(1)
B 0 M

(1)
C

∗ M
(1)
D 0 M

(1)
E

∗ ∗ 0 0

∗ ∗ ∗ Z

 , (4.107)
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M (2) =


0 0 Y T

1 0

∗ 0 T T 0

∗ ∗ −e−2λh̄Z Y2

∗ ∗ ∗ 0

 , (4.108)

with,

M
(0)
ij,A = λ(P + P T ) +Q+ (h̄2λ2 − π2

4 )U − X+XT

2 + P T2 Ai +ATi P2 − Y1 − Y T
1 ,

M
(0)
ij,B = −(h̄2λ2 − π2

4 )U − (−X +X1) + P T2 BiGj + Y T
1 − T,

M
(0)
ij,C = P + h̄2λU − P T2 − Y2 +ATi P3,

M
(0)
ij,D = (h̄2λ2 − π2

4 )U − (−X1 −XT
1 + X+XT

2 ) + T T + T,

M
(0)
ij,E = −h̄2λU + Y2 +GTj B

T
i P3,

M
(0)
ij,F = h̄2U − P T3 − P3,

M
(1)
A = 2λX+XT

2 ,

M
(1)
B = 2λ(−X +X1),

M
(1)
C = X+XT

2 ,

M
(1)
D = 2λ(−X1 −XT

1 + X+XT

2 ),

M
(1)
E = (−X +X1)T ,

Using these matrix notation, we can rewrite (4.104) as

˙̄V (t) + 2λV̄ (t) ≤
∑p

i=1

∑nh
j=1wi(x(t))Mj(x(tk))ζ(t)TM

(0)
ij ζ(t)

+(tk+1 − t)ζ(t)TM (1)ζ(t) + (t− tk)ζ(t)TM (2)ζ(t).
(4.109)

Since,
∑p

i=1

∑nh
j=1wi(x(t))Mj(x(tk) = 1, ∀i ∈ {1, · · · , q}, j ∈ {1, · · · , nh}, equation

(4.109) can be rewritten as:

˙̄V (t) + 2λV̄ (t) ≤∑p
i=1

∑nh
j=1wi(x(t))Mj(x(tk))

[
ζ(t)T

[
M

(0)
ij + (tk+1 − t)M (1) + (t− tk)M (2)

]
ζ(t)

]
.

(4.110)
Similar to equation (4.34) and (4.71), since equation (4.110) is also linear in the variable

t, we follow similar steps to reduce the number of conditions to be checked to a finite
number by applying Theorem A.3 (in the Appendix A), with the variable ρ = t ∈ [tk, tk+1).
We thus obtain two inequalities, both linear in the variable tk+1 − tk. Thus we can use
once again Theorem A.3 (in the Appendix A) with the variable ρ = tk+1 − tk ∈ [0, h̄]

to prove that if the four inequalities ζ(t)TΞijζ(t) � 0 are satisfied for all ζ(t) ∈ R4nx ,
i ∈ {1, · · · , q} and j ∈ {1, · · · , nh}, with Ξij defined as

Ξij =


M

(0)
ij ,

M
(0)
ij + h̄M (1),

M
(0)
ij + h̄M (2),

M
(0)
ij + h̄M (1) + h̄M (2),

(4.111)
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then, ˙̄V (t) + 2λV̄ (t) ≤ 0 for all t ∈ [tk, tk+1), k ∈ N. Again we considered any sampling
sequence hk = tk+1 − tk ∈ [0, h̄]. Therefore, the exponential stability results we obtained
will be valid for any sampling sequence satisfying (4.77). Further, since we have shown
that ˙̄V (t) ≤ −2λV̄ (t) for all t ∈ [tk, tk+1), k ∈ N, we find

V̄ (t) ≤ e−2λ(t−t0)V̄ (t0). (4.112)

Therefore, we will have the following theorem.

Theorem 4.15: Consider scalars λ > 0 with matrices Gj ∈ Rnu×nx , j ∈ {1, · · · , nh},
with maximum sampling interval h̄. Then, the perturbed system S is exponentially stable
with decay-rate λ for any sampling sequence satisfying (4.77), if there exist matrices
P, Q, Z, U ∈ Snx

+ and arbitrary matrices X, X1, Y1, Y2, T, P2, P3 ∈ Rnx×nx such that
(4.95) and (4.111) satisfy, for all i ∈ {1, · · · , q} and j ∈ {1, · · · , nh}.

Remark 4.16: Similar to Remark 3 from [Hu et al. 2018], It can be seen from Theorem
4.15 that the LMI’s for exponential stability depend only on the hidden node to outer node
parameter, Gj but not on front node to outer node parameter or the plant parameters
wi(x(t)), ∀i ∈ {1, · · · , p}. Further, if plant parameter uncertainties are related only to
wi but not to A or B matrices, then the robust exponential stability of the closed-loop
system (4.78) with respect to wi is obtainable.

Remark 4.17: Similar to Remark 4.6, when searching for solutions of LMIs (4.95) and
(4.111), one needs to remove the zero rows/columns that may appear in (4.111) since LMI
solvers search for strict solutions. Indeed, one can see that M (0)

ij and M (1) in Ξij are
independent of v1.

Remark 4.18: The choice of a non-linear time-varying system to represent Driver-Train
interaction and a NN controller to represent ADAS did expanded the scope of exponential
stability study of ADAS-Driver-Train interaction via system modelling approach. How-
ever, while deriving the LMI condition, the choice of Jensen inequality to upper-bound
the integral terms added conservativeness to the proof.

4.4.3 Discussion

This section has proposed a stability analysis allowing to estimate maximum time-varying
sampling period h̄ , while ensuring exponential stability for NN-based control of non-linear
systems. The study is based on a new class of LKF involving application of derivative of
extension of Wirtinger inequality that reduce the conservatism of time-varying sampling.
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However, we would like to highlight that compared to previous abstractions, the ap-
proach did not consider the estimated exogenous perturbations. It was assumed that the
driver and the train can be represented together by a continuous non-linear time-varying
system, while ADAS by a NN controller to study the closed-loop system stability.

The modelling and stability approach was indeed a necessary step to improve system
description and stability approach. In the future works, we would like to separate the driver
and the train representation, i.e. in addition to the non-linear system representation for
the train, we would like to consider the time-varying gain, K(d(t)) for the driver, to derive
closed-loop stability conditions. We would also like to consider the integral action by the
driver and it’s influence on the time-varying sampled stability context.

Further, while deriving the LMI conditions, the choice of Jensen inequality to upper-
bound the integral term can be replaced by either Wirtinger or affine Bessel-Legendre
inequality. In addition, to further improve the results, a combination of augmented LKF
and affine Bessel-Legendre to study the exponential stability problem may provide a fur-
ther improved maximum time-varying sampling interval h̄, that will ensure the closed-loop
system stability.

4.5 Algorithm to find maximum sampling period

In the previous sections, we presented three methods to stabilise the ADAS-Driver-Train
system, in the presence of delayed sensor measurements and a varying driver behaviour. In
the following we provide steps of a search algorithm that uses the stability conditions from
either of the three approaches, to find the maximum sampling period h̄. The computational
steps of the algorithm are as follows:

1. If abstraction 1, then:

• Fix values of γ1, γ2; G1, G2 gains of state-feedback controller and Ki, i ∈
{1, · · · , q} gains of the convex polytope of K(d(t)),

• Decide a range [hmin, hmax] to test h̄,

• Test the LMI from (4.35) for the system (4.6) with γ1, γ2, G1, G2, Ki and the
maximum sampling interval, hmax,

2. If abstraction 2, then:

• Fix values of γ1, γ2; G1,j , G2,j , j ∈ {1, · · · , nh} gains of NN controller and Ki,
i ∈ {1, · · · , q} gains of the convex polytope of K(d(t)),

• Decide a range [hmin, hmax] to test h̄,
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• Test the LMI from (4.72) for the system (4.49) with γ1, γ2, G1,j , G2,j , j ∈
{1, · · · , nh}, Ki, i ∈ {1, · · · , q} and the maximum sampling interval, hmax,

3. If abstraction 3, then:

• Fix values of λ and Gj , j ∈ {1, · · · , nh} gains of NN controller,

• Decide a range [hmin, hmax] to test h̄,

• Test the LMI from (4.111) for the system (4.78) with λ, Gj , j ∈ {1, · · · , nh}
and maximum sampling interval, hmax,

4. If the LMI are solved, h̄ is hmax. Now set hmin = hmax and hmax = hmax+h̄
2 and go

to 3rd step of the appropriate abstraction to test the LMI with new hmax,

5. If the LMI are not solved, set hmax = hmin+hmax
2 while keeping hmin the same and

go to 3rd step of the appropriate abstraction to test the LMI with new hmax,

6. Keep solving the LMI untill hmax−hmax > 0.0001. Here, 0.0001 decides the desired
precision of h̄.

Keep in mind that all the steps in the algorithm are computed off-line, i.e. The
maximum sampling interval h̄ is computed with the help of a numerical solver such as
MOSEK or YALMIP in MATLAB before the controller gains in the three abstraction are
implemented.

4.6 Conclusion

In this chapter, we presented three modelling abstractions to deal with ADAS-Driver-
Train closed-loop stability problem, in the presence of delays in sensor measurement and
driver behaviour variation. The chapter presented progressive evolution of the manner in
which the problem is addressed.

