
HAL Id: tel-03526298
https://theses.hal.science/tel-03526298

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous and Relational Soundness Theorems for
Concurrent Separation Logic

Léo Stefanesco

To cite this version:
Léo Stefanesco. Asynchronous and Relational Soundness Theorems for Concurrent Separation Logic.
Logic in Computer Science [cs.LO]. Université de Paris, 2021. English. �NNT : �. �tel-03526298�

https://theses.hal.science/tel-03526298
https://hal.archives-ouvertes.fr

Université de Paris

ED386 Sciences Mathématiques de Paris Centre — Laboratoire IRIF
Thèse de doctorat, spécialité informatique, sous la direction de Paul-André Melliès

Asynchronous and Relational
Soundness Theorems

for Concurrent Separation Logic
Léo Stefanesco

Jury

Adrien Guatto MdC, Université de Paris Examinateur
Chung-Kil Hur Assoc Prof, Seoul National University Rapporteur
Damiano Mazza DR, CNRS Rapporteur
Daniela Petrisan MdC, Université de Paris Examinatrice
François Pottier DR, INRIA Examinateur
Viktor Vafeiadis Faculty, MPI-SWS Examinateur
Nobuko Yoshida Prof, Imperial College Examinatrice

Paul-André Melliès DR, CNRS Directeur
Lars Birkedal Prof, Aarhus University Invité

Présentée et soutenue publiquement le 12 novembre 2021.

Abstract — Asynchronous and Relational Soundness Theorems
for Concurrent Separation Logic

The subject of this thesis is concurrent separation logic, a program logic for concurrent
shared-memory languages. The relation between the proof of a program in a separation
logic and the semantics of this program is expressed by the soundness theorem of
this logic. This thesis introduces two soundness theorems. The first, the asynchronous
soundness theorem, expresses the absence of data race in well specified programs in
the language of template games in asynchronous graphs. The second part of this thesis
extends the Iris concurrent separation logic with a relational soundness theorem which
allows to establish simulations between a concrete program and an abstract model
expressed as a state transition system. An application of this theorem is the proof of
termination of concurrent programs under the assumption of a fair scheduler.

Keywords: concurrent separation logic, program logics, semantics, Iris, Coq

Résumé — Théorèmes de correction asynchrone et relationnelle
de la logique de séparation concurrente

L’objet de cette thèse est la logique de séparation asynchrone, une logique de pro-
gramme pour les langages de programmation concurrents et à mémoire partagée. Le
lien entre une preuve d’un programme dans une logique de séparation concurrente et
la sémantique de ce programme est exprimée par le théorème de correction de cette
logique. Cette thèse introduit deux théorèmes de corrections. Le premier, le théorème
de correction asynchrone, exprime dans le langage des jeux de gabarits sur des graphes
asynchrones l’absence de courses des programmes bien spécifiés. L’autre étend la
logique de séparation concurrente Iris avec un théorème de correction relationnel
qui permet d’établir des simulations entre un programme concurrent concret et un
modèle abstrait, formalisé comme un système de transition. Une application de ce
théorème est la preuve de terminaison de programmes concurrent sous l’hypothèse
d’un ordonnanceur équitable.

Mot-clés: logique de séparation concurrente, logique de prorgramme, sémantique, Iris,
Coq

ii

Contents

Introduction 7
0.1 Program logics . 7

0.1.1 Why use program logics? . 7
0.1.2 Hoare logic . 9
0.1.3 Program logics for concurrent programs 14
0.1.4 Limitations of Hoare logics . 16

0.2 Separation logic . 17
0.2.1 Ownership . 18
0.2.2 Inference rules . 19
0.2.3 Bunched implications . 19
0.2.4 Towards concurrent separation logic 20

0.3 Concurrent separation logic . 21
0.3.1 Resource invariants . 21
0.3.2 Soundness theorem . 22
0.3.3 Developments to concurrent separation logic 23

0.4 Organization of the thesis . 26

I Asynchronous models of CSL 28

1 Proofs of soundness of CSL 29
1.1 Trace semantics of the language . 29

1.1.1 Other proofs based on trace semantics 33
1.2 Operational semantics of the language 33

1.2.1 Step-indexed models of CSL . 36
1.3 Other proofs soundness of CSL . 36

1.3.1 Syntactic proofs . 36
1.3.2 Other . 37

1.4 Conclusion . 38

2 Asynchronous soundness for CSL 39
2.1 Hoare logic as refinement systems . 39
2.2 State transition systems . 40

iii

Contents

2.3 An imperative shared-memory concurrent language 41
2.4 Concurrent transition systems . 43

2.4.1 Asynchronous graphs . 43
2.4.2 Asynchronous machine models 45
2.4.3 Transition systems . 50
2.4.4 Data-races . 50
2.4.5 Polarized asynchronous transition systems 52

2.5 Concurrent separation logic . 54
2.5.1 The logic . 54
2.5.2 Semantic interpretation of CSL 57
2.5.3 The asynchronous soundness theorem 61

3 An asynchronous template game model of CSL 63
3.1 The double category Cob(�) of games and cobordisms 63

3.1.1 Internal categories . 63
3.1.2 Double categories . 66
3.1.3 Polyads and internal 𝐽-opcategories 68
3.1.4 The double category Cob(�) of games and cobordisms 70

3.2 Three internal 𝐽-opcategories: �L, �S, �Sep 72
3.2.1 The internal opcategories �L and �S for the code 72
3.2.2 The internal 𝐽-opcategory �Sep for the proofs 74

3.3 Parallel product . 75
3.3.1 Plain internal functors . 75
3.3.2 Acute spans of internal functors 76
3.3.3 Span monoidal internal 𝐽-opcategories 80
3.3.4 Parallel products of code and of proofs 82

3.4 Generalized sequential composition . 84
3.5 Change of locks . 87

3.5.1 Hiding . 89
3.5.2 Critical sections . 90

3.6 Sum of cobordisms . 91
3.7 Interpretation of codes and proofs . 91

3.7.1 Stateful and stateless interpretations of the code 92
3.7.2 Interactive and separated interpretations of the proofs 94

3.8 The asynchronous soundness theorem 95
3.8.1 Comparing the three interpretations 96
3.8.2 The asynchronous soundness theorem 98

3.9 Proof of the asynchronous soundness theorem 99
3.9.1 Well-formed cobordisms . 99
3.9.2 Adhesivity of AsyncGraph . 102
3.9.3 Preservation of well-formedness 103

iv

Contents

3.9.4 Strict maps of cobordisms . 108
3.9.5 Proof of 2-dimensional correctness 112
3.9.6 Proof of 1-dimensional correctness 114

II Relational soundness in Iris 117

4 Background on Iris 118
4.1 Overview of the approach . 118

4.1.1 Iris predicates . 119
4.1.2 The Iris standard weakest precondition 120

4.2 The Iris model . 122
4.2.1 Ordered families of equivalences 123
4.2.2 RAs and Cameras . 124
4.2.3 The Iris base logic . 125
4.2.4 Interpretation of Iris predicates 126
4.2.5 Logical rules . 127

4.3 High level logic . 128
4.3.1 Combining cameras . 128
4.3.2 Invariants . 129
4.3.3 The standard Iris weakest precondition 130

5 A program logic to relate traces 131
5.1 Introduction . 131

5.1.1 Relating STSs to programs in Iris 132
5.1.2 Simulations . 133
5.1.3 Motivation . 134

5.2 The trace weakest-precondition . 135
5.2.1 Soundness of trwp . 136
5.2.2 Proof of the soundness theorem 137
5.2.3 Infinite traces . 139

5.3 Related works . 140

6 Fair termination in Iris 141
6.1 Termination and fairness preserving simulation 142

6.1.1 Fairness models . 142
6.1.2 Running example . 143
6.1.3 A local criterion for the fair termination of models 144
6.1.4 Termination and fairness preserving refinements 146
6.1.5 The 𝔏𝔦𝔳𝔢 construction . 147

v

Contents

6.2 A logic for proving fairness and termination preserving refinements . . 151
6.2.1 Changes to the logic . 151
6.2.2 Logical resources . 153
6.2.3 Inference rules . 154
6.2.4 Soundness theorem . 156
6.2.5 Back to the example . 157

6.3 Related works . 158

Conclusion 160

Bibliography 164

vi

Résumé en francais

Les logiques de programme, dont la logique de séparation concurrente qui est l’objet de
cette thèse, sont des logiques axiomatiques, en ce que les théorèmes qu’on prouve dans
ces logiques ne sont que des moyens de prouver des propriétés dans la logique ambiante
sur des programmes. Les propriétés des programmes sont déduites de la prouvabilité
de certains théorèmes par le truchement des théorèmes de correction —aussi appelés
théorèmes d’adéquation— de la logique. Cette thèse s’intéresse principalement à ces
théorèmes de correction, pour deux variantes de la logique de séparation concurrente.

Après avoir introduit la logique de séparation concurrente, ce résumé décrit les deux
parties largement indépendantes de ce manuscrit qui présentent chacun un théorème de
correction : un théorème asynchrone pour la première partie, et un théorème relationnel
pour la seconde.

La logique de séparation concurrente

La première logique de programme moderne, dans le sens où les logiques de programme
contemporaines utilisent le même formalisme, est la logique de Hoare (1969), qui fut
introduite par ce dernier dans son article fondateur An axiomatic basis for computer
programming. Les prédicats principaux de la logique sont les triplet de Hoare1

{𝑃} 𝐶 {𝑄}

où 𝐶 est un programme écrit dans un langage de programmation impératif séquentiel
et 𝑃 et 𝑄 sont des prédicats sur l’état de la mémoire du programme, qu’on appelle
respectivement la pré-condition et la post-condition du triplet de Hoare. Intuitivement,
la signification du triplet de Hoare ci-dessus est que, si l’état initial de la mémoire
avant que le programme 𝐶 ne s’exécute satisfait la pré-condition 𝑃, alors d’une part
le programme de recontrera pas d’erreur qui stoppe son exécution, et d’autre part,
si le programme termine, alors l’état final de la mémoire satisfait nécessairement la
post-condition 𝑄.

1L’article original utilisait la notation duale 𝑃 {𝐶} 𝑄 pour ce triplet, mais nous utilisons la notation
devenue standard par la suite.

1

Contents

Les triplet de Hoare sont prouvés dans la logique de Hoare à l’aide de règles d’inférence,
avec lesquelles sont construits des arbres de dérivations, aussi appelés preuves. Par
exemple, la règle d’inférence qui correspond à la composition séquentielle de deux
programmes est la suivante :

{𝑃} 𝐶1 {𝑄} {𝑄} 𝐶2 {𝑅}

{𝑃} 𝐶1; 𝐶2 {𝑄}

Comme nous l’avons expliqué précédemment, le lien entre l’existence d’un tel arbre de
dérivation dont la conclusion est un triplet de Hoare {𝑃} 𝐶 {𝑄} et la sémantique du pro-
gramme 𝐶 est exprimé par le théorème de correction de la logique de programme. Celui
de la logique de Hoare (faible, car elle ne garantie pas la terminaison des programmes)
est le suivant :

Theorème 1. Soit un triplet de Hoare {𝑃} 𝐶 {𝑄} qui soit prouvable à l’aide des règles
d’inférence de la logique de hoare, et soit 𝔰 un état de la mémoire qui satisfait la pré-
condition 𝑃. Alors 𝐶 exécuté à partir de l’état 𝔰 ne rencontre pas d’erreur, et pour tout
état mémoire 𝔰′ tel que 𝐶 exécuté à partir de 𝔰 termine en 𝔰′, cet état 𝔰′ satisfait la post-
condition 𝑄.

Bien sûr, pour que le théorème ci-dessus soit complètement formel, il faut donner une
sémantique formelle au langage de programmation, ce qui est aisé dans le cas d’un
langage aussi simple que celui considéré par Hoare (1969).

La logique de Hoare a connu de nombreux développements ultérieurs qui l’ont étendu
dans différentes directions telles que l’automatisation des preuves, l’augmentation
de l’expressivité de la logique ou la gestion de langages de programmation avec des
fonctionnalités plus avancées telles que la récursion.

L’une des limites de la logique de Hoare est qu’elle n’est pas adaptée à la gestion des
structures de données contenant des pointeurs. En effet, il est difficile d’écrire une
formule qui décrit, par exemple, un arbre binaire de recherche sans partage.

C’est pour résoudre ces problèmes que la logique de séparation fut inventée au tour-
nant des années 2000. La différence fondamentale entre la logique de séparation et la
logique de Hoare est que ses prédicates 𝑃, 𝑄 ne sont plus des formules de la logique
du premier ordre avec des formules atomiques décrivant la mémoire, mais une logique
sous-structurelle qui étent la logique du premier ordre avec une nouvelle forme de
conjonction, la conjonction séparante 𝑃 ∗ 𝑄. Un état mémoire 𝔰 satisfait ce prédicat s’il
est possible de découper cet état en deux parties disjointe, l’une satisfaisant 𝑃 et l’autre
satisfaisant 𝑄.

2

Contents

Quelques années plus tard, O’Hearn découvrit que la logique de séparation était aussi
adaptée à résoudre une autre limitation de la logique de Hoare, les programmes concur-
rents, et introduit la logique de séparation concurrente. En effet, les extensions de la
logique de Hoare aux programmes concurrents, telles que la logique d’Owicki-Gries
ou les logiques de Rely-Guarantee, doivent explicitement poser les hypothèses que
l’environnement du programme qu’on prouve doit respecter.

Au contraire, la localité des prédicats de la logique de séparation permettent de mettre
en place une discipline de propriété (en anglais : ownership) au niveau logique : si
un prédicat mentionne une certaine ressource —par exemple de la mémoire— alors
le programme peut utiliser cette ressource sans risque d’interférence de la part de
l’environnement. En d’autres termes, la seule hypothèse sur l’environnement qui est
faite est qu’il a aussi été prouvé avec la logique de séparation concurrente.

Un théorème de correction asynchrone pour la logique de
séparation concurrente

La première partie de ce manuscrit étudie une version de la logique de séparation
concurrente proche de la version originale proposée par O’Hearn. Le langage considéré
étend celui considéré par Hoare avec une opération de composition parallèle 𝐶1 ∥ 𝐶2,
ainsi que des verrous qui sont alloués statiquement avec la construction resource𝑟do𝐶
et qui sont utilisés avec la construction with 𝑟 do 𝐶. Ces constructions sont reflétées
dans la forme des triplets de la logique de séparation concurrente : ils sont de la forme

Γ ⊢ {𝑃} 𝐶 {𝑄}

où Γ est un contexte associant à chaque verrou disponible un invariant, qui est sim-
plement un prédicat de la logique, du même type que les pré-conditions et que les
post-conditions.

Dans un cadre concurrent, le théorème de correction de la logique doit aussi garantir
qu’un programme qui a été prouvé ne fera pas d’accès concurrent (data race en anglais).
Un accès concurrent est la situation où un deux threads d’un programme accèdent
en même temps à la même case mémoire, et qu’au moins l’un de ces accès est une
écriture.

Les deux parties du théorème de correction —le programme ne crash pas, le programme
de fait pas d’accès concurrent— sont de nature largement différentes. En effet, la première
propriété parle de chaque instruction exécutée par le programme, alors que la seconde
parle des paires d’instructions exécutées par le programme. Dans notre formalisme, cette
première condition est exprimée comme une propriété 1-dimensionnelle de la séman-
tique, alors que la seconde condition correspond à une propriété 2-dimensionnelle.

3

Contents

La grande majorité des preuves de correction de la logique de séparation concurrente,
au contraire de notre approche, ramènent la seconde condition à la première en instru-
mentant la sémantique du langage de programmation pour provoquer un crash en cas
d’accès concurrent.

Notre approche générale est la suivante. Étant donné un arbre de dérivation 𝜋 d’un
triplet de la logique de séparation concurrente

⋅⋅⋅⋅⋅
𝜋

Γ ⊢ {𝑃} 𝐶 {𝑄}

on interprète la preuve ainsi que le programme (de deux manières différentes) dans le
même domaine sémantique de telle manière à ce ces trois intepretations soient liées de
manière canoniques par des morphismes correspondant à des simulations :

J𝜋KSep
𝒮

−−−−−→ J𝐶KS
ℒ

−−−−−→ J𝐶KL.

Le domaine sémantique est basé sur la notion de graphe asynchrone, une notion de
graphe dotés d’informations 2-dimensionnelles, les tuiles qui témoignent du fait que
deux opérations sont “indépendantes”.

Le théorème de correction peut alors s’exprimer à l’aide de notions de 1-fibration et de
2-fibration qui expriment que les arcs et les tuiles de la sémantique du programme 𝐶
peuvent être relevées en des arcs et des tuiles de la sémantique du la preuve 𝜋, qui
vivent dans un univers où, par construction, les erreurs et les accès concurrents sont
impossibles.

Theorème 2 (Théorème de correction). Étant donné une preuve 𝜋 d’un triplet Γ ⊢
{𝑃} 𝐶 {𝑄}, et avec les notations ci-dessus :

1. 𝒮 est une 1-fibration du Code ;

2. ℒ ∘ 𝒮 est une 2-fibration.

Un point important de cette partie est la méthodologie suivie pour définir les séman-
tiques des programmes et des preuves de la logique. Nous avons utilisés une version
dualisée des jeux de gabarits de Melliès, basée sur des cospans au lieu de spans comme
la version usuelle. L’idée la plus importante est que les interpretations vivents dans des
doubles catégories induites par des gabarits (dans notre cas, des opcatégories internes à
la catégorie des graphes asynchrones), et toutes les opérations sur ces interprétations
sont induites par des structures sur ces gabarits.

4

Contents

Un théorème de correction relationnelle pour Iris

La seconde partie de cette thèse propose une nouvelle variante de la logique de sé-
paration concurrente qui permet de construire des simulations entre un programme
et un modèle abstrait qui peut soit être vu comme une spécification, soit comme une
abstraction qui permet de prouver certaines propriétés du programme.

Cette logique est basée sur Iris, une logique de séparation concurrente moderne qui a
plusieurs propriétés importantes pour ce travail. D’abord, contrairement aux logique
dont nous avons parlé jusqu’à présent, il n’y a pas de stratification entre les prédicats𝑃, 𝑄
qui apparaissent en pré-condition par exemple, et les triplets de Hoare. Au contraire, les
prédicats logiques de Iris sont suffisamment expressifs pour pouvoir définir les triplets
de Hoare. Cela signifie que, pour définir une nouvelle logique de programme, il suffit
de définir une nouvelle notion de triplet dans la “logique de base” de Iris, et c’est ce que
nous avons fait ici.

Une autre différence importante est qu’Iris est une logique modale avec un opérateur
de point fixe gardé. En particulier, Iris est doté d’une modalité ⊳ (“later”) et son modèle
sémantique est basé sur le comptage de pas (step-indexing). Cela signifie en particulier
que la logique n’est capable que d’exprimer des propriétés de sureté, par opposition à
des propriétés de vivacité telles que la terminaison.

Concrètement, nous proposons une logique de programme paramétrisée par un un
certain modèle et qui admet une unique nouvelle règle de raisonnement par rapport à
la logique de programme standard d’Iris qui permet de “faire un pas” dans le modèle.
Le théorème de correction de la logique permet de prouver qu’une certaine relation 𝜉
est contient une simulation entre le programme et le modèle abstrait si l’on a prouvé
un certain triplet pour le programme en question.

Une application directe de ce théorème est de montrer qu’un programme distribué implé-
mente l’algorithme de consensus distribué Paxos de Lamport, au sens où le programme
et l’algorithme envoient les même messages, modulo encodage. Un autre exemple que
nous avons mis en œuvre est la preuve qu’un algorithme distribué converge nécessai-
rement (eventually consistent), sous certaines hypothèses de vivacité du réseau et du
programme.

Enfin, la dernière application de ce théorème de correction relationnelle est une logique
permettant de prouver qu’un programme concurrent termine si l’ordonnanceur est
équitable (fair scheduler). La limitation due au comptage de pas ne pose pas de problème
car la technique utilisée est de construire une relation entre le programme et un modèle
abstrait qui admet un ordre bien fondé satisfaisant quelques propriétés de décroissance.
La relation préserve l’équité du programme vers le modèle, et la terminaison du modèle
vers le programme, ce qui permet de déduire la terminaison des traces équitables du

5

Contents

programme de la terminaison des traces équitables du modèle abstrait, qui découle
elle-même de l’existence d’un ordre bien fondé sur ses états.

6

Introduction

Proving the correctness of programs has been the object of scientific interest well
before the use of computer software became widespread and the social need for proving
their correctness arose, especially in critical contexts, such as cyber-physical systems
where computer programs control physical actuators. Formally, the objective is to prove
properties about the semantics of some program: most typically that it does not crash
and that if it terminates, its final state satisfies a certain property which expresses that
it did what was expected.

0.1 Program logics

The first paper on this topic is the now famous paper Checking a large routine by Turing
(1949). Most current program logics are instances of what is now called Hoare logic,
which was first developed by Hoare (1969), building on previous works by Floyd (1967).
In every case, the method follows the structure of the program, be it in the form of a
flowchart for Turing and Floyd, or of its syntax tree for Hoare.

Logics should provide reasoning rules which are as close as possible to the methods
programmers use to reason about the correctness of their programs, such as using
loop invariants to reason about the correctness of loops, and variants to prove their
termination.

Related to the idea that proofs of programs carried out in a program logic should follow
the structure of the program, these proofs should be modular : proofs of correctness of
several part of a program should be carried out in isolation, and then combined into a
proof of the whole program, mirroring the modularity mechanisms of the programming
language.

0.1.1 Why use program logics?

Some researchers, such as L. Lamport (1994) have argued that instead of using specialized
logics, one should prove programs using “usual” mathematics, or at least in a setting

7

Introduction

as closed to it as possible. For example, the logic of his TLA+ tool is a set theory
augmented with temporal modalities from LTL to express properties of execution steps
of programs.

However, it seems to us that TLA+’s purpose is not to prove programs, instead it is
to prove algorithms, or something intermediate between an algorithm and a program
implementing it.

Proving programs and proving algorithms are widely different tasks: programming
languages have intricate semantics, and proving that a piece of code is safe can be
a subtle task, even if it corresponds to a simple action in the algorithm the program
implements. For example, to prove that dereferencing a raw pointer in Rust is safe,
which is an unsafe operation in general, the programmer needs to consider which other
part of the program is using this pointer, whether the target of the pointer is valid,
and what are the other pointers or references which may alias with it. Logics such
as Rustbelt (Jung, Jourdan, et al., 2017) provide facilities to carry such arguments in a
specialized logic.

Nowadays, realistic languages are formalized using an operational semantics (for exam-
ple CompCert for C (Leroy, 2009), or JSCert for Javascript (Bodin et al., 2014)), because
state transition systems are simple first order objects which are easy to define and
manipulate, especially in a proof assistant. Operational semantics, however, are not
well suited in practice to reason directly about programs, even programs of moderate
size, because the number of cases to consider quickly explodes. This is specially true
when, as it is common, the semantics leaves evaluation orders unspecified, leading to
non-determinism in the semantics. This is even more true for concurrent programs,
where one needs to consider all interleavings. In a way, the logic is required to re-
cover the compositionality which operational semantics lack compared to denotational
semantics.

Finally, most programs are composed of many algorithms: for instance, a simple con-
current program would contain a lock implementing the ticket-lock algorithm (Mellor-
Crummey and Scott, 1991), which would prevent concurrent access to a skip-list for
example. In the same way that the lock module can be used to protect any data structure,
it should be given a specification and a proof of correctness that can be used in many
contexts. Conversely, the skip list should be proved and specified without mention of
locking or concurrency, as it is a sequential data structure.

One avenue we will explore in Part II is to cleanly separate the proof of the algorithm
from the proof of the program module implementing it. For example, we consider an
abstract model of the Paxos consensus algorithm taken from a TLA+ specification,
and prove in the Iris logic that it simulates a concrete implementation. Then, the

8

Introduction

consensus property of the program is deduced from the consensus property of the
abstract algorithm.

0.1.2 Hoare logic

We begin by describing Hoare logic (Hoare, 1969), which is the core of most program
logics for imperative programming languages. Its purpose is to prove the safety and
the functional correctness of programs written in a simple While language with the
following grammar: It has Boolean expressions:

𝐵 ⩴ true ∣ false ∣ 𝐵 ∧ 𝐵′ ∣ 𝐵 ∨ 𝐵′ ∣ ¬𝐵 ∣ 𝐸 = 𝐸′

arithmetic expressions:

𝐸 ⩴ 0 ∣ 1 ∣ … ∣ 𝑥 ∣ 𝐸 + 𝐸′ ∣ 𝐸 ∗ 𝐸′

and commands:

𝐶 ⩴ 𝑥 ≔ 𝐸 ∣ 𝐶; 𝐶′ ∣ if 𝐵 then 𝐶1 else 𝐶2 ∣ while 𝐵 do 𝐶 ∣ skip

This language is extremely simple: it does not have functions nor local variables, but it
captures the essence of sequential imperative programming. For example, the following
program ediv computes the Euclidian division of two integers. More precisely, it
computes the division of the number stored in the global variable x by the one in global
variable y, and stores the quotient in q and the remainder in r.

r := x;
q := 0;
while r ≥ y do

(r := r - y;
q := q + 1)

Of course, this piece of code only satisfies the informal specification above when x
and y are positive.

Hoare logic specifies programs 𝐶 using Hoare triples, which are predicates of the form:

{𝑃} 𝐶 {𝑄}

where 𝑃 and 𝑄 are formulas which represent logical predicates over the state of the
memory, written in a language which is part of Hoare logic. Intuitively, this states that
any execution of the program 𝐶 which begins with an initial memory state 𝔰0 which

9

Introduction

satisfies the precondition 𝑃, does not crash; moreover, if this execution of the program 𝐶
terminates, then its final state 𝔰𝑓 satisfies the postcondition 𝑄.

In the version of Hoare logic we consider, 𝑃 and 𝑄 are first-order formulas with atomic
propositions 𝑥 = 𝑣 asserting that, in the current memory state, the program variable 𝑥
is well defined and contains the value 𝑣. The meaning of such a predicate is given by
the satisfiability relation 𝔰 ⊨ 𝑃, where the memory state 𝔰 is a finite partial map from
variables to values; it is defined as follows

𝔰 ⊨ 𝑥 = 𝑣 ⟺ 𝔰(𝑥) = 𝑣,

𝔰 ⊨ 𝑃 ∧ 𝑄 ⟺ 𝔰 ⊨ 𝑃 ∧ 𝔰 ⊨ 𝑄,

and similarly for every first order connectives.

In this thesis, we consider Hoare logics for weak correctness, which does not guarantee
that programs terminate for initial states satisfying the precondition 𝑃. Such logics
—called strong— do exist and, for sequential programs, are fairly similar to weak logics.

For instance, the ediv program above, which implements Euclidian division, would be
specified using the following Hoare triple:

{x ≥ 0 ∧ y > 0} ediv {x = y ⋅ q+ r ∧ 0 ≤ r < y}

To be accepted, a Hoare triple such as the one above needs to be the conclusion of a
proof tree build using the inference rules of the logic. The usual inference rules for
Hoare logic are presented in Figure 0.1. Each syntactic construction of the programming
language has an associated rule. In this version of Hoare logic, the only rule which does
not correspond to the syntax of the program is the rule of consequence Conseq. This
rule, which allows strengthening the precondition and weakening the postcondition,
is essential: it allows the prover to “massage” the pre and postconditions so that the
syntax directed rules can be applied; for instance, the premise (and the conlusion) of
the While rule must be of a particular shape to be used. The premises of Conseq refer
to the entailment relation on predicates, which is defined as follow:

𝑃 ⇒ 𝑄 ⟺ ∀𝔰, 𝔰 ⊨ 𝑃 implies 𝔰 ⊨ 𝑄,

or, equivalently, it holds iff the Hoare logic predicate 𝑃 ⇒ 𝑄 is a tautology. Importantly,
entailment should be seen as a semantic construct, unlike the rest of Hoare logic which
is a syntactic system.

Let us focus on the rule for while. To use it, the prover needs to find a Hoare logic
predicate 𝐼 which is called the loop invariant. The premise states that if, before the
execution of an iteration, the invariant 𝐼 and the guard 𝐵 of the loop both hold, then
the invariant is still true after that iteration.

10

Introduction

Skip
{𝑃} skip {𝑃}

Aff
{𝑄[𝑥 ≔ 𝑎]} 𝑥 ≔ 𝐸 {𝑄}

{𝑃} 𝐶1 {𝑄} {𝑄} 𝐶2 {𝑅} Seq
{𝑃} 𝐶1; 𝐶2 {𝑅}

{𝑃 ∧ 𝐵} 𝐶1 {𝑄} {𝑃 ∧ ¬𝐵} 𝐶2 {𝑄} If
{𝑃} if 𝐵 then 𝐶1 else 𝐶2 {𝑄}

{𝐼 ∧ 𝐵} 𝐶 {𝐼}
While

{𝐼} while 𝐵 do 𝐶 {𝐼 ∧ ¬𝐵}

𝑃 ⇒ 𝑃′ {𝑃′} 𝐶 {𝑄′} 𝑄′ ⇒ 𝑄
Conseq

{𝑃} 𝐶 {𝑄}

Figure 0.1: Inference rules for Hoare logic

To see how this works out in practice, we prove that the program ediv does satisfy the
specification we have given above. Instead of displaying the proof as a tree, because of
the amount of redundancy which is contained in Hoare logic proof trees, we annotate
the program with predicates enclosed in curly braces, and we denote the use of the
Conseq rule with⇒.

{ x ≥ 0 ∧ y > 0 } ⟹

{ x = y ⋅ 0 + x ∧ x ≥ 0 ∧ y > 0 }
r := x;
{ x = y ⋅ 0 + r ∧ r ≥ 0 ∧ y > 0 }
q := 0;
{ x = y ⋅ q + r ∧ r ≥ 0 ∧ y > 0 }
while r ≥ y do

(
{ x = y ⋅ q + r ∧ r ≥ 0 ∧ y > 0 ∧ r ≥ y } ⟹

{ x = y ⋅ (q+1) + (r-y) ∧ r-y ≥ 0 ∧ y > 0 ∧ r-y ≥ 0 }
r := r - y;
{ x = y ⋅ (q+1) + r ∧ r ≥ 0 ∧ y > 0 ∧ r ≥ 0 }
q := q + 1
{ x = y ⋅ q + r ∧ r ≥ 0 ∧ y > 0 ∧ r ≥ 0 }

)
{ x = y ⋅ q + r ∧ r ≥ 0 ∧ y > 0 ∧ r < y } ⟹

{ x = y ⋅ q + r ∧ r < y }

This example demonstrates that proving the entailment relation used in the consequence
rule requires general mathematical reasoning, in this case arithmetic reasoning. This is
why considering it as a semantic notion instead of a syntactic one simplifies a lot the
definition of the logic.

11

Introduction

Weakest precondition

The rule While has a special status in Hoare logic because it is the only rule for
which the pre and postconditions in the premise cannot be computed from those in
the conclusion. To see this, it is useful to consider another presentation of Hoare logic
using weakest preconditions: the weakest precondition wp 𝐶 {𝑄} of a program 𝐶 and
a postcondition 𝑄 is the weakest —according to the entailment order— precondition
such that the Hoare triple {wp 𝐶 {𝑄}} 𝐶 {𝑄} holds. We can recover Hoare triples from
weakest preconditions with:

{𝑃} 𝐶 {𝑄} ≔ 𝑃 ⇒ wp 𝐶 {𝑄}

There are logics, such as the Iris logic, which we will present in Part II, which takes weak-
est preconditions as their primitive notion, from which Hoare triples are deduced.

One advantage of weakest preconditions is that, except for while loops as alluded to
above, they can be computed by induction on the syntax of the program:

wp skip {𝑄} ≔ 𝑄

wp 𝑥 ≔ 𝐸 {𝑄} ≔ 𝑄[𝑥 ≔ 𝐸]

wp 𝐶1; 𝐶2 {𝑄} ≔ wp 𝐶1 {wp 𝐶2 {𝑄}}

wp if 𝐵 then 𝐶1 else 𝐶2 {𝑄} ≔ (𝐵 ∧ wp 𝐶1 {𝑄}) ∨ (¬𝐵 ∧ wp 𝐶2 {𝑄})

Therefore, to check that a program (without loop) satisfies a Hoare triple {𝑃} 𝐶 {𝑄}, it
suffices to prove the entailment

𝑃 ⇒ wp 𝐶 {𝑄}

which, in practice, can be fairly well automated using automatic theorem provers.

A common strategy for loops is to ask the programmer to give a loop invariant, which
can then be used to define the weakest precondition:

wp while 𝐵{𝐼} do 𝐶 {𝑄} ≔ 𝐼

assuming the side conditions 𝐵 ∧ 𝐼 ⇒ wp𝐶 {𝐼} and ¬𝐵∧ 𝐼 ⇒ 𝑄 hold. Examples (among
many) of tools which use refinements of the method just outlined are Why3 (Filliâtre
and Paskevich, 2013) for ML or Dafny (Leino, 2010) for C.

Soundness theorem

We have explained informally the meaning of a (weak) Hoare triple, in terms of exe-
cutions of the programs. The corresponding formal statement is called the soundness

12

Introduction

theorem of the logic. To be able to state it, we need to give the language a formal
semantics. For example, we can consider its big step semantics 𝐶, 𝔰 ⇓ 𝔰′ which states
that the program 𝐶 started in the initial state 𝔰 terminates, and its final state is 𝔰′, and
𝐶, 𝔰 ⇓ if the program crashes.

We can now state the soundness theorem:

Theorem 0.1.1. Given a derivation tree 𝜋 of a Hoare triple {𝑃}𝐶{𝑄}, and given a machine
state 𝔰 such that 𝔰 ⊨ 𝑃, the program is safe: 𝐶, 𝔰 ��⇓ and if 𝐶, 𝔰 ⇓ 𝔰′ then 𝔰′ ⊨ 𝑄

Proof. Straightforward induction on the structure of the derivation tree 𝜋.

The reason why the soundness theorem is important is that Hoare logic is an “axiomatic
logic”, in the terminology of Girard, in that it is only useful as a tool to prove properties
of the program expressed in the ambient logic; and this connection is given by the
soundness theorem. This point will more salient in Part II because the distance between
the Iris logic and the ambient logic is greater, as Iris is a step-indexed modal logic.

Semantic triples and completeness

We can rephrase the soundness theorem above by defining the semantic validity of a
Hoare triple as:

⊨ {𝑃} 𝐶 {𝑄} ≔ ∀𝔰, 𝔰 ⊨ 𝑃 ⟹ 𝐶, 𝔰 ��⇓ ∧ ∀𝔰′, 𝐶, 𝔰 ⇓ 𝔰′ ⇒ 𝔰′ ⊨ 𝑄

Then, writing ⊢ {𝑃} 𝐶 {𝑄} for the existence of a derivation tree for that Hoare triple,
the soundness theorem can be expressed as

Theorem 0.1.2. ⊢ {𝑃} 𝐶 {𝑄} implies ⊨ {𝑃} 𝐶 {𝑄}.

The usual way to prove this theorem amounts to proving that each inference rule of the
logic has a corresponding lemmawherewe replace syntactic tripleswith semantic triples.
Some logics such as Iris completely forgo syntactic triples and only have semantics
triples with lemmas about them which correspond to the inference lemmas.

Despite its simplicity, Hoare logic is complete, in the sense that the converse of the
second formulation of the soundness theorem holds:

Theorem 0.1.3. ⊨ {𝑃} 𝐶 {𝑄} implies ⊢ {𝑃} 𝐶 {𝑄}.

In the sequel we will only consider the soundness of program logics.

13

Introduction

0.1.3 Program logics for concurrent programs

As we have discussed, Hoare logic is a program logic well suited for a simple sequential
programming language such as While. Intuitively, the logic ensures that at each step
of an execution of the program, it is in a state which guarantees that the execution is
safe.

In a concurrent setting this is not sufficient anymore, because a non-trivial thread
cannot be safe regardless of how the other threads executing concurrently are behaving.
Consider indeed a thread which modifies randomly the values of every variables, which
are shared between the threads. In these conditions, during the proof of any other
thread, it does not make sense to have, say, a loop invariant which depends on the value
of a variable since that other thread can invalidate it at any moment.

The fundamental difference between logics for sequential and concurrent languages
is that, if we are to prove each thread separately, the proof needs to pose constraints
on the behavior of its environment, which is the abstraction of all threads possibly
executing concurrently.

A simple imperative shared memory language

To make things more concrete, let us consider a simple concurrent language with atomic
sections, which adds the following commands to the While language we considered in
the previous section:

𝐶 ⩴ … ∣ 𝐶1 ∥ 𝐶2 ∣ atomic 𝐶

The command 𝐶1 ∥ 𝐶2 executes the two commands 𝐶1 and 𝐶2 in parallel and waits for
both of them to finish, and the atomic section atomic 𝐶 creates a critical section, in
that at most one such critical section is executing in the complete program at any one
time. Here is a very simple program taking advantage of these two new constructs:

atomic (y:=x; x:=y+1) || atomic (z:=x; x:=z+1)

If the initial values of x is 0, then the the final value will be 2. Without the critical
sections, both threads could have read the value 0 from x, and then they both would
have written 1 into x. (There would have been a data race as well, but we will talk about
this later.)

14

Introduction

Rely-guarantee

There have been several generalizations of Hoare logic to concurrent settings. An early
milestone was proposed by Owicki and Gries (1978), who introduced an extension of
Hoare logic to shared-memory concurrent programs, which now bears their name,
which is compositional, in that each thread is proved separately. The central rule is the
following

{𝑃1} 𝐶1 {𝑄1} {𝑃2} 𝐶2 {𝑄2} the two proofs are not interfering
{𝑃1 ∧ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∧ 𝑄2}

The issue however is that the non-interference side-condition is quite complicated and
unpractical.

The logic which we consider more carefully is the Rely-Guarantee logic (RG), which was
introduced by Jones (1983). The two key ideas are, first, to make explicit the assumption
about the interferences of the environment on which the proof of the program relies,
and, second, that conversely, the program should provide guarantees to its environment.
Formally, a specification in RG is a 5-tuple which we write

𝑅; 𝐺 ⊢ {𝑃} 𝐶 {𝑄}

where, as before, 𝑃 and 𝑄 are predicates, and 𝐶 is the program; the two new items 𝑅
and 𝐺 are relations on memory states (or a syntactic representation thereof). Intuitively,
𝐺 contains the set of atomic modifications of the memory which the program is allowed
to perform; dually, 𝑅 represents the set of atomic modifications which the environment
is allowed to perform while 𝐶 is executing.

Since the program needs to be able to rely on its precondition 𝑃 to hold at the beginning
of its execution, the precondition 𝑃 needs to be stable under the rely relations, in that
𝔰 ⊨ 𝑃 ∧ (𝔰, 𝔰′) ∈ 𝑅 ⇒ 𝔰′ ⊨ 𝑃. Otherwise, the proof of the program would have to take
into account that the environment can invalidate 𝑃 at any time.

The inference rule for the parallel product ensures that the two specifications are
compatible, in that the rely relation of each thread follows from the guarantee of the
other:

𝑅1; 𝐺1 ⊢ {𝑃1} 𝐶1 {𝑄1} 𝑅2; 𝐺2 ⊢ {𝑃2} 𝐶2 {𝑄2} 𝐺1 ⇒ 𝑅2 𝐺2 ⇒ 𝑅1

𝑅1 ∩ 𝑅2; 𝐺1 ∪ 𝐺2 ⊢ {𝑃1 ∧ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄}

for some 𝑄 computed from the 𝑄𝑖’s and the 𝑅𝑖’s. The improvement over the Owicki-
Gries logic is that the side conditions no longer refer to the proofs of 𝐶1 and of 𝐶2, but
only the specifications of 𝐶1 and of 𝐶2.

15

Introduction

The other rules ensure that each atomic step taken by a program are part of its guarantee
relation, and that all preconditions are stable under the rely relation.

In conclusion,the fundamental difference between sequential Hoare logics and concur-
rent Hoare logics is that, for the logic to be compositional, the predicates it manipulates
must be secure against interferences from any well-specified environment.

0.1.4 Limitations of Hoare logics

Despite the power of Hoare logic and its variant —they are complete— they have
difficulties with compositionality. One instance of this is related to the frame rule, an
important rule for compositionality of proofs:

{𝑃} 𝐶 {𝑄} 𝑅 does not contain variables written by 𝐶
{𝑃 ∧ 𝑅} 𝐶 {𝑄 ∧ 𝑅}

It allows for proving a piece of code 𝐶 using only the needed pre/post-condition 𝑃
and 𝑄, and the using it in any context where the precondition implies 𝑃 ∧ 𝑅. A typical
example where this is useful is in a program with many variables which contains a
loop writing to a single variable x. Without such a rule, the loop invariant needs to
state that every property about the other variables is preserved, which can be tiresome.
More fundamentally, this allow a single piece of code to be proved once and used in
several different contexts.

This rule does hold in “classical” Hoare logic, but tends to fail in extensions. In the
context of concurrent programming languages, the Hoare triples of RG do not admit a
suitable frame rule, making the rely and guarantee relations global.

The second programming language feature which invalidates Hoare logic’s frame rule,
and which motivated separation logic originally, is the addition of pointers. The core of
the problem is that, unlike for program variables, interference at the level of pointers
(addresses in the memory heap) is a semantic property, which cannot be captured using
a syntactic side condition like the frame rule presented above.

We add pointers to our simple (sequential) While language. The memory states are
now pairs 𝔰 = (𝑠, ℎ) of a stack 𝑠 as before, and a heap ℎ a finite partial mapping from
addresses to values. We identify addresses with natural numbers, and we assume that
addresses are values, allowing programs to store pointers. We write [𝐸] to dereference
the address represented by the expression 𝐸, giving the following commands:

𝐶 ⩴ ⋯ ∣ [𝐸] ≔ 𝐸′ ∣ x ≔ [𝐸]

16

Introduction

It is natural to add an atomic predicate to be able to specify the value contained at some
memory location, which mirrors the predicates for the stack:

ℓ ↦ 𝑣

specifies that the address ℓ is allocated and that it contains the value 𝑣. However, it is
easy to see that the frame rule given above does not hold, as the following could be
derived:

{ℓ ↦ 1} [ℓ] ≔ 3 {ℓ ↦ 3}

{ℓ ↦ 1 ∧ ℓ ↦ 1} [ℓ] ≔ 3 {ℓ ↦ 3 ∧ ℓ ↦ 1}

Of course this example can be ruled out using a version of the side condition mentioned
above, but the address ℓ could be stored in a variable, or in the heap.

The fact that a program 𝐶 admits a Hoare triple {𝑃} 𝐶 {𝑄} implies, informally, that the
memory it manipulates is described by the predicate 𝑃. Therefore, for a frame rule to
exist, it would be sufficient to be able to state that the frame predicate 𝑅 describes a
part of the memory which is distinct from the memory described by 𝑃. The new tools
provided by separation logic will allow us to do just that.

Another way this disjointedness property is useful is in specifying programs which
manipulate data structures which contain pointers. For example, the obvious program
which mutably concatenates two linked lists produces a linked list only if the two lists
passed as arguments do not alias, that is, only if they span two disjoint areas of the
memory.

0.2 Separation logic

Separation logic was introduced around 2000 by Reynolds, O’Hearn, Ishtiaq and Yang to
improve reasoning about pointers in Hoare logics. It acquired its name in a survey paper
by Reynolds (2002), following works by Ishtiaq and P. W. O’Hearn (2001), Reynolds
(2000), P. W. O’Hearn, Reynolds, and Yang (2001).

As we explained above, the main improvement over Hoare logic lies in how predicates
can control aliasing. This is achieved using a new logical connector, the separating
conjunction, written 𝑃 ∗ 𝑄. It states that the predicates 𝑃 and 𝑄 hold in two disjoint
regions of the memory:

𝔰 ⊨ 𝑃 ∗ 𝑄 ⟺ ∃𝔰1, 𝔰2, 𝔰 = 𝔰1 ⊎ 𝔰2 ∧ 𝔰1 ⊨ 𝑃 ∧ 𝔰2 ⊨ 𝑄

This allows to state at a semantic level that two predicates are “independent”. More
fundamentally, predicates now behave like resources: they are not duplicable in general,
in that 𝑃 ⇒ 𝑃 ∗ 𝑃 does not hold.

17

Introduction

There are two flavors of separation logics, depending on whether the logic allows
weakening: If it does, the logic is called affine (or intuitionistic), otherwise it is linear
(or classical). Semantically, in logics of the first kind, the set of states which satisfy any
predicate 𝑃 is upward closed:

∀𝔰, 𝔰′, 𝔰 ⊨ 𝑃 ∧ 𝔰 ⊆ 𝔰′ ⟹ 𝔰′ ⊨ 𝑃

For example, the interpretation of the “points-to” predicates which specify the value
at some address ℓ of the heap in an affine logic is defined in the same way as for the
Hoare logic above:

𝔰 ⊨ ℓ ↦ 𝑣 ⟺ (ℓ, 𝑣) ∈ 𝔰

In such a logic, the unit element of the separating conjunction ∗ is the predicate ⊤
which holds for any memory state. In a separation logic which is linear, however, ℓ ↦ 𝑣

only holds for the corresponding singleton heap:

(𝑠, ℎ) ⊨ ℓ ↦ 𝑣 ⟺ ℎ = [ℓ ↦ 𝑣]

In such a logic, the predicate ⊤ is not the unit element of the separating conjunction.
Actually, the mapping 𝑃 ↦ 𝑃 ∗ ⊤ defines a translation from a linear to an affine
separation logic. The unit element is the atomic predicate emp, which holds exactly
when the heap is empty. In the remainder of this introduction and in Part I we consider
a linear separation logic. Part II uses the Iris separation logic, which is affine.

0.2.1 Ownership

A predicate 𝑃 can be seen as representing the ownership of an area of the memory
which satisfies it. As we will see later, this (purely logical) ownership can be transferred
among threads when acquiring a lock. Another example of ownership transfer would
be a program which sends a pointer in a channel, giving away its ownership of the
memory it points to; the program which receives from the other end of the channel
would be the new owner of this memory.

The separating conjunction 𝑃∗𝑄 then represents the ownership of 𝑃 and the ownership
of 𝑄. The usual conjunction 𝑃 ∧ 𝑄, on the other hand, states the ownership of memory
which satisfies both 𝑃 and 𝑄. This is intuitively similar to intersection types, where a
term has several types, and can be used as either.

The ownership interpretation of a separation logic Hoare triple {𝑃} 𝐶 {𝑄} is that the
program 𝐶 needs to be given ownership of the resource 𝑃 to run, and after it has finished,
it gives back to its caller the ownership of the resource 𝑄.

18

Introduction

0.2.2 Inference rules

Separation logic allows us to state a frame rule which holds in the presence of pointers:

{𝑃} 𝐶 {𝑄} 𝑅 does not contain variables written by 𝐶
{𝑃 ∗ 𝑅} 𝐶 {𝑄 ∗ 𝑅}

The reason why there still is a side condition about written program variables is that
in the presentation we have given, predicates do not have a notion of ownership of
variables. This means that non-interference at the level of program variables needs to
be handled in side conditions.

This is why most modern separation logic handle variables like ML: a variable is
immutable, but can contain a location whose content can change, as we will see in
Part II. In other words, instead of memory states being a stack and a heap, they are a
heap and an environment. In the remainder of this introductory chapter, we omit those
side conditions, since they can be dealt with.

The remainder of the rules are similar to the ones for Hoare logic. For example, the rule
for reading from the heap is the following:

{x = 𝑣′ ∗ ℓ ↦ 𝑣} x ≔ [ℓ] {x = 𝑣 ∗ ℓ ↦ 𝑣} (0.1)

The resource ℓ ↦ 𝑣 is given back in the postcondition because the command does not
consume this resource. In contrast, the dispose operation which frees the memory has
the following specification:

{ℓ ↦ 𝑣} dispose(ℓ) {emp}

The linearity of the logic allows the user of the logic to ensure that all the memory has
been freed using the dispose operation at the end of the execution of the program by
choosing emp as the postcondition of the program.

0.2.3 Bunched implications

The predicates of separation logic are an instance of the logic of bunched implications
(BI), a substructural logic introduced by P. W. O’Hearn and D. J. Pym (1999). It features
two types of conjunctions, additive conjunction ∧ and multiplicative conjunction ∗,
each with a right adjoint→ and −∗ (read “magic wand”), respectively.

