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Résumé | Abstract

Résumé La technologie de l’Internet des objets (IoT) est devenue omniprésente
dans de nombreuses applications et son utilisation se développe très rapidement.
Cependant, l’expansion de l’IoT se heurte à une difficulté importante d’évolutivité,
c’est-à-dire que le déploiement très dense d’appareils communicants est actuellement
limité. Cette thèse se concentre sur la fourniture de solutions aux problèmes liés
à l’évolutivité des réseaux de type LoRa dans les deux sens de communication, la
liaison montante et la liaison descendante. Dans les réseaux longue portée, comme
LoRa, la liaison descendante est critique car elle limite le nombre d’accusés de ré-
ception pouvant être envoyés, et par conséquent, la fiabilité. Cela limite également
la possibilité de mettre à jour les appareils, ce qui pourrait être critique lorsqu’ils
sont déployés pendant des décennies. Pour surmonter ces problèmes, nous proposons
une solution, inspirée des techniques d’accès multiple non orthogonal (NOMA), pour
augmenter d’au moins un ordre de grandeur le nombre de dispositifs pouvant être
adressés. Si l’approche différencie les appareils par la puissance qui leur est allouée,
elle diffère de la grande majorité des travaux antérieurs sur le domaine de puissance
NOMA car elle ne nécessite pas d’annulation des interférences. Au lieu de cela, il
bénéficie de l’étalement spectral du schéma de modulation (chirp spread spectrum),
où, à la fin de la phase de décodage, l’information portée par un symbole se retrouve à
la position d’un pic dans le domaine de Fourier. Dans la plupart des cas, les informa-
tions provenant de différents utilisateurs entraînent des positions de pic différentes,
ne créant aucune interférence. En ce sens, on se rapproche des schémas d’évitement
comme le saut de temps ou de fréquence, mais sans utiliser de code. Cette thèse pro-
pose une nouvelle solution s’appuyant sur du NOMA dans le domaine de la puissance
qui ne souffre pas des limitations induites par les résidus d’annulation d’interférence.
Le système proposé, y compris la détection de préambule et l’estimation de canal,
est présenté et évalué par des simulations. Nous montrons que notre schéma permet
d’augmenter le nombre d’appareils connectés d’un ordre de grandeur par rapport au
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iv Résumé | Abstract

système actuel, tout en maintenant une compatibilité totale avec la norme de couche
physique LoRa.

Concernant la liaison montante, nous présentons un nouveau récepteur capable de dé-
moduler plusieurs utilisateurs transmis simultanément sur le même canal de fréquence
avec le même facteur d’étalement. Du point de vue de l’accès multiple non orthogo-
nal, il est basé sur le domaine des puissances et utilise l’annulation des interférences
en série. Les résultats de simulation montrent que le récepteur permet une aug-
mentation significative du nombre d’appareils connectés dans le réseau. Enfin, cette
thèse traite de la détection de signaux, en liaison montante, d’un réseau LoRa à
travers une approche basée sur l’apprentissage profond. Deux stratégies sont pro-
posées : la régression pour la détection de bits basée sur un réseau de neurones deep
feedforward et la classification pour la détection de symboles basée sur un réseau
de neurones convolutif. Ces récepteurs peuvent décoder les signaux d’un utilisateur
sélectionné lorsque plusieurs utilisateurs émettent simultanément sur la même bande
de fréquences avec le même facteur d’étalement. Les résultats de simulation montrent
que les deux récepteurs surpassent le LoRa classique en présence d’interférences. De
plus, les résultats montrent que l’approche introduite est pertinente pour traiter la
question de l’évolutivité.

Mots-clefs LoRa, LoRaWAN, IoT, Annulation des interférences série, Détecteur
multi-utilisateurs, Allocation de puissance, évolutivité, Deep-Learning, Chirp Spread
Spectrum.
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Abstract Internet of Things (IoT) technology has become ubiquitous in many ap-
plications, and its use is growing very fast. However, the expansion of IoT faces a
significant difficulty of scalability, which is, the very dense deployment of commu-
nicating devices is currently limited. This thesis focuses on providing solutions to
issues related to the scalability of LoRa-like networks in both communication direc-
tions, the uplink, and downlink. In long-range networks, such as LoRa, the downlink
is critical because it limits the number of acknowledgments that can be sent, and
consequently, reliability. It also limits the possibility of updating the devices, which
could be critical when deployed for decades. To overcome those problems, we pro-
pose a solution, inspired by Non-Orthogonal Multiple Access (NOMA) techniques,
to increase by at least one order of magnitude the number of devices that can be
addressed. While the approach differentiates the devices by the power allocated to
them, it differs from the vast majority of previous works on power domain NOMA
because it does not require interference cancellation. Instead, it benefits from the
spectrum spreading of the modulation scheme (chirp spread spectrum), where, at
the end of the decoding phase, the information carried by a symbol is found in the
position of a peak in the Fourier domain. In most cases, the information from dif-
ferent users results in different peak positions, not creating any interference. In that
sense, we get closer to avoidance schemes such as time or frequency hopping, but
without using a code. This thesis proposes a new solution for NOMA in the power
domain that does not suffer from the limitations induced by interference cancellation
residues. The proposed system, including preamble detection and channel estima-
tion, is presented and evaluated by simulations. We demonstrate that our proposed
scheme increases the number of devices by one order of magnitude compared to the
current system, which allows addressing only one user at a time and maintains full
compatibility with the LoRa physical layer standard.

In addition to that, we present a new receiver design, which significantly improves
performance in the uplink communication of LoRa networks, i.e., having asyn-
chronous transmissions. The proposed receiver is able to demodulate multiple users
simultaneously transmitted over the same frequency channel with the same spreading
factor. From a non-orthogonal multiple access point of view, it is based on the power
domain and uses serial interference cancellation. Simulation results show that the
receiver allows a significant increase in the number of connected devices in the net-
work. Finally, this thesis deals with signal detection in the uplink of a LoRa network
through a deep learning-based approach. Two strategies are proposed: regression for
bit detection based on a deep feedforward neural network and classification for sym-
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bol detection based on a convolutional neural network. These receivers can decode
a selected user’s signals when multiple users simultaneously transmit over the same
frequency band with the same spreading factor. Simulation results show that both
receivers outperform the classical LoRa one in the presence of interference. Further-
more, the results show that the introduced approach is relevant to deal with the
scalability issue.

Keywords LoRa, LoRaWAN, IoT, Serial Interference Cancellation, Multiuser De-
tector, Power Allocation, scalability, Deep-Learning, Chirp Spread Spectrum.
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General Introduction

Context

The Internet of Things (IoT) technology has been well integrated into our daily lives.
However, we are still far from solving all significant challenges in a single network [1–
3]. Nevertheless, IoT is growing fast and has become ubiquitous in many applications,
such as smart cities, smart animal farming, smart agriculture, smart buildings, smart
environment, smart metering, smart water recycling, and disaster alerting. These IoT
applications require low power operations, long-range communication, and scalable
network technologies. Low Power Wide Area Networks (LPWAN) provides a good
solution for such requirements, and LoRa is one of those protocols which can enable
such methods. However, the expansion of IoT faces a major difficulty: scalability,
that is, very dense deployment of communicating devices, which is currently limited.
This thesis brings solutions to enhance the scalability in LoRa-like networks.

Motivation

This thesis aims to study the scalability challenges of IoT networks from the physical
layer perspective and design receivers to increase the number of connected IoT de-
vices. This work is mainly motivated by one of the prominent LPWAN, LoRaWAN.
In this thesis, the following challenges are addressed:

1. Signal detection in LoRa Downlink Communication: In long-range net-
works, such as LoRa, the downlink is critical because it limits the number of
acknowledgments that the gateway can send, and consequently, reliability. In
fact, the access point is constrained by the duty cycle; therefore, it cannot
address many devices. It also limits the possibility of updating the devices,
which could be critical when deployed for decades. Therefore, these problems

1



2 General Introduction

need to be addressed to increase the number of devices that the network can
support.

2. Signal detection in LoRa Uplink Communication: As we mentioned, the
number of connected IoT devices is significantly increasing. Over recent years,
LPWAN technologies, like LoRa in unlicensed bands, are proposed to face this
growth. Several transmission settings enable quasi-orthogonal transmissions for
the IoT devices. However, when two or more devices transmit simultaneously
using the same transmission settings, a collision occurs at the receiver. This
collision generally results in the loss of all colliding packets from the devices.
As a result, the network capacity is limited in terms of scalability as well as
reliability. Therefore, there is a need for a receiver design that enables multiple
users to transmit simultaneously using the same transmission settings.

Plan of document

The thesis is organized as follows:

• In Chapter 1, we describe some key features of LoRa technology and review
the state-of-the-art LoRa scalability.

• In Chapter 2, we focus on designing a receiver for downlink communication
in LoRa-like networks inspired by Non Orthogonal Multiple Access (NOMA)
techniques:

– We applied a superposition transmission scheme for LoRa-like Networks,
which does not require Serial Interference Cancellation (SIC);

– We proposed two different Power Allocation (PA) schemes to minimize
error probabilities and increase fairness between users who have good or
bad channels.

• Chapter 3 focuses on designing receivers for uplink communication in LoRa-
like networks, which can cope with interference coming from other LoRa users.

– We implemented a SIC technique to decode multiple signals in the uplink
LoRa-like Networks;

– We consider Co-Spreading Factor interference users;

– Two deep learning-based receivers are modeled for single-user detection:
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based on deep feedforward neural network and a convolutional neural
network.

• Finally, the conclusion and future perspectives are drawn.
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1.1 Introduction

The IoT is growing rapidly and is expected to connect more than 20 billion de-
vices in the next 5 years [4–6], including more than 2 billion devices connected via
LPWAN [7]. IoT provides connections between different devices used for different
applications, such as smart metering [8,9], parking space monitoring [10,11], building
monitoring [12], and smart agriculture [13,14]. These applications require low-power
operation (devices are battery-powered), and a wide range of communications (de-
vices are scattered in a large area) [15]. For these applications, wireless networks are
necessary to cover a large area of farms, cities, or buildings [16]. Ordinary wireless
technologies (such as ZigBee, Bluetooth, and Wi-Fi) used for this purpose can range
up to several meters, and a multi-hop communication in a mesh network topology
can be implemented to increase the coverage [17]. In recent years, LPWAN provides
a good solution for the requirements of IoT applications [18, 19] and LoRa is one of
the protocols that can enable such methods. LoRa employs a Chirp Spread Spec-
trum (CSS) Modulation technique to encode information [20,21]. Several Spreading
Factor (SF) and bandwidth settings enable quasi-orthogonal transmissions for LoRa
end-devices [22, 23]. However, when two or more end devices transmit simultane-
ously on the same band and with the same SF, a collision occurs at the receiver.
This collision generally results in the loss of all colliding packets but sometimes the
first arrived signal might be fully decoded due to a capture effect. Capture effect is
a phenomenon associated with FM reception in which only the stronger of two sig-
nals at, or near, the same frequency or channel will be demodulated [24]. Therefore,
there are still challenges to provide robust and reliable communication links, while
there is a huge increase in communication devices. The organization of the rest of
this chapter is as follows: sections 1.2 and 1.3 present the description of LoRaWAN
and LoRa, which define the MAC layer and the PHY layer, respectively. Section 1.4
reviews the state-of-the-art on LoRa network scalability.

1.2 LoRaWAN

LoRaWAN is an open standard defining a MAC protocol [20] proposed for LoRa
and provides the ability to control SF and Bandwidth (B). This also allows nodes
to transmit with the possible highest rate in bi-directional transmission. A LoRa
network is typically based on end devices (sensors, actuators, or both), gateways,
and a network server. The architecture of the LoRaWAN network follows a star-
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Figure 1.1: LoRaWAN Network Architecture.

of-stars topology in which gateways are used to relay messages between end-devices
and a central network server, as represented in Fig. 1.1. By exploiting the long-
range characteristics of the LoRa physical layer, the end devices are connected to
one or several gateways through a single-hop LoRa wireless link. The gateways are
connected to the network server through a standard IP-based network and provide
the bridging from end devices to the IP world [25–28].

The capabilities of LoRa nodes differ depending on the node class (A, B, or C) with
different specifications [25, 29]:

• Class A devices are of the lowest cost and energy-consuming nodes. They ini-
tiate the communication with a pure ALOHA [30, 31] medium access. uplink
transmission is followed by two short downlink windows to receive a response
from the gateway. downlink transmission is only allowed after a successful
uplink transmission is decoded by the gateway. This is because the first down-
link window’s data rate is considered a function of the uplink data rate and
the receive window offset. Thus, if the downlink traffic is received in the first
window, the second is disabled, see Fig. 1.2a.
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Figure 1.2: LoRaWAN devices classes.

• Class B devices allow additional downlink windows. They are synchronized
using periodic beacons sent by the gateway to open an additional receive win-
dow regardless of prior successful uplink transmissions. Thus, these devices
are preferred for applications that have more downlink traffic. However, this
is achieved at the expense of some additional power consumption in the end
nodes, see Fig. 1.2b.

• Class C devices are always listening and, consequently, can receive packets at
any time. In this class, there is more power consumption as compared with
other classes. Therefore, they usually require a permanent power source, see
Fig. 1.2c.

LoRaWAN provides a maximum frame size of 256 bytes, and it has a preamble,
header, and payload fields, as illustrated in Fig. 1.3. The preamble field contains
a sequence of constant up chirps which enables the detection of the beginning of a
packet, two down chirps, and a quarter of up chirp, which represents a gap used to
allow the receiver to adjust the time [20] (see Fig. 1.4).
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Figure 1.4: Spectrum plot of a LoRa packet.

The header field (existing only in explicit header mode) specifies the payload length,
Forward Error Correction (FEC), Code Rate (CR), and Cyclic Redundancy Check
(CRC). The integrity of the header is protected by the header CRC field, which is
also included in the header. The actual data is contained in the payload field, and
for error correction in the payload, an optional CRC field can be used [25]. The
LoRa packet time on-air can be computed as:

TA = (nPreamble + nPayload + 4.25)× Ts (1.1)

where nPreamble and nPayload are the numbers of programmed preamble symbols and
the number of payload symbols, respectively. The constant value 4.25 represents the
minimum length of the fixed part of the preamble.