The first abstraction presented a stability study of a state-feedback controlled sampled-
data LTI system in the presence of time-varying sampling and a time-varying gain. The
stability conditions utilised time-dependent LKF based on Wirtinger inequality, used
Jensen inequality for upper-bounding integral terms of LKF derivative, and finally used
convexity arguments to obtain stability conditions in the form of LMIs.

The second abstraction presented a stability study of a NN controlled sampled-data
LTI system in the presence of time-varying sampling and a time-varying gain. The sta-
bility conditions utilised augemented time-dependent LKF, used affine Bessel-Legendre
inequality for upper-bounding integral terms of LKF derivative, and finally used convex-
ity arguments to obtain stability conditions in the form of LMIs.
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Finally, the third abstraction presented a stability study of a NN controlled non-linear
sampled system (represented in the form of time-varying T-S system) in the presence
of time-varying sampling. The stability conditions again utilised time-dependent LKF
based on derivative of Wirtinger inequality, used Jensen inequality for upper-bounding
integral terms of LKF derivative, and finally used convexity arguments to obtain stability
conditions in the form of LMIs.

The first and second abstraction were intended to address a simple stability scenario,
such as cruise control scenario. For this purpose, linear Driver-Train system modelling and
two varying complexity ADAS control models were considered. For the third abstraction,
both Driver-Train and ADAS models were upgraded and a relatively conservative stability
criteria was considered, to fit tight performance requirements, i.e. exponential stability
and also to increase the horizon of applicability of the obtained results.

In the next chapter, we will implement the three abstractions on a Driver-Train model
and compare the stability results of different approaches.
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5.1 Introduction

In the previous chapter, we presented time-delay system stability based solutions for the
ADAS-Driver-Train system stability in midst of unreliable driver and train state measure-
ments. The estimation of maximum admissible measurement delay was studied for three
modelling abstractions, namely, perturbed sampled-data LTI system with a state-feedback,
perturbed sampled-data LTI system with NN controller and non-linear sampled-data sys-
tem with NN controller. In this chapter, we will utilise these frameworks to study the
driver-in-the-loop train control stability.
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The chapter is organised as follows: First, Section 5.2 presents the driver advisory
control simulation context. In the next three sections, i.e. 5.3, 5.4 and 5.5, we consider
the three modelling abstractions sequentially. In each section we first present a system
description, i.e. train model, driver model, ADAS model and the closed-loop equation.
Then, we present simulations for three different scenarios. Lastly, we compare simulation
results with other abstractions to illustrate the effectiveness of the proposed approach.
Finally, Section 5.6 summarises the results obtained in this chapter.

5.2 Simulation protocol

Figure 5.1: Simulation scenario: Railway traffic control of Train 1

For simulation purpose, we considered railway traffic control of a high-speed train
travelling through several blocks as shown in Fig. 5.1. When the train approaches a new
block, the train position is detected, sent to the dispatcher and in return a new reference
speed is sent back to the train via in-cabin signalling system.

Figure 5.2: Typical train speed-distance trajectory

A typical speed-distance trajectory of the train is shown in Fig. 5.2. The red curve
indicates the speed-limit signals from railway traffic control center and the black curve is
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the actual train operation speed during the journey from station A to station B. However,
we are interested in the journey period, when a dispatcher sends the signal to accelerate
the train speed from 220km/h to 240km/h,

vr(t) =

220 km/h, if 0s ≤ t < 1500s,

240 km/h, if 1500s ≤ t < 12000s,
(5.1)

Figure 5.3: Reference speed

Moreover, in later simulations, the assumption of constant reference is relaxed by
considering a varying speed reference that gradually increases as follows:

vr(t) =


220 km/h, if 0s ≤ t < 1500s,

220 + 10( 2
(1+exp(−7( t−1500

300
)+7))

) km/h, if 1500s ≤ t < 2100s,

240 km/h, if 2100s ≤ t < 12000s,

(5.2)

Figure 5.4: Varying reference speed

We recall the driver advisory train control system in Fig. 5.5. Once the reference speed
is sent by the railway traffic control, the driving advices are generated using sampled train
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speed tracking error and sampled driver state measurements from driver attention level
detection system. Particularly, the driver is provided with graphical/text information
about the level of acceleration/braking control actions.

Figure 5.5: Driver-in-the-loop advisory control scheme

Further, we consider that the driver is able to accelerate the train to the new cruise
speed. However, while maintaining the new cruise speed, the driver behaviour starts
varying according to the equation,

K(d(t)) = Knom + ∆Kd(t), (5.3)

with d(t) ∈ L2 as the unknown exogenous disturbance, and ∆K = Kmax − Knom with
Knom and Kmax as the nominal and maximum gains. Considering these parameters, the
driver behaviour variation is as shown in Fig. 5.6.

Figure 5.6: The nominal K(d(t)) = Knom and varying K(d(t)) driver gain

If K = Knom, then the driver interprets the advices correctly. Moreover, it also signify
that the driver is contributing positively to the closed-loop stability, i.e. closed-loop poles
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are in negative half plane. However, when K = Kmax then the driver misinterprets/dis-
cards the advices. Therefore the driver might be destabilising the closed-loop and the
ADAS based advice needs to adjust accordingly.

For simulation purposes, the nominal and maximum gains are considered to beKnom =

1 and Kmax = 5 respectively. Without loss of generality, the disturbance is considered
as d(t) ∈ [0, 1]. The duration of the perturbation is considered to be 6000s, i.e. from
tdstart = 4000s to tdend = 10000s, with rise and recovery time of 1000s.

Figure 5.7: The estimated driver state d̂(tk)

The driver attention level is detected based on physical features (eye, mouth, face/head
state based) or can also be from train features (current/advised actuator level). However,
the estimates are available only at specific times to the driver advisory system. A sample
estimate of driver attention, with h̄ ∼ 4min, is shown in Fig. 5.7.

Further, we also consider a wind gust disturbance acting on the train. Here, the wind
disturbance is assumed to last during the interval [tdstart, tdend]. The start and end time
of the disturbance is usually unknown, however, for a realistic scenario we consider it as,

w(t) =


0.002 sin(0.01t) if tdstart < t < tdend

0 otherwise.
(5.4)

Considering this situation, our objective is to assess the maximum admissible delay
in driver and train measurements, until which, the driver-in-the-loop train control is sta-
ble. For this purpose, we will use Theorems 4.4, 4.9 & 4.15 and corresponding h̄ search
algorithms, as proposed in the contribution chapter, for the following three scenarios.

1. Non functional ADAS: This scenario considers interaction of driver and train
without an ADAS, i.e. no driver advisory signals as shown in Fig. 5.8.

jaina
Highlight
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Figure 5.8: Closed-loop system schematic with non-functional ADAS

2. Partially functional ADAS (with train measurements only): This scenario
considers interaction of driver and train via an ADAS, however, driver advisory
signals are based only on train state measurements as shown in Fig. 5.9.

Figure 5.9: Closed-loop system schematic with partially functional ADAS

3. Fully functional ADAS (with both train and driver measurements): This
scenario considers interaction of driver and train via an ADAS, however, driver
advisory signals are based on both driver and train state measurements as shown in
Fig. 5.10.

Figure 5.10: Closed-loop system schematic with Fully functional ADAS
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In the following sections we will first present each abstraction and then study the three
scenarios for each case. In our discussion, we will compare the results of different scenarios
for each abstraction and then of different abstractions.

5.3 1st abstraction: Stability of perturbed linear Driver-

Train system with a state-feedback based ADAS

In this section, we considered train, driver and ADAS model as a sampled-data LTI system,
a time-varying gain and a state-feedback controller respectively.

5.3.1 System description

Train model: We considered a single-point train dynamics model subject to rolling
mechanical resistance and aerodynamic drag. Since the train is running at a constant
cruise speed, i.e. vr(t) ≡ vr = const, we can get the linearised error dynamical equation
around the equilibrium state (v̇r(t) = 0) as,

ė(t) = Ae(t) +Bu(t)− k0 − k1vr − k2v
2
r , (5.5)

where, e(t) = v(t)− vr(t), A = −k1 − 2k2vr, B = 1/m. The train parameters are chosen
from the experimental results of Japan Shinkansen train [Maeda et al. 1989], Table 5.1.
However we considered only partial knowledge of the drag coefficients, i.e. the values used
for calculus are slightly different than those used by the simulated train, by 5-10%.

Symbol Value Unit
m 800× 103 kg

k0 0.01176 N/kg

k1 0.00077616 N s/m kg

k2 1.6× 10−5 N s2/m2 kg

Table 5.1: Parameters of the train.

Driver model: We choose the following equation for driver control response,

u(t) = û(t) + ū(t),

û(t) = K(d(t))η(t),
(5.6)

where, K(d(t)) is the ability of the driver to interpret the advised control action η(t).
Together, û(t) and ū(t) constitute driver control to maintain the cruise speed, with
ū(t) = B−1(k0 + k1vr + k2v

2
r ) − KnomG2dnom as the reference control and û(t) as the

stabilizing/robust control.
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Figure 5.11: ADAS-Driver control schematic

ADAS model: The state-feedback controller based ADAS model is considered as,

η(t) = G1e(tk) +G2d̂(tk), (5.7)

with tk is the kth sampling instant satisfying tk, k ∈ N,

t0 = 0, 0 < tk+1 − tk ≤ h̄, lim
k−→∞

tk =∞, (5.8)

where, e(tk) and d̂(tk) are the speed error and driver state measurement at time tk, respec-
tively. The advisory control η(t) will adjust according to the driver current behaviour using
appropriate values of G1 and G2 gains. The G1 can be obtained by pole-placement, while
G2 gain value can be obtained by considering the fact that at nominal driving condition
d̂(tk) = dnom and KnomG2d̂(tk)−B−1(k0 + k1vr + k2v

2
r ) = const should satisfy.

