N

N

Modeles a Variables Latentes Profonds: des propriétés
aux structures
Victor Berger

» To cite this version:

Victor Berger. Modéles a Variables Latentes Profonds: des propriétés aux structures. Apprentissage
[cs.LG]. Université Paris-Saclay, 2021. Francais. NNT: 2021UPASGO053 . tel-03528577

HAL Id: tel-03528577
https://theses.hal.science/tel-03528577v1

Submitted on 17 Jan 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03528577v1
https://hal.archives-ouvertes.fr

Jud
1]
—
o
Jud
(@)
(@]
L®)
Q
ge]
Q
7))
QD
N e
-

m
o)
o
O
<
[
-
—
o
o
o~
|_
=
=

o
universite

PARIS-SACLAY

Modeles a Variables Latentes:

des propriétés aux structures

Deep Latent Variable Models:
from properties to structures

Theése de doctorat de I’Université Paris-Saclay

Ecole doctorale n° 580, Sciences et Technologies de I'Information et
de la Communication (STIC)

Spécialité de doctorat: Informatique

Unité de recherche: Université Paris-Saclay, CNRS, Laboratoire
interdisciplinaire des sciences du numérique, 91405, Orsay, France
Référent: Faculté des Sciences d’Orsay

Thése présentée et soutenue a Paris-Saclay,
le 13/10/2021, par

Victor BERGER

Composition du jury

Anne Vilnat Présidente

Professeure des universités, LISN, Université Paris-Saclay

Danilo Jimenez Rezende Rapporteur & Examinateur
Senior Staff Research Scientist, DeepMind

Yann Chevaleyre Rapporteur & Examinateur
Professeur des universités, LAMSADE, Université Paris

Dauphine

Stéphane Canu Rapporteur & Examinateur

Professeur des universités, LITIS, INSA de Rouen

Direction de la these

Michele Sebag Directrice
Directrice de Recherche, LISN, CNRS

Résumé / Abstract

Résumé

Les Modeles a Variables Latentes Profonds sont des modeles génératifs combinant les
Réseaux Bayésiens avec I’apprentissage profond, illustrés par le célebre Auto-encodeur
Variationnel. Cette theése se focalise sur leur structure, entendue comme la combinai-
son de 3 aspects : le graphe du Réseau Bayésien, le choix des familles probabilistes
des variables, et ’architecture des réseaux de neurones. Nous démontrons que de
nombreux aspects et propriétés de ces modeles peuvent étre compris et controlés par
cette structure, sans altérer 1’objectif d’entrainement construit sur I’ Fvidence Lower
Bound.

La premiére contribution concerne 'impact du modéle d’observation — la mod-
élisation probabiliste des variables observées — sur le processus d’entrainement :
comment il détermine la séparation entre signal et bruit, ainsi que son impact sur la
dynamique de I'entrainement lorsque son parametre d’échelle est appris plustot que
fixé, ou il agit alors comme un processus de recuit simulé.

La seconde contribution, CompVAE, est centrée sur la structure hiérarchique des
variables latentes : un modele génératif conditionné par un multi-ensemble d’élements
a combiner dans la génération finale. CompVAE démontre comment des propriétés
globales — des manipulations ensemblistes dans ce cas — peuvent étre atteintes par la
seule conception structurale. Ce modeéle est de plus validé empiriquement sur des
données réelles, pour la génération de courbes de consommation électrique.

La troisiéme contribution, Boltzmann Tuning of Generative Models (BTGM),
est un cadre permettant d’ajuster un modele génératif pré-entrainé selon un critere
extérieur, en trouvant les ajustements minimaux nécessaire. Ceci est fait tout en
contrélant finement quelles variables latentes sont ajustées, et comment elles le sont.
Nous démontrons empiriquement comment BTGM peut étre utilisé pour spécialiser
un modele déja entrainé, ou pour explorer les parties extrémes d’une distribution
générée.

Abstract

Deep Latent Variable Models are generative models combining Bayesian Networks
and deep learning, illustrated by the renowned Variational Autoencoder. This thesis
focuses on their structure, understood as the combination of 3 aspects: the Bayesian
Network graph, the choice of probability distribution families for the variables, and
the neural architecture. We show that and how several aspects and properties of
those models can be understood and controlled through this structure, without
altering the training objective constructed from the Evidence Lower Bound.

The first contribution concerns the impact of the observation model — the proba-
bilistic modeling of the observed variables — on the training process: how it determines
the demarcation between signal and noise and its impact on training dynamic when
its scale parameter is learned rather than fixed. It then behaves similarly to a
simulated annealing process.

The second contribution, Comp VAE, is centered on the hierarchical structure of
latent variables: a generative model conditioned by a multi-set of elements to be
combined in the final generation. CompVAE demonstrates how global properties —
ensemblist manipulations in this case — can be achieved by solely structural design.
The model is furthermore empirically validated on real data to generate electrical
consumption curves.

The third contribution, Boltzmann Tuning of Generative Models (BTGM), is
a framework for adjusting trained generative models according to an externally
provided criterion while finding the minimal required adjustments. This is done
while finely controlling which latent variables are adjusted and how the are. We
empirically demonstrate how BTGM can be used to specialize a trained model or to
explore the extreme parts of a generative distribution.

Remerciements

Je tiens tout d’abord a remercier Michele Sebag, ma directrice de these, qui m’a offert
I’opportunité d’entreprendre cette aventure et m’a guidé durant ces quatre années.
Merci pour ton attention, tes conseils avisés et le temps que tu as su m’accorder.

Je souhaite également remercier Danilo Jimenez Rezender, Yann Chevaleyre,
Stéphane Canu et Anne Vilnat, qui ont accepté de rapporter et examiner mon travail.

Je remercie Artelys, en collaboration de qui ces travaux de recherche ont été
effectués, et en particulier Vincent Renaud qui a assuré le lien. Je remercie également
PADEME, qui a financé le projet dans lequel ma thése s’inscrit.

Merci a I’école doctorale STIC pour son suivi, et tout particulierement a Stéphanie
Druetta, secrétaire du pole B, pour son aide réguliere.

Un tres grand merci a toute I’équipe Apprentissage et Optimisation pour son
accueil chaleureux, ses séminaires stimulants et ses pauses café aux mathématiques
interminables. Merci Marc, Guillaume, Cécile, Cyril, Flora, Francois, Aurélien,
Yann, Théophile, Victor, Giancarlo, Diviyan, Guillaume, Eléonore, Adrien, Loris,
Nilo, Zhengying, Armand, Marine pour les nombreuses discussions toutes plus
passionnantes les unes que les autres, les sorties escalade, pique-niques et autres
soirées tartiflette.

Je ne suis bien évidemment pas un chercheur solitaire, et je remercie Corentin
et Pierre avec qui j’ai partagé mon bureau et on été une grande source d’échanges
éclairantes pendant tout ce temps. Merci également & Adrian et Balthazar pour les
collaborations enrichissantes. Et un merci a Laurent pour m’avoir fait découvrir les
travaux d’E.T. Jaynes.

Un merci spécial aux personnes a-eatse grace auxquelles j’ai pris le chemin de la
these : Gaétan, Laurent, Arséne et Philippe, tout ¢a c’est aussi grace a vous.

Enfin un grand merci a toutes les personnes qui m’ont accompagné durant cette
these. Merci a ma famille qui m’a aidé et soutenu dans ce projet un peu fou. Merci
A toi Elodie. Merci aux peuplades de Rézosup et notamment #doctorat. Merci aux
camarades du serveur Discord d’entraide et de shitpost.

Et finalement merci & vous, qui prenez le temps de lire ces pages.

iii

Contents

Résumé / Abstract
Remerciements
Contents
Publications
Introduction

1 Introduction to Probabilistic Graphical Models
1.1 Independence relations as graphs
1.1.1 Bayesian Networks
1.1.2 Markov Networks
1.2 Inference. e
1.2.1 Exact inference on discrete variables
1.2.2 Approximate inference with Monte Carlo methods
1.2.3 Variational inference oo,
1.3 Training from data Lo Lo
1.3.1 Maximum Likelihood training of a graphical model
1.3.2 Bayesian regularization and Maximium A-Posteriori
1.3.3 Structure learning Lo
1.4 Summary

I Latent Variables modeling

2 Latent Variables and the ELBO
2.1 Latent variables as a modeling tool
2.1.1 Imterpretability oL
2.1.2 Abstract variables for expressiveness
2.2 Training challenges of Latent Variable Models
2.2.1 Likelihood and marginalization
2.2.2 Abstract variables and identifiability
2.3 Variational Inference
2.3.1 The Evidence Lower Bound
2.3.2 Mean-Field approximation for posteriors
2.3.3 Flexible posterior approximation using Normalizing Flows . .

1

iii

11
12
12
14
16
16
17
20
21
21
23
23
24

27

29
29
30
31
32
32
32
33
34
35
35

I1

2.4 Model training with Expectation-Maximization
2.4.1 Exact inference in Gaussian Mixture Models
2.4.2 Approximate inference with Variational EM

2.5 Summary e e

Deep Latent Variable Models

3.1 The Variational Auto-Encoder
3.1.1 Amortized Inference
3.1.2 The Reparametrization Trick
3.1.3 Link with Auto-Encoders

3.2 Advanced latent models L.
3.2.1 Powerful encoders and complex latent spaces
3.2.2 Learned latent distributions

3.3 Discrete latent variables Lo

3.4 TImpact of the Inference Model

3.5 Summary ... L

Hierarchical Deep LVMs

4.1 The ELBO with hierarchical latent variables.

4.2 Optimization of hierarchical structures
421 Gradient flow oL
4.2.2 Stability problems oo oL
4.2.3 Alternative training formulations
4.2.4 Key design considerations

4.3 Graph Structure Learning oo

4.4 SUMMATY . . . o v v e vt e e e e e e

Observation models

Probabilistic interpretation of observed variables

5.1 Perceptual distances for images
5.1.1 Gaussian observation and choice of distance
5.1.2 NN-based perceptual distances

5.2 Autoregressive observation modelso o000
5.2.1 Recurrent Neural Networks for sequential data
5.2.2 PixelRNN and PixelCNN for image generation
5.2.3 WaveNet for audio generation

5.3 RealNVP and flows-based observation models

5.4 The Posterior Collapse Phenomenon

5.5 Summary Lo e e

The Manifold Hypothesis and Quasi-Deterministic Observations
6.1 The Manifold Hypothesis
6.2 Quasi-deterministic observation models.
6.2.1 The Gaussian observation and its limitations
6.2.2 Hierarchical quasi-deterministic observations
6.3 Noise Variance and data resolution

41
41
41
42
43
44
44
46
47
49
50

51
51
53
53
o4
o4
56
58
59

61

63
63
64
65
66
66
67
68
69
70
72

6.3.1 Modeling an hypersphere 79

6.3.2 Experimental study of manifold approximation 80

6.4 Summaryo 82
6.A Proof of Theorem 6.1 84

7 Dynamics of Variance Learning 87
7.1 Observation variance fitting o0 87
7.1.1 Learning a global noise variance o 88

7.1.2 Learning a local noise variance o(2z) 88

7.1.3 Empirical study oo oL 89

7.2 The risk of deterministic collapse 89
7.3 The dynamics of variance learning as an annealing process 92
7.4 Summary and perspectiveso 94
7.A Observation tempering and link with 5-VAE 97
IIIProperties of latent structures 101
8 Properties-oriented structures 103
8.1 Generative classifiers for robustness 103
8.2 Semi-supervised learning with VAEs 105
8.3 Combining probabilistic and deterministic latent variables 106
8.3.1 Failure of the fully probabilistic approach 107

8.3.2 Deep Variational Bayes Filter 108

8.4 Typed anomaly detection 109
8.4.1 The two kinds of anomalies 109

8.4.2 Conditional anomaly detection 111

8.4.3 Empirical validation 112

8.5 Summary e 113

9 Compositional VAE: structure-enforced properties 115
9.1 A latent space supporting composition 116
9.1.1 Definition of the latent structure 116

9.1.2 Handling the variable number of parts in neural architecture 117

9.2 Inference model over multi-sets 118
9.2.1 The recurrent network approach 118

9.2.2 Correlated Gaussian prediction 119

9.2.3 Using graph neural networks 121

9.3 Empirical results 122
9.3.1 1D artificial problem o 0oL 122

9.3.2 2D artificial problem Lo 123

9.3.3 Electrical curves composition 127

9.4 Summary and perspectives 132
9.A Determinant of the covariance matrix 133
9.B Computing the KL divergence on {W;} 133

10 Latent manipulation from Boltzmann principles 135

10.1 Boltzmann distributions and Pareto exploration 136

10.1.1 Principle of maximum (relative) entropy 136

10.1.2 Exploration of the Pareto front 137

10.2 The Boltzmann tuning of Generative Models 138
10.2.1 Generalizing to multiple variables 139
10.2.2 Using normalizing flows 141
10.2.3 Comparing and selecting the f criterion 141

10.3 Case studieso 142
10.3.1 Case 1: Conditioning a distribution 142
10.3.2 Case 2: Extreme values of a distribution 144
10.3.3 Case 3: Fine-tuning a generative model 146

10.4 Summary and perspectives 150
10.A Derivation of the MaxEnt solution 151
10.B Proofs of the derivative formulas 151
10.C Monte-Carlo Prediction of [§; f and Drr(pallp) - - - - - 154
Conclusion and Perspectives 155

Bibliography 159

Publications

Published articles

[Pol+19]

[BS20a]

Adrian Pol, Victor Berger, Gianluca Cerminara, Cécile Germain, and
Maurizio Pierini. “Anomaly Detection With Conditional Variational
Autoencoders”. In: ICMLA 2019 - 18th IEEE International Conference
on Machine Learning and Applications. Dec. 16, 2019 (cit. on pp. 8,
103, 109-113).

Victor Berger and Michele Sebag. “From Abstract Items to Latent
Spaces to Observed Data and Back: Compositional Variational Auto-
Encoder”. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe,
Marloes Maathuis, and Céline Robardet. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 274-289.
ISBN: 978-3-030-46150-8 (cit. on pp. 8, 115, 122).

Pre-Prints

[BS20b]

[BS21]

Victor Berger and Michele Sebag. “Variational Auto-Encoder: not all
failures are equal”. In: arXiv:2003.01972 [cs, eess, stat] (Mar. 4, 2020).
arXiv: 2003.01972 (cit. on pp. 8, 73, 87).

Victor Berger and Michele Sebag. “Boltzmann Tuning of Generative
Models”. In: arXiv:2104.05252 [cs] (Apr. 12, 2021). arXiv: 2104.05252
(cit. on pp. 8, 135).

https://arxiv.org/abs/2003.01972
https://arxiv.org/abs/2104.05252

Introduction

Generative modeling became a very hot topic in the field of deep learning in 2014,
with both seminal papers presenting Variational Auto-Encoders (VAEs) [KW14;
RMW14] and Generative Adversarial Networks (GANs) [Goo+14]. Each paper gave
rise to a flourishing framework integrating probabilistic generative principles within
deep learning methods.

This thesis focuses on the VAE framework and more specifically deep Latent
Variable Models (LVMs), that elegantly combine the mathematical formalism of
Bayesian Networks with the learning methods of artificial deep neural networks. This
framework allows one to build powerful and flexible models, naturally amenable to
the integration of prior knowledge about the considered data domain, as we aim to
show in the following chapters.

A main research question guiding the organization of the manuscript is how to
design deep Latent Variable Models depending on both the specifics of the data
and the intended usage of the models, and how to understand their can and their
can’t. This analysis is conducted in the perspective of Probabilistic Graphical Models
(PGM) first, and deep learning second. Focusing on the probabilistic structure of the
models allows for a unified understanding of most other aspects, as this structure
governs the training procedure and the relation of the model to its training data.

The applicative motivation for this research is the study of smart energy policies
and dimensioning of electrical networks, more specifically the need for programmable
generative models (PGMs) in order to produce realistic and exploratory simulations
of electrical consumption in power systems'. Principled models built in the PGM-
oriented perspective, presented in the last part of the thesis, aim to answer these
needs.

Organization of this manuscript

This manuscript is structured in three parts, respectively devoted to i) the theory of
deep LVMs as learned models; ii) the relationships of the deep LVM structure with
the data; and iii) the design of latent structures in order to encourage or enforce
desirable properties in view of the model intended usages.

Chapter 1 provides a general introduction to probabilistic graphical models
(PGMs), at the core of the LVM framework and of this whole manuscript.

Part I revolves around the construction and analysis of deep LVMs. Chapter 2
introduces the concept of latent variables in a PGM, which can be interpretable or
abstract, and their training within the Evidence Lower Bound (ELBO) framework.

!Contract NEXT, funded by ADEME, French Agence de la Transition Ecologique.

7

8 Chapter 0. Introduction

Chapter 3 pushes this construction further by combining the ELBO criterion with deep
learning in the spirit of the Variational Auto-Encoder (VAE) [KW14; RMW14], and
analyses the interaction of the inference model with the training process. Chapter 4
introduces the concept of hierarchical deep LVMs, which involves multiple latent
variables organized in a hierarchy, and discusses the difficulties encountered when
training such models.

Part II focuses on the relationship between the model and the available data,
embodied in the so-called observation model. Chapter 5 presents a few sophisticated
observation models from the literature, and discusses the problem of posterior collapse
encountered by some of these models. Chapter 6 focuses on a particular type of
observation model referred to as quasi-deterministic, which acts as a mere translation
layer between the latent space of the model and the observed data, ensuring that all
relevant information is captured by the latent variables. By relating these models to
the Manifold Hypothesis, this chapter investigates the link between the observation
model and the data information, and whether it can (or cannot) be exploited by the
deep LVM. The answer to this question is theoretically and empirically shown to
depend on the variance of the observation model [BS20b]. Then, Chapter 7 focuses
on this variance and how it can be learned; it illustrates the profound impact of such
a learning on the training dynamics of the whole LVM.

Part I1I details how hierarchical deep LVMs can be structurally designed to enforce
desirable properties from the whole model. Chapter 8 analyses a few examples from
the literature, and presents the usage of such models to achieve anomaly detection;
this application was motivated by the identification faulty sensors in the CMS
experiment at CERN [Pol+19]. Then, Chapter 9 presents CompVAE [BS20a], a
deep LVM structure designed to represent a programmable compositional generative
model, meant to generate instances aggregating a variable number of entities. This
model is detailed and analyzed on 1D and 2D artificial problems, and applied to real
world data in the context of electrical distribution networks. Finally, Chapter 10
presents the Boltzmann Tuning of Generative Models (BTGM) approach [BS21],
aimed to a posteriori refining an already trained LVM and to oversample a part of
the corresponding distribution depending on an externally provided criterion. The
BTGM approach, stemmed from the practical motivation of identifying the electrical
consumption peak, constitutes a principled alternative to rejection-based sampling.

Notations

In the manuscript, random variables are denoted with capital letters (e.g. A, X, Z);
their instanciations are denoted with lowercase letters (e.g., a,x, 2).

The probabilistic models are generally denoted p or ¢; the probability (or proba-
bility density) p(X = z,Y = y) associated with a variable assignation is noted p(x, y)
for simplicity. By slight abuse of notation, the conditional and marginal distributions
derived from this model are noted in the same way, e.g., p(z, z|w) represents the
distribution under model p, conditioned on W = w, and where all variables but X
and Z have been marginalized.

Many probabilistic models considered in this work are parameterized; their
vector of parameters is generally noted 6 or ¢, and the parameterized model is

correspondingly noted pg or g4. The notation similarly extends to conditional and
marginal distributions, like py(x, z|w).

Introduction to Probabilistic
Graphical Models

Contents
1.1 Independence relations as graphs 12
1.1.1 Bayesian Networks 12
1.1.2 Markov Networks 14
1.2 Imference 16
1.2.1 Exact inference on discrete variables 16
1.2.2 Approximate inference with Monte Carlo methods 17
1.2.3 Variational inference 20
1.3 Training from data 21
1.3.1 Maximum Likelihood training of a graphical model 21
1.3.2 Bayesian regularization and Maximium A-Posteriori . . . 23
1.3.3 Structure learning 23
1.4 Summary 24

This chapter presents the general framework of the research conducted during
my PhD: probabilistic models.

Models play an important role in analysis of the world, and are widely used
in various forms across the scientific literature. They help understand relations
and interactions between the various quantities of interest in a problem analysis by
unveiling structure in the data. In many cases these models are probabilistic, either
due to the intrinsic stochasticity of the phenomenon at hand or to account for the
fact that this phenomenon is only partially known.

Probabilistic models generally take the form of a joint distribution over descriptive
variables’ X1, Xs,..., Xx. Due to the usually large number of variables involved,
such joint distributions can very quickly become incredibly complex and tedious to
manipulate. To address this issue, an approach is to introduce explicit structure
into the model, e.g. accounting for some known dependency relations between the
variables. Probabilistic graphical models aim at representing such relations using
graphs.

L A notable example is the representation of a statistical link between illnesses and their symptoms.
In such case, one can introduce one variable per illness and per symptom.

11

12 Chapter 1. Introduction to Probabilistic Graphical Models

1.1 Independence relations as graphs

The probabilistic graphical model framework is as follows. Each variable of the
model is represented as a node in the graph. Two nodes are linked by an edge if
there is some direct dependency relationship between the two variables. In this
representation, there exists a path in the graph between two nodes iff there exists
some potential dependency between both variables. On the contrary, if no path
exists, then the two variables must be independent.

Such a representation allows reasoning about subsets of variables, as illustrated
in Figure 1.1. Large graphical models can be analyzed on a local basis if they are
sufficiently sparse. This makes it possible to characterize the behavior of the model
to some extend without needing to consider the whole joint distribution.

(a) Graphical model before observation (b) Equivalent graph with C' observed

Figure 1.1: In this example graphical model (a), the observation of the value of a
variable can split the graph into independent subgraphs (b): the pairs of variables
(A, B) and (D, E) are independent of each other given the value of variable C'.

As will be illustrated in the rest of this sections, graphs can directed or undirected,
with different interpretations associated with the links. The two main types of
graphical models are Bayesian Networks (which are directed graphs) and Markov
Random Fields (which are undirected). While the thesis mostly relies on Bayesian
Networks, some methods relying on Markov Random Fields are also discussed.
Therefore, both frameworks are presented in this chapter, introducing their proper
inference and training methods.

1.1.1 Bayesian Networks

Bayesian Networks, a prominent type of probabilistic graphical models [KF09],
are based on Directed Acyclic Graphs (DAG): edges among nodes are oriented
(represented as arrows) and the graph does not include any directed cycle. An
example of such a network is given in Figure 1.2.

Let us introduce and illustrate the classic Bayesian Network terminology on this
example. Each edge defines a directed relation between two nodes. The node from
which the edge comes is called the parent and the node to which the arrow points is
called the child. In the example graph, S and R are the children of C', H and C are
the parents of S. Nodes H, S, C and R are ancestors of W. Similarly, S, R and W
are descendants of C'. There is no particular named relation between H and R, aside
the fact that they are not independent.

One should note that the independence relations in such a directed graph are not
as straightforward as in an undirected case(Figure 1.1). An important situation is
when two nodes share a child, forming what is known as a v-structure. Figure 1.2

1.1. Independence relations as graphs 13

Figure 1.2: Example of a Bayesian Network modeling the possible causes of why the
grass outside may be wet (W). The two direct considered causes are the rain (R)
and the sprinkler (S). The rain is more likely to occur when the sky is cloudy (C),
while the sprinkler is more likely to be used when the sky is clear and the air is hot

(H). While the graph may appear cyclic, it is not when you consider the orientation
of the edges. For example you cannot loop back to S by only following the arrows.

displays two of them: H — S — C and S — W — R. In such a case, the parents are in
general not independent given their child. In the running example, knowing that the
grass is wet means that for sure either its has rained or the sprinkler has run; if one
variable is False, then the other must be T'rue. However, observing a variable still
makes its different children independent of each other and its parents independent
from its children, assuming there is no other path in the model linking them. In
Figure 1.2, observing S and R would make (H,C) independent of .

The graph representation of a Bayesian Network specifies the structure of the
associated probabilistic model. Formally, this joint probability distribution is defined
as the product of conditional distributions over the nodes. Letting m(X;) denote the
set of parent variables of X, then:

N
p(X1,Xo,....2n) = [[p(Xilm(X5)) (1.1)
i=1
The example network of Figure 1.2 can thus be factorized as:
p(A, B,C, D, E) = p(A)p(B)p(C|A, B)p(D|B)p(E|C, D). (1.2)

This representation allows for drastically compressing the model. Instead of
specifying a full probability table over the 5 variables, we can just specify 5 small
tables over at most 3 variables each, making the combinatorics of the model much more
manageable. In our example, assuming all 5 variables were binary, the full probability
table would have 2° = 32 entries. By contrast, the factorized representation with 5
tables would involve only 24 entries, only half of which would be actually independent
parameters. This difference can grow very quickly with the number of variables and
the number of different values each variable can take.

Each term p(z;|m(X;)) in the factored distribution can be specified as a probability
table in the discrete case. In the following, a more general formulation will be
considered to handle both discrete and continuous variables. Each variable X; ~
P;(Xi;w;)) follows a given distribution (such as categorical, Gaussian, or Poisson
distributions), the parameter of which depends on the value of its parent variables ,
we associate a parameterized distribution family (w; = f;(7(X5))).

Eventually, the joint distribution p(X; ... Xy) is fully specified from the DAG
structure, the parameterized distribution family P; associated to each variable X;

14 Chapter 1. Introduction to Probabilistic Graphical Models

Figure 1.3: Example of a Markov Random Field.

and a parameter function f; defining how the parameter of P;(X;) depends on the
parent variables of X;:

N

i=1

1.1.2 Markov Networks

Markov Networks, also called Markov Random Fields (MRFs), are the other main
type of graphical models [KF09]. They differ from Bayesian Networks in two ways:
firstly, MRFs are represented via undirected graphs (as opposed to directed graphs
for BNs). Secondly, while BNs characterize the joint distribution as the product of
conditional distributions, MRFs aim to express independence relations, centered on
the Markov Property: given a set of variables that splits the graph in two disjoint
subsets (a.k.a. separating the graph), the distribution of the two resulting subsets
are independent conditionally to the value of the separating variables.

MRFs are notably used in several statistical physics models. For example Ising
networks represent networks of particles that can each be in two states, denoted Up
and Down. Interactions between these particles are local: each particle tends to
settle in a state depending on the states of its neighbors (as represented by the graph).
The study of the produced MRFs allows understanding the large-scale behavior of
lattices composed of many such particles.

Following the example of Figure 1.3, conditioning on the variables B and F
splits the graph in two subgraphs, {A, D} and {C, F'}. Thus, the joint conditional
distribution p(A, C, D, F|B, E) factors as:

In many cases the probability distribution associated with the graphical model
can be represented in a factorized form according to the cliques of the graph?. Cliques
are fully-connected subgraphs: in the model of Figure 1.3, {B, D, E} is a clique,
while {A, B, D, F'} is not (it is missing an edge between A and E).

For each clique C in the graph, is it possible to define a potential function ¢¢(X¢)
over the values of the variables contained in this clique, such that the whole probability
distribution factors as a product of these potentials. These clique potentials reflect
the independence assumptions included in the graph structure.

2This is the case if either the distribution is positive (no configuration has a probability of 0) or
the graph is chordal (all cycle of size greater than 3 has an internal edge connecting two of its nodes,
forming smaller cycles as well).

1.1. Independence relations as graphs 15

plar, - van) = 5 [de(Xe) (15)
C

The normalization constant Z is then defined as the sum of the potential values
over all possible assignments of the variables, so that the distribution probability is
correctly normalized. As a result, it depends on the potential functions:

Z =Y []¢c(Xc) (1.6)
Xex ¢
In Figure 1.3, {B, D, E} is a clique, while {A, B, D, F'} is not (it is missing an
edge between A and F). The joint distribution model thus reads

1
p(A,B,C,D,E,F) = Z¢ABD¢BDE¢BEF¢BCF (1.7)

Note that with no loss of generality, one can consider only the largest cliques in the
graph (e.g. ¢4p is accounted for by ¢apc).

It is emphasized that potentials ¢ need not be normalized probability distribu-
tions (as opposed to Bayesian Networks). This gives more representation flexibility?,
at the expense of a loss in interpretability.

By analogy with statistical physics, it is often convenient to represent the clique
potentials in logarithmic form: fo(zc) = —logd(zc), in which case the joint
distribution of the model takes the form of a Gibbs distribution:

p(z1,...,xN) = %exp (—Zf(;(:cg)) = %exp(—E(ml, Cey TN)) (1.8)

The sum E(z1,...,zx) = Y. fo(xc) is by analogy named the energy function of
the model.

The computation of the normalization constant Z is, in general, a hard problem:
it requires computing and summing the potentials over all possible values of all
variables. As a consequence, many algorithms working with Markov Networks are
designed to work with the unnormalized probability, thus side-stepping the need to
know the value of Z [KF09].

(Restricted) Boltzmann Machines Boltzmann Machines are a special case
of Markov Networks where all nodes take binary values, and the energy function
decomposes into terms involving only 1 or 2 variables. The general form of a Boltzman
Machine energy function thus is:

E(a;l,...,a:N) = Zwijxixj+2bixi (1.9)
i<j i
A special case of Boltzmann Machines of special interest in machine learning are

the so-called Restricted Boltzmann Machines, or RBMs. They additionally impose
that the variables be split into two sets, respectively referred to as "visible" variables

3Indeed, any Bayesian Network can be converted into a Markov Networks by using the conditional
probabilities associated to each node as a clique potential. On the other hand, not all Markov
Networks can be converted into a Bayesian Network over the same set of variables.

16 Chapter 1. Introduction to Probabilistic Graphical Models

{v;} and "hidden" variables {h;} (Figure 1.4(b)), and that visible (resp. hidden)
variables are independent from each other. Potentials involving two variables thus
always involve one hidden and one visible variable.

XX,

(a) Boltzman Machine (b) Restricted Boltzmann Machine

Figure 1.4: Examples for graphical representation of a Boltzmann Machine (a) and
a Restricted Boltzmann Machine (b).

The strongly constrained structure of RBMs make them significantly easier to
manipulate than general Boltzmann Machines or Markov networks. They display
significant success as a machine learning tool on a large range of problems [HS06;
SMHO07; LB0S].

1.2 Inference

A fully-specified graphical model provides a description of the underlying phenomenon.
It can also be queried to answer questions such as "Assuming variable X takes the
value z, what is the associated conditional probability of variable Y, p(Y|X =z) ?".
Answering such queries, referred to as What-If usage, is one of the major assets of
graphical models?. This kind of questions generally involve a mix of conditioning
the model on some variables and marginalizing others, to produce a probability
distribution over the variables of interest.

An early example of such a use case is the design of Bayesian Networks to assist
medical diagnostic, such as the Pathfinder models [HN92]. The relationships between
candidate diseases and the associated symptoms are modeled as a Bayesian Network
with the help of medical experts, and inference queries on this network allow to infer
the most likely diseases given the observed patient symptoms.

Quite a few approaches have been designed to answer such queries depending on
the query and the graph associated to the model. This section presents several of
them. They generally apply to both Bayesian Networks and Markov Networks.

1.2.1 Exact inference on discrete variables

In the discrete finite case (every variable taking a finite number of values), any such
query can be answered by producing the full probability table of the model, although

* Another usage is that of counterfactual reasoning (what if not) [PJS17; PM18]. This is outside
of the scope of the presented research.

1.2. Inference 17

this approach clearly does not scale up with the number of variables and the size of
their domain®. Depending on the shape of the graph and the kind of query, various
algorithms have been developed to efficiently compute these queries.

Variable Elimination algorithm Some graphs can be processed in an iterative
manner, eliminating the variables one after another. Doing so in a carefully chosen
order can significantly reduce the total computational cost as it never requires to
actually produce the full probability table[ZP94]. For example, following Figure 1.2,
the variable A is a good candidate for being marginalized first: being liked to a
single other variable doing it is an easy task. On the other hand marginalizing C
first would link together variables A, B and F into a complex distribution.

Belief Propagation algorithm The belief propagation (BP) algorithm [Pea82]
efficiently applies on tree-structured models. Given any number of observed variables
with fixed value, the exact marginal distribution of every other variable is computed.
BP can also apply on non tree-structured graphs, in which case it is referred to
as Loopy BP and is part of the large family of Approximate Message Passing
algorithms[DMMO09]. It does no longer provide any guarantee on the result accuracy
and might not converge in the general case, but under some conditions (in particular
concerning the graph sparsity), it can still yield satisfactory approximations of the
sought results [Wei00].

Junction tree algorithm When considering a non tree-structured BN, the junc-
tion tree algorithms proceed by creating additional meta-nodes and grouping initial
nodes in such a way that the initial graph induces a tree-structure of the created
meta-node graph; the belief propagation algorithm thus applies on the meta-node
graph. This general idea comes in diverse variants [LS88; JOA90; She97], differing in
how to select and group the nodes: the cost of the belief propagation highly depends
on which nodes are grouped together.

1.2.2 Approximate inference with Monte Carlo methods

When the model involves continuous variables, or the query or model does not fit well
with the previously described algorithm, one can turn to Markov-Chain Monte-Carlo
(MCMC) methods in order to sample the sought distribution. These samples can
then be used to compute statistical quantities of this distribution, and more generally
to approximate the expectation of an arbitrary function under this distribution.

Markov Chains are the core element of these methods. They are stochastic
processes that generate a sequence of values (x(o), A N). The process is defined
by a transition probability function 7'(z(**+1|z®)), which describes the probability
of the value at step t + 1 given the value at step t. A visual illustration of such a
process can be seen in a board game, where each player rolls the die at their turn
and moves accordingly: the resulting position depends on the previous position and
the result of the die throw.

5This inference problem bears mathematical similarities with that of constraints programming
[RVWO06], but we focus here on inference queries on probabilistic graphs.

18 Chapter 1. Introduction to Probabilistic Graphical Models

As a result, a sample from the chain only depends on the value of the previous
sample. This is another form of the Markov Property. Indeed, a Markov Chain can
be represented as a Bayesian Network in which each variable X is linked to the
previous and next variables in the sequence, X1 and XD ag illustrated in

Figure 1.5.

Figure 1.5: Representation of a Markov Chain as a Bayesian Network.

Under some conditions, Markov Chains have a stationary distribution m, defined
as:

n(z') = E T (2 |z) (1.10)
T~T
It means that if X(© is sampled from = and X is sampled from the transition
probability T'(-| X (9)), then the distribution of X (1) also is 7. In the case of an ergodic
Markov Chain (i.e. any value can be reached from any starting point in a finite
number of steps), then the stationary distribution 7 is unique and the long-run
samples of the Markov Chain converge in law to it.

Markov-Chain Monte-Carlo is a family of methods that can be used to approx-
imately sample a given target distribution p. The common principle is to try and
design a Markov Chain whose stationary distribution is p. Samples from this Markov
Chain can then by used as proxy for samples of p, with two caveats. First, we need to
take into account the time of convergence for the Markov Chain: unless the starting
point was sampled directly from the stationary distribution (which cannot be the
case here), the initial samples are not distributed according it. This generally implies
a "burn-in" time: the first K samples of the Markov Chain are discarded (with typical
values of K being around 1000). The second caveat is that the successive samples
from the Markov Chain are correlated. In order to approximate independent samples
from the target distribution, it is further necessary to discard many samples between
each one that is kept (for example keeping 1 sample in 100).

A sufficient condition for p being such a stationary distribution, it that the it
satisfies the detailed balance property, making the Markov Chain reversible:

Vz, 2" : T(2'|2)p(x) = T(x|2")p(z") (1.11)

In the context of graphical models, a Markov Chain proceeds by generating

X (t+1) (the vector of all node values) from X (). As is illustrated by the algorithms

presented in the following sections, a strong merit of MCMC-based methods is that

many of them only require an unnormalized target distribution, making them widely
applicable.

1.2.2.1 Gibbs sampling

In most models, the sampling complexity is due to the correlation of the variables.
However each individual variable z; often follows a simple conditional distribution

1.2. Inference 19

relative to all other variables (noted z_;): when all variables but one are frozen, the
effective size of the graphical model is drastically reduced. Gibbs sampling [GG84]
takes advantage of this property, by updating each z; conditionally to the others,
thus generating a sequence of intermediate states:

t+1 t+1 0| (¢ t+1 t+1 t+1 t
(9:(()),...,:cz(-fl), ﬂfg),JJEle,...,Jf?f))—)(ﬂ?(()),...,:cz(-fl), xg),$££1,...,xnt))
where xz(tﬂ) is generated according to p(wz]xgzl),xggz) After all variables have

been updated, the next step of the Markov Chain is given as (xgtﬂ), e ,:z,(fﬂ)).
Each individual variable updating of this procedure verifies the detailed balance
property%, ensuring that the Gibbs sampling procedure does indeed converge towards

the sought distribution.

1.2.2.2 Metropolis-Hastings

Another approach is the Metropolis-Hastings algorithm family [Met+53; Has70].
In this context, the sampling of the next value is done in two steps. First, a new
candidate value is proposed, by sampling some simple distribution g(’ \x(t)), and it
is then randomly accepted or refused though a biased coin flip, whose acceptance
probability a(z/, a:(t)) depends on the original value and the proposed value. If the
sample is refused, the next value is taken as equal to the current value z(+1) = 2.

The transition probability is thus given by T'(z'|z) = g(2'|x)a(2’,z), and a
common choice to ensure that the detailed balance property is verified is to choose
the acceptance ratio as:

R — <17 g(mlw’)p(w’))
g9(@'|z)p(x)

Note that with this choice, the sampling process only needs to compute probability
ratios of p: p(z')/p(x), meaning that it is no necessary to know its normalization
constant. In particular when the proposal distribution is symmetric (that is g(z'|z) =
g(z|z")), then the acceptance process simplifies to an acceptance rate equal to %
with automatic acceptance if the ratio is greater than one. The proposal is always
accepted if it has an higher probability than the previous value, and otherwise is all
the more likely to be refused that it has a lower probability according to p.

An example of symmetric proposal probability g(z'|z) would for example be
a Normal distribution with some fixed variance. In this context, the Metropolis-
Hastings algorithm is similar to a Brownian motion biased towards regions of higher
probability for the model p to approximate.

There is a trade-off in the choice of g: if the proposal distribution has a large
variance, and proposes new samples that are far from the current value, these samples
are likely to fall in a low-probability region and be rejected. On the other hand,
having g proposing only samples close to the current value, while increasing the
chance that they are accepted, will cause the Markov Chain to explore the space
slowly, requiring to discard more samples between two selected ones for these to be
considered independent.

61f 5% is the operation that updates the i-th variable, then TF™% (¢'|z) = p(z}|z_:)d(z_; =
x_;), causing both sides of Equation 1.11 to be equal to p(z|z_;)p(zi|z—:)é(z_; = x_;)p(z_;).

20 Chapter 1. Introduction to Probabilistic Graphical Models

1.2.2.3 Langevin Monte-Carlo

One way of choosing a good proposal distribution g in Metropolis-Hastings is based
on the Langevin Monte-Carlo (LMC) algorithm [Bes94; RT96; RR98]. This method
makes use of the available information about p to propose better candidate samples,
based on the following stochastic differential equation (SDE), where dW represents
the derivative of a Brownian motion:

1
dX = §VX log p(X)dt + dW (1.12)

This SDE has two interesting properties: it converges towards a stationary
distribution that is equal to p, and V x log p(X) can be computed without knowing
the normalization constant of p. Therefore, it suffices to numerically solve this
equation to draw samples according to p. LMC however combines the numerical
resolution with a Metropolis-Hastings acceptance step, in order to control for the
numerical errors caused by discrete-time solving ofthe SDE.

The resulting process consists in, for some given time step At, proposing a
candidate sample 2’ from a current state z as (with e ~ A(0,1) drawn after a
standard Normal distribution):

1
¥ =z+ §Atvx logp(z) + vV Ate (1.13)

This corresponds to sampling 2’ from a Normal distribution of mean x+%Atvx log p(x)

and of variance At, making the proposal density easy to compute:
(@|2) = ——— o ! i (1.14)
= xp | —=—— .
g VorAt P\ " 2at

This thus defines a proper Metropolis-Hastings scheme, that takes advantage of
gradient information from logp to guide the exploration. As a consequence, it only
applies on continuous variables. In general, the LMC enjoys a higher acceptance
rate than a mainstream Metropolis Hastings mechanism, despite parameter At being

1
¥ —x— §Atvx log p(z)

very sensitive.

1.2.3 Variational inference

Another approach for approximating distribution p is Variational Inference [SJJ96;
Bis+98]. It consists in reframing this approximation problem into an optimization
problem: given some convenient class of distributions Q, find ¢* in Q closest to the
target distribution p, where the distance is given by the Kullback-Leibler divergence:

q* = argmin Dk (q||p) = arg min E log a(x) (1.15)
qeQ q T~q p(l‘)

In the particular case where p is sought as a conditional distribution of z given
some other variables z, i.e. the goal is to approximate p(z|z), it takes its most known

form”:

"While log p(z|z) = log p(z, *) — log p(x), note that the later term is a constant, and thus does
not affect the optimization process.

1.3. Training from data 21

q¢* = argmax | H(q) + E log p(z,) (1.16)
qeQ z2r~q

A main challenge in Variational Inference is the choice of the distribution class
9, sufficiently expressive to yield a good approximation of the target distribution
while permitting its efficient optimization.

Variational Inference is at the core of the presented research, and is presented
and discussed in more detail in the following chapters, notably in Section 2.3.

1.3 Training from data

Informally, the question of learning a graphical model from data can be formulated
as: given some dataset D € XV, find a graphical model p that best matches this
dataset. This formulation leaves several questions unanswered. How to measure
how well does a model p match a dataset? Is the underlying optimization problem a
parametric one (find the parameters of a know graph) or a non-parametric one (find
the graphical structure as well) ? Can the distribution involve variables that are not
observed in the dataset, referred to as hidden variables?

The case where the distribution involves hidden variables, at the core of this
manuscript, is considered in next chapters. In the remainder of this chapter, only
observed variables are considered.

When learning probabilistic models, it is most often convenient to parameterize
the search space with a vector of parameters, traditionally noted 6, concatenating
the different vectors of parameters involved in the different elements of the model
(the conditional distributions of a Bayesian network or the potentials of a Markov
network). Therefore all elements formally depend on the same 6, although each term
in the learning criterion only depends on a sub-vector of 6.

1.3.1 Maximum Likelihood training of a graphical model

One natural criterion for evaluating the quality of a graphical model on data is to
measure the likelihood this model assigns to the dataset p(D). Given some model
class C, the goal thus becomes to find a model p assigning the highest possible
probability to the data:

p* = argmax p(D) (1.17)

peC
Under the assumption of independent and identically distributed samples (iid),
one has p(D) = [[,epp(z), making p(D) very small for large D. For numerical

stability and general convenience, it is thus customary to instead consider the
negative log-likelihood (NLL) of the data:

p* = arg min — log p(D) = arg min Z —log p(x) (1.18)
peC peC €D

This can be reformulated as an expectation on the dataset:

22 Chapter 1. Introduction to Probabilistic Graphical Models

p* —argmlnE log p(x) (1.19)
peC zeD

Along this line, this formulation provides a justification for maximum likelihood
training: in the large sample limit, the empirical expectation becomes the expectation
w.r.t. the underlying distribution generating the dataset. Equation 1.19 then becomes
equivalent to seeking the distribution p that minimizes the cross-entropy from pp to
p, which is reached by p* = pp. Accordingly, whenever sufficient data is available,
maximum likelihood optimization can be used for fitting the parameters of the
graphical model.

1.3.1.1 Maximum Likelihood for Bayesian networks

In the Bayesian Network framework, maximum likelihood optimization can conve-
niently be applied, using the distribution factorization (Equation 1.1):

K —logp(z) = K, —log p(a|m(X;)) (1.20)

€D i x€D

Each node/variable of a Bayesian Network can thus be trained independently,
only requiring to access the values of the variable and its parents. On large Bayesian
Networks, this makes it possible to parallelize the training procedure, with significant
computational gains on sparse graphs.