1.3 LoRa PHY

LoRa physical layer has been patented by Semtech [20]. LoRa is implemented based
on the CSS modulation [21] scheme and each LoRa chirp consists of a linear fre-
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quency change over the symbol duration (Ts). CSS is one of the spread-spectrum
approaches which employs broadband frequency modulated chirp pulses (sinusoidal
pulses with varying frequency) to carry information hence improving the robustness
against Doppler effect, interference, and multipath. Transmissions are identified by
the duration Ts of the coded chirp, which depends on the SF used, i.e., longer chirps
correspond to higher SF value and shorter chirps to lower SF value. Higher SF
can increase robustness to natural interference and noise but also decreases available
bandwidth for data. LoRa signal model is an M -ary digital modulation based on
frequency shift chirp spread spectrum. The M possible waveforms are chirps mod-
ulated over the bandwidth B with M different initial frequencies. A modulating
symbol carries SF = log2(M) bits, with SF ranging from 7 to 12, (SF = 6 also
exists but corresponds in fact to a very different modulation scheme and smaller
SF also exists in the 2.4 GHz band). The orthogonal nature of these SFs enables
simultaneous and collision-free communication in the network. The symbol duration
is Ts = MT , where T = 1/B is the sampling period. Each modulated chirp is based
on a raw chirp, whose instantaneous frequency is given by f(t) = B

Ts
t. Recall that

the instantaneous phase (ϑ(t): f(t) = 1
2π

dϑ(t)
dt ) is the integral of f(t), which yields

the following baseband expression for the raw chirp:

c(t) = exp
(

2π
B

2Ts
t2
)
, t ∈

[
−Ts

2
,
Ts
2

]
. (1.2)

The transmitted modulating symbol of the ith user at time qTs, q = 0, · · · , Q −
1, with Q the number of symbols transmitted in a packet, is denoted by m

(i)
q ∈

{0, ...,M − 1}. The corresponding modulated chirp is obtained by left-shifting the

raw chirp of τ (i)
q = m

(i)
q T in the time domain, yielding a shift of m

(i)
q

Ts
in the frequency

domain (see Fig. 1.5). The coded chirp x(i)
q (t) is expressed as:

x(i)
p (t) =


exp

(
2π
[ B

2Ts
t2 +

m
(i)
q

Ts
t
])
, t ∈

[
−Ts

2 ,
Ts
2 − τ

(i)
q

)
,

exp
(

2π
[ B

2Ts
t2 +

(m(i)
q

Ts
−B

)
t
])
, t ∈

[
Ts
2 − τ

(i)
q , Ts2

]
.

(1.3)

Finally, the complex envelope of the transmitted signal of user i, s(i)(t) is given by:

x(i)(t) =

Q−1∑
q=0

x(i)
q (t− qTs). (1.4)
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(a) Raw chirp (b) Coded chirp     

Figure 1.5: Raw up-chirp and Coded chirp associated with m(i)
q .

The transmitted LoRa packet is then obtained by adding the preamble consisting of
a sequence of raw chirps. The sampled received signal is multiplied by the conjugate
form of the raw chirp used on the transmitter side to detect the transmitted symbols.
Taking the Fast Fourier transform (FFT) of the de-chirped signal, each stream after
the demodulation, the symbols can be determined by obtaining the maximum or
strongest component of each FFT.

To improve the robustness against noise and interference, LoRa applies an interleav-
ing and FEC code with a coding rate of 4/(CR + 4), where the CR value is between
1 and 4. The symbol rate Rs and data rate Rb can be computed by:

Rs =
B
M

(1.5)

Rb = SF
4

CR+4
M
B

(1.6)

It can be seen from equation (1.5) that increasing the SF increases the symbol time
and decreases the symbol rate. From equation (1.6), it can be noted that the data
rate decreases as the SF increasing.
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1.4 State of the Art: Scalability

1.4.1 Physical Layer

Few works have been done at the PHY layer in the literature, but open issues remain,
and scalability is among the main issues. This section reviews the scalability of LoRa
networks and some proposed PHY layer techniques to address this problem.

LoRa is claimed to be robust to inter-SF interference due to different orthogonal
SFs. However, authors in [32] have shown that a LoRa network cell cannot be
considered as a simple composition of independent networks operating on different
channels because of the imperfect orthogonality between different SFs. Specifically,
they showed that if the received power of the interference is strong, the collision
between packets with different SFs can be destructive and hence limits the scalability.
The work in [33] presented the theoretical analysis of the achievable LoRa throughput
in the uplink, where capture conditions such as signal-to-Noise Ratio (SNR) reception
level, Signal-to-Interference-plus-Noise Ratio (SINR) level for co-SF and inter-SF
captures are included. Their results showed a significant impact of SF imperfect
orthogonality and the effects of different SF allocation based on the end-devices
distance from the gateway on the system performance. In [34] LoRaWAN scalability
study is introduced. The authors developed a numerical model of the transmission
process to evaluate the scalability of LoRaWAN. They inferred that the network
limit is just 0.151 byte payload for every second. This limit relates to 5000 devices,
each communicating two messages every day.

The effect of interference on a LoRa network brought by concurrent transmissions
utilizing a similar SF and various SFs is analyzed in [35]. The interference field is
modeled as Poisson point process with duty-cycled ALOHA, and the distributions of
signal to interference ratio are derived by considering different interference scenarios.
The authors showed in their results that in the LoRa network, the number of end
devices that can transmit successfully is limited due to the combined impact of the
co-SF and inter-SF interference.

In LoRa, the single-hop star topology has a great advantage in terms of low power
consumption; however, it is a bottleneck to realize a LoRa network that is efficient,
scalable, and with high coverage ability. Evaluation of multi-hop LoRa receiver
performance under concurrent transmission with all SFs is discussed in [36]. The
authors demonstrated that with adequate power offset, the concurrent transmission-
based multi-hop LoRa showed good performance in the presence of packet collision
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under the same SFs. The work in [37] introduced the performance of the LoRaWAN
network in an urban environment where the unconfirmed mode was implemented.
The authors present the SF allocation to every device depending on the sensitivity
of the gateway by analyzing the power signal at the gateway. Accordingly, both the
probability of collisions and time on-air (ToA) were reduced. The gateway configu-
ration is based on 8 receiving paths with 3 channels, and these paths are reserved
for the uplink traffic. However, the downlink traffic is not considered. The effect
of the same SF interfering signal on the decoding performance of the useful signal
has studied in [38,39]. The authors introduced the hypothetical models of the inter-
ference. However, the study is performed to the detriment of the interfering signal
whose data is lost, and no solution has proposed any technique to deal with the
interference problem.

Authors in [40] implemented simulators to assess the effect of intra and inter SF
interference on LoRaWAN performance. The authors demonstrated that the SFs
are not completely orthogonal; as a result, a collision can occur, and it can be very
destructive if the Signal-to-Interference Ratio (SIR) is lower than a given threshold
value for each SF. In addition, for co-SF collisions, the useful signal can be success-
fully decoded by applying a capture effect only if the received power of the useful
signal is 6 dB higher than the total power of interfering signals. In [41], the authors
presented a technique to detect a signal of the desired transmission in the presence
of an interfering signal with received power 6 dB larger than the desired. They
considered several cases where a receiver has a candidate list of expected signals.

Mainly in the uplink, the capture effect is analyzed in [42,43] and gives a general idea
of differentiating users based on their received power. The authors in [44] proposed
to decode two desynchronized LoRa-like signals, received concurrently in the same
channel, with the same SF. The approach is based on estimating the time shift
between the two received signals, but the decoding works only if the signal that has
the highest power is received first. In [45] a different approach is also proposed that
decodes superposed LoRa signals using the chirps timing information. However, the
approach requires receivers to be perfectly synchronized or slightly desynchronized
and only dealt with the uplink case, which is not practical in ALOHA-based LoRa
networks.

Those ideas have been further developed and extended using a SIC scheme to decode
signals from multiple users in the uplink [42, 46].However, the first one considers
that all transmitting nodes are perfectly synchronized, which is not the case in the
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uplink communication, whereas the second only considers not more than 4 users. To
increase the scalability, in [47], we proposed a SIC receiver that allows recovering
multiple signals transmitted in the same time slot (but not necessarily synchronized)
and with the same SF. A complete receiver structure, with detection of packets,
channel estimation, detection of symbols, and interference cancellation, is proposed
and shown to support 20 times more nodes than the classic LoRa receiver. This leads
to a significant increase in the possible number of devices connected to the network.
Practical implementation issues remain, however, to be addressed.

To increase end-nodes density, the authors in [48] have proposed the use of multiple
gateways and directional antennas, which reduces the number of end-nodes connected
to a single antenna. In this work, the effect of interference between multiple LoRa
networks is limited using directional antennas and multiple gateways.

The performance of uplink communication of a LoRa link in a multi-cell LoRa sys-
tem is modeled and analyzed in [49]. Stochastic geometry and geometric probability
are used to model the spatial distribution of LoRa devices. The effects of the mas-
sive number of LoRa cells and the quasi-orthogonal spreading factors assignment on
the success probability of the LoRa transmissions were represented by the model.
LoRaWAN vulnerability to the inter-network interferences is studied in [50]. The
authors determined the impact of LoRaWAN data rates of the transmitter and the
interference source on the probability of successfully transmitting data packets when
operating in the EU 868 MHz frequency band. The results show that, in fact, trans-
missions with different data rates in the same channel will have an impact on the
transmitted signals, and high data rates are more severely affected by interference
than low data rates.

The deployment of Interleaved Chirp Spreading (ICS) LoRa to create a new over-
lapping logical network that co-exists with the classical LoRa network is studied
in [51]. The author particularly focuses on the study of the inter-network interfer-
ence between the classical LoRa and the Interleaved Chirp Spreading LoRa logic
network under different SIR as well as different SNR. The simulation results show
that ICS-LoRa interference has a slight impact on the Bit-error Rate (BER) perfor-
mance of the classical LoRa decoding, and vice versa. In addition, it has been proven
that better cross-correlation characteristics provide a better opportunity to eliminate
inter-network interference signals successfully. The authors in [52] discussed the co-
existence of LoRaWAN networks in the same frequency band, as well as existing
applications of the short-range devices, which cover everything from door openers to
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traditional home automation technologies of different types of equipment.

1.4.2 MAC Layer

Most of the LoRaWAN scalability researches have mainly focused on the MAC layer
considering the uplink communication, and some are discussed in this section. Chal-
lenges of radio channel access and LoRa network scalability are discussed in [43].
Real-world deployments of IoT networks and LoRaWAN experimental analyses have
been conducted. The impact of an adaptive data rate is illustrated, and the impact
of duty cycle restrictions on the LoRa network. Scalability limits of LoRaWAN have
been studied in [53–55]. It is limited because of the regulatory constraints on the
channel and the use of random channel access rather than because of LoRa technical
limitations.

In [55], it is shown that the network can support only up to 120 nodes with a data
extraction rate over 0.9 and using a single gateway, an SF of 12, a bandwidth of
125 kHz, and forward error correction with Code Rate 4/5. The authors proposed a
dynamic channel parameter setting (transmission power, SF, bandwidth, and code
rate) with multiple gateways. They showed a possible increase by one order of
magnitude of the number of users.

The solutions proposed in the previously mentioned papers concentrate solely on the
uplink direction. However, it has been shown [56] that the duty cycle restricts both
the scalability and the network’s reliability. However, only a few works tackle this
important aspect of scalability issues of LoRa downlink traffic to date. The authors
in [57] present and evaluate gateway selection solutions to improve the performance
of LoRaWAN downlink communications in terms of throughput. They consider
gateway selection algorithms based on load balancing and received signal strength
indicators with different deployment scenarios. The authors conclude that balancing
the load per gateway improves the performance. However, the downlink benefits
from a crucial advantage: the transmission to all users originates in the access point
allowing accurate synchronization of signals. The authors in [58–60], evaluated the
effect of downlink traffic on the performance of LoRaWAN. They have shown that the
uplink traffic is extremely impacted when the number of downlink feedback frames
rises. They identified the duty cycle as the main limiting factor in the scalability
problem. In these papers, no solution is proposed to improve the situation. Van
et al. [61] analyze the downlink frame issue using the ns-3 network simulator. The
authors illustrate the main reasons behind the gateways congestion by emphasizing
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the duty cycle limitation and the half-duplex problem. They also propose a multi-
gateway system and assess the improvements based on lower duty cycle saturation
and load balancing among the gateways. However, there is no explanation of how
the load balancing is performed.

The authors in [62] presented a spreading factor allocation algorithm for a large-
scale LoRa network based on K-means clustering. They illustrate the impact of the
number of nodes in each spreading factor and their distance from the gateway on
the network performance. The algorithm works by defining a number of nodes and
range boundaries for each spreading factor. Farhad et al. in [63] investigated LoRa
network scalability under a dense urban environment for confirmed and unconfirmed
transmission modes. Their result indicated that the distribution of the spreading
factor is highly affected by the dense urban environment. The scalability of the
network is limited by the use of acknowledgment in the downlink. Moreover, they
show that the network’s performance can be improved by increasing the antenna
height in a dense urban area. A comprehensive analysis of the effects of downlink
traffic on LoRaWAN capacity was provided in a recent paper [64]. The authors de-
scribe how the gateway’s half-duplex mode and the sequential transmission lead to
the duty cycle saturation for downlink traffic. They also propose a multi-gateway
deployment, parallel transmission of downlink frames on the same channel but with
different orthogonal SF, and load balancing among the deployed multiple gateways.
However, deploying multiple gateways can cost, and implementing the gateway se-
lection algorithm to balance the load can bring another level of complexity to the
system.

To improve the reliability and scalability of LoRaWAN, a new method, RS-LoRa
MAC protocol, is proposed in [65]. RS-LoRa operates in two significant steps; in
the initial step, the gateway schedules the devices inside its reach by estimating the
Received Signal Strength Indicator (RSSI) and SF for each channel. In the second
step, every device chooses its transmission setting, such as; transmission power,
SF, and channel depending on the scheduling data of the gateway. The authors
showed that the proposed scheduling approach decreases the impact of a collision by
cautiously choosing an SF to improve the network quality, scalability, and capture
effect.

In [66] an SF allocation technique for massive LoRaWAN networks is proposed.
This technique targets to improve the success rate by analyzing the interference
between similar SFs and channels. The interference brought by the collision of two
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packets is recognized by fixing the collision time between the packets of similar SFs
over a similar channel. The SIR and received power are determined at that point.
After comparing it with a threshold, the interference will not affect the packets if
it surpasses the threshold. If that is not the case, the packets are lost because of
interference.

Most of the proposed schemes in the previously mentioned papers mainly focus on
uplink communication, and few works are proposed to tackle the scalability issue
from the MAC layer perspective. However, we are interested in alleviating the issues
related to scalability from the PHY layer point of view. Therefore in [67], we proposed
a Non-Orthogonal Multiple Access (NOMA) based new joint multiuser detection
technique for downlink traffic in LoRa networks. We proposed transmitting multiple
frames simultaneously, with the same SF, and on the same frequency band. On the
receiver side, the devices are differentiated by the allocated power on their dedicated
frame. It was demonstrated that the proposed joint multiuser detector increases
the number of connected devices at least by 10 and maintains the symbol error rate
below 10−3 without implementing error-correcting codes.

The next chapter studies the downlink transmission in the LoRa-like networks. It
addresses issues related to the duty cycle by proposing a solution to enhance the
scalability of the networks.
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In this chapter, we present the proposed receiver for downlink communication in
LoRa-like networks inspired by Non-Orthogonal Multiple Access (NOMA) techniques.
The proposed receiver improves the scalability of the network by increasing the num-
ber of devices that can be addressed at least by one order of magnitude. While the
approach differentiates the devices by the power allocated to them, it differs from the
vast majority of previous works on power-domain NOMA because it does not require
interference cancellation. Instead, it benefits from the spectrum spreading of the mod-
ulation scheme (chirp spread spectrum) where, at the end of the decoding phase, the
information carried by a symbol is found in the position of a peak in the Fourier
domain.