Closed-loop system: We obtain the ADAS-Driver-Train closed-loop error dynamics as,

ė(t) = Ae(t) +BK(d(t))G1e(tk) +BK(d(t))G2w1(t) +Bw2(d(t)). (5.9)

with, tk ≤ t < tk+1, k ∈ N, w1(t) = d̂(tk)−dnom and w2(d(t)) = (K(d(t))−Knom)G2dnom

as small perturbations corresponding to the measurement delays and deviation from the
nominal performance, varying with an unknown exogenous perturbation, d(t) ∈ L2.

The objective is to find an estimate of the largest allowable sampling interval h̄ in (5.8)
for some given ADAS gains G1 and G2, using Theorem 4.4 while guaranteeing L2-stability
of the closed-loop system.

5.3.2 Simulation studies

In this subsection, we test the three scenarios to verify the effectiveness of state-feedback
based ADAS to reduce the tracking error in the presence of varying driver behaviour.
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5.3.2.1 Non functional ADAS

In this scenario we consider that there is no ADAS installed on the train. Thus, when
the driver is inattentive, no driver advisory control signals will be available. In order
to simulate this case, we considered G1 = 1 and G2 = 0 and considered h̄ = 1s. Fig.
5.12 shows the speed v(t) response for two possibilities of this scenario, i.e. driver with
a stable/nominal behaviour Knom and a varying/ab-nominal behaviour K(d(t)). The
following observation can be made from Fig. 5.12.

• When the driver’s state is nominal, he accurately follows the reference train speed
even during the wind disturbance.

• However, when the driver’s state is impacted by d(t), the train speed tracking per-
formance decreases even with speed measurement delay of h̄ = 1s.

Remark 5.1: The speed divergence of the Fig. 5.12 indicate that if the driver is insuffi-
ciently attentive, he is unable to apply the required controller level and follow the reference
speed advice correctly. However, the divergence is exaggerated by the simulation, because
the considered driver’s model is valid for speed tracking. In reality, the driver’s actions are
more sophisticated. The tracking performance losses at the security level are compensated
by other means than the ADAS.

Figure 5.12: The response of v(t), η(t) and d(t) without ADAS assistance to nominal
(blue) and varying driver behaviour (red)
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5.3.2.2 Partially functional ADAS (with train measurements only)

In this scenario we consider a driver advisory system with partial functionality. Thus, the
ADAS helps the driver by providing advisory control signal based only on delayed train
speed measurements, i.e. η(t) = G1e(tk). Fig. 5.13 gives speed v(t) response considering
a varying driver behaviour K(d(t)). In order to simulate this scenario, we considered
the controller gains as G1 = −1 by pole-placement method and G2 = 0 and obtained
h̄ ∼ 5min for γ1, γ2 = 15. The following observation can be made from Fig. 5.13.

• If the delay in train speed measurement gradually increases from 0s→ 180s→ 285s,
the train cruise control stability will become more and more compromised. Moreover,
the speed tracking performance will decrease with bigger values of the delay h̄.

• The train speed of yellow plot with maximum sampling period h̄ ∼ 285s compared
to red plot with maximum sampling period of h̄ ∼ 180s is unstable because LMIs of
Theorem 4.6 are solvable only for h̄ < 285s.

Remark 5.2: The speed divergence of the Fig. 5.13 models the discrepancy arising due
to driver’s inability to follow ADAS advice exactly. In reality, the discordant advises of
the ADAS would be rejected by the driver, who will rather drive on sight. This will nullify
practical benefits of ADAS and rather reduce ADAS’s acceptability by the drivers.

Figure 5.13: The response of v(t), η(t) and d(t) with static-feedback based ADAS assis-
tance to varying driver behaviour for only train speed measurements
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5.3.2.3 Fully functional ADAS (with both train and driver measurements)

Figure 5.14: a) The response of v(t), η(t) and d(t) with static-feedback based ADAS
assistance to varying driver behaviour for both train speed and driver state measurements
b) Comparison of the response of v(t), η(t) and d(t) with static-feedback based ADAS
assistance to varying driver behaviour for only train speed measurements (blue) and for
both train speed and driver state measurements (red)

In this scenario, we consider that the driver advisory system is present with full func-
tionality. Compared to previous scenarios, ADAS will help the driver by adjusting the
advisory control signal η(t) based on both the time-delayed train speed e(tk) and driver
state d̂(tk) measurements. Thus, the advisory control signal η(t) given by (5.7), depends
on both, G1e(tk) and G2d̂(tk). Fig. 5.14 gives speed v(t) response for this scenario consid-
ering a varying driver behaviour K(d(t)). In order to simulate this scenario, we considered
the controller gains as G1 = −1 by pole-placement method and G2 = −2, and obtained
h̄ ∼ 4min for γ1, γ2 = 15. The negative G1 value will keep the closed-loop poles in neg-
ative half plane, whereas, a negative G2 value will actively correct the ab-nominal driver
behaviour. The following observations can be made from Fig. 5.14.

• Similar to previous scenario, if delay in train speed and driver state measurement
gradually increases from 0s→ 180s→ 245s, the train cruise control is compromised
and the tracking performance is deteriorated.

• However, notice from the yellow plot corresponds to h̄ ∼ 245s, i.e. the maximum
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delay until which stability can be guaranteed. This is because the LMIs of Theorem
4.6 are solvable only for h̄ < 245s.

• Moreover, when the train speed and driver state measurements are within the maxi-
mum delay limit, the cruise speed decreases during inattentiveness of the driver. The
steady state error depends on G2 design and signify the impact of delayed driver
state on the stability of the ADAS-Driver-Train closed-loop system.

• The smaller value of h̄ in this scenario further signify that when ADAS considers
time-delayed driver state signals to decide driver advisory signal, the time-delay
margin for closed-loop system stability is decreased. This means that injecting two
delayed measurements will induce less stability, which is logical.

5.4 2nd abstraction: Stability of perturbed linear Driver-

Train system with a neural-network based ADAS

In this section, we consider train, driver and ADAS modelled as a sampled-data LTI
system, a time-varying gain and a NN controller respectively.

5.4.1 System description

Compared to the previous modelling abstraction, for this approach, we considered the same
train and driver model. However, we considered a NN controller for ADAS representation.
Thus, we will only present ADAS-Driver control model.
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Figure 5.15: NN-based ADAS-Driver control schematic

ADAS model:
The NN controller based ADAS model is considered as,

η(t) =
∑nh

j=1Mj(X(tk))
[
G1,je(tk) +G2,j d̂(tk)

]
(5.10)
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with the sampling instants tk, k ∈ N, that satisfy,

t0 = 0, 0 < tk+1 − tk ≤ h, lim
k−→∞

tk =∞. (5.11)

where e(tk) and d̂(tk) are the speed error and estimated driver behaviour measurement at
time tk, respectively. Note, that the input vector of the neural-network are considered as

X(tk) = [X1(tk) X2(tk)]
T =

[
e(tk) d̂(tk)

]T
and

Mj(X(tk)) =
tf (
∑nx

i=1mj,iXi(tk) + bj)∑nh
l=1 tf (

∑nx
i=1ml,iXi(tk) + bl)

∈ [0, 1], (5.12)

with the property
∑nh

j=1Mj(X(tk)) = 1. Further, we assume a sigmoid activa-
tion function, i.e. tf (

∑nx
i=1mj,iXi(tk) + bj) = 1

1+exp(−
∑nx

i=1mj,iXi(tk)−bj)
> 0 and∑nh

l=1 tf (
∑nx

i=1ml,iXi(tk) + bl) 6= 0. The task of advisory control is to adjust to the driver
state change due to d(t) by using appropriate values of G1,j and G2,j gains, obtained by
offline training of the NN using I/O data of "to be approximated" embedded device.

Remark 5.3: In literature, several activation functions are proposed for NN-based con-
trol, [Nwankpa et al. 2018]. In our context, the choice of activation function should
ensure that the impact of connection weight mj,i between input nodes and the hidden
nodes is bounded and differentiable. Without loss of generality, we choose sigmoid over
tanh activation function to limit tf (.) ∈ [0, 1] for any x(tk) and further considered the∑nh

j=1Mj(X(tk)) = 1 to normalise the output of various hidden nodes. The tuning of
mj,i weights can be done by employing an optimisation criteria [Lam & Leung 2006]. For
simplicity, in the following, equal importance is given to each input Xi(tk).

Figure 5.16: Activation functions and their derivatives
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Closed-loop system: The ADAS-Driver-Train closed-loop error dynamics becomes,

ė(t) =
∑nh

j=1Mj(X(tk))
[
Ae(t) +BK(d(t))G1,je(tk) +BK(d(t))G2,j(d̂(tk)− dnom)

+B(K(d(t))−Knom)G2,jdnom

]
.