1.3.1.2 Maximum Likelihood for Markov Models

Markov Models do not decompose as nicely. From Equation 1.8, it comes:

E —logp(z E E(z)+logZ = E ch(xc) +log Z (1.21)

z€D z€D z€D C

Energy terms fo do separate from one another, but remain coupled through the
normalization constant Z, which depends on all the fc.

While the normalization constant can be omitted in inference tasks, it is an
integral part of the training process, and it is necessary to deal with it. Cases where
this normalization constant can be explicitly computed are rare. In some cases
however, the model can be trained without explicitly computing Z.

Let parametric model py be defined by the energy function E(z;#) with § € RM,
this model can be trained by gradient descent; the trick is that we can compute
the full gradient of the NLL with regards to 6 without computing the value of Z:
simple algebraic manipulations yield VglogZ = -, ., VoE (x;0), and finally the
full gradient:

Vo —logpy(D) = [, VoE(x;0) — [K, VeE(x;0) (1.22)
€D T~pe
Although the second expectation cannot in general be exactly computed, it can
be empirically approximated using the inference methods developed in the previous
section.

1.3. Training from data 23

1.3.2 Bayesian regularization and Maximium A-Posteriori

The Maximum Likelihood method is well founded under the assumption of a very
large amount of data, that rarely holds in practice. In this context, one can turn to
Bayesian inference, learning a probability distribution over parameters 6 to account
for the uncertainty due to the lack of data. This is done based on Bayes Theorem:

£(ip) - OO

P(#) is a prior distribution over the parameters and assumed given as a model
hypothesis. P(D|0) = pg(D) the likelihood of the data according to the model
of parameters . Computing the full posterior distribution P(f|D) is in general
intractable, in particular due to the normalization factor P(D). One thus commonly
resorts to only finding its optimal value, after the Maximum A-Posteriori (MAP)

(1.23)

procedure:
0* = arg ;nax P(0|D) (1.24)
In NLL terms, it comes:
0 = argemin [—logpg(D) — logP(0)] (1.25)

MAP training is thus very similar to Maximum Likelihood, with the addition of
the —logP(#) term in the optimization procedure, acting as a regularizer. Under
the iid assumption, dividing Equation 1.25 by the size N of the dataset, it comes:

1
0* = arg min E [—log pe(z)] — — log P(0) (1.26)
0 N
€D
This shows how the prior term impact naturally decreases as the amount of data
increases.

1.3.3 Structure learning

There exists a large body of work devoted to learning the structure of graphical
model. refSurvey on learning GM structure As this issue is outside the scope of the
presented work, only an overview of the main approaches designed for BN structure
learning will be presented, used as an inspiration for structure learning of Deep
Learning based models in Section 4.3.

The goal is to learn both the graph structure G and its parameters given a dataset
D. In a fully Bayesian perspective, we are seeking the posterior P(G|D) or a workable
estimate of its mode. Bayes’ Theorem decomposes this posterior as a prior over the
graphs P(G) and a likelihood term P(D|G), which can be decomposed as an integral
over Og the parameters of the graphical model defined by G:

P(DIg) = | B(DI5.)B(0519) ddg (1.27)

In order to learn G, some scoring measures are designed and used as proxies for
this likelihood term (the prior is supposed to be given, as problem dependent). The

24 Chapter 1. Introduction to Probabilistic Graphical Models

main three scoring measures are: the Bayesian Information Criterion, the Akaike
Information Criterion, and the Bayesian Dirichlet algorithm.

Bayesian Information Criterion The Bayesian Information Criterion (BIC)
[Sch78], is an asymptotic approximation of log P(D|G) in the large sample limit. Let
kg be the number of learnable parameters in the model induced by G, the BIC is
formulated as:

BIC(G) = max [log P(Dfg, 0)] - %kg log |D| (1.28)
g

It is the optimal log-likelihood reached by the model, with a penalization propor-
tional to the number of parameters, and logarithmically growing with the dataset size.
The fact that this score does not depend on the exact form of the prior corresponds
to the large sample limit assumption. Note also that the likelihood of the dataset
grows as O(|D|); the likelihood term dominates on very large datasets.

Akaike Information Criterion The Akaike Information Criterion (AIC) [Aka74]
is constructed on information theoretic arguments, aimed to find a model achieving
the minimal information loss w.r.t. the real distribution.

The information loss is measured with the Kullbak-Leibler divergence from P(D|G)
to P(D): Dkr(P(D)||P(D|G)). Like BIC, the AIC considers an approximation in the
large sample limit:

AIC(G) = max log B(Dldg, G)] — kg (1.29)

A main difference compared to BIC is that the penalization does not depend on
the dataset size. An extensive comparison of the strengths and weaknesses of both
methods is given in [BA98; Yan05; Vril2].

Bayesian Dirichlet The Bayesian Dirichlet method [CH92] focuses on Bayesian
Networks with discrete variables. In this case all sub-likelihoods pg(z;|m(X;)) are
categorical distributions, and admit a Dirichlet distribution as conjugate prior. If
such a prior is chosen over the parameters, the whole likelihood factors and the graph
likelihood P(D|G) can be computed analytically.

The question of how to efficiently explore the space of potential graphs, and
find the graph with the best score is known to be NP-hard [CHMO04], but several
approximate methods give good results [SM06; Jaa+10; CJ11].

1.4 Summary

This chapter presented the Probabilistic Graphical Models framework, focusing on
the Bayesian Networks at the core of the presented work. Graphical models allow
one to decompose the relations between variables in a model into a sparse set of
local dependencies, where each variable only directly depends on a few others. This
both enables a compact representation of the model, and makes it possible to locally
reason about them to some extent.

1.4. Summary 25

When the goal is to answer queries, e.g. computing conditional distributions in
the form P(Y|X) for some subset Y of variables, such models usually require the
non-trivial marginalization of some variables. Several algorithms take advantage of
the graphical structure to answer the query without needing to produce the full joint
distribution, such as the Variable Elimination Algorithm or the Belief propagation
Algorithm. Another approach is the use of Markov Chain Monte-Carlo methods to
directly produce approximate samples from the sought distribution.

When the goal is to learn graphical models from datasets, one must distinguish the
building of the graph structure itself (usually tackled using complexity minimization)
and the learning of its parameters. In the last case, the main approaches rely
on Mazximum Likelihood, achieving the (approximate) Bayesian inference of the
parameters of the model given its structure.

Latent Variables

Chapters

2 Latent Variables and the ELBO
3 Deep Latent Variable Models

4 Hierarchical Deep LVMs

modeling

29

41

51

Latent Variables and the ELBO

Contents
2.1 Latent variables as a modeling tool 29
2.1.1 Imterpretability oL 30
2.1.2 Abstract variables for expressiveness 31
2.2 Training challenges of Latent Variable Models 32
2.2.1 Likelihood and marginalization 32
2.2.2 Abstract variables and identifiability 32
2.3 Variational Inference 33
2.3.1 The Evidence Lower Bound 34
2.3.2 Mean-Field approximation for posteriors 35
2.3.3 Flexible posterior approximation using Normalizing Flows 35
2.4 Model training with Expectation-Maximization 36
2.4.1 Exact inference in Gaussian Mixture Models 37
2.4.2 Approximate inference with Variational EM 38
2.5 Summary e e e e 38

In many cases, graphical models involve extra variables beyond those observed
in the dataset. These unobserved variables are referred to as "latent" or "hidden"
variables, and the models containing such variables are called Latent Variables Models
(LVMs). This chapter focuses on the motivations for using latent variables, and how
to train LVMs.

2.1 Latent variables as a modeling tool

The design of a graphical model is generally driven by our a priori knowledge about
the problem at hand, implying that the model will generally be designed based on
epistemic and computational considerations. Epistemic information informs model
design by mapping variables to interpretable quantities from the real-world process
under study. Computational considerations incline to retain structures that can
easily be manipulated by our current algorithms and computers, while remaining
expressive enough to represent the data. Model design must find some trade-off
between both types of considerations, and this might lead to include in the model
variables that don not map to any observed data.

In this section we shall explore the use of two types of latent variables: inter-
pretable ones and abstract ones.

29

30 Chapter 2. Latent Variables and the ELBO

2.1.1 Interpretability

One immediate reason why one would integrate an interpretable latent variable in a
graphical model is if this variable represents a quantity of interest, to be predicted
from the data. In this situation the structure of the model is generally based on
strong epistemic considerations.

Similarly, unobserved quantities are not rare in scientific models', and many of
these models can be studied though the lens of graphical models.

In this context, observed and latent variables are generally related in known
ways. For instance, in a Bayesian Network, the distribution of an observed variable
conditionally to a latent one might be given a prior:; or at least its structure might
be known and depend on a few parameters. For instance, the gravitational law in
Physics specifies how the acceleration depends on the mass of a system, via the
gravity constant.

In many other cases, latent variables are interpretable by construction. Taking
for example Latent Dirichlet Allocation for modeling text documents by linking them
to topics via their individual words. Each topic k is associated to a latent variable
¢ representing the distribution of words associated to it, and each document i is
associated to a latent variable 6; representing the distribution of topics associated
to it. Then within a document, each word j is associated to a latent variable z; ;
representing its topic and an observed variable w; ; representing the word itself. From
this description the sampling process is derived as follows. Each topic k£ has its word
distribution sampled from p(¢y). The topic distribution of document i is sampled
from p(6;). Then for each word, the topic of that word is sampled from p(z; ;|6;), and
finally the word itself is sampled following p(w; j|¢r=z, ;), yielding the factorization
of the whole model and its graphical representation (Figure 2.1):

(Db {0:}is (it {wigbig) = TT | p00p(on) TT [p(2i100)p(wi sl dn=)]

i,k J

®
O @)—m)

A7
vj

(2.1)

Figure 2.1: Graphical representation of Latent Dirichlet Allocation, the rectangles,
referred to as plates, represent variables that are repeated.

We generally have an a priori understanding of how an interpretable latent
variable should behave, either from domain knowledge, theoretical analysis, or
preliminary analysis of the data. This understanding can be leveraged to monitor the

We can for example think of the micro-states in statistical physics, or the actual number of
contaminated persons (as opposed to the number of reported cases) in an epidemiological model.

2.1. Latent variables as a modeling tool 31

behavior of the model and to help training it, depending on the context; for instance
(non exhaustive list) the inference algorithm can be adapted to avoid numerical
instability if the range of a variable is known in advance, the appropriate number of
mixtures in a model can be pre-estimated by eyeballing it from a plot of the data, or
appropriate sampling methods can be used depending on the expected rarity of the
relevant values.

2.1.2 Abstract variables for expressiveness

In some situations, one might want to consider latent variables with no a priori
interpretation. Such variables, more loosely coupled with other variables, often serve
to drastically increase the expressiveness of a model while keeping its computational
complexity controlled.

To illustrate this principle, let us consider a finite Gaussian Mixture. Each
component i is defined by a mean y; and a variance o2. The family of all Gaussian
mixtures of a given size is significantly more expressive than a single Gaussian
distribution while the computational cost associated with it remains very reasonable,
proportional to the number of components. Even when the information of which
component a given datapoint belongs to is not of interest, using a mixture can be a
relevant way of increasing the space of distributions that the model can represent?,
as illustrated by Figure 2.2.

S

Figure 2.2: Representation of a 2D Gaussian distribution (left) compared to a
mixture of 5 Gaussian distributions (right). While the single Gaussian has a simple
elliptic shape, Gaussian mixtures can express much more complex distirbutions.

This idea can be generalized though the principle of marginalization. Defining a
joint distribution p(z, z) over an observed variable z and a latent variable z might
yield a complex marginal distribution® p(z) = [, p(x, z)dz. Such an approach usually
involves a latent distribution over the marginalized variable p(z) and a family of
simple conditional distributions p(x|z): a graphical model with a latent variable.
In this case, latent variable z is abstract: it does not have any intrinsic meaning,

2In particular, Gaussian functions being universal approximators [MS96], a Gaussian mixture
with a sufficiently large number of component would be able to represent any reasonable distribution.

3For example, any distribution with a known cumulative distribution function F can be expressed
this way: let z by a uniform variable over [0;1] and = deterministically derived from it: z = F~*(z).
p(2) is a simple uniform distribution and p(x|z) is a simple constant distribution, yet the marginal
p(z) is the distribution defined by F', which can be arbitrarily complex.

32 Chapter 2. Latent Variables and the ELBO

and its only role is to be marginalized out to increase the power of the model over
the variable of interest x while keeping the computational cost low. One can then
think of p(z) as a mixture model with an infinite (and even continuous) number of
components, indexed by z.

2.2 Training challenges of Latent Variable Models

The introduction of latent variables in a graphical model has a significant impact
on the training procedures: latent variables are not observed, and appropriate
losses must thus be considered. A common approach is based on marginalization,
maximizing the likelihood of the observed data according to the (marginalized) model.
The marginalization procedure is however generally nontrivial, and poses additional
questions in the case of abstract latent variables. By convention, observed variables
(respectively latent variables) are noted z; (resp. z;) in the following.

2.2.1 Likelihood and marginalization

The graphical model specifies the joint likelihood over all variables pg(z1, . . ., Zn, 21, . . .
Training this model relies on estimating the likelihood py(x1, ..., z;,) of the data over
the observed variables; this estimation is at the core of all training procedures, either
based on maximum likelihood, MAP, or fully Bayesian training. The likelihood over
observed variables is estimated by marginalization over the latent ones:

pg(azl,...,xn):/ Po(ZT1y. ey Ty 21y ey 25)d21 .. dzg, (2.2)
Z1yes”k

In some cases, this marginalization can be computed exactly, e.g. in a finite
mixture, and the training procedure de scribed in Section 1.3 directly applies. In
most cases however, such computation is either intractable or prohibitively expensive,
and approximate methods are needed.

In the case of a graphical model parameterized by continuous variables, the
gradient of the likelihood can be estimated by Monte-Carlo sampling, by using the
following identity (where x thereafter stands for the set of all observed variables, and
z the set of all latent ones):

Vo logpg(x) = E Vo logpg(x,z) (2.3)

z~pe (2]x)

The expectation over pg(z|x) can be estimated using sampling methods (Sec-
tion 1.2.2). In a large range of problems, the model is trained using the Expectation-
Maximization algorithm (see Section 2.4).

2.2.2 Abstract variables and identifiability

Abstract variables usually raise additional challenges, due to the fact that they are
often underconstrained. For any model py(x, z) with z an abstract latent variable,
it is generally possible to define a number of equivalent models p;(z, Z) through
considering Z = ¢(z) with ¢ a bijection on the latent space. Accordingly, the
parameter vector 6 is not unique, that is, the model is non-identifiable with regard to

2.3. Variational Inference 33

its observed variables. Typically in the context of a mixture model, any permutation
of the mixture components yields an equivalent model.

This non-identifiability raises difficulties of different types. With respect to
the training step, if there exist multiple parameters 6 yielding the same marginal
likelihood pg(x), then the underlying optimization problem is not well-defined,
admitting numerous local optima and offering less guarantees depending on the
optimization algorithm, e.g. gradient ascent or estimation of a Bayesian posterior
over the parameters?. With respect to the interpretation of the results, different
models are learned in different runs, hindering the interpretation of the latent
variables. While the trained model might accurately represent the observation
density pgp(x), it offers little insight into the underlying generative process.

Some partial identifiability property can be enforced through setting constraints
on either the relationships between observed and latent variables, or the latent
distribution py(z). Such constraints can be guided by a priori knowledge on the
problem, or by the desired properties of the learned latent representation. Both
approaches, at the core of the thesis, are investigated in depth in respectively Part 11
and Part III.

2.3 Variational Inference

Variational inference is an umbrella for a family of approaches, tackling the approx-
imation of probability distribution through solving an optimization problem. In
its most general form, it can be formulated as finding the distribution within the
selected distribution space, that is closest to the target distribution in terms of the
Kullback-Leibler divergence®:

R . : q(2)
q argengnn Dk1.(qllp) argengnn ZIE:}] log o) (2.4)

A significant advantage of this formulation is that the target distribution p does
not need to be sampled, nor does it need to be normalized. This makes the approach
particularly applicable to graphical models, in particular in the context of conditional
queries where normalization raises critical difficulties.

Given a model p(x,z), with x the observed variables and z the latent ones.
Assuming a given value of x, the goal is to approximate the conditional distribution
p(z|x) with ¢(z). Minimizing the KL divergence from it to the approximating
distribution ¢(z) yields the following optimization problem (constant terms relative
to z omitted):

¢ = argmax |H(q) + E log p(x, z) (2.5)
qeQ z~q

Accordingly, the optimization of g reflects a trade-off between maximizing the
likelihood of the model log p(x, z), and maximizing the entropy H(q). For any given
x, the global optimum is reached for ¢%(z) = p(z|x).

4The Bayesian posterior over the parameters of a non-identifiable model does not converge to a
point measure in the large sample limit, while it does converge for an identifiable model.

5The choice of the KL-divergence as an optimization objective is in part driven by the fact that
it makes the optimization problem rather easy to manipulate and does not require the distribution
p to be sampled nor normalized.

34 Chapter 2. Latent Variables and the ELBO

2.3.1 The Evidence Lower Bound

Equation 2.5 can be reformulated to express nice insights into the structure of the
sought solution. Expanding the KL divergence between ¢(z) and p(z|z) gives:

Dics(ax()p(z) = [[10 } (2.6)
_ <)p(z)
‘INE o(x,2)) 27)
) log (]+1ogp<) (2.8)
This can be reformulated as:
o) = T [los %2+ Dy a2t 29)
ELBO

As the KL-divergence is always positive, the first term of the right-hand side
of Equation 2.9 sets a lower bound for the log-probability the model assigns to
the observed value x, log p(x). This log-probability is also called the evidence of
the model, hence giving the name FEvidence Lower Bound (ELBO) [BG02; GHB12;
KW14; RMW14]. Optimizing the ELBO thus supports both approximations of
p(z|z) and logp(x), for any given observation z.

The ELBO can be written in three different ways:

E [oz"2)] = () + E, torsta.x) = B, loep(xia) - Dic(ax(@lp(a)
(2.10)

Depending on the context and which terms can be exactly computed, or approx-
imated more efficiently, one formulation can be more convenient than the others.
Most approaches in the literature thus focus on one of these three forms.

Overall, the ELBO maximization defines a training objective for the graphical
model p [BG06; RGB14]: once decently maximized with regard to g, the value of the
ELBO can be used as a estimation of the model evidence log p(x), and used as an
optimization objective. When considering some training dataset D, one associates
to each sample x a distribution gx(z), optimized to approximate the conditional
distribution p(z|x). The joint ELBO then reads:

logp(D) =Y logp(x) > > K, log

x€D x€D Z2~~4x

(2.11)

Maximizing the ELBO regarding both p and the set {qx}xep achieves the maxi-
mum likelihood training of model p. The key issues are the selection of model class
Q containing the gx, and the optimization methods used to find ¢x and p.

The above sum can also be maximized as an expectation over the dataset, as
done in Section 1.3.1:

1

Gl logp(D) = [R, logp(x) > [E, [E, log®

xeD x€D z~qx

(2.12)

2.3. Variational Inference 35

When considering an iterative optimization approach, e.g. based on gradient
descent, the expectation over the dataset can be approximated by Monte-Carlo,
considering a random subsample (mini-batch) instead of the whole dataset. Only
the ¢y associated with the sampled datapoints are then computed in each iteration,
drastically speeding-up the training of the model on large datasets [Hof+13].

2.3.2 Mean-Field approximation for posteriors

The simplest and most convenient method, known as mean field approximation
[SJJ96], considers g as the product of distributions of a single latent variable ¢(z) =
[1; ¢j(2;). Each component g; is sought as a simple (e.g. Gaussian or categorical)
distribution, depending on the type of the latent variable. In this case, the entropy
term of the ELBO (Equation 2.10) reads as H(q) = >_; H(g;), making its analytical
expression generally possible. Likewise, the mean field approximation setting easily
supports the Monte-Carlo estimation of [£,, log p(z, x) in general.

The main and significant limitation of mean field approximation is that it can only
efficiently fit mono-modal distributions: only a single mode of the sought distribution
is decently approximated.®. When considering multi-modal p(z|z), one thus rather
models ¢ as a mixture of factorized distributions[Bis+98; GHB12], still supporting an
easy sampling and computation of log ¢(z). While entropy H(q) is no longer defined
in closed form, its Monte-Carlo approximation still applies.

The particular case of continuous (Gaussian) distributions has been further
explored. On the one hand, factorized Gaussian models, with diagonal covariance
matrix, are often too poor and do not support correlations among latent variables. On
the other hand, multivariate Gaussian distributions have a quadratic complexity in the
number of latent variables. A trade-off is offered by considering low-rank covariance
matrices [ONS18], enabling to capture the main correlations at a reasonable cost.

Note that Gaussian distributions offer many possibilities for mixture approxima-
tions of the posterior thanks to their universal approximation property. Adaptive
mixture constructions have been proposed along this line, dynamically adding com-
ponents to the mixture as needed to improve the approximation [Guo+17; MFA17].

2.3.3 Flexible posterior approximation using Normalizing
Flows

In order to construct approximations ¢(z) to the conditional distribution p(z|z), a
quite different approach is based on the so-called Normalizing Flows [RM15], where
q(z) is based on a standard distribution (e.g. centered Gaussian) 7, and z is obtained
by applying some transformation z = f(¢), with € 7 a fixed distribution of noise.
The optimization problem thus consists in finding an appropriate f.

In order to compute the density ¢(z), f is required to be invertible. Under this
assumption, ¢(z) can be computed in close form, involving the determinant of the
Jacobian matrix V f of f:

51f each ¢; is a single-mode distribution, then the complete ¢ will have a single mode as well.
But even if the ¢; can be multi-modal, this forces the modes of each dimension to be independent,
which is unlikely to match the real structure of p(z|x), causing the inference model to still choose a
single mode and fit it.

36 Chapter 2. Latent Variables and the ELBO

q(z) = m(e)|VefI™! (2.13)

This formula and the choice of a class of functions for which the determinant can
easily be computed is at the core of Normalizing Flows (NF). Due to the invertibility
constraint, NF only apply to continuous variables. In the NF framework, the ELBO
reads:

logp(x) > H(r) + [, [log |Vef| + logp(z, 2)| (2.14)

zrq

Within this generic NF framework, a number of approaches have been developed,
using carefully structured artificial neural networks (e.g. based on autoregressive
principles) to model the function f [RM15; DKB15; LW17; Kin+17; Ber+19; Dur+19].
These approaches offer versatile approximations ¢, well-suited to models with abstract
continuous latent variables.

2.4 Model training with Expectation-Maximization

The famed Expectation-Maximization (EM) algorithm is an iterative algorithm,
used to train a parametric model py by alternating an "Expectation" step and a
"Maximization" step [DLR77]. As will be seen in Section 2.4.2, it is closely related to
ELBO training.

Let 61 denote the parameter vector of the model at step t. The Expectation
step relies on a score function £, which assigns a score to every possible # in the
parameter space:

L (G;H(t)) = Z [E logpg(x,z)] (2.15)

€D |z~py) (2|@)

Note that in particular £ (G(t); H(t)> = log py«) (D) is the evidence of the model

for the vector of parameters 6().

Then the Maximization step determines the value of § maximizing £, and sets
0+ to this optimal value.

01+ = arg max £ (0; H(t)) (2.16)
0

The Expectation-Maximization scheme is iterated until convergence of #°.
The justification of the algorithm goes as follows. [, logp(z, 2) is maximal

w.r.t. p when ¢(z) = p(z|z). Therefore, the function n — £ (9(t+1); 77) reaches its

maximum for n = 9+ From the definition of the Maximization step, it then
comes:

2.4. Model training with Expectation-Maximization 37

(9(t+1); 0(t+1))

Inge(tH)() L ()

c (9““); 9@) (2.18)

c (2.19)
(

Y

v

(9(1&); 9(t)>

log py(t+1) (D) > log py) (D)

In other words, the model evidence (the log-likelihood of the data) monotonically
increases in each EM iteration. The algorithm thus is guaranteed to converge toward
a local optimum, except if the evidence can diverge towards +oo; in this latter case,
the algorithm is prone to severe overfitting.

2.4.1 Exact inference in Gaussian Mixture Models

EM classically considers Gaussian Mixture Models as model space, as this space
allows analytic solving of both expectation and maximization steps.

Let us consider a mixture model of K multivariate Gaussian distributions, rep-
resented as a graphical model with two variables: I the mixture index, and X
the observed value. The model thus factors as pg(z,i) = pg(z|i)pg(i). The latent
distribution is a categorical one with K values. Let a; denote its parameters, that is,
Doy (1) = agt). The observation distribution is a multivariate Gaussian of mean p;
and covariance matrix X;: pye (z]i) = N (x; ,ul(-t), El(»t)). The overall parameter vector
is thus composed of the K weights of the latent distribution, K mean vectors, and
K covariance matrices: 0 = ({a; M, {ui (S E).

In the expectation step, py (i) is computed for each datapoint, using Bayes
Theorem:

po (@i)pen () ol N u?’»zﬁ% 0
Poo (i|z) = “ K 0) s« (t)
Py (z) S N (@), 5)

The objective function of the maximization step reads:

(0 0 t)) E Z w(t) [log a; + log N (x; s, El)} (2.22)

€D i=1
Note that, thanks to the factorization of the model, parameters «, and each
(i, ;) pair can be optimized independently: the latent parameter «; is set to the
mass ratio of the posteriors for the i-th cluster across the dataset and each Gaussian
distribution A (p;, ¥;) is fitted by maximum likelihood to the dataset with importance

weights wgt) (x):
iV = K w(x (2.23)
z€D
W = R (@ (2.24)
z€D
Z(t+1)]E w(t) (t+1))($ _ M§t+1))T (225)

z€D

38 Chapter 2. Latent Variables and the ELBO

Along these equations, the algorithm iteratively computes the |D| x K matrix of

()

weights w,;”’ (x), and updates the parameters o, i1, ¥, until convergence.

2.4.2 Approximate inference with Variational EM

In some cases, the conditional distribution pyw (z|z) cannot be exactly computed,
preventing the objective function £ from being computed as well. In this context,
the EM algorithm can be reframed using the ELBO, defining a Variational EM
Algorithm. Note that a number of EM variants have been referred to as "Variational
EM"; in the following, Variational EM is meant as a generic variational approach
based on the EM principles.

As described in Section 2.3.1, the family Q®) made of all q,(vt), variational approx-
imation of pyu (2|z) for each datapoint x, is maintained.

Given the family Q) and the model parameters), the ELBO is used to lower
bound the model evidence:

x, 2
logpy (D) = > [1ogf% = Lrrpo(Q";0%) (2.26)
2€D 4 gV gz (2)

The two steps of the EM algorithm then naturally appear from this formulation:
the Expectation step maximizes Lr;po with regard to Q, and the Maximization
step optimizes it with regard to 0:

QY — argmax Lrrpo(Q;0%) 3 0%V = argmax Lprpo(QHY;0) (2.27)
9 0

This formulation makes it clear that the ELBO monotonically increases as the
algorithm unfolds. Variational EM thus appears as a special case of ELBO training,
alternatively optimizing the variational approximations g, and the model py.

When the exact conditional distribution of the latent variables can be exactly
computed, the ELBO boils down to the model evidence, and Variational EM coincides
with EM.

2.5 Summary

This chapter describes why and how to use latent variables in graphical models.
Latent variables, not observed in the data, are meant to either reflect hidden factors
(considering the phenomenon at hand as a partially observed one) or increase the
expressive power of the model while keeping its computational cost low.

Unless latent variables can be analytically marginalized to compute the model
evidence over the dataset log py(D), one resorts to estimating it using the FEvidence
Lower Bound (ELBO) with a family of auxiliary inference distributions {¢z}zep
(Equation 2.11). Optimizing the ELBO with regards to both pg and {g, }.ep allows
one to both train the generative model by likelihood optimization, and build an
approximation of the posterior distribution of the latent variables given the observed
ones, as the set {q;}zep.

Notably, the Ezpectation-Mazimization (EM) algorithm can be seen as a special
case of this principle, where the model and the inference distributions are trained

2.5. Summary 39

iteratively, maximizing the ELBO with regards to either one alternatively. The
mainstream EM algorithm corresponds to the case where both maximization steps
can be solved analytically.

Deep Latent Variable Models

Contents
3.1 The Variational Auto-Encoder 41
3.1.1 Amortized Inference 41
3.1.2 The Reparametrization Trick 42
3.1.3 Link with Auto-Encoders 43
3.2 Advanced latent models L. 44
3.2.1 Powerful encoders and complex latent spaces 44
3.2.2 Learned latent distributions 46
3.3 Discrete latent variables L. 47
3.4 Impact of the Inference Model 49
3.5 SUMMATY . . . o v o vt e e e e 50

Latent Variable Models took a new turn with the rise of Deep Learning, yielding
the famed Deep Latent Variable Models. Note that "deep" refers to the use of deep
artificial networks to implement and learn the functions underlying the graphical
model, and not to the topology of the graph. The most typical example of these
Deep LVMs is the Variational Auto-Encoder.

3.1 The Variational Auto-Encoder

The Variational Auto-Encoder (VAE) [RMW14; KW14] is an instantiates the simplest
LVM structure: an observed variable X and a latent variable Z, linked as a Bayesian
Network Z — X. The model thus factors as pg(x, z) = pg(x|z)pg(z). Deep learning
is leveraged to implement pg(x|z) (Section 1.1.1): given a parametric family P, (z)
of distributions (e.g. Gaussian), a function fp : 2z — w is used to map the latent
variable z onto the parameters w of the chosen family, as illustrated by Figure 3.1. It
results that pg(x|z) = P,—f,()(z). The function fy is implemented using an artificial
neural network and trained by maximizing the ELBO. The main two ideas used
in the VAE concern the construction of the inference model ¢ which approximates
po(z|x): Amortized Inference and the Reparameterization Trick.

3.1.1 Amortized Inference

While Bayesian inference is in general a hard and computationally expensive problem,
it is believed that human cognition performs it (at least approximately) routinely

41

42 Chapter 3. Deep Latent Variable Models

p(z) p(x | z) p(x)

Figure 3.1: Illustration of the generative behavior of a Gaussian VAE: each latent
value z (left) is mapped to a Gaussian distribution in the data space pg(x|z) (middle).
The mixture of these individual Gaussian distributions makes the complete generative
distribution pg(z) (right).

with much efficiency. Human beings generally face and solve many instances of
very similar problems (such as recognizing an object in a visual scene). Under the
assumption that similar problems have similar solutions, results of past inferences
can generally be re-used to solve future ones more efficiently. This action of re-using
past inference is referred to as amortized inference, as the cost is the initial inferences
is amortized by its subsequent reuse. Some evidence has been presented that human
beings do actually rely on such re-use, at least to some extent [GG14].

The general principle of amortized inference in a Bayesian Netowrk setting consists
in analyzing the graphical model beforehand and inverting it, thus making it possible
to perform quick approximate inference queries using the resulting inverted graph
[STG13]. The more queries are answered using the inverted graph, the more the
inverting cost is amortized.

In the VAE setting, the assumption translates to considering that pg(z|z) varies
smoothly with z. In other words, letting # and 2’ denote two similar observed
instances, the associated conditional distributions py(z|z) and pg(z|z’) should also
be similar to each other. This prompts the idea of jointly learning all ¢,(z) ap-
proximations. Like for py(z|z), the conditional distribution py(z|z) is approximated
by choosing a parametric family and training a neural network mapping x to the
parameters of the considered family. By opposition to the generative model, this
construct is traditionally named the inference model, and noted g4(z|x), with ¢ the
trainable parameters of the associated neural network.

3.1.2 The Reparametrization Trick

The Reparameterization Trick is a method to compute the gradient of an expectation
with respect to the parameters of the distribution: V EZN% g(z), as appears in the

3.1. The Variational Auto-Encoder 43

ELBO. In order to train the inference model using stochastic gradient descent (as
usual for neural networks), then this gradient needs to be computed. A well known
method to do so is the so-called Log-Trick, which relies on the following identity:

Vo]E g(z) =]E [g(z)ng 1ogq¢(z)} (3.1)
2~y 2~qg

This identity however leads to an estimation of the gradient with very high vari-
ance', making it a poor candidate to do Monte-Carlo estimation. The Reparametriza-
tion Trick [KW14] instead tries to express the distribution ¢, as some noise sampled
from a fixed base distribution € ~ 7, and then transformed by a function z = hy(e).
This is similar to Normalizing Flows (Section 2.3.3), which were inspired from it.
Accordingly, the expectation is expressed over the base distribution 7, which does
not depend on the parameters ¢, allowing the gradient operator to commute with it:

Vs [K, 9(z) = Vo [, 9(ho(e)) = K, Vola(hs(e))] (3.2)
z~qg €T T
This estimator has much better variance characteristics [Xu+19], and can in
practice be efficiently implemented in deep learning software.

3.1.3 Link with Auto-Encoders

Combining the above, the VAE proceeds as illustrated on Figure 3.2: first, the
datapoint x is processed by the inference network, predicting the inference distribution
¢s(2z|z) from which a latent sample z is sampled. This sample is then processed
by the generative network to compute the evidence log py(x|z). Both networks are
jointly trained by stochastic gradient descent to maximize the ELBO, where the
expectation over z is often approximated by a single sample of g4(z|):

ELBO(0,¢)= i, | K, logps(el2) — Dirlge(z|z)llpe(=)) (3-3)

2€D | znqy(zl2)

Latent regularization

Reconstruction loss

The inference and generative networks can respectively be viewed as probabilistic
encoder and decoder. Along this line, the ELBO decomposes into a reconstruction
loss and a latent regularization term (Equation 3.3). The training process aims to
trading-off the reconstruction loss and the compression of the latent information, as
measured by the Dk term, akin a regularized auto-encoder. This parallel explains
the origin of the VAE name.

Gaussian VAE VAEs classically use Gaussians as base distributions, with pg(2)
set to NV'(0; I), and pg(z, 2) set to N'(decy(z), o?), with decy the output of the decoder
network; o is a hyperparameter of the model. Likewise, the inference model g4(z|z)
is classically implemented as N (¢ (z), O’(%(CE), with pe () and diagonal covariance

"While the source of this high variance is not theoretically established, to our best knowledge, it
intuitively reflects the fact that this estimator does not use any differential information from g, only
its values.

44 Chapter 3. Deep Latent Variable Models

_ ' go(2]2) po(2).
. . " P e -
log po(z|2) = 1»]97993\72'7)/1 e Dkr(gs(z])(lpo(2))

Figure 3.2: VAE architecture: the encoder (resp. decoder) module is a neural
network taking = (resp z) as input and computing the parameters of distribution
¢s(2|z) (resp., pp(z|2)). Dashed rectangles represent probability distributions and
dotted arrows represent the computation of loss terms.

matrix ai(x) the output of the encoder network. In this case, the reparameterization
trick simply is:

2= () + € oy(x)

with € ~ AM(0;I) and ® denoting the element-wise vector product. Likewise, the
KL-divergence between g4(z|z) and pg(z) can be computed analytically.

The loss to be minimized is then the opposite of the ELBO, yielding the following
loss (where j runs across the dimensions of the latent variable Z):

1
L(0,9) = E T‘g”x — decy(z
z~D
e~N(0,1) Reconstruction loss

K
Z(“w) +05(x) — 10%035&(”3)_1)

Latent regularization

l\’)\r—t

(3.4)

3.2 Advanced latent models

While Gaussian VAEs are easy to both implement and train, and yield some impressive
results [KW14], the Gaussiam structure might fail to represent complex distributions,
e.g., images: the too simple approximation of the conditional latent can make
the ELBO too loose a bound, in which case the model is susceptible to generate
non-realistic samples [AB17].

This limitation raises the question of developing more elaborate representations
of the latent distribution. The main two directions explored in the literature to this
aim include constructing more powerful representations for gy (z|z), or learning also
po(z) to accommodate for the limited expressiveness of gy.

3.2.1 Powerful encoders and complex latent spaces

This section provides a (non exhaustive) overview of some approaches aimed to
designing a more powerful inference model. Note that these approaches are not
necessarily incompatible, and can be combined together.

3.2. Advanced latent models 45

Conditional Normalizing Flows. A powerful framework for inference models is
that of the Normalizing Flows (Section 2.3.3): a flexible and powerful approximation
¢s(2|7) is obtained via z = f4(€,x), where f, is only required to be invertible with
regard to €. Note that this usage was the initial motivation for the introduction of
Normalizing Flows [RM15]. This formulation drastically increases the expressive
power of the inference model, enabling very sharp boundaries in the latent space, as
shown by [Kin+17], at the expense of some (significant) increase in the number of
layers of the encoder network.

Importance Weighted AE proceeds by replacing the Z Zgjfig in the ELBO by an

empirical average over k z; samples [BGS16]:

=% T ($)10g< Zm) (3.5)

€D (21,.-,2k)~qg (- =1 Q¢

This new formulation, still a lower-bound of the model evidence log pg(D), be-
comes tighter and tighter as k increases, as the sum in the logarithm better estimates
po(x). Indeed, when k goes to infinity, it comes:

k
tm L3P ol 2) / 061 P22 o = [o, 2) dz = pof)

k—oo k i=1 Q¢ zZ~qg q¢> q¢(z\x)

This tighter estimate allows to overcome a poor quality inference model, and increase
the quality of the learned model.

While the Importance Weighed AE was originally formulated as an alternative
lower bound to the ELBO, it has since then been re-interpreted as equivalent to
using the classic ELBO with an augmented inference model [CMD17]: the k samples
from gy (z|x) are aggregated into a single sample from an augmented distribution
qgew (z|x), which is closer to the model posterior pg(z|z).

MCMC refinement of samples. Noting that neural networks are by construction
differentiable, one can compute V,py(z|z), opening the door to the use of efficient
MCMC methods to directly sample from pg(z|z). Such Monte-Carlo methods allow
an extremely tight evaluation of the ELBO, e.g. using Langevin dynamics [Han+17],
or using Hamiltonian Monte Carlo to improve the initial proposal of an inference
network [CDS18].

Another direction is that of Semi-Amortized VAEs [Kim+18], using stochastic
variational inference [Hof+13] to improve the variational parameters of gg(z|x)
predicted by the neural network, rather than working directly on the samples.

The use of Monte-Carlo methods however comes at a significant computing cost,
requiring back-propagation through the neural networks to compute the gradient for
every one of the (many) samples.

Non-euclidean latent spaces. In order to match the complex topology of some
datasets, distributions constructed on non-Euclidean spaces have also been proposed
recently. The Poincaré VAEs [Mat+19a] build an hyperbolic latent space with

46 Chapter 3. Deep Latent Variable Models

negative curvature, better suited to tree-structured data than a flat Gaussian latent?.
[Fal+19] introduces a general method for transposing distributions defined on an
Euclidean space into an arbitrary Lie Group, including the reparametrization trick.

3.2.2 Learned latent distributions

While above methods might change the structure of the latent space, governing the
latent distribution py(z), this latent distribution remains fixed during the training.
Often called a "prior" in the literature, this distribution is only a prior in the Bayesian
sense with regards to the inference of z given x, not with regards to the learning of
the model parameters 6. It can be learned just as every other part of the model, and
this section presents some of the methods developed to do so.

A general incentive for learning the latent distribution is to account for some well-

separated modes of the true distribution. If the latent distribution cannot capture
several modes (as is the case for Gaussian distributions), this makes it difficult to
learn the whole model:
One possibility is that the generative network py(z|z) learns a quickly varying
function, able to separate in the data space values that are close to each other in the
latent. This ability requires a significant expressive power from the neural network?.
Another possibility is that large parts of the latent space with non-zero mass according
to pe(z) be avoided by g4 (z|x), achieving the separation of the data (Figure 3.3).
This option is the one empirically observed when training Gaussian VAEs from
multimodal data. When latent z samples fall in these avoided regions, they yield
samples x ~ py(z|z) that are generally unrealistic, illustrating that the ELBO remains
loose in this context.

While the methods described below can in principle be combined with the ones
from in the previous section, their combination raises difficulties: learning both
¢s(2|z) and pg(z) as complex distributions often results in training instabilities.

Mixture-based latent distributions. A simpler way to handle multi-modal
data is to model py(z) as a mixture model. As fitting a mixture model by gradient
descent is difficult, more elaborate methods have been considered, e.g., modeling the
mixture as part of the graphical model [Dil417; Don+19] (see next chapter for the
use of Deep LVM with several nodes) or adapting the ELBO to directly integrate
the mixture latent [Guo-20].

Linking the latent to the inference model. As illustrated by the VampPrior
[TW18], this approach implicitly defines the latent distribution p(z) from the infer-
ence model g4(z|x), as a mixture of inference predictions from few artificial inputs

2In negative-curvature spaces distances tend to grow quickly in a non-intuitive way. While the
perimeter of a circle in an euclidean space grows linearly with its radius, in a negative-curvature
space it will grow quicker. This means that the amount of space at a given maximal distance from
the origin is higher in negative-curved spaces, allowing to arrange more datapoints equidistant from
each other than would be in an euclidean one. This property is successfully exploited to represent
geometrically hierarchically-structured data.

3In order to separate two very close latent values, the neural network (the represented function)
must allow for abrupt variations in their vicinity. Depending on the optimization algorithm and
neural architectures, this might be hardly doable or unstable.

3.3. Discrete latent variables 47

Figure 3.3: Tllustration of a possible mismatch in the inference density compared
to the latent distribution. The grey background represents the latent density py(z),
while the red lines represent the inference density g, (2|x) averaged over the dataset.
The inference density is here split in two regions (top and bottom) separated by
a low-probability band, which represent two modes in the dataset that the model
couldn’t join continuously.

(£1,...,2K): p(2) = % 3; qp(2|2;). Learning the latent distribution thus amounts
to learning the artificial inputs, which is done by back-propagation through the
inference network.

Implicit latents with an energy model. A very versatile approach is to learn
the latent distribution through an energy model: learn some function £ : Z — R,
and implicitly define the distribution as

p(2) o exp(—E(2))

While this formulation can in principle accommodate most latent structures, it
raises two difficulties. Firstly, the latent distribution can hardly be directly sampled,
requiring the use of Monte-Carlo methods. Secondly, designing a proper optimization
procedure to learn the energy function F is highly non-trivial. Some approaches learn
it by estimating the gradient online using Equation 1.22 [Pan+20]; other approaches
fit a posteriori the energy function on a already trained model to fine-tune it [X'YA20].

3.3 Discrete latent variables

All above methods, relying on the reparametrization trick to compute gradients, are
limited to continuous latent spaces. However, some datasets are better handled by
using discrete structures, raising the issue of whether Deep LVMs can be used with
discrete latent variables.

When considering a small latent domain, the expectation over g4 (z|x) can be easily
and exactly computed from the vector of probabilities of the discrete distribution.

48 Chapter 3. Deep Latent Variable Models

The difficulty arises when considering a large latent domain, e.g. Z = {0,1}¥. In this
case, the cost of exactly computing the expectation is prohibitive, being exponential
in the dimension K of the latent space.?

Two main approaches have stood out to tackle the problem of large discrete latent
space: the Gumbel-Softmax, and the so-called Discrete VAE.

Gumbel Softmax This approach relies on the standard Gumbel distribution,
whose cumulative distribution function is G(x) = e=¢ ". It can be used for approxi-
mating a one-hot encoding of a categorical distribution® [JGP17].

Let us consider a categorical distribution defined by the probability vector
(m,m2,...,7K), and let (g1,92,...,9%) be K independent samples from the stan-
dard Gumbel distribution. Let vector z be defined by softmax from the vector of
coordinates (g; + logm;)/7, with 7 > 0 a hyperparameter of the model:

exp ((g; +logm;)/7)
iy exp (g5 + log ;) /7)

(3.6)

P =

By definition of the softmax, all coordinates of z belong to (0,1), and they sum
to 1. Formally, z converges to a one-hot vector as 7 — 0. Further, the distribution
of such zs matches a one-hot encoding of samples from the categorical distribution
defined by the probabilities ;.

