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Titre: Conception, analyse et implémentation d'algorithmes de chi�rement symétrique sur FPGA
Mots clés: Cryptographie légère, Chi�rement par blocs, Fonctions éponges

Résumé: Cette thèse explore di�érents aspects
de construction d'algorithmes de chi�rement
symétrique. Les travaux portent sur le design et
l'implémentation d'algorithmes de chi�rement
par blocs dits légers, ainsi que sur les fonc-
tions éponges permettant de réaliser du chi�re-
ment authenti�é. Le but recherché dans les
deux notions est de dé�nir des solutions per-
mettant de garantir des bornes de sécurité sim-
ilaires à celles des algorithmes standards de
la littérature cryptographique tout en obtenant
des performances et un ratio débit sur surface
utilisée le meilleur possible. La première par-
tie étudie les algorithmes de chi�rement par

blocs légers et les di�érentes techniques exis-
tantes pour développer un nouvel algorithme
avec les propriétés souhaitées. Nous dé�nissons
également un nouveau mode d'opération per-
mettant de garantir une sécurité équivalente à
celle des modes d'opération standardisés par le
NIST ou l'ANSSI tout en o�rant la possibilité
d'une application n'échangeant pas de vecteur
d'initialisation. Pour �nir, après une compara-
ison des di�érents modes d'opération ainsi que
les permutations existantes dans la littérature,
le but est de dé�nir les meilleurs candidats pos-
sibles selon le cas d'usage.

Title: Design, analysis and implementation of symmetric encryption algorithms on FPGA
Keywords: Lightweight cryptography, Block cipher, Sponge Function

Abstract: This work studies several aspects of
design and implementation of symmetric cryp-
tography. The focus was brought on two dif-
ferent kinds of construction, namely lightweight
block ciphers and sponge functions providing
authenticated encryption. For both the goal
is to de�ne solutions ensuring similar security
bounds as standards algorithms while achieving
good performances towards throughput and low
area occupation. The �rst part of this thesis fo-
cuses on the state-of-the art in designing block
ciphers and which parameters and construction

may lead to the desired performances. We then
de�ne a new mode of operation achieving the
same security margins as the mode of operation
standardized by the NIST and the ANSSI while
allowing application where the initialization vec-
tor cannot be sent to both correspondents. The
second half is based on the study of sponge func-
tions, from the SHA-3 competition to the NIST
LWC standardization process, of both mode of
operation and permutation to achieve the best
performances as possible for di�erent use cases.
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Chapter 1

Context of this thesis

I have been able to conduct those three years of research in collaboration between HENSOLDT France
and the Laboratoire de Mathématiques de Versailles, in the Université Versailles-Saint-Quentin.

A quick introduction into what HENSOLDT France is. HENSOLDT France is a french company,
subsidiary company from HENSOLDT GmbH, a German group. The company originates from the
electronics business unit of the defense division of the Airbus Group. At the end of February 2017,
Airbus sold this business unit to an US �nancial investor, KKR. Since 2017, the company has been
known as HENSOLDT. The company's name can be traced back to Moritz Carl Hensoldt (1821-1903),
a German pioneer of optics and precision mechanics in the 19th century. In 1852, he founded an optical
workshop for telescopes, astronomical equipment and microscopes.

HENSOLDT focuses on sensor technologies for protection and surveillance missions in the de-
fense, security and aerospace �elds. The main product areas are radars, optoelectronics and avionics.
HENSOLDT France and its predecessor companies (SECRE, MATRA, EADS and AIRBUS DS) have
started developing and producing crypto-computers, to become one of the �rst manufacturer of IFF
crypto-computers worldwide and the 1st in Europe. Several generations of crypto-computers (Mode
4, Mode 5, and Secure Mode) have been developed to equip platforms such as the Mirage 2000, the
Rafale, or the Tiger helicopter.

This work is part of a new project from HENSOLDT to develop the next generation of crypto-
computers. The point is to develop a new family of lightweight block ciphers which will be integrated
into a constrained hardware platform. Moreover, those algorithms need to be parametrized at will for
a given user, while remaining secure. In order to secure the parametrization of these algorithms, a
solution of authenticated encryption has to be developed. This solution also needs to be lightweight.

Some of these algorithms can not be disclosed due to the �eld of activity of HENSOLDT. In the
work described in this thesis, the techniques we use will sometimes be illustrated on standard algo-
rithms instead of the proprietary solutions from HENSOLDT.

Usually, in cryptographic papers, three people are introduced to explain and schematize the pro-
tocols and de�nitions. They are named Alice, Bob and either Charlie or Eve (A, B, C and Eve comes
from eavesdrop). In this work, I've chosen di�erent protagonists just to personalize this work and
thank the people I've been working with. As you may notice in reading further into this paper, Moritz
will appear again, as the mascot from HENSOLDT, a little bat (bats are known to use sonar to localize
themselves and their environment); he will replace the usual Alice in some schemes and protocols def-
initions. Bob will still be called Bob and will be represented with Sponge Bob dressed as a pilot. The
reader of this work will soon realize that sponge functions are an important part of my �eld of study
and planes and pilots are a wink to HENSOLDT and its past. Lastly, Charlie will be represented as
the detective from the famous cartoon Pink Panther, my manager is a huge fan of this cartoon and it
seemed the least I could do to thank her.

Once all the characters have been introduced, we can move on to the �rst part of this work.
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Figure 1.1: Moritz
Figure 1.2: Pilot
Sponge Bob

Figure 1.3: Detective
Clouseau
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Chapter 2

Introduction

Cryptographic applications can be found in our everyday life in many objects we do not even think
about. Cryptography's goal is to ensure the con�dentiality of a message, its authenticity and the
identity of the sender. Our credit card is just an embedded crypto system that communicates through
secure channel with a terminal to decide whether we are allowed to pay for this meal at a restaurant
or for this ticket at a theater. Every Internet request also carries hidden cryptographic protocols that
are not noticeable by the user but are used at any moment, to send mails, secure on-line trades, ...
Modern cryptography began in the twentieth century with the de�nition of classic security notions and
the development of new techniques and protocols. Moreover, standards have been de�ned by national
and international institutes to standardize algorithms and protocols to be used in commercial and
public applications. Symmetric structures are now well-known and most users can �nd the candidate
that suits their application at best.

One of the remaining challenges in cryptography is to �nd solutions that can be implemented in
small devices and provide adequate security. Indeed, with the Internet of Things, more and more
devices are developed, gathering multiple applications in a size which tends towards the smallest as
possible. But the size of a device does not mean that breaking its security is not critical. Those devices
can be used to secure our cars, our homes, and need to ensure that no attacker can overcome them.
It is more than necessary to develop cryptographic solutions for those environments and this is one of
the main subject of these three years : develop lightweight solutions.

During this thesis, I had two main objectives. The �rst one was to develop a new family of
lightweight block ciphers that was suitable for my company's applications. This meant to research the
state of the art in block ciphers and their lightweight counterparts as well as the mode of operations
that can be used using these block ciphers. Lastly the resistance against side-channel analysis and the
ease of masking of the adopted solution was a determinant point to tell whether or not the candidate
was acceptable for our use case.
The second objective was to design a new solution for authenticated encryption while keeping in mind
the lightweight capabilities of our use case. This was achieved by studying the candidates proposed at
di�erent cryptographic competition and which elements were of interest for our particular application.

In this work, I start by introducing the context of this thesis, and what was the goal for HENSOLDT
France, then I present a quick history of cryptography and which ideas and discoveries led to our modern
cryptography. I end this chapter with a quick look at what the future of cryptography may look like
with the apparition of quantum computers and post-quantum cryptography. In part II, I present
some important de�nitions for cryptography and cryptographic usage, and give a state-of-the-art of
the cryptographic objects that I have used through this work. I start by de�ning the basic notions of
cryptography, cryptographic constructions and security. I then focus on block ciphers, how they can be
built, what major security properties they need to achieve and continue by introducing the standards
used worldwide. Lastly in part II, I introduce authenticated encryption, in what way it di�ers from
plain encryption, and continue by presenting the current standards and the cryptographic processes
that are still at the moment running to de�ne the future standards. Then in Part III, I present my
contributions, divided into three chapters: the �rst one on a self-synchronyzing stream cipher (SSSC)
Stanislas, the second one on some hardware implementation of sponge-based candidates to CAESAR
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and NIST cryptographic competition on authenticated encryption, and the third one on an attack on
the SIV mode of operation. I also give in Appendix A another topic I worked on about: a blockchain
protocol to reward useful works. Lastly I conclude this work and give some incensive on the work left
to be done on these topics and what I may be focusing on in a near future.
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Chapter 3

A brief history of cryptography

Before digging into the subject of this work, let's start with a de�nition and a bit of history. Cryp-
tography comes from the ancient Greek krypto (hidden) and graphein (writing) and means writing
a secret or a hidden message. Cryptology is the science of secret and is composed of cryptography;
the study of techniques and technologies enabling to create a secret; and cryptanalysis: the analysis
of cryptography or the science to break a secret. It also includes creating systems enabling secure
communication which doesn't include only encrypting but also authentication, or signatures.
The history of cryptography and cryptology is commonly divided into three phases, which are de�ned
not only by a time stamp but also by the means and materials available.
The �rst phase is about manual cryptography. The techniques used during this phase are limited in
both size and complexity. This is the longest one, with more than 5000 years.
The second phase is about mechanized cryptography with the use of mechanic and electronic devices
enhancing the maximum security while speeding up the encryption process.
The third phase is not only focused on the means of performing cryptographic operations (computer-
aided cryptography) but also on developing new ones like digital signature, authentication, or the
public-key cryptography. Not only new algorithms are designed during this phase but also security
protocols de�ned to protect some assets. This phase follows the development of the computer and
online communication.
Adding to these three phases, a fourth one can be de�ned, focused on quantum capabilities and the
use of quantum physics to de�ne communication protocols or to create and develop cryptographic
algorithms able to resist attacks from a quantum capable adversary.

3.1 First phase, manual cryptography

Cryptography is supposed to be born along with the development of writing, almost six thousand
years ago. The �rst forms of hidden message have been found in ancient stone inscriptions, tablets, or
papyrus from di�erent civilizations.

Figure 3.1: Greek scytale
used for secrete communica-
tion

The �rst recorded correspondence, making use of cryptography
was developed by the Spartans, using a cipher device called the scytale
for secret communication between military commanders. It consists
of a baton, spirally wrapped with a strip of parchment or tissue, on
which the message is written. Once unwound, the letters of the mes-
sage are scrambled and the message can only be retrieved by winding
the parchment on a baton of same diameter. The scytale is considered
as the �rst transposition cipher.

Apart from the scytale, most of the cryptographic technique used up to the beginning of the
twentieth century consist of substitution ciphers.

15



Mono-alphabetical substitution The �rst forms of substitution ciphers can be traced back to
the Greeks with the Polybius square. It is a 5x5 square table, each line and column numerated from
1 to 5. The letters were encrypted by giving their coordinates on the grid formed with the table.
The Romans are also famous for their substitution ciphers with the well-known Caesar cipher, a mono-
alphabetic substitution with a shift of three positions in the alphabet so that an 'a' became a 'd', a 'b'
became an 'e' and so on.

Poly-alphabetical substitution Another known example of historical ciphers is the Vigenère's
cipher, published in 1586 by Blaise de Vigenère in Traicté des Chi�res, ou secrètes manières d'escrire

(Treaty on Ciphers and secrete writing). This is a poly-alphabetic cipher using a word as the secrete
key. In order to encrypt or decrypt a word using the Vigenere's technique, you �rst need the following
table :

Figure 3.2: Vigenere's table

For each letter, �nd the position in the table corresponding to the crossing of the column for the
message the line for the key to get the ciphered letter. To decrypt the message, start with the line
corresponding to the �rst letter of the key, then cross the column corresponding to the letter from the
ciphertext to �nd the decrypted letter.

Figure 3.3: al-Kindi's Trea-
tise on Cryptanalysis

The �rst use of cryptanalysis The Arabs were the �rst people
to look more deeply into the principles of cryptography, and to intro-
duce the beginnings of cryptanalysis. They worked on both substitu-
tion and transposition ciphers and even discovered the use of letter
frequency distributions and probable plaintext in cryptanalysis. [16]
They noticed that some letters were more frequently used than others
in every language, e.g. 'e' is the most used letters in both English
and French. With a statistical analysis of the frequency at which each
letter appears, it is possible to make assumptions to break the cipher
and �nd both the plaintext and the key used to encrypt it.
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3.2 Second phase, mechanized cryptog-

raphy

Manual cryptography lasted until the beginning of the twentieth cen-
tury, mostly limited by the complexity of what a code clerk could rea-
sonably do, aided by simple mnemonic devices. As a result, ciphers
were limited in size, up to a few thousands characters. Moreover, the complexity of such encryption
techniques was also limited in a way that any cryptography scheme could have been used by the an-
cients if they had known of it.
General principles for both cryptography and cryptanalysis were known, and security was always lim-
ited by what could be done manually. Therefore, most systems could be cryptanalyzed, given su�cient
ciphertexts and e�ort.
Moreover, for military purposes, several armies created teams of experts to decrypt opponents' en-
crypted messages, mastering the cryptanalysis techniques, although the speed to create secrete mes-
sages has almost not changed through centuries. The end of the �rst world war and the use of machines
dedicated to cryptography starts the beginning of the second phase.

The rotor machines brought a big change by providing a practical way to mechanize the encryption
thus allowing the use of a much larger number of alphabets and enhancing the reachable security. Hugo
Koch, Dutch engineer, was the �rst to patent an electromechanical cipher machine. This then led to
the creation of a company developing a cipher machine for public use : the Enigma. The idea will be
latter reused by military forces, especially the German ones.

The machine will scramble the 26 letters of the alphabet, using a rotor mechanism. The mechanical
subsystem consists of a keyboard, a set of rotors and a series of lamps, representing each letters. This
subsystem is linked with an electrical circuit which carries the information. An action on the keyboard
will lead to the rotation of the rotors. Those rotors all have electrical contacts on their side, which will
create an electrical route when aligned to light up one of the lamps.

The Enigma machine was designed to be symmetrical, i.e. the same key is used to encrypt and
decrypt the message. A machine with only one rotor can be seen as a classical substitution cipher with
a single shift. Thus, with an alphabet of 26 letters, with one rotor, the machine will have the same
security as a hand-written substitution cipher. The security of such machines can be easily increased
by adding rotors, which will all spin one position away from the previous one. This system gives a
longer alphabet. With each added rotor, the available alphabet is multiplied by itself, in this case by
26, meaning 676 possibility with two rotors, and 17576 with three. In its last version, the Enigma
machine was equipped with eight rotors, leading to 268 = 208827064576 possibilities.

The U.S Army had designed another kind of rotor machine: the SIGABA or Converter M-134 that
adds randomness on the movement of the rotors. The key is a pierced ribbon. Each time a letter
is pressed on the keyboard, the rotors are moved according to the holes in the ribbon, signi�cantly
increasing the security of the cipher.
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Figure 3.4: An Enigma Ma-
chine Figure 3.5: The SIGABA Machine

3.3 Third phase, modern and computed cryptography

Until the Second World War, most of the work on cryptography was developed by and for military
purposes, to hide secrete and tactical information. However, at the end of the war, even if the com-
mercial use of the Enigma machine was a �asco, cryptography started to attract public attention, with
businesses trying to secure their data from competitors.

Cryptography and Information Theory One of the basis and the conceptualization of modern
cryptography is the work of Claude Shannon. First of all, his book called "A mathematical theory
of cryptography" [216], explains how to apply information theory to cryptography. From now on,
encryption techniques rely on and shall be de�ned by mathematical properties explaining their security.
He also de�ned two terms which are the basis of de�ning the security of numerous cipher algorithms:

� Confusion. In its original de�nition, the confusion states the aim of decorrelating as much as
possible the encryption key from the ciphertext. Each character or bit from the ciphertext shall
depend on several parts of the key. An algorithm with good confusion should make it di�cult
to �nd the key knowing the ciphertext. Moreover, if a single bit of the key is changed, the
calculation of the value of most, if not all of the ciphertext shall be a�ected.

� Di�usion. The idea of di�usion is to hide the relationship between the ciphertext and the
plaintext. The goal is to make it hard for an attacker to �nd the plaintext knowing only the
ciphertext. An algorithm with good di�usion means that if the plaintext changes by a single bit,
then statistically half of the bits in the ciphertext should change, and similarly, if the ciphertext
is changed by one bit, then approximately one half of the plaintext bits should change.

The development of modern technologies and especially computers helped to develop cryptography
for public purposes, which lead to three major public advances :

� A public encryption standard (standard for public and commercialized cryptography),

� The �rst key-exchange protocol,

� The �rst public-key algorithm.

The Data Encryption Standard In the early 1970's, IBM created a crypto-group to create a
form of encryption to secure their customers data, this group was lead by Horst Feistel. They designed
a cipher called Lucifer. This algorithm was tweaked by the NSA, later in 1976 and presented as the
�rst public standard for encryption, the Data Encryption Standard (DES) [186]. This standard is
described in order to help companies and banks to develop secure electronic communications. The
DES is de�ned with a key of 56 bits and based on a Feistel scheme, from its author's name.
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The Di�e-Hellman key exchange In 1976, Whit�eld Di�e and Martin Hellman published a
research paper on what would be de�ned as the Di�e-Hellman key exchange [102]. For the �rst time,
they described a system which would allow two correspondents to securely exchange messages without
relying on pre-shared keys. The Di�e�Hellman key exchange method allows two parties that have no
prior knowledge of each other to jointly establish a shared secret key over an insecure channel.
Take Moritz and Bob who want to create a mutual secret. They both agree on two numbers: p a
large prime number et g called the generator which are sent over the communication channel. They
then both chose a random large number, which they keep secrete, x for Moritz and y for Bob. Moritz
will compute P1 = gx (mod p) and Bob P2 = gy (mod p) and transmit it. Then Moritz computes
K1 = P x2 (mod p) and Bob K2 = P y1 (mod p). As K1 = K2 they have managed to compute a secrete
value known by them only that can be used as a secrete key for symmetric cryptosystems.
This led almost immediately to the development of a new kind of cryptography : public-key cryptog-
raphy.

The RSA The RSA cryptosystem is a public-key cryptosystem named after its three inventors:
Ronald Rivest, Adi Shamir and Leonard Adleman. It was created in 1977 [195], shortly after the
publication of the Di�e-Hellman key exchange. It uses a pair of keys, a public key to encrypt data and
a private key to decrypt it. The public and the private keys are mathematically linked. The private
key is computationally hard to �nd, knowing the public one, and the data cannot be decrypted with
only the public key.
The security of RSA relies on the practical di�culty of factoring the product of two large prime
numbers, the factoring problem. Breaking RSA encryption is known as the RSA problem. Nowadays,
the recommended key size is at least 2048 bits.
The RSA algorithm involves four steps: key generation, key distribution, encryption, and decryption.
The basic principle behind RSA is the observation that it is practical to �nd three very large positive
integers e, d, and n, such that with modular exponentiation for all integers m (with 0 ≤ m < n):

(me)d ≡ m (mod n)

and that it is hard to �nd d, knowing e and n, or even m. The public key is represented by the integers
n and e; and, the private key, by the integer d. m represents the message.
The RSA can be used to either encrypt and decrypt messages or to generate a digital signature.

Cryptographic Hash functions Computers also helped developing hash functions and making
it readily accessible to the public. The point is to take any string of text or vector of bits, and hash
it, to create an output of �nite size. This hash value or digest is a footprint of the message and can
be used for di�erent purposes. The mathematical properties of a cryptographic hash function make it
computationally hard to reverse or at least not in an acceptable time span. Thus, hash functions have
seen multiple uses in cryptography :

� Veri�cation of a message integrity

� Digital signature

� Password validation

The cryptographic hash functions have seen a lot of work through the years to create and adapt new
standards. The last one is SHA-3, based on the Keccak algorithm [58].

Standards, protocols and new platforms Numerous standards have been developed to inform
and give good incentives for implementing secure communications or keeping sensitive information
hidden. Even if current standards such as the AES, SHA-3 or RSA are still considered to be secured
for years to come, new technologies may require new cryptographic solutions due to their limited size
and battery.
The Internet of Things (IoT) development have brought a huge number of little objects which are
very limited in size, don't have access to power sources and need to be updated easily. This created
the need to develop new protocols of secure communication, and started the search for lightweight
cryptographic solutions which may supersede the AES [97] in some cases.
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3.4 Towards a fourth phase? Quantum and post-quantum

cryptography

Quantum cryptography is a set of techniques aiming to create key exchanges whose security is based on
physics rather than on mathematics as it is for classical cryptographic key exchanges. Post-quantum
cryptography is the principle consisting in developing cryptographic algorithms and solutions that
resist an attacker capable of quantum computation. The third part, quantum computing is about the
innovations and di�culties met by the companies trying to develop quantum computers. I have chosen
to gather those di�erent points into the same part because they are all linked in a way or another
to the quantum technologies but they are not linked neither directly nor chronologically. Moreover,
even if post-quantum cryptography is directly linked to the evolution of the quantum computer, it is
important for cryptography to be as much as possible in advance of the di�erent existing and future
threats.

3.4.1 Quantum cryptography

Quantum cryptography describes the use of quantum physics properties in order to create or enhance
cryptographic protocols achieving better security bounds than those created using properties from
classical (or causal) physic. One of the main goal is to achieve a secure quantum key distribution
between two distant correspondents.
The idea comes from Stephen Wiesner explained in [230] with the concept of conjugated coding.
After the publication of this article, Charles H. Bennett and Gilles Brassard worked out the �rst
quantum key-exchange protocol, based on conjugated observations. This protocol is named BB84
[50] after the name of its authors and the year of publication. In 1990, Artur Ekert developed a key
distribution technique based on the quantum correlations between two photons, also called quantum
entanglement. This led to the E90 protocol [116].

Protocol Take as an example Moritz and Bob. They are two distant correspondents both having
at their disposal

� quantum objects which can be modeled as light pulses (photons, coherent states, entangled pairs
of photons),

� a quantum channel which can transmit the light pulses (like an optic �ber),

� a classical channel of communication which needs to be authenticated.

Let's consider a spy trying to crack the system. He can have access to everything that transits
between Moritz and Bob, only limited by the laws of physics but cannot access their systems.

The security of the systems relies on two fundamental aspects of the quantum mechanics :

� the no-cloning theorem, stating that it is impossible to duplicate any unknown quantum object,

� the wave function collapse postulate, explaining that any measure realized on a quantum object
will modify its quantum properties.

According to the laws speci�ed above, Moritz and Bob can automatically know if anyone is trying
to spy on their exchanges, and which quantity of information has been eavesdropped.

Moritz starts by coding a random information on each light pulse and sends it to Bob, through the
quantum channel. Bob receives and measures the quantity of information carried by the light pulse
and will possess a set of measurements correlated to the data sent by Moritz, which may have been
spied on. Depending of the quantity of information left secured between them two, they can create a
cryptographic key with a size, at most of the quantity left untouched and unseen.
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Figure 3.6: Quantum cryptography protocol

Implementation and �rst results The implementation of a quantum key exchange mainly relies
on the ability to generate quickly enough a certain number of quantum objects, measure and transmit
them over acceptable distances. Several networks have been implemented �rst for experimental pur-
poses but nowadays also for commercial uses. The �rst bank transfer using quantum key distribution
was carried out in Vienna in 2004. In 2007, the NIST announced an implementation over an optic
�ber across nearly 150km. The same year, a quantum encryption technology was used in Geneva to
transmit ballot results for the Swiss national elections. The University of Geneva and Corning Inc.
holds the actual record of physical distance, since 2015, with a 307 km-long optic �ber capable of a
speed of 12.7kbits/s. In 2016, China sent its second Space Laboratory that carries 14 missions and
experimental packages to verify the feasibility of space-to-ground quantum communication. Among all
its equipment, Tiangong-2 brought a Space-Earth quantum key distribution and a laser communication
experiment. With this satellite, as part of the Quantum Experiments at Space Scale (QUESS), the
team managed to measure entangled photons over a distance of 1203 km, sent from a ground station
to the satellite and sent back to another ground station. Later in 2017, they managed to implement
the BB84 protocol over satellite link between Beijing and Vienna.

3.4.2 Post-quantum cryptography

Post-quantum cryptography is a �eld of cryptography aiming to provide security against an adversary
using a quantum calculator. The cryptographers started from the observation that an opponent with
access to a quantum computer can more easily or swiftly break some well-known algorithms used to
de�ne security margins of public-key algorithms.
The Shor algorithm is used to solve the discrete logarithm problem and factor integers. This algorithm
can be executed in polynomial time if used on a quantum calculator. Thus, the algorithm would be
able to break a cipher with a key of n bits in n times the unit of time necessary to do one operation.
In comparison, current computers can do it in exponential time, i.e. 2n operations. This leads to a
serious threat problem: every cryptographic primitive based on the discrete logarithm problem (like
the Di�e-Hellmann key exchange or the ECDSA signature [149] for example) or the problem of inte-
gers factoring (RSA signature) would be vulnerable to an adversary capable of performing quantum
computation.
The Grover algorithm enhances the e�ciency of research problems, providing a quadratic advantage
for an adversary, dividing the security level of most symmetric algorithms by two. In order to man-
age/lessen this disadvantage, symmetric algorithms need to double the size of their key.
For a symmetric algorithm to be secured in a quantum world, it would need to double the size of its
current key, if described with an internal mathematical block suitable for this size (i.e. the AES [97]

21



would be considered secure with its version with a key of 256 bits).

Scheme Affect

Symmetric Key Security halved (Grover)
Hash (SHA-3) Security decreased (Grover)

Public Key (RSA, DSA) Completely broken (Shor)
Lattice-based cryptography Quantum safe
Multivariate Cryptography Qauntum safe
Hash-based Cryptography Quantum safe
Code-based cryptography Quantum safe
Isogeny Cryptography Quantum Safe

Table 3.1: Classic structure security in the post-quantum world

In order to prevent such attacks and prepare the future of cryptography, the NIST (the American
National Institute of Standards and Technology) and the CACR (the Chinese Association for Cryp-
tographic Research) both launched a competition to develop and standardize post-quantum public-
key algorithms. The Chinese post-quantum competition ended in 2019 with two di�erent use cases:
Public-key algorithms and grouping algorithms (digital signatures schemes or Key-exchange mecha-
nisms). Winners are respectively uBlock [236] and Ballet [92], and Aigis-sig [239], LAC.PKE [173] and
Aigis-enc. The Post-Quantum Cryptography Standardization is a competition launched by the NIST,
announced at PQCrypto 2016 [144]. The �rst submission deadline at the end of 2017 met a total of 23
signature and 59 encryption schemes, among which 69 (19 signature and 45 KEM/encryption schemes)
were deemed well enough designed to enter competition. In July 2020, the NIST announced seven �-
nalists and eight alternate algorithms. These seven �nalists are thought to be the most promising and
will be considered for standardization at the end of the third round. The second track is still to be
considered if attacks on the �nalists are found feasible before the end of the standardization process,
or if any intellectual property is still left to be solved on a �nalist candidate.

Type PKE/KEM Signature

FINALISTS

Lattice
CRYSTALS-KYBER [72] CRYSTALS-DILITHIUM [35]

NTRU [87] FALCON [140]
SABER [42]

Code-based Classic MacEliece [17]
Multivariate Rainbow [103]

ALTERNATE CANDIDATES

Lattice
FrodoKEM [18]
NTRU Prime [53]

Code-
based

BIKE [27]
HQC [181]

hash-based SPHINCS+ [30]
Multivariate GeMSS [77]

Supersingular Elliptic Curve Isogeny SIKE [99]
Zero-knowledge proofs Picnic [85]

Table 3.2: NIST PQC �nalists and alternate algorithms

3.4.3 The quantum computer

The quantum computer can provide an enormous computing capacity. While a classical register of N
bits may only store one array of N binary values at a time, a N qubits register may, thanks to the
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quantum superposition, store every possible combinations which represents 2N arrays of binary values,
each array associated with a given probability. When the register is read, the quantum superposition
collapses and only the good result is shown.
Currently, even for supercomputers, it is unfeasible to break RSA keys with 2048 or more bits, which is
the recommended size. In 2003, Stéphane Beauregard proved that to factor an N bits integer, 2N + 3
qubits are enough [45]. Breaking a 2048 bits RSA key would then only require 4099 qubits.
The quantum computer could be used not only for cryptography, but in many �elds including biology,
physics, chemistry, mathematics, which explains the billions of dollars invested in the research and de-
velopment of the future quantum computers. One main issue with current quantum computers is their
lack of e�ciency. The superposition phase is highly unstable and the systems are too prone to errors.
Thus the systems require numerous physical qubits in order to get one stable logical qubit (hundreds
or maybe thousands). The �rst issue to solve is then to �nd an appropriate solution for quantum error
correcting code; two methods have been published, by Peter Shor [220] and Andrew Steane [222] which
are the �rst step to e�cient quantum error correcting. In 2019, a team of researchers showed that to
break a RSA code with 2048 bits within eight hours, one would need to have twenty million physical
qubits.
In 2019, Google advertised their quantum supremacy by achieving the computing of one precise com-
puting in around 200 seconds where a supercomputer would need 10,000 years, using 53 qubits. This
is, to the best of our knowledge, the best advances in the �eld of quantum computers to this day. To
achieve an e�cient and useful quantum computer, a lot of technological issues are yet to solve and it
may be impossible to see a functional quantum computing in the years or even decades to come.
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Part II

State-of-the-Art
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Chapter 4

A few de�nitions

4.1 Asymmetric and symmetric cryptography

Asymmetric cryptography or public-key cryptography is a system that uses a pair of keys: a public one
and a private one. The public key can be openly distributed or shared with a group of users while the
private key is known only by its owner. The public key is generated using a cryptographic algorithm
producing a one-way function from the private key, ensuring the security of the system.
In a public-key system, a message can be encrypted using the public key of the recipient. This message
can then only be decrypted using the private key associated. This results in a secure channel between
two users created from public data.
Public-key cryptography is also used as an e�cient method to create a robust authentication to create
a digital signature of a message, using the private key. Anyone with the sender's public key can verify
the signature of the message.

Symmetric cryptography mechanisms use algorithms that wield the same cryptographic keys to
perform both encryption and decryption of a message. The key or set of keys is a shared secret
between the parties that is used to maintain a secure communication link. The symmetric primitives
can be either block ciphers, stream ciphers or hash functions. The main di�culty with symmetric
cryptography is the way used to obtain the shared secret and thus establish the secure link between
the di�erent users. Therefore symmetric and asymmetric cryptography are often used in conjunction:
the asymmetric part is used to generate and securely exchange the symmetric keys later used to
communicate with the shared secret.

4.2 Block ciphers

A symmetric cryptographic algorithm usually takes as input two vectors, namely a message and a
key. In the case of block ciphers, the set of all possible blocks of messages are of �xed length. The
algorithm then applies a permutation to the block. Commonly, the application of the permutation is
called encryption and converts a plaintext into a ciphertext, while the inverse permutation is called
decryption and converts a ciphertext into a plaintext. Computing the inverse of the permutation
usually have identical cost to computing the forward permutation.
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4.3 Stream ciphers

As opposed to block ciphers that operate on �xed length, a stream cipher computes a ciphertext stream
by combining a digit of the plaintext with the corresponding digit of the keystream. Typically, the
digit is a bit and the combination of the plaintext and the keystream an exclusive-or (XOR). But other
solutions exist using bytes or half-bytes and more complex combinations of the message and the key.
The keystream is often generated from a random seed value (the initial key), extended using di�erent
operations such as shift registers or �lters.
A stream cipher can also be constructed from a block cipher, using a mode of operation such as the
Counter Mode (CTR).
Stream ciphers have received less interest than block ciphers from the cryptographic community point
of view and many primitives have been found insecure up to the point that in 2004, at Asiacrypt
crypto-conference, Adi Shamir asked whether stream ciphers were dead or not. This discussion ended
up on a new cryptographic project called eStream [7] launched by the European Network of Excellence
in Cryptology (ECRYPT), started in October 2004 and �nished in September 2007. From the 35
candidates, 7 were selected as winners, covering two categories: primitives oriented towards software
or towards hardware platforms.

Software Hardware

HC-128 [232] Grain v1 [138]
Rabbit [65] MICKEY v2 [34]

Salsa20/12 [55] Trivium [101]
Sosemanuk [51]

4.4 Modes of operation

Amode of operation is an algorithm that takes as core part a block cipher and uses it in a way to provide
capabilities unachievable with a block cipher. A block cipher is only suitable for the cryptographic
transformation of one �xed-length block.
Mode of operations can be used for di�erent purposes: create a stream cipher, generate authenticated
encryption, to create shorter or larger blocks. Several modes are de�ned and standardized by the NIST
to achieve con�dentiality while using a properly chosen block cipher [111].

Electronic Code Book (ECB) mode This is the simplest of the mode of operations, the
message is divided into blocks, and each block is encrypted separately. The main �aw of this mode
is the lack of di�usion. ECB encrypts identical plaintext blocks into identical ciphertext blocks, and
does not hide data patterns. ECB is not recommended for use in cryptographic protocols. It can also
make protocols without integrity protection even more susceptible to replay attacks, since each block
gets decrypted in exactly the same way.

The Cipher Block Chaining (CBC) mode was invented and patented in 1976 [115] by
Ehrsam, Meyer, Smith and Tuchman. Each block of plaintext is XORed with the previous ciphertext
block before being encrypted. This way, each block of ciphertext depends on all the plaintext blocks
processed up to that point. To make each message unique, an initialization vector must be used with
the �rst block.

Figure 4.1: Cipher Block Chaining mode of operation
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By denoting Pi with i ∈ {0, . . . , n} the ith block of plaintext, Ci the i
th block of ciphertext and

EK the block cipher E with the key K, we have C0 = Ek(IV ⊕ P0) and Ci = Ek(Ci−1 ⊕ Pi).
CBC is the most commonly used mode of operation. In opposition to the ECB mode of operation, any
change on either the plaintext or the IV will have an e�ect on all of the ciphertext blocks.
Its main drawbacks are that encryption is sequential which means that it cannot be parallelized. More-
over, the message must be padded to a multiple of the cipher block size or the mode must use the
ciphertext stealing method.

Cipher Feedback (CFB) mode is a mode of operation, operating as a stream cipher. It is quite
similar to CBC with the di�erence that the plaintext is XORed with the output of the encryption
operation. In CFB, using same notations as in the previous paragraph, C0 = Ek(IV ) ⊕ P0 and
Ci = EK(Ci−1)⊕ Pi.

Figure 4.2: Cipher Feedback mode of operation

The main advantage of this mode of operation is that only the encryption part of the block cipher
algorithm is needed, which can save some memory if the encryption and decryption operations are
not the same (as it is the case for the AES). Moreover, the message does not need to be padded to a
multiple of the cipher block size.
Like with the CBC mode, changes in the plaintext propagate forever in the ciphertext, and encryption
cannot be parallelized. Also like CBC, decryption can be parallelized.

Output Feedback (OFB) mode is also a synchronous stream cipher mode of operation. It
processes the data in the same way as CFB, but instead of carrying the ciphertext computed at step
i to the next one, the data carried is the output of the encryption computation. In other words,
C0 = EK(IV )⊕ P0, Ci = EiK(IV )⊕ Pi with EiK the composition i times of the EK operation.

Figure 4.3: Output Feedback mode of operation

Because of the symmetry of the XOR operation, encryption and decryption are exactly the same.
Each output feedback block cipher operation depends on every previous ones, and so can not be
performed in parallel. However, because the plaintext or ciphertext is only used for the �nal XOR,
the block cipher operations may be performed in advance, allowing the �nal step to be performed in
parallel once the plaintext or ciphertext is available.
One can obtain an OFB mode keystream by using CBC mode with a constant vector of zeroes as
input. It can allow fast hardware implementations of CBC mode for OFB mode encryption.
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CounTeR (CTR) mode was introduced by Whit�eld Di�e and Martin Hellman in 1979. It turns
a block cipher into a stream cipher and generates the next keystream block by encrypting successive
values of a "counter". The counter can be any function which produces a sequence which is guaranteed
not to repeat for a long time, although an actual increment-by-one counter is the simplest and most
popular.

Figure 4.4: CounTer mode of operation

Ci = EK(N ||ctri)⊕Pi with ctri the ith counter (usually the value i coded on the desired size), and
N the nonce (number only used once) that must be picked at random and vary for each call to the
CTR mode. The nonce does not need to be kept secret to ensure the security of the mode.
CTR mode is particularly well suited for multi-processor machines where blocks can be encrypted in
parallel.
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4.5 Hash functions

A hash function is a mathematical function that computes a digital print of a data taken as input.
This print can be used to identify the data it is calculated from. A cryptographic hash function will
take as input a data of arbitrary size and compute a hash value or message digest of �xed size. It is
a one-way function, meaning that it is supposedly really hard to invert. The ideal cryptographic hash
function has the following main properties:

� it is deterministic, the same message always results in the same hash

� it is quick to compute the hash value for any given message

� it is unfeasible to generate a message that yields a given hash value (i.e. to reverse the process
that generated the given hash value)

� it is unfeasible to �nd two di�erent messages with the same hash value

� a small change to a message should change the hash value so extensively that the new hash value
appears uncorrelated with the old hash value (avalanche e�ect)

Those functions can be used for digital signatures, message authentication codes (MAC) or be part
of digital authentication protocols.

Hash function security Whereas ciphers protect data con�dentiality in an e�ort to guarantee
that data sent in the clear can not be read, hash functions protect data integrity in an e�ort to
guarantee that data has not been modi�ed. If a hash function is secure, two distinct pieces of data
should always have di�erent hashes. A hash can thus serve as an identi�er.
The most common application of a hash function is digital signatures. When digital signatures are
used, applications process the hash of the message to be signed rather than the message itself. If a
single bit is changed in the message, the hash of the message will be totally di�erent. The hash function
thus helps ensure that the message has not been modi�ed.
The strength of a hash function is directly linked to the unpredictability of its outputs. By de�nition,
a secure hash function behaves as much as possible like a truly random function (sometimes called a
random oracle). Speci�cally, a secure hash function should not have any property or pattern that a
random function does not. This de�nition is helpful for theoreticians, but in practice we need more
speci�c notions: namely, preimage resistance and collision resistance.

Preimage Resistance A preimage of a given hash value,H, is any message,M , such asHash(M) =
H. Preimage resistance describes the security guarantee that given a random hash value, an attacker
will not �nd a preimage of that hash value. Hash functions are sometimes called one-way functions
because it is easy to obtain a hash from the message but it is computationally hard to �nd the message
from the hash.
Even given unlimited computing power, one would not be able to determine the message picked to
produce a particular hash, since there are many messages hashing to the same value. For example,
there are 2256 possible values of a 256-bit hash (the typical length with hash functions used in practice),
but there are many more values of 1024-bit messages (21024 possible values). Therefore, each possible
256-bit hash value will have about 21024/2256 = 21024−256 = 2768 preimages of 1024 bits each.
In practice, the goal is to be assured that it is practically impossible to �nd any message that maps
to a given hash value, which is what preimage resistance actually stands for. Speci�cally, two terms
exist: �rst-preimage and second-preimage resistance. First-preimage resistance (or just preimage resis-
tance) describes cases where it is practically impossible to �nd a message that hashes to a given value.
Second-preimage resistance, on the other hand, describes the case that when given a message, M1, it
is practically impossible to �nd another message, M2, that hashes to the same value that M1 does.

Collision Resistance Whatever chosen hash function, collisions will inevitably exist due to the
pigeonhole principle. However, collisions should be hard to �nd as it is for the original message in
order for a hash function to be considered collision resistant (an attacker should not be able to �nd
two distinct messages that hash to the same value). A hash of n bits can be broken in O(2n/2) time
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steps while a preimage can be found in O(2n)
The notion of collision resistance is related to the notion of second preimage resistance: if it is possible
to �nd second preimages for a hash function, it is also possible to �nd collisions. Thus, any collision-
resistant hash is also second preimage resistant. If this was not the case, there would be an e�cient
solve-second-preimage algorithm that could be used to break collision resistance.

The SHA Family Several cryptographic hash algorithms have been standardized by the American
Institute of Standards and Technology (NIST) through the years as Federal Information Processing
Standards (FIPS).
The Secure Hash Algorithm (SHA) hash functions are standards de�ned by the NIST for use by non-
military federal government agencies in the US.
They are considered worldwide standards, and only certain non-US governments opt for their own hash
algorithms (such as China's SM3, Russia's Streebog, and Ukraine's Kupyna) for reasons of sovereignty
rather than a lack of trust in SHA's security. The US SHAs have been more extensively reviewed by
cryptanalysts than the non-US ones.

� SHA-1 The SHA-1 standard comes from the failure in the NSA's original SHA-0 hash function.
In 1993, NIST standardized the SHA-0 hash algorithm, but in 1995 the NSA released SHA-1 to
�x an unidenti�ed security issue in SHA-0. The reason for the tweak became clear when in 1998,
two researchers discovered how to �nd collisions for SHA-0 in about 260 operations instead of the
280 expected for 160-bit hash functions such as SHA-0 and SHA-1. Later attacks reduced the
complexity to around 233 operations for near-collisions and aroud 239 for real collisions, leading
to actual collisions in less than an hour for SHA-0 [228].
SHA-1 is based on a Merkle�Damgård hash function. That is, SHA-1 works by iterating the
following operation over 512-bit message blocks (M) : H = E(M,H) +H. SHA-1 is the basis of
the block cipher, called SHACAL.