(5.13)
with tk ≤ t < tk+1, k ∈ N, ū(t) =

∑nh
j=1Mj(X(tk))

[
B−1(k0 + k1vr + k2v

2
r )−KnomG2,j

dnom

]
, w1(t) = d̂(tk) − dnom and w2(d(t)) = (K(d(t)) − Knom)G2,jdnom as small per-

turbations, corresponding to the measurement delays and deviation from the nominal
performance respectively and the sampling instants tk, k ∈ N satisfy,

t0 = 0, 0 < tk+1 − tk ≤ h̄, lim
k−→∞

tk =∞. (5.14)

Again, the objective is to find an estimate of the largest allowable sampling interval h̄,
(5.18) for some given ADAS gains G1,j and G2,j , using Theorem 4.9, while guaranteeing
L2 stability of the closed-loop system.

5.4.2 Simulation studies

In this subsection, we test the three scenarios to assess the usefulness of NN-based ADAS
to reduce tracking error in the presence of varying driver behaviour.

5.4.2.1 Non functional ADAS

In this scenario, since there is no intervention of ADAS, the train speed response is similar
to the scenario of last section. Thus, we take liberty to skip presenting these simulations.

5.4.2.2 Partially functional ADAS (with train measurements only)

In this scenario, we consider a driver advisory system is present with partial functionality.
Thus the ADAS helps the driver by providing the advisory control signal η(t) given by
equation (5.10). However, ADAS does not have information about driver’s state variation,
i.e. G2,j = 0, ∀j ∈ 1, · · · , nh. Thus, the η(t) signals are generated based only on train
speed measurements, i.e. η(t) =

∑nh
j=1Mj(X(tk))G1,je(tk). Fig. 5.17 presents speed v(t)

response considering a varying driver behaviourK(d(t)). In order to simulate this scenario,
we considered NN parameters as m1,1, m1,2, m2,1, m2,2 = 0.5, and G1,1, G1,2 = −0.5

and G2,1, G2,2 = 0 and obtained higher than h̄ ∼ 5min for γ1, γ2 = 15. The gains were
considered so that to have a comparison of performance with the state-feedback controller.
The following observations can be made from Fig. 5.17.
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• When delay in train speed measurement increases, i.e. from 0s→ 180s→ 285s, the
train cruise control stability is not compromised and the speed tracking performance
is also achievable. Compared to state-feedback, a NN-based ADAS successfully
smooth out the speed variations and thus improved the tracking performance.

• Moreover, compared to the previous abstraction and the same scenario, the state-
feedback controller was stable for h̄ < 285s. Nevertheless, NN-based advisory control
is stable for even higher delays, i.e. h̄ ∼ 300s. This is noticeable by the comparison
of speed v(t) response of the two controllers at h̄ ∼ 285s in Fig. 5.17. This is because
the LMI’s of Theorem 4.9 are solvable even for delays higher than h̄ > 285s.

Figure 5.17: a) The response of v(t), η(t) and d(t) with NN-based ADAS assistance
to varying driver behaviour for only train speed measurements, b) Comparison of the the
response of v(t), η(t) and d(t) with state-feedback based (red) and NN-based (blue) ADAS
assistance to varying driver behaviour for only train speed measurements

5.4.2.3 Fully functional ADAS (with both train and driver measurements)

In this scenario, we again consider that the driver advisory system with full functionality.
Compared to previous scenario, ADAS will help the driver by adjusting the advisory
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control signal η(t), given by (5.10). Thus, the advisory control signal η(t) depends on
both, G1,je(tk) and G2,j d̂(tk). Thus the ADAS responds to the driver state change using
both time-delayed train speed and driver state measurements. Fig. 5.18 gives speed v(t)

response of this scenario considering a varying driver behaviour K(d(t)). In order to
simulate this scenario, we considered the NN parameters as m1,1, m1,2, m2,1, m2,2 = 0.5

and G1,1, G1,2 = −0.5 and G2,1, G2,2 = −1 and obtained higher than h̄ ∼ 5min for
γ1, γ2 = 15. Notice that the gains G2,j are non-zero. Thus η(t) signal calculations use
the estimated driver state. The following observations can be made from Fig. 5.18.

Figure 5.18: a) The response of v(t), η(t) and d(t) with NN-based ADAS assistance to
varying driver behaviour for both train speed and driver state measurements b) Compar-
ison of the response of v(t), η(t) and d(t) with state-feedback based (red) and NN-based
(blue) ADAS assistance to varying driver behaviour for both train speed and driver state
measurements

• Compared to previous scenario, when delay in train speed and driver state mea-
surement increases, i.e. from 0s → 180s → 285s, the train cruise control stability
and the speed tracking performance are certainly achievable however with an steady
state error. The steady state error is the acknowledgement of the information of
driver state change with ADAS.
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• Moreover, for this scenario, the maximum delay in driver and train state measure-
ment until which stability can be guaranteed with a NN controller is h̄ > 285s

compared to h̄ < 245s with a state-feedback controller. This is because the LMIs of
Theorem 4.6 are solvable till this limit and provide the yellow plot with h̄ ∼ 285s.

• Fig. 5.18 b) compares the speed v(t) response of NN and state-feedback controller
for this scenario at h̄ ∼ 285s. The NN controller outperforms the state-feedback
controller response even at the maximum delay of h̄ ∼ 285s. The h̄ limit that satisfy
LMIs of Theorem 4.9 for stability is larger than that of first abstraction.

5.5 3rd abstraction: Stability of non-linear Driver-Train sys-

tem with neural-network based ADAS

In this section, we consider train, driver and ADAS model as a T-S non-linear system, a
time-varying gain and a NN controller respectively.

5.5.1 System description

Compared to the previous modelling abstractions, for this approach, we considered the
same driver and ADAS model. However, we considered a T-S model for representation of
the train. Hence, we will only present train model.

Train model: We considered a single-point train dynamics model subject to rolling
mechanical resistance and aerodynamic drag. However, we did not linearise the model for
cruise motion. The single-point model is represented in T-S form as following:

ẋ(t) = A(y(t))x(t) +Bu(t)− k0,

y(t) = Cx(t),
(5.15)

where, x(t) = v(t), A(y(t)) = −k1− k2y(t), B = 1/m, C = 1, v(t) the train speed and k0,
k1, k2 are real coefficients. The train parameters are chosen as in the Table 5.1.

Now, as y(t) is a measured state, we can use a polytopic description of A(y(t)) via T-S
or quasi-LPV representation. Using the fact that y(t) ∈

[
ȳ, y
]
, the weighting functions

w1(y(t)) = ȳ−y(t)
ȳ−y and w2(y(t)) = 1 − w1(y(t)) trivially hold the convex sum property∑2

i=1wi(y(t)), 0 ≤ wi(y(t)) ≤ 1. Therefore, a T-S form of (5.15) has the following form:

ẋ(t) =
∑2

i=1wi(y(t))Aix(t) +Bu(t)− k0,

y(t) = Cx(t),
(5.16)

with, A1 = −(k2y + k1) and A2 = −(k2ȳ + k1).
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Closed-loop system: Considering e(t) = x(t) − xr(t) and ẋr(t) negligible, the input

vector of the neural-network to be X(tk) = [X1(tk) X2(tk)]
T =

[
e(tk) d̂(tk)

]T
, then, the

ADAS-Driver-Train closed-loop speed dynamics becomes,

ė(t) =
∑nh

j=1Mj(X(tk))
∑2

i=1wi(y(t))
[
Aie(t) +BK(d(t))G1,je(tk)

+BK(d(t))G2,j(d̂(tk))
]
.

(5.17)

with tk ≤ t < tk+1, k ∈ N. Moreover, the sampling instants tk, k ∈ N satisfy,

t0 = 0, 0 < tk+1 − tk ≤ h̄, lim
k−→∞

tk =∞. (5.18)

The objective is to find an estimate of the largest allowable sampling interval h̄, (5.18),
using Theorem 4.15, while guaranteeing exponential stability of the closed-loop system.

5.5.2 Simulation studies

In this subsection, we test the three scenarios to assess the usefulness of NN-based ADAS
on a T-S form based train model to reduce tracking error in the presence of varying
driver behaviour. Moreover in order to show robustness of stability we will also compare
the speed response of T-S form based nonlinear train model with the speed response of
linearised train model by considering a disturbance on train control as u(t) + step(t).

Moreover in order to appreciate the importance of considering a delay in driver state,
we will compare the speed response of partially functional and fully functional ADAS by
considering a disturbance on train control as u(t) + step(t).

5.5.2.1 Non functional ADAS

In this scenario, since there is no intervention of ADAS, the train speed response is similar
to the scenario of last two sections. Thus, we skip to present these simulations.

5.5.2.2 Partially functional ADAS (with train measurements only)

In this scenario, we consider that a driver advisory system is present with partial func-
tionality. Thus the ADAS helps the driver by providing the advisory control signal η(t)

based only on delayed train speed measurements, i.e. η(t) =
∑nh

j=1Mj(X(tk))G1,je(tk).
Fig. 5.19 presents speed v(t) response considering a varying driver behaviour K(d(t)). In
order to simulate this scenario, we considered NN parameters similar to second scenario
of the previous abstraction. The following observations can be made from Fig. 5.19.
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• Similar to second scenario of the second abstraction, when delay in train speed
measurement increases, i.e. from 0s→ 180s→ 285s, the train cruise control stability
is not compromised and the speed tracking performance is also achievable.