This property thus supports a continuous approximation of a one-hot-encoded
categorical distribution; this continuous approximation can be used with the repa-
rameterization trick to train a VAE [Lor+19].

Discrete VAE The Discrete VAE [Rol17] and its refinements [Vah+18; VAM18|
take a different approach, where the latent space involves a set of K binary variables
(z € {0,1}%). Each latent coordinate z; is paired with a continuous one ¢; € [0; 1],
where z; depends on (; after some appropriate fixed distribution p(z;|¢;). In the
final generative step, = is generated from the continuous vector (, as illustrated on
Figure 3.4.

The inference model involves the inference distribution g4(z; = 1|z). Thanks to
the fixed dependency among z; and (;, g4((;|x) can be analytically expressed as a
function of g4(z; = 1|z)®. The chained dependencies thus allow the gradient to flow
and learn g4 through the discrete variable z.

This discrete structure is combined with a latent distribution py(z) learned
as a Restricted Boltzmann Machine (Section 1.1.2), in order to capture complex
correlations. The encoder and decoder are trained as a regular VAE by optimizing
the ELBO and the latent RBM is trained at the same time by maximum likelihood
using samples from the encoder ¢4 (2|z) as a dataset.

4Unfortunately, the log-trick yields poor estimates of the gradient in this context.

5Letting k be sampled from a categorical distribution with K values, its one-hot encoding is the
K-dimensional vector with all coordinates set to 0 except for the k-th, set to 1.

5This properties relies on the specific choice of p(¢;|z) made in DVAE, and the re-use of that
same distribution in gg.

3.4. Impact of the Inference Model 49

21 @ z3 e

@ © © @@
& © ® ©

(a) Generative model

(b) Inference model

Figure 3.4: Discrete VAE: Graphical representation of: (a) the generative model;
and (b) the inference model.

3.4 Impact of the Inference Model

In general”, gy lies in some selected class of distributions Q. This restriction has
an impact on the training dynamics of the model, as it controls the quality of
approximation of pg(z|z), permitted by Q. This impact can be understood as a kind
of posterior reqularization [Gan+10], as analyzed by [Shu+18].

Considering the training ELBO for the whole dataset:

28000 =Y. T 1os 20~ logp(D) ~ 3 DicalaoGlo)lpo(zle)

xED z~vqy(2|T) q¢(|) z€D
(3.7)
Let us introduce for any distribution r(z) its "bias" relative to the class Q as:
Do(r) = min Drcr(¢(2)l|r(=)) (3.8)

By training the inference model until ELBO-optimality (reaching the optimal
parameters ¢*(6)) then for all x, the term Dgr,(ge(2]x)||pe(2|x)) is minimized and
thus equal to Do (pg(+|z)). The ELBO can thus be reformulated as:

ELBO(6,¢*(0)) = logpe(D) — Y Da(pe(-|z)) (3.9)
z€D

Along this line, using a restricted class of inference model is thus similar to
Posterior Regularization: the model is trained to maximize the likelihood of the
dataset log pp(D), augmented with a penalization reflecting the bias of its latent
conditional relative to Q. The more expressive Q, the weaker the regularization is,
to the point of completely disappearing for very expressive inference models such
as MCMC. Further restricting the class Q has been additionally shown as a way to
improve generalization in VAEs [Shu+18].

This regularization, constraining the abstract latent variable z, can serve to
mitigate the pitfalls linked to non-identifiable latent variables (Section 2.2.2). Im-
posing a restrictive class Q@ can thus be used to enforce desirable properties in the
learned model. For example if Q only contains distributions with a single mode, then

"Unless powerful inference models, e.g. Normalizing Flows or MCMC-based, are considered.

50 Chapter 3. Deep Latent Variable Models

the model is drawn toward learning a latent representation such that py(z|z) has a
single mode as well. Several approaches to exploit this regularization mechanism are
discussed by [Shu+18].

Likewise, disentanglement of the latent factors has been observed in factorized
Gaussian VAEs [Mat+19b]. It has been suggested that inductive biases are in
fact necessary to encourage such desirable properties in the latent representations
[Loc+19]. Along this line, the choice of a restrictive class Q is viewed as an alternative
(compared to modifying the ELBO criterion) to enforce the desired biases [Hig+17;
Che+18a].

3.5 Summary

This chapter introduces the Variational Auto-Encoder (VAE), transposing latent
variable models in the deep learning setting. In the basic case of a Bayesian Network
with a single observed and a single latent variable (both of which can be multi-
dimensional), VAE mainly relies on: i) amortized inference, consisting in learning the
inference model ¢ as a function of the observed variable x (as opposed to learning a
different ¢, approximation for each datapoint); ii) the reparameterization trick, aimed
to express expectations over ¢(z|z) as expectations over a fixed base distribution,
whose samples are transformed by a differentiable operation, significantly lowering
the variance of the gradient estimation.

The VAE can thus be viewed as a regularized Auto-Encoder with a distribution /
sampling mechanism at its core. Numerous efforts have been made to address the
limitations related to the original use of Gaussian distribution, and design appropriate
inference model g4(z|z) and latent distribution py(z), depending on the data domain.

An aspect of the chapter is to show how, within the Posterior Regularization
framework, the use of a limited inference model g4 can shape the distribution and
favor desirable properties such as latent disentanglement.

Hierarchical Deep LVMs

Contents
4.1 The ELBO with hierarchical latent variables 51
4.2 Optimization of hierarchical structures 53
4.2.1 Gradient flow oL o o 53
4.2.2 Stability problems oL L 54
4.2.3 Alternative training formulations 54
4.2.4 Key design considerations 56
4.3 Graph Structure Learning 58
4.4 SUMMATY . .« v v v e e e e e e 59

This chapter extends the Variational Auto-Encoder framework and the ELBO
learning criterion, to the general case of Hierarchical Deep LVMs, where several
latent and/or observed variables are structured into a Deep LVM.

4.1 The ELBO with hierarchical latent variables

In the previous sections, the ELBO involves two (multi-dimensional) variables z
and z. However this framework can be generalized and involve an arbitrary number
of observed and latent variables. Let p denote a model with K observed variables
x1,...,Tx and L hidden variables z1, ..., 2y, then for any distribution ¢ over the
hidden variables:

1,...
logp(x1,...,xK) > E logp(x v TR A2 (4.1)

21,20~ q(z1,...,21)

Along this more general formulation, the VAE is extended to handle complex relations
among latent and observed variables, referred to Hierarchical Deep LV Ms, where the
hierarchy relates to the structure involving the (usually latent) variables.

Such a generative model is specified as a generic graphical model, usually a
Bayesian Network, defining some factorization of the distribution pg. The main
specificity is that conditional distributions are implemented and trained as neu-
ral networks, akin to the VAE decoder. After the amortized inference principle
(Section 3.1.1), an inference model is sought as gg(z1,...,25|z1,...,2L).

The inference model is generally also factorized a a Bayesian Network, for
considering a joint probability over all latent variables can be very impractical. The
main design issue is that of the most appropriate factorization of the inference

o1

52 Chapter 4. Hierarchical Deep LVMs

model. While the factorization of the generative model py is guided by domain
knowledge and other epistemic considerations, the factorization of the inference
model g4 primarily aims at efficiently approximating the conditional distribution
po(z1,. .., 20|T1, .., TK).

A principled approach for designing the inference model is the Natural Minimal
I-map generator (NaMI) algorithm [Web+18]. This principle operates on the graph
defining py in order to produce a new graph usable for g4 that is minimally faithful
with regard to pyg.

The graphical model representing ¢4 is said to be faithful to the one underlying
pe if all independence relations of g4 are also present in py: in other words if gy
does not introduce new independence relations between variables relative to pg. It
is however allowed to have fewer such relations. For example, having g4 be a fully
connected graph is a trivial way to make it faithful.

In addition, NaMI seeks to produce a graph qg4 that is minimally faithful, that is
that has the smallest possible number of edge while still being faithful to pg. A graph
is said to be minimally faithful if it is faithful, but removing any of its edge would
make it unfaithful. Note that this is a local property, not a global one. Hence there
can exist many graphs that are each minimally faithful with regard to pg. NaMI
thus seeks to create one such graph.

The general process of NaMI can be summarized as follows. Starting from the
original graphical model (Figure 4.1(a)), first the arrows on all edges are removed to
produce an undirected graph. Then this graph is moralized: an edge is added between
each pair of node which share a child in the original graph. The resulting undirected
graph is then the skeleton on which the graph for the inference model g4 is built:
the last stage consists in directing the edges to produce a new Bayesian Network.
This is done by iterating on all latent nodes of the graph and for each directing
all not-yet-directed of its edge towards it. For example, in the graph presented on
Figure 4.1(b), the latent nodes were visited in the order 7y, Zs, Z3, while on figure
Figure 4.1(c) the order was Z3, Z3, Z.

(a) Generative graph (b) Forward-NaMI (c) Reverse-NaMI

Figure 4.1: Example of a generative model graph (a), the associated inference model
generated by forward-NaMI (b), and the one generated by reverse-NaMI (c).

Two main properties of this procedure can be noted. First of all, in the produced
graph the observed variables don’t have any parent: this reflects the fact that this
graph represents a conditional distribution of the latent variables given the observed
one. Secondly, the resulting graph depends on the order in which the latent variables
are processed: each ordering potentially produces a different Bayesian Network.

4.2. Optimization of hierarchical structures 53

NaMI identifies two special ordering, referred to as forward-NaMI and reverse-NaMI,
both relying on a topological ordering of the nodes in the original graph'. Forward-
NaMI processes the latent nodes in the same order as the topological ordering, while
reverse-NaMI processes them in reverse order. Note that as a result, Forward-NaMI
tends to overall reverse the structure of the original graph and reverse-NaMI tends
to follow it, as illustrated in Figure 4.1.

Note that one might prefer considering more sparse graphs than the NaMI ones:
by using a graph with less edges, one sets more constraints on the learned model, as
discussed in Section 3.4

4.2 Optimization of hierarchical structures

While the vanilla VAE (Chapter 3) can usually be trained in an easy and stable way
using stochastic gradient descent, the training of hierarchical models raises stability
issues, some typical from Deep Learning in general, and some specific to the LVM
structures.

4.2.1 Gradient flow

A main stability issue faced by Deep Learning is related to the so-called vanishing
gradients phenomenon [Hoc+01]. While it is required that the gradients can flow
efficiently through the neural network along back-propagation, the vanishing gradients
cause the deepest layers of the network to not receive enough gradient information to
be efficiently trained. The vanishing gradients are ultimately blamed on the classical
activation functions (e.g. sigmoid), with saturating regions where the gradient is
vanishingly small (the derivative of the activation function is close to 0). Stacking
many layers and activation functions thus makes gradients quickly converging to 0
as they back-propagate. More recent activation functions, like the ReLU [GBB11]
somewhat mitigate this issue; however, as quite some RELU neurons are saturated in
each layer, a non-negligible fraction of the gradient information is lost at each step.

Deep Hierarchical LVM are also susceptible to this problem, as introducing a
hierarchy of latent variables implies that the gradient will need to flow though more
neural networks (one per edge in the Bayesian Network defining the model). This
can lead the latent variables which are farthest to the observed ones in the graph to
not train well, if at all [So +16], and as such the resulting model cannot exploit its
capacity to the fullest.

A common mitigation for this problem in the Deep Learning literature is the
use of residual networks[He+16]. These constructs rework the structure of neural
network in such a way that several paths lead to each neurons, and can ensure that at
least one of these paths only consists in affine transformations, ensuring meaningful
gradient always reaches all parameters in the neural network. Residual networks
can in general be an answer to this issue for Deep Hierarchical LVM as well, though
some care needs to be taken when incorporating them due to the stochastic nature
of the training, which can cause stability issues.

! A topological ordering is the definition of an ordering relation of the graph compatible with its
topological structure, meaning that if node B is a descendant of node A, then the ordering must
have A < B. A topological ordering for a given DAG is not necessarily unique.

54 Chapter 4. Hierarchical Deep LVMs

4.2.2 Stability problems

The ELBO training objective is computed based on two expectations: one over
the examples in the dataset, and another over the latent variables, sampled from
the inference model g4. The first expectation is approximated using mini-batches,
leading to training via stochastic gradient descent [Lec+98b; Hof+13]. The second
expectation is generally approximated by Monte-Carlo: g is sampled a few times and
the ELBO is computed on the basis of this average. Though often the expectation is
approximated by a single sample with the assumption that the noise will average
out across the many training iterations.

This however significantly increases the noise of the gradient estimation during
the training, making in general VAE almost impossible to train with plain stochastic
gradient descent without diverging. Adaptive optimizers like Adam [KB17] are
generally used? for their momentum properties, which reduce the noise in parameter
updates.

The use of Hierarchical Deep LVMs pose the additional difficulties that, for
internal latent variables, both g4 and py are generated by the output of a neural
network each. Due to the stochasticity of the optimization process, it can happen
that at some point a minibatch is evaluated for which predicted distributions are
quite far from each other at some variable z;, causing the probability ratio %
in the ELBO to be extremely small. This in turns causes a large spike in the ELB
value for that minibatch, causing very large gradients to correct for it, excessively
disrupting the internal state of the optimizer and causing the training process to
diverge.

This is mostly a problem of training dynamics: due to the large number of
parameters in artificial neural networks, even a small update to each (as enforced
by Adam) can still have a dramatic effect on the output of the network at the next
iteration. The more hierarchical variables in the model, the more likely that at least
one of them, when sampled, produces a value in an unlikely region of the space,
creating a cascade of unusual values entering the subsequent networks, entailing a
spike of the loss and generating extreme gradients.

This instability could be mitigated by considering a sufficient number of samples
drawn after g4 and taking their average to better approximate the expectation; but
this approach is hardly affordable.

4.2.3 Alternative training formulations

The stability issue can also be handled by adjusting the training procedure and
the ELBO optimization. Two approaches investigated in the literature include
considering an inference model structure tightly connected to that of the generative
model, and sequentially learning the latent variables. Both approaches have mainly
considered unary tree-structures, as illustrated in Figure 4.2, factoring as:

po(x,21,...2K) = po(x|2K)po (2K | 2K —1) - - - Po(22]21) (4.2)

Here, the hierarchy of latent variables mostly aims at a more powerful represen-
tation: with numerous latent variables stacked on top of each other, even if each

2Tt is classic to use Adam with lower momentum parameters than the standard, such as
(B1,B2) = (0.5,0.9) rather than (0.9,0.999), the later being often unstable when used with VAEs.

4.2. Optimization of hierarchical structures 55

B2 —) @—®

Figure 4.2: Hierarchical graphical model whose 4 latent variables are structured as

(%)
Gr—af 7)) G

(a) Inference model of LadderVAE. (b) Output of forward-NaMI.

Figure 4.3: Comparison of the inference model used by Ladder-VAE and the on
that NaMI would produce for this generative model.

variable has simple neural networks encoding them, complex marginal distributions
can be reached for the last one zg.

Coupling the inference and generative models Introduced by [S¢ +16], the
LadderVAE builds an inference model with same topological ordering as the generative
model (thus similar to reverse-NaMI). It relies on a Gaussian parametrization of the
latent variables: each layer z; of the generative model is modeled by a neural network
with output ii(zi-1), 05 ;(zi-1). Finally, pa(zi|zi-1) = N (ppi(zi-1), 0 (2i-1))-

The specificity of the LadderVAE lies in the definition of its inference model. first,
a deterministic neural network takes the data = as input and produces parameters
fg.i(2), &§7Z~(m) for all latent variables as once, and then the actual ¢ distribution is
defined by combining these parameters with the associated parameters from p to
build gy (zi|z, zi—1) = N (pq,, ngi):

~—2

_9 ~
1 Hp,iCp i + Hq,i0g
2 - - @@ and ,U'i,q — D, q,

oL+ 6,7 43)
The above coupling of g4 and pg defines the inference model as an iterative
refinement of the prediction of the generative model, using information extracted
from the target value x, with the variance predictions as mixture weights.
This formulation avoids a major source of instability as it ensures that o,; < 0} ;.
Quite the contrary, when o,; >> 0,; in a regular VAE, thethis incurs a high
Kullback-Leibler divergence, strongly penalizing the model and generating large
gradients. LadderVAE is by construction immune to this risk of instability.

Note that in the LadderVAE all latent predictions from the inference model
directly depend on z (as opposed to e.g. NaMI where each variable depends on
its direct neighbor variables, both cases are compared on Figure 4.3), enabling the
information to flow through the model more efficiently.

Sequential training of latent variables The Two Stage VAE [DW19] addresses
the following issue. When training a Gaussian non-hierarchical VAE, the marginal
latent distribution of the inference model g4(2) = [E,cp 9 (2]x), also referred to as

56 Chapter 4. Hierarchical Deep LVMs

aggregated posterior in the literature, does not in general correctly match the gener-
ative latent distribution pg(z). This mismatch causes the generation of unrealistic
samples: when z is sampled from pg in an improbable region after g4, the generative
neural network has not been trained in such regions and it fails to generate a realistic
sample.

The authors argue that this failure happens when the data is concentrated in a
low-dimensional manifold of the data space [DW19]. This property, known as the
Manifold Hypothesis, is discussed further in Section 6.1. Accordingly, the VAE needs
to find said manifold, an ill-defined problem (except in the large sample limit). In
this situation, the VAE can optimize its ELBO well without necessarily converging
to an aggregated posterior that accurately matches the latent distribution pg(z2).

Even though, the aggregated posterior g4(z) still covers most of the latent
space Z, not being restricted to a low-dimensional manifold. The Two Stage VAE
precisely exploits this ¢4(2) and trains a second VAE, using another latent variable
u to approximate g4(z). The eventual model is a Hierarchical LVM pyg(x,z,u) =
po(x|z)pe(z|u)p(u). One can think of the first stage as "smoothing" the dataset in
view of the second stage.

4.2.4 Key design considerations

Hierarchical models can still be trained in a stable way using gradient descent on the
standard ELBO, provided that some care is taken of the neural network architecture,
their initialization, and the training dynamics.

Neural Network architecture To allow the gradient to flow across the whole
architecture and efficiently train the model, the use of residual structures is necessary.
Specifically, for every neural network involved in either the inference or the generative
models, there must exists one linear path from the input to the output neurons
(involving no non-linear activation function). This direct path help ensuring the flow
of the gradient information up to the deepest parts of the model.

The information flow towards the deepest part of the model can also be improved
by augmenting the NaMI-produced graph for the inference model, adding additional
edges from the observed variables to the latent ones, much like the LadderVAE
does. The increased cost of these additional edges can be mitigated by implementing
partial weight-sharing between the neural networks working on these inputs.

Model initialization The initialization of the various neural networks interacting
during the training of a Hierarchical Deep LVM can have a dramatic impact on its
training stability. A random initialization might result in generating poorly aligned
samples from py and ¢, yielding a poor initial ELBO and (very) large gradients, as
discussed in Section 4.2.2.

An option is to initialize each neural network in such a way that it yields a
constant output, not depending on its inputs. This is achieved by setting to 0 the
weight matrix of the last layer, with a constant bias adjusted to yield a sensible
initial value depending on the considered distribution. For example, if the network
is to predict a Gaussian distribution, it could be initialized to always rpedict a mean
of 0 and a variance of 1. This way the rest of the network will still compute random

4.2. Optimization of hierarchical structures 57

features of the input, allowing the gradient computation to pick up correlations and
initiate the training. This targeted initialization of the last layer is part of the Fixup
Initialization scheme [ZDM18].

The same initialization strategy also applies on the inference model, albeit with a
different rationale. Having ¢4 predict random distributions right from the beginning
imposes an initial organization of the latent space of abstract variables®. If this
organization is suboptimal (which is likely the case) the network can nevertheless be
stuck with it, as it can form a local minimum of the training objective. Initializing
¢4 to have constant predictions equal to that of py avoids this, as no organization is
imposed. The natural stochasiticity of the gradient estimation via Monte-Carlo is
enough to break the symmetry of this initial configuration and allow training.

Finally, when using complex residual networks, one must preserve the initial
variance (similarly to mainstream neural networks [Lec+98b]). Hierarchical Deep
LVM are particularly sensitive to an initialization that increases the variance, as this
effect can cascade through the latent variables hierarchy. The use of standard initial-
izations within residual networks however tends to increase the output variance, due
to the multiple paths. An empirically efficient alternative is the Fixup Initialization

[ZDM!18], which is designed to compensate this variance increase®.

Noise reduction The noise in the estimation of the gradient through the repa-
rameterization trick can be further reduced by using a Path Derivative estimator
[RWD17]. Using the reparameterization trick, a latent variable z sampled from g,
is written as a function of some standard noise ¢, the parameters of the inference
network ¢, and the input x: z(e, ¢,). Then, the gradient estimate produced by the
reparameterization trick decomposes as:

Po(z, 2) po(, 2)
\Y log ———= = V.log | T2) - Vyz =V, log g4 (2| 44
d)z]:”\@qb q¢(z‘m) z@¢ <q¢(z|x) ¢ ¢ ¢(‘) ()

path derivative

The last term of this equation, V4 log g4(z|z) has a null expectation:

N S S
Z@d)vwog%(zlx)—/z%(z!m) WER d —Lv¢q¢(z)d _vd)/z%(l2)dz = 0
(4.5)

However, this term introduces variance in the gradient estimation, which tends
to drown the useful signal during the latter stages of the training. It can however
be removed from the gradient estimation using a stop-gradient instruction in the
computation graph of the model (which is supported by most deep learning frame-
works). A detailed discussing about when this estimator can be preferable to the
simple reparameterization trick, and how to do it, is presented in [RWD17].

3This argument also applies to pf for latent variable which have parents: if pe(zi|7(Z;)) is
randomly initialized this gives a very opinionated shape to the associated latent space.

4The variance of the random initialization is reduced by taking into account the number of
different paths reaching a certain point of the network. This ensures that at initialization, the
network as a whole preserves the input variance.

58 Chapter 4. Hierarchical Deep LVMs

Training dynamics In some cases, the stability can be improved by using two
different optimizers for the inference model g4 and the generative model pg. In
particular, choosing an optimizer with more inertia and a smaller stepsize for py
permits gy to converge quicker; this ensures that a tighter ELBO is used to compute
the training gradients for pg. A slow-moving pg also prevents it from getting suddenly
too far from the prediction of ¢4 and generating huge gradients, as discussed in
Section 4.2.2.

4.3 Graph Structure Learning

A question is whether same methods can be applied to learn the structure of Bayesian
Networks (Section 1.3.3) and that of Hierarchical Deep LVM. This question however
raises two difficulties: besides the general issue of learning the structure of an LVM,
comes the additional complexity of structure choice in deep learning.

Two works related to learning Hierarchical Deep LVMs will be discussed (the
litterature on the topic being scarce and recent): Graph-VAE [He+18] and LT-
VAE[Li+19]. Both approaches center on learning an internal structure of Gaussian
latent variables z;, which are then all given as input to the final stage of the generative
model pg(z|z1, ... 2k).

Graph-VAE This approach considers a multivariate latent variable z = (21, 22, . . ., 2K)
and factors its latent distribution such that the set of parents of each z; is a subset

of {2;,% < j}. For each pair (2, 2;) with i < j, a binary variable ¢; ; models whether
an edge from ¢ to j should exist or not, defining a conditional generative model on
the vector c¢:

po(x, z|c) = pg(z|2) Hpg(zj\zi st.cij=1) (4.6)
j

In practice, the neural network structure is fixed and the conditioning on c is
achieved by multiplying z; by ¢; ; before feeding it as input to the neural network
handling z;. The inference model gy is defined using the same graphical structure
and conditioning, but giving x as input to each distribution:

qs(2|z,c) = Hq¢(zj\x,zi st.cj=1) (4.7)
J

For each ¢, the above formula defines an ELBO training of py(z|c), where ¢ fully
encodes the graphical latent structure to be learned. c itself is learned by defining a
distribution p, () as a product of Bernoulli distribution parameterized by a vector
o of their means: p,(c; ;) = B(u; ;). The final training objective is then defined by
taking the expectation of the c-conditioned ELBO over p,(c), and estimating said
expectation via Gumbel-Softmax parametrization to learn p via gradient descent
along 6 and ¢:

L= E E log po(, 2lc) (4.8)

C~Pp z~q¢(z|z7c) q¢(2’33', C)

4.4. Summary 59

Figure 4.4: Example of a latent structure that could be learned by LTVAE. At the

end of the training, if several Z; variables are attached to the same Y; (like Z3 and
Zy here), they can be fused into a single variable.

Although the resulting loss is not a lower-bound per se, the authors report that
the approach works well in practice and that p, reliably converges to be a constant
distribution, meaning the model does settle for a single latent structure.

Latent Tree VAE (LTVAE) This model learns the structure of the latent
variables, as illustrated in Figure 4.4. The number of latent dimensions is still
fixed in advance; the z; are partitioned into clusters, multivariate variables noted
Z1,...,2Zp, where B is not fixed in advance. Discrete latent variables Y7,...Y; are
learned too: these Y; are tree-structured, and each Z; variable is linked to a single Y
as its parent. The learning procedure concerns: the number of Y}, their organization
as a tree, the number of Z;, the dimensionality of each, and which Y; governs a Z;.

The inference model g4 (2|x) is a diagonal multivariate distribution over the whole
joint variable z, defining an elaborate latent distribution pf(z). While pg(x|z) and
¢s(2|z) are learned like in a mainstream VAE, the latent distribution py(z) is learned
via an EM-like algorithm, optimizing its parameters and computing the gradient
V.logpg(z) by message passing. The latent structure itself is also continuously
optimized during the training search, modifying the graph via graph operators
(adding a Y;, splitting a Z; into two new variables, changing the parent of a Z;, ...)
and evaluating the quality of a structure via the Bayesian Information Criterion
(BIC) (Section 1.3.3).

4.4 Summary

This chapter describes the Hierarchical Deep LVMs framework, and presents the
Natural Minimal I-map (NaMI) algorithm to construct an inference model for any
Bayesian network, that captures all relevant dependencies while remaining as sparse
as possible.

These approaches face similar challenges as deep networks (regarding the training
stability and the flow of information through the model during training), still
exacerbated by the intrinsically stochastic nature of the ELBO training criterion.
In order to mitigate these issues, an option is to couple more tightly the structures
of the inference and the generative model. The NaMI graph can be augmented by

60 Chapter 4. Hierarchical Deep LVMs

adding direct edges from the observed variables to latent ones, improving information
flow at the expense of the computational cost. Mainstream architectures require
specific care in the design of the neural networks and their initialization.

Regarding the learning of the Bayesian Network graph, some encouraging prelim-
inary results have been presented in the literature [He+18; Li+19].

Observation models

Chapters

5 Probabilistic interpretation of observed variables 63
6 The Manifold Hypothesis and Quasi-Deterministic Observations 73

7 Dynamics of Variance Learning 87

Praobabilistic interpretation of
observed variables

Contents
5.1 Perceptual distances for images 63
5.1.1 Gaussian observation and choice of distance 64
5.1.2 NN-based perceptual distances 65
5.2 Autoregressive observation models 66
5.2.1 Recurrent Neural Networks for sequential data 66
5.2.2 PixelRNN and PixelCNN for image generation 67
5.2.3 WaveNet for audio generation 68
5.3 RealNVP and flows-based observation models 69
5.4 The Posterior Collapse Phenomenon 70
5.5 SUMMArY oo e e e e e e 72

This chapter discusses the state of the art related to observation models. While
latent variables can be arbitrarily modeled following the desired properties (as will
be discussed in Part IIT), the modeling of observed variables is directly linked to their
probabilistic interpretation, defining the observation model. The observation model
can be best designed from the known internal structure of the data (sound, images,
text...) as in Machine Learning in general, via pre-processing (e.g., normalization of
numerical values, embedding of semantic values or manual feature construction), or
based on the structure of the data (e.g. convolutional networks for image processing
[LB98] or long short-term memory (LSTM) structures for sequential data [HS97]).

Section 5.1 presents perceptual distances, which adjust a Gaussian observation
model w.r.t. a specific distance function. Section 5.2 is centered on the use of
auto-regressive observation models, which decompose multi-dimensional examples
as a sequence of conditionally-produced values. These very expressive models are
notably applied to represent temporal or spatial structures (such as sound or images).
Then, Section 5.3 focuses on an extremely powerful class of observation models
built upon normalizing flows: RealNVP. Finally, Section 5.4 discusses the posterior
collapse phenomenon, a not infrequent pitfall related to the use of very expressive
observation models.

5.1 Perceptual distances for images

The Gaussian observation model is in general an intuitive choice: it represents
the fact that the value z was measured with some (known or not) uncertainty. If

63

64 Chapter 5. Probabilistic interpretation of observed variables

the measurement apparatus that produced the dataset has a known precision, this
can be reflected in the model by specifying a Gaussian observation model with an
appropriate fixed variance, reflecting the fact that making predictions that are more
precise than the experimental apparatus is meaningless.

When applied to images, this interpretation is not always satisfying. A diagonal
Gaussian distribution would make sense by representing the intrinsic noise of the
photographic captor. This noise is however extremely small, implying a variance
so small that the observation model is then essentially deterministic, defeating the
purpose of integrating data structure into the model.

Work has been done to address this problem by trying to use the observation model
to represent semantic uncertainty in the image data, by differentiating information
that is semantically relevant from what could be called semantic noise. This is
achieved by considering different distance measures in image-space than the euclidean
distance induced by the pixel-wise Gaussian distribution.

5.1.1 Gaussian observation and choice of distance

The normal distribution can be specified to explicit its dependency with regards to
the underlying metric. Let X denote the instance space, with a distance function
on this space d : X x X — R*. A normal-like distribution of parameters # € X and
0% > 0 is defined as:

Ny(z|z,0%) o exp (—%i?d(a:,ﬁ:F) (5.1)

The usual isotropic normal distribution is then recovered for d(x,y) = ||z — y||2.

This formulation is appealing for the VAE, especially when viewed as an auto-
encoder. The reconstruction term (Equation 3.3) then boils down to the expectation
of the squared distance d? between the input datapoint and the value predicted by
the decoder neural network . The key issues are to define the appropriate distance

measure, and the scale parameter o2.

Along this line, an appropriate distance is one making a real picture far from any
image filled with noise, while making close two similar real images. The pixel-based
Euclidean distance, d(x, %)% = 3,(z; — #;)? does not satisfy these requirements, as
illustrated on Figure 5.1.

The question thus becomes to find perceptual distances, reflecting the human per-
ception of similarities and dissimilarities between images. Such similarity measures
have been explored over the last decades, notably for content-addressed search in im-
age databases [NG06; Bed+16], but most are inadequate to support the optimization
and training of deep networks, not being differentiable.

Note that the use of an arbitrary distance function raises another issue, that
of directly sampling the distribution Nj;. Actually, most models based on such
Ny take the output # of the decoder NN in lieu of generated sample. While this
approximation makes sense for o2 << 1, it might be abused in practice, entailing
most undesirable effects. We shall come back to this important issue in Section 6.2.

5.1. Perceptual distances for images 65

(c) Noisy version of image

(a) Image A (b) Image B A

Figure 5.1: Pixel-based Euclidean distance on images: the distance between the
noisy and clean versions of image A is the same as the distance between image A
and image B.

5.1.2 NN-based perceptual distances

Perceptual distances often rely on the use of neural networks (thus defining an
implicit differentiable distance function). Formally, a NN is used to embed the
images onto a vector feature space; the Euclidean distance in this feature space is
used as perceptual distance, under the assumption that the feature space induces a
more meaningful Euclidean distance than the pixel space. The question thus becomes
finding an appropriate feature space as well as a tractable way to compute it.

Quite a few approaches reuse some intermediate representation learned by a
neural network trained to achieve image recognition. Along this line, DeepSIM
[DB16] uses an internal layer of the classifier AlexNet [KSH12], trained for image
classification on the ImageNet [Den+09] dataset. The Euclidean distance computed in
this internal feature space is combined with the Euclidean distance in pixel space and
an adversarial feedback based on Generative Adversarial Networks (GANs)! [Goo+14;
RMC16] to produce a hybrid training criterion, mixing the perceptual distance and
the discriminant information, eventually yielding more realistic generated images.

Similarly, [Hou+17] use the distance defined from a VGGNet classifier [SZ15]
also trained on ImageNet; they consider the Gaussian distribution built upon this
distance to train a generative model on the CelebA faces dataset [Liu+15], by using
a combination of several internal deep and shallow layers of the classifier network.
The intuition is that, although the classifier has not been trained on the same data,
both datasets are natural images; therefore the same feature space should be relevant
to both. Moreover, using a classifier trained on a more general dataset than the
generative model can also reduce overfitting.

Another approach is that of VAEGAN [Lar+16], that uses the latent representa-
tion of an adversarial discriminator (trained to discriminate the generated samples
from the initial data). By construction, the discriminator aims to distinguish real
images from generated ones, thus expectedly creating a feature space where the

!The main mechanism of GANs is the use of a so-called "discriminator network": a binary
classifier aims to distinguish images from the real dataset from the ones produced by the generative
model. The generative model is then trained by reversing the discriminator gradient, in order to
fool the discriminator.

66 Chapter 5. Probabilistic interpretation of observed variables

Euclidean distance would be relevant.

5.2 Autoregressive observation models

Rather than building further on the Gaussian observation model, another very general
approach for handling handling multi-dimensional variables consists in splitting them
into a list of scalar variables, with a chained distribution structure:

po(z]2) = HP9($i|Z7$0, ce X)) (5.2)

Such models, referred to as autoregressive models, can be extremely expressive.
Actually, many such models were developed with no latent variables: the auto-
regressive component pg(z;|zo,...,z;—1) can be powerful enough to represent a
complex distribution, and it can be trained directly using explicit maximum likelihood.
Such models are especially well suited to data with a temporal or spatial structure,
such as sound, images or language.

5.2.1 Recurrent Neural Networks for sequential data

Auto-regressive observation models can be most simply implemented using recurrent
neural networks such as LSTMs [HS97]. The latent variable z is used to define
the initial state hg of the LSTM decoder, that yields eventually x as illustrated
in Figure 5.2. In this approach [FA15; Bow+15], the associated inference network
similarly relies on an LSTM.

(a) Generative model (b) Inference model

Figure 5.2: Recursive structures: (a) a recurrent neural network is used to represent
an observation model from a single latent variable; (b) the associated inference model.
Diamond-shaped nodes represent deterministic latent variables.

Another approach uses a recurrent structure for the latent variables themselves,
akin a Hidden Markov Model (illustrated on Figure 5.3(a)). Introducing a sequence
of latent variables can drastically improve the expressiveness of the model, accurately
reflecting the sequential nature of the data. In practice, Deep LVMs built on recurrent
architectures often use a combination of latent and deterministic nodes, such as the
Variational Recurrent Neural Network (VRNN) [Chu+15] illustrated in Figure 5.3(b),
that has been used for speech modeling. Even more complex structures have been
proposed, such as the Stochastic Recurrent Neural Network (SRNN) [Fra+16] that
uses a hierarchy of two sequences of latent variables linked to the sequence of
observations.

5.2. Autoregressive observation models 67

(a) Hidden Markov Model (b) VRNN

Figure 5.3: Comparison of a Hidden markov Model (a) and a more complex latent
structure as proposed by the VRNN [Chu+15] (b)

5.2.2 PixelRNN and PixelCNN for image generation

When considering an autoregressive factorization for image generation, one naturally
considers each channel of each pixel of the image as different variables. Along this line,
PixelRNN model [OKK16] fully embraces the discrete nature of computer images by
modeling the variable of each channel as a 256-values discrete variable, parameterized
using a softmax output. With no latent variables, this model can be trained directly
to maximize the data likelihood.

In its simplest mode PixelRNN generates the image row by row (denoted Row-
LSTM). A more powerful approach, BiLSTM, implements a recurrent structure
w.r.t. both dimensions of the image, ensuring a better coherence of the generated
image. The third variant, PixelCNN, has proved the most popular one, where the
generation of a given pixel z; depends only on its neighbor pixels, following the
receptive field of a convolutional layer. The whole neural network thus is structured
using convolutional neural networks (as opposed to recurrent ones, with significant
improvement of the runtime performances at the cost of some expressiveness). Both
variants are shown in Figure 5.4.

Y S SESES

O000O0 o -@-@
ooooo ooo M’oo
oo df 'O oo otoo
| [} |
I : [}
od> ® 00O O ®OO0O
ooooo 0O 0000
600 O0O®0O0
ooooo ooooo O000O0
Pixel CNN Row LSTM Diagonal BIiLSTM

Figure 5.4: The 3 variants of PixelRNN. Top layer is the output, bottom layer is
the input. Figure from [OKK16].

PixelCNN is acknowledged to be a powerful and expressive architecture. It
has been used as decoder within an auto-encoder [Oor+16a, and combined with a
Deep LVM to yield the Pixel VAE [Gul+16]. Further improvements notably replace

68 Chapter 5. Probabilistic interpretation of observed variables

the 256-way softmax output with a mixture of discretized logistic distribution?,
drastically reducing the output dimension of the network while retaining sufficient
expressiveness in PixelCNN++ [Sal+17]. Later, PixelSNAIL [Che+18b] was pro-
posed, improving the receptive field of the autoregressive process to better handle
long-term dependencies.

5.2.3 WaveNet for audio generation

Audio data models lend themselves to a natural sequential factorization along the
time steps. Accordingly, Wavenet [Oor+16b] was designed following the principles of
PixelRNN. It similarly handles the prediction of the audio waveform x; as that of a
categorical variable, where the continuous signal value is binned into intervals (the
width of which follows a logarithmic scale). The major novelty in Wavenet lies in
the internal structure of the recurrent network based on dilated convolutions.

Recurrent neural networks are known to struggle with long-term dependencies,
and while e.g. LSTM [HS97] mitigates this issue, it remains insufficient for raw audio
— usually recorded from 16 kHz up to 44 kHz, or even higher. Tens of thousands
of variables for each second of audio is more than any standard recurrent network
can hope to remember. Wavenet thus introduces an internal structure specifically
designed to handle long-term dependencies using several layers of dilated convolutions,
each layer effectively doubling the receptive field of the output with regard to the
previously generated values (Figure 5.5).

-- ::O

Output
Dilation = 8

:Q_:; SIan-

. O Hidden Layer
e g Lo Dilation = 4
O P Q - . PR Hidden Layer
P e e ' Dilation = 2
Q O Q T T K Hidden Layer

! l l / A l A l Dilation = 1

Input

Figure 5.5: Representation of the dilated convolutions used in Wavenet. Each input
is the concatenation of the output at previous time step and some conditioning for
this time step. Figure from [Oor+16b].

In its initial version Wavenet was rather slow, generating samples x; one at
a time. To alleviate this shortcoming, [Oor+18] introduces the Parallel Wavenet.
This neural structure similar to Wavenet uses a Normalizing Flow, transforming a
sequence of latent values sampled from a fixed distribution €, ~ p(e) into a sequence
of observations x; ~ p(x|€; ... €). The benefit of this structure is that z; no longer
depends on the values of the previous timesteps xg, . .., x:—1, allowing each value to
be sampled in parallel in a much faster way.

2The discretized logistic, a distribution similar to the Normal distribution, is likewise parame-
terized by a location and a scale parameter. A main difference lies in its distribution support, set
to an integer interval as opposed to R. The interested reader is refferred to [Sal+17] for a more
comprehensive presentation.

5.3. RealNVP and flows-based observation models 69

However, as discussed in Section 2.3.3, Normalizing Flows are trained by min-
imizing their Kullback Leibler divergence to an energy model (as opposed to, by
maximum likelihood). Accordingly, the Parallel Wavenet is trained using a regular
Wavenet as its target energy model. The complete training is thus achieved in two
steps: first a regular Wavenet is trained on the dataset, then the Parallel Wavenet is
trained using Wavenet as a teacher, akin a Network Distillation scheme [HVD15].

Wavenet is extensively used for speech synthesis, conditioning the synthesis on a
phonetic encoding of the sentences to generate, with such a quality that Wavenet
was used to voice the Google assistant when it was deployed in Oct. 20173.

5.3 RealNVP and flows-based observation models

Normalizing Flows (Section 2.3.3), being very expressive and able to approximate
almost any well-behaved distribution, are a very powerful option for building ob-
servation models. They however need to be adapted to learn a distribution from a
dataset (as opposed to an energy function).

The adaptation is straightforward: instead of defining the transformation as
x = fp(€), it is reversed as € = fy(z). The density equation then becomes:

log po(x) — log |V, f| = log m(e) (5.3)

This formulation supports a maximum likelihood training from the dataset:

logpg(D) = Y logpo(z) = Y. [log |Vaf| +logm(fo(w))] (5.4)

zeD z€D

However, this only formulation is limited as py(x) cannot be efficiently sampled
unless f,° ! can be easily computed. This limitation was initially addressed by the
use of real-valued non-volume preserving (realNVP) transformations [DSB17], both
invertible and suitable for use in Normalizing Flows.

The general idea of realNVP is to split the input and output multi-dimensional
variables in two: z = (x1,x2) and € = (€1, €2), and consider the following transforma-
tion fy, called an affine coupling (where * is an element-wise multiplication):

fo: {61 - (5.5)

€9 = x9 * Sg(x1) + to(z1)

As the transformation is conditioned by x1, which is fixed, it can be easily inverted
(where + is an element-wise division):

£ {xl - (5.6)

T2 = (€2 — tg(€1)) + so(e1)

Although this transformation is simple in itself, stacking several instances of it
(with different parameters), and alternating the role of the two halves of the variables
by permuting them? yield powerful representations. In particular for the application

3https://deepmind.com/blog/article/wavenet-launches-google-assistant
4Permutations of the components of x are invertible operations whose Jacobian determinant is 1.

https://deepmind.com/blog/article/wavenet-launches-google-assistant

70 Chapter 5. Probabilistic interpretation of observed variables

to images, [DSB17] propose to split the pixels of the image in two groups along a
checkerboard pattern; both halves thus cover the whole image, allowing for coherent
transformations. The ty and sg functions are then learned using convolutional neural
networks.

Further improvements and variations of realNVP have been proposed:
Glow [KD18] replaces the permutation step by an invertible 1 x 1 convolution, of
which permutations are a special case.
Flow++ [Ho+19] introduces a more complex class of coupling layers, and proposes
a new method to address dequantization °® based on the ELBO and using another
Normalizing Flow.

5.4 The Posterior Collapse Phenomenon

Autoregressive and realNVP-based models, initially introduced as standalone gen-
erative models, are mostly used as such. They both have conditional variants, and
can be used as observation models within a Deep LVM; along this line PixelVAE
[Gul+16] combines VAE with a PixelCNN decoder. However, in general ELBO
training of these models proves difficult due to a phenomenon known as Posterior
Collapse (PC).

The PC occurs when the Deep LVM involves a very powerful observation model,
that would be capable of approximating well the dataset while entirely ignoring the
value of the latent variables (Figure 5.6). Along this line, the inference model g4
receives almost no feedback from the data while the ELBO draws it to match the
latent distribution py(z), and it collapses to this distribution: Va : g4(2|z) = pg(2).
The model thus reaches a good optimization of the ELBO while completely ignoring
the latent variables [Che+17], which generally goes against the intended goal of
introducing such variables in the first place.

It is currently believed that the posterior collapse occurs due to the training
dynamics of the model [He+19; Luc+19]. In the early training stages the inference
model g4 poorly approximates the real posterior distribution pg(z|z) associated to
these complex observation models, and the inferred z is thus irrelevant to improve
the prediction pyp(z|z). The poor quality of this approximation is blamed on the
insufficient optimization of the inference model, making it lag behind the observation
model [He+19].