� SHA-2, the successor to SHA-1, was designed by the NSA and standardized by the NIST. SHA-2
is a family of four hash functions: SHA-224, SHA-256, SHA-384, and SHA-512. The three-digit
numbers represent the bit lengths of each hash.
The initial motivation behind the development of SHA-2 was to generate longer hashes and thus
deliver higher security levels than SHA-1.
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The SHA-3 Competition In 2007, the NIST announced a Hash Function Competition (the
o�cial name of the SHA-3 competition) that began with a call for submissions and some basic require-
ments: hash submissions were to be at least as secure and as fast as SHA-2, and they should be able
to do at least as much as SHA-2. By 2008, the NIST had received 64 submissions from around the
world, including those from universities and large corporations. Of these 64 submissions, 51 matched
the requirements and entered the �rst round of the competition.
During the �rst weeks of the competition, cryptanalysts mercilessly attacked the submissions. In July
2009, NIST announced 14 candidates for the second round. After spending 15 months analyzing and
evaluating the performance of these candidates, the NIST chose �ve �nalists:

� BLAKE [32] An enhanced Merkle�Damgård hash whose compression function is based on a
block cipher, which is in turn based on the core function of the stream cipher ChaCha, a chain of
additions, XORs, and word rotations. BLAKE was designed by a team of academic researchers
based in Switzerland and the UK.

� Grøstl [125] An enhanced Merkle�Damgård hash whose compression function uses two permuta-
tions (or �xed-key block ciphers) based on the core function of the AES [97] block cipher. Grøstl
was designed by a team of seven academic researchers from Denmark and Austria.

� JH [233] A tweaked sponge function construction wherein message blocks are injected before and
after the permutation rather than just before. The permutation also performs operations similar
to a substitution-permutation block cipher (as discussed in Chapter 4). JH was designed by a
cryptographer from a university in Singapore.

� Keccak [58] A sponge function whose permutation performs only bitwise operations. Keccak
was designed by a team of four cryptographers working for a semiconductor company based in
Belgium and Italy, and included one of the two designers of AES.

� Skein [121] A hash function based on a di�erent mode of operation than Merkle�Damgård, and
whose compression function is based on a block cipher that uses only integer addition, XOR,
and word rotation. Skein was designed by a team of eight cryptographers from academia and
industry, all but one of whom are based in the US, including the renowned Bruce Schneier.

After extensive analysis of the �ve �nalists, the NIST announced a winner: Keccak. NIST's report
rewarded Keccak for its elegant design, large security margin, good general performance, excellent
e�ciency in hardware, and its �exibility.

Keccak (SHA-3) One of the reasons that NIST chose Keccak is that it is completely di�erent
from SHA-1 and SHA-2. Its design is based on the sponge function. Keccak's core algorithm is a
permutation of a 1600-bit state that ingests blocks of 1152, 1088, 832, or 576 bits, producing hash
values of 224, 256, 384, or 512 bits, respectively, the same four lengths produced by SHA-2 hash
functions. But unlike SHA-2, SHA-3 uses a single core algorithm rather than two algorithms for all
four hash lengths.
Another reason is that Keccak is more than just a hash. The SHA-3 standard document FIPS 202
de�nes four hashes: SHA3-224, SHA3- 256, SHA3-384, and SHA3-512 and two algorithms called
SHAKE128 and SHAKE256. (The name SHAKE stands for Secure Hash Algorithm with Keccak.)
These two algorithms are extendable-output functions (XOFs), or hash functions that can produce
hashes of variable length, even very long ones. The numbers 128 and 256 represent the security level
of each algorithm.
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4.6 Message Authentication Code

De�nition A message authentication code (MAC) is a block of information, or tag, used to au-
thenticate a message (ensure that the message comes from the stated sender) and verify that it has
not been modi�ed. The MAC value protects both the integrity and the authenticity of a message, by
allowing veri�ers (who possess the secret key used to generate the MAC) to detect any changes to the
message content.
A message authentication code system consists of three algorithms:

� A key generation algorithm that selects a key randomly from the key space featuring uniform
distribution.

� A signing algorithm that returns the tag computed from the key and the message.

� A verifying algorithm that veri�es the authenticity of the message given the key and the tag. It
returns either accepted if the MAC is correct or ⊥ if not.

Standards Various standards de�ning MAC algorithms exist. These include:

� FIPS PUB 113 Computer Data Authentication, withdrawn in 2002, de�ned an algorithm based
on DES.

� FIPS PUB 198-1 The Keyed-Hash Message Authentication Code (HMAC)

� ISO/IEC 9797-1 Mechanisms using a block cipher

� ISO/IEC 9797-2 Mechanisms using a dedicated hash-function

� ISO/IEC 9797-3 Mechanisms using a universal hash-function

� ISO/IEC 29192-6 Lightweight cryptography - Message authentication codes

ISO/IEC 9797-1 and -2 de�ne generic models and algorithms that can be used with any block cipher or
hash function, and a variety of di�erent parameters. These models and parameters allow more speci�c
algorithms to be de�ned by nominating the parameters. For example, the FIPS PUB 113 algorithm
is functionally equivalent to ISO/IEC 9797-1 MAC algorithm 1 with padding method 1 and a block
cipher algorithm of DES.
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4.7 Security de�nitions

4.7.1 Basic security notions

Before introducing the main families of symmetric primitives in the next chapter, we formalize three the-
oretical objects : Pseudo Random Function (PRF), Pseudo Random Permutation (PRP) and Pseudo
Random Number Generator (PRNG). These notions are needed to de�ne the security requiremens on
symmetric primitives.

Pseudo Random Function Let's consider a function fK from n bits to m bits, with n and m
two integers and with K a secret key taken from the set of all k-bit secret keys under the uniform
distribution and f∗ a random function from the space of all possible functions of n bits to m bits. We
denote A a probabilistic algorithm that outputs either 1 or 0 when given function f as input. The
algorithm aims to distinguish a function fK from f∗.
The collection F = {fK |K ∈ K} is said to be a PRF if the advantage of any probabilistic algorithm A
for distinguishing fK from f∗ is small, with the following equality :

AdvPRFF (A) = |Pr[A(fK) = 1]− Pr[A(f∗) = 1]|

Pseudo Random Permutation The de�nition of a PRP derives from the de�nition of a PRF.
Let's consider πK a permutation of n bits with K a secret key taken from the set of all k-bit secret keys
under the uniform distribution and π∗ a random permutation from the space of all possible permutation
of n bits to n bits. We denote A a probabilistic algorithm that outputs either 1 or 0 when given a
permutation π as input.
The collection Π = {πK |K ∈ K} is said to be a PRP if the advantage of any probabilistic algorithm A
for distinguishing πK from π∗ is small, with the following equality :

AdvPRPΠ (A) = |Pr[A(πK) = 1]− Pr[A(π∗) = 1]|

Pseudo Random Number Generator Let's consider a function s that takes as input a secret
key K of k bits and outputs a binary string of m bits and s∗ a random binary string of m bits. We
denote A a probabilistic algorithm that outputs either 1 or 0 when given a binary string.
s is a PRNG if the advantage of any probabilistic algorithm A for distinguishing s(K) from s∗ is small,
with the following equality :

AdvPRNGs (A) = |Pr[A(s(K)) = 1]− Pr[A(s∗) = 1]|

4.7.2 Indistinguishability

In order to judge the usability of a cryptographic primitive, the main property to evaluate is its security.
The �rst de�nition of security was given by Claude Shannon in 1949 [215]. A cipher is considered as
secure if no one not knowing the key is able to retrieve the plaintext knowing the ciphertext nor gain
any information on either the key or the message. To achieve Shannon's security, one needs to use a
key at least as long as the message to encrypt and to use a new key for each new message. This model
is not realistic thus another security de�nition is needed.
The concept of impossible in cryptography can be de�ned with the two following notions: informational
security and computational security. The �rst notion is about theoretical impossibility whereas the
second about practical impossibility.
Informational security tries to de�ne whether it is conceivable to break a cipher or not. Thus, a cipher is
informationally secure if it cannot be broken even if an attacker is given an unlimited computation time
and memory. The one-time pad is informationally secure. It encrypts a plaintext P to a ciphertext
C using a key K which is a random bit-string that is unique to each plaintext, such as C = P ⊕
K. Knowing C, even given unlimited time to try all possible keys, and compute the corresponding
plaintext, it is still unfeasible to identify the right key as there are as many possible P as there are K.
Computational security de�nes a cipher as secure if it cannot be broken given a reasonable amount of
time and resources, such as memory, budget, energy, etc. Consider a cipher E, with a known plaintext-
ciphertext pair (P,C) such as C = E(P,K). The plaintext, key and ciphertext are all 128-bit long.
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This cipher is not informationally secure as you can break it using brute-force and the 2128 possibles
keys. In practice, testing all the keys is unfeasible, as, even having access to all the computational
capability on earth it would still require an unreasonable time to test all keys. The cipher is then
computationally secure.
We then need to de�ne notions and means to calculate the ability of a cipher to resist to attacks
and to quantify the security. Usually, the values used are the computation time it takes to break a
cipher, usually named t and the memory needed to gather of the information needed to break it. The
probability of success of an attack ε is also often used.
We then say that a cryptographic scheme is (t, ε)-secure if an attacker performing at most t operations
has a probability of success that is no higher than ε, with 0 ≤ ε ≤ 1. t and ε are just limits: if a cipher is
(t, ε)-secure, then no attacker performing fewer than t operations will succeed (with probability higher
than ε). But that does not imply that an attacker doing exactly t operations will succeed, and it does
not tell you how many operations are needed, which may be much larger than t. It is simply a lower
bound on the computation e�ort needed, because one would need at least t operations to compromise
security.
Sometimes it is possible to know precisely how much e�ort it takes to break a cipher. In such cases,
a (t, ε)-security gives a tight bound when an attack exists that breaks the cipher with probability ε
and exactly t operations. For example, consider a symmetric cipher with a 128-bit key. Ideally, this
cipher should be (t, t/2128)-secure for any value of t between 1 and 2128. The best attack should be
brute force (trying all keys until you �nd the correct one). Any better attack would have to exploit
some imperfection in the cipher, the goal is thus to create ciphers where brute force is the best possible
attack.
Given the statement (t, t/2128)-secure, let's examine the probability of success of three possible attacks:

� t = 1, an attacker tries one key and succeeds with a probability of ε = 1/2128.

� t = 2128, an attacker tries all 2128 keys and one succeeds. Thus, the probability ε = 1 (if the
attacker tries all keys, obviously the right one must be one of them).

� an attacker tries only t = 264 keys, and succeeds with a probability of ε = 264/2128 = 2−64.

When an attacker only tries a fraction of all keys, the success probability is proportional to the number
of keys tried. A cipher with a key of n bits is at best (t, t/2n)-secure, for any t between 1 and 2n,
because no matter how strong the cipher, a brute-force attack against it will always succeed. The key
thus needs be long enough to make brute-force attacks unfeasible in practice. But the key size does not
always match the security level, it only gives an upper bound, or the highest possible security level.
Choosing a security level using current standard block ciphers is equivalent to selecting between 128-bit
and 256-bit security. 128-bit security means that 2128 operations are needed to break that cryptosystem.
Consider the fact that the universe is approximately 288 nanoseconds old. Since testing a key with
current technology takes no less than a nanosecond, an attacker would need several times the age of
the universe to succeed if it takes exactly one nanosecond to test a key. Even forecasting the Moore's
law still true for decades to come (every two years, a computer is able to compute 1 more bit key in
one hour) the current 128-bits security will hold enough for years.
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Computational indistinguishability Let's have X and Y , two distributions over {0, 1}n. For
every A : {0, 1}n → {0, 1}, X and Y are computationally indistinguishable if for every polynomial-time
A and every polynomially bounded ε we have:

|Pr[(A(X) = 1]− Pr[A(Y ) = 1]| ≤ ε

Ciphertext indistinguishability is a property of many encryption schemes. Intuitively, if a cryp-
tosystem possesses the property of indistinguishability, then an adversary will be unable to distinguish
pairs of ciphertexts based on the message they encrypt. The property of indistinguishability under cho-
sen plaintext attack is considered a basic requirement for most provably secure cryptosystems, though
some schemes also provide indistinguishability under chosen ciphertext attack and adaptive chosen
ciphertext attack. Indistinguishability under chosen plaintext attack is equivalent to the property of
semantic security, and many cryptographic proofs use these de�nitions interchangeably.

A cryptosystem is considered secure in terms of indistinguishability if no adversary, given the
result of the encryption of one message randomly chosen in a two-element space, is able to identify
which of the two elements was chosen with a probability signi�cantly better than random guessing
(1/2). If any adversary can succeed in distinguishing the chosen message (respectively ciphertext) with
a probability greater than 1/2, then this adversary has an advantage in distinguishing the message
(respectively ciphertext), and the cryptosystem is not considered secure in terms of indistinguishability.
By de�nition, with a secure scheme, no adversary should be able to learn any information from seeing
a ciphertext, therefore no adversary should be able to do better than just guessing randomly.
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4.7.3 Cryptanalysis

Results of a cryptanalysis - Partial vs total break Attacks can be classi�ed based on what
type of information the attacker has available.

� Ciphertext-only: the attacker has access only to a collection of ciphertexts.

� Known-plaintext: the attacker has a set of ciphertexts and their corresponding plaintext.

� Chosen-plaintext (chosen-ciphertext): the attacker can obtain the ciphertexts (plaintexts) cor-
responding to an arbitrary set of plaintexts (ciphertexts) they may choose.

� Adaptive chosen-plaintext: a chosen-plaintext attack where the attacker can choose plaintexts
based on information learned from previous encryptions, similarly to the Adaptive chosen ci-
phertext attack.

� Related-key attack: a chosen-plaintext attack where the attacker can obtain ciphertexts en-
crypted under two di�erent keys. The keys are unknown, but the relationship between them is
known (for example two keys that di�er in the one bit).

The results of cryptanalysis can also vary in usefulness. Lars Knudsen classi�ed various types of
attack on block ciphers according to the amount and quality of secret information that was discovered:

� Total break � the attacker deduces the secret key.

� Global deduction � the attacker discovers a functionally equivalent algorithm for encryption
and decryption, without learning the key.

� Instance deduction � the attacker discovers plaintexts (or ciphertexts) not previously known.

� Information deduction � the attacker gains some Shannon information about plaintexts (or
ciphertexts) not previously known.

� Distinguishing algorithm � the attacker can distinguish the cipher from a random permutation.

Academic attacks are often against weakened versions of a cryptosystem, such as a block cipher
or hash function with less rounds. Many attacks become exponentially more di�cult to execute as
rounds are added to a cryptosystem, so it's possible for the full cryptosystem to be strong even though
reduced-round variants are weak. Nonetheless, partial breaks that come close to breaking the original
cryptosystem may mean that a full break will follow. For example, the successful attacks on DES,
MD5, or SHA-1 were all preceded by attacks on weakened versions.

In academic cryptography, a weakness or a break in a scheme is usually de�ned quite conservatively:
it might require impractical amounts of time, memory, or known plaintexts. It also might require the
attacker to be able to do things many real-world attackers can not: for example, the attacker may
need to choose particular plaintexts to be encrypted or even to ask for plaintexts to be encrypted using
several keys related to the secret key. Furthermore, it might only reveal a small amount of information,
enough to prove the cryptosystem imperfect but too little to be useful to real-world attackers. Finally,
an attack might only apply to a weakened version of cryptographic tools, like a reduced-round block
cipher, as a step towards breaking of the full system. As long as the attack is more e�cient than brute
force (i.e. trying all possible keys), the attack is considered valid.

Brief history of cryptanalysis Given some encrypted data, the goal of the cryptanalyst is to
gain as much information as possible about the unencrypted data.
Historically, cryptography was �rst academically studied in 1981 with the �rst CRYPTO conference
where observations on some undesirable properties of the DES were established. Practically, most
cryptanalytic techniques were developed in the 1990s. A number of them are variants from two main
discoveries. First, di�erential cryptanalysis was found by Biham and Shamir and presented at CRYPTO
90 [60].
Then, linear cryptanalysis was developed by Matsui and presented at EUROCRYPT 93 [177].
The cryptographers community then tried to either use or enhance these techniques to break public
ciphers and some introduced original improvements. These two techniques also led to the development
of criteria for security evaluation of block ciphers.
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Di�erential cryptanalysis In 1990, Eli Biham and Adi Shamir introduced di�erential cryptanal-
ysis, a chosen-plaintext attack for analyzing ciphers based on substitutions and permutations. Applied
to DES, the attack is more e�cient than brute force, but it requires a large number of chosen plain-
texts. As compared to brute force, which requires a single known plaintext/ciphertext pair and takes
256 operations, di�erential cryptanalysis requires 236 chosen plaintext/ciphertext pairs and 237 opera-
tions.
Since the publication of di�erential cryptanalysis, one of DES's designers revealed that the DES design
team already knew about di�erential cryptanalysis when the cipher was published as standard, but
had to keep it secret for reasons of national security. He also revealed that they chose the speci�c
substitution and permutation parameters of DES to provide as much resistance to di�erential crypt-
analysis as possible.
The goal of di�erential cryptanalysis is to use several plaintexts with a �xed XOR di�erence and an-
alyze the di�erence in the resulting ciphertext given by each plaintext. Using these di�erences, each
possible key is assigned a probability of success. The more plaintext/ciphertext couples are used, the
more the attack can focus on a smaller number of probable keys. Once a su�ciently small number of
keys is found, the attacker can perform a brute force search on the remaining probabilities.
Applied to block ciphers, di�erential analysis can be described as a set of techniques aiming at tracing
di�erences through the network of transformation, discovering where the cipher exhibits what is known
as non-random behavior and exploiting such details to recover the secrete key (cryptography key).
For any particular cipher, the input di�erence must be keenly selected for the attack to be successful.
An analysis of the algorithm's internals is undertaken; the standard method is to trace a path of highly
probable di�erences through the various stages of encryption, referred to as di�erential characteristic.
In the process, observing the desired output di�erence between the two chosen or unknown plaintext
inputs suggests possible key values.

Linear cryptanalysis Linear cryptanalysis is basically a known plaintext attack, in which an
attacker studies the linear relations between the plaintext and the ciphertext that hold with a certain
probability. This approximation can be used to assign probabilities to the keys and �nd the most
probable one.
The focus of linear cryptanalysis is the statistical analysis against one round of decrypted ciphertext.
Usually the only non-linear part of a block cipher is the substition layer made of one or several Sboxes.
The idea is to approximate these boxes with a linear expression of the form:

n⊕
i=0

Xi ⊕
m⊕
i=0

Yi = 0

Where Xi and Yi respectively are the inputs and outputs of the Sbox. For a n-bit input, m-bit
output Sbox, there are (2n− 1)× (2m− 1) possible linear approximations. The attack then consists in
investigating all possible linear approximations and the probabilities that these approximations hold.
As Sboxes have 2n possible inputs, if x is the number of times a linear approximation holds, the
resulting probability is computed by p = x/2n and the corresponding bias is de�ned as ε = p − 1/2.
Once the approximation of the Sboxes found, the goal is to combine them so that a �nal approximation
of the cipher only involves plaintext bits, ciphertext bits and key bits.
Linear cryptanalysis requires a r− 1 rounds linear approximation of a cipher if the cipher iterates in r
rounds. Then only a key guess on some bits of the key are needed to expand the linear approximation
to r rounds.
Matsui showed that the number of known plaintexts required in the attack is proportional to ε−2. The
probability of success of the attack increases with the number of plaintext considered.

Extensions of di�erential and linear cryptanalysis Since the publication of these two
techniques several variants and improvements have been brought by the cryptographic community:

� Di�erential-linear cryptanalysis: a chosen plaintext attack where the linear cryptanalysis is used
to provide a di�erential characteristic. The goal is to reduce the amount of plaintexts required
to mount the attack.
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� Non-linear cryptanalysis: an improvement of linear cryptanalysis that decreases the number of
plaintexts required. The goal is to �nd non-linear approximations of Sboxes, which give better
probabilities for the key search.

� Chosen-plaintext linear cryptanalysis: an improvement of linear cryptanalysis based on the choice
of a particular plaintext to recude the number of active Sboxes.

� Partial or truncated di�erential: it is possible to build truncated di�erentials with signi�cant
probabilities for some ciphers that are secure against di�erential cryptanalysis. These di�erentials
predict that some parts of the output di�erence is 0, while other parts are non-0.

� Higher order di�erentials: an improvement of di�erential cryptanalysis that studies the propaga-
tion of a set of di�erences between a larger set of plaintexts. The goal is to calculate higher-order
derivatives of the round function to access better probabilities for key search.
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4.8 Side-channel analysis

4.8.1 De�nition

A side-channel analysis is an attack based on the information that can be gathered from the imple-
mentation and the processing of sensitive data on a device. Any device produces emanations that can
be measured to retrieve the sensitive data. The means can be a study of the time, power consumption,
electromagnetic radiation, light emission or even sound. This attack can be mounted on computers,
smart cards, FPGAs and any device that will compute a cryptographic operation.
Attacks can be divided into two categories :

� Passive attacks that will consist only in observing the target and any information it can leak.
The attacker can possibly modify the target to execute a speci�c behavior to observe or to repeat
some operation several hundreds or thousands of times.

� Active attacks that will consist in manipulating the target or its environment outside of its
normal behavior. Some examples are fault injections, clock glitching or changing the program
�ow.

4.8.2 Initial discovery.

The U.S. Army and Navy were using secure teletypewriter communications during WWII, the Bell
Telephone mixing device 131-B2. Friedman claims that in 1943, engineers from Bell Telephone were
testing the 131-B2 when they realized that each time the machine was actioned, a spike appeared on an
oscilloscope in a remote place in the lab. Further explorations revealed that it was possible to recover
the plaintext being encrypted by the machine using the remote oscilloscope. The engineers set up a
demonstration for military o�cials to prove that this e�ect was exploitable in the �eld. An experiment
was realized from a building about 25 meters away from a Signal Corps' cryptocenter. After 1 hour of
data capture and 3 hours of analysis, 75% of the plaintext data that was processed was recovered.

Bell Labs was appointed to study the causes of these leakages and how to limit or stop them. They
identi�ed three di�erent sources:

� Radiation through space and magnetic �elds. The protection suggested is shielding.

� Conducted signals on power or signal lines. The countermeasure hinted is �ltering on the lines.

� Space-radiated or conducted signals. The �x proposed is masking. In this context, masking
consists in creating a lot of ambient electrical noise to override, or hide the signals.

Because of the limited time and the di�culty to implement these solutions, the US being at war and
having cryptoprocessors used in many di�erent war zones abroad, the idea was left unused. At the end
of the war, most of the machines and papers describing their operations were destroyed. A declassi�ed
document from the NSA [124] explains that the �rst work undertaken by the US government goes
back to 1951, when CIA rediscovered the Bell Labs's �ndings. They realized that any time a machine
was used to process information electrically, the various switches, contacts, relays or other components
may emit radio frequency or acoustic energy. These emanations can then be used to trace back either
the plaintext or the key used to encipher the messages.
Several attempts were made to try and diminish as much as possible this phenomenon by hiding the
signal into a noise, or other operations, by masking the data in such a way that clear data were not
directly linked to the emissions, by trying to decorrelate them as much as possible from any emission
,or by shielding or coating the various machines with metal surroundings creating a Faraday cage. All
techniques used for either retrieving signals and information from cryptographic devices or protecting
a device from side-channel analysis are part of a NATO and NSA certi�cation code-named TEMPEST.
This speci�cation is available to agencies and companies that work with American or NATO secrets.

4.8.3 Compromising emanation

The NIST de�nes compromising emanations as "unintentional signals that, if intercepted and analyzed,
would disclose the information transmitted, received, handled, or otherwise processed by telecommu-
nications or information systems equipment". Often, useful information can be extracted from the
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emanations of any electrical device in use.
These emanations can be of di�erent types and nature. It can be electromagnetic emanations directed
from the switching of transistor during an operation, acoustic energy that can be linked to a press on a
keyboard or even the sound made by internal components of a computer. Information about a critical
source can even be picked up using optical emanations such as the light emitted by a display or the
optical signal from LED, as shown in [172].
The electromagnetic emanations of a device can be eavesdropped and saved for analysis as explained in
[225] to retrieve the image of a CRT display through the EM �eld emitted. The historical background
of electromagnetic compromising emanations, is well detailed in the PhD thesis of Markus Kuhn [167].

4.8.4 Timing attacks

Side-channel attacks were introduced by Paul Kocher at CRYPTO 1996 [165]. The idea is that an
adversary can recover the secrets involved in a computation by measuring the time a cryptographic
device needs to execute the algorithm. Kocher presented key-recovery attacks on implementations of
RSA, Di�e-Helmann, or digital signature schemes and other algorithms.
Suppose the operation is a modular exponentiation with known base and secret exponent. Assume the
modular exponentiation is implemented as a sequence of modular multiplications and squarings. The
sequence of operations depends on the secret exponent. In addition, it is reasonable to assume that the
modular multiplication takes di�erent time for di�erent inputs. Take the case of the RSA encryption:
C = M e (mod n) with M the message, C the encrypted message, e a natural integer, prime with the
Euler's totient function of two prime numbers and n an integer such as e < n.
The attacker collects enough measurements of the execution time for the exponentiation. Suppose the
implementation handles �rst the least signi�cant bit of the secret exponent e0. The attacker can model
the execution time based on the known inputs and a guess for e0. This predictions are contrasted
with the measurements, and if they match, the guess is deemed correct and the attack continues in a
divide-and-conquer fashion against the next secret bit e1 carrying over the information learned on e0.

Quick example Let's show a quick example with a very simple attack on a PIN code verifying.
Let's suppose the PIN is four digits, each between 1 and 9.

boolean ver i fyPIN ( byte [ ] inputPIN )
{

f o r ( i n t i = 0 ; i < correctPIN . l ength ; i++)
i f ( inputPIN [ i ] != correctPIN [ i ] )

r e turn f a l s e ;
r e turn t rue ;

}

While an exhaustive search would need to test every 10000 possibilities, it is possible to mount an
attack with only 40 tests at maximum with a timing attack. Actually, the test will stop if the �rst
number is wrong. An attacker then just need to test 0xxx, 1xxx, ..., 9xxx and for one of the ten
possibilities, the code will take longer to execute as the �rst if call will not return false. It is then
su�cient to do the same with the three other digits to �nd the correct PIN.

4.8.5 Power analysis attacks

Power analysis attacks were introduced by Paul Kocher, Joshua Ja�e and Benjamin Jun in a technical
report in 1998 [164], introducing a whole new area of research. Power analysis studies the instantaneous
power consumption of a device performing cryptographic operations to �nd cryptographic keys. Power
analysis can be easy to implement if no countermeasures are present, it does not require expensive
equipment and the cost per device is low. This discovery had a huge impact on all the industry that
sold cryptographic solutions.

Simple power analysis Simple power analysis (SPA) represents several analysis techniques in-
cluding gathering and analyzing one or several traces, and inspecting patterns. If successful, SPA
can completely break a cryptographic implementation using very few traces. It is mainly used in the
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domain of public-key implementations but secret-key implementations can also be vulnerable.
SPA attacks are highly dependent on the details of the implementation which can make them di�cult
to apply.
A simple example with a RSA signing operation. This operation uses a public input m that is raised
to a private exponent d producing the signature md (mod N). If the exponentiation uses a naive
square-and-multiply algorithm, the sequence of performed square and multiply operations reveals the
secret exponent d. This sequence of operations may be distinguishable in the power trace, and thus
be susceptible to a SPA attack. In the classical consumption model, each square operation will appear
as a 0 and each multiply as a 1, hence leaking the secret exponent.

Di�erential Power Analysis Di�erential power analysis (DPA) analyzes several hundreds of
traces (up to millions) to recover cryptographic secrets. It exploits the fact that the power consumption
is correlated with the data value being handled by the device, the power dissipation to manipulate one
bit to 1 is di�erent from the power dissipation to manipulate it to 0.
It �rst needs to model the power consumption when the device is handling a concrete intermediate
value. This modeling involves a guess of a part of the key (usually a byte). Then, the di�erent key-
dependent models are compared against measurements. The key guess that leads to a better �t is
deemed as the correct key candidate.
DPA has many attractive properties: it is resilient to noise (the success rate can be ampli�ed by using
more traces) and does not require extensive computational resources. There are many variations on
SPA and DPA. A very popular variant is Correlation Power Analysis [73].
Templates attacks were introduced at CHES 2002 by Suresh Chari, Josyula R. Rao and Pankaj Rohatgi
[84]. These attacks are variants of DPA where the adversary can perform a prior pro�ling with a study
device under his control. Another variant is collision attacks: internal collisions are detected during
the executions to recover key material. The idea was presented at FSE 2013 by Kai Schramm, Thomas
Wollinger and Christof Paar [213].

4.8.6 Fault attacks

The �rst paper on faults attacks was published by Dan Boneh, Richard A. DeMillo and Richard J.
Lipton in [69]. They presented a theoretical model for breaking various cryptographic schemes such as
the Fiat-Shamir protocol or certain RSA implementations, by taking advantage of random hardware
faults. This attack was described only to target public key cryptosystems. Biham and Shamir then
extended this attack to some secret key cryptosystems such as DES [61]. They called this attack
Di�erential Fault Analysis. In this paper, they described how it can be feasible to access not only
cryptographic keys of known ciphers but also the key stored in tamper-resistant cryptographic devices
even when nothing is known about the structure and operation of the cryptosystem. Fault attacks
can be of various type, depending on the platform that is attacked. The most used attacks are power
or clock glitching that can be used to bypass some instruction (for example a checking operation that
happens on a given clock cycle) or fault injections by laser, that can be used to �ipping bits on SRAM
to create faulty bytes on a cryptographic computation. In 2003, Dusart et al. described a DFA on
AES [190] needing only eight successful faults injected to recover a 128 bits key in just a few seconds.

4.8.7 Countermeasures

In cryptography it is never said that there is a way to create a solution that is 100% secure, but the goal
is to make an attack as di�cult to realize as possible. It is the same for side-channel countermeasures.
There are several possibilities to make an implementation less prone to side-channel analysis, we can
cite for example:

� Solutions at algorithm level, such as masking.

� Solutions at protocol level, if an attack is known to be able to retrieve the key in a thousand
computations, one can make the key change every 500 computations.

� Solutions at implementation level, unroll an implementation, make it less iterative to make power
analysis more di�cult.
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� Hiding, by generating a noise or adding dummy operations to hide the timing or the power usage
of a single operation.

� Solutions at mechanical level, such as shielding with a metal coating, use mesh cover to detect
and/ or prevent intrusion.

In this work, we will only present countermeasure based on masking because it is a technique that
can be used on every algorithm, in any application, contrary to the other solutions.

4.8.8 Masking

Masking is a countermeasure against power analysis attacks. The point is to decorelate the values
processed by the device from the intermediate values of a cryptographic algorithm.
Each bit of the original computation is split into several shares, so that each of the shares considered
individually does not reveal any information on the original bit. Every computation is carried out by
handling only the di�erent shares; the original bit is only reconstructed at the end of the computation.

The �rst proposal At the same conference where SPA and DPA were introduced, a team from
the IBM Thomas J. Watson research center published a sound countermeasure against power analysis
attacks [83]. They proposed a masked encoding of each original bit b into k shares

b⊕ r1, r2, ..., rk−1, r1 ⊕ ...⊕ rk−1

where each ri is a random bit.
In the meantime, they provide a formal security proof arguing that this probabilistic encoding

makes power analysis attacks more di�cult in terms of traces needed to distinguish between two
possible values of an unshared bit. More precisely, the main result is that an adversary willing to
distinguish between two leakage distributions of masked bits b = 0 and b = 1 needs exponentially
more traces as the number of shares is increased. They proved that the amount of samples required to
distinguish the two distributions (corresponding to the two possible values for the unshared bit) grows
as σ2k, where σ is the noise level and k the masking order.

The duplication method A similar concept of masking was introduced at CHES 1999 by Goubin
and Patarin with the name �the duplication method� [132], hence, masking is often credited to both
the IBM team and Goubin and Patarin. Goubin and Patarin give practical constructions for comput-
ing DES and RSA. For DES they give essentially a table-based approach to compute the non-linear
functions, and provide some optimizations to reduce RAM usage.

Threshold implementation Threshold implementation were introduced by Nikova et al. in [188]
as an alternative to masking to secure implementation in the presence of glitches.
A TI is based on multi-party computation and secret sharing.
The authors identi�ed two key properties: non-completeness (any share of the masked function must
be independent of at least one input share) and uniformity (the masked function uses a uniform sharing
of the input and transforms this input into a uniform sharing of the output), which together ensure
the provable security of TI against �rst-order DPA in the presence of glitches on any hardware as long
as the independent leakage assumption of masking holds. Two other security notions were then added
to complete the security proof of threshold implementations : correctness (the masked function should
compute a masked representation of the correct unmasked output) and non-interference.
The concept was extended to higher-order security by Bilgin et al. [63].
Threshold implementation is provably secure against any order DPA with k + 1 shares needed in
input for a k order DPA resistance. Several implementations have been conducted to make those
implementations e�cient on di�erent cryptographic components, such as SBOX [62].
For an operation S from 3n bits to 3n bits, that takes as input a vector (x, y, z) and produces (a, b, c)
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as outputs, a threshold implementation at order k is such as:
S(x1, y1, z1) = (a1, b1, c1)
S(x2, y2, z2) = (a2, b2, c2)
. . .
S(xk, yk, zk) = (ak, bk, ck)

and {
(x1, y1, z1)⊕ (x2, y2, z2)⊕ · · · ⊕ (xk, yk, zk) = (x, y, z)
(a1, b1, c1)⊕ (a2, b2, c2)⊕ · · · ⊕ (ak, bk, ck) = (a, b, c)

Masking comes with a cost Given a masking order k, the principle of masking is to split all
the sensitive data manipulated by the original circuit in k + 1 shares in the masked circuit, and to
perform the computations on those shares only. In the masked circuit, each wire of the original circuit
is replaced by a set of wires, and each gate is replaced with operations on the shares equivalent to the
operation of the gate in the original circuit. This protection makes attacks more di�cult: to recover
the value of a sensitive variable, the adversary has to know the value of all its shares.
Various types of masking schemes have been considered in the literature including additive/boolean
masking [89] (b1 = b⊕m, b2 = m), multiplicative masking [131] (b1 = b ∗m, b2 = m) , a�ne masking
[231] (b1 = b ∗m1⊕m2, b2 = m1, b3 = m2), Inner Product masking [36]. All these proposals come with
signi�cant overheads in execution time and randomness consumption.
Masking techniques are one very important point to take into consideration when implementing a
cryptographic algorithm on a given device. A device carrying sensitive data needs protection against
side-channel analysis and as for cryptographic ciphering solutions, lightweight masking solution are
under the scope of intensive research to secure devices with as little cost overhead and computation
time overhead as possible.
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4.9 Hardware implementation of cryptographic algorithms

4.9.1 Choosing the implementation method - Software vs hardware
cryptography

Implementing cryptography can be as tricky as designing secure schemes. Moreover, a poor implemen-
tation can make a provably secure design completely breakable. Therefore, a focus has to be made
on implementation matters and �rst of all on which platforms our cryptographic schemes have to be
implemented.
Modern cryptographic algorithms can be implemented using either dedicated cryptographic hardware
or software running on general-purpose hardware. Each has its own pros and cons which we will try
to describe below.
When it comes to implementation aspects, several factors have to be taken in consideration. One
main drawback of having dedicated and accurate answer to each possible security issue a system may
face is that it comes with a computational cost or more exactly, costs. Cost is measured in terms of
execution time, memory use, power consumption, and die surface. All the history of security company
shows the constant struggle between the trades-o�s of lowest implementation cost versus the required
level of security. We can cite as example the RSA where keys lengths correspond to the level of se-
curity; the longer the key is, the stronger the protection, but also the longer the key is, the higher
the complexity, i.e. the computation is longer and the required resources are larger. A prudent risk
assessment estimates which key length is su�cient for the task and, therefore, what is the minimum
level of complexity required for the implementation.

Software-Based Encryption is the process of keeping data safe using software. Software is usu-
ally installed in host computers that encrypt and decrypt data. It usually shares processing resources
with all other programs or processes on the system that might have an impact on performance of all
other functions of the system.
It is usually less costly to develop software solutions as no speci�c hardware is required. The funda-
mental cryptographic needs for these less complex secure applications are hash functions and digital
signature veri�cation that can be realized with software implementation. It is simpler than embedded
protection and does not impact the die size. Moreover, it does not require a specialized hardware block
that may not be used by every customer, and, �nally, does not raise system costs.
Software encryption programs are more prevalent than hardware solutions as they can be used to
protect all devices within an organization. These solutions can be cost e�ective as well as easy to
use, upgrade and update. Software encryption is readily available for all major operating systems and
can protect data at rest, in transit, and stored on di�erent devices. Software-based encryption often
includes additional security features that complement encryption, which cannot come directly from the
hardware.
Moreover, software solutions allow �exibility in the choice of the algorithm as adding a new algorithm
to the platform is as simple as a software update.
The protection granted by these solutions, however, is as strong as the level of security of the operat-
ing system of the device. A security �aw in the OS can easily compromise the security provided by
the encryption code. Encryption software can also be complicated to con�gure for advanced use and,
potentially, could be turned o� by users. Performance degradation is a notable problem with this type
of encryption. The security level of a software-based cryptographic module is upper-bounded by the
security level of the mechanism that protects the secrecy and integrity of the memory space it uses.
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Hardware-Based Encryption is a process of keeping data safe using dedicated and separate
processor. It is more cost-e�ective for larger companies because it does not require any additional
software installation. It provides greater throughput capacity and speed in large-scale environment.
A hardware-based solution is most advisable for sensitive data protection on portable devices such as
laptops or a USB �ash drives. It is also e�ective when protecting data at rest. Drives containing sensi-
tive data such as banking applications, private data or government �elds are better protected through
hardware keys that can be e�ective even if the equipment is stolen or installed in another computer.
Hardware-based encryption o�ers stronger resilience against common attacks. In general, an attacker
will not be able to perform brute-force attacks to a hardware-encrypted system because the crypto
module will shut down the system and possibly compromise data after a certain number of attempts,
while in software-based solutions, hackers might be able to locate and possibly reset the counters or
even copy the encrypted �le to di�erent systems for parallel cracking attempts. It also includes faster
algorithm processing, tamper-proof or tamper-resistant key storage, and protection against unautho-
rized code.
On the other hand, hardware implementation is relatively �xed and takes a relatively long time to
implement. Even a simple implementation of an algorithm on FPGA, is more di�cult to design, code,
and test than the same e�ort in software.
Moreover, hardware solutions might be inapplicable due to their cost. A hardware encryption is tied
to a particular device and updates can only happen through device substitution.

Implementation platforms There are typically four di�erent settings (or platforms) that can be
used to implement and run cryptographic applications.

� The General-purpose processor (Central Processing Unit (CPU) or microcontrollers for example).
Usually a classic desktop or laptop CPU, it can also be part of an embedded device. Most of
the time it carries only a few computation cores (less than 20) that can be used very fast and it
can execute arbitrary instructions (in arbitrary order) from its assembler language. Encryption
algorithms running on CPUs are most likely software-implemented because the algorithms (i.e.
the instructions) are merely information given to the CPU for execution. CPUs are best at
running complex, linear algorithms.

� The Graphics Processing Unit (GPU). It can be used as desktop or laptop graphics processor or
a supercomputing computation accelerator. It is characterized by its high number of cores, the
low speed of each core and the limited instruction set. GPUs are made to run simple algorithms
that are massively parallel. Much like CPUs, their algorithms are implemented in software.

� The Field Programmable Gate Array (FPGA). It is usually found in small embedded devices,
running specialized algorithms. Its hardware can be con�gured after manufacturing, at the
expense of lower speeds of operation than with ASICs. With FPGAs you change the hardware
layout of your integrated circuit to run your algorithm. Hence algorithms run by FPGAs are
said to be hardware implemented, because in its current state, the hardware can run only this
exact algorithm, nothing else.

� The Application Speci�c Integrated Circuit (ASIC).This is an integrated circuit manufactured
to run a set of function, created by producing a speci�c set of transistors. Once the ASIC is
created, it cannot be modi�ed; an ASIC is manufactured for a purpose and can only achieve
this purpose. ASICs provide high speed for this algorithm and are used in speed or throughput
critical applications. Hardware Security Modules (HSMs) are a good example of application using
ASICs to accelerate the execution of cryptographic operations (such as the AES or SHA hashes).
Crypto processors commonly are simple processors with additional crypto-speci�c ASICs.

As for the security of each platform, the tendency is that if going down this list, the security will
increase. CPUs are usually occupied by many di�erent processes (including the OS), but may be prone
to side-channel attacks, GPUs are commonly not used for cryptographic applications, FPGAs should
provide more security than CPUs if implemented properly and provide better raw side-channel security
and ASICs have the same bene�t, while allowing to go further into hardware exploration.
The speed increases similarly going down the list. CPUs must be capable to do many di�erent oper-
ations and cannot be too much optimized in one direction, same goes for GPUs although they have
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much more computation power if needed. FPGAs are faster because of their inherent parallelism,
con�gurable logic cells and interconnections. ASICs are the most advantageous because besides the
inherent parallelism, their architecture can be highly optimized, while being dedicated to the selected
algorithm and using fast hardwired interconnections.
The price has a similar order. CPUs are easy to obtain, cheap to program and easy to implement and
run. GPUs are also quite easy to obtain, a bit more expensive to e�ectively program and can be get to
run the code e�ciently. FPGAs are more expensive by themselves and require device-speci�c design
tools, especially for placement and routing, timing estimation, and con�guration, hence more time and
expertise and thus money. ASICs are speci�c due to their very high non-recurring engineering (NRE)
cost and long design cycles, but relatively low production cost.
For the process of designing and implementing an algorithm, it will often �rst be done in software as
it may be a lot easier to test. Once the algorithm is de�ned, the question to answer is what is this
algorithm going to be used for, which performances are important, which comes �rst between e�ciency
and �exibility? Moreover, how many devices using this algorithm will there be and do these devices
need to be protected through hardware obfuscation? Once these questions answered, the choice has to
be weighted between the costs of implementing in hardware versus the bene�ts of speed and market
control.
In our application, the choice was made towards FPGA because of required performances, and the
number of devices will not be high enough to make ASICs pro�table.