2.1 Introduction

Compared to the uplink, the downlink benefits from a crucial advantage: the trans-
mission to all users originates from the same access point, allowing accurate synchro-
nization of signals and power allocation. Leveraging on this, we propose a power-
domain NOMA scheme [68] that limits the impact of the duty cycle, half-duplex
mode, and sequential transmission of a LoRa network. Besides, the complexity at
the receiver level must remain low, prohibiting the implementation of many advanced
methods. Therefore, applying Serial Interference Cancellation (SIC) significantly
limits the possible number of simultaneous transmissions in practical systems in the
downlink. Taking benefit from the CSS modulation, the main novelty in our work is
to propose a power domain NOMA scheme without the need of a SIC receiver. In
addition to reducing the complexity, it also avoids the residual error resulting from
signal cancellation, which means a significantly easier and less limited scheme to be
implemented in real systems.

The main contributions of this chapter can be summarized as follows:

1. We propose a superposition transmission scheme for synchronized (downlink)
CSS modulation, which does not require SIC.

2. We derive the Maximum Likelihood (ML) optimal Multi User Detector (MUD).
Due to its high complexity, it cannot be implemented in practice, and we,
therefore, develop an approximation via the Cross Entropy Method (CEM).
Still too complex for end devices, this receiver serves us as a reference.

3. We develop a suboptimal detection scheme that significantly reduces the com-
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putation time compared with the CEM, specifically designed for low-cost de-
vices. This scheme does not require interference cancellation. It benefits from
the collision avoidance inherent in CSS. This is a significant advantage of the
method since it avoids the limitations due to the propagation of residual errors
after each cancellation. Preamble detection and channel estimation scheme are
included in our simulation results.

4. We propose Power Allocation (PA) schemes to minimize error probabilities and
increase fairness between users having good or bad channels.

Our scheme is very different from traditional NOMA, both for the decoding approach
and the PA scheme. Indeed, the information in the decoded signal is carried by a
frequency, i.e., a peak in the Fourier domain. Most of the time, users carry differ-
ent information so that their peaks fall at different positions, avoiding each other,
and the interference does not accumulate. The scheme is more similar to time or
frequency hopping than to superposition coding or Direct Sequence Code Division
Multiple Access (CDMA) and does not require a specific code. As far as we know,
this is the first time such a NOMA scheme is proposed. A few papers have studied
downlink NOMA without SIC. In [69], a Pulse-Amplitude modulation is studied and
the Gray labeling without SIC very close to a system using SIC. In [70], a down-
link NOMA technique without SIC is proposed using an algebraic lattice to design
modulations that guarantee all users achieve full diversity gain. These approaches,
although not relying on SIC, use a superposition coding scheme and try to maxi-
mize capacity or diversity gain. Besides, they are limited in the number of users
and only consider two. On the contrary, the CSS that is used in LoRa is not max-
imizing the transmission rate, but our proposal can handle many more users. The
avoidance rather than superposition approach avoids the cancellation residue that
significantly limits the possible simultaneous transmissions. We keep our analysis at
the PHY layer level, although characterizing in terms of good-put and latency could
also certainly highlight the benefits of our method. However, it would be necessary
to include channel coding schemes, protocol solutions, and re-transmission strategies
beyond this thesis’s scope.

2.2 System Model

As mentioned in section 1.2, the downlink capabilities of LoRa devices differ depend-
ing on the node class (A, B, or C) [25]. For battery-operated class A or B devices
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and with an expected lifetime of several years, the downlink is very limited in terms
of the quantity of information transmitted because a very limited number of slots
are available. However, this is not the only limitation. LoRa operates in the license-
free Industrial, Scientific and Medical (ISM) radio band, and consequently, suffers
severe limitations concerning channel access. Because the devices do not listen to
the channel before transmitting, the devices must adhere to the duty cycle regula-
tion imposed by the regulatory bodies, such as the European Telecommunications
Standards Institute (ETSI) [71]. This restriction limits a transmitting device when
it can occupy the channel, for instance, 1% in Europe (868−868.6 MHz band). This
duty cycle is significant for the downlink transmission. The gateway is extremely
affected since it cannot send downlink frames to all of the devices after receiving
multiple uplink frames. This constraint limits the capacity of downlink transmission
in terms of the maximum traffic supported and, consequently, impacts the scalability
of LoRaWAN networks.

Recall from section 1.3, the transmitted chirp of user i at time qTs, q ∈ {0, . . . , Q−1},
where Q is the number of symbols transmitted in a packet, is generated by applying
left-shifting of the raw up-chirp by τ (i)

q = m
(i)
q T . The transmitted data symbol is

represented by m(i)
q ∈ {0, ..., 2SF − 1}. The coded chirp of user i associated with the

qth symbol is:

x(i)
q (t) =


exp

(
2ıπ
[
B

2Ts
t2 +

m
(i)
q

Ts
t
])
, t ∈
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−Ts
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Ts
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(i)
q

)
,

exp
(
2ıπ
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(m(i)
q

Ts
−B

)
t
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, t ∈
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Ts
2 − τ

(i)
q , Ts2

]
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(2.1)

Finally, the complex envelope of the transmitted signal of the ith user is:

x(i)(t) =

Q−1∑
q=0

x(i)
q (t− qTs). (2.2)

2.3 Proposed Signal Detection Scheme

In this section, we present the proposed scheme. We first present the transmitter
design and the wireless channel model. We then present our method for the receiver,
starting from the optimal detector formulation via the Maximum Likelihood Detector
(MLD), which we show has a combinatorial complexity. To overcome this limitation,
we propose an algorithm that approximates the MLD with a much lower complexity
based on the CEM [72]. To further reduce the computational complexity, we propose
a low-complexity multiuser detector that only searches for the closest peak to the
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expected one. It is to be noted that the CEM-based and the low-complexity detectors
will be used as references for comparison. We did not find any competitive method in
the literature or theoretical bounds for a method equivalent to our NOMA proposal.
The only one which would be relevant would be a pure ALOHA scheme or a perfect
Time Division Multiple Access (TDMA) approach. Even if it is impractical in real
networks, this latter approach will also be used as a comparison, but our scheme
significantly outperforms both. In addition to that, we propose two PA schemes.
The first one avoids ambiguities when two users transmit the same information at
the same time. The second one distributes the powers to ensure a constant distance
between the power of the selected peak and that of the nearest lower peak to improve
equity.

2.3.1 Transmitted signal

To avoid the limitation due to the duty cycle, we propose to transmit N frames
simultaneously, with the same SF and on the same frequency band. It is possible
with Class B devices that can be synchronized and in receive mode during the same
time frame. The objective is then to design a communication strategy that allows us
to superimpose N users in the duration of a single packet. The idea is to generate
information streams for N end-devices, modulate them using the CSS scheme, then
add all signals with different allocated powers to form a single packet. A preamble
and a common header are added at the packet start. The information about the
number of users and the PA scheme is added in the header. At the receiver side, the
receivers select and decode the signal which corresponds to their allocated power.
The combined transmitted signal is:

x(t) =
N∑
i=1

√
p(i) x(i)(t), (2.3)

where p(i) is the power allocated to user i.

2.3.1.1 Power considerations

The maximum transmission power in an ISM band is restricted. For LoRa (at 868
MHz), in Europe, this maximum is set to 14 dBm for uplink and 27 dBm for downlink.
The noise level of a receiver at room temperature is:

N0(dBm) = −174 + 10 log10(B) + NF, (2.4)
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where the first term is the thermal noise in 1 Hz of bandwidth and can only be
affected by changing the receiver’s temperature. NF is the receiver noise figure,
which depends on the hardware implementation, and a typical 6 dB noise figure is
considered [21]. If we consider B = 250 kHz, the noise power density at the receiver
is −114 dBm.

2.3.1.2 Channel Model

We consider one cell of radius R with the gateway placed at the center. Many devices
are uniformly distributed within the cell, and the gateway has to send information
to N of them. The distance from end-device i to the gateway is denoted by d(i).
The propagation channel is considered block and flat fading, so a single constant
coefficient throughout the packet’s duration. We consider path loss and Rayleigh
multipath fading χi. The signal amplitude decays with increasing distance accord-
ing to d(i)−η/2, where η is the path loss exponent. The channel attenuation (in
amplitude) is expressed as h(i) = d(i)−η/2 · χ(i).

In the following, the user we are trying to decode is denoted by j, and the signal it
receives is:

r(j)(t) = h(j)
N∑
i=1

√
p(i) x(i)(t) + w(j)(t), (2.5)

where w(j)(t) is a complex Gaussian noise and h(j) the channel between the access
point and device j.

2.3.2 Receiver Design

The receiver acts in two steps: preamble detection and demodulation process.

First, the correlation between the received signal and the known preamble sequence
is calculated to detect the packet and its start. This detection is easy because the
preamble is common to all the users; hence the power dedicated to it is large. This
step also allows us to estimate the user’s channel from the maximum value of the
correlation.

Second, we are interested in the decoding of symbol q. We sample the received signal
and it is expressed as:

r(j)
q [n] = r(j)(nT + qMT ), (2.6)
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where n is limited to the set Ω = {0, . . . , 2SF − 1}.Then we have:

r(j)
q [n] = h(j)

N∑
i=1

√
p(i) x(i)

q [n] + w(j)
q [n], (2.7)

where w(j)
q [n] ∼ NC(0, σ2

n) is a complex Gaussian thermal noise (discussed in section
2.3.1.1) and x(i)

q [n] = x
(i)
q (nT ).

The received samples r(j)
q [n] are then multiplied by the complex conjugate form of

the sampled up-chirp. The sampled up-chirp is defined for n ∈ Ω and denoted
by x[n] = x(nT ). The signal corresponding to the qth symbol after de-chirping is
written as:

y(j)
q [n] = r(j)

q [n]x∗[n],

= h(j)
N∑
i=1

√
p(i)e

2ıπ
m

(i)
q

2SF
n

+ w̃(j)
q [n].

(2.8)

To make a decision, we use the ML estimator. It is equivalent to work with r(j)
q [n],

y
(j)
q [n] or even in the Fourier domain. We did not get any tractable solution in the
time domain so, after compensating for the channel gain multiplying y(j)

q [n] by h(j)∗

(the ∗ denotes the complex conjugate -in the following formulations, we assume a
perfect channel estimation but in the simulation part the estimated channel will be
used), we perform a FFT, as the traditional LoRa receiver:

Z(j)
q [k] = Re

{ 2SF−1∑
n=0

(
h(j)∗y(j)

q [n]
)
e
−2ıπ nk

2SF

}
,

= |h(j)|2
N∑
i=1

√
p(i)δ[k −m(i)

q ] +W (j)
q [k].

(2.9)

where W (j)
q [k] ∼ NC(0, |h(j)∗|2σ2

n/2) is the FFT of the noise, δ[.] is Kronecker delta
function, δ[n] = 1 for n = 0 and δ[n] = 0 for n 6= 0. We observe that the obtained
vector presents peaks at the positions corresponding to the source symbols (δ[k −
m

(i)
q ]).

The basic LoRa detector searches for the strongest peak to decode a single user. This
observation will be used in the receiver architectures we propose.

Based on (2.9), we note:
Z(j)
q = |h(j)|2X(j)

q + W(j)
q , (2.10)
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which is the 2SF -dimensional received vector after FFT. We want to implement
a multiuser detection scheme. To do so, we express the log likelihood function.
mq = {m(1)

q , . . . ,m
(N)
q } is the information vector and we assume an independent

and identically distributed noise vector W(j)
q :

Λ = logP
(
Z(j)
q

∣∣∣h(j),mq

)
,

= log
2SF−1

Π
k=0

P
(
Z(j)
q [k]

∣∣∣h(j),mq

)
,

=
2SF−1∑
k=0

logP
(
|h(j)|2X(j)

q [k] +W (j)[k]
∣∣∣h(j),mq

)
. (2.11)

Because all operations are linear and given mq, |h(j)|2X(j)
q [k]+W

(j)
q [k] is a Gaussian

random variable with mean |h(j)|2X(j)
q [k], variance σ2

n and we have:

m̂q = argmax
mq∈Q

2SF−1∑
k=0

log

 1√
π|h(j)|2σ2

n

e
−

(
Z

(j)
q [k]−|h(j)|2X(j)

q [k]

)2

|h(j)|2σ2
n


= argmin

mq∈Q
‖Z(j)

q − |h(j)|2X(j)
q ‖2,

(2.12)

where Q :=
[
0, . . . , 2SF − 1

]N is the set of all possible symbols. As expected in the
Gaussian independent noise case, maximizing the likelihood function Λ is equivalent
to minimizing the Euclidean distance between the transmitted signal X(j)

q , and the
received one Z

(j)
q . However, this problem does not give an analytical expression for

the solution. The difficulty is that m(i)
q can take any integer value between 0 and

2SF −1, meaning that with N users, the MLD is required to evaluate 2N.SF possible
source combinations, which is impractical.

One common approach to overcoming the combinatorial complexity is relaxing the
problem by assuming that m has real-valued support. However, in our model, this
relaxation would not simplify the solution due to the non-linear structure of the
likelihood function, neither in time nor in frequency. We, therefore, develop an
alternative solution that is based on a Monte Carlo sampling technique, known as
the CEM [72].

2.3.2.1 Cross-Entropy Multiuser Detector

The CEM is a flexible Monte Carlo technique, which was originally developed for
rare-event probability estimation, solving combinatorial, continuous, constrained,
and noisy optimization problems [73].
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The basic idea is to generate a set of candidate solutions (mq in our case consisting
of N integers in {0, . . . , 2SF − 1}), select the best possible candidates, update the
generating rule and iterate until convergence is obtained. One important step is the
possible solution generation: what distribution for mq should be chosen? Let fm(.)

be the PMF of mq. The proposed cross-entropy algorithm is presented in algorithm
2.1.

Steps 1 to 3 define some parameters: the number of sequences we generate at each
iteration, the number of sequences we keep to update the distribution, and a param-
eter that controls the convergence speed. Along with two parameters chosen for the
initialization of the PMF of mq, these parameters are important and could be opti-
mized because they represent a compromise between the complexity burden and the
algorithm’s accuracy. We chose parameters that ensure a good convergence rather
than a reduced complexity to perform close to the true ML.

Steps 4 to 9 initialize the PMF of mq. All values are possible, but we give a slightly
higher probability to the dominant peaks. This reduces the necessary number of
iterations. An example is seen in Fig. 2.1, where the initial fm is represented. The
same PMF is used for each user.

Step 10 starts the main loop. We set the end of iterations when for each user, the
probability of a given value is at least 0.85. This probability is set empirically. From
steps 11 to 17, we generate Nseq random sequences m̃q according to fm and the
corresponding decoded vector Z̃(j)

q [k]. This requires the channel estimate ĥ(j). The
distance with the true received sequence is also calculated. We chose Nseq = 2000

to ensure enough variety in the generated sequences and a good convergence of the
algorithm.

Steps 18 and 19 select the Nkeep sequences leading to the closest received vectors form
the truly received one. We chose Nkeep = 100, also ensuring a good convergence of
the algorithm. These sequences will be used in step 20 to update fm by reinforcing
the weights on symbols that have been generated in the set of selected sequences. A
parameter δP is needed for this purpose and is empirically set to 0.003, which has
been shown to be a good compromise. A larger value increases the convergence speed
but also the number of wrong decisions. The process is illustrated in Fig. 2.2 and
Fig. 2.3, where we show the CEM values of fm per user after 15 and 30 iterations.