Several approaches have been developed to mitigate the PC effect. [Luc+19]
consider an annealing process on the ELBO, setting a weight a on the term
Dir(qe(z|x)|lpe(2)), initialized at 0 and gradually increased to 1, then recover-
ing the original ELBO. Therefore the observation model can freely use the z variable
in the early training stage, as the inference model is then allowed to deviate a lot
from the latent distribution pg(z). The increase of o then slowly drives the latent
variable z back to py(z), while the observation model has already learned to use it,

5The dequantization problem arises when training continuous probabilistic models (such as
realNVP) on data that have been discretized (such as images whose pixel values are in [|1; 255]]). In
that case, the target distribution actually lives in a discrete grid-like subspace of the data space,
making it a collection of point masses. Such a distribution, beyond the reach of most continuous
models, may cause the training to diverge. Dequantization is the process of adding a small continuous
noise to the discretized data to make it continuous again.

5.4. The Posterior Collapse Phenomenon 71

Z X z X
> |
:“*? &\
T P \§
l.\ — 0-—-_____?
P
o L /
t\m /|
(a) Gaussian observation VAE (b) Model suffering of posterior collapse

Figure 5.6: Illustration of posterior collapse. In the Gaussian VAE (5.6(a)) each
latent value Z is mapped to a different distribution in the data space X, the
mixture of all of them making the actual generative distribution pg(z) (black outline).
When posterior collapse occurs (5.6(b)), all latent values are mapped to the same
distribution in the data space and the observation model represents the generative
distribution by itself: Vz : pg(z|2) = po(x).

and follows the movement. [Raz+19] introduces the 0-VAE, where the distribution
classes for qq(z|r) and p(z) are chosen in such a way that their KL-divergence is
lower-bounded by some hyper-parameter & > 0, preventing the total collapse of the
inference model. Likewise, this makes it free for the observation model to somehow
use the latent variable and opening the door for more. Finally, [Ale+18] modifies the
ELBO training objective by reformulating it as a constrained optimization problem
and then generalizing it to design a new training objective that forces the model to
use the latent variable.

The most effective results obtained by combining Deep LVMs with powerful
observation models rely on the use of discrete latent variables. An example thereof
is Pixel VAE++ [Sad+19], that improves PixelVAE taking inspiration from Pixel-
CNN++, replacing the latent space with a discrete variable, and learning the latent
distribution py(z) as an RBM, mimicking DVAE [Roll7]. The Vector-Quantized VAE
(VQ-VAE) [OVK17] and its refinement VQ-VAE-2 [ROV19] significantly modify the
model formulation by learning a set of latent embeddings and a discrete distribution
over them, effectively handling the inference model g4 (2|x) as a mixture of point mass
distribution (a mixture of Diracs). This makes it impossible to interpret the learning
criterion as a lower bound of the data likelihood. Nevertheless, VQ-VAE reaches
very competitive performance in the context of generation of realistic high-definition
images.

72 Chapter 5. Probabilistic interpretation of observed variables

5.5 Summary

This chapter focuses on the probabilistic interpretation of observed variables. This
interpretation (and the associated probabilistic model choice) defines the lens through
which the LVM can interact with the data, thus conditioning the success of the
training.

Several approaches have been designed to account for data properties or structures:
Perceptual distances are meant to emulate the human-perceived similarity between
images. Autoregressive models (e.g. Wavenet or PixelRNN/CNN) factor the model
as a succession of conditional distributions, yielding very expressive models for
discrete sound or image data. Inspired from autoregressive flows, RealNVP builds
an expressive class of observation models enabling to generate high-dimensional
examples.

In counterpart for these gains in expressivity, the above approaches are highly
susceptible to posterior collapse, ignoring the latent variables and learning the
data distribution from the only observation model. Several adjustments have been
proposed to avoid this issue [Luc+19; Raz+19; Ale+18].

Overall, these expressive observation models tend to weaken the link between
the latent variables and the observed data. Specifically, the latent representation
can then be less easily exploited in order to analyze the data: expressive observation
models can induce, and compensate for, a poorly informative latent representation.

The Manifold Hypothesis and
Quasi-Deterministic Observations

Contents
6.1 The Manifold Hypothesis 73
6.2 Quasi-deterministic observation models 74
6.2.1 The Gaussian observation and its limitations 75
6.2.2 Hierarchical quasi-deterministic observations. 76
6.3 Noise Variance and data resolution 78
6.3.1 Modeling an hypersphere 79
6.3.2 Experimental study of manifold approximation 80
6.4 Summary e 82
6.A Proof of Theorem 6.1 84

This chapter presents and discusses the relationship between the model and the
data in relation with the so-called Manifold Hypothesis [Rif+11; BWS15; FMN16;
CCR21], considering that the data lie near a manifold. Ideally, an optimal latent
representation would define a mapping from some (low-dimensional) space onto the
data manifold, that is, provide a parametric map of this manifold.

The question thus becomes when and how can an LVM appropriately characterize
the data manifold. This chapter presents the first main contribution of this thesis: a
case study under the assumptions of a large sample limit and an infinitely expressive
latent representation, extending a former article [BS20b].

The subject of information flow throughout the a VAE and its relation to the
learning process has been studied thoroughly. One notable angle of analysis is
the interpretation the latent space as a noisy communication channel between the
encoder and decoder in the light of Information Theory [BK18; RV18; ZSE18; Raz+19;
Zhe+19; DSL20]. An other lies on linking the VAE to Principal Component Analysis
(PCA) [Dai+18; Luc+19]. This chapter and the next one provide a complementary
analysis focusing on the geometrical interpretation of the training objective in light
of the Manifold Hypothesis, and the impact of the observation model on the training
process.

6.1 The Manifold Hypothesis

Most datasets are endowed with an internal structure, that is implicitly characterized
as not every element in the considered embedding space X is a valid sample: a random
matrix of pixels does not correspond to a photorealistic image, a random image does

73

74 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

not represent a person in general, a random sequence of numbers does not encode a
voice waveform, etc. (On the other hand, if any sample in a high-dimensional space
were a valid one, then in general, the available data resources would be insufficient
to support learning).

The structure of the real data samples in a high dimensional space, referred to as
Manifold Hypothesis (MH), is formulated as follows:

The considered dataset in a high-dimensional space is actually concen-
trated around a low-dimensional manifold embedded in this space.

Note that the dataset is assumed to concentrate near a low-dimensional manifold,
as opposed to, be contained in the manifold. The latter assumption would be
unrealistic, due to the data noise. The MH thus actually assumes that there exists a
low-dimensional representation of the dataset with no significant loss of information;
it does not assume that the data exactly lie in some "true" manifold of the embedding
space.

The MH is generally assumed in the domain of computer vision: the region of
natural images is continuous and connected! while most pixel matrices are "visibly"
not natural images. The same applies for audio data. The MH can have an adverse
impact on some learning algorithms, such as Generative Adversarial Networks: the
fact that the data lie in a restricted region of the embedding space can hinder or
prevent the training of the model [AB17].

If such an appropriate manifold were known, then any datapoint could be
decomposed in two parts: a location on the manifold, plus some small deviation
from the manifold. Along this line the semantically useful information would be said
location on the manifold, while the deviation would represent a small noise. This
decomposition, akin to Manifold Learning [Cay05], motivates the following sections.

6.2 Quasi-deterministic observation models

Latent Variable Models can be understood with respect to the MH. The learned
distribution over observed variables, pg(z), can be viewed as a mixture of the
observation model, indexed by the latent variables z: po(z) = [, po(x|2)pe(z)dz.
Along this line, the LVM training aims to pave the data manifold with instances of
its observation model (Figure 6.1).

If all considered observation models are low-variance distributions, then the
learned observation model py(x|z) itself establishes a mapping from the z space
to the data manifold, the transformation z — x being almost deterministic (in
the low variance case). In order for the learned observation model to characterize
the data manifold, the latent variables z must contain all relevant information for
characterizing a given example within the whole dataset; the latent representation
could then support other downstream tasks?.

!There is a very natural and intuitive way to continuously transform a photograph into another:
making both of them part of the same filmed video that goes from one point of view to the other.

2Such task include for example using the VAE as a dimensionality-reduction algorithm, compa-
rable to a non-linear PCA [Luc+19]. Part III further expands on design of the latent structure of
the LVM to extract sought information or enforce desirable properties.

6.2. Quasi-deterministic observation models 75

— rdl o
) b, -
S B
rd b
K P, *\ Ny
AL N
N
L2 o ~
{ ’ re oy _ A
b . N e~ o~
a 1 .
t'-'*e", : A h
‘ﬁ\ ~ = * > Ll -~ C \L\
ot A \
\‘7\ 5 ~E8S Z N
Ay — ,;‘
AT - A7 I
- . (]
\\‘ \4—\ /F
N 99
L.~ \1_\7 P!
e &

Figure 6.1: Example of approximate paving of a manifold (blue line) with observation
models (red circles). Each circle representing for example a small-variance Gaussian
distribution.

Let us define the notion of quasi-deterministic observation model as an observation
model where the generative process of x given z is a deterministic procedure fy
augmented with some noise €p: = fg(z) + €9. Thus pg(x|z) can be formulated in
terms of p. g(€|z), the density of the noise model:

Po(2|2) = peple = — fo(2)|2) (6.1)

Though the noise can in principle depend on z (inducing heteroscedastic models),
the idea is that after training, the learned noise model will have a small variance
such that the deterministic mapping & = fp(2) offers a decent alternative to actually
sampling pg(x|z).

In the following two examples of quasi-deterministic observation models are
analyzed. The simplest one (diagonal Gaussian observation) has limitations that
may force the model to fail to differentiate the manifold from the noise. The
second illustrates how these limitations can be overcome without leaving the quasi-
deterministic context, by building a hierarchical observation model.

6.2.1 The Gaussian observation and its limitations

When considering Gaussian observation models, the observed variable x involves a
mean noted fy(z) and a covariance matrix. The low variance of the noise model holds
iff this covariance matrix have small eigenvalues compared to the overall variance of
the considered dataset.

In practice, three options have been considered in the literature. A first option
considers an isotropic covariance matrix ¢?I with a constant o. This option is
retained in many papers, notably in computer vision where the VAE is mostly viewed
as a regularized auto-encoder® [Hou+17; Dor+17; Hua+18; GSS20; Gho+20], trained
from the squared error reconstruction loss £(x,#) = ||z — 2||%. This loss is equivalent

3Tt is actually difficult to measure precisely how widespread it is used: a large fraction of articles
about VAEs do not explicit their observation models.

76 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

to a Gaussian observation model with a fixed isotropic variance* o2 = 1/2. However,

a variance of 1/2 might seem unreasonably large (when considering the image data
as a vector whose coordinates are in [0;1]), preventing fy(z) from being a good
approximation for pg(x|z). As will be shown in Section 6.3, such a high o can be
considered the main cause for the blurriness long observed in VAE-generated images.

It can be noted that in this context, changing the fixed observation variance o is
equivalent to applying a factor in front of the KL part of the loss, as done by 3-VAE?
[Hig+17]. Empirically, it is observed that increasing the value of 5 improves the
disentanglement of the VAE latent space; in counterpart, the images generated from
the decoder (2 = fy(z)) are increasingly blurry, which is coherent with it introducing
an observation noise that is too large relative to the data characteristics. A detailed
comparison between S-VAE and quasi-deterministic observation models in terms of
training dynamics is given in Appendix 7.A.

Other usual options consists in considering an isotropic covariance matrix whose
variance is learned as a global parameter of the model [RV18], or as a diagonal
covariance matrix, whose components are the output of the decoder neural network
alongside the mean [KW14; MF18]. As will be shown in Chapter 7, learning the
variance of the observation model has a positive impact on the dynamics of the
learning process, compared to considering a fixed variance, even if adjusted using
preliminary experiments.

The limitation of all above options is twofold: firstly, they lack the expressiveness
of a full-rank covariance matrix; secondly, they assume an uncorrelated noise between
the dimensions of x. If the data structure involves some correlated noise, the above
models, being unable to model it directly, might settle for a smaller variance than
appropriate. Hence, a part of the noise would eventually be encoded in the latent
space alongside the actual information, as illustrated by Figure 6.2. On the other
hand, the option of considering (learning) a full-rank covariance matrix is impractical,
especially so in high-dimensional domains like computer vision.

6.2.2 Hierarchical quasi-deterministic observations

The use of quasi-deterministic observation models can however be combined with
taking advantage of the structure of the data: elaborate models can be defined using
an adequate LVM structure. While the properties of high dimensional data are
counter-intuitive in many cases, the manifold assumption can be invoked to enforce
the sought properties or behaviors, even while sticking to the quasi-deterministic
framework.

“The negative log-likelihood of a Gaussian distribution of mean & and of variance o2 = 1/2
reads:

1 D
—logp(|#,0%) = 5 |lv = & = Dlogo = |lo — &[|" + 7 log2

The constant term % log 2 does not affect the optimization process.

5In the isotropic Gaussian observation, the variance o2 acts as a global multiplicative parameter
in front of the squared error. This makes it possible to interpret it as a hyperparameter reweighting
the reconstruction and KL parts of the ELBO. By introducing the parameter § = o2, the formulation
becomes equivalent to that studied in the 8-VAE:

Lsvae = BDxr (as(2[2)llpe(2)) + E llz = fo(2)II* (6.2)

zrvqg

6.2. Quasi-deterministic observation models 7

-3)) 0 1 2 33) A 0 1 2 3
(a) Full-rank normal distribution (b) Mixture of diagonal normal distributions

Figure 6.2: Illustration of the inappropriately small variance imposed by a diagonal
observation model. (a) The cluster of points can efficiently be fitted by a single
full-rank normal distribution. (b) It requires a mixture of smaller variance normal
distributions if these are constrained to be diagonal. The second observation model
requires additional information to be captured in the latent variables, compared to
the first one.

Such an adequate LVM structure is that of Laplacian Pyramid representations,
reflecting the multi-scale structure of images and explored e.g. in LapCVAE [Dor+17].
The article introduces several modifications to the VAE; in the following we focus on
the use of intermediate observed variables, which can be considered independently of
the other modifications.

The core idea consist in generating the image along a sequence of resolution
steps. First a small image g is generated, then this image is upscaled, and the
model generates a update dxq that is added to the upscaled version to make a larger
image with more details: z1 = upscale(zg) + dz1. The process is iterated until the
sought size is reached, generally with an upscaling of a factor 2 in each step. The
sequence of generated images zg,x1,... is thus defined by (z denoting the set of
latent variables):

o ~ p(zo|2)
owiy1 ~ p(owiy1|zi,2) (6.3)
Tiy1 = upscale(x;) + 0xi41

This is illustrated by Figure 6.3: each observed variable z;;; depends on the
previous one x; and some subset of the latent variable.

Along this setting, for each full image noted xy, a sequence of x; (observed
variables generated by downscaling zy) is used in the training procedure. The
process, decomposing the data into multiple scales (as appropriate for images),
guides the model along this structure.

Finally a hierarchical quasi-deterministic observation model thus builds z; at

78 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

@@@

Figure 6.3: Illustration of a multiscale observation model.

each scale as:
x; = upscale(xi—1) + fio(ri-1,2) + € 0(Ti-1,2) (6.4)

Both the prediction f; ¢ and noise ¢; g functions take as arguments the previous
image, x;—1 and some subset of the latent variables. This hierarchical observation
model can be combined with any latent structure as appropriate for the application
domain and goals. LapCVAE for example introduces a hierarchy of latent variables
z1, z2, . .. depending on the observed variables, and conditioning them as depicted in
Figure 6.4.

Figure 6.4: LapCVAE. The graphical model illustrates the dependencies among the
observed x; and latent z; variables. The dependency of z; on z;_; is achieved through
concatenation: each latent variable contains the concatenation of all previous ones,
plus new dimensions inferred from the two previous generated images.

6.3 Noise Variance and data resolution

A first contribution of the presented manuscript is to analyze how the structure of
the observation model governs the possibilities of the inference model even under the
assumption of a large sample limit and infinite capacity (representation power) of the
inference model. This contribution is analyzed in view of the Manifold Hypothesis.

A primary remark is that the variance o of the observation model noise governs
the resolution and degree of approximation of the data by the model: the training
criterion involves the likelihood of the dataset w.r.t. the model at hand, where
the noise amplitude is 0. Accordingly, any data pattern that would be made
indistinguishable by this noise amplitude, is lost, for the same reasons as discussed in
relation with the Posterior Collapse phenomenon (Section 5.4). In the S-VAE case,
increasing 8 amounts to increasing the variance of the noise, which in turn prevents
the learned model from grasping the fine-grained patterns of the data. Eventually,
such a high variance results both in defining a blurry model, and reducing the amount
of information captured by the latent variable, making it in turn more amenable to
disentanglement®.

SAll structure being fixed, the model needs to pack less information into a latent space of the

6.3. Noise Variance and data resolution 79

The proposed interpretation is backed upon a theoretical result (section 6.3.1).
Experiments on synthetic datasets situated on a 1D manifold illustrate the interplay
among the model variance (fixed or learned) and the quality of the learned model.

6.3.1 Modeling an hypersphere

The impact of the observation model is examined under three assumptions:

1. The inference model used to train the VAE is assumed to be exact: g4(z|z) =
po(z|x) for all . Therefore the ELBO is tight, and its maximization boils down
to maximizing the likelihood & cp log pe(x).

2. The predictor function fy of the observation model is sought in a hypothesis
space with infinite capacity (encoded by a neural network with arbitrary
expressiveness).

3. The optimization process is assumed to reach the exact optimum of the criterion;
the dataset is assumed to be an infinite uniform sample on the target manifold.

Therefore, the VAE only depends on the observation model, a Gaussian observa-
tion model with an isotropic covariance matrix oI, for some fixed value of ¢ and
whose mean is predicted by a neural network fy.

Let us further assume that the sought manifold is a hypersphere of radius R of
center 0, in dimension D (in RP).

Then:

Theorem 6.1. Under the previously described assumptions, if o > \/%, then the

global optimum is reached when fy is a constant function at 0.

In other words, if the variance o2 is too large, the designed VAE will learn nothing
of the dataset, even though it has infinite capacity. The proof of this theorem, detailed
in Appendix 6.A, consists in analytically characterizing the optimal distribution
pe(x); this characterization is made possible under the considered assumptions. Let
be the mean of the observation model and output of the predictor neural network fy.
It is shown that, when optimal, the distribution of y is uniform over an hypersphere
of radius r > 0, where r is given by maximizing the following quantity:

_r [T Rr . D2
U(r) = e 2 / exp | —5 cosf | sin” " =(0)d0 (6.5)
0=0 o

When o > \/%, { reaches its maximum for r = 0, which concludes the proof of
Theorem 6.1.

The behavior of ¢ is illustrated in Figure 6.5 (left, for D = 2; right, for D = 10),
plotting ¢(r) in the 2D plane given by R/o and r/o, with the curve of optimal r
depicted in black. It is seen that the optimal r remains 0 until R/o grows larger
than respectively v/2 and /10. The actual threshold is larger than the one given in
Theorem 6.1 (v/D rather than v/D — 1). After the threshold, /o quickly grows with
R/o, and converges asymptotically to r = R. As o shrinks to 0, r converges to R.

same size, and can afford less precise latent encoding. As a result, it can more easily follow the
tendency for disentanglement that a factorized inference model suggests (3.4).

80 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

Figure 6.5: Contourplot of ¢ (Equation 6.5) in the 2D plane given by r/o and
R/o. Left: D = 2. Right: D = 10. The background color indicates the value of
the criterion (increasing from blue to yellow on a logarithmic scale). Black curve
indicates the optimum of £(r). The threshold value v/D is indicated as a black dot
on the horizontal axis.

In view of the Manifold Hypothesis, Theorem 6.1 establishes that a Gaussian
VAE with fixed variance ¢ is blind to data structures whose radius of curvature is
smaller than” o+/D — 1. In other words, the VAE is doomed to miss such "details"
of the data distribution if their scale is too small compared to its (fixed) variance;
the VAE then yields an overly smooth manifold.

According to this result, the fixed variance of the VAE model o sets a lower-bound
on the smoothness of the manifold the VAE can learn. More precisely, o defines
a trade-off between the noise (missed) and the information (stored in the latent
representation): too large, and the fine-grained patterns will be missed; too small
and the noise will be stored in the latent representation.

6.3.2 Experimental study of manifold approximation

This claim is experimentally supported on a synthetic 2D dataset Figure 6.6. A 1D
sinusoidal manifold is defined in R?, and the synthetic dataset is generated from this
manifold with a isotropic Gaussian noise, the amplitude of which varies along the
manifold (heteroscedastic distribution).

A powerful VAE is generated from this dataset along a large sample limit process
(10.000 new samples are generated in each epoch) with a Gaussian observation model
of various ¢ values, and an "infinitely powerful" generative model®.

On this synthetic dataset, the relation between the fixed ¢ and the curvature of
the learned manifold can be summarized as follows:

For a large o value, the model yields a smoothed version of the manifold; for very
small o values, the noise is interpreted as part of the manifold, increasing the

"Note that Figure 6.5 suggests the cutoff is actually at o/D.
8Using a Resnet-based architecture with a 10 dimensional latent variable z.

6.3. Noise Variance and data resolution 81

150 150 1
125 125 4
100 . 100 4
075 0.75
os0{ 0.50 1
<
0.25 0.25
0.00 ’ 0.00 ’
—0.25 1 —0.25 4
-3 -2 -1 0 1 2 3 —|3 -2 -1 o 1 2 3
(a) Dataset (b) c=1.0
150 -~ 150 4
125 4 125 4
100 1004
075 0.75
0.50 1 . 0.50 .
0.25 0.25
0.00 ’ 0.00 ’
—0.25 1 —0.25 4
-3 -2 -1 0 1 2 3 =3 -2 -1 o 1 2 3

150 150

125 125

100 100 4

075 0.75

050 0.50

0.25 0.25

0.00 0.00

—0.25 1 —0.25 1

3 2 0 1 2 3 3 5 a 0 1 2 3
(e) 0 =0.03 (f) o =0.01

Figure 6.6: Impact of the observation model variance o on the learned manifold
(output of the predictive neural network & = fy(z), with z ~ g4). (a): The original
manifold involves several regions, with a varying curvature, and a varying noise.
Original points are in blue, learned manifold in orange. (b-c): Large values of o
result in a smoothed approximation of the manifold, where highly-curved regions
have been lost. (d): A well calibrated o adequately separates the manifold structure
from its noise. (e-f) Too small o values force the model to encode the noise into the
latent variable as well; the dimension of the learned manifold increases from 1 to 2.

dimensionality of the latent space. This relation between the approximating manifold
and the scale parameter of the observation model and the thresholding effect similar
to a phase transition has also been experimentally observed by [RV18].

The precision of the observation model, governing the manifold approximation,
also has a dramatic impact on the generative model. The two manifolds & = fyp(z)
respectively obtained by reconstruction (z ~ gy, Figure 6.6) and generation (z ~ pg,

82 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

Figure 6.7) differ depending on o:

Both manifolds are very similar when o is adequate or too large. Quite the contrary,
when ¢ is too small, the latent variable z seemingly fails to adequately capture
the manifold, resulting in a poor coverage of the latent distribution py(z) by the
aggregated inference model g4 (z). This eventually causes the generative process to
yield poorly realistic samples.

It must be emphasized that this failure when o is small is related to the training
dynamics; we shall return to this issue in Chapter 7.

These remarks establish that, when using a quasi-deterministic observation model,
the choice of the noise variance o is a crucial design point. When considering a
model with a fixed isotropic covariance, o acts as regularization weight, balanc-
ing the KL-part of the ELBO (Dgr(qg(z|x)|pe(2))) and the reconstruction term
(g, logpo(]2)), as classically done in practice in the VAE literature [Hou+17;
Lar+16; Hig+17; Hua+18; GSS20).

6.4 Summary

The observation model aims at a probabilistic mapping between the space of latent
variables and the observed data space. Under the manifold assumption, one might
consider instead a quasi-deterministic observation model, involving a deterministic
mapping onto the data manifold with an additional small noise. Some examples of
this approach, ranging from the Gaussian case to LapCVAE, are described.

Our claim is that the variance of this added noise governs the identification
of the data manifold; as theoretically and experimentally shown (Theorem 6.1,
Section 6.3.2), manifold regions with a high curvature compared to the noise variance
are smoothed and the details are lost. At the other extreme, a too small noise
variance leads the model to encode the data noise, increasing the effective dimension
of the learned manifold.

The key question thus becomes to identify the noise variance: i) based on
prior knowledge (e.g. related to known measurement uncertainties); ii) tuned as
a model hyper-parameter; iii) or learned as yet another model parameter. The
learning dynamics differs widely depending on the chosen option, as will be shown in
Chapter 7.

6.4. Summary 83

150 41
125 3]
100 . 2
0.75 14
0s0{ 0
025 4 -1
000 7
-0.25 -3
5 2 4 0 1 2 3 -5 -1 -2 0 2 a 5

(e) 0 =0.03 (f) o =0.01

Figure 6.7: Impact of the observation model variance o on the generative process.

(a): the original data (in blue). The output of the predictive model (Z = fp(z) with
z ~ pg(z)) is in orange and the generated samples (z = Z + €g) are in green. (b-c):
When ¢ is too large, the generated manifold (orange) matches with the reconstructed
one (Figure 6.6), and the added ey noise ensures complete coverage of the dataset
(note the change of axes scale). (e-f): When o is too small, the generated manifold
is actually quite different from the reconstructed one, suggesting that the latent
representation fails to adequately capture the real manifold: z ~ py(z) often generates
unrealistic samples.

84 Chapter 6. The Manifold Hypothesis and Quasi-Deterministic Observations

6.A Proof of Theorem 6.1

Proof of Theorem 6.1. Under the assumptions stated in Section 6.3.1, the aim is to
characterize pg(z) = [, po(x|2)pe(2)dz at the optimum.
The Gaussian observation model is defined by:

poals) = s e (g lle = 2)IP) (6.

The prediction function fp can be discarded (e.g. through a change of variable
= fo(2)); only the associated distribution py(u) needs to be considered:

o) = G [exp (= goalle =l ol (6.7

The considered dataset has a spherical symmetry around the origin; the observa-
tion model also is isotropic. Therefore at its optimum the distribution py(u) must
also have this spherical symmetry, i.e. it only depends on the norm of u. After
normalization, the sought probability distribution thus has the following form:

)
)= o9

with Ap_1 the area of the unit D — 1 hypersphere, and ¢ a normalized probability
measure ([, q(r)dr =1).

Considering the likelihood of the dataset (and dropping constant terms related
to q), it comes:

_ _ q(ll[1) (_1 N 2)
L= E log pp(x) = /z”_R log/u P exp | =53 |l — p||*) dudx+ ... (6.9)

zeD I

Let r be the norm of u and 6 be the angle between x and . In spherical
coordinates, the exponential can be reformulated as ||z — u|? = R? + 72 — 2Rr cos 6.
The inner integral on u depends only on R and #. The integration on the other D — 2
dimensions yields a multiplicative constant that can be moved out of the logarithm.
After this rewriting, the contents of the logarithm no longer depends on x, making
the outer integral trivial as well.

+oo 4 2 —2Rrcosf
L=Ap_ilog / q(r) / exp (—TQZTCOS> sin?~2(8)d0dr + ... (6.10)
r=0 0=0 (e

The term in the logarithm is the expectation over ¢ of some function of r, it is
thus maximized when ¢ is a Dirac measure at the maximum value of that function.
Thus at the optimum, py(u) is the uniform distribution over a hypersphere of center
0. Only its radius r remains to be determined. Maximizing £ is equivalent to
maximizing the contents of the logarithm:

— r2 ™ R’I“ . D—2
Ur) = e 202 / exp | —5 cosf | sin™“(0)d0 (6.11)
9=0 o

The derivative of £ yields:

22T —
% =e 22 /9:0 (RC0229T> exp (i; cos 0) sin?~2(6)d# (6.12)

6.A. Proof of Theorem 6.1 85

Using integration by parts on the R cosf term, it comes:

/ Reost exp <RT oS 0> sin?~2(6)df =
0

o2 o2

R Rr . D-1 ™ ™ RQ’I“ Rr D
{w—naze"p (G cos0) s %*/0 D1t P (5 cos®) sin” 010

=0

Finally yielding:

dl N R?sin? 0 Rr . D_9
- = 3¢ 207 /9:0 ((1)1)02 — 1> exp <a2 cos 9) sin” "~ “(0)d6 (6.13)

In particular, if ﬁ < 1, the derivative of ¢ as a function of r is always
negative, implying that it reaches its maximum for » = 0. This means that py(u) is
a Dirac-measure at p = 0, and therefore the predictive function fy is the constant
function 0. O

Dynamics of Variance Learning

Contents
7.1 Observation variance fitting L. 87
7.1.1 Learning a global noise variance ¢ 88
7.1.2 Learning a local noise variance o(z) 88
7.1.3 Empirical study o0 oo 89
7.2 The risk of deterministic collapse 89
7.3 The dynamics of variance learning as an annealing process 92
7.4 Summary and perspectives 94
7.A Observation tempering and link with g-VAE 97

This chapter continues the analysis presented in the previous chapter and ex-
tending [BS20b], showing that in the quasi-deterministic case the variance of the
observation model governs the scale of the data patterns that can be modelled.

The question investigated here concerns how to learn this variance Section 7.1
and its impact on the training dynamics 7.3. Only Gaussian observation models are
considered in the chapter for the sake of clarity; the analysis however is general in
the sense that it does not rely on the specific structure of the Gaussian model but
rather on its quasi-deterministic properties.

7.1 Observation variance fitting

As said (Section 6.3), an observation model with a too high noise variance prevents
the model from capturing fine-grained details of the data. Quite the contrary, a too
low variance causes the encoding the "natural" data noise into latent variables.

Unless this variance is supplied from prior knowledge, it must thus be learned
from the data (and even when it is known beforehand learning it is still beneficial,
Section 7.3). Two approaches are found in the literature:

 Considering an isotropic observation model N(fp(z), o) where o is optimized
along training [RV18] (Section 7.1.1);

o Considering an isotropic N (fy(z), o(z)Id) or non-isotropic N (fy(z), D(z)) with
D a diagonal matrix, and the scalar or vector noise variance o(z) being learned

by the neural net [KW14; MF18] (section 7.1.2).

87

88 Chapter 7. Dynamics of Variance Learning

7.1.1 Learning a global noise variance o

In the case where the sought variance o? is constant over the observation space

X C RP, then its optimization can be done analytically. Let ¢s(2|z) denote the
inference model, fy the decoder neural network, with D the dimensionality of the
observation space. In this case, ¢ is only involved in the reconstruction part of the
ELBO:

E E logpg(x]z):—E E [W—FD]O{;U] (7.1)

€D z~qy(z|x) 2ED z~qy(z|x)

Let €2 = E,ep Eingyale) Iz — fo(2)||? be the average squared reconstruction
error. The optimal value ¢* is thus reached as:

2
02 = argarznin % + Dlog 01 (7.2)
Simple calculations then give:
2
e
ol =) (7.3)

The optimal variance thus is directly set to the average reconstruction error
per coordinate. This result generalizes to non-isotropic observation models, where
the noise is defined after a diagonal matrix A(oy,...,0p): variance o; on the i-
th coordinate is the average squared reconstruction error of the model on this
coordinate!.

Algorithmically, o can be computed from the average reconstruction error incurred
in the current epoch, and updated for the next epoch. This is proposed with good
success in the recent article [RDL21]. In practice however (as said in Section 6.2.1),
most articles using a Gaussian observation model consider ¢ a fixed hyperparameter.
Another option is to learn o by gradient descent like any other parameter, and have
it converging to its optimal value. Expectedly, o gradually decreases along training,
as the reconstruction quality improves. This approach appears empirically equivalent
to computing the optimal o at every batch (Figure 7.4). The stability and dynamical
implications of this process are discussed in Section 7.2 and Section 7.3.

A third alternative is formulated by the Generalized ELBO with Constrained
Optimization (GECO) algorithm [RV18], where the search for a VAE proceeds by
minimizing the KL divergence in the latent part of the ELBO under the constraint
that the average squared reconstruction error be smaller than some prescribed value.
This approach is formulated in terms of 3-VAE [Hig+17], which is in the Gaussian
case equivalent to changing the observation variance, as discussed in Section 6.2.1.

7.1.2 Learning a local noise variance o(z)

Most interestingly, the seminal paper on VAE [KW14] advocated the learning of
the noise variance as an output of the decoder NN — though this architecture is

'Full-rank covariance matrix for the observation model is also analytically solvable and leads to
2= [(m — fo(2))(xz — fo (z))T} , however such models are generally impractical in high-dimensional
data spaces as they require large matrix inversions.

7.2. The risk of deterministic collapse 89

also rarely considered in practice. Formally, the decoder neural network yields two
vectors of size K, respectively the mean fy(z) and the (diagonal) variance o3(z) of
the model. As said, the case of a full covariance matrix has been considered for small
input dimensions only.

The model is trained by gradient descent to maximize the Gaussian log-probability:

(zi — fo(2)i)?

202(2); —logog(2); (7.4)

log po(z]z) = =)
(2

This formulation makes it possible to learn different noise amplitudes in different
regions of the input space, either reflecting the heteroscedastic noise of the data (as
in the artificial example in Chapter 6, Figure 6.6(a)), or reflecting the uncertainty of
the model to account for the data in the region. In the latter case, the large variance
reflects the fact that the model does not know how to handle this sample.

This gain in expressiveness however comes at a cost in training stability. De-
pending on the architecture of the underlying neural network and the optimizer, the
values of the observation model might vary in a large range, or take extreme values.
In such cases the 1/ Ug(z) factor occasionally becomes huge?, severely hindering the
training process. To avoid this, the parameterization of the neural network should
ensure that Ug(z) be initialized to a reasonably large value, and evolve slowly enough,
avoiding abrupt changes from one iteration to the next. We shall return to the
impacts of the training dynamics in Section 7.2 and Section 7.3.

7.1.3 Empirical study

Considering the artificial dataset introduced in the previous chapter, this section
presents an empirical comparison of both options of learning a global or local variance
(Figure 7.1). The model with a globally optimized value for o is doomed to find a
trade-off, with too low a variance in the high noise regions, and too large a variance
elsewhere (Figure 7.1(c)). On the contrary, the model where o(z) is a learned function
of z manages to perfectly fit the noise from the dataset (Figure 7.1(d)): the generated
samples (in green) display the same dispersion as the original dataset (in blue). The
goodness of fit is also visible from the ELBO improvement: the model with learned
function o(z) yields 1.62 + 0.08 while the model with learned global o only reaches
1.26 4 0.09.

7.2 The risk of deterministic collapse

Both schemes — learning the variance either directly or as a function of the latent
variable — converge toward setting variance o2 to the (possibly dimension-wise)
reconstruction error ||z — fy(2)||?. In the former case, o converges toward the
average reconstruction error; in the latter case, 0?(z) converges toward the local
reconstruction error.

When considering a quasi-deterministic observation model however, there is a risk
of deterministic collapse: if the VAE yields a perfect reconstruction (i.e. fyg(z) ==z

2As o(z) must be strictly positive, it is usually sought as the softplus of an expression, and goes
to 0 as this expression goes to —oo.

90 Chapter 7. Dynamics of Variance Learning

150 150

1325 125 4

100 100 4
0.75 0.75 A
050 0.50 A
0.25 0.25

pood{ ° poo{ °

—0.25 1 —0.25 4

(a) Reconstruction global o (b) Reconstruction local o(z)
1501 150 1
1251 125
1001 100 1
075 1 0.75
050 1 d 0.50
025 025 |
0.00 4 . 0.00 4
—0.25 1 —0.25 4
3 2 A 0 1 2 3 3 2 A 0 1 2 3
(c) Generation global o (d) Generation local o(z)

Figure 7.1: Results of training the VAE from Section 6.3.2 with o either learned as
a global value or as an output of the decoder. In blue is the original data, in orange
the predictions & = fy(z), and in green actual samples from py. While both models
learn the same approximating manifold (a, b), the second one manages to better fit
the heterogeneous noise of the dataset in generation (d) than the first one (c).

everywhere), then the optimal value for o is 0 (Equation 7.3), and the ELBO goes
to +00. Note that such a perfect reconstruction entails a high cost in terms of
Drr.(g4(2|x)||pe(2)), since the inference model g4(z|z) is bound to be deterministic
as well, making the KL-divergence infinite too>.

The risk of collapse is explained as follows. In the deterministic limit, both
ELBO terms are proportional to the dimensionality of their respective space (data
or latent). Typically for a Gaussian VAE, the reconstruction loss is the sum of the
squared reconstruction error, and a log-variance term N log o,. If the reconstruction
error is very small, the loss is dominated by the second term, which is proportional
to the dimensionality of the input space. The latent KL similarly involves a term
which is bounded in the deterministic limit, plus a term of the form —} ;logo. ;,
with ¢ ranging among the latent coordinates. This latter term is proportional to the
number of dimensions where o; is significantly smaller than 1 (the variance of p(z)).
In the deterministic limit, the variances go to 0 and the full behavior of the ELBO is
dominated by term Nlogo, — > ;logo. ;.

As a result of this limiting behavior, if the number of effectively used dimensions
in the latent space is smaller than N, then the ELBO tends to 400 as all variances
converge to 0, resulting in a model converging to a deterministic auto-encoder while

3For gy (z|z) a deterministic Dirac distribution, its KL to a non-tereministic prior is —oo.

7.2. The risk of deterministic collapse 91

optimizing its objective. This argument is not specific to the Gaussian case, but
relies on the fact as gg(z|z) and py(x|z) converge to deterministic distributions,
[Ez~yq, log po(|2) grows to +oo faster than Dgr(qe(z|2)[|p(z)), which is generally
the case if the model manages to compress the dataset at least a little.

This risk of collapse, as identified by [RV18; MF18], follows from the fact that
training a continuous probabilistic model on a finite dataset is not a well-posed
problem, as its optimal solution is a mixture of point masses over the examples.
Indeed the ELBO is higher-bounded by the negative entropy of the target distribution.
However when considering a continuous observation model, this entropy needs to be
computed as a differential entropy. When viewed as a continuous distribution, the
entropy of a Dirac is —oo, meaning that the differential entropy of any finite dataset
is —oo as well. This results in an optimization problem where the ELBO is not
higher-bounded by a finite value, making it ill-defined and entailing the deterministic
collapse phenomenon.

This risk has however to the best of our knowledge remained theoretical: the
optimizer dynamics and the limitations of the neural network structure generally
prevent the model from reliably reaching a perfect reconstruction, preventing in turn
a deterministic collapse. However the model is still driven to decrease the observation
variance as much as possible to increase its ELBO, as long as its capacity allows it.

As was analyzed in Section 6.3.2, the variance the model settles on determines
the resolution at which it observes the dataset and the amount of detail that is
learned in the latent space. It effectively defines the limit between signal and noise,
and on a finite dataset the model is driven to consider as much information as
possible as signal, as long as it can be compressed at least a little. This is in general
counterproductive: as long as the model is expressive enough, it’ll be able to learn
and compress any noise on a finite dataset [Zha+17]. In such a dynamic, part of the
random noise in the dataset would be interpreted as small but significant signal and
stored in the latent space. This could be interpreted as some form of overfitting.

In some situations, knowledge about the dataset allows to know in advance a
lower-bound for any reasonable value of this observation variance: the uncertainty
of the measurement apparatus that produced the data could be known, or smaller
details are deemed irrelevant for the task at hand (for example, details that are
invisible to the human eye can be irrelevant in a task of image generation). In such
cases it seems natural to ensure that the model will not converge to a variance that
is smaller than this lower bound, to avoid putting unnecessary pressure on the latent
encoding.

We propose here two simple methods to achieve that. The first method is to
parameterize the learning process of the variance such that it cannot decrease below
it4, effectively making this part of the optimization space unreachable for the model.
The second method is to augment each training batch with a Gaussian noise with
variance equal to said lower-bound. This noise will not be compressible by the model
(as it is a real, infinite noise), preventing it from storing it in the latent space. That
added noise can also have a regularization behavior on the inference model.

4For example, noting omin the lower-bound, the predicted o can be passed to a threshold
function such as ¢ — max (o, Omin) Or ¢ = Tmin + softplus(o).

92 Chapter 7. Dynamics of Variance Learning

150 150
125 125 1
100 100 1
075 0.75
050 0.50
025 0.25

poo{ 0ooq

-0.25 - -0.25 4

(a) Reconstruction learned global o

150 150
1325 4 135 1
100 100 1
0.75 - 0.75 4
050 1 0.50 {
0.25 4 . 025 1
000] _ 0.00 {
o35 | ~0.25 1
3 2 0 1 2 3 = 2 A 0 1 2 3
(c) Generation learned global o (d) Generation o = 0.043

Figure 7.2: Comparing VAE with trained and fixed variance on the artificial
problem (Section 6.3.2). (a): Reconstruction of initial samples with learned o. (b):
Reconstruction of initial samples with o = .043. (c): Generated samples with learned
o. (d): Generated samples with o = .043. Original samples are in blue; Predictions
without observation noise are in orange; Generated samples are in green. While the
model with a learned o correctly characterizes the dataset, the model with a fixed o
value fails to separate the noise from the underlying manifold (the noise is encoded
in the latent space, as seen on (b), resulting in a terrible generation performance as
shown in (d).

7.3 The dynamics of variance learning as an an-
nealing process

Chapter 6 illustrates the dramatic impact of the observation variance on the approx-
imation of the data manifold, governing the latent representation.

This impact is investigated in more depth, focusing on the case where the variance
is learned. A lesion study is conducted, by comparing the observation model —
where the scalar o converges toward o = 0.043 — with the eventual observation
model obtained when setting o to this same value. Unexpectedly, the latter model
(fixing o = 0.043) fails to correctly characterize the data manifold, as illustrated in
Figure 7.2.

The fact that the variance is learned is conjectured to significantly modify the
learning dynamics. More specifically, our tentative interpretation is as follows:
initializing o to a large value and letting the training process learn it plays a
regularization role comparable to an annealing process, akin KL-annealing [Luc-+19].

7.3. The dynamics of variance learning as an annealing process 93

20
4 —— latent loss

reconstruction loss
15 negative ELBO

10

-2

= latent loss
reconstruction loss

negative ELBO -5
0 100 200 300 a00 500 0 100 200 300 400 500
(a) Losses for learned global o. (b) Losses for fixed o = 0.043.

Figure 7.3: Trajectories of the reconstruction loss (orange), latent KL loss (blue)
and negative ELBO (green) for the model with learned global o (Fig. 7.3(a)) and
fixed o = 0.043 (Fig. 7.3(b)). The first model has a very gradual learning trajectory,
while the second starts with a high reconstruction loss and converges very quickly
toward a local optimum.

Formally, starting with a large o causes the model to first learn a most simple
representation of the data, as discussed in Section 6.3.2. This simplistic representation
is very easy to efficiently compress into the latent space, and the model promptly
learns an efficient representation. This representation allows the reconstruction
quality to be decent enough to afford decreasing o; the smaller ¢ in turn enables the
model to be aware of smaller details, that are gradually accounted for in the latent
representation.

In contrast, freezing o to a small value puts a large initial weight on the recon-
struction part of the ELBO (the 1/0? term dominates), making the model minimizing
its reconstruction loss at all cost. The optimization, thus entirely driven by local
reconstruction quality, fails to establish a global coherent structure on the latent
space. As a result, the model remains stuck in a local minima with a poorly organized
latent representation.

This interpretation is further assessed by comparing the loss trajectories (Fig-
ure 7.3). The training dynamics significantly differ in both cases of learned versus
fixed o, as follows: when o is learned, the data information is gradually accounted
for in the latent space, causing the latent loss (Equation 3.3) to gradually increase
while the reconstruction loss gradually decreases, resulting in a gradual reduction of
the negative ELBO. On the opposite, the model with fixed ¢ = 0.043 suffers a very
high reconstruction loss from the start; it quickly reduces it and quickly converges,
hardly improving its loss past the first 5 epochs. Note that the gradual dynamics of
the losses when o is learned strongly correlates with the evolution of the value of o
itself, as illustrated on Figure 7.4.