• Moreover, the comparison of speed v(t) and advisory control η(t) response of the
second scenario of the two abstractions at h̄ ∼ 285s in Fig. 5.19 indicate that there
is only a slight difference in control computation, i.e. during the acceleration phase.
However, no big difference is visible during the cruise phase.

Figure 5.19: a) The response of v(t), η(t) and d(t) with NN-based ADAS assistance
to varying driver behaviour for only train speed measurements, b) Comparison of the
response of v(t), η(t) and d(t) with Abs3 NN-based (red) and Abs2 NN-based (blue)
ADAS assistance to varying driver behaviour for only train speed measurements

Further, a simulation study with varying speed reference with a sinusoidal variation,
ve = 2.4sin( t−1500−600

300 )if 2100s ≤ t < 12000s to constant reference is considered to assess
the impact of neglecting ẋr(t) to derive closed-loop equation. Fig. 5.20 presents speed v(t)

response considering a varying driver behaviour K(d(t)) and a varying speed reference.
The following observations can be made from Fig. 5.20.

• In spite of a varying reference, when delay in train speed measurement increases, i.e.
from 0s → 180s → 285s, the train cruise control stability is not compromised and
the speed tracking performance is also achievable.
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• Moreover, the comparison of speed v(t) and advisory control η(t) response of the
second scenario of abstraction two and three at h̄ ∼ 285s in Fig. 5.20 for a varying
speed reference indicate that the v̇r(t) assumption does not impact stability.

Figure 5.20: a) The response of v(t), η(t) and d(t) with NN-based ADAS assistance to
varying driver behaviour and varying speed reference, for only train speed measurements,
b) Comparison of the response of v(t), η(t) and d(t) with Abs3 NN-based (red) and Abs2
NN-based (blue) ADAS assistance to varying driver behaviour and varying speed reference
for train speed measurements only

5.5.2.3 Fully functional ADAS (with both train and driver measurements)

In this scenario, we consider that the driver advisory system is present with full functional-
ity. Thus, ADAS will help the driver by adjusting the advisory control signal η(t), which
depend on both G1,je(tk) and G2,j d̂(tk), i.e. time-delayed train speed and driver state
measurements. Fig. 5.21 gives speed v(t) response of this scenario considering a varying
driver behaviour K(d(t)) and a varying speed reference. In order to simulate this scenario
we considered the NN parameters similar to third scenario of the previous abstraction.
The following observations can be made from Fig. 5.21.
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• Similar to the third scenario of second abstraction, when delay in train speed and
driver state measurement increases, i.e. from 0s → 180s → 285s, the train cruise
control stability and the speed tracking performance are again achievable however
with an steady state error.

• Moreover, the comparison of speed v(t) and advisory control η(t) response of the
third scenario of abstraction two and three at h̄ ∼ 285s in Fig. 5.21 for a varying
speed reference indicate that the controller is also stable when ADAS has information
about driver state.

Figure 5.21: a) The response of v(t), η(t) and d(t) with NN-based ADAS assistance to
varying driver behaviour for both train speed and driver state measurements b) Compari-
son of the response of v(t), η(t) and d(t) with Abs3 NN-based ADAS assistance to varying
driver behaviour and varying speed reference for only train speed measurements (blue)
and for both train speed and driver state measurements (red)

Next, we tested the robustness of the proposed controller by introducing a step(t)

disturbance to train control during varying driver behaviour as shown in Fig. 5.22. Fig.
5.23 presents speed v(t) response considering varying driver behaviour K(d(t)) and a
constant reference. The following observations can be made from Fig. 5.23.
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Figure 5.22: Closed-loop system schematic with step(t) disturbance

Figure 5.23: Comparison of the response of v(t), η(t) and d(t) with Abs3 NN-based ADAS
assistance to varying driver behaviour in the presence of only train state measurements
(blue, yellow) and both train speed and driver state measurements (red, magenta) in the
presence of a step(t) disturbance (yellow, magenta)

jaina
Highlight



5.6. Conclusion 147

The benefit of introducing d̂(tk) in deriving stability conditions is visible when a step(t)
disturbance in introduced. Inspite of step(t) disturbance, fully functional ADAS (magenta)
could achieve train cruise control stability with a better speed tracking performance.

5.6 Conclusion

In this chapter, we presented simulations to study stability of ADAS-Driver-Train closed-
loop system in the presence of varying driver behaviour and time-delayed driver and train
state measurements. For this purpose, we employed three modelling abstractions from
the contribution chapter. For each abstraction, we considered three scenarios, ADAS is
not present, ADAS is present with partial functionality, i.e. can access only time-delayed
train state measurements and ADAS is present with full functionality, i.e. can access both
time-delayed train and driver state measurements.

Our research concluded that a NN-based driver advisory system is viable compared
to state-feedback based driver advisory system for all the three simulation scenarios while
providing more design freedom, and potentially a better performance. It is evident from
the simulation results of fully functional ADAS that the steady state response of the train
speed has a steady state error, but remains stable. However, considering the fact that the
activation functions of the NN adds a "lag" in the closed-loop, the maximum admissible
delay is higher for NN-based fully functional ADAS. The admissible measurement delay
were quantified using the results of contribution chapter, and conversely the theoretical
results were also confirmed by the simulation results, both for stability and instability.

Moreover, when a disturbance appears at the train system level, a fully functional
NN-based ADAS handled the disturbance better than a partially functional NN-based
ADAS. This is because the discrepancy between the real driver state and the driver state
as seen by the ADAS, will be matching at some point, which will improve the closed-loop
performance, in spite of the mismatched estimation period due to the aperiodic sampling
of driver state. Finally, we assessed the impact of the assumption of a "constant reference
speed", used in the contribution chapter to derive stability conditions. Even though there
was no theoretical result presented without the relaxation, the simulation results shown
that this relaxation is possible, and this is a perspective improvement of our work.





Chapter 6

General Conclusion

This PhD thesis was dedicated to achieve safety and performance guarantees of ADAS
assistance to drivers for long journey railway transportation. For this purpose, an "approx-
imate computing" based approach was considered, where sophisticated ADAS algorithms
are approximated using offline learning based NN, and then embedded in a stability as-
sessment framework. Particularly, a stability analysis of ADAS-Driver-Train system in
presence of delay in the driver and the train state measurement was conducted to ascer-
tain performance guarantees. A particular attention was given to the context of varying
driving behaviour. The main objective was to propose stability criteria that allows to
find the maximum allowable delay before the closed-loop system looses stability. This
means that even if the inputs to ADAS are missing due to corrupted measurements or
delays, the global system remains stable under this maximum delay. Moreover, the intro-
duced ADAS reach the first GoA and respects the principle of "atleast as good as" when
replacing/extending existing driver interfaces.

In this work we have provided foundations to a novel approach to study stability of
Driver-Train system by introducing ADAS model in the Driver-Train closed-loop system.
We proposed three abstract models that approximate the train as a controlled system and
ADAS-Driver as the controller. Further we considered time-delay approach based Lya-
punov techniques for obtaining LMI-based stability conditions. Particularly, we considered
time-dependent LKF technique because it can consider both slow and fast-varying delay
properties and also gives the opportunity to estimate maximum time-delay for which the
stability can be guaranteed. With the advantage to introduce time-delays in the stability
conditions it was thus possible to estimate maximum delay in the driver and train state
measurement in presence of varying driver behaviour.

Considering the aforementioned approach, we proposed three Theorems and also their
corresponding delay search algorithms for the three abstract models to assess the max-
imum admissible delay in the driver and the train state measurements for each of the
following three scenarios. The first scenario, used as a reference, non functional ADAS,
i.e. driver interacts with the train without any driver advisory signals. The second scenario
considered partially functional ADAS, i.e. driver interacts with the train via an ADAS,
however, driver advisory signals are based only on train state measurements. The third
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scenario considers fully functional ADAS, i.e. driver interacts with the train via an ADAS,
however, driver advisory signals are based on both driver and train state measurements.
We studied the three scenarios for each abstract model and then compared the results of
different scenarios for each abstraction and then of different abstractions.

Considering low complexity levels of the "to be approximated" system, the first two
abstractions are proposed for a cruise driving context. The first abstraction considered
a sampled-data LTI system to model the train cruise dynamics, a time-varying gain to
model driver dynamics and a state-feedback controller to model the ADAS dynamics.
In this context, a novel time-dependent LKF functional based on Wirtinger inequality
was proposed to guarantee the L2 stability of the sampled-data LTI system. The stability
proof used Jensen inequality to upper-bound the integral terms of LKF derivative and then
used convex embedding approach to derive the LMIs for the estimation of the maximum
allowable delay. The approach was illustrated by application to the ADAS-Driver-Train
model for the aforementioned three scenarios. It was found that the maximum allowable
delay for a fully functional state-feedback based ADAS was lower than that of partially
functional ADAS, due to awareness of ADAS about exogenous perturbation on the driver
state and limited capability of a state-feedback based ADAS to handle non-linearity.