4.9.2 FPGA

FPGA stands for Field Programmable Gate Array. An FPGA is an integrated circuit that is designed
to be con�gured after manufacturing, contrary to an ASIC. A classical FPGA can be recon�gured at
will.
An FPGA is a component that can be seen as a big grid of digital components such as gates, look-
up tables and �ip-�ops that can be connected through wires. The description code used to program
the FPGA will be translated into physical connections with wires to perform the functions needed.
This translation is realized by the vendor programming tool. Similarly to ASICs, FPGAs are very
good at performing a large number of operations in parallel. Hence, they are used in high-speed,
high-performance tasks such as image processing, telecommunications, digital signal processing or
high-frequency stock market trading.

Several technologies exist for con�guring FPGA

� Static RAM: the connections are made by turning a transistor on. This technology relies on a
standard memory cell loaded at initialization, it is based on the CMOS technology. Its main
advantage is that it allows a very quick recon�guration of the circuit, at the cost of an important
surface needed.

� EEPROM: Electrically Erasable Programmable Read-Only Memory technology. Individual bits
can be re-programmed or erased electrically (UV light is not needed).

� Flash EPROM technology. Individual bits can be re-programmed or erased electrically, more
quickly than EEPROM using address sectors. Some but not all �ash devices can be in-system
programmed. Usually, a �ash cell is smaller than an equivalent EEPROM cell and is therefore
less expensive to manufacture.

� Anti-fuse: Once programmed, the FPGA is locked: a high voltage is applied across the terminals,
creating a low-resistance link. This technology is less expensive than SRAM, achieves higher
speed and needs less surface. However, the FPGA can only be programmed once, and any error
in the con�guration bitstream or during programming means that the FPGA becomes useless.

The anti-fuse technology is the most e�cient in terms of area occupation but cannot be reprogrammed.
EEPROM and Flash EPROM-based FPGAs are the second most area e�cient, namely because they do
not need additional con�guration memory, but they necessitate additional hardware for reprogramming
(if the reprogramming is needed) and the reprogramming speed is quite low compared to SRAM
technologies.
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Major manufacturers Two industry rivals Xilinx (now AMD) and Altera (now an Intel sub-
sidiary) are the FPGA market leaders, controlling nearly 90 percent of the market. Each provides a
proprietary electronic design automation software for Windows and Linux (ISE/Vivado and Quartus)
which enables engineers to design, analyze, simulate, and synthesize their designs.
Other manufacturers include:

� Microchip:

� Microsemi (previously Actel), producing antifuse, �ash-based, mixed-signal FPGAs; ac-
quired by Microchip in 2018

� Atmel, a second source of Altera-compatible devices; acquired by Microchip in 2016

� Lattice Semiconductor, which manufactures low-power SRAM-based FPGAs featuring integrated
con�guration �ash, instant-on and live recon�guration

� SiliconBlue Technologies,

� QuickLogic,

� Achronix.

Internal structure of an FPGA FPGA circuits are composed of a matrix of con�gurable logic
block, surrounded by con�gurable Input/Output (I/Os) blocks. The whole design is interconnected
by a con�gurable interconnection network. The interconnections �ll approximately 80% of the whole
surface. The internal structure of FPGAs di�ers depending on the manufacturers. Commercially, four
major structures can be found :

� Symmetrical Array

� Row-based

� Sea-of-Gates

� Hierarchical PLD

Figure 4.5: The di�erent FPGA structures

Xilinx for example uses symmetrical array while Microsemi FPGAs are Row-based.
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Resources of an FPGA FPGA resources are used to perform logic functions. Xilinx FPGA
resources are grouped in slices to create con�gurable logic blocks. A slice contains a set number of
LUTs, �ip-�ops and multiplexers. A LUT is a collection of logic gates hard-wired on the FPGA. It is
a memory representing (containing) a truth table of the implemented combinatorial function with up
to 6 inputs and provide a fast way to retrieve the output of a logic operation. A �ip-�op is a circuit
featuring two stable states. It stores a single bit value. A multiplexer, (also called a MUX), is a circuit
that selects between two or more inputs and outputs the selected input.
LUTs are grouped to slices (Xilinx) or logic array blocks - LABS (Altera). Di�erent FPGA families
implement slices, LABs and LUTs di�erently. For example, a slice on a Virtex-II FPGA has two LUTs
and two �ip-�ops but a slice on a Virtex-5 FPGA has four LUTs and four �ip-�ops. In addition, the
number of LUT inputs, commonly two to six, depends on the FPGA family.

� Area occupation When comparing ASICs implementation, the area is expressed in Gate Equiv-
alents (GEs). For FPGA, depending on the technology, the area occupation is given in slices or
logic cells (LCs), LUTs, FFs or Block RAMs.

� Slice

� LUT

� FF

� Register

� Block RAM

� Frequency

� Throughput

� Throughput/area ratio

� Energy

� Power

A LUT (Look-Up Table) is a small asynchronous SRAM that is used to implement combinational
logic, while FF (Flip-Flop) is a single-bit memory cell used to hold state. LUTs are usually read-only
and their content can only be changed during FPGA con�guration. But in Xilinx FPGAs usually half
of the LUTs can actually be written to, so they can be used to implement many small RAMs (so-called
"distributed RAM").
Flip-Flops are components that can have two stable states, representing one bit. A Flip-Flop is the
smallest storage resource on FPGAs. Each one is a binary register used to store the logical state
between each clock cycle.
A �ip-�op stores a single bit of data; one of its two states represents a "one" and the other represents a
"zero". Such data storage can be used for storage of state, and such a circuit is described as sequential
logic in electronics. When used in a �nite-state machine, the output and the next state depend not
only on the current input, but also on the current state. It can also be used for counting pulses and
synchronizing variably-timed input signals to some reference timing signal.
Multiplexers (that can be viewed as data selectors) are devices that select between several input signals
and forward the selected input to a single output line. The selection is directed by a separate set of
digital inputs called the select lines. A multiplexer of 2n inputs has n select lines to select which input
line to output.
A register is a group of �ip-�ops that stores a bit pattern. A register on the FPGA has a clock, input
data, output data, and an enable signal port. At every clock cycle, the input data is latched, stored
internally, and the output data is updated to match the internally stored data. Registers can be used
to perform functions such as:

� Holding state between iterations of a loop

� I/O synchronization

� Handshaking data between clock domains
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� Pipelining

Block RAM, or block memory, is RAM that is embedded throughout the FPGA for storing data.
BRAM memory can be used for the following tasks :

� Transfer data between di�erent clock domains using local FIFOs (First In First Out structures).

� Transfer data between the FPGA and a host processor using a Direct Memory Access (DMA)
FIFO.

� Transfer data between two FPGAs using a peer-to-peer FIFO.

� Store huge loads of data on FPGAs. This is more e�cient than using RAM based on LUT tables.

Designing an FPGA-based application The digital circuitry which should be implemented
in the FPGA can be described using schematic diagrams or hardware description languages (HDL).
The HDL code is fundamentally di�erent from a software code - it describes the hardware architec-
ture instead of the algorithm. The HDL code is compiled and transformed to netlists containing logic
elements available in the selected FPGA family: LUTs, FFs, RAMs, DSP components and other ded-
icated blocks. The netlist is mapped to the device during the placement and routing process.
Logic blocks can be con�gured to perform complex combinational functions, or simple logic gates such
as AND and XOR. In most FPGAs, logic blocks also include memory elements, which may be simple
�ip-�ops or more complete blocks of memory.
Many FPGAs can be recon�gured online to implement temporarily di�erent logic functions, allowing
�exible recon�gurable computing as performed in computer software.

4.9.3 Implementation methods

The implementation method used by the designer of a cryptographic algorithm on any kind of plat-
form depends largely on the implementation methodology, so it is of course the case for FPGA. Many
di�erent strategies exist to optimize di�erent resources and the implementation decisions have a sig-
ni�cant impact on the area occupation and performance of the targeted architectures. Let's take the
example of the AES [1]. This algorithm can be divided into two parts: the key expansion part and
the cipher module. The algorithm is also divided into di�erent iterating rounds, 10 for a 128-bit key,
12 for a 192-bit key and 14 for a 256-bit key. Each round iterates the same four operations in the
same order: SubByte, ShiftRows, MixColumns and AddRoundKey, except for the last round which
does not compute the MixColumns operation. A naive and straightforward implementation of the AES
would be to implement each operation linearly, one after the other, in the same way a C code could
be implemented naively. The key schedule would be executed �rst, computing each subkey for each
round, and then the cipher part using these subkeys. This is usually not the preferred methodology as
there exist di�erent possibilities to improve the implementation performances and occupation.

Unrolling the implementation The cipher module essentially is an iterative looping structure;
the �rst rounds are identical but the last one only di�ers in one operation. Classic loop optimization
technique like loop unrolling can then be applied to optimize the implementation in terms of speed.
Loop unrolling is a technique that replaces a looping structure with N copies of that looping body,
hence reducing the total loop iterations by N times (i.e. inter-round optimization). Loop unrolling of
the cipher module can be combined with key expansion routine to achieve fully parallel implementation
of AES algorithm. Key expansion routine can be split into smaller key expansion modules that would
be placed along unrolled round operations of cipher module (online key expansion). Unrolling the
cipher module combined with split key expansion modules result in fully parallel implementation of
the AES algorithm on FPGA. This parallel implementation leads to an improved throughput of AES
algorithm compared to a straightforward implementation. However, unrolling the code increases the
area occupation of the resulting algorithm.
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Storing memory in BRAM Another important way of optimizing the performances of an im-
plementation is to use or not the BRAM blocks present in most of current FPGAs to store part of
the code. Using BRAM blocks to store data is an e�cient way of minimizing the area occupation
but it increases the delay, as the FPGAs takes more time to access data stored in BRAM than to
access it while it is stored in the logic cells (or slices). The work realized by Umer Farooq and M.
Faisal Aslam provides comparison of �ve di�erent implementation of the AES storing the SBOX in
the logic cells or in BRAM, and using rolled or unrolled implementation [119]. Each implementation
choice has an impact on the area occupation, the delay and the maximum throughput achieved by the
implementation.

Hardware API for Lightweight Cryptography The �rst public competition for crypto-
graphic standards was the NIST call for the Advanced Encryption Standard [1]. During this com-
petition, the main criteria of competition were security and software performances. The hardware
performances only came into consideration close to the end of the standardization process. The same
happened during the SHA-3 competition and there are still only a few referenced papers on hard-
ware performances of the candidates. The real change came with the CAESAR competition, when
a standard hardware API (Application Programming Interface) was developed and validated by the
competition committee [141]. Hardware implementations were required for all submissions from round
3, with the development team helping candidates to use and develop their solutions. This API was not
mandatory but it helped to de�ne new guidelines for comparison at the second half of the competition.
The implementation and linked results of each candidate can be found here [3].
For the NIST Lightweight Cryptography Standardization process, no hardware implementation was
mandatory but before the announcement of the round two, some candidates were found with a hard-
ware implementation compliant with the CAESAR Hardware API. To fairly implement and compare
the di�erent candidates of the NIST standardization process for Lightweight Cryptography (LWC), a
Framework for Benchmarking of Hardware Implementations was introduced and presented by Kaps et
al. in [156] and [155]. Based on the framework developed for the CAESAR competition [2], it gives the
developers a guideline to implement the di�erent ciphers. This requires a few modi�cations to adapt
the implementations based on the CAESAR API and the overhead from this API is well explained in
[157]. With the beginning of the round 2 in September 2019, more implementations, compliant with
this API, have been created and can be used as a fair basis for benchmarking hardware performances
[185].

Speci�cations In order to speed up the development process, both CAESAR and LWC API fea-
ture a development package and an Implementer's Guide. Both designs use the same modules: the
Preprocessor, FIFO, Postprocessor and the cryptographic core. The input data are split into two parts:
the public data (pdi) and the secret data (sdi) which are both received by the Preprocessor. After
removing the header information, the data are passed to the cryptographic core which will implement
the chosen cryptographic primitive (designers only have to modify this part to implement their solu-
tion). The Postprocessor will then get the data output by the cryptographic core and add the API
speci�c header data before sending it to the ouput port (do). In addition to some changes, the LWC
package also fully supports hash algorithms, which will not be considered in this manuscript as not all
candidates specify one.

Figure 4.6: The LWC API
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Implementation process In order to fairly compare all candidates, one method must be chosen
and kept during the development process of each algorithm. We decided to follow the method chosen
and explained in [192]. Each algorithm is developed following a basic-iterative construction, meaning
that each step or round of an algorithm will be executed in one clock cycle. If the permutation of an
algorithm is made of steps and rounds, such as ACE [13], one permutation will be executed in number

of steps * number of rounds clock cycles (in this example 16 ∗ 8 = 128 clock cycles). Moreover, all
implementations presented in 8 are fully compliant with the LWC Hardware API.

4.9.4 Comparing the implementation results

Type of FPGA based on applications The FPGA can be classi�ed into three types based on
their application: low-end, mid-range and high-end FPGAs.
Low-end FPGAs are designed for low power consumption, low logic density and low complexity per
chip. In the works presenting algorithms or applications targeting lightweight implementations, the
results are often targeting the Spartan family from Xilinx or the Intel Cyclone families.
Mid-range FPGAs consist in a trade-o� between low-end and high-end applications and are developed
as a balance between performance and cost. FPGA results when no particular application is targeted
are sometimes presented on Artix FPGAs from Xilinx.
High-end FPGAs are developed for logic density and high performance, where the most important
resource is either throughput or throughput on area ratio. Comparisons targeting high performance
applications are often studied using the Virtex FPGAs from Xilinx, as it is the case for the LWC
standardization process or the CAESAR competition.
When comparing di�erent algorithms, schemes or implementation methods, several di�erent resources
are to look upon. Depending on the targeted application, the most important ones can di�er. For
example, lightweight applications target a low area occupation and a good energy and power e�ciency
(lightweight components only have a few gates dedicated to security and have little or no place for
battery and need solutions with a reduced energy consumption).
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Chapter 5

Block ciphers

5.1 Introduction

Block ciphers are arguably one of the best understood primitives in the �eld of symmetric cryptog-
raphy, if not the best. Over the last decades, solid theoretical foundations have been developed and
several design principles have been established to allow cryptographers to construct block ciphers with
solid basis against cryptanalysis.
From the �rst standard in 1976 [186], many improvements have been brought, not only in term of cre-
ativity, or security, but also performances. The current challenges in designing new block ciphers tend
to follow the development of new products which all need security and require as compact hardware
as possible.
This brought the need for more compact design, improving performances, while at the same time taking
no compromises regarding to security. Research in block ciphers is also oriented towards development
of new, more e�cient attacks to prove the robustness of existing ciphers and to propose new cipher
designs or design methodologies.

In 1883 Auguste Kerckho�s published two papers in La Cryptographie Militaire [159] in which he
stated six axioms of cryptography. In modern words, these axioms can be summarized as:

� The system must be mathematically and physically indecipherable

� It must not rely on secret algorithms or parameters

� It must be easy and/or e�cient to transmit the key and change it

� It must be applicable to telecommunications

� It must allow lightweight implementations

� It must be user friendly and its use must not require technical prowess.

The second axiom, now known as Kerckho�s' Principle states �Il faut qu'il n'exige pas le secret,
et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi� which, in English, means that
the method should not be required to be secret, and it can fall into the hands of the enemy without
inconvenience.

This implies that the security shall only rely on the secrecy of the key. This relates to Claude
Shannon's maxim: �the enemy knows the system.� This may be the most important design principle
for any cipher: avoid secret designs or design principles. Indeed, scrutiny leads to better ciphers and
understanding of possible attacks, but obscurity may give a false sense of security, leading to design
mistakes or shortcuts. Thus, the design of cryptographic primitives shall not only be described, but
also explained and detailed in its every choices.

5.2 De�nitions and design principles

A block cipher is an algorithm that applies a permutation to the set of all blocks of a �xed length,
selected by a key. The permutation is called encryption and converts a plaintext into a ciphertext.
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The inverse permutation is called decryption and converts a ciphertext into a plaintext using the same
key used for encryption. Usually, the cost to compute encryption and decryption are identical or fairly
similar.
A cipher is classically deemed secure if it is not feasible to determine the key, even with a large set of
plaintext/ciphertext pairs available.

Modern concepts can be de�ned to prove the security of a block cipher:
Indistinguishability: two systems are said to be indistinguishable if no e�cient algorithm is able to
decide which one of the two systems it is interacting with. A block cipher E(K, ·) and its inverse
D(K, ·) with an uniformly random key K are secure if E and D are indistinguishable from a truly
random permutation π and its inverse π−1.
Indi�erentiability: two systems are said to be indi�erentiable if and only if the security of any cryp-
tosystem using one as a component is not a�ected when substituted by the other one. In other words,
a block cipher is secure if it is indi�erentiable from an ideal one.
Any attack against a block cipher should not run faster than brute force on the key space. Moreover,
a block cipher should not be approximable by any easily computable function of the input with a non
negligible bias, implying that a block cipher shall be non linear.
Another desirable property is the avalanche e�ect, which means that any change in either the key or
the plaintext should induce an important change in the ciphertext. This was formalized by Webster
and Tavares as the Strict Avalanche Criterion (SAC) [229]: "Complementing a single bit in the input
or in the key should change any bit in the output with probability 1/2, for any input or key bit and
for any output bit."
Claude Shannon �rst formalized the idea of product cipher by de�ning it as a sequence of rounds. The
input to the �rst round is the plaintext, then the output of each round is used as input for the next
one. Finally, the output of the last round is the ciphertext. Each round is a simple cipher itself, using
a round key, derived from the main one. Block ciphers then need a third operation, namely the key
schedule (or key expansion) that will generate round keys from the encryption key.
In order to simplify the construction, Shannon suggested to build a product cipher by repeating the
same steps over and over until the desired robustness is achieved. Intuitively, increasing the number of
rounds improves the security of a cipher at the expense of speed, while reducing the number of rounds
can improve performance at the expense of security. This trade-o� is often considered during design
of new block ciphers.

Figure 5.1: An iterated product block cipher

The operations used to build each round shall of course provide both confusion and di�usion.

5.3 Substitution-Permutation Networks

To achieve both confusion and di�usion, a classical way to operate is to use a substitution function
or substitution layer that will provide confusion and a di�usion layer for di�usion. The separation of
these two operations allows to construct the rounds from simpler operations that can be more easily
mathematically analyzed.
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Figure 5.2: Substitution-Permutation Network

The substitution layer can be represented as a table mapping the state value to another value,
either in one block or by dividing the state into several words. This function is sometimes called a
Sbox. The term Sbox can also be applied to a simple non-linear operation that modi�es just a part of
the state. In this case, the substitution layer consists of several applications in parallel of Sboxes to
the whole or part of the state.
The permutation layer or di�usion layer is sometimes called a Pbox. It can be realized by a �xed
permutation of the bits of the state, or more general invertible linear transformation of the state as a
vector.
A combination of these two operation types together with a key mixing constitutes a round of a
Substitution-Permutation Network (SPN). Key mixing is usually a simple operation, in most cases a
XOR or a modular addition.
Most of the block cipher designs and almost all those that are in use today are SPNs. Some of the
designs that are often presented as belonging to a di�erent family, such as Feistel networks or Lai-
Massey designs, are in fact just particular types of SPNs. Nowadays, Feistel Networks and SPNs are
treated as separate design families: when a cipher is clearly a Feistel or Lai-Massey design, it is denoted
only as such and rarely referred to as an instance of a SPN, whereas SPN usually denotes a narrower
class of ciphers such as bricklayer designs following the Wide Trail strategy.
Classical examples of SPN ciphers are Rijndael [97], and PRESENT [66].
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5.4 Feistel scheme

In the early 1970's, IBM created a crypto-group to create a form of encryption to secure their customers
data, this group was lead by Horst Feistel. They designed a cipher called Lucifer. Lucifer is a family
of block ciphers whith di�erent block and key size. The most known member of this family is the one
which later was tweaked by the NSA to become the Data Encryption Standard. This member present
a new design, named after its author: the Feistel scheme or Feistel Network.
This Feistel scheme is a design to construct block ciphers with almost similar encryption and decryp-
tion process. Actually, the only di�erence between the two operations is the order in which the subkeys
are fed into the cipher.

Figure 5.3: Feistel Network

The state is split into two halves, called branches. A function, called the F-function, is computed
on the �rst half, called the source branch. The result of this operation is composed with the other half
of the state, called the target, in a reversible way (the source branch remains unchanged). Finally, the
two branches are swapped. For the composition of the transform of the source to the target, the XOR
operation is usually used because XORing with some value is reversed by XORing again with the same
value, but other composition operations may be used.
Let the state be written as L||R, as the concatenation of the Left and Right branches. The plaintext
is the initial state L1||R1.
A round computes state Li+1||Ri+1 from Li||Ri as follows:{

Ri+1 = Li ~ F (Ri, ki)
Li+1 = Ri
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The ciphertext is the state Lr+1||Rr+1 after r rounds. The round keys k1, . . . , kr are derived from
the key through a key schedule.
Feistel networks are a special case of SPNs: only half of the state is modi�ed at each round. However,
the state is a function of the whole previous state, and the permutation function is very simple. This
also means that confusion and di�usion must be applied to the source branch. Since confusion and
di�usion are applied only to part of the state, a higher number of rounds is necessary, usually twice as
much. But these rounds can be less expensive since they have to operate only on half of the state.
Moreover, the steps are easy to revert when the composition is the XOR, since only the round keys
have to be fed in the opposite order to decrypt. This means a minor augmentation of hardware surface
needed to implement both encryption and decryption, compared to classical SPN.
Finally, the F-function can be a simple SPN itself, so all the theory developed for SPNs is recycled.
This was the case for the development of the Lucifer family of block ciphers whose �rst instances were
SPNs, and then the experience of the design of these SPNs was exploited to design the round function
of the �nal Lucifer.
In fact, the F-function itself can be an existing cipher, and this construction can therefore be seen as
a way to double the block size of a cipher: the original cipher is used as the F-function, so it operates
on half of the state of the new cipher, and the key-schedule is extended to generate di�erent round
keys for the various instances of the original cipher. For example, DEAL [163] uses DES as the round
function in this way.
One main advantage of this construction comes from the fact that the F-function does not needs
to be bijective, with serious positive implications for performance, �exibility of design, and also for
cryptographic theory. Michael Luby and Charles Racko� analyzed the Feistel cipher construction [174],
and proved that if the round function is a cryptographically secure pseudo-random function then three
rounds are su�cient to make the block cipher a pseudo-random permutation, while four rounds are
su�cient to make it a �strong� pseudo-random permutation (the cipher remains pseudo-random even
to an adversary who gets oracle access to its inverse permutation). Since these results, Feistel ciphers
are also called Luby-Racko� ciphers.

Feistel types There are many types of Feistel networks and generalizations. Please refer to Figure
5.4 for the di�erent notations used below:

1. Classic Feistel network, also called a balanced Type 1 Feistel network, the two branches have
the same size. Examples of such designs are DES, Blow�sh [212], Camellia [26], or Simon [44].

2. Mitsuru Matsui's variation as used in various components of the ciphers MISTY-1 and MISTY-2
[178], is here given as the �L-network,� i.e. the version where the F-function is on the target
branch. There is also another version, the "R-network", where the F function is on the source
branch. In these constructions the F-function must be invertible.

3. Unbalanced Feistel network. The bit length of in1 and out0 is di�erent from the bit length of in0

and out1. The output of a round can then be repartitioned before being input to the next round.
But variants exist where there is no repartitioning, two di�erent F-functions are used, with one
�expanding� its input to be applied to the smaller branch and the other one compressing the
input to apply the output to the larger branch, such as BEAR, LION and LIONESS [24]. The
most extreme example of repartitioning unbalanced Feistel network is the Thorp shu�e, where
the n bit state is divided into a 1 bit part and a n− 1 bit part. The function F takes the n− 1
bit part and outputs a single bit that is XORed to the 1 bit part. NLFSR-based ciphers such as
KATAN [100] can be described in terms of unbalanced Feistel networks.

4. Generalized Feistel Network (GFN) Type 1. It is one of the many ways to describe unbalanced
networks: instead of having two branches of di�erent width, The state is split into more than
two branches. The generalized Type 1 network depicted here has four branches, but there can
be even more. CAST-256 [14] is a classic example of this design. Other variants are possible,
for instance where the output of the F-function is combined to the in3 branch. In this case
the source branch gets permuted onto the target, as represented in the sub�gure 4(b), and this
variant is actually the inverse of the previous design, up to numbering of the branches. The
Skipjack [15] rounds combine ideas from the Type 4 and Matsui networks.
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5. Type 2, notable examples being RC6 [196], CLEFIA [219] encryption and key schedule.

6. Nyberg's Type 2 [189]. It is a variation of Type 2 with a di�erent permutation of the branches.
The sub�gure 6(a) follows Kaisa Nyberg's original depiction, whereas the sub�gure 6(b) shows
how the permutation is di�erent from the usual Feistel cyclic rotation of branches. The sig-
ni�cative di�erence between Type 2 and Nyberg's Type is that in Type 2 source and target
branches are always swapped, whereas in the Nyberg's Type some source and target branches
are permuted to branches of the same type.

7. Zheng-Matsumoto-Imai Type 3.

8. MARS Type 3, also called target-heavy, which is used in MARS [74].

9. Source-heavy, as used in RC2. This is a dual of the target-heavy topology.
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Figure 5.4: Di�erent Feistel Types58



5.5 Lai-Massey Design

In Feistel networks, part of the state is left unchanged implying that confusion is not applied to the
whole state in each round. On the other hand, Feistel networks allow more freedom in the choice of
the round functions than more general SPNs, and make it easier to design ciphers where the data
obfuscation path is the same for encryption and decryption. IDEA [168] attempts to combine the
advantages of both Feistel networks and more general SPNs. Despite being still, in principle, a SPN,
its design is original enough to warrant its own terminology: some authors indeed call IDEA and
similar ciphers a Lai-Massey Design, after the names of its inventors. There are two main di�erences
with Feistel Networks: the two halves of the state are �rst combined before being fed to the F-function,
and then the output of the F-function is combined with both halves of the state. The purpose is to
accelerate both di�usion and confusion. In order to be able to reverse this scheme the input to F must
be reconstructed from the outputs.
It is necessary that L~R = (L}∆)~ (R�∆) is satis�ed for all L,R and ∆. This is clearly satis�ed
if all three operations ~,} and � are the bitwise XOR, but other combinations of operations are
possible. For instance we can take } and ~ to be integer addition, while � is integer subtraction.

Figure 5.5: Substitution-Permutation Network

L ⊕ R is a constant, therefore a permutation layer is added after the F-function, and often an
additional operation σ (called an orthomorphism) is necessary to avoid ~-di�erentials that an attacker
may be able to exploit. The permutation layer alone may be su�cient, if it can guarantee good di�usion
over su�ciently many layers. Some designs include σ but no permutation. Serge Vaudenay [226] studies
security properties of Lai-Massey schemes and proves the same security bounds for Lai-Massey schemes
with an orthomorphism as for Luby-Racko� constructions, i.e. if the F-function is a random function,
then three rounds are su�cient to make the block cipher a pseudo-random permutation, while four
rounds is su�cient to make it a strong pseudo-random permutation.
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5.6 The Even-Mansour Schemes and the FX construction

In 1991, Shimon Even and Yishay Mansour considered the question What is the simplest possible
construction of a block cipher which is provably secure in some formal sense? To answer this question
they came up with a minimalist design [117], inspired by Ron Rivest's FX construction. The DESX
was proposed as a way to enhance the security of the DES by XORing two masked keys before and
after the DES call. In general, the name of the construction refers to �F�, i.e. any function, and �X�,
meaning that the function F is eXtended.

Figure 5.6: The DESX construction

The Even-Mansour (EM) scheme instead uses whitening keys, each as large as the plaintext block.
The resulting scheme is extremely simple: to encrypt an n-bit plaintext, XOR it with a n-bit key,
apply a publicly known permutation, and XOR the result with a second n-bit key. The main di�culty
is to construct the permutation that must be a pseudo-random function.

Figure 5.7: The Even Mansour scheme

Joan Daemen attacked this scheme [96] with a chosen ciphertext attack of complexity O(2n/2),
while the scheme needs 2n key bits. Orr Dunkelman, Nathan Keller and Adi Shamir proved in [110] a
bound Ω(2n/s) on attacks on the Even-Mansour scheme where s is the number of known plaintexts,
matching Daemen's upper bound. They also showed that one key can be used in place of two (but
both ends must be whitened), meaning that only n key bits are needed to achieve the same security
bounds.
Thus, even assuming the central permutation is ideal, the best attainable security is 2n/2.
Better security bounds can be attained by alternating more key additions and state permutations.
With these designs, not all rounds need to be keyed. For example MARS, Three�sh or LED [148]
apply key mixing only every four rounds.
The di�erences between the EM-scheme and the FX-construction are fundamental: the internal cipher
of the FX-construction does not need to be a pseudo-random function (it is often a cipher for which
the existence of distinguishers has been proved), and it is keyed. But the attacks on the EM scheme
can still be mounted, for instance by �xing the internal l-bit key and mounting a generic attack on EM
schemes on the resulting function. As a result, Kilian and Rogaway showed that if the core cipher E
is ideal, the FX construction achieves (l + n− 1− log(T )-bit security where T is the number of pairs
of inputs and outputs for E known by the attacker.

The FX-construction is an easy way to strengthen an existing cipher (against brute force attacks,
di�erential and linear cryptanalysis) with a very low additional implementation cost. But it has also
become a design criterion on its own, as several ciphers are now designed including a key whitening step.
The construction gives a trade-o� security: in order to reach a level of l + n bits of security (meaning
that no attacks taking less time than 2l+n can be mounted) a di�erent design strategy is required. The
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FEAL cipher [218] introduces an interesting form of key whitening that uses keys derived from the
initial key material. In a Feistel cipher, this can increase security by concealing the speci�c inputs to
the �rst and last round functions. This version of key whitening o�ers no additional protection from
brute force attacks, but can make other attacks more di�cult.
Some examples of cipher with key whitening: FEAL, MARS, Two�sh, RC6, Camellia, HIGHT [142],
CLEFIA, PRINCE [71] and Piccolo [217].
Pierre-Alain Fouque and Pierre Karpman described a stronger version of the FX construction where
instead of simple key whitening more complex keyed functions are used [122].

The Key schedule can be used to specify the subkeys that are mixed to the state at each round
in a product cipher (it is the case for the DES and most SPNs including AES). It can also be used to
initialize some �xed elements of a cryptographic transform, such as substitution tables (for example in
Blow�sh and Two�sh).
It can also be used to dynamically select functions from �xed families depending on its outputs. These
families of functions can be Sboxes from a list, or rotations. This was the approach used in some early
ciphers such as the DES, or CAST. In the case of FROG, the key schedule expands the key into a
program describing the data obfuscation path.
The principle of confusion states that the key bits must be combined with the plaintext bits in a
way as complex as possible. In an iterative block cipher with round key mixing between the rounds,
the use of di�usion and confusion to get rid of any linear relation between plaintext and ciphertext
contributes to the mixing of the key bits with the plaintext, such as the non-linearity between plaintext
and ciphertext.
A �rst study of how complex the key schedule must be in order to achieve a su�cient di�usion of the
key bits in combination with the round functions was done by Jialin Huang and Xuejia Lai [143]. They
speci�ed a criterion to evaluate key schedule di�usion that takes into account the round di�usion.
Most proofs of security for block ciphers rely on strong assumptions about the independence of the
round keys, or the pseudo randomness of the output of the key schedule process.
There are several ways to construct a key schedule, such as using a linear key schedule, combining bit
permutations and extractions and other linear operations (for example the DES, IDEA, or Skipjack).
Masking with �xed constants to a linear key schedule can be added, such as in SIMON and Piccolo.
PRINCE is an extreme example because each round key is just the master key XORed with a di�erent
round constant. The AES, PRESENT, or SPECK add a non-linear component to the linear operations.
Some algorithms encrypt the master key using a block or stream cipher with �xed keys, and use the
intermediate states of the block cipher or the output of the stream cipher as the subkeys. The same
algorithm as the data obfuscation path can be reused to generate some or all of the subkeys, as in
Camellia, or a di�erent one, possibly reusing some of the components of the the data obfuscation
path, as in Two�sh, or CLEFIA. Blow�sh repeatedly uses the encryption routine to generate the key
expansion while SHARK's [193] key schedule is based on cipher itself in CFB mode.
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5.7 State of the art

5.7.1 Norms and Standards

In this section we try to gather information about the norms and standards from di�erent standard-
ization organizations, namely the American one: the NIST (National Institute for Standard and Tech-
nologies), the French one: the ANSSI (Agence Nationale de la Sécurité des Systèmes d'Information)
and a more global one: ISO (International Organization for Standardization). For each of these three
organizations, we present the standards on block cipher algorithms, key size and the standardized
mode of operation.

International Organization for Standardization ISO/IEC 18033 speci�es encryption sys-
tems (ciphers) for the purpose of data con�dentiality:

� for 64-bit block ciphers: TDEA, MISTY1 [178], CAST-128 [14], HIGHT [142],

� for 128-bit block ciphers: AES [97], Camellia [26], SEED.

ISO/IEC 29192-2:2019 speci�es three block ciphers suitable for applications requiring lightweight
cryptographic implementations:

� PRESENT: a lightweight block cipher with a block size of 64 bits and a key size of 80 or 128
bits.

� CLEFIA: a lightweight block cipher with a block size of 128 bits and a key size of 128, 192 or
256 bits.

� LEA: a lightweight block cipher with a block size of 128 bits and a key size of 128, 192 or 256
bits.

For the cryptographic mode of operation, the fourth edition of ISO/IEC 10116 speci�es �ve modes for
any n-bit block ciphers:

� Electronic Codebook (ECB);

� Cipher Block Chaining (CBC);

� Cipher Feedback (CFB);

� Output Feedback (OFB);

� Counter (CTR).

National Institute for Standards and Technologies Currently, there are two approved
block cipher algorithms that can be used for encryption and/or decryption: AES and Triple DES. The
Triple DES (or TDEA for Triple Data Encryption Algorithm) use has been deprecated through 2023.
From 2023 and up to 2030, only the AES is certi�ed for secure uses with a key size from 128 to 256
bits.
In SP800-38A [111] �ve con�dentiality modes are speci�ed for use with any approved block cipher,
such as the AES algorithm. The modes in SP 800-38A are updated versions of the ECB, CBC, CFB,
and OFB modes that are speci�ed in FIPS 81 and the CTR mode.

ANSSI Up to 2020, the minimum recommended key size was 100 bits, but since 2020, the minimum
one is 128 bits. Similarly, up to 2020, the minimum block size was 64 bits, and is now set up to 128
bits at minima.
The ANSSI does not recommend a speci�c algorithm, but provides a set of recommendations based
on the resistance of an algorithm towards classical cryptanalysis attacks. To simplify the study, they
specify three quantities: Nop the number of operations needed to mount the attack, Nblock the number
of blocks needed to cipher or decipher to mount the attack and Nmem the quantity of data to store
to mount the attack. A simpli�ed way of considering an algorithm as secure was to de�ne wheither
there was any known attack needing less than Nop = 2128 operations. The other two quantities are
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not mentioned to not complexify the rules. The current rule to even simplify the comprehension is �Il
est recommandé d'employer des algorithmes de chi�rement par bloc largement éprouvés dans le milieu
académique� which can be translated as it is recommended to use the block cipher algorithm that have
been widely studied by the cryptographic community. Nevertheless, they give the AES as an example
of a block cipher satisfying these recommendations.
As for the mode of operations, the recommendations are to use a non-deterministic one, jointly with
an integrity mechanism and a mode of operations which has been described with security proofs.

5.7.2 DES

This algorithm is designed to encipher and decipher blocks of data consisting of 64 bits with a 56-bit
key.
A block to encrypt is subjected to an initial permutation IP , then to a complex key-dependent com-
putation and �nally to a permutation which is the inverse of the initial permutation IP−1. The
key-dependent computation can be simply de�ned in terms of a function f , called the cipher function,
and a function KS, called the key schedule.
The DES is designed following the Feistel construction, which means that at each round, the state
will be divided into two 32-bit words L and R for respectively left and right part. The right part will
be processed through the f function and the result is the XORed with the left part. Finally, the two
branches are inverted. For the ith round, we have Li = Ri−1 and Ri = Li−1 ⊕ f(Ri−1,Ki), with Ki

the subkey of round i.

Figure 5.8: The DES

The IP and IP−1 are a permutation and its inverse, each of the 64 bits of the state will get
scrambled to a di�erent position according to the following tables:
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Figure 5.9: The IP permutation table Figure 5.10: The IP−1 permutation table

The f function is described in the �gure below. It takes as input the half-state of 32 bits Ri and
the subkey of 48 bits Ki. It �rst processes the 32-bit word through the expansion function E which
expands it into a 48-bit word. The result is then XORed to the subkey. The resulting 48-bit word is
then split into 8 6-bit words, each processed by a substitution box S1 to S8. Finally the result goes
through a permutation table P .

Figure 5.11: DES f function

The DES key schedule is a simpli�ed Feistel form that is inspired by the encryption function. The
key goes through a �rst permutation table then it is split in two halves. Each half undergoes a left
shift. This operation is iterated 16 times, and at each step a round key is extracted.
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Figure 5.12: DES key schedule

5.7.3 AES

The AES is the universal standard block cipher. Rijndael was �rst published in 1998 and selected
as the US AES in 2001 after a public selection process by the NIST. Rijndael is designed by Vincent
Rijmen and Joan Daemen.
The �rst publication presented a block cipher with a block size and a key size between 128 and 256
bits with a speci�cation for any multiple of 32 bits in between. AES �xes the block length to 128 bits,
and supports key lengths of 128, 192 or 256 bits only.
The AES is a Substitution Permutation Network using 10 rounds for 128-bit keys, 12 for 192-bit
keys and 14 for 256-bit keys. Each round of the AES is the composition of four di�erent operations:
SubBytes, ShiftRows, MixColumns and AddRoundKey. The state is represented as a 4× 4 matrix of
bytes. The state is initialized by the plaintext, then XORed with the �rst round key. The state is then
updated the appropriate number of times according to the key size. The last round does not use the
MixColumn operation.
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Figure 5.13: One AES round

The SubBytes operation is a non-linear substitution step where each byte ai,j is replaced with
S(ai,j) using a 8-bit Sbox, that can be seen as a lookup table, the Rijndael Sbox. This operation
provides the non-linearity in the cipher. The Sbox used is derived from the multiplicative inverse
over GF (28), known to have good non-linearity properties. The Sbox is constructed by combining
the inverse function with an invertible a�ne transformation. This is made to avoid attacks based on
simple algebraic properties. The Sbox is also chosen to avoid any �xed point, i.e., S(ai,j) 6= ai,j , and
also any opposite �xed point, i.e., S(ai,j) ⊕ ai,j 6= 0xFF. For the decryption, the Inverse SubBytes
step is used, which requires �rst taking the a�ne transformation and then �nding the multiplicative
inverse (reversing the steps used in SubBytes step).

Figure 5.14: The AES Sbox representation Figure 5.15: The SubByte operation

The ShiftRows operation is a transposition step where the last three rows of the state are
cyclically shifted a certain number of steps.
It operates on the rows of the state by cyclically shifting the bytes in each row by an o�set corresponding
in the number of the row minus 1. The �rst row is left unchanged. Each byte of the second row is
shifted one to the left. The third and fourth rows are shifted by two and three respectively. This way,
each column of the output state of the ShiftRows step is composed of bytes from each column of the
input state. (Rijndael variants with a larger block size have di�erent o�sets). The goal of this step is
to avoid the columns being linearly independent, in which case, AES degenerates into four independent
block ciphers.
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Figure 5.16: The ShiftRows operation

The MixColumns operation is a mixing operation that operates on the columns of the state,
combining the four bytes in each column using an invertible linear transformation. The MixColumns
function takes four bytes as input and outputs four bytes, where each input byte a�ects all four output
bytes. This step increases the di�usion of the cipher.

During this operation, each column is transformed using a �xed matrix:
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Matrix multiplication is a set of multiplication and addition on words of 8 bits treated as coe�cients

of polynomial of order x7 in GF (28). Addition is a simple XOR while multiplication is modulo the
irreducible polynomial x8 + x4 + x3 + x+ 1. The columns are considered as polynomials over GF (28)
and multiplied modulo x4 + 1 with a �xed polynomial a(x), given by a(x) = 03x3 + 01x2 + 01x + 02
. The coe�cients are displayed in their hexadecimal equivalent of the binary representation of bit
polynomials from GF (2)[x].

The AddRoundKey operation consists in XORing the round key to the state, byte by byte
using a simple bitwise XOR.

The key expansion is used to generate the round keys from the main key. The AES needs Nr + 1
subkeys, with Nr the number of rounds, each of size Nb. The resulting key schedule consists of a linear
array of 4-byte words, denoted [wi], with i in the range 0 ≤ i < Nb(Nr + 1).
The expansion of the input key into the key schedule proceeds according to the pseudo code in �gure
below.
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Figure 5.17: The AES key expansion pseudo-code

SubWord() is a function that takes a four-byte input word and applies the Sbox to each of the
four bytes to produce an output word. The function RotWord() takes a word [a0, a1, a2, a3] as input,
performs a cyclic permutation, and returns the word [a1, a2, a3, a0]. The round constant word array,
Rcon[i], contains the values given by [xi−1, {00}, {00}, {00}], with xi−1 being powers of x.