In practice, the CEM-MUD still incurs too high a computational complexity because
it needs to generate many samples and keep generating for several rounds to converge
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Algorithm 2.1 CEM-MUD for downlink LoRa.

Input: Received vector Z(j)
q , ĥ(j), N

Output: Decoded vector mq

1: Nseq ← 2000 (Number of generated sequences)
2: Nkeep ← 100 (Number of selected sequences)
3: δP ← 0.003 (Update parameter)
4: [p, l]← find peak values and indices of Z(j)

q

5: u← sort p in descending order
6: pos← l(u(1 : N)) % Select the N strongest peaks
7: fm ← N × 2SF matrix with all elements equal to 0.01

8: fm(:, pos)← 0.05

9: fm ← fm/
∑
fm (

∑
fm is the sum of all elements of fm to normalize and have

a probability mass function.)
10: while min of max of each line of fm less than 0.85 do
11: for idx = 1 to Nseq do
12: Generate a vector m̃q according to fm
13: Generate the source vector X̃q from m̃q and (2.2)
14: R̃

(j)
q [n]← ĥ(j)X̃q[n]

15: Z̃
(j)
q [k]← Re{FFT (ĥ(l)∗R̃

(j)
q [n])}

16: d(idx)← ‖Z(j)
q − Z̃

(j)
q [k]‖2

17: end for
18: d← sort d in ascending order
19: Keep Nkeep sequences with the smallest d
20: Update fm by adding δP at each position given by the selected sequences and

normalizing.
21: end while
22: return m̃q corresponding to the smallest d.
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User No. 2; Iteration No. 1

Figure 2.1: CEM-MUD as per Algorithm 2.1, with N = 8 users and SF = 7. This figure
represent fm = P(m = k) at the beginning of the first iteration. Only one user is represented
because the PMF fm is the same for all users.

into the true values. Therefore, we propose a new multiuser approach based on peak
detection and collision studies.

Remark: We implemented in Algorithm 2.1 the full MUD. In fact, when implemented
at a specific receiver, the algorithm can simply focus on the selected user. The stop-
ping rule can then be adapted (only the probability concerning the selected user has
to exceed the threshold).

2.3.2.2 Proposed Low-Complexity Detector

To reduce the complexity, we propose a simpler and more direct strategy. In fact,
when a good number of peaks is found and because the power allocation scheme
is known, it is straightforward to find the one corresponding to the selected user.
The CSS in fact allows an interferer avoidance scheme in the Fourier domain at the
receiver. In such a case, it is not necessary to cancel interference from stronger users.
However, collisions, when two users transmit the same information at the same time,
make things more difficult, and if not handled properly, may significantly limit the
capabilities of the approach. Our proposed algorithm has the following two steps:

1. Peak detection using a threshold: The goal is to find the peaks, including the
one from the selected user and the higher peaks. For instance, if the selected
user is user j (the order of the users is from the strongest to the weakest
allocated power), we define a low enough threshold that will allow us to detect
the j strongest peaks but high enough such that the weaker peaks will not be
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Figure 2.2: CEM-MUD as per Algorithm 2.1, with N = 8 users and SF = 7. In this example
two collisions occur (mq = {6, 79, 115, 79, 100, 100, 51, 87}). The figures represent fm at the
beginning of the 16th iteration. We can see that if values tend to gain in probability, the
decision cannot be made yet.
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Figure 2.3: CEM-MUD as per Algorithm 2.1, with N = 8 users and SF = 7. In this example
two collisions occur (mq = {6, 79, 115, 79, 100, 100, 51, 87}). The figures represent fm at the
beginning of the 31st iteration. We can see that the probability is clearly converging towards
a single value equal to one for each user, all the others being zero. We also see that the
decision is good despite the two collisions between users 2 and 4 and users 5 and 6.
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detected.

2. Peak selection using a search method: If exactly j peaks are detected, we choose
the closest one from the expected received amplitude, and its position gives the
information of the selected user. Similarly, if more than j peaks are detected,
weaker peaks have probably collided, and we choose the closest one from the
expected received amplitude. Finally, if we detect less than j peaks, it means
that collisions occurred between the j strongest users. In that case, we analyze
all the possible collision cases to choose the most likely and decide.

Both steps (choosing the threshold and deciding when less than j peaks are detected)
will be described in the following.

Remark: In the second step, when we detect exactly j peaks, there is a case where
we can miss the information of the selected user, that is, when two or more weaker
users collided and result in a peak larger than or equal to the selected user’s peak but
this selected peak is below the threshold or also collided with another peak. This case
is infrequent and can be generally avoided by the power allocation scheme described
in 2.3.3.1.

A) Threshold definition: Recall that we have N users ordered from the strongest
allocated power to the weakest one. We consider user j that we want to decode. We
fix a threshold to detect the j strongest peaks but not the N − j weakest ones. The
expected amplitude for user i at receiver j is |h(j)|

√
p(i). The objective for choosing

the optimal threshold is by maximizing:

p1 = P
(
|h(j)|

√
p(j) +W j

p [k] > γ

)
,

and, at the same time, to minimize:

p0 = P
(
|h(j)|

√
p(j+1) +W j

p [k′] > γ

)
.

where W j
p [k] is the Gaussian noise and k and k′ denote the frequencies where the

peaks fall. If user j is the weakest one (j = N), we set p(N+1) = 0:

γ∗ = argmax
γ∈γ

[
P
(
|h(j)|

√
p(j) +W j

p [k] > γ

)
,

1− P
(
|h(j)|

√
p(j+1) +W j

p [k′] > γ

)]
.

(2.13)
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then, we have:

p1 = Q

(
γ − h(j)

√
p(j)

σn

)
, (2.14)

p0 = Q

(
γ − h(j)

√
p(j+1)

σn

)
, (2.15)

where Q (.) is the Q-function [74]. Consequently, we have a multi-objective opti-
mization problem, and the Pareto front is easy to obtain. As a starting point, we
choose:

γ = h(j)

√
p(j+1) +

√
p(j)

2
, (2.16)

but this parameter could be optimized to give more weight to p1.

B) Making a decision: Let Npk be the number of peaks above the threshold γ.
The number of expected peaks is Nexp = j. The decision rule is the following:

• If Npk ≥ Nexp, we assume no collision between strong peaks and select the
peak that has the closest value to the expected one.

• If Npk < Nexp, we assume a collision occurred. We scan for all possible combi-
nations between the users 1 to j. Let m̆ be such a combination. We create a
vector adding the amplitudes of the peaks that collide. We ordered the result-
ing values (including those that did not collide) and calculate the Euclidean
distance with the ordered detected peaks. Scanning all possible combinations,
we minimize the Euclidean distance in (2.12) to select the most probable one
and deduce the estimated information of the selected user.

C) Algorithm: The resulting proposed solution is given in Algorithm 2.2.

Step 1 determines the threshold, and step 2 finds the peaks above the threshold.
Steps 3 and 4 initialize the value of the decoded symbol (m0) and the minimum
distance (M0).

Steps 5 to 16 are for the case when the number of peaks is less than the threshold:
collision occurred. In that case, we scan all possible combinations giving the calcu-
lated number of collisions. If the vector received for a generated sequence is closer
to the truly received vector (distance less than M0), we update the values of m0 and
M0. The number of combinations to scan can become important when the number of
users and the number of collisions get large (see table 2.1), and alternative strategies
should be found for these rare events.
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When no collision is detected (the number of detected peaks is at least the one we
expected), we choose the peak with the closest amplitude to the one we expect (step
18).

Algorithm 2.2 Proposed Multiuser Detection Algorithm (single symbol)

Input: Received vector Z(j)
q , ĥ(j), N , p(j), p(j+1)

Output: Decoded symbol m(j)
q

1: Calculate γ according to (2.16)
2: u← Z

(j)
q > γ %Get the position of peaks larger than γ.

3: m0 ← 0 % Value of the selected combination
4: M0 ← ‖Z[u]‖2 % Initialize the distance
5: if length(u) < j then
6: while another combination of j − length(u) collisions exist do
7: Choose a combination m̃q with m the symbol of user j
8: Generate the source vector X̃q from m̃q and (2.2)
9: R̃

(j)
q [n]← ĥ(j)X̃q[n]

10: Z̃
(j)
q [k]← Re{FFT (ĥ(j)∗R̃

(j)
q [n])}

11: if ‖Z(j)
q [u]− Z̃

(j)
q [u]‖2 < M0 then

12: m0 ← m

13: M0 ← ‖Z(j)
q [u]− Z̃

(j)
q [u]‖2

14: end if
15: end while
16: m

(j)
q ← m0

17: else
18: m

(j)
q ← argmin

u

(
‖Z(j)

q [u]− |ĥ(j)|2
√
p(j)‖2

)
19: end if
20: return m

(j)
q

2.3.2.3 Direct Peak Detection

As a reference, we also implement a detection based on finding the peak with the
closest amplitude to the expected one. This receiver is the simplest one but does
not provide the means to resolve collisions. The decoding process with N users is
described as follows: search for the N strongest peaks; select the peak that minimizes
the distance between its amplitude and the expected value |ĥ(j)|

√
p(j).
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2.3.3 Power allocation scheme

The power allocation allows us to differentiate the different users at the receiver.
In order to optimize the NOMA scheme, we attribute the largest transmit power
to the user with the worst channel [75, 76]. We can then allocate power based on
two different objectives: (a) to suppress ambiguities when collisions occur and (b)
to increase fairness between different users.

2.3.3.1 Power Allocation 1: Suppressing ambiguities

The goal is to avoid colliding users giving rise to a peak with an amplitude equal to
another user or a combination of other colliding users. We first order the users from
the strongest to the weakest based on an estimate of the channels from a previous
uplink (|ĥ(1)| > |ĥ(2)| > · · · > |ĥ(N)|). For user j, we allocate the power:

p(j) =
2j−1∑N
i=1 2i−1

pt, (2.17)

where pt is the total power transmitted by the access point. This guarantees that
whatever collision occurs, two peaks can not have the same amplitude at the receiver
side. However, this results in a significant proportion of the available power to be
allocated to further users, and the amplitude difference gets small for the closest
ones.

2.3.3.2 Power Allocation 2: Fair Spacing

We order the users based on an estimate of the channels from a previous uplink from
the weakest to the strongest (|ĥ(1)| < |ĥ(2)| < · · · < |ĥ(N)|). We note h(0) = 0. We
want that whatever the receiver j, the gap between the peak amplitudes of user j
and the weaker user j − 1 always has the same value c,

|ĥ(j)|
√
p(j) − |ĥ(j)|

√
p(j−1) = c. (2.18)

We show in appendix A that the power allocated to user j in that case is:

p(j) = pt
A2
j∑N

i=1A
2
i

, (2.19)

where,

Ai =
i∑
l=1

1

|ĥ(l)|2
. (2.20)
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The drawback of this algorithm is that it depends on the channel coefficients. The
access point can estimate them on previous uplinks, but the quality of the scheme
will depend on the time coherence of the channels. We assume the time coherence
of the channels is long in many static IoT cases, but the impact of time evolution
needs to be further investigated. Theoretical performance analysis as the one in [77]
for the uplink would have been a significant added value. However, contrary to
other works on NOMA, performance is conditioned on collisions and gaps between
allocated powers rather than on SIR, where interference is the sum of all interfering
signals. It introduces combinatorial problems (probability of collisions, who collides,
and so on), but we have not yet solved the problem.

2.4 Results

This section has four main objectives: first, we show that the MUD allows us to
increase the LoRa network’s capacity significantly. Second, we confirm that the pro-
posed algorithm delivers performance close to the CEM-MUD. Third, we check the
proposed PA schemes, including the users’ performance according to their position
(in terms of channel gain) in the group of users, simultaneously addressed. Fourth,
we provide an analysis of the computational complexity.

2.4.1 Simulation setup

We define a circular region inside which users are uniformly distributed. The radius
of the circle is R = 4, 5, 10 km for SF = 7, 8, 10 respectively, and we choose
the channel attenuation coefficient η = 3.5. A complex Gaussian random variable
with mean 0 and variance 1 is drawn for each user to model the Rayleigh fading and
obtain the channel coefficient as described in section 2.3.1.2: h(i) = d(i)−η/2 · χ(i).

However, to be connected to the network with a given SF, the received power in
the uplink has to be greater than the receiver sensitivity Rs (we assume a transmit
power of 14 dBm). For instance, Rs = −121.5, −124, −129 dBm for SF = 7, 8, 10

respectively, and B = 250 kHz. Users that do not respect this condition are discarded
and drawn again until N devices are connected. We consider that the access point
has a sufficient number of users to address, but no selection scheme is implemented
(users are independent and identically distributed). We fix this number, and the
transmitted packet is the superposition of all corresponding signals.

The noise level of the receiver, as discussed in Section 2.3.1.1, is −114 dBm. The
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complete chirp spreading is simulated in the baseband, and the information is coded
for all users. We use a total transmit power of 27 dBm.

Monte Carlo simulations are used to evaluate the performance of the proposed
scheme. The parameter settings for the cross-entropy decoder are as follows: we
generate Nseq = 2000 sequences and keep Nkeep = 100 sequences for the probability
mass function update.

Packet detection and channel estimation are performed using correlation with the
known preamble. Common to all users and transmitted with the full transmit power,
it does not generate errors, and the channel estimation is accurate. We present the
performance evaluation in terms of the average symbol error rate (SER). Error-
correcting codes and a user selection scheme should be included to derive a higher
layer Key Performance Indicator. This remains out of the scope of this paper because
we are only interested in the Physical (PHY) layer.

2.4.2 Performance of the three receivers

Figs. 2.4a and 2.4b illustrate the SER of a single user with additive Gaussian noise
(different SNR, which corresponds to different radio link quality) in the presence of,
respectively, 4 and 9 interfering users. The spreading factor is SF = 7, B = 250 kHz,
and Rs = −121.5 dBm. Power allocation scheme 2 was used in these simulations.
Slightly different results are obtained with scheme 1 but without changing the trends
and conclusions. The impact of the other users and erroneous decisions due to peak
ambiguities or collisions is shown. The MUD performance is outstanding compared
to the direct peak receiver. At equivalent SNR, we see a significant gain in SER (one
order of magnitude at -15 dB in the case of 5 simultaneous users).

The CEM-MUD has the best performance. It shows that the multiuser scheme can
be implemented and significantly increases the number of users in the networks: 10

simultaneous users can be supported. These brute results are very encouraging,
especially because we did not consider any user clustering scheme. If the network is
highly populated, we should search for the best way to group users and ensure optimal
performance. The CEM-MUD significantly outperforms the simplest receiver that
only searches for the close peak amplitude. This shows that it is important to have a
multiuser approach and implement a solution to account for collisions. Finally, our
proposed receiver and the cross-entropy method have almost similar performance,
especially at high SNR. This allows a solution for a low complexity implementation
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(a) Performance of a single user in the presence of 4 interfering users.