Next, the second abstraction considered a sampled-data LTI system to model the train
cruise dynamics, a time-varying gain to model driver dynamics and a NN controller to
model the ADAS dynamics. In this context, a novel augmented time-dependent LKF
functional was proposed to guarantee the L2 stability of the sampled-data LTI system.
In order to increase even further the maximum allowable delay, the stability proof used
affine Bessel-Legendre inequality than Jensen inequality to better upper-bound the in-
tegral terms of LKF derivative. Further, convex embedding approach was used to de-
rive the LMIs for the estimation of the maximum allowable delay. The approach was
then illustrated by application to the ADAS-Driver-Train model for the aforementioned
three scenarios. A smooth and derivable sigmoid activation function was considered for
a three layer feed-forward neural network to closely approximate non-linear ADAS and
Driver-Train interaction. Moreover, it was found that the maximum allowable delay for a
fully functional NN-based ADAS was higher than that of fully/partially functional state-
feedback based ADAS.

Finally, third abstraction considered a T-S non-linear system to improve upon the train
dynamics model, a time-varying gain to model driver dynamics and a similar NN controller
to model the ADAS dynamics. In this context, a novel time-dependent LKF functional
based on derivative of Wirtinger inequality was proposed to guarantee the exponential
stability of the non-linear sampled-data system. The stability proof used Jensen inequality
to upper-bound the integral terms of LKF derivative and then used convex embedding
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approach to derive the LMIs for the estimation of the maximum allowable delay. The
approach was then illustrated by application to the ADAS-Driver-Train model for the
aforementioned three scenarios. In addition to constant reference, the simulation were
also performed for varying speed reference to show the generality of the stability proof by
this approach. Moreover, the robustness aspect with respect to exogenous disturbances
at the train system level was introduced to show that a fully functional ADAS provided
better performance than that of partially functional ADAS.

6.1 Perspectives

The implications of our results are twofold : First-of-all, the framework to assess stability
of approximate computing solutions for advisory control via NN is usable to approximate
and replace exogenous devices for embedded architectures. Secondly, the control-theoretic
approach to assess stability of Human-Machine Systems, that suffer from modelling and
measurement uncertainties is plausible. The proposed approaches are able to interpret
these uncertainties quantitatively and use them for advisory controller design with guaran-
teed performance. This makes the certification process of ADAS easier by using advanced
control techniques such as model-based control and neural-networks.

Another research direction would be to extend the results for other types of NN-based
controller such as Recurrent Neural Networks, or more refined driver models or by con-
sidering Human-Machine shared control of transportation systems. In future, further
improvements can be obtained by proposing detailed ADAS-Driver-Train dynamics mod-
elling abstraction. For example, in addition to compensation behaviour, a driver model
that considers both anticipation and delay in response time can be considered. For train,
in addition to aerodynamic and mechanical drag, a more detailed model with energy source
(electric/combustion), rail-wheel slip dynamics and even track topology can be considered.

In addition to detailed ADAS-Driver-Train models. the closed-loop stability conditions
can be brought more close to reality by considering two different delays for driver and
train state measurements. It is because, it is very likely that the sensor used for train
speed measurement and that for driver state measurements may induce different maximum
time-delay and that too at different delay-rates. Thus, it would be interesting to consider
different delays in deriving two maximum delay dependent closed-loop stability conditions.
Moreover, the simulation results shown that L2 stability proof of 2nd abstraction approach
the exponential stability proof of the 3rd abstraction. It is likely due to stable train
dynamics. Thus a relatively less stable train dynamic modelling could be considered.
Lastly, an interesting direction of research could be to find alternative ways to resolve the
issue pursued in this thesis, i.e. "how to embed ADAS compensation delays in the LMI".
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Appendix A

Some useful matrix properties

Theorem A.1 (Jensen’s Inequality [Gu et al. 2003])

For any matrix R ∈ S+∗
nx

, scalar r > 0 and vector function w : [0, r] → Rnx such that the
concerned inequalities are well defined, one has

(∫ r

0
w(s)ds

)T
R

(∫ r

0
w(s)ds

)
≤ r

(∫ r

0
w(s)TRw(s)ds

)
.

Theorem A.2 (Wirtinger’s Inequality [Liu et al. 2010] )

Given the space of functions φ : [a, b] → Rnx , which are absolutely continuous on [a, b),
have a finite limθ→b− φ(θ) and have square integrable first-order derivatives is denoted by

Wnx [a, b) with the norm, ‖φ‖Wnx [a,b) = maxθ∈[a,b] ‖φ(θ)‖+
[∫ b
a ‖φ̇(s)‖2ds

] 1
2 . if we denote

W = Wnx [−h̄, 0) and xt(θ) = x(t+ θ) with θ ∈ [−h̄, 0] then,

Let z ∈ Wn[a, b). assume that z(a) = 0. Then for any nx × nx-matrix R > 0. The
following inequality holds;

∫ b

a
zT (ξ)Rz(ξ)dξ ≤ 4(b− a)2

π2

∫ b

a
żT (ξ)Rż(ξ)dξ.

Theorem A.3 (Adapted from [Boyd et al. 1994])

Consider x ∈ Rnx , two matrices Γ1 and Γ2 in Snx and two scalars λ− < λ+. The following
statements are equivalent:

(i) ∀λ ∈ [λ−, λ+], xT (Γ1 + λΓ2)x ≤ 0

(ii) xT (Γ1 + λ−Γ2)x ≤ 0 and xT (Γ1 + λ+Γ2)x ≤ 0

Proof: Let x ∈ Rnx and λ ∈ [λ−, λ+]. Remarking that Γ1 + λΓ2 = λ+−λ
λ+−λ− (Γ1 +

λ−Γ2) + λ−λ−
λ+−λ− (Γ1 + λ+Γ2) achieves the proof since λ+−λ

λ+−λ− and λ−λ−
λ+−λ− are positive.
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Theorem A.4 (Affine Bessel-Legendre Inequality

[Lee et al. 2018])

Let x(s) | s ∈ [a, b]→ Rnx be a continuous function. Then, for a non-negative integer N , a
positive integer c, an arbitrary vector ζ ∈ Rcnx , R ∈ Snx

+ , and a matrix F ∈ Rcnx×(N+1)nx

with appropriate dimensions, the following inequality holds:

−
∫ b
a ẋ

T (s)RẋT (s)ds ≤ (b− a)ζTFR−1
N F T ζ + He

{
ζTFL(a, b)

}
, (A.1)

where,

RN = diag {R, 3R, · · · , (2N + 1)R} ,
L(a, b) = col {L0(a, b), · · · ,LN (a, b)} ,

Lk(a, b) =

{
x(b)− x(a) if k = 0

x(b)− (−1)kx(a)−
∑k

l=1 p
k
l

l!
(b−a)l

Il−1(a, b) for k ∈ N
,

pkl = (−1)l+k

(
k

l

)(
k + l

l

)
,

Il(a, b) =
∫ b
a

∫ b
s1
· · ·
∫ b
sl
x(sl+1)dsl+1 · · · ds1.

(A.2)
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Stability of sampled-data LTI
systems

B.1 Basic stability concepts

In order to study stability of a sampled-data LTI system, it is imperative to understand
what is stability of a system. Thus, we recall some fundamental concepts about system
stability and the classical tools from [Fiter 2012].

B.1.1 Stability definition

A system is said to be stable, when, if the system state is punctually disturbed, the state
stays close to an equilibrium position. Originally, stability is analysed for systems that
are time-invariant and autonomous (i.e. for which there is no control or for a closed-loop
system with a given control). Such systems are defined as follows:

Definition B.1: (Autonomous System) The following ordinary differential equation:

ẋ(t) = f(x(t)), ∀t ≥ 0 (B.1)

with f : Rnx → Rnx Lipschitz1 continuous, is said to be autonomous, if f(x(t)) does not
depend explicitly on the free time variable, t. Further, xe will be said to be an equilibrium
point, if it represents a real solution of the equation f(x(t)) = 0. The quality of this
equilibrium point can be ascertained based on the following definitions:

Definition B.2: [Khalil 2002] An equilibrium point xe of the system (B.1) is

• stable (in the sense of Lyapunov), if ∀ε > 0,∃δ = δ(ε) > 0 such that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε, ∀t ≥ 0;

1Given two metric spaces (X, dX) and (Y, dY ), where dX denotes metric on the set X and dY denotes
a metric on the set Y , a function f : X → Y is called Lipschitz continuous (or simply Lipschitz) if there
exists real constant K ≥ 0 such that for all x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ KdX(x1, x2).
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• attractive if ∃ρ > 0 such that

‖x(0)− xe‖ < ρ⇒ lim
t→∞
‖x(t)− xe‖ = 0;

• asymptotically stable, if it is stable and attractive;

• exponentially stable, if there exists scalars α, β, δ > 0 such that

‖x(0)− xe‖ < δ ⇒ lim
t→∞
‖x(t)− xe‖ = α‖x(0)− xe‖e−βt.

For such a scalar β, called (exponential) "decay rate", the equilibrium point is also
said to be "β stable";

• globally asymptotically stable, if it is stable for ∀x(0) ∈ Rnx ,

lim
t→∞
‖x(t)− xe‖ = 0

Note that, it is always possible to reformulate the problem as a stability analysis around
xe = 0, by using a translation of the origin. Therefore, the upcoming results and stability
properties are written while taking xe = 0 as the studied equilibrium point.

B.1.2 Lyapunov method

The most common stability tool is the Lyapunov stability approach. It is based on the
fact that a system whose trajectory approaches origin, looses its energy. The Lyapunov
approach makes use of a function V : Rnx → R+, called "candidate Lyapunov function",
which depends on the system’s state and symbolises some sort of potential energy of the
system, with respect to the origin. Very often, this function is chosen as a norm or a
distance. The Lyapuonv stability theory is described as follows [Khalil 2002].