5.7.4 Lightweight algorithms

Existing cryptographic algorithms were, for the most part, designed to meet the needs of the desktop
computing era. Such cryptography is not very well-suited for pervasive computing, in which many
highly constrained hardware- and software-based devices will need to communicate wirelessly with one
another. Security is important for these devices and the cost of ciphers, as well as the cryptographic
protocols are important matters while more and more of these devices can carry private information.
Moreover, lightweight ciphers need to be easily secured against side-channel analysis because many
lightweight devices are easily accessible in huge amount so that they can be more easily analyzed and
attacked. Moreover, because of the cost, they are often unprotected.

The relatively new �eld of lightweight cryptography addresses the security issues for highly con-
strained devices. A lot of work has been done in this area, much of it aiming speci�cally at developing
block ciphers suitable for lightweight cryptographic applications.

The obvious �rst question for developers of lightweight applications is �Why not build protocols
around AES?� Indeed, it has been suggested for lightweight use, and should be used whenever ap-
propriate. However, for the most constrained environments, AES is not always the right choice: in
hardware, for example, the consensus in the academic literature is that area should not exceed 2000
gate equivalents, while the smallest available implementation of AES requires 2400.

Among the block ciphers intended for use on constrained devices, some have been designed specif-
ically to perform well on dedicated Application-Speci�c Integrated Circuits (ASICs), and thus can be
realized by small circuits with minimal power requirements. Others are meant to perform well on
low-cost microcontrollers with limited �ash, SRAM, and/or power availability. Unfortunately, design
choices meant to optimize performance on one platform often are not compatible with another one.

PRESENT PRESENT is a 64-bit block cipher developed by Andrey Bogdanov et al. and intro-
duced at CHES 2007 [66]. The algorithm is described with two versions, with keys of 80 and 128 bits.
It was designed for low-cost devices like RFID-tags after realizing that the AES was not suitable for
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extremely constrained environments due to its implementation cost.
PRESENT is a Substitution-Permutation Network with 31 rounds. Each round consists of: a round
key addition, a substitution layer, and a permutation layer. A �nal key addition is computed before
outputting the ciphertext.

Figure 5.18: A PRESENT round

The substitution layer is composed of 4-bit Sbox applied to each 16 nibbles of the 64-bit state.
This Sbox was designed with cryptanalytic resistance in mind. Conditions were posed on the Sbox to
improve the avalanche of change:

� For any output di�erence, there are at most four inputs di�erences.

� There are no single bit input di�erences that give single bit output di�erences.

� For all non-zero a, b ∈ F4
2, |Sωb (a)| ≤ 8, with Sωb (a) the Walsh-Fourier coe�cient of S.

� For all a, b ∈ F4
2, both with Hamming weight equal to 1, |Sωb (a)| = 4.

The chosen Sbox was sorted among the set of all 4-bit Sbox ful�lling these requirements, the chosen
one being the one with the lowest hardware footprint.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 5.1: The PRESENT Sbox

This Sbox has been reused in several cryptographic applications, such as SPONGENT [67] or
PHOTON [136] due to its good properties on both security and hardware e�ciency.
The permutation layer is a pure bit permutation layer, associating each input bit to one output. This
construction allows a good hardware e�ciency by minimizing the number of processing elements. This
design gives the propriety that any �ve-round di�erential characteristic of PRESENT has a minimum
of 10 active Sboxes.
For the key schedule: in the case of 80-bit keys, a 80 bit register containing the secret key is rotated
by 61 positions to the left, the least signi�cant nibble is passed through the Sbox, and then the value
of a counter is XORed to some of the bits of the register. The round key is the leftmost 64 bits of this
register.
In the case of 128-bit keys, the round key register is 128 bits wide and two nibbles are passed through
the Sbox.
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SIMON, SPECK and Simeck In 2013, a team from the NSA published a paper presenting two
new cipher algorithms dedicated to lightweight cryptography [44]. SIMON and SPECK are designed
to be secure, �exible, and analyzable lightweight block ciphers o�ering good performances on hardware
and software platforms, while being �exible enough to admit a variety of implementations on a given
platform. They are not given with any security proofs but are said to be easily analyzable.
They both perform well across numerous lightweight applications, but SIMON is tuned for optimal
performance in hardware, and SPECK for optimal performance in software.
SIMON and SPECK are designed to be block cipher families: Each supports block sizes of 32, 48, 64,
96, and 128 bits, with up to three key sizes to go along with each block size. Each family provides ten
algorithms in all.
The SIMON block cipher with a n-bit word (and hence a 2n-bit block) is denoted SIMON2n, where n
is required to be 16, 24, 32, 48, or 64. SIMON2n with an m-word (mn-bit) key will be referred to as
SIMON2n/mn. For example, SIMON64/128 refers to the version of SIMON acting on 64-bit plaintext
blocks and using a 128-bit key. Each instance of SIMON is based on a Feistel Network.
SIMON2n encryption and decryption use only three operations on n-bit words: bitwise XOR (⊕),
bitwise AND (&), and left circular shift (Sj), by j bits.
The SPECK2n computation makes use of the following operations on n-bit words: bitwise XOR (⊕),
addition modulo 2n (+), and left and right circular shifts, Sj and S−j , respectively, by j bits.

Figure 5.19: Simon round Figure 5.20: SPECK round

Inspired by the designs of SIMON and SPECK, Simeck was designed, combining their good com-
ponents in order to get a new design of block cipher family [237]. The encryption process is a modi�ed
version of SIMON's round function, and it reuses it in the key schedule like SPECK does. Moreover,
the key schedule uses Linear Feedback Shift Register (LFSR) based constants in order to further reduce
hardware implementation footprints. The new family of lightweight block ciphers Simeck aims to have
comparable security levels as Simon and Speck but more e�cient hardware implementations.
The family proposes three members with block/key size of 32/64, 48/96 and 64/128 bits.
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Figure 5.21: A Simeck round

To generate the round key ki from a given master key K, the master key is �rst segmented into
four words and loaded as the initial states (t2, t1, t0, k0) of the feedback shift registers. The n least
signi�cant bits of K are loaded into k0 and the n most signi�cant bits are put into t2. To update the
registers and generate round keys, the round function with a round constant C ⊕ (zj)i acting as the
round key is used, i.e. {

ki+1 = ti
ti+3 = ki ⊕ f(ti)⊕ C ⊕ (zj)i

Figure 5.22: The Simeck key schedule
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5.8 Tweakable block ciphers

5.8.1 De�nition

The �rst cipher that could be called a tweakable block cipher is the Hasty Pudding Cipher [214],
designed by Schroepel for the AES competition. However, the concept of Tweakable Block Cipher
(TBC) was introduced by Moses Liskov, Ronald L. Rivest, and David Wagner in their article [171].
A tweakable block cipher accepts as input the usual block of plaintext and the key plus an additional
tweak. The tweak serves the same purpose as an initialization vector or a nonce (number only used
once) does for some mode of operation. The authors claim three properties characterizing a "good"
tweakable block cipher:

� tweakable block ciphers are easy to design,

� the extra cost of making a block cipher tweakable is small,

� and it is easier to design and prove modes of operation based on tweakable block ciphers.

The �rst construction they described was ẼK(T,M) = EK(T ⊕ EK(M)) with ẼK the tweakable
block cipher based on the block cipher EK using the key K, a message M and a tweak T . They prove
that if EK is a secure block cipher then ẼK is a secure tweakable block cipher, meaning that any
adversary can only access a small advantage in distinguishing the encryption algorithm from a random
permutation.
The second one has the form ẼK,h(T,M) = EK(M ⊕ h(T )) ⊕ h(T ) with h a hash function from
{0, 1}t → {0, 1}n. If the set of function h is ε-almost 2-xor-universal (Prh[h(x)⊕ h(y) = z] ≤ ε for all
(x, y, z) with ε ≤ 1/2n then Ẽ is a strong tweakable block cipher, it is chosen-ciphertext secure.

Building tweakable block ciphers There are mainly three approaches to build a tweakable
block cipher. The �rst one is to start from scratch which was the case for Hasty Pudding Cipher
[214], but also for Mercy [91] and Three�sh (used in the SKEIN Hash function) [175]. The second one
is to introduce the additional tweak to generic constructions of block cipher. Methodologies exist for
di�erent structure of block ciphers such as Feistel-based ciphers with [130], generalized Feistel Networks
with [184] or key alternating ciphers (iterated Even-Mansour) with for example [88]. These designs are
provably secure with a security up to 2/n/2, n being the size of the message space. The last approach
is also the most common one and consists in starting from a classical block cipher and using it as a
black block to build a TCB. This is the case for the LRW1 and LRW2 constructions [171].

5.8.2 The TWEAKEY Framework

In 2014, Jean, Nikolic and Peyrin introduced the TWEAKEY framework [147] to unify the design of
tweakable block ciphers and of block ciphers resistant to related-key attacks. The design goal is to
extend the key-alternating construction, and allow the construction of a primitive with arbitrary tweak
and key sizes, given the public round permutation such as the AES round, i.e to blend the tweak with
the key in the key scheduling algorithm.
The design of the TWEAKEY framework came from the two points below:

� From an e�ciency point of view, updating the tweak input of a TBC should be doable very
e�ciently which means that the tweak schedule should be lighter than the key schedule.

� From a security point of view, the tweak is fully known and controllable, unlike the key which
means that the tweak schedule should be stronger than the key schedule.

This leads to the point that the tweak and the key should be treated equivalently.
The regular key schedule is replaced by a TWEAKEY schedule that generates subtweakeys. A TK-2
primitive (or TWEAKEY of order 2) is a TBC with n-bit key, n-bit tweak that has 2n-bit TWEAKEY
and a function g that compresses 2n to n bits (which can also be seen as a 2n-bit key cipher with no
tweak).
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Figure 5.23: The TWEAKEY framework

This design gave birth to the KIASU cipher which is based on the AES with a �xed 64-bit tweak
value XORed to each subkey. The f function in the �gure below is the AES round and AES KS
represents the AES key schedule.

Figure 5.24: The KIASU block cipher

The TWEAKEY framework uni�es the tweak and key input for a tweakable block cipher, but does
not provide real instantiation of this construction, i.e. which functions f , g and h (and number of
rounds r) one should choose. Hence, the designers introduced the STK construction (Superposition
TWEAKEY) in order to simplify the analysis of the concrete security of such scheme and give the
ability to reach security bounds given the input parameters.
The STK construction is a subclass of the TWEAKEY framework for AES-like ciphers de�ned over a
�nite �eld GF (2c)
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Figure 5.25: The STK framework

p = (t+ k)/n denotes the number of n-bit words in the TWEAKEY state composed of t-bit tweak
and k-bit key. Assuming that the AES-like Sbox operates on c bits, the STK construction further
speci�es the f , g and h functions:

� the function g XORs all the p n-bit words of the TWEAKEY state to the internal state (Ad-
dRoundTweakey, denoted ART), and then XORs a round-dependent constant Ci.

� the function h �rst applies the same nibble position substitution function h0 to each of the p
n-bit words of the TWEAKEY state, and then multiplies each c-bit cell of the j-th n-bit word
by a nonzero coe�cient αj in the �nite �eld GF (2c).

� the f function is an AES-like round.

This construction was used to design the block ciphers Deoxys and Joltik.

5.8.3 Targeting optimally secure tweakable block ciphers

In 2015, Bart Mennink published a new work on designing Tweakable Block Cipher with said optimal
security [182]. This work tries to answer the following question: Can we design an optimally secure
tweakable block cipher Ẽ with n-bit in- and outputs using only a block cipher E with n-bit in- and
outputs?
The generic design to achieve this uses a classical block cipher E, called ρ times, with arbitrary mixing
functions to generate the inputs to primitive calls and generate the �nal output. The result is called
Ẽ[ρ] with ρ ≥ 1.
With one block cipher call and using polynomial mixing function (involving multiplication), the F̃ [1]
construction stands with the form :

F̃ [1] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n

F̃ [1](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z,where z = k ⊗ t
(5.1)

Figure 5.26: Tweakable Block Cipher F̃ [1]
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This construction is proven indistinguishable from an ideal tweakable cipher as long as the distin-
guisher's complexity is at most 22n/3.
With two block cipher calls and linear mixing functions the designers also introduced the F̃ [2] con-
struction:

F̃ [2] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n

F̃ [2](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z,where z = E(2k, t)
(5.2)

Figure 5.27: Tweakable Block Cipher F̃ [2]

Using slightly more computations than for F̃ [1], F̃ [2] is proven to be an optimally secure tweakable
cipher up to about 2n queries.

In 2016, Wang and al. published a new work on the construction of secure tweakable block ciphers
[227] aiming at designs achieving full 2n security. They searched for every possible instances of tweak-
able block ciphers with only two calls to the inner block cipher and found 32 e�cient solutions that
provide up to 2n provable security. Every solution follows the following form :

Ẽ[bp, bc](k, t, p) := Ẽ(k, t, p⊕ (bp.t))⊕ (bc.t)

for all k ∈ K, t ∈ T and p ∈M, with bp, bc ∈ {0, 1}.

5.8.4 Use of tweakable block ciphers

Tweakable block ciphers and tweakable modes of operation have seen di�erent uses since the �rst
construction in 2020. One application of tweakable block ciphers is disk encryption, where each block
is encrypted with the same key, plus a tweak that corresponds to the block index. Disk encryption can
also be achieved with tweakable mode of operation with for example the XTS mode [198]. Tweakable
block ciphers can also be used to generate authenticated encryption, with several examples at the
CAESAR competition [2] and the NIST LWC standardization process [8] and the ciphers AEGIS-128
[235] or Deoxys-II [146] which both ranked �rst at the CAESAR competition for their respective use
case.
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Chapter 6

Authenticated encryption

6.1 Concept and de�nitions

For a communication to be considered secure, it needs to achieve two characteristics, namely con�den-
tiality and integrity.
Con�dentiality ensures that the information transmitted between a set of correspondents is only acces-
sible to those whose access is granted to this information. In cryptography, this means that a secure
communication is encrypted in a way that only the correspondent knowing both the encryption algo-
rithm and the key to encrypt/decrypt the data can access it.
The integrity means that any data stays accurate and unchanged during its treatment, transmission,
or saving.
A system that should guarantee data integrity has to possess a way to check whether the data has been
changed during its life cycle (either a deletion, addition, or modi�cation of some bits of the message)
or not. Usually, con�dentiality is achieved through encryption and integrity through authentication,
using a secure MAC. Authenticated encryption tries to achieve both security goals in a single algorithm
or protocol.

The need for authenticated encryption emerged from the observation that securely combining sepa-
rate con�dentiality and authentication block cipher operation modes could be error prone and di�cult.
This was con�rmed by a number of practical attacks introduced into production protocols and appli-
cations by incorrect implementation, or lack of authentication.

Authenticated encryption can be generically constructed by combining an encryption scheme and
a MAC, provided that the encryption scheme is secure under chosen plaintext attacks and the MAC
function is unforgeable under chosen message attacks.

A typical programming interface for an AE implementation provides the following functions:

� Encryption

� Input: plaintext, key, and optionally a header in plaintext that will not be encrypted, but
will be covered by authenticity protection.

� Output: ciphertext and authentication tag (message authentication code).

� Decryption

� Input: ciphertext, key, authentication tag, and optionally a header (if used during the
encryption).

� Output: plaintext, or an error if the authentication tag does not match the supplied ci-
phertext or header. The header part is intended to provide authenticity and integrity
protection for networking or storage metadata for which con�dentiality is unnecessary, but
authenticity is desired.

In addition to protecting message integrity and con�dentiality, authenticated encryption can pro-
vide security against chosen ciphertext attack. Authenticated encryption schemes can recognize improperly-
constructed ciphertexts and deny them. This prevents the attacker from requesting the decryption of
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any ciphertext unless it was generated correctly using the encryption algorithm, thus implying that the
plaintext is already known. Implemented correctly, authenticated encryption removes the usefulness
of the decryption oracle, by preventing an attacker from gaining useful information that he does not
already possess.

6.1.1 Variants of Authenticated Encryption

Encrypt-then-MAC (EtM) The plaintext is �rst encrypted using for example a block cipher and
a key K1, then a MAC is produced based on the resulting ciphertext using for example a cryptographic
hash function and a key K2. The ciphertext and the MAC are sent together, concatenated. The keys
used to encrypt and to produce the MAC need to be di�erent to maintain the expected level of security.

Figure 6.1: Encrypt-then-MAC

This method is used for example in the IPSec protocol, it is the standard method according to
ISO/IEC 19772:2009. This is the best composition method (the method that can mathematically reach
the highest de�nition of security in AE), but this needs a strongly unforgeable MAC.

Encrypt-and-Mac (E&M) The MAC and the encryption process are done simultaneously, both
using the plaintext. The Ciphertext and the MAC are sent together. The same key can be used to
generate both cryptographic applications.

Figure 6.2: Encrypt-and-MAC

This method is used in SSH. Even though the E&M approach has not been proved to be strongly
unforgeable in itself, indeed, their is no integrity on the ciphertext, so it is possible to apply some
minor modi�cations to SSH to make it strongly unforgeable.
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MAC-then-Encrypt (MtE) The plaintext is �rst used to generate a MAC. The resulting MAC
is then concatenated to the plaintext and encrypted to produce the ciphertext. Only the ciphertext is
sent.

Figure 6.3: MAC-then-Encrypt

This method is used for example in SSL/TLS. Even though the MtE approach has not been
proven to be strongly unforgeable in itself (it is susceptible to padding oracle attacks), the SSL/TLS
implementation has been proven to be strongly unforgeable thanks to the encoding used alongside the
MtE mechanism. SSL/TLS can be modeled as a MAC-then-pad-then-encrypt mechanism, i.e. the
plaintext is �rst padded to the block size of the encryption function.

6.2 Mode of operation

The NIST speci�es �ve modes of operation to achieve both con�dentiality and authentication:

� Two authenticated encryption modes

� An Authenticated Encryption Mode: counter with cipher block chaining message authen-
tication code; counter with CBC-MAC (CCM). CCM combines the counter mode for con-
�dentiality with the cipher block chaining technique for authentication (CBC-MAC).

� A High-Throughput Authenticated Encryption Mode : Galois/Counter Mode (GCM).
GCM combines the counter mode for con�dentiality with an authentication mechanism that
is based on an universal hash function. GCM was designed to facilitate high-throughput
hardware implementations.

� Three key wrapping methods

� AES Key Wrap (KW).

� AES Key Wrap with Padding (KWP).

� TDEA Key Wrap (TKW).

Three other modes of operation to achieve authenticated encryption have been submitted to the
NIST for consideration:

� Galois/Counter Mode-Synthetic Initialization Vector (AES-GCM-SIV).

� O�set Codebook (OCB).

� Encrypt-then-Authenticate-then-Translate (EAX).

All of these modes of operations are de�ned with a block cipher which is not modi�ed, either the AES
or TDEA.
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6.2.1 Galois/Counter Mode

The Galois/Counter Mode is a cryptographic mode of operation using block ciphers to achieve authen-
ticated encryption. This mode of operation is widely used because of its performances.

Figure 6.4: The Galois/Counter Mode

The red part of the scheme is the CTR mode of operation, the rest of the scheme is the Galois
Hash (GHASH) function, generating the authentication tag from the ciphertext and additional data.
The multH block in the scheme represents the multiplication in the Galois �eld GF128 of the Addi-
tional Authenticated Data and H. The value H is generated by computing one encryption using the
block cipher taking as input a message made of 128 zeros.
Ek represents the encryption using the block cipherE (usually the AES) with the keyK. Len(A)||Len(C)
is the concatenation of the bit vector representation of the length of the last block of authenticated
data and the last block of ciphertext.
Such as in the CTR mode, blocks are numbered sequentially. It is de�ned for block ciphers with a
block size of 128 bits. The mode uses an initialization vector of arbitrary size as input, which will feed
a counter, incremented for each block of 128 bits. Each counter obtained is then computed through
the block cipher EK and the result is XORed to the plaintext to obtain the resulting ciphertext. Like
all counter modes, this is essentially a stream cipher, forcing to use a di�erent IV for each data that is
encrypted.

Security GCM is proven secure in the concrete security model when used with a block cipher in-
distinguishable from a random permutation. This security depends on choosing a unique initialization
vector for every encryption performed with the same key. For any given key and initialization vector
combination, GCM is limited to encrypting 239 − 256 bits of plain text (68 GB). Moreover, GCM is
neither well-suited for very short tag-lengths nor very long messages.
As for all symmetric message authentication codes, the authentication strength depends on the length
of the tag. T is recommended to be any one of the following �ve values: 128, 120, 112, 104, or 96.
The bit-length of the tag, denoted T , is a security parameter. Like with any message authentication
code, if the adversary chooses a T -bit tag at random, it is expected to be correct for given data with
probability 2−T . With GCM, however, an adversary can increase their likelihood of success by choos-
ing tags with words of size n, i.e the total length of the ciphertext plus any additional authenticated
data (AD), described as Len(A) + Len(C) in our scheme. This leads to a probability of �nding the
tag in 1− n.2−T for arbitrarily large T . In 2005, Ferguson and Saarinen independently described how
an attacker can perform optimal attacks against GCM authentication [120] [205] (the attack meets
the lower bound on its security). Ferguson showed that there is a method of constructing a targeted
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ciphertext forgery that is expected to succeed with a probability of approximately n.2−T , with n the
number of blocks in the encoding (the input to the GHASH function). If the tag length t is shorter
than 128, then each successful forgery in this attack increases the probability that subsequent targeted
forgeries will succeed, and leak information about H. Eventually, H may be compromised entirely and
the authentication assurance completely lost.
GCM is not nonce misuse resistant, which means that an attacker, given the ability of using the same
nonce to encrypt di�erent messages can practically break the AES-GCM [43].
Moreover, the GCM mode of operation does not achieve Random Key Robustness (two di�erent plain-
text, used with two di�erent keys can not produce the same ciphertext + tag), which is a required
property for tools targeting Password Authenticated Key Exchange.

6.3 Context of research

In July 2012, a workshop focused on authenticated encryption took place in Stockholm: DIAC - Di-
rections in Authenticated Ciphers, organized by the virtual labs SymLab [6] and VAMPIRE [10]. The
goal was to take stock on the state of the art on authenticated encryption. The CAESAR Competition
had just been announced and the objective was to shape the future competition with research axis in
the same way that SASC 2004 and the ECRYPT Hash Workshop 2007 shaped the ECRYPT Stream
Cipher Project and the SHA-3 competition: �Users, starting with a shared secret key, need to protect
messages against espionage and against forgery. Dissatisfaction with the security and performance of
current approaches has led to calls for a new competition for authenticated ciphers. The purpose of
this workshop is to evaluate the state of the art in authenticated encryption and gather community
input regarding desired future directions.�

During DIAC 2013 [4], the cryptographic community started a common e�ort to update the state
of the art in authenticated encryption which continued with the launch of the Competition for Au-
thenticated Encryption: Security, Applicability and Robustness (CAESAR) [2].

6.3.1 CAESAR Competition

CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness) is a
crypto competition aiming to identify a portfolio of authenticated ciphers that o�er advantages over
AES-GCM and are suitable for a widespread adoption. The �rst submission deadline met 57 candidates,
with some o�ering more than one version, leading to a total of 61 proposals. The competition went on
from March 2014 up to February 2019 with the announcement of the �nal portfolio.
Among all candidates, four categories can be distinguished:

� Block Cipher-based: mode of operation using a block cipher as basis. Several of the candidates
were based on the AES [97], using a mode of operation using it as its main cryptographic core
to achieve authenticated encryption, this is the case for OCB. Some candidates proposed their
own block cipher, such as Deoxys. Some candidates were designed using parts of known block
cipher, such as AEGIS.

� Stream-cipher-based: like block ciphers, stream ciphers can be used as a core primitive in au-
thenticated encryption scheme to achieve both con�dentiality and integrity as long as the cipher
is secure. Stream ciphers are designed to be fast and small in size, and are mainly targeting
applications with low resources such as embedded devices. ACORN, the second recommendation
for lightweight applications is stream-cipher-based.

� Compression Function-based: a one-way compression function transforms two �xed-length inputs
into one �xed-length output. OMD is a candidate based on the Merkle-Damgård construction,
which is widely used to create hash functions.

� Permutation-based: permutation-based candidates are algorithms using several calls to a permu-
tation taking as inputs every elements needed to perform the authenticated encryption (plaintext,
additional data, nonce, key) to produce both the ciphertext and the tag. This is the case for
Minalpher [208] for example. A large part of permutation-based candidates are designed using
the sponge construction, like ASCON.
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During this competition, three rounds were organized, each one focusing on one or a few points, in
order : security and usability for the �rst round, software performances for the second and hardware
performances for the third one. The CAESAR competition was the �rst one with a hardware dedicated
API proposed to guide cryptographers to implement their candidate on FPGA or ASIC technology.
Several candidates proposed interesting properties and eventually, no proposal was better than all the
others, depending on the focus undertaken by the designers.

The �nal portfolio is organized into three use cases, each one providing two choices :

Use case Candidate Designers

Lightweight Applications
ASCON [106] C. Dobraunig, M. Eichlseder, F. Mendel,et al.
ACORN [234] H. Wu

High-performances
Applications

AEGIS-128 [235] H. Wu, B. Preneel
OCB [201] T. Krovetz, P. Rogaway

Defense in depth
Deoxys-II [146] J. Jean, I. Nikoli¢, T. Peyrin, et al.
COLM [25] E. Andreeva, A. Bogdanov, N. Datta, et al.

6.3.2 NIST LWC standardization process

In parallel, the NIST initiated several workshops on lightweight cryptography since 2015 that ended
on the launch of a lightweight cryptography standardization process aiming to solicit, evaluate and
standardize lightweight cryptography algorithms suitable for use in constrained environments in which
the current standards are not acceptable. The point is to either develop new cryptographic solutions,
enhance the existing ones or improve the implementations of current algorithms dedicated to authen-
ticated encryption and optionally hash functions.
The proposed cryptographic solutions are authenticated encryption with associated data (AEAD) al-
gorithms. This cryptographic function takes four byte-string as inputs and one byte-string as output.
The four inputs are a variable-length plaintext, variable-length associated data, a �xed-length nonce,
and a �xed-length key. The output is a variable-length ciphertext. The algorithms shall provide both
authenticated encryption and decryption-veri�cation. The cryptographic solutions should also provide
con�dentiality under adaptive chosen-plaintext attacks and integrity of the ciphertexts under adaptive
forgery attempts. They are expected to maintain security when the uniqueness of the nonce is respected
(any proof of security under nonce-reuse can be advertised as a feature). The minima in terms of size
and security are a key of at least 128 bits, resisting attacks of at least 2112 computations on a classical
computer in a single-key setting, and a key of 256 bits resisting attacks of at least 2224 computations.
The recommended minimum sizes for nonce and tag are respectively 96 bits and 64 bits and the limit on
the input sizes shall not be smaller than 250−1 bytes. The entirety of the requirements are stated in [9].

57 candidates were proposed and 56 selected as Round 1 candidates. The focus during the �rst
round was set on the cryptographic security of the submissions leading to two major selection criteria:
maturation of the candidates and cryptanalysis of the candidates [224]. In September 2019, the NIST
announced the candidates which made it to the round 2. For this second round, performance will play
a larger role in the selection process, the goal being to obtain optimized versions fairly benchmarked
on both software and hardware platforms.

Round 2 candidates

ACE ASCON COMET DryGASCON

Elephant ESTATE ForkAE GIFT-COFB

Gimli Grain-128AEAD HYENA ISAP

KNOT LOTUS-AEAD / LOCUS-AEAD mixFeed ORANGE

Oribatia PHOTON-Beetle Pyjamask Romulus

SAEAES Saturnin SKINNY-AEAD/HASH SPARKLE

SPIX SpoC Spook Subterranean 2.0

SUNDAE-GIFT TinyJambu WAGE Xoodyak
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6.4 Authentication through the sponge construction

6.4.1 The Sponge construction

The sponge construction was introduced by Bertoni et al. in [57] in 2007. It is based on a �xed-length
permutation or transformation building a function mapping a variable-length input to a variable-length
output. The construction was �rst used to build strong hash functions such as Keccak, the winner of
the SHA-3 competition [12]. The sponge construction operates on a state of b = r + c bits where b is
called the width, r the rate and c the capacity. The data is padded and divided into words of r bits.
The b bits of the state are initialized to zero. Then the construction proceeds in two phases. During
the absorption, r bits are added to the state which goes through the f function. Once the whole data
is absorbed, r bits are squeezed at a time with a call to the f function at each time. The last c bits
of the state are never directly a�ected by the input block and are never output during the squeezing
phase.

Figure 6.5: The sponge construction

From the sponge construction, keyed variants have been developed and have become a very pop-
ular mode of operation for a wide spectrum of cryptographic functions including message authentica-
tion codes computation, key derivation, pseudo-random functions, stream ciphers, Extendable-Output
Functions (XOFs)[12] and authenticated encryption modes.
The sponge construction allows the possibility to build lightweight design for hash functions. Since
the introduction of the design, numerous lightweight hash algorithms have indeed been proposed, such
as SPONGENT[67], Quark [31] or PHOTON[136]. One main advantage when compared to classical
Merkle-Damgård hash functions is the size of the state which is fairly smaller.
The keyed sponge principle also got adopted in Spritz, a new RC4-like stream cipher [197], and in 10
out of 57 submissions to the CAESAR[2] competition on authenticated encryption, with ASCON [106]
as one of its best representatives for this competition.

The Random Oracle distinguishing advantage of the sponge construction when calling a random
transformation f is upper bounded by:

1− e
−N(N+1)

2c+1

The Random Oracle distinguishing advantage of the sponge construction when calling a random
permutation f is upper bounded by:

1− e
−N(N+1)

2c+1 −N(N−1)

2r+c+1

With N the cost of the computation, r the rate and c the capacity. If N is signi�cantly smaller than
2c, then these bounds become :

Adv(A) <
N(N + 1)

2c+1
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and

Adv(A) <
N(N + 1)

2c+1
− N(N − 1)

2r+c+1

6.4.2 Sponge-based authenticated encryption schemes

The Duplex construction Encrypting using the Sponge construction is usually done via the
Duplex construction[59]. It is a stateful construction made of two interfaces: one for initialization and
one for duplexing. The initialization interface is used to initialize the state (which can be all-zero)
while the duplexing interface absorbs a message of at most r bits and squeezes ≤ r bits of the outer
part.
The duplex construction also uses a �xed-length transformation or permutation f , a padding rule, and
a bitrate r to build a cryptographic scheme.

Figure 6.6: The Duplex construction

Existing security bounds The security of the Duplex mode is directly linked to the indi�eren-
tiability of the classical Sponge, leading to a O(2c/2) security bound. Bertoni et al.[59] showed that
the Duplex construction can be used for authenticated encryption in the form of SpongeWrap. This
mode stands as the basis of the majority of Sponge-based submissions in the CAESAR competition
and further work on improving sponge-based designs.
In the indi�erentiability framework, Bertoni et al. [57] proved that the Sponge construction is secure
up to the O(2c/2) birthday-type bound. The capacity part is left untouched throughout the evaluation
of the Sponge construction: a violation of this paradigm would make the indi�erentiability security
result void.

A thorough analysis of the full-state message absorption keyed Sponge had to wait for Gazi, Pietrzak
and Tessaro [126], who proved nearly tight security up to O(lq(q+N)/2b+ q(q+ l+N)/2c), where the
adversary makes q queries of maximal length l, and makes N primitive calls. However, their analysis
only applies to the �xed-output-length variant. The dubbed Full-state Keyed Sponge (FKS) implies
the security of Donkey Sponge in the ideal permutation setting, and proves that it is secure up to
approximately

2(ql)2

2b
+

2q2l

2c
+
µN

2k

where k is the size of the key, and µ is a parameter called the multiplicity. This observation only works
for k ≤ c.

In the above mentioned result, for the integrity security the authors have assumed that the number
of forgery blocks is limited. To be more speci�c, total number of forgery attempted blocks σv is
restricted to satisfy the following: qp + σe + σv ≤ 2c/σv, where σe is the total number of encryption
query blocks and qp is the number of permutation queries. The above equation clearly suggests that
the number of decryption blocks should be at most 2c/2.
Jovanovic et al. [153] claimed that Sponge-based constructions for authenticated encryption can achieve
a signi�cantly higher bound with a security of min{2b/2, 2c, 2k}, with b the permutation size, c the
capacity and k the key size.
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Beetle The authors of the Beetle Sponge mode wanted to develop a sponge-based mode of operation
that could allow a better ratio rate capacity than already existing sponge-based mode of operations.
They started from noticing from the CAESAR competition that even if sponge modes were known
to provide lightweight solutions for authenticated encryption, the lightest candidate was COFB [81],
which is block cipher-based. Consequently, the motivation to further understand the security bounds
for sponge modes and trying to achieve even more lightweight designs. The Beetle mode of operation
is combining a feedback function with a sponge to create a di�erence between the cipher text block
and the rate part of the next feedback.

Figure 6.7: The Beetle mode of operation

For I1 and I2 two blocks of r bits, the feedback function called ρ is de�ned such as:

ρ(I1, I2) = (O1, O2),where O1 = shuffle(I1)⊕ I2, O2 = I1 ⊕ I2.

The inverse function ρ′ is

ρ′(I1, O2) = (O1, I2),where O1 = shuffle(I1)⊕ I1 ⊕O2, I2 = I1 ⊕O2.

shuffle is de�ned as shuffle(W ) = (W [2],W [2] ⊕ W [1]) with W ∈ {0, 1}r and W [1] and W [2]
∈ {0, 1}r/2 such as W = (W [1],W [2]).
The authors claim a provable security up to min{c− log(r), b/2, r} which o�ers a security of 121 bits
for a 256-bit permutation with a capacity and a rate of 128 bits, thus allowing good performances and
reducing hardware cost.

SpoC SpoC, Sponge with masked Capacity, is a permutation based mode of operation for authen-
ticated encryption with associated data functionality. The high level design is inspired by the Beetle
mode of operation.
Capacity is masked with data blocks instead of rate which improves the security and allows larger rate
value per permutation call. It o�ers higher security guarantee with smaller states as compared to some
of the previous AEAD designs based on the Sponge construction.
A 4-bit control signal which distinguishes di�erent phases and does not require an extra call of permu-
tation in the case of empty and partial data blocks.
The authors claim 128-bit security with state sizes 192 and 256, and corresponding rate values 64 and
128 bits, respectively.

Figure 6.8: Sponge with masked Capacity

6.4.3 Side-channel resistant or resilient sponge mode by design

One main threat for lightweight platforms such as IoT, RFID tag or smartcard are physical attacks
(or side-channel attacks) that can break the encryption and retrieve the key without mathematically
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cryptanalysing the algorithm.
In order to face this threat some designers decided to look into the sponge resilience to leakages and
physical resistance to known attacks.
In a presentation made at a workshop from the NIST LWC standardization process, François-Xavier
Standaert presented his analysis on the leakage resistance of some candidates that made it to the round
2 [221].
The sponge modes can be divided into four steps, namely initialization, computation, �nalization and
tag veri�cation.

Figure 6.9: The four steps of AE sponge modes

Standaert divided the study on sponge modes in three cases : re-keyed modes, re-keyed modes
with a strengthened initialization and �nalization and two-passes re-keyed modes with a strengthened
initialization and �nalization.
Modes such as PHOTON-Beetle or Gimli can be seen as AE mode with a re-keying part, as the key
is scrambled into the state along with the nonce through a permutation. Ascon or Spix for example
have a strengthened initialization and �nalization by XORing the key to the state. Spook and the S1P
mode of operation also have this extra characteristics by using a tweakable block cipher as re-keying
modules. Lastly, ISAP and the S2P mode of operation use a two-passes design in addition to the other
properties to achieve even better security at the cost of an heavier and slower design.
The security targets are con�dentiality, integrity for both plaintext and ciphertext, reduced leakage
during encryption and/or decryption, nonce-misuse resistance or resilience, leakage-resistance or re-
silience and beyond birthday bond security in the single or multi-user paradigm.
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ISAP Isap [105] is a family of permutation-based authenticated encryption schemes. The Isap in-
stances are parameterized by the security parameter k, which de�nes the cryptographic security level
of k bits, as well as a set of permutations with di�erent round numbers. The authenticated encryption
algorithm E gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and
a message M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k, where |M |
denotes the bitlength of M . The decryption algorithm D takes K,N,A,C, and T , and returns either
the message M or an error ⊥.
Isap is an encrypt-then-MAC design, where the same k-bit key is used for encryption and message au-
thentication. Three di�erent operations are used : the encryption IsapEnc, the message authentication
IsapMAC and the re-keying function IsapRK used internally by both functions.
In these algorithms, pH , pB, pE , pK denote permutations updating an n-bit state S.
Rate rH is applied for states in the unkeyed sponge and in the keyed sponge that are unlikely to
be evaluated more than once for di�erent outer parts with a �xed inner part, which means that
rH may be reasonably large. Rate rB is applied for states in the keyed sponge that may be evalu-
ated more than once, which means that we must bound the amount of leakage by limiting the total
number of evaluations that may be made for that state. In each of the members of Isap, we set
rH = n− 2k, cH = 2k and rB = 1, cB = n− 1.
The rate r de�nes how the state S is split into an r-bit outer part Sr and a c-bit inner part Sc as
S = Sr||Sc = [S]r[S]c, where c = n− r.

Figure 6.10: The ISAP mode of operation

The re-keying function IsapRK is called by IsapEnc and IsapMAC to generate session keys K∗E and
K∗A to perform encryption and authentication, respectively. The function gets as input a k-bit key K,
a k-bit string Y , a constant IV, and an output size z, where

(IV, z) =

{
(IVKE , n− k), if called byIsapEnc

(IVKA, k), if called byIsapMAC

and transforms these into a subkey K∗ of size z bits. It is instantiated using permutations pK , called
in the beginning to process the master key K and pB for all intermediate duplexes using a very small
rate rB.
Encryption is performed with the keyed sponge construction in the streaming mode. First, IsapRK is
called to generate a subkeyK∗E . IsapEnc gets as input a k-bit keyK, a k-bit nonceN , and an arbitrarily
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large message M , and generates a ciphertext C of size |M |. It �rst calls IsapRK for encryption using
the constant initial value IV = IVKE and z = n− k in order to derive a (n− k)-bit subkey K∗E . Once
this subkey is generated, a regular sponge-based streaming mode using permutation pE is evaluated
at high rate rH .
For message authentication, we use a sponge-based hash function to build a su�x-MAC. IsapMAC
gets as input a k-bit key K, a k-bit nonce N , arbitrarily large associated data A, and arbitrarily large
ciphertext C, and it outputs a tag T of size k bits. It starts by initializing the state as N ||IVA and
absorbing the non-secret inputs (A,C) in plain sponge mode using permutation pH with high rate rH .
Note that domain separation between A and C is performed using the XOR of a single bit '1' to the
inner part of the state. The resulting state S is then split into a k-bit value [S]k and a (n − k)-bit
value [S]n−k. The value [S]k is fed as input string to IsapRK to generate a subkey K∗A, and a �nal call
to the permutation pH is made on input KA||[S]n−k to obtain the k-bit tag T . For veri�cation, the
tag T ′ is re-computed in the same way from the received nonce N , associated data A, and ciphertext
C, and compared with the received tag T .
ISAP is de�ned with two di�erent permutations: Keccak-p[400] and Ascon-p.

The TETSponge/S1P The TETSponge/S1P scheme is a one-pass sponge-based mode for AEAD
[135].

Figure 6.11: The TETSponge/S1P scheme

�E is an (n, n, n)-TBC and Π is an l = r + c bit keyless permutation. The key of S1P is K||PK,
where |K| = n and |PK| = np. We stress that only K has to be kept secret, but PK can be public. The
secret key K is picked uniformly at random in {0, 1}n. The public key PK only needs to be distinct
for each session. For simplicity, the focus is only put on uniform PK ∈ {0, 1}np . Let n = |N | be the
�xed length of the nonce. Is is only required that np ≤ r, nN + np + n ≤ r + c, and 2n ≤ r + c + 1.
Yet, it is recommended that np ≈ n and c ≈ 2n and it was actually chosen by the authors np = n− 1
and c = 2n as this leads to a security up to 2n/n2 complexity. There is no recommendation for nN ,
but when n = 128 one could take nN = 96 which is a standard choice.
Upon encrypting (N , A, M), the mode �rst derives an n-bit initial seed B from N , using a strongly

protected TBC-call to �E
PK||0∗
K (N ||0). The initial seed B is then used as the key of the inner keyed

duplex to process A and M = M [1]|| . . . |||M [l] and produce c = C[1] . . . |||C[l]. Note that 2 bits
are used for domain separation, in order to distinguish M from A and mark if the last blocks of A
and M are of full r bits or not. Let U ||V be the least signi�cant 2n − 1 bits of the �nal state with
|U | = n. As discussed, this truncated state is not immediately used as the tag. Instead, another

strongly protected TBC-call is made, which generates the n-bit tag Z = �E
V ||1

(U). The �nal ciphertext
is C[1]|| . . . ||C[l]||Z.
The Decryption. Upon decrypting (N , A, C), C = C[1]|| . . . ||C[l]||Z, the mode �rst derives the initial

seed B via B = �E
PK||0∗
K (N ||0), and then runs the inner keyed duplex on A and C[1]|| . . . ||C[l] to derive

M and the 2n− 1 bit truncated state U ||V . Finally, it makes an inverse TBC call U∗ = (�E
V ||1
K )−1(Z),

and outputs M if and only if there is a match U = U∗ . In such a way, invalid decryption only leaks
meaningless random values U∗ (instead of the correct tag) which is instrumental to achieve CIML2.