(b) Performance of a single user in the presence of 9 interfering users.

Figure 2.4: SER for different SNR values of a single user, when SF = 7, and B = 250 kHz.
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of a multiuser detector.

2.4.3 Power allocation performance

Figs. 2.5a and 2.6a show the symbol error rate of a single user with an additive
Gaussian noise, SNR= −10 and −12 dB respectively, and an increasing number
(N − 1) of interfering users with N = 3, . . . , 13. In both cases, the power allocation
scheme 2 (fair allocation) exhibits better performance. This is more significant in
Fig. 2.6a when the SNR is smaller so that the user is in the weak users. This can
be observed from Figs. 2.5b and 2.6b, where the histogram of the position of the
selected user when users are ordered from the weakest channel (strongest allocated
power) to the best channel. For instance, in the case with N = 12, it is seen that the
mean position is between 3 and 4 in Fig. 2.6b (SNR= −12 dB) when it is between
10 and 11 in Fig. 2.5b (SNR= −10 dB). This latter case sees a larger benefit with
the second power allocation scheme, which comes from the fairness approach and the
fact that for the first allocation scheme, the gap between amplitudes is small for the
users with the good channels.

This analysis is confirmed in Figs. 2.7 and 2.8 where the average symbol error rate is
plotted for different SF (SF = 7, 8, 9, and 10) and the two power allocation schemes.
These two plots also show that the proposed MUD exhibits good performance

whatever the SF. As a comparison, the actual implementation of LoRa allows us to
address only one user at a time. This means that we can increase by one order of
magnitude the number of users that can be addressed in a single time slot.

2.4.4 Fairness

The previous section analyzed the mean error (among all users) but did not consider
the SER difference between users with a good or a bad channel. The SER difference
between individual users is shown in Fig. 2.9. Users are randomly chosen at each
round, but errors are added depending on their order (from the worst to the best
channel). User one, for instance, is the one with the worst channel, so the one with
the highest allocated power. Both power allocation schemes are considered, and we
use N = 7 and 13. In the first power allocation scheme, ambiguities are avoided,
but the gap between allocated powers is rapidly decreasing and does not take the
channel into account. For the last users (in fact, users with the best channel), the
gap between allocated powers is insufficient, resulting in an increased SER. On the
contrary, the second scheme offers a fairer allocation, slightly increasing the SER
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(a) SER of a single user in the presence N − 1 interfering users.

(b) Position of the selected user (jth) compared to the interfering users.

Figure 2.5: Performance of the proposed MUD when SNR = −10 dB, SF = 8, and B = 250

kHz.
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(a) SER of a single user in the presence N − 1 interfering users.

(b) Position of the selected user (jth) compared to the interfering users.

Figure 2.6: Performance of the proposed MUD when SNR = −12 dB, SF = 8, and B = 250

kHz.
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Figure 2.7: SER of the proposed MUD for different N , Noise level of −114 dBm, SF=7, 8,
and B = 250 kHz.

Figure 2.8: SER of the proposed MUD for different N , Noise level of −114 dBm, SF=9, 10,
and B = 250 kHz.
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for the far users (the first ones) but keeping a more constant value and significantly
improving performance compared to the other allocation scheme for the last users.

Figure 2.9: SER of individual users when N = 7 and 13, SF = 8, Noise level of −114 dBm,
and B = 250 kHz.

2.4.5 Computational Complexity Analysis

We compare the computational complexity of the three decoding algorithms, namely
Direct peak detection, Cross-Entropy, and proposed receivers. Our evaluation is
considering the decoding of a single symbol. This study gives a broad idea of the
complexity, but we did not try to optimize the algorithm implementation.

2.4.5.1 Direct peak detection

For each symbol, we repeat the following operations:

1. Multiply by the down-chirp (2SF multiplications),
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2. FFT (complexity O(2SF . log(2SF )).

The final complexity for this simple receiver is O(2SF . log(2SF )).

2.4.5.2 Cross Entropy Method

If we assume that generating a sample from a given PMF and updating a PMF
are both O(1), the complexity of the CEM algorithm depends on the number of
operations that are iterated. These operations, as depicted in algorithm 2.1 and
their associated complexity for a single symbol are:

1. Line 12 (Generate m̃q) is O(N)

2. Line 13 (Generate the source vector X̃q) is O(N.2SF )

3. Line 14 (R̃(j)
q [n]← ĥ(j)X̃q[n]) is O(2SF )

4. Line 15 (FFT) is O(2SF log(2SF ))

5. Line 16 (distance) is O(2SF )

The listed operations are repeated Nseq.Nite times, where Nite is the number of
iteration before convergence which was observed to be around 30. The PMF updating
involves only additions and one normalization and will be O(Nkeep).

Therefore, the overall complexity is dominated by the 2SF repeated N times in line
13 and log(2SF ) in the FFT calculation done for each tested sequence. These figures
are of similar order and fixed. In the end we can state that the complexity of the
CEM is O(Nseq.Nite.N.2

SF ).

2.4.5.3 Proposed Method

In our proposal, after peak detection, the complexity is equal to the first approach
as long as the number of the detected peaks is equal to or larger than the number of
expected peaks.

In the case where fewer peaks are detected, the complexity will be given by the FFT
operation that we will need to repeat Mc times, Mc being the number of possible
collision combinations we have to scan (steps 6-15 in algorithm 2.2). For a reasonable
number of users and collisions, this number remains low (see table 2.1). So, finally,
the overall complexity is O(E[Mc].2

SF log(2SF )).

The time needed to decode a symbol is random and depends onMc, which is directly
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linked with the number of users N and collisions Nc occurring. It is easily seen that
the probability of having no collision with N users independently and uniformly
selecting a number in {1, ..., 2SF } is:

P{No Collision} =

∏N−1
i=0 (2SF − i)

2N.SF
(2.21)

It is, for instance, 0.697 when SF = 7 and N = 10 and goes up to 0.961 when
SF = 8 and N = 5. In the case when a collision occurs, the number of combinations
to be scanned is presented in table 2.1 and can become very large in the rare cases
when N is larger than 10 and Nc larger than 4, for instance.

2.4.5.4 Comparison

It is clearly seen from the previous analysis that the CEM is much more complex
than the two others. Our proposed approach is only complex in rare cases when the
number of considered users is large and several collisions occur. Probably it will not
be possible to implement these cases in low-cost devices, and alternative strategies
to address them will be necessary.

To complement our study, table 2.2 compares the mean computational time Rt (in
seconds) of the three receivers, which is required to decode a single user’s packet when
the length of the packet is Q = 100 symbols, and B = 250 kHz, and SNR = −12.5

dB. To evaluate the differences, we used a MATLAB-based software implementation
of the digital part of the receiver on a standard computer, but it gives us a general
idea about the computational complexity.

As expected, the ordered peak receiver is much faster at the price of significantly
degraded performance. On the other hand, the CEM-MUD has much better perfor-
mance but with high computational complexity. The computation time is multiplied
by 1200 for 5 users, and the coefficient increases with the number of users.

Our proposed receiver has performance close to the CEM-MUD with a significantly
reduced computation time. Indeed, this time is more than 900 times less than the
CEM-MUD except when the number of simultaneous packets becomes large (20 in
table 2.2).

2.4.6 SF Orthogonality

Fig. 2.10 and 2.11 study the impact of interfering users transmitting simultaneously
but with another spreading factor. Fig. 2.10, five users are considered simultaneously
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Table 2.1: Number of different combinations Mc when Nc collisions occur leading to Npk

observed peaks when Nexp were expected.

H
HHH

HHHN

Nc 1 2 3 4 5

1 0 0 0 0 0
2 1 0 0 0 0
3 3 1 0 0 0
4 6 7 1 0 0
5 10 25 15 1 0
6 15 65 90 31 1
7 21 140 350 301 63
8 28 266 1050 1701 966
9 36 462 2646 6951 7700
10 45 750 5880 22827 42525
11 55 1155 11880 63987 179487
12 66 1705 22275 159027 627396
13 78 2431 39325 359502 1899612
14 91 3367 66066 752752 5135130
15 105 4550 106470 1479478 12662650

with an SF 8. On the same frequency and at the same time, other users transmit
using a different SF. Even if a slight degradation can be observed, it is seen that the
performance is kept at a reasonable level.

The same conclusion can be drawn from Fig. 2.11, where 10 users are using an SF
8. Again with up to 10 interfering users transmitting with another SF, the loss in
performance is limited.
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Figure 2.10: SER for fixed 5 users using SF = 8, for different SF and interfering users, when
B = 250kHz.
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Figure 2.11: SER for fixed 10 users using SF = 8, for different SF and interfering users,
when B = 250kHz.
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Table 2.2: Average computational time Rt (in second) to decode a single user (jth) when
SF = 7, and N users.

N jth user position Direct Peak Proposed CEM-MUD

5 5 0.0046 0.0059 5.5179
10 8 0.0062 0.0114 17.3731
15 13 0.0077 0.0233 32.6277
20 16 0.0093 0.4254 52.3609

Conclusion

This chapter proposed a new joint multiuser receiver for downlink LoRa networks to
face the scalability issue in the downlink. Our proposal is inspired by power domain
NOMA but does not require the use of a SIC receiver. Doing so, we avoid the
limitation of NOMA resulting from the residues remaining after each cancellation.
A second concern for using NOMA in IoT is the low-cost end devices that cannot
support computational complexity. The ML does not give an analytical solution and
cannot be used. We proposed a suboptimal approach based on the CEM, which
is efficient but remains too complex. Consequently, we derived a simplified method
that allows resolving collision but keeps complexity low. We have shown that instead
of one single packet per time slot, we could transmit more than 10 packets per time
slot and even more, keeping the symbol error rate (without error-correcting codes)
below 10−3.

The next chapter will discuss the uplink communications in LoRa-like networks and
presents a new multi-user receiver to decode multiple signals from different users
using the same spreading factor. Additionally, new single-user detectors based on a
deep learning approach are also presented.
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In Chapter 2, we presented a solution for the scalability issues in the downlink
communications of LoRa-like networks. This chapter introduces other solutions for
uplink communication in LoRa-like networks, which can cope with co-spreading fac-
tor interference coming from other LoRa users. First, a multi-user detector based
on a Serial Interference Cancellation (SIC) technique is discussed. Then two deep
learning-based receivers are modeled for single-user detection based on deep feedfor-
ward neural network and a convolutional neural network.

3.1 Multi-user Detection: Serial Interference Cancella-
tion

As mentioned earlier, in LoRa, when two or more devices use the same transmission
settings (B and SF) for simultaneous transmission, destructive collision will occur.
Therefore, the main objective of this section is to introduce a solution that enables
two or more users to transmit their signals using the same SF and frequency band
at the same time. In the rest of this section, we reviewed related works.

The authors in [38] examines the interfering signal and analytically derives the per-
formance of LoRa under the same SF interference. Unfortunately, information about
interferers is lost in the process. Recent work [45] proposes an algorithm to decode
the correct symbols of synchronized or slightly desynchronized signals using their
timing information. However, ensuring synchronization is complex in the uplink of
long-range networks.

Recently, the authors in [78] proposed a receiver that can decode two signals received
at the same time, with the same spreading factor using SIC. Asynchronicity is
processed by estimating the time shift between the two received signals. However,
the authors presumed that the signal with the highest power was received first, which
is not necessarily the case. The extension of this work, which can process multiple
simultaneously received signals with the same SF is presented in [46]. However, the
power ratio between two successive received signals is assumed to be constant.

The work in [42], closely related to ours, proposes SIC to decode information from
all users. A synchronized reception is considered, which is not realistic in the uplink.

We proposed a SIC technique to enable a receiver to decode multiple signals simul-
taneously. We extend the work in [42] to a more general case where transmitters are
asynchronous. Our main contributions are to develop a complete receiver structure,



3.1. Multi-user Detection: Serial Interference Cancellation 53

including the detection of packets, channel estimation, detection of symbols, and
interference cancellation. We analyze the performance in the presence of multiple in-
terfering nodes and show that this approach can significantly improve the scalability
of the network.

This section is divided into three subsections. In 3.1.1, we introduce the system
model. In 3.1.2, we present the SIC algorithm while in 3.1.3 we discuss the simulation
results.

3.1.1 System Model

Recall that the transmitted modulating symbol of the ith user at time qTs, q =

0, · · · , Q− 1, with Q the number of symbols transmitted in a packet is described in
section 1.3, see eq. 1.3. Then, the complex envelope of the transmitted signal of user
i, x(i)(t), is given by:

x(i)(t) =

Q−1∑
q=0

s(i)
q (t− qTs) (3.1)

The transmitted LoRa packet is finally obtained by adding the preamble consisting
of consecutive raw chirps as explained in section 1.2.

The rest of this section deals with the reception of a LoRa frame in the presence of
interfering users. Indeed, when two users simultaneously transmit their data using
the same spreading factor and frequency band, a collision can occur at the reception.
Without loss of generality, only one interfering user is considered, and the complete
expressions withNu interferes are directly obtained by adding all interfering terms, all
of which have a similar expression. Therefore, in this analysis, we consider a collision
between a symbol of a selected user of interest and two consecutive symbols of an
interfering user. The derivation of the expressions of the two consecutive symbols of
an interfering user is shown in appendix B.1 in details and can be written as:

x
(j,i)
q,1 (t) =


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B
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t2 +

(m(i)
q,1−B∆(j,i)
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[
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x
(j,i)
q,2 (t) =
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where φ
(j,i)
q,1 =

B(∆(j,i))2 − 2m
(j,i)
q,1 ∆(j,i)

2Ts
, and

φ
(j,i)
q,2 =

B(Ts −∆(j,i))2 + 2m
(j,i)
q,2 (Ts −∆(j,i))

2Ts
.

Now we describe the collision between a qth symbol of the selected user of interest
j and two consecutive symbols of an interfering user i as shown in Fig. 3.1. Recall
that x(j)

q (t) denotes the modulated symbol (or chirp) at time qTs of user j (see eq.
(1.3)). The two consecutive interfering symbols of user i are denoted by x(j,i)

q,1 (t) and

x
(j,i)
q,2 (t), the index j indicating that the synchronization is carried out on user j. The

shifts carrying the corresponding modulating symbols are given by τ (i)
q,1 = m

(i)
q,1T and

τ
(i)
q,2 = m

(i)
q,2T . The delay between user j and user i (accounting for asynchronous

transmissions) is denoted by ∆(j,i).

To formulate the mathematical expression for the interfering signals in Fig. 3.1,
we consider two conditions that define the positions of the shifts of the interfering
symbols:

C1: τ
(i)
q,1 > ∆(j,i), C2: τ

(i)
q,2 < ∆(j,i). (3.4)

Depending on these conditions, there could be two to four contributions to the in-
terference. The expression for the interfering signal is given in (3.2) and (3.3). The
second case in (3.2) (respectively the first in (3.3)) contributes only if C1 (respectively
C2) in (3.4) is satisfied, see appendix B.1.