A sequent in BI is of the form Γ ⊢ 𝑃, where the context Γ is a tree of the form:

Γ ⩴ 𝑃 ∣ Γ1, Γ2 ∣ Γ1; Γ2

19

Introduction

The arborescent nature of the contexts gives its name to the logic. The internal nodes of
the tree denoted with semicolons correspond to ∧, and the nodes denoted with commas
correspond to ∗, as demonstrated by the introduction rules of the implications:

Γ, 𝑃 ⊢ 𝑄

Γ ⊢ 𝑃 −∗ 𝑄

Γ; 𝑃 ⊢ 𝑄

Γ ⊢ 𝑃 ⇒ 𝑄

The main difference is that only ; admits structural rules. To express those rules, we
denote by Γ(Δ) a context where Δ appears as a subtree, and where Γ is the “rest” of the
tree (more formally, Γ is a context in the other meaning of the word).

Γ(Δ) ⊢ 𝑃

Γ(Δ; Δ) ⊢ 𝑃

Γ(Δ; Δ) ⊢ 𝑃

Γ(Δ) ⊢ 𝑃

As expected, there is a multiplicative unit 𝐼 and an additive unit ⊤, which correspond
to emp and ⊤ in the separation logic we have presented.

Models of BI

A natural question to ask is how BI relates to linear logic, another substructural logic.
One answer is to look at models of BI. A model of BI is a doubly closed category: a
Cartesian closed category (𝒞, ×,⇒, ⊤) together with a monoidal closed structure on the
same category (𝒞, ∗, −∗, 𝐼). The semantics of a context Γ is given by interpreting , using
the monoidal product ∗, and interpreting ; using the Cartesian product ×. In particular,
we have:

𝒞(𝐼, 𝑃 −∗ 𝑄) ≅ 𝒞(𝑃, 𝑄) ≅ 𝒞(⊤, 𝑃 ⇒ 𝑄)

Many separation logics have a magic wand; it is the basic notion of implication which
is used in Iris for example.

One class of examples of models of BI are functor categories over monoidal categories,
where the monoidal product is the Day tensor product. There is also a game model by
McCusker and D. Pym (2007).

0.2.4 Towards concurrent separation logic

The great aptitude of separation logic for controlling interferences make it well-suited
for the concurrent setting. Intuitively, the Frame rule implies the following rule for the
parallel product:

{𝑃1} 𝐶1 {𝑄1} {𝑃2} 𝐶2 {𝑄2}

{𝑃1 ∗ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∗ 𝑄2}

20

Introduction

Indeed, according to the frame rule, each program 𝐶𝑖 leaves untouched the memory
described by 𝑃3−𝑖, so it is reasonable to expect that 𝐶1 and 𝐶2 do not to interfere at all,
which means that this rule is semantically valid.

Separation logic can be seen as an implicit instance of the Rely-Guarantee method: a
programwhich can be specified with a separation logic Hoare triple {𝑃}𝐶{𝑄} guarantees
to only access memory it owns, which, at the start of its execution, is described by
its precondition 𝑃, and it relies on the environment not to access the memory owned
by 𝐶.

The purpose of concurrent separation logic is to provide means to prove concurrent
programs which interfere in a controlled way.

0.3 Concurrent separation logic

Concurrent separation logic (CSL) was introduced by P. W. O’Hearn (2004) and Brookes
(2004) as an extension of separation logic to a concurrent shared memory language
with locks.

The language which was considered in the early CSL papers was slightly different from
the ones we used in Section 0.1.3: Instead of atomic sections, programs can declare
locks, and use critical sections associated to each of these locks. Its grammar replaces
the command atomic 𝐶 with:

𝐶 ⩴ ⋯|resource 𝑟 do 𝐶 ∣ with 𝑟 do 𝐶

The command resource 𝑟 do 𝐶 declares a new lock 𝑟, which is available inside 𝐶;
with 𝑟 do 𝐶 acquires the lock 𝑟, runs 𝐶, and then unlocks 𝑟. Dynamically, two critical
sections for the same lock are guaranteed not to run at the same time.

0.3.1 Resource invariants

The idea of CSL is to associate each lock with a predicate of CSL, which describes the
resource protected by the lock while it is available (unlocked). In CSL, Hoare triple are
parameterized with a context Γ, making them formally 4-tuples:

Γ ⊢ {𝑃} 𝐶 {𝑄}

where 𝑃 and 𝑄 are predicate of the same type as (sequential) separation logic, and Γ is
a context

Γ ⩴ ∅ ∣ Γ, 𝑟 ∶ 𝐼

21

Introduction

associating predicates 𝐼 with locks 𝑟. The predicate 𝐼 is called the lock invariant of the
lock 𝑟. We consider contexts up to permutations and we assume the lock names are
distinct.

The general idea is that the only way for threads to communicate is though locks: for
example, suppose the lock 𝑟 is associated with the resource ∃𝑣, ℓ ↦ 𝑣, which expresses
the ownership of the memory location ℓ. Suppose ℓ contains initially 0, and that one
thread wants to signal another thread. It can write the value 1 to the memory location ℓ
in a critical section:

with 𝑟 do [ℓ] ≔ 1

The other thread could be reading ℓ in a loop, waiting to read 1 before exiting the
loop:

x ≔ 0;

while 𝑥 = 0 do with 𝑟 do 𝑥 ≔ [ℓ]

At the logical level, the program acquires the resources protected by the lock when
it enters the critical section, and it must release the resource at the end of the critical
section.

Γ ⊢ {𝑃 ∗ 𝐼} 𝐶 {𝑄 ∗ 𝐼}

Γ, 𝑟 ∶ 𝐼 ⊢ {𝑃} with 𝑟 do 𝐶 {𝑄}

Γ, 𝑟 ∶ 𝐼 ⊢ {𝑃} 𝐶 {𝑄}

Γ ⊢ {𝑃 ∗ 𝐼} resource 𝑟 do 𝐶 {𝑄 ∗ 𝐼}

To declare a new lock 𝑟 with invariant 𝐼, the program needs to let go of the resource 𝐼
and put it “in the lock”; after the end of the command 𝐶 the program gets back the
resource 𝐼. Finally, the rule for the parallel product is the same as the one sketched
at the end of the previous section, with the addition of the context which is shared
between the two threads.

Γ ⊢ {𝑃1} 𝐶1 {𝑄1} Γ ⊢ {𝑃2} 𝐶2 {𝑄2}

Γ ⊢ {𝑃1 ∗ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∗ 𝑄2}

0.3.2 Soundness theorem

The soundness theorem of the CSL states, as for Hoare logic, that every execution of
a well-specified program is safe, and that if it terminates, the final state satisfies the
postcondition. If the logic uses linear predicates, one can allow the initial state of said
execution ton contain a sub-memory state which satisfies the precondition.

Theorem 0.3.1. Suppose ∅ ⊢ {𝑃} 𝐶 {𝑄}, and suppose that 𝔰 ⊨ 𝑃 ∗ ⊤, then any execution
of 𝐶 which starts from 𝔰 is safe, and its final state, if it exists, satisfies 𝑄 ∗ ⊤.

22

Introduction

There is another property which is important to require for a concurrent shared-memory
program to be considered safe: it must be data race free. Informally, an execution of a
program contains a data race if there are two instructions which are executed at the
same time and such that one writes to the location the other one is accessing. Therefore,
the soundness theorem of CSL contains a second half:

Theorem 0.3.2. Suppose ∅ ⊢ {𝑃} 𝐶 {𝑄}, and suppose that 𝔰 ⊨ 𝑃 ∗ ⊤, then any execution
of 𝐶 which starts from 𝔰 is data-race free.

This second half of the theorem is different in nature to the first because it requires
reasoning about pairs of instructions of the same execution.

The proof of soundness of CSL is significantly more difficult than its sequential coun-
terpart, as the meaning of a CSL Hoare triple needs to state formally what is the “rely”
of the environment.

Most proofs of soundness of CSL add a rule in the semantics of the programming
language which makes the program crash when a data race occurs, this allows one to
deduce the second part of the theorem from the first.

Part I of this thesis, on the contrary, develops a proof of soundness of CSL which
handles directly this aspect by giving an asynchronous semantics to both the program
and the derivation trees of CSL, allowing us to talk about concurrent executions of
instructions.

0.3.3 Developments to concurrent separation logic

There have been many advances in the field of concurrent separation logics since the
seminal papers of O’Hearn and Brookes. The language we considered above is indeed
very simple, and CSL was extended to support richer languages with higher-order
functions, higher order store (mutable references which can contain closures), dynamic
creation of threads, etc.

Another area of improvement is the concurrency primitives that the programming
languages support. The concurrency primitive of the While language above is statically
declared locks. Logics for dynamically created locks were developed by Gotsman et al.
(2007b), and later for atomic operations such as Compare-and-swap allowing lockless
data structures to be proved (Parkinson, Bornat, and P. O’Hearn, 2007).

All the examples above consider programs with sequentially consistent (SC) seman-
tics (Lamport, 1979): The execution of concurrent programs are interleaved together.
Parallel computers exhibit non-SC behaviors, making it particularly difficult to reason

23

Introduction

about concurrent programs. Logics based on CSL were developed to reason about such
programs, such as GPS (Turon, Vafeiadis, and Dreyer, 2014).

Other directions include distributed systems —eg. Disel (Sergey, Wilcox, and Tatlock,
2017), or Aneris (Krogh-Jespersen et al., 2020; Gondelman et al., 2021), and language
based security (Georges et al., 2021), …

The main technical means which contributed to this increase in expressive power of
the logic is the decoupling of logical state from machine state. Here, we call machine
state the notion of state which is used to define the semantics of the programming
language, and we call logical state the type of object the predicates of the logic are
predicates on. In the instance of CSL above, the meaning of a predicate 𝑃 is defined
by the satisfiability relation 𝔰 ⊨ 𝑃, where 𝔰 is a machine state. In other words, the two
notions are identified in this early example.

Permissions

An early instance of this decoupling is the introduction of permissions which were
introduced by Bornat, Calcagno, P. O’Hearn, et al. (2005) in separation logic, following
their invention by Boyland (2003), who used them in a type system.

To avoid data races, the situation to forbid is one thread writing to a location while
another is reading or writing to that location. The variant of CSL we have presented
above is too strict in that it also disallows concurrent reads. Indeed, to be able to read
a location ℓ, using the rule (0.1), a command needs ownership of a corresponding
resource ℓ ↦ 𝑣. Since this resource is not duplicable, either it is protected by a lock or
only one thread can own it.

The solution is to consider a more refined notion of ownership: one can own a fraction 𝑝
(0 < 𝑝 ≤ 1) of a location. Fractional ownership can be combined using the following
law:

ℓ
𝑝1
↦ 𝑣 ∗ ℓ

𝑝2
↦ 𝑣 ⟺ ℓ

𝑝1 + 𝑝2
↦ 𝑣

if 𝑝1+𝑝2 ≤ 1. Any fractional ownership is sufficient to read from it, but full ownership
(𝑝 = 1) is required to write to it. The invariant enforced by the logic is that if one thread
owns a full permission over some location ℓ, then no other thread is able to own any
fractional permission to that location, which means that no other thread can read from
this location, avoiding data races on location ℓ.

Because predicates now contain permissions, they are predicates over a refined version
of the memory which contains permissions. This logical state is related to the machine
state by erasing permissions.

24

Introduction

Ghost variables and logical state

In Hoare logics, it is very useful to have ghost code, code which is added to the program
to help with reasoning but does not affect the behavior of the program. A classical
example is proving that two threads which each add 𝑘 to a shared reference end up
adding 2𝑘 to it. Here is the program:

resource 𝑟 do

with 𝑟 do (x ≔ [ℓ]; [ℓ] ≔ x + 𝑘) ∥ with 𝑟 do (y≔ [ℓ]; [ℓ] ≔ y+ 𝑘)

and we want to prove that, if ℓ contains initially 0, in the final state it contains 2𝑘.
Since both thread write to ℓ, we need to put total ownership of it in the lock 𝑟, but the
invariant cannot express that, depending on which instruction has been executed, the
value at location ℓ is either 0, 𝑘 or 2𝑘: it has to be of the form ∃𝑣, ℓ 1

↦ 𝑣 or similar.

The solution is to use ghost code, and add two ghost variables 𝜆 and 𝜌 such that 𝜆
contains the contribution of the left thread, and 𝜌 that of the right. Because each is
written to by a single thread and both are mentioned in the invariant, we split their
ownership in two part: one half is given to the relevant thread, and the other is in the
invariant:

∃𝑣1, 𝑣2, 𝜆
1/2
↦ 𝑣1 ∗ 𝜌

1/2
↦ 𝑣2 ∗ ℓ

1

↦ 𝑣1 + 𝑣2

We modify the code so that each critical section also increments the corresponding
ghost variable by 𝑘. At the end of the execution, we can easily prove that 𝜆 and 𝜌 both
contain 𝑘 and therefore ℓ contains 2𝑘.

Usually there are syntactic rules to ensure that non-ghost variables do not depend on
ghost variables, and one can prove an erasure theorem stating that the program with
the ghost code erased and the original program are equivalent in some sense. This
approach has drawback however, as the source code of the program has to be modified,
which is detrimental to modularity of proofs.

In recent concurrent separation logics such as Iris (Jung, Swasey, et al., 2015), ghost
variables are subsumed by logical variables, which live in the logical state instead of
the machine state. This increases further the distance between the machine and the
logical states compared to permissions, as they no longer have the same “shape”.

Iris

In Part II of this thesis, we will use the Iris (Jung, Swasey, et al., 2015; Jung, Robbert
Krebbers, Lars Birkedal, et al., 2016; Robbert Krebbers, Jung, et al., 2017) concurrent
separation logic, which unifies under an extensible framework many of the previous

25

Introduction

concurrent separation logics which had been developed in the 2010s. One powerful
aspect of Iris is that Hoare triples are defined in its language of predicate. This has two
consequences: First, a Hoare triple can appear in the precondition of some Hoare triple,
allowing for specifying higher-order programs. Second, this lowers the effort required
to develop new program logics, since one only needs to define a new version of Hoare
triples in the base logic of Iris. An instance of this appears in Part II.

The semantic of Iris is defined a step-indexed Kripke semantics: an Iris predicate is a
step-indexed predicate over a notion of world, which are defined as the solution to a
guarded domain equation. Iris’s facilities to solve domain equation have also been used
to define step-indexed logical relations (Robbert Krebbers, Timany, and Lars Birkedal,
2017): for example to prove properties about the ST monad (Timany, Léo Stefanesco,
et al., 2017), or the soundness of the DOT calculus (Giarrusso et al., 2020), but also to
develop a model of the Rust language (Jung, Jourdan, et al., 2017).

The soundness theorem for the usual notion of Hoare triple of Iris is proved using the
adequacy theorem of the base logic. The soundness theorem states, as usual, that a
well-specified program does not get stuck (the way runtime errors are represented
in Iris). Though it does not provide data race freedom, it is possible to define other
program logics which do guarantee data race freedom, such as the RustBelt semantic
model of the Rust language (Jung, Jourdan, et al., 2017).

In Part II of this thesis, we develop a program logic in the Iris framework with a
more intensional soundness theorem. The logic is parameterized by a user-chosen
state transition system (STS) which models the behavior they want their program to
satisfy. For example, they can chose the TLA+ (L. Lamport, 1994) model of the single-
decree Paxos algorithm. It they prove their implementation of Paxos in this logic, the
soundness theorem will certify that their Paxos implementation is simulated by the
abstract model.

Another use of this logic is to prove that a concurrent program terminates assuming
the thread-scheduler is fair. This is done by relating the program with an STS whose
states are ordered by a well-founded order, and which satisfy a property expressing
that enough transitions of the STS make the state decrease.

0.4 Organization of the thesis

This thesis is made of two independent parts.The first part, which reports on joint works
with Paul-André Melliès (Melliès and Léo Stefanesco, 2017; Melliès and Léo Stefanesco,
2018; Melliès and Léo Stefanesco, 2020), takes a new approach to the soundness of
concurrent separation logic. Both the programs and the derivation trees of CSL are

26

Introduction

given a truly concurrent interpretation using asynchronous graphs. These semantics
are related by a forgetful map between them, and our version of the soundness theorem
is expressed as topological properties of this map.

• Chapter 1 is a brief survey of previous proofs of soundness for CSL,

• Chapter 2 introduces our approach to the problem and defines the basic notions
which we will use,

• Chapter 3 presents our asynchronous model of CSL and our proof of soundness.

Part II presents a joint work with Lars Birkedal, Léon Gondelman, Abel Nieto, Simon
OddershedeGregersen andAmin Timanywhichwe described briefly just above (Timany,
Gregersen, et al., 2021).

• Chapter 4 introduces Iris,

• Chapter 5 defines the new Hoare triples, its soundness theorem and examples
relating programs with STSs describing their correctness,

• Chapter 6 develops a logic to prove the fair termination of shared memory
concurrent programs based on the logic described in the previous chapter. This is
the personal work of the author.

Links to definitions

This thesis is using the excellent knowledge package developed by Thomas Colcombet.
Definitions are written in bold, as just above, and uses of these notions are shown like
this: tiny. Clicking on it in a PDF viewer goes to the definition, and hovering it may
display the definition.

27

Part I

Asynchronous models of CSL

28

1 Proofs of soundness of CSL

We can distinguish two kinds of proofs of soundness of concurrent separation logic, de-
pending on how the semantics of the programming language is formalized: semantically
using traces or operationally using a small-step semantics.

1.1 Trace semantics of the language

When O’Hearn developped the rules of CSL, he asked Brookes, a specialist in the
semantics of concurrent shared-memory programming languages, to help him prove
the soundness of the logic. We describe here Brookes seminal proof (Brookes, 2004;
Brookes, 2011).

He considers a simple While language with parallel composition, locks and critical
sections. Its semantics is defined using the notion of action, which are of the form

𝜆 ≔ nop ∣ 𝑖 = 𝑣 ∣ 𝑖 ≔ 𝑣 ∣ [ℓ] = 𝑣 ∣ [ℓ] ≔ 𝑣 ∣ acq(𝑟) ∣ rel(𝑟) ∣ try(𝑟) ∣ abort …

An action describes an event in the history of a program, for example, 𝑖 = 𝑣means that
the program read variable 𝑖 and its value was 𝑣, and 𝑖 ≔ 𝑣 means that the program
wrote 𝑣 into the variable 𝑖. The notation [ℓ] denotes the dereferencing of a memory
address ℓ. The last three operations on a lock 𝑟 respectively mean that the program
successfully acquired the lock 𝑟, released it, or unsuccessfully tried to acquire it.

Interpretation of the language Programs are interpreted as sets of traces, finite or
infinite sequences of such actions. But first, we can give a semantics to actions 𝜆 by

giving them effects
𝜆
=⇒ ⊆ State × State. The predicate 𝔰

𝜆
=⇒ 𝔰′ between states 𝔰 and 𝔰′

holds when the action 𝜆 is compatible with the initial state 𝔰 and final state 𝔰′. For
example, the action 𝑖 = 𝑣 of reading the value 𝑣 from the variable 𝑖 has the following
effect:

𝔰
𝑖=𝑣
==⇒ 𝔰 if the state 𝔰 maps 𝑖 to 𝑣

𝔰
𝑖=𝑣
==⇒ if the variable 𝑖 is not in the state 𝔰

29

1 Proofs of soundness of CSL

where ∈ State is a special state denoting an error; here reading from an undefined
variable. Note that, if 𝔰 maps 𝑖 to another value that 𝑣, then there is no 𝔰′ such that
𝔰

𝑖=𝑣
==⇒ 𝔰′. We say that the action 𝜆 is enabled when there exists a state 𝔰′ such that

𝔰
𝜆
=⇒ 𝔰′.

A trace 𝜆 is called sequential (or sequentially consistent) when it is enabled, in that
there exist 𝔰0, … , 𝔰|�⃗�| such that

𝔰0
𝜆1
=⇒ 𝔰1

𝜆2
=⇒ 𝔰2

𝜆3
=⇒ ⋯

Such a trace describes an execution which makes sense without interference from the
environment.

As expected for a denotational semantics, the operators used to compose programs are
reflected as operations in the semantic domain. The interpretation of the sequential
fragment of the language is standard. For the parallel product, given two sets 𝑇1 and 𝑇2
of traces, 𝑇1 ∥ 𝑇2 is defined as the union of the interleavings of 𝑡1 ∈ 𝑇1 and of 𝑡2 ∈ 𝑇2.
The set of interleavings of two traces is defined coinductively on their structure, taking
into account the set of locks which is held by the program and its environment. The
definition is setup in such a way that 𝑡1 ∥ 𝑡2 contains the singleton trace abort if it
contains a data race.

With these operations, we interpret the commands as sets of traces and the expressions
as sets of pairs (𝑡, 𝑣) of a trace 𝑡 and a resulting value 𝑣 in the standard way. Of course,
the traces in the semantics of a program are not necessarily sequentially consistent; for
example the expression 𝑖 + 𝑖 which reads the variable 𝑖 twice and adds the two values
is interpreted as the following set of pairs of a trace and a resulting value:

{ ((𝑖 = 𝑣) (𝑖 = 𝑤) , 𝑣 + 𝑤) ∣ 𝑣 and 𝑤 values }

Interpretation of the logic The Hoare triples Γ ⊢ {𝑃} 𝐶 {𝑄} which are considered
by Brookes (2004) have contexts of the form

𝑟1(𝑋1) ∶ 𝐽1, … , 𝑟𝑛(𝑋𝑛) ∶ 𝐽𝑛

where the𝑋𝑖 are sets of program variables which are said to be owned by the invariant.

The soundness theorem is formalized by defining the notion of valid Hoare triple.
Informally, if a Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄} is valid, then all the traces of the program 𝐶
which start from a state which satisfy the precondition 𝑃 and the invariants in Γ are
safe and their final states satisfy the postcondition 𝑄 and the invariants still hold.

30

1 Proofs of soundness of CSL

This definition is too weak to be an inductive invariant because it does not take into
account the interference from the environment, which is necessary to prove that the
parallel product preserves validity.

Brookes’ solution is to define a local notion of reduction, which he calls the local
enabling relation

(𝑠, ℎ, 𝐴)
𝜆
−−→
Γ
(𝑠′, ℎ′, 𝐴′)

where 𝑠 is the stack, ℎ is the heap, and 𝐴 is the set of locks held by the “current” thread.
For actions which do not involve locks, local enabling essentially coincides with the
global enabling we have talked about above, except that the use of variables which
appear in invariants is forbidden: For instance, the read of a variable 𝑖

(𝑠, ℎ, 𝐴)
𝑖≔𝑣
−−−−→

Γ

is invalid if 𝑖 ∉ dom(𝑠), as before, or if 𝑖 is free in an invariant 𝐽𝑘 which is not owned,
in that 𝑟𝑘 ∉ 𝐴.

The logical nature of the local enabling relation is clearer when looking, for example, at
the rules for the action acq(𝑟):

(𝑠, ℎ, 𝐴)
acq(𝑟)

−−−−−−→
Γ,𝑟(𝑋)∶𝐽

(𝑠 ⊎ 𝑠𝑟, ℎ ⊎ ℎ𝑟, 𝐴 ⊎ {𝑟})

for any stack 𝑠𝑟 and heap ℎ𝑟 such that dom(𝑠𝑟) = 𝑋 and (𝑠 ⊎ 𝑠𝑟, ℎ𝑟) ⊨ 𝐽. When the
program acquires a lock, its memory state can be adjoined with any memory state
satisfying the invariant associated with the lock 𝑟.

Remark 1.1.1. This proof technique puts a requirement of the semantics of the pro-
gramming language we consider: they must be insensitive to any extension of the
memory:

𝔰 ⊎ 𝔰𝐹
𝜆
−−→ 𝔰′ ⟹ ∃𝔰″, 𝔰′ = 𝔰″ ⊎ 𝔰𝐹 ∧ 𝔰

𝜆
−−→ 𝔰″

A common counter-example is semantics with a deterministic allocation strategy, such
as malloc allocating the least free address. A naive notion of validity would make the
following Hoare triple valid

Γ ⊢ {emp} malloc(𝐸) {0 ↦ 𝐸} (1.1)

because we assert that in the precondition that the initial state is empty, and therefore
that address 0 is the least free address. This would, however, contradict the Frame-rule
of separation logic, since it would let us prove the following rule:

Γ ⊢ {𝑅} malloc(𝐸) {𝑅 ∗ 0 ↦ 𝐸}

31

1 Proofs of soundness of CSL

which is is clearly unsound (take 𝑅 ≔ 0 ↦ 88 for example). The technique used by
Brookes (2004) ensures the validity of the Frame rule by putting conditions on the
semantics of the programming language. Another more flexible proof, for example the
proof by Vafeiadis (2011) which we will describe in Section 1.2, bakes in the frame into
the definition of validity, making rule (1.1) invalid.

The core of the proof are lemmas relating local traces of a command 𝐶 with local traces
of its subcommands 𝐶𝑖. For example, for the parallel product:

Theorem 1.1.2 (Thm 21 in (Brookes, 2004)). Let 𝐶1 and 𝐶2 be two commands and Γ a
CSL context, and suppose that every variable which is free in one and written to in the
other is owned by some invariant in Γ. Consider a trace 𝛼1 ∈ J𝐶1K and a trace 𝛼2 ∈ J𝐶2K.
Given a trace 𝛼 ∈ 𝛼1 ∥ 𝛼2 in their parallel product and ℎ = ℎ1 ⊎ ℎ2:

1. If (𝑠, ℎ, ∅)
𝛼
−→
Γ
 then (𝑠 ⧵ wr(𝛼2), ℎ1, ∅)

𝛼1
−−→
Γ

 or (𝑠 ⧵ wr(𝛼1), ℎ2, ∅)
𝛼2
−−→
Γ

 .

2. If (𝑠, ℎ, ∅)
𝛼
−→
Γ
(𝑠′, ℎ′, ∅) then either:

• (𝑠 ⧵ wr(𝛼2), ℎ1, ∅)
𝛼1
−−→
Γ

 , or

• (𝑠 ⧵ wr(𝛼1), ℎ2, ∅)
𝛼2
−−→
Γ

 , or

• there exists ℎ′1 ⊎ ℎ
′
2 = ℎ

′ such that

– (𝑠 ⧵ wr(𝛼2), ℎ1, ∅)
𝛼1
−−→
Γ
(𝑠′ ⧵ wr(𝛼2), ℎ′1, ∅), and

– (𝑠 ⧵ wr(𝛼1), ℎ2, ∅)
𝛼2
−−→
Γ
(𝑠′ ⧵ wr(𝛼1), ℎ′2, ∅).

If we assume that 𝛼1 and 𝛼2 do not crash, then this imply that neither do the inter-
leavings. This result is proved using a difficult induction on the length of the traces 𝛼1
and 𝛼2, where the statement is generalized to an arbitrary set 𝐴 of locked resources
instead of ∅.

Notice also that, because the separation of which program variables are used in which
part of the program is handled using side rules, the statements of the lemmas as the
one above need to pose subtle restrictions. This was solved in subsequent works with
the variables as resources discipline of Bornat, Calcagno, and Yang (2006) (see the
next chapter) and later by considering languages with immutable variables which can
contain mutable memory-cells, in the tradition of ML.

We can now state the definition of validity of a Hoare triple:

32

1 Proofs of soundness of CSL

Definition 1.1.3. A Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄} is valid if, for any trace 𝛼 ∈ J𝐶K,
for any stacks 𝑠 whose domain contains all program variables which appear in 𝐶 and
in Γ but are not owned by an invariant in Γ, and for any heap ℎ, if (𝑠, ℎ, ∅) ⊨ 𝑃 and
(𝑠, ℎ, ∅)

𝛼
−−−→ 𝔰′, then 𝔰′ ⊨ 𝑄. In particular, 𝔰′ is not the error state since it satisfies

some formula.

As expected, the soundness theorem states:

Theorem 1.1.4 (Soundness). Every provable Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄} is valid.

It is proved by induction on the derivation tree of the Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}, using
decomposition results such as Theorem 1.1.2.

Finally, all that remains to be done is to link validity of a Hoare triple, which is a
statement about the local enabling relation of the program, to its global semantics, as
mentioned in Remark 1.1.1.

1.1.1 Other proofs based on trace semantics

In their work on Subjective Concurrent Separation Logic, Ley-Wild and Nanevski (2013)
interpret programs as sets of action trees, which one can see as more interactive variants
of traces. An instead of having one trace for, say, each value return by a load to memory,
the tree contains a branching with one subtree for each value. Unlike in Brookes’s proof,
action trees are finite approximations of the program, and programs are interpreted as
sets of such trees, which form a complete lattice to interpret recursion. A more recent
research program which interprets program as (possibly infinite) interactive trees in
the Coq proof assistant is the work on Interaction trees by Xia et al. (2020) and Zakowski
et al. (2020).

1.2 Operational semantics of the language

In this section, we explain how to prove the soundness of concurrent separation logic
which is based on a small step operational semantics of the language, instead of a
denotational semantics as in Brookes original proof which we described in the previous
section. This section is based on the proof of soundness by Vafeiadis (2011). There are
other proofs based on operational semantics, such as the Views framework by Dinsdale-
Young et al. (2013), the TaDa logic by da Rocha Pinto, Dinsdale-Young, and Gardner
(2014) or, more recently, the Iris framework, which we will discuss in the second part
of this thesis.

33

1 Proofs of soundness of CSL

𝔰 ⊨ 𝑄

safe(skip, 𝔰, 𝑄)

(𝐶, 𝔰) ↛ ∀𝐶′, 𝔰′, (𝐶, 𝔰) → (𝐶′, 𝔰′) ⇒ safe(𝐶′, 𝔰′, 𝑄)

safe(𝐶, 𝔰, 𝑄)

Figure 1.1: Semantic validity for Hoare logic

Vafeiadis expresses the semantics of the programming language under consideration,
a simple While language with a parallel product and locks as small-step semantics:
a state transition system whose states are pairs (𝐶, 𝔰) of a program 𝐶 and a machine
state 𝔰 which contains the state of the memory and of the locks. A transition

(𝐶, 𝔰) −−−−−−→ (𝐶′, 𝔰′)

expresses that, in machine state 𝔰, the program 𝐶 reduces to 𝐶′ and updates the ma-
chine state to 𝔰′. The definition is the expected one for a concurrent shared memory
programming language, with the following two rules for the parallel product:

(𝐶1, 𝔰) −−−−→ (𝐶
′
1, 𝔰

′)

(𝐶1 ∥ 𝐶2, 𝔰) −−−−→ (𝐶
′
1 ∥ 𝐶2, 𝔰

′)

(𝐶2, 𝔰) −−−−→ (𝐶
′
2, 𝔰

′)

(𝐶1 ∥ 𝐶2, 𝔰) −−−−→ (𝐶1 ∥ 𝐶
′
2, 𝔰

′)

Note that this is a slight simplification of the setting in the proof of Vafeiadis (2011) in
the way we deal with locks.

Safety of a Hoare triple Before we explain the validity of a concurrent separation
logic Hoare triple in the setting of Vafeiadis (2011), we go back to the simpler case
of Hoare logic for (weak correctness of) sequential programs. In that setting, one
can express the semantic validity of a Hoare triple ⊢ {𝑃} 𝐶 {𝑄} at machine state 𝔰 as
safe(𝐶, 𝔰, 𝑄), where the predicate safe is defined in Figure 1.1.The predicate safe(𝐶, 𝔰, 𝑄)
explores the tree of all computation which start in state (𝐶, 𝔰) and check that no path
leads to the error state , and that all leaves satisfy the postcondition 𝑄. We can then
define the validity of a Hoare triple as follows:

⊢ {𝑃} 𝐶 {𝑄} ≔ ∀𝔰, 𝔰 ⊨ 𝑃 ⟹ safe(𝐶, 𝔰, 𝑄).

The predicate of Figure 1.1 needs to be adapted to the setting of concurrent separation
logic: First, separation logic predicates 𝑃 (in linear variants such as the ones we consider
here) hold for “small” memory states; therefore we would have, for example, to replace
𝔰 ⊨ 𝑃 by ∃𝔰′, 𝔰′ ⊆ 𝔰 ∧ 𝔰′ ⊨ 𝑃. More fundamentally, the predicate safe cannot handle an
environment modifying the state, and therefore does not validate the inference rule for
the parallel product.

34

1 Proofs of soundness of CSL

𝔰 ⊨ 𝑄

safe(skip, 𝔰, Γ, 𝑄)

∀𝔰 ⊎ 𝔰𝐹, (𝐶, 𝔰 ⊎ 𝔰
′) ↛

∀𝔰 ⊎ 𝔰Γ ⊎ 𝔰𝐹, 𝔰Γ ⊨ ⊛
𝑟∈unlocked(𝔰)

Γ(𝑟) ⇒

∀𝐶′, 𝔰′, (𝐶, 𝔰 ⊎ 𝔰Γ ⊎ 𝔰𝐹) → (𝐶
′, 𝔰′) ⇒

∃𝔰″ ⊎ 𝔰′Γ ⊎ 𝔰𝐹 = 𝔰
′ ∧ 𝔰′Γ ⊨ ⊛

𝑟∈unlocked(𝔰′)

Γ(𝑟) ∧ safe(𝐶′, 𝔰″, 𝑄)

safe(𝐶, 𝔰, Γ, 𝑄)

Figure 1.2: Semantic validity for concurrent separation logic

Vafeiadis’ solution is to use the predicate defined coinductively1 in Figure 1.2. The
predicate safe(𝐶, 𝔰, Γ, 𝑄) is defined as a predicate over the the executions of 𝐶. Unlike
its counterpart for Hoare logic, at each step, we consider what happens if 𝐶 is executed
in a state which contains 𝔰 and which contains memory which satisfies the invariants
of the unlocked resources. One important thing to note and to contrast with the notion
of local enabling in the proof of Brookes is that we always consider the reduction of
the program in the global state of the memory, which is decomposed as 𝔰 ⊎ 𝔰Γ ⊎ 𝔰𝐹:
the memory 𝔰 which is owned by the program, 𝔰Γ which is being protected by the
locks, and 𝔰𝐹 which is owned by the environment, which we also call the frame. The
reason this definition is adequate for the concurrent setting is that, at each step, the
pieces of state 𝔰Γ and 𝔰𝐹 are universally quantified. As long as the environment does
not modify 𝔰 and preserves the invariants, the program 𝐶 will be safe, and will preserve
the memory of the environment and the invariants. Therefore, one can show that,
assuming both safe(𝐶1, 𝔰1, Γ, 𝑄1) and safe(𝐶2, 𝔰2, Γ, 𝑄2) hold, with 𝔰1⊎𝔰2, then so does
safe(𝐶1 ∥ 𝐶2, 𝔰1 ⊎ 𝔰2, Γ, 𝑄1 ∗ 𝑄2).

Finally, Vafeiadis proves the soundness theorem:

Theorem 1.2.1. If Γ ⊢ {𝑃} 𝐶 {𝑄} is provable, and if 𝔰 ⊨ 𝑃, then safe(𝐶, 𝔰, Γ, 𝑄).

To prove that the absence of data-races in well-specified programs, similarly to Brookes’
1The paper and its associated mechanizations use the corresponding step-indexed predicate safe𝑛; and
we can define safe ≔ ⋀𝑛 safe𝑛 to recover the coinductive predicate.

35

1 Proofs of soundness of CSL

proof before, the following rule RaceDetect which crashes the program when there is
a data-race:

(accesses(𝐶1, 𝔰) ∩writes(𝐶2, 𝔰)) ∪ (accesses(𝐶2, 𝔰) ∩writes(𝐶1, 𝔰)) = ∅
(𝐶1 ∥ 𝐶2, 𝔰) −−−−→

which states that if 𝐶1 is about to access a variable or a location which 𝐶2 is about to
write, or vice-versa, then the program crashes. Since the safe predicate implies safety of
executions of closed programs without interference from the environment, this implies
the absence of data-race.

1.2.1 Step-indexed models of CSL

There is a line of research (Svendsen and Lars Birkedal, 2014; Dodds et al., 2016) which
uses a step-indexed type theory to define the validity of a Hoare triple. This line of
research developed into the Iris framework (Jung, Swasey, et al., 2015; Jung, Robbert
Krebbers, Lars Birkedal, et al., 2016; Robbert Krebbers, Jung, et al., 2017; Jung, Robbert
Krebbers, Jourdan, et al., 2018).

The proof of soundness of the Iris separation logic proceeds by defining a weakest
precondition similar to safe expressed in the Iris base logic, which is a modal logic
with guarded recursion and a separating conjunction. Instead of syntactic inference
rules, the user of the logic is directly manipulating the semantic predicate, with lemmas
which roughly correspond to the usual inference rules of the logic. We give a more
complete description of Iris in Chapter 4.

One thing to note here is that the “generic” notion of Hoare triple of Iris does not
guarantee data-race freedom, or rather, every memory access is considered atomic. One
can recover data-race freedom by instrumenting the semantics: For example, in the
semantics of 𝜆rust, in the RustBelt development by Jung, Jourdan, et al. (2017), each
memory cell is associated with what amounts to a reader-writer lock which crashes the
program if two threads access and write the same memory location concurrently.

1.3 Other proofs soundness of CSL

1.3.1 Syntactic proofs

There are many proofs of soundness based on an operational semantics of the pro-
gramming language and which are modeled after the familiar technique of progress

36

1 Proofs of soundness of CSL

and preservation proofs of safety of type systems. The idea is to see a (derivation tree
of) a Hoare triple as a typing derivation and to prove two lemmas: First, a version of
progress stating that a well-specified program does not immediately crash in a state
which satisfies the precondition of the Hoare triple.

Lemma 1.3.1. Given a Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}, and a machine state 𝔰 ⊨ 𝑃, the next
step of reduction of 𝐶 are safe:

(𝐶, 𝔰) ./

Second, one also proves a version of preservation, which states that a well-specified
program necessarily reduces to a well-specified program.

Lemma 1.3.2. Given a Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}, and a machine state 𝔰 ⊨ 𝑃, for any
possible reduction

(𝐶, 𝔰) (𝐶′, 𝔰′)

there exists a predicate 𝑃′ of CSL such that 𝔰′ ⊨ 𝑃′ and a derivable Hoare triple Γ ⊢
{𝑃′} 𝐶′ {𝑄}.

The safety of well specified programs and the validity of the postcondition at final states
are easy consequences of the two preceding lemmas.

This proof techniques have been used by many authors, for example François Pottier
(2013) and Balabonski, François Pottier, and Protzenko (2014) in works which prove the
type soundness of type systems which use features borrowed from separation logic.
Gotsman et al. (2007a) use a predicate transformer semantics to prove the soundness of
their variant of concurrent separation logic.

1.3.2 Other

There are many proofs of soundness of concurrent separation logic. We cite a few
notable ones here, but we do not claim any exhaustiveness. Hayman and Winskel
(2008) have given a proof of soundness of CSL using a truly concurrent semantics of
the underlying programming language using Petri nets. Unlike the other proofs we
have cited here, data-races are not detecting by crashing or clocking the program, but
instead, data races are detected using the notion of independence of Petri nets, which
state that two transitions have disjoint neighborhoods.

37

1 Proofs of soundness of CSL

1.4 Conclusion

To our knowledge, most proofs deduce data race-freedom from the safety of programs
where the semantics crashes in case of data race. Moreover, in most proofs of correctness
of concurrent separation logics, the meaning of a Hoare triple {𝑃} 𝐶 {𝑄} is a property
of the program.

Instead, our proof of soundness interprets the derivation tree 𝜋 of {𝑃} 𝐶 {𝑄} itself as
an interactive semantics of a program operating with a refined notion of state which
tracks the owner of each memory cell.

The asynchronous soundness theorem which we will describe in the next chapter
explains the absence of data race in valid executions by the fact that any concurrent
access in the semantics of the program 𝐶 corresponds to an independent access in the
semantics of the derivation tree 𝜋.

38

2 Asynchronous soundness for CSL

2.1 Hoare logic as refinement systems

The starting point of our semantics of concurrent separation logic (CSL) is to see such
a program logic as a refinement type system: the program 𝐶, which we see a being of
type State → State, is refined by the Hoare triples Γ ⊢ {𝑃} 𝐶 {𝑄} it satisfies, which
we could write Γ ⊢ 𝐶 ∶ {𝑃} → {𝑄}. Indeed, if we consider the input and the output
of the program to be the initial and the final states of its executions, the predicates 𝑃
and 𝑄 describe subsets of the input and output respectively. This is characteristic of
type refinement systems.

Melliès and Zeilberger (2015) have argued that the semantics of a type refinement
system should be given as a functor

ℒ ∶ 𝒟 ⟶ 𝒞

from a category 𝐷 where the refined programs are interpreted to a category 𝒞 where
the programs are interpreted. In the case of a Hoare logic for example, the functor ℒ
corresponds to the syntactic “forgetful” map

⋅⋅⋅⋅⋅
𝜋

Γ ⊢ {𝑃} 𝐶 {𝑄} ⟼ 𝐶

projecting the program 𝐶 out of the proof tree 𝜋 of the Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}.

Our model will follow this guiding idea. In particular, the proofs 𝜋 of the Hoare triples
Γ ⊢ {𝑃}𝐶{𝑄}will be given their own semantic interpretations J𝜋K. The programs 𝐶will
also be given a semantics J𝐶K, and the two will be related through a semantic map

ℒ ∶ J𝜋K ⟶ J𝐶K.

The existence of the map ℒ suggests that the interpretations of the proofs and of the
programs should be similar in nature so that they can easily be compared.

This chapter explains the rationale behind the choices we have made in the construction
of our model of concurrent separation logic, and in particular how we deal with data
races.

39

2 Asynchronous soundness for CSL

2.2 State transition systems

Perhaps the simplest way to give a semantics to a sequential imperative program is as
a state transformer : a program 𝐶 is seen as a function

J𝐶K ∶ State ⟶ State+ ⊥

which takes as input an initial memory state and outputs either the final state of the
program, when the program terminates on that input, or ⊥ if the program does not
halt.

In the semantics of state transformers, the following two programs have the exact same
semantics:

X := 0;
Y := 0;

X := 4;
Y := 0;
X := Y;

In

some context, too much information is lost. When he gave his object based semantics of
Idealized Algol, a higher-order sequential language, Reddy (1996) argued the information
missing in this semantics is the changing of the state, seen as a first-class phenomenon
and not simply a piece of information which can (partially) be recovered as the difference
between the initial and the final state the program.

Another, more obvious, obstacle appears when adding concurrency to the language:
the environment is able to observe the transient state of the program on the right above
where the variable X is equal to the value 4. For example, the context (–|| Z := X) is
able to distinguish between the two programs by reading X during the time in which it
holds the value 4.

To capture the changes induced by a program 𝐶, we interpret it as a state transition sys-
tems J𝐶K: a graph where each intermediate state the program goes though is represented
by a node, and each action of the program is represented as an edge.

It is important, if not so common, to distinguish between the internal and the external
state of the program. The external state is characterized by the fact that it is observable
from the context, and therefore it can be used for synchronization. In the case of the
simple imperative and concurrent language we consider, it consists essentially on the
state of the memory, since it is what is shared between the program and its environment.
In a typed language, the type of the program would also be part of its external state;
to a certain extent, this can be seen in how we interpret proofs of CSL, which we can
see as programs typed using a refinement type system. The internal state, on the other
hand, corresponds in our case to the position of the program the control flow, which
would correspond to the program counter in a concrete machine.

40

2 Asynchronous soundness for CSL

To enforce this discipline, the state transition system J𝐶K is labeled explicitly using a
map 𝜆J𝐶K ∶ J𝐶K → � which associate an external state in � to each node of the state
transition system J𝐶K. We explain the nature of � in the sequel. The nodes of J𝐶K are
left “opaque”: all we know about them is their image under 𝜆J𝐶K.

2.3 An imperative shared-memory concurrent
language

The language we consider is the same as the one considered in the early concurrent
separation logic papers, for example in the proofs of soundness of Brookes (2004) in
Vafeiadis (2011).

The grammar of this language is the following. It has Boolean expressions

𝐵 ⩴ true ∣ false ∣ 𝐵 ∧ 𝐵′ ∣ 𝐵 ∨ 𝐵′ ∣ ¬𝐵 ∣ 𝐸 = 𝐸′

arithmetic expressions

𝐸 ⩴ 0 ∣ 1 ∣ … ∣ 𝑥 ∣ 𝐸 + 𝐸′ ∣ 𝐸 ∗ 𝐸′

and commands

𝐶 ⩴ 𝑥 ≔ 𝐸 ∣ 𝑥 ≔ [𝐸] ∣ [𝐸] ≔ 𝐸′ ∣ skip ∣ dispose(𝐸) ∣ 𝑥 ≔ malloc(𝐸)

∣ 𝐶; 𝐶′ ∣ 𝐶1 ∥ 𝐶2 ∣ resource 𝑟 do 𝐶 ∣ with 𝑟 do 𝐶

∣ if 𝐵 then 𝐶1 else 𝐶2 ∣ while 𝐵 do 𝐶

where 𝑥 ∈ Var are program (stack) variables, and the notation [𝐸] dereferences the
address denoted by the arithmetic expression𝐸.The action of the construction with𝑟do𝐶
is to acquire the lock 𝑟, execute the command 𝐶, and then release the lock 𝑟. Locks are
introduced with the construction resource 𝑟 do 𝐶: the lock 𝑟 is only available inside of
the command 𝐶.

Let us define the external states of our state transition systems. We decompose the
memory in two parts: the stack 𝑠 ∶ Var ⇀fin Val which is a partial finite map from
the set Var of variables to the set Val of values, and the heap ℎ ∶ Loc ⇀fin Val,
which associates a value to each allocated location ℓ ∈ Loc. We identify the set Loc of
locations with the natural numbers ℕ, and we assume that Loc ⊆ Val so that values
can serve as addresses in the heap. A memory state 𝜇 is a pair (𝑠, ℎ) of a stack 𝑠 and
of a heap ℎ.

There is one more piece of state which is needed: the locks. Given a set 𝔏 ⊆ Locks of
locks valid in the current context, the lock state keeps track of the set 𝐿 ⊆ 𝔏 of locks

41

2 Asynchronous soundness for CSL

𝐸(𝜇) = 𝑣

(𝜇, 𝐿) (𝜇[𝑥 ↦ 𝑣], 𝐿)
𝑥≔𝐸

𝐸(𝜇) not defined

(𝜇, 𝐿) 𝑥≔𝐸

𝐸(𝜇) = ℓ ℓ ∈ dom(𝜇) 𝐸′(𝜇) = 𝑣

(𝜇, 𝐿) (𝜇[ℓ ≔ 𝑣], 𝐿)
[𝐸]≔𝐸′

𝑟 ∉ 𝐿

(𝜇, 𝐿) (𝜇, 𝐿 ⊎ {𝑟})
𝑃(𝑟)

(𝜇, 𝐿 ⊎ {𝑟}) (𝜇, 𝐿)
𝑉(𝑟)

𝐸(𝜇) = 𝑣 ℓ ∉ dom(𝜇)

(𝜇, 𝐿 ⊎ {𝑟}) (𝜇[𝑥 ≔ ℓ, ℓ ≔ 𝑣], 𝐿)
alloc(𝐸)

Figure 2.1: Semantics of machine instructions

which are being held (locked). Finally, a machine state 𝔰 ∈ State(𝔏) is a pair (𝜇, 𝐿) of
a memory state 𝜇 and of a set of a lock state 𝐿.

We label each transition in the state transition system J𝐶K with a label describing
the external action the transition corresponds to. There is a strong correspondance
between the external actions of the code and the “leaf” commands. The transitions
of J𝐶K are labeled with the following set Instr(𝔏) of actions, which we call machine
instructions𝑚:

𝑥 ≔ 𝐸 ∣ 𝑥 ≔ [𝐸] ∣ [𝐸] ≔ 𝐸′ ∣ nop

𝑥 ≔ alloc(𝐸, ℓ) ∣ dispose(𝐸) ∣ 𝑃(𝑟) ∣ 𝑉(𝑟)

The first three correspond to reading and writing the memory, while nop does nothing,
𝑥 ≔ alloc(𝐸, ℓ) corresponds to allocating a new memory cell at address ℓ initializing
it with 𝐸, dispose(𝐸) frees the address 𝐸. The last two machine instructions 𝑃(𝑟)
and 𝑉(𝑟) respectively acquire and release the lock 𝑟 ∈ 𝔏. The semantics of these
instructions are expressed by the transition system�S betweenmachine states described
in Figure 2.1. The set of nodes of �S is the set State+ of mahchine states adjoined
with an error state . Its edges ⋅ ⋅

𝑚 are labeled with machine instructions𝑚.

Remark 2.3.1. The symbol � was chosen by Melliès (2019) for its similarity with boat
anchors. It was introduced by Jeremy Gibbons as a symbol for tree constructors, as it is
inspired by , the Chinese ideogram for tree. It can be pronounced “anchor”, “template”
or “moo”.