The TEDTSponge/S2P The main limitation of TETSponge/S1P pointed by its authors is that
it does not achieve CCAmL2 security (which seems to be the price to pay to obtain a one-pass design).
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With two passes, an Encrypt-then-MAC composition, the de facto standard choice for leakage-resilient
Authenticated Encryption becomes possible.
The TBC-based key-derivation is used to start a keyed duplex for encrypting. Then a hash-then-TBC
MAC function generates the tag from the nonce, the associated data, the ciphertext, and the public
key. The keyless hash function is built upon the sponge function. The ideas of using hash-then-TBC
for beyond n/2 security and hashing PK for beyond n/2 multi-user security are again inherited from
[56]. In summary, S2P[Π, �E] can be seen as a (more e�cient) sponge-based variant of the TEDT
TBC-mode, or an ISAP variant using a TBC to improve leakage-resilience (i.e., CIML2 and CCAmL2)
security.
Formally, with the same conventions np ≤ r, nN +np+n ≤ r+c, and 2n ≤ r+c+1. The recommended
parameters are np = n− 1 and c = 2n.

Figure 6.12: The TEDTSponge/S1P scheme
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6.4.4 Focus on the permutation

Through the years, several sponge-based schemes have been published, each one presenting one or
several enhancements on the mode, being either implementation e�ciency, improvement of security
bounds, enhancement or applicability of side-channel attacks and solutions to prevent them... But for
the best of our knowledge, no work yet has been trying to compile all of these features and compare
them. This is what we are trying to do here.

The permutation is the main component of the sponge construction. It is called numerous times
during the encryption and MAC part. The majority of sponge-based AEAD schemes only rely on the
permutation plus a few XOR for constants adding, the padding of messages and additional data.

Di�erent state sizes can be found in the literature. From the NIST LWC standardization process,
we can gather information on the size of the permutation used. The smallest one is used for SpoC
with 192 bits and the largest one is Spook with 512 bits. We also study some interesting sponge-based
hash scheme which can quite easily be turned into AEAD schemes.
Considering the security bounds given by the designers of the di�erent sponge modes and emphasizing
lightweight hardware implementations, we focus our work on permutations with size b ∈ {192, 256, 259, 320, 384}.

WAGE WAGE is an AEAD algorithm design introduced by Aagaard et al. [21]. The state is made
of 259 bits and the permutation is based on the Welch-Gong stream cipher[206].

The state is divided into 37 7-bit words S36 to S0. The rate part of the WAGE-AE-algorithm,
called Sr is made of the last bit of S36 and S35, S34, S28, S27, S18, S16, S15, S9, S8. The capacity part,
of 195 bits is made of the rest of the state. The squeezing and absorbing phases of WAGE are shown
in Fig. 8 with the rate part shaded in orange and the green part representing the capacity.

Figure 6.13: The squeezing and absorbing phases of WAGE

The WAGE permutation operates over the �nite �eld F27 . Its round function is constructed by
tweaking the initialization phase of the Welch-Gong cipher with four 7-bit SBoxes added to achieve a
faster confusion and di�usion. The core components of the round function are an LFSR, two Welch-
Gong Permutations (WGP) and four SBoxes. The state is updated 111 times as described next.
The Welch-Gong permutation is de�ned by:
WGP(x) = x13+(x13 + 1)33+(x13 + 1)39+(x13 + 1)41+(x13 + 1)104.
The state is updated as follow:
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fb = Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si26)

Si+1
4 = Si5 ⊕ SB(Si8

Si+1
10 = Si11 ⊕ SB(Si15

Si+1
18 = Si19 ⊕WGP (Si8)⊕ rci0
Si+1

23 = Si24 ⊕ SB(Si8)

Si+1
29 = Si30 ⊕ SB(Si15)

Si+1
36 = fb ⊕ SB(Si36)⊕ rci1
Si+1
j = Sij+1, j ∈ {0, ..., 36} \ {4, 10, 18, 23, 29, 36}

with rci0 and rci1 round constants calculated with a LFSR of length 7.

The sLiSCP-light mode The sLiSCP family of lightweight cryptographic permutations [22] was
proposed at SAC17. It is designed on the uni�ed duplex construction to provide multiple cryptographic
functions aiming for the lowest hardware cost as possible. The permutation used is based on the Simeck
[237] block cipher. It follows a 4-bit sub-block Type-2 Generalized Feistel-like Structure (GFS) with
unkeyed round-reduced Simeck as the round function. The sLiSCP-Light design is designed by tweak-
ing the GFS structure into a Partial Substitution-Permutation Network, thus achieving better security
properties while reducing the hardware cost of the design and enhancing its performances.

Figure 6.14: The sLiSCP permutation Figure 6.15: The sLiSCP-Light permutation

The sLiSCP-Light permutation operates on s step, computing b bits made of 4 × m sub-blocks
(Xi

0, X
i
1, X

i
2, X

i
3), with i the step number (numerated from 0 to s-1).

In each step, the state is updated by a sequence of three transformations: SubstituteSubblocks(SSb),
AddStepconstants(ASc), and MixSubblocks(MSb), such as:

(Xi+1
0 , Xi+1

1 , Xi+1
2 , Xi+1

3 )←MSb ◦ASc ◦ SSb(Xi
0, X

i
1, X

i
2, X

i
3)

The SubstituteSubblocks operation is a partial substitution layer of the SPN structure, where the
non-linear operation is applied to half of the state, on two di�erent m-bit sub-blocks. It applies the
u-round iterated unkeyed Simeck box.
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Figure 6.16: One sLiSCP-Light step Figure 6.17: Simeck round

The usual round sub-key added at each round is here replaced by round constants.
The AddStepconstants operation consists of adding step constants to the two m-bit sub-blocks that
did not go through the Simeck box.
The MixSubblocks layer applies the linear transformation that is used in the Type-2 GFS to the sub-
blocks of the state. More precisely, each even indexed sub-block is replaced by the XOR of its initial
value with its neighboring odd indexed sub-block. Then a sub-block cyclic left shift is applied.
The permutation is designed to work with 192 or 256 bits with 48 or 64 bit sub-blocks. It is used in
the SPIX [20] and SpoC [19] candidates to the NIST LWC standardization process.

ACE ACE [13] is a 320-bit sponge-based algorithm that can be used for both Authenticated En-
cryption with Associated Data and hashing functions. Its name comes from the strongest card of the
deck. Following the designers' idea, ACE is designed to achieve a balance between hardware cost and
software e�ciency.
In the case of ACE, the 320-bit state is divided into �ve 64-bit words, A, B, C, D and E. The Simeck
box is applied to three of the �ve words, namely to words A, C and E. The permutations are made in
16 steps.
The sLiSCP-light uses a combination of a Type II Generalized Feistel Structure (GFS) and a round-
reduced unkeyed Simeck box (SB). Each step consists of three transformations, namely, Substitute-
Subblocks (SSb), AddStepconstants (ASc), and MixSubblocks (MSb). The non-linear operations are
applied in the SSb, or SB. SBs consist of XORs, bitwise rotations, and a logical AND.
The three SBs on 64-bits each operate on a total of 192 bits out of 320 bits of state. Round constants
are supplied to each SB at the start of each SSb transformation.
An SSb transformation requires 8 rounds, each of which executes in one clock cycle. Local state vari-
ables, as well as updated round constants, are stored during SSb transformations. The three round
constants (rc0, rc1 and rc2) and three step constants (sc0, sc1 and sc2), each 8 bits, are implemented
using look-up tables. The result of the C words through the second SB is then XORed to word B, and
the same happens with words E and D. The three state constants are added to words B, D and E.
Finally, the MixSubblocks part mixes the 5 words to their corresponding output, as shown in Figure
8.6. One sLiSCP-Light permutation is executed in 16× 8 = 128 clock cycles.

91



Figure 6.18: The ACE Permutation

The Simeck box shown in the �gure below is an unkeyed independently parameterized variant of
the round function of the Simon algorithm.

Figure 6.19: The Simeck Box
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PHOTON The PHOTON permutation is an AES-like function, applied on an internal state of d2

elements of s bit each. The state can be represented as a (d×d) matrix. The permutation is composed
of Nr rounds, each made of four layers : AddConstants (AC), SubCells (SC), ShiftRows (ShR), and
MixColumnsSerial(MCS). AddConstants consists in adding �xed values to the cells of the internal
state, SubCells applies an s-bit Sbox to each of them, ShiftRows rotates the position of the cells in
each row and MixColumnsSerial linearly mixes all the columns independently.

AddConstants: The constants have been chosen such that each of the Nr round computations are
di�erent, and such that classical symmetry between columns in AES-like designs is destroyed. The
AddConstants layer prevents an input with all columns equal to maintain this property through the
rounds. Only the �rst column of the internal state is involved, to limit the number of operations. The
round constants can be generated by a combination of very compact Linear Feedback Shift Registers.

SubCells: Two types of Sboxes are used in PHOTON, the 4-bits SBOX from PRESENT [66] and
the 8-bits SBOX from the AES. The Sboxes have mainly been chosen for their low hardware footprint.
4-bit Sboxes can be very compact in hardware while the acceptable upper limit on the cell size is s = 8.
The choice was also made to save time for cryptanalysis by reusing already trusted and well analyzed
components.

ShiftRows: Each row i will be rotated by i positions to the left, i counts from 0 to d− 1.
MixColumnsSerial: The starting point for choosing the matrix was that the matrix underlying the

AES MixColumns function can not be implemented in a very compact way, mainly because the byte-
serial implementation of this function is not compact. To maintain as much di�usion as possible and
follow the idea used in AES, the matrix A is designed such as Ad is MDS, denoted as Serial(Z0, .., Zd−1)
such as:

The size which interests us for this work is the P256 permutation, used in PHOTON-Beetle. This
is a permutation on 256 bits, represented as a (8× 8) matrix of 4 bits elements, computed 12 rounds.
The matrix used for the MixColumnsSerial operation is Serial(2, 3, 1, 2, 1, 4). The PRESENT Sbox in
hexadecimal display:

SBOXPRESENT = [0xc, 0x5, 0x6, 0xb, 0x9, 0x0, 0xa, 0xd, 0x3, 0xe, 0xf, 0x8, 0x4, 0x7, 0x1, 0x2]

The Mixing Matrix:
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The PHOTON family members of hash functions proposes di�erent possible parameters, as pre-
sented below:

Figure 6.20: The Photon Family members

LS-design Spook is designed in a mode of operation minimizing side-channel leakages. To achieve
its security, it is designed with a tweakable block cipher Clyde-128 and a permutation, Shadow. Shadow
is described with two state sizes: 512 bits, the primary candidate, and 384 bits. To reduce at maximum
the hardware footprint of the whole algorithm, Clyde and Shadow use the same components.
Shadow is a variant of the LS-designs denoted as mLS-designs (multiple LS-designs) that mixes multiple
LS-designs thanks to an additional di�usion layer. Such ciphers work on n = (m ·s · l)-bit states, where
m is the number of LS-designs considered, the size of the Sbox is s and the size of the Lbox is 2l.
The state is denoted as x, each (s·l)-bit substate corresponding to an LS-design as a bundle x[b, ∗, ∗](0 ≤
b < m), a bundle row as x[b, i, ∗](0 ≤ i < s) and a bundle column as x[b, ∗, j](0 ≤ j < l).
The internal representation of the data is an (m · s · l)-bit state but the cipher operates over bitstring
inputs and outputs. The mapping between a bitstring B and a state x is x[b, i, j] = B[b · l · s+ i · l+ j].
In summary, Shadow-512 updates the n-bit state x by iterating Ns steps, each of them made of two
rounds (A and B) that respectively apply an L-box to the rows of each bundle independently, and a
di�usion layer mixing the rows of di�erent bundles (on top of the S-box layer).
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The Shadow permutation is de�ned as such:

x← µ
for 0 ≤ σ < Ns do
for 0 ≤ b < m do
for 0 ≤ j < l do
x[b, ∗, j] = S(x[b, ∗, j]);

end for
for 0 ≤ i < s \ 2 do

(x[2i, ∗], x[2i+ 1, ∗]) = L(x[2i, ∗], x[2i+ 1, ∗]);
end for
x← x⊕W (2 · σ)

end for
for 0 ≤ b < m do
for 0 ≤ j < l do
x[b, ∗, j] = S(x[b, ∗, j]);

end for
end for
for 0 ≤ i < s do
for 0 ≤ j < l do
x[∗, i, j] = D(x[∗, i, j]);

end for
end for
x← x⊕W (2 · σ + 1)

end for
return x

where µ denotes the input, W (r) are round constants, S and L are an s-bit Sbox and a 2l-bit L-box
and D is a m-bit di�usion layer.

The SBox used for the permutation is derived from the one used in Skinny [47]:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 8 1 15 2 10 7 9 4 13 5 6 14 3 11 12

Table 6.1: Spook Sbox Table

The Lbox applies jointly to pairs of 32-bit words and has branch number 16 over those pairs.
Denoting the two words on which it is applied as x and y:

(a, b) = L′(x, y) =

(
circ(0xec045008) · xT ⊕ circ(0x36000f60) · yT
circ(0x1b0007b0) · xT ⊕ circ(0xec045008) · yT

)
where circ denotes the circulant matrix whose �rst line is given in hexadecimal notation, so that the
number b =

∑31
i=0 2ibi corresponds to the row vector (b0, ..., b31).

The di�usion layer is represented with the D matrix. It is the di�usion layer of the low-energy cipher
Midori [39], which is based on a near-MDS 4× 4 matrix de�ned as follows:

(a, b, c, d) = D(w, x, y, z) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ·

w
x
y
z


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ASCON permutation The Ascon permutation operates on a 320-bit state with a SPN-based
round transformation that consists of three steps, namely pc, ps and pl. The state is divided into �ve
64-bit words, S = x0||x1||x2||x3||x4. The pc operation is the addition of the round constant to the
third 64-bit word of the state. The ps is the substitution layer, each word being processed through a
5-bit Sbox such as:

Figure 6.21: ASCON SBOX

The pl represents the Linear Di�usion layer, de�ned with the following equation:

x0 ←
∑

0

(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ←
∑

1

(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ←
∑

2

(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ←
∑

3

(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ←
∑

4

(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

These steps are iterated 12 times when the permutation is used for initialization, �nalization or
computing of additional data and six or eight times for message computation, depending on the targeted
security level.

SHAMASH SHAMASH is an authenticated cipher based on a 320-bit permutation. The permuta-
tion divides the state into �ve 64-bit words and computes them with three layers of operation, namely
a round constant addition to the �rst word of the state, a substitution layer and a di�usion layer.
The round constants are (11× i)⊕ 0xff where i is the round number.
The substitution step, such as ASCON, consists in the passage of the state through sixty-four 5-bit to
5-bit Sboxes.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[x] 16 14 13 2 11 17 21 30 7 24 18 28 26 1 12 6
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S[x] 31 25 0 23 20 22 8 27 4 3 19 5 9 10 29 15

Table 6.2: The SHAMASH 5-bit Sbox

The di�usion layer consists of a series of rotations and XORs, in three steps. First, each 64-bit
word is rotated twice to the right and the results XORed with the original word:

w → w ⊕Rot(w, a)⊕Rot(w, b)

With a, b, constants, di�erent for each word. For any constants a, b 6= 0, a 6= b the above transformation
is invertible. The inverse is a function of the form

w →
t⊕
i=0

Rot(w, ai)

where t is the number of terms of the inverse.
The constants a and b have been chosen for each word so that the inverse of each of the �ve transfor-
mations has the highest value as possible, i.e. 43 and 37:

96



a b t
W0 43 62 37
W1 21 46 37
W2 58 61 43
W3 57 63 37
W4 3 26 37

Then the bits are mixed vertically, following:

Wi =

{
Wi ⊕W3 ⊕W4, if i = 0, 1 or 2

Wi ⊕W0 ⊕W1 ⊕W2, if i = 3 or 4

Lastly, the 4 �rst words Wi are rotated from 2i + 1 bytes to the right, while the last word is left
untouched.
This whole process is iterated nine times to compute the permutation.

Sycon Sycon v1.0 [176] was �rst designed to enter the NIST LWC standardization process but did
not make it into the round 2. After noticing that some parts of the design were not optimal (for
example, some of the di�erential trail claimed in the submission document were not correct), the
design goal was to design a permutation, lighter as the permutation from Ascon but with the same
security and e�ciency. Sycon [176] is an AEAD scheme based on the MonkeyDuplex construction.
The design of the permutation is based on the Substitution-Permutation Network, applying �rst a
substitution layer (Sboxes in parallel) that induces the confusion property and then a linear di�usion
layer to induce di�usion.
The Sycon permutation is an iterative permutation on 320 bits. The state is �rst divided into sixty-four
5-bit words, each processed trough a 5-bit Sbox, in parallel. This operation is named Sbox (SB).

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[x] 8 19 30 7 6 25 16 13 22 15 3 24 17 12 4 27
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S[x] 11 0 29 20 1 14 23 26 28 21 9 2 31 18 10 5

Table 6.3: The Sycon 5-bit Sbox

The di�usion layer is a linear transformation that is applied independently on �ve 64-bit subblocks
si, 0 ≤ i ≤ 4. The linear transformation has the form L(x) = (x ⊕ (x ≪ u) ⊕ (x � 2u)) ≪ t where
0 ≤ u, t ≤ 63 are positive integers.

s0 ← (s0 ⊕ (s0 ≪ 59)⊕ (s0 ≪ 54)) ≪ 40

s1 ← (s1 ⊕ (s1 ≪ 55)⊕ (s1 ≪ 46)) ≪ 32

s2 ← (s2 ⊕ (s2 ≪ 33)⊕ (s2 ≪ 2)) ≪ 16

s3 ← (s3 ⊕ (s3 ≪ 21)⊕ (s3 ≪ 42)) ≪ 56

s4 ← (s4 ⊕ (s4 ≪ 13)⊕ (s4 ≪ 26)).

The last step of the permutation is the AddRoundConst (RC). The round constants are generated
using a 4-bit LFSR, each state of the LFSR serving as a distinct round constant. The four bits thus
generated are concatenated with a 60-bit constant value: 0xaaaaaaaaaaaaaa0.
These steps are iterated twelve times when the permutation is used for initialization, �nalization or
computing of additional data and six or seven times for message computation, depending on the security
level targeted.

Keccak permutation The Keccak-p permutations are derived from the Keccak-f permutations
[12] and have a tunable number of rounds. A Keccak-p permutation is de�ned by its width b = 25×2l,
with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr.
Keccak-p[b, nr] consists in the application of the last nr rounds of Keccak-f [b]. When nr = 12 + 2l,
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Keccak-p[b, nr] =Keccak-f [b].
The permutation Keccak-p[b, nr] is described as a sequence of operations on a state a that is a three-
dimensional array of elements of GF(2), namely a[5, 5, w], with w = 2l.
The expression a[x, y, z] with x, y ∈ Z5 and z ∈ Zw, denotes the bit at position (x, y, z). Expressions
in the x and y coordinates should be taken modulo 5 and expressions in the z coordinate modulo w
Keccak-p[b, nr] is an iterated permutation, consisting of a sequence of nr rounds R, indexed with ir
from 12 + 2l− nr to 12 + 2l− 1. Note that ir, the round number, does not necessarily start from 0. A
round consists of �ve steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

with
θ : a[x, y, z]← a[x, y, z] +

∑4
y′=0 a[x− 1, y′, z] +

∑4
y′=0 a[x+ 1, y′, z − 1], ρ : a[x, y, z]← a[x, y, z − (t+

1)(t+ 2)/2],

with t satisfying 0 ≤ t ≤ 24 and
(

0 1
2 3

)t( 1
0

)
=
( x
y

)
in GF (5)2×2, or t = −1 if x = y = 0, π : a[x, y] ←

a[x′, y′] with
( x
y

)
=
(

0 1
2 3

)(
x′

y′
)
,

χ : a[x]← a[x] + (a[x+ 1] + 1)a[x+ 2],
ι : a← a+RC[ir].

Spongent Spongent is a sponge construction based on a PRESENT-type permutation [66]. It
produces a n-bit hash value for any input of a �nite number of bits using a permutation πb operating
on a state of b bits. The permutation is a N -round iteration of the transformation of the b-bit state.
It is similar to the PRESENT round function but in a wider version. Moreover, instead of the key
addition a round constant is XORed to the state. The round constants are computed using a LFSR.
The substitution and permutation layers of spongent are the same as in PRESENT but de�ned for a
wider state.

Figure 6.22: PRESENT round

The substitution layer uses a 4-bit Sbox which is applied b/4 times in parallel:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

Table 6.4: The PRESENT Sbox

The permutation layer is an extension of the inverse PRESENT bit-permutation and moves bit j
of the state to position Pb(j) following:

Pb(j) =

{
j.b/4 (mod b− 1) if j ∈ {0, ..., b− 2}
b− 1 if j = b− 1

Spongent is proposed with 5 sets of parameters, each one resulting on a di�erent security level:

98



QUARK QUARK is a hash function with a hardware oriented permutation inspired by the lightweight
block ciphers KTANTAN and KATAN and the hardware oriented stream cipher Grain. The smallest
version, U-QUARK produces a 136 bits long digest, D-QUARK produces a 176 bits long digest and
the longest version, S-QUARK a 256 bits long digest.
The update function computes b bits by loading each half of the state into a distinct NLSFR of length
b/2 and then computing it 4×b times. The NLSFRs are connected to each other and to a small LFSR of
length log(4b). The functions f , g and h are boolean functions chosen for their non-linearity, resilience,
algebraic degree and density. f and g are identical for all versions and borrowed from Grain-v1 while
h depends on the instance.

The Quark instances can easily be modi�ed to operate in the duplex construction to allow the real-
ization of functions as authenticated encryption or reseedable pseudo-random generators. C-QUARK
is such a version, dedicated to authenticated encryption.

99



GIMLI GIMLI [54] is a 384-bit permutation, designed for cross-platform performance. It also aims
to be energy-e�cient in hardware, and it provides side-channel-protected implementations for hardware
platforms and for micro-controllers.
Gimli applies a sequence of rounds to a 384-bit state. The state is represented as a parallelepiped with
dimensions 3 × 4 × 32 or, a 3 × 4 matrix of 32-bit words. A column j is a sequence of 96 bits and a
row i is a sequence of 128 bits.

Figure 6.23: Representation of the GIMLI state

Each round is a sequence of three operations: a non-linear layer (96-bit SP-box applied to each
column) (1), in every second round, a linear mixing layer (2) ; and in every fourth round, a constant
addition (3). The SP-box consists of three sub-operations: rotations of the �rst and second words, a
3-input nonlinear T-function and a swap of the �rst and third words. The linear layer consists of two
swap operations: Small-Swap and Big-Swap. Small-Swap occurs every four rounds starting from the
�rst round, Big-Swap every four rounds starting from the third round. There are 24 rounds in Gimli,
and constants are added to the state on rounds 24, 20, 16, 12, 8 and 4. XOR the round constant
0x9e377900⊕ r to the �rst state words.

Figure 6.24: Gimli SP-box

Figure 6.25: Gimli linear layer
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Part III

My contributions
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For the duration of this thesis, I have been working on several topics upon which I could bring my
contribution. Three of them are quite related to the topics I was working on for HENSOLDT France,
which I will present here. The last one is about a new protocol for blockchain, trying to initiate a
cryptocurrency rewarding useful works, that I will present in appendix of this thesis.

The �rst paper is entitled Non-Triangular Self-Synchronizing Stream Ciphers, and was written in
collaboration with Julien Francq, Paul Huynh, Philippe Guillot, Gilles Millerioux and Marine Minier.
It was published in IEEE Transactions on Computers [123]

Abstract We propose here an instantiation, called Stanislas, of a dedicated Self Synchronizing
Stream Ciphers (SSSC) involving an automaton with �nite input memory using non-triangular state
transition functions. Previous existing SSSC are based on automata with shifts or triangular functions
(T�functions) as state transition functions. Our algorithm Stanislas admits a matrix representation
deduced from a general ans systematic methodology called Linear Parameter Varying (LPV). This
particular representation comes from the automatic theory and from a special property of dynamical
systems called �atness.
Hardware implementations and comparisons with some state-of-the-art stream ciphers on Xilinx FP-
GAs are presented. It turns out that Stanislas provides bigger throughput than the considered stream
ciphers (synchronous and self-synchronizing) when straightforward implementations are considered.
Moreover, its synchronization delay is much smaller than the SSSC Moustique (40 clock cycles instead
of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128).

My main contribution for this work was the implementation of the Stanislas algorithm on FPGA
and some others stream ciphers for comparisons. The goal was rather to have an implementation
developed in the same spirit as those from the other algorithms found in the literature than to provide
a fully optimized implementation, in order to get a fair comparison. An optimized version could be
developed later if the algorithm �nds its use in a practical application. In addition, we studied some
solutions for masking the algorithm but the results were not conclusive so we decided not to disclose
it in this paper.

The second work followed the NIST LWC standardization process that aims to de�ne the new
standards for lightweight authenticated encryption. For this purpose, I implemented and made a com-
parative study of some sponge-based candidates that made it into the second round of the competition.
This work was made in collaboration with Louis Goubin, who helped me analyze the proper conclu-
sions and perspectives. This work was realized in parallel to the NIST LWC standardization process
and similar results have been published by others teams of cryptographers, including one from the
CERG (Cryptographic Engineering Research Group) that is the current reference in cryptographic
implementations on FPGA. In order to be resubmitted, further improvements will be required for an
optimized FPGA implementation of PHOTON-Beetle, which has been accepted in the third round of
the LWC standardization process.

Abstract Achieving security while maintaining a low hardware footprint is one of the new chal-
lenges in cryptography. Small objects like IoT (Internet of Things) have seen their use skyrocket those
past years and they need secure solutions adapted to their size, thus the need to develop or adapt
lightweight yet robust cryptographic solutions. This calls for improved designs and implementations
of constructs such as Authenticated Encryption with Associated Data (AEAD) which can ensure con-
�dentiality, integrity, and authenticity, all in one algorithm.
The CAESAR competition[2] with ASCON [106] as �rst recommendation for lightweight use cases for
AEAD have shown that sponge-based design could be very practical to design lightweight yet robust
solutions for those functions.
The U.S. National Institute of Standards and Technology (NIST) has begun a years-long e�ort called
the Lightweight Cryptography (LWC) standardization process in order to evaluate lightweight AEAD
and hash algorithms to update the U.S. federal standards accordingly. Several sponge-based candidates
were presented.
The goal here is to implement and compare some of these candidates to distinguish which are the
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most interesting bricks to construct lightweight sponge-based candidates depending on the perfor-
mance mainly targeted. We therefore implemented three sponge-based AEAD candidates on FPGA:
ACE[13], WAGE[21] and PHOTON-BEETLE[40]. These implementations are compliant with the
newly-released hardware (HW) applications programming interface (API) for lightweight cryptogra-
phy and come to complet the work initiated in [192].

The third and last work I present in this part is an attack on the SIV mode of operation. The
goal of this attack was to introduce an attack which is feasible if the protocol is not well instantiated,
i.e., the number of allowed messages while using the same key is not de�ned. This work was realized
in collaboration with Louis Goubin. While we were working on a new mode of operation, we found
interesting to test the security of existing an one and found this attack. This paper has not been
submitted yet at the time this thesis is written, but is intended to be soon.

Abstract SIV mode of operation is a mode of operation described to obtain deterministic authen-
ticated encryption. This means that the mode of operation reaches security while not using any
initialization vector. Algorithms designed to achieve this can be viewed as misuse-resistant modes
of operations. In this work we try to show the characteristics that need to be given for a proper
use of this mode of operation for secure protocol, i.e. no more than 264 − 1 messages per key. We
describe an attack on the mode of operation that can be realized if this characteristic is not maintained.

Lastly I have been able to contribute to a paper on a new protocol for blockchain, a Useful-Work
protocol, that I introduce in Appendix A. This work is not related to the main topic of this thesis but
was a very interesting starting point for me in the vast universe of the blockchain.

At the time this thesis is written, the paper concerning the Useful-Work protocol have been sub-
mitted to acceptance for publication.
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Chapter 7

A Self-Synchronizing Stream Cipher :

Stanislas

7.1 Introduction

Self-Synchronizing Stream Ciphers (SSSC) were patented in 1946. The basic principle of such ciphers is
to encrypt every plaintext symbol with a transformation that only involves a �xed number of previous
ciphertext symbols. Therefore, every ciphertext symbol is correctly deciphered provided that previous
symbols have been properly received. This self-synchronization property has many advantages and
is especially relevant to group communications. In this respect, since 1960, speci�c SSSC have been
designed and are still used to provide bulk encryption (for Hertzian line, RNIS link, etc.) in military
applications or governmental radio mobile networks [179, 203].
The canonical form of the SSSC combines a shift register, which acts as a state register with the
ciphertext as input, together with a �ltering function that provides the running key stream. The cryp-
tographic complexity of the canonical form of the SSSC lies in the �ltering function.
In the early 90s, studies have been performed [179, 93] to propose secure designs of SSSCs. These works
have been followed by e�ective constructions ([137, 207, 95]). What motivates the present proposal for
a new SSSC is that, till now, all of these SSSC schemes have been broken ([150, 151, 152, 158, 162]).
And up to our knowledge, since 10 years, no other proposals of SSSCs has been made. Clearly, SSSC
can be naturally built using a block cipher by applying the Cipher Feedback (CFB) mode. However,
the computational cost of CFB is one full block cipher operation per digit. So for single-bit digits, it is
n times less e�cient than synchronous stream encryption modes such as Output Feedback (OFB) or
Counter (CTR) Mode, with n the block length. For example, AES in single-bit CFB mode (as de�ned
as �CFB1-AES128� in NIST SP 800-38a [111]) is 128 times less e�cient than AES in counter mode.
As a consequence, it seems interesting to propose dedicated SSSC and consider them as a category of
primitives of their own.
The aim of the present chapter is to propose a new framework, along with an instantiation called
Stanislas, to design SSSC. The design approach is based on both the special feature of Finite State
Machines admitting a matrix representation, called LPV (Linear Parameter Varying) automata and
on a property of dynamical systems named �atness coming from control theory. Flatness is interpreted
in terms of the structure of a graph associated to the automaton from which self-synchronization can
be easily characterized. The matrix representation is a generalization of Rational Linear Finite State
Machines or Feedback with Carry Shift Registers proposed in [28, 29]. The use of �atness for the sake
of cryptography has been �rst proposed in [108]. It has been shown that �atness characterizes the
self-synchronization property and that it allows to design automata which can be more general than
T�functions as it was the case over the past years (see [94, 95] as examples). One of the bene�ts of this
approach is that we could introduce nonlinearities with proved properties in the matrix representation,
what a shift register does not always permit. Due to this peculiarity, the class of admissible automata
to act as SSSCx is thereby enlarged.
In the present chapter, a complete cipher, called Stanislas (for Secure Transmission Algorithm with
Non triangular Iterative Structure Looking After Self-synchronization) and designed from the LPV
framework, is described. The key schedule, the design rationale and the security analysis are pro-
vided. Next, hardware implementation results on Xilinx FPGA platforms of Stanislas are performed
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and compared with some state-of-the art competitors: some Synchronous Stream Ciphers coming from
eSTREAM portfolio (Trivium [101] and Grain [138]), one SSSC (Moustique) and the only known
feedback mode (the NIST-standardized CFB1-AES128). Interestingly, Stanislas provides the highest
throughput on Xilinx Spartan-6 XC6SLX75T FPGAs compared to its stream ciphers and SSSC com-
petitors, implemented in a straightforward manner. Moreover, with the same comparison conditions,
its synchronization delay is much smaller than the SSSC Moustique (40 clock cycles instead of 105)
and the standard approach CFB1-AES128 (40 clock cycles instead of 128), which provides a decisive
advantage for applications when low-latency synchronization is required (e.g., Telecom).
The chapter is organized as follows. Section 7.2 recalls the theoretical results linking together �at-
ness and SSSC. Section 7.3 presents the new SSSC Stanislas. The design rationale and the security
analysis are detailed in Section 7.4. Finally, Section 7.5 provides hardware implementation results and
comparisons. Section 7.6 concludes this chapter.

7.2 Theoretical Foundations and Flatness

After few generalities on stream ciphers, it is recalled in this section the main results of [108] concerning
the design of SSSC based on the property of �atness.

7.2.1 Generalities on Stream Ciphers

For a stream cipher, it must be given an alphabet A, that is, a �nite set of basic elements named
symbols. The set A stands in this paragraph as a general notation without any speci�c alphabet.
Typically, A could be composed of 1 or several bits elements. Hereafter, the index t ∈ N will stand for
the discrete-time. On the transmitter part, the plaintext (also called information or message) m ∈M
(M is the message space) is a string of plaintext symbols mt ∈ A. Each plaintext symbol is encrypted,
by means of an encryption (or ciphering) function e, according to:

ct+r = e(zt+r,mt), (7.1)

where zt ∈ A is a so-called keystream (or running key) symbol delivered by a keystream generator. The
function e is invertible for any prescribed zt. The resulting symbol ct ∈ A is the ciphertext symbol. The
integer r ≥ 0 stands for a potential delay between the plaintext mt and the corresponding ciphertext
ct+r. This is explained by computational or implementation reasons, for instance pipelining (see [94]
for example). Consequently, for stream ciphers, the way how to encrypt each plaintext symbol changes
on each iteration. The resulting ciphertext c ∈ C (C is called the ciphertext space), that is the string
of symbols ct, is conveyed to the receiver through a public channel.
At the receiver side, the ciphertext ct is deciphered according to a decryption function d which de-
pends on a running key ẑt ∈ A delivered, similarly to the cipher part, by a keystream generator. The
decryption function d obeys the following rule. For any two keystream symbols ẑt+r, zt+r ∈ A, it holds
that

m̂t+r := d(ct+r, ẑt+r) = mt whenever ẑt+r = zt+r. (7.2)

Equation (7.2) means that the running keys zt and ẑt must be synchronized for a proper decryption.
The generators delivering the keystreams are parametrized by a secret key denoted by K ∈ K (K is
the secret key space). The distinct classes of stream ciphers (synchronous or self-synchronizing) di�er
each other by the way on how the keystreams are generated and synchronized. Next, we detail the
special class of stream ciphers called Self-Synchronizing Stream Ciphers.

7.2.2 Keystream Generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate the keystreams has been �rst suggested in [179]. It is based on
the use of so-called �nite state automata with �nite input memory as described below. This is typically
the case in the cipher Moustique [158]. At the ciphering side, the automaton delivering the keystream
takes the form: {

xt+1 = fK(xt,mt),
zt+r = hK(xt)

(7.3)
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where xt ∈ A is the internal state, f is the next-state transition function parametrized by K ∈ K.
As previously stressed, the delay r is introduced to cope with special situations, in particular when
the computation of the output (also called �ltering) delivered by the function h involves r successive
operations processed at time instants t, . . . , t+ r. Those operations will be here matrix multiplications
as detailed later in Equation (7.14). Substituting mt by its expression (7.2) yields an automaton
described by {

xt+1 = gK(xt, ct+r),
zt+r = hK(xt)

(7.4)

If such an automaton has �nite input memory, it means that, by iterating (7.4) a �nite number of
times, there exists a function `K and a �nite integer M such that

xt = `K(ct+r−1, . . . , ct+r−M ), (7.5)

and thus,
zt+r = hK(`K(ct+r−1, . . . , ct+r−M )). (7.6)

Actually, the fact that the keystream symbol can be written in the general form

zt+r = σK(ct−`, . . . , ct−`′), (7.7)

with σK a function involving a �nite number of past ciphertexts from time t− ` to t− `′ (`, `′ ∈ Z), is
a common feature of the SSSC. Equation (7.7) is called the canonical equation.

Remark 1 The bene�ts of implementing the recursive forms (7.3) or (7.4) instead of directly imple-
menting the canonical form (7.7) is that we can obtain nonlinear functions σK of high complexity
by implementing simpler nonlinear functions fK or gK . The complexity results from the successive
iterations which act as composition operations.

At the deciphering side, the automaton takes the form{
x̂t+1 = gK(x̂t, ct+r),
ẑt+r = hK(x̂t)

(7.8)

where x̂t is the internal state. Similarly to the cipher part, the automaton having a �nite input memory,
it means that, by iterating Equation (7.8) a �nite number of times, one also obtains

x̂t = `K(ct+r−1, . . . , ct+r−M ),

and thus,
ẑt+r = hK(`K(ct+r−1, . . . , ct+r−M )).

Hence, it is clear that after a transient time of maximal length equal to M , it holds that, for t ≥M ,

x̂t = xt and ẑt+r = zt+r. (7.9)

In other words, the generators synchronize automatically after at most M iterations. Hence, the
decryption is automatically and properly achieved after at most M iterations too. No speci�c syn-
chronizing protocol between the cipher and the decipher is needed. This explains the terminology
Self-Synchronizing Stream Ciphers. The integer M is called the synchronization delay.

Hereafter, the considered automata will be assumed to operate on the q elements �nite �eld F = Fq
where q is a prime power.
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7.2.3 Flat LPV Automata and SSSC

For the automaton described by (7.3) (or the equivalent automaton described by (7.4) after substi-
tution) to get a �nite input memory feature (see (7.5)), the solutions proposed in the open literature
call for state transition functions gK in the form of shifts or more generally T�functions (T for Trian-
gle). It is recalled that T�functions are functions that propagate dependencies in one direction only.
Till now, none of the proposed SSSCs has involved non-triangular state transition functions although
T�functions are known to su�er from weakness [152]. Indeed, T�functions induce a propagation of
di�erential properties which make them easier to cryptanalyse.
It is explained by the fact that no systematic methodology for constructing �nite automata with �-
nite input memory and involving general non triangular state transition functions was proposed so
far. Actually, in [108] a particular class of automata called �at LPV (Linear Parameter-Varying) has
been introduced and it has been shown that this class allows to de�ne such an expected systematic
methodology. Let us recall what is a �at automaton.

De�nition 1 An automaton described by the dynamics f verifying

xt+1 = f(xt,mt) (7.10)

where xt ∈ Fn is the state, mt ∈ F is the input, is said to be �at, if there exists a function

h : Fn × F→ F
ct = h(xt,mt)

such that all system variables can be expressed as a function of ct and a �nite number of its backward
and forward shifts.

The output ct is called the �at output. Hence, by de�nition, there exists a function F such that

xt = F
(
ct+t0 , . . . , ct+t1

)
(7.11)

where t0 and t1 are Z-valued integers. A central remark is that (7.11) is nothing but the canonical
equation of an SSSC (compare with (7.5)). As a direct consequence, a �at automaton acts as a primitive
to being an SSSC and thus is central for design perspectives.
LPV automata, de�ned over a �eld F, are described by the following state space representation:

xt+1 = Aρ(t)xt +Bmt (7.12)

xt ∈ Fn is the state vector, mt ∈ F is the input. The matrices A ∈ Fn×n and B ∈ Fn×1 are respectively
the dynamical matrix and the input matrix. The output ct is de�ned as

ct = Cxt (7.13)

with C ∈ F1×n the output matrix. The matrix B is the input matrix and de�nes the component xit
on which the symbol mt is added. Let us note that mt can be added to several components. Such a
system is called Linear Parameter-Varying because it is written with a linear dependency with respect
to the state vector.The set of all varying parameters of A are collected on a vector denoted by

ρ(t) =
[
ρ1(t), ρ2(t), ..., ρL(t)

]
∈ FL

where L is the total number of non-zero (possibly varying) entries. Such automata can exhibit nonlinear
dynamics. Indeed, the nonlinearity is obtained by de�ning the varying parameters ρi(t) as nonlinear
functions ϕi : Fs+1 → F of the output ct (or a �nite number of shifts) ρ

i(t) = ϕi(ct, ct−1, · · · , ct−s) with
s a natural number. Let us notice that the notation ρi(t) (usual in the literature for LPV systems) is
somehow abusive because it does not re�ect an explicit dependency with respect to the time t but on
quantities, here ct, indexed with t.
Furthermore, the LPV structure is suitable to construct non triangular state transition functions.
Indeed, because of the varying entries, the state transition function is not triangular if there does not
exist a common and constant triangularization basis over the whole set of matrices Aρ(t) with ρ(t) ∈ FL.
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Hence, it su�ces to select the position of the varying parameters ρi(t) in the matrix A accordingly.
As a simple illustration, the automaton governed by Equation (7.12) with the setting

Aρ(t) =

(
a 0

ρ1(t) ρ2(t)

)
, B =

(
1
0

)
with a a constant element in F, ρ1(t) = ct · ct−1 and ρ2(t) = (ct−2)2 is an LPV automaton and does
not admit a constant triangularization basis.

A �at LPV automaton is an LPV automaton of which state vector xt veri�es (7.11).
Let us recall from [108] the main proposition which allows to de�ne a family of SSSC based on LPV
automata. For brevity, we introduce the following notation. For t2 ≥ t1, denote by

∏t1
l=t2

Aρ(l) the

product of matrices Aρ(l) from t2 to t1. For t2 < t1, de�ne
∏t1
l=t2

Aρ(l) = 1n (the identity matrix of

dimension n). Finally, let T be the scalar de�ned by T = C
∏t+1
l=t+r−1Aρ(l)B.

Proposition 1 If the LPV �nite state automaton de�ned by (7.12) is �at, de�ning the keystream with
delay r as

zt+r = C
∏t
l=t+r−1Aρ(l)xt (7.14)

and the ciphering function as
ct+r = zt+r + Tmt, (7.15)

the set of equations (7.12), (7.14) and (7.15) de�ne the ciphering part of an SSSC.
On the other hand, consider the �nite state automaton with internal state x̂t with dynamics given

by
x̂t+1 = Pρ(t:t+r)x̂t +BT −1ct+r (7.16)

with

Pρ(t:t+r) = Aρ(t) −BT −1C
t∏

l=t+r−1

Aρ(l) (7.17)

along with the keystream ẑt de�ned as

ẑt+r = C
∏t
l=t+r−1Aρ(l)x̂t (7.18)

and the deciphering function obeying

m̂t+r = T −1(ct+r − ẑt+r). (7.19)

Then, the set of equations (7.16-7.19) de�ne the deciphering part of an SSSC.