As said, this gradual decrease of o, viewed as an annealing process, seems to
benefit to the shaping of the latent space of a quasi-deterministic observation model.
By gradually increasing the amount of detail available to the model, it allows an
incremental refinement of the latent representation, which in turn allows the model to
converge to a more efficient latent space. The simplest way to achieve this annealing
is by having o be initialized to a large value (of the order of the total variance of
the training data), and letting the model learn its value gradually, as discussed in

94 Chapter 7. Dynamics of Variance Learning

10 A batch optimal
— 5G0

0.8 1

0.6

0.4 1

02 1

001 r . . r .
0 100 200 300 400 500

Figure 7.4: Evolution of the learned value for o during the training procedure. Blue:
o is learned through SGD. Orange: o is fixed to its optimal value (Equation 7.3) at
each minibatch. Both schemes are empirically equivalent.

Section 7.1.

How the final value of the ELBO depends on the fixed value of o versus learned
o is illustrated on Figure 7.5. 50 independent runs with fixed ¢ log-uniformly drawn
in interval [0.01; 1] have been done. The eventual optimal ELBO shows a bell curve
w.r.t. o, reaching its optimum for o ~ .1 (in blue, Figure 7.5). Likewise, 10 runs have
been launched to optimize the ELBO with a global learned o, showing that: i) the
variance of the eventual ELBO value is very low (all runs converge toward very close
optimal o); this optimal o value (.043) is significantly lower than the optimal value for
the runs with fixed o (in red, on Fig. Figure 7.5). Last, 10 runs have been launched
with o learned as a function of the latent variable z, and for each run, the range of
these optimal o is depicted as a segment (in green on Fig. Figure 7.5). To reflect
the prediction of multiple different o values by these last models, the cumulative
distribution of these prediction for one such model is presented in Figure 7.6.

7.4 Summary and perspectives

This chapter presents two results concerning the variance of the observation model
in the quasi-deterministic case.

Firstly, for a given predictor function fy(z) and inference model gy, the optimal
value of the variance (w.r.t. the ELBO optimization) is the average squared error of
the VAE reconstruction®. The associated risk of deterministic collapse is analyzed.
While this risk is hardly met in practice, it might lead to retain a variance lower
than would be appropriate. Two heuristics counter-acting this effect are discussed.

Secondly, a proof of concept is presented, suggesting that learning the variance
might have beneficial effects beyond finding the appropriate value. Most interestingly,
enabling the VAE to learn the variance allows the model to gradually build and

5More precisely, the global average if o is globally optimized by gradient descent; the local
average in the image of the latent region if o is learned as a function of z.

7.4. Summary and perspectives

95

———— » Fixed variance
1.5 « Learned global variance
] Learned local variance
1.0
[] ...
0.5 *
8 o.°. ¢ .
* o -
o Jo .
0.0 . ‘e
. ® [
. ® .o
- L]
-0.5 . ° . o..
L] []
L]
~1.0 ‘
%
102 101 10°
a

Figure 7.5: Representation of the ELBO value reached by the model as a function
of the observation model variance o?. Each dot corresponds to one training instance.
In blue are models whose variance was fixed at the beginning of the training. In red,
models where the variance is learned as a global parameter, the reported variance
being the final learned value. In green are represented models where the variance is
part of the output of the decoder (and thus depends on the latent variable); each is
represented by an horizontal line over the range of values produced by the model.

1.0

0.8

0.6

0.4

0.2

0.0

1072

1071
g

Figure 7.6: Cumulative distribution of the predicted o(z) across the generative
distribution p(z) (horizontal axis is in logarithmic scale). A large portion of the
[0.01;0.08] interval is used by the model, reflecting its learning of the heterogeneous

noise in the dataset.

96 Chapter 7. Dynamics of Variance Learning

compress the latent representation, increasing the amount of detail stored in the
latent space, until reaching the point where all remaining information would be
more expensive to store in the latent space than the gain provided in terms of
reconstruction quality. Overall, this learning dynamics is viewed as an annealing
process, adequately separating the noise from the information to the extent permitted
by the model capacity.

A perspective for further study thus consists in inspecting how the latent space
forms its structure, and how it manages (or fails) to reflect the topological structure of
the dataset. Our contribution, showing the impact of the training dynamics, suggests
to investigate the adaptive balancing of the reconstruction and the compression
efforts.

7.A. Observation tempering and link with 5-VAE 97

7.A Observation tempering and link with 5-VAE

Chapter 6 detailed the equivalence between setting a fixed variance to a Gaussian
observation model and the introduction of a weighting factor between the "reconstruc-
tion" and "latent" parts of the ELBO. While this equivalence is no longer true when
the variance is a learned parameter®, in essence the comparison is still applicable,
this section will explicit how.

The $-VAE [Hig+17] can be compared to defining the global generative model
as:

po(x,z) o py(z|z)/Ppy(z) (7.5)

By analogy with the tempered posteriors of Bayesian inference, we will refer
to this as observation tempering. It is important to note that this observation
tempering is not the same as the 8-VAE, as the later does not take into account
the normalization factor of the modified observation model (which depends on z, 0
and (). This is a situation similar to the one analyzed by [LC19]. After studying
the impact of observation tempering, we will explicit how it can be compared to the
proper 5-VAE.

Tempering the observation model with 8 > 1 makes it blurrier, converging to
a uniform distribution in the limit § — oco. It is to be expected that the analysis
of Section 6.3 will overall still apply here. As [increases, the model becomes more
and more blind to fine details and highly-curved regions of the data manifold. On
the opposite, tempering the observation model with § < 1 makes it sharper than
it normally is, with all the opposite effects as illustrated on Figure 7.7. If the
observation model is allowed to learn some scale parameter, it is to be expected
that it will converge to a different value of it, compensating the tempering to some
extend”.

The relation of 5-VAE to observation tempering is that the former does not take
into account the renormalization. Let pg represent the tempered version of some base
distribution p. It is defined by the following identity in log-probabilities, including
the normalization term:

log pg(x) = ;logp(m) — log / p(a)"/da (7.6)

Now, when considering the gradient of the distribution relative to some value
A (which can be either a model parameter or the value of another variable of the
model), the normalization factor gives rise to a non-zero gradient term:

Vilogps(x) :; Valogp(z) — [K, Valogp(2) (7.7)

E~Dg

SFor example, the Gaussian observation includes an additive log o term to the loss, breaking the
equivalence.

"The tempered observation model is in general not in the same distribution family as the original
model, as a result it cannot be expected that the model would exactly compensate it. Notable
exceptions are exponential family distributions (such as categorical, Gaussian or Beta for example),
for which the tempering operation does preserve the class, and amounts to a simple reparametrization
which learning can in principle compensate. It will however still affect training dynamics.

98 Chapter 7. Dynamics of Variance Learning

—— Base distribtion
5 Tempering with p =5
Tempering with B = 1/5
4
3
2
1
0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.7: Illustration of the effect of tempering on a distribution. The base
distribution (blue) is significantly broadened when tempered with a large 5 (orange,
S =5), and concentrated when tempered with a small 8 (green, 8 = 1/5).

Isolating the gradient as computed by 5-VAE:
1
s

—_——
B-VAE gradient

. 1 N
Valogp(z) = Valogps(@) 45 i, Valogp(®) (7.8)
tempered observation gradient pp

The gradient guiding 5-VAE can thus be seen as an approximation of the gradient
guiding the tempered observation with an additional term. The analysis of this term
will explicit the relation between the two formulations.

The second term of Equation 7.8 is very similar to a known identity®, which is
recovered when § = 1:

E Valogp(z) =0 (7.9)
z~p

As (is changed from 1, the gradients in the expectation are reweighted relative
to each other, changing the result. In particular, when 8 > 1, the tempered
distribution pg is more spread-out than the original distribution p. This affects the
expectation such that gradient terms in low-probability regions are over-represented,
while gradient terms in high-probability regions are under-represented. With each
point-wise gradient directing the distribution towards increasing the probability at
this point, they thus combine into a global gradient that tends to increase the spread
of the distribution further. A symmetric reasoning can be done when g < 1, in
which case pg is more concentrated than p, and the resulting gradient drives the
distribution overall towards being even more concentrated.

Finally, Equation 7.8 can be read as follows: the gradient guiding the training in
B-VAE is similar to the gradient guiding a tempered observation with the same /3,
with an additional term that accentuates the effect of 8 (spreading the distribution

8Previously proved in Equation 4.5.

7.A. Observation tempering and link with 5-VAE 99

when 8 > 1 and concentrating it when 5 < 1). This second terms thus prevents
the model from effectively compensating the tempering of the observation model by
learning different parameters.

As an illustrative example, consider a single-dimensional Gaussian observation of
learned variance o2. In this case, the additional term can be computed analytically:

1 -1
BVA log p(x) = V) logpg(z) + BBVA logo (7.10)

In this case, the S-VAE formulation drives the model towards increasing the chosen
o2 if B > 1, compared to the usual Gaussian observation®.

The general interpretation thus holds overall: the 8-VAE alters the convergence
of the observation model in the training dynamics. When g > 1, it forces the model
to use a smoother observation model than the natural ELBO would converge to, with
the consequences explored in Section 6.3. In particular, the higher the 3, the more
the model is blind to details of the data manifold. This results in less information
encoded in the latent variables, and blurrier reconstructions and generations in the
context of images. All of this is in accordance with the empirical results observed by
[Hig+17].

2

Qﬁg () is just a reparametrization o* — Bo? for which the learning process can compensate

exactly.

Properties of latent structures

Chapters
8 Properties-oriented structures 103
9 Compositional VAE: structure-enforced properties 115

10 Latent manipulation from Boltzmann principles 135

Properties-oriented structures

Contents
8.1 Generative classifiers for robustness 103
8.2 Semi-supervised learning with VAEs 105
8.3 Combining probabilistic and deterministic latent variables 106
8.3.1 Failure of the fully probabilistic approach 107
8.3.2 Deep Variational Bayes Filter 108
8.4 Typed anomaly detection 109
8.4.1 The two kinds of anomalies 109
8.4.2 Conditional anomaly detection 111
8.4.3 Empirical validation 112
85 Summaryo e 113

While the previous chapters focus on the design of deep LVMs, aimed to reflect
the data via the observation model, this chapter focuses on the design of Deep LVMs
and their latent structure, to enforce model properties guided by either epistemic
considerations about the data, or the intended use of the model.

After describing how such properties have been enforced in the literature, either
by integrating a deep LVM into a larger model (Section 8.1 & 8.2), or by carefully
designing its latent structure (combining probabilistic and deterministic variables,
Section 8.3), this chapter describes our contribution related to anomaly detection in
the context of the Compact Muon Solenoid (CMS) experiment at CERN [Pol+19].
A conditional deep LVM is there used to detect and distinguish two different kinds
of anomalies, by leveraging its latent structure (Section 8.4).

8.1 Generative classifiers for robustness

This section focuses on the use of generative models for classification.

The dominant classification approach is discriminative, that is, the ML model is
trained to directly approximate P(Y|X = z), the conditional distribution of the class
label Y given the description x of an example (Figure 8.1(a)). This approach faces
a major challenge: the quality of the learned approximation for a given example x
dramatically depends on how close this example is to the training dataset, with little
means to evaluate the quality of said approximation a priori [Sno+19; Nal-+19b].

103

104 Chapter 8. Properties-oriented structures

®— ®—

(a) Discriminative classifier (b) Generative classifier

Figure 8.1: Graphical representation of a discriminative classifier (a) and a generative
one (b).

This challenge is at the heart of the so-called adversarial examples, which are a
longstanding research question for deep learning based classification [GSS15; KGB17;
CW17; Ath+18; Ily+19].

An alternative approach, often referred to as generative classifiers or Bayes
classifiers, consists in reverting the graphical model (Figure 8.1(b)) and instead
learning a conditional generative model of the data given the class label P(X =
z|Y = y), noted p(x|y) for simplicity.

The actual classification is then achieved by selecting the y value making x
most likely. On this two-node model, this amounts to applying Bayes’ Theorem:
p(y|z) < p(x|y)p(y) using the conditional generative model and a prior p(y) on the
class labels. Under the assumption of independence of X features, this yields the
well known Naive Bayes classifier, delivering in practice surprisingly good results
(despite this assumption to generally be unrealistic) [DP97; HY01]. The general
Bayes principle can also be applied to more complex generative models including
latent variables. For instance, in [Sch+18] one VAE per class is trained, and then a
tight ELBO estimation of log p(z|y) is computed at test time.

The generative approach is significantly more computationally expensive than
the discriminative one, as it requires the computation of a conditional query on
a graphical model. Its main merit is its robustness property. The prediction of a
generative classifier combines a prior (where the prior p(y) can be simply estimated
from the class frequencies in the training data) p(y) and the generative likelihood for
each class p(z|y). Its behavior can thus be thought of in terms of mixture models,
making it less prone to overfitting than discriminative classifiers. Indeed, examples
far from the training set are expected to yield low generative probabilities p(z|y) for
all classes, resulting in a final prediction somewhat close to the prior. Furthermore,
this setting makes room for evaluating the probability of the sample p(x), that can
be used to estimate how close this example is to the training dataset. This makes it
possible to discard examples with a very low probability, enabling the classifier to
abstain instead of reporting a low confidence classification.

These two properties of resistance to overfitting and identification of untypical
examples have been experimentally and thoroughly explored in [LBS19]. This article
compares several structures of generative and discriminative classifiers against state
of the art adversarial attacks. The effectiveness of different methods to detect such
adversarial attacks are also compared. Their conclusions are that generative classifiers
are indeed less prone to making confident but wrong predictions, and that even when
they do, the evaluation of p(z) is a robust way to detect out-of-distribution examples.

This last issue, the detection of out-of-distribution examples, is still debated in
the state of the art. The simplest method of detecting out-of-distribution samples,
thresholding p(x), has been empirically shown to be unreliable in high-dimensional
data spaces: out-of-distribution samples can have a higher probability assigned
by the model than actual samples from the training dataset. Indeed the curse of

8.2. Semi-supervised learning with VAEs 105

ob b o4

(a) Generative model (b) Labeled inference model (c) Unlabeled inference model

Figure 8.2: The generative semi-supervised model combines a generative and an
inference model [Kin+14]

dimensionality makes the probability density a poor indicator of whether a given
sample does lie in the typical set of a distribution. This phenomenon and its
implications are notably analyzed by [Nal4+19b; CJA19; Nal+19a]. We shall return
to this point in Section 8.4.

How to use generative classifiers for detecting out-of-distribution samples has
been further examined within the Linear Discriminant Analysis (LDA) framework:
by introducing a Gaussian assumption on the form of the generative models p(x|y),
the application of Bayes’ Theorem is reframed as finding the class that minimizes a
distance in a feature space previously learned by a discriminative classifier, improving
the prediction robustness [Lee+18]. Notably the introduction of a learned covariance
matrix for the Gaussian model allows to geometrically reshape the latent space,
improving the quality of the used distance function. In this framework, [PDZ18|
further proposes to directly learn the feature space in which LDA is performed, rather
than rely on a previously trained one.

8.2 Semi-supervised learning with VAEs

This section focuses on the combined used of labeled and unlabed data, to support a
more robust classification approach.

Semi-supervised learning (SSL) encompasses diverse algorithms, able to harness
a (supposedly large) unlabeled dataset to improve the predictive capacity of a model
trained on a smaller labeled dataset. SSL relies on the assumption that unlabeled
data yield meaningful information about the domain structure, such as the presence
of natural clusters, which can be used for the prediction task. Many such methods
consist in implicitly labeling the unlabeled samples, for example by propagating
labels from the labeled ones using geometrical properties.

The so-called Generative semi-supervised model (M2) procedure, proposed in
[Kin+14], consists in jointly training a classifier and the inference model of a Deep
LVM, that is itself trained on both the labeled and unlabeled dataset.

Consider the 3-node LVM represented in Figure 8.2(a), where the X node
represents the data, Y its label, and Z an abstract latent variable. This model,
factored as pg(z,y,z) = po(x|z,y)pe(y)pe(2), is trained simultaneously on labeled
and unlabeled data using two different inference models.

On labeled dataset D, the model is trained using Y and X as observed variables,
combined with an inference model g4(2|z,y), represented as Figure 8.2(b). Applying
the ELBO on this model yields the following training objective:

106 Chapter 8. Properties-oriented structures

£labeled = Z log Do (y) -+]E]og M (81)
(z,y)ED Z~q¢(z|x,y) Q¢(Z‘$, y)

The above loss, decoupling py(y) from the rest of the generative model, makes it
to reflect the probabilities of the different classes in the dataset. Independently, the
other two parts of the model py(x|z,y) and pg(z) are trained jointly as a conditional
VAE to reflect the distribution of X given Y.

When considering the unlabeled dataset U, the inference model is augmented
with a component g4(y|z) predicting y, yielding the model presented in Figure 8.2(c).
The associated ELBO training objective is thus:

Lunlabeled = Z E log p?(’y)> + E log pe(x‘(z’y)pe(z) (8.2)
el y~qq(y|z) de YT zrvqg(2]T,y) 95(2|z, y)

Note that the expectation over Y cannot be evaluated using the reparametrization
trick as Y is a discrete variable. It is thus computed exactly, evaluating the ELBO of
the conditional generative model for each possible value of the label Y, and weighting
these values according to g4 (y|z).

Lastly, the g4(y|z) part of the inference model acts as a probabilistic classifier.
This most interesting part, trained (after Equation 8.2) to approximate® py(y|z), can
be seen as a generative classifier based on the Deep LVM pg. The whole approach
thus builds a generative model consistent with both the labeled dataset D and the
unlabeled dataset U, by maximizing the joint objective Lizpeled + Lunlabeled, and
delivers g4(y|x), a good approximation of the generative classifier defined by this
model.

Moreover, one can also directly train gy (y|x) as a regular classifier on the labeled
dataset [Kin+14], introducing a third term in the overall loss with hyperparameter
weight a, and considering the full training objective Liabeled + Lunlabeled + & Lelassifier-

8.3 Combining probabilistic and deterministic la-
tent variables

This section is interested in the modeling of structured data, focusing on the particular
case of temporal data and the identification of the underlying dynamics of the
considered system. The claim is that such models are more effectively identified by
combining probabilistic and deterministic variables.

As will be shown in this section, a finer control of the latent representation
can be obtained through introducing deterministic variables in the graphical model.
Such variables play a very different role compared to the probabilistic ones: they do
not appear in any density distribution and they only affect the training objective
indirectly, by guiding the information flow through the model, as illustrated by the
Deep Variational Bayes Filter [Kar+17].

!Optimizing the ELBO drives g4(z|x,y)qs(y|z) to be a good approximation of ps(z,y|z), which
in turns implies that ¢, (y|z) is trained to be a good approximation of pg(y|z).

8.3. Combining probabilistic and deterministic latent variables 107

()
CO—rr)—rt) (Gt
&

(a) Generative model (b) Inference model

Figure 8.3: Intuitive generative and inference models for sequence modeling.

The model, aimed to learn the behavior of a controlled dynamical system, is
trained from a sequence (z¢, ut), with z; the observed state of (resp. u; the control
applied on) the system at time step ¢. For instance, z; might stand for the location
of the considered vehicle, and u; for the amplitude of acceleration and steering angle.
A natural modeling approach is to introduce a sequence of latent variables z; akin
a hidden Markov model (Figure 8.3). However, [Kar+17] notes that this model
structure puts the stress on accurately reconstructing x; from z; (in the auto-encoding
step of ELBO training); but empirically, it fails to accurately capturing the desired
dynamics of the z; sequence.

8.3.1 Failure of the fully probabilistic approach

The overall approach, as depicted in Figure 8.3, assumes the Markovian property
of the z; sequence: z; is supposed to yield all necessary information for predicting
x¢, as well as, together with w,, predicting z;1. While [Kar+17] report that this is
not the case, they offer no tentative interpretation for this failure. This failure is
unexpected as one might think that minimizing the gap between the prediction of
the inference and generative models corresponds to an optimal ELBO.

Let us suggest a tentative interpretation for this failure, based on analyzing the
training dynamics along the same lines as in Section 7.3.

In the early training stage, the optimization process is generally mostly driven by
the reconstruction term of the loss (as discussed in Section 7.3), that drives pg(z¢|2¢)
and qg(2¢|Te, 2e41, wt, ug 1) along an auto-encoding scheme. This causes the model
to store into z; all information needed to reconstruct x; on a per-timestep basis. In
a further stage, when the reconstruction loss is decent enough, the reconstruction
term of the loss no longer dominates, and the optimization process should ideally
proceed to compress the latent representation, taking advantage of the Markov
relation between the z; variables.

However, at this stage, z; is unlikely to contain the necessary information for
predicting z;y1, as it has mostly been optimized for predicting x;. If the system
involves some latent information required for (short or long term) prediction, that
is not required for instant prediction (of z;), then py does not have access to this
relevant information, preventing the prediction of z;11 given z; and u;. In essence,
the model is stuck in a local minimum where it misses the temporal relation between

108 Chapter 8. Properties-oriented structures

OO (p—)

S e &
@))

(a) Generative model (b) Inference model

Figure 8.4: Generative and inference models for the Deep Variational Bayes Filter.
Diamond-shaped nodes represent deterministic variables.

the variables. In the exemple of the vehicle dynamics, x; contains the location of
the vehicle; but in order to predict its dynamics, one needs z; to encode both its
location and its momentum. If the latter information is missing, one cannot predict
Zy4+1 from z;.

8.3.2 Deep Variational Bayes Filter

The above issue can be avoided by modifying the structure of the generative model,
and making the latent variables z; deterministic, as proposed by [Kar+17], with

241 = fét)<ztaut7/8t)

where (3; is a latent variable accounting for the stochasticity of the overall dynamics
(Figure 8.4). The variable z;11 is the only input of the decoder pg(x¢4+1|2¢+1), thus to
achieve good prediction of x;y; during training, z;4+1 must contain all the necessary
information. In turn, z;y1 being a deterministic variable, the inference model g4 does
not directly predicts its value, the information pressure thus flows up to the parents
of zi41: the triplet (z¢, ut, ;) must contain the necessary information to predict z;41
(and thus x441).

Note that this new formalization radically changes the training dynamics: the z;
now being deterministic variables, the ELBO no longer penalizes storing information
into them (as opposed to ;). The training objective thus enables storing as much
information in z; as needed to predict z;11, ensuring a good modeling of the system
dynamics®?. The good experimental results confirm the merits of the approach,
combining probabilistic and deterministic latent variables: within this formalization,
[Kar+17] accurately model the dynamics of simple physical systems, such as a
pendulum or a ball bouncing in a box, and can predict dynamics of the system
on timelines significantly longer than the length of training sequences. However to
the best of our knowledge, evaluation of this approach on more complex problems

2To enforce the interpretability of the latent representation, [Kar-+17] further requires fét) to be
a mixture of linear functions of z;, u; and ;. Formally, the matrices encoding these linear functions
are globally learned as function of ¢, and the mixture parameters are learned functions of (z:, us)
(but not directly of t).

8.4. Typed anomaly detection 109

remains to be done: [Kar+17] heavily rely on the fact that the dynamical equation
of their test systems can be represented linearly in the latent space.

This experiment illustrates how a change of the latent structure in the generative
model can have a dramatic impact on what can be learned. Using deterministic
variables as the backbone of the recurrent structure rather than a Markovian construct
allows the gradient information to flow much more efficiently through the model,
thus avoiding local optima where the temporal relation is not learned.

8.4 Typed anomaly detection

As discussed in Section 8.1, LVMs can to some extent be used to detect out-of-
distribution samples. I applied this property to achieve anomaly detection in the
domain of particle physics, in collaboration with Adrian Alan Pol [Pol+19]. The
context of application is the Compact Muon Solenoid (CMS), a large detector on
the Large Hadron Collider (LHC) at CERN, tasked with detecting particles from
high-energy physics experiments. The CMS notably took part in the confirmation of
existence of the Higgs Boson.

The CMS trigger system aims to prune the raw data stream from the particle
detectors to manageable amounts by filtering out non-interesting events. It is made
of a number of rules that can be evaluated online and triggered depending on the
content of the events; it governs whether these events will be retained for further
analysis. The experiment produces around 40 million events per second, which is
much too large an amount of data for exhaustive processing. A first level of fast
hardware-implemented filters (named LI triggers) reduces this to 100 thousand
events per second. Then a second level of software triggers (named High level trigger
(HLT)) further reduces this to 1000 events per second. Each HLT processes the
events selected by a pre-defined subset of L1 triggers, making a hierarchical relation
between L1 and HLT.

The CMS system is hierarchical, with a second layer of (more complex) trigger
rules exploiting the events of the first (simpler) ones.

The applicative goal is to detect anomalies in the measurement data streams
to identify hardware or software failures in the CMS trigger system. Failures can
expectedly be detected by observing unusual rates of acceptance in the triggers
[Pol20].

This anomaly detection task has two specific features: i) two kinds of anomalies
need to be distinguished; ii) the anomalous status of a datapoint is context-dependent.

These features can be efficiently accounted for in a specific deep LVM, as will be
detailed below.

8.4.1 The two kinds of anomalies

In the following, each datapoint is a vector of numerical values. In the context of
the CMS data, each of these values correspond to the trigger rate of a single filter
during a physical experiment. As the triggers are related by a hierarchical relation,
depending on where the fault occurs (at the level of a L1 trigger, or at the level of a
HLT) the final vector of trigger rates is affected differently.

110 Chapter 8. Properties-oriented structures

The first kind of anomaly, referred to as type A anomaly, manifests itself as a
large change of value in a single feature of the vector. The second kind of anomaly,
referred to as type B anomaly, manifests itself as a small but correlated change
over a group of features. Both types of anomaly can be emulated in an LVM in a
natural way, via perturbing different variables in the generative process. A type
A anomaly corresponds to a perturbation of a single observed variable, while the
generative process is untouched as a whole. A type B anomaly can be thought of as
perturbing a single latent variable, with cascading consequences, leading to a host
of small correlated changes at the observation level. In relation to the CMS data,
Type A anomalies are anomalies related to a fault in a single HLT, while Type B
anomalies are linked to a fault at the L1 level, cascading over to all HLT feeding on
this particular L1 trigger.

More formally, the behavior of the LVM on anomalous observations differs
depending on the kind of anomaly.

Type A anomalies are generally errors that cannot be modeled by the generative
model, as they do not fit the generative process of the training data at all. It is thus
expected that the auto-encoding process would fail to account for these anomalies.
As a result, the reconstruction term of the ELBO, EZN% log pg(z|z), would have a
value much lower than for regular data.

On the other hand, type B anomalies would somewhat align with the generative
process and the inference model might reflect type B anomalies through slightly
modifying the latent variable values according to the existing generative process
(po(x|2)). In this case, the reconstruction term of the ELBO would have a usual
amplitude, but the inferred values for the latent variables would cause a very low
probability for the latent term [, . log pg(2).

In a nutshell, the general intuition is that when evaluating the ELBO on an
anomalous datapoint, at least one of the variables of the model will take an unexpected
value. Depending on which variable does, one can identify the kind of anomaly
presented to the LVM. Furthermore the (usual) dimensionality reduction from X
to Z alleviates the curse of dimensionality encountered when assessing whether the
variable is out-of-distribution.

In [Pol+19] we focus on a model with a single latent variable Z and a single
observed variable X; both are multi-dimensional Gaussian variables whose dimensions
depend on the problem considered. The definition of what counts as a Type B
anomaly amounts to putting a threshold on the value of the latent KL divergence,
Dikr(qe(z|x)|lpe(2)), while Type A anomalies are found by comparing the real
feature vector x to the one predicted by the observation model pg(z), and rescaled
by the predicted standard deviations oy(z). This amounts to computing the max
norm of the difference vector (i running on the dimensions of the space):

max [zi = po(2)il (8.3)

g o9(2)i

That criterion is triggered if a feature of the vector x deviates from the predicted

value p9(2) significantly more than the predicted standard deviation oy(z), allowing

e.g. to characterize 3-sigma deviations (being reminded that type A anomalies
intervene on a single coordinate of the observations).

8.4. Typed anomaly detection 111

(@D— —®

(a) Generative model (b) Inference model

Figure 8.5: Generative and inference models associated with the conditional VAE
presented in [Pol+19].

Limitations. The potential limitation of the approach is twofold — although these
limitations were not experimentally encountered in [Pol+19]. The first limitation
(regarding the detection of type B anomalies) lies in assessing whether the KL term is
unusually high (log pg(z) unusually low). As discussed in Section 8.1, the use of the
log-likelihood is not always a good indicator, especially in high-dimensional spaces
[Nal+19b; CJA19; Nal+19a]. However, the fact that one considers here the latent Z
as opposed to the observed X alleviates this issue.

The second limitation is when, even though the ELBO presents an abnormally
low value, the gap is equally spread among several variables, making it impossible
to precisely identify the faulty variable. This situation might arise in a hierarchical
generative process where several nodes take a slightly unusual value, and their
combined effects lead to a very unexpected end result. The question of whether these
cases should be treated as anomalies or not is generally problem-dependent.

8.4.2 Conditional anomaly detection

In order to detect malfunctioning sensors at the CERN, another constraint needs to
be considered: the question of whether a datapoint is an anomaly or not depends on
some external factors, K, e.g. reflecting the nature of the ongoing LHC experiments.
Depending on the current experiment, we have some expectations about the behavior
of the trigger system.

Accordingly, the data distribution should be learned as pg(z|k), prompting for
the use of a conditional deep LVM (Figure 8.5).

This conditional formulation plays a crucial role in the use of this model for
anomaly detection. As discussed in Section 8.4.1, K should rather be viewed as a
deterministic variable, available to both generative and inference models. This ensures
the model uses Z to only encode the relevant information not already contained in
K. This role of Z is enforced by the KL term of the ELBO, that drives g4(z|z, k)
(and thus py(z|z, k) as well, Section 3.4) to be as close as possible to the fixed latent
distribution p(z).

The KL information pressure is such that Z is as parcimonious as possible, thus
avoids duplicating any information already contained in K,® as long as the decoder

3The value of the latent KL loss of a VAE can be interpreted as the amount of information
the decoder has to specify to distinguish the particular sample at hand in the whole generative
latent distributionpe(z). ELBO training thus drives the model to build a latent representation which
allows this using as little information as possible. It follows from this that any information provided
to the model via the K variable but still encoded in Z by the inference model will cause an ELBO
penalty compared to the optimal model.

112 Chapter 8. Properties-oriented structures

07k B []
C M 1 0.6 /// j
06 E g 1

r] 05k 5
05F = F]

0.4F—— CVAE's b - [— CVAE's Di.

U
o
[
I
1
AUC

[— VAE's D] [— VAE's Dk,

03— u-SvMm 4 03— psvm 7
r Isolation Forest b Isolation Forest]
S [N [N S S MY MR | e o e e ey ey 1y
0.0 0.2 0.4 0.6 0.0 0.2 0.4

) 1.0 0.6 . 1.0
Anomaly Treshold [Log Loss] Anomaly Treshold [Log Loss]

Figure 8.6: Reported ROC area under curve (AUC) for MNIST (left) Fashion-
MNIST (right) datasets and different anomaly detection algorithms as a function of
varying anomaly threshold ¢ based on LeNet-5 [Lec+98a] model classification log loss.
Overall classifier accuracy is 98.95% and 89.62% for MNIST and Fashion-MNIST
respectively. The curves stay relatively flat due to high performance of the classifier:
most of the test samples have log loss smaller than 0.01. The variance is computed
over 5 independent runs.

neural network implementing pg(z|z, k) can appropriately mix Z and K into the final
prediction X. As above, Z being concise makes it less susceptible to dimensionality
issues.

8.4.3 Empirical validation

This method for anomaly detection was empirically validated on both toy examples
(a synthetic dataset, MNIST, and Fashion-MNIST) as well as the proprietary data
from the CMS experiment [Pol+19], confirming the above considerations as follows.
The Conditional VAE is referred in the figures as CVAE.

In the context of the MNIST and Fashion-MNIST datasets, the notion of condi-
tional anomaly is intuitively defined as an image that does not look like its class,
either due to a labeling error, or because the image is fundamentally borderline (for
example, a very deformed digit, which can be hard to classify). It is observed that
the conditional VAE (CVAE, in Figure 8.6) does detect such examples as type B
anomalies, and that this classification strongly correlates with the uncertainty of a
classifier trained on the same dataset: anomalous datapoints are the most difficult
ones to classify. In particular, one observes that the conditional part of the VAE
significantly improves the anomaly detection, further backing the claim that it is
easier for the model to decide whether an image is weird-looking when knowing its
alleged class.

The tests on the synthetic and CMS data allow one to assess the behavior of
the model of type A and type B anomalies compartively to the ground truth
(Figure 8.7). The synthetic data used 100-dimensional X values, generated from a
5-dimensional K external factor. In the case of the CMS data, X is composed of the
trigger rates of 24 HLT, while K is composed of the trigger rates of the 4 L1 triggers
that feed them.

It is observed that type A anomalies are very easy to detect (being of large
amplitude in both datasets), while type B anomalies are more challenging. However,
the conditional VAE significantly outperforms the vanilla VAE, illustrating the

8.5. Summary 113

—— CVAE: Type A, ||(l7(x — X)?||=, AUC = 0.996 + 0.002 —— CVAE: Type A, ||%(x— X)?||, AUC = 0.984 + 0.008
—— CVAE: Type B, u(Dk), AUC = 0.826 + 0.010 —— CVAE: Type B, u(Dx.), AUC = 0.826 * 0.039
--- VAE: Type B, 4(Dx1), AUC = 0.686 + 0.027 --- VAE: Type B, (D), AUC = 0.675 * 0.008

Sensitivity (TPR)
|
Sensitivity (TPR)
o o o
S (=2l [}
T
‘I
y
\
\
\
A
\
1
'
i
\
1
‘\
|

|
o
[N}

I I I [
T . N m—
Fall-out (1-TNR) Fall-out (1-TNR)

Figure 8.7: Anomaly detection: ROC curves for the synthetic test dataset (left) and
the CMS trigger rates dataset (right). The represented variance corresponds to 5
independent runs. The anomaly score for type B reports the average Dy, of z. For
CMS trigger case with low false-positive rate (fall-out), VAE slightly outperforms
CVAE but remains within the training variance. On type A anomalies, VAE and
CVAE have very similar performances.

positive impact of using K and letting the latent variable Z focus on the anomaly
detection.

8.5 Summary

This chapter focuses on the design of latent structures in order to achieve different
goals: supervised and semi-supervised learning; structure-based learning; and anomay
detection.

Classification can be achieved by the use of conditional generative models in
the context of generative classification, producing models that are more resilient
to adversarial attacks and out-of-distribution samples, by avoiding unreasonably
confident predictions, making it easier to detect anomalous examples and abstaining
from classifying them. The integration of the conditional generative model in a larger
structure [Kin+14] allows to expand this construct to semi-supervised learning, and
train a discriminative classifier using the generative one as a teacher. This approach
also nicely illustrates how multiple datasets with different observed variables can be
used to jointly train a single model.

Regarding data structures, the introduction of deterministic latent variables in
the LVM [Kar+17] can significantly impact the training dynamics of the model,
and allow finer control over the flow of information through the variables. In
particular, sequential models can more efficiently learn temporal dependencies through
a backbone of deterministic variables, rather than probabilistic ones for which the
training dynamics can easily get stuck in local minima.

Finally, formulating the question of anomaly detection in the context of generative
graphical models enables to finely distinguish among different types of anomalies.
In the presented contribution [Pol419], we show that the generative model (via
the inference model) can be structured so as to distinguish several parts in the
data producing system, here enabling to identify faulty behavior from two different

114 Chapter 8. Properties-oriented structures

systems in the CMS experiment at CERN. The ability of deep LVMs to represent
data using low-dimensional variables also seems to make them more robust to the
curse of dimensionality.

Compositional VAE:
structure-enforced properties

Contents
9.1 A latent space supporting composition 116
9.1.1 Definition of the latent structure 116
9.1.2 Handling the variable number of parts in neural architecture117
9.2 Inference model over multi-sets 118
9.2.1 The recurrent network approach 118
9.2.2 Correlated Gaussian prediction 119
9.2.3 Using graph neural networks 121
9.3 Empirical results o 122
9.3.1 1D artificial problem 122
9.3.2 2D artificial problem oo 123
9.3.3 Electrical curves composition 127
9.4 Summary and perspectives 132
9.A Determinant of the covariance matrix 133
9.B Computing the KL divergence on {W;} 133

This chapter describes our second main scientific contribution, the Compositional
Variational Autoencoder (CompVAE), first presented in [BS20a]. This contribu-
tion originates from the context of smart energy policy design and infrastructure
dimensioning. More precisely, the goal is to generate the electrical consumption
curves aggregating the consumption of a few dozen households, based on little meta-
data information about these individual households, under various usage scenarii.
The difference, compared to other approaches related with residential consumption
forecasting [Cia+13; Ort+14; Zha+18], is that the latter aim to precise short or mid-
term forecasting built on probabilistic models of electrical consumption of individual
appliances.

The considered goal was formulated and addressed at a general level: define
compositional models, trained from and able to generate whole instances, involving
a varying number of entities. In other words, the point is to define a programmable
probabilistic simulator, trained from aggregated instances. The presented approach,
tackling the compositional generative goal, faces three challenges:

Firstly, the number of households is not fixed in advance, and the model needs to
potentially accommodate a large number (a few hundred) of households based on
their metadata.

Secondly, the aggregated consumption should be invariant w.r.t. permutation of the

115

116 Chapter 9. Compositional VAE: structure-enforced properties

households.

Thirdly, the aggregated model should account for the fact that the individual curves
are not independent: they are all conditioned by same global factors, e.g. weather or
holidays.

These requirements are addressed using a generative model conditioned by a
multi-set', hence the name Compositional Variational Auto-Encoder. This approach
is more generally designed to enable generating instances of some "whole" based on a
multi-set description of its parts.

9.1 A latent space supporting composition

A main specific requirement of the tackled problem is to control the generated
output based on a multi-set, denoted {/;}. As detailed in Section 5.2.1, quite a
few Latent Variable Models can handle sequential data [FA15; Bow+15; Chu+15;
Fra+16; OKK16; Oor+16b]. The goal here is to ensure that the eventual generated
output does not depend on the arbitrary order on the ¢; elements, that is, achieving
a permutation-invariant representation: the behavior of the model is not affected by
a permutation is applied on its inputs. Encoding such invariances in the structure of
the model and the architecture of the neural networks has a significant positive effect
on the training and model quality [RSP17b; BPC19]. In CompVAE, this invariance
property is sought using a 2-level representation, as follows.

0.1.1 Definition of the latent structure

Let C denote the set of external factors (e.g. weather or holidays) generally condi-
tioning all simultaneous consumption curves.

Besides the source of variations represented by C, each i-th part of the whole has
some additional internal variation on the top of its description via ¢;. In the case of
electrical consumption for instance, £; might be the type of electrical contract of the
i-th household; this type of contract does not entirely characterize the behavior of a
household.? This remark leads to associate each i-th part with a continuous latent
variable W;, aimed to capture this internal variation. Along this line, the model
learns an associated distribution pg(w;|¢;).

Secondly, as said, the different parts involved in the whole depend on some
global factor C. For electrical consumption, the instanciation of C' might represent
an external event that jointly affects the consumption of all households (a match
on the TV). For image generation, C' might indicate the general light and light
orientation conditions. For music generation it could capture the synchronization
of the different instruments. This lack of independence is modelled by introducing
another latent variable Z, depending on C' (the global factors) and possibly the {W;}
as well: py(z|e, {w;}).

YA multi-set differs from a standard mathematical set as it can contain multiple copies of some
elements.

2Likewise, when generating an image based on the involved entities, ¢; might specify that the
i-th entity s a chair; still there are many instances of chair.

9.1. A latent space supporting composition 117

Eventually, the output X is generated by combining Z and the {WW;} in a last
step, pg(z|z, {w;}), yielding the following factored distribution:

po(@, z, {witle, {€:}) = po(lz, {wi}) po(zle, {wi})] po(wilts) (9-1)

The next step is to describe how X and Z depend on the multi-set {W;}. The
use of recurrent neural networks is not appropriate: they impose an arbitrary
ordering of the elements, and pose several optimization challenges when considering
a large number of elements. For this reason CompVAE takes inspiration from the
encoder-aggregator-decoder structure that has been used in previous work dealing
with set-structured data [ES17; Esl+18; Gar+18; Lee+19] and introduces a specific
deterministic latent variable W that aggregates the {W;}, and conditions X and Z
with W (Figure 9.1):

w = ¥Y(wi,ws,... wk) (9.2)

Figure 9.1: Representation of the CompVAE generative model.

The aggregation function ¥ must apply on any number of inputs, be invariant
with regard to their order, and capture the multiplicity of a same element in the
multi-set.

The straigtforward approach, used in CompVAE;, is to consider their sum:

%

The investigation of other aggregators is left for further work. This aggregation of the
individual w; has important implications on the inference model, and the choice of
an additive aggregation is in large part driven by the fact that there are efficient and
simple ways to control for the sum of a set of random variables (more in Section 9.2).

9.1.2 Handling the variable number of parts in neural archi-
tecture

A key issue in CompVAE is to account for the fact that the generated whole X must
reflect the number K of pats involved in the composition. Two main situations are
considered, depending on whether the general amplitude of X is proportional to K
(e.g. in the case of the consumption curves) or not (e.g. in images, each pixel varies
in the same range, and the number of pixels remain the same, whatever the number
of objects in the scene).

118 Chapter 9. Compositional VAE: structure-enforced properties

Since the 2010s, many neural networks are based on activation functions akin
the ReLU [GBBL11], with value linear in their input unless they are saturated. In
this case, when the amplitude of the input is doubled, the overall amplitude of the
output is approximately doubled as well. Accordingly, when using such networks for
modeling py in CompVAE, the amplitude of Z and X is proportional to that of f/IV/,
and thus to K, the number of parts.?

9.2 Inference model over multi-sets

Symmetrically, the design of the CompVAE inference model poses the inverse problem
of that of the generative model: the information contained in the variable X needs to
be split into the different {W;} variables. This inference model naturally factors as:

Q¢(z> {wi}|x’ C, {El}) = Q¢(Z|Cv m)Q¢({wi}|$7 G %, {El}) (9'3)

The question is how to implement gy({w;}|z, ¢, 2, {£;}).

9.2.1 The recurrent network approach

Our first attempt to build the inference model relied on factorizing further the g
distribution by introducing an arbitrary ordering of the elements, as follows:

Q¢({wi}‘x? ¢z, {gl}) = H q¢>(wi‘x> ¢, 2, i, {w<i}) (9'4>

Such a factorization can easily be implemented using a recurrent neural network:
at each step, the network is given a triplet (z, ¢, ¢;) as input and predicts a distribution
on wj; as output, the dependency on {w.;} being handled by the recurrent state of
the network. This approach however does not scale well to large numbers of elements
(due to long-term dependencies problems with RNNs, as discussed in Section 5.2.3).
We also observed that, even with a small number of elements, the information does
not in practice split equally between the different w;; quite the contrary it is observed
that the w;s are almost insignificant for ¢ > 3. While the RNN achieves a good
reconstruction, the model thus fails to capture the link between w; and ¢;, resulting
in a very poor generative quality.

Our second attempt, aimed to mitigate the above loss of signal issue, was to
explicit the recurrent state of the model. In the former attempt the recurrent state
does not directly depend on the sampled value of each variable w;, blurring the
dependency on {w;}. The second attempt thus made it explicit that the relevant
recurrent state is the sum of the previously extracted w;, hopefully enabling the
extraction of w;. The sought distribution thus reads:

gs({wit|z, ¢, 2, {€;}) = Hq¢ w;|xT, ¢, 2, b, ij (9.5)

j<i

31f such a proportionality is not desirable, the structure of the neural networks needs to be
adjusted accordingly, for example by introducing (at least) one layer of saturating activation functions
like the sigmoid or the hyperpolic tangent, as done in section 9.3.2.

9.2. Inference model over multi-sets 119

The above extraction procedure behaves like a hand-rolled RNN: an accumulator
variable, initialized to 0, holds the partial sum Zj <; wj;; then at each step this
accumulator is given as input to the neural network, in addition to x, ¢, z and ¢;,
and its output is the probabilistic prediction for w;, from which a value is sampled
and added to the accumulator, as illustrated by Figure 9.2.