A state transition system for interpreting programs can be defined as a pair (𝐺, 𝜆 ∶ 𝐺 →
�) of a graph 𝐺 and a graph homomorphism 𝜆. Explicitly, each node 𝑥 of the graph 𝐺

42

2 Asynchronous soundness for CSL

is labeled with a machine state 𝜆(𝑥) ∈ State or the error state . Each edge in 𝐺, seen
as a transition,

𝑥 −−−−−−→ 𝑦

is labeled with a transition of the state transition system �S defined in Figure 2.1 of
one of the two forms

𝔰 𝔰′
𝑚

𝔰 𝑚

depending on whether executing the machine instruction𝑚 in machine state 𝔰 is safe
(left) or produces an error (right). Since 𝜆 is a graph homomorphism, 𝜆(𝑥) = 𝔰 and,
respectively, 𝜆(𝑦) = 𝔰′ or 𝜆(𝑦) = . A quick inspection of the definition of �S shows
that the error state is terminal, in that there are no edges outgoing from ; hence the
description of the image under 𝜆 of the edge 𝑥 ⟶ 𝑦 above is exhaustive. We sometimes
write the situations above as

𝔰
𝑚

−−−−−→ 𝔰′ 𝔰
𝑚

−−−−−→

always keeping in mind that 𝔰, 𝔰′ and are merely labels attached to the (unnamed)
nodes of the graph 𝐺.

2.4 Concurrent transition systems

The transition systems we have described above are inadequate to interpret shared
memory programs for two reasons: First, the treatment of data-races is impossible
because the semantics of a program which we have sketched so far does not track
which pairs of instructions are executed in parallel. Second, the semantics of programs
are not stable under an environment which is executing concurrently with the program,
this precludes a compositional definition of the parallel product𝐶1 ∥ 𝐶2 of two programs.
To handle the first issue, we switch from using graphs to using asynchronous graphs for
our transition systems and our machine models. For the second, we consider polarized
transition systems which contain both transitions of the program and transitions of the
environments.

2.4.1 Asynchronous graphs

To solve these problems without abandoning the idea of using state transition systems
based on graphs, we use asynchronous graphs, which are a notion of graphs with
2-dimensional information.

43

2 Asynchronous soundness for CSL

Definition 2.4.1. A graph 𝐺 = (𝑉, 𝐸, 𝜕−, 𝜕+) consists in a set 𝑉 of vertices, or nodes,
a set 𝐸 of edges, and two maps 𝜕−, 𝜕+ ∶ 𝐸 → 𝑉 assigning a source and a target vertex
to each edge, respectively.

Given a graph 𝐺, a square in 𝐺 is a pair of paths of length 2 in 𝐺 with a common source
vertex and a common target vertex.

An asynchronous graph 𝒢 = (𝐺, ⋄) is a graph𝐺 equippedwith a tuple ⋄ = (𝑇, 𝜕⋄, 𝜎) of
a set 𝑇, the elements of which we call permutation tiles, a function 𝜕⋄ from the set 𝑇 to
the set of squares of the graph𝐺, and an endofunction 𝜎 on 𝑇 such that, if 𝜕⋄(𝑡) = (𝑓, 𝑔),
then 𝜕⋄(𝜎(𝑡)) = (𝑔, 𝑓). A permutation tile mapped to a square (𝑢 ⋅ 𝑣′, 𝑣 ⋅ 𝑢′), where
𝑢, 𝑢′, 𝑣, 𝑣′ are edges of the graph 𝐺 which form a square

u

v

v
,

u
,

is depicted as a 2-dimensional tile sitting on that square:

u

v

v
,

u
,

A square on which there are no tiles is called a hole. We write 𝑇 ∶ 𝑝 ∼ 𝑞 to express that
𝑇 is a tile which sits between the two paths 𝑝 and 𝑞 of length 2.

The intuition is that a tile such as the one depicted above witnesses that the transitions
𝑢 and 𝑣 are independent. The transitions 𝑢′ and 𝑣′ should be seen as being the same,
respectively, as 𝑢 and 𝑣, but executed from another state. In particular, the fact that
they form a square means that the action of 𝑢 and of 𝑣 commute.

A morphism ℱ between asynchronous graphs 𝒢 = (𝐺, ⋄𝐺) andℋ = (𝐻, ⋄𝐻) is called
an asynchronous morphism. It is a pair ℱ = (ℱ𝐺, ℱ⋄) of a graph homomorphism ℱ𝐺 ∶

𝐺 → 𝐺′ and of a map ℱ⋄ ∶ 𝑇𝐺 → 𝑇𝐻 between their tiles such that it preserves borders:

ℱ𝐺 ∘ 𝜕⋄ = 𝜕⋄ ∘ ℱ⋄, ℱ𝐺 ∘ 𝜎 = 𝜎 ∘ ℱ⋄.

44

2 Asynchronous soundness for CSL

This definition of asynchronous graph, without uniqueness properties on tiles is mo-
tivated by the simplicity of the limits and colimits in the category AsyncGraph of
asynchronous graphs and asynchronous morphisms. This is because the category
AsyncGraph is the category of presheaves over the category presented by the follow-
ing graph:

[0] [1] [2]
𝑡

𝑠

𝑢𝑟

𝑑𝑟

𝑢𝑙

𝑑𝑙

𝜎

and with the equations:

𝑑𝑙 ∘ 𝑠 = 𝑢𝑙 ∘ 𝑠 𝑑𝑙 ∘ 𝑡 = 𝑑𝑟 ∘ 𝑠 𝑑𝑟 ∘ 𝑡 = 𝑢𝑟 ∘ 𝑡 𝑢𝑙 ∘ 𝑡 = 𝑢𝑟 ∘ 𝑠

𝜎 ∘ 𝑑𝑙 = 𝑢𝑙 𝜎 ∘ 𝑢𝑙 = 𝑑𝑙 𝜎 ∘ 𝑑𝑟 = 𝑢𝑟 𝜎 ∘ 𝑢𝑟 = 𝑑𝑟.

As such, both limits and colimits are computed object-wise. We detail below the case of
pullbacks, and consequently of Cartesian products. The pullback of a cospan

𝐴1
𝑓

−−−−−→ 𝐵
𝑔

←−−−−− 𝐴2

of asynchronous graphs is defined as the asynchronous graph 𝐴1×𝐵𝐴2 below. Its nodes
are the pairs (𝑥1, 𝑥2) consisting of a node 𝑥1 in 𝐴1 and of a node 𝑥2 in 𝐴2, such that
𝑓(𝑥1) = 𝑔(𝑥2). Its edges (𝑢1, 𝑢2) ∶ (𝑥1, 𝑥2) → (𝑦1, 𝑦2) are the pairs consisting of an
edge 𝑢1 ∶ 𝑥1 → 𝑦1 in 𝐴1 and of an edge 𝑢2 ∶ 𝑥2 → 𝑦2 in 𝐴2, such that 𝑓(𝑢1) = 𝑔(𝑢2).
In the same way, a tile (𝛼1, 𝛼2) ∶ (𝑢1, 𝑢2)⋅(𝑣′1, 𝑣′2)⋄(𝑣1, 𝑣2)⋅(𝑢′1, 𝑢′2) is a pair consisting
of a tile 𝛼1 ∶ 𝑢1 ⋅𝑣′1⋄𝑣1 ⋅𝑢′1 of the asynchronous graph𝐴1 and of a tile 𝛼2 ∶ 𝑢2 ⋅𝑣′2⋄𝑣2 ⋅𝑢′2
of the asynchronous graph 𝐴2, such that the two tiles 𝑓(𝛼1) and 𝑔(𝛼2) are equal in the
asynchronous graph 𝐵. The Cartesian product 𝐴1 × 𝐴2 of two asynchronous graphs is
obtained by considering the special case when 𝐵 is the terminal asynchronous graph,
with one node, one edge, and one tile. The definition of 𝐴1 × 𝐴2 thus amounts to
forgetting the equality conditions in the definition of the pullback 𝐴1 ×𝐵 𝐴2 above.

2.4.2 Asynchronous machine models

We now add permutation tiles to the machine model �S which we have defined above
to express the behavior of instructions which are executed in parallel with respect
to data-races. We will then define another machine model �L which will contain the
synchronization behavior of the instructions. First, we define the notion of machine
state footprint which we will use to define data races and the permutation tiles in our
machine models.

45

2 Asynchronous soundness for CSL

𝑚 rd wr lk mem
nop ∅ ∅ ∅ ∅

𝑥 ≔ 𝐸 fv(𝐸) {𝑥} ∅ ∅

𝑥 ≔ [𝐸] fv(𝐸) ∪ {𝐸} {𝑥} ∅ ∅

[𝐸] ≔ 𝐸′ fv(𝐸′) {𝐸} ∅ ∅

𝑥 ≔ alloc(𝐸, ℓ) fv(𝐸) {𝑥} ∅ {ℓ}

dispose(𝐸) fv(𝐸) {𝐸} ∅ {𝐸}

𝑃(𝑟) ∅ ∅ {𝑟} ∅

𝑉(𝑟) ∅ ∅ {𝑟} ∅

Table 2.1: Footprint of machine instructions

Data races

We define data races using the notion of footprint of a machine instruction which
summarizes both the part of the memory and the set of locks which is accessed by the
instruction.

Definition 2.4.2. A machine state footprint (with valid locks 𝔏)

𝔭 ∈ ℘(Var+ Loc) × ℘(Var+ Loc) × ℘(𝔏) × ℘(Loc)

contains: 1. rd(𝔭) the set of locations that are read, 2. wr(𝔭) the set of locations that
are written, 3. lk(𝔭) the set of locks that are touched (either acquired or released), and
4. mem(𝔭) the set of locations which are allocated or deallocated.

Given a machine instruction𝑚 and a machine state 𝔰, we define the footprint 𝔭𝔰(𝑚)
of𝑚 executed at 𝔰 in Table 2.1. The set of free program variables of an expression 𝐸 is
denoted by fv(𝐸), and we write 𝐸 for its value seen as a location in Loc when evaluated
in the state 𝔰.

Informally, two instructions executing at the same time define a data race when their
footprints are not independent:

Definition 2.4.3. Two machine state footprints 𝔭1 and 𝔭2 are defined to be indepen-
dent when:

(rd (𝔭2) ∪ wr (𝔭2)) ∩ wr (𝔭1) = ∅ lk(𝔭1) ∩ lk(𝔭2) = ∅
(rd (𝔭1) ∪ wr (𝔭1)) ∩ wr (𝔭2) = ∅ mem(𝔭1) ∩mem(𝔭2) = ∅

46

2 Asynchronous soundness for CSL

It may not be obvious why the last component mem(𝔭) of the footprint is needed. If
two instructions alloc and dispose over the same memory location ℓ are executed,
then there must have been some synchronization to propagate the information that the
location ℓ is free or no longer free. Hence, the two instructions do not run in parallel.
A dedicated component is needed so that the map from the stateful to the stateless
semantics, which is defined bellow, is well defined.

Stateful machine model

We can now complete the definition of the stateful machine model �S ∈ AsyncGraph
by defining its set of tiles. All the tiles will sit on squares of the form

𝔰1 𝔰3

𝔰2

𝔰′𝑠

𝑚1 𝑚2

𝑚2 𝑚1

which represent the two schedules of 𝑚1 and 𝑚2 being executed on two different
threads. For every such square in �S, there is a unique tile

𝔰1 𝔰3

𝔰2

𝔰′𝑠

𝑚1 𝑚2

𝑚2 𝑚1

when 𝔭𝔰1(𝑚1) and 𝔭𝔰1(𝑚2) are independent.

Remark 2.4.4. This condition above does not depend on the state at which are com-
puted the footprints: When the footprints are independent for one of the four states in
the square, they are independent at the other three.

The stateful machine model contains the information of when two instructions executed
in two different threads create a data race. We use a second machine model to encode
the information of when two instructions are unsynchronized when run in two different
threads.

47

2 Asynchronous soundness for CSL

Stateless machine model

We define the stateless machine model �L, which is also parameterized by the set 𝔏
of available locks. Because its purpose is to embody the synchronization behavior
of instructions in the language of asynchronous graphs, it needs to contains “more
squares” than the stateful machine model �S. Indeed, the fact that the actions of two
instructions on the state of the machine commute with each other does not depend on
whether these two instructions synchronize or not.

The solution to this problem is to use a coarser notion of state for the machine model�L:
a lock state

𝐿 ∈ ℘(𝔏) +

only keeps track of the set of locks which are being held in the current state.

The edges of the asynchronous graph �L are of the form

𝐿
𝑚

−−−−−→ 𝐿′

where𝑚 is a lock instruction

𝑚 ⩴ 𝑃(𝑟) ∣ 𝑉(𝑟) ∣ alloc(ℓ) ∣ dispose(ℓ) ∣ nop.

The effect of a lock instruction on a lock state is simple: alloc(ℓ), dispose(ℓ) and nop
act as the identity, and there are transitions

𝐿
𝑃(𝑟)

−−−−−−−→ 𝐿 ⊎ {𝑟} 𝐿 ⊎ {𝑟}
𝑉(𝑟)

−−−−−−−→ 𝐿

Moreover, since lock states do not contain enough information about whether fallible
instructions crash, we add pessimistically the following transitions:

∀𝐿, ∀𝑚, 𝐿
𝑚

−−−−−→

In order to define the tiles of the asynchronous graph �L, we define the notion of
stateless footprint.

Definition 2.4.5. A stateless footprint

𝔭 ∈ ℘(𝔏) × ℘(Loc)

is the data of a set lk(𝔭) of locks, and of a set mem(𝔭) of memory locations. Two such
footprints 𝔭1 and 𝔭2 are independent when

lk(𝔭1) ∩ lk(𝔭2) = ∅ mem(𝔭1) ∩mem(𝔭2) = ∅.

48

2 Asynchronous soundness for CSL

A square

𝐿1 𝐿3

𝐿2

𝐿′𝑠

𝑚1 𝑚2

𝑚2 𝑚1

in the asynchronous graph �L is then associated with a unique tile when the footprints
of𝑚1 and of𝑚2 are independent.

Relationship between the models

The two models are constructed in such a way that there exists an asynchronous
morphism

ℒ� ∶ �S ⟶ �L

defined on nodes by projecting out the lock state out of the machine state

ℒ(𝜇, 𝐿) ≔ 𝐿

and on edges as follows.

(𝜇, 𝐿)
𝑃(𝑟)

−−−−−−−→ (𝜇, 𝐿′) ↦ 𝐿
𝑃(𝑟)

−−−−−−−→ 𝐿′

(𝜇, 𝐿)
𝑉(𝑟)

−−−−−−−→ (𝜇, 𝐿′) ↦ 𝐿
𝑉(𝑟)

−−−−−−−→ 𝐿′

(𝜇, 𝐿)
alloc(𝐸,ℓ)

−−−−−−−−−−→ (𝜇, 𝐿′) ↦ 𝐿
alloc(ℓ)

−−−−−−−−−→ 𝐿′

(𝜇, 𝐿)
dispose(𝐸)

−−−−−−−−−−−→ (𝜇, 𝐿′) ↦ 𝐿
dispose(J𝐸K)(𝜇)

−−−−−−−−−−−−−−→ 𝐿′

(𝜇, 𝐿)
𝑚

−−−−−→ (𝜇′, 𝐿′) ↦ 𝐿
nop

−−−−−−→ 𝐿′

where, in the last case, 𝑚 is any instruction which is not mentioned above. A rapid
inspection of the definitions of the stateful machine model�S and the stateless machine
model �L shows that the map ℒ maps tiles to tiles, and hence defines an asynchronous
morphism.

49

2 Asynchronous soundness for CSL

2.4.3 Transition systems

We can now refine the way we interpret programs which we sketched in Section 2.3.
A state transition system is a pair (𝐺, 𝜆 ∶ 𝐺 → �) of an asynchronous graph and of
an asynchronous morphism 𝜆 ∶ 𝐺 → � from 𝐺 to a machine model �. The machine
model � contains all the information which is intrinsic to the behavior of instructions:
their effect on state, and how pairs of instructions behave when they run in parallel.
The asynchronous graph 𝐺 on the other hand, expresses how and when instructions
are dispatched, adding the constraints of the program to their inherent constraints in
the machine model.

Another way to look at it is that the program adds program-order dependencies to
instructions to the dependencies such as synchronizes-with which are part of the spec-
ification of instructions. The property that the program can only add dependencies
corresponds to the requirement that an asynchronous morphism sends tiles in the
program (intuitively, non-dependent transitions) to tiles in the machine model.

To interpret programs with fine-grained information about their concurrent behavior
using asynchronous graphs, we interpret each program with two different machine
models. As we will see in the next section, the stateful interpretation J𝐶KS and the
stateless interpretation J𝐶KL will be related by a map ℒ, resulting in a commutative
diagram in the category AsyncGraph of the form:

J𝐶KS 𝐺𝑆 �S

J𝐶KL 𝐺𝐿 �L

ℒ =

𝜆𝑆

ℒ ℒ�

𝜆𝐿

(2.1)

To demonstrate why this double interpretation is useful, we describe data-races in this
semantics.

2.4.4 Data-races

Recall that a data-race happens when two instructions are executed in parallel and
touch the same area of memory, with at least an instruction writing. In particular, we
need to know when two instructions are executed in parallel without synchronization.
This corresponds in our semantics to a tile in the asynchronous graph 𝐺𝐿, with the
notations of diagram (2.1) above.

Now, we need to characterize the second half of the definition of a data race, which
says that the two instructions are in conflict. Since this is defined with respect to the

50

2 Asynchronous soundness for CSL

J𝐶KS

J𝐶KL

Figure 2.2: A data race in the interpretation of a program

memory, this is a property of the stateful interpretation 𝜆𝑆 ∶ 𝐺𝑆 → �S. There are two
cases. If the instructions involved in the data-race do not commute, for example 𝑥 ∶= 4
and 𝑥 ∶= 5, then there will be a “fork” mapped under ℒ to the tile in 𝐺𝐿 as depicted
on the left of Figure 2.2. The second case occurs when the two instructions happen to
commute, but still produce a data-race, for example 𝑥 ∶= 1 in parallel with 𝑥 ∶= 1. In
that case there will be a hole, since there a tile in �S only when there is no data-race,
which is mapped to the tile in 𝐺𝐿; this situation is depicted on the right of Figure 2.2.

Because our goal is to prove the absence of data races, we need to prove the negation of
the above: for every tile in 𝐺𝐿 which is part of an execution, there exists a tile in 𝐺𝑆
which is mapped to that tile under the map ℒ ∶ 𝐺𝑆 → 𝐺𝐿. The condition that the
tile is part of an execution is necessary because the stateless semantics J𝐶KL contains
nonsensical executions; the stateless semantics is a tool to for adding local information
to transitions in the stateful semantics J𝐶KS.

More precisely, a set of executions of J𝐶KS is data race-free if, whenever two consecutive
transitions 𝑚1 ⋅ 𝑚2 of some execution are mapped under ℒ to the edge of some tile
(depicted below left), the tile can be lifted along ℒ to a tile whose edge is𝑚1 ⋅𝑚2 (below
right):

J𝐶KS

J𝐶KL

ℒ ⟹

51

2 Asynchronous soundness for CSL

2.4.5 Polarized asynchronous transition systems

Wenow explain how to solve the second problem outlined at the beginning of Section 2.4:
the interpretation of programs should be closed under the action of the environment.
For this, we explicitly add Environment transitions in the machine models and in
the program interpretations so that any possible interference of the environment is
accounted for.

First, we adapt our stateful and stateless machine models to have two copies of each
edge, which we write

𝔰
𝑚∶C

−−−−−−−→ 𝔰′ 𝔰
𝑚∶F

−−−−−−→ 𝔰′

for, respectively, a transition of the Code, and a transition of the Frame (or Environment).
We write �∘•S and �∘•L for the version with two polarities. To make the notation more
explicit about the number of polarities, we write the unpolarized machine models as
�•S and �•L in the sequel instead of notation �S and �L which we have been using until
now.

A transition system is therefore a pair (𝐺, 𝜆) of an asynchronous graph 𝐺 and of an
asynchronous morphism

𝜆 ∶ 𝐺 ⟶ �∘•

Because the transitions with the Frame polarity 𝐹 need to account for every possible
transition by the Environment, there must be “enough” Frame transitions in 𝐺. From
the point of view of the Frame, in any state 𝑥 in 𝐺, the set of transitions available to
the Frame must be the same as the set of transitions available from 𝜆(𝑥) ∈ �∘•. This is
made formal by stating that 𝜆 is an Environment 1-fibration.

Definition 2.4.6. Let 𝑓 ∶ 𝐺 → 𝐺′ be an asynchronous morphism between two asyn-
chronous graphs 𝐺 and 𝐺′. Letℳ be a set of edges in 𝐺′.

The asynchronous morphism 𝑓 is called anℳ-1-fibration if, for all 𝑥 ∈ 𝐺, and for all
edges 𝑒′ ∶ 𝑓(𝑥) → 𝑦′ inℳ, there exists an edge 𝑒 ∶ 𝑥 → 𝑦 in 𝐺 such that 𝑓(𝑦) = 𝑦′
and 𝑓(𝑒) = 𝑒′, as depicted below. When there is a notion of Code or Environment
edges, this defines the notions of Code 1-fibration and Environment 1-fibration.

𝑥

𝑓(𝑥) 𝑦′

𝑓 ⟹

𝑥 𝑦

𝑓(𝑥) 𝑦′

𝑓 𝑓

52

2 Asynchronous soundness for CSL

The asynchronous morphism 𝑓 is called a 2-fibration if, for all paths 𝑝 ∶ 𝑥 ↠ 𝑧 of
length 2 in 𝐺, and for all tiles 𝑇′ ∶ 𝑓(𝑝) ∼ 𝑞′ in 𝐺′, there exists a tile 𝑇 ∶ 𝑝 ∼ 𝑞 in 𝐺
such that 𝑓(𝑞) = 𝑞′ and 𝑓(𝑇) = 𝑓(𝑇′).

𝐺

𝐺′

ℒ ⟹

Such a transition system, which interpret a program 𝐶 can be depicted as follows:

Cout Cin

s′

s

At each state, there are many Environment transitions, depicted in red. The Code
transitions, the Code transitions, make the execution of the program progress. A path
from an initial state on the left to a final state on the right will begin with any number
of Frame transitions, followed by one Code transitions, followed by any number of
Frame transitions, and so on.

We finally have a suitable definition of a transition system.

Definition 2.4.7. A transition system (𝐺, 𝜆, 𝐺in, 𝐺out) over the machine model � ∈

{�S,�L} is the data of:

1. an asynchronous morphism 𝜆 ∶ 𝐺 → �∘•, which is an Environment 1-fibration;

2. two sub-asynchronous graphs 𝐺in, 𝐺out ⊆ 𝐺 containing only Frame transitions
denoting the initial and final states of the program.

This definition will be reformulated in a more categorical and convenient language in
the next chapter. The basic idea is that a transition system as above can be seen as a
cospan

𝐺in 𝐺out

𝐺

in out

53

2 Asynchronous soundness for CSL

in the category of asynchronous graphs. These asynchronous graphs will be organized
to be horizontal morphisms in a certain double category.

Moreover, following Melliès methodology of template games (Melliès, 2019), but in a
dual setting, with cospans instead of spans, the spans we consider are “typed” using
templates �:

𝐺in 𝐺out

𝐺

�[0] �[0]

�[1]

in

𝜆𝐼

out

𝜆𝑂

The purpose of the templates is that every operation which we will define on transition
systems will be induced by structures at the level of templates. This has the practical
advantage that the templates are simple objects, and so are easier to manipulate.

2.5 Concurrent separation logic

In the previous section, we have explained how to interpret programs as transition
systems, and we have sketched the formal statement of the data-race freedom property
we wish to prove about programs which have been proved using CSL.

In this section, we describe the version of CSL which we consider, and we explain
how to interpret proofs, that is, proof trees, of CSL as transition systems over an
appropriate machine model �Sep. We conclude the section and the chapter by stating
the asynchronous soundness theorem of the logic.

2.5.1 The logic

The version of CSL which we consider here is the same as the original papers by P.
O’Hearn (2007) and Brookes (2004) as well as the first operational soundness proof, by
Vafeiadis (2011). The main differences is that the version of CSL we consider has per-
missions which were introduced for separation logic by Bornat, Calcagno, P. O’Hearn,
et al. (2005), following their introduction by Boyland (2003). The purpose of permissions
allow the logic to prove programs where several threads read memory without syn-
chronization. We also use a variant of the “variables as resources” descipline introduced
by Bornat, Calcagno, and Yang (2006) to remove side conditions to the rules of the logic
such as the inference rule for the parallel product and the frame rule.

54

2 Asynchronous soundness for CSL

The judgments of CSL are Hoare triples of the form

Γ ⊢ {𝑃} 𝐶 {𝑄}

where 𝑃 and 𝑄 are formulas of CSL, and Γ = 𝑟1 ∶ 𝐽1, … , 𝑟𝑛 ∶ 𝐽𝑛 is a context associating
a formula 𝐽𝑖 to each lock 𝑟𝑖.

Formulas of CSL

Formulas denote predicates over a logical version of the memory augmented with
permissions. Their syntax is the following:

𝑃, 𝑄, 𝑅, 𝐽 ⩴ emp ∣ 𝑃 ∗ 𝑄 ∣ ⊤ ∣ ⊥ ∣ 𝑃 ∨ 𝑄 ∣ 𝑃 ∧ 𝑄 ∣ ¬𝑃
∣ ∀𝑎.𝑃 ∣ ∃𝑎.𝑃 ∣ 𝑣

𝑝

↦ 𝑤 ∣ Own𝑝(𝑥) ∣ 𝐸′1 = 𝐸′2

where 𝑥 ∈ Var, 𝑝 ∈ Perm is a permission, 𝑣, 𝑤 ∈ Val, and the 𝐸′𝑖 are arithmetic
expressions which can contain logic variables 𝑎, 𝑏, 𝑐. The idea behind permissions is
that a permission 𝑝 ∈ Perm represents a degree of ownership of a memory cell either
in the heap through the atomic formula 𝑥

𝑝

↦ 𝑣 or in the stack with Own𝑝(𝑥). Any
permission is enough to read the memory, but only the total permission ⊤ allows for
writing to the memory. This leads to the following definition.

Definition 2.5.1. A permission monoid Perm is a partial cancellative commutative
semi-group with a distinguished element ⊤ ∈ Perm called the total permission of
Perm which allows no multiple:

∀𝑥 ∈ Perm, 𝑥 + ⊤ is not defined.

This implies in particular that Perm has no neutral element. Cancellativity means that
for all elements 𝑥, 𝑦, 𝑧 ∈ Perm, if 𝑥 + 𝑦 = 𝑥 + 𝑧 (and both sides of the equality are
well defined), then 𝑦 = 𝑧.

Of course, such permission monoids are partial semi-groups, but this name is tradi-
tional.

The canonical example of permission monoid are the fractional permissions (0, 1] of
the additive monoid ℚ restricted to values greater that 0 and less than or equal to 1. It
is easy to check that 1 is a total permission since, for any 𝑥 > 0, 𝑥 + 1 is greater that 1
and thus not defined in the partial monoid of fractional permissions.

Since the formulas can specify the level of permission over pieces of memory, they
cannot be interpreted as predicates over memory states. Instead, they are predicates
over logical states.

55

2 Asynchronous soundness for CSL

(𝑠, ℎ) ⊨ 𝑣
𝑝

↦ 𝑤 ⟺ 𝑣 ∈ Loc ∧ 𝑠 = ∅ ∧ ℎ = [𝑣 ↦ (𝑤, 𝑝)]

(𝑠, ℎ) ⊨ Own𝑝(𝑥) ⟺ ∃𝑣 ∈ Val, 𝑠 = [𝑥 ↦ (𝑣, 𝑝)] ∧ ℎ = ∅

𝜎 ⊨ emp ⟺ 𝜎 = (∅, ∅)

𝜎 ⊨ 𝑃 ∗ 𝑄 ⟺ ∃𝜎1𝜎2, 𝜎 = 𝜎1∗𝜎2, 𝜎1 ⊨ 𝑃 ∧ 𝜎2 ⊨ 𝑄

𝜎 ⊨ 𝑃 ∧ 𝑄 ⟺ 𝜎 ⊨ 𝑃 and 𝜎 ⊨ 𝑄
𝜎 ⊨ 𝐸1 = 𝐸2 ⟺ J𝐸1K = J𝐸2K ∧ fv(𝐸1 = 𝐸2) ⊆ vdom(𝜎)

𝜎 ⊨ ∃𝑎. 𝑃 ⟺ ∃𝑣 ∈ Val, 𝜎 ⊨ 𝑃[𝑣/𝑎]

Figure 2.3: Satisfaction of CSL formulas

Definition 2.5.2. A logical state 𝜎 ∈ LogState is a pair (𝑠, ℎ) of a logical stack 𝑠 ∈
Var ⇀fin (Val×Perm) and a logical heap ℎ ∈ Loc ⇀fin (Val×Perm)which associate
to each variable and each heap location a value and a permission.

Permissions for a resource can be split and combined:

𝑥
𝑝+𝑞

↦ 𝑣 ⊣⊢ 𝑥
𝑝

↦ 𝑣 ∗ 𝑥
𝑞

↦ 𝑣

therefore, to interpret the separating conjunction, we need an operator to play the role
of the disjoint union of heaps in a way that takes permissions into account. Reading
the equivalence above tells us that we can combine logical states which contain the
same values, and in that case the permissions are added (if the sum is well-defined of
course).

Definition 2.5.3. Given two logical states 𝜎1 and 𝜎2, their product 𝜎1 ∗ 𝜎2, if it is
defined, is a logical state whose domain is the union of the domains of 𝜎1 and of 𝜎2.
For 𝑎 ∈ dom(𝜎1) ∪ dom(𝜎2) ⊆ Var ⊎ Loc,

(𝜎1 ∗ 𝜎2)(𝑎) ≔ {

𝜎1(𝑎) if 𝑎 ∈ dom(𝜎1) ⧵ dom(𝜎2)

𝜎2(𝑎) if 𝑎 ∈ dom(𝜎2) ⧵ dom(𝜎1)

(𝑣, 𝑝 + 𝑝′) if 𝜎1(𝑎) = (𝑣, 𝑝) and 𝜎2(𝑎) = (𝑣, 𝑝′)

If any the right hand-side is undefined for any 𝑎, then the product 𝜎1 ∗ 𝜎2 as a whole is
undefined.

We define the satisfaction relation 𝜎 ⊨ 𝑃 in Figure 2.3, using the operation above for
the case of the separating conjunction. We write dom(𝜎) ⊆ Var⊎Loc for the complete
domain of the state 𝜎, and vdom(𝜎) for the domain of its stack component 𝑠. The

56

2 Asynchronous soundness for CSL

formula 𝑣
𝑝

↦ 𝑤 is only satisfied for logical states of the form 𝜎 = (∅, [𝑣 ↦ (𝑤, 𝑝)]),
similarly, the formula Own𝑝(𝑥) is only satisfied by singleton stacks whose domains
are {𝑥}. The value of variables is specified using the predicates 𝐸1 = 𝐸2, which can
only be true if the heap contains all the variables mentionned in 𝐸1 and 𝐸2. Therefore,
one can use the formula Own1(𝑥) ∧ 𝑥 = 5 to state that 𝑥 must contain the value 5.
As expected, 𝑃 ∗ 𝑄 holds for 𝜎 if the logical state 𝜎 can be split using the operation of
Definition 2.5.3 in two logical states 𝜎1 and 𝜎2 which satisfy 𝑃 and 𝑄 respectively.

Given the satisfaction relation, we can define the entailment of predicates as

𝑃 ⇒ 𝑄 ⟺ ∀𝜎, 𝜎 ⊨ 𝑃 ⇒ 𝜎 ⊨ 𝑄.

Inference rules of CSL

Hoare triples Γ ⊢ {𝑃} 𝐶 {𝑄} of CSL are constructed by building derivation trees, or
proof trees, using the inference rules presented in Figure 2.4. The first premise of the
rule If, 𝑃 ⇒ def(𝐵) states that if 𝑃 holds for some logical state 𝜎, then all the program
variables appearing in 𝐵 are owned with some permission.

The rules Aff for writing into variables and St for writing into the heap require full
permission over the respective memory resources; while we only require partial permis-
sion for reading, implicitly for variables —otherwise equalities involving expressions
would be false— and explicitly in rule Ld for heap locations. The other rules are standard
and were explained in Section 0.1.2.

2.5.2 Semantic interpretation of CSL

Our method for proving the soundness of the logic we describe above is to interpret
proof trees of CSL as transition systems over an adequate machine model. The first task
is to define the notion of state which will be used by the machine model.

The predicates 𝑃 which appear in the Hoare triples of the logic describe the logical
memory which is owned by the Code. Since we have chosen to describe explicitly the
actions of the Environment, or Frame, in our transition systems, our states need to
contain the (logical) memory which is owned by the Frame.

This dichotomy does not account for all the memory: shared resources are owned by
the locks, and therefore are owned by neither the Code nor the Frame. These states will
keep track, for each lock, of the logical state it owns or the identity of its holder (Code
or Frame). Putting all of this together, we define the notion of state which we will use
to interpret proofs of CSL.

57

2 Asynchronous soundness for CSL

Aff
Γ ⊢ {(Own⊤(𝑥) ∗ 𝑃) ∧ 𝐸 = 𝑣} 𝑥 ≔ 𝐸 {(Own⊤(𝑥) ∗ 𝑃) ∧ 𝑥 = 𝑣}

St
Γ ⊢ {(𝑃 ∧ 𝐸 = 𝑤 ∧ 𝐸′ = 𝑣) ∗ 𝑤

⊤
↦ −} [𝐸] ≔ 𝐸′ {(𝑃 ∧ 𝐸 = 𝑤 ∧ 𝐸′ = 𝑣) ∗ 𝐸

⊤
↦ 𝑤}

𝑃 ⇒ def(𝐵) Γ ⊢ {𝑃 ∧ 𝐵} 𝐶1 {𝑄} Γ ⊢ {𝑃 ∧ ¬𝐵} 𝐶2 {𝑄} If
Γ ⊢ {𝑃} if 𝐵 then 𝐶1 else 𝐶2 {𝑄}

𝑃 ⇒ def(𝐵) Γ ⊢ {𝐼 ∧ 𝐵} 𝐶 {𝐼}
While

Γ ⊢ {𝐼} while 𝐵 do 𝐶 {𝐼 ∧ ¬𝐵}

Ld
Γ ⊢ {((Own⊤(𝑥) ∗ 𝑃) ∧ 𝐸 = 𝑤)∗𝑤

𝑝

↦ 𝑣} 𝑥 ≔ [𝐸] {((Own⊤(𝑥) ∗ 𝑃) ∧ 𝑥 = 𝑣)∗𝑤
𝑝

↦ 𝑣}

Γ ⊢ {𝑃} 𝐶1 {𝑄} Γ ⊢ {𝑄} 𝐶2 {𝑅} Seq
Γ ⊢ {𝑃} 𝐶1; 𝐶2 {𝑅}

Γ ⊢ {𝑃1} 𝐶 {𝑄1} Γ ⊢ {𝑃2} 𝐶 {𝑄2} Disj
Γ ⊢ {𝑃1 ∨ 𝑃2} 𝐶 {𝑄1 ∨ 𝑄2}

Γ, 𝑟 ∶ 𝐽 ⊢ {𝑃} 𝐶 {𝑄}
Res

Γ ⊢ {𝑃 ∗ 𝐽} resource 𝑟 do 𝐶 {𝑄 ∗ 𝐽}

Γ ⊢ {(𝑃 ∗ 𝐽) ∧ 𝐵} 𝐶 {𝑄 ∗ 𝐽}
With

Γ, 𝑟 ∶ 𝐽 ⊢ {𝑃} with 𝑟 do 𝐶 {𝑄}

Γ ⊢ {𝑃1} 𝐶1 {𝑄1} Γ ⊢ {𝑃2} 𝐶2 {𝑄2} Par
Γ ⊢ {𝑃1 ∗ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∗ 𝑄2}

Γ ⊢ {𝑃} 𝐶 {𝑄}
Frame

Γ ⊢ {𝑃 ∗ 𝑅} 𝐶 {𝑄 ∗ 𝑅}

𝑃 ⇒ 𝑃′ Γ ⊢ {𝑃′} 𝐶 {𝑄′} 𝑄′ ⇒ 𝑄
Conseq

Γ ⊢ {𝑃} 𝐶 {𝑄}

Figure 2.4: Inference rules of CSL

58

2 Asynchronous soundness for CSL

Definition 2.5.4. Given a CSL context Γ, a separated state is a triple

(𝜎𝐶, �⃗�, 𝜎𝐹) ∈ SepState(Γ)

with 𝜎𝐶, 𝜎𝐹 ∈ LogState, and �⃗� ∶ dom(Γ) → LogState+{C, F}, and which satisfies two
properties:

1. Locked resources satisfy their invariants: ∀𝑟 ∈ unlocked(�⃗�), �⃗�(𝑟) ⊨ Γ(𝑟);

2. The components are coherent: the logical state below is defined:

𝜎𝐶 ∗ { ⊛
𝑟∈dom(�⃗�)

�⃗�(𝑟) } ∗ 𝜎𝐹 ∈ LogState (2.2)

A separated state (𝜎𝐶, �⃗�, 𝜎𝐹) defines as machine state ⊛(𝜎𝐶, �⃗�, 𝜎𝐹) = (𝜇, 𝐿) whose
memory state 𝜇 is obtained by forgetting permissions in the logical state (2.2) above,
and whose set 𝐿 of available locks is unlocked(�⃗�).

Unlike the two machine models �S and �L which we use to interpret programs, the
machine model for the proofs distinguishes between transitions of the Code and of the
Frame. It is defined as follows.

Definition 2.5.5. Themachine model of separated states�∘•Sep(Γ) parameterized by
a CSL context Γ is an asynchronous graph whose nodes are the separated states over
the context Γ and with Code transitions

(𝜎𝐶, �⃗�, 𝜎𝐹)
𝑚∶C

−−−−−−−→ (𝜎′𝐶, �⃗�
′, 𝜎𝐹)

where𝑚 ∈ Instr is an instruction, such that

⊛(𝜎𝐶, �⃗�, 𝜎𝐹)
𝑚

−−−−−→ ⊛(𝜎′𝐶, �⃗�
′, 𝜎𝐹)

is a transition in �•S, and such that the following conditions are satisfied:

∀ℓ ∉ wr(𝑚), 𝜎𝐶(ℓ) = 𝜎′𝐶(ℓ) wr(𝑚) ∪ rd(𝑚) ⊆ dom(𝜎𝐶)

lk(𝑚) ⊆ dom(�⃗�) ∪ �⃗�−1(C) ∀𝑟 ∉ lk(𝑚), �⃗�(𝑟) = �⃗�′(𝑟).

Frame transitions are of the form (𝜎𝐶, �⃗�, 𝜎𝐹)
𝑚∶F
−−−→ (𝜎𝐶, �⃗�

′, 𝜎′𝐹) with symmetric condi-
tions:

⊛(𝜎𝐶, �⃗�, 𝜎𝐹)
𝑚

−−−−−→ ⊛(𝜎′𝐶, �⃗�
′, 𝜎𝐹)

is a transition in �•S and

∀ℓ ∉ wr(𝑚), 𝜎𝐹(ℓ) = 𝜎′𝐹(ℓ) wr(𝑚) ∪ rd(𝑚) ⊆ dom(𝜎𝐹)

lk(𝑚) ⊆ dom(�⃗�) ∪ �⃗�−1(F) ∀𝑟 ∉ lk(𝑚), �⃗�(𝑟) = �⃗�′(𝑟).

59

2 Asynchronous soundness for CSL

The tiles are defined in the same way as in the stateful machine model, using the same
notion of footprint: a square in �Sep of the form:

𝑎 𝑐

𝑏

𝑏′

𝑚1 𝑚2

𝑚2 𝑚1

has a unique tile if the footprint of𝑚1 and of𝑚2 computed at the machine state⊛𝑎
are independent.

This newmachine model of separated states induces a notion of asynchronous transition
system which can be used to interpret proofs trees of CSL by induction of the inference
rules. A proof 𝜋 ∶ Γ ⊢ {𝑃} 𝐶 {𝑄} is interpreted as a pair (𝐺𝜋, 𝜆𝜋, 𝐺in, 𝐺out) where 𝐺𝜋 is
an asynchronous graph, and 𝜆𝜋 is an asynchronous morphism

𝜆𝜋 ∶ 𝐺𝜋 ⟶ �∘•Sep

which maps all initial states in 𝐺in ⊆ 𝐺𝜋 to separated states (𝜎𝐶, �⃗�, 𝜎𝐹) which satisfy
the precondition 𝑃 (in that 𝜎𝐶 ⊨ 𝑃) and, symmetrically, all final states in 𝐺out ⊆ 𝐺𝜋 are
mapped to separated states which satisfy the postcondition 𝑄.

In the same way that there is a map from the stateful machine model to the stateless
machine model ℒ� ∶ �∘•S → �∘•L , the operation (𝜎𝐶, �⃗�, 𝜎𝐹) ↦ ⊛(𝜎𝐶, �⃗�, 𝜎𝐹) defines an
asynchronous morphism 𝒮� ∶ �∘•Sep → �∘•S .

As it turns out, we will see in the next chapter that, if 𝜋 is a proof of the Hoare
triple Γ ⊢ {𝑃}𝐶{𝑄}, the interpretation of 𝜋 and the two interpretations of the program 𝐶
are related as follows, completing the diagram (2.1) page 50:

J𝜋KSep 𝐺𝜋 �Sep

J𝐶KS 𝐺𝑆 �S

J𝐶KL 𝐺𝐿 �L

𝒮

𝜆𝜋

𝒮 𝒮�

ℒ

𝜆𝑆

ℒ ℒ�

𝜆𝐿

The map 𝒮 induces a sub-asynchronous graph of J𝐶KS of the executions which are
supported by the CSL proof:

60

2 Asynchronous soundness for CSL

C

Cin
Cout

s

s’

Pin

Qout

π

interactive interpretation
of the CSL proof π

operational interpretation
of the code C

canonical coercion
of the CSL proof π
inside the code C

This sub-asynchronous graph cannot be characterized at the level of the stateful seman-
tics, it is only makes sense seen as the paths of J𝐶KS which are refined by the proof 𝜋.
This is the basis of the asynchronous soundness theorem of CSL.

2.5.3 The asynchronous soundness theorem

The soundness theorem of CSL states that programs which have been proved with the
logic are safe, satisfy their postconditions if they terminate, and do not produce any
data-race. In our setting, these properties are expressed as properties of the maps

J𝜋KSep
𝒮

−−−−−→ J𝐶KS
ℒ

−−−−−→ J𝐶KL

which relate the interpretation J𝜋KSep of a proof 𝜋 of the Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}
and the stateful J𝐶KS and stateless J𝐶KL interpretations of the program 𝐶. This property
is expressed using the language of fibrations, which we defined in Definition 2.4.6. First,
the safety of the program is expressed as a property about 𝒮:

Theorem 2.5.6. The asynchronous morphism 𝒮 is a Code 1-fibration.

Unfolding the definitions, this means that for all Code transitions

𝔰1
𝑚

−−−−−→ 𝔰2

in J𝐶KS, if there is a separated state (𝜎𝐶, �⃗�, 𝜎𝐹) which corresponds to the machine
state 𝔰1 thought 𝒮, then there exists a transition

(𝜎𝐶, �⃗�, §𝐹)
𝑚

−−−−−→ (𝜎′𝐶, �⃗�
′, §𝐹)

61

2 Asynchronous soundness for CSL

with⊛(𝜎′𝐶, �⃗�′, §𝐹) = 𝔰2. In particular, since the image of the⊛ operation is always a
well-defined machine state and not the error state , this means that the operation𝑚
did not fail.

There are two ways to understand why this implies the safety of the whole program.
The first is that all Code transitions preserve the safety of the program, and that it is
up to the Environment to make sure that its transitions follow the discipline of CSL
and preserve the correctness of the program. The other point of view is that, given a
closed and complete program, one can forbid actions from the Environment. Then the
asynchronous morphism 𝒮 guarantees that any path which starts in a machine state
which corresponds to a separated state which satisfies the precondition 𝑃 does not
contain the error state .

Now, let us state the second part of the soundness theorem, which states that there are
no data-races in well-specified programs.

Theorem 2.5.7. The asynchronous morphism ℒ ∘ 𝒮 is a 2-fibration.

This means that whenever there is a tile in the stateless semantics J𝐶KL of the program 𝐶,
meaning that two instructions are executed in parallel and do not synchronize between
each other, if one of the edges of the tile corresponds to a path in the semantics of the
proof J𝜋KSep, which means that this path corresponds to a piece of execution which
follows the memory management rules of CSL, then there is a tile completing the path
in J𝜋KSep.

The asynchronous morphism 𝒮 maps this tile in J𝜋KSep into a tile in J𝐶KS which, by
definition of tiles in�S, means that there is no data-race between the two instructions.

62

3 An asynchronous template game
model of CSL

Our semantic interpretation of CSL is based on the methodology of templates (Melliès,
2019). The general idea is that the interpretations live in a semantic domain which is
parameterized by a template �. In the work of Melliès (2019) for example, a template �
is defined to be an internal category, which induces a bicategory of games Games(�)
based on spans.

The slogan of this approach is that every operation at the level of the interpretation, say
tensor products, should be induced by a structure at the level of templates, for tensors:
span-monoidal internal categories in (Melliès, 2019).

In this work, our notion of template is almost dual, as they are a generalization of
internal opcategories, and programs and proofs of CSL are interpreted as cobordisms,
which are based on cospans.

3.1 The double category Cob(�) of games and
cobordisms

3.1.1 Internal categories

Internal categories are the result of spelling out the definition of a category in the
language of categories, in the same way that one can define a monoid object or a group
object in any category with enough structures. We will use this notion in two ways:
First, double categories are by definition weakly internal categories in the 2-category
Cat of categories; and, second, they will be generalized and dualized in the sequel to
define internal 𝐽-opcategories, the notion of template which our model will be based
on.

To a first approximation, a category is a reflexive graph (or, more precisely, quiver):
a set 𝒞[0] of objects, and a set 𝒞[1] of morphisms. Each morphism has a source and
a target: this defines two maps 𝑠, 𝑡 ∶ 𝒞[1] → 𝒞[0]. Similarly, each object 𝐴 ∈ 𝒞[0] is

63

3 An asynchronous template game model of CSL

associated with an identity morphism Id𝐴 ∶ 𝐴 → 𝐴, this defines a map 𝑒 ∶ 𝒞[0] → 𝒞[1].
One then needs to express that, for instance, the source and target of the identity on 𝐴
are equal to 𝐴, and to formalize the composition operator. This leads to the following
definition, discovered by Ehresmann (1963).

Definition 3.1.1. We consider a category 𝕊 with finite limits. An internal category 𝒞
in 𝕊 contains the following data. Two objects 𝒞[0] and 𝒞[1] of 𝕊which we call the space
of objects and the space of morphisms of 𝒞 respectively. Morphisms 𝑠, 𝑡 ∶ 𝒞[1] → 𝒞[0]
and 𝑒 ∶ 𝒞[0] → 𝒞[1] as explained above. A composition morphism 𝑚 ∶ 𝒞[2] → 𝒞[1]

which associates morphisms to composable pairs of morphisms defined as the pullback

𝒞[2]

𝒞[1] 𝑝𝑏 𝒞[1]

𝒞[0]

𝑙 𝑟

𝑡 𝑠

In the category of sets, this corresponds to pairs of arrows such that the target of the
first is equal to the source of the second.

This structure 𝒞 = (𝒞[0], 𝒞[1], 𝑠, 𝑡, 𝑒,𝑚) must satisfy certain properties:

1. The identities have the right endpoints: 𝑠 ∘ 𝑒 = 𝑡 ∘ 𝑒 = Id𝒞[0];

2. Morphism composition preserves endpoints: 𝑠 ∘ 𝑙 = 𝑠 ∘ 𝑚 and 𝑡 ∘ 𝑟 = 𝑡 ∘ 𝑚;

3. Identities are identities for composition: the following diagram commutes

𝒞[0] ×𝒞[0] 𝒞[1] 𝒞[2] 𝒞[1] ×𝒞[0] 𝒞[0]

𝒞[1]

𝜋2

𝑒×𝒞[0]Id

𝑚
𝜋1

Id×𝒞[0]𝑒

(3.1)

4. and composition must be associative: writing 𝒞[3] = 𝒞[1] ×𝒞[0] 𝒞[1] ×𝒞[0] 𝒞[1]
the space of triples of composable arrows, the following diagram must commute:

𝒞[3] 𝒞[2]

𝒞[2] 𝒞[1]

𝑚×𝒞[0]Id

Id×𝒞[0]𝑚 𝑚

𝑚

(3.2)

64

3 An asynchronous template game model of CSL

As expected, a (small) category is an internal category in the category Set of sets and
functions. We ask that the ambient category 𝕊 has finite limits in the definition above as
this is general enough for our purposes, in general only the pullbacks of 𝑠 along 𝑡 needs
to exist. The instance we are most interested in are strict double categories, which are
categories internal toCat. More precisely, we need the weaker notion of (pseudo) double
category, where the composition operator𝑚 ∶ 𝒞[2] → 𝒞[1] is only associative up to an
isomorphism. Accordingly, we define a weakly internal category in a 2-category 𝕊
with finite limits to be the same as an internal category except that diagrams (3.1)
and (3.2) only needs to commute up to isos which satisfy the pentagon and triangle
identities of monoidal categories. See Appendix A.2 of the PhD thesis of Courser (2020)
for the full definitions of double categories and related objects.