The proof given in [108] consists in showing that, if the LPV �nite state automaton de�ned by (7.12)
is �at, then there exists an integer M such that the synchronization error xk − x̂t+r reaches zero after
a �nite transient time of length M . The integer M is the synchronization delay. Actually, it is shown
that �atness is equivalent to the existence of an integer M such that for all t ≥ 0,

Pρ(t+M−1:t+M−1+r)Pρ(t+M−2:t+M−2+r) · · ·Pρ(t:t+r) = 0 (7.20)

where the product (7.20) results from the composition of the state transition functions of the decipher-
ing automaton. Let us note that t and r are independent.

This LPV framework for the design of SSSC is new regarding the literature devoted to the design
of SSSC. In particular, it really di�ers from the serial and parallel constructions proposed in the 90s
by Maurer [179].

According to Remark 1, implementing the recursive form (7.12) and (7.16) instead of the canonical
form (7.5) is more e�cient from a computational point of view.

It is recalled that the non-linearity is obtained by de�ning the values of every varying parameters
ρi(t) (i = 1, . . . , L) involved in the matrices of (7.12-7.19) as non-linear functions ϕi of a �nite number
of past cryptograms (ρi(t) = ϕi(ct, ct−1, · · · , ct−s)). Those functions will be implemented in the form
of S-boxes denoted S.

ϕi : Fs+1 → F
(ct, ct−1, · · · , ct−s) 7→ S(ct, ct−1, · · · , ct−s, SKi)

(7.21)
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where SKi is the subkey number i derived from the secret key denoted with K.
The point is that the LPV automaton de�ned by (7.12) must be �at for any secret key K and

any realization of ρ(t). In other words, �atness must be a generic property of (7.12). Designing an
LPV automaton (7.12) which is generically �at relies on an admissible realization of a corresponding
structured linear system. A structured linear system is a linear system only de�ned by the sparsity
pattern of the state space realization matrices. In other words, for a structured linear system, we
distinguish between the entries that are �xed to zero and the other ones that can take any value in F,
including the ones which are time-varying. Hence, a structured linear discrete-time system, denoted
by ΣΛ, is a system that admits the form:

ΣΛ : xt+1 = IAxt + IBmt (7.22)

The entries of the matrices of (7.22) are '0' or '1'. In particular, the entries A(i, j) of IA (resp. B(i)
of IB) that are '0' mean that there are no relation (dynamical interaction) between the state xit+1 at

time t + 1 and the state xjt at time t (resp. the state xit+1 at time t + 1 and the input mt at time t).
The entries that are '1' mean that there is a relation. As a simple example, let us consider an LPV
system with the setting

Aρ(t) =

(
a 0

ρ1(t) ρ2(t)

)
and B =

(
1
0

)
where a is a constant element in F, ρ1(t) and ρ2(t) are varying parameters in F. The dynamical matrix
and the input matrix IA and IB of the corresponding structured linear system read:

IA =

(
1 0
1 1

)
, IB =

(
1
0

)
As a consequence, if the structural linear system (7.22) derived from (7.12) is �at, the �atness will hold
for any ρ(t) or equivalently any nonlinearity ϕi (any S-box will be admissible). Hence, the challenge is
to de�ne a methodology to construct �at linear structural systems. It is the purpose of the graph-based
approach provided in [183] which follows the steps recalled in Appendix 7.9. Roughly speaking, given
a triplet (n, r, na) with n the dimension of the state, r the delay and na the number of non-zero entries
of the matrix A, a digraph G(ΣΛ) is constructed according to given rules and the matrices IA and IB
are derived.

The triplet (n, r, na), the number of non-linear functions ϕi and their location in the matrix IA
determine a family of �at LPV-based SSSC. Next subsection aims at summarizing the steps needed
for the design of such a family. Then, a particular instantiation, leading to the SSSC called Stanislas,
is given in next section.

Summary for the construction of SSSC from a �at LPV-based automaton

Choose a triplet (n, r, na) with n the dimension of the state, r the delay and na the number of non-zero
entries of the matrix A.

Step S1: Choose a component xit on which the plaintext symbol mt is added. It follows that
B = (0 . . . 1 0 . . . 0)t (the entries 1 is located at column i).

Step S2: Choose a component xit (i ∈ {1, . . . , n}) as the desired �at output yt = xit. It follows
that C = (0 · · · 0 1 0 . . . 0) (the only entry 1 is located at the i-th column of C). It can be shown that
for the special case when B = (1 0 . . .), i must be equal to r for yt = xit to be a �at output.

Step S3: Construct the corresponding digraph G(ΣΛ) according to Step 1-5 given in Appendix 7.9
and derive the matrices IA and IB of the structured linear system ΣΛ.

Step S4: Replace some of the non-zero entries of IA by a nonlinear function ρi(t) = ϕi(ct, ct−1, · · · , ct−s)
to construct the matrix Aρ(t) of (7.12) and set B = IB. Not all '1' entries of IA must be assigned to a
non-linear function. Some of them can be merely constant. The choice must obey a trade-o� between
complexity of the architecture and security (a matter discussed in next section). Since the construction
ensures structural �atness, any choice will preserve the self-synchronization property.

Step S5: Complete the design by deriving the equations of Proposition 1. In particular, cal-
culate the matrix (7.17) governing the state transition function of the automata (7.16) ensuring the
deciphering.
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Example: Consider the triplet (n = 2, r = 2, na = 5). Choose

B =

(
1
0

)
, C = (0 1)

The particular setting of the matrix C means that the component x2
t of the state vector of the

LPV system (7.12) is the desired �at output.
For na = 5, Step 1-5 given in Appendix 7.9 give

IA =

(
1 1
1 1

)
, IB =

(
1
0

)
(7.23)

Let us keep constant and equal to 1 the �rst three entries of A and let the fourth entry be a nonlinear
function. It is denoted by ρ1(t). This �nally leads to the following matrix Aρ(t):

Aρ(t) =

(
1 1
1 ρ1(t)

)
Calculate Pρ(t:t+2) = Aρ(t) −B · C ·Aρ(t+1) ·Aρ(t). One obtains

Pρ(t:t+2) =

(
−ρ1(t+1) −ρ1(t) · ρ1(t+1)

1 ρ1(t)

)
.

Next sections are devoted to the speci�cations, design rationale and security analysis of a complete
SSSC based on �at LPV dynamical systems as described above. The cipher is called Stanislas for Secure
Transmission Algorithm with Nontriangular Iterative Structure Looking After Self-synchronization.

7.3 Speci�cation of the �at LPV-based SSSC Stanislas

Stanislas operates over the 16 elements of the �nite �eld F16 de�ned as: F16 = F2[X]/(X4 + X + 1),
the addition being the componentwise exclusive or, simply denoted +, and the multiplication, denoted
by ·, being the polynomial multiplication modulo the primitive polynomial X4 +X + 1.

7.3.1 Equations of Stanislas

The internal state xt ∈ F40
16 of the cipher consists in a vector of dimension n = 40 with 4-bit components

considered as elements in F16. The input mt and the output ct of the ciphering function are 4-bit
respective elements in F16.

Ciphering equations

The ciphering equation de�nes the next internal state xt+1 ∈ F40
16 and the cipher output ct ∈ F16. Note

also that all elements that compose the matrix Aρ(t) and the vectors B and C are elements of F16. The
ciphering equation obeys, for t ≥ 0,

cipher:

{
xt+1 = Aρ(t)xt +Bmt

ct+1 = Cxt+1
(7.24)

where B is the column vector equal to B = (1F16 , 0F16 , . . . , 0F16)T and C is the row vector equal
to C = (0F16 , 0F16 , 1F16 , 0F16 , . . . , 0F16) with the 1F16 component located at column r = 3. In other
words, the only non-zero component of C which equals 1F16 is the third component. Hence, the
ciphertext symbol consists in the third component of the internal state. Let us note that in general,
the ciphertext obeys Equation (7.13). Hence, the ciphertext results from a linear combination of the
state vector components. Here, we propose a construction for which the linear combination reduces
to the selection of one component. To guarantee a self-synchronization property (otherwise stated, to
ensure Equation (7.20), the component that is selected must coincide with r, the delay of the system.
This is why here, r = 3.

The matrix Aρ(t) is a 40 × 40 dimensional matrix. The entries aij of Aρ(t) are either zero of F16,
or 1 of F16 or a nonlinear function of ct. Among them, na = 115 entries are non-zero coe�cients and
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L = 80 entries correspond to nonlinear functions ϕi (i = 1, . . . , 80). Each function ϕi depends on the
current ciphertext symbol ct (s = 0) and on a subkey SKi of K. This subkey SKi thus de�nes the
corresponding function ϕi which depends on only one ciphertext symbol ct.

ϕi : F16 → F16

ct 7→ S(ct ⊕ SKi)
(7.25)

where the subkey SKi is a 4-bit word derived from the secret key K as described in the key schedule of
subsection 7.3.1 detailed further on. The function S is the bijective S-Box borrowed from Piccolo [217].
It is de�ned on 4-bit words by Table 7.1. The entries aij according to their location (row i, column j
for i, j ∈ {1, . . . , 40}) are given in Appendix 7.8 in a symbolic manner. In the symbolic representation
of Aρ(t), denoted AS , the functions ϕ

i (i = 1, . . . , 80) are assigned to the entries S. Thus, the �rst line
of the Fig. 7.1 corresponds to the �rst row of the matrix AS applied to the internal state xt to produce
the corresponding coe�cient of the internal state xt+1 (combined with mt to produce ct+1).

Table 7.1: S-box in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D

In other words, taking into account the particular structure of the matrices B and C with only one
non-zero coe�cient, the ciphering process is governed by:

x1
t+1 =

∑n
j=1 a1jx

j
t +mt

xit+1 =
∑n

j=1 aijx
j
t , i = 2, · · · , n

ct+1 = Cxt+1 = x3
t+1

(7.26)

Deciphering equations

The deciphering is governed by two equations de�ned, for t ≥ 0, by

decipher:

{
x̂t+1 = Pρ(t:t+r)x̂t +BT −1ct+r
m̂t+r = T −1(ct+r − C

∏t
l=t+r−1Aρ(l)x̂t)

(7.27)

where the 40×40-dimensional matrix Pρ(t:t+r) over F16 veri�es Pρ(t:t+r) = Aρ(t)−BT −1C
∏t
l=t+r−1Aρ(l)

and T = C
∏t+1
l=t+r−1Aρ(l)B.

Otherwise stated, the deciphering consists of two equations. The �rst one achieves the computation
of the next internal state x̂t+1 from the current state x̂t and the delayed ciphertext ct+r. The second
equation ensures the recovery of the plaintext symbolmt. The self-synchronization between the internal
states xt and x̂t of the cipher and the decipher automata and thus a proper decryption are guaranteed,
by construction, after a �nite transient time.

Let X[i] denotes the i-th row of a matrix X. Taking into account the particular structure of the
matrices A, B and C, the delay r = 3, and noticing that T equals one, the deciphering process is
governed by:

x̂1
t+1 =

(
Pρ(t:t+3)[1] · x̂t

)
+ ct+3

x̂it+1 =
(
Pρ(t:t+3)[i] · x̂t

)
i = 2, · · · , 40

m̂t+3 =
(
Aρ(t+2)Aρ(t+1)Aρ(t)

)
[3] · x̂t + ct+3

(7.28)

where
Pρ(t:t+3)[1] = Aρ(t)[1]−

(
Aρ(t+2)Aρ(t+1)Aρ(t)

)
[3]

Pρ(t:t+3)[i] = Aρ(t)[i], 2 ≤ i ≤ n (7.29)

Key schedule

The matrix A consists of na = 115 non-zero entries, and among them, L = 80 are functions ϕi

depending on the subkey SKi. Thus, the key schedule process aims at generating 80 subkeys of 4-bit
length: SK1, · · · , SK80 from the 80-bit master key K arranged as 20 words K1, . . . ,K20 of 4-bit length.
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To do so, the ciphering equations (7.26) withmt = 0 are used. During this process, the parameters SKi

involved in the functions ϕi (see Equation (7.25)) are set to zero. The internal state x0 is initialized by
duplicating the master key K as (x1

0 · · ·x20
0 ) = (K1 · · ·K20) and (x21

0 · · ·x40
0 ) = (K1 · · ·K20). Then, the

initial internal state x0 is updated ten times by using equations (7.26) with mt = 0 for t = 0, . . . , 9.
After those ten iterations, the ten subkeys SK1, . . . , SK10 are respectively initialized with the

following components of the internal state x10: x
1
10, x

2
10, x

7
10, x

10
10, x

17
10, x

18
10, x

22
10, x

26
10, x

28
10, x

34
10.

This process is repeated 7 more times to initialize the other subkeys SK10i+1, . . . , SK10i+10, for i =
0, . . . , 7.
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7.3.2 Ciphering Process

The plaintext consists of ` elements of F16: m = m0 · · ·m`−1. The initial state x0 is �rst initialized
with 40 random elements of F16. These initial values are kept secret and are not transmitted to the
decipher. The way those elements are randomly picked is out of the scope of this chapter. Only
consider that you have a source of randomness. x0 could be considered as a secret nonce.

Then randomly pick n − 1 = 39 elements m−39, · · · ,m−1 of F16 as the synchronization sequence
which is placed before the plaintext. It is recalled that at most n = 40 iterations are needed for the
self-synchronization to be achieved.

Then, because of the parameter value r = 3 that induces a delay, randomly pick r − 1 = 3 −
1 = 2 more elements m`,m`+1 of F16 that will be placed at the end of the plaintext sequence m
to process the two last plaintext symbols. Finally, the sequence that must feed the cipher is m? =
m−39, . . . ,m0, . . . ,m`,m`+1.

The resulting ciphertext consists of the sequence c−39, . . . , c`+1 of (`+41) symbols in F16, computed
with the ciphering Equations (7.26) using Matrix AS given in Appendix 7.8 for t in −39, · · · , `+ 1:

x1
t+1 = S(x20

t ⊕ SK0)⊕ S(x26
t ⊕ SK1)

⊕S(x29
t ⊕ SK2)⊕ S(x40

t ⊕ SK3)⊕mt

x2
t+1 = x1

t ⊕ S(x2
t ⊕ SK4)⊕ S(x31

t ⊕ SK5)
⊕S(x35

t ⊕ SK6)
x3
t+1 = x2

t ⊕ S(x3
t ⊕ SK7)

x4
t+1 = S(x2

t ⊕ SK8)⊕ S(x3
t ⊕ SK9)

...
ct+1 = x3

t+1

Those equations are the ones given in Fig. 7.1 corresponding with the coe�cients of the matrix AS .
Note that the Matrix AS given in Appendix 7.8 could be seen as one round of a block cipher applied

on a state with 40 4-bit words where after each round the 4-bit word x3 is outputted whereas the 4-bit
word x0 is completely updated by other 4-bit words. At each clock, each 4-bit word crosses at least one
S-box, except the 4-bit word x1 that could be considered as a temporary variable (as it receives the
4-bit message mt). Note also that the updated rule for most of the variables xi (5 ≤ i ≤ 40) could be
written as xit+1 = S(xi−1

t ⊕ SKk)⊕ f(xi−2
t ) or S(xi−1

t ⊕ SKk)⊕ f(xi−2
t )⊕ S(xjt ⊕ SKk′) for given j, k

and k′ and where f is the identity or the S-box S. It could be seen as a generalization of the so-called
L-scheme with a circular permutation used in the block cipher MISTY1 with balanced inputs/outputs.

The complete ciphering process of Stanislas is illustrated on Fig. 7.1

7.3.3 Deciphering Process

The decipher receives the cryptogram consisting of `+ 41 symbols c−39, . . . , c`+1 in F16. The internal
state x̂0 is initialized to an arbitrary value, for example the zero value.

Then, the deciphering Equations (7.28)-(7.29) are applied to recover a `+ 41-length message m̂ =
m̂−41, . . . m̂`−1. The plaintext sequence is recovered as the last ` symbols m = m̂0 . . . m̂`−1.

Remark 2 It could be surprising that a part of the ciphering process directly depends on a secret nonce
(i.e. x0). Instead, we could imagine that an 80-bit IV is used to generate the �rst value x0 adding
an IV schedule to the key schedule process. First, generate the subkeys using the key schedule, then
initialize the internal state with the concatenation of the IV and of the key. Then, apply again the key
schedule process (but including the generated subkeys SKi in the S-boxes) to initialize the internal
state x0. But, note that in this case, the particular property that the internal states (that must be kept
secret) of the ciphering part and of the deciphering part are not required to be equal is lost. Indeed,
in this case where an IV is used, we will suppose that the internal state will be computed in the same
way in both sides.

The matrix A consists of na = 115 non-zero entries, and among them, L = 80 are functions ϕi

depending on the subkey SKi. Thus, the key schedule process aims at generating 80 subkeys of 4-bit
length: SK1, · · · , SK80 from the 80-bit master key K arranged as 20 words K1, . . . ,K20 of 4-bit length.
To do so, the ciphering equations (7.26) withmt = 0 are used. During this process, the parameters SKi
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synchronisation
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Figure 7.1: The complete ciphering process of Stanislas with ϕi(xjt) = S(xjt ⊕SKi). x
i
t and xit+1

are the coe�cients of the internal state at time t and time t+1. mt represents a plaintext symbol
(4 bits), cj the ciphertext symbols (4 bits) where c−39, . . . , cl+2 are required for synchronization.
The equations of the lines are derived from the coe�cients of the rows of the matrix AS.

involved in the functions ϕi (see Equation (7.25)) are set to zero. The internal state x0 is initialized by
duplicating the master key K as (x1

0 · · ·x20
0 ) = (K1 · · ·K20) and (x21

0 · · ·x40
0 ) = (K1 · · ·K20). Then, the

initial internal state x0 is updated ten times by using equations (7.26) with mt = 0 for t = 0, . . . , 9.

7.4 Design Rationale and Security Analysis

In this section, we motivate the choices of the �eld on which the cryptosystem operates, the dimension
n of the internal state, the delay r and the structure of the matrix A. Most of the choices rest on
security criteria, other ones take into account practical considerations, regarding in particular the
hardware implementation issues.

7.4.1 Design Rationale

Field on which the cryptosystem operates: Galois �eld GF (16) Any quantities mt, ct,
components of xt and x̂t and non-linear functions ϕi (S-boxes) inputs are 4-bit data. It is motivated
by the fact that the cryptosystem is intended to be implemented on a digital equipment. Hence, �eld
extensions and so, power of two are required. On the other hand, 8-bit would be too heavy for an
embedded algorithm. In particular, S-boxes would involve too many logic gates.

Dimension n: 40 As the internal state components are 4-bit words, a dimension n = 40 provides
an internal state of 160 bits and thus a security level of 80 bits. Indeed, to prevent time-memory
trade-o� attack [139] (an attack which is a trade-o� between exhaustive search and table look-up), the
internal state must be two times longer than the key length which de�nes the security level. This level
is compatible with a real-world application.

Delay r: 3 The more the delay, the more the algebraic degree of the entries of Pρ(t:t+r), recalling
that Pρ(t:t+r) involves the product of r matrices (see (7.29)). Thus, for a good resistance against an
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algebraic attack ([90]), the algebraic degree should be as large as possible. On the other hand, the more
the delay, the more the complexity of implementation and the less the computational performances.
The delay r = 3 results from a trade-o� between security with respect to algebraic attacks (to increase
the overall algebraic degree) and ease of implementation (especially the implementation of the P
deciphering matrix which involves several S-box multiplications (see Equation (7.17) in the general
case and (7.29) for Stanislas)).

Structure of the matrices A and P We recall that the matrix A (and thus P from the
computation (7.29)) is derived from the construction of a digraph (see Appendix 7.9) from which an
adjacency matrix IA is extracted. More precisely, the adjacency matrix IA determines the entries of
Aρ(t) that are zero and the others that are possibly non-zero. The number na of edges in the digraph
G(ΣΛ) corresponds to the number of non-zero entries of IA. Hence, the number na also determines the
number of non-zero entries of the state transition matrix P . Beyond the number of non-zero entries,
their location (row and column) must also be chosen. Finally, it must be decided whether a non-zero
entry will be 1 or will correspond to an S-box. All those issues have been addressed by considering
several criteria regarding the security, in particular the good resistance to classical attacks and the
good di�usion delay, while satisfying a trade-o� with respect to the computational complexity for the
sake of implementation. Let us introduce symbolic representations of Aρ(t) and Pρ(t) denoted by AS
and PS where the coe�cients of AS and PS belong to Z[S], S representing any non-linear function.
The following considerations on AS and PS can be made.

� Di�usion Delay and Depth. The di�usion delay and the depth are properties related to the
consideration of the powers ApS and of P pS as p, a natural integer, increases. Indeed, the power
of matrices results from the successive iterations of the ciphering and the deciphering process.
Let p denotes the power of a matrix Z ∈ Mn(GF (16)). The di�usion delay, introduced in [29],
is the smallest value, denoted by d0, of p such that Zp does not have any zero coe�cient. In
other words, it is the smallest value of p such as each element of the initial internal state x0 has
in�uenced every element of xt for t ≥ d0. The depth, introduced in [52], is the smallest value,
denoted by d1, of p such that any entry of Zp are polynomials of degree at least 1. We are
looking for the smallest values of d0 and d1.

� Algebraic Degree. Considering the matrix resulting from successive powers of AS and PS , we are
�rst interested in ensuring that at least one entry has the largest algebraic degree. To this end,
we must add a cycle on the r-th vertex of the digraph G(ΣΛ), which equivalently means that the
entry of AS and PS located at row r and column r must be an S-box. Furthermore, the evolution
of this quantity, after successive iterations, must meet an ideal shape. It must increase by one
at each iteration, must remain constant and equal to its maximum value as long as possible and
�nally must drop down to zero (let us recall that after 40 iterations, due to (7.20), the product
reaches exactly zero).

� Full Rank Matrix. The fact that AS is a full-rank matrix is a necessary condition to ensure a
full di�usion of the internal state and to maximize the dependency between the involved terms
at time t and the involved terms at time t + 1. Moreover, this condition guarantees that the
encryption process does not collapse. By construction (see Appendix 7.9) to ensure �atness,
every element of the subdiagonal of IA from the r-th one is 1. Hence, for AS to be full-rank,
each column and each row must contain at least one non-zero element. And yet, by construction,
only the r − 1 �rst elements of the last column can be non-zero. Hence, one of them must be
non-zero. From the digraph point of view, it means that at least one of the r − 1 �rst vertices
must be connected to the last vertex.

The symbolic matrix AS which has been �nally selected is given in Appendix 7.8. It has been obtained
after 700000 random runs performed under the aforementioned constraints: best di�usion delay and
depth, algebraic degree (especially increase by 1 at each iteration), full rank matrix. Several matrices
correspond to the best choices (we add a sum indicator without weighing) and we �nally choose the one
with the best implementations for AS and for PS . The symbolic matrix PS can be directly obtained
by considering Equations (7.29). The matrix AS involves na = 120 non-zero entries and its number of
S-boxes is L = 80. The matrix extracted from AS and PS by removing the �rst r rows and columns
have a special feature. The lower subdiagonal is full of coe�cients S (corresponding to S-boxes and
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denoted SB in the symbolic representation) and the subsubdiagonal just above is full of 1. Thus, each
line has at least one S-box to ensure that the internal state xt is updated in a non-linear way: this
corresponds to a non-linear shift register.

The corresponding di�usion delay, d0 = 7, could be considered as a good di�usion delay with
regard to the synchronization delay that equals 40 (the system dimension). Indeed, the worst di�usion
delay is equal to 40 and the best di�usion delay of 1 could only be reach with a matrix full of non-zero
coe�cients. Thus, we consider that a di�usion delay of 7 is a su�ciently good compromise between
the best di�usion delay and a reasonable number of non-zero coe�cients.

Let us notice that the dimension n of the system is the upper bound of the di�usion delay. Indeed,
due to (7.20), the product reaches exactly zero in GF (16) since the synchronization is achieved after
at most 40 iterations. The depth is d1 = 7 and is the best that we manage to achieve.

S-box Various classi�cations of 4-bit S-boxes exist in the literature [75, 169, 204]. For the sake of
hardware optimization, the same S-box has been used to de�ne the L = 80 nonlinear functions ϕi.
Two kinds of criteria have been considered: theoretical and practical. On one hand, we have selected
S-boxes to satisfy the maximum di�erential probability and the maximum (absolute) linear bias 2−2,
the algebraic degree 3, and no �xed-point. Four S-boxes that satisfy those criteria and that have simple
algebraic expressions (i.e. a minimal number of non-linear transformations) have been selected, each
one corresponding respectively to the four classes proposed in [204].

From an implementation point of view, it turns out that the S-box depicted in Table 7.1 induces
the smallest gate count. It is the Piccolo S-box ([217]). The area is around 23 GEs1). It involves four
NOR gates, three XOR gates and one XNOR gate. Let us notice that the masking method can be
applied using only three shares, making this S-box suitable for e�cient threshold implementations.

Key Schedule The key schedule has been chosen to reuse existing circuit while su�ciently mixing
together the key words. To do so, we use the already implemented matrix A by applying it a su�cient
number of times when looking at the di�usion degree and at the induced algebraic degree. The
extracted 4-bit words of the internal state xt - at positions 1, 2, 7, 10, 17, 18, 22, 26, 28, 34 - have been
chosen to be among the ones that depend of the maximum number of other elements of xt to ensure
to maximize the di�usion e�ect of the initial state x0.

From a theoretical point of view, if we consider that each S-box behaves as a random function (i.e.
it has a behavior su�ciently near the one of a true random function) and using the direct extension of
Lemma 9 and Theorem 7 of [180], we could say, that after d0 + 2 of the matrix A on the input x0, the
applied transformation behaves as a random function. In other words, the operations done to ful�ll
the subkey words behaves as a random function.

7.4.2 Security Analysis

The following section focuses on the security of Stanislas against known attacks. We claim a 80-bit
security level which corresponds to the key length (we could not have a security level greater than the
key length). Moreover, this security level is also achieved regarding the length of the main register:
160 bits. Indeed, the Guess-and-Determine attacks described in [139] imply to double the length of
the used register compare to the key length to achieve a security level corresponding to the key length.
Thus, we try to derive security bounds for all known attacks against Stanislas and we found no attacks
that work with a complexity smaller than 280 operations which corresponds with our security claim.

Moreover, it has been proven in [109] that the canonical form of an SSSC is secure against Chosen
Plaintext Attacks (IND-CPA secure) but not against Chosen Ciphertext Attacks (IND-CCA security).
We do not claim any security result in this last model. Moreover, we suppose that the attacker has no
access to the key and to the initial value of the internal state x0. To prevent collision search attack,
we limit the size of each plaintext to 264 4-bit words.

First, it seems very di�cult to analyze the security of Stanislas in its true settings (i.e. the 160-bit
internal state x0 is a secret nonce). In those settings, we could only say that:

1To see the meaning of GE metric, please refer to Section 7.5.
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� the time-memory-data trade-o� attacks described in [33, 64, 139] apply when the internal state
is smaller than two times the key length. This is why we choose the length of the internal state
to be twice the key length to prevent this kind of attacks.

� Guess-and-Determine Attacks [139] consist in guessing a part of the state to further determine
the remaining part of the state. Thus, at time t, suppose that we know x2

t , x
3
t and of course, ct.

Thus, we could suppose that we observe n consecutive outputs from ct to ct+n. Thus, how much
does it cost to recover the induced subkey SKi? First, from the equation x3

t+1 = x2
t⊕S(x3

t⊕SK7),
we could directly compute SK7. Thus, we could derive the successive value of x2

t from t to n.
Thus, from x2

t we derive non-linear equations where the unknowns are x
1
t , x

31
t , x35

t , SK5, SK4

and SK6 and the known terms are x2
t to x

2
t+n. Thus, as the Algebraic Normal Form (ANF) of

the S-box has 2 equations with 4 terms, 1 equation with 9 terms and 1 equation with 7 terms,
each new x2

t will induce a system of 4× 3× (n+ 1) + 3× 4 = 12n+ 24 unknown binary variables
with 4 equations with in total 24 non-linear terms. Thus, we could not solve the system without
guessing a part of it whatever the n value. Even considering that we guess a part of the system,
the combinatorial explosion seems clear because each value of the internal state depends on at
least one other value. Thus, we conjecture here that Stanislas is safe against this type of attacks
since, even if a part of the internal state is guessed, each 4-bit word of this state is updated
through a XOR with a 4-bit word of subkey and an S-box. Moreover, since the di�usion delay
of AS is d0 = 7, this leads to guess after 7 outputs all the key. Thus, guessing a part of the state
allows to guess a part of the key which, in then, amounts to a guess-and-determine attack with
a complexity greater than the key exhaustive search.

Thus, instead, when looking at classical attacks, we will use the model described in Remark 2 where
the initial state is derived in its �rst components after 20 iterations of the matrix AS applied on the
concatenation of an IV and of the master key K and in its last components after 14 more iterations.
Those settings could be considered as a degrading mode of the original Stanislas speci�cations. Thus
considering that the attacker has full access to the IV, we obtain the following bounds against classical
attacks:

� Di�erential / Linear Cryptanalysis: we compute the lower bounds on the minimal number of
active S-boxes for the computation of the internal state with remark 2. To do so, we implement
the model of remark 2 using Constraint Programming to explore all the possible paths in the
induced graph. Then, we obtain that, for the di�erential case, after 7 iterations, a minimal
number of 38 S-boxes has been crossed, after 10 iterations, 46, after 14 iterations, 65. As the
di�erential probability of the chosen S-box is equal to 2−2, we could guarantee that the 80-bit
key exhaustive search is less expensive than passing through more than 40 S-boxes, which is the
case after 10 iterations of the AS matrix. In the same way, for the linear case, we obtain after
7 iterations, 35 active S-boxes, after 10 iterations, 41 and after 14 iterations, 59. Thus, for the
same reason, after 10 iterations, a 80-bit key exhaustive search is more e�cient.

� Algebraic Attacks: This kind of attacks [90] is possible when the overall degree of the induced
system of equations does not su�ciently increase at each clock. Especially, if the overall degree
d in each of the n unknown variables (the key variables for example) of the system is such
that (nd)2.5 is lower than the security bounds, it means that it is faster to solve the induced
system by Gaussian elimination (considering that each new monomial is a new unknown variable)
than trying all the keys of the system. Thus, we want to prevent this attack from happening
as described below. The algebraic degree of each S-box component is the best one: equal to
3. Thus, each passing through an S-box increases the degree in the equations describing the
internal state and in the equations describing the key. Even if the SKi linearly depends on the
master key bits K1, · · · ,K80 (there are 80 key bits that are unknown), if we write the number
of variables after crossing the �rst S-box, we have (80)3 monomials depending on the unknown
key bits, after the second pass we obtain (80)6 monomials also depending on the unkonwn key
bits and so on. Thus, if we apply those estimations using the bounds on the number of active
S-boxes of the di�erential/linear case, after 10 iterations, we have 46 active S-boxes, which means
that the number of unknowns (considering that each new monomial is a new unknown) is lower
bounded after 10 iterations by (80)3×46 ≈ 2872,16 where 80 are the unknowns coming from the
master key, 3 is the algebraic degree of the S-box and 46 is the number of crossed S-boxes. Thus,
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we conjecture that the complexity of the best algebraic attack is greater than the 80-bit key
exhaustive search.

� Cube Attacks: As established in [104], a cipher is vulnerable to cube attacks if an output bit can
be represented as a su�ciently low degree polynomial over GF (2) of key and input bits. It works
by summing an output bit value for all possible values of a subset of public input bits, chosen
such that the resulting sum is a linear combination of secret bits. Repeated application of this
technique gives a set of linear relations between secret bits that can be solved to discover these
bits. In [209], the authors analyzed this kind of attacks on the block cipher Piccolo, especially
its S-box. They stated that after 8 rounds, no relation with 63 input bits could be found. The
minimal number of S-boxes crossed for 8 Piccolo rounds is 58 whereas in our case, it is 46 after
10 iterations. So we conjecture, that we cross a su�cient number of S-boxes after few iterations
to prevent having low degree relations between secret key bits and public input bits.

In summary, we conjecture that most of the usual attacks which apply in the stream cipher context
have a complexity greater than the exhaustive key search for Stanislas.

118



7.5 Hardware Performance and Implementation Aspects

We give hereafter the implementation results of a straightforward implementation of Stanislas. It
produces one 4-bit word of ciphertext per clock cycle. Subkeys are computed in the initialization step
and stored in dedicated registers, before the cipher state processing. The same material is used for
the cipher state and the Key Schedule processes. The hardware implementation of Stanislas is not
an optimized version targeting any speci�c performance. The main area occupation comes from the
matrix update as it carries big registers during all the calculations. Those registers are the internal
state which are mixed with the subkeys either with binary addition or multiplication. This means
updating a 40× 40 bits register all along the matrix update.

During ciphering process, the matrix update is solely made of S-boxes and XOR of 4-bit words.
The lowest line of the matrix in terms of area occupation is made of 1 S-box and 2 additional XORs,
and the biggest of 4 S-boxes and 8 additional XORs. The deciphering process implies adding 23
multiplications, 28 S-boxes and 39 XORs to the previous total which makes deciphering heavier in
terms of area occupation.

The matrix is implemented line by line, calculated straightforwardly following the equations as
depicted in Fig. 7.1. The S-boxes are implemented in a Look-Up-Table (LUT) way, so we let the
compiler do its own optimizations. Our Stanislas implementation combines both the encryption and
decryption process in order to ease comparison with others (synchronous or self-synchronous) stream
ciphers.

We implemented Stanislas in VHDL and we provide in Table 7.2 FPGA hardware implementations
and performance comparisons with synchronous SCs Trivium [101] and Grain [138], �nal members of
the eSTREAM portfolio, another SSSC Moustique and the AES-based SSSC CFB1-AES128 as de�ned
in NIST SP 800-38a [111]. The chosen FPGA platform for our benchmark is the Xilinx Spartan-
6 XC6SLX75T, package FGG676. The ISE compiler was set on for high e�ort on area reduction.
Post-place-and-route results are provided.

To get Trivium and Grain implementation results, we have reused VHDL reference implementations
coming from their submission packages, without further optimization. We have implemented our own
straightforward VHDL versions of Moustique and CFB1-AES128. For this latter, we have implemented
the S-Boxes as LUTs, to be consistent with the S-Boxes LUT implementations of Stanislas.

Area Init. Synchro. Freq. TP
(slices) (cycles) (cycles) (MHz) (Mbps)

Trivium 47 1603 0 191 191
Grain 48 256 0 355 355

Moustique 166 105 105 309 309
CFB1-AES128 745 0 128 73 849

Stanislas 701 254 40 95 380

Table 7.2: Xilinx Spartan-6 XC6SLX75T (FPGA) Straightforward Implementation Results.

At �rst sight, we can check that some well-known properties are visible in the results. For example,
Trivium and Grain are very compact, which can be explained by their low gate counts, �ip-�ops
excluded. Moreover, the number of initialization cycles needed for Trivium, Grain and Moustique
which is consistent with the speci�cations: e.g., Trivium needs a warm-up phase of minimum 1152
steps. This number is really slow for Stanislas where it just consists in a Key Schedule and it is equal
to 0 for CFB1-AES128 where the key is processed on the �y.

Surprisingly, straightforward implementation of Stanislas provides the best throughput (TP) com-
pared to the other stream ciphers, even self-synchronizing, to the exception of CFB1-AES128. The
reason is that one 4-bit word is processed by clock cycle, so the throughput is given by: 95 × 4 (bits)
= 380 Mbps. That justi�es the design choice of processing 4-bit words instead of individual bits.
CFB1-AES128, produces 128-bit words after each iteration of the AES in CFB mode(10 rounds plus
one clock cycle for the �nal Xor operation), hence a throughput of (128∗73)/11 = 849Mps. Compared
to the standard approach CFB1-AES128, the time needed for synchronization is also shorter, along
with a smaller area.

This encouraging result has to be mitigated if we consider the combined metric TP/area as shown
on Table 7.3. This latter allows to estimate the cost of optimized parallel implementations (e.g.,
unfolded), where many bits can be processed in parallel, at the expense of additional area.
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TP/Area
Trivium 4.06
Grain 7.39

Moustique 1.86
CFB1-AES128 1.13

Stanislas 0.54

Table 7.3: Combined Metric TP/Area (Mbps/Slice on Xilinx Spartan-6 XC6SLX75T FPGA).

As we can see, straightforward implementation of Stanislas will su�er from the comparisons of its
competitors' optimized versions. We can then estimate, in Table 7.4, the theoretical implementation
results of all Stanislas competitors when all of them are unfolded versions which process 4 bits per
clock cycle, as Stanislas.

Area (slices) TP (Mbps)
Trivium 188 764
Grain 192 1420

Moustique 664 1236
CFB4-AES128 2980 3396

Stanislas 701 380

Table 7.4: Theoretical Implementation Results of some (SS)SCs on Xilinx Spartan-6
XC6SLX75T FPGA for 4-bit Versions

As we can see, CFB4 mode has four-fold throughput speedup, beating Stanislas proposal with a
signi�cant margin, and it requires only 32 steps for synchronization. But it implies to occupy a big
amount of FPGA slices, which is not always a�ordable for some constrained applications.

Future works will include the study of the cost of side-channel protected Stanislas implementations.

7.6 Conclusion

An instantiation called Stanislas, of a dedicated Self-Synchronyzing Stream Cipher (SSSC) has been
proposed. Its main peculiarity comes from the fact that it involves an automaton with �nite input
memory using non-triangular state transition functions. The construction is based on a general and
systematic methodology that uses automata (called Linear Parameter Varying, LPV) admitting a
matrix representation and a special property called �atness. The security analysis allows to conjecture
that most of the usual attacks which apply in the stream cipher context have a complexity greater than
the key exhaustive search for Stanislas. But Stanislas could not be considered having a small hardware
footprint.

However, when straightforward implementations are considerd, Stanislas provides bigger throughput
than the considered stream ciphers, and its intrinsic synchronization delay is much smaller than the
SSSC Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock
cycles instead of 128).

Moreover, the number of surviving Self Synchronizing Stream Ciphers after a phase of public
cryptanalysis time is equal to zero. So, we hope that Stanislas will be the �rst one and we encourage
the symmetric key cryptographic community to cryptanalyze it.

7.7 Appendices

7.8 The Matrix AS

The matrix AS is given in Fig. 7.2.

120



Figure 7.2: The Matrix AS.

7.9 Construction of the Matrices of the SSSC

A digraph G(ΣΛ) describing the structured linear system associated to the state equations (7.12), is
the combination of a vertex set V and an edge set E . The vertices represent the states and the input
components of ΣΛ while the edges describe the dynamic relations between these variables. One has
V = X ∪ {m} where X is the set of state vertices de�ned as X =

{
x1, . . . , xn

}
and m is the input

vertex. The edge set is E = EA ∪ EB, with EA =
{

(xi,xj) |A(i, j) 6= 0
}
and EB =

{
(m,xi) |B(i) 6= 0

}
.

The entries of Aρ(t) correspond to the weights of the edges in the digraph. For convenience, we will

denote by vj, (j = 0, . . . , n) a vertex of the digraph G(ΣΛ) regardless of whether it is the input or a
state vertex.

Given a triplet (n, r, na) with n the dimension of the state, r the delay and na the number of
non-zero entries of the matrix A, the construction of the digraph G(ΣΛ) related to the system ΣΛ

involves the following steps.

The system ΣΛ is of dimension n and thus, the digraph G(ΣΛ) involves n+ 1 vertices. The input
is assigned to the vertex denoted by v0. The other n vertices are denoted by v1, . . . ,vn. Let vr be
the vertex that corresponds to the �at output vr.

Step 1: For, i = 0, . . . , n− 1, add the edges (vi,vi+1). There are r edges which connect v0 to vr.
Hence, the delay of the automaton is r.

After Step 1, this line topology corresponds to quite trivial dynamical systems since it corresponds
to state transition functions in the form of simple shifts. Let us recall that we aim at designing an
automaton possibly involving state transition functions more general than T�functions. A shift is a
special and trivial T�function. To this end, the following steps provide a way of adding edges (vi,vj)
while guaranteeing �atness.

Step 2: Add the edges (vr+i,vr+i+1) for i = 1, . . . , n−r−1. Step 2 allows vertex vj, j = r+1, . . . , n
to have a predecessor. Indeed, if not so, the dynamics of the corresponding vertex vj would reduce
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to xjk+1 = 0 and would be clearly useless. The resulting path is a so-called main directed path and is
depicted in Figure 7.3.

v0 v1 v2 vr−1 vr vn

Figure 7.3: Digraph obtained after completion of Step 1-2. The vertex vr corresponds to the
�at output

Step 3: Add the edges (vr,vi), i = 1, . . . , n that connect the vertex vr to any other vertices of
the graph (except the vertex v0 related to the input).

Step 4: For every vertex vi, i = 1, . . . , r − 1, add the directed edge (vi,vj) for j = 1, . . . , i.

The graph obtained after Step 1-4 is depicted in Figure 7.4.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 7.4: Graph obtained after Step 1-4.

Step 5: For every vertex vi, i = r + 1, . . . , n, add the directed edge (vi,vj) for j = 1, . . . , r and
j = i+ 2, . . . , n.

The resulting digraph after completion of Step 1-5 is depicted in Figure 7.5.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 7.5: Graph obtained after completion of Step 1-5.

To sum up, the digraph G(ΣΛ) is parametrized by the triplet (n, r, na). The number of vertices of
the digraph is equal to n + 1. Indeed, there are n vertices assigned to the state components and one
assigned to the input. The delay r is the number of edges in the main directed path. The integer na
de�nes the desired number of edges in the digraph G(ΣΛ). It must satisfy na ≤ nM , where nM is the
maximal number of edges resulting from the construction Step 1-5. A simple counting leads to:

nM =
n(n+ 1)

2
+ r. (7.30)

During the construction, at each step, we can decide whether we actually add the edges or not. That
introduces �exibility in the perspective of providing distinct graphs and thus, distinct SSSC as detailed
in Subsection 7.2.3.