Theorem B.3: Consider the autonomous system (B.1) with an isolated equilibrium point
(xe = 0 ∈ Ω ⊆ Rnx , with Ω a neighbourhood of xe). If there exists a locally Lipschitz
function V : Rnx → R+ with continuous partial derivatives and two class K functions2 α
and β such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Ω,

then the origin xe = 0 of the system is

• stable (in the sense of Lyapunov) if
dV (x)

dt
≤ 0, ∀x ∈ Ω, x 6= 0;

• asymptotically stable, if there exists a class K function ϕ such that
dV (x)

dt
≤ −ϕ(‖x‖), ∀x ∈ Ω, x 6= 0;

2A class K function is a function ϕ : [0, a)→ [0,+∞) that is strictly increasing, and such that ϕ(0) = 0.
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• exponentially stable, if, moreover, there exist four scalars ᾱ, β̄, γ, p > 0 such that

α(‖x‖) = ᾱ‖x‖p, β(‖x‖) = β̄‖x‖p, ϕ(‖x‖) = γ‖x‖.

In such a case, the equilibrium point xe allows a decay rate equal to γ
p .

There also exist discrete-time version of the Lyapunov stability theory.

Theorem B.4: Consider the discrete-time autonomous system

xk+1 = f(xk), (B.2)

with an isolated equilibrium point (xe = 0 ∈ Ω ⊆ Rnx , with Ω a neighbourhood of xe). If
there exists a locally Lipschitz function V : Rnx → R+ with continuous partial derivatives
and two class K functions α and β such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Ω,

then the origin xe = 0 of the system is

• stable (in the sense of Lyapunov) if

∆V (xk) ≤ 0, ∀xk ∈ Ω, xk 6= 0

where,
∆V (xk) = V (xk+1)− V (xk)

= V (f(xk))− V (xk)

• asymptotically stable, if there exists a class K function ϕ such that

∆V (xk) ≤ −ϕ(‖xk‖), ∀xk ∈ Ω, xk 6= 0;

• exponentially stable, if, moreover, there exist four scalars ᾱ, β̄, γ, p > 0 such that

α(‖x‖) = ᾱ‖x‖p, β(‖x‖) = β̄‖x‖p, ϕ(‖x‖) = γ‖x‖.

Remark B.5: The local definitions of the above theorem is globally valid if the given
functions are class K∞ functions3 and Ω = Rnx .

The function V : Rnx → R+ that verifies the property in the previous theorem is
called the "Lyapunov function". In the case of linear systems, a system with a stable and
a unique equilibrium point is often called a "stable system". Furthermore, if the system
is not stable, we will say that it is "unstable".

3A class K∞ function is a class K function such that a = +∞ and limt→+∞ ϕ(t) =∞.
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B.1.3 Properties of LTI systems with sampled-data control

In order to study stability/stabilisation of a general system (linear/non-linear), broadly
two approaches are used, i.e. either continuous or discrete-time approach. In the
continuous-time approach, a continuous-time controller for a continuous-time system
model is found by classical approaches [Khalil 2002], then the discrete-time controller is
obtained by integrating the continuous-time controller solution over the interval [tk, tk+1).
This approach, where continuous-time controller is discretized, is also called emulation.

Consequently, for the discrete-time approach, a discrete-time system model is derived
first by integration (steps in (3.5) and (3.6)) and then a discrete-time controller is designed.
In the literature, [Wittenmark et al. 1995], a large variety of discrete-time control design
methodologies are available. An interesting property arise in the context of sampled-
data LTI systems, about the equivalence of these approaches. The property concerns the
equilibrium attractivity/asymptotic stability, and is formulated as follows:

Theorem B.6: (From [Fujioka 2009b]) For a given sampled-data LTI system (3.3)
with bounded sampling intervals and a given initial state x(0), the following conditions
are equivalent:

1. limt→+∞ x(t) = 0 ,

2. limk→+∞ x(tk) = 0.

This property means that the attractivity of the continuous-time system (3.3) is equivalent
to attractivity of the discrete-time system (3.6). Therefore, it is possible to use either a
continuous or a discrete-time approach to study the stability of LTI sampled-data systems.

B.2 Stability analysis under constant sampling

In this case (see Fig. B.1), the system’s stability is usually analysed using the discrete-time
LTI model of the system:

xk+1 = Λ(T )xk. (B.3)

For a given sampling period T , the most common approach to analyse the stability (the
so-called "Schur method") consists in studying the eigen values of the transition matrix
Λ(T ). We call λmax(T ) the eigen value of Λ(T ) with the largest modulus. We then have
the following properties, [Åström & Wittenmark 1996].
Theorem B.7: The equilibrium xe = 0 of (B.3) is

• Schur-stable (globally asymptotically stable) if and only if ‖λmax(T )‖ < 1. In that
case, Λ(T ) is called a Schur matrix;
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Figure B.1: Sampled-data system with constant sampling rate

• globally exponentially stable with decay-rate α > 0 if and only if ‖λmax(T )‖ ≤ e−αT .

Equivalent LMI stability conditions can also be obtained using the Lyapunov stability
theory for discrete-time LTI model of the system.

Theorem B.8: The considered LTI system (B.3) is

• stable (globally) if and only if there exists a matrix P ∈ S+∗
nx

such that

Λ(T )TPΛ(T )− P � 0;

• Schur-stable (globally asymptotically stable) if and only if there exists a matrix
P ∈ S+∗

nx
such that

Λ(T )TPΛ(T )− P ≺ 0;

• exponentially stable (globally) with a decay rate α if and only if there exists a matrix
P ∈ S+∗

nx
such that

Λ(T )TPΛ(T )− e−αTP � 0.

B.3 Stability analysis under time-varying sampling

In this case, where, time-varying sampling arise due to delay in sensor measurement, such
systems can be represented by the block diagram in Fig. B.2.

B.3.1 Difficulties and challenges

From control theoretic point of view, these variations in the sampling interval bring up
new challenges since they may have a destabilising effect if they are not properly taken into
account [Wittenmark et al. 1995], [Li et al. 2010]. Consider for example the sampled-data
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Figure B.2: Sampled-data system with time-varying sampling rate

LTI system [Zhang et al. 2001]:

ẋ(t) =

[
1 3

2 1

]
x(t) +

[
1

0.6

]
u(t), ∀t > 0,

u(t) = −
[

1 6
]
x(tk), ∀t ∈ [tk, tk+1), k ∈ N.

(B.4)

In the case of a constant sampling rate, using the stability conditions from Theorem 2.9,
one can find that the origin of the system is Schur-stable if T ∈ [0s, Tmaxconst = 0.5937s],
and unstable for T ∈ [Tmaxconst,+∞]. The system’s evolution for constant sampling rate
T1 = 0.18s and T2 = 0.54s is illustrated by Fig. B.3.

Figure B.3: Constant sampling rate with T1 = 0.18s and T2 = 0.54s - Stable

When the sampling interval is constant, the Schur property of Λ(T ) represents a
necessary condition for stability of the sampled-data LTI system (B.4). However, it
is not a sufficient one. When we sample using a fixed sequence of sampling intervals
T1 → T2 → T1 → T2 → · · · , the system becomes unstable, Fig. B.4.

This is due to the fact that the Schur property of matrices is not preserved under
matrix product (i.e. the product of two Schur matrices is not necessarily Schur). In this
case, the discrete-time equivalent system over two sampling instants can be written as,

xk+2 = Λ(T2)Λ(T1)xk, ∀k ∈ 2N
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Figure B.4: Variable sampling T1 = 0.18s→ T2 = 0.54s→ T1 → T2 → · · · - unstable

which can be rewritten as, xl+1 = Λ(T1, T2)xl, ∀l ∈ N,

with l representing 2kth sampling, and the transition matrix,

Λ(T1, T2) ≡ Λ(T2)Λ(T1) =

[
0.8069 −3.2721

0.6133 −2.1125

]
,

over two sampling intervals T1 and T2, which is not Schur in this example. In addition to
existence of unstable sampling sequences made of stable sampling intervals4, one can also
find cases where there exist stable sampling sequences made of stable/unstable or even
unstable/unstable sampling sequences.

Let us now consider the following sampled-data LTI system, [Gu et al. 2003],

ẋ(t) =

[
0 1

−2 0.1

]
x(t) +

[
0

1

]
u(t), ∀t > 0,

u(t) = −
[
−1 0

]
x(tk), ∀t ∈ [tk, tk+1), k ∈ N.

(B.5)

Assume that the sampling is restricted to the set T ∈ [T1, T2] with T1 = 2.126s and
T2 = 3.950s. For constant sampling interval values T1 and T2, the sampled-data LTI
system (B.5) behaviour is unstable with both the samplings. This is because, individually,
for these values, system’s transition matrix Λ(T ) is not a Schur matrix. However, it can
be seen in Fig. B.5, the system’s transition matrix Λ(T1, T2) is Schur-stable under the
periodic sampling T1 → T2 → T1 → T2 → · · · .

According to previous observation, it is clear that the existing stability tools for
sampled-data LTI systems with constant sampling will not provide any guarantee of sta-
bility for sampled-data LTI systems with unknown time-varying sampling that arises in
real-time control conditions.