This second attempt however faced the same issue as the first one, most of
the information being captured by the first few variables. Another, non-recurrent
approach was thus considered.

e

Figure 9.2: Graphical representation of the recurrent inference model with explicit
recurrent state. The dependency of each w; node on (z, ¢, z) is omitted for clarity.

9.2.2 Correlated Gaussian prediction

The failure of the inference model to adequately split the information between the
different W; variables is blamed on the choice to process them sequentially, rather
than as a whole. Therefore, we opted for designing an inference model that directly
predicts a joint distribution over the set {W;}.

In order to ensure an accurate reconstruction of X, the key issues are to identify
W and Z ; the W;s are only directly involved in the KL term of the ELBO.

For each (vectorial) W; in the latent space, its coordinates are assumed to be
independent; for simplicity, W; will be considered as a scalar in the remainder
(its prediction actually proceeds coordinate-wise). The simplest model considers a
diagonal Gaussian distribution over the vector (wy,ws, ..., wg), where the neural
network predicts a mean and variance pair (,ui,azz) for each w;. We modify the
diagonal covariance matrix to allow the model to control for the variance of the sum
of these variables: the motivation is to enforce a small variance on the prediction of
the value w while enabling a larger variance on the prediction of each w;, to allow a
tighter ELBO.

The motivation for this requirement (enabling a high variance for each individual
W; while enforcing a low variance on w through correlating the W;s) is the following.
On the one hand the low variance on the prediction of W is required for a good
reconstruction of X by the model. On the other hand, the inference model should
not be required to identify the individual contributions of the parts. Alleviating the
need for individual predictions allows one to increase the entropy of the inference
prediction (thus improving the ELBO), and avoids the need for the neural network
to break the symmetry between similar parts, a far from trivial task.

120 Chapter 9. Compositional VAE: structure-enforced properties

To control the variance of W, a new parameter 0 < p; < 1for:=1to K is
introduced, informally defining how much W; varies conditionally to W; p; > 0
enforces a negative correlation between W; and W, as formalized in Equation 9.6.

Let ¢; and p; + 0;¢; be samples respectively drawn after A'(0; 1) and N (u;02)).
The p; parameter is used in the sampling procedure of w;, as:

w; = g + 06 — p; Zajej (9.6)

The above sampling procedure defines a multivariate normal distribution of all
Wis, such that the variance of W = Y, W; is controlled by the p; parameters with:

Var (W;) = (1 — p;)? —i—Zp (9.7)
J#i

Var() (1—2,%) (Za2> (9.8)

thus, the variance of W; can be high while the variance of W is low. In the case
where), p; = 1, the variance of W is 0, making its prediction deterministic. In
the particular case where p; = 1/N, with N the number of parts in the whole, then
one has as desired the variance of W set to 0, while the variance of each W; is
(1-%)o? ++ ZJ %, which can still be relatively large.

The density of the w; distribution reads, with |X| the determinant of the covariance
matrix of the w;:

tog as(fwid () (o), {pid) = 3 Y- — S log[8] — & log2m (9.9)

This determinant can be computed analytically (with detailed derivation in
Appendix 9.A):

1
§log|2\ = log (1 — E pi) + g log o; (9.10)
i i

A non-admissible case is when), p; = 1, where the variance of W is zero and
the determinant of the covariance matrix 3 is 0. This case is avoided by choosing an
appropriate parameterization, e.g. by setting p; as the softmax of some v; in the real
space:

evi

pi =

ensuring that both the sum of the p; is less than 1 and p; is in interval (0, 1).

This parameterization also interestingly supports the closed form computation
of the KL-divergence between g,({w;}|z,x,c, {¢;}) and po({w;}|{¢;}) (detailed in
Appendix 9.B).

9.2. Inference model over multi-sets 121

9.2.3 Using graph neural networks

The neural network defining ¢4 ({w;}|z, z, ¢, {¢;}) thus yields three values j;, o; and
v; for each coordinate of W;. The chosen architecture, easily scaling up with the
dimension size of the latent W space, is that of graph neural networks (GraphNN)
[Sca+09; Gil+17; Wu+21].

In GraphNN, each layer of the network is structured according to a same graph
(Figure 9.3): each node in a layer receives as input its previous state and the output
of its neighbor nodes computed in the former layer; the same activation function is
used in each node for a given layer. Formally, letting L denote the layer index, with
h¥ the state of node i at layer L, and f7, the function encoded by the neural network
on the L-th GraphNN layer, then:

hitt = fo(hf R Yjen) (9-12)

for N; the set of neighbor node of the i-th node.

L Layer i — 1J Layer g Layer 7 + 1)

. .

Figure 9.3: A GraphNN: within each layer, the neurons (circles) are connected using
a same graph (black lines). The value of each i-th neuron is computed from the
values of the i-th neuron and its neighbors in the previous layer. For readability, the
computation graph is only shown for the red and green neurons.

In order for the function definition to be independent of the number of neighbors,
the function f, is implemented as taking the sum (or average) of some projection of
the state at the neighbors via a function &y :

Wt =fu [hF Y @r(hh) (9.13)

JEN;

where f¥ and ®¥ are implemented and learned as standard neural networks.

In CompVAE, the GraphNN is built on a fully connected layer graph®. It
gradually exploits and refines individual parts and whole information (respectively,
the {/;} element metadata, the state of the other variables, and the global (z, z, ¢))),
as illustrated by Figure Figure 9.4. Note that the global (z, z, ¢) is pre-processed by

4Even with a fully-connected graph, the computational cost remains reasonable thanks to the
chosen structure: ®;, needs only be computed once, and the sum on all neighbors can be efficiently
computed by first computing the sum on all nodes, and then subtracting the value from the current
node from that total sum. The complete process thus remains linear in the number of elements of
the composition, not quadratic.

122 Chapter 9. Compositional VAE: structure-enforced properties

; ©3) €D 3

(NN (i)

ASCR ARGy
f1, @1 fa, P2 f3,®3

Figure 9.4: Graphical representation of the GraphNN used in the inference model
of CompVAE with 3 GraphNN layers(G). Each "NN" rectangle represents a neural
network independent of the graphical structure. When applied to a set of variables
{... }4, these neural networks are applied independently on each element to produce
a the output set of variables.

another neural network into a latent value h, which is provided as input to both fr
and @y in each layer of the GraphNN:

hitt = fr (hf,ﬁ, >, (I)L(hJL79)) (9.14)

JEN;

9.3 Empirical results

The proposed CompVAE architecture is validated on two artificial problems and the
real-world problem motivating the design of the approach, the generation of electrical
consumption curves. Preliminary results on both artificial problems in [BS20al; the
validation real-world data has been completed since and is also provided here.

9.3.1 1D artificial problem

In the first artificial problem, a part is a sine curve; the whole is made of the non-
linear sum of these curves. In this problem, the output amplitude is proportional to
the number K of parts, and each part affects all coordinates of the whole.

Each part (sine curve) is defined by its frequency, amplitude and phase. The
associated meta-data consists of the single frequency ¢; (and thus is known when
generating the curves); the amplitude a; and phase x; are meant to be captured by the
latent variables w;. The whole curve is obtained by applying a tanh function on the
sum of the K curves, inducing a saturating behavior controlled by a hyper-parameter
A. The whole curve is then sampled according to some time resolution 7' to produce
a vector of values:

A K 27l
z[t] = K tanh <K ; a; cos (Tt + Hz)) (9.15)

The observation model thus is defined as a diagonal Gaussian observation on the
vector z[t], for t = 0 to T.

9.3. Empirical results 123

The frequency ¥¢; of each sine curve is randomly sampled in the finite set
{1,2,...10}; amplitude a; is sampled from a normal distribution N (1,0.3); phase r;
is sampled from a normal distribution AV(0,7/2). Two global curves generated from
the same four sine curves are depicted in Figure 9.5, in order to compare the curve
obtained by the tanh of the sum and that of the sum of the tanh. The point of this
artificial problem is to investigate the case where the whole does not boil down to
the sum of the parts.

tanh of sum —— sum of tanh ——

Figure 9.5: Non-linear part-to-whole aggregation (purple) compared to the sum
of non-linear perturbations of the parts (green). Both curves involve a non-linear
transform factor A = 3.

The compositional behavior of the model learned by CompVAE is illustrated on
Figure 9.6, displaying the whole curve generated from an increasing number of the
individual sine curves. All individual w;s are sampled from the generative model
po(w;|¢;) and the corresponding individual curves are displayed (Figure 9.6, left).
The overall curve (Figure 9.6, right) is generated from the partial sums: from top
to bottom, one sees the overall curve generated from w; alone, then w; + ws, then
w1 + wy + w3, forming a coherent composition of the different individual parts.

The model used in this problem is built using a 10-layers residual network for
the generative model and 3 GraphNN layers combined with 6 residual layers for the
inference network. It takes approximately 10 hours to train using a GTX1080 GPU.

9.3.2 2D artificial problem

The second artificial problem is concerned with the generation of an image (the
whole) combining parts described as color anchors. Formally, a part (color anchor) is
defined from its location, color, and intensity. The associated meta-data ¢; consists
of both the color varying in {white, black, red, green,blue} and the location of the
anchor point encoded as a 2D vector in [0; 1]%; the intensity of the anchor point is
left to be captured by w;. Each part induces a color gradient on the blank canvas.
The whole is an image alike a Voronoi diagram (Figure 9.7) where the color in each
pixel is set to a weighted combination of the anchor colors, weighted by the distance
of the pixel to the anchor and the intensity thereof.

124 Chapter 9. Compositional VAE: structure-enforced properties

Figure 9.6: The compositional CompVAE generative model on the 1D artificial
problem: On each row is displayed a part (left) and the whole (right) made of this
part and all above parts.

This 2D problem presents two additional difficulties compared to the former 1D
problem. Firstly, the whole output (the image) is of constant amplitude and does
not depend on the number K of parts; pixel values lie in the [0; 1] interval whatever
K is. Secondly, each part only has a local impact on the whole.

The first issue implies that the generative model needs to include a saturating
mechanism. Two approaches have been considered, based on the combination function
1 and the observation model.

The aggregation function ¥ (Equation 9.2) is modified by applying, on the
additive aggregation of the W;s, the following saturating activation function:

xT

(9.16)

9.3. Empirical results 125

Figure 9.7: Examples of training images for the color gradient composition problem.

—10) 0 5) 10

x T
tanh =" T~ T

Figure 9.8: Comparison of the tanh activation to x — %ﬂxl

and finally,
W=y <Z Wi> (9.17)

The coefficient v is learned as a global parameter, and initialized to 1.0. This
activation function has a saturating behavior similar to that of tanh but is slower
to saturate (Figure 9.8), preventing gradient vanishing in the early learning stages,
when w still has a large variance.

Additionally, the observation model is built using the discretized logistic model
[Sal+17] (Section 5.2.2). This model generally behaves as a quasi-deterministic
observation model (Section 6.2), but it is built on the discrete domain of pixels (that
is, {0,1,2,...,255}). It thus acts as a second saturating layer, enforcing by design

126 Chapter 9. Compositional VAE: structure-enforced properties

Figure 9.9: CompVAE on the 2D problem, composition of color anchors. Leftmost:
the ground truth image. Left to right, generated output at epoch {0, 1, 2, 3, 4 5}
x 100, 000. The right colors are identified around epoch 200.000; the right locations
are identified much later, around epoch 500,000.

Figure 9.10: The compositional CompVAE generative model on the 2D artificial
problem: On each row is displayed a part (column 1), the ground truth whole made
of this part and all above parts (column 2) and generated images (columns 3 to 9)
generated from this part and all above parts.

the fact that every generated pixel belongs to the proper domain.

The second difficulty is that each part (anchor) only locally affects the whole
image locally. The learning process thus must manage to identify which part of the
whole image is associated with an ¢; part; the training information is more sparse.
In contrast, in the 1D problem, every ¢; part had an impact on all coordinates of
the whole curve. This sparsity of the training signal overall results in a significantly
longer training process. Typically, the last thing the model learns is the link between
the location of the parts and their effect on the whole image, as shown on Figure 9.9.

The whole process is illustrated on Figure 9.10, displaying the whole image
generated from an increasing number of the individual color anchors. As in the 1D
problem, all individual w;s are sampled from the generative model pg(w;|¢;) and the
overall image (Figure 9.10, right) is generated from the partial sums: from top to
bottom, one sees the overall image generated from w; alone, then w; 4+ ws, then
w1 + we + ws, forming a coherent composition of the different individual parts.

The model used for this experiment is a 20-layer residual network for the generative
model, and uses 5 GraphNN layers with 10 additional residual layers for the inference
model. Its full training took 2 days on a GTX1080 GPU.

9.3. Empirical results 127

9.3.3 Electrical curves composition

The applicative motivation of CompVAE is concerned with smart energy control
policies, and more specifically the dimensioning of infrastructures along diverse
usage scenarii. In the context of the NEXT contract (ADEME funding, coordinator
Artelys), our industrial partner needs to assess the consumption peak of sets of
households under different energy demand settings (weather, electric car). More
abstractly, the question is to generate energy consumption curves corresponding to a
set of customers (households or factories), where each customer is associated with
its contract metadata.

Our input data consists of anonymized consumption curves from around 500
households, covering a span of 5 years for the longest. The consumption is measured
bi-hourly, resulting in 48 values per day. Examples of the consumption curve of a
single household over a week are displayed in Figure 9.11. These curves illustrate
the erratic behavior of household-level consumption in general: the baseline is very
low, with spikes of consumption when persons are active, turning lights on and
using electrical appliances. Note that the aggregated curves of circa 100 households
show a much smoother behavior than individual curves (Figure 9.12). As expected,
the aggregation of independent random variables is smoother than the individual
variables. Note however that the behavior of different households (the random
variables) are independent only to some extent: they are correlated as the households
face the same weather and external temperature, the same holiday periods, the same
matches on the TV.

However, the comparatively smoother behavior of aggregated households moti-
vates the presented approach: training a generative modeling to directly produce
aggregated curves, associated with the multi-set of entity (household) descriptions.

The metadata available for each entity (household) is composed of the type of
power contract (categorical variable), the power subscribed (numerical variable), and
possibly the group of off-peak hours® (also described with a categorical variable).
These three values thus compose the ¢; label associated with household i. The
objective is to build a model that can generate aggregate consumption curves of
circa 50-150 households. In addition, the hourly measure of temperature is given as
a global metadata C.

CompVAE uses a specific observation model py(x,w, z) here, reflecting the multi-
scale structure of aggregated electrical curves (Figure 9.12): a strongly regular baseline
with a daily regularity, decorated with a fast varying component. This structure
leads to the use of a hierarchical observation model as presented in Section 6.2.2.
Formally, curve X is decomposed into two observed variables X1 and X2, where X2
is the full-resolution curve, and X1 is a smoothed version, sub-sampled by a factor
of 2. The model then decomposes as py(z2|z1, W, z)pg(x1|w, z). As in the Laplacian
pyramid structure, X2 is predicted as a correction to an upscaled version of X1. The
neural network structure itself is built using 1D convolutional and residual networks:
the generator model is composed of 14 residual layers, while the inference model has
5 GraphNN layers, associated with 7 residual layers. The total training time is of
approximately 1 day using a GTX1080 gpu.

5The electricity provider proposes electrical contracts where the electricity is cheaper during
some time range (usually during the night), as an incentive to shift part of the consumption (such
as water heaters or washing machines) during off-peak hours.

128

Chapter 9. Compositional VAE: structure-enforced properties

3500 1 3000 1
3000 1 2500
2500 2000 |

2000
1500

1500 |
1000 -

1000 -
500 500
01 oA

(a) Consumption curve of a household.
4000

(b) Consumption curve of a household.

1500 1
3000 A 1250 1
1000 4
2000 1 70 |
500 -

1000 {
250
0 o

o 1 2 3 4 5 3 7

(c) Consumption curve of a household.

o 1 2 3 4 5 3 7

(d) Consumption curve of a household.

Figure 9.11: Examples of consumption curves of single households. Horizontal axis is
labeled in days, starting at Monday morning and ending at Sunday evening. Vertical

axis is labeled in Watts.

100000 4

80000 4

60000 4

40000 1

20000 4

T T T T T T T T
0 1 2 3 4 5 6 7

(a) Consumption curve of 100 household.

120000 4

100000 4

80000 4

60000

40000 4

T T T T T T T T
0 1 2 3 4 5 3 7

(b) Consumption curve of 100 household.

80000
70000 A
B0000 4
50000 A
40000 4
30000 4
20000 4

10000 4

80000

60000 1

40000 4

20000 1

o 1 2 3 4 5 i1 T

(c) Consumption curve of 100 household.

o 1 2 3 4 5] T

(d) Consumption curve of 100 household.

Figure 9.12: Examples of aggregated consumption curves of a hundred random
households. Horizontal axis is labeled in days, starting at Monday morning and
ending at Sunday evening. Vertical axis is labeled in Watts.

9.3. Empirical results 129

90 T T T T 120 T T T
Prediction std Prediction std

80 Prediction mean Prediction mean
“ n n Target 100 Target

n |
JI
|

70

60

80

60

40

o | 1
| R
\ |

INNiaT S
a [V N AWV WU W L W LY

Consumption (kW)

Consumption (kW)

o) VR e
0 0
0 20 40 60 80 100 120 140 160 180 0 50 100 150 200 250 300 350
Iterations Iterations
(a) Reconstruction of X1 (b) Reconstruction of X2.
120 T T T 140
Prediction std
Prediction mean i
100 Target 120 . v‘ ?‘ i
| |
\ [
Z w0 ” z 100 \ “J ‘\‘ | “ '
= = |
g ’ . £ 80 i\ ‘\ I | I
E TT I T sl bk
g g 60 H ‘ He==t==H 11
: hwk] AHHH . e b I
N AN L P R N T AR AT AP MY
‘\“ { | ' i ‘v ‘?“ “r:\{l“‘ Y MJW ’M\‘;{ _‘~ b\l A i ‘\\‘
20 MV V u / V W .]) -4 20 ,U{“ "“ WJ ‘W :\J‘\" V ‘l}%\n’d"\ \\H‘ wd \/V‘“ ”\h‘f’r‘ K’v’,"{é" V\/
0 ‘ 0 ‘ ‘ ‘
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Tterations Iterations
(c) Stochastic reconstruction of X2. (d) Fully generated samples.

Figure 9.13: CompVAE performance on electrical consumption curves. The recon-
structions (a,b,c) show the target curve in red, and the Gaussian model prediction by
its mean (purple) and standard deviation (light blue). (a) shows the reconstructed
X1, (b) the reconstructed X2 given the real X1, and (c) the reconstructed X2

given the reconstructed X1. (d) shows 5 generated curves from the same set of {/;}
metadata.

The training procedure uses aggregated curves that are generated on the fly for
each minibatch, uniformly selecting a week and a set of households in the set of 500
households and (at most) 250 weeks. One can thus consider that the training data is
virtually infinite®, which significantly helps avoiding overfitting.

The behavior of the trained model is presented in Figure 9.13. In particular,
Figure 9.13(a) and Figure 9.13(b) illustrate the reconstruction quality reached by
CompVAE on these data: X2 is near-perfect given the real X1, and X1 itself captures
well the shape of the curve, with most of the uncertainty being on the exact height of
the peaks and lows. Figure 9.13(c) illustrates what would be a "full reconstruction'
from the latent values: Z and {W;} are given from the inference model, but X1
is sampled from pg(z1|w, z) before being given to py(x2|xl,w, z), the later being
represented on the plot. The resulting prediction, while still fitting the overall
shape of the curve, now displays small but significant deviations from it. While
the error between the reconstructed curves and the real ones is of 3.8kW (+1.5kW)

6As the number of ways to randomly choose between 50 and 150 elements from a set of 500 or
magnitude comparable to 10'3°

130 Chapter 9. Compositional VAE: structure-enforced properties

and 4.9kW (+1.6kW) per household” for individual X1 and X2 reconstructions, it
reaches around 13.9kW (£5.3kW) per household for the "full reconstruction”. This
illustrates how the uncertainty is shared between the two variables X1 and X2 by
the hierarchical observation model.

In generative mode, Figure 9.13(d) displays 5 curves produced by CompVAE
upon receiving the same {/;} 100-element multiset. All generated curves have same
general shape and amplitude as the original one: the average distance between the
original curve and a generated one is 20kW (+11kW) per household (using the same
metadata), to be compared with 92kW (£73kW') when the individual curves are
independent, that is, the same distance as between two independent real curves.
This result confirms that CompVAE correctly identifies the dependency between the
metadata and the curve.

The quality of the generated curves is evaluated and compared to real data
according to three domain-specific metrics, related to the goal of balancing the
electrical network. The first metric is the peak consumption: the maximum value
reached by the curve during the week. A too high peak value can trigger some
security mechanisms on the grid. A second metric is the peak sustained consumption
for a given duration: for example the maximum value that is reached for at least
8h in total during the whole week. Sustained high consumption can also adversely
affect the network, e.g. by causing overheating in some parts. A third metric is the
flexibility of the curve, a technical indicator defined as the L1 distance between the
curve and the constant curve of same average consumption over the week. At the
grid level, consumption and production must always be balanced; in this respect, the
easiest case is that of constant consumption curves. The flexibility thus measures
how far the curve is from a constant curve with the same total energy consumed,
using the earth-mover’s (or energy-mover’s) distance.

The overall distribution (averaged over the number of households, household
metadata and temperature profiles) of these three metrics are compared in Figure 9.14.
The provided histograms are computed from 100,000 real aggregated curves and
100,000 curves generated by CompVAE. One observes a small but noticeable bias in
CompVAE, that generates curves with slightly higher peaks and a slightly higher
flexibility in average, as shown in Fig. 9.14. Following the discussion in Chapter 7, a
tentative interpretation might be that, as the generative model did not fully capture
the structure of the curves, it provisionned the intrinsic variability of the curves
through random noise; this noise might explain the wider range of the curve values,
increasing the top-1 value (peak) and its variance (flexibility).

The impact of providing the temperature as global metadata C' is assessed through
a lesion study, comparing the latent part of the losses for a model trained with and
without this metadata, as summarized in Table 9.1. These values can be interpreted
as the amount of data the encoder needs to store in the latent variables in addition
to the one already provided by the latent model pg(z, {w;}|{¢;}). CompVAE trained
without the temperature information converges to storing on average 12 bits in the
set of {w;} as a whole, and 25 bits in z, so 37 bits total. This is already quite a small
value compared to the size of the data (X is a vector of 336 values), illustrating how

"The error is computed as the sum of absolute error across time, divided by the number of
households in the composition, so that values associated with different number of households can
still be compared.

9.3. Empirical results

131

1000

800

600

400

200

1200

1000

800

600

400

200

1750

1500

1250

1000

750

500

250

Generated
[Dataset

0 50 100 150 200 250
Peak value (kW)

Generated
[Dataset

0 2000 4000 6000 8000 10000
Flexibility (kW)

Generated
[Dataset

0 20 40 60 80 100
Top-8h (kW)

Figure 9.14: Histograms of the overall distribution of generated curves (orange)
and the dataset (blue) according to 3 domain-specific metrics: the peak value, the
flexibility, and the maximum-value sustained over 8 hours (top-8h).

132 Chapter 9. Compositional VAE: structure-enforced properties

{W;}i loss (bits)| Z loss (bits)|Total latent loss (bits)
Without temperature input 12 25 37
With temperature input 8 18 26

Table 9.1: Lesion study, impact of providing the weather temperature as input to
CompVAE: Amount of information stored by the model in the latent variables, as
interpreted from the loss values.

X can indeed be well predicted from the set {¢;}. However, the model trained with
the temperature input as C' converges to around 8 bits in the set of {w;} and 18
bits in z, for a total of 26 bits. The addition of the temperature input thus allows
the model to reduce by around 30% the amount of information the inference model
needs to provide on top of the trained model to accurately reconstruct the curve,
illustrating the expected link between weather and electrical consumption (being
reminded that electrical heating is quite common in France). It is interesting to note
that even though the temperature is only injected at the level of the Z variable in
the model, its usage enables to reduce the amount of information stored both in Z
and in the {W;}.

9.4 Summary and perspectives

Our second main contribution, CompVAE is a Deep LVM with a specific latent
structure aimed to enforce additive semantics in latent space. This structure makes
CompVAE able to accurately learn and exploit a generative model conditioned on
a multi-set of variables, addressing the applicative need of generating aggegated
electrical consumption curves for a neighborhood given the set of households it
contains. Its empirical validation on synthetic and real-world problems demonstrates
its generality and its potential®.

The CompVAE structure involves clearly separated observation and latent models
— as generally advocated throughout the manuscript. A perspective for further
study is thus to combine CompVAE with more sophisticated observation models (e.g.
Wavenet or Pixel CNN), and extend compositional generation to high-dimensional
complex data.

Another perspective concerns the aggregation function ¥ used to combine the
{W;} variables in CompVAE. All considered models rely on the sum (or a variation
thereof); the rationale is to allow the inference model to infer the {W;}s while con-
trolling for their sum, using a multivariate Gaussian distribution. Other aggregation
functions could be considered, e.g. an element-wise max, or a learned combination
function built on invariant neural networks [RSP17a; BPC19]. How to adjust the
inference model to capture the behavior of these aggregation functions opens the
path for further research.

8Though a slight bias, interpreted as the amplification of the entity interdependencies, is observed
on the electrical curves case study.

9.A. Determinant of the covariance matrix 133

9.A Determinant of the covariance matrix

The sampling procedure is defined by:

Wi = Wi + 0;€; — ,OZ'ZO'J'EJ' (9.18)
J

Let D be the diagonal matrix (o1, 02, ...,0k), 1 be the column vector (1,1,...,1),
and w, p, € and p be the column vectors defined by the {w;}, {p;} {e;} and {u;}
respectively. The sampling procedure can be reformulated using these as:

w =+ De—p(1TDe) = p+ (I — p17)De (9.19)
The covariance matrix is thus given as a product of four matrices:
¥ =1-p1")DDI - p1T)T (9.20)

The determinant of D is []; o5, remains the determinant of (I — p17) to compute.

This can be done using the matrix determinant lemma®:

I-p1T|=1-1Tp=1-> p; (9.22)
%

Finally the determinant is given as:
2
s- (1-X0) T 9.29
i i

9.B Computing the KL divergence on {IV;}

In the context of the CompVAE model, pg({w;}|{¢;}) factorizes as a product
L po(w;|¢;), each term of this product being a normal distribution.

The KL divergence thus decomposes as (conditioning variables are ommited for
brevity):

Drr(gs({wi}] ..)llpe({will...)) = —H(gp({wi}|...)) =Y K, logpg(wi...)

i Wit~qg
(9.24)
The entropy of the g4 distribution is easily known from its covariance matrix:
K K 1
H(gy({wi}].) = 7 + 7 log 2m + 7 log 3| (9.25)
K K
=5 + 5 log 27 + log <1 — ; pi> + ; log o; (9.26)

9For any invertible square matrix A and vectors u and v:

JA+uv’|=(1+v A u)|A| (9.21)

134 Chapter 9. Compositional VAE: structure-enforced properties

To compute the second half of the KL, let m; be the mean of pg(w;|¢;), and s?
be its variance. The log-density is thus expressed as:

2
w; — My 1
log pg(w;|4;) = —(128221) —log s; — 5 log 27 (9.27)
The expectation is then computed using the sampling definition of w;, and by
averaging over the standard normal variables €1, ..., €x:
2
1 1
E log po(w;|...) = E Wi + o€, — p; Zajej —m; | —logs; — 5 log 27
Wi~qe sz €150y €K i
1 1
=5z [—m)? + (1= p)o; +mZU —logsi — - log 21
L JFi
1 1
= =52 | (s —m)* + (1= 2p)07 +pi }_oj| —logs; — ;5 log2m
7

J

Putting all terms together, the final result is similar to the usual divergence
between two diagonal normal distribution, with a few additional terms involving the
pi parameters:

Dgr(...)=)Y

%

(pi — mz) + (1 — 2/)1)(7 + Pz Z S
3 + log —

(9.28)

K
— log (1—sz‘> Y

Latent manipulation from
Boltzmann principles

Contents
10.1 Boltzmann distributions and Pareto exploration 136
10.1.1 Principle of maximum (relative) entropy 136
10.1.2 Exploration of the Pareto front 137
10.2 The Boltzmann tuning of Generative Models 138
10.2.1 Generalizing to multiple variables 139
10.2.2 Using normalizing flows 141
10.2.3 Comparing and selecting the f criterion 141
10.3 Case studies Lo 142
10.3.1 Case 1: Conditioning a distribution 142
10.3.2 Case 2: Extreme values of a distribution 144
10.3.3 Case 3: Fine-tuning a generative model 146
10.4 Summary and perspectiveso L 150
10.A Derivation of the MaxEnt solution 151
10.B Proofs of the derivative formulas 151
10.C Monte-Carlo Prediction of [§, f and Drr(pallp) - . - - - 154

This chapter presents the third main contribution of the manuscript, concerned
with the control of the generative process. Many related works [Mat+16; RMC16;
Lar+16; Che+18a; Moy+18; Mat+19b] are based on the explicit interpretation and
control of the latent variables. Another approach is proposed here, where the latent
distribution is altered using an explicit loss on the observed variables, as this second
formulation is more in line with some problems. A first version of the approach,
named Boltzmann Tuning of Generative Models (BTGM), was presented in [BS21].
This chapter describes an extended version of BTGM.

Considering a given, already trained generative model p(z), and an external
criterion f : X — R, the goal is to refine the model and define a new model p(x)
that maximizes £, f(=) while remaining as close to p as possible. This goal, akin
model fine-tuning, is formalized as a tractable optimization problem, and a sound
procedure is proposed to tackle it.

This problem is also motivated by an application from the smart energy control
domain, and specifically the estimation of the consumption peak. More formally, in
the same context as in the previous chapter, the goal is to generate extreme though
realistic electrical consumption curves; these curves will be used to evaluate the
behavior of the electrical grid in specific scenarii and the associated risk attached.

135

136 Chapter 10. Latent manipulation from Boltzmann principles

BTGM proposes a general answer to the above problem. At an abstract level,
the point is to bias the generative model toward the region of extreme values w.r.t.
the considered external criterion.

10.1 Boltzmann distributions and Pareto explo-
ration

A most appropriate framework to express constraints in a probabilistic setting is
the celebrated Principle of Maximum-Entropy (MaxEnt), originated from statistical
physics [Jay57] and now widely used in Machine Learning. In Bayesian terms, this
principle concerns the appropriate choice of a prior distribution, as being the one with
largest entropy among the admissible distributions (complying with the constraints).

10.1.1 Principle of maximum (relative) entropy

Most considered constraints either restrict the support of the distribution, or require
the expectation of some function over the distribution take a given value: [i, f = C.
In both cases, the MaxEnt principle can be formulated as a constrained optimization
problem:
argmax H(p) s.t. Vi: E fi(z) = C; (10.1)
b)
This constrained optimization problem is solved by using Lagrange multipliers
[Jay57], yielding a solution of the form (complete derivation in Appendix 10.A):

px) = %GXP (Z)\ifi(x)> (10.2)

where the values of the Lagrange multipliers A\; depend on constant C;s, and the
normalization constant Z also is a function of the Lagrange multipliers.

Interestingly though unsurprisingly, energy-based models (Section 1.1.2) take the
same functional form. Both approaches take inspiration from statistical physics: In
both cases, the principle of maximum entropy of the distribution over the physical
states of the studied system, subject to the expectation of the total energy tak-
ing a known value [Jay57], yields the Boltzmann distribution (where the inverse
temperature plays the role of the Lagrange multiplier).

The principle of maximum entropy has been further generalized by [Cat07],
combined with Bayes rule to define the principle of maximum relative entropy. This
latter principle states that, given a prior distribution p(x), the refinement of p subject
to a set of constraints of the form [i, f = C' is properly formulated through minimizing
the KL-divergence of the sought distribution p and p (or relative entropy of p):

argmin D (pllp) s.t. Vi: E fi(z) =C; (10.3)

p zwﬁ

This new problem can be solved in the same way as MaxEnt, and yields a similar
solution:

px) = p(Za:) exp (Z)\ifz‘(x)) (10.4)

10.1. Boltzmann distributions and Pareto exploration 137

10.1.2 Exploration of the Pareto front

This formulation interestingly allows for exchanging the roles of the optimization
objective and the constraints, up to a reparameterization of the Lagrange multipliers.
In short, optimizing the (relative) entropy under the constraint that the expectation
of a function f is fixed to a constant value, is equivalent to maximizing [K, f under
the constraint of a given value for the (relative) entropy'. More generally, the
Lagrange multipliers can be interpreted as a parameterization of the Pareto front
corresponding to the multi-objective optimization of the various f; criteria and the
(relative) entropy. This Pareto front, describing the possible trade-offs between the
considered objectives, can be explored via varying the \;s.

This exploration is illustrated on a simple case with a single criterion f(x). Let
Py be the distribution defined as:

pa(z) = 2 s (10.5)

Then, the local behavior of the criteria seen as functions of A can be expressed
using statistical quantities evaluated over py, as follows:

A Dics(prllp) = W, (7) (10.6)
d
= [E f = Vary, (f) (10.7)

In particular, when restricted to A > 0, both D, (pxllp) and [E;, f are monotonic
functions of A. The A < 0 case is symmetrically handled (by minimizing f instead
of maximizing it). This confirms that exploring the different values of A reliably
explores the Pareto front balancing these two objectives.

Similar identities hold for second derivatives (with proofs in Appendix 10.B):

2

3
S Dxr(alp) = Vary, (1) AR (7 -/ (10.8)
P Pr

3
d2
SE-E(/-Es (10.9)
Px Px Px

From the above equations, it follows that if the first, second, and third moments
of f under p) can be empirically estimated (assuming that one can sample the
instance space according to py), these estimates can be used to efficiently explore
the said Pareto front.?.

The sought approximation of p can be found using variational inference (pre-
sented in Section 2.3); it reads:

pr = argmin DicL (pl|p) (10.10)
p

'Both associated Lagrangians (see details in Appendix 10.A) are very similar, the only difference
being whether the Lagrange multiplier A applies on f or of the KL-divergence. As a result, they
yield the same solution, up to a reparameterization of A into 1/\.

?In the case where more than one f; criterion is considered, the approach can be extended to
characterize in closed form the gradient of the criteria w.r.t. the (A;); vector, as well as their Hessian
matrix.

138 Chapter 10. Latent manipulation from Boltzmann principles

Then, replacing py with its formal definition (Equation 10.5) and dropping the
constant terms:

by = argmax H(p) + [[§, [\f(z) +log p(2)] (10.11)

This optimization problem can be solved within the variational inference frame-
work, depending on the considered f and p. This optimization can be combined with
a second-order method to efficiently find the value of A corresponding to a given
target value of D (pxllp) or [E;, f- The approach is described in Algorithm 10.1
and Algorithm 10.2.

Algorithm 10.1 Maximizing [£; f subject to Dk (pallp)

D <+ Target value for Dgr(py||p)

A<+ 0

repeat
P < argmax,; H(p) + E,p [Mf(x) +logp(z)] (Equation 10.11)
Estimate Dgr,(pa|lp) by Monte-Carlo
Estimate <& Dy (p||p) using Equation 10.6 by Monte-Carlo
Estimate %DK L(DAllp) using Equation 10.8 by Monte-Carlo
A < Second order update to bring Dgr (pa||p) towards D

until convergence of A

return p)

Algorithm 10.2 Minimizing Dk, (px||p) subject to [, f

F « Target value for [£; f

A0

repeat
px < argmax,; H(p) + E,p [N (x) +logp(z)] (Equation 10.11)
Estimate [£; f by Monte-Carlo
Estimate % Es, / using Equation 10.7 by Monte-Carlo
Estimate % [Es, f using Equation 10.9 by Monte-Carlo
A < Second order update to bring [£; f towards F'

until convergence of A

return p)

In both algorithms, the computational cost is dominated by the optimization
of Equation 10.11. The Monte-Carlo estimation of the objective value and its two
derivatives with a large number of samples is comparatively inexpensive; hence
the estimation error comes from the error on py itself (not from the Monte-Carlo
estimation).

10.2 The Boltzmann tuning of Generative Models

The above general principles aimed to finding py from p can be adapted in the
deep LVM framework, defining our third contribution, the Boltzmann Tuning of

10.2. The Boltzmann tuning of Generative Models 139

Generative Models (BTGM). This algorithm (Algorithm 10.1 & 10.2) involves an
inner loop (finding py for a given value of A and an outer loop, adjusting the value
of A complying with the constraint w.r.t. the current py, until convergence of \.

10.2.1 Generalizing to multiple variables

When transposing the optimization problem from Equation 10.1 to a LVM, a first
issue regards the definition of the relevant variables, and specifically which variables
should be marginalized before computing the KL-divergence between py and p.
Let us consider the case of distribution p(z, z) with X the observed variable and
Z an abstract latent variable. The quantity of interest clearly is the distribution p(x)
over the observed variable.
One would thus like to minimize Dgr,(px(2)||p(z)) (as opposed to, D r.(Pa(z, 2z)||p(x, 2)),
that is in general different). However, the optimization of Dgr (px(z, z)||p(x, 2)) is
straightforward to estimate from the LVM, while Dy, (px(x)|p(z)) is much more
expensive, as it requires marginalizing out the latent variable Z.
The question thus becomes of comparing both optimization problems (marginalized
and non marginalized) and estimate the cost of the non-marginalized approximation.
Formally, the KL-divergence can be decomposed as:

Drr(pa(z, 2)||p(z, 2)) = Drr(pr(x)|p(2)) + K, Drr(Ba(zlo)||p(z[x)) (10.12)

TP

The non marginalized KL-divergence thus is a higher-bound of the marginalized
one. Accordingly, minimizing the non-marginalized KL-divergence also brings the
marginalized down, but the tightness of the bound is unknown and there is no guar-
antee regarding the difference between both optimal solutions. In the marginalized
optimization problem, the model can flexibly reorganize the latent space as it does
not constrain in any way the distribution of the latent variable Z. Quite the contrary,
the non-marginalized optimization problem directly takes into account the latent
space: it forces both py(z) to remain similar to p(z) and py(x|z) to remain similar
to p(z|z).

The lack of flexibility of the latter optimization problem is however not necessarily
a drawback, and might actually be beneficial to the BTGM implementation. In
most cases, distribution p is obtained as the (imperfect) result of a training process.
Searching for py while drastically modifying the latent structure of p thus amounts
to training from scratch a new model distilling p. On the one hand, this optimization
is very costly; on the other hand, it can amplify the errors in p.

The alternative is to only learn a new latent distribution py(z), while keeping
the "decoder" part of the model p(x|z) frozen, where py is obtained as:

Pa(z, 2) = p(x[2)pa(2) (10.13)

The characteristics of the data, what makes p "realistic", are essentially captured
in p(z|z), where the latent variable Z only dictates the data region to be sampled
from. The only modification of the Z distribution thus ensures that the tuned model
P remains within the domain of realistic data (as sampled by p), and focuses on the
appropriate subdomain according to criterion f. Furthermore, the KL-divergence

140 Chapter 10. Latent manipulation from Boltzmann principles

simplifies when focusing on the only Z distribution optimization:

Drr(Pa(x, 2)||p(x, 2)) = Drr(bA(2)||p(2)) + [, Drr(p(zl2)|p(z]z)) (10.14)

2~Px

=0

Overall, conducting the optimization on the two variable model p(x, z) with
criterion f(x) is equivalent to conducting the optimization on the single-variable
model p(z) with criterion f(2) = Egop(alz) f(x).3

This reduction enables to exploit models with a deterministic "decoder", such
as GANs. It is however still necessary to evaluate the tightness of the upper bound
(Equation 10.12).

Note that even though py(x|z) = p(z|z), this does not imply in general that
Px(z|z) = p(z|z). After Bayes theorem,

M(le) _ i) pla)
p(Ele) ~ pala) p()

(10.15)

In order to enforce the tightness of the upper bound (Equation 10.12), that is,
ensure [, Dxr(Pr(z|x)||p(z|z)) be close to 0, then the ratio needs to be most of
the time close to 1 when (z,2) ~ px:

V(x,2) ~ P iig; p(z (10.16)

In the case where z is a quasi-deterministic and invertible function of z, the change
of probability from p to p) can be mostly controlled by the change of probability of
z.

In the VAE case, the use of a quasi-deterministic observation model (Section 6.2)
falls in the above category; the mapping from z to = can be made quasi-invertible by
using a restricted probabilistic inference model.*

In the GAN case, on the one hand they do provide a deterministic mapping; on
the other hand, there is a-priori no guarantees for this mapping to be invertible;
hence, the use of a GAN as base p model might result in a larger gap between
Drr(Pa(, 2)|lp(, 2)) and Drer(Pa()[[p())-

Likewise, complex observation models such as PixelCNN (Section 5.2.2) neither
provide quasi-determinism nor are quasi-invertible, and thus they are a priori poor
candidates as base models for BTGM.

When considering a multi-variable deep LVM (with more than two variables), the
same methodology can be followed, selecting only some variables X;s of the model to
be tuned while the total KL-divergence reads as a sum of KL-divergences over these
variables (taking the KL expectation w.r.t. their parent variables noted m(Xj;)):

Dir(palp) = Z E Dir(Pa(zi|m(Xy))||p(2i|w (X)) (10.17)

3The criterion f under py reads]E<I . f(z). Under the assumption px(z, z) = p(z|2)pa(2),

this can be decomposed as [F,]anp(x\z) f(z). The latter is expressed as the expectation of the

ZP
alternative criterion f()= Em~p(z\z) f(z) under px(z), effectively moving the decoder part of the
model into the optimization criterion.

*If the inference model is limited to be single mode, e.g. Gaussian, then the generative model
po(x, z) is driven to learn a latent representation compatible with this inference model: such that
po(z|x) has a single mode as well (Section 3.4), therefore z is a quasi-invertible function of z.

10.2. The Boltzmann tuning of Generative Models 141

Does approximating the KL-divergence over observed variables by the full KL-
divergence over all variables entail a performance loss? The answer thus depends
on whether the observed variables depend on the rest of the model in a quasi-
deterministic and quasi-invertible way. In the positive case, the tightness of the
upper bound is good after Equation 10.12 (the second term in right hand side is
small); otherwise there is no guarantee.

10.2.2 Using normalizing flows

A key issue is to define a good search space for py. For simplicity, let us focus on
the single-variable case; the multi-variable case is handled in the same way. While
any variational inference method can be used in principle, the choice of flows-based
methods (Section 2.3.3) appear to be appropriate: even though py can be a very
complex distribution, its support is bound to be within the support of p for the sake
of the realism of the generated samples.

Using normalizing flows (Section 2.3.3) to transform samples from p into samples
of another distribution p is thus a natural approach. It provides a significant flexibility,
while the values of p can still be computed in closed form. Letting g denote the
learned flow, x a sample from p and & = g(x), the generated sample from p, then it
comes:

B(2) = p(«)|J (9)(2)| (10.18)

with |J(g)(z)| the determinant of the Jacobian matrix of ¢ in x. The optimization
problem defined in Equation 10.11 then is rewritten as an optimization on g:

arg max [} [\f(g(x)) +log p(g()) +log |/ (9)(2)|] (10.19)

g T~p

In practice, to ensure a proper coverage of the space and a good exploration of
the modes of py, the flow model is initialized close to the identity function, ensuring
that the training samples cover the whole support of p from the start.

As said, the approach involves an inner optimization loop (finding p)) and an outer
loop (adjusting A). Using a flow-based approximation in the frame of Algorithm 10.1
or Algorithm 10.2 enables a warm-start heuristics in the inner loop: re-using the
approximation of g from outer iteration ¢ — 1 to warm-start g at iteration ¢. As
long as the estimated value of A increases along the outer loop of optimization, the
new target distribution becomes more concentrated around its modes, making the
previous one a decent initialization. If A decreases this strategy is however more
risky: one or more modes of the distribution may become eligible, not necessarily
covered by the previous approximation. In that case, the safe solution consists in
initializing ¢ to identity, or to a previous approximation trained with a lower A value.