A nice characterization of internal categories, which is going to be useful to generalize
internal categories to polyads, is the following:

Lemma 3.1.2. An internal category in 𝕊 is the same as amonad in the bicategory Span(𝕊)
of spans in 𝕊. Equivalently, this is also the same as a lax pseudo-functor 1 → Span(𝕊),
where 1 is the terminal bicategory.

In the same way the definition of a category was expressed in the language of categories,
there is an internal notion of functor between internal categories:

Definition 3.1.3. An internal functor of categories 𝐹 from 𝒞 to 𝒟, two internal
categories in a category 𝕊 with finite limits, is the data of two morphisms in 𝕊 between
the two spaces of objects and the two spaces to morphisms:

𝐹[0] ∶ 𝒞[0] ⟶ 𝒟[0] and 𝐹[1] ∶ 𝒞[1] ⟶ 𝒟[1]

satisfying the expected conditions:

1. 𝐹 acts coherently with respect to the source and target maps, in that the following
diagram commutes:

𝒞[0] 𝒞[1] 𝒞[0]

𝒟[0] 𝒟[1] 𝒟[0]

𝐹[0] 𝐹[1]

𝑠 𝑡

𝐹[0]

𝑠 𝑡

2. The commutation of the diagram above induces a map 𝐹[2] ∶ 𝒞[2] → 𝒟[2] by the
universality of the pullback defining𝒟[2]. The following diagram must commute,

65

3 An asynchronous template game model of CSL

expressing the fact that the composite of the images is equal to the image of the
composite and that 𝐹 preserves identity maps:

𝒞[2] 𝒞[1] 𝒞[0]

𝒟[0] 𝒟[1] 𝒟[0]

𝐹[2]

𝑚

𝐹[1] 𝐹[0]

𝑒

𝑚 𝑒

3.1.2 Double categories

Double categories are a notion of two-dimensional categories introduced by Ehresmann
(1963). Unlike 2-categories and bicategories, double categories have two distinct classes
of 1-cells, called vertical and horizontal. This notion is central in this work, as the
programs and the proof tree of CSL will be interpreted as horizontal morphisms in a
double category.

Definition 3.1.4. A double category 𝒟 is a weakly internal category in Cat, the
2-category of small categories. Let us spell it out. The double category 𝒟 is a tuple
𝒟 = (𝒟[0], 𝒟[1], 𝑠, 𝑡, 𝑒,𝑚) which contains two categories 𝒟[0] and 𝒟[1]. The objects
of 𝒟[0] are called the objects of the double category 𝒟, and its maps are called the
vertical morphisms of 𝒟 and are denoted with plain arrows 𝐴 → 𝐵. Each object of
𝒟[1] is associated with a source and a target object in 𝒟[0] through the two functors
𝑠 and 𝑡, and is called a horizontal morphism. They are denoted with crossed arrows
𝐴 𝐵. Finally, a morphism 𝛼 in 𝒟[1] is called a 2-cell of the double category 𝒟. The
2-cell 𝛼 fills a square of two horizontal and two vertical maps of the form:

𝐴1 𝐵1

𝐴2 𝐵2

𝑓

𝐹

𝑔

𝐺

𝛼

A 2-cell as above is called special if the two vertical morphisms 𝑓 and 𝑔 are identities.
Composition of horizontal morphisms is associative up to coherent special two-cells.

Most examples of double categories have a similar flavor: vertical morphisms are the
usual notion of map for the objects under consideration, and the horizontal morphisms
correspond to relation-like mappings between objects. For example, there is a double
category where the horizontal morphisms between rings 𝐴 and 𝐵 are the 𝐴𝐵-bimodules,

66

3 An asynchronous template game model of CSL

while vertical morphisms are simply ring homomorphisms. In other words, the under-
lying vertical category (𝒟[0] in the notation of the definition) is the usual category
of rings. This intuition is captured by the notion of framed bicategory introduced by
Shulman (2008).

Another important family of example of double categories which follow the same princi-
ple are the double categories Cospan(𝕊), parameterized by a category 𝕊with pushouts.
The object and vertical morphisms are the same as 𝕊, and horizontal morphisms between
objects 𝐴 and 𝐵 of 𝕊 are cospans:

𝐴 𝐵

𝑆
𝑙 𝑟

Themaps 𝑙 and 𝑟 are called its legs, and 𝑆 is its support.We sometimeswrite 𝑆 ∶ 𝐴 𝐵

when the legs are clear from context. The composite of two cospans 𝑆 ∶ 𝐴 𝐵 and
𝑇 ∶ 𝐵 𝐶 is defined using the pushout of the right leg of 𝑆 and the left leg of 𝑇 as
depicted in this diagram:

𝐴 𝐵 𝐶

𝑆 𝑇

𝑇 ∘ 𝑆

𝑙 𝑟

𝑝𝑜

𝑙′ 𝑟′

The 2-cells between horizontal maps 𝑆 ∶ 𝐴 𝐵 and 𝑇 ∶ 𝐶 𝐷 and vertical
maps 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐷 are the maps 𝛼 ∶ 𝑆 → 𝑇 which make the following
diagram commute:

𝐴 𝑆 𝐵

𝐶 𝑇 𝐷

𝑙

𝑓 𝛼

𝑟

𝑔

𝑙′ 𝑟′

Of course, there is a similar double category Span(𝕊) of spans when the category 𝕊
has all pullbacks. We can recover the more common bicategory of cospans if we only
consider special 2-cells; this comes from a general fact:

Lemma 3.1.5. Any double category 𝒟 induces a bicategory H𝒟 whose objects are the
same as 𝒟’s, whose 1-cells are the horizontal morphisms of 𝒟, and whose 2-cells are the
special 2-cells of 𝒟.

67

3 An asynchronous template game model of CSL

There is a natural notion of map between double categories:

Definition 3.1.6. A double functor ℱ between two double categories 𝒞 and 𝒟 is an
internal functor between them. Explicitly,ℱmaps objects, vertical 1-cells and horizontal
1-cells and 2-cells of the double category 𝒞 to the same type of cells of the double
category 𝒟 while preserving source and targets, as expected.

Moreover, for two composable vertical morphisms 𝑓, 𝑔 in 𝒞, ℱ(𝑔 ∘ 𝑓) = ℱ(𝑔) ∘ ℱ(𝑓)
in𝒟, and, for two composable horizontal morphisms𝐹, 𝐺 in 𝒞,ℱ(𝐺∘𝐹) andℱ(𝐺)∘ℱ(𝐹)
are related by an invertible special 2-cell. Finally, ℱ preserves vertical identities on the
nose and vertical identities up to invertible special 2-cells.

A weaker notion which will be useful is the following

Definition 3.1.7. A lax double functor ℱ between two double categories 𝒞 and 𝒟 is
the same as a double functor except that the special 2-cells which relates ℱ(𝐺 ∘ 𝐹) and
ℱ(𝐺) ∘ ℱ(𝐹)

ℱ(𝐴) ℱ(𝐵) ℱ(𝐴)

ℱ(𝐴) ℱ(𝐶)

ℱ𝐹 ℱ𝐺

𝛼

ℱ(𝐺∘𝐹)

is not necessarily invertible. Again, we refer the reader to Appendix A.2 of (Courser,
2020) for the full definition.

3.1.3 Polyads and internal 𝐽-opcategories

Polyads are a generalization of monads with several objects which were introduced by
Bénabou (1967). They are used to define the notion of internal 𝐽-opcategory, which will
be the basic notion of template in this work.

The forgetful functor | − | ∶ Cat → Set which transports every small category to its
set of objects has a right adjoint chaos ∶ Set → Cat which transports every set 𝐽 to
its chaotic category defined as the category chaos(𝐽) whose objects are the elements
𝑖, 𝑗, 𝑘 of the set 𝐽, with a unique morphism between each pair of objects.

Definition 3.1.8. Given a set 𝐽, a 𝐽-polyad in a double category 𝒟 is a lax double
functor

chaos(𝐽) ⟶ 𝒟

from the chaotic category over the set 𝐽, seen as a double category whose horizontal
morphisms are the morphisms of chaos(𝐽), to 𝒟. The elements of 𝐽 are called the colors
of the polyad. A polyad is a 𝐽-polyad for some set 𝐽.

68

3 An asynchronous template game model of CSL

Polyads generalize monads as a monad is simply a {∗}-polyad. This leads us, inspired by
Lemma 3.1.2, to define an internal 𝐽-opcategory to be a polyad in the double category
Cospan(𝕊). They are, in a sense, dual to internal categories in that they are based on
cospans instead of spans; they also are a generalization to multiple objects.

The definition can be expounded as follows. An internal 𝐽-opcategory � consists of an
object �[0, 𝑖] of 𝕊 for each element 𝑖 ∈ 𝐽, and of a cospan

�[1, 𝑖𝑗] ∶ �[0, 𝑖] � [0, 𝑗] = �[0, 𝑖] �[1, 𝑖𝑗] �[0, 𝑗]
in𝑖𝑗 out𝑖𝑗

for each pair 𝑖, 𝑗 ∈ 𝐽, together with two coherent families 𝜂 and 𝜇 of special 2-cells
between cospans:

�[0, 𝑖] �[0, 𝑖]

Id

�[1,𝑖𝑖]

𝜂𝑖

�[0, 𝑗]

�[0, 𝑖] �[0, 𝑘]

�[1,𝑗𝑘]�[1,𝑖𝑗]

�[1,𝑖𝑘]

𝜇𝑖𝑗𝑘

In particular, the left condition implies that the cospans �[1, 𝑖𝑖] are of the form

�[0, 𝑖] �[1, 𝑖𝑖] �[0, 𝑖]
𝜂𝑖 𝜂𝑖

More explicitly, 𝜇𝑖𝑗𝑘 is given by the map 𝑔𝑖𝑗𝑘 in the following commutative diagram in
the category 𝕊:

�[0, 𝑖] �[0, 𝑗] �[0, 𝑘]

�[1, 𝑖𝑗] �[1, 𝑗𝑘]

�[2, 𝑖𝑗𝑘]

�[1, 𝑖𝑘]

in𝑖𝑗

in𝑖𝑘

in𝑗𝑘out𝑖𝑗

𝑝𝑜

out𝑗𝑘

out𝑖𝑘
𝑔𝑖𝑗𝑘

Finally, there are some conditions about the associativity of the composition, and about
the identity; they can be found in (Bénabou, 1967, def. 5.5.1). An internal opcategory
� is defined as an internal {∗}-opcategory. We write in that case �[0] and �[1] for the
objects �[0, ∗] and �[1, ∗∗] of the ambient category 𝕊, respectively.

The notion of internal 𝐽-opcategory comes with a natural notion of morphism between
them: internal functors of 𝐽-opcategories:

69

3 An asynchronous template game model of CSL

Definition 3.1.9. An internal functor 𝐹 = (𝑓, 𝐹[0, ⋅], 𝐹[1, ⋅]) from� to�′ is a triple
consisting of a function 𝑓 ∶ 𝐽 → 𝐽′ between the sets of colors, and:

1. for each 𝑖 ∈ 𝐽, a map 𝐹[0, 𝑖] in the ambient category 𝕊:

𝐹[0, 𝑖] ∶ �[0, 𝑖] ⟶ �′[0, 𝑓(𝑖)],

2. for each 𝑖, 𝑗 ∈ 𝐽, a map 𝐹[1, 𝑖𝑗] in the ambient category 𝕊:

𝐹[1, 𝑖𝑗] ∶ �[1, 𝑖𝑗] ⟶ �′[1, 𝑓(𝑖𝑗)]

where we use the lighter notation 𝑓(𝑖𝑗) for 𝑓(𝑖)𝑓(𝑗). One asks moreover that the
diagram below commutes

�[0, 𝑖] �[1, 𝑖𝑗] �[0, 𝑗]

�′[0, 𝑓(𝑖)] �′[1, 𝑓(𝑖𝑗)] �′[0, 𝑓(𝑗)]

𝐹[0,𝑖]

in𝑖𝑗

𝐹[1,𝑖𝑗] 𝐹[0,𝑗]

out𝑖𝑗

in𝑓(𝑖)𝑓(𝑗) out𝑓(𝑖)𝑓(𝑗)

and that the internal functor is compatible with the identities: the diagram on the right
below commutes; andwith composition: themaps𝐹[2, 𝑖𝑗𝑘] ∶ �[2, 𝑖𝑗𝑘] → �′[2, 𝑓(𝑖𝑗𝑘)]

induced by universality of the pushout must make the left diagram commute.

�[2, 𝑖𝑗𝑘] �[1, 𝑖𝑘]

�′[2, 𝑓(𝑖𝑗𝑘)] �′[1, 𝑓(𝑖𝑘)]

𝐹[2,𝑖𝑗𝑘] 𝐹[1,𝑖𝑘]

�[0, 𝑖] �[1, 𝑖𝑖]

�[0, 𝑓(𝑖)] �′[1, 𝑓(𝑖𝑖)]

𝐹[0,𝑖]

𝜂𝑖

𝐹[1,𝑖𝑖]

𝜂′𝑓(𝑖)

The internal 𝐽-opcategories and internal functors form a category opCat(𝕊). This
category admits products: the index set of the product of two internal categories is the
product of their index sets, and (� × �′

)[0, (𝑖, 𝑗)] = �[0, 𝑖] × �′[0, 𝑗]. This fact will
play a important role in the sequel.

3.1.4 The double category Cob(�) of games and cobordisms

Suppose given an internal 𝐽-opcategory � in a category 𝕊 with pushouts. A 𝑗-colored
game (𝐴, 𝜆𝐴) is defined as an object 𝐴 of 𝕊 equipped with a morphism 𝜆𝐴 ∶ 𝐴 → �[0, 𝑗].
An 𝑖𝑗-colored cobordism from an 𝑖-colored game (𝐴, 𝜆𝐴) to a 𝑗-colored game (𝐵, 𝜆𝐵)

70

3 An asynchronous template game model of CSL

is defined as a cospan in 𝒞 together with colors 𝑖, 𝑗 ∈ 𝐽 and a map 𝜆𝜎 such that the
following diagram commutes:

𝐴 𝑆 𝐵

�[0, 𝑖] �[1, 𝑖𝑗] �[0, 𝑗]

in

𝜆𝐴 𝜆𝜎

out

𝜆𝐵

in𝑖𝑗 out𝑖𝑗

We think of a cobordism as a space 𝑆 of all executions of a program, visualized as a
topological space, with two “borders” which are interpreted as the initial (or input)
states and the final (or output) states of the program.The cospan at the level of templates
is a way of typing, or coloring this object. They are depicted like this:

Two such 𝑖𝑗-colored cobordism 𝜎 ∶ 𝐴 𝐵 and 𝑗𝑘-colored cobordism 𝜏 ∶ 𝐵 𝐶

can be composed into an 𝑖𝑘-colored cobordism 𝜎; 𝜏 ∶ 𝐴 𝐶 using a pushout and
a relabeling along the 2-cell 𝜇𝑖𝑗𝑘 provided by the internal 𝐽-opcategory, as shown
below:

𝐴 𝐵 𝐶

�[0, 𝑖] �[0, 𝑗] �[0, 𝑖]

C C′

�[1,𝑖𝑗]

�[1,𝑖𝑘]

�[1,𝑗𝑘]
𝜇𝑖𝑗𝑘

In order to give cobordisms over an internal 𝐽-opcategory � a structure of double
category, we need identities, which are given by:

𝐴 𝐴

�[0, 𝑖] �[0, 𝑖]

Id𝐴

𝜆𝐴 𝜆𝐴

Id�[0,𝑖]

�[1,𝑖𝑖]

𝜆𝐴

𝜂𝑖

71

3 An asynchronous template game model of CSL

The vertical morphisms are the maps 𝑓 ∶ 𝐴 → 𝐴′ such that 𝜆𝐴 = 𝜆𝐵 ∘ 𝑓, and the
two-cells are triples of maps 𝑓in ∶ 𝐴 → 𝐴′, 𝑓out ∶ 𝐵 → 𝐵′, 𝑓 ∶ 𝑆 → 𝑆′ such that the
following diagram commutes

𝐴 𝑆 𝐵

𝐴′ 𝑆′ 𝐵′

inC

𝑓in 𝑓

outC

𝑓out
in′C out′C

such that moreover, 𝑓in and 𝑓out are vertical morphisms, and similarly 𝜆𝜎 = 𝜆𝜎′ ∘ 𝑓. One
obtains:

Theorem 3.1.10. Every internal 𝐽-opcategory � induces a double category Cob(�)
whose objects are the 𝑗-colored games and whose horizontal maps are the cobordisms with
composition defined as above.

3.2 Three internal 𝐽-opcategories: �L, �S, �Sep

We instantiate the framework described above to define the three 𝐽-opcategories in
the category 𝕊 = AsyncGraph of asynchronous graphs which we will use to give a
semantics to the concurrent shared memory language we describe in Section 2.3 and to
the proofs of CSL, described in Section 2.5.

They are based on the machine models�•
L,�•

S, and�•
Sep which we defined in Chapter 2.

Themachine models describe the basic operations supported by the underlying machine,
and how the interact when they are executed in parallel. The cobordisms over these
internal 𝐽-opcategories will contain the information of how programs cause these
instructions to be executed and how they react to changes in the global memory
state.

3.2.1 The internal opcategories �L and �S for the code

Recall that both the stateless machine model �•
L and the stateful machine model �•

S are
parameterized by a set 𝔏 of allocated locks. In this section we assume given such a set
and we do not write it explicitly.

The construction of the internal opcategories from the machine models is the same for
both the stateless internal opcategory �L and the stateful internal opcategory �S.
We write �• for either �•

L or �•
S and we write � for either �L or �S, respectively.

72

3 An asynchronous template game model of CSL

Recall that defining an internal opcategory � comes down to defining a cospan in the
ambient category AsyncGraph. In our case, it will be of the form:

�[0] �[0]

�[1]
𝜄 𝜄

That is, both its legs are equal and are monomorphisms.

We construct an asynchronous graph�[1]with two players (for Code and Environment)
from the asynchronous graph�• which we see as having a single player. This shift from
one player to two players is performed in a very simple way. We consider the functor
Ω ∶ Set → AsyncGraph which transports a given set ℒ of labels to the asynchronous
graph Ω(ℒ) with one single node, the elements of ℒ as edges, and one tile for each
square. We are particularly interested in the case when the set of labels ℒ = {C, F}
contains the two polarities C and F associated with the Code and to the Frame (or the
Environment), respectively. Note that the functor preserves limits: in particular, the
asynchronous graph Ω(1) is the terminal object of AsyncGraph. The asynchronous
graphΩ({C, F}) enables us to define the two-player machine models�∘• as the Cartesian
product of asynchronous graphs

�∘• = �• × Ω({C, F}).

The resulting asynchronous graph �∘• has the same nodes as �• and contains two
edges

𝑥
𝑚∶C

−−−−−−−→ 𝑦 𝑥
𝑚∶F

−−−−−−→ 𝑦

the first one labeled with a polarity C for Code, the second one labeled with a polarity F
for Frame, for each edge

𝑥
𝑚

−−−−−→ 𝑦

in the original one-player, or apolar, asynchronous graph �•. The two circles ∘ and • in
the notation �∘• are mnemonics designed to remind us that there are two players in
the game: the Code playing the white side (∘) and the Environment playing the black
side (•).

We have accumulated enough material at this stage to define the internal opcategories
� = �S,�L in the ambient category AsyncGraph. The asynchronous graph �[1] is
defined as the two-player machine model �∘• while the asynchronous graph �[0] is
defined as the one-player machine model, which we see here as played only by the
Frame. In summary:

�[1] = �∘• � [0] = �•.

The asynchronous graph �[0] with one player is then embedded in the two-player
asynchronous graph �[1] by the asynchronous morphism 𝜄 = �[0] → �[1] obtained

73

3 An asynchronous template game model of CSL

by transporting every node of �[0] to the corresponding node in �[1], and every edge
of �[0] to the corresponding edge in �[1] with the polarity F of the Frame.

3.2.2 The internal 𝐽-opcategory �Sep for the proofs

The case of the separated state internal 𝐽-opcategory differs from the two internal
opcategories we have just defined in two ways: First, the underlying machine model of
separated states already has two players because the notion of state contains distin-
guishes several the area owned by the Code from the area owned by the Environment.

Second, the set 𝐽 of colors is not a singleton: it is the set of predicates of the logic. The
reason is that a proof 𝜋 of a Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄} has a meaning only when, in
the initial state, the memory owned by the Code satisfies the precondition 𝑃, and dually
it guarantees that the final state satisfies 𝑄. This typing information is contained in the
space of objects of the internal 𝐽-opcategory of a cobordism interpreting the proof 𝜋:

𝐼 𝑂

𝑆

�Sep(Γ)[0, 𝑃] �Sep(Γ)[0, 𝑄]

�Sep(Γ)[1]

This expresses that the initial (internal) states of the proof, represented by the asyn-
chronous graph 𝐼 have (external) states which satisfy the predicate 𝑃, and similarly for
final states and the postcondition 𝑄.

Following this intuition, the nodes of the asynchronous graph �Sep[0, 𝑃] are all the
separated states whose Code-components satisfy the predicate 𝑃:

(𝜎𝐶, �⃗�, 𝜎𝐹) ∈ �Sep[0, 𝑃] ⟺ 𝜎𝐶 ⊨ 𝑃.

As in the previous section for the internal opcategories for the code, we omit the
parameter Γ. The transitions in �Sep[0, 𝑃] between such states are those of �∘•Sep played
by Frame.

The asynchronous graph �Sep[1] is simply defined to be �∘•Sep, and the maps

�Sep[0, 𝑃] �Sep[1]
𝜄

are the obvious inclusions.

74

3 An asynchronous template game model of CSL

3.3 Parallel product

The double categoriesCob(�), where� is one of the three internal opcategories�L,�S
or �Sep, need additional structures to interpret the constructions of the programming
language we consider and the corresponding rules of CSL. We begin with the parallel
product.

It would be natural to interpret it as a monoidal product ∥ in the model. However,
given maps 𝐶𝑖 ∶ 𝐴𝑖 𝐵𝑖 and 𝐷𝑖 ∶ 𝐵𝑖 𝐸𝑖, for 𝑖 = 1, 2, there would have to be an
invertible special 2-cell:

(𝐶1 ∥ 𝐶2); (𝐷1 ∥ 𝐷2) ⟹ (𝐶1; 𝐷1) ∥ (𝐶2; 𝐷2) (3.3)

between two horizontal morphisms 𝐴1 ∥ 𝐴2 𝐸1 ∥ 𝐸2. This contradicts the well-
known fact that in general the concatenation of interleavings are included in the
interleaving of the concatenations of traces, expressed by the so-called Hoare inequal-
ity:

(𝐶1 ∥ 𝐶2); (𝐷1 ∥ 𝐷2) ⊆ (𝐶1; 𝐷1) ∥ (𝐶2; 𝐷2).

Hence, the right structure to interpret the parallel product is that of lax monoidal
products, where the 2-cell (3.3) is not necessarily invertible.

As for the other constructions on cobordisms, this lax monoidal product is going to be
induced by a structure at the level of templates: span monoidal internal 𝐽-opcategories.
In order to define them, we introduce plain internal functors, which are internal functors
of 𝐽-opcategories which enjoy the property that one can pull along them.

3.3.1 Plain internal functors

An important family of internal functors are plain internal functors, which are
functors whose action on the colors is the identity. With the notations of Definition 3.1.9,
they are the internal functors of 𝐽-opcategories such that 𝑓 = Id. Plain internal functors
𝐹 ∶ �1 → �2 are useful because they define a pull operation on cobordisms C in
Cob(�2) operation when 𝕊 has pullbacks, given by the obvious three pullbacks along

75

3 An asynchronous template game model of CSL

the components of 𝐹 in the following diagram:

𝑂

𝑆

𝐼 �2[0, 𝑗]

�2[1, 𝑖𝑗] �1[0, 𝑗]

�2[0, 𝑖] �1[1, 𝑖𝑗]

�1[0, 𝑖]

outC

inC

out𝑖𝑗 𝐹[0,𝑗]

out𝑖𝑗

in𝑖𝑗 𝐹[0,𝑖𝑗]

𝐹[0,𝑖] in𝑖𝑗

This construction induces a lax double functor between Cob(�2) and Cob(�1). The
converse operation of pushing exists for any internal functor.

Lemma 3.3.1. A plain internal functor 𝐹 ∶ �1 → �2 induces a lax double functor defined
by taking the pointwise pullbacks along the components of 𝐹

pull[𝐹] ∶ Cob(�2) ⟶ Cob(�1).

Conversely, any internal functor 𝐹 ∶ �1 → �2 induces a double functor by post-
composition

push[𝐹] ∶ Cob(�1) ⟶ Cob(�2).

Proof. The double functor pull[𝐹] is lax, in that there is a (not necessarily invertible)
map pull[𝐹](𝐶); pull[𝐹](𝐷) → pull[𝐹](𝐶; 𝐷) induced by the universal properties of
colimits and limits.

3.3.2 Acute spans of internal functors

We start by introducing the notion of acute span of internal functors, and then describe
how transport of structure works along an acute span.

76

3 An asynchronous template game model of CSL

Acute spans An acute span between an internal 𝐽1-opcategory �1 and an internal
𝐽2-opcategory �2 is defined as a span of internal functors

�1 �0 �2=
𝐹 𝐺

where�0 is an internal 𝐽0-opcategory and the= sign indicates that the internal functor
𝐹 is plain. Here, we suppose that the ambient category 𝕊 has pushouts and pullbacks.
In that case, the definition gives rise to a double category AcuteSpan, whose objects
are the internal 𝐽-opcategories in the ambient category 𝕊, whose horizontal 1-cells are
acute spans, whose vertical 1-cells are internal functors of 𝐽-opcategories and whose
2-cells are maps of acute spans: commuting diagrams of the form:

�1 �2 �3

�′
1 �′

2 �′
3

=

=
𝜙

=

where the internal functor 𝜙 ∶ � → �′
0 is plain. Acute spans are composed using

pullbacks of plain internal functors along internal functors, in the category of internal 𝐽-
opcategories. The pullback is defined as follows: Assume that we are given two internal
functors:

�1 �2 �3
𝐹 𝐺

=

between an internal 𝐽1-opcategory�1 and a 𝐽3-opcategory�3. Their pullback is defined
as the internal 𝐽1-opcategory �1 ×�2

�3 described as follows. At the level of its
components and objects of 𝕊, for each 𝑖 ∈ 𝐽1, the two internal functors give the
following diagram:

�1[0, 𝑖] �2[0, 𝑓(𝑖)] �3[0, 𝑓(𝑖)]
𝐹[0,𝑖] 𝐺[0,𝑓(𝑖)]

where 𝑓 is the action of the internal functor 𝐹 on colors; and we simply define (�1×�2

�3)[0, 𝑖] as the pullback of that diagram in the ambient category 𝕊. We proceed similarly
to define (�1 ×�2

�3)[1, 𝑖𝑗], and the universality of the pullbacks in 𝕊 gives the
structural maps between the two.

Transport along acute spans The raison d’être of acute spans is to induce an opera-
tion of transport by “pull-then-push” along the two legs of a span. This operation plays
a fundamental role in Part I of this thesis, in particular because we derive our definition
of parallel product, and later of change of lock operations, from it.

To be able to characterize this operation, we need the notion of vertical transformation,
a generalization of natural transformations to double categories.

77

3 An asynchronous template game model of CSL

Definition 3.3.2. Given two double categories 𝒞 and 𝒟, and two lax double functors
ℱ, 𝒢 ∶ 𝒞 → 𝒟 between them, a vertical transformation 𝛼 ∶ ℱ ⇒ 𝐺 is defined as the
following.

• For all object 𝐴 ∈ 𝒞, a vertical 1-cell

ℱ(𝐴)

𝒢(𝐴)

𝛼𝐴

in 𝒟 which is natural with respect to composition with vertical 1-cells in the
double category 𝒞.

• For every horizontal 1-cell 𝐹 ∶ 𝐴 → 𝐵 in 𝒞, a 2-cell

ℱ(𝐴) ℱ(𝐵)

𝒢(𝐴) 𝒢(𝐵)

ℱ(𝐹)

𝛼𝐴 𝛼𝐹
𝛼𝐵

𝒢(𝐹)

• For composable horizontal 1-cells 𝐹 ∶ 𝐴 → 𝐵 and 𝐺 ∶ 𝐵 → 𝐶, the horizontal
composite of 𝛼𝐹 and 𝛼𝐺 is 𝛼𝐺∘𝐹.

The operation of transport along an acute span can be formulated as a double functor

Cob ∶ AcuteSpan → Dblvstrict ,hlax

between the double category AcuteSpan of acute spans defined just above, and the
following double category:

Definition 3.3.3. Thedouble category of double categories, double functors and vertical
transformations Dblvstrict ,hlax is defined as follows:

• 0-cells are double categories;

• vertical 1-cells are double functors;

• horizontal 1-cells are lax double functors;

• 2-cells are vertical transformations between the two composite lax double func-
tors.

78

3 An asynchronous template game model of CSL

Lemma 3.3.4. The operation Cob defines a double functor

Cob ∶ AcuteSpan → Dblvstrict ,hlax

from the double category AcuteSpan just defined to the double category Dblvstrict ,hlax of
double categories, double functors, lax double functors and vertical transformations. It is
defined as follows:

Cob ∶ AcuteSpan ⟶ Dblvstrict ,hlax
� ⟼ Cob(�)
𝑓 ⟼ push[𝑓]

(𝐹, 𝐺) ⟼ push[𝐺] ∘ pull[𝐹]

and the 2-cells are given by the universal properties of the pullback in the definition of
pull[⋅].

Proof. To prove that this induces a double functor, one needs in particular to check
that, given two composable acute spans F ∶ �1 �3 with support �2 and G ∶

�3 �5 with support �4, there is an invertible special 2-cell, that is, an invertible
vertical transformation 𝛼 ∶ Cob(G ∘ F) ≅ Cob(G) ∘ Cob(F). In particular, given an
object 𝜆 ∶ 𝐴 → �1[0, 𝑖] of Cob(�1), there must be a vertical isomorphism

𝛼𝐴 ∶ Cob(G ∘ F)(𝐴)
∼

−−−−−→ (Cob(G) ∘ Cob(F))(𝐴)

The following diagram shows how to construct this isomorphism.

𝐴 𝐴1

𝐴1 𝐴2

�1[1] �3[1] �5[1]

𝐵

�2[1] �4[1]

�6[1]

𝜆

𝛼𝐴

79

3 An asynchronous template game model of CSL

Here, �6[1] is the pullback defining the composition of 𝐹 and of 𝐺, and 𝐴1 and 𝐴2 are
the pullbacks in the action of the acute spans 𝐹 and 𝐺. Finally, 𝐵 is the pullback of the
action of 𝐺 ∘ 𝐹, along the map from �6[1] to �1[1].

Using the pasting lemma on pullbacks, the face of the cube with 𝐵, 𝐴1 and �6[1] is a
pullback. Using the same lemma with the other faces of the cube, we conclude that the
top face is a pullback as well.

This implies that map from 𝐵 to 𝐴2 is an isomorphism, since it is the pullback of
the identity on 𝐴1. This means that 𝐵 and 𝐴2 are related by an isomorphism which
commutes with the labeling maps:

𝐵 𝐴2

�5[1]

𝛼𝐴

We can do the same with the �[0, 𝑖]’s to construct the desired isomorphism.

3.3.3 Span monoidal internal 𝐽-opcategories

We use the span operation above to define the parallel product of two programs. Cate-
gorically, we construct a lax-monoidal structure on Cob(�), that is to say a lax double
functor

∥ ∶ Cob(�) × Cob(�) → Cob(�).

By lax double functor, we mean that there exists a natural and coherent family of
maps:

(𝐶1 ∥ 𝐶2) ; (𝐷1 ∥ 𝐷2) ⟹ (𝐶1; 𝐷1) ∥ (𝐶2; 𝐷2).

In our setting, this follows from Lemma 3.3.1, and therefore from the fact that there is
always a map from a colimit of limits to the corresponding limit of colimits.

The formal statement is that Cob(�) is a monoid object in the bicategory Dbllax of
double categories and lax double functors. This is why we will use the fact (Lemma 3.1.5)
that Cob induces a lax pseudo functor of bicategories HCob between the horizontal
bicategories HAcuteSpan and HDblvstrict ,hlax = Dbllax of double categories and lax
double functors.The objects of bicategoryAcuteSpan are the same as the corresponding
double category, its 1-cells are the acute spans and a two cell 𝜙 ∶ (𝐹′, 𝐺′) ⇒ (𝐹′, 𝐺′) is

80

3 An asynchronous template game model of CSL

a special 2-cell in the double category, that is, a plain internal functors 𝜙 which make
the following diagram commute:

�0

�1 �2

�
′

0

=

𝐹 𝐺

𝜙

=

=

𝐹′ 𝐺′

In this section, Cob will denote this lax pseudo functor and AcuteSpan will denote
the bicategory of acute spans.

This tensor product is built the same way as in the case of template games (Melliès,
2019), but using the notion of span-monoidal internal 𝐽-opcategory. We remarked below
Definition 3.1.9 that the category opCat(𝕊) of internal opcategories in the ambient
category 𝕊 is a Cartesian category.

As a consequence, the lax pseudo functor Cob is lax monoidal, where we equip both
AcuteSpan andDbllax with the monoidal structure induced by their Cartesian products.
In particular, there exist coercions living in the Cartesian category Dbllax, in the form
of lax double functors

m�1,�2
∶ Cob(�1) × Cob(�2) ⟶ Cob(�1 ×�2)

m1 ∶ 𝟙 ⟶ Cob(1)
The first coercion is obtained in the natural way by taking the “pointwise” Cartesian
product of the two cobordisms, and the second is the trivial cobordism, given by the
initial opcategory 1.
Definition 3.3.5. A span-monoidal internal 𝐽-opcategory (�, ∥, 𝜂) is a symmetric
pseudomonoid object in the symmetric monoidal bicategory AcuteSpan. In particular,
∥ and 𝜂 are two acute spans:

� ×� �∥ �
pick pince

1 �𝜂 �.

together with invertible 2-cells that witness the associativity of ∥, and the fact that 𝜂 is
a left and right identity of ∥. See (Day and Street, 1997, §3) for the complete definition.

Now, combining the external operations m�,� and m1 on the one hand, and the
internal operations ∥, 𝜂 on the other, we get a lax-monoidal structure on Cob(�)whose
multiplication and unit are respectively given by:

Cob(�) × Cob(�) Cob(� ×�) Cob(�)

𝟙 Cob(1) Cob(�)

m�,� Cob(∥)

m1 Cob(𝜂)

Theorem 3.3.6. Every span-monoidal internal 𝐽-opcategory � induces a symmetric lax-
monoidal double category Cob(�).

81

3 An asynchronous template game model of CSL

3.3.4 Parallel products of code and of proofs

Now that we have a general method for equipping the double category Cob(�) with a
lax-monoidal structure, we use it to define the parallel product for the stateful and the
stateless semantics of the Code.

Parallel product of codes Thebasic idea is to think of the code 𝐶1 ∥ 𝐶2 as a situation
where (1) there are three players involved: the Code of 𝐶1, the Code of 𝐶2 and the overall
Frame 𝐹, but where (2) we have forgotten the identities of the codes 𝐶1 and 𝐶2 by
considering both of them to be the Code 𝐶. This idea leads us to define the three-player
machine models �∘∘•L and �∘∘•S , with polarities C1,C2 and F. In the same way the two-
player versions of the machine models are deduced from their one-player versions �•L
and �•S in Section3.2.1 using a product, we use here the pullback:

�∘∘• Ω{C1,C2, F}

�∘• Ω{C, F}

𝜋
(12)(F)
pol

𝜋
(12)(F)
state Ω(12)(F)

𝜋pol

where (12)(F) denotes the function {C1,C2, F} → {C, F} which maps the polarities C1

and C2 to C, and the polarity F to itself. More explicitly, �∘∘• has the same states as �•
and three copies for each transition of �•, one copy for each of the three polarities
C1,C2, F. The span-monoidal structures on the internal opcategories � = �S,�L are
defined in a common way:

�∘• ×�∘• �∘∘• �∘•
⟨𝜋

(1)(2F)
state ,𝜋

(2)(1F)
state ⟩ 𝜋

(12)(F)
state 1 �• �∘•.

𝜄F

where, for instance, 𝜋(1)(2F)state maps every transition with polarity C1,C2, F to the cor-
responding transition with polarity given by the map C1 ↦ C and C2, F ↦ F; while
the homomorphism 𝜄F embeds the asynchronous graph �• into �∘• with every edge
transported to the corresponding edge of polarity F.

The product synchronizes transitions of the Code in 𝐶1 with transitions of the Envi-
ronment in 𝐶2 which are mapped to the same transition in �. The intuition here is
that a transition of 𝐶1 is seen by 𝐶2 as a transition of its Environment. Note that the
parallel product preserves tiles from 𝐶1 and from 𝐶2, and adds Code/Code tiles when
one transition comes from 𝐶1 and the other transition from 𝐶2—meaning that the two
instructions are executed on two different “threads”—and their image in�∘•×�∘• forms
a tile–meaning that these two instructions are independent.

82

3 An asynchronous template game model of CSL

Parallel product of proofs In order to define the parallel product at the level of
proofs, which we will use to interpret the CSL rule for the parallel product, we endow
�Sep with a span-monoidal structure. The main piece of this structure is the asyn-
chronous graph �∘∘•Sep of three-player separated states, which will be the basis for the
support of the span

�Sep ×�Sep �∥
Sep �Sep

pick pince

of Definition 3.3.5. It is the straightforward generalization of separated states to the
case where there are three players, C1,C2 and F.

Definition 3.3.7. A three-player separated state (𝜎1, 𝜎2, �⃗�, 𝜎𝐹) is a triple of three
logical states 𝜎1, 𝜎2 and 𝜎𝐹 and a map �⃗� ∶ 𝔏 → LogState+ {C1,C2, F} which satisfies
the following properties. For all 𝑟 ∈ �⃗�−1(LogState), �⃗�(𝑟) ⊨ Γ(𝑟), and the following
logical state is well defined:

𝜎1 ∗ 𝜎2 ∗ { ⊛
𝑟∈�⃗�−1(LogState)

�⃗�(𝑟) } ∗ 𝜎𝐹 ∈ LogState

As for two-player separated states, using the logical state above, we can define a map
⊛ which maps a three-player separated state to its underlying machine state.

The asynchronous graph �∘∘•Sep, the three-player analogue to �∘•Sep which is the basis
to the �Sep internal 𝐽-opcategory is defined as follows. Its nodes are the three-player
separated states defined above. It has three kinds of transitions: The C1 transitions are
of the form:

(𝜎1, 𝜎2, �⃗�, 𝜎𝐹)
𝑚∶C1

−−−−−−−→ (𝜎′1, 𝜎2, �⃗�
′, 𝜎𝐹)

where𝑚 ∈ Instr is an instruction, such that

⊛(𝜎1, 𝜎2, �⃗�, 𝜎𝐹)
𝑚

−−−−−→ ⊛(𝜎′1, 𝜎2, �⃗�
′, 𝜎𝐹)

is a transition in �•S, and such that the following conditions are satisfied:

∀ℓ ∉ wr(𝑚), 𝜎1(ℓ) = 𝜎′1(ℓ) wr(𝑚) ∪ rd(𝑚) ⊆ dom(𝜎1)

lk(𝑚) ⊆ dom(�⃗�) ∪ �⃗�−1(C1) ∀𝑟 ∉ lk(𝑚), �⃗�(𝑟) = �⃗�′(𝑟).

The C2 transitions are of the form

(𝜎1, 𝜎2, �⃗�, 𝜎𝐹)
𝑚∶C2

−−−−−−−→ (𝜎1, 𝜎
′
2, �⃗�

′, 𝜎𝐹)

with symmetric conditions. Finally, the F transitions are of the form

(𝜎1, 𝜎2, �⃗�, 𝜎𝐹)
𝑚∶F

−−−−−−→ (𝜎1, 𝜎2, �⃗�
′, 𝜎′𝐹)

83

3 An asynchronous template game model of CSL

such that they correspond to a transition in �S as above, and such that

∀ℓ ∉ wr(𝑚), 𝜎𝐹(ℓ) = 𝜎′𝐹(ℓ) wr(𝑚) ∪ rd(𝑚) ⊆ dom(𝜎𝐹)

lk(𝑚) ⊆ dom(�⃗�) ∪ �⃗�−1(F) ∀𝑟 ∉ lk(𝑚), �⃗�(𝑟) = �⃗�′(𝑟).

We can now define the internal 𝐽-opcategory �∥
Sep, where 𝐽 is the set of ordered pairs

of formulas of CSL. As for �Sep, we define �∥
Sep[1] to be �∘∘•Sep, and �∥[0, (𝑃, 𝑄)] is

the sub-asynchronous graph of �∘∘•Sep induced by keeping all F transitions (and tiles
over them) between three-player separated states (𝜎1, 𝜎2, �⃗�, 𝜎𝐹) such that 𝜎1 ⊨ 𝑃 and
𝜎2 ⊨ 𝑄.

The internal functor pince has the following action on the supports of the internal
𝐽-categories: it maps a three-player state to the (two-player) separated state (𝜎1 ∗
𝜎2, �⃗�

′, 𝜎𝐹), where �⃗�′ is the same as �⃗�where 𝐶1 and 𝐶2 have been remapped to 𝐶. It maps
�∥

Sep[0, (𝑃, 𝑄)] to�Sep[0, 𝑃∗𝑄] by restriction of the above asynchronousmorphism.The
morphism pickmaps that three-player state to the pair ⟨(𝜎1, �⃗�1, 𝜎2 ∗ 𝜎𝐹), (𝜎2, �⃗�1, 𝜎1 ∗ 𝜎𝐹)⟩.
The unit �∥𝜂

Sep of the structure is the subgraph of �Sep[1] with only Frame moves.

3.4 Generalized sequential composition

So far, to compose cobordisms horizontally, the target of the first cobordism must
exactly match the source of the second. This is not a reasonable assumption, because
the initial and the final states of a program are part of its internal state. For example,
the two cobordisms corresponding to the two programs being sequentially composed
in the following program

(if 𝐵 then 𝐶1 else 𝐶2) ; 𝐷

could look like this:

C₁

C₂

D

B

¬B

84

3 An asynchronous template game model of CSL

In summary, the two cobordisms we wish to compose generally look like:

𝐴 𝐵 𝐵′ 𝐶′

�[0, 𝑖] �[0, 𝑗] �[0, 𝑖′] �[0, 𝑗′]

𝜆out 𝜆in

�[1,𝑖𝑗] �[1,𝑖′𝑗′]

In practice, in all the cases we consider, �[0, 𝑗] and �[0, 𝑖′] will be equal, but 𝐵 and 𝐵′
will be different. To bridge the gap between (𝐵, 𝜆out) and (𝐵′, 𝜆in), we will use a filling
system over the internal 𝐽-opcategory�. With each pair of interfaces 𝜆out ∶ 𝐵 → �[0, 𝑗]
and 𝜆in ∶ 𝐵′ → �[0, 𝑖′], the filling system associates a cobordism

fill ((𝐵, 𝜆out), (𝐵′, 𝜆in)) ∶ (𝐵, 𝜆out) (𝐵′, 𝜆in)

from (𝐵, 𝜆out) to (𝐵′, 𝜆in). Thanks to this mediating cobordism, it becomes possible to
compose the two cobordisms using the usual composition of cobordism. Given such a
filling system, we write 𝐶1 ; 𝐶2 for this generalized form of composition.

Proposition 3.4.1. Suppose that for all games 𝜆, 𝜆′, 𝜇, 𝜇′ there exists amap fill (𝜆 ∥ 𝜆′, 𝜇 ∥ 𝜇′) →
fill (𝜆, 𝜇) ∥ fill (𝜆′, 𝜇′). In that case, the Hoare inequality holds: (𝐶1 ∥ 𝐶′1) ; (𝐶2 ∥ 𝐶

′
2) →

(𝐶1 ; 𝐶2) ∥ (𝐶
′
1 ; 𝐶′2).

Proof. The Hoare inequality for the usual composition applied twice gives us the map
below, from which we can conclude using the hypothesis on the filling system.

(𝐶1 ∥ 𝐶
′
1); (fill (𝜆, 𝜇) ∥ fill (𝜆

′, 𝜇′)); (𝐶2 ∥ 𝐶
′
2) → (𝐶1 ; 𝐶2) ∥ (𝐶

′
1 ; 𝐶′2)

When the base category 𝒞 has pullbacks as well as pushouts, which is the case in
the examples we are considering, a filling system always exists. It is defined by the
following diagram:

𝐵𝑗 ×�[1,𝑗𝑗′] 𝐴𝑗′

𝐵𝑗 𝐴𝑗′

𝐵𝑗 ∪�[1,𝑗𝑗′] 𝐴𝑗′

�[0, 𝑗] �[0, 𝑗′]

�[1, 𝑗𝑗′]

𝜆 𝜆′

in𝑗𝑗′ in𝑗𝑗′

where 𝐵𝑗 ×�[1,𝑗𝑗′] 𝐴𝑗′ is a pullback, and where 𝐵𝑗 ∪�[1,𝑗𝑗′] 𝐴𝑗′ is a pushout above that
pullback. Intuitively, it identifies all nodes of𝐵𝑗 and of𝐴𝑗′ that have the same underlying
state in �[1, 𝑗𝑗′]. This is the filling system which will be used in our interpretation of
sequential composition.

85

3 An asynchronous template game model of CSL

Lemma 3.4.2. The hypothesis of Proposition 3.4.1 holds in the case of the stateful and
stateless templates �S and �L.

Proof. Let � be either �L or �S. Given two games 𝜆 ∶ 𝐴 → �[0] and 𝜇 ∶ 𝐵 → �[0]
formulated as asynchronous morphisms, let us describe fill (𝜆, 𝜇). Every node 𝑥 of 𝐴
comes with a state in𝜆(𝑥)∈� [1]which we call the underlying state of 𝑥. Similarly, every
node 𝑦 of 𝐵 comes with an underlying state in𝜆(𝑦) ∈ �[1]. The pullback 𝐴 ×�[1] 𝐵

contains all the pairs (𝑎, 𝑏) ∈ 𝐴 × 𝐵 which share the same underlying state. Hence,
when we perform the pushout, we identify all such nodes 𝑎 and 𝑏; in particular, in the
case where there is another node 𝑎′ of 𝐴 with the same underlying states, the pullback
will also contain (𝑎′, 𝑏), and the nodes 𝑎 and 𝑎′ will be identified in the pushout. In
summary, the support 𝑆 of the filling fill (𝜆, 𝜇) is made of three kinds of nodes:

1. the nodes 𝑥 of 𝐴 such that no node of 𝐵 has the same underlying state;

2. the nodes 𝑦 of 𝐵 such that no node of 𝐴 has the same underlying state;

3. the states 𝑠 ∈ �[1] such that there exists nodes in 𝐴 and nodes in 𝐵 whose
underlying states is 𝑠 ; we use the notation [𝑠] in order to denote these specific
nodes.