To synchronize, we perform a correlation between the received signal and the pream-
ble. The highest peak indicates the strongest user, indexed by j, that we will try to
decode first, so we synchronize on it. The received signal associated with symbol q
of user j sampled at t = nT , n = 0, · · · ,M − 1 is:

y(j)
q [n] = h(j)

√
Pt x

(j)
q [n] + h(i)

√
Pt

(
x

(j,i)
q,1 [n] + x

(j,i)
q,2 [n]

)
+ wq[n]. (3.5)
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0

Figure 3.1: LoRa-like Interfering symbols.

where we have used the notation x[n] = x(nTs) for any modulated signal x(t).
wq[n] ∼ CN (0, σ2

n) is a complex Gaussian noise, h(j) and h(i) are the channel atten-
uations for users j and i, Pt is the transmitted power (we consider the same transmit
power for each user). Details are shown in appendix B.2.

rq[n] = h(j)
√
Pt e

2π
m

(j)
q
M

n + h(i)
√
Pt

( 2∑
l=1

e2πφ
(j,i)
q,l e2π

(ϕ(j,i)
q,l
M

)
n
1Aq,l [n]

+ e2π(φ
(j,i)
q,l +B∆(j,i))e2π

(ϕ(j,i)
q,l
M
−(−1)l+1

)
n
1Bq,l [n]

)
+ wq[n], (3.6)

R′q[k] = P (j)δ[k −m(j)
q ] + P (i)

(
2∑
l=1

eβ
(j,i)
q,l

sin
(
π
(k−ϕ(j,i)

q,l

M

)
∆Aq,l

)
sin
(
π
(k−ϕ(j,i)

q,l

M

))
+ eγ

(j,i)
q,l

sin
(
π
(k−ϕ(j,i)

q,l

M − (−1)l
)
∆Bq,l

sin
(
π
(k−ϕ(j,i)

q,l

M − (−1)l
))

)
+W ′q[k]. (3.7)
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Figure 3.2: FFT of coded chirp of the user of interest at the values of 4 and 99 in the
presence of one interfering user using SF = 8, B = 250 KHz.

where β
(j,i)
q,l = 2πφ

(j,i)
q,l − π

(k − ϕ(j,i)
q,l

M

)
(∆Aq,l − 1),

γ
(j,i)
q,l = 2π(φ

(j,i)
q,l +B∆(j,i))− π

(k − ϕ(j,i)
q,l

M
− (−1)l

)
(∆Bq,l − 1),

ϕ
(j,i)
q,l = m

(i)
q,l −B∆(j,i),

∆Aq,l, ∆Bq,l are the length of the intervals Aq,l and Bq,l for l ∈ {1, 2}.

To demodulate, the samples of the received signal are multiplied by the conjugate of
the raw chirp: i.e., rq[n] = y

(j)
q [n]c∗[n], where c∗[n] = c∗(nT ). The resulting signal is

given in (3.6), with Aq,l and Bq,l, l ∈ {1, 2}, from (3.2) and (3.3). Taking the absolute
value of the FFT of (3.6), the useful information creates a peak whose amplitude
depends on the channel attenuation. Eq. (3.6) also shows that user i can create up
to four peaks in the Fourier domain (and this is the same for any interfering user).
The height of these peaks is determined not only by the channel attenuation but also
by the length of the overlaps, and this is good news for our SIC scheme. Fig. 3.2
illustrates this phenomenon by showing the results of the FFT processing for two
coded chirps with m = 4 and m = 99 for the user of interest. The parameters are as



3.1. Multi-user Detection: Serial Interference Cancellation 57

follows: Noise level of −114 dBm, SF = 8, B = 250 kHz and one interfering user.

3.1.2 Proposed SIC Receiver

We consider SIC as a pure receiver technique, without any power control or any
types of adjustment at the transmitter side. First, the strongest signal is decoded.
Its contribution can then be reconstructed using an estimate of the channel and
subtracted from the received signal. From the resulting residue, the second strongest
signal can then be extracted [79]. The performance of the decoding will be degraded
by two facts: if the difference in received powers from two different users is too close
(which means that their channel is similar because we do not perform any power
control); and if other peaks collide, making the peak of interest, not the strongest
one or significantly deviating from its expected amplitude. It is important to notice
in this case that the signal to interference plus noise power ratio, with an interference
power evaluated through the sum of all interfering signal powers, is not a reliable
metric. We can also note that the wide range of the communications should allow a
large dispersion in the received powers, allowing our approach to performing well.

The decoding of a user can be described as follows. First, the strongest pream-
ble is detected by calculating the correlation between the received signal and the
preamble and taking the maximal value, denoted by Cmax. This allows us to de-
tect the beginning of the packet of the strongest user and to estimate its channel
ĥ(j). Multiplication by the down-chirp is then performed; see (3.6). We apply an
FFT to rq[n] and divide it by the estimated channel, which is shown in (3.7), where
R′q[k] = Rq[k]/ĥ(j), P (j) =

√
Pt h

(j)/ĥ(j), P (i) =
√
Pt h

(i)/ĥ(j), W ′q[k] = Wq[k]/ĥ(j), and
Wq[k] is the FFT of the Gaussian noise. In (3.7), it is shown that the received power
varies according to the standard deviation σn of the noise term W ′q[k]. (Expressions
are still given for two users and are simply extended to Nu users.)

The next step is to search for the peaks of the selected user. Instead of the usual
maximum search, we propose to search for the peak having the closest value to P (j)

by minimizing the difference between the detected peaks in R′q[k] and P (j). This
avoids mistakes when interferers collide and create peaks with a larger amplitude
than the desired one. We also check that |R′q[k] − P (j)| < ε to detect collisions on
the desired peak, where ε is tuned by grid-search, yielding an optimal value of 3σn. If
the above condition is not verified, we choose the maximum peak. Once the symbol
of the selected user is decoded, its contribution is re-constructed and subtracted from
the composite received discrete signal yq[n]. The process then starts again to detect
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the next strongest user. This detection and suppression process is repeated until no
more preamble can be found or a packet is not correctly decoded. Algorithm 3.1
illustrates the proposed receiver. The input is only the combined received signal.

Algorithm 3.1 SIC Receiver for LoRa-like Networks
Input: Received samples yq[n], number of transmitted symbols Q, detection thresh-

old ε
Output: Decoded symbols m(j)

q

1: Detected← 1

2: while Detected == 1 do
3: if |Cmax| < ε then
4: Detected← 0

5: else
6: Estimate ĥ(j)

7: rq[n]← y
(j)
q [n]c∗[n]

8: R′q[k]← |FFT (rq[n])|
9: for q = 1 to Q do

10: u← argmin
k
|R′q[k]− P (j)|

11: if |R′q[u]− P (j)|2 < ε then
12: m

(j)
q ← u

13: else
14: m

(j)
q ← argmax

k
(|R′q[k]2|)

15: end if
16: end for
17: x̂

(j)
q [n]← CSS Modulation of m(j)

q

18: yq[n]← yq[n]− ĥ(j) x̂
(j)
q [n]

19: end if
20: return m

(j)
q

21: end while

3.1.3 Results

To evaluate the performance of our proposed scheme, we rely on Monte Carlo simula-
tions. We consider a circle of radius R with one gateway at the center. Multiple users
are uniformly distributed within the circle. The distance from user i to the gateway
is denoted by d(i). We consider a set of users transmitting their data through block
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fading channels during the time interval of interest. All users employ CSS modu-
lation with a symbol duration Ts (same SF). They transmit their signals with the
same power Pt, i.e., there is no power control. We consider asynchronous transmis-
sion among the nodes, different devices operating autonomously. We consider path
loss and Rayleigh multi-path fading χi. For path loss, the signal amplitude decays
with distance according to d(i)−η/2, where η is the path loss exponent. The channel
attenuation (in amplitude) is then h(i) = d(i)−η/2χi. In the following, we take a max-
imum range R = 5 km, and we choose η = 3.5. However, the channel attenuation
has to be such that the user can be connected to the network with the chosen SF,
in other words, if their received power is greater than the receiver sensitivity S, for
instance, S = −124 dBm for SF = 8 and B = 250 kHz. Users that do not respect
this condition are discarded and drawn again. The noise level of a receiver at room
temperature is −174+10 log10(B)+NF = −114 dBm, where NF is the receiver noise
figure and a classic 6 dB is considered [21].

We consider a window of size W = 3Tf , where Tf is the frame length. N devices
are transmitting in this window and asynchronicity is ensured through a random
variable ∆(i), uniformly distributed over [0, 2Tf ]. Indeed, 2Tf is the vulnerability
period of an ALOHA protocol, and to be sure we receive all full packets, we need to
end our study frame at 3Tf . A perfect time-division would allow 3 users (3 packets)
in this frame if collisions are not allowed. No channel coding is performed, and we
are interested in the symbol error rate (SER).

3.1.3.1 Performance for a given selected link

For a given selected link characterized by its SNR |h|2P
σ2
n

, Fig. 3.3 shows the perfor-
mance of this specific receiver when there is no other interfering user (Nu = 1) as
well as when Nu = 4, 7, and 10 interfering users are present. The positions and
channels of these interfering users are randomly chosen at each round. For an SNR
of −10 dB, a typical value for SF = 8 and B = 250 kHz, the performance is good
even for 10 interfering users; we reach a SER of 10−3 at SNR of −10 dB which is a
target SER for LoRa under same SF interference [38].

3.1.3.2 Mean Performance

We now evaluate the performance for any user, whatever their channel (so their
SNR) is. Fig. 3.4 shows the average symbol error rate of the proposed receiver
with SF = 8 when the position of all users is randomly drawn at each round and
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Figure 3.3: SER for Nu = 1, 4, 7, and 10, with SF = 8, B = 250 kHz.

when different noise levels are considered. It can be seen that instead of the three
users that could be handled with a perfect TDMA, which is even more than what an
ALOHA protocol as the one used in LoRa can handle, a SIC approach allows having
about 20 users with a SER under 10−2.

SIC receiver can be affected by error propagation, which is the consequence of the
serial decoding, reconstruction, and suppression process. The result is a higher SER
for users with lower power. Fig. 3.5 illustrates the SER of each users when Nu = 7,
10, 13, and 16. According to their received power, the users are ordered from the
highest (1) to the lowest (7, 10, 13, and 16) (cf. Figs. 3.5a, 3.5b, 3.5c, and 3.5d),
confirming the error propagation.

3.1.3.3 SF Orthogonality

It was shown in [80] that SFs have imperfect orthogonality. Fig. 3.6 presents the
average SER for 10 users, which transmit their signal using SF = 8. We consider
an additional Nu of interfering users transmitting their signal using a different SF
(9, 10 or 12). As long as these added interferers are less than four, their impact is
negligible. However, the spreading factors are not perfectly orthogonal so that the
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Figure 3.4: SER for different values of Nu, SF = 8, B = 250 kHz.

performance of the 10 users using SF = 8 degrades when the number of interfering
users with a different SF gets larger. We also notice that the shorter SF (9) impacts
more than, the longer ones.
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(a) Nu = 7

(b) Nu = 10

Figure 3.5: SER of each users for SF = 8, B = 250 kHz, Noise level of −114 dBm.
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(c) Nu = 13

(d) Nu = 16

Figure 3.5: SER of each users for SF = 8, B = 250 kHz, Noise level of −114 dBm.
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Figure 3.6: SER of Fixed 10 users using SF = 8 and additional interfering users using
different SF (9, 10, 12), B = 250 kHz, Noise level of −114 dBm.
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3.2 Single User Detection: Deep learning-based

In this section, the main focus is to design a single user detector for LoRa-like
networks. Generally, in LoRa, when a collision occurred at the receiver, it results
in packet loss [81]. Sometimes, one packet can be correctly decoded despite the
collision due to a capture effect. It can be achieved when the desired signal is suffi-
ciently stronger than the interfering one. Such results have been presented in LoRa
communications in [82]. However, an interleaved chirp spreading (ICS) modulation
scheme is used, which is not directly backward compatible with the standard LoRa.
This principle is also used in serial interference cancellation schemes. In [47], the
strongest user can be decoded, then suppressed, and the second strongest can, in
turn, be decoded. The capture effect is also used in [45], where two superposed
signals, synchronized or slightly desynchronized, can be decoded using timing infor-
mation. However, ensuring synchronization is not realistic in the uplink of wide-area
networks.

Nevertheless, the capture effect requires a sufficient power gap between the desired
and the interfering signal. This section proposes two schemes based on deep learning
that significantly improve the receiver’s ability to correctly retrieve a signal, even
when an interfering user is present. In the literature, some works employ the deep
learning approach for IoT networks [83, 84], but not for signal detection. To our
knowledge, there are no works yet that investigate detection in that context using
deep learning.

The contributions are three-fold:

1. Designing two new receivers based on deep learning for detection in LoRa net-
works. The first one deals with bit detection with a regression approach, as
in [85] for the OFDM context, and the second one deals with symbol detec-
tion with a classification approach. These receivers can cope with interference
coming from other LoRa users, and both strongly improve the capture effect
compared to the classical LoRa receiver;

2. It is shown that, once they have information on the power levels, the designed
receivers are further efficient, mainly if the interfering users are stronger than
the user to be decoded; and

3. The outstanding performance of the new receivers is achieved while maintaining
an efficient complexity order.
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Figure 3.7: Uniform distribution of interfering user around the gateway. There exist no
interfering devices within the radius of the guard-zone.

The rest of this section is organized as follows. Subsection 3.2.1 describes the system
model, 3.2.2 presents the proposed deep learning-based receivers, and 3.2.3 shows
simulation results and discussions.

3.2.1 System Model

A circle of radius rmax with one gateway located at the center is considered, including
a user-free guard-zone around the gateway with radius rmin, see Fig. 3.7. We assume
Ni interfering users are using the same SF. Ni is randomly drawn from a Poisson
distribution with parameter λ. The 2D coordinates of the Ni interfering users are
uniformly distributed while considering only positions within the disc defined by rmax
and rmin. Since different devices operate autonomously, the transmission between
nodes is asynchronous.

The collision between the pth symbol of the selected user j and two consecutive
symbols of an interfering user i is illustrated in Fig. 3.8. The interfering part of
user i is denoted by x(j,i)

q,interf. The delay between user j and user i (accounting for
asynchronous transmissions between the nodes) is ∆(j,i).

The synchronization is carried out as follows: a correlation is first performed between
the received signal and preamble. Then the highest peak of the correlation is selected,
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Figure 3.8: Collision between a symbol of selected user and two consecutive symbols of the
interfering user.

and the received signal is synchronized on it. The user corresponding to this peak is
the selected user to be decoded, indexed by j. The received signal associated with
symbol q of user j sampled at t = nT , n = 0, · · · ,M − 1 is:

rq[n] = h(j) x(j)
q [n] +

∑
i∈I

h(i) x
(j,i)
q,interf[n] + wq[n], (3.8)

where x(j)
q [n] = x

(j)
q (nT ), I is the set of interfering users (|I| = Ni) and wq[n] ∼

CN (0, σ2) is a circularly symmetrical complex Gaussian noise. h(j) and h(i) are the
channel coefficients for users j and i, respectively.

To demodulate, the classical LoRa receiver first multiplies the samples of the received
signal by the conjugate of the raw chirp, yielding yq[n] = rq[n]c∗[n], where c∗[n] =

c∗(nT ). Then, a FFT is applied:

Yq[k] =

M−1∑
n=0

yq[n] e−2ıπ nk
M , k = 0, . . . ,M − 1. (3.9)

The symbol m(j)
q is estimated by searching for the frequency index where the mod-

ulus of (3.9) is maximum. However, collisions occur when multiple users transmit
simultaneously using the same SF, yielding possible detection errors.