The experiments presented in Section 10.3 rely on this warm-start procedure.

10.2.3 Comparing and selecting the f criterion

A key step in the setup of BTGM is the choice of the criterion f to be maximized.
Informally, the expert’s requirements can be represented in many different ways,
and same solutions should be found when using f or hof for any monotonous scalar
function h. The difficulty of the underlying optimization problem however varies

142 Chapter 10. Latent manipulation from Boltzmann principles

depending on which h is chosen. Let us examine how BTGM behaves depending on
f.

Note that the Pareto front defined by the family p) when A ranges in R is
unaffected when f is composed with any affine h (h(xz) = ax + b, with a > 0).
Varying constant b amounts to changing the normalization constant Z(\), and
varying coefficient ¢ amounts to changing A, leaving the Pareto front unchanged. An
affine normalization of f is based on this remark: in the remainder, it is assumed
with no loss of generality that the expectation of f under the base distribution p is
0, and its variance is 1.

A given f (after the affine normalization) is assessed from the expected difficulty
of learning a good approximation of p) with f. Intuitively, if p) involves sharp and
intricate boundaries, the task is more difficult. Letting g denote the transformation
from p to Py, then the determinant |J(g)| of its Jacobian matrix gives a quantitative
estimate of how much g needs to warp its working space to transform samples from
p into samples from py. The variations of this determinant across the space thus
provide a good indicator of the complexity of this transformation.

More formally, the complexity of g at its best (corresponding to an optimal p))
can be computed from its theoretical value given by Equation 10.5. The gradient of
the logarithm of its determinant is given as:

V. log|J(g)| ™! = V, log “((“’“)) = AV, f(2) (10.20)

p(x
The difficulty of learning p, for a criterion f is thus given a priori by considering
the distribution of the gradient of f under the base distribution p. Therefore, two
criteria f; and fo can be compared based on the histograms of their normalized

gradients: |V, f(z)||/1/Vary(f), as will be illustrated in Section 10.3.1.

10.3 Case studies

This section illustrates the use of BTGM on three case studies:

In the first one, the criterion f is an externally-trained classifier, and the goal is to
bias a generative model to oversample the selected class(es), allowing one to finely
control the strength of the bias.

In the second one, BTGM is applied in the context of smart energy policies, continuing
the application described in Section 9.3.3; the initial goal is to produce curves and
facilitate the estimation of the peak consumption; more generally, one want to
produce extreme-but-realistic consumption curves according to some metrics.

The third case study investigates how to use BTGM to combine an overly general
generative model (as trained by a VAE) with a discriminator network (as used in
GANSs) to yield a more realistic distribution sample.

10.3.1 Case 1: Conditioning a distribution

Given a generative model p(z), BTGM is applied to create a conditioned version of
it. Let us assume for instance that some classifier ¢(y|x) is provided, then we might
use it to condition a posteriori the generative model and e.g., approximate p(z|y) for
a chosen class y.

10.3. Case studies 143

In order to do so, one might consider two criteria, commonly associated to
probabilistic classifiers: f(x) = ¢(y|z) and f(z) = logc(y|z). From an analytical
point of view, the second criterion (log-probability of the class) seems to be more
appropriate, yielding the theoretical distribution (after Equation 10.5):

pr o pl) e(yl)* (10.21)

If classifier ¢ accurately approximates p(y|x), then setting A = 1 gives py ~ p(x|y)
after Bayes theorem. Depending on the value of A, one might control the strength
of the bias, from a slight oversampling of class y (A < 1) to a strong preference for
examples unambiguously classified into class y (A > 1).

Criterion f(z) = c¢(y|z) does not yield such a principled theoretical solution.
However, as discussed in Section 10.2.3, another issue is whether one or the other
criterion induces a tractable optimization problem. This question is experimentally
investigated as follows. We trained a classifier on the MNIST dataset; the distributions
of [|[Vze(y|z)|| and ||V logc(y|z)| for each of the 10 classes are computed, using a
trained VAE as base distribution p. The histograms, estimated from 10.000 samples,
are presented as Figure 10.1.

Class =0 Class =1 Class =2 Class =3 Class =4
B (og ply|x)
3 plylx)
2
1 |
0 |||||I|||I|.. — |.|I||..II . I|||I||||u... . ||||I|||II||... T |.||I|I.II|..| .
o 2 4 o 2 4 0 2 4 o 2 4 o 2 4
Class =5 Class = 6 Class =7 Class =8 Class =9
3
2
1
0 |||I|||| [FT .||II.||....|I ol |||I|I|||.|||. . ||I|IIII||I| 2k . IIII||||| .
o 2 4 o 2 4 0 2 4 o 2 4 o 2 4

Figure 10.1: Comparing criterion f(z) = c¢(y|z) (in blue) and f(z) = log c¢(y|x) (in
orange) on MNIST: binned distribution of their gradient norms. The distribution
tails are truncated for the sake of visualization.

In the latter case (f(x) = ¢(y|x)), Figure 10.1 (left) shows a large bar at 0 (for
large regions of the space, the gradient norm is close to 0), and values up to 100 are
observed (the histogram is truncated for readability). The optimization landscape
defined by f(z) = c(y|x) thus expectedly involves large plateaus (regions where the
gradient norm is close to 0) separated by large cliffs (regions where the gradient
norm is very high). While this landscape reflects the behavior of a sharp classifier,
it is expected to define a hard optimization problem for the normalizing flow, as it
requires the learned transformation to widely vary at the boundaries among classes
(following Equation 10.20). On the opposite, the former case (f(x) = loge(y|x))
involves few plateaus (regions with gradients close to 0) and no abrupt transitions
(the gradient norm remains less than 15), suggesting a much smoother optimization
landscape consisting of hills and valleys.

The above remarks are empirically confirmed by building p, for various values
of A. Figure 10.2 reports Dy (pallp) versus [£;, f, comparing the empirical value

144 Chapter 10. Latent manipulation from Boltzmann principles

(in orange) and the theoretical value (in blue) for both f = c¢(y|z) (Figure 10.2,
left) and f = logc(y|z) (Figure 10.2, right). The theoretical values are numerically
computed by sampling p and using the following formulas (derivations detailed in
Appendix 10.C):

E, feM
f="F 10.22
Iﬁﬁ; E, (10.22)
A
Dk (pxllp) = % —log[F, &M (10.23)
p p

As could have been expected, the empirical curves do not perfectly match the
theoretical curves. However, the gap is significantly lower when using f = log(c(y|z))®.
More specifically, for low A values, p) tends to remain close to p; as A increases,
it quickly overshoots the theoretical Dg. This behavior is consistent with an
optimization landscape composed of plateaus and abrupt cliffs: for low A the landscape
is mostly flat, and the few small cliffs are missed, and when A increases only the high
plateaus are kept and the rest of the distribution support is suddenly discarded.

In contrast, the evolution of the distribution for f(z) = log(c(y|x)) is smoother
and more gradual, closer to the theoretical values, thus confirming the expectations
based on the regularity of its gradient norm.

The generated samples are illustrated on Figure 10.4 using f(z) = log c(y = 4|x).

From top to bottom, the A value increases; each row displays a set of samples
from py. As X increases, the prevalence of the digit 4 increases in the generated
samples, and non-4 digits are mostly chosen in the class 9, that most look alike 4.
For A > 1, only 4 samples are generated; for A = 1.25, the distribution focuses on
the most unambiguous 4 samples.

10.3.2 Case 2: Extreme values of a distribution

The motivating application used in CompVAE (Chapter 9) is also considered for
BTGM.5 The presented results are based on a regular VAE trained on electrical
curves, aggregating 10 households. The rationale for considering a small number of
households is to enforce the variability of the generated curves, and produce examples
that are visually compelling. The same model, trained on larger aggregations,
produces "extreme" curves that are less easily interpretable due to the lower global
variance of the dataset.

BTGM is applied on a pre-trained VAE by learning a normalizing flow in its
latent space, as described in Section 10.2.1 and Section 10.2.2. The generation of
electrical consumption curves considers the same objective functions as presented in
Section 9.3.3: the peak value, the flexibility, and the sustained maximum value over
8 hours, characterized as follows (where © = (z1,x2,...x7) denotes the generated
curve):

Fpeak(x) = max(z;) (10.24)

5When using the classification probability, the maximum gap between the predicted and reached
values for the KL-divergence is 0.58, while it is of only 0.17 when using the log-probability (the
values of f are not comparable as they are on different scales).

5The full integration of CompVAE and BTGM is not achieved at time of writing.

10.3. Case studies 145

10

0.8 1

0.6 1

0.4 1

0.2 4

T T T T T T T -10 - T T T T T T
o 2 4 & B 10 12 0.0 02 0.4 08 08 10 12

(a) [E;, [as a function of A using c(y|x). (b) [E;, f as a function of A using log c(y|x).

35
25 1
3.0
2.0 1
25 1
20 1 15 4
15 A1
10 1
10
0.5 1
0.5 A
0.0 4 0.0 1
T T T T T T T T T T T T T T
o 2 4] B 10 12 00 02 04 06 08 1a 12

(c) Dir(Prllp) as a function of A using (d) Dgr(pr]lp) as a function of A using
c(ylz). log c(y|z).

Figure 10.2: Comparing the theoretical (in blue) and empirical (in orange) values of
the criteria. Left: f(x) = c(y|z). Right: f(z) = logc(y|x).

10 A

0.8 4

0.6 4

0.4 4

0.2 4

T T T T T T T T _]‘0 - T T T T T T
0.0 0.5 10 15 20 25 30 35 0.0 05 10 15 20 25

(a) [E;, f as a function of Dk (pa[p) using (b) [£,, f as a function of Dk (pPx||p) using
c(y|z). log c(y|x).

Figure 10.3: Representation of the theoretical (blue lines) and empirical (orange
dots) Pareto front between both criteria, depending on the choice of f, using either

f(z) = c(ylz) (left) or f(x) =logc(ylz) (right).

146 Chapter 10. Latent manipulation from Boltzmann principles

1
”
q
(
Y
Y

YAYYUYIGHYYYq

Figure 10.4: Samples generated from py biasing a generative model trained on
MNIST towards the class 4(using f(z) = logc(y = 4|z)). The top to bottom
rows respectively correspond to A = {0.0,0.25,0.5,0.75,1.0,1.25}. In each row
are presented samples from py: py = p for A = 0 (top row) and the bottom row
corresponds to the theoretical conditional model (A = 1).

fsustained(x; k) = tOp—k’(l‘i) (1025)

fﬂex1b111ty() Z

%

Z%

In order to generate visually extreme cases, the target value for Dy is fixed
to —1og(0.001) ~ 6.91, corresponding to the top 0.1% curves w.r.t. the chosen
criterion. In all cases the process converged in less than 10 updates of A, following
Algorithm 10.1. The resulting tuned distributions are shown in Figure 10.5, on
which the respective impact of each criterion is clearly visible. The maximization of
Jpeak (Figure 10.5(b)) selects curves that are slightly above average, but with very
high short peaks (even going beyond 30kW). In contrast, maximizing fsustained does
not produce as high peaks, but selects curves with higher average value, as desired.
Finally, maximizing fgexibility selects curves with high variance, with periods of both
very high and very low consumption. In all cases, the generated curves still have
the general characteristic of real curves (such as the daily pattern) and do present
significant variety, in concordance with BTGM objective of remaining as close to the
base generative model as possible.

(10.26)

10.3.3 Case 3: Fine-tuning a generative model

Another usage of BTGM aims to fine-tuning generative models to improve their
generation quality. As discussed in Section 3.2, deep LVMs such as VAEs tend
to learn overly general distributions due to the limited capacity of their inference
models and their maximum likelihood training [AB17]. Given such a model, BTGM

10.3. Case studies 147

E: L ,)nl ’l_ /‘f }J E
L \ m.;.ﬁ.._ JL,\,.L :

(a) Real curves.

M MWQ! M’M
5- uﬁw JLWMM | VR
(c) Maximizing fustained- (d) Maximizing faexibility-

Figure 10.5: Generation of electrical consumption curves: original curves (in blue),
curves generated from the base distribution (in green) and from the biased distribution
(in red). (a): Original curves. (b): Curves biased toward high consumption peak.
(c): Curves biased toward sustained consumption (over 8 hours, thus biased toward
the top 16 highest consumption. (d) Curves biased toward high flexibility. In each
case, b curves are sampled and superposed to illustrate the variety of the generation.

proceeds to refine its latent distribution and better stick to realistic samples using
an adversarial mechanism a posteriori [Goo+14].

A standard GAN classifier (referred to as discriminator) discriminates among
generated samples (drawn after a generative model pg) and a real dataset pp. When

trained to optimality, the discriminator thus provides an approximation of %55.

The pre-sigmoid output of the discriminator is thus itself an approximation’ of

e (x;, making it an interesting candidate for a BTGM f criterion. Using pg as
base distribution, the optimized distribution produced by BTGM reads:

Pa(z) p(;(m)l_)‘pp(x))‘ (10.27)

Distribution p, gets closer to the data distribution pp as A increases, with
theoretically py = pp for A = 1. In practice it is unlikely to fully recover pp, but
one might expect to decently tighten an overly general distribution pg. Note that
the use of a GAN discriminator within BTGM enables to decouple the training of
the modules: the discriminator is trained while pg is frozen, and BTGM is then
launched to learn py with both pg and the discriminator frozen: this mechanism
avoids the concurrent adversarial training of the modules, sidestepping the notorious
stability issues of the GANs [AB17].

"Let y denote the pre-sigmoid activation of the discriminator, then sigmoid(y) ~ I)G(Z)DT%.

~ PD(JE)

Solving for y yields y ~ Ok

148 Chapter 10. Latent manipulation from Boltzmann principles

10 10

-5

-10 F
-15) 7
—20 _»‘//
| o] =
D.IO 0. I2 D.I4 0. IG D.IS 1 IO 1 I2 0 ICI D.IZ 0 I4 D.IG D.IS 1 ICI 1 IZ
(a) Es, f (y axis) vs A (z axis). (b) Dk r.(prllp) (y axis) vs A (z axis).
10 Jd %Y
5 97
o
) g89
-10 } I /
s {1/
o] £
S S S S vk
(c) Ep, f (y axis) vs Dir(Prllp) (= (d) Generated samples, with the
axis). strength A of the bias increasing from

top to bottom rows.

Figure 10.6: Adversarial refinement of pg (VAE trained on MNIST) based on an
adversarial discriminator f, comparison of theoretical (in blue) and empirical results
(in orange). 10.6(a), 10.6(b): Evolution of E;, f and Dgp(px|lp) with A. 10.6(c):
Pareto front of both objectives. 10.6(d): top to bottom rows respectively correspond
to A in {0.0,0.125,0.250,0.375,0.5,0.625,0.750}; on each row are samples generated
from py, showing a mode dropping phenomenon (see text).

A proof of concept for this a posteriori adversarial refinement of an overly general
distribution is provided on the MNIST dataset. pg is trained as a Gaussian VAE; f
is a classifier trained to distinguish pg from the dataset, with 99% accuracy. BTGM
is applied on the VAE latent space (Section 10.2.1), and the results are presented in
Figure 10.6.

An ideal solution is obtained for [§; f ~ 0, i.e. on average, the classifier cannot
distinguish between py and pp. As expected, BTGM does not manage to reach this
ideal solution and the optimization saturates for A < 0.5, failing to tighten the model
further. The Dy, value reached at this point is ~ 4, hinting at a concentration of
the model around the 2% most realistic images according to the classifier®.

The reason for failing to improve further p, likely lies in the shape of the

8The reasoning is as follows. Considering some base distribution p, and another distribution ¢
which is proportional to p, with support is restricted to some subset S of the support of p, then one
has Dk r(q|lp) = —logp(S), where p(S) represents the total probability mass of the set S according
to p. Inversely, if p, restricts its support — while remaining proportional to p on this support
(which is untrue in general), then the mass of its support can be estimated from the value of the
KL-divergence.

10.3. Case studies 149

035

030 4

025 4

020 4

015 4

010 4

005 4

0.00 -
0o 25 50 15 100 125 5.0 175 20,0

Figure 10.7: Distribution of the norm of the gradient of the objective f (pre-
activation output of the discriminator) wrt to the latent variable. The histogram is
truncated at a norm of 20 for clarity, but around 1% of the gradients have a norm
circa 230.

optimization landscape defined by the discriminator. Figure 10.6(b) shows the
optimization plateau at the same value of A for which the curve for D steepens,
hinting at a point where the optimization landscape contains large plateaus and high
cliffs, as in Section 10.3.1.

This tentative interpretation is confirmed by plotting the histogram of the gradient
norm (Figure 10.7): while most gradients are well-behaved, around 1% of them take
very high values, up to a norm of 230. This optimization landscape likely contains
some very high cliffs, that the normalizing flow fails to capture.

This optimization landscape suggests that the discriminator manages to tightly
characterize the support of the real data distribution pp, leading to sharp boundaries
between the classes. As the support of pp is known to be contained within that of
pc (as VAEs always cover the whole dataset), this suggests the generative model pg
is too spread out, making the discriminator task too easy. Empirically, BTGM fails
to bring the expectation of log Z—g higher than —5, meaning the region is still largely
classified as belonging to pg. It is also likely that the Gaussian observation model of
the VAE further introduces some noise over which BTGM does not have control (as
it only operates in the latent space) but which is exploited by the discriminator.

This last point underlines the fundamental assumption made in Section 10.2.1:
that pg(z|z) reflects the true distribution. In the case of a Gaussian observation
model, this assumption contradicts the analysis presented in Chapter 6 and Chapter 7,
showing that there will always be some residual noise that a discriminator could
capture. A perspective to mitigate this drawback would be to train the discriminator
on a version of the dataset on which a similar noise has been introduced, in the spirit
of [Saj+18].

150 Chapter 10. Latent manipulation from Boltzmann principles

10.4 Summary and perspectives

The Boltzmann Tuning for Generative Models (BTGM) presented in this chapter
constitutes the third contribution of this thesis. Built on Deep LVMs and the
celebrated Maximum Entropy Principle, BTGM makes it possible to selectively
revise some parts of a Deep LVM based on an external differentiable criterion f
operating on a subset of variables. The presented framework focuses on adjusting
the distribution of the latent (Z) variable of a VAE based on a criterion f operating
on its observed (X)) variable; in the general case, the distribution and criterion can
equally handle observed or latent variables.

BTGM can naturally be interpreted in probabilistic terms, e.g. recovering a
conditional generative model when criterion f is based on a discriminative classifier.
On our motivating application in the domain of electrical consumption curves, it
gracefully modifies the original distribution according to the criterion, preserving
the realism and general behavior of real electric curves when the base distribution is
"sufficiently" appropriate.

A third case study, concerned with the adversarial refinement of a distribution,
illustrates the main limitation of the approach, as follows. BTGM freezes some parts
of the LVM distribution and modifies the others. But even when training extremely
powerful normalizing flows to achieve the modifications, BTGM cannot compensate
for deficiencies present in frozen parts of the model.

This remark opens a perspective for further research. As retraining the whole
distribution (not freezing any part of it) is expensive, the question is whether and
how marginal modifications on some parts of the model can be achieved, avoiding
both the rigidity of freezing them and the computational cost of learning them fully.

10.A. Derivation of the MaxEnt solution 151

10.A Derivation of the MaxEnt solution

The constrained optimization problem of Equation 10.1 is restated here:

argmax H(p) s.t. Vi: E fi(z) = C; (10.28)
p

T~p

In order to solve it, we use consider the Lagrange multiplier method, defining the
Lagrangian as:

L= /) log p(x dz—n(/X dx—l) Z)\ (/ ()d:L"—C)

Normalization of p i-th constraint

(10.29)

Then, solving for p and the Lagrange multipliers n and ()\;); implies requiring

that we are at a saddle point of the Lagrangian £ for all of these variables. For

P, this means that, for any small perturbation p — pdp the first-order change of

the Lagrangian must be £ = 0. Injecting this into the definition and only keeping
first-order terms in dp yields:

5L = /[logp J41—7 ZA il (10.30)

This expression must be 0 for any perturbation Jp, meaning the term between
brackets must be 0 for every value of x. This means in turn:

logp(z) =n—14> Aifi(z) (10.31)
And then:
plz) = &1 e M Ii@) (10.32)

The value of 7 is determined by the constraint that p must be a normalized
probability distribution. Defining Z as:

Z= L _ [S, (10.33)
en—1 "

We finally get:
plx) = fZeZz i (10.34)

The value of the remaining Lagrange multipliers ()\;); must now be determined
according to the other constraints: [£; f; = Ci.

10.B Proofs of the derivative formulas

In order to derive the formulas for the derivatives, let us first derive two intermediate
results (assuming a single criterion f and Lagrange multiplier \):

Lemma 10.1. The derivative % log Z(\) reads:

d
Ty o Z(N) =];E f (10.35)

152 Chapter 10. Latent manipulation from Boltzmann principles

Proof. As Z(\) = [, p(x)eM @ da by definition, it follows:

d 1 d
1 d
~Z0) ﬁ/ pa)e!

1)M (@)
Z()\ / f(x dz (10.36)

Z/fl’ﬁ,\ﬂ?
:Ef
DA
O]

Lemma 10.2. Let h: X — R be a function (possibly depending on A as well as x).
The derivative of its expectation on py wrt A reads:

d)\Eh E [chr } (E f) (Eh) (10.37)
Proof :
(i\]g’h _ dd)\Z(l)/xh(m)p(x)e’\f(z)dx
=0 [() @)+ G5 @) pla)e s
N Z(IA)Zfli /x (w)p(r)e O da (10.38)
:I,.E;’ {@Hgﬂ _ (]_;E;{h) %logZ(/\)

3

A

Bl (B7) (B2)

From Lemma 10.1 and Lemma 10.2, we can derive the first and second derivatives

of [£;, [
Lemma 10.3. The first and second derivatives of [, f wrt X\ read:

3

d d2

DS =Varyf and S5 T=TE (f—Ef) (10.39)
P N N Do

Proof. Replacing h with f in Equation 10.37, and noting that f does not depend on
A, yields the first derivative:

2
%Ef:EfQ_ (Ef) = Vary, f (10.40)
DA I P

10.B. Proofs of the derivative formulas 153

2 2
Noting that Vary, f =[E;, (f - E;, f) and replacing h with (f —E;, f) (that
does depend on) in Equation 10.37 yields the second derivative:

j;@fzog@(f—@ff
@:f<f@f)22 f—[}?;f)g@f —(Iﬁﬁ;f) E(f Ef)

Px

-E f—]E,f) ‘2@_f‘@f]$@f

=0

E(-Es)

(10.41)

And similarly the first and second derivatives of Dxr,(pa||p):

Lemma 10.4. The first and second derivatives of D (pr||p) wrt A read:

3
d d? R
S Din(alp) = \Varg, £ and 5 Dicp(pallp) = Varg, f + AR, (f -E f)
2N D
(10.42)
Proof. By definition:
Drr(rllp) = Elog
= E Af —log Z(N)] (10.43)
=)\E —log Z(A
Lemmas 1 and 2 thus yield:
d . d d
i Prralp) = IPE;, [f1+ /\5 [f] = 75 log Z()
= E +)\VarpA [f] — E [f] (10.44)

= NVarp, f

154 Chapter 10. Latent manipulation from Boltzmann principles

and:
d

R d
aDKL(P/\HP) =Vary, [+ X\—=Varp, f

dX

3
:VarmfjuAE (f—Ef)
D D

(10.45)

O

10.C Monte-Carlo Prediction of E;, f and Dy (p||p)

Following the theoretical definition of py (Equation 10.5):

P(E) Ap@)

Z0) (10.46)

Pa(z) =
One can express Z(\) as:

Z(\) = /xp(x)e)‘f(x)d:c = Ee)‘f (10.47)

From this, interpreting the integrals as expectations over p yield the expected
results:

)M @) M @) g A
Ef /f da::fp(2)f @ zf(xd "”“:Epfif (10.48)
J.p(w)e T E,e
Similarly, re-injecting the definition of p, into the KL yields:
Dir(ballp) = E log p,\ (10.49)
TP
1 emx) 10.50
= K s 75 (10.50)
TP
= A f —log Z()) (10.51)
P

And finally, using the previous results:

Drr(Pxllp) = %f — log (E N) (10.52)

Conclusion and Perspectives

Deep latent variable models (LVM) are at the forefront of the state of the art in
generative models, offering both a flexible model space and a principled training
methodology, relying on the Fvidence Lower Bound (ELBO) criterion to maximize
the data likelihood.

The analysis presented in the manuscript is conducted in the perspective of the
structure design, including the associated inference models, and their impacts. This
perspective is contrasted with a number of works at the state of the art, e.g. [BGS16;
Hig+17; Ale+18; RV18; Raz+19], that proceed with augmenting the ELBO with ad
hoc regularization terms, or with altering the training process, in order to shape the
deep LVM and enforce the desired properties.

Quite the contrary, our claim is that the structure design can convey a number
of targeted properties in a principled yet efficient way, operating at both static and
dynamic levels.

On the static level, mainly two topics have been investigated: the relationship to

the data, and the latent structure and symmetries. Regarding the relationship with
the data, Chapter 5 emphasizes that the observation model, the probabilistic structure
defined on the observed variables of the LVM, disentangles the notions of signal and
noise. The signal is encoded into the latent variables; the noise is modeled through
the observed variables. At one extreme, (too) powerful autoregressive observation
models yield the posterior collapse phenomenon, where the LVM essentially models
the whole data information based on noise only. A particular case is when observed
variables are noisy deterministic functions of the latent variables. In this case,
referred to as quasi-deterministic observation models and discussed in Chapter 6, a
rich representation of the data structure can still be obtained, e.g. using a hierarchy
of variables to capture multi-scale representations [Dor+17].
In this context, our first contribution shows theoretically and empirically that such
observation models are governed by the scale of their noise. This hyper-parameter
actually governs the trade-off between the latent compression and the reconstruction
terms of the ELBO. In particular, we show on a proof of concept that an over-
estimated noise hyper-parameter can prevent from identifying the data manifold,
even in the large sample limit (Theorem 6.1).

Our second contribution is to show how the latent structure organization can
be leveraged to enforce sophisticated generative properties, with a motivating ap-
plication in the domain of smart energy policies. Specifically, the CompVAE model
(Chapter 9) uses a hierarchy of latent variables to deliver a programmable generative
model, conditioned on a multiset of elements. By using one latent variable per condi-
tioning element and aggregating them through a permutation-invariant function, the

155

156 Conclusions

permutation symmetries of the input multi-set are seamlessly enforced in the model
structure. On top of the aggregation, the structure involves a global latent variable
that captures the factors of variation shared by all entitites (in the application domain
where the entities are households, and the programmable generative model delivers
the aggregated consumption curves of the households, the latter latent variable
reflects e.g. the weather). The empirical validation of the approach in the context of
the NEXT contract (funded by the French Energy Agency, ADEME) successfully
showed the merits and efficiency of the approach.

On the dynamic level, mainly three topics have been of interest: the relationship
between the structure and the optimization trajectory; the a posteriori refinement of
the probabilistic model; and thirdly (Chapter 3) the regularization role of the inference
model, guiding convergence toward an easy to approximate posterior distribution, as
analyzed through the lens of posterior regularization [Gan+10; Shu+18].

Regarding the relationship with the optimization trajectory, the learning of the
observation noise variance has been studied in Chapter 7. The main result is to show
that the impact goes much deeper than only finding the appropriate value of the
variance parameter. Specifically, starting with a high noise enables the model to
first learn a very smooth approximation of the data manifold, discarding much of
the data information. This approximation allows an efficient latent representation
to be found; this latent representation is iteratively refined as the noise variance is
decreased, enabling the model to gradually capture finer-grained details from the
data. Overall, the optimization trajectory yields a much better (quasi) optimum
through this interplay between both terms of latent compression and reconstruction
loss, akin an annealing procedure. The improvement is equally manifest in terms of
the eventual ELBO value and the quality of the generated samples. The impact of
this optimization trajectory can be understood in the perspective of Bayesian deep
learning [MAV17], stating that a final (sparse) solution can best be found by first
considering an unconstrained space (with no sparsity constraint) and only thereafter
gradually increasing the sparsity pressure. In our case, the complexity of the learning
task gradually and automatically increases as the observation variance decreases, the
reduction of variance being itself driven by the progress of the reconstruction loss;
the whole model can thus be seen as self-regularized.

Regarding the a posteriori refinement of a probabilistic model, our last contribu-
tion is the Boltzmann Tuning of Generative Models (BTGM) (Chapter 10). Formally,
the BTGM framework establishes that a trained deep LVM can be "surgically" altered
using Variational Inference principles according to an external criterion (operating on
observed variables) through modifying only some specific parts of the learned latent
representation. This approach can be applied to a posteriori condition a trained
model or explore the extreme regions of a distribution, while controlling precisely
which factors — or causes — are allowed to be modified, and to which extent. As a
result, while not directly linked to model design, BTGM can exploit a pre-existing
latent structure for directed tuning. The experimental validation on the same moti-
vating application of CompVAE indeed shows that the BTGM approach constitutes
an efficient alternative to rejection sampling in order to explore the extreme regions
of the distribution.

In summary, out motto is that encoding model properties through the LVM

157

structure design is when possible an efficient way to achieve robust models which are
amenable to being explainable and transparent. The guiding thread of the presented
research is that an LVM can be well characterized from both static and dynamic
perspectives from its only structure design, while preserving the probabilistic interpre-
tation of the ELBO criterion. This approach provides a complementary perspective
on model design to the introduction of additional objectives or regularization terms
within the training loss [BGS16; Hig+17; Ale+18; RV18; Raz+19].

This motto thus raises the question of how to encode domain- or problem-
dependent objectives through the LVM design. This question is at the core of the
main research perspectives opened by the presented work.

A first perspective is to build a bridge between deep LVMs and causal models,
and more specifically to uncover and exploit the causal structure of the real data-
generating process to guide the design of the LVM structure. On the one hand the
idea is simple and clear: it is generally believed that the true underlying causal
structure of the data is among the simplest ones accounting for the data everything
else being equal [PJS17; PM18]; the true causal structure thus should yield an easier
to train model and deliver a better generalization overall. This claim needs however
to be taken with a grain of salt. Firstly, finding the true causal structure is not a
simpler problem than building a good generative model. Secondly, the true causal
structure is not necessarily aligned with the requirements of the expected usage of
the model; it might also make the training procedure harder than it needs to be.

A counter-example backing this remark is again provided by the motivating appli-
cation of CompVAE. In the context of the generative model of aggregated electrical
curves, there exist root causes governing each and every household consumption (e.g.
the weather, the holidays, a match on the TV). These root causes operate besides
the individual causes attached to each household (e.g. the electrical appliances, the
type of contract of the household). In a relevant causal model the outcome thus is
defined as the aggregation of all household curves, where each household curve is
governed together by the root and the individual causes.

The CompVAE model however first models the aggregation of the households
(in an abstract latent space); and the external factors are introduced on top of the
aggregation to produce the global aggregated curve. In other words, the root causes
appear after the individual causes in the hierarchy. This structure is motivated as
external factors affect individual households in a coherent way, and because the
targeted outcome is the global behavior only. For this reason, CompVAE does not
need to represent the root causes per se, through some associated latent variable;
instead, it directly encodes the effect of those root causes onto the aggregated curve.
This architecture comes with two main advantages. Firstly, it results in a significantly
simpler computational graph, facilitating its training and contributing to the stability
of the solution. Secondly, this architecture allows the latent representation to
efficiently disentangle the impact of external factors from the individual factors of
each household, supporting an efficient ensemblist manipulation of the household
descriptions.

In summary, the LVM architecture can usefully take inspiration from the causal
underlying structure of the phenomenon under study, with two caveats. On the one
hand, uncovering the causal structure is a problem per se; on the other hand, the
true causal structure needs be revisited in the perspective of the usage and learning

158 Conclusions

of the LVM.

Another, longer-term, perspective of research lies in extending BTGM to tackle
inverse problems. Formally, given the objective function and a trained LVM archi-
tecture, one might want to determine the minimal amount of change required to
meet one’s objectives in terms of system response. BTGM presently relies on the
assumption of an accurate differentiable generative model. A first line of research
concerns the extension of the approach to handle binary or categorical variables; a
second line of research consists of investigating the impact of model misspecifications.

Formally, BTGM presently proceeds by perturbing the distribution of observed
or latent variables. But the sought perturbations can also be thought of in terms of
interventions on observed or latent variables, and/or on the mechanisms linking the
observed to latent variables. Along this line, the extended BTGM could go much
beyond counter-factual reasoning, and actually tackle planning (what changes are
most effective to reach a given effect). Overall, this extension would help to identify
minimal interventions on a system to reach desired behavior. In an applicative
perspective, this approach paves the way toward optimal design and control (how to
best control the system in order to get a given response).

When applied on a causal model (as opposed to a generative model), this BTGM
extension might help identifying the (observed) variables that should best be con-
trolled, and guide the design efforts. When applied to control latent variables, this
could allow to identify which parts of the model need to be refined the most, and/or
pinpoint the deficiencies of the model, and how to repair it by introducing more
epistemic knowledge.

A shorter-term research perspective opened by the presented work is related to the
quasi-deterministic observation models, as the presented analysis of the relationship
between the model and the training data calls for further refinement. Theorem 6.1
provides an intuitive understanding of the smoothing effect of the observation noise
on highly curved manifolds. A most interesting extension of this analytical result
aims to predict how those manifolds are smoothed depending on the precision.
Similarly, the precise analysis of non-isotropic noise (e.g. like in Laplacian Pyramid
observations [Dor+17] on images) might yield new lessons about very structured and
high-dimensional data. Lastly, while the theoretical and empirical results have been
established under the large-sample limit assumption, it remains to see how the data
shortage might interact with the data precision.

[AB17]

[Aka74]

[Ale+18]

[Ath+18]

[BA9S]

[Bed+16]

[Ber+19]

[Bes94]

[BG02]

Bibliography

Martin Arjovsky and Léon Bottou. “Towards Principled Methods for
Training Generative Adversarial Networks”. In: arXiv:1701.04862 [cs,
stat] (Jan. 17, 2017). arXiv: 1701.04862 (cit. on pp. 44, 74, 146, 147).

H. Akaike. “A new look at the statistical model identification”. In: IEEE
Transactions on Automatic Control 19.6 (Dec. 1974). Conference Name:
IEEE Transactions on Automatic Control, pp. 716-723. 1SSN: 1558-2523
(cit. on p. 24).

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A. Saurous,
and Kevin Murphy. “Fixing a Broken ELBO”. In: International Con-
ference on Machine Learning. International Conference on Machine
Learning. ISSN: 1938-7228 Section: Machine Learning. July 3, 2018,
pp. 159-168 (cit. on pp. 71, 72, 155, 157).

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. “Syn-
thesizing Robust Adversarial Examples”. In: International Conference
on Machine Learning. International Conference on Machine Learning.
ISSN: 2640-3498. PMLR, July 3, 2018, pp. 284-293 (cit. on p. 104).

Kenneth P. Burnham and David R. Anderson. “Practical Use of the
Information-Theoretic Approach”. In: Model Selection and Inference: A
Practical Information- Theoretic Approach. Ed. by Kenneth P. Burnham
and David R. Anderson. New York, NY: Springer, 1998, pp. 75-117.
ISBN: 978-1-4757-2917-7 (cit. on p. 24).

Marcos Vinicius Naves Bedo, Davi Pereira dos Santos, Marcelo Ponciano-
Silva, Paulo Mazzoncini de Azevedo-Marques, André Ponce de Ledén
Ferreira de Carvalho, and Caetano Traina. “Endowing a Content-Based
Medical Image Retrieval System with Perceptual Similarity Using En-
semble Strategy”. In: Journal of Digital Imaging 29.1 (Feb. 1, 2016),
pp. 22-37. 1SSN: 1618-727X (cit. on p. 64).

Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and
Max Welling. “Sylvester Normalizing Flows for Variational Inference”.
In: UAI 2018 (Feb. 20, 2019). arXiv: 1803.05649 (cit. on p. 36).

JE Besag. “Comments on “Representations of knowledge in complex
systems” by U. Grenander and MI Miller”. In: J. Roy. Statist. Soc. Ser.
B 56 (1994), pp. 591-592 (cit. on p. 20).

Matthew Beal and Zoubin Ghahramani. “The Variational Bayesian EM
Algorithm for Incomplete Data : with Application to Scoring Graphical
Model Structures”. In: Statistics (July 25, 2002) (cit. on p. 34).

159

https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1803.05649

160

Bibliography

[BGOG]

[BGS16]

[Bis+98]

[BK18]

[Bow+15]

[BPC19]

[BS20a]

[BS20D]

[BS21]

[BWS15]

[Cat07]

[Cay05]

Matthew J. Beal and Zoubin Ghahramani. “Variational Bayesian learn-
ing of directed graphical models with hidden variables”. In: Bayesian
Analysis 1.4 (Dec. 2006). Publisher: International Society for Bayesian
Analysis, pp. 793-831. 1SsN: 1936-0975, 1931-6690 (cit. on p. 34).

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance
Weighted Autoencoders”. In: arXiv:1509.00519 [cs, stat] (Nov. 7, 2016).
arXiv: 1509.00519 (cit. on pp. 45, 155, 157).

Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, and Michael
I. Jordan. “Approximating Posterior Distributions in Belief Networks
Using Mixtures”. In: Advances in Neural Information Processing Sys-
tems 10. Ed. by M. 1. Jordan, M. J. Kearns, and S. A. Solla. MIT Press,
1998, pp. 416422 (cit. on pp. 20, 35).

D. T. Braithwaite and W. B. Kleijn. “Bounded Information Rate Varia-
tional Autoencoders”. In: KDD 2018 (July 25, 2018). arXiv: 1807.07306
(cit. on p. 73).

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal
Jozefowicz, and Samy Bengio. “Generating Sentences from a Continuous
Space”. In: (Nov. 19, 2015) (cit. on pp. 66, 116).

Gwendoline De Bie, Gabriel Peyré, and Marco Cuturi. “Stochastic
Deep Networks”. In: International Conference on Machine Learning.
International Conference on Machine Learning. ISSN: 2640-3498. PMLR,
May 24, 2019, pp. 1556-1565 (cit. on pp. 116, 132).

Victor Berger and Michele Sebag. “From Abstract Items to Latent
Spaces to Observed Data and Back: Compositional Variational Auto-
Encoder”. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe,
Marloes Maathuis, and Céline Robardet. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 274—-289.
ISBN: 978-3-030-46150-8 (cit. on pp. 8, 115, 122).

Victor Berger and Micheéle Sebag. “Variational Auto-Encoder: not all
failures are equal”. In: arXiv:2003.01972 [cs, eess, stat] (Mar. 4, 2020).
arXiv: 2003.01972 (cit. on pp. 8, 73, 87).

Victor Berger and Michele Sebag. “Boltzmann Tuning of Generative
Models”. In: arXiv:2104.05252 [cs] (Apr. 12, 2021). arXiv: 2104.05252
(cit. on pp. 8, 135).

Pratik Brahma, Dapeng Wu, and Yiyuan She. “Why Deep Learning
Works: A Manifold Disentanglement Perspective”. In: IEEE Transac-
tions on Neural Networks and Learning Systems 27 (Dec. 16, 2015),
pp. 1-12 (cit. on p. 73).

Ariel Caticha. “Information and Entropy”. In: AIP Conference Proceed-
ings 954 (2007), pp. 11-22. 1SsN: 0094243X. arXiv: 0710.1068 (cit. on
p. 136).

Lawrence Cayton. “Algorithms for manifold learning”. In: Univ. of
California at San Diego Tech. Rep 12.1 (2005), p. 1 (cit. on p. 74).

https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1807.07306
https://arxiv.org/abs/2003.01972
https://arxiv.org/abs/2104.05252
https://arxiv.org/abs/0710.1068

Bibliography 161

[CCR21]

[CDS18]

[CHY2]

[Che+17]

[Che+18a]

[Che+18b]

[CHMO4]

[Chu+15]

[Cia+13]

[CI11]

Marissa Connor, Gregory Canal, and Christopher Rozell. “Variational
Autoencoder with Learned Latent Structure”. In: International Confer-
ence on Artificial Intelligence and Statistics. International Conference on
Artificial Intelligence and Statistics. ISSN: 2640-3498. PMLR, Mar. 18,
2021, pp. 23592367 (cit. on p. 73).

Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. “Hamilto-
nian Variational Auto-Encoder”. In: Advances in Neural Information
Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 81678177 (cit. on p. 45).

Gregory F Cooper and Edward Herskovits. “A Bayesian method for the
induction of probabilistic networks from data”. In: Machine Learning
9.4 (1992). Publisher: Springer, pp. 309-347 (cit. on p. 24).

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhari-
wal, John Schulman, Ilya Sutskever, and Pieter Abbeel. “Variational
Lossy Autoencoder”. In: ICLR 2017 (Mar. 4, 2017). arXiv: 1611.02731
(cit. on p. 70).

Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud.
“Isolating Sources of Disentanglement in Variational Autoencoders”.
In: Advances in Neural Information Processing Systems 31. Ed. by S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., 2018, pp. 26102620 (cit. on pp. 50,
135).

X. I. Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel.
“PixelSNAIL: An Improved Autoregressive Generative Model”. In: Inter-
national Conference on Machine Learning. International Conference on
Machine Learning. ISSN: 2640-3498. PMLR, July 3, 2018, pp. 864—-872
(cit. on p. 68).

David Maxwell Chickering, David Heckerman, and Christopher Meek.
“Large-Sample Learning of Bayesian Networks is NP-Hard”. In: Journal
of Machine Learning Research 5 (Oct 2004), pp. 1287-1330. 1ssN: ISSN
1533-7928 (cit. on p. 24).

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C.
Courville, and Yoshua Bengio. “A Recurrent Latent Variable Model
for Sequential Data”. In: Advances in Neural Information Processing
Systems 28 (2015), pp. 29802988 (cit. on pp. 66, 67, 116).

Lucio Ciabattoni, Massimo Grisostomi, Gianluca Ippoliti, and Sauro
Longhi. “A Fuzzy Logic tool for household electrical consumption model-
ing”. In: IECON 2013 - 39th Annual Conference of the IEEE Industrial
Electronics Society. IECON 2013 - 39th Annual Conference of the IEEE
Industrial Electronics Society. ISSN: 1553-572X. Nov. 2013, pp. 8022-
8027 (cit. on p. 115).

Cassio P. de Campos and Qiang Ji. “Efficient Structure Learning of
Bayesian Networks using Constraints”. In: Journal of Machine Learning
Research 12.20 (2011), pp. 663—689. 1sSN: 1533-7928 (cit. on p. 24).

https://arxiv.org/abs/1611.02731

162

Bibliography

[CJAL9]

[CMD17]

[CW17]

[Dai+18]

[DB16]

[Den+09]

[Dil+17]

[DKB15]

[DLR77]

[DMMO09]

Hyunsun Choi, Eric Jang, and Alexander A. Alemi. “WAIC, but Why?
Generative Ensembles for Robust Anomaly Detection”. In: arXiv:1810.01392
[es, stat] (May 23, 2019). version: 4. arXiv: 1810.01392 (cit. on pp. 105,
111).

Chris Cremer, Quaid Morris, and David Duvenaud. “Reinterpreting
Importance-Weighted Autoencoders”. In: arXiv:1704.02916 [stat] (Aug. 14,
2017). arXiv: 1704.02916 (cit. on p. 45).

Nicholas Carlini and David Wagner. “Adversarial Examples Are Not
Easily Detected: Bypassing Ten Detection Methods”. In: Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security. AlSec
"17. New York, NY, USA: Association for Computing Machinery, Nov. 3,
2017, pp. 3-14. 1SBN: 978-1-4503-5202-4 (cit. on p. 104).