Let us prove now that the filling system defined just above satisfies the property that
there exists a map:

fill (𝜆 ∥ 𝜆′, 𝜇 ∥ 𝜇′) → fill (𝜆, 𝜇) ∥ fill (𝜆′, 𝜇′)

The map is constructed in the following way. Consider a node of the support of
fill (𝜆 ∥ 𝜆′, 𝜇 ∥ 𝜇′). As we have just mentioned, there are three possibilities:

1. In the first case, the element is a node of 𝐴 ∥ 𝐴′, and thus a pair (𝑥, 𝑥′) ∈ 𝐴 × 𝐴′
consisting of two elements 𝑥 ∈ 𝐴 and 𝑥′ ∈ 𝐴′ with the same underlying state 𝑠.
Recall indeed that the asynchronous morphism pince[1] ∶ �∥[1] → �[1] is
injective on states. Since we are in the first case, there exists no node of 𝐵 ∥ 𝐵′
with underlying state 𝑠. This means that either:

a) neither 𝐵 nor 𝐵′ have nodes whose underlying state is 𝑠; in that case the
node 𝑥 is in fill (𝜆, 𝜇), and the node 𝑥′ is in fill (𝜆′, 𝜇′), and we map (𝑥, 𝑥′)
to (𝑥, 𝑥′).

b) 𝐵 has a node whose underlying state is 𝑠, but not 𝐵′; in the same way
essentially as in the preceding case, we can map (𝑥, 𝑥′) to ([𝑠], 𝑥′),

c) 𝐵′ has a node whose underlying state is 𝑠, but not 𝐵; this case is symmetric
to the previous one.

86

3 An asynchronous template game model of CSL

2. the second case is symmetric to the previous one.

3. last case: the node of the support of fill (𝜆 ∥ 𝜆′, 𝜇 ∥ 𝜇′) is of the form [𝑠]. In that
case, there are nodes in each of the four graphs 𝐴, 𝐴′, 𝐵, 𝐵′ whose underlying
states is 𝑠. We are thus allowed to map [𝑠] to the pair ([𝑠], [𝑠]).

Interestingly, this is not necessarily the case for the template �Sep of separated states
regulating the interpretation of CSL proofs. The reason is that there are several ways to
decompose a given separated state between two players C, F in �∘•Sep into a separated
state between three players C1,C2, F in �∘∘•Sep.

3.5 Change of locks

In the language we consider, locks names follow lexical scoping: A lock 𝑟 is introduced
with the resource 𝑟 do 𝐶 construction, and is only available inside of the command 𝐶.
This would be formalized syntactically by a judgment 𝔏 ⊢ 𝐶 which states that all the
locks in 𝐶 are in the set 𝔏, with the expected introduction and elimination rules:

𝔏 ⊎ {𝑟} ⊢ 𝐶

𝔏 ⊢ resource 𝑟 do 𝐶

𝔏 ⊢ 𝐶

𝔏 ⊎ {𝑟} ⊢ with 𝑟 do 𝐶

Correspondingly, the three machine models � = �Sep,�S,�L considered in this paper
are parameterized by the set of locks that the programs can access. In the case of the
two internal opcategories �S and �L, the free locks are simply described by a set 𝔏 of
lock names. Then, a program 𝔏 ⊢ 𝐶 is interpreted as a cobordism in Cob(�(𝔏)).

In the case of the internal 𝐽-opcategories �Sep of separated states, the free locks are
described by a context Γ = 𝑟1 ∶ 𝐼1, … , 𝑟𝑛 ∶ 𝐼𝑛 which associates with each free lock 𝑟𝑘
the predicate 𝐼𝑘 of a CSL invariant. A proof 𝜋 of a Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄} is
interpreted as cobordism in Cob(�Sep(Γ)). The rules Res and With, which manipulate
the context Γ of locks and invariants refine the two rules defined above.

As we wish to consider both cases at once, we write Γ, 𝑟 to denote a context in either of
the two cases. The operations of introducing a new lock and of creating a critical section
transport cobordisms across machine models parameterized with different free locks.
This change-of-basis technique is similar in nature to the way categorical models of
Algol such as (Reynolds, 1997) deal with lexical scoping of variables. Hence, we call the
two operations defined in this section change of locks operations.

87

3 An asynchronous template game model of CSL

The change-of-basis operations are induced by the two acute spans below:

�(Γ) �(Γ, 𝑟)

when[𝑟]

hide[𝑟]

where we write explicitly the dependence of the models �(Γ) on the contexts (or lists)
Γ of free locks. We formalize the situation by defining the graph LockGraph whose
vertices are the lock contexts Γ, with edges defined as transitions adding or removing
one specific lock in the context:

Γ Γ, 𝑟

𝜄Γ𝑟

𝜋Γ𝑟

Consider LockGraph∗ the locally posetal bicategory freely generated by this graph,
with invertible 2-cells between paths that are equal up to the reorderings: 𝜋𝑟 ∘ 𝜄𝑟′ ∼
𝜄𝑟′ ∘ 𝜋𝑟, 𝜋𝑟 ∘ 𝜋𝑟′ ∼ 𝜋𝑟′ ∘ 𝜋𝑟 and 𝜄𝑟 ∘ 𝜄𝑟′ ∼ 𝜄𝑟′ ∘ 𝜄𝑟, for 𝑟 ≠ 𝑟′, and leaving the Γ’s
implicit. By locally posetal, we mean that there is at most one tile (or invertible 2-cell)
between any pair of morphisms, witnessing that they are equal up to the reorderings
above. We call a LockGraph-template a double functor from this bicategory see as
a double category to AcuteSpan(𝕊), the double category of internal 𝐽-opcategories
and acute spans we defined in Section 3.3.2. The invertible 2-cells in the domain reflect
the fact that the order of the operations does not matter, up to isomorphism. The three
families � = �Sep,�S,�L of internal 𝐽-opcategories defined so far are LockGraph-
templates; we explain how in the remainder of this section. Practically, this means
that, by post-composing with the lax double functor Cob(⋅), we are able to transport
a cobordism defined on the internal category �(Γ) to one defined on the internal
category �(Γ, 𝑟 ∶ 𝐼), to interpret critical sections, and back, for resource introduction.
We abuse the notation and write these lax double functors as follows:

Cob(�(Γ)) Cob(�(Γ, 𝑟))

when[𝑟]

hide[𝑟]

The fact that it is possible to rename bound lock names at the syntactic level is reflected
in the semantics by the fact that the target of hide[𝑟] does not contain the name 𝑟 of
the hidden lock.

88

3 An asynchronous template game model of CSL

3.5.1 Hiding

To hide a lock 𝑟, we proceed in two steps for all the templates that we consider � =
�L,�S,�Sep. First, we prevent the Environment from touching that lock, and then we
remove this lock from the states and we transform all transitions 𝑃(𝑟), 𝑉(𝑟) into nops.
Formally, hiding is defined by a pull and push operation along the acute span hide[𝑟]:

�(Γ, 𝑟) �⟨𝑟⟩(Γ, 𝑟) �(Γ).
hide𝐶inj𝐶

The support �⟨𝑟⟩(Γ, 𝑟) of the span describes programs where the lock 𝑟 is hidden from
the environment, which means that only the Code can use it. Hence, �⟨𝑟⟩(Γ, 𝑟)[1] is
defined to be the same as the template �(Γ, 𝑟), except that all Environment transitions
𝑃(𝑟), 𝑉(𝑟) are deleted, and, in the case of the template of separated states, we remove
the states of the form (𝜎𝐶, �⃗�, 𝜎𝐹), where the lock 𝑟 is held by the Environment (that is:
�⃗�(𝑟) = F).

Moreover, we know that at the beginning and at the end of the execution of 𝐶 in
resource 𝑟 do𝐶, the resource 𝑟 is unlocked. This is why we define�⟨𝑟⟩(Γ, 𝑟)[0] to only
contain states where the resource 𝑟 is unlocked. Note that it means that �⟨𝑟⟩(Γ, 𝑟)[0]

is isomorphic to �(Γ)[0]; a fact which will prove useful later.

By definition of �⟨𝑟⟩(Γ, 𝑟) as a restriction of �(Γ, 𝑟), there is a canonical injection
inj

𝐶
∶ �⟨𝑟⟩(Γ, 𝑟) → �(Γ, 𝑟). The map hide𝐶 is defined differently depending on the

kind of template we are considering. In the case of the templates used for the code,
respectively�L and�S, we map the states 𝐿 ⊆ 𝔏 to 𝐿⧵{𝑟}, and 𝔰 = (𝜇, 𝐿) to (𝜇, 𝐿⧵{𝑟})
respectively. In the case of the template of separated states�Sep used to interpret proofs,
it is defined as follows on separated states:

(𝜎𝐶, �⃗�, 𝜎𝐹) ↦ {
(𝜎𝐶 ∗ �⃗�(𝑟), �⃗� ⧵ 𝑟, 𝜎𝐹) if �⃗�(𝑟) ∈ LogState
(𝜎𝐶, �⃗� ⧵ 𝑟, 𝜎𝐹) if �⃗�(𝑟) = 𝐶

Intuitively, this means that after the lock is hidden, the resource it protects belongs to
the Code. The fact that the lock has been hidden from the Environment ensures that
the mapping above defines an asynchronous morphism.

In all cases, hide𝐶 maps 𝑃(𝑟) and 𝑉(𝑟) to nop, and otherwise preserves the edges. The
intuition behind the definition of hide𝐶 for the separated states is that when we forget
about the lock 𝑟, even when nobody is holding it, we need to do something with the
resources that is associated with the lock: we chose to give this resource to the Code.
This means that outside of the binder for 𝑟, the resource associated with 𝑟 is not shared,
but belongs to the Code.

89

3 An asynchronous template game model of CSL

3.5.2 Critical sections

The case of critical sections is more delicate, as the definition differs between �L,�S
on the one hand, and �Sep on the other. In the case of the semantics of the code, we
wish to let the Environment be wild and change the states of locks whenever it wants,
even if they happen to be held by the Code. On the other hand, when it comes to the
semantics of the proofs, we enforce the discipline that a lock can only be unlocked by
the player that locked it (they are not semaphores). This difference of requirements is
reflected by differences in the definition of when[𝑟].

Stateful and stateless semantics We consider the machine model �⟨𝑟⟩(𝔏 ⊎ {𝑟})

which is the restriction of�(𝔏⊎{𝑟})where only the Environment is able to use the lock 𝑟.
This corresponds to the fact that inside a critical section the Code loses syntactically
access to the corresponding lock until the end of the critical section. There exists a
map ∇ from �⟨𝑟⟩(𝔏 ⊎ {𝑟}) to �(𝔏) given by:

Nodes: (𝜇, 𝐿) ⟼ (𝜇, 𝐿 ∩ 𝔏)

Edges: {

𝑃(𝑟)∶F ⟼ nop

𝑉(𝑟)∶F ⟼ nop

𝑚 ⟼ 𝑚

Then, the lifting of a cobordism for the critical sections is given by the following acute
span:

�(𝔏)
∇

←−−−−− �⟨𝑟⟩(𝔏 ⊎ {𝑟})
incl

−−−−−−−→ �(𝔏 ⊎ {𝑟})

where the right leg is the obvious inclusion. Intuitively, the operation of pulling along ∇,
which defines the when[𝑟] operation, duplicates the whole transition system, with
one version for each state of the lock 𝑟. It is the Environment which is in control of
switching between the copies, and the Code is oblivious to the state of the lock 𝑟.

Separated state semantics The lifting operation, that wewill use to deal with critical
sections, is simply defined as the push-forward along the map

�Sep(Γ) ⟶ �Sep(Γ, 𝑟 ∶ 𝐼)

which sends a separated state (𝜎𝐶, �⃗�, 𝜎𝐹) over Γ to the separated state over Γ, 𝑟 ∶ 𝐼
where the lock is held by the code (𝜎𝐶, �⃗� ⊎ [𝑟 ↦ 𝐶], 𝜎𝐹).

90

3 An asynchronous template game model of CSL

3.6 Sum of cobordisms

We define the disjoint sum of two cobordisms. This will be useful as a building block
for interpreting conditionals, and for the CSL rule for disjunction.

First, we remark that the category opCat(𝕊) of internal 𝐽-opcategories has binary sums:
the sum of an internal 𝐽-opcategory � and an internal 𝐽′-opcategory �′ is an internal
𝐽 × 𝐽′-opcategory �+�′. For example, for 𝑗 ∈ 𝐽 and 𝑗′ ∈ 𝐽′, define

(�+�′)[0, (𝑗, 𝑗′)] ≔ �[0, 𝑗] +�[0, 𝑗′].

Commutation of colimits ensures that this operation is well defined.

As usual, this operation on cobordisms is defined using a structure at the level of internal
𝐽-opcategories.

Definition 3.6.1. An internal 𝐽-opcategorywith sums (�, ∨) is an internal 𝐽-opcategory�
together with a symmetric injections ∨ ∶ 𝐽 × 𝐽 → 𝐽 in 𝕊 and an internal functor of
𝐽-opcategories ∇ ∶ �+� → � whose action on colors is the map ∨.

In particular, every internal opcategory has a canonical structure of internal opcategory
with sums.

Given two cobordisms C and D over an internal 𝐽-opcategory with sums, their sum
C⊕ D is defined as the following cobordism, with the obvious notations:

𝐼 + 𝐼′ 𝑆 + 𝑆′ 𝑂 + 𝑂′

�[0, 𝑖] +�[0, 𝑖′] �[1, 𝑖𝑗] +�[1, 𝑖′𝑗′] �[0, 𝑗] +�[0, 𝑗′]

�[0, 𝑖 ∨ 𝑗] �[1, 𝑖 ∨ 𝑖′𝑗 ∨ 𝑗′] �[0, 𝑗 ∨ 𝑗′]

in+in

𝜆𝐼+𝜆𝐼′ 𝜆𝜎+𝜆𝜎′

out+out

𝜆𝑂+𝜆𝑂′

in𝑖𝑗+in𝑖′𝑗′

∇ ∇

out𝑖𝑗+out𝑖′𝑗′

∇

in𝑖∨𝑖′𝑗∨𝑗′ out𝑖∨𝑖′𝑗∨𝑗′

3.7 Interpretation of codes and proofs

We have studied in previous sections how to express the main operations of concurrent
separation logic (sequential composition, parallel product and change of lock) in the
language of template games and cobordisms. Now that each of these basic operations has
been defined, the interpretation of the code and of the proofs of concurrent separation
logic (CSL) is uniform and essentially straightforward.

91

3 An asynchronous template game model of CSL

3.7.1 Stateful and stateless interpretations of the code

We begin by describing how the stateful and stateless interpretations J𝐶KS and J𝐶KL of
a given code 𝐶 are computed in our template game model. Since the interpretation is
uniform in �S and �L and only depends on the combinators of 𝐶, we find it convenient
to write � alternatively for �S or �L. The code 𝐶 with free locks 𝔏 is interpreted by
structural induction as a cobordism of the form

J𝐶K =

J𝐶Kin J𝐶Ksupport J𝐶Kout

�(𝔏)[0] �(𝔏)[1] �(𝔏)[0].

𝜆in 𝜆out (3.4)

The interpretation of every non-leaf command of the language corresponds to an
operation on cobordisms already defined, and it is thus straightforward.

Instructions We explain first how to define the cobordism that interprets a single
instruction𝑚. The cobordism J𝑚K is constructed in the following way: its input and
output borders J𝑚Kin and J𝑚Kout are defined as the asynchronous graph�(𝔏)[0], while
its support J𝑚Ksupport consists of the disjoint union of J𝑚Kin and J𝑚Kout augmented
with an edge 𝑠1 → 𝑠2 from 𝑠1 ∈ J𝑚Kin to 𝑠2 ∈ J𝑚Kout for every machine transition
𝑚 ∶ 𝑠1 → 𝑠2 performed by the instruction𝑚. Note that J𝑚Kin and J𝑚Kout contain only
Frame transitions, and that all the “transverse” edges 𝑠1 → 𝑠2 from J𝑚Kin to J𝑚Kout are
Code transitions, with the state 𝑠2 potentially equal to the error state.

This definition can be formulated using a well-chosen pullback: Consider the following
asynchronous graph

𝐴 = • •

𝐹1

𝐶

𝐹2

with a tile 𝐹1 ⋅ 𝐶 ∼ 𝐶 ⋅ 𝐹2. Then, we can construct the pullback, where Instr is the
set of instruction and Ω ∶ Set → AsyncGraph is the functor we used to define �∘•
page 72.

𝐺(𝑚) 𝐴 ×�•

Ω({𝐹,𝑚}) Ω({𝐹} ∪ Instr)

𝑓

where the map 𝑓 sends edges of the form (𝐹1, ⋅) and (𝐹2, ⋅) to 𝐹 and edges of the form
(𝐶,𝑚′) to the edge 𝑚′ in Ω({𝐹} ∪ Instr), for all instructions 𝑚′. It is then easy to
deduce the maps from the borders of the cobordism to its support using the universal
property of the pullback.

92

3 An asynchronous template game model of CSL

Leaf codes Except for malloc which is treated below, every leaf command 𝑥 ≔ 𝐸 ∣

𝑥 ≔ [𝐸] ∣ [𝐸] ≔ 𝐸′ ∣ skip ∣ dispose(𝐸) of the language corresponds to a specific
machine instruction𝑚 which is interpreted as the cobordism J𝑚K we have just defined.
The case of malloc is different because it needs to choose non-deterministically the
address which is allocated; as such, we take the disjoint sum of all the semantics of the
basic instructions alloc(𝐸, ℓ):

Jmalloc(𝐸)K ∶= fill (Id�[0], …) ; ⨁

ℓ∈Loc

Jalloc(𝐸, ℓ)K

where we pre-compose with a filling system to normalize the initial states (the second
component of fill is determined by the cobordism on its right.)

We now detail how to give a semantics to any code 𝐶 as a cobordism J𝐶K, by induction
on its structure. This lets us build J𝐶KS and J𝐶KL in the same way.

Conditionals Conditional branching is interpreted as

Jif 𝐵 then 𝐶1 else 𝐶2K

defined as
Jtest(𝐵)K; J𝐶1K⊕ Jtest(¬𝐵)K; J𝐶2K (3.5)

precomposed with

fill (�[0]
𝑖𝑑
⟶ �[0], �[0] +�[0]

∇
⟶ �[0])

as depicted at the beginning of Section 3.4, page 84.

Here, the purpose of precomposing with the filling is to identify the two copies of the
input �[0] appearing on each sides of the disjoint sum (3.5).

Sequential and parallel compositions We use the sequential and the parallel prod-
uct of cobordisms to interpret their syntactic counterparts:

J𝐶1‖𝐶2K = J𝐶1K‖J𝐶2K J𝐶1; 𝐶2K = J𝐶1K ; J𝐶2K.

Resource introduction and critical sections We use the change of locks opera-
tions. The interpretation of resource 𝑟 do 𝐶 is defined as

Jresource 𝑟 do 𝐶K = hide[𝑟](J𝐶K)

The interpretation of Jwith 𝑟 do 𝐶K is defined as:

J𝑃(𝑟)K ; when[𝑟](J𝐶K) ; J𝑉(𝑟)K.

93

3 An asynchronous template game model of CSL

Loops To interpret a loop while 𝐵 do 𝐶, we build its infinite unfolding as the least
fixpoint of the map:

𝐹(𝑋) = Jtest(𝐵)K ; J𝐶K ; 𝑋 ⊕ Jtest(¬𝐵)K

seen as an endofunctor on the category of arrows of the double category Cob(�)
seen as an internal category in Cat. It exists because that category has all colimits of
𝜔-chains, and 𝐹 preserves such colimits because it is itself defined using colimits.

3.7.2 Interactive and separated interpretations of the proofs

Our purpose is to interpret by structural induction every CSL proof 𝜋 ∶ Γ ⊢ {𝑃} 𝐶 {𝑄}
as a cobordism of the form

J𝜋KSep =

J𝜋KSep,in J𝜋KSep,support J𝜋KSep,out

�Sep(Γ)[0, 𝑃] �Sep(Γ)[1] �Sep(Γ)[0, 𝑄].

(3.6)

living in the double category Cob(�Sep(Γ)) associated with the template �Sep(Γ)

of separated states, parameterized by the context Γ. As it stands, the interpretation
is essentially straightforward, since most of the rules of the logic correspond to an
operation on cobordisms already carefully defined. There is apparently one exception
however: the Frame rule does not seem, at least at first sight, to correspond to a basic
operation on cobordisms. Given a cobordism J𝜋KSep which interprets a proof 𝜋 of the
Hoare triple Γ ⊢ {𝑃}𝐶{𝑄}, we need to define a new cobordism associated with the Hoare
triple Γ ⊢ {𝑃∗𝑅}𝐶{𝑄∗𝑅}.The solution is not difficult to find however: we define the new
cobordism as the parallel product J𝜋KSep ∥ �Sep[0, 𝑅], where the asynchronous graph
�Sep[0, 𝑅], which contains only states which statisfy the predicate 𝑅 and Environment
transitions, is lifted to the identity cobordism defined in the expected way in the double
category Cob(�Sep).

The rules that correspond tomachine instructions𝑚 ∈ Instr (such as Ld) are interpreted
in a way which is similar to the interpretation of the corresponding codes, always
preserving the permission associated with affected locations. For instance, the axiom
rule

Ld
Γ ⊢ {((Own⊤(𝑥) ∗ 𝑃) ∧ 𝐸=𝑤)∗𝑤

𝑝

↦ 𝑣} 𝑥 ≔ [𝐸] {((Own⊤(𝑥) ∗ 𝑃) ∧ 𝑥=𝑣)∗𝑤
𝑝

↦ 𝑣}

is interpreted as a cobordisms whose Code edges are all the edges from an initial state
to an final state of the form

((𝑠, ℎ), �⃗�, 𝜎𝐹)
𝑥≔[𝐸]∶C

−−−−−−−−−→ ((𝑠[𝑥 ↦ 𝑣], ℎ), �⃗�, 𝜎𝐹)

94

3 An asynchronous template game model of CSL

where ℎ contains a mapping [𝑤 → 𝑣], and where 𝐸 = 𝑤 holds in ℎ.

t
⋅⋅⋅⋅⋅
𝜋1

Γ ⊢ {𝑃} 𝐶1 {𝑄}

⋅⋅⋅⋅⋅
𝜋2

Γ ⊢ {𝑄} 𝐶2 {𝑅}

Γ ⊢ {𝑃} 𝐶1; 𝐶2 {𝑅}

|

Sep

= J𝜋1KSep ; J𝜋2KSep

For the parallel product rule Par, we use the parallel product of cobordisms using the
above notion of compatibility:

t
⋅⋅⋅⋅⋅
𝜋1

Γ ⊢ {𝑃1} 𝐶1 {𝑄1}

⋅⋅⋅⋅⋅
𝜋2

Γ ⊢ {𝑃2} 𝐶2 {𝑄2}

Γ ⊢ {𝑃1 ∗ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∗ 𝑄2}

|

Sep

= J𝜋1KSep ∥ J𝜋2KSep

t
⋅⋅⋅⋅⋅
𝜋

Γ ⊢ {𝑃} 𝐶 {𝑄}

Γ ⊢ {𝑃 ∗ 𝑅} 𝐶 {𝑄 ∗ 𝑅}

|

Sep

= J𝜋KSep ∥ Id�Sep[0,𝑅]

t
⋅⋅⋅⋅⋅
𝜋

Γ, 𝑟 ∶ 𝐽 ⊢ {𝑃} 𝐶 {𝑄}

Γ ⊢ {𝑃 ∗ 𝐽} resource 𝑟 do 𝐶 {𝑄 ∗ 𝐽}

|

Sep

= hide[𝑟](J𝜋K)

t
⋅⋅⋅⋅⋅
𝜋

Γ, 𝑟 ∶ 𝐽 ⊢ {(𝑃 ∗ 𝐽) ∧ 𝐵} 𝐶 {𝑄 ∗ 𝐽}

Γ, 𝑟 ∶ 𝐽 ⊢ {𝑃} with 𝑟 do 𝐶 {𝑄}

|

Sep

=

acquire[𝑟];
when[𝑟](J𝜋KSep) ;
release[𝑟]

t
⋅⋅⋅⋅⋅
𝜋1

Γ ⊢ {𝑃1} 𝐶 {𝑄1}

⋅⋅⋅⋅⋅
𝜋2

Γ ⊢ {𝑃2} 𝐶 {𝑄2}

Γ ⊢ {𝑃1 ∨ 𝑃2} 𝐶 {𝑄1 ∨ 𝑄2}

|

Sep

= J𝜋1KSep⊕ J𝜋2KSep

In the definition of the interpretation ofWith, the cobordisms acquire[𝑟] and release[𝑟]
are the counterparts of J𝑃(𝑟)KS and J𝑉(𝑟)KS at the level of separated states.

3.8 The asynchronous soundness theorem

We explain how to state the asynchronous soundness theorem of concurrent separation
logic which we described in the previous chapter in Section 2.5.3 in the language of
cobordisms.

95

3 An asynchronous template game model of CSL

3.8.1 Comparing the three interpretations

Given a code 𝐶 and a proof 𝜋 of Γ ⊢ {𝑃}𝐶{𝑄}, the proof of the asynchronous soundness
relies on the existence of a chain of translations

J𝜋KSep J𝐶KS J𝐶KL
𝒮 ℒ (3.7)

between cobordisms living respectively in �Sep(Γ), �S(𝔏) and �L(𝔏). Here, we write
𝔏 for the domain of Γ. In order to clarify the functorial nature of these translations,
one starts by observing the existence of internal functors between the internal 𝐽-
opcategories:

�Sep(Γ) �S(𝔏) �L(𝔏).
𝑢𝒮 𝑢ℒ

The first internal functor 𝑢𝒮 transports every separated state (𝜎𝐶, �⃗�, 𝜎𝐹) into the ma-
chine state obtained by multiplying all its components as in Definition 2.5.4 and by
forgetting all the permissions. The second internal functor 𝑢ℒ forgets the memory from
amachine state in order to obtain the corresponding lock state.The three systems of tiles
which equip the synchronization templates �Sep, �S and �L were carefully designed in
order to ensure that these internal functors do indeed exist. Since we can compare by a
simulation two cobordisms defined over the same internal 𝐽-opcategory, we can also
compare by “change-of-basis” two cobordisms over different internal 𝐽-opcategories.
This leads to the following definition.

Definition 3.8.1. Given two internal 𝐽-opcategories � and �′, and two cobordisms

C ∶ 𝐴 𝐵 in Cob(�) and C′ ∶ 𝐴′ 𝐵′ in Cob(�′)

where we write 𝐴 to denote the 0-cell 𝐴 → �[0, 𝑖] of Cob(�), etc, a map of cobor-
disms (ℱ, ℱ𝐴, ℱ𝐵, ℱ�) fromC toC′ is the data of an internal functor of 𝐽-opcategoriesℱ� ∶

� → �′ and of a 2-cell ℱ and two vertical 1-cells ℱ𝐴 and ℱ𝐵 in Cob(�′) of the form:

push[ℱ�](𝐴) push[ℱ�](𝐵)

𝐴′ 𝐵′

push[ℱ�](C)

ℱ𝐴 ℱ𝐵

C′

ℱ

This means that the translations in (3.7) are simulations:

push[𝑢𝒮](J𝜋KSep) J𝐶KS
𝒮 and push[𝑢ℒ](J𝐶KS) J𝐶KL.

ℒ

96

3 An asynchronous template game model of CSL

Because the semantic interpretations of programs and proofs are defined by structural
induction, we need the semantic combinators we use to “preserve” maps of cobordisms.
The following lemmas provide conditions for their preservation.

The definition of internal functor of 𝐽-opcategories implies that we have a natural family
of isomorphisms

push[𝑢](𝐶; 𝐷) push[𝑢](𝐶); push[𝑢](𝐷)𝑖𝑠𝑜

in the ambient category 𝕊 = AsyncGraph. Intuitively, the reason why this is an
isomorphism is that, in both cases, we perform the same pushout for cospan composition
𝐶, 𝐷 ↦ 𝐶;𝐷 at the level of the supports of games and cobordisms. The following lemma
gives a condition for the sequential product to preserve maps of cobordisms.

Lemma 3.8.2. Let � and �′ be two internal 𝐽-opcategories related by an internal functor
of 𝐽-opcategories 𝑢 ∶ � → �′. Consider two composable cobordisms C ∶ 𝐼 → 𝑀 and
D ∶ 𝑀 → 𝑂 in Cob(�), and two composable cobordisms C′ ∶ 𝐼′ → 𝑀′ and D ∶ 𝑀′ → 𝑂′

in Cob(�′). Suppose finally that they are related by two maps of cobordisms ℱ ∶ C → C′

and 𝒢 ∶ D → D′ such that 𝑢 = ℱ� = 𝒢� and ℱ𝑀 = 𝒢𝑀. Then there is a map of
cobordisms

ℱ; 𝒢 ∶ C;D ⟶ C′;D′

Proof. The desired 2-cell in Cob(�′) is the following, where the top invertible 2-cell is
the isomorphism given above.

push[𝑢](𝐼) push[𝑢](𝑂)

push[𝑢](𝐼) push[𝑢](𝑀) push[𝑢](𝑂)

𝐼′ 𝑀′ 𝑂′

push[𝑢](C;D)

push[𝑢](C)

ℱ𝐼

push[𝑢](D)

𝒢𝑀ℱ𝑀 ℱ𝑂

C′ D′

∼

ℱ 𝒢

We defer to Lemma 3.9.2 the explanation of why the condition ℱ𝑀 = 𝒢𝑀 is always true
for the cobordisms which we compose sequentially.

The preservation of the maps of cobordisms by the action of the double functor Cob of
Lemma 3.3.4 is expressed in the following lemma.

97

3 An asynchronous template game model of CSL

Lemma 3.8.3. Let �1,�2,�′
1 and �′

2 be internal 𝐽-opcategories, C ∶ 𝐴 𝐵 be a
cobordism in Cob(�1) and C′ ∶ 𝐴′ 𝐵′ be one in Cob(�′

1). Suppose moreover given
two acute spans (𝐹, 𝐺) and (𝐹′, 𝐺′) related as follows in the double category AcuteSpan:

�1 �2

�′
1 �′

2

(𝐹,𝐺)

𝑢 𝑣

(𝐹′,𝐺′)

𝛼

Then a map of cobordisms ℱ ∶ C → C′ such that ℱ� = 𝑢 induces a map of cobordisms
from Cob((𝐹, 𝐺))(C) to Cob((𝐹′, 𝐺′))(C′) which is above 𝑣.

Proof. The induced map of cobordism is given by the following vertical composition of
2-cells in Cob(�′

2), and the lax double functor structure of Cob(⋅).

push[𝑣](Cob((𝐹, 𝐺))(𝐴)) push[𝑣](Cob((𝐹, 𝐺))(𝐵))

Cob((𝐹′, 𝐺′))(push[𝑢](𝐴)) Cob((𝐹′, 𝐺′))(push[𝑢](𝐵))

Cob((𝐹′, 𝐺′))(𝐴′) Cob((𝐹′, 𝐺′))(𝐵′)

push[𝑣](Cob((𝐹,𝐺))(C))

Cob(𝛼)𝐴 Cob(𝛼)𝐵

Cob((𝐹′,𝐺′))(push[𝑢](C))

Cob((𝐹′,𝐺′))(ℱ𝐴) Cob((𝐹′,𝐺′))(ℱ𝐵)

Cob((𝐹′,𝐺′))(C′)

Cob(𝛼)C

Cob((𝐹′,𝐺′))(ℱ)

3.8.2 The asynchronous soundness theorem

As we have explained in the previous chapter, the asynchronous theorem of CSL uses
the notion of fibration. Definition 2.4.6 introduces different notions of fibration for
asynchronous morphisms. We can lift this notion to maps of cobordisms by considering
the asynchronous morphism between the supports which is induced by such a map.

We can now state the asynchronous soundness theorem for CSL which relies on these
two notions of fibrations in order to express the safety and data-race freedom of the
code in a clean topological way. In order to prove these two properties, the theorem
focuses on the nature of the asynchronous comparison maps between cobordisms

J𝜋KSep
𝒮

−−−−−→ J𝐶KS
ℒ

−−−−−→ J𝐶KL

98

3 An asynchronous template game model of CSL

discussed in §3.8.1. The theorem states:

Theorem 3.8.4 (Asynchronous soundness theorem). For every CSL proof 𝜋 of Γ ⊢
{𝑃}𝐶{𝑄}, the comparison map 𝒮 ∶ J𝜋KSep → J𝐶KS is a Code 1-fibration, and the comparison
map ℒ ∘ 𝒮 ∶ J𝜋KSep → J𝐶KL is a 2-fibration.

As we explained in Section 2.5.3, the first part of the theorem ensures that a program
specified in CSL does not crash. Indeed, the cobordism J𝜋KSep lives above�Sep[1]which
does not include the error state . Since every step performed by the Code in J𝐶KS
can be lifted to J𝜋KSep by the 1-fibrational property, the specified Code cannot produce
any error. The second part of the theorem ensures that a specified program does not
produce nor encounter any data race. Indeed, every time two instructions are executed
in parallel in the machine, they define a tile in the cobordism J𝐶KL, which can be lifted
by the 2-fibrational property to a tile in the cobordism J𝜋KSep of separated states. There,
the very existence of the tile implies that these two instructions are independent and
do not produce any data race.

3.9 Proof of the asynchronous soundness theorem

The general method for proving Theorem 3.8.4 is to prove by structural induction over
the proof trees of CSL that the maps 𝒮 and ℒ exist, have the fibrational properties stated
in the theorem for the axioms of the logic, and that the maps and these properties are
preserved by the rules of the logic.

3.9.1 Well-formed cobordisms

To do so, we need to refine the kind of cobordisms we use to interpret programs and
proofs: We require that they satisfy a number of properties.

Definition 3.9.1. A cobordism

𝐼 𝑆 𝑂

�[0, 𝑖] �[1, 𝑖𝑗] �[0, 𝑗]

in

𝜆𝐼 𝜆𝜎

out

𝜆𝑂

in𝑖𝑗 out𝑖𝑗

in an ambient category 𝕊 is said to be well-formed if:

1. the map 𝜆𝐼 ∶ 𝐼 → �[0, 𝑖] is an isomorphism;

99

3 An asynchronous template game model of CSL

2. the map 𝜆𝜎 is an Environment 1-fibration;

3. the map out ∶ 𝑂 → 𝑆 is a mono;

4. the pullback of in ∶ 𝐼 → 𝑆 along out ∶ 𝑂 → 𝑆 is the initial object of 𝕊.

The conditions 1. and 2. are related to receptivity in games semantics: the first means
that any initial state in �[0, 𝑖] must be “accepted” by the program or the proof, and the
second means that the Frame can always play any valid transition, or move. Condition 3.
and 4. are more technical and are needed to ensure that sequential composition behaves
nicely with respect to fibrational properties.

The condition that 𝜆𝐼 be a monomorphism (since it is an isomorphism) is used to ensure
that the maps of cobordisms𝒮 and ℒ always exist.

Lemma 3.9.2. Consider two composable cobordisms C ∶ 𝐼 → 𝑀 and D ∶ 𝑀 → 𝑂

in Cob(�), and two composable cobordisms C′ ∶ 𝐼′ → 𝑀′ and D ∶ 𝑀′ → 𝑂′ in Cob(�′).
Suppose finally that they are related by two maps of cobordisms ℱ ∶ C → C′ and
𝒢 ∶ D → D′ such that ℱ� = 𝒢�. If D′ is well-formed, then ℱ𝑀 = 𝒢𝑀.

Proof. This follows from 𝜆′𝑀 ∘ ℱ𝑀 = 𝑢 ∘ 𝜆𝑀 = 𝜆′𝑀 ∘ 𝒢𝑀, where 𝑢 = ℱ� = 𝒢� and from
the fact that 𝜆′𝑀 is a mono.

We also require that the internal 𝐽-opcategories we use to interpret have good fibrational
properties:

Definition 3.9.3. An internal 𝐽-opcategory � is called ℳ-fibrational if the maps
in𝑖𝑗 ∶ �[0, 𝑖] → �[1, 𝑖𝑗] and out𝑖𝑗 ∶ �[0, 𝑗] → �[1, 𝑖𝑗] are monos,ℳ-1-fibrations and
2-fibrations, and if the map �[2, 𝑖𝑗𝑘] → �[1, 𝑖𝑘] are anℳ-1-fibration. This induces
the notion of Environment-fibrational internal 𝐽-opcategories.

Every internal 𝐽-opcategories �Sep, �S and �L we have seen so far is Environment-
fibrational.

Before we proceed to proving that all operations we use on cobordisms preserve well-
formedness, we characterize fibrations as maps which satisfy a right lifting property.
Let us write ⋅→⋅ for the asynchronous graph with two nodes 0 and 1 an and a unique
edge 0 → 1. We write →𝐶 when this unique edge is considered a Code transition, and
→𝐹 when it is considered as a Frame transition. We write ⋅ for the asynchronous graph
with a unique node, and no edge or tile. We denote by 𝑠 ∶ ⋅ ⟶ ⋅→⋅ the asynchronous
morphism which maps that single node to the node 0 of ⋅→⋅.

100

3 An asynchronous template game model of CSL

Lemma 3.9.4. Let 𝑓 ∶ 𝐺 → 𝐺′ be an asynchronous morphism between asynchronous
graphs with a notion of Code and Frame edge. Then 𝑓 is a Code 1-fibration (respectively
an Environment 1-fibration) iff, for all squares of polarity preserving morphisms as in the
left-hand diagram below (respectively the right-hand diagram), there exists a map denoted
by the dashed arrow which makes both triangles commute.

⋅ 𝐺

→𝐶 𝐺′

𝑠 𝑓

⋅ 𝐺

→𝐹 𝐺′

𝑠 𝑓

Proof. Follows easily from the definitions.

We can characterize 2-fibrations in the same way. Let ∧ be the asynchronous graph
with three nodes 0, 1, 2 and two edges 0 → 1 → 2, and let � be the asynchronous graph
with 4 nodes 0, 1, 1′, 2 and four edges 0 → 1 → 2 and 0 → 1′ → 2 and a unique tile
which sits on the two paths of length two above. Write 𝑢 ∶ ∧ → � for the inclusion,
mapping the path of length two in ∧ to the “upper path” of the tile in �. Similarly, we
have:

Lemma 3.9.5. Let 𝑓 ∶ 𝐺 → 𝐺′ be an asynchronous morphism between two asynchronous
graphs. Then 𝑓 is a 2-fibration iff, for all squares as in the diagram below, there exists a
map denoted by the dashed arrow which makes both triangles commute.

∧ 𝐺

� 𝐺′

𝑢 𝑓

Proof. Follows easily from the definitions.

One immediate consequence of this diagrammatic characterization of fibrations is that
they are stable under pullbacks, in the following sense.

Lemma 3.9.6. Given an morphism 𝑓 ∶ 𝐺 → 𝐺′ in 𝕊, suppose 𝑔 its pullback along some
map 𝑢 ∶ 𝐻′ → 𝐺′:

𝐻 𝐺

𝐻′ 𝐺′

𝑔 𝑝.𝑏. 𝑓

𝑢

then 𝑔 is a fibration of some type (Code or Environment 1-fibrations, or 2-fibrations) if 𝑓 is.

101

3 An asynchronous template game model of CSL

Proof. Assume 𝑓 is a fibration characterized by a right lifting property with respect to
a map 𝑖 ∶ 𝑋 → 𝑌

𝑋 𝐻 𝐺

𝑌 𝐻′ 𝐺′

𝑖 𝑔 𝑝.𝑏. 𝑓

𝑢

then there exists a map 𝑎 ∶ 𝑌 → 𝐺 making the two triangles commute. The universal
property of the pullback implies that there exists a unique map 𝑎′ ∶ 𝑌 → 𝐻 which
makes the two triangles commute, and therefore 𝑔 is a fibration as well.

Another important observation, especially when dealing with colimits, is that of all the
“test” objects (⋅, ⋅→⋅, ∧, �) only ∧ is not representable in AsyncGraph, and hence is
not tiny, since, in presheaf categories, tiny objects are the retracts of representables.

Definition 3.9.7. An object 𝐴 of a category 𝒞 is called tiny if the functor 𝒞(𝐴,−)
preserves colimits.

We now introduce another notion, adhesivity, which is going to be useful to reason
about sequential composition of cobordisms.

3.9.2 Adhesivity of AsyncGraph

There are several equivalent definitions of adhesivity, the one we present here, which
is not the tersest, has been chosen because it is used directly in the sequel.

Definition 3.9.8. A category 𝒞 is adhesive if all pushouts along monos exist, and if
all such pushout squares are van Kampen squares. A commutative square

𝐴 𝐶

𝐵 𝐷

𝑔

𝑓 𝑣

𝑢

102

3 An asynchronous template game model of CSL

is said to be a van Kampen square if, for every cubical commutative diagram of the
form

𝑊 𝑌

𝑋 𝑍

𝐴 𝐶

𝐵 𝐷

𝑔

𝑓

𝑣

𝑢

whose two “back faces” (𝑊,𝐴, 𝑋, 𝐵 and 𝑊,𝐴, 𝑌, 𝐶) are pullbacks, the top face is a
pushout if and only if the two front faces (𝑋, 𝑍, 𝐵, 𝐷 and 𝑌, 𝑍, 𝐶, 𝐷) are pullbacks. We
call such a commutative cube a van Kampen cube.

The category AsyncGraph of asynchronous graphs is adhesive since it is a presheaf
category, and therefore a topos.

The following consequences of adhesivity will be useful, see for example (Lack and
Sobociński, 2004).

Lemma 3.9.9. In an adhesive category, pushouts of monos are monos, and the resulting
pushout squares are also pullback squares.

Another useful fact is that a the coproducts are well-behaved as soon as an adhesive
category has strict initial objects.

Lemma 3.9.10. Any adhesive category 𝕊 which has a strict initial object is extensive. In
particular, this means that its coproducts are disjoint, which means that coprojections are
monic, and their pullback is an initial object in 𝕊.

3.9.3 Preservation of well-formedness

We prove that the operations that we use to interpret programs and proofs preserve the
well-formedness of cobordisms. The cases of operations such as the parallel product
and the two change of locks operations follows from the lemma below, which relies on
the following property of the acute spans we use.

Definition 3.9.11. An acute span S of internal 𝐽-opcategories

�1 �2 �3
𝐹 𝐺

103

3 An asynchronous template game model of CSL

is called strict if the following squares are pullbacks:

�2[0, 𝑖] �2[1] �2[0, 𝑗]

�1[0, 𝑖] �1[1] �1[0, 𝑗]

in𝑖

𝐹[0,𝑖] 𝐹[1]

out𝑗

𝐹[0,𝑗]

in𝑖

out𝑗

Lemma 3.9.12. Given a strict acute span S of internal 𝐽-opcategories

�1 �2 �3
𝐹 𝐺

the operation on cobordisms 𝑋 ↦ Cob(S)(𝑋) preserves well-formedness (except for
condition 1 of Definition 3.9.1) if 𝐺[1] is an Environment 1-fibration and a mono. If
moreover the maps 𝐺[0, 𝑖] are isos, then Condition 1 is also preserved.

Proof. Let the following be a well-formed cobordism over the internal 𝐽-opcategory�1:

𝐼 𝑆 𝑂

�1[0, 𝑖] �1[1, 𝑖𝑗] �1[0, 𝑖]

in

𝜆𝐼 𝜆𝜎

out

𝜆𝑂

in𝑖𝑗 out𝑖𝑗

and let the following cobordism over �2 be obtained by pulling back along the compo-
nents of the internal functor 𝐹 using the pull[𝐹] lax double functor of Lemma 3.3.1:

𝐼′ 𝑆′ 𝑂′

�2[0, 𝑖] �2[1, 𝑖𝑗] �2[0, 𝑖]

in′

𝜆𝐼′ 𝜆𝜎′

out′

𝜆𝑂′

in𝑖𝑗 out𝑖𝑗

We need to check the four conditions of Definition 3.9.1.

(1) Isos are stable under pullback in AsyncGraph, so 𝜆𝐼′ is an iso as well. If the
condition that 𝐺[0, 𝑖] is an iso holds, the operation push[𝐹] also preserves Con-
dition 1.

(2) Fibrations are stable under pullback, so 𝜆𝜎′ is also a 1-fibration. The hypothesis
on 𝐺[1] implies that Condition (2) is preserved by post-composing.

(3) The map out′ ∶ 𝑂′ → 𝑆′ is a mono because, according to the pasting lemma on
pullbacks and the fact that 𝐺[1] is a mono, it is the pullback of out ∶ 𝑂 → 𝑆 along
the map 𝑂′ → 𝑂 which is part of the pullback defining 𝑂′.

104

3 An asynchronous template game model of CSL

(4) The universal property of pullbacks implies that there is a map from the pullback𝑋
of 𝐼′ and 𝑂′ to the pullback of 𝐼 and 𝑂, which is an initial object of AsyncGraph
since it is a well-formed cobordism. SinceAsyncGraph has strong initial objects,
𝑋 is an initial object as well.

All the operations on cobordisms, the parallel product, hiding and lifting of locks (except
for Condition 1, see below), are defined using acute spans which satisfy the conditions
of the lemma above, and therefore they preserve well-formedness.

To prove that the other operations also preserve well-formedness, we need to prove
that sequential composition preserves well-formedness. This fact relies on the following
result.

Lemma 3.9.13. Suppose given the following diagram:

𝑌 𝐶

𝑍 𝐷

𝑊 𝐴

𝑋 𝐵

𝑓′

𝜆2

𝑖′

𝑖

𝜇

𝑔

𝑓

𝑝𝑜

𝑗

𝑝𝑜

𝑔′

𝜆1

𝑗′

where 𝜆1, 𝜆2, 𝑖 and 𝑗 are Environment 1-fibrations, and 𝑖, 𝑗 are monos. Then the map 𝜇
induced by the universality of the pushout is an Environment 1-fibration as well.

Proof. First, becauseAsyncGraph is adhesive, 𝑖′ and 𝑗′ are monos as well. Suppose we
have a node 𝑥 in 𝑍 which is mapped to the source node of an Environment transition 𝑡
in 𝐷. Because the walking arrow is tiny, either 𝐵 of 𝐶 contains a transition 𝑡′ which is
mapped to the transition 𝑡. Without loss of generality, suppose that it is in 𝐵. Similarly,
the node 𝑥 has an antecedent 𝑥′ in either 𝑋 or 𝑌. Suppose first that it is in 𝑋. Then,
because 𝑗′ is a monomorphism, it must be that this node is mapped by 𝜆1 to the source
node of 𝑡′, and then we conclude using the fact that 𝜆1 is an Environment 1-fibration.
Suppose now that this node 𝑥′ is in 𝑌. Then the node 𝜆2(𝑥′) in 𝐶 is mapped to the same
node in 𝐷 as the source node of 𝑡′, therefore there is a node 𝑦 in 𝐴 which is mapped
under 𝑗 to the source node of 𝑡′, and under 𝑖 to 𝜆2(𝑥′). We get back to the previous
case by using the fact that 𝑗 is an Environment 1-fibration.

105

3 An asynchronous template game model of CSL

It is now easy to prove that sequential composition preserves well-formedness.

Lemma 3.9.14. Let C ∶ 𝐼 𝐼′ andD ∶ 𝐼′ 𝑂′ be two well-formed cobordisms over
one of the internal 𝐽-opcategories we have defined above. Then C;D is well-formed. This is
also the case if D does not satisfy Condition 1 of Definition 3.9.1.

Proof. Condition 1 is obvious, Condition 2 is the lemma above, Condition 3 follows
from the stability of monos under pullback. Condition 4 follows from the fact that
pushouts along monos are pullbacks in the diagram

𝑋

∅

∅ ∅

𝐼 𝐼′ 𝑂′

𝐶 𝐷

𝐶;𝐷

∼

where 𝑋 is the pullback of the map 𝐼 → 𝐶;𝐷 along 𝑂′ → 𝐶;𝐷, and where the four
“small” squares are pullbacks for the reason above.

The operation for which we do not yet have the tools to prove that it preserves well-
formedness is the generalized sequential composition with filling systems, because they
are not well-formed cobordisms, as they fail to satisfy Conditions 3 and 4.

Lemma 3.9.15. Given the following commutative diagram, where the square is a pushout

106

3 An asynchronous template game model of CSL

and 𝑜′ is a mono:
𝑀 𝑂′

𝐶 𝐶′

𝐷

𝑜 𝑖′ 𝑜′

𝑓 𝑔

if the pullback of 𝑖′ and 𝑜′ is the initial object, then the composite 𝑜′∘𝑔 is a mono. Moreover,
the pullback of 𝑂′ and 𝐶 is the initial object.

Proof. First, we establish that the 𝐶′ contains the disjoint union of the image of 𝑀
under 𝑖′ and the image of 𝑂′ under 𝑜′. For that purpose, consider an epi-mono factor-
ization 𝑖′2 ∘ 𝑖′1 of 𝑖′ and the following diagram, where the two squares are pullbacks:

𝑀 ∅

𝐶′𝑀 𝑋

𝐶′ 𝑂′

𝑖′1

𝑖′2

As epimorphisms are preserved under pullbacks in AsyncGraph, the map ∅ → 𝑋 is an
epi, which means that 𝑋 is the initial object ∅. From that, we deduce that the map

𝐼′ + 𝑂′ −−−−→ 𝐶′𝑀

is a monomorphism, using the fact that colimits are universal. This is an instance of
the general fact that the union of two subobjects is given by the pushout above the
pullback. Now, consider the following diagram, where all squares are pushouts:

𝐶 𝑀

𝐴 𝐶′𝑀

𝐴 + 𝑂′ 𝐶′𝑀 + 𝑂
′ 𝑂′

𝐷 𝐶′

𝑜

𝑖′1

ℎ

𝜄1

𝑘

ℎ+Id

[𝑖′2,𝑜
′]

𝜄2

𝑔

107

3 An asynchronous template game model of CSL

Because monos are preserved under pushouts, the composite 𝑘 ∘ (ℎ+ Id) ∘ 𝜄2 = 𝑘2 = 𝑜′
is indeed a mono, where we write 𝑘 = [𝑘1, 𝑘2].