4By "stable sampling interval", we mean that the transition matrix of associated sampling interval is
Schur.
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Figure B.5: Variable sampling T1 = 2.126s→ T2 = 3.950s→ T1 → T2 → · · · - stable



Appendix C

Numerical example: Stability of
non-linear sampled-data system with

neural-network control

Figure C.1: Schematic of an inverted pendulum

In this section, a sampled-data TLFCFFNN-based controller is shown to stabilize an
inverted pendulum on a moving cart (Fig. C.1). The dynamics of the inverted pendulum
is described by the equation,

θ̈(t) =
g sin(θ(t))− ampLθ̇(t)

2 sin(2θ(t))
2 − a cos(θ(t))u(t)

4L
3 − ampL cos(θ(t))2

,

where, θ(t) is the angular displacement of the pendulum, g = 9.8 m/s2 is the accel-
eration due to gravity, mp ∈ [mpmin,mpmax] = [2, 5] Kg is the mass of the pendulum,
Mc ∈ [Mcmin,Mcmax] = [30, 35] Kg is the mass of the cart, 2L = 1m is the length of the
pendulum, u(t) is the force applied to the cart, and a = 1/(mp + Mc), with mp and Mc

being parameter uncertainties. By choosing,

x(t) = [x1(t) x2(t)]T = [θ(t) θ̇(t)]T ,

and considering x1(t) ∈ [x1min, x1max] = [−π/3, π/3] and x2(t) ∈ [x2min, x2max] = [−5, 5]

as in [Wu et al. 2014b], the non-linear motion of an inverted pendulum can be represented
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by a T-S model,

ẋ(t) =

p∑
i=1

wi(x(t))(Aix(t) +Biu(t)),

with the parameters, Ai, Bi and wi(x(t)) of the system as,

A1 = A2 =

[
0 1

f1min 0

]
, A3 = A4 =

[
0 1

f1max 0

]
,

B1 = B3 =

[
0

f2min

]
, B2 = B4 =

[
0

f2max

]
,

wi(x(t)) =
µi(f1(x(t))).vi(f2(x(t)))∑4

j=1(µi(f1(x(t))).vi(f2(x(t))))
,

with, f1min = 11.3533, f1max = 16.4640, f2min = −0.0192, f2max = −0.0492 and

µj(f1(x(t))) =
−f1(x(t)) + f1max

f1max − f1min
for j = 1, 2,

µj(f1(x(t))) = 1− µ1(f1(x(t))) for j = 3, 4,

vj(f2(x(t))) =
−f2(x(t)) + f2max

f2max − f2min
for j = 1, 3,

vj(f2(x(t))) = 1− v1(f2(x(t))) for j = 2, 4,

f1(x(t)) =
g − ampLx2(t)2 cos(x1(t))

4L
3 − ampL cos(x1(t))2

sin(x1(t))

x1(t)
,

f2(x(t)) = − a cos(x1(t))
4L
3 − ampL cos(x1(t))2

.

Further, for this example, we considered a sampled-data TLFCFFNN-based controller
with four hidden nodes to control the inverted pendulum. The sampled-data TLFCFFNN-
based controller is given by

u(t) =

4∑
l=1

Mj(x(tk))Gjx(tk), ∀ tk ≤ t < tk+1, (C.1)

where, Mj(x(tk)) is defined in (4.47), and

tf (

2∑
i=1

mj,ixi(tk) + bj) =
1

1 + exp
(
−
∑2

i=1mj,ixi(tk)− bj
) .

Our aim is to find the largest sampling interval h̄ upto which closed-loop system
stability is guaranteed. For this aim, we considered the following stabilizing connection
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weights Gj , ∀j ∈ {1, · · · , 4},

G1 = [1790.3422 471.7552]

G2 = [1790.3904 471.7757]

G3 = [1790.1572 471.6711]

G4 = [1790.1696 471.6766],

and the following parameters (as given in [Wu et al. 2014b]),

m1,1 = −0.0591, m1,2 = 0.5511

m2,1 = −0.9863, m2,2 = 0.5118

m3,1 = 0.3058, m3,2 = 0.1582

m4,1 = −0.6254, m4,2 = −0.7569

b1 = −0.2765, b2 = −0.3234

b3 = −0.7899, b4 = 0.4423

mp = 2kg, Mc = 30kg.

The combination of decay-rate λ and the largest sampling interval h̄ that satisfy The-
orem 4.15 and preserves the exponential stability of the closed-loop system are listed in
Table C.1.

Table C.1: Maximum upper bound h̄ V/S decay-rate λ

λ 0.1 0.3 0.5 0.7 0.9

Theorem 3.13 0.250 0.227 0.205 0.180 0.152

When the decay-rate λ is fixed to 0.15, the maximum allowable sampling interval
obtained by [Wu et al. 2014b] is 0.035. It can be found in Table C.1 that Theorem 4.15
gives larger upper bound of the sampling interval, hk as 0.244s.

Supposing the initial condition x(0) = [π5 − 1]T and the maximum sampling interval
h̄ as 0.244s, the system responses are as shown in Fig. C.2. The non-linear system is
exponentially stable for equilibrium point xe = [0 0]T for h̄ = 0.244s.
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Figure C.2: x(t), h(t), V (t) variation
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Étude de la Stabilité du Système Conducteur-Véhicule sous des
Mesures d’échantillonnage apériodiques

Résumé: Les trains à grande vitesse ont une exigence de sécurité de conduite importante
par rapport aux autres transports publics en raison de leur vitesse plus élevée et de la
demande croissante du public. Cependant, la particularité de la conduite des trains conduit
souvent à des conducteurs sensibles à la fatigue. Dans ce contexte, la dernière décennie a
vu l’adoption généralisée de ADAS dans l’industrie du transport ferroviaire, en particulier
le système de détection de la fatigue des conducteurs.

ADAS est destiné à aider les conducteurs de train. Le planificateur de trajectoire dans
ADAS guide le conducteur pour maintenir un niveau de vitesse (v) et d’accélération (a)
pour aller de la station A à la station B, en tenant compte de divers facteurs comme la
consommation de carburant, le terrain de la route, le trafic et aussi le l’état du conducteur
à partir du système de détection de fatigue du conducteur. Cependant, parfois en raison
de mauvaises conditions d’éclairage/mauvaise position du conducteur/capteur défectueux,
les informations précises sur le train et l’état du conducteur peuvent être retardées.

L’indisponibilité apériodique du conducteur et de l’état du train au système ADAS
soulève des inquiétudes quant à la stabilité et la sécurité de la dynamique du train. Par
conséquent, la prise en compte de l’incertitude dans l’état du conducteur et du train lors
de l’analyse de la stabilité du train devient essentielle. À cette fin, une approche basée sur
un modèle est utilisée pour approximer l’interaction ADAS-conducteur-train et prouver la
stabilité du système de contrôle de train consultatif du conducteur.

Pour l’étude de stabilité, le système constitué de Driver-Train en boucle ouverte est
considéré comme un système de données échantillonnées et ADAS comme un contrôleur.
En outre, l’approche du retard d’entrée est utilisée pour transformer le système de données
échantillonnées en un système de retard variable dans le temps. De plus, des fonctionnelles
de Lyapunov dépendantes du temps et des arguments de convexification sont utilisés pour
dériver des critères de stabilité en termes de conditions LMI. Le critère permet d’estimer le
délai maximal admissible dans la mesure de l’état du conducteur et du train pour garantir
la stabilité de la dynamique du train.

Mots-clés: Système conducteur-train, système commandé par réseau, système échantil-
lonné, système à retard, échantillonnage variable, stabilité, inégalité matricielle linéaire.



Investigating Stability of Driver-Vehicle System under Aperiodic
Sampling Measurements

Abstract: High-speed rails have a significant driving safety requirement than other
public transport because of faster speed and an increasing public demand. However, the
particularity of train driving often leads to driver’s susceptible to fatigue. Under this con-
sideration, last decade has seen widespread adoption of ADAS in rail-based transportation
industry, specifically driver fatigue detection system.

ADAS is meant to help the train drivers. The trajectory planner in ADAS guides
the driver to maintain a level of velocity (v) and acceleration (a) to go from station A to
station B, by considering various factors as fuel efficiency, road terrain, traffic and also
the state of the driver from the driver fatigue detection system. However, sometimes due
to bad lighting conditions/ bad driver position/ faulty sensor, the accurate information
about the train and the driver state may be delayed.

The aperiodic unavailability of the driver and the train state to the ADAS system
raises concern about the train dynamics stability and safety. Therefore, consideration of
uncertainty in driver’s and train’s state during train stability analysis becomes essential.
For this purpose, a model-based approach is employed to approximate ADAS-Driver-Train
interaction and prove stability of driver advisory train control system.

For the stability study, the system consisting of Driver-Train in open-loop is considered
as a sampled-data system and ADAS as a controller. Further, the input-delay approach is
used to transform the sampled-data system to time-varying delay system. Further, time-
dependent Lyapunov functionals and convexification arguments are used to derive stability
criteria in terms of LMI conditions. The criteria allows to estimate the maximum allowable
delay in driver and train state measurement to guarantee train dynamics stability.

Keywords: Driver-Train system, network control system, sampled-data system, time-
delay system, time-varying sampling, stability, linear matrix inequality.
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