Finally, the matrices IA and IB of the structural system ΣΛ can be extracted from the adjacency
matrix, denoted by I, associated to the digraph G(ΣΛ). Indeed, the adjacency matrix I associated to
the digraph G(ΣΛ) is the (n+ 1)× (n+ 1) matrix

I =


0 ItB
0

ItA
...
0

 (7.31)

122



where ItA and ItB stands respectively for the transpose of the structured matrices IA and IB. The
entries Iij are de�ned as follows for 1 ≤ i, j ≤ n

Iij =

{
1 if there exists an edge from vj to vi

0 otherwise.
(7.32)

The adjacency matrix associated to G(ΣΛ), obtained after completion of Step 1-5, is given by

v0 v1 v2 v3 · · · vr vr+1 · · · vn−1 vn



v0 0 1 0 0 · · · 0 · · · 0 0 0
v1 0 1 1 0 · · · 0 · · · 0 0 0
v2 0 1 1 1 · · · 0 · · · 0 0 0
v3 0 1 1 1 · · · 0 · · · 0 0 0
...

...
...

...
...

. . . 0 0 0 0 0
vr 0 1 1 1 · · · 1 1 1 1 1

vr+1 0 1 1 1 · · · 1 0 1 1 1
...

...
...

...
...

...
...

...
. . .

. . .
...

vn−1 0 1 1 1 · · · 1 0 0 0 1
vn 0 1 1 1 · · · 1 0 0 0 0

The open source software Sagemath [76] has been used to elaborate the digraph G(ΣΛ) correspond-
ing to the triplet (n = 40, r = 3, na = 120). The construction has been performed on an Intel CORE
i7 CPU 2.26 GHz running Linux Ubuntu 14.04. All experiments ran single-threaded on the processors.
It took 21 ms on the computer to obtain the digraph G(ΣΛ).
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Chapter 8

Implementation of some Sponge-based

AEAD schemes

8.1 Introduction

We see more and more emerging areas in which small devices are interconnected, communicating wire-
lessly with one another and working together in order to accomplish various tasks (we can think about
sensor networks, the Internet of Things or healthcare systems). Those devices are very limited in space
and memory size while more and more functions need to be implemented in these always more compact
objects. Due to the criticity and the need for con�dentiality of the data transmitted, we need to get
those objects as secured as possible. However the majority of cryptographic solutions developed until
the 2000s were designed solely targeting desktops or server environments and are not �t for constrained
devices.

The devices should be protected against a various range of cryptographic attacks, from private data
theft to destructive attacks such as man-in-the-middle attacks. To prevent such attacks, cryptographic
solutions should be able to provide con�dentiality (ensure that an attacker cannot read sensitive data),
integrity (prove that the data have not been modi�ed), and authenticity (provide of proof of the iden-
tity of the sender). Authenticated encryption can answer all those needs using a single algorithm. This
leads to improvement in performance and reduction of memory costs.

During DIAC 2013 [5], the cryptographic community started a common e�ort to update the state
of the art in authenticated encryption which continued with the launch of the Competition for Au-
thenticated Encryption: Security, Applicability and Robustness (CAESAR) [2]. From 2014 to 2019 all
the submissions were carefully studied, from 58 in the �rst round to 17 in the third one. In 2019, six
recommendations were made, two for each of the three di�erent use cases: lightweight applications,
high-performance applications and defense in depth, respectively ASCON[106], ACORN[234], AEGIS-
128[235], OCB[166], Deoxys-II[146] and COLM[25].

In parallel, the NIST initiated several workshops on lightweight cryptography since 2015, which
ended on the launch of a lightweight cryptography standardization process aiming to solicit, evaluate
and standardize lightweight cryptography algorithms suitable for use in constrained environments in
which the current standards are not acceptable. The point is to either develop new cryptographic
solutions, enhance the existing ones or improve the implementations of current algorithms dedicated
to authenticated encryption and optionally hash functions.

The proposed cryptographic solutions are authenticated encryption with associated data (AEAD)
algorithms. This cryptographic function takes a four byte string as inputs and one byte-string as
output. The four inputs are a variable-length plaintext, variable-length associated data, a �xed-length
nonce, and a �xed-length key. The output is a variable-length ciphertext. The algorithms shall provide
both authenticated encryption and decryption-veri�cation. The cryptographic solutions should also
provide con�dentiality under adaptive chosen-plaintext attacks and integrity of the ciphertexts under
adaptive forgery attempts and are expected to maintain security when the uniqueness of the nonce is
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respected (any proof of security under nonce-reuse can be advertised as a feature). The minima in
terms of size and security are a key of at least 128 bits, resisting attacks of at least 2112 computations
on a classical computer in a single-key setting, and a key of 256 bits resisting attacks of at least 2224

computations. The recommended minimum sizes for nonce and tag are respectively 96 bits and 64 bits
and the limit on the input sizes shall not be smaller than 250−1 bytes. The entirety of the requirements
are stated in [9].

57 candidates were proposed and 56 selected as Round 1 candidates. The focus during the �rst
round was set on the cryptographic security of the submissions leading to two major selection criteria:
maturation of the candidates and cryptanalysis of the candidates [224]. In September 2019, the NIST
announced the candidates which made it to the round 2. For this second round, performance will play
a larger role in the selection process, the goal being to obtain optimized versions fairly benchmarked
on both software and hardware platforms.

We focused our e�orts on sponge-based candidates as it appears to gather several interesting
advantages as lightweight building technique and the design has been well studied those past years.
We selected three of them because they each use di�erent building techniques and it seemed constructive
to compare them knowing that each candidate targets a di�erent goal in terms of performances such
as improved security margins, high throughput or power e�ciency for example. This work is therefore
oriented toward �guring out which construction leads to which performance enhancement and not
simply on which one would be the best one. While some candidates were presented targeting software
performances or a good trade-o� between hardware and software e�ciency, this work is only focused
on hardware perfomances.
For this purpose, we implemented three of the round 2 candidates: ACE[13], WAGE[21] and PHOTON-
BEETLE[40]. ACE is the �rst candidate in alphabetical order and shares an equivalent design with
SPIX[20] and SpoC[19] which implementation results can already be found [192]. PHOTON-BEETLE
is based on the Beetle sponge mode which design allows smaller state size for comparable security
margins. WAGE is a stream cipher-based design. With the implementation of these candidates we
cover a wide range of useful building techniques for sponge designs targeting AEAD.
We implemented these algorithms using the Hardware LWC API proposed [156] to fairly compare our
results to those already available, as presented in the last section.

8.2 Implementation methodology

8.2.1 Hardware API for Lightweight Cryptography

The �rst public competition for cryptographic standards was the NIST call for the Advanced En-
cryption Standard [1]. During this competititon, the main criteria of competition were security and
software performances; the hardware performances only came into consideration near the end of the
standardization process. The same happened during the SHA-3 competition and there are still only
a few referenced papers on hardware performances of the candidates. The real change came with
the CAESAR competition, when a standard hardware API was developed and validated by the com-
petition committee[141]. Hardware implementations were required for all submissions from round 3,
with the development team helping candidates to use and develop their solutions. This API was not
mandatory but helped de�ne new guidelines for comparison for the second half of the competition.
The implementation and linked results of each candidate can be found here [3].
For the NIST Lightweight Standardization process, no hardware implementation was mandatory but
before the announcement of the round two, some candidates were found with a hardware implemen-
tation compliant with the CAESAR Hardware API. To fairly implement and compare the di�erent
candidates of the NIST standardization process for Lightweight Cryptography, a Framework for Bench-
marking of Hardware Implementations was introduced and presented by Kaps et al. in [156] and [155].
Based on the framework developped for the CAESAR competition [2], it gives the developers a guide-
line to implement the di�erent ciphers. This requires a few modi�cations to adapt the implementations
based on the CAESAR API and the overhead from this API is well explained in [157]. With the be-
ginning of round 2 in September 2019, more implementation compliant with this API are expected to
create a fair basis for benchmarking hardware performances.
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8.2.2 Speci�cations

In order to speed up the development process, both API feature a development package and an Im-
plementer's Guide. Both designs use the same modules: the Preprocessor, FIFO, Postprocessor and
the cryptographic core. The input data are split into two parts: the public data (pdi) and secret data
(sdi) which are both received by the Preprocessor. After removing the header information, the data
are passed to the cryptographic core which will implement the chosen cryptographic primitive (the
designers only have to modify this part to implement their solution). The Postprocessor will then get
the data output by the cryptographic core and add the API speci�c header data and send it to the
output port (do). In addition to some changes, the LWC package also fully supports hash algorithms,
which will not be considered in this chapter as all candidates don't specify one.

Figure 8.1: The LWC API

8.2.3 Implementation process

In order to get a fair comparison of all candidates, one method must be chosen and kept during the
development process of each algorithm. We decided to follow the method chosen and explained in
[192]. Each algorithm is developed following a basic-iterative construction, meaning that each step or
round of an algorithm will be executed in one clock cycle. If the permutation of an algorithm is made
of steps and rounds, such as ACE [13], one permutation will be executed in

numberofsteps ∗ numberofrounds

clock cycles (in this example 16 ∗ 8 = 128 clock cycles). Moreover, all implementations are fully
compliant with the LWC Hardaware API.

8.3 Sponge function and sponge-based mode of operation

The Sponge construction was introduced by Bertoni et al. in [57] in 2007. It is based on a �xed-length
permutation building a function mapping a variable-length input to a variable-length output. The
construction was �rst used to build strong hash functions such as Keccak, the winner of the SHA-3
competition [12]. The sponge construction operates on a state of b = r + c bits where b is called the
width, r the rate and c the capacity. The data is padded and divided into words of r bits. The b bits of
the state are initialized to zero. Then the construction proceeds in two phases. During the absorption,
r bits are added to the state which goes through the f function. Once the whole data is absorbed, r
bits are squeezed at a time with a call to the f function at each time.
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Figure 8.2: The sponge construction

From the sponge construction, keyed variants have been developed and have become a very popular
mode of operation for a wide spectrum of cryptographic functionalities including authentication codes,
pseudo-random functions, Extendable-Output Functions (XOFs)[12] and Authenticated Encryption
modes.
The sponge construction allows the possibility to build lightweight design for hash functions. Since
the introduction of the design, numerous lightweight hash algorithms have indeed been proposed, such
as SPONGENT[67], Quark [31] and PHOTON[136]. One main advantage when compared to classical
Merkle-Damgård hash functions is the size of the state which is fairly smaller.
The keyed Sponge principle also got adopted in Spritz, a new RC4-like stream cipher [197], and in 10
out of 57 submissions to the CAESAR[2] competition on authenticated encryption, with ASCON [106]
as one of its best representative for this competition.

8.3.1 Existing security bounds

Encrypting using the Sponge construction is usually done via the Duplex construction[59]. As shown
in Figure 8.3, it is a stateful construction made of two interfaces: one for initialization and one for
duplexing. The initialization interface is used to initialize the state (which can be all-zero) while the
duplexing interface absorbs a message of at most r bits and squeezes ≤ r bits of the outer part.

Figure 8.3: The Duplex construction

The security of the Duplex mode is directly linked to the indi�erentiability of the classical Sponge,
leading to a O(2c/2) security bound. Bertoni et al.[59] showed that the Duplex construction, can be used
for authenticated encryption in the form of SpongeWrap. This mode stands as the basis of the majority
of Sponge-based submissions in the CAESAR competition and further work on improving sponge-based
designs. Jovanovic et al. [153] claimed that Sponge-based constructions for authenticated encryption
can achieve a signi�cantly higher bound with a security of min{2b/2, 2c, 2k}, with b the permutation
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Figure 8.5: The ACE algorithm

size, c the capacity and k the key size. The author of the Beetle family of authenticated encryption
ciphers [80] prove that these bounds do not stand for every application as an adversary can make a
large number of decryption queries to mount the attack, which would then not satisfy the restrictions
explained in [153]. The degraded security bound according to the Beetle authors is min{2c, 2k}.
The Beetle mode of operation is a duplex sponge mode combined with a feedback function such as in
[81]. Using this feedback function only adds a little overhead in term of hardware ressources needed
but helps to achieve the desired security bound. The authors claim a security ofmin{c−log(r), b/2, r},
with r the rate r = b− c.

Figure 8.4: The Beetle construction

8.4 ACE: An Authenticated Encryption and Hash Algo-

rithm

ACE [13] is a 320-bit sponge-based algorithm that can be used for both Authenticated Encryption
with Associated Data and hashing functionalities. Its name comes from the strongest card of the
deck. Following the designers' idea, ACE is designed to achieve a balance between hardware cost and
software e�ciency. The recommended parameter set states a rate r of 64 bits, a key of 128 bits, a
nonce of 128 bits and a tag of 128 bits also. The capacity c = b − r is then of 256 bits. This set of
parameters is thought to be used for both AEAD and hash functionnalities.

ACE is based on the uni�ed duplex sponge mode [22], a variant of the duplex sponge mode using
the sLiSCP-light permutation. Two others NIST LWC candidates are based on the sLiSCP permuta-
tion: SPIX with a state of 256 bits [20] and SpoC with a state of 192 bits [19]. The sLiSCP-light uses
a combination of a Type II Generalized Feistel Structure (GFS) and a round-reduced unkeyed Simeck
box (SB). Each step consists of three transformations, namely, SubstituteSubblocks (SSb), AddStep-
constants (ASc), and MixSubblocks (MSb). The non-linear operations are applied in the SSb, or SB.
SBs consist of XORs, bitwise rotations, and a logical AND.
In the case of ACE, the 320-bit state is divided into �ve 64-bit words, A, B, C, D and E. The Simeck
box is applied to three of the �ve words, namely to words A, C and E. The permutations are made in
16 steps.
In order to follow the basic-iterative construction, we built three SBs on 64-bits each, which operate
on a total of 192 bits out of 320 bits of state. Round constants are supplied to each SB at the start
of each SSb transformation. An SSb transformation requires 8 rounds, each of which executes in one
clock cycle. Local state variables, as well as updated round constants, are stored during SSb trans-
formations. The three round constants (rc0, rc1 and rc2) and three step constants (sc0, sc1 and sc2),
each 8 bits, are implemented using look-up tables. The result of the C words through the second SB
is then XORed to word B, and the same happens with words E and D. The three state constants are
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added to words B, D and E. Finally, the MixSubblocks part mixes the 5 words to their corresponding
output, as shown in Figure 8.6, one sLiSCP permutation is executed in 16 x 8 = 128 clock cycles.

Figure 8.6: The ACE Permutation

The Simeck box shown in Figure 8.7 is an unkeyed independently parameterized variant of the
round function of the Simon algorithm.

Figure 8.7: The Simeck Box

8.5 WAGE : An Authenticated Cipher

WAGE is a 259-bit AEAD algorithm design by Aagaard et al. [21]. Its mode of operation is an uni�ed
sponge duplex mode with an additionnal e�ort put for the initialization and the �nalization. Its design
is oriented towards hardware e�ciency. The authors recommend using a rate r of 64 bits and a key, a
nonce and a tag of 128 bits each.
The state is made of 259 bits and the permutation is based on the Welch-Gong stream cipher[187].

The state is divided into 37 7-bit words S36 to S0. The rate part of the WAGE-AE-algorithm,
called Sr is made of the last bit of S36 and S35, S34, S28, S27, S18, S16, S15, S9, S8. The capacity part,
of 195 bits is made of the rest of the state. The squeezing and absorbing phases of WAGE are shown
in Figure 8.8 with the rate part shaded in orange and the green part representing the capacity.

Figure 8.8: The squeezing and absorbing phases of WAGE

In case the processed data is not a multiple of the rate value, the padding rule for messages and
additionnal data is the following : for a given vector X, padr(X)← X||1||0r−1−(|X|mod(r)).
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The loading of the nonce and key consists of dividing it into 17 7-bits tuples of nonce and key plus one
7-bit tuple �lled with the remaining bits and zeros and loading it by mixing nonce and key bits into
the state.

The state is then initialized by loading the key in two blocks K0 and K1 to Sr and applying a
WAGE permutation to the updated state.
The WAGE permutation operates over the �nite �eld F27 . Its round function is constructed by tweak-
ing the initialization phase of the Welch-Gong cipher with four 7-bit SBoxes added to achieve a faster
confusion and di�usion. The core components of the round function are an LFSR, two Welch-Gong
Permutations (WGP) and four SBoxes. The state is updated 111 times as described next.
The Welch-Gong permutation is de�ned by:
WGP(x) = x13+(x13 + 1)33+(x13 + 1)39+(x13 + 1)41+(x13 + 1)104.
The state is updated as follow:

fb = Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si26)

Si+1
4 = Si5 ⊕ SB(Si8

Si+1
10 = Si11 ⊕ SB(Si15

Si+1
18 = Si19 ⊕WGP (Si8)⊕ rci0
Si+1

23 = Si24 ⊕ SB(Si8)

Si+1
29 = Si30 ⊕ SB(Si15)

Si+1
36 = fb ⊕ SB(Si36)⊕ rci1
Si+1
j = Sij+1, j ∈ {0, ..., 36} \ {4, 10, 18, 23, 29, 36}

with rci0 and rci1 round constants calculated with a LFSR of length 7.

8.6 PHOTON-BEETLE : An Authenticated Cipher

PHOTON-BEETLE[40] is an authenticated encryption and hash family which uses a sponge-based
mode of operation called Beetle [80]. The innovation of this mode of operation resides in the feedback
function used on the outer part of the state (the rate part). As stated in [80], this allows to achieve
the required security bounds while keeping a relatively small state compared to other sponge-based
designs. The feedback function used in the PHOTON-BEETLE algorithm is displayed in Figure 8.9.

Figure 8.9: PHOTON-BEETLE Feedback function

PHOTON-BEETLE operates a 256-bit state modi�ed sponge mode of operation with 128 bits of
key, nonce and tag prescribed. The prime recommendation from the author for the sole AEAD mode
is a rate and a capacity of 128 bits. These parameters allow a good throughput while maintening
su�cient security margins.
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Figure 8.10: The PHOTON-BEETLE algorithm

PHOTON256[136] is used as the underlying 256-bit permutation. It is applied on a state of 64
elements of 4 bits each. The state is represented as a (8 x 8) matrix. The permutation is composed
of 12 rounds, each iterating four layers: AddConstant, SubCells, ShiftRows and MixColumnSerial.
AddConstant adds �xed constants, SubCells applies a 4-bit S-Box to each cells, ShiftRows rotates
the position of the cells in each of the rows and MixColumnSerial linearly mixes all the columns
independently using a serial matrix multiplication.

8.7 Hardware implementation of permutations

Comparison process All implementations are veri�ed using Xilinx Vivado Simulator and the re-
sults are generated for Xilinx Artix-7 (xc7a100tcsg324-3), targeting area optimization. All candidates
are implemented only in their AEAD form (if a hash functionnality exists, it is not targeted for this
work) with the prime recommendation of the authors, as shown in Table 8.1.

Table 8.1: Characteristics of implemented ciphers
Cipher key (bits) nonce (bits) steps rounds state (bits) rate (bits) tag (bits)
ACE 128 128 16 8 320 64 128

PHOTON-BEETLE 128 128 - 12 256 128 128
WAGE 128 128 111 - 259 64 128
SpoC-64 128 128 18 6 192 64 64
ASCON 128 128 - 6/12 320 64 128

SCHWAEMM 128 256 7/11 4 384 256 128

Table 8.2 details the number of clock cycles used for each step of each candidate and compares
them using latency and throughput.
Latency is de�ned as the number of clock cycles needed to process one block of message from start to
end (Initialization, computing and Finalization). While the throughput in Mbps is approximated by
TP = fclk∗ (bits/block) / (cycles/block) with fclk the maximum frequency achieved by the design.
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Table 8.2: Latency and throughput for selected ciphers
Ciphers Encrypt Latency Throughput
ACE 651 + 130 x AD + 131 x PT 782 fclk x 64/131

PHOTON-BEETLE 23 + 14 x AD + 15 x PT 38 fclk x 128/15
WAGE 566 + 113 x AD + 114 x PT 680 fclk x 64/114
SpoC 219 + 109 x AD + 111 x PT 330 fclk x 64/111
Ascon 42 + 9 x AD + 10 x PT 52 fclk x 64/10

Schwaemm 114 + 43 x AD + 52 x PT 166 fclk x 256/52

Implementations are compared according to maximum frequency, area (given in LUTs), throughput
and throughput-to-area ratio. We can thus compare our results to those of Hardware Implementation
of NIST Lightweight Cryptographic Candidates: A First Look[192].

Table 8.3: Implementation results
Ciphers Freq (MHz) Area (LUTs) TP (Mbps) TPA (Mpbs/LUT) Ref
ACE 128 1337 62.53 0.047 This work

PHOTON-BEETLE 139 601 1186.1 1.974 This work
WAGE 142 780 79.7 0.102 This work
SpoC 268.0 1172 154.5 0.132 [192]

Ascon-AEAD 263.0 1898 1683.2 0.887 [192]
Schwaemm 106.0 4313 521.8 0.121 [192]

From this table we can extract some interesting information. Looking at each candidate's param-
eters, it can be expected that smaller state size leads to smaller area occupation, which is not always
true.
PHOTON-BEETLE has the lowest area occupation thanks to a relatively small state (256 bits) and a
permutation known for its lightweight capabilities. Moreover, being designed targeting low latency
leads to an excellent result considering throughput. WAGE, combining a 259-bits state with its
LFSR-based permutation also achieves a small area occupation but this implementation only o�ers
a throughput of 79.7 MHz. Coming third regarding area occupation, SpoC is designed to achieve
su�cient security with the lowest state for a sponge-based design in the NIST project. Despite this
state size of 192 bits, the mode of operation used for SpoC leads to a higher area occupation than the
classical Beetle mode of operations which increases its total occupation. However, its implementation
achieves the highest frequency with 268MHz. ACE and Ascon both use 320 bits of state and we can
see that the ARX design of ACE allows a lower hardware footprint while ASCON achieves a better
throughput.

8.8 Conclusion

In this work, we implemented three sponge-based algorithms in compliance with the provided Hard-
ware API for Lightweight Cryptography. We compared the implementations with others from this
paper[192] and completed the implementation process of NIST candidates for Lightweight Standard-
ization Process.
This work presents and compares di�erent algorithms, identifying di�erent building techniques and
providing a precised analysis on the performances that can be achieved on FPGA. One of the out-
comes is that no algorithm presented really takes the lead as an outperformer when combining all
studied characteristics. Indeed, when looking for the maximum achievable frequency, SpoC takes a
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short lead on ASCON with 268 MHz. Ascon is the best regarding maximum throughput with 1683
Mbps. PHOTON-BEETLE achieves the smallest area occupation and the best throughput-to-area
ratio by being at the same time very small to implement and achieving a very low latency.
To complete this work, future implementations of algorithms designed speci�cally for side-channel re-
sistance and fault protection need to be done, targeting at �rst DryGASCON[194], ISAP[105] and
Spook[48]. This will enrich our list of techniques and ideas, in particular those which enable a good
resistance to physical and fault attacks.
Overall, the identi�ed bricks will be useful to create variants or adaptations of the most promising
lightweight AEAD solutions, enabling di�erent use cases and especially targeting e�ciency on hard-
ware platforms and resistance against physical attacks.
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Chapter 9

An attack on the SIV Mode of Operation

9.1 Introduction

Amode of operation is an algorithm that takes as core part a block cipher and uses it in a way to provide
capabilities unachievable with a block cipher. A block cipher is only suitable for the cryptographic
transformation of one �xed-length block.
Modes of operations can be used for di�erent purposes : create a stream cipher, compute a Message
Authentication Code (MAC), generate authenticated encryption, or create shorter or larger blocks.
Several modes are de�ned and standardized by the National Institute for Standards and Technologies
(NIST) to achieve con�dentiality while using a properly chosen block cipher [111]. Other modes are
de�ned to achieve authenticated encryption from a block cipher, which is the case of the CCM and the
GCM modes of operation described in [113] and [112]. One mode is designed to perform authentication,
namely CMAC [114].
In the �rst part, we present the notation and a quick reminder of what a block cipher and a MAC are.
In the second part we introduce the di�erent types of mode of operations standardized by the NIST.
In the third part we present the SIV mode of operation and the attack we managed to conduct on.
Finally we conclude this chapter.

9.2 Notations

This work is well inspired by the paper of Rogaway on the security of several modes of operations and
we then decided to use the same notations he did [200]. By �strings� we mean (�nite) binary strings.
The empty string is written ε. The bit-length of a string X is written |X|. The byte-length of a byte
string X is written |X|8. Concatenation of strings A and B is written as A||B. We sometimes use
conventional formal-language notation, like {0, 1}∗ for binary strings or ({0, 1}n)+ for strings having
a positive multiple of n bits. The �rst t bits of a string X of length at least t is written MSBt(X),
while the last t bits are LSBt(X). We write A ⊕ B for the bitwise exclusive-or of two equal-length
strings. We also use this notation for the xor of unequal-length strings, where the understanding is to
drop rightmost bits of the longer string until the two strings are of equal length, and then bitwise xor.
We write a $←−X for the experiment of randomly sampling from a space X and assigning the result to
a. Either X will have a distribution associated to it or X will be �nite and we mean the uniform
distribution.
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9.2.1 Block ciphers

A block cipher is a function E : K × {0, 1}n → {0, 1}n such that EK(·) = E(K, ·) is a permutation
on {0, 1}n. The inverse of the block cipher E is D = E−1 de�ned by X = DK(Y ) being the unique
X ∈ {0, 1}n such that EK(X) = Y . A typical block cipher is the AES [1]. Actually, to match the
de�nition just given, the AES speci�cation would be understood as any de�ning three block ciphers,
AES-128, AES-192, and AES-256, one for each of three permitted key length. Typically a scheme's
parameters, like the key length k for AES, must be �xed for the scheme, as described in the speci�cation,
to match the syntax we exploit in a de�nition. The usual way to quantify the security of a blockcipher
E : K × {0, 1}n → {0, 1}n works as follows. Let's choose a random K $←−K and a random permutation
π on n-bits. An adversary A is given black box access either to EK or to π. The adversary tries to
guess which kind of object it has. We let

AdvprpE (A) = Pr[K $←−K : AEK(·) ⇒ 1]− Pr[π $←−Perm(n) : Aπ(·)⇒ 1]

where Perm(n) denotes all the permutation on n-bit strings. An alternative measure of security for a
blockcipher compares it against a random function instead of a random permutation. In that case we
set

AdvprfE (A) = Pr[K $←−K : AEK(·) ⇒ 1]− Pr[ρ $←−Func(n, n) : Aρ(·) ⇒ 1]

where Func(n, n) denotes the set of all functions from n-bit strings to n-bit strings. It is a standard
result that Pr[Aπ ⇒ 1] − Pr[Aρ ⇒ 1] ≤ q2/2n+1 for any adversary A that asks at most q queries.
This makes the PRP (Pseudo-Random Permutation) and PRF (Pseudo-Random Function) notions of
advantage close:

|AdvprpE (A)−AdvprfE (A)| ≤ q2/2n+1

if A asks q or fewer queries. The observation is sometimes known as the PRP/PRF Switching Lemma
[82].
Yet another important security notion for blockciphers strengthens the requirement for resembling a
random permutation by giving the adversary oracles not only for the forward direction of the cipher or
the random permutation, but for the backwards direction, too. This is some-times called the �strong�
notion of PRP security. It amounts to permitting a chosen-ciphertext attack (in addition to a chosen-
plaintext attack). The de�nition of advantage becomes

Adv±prpE (A) = Pr[K $←−K : AEK(·),E−1
K (·) ⇒ 1]− Pr[π $←−Perm(n) : Aπ(·),π−1(·) ⇒ 1]

It is now easy to see that a good ±prp-security implies a good prp-security, but that the reverse does
not hold. It is strongly believed that blockciphers like E = AES are good in the PRP and strong-PRP
senses of the word: �reasonable� adversaries have only a �small� value AdvprpE (A) or Adv ± prpE(A).
We are not trying to de�ne reasonable or small in this work. If one would like to specify an explicit
assumption, one could say something like �we think that Adv±prpAES128(A) < 2−10 if A asks at most 250

queries and uses at most 290 time� (with time understood to include the adversary's description size
and some particular computational model being �xed). But we certainly do not know how to prove
any such statement, and making concrete conjectures like the one just given does not seem to have
any real value.
Those blockciphers are what one might call conventional blockciphers; in particular: block size n is
some �xed and rather small number, like n = 64 or n = 128, and the blockcipher is a �true� primitive.
More generally, we can de�ne a blockcipher as a function E : K ×X → X where X ⊆ {0, 1}∗ is the
message space and EK(·) = E(K, ·) is a length-preserving permutation. The inverse to the blockcipher
E is D = E−1 de�ned by DK(Y ) being the unique X ∈ {0, 1}n such that EK(X) = Y . To de�ne the
prp and ±prp security notions for blockcipher E : K×X → X one adjusts the �rst and third equation
to

AdvprpE (A) = Pr[K $←−K : AEK(·) ⇒ 1]− Pr[π $←−Perm(X) : Aπ(·) ⇒ 1]
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and
Adv±prpE (A) = Pr[K $←−K : AEK(·),E−1

K (·) ⇒ 1]− Pr[π $←−Perm(X) : Aπ(·),π−1(·) ⇒ 1]

where Perm(X) denotes the set of all length-preserving permutations on X.

9.2.2 Message Authentication Code

De�nition A message authentication code (MAC) is a block of information, or tag, used to au-
thenticate a message (ensure that the message comes from the stated sender) and verify that it has
not been modi�ed. The MAC value protects both the integrity and the authenticity of a message, by
allowing veri�ers (who possess the secret key used to generate the MAC) to detect any changes to the
message content.
A message authentication code system consists of three algorithms:

� A key generation algorithm that selects the key from the key space, uniformly at random.

� A signing algorithm that returns the tag computed from the key and the message.

� A verifying algorithm that veri�es the authenticity of the message given the key and the tag. It
returns either accepted if the MAC is correct or ⊥ if not.

Standards Various standards exist that de�ne MAC algorithms. These include:

� FIPS PUB 113 Computer Data Authentication, withdrawn in 2002, de�ned an algorithm based
on DES.

� FIPS PUB 198-1 The Keyed-Hash Message Authentication Code (HMAC)

� ISO/IEC 9797-1 Mechanisms using a block cipher

� ISO/IEC 9797-2 Mechanisms using a dedicated hash-function

� ISO/IEC 9797-3 Mechanisms using a universal hash-function

� ISO/IEC 29192-6 Lightweight cryptography - Message authentication codes

ISO/IEC 9797-1 and -2 de�ne generic models and algorithms that can be used with any block cipher or
hash function, and a variety of di�erent parameters. These models and parameters allow more speci�c
algorithms to be de�ned by nominating the parameters. For example, the FIPS PUB 113 algorithm
is functionally equivalent to ISO/IEC 9797-1 MAC algorithm 1 with padding method 1 and a block
cipher algorithm of DES.
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9.3 Modes of operation

When a block cipher is used in some scheme to accomplish a higher-level goal, we call the blockcipher
using scheme a (blockcipher-based) mode of operation. Usually one sees the term mode of operation
without the �block cipher� quali�cation; it is understood that the mode is based on a blockcipher.
Besides using the block cipher, the mode may use other simple tools, such as simple bit manipulations,
XOR operations, message padding, and even some �nite-�eld arithmetic. If one started to use quite
complex operations � such as a modular exponentiation or an elliptic-curve computation � one would
probably draw the line and say that this no longer looked like a mode of operation: there is no precise
meaning ascribed to the term modes of operation of a blockcipher, but we expect, somehow, that use
of the blockcipher is the dominant thing that is going on. The goal of di�erent modes of operation
varies.

9.3.1 Con�dentiality modes

The NIST currently speci�es �ve modes of operation for block ciphers that achieve con�dentiality. The
�rst four modes (ECB, CBC, CFB and OFB) are classical, going back to FIPS 81 [11] (at which time
the modes were speci�c to DES), more than 40 years ago.
The ECB mode is the simplest one as it only consists in several calls to the underlying block cipher
up to the number of blocks that are needed to encrypt or decrypt. The disadvantage of this method
is that identical plaintext blocks are encrypted into identical ciphertext blocks; thus, it does not hide
data patterns well. In some senses, it does not provide a semantically secure encryption scheme, and
is therefore not recommended for use in cryptographic protocols at all.
CBC is an improvement of ECB, where each block of plaintext is XORed with the previous ciphertext
block before being encrypted. This way, each ciphertext block is dependent on all plaintext blocks
processed up to that point. CBC has been the most commonly used mode of operation. Its main
drawbacks are that encryption is sequential (i.e., it cannot be parallelized), and that the message must
be padded to a multiple of the cipher block size.
CFB is closely related to CBC as it transforms a block cipher into a self-synchronizing stream cipher.
The mode of operation is very similar; speci�cally, CFB decryption is almost identical to CBC encryp-
tion performed in reverse. CFB can be used as a self-synchronizing stream cipher mode of operation
as described in 7.
OFB makes a block cipher into a synchronous stream cipher. It generates keystream blocks, which
are then XORed with the plaintext blocks to get the ciphertext. Each output feedback block cipher
operation depends on all previous ones, and so cannot be performed in parallel. However, because the
plaintext or ciphertext is only used for the �nal XOR, the block cipher operations may be performed in
advance, allowing the �nal step to be performed in parallel once the plaintext or ciphertext is available.
The �fth mode, CTR, was suggested by Di�e and Hellman just as early as the basic-four modes, yet
was not included in the initial batch. CTR is often seen as the �best� choice among the classical
con�dentiality-only techniques. Its parallelizability and obvious correctness, when based on a good
block cipher, makes it a good candidate in any modern portfolio of modes.

9.3.2 Authentication modes

The NIST only speci�es one mode of operation for constructing a message authentication code from
a block cipher, the cipher-based MAC or CMAC [114]. The original de�nition of the CMAC mode
of operation was the Cipher Block Chaining MAC algorithm (CBC-MAC) that was then withdrawn
for security de�ciences. The design was then re�ned by Black and Rogaway and published under the
name XCBC [129]. Iwata and Kurosawa proposed an improvement of XCBC and named the resulting
algorithm One-Key CBC-MAC (OMAC) and later submitted OMAC1 as a re�nement of OMAC.
OMAC1 e�ciently reduces the key size of XCBC.
The CMAC algorithm depends on the choice of an underlying symmetric key block cipher. NIST only
approves the use of two block cipher algorithms, the AES [1] and the TDEA [41]. The CMAC mode
does not exploit the inverse function of the block cipher.
The mode of operation accepts messages divided in blocks of size b, depending on the block cipher
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used: b = 128 in th ecase of the AES and b = 64 in the case of the TDEA. The CMAC key is the block
cipher key (the key, for short). The key is denoted K, and the resulting forward cipher function of the
block cipher is denoted CIPHK .
For a given block cipher and key, the input to the MAC generation function is a bit string called the
message, denoted M . The bit length of M is denoted Mlen. In principle, there is no restriction on
the lengths of messages. In practice, however, the system in which CMAC is implemented may restrict
the length of the input messages to the MAC generation function.
The output of the MAC generation function is a bit string called the MAC, denoted T with a length
denoted T len, a parameter that shall be �xed for all invocations of CMAC with the given key.
During the computation, subkeys are needed and are computed using the zero vector (a vector made
of zeros with a length of b). (details on the exact computation method of subkeys K1 and K2 can be
found in [114]).

Figure 9.1: the CMAC computation with two cases

The two cases of MAC Generation are illustrated in the �gure above. On the left is the case where
the message length is a positive multiple of the block size; on the right is the case wherethe message
length is not a positive multiple of the block length and shall therefore be padded.

9.3.3 Authenticated-encryption modes

Currently, the NIST has standardized two modes for authenticated encryption, CCM [113] and AES-
GCM [112]. A third one is currently in the scope of a potential standardization: the AES-GCM-SIV
[134].
CCM is a nonce-based AEAD scheme that combines CTR mode encryption and the raw CBC-MAC.
It is inherently serial, which can limit speed in some contexts. It is provably secure with good bounds,
assuming the underlying block cipher is a good Pseudo-Random Permutation. The mode is widely
standardized and used. It is simpler to implement than GCM because it does not require the multi-
plication and can be used as a nonce-based MAC.
GCM is a nonce-based AEAD scheme that combines CTR mode encryption and a GF(2128)-based uni-
versal hash function. It has good e�ciency characteristics for some implementation environments. It
also has good provably-secure results assuming minimal tag truncation but there exist attacks that lead
to poor provable-security bounds in the presence of substantial tag truncation. It can also be used as a
nonce-based MAC, which is then called GMAC. The recommendation using this mode of operation is
to restrict nonces to 96-bits and tags to at least 96 bits. This mode is also widely standardized and used.
Both are nonce-based (meaning that the user must supply a never-repeating IV). Both allow �associated-
data� (for example, a message header which can be constituted of metadata describing the message) to
be authenticated alongside whatever is being encrypted. The methods are called AEAD (authenticated-
encryption with associated-data) schemes.
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9.3.4 Deterministic Authenticated Encryption modes

A deterministic algorithm is an algorithm that will always output the same results given the same
inputs. That is usually a characteristic that is not desired in cryptography as it can lead to several
attacks. Therefore, mode of operations are most of the time de�ned with Initialization Vectors (IV)
or nonces and speci�ed with the notion that the triplet message, key and IV shall not be used more
than once. However some applications or communication protocols cannot carry or use IV and thus
fall under other security de�nitions. Rogaway de�ned �rst the notion of deterministic authenticated-
encryption or DAE in his paper on the Key-Wrap problem [202].
A key-wrap scheme is a shared-key encryption scheme that aims to provide privacy and integrity
protection for data such as cryptographic keys without relying on the use of a nonce or any random
bits (IV or counters). The goal of such a scheme is to protect cryptographic keys that are encrypted
as the message, while a header composed for example of the meta-data of the associated keys is used
and authenticated.
So key-wrap's purpose is to remove Authenticated Encryption's reliance on a nonce or random bits.
At least in the context of transporting cryptographic keys, a deterministic scheme should be just as
good as a probabilistic one, anyway. Another goal of key wrap is to provide integrity protection for
cleartext associated data, typically control information about the wrapped key.

9.4 Our contribution: Attack on SIV

9.4.1 The SIV Mode of Operation

There exist several algorithms that can be used to achieve deterministic authenticated encryption
without the use of an initialization vector, such as the HBS mode of operation [145]. We decided to
focus our study on the SIV mode of operation which is, to the best of our knowledge the �rst candidate
to tackle this problem. The Synthetic Initialization Vector (SIV) Authenticated Encryption is a mode
of operation described in [199]. The algorithm is composed of two operations:

� The S2V operation that takes as input the plaintext, the authentication key, plus the optional
additional data and generates a tag T . The computation is a CBC-MAC using the AES as
internal block cipher.

� The other operation, that we will call from now on S1V, uses the tag T as initialization vector
and encrypts the plaintext using the AES-CTR mode of operation.

The mode of operation is based on one block cipher that will compute blocks of 128 bits. Usually,
the recommended block cipher is the AES. Two keys are used, one for each operation. The mode is
de�ned with a key K that will be divided into the two keys K1 for the S2V operation and K2 for the
S1V operation. K can be of 256, 384 or 512 bits.

The S2V operation is a slightly modi�ed CMAC mode of operation. It consists of the doubling and
Xoring of the outputs of the block-cipher used for this mode of operation, computing each individual
128 bits strings of the input. The �rst operation is the computation of the zero vector. Then each
block of input is computed and the result is Xored with the doubling of the previous ciphered block
(multiplication by 2 (mod ()2n). The last block is padded if needed (if the size of the last block is
less than 128 bits). Finally, the result is computed through a last instantiation of the block cipher to
output the Synthetic Initialization Vector, that is also used as the authentication tag, called V .
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Figure 9.2: the S2V operation

The second part of the mode of operation consists of a Counter mode of operation taking as inputs
the blocks of message and the Synthetic Initialization Vector resulting from the S2V operation. Each
block are computed independently from each other, by Xoring them to the output of the block cipher.
Each block Mi is Xored to the output Xi resulting of the computation of the counter which is the
Synthetic Initialization Vector concatenated with the incremented counter i. Put in equation :

Xi = EK(V ||i);Ci = Mi ⊕Xi (9.1)

Figure 9.3: the CTR operation

Put together, the SIV mode of operation will �rst compute the Synthetic Initialization Vector V
from the header and the message. This SIV that will be used both as authentication tag and nonce
for the Counter Mode of operation. The message will then be processed through the CTR mode of
operation to compute the ciphertext C. The result C is concatenated with V to produce the end result
Z = V ||C.
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Figure 9.4: the SIV mode of operation

9.4.2 The attack

Consider a plaintext M such as M = (M0,M1, ...,Mn).
Consider a SIV oracle that takes as input (M0,M1, ...Mn) and returns (V,C0, C1, ..., Cn) with V the
tag resulting of the computation of the plaintext through the S2V operation and C the ciphertext such
as C = (C0, C1, ..., Cn).
An attacker having access to this SIV oracle will start by sending requests with k messages of two
blocks (Mα

0 ,M
α
1 ), receiving k answers (V α, Cα0 , C

α
1 ), with α ∈ {0, k}.

According to the birthday bond, in 2n/2 messages the attacker will have two di�erent messages (M i
0,M

i
1)

and (M j
0 ,M

j
1 ) such as V i = V j .

The attacker then sends two challenges with messages of only one block each, namely M i
0 and M j

0 to
obtain Ti and Tj .

It is then easy to extend these messages to two blocs (M i
0,M

i
1) and (M j

0 ,M
j
1 ) such as the S2V operation

returns the same Ti and Tj by selecting M i
1 = M i

0 ⊕ Ti and M
j
1 = M j

0 ⊕ Tj .
The attacker can then recursively extend the plaintext, one block at a time while obtaining the same
Ti or Tj .
The CTR mode of operation computes the value of AESK(Ti + cpt) Finally, knowing the ciphertext
Ci corresponding to a plaintext M i, the attacker can retrieve the ciphertext Cj from M j . Hence we
do have a distinguisher in O(2n/2).