3.2.2 Deep Learning-based Receiver

This section presents two receivers based on Deep Feedforward Neural Network
(DFNN) and a convolutional neural network (CNN).
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3.2.2.1 Deep Feedforward Neural Network-based receiver

As indicated in Fig. 3.9, the detector relies on a DFNN architecture with four hidden
layers. The number of nodes in each hidden layer is 8M , 4M , 2M , and M . The
input is the modulus of the de-chirped received samples after the FFT (3.9), yielding
M input nodes. The output is the bits of the transmitted symbol, yielding SF
output nodes. The ReLU function is used as the activation function in the hidden
layers. The sigmoid function is applied to map the outputs to the interval [0, 1] in the
output layer. Batch normalization (BN) is embedded in the hidden layers to prevent
overfitting. The DFNN is trained so that the error between the outputs and the
transmitted bits is minimized. The error is evaluated through the L2 mean squared
error function. Then, the detected bits are obtained by thresholding the outputs.
For the sigmoid function, the corresponding threshold is 0.5.

sigmoid

FC1 + BNInput Layer Hidden Layers Output Layer

FC: Fully Connected
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t
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FC3 + BN

FC4 + BN

BN: Batch Normalization

O
ut
pu
t

Figure 3.9: Deep Feedforward Neural Network architecture.

3.2.2.2 Convolutional Neural Networks-based receiver

Differently from the common feedforward architecture, CNN relies mainly on con-
volution operations within the so-called convolutional layers. For this architecture,
the input is an M ×M image containing the modulus plots of (3.9), as illustrated
in Fig. 3.10. The M nodes at the output layer correspond to the M symbols to be
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Figure 3.10: Plot of |Yq[k]| (k = 0, · · · ,M − 1) for a symbol of mq = 20 with SNR = −10

dB and SF = 7.

detected. Here, we use a structure that includes two convolutional layers and two
fully connected layers (cf. Fig. 3.11).

We set M/4 and M/2 kernels for the first and second convolutional layers, respec-
tively. The kernel size is set to 4 × 4 for both layers. A pooling layer follows
convolution steps to reduce the feature map’s dimension while keeping the most rel-
evant information. The filter used for the average pooling layer is of size 2× 2, and
the stride is 2. The output of the second pooling layer is flattened to be the input
of the fully connected layer. The first fully connected layer has 4M nodes and the
second one has 2M nodes. Similarly to the DFNN, the ReLU function is used as the
activation function, and batch normalization is performed. For the output classifi-
cation layer, we employ the softmax function. The CNN is trained to minimize the
cross-entropy loss between the output and the transmitted symbols.

3.2.3 Results

In this section, we provide simulation results to evaluate the proposed DFNN and
CNN-based receivers’ performance. For the LoRa modulation, the bandwidth B =
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Figure 3.11: Convolutional Neural Network architecture.

250 kHz is considered, with SF = 7, yielding M = 128. rmax and rmin are set to 1

km and 200 m, respectively. The proposed detectors are compared with the classical
LoRa detector in terms of symbol error rate (SER).

In the following, first, we present results where Ni is a random variable. Then, in
order to investigate the capture effect, the number of interfering users is forced to
one (Ni = 1). Capture effect is the receiver’s ability to decode one out of two (or
more) colliding users correctly, usually the strongest one but not necessarily with the
proposed receiver.

3.2.3.1 Results for Ni ∼ P(λ)

As described in section 3.2.1, the total number of interfering users Ni, in the time
interval of interest, is drawn from a Poisson distribution, i.e., Ni ∼ P(λ), with the
following values for λ: 0.25, 0.5, and 0.7. Training and test are done for each (SNR,
λ) couple. Note that LoRa receivers can estimate the SNR. Results are presented
in Fig. 3.12. As a lower bound, the case when there is no interfering user, i.e.,
λ = 0, is considered (gray curves). It is shown that the proposed receivers have
better performance compared to the classical LoRa one for λ 6= 0. For λ = 0, the
SER of the CNN is close to that of the classical LoRa receiver, whereas the DFNN
is not as efficient with a 2 dB penalty for a target SER of 10−4.
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For the lowest number of interfering users (λ = 0.25 and 0.5), the SER of the two
proposed receivers is in the order of 10−3 for SNR = −7.5 dB (cf. Figs. 3.12a and
3.12b). For the same SNR value, in the case of the higher number of interfering
users (λ = 0.7), the SER of the CNN-based receiver remains in the order of 10−3

whereas the SER of the other receivers degrades (cf. Fig. 3.12c and 3.12d). Besides,
as the number of interfering users increases, the classic LoRa receiver endures higher
performance loss than the CNN-based receiver.

3.2.3.2 Capture Effect – Ni = 1

The goal is now to analyze the impact of one interfering user with different levels of
signal-to-interference ratio (SIR). This is done by generating a new test set for which
Ni is forced to one and testing the previously trained networks with this specific test
set. The one that was trained for the (λ = 0.25, SNR = −6 dB) couple is considered.
Fig. 3.13 plots the obtained SER as a function of the SIR (solid line). Additionally,
as a perspective, we also investigate what would happen if the SIR could be estimated
at the receiver. To do so, we do a new training of the networks for the different (SIR,
SNR = −6 dB) couples with Ni = 1, and we use the appropriate network for the
test. Clearly, in this context, the deep learning-based approaches outperform the
classical receiver for SIR ≤ 4 dB.

When SIR > 0 dB, that is, the selected user’s signal is the strongest, the capture
effect happens for all receivers while being improved for the CNN-based receiver
when the SIR is under 6 dB. However, when SIR < 0 dB, i.e., the interfering user
is the strongest, performance can be further improved if we have information on the
SIR, i.e., learning is performed given the SIR value. In fact, when the SIR is known,
the deep learning-based approach makes it possible to distinguish between the two
users based on their power level, unless there is ambiguity, i.e., SIR = 0 dB.

3.2.3.3 Computational complexity

The computational complexity of the classical LoRa receiver is of O(M log(M)) [67].
For the DFNN-based receiver, the complexity results in O(M2). Based on [86], where
the complexity order for the convolutional layers is derived, the overall complexity of
the CNN-based receiver is also of O(M2). Even though the proposed receivers and
the classical LoRa receiver have different complexity orders, the proposed schemes’
running time remains polynomial. According to [87], one of the definitions for com-
putational efficiency is the following: “an algorithm is efficient if it has a polynomial
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(a) λ = 0.25

(b) λ = 0.5

Figure 3.12: Symbol error rate as a function of the SNR for different detection approaches:
classical decoder [O], DFNN-based [∗], and CNN-based [◦]. For all figures, two scenarios are
considered: no possible interference (plots in dash-dot line [ ]) and when interference can
happens (plots in solid line [ ]). The plot inside show the probability mass function (pmf)
related to the number of interfering users.
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(c) λ = 0.7

(d) λ = 1

Figure 3.12: Symbol error rate as a function of the SNR for different detection approaches:
classical decoder [O], DFNN-based [∗], and CNN-based [◦]. For all figures, two scenarios are
considered: no possible interference (plots in dash-dot line [ ]) and when interference can
happens (plots in solid line [ ]). The plot inside show the probability mass function (pmf)
related to the number of interfering users.



74 Chapter 3. Uplink Communication in LoRa-like Networks

Figure 3.13: SER as a function of the SIR for the classical detector [O], the DFNN-based
[∗], and the CNN-based [◦]. The SNR for the selected user is set to −6 dB. Two different
cases are considered: networks trained for λ = 0.25[ ], networks trained for each SIR value
[ ] .

running time”.



3.2. Single User Detection: Deep learning-based 75

Conclusion

Scalability is a major concern in IoT networks and actual deployed solutions can-
not face it. However, due to the star topology of LP-WANs, complexity can be
added at the receiver to improve the system performance, without modifying the
low consumption transmission scheme. It allows us to propose a serial interference
cancellation scheme for chirp spread spectrum based physical layer. Assuming un-
coordinated transmitting devices, we use the power-domain NOMA idea to recover
multiple signals arriving simultaneously, on the same bandwidth and with the same
SF. The diversity in received powers is ensured by the random radio channels faced
by the devices. A SIC receiver allows then to recover the multiple signals. The
proposed solution allows to support 20 times more devices without any modification
of the transmission scheme. This is attained with a first simple implementation of
the SIC and further improvement can certainly be obtained with a judicious choice
of the PHY layer parameters.

This chapter also investigated a deep learning-based approach for LoRa-like networks
to decode a selected user’s signals while considering interfering users that transmit
simultaneously over the same frequency channel with the same SF. From the sim-
ulation results, we observed that in terms of SER, the two proposed receivers, the
DFNN-based and the CNN-based, outperform the classical LoRa decoder in the
presence of interference. In the absence of interference, the CNN-based receiver per-
forms closely to the classical LoRa receiver, which is the optimal receiver for the
interference-free case. However, the DFNN-based receiver has endured a slight loss
in performance, e.g., a 2 dB penalty in SNR for a target SER of 10−4. The good
performance shown by the proposed schemes is achieved while keeping an efficient
complexity order, i.e., a polynomial running time of order two. For the future, the
deep learning-based approach seems to be a promising candidate to tackle the issue
of interference in LoRa networks due to the exponential growth of connected devices.
In addition to improving the capture effect, i.e., decoding the selected user when its
power is higher than that of the interference, we have shown that the deep-learning-
based approach makes it possible to decode the selected user when it is weaker than
the interference. This requires information on the SIR. As a perspective, an SIR
estimation technique could be combined with the deep learning-based decoder to
improve the receiver’s performance further.





Conclusion and Perspectives

In Internet of Things (IoT) networks, scalability is a significant issue, and current so-
lutions cannot deal with it. In this thesis, different solutions are proposed to enhance
the scalability of LoRa-like networks in both downlink and uplink communication.

To address the downlink’s scalability limitations caused by the duty cycle, we in-
troduce a new joint multiuser receiver for downlink LoRa-like networks. Although
our approach is based on power-domain Non-Orthogonal Multiple Access (NOMA),
it does not require a Serial Interference Cancellation (SIC) receiver. As a result, we
avoid the NOMA constraint caused by the residue after each cancellation step. The
low-cost end devices that cannot handle high computational complexity are other
concerns for employing NOMA in IoT. The Maximum Likelihood (ML) cannot be
applied since it does not provide an analytical solution. We presented a suboptimal
Cross-Entropy Method (CEM) based method that is efficient but too complicated.
As a result, we developed a simpler approach for resolving collisions while maintain-
ing a low level of complexity. We showed that instead of transmitting a single packet
each time slot, we could transmit more than ten packets, if not more, while keeping
the symbol error rate below 10−3. This is achieved without using error-correcting
codes.

In uplink communication, due to the LPWANs’ star topology, the receiver can be
complex to improve the system performance without modifying the low consumption
transmission scheme. As a result, we propose a SIC technique for the physical layer
based on the chirp spread spectrum. We apply the power-domain NOMA approach
to recover numerous signals received simultaneously, over the same bandwidth, us-
ing the same SF, and assuming uncoordinated transmitting devices. The devices’ re-
ceived power varies according to the random radio channels they encounter. Multiple
signals can be recovered using a SIC receiver. Without modifying the transmission
system, the proposed method can handle 20 times more devices. This is obtained
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with a simple SIC implementation, and additional improvement can be achieved with
a proper choice of PHY layer settings.

Finally, we studied a deep learning-based technique for LoRa-like networks to decode
a single user’s signal while taking into account interfering users that transmit over
the same frequency channel, with the same SF at the same time. In the presence
of interference, the two proposed receivers, the DFNN-based and the CNN-based,
outperform the classical LoRa decoder in terms of SER, according to the simu-
lation findings. In the absence of interference, however, the CNN-based receiver
performs similarly to the traditional LoRa receiver, which is the optimal decoder in
the interference-free scenario. The DFNN-based receiver has sustained slight perfor-
mance loss, such as a 2 dB SNR penalty for a target SER of 10−4. The proposed
methods achieve good performance while maintaining an efficient complexity order,
i.e., a polynomial running time of order two. As a result, the deep learning-based
technique appears to be a potential choice for addressing interference issues in LoRa
networks that have arisen due to the exponential increase of connected devices. We
have demonstrated that, in addition to improving the capture effect, i.e., decoding
the useful user when its power is higher than the interference, the deep-learning-
based technique also allows us to decode the useful user when its power is less than
the interference. This requires information on the signal-to-interference ratio (SIR).

Perspectives

This thesis proposes different receivers which can increase LoRa-like networks’ scal-
ability and cope with co-spreading factor interference from other LoRa users. In the
future, the extension of the work in this thesis can be from several perspectives and
can be summarized as follows:

1. As demonstrated in Chapter 2, different power allocation strategies have dis-
tinct impacts on the overall system performance. Two power allocation schemes
are proposed; the first one helps suppress ambiguities when collisions occur,
and the other one increases fairness between users. As a result, to optimize
signal detection performance even further, this work may be extended to iden-
tify a better trade-off between the two power allocation approaches that can
minimize ambiguities when collisions occur while also increasing user fairness.

2. In this thesis, it is mentioned that the achieved performance is without the
use of error-correcting codes. Therefore, another perspective to improve the
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performance is to implement error-correcting codes. In LoRa, Forward error
correction (FEC) techniques are used to further increase receiver sensitivity,
and FEC schemes can add redundant bits to the valuable information using
Hamming codes to correct the errors [42].

3. The findings in section 3.2.3.2 showed that the signal detection performance
could be enhanced if the information about the SIR is provided. For LoRa-like
networks where resources are shared dynamically among users, SIR estimation
is critical. As a result, the SIR estimation technique in [88] could be com-
bined with the proposed deep learning-based decoders to further improve the
receiver’s signal detection performance.

4. In LoRa, the signal is transmitted under the noise level, meaning with a low
SNR value. The proposed receivers in section 3, specifically the convolutional
neural network (CNN)-based receiver, can be more efficient if we can manage to
reduce the received signal’s noise level. Thus, a denoising auto-encoder can be
combined with CNN to denoise the received signals before further processing,
enabling CNN to extract better features for classification. Subsequently, the
signal detection performance can be optimized.

5. In this study, we considered only interference only coming from other LoRa
users. Finally, we can extend the analysis by considering interference from
other IoT networks such as Sigfox, Zigbee.