Finally, 𝐶×𝐷𝑂′ ≅ ∅ because 𝐶×𝐴+𝑂′𝑂′ ≅ ∅ (coproducts are disjoint, because adhesive
categories are extensive if they have a strict initial object as we noted in Lemma 3.9.10)
and 𝑘 ∶ 𝐴 + 𝑂′ → 𝐷 is a mono.

Fibrational properties of the disjoint sum Suppose the ambient category 𝕊 has
disjoint sum, which is the case of AsyncGraph. Then

Lemma 3.9.16. The sum of two fibrations is a fibration.

The three family of template which we use have a natural structure of internal 𝐽-
opcategory with sums: for the two template �𝑆 and �𝐿, this is automatic as they are
internal opcategories, and for the separated states, the map ∨ simply computes the
disjunction of the formulas. We note that in all cases, the map ∇ ∶ �[1] +�[1] → �[1]
is an Environment 1-fibration and a 2-fibration. This ensures in particular that the
disjoint sum of cobordisms preserves well-formedness, except for Condition 1, which
can be recovered by precomposing with a suitable filling system when adequate.

Putting all of this together, we prove:

Proposition 3.9.17. All operations which are used to interpret programs preserve well-
formedness.

Proof. For sequential composition, while loops and conditionals, this follows from
Lemma 3.9.14 and Lemma 3.9.15. Parallel composition and lock allocation follows from
Lemma 3.9.12 about the action of acute spans, and critical sections follow from the
aforementioned lemma and sequential composition (this is where the caveats about
Condition 1 in the lemmas above are useful).

3.9.4 Strict maps of cobordisms

The proof of the asynchronous soundness theorem relies on the fact that the maps of
cobordisms 𝒮 and ℒ are strict in the following sense:

108

3 An asynchronous template game model of CSL

Definition 3.9.18. Amap of cobordisms (ℱ, ℱ�) fromC ∈ Cob(�1) toD ∈ Cob(�2)

is strict if the two squares below, with the same notations as Definition 3.8.1, are
pullbacks.

𝐼 𝐶 𝑂

𝐼′ 𝐷 𝑂′

inC

ℱ𝐼 pb pbℱ𝐶

outC

ℱ𝑂

inC outD

We prove in this section that the maps of cobordisms 𝒮 and ℒ are strict. We begin with
operations based on the pull-and-push construction along acute spans

Lemma 3.9.19. Let C ∈ Cob(�1) and C′ ∈ Cob(�′
1) be cobordisms related by a strict

map of cobordisms ℱ ∶ C → C′, and let

�1 �2 �3
𝐹
=

𝐺 �′
1 �′

2 �′
3

𝐹′

=
𝐺′

be two strict acute spans related by three internal functors of 𝐽-opcategories 𝑢1, 𝑢2 and 𝑢3
as in the following commutative diagram

�1 �2 �3

�′
1 �′

2 �′
3

𝑢1

𝐹
=

𝐺

𝑢2 𝑢3

𝐹′

=
𝐺′

Then the induced map of cobordisms ℱ′ ∶ Cob((𝐹, 𝐺))(C) → Cob((𝐹′, 𝐺′))(C′) is a
strict map of cobordisms.

Proof. Write the cobordism C as the diagram

𝐼 𝑆 𝑂

�1[0, 𝑖] �1[1, 𝑖𝑗] �1[0, 𝑖]

in

𝜆𝐼 𝜆𝜎

out

𝜆𝑂

in𝑖𝑗 out𝑖𝑗

and write
𝐽 𝑇 𝑃

�2[0, 𝑖] �2[1, 𝑖𝑗] �2[0, 𝑖]

inpb

𝜆𝐼 𝜆𝜏

outpb

𝜆𝑂

in𝑖𝑗 out𝑖𝑗

109

3 An asynchronous template game model of CSL

the result of pulling back the cobordism C along the plain internal functor 𝐹, which is
part of the definition of the action of the acute span (𝐹, 𝐺) on C.

First, we claim that the following squares induced by the pullbacks is a pullback square
itself.

𝐼 𝑆 𝑂

𝐽 𝑇 𝑃

in

pb

out

pb

inpb outpb

Since the two cases are symmetric, we prove that the left square is a pullback. This
follows from the pasting lemma of pullbacks in the following commutative cube

𝐼 𝑆

𝐽 𝑇

�1[0] �1[1]

�2[0] �2[1]

since the two side faces are pullbacks by definition, and the bottom face is one because
(𝐹, 𝐺) is a strict acute span by assumption. We have the same result for the pullback
of C′ along 𝐹′.

Finally, we conclude by using again the pasting lemma for pullback in the cube

𝐼 𝑆

𝐽 𝑇

𝐼′ 𝑆′

𝐽′ 𝑇′

ℱ𝐼

ℱ𝑆

We have just proved that the top and the bottom faces are pullbacks, and the hypothesis
that ℱ is a strict map of cobordisms means that the back face is a pullback as well. We
conclude that the front face is one as well, which is what we needed to prove.

The second basic operation we need to prove preserves strictness of maps of cobordisms
is sequential composition. This fact relies heavily on the fact that the ambient category
AsyncGraph is adhesive.

110

3 An asynchronous template game model of CSL

Lemma 3.9.20. Let C,D ∈ Cob(�1) and C′,D′ ∈ Cob(�′
1) be cobordisms related by

two strict maps of cobordisms ℱ ∶ C → C′ and ℱ ∶ D → D′. Suppose moreover that C′

and D′ satisfy Condition 3 of Definition 3.9.1.

Then the induced map of cobordisms ℱ; 𝒢 ∶ C;D → C′;D′ is strict.

Proof. The situation is described by the following diagram:

𝐼 𝑀 𝑂

𝐼′ 𝐶1 𝑀′ 𝐶2 𝑂′

𝐶′1 𝐶1; 𝐶2 𝐶′2

𝐶′1; 𝐶
′
2

where the non-dashed vertical arrows are given by ℱ and 𝒢, and the map𝑀′ → 𝐶′1 is a
mono, since the cobordism C′ is satisfies Condition 3.

We focus on the central commutative cube. The bottom face is a pushout along a
mono, and therefore it is a van Kampen square in AsyncGraph. The two back faces
are pullbacks since we assume that ℱ and 𝒢 are strict. Since the top face is a pushout
by the definition of sequential composition, adhesivity of AsyncGraph implies, by
definition, that the two front faces are pullbacks. We conclude by the pasting lemma of
pullbacks.

Strictness of maps of well-formed cobordisms is stable under generalized sequential
composition with filling systems follows from the following lemma.

Lemma 3.9.21. Let 𝜆 ∶ 𝐴 → �[0, 𝑖] and 𝜇 ∶ 𝐵 → �[0, 𝑗] be two colored-games
over an internal 𝐽-opcategory which is Environment-fibrational. If 𝜇 is a mono, then the
cobordism fill (𝜆, 𝜇) satisfies Condition 3 of Definition 3.9.1.

Proof. Follows from the definition of fill (𝜆, 𝜇), and form the fact that monos are stable
under pullback and pushout in AsyncGraph.

Similarly to the previous section, the lemmas above imply the following.

111

3 An asynchronous template game model of CSL

Proposition 3.9.22. Given a proof 𝜋 of some CSL Hoare triple Γ ⊢ {𝑃} 𝐶 {𝑄}, the two
maps

J𝜋KSep
𝒮

−−−−−→ J𝐶KS
ℒ

−−−−−→ J𝐶KL
are strict maps of cobordisms.

3.9.5 Proof of 2-dimensional correctness

We begin with the proof that the constructions on cobordisms which we use preserve
2-fibrations because it is simpler than proving that they preserve Code 1-fibrations.

We prove by induction on the structure of the derivation trees of the logic that the
map ℒ ∘ 𝒮 ∶ J𝜋KSep → J𝐶KL is a 2-fibration. The fact that the rule Par for the parallel
product preserves 2-fibration in the sense above uses the following technical lemma.

Lemma 3.9.23. Consider an asynchronous morphism 𝑠 ∶ 𝑆1 → 𝑆2 which we see as
defining a notion of fibration through a right-lifting property, and another asynchronous
morphism 𝑔 ∶ 𝐺 → 𝐻 which satisfies the following property:

∀ 𝑙, 𝑟 ∶ 𝑆2 → 𝐺, (𝑟𝑠 = 𝑙𝑠 ∧ 𝑔𝑟 = 𝑔𝑙) ⟹ 𝑙 = 𝑟. (3.8)

Then, for another map 𝑓 ∶ 𝐾 → 𝐺, if 𝑔 ∘ 𝑓 is a 𝑆1 → 𝑆2 fibration, then so is 𝑓. Moreover,
maps which satisfy Condition 3.8) are stable under pullback. Monos are a particular case
of such maps.

Proof. The second statement follows from the uniqueness property of the universal
property of pullbacks, similarly to preservation of monos under pullbacks. The third is
easy.

Let us consider the first statement. This situation is depicted with the following diagram:

𝐾 𝑆1

𝐺 𝑆2

𝐻

𝑓

𝑤

𝑠

𝑔

𝑡

ℓ

where the full arrow commute and where the map ℓ is such that 𝑠ℓ = 𝑤 and 𝑔𝑓ℓ = 𝑔𝑡.
Since moreover 𝑡𝑠 = 𝑓𝑤, we can use the hypothesis to conclude that 𝑓ℓ = 𝑡, which
means that ℓ is indeed a lifting and that 𝑓 is a fibration.

112

3 An asynchronous template game model of CSL

Lemma 3.9.24. Let (𝐹, 𝐺) ∶ �1 �3 and (𝐹, 𝐺′) ∶ �′
1 �′

3 be two acute spans
related by a map of acute spans 𝛼 ∶ 𝐹 → 𝐺. Suppose that 𝐹 ∶ �2 → �1 is a 2-fibration,
and that 𝐹′ ∶ �2 → �3 satisfies Condition (3.8).

If ℒ ∘ 𝒮 ∶ J𝜋KSep → J𝐶KL is a 2-fibrations, then so is the induced map of cobordisms
𝛼(ℒ ∘ 𝒮) ∶ Cob(𝐹)(J𝜋KSep) → Cob(𝐺)(J𝐶KL).

Proof. Consider the following diagram, where 𝑓 is the component of ℒ ∘ 𝒮 between the
supports:

𝑇 𝑇′

𝑆 𝑆′

�1 �′
1

�2 �′
2

�3 �′
3

𝛼𝑓

𝑓

𝛼1

pince

𝛼2

pic
k

pince′

pick ′

𝛼3

and where the two squares on the sides are pullbacks.

First, since the map 𝐹 ∶ �2 → �1 is a 2-fibration, and because the fibrations are
preserved under pullbacks, the map 𝑇 → 𝑆 is a 2-fibration as well. Similarly, the map
𝑇′ → 𝑆′ satisfies Condition (3.8). since it is the pullback of 𝐹′. We conclude using
Lemma 3.9.23 above.

Since 2-fibrations are closed under product, and pick[1] ∶ �∥
L[1] → �L[1] ×�L[1] is a

mono, the lemma above can be applied to the parallel product.

Corollary 3.9.25. If ℒ1 ∘ 𝒮1 ∶ J𝜋1KSep → J𝐶1KL and ℒ2 ∘ 𝒮2 ∶ J𝜋2KSep → J𝐶2KL are
2-fibrations, then so is the induced map of cobordisms (ℒ1 ∘ 𝒮1) ∥ (ℒ2 ∘ 𝒮2) ∶ J𝜋1KSep ∥
J𝜋2KSep → J𝐶1KL ∥ J𝐶2KL.

Similarly, this lemma can be applied for the two change of locks operations as well.

The proof that sequential composition preserves 2-fibrations follows from the fact that
van Kampen cubes preserve 2-fibrations in the following sense:

113

3 An asynchronous template game model of CSL

Lemma 3.9.26. Consider the following diagram in AsyncGraph:

𝑌 𝐶

𝑍 𝐷

𝑊 𝐴

𝑋 𝐵

𝑓′

𝜆2

𝑖′

𝑖

𝜇

𝑔

𝑓

𝑝𝑜

𝑗

𝑝𝑜

𝑔′

𝜆1

𝑗′

such that:

1. 𝜆1 and 𝜆2 are 2-fibrations,

2. the cube is van Kampen,

3. the two back faces are pullbacks.

Then, the asynchronous map 𝜇 is a 2-fibration.

Proof. Let us assume there is a path of length 2 in 𝑍 which is mapped by 𝜇 to the top
of a tile in 𝐷. We will use the fact that representables are tiny, in particular, tiles are
tiny. Assume without loss of generality that the tile in 𝐷 has a preimage 𝑇𝐶 in 𝐶. Then
the upper path of the tile in 𝐷 is the target of a path of length 2 in 𝑍 and the target of
a path of length 2 in 𝐶 (the upper path of 𝑇𝐶). Since the cube is van Kampen, 𝑌 is the
pullback of 𝑖′ along 𝜇, which means that there is a path of length 2 in 𝑌 that is mapped
to the one in 𝐶. We can conclude from there using the fact that 𝜆2 is a 2-fibration.

3.9.6 Proof of 1-dimensional correctness

Preservation of Code 1-fibrations by sequential composition follows directly from a
variant of Lemma 3.9.13 where all occurrences of Environment 1-fibrations are re-
placed with Code 1-fibrations. The proof for change of lock operations follows from
Lemma 3.9.24.

The proof that the parallel product preserves Code 1-fibrations is a bit more intricate
than the case of 2-fibrations. The reason is that the map pick ∶ �⊗

S [1] → �S[1] ×�[1]
is not a Code 1-fibration, which means we cannot use Lemma 3.9.24. Instead, we need
to rely on the fact that the map 𝑆 → �S[1] from the support of the cobordism to the
template is an Environment 1-fibration and on the fact that the morphism pick above
never pairs two Code transitions.

114

3 An asynchronous template game model of CSL

Lemma 3.9.27. Given two maps of cobordisms

𝐹𝑖 ∶ C𝑖 → C′
𝑖

for 𝑖 = 1, 2, and if 𝐹1 and 𝐹2 are 1-fibrations on Code transitions, then the induced
morphism

𝐹1 ∥ 𝐹2 ∶ C1 ∥ C2 → C′
1 ∥ C′

2

is a 1-fibration on Code transitions as well.

Proof. Let us focus on the maps between the supports. We call the supports 𝑆1, 𝑆2, 𝑆′1
and 𝑆′2, and we call the maps between that are contained in 𝐹1 and 𝐹2:

𝑓1 ∶ 𝑆1 ⟶ 𝑆′1 𝑓2 ∶ 𝑆2 ⟶ 𝑆′2

Finally, we write pick both for the map pick in the span-monoidal structure, and for
the map it induces by pullback at the level of the supports of the cobordisms.

Recall that the map 𝑓1 ∥ 𝑓2 is defined by the following diagram, where (𝑢, 𝑢∥) is the
span-monoidal functor structure:

⋅ →𝐶

𝑆1 ∥ 𝑆2 𝑆′1 ∥ 𝑆
′
2

𝑆1 × 𝑆2 𝑆′1 × 𝑆
′
2

� ×� �′ ×�′

�∥ �′∥

� �′

pick

𝑓1∥𝑓2

pic
k
′

𝑓1×𝑓2

𝑢×𝑢

pince

𝑢∥

pic
k

pince′

pick ′

𝑢

The polarity of the image of the unique edge of→𝐶 in �′∥ is either 𝐶1 or 𝐶2. Because
the situation is symmetric, we can suppose without loss of generality that this polarity

115

3 An asynchronous template game model of CSL

is 𝐶1. In that case, the edge→𝐶 is mapped to a Code transition in 𝑆′1. By assumption, 𝑓1
is a 1-fibration on Code transitions, so we can lift this arrow to 𝑆1. Moreover, because
𝜋 ∘ pick ∶ �∥ → � is a 1-fibration on Code transitions as well, we can also lift→𝐶 to�∥.
Therefore, we have the following situation:

⋅ 𝑆1 × 𝑆2

𝑆1 𝑆2

→𝐶 �[1] ×�[1]

�[1] �[1]

→𝐶1
�∥[1]

→𝐹

⟨𝑓1,𝑓2⟩

𝜋1 𝜋2

𝜆1 𝜆2

(1)

𝜋1 𝜋2

𝜋
1 ∘pick

𝜋2
∘pic

k

(2)

The map (1) exists because 𝑓1 is a 1-fibration on Code transitions, as mentioned above,
and the map (2) exists because 𝜆2 is a 1-fibration on Environment moves. Therefore,
we can lift the arrow→𝐶1

to 𝑆1×𝑆2. We conclude by using the fact that 1-fibrations on
Code transitions are stable by pushout, and that pick ∶ �∥ → �×� is a 1-fibration.

116

Part II

Relational soundness in Iris

117

4 Background on Iris

Iris is a state of the art concurrent separation logic. Its goal was to unify the many vari-
ants of concurrent separation logic which were being developed to handle increasingly
complicated concurrent algorithms or language features. The first step (Jung, Swasey,
et al., 2015) was to axiomatize the notion of logical resource: all the resources the
predicates are describing, such as the heap, or the heap with permission are cameras,
a structure similar to a partial commutative monoid. Cameras can be combined to
enable reasoning about complex concurrent data structures and algorithms with subtle
synchronization patterns.

The Iris program logic is also parameterized by a programming language, which is
expressed as a small step operational semantics. This allows users to prove properties
of programs written in their language of choice without having to redefine and reprove
the soundness of the logic from scratch.

Early versions of Iris were program logics, in that concepts such as Hoare triples or
invariants were primitive notions. In later versions (Robbert Krebbers, Jung, et al., 2017),
such notions became defined in terms of a more basic modal logic, which is called the
base logic.

Importantly, the soundness of the program logic follows from an adequacy theorem
of the base logic. This allows one to develop new program logics which provide other
guarantees than the usual Hoare triples of Iris in a much simpler way than if one had
to define it and prove its soundness from scratch. In this part of the thesis, we define a
new notion of Hoare triple, which allows its users to construct simulations between a
program and a state transition system which we see as an abstract specification for the
program. First, we present in this Chapter the basics of the Iris logic.

All the result and the background in this part are formalized in the Coq proof assistant.

4.1 Overview of the approach

One way to explain Iris is to start from the semantic definition of safety which can
be used to define the meaning of a Hoare triple {𝑃} 𝐶 {𝑄} from Chapter 1 and which

118

4 Background on Iris

𝔰 ⊨ 𝑄

safe(skip, 𝔰, 𝑄)

(𝐶, 𝔰) ↛ ∀𝐶′, 𝔰′, (𝐶, 𝔰) → (𝐶′, 𝔰′) ⇒ safe(𝐶′, 𝔰′, 𝑄)

safe(𝐶, 𝔰, 𝑄)

Figure 4.1: Semantic validity for Hoare logic

we reproduce here in Figure 4.1 (recall the double bar denotes a coinductive predicate)
Recall that validity of a Hoare triple was defined as:

⊨ {𝑃} 𝐶 {𝑄} ⟺ ∀𝔰, 𝔰 ⊢ 𝑃 ⇒ safe(𝐶, 𝔰, 𝑄)

It is easy to check that defining a new predicate wp 𝐶 {𝑄} as follows:

𝔰 ⊨ wp 𝐶 {𝑄} ⟺ safe(𝐶, 𝔰, 𝑄)

defines a semantic weakest precondition for the Hoare triple. Iris proceeds by defining a
semantic weakest precondition which follows the same intuition as the one in Figure 4.1.
One difference is that, in Iris, the machine state 𝔰 is not a parameter of the predicate,
instead it is part of the logical state, or world.

4.1.1 Iris predicates

The Iris base logic propositions are predicates over worlds, and the Iris logic is parame-
terized over the set𝒲 of words. Iris propositions are predicates over worlds, that is,
functions of type iProp ≔𝒲 → ℙ, where ℙ is the two-element set 𝟚 or the type Prop
in Coq. It is conventional to call the world 𝑤 ∈ 𝒲 which is passed to a predicate the
current world.

Predicates can access the current state (that is, the state contained in the current world)
using the predicate state_interp 𝔰which states that the current memory state is equal
to 𝔰. In other words, it is the predicate:

state_interp 𝔰 ∶= 𝜆𝑤. “the memory state in 𝑤 is 𝔰”

Using this predicate, we can already express that an expression must not be stuck:

not_stuck 𝑒 ≔ ∃𝔰, state_interp 𝔰 ∧ ⌜∃𝑒′, 𝔰′, (𝑒, 𝔰) → (𝑒′, 𝔰′)⌝

where ⌜ ⋅ ⌝ ∶ ℙ → iProp injects propositions from the ambient logic into Iris proposi-
tions. This proposition expresses that the term 𝑒 is reducible in the current memory
state.

119

4 Background on Iris

Iris is a separation logic, which means that there is a notion of the “part of the world”
which verifies some predicate 𝑃. This is achieved by requiring that the set𝒲 of worlds
have a partial commutative monoid structure (actually, as we will see in the sequel, a
camera structure.) This partial commutative monoid structure induces an order relation
on elements of𝒲:

𝑤 ≼ 𝑤′ ⟺ ∃𝑤𝑓, 𝑤
′ = 𝑤 ⋅ 𝑤𝑓

Wemodel the partiality of𝒲 by choosing a subset 𝒱 ⊆ 𝒲 of valid elements. Intuitively,
two subworlds 𝑤1 and 𝑤2 are compatible if (𝑤1 ⋅ 𝑤2) ∈ 𝒱. This defines a separating
conjunction of predicates: 𝑤 ⊨ 𝑃 ∗ 𝑄 if 𝑤 is the product of two worlds which satisfy 𝑃
and 𝑄 respectively.

This generalizes our notion of logical state in Part I: The ∗ product which we defined
on LogState gave a partial commutative monoid structure to logical states.

4.1.2 The Iris standard weakest precondition

Until the end of this thesis, we consider expression-based languages: there is no dis-
tinction between commands and expressions, which can also have side effects.

Definition 4.1.1 (Language). We consider languages with expressions denoted by 𝑒 ∈
Expr, values 𝑣 ∈ Val with Val ⊆ Expr. A language has a notion of state 𝔰 ∈ State,
and a (thread-local) small-step operational semantics

→ ⊆ (Expr × State) × (Expr × State × List(Expr))

A step (𝑒, 𝔰) → (𝑒′, 𝔰′, 𝑒𝑓)means that the expression 𝑒 reduces to 𝑒′ while changing the
state from 𝔰 to 𝔰′, and creating the threads in the list 𝑒𝑓. A value must not be reducible,
and an non-value expression which cannot reduce is how Iris characterizes runtime
errors.

This thread-local reduction relation is lifted to a threadpool reduction relation

−→tp ⊆ (List(Expr) × State) × (List(Expr) × State)

defined using the following rule:

(tp[𝑘], 𝔰) → (𝑒′𝑘, 𝔰
′, 𝑒𝑓)

(tp, 𝔰)
𝑘
−−→tp (tp[𝑘 ≔ 𝑒′𝑘] ++𝑒𝑓, 𝔰

′)

where tp[𝑘] denotes the 𝑘th element of the list tp, and tp[𝑘 ≔ 𝑒′𝑘] denotes tpwhere the
𝑘th element has been replaced by 𝑒′𝑘. The threadpool is the list of all the threads of the

120

4 Background on Iris

system which have been spawned. The thread ID of a thread, denoted in general with
the variable tid is the index of the thread in the threadpool. This index is stable because
irreducible programs are not removed from the threadpool. One reducible thread is
chosen non-deterministically, and is reduced for one step. The threads it has spawned
are added to the threadpool.

The next step to restate the definition of weakest precondition given by Figure 4.1 is to
be able to update the memory state so that we can state that the weakest precondition
holds in the new state 𝔰′ after the program has reduced. To do so, we use the viewshift⇛
connector of the logic. The proposition 𝑃⇛ 𝑄 asserts that we can replace any part of
the world which satisfies 𝑃 by a new subworld which satisfies 𝑄 in a way which “does
not disturb” the rest of the world.

Remark 4.1.2. Readers familiar with Kripke semantics should keep in mind that the⇛
connector is not related to the notion of “future world”. As we will see, however, the Iris
model has a notion of future world for the step-indexing, and propositions are closed
under that relation.

Given an Iris predicate Φ ∶ Val → iProp, we can define a weakest precondition as the
following recursive predicate:

wp 𝑒 {𝑄} ≔ (⌜𝑒 ∈ 𝑉𝑎𝑙⌝ ∧ 𝑄 𝑒) ∨

(∃𝔰, state_interp 𝔰 −∗ ⌜∃𝑒′, 𝔰′, (𝑒, 𝔰) → (𝑒′, 𝔰′, 𝑒𝑓)⌝∧

∀𝑒′, 𝔰′, 𝑒𝑓, ⌜(𝑒, 𝔰) → (𝑒
′, 𝔰′, 𝑒𝑓)⌝ ⇛ state_interp 𝔰′∗

⊳wp 𝑒′ {𝑄} ∗⊛
𝑒𝑓∈𝑒𝑓

wp 𝑒𝑓 {⊤})

Note that, because 𝑒 is an expression, which evaluates to a value, the postcondition 𝑄
takes a program value as an argument: it is of type 𝑄 ∶ Val → iProp.

If 𝑒 is already a value, the predicate is true if 𝑒 satisfies the postcondition 𝑄. Otherwise,
if the current memory state is 𝔰, the program 𝑒 must be reducible at that state, and,
for all possible reductions (𝑒, 𝔰) → (𝑒′, 𝔰′, 𝑒𝑓), where 𝑒𝑓 is the list of threads which are
spawned during the reduction steps, we can update the world in such a way that the
new memory state is 𝔰′, the weakest precondition holds for the reduct 𝑒′ and all the
spawned threads are safe.

The ⊳ modality in front of the recursive occurrence of wp is needed because, the Iris
weakest precondition is defined as a guarded fixpoint instead of coninductively. A
recursive definition is guarded if each recursive occurrence is under a ⊳ modality. This
modality was introduced by Nakano (2000), and its relation with step-indexing was
discovered by Appel et al. (2007).

121

4 Background on Iris

Because Iris is a separation logic, the proposition

wp 𝑒1 {𝑃1} ∗ wp 𝑒1 {𝑃2}

means that that the resources needed to guarantee the safety of 𝑒1 and those for 𝑒2
must be “disjoint”, and 𝑒1 and 𝑒2 are safe to execute in parallel. This is why this is
enough to requires the separated product of the weakest preconditions of the reduct
of 𝑒 and of every forked thread in the definition of the weakest precondition.

4.2 The Iris model

One requirement of the Iris logic is that the world be able to contain Iris predicates.
This is particularly useful to implement invariants, which are a generalization of lock
invariants in the version of CSL we have studied in Part I. Let us make the simplifying
assumption that we want our world to only contain one Iris predicate. Then, we have
the following isomorphisms:

iProp ≅ 𝒲 → ℙ

𝒲 ≅ 𝑖𝑃𝑟𝑜𝑝

The first isomorphism comes from the definition of Iris proposition as predicate over
worlds. If we rewrite the second isomorphism into the first, we get:

iProp ≅ iProp → ℙ

This kind of recursive equation with a negative occurrence (on the left of an arrow)
does not have a solution in most domains.

The solution Iris uses to solve this problem is to use step-indexing: intuitively, every
set 𝑋 is replaced by a sequence (𝑋𝑛)𝑛∈ℕ of sets. The unsolvable equation above is
replaced with a system of equations which uses these indices break the cyclic nature of
the previous equation:

iProp
0

≅ ℙ

iProp
𝑛+1

≅ iProp
𝑛
→ ℙ

We can use operators on such indexed sets to simplify its presentation: Given a set 𝑋,
we write G𝑋 the constant sequence (𝑋)𝑛∈ℕ. We can also define a “next” operator �
which takes care of decreasing the step-indices:

(�𝑋)0 ≔ {⋆}

(�𝑋)𝑛+1 ≔ 𝑋𝑛

122

4 Background on Iris

Using these two operators, we can rewrite the system of equations above as:

iProp ≅ �iProp → Gℙ

This presentation of the model of Iris has so far been informal, as we have not defined the
notion of maps, etc. One way to formalize this is to work in the category of presheaves
over the ordinal 𝜔, seen as a category; this category is also known as the topos of trees
(L. Birkedal et al., 2012).

4.2.1 Ordered families of equivalences

In the actual model of Iris, sequences of sets are replaced by sets equipped with a
sequence of equivalence relations:

Definition 4.2.1. An ordered family of equivalences (OFE) is the data (𝑋, (
𝑛
=)𝑛) of

a set 𝑋 and a sequence of equivalence relations over 𝑋, such that:

1.
𝑛
= ⊆

𝑚
= for 𝑛 ≥ 𝑚;

2. 𝑥 = 𝑦 iff ∀𝑛, 𝑥
𝑛
= 𝑦.

The first condition states that the equivalence relation becomes more discriminating
as 𝑛 grows, and the second states that the limit of (

𝑛
=) is the equality relation.

An OFE 𝑋 induces a sequence of sets as in the informal overview above by quotienting
by the equivalence relation at each step-index:

𝑋 ⟼ (𝑋/
𝑛
=)

𝑛

There are two useful notions of maps of OFEs:

Definition 4.2.2. Given two OFEs 𝑋 and 𝑌, a map 𝑓 ∶ 𝑋 → 𝑌 between the underlying
sets is said to be:

• non-expansive if, for all 𝑥, 𝑦 ∈ 𝑋, and step-index 𝑛, 𝑥
𝑛
= 𝑦 ⇒ 𝑓(𝑥)

𝑛
= 𝑓(𝑦);

• and it said to be contractive if, for all 𝑥, 𝑦 ∈ 𝑋, 𝑥
𝑛
= 𝑦 ⇒ 𝑓(𝑥)

𝑛+1
= 𝑓(𝑦).

OFEs and non-expansive maps form a Cartesian-closed category OFE. This vocabulary
comes from the intuition that 𝑋 is an ultrametric space, and that 𝑥

𝑛
= 𝑦 means that the

points 𝑥 and 𝑦 are at a distance ≤ 2−𝑛. An OFE which will be useful to define the Iris

123

4 Background on Iris

model is the the OFE SProp of step-indexed propositions: its underlying set SProp is
the set

{𝐴 ⊆ ℕ ∣ ∀𝑛 ≤ 𝑚, 𝑚 ∈ 𝐴 ⇒ 𝑛 ∈ 𝐴}

of downward closed subsets of ℕ, and two step-indexed propositions are related by ≠ 𝑛
if

∀𝑚 ≤ 𝑛, 𝑥 ∈ 𝐴 ⟺ 𝑥 ∈ 𝐵

An intuitive reading of 𝑛 ∈ 𝐴 is that it is not possible to disprove the proposition 𝐴 in
the first 𝑛 steps of “execution”. Now that we have a step-indexed notion of proposition,
it remains to define a step-indexed notion of partial commutative monoid.

4.2.2 RAs and Cameras

Iris is defined in terms of an extension of the notion of partial commutative monoid
known as resource algebras (RA). Instead of having a neutral element, an RA𝑀 contains
a partial map | | ∶ 𝑀 ⇀ 𝑀 called the core, which associates to some element 𝑎 its
duplicable part, if it exists; in which case we have:

|𝑎| ⋅ 𝑎 = 𝑎 and ||𝑎|| = |𝑎|

which does imply that the core is duplicable:

|𝑎| ⋅ |𝑎| = ||𝑎|| ⋅ |𝑎| = |𝑎|

The step-indexed version of RAs are Cameras:

Definition 4.2.3. A camera𝑀 is the data (𝑀, 𝒱, |⋅|, ⋅) of:

• an OFE𝑀 of elements;

• a “step-indexed subset” of valid elements 𝒱 ∶ 𝑀 → SProp expressed as a non-
expansive map of OFEs;

• a partial map |⋅| ∶ 𝑀 → 𝑀?, where𝑀? ≔ 𝑀 ⊎ ⊥ adjoins a new neutral element;

• and a commutative and associative non-expansive operation ⋅ ∶ 𝑀 ×𝑀 → 𝑀

which satisfy a number of axioms given in (Iris Team, 2021). This definition induces a
step-indexed order on elements of𝑀 with 𝑎

𝑛

≼ 𝑏 ⇔ ∃𝑎′, 𝑏
𝑛
= 𝑎 ⋅ 𝑎′.

124

4 Background on Iris

4.2.3 The Iris base logic

The Iris logic is parameterized by a camera 𝑀; we will explain later how the choice
of𝑀 is done in a way that is modular.

The formulas of Iris base logic comprise higher-order BI

𝑃 ⩴ 𝑃 ∧ 𝑄 ∣ 𝑃 ∨ 𝑄 ∣ 𝑃 ⇒ 𝑄 ∣ 𝑃 ∗ 𝑄 ∣ 𝑃 −∗ 𝑄 ∣ ∃𝑥 ∶ 𝜏. 𝑃 ∣ ∀𝑥 ∶ 𝜏. 𝑃 ∣ 𝑥

where the type 𝜏 of the quantified variable 𝑥 includes Iris propositions iProp and the
camera parameter𝑀; as well as the later modality and a guarded fixpoint operator:

𝑃 ⩴ ⋯ ∣ ⊳𝑃 ∣ 𝜇𝑥 ∶ 𝜏. 𝑃

where every occurrence of 𝑥 in 𝑃 must appear under a ⊳ modality; and a number of
modalities and atomic propositions to reason about resources:

𝑃 ⩴ ⋯ ∣ Own(𝑎) ∣ 𝒱(𝑎) ∣ 2𝑃 ∣ ∣⇛𝑃 ∣ ⌜Φ⌝

where 𝑎 in an element of 𝑀, and Φ ∈ ℙ is a proposition in the ambient logic. The
formula Own(𝑎) expresses the ownership of the resource 𝑎, and 𝒱(𝑎) expresses that it
is valid. The formula 2𝑃 (read persistently 𝑃) asserts that the persistent part of 𝑃 holds,
and ⌜Φ⌝ states that the proposition Φ is true.

Finally, the update modality ∣⇛𝑃 is related to the viewshift connector ⇛ which we
have seen before:

𝑃⇛ 𝑄 ≔ 𝑃 −∗ ∣⇛𝑄

The formula ∣⇛𝑃 means intuitively that the current world (an element of 𝑀) can be
updated so that the newworld satisfies 𝑃The condition that this update must not disturb
the rest of the world is formalized using the notion of frame-preserving update: Given
𝑎 ∈ 𝑀 and 𝐵 ⊆ 𝑀, there is a frame-preserving update from 𝑎 to 𝐵, written 𝑎 ; 𝐵 if:

∀𝑛, 𝑎?𝑓, 𝑛 ∈ 𝒱(𝑎 ⋅ 𝑎
?
𝑓) ⇒ ∃𝑏 ∈ 𝐵, 𝑛 ∈ 𝒱(𝑏 ⋅ 𝑎?𝑓)

where 𝑎?𝑓, which represents the rest of the world, or, in other words, what is owned by
the environment, is an element of𝑀? ≔ 𝑀⊎⊥. One way to interpret it is that, whatever
the frame 𝑎?𝑓, which is assumed to be compatible with 𝑎, we can find an element 𝑏 ∈ 𝐵
which can replace 𝑎 without conflicting with the environment.

One example which we have already encountered is the allocation of a new location in
the partial monoid LogState of logical states in Part II. The fact that there is always
a free location in a logical state can be expressed as the following frame preserving
update:

∅ ; {[ℓ ≔ (𝑣, 1)] ∣ ℓ ∈ Loc}

125

4 Background on Iris

The fact that full ownership of a memory location allows one to update its contents
corresponds to the followoing frame-preserving update:

[ℓ ≔ (𝑣1, 1)] ; [ℓ ≔ (𝑣2, 1)]

where we write 𝑎 ; 𝑏 for 𝑎 ; {𝑏}.

As we will see, these two frame-preserving updates corresponds, respectively, to the
two laws in the logic:

⊤ −∗ ∣⇛ ∃ℓ. ℓ
1

↦ 𝑣 ℓ
1

↦ 𝑣1 −∗ ∣⇛ ℓ
1

↦ 𝑣2

where we define ℓ
𝑝

↦ 𝑣 as Own([ℓ ≔ (𝑣, 𝑝)]).

4.2.4 Interpretation of Iris predicates

Iris predicates 𝑃 are interpreted as monotone maps 𝑃 ∶ 𝑀 → SProp, where the order
on𝑀 is given by divisibility, and the order on SProp is given by containment. Hence, a
predicate 𝑃 is upward-closed with respect to the order on𝑀 (which corresponds to the
fact that Iris is an affine logic) and downward-closed with respect to step-indices (from
the definition of SProp).

Writing 𝑎, 𝑛 ⊨ 𝑃 for 𝑛 ∈ 𝑃(𝑎), we define the interpretations of the main constructions
of the base logic:

𝑎, 𝑛 ⊨ 𝑃 ∗ 𝑄 ⟺ ∃𝑏1, 𝑏2, 𝑎
𝑛
= 𝑏1 ⋅ 𝑏2 ∧ 𝑏1, 𝑛 ⊨ 𝑃 ∧ 𝑏2, 𝑛 ⊨ 𝑄

𝑎, 𝑛 ⊨ 𝑃 −∗ 𝑄 ⟺ ∀𝑚, 𝑏, 𝑚 ≤ 𝑛 ∧ 𝑚 ∈ 𝒱(𝑎 ⋅ 𝑏) ∧ 𝑏,𝑚 ⊨ 𝑃 ⇒ 𝑎 ⋅ 𝑏,𝑚 ⊨ 𝑄

𝑎, 𝑛 ⊨ 2𝑃 ⟺ |𝑎|, 𝑛 ⊨ 𝑃

𝑎, 𝑛 ⊨ ⊳𝑃 ⟺ 𝑛 = 0 ∨ 𝑎, 𝑛 − 1 ⊨ 𝑃

𝑎, 𝑛 ⊨ ∣⇛𝑃 ⟺ ∀𝑚, 𝑎′, 𝑚 ≤ 𝑛 ∧ 𝑚 ∈ 𝒱(𝑎 ⋅ 𝑎′) ⇒ ∃𝑏, 𝑚 ∈ 𝒱(𝑏 ⋅ 𝑎′) ∧ 𝑏,𝑚 ⊨ 𝑃

𝑎, 𝑛 ⊨ ⌜Φ⌝ ⟺ Φ

𝑎, 𝑛 ⊨ Own(𝑏) ⟺ 𝑏
𝑛

≼ 𝑎

𝑎, 𝑛 ⊨ 𝒱(𝑏) ⟺ 𝑛 ∈ 𝒱(𝑏)

The guarded fixed-points are interpreted using a fixed point operator defined on
contractive maps in the category OFE, as introduced by America and Rutten (1989) and
generalized by Lars Birkedal, Støvring, and Thamsborg (2010).

Definition 4.2.4. A predicate 𝑃 is valid, which we write⊨ 𝑃 if it is valid for all element
of the camera and all the step-indices:

⊨ 𝑃 ⟺ ∀𝑎 ∈ 𝑀, 𝑛 ∈ ℕ, 𝑎, 𝑛 ⊨ 𝑃.

126

4 Background on Iris

4.2.5 Logical rules

This model satisfies a number of logical properties. We write here a few of them, and
refer the reader to (Iris Team, 2021) for an exhaustive list.

The separating conjunction reflects the operation of the camera 𝑀, and an owned
element is always valid:

Own(𝑎) ∗ Own(𝑏) ⇔ Own(𝑎 ⋅ 𝑏) Own(𝑎) ⇒ 𝒱(𝑎)

The update modality behaves like a strong monad

𝑃 ⇒ ∣⇛𝑃 ∣⇛∣⇛𝑃 ⇒ ∣⇛𝑃 𝑄 ∗ ∣⇛𝑃 ⇒ ∣⇛𝑄 ∗ 𝑃

and it reflects frame-preserving updates:
𝑎 ; 𝐵

Own(𝑎) ⇒ ∣⇛∃𝑏, Own(𝑏)

The persistence modality behaves like a comonad and corresponds to the core opera-
tion

2𝑃 ⇒ 𝑃 2𝑃 ⇒ 22𝑃 Own(𝑎) ⇒ Own(|𝑎|)

and it makes predicate duplicable:
2𝑃 ⇔ 2𝑃 ∗2𝑃

A predicate 𝑃 is called persistent if it is equivalent to 2𝑃. Note that this is stronger
than being duplicable: the predicate ∃𝑝, ℓ

𝑝

↦ 1 is duplicable but not persistent. Of
course, the laws of higher-order bunched implications also hold, such as −∗ being a
right adjoint to ∗, etc.

The later modality allows to define recursive predicates using guarded recursion. Such
predicates come with a powerful induction principle which allows resonning about
them, called Löb induction:

⊳𝑃 ⇒ 𝑃

𝑃

This corresponds to an induction on the step-index in the semantics of the predicates.
In the setting of a program logic, this means that the induction hypothesis can be used
as soon as the program reduces by on step, because the definition of wp contains a later
modality, tying logical steps with program steps. This allows for eliminating a later
modality guarding an hypothesis using the rule:

𝑃 ⇒ 𝑄

⊳𝑃 ⇒ ⊳𝑄

In particular, the proof of a recursive function is able to use its induction hypothesis to
reason about recursive calls because the execution of a recursive function always starts
with the beta reduction step which substitute its argument.

127

4 Background on Iris

Adequacy of the base logic

The adequacy of the Iris base logic states that the modalities of the Iris base logic do
not allow to prove false statements in the meta-logic.

Theorem 4.2.5 (Adequacy). Suppose ⊨ 𝑚1⋯ 𝑚𝑘 ⌜Φ⌝, where each𝑚𝑖 is an Iris modal-
ity such as ⊳, ∣⇛,2, …, and Φ ∈ ℙ is a proposition, then Φ holds.

4.3 High level logic

The logic we have described so far is not usable to prove programs. For instance, it is
parameterized by a single camera, whereas programs most often need several kinds of
resources to be specified and proved. Another missing feature are invariants, which are
the way concurrent separation logics allow reasoning about how threads communicate
and synchronize with each others. These features can be defined using the base logic
above. We sketch in this section how they are defined and how they can be used.

4.3.1 Combining cameras

Themechanismwithwhich several cameras can be used is simple: Given a list𝑀1, … ,𝑀𝑛

of cameras, we define a new camera

Res ≔ ∏

𝑖∈{1,…,𝑛}

GName ⇀fin 𝑀𝑖

where GName ≔ ℕ are the type of ghost (or logical) variables. The camera struc-
ture induced by the product is straightforward, and the product of two partial finite
maps 𝑓1, 𝑓2 ∶ 𝑋 ⇀fin 𝑀 is defined as:

(𝑓1 ⋅ 𝑓2)(𝑥) ≔ {

𝑓1(𝑥) if 𝑥 ∈ dom(𝑓1) ⧵ dom(𝑓2)

𝑓2(𝑥) if 𝑥 ∈ dom(𝑓2) ⧵ dom(𝑓1)

𝑓1(𝑥) ⋅ 𝑓2(𝑥) if 𝑥 ∈ dom(𝑓1) ∩ dom(𝑓2)

and a finite partial map is valid iff all its component are valid. This definition is the
same as the product of logical states from Definition 2.5.3 in Part I for 𝑋 ≔ Loc
and𝑀 ≔ Val × Perm.

We can define the predicate

𝑚 ∶ 𝑀𝑖
𝛾

≔ Own((∅,… , ∅, [𝛾 ≔ 𝑚], ∅, … , ∅))

128

4 Background on Iris

which expresses the ownership of an 𝑛-tuple of empty partial finite maps, except for
the 𝑘th component which contains the singleton finite map associating the element𝑚
of𝑀𝑖 to the ghost variable 𝛾.

This new predicate admits a rule for allocation, and the same rules as the primitiveOwn
predicate for updating and combining:

𝑎 ∈ 𝒱𝑀𝑖

∣⇛∃𝛾. 𝑎 ∶ 𝑀𝑖
𝛾

𝑎 ; 𝐵

𝑎 ∶ 𝑀𝑖
𝛾
∣⇛∃𝑏 ∈ 𝐵. 𝑏 ∶ 𝑀𝑖

𝛾
𝑎

𝛾
∗ 𝑏

𝛾
⟺ 𝑎 ⋅ 𝑏

𝛾

4.3.2 Invariants

We will not explain how invariants are constructed, but the gist of it is that, as we
sketched at the beginning of this chapter, Iris predicates can be endowed with a camera
structure. To be useful, invariants cannot always hold, there needs to be a mechanism
for opening invariants and then requiring they be reestablished.

This control is achieved in Iris using the so-called fancy update modalities ∣⇛ℰ1 ℰ2 ,
which are defined using the update modality ∣⇛. This modality is parameterized by a
masks ℰ1 and ℰ2 which denote sets of invariant names. The predicate ∣⇛ℰ1 ℰ2𝑃 means
that we can update from a world where every invariant in ℰ1 holds to a wolds where
every invariant in ℰ2 hold and where 𝑃 is verified. For instance ∣⇛⊤ ∅𝑃 means that one
is able to prove 𝑃 while opening all the invariants (the mask ⊤ denotes the set of all
invariant names).

The existence of an invariant is claimed using the predicate inv𝒩 (𝑃), where𝒩 is the
name of the invariant. It is a persistent predicate, which means in particular that it is
duplicable, and that it can be shared between threads. The rules for creating and for
opening invariants are the following:

⊳𝑃 ⇒ ∣⇛ℰ ℰ∪𝒩 inv𝒩 (𝑃)

𝒩 ⊆ ℰ

inv𝒩 (𝑃) −∗ ∣⇛ℰ ℰ⧵𝒩 ⊳𝑃 ∗2(⊳𝑃 −∗ ∣⇛ℰ⧵𝒩 ℰ ⊤)

The second rule deserves an explanation: If the invariant𝒩 contains predicate 𝑃, and if
it currently holds (𝒩 ⊆ ℰ), then is it possible to update to a world where the invariant𝒩
no longer hold but where ⊳𝑃 holds. To close the invariant and go back to a situation
where𝒩 holds, one can use the implication which consumes the resource ⊳𝑃. The
later modalities ⊳ in these rules come from the later operator in the domain equation
at the beginning of Section (4.2).

129

4 Background on Iris

4.3.3 The standard Iris weakest precondition

We now have the tools to define the standard Iris weakest precondition, which guar-
antees the safety of programs. It differs from the one sketched at the beginning of the
section by the masks and the fancy updates which need to be added to be able to use
invariants when proving programs.

wp
ℰ
𝑒 {𝑄} ≔ 𝜇 wp

0
.

(⌜𝑒 ∈ 𝑉𝑎𝑙⌝ ∧ ∣⇛ℰ ℰ𝑄 𝑒) ∨

(∃𝔰, state_interp 𝔰 −∗ ∣⇛ℰ ∅⌜reducible 𝑒 𝔰⌝ ∧

∀𝑒′, 𝔰′, 𝑒𝑓. ⌜(𝑒, 𝔰) → (𝑒
′, 𝔰′, 𝑒𝑓)⌝ −∗ ∣⇛∅ ∅ ⊳ ∣⇛∅ ℰstate_interp 𝔰′∗

wp
0 ℰ
𝑒′ {𝑄} ∗⊛

𝑒𝑓∈𝑒𝑓

wp
0 ⊤
𝑒𝑓 {⊤})

All the expected rules about this weakest precondition are proved using the rules of
Iris logic. The soundness theorem states that if we can prove wp

⊤
𝑒 {𝑣. ⌜Φ 𝑣⌝} from

any world where the initial machine state is 𝔰, then all executions which start from 𝔰

are safe, and if they terminate, their final value satisfies Φ. This is stated formally as
follows:

Theorem 4.3.1 (Soundness of the standard weakest precondition). Given a program 𝑒,
a machine state 𝔰 and a postcondition Φ ∶ Val → ℙ, if

⊨ ∣⇛⊤ ⊤state_interp 𝔰 ∗ wp
⊤
𝑒 {𝑣. ⌜Φ 𝑣⌝}

then for all execution paths ([𝑒], 𝔰) −→∗
tp (tp′, 𝔰′), for all 𝑒′ ∈ tp′, either 𝑒′ is a value, or

(𝑒′, 𝔰′) is reducible. If moreover the main thread has terminated (that is, 𝑒′ = tp′[0] is a
value), then Φ 𝑒′ holds.