9.5 Conclusion

The SIV mode of operation is described in several di�erent documents, each with di�erent security
notions or security requirements. Our analysis clari�es these notions and shows that no protocol using
the SIV mode of operation should be used with more than 264 − 1 messages under the same key. This
is reminiscent of other papers, such as the CMAC paper [114] that speci�es that no protocol using the
CMAC mode of operation should be used with more than 248 messages under the same key, but does
not provide analysis explaining this limit.
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Part IV

Outlooks and future work
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There were two main goals that drove me through this work: developing and implementing on
FPGA a new family of customizable block ciphers with an appropriate mode of operation and a
lightweight, side-channel prone, authenticated encryption scheme. At the moment I �nish writing this
thesis, I have de�ned, speci�ed and implemented on FPGA the new family of proprietary algorithms,
in order to ful�ll their primary need. The details about those algorithms cannot be disclosed here,
however, I tried to give as much incentives as possible on the work that I have led during the last years
to achieve those results.

The research for the state-of-the-art presented in part II �lled various purposes: �rst of all, for me
it was a way of learning new techniques, review and better apprehend di�erent notions and crypto-
graphic primitives. Secondly, I hope it helps the reader to better understand the context of this thesis
and brings reminders on the di�erent notions. Lastly, I used those studies to begin an introduction to
cryptographic notions for those of my coworkers that felt the need to embrace the cryptographic world
and its applications.

Particularly, the chapter about block ciphers, their design and application was a very important
topic for the work I did during those years and the work to come, as I had to create a design for a
peculiar application. In the context of HENSOLDT's applications, the protocols I have been working
on entail that both the block cipher and the mode of operation can not follow the current crypto-
graphic standards. Hence a particular e�ort is required to better understand what has been done in
the �eld of block ciphers and design of modes of operation to be able to tweak it to cope with our needs.

This chapter leads naturally to the work realized on the deterministic authenticated encryption and
the attack we proposed against the SIV mode of operation. Some applications such as Key-wrapping
mechanisms require the use of a mode of operation that o�ers con�dentiality, integrity and authentic-
ity, even in protocols were no random value (such as Initialization Vector (IV) or nonce) are provided.
In other words, it needs to hold its security properties in the case of nonce-misuse. In the event of
protecting such protocols, the need to de�ne the boundaries of allowed quantity of messages processed
using the same key is very important as it can lead to disastrous attacks. In this scope, we provided an
attack on the SIV mode of operation in the event of a protocol allowing at least 264 messages processed
using the same key.

This work will be carried on for one of the main future needs for HENSOLDT applications: devel-
oping a new mode of operation usable with a lightweight block cipher, using out of standards messages
without common protocols. The SIV mode of operation was looked upon because it provides security
without the use of a proper IV which is an interesting research strategy for this particular application.
Security of such a mode of operation and its limitations are a good basis for a future research. The
next step will be to design a new mode of operation, that can provide good security boundaries without
the use of an actual IV and then implement it on FPGA.

Speaking of peculiar protocols, some applications need the ability to auto-recover in the case of
data loss during the transfer. The Self-Synchronizing Stream Cipher Stanislas is, to the best of our
knowledge, the only Self-Synchronizing Stream Cipher (SSSC) scheme that has not already been bro-
ken. Although we encourage the cryptographic community to give a try to attacking it, we have good
hopes that this scheme can be of some use. Indeed, the self-synchronizing capability, with only a few 40
bits lost can be used to secure some protocols, such as SCADA protocol, and could �nd some interest-
ing application on proprietary protocols. Moreover, even if the algorithm is not very e�cient in terms
of area occupation, at least implemented as we did, straightforwardly, its relatively high throughput
o�ers the potential to secure even high performances applications. A future step on this algorithm
would be to look after the best possibilities to secure this scheme against side-channel analysis and
study the impact on area occupation. Furthermore, provide an optimized implementation on FPGA
could also be a good add to see if this algorithm could be used in some embedded protocols.

Finally, the part that took most of the time was the study and design and implementation of an
authenticated encryption scheme. I started by studying the di�erent methods to achieve such schemes,
namely the three approaches Encrypt-then-MAC, Encrypt-and-MAC and MAC-then-Encrypt. Then
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I followed the two cryptographic competitions: CAESAR and the NIST LWC standardization process
to gather data on the last techniques and improvements in terms of designs, security and performances
(throughput and area occupation).
I then focused on the sponge construction for several reasons. It is a well understood and studied
scheme, as it is the basis of the SHA-3 hash standard. I �nd the design quite easy to understand
and tweak if needed and quite elegant. Moreover, it achieves good performances in terms of both
area occupation and throughput, with for example ASCON, �rst choice at the term of the CAESAR
competition in the lightweight solutions use case and ranking in the top three of round 2 at the NIST
LWC standardization process in terms of throughput [185]. This last point is helped by the fact that
sponge-based designs are one-pass for veri�cation and decryption mechanisms, as opposed as most
of other schemes that �rst need one pass to verify the tag and another one for decryption. In the
purpose of de�ning which one would be the best choice depending on the application requirements, I
implemented some of the round 2 candidates on FPGA based on di�erent design choices: ACE whose
permutation is based on the Simeck algorithm, WAGE, which has a peculiar permutation on 259 bits,
and PHOTON-BEETLE which employs a modi�ed mode of operation; the BEETLE mode, in order to
achieve the same security while using a shorter internal state. I compared these implementations with
the ones from [192] which displayed SpoC; another design made to shorten the internal state; ASCON
and Schwaemm.
Finally, I started focusing on the di�erent choices of permutations that could had been designed by
the sponge-based designs community in order to �nd the most interesting depending on the needs. We
now have a large spectrum of choices in terms of sponge-based mode of operation (with for example
DuplexSponge, BEETLE, SpoC, ISAP, TETSponge, TEDTSponge) and a large choice of permutation,
that can be tweaked in order to achieve the required size. The future designs can be created by using
those di�erent blocks as LEGO®blocks and by designing a scheme with requirements needs in terms
of area occupation, throughput, throughput-to-area ratio, latency and side-channel security.
The next step in this direction could be to try to improve the existing FPGA implementation of the
candidates of the NIST LWC standardization process that made it up to round three, using a sponge-
based design. Moreover, a work using the di�erent blocks and giving a proper FPGA implementation
of every possible mixes is an interesting topic of research as it could help better apprehend the whole
possibilities o�ered by sponge-based designs for authenticated encryption.

The work done on the Useful-Work protocol, presented in Appendix A was for me a �rst step to
the blockchain universe that I have found very interesting. My contribution to this work helped me
better apprehend this domain that has, in my opinion, a lot to o�er in the near future as some new
challenges appear to bring a lot of attention. If this protocol �nds its public, the next step would be
to de�ne potential applications and implement them to create a new type of cryptocurrency rewarding
useful works.
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Appendix A

Useful work: a new protocol to ensure

usefulness of PoW-based consensus for

blockchain

Context This work was made by Louis Goubin, Jacques Patarin, Ambre Toulemonde and myself,
in parallel to my main thesis topic. It tackles the will to create a protocol for blockchain keeping as
goal to reward useful works.

Abstract The blockchain is a new technology that attracts several actors since 2009, and in partic-
ular in the �nancial domain with the emergence of cryptocurrencies such as the well-known Bitcoin.
In a blockchain, seen also as a distributed ledger or a chain of blocks, the participants use a consen-
sus protocol to add new data into the ledger. For example, in the Bitcoin Proof-of-Work consensus
protocol, the participants have to unnecessarily invest a huge amount of energy to add a new block of
transactions, and therefore to also win the coin associated to this block.
In this paper, we present a new protocol called Useful Work (UW) protocol that is based on the Proof-
of-Stake and Proof-of-Work mechanisms where the computing work is dedicated to useful problems.
The participants get a chance to win coins after performing honest and useful work for a submitted
problem.
We present a high-level description of our UW protocol that is con�gurable and propose some variants
of the protocol.
We discuss also some new and well-known issues that our protocol prevents.

A.1 Introduction

For years, the blockchain technology has aroused a great interest in several applications such that
�nancial transactions. A blockchain is a distributed ledger or chain of blocks intended to be immutable,
i.e. new data or transactions can only be appended into the ledger. To this end, participants use a
consensus protocol enabling to choose one of them as leader who wins the right to write the next
block into the blockchain. The choice of the consensus protocol is one of the main challenges in the
blockchain technology.

The �rst consensus protocol for blockchain is the Proof-of-Work (PoW) used for transactions of
the Bitcoin cryptocurrency. In PoW protocol, the leader is the �rst participant who solves the hash
puzzle, i.e. �nding a block's hash lower than a target value. This process is also called mining and
the participants are called miners. Thus, the miners are selected as leaders proportionally to their
computing power since the chance of �nding a valid hash is proportional to the computing power
owned. The PoW consensus protocol has been designed to achieve new requirements of scalability and
incentivation. The scalability enables to handle a variable number of participants since in the Bitcoin
blockchain, anyone at any time can participate to the consensus protocol. The incentivization aims
to motivate the participation in the consensus protocol, e.g. the leaders are rewarded with Bitcoin
cryptocurrencies.

However, the Bitcoin PoW consensus protocol has some limits. For example, there is a huge waste
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of computing power since the mining can be performed only by brute force and so requires an important
number of resources (computers, electricity, etc.). The current consumption of energy used to mine a
new block and so new Bitcoin cryptocurrencies is equivalent to the electric consumption of a country
with some tens of millions of inhabitants. Several alternative solutions have been proposed to replace
the Bitcoin PoW consensus protocol or to make the work performed during the mining useful, while
taking into account the new scalability and incentivization requirements.

A.1.1 Related works

The �rst solutions to prevent the PoW issues have been constructed on a Proof-of-Stake (PoS) mecha-
nism, where a participant's probability of being leader is proportional to the amount of money he has
invested in the system. The PoS mechanism may be combined with a random leader election like in
Algorand [128] and Ouroboros [160].

Instead of replacing the PoW mechanism, other solutions [154] aim to make the computations
useful by substituting the hash puzzle by another useful problem. For example, in Primecoin [161],
the leader is the �rst participant who �nd a chain of prime numbers. Other mechanisms [37, 170] have
been proposed to perform honest machine learning training work in order to have the chance to be
the leader. The Folding@home [46] and SETI@home [23] projects aim to �nd solutions to real world
problems such that researching various diseases and extra-terrestrial life respectively.

Zhang et al. [238] proposed the Resource-E�cient Mining (REM) which is a consensus protocol
using Trusted Execution Environment (TEE). The TEE is a protected address space, called also an
enclave, using Intel Software Guard Extension (SGX) which is a set of new instructions available on
certain Intel CPUs. In REM, one or several clients propose any useful works in form of tasks that
REM miners run in their SGX enclave. The veri�cation and measurement of the work performed
in the enclave are done through the Intel attestation service. The work of miners is metered on a
per-instruction basis. The SGX enclave randomly determines whether the work results in a block
by treating each instruction as a Bernoulli trial. Thus, in REM protocol, each executed useful work
instruction is analogous to one hash query in the Bitcoin PoW consensus protocol. The miner is elected
as leader proportionally to the number of executed useful-work instructions, and the SGX enclave works
as a trusted random oracle. However, REM is a partially decentralized solution since it relies on Intel
services.

Ball et al. proposed their Proof-of-Useful-Work (PoUW) [38] protocol to replace the Bitcoin PoW
puzzle by resolving the k-Orthogonal Vectors (k-OV) problem. The �rst block contains the initial
k-OV problem. All participant in the network are solving the same k-OV problem and the �rst one
who has a better solution than the solution in the previous block becomes the leader. However, the
work performed for PoUW protocol provides only new insights into the hardness problem and does
not solve any real-world problem.

Hybrid solutions have also been proposed to decrease the energy waste of mining process by com-
bining the hash puzzle with useful works. In the Hybrid Mining protocol of [86], anyone can submit
any NP-complete problem along with a reward by translating it into the boolean satis�ability (SAT)
problem. Then, miners solve either the submitted problem or the hash puzzle to have the chance
of being leader. The consensus protocol of Gridcoin [133] is also an hybrid solution that combines
PoW puzzle with useful computational work performed for BOINC projects. In Gridcoin, miners can
perform the work for a BOINC project in order to make the PoW puzzle easier to solve. Indeed,
in exchange of his solution to any BOINC project, the miner obtains BOINC credit that enables to
increase the mining target, and so decreases the di�culty of the hash puzzle. Thus, the leader is the
�rst miner who provides a block with a valid solution of PoW puzzle.

A.1.2 Our contribution

In this paper, we propose the Useful Work (UW) protocol which is a variant of the PoW mechanism
where the work is used to solve any real world problem. Our UW protocol is designed to be used
in permissionless setting, i.e. anyone at any time can participate in the protocol, and it is based on
PoW and PoS mechanisms. We assume that while more than two thirds of coins are owned by honest
participants, then our UW protocol works.
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Broadly speaking, our UW protocol proceeds as follows. It is divided in rounds. At each round
k, the participants compete to win useful coins. To this end, they have to perform the computational
work of problems submitted by clients and provide a proof of their correct computations. When the
computational works are validated by a group of veri�ers, a random election is run to choose one of
the participants to win useful coins. Then, a participant is elected to generate the block Bk of valid
transactions that contains also the data related to the winner of useful coins.

First, we present a high-level description of our UW protocol with eight steps that may be �exible.
We present a �rst method in each step and propose some possible variants. Then, we describe some
issues and well-known attacks against consensus protocols and blockchains, and discuss the resilience
of our UW protocol under these attacks.

A.2 Background

In this section, we recall the classical security properties of consensus protocols. Then, we mention
the main vulnerabilities and issues of the Bitcoin PoW protocol that are discussed in more detail in
Section A.5.

A.2.1 Security properties

A consensus protocol enables a set of n participants to agree on the current state. Generally, they
select in distributed manner one of them as leader to provide the next data to add into the ledger.
Safety and liveness are the basic security properties of consensus protocols. The safety property means
that (i) only a value that has been proposed may be chosen; (ii) only a single value is chosen, and
(iii) a participant never considers that a value has been chosen unless it actually has been. The
liveness property requires that a consensus can be achieved even if some fraction of participants may
be malicious or inactive. New consensus protocols designed for blockchain aim to achieve these security
properties while avoiding the Bitcoin PoW issues.

A.2.2 Vulnerabilities and issues

In addition to the waste energy problem, the Bitcoin PoW consensus protocol may lead to a sort
of centralization with participants grouping in pools to share the workload since it requires intensive
computation to solve the hash puzzle. Being in the pool, the participant takes the advantage to smooth
the incomes. Moreover, the Bitcoin PoW protocol may also su�er from fork problems leading to two
valid blocks that extend the same block and compete to be the main chain. In PoW protocol, fork is
solved with the longest chain rule approved by the majority of participants. The Bitcoin PoW protocol
is also vulnerable to sel�sh mining strategies [118] due to the possibility to fork. Indeed, a rational
adversary can leverage the usual forking in the protocol to temporarily hide one or several blocks in
order to increase incomes by revealing her blocks at a suitable time. PoW protocol is also vulnerable
to the Majority attack where an adversary owning more than half of computing power may add any
block of transactions.

A.3 Entities and building blocks

At each round k, our UW protocol enables to generate and add a block Bk into the blockchain. Our
UW protocol is designed to be used in permissionless setting, i.e. anyone at any time can participate
in the protocol.

Participants called workers perform the work submitted by clients and provide proofs of their
correct computations. Then, when the computations are validated by a set of veri�ers, one of workers
is elected as winner to win some useful coins. Finally, a writer is elected to generate the next block
that contains valid transactions and data related to the winner.

We assume that we have a random number generator that provides trusted and veri�able random
values. Several works study how to generate such random values in distributed manner [78, 223, 211,
210] which is out of scope of this paper.
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A.3.1 Two type of entities

There are two types of entities in our Useful Work protocol: one or more clients and several participants.

Clients

The clients are external entities who need computing power for any real world problem, e.g. scienti�c
experiments, mathematical problems, etc. The clients submit problems in the form of a code to run.
Each client Ci owns an account accCi that contains an amount of useful coins related to a pair of public
and secret keys (pkCi , skCi).

Participants

The participants perform the computational work of submitted problems and maintain the blockchain.
They may have one or several roles: worker, voter, veri�er and writer. For example, a worker may be
also selected as a veri�er or as a writer.

� Workers perform computation works of submitted problems to win useful coins. To this end,
each worker has to run the code of a submitted problem and provides a result along with a proof
of correct computation.

� Voters are selected to de�ne which are the most relevant problems to run.

� Veri�ers are selected to verify the result published and/or the generated block. The veri�ers
may earn also useful coins for their veri�cation.

� A writer is elected to generate a block of valid transactions and add it into the blockchain. The
writer is also rewarded for his work.

Each participantMi owns a wallet accMi that contains an amount of useful coins related to a pair of
public and secret keys (pkMi , skMi).

A.3.2 Proof of correct computation

For each executed code, a worker has to prove the correct execution of the problem's code. This
ensures that the workers have invested computing power and time into the blockchain, and they may
be rewarded for their work.

A �rst method may be to provide a hash of the computation executed. Then, the set of veri�ers
execute the corresponding code and compute the hash of their computations. If a threshold of veri�ers
obtains a hash equal to the hash provided by the worker, then the work is validated.

Proofs as proposed in [49] may also be used to prove the correct computations. Indeed, the authors
of [49] present a Succinct Non-interactive ARgument of Knowledge (SNARK) to prove the correct
execution of C programs. Given a program Φ in C and a time bound t to execute Φ, on any input x,
it allows to prove the correct execution of Φ after a one-time setup requiring O(|Φ| · t) cryptographic
operations. The prover requires O(|Φ| · t) cryptographic operations to generate the SNARK proof and
the veri�er performs O(|x|) cryptographic operations to verify the proof.

Other solutions such that [127, 68] may be also interesting solutions that can be adapted without
the privacy property. In our UW protocol, the work performed has to be useful and honest, and so
the privacy of problem's data may not be necessary.

We denote by PROVE, the algorithm run by the workers to prove the correctness of their computa-
tions at the Useful work process and result announcement step as described in Section A.4. PROVE may
take as input the problem's code Φ, the time t, the input x and the necessary keys and data according
the chosen protocol, and output a result out and a proof of correct computation proofc.

A.3.3 Group selection

Our UW protocol uses a mechanism of group selection to constitute three groups: (1) a jury of voters
to select the relevant problems, (2) a veri�er set to verify the performed work and (3) a veri�er set to
check the generated block. A participant may be selected proportionally to the amount of useful coins
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owned and his contribution to the blockchain, e.g the number of generated blocks in the chain. All
voters and veri�ers, have the same weight for the vote and veri�cation, respectively, in their group.

A group selection as in [79] may be a �rst solution. The authors of [79] propose a group selection
where the selected group represents the participants proportionally to their stake and with no minority
being neither underrepresented nor overrepresented. The general idea is to begin with an empty group
and add a new member over a number of iterations, following some speci�c rules for the candidate
selection.

The random secret election of Algorand may also be an e�cient group selection. Indeed, the
Algorand selection uses a random secret selection based on a Veri�able Random Function (VRF) that
outputs a unique random value α with a proof π that α has been correctly computed. In the random
secret selection, each participant privately learns if he is selected and later reveals his selection along
with a proof of his selection.

We de�ne by SELECTION, the algorithm executed by the participants at each step of a round to
select (or learn his owned selection in) the group of voters and veri�ers. It is run at the Relevant prob-
lems selection, Work veri�cation and Writer election and validation steps as described in Section A.4.
SELECTION may take as input the index of the round k, a trusted random value r1,k, the role of the
current step, i.e. voters, veri�ers of the performed work or veri�ers for the generated block, and other
necessary data for the chosen protocol. It outputs the selection proof of veri�ers.

A.3.4 Winner and writer election

In our UW protocol, we use an election mechanism to elect (1) a winner who wins the useful coins for
his performed work and (2) a writer who generates the next block to be added into the blockchain. The
winner and the writer may be elected proportionally to the amount of useful coin owned. The writer
is elected among the workers who provide a valid work for a submitted problem. The winner and the
writer may be or not the same participant. Indeed, the writer may be selected among the workers. In
addition to provide valid work, the participant may provide also the next block to be added into the
blockchain. Note that, in this case, an alternative mechanism to select a writer is required when there
is no problem available. The writer may be also selected among all participants who want to be writer.

We can use the random election protocol proposed in [70]. Boneh et al. [70] describe an election
where participants aim to randomly choose exactly one leader such that the identity of the leader will
only be known by the chosen leader. Later, the elected leader can reveal her identity while proving
that she indeed won the election.

We denote by ELECTION, the algorithm that elects one winner or writer among a set of participants.
It is run by the participants at the Winner election and Writer election and validation steps described
in Section A.4. ELECTION takes as inputs the index of the round k, the trusted random value r2,k and
other necessary data according to the chosen protocol, and outputs the winner (or the writer) with an
eligibility proof.

A.3.5 Veri�cation process

In our UW protocol, the sets of veri�ers are selected to verify the computation works and the generated
blocks. These processes prevent the workers to provide false computations and the writer to add
con�icting data into the blockchain, e.g. double spending transactions. A solution to validate the works
and blocks may be to collect a threshold of acknowledgements th from the veri�ers. The two thirds
classical threshold may guarantee security requirements, such as to be resilient to the Majority attack
(as described in Section A.5). Thus, when a participant receives at least th = 2nv

3 +1 acknowledgements
that validate a computation work (or a block), with nv the group size, then he can consider the work
(or the block) as valid (or as a part of the blockchain).

A.3.6 Reward distribution

When the block is considered as a part of the blockchain, the participants involved in this block are
rewarded. A �xed reward RW is distributed among the winner, veri�ers and writer. The winner earns
rwworker, each veri�er who has veri�ed the work of the winner earns rwverifier and the writer earns
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rwwriter. Thus, RW = rwworker + nv · rwverifier + rwwriter. The part of the worker rwworker may be
proportional to the work performed. Each veri�er may earn the same amount rwverifier.

A mechanism to punish malicious participation may also be planned. For example, if a threshold of
veri�ers invalidates the result of a worker, this latter may lose the coins committed for his participation.

A.4 Our Useful work protocol

Our Useful Work (UW) protocol is divided in rounds where at each round k, one block Bk is added
into the blockchain. A round is divided in eight steps: 1) Problem proposal, 2) Resources provision, 3)
Relevant problems selection, 4) Problems distribution, 5) Useful work process and result announcement,
6) Work veri�cation, 7) Winner election and 8) Writer election.

A.4.1 Problem proposal

In our UW protocol, a client Ci submits his problem PBCi with the following information and broadcasts
it to the participants:

� Φ the code of the problem

� αc the expected number of computations to run Φ

� αm the necessary memory to run Φ

� t the necessary time to run Φ

� f1 the constant proposal problem fees

� f2 · |Φ| the problem storage fees

� (optional) cert a certi�cation provided by an external entity

� signCi the signature of the client Ci who submits the problem

A client Ci submits his problem under the form of a code Φ, e.g. in C, to be run. The client estimates
αc the number of computations, αm the memory necessary and t the time to run Φ. The constant
proposal problem fees f1 is paid by the client who submits his problem and prevent any client to
�ood the network of problem. The problem storage fees f2 · |Φ| is also paid by the client to prevent
computational waste in code and limit the code to only useful computation steps. Optionally, the client
may provide also a certi�cation cert generated by an external entity, e.g. laboratory or a university,
to legitimate the origin of the problem. The client signs his problem proposal signCi to prove that he
has submitted the problem.

A.4.2 Resources provision

Each participant who wants to be a worker, i.e. running the code of a problem in order to win useful
coins, has to make available his computing capacity. The workerMi may commit a stake which is an
amount of coins accMi and the amount of memory βm available for the computations. A worker who
proposes a certain quantity of memory will obtain a problem proposal requiring an equivalent quantity
of memory.

Note that, a minimum amount of committed coins may be required to prevent an attacker to create
several identities with low stake participation.

A.4.3 Relevant problems selection

Each problem proposal may be subject to a vote from a jury of voters to select the relevant problems.
Indeed, selecting some problems may prevent clients to submit problems which may have a malicious
impact for the society, e.g. breaking a secret key, or to propose an already submitted problem with a
slight modi�cation in order to earn easily useful coins.
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The initial voters may be the creators of the blockchain. Each initial voter may have the same
weight of vote, i.e. one voter is equivalent to one vote. Next, for each new block, a jury of voters is
selected proportionally to his stake, i.e. a participant with a large stake has more chance to be selected
in the jury of voters. The participants use the SELECTION algorithm to know who is selected as voter
for the round k.

The role of the voters is to select the most relevant problems. The vote for a problem may be based
on the number of computations, the quantity of memories and the time necessary to run the problem's
code. Moreover, additional information such as a certi�cate cert signed by an external entity may also
legitimate the problem. A voter Mi broadcasts his vote for a problem PBCj along with his proof of
selection as voter outputted by SELECTION.

At the end of this step, the l problems PBC1 , PBC2 , . . . , PBCl that have received the most votes
are selected for the next step.

A.4.4 Problems distribution

The relevant problems PBC1 , PBC2 , . . . , PBCl may be randomly distributed to the workersM1, . . . ,Mn

who have committed their computing capacities at Resources provision step. A worker who has pro-
posed a large quantity of memory will obtain a problem proposal requiring an equivalent quantity of
memory.

The jury of voters agree on which worker has which problem. For each problem PBCj , the voters
randomly assign PBCj to the worker Mi such that βm ≥ αm where βm is the quantity of memory
committed by the worker Mi and αm the memory estimated by the client Cj . An assignment proof
assignPBCj ,Mi is generated for each worker Mi that proves that Mi has to run the code of PBCj
problem.

Note that, the value n may be larger or equal to l. In the case where l < n, two cases may be
possible. First, only l workers may have a problem to execute and the jury does not assign a problem
to the other n− l workers. Another possible solution may assign one problem PB to several workers.
In this case, a seed chosen for each worker is added into the code of the problem PB to guarantee that
each worker performs the computation works.

A.4.5 Useful work process and result announcement

The workerMi executes the corresponding code Φ of the assigned problem PCj . Then,Mi computes
HASH(workc) where workc is the set of computations executed.

The workerMi broadcasts the following result RESMi to prove that he has performed the problem
PBCj :

� PBCj the problem proposal

� votesPBCj the set of votes from the jury of voters for the proposal PBCj

� assignPBCj ,Mi the proof of problem assignment generated in Problem distribution step

� (out, proofc) the �nal output of the code Φ and the proof of correct computation outputted by
PROVE

� HASH(workc) the hash of the computation executed workc

� signMi the signature of the participantMi who executes the code Φ

The set of votes votesPBCj enables to prove that the corresponding problem is in the list selected by the

jury of voters in the Relevant problems selection. The workerMi can prove his legitimacy to execute
the code of the problem PBCj with the assignment proof assignPBCj ,Mi . The worker Mi provides

the values (out, proofc) outputted by PROVE algorithm to prove his honest and correct computational
works. The hash value HASH(workc) ensures the integrity of his computation workc. The worker
Mi signs his result message signMi to prove that he has run the assigned problem's code.
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A.4.6 Work veri�cation

Each participant receives a set of resultsRESM1 , RESM2 , . . . , RESMn . The participant runs SELECTION
to learn who is selected as veri�ers for the performed work for the round k.

If the participant Mi is a veri�er, then Mi veri�es the proof proofc of RESMj . If proofc is
correct, then Mi broadcasts his acknowledgement for the result RESMj along with the proof of
selection outputted by SELECTION.

If there is a threshold th of acknowledgements for the same result RESMj , then RESMj is consid-
ered as valid and the corresponding worker becomes a candidate for the Winner election step described
in the next paragraph.

A.4.7 Winner election

Among the workers who provide valid results, a winner is selected to win the useful coins for his
computational work. A random selection chooses a worker as the winner. The participants use the
ELECTION algorithm to know who is elected as the winner to win the useful coins. The winner may be
elected proportionally to the amount of useful coins owned in his wallet and his contribution to the
blockchain. Note that, a participant can earn useful coins when he is selected as winner, veri�er of
the result provided by the winner or writer, and his contribution may be measured to the number of
blocks that he added into the blockchain, for example.

The winner and the veri�ers who verify the winner's result are written into the blockchain as
described in the Writer election and validation step of the next paragraph. When the block is validated
and considered as a part of the blockchain, then the writer and veri�ers earn their corresponding part
of the reward for his performed work and their veri�cation, respectively.

The other workers who have not been chosen as winner and have proposed a valid result may
recover their stake if they do not want participate in the next winner election. In either case, the
fees paid by clients may be sent to the workers who provide a valid result. A problem that has been
assigned to a worker but has not received a valid result may be assigned to the next round by adding
a seed in the problem's code. This prevents a participant to propose a result already performed.

A.4.8 Writer election and validation

The Writer election step enables to select a participant as writer to generate and add the new block
of transactions. The random election protocol ELECTION enables to choose one of them as writer and
this latter wins the right to add his block into the blockchain. A new block Bk contains the following
values:

� HASH(Bk−1) where Bk−1 is the last block added into the blockchain

� TXS a set of valid transactions

� (winner, πwinner) the identity of the selected worker who wins useful coin and his winning proof

� πwriter the writer proof

� RW the �xed reward distributed among the winner, veri�ers and writer

The value HASH(Bk−1) is the classical hash value to link the blocks of the blockchain. The set TXS
has been veri�ed to prevent issues such as the double spending as described in Section A.5. The values
(winner, πwinner) enables to write in immutable manner who wins the useful coin for the performed
work. The πwinner value may contain the output of ELECTION during the Winner election step along
with the result message of the winner, the set of veri�ers who verify his result and the threshold of
acknowledgements. The writer proves his legitimacy with the value πwriter outputted by ELECTION

during this step.
Then, a set of veri�ers is selected to verify the block of the writer. The participant Mi uses the

SELECTION to know who is selected as a veri�er for verifying the generated block of the round k. When
the block Bk receives the threshold th of acknowledgements from the veri�ers, Bk is considered as valid
and a part of the blockchain. The block Bk is then added into the blockchain along with the threshold
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th of acknowledgements. Finally, each involved participant receives his reward, i.e. the winner, the
veri�ers of the result provided by the winner and the writer who generates the corresponding block.

Note that, in the case where the elected writer is malicious or o�ine, and so does not provide the
expected block, a mechanism to replace the writer is required. Another solution is to ensure a selection
among the online participants until the end of this step as considered in [191, 98].

A.5 Security analysis

In this section, we discuss some well-known and new attacks, and indicate how our UW protocol
prevents them.

A.5.1 Malicious problem proposal

A malicious client may propose a problem that is a malware or has a bad impact for the society. A client
may also be a worker that proposes an already executed problem with (or not) a slight modi�cation
in order to easily win coins. We prevent these problems thanks to the Relevant problems selection
step that �lters the problems submitted by the clients. This selection is based on the number of
computations, the quantity of memory and the time necessary to run the problem's code. Additional
information may be added into the problem proposal to re�ne the selection such as a certi�cate provided
by a trusted party or a problem description that argue the relevant aspect of the problem.

A.5.2 Coalition problem

It is possible that several workers receive the same code to execute when there is less submitted
problems than workers. In a set of malicious workers who receives the same problem, only one worker
may perform the computational works for the assigned problem and shares her result and computations
to others malicious workers. Thus, the set can decrease its computational e�ort while having the same
chance to win useful coins. Our UW protocol avoids this by adding di�erent seeds in the same code
executed by several workers. Thus, the computation for a same code may be di�erent from a worker
to another and a coalition cannot provide the same result.

A.5.3 Work theft

A malicious participant may steal the result of a worker and convince other participants that she
performed the work of the stolen result. Thus, the malicious participant may participate to the winner
selection and so win useful coins without performing any work. Our UW protocol prevents this theft
by providing a proof that a speci�c entity receives a submitted problem to run. Indeed, in the Problem
distribution step, the voters distribute the relevant problem to the participants who want to be a worker.
The agreement on who has which problem is veri�able via the assignment proof generated during the
Problem distribution step. Moreover, in the case where several workers receive the same problem, the
di�erent seeds added in the problem's code during the Problem distribution step guarantee that each
computational work is di�erent and so a malicious worker cannot convince other participants that she
has performed the work of another worker.

A.5.4 Fork problem

A fork in a blockchain occurs when two blocks extend the same block and compete to be in the main
chain. This issue is limited in our UW protocol since in the writer election, only one writer is elected.
Moreover, we ensure that only one block can reach the two thirds threshold of acknowledgements and
so validate one block at each round.

A.5.5 Denial of Service attack

In a Denial of Service (DoS) attack, an attacker may �ood the network of a huge amount of messages to
make it unavailable. In our UW protocol, the attacker may be a malicious client that �oods of fake or
useless problems. We mitigate this issue thanks to the proposal and storage problem fees that limits a
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client to submit several and large codes. A DoS attack may also be run by a malicious worker. Indeed,
she may create several identities in order to have several assignment problems and sent to one or several
victim participants false results. We prevent this issue with requiring a minimum amount of committed
coins to win the right to participate at the winner election and with a punishment mechanism where
the workers who provide invalid results lose their committed coins.

A.5.6 Sybil attack

In a Sybil attack [107], an attacker creates several malicious participants under di�erent identities to
participate in the protocol, e.g. to increase her in�uence on the voting and verifying steps. Our UW
protocol is Sybil resilient since the selection algorithm SELECTION is based on PoS mechanism with
a minimum amount of committed stake. Thus, an attacker splitting her currencies for her di�erent
identities cannot increase her in�uence on the protocol. She may succeed a Sybil attack only by
investing at least as much coin as honest participants.

A.5.7 Majority attack

A majority attack may occur when the attacker controls more than the majority of resources in the
system, i.e. useful coins in our UW protocol. An adversary that controls the majority of coin can make
the blockchain useless by not forwarding messages or not participating in the vote and veri�cation
processes. However, with the two thirds threshold th of acknowledgements as described in Section A.3,
she cannot validate fake work or con�icting blocks while she controls less than two thirds of the total
coin. We assume then, that our UW protocol works while two thirds of the total coin owned to honest
participants. Moreover, in the long run of a cryptocurrency context, for example, collecting more than
two thirds of total coin could be di�cult to achieve if the useful coin acquires more value.

A.5.8 Sel�sh mining strategies

In a Sel�sh mining strategy [118], an attacker takes advantage of the usual forking to temporarily hide
one or several blocks and then, she reveals her blocks at the suitable time to drop honestly generated
blocks from the main chain. In this way, she can increase her ratio of blocks in the blockchain and thus
also her reward compared to the reward she would obtain by following the honest protocol. In our
UW protocol, a participant may earn reward being a writer, a winner or a veri�er. A malicious writer
cannot increase her incomes by withholding her block since a writer who does not provide her block
is replaced by another. A winner is a worker who has already broadcasted his performed work and
so a malicious one cannot increase incomes by hiding his computing e�ort. Moreover, the malicious
worker cannot keep this work for later since an assigned problem that is unsolved is proposed for the
next round with a seed in the code. As a veri�er, an attacker cannot increase his reward since a
non-participation to the veri�cation process is not rewarded.

A.5.9 Nothing-at-stake attack

The nothing-at-stake attack is generally speci�c for PoS-based blockchain since the generation of blocks
necessitates little computational e�ort. Indeed, an attacker may generate blocks on multiple chain of a
fork. Thus, it may guarantee that one of them is chosen to be in the main chain and the attacker can
recover the currencies invested in the discarded blocks. In our protocol, a worker who proposes false
or empty results is detected during the Work veri�cation phase where veri�ers invalidate the result.
Moreover, with the punishment mechanism a worker may lose her stake by sending false results.

A.5.10 Double spending attack

In a double spending attack, an attacker succeeds to execute two transactions that spend the same
currencies. For example, the attacker may issue a transaction that sends an amount of coins to a
recipient. She may succeed to con�rm it and then she may spend the same coins in another transaction,
i.e. the second transaction is also con�rmed. We prevent this issue in the Writer election and validation
step where a group of veri�ers is selected to check the block generated by the writer. If a threshold
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of the veri�ers validates the blocks, i.e. there is not con�icting data, then the block is added into the
blockchain.

A.6 Variants and discussion

In this paper, we propose a high-level construction of our Useful Work protocol to replace the hash
puzzle of the Bitcoin's PoW mechanism by useful work. Obviously, at each step of our UW protocol,
several variants are possible.

In Section A.3, we proposed some possible protocols for the SELECTION, ELECTION and PROVE

algorithms. The di�erent steps described in Section A.4 may also be done with other mechanisms. For
example, the selection of the relevant problems may be done via an external consortium of experts.
The distribution of problem may be replaced by a mechanism where each participant may choose their
problem to execute. The choice of protocols may be based on the security properties according to the
application or the trade-o� with the performance.

Note that, for each choice done in the di�erent steps, several processes may be adapted. For
example, the reward distribution may be reviewed to remain fair, i.e. each entity is rewarded according
to his work invested into to the blockchain. Moreover, a security analysis may be necessary to prevent
attacks as described in Section A.5.

A.7 Conclusion and future works

We presented the Useful Work protocol which is a new consensus protocol for blockchain based on
the Proof-of-Stake and Proof-of-Work processes where the computing work and the memory space are
dedicated to useful works. In our UW protocol, the participants compete to win useful coins. To this
end, they have to run the code of problems submitted by clients. Then, a PoS-based random election
chooses one of them to win the coins. A participant is then elected to generate the new block of valid
transactions along with the information related to the winner of useful coins. We also presented some
new issues and showed that our UW protocol is resilient to these issues and the classical attacks on
the consensus protocols and blockchain.

Several interesting topics are left for future works such as formal model and security analysis of our
protocol, an implementation and tests to provide a security and performance trade-o�, and a detailed
analysis of the scalability requirement.
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Conception, analyse et implémentation
d’algorithmes de chiffrement symétrique

sur FPGA

Résumé:
Cette thèse a été réalisée au sein de l’Université de Versailles-Saint-Quentin-en-Yvelines, en parte-
nariat avec HENSOLDT France SAS.
L’objectif pendant ces trois ans était de développer, pour HENSOLDT, deux solutions de chiffre-
ment symétrique: une famille d’algorithmes de chiffrement par blocs personnalisables, associée
à un mode d’opération propriétaire et une solution de chiffrement authentifiée légère. Ces al-
gorithmes étant la propriété d’HENSOLDT, ils ne peuvent donc pas être publiés. Les travaux
présentés dans cette thèse explorent alors différents aspects de construction d’algorithmes de
chiffrement symétrique et reprennent les différentes techniques utilisées pour développer ces al-
gorithmes sans les présenter dans le détail.
Les travaux portent sur le design et l’implémentation d’algorithmes de chiffrement par blocs dits
légers, ainsi que sur les fonctions éponges permettant de réaliser du chiffrement authentifié. Le
but recherché dans les deux notions est de définir des solutions permettant de garantir des bornes
de sécurité similaires à celles des algorithmes standards de la littérature cryptographique tout en
obtenant des performances et un ratio efficacité-occupation le meilleur possible. Le manuscrit se
décompose en trois grandes parties. La première est une introduction, rappelant le contexte de
recherche de ces travaux et présentant rapidement l’histoire de la cryptographie depuis l’antiquité
à nos jours avec certains des challenges futurs pour la cryptographie et les menaces qui pourraient
apparaitre dans le futur, notamment l’ordinateur quantique. La seconde partie présente l’état de
l’art et différentes techniques utilisées pour construire des schémas de cryptographie symétrique.
Cette partie présente également les standards et plusieurs techniques possibles pour implémenter
ces solutions sur FPGA.
La troisième partie présente mes différentes contributions qui se décomposent en trois travaux dif-
férents. Le premier consiste en l’implémentation sur FPGA d’un nouvel algorithme de chiffrement
par flot autosynchronisant sur FPGA. Cet algorithme est ensuite comparé à d’autres candidats pour
comparer ses performances. Malgré une implémentation plus importante en termes de mémoire
nécessaire, les résultats sont satisfaisants en termes de débit offert par cet algorithme. De plus,
il offre le plus court temps de resynchronisation. Le deuxième article présente une attaque sur le
mode d’opération SIV. Ce mode permet d’obtenir une solution de chiffrement authentifié en util-
isant un algorithme de chiffrement par blocs tel que l’AES. La particularité de ce mode d’opération
est qu’il est présenté comme possédant des bornes de sécurité similaires aux modes d’opération
classiques mais sans recourir à l’usage de vecteur d’initialisation. Cette spécificité est particulière-
ment intéressante pour le développement de notre propre mode d’opération. L’attaque présentée
ici présente un distingueur permettant de casser l’authentification de cette solution avec 264 mes-
sages. Le dernier travail décrit dans le corps de ce manuscrit introduit une implémentation de trois
algorithmes présentés lors du processus de standardisation d’algorithmes de chiffrement authen-
tifié du NIST. Ces algorithmes, acceptés au second round de cette compétition cryptographique
sont tous les trois basés sur des fonctions éponges, ce qui les rend très intéressants par rapport à
notre étude. Les résultats de l’implémentation de ces algorithmes sur FPGA sont ainsi présentés
et comparés avec trois autres algorithmes basés également sur des fonctions éponges.
J’inclus également en annexe un article, présentant une première réflexion concernant la création
d’un protocole permettant de rétribuer les utilisateurs d’une blockchain qui auront contribué à
celle-ci en réalisation un travail considéré comme utile.
Je conclus ces travaux en présentant de futurs axes de recherche possibles, notamment optimiser
les implémentations de plusieurs algorithmes et l’utilisation de solutions permettant la résistance
aux analyses par canaux auxiliaires de différents schémas basés sur les fonctions éponge.
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