Appendix A

Appendix related to Down-link
Communication in LoRa

A.1 Power allocation 2

Let us consider N users with estimated channels ĥ(i), i = 1, · · · , N order from the
weakest to the strongest channel: |ĥ(1)| < |ĥ(2)| < · · · < |ĥ(N)|. We note ĥ(0) = 0.
We want that whatever the receiver j, the gap between the peak amplitudes of user
j and j − 1 is always the same, c. We denote pt the total transmit power. We write
h(i) = |ĥ(i)| for the rest of this annex for lighter expressions. We want:

h(1)
√
p(1) − 0 = c

h(2)
√
p(2) − h(2)

√
p(1) = c

...
h(N)

√
p(N) − h(N)

√
p(N−1) = c

p(1) + p(2) + p(3) + · · ·+ p(N) = pt

We note

Ai =
i∑

j=1

1(
h(j)
)2 , (A.1)

Starting with the weakest user (i = 1) we have

p(1) =

(
c

h(1)

)2

= c2A1, (A.2)

81



82 Appendix A. Appendix related to Down-link Communication in LoRa

If we assume

p(l) = c2Al, (A.3)

then from
h(l+1)

√
p(l+1) − hl+1)

√
p(l) = c, (A.4)

and using (A.3), we have√
p(l+1) =

c

h(l+1)
+

√
p(l),

= c

 1

h(l+1)
+

l∑
j=1

1

h(j)

 ,

= c

 l+1∑
j=1

1

h(j)

 ,

= c
√
Al+1. (A.5)

which proves that (A.3) is true for all i = 1, · · · , N .

We then use the final equation in (A.1)

Pt =
N∑
j=1

p(j) = c2
N∑
j=1

Aj , (A.6)

which gives

c =

√
pt∑N
j=1Aj

. (A.7)

We finally obtain p(l) = pt
A2
l∑N

i=1A
2
i

which is (2.19).



Appendix B

Appendix related to Up-link
Communication in LoRa-like
Networks

B.1 Chirp Formulation

A chirp (up or down) over the entire Ts is regarded as a raw chirp and its instanta-
neous frequency is given by f(t) = B

Ts
t. Its baseband expression is: c(t) = ej2π

B
2Ts

t2

for t ∈
[
− Ts

2 ,
Ts
2

]
. Let’s consider multiple users in the network. For the ith user

the instantaneous frequency of the chirp transmitted at time qTs is defined as the

derivative of the phase ϑ(i)
q (t): f (i)

q (t) = 1
2π

dϑ
(i)
p (t)
dt . We denote the transmit symbol of

the ith user at time qTs as m
(i)
p ∈ {0, ...,M − 1}. Information is carried by perform-

ing a cyclic shift of the up-chirp and the position of the shift depends on the symbol
value. Delaying the frequency ramp of the chirp by τ (i)

q = m
(i)
q /B will give us the

coded chirp as it shown in Fig. 1.5, where τ (i)
q is the time shift that corresponds to

the qth symbol. The coded chirp of the qth symbol of user i is:

ϑ(i)
q (t) =

2π
(
B

2Ts
t2 +

m
(i)
q

Ts
t
)
, for t ∈

[
−Ts

2 ,
Ts
2 − τ

(i)
q

)
,

2π
(
B

2Ts
t2 + (

m
(i)
q

Ts
−B)t

)
, for t ∈

[
Ts
2 − τ

(i)
q , Ts2

]
.

(B.1)

The complex envelope of the transmitted signal of the ith user, x(i)(t), can be written
as:
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x(i)(t) =

Q∑
p=0

x(i)
q (t− qTs) =

Q∑
q=0

ejϑ
(i)
q (t−qTs). (B.2)

where x(i)
q (t) = ejϑ

(i)
q (t), and Q is the transmitted symbols of user i inside a packet.

Assume that the users transmit simultaneously their data using the same spreading
factor. As a result a collision occurs between the qth symbol of the user of interest j
and two consecutive symbols of other user i as shown in Fig. B.1. x(j)

q is the symbol
of the user j we try to decode. x(j,i)

q,1 and x(j,i)
q,2 are the two consecutive symbols from

the ith user that are interfering with user of interest j. The delay between the user
of interest j and x(j,i)

q,1 is denoted by ∆(j,i). The interference from user i in x(j)
q is the

combination of the interference from two successive symbols, x(j,i)
q,1 and x(j,i)

q,2 , carrying

their own information defined by the shifts τ (j,i)
q,1 = m

(j,i)
q,1 /B and τ (j,i)

q,2 = m
(j,i)
q,2 /B.

0

Figure B.1: Interfering symbols at the receiver.
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x
(j,i)
q,1 (t) =



exp

(
2π
(
B

2Ts
t2 +

(m(i)
q,1−B∆(j,i)

Ts

)
t+ φ

(j,i)
q,1

))
,

t ∈ Aq,1 =
[−Ts

2 + ∆(j,i), Ts2 + ∆(j,i) − τ (i)
q,1

)
,

exp

(
2π
(
B

2Ts
t2 +

(m(i)
q,1−B∆(j,i)

Ts

)
t+ φ

(j,i)
q,1 −B(t−∆(j,i))

))
,

t ∈ Bq,1 =
[
Ts
2 + ∆(j,i) − τ (i)

q,1,
Ts
2

)
.

(B.3)

x
(j,i)
q,2 (t) =



exp

(
2π
(
B

2Ts
t2 +

(m(i)
q,2+B(Ts−∆(j,i))

Ts

)
t+ φ

(j,i)
q,2

))
,

t ∈ Bq,2 =
[−Ts

2 , −Ts2 + ∆(j,i) − τ (i)
q,2

)
,

exp

(
2π
(
B

2Ts
t2 +

(m(i)
q,2+B(Ts−∆(j,i))

Ts

)
t+ φ

(j,i)
q,2 −B(t+ Ts −∆(j,i))

))
,

t ∈ Aq,2 =
[−Ts

2 + ∆(j,i) − τ (i)
q,2,

−Ts
2 + ∆(j,i)

)
.

(B.4)

where φ
(j,i)
q,1 =

B(∆(j,i))2 − 2m
(j,i)
q,1 ∆(j,i)

2Ts
, and

φ
(j,i)
q,2 =

B(Ts −∆(j,i))2 + 2m
(j,i)
q,2 (Ts −∆(j,i))

2Ts
.

To formulate the mathematical expression for the interfering signals in Fig. B.1,
we consider two conditions that define the positions of the shifts of the interfering
symbols:

C1:
Ts
2

+ ∆(j,i) − τ (j,i)
q,1 <

Ts
2
, and C2: −

Ts
2

+ ∆(j,i) − τ (j,i)
q,1 > −Ts

2

C1: τ
(j,i)
q,1 > ∆(j,i), and C2: τ

(j,i)
q,2 < ∆(j,i). (B.5)

The expression for the first interfering symbol of the ith user, x(j,i)
q,1 (t) is derived

as:

x
(j,i)
q,1 (t) = ejϑ

(j,i)
p,1 (t), and ϑ

(j,i)
q,1 (t) = ϑ(j)

q (t−∆(j,i)).
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1) For t ∈ Aq,1=
[ −Ts

2 + ∆(j,i), Ts2 + ∆(j,i) − τ (j,i)
q,1

)
, we have:

ϑ
(j,i)
q,1 (t) = 2π

[ B
2Ts

(t−∆(j,i))2 +
m

(j,i)
q,1

Ts
(t−∆(j,i))

]
= 2π

[ B
2Ts

(t2 + (∆(j,i))2 − 2t∆(j,i)) +
m

(j,i)
q,1

Ts
t−

m
(j,i)
q,1

Ts
∆(j,i))

]
(B.6)

= 2π
[ B

2Ts
t2 +

(m(j,i)
q,1 −B∆(j,i)

Ts

)
t+ φ

(j,i)
q,1

]

2) For t ∈ Bq,1 =
[
Ts
2 + ∆(j,i) − τ (j,i)

q,1 , Ts2
]
, we have:

ϑ
(j,i)
q,1 (t) = 2π

[ B
2Ts

(t−∆(j,i))2 +
m

(j,i)
q,1

Ts
(t−∆(j,i))−B(t−∆(j,i))

]
= 2π

[ B
2Ts

(t2 + (∆(j,i))2 − 2t∆(j,i)) +
m

(j,i)
q,1

Ts
t−

m
(j,i)
q,1

Ts
∆(j,i))−B(t−∆(j,i))

]
(B.7)

= 2π
[ B

2Ts
t2 +

(m(j,i)
q,1 −B∆(j,i)

Ts

)
t+ φ

(j,i)
q,1 −B(t−∆(j,i))

]

The expression for the second interfering symbol of the ith user, x(j,i)
q,2 (t) is derived

as:

x
(j,i)
q,2 (t) = ejϑ

(j,i)
q,2 (t), and ϑ

(j,i)
q,2 (t) = ϑ(j)

q (t+ Ts −∆(j,i)).

1) For t ∈ Bq,2=
[ −Ts

2 ,−Ts
2 + ∆(j,i) − τ (j,i)

q,2

)
, we have:

ϑ
(j,i)
q,2 (t) = 2π

[ B
2Ts

(t+ Ts −∆(j,i))2 +
m

(j,i)
q,2

Ts
(t+ Ts −∆(j,i))

]
= 2π

[ B
2Ts

(t2 + T 2
s + (∆(j,i))2 + 2tTs− 2Ts∆

(j,i) − 2t∆(j,i))

+
m

(j,i)
q,2

Ts
(t+ Ts −∆(j,i))

]
= 2π

[ B
2Ts

t2 +
(m(j,i)

q,2 −B(Ts −∆(j,i))

Ts

)
t+ φ

(j,i)
q,2

]
(B.8)
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2) For t ∈ Aq,2 =
[
− Ts

2 + ∆(j,i) − τ (j,i)
q,2 ,−Ts

2 + ∆(j,i)
]
, we have:

ϑ
(j,i)
q,2 (t) = 2π

[ B
2Ts

(t+ Ts −∆(j,i))2 +
m

(j,i)
q,2

Ts
(t+ Ts −∆(j,i))−B(t+ Ts −∆(j,i))

]
= 2π

[ B
2Ts

(t2 + T 2
s + (∆(j,i))2 + 2tTs− 2Ts∆

(j,i) − 2t∆(j,i))

+
m

(j,i)
q,2

Ts
(t+ Ts −∆(j,i))−B(t+ Ts −∆(j,i))

]
= 2π

[ B
2Ts

t2 +
(m(j,i)

q,2 −B(Ts −∆(j,i))

Ts

)
t+ φ

(j,i)
q,2 −B(t+ Ts −∆(j,i))

]
(B.9)

B.2 Received Signal and De-chirping

The received signal associated with the pth user symbol of the strongest user sampled
at t = nT , where T = 1

B , is:

y(j)[n] = h(j)√pe x(j)
q [n] + h(i)√pe

(
x

(j,i)
q,1 [n] + x

(j,i)
q,2 [n]

)
+ w[n] (B.10)

where y(j)[n] ∀n ∈ [0, . . . ,M − 1], h(j) and h(i) are the channel coefficients of the
user of interest and the interfering users respectively, w[n] ∼ N (0, σ2

N ) is a complex
Gaussian noise, and pe is the transmit power which is equal to all users.

To demodulate the samples of the received signal y(j)[n] is multiplied by the conjugate
of the raw chirp, c∗[n], i.e., r[n] = y(j)[n]c∗[n] for all t = nT :

r[n] = y(j)[n]c∗[n]

r[n] = h(j)√pe x(j)
q [n]e−j2π

1
2M

n2︸ ︷︷ ︸
User of interest

+ h(i)√pe
(
x

(j,i)
q,1 [n]e−j2π

1
2M

n2︸ ︷︷ ︸
1st interfering symbol

+ x
(j,i)
q,2 [n]e−j2π

1
2M

n2︸ ︷︷ ︸
2nd interfering symbol

)
+ w[n]e−j2π

1
2M

n2
(B.11)

It should be noted that the intervals Aq,l, Bq,l for l ∈ {1, 2} are given in (B.3) and
(B.4), for t = nT , T = 1

B .

1. Selected user of interest, t = nT :

x(i)
q [n]× c∗[n] = ej2π

(
1

2M
n2+

m
(i)
q
M

n
)
e−j2π

1
2M

n2

= ej2π
m

(j)
q
M

n1[−M
2
,M

2
−1][n]. (B.12)
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2. 1st interfering symbol of user i:

1st Part: x(j,i)
q,1 [n]× c∗[n] = ej2π

(
1

2M
n2+
(m(j,i)

q,1 −B∆(j,i)

M

)
n+φ

(j,i)
q,1

)
e−j2π

1
2M

n2
1[Aq,1][n]

= ej2πφ
(j,i)
q,1 ej2π

(m(j,i)
q,1 −B∆(j,i)

M

)
n
1[Aq,1][n]. (B.13)

2nd Part: x(j,i)
q,1 [n]× c∗[n] = ej2π

(
1

2M
n2+
(m(j,i)

q,1 −B∆(j,i)

M

)
n+φ
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q,1 −B( n

B
−∆(j,i))

)
× e−j2π

1
2M
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= ej2π(φ
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q,1 +B∆(j,i))ej2π
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q,1 −M−B∆(j,i)

M

)
n
1[Bq,1][n].

(B.14)

3. 2nd interfering symbol of user i:

1st Part: x(j,i)
q,2 [n]× c∗[n] = ej2π

(
1

2M
n2+
(m(j,i)

q,2 −B(Ts−∆(j,i))

M

)
n+φ

(j,i)
q,2

)
× e−j2π

1
2M

n2
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= ej2πφ
(j,i)
q,2 ej2π

(m(j,i)
q,2 +M−B∆(j,i)

M

)
n
1[Bq,2][n]. (B.15)

2nd Part: x(j,i)
q,2 [n]× c∗[n] = ej2π

(
1

2M
n2+
(m(j,i)

q,2 −B(M
B
−∆(j,i))

M

)
n+φ

(j,i)
q,2 −B( n

B
+M
B
−∆(j,i))

)
× e−j2π

1
2M

n2
1[Aq,2][n]

= ej2π(φ
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q,2 −M+B∆(j,i))ej2π
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q,2 −B∆(j,i)

M

)
n
1[Aq,2][n]

(B.16)

= ej2π(φ
(j,i)
q,2 +B∆(j,i))ej2π

(m(j,i)
q,2 −B∆(j,i)

M

)
n
1[Aq,2][n].

Therefore, the final term can be written as:

r[n] = h(j)√pe ej2π
m

(j)
q
M

n + h(i)√pe
( 2∑
l=1

ej2πφ
(j,i)
q,l ej2π

(ϕ(j,i)
q,l
M

)
n
1[Aq,l][n] (B.17)

+ ej2π(φ
(j,i)
q,l +B∆(j,i))ej2π

(ϕ(j,i)
q,l
M
−(−1)l+1

)
n
1[Bq,l][n]

)
+ w[n].

where ϕ(j,i)
q,l = m

(j,i)
q,l −B∆(j,i) for l ∈ {1, 2}.

Applying FFT to r[n] in (B.17) , we have:
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R[k] =

M
2
−1∑

n=−M
2

r[n]e−j2π
n
M
k

R[k] = h(j)√pe

M
2
−1∑

n=−M
2

ej2π
m

(j)
q
M

n e−j2π
n
M
k

︸ ︷︷ ︸
R0[k]

+ h(i)√pe
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ej2πφ

(j,i)
q,1

∑
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R[k] = R0[k] +R1[k] +R2[k] +R3[k] +R4[k] (B.24)

B.3 Amplitudes of the Peaks

• The amplitude of the 1st peak is written as:
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• The amplitude of the 2nd peak is written as:
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• The amplitude of the 3rd peak is written as:
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• The amplitude of the 4th peak is written as:
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