The proof proceeds by Löb induction and uses the adequacy theorem of the Iris base
logic.

The soundness theorem above does not allow to prove intensional properties of the
program; the next chapter presents a new weakest precondition which allows to specify
more accurately the behavior of the program.

130

5 A program logic to relate traces

Program logics describe program behaviors through their soundness theorems: the fact
that some predicate about a program is provable inside the program logic implies that
the semantics of this program satisfies some property in the ambient logic. This means
that the expressiveness of the logic is limited by its soundness theorem.

5.1 Introduction

The Soundness Theorem 4.3.1 for the standard Iris weakest precondition is, essentially,
able to express that all vertices in the graph of all possible executions of a program 𝑒

starting at machine state 𝔰 satisfy some property, which corresponds to invariants being
always satisfied.

To see why one would want a finer characterization of the behavior of programs, let us
consider a program hanoi which solves the Tower of Hanoi problem. Recall that, in
the Tower of Hanoi problem, there are three rods, 𝐴, 𝐵 and 𝐶 and a number 𝑛 of disks
of different diameters {1, … , 𝑛}. Each disk has a hole in its center so that it can slide
onto any rod 𝐴, 𝐵 or 𝐶. In this initial state, all disks are on rod 𝐴, in increasing diameter
from the top. The goal is to move this stack from rod 𝐴 to rod 𝐵, with the following
constraints:

1. a disk must never lie on a smaller disk;

2. at most one disk can be missing from the stacks at any time;

3. each move consists in moving one disk from the top of a stack to the top of
another stack (including the empty stack).

It is a standard exercise for students learning recursive programming to write a program
which solves the Hanoi problem. One way to encode the Towers of Hanoi as a program
specification is as follows: each disk is represented as its diameter, and each stack is
represented as a linked list of the diameters of the disks (the head of the list contains
the disk on the top of the stack.)

131

5 A program logic to relate traces

Conditions 1 and 2 can be expressed as invariants of the program logic: at each instant,
each linked list is sorted, and the multiset of all elements of every list contains all disks
except for at most one (which is being held in the hands of the player of the game) and
no disk has a multiplicity greater than 1.

The problem with this specification is that the following program satisfies it:

hanoi ℓ𝐴 ℓ𝐵 ℓ𝐶 ≔ swap ℓ𝐴 ℓ𝐵

indeed, at the end of the execution, all the disks have been moved to the second rod,
and the invariant described above was never invalidated. The problem is that we are
not able to express the third condition above, which restricts the steps the program can
take.

5.1.1 Relating STSs to programs in Iris

More generally, the Towers of Hanoi problem described above is an instance of a more
general pattern: there is a state transition system (STS) (ℳ,→) which is an abstract
specification of the behavior the program should follow. It can be seen as a specification
of the problem to solve as in the example above, or it can represent the algorithm the
program should implement.

In the case of the Towers of Hanoi,ℳ ⊆ ℕ∗×ℕ∗×ℕ∗ represents the legal states of the
three stacks of disks, and the transition relation→ ⊆ℳ ×ℳ expresses the allowed
transitions of the game.

A common strategy, used for example by Robbert Krebbers, Timany, and Lars Birkedal
(2017) to encode binary logical relations in Iris, is to state the following invariant

inv𝒩 (∃𝑠 ∈ ℳ. model_is 𝑠 ∗ ⌜𝑠0 →
∗ 𝑠⌝ ∗ 𝐼 𝑠)

where 𝑠0 is the initial state of the STS —for Hanoi, 𝑠0 = ([1, … , 𝑛], 𝜀, 𝜀)— and model_is
is a predicate which states that the “current state” of the STS is equal to 𝑠. The Iris
predicate 𝐼 ∶ ℳ → iProp expresses that the memory of the program corresponds to the
state 𝑠 ∈ ℳ of the STS: In the Towers of Hanoi case, it states that the three linked lists
contains the same integer sequences as the components of the model.

Using the soundness theorem of the logic, we can prove that at every step 𝑘 of the
execution of the program, there is a state 𝑠𝑘 of the STS which is reachable from the
initial state and which matches the state of the program according to the predicate 𝐼.
What is lacking is that the sequence of witnesses 𝑠1, … , 𝑠𝑘 is a valid run of the STSℳ.
The technical objective of this work is to construct a program logic using the Iris base
logic which does provide such a guarantee.

132

5 A program logic to relate traces

5.1.2 Simulations

The formal notion of correspondence between executions of the program and the runs
of the STS which we use is simulation. This makes sense because a small step semantics
of a programming language in the sense of Definition 4.1.1 defines an STS ℒ over the
states (tp, 𝔰) where tp is a threadpool and 𝔰 is a machine state. The transition relation
is −→tp, ignoring the label. A simulation is a relation between states of two STSs which
is, in a sense, stable under transitions:

Definition 5.1.1. Given two STSs (ℳ1, →1) and (ℳ2, →2), a simulation is a rela-
tion 𝜙 ⊆ ℳ1×ℳ2 which satisfies the following property. For all (𝑠1, 𝑠2) ∈ ℳ1×ℳ2,
if 𝜙(𝑠1, 𝑠2), and for all 𝑠′1 ∈ ℳ1 such that 𝑠1 → 𝑠′1, there exists 𝑠′2 such that 𝑠2 → 𝑠′2
and 𝜙(𝑠′1, 𝑠′2).

Any STS induces another STS whose states are its runs:

Definition 5.1.2. Given an STSℳ = (ℳ,→), a run, execution or trace ofℳ is a finite
or infinite sequence 𝑡 = 𝔰1, … , 𝔰𝑛, … ∈ ℳ of states such that, for all 1 ≤ 𝑖, 𝔰𝑖 → 𝔰𝑖+1.
We write Runs(ℳ) the set of runs ofℳ, and FRuns(ℳ) for finite runs. If 𝑡 is a finite
run of length 𝑛 with the notations above, and if 𝔰𝑛+1 is such that 𝔰𝑛 → 𝔰𝑛+1, then
𝑡 ⋅ 𝔰𝑛+1 denotes the run 𝔰1, … , 𝔰𝑛+1.

Given an STSℳ, the STS ℜ(ℳ) of runs ofℳ is the STS ℜ(ℳ) = (FRuns(ℳ),→)

where
𝑠1⋯𝑠𝑛 → 𝑠1⋯𝑠𝑛𝑠𝑛+1 ⟺ 𝑠𝑛 → 𝑠𝑛+1

This allows us to define the notion of history-sensitive simulation as follows: a
history-sensitive simulation between two STSsℳ1 andℳ2 is a simulation between
ℜ(ℳ1) and ℜ(ℳ2). Such a simulation relates pairs of “executions”, and may examine
the history of those computations.

This notion of simulation is too strict for our purposes however: each step of the
program would need to be related to a step of the STSℳ, but, becauseℳ is meant to
be an abstract description of a computational process, it is natural to expect that it will
take fewer steps than the program. For example, for the Towers of Hanoi, all the steps
of the program which do not change the state of the memory are not matched by steps
in the STS representing the rules of the Hanoi game.

The solution, of course, is to allow the simulation to stutter. In this chapter, we allow
infinite stuttering, and define

Definition 5.1.3. Given two state transition systemsℳ1 andℳ2, a (history-sensitive
termination-insensitive) stuttering simulation is a history-sensitive simulation
betweenℳ1 andℳ=

2 , whereℳ=
2 is the reflexive closure ofℳ2.

133

5 A program logic to relate traces

In this chapter, we will define a program logic which, given a proof of trwp 𝑒{𝑄}, allows
for easily proving that some user-chosen relation 𝜙 contains a stuttering simulation
which relates an abstract modelℳ and a program 𝑒, seen as an STS.

More precisely, we define

Definition 5.1.4. Given two STSs ℳ1 and ℳ2 and a relation 𝜙 ⊆ ℳ1 × ℳ2, we
define 𝜙-similarity as the greatest simulation included in 𝜙. Two states 𝑠1 ∈ ℳ1

and 𝑠2 ∈ ℳ2 are called 𝜙-similar if they are related by the 𝜙-similarity relation.

This is well defined because simulations are closed under union, and so are the relations
⊆ 𝜙. Intuitively, 𝑠1 and 𝑠2 are 𝜙-similar when they are related by 𝜙 and for any step
of 𝑠1, there exists a step of 𝑠2 so that the reducts are related by 𝜙. This can be made
formal with the following characterization of 𝜙-similarity as the greatest fixpoint of
the following monotone map over relations in ℘(ℳ1 ×ℳ2):

ℛ ↦ {(𝑥1, 𝑥2) ∣ 𝜙(𝑥1, 𝑥2) ∧ ∀𝑥
′
1, 𝑥1 → 𝑥

′
1 ⇒ ∃𝑥′2, 𝑥2 → 𝑥

′
2 ∧ ℛ(𝑥

′
1, 𝑥

′
2)}

This induces the notion of 𝜙-history sensitive similarity and of 𝜙-stuttering sim-
ilarity since the corresponding notions of simulation are defined as simulations on
transformed STSs.

5.1.3 Motivation

This goal of this logic is to be able to state formally that some program module 𝑒
implements some algorithm 𝒜, described as a state transition systemℳ. The usual
program logic of Iris allows, in a sense, to prove that 𝑒 satisfies properties which are
expected of𝒜 by specifying 𝑒 with Hoare triples. The relevance of these Hoare triples
is supported by writing clients which use these specifications and whose safety depend
on the program module 𝑒 having the properties expected of it.

Practically speaking, one advantage of our approach is that one can use an off-the-shelf
formal description of the algorithm 𝒜. For example, we took a TLA+ specification,
written by experts, of the single decree Paxos algorithm of L. Lamport (2001), and we
proved that some program implements this algorithm. This also allows to split the proof
of this subtle program in two independent parts: fist we prove that 𝑒 implementsℳ
dealing with issues related to the implementation, and then we prove thatℳ does solve
the consensus problem in an idealized setting. See (Timany, Gregersen, et al., 2021) for
more details.

As we will see in the next chapter, this technique can be adapted to prove termination
of concurrent programs under fair schedulers by building a fair simulation between the
program and a well-behaved abstract model.

134

5 A program logic to relate traces

5.2 The trace weakest-precondition

The new weakest precondition trwp which we introduce in this chapter relates execu-
tions of the programwith traces in themodel.Therefore, we generalize the state_interp
predicate to take both the memory state 𝔰 and the model state 𝑠 as parameter. Using
the so-called authoritative camera construction which we will not detail here, the
state_interp and model_is predicates can be defined in such a way that they follow
the law:

state_interp 𝔰 𝑠 ∗ model_is 𝑠′ −∗ ⌜𝑠 = 𝑠′⌝

Only the model_is predicate is seen by the user of the logic during the proof of the
program; the state_interp predicate is only used in the definition of the weakest
precondition and in the proof of lemmas about trwp and model_is.

The logic is parameterized by a predicate state_evol 𝔰1 𝑠1 𝔰2 𝑠2 which expresses
which transitions in the model are allowed, a notion which can depend on the old
memory state 𝔰1 and the new memory state 𝔰2 of the program.

To make trwp a strict generalization of the standard Iris weakest precondition wp, in
that every rule which is valid for the latter is also valid for the former, it suffices to
choose a state_evol predicate which satisfies:

∀𝔰1, 𝔰2, 𝑠, state_evol 𝔰1 𝑠 𝔰2 𝑠.

The standard definition for this predicate, given a model STSℳ, is:

state_evol 𝔰1 𝑠1 𝔰2 𝑠2 ≔ ⌜𝑠1 → 𝑠2 ∨ 𝑠1 = 𝑠2⌝

which corresponds to ignoring the machine states and asking that each step of the
program correspond to a step inℳ=, the reflexive closure of the model STSℳ.

The new weakest precondition is defined as the following guarded fixpoint:

trwp
ℰ
𝑒1 {𝑄} ≔ (⌜𝑒1 ∈ Val ⌝ ∧ ∣⇛ℰ ℰ𝑄 𝑒1) ∨ (⌜𝑒 ∉ Val⌝ ∧

∀𝔰1, 𝑠1, state_interp 𝔰1 𝑠1 −∗ ∣⇛ℰ ∅⌜reducible 𝑒1 𝔰1⌝ ∗

∀𝑒2, 𝔰2, 𝑒𝑓. ⌜(𝑒1, 𝔰1) → (𝑒2, 𝔰2, 𝑒𝑓)⌝ −∗ ∣⇛∅ ∅ ⊳ ∣⇛∅ ℰ ∃𝑠2,

⌜state_evol 𝔰1 𝑠1 𝔰2 𝑠2⌝ ∗ state_interp 𝔰2 𝑠2 ∗

trwp
ℰ
𝑒2 {𝑄} ∗⊛

𝑒∈𝑒𝑓

trwp
⊤
𝑒 {⊤})

The weakest precondition takes as input the “current” machine state 𝔰1 and the current
state 𝑠1 of the STSℳ. If the program 𝑒1 is not a value, it must be reducible in state 𝔰,

135

5 A program logic to relate traces

and for all possible reduction steps of the program (𝑒1, 𝔰1) → (𝑒2, 𝔰2, 𝑒𝑓), there must
exist a corresponding state 𝑠2 of the STS such that the transition from 𝔰1, 𝑠1 to 𝔰2, 𝑠2
is allowed, and such that trwp

ℰ
𝑒2 {𝑄} holds in a world where the new states are 𝔰2

and 𝑠2 and where the new threads are safe.

Given that guarded recursion is closely related to condinduction, this definition is
reminiscent of similarity.

The predicate trwp satisfies all the rules expected of a weakest precondition. In addition,
it is possible to change the state of the STS while executing an atomic expression (by
definition, an expression which reduces to a value in one step). The following rule
allows to take a step in the model:

⌜𝑠 → 𝑠′⌝ ∗ model_is 𝑠 ∗ trwp
ℰ
𝑒 {𝑣. model_is 𝑠′ −∗ ∣⇛ℰ ℰ𝑄 𝑣}

trwp
ℰ
𝑒 {𝑄}

In other words, if we own the fact that the current models of the STS is 𝑠 and that 𝑠 → 𝑠′,
then we can assume that, after 𝑒 has executed, the new state of the STS is 𝑠′.

5.2.1 Soundness of trwp

The soundness theorem provides a criterion, given a relation𝜙 and a proof of trwp
⊤
𝑒{𝑄}

in a logical state where the current program and model states are respectively 𝔰0 and 𝑠0,
for ([𝑒], 𝔰0) and 𝑠0 to be 𝜙-history sensitive similar. This criterion states —if we ignore
histories— that 𝜙 𝔰 𝑠 holds if ⌜state_interp 𝔰 𝑠⌝ does.

The reason why this criterion is easy to use is that this it needs to be satisfied inside of
Iris, while being able to use every invariant; and in practice the invariant and 𝜙 state
essentially the same property, the first from inside the Iris logic and the second from
the outside. For example, in the case of the Towers of Hanoi, the invariant states that
the three linked lists contain the same elements as the three components of the abstract
model using points-to predicates, and 𝜙 states the same fact, in the form of a predicate
over the memory and the state of the STS.

We need some notations to state the soundness theorem. Given a run 𝑡 of an STS, we
write

𝑡 = 𝑥⋯𝑦

to mean that the first state of the run 𝑡 is 𝑥 and the last one is 𝑦. Note that if 𝑡 is of
length 1, 𝑥 and 𝑦 are the same state. We write |𝑡| for the length of the run 𝑡. Finally,
if 𝑡 = 𝑥1⋯𝑥𝑛−1𝑥𝑛 is a run of length > 1, we write 𝑡[∶−1] for the trace 𝑥1⋯𝑥𝑛−1.

As we will explain in the next section, the following technical condition is required by
the fact that the Iris logic is step-indexed.

136

5 A program logic to relate traces

Definition 5.2.1. Given relation 𝜙 between finite executions of ℒ and finite runs ofℳ,
the STSℳ is called 𝜙-finitary if, for all 𝑠, 𝑡1, 𝑡2, the the following set is finite:

{𝑠′ ∣ 𝑠
ℓ
−→ 𝑠′ ∧ 𝜙 (𝑡1 ⋅ 𝔰) (𝑡2 ⋅ 𝑠

′)}

Theorem 5.2.2. Let 𝜙 be a relation between finite executions of ℒ and finite runs ofℳ.
Given a program 𝑒, an initial memory 𝔰 and a model STSℳ with an initial state 𝑠0, if
the Iris formula

∣⇛⊤ ⊤state_interp 𝔰0 𝑠0 ∗ trwp⊤ 𝑒 {𝑄} ∗

(∀𝑡1, 𝑡2, tp, 𝔰, 𝑠, ⌜𝑡1 = ([𝑒], 𝔰0)⋯ (tp, 𝔰) ∧ 𝑡2 = 𝑠0⋯𝑠⌝ −∗

(⌜|𝑡1| > 0 ∧ |𝑡2| > 0 ⟹ 𝜙 𝑡1[∶−1] 𝑡2[∶−1]⌝) −∗

state_interp 𝔰 𝑠 −∗

∣⇛⊤ ∅⌜𝜙 𝑡1 𝑡2⌝)

is valid, and if the STSℳ is 𝜙-finitary, then the singleton traces [([𝑒], 𝔰0)] of the program
and [𝑠0] of the STS are 𝜙-history sensitive similar.

The implication
|𝑡′1| > 0 ∧ |𝑡

′
2| > 0 ⟹ 𝜙 𝑡1[∶−1] 𝑡2[∶−1]

is a terse way of stating that the user needs to establish that 𝜙 relates the initial machine
and STS states, and that afterwards they can assume that 𝜙 relates the previous states.

In the standard instantiation explained above with the reflexive closureℳ ≔ℳ=
0 of

a STSℳ0, the conclusion states that the singleton executions [([𝑒], 𝔰0)] and [𝑠0] are
𝜙-history sensitive similar in the STSsℳ= and ℒ. By definition of stuttering simulation,
this means that [([𝑒], 𝔰0)] and [𝑠0] are 𝜙-stuttering similar.

Remark 5.2.3. We have not presented the soundness theorem of the logic in is full
generality for clarity, instead we have presented it as it looks when instantiated for some
programming language. We refer the reader to the Coq development for the more gen-
eral definition, where the predicates state_interp and state_evol are existentially
quantified, and where there are more hypothesis available to prove ⌜𝜙 𝑡1 𝑡2⌝.

5.2.2 Proof of the soundness theorem

Because 𝜙-similarity can be defined as a coinductive predicate, the proof of the sound-
ness theorem boils down to the fact that a guarded fixed point trwp in the Iris logic
implies a coinductive predicate in the ambient logic.

137

5 A program logic to relate traces

This proof proceeds by considering an intermediate “pure” predicate gsim which sits
in between those two predicates. It states the definition of 𝜙-similarity expressed as
a guarded fixpoint which is independent of resources. Writing Hyp(𝜙, et ,mt) for the
hypothesis in Theorem 5.2.2, where et and mt are singleton program trace and STS run
respectively, the proof proceeds by proving the following two implications:

1. ⊨ Hyp(𝜙, et ,mt) −∗ gsim
𝜙
(et ,mt)

2. (⊨ gsim
𝜙
(et ,mt)) ⟹ et and mt are 𝜙-similar

Beforewe describe the proofs of these two implications in turn, let us define the gsim
𝜙
(et ,mt)

predicate as the Iris guarded fixpoint:

gsim
𝜙
(et ,mt) ≔ ⊳ ⌜𝜙 et mt⌝ ∧ ∀tp, 𝔰, tp′, 𝔰′.

⌜et = ⋯(tp, 𝔰) ∧ (tp, 𝔰) −→tp (tp′, 𝔰′)⌝ ⟶

⊳⊳(∃𝑠′. ⌜state_evol 𝔰 𝑠 𝔰′ 𝑠′⌝ ∧ gsim
𝜙
(et⋅(tp′, 𝔰′),mt⋅𝑠′))

where the first ⊳ spans over the whole formula. Notice that all the atomic predicates
used in this definition are of the form ⌜Φ⌝. This implies that it does not depend on
resources: for all resources 𝑎 and 𝑎′

𝑎, 𝑛 ⊨ gsim
𝜙
(et ,mt) ⟺ 𝑎′, 𝑛 ⊨ gsim

𝜙
(et ,mt)

The three later modalities in the definition of gsim are necessary to eliminate the laters
and the fancy updates (which are defined using a later modality) in the definition of trwp
during the proof of the first implication Hyp(𝜙, et ,mt) −∗ gsim

𝜙
(et ,mt).

The proof of this implication proceeds by Löb induction and it fairly similar to the proof
of soundness of the usual Iris weakest precondition.

Extracting a trace from a guarded predicate

The more interesting part of the proof is the second implication:

(⊨ gsim
𝜙
(et ,mt)) ⟹ et and mt are 𝜙-similar

To emphasize the resemblance between the gsim predicate and 𝜙-similarity, we express
the latter in a language close to the Coq syntax for coinductive predicates:

Coinductive gsim
𝜙
(et ,mt) ≔

𝜙 et mt ∧ ∀tp, 𝔰, tp′, 𝔰′.
et = ⋯(tp, 𝔰) ∧ (tp, 𝔰) −→tp (tp′, 𝔰′) ⟶

∃𝑠′. state_evol 𝔰 𝑠 𝔰′ 𝑠′ ∧ gsim
𝜙
(et⋅(tp′, 𝔰′),mt⋅𝑠′)

138

5 A program logic to relate traces

They only differ syntactically by the modalities and the different nature of their fixpoint.
The proof of this implication is not trivial however: the STS needs to be 𝜙-finitary for
it to hold. The reason is that the following result does not hold in general:

⊨ ∃𝑥 ∶ 𝐴. 𝑃 𝑥 ⇒ ∃𝑥 ∶ 𝐴, ⊨ 𝑃 𝑥 (5.1)

where the predicate 𝑃 does not depend on resources. The reason is that, unfolding the
definition of ⊨ ∃𝑥 ∶ 𝐴. 𝑃 𝑥 and of validity, this amounts to proving that

(∀𝑖 ∶ ℕ, ∃𝑥𝑖 ∶ 𝐴, 𝑖 ⊨ 𝑃 𝑥𝑖) ⇒ ∃𝑥 ∶ 𝐴, ∀𝑖 ∶ ℕ, 𝑖 ⊨ 𝑃 𝑥

which, not surprisingly, does not hold for all 𝐴 (we omit the resource 𝑎 since validity of
these formulas do not depend on it). If 𝐴 is finite however, if the LHS of the implication
holds, by the pigeonhole principle and the axiom of choice, there exists 𝑥∞ such that
for infinitely many 𝑖 ∈ ℕ, 𝑖 ⊨ 𝑃 𝑥∞.

Because, by definition, predicates are downward closed for step indices (𝑖 ⊨ 𝑃 implies
that, for any 𝑗 < 𝑖, 𝑗 ⊨ 𝑃), this witness 𝑥∞ holds for every step-index 𝑖, and the
implication (5.1) holds.

The case of the universal quantification and conjunction is not problematic because this
amounts to permuting two universal quantifiers. Disjunction is equivalent to existential
quantification over Booleans which means that “disjunction distributes over ⊨” (though
we do not need it here).

Using (5.1) to extract the witness 𝑠′, the proof proceeds by a simple coinduction.

This technique was used by Tassarotti, Jung, and Harper (2017) and Spies et al. (2021)
for similar purposes.

Remark 5.2.4. The condition that the STSℳ is finitely branching which we presented
here is stronger than necessary. In the next chapter, we need the weaker but more
complicated condition, that for all program configuration (tp, 𝔰) and machine state 𝔰′,
for all STS state 𝑠 ∈ ℳ,

(∃et ,mt , et = ⋯(tp, 𝔰) ∧mt = ⋯𝑠 ∧ 𝜙 et mt) ⇒ |{𝑠′ ∣ state_evol 𝔰 𝑠 𝔰′ 𝑠′}| < ∞

5.2.3 Infinite traces

The soundness theorem of this logic is a proof method to prove that a singleton program
trace [(tp, 𝔰)] and a singleton run [𝑠] of the STSℳ are𝜙-similar for some binary relation
𝜙.

139

5 A program logic to relate traces

This implies in particular that given a possibly infinite trace et of the form et = (tp, 𝔰)⋯,
there exists a possibly infinite run mt ofℳ of the same length as et which begins by 𝑠,
and such that:

∀𝑛 < |et|, 𝜙 et [∶𝑛] mt [∶𝑛]

where we write et [∶𝑛] for the prefix of et which consists in the first 𝑛-transitions.

The fact that this relates infinite traces will allow us to transport liveness properties
from the STS run to the execution trace in the next chapter.

5.3 Related works

There have been several works which aim at proving refinement of programs using a
concurrent separation logic such as Iris, often using logical relations: (Robbert Krebbers,
Timany, and Lars Birkedal, 2017) explains how to define binary logical relations and
prove them sound using Iris, (Timany, Léo Stefanesco, et al., 2017) defines a binary logical
relation to prove that the ST monad preserves observational purity of the language,
and ReLoC is a relational logic encoded in Iris (Dan Frumin, Robbert Krebbers, and
Lars Birkedal, 2018). The goal of these logics is to prove contextual refinements, whereas
our goal is to prove more intentional notions of refinements at the level of traces. As a
consequence, they can use the usual Iris weakest precondition, and put the state of the
program being refined in the logical state. They state in an Iris invariant the fact the
current state of the refined program is reachable from its initial state, as we explained
at the beginning of this chapter.

The goal of the Polaris logic, by Tassarotti and Harper (2019), is to reason about programs
written in a probabilistic concurrent shared memory programming language. The
nondeterminism of the scheduler mixed with the probabilistic behavior of the program
is a difficult combination to reason about. Their solution is to relate such a program 𝑒
with a simple probabilistic program which denotes an element of a monad for mixing
non-determinism and probabilities defined by Varacca and Winskel (2006). Our method
is similar since we relate a program with an abstract specification of its behavior, which
is easier to study. Their weakest precondition is similar to ours, specialized to their
notion of abstract model.

There are works aiming at proving non-interference properties of programs using
program logics. The work closest to ours is SeLoC (D. Frumin, R. Krebbers, and L.
Birkedal, 2021) a logic on top of Iris to prove strong low-bisimulations. Bisimulations
are easier in some respect to deal with because they do not have existential quantifiers
interacting with the step indexing, and they do not deal with stuttering.

140

6 Fair termination in Iris

Most concurrent programs need a fair scheduler to make progress. This is especially
true when programs cannot rely on an operating system to put to sleep threads waiting
for a lock to become unlocked and to wake them up when another thread unlocks this
lock.

This means that whenever a thread 𝐴 is waiting on another thread 𝐵 to be able to make
progress, for instance the following program which uses a lock ℓ:

acquire(ℓ); release(ℓ) ∥ acquire(ℓ); release(ℓ)

an unfair scheduler could first execute the left hand-side acquire operation, followed
by only executing the right hand-side thread. Because the program cannot go to sleep,
the implementation of acquire must spin and try to acquire the lock in a loop until it
succeeds. This means that this program has infinite executions.

In most circumstances, it is not a reasonable behavior for the scheduler, and we only
consider traces where the scheduler is behaving fairly:

Definition 6.0.1. Consider an execution trace of a program, of the form:

(tp
1
, 𝔰1)

tid1
−−−→tp (tp2, 𝔰2)

tid2
−−−→tp ⋯

This trace is called fair if, either the trace is finite, or, for all 𝑛 ∈ ℕ ⧵ {0}, if the thread
at index tid of tp

𝑛
is enabled, then there exists𝑚 ∈ ℕ such that either:

1. the thread at index tid is not enabled in tp
𝑛+𝑚

, or

2. the thread tid is executed in step 𝑛 +𝑚, in that: tid𝑛+𝑚 = tid.

In words and in the language of linear temporal logic, it is always the case that if a
thread is enabled, eventually it is disabled or it runs.

Note that, in our particular setting, a thread stops being enabled only after it takes
at least one step, so the first disjunct of the definition could be removed. We choose
however to use the usual definition.

141

6 Fair termination in Iris

It is easy to convince oneself that every fair execution of the simple program above is
finite. By definition, this means that it is fairly terminating.

Our goal in this chapter is to use the framework described in the previous chapter to
prove the fair termination of concurrent programs in the Iris logic.

6.1 Termination and fairness preserving simulation

Proving termination of a program “directly” in Iris is made very difficult by the step-
indexing underlying it: the validity of an Iris predicate states that it holds at every
step-index. If, as it is the case for most weakest preconditions, each step of the program
corresponds to at least one later modality ⊳ in the weakest precondition, then we are
limited to expressing properties about all finite prefixes for executions of the program.
Termination being a liveness property, finite prefixes are not enough.

One solution, which is part of the Iris development, is to define a weakest precondition
without later modalities. Such a weakest precondition guarantees termination, but does
not allow to eliminate later modalities. As a consequence, not all predicates can be used
in invariants, and Löb induction cannot be used.

6.1.1 Fairness models

Our approach is instead to relate the program to an abstract model expressed as an STS
in such a way that if the model is fairly terminating, so is the program. This means that
the traces of the STSs we consider need to come with a notion of fairness, which is
not the case of the simple unlabeled STSs of the previous chapter. Instead, we use the
following notion:

Definition 6.1.1. A fairness model ℱ is the data of a set ℱ of states, a set ℛ of roles,
and a transition relation→ ⊆ ℱ×ℛ×ℱ labeled by roles. Moreover, it is equipped with
a map enabled_roles ∶ ℱ → ℘fin(ℛ) which associates a finite set of enabled roles to
each state 𝑠 ∈ ℱ. It must approximate the set of outgoing roles:

∀𝜌 ∈ ℛ, ∀𝑠, 𝑠′ ∈ ℱ, 𝑠
𝜌
−→ 𝑠′ ⟹ 𝜌 ∈ enabled_roles 𝑠.

and it must not disable other roles: if 𝑠
𝜌
−→ 𝑠′, then

∀𝜌′ ≠ 𝜌, 𝜌′ ∈ enabled_roles 𝑠 ⇒ 𝜌′ ∈ enabled_roles 𝑠′

Finally, ℱ comprises a map fuel_limit ∶ ℱ → ℕ which will be useful to ensure finite
branching conditions.

142

6 Fair termination in Iris

A run of ℱ is a non-empty finite or infinite sequence of the form:

𝑠1
𝜌1
−−→ 𝑠2

𝜌2
−−→ ⋯

The notion of role plays the same role as thread identifiers in the STS of programs: they
allow to talk about “who” is taking steps. In particular, this notion allows to define a
notion of fair run for a fairness model:

Definition 6.1.2. Consider a run of a fairness model ℱ of the form:

𝑠1
𝜌1
−−→ 𝑠2

𝜌2
−−→ ⋯

This run is called fair if it is finite, or if, for all 𝑛 ∈ ℕ⧵{0}, for all 𝜌 ∈ enabled_roles 𝑠𝑛,
there exists𝑚 ∈ ℕ such that either 𝜌 ∉ enabled_roles 𝑠𝑛+𝑚, or 𝜌 = 𝜌𝑛+𝑚.

The fairness model ℱ is called fairly terminating if all its fair runs are finite.

6.1.2 Running example

The running example in this chapter is a classical example of a simple program which
fairly terminates. It has two threads which each flip 𝑘 times a shared Boolean variable b.
Thread Yes flips it from true to false, and thread No flips it from false to true. In
code:

Yes () ≔ (if CAS(b, true, false) then n≔ !n− 1); if !n > 0 then Yes ()

No () ≔ (if CAS(b, false, true) then m≔ !m− 1); if !m > 0 then No ()

where we use ML notations for references: !n reads the contents of the reference n, and
n≔ 𝑣 updates it with a new value 𝑣. Note that only b is shared, the variables n and m
are local to each thread, and initially hold 𝑘.

The CAS(ℓ, 𝑣1, 𝑣2), which stands for compare-and-swap, or compare-and-set, is an
atomic primitive which updates the contents of ℓ with 𝑣2 if it currently contains 𝑣1, in
which case it returns true; otherwise, if ℓ contains another value than 𝑣1, it does not
modify ℓ and returns false.

This program fairly terminates because, intuitively, at each stage of the computation,
exactly one of the two threads can make progress. In a fair execution, each thread
eventually gets executed, which means that the program makes progress eventually.
This means that the contents of n and m always eventually decrease, and since they are
always positive, the program terminates.

143

6 Fair termination in Iris

The model we will use, in a sense, formalizes the above reasoning by only counting the
relevant steps, which are the CAS operations, which are less that one twentieth of the
reduction steps in this simple example.

To define a small model, it is useful to note that the contents of n and of m are almost
equal just before executing the CAS operation:

• if 𝑏 is true, m and m are equal,

• if 𝑏 is false, m = n+ 1

this means that, in a way, the state of the program can be summarized by the value
of m and the value of 𝑏. Hence, the states of the fairness model ℱyn for the example
above are the pairs (𝑚, 𝑏) of a natural number𝑚 ∈ ℕ and a Boolean 𝑏 ∈ 𝟚. There are
two roles, Yes and No, which represent the actions of the corresponding threads of the
program. The transitions are the following, labeled with their role:

⋯ 𝑘, 1 𝑘, 0 𝑘−1, 1 𝑘−1, 0 ⋯ 0, 0
No

No

Yes

Yes

No

No

Yes

Yes

No Yes

The loops represent the failed CASes, and the horizontal transitions represent the
successful CASes which make the program progress. For now, let us say that both
roles are enabled in every state, that is, enabled_roles is the constant map equal
to {Yes, No}. We will see in the sequel that, for rather unfortunate technical reasons,
the model needs to be slightly modified.

Since our strategy to prove that the the parallel composition of Yes and of No is fairly
terminating is to reduce it to the fact that ℱyn is a fairly terminating fairness model, it
is natural to ask how does one prove the latter.

6.1.3 A local criterion for the fair termination of models

Proving directly that a simple model such as ℱyn is fairly terminating is very tedious,
as one needs to do a lexicographic induction on the pairs which define the states, but
also an induction on the “deadline”𝑚 which Definition 6.1.2 supplies.

Instead, one can use a local criterion which formalizes the intuition that at each step,
there is a certain role 𝜌 which will make progress when it gets to run. Given a fair run,
we know that this role is eventually going to run, and therefore that progress will be
made. The notion of progress is defined using the usual notion of well-founded order:

144

6 Fair termination in Iris

Definition 6.1.3. An ordered set (𝐴,≤) is a well-founded ordered set if there does not
exist any infinite decreasing sequences of elements of 𝐴.

The states of the fairness model ℱyn equipped with the lexicographic order over ℕ × 𝟚
are well-founded. We can now state our criterion:

Definition 6.1.4. A fairness model ℱ is called locally fairly terminating if there
exists a well founded order ≤ over ℱ and a map 𝜋 ∶ ℱ → ℛ from states to roles which
satisfies the following conditions:

1. for all transitions 𝑠
𝜌
−−→ 𝑠′, 𝑠′ ≤ 𝑠;

2. for all states 𝑠 ∈ ℱ which are not dead ends, 𝜋(𝑠) ∈ enabled_roles 𝑠 and for
all 𝑠′ such that 𝑠

𝜋(𝑠)
−−−−→ 𝑠′, 𝑠′ < 𝑠;

3. for all transitions 𝑠
𝜌
−−→ 𝑠′, if 𝜌 ≠ 𝜋(𝑠), then 𝜋(𝑠′) = 𝜋(𝑠);

where a state 𝑠 is called a dead end if there are no outgoing transitions from it.

We call this criterion local because it can be checked for each transition independently,
without any reference to traces. This criterion is correct:

Lemma 6.1.5. If a fairness model ℱ is locally fairly terminating, then it is fairly termi-
nating.

Proof. The proof proceeds by proving the following statement by well-founded induc-
tion over �̄�: For any run mt whose first state is ≤ �̄�, if it is fair, then it is finite.

Let �̄� be a state and mt be such a fair model run; write 𝑠𝑘 its 𝑘th state and 𝜌𝑘 the
role of its 𝑘th transition, pose 𝜌 ≔ 𝜋(𝑠1). By definition of locally fair model, 𝜌 ∈
enabled_roles 𝑠1, which means, since mt is fair, that there exists𝑚 ∈ ℕ such that

𝜌 ∉ enabled_roles 𝑠1+𝑚 ∨ 𝜌 = 𝜌1+𝑚 (6.1)

where we see 𝑠𝑘 and 𝜌𝑘 as depending on the trace mt . We proceed by induction over
natural numbers𝑚.

For 𝑚 = 0, the left disjunct is in contradiction with 𝜌 ∈ enabled_roles 𝑠1, there-
fore 𝜌 = 𝜌1 and, by definition of local fairness, 𝑠2 < 𝑠1, and we conclude with the
“outer” induction hypothesis applied to the tail of the run mt .

For𝑚 > 0, we examine the first transition of mt :

1. If the trace is a singleton it is finite and we are done.

145

6 Fair termination in Iris

2. If it is of the form 𝑠1
𝜌
−−→ 𝑠2, we proceed as above with the “outer” induction

hypothesis.

3. Otherwise, 𝜌1 ≠ 𝜌, so 𝜋(𝑠2) = 𝜋(𝑠1), and the tail of mt satisfies (6.1) for𝑚 − 1
instead of𝑚, and so we can conclude using the “inner” induction hypothesis.

The criterion is enough to prove thatℱyn is fairly terminating: define𝜋((𝑚, 𝑏)) to be Yes
for 𝑏 = 1 and No otherwise. Checking that this defines a locally fairly terminating model
is immediate.

6.1.4 Termination and fairness preserving refinements

Now that we have explained how to establish the fair termination of a fairness model ℱ,
it remains to define a notion of refinement between traces ≾ which preserves the
properties we need: Given a program execution et and a fairness model run mt such
that et ≾ mt ,

1. if et is a fair execution, then mt is a fair run,

2. if mt is a finite run, then et is a finite execution.

Given such a notion of refinement, to prove that a program 𝑒 fairly terminates, it is
sufficient to find a fairly terminating fairness model ℱ such that, for all execution
trace et of 𝑒, there exists a run mt of ℱ such that et ≾ mt . The existence of such a run
will follow in great part from the corollary of the soundness of trwp which we stated
in Section 5.2.3.

The main difficulty in defining the trace refinement relation ≾ is to enforce fairness
preservation. The intuition is the following. If the execution trace et is fair, this means
that “resources” are equitably allocated to each thread; and such a trace must only be
related to run of ℱ where resources are allocated equitably to each role. Keeping in
mind that we want our proof method to be thread-local, we ask that each role 𝜌 be the
responsibility of a thread 𝔗(𝜌) ∈ ℕ, and each thread tid needs to allocate the resources
it gets from the scheduler fairly among the set 𝔗−1(tid) of roles it is in charge of.

More concretely, any infinite sequence of transitions of thread tid in et must correspond
to an infinite number of transitions in mt of every role in 𝔗−1(tid). This is achieved
by associating a “fuel amount” 𝔉(𝜌) ∈ ℕ to each role 𝜌. Each step of a thread tid
must decrease (strictly) the amount of fuel of every role in 𝔗−1(tid), unless this step
corresponds, according to ≾, to a step labeled with a role 𝜌 ∈ 𝔗−1(tid), in which case

146

6 Fair termination in Iris

the fuels of the roles in 𝔗−1(tid) ⧵ {𝜌} must decrease, and the fuel of 𝜌 can be filled
up.

Remark 6.1.6. This notion of fuel is, in a sense, dual to step-indexing: if the step-index
reaches “-1”, Prover wins the game (that is, 0 ⊨ ⊳⊥ is true), in other words, Verifier
needs to find a contradiction in a finite number of moves. Here, on the other hand,
Prover needs to produce a witness before the fuel runs out.

This relation ≾ over traces needs to keep track of these two mappings 𝔗 and 𝔉 which
need to evolve at each step. To manage this complexity, we define ≾ as the composition
of to relations:≾ ≔ ≾s ∘ ≾f which relate the former traces to an existentially quantifier
trace of an STS 𝔏𝔦𝔳𝔢(ℱ). In other words, for program execution et and a model runmt ,

et ≾ mt ⟺ ∃𝔱 ∈ Runs(𝔏𝔦𝔳𝔢(ℱ)), et ≾f 𝔱 ∧ 𝔱 ≾s mt

The relation ≾f is the predicate on traces which is induced by a mild generalization of
the notion of simulation of Definition 5.1.1, and ≾s is a very simple as well. Hence, the
whole complexity of the accounting of fuel and of the correspondence between threads
and roles (which can change dynamically) is confined in the definition of 𝔏𝔦𝔳𝔢(ℱ).

6.1.5 The 𝔏𝔦𝔳𝔢 construction

Given a fairness model ℱ, we define a (labeled) STS 𝔏𝔦𝔳𝔢(ℱ) which keeps track of
mapping between roles and threads, and of fuels, as suggested above.

Definition of the labeled STS

A state of 𝔏𝔦𝔳𝔢(ℱ) is a triple (𝑠, 𝔉, 𝔗) of a state 𝑠 ∈ ℱ, together with two maps 𝔉 ∶
enabled_roles 𝑠 → ℕ and 𝔗 ∶ enabled_roles 𝑠 → ℕ which associate a fuel amount
and a thread ID to each role 𝜌 which is enabled in the current underlying state 𝑠.

The set of labels of 𝔏𝔦𝔳𝔢(ℱ) is

{Step 𝜌 tid ∣ 𝜌 ∈ ℛ, tid ∈ ℕ} ⊎ {Silent tid ∣ tid ∈ ℕ}

(recall that ℛ is the set of roles of the fairness model ℱ) The intuition is that a step
labeled by Step 𝜌 tid corresponds to the situation where the thread tid takes a step in
the program, and one of the roles 𝜌 under its responsibility takes a step in the fairness
model. A step labeled Silent tid, on the other hand, corresponds to a step in the program
which does not correspond to a step in the fairness model, in other words, a stuttering
step.

147

6 Fair termination in Iris

We now describe the transitions in the labeled STS 𝔏𝔦𝔳𝔢(ℱ). The idea is that there are
two kinds of transitions

• A thread tid can take a step in 𝔏𝔦𝔳𝔢(𝑀) of the form

(𝑠, 𝔉, 𝔗)
Silent tid
−−−−−−→ (𝑠, 𝔉′, 𝔗′)

which does not corresponds to a step in the underlying fairness model ℱ in
exchange of consuming fuel: for every 𝜌 ∈ 𝔗−1(tid) which the thread tid is in
charge of, the corresponding fuel 𝔉(𝜌) must decrease strictly, in that 𝔉′(𝜌) <
𝔉(𝜌).

• A thread tid can also take a step in the underlying model which corresponds to a
role 𝜌 ∈ 𝔗−1(tid)

(𝑠, 𝔉, 𝔗)
Step 𝜌 tid
−−−−−−→ (𝑠′, 𝔉′, 𝔗′)

This allows to refill the fuel of 𝜌 up to the limit fuel_limit 𝑠′, that is, 𝔉′(𝜌) ≤
fuel_limit 𝑠′; this is required to keep the STS finitely branching. All the other
roles which are associated with tid must decrease:

∀𝜌′ ∈ 𝔗(tid) ⧵ {𝜌}, 𝔉′(𝜌′) < 𝔉(𝜌′)

Roles which appear between 𝑠 and 𝑠′ can have any fuel ≤ fuel_limit 𝑠′ in 𝔉′. Of
course, we also require there be a step

𝑠
𝜌
−−→ 𝑠′

in the fairness model ℱ.

In addition to the two constraints above, in both cases, the fuel of the roles which are
not associated with the thread tid must not increase:

∀𝜌 ∈ ℛ ⧵ 𝔗−1(tid), 𝔉′(𝜌) ≤ 𝔉(𝜌)

and roles which change owners (𝔗′(𝜌) ≠ 𝔗(𝜌)) must have their fuel decrease strictly.

The trace refinement predicates ≾f and ≾s

Given two labeled STSℳ1 andℳ2 with states 𝑆1 and 𝑆2 and labels 𝐿1 and 𝐿2 respec-
tively, and relations 𝜙𝑆 ⊆ 𝑆1 × 𝑆2 and 𝜙𝐿 ⊆ 𝐿1 × 𝐿2, we say that a trace et ofℳ1 and
a trace mt ofℳ2 are related by 𝜙𝑆 and 𝜙𝐿 if: they have the same size, and, for all 𝑛,
the 𝑛th state of et and the 𝑛th state of mt are related by 𝜙𝑆, and similarly 𝜙𝐿 relates
the respective 𝑛th labels of the traces.

148

6 Fair termination in Iris

The refinement predicate ≾f is defined as follows:

et ≾f 𝔱 ⟺ et and 𝔱 are related by enabled_tids and labels_match

where those two relations are defined as follow. Given a label tid of the labeled STS ℒ of
the programming language, and a label ℓ of the labeled STS 𝔏𝔦𝔳𝔢(ℱ), labels_match tid ℓ
holds iff

ℓ = Silent tid ∨ ℓ = Step tid 𝜌 (for some 𝜌)

The predicate over states of the two STSs enforces that thread IDs which appear in
the states of 𝔏𝔦𝔳𝔢(ℱ) correspond to threads in the corresponding state of the program,
and that no role is the responsibility of a thread which is not enabled. Hence we define
enabled_tids((tp, 𝔰), (𝑠, 𝔉, 𝔗)) as

(∀𝜌, tid, 𝔗(𝜌) = tid ⇒ tid < |tp|) ∧
(∀tid, tp[tid] ∈ Val ⇒ (∀𝜌, 𝔗(𝜌) ≠ tid))

(6.2)

The second trace refinement relation ≾s is simpler. There is forgetful map 𝒮 from the
states of 𝔏𝔦𝔳𝔢(ℱ) to the sets of ℱ:

(𝑠, 𝔉, 𝔗) ↦ 𝑠

and a partial map ℒ from the labels of of 𝔏𝔦𝔳𝔢 to the sets of ℱ which maps the labels
of the form Step tid 𝜌 to 𝜌 and is undefined otherwise. This defines a map 𝒟 from the
traces of 𝔏𝔦𝔳𝔢(ℱ) to the traces of ℱ by disregarding transitions which are not in the
domain of the label partial map above; this corresponds to destuttering of the trace.

This map is very well behaved:

Lemma6.1.7. If the image underℒ of the label of transition (trace of length 2) (𝑠, 𝔉, 𝔗)
ℓ
−−→

(𝑠′, 𝔉′, 𝔗′) is not defined, then 𝑠 = 𝑠′.

Moreover, there exists a map Ψ from the states of 𝔏𝔦𝔳𝔢(ℱ) to ℕ such that, for transitions
as above:

Ψ(𝑠′, 𝔉′, 𝔗′) < Ψ(𝑠, 𝔉, 𝔗)

Proof. Take Ψ(𝑠, 𝔉, 𝔗) ≔ ∑
𝜌∈enabled_roles 𝑠 𝔉(𝜌).

The existence of the decreasing potential Ψ means in particular that the destuttering
map 𝒟 can be defined in Coq. Finally, we define ≾s as the graph of 𝒟:

𝔱 ≾f mt ⟺ 𝒟(𝔱) = mt

149

6 Fair termination in Iris

Preservation of fairness and termination

There is a natural notion of fairness for runs of the STS 𝔏𝔦𝔳𝔢(ℱ):

Definition 6.1.8. Consider a run of 𝔏𝔦𝔳𝔢(ℱ), for a fairness model ℱ, of the form:

(𝑠1, 𝔉1, 𝔗1)
ℓ1
−−→ (𝑠2, 𝔉2, 𝔗2)

ℓ2
−−→ ⋯

This run is called fair if it is finite, or for all 𝑛 ∈ ℕ⧵ {0}, for all 𝜌 ∈ enabled_roles 𝑠𝑛,
then there exists 𝑚 ∈ ℕ such that either: 𝜌 ∉ enabled_roles 𝑠𝑛+𝑚, or ℓ𝑛+𝑚 =

Step tid 𝜌 for some tid ∈ ℕ.

This amounts to defining a fair run of 𝔏𝔦𝔳𝔢(ℱ) as being in the preimage under 𝒟 of a
fair run of ℱ.

We are going to prove the following:

et 𝔱 mt≾f

fair fair

≾s

finite finite

where, for instance, the arrow from et to 𝔱 means that if et is fair, then 𝔱 is fair. The
right hand-side arrows are easy to prove, because ≾s relates traces which are equal up
to finite stuttering. The implication that, if 𝔱 is finite, then et is also finite is obvious
because of the definition of ≾f states that they must have the same length.

The part which is more difficult to prove is that ≾f preserves fairness.

Lemma 6.1.9. Given a execution et and a run of 𝔏𝔦𝔳𝔢(ℱ), if et is a fair execution, then 𝔱
is a fair run.

Idea of the proof. Wewrite (𝑠𝑛, 𝔉𝑛, 𝔗𝑛)
ℓ𝑛
−−→ (𝑠𝑛+1, 𝔉𝑛+1, 𝔗𝑛+1) the 𝑛-th transition of 𝔱,

and, similarly, we write (tp
𝑛
, 𝔰𝑛)

tid𝑛
−−→ (tp

𝑛+1
, 𝔰𝑛+1) the 𝑛th transition of et .

Let 𝜌 be a role, and assume without loss of generality that it is enabled in the first
state of 𝔱. We need to prove that there exists a natural number 𝑚 ∈ ℕ such that
𝜌 ∉ enabled_roles 𝑠1+𝑚 or such that ℓ1+𝑚 = Step 𝜌 tid for some tid.

Let tid = 𝔗1(𝜌), which is defined since we assume the role 𝜌 is enabled at the beginning.
Because et is fair, we know that there exists 𝑁 such that tid𝑁 = tid. We proceed by
lexicographic induction on the pair (𝔉1(𝜌), 𝑁) of the fuel of 𝜌 at the beginning of 𝔱
and this bound 𝑁. Let us consider the first transition of 𝔱.

150

6 Fair termination in Iris

1. If ℓ1 = Step 𝜌 tid, we are done.

2. If ℓ1 = Step 𝜌′ tid′ or Silent tid′, with tid′ ≠ tid, we use the induction hypothesis
with the tails of 𝔱 and of et , with 𝑁 − 1 and the same fuel.

3. If ℓ1 = Step 𝜌′ tid with 𝜌′ ≠ 𝜌, then the definition of the transition in 𝔏𝔦𝔳𝔢(ℱ)
states that the fuel of 𝜌 must decrease, and fairness of et gives us a new bound
𝑁 before which thread tid will take a step, and we conclude using the induction
hypothesis.

We have now proved everything we need about the trace refinement relations≾f and≾s.
It remains to explain how to prove that, given a program execution et , there exists
runs 𝔱 of 𝔏𝔦𝔳𝔢(ℱ) andmt of ℱ such that et ≾f 𝔱 ≾s mt . It is easy to see that it suffices
to find a trace 𝔱, since we can then define mt ≔ 𝒟(𝔱). The next section explains how
the program logic presented in the previous chapter can be used to prove the existence
of 𝔱.

6.2 A logic for proving fairness and termination
preserving refinements

We use the logic we described in the previous chapter instantiated with the labeled
STS 𝔏𝔦𝔳𝔢(ℱ) which depends on a user chosen fairness model ℱ.

6.2.1 Changes to the logic

To accommodate the change from unlabeled to labeled state transition systems, we
need to slightly change the definition of trwp. Another modification is that because we
need to keep track of which thread takes which transition in the fairness model, we
need to annotate the weakest precondition with the thread ID of the thread running the
code. This new weakest precondition is defined as follows, with the changes highlighted

151

6 Fair termination in Iris

in green:

fwp
ℰ
𝑒1@tid {𝑄} ≔

(⌜𝑒1 ∈ Val ⌝ ∧ ∣⇛ℰ ℰ𝑄 𝑒1) ∨ (⌜𝑒 ∉ Val⌝ ∧

∀𝔰1, 𝑠1, 𝑛, state_interp 𝔰1 𝑠1 𝑛 −∗ ∣⇛ℰ ∅⌜reducible 𝑒1 𝔰1⌝ ∗

∀𝑒2, 𝔰2, 𝑒𝑓. ⌜(𝑒1, 𝔰1) → (𝑒2, 𝔰2, 𝑒𝑓)⌝ −∗ ∣⇛∅ ∅ ⊳ ∣⇛∅ ℰ ∃𝑠2, ℓ.

⌜state_evol 𝔰1 𝑠1 tid ℓ (𝑛, |𝑒𝑓|) 𝔰2 𝑠2⌝ ∗ state_interp 𝔰2 𝑠2 (𝑛 + |𝑒𝑓|) ∗

fwp
ℰ
𝑒2@tid {𝑄} ∗ ⊛

𝑘↦𝑒∈𝑒𝑓

fwp
⊤
𝑒 @𝑛+𝑘 {fork_post 𝑛+𝑘})

In addition to the new tid parameter to fwp, the main change is that the state_evol
predicate takes labels and the thread count into account. The pair (𝑛, |𝑒𝑓|) which is
passed to it corresponds to the thread count before the reduction step is taken, and the
number of threads created during the reduction step of the program. The total number
of threads is retrieved using a new parameter to state_interp which corresponds to
the total number of threads. Finally, threads which are spawned can have a non-trivial
postcondition fork_post tid which may depend on their thread ID.

In the case where the labeled STS is 𝔏𝔦𝔳𝔢(ℱ), the predicate state_evol is instantiated
as follows:

state_evol 𝔰1 𝑠1 tid ℓ (𝑛, 𝑘) 𝔰2 𝑠2 ≔

labels_match tid ℓ ∧ 𝑠1
ℓ
−−→ 𝑠2 ∧ (tids_le 𝑛 𝑠1 ⇒ tids_le (𝑛 + 𝑘) 𝑠1)

where tids_le 𝑛 𝑠 states that every tid in the 𝔗 component of 𝑠 is ≤ 𝑛, and where the
labels_match predicate is defined in Section 6.1.5, page 149.

The soundness theorem of the logic can also be slightly adapted to fit the labeled setting
without any difficulty.

All that remains to do is to deduce a trace refinement from the 𝜙-history sensitive
similarity predicate which the soundness theorem provides.

Lemma 6.2.1. Let ℳ1 and ℳ2 be two labeled STSs, and let 𝜙 ⊆ FRuns(ℳ1) ×

FRuns(ℳ2) a relation between finite runs. Let 𝜙𝑆 ⊆ ℳ1 ×ℳ2 be a relation between
their states, and 𝜙𝐿 be a relation between their labels. Then, if 𝑠1 ∈ ℳ1 and 𝑠2 ∈ ℳ2

are 𝜙-history sensitive similar, then, for all finite or infinite trace 𝑡1 ∈ Runs(ℳ1) which
starts with the state 𝑠1, there exists a trace 𝑡2 ∈ Runs(ℳ1) such that 𝑡1 and 𝑡2 are
related by 𝜙𝑆 and 𝜙𝐿.

152

6 Fair termination in Iris

Using this lemma, we can deduce the existence, for every execution et of a program
from an initial state which has been proved with fwp, of a trace 𝔱 of 𝔏𝔦𝔳𝔢(ℱ) such
that et ≾f 𝔱. We now finish by explaining how the logical resources are setup to provide
Iris predicates and reasoning rules which are easy to manipulate.

6.2.2 Logical resources

As expected, the Iris logical state contains Iris resources for each the three components
of the states of 𝔏𝔦𝔳𝔢(ℱ), and they are tied to the “raw” model state in the state_interp
predicate.

First, as in the previous chapter, there is a predicate model_is 𝑠 which state that the
current state of the underlying fairness model ℱ is equal to 𝑠. As before, it must agree
with the state_interp predicate:

state_interp 𝔰 (𝑠, 𝔉, 𝔗) 𝑛 ∗ model_is 𝑠′ −∗ ⌜𝑠 = 𝑠′⌝

For each role 𝜌 which is enabled in the current state of the fairness model ℱ, there is a
predicate 𝜌 ↦𝐹 𝔣 which states that the fuel amount associated to 𝜌 is 𝔣. It satisfies the
rule:

state_interp 𝔰 (𝑠, 𝔉, 𝔗) 𝑛 ∗ 𝜌 ↦𝐹 𝔣 −∗ ⌜𝔉(𝜌) = 𝔣⌝

The way we reflect mapping is less straightforward: instead of maps from roles to
thread IDs, they are represented as maps from thread IDs to sets of roles. Formally, we
represent the map 𝔗 ∶ 𝑅 → ℕ as a map𝑀′ ∶ ℕ → ℘fin(𝑅) such that:

𝑀 𝜌 = 𝑡𝑖𝑑 ⟺ 𝜌 ∈ 𝑀′ 𝑡𝑖𝑑

where 𝑅 ⊆ ℛ is a set of roles of ℱ. We put an exclusive structure on the finite sets
of roles in the codomain of the map. That is, the camera operation on ℘fin(𝑅) which
we use is never defined. We write tid ↦𝑇 �⃗� to denote the exclusive ownership of the
singleton map [tid≔ �⃗�], where �⃗� ⊆ ℛ. The exclusive structure on sets of roles means
that tid ↦𝑇 �⃗� ∗ tid

′
↦𝑇 �⃗�

′ implies that tid ≠ 𝑡𝑖𝑑′.

The law which relates it to the states interpretation is the following:

state_interp 𝔰 (𝑠, 𝔉, 𝔗) 𝑛 ∗ tid ↦𝑇 �⃗� −∗

⌜∀𝜌, 𝜌 ∈ �⃗� ⟺ 𝔗(𝜌) = tid⌝
(6.3)

Remark 6.2.2 (Why exclusive?). The reason we need an exclusive structure on the set
of roles above is that the resource corresponds to an obligation: when the thread tid
makes a transition, the set of roles whose fuel decreases must include the set of roles

153

6 Fair termination in Iris

associated with the thread tid. A simple way of achieving this is to associate tid with
exactly its set of roles in the model.

If we had used a more natural camera structure on these sets, such as disjoint union,
the reasoning principle (6.3) would have been too weak, and the equivalence on the
right would have been a simple implication. Another way to see this is that the set of
roles �⃗� in tid ↦𝑇 �⃗� is linear. Of course the whole tid ↦𝑇 �⃗� can be dropped since Iris is
an affine logic, but we cannot drop one single 𝜌 ∈ �⃗� like we would have been able to
do if we had put a disjoint union structure on ℘fin(ℛ).

The resources for the fuel and the mapping are often used in concert since they contain
all the information about some thread. We define

tid_has_fuels tid 𝔣𝑠 ≔ tid ↦𝑇 dom(fs) ∗ ⊛
𝜌↦𝔣 ∈ 𝔣𝑠

𝜌 ↦𝐹 𝔣

where 𝔣𝑠 is a finite partial map from roles 𝜌 to fuel amounts 𝔣. This predicate states that
the thread tid is associated to the roles which are in the domain of 𝔣𝑠 and each of these
roles 𝜌 has fuel 𝔣𝑠(𝜌).

6.2.3 Inference rules

Unlike in the previous chapter, where the standard instantiation of trwp allows for
infinite stutter by choosing as STS the reflexive closure of some user-chosen STSℳ,
which allows the logic to be conservative over the usual Iris weakest precondition wp,
fwp is not conservative of wp. Indeed, each “internal” step of of each thread tid which
does not correspond to a step in the fairness model ℱ consumes the fuel of the roles
which are under its responsibility.

Silent steps

Iris has a useful concept of a pure reduction step of a program. Intuitively, for ML-style
languages, this corresponds to steps of a pure 𝜆-calculus.

Definition 6.2.3. A pure reduction step 𝑒 → 𝑒′ between two expressions is the data of
two expressions which correspond to a reduction step which ignores the machine state

∀𝔰, (𝑒, 𝔰) → (𝑒′, 𝔰)

and which is deterministic:

∀𝔰, 𝔰′, 𝑒″ (𝑒, 𝔰) → (𝑒″, 𝔰′) ⇒ 𝑒″ = 𝑒′ ∧ 𝔰′ = 𝔰

154

6 Fair termination in Iris

This definition allows to define a rule for pure reductions: if 𝑒 → 𝑒′ is a pure reduction,
then:

tid_has_fuels tid (𝔣𝑠 + 1) ∗ (tid_has_fuels tid 𝔣𝑠 −∗ fwp
ℰ
𝑒′@tid {𝑄}) 𝔣𝑠 ≠ ∅

fwp
ℰ
𝑒 @tid {𝑄}

where 𝔣𝑠 + 1 adds 1 to each fuel in the finite partial map 𝔣𝑠. This simply says that
reducing by one step “costs” one unit of fuel for every role associated to tid. The
standard instantiation of trwp in the previous chapter and the standard Iris weakest
precondition wp, in contrast, have the simpler rule:

wp
ℰ
𝑒′ {𝑄}

wp
ℰ
𝑒 {𝑄}

The rule for fwp can be automated in a proof assistant so that the fuel is automatically
decreased and the program 𝑒 automatically reduced until it reaches an expression which
is not purely reducible. (Currently, this tactic only supports the common case where 𝔣𝑠
is a singleton, but this should not be too difficult to fix)

The other rules of the logic, for reading and writing references or for CAS operations,
including the invariant opening, admit inference rules which are the same as for wp
except for the fuel being decremented using the pattern above.

Steps in the fairness model

For the steps of a thread tid which correspond to a step in the fairness model ℱ, the
rules are a little more complicated because the role 𝜌 of the step in ℱ is distinguished
from the other roles associated to the thread tid. We give as an example the rule for a
successful CAS, since it is a common point for externally visible actions, and with a role
associated to the thread tid. The rule is expressed as a Hoare triple, which is defined
using fwp as explained in Chapter 4.

The Hoare triple

{⊳ ℓ ↦ 𝑣1 ∗ ⊳ model_is 𝑠1 ∗ ⊳ tid_has_fuels tid [𝜌 ≔ 𝔣1]}

CAS(ℓ, 𝑣1, 𝑣2) @ tid
{ℓ ↦ 𝑣2 ∗ model_is 𝑠2 ∗ tid_has_fuels tid [𝜌 ≔ 𝔣2]}

holds when

• there is a transition 𝑠1
𝜌
−−→ 𝑠2 in the underlying fairness model ℱ;

• the role 𝜌 is still enabled in 𝑠2: 𝜌 ∈ enabled_roles 𝑠2;

155

6 Fair termination in Iris

• the new fuel associated to 𝜌 is under the limit: 𝔣2 ≤ fuel_limit 𝑠2.

If the second condition had been false, the postcondition would have contained the
predicate tid ↦𝑇 ∅ instead of tid_has_fuels tid [𝜌 ≔ 𝔣2].

Postcondition for forks

We need to maintain the invariant enabled_tidswhich is defined in equation (6.2), which
states that only non-finished threads are associated to roles. To do this, we require the
post-condition of every forked thread to be fork_post tid≔ tid ↦𝑀 ∅. The soundness
theorem of the logic will also require the main thread to have this postcondition.

For this reason, in the example with the two threads Yes and No, the final step of each
thread needs to take a step in the fairness model ℱyn to move to a state where the
corresponding role is not enabled. This has to be done at the last step because a thread
which is associated to no role does not have the right to take any step. We describe how
we handle this requirement in the sequel when we describe the proof of the example.

6.2.4 Soundness theorem

We are finally ready to state the soundness theorem of the logic when instantiated with
a labeled STS of the form 𝔏𝔦𝔳𝔢(ℱ) for some fairness model ℱ.

Theorem 6.2.4. Given a program 𝑒, a finitely branching fairly terminating fairness
model ℱ, a state 𝑠0 in ℱ, if the following Iris predicate is valid

model_is 𝜎0 −∗ tid_has_fuels 0 initial_fuel −∗ ∣⇛⊤ ⊤ fwp
⊤
𝑒 @0 {0 ↦𝑇 ∅}

then 𝑒 is fairly terminating.

In the Iris predicate above, 0 is the thread ID of the main thread, and initial_fuel is the
constant map defined on enabled_roles 𝑠0 equal to fuel_limit 𝑠0.

Proof. The proof is a straightforward application of the soundness theorem of fwp
and of the results in Section 6.1. One needs in addition to prove that, if ℱ is finitely
branching, then so is 𝔏𝔦𝔳𝔢(ℱ), assuming a bound on the thead IDs which is given by
the fact that tids_le holds.

Given a state (𝑠, 𝔉, 𝔗), a successor state (𝑠′, 𝔉′, 𝔗′) is the data of 𝑠′ such that 𝑠 → 𝑠′,
of which we assume there is a finite number, and of two maps defined on a fixed finite
set enabled_roles 𝑠′ with finite ranges: for 𝜌 ∈ enabled_roles 𝑠′,

𝔉′(𝜌) ≤ max(max(𝔉), fuel_limit 𝑠′) 𝔗′(𝜌) ≤ maxtid

156

6 Fair termination in Iris

where maxtid is the bound given by tids_le, and max(𝔉) is the maximal fuel value
which appears in 𝔉.

6.2.5 Back to the example

Recall that we considered two threads

Yes () ≔ (if CAS(b, true, false) then n≔ !n− 1); if !n > 0 then Yes ()

No () ≔ (if CAS(b, false, true) then m≔ !m− 1); if !m > 0 then No ()

flipping a Boolean variable b back and forth a finite number of time, each corresponding
to a role in the fairness modelℱyn. They do not form a complete program, since they rely
on references to be allocated and initialized. We use a program Start which allocates
the references, spawns the two threads and stops immediately. Roughly (ignoring lexical
scoping issues):

Start () ≔

b≔ alloc(true); n≔ alloc(𝑘); m≔ alloc(𝑘);

fork(Yes); fork(No)

We do not need to give a role in ℱyn to Start, instead, it is initially responsible of
both Yes and No, until the first fork operation, after which it is only responsible of No,
and finally it terminates and is responsible of no role. We are lucky, in that there is no
operation after it has delegated its last role to the thread No.

This is not the case for the threads Yes and No, because they must decrement their
variable after their last CAS. The solution is to add flags to the states of ℱyn: a state is
of the form

(𝑚, 𝑏, ye, ne)

where the new flags ye, ne ∈ 𝟚 mean that Yes, respectively No, is still executing. The
enabled_roles predicate is defined using these flags using

Yes ∈ enabled_roles (𝑚, 𝑏, ye, ne) ⟺ ye = 1

and symmetrically for No. The transitions express that threads can shutdown only after
their counter has reached zero.

This difficulty surmounted, the proof is fairly straightforward, using an invariant to
related the values of 𝑏 and𝑚 in ℱyn to the values of the three references.

157

6 Fair termination in Iris

6.3 Related works

The most closely related work is a paper by Tassarotti, Jung, and Harper (2017) which
uses Iris to construct a logic which allows to prove the existence of a fairness preserving
termination preserving refinement between two programs. In their case, their goal is
to prove that a simple compiler which replaces abstract channel operations by shared
memory implementations preserves fair termination.Their soundness theorem is similar
as well, in that it states that each fair infinite trace of the target program is refined by a
fair trace of the source program.

They have a second example where they prove that a Craig-Landin-Hagersten queue
lock refines a ticket-lock. The statement is made formal by implementing a compiler
which translates a program using the first into one using the second.

The main technical difference between the two approaches is that they need to change
the base model of Iris in two ways. First, to be able to talk about traces, they add a new
piece of data to the definition of a camera: Each camera𝑀 has a step-indexed transition
relation (↷𝑛)𝑛∈ℕ. For every camera except for the camera which holds the state of the
source program, this relation is the total relation.

The second modification to the Iris model is the addition of linear predicates, which
they need in order to prevent the prover from dropping the obligation to take a step in
the source language. The interpretation of an Iris predicate becomes a non-expansive
map

𝑀 ×𝑀 ⟶ ℙ

which is upward closed only with respect to its first parameter, which corresponds to the
usual Iris affine predicates; the second parameter corresponds to linear predicates. They
have an “affinely” modality to express rules which only hold for affine propositions such
as framing and weakening. Linear propositions cannot be put inside an invariant.

Our intuition for why we do not need the predicate tid ↦𝑇 �⃗� to be linear is that the
weakest precondition takes as input a resource of the form tid ↦𝑇 �⃗�

′, which means
that dropping this resource is not a risk. Moreover, as we mentioned in Remark 6.2.2,
the exclusive structure on �⃗� makes the predicate behave somewhat linearly.

We think the main advantage of our approach, beyond the fact that changing the base
logic of Iris is a fair amount of work, is that putting the role-to-thread mapping and the
fuel accounting in the 𝔏𝔦𝔳𝔢 construction clarifies the reasoning.Their construction of the
camera which holds the state of the source program is fairly involved and takes around
7000 lines of Coq (for comparison the 𝔏𝔦𝔳𝔢 construction and the proofs of Section 6.1
take 1350 lines).

158

6 Fair termination in Iris

Less closely related, there as several program logics to reason about fairness of concur-
rent programs, such as the Rely-Guarantee logic LiLi by Liang and Feng (2016), and the
concurrent separation logic Tada Live described in a draft by D’Osualdo et al. (2019).

There also has been a lot of work on the topic of fairness preserving simulations from
the model checking community, for example in the context of LTL (Kesten, Manna, and
Pnueli, 1994), TLA+ (L. Lamport, 1994), games (Henzinger, Kupferman, and Rajamani,
1997), etc.

Another related line of work are the time credit-base logics by Guéneau, Charguéraud,
and François Pottier (2018) and Mével, Jourdan, and François Pottier (2019). Their goal is
to prove worst case complexity bounds using a program logic. They add a predicate $𝑘
to the logic to state that the program must finish in less than 𝑘 steps. This is related to
our tid ↦𝐹 𝔣 predicate. The main difference is that they do not keep track of the identity
of the thread, and credits always decrease.

159

Conclusion

This thesis contains two works I was involved in during my PhD. This last chapter
concludes this thesis with remarks about the two works which were presented, and
future directions which I think are interesting to pursue.

Semantic models of CSL

In Part I of this thesis, I presented a semantic model of a simple concurrent separation
logic and its associated programming language. Our goal was to give a semantic model
which gives a semantic interpretation to the proof of CSL themselves, in the tradition
of Curry-Howard, and which takes on data races head on.

The simplicity of the language, and the fact that the logic is strongly associated to
the language compared to Iris which can be instantiated with any language written
in the format of Definition 4.1.1, had the benefit, besides simplifying the model, to
bring to light structures in the logic. For example, the change of lock operations on
the interpretations of the proofs make sense because the logic follows the same lexical
scoping of locks as the language.

Choice of the language

Looking back, I believe however that a better choice of programming language would
have been a first order 𝜆-calculus with ML-style references. The first advantage is that
variables would have been immutable which can be substituted into in the specifications,
instead of using the Own(𝑥) predicates.

The other advantage is that it would have clarified a question we had as to what is the
right shape of the cobordisms we use to interpret programs. In this thesis, the “input
interface” 𝐼 needs to be isomorphic to �[0, 𝑖], but not the output interface, because we
had not found this constraint to have been useful. In a language where programs reduce
to values however, the natural solution is to interpret a program of type 𝐶 ∶ 𝐴 → 𝐵,

160

Conclusion

where 𝐴 and 𝐵 denote sets if the language is first order, as a cobordism roughly of the
form:

𝐴 ×�[0] J𝐶Ksupport 𝐵′ ×�[0]

�[0] �[1] �[0].

𝜋2 𝜋2

where 𝐵′ ⊆ 𝐵, following the intuition that the input and output are “covering spaces”
above base space �[0] such that the fiber above any memory state is the set of possible
values.

Since, in the language we consider, every command can be considered as having the
type 𝟙 → 𝟙, this suggests that the right definition is to ask that the map J𝐶Kout → �[0]
be an iso. Alas, this remark came to me too late.

Higher order

The variant of CSL we considered cannot reason about higher-order functions. There
are two possible ways to scale our approach to this setting.

One possibility would be to do a construction similar to the Int construction of Joyal,
Street, and Verity (1996), which constructs a compact-closed category from a traced
symmetric monoidal category, which Cob(�) is, at least intuitively. The issue is that
the resulting double category would not be closed with respect to the parallel product,
but the disjoint union. I believe this approach could be made to work for a sequential
separation logic.

Another possibility is to switch from our cospan-based semantics to the span-based
template games of Melliès (2019). The approach would be to create a game model of the
logic of bunched implications which would be parameterized by a partial commutative
monoid (PCM). In his setting, the template � is an internal category which describes
the polarities of the games and the strategies. The idea would be to annotate these
polarities with elements of the PCM which would represent the resources owned by
each of the players.

Weak memory

Another natural extension is giving a semantics to a concurrent separation logic for
weak memory. This is natural because axiomatic semantics of weak memory models are
expressed as partial orders over the events of computations, and asynchronous graphs
are true concurrency structures which induce partial orders over events.

161

Conclusion

A counter argument is that most successful concurrent separation logics, eg. (Kaiser
et al., 2017), for weak memory use the promising semantics of Kang et al. (2017),
whose distinctive feature is that it is, essentially, expressed as a normal state transition
system. The complexity of weak memory is largely put inside the state, which is a set
of timestamped messages instead of a simple partial map from locations to values. Part
of this success can be explained by the fact that separation logic was designed to deal
with complex state rather than complex reduction semantics (for instance, separation
logics for probabilistic languages are an active area of research).

Fairness in Iris

Part II of this thesis develops a framework on top of Iris for relating the behavior of
a program and of an abstract model of computation in an intensional manner. This
approach is quite flexible: From a single soundness theoremwhich asserts that the initial
state of the program and of the model are similar in some sense, using constructions on
the model we are able to, on the one hand, prove that distributed programs implement
classical algorithms, and on the other hand, that concurrent programs fairly terminate.

Finite but unbounded stuttering

The genesis of Chapter 6 is a previous failed attempt at proving fair termination of
programs. The goal was to avoid the need for a fixed (in our case, given by the current
state of the fairness model) bound to impose finite stuttering. Inspired by the fact that
finite stutter can be expressed as a nested coinductive-inductive predicate, our plan was
to define a weakest precondition as a least fixpoint which would look schematically
like this:

fwp 𝑒 {𝑄} ≔ “𝑒 is a value” ∨
(∀ 𝑒 → 𝑒′, fwp 𝑒′ {𝑄}) ∨ (∀ 𝑒 → 𝑒′, “take a step inℳ” ∧ ⊳ fwp 𝑒′ {𝑄})

Note the lack of later modality in the disjunct corresponding to not taking a step in the
model. Because this is a least fixpoint, the program 𝑒 would either eventually reduce to
a value, or the proof of fwp 𝑒 {𝑄} would eventually take a step in the model.

The issue is that we did not manage to define an Iris predicate similar to gsimwhich does
not depend on the resources and which expresses that each thread always eventually
takes a step in the model without quantifying over ordinals larger than the indexing
ordinal, which is needed to get a simulation in the ambient logic out.

162

Conclusion

This method works for single-threaded programs, as it was successfully used in (Spies
et al., 2021) in version of Iris with transfinite step-indexing, and I think it would improve
the usability of the logic significantly if this obstacle was cleared.

Liveness of distributed systems

I think the objective of proving the liveness of distributed systems, under fairness
assumptions about the network, it reachable. The idea would be that, for each message
which must be received, there is a role in an abstract model, which becomes disabled
when the message is received. Locally, this means that each node must send it infinitely
often until it receives an acknowledgment.

Liveness is more of an issue in distributed systems compared to typical shared memory
algorithms because the nodes and the network are unreliable, so this would be a good
case study.

Compositionality of models

More generally, the main limitation of Part II is that the whole program must be proved
using one single abstract modelℳ. In the future, we need to develop ways of combining
such models as well as hiding them.

163

Bibliography

America, Pierre and Jan Rutten (1989). “Solving reflexive domain equations in a category
of complete metric spaces.” In: Journal of Computer and System Sciences (cit. on
p. 126).

Appel, Andrew W., Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon
(2007). “A very modal model of a modern, major, general type system.” In: Proceed-
ings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, Nice, France, January 17-19, 2007. Ed. by Martin Hofmann
and Matthias Felleisen (cit. on p. 121).

Balabonski, Thibaut, François Pottier, and Jonathan Protzenko (2014). “Type Soundness
and Race Freedom for Mezzo.” In: FLOPS (cit. on p. 37).

Bénabou, Jean (1967). “Introduction to bicategories.” In: Reports of the Midwest Category
Seminar. Berlin, Heidelberg, pp. 1–77. isbn: 978-3-540-35545-8 (cit. on pp. 68, 69).

Birkedal, L., R. Møgelberg, J. Schwinghammer, and K. Støvring (2012). “First steps in
synthetic guarded domain theory: step-indexing in the topos of trees.” In: Logical
Methods in Computer Science (cit. on p. 123).

Birkedal, Lars, Kristian Støvring, and Jacob Thamsborg (2010). “The category-theoretic
solution of recursive metric-space equations.” In: Theoretical Computer Science (cit.
on p. 126).

Bodin, Martin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith (2014). “A TrustedMechanised
JavaScript Specification.” In: POPL ’14. San Diego, California, USA (cit. on p. 8).

Bornat, Richard, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson (2005).
“Permission Accounting in Separation Logic.” In: POPL (cit. on pp. 24, 54).

Bornat, Richard, Cristiano Calcagno, and Hongseok Yang (2006). “Variables as Resource
in Separation Logic.” In: ENTCS 155 (cit. on pp. 32, 54).

Boyland, John (2003). “Checking Interference with Fractional Permissions.” In: Static
Analysis. Ed. by Radhia Cousot. Springer Berlin Heidelberg (cit. on pp. 24, 54).

Brookes, Stephen (2004). “A semantics for concurrent separation logic.” In: CONCUR
(cit. on pp. 21, 29, 30, 32, 41, 54).

Brookes, Stephen (2011). “A Revisionist History of Concurrent Separation Logic.” In:
Mathematical Foundations of Programming Semantics, MFPS. Ed. by Michael W.
Mislove and Joël Ouaknine (cit. on p. 29).

164

Bibliography

Courser, Kenny Allen (2020). “Open Systems: A Double Categorical perspective.” PhD
thesis. University of California Riverside (cit. on pp. 65, 68).

D’Osualdo, Emanuele, Azadeh Farzan, Philippa Gardner, and Julian Sutherland (2019).
“TaDA Live: Compositional Reasoning for Termination of Fine-grained Concurrent
Programs.” In: CoRR (cit. on p. 159).

da Rocha Pinto, Pedro, Thomas Dinsdale-Young, and Philippa Gardner (2014). “TaDA: A
Logic for Time and Data Abstraction.” In: Proceedings of the 28th European Conference
on Object-Oriented Programming (ECOOP’14). Ed. by Richard E. Jones (cit. on p. 33).

Day, Brian and Ross Street (1997). “Monoidal Bicategories and Hopf Algebroids.” In:
Advances in Mathematics 129.1, pp. 99–157. issn: 0001-8708 (cit. on p. 81).

Dinsdale-Young, Thomas, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and
Hongseok Yang (2013). “Views: compositional reasoning for concurrent programs.”
In: POPL (cit. on p. 33).

Dodds, Mike, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars
Birkedal (2016). “Verifying Custom Synchronization Constructs Using Higher-Order
Separation Logic.” In: ACM Trans. Program. Lang. Syst. 38.2 (cit. on p. 36).

Ehresmann, Charles (1963). “Catégories structurées.” In: Annales scientifiques de l’École
Normale Supérieure 80.4, pp. 349–426 (cit. on pp. 64, 66).

Filliâtre, Jean-Christophe and Andrei Paskevich (2013). “Why3 — Where Programs Meet
Provers.” In: Proceedings of the 22nd European Symposium on Programming. Lecture
Notes in Computer Science (cit. on p. 12).

Floyd, Robert (1967). “Mathematical Aspects of Computer Science.” In: Proceedings of
Symposium on Applied Mathematics. American Mathematical Society. Chap. As-
signing Meanings to Programs (cit. on p. 7).

Frumin, D., R. Krebbers, and L. Birkedal (2021). “Compositional Non-Interference for
Fine-Grained Concurrent Programs.” In: Proceedings of Security and Privacy (cit. on
p. 140).

Frumin, Dan, Robbert Krebbers, and Lars Birkedal (2018). “ReLoC: A Mechanised Rela-
tional Logic for Fine-Grained Concurrency.” In: LICS ’18 (cit. on p. 140).

Georges, Aın̈a Linn, Armaël Guéneau,Thomas Van Strydonck, Amin Timany, Alix Trieu,
Sander Huyghebaert, Dominique Devriese, and Lars Birkedal (2021). “Efficient and
Provable Local Capability Revocation Using Uninitialized Capabilities.” In: Proc.
ACM Program. Lang. 5.POPL (cit. on p. 24).

Giarrusso, Paolo G., Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers
(2020). “Scala Step-by-Step: Soundness for DOTwith Step-Indexed Logical Relations
in Iris.” In: Proc. ACM Program. Lang. 4.ICFP (cit. on p. 26).

Gondelman, Léon, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars
Birkedal (2021). “Distributed Causal Memory: Modular Specification and Verifica-
tion in Higher-Order Distributed Separation Logic.” In: Proc. ACM Program. Lang.
POPL (cit. on p. 24).

165

Bibliography

Gotsman, Alexey, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv (2007a).
“Local Reasoning for Storable Locks and Threads.” In: Programming Languages and
Systems. Ed. by Zhong Shao (cit. on p. 37).

Gotsman, Alexey, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv (2007b).
“Local Reasoning for Storable Locks and Threads.” In: Programming Languages
and Systems, 5th Asian Symposium, APLAS 2007, Singapore, November 29-December
1, 2007, Proceedings. Ed. by Zhong Shao. Vol. 4807. Lecture Notes in Computer
Science. Springer, pp. 19–37. doi: 10.1007/978-3-540-76637-7_3. url: https:
//doi.org/10.1007/978-3-540-76637-7%5C_3 (cit. on p. 23).

Guéneau, Armaël, Arthur Charguéraud, and François Pottier (2018). “A Fistful of Dollars:
Formalizing Asymptotic Complexity Claims via Deductive Program Verification.”
In: ESOP. Ed. by Amal Ahmed (cit. on p. 159).

Hayman, Jonathan and Glynn Winskel (2008). “Independence and Concurrent Separa-
tion Logic.” In: LMCS (cit. on p. 37).

Henzinger, Thomas A., Orna Kupferman, and Sriram K. Rajamani (1997). “Fair Sim-
ulation.” In: CONCUR ’97. Ed. by Antoni W. Mazurkiewicz and Józef Winkowski
(cit. on p. 159).

Hoare, C. A. R. (1969). “An Axiomatic Basis for Computer Programming.” In: Commun.
ACM 12.10 (cit. on pp. 1, 2, 7, 9).

Iris Team (2021). The Iris 3.4 Documentation. https://plv.mpi-sws.org/iris/appendix-
3.4.pdf (cit. on pp. 124, 127).

Ishtiaq, Samin S. and Peter W. O’Hearn (2001). “BI as an Assertion Language for Mutable
Data Structures.” In: Conference Record of POPL 2001. Ed. by Chris Hankin and Dave
Schmidt. ACM (cit. on p. 17).

Jones, Cliff B. (1983). “Specification and Design of (Parallel) Programs.” In: Information
Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France,
September 19-23, 1983. Ed. by R. E. A. Mason. North-Holland/IFIP, pp. 321–332
(cit. on p. 15).

Joyal, André, Ross Street, and Dominic Verity (1996). “Traced monoidal categories.”
In: Mathematical Proceedings of the Cambridge Philosophical Society, pp. 447–468
(cit. on p. 161).

Jung, Ralf, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer (2017). “RustBelt:
Securing the Foundations of the Rust Programming Language.” In: 2.POPL (cit. on
pp. 8, 26, 36).

Jung, Ralf, Robbert Krebbers, Lars Birkedal, and Derek Dreyer (2016). “Higher-Order
Ghost State.” In: 51.9 (cit. on pp. 25, 36).

Jung, Ralf, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and
Derek Dreyer (2018). “Iris from the ground up: A modular foundation for higher-
order concurrent separation logic.” In: Journal of Functional Programming 28. doi:
10.1017/S0956796818000151 (cit. on p. 36).

166

https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1007/978-3-540-76637-7%5C_3
https://doi.org/10.1007/978-3-540-76637-7%5C_3
https://doi.org/10.1017/S0956796818000151

Bibliography

Jung, Ralf, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer (2015). “Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning.” In: 50.1 (cit. on pp. 25, 36, 118).

Kaiser, Jan-Oliver, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis
(2017). “Strong Logic for Weak Memory: Reasoning About Release-Acquire Consis-
tency in Iris.” In: 31st European Conference on Object-Oriented Programming (ECOOP
2017). Ed. by Peter Müller (cit. on p. 162).

Kang, Jeehoon, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer (2017). “A
Promising Semantics for Relaxed-Memory Concurrency.” In: SIGPLAN Not. (Cit. on
p. 162).

Kesten, Yonit, Zohar Manna, and Amir Pnueli (1994). “Temporal verification of sim-
ulation and refinement.” In: A Decade of Concurrency Reflections and Perspectives.
Ed. by J. W. de Bakker, W. -P. de Roever, and G. Rozenberg (cit. on p. 159).

Krebbers, Robbert, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and
Lars Birkedal (2017). “The Essence of Higher-Order Concurrent Separation Logic.”
In: Programming Languages and Systems. Ed. by Hongseok Yang. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 696–723 (cit. on pp. 25, 36, 118).

Krebbers, Robbert, Amin Timany, and Lars Birkedal (2017). “Interactive Proofs in Higher-
Order Concurrent Separation Logic.” In: SIGPLAN Not. (Cit. on pp. 26, 132, 140).

Krogh-Jespersen, Morten, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede
Gregersen, and Lars Birkedal (2020). “Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems.” In: ESOP. Ed. by Peter Müller (cit. on p. 24).

Lack, Stephen and Paweł Sobociński (2004). “Adhesive Categories.” In: Foundations
of Software Science and Computation Structures. Ed. by Igor Walukiewicz (cit. on
p. 103).

Lamport (1979). “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs.” In: IEEE Transactions on Computers C-28.9, pp. 690–691
(cit. on p. 23).

Lamport, Leslie (1994). “The Temporal Logic of Actions.” In: ACM Trans. Program. Lang.
Syst. (Cit. on pp. 7, 26, 159).

Lamport, Leslie (2001). “Paxos Made Simple.” In: ACM SIGACT News (Distributed Com-
puting Column), pp. 51–58 (cit. on p. 134).

Leino, Rustan (2010). “Dafny: An Automatic Program Verifier for Functional Correct-
ness.” In: 16th International Conference, LPAR-16, Dakar, Senegal (cit. on p. 12).

Leroy, Xavier (2009). “Formal verification of a realistic compiler.” In: Communications of
the ACM 52.7, pp. 107–115 (cit. on p. 8).

Ley-Wild, Ruy and Aleksandar Nanevski (2013). “Subjective Auxiliary State for Coarse-
Grained Concurrency.” In: SIGPLAN Not. 48.1, pp. 561–574 (cit. on p. 33).

Liang, Hongjin and Xinyu Feng (2016). “A Program Logic for Concurrent Objects under
Fair Scheduling.” In: SIGPLAN Not. (Cit. on p. 159).

167

Bibliography

McCusker, Guy and David Pym (2007). “A Games Model of Bunched Implications.” In:
Computer Science Logic. Ed. by Jacques Duparc and Thomas A. Henzinger (cit. on
p. 20).

Melliès, Paul-André (2019). “Categorical Combinatorics of Scheduling and Synchroniza-
tion in Game Semantics.” In: Proc. ACM Program. Lang. 3.POPL. issn: 2475-1421
(cit. on pp. 42, 54, 63, 81, 161).

Melliès, Paul-André and Léo Stefanesco (2017). “A Game Semantics for Concurrent
Separation Logic.” In: MFPS (cit. on p. 26).

Melliès, Paul-André and Léo Stefanesco (2018). “An Asynchronous Soundness Theorem
for Concurrent Separation Logic.” In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018
(cit. on p. 26).

Melliès, Paul-André and Léo Stefanesco (2020). “Concurrent Separation Logic Meets
Template Games.” In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science. LICS ’20 (cit. on p. 26).

Melliès, Paul-André and Noam Zeilberger (2015). “Functors are Type Refinement Sys-
tems.” In: POPL 2015. ACM, pp. 3–16 (cit. on p. 39).

Mellor-Crummey, John M. and Michael L. Scott (1991). “Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors.” In: ACM Trans. Comput. Syst.
9.1 (cit. on p. 8).

Mével, Glen, Jacques-Henri Jourdan, and François Pottier (2019). “Time credits and time
receipts in Iris.” In: ESOP. Ed. by Luis Caires (cit. on p. 159).

Nakano, Hiroshi (2000). “A Modality for Recursion.” In: 15th Annual IEEE Symposium on
Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000 (cit. on
p. 121).

O’Hearn, Peter (2007). “Resources, Concurrency, and Local Reasoning.” In: TCS 375
(cit. on p. 54).

O’Hearn, Peter W. (2004). “Resources, Concurrency and Local Reasoning.” In: CONCUR.
Ed. by Philippa Gardner and Nobuko Yoshida. Lecture Notes in Computer Science
(cit. on p. 21).

O’Hearn, Peter W. and David J. Pym (1999). “The logic of bunched implications.” In:
Bull. Symb. Log. (Cit. on p. 19).

O’Hearn, PeterW., John C. Reynolds, and Hongseok Yang (2001). “Local Reasoning about
Programs that Alter Data Structures.” In: Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September
10-13, 2001, Proceedings. Ed. by Laurent Fribourg. Lecture Notes in Computer Science
(cit. on p. 17).

Owicki, Susan and David Gries (1978). “An Axiomatic Proof Technique for Parallel
Programs.” In: Programming Methodology: A Collection of Articles by Members of
IFIP WG2.3. Ed. by David Gries. New York, NY: Springer New York, pp. 130–152.

168

Bibliography

isbn: 978-1-4612-6315-9. doi: 10.1007/978-1-4612-6315-9_12. url: https:
//doi.org/10.1007/978-1-4612-6315-9_12 (cit. on p. 15).

Parkinson, Matthew, Richard Bornat, and Peter O’Hearn (2007). “Modular Verification
of a Non-Blocking Stack.” In: POPL ’07. isbn: 1595935754 (cit. on p. 23).

Pottier, François (2013). “Syntactic soundness proof of a type-and-capability system
with hidden state.” In: J. Funct. Program. (Cit. on p. 37).

Reddy, Uday S. (1996). “Global State Considered Unnecessary: An Introduction to
Object-Based Semantics.” In: LISP Symb. Comput. 9.1, pp. 7–76 (cit. on p. 40).

Reynolds, John C. (1997). “The Essence of Algol.” In: Algol-like Languages. Ed. by PeterW.
O’Hearn and Robert D. Tennent. Boston, MA: Birkhäuser Boston (cit. on p. 87).

Reynolds, John C. (2000). “Intuitionistic Reasoning about Shared Mutable Data Struc-
ture.” In: Millennial Perspectives in Computer Science. Palgrave (cit. on p. 17).

Reynolds, John C. (2002). “Separation Logic: A Logic for SharedMutable Data Structures.”
In: 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002,
Copenhagen, Denmark, Proceedings (cit. on p. 17).

Sergey, Ilya, James R. Wilcox, and Zachary Tatlock (2017). “Programming and Proving
with Distributed Protocols.” In: 2.POPL (cit. on p. 24).

Shulman, Michael (2008). “Framed bicategories and monoidal fibrations.” In: Theory and
Applications of Categories [electronic only] 20, pp. 650–738 (cit. on p. 67).

Spies, Simon, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek
Dreyer, and Lars Birkedal (2021). “Transfinite Iris: resolving an existential dilemma
of step-indexed separation logic.” In: PLDI. Ed. by Stephen N. Freund and Eran
Yahav (cit. on pp. 139, 163).

Svendsen, Kasper and Lars Birkedal (2014). “Impredicative Concurrent Abstract Predi-
cates.” In: Programming Languages and Systems. Ed. by Zhong Shao (cit. on p. 36).

Tassarotti, Joseph and Robert Harper (2019). “A Separation Logic for Concurrent Ran-
domized Programs.” In: 3.POPL (cit. on p. 140).

Tassarotti, Joseph, Ralf Jung, and Robert Harper (2017). “A Higher-Order Logic for
Concurrent Termination-Preserving Refinement.” In: ESOP. Ed. by Hongseok Yang.
Lecture Notes in Computer Science (cit. on pp. 139, 158).

Timany, Amin, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel
Nieto, and Lars Birkedal (2021). Trillium: Unifying Refinement and Higher-Order
Distributed Separation Logic. arXiv: 2109.07863 [cs.PL] (cit. on pp. 27, 134).

Timany, Amin, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal (2017). “A
Logical Relation for Monadic Encapsulation of State: Proving Contextual Equiva-
lences in the Presence of RunST.” In: Proc. ACM Program. Lang. POPL (cit. on pp. 26,
140).

Turing, Alan (1949). “Checking a Large Routine.” In: Report of a Conference on High
Speed Automatic Calculating Machines (cit. on p. 7).

169

https://doi.org/10.1007/978-1-4612-6315-9_12
https://doi.org/10.1007/978-1-4612-6315-9_12
https://doi.org/10.1007/978-1-4612-6315-9_12
https://arxiv.org/abs/2109.07863

Bibliography

Turon, Aaron, Viktor Vafeiadis, and Derek Dreyer (2014). “GPS: Navigating Weak
Memory with Ghosts, Protocols, and Separation.” In: (cit. on p. 24).

Vafeiadis, Viktor (2011). “Concurrent Separation Logic and Operational Semantics.” In:
ENTCS 276 (cit. on pp. 32–34, 41, 54).

Varacca, Daniele andGlynnWinskel (2006). “Distributing probability over non-determinism.”
In: Math. Struct. Comput. Sci. (Cit. on p. 140).

Xia, Li-yao, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.
Pierce, and Steve Zdancewic (2020). “Interaction trees: representing recursive and
impure programs in Coq.” In: Proc. ACM Program. Lang. 4.POPL, 51:1–51:32 (cit. on
p. 33).

Zakowski, Yannick, Paul He, Chung-Kil Hur, and Steve Zdancewic (2020). “An equa-
tional theory for weak bisimulation via generalized parameterized coinduction.” In:
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP, pp. 71–84 (cit. on p. 33).

170

	Introduction
	Program logics
	Why use program logics?
	Hoare logic
	Program logics for concurrent programs
	Limitations of Hoare logics

	Separation logic
	Ownership
	Inference rules
	Bunched implications
	Towards concurrent separation logic

	Concurrent separation logic
	Resource invariants
	Soundness theorem
	Developments to concurrent separation logic

	Organization of the thesis

	Asynchronous models of CSL
	Proofs of soundness of CSL
	Trace semantics of the language
	Other proofs based on trace semantics

	Operational semantics of the language
	Step-indexed models of CSL

	Other proofs soundness of CSL
	Syntactic proofs
	Other

	Conclusion

	Asynchronous soundness for CSL
	Hoare logic as refinement systems
	State transition systems
	An imperative shared-memory concurrent language
	Concurrent transition systems
	Asynchronous graphs
	Asynchronous machine models
	Transition systems
	Data-races
	Polarized asynchronous transition systems

	Concurrent separation logic
	The logic
	Semantic interpretation of CSL
	The asynchronous soundness theorem

	An asynchronous template game model of CSL
	The double category Cob(木) of games and cobordisms
	Internal categories
	Double categories
	Polyads and internal J-opcategories
	The double category Cob(_|_) of games and cobordisms

	Three internal J-opcategories: 木L, 木S, 木Sep
	The internal opcategories 木L and 木S for the code
	The internal J-opcategory 木Sep for the proofs

	Parallel product
	Plain internal functors
	Acute spans of internal functors
	Span monoidal internal J-opcategories
	Parallel products of code and of proofs

	Generalized sequential composition
	Change of locks
	Hiding
	Critical sections

	Sum of cobordisms
	Interpretation of codes and proofs
	Stateful and stateless interpretations of the code
	Interactive and separated interpretations of the proofs

	The asynchronous soundness theorem
	Comparing the three interpretations
	The asynchronous soundness theorem

	Proof of the asynchronous soundness theorem
	Well-formed cobordisms
	Adhesivity of
	Preservation of well-formedness
	Strict maps of cobordisms
	Proof of 2-dimensional correctness
	Proof of 1-dimensional correctness

	Relational soundness in Iris
	Background on Iris
	Overview of the approach
	Iris predicates
	The Iris standard weakest precondition

	The Iris model
	Ordered families of equivalences
	RAs and Cameras
	The Iris base logic
	Interpretation of Iris predicates
	Logical rules

	High level logic
	Combining cameras
	Invariants
	The standard Iris weakest precondition

	A program logic to relate traces
	Introduction
	Relating STSs to programs in Iris
	Simulations
	Motivation

	The trace weakest-precondition
	Soundness of
	Proof of the soundness theorem
	Infinite traces

	Related works

	Fair termination in Iris
	Termination and fairness preserving simulation
	Fairness models
	Running example
	A local criterion for the fair termination of models
	Termination and fairness preserving refinements
	The construction

	A logic for proving fairness and termination preserving refinements
	Changes to the logic
	Logical resources
	Inference rules
	Soundness theorem
	Back to the example

	Related works

	Conclusion
	Bibliography