Bin Dai, Yu Wang, John Aston, Gang Hua, and David Wipf. “Connec-
tions with Robust PCA and the Role of Emergent Sparsity in Variational
Autoencoder Models”. In: Journal of Machine Learning Research 19.41
(2018), pp. 1-42. 15SN: 1533-7928 (cit. on p. 73).

Alexey Dosovitskiy and Thomas Brox. “Generating Images with Per-
ceptual Similarity Metrics based on Deep Networks”. In: Advances
in Neural Information Processing Systems 29. Ed. by D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc., 2016, pp. 658-666 (cit. on p. 65).

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image database”. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 2009 IEEE Conference
on Computer Vision and Pattern Recognition. ISSN: 1063-6919. June
2009, pp. 248-255 (cit. on p. 65).

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew
C. H. Lee, Hugh Salimbeni, Kai Arulkumaran, and Murray Shana-
han. “Deep Unsupervised Clustering with Gaussian Mixture Variational
Autoencoders”. In: arXiw:1611.02648 [cs, stat] (Jan. 13, 2017). arXiv:
1611.02648 (cit. on p. 46).

Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-linear In-
dependent Components Estimation”. In: arXiv:1410.8516 [cs] (Apr. 10,
2015). arXiv: 1410.8516 (cit. on p. 36).

A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood
from Incomplete Data via the EM Algorithm”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 39.1 (1977). Publisher:
[Royal Statistical Society, Wiley], pp. 1-38. 1sSN: 0035-9246 (cit. on
p. 36).

David L. Donoho, Arian Maleki, and Andrea Montanari. “Message-
passing algorithms for compressed sensing”. In: Proceedings of the Na-
tional Academy of Sciences 106.45 (Nov. 10, 2009). Publisher: National
Academy of Sciences Section: Physical Sciences, pp. 18914-18919. 1SSN:
0027-8424, 1091-6490 (cit. on p. 17).

https://arxiv.org/abs/1810.01392
https://arxiv.org/abs/1704.02916
https://arxiv.org/abs/1611.02648
https://arxiv.org/abs/1410.8516

Bibliography 163

[Don+19]

[Dor+17]

[DP97]

[DSB17]

[DSL20]

[Dur+19]

[DW19]
[ES17]

[Esl+18]

[FA15]

[Fal+19)

Wei Dong, Qinliang Su, Dinghan Shen, and Changyou Chen. “Document
Hashing with Mixture-Prior Generative Models”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). EMNLP-IJCNLP 2019. Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 5226-5235
(cit. on p. 46).

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D.F. Campbell,
Simon Prince, and Ivor Simpson. “Laplacian Pyramid of Conditional
Variational Autoencoders”. In: Proceedings of the 14th Furopean Confer-
ence on Visual Media Production (CVMP 2017). CVMP 2017. London,
United Kingdom: Association for Computing Machinery, Dec. 11, 2017,
pp. 1-9. 1sBN: 978-1-4503-5329-8 (cit. on pp. 75, 77, 155, 158).

Pedro Domingos and Michael Pazzani. “On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss”. In: Machine Learning 29.2
(Nov. 1, 1997), pp. 103—130. 1SSN: 1573-0565 (cit. on p. 104).

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density es-
timation using Real NVP”. In: ICLR 2017 (Feb. 27, 2017). arXiv:
1605.08803 (cit. on pp. 69, 70).

Jacob Deasy, Nikola Simidjievski, and Pietro Li6. “Constraining Varia-
tional Inference with Geometric Jensen-Shannon Divergence”. In: Ad-
vances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., 2020, pp. 10647-10658 (cit. on p. 73).

Conor Durkan, Artur Bekasov, lain Murray, and George Papamakarios.
“Neural Spline Flows”. In: Advances in Neural Information Process-
ing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d{\textbackslash}textquotesingle Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 7511-7522 (cit. on p. 36).

Bin Dai and David Wipf. “Diagnosing and Enhancing VAE Models”.
In: ICLR 2019 (Oct. 30, 2019). arXiv: 1903.05789 (cit. on pp. 55, 56).

Harrison Edwards and Amos Storkey. “Towards a Neural Statistician”.
In: ICLR 2017 (Mar. 20, 2017). arXiv: 1606.02185 (cit. on p. 117).

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola,
Ari S. Morcos, Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo
Danihelka, Karol Gregor, David P. Reichert, Lars Buesing, Theophane
Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King,
Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu,
and Demis Hassabis. “Neural Scene Representation and Rendering”. In:
Science 360.6394 (June 15, 2018), pp. 12041210 (cit. on p. 117).

Otto Fabius and Joost R. van Amersfoort. “Variational Recurrent
Auto-Encoders”. In: arXiv:1412.6581 [cs, stat] (June 15, 2015). arXiv:
1412.6581 (cit. on pp. 66, 116).

Luca Falorsi, Pim de Haan, Tim R. Davidson, and Patrick Forré. “Repa-
rameterizing Distributions on Lie Groups”. In: AISTATS 2019 (Mar. 7,
2019). arXiv: 1903.02958 (cit. on p. 46).

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1903.05789
https://arxiv.org/abs/1606.02185
https://arxiv.org/abs/1412.6581
https://arxiv.org/abs/1903.02958

164

Bibliography

[FMN16]

[Fra+16]

[Gan+10]

[Gar+18]

[GBB11]

[GG14]

[GG84

[GHB12]

[Gho+20]

[Gil+17]

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. “Testing
the manifold hypothesis”. In: Journal of the American Mathematical
Society 29.4 (2016), pp. 983-1049. 1SSN: 0894-0347, 1088-6834 (cit. on
p. 73).

Marco Fraccaro, S¢ ren Kaae S¢ nderby, Ulrich Paquet, and Ole Winther.
“Sequential Neural Models with Stochastic Layers”. In: Advances in
Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc.,
2016, pp. 2199-2207 (cit. on pp. 66, 116).

Kuzman Ganchev, Jo\&\#227, O Graga, Jennifer Gillenwater, and Ben
Taskar. “Posterior Regularization for Structured Latent Variable Mod-
els”. In: Journal of Machine Learning Research 11.67 (2010), pp. 2001
2049. 1sSN: 1533-7928 (cit. on pp. 49, 156).

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ra-
malho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo Rezende,
and S. M. Ali Eslami. “Conditional Neural Processes”. In: International
Conference on Machine Learning. International Conference on Machine
Learning. PMLR, July 3, 2018, pp. 1704-1713 (cit. on p. 117).

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statis-
tics. ISSN: 1938-7228. JMLR Workshop and Conference Proceedings,
June 14, 2011, pp. 315-323 (cit. on pp. 53, 118).

Samuel Gershman and Noah Goodman. “Amortized Inference in Prob-
abilistic Reasoning”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society 36.36 (2014). 1SSN: 1069-7977 (cit. on p. 42).

Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs Dis-
tributions, and the Bayesian Restoration of Images”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-6.6 (Nov.
1984). Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 721-741. 1sSN: 1939-3539 (cit. on p. 19).

Samuel J. Gershman, Matthew D. Hoffman, and David M. Blei. “Non-
parametric variational inference”. In: Proceedings of the 29th Inter-
national Coference on International Conference on Machine Learning.
ICML’12. Edinburgh, Scotland: Omnipress, June 26, 2012, pp. 235-242.
ISBN: 978-1-4503-1285-1 (cit. on pp. 34, 35).

Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, and
Bernhard Scholkopf. “From Variational to Deterministic Autoencoders”.
In: ICLR 2020 (May 29, 2020). arXiv: 1903.12436 (cit. on p. 75).

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. “Neural Message Passing for Quantum Chemistry”.
In: International Conference on Machine Learning. International Con-
ference on Machine Learning. ISSN: 2640-3498. PMLR, July 17, 2017,
pp. 1263-1272 (cit. on p. 121).

https://arxiv.org/abs/1903.12436

Bibliography 165

[Goo+14]

[GSS15]

(GSS20]

[Gul+16]

[Guo+17]

[Guo+20]

[Han+17]

[Has70]

[He+16]

[He+18]

[He+19]

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Gen-
erative Adversarial Nets”. In: Advances in Neural Information Pro-
cessing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger. Curran Associates, Inc., 2014,
pp. 2672-2680 (cit. on pp. 7, 65, 147).

Tan J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: arXiv:1412.6572 [cs, stat]
(Mar. 20, 2015). arXiv: 1412.6572 (cit. on p. 104).

Kamal Gupta, Saurabh Singh, and Abhinav Shrivastava. “PatchVAE:
Learning Local Latent Codes for Recognition”. In: arXiv:2004.03623
[es] (Apr. 7, 2020). arXiv: 2004.03623 (cit. on pp. 75, 82).

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga,
Francesco Visin, David Vazquez, and Aaron Courville. “PixelVAE: A
Latent Variable Model for Natural Images”. In: arXiv:1611.05013 [cs]
(Nov. 15, 2016). arXiv: 1611.05013 (cit. on pp. 67, 70).

Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David
B. Dunson. “Boosting Variational Inference”. In: arXiv:1611.05559 [es,
stat/ (Mar. 1, 2017). arXiv: 1611.05559 (cit. on p. 35).

C. Guo, J. Zhou, H. Chen, N. Ying, J. Zhang, and D. Zhou. “Variational
Autoencoder With Optimizing Gaussian Mixture Model Priors”. In:
IEEE Access 8 (2020). Conference Name: IEEE Access, pp. 43992-44005.
ISSN: 2169-3536 (cit. on p. 46).

Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. “Alternat-
ing Back-Propagation for Generator Network”. In: Thirty-First AAAI
Conference on Artificial Intelligence. Thirty-First AAAI Conference on
Artificial Intelligence. Feb. 13, 2017 (cit. on p. 45).

W. K. Hastings. “Monte Carlo sampling methods using Markov chains
and their applications”. In: Biometrika 57.1 (Apr. 1, 1970). Publisher:
Oxford Academic, pp. 97-109. 1sSN: 0006-3444 (cit. on p. 19).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 770—
778 (cit. on p. 53).

Jiawei He, Yu Gong, Joseph Marino, Greg Mori, and Andreas Lehrmann.
“Variational Autoencoders with Jointly Optimized Latent Dependency
Structure”. In: International Conference on Learning Representations
2019. Sept. 27, 2018 (cit. on pp. 58, 60).

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-
Kirkpatrick. “Lagging Inference Networks and Posterior Collapse in
Variational Autoencoders”. In: ICLR 2019 (Jan. 28, 2019). arXiv:
1901.05534 (cit. on p. 70).

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2004.03623
https://arxiv.org/abs/1611.05013
https://arxiv.org/abs/1611.05559
https://arxiv.org/abs/1901.05534

166

Bibliography

[Hig+17]

[HIN92]

[Ho+19)

[Hoc+01]

[Hof+13]

[Hou+17]

[HSO06]

[HS97]

[Hua+18]

[HVD15]

[HYO01]

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier
Glorot, Matthew M. Botvinick, Shakir Mohamed, and Alexander Ler-
chner. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: ICLR. 2017 (cit. on pp. 50, 76, 82, 88, 97,
99, 155, 157).

David E. Heckerman and Bharat N. Nathwani. “An evaluation of the
diagnostic accuracy of Pathfinder”. In: Computers and Biomedical
Research 25.1 (Feb. 1, 1992), pp. 56-74. 1SsSN: 0010-4809 (cit. on p. 16).

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel.
“Flow+-+: Improving Flow-Based Generative Models with Variational
Dequantization and Architecture Design”. In: International Conference
on Machine Learning. International Conference on Machine Learning.

ISSN: 2640-3498. PMLR, May 24, 2019, pp. 27222730 (cit. on p. 70).

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies”.
In: A Field Guide to Dynamical Recurrent Neural Networks. Ed. by
S. C. Kremer and J. F. Kolen. IEEE Press, 2001 (cit. on p. 53).

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley.
“Stochastic variational inference”. In: The Journal of Machine Learning
Research 14.1 (May 1, 2013), pp. 1303—-1347. 1SSN: 1532-4435 (cit. on
pp. 35, 45, 54).

Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu. “Deep Feature
Consistent Variational Autoencoder”. In: 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACYV). 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). Mar. 2017,
pp. 1133-1141 (cit. on pp. 65, 75, 82).

G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality
of Data with Neural Networks”. In: Science 313.5786 (July 28, 2006).
Publisher: American Association for the Advancement of Science Section:
Report, pp. 504-507. 1ssN: 0036-8075, 1095-9203 (cit. on p. 16).

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (Nov. 1, 1997). Publisher: MIT Press,
pp. 1735-1780. 1sSN: 0899-7667 (cit. on pp. 63, 66, 68).

Huaibo Huang, zhihang li zhihang, Ran He, Zhenan Sun, and Tieniu Tan.
“IntroVAE: Introspective Variational Autoencoders for Photographic
Image Synthesis”. In: Advances in Neural Information Processing Sys-
tems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., 2018, pp. 52-63
(cit. on pp. 75, 82).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge
in a Neural Network”. In: arXiv:1503.02531 [cs, stat/ (Mar. 9, 2015).
arXiv: 15603.02531 (cit. on p. 69).

David J. Hand and Keming Yu. “Idiot’s Bayes—Not So Stupid After
Al?” In: International Statistical Review 69.3 (2001), pp. 385-398. ISSN:
1751-5823 (cit. on p. 104).

https://arxiv.org/abs/1503.02531

Bibliography 167

[Tly+19]

[Jaa+10]

[Jay57]

[IGP17]

[JOA9(]

[Kar+17]

[KB17]

[KD18]

[KF09]

[KGB17]

[Kim-+18]

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. “Adversarial Examples Are
Not Bugs, They Are Features”. In: Advances in Neural Information
Processing Systems 32 (2019), pp. 125-136 (cit. on p. 104).

Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila.
“Learning Bayesian Network Structure using LP Relaxations”. In: Pro-
ceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics. Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. ISSN: 1938-7228.
JMLR Workshop and Conference Proceedings, Mar. 31, 2010, pp. 358—
365 (cit. on p. 24).

E. T. Jaynes. “Information Theory and Statistical Mechanics”. In:
Physical Review 106.4 (May 15, 1957). Publisher: American Physical
Society, pp. 620630 (cit. on p. 136).

FEric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameteriza-
tion with Gumbel-Softmax”. In: arXiv:1611.01144 [cs, stat] (Aug. 5,
2017). arXiv: 1611.01144 (cit. on p. 48).

Finn Verner Jensen, Kristian G. Olesen, and Stig Kjaer Andersen. “An
algebra of bayesian belief universes for knowledge-based systems”. In:
Networks 20.5 (1990), pp. 637-659. 1sSN: 1097-0037 (cit. on p. 17).

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der
Smagt. “Deep Variational Bayes Filters: Unsupervised Learning of State
Space Models from Raw Data”. In: ICLR 2017 (Mar. 3, 2017). arXiv:
1605.06432 (cit. on pp. 106-109, 113).

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: ICLR 2015 (Jan. 29, 2017). arXiv: 1412.6980 (cit.
on p. 54).

Durk P Kingma and Prafulla Dhariwal. “Glow: Generative Flow with
Invertible 1x1 Convolutions”. In: Advances in Neural Information Pro-
cessing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 10215-10224 (cit. on p. 70).

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-
ciples and Techniques - Adaptive Computation and Machine Learning.
The MIT Press, 2009. 1SBN: 978-0-262-01319-2 (cit. on pp. 12, 14, 15).

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial ex-
amples in the physical world”. In: arXiv:1607.02533 [cs, stat] (Feb. 10,
2017). arXiv: 1607.02533 (cit. on p. 104).

Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander
Rush. “Semi-Amortized Variational Autoencoders”. In: International
Conference on Machine Learning. International Conference on Machine
Learning. ISSN: 1938-7228 Section: Machine Learning. July 3, 2018,
pp. 2678-2687 (cit. on p. 45).

https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1605.06432
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1607.02533

168

Bibliography

[Kin+14]

[Kin+17]

[KSH12]

[KW14]

[Lar+16]

[LBOS]

[LBYS]

[LBS19]

[LC19]

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. “Semi-supervised Learning with Deep Generative Models”.
In: Advances in Neural Information Processing Systems 27. Ed. by Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger. Curran Associates, Inc., 2014, pp. 3581-3589 (cit. on pp. 105,
106, 113).

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya
Sutskever, and Max Welling. “Improving Variational Inference with
Inverse Autoregressive Flow”. In: arXiv:1606.04934 [cs, stat] (Jan. 30,
2017). arXiv: 1606.04934 (cit. on pp. 36, 45).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25 (2012), pp. 1097-1105
(cit. on p. 65).

Diederik P. Kingma and Max Welling. “Auto-Encoding Variational
Bayes”. In: arXiw:1312.611/ [cs, stat] (May 1, 2014). arXiv: 1312.6114
(cit. on pp. 7, 8, 34, 41, 43, 44, 76, 87, 88).

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo Larochelle,
and Ole Winther. “Autoencoding beyond pixels using a learned simi-
larity metric”. In: International Conference on Machine Learning. In-
ternational Conference on Machine Learning. ISSN: 1938-7228 Section:
Machine Learning. June 11, 2016, pp. 1558-1566 (cit. on pp. 65, 82,
135).

Hugo Larochelle and Yoshua Bengio. “Classification using discriminative
restricted Boltzmann machines”. In: Proceedings of the 25th interna-
tional conference on Machine learning. ICML ’08. New York, NY, USA:
Association for Computing Machinery, July 5, 2008, pp. 536-543. ISBN:
978-1-60558-205-4 (cit. on p. 16).

Yann LeCun and Yoshua Bengio. “Convolutional networks for images,
speech, and time series”. In: The handbook of brain theory and neural
networks. Cambridge, MA, USA: MIT Press, Oct. 1, 1998, pp. 255-258.
ISBN: 978-0-262-51102-5 (cit. on p. 63).

Yingzhen Li, John Bradshaw, and Yash Sharma. “Are Generative Classi-
fiers More Robust to Adversarial Attacks?” In: International Conference
on Machine Learning. International Conference on Machine Learning.
ISSN: 1938-7228 Section: Machine Learning. May 24, 2019, pp. 3804—
3814 (cit. on p. 104).

Gabriel Loaiza-Ganem and John P Cunningham. “The continuous
Bernoulli: fixing a pervasive error in variational autoencoders”. In: Ad-
vances in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d{\textbackslash }textquotesingle
Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019,
pp. 13287-13297 (cit. on p. 97).

https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1312.6114

Bibliography 169

[Lec+98a]

[Lec+98b]

[Lee+18]

[Lee+19]

[Li+19]

[Liu+15]

[Loc+19]

[Lor+19]

[LS88]

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learn-
ing applied to document recognition”. In: Proceedings of the IEEE 86.11
(Nov. 1998). Conference Name: Proceedings of the IEEE, pp. 2278-2324.
ISSN: 1558-2256 (cit. on p. 112).

Y. Lecun, L. Bottou, G. B. Orr, and K.-R. Miiller. “Efficient backprop”.
In: Lecture notes in computer science. Neural networks : tricks of the
trade (1996). ISSN: 0302-9743, 1998, pp. 9-50. 1SBN: 978-3-540-65311-0
(cit. on pp. 54, 57).

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. “A Simple Unified
Framework for Detecting Out-of-Distribution Samples and Adversarial
Attacks”. In: Advances in Neural Information Processing Systems 31.
Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett. Curran Associates, Inc., 2018, pp. 7167-7177
(cit. on p. 105).

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi,
and Yee Whye Teh. “Set Transformer: A Framework for Attention-Based
Permutation-Invariant Neural Networks”. In: International Conference
on Machine Learning. International Conference on Machine Learning.
PMLR, May 24, 2019, pp. 3744-3753 (cit. on p. 117).

Xiaopeng Li, Zhourong Chen, Leonard K. M. Poon, and Nevin L. Zhang.
“Learning Latent Superstructures in Variational Autoencoders for Deep
Multidimensional Clustering”. In: ICLR 2019 (Feb. 22, 2019). arXiv:
1803.05206 (cit. on pp. 58, 60).

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning
Face Attributes in the Wild”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 3730-3738 (cit. on p. 65).

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Syl-
vain Gelly, Bernhard Schélkopf, and Olivier Bachem. “Challenging
Common Assumptions in the Unsupervised Learning of Disentangled
Representations”. In: International Conference on Machine Learning.
International Conference on Machine Learning. ISSN: 1938-7228 Section:
Machine Learning. May 24, 2019, pp. 4114-4124 (cit. on p. 50).

Guy Lorberbom, Andreea Gane, Tommi Jaakkola, and Tamir Hazan.
“Direct Optimization through \textbackslash arg \textbackslash max for
Discrete Variational Auto-Encoder”. In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d{\textbackslash }textquotesingle Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 6203-6214 (cit. on p. 48).

S. L. Lauritzen and D. J. Spiegelhalter. “Local Computations with
Probabilities on Graphical Structures and Their Application to Ex-
pert Systems”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 50.2 (1988). Publisher: [Royal Statistical Society, Wi-
ley], pp. 157—224. 1SSN: 0035-9246 (cit. on p. 17).

https://arxiv.org/abs/1803.05206

170

Bibliography

[Luc+19]

[LW17]

[Mat+16]

[Mat+19a]

[Mat+19b]

[MAV17]

[Met+53]

[MF18]

[MFA17]

James Lucas, George Tucker, Roger Baker Grosse, and Mohammad
Norouzi. “Understanding Posterior Collapse in Generative Latent Vari-
able Models”. In: DGS@ICLR. 2019 (cit. on pp. 70, 72-74, 92).

Christos Louizos and Max Welling. “Multiplicative Normalizing Flows
for Variational Bayesian Neural Networks”. In: International Conference
on Machine Learning. International Conference on Machine Learning.
ISSN: 1938-7228 Section: Machine Learning. July 17, 2017, pp. 2218-
2227 (cit. on p. 36).

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh,
Pablo Sprechmann, and Yann LeCun. “Disentangling factors of varia-
tion in deep representation using adversarial training”. In: Advances
in Neural Information Processing Systems 29. Ed. by D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc., 2016, pp. 5040-5048 (cit. on p. 135).

Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka,
and Yee Whye Teh. “Continuous Hierarchical Representations with
Poincaré Variational Auto-Encoders”. In: Advances in Neural Infor-
mation Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d{\textbackslash }textquotesingle Alché-Buc, E. Fox,
and R. Garnett. Curran Associates, Inc., 2019, pp. 12565-12576 (cit. on
p. 45).

Emile Mathieu, Tom Rainforth, N. Siddharth, and Yee Whye Teh.
“Disentangling Disentanglement in Variational Autoencoders”. In: Inter-
national Conference on Machine Learning. International Conference on
Machine Learning. ISSN: 1938-7228 Section: Machine Learning. May 24,
2019, pp. 4402-4412 (cit. on pp. 50, 135).

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. “Variational
Dropout Sparsifies Deep Neural Networks”. In: International Conference
on Machine Learning. International Conference on Machine Learning.
ISSN: 2640-3498. PMLR, July 17, 2017, pp. 2498-2507 (cit. on p. 156).

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. “Equation of State Calculations
by Fast Computing Machines”. In: The Journal of Chemical Physics
21.6 (June 1, 1953). Publisher: American Institute of Physics, pp. 1087
1092. 18sN: 0021-9606 (cit. on p. 19).

Pierre-Alexandre Mattei and Jes Frellsen. “Leveraging the Exact Likeli-
hood of Deep Latent Variable Models”. In: Advances in Neural Informa-
tion Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 3855-3866 (cit. on pp. 76, 87, 91).

Andrew C. Miller, Nicholas J. Foti, and Ryan P. Adams. “Variational
boosting: iteratively refining posterior approximations”. In: Proceedings
of the 34th International Conference on Machine Learning - Volume 70.
ICML’17. Sydney, NSW, Australia: JMLR.org, Aug. 6, 2017, pp. 2420-
2429 (cit. on p. 35).

Bibliography 171

[Moy+18] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, and Greg
Ver Steeg. “Invariant Representations without Adversarial Training”.
In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. Curran Associates, Inc., 2018, pp. 9084-9093 (cit. on
p. 135).

[MS96] Vladimir Maz’ya and Gunther Schmidt. “On approximate approxima-
tions using Gaussian kernels”. In: IMA Journal of Numerical Analysis
16.1 (Jan. 1, 1996). Publisher: Oxford Academic, pp. 13-29. 1sSN: 0272-
4979 (cit. on p. 31).

[Nal+19a] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshmi-
narayanan. “Detecting Out-of-Distribution Inputs to Deep Generative
Models Using Typicality”. In: arXiv:1906.0299/ [cs, stat]/ (Oct. 16,
2019). arXiv: 1906.02994 (cit. on pp. 105, 111).

[Nal+19b] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Goriir, and
Balaji Lakshminarayanan. “Do Deep Generative Models Know What
They Don’t Know?” In: ICLR (2019) (cit. on pp. 103, 105, 111).

[NGO6] Dirk Neumann and Karl R. Gegenfurtner. “Image retrieval and per-
ceptual similarity”. In: ACM Transactions on Applied Perception 3.1
(Jan. 1, 2006), pp. 31-47. 1SSN: 1544-3558 (cit. on p. 64).

[OKK16] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel
Recurrent Neural Networks”. In: International Conference on Machine
Learning. International Conference on Machine Learning. ISSN: 1938-
7228 Section: Machine Learning. June 11, 2016, pp. 17471756 (cit. on
pp. 67, 116).

[ONS18] Victor M.-H. Ong, David J. Nott, and Michael S. Smith. “Gaussian Vari-
ational Approximation With a Factor Covariance Structure”. In: Journal
of Computational and Graphical Statistics 27.3 (July 3, 2018). Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/10618600.2017.1390472,
pp. 465-478. 15SN: 1061-8600 (cit. on p. 35).

[Oor+16a] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu
koray, Oriol Vinyals, and Alex Graves. “Conditional Image Generation
with PixelCNN Decoders”. In: Advances in Neural Information Pro-
cessing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett. Curran Associates, Inc., 2016, pp. 47904798
(cit. on p. 67).

[Oor+16b] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio”.
In: arXiv:1609.03499 [cs] (Sept. 19, 2016). arXiv: 1609.03499 (cit. on
pp. 68, 116).

https://arxiv.org/abs/1906.02994
https://arxiv.org/abs/1609.03499

172

Bibliography

[Oor+18]

[Ort+14]

[OVK17]

[Pan+20]

[PDZ18]

[Peal2]

[PJS17]

[PM18]

[Pol+19]

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,
Koray Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo,
Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury,
Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex
Graves, Helen King, Tom Walters, Dan Belov, and Demis Hassabis.
“Parallel WaveNet: Fast High-Fidelity Speech Synthesis”. In: Interna-
tional Conference on Machine Learning. International Conference on
Machine Learning. ISSN: 2640-3498. PMLR, July 3, 2018, pp. 3918-3926
(cit. on p. 68).

Joana Ortiz, Francesco Guarino, Jaume Salom, Cristina Corchero, and
Maurizio Cellura. “Stochastic model for electrical loads in Mediterranean
residential buildings: Validation and applications”. In: Energy and
Buildings 80 (Sept. 1, 2014), pp. 23-36. 1SSN: 0378-7788 (cit. on p. 115).

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural
Discrete Representation Learning”. In: Advances in Neural Information
Processing Systems 30. Ed. by 1. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran
Associates, Inc., 2017, pp. 6306-6315 (cit. on p. 71).

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu.
“Learning Latent Space Energy-Based Prior Model”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 22015-22029 (cit. on p. 47).

Tianyu Pang, Chao Du, and Jun Zhu. “Max-Mahalanobis Linear Dis-
criminant Analysis Networks”. In: International Conference on Machine
Learning. International Conference on Machine Learning. ISSN: 2640-
3498. PMLR, July 3, 2018, pp. 4016-4025 (cit. on p. 105).

Judea Pearl. “Reverend bayes on inference engines: a distributed hier-
archical approach”. In: Proceedings of the Second AAAI Conference on
Artificial Intelligence. AAAT’82. Pittsburgh, Pennsylvania: AAAT Press,
Aug. 18, 1982, pp. 133-136 (cit. on p. 17).

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of
Causal Inference : Foundations and Learning Algorithms. Accepted:
2019-01-20 23:42:51 Journal Abbreviation: Foundations and Learning
Algorithms. The MIT Press, 2017. 1sBN: 978-0-262-03731-0 (cit. on
pp. 16, 157).

Judea Pearl and Dana Mackenzie. The book of why: the new science of
cause and effect. Basic books, 2018 (cit. on pp. 16, 157).

Adrian Pol, Victor Berger, Gianluca Cerminara, Cécile Germain, and
Maurizio Pierini. “Anomaly Detection With Conditional Variational
Autoencoders”. In: ICMLA 2019 - 18th IEEE International Conference
on Machine Learning and Applications. Dec. 16, 2019 (cit. on pp. 8,
103, 109-113).

Bibliography 173

[Pol20] Adrian Alan Pol. “Machine Learning Anomaly Detection Applications
to Compact Muon Solenoid Data Quality Monitoring”. PhD thesis.
Université Paris-Saclay, June 8, 2020 (cit. on p. 109).

[Raz+19] Ali Razavi, Adron van den Oord, Ben Poole, and Oriol Vinyals. “Pre-
venting Posterior Collapse with delta-VAEs”. In: ICLR 2019 (Jan. 10,
2019). arXiv: 1901.03416 (cit. on pp. 71-73, 155, 157).

[RDL21] Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. “Simple and Ef-
fective VAE Training with Calibrated Decoders”. In: International
Conference on Machine Learning. International Conference on Machine
Learning. PMLR, July 1, 2021, pp. 9179-9189 (cit. on p. 88).

[RGB14] Rajesh Ranganath, Sean Gerrish, and David Blei. “Black Box Vari-
ational Inference”. In: Artificial Intelligence and Statistics. Artificial
Intelligence and Statistics. ISSN: 1938-7228 Section: Machine Learning.
Apr. 2, 2014, pp. 814-822 (cit. on p. 34).

[Rif+11] Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio, and
Xavier Muller. “The Manifold Tangent Classifier”. In: Advances in
Neural Information Processing Systems 24 (2011) (cit. on p. 73).

[RM15] Danilo Rezende and Shakir Mohamed. “Variational Inference with
Normalizing Flows”. In: International Conference on Machine Learning.
International Conference on Machine Learning. ISSN: 1938-7228 Section:
Machine Learning. June 1, 2015, pp. 1530-1538 (cit. on pp. 35, 36, 45).

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Adversarial
Networks”. In: arXiv:1511.06434 [cs] (Jan. 7, 2016). arXiv: 15611.06434
(cit. on pp. 65, 135).

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochas-
tic Backpropagation and Approximate Inference in Deep Generative
Models”. In: International Conference on Machine Learning. Inter-
national Conference on Machine Learning. ISSN: 1938-7228 Section:
Machine Learning. Jan. 27, 2014, pp. 1278-1286 (cit. on pp. 7, 8, 34,
41).

[Rol17] Jason Tyler Rolfe. “Discrete Variational Autoencoders”. In: arXiv:1609.02200
[es, stat] (Apr. 21, 2017). arXiv: 1609.02200 (cit. on pp. 48, 71).

[ROV19] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. “Generating Di-
verse High-Fidelity Images with VQ-VAE-2". In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d{\textbackslash }textquotesingle Alché-Buc, E. Fox,
and R. Garnett. Curran Associates, Inc., 2019, pp. 14866-14876 (cit. on
p. 71).

[RRIS] Gareth O. Roberts and Jeffrey S. Rosenthal. “Optimal scaling of discrete
approximations to Langevin diffusions”. In: Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 60.1 (1998), pp. 255—268.
ISSN: 1467-9868 (cit. on p. 20).

https://arxiv.org/abs/1901.03416
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1609.02200

174 Bibliography

[RSP17a] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Deep
Learning with Sets and Point Clouds”. In: arXiv:1611.04500 [cs, stat]
(Feb. 23, 2017). arXiv: 1611.04500 (cit. on p. 132).

[RSP17b] Siamak Ravanbakhsh, Jeff Schneider, and Barnabds Péczos. “Equiv-
ariance Through Parameter-Sharing”. In: International Conference on
Machine Learning. International Conference on Machine Learning. ISSN:
2640-3498. PMLR, July 17, 2017, pp. 2892-2901 (cit. on p. 116).

[RT96] Gareth O. Roberts and Richard L. Tweedie. “Exponential convergence of
Langevin distributions and their discrete approximations”. In: Bernoulls
2.4 (Dec. 1996). Publisher: Bernoulli Society for Mathematical Statistics
and Probability, pp. 341-363. 1SsN: 1350-7265 (cit. on p. 20).

anilo Jimenez Rezende and Fabio Viola. “Taming s”. In: arXiv:)
RV18 Danilo Ji Rezende and Fabio Viola. “Taming VAEs”. In: arXiv:1810.00597
[es, stat] (Oct. 1, 2018). arXiv: 1810.00597 (cit. on pp. 73, 76, 81, 87,
88, 91, 155, 157).

[RVW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of con-
straint programming. Elsevier, 2006 (cit. on p. 17).

[RWD17] Geoffrey Roeder, Yuhuai Wu, and David K. Duvenaud. “Sticking the
Landing: Simple, Lower-Variance Gradient Estimators for Variational
Inference”. In: Advances in Neural Information Processing Systems 30
(2017), pp. 6925-6934 (cit. on p. 57).

[Sad+19] Hossein Sadeghi, Evgeny Andriyash, Walter Vinci, Lorenzo Buffoni,
and Mohammad H. Amin. “Pixel VAE++: Improved PixelVAE with
Discrete Prior”. In: arXiv:1908.09948 [cs, stat] (Aug. 26, 2019). arXiv:
1908.09948 (cit. on p. 71).

[Saj+18] Mehdi S. M. Sajjadi, Giambattista Parascandolo, Arash Mehrjou, and
Bernhard Scholkopf. “Tempered Adversarial Networks”. In: Interna-
tional Conference on Machine Learning. International Conference on
Machine Learning. ISSN: 1938-7228 Section: Machine Learning. July 3,
2018, pp. 4451-4459 (cit. on p. 149).

[Sal+17] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma.
“Pixel CNN++: Improving the Pixel CNN with Discretized Logistic Mix-
ture Likelihood and Other Modifications”. In: ICLR (2017) (cit. on
pp. 68, 125).

[Sca4+09] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
“The Graph Neural Network Model”. In: IEEE Transactions on Neural
Networks 20.1 (Jan. 2009). Conference Name: IEEE Transactions on
Neural Networks, pp. 61-80. 1sSSN: 1941-0093 (cit. on p. 121).

[Sch+18] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel.
“Towards the first adversarially robust neural network model on MNIST”.
In: ICLR2019 (Sept. 20, 2018). arXiv: 1805.09190 (cit. on p. 104).

[Sch78] Gideon Schwarz. “Estimating the Dimension of a Model”. In: Annals
of Statistics 6.2 (Mar. 1978). Publisher: Institute of Mathematical
Statistics, pp. 461-464. 18SN: 0090-5364, 2168-8966 (cit. on p. 24).

https://arxiv.org/abs/1611.04500
https://arxiv.org/abs/1810.00597
https://arxiv.org/abs/1908.09948
https://arxiv.org/abs/1805.09190

Bibliography 175

[She97]

[Shu-+18]

[SJJ96]

[SMO6]

[SMHO7]

[Sno+19]

[Sp +16]

[STG13]

[SZ15]

[TW1§]

Prakash P. Shenoy. “Binary join trees for computing marginals in the
Shenoy-Shafer architecture”. In: International Journal of Approximate
Reasoning. Uncertainty in AT (UAT’96) Conference 17.2 (Aug. 1, 1997),
pp. 239-263. 1SSN: 0888-613X (cit. on p. 17).

Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and
Stefano Ermon. “Amortized Inference Regularization”. In: Advances
in Neural Information Processing Systems 31. Ed. by S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Curran Associates, Inc., 2018, pp. 4393-4402 (cit. on pp. 49, 50, 156).

L. K. Saul, T. Jaakkola, and M. I. Jordan. “Mean Field Theory for
Sigmoid Belief Networks”. In: Journal of Artificial Intelligence Research
4 (Mar. 1, 1996), pp. 61-76. 1sSN: 1076-9757 (cit. on pp. 20, 35).

Tomi Silander and Petri Myllyméki. “A simple approach for finding
the globally optimal Bayesian network structure”. In: Proceedings of
the Twenty-Second Conference on Uncertainty in Artificial Intelligence.
UAT06. Arlington, Virginia, USA: AUAI Press, July 13, 2006, pp. 445—
452. 1SBN: 978-0-9749039-2-7 (cit. on p. 24).

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted
Boltzmann machines for collaborative filtering”. In: Proceedings of the
24th international conference on Machine learning. ICML ’07. New
York, NY, USA: Association for Computing Machinery, June 20, 2007,
pp. 791-798. 1SBN: 978-1-59593-793-3 (cit. on p. 16).

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan,
Sebastian Nowozin, D. Sculley, Joshua Dillon, Jie Ren, and Zachary
Nado. “Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift”. In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d{\textbackslash}textquotesingle Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 13991-14002 (cit. on p. 103).

Casper Kaae Sg nderby, Tapani Raiko, Lars Maals e, S¢ ren Kaae
So nderby, and Ole Winther. “Ladder Variational Autoencoders”. In:
Advances in Neural Information Processing Systems 29. Ed. by D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran
Associates, Inc., 2016, pp. 3738-3746 (cit. on pp. 53, 55).

Andreas Stuhlmiiller, Jacob Taylor, and Noah Goodman. “Learning
Stochastic Inverses”. In: Advances in Neural Information Processing
Systems. 2013, pp. 3048-3056 (cit. on p. 42).

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: arXiv:1409.1556 [cs]
(Apr. 10, 2015). arXiv: 1409.1556 (cit. on p. 65).

Jakub Tomczak and Max Welling. “VAE with a VampPrior”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. International
Conference on Artificial Intelligence and Statistics. ISSN: 1938-7228
Section: Machine Learning. Mar. 31, 2018, pp. 1214-1223 (cit. on p. 46).

https://arxiv.org/abs/1409.1556

176

Bibliography

[Vah+18]

[VAM18]

[Vril2]

[Web+-18]

[Weil0]

[Wu+21]

[Xu+19]

[XYA20]

[Yan05)]

Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman,
and Evgeny Andriyash. “DVAE++: Discrete Variational Autoencoders
with Overlapping Transformations”. In: International Conference on
Machine Learning. International Conference on Machine Learning. ISSN:
1938-7228 Section: Machine Learning. July 3, 2018, pp. 5035-5044 (cit.
on p. 48).

Arash Vahdat, Evgeny Andriyash, and William Macready. “DVAE#:
Discrete Variational Autoencoders with Relaxed Boltzmann Priors”.
In: Advances in Neural Information Processing Systems 31. Ed. by S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., 2018, pp. 1864-1874 (cit. on p. 48).

Scott 1. Vrieze. “Model selection and psychological theory: A discussion
of the differences between the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC)”. In: Psychological Methods
17.2 (2012). Place: US Publisher: American Psychological Associa-
tion, pp. 228-243. 1sSN: 1939-1463(Electronic),1082-989X (Print) (cit. on
p. 24).

Stefan Webb, Adam Golinski, Rob Zinkov, Siddharth N, Tom Rainforth,
Yee Whye Teh, and Frank Wood. “Faithful Inversion of Generative
Models for Effective Amortized Inference”. In: Advances in Neural
Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran
Associates, Inc., 2018, pp. 3070-3080 (cit. on p. 52).

Yair Weiss. “Correctness of Local Probability Propagation in Graphi-
cal Models with Loops”. In: Neural Computation 12.1 (Jan. 1, 2000).
Publisher: MIT Press, pp. 1-41. 1sSN: 0899-7667 (cit. on p. 17).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. “A Comprehensive Survey on Graph Neural
Networks”. In: IEEE Transactions on Neural Networks and Learning
Systems 32.1 (Jan. 2021). Conference Name: IEEE Transactions on
Neural Networks and Learning Systems, pp. 4-24. 1SSN: 2162-2388 (cit.
on p. 121).

Ming Xu, Matias Quiroz, Robert Kohn, and Scott A. Sisson. “Variance
reduction properties of the reparameterization trick”. In: The 22nd
International Conference on Artificial Intelligence and Statistics. The

22nd International Conference on Artificial Intelligence and Statistics.
ISSN: 2640-3498. PMLR, Apr. 11, 2019, pp. 2711-2720 (cit. on p. 43).

Zhisheng Xiao, Qing Yan, and Yali Amit. “Exponential Tilting of Gen-
erative Models: Improving Sample Quality by Training and Sampling
from Latent Energy”. In: arXiw:2006.08100 [cs, stat] (June 14, 2020).
arXiv: 2006.08100 (cit. on p. 47).

Yuhong Yang. “Can the strengths of AIC and BIC be shared? A conflict
between model indentification and regression estimation”. In: Biometrika
92.4 (Dec. 1, 2005). Publisher: Oxford Academic, pp. 937-950. 1SSN:
0006-3444 (cit. on p. 24).

https://arxiv.org/abs/2006.08100

Bibliography 177

[ZDM18]

[Zha+17]

[Zha+18]

[Zhe+19)]

[ZP94]

[ZSE18]

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. “Fixup Initialization:
Residual Learning Without Normalization”. In: International Conference
on Learning Representations. Sept. 27, 2018 (cit. on p. 57).

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. “Understanding deep learning requires rethinking gener-
alization”. In: ICLR 2017 (Feb. 26, 2017). arXiv: 1611.03530 (cit. on
p. 91).

Xiaoou Monica Zhang, Katarina Grolinger, Miriam A. M. Capretz, and
Luke Seewald. “Forecasting Residential Energy Consumption: Single
Household Perspective”. In: 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). 2018 17th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA).
Dec. 2018, pp. 110-117 (cit. on p. 115).

Huangjie Zheng, Jiangchao Yao, Ya Zhang, Ivor W. Tsang, and Jia
Wang. “Understanding VAEs in Fisher-Shannon Plane”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 33.01 (01 July 17,
2019), pp. 5917-5924. 1SSN: 2374-3468 (cit. on p. 73).

Nevin Lianwen Zhang and David Poole. “A simple approach to Bayesian
network computations”. In: Proc. of the Tenth Canadian Conference
on Artificial Intelligence. 1994 (cit. on p. 17).

Shengjia Zhao, Jiaming Song, and Stefano Ermon. The Information
Autoencoding Family: A Lagrangian Perspective on Latent Variable
Generative Models. July 7, 2018. arXiv: 1806.06514 [cs, stat]. URL:
http://arxiv.org/abs/1806.06514 (visited on 09/15/2021) (cit. on
p. 73).

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1806.06514
http://arxiv.org/abs/1806.06514

DEPARTEMENT

° .
* i Sciences et Technologies
univers |te : de I'Information
PARIS-SACLAY : etde la Communication
Titre : Modéles & Variables Latentes Profonds : des propriétés aux structures

Mots clés :

Résumé : Les Modeéles a Variables Latentes Pro-
fonds sont des modéles génératifs combinant les
Réseaux Bayésiens avec ’apprentissage profond, il-
lustrés par le céleébre Auto-encodeur Variationnel.
Cette thése se focalise sur leur structure, entendue
comme la combinaison de 3 aspects : le graphe
du Réseau Bayésien, le choix des familles proba-
bilistes des variables, et I'architecture des réseaux
de neurones. Nous démontrons que de nombreux
aspects et propriétés de ces modéles peuvent étre
compris et controlés par cette structure, sans altérer
I'objectif d’entrainement construit sur I’Evidence
Lower Bound.

La premiére contribution concerne l'impact
du modéle d’observation — la modélisation proba-
biliste des variables observées — sur le processus
d’entrainement : comment il détermine la sépara-
tion entre signal et bruit, ainsi que son impact sur la
dynamique de 'entrainement lorsque son paramétre
d’échelle est appris plustot que fixé, ou il agit alors
comme un processus de recuit simulé.

La seconde contribution, CompVAE, est cen-

Modéles Génératifs, Apprentissage Profond, Modéles a Variables Latentes, Réseaux Bayésiens

trée sur la structure hiérarchique des variables
latentes : un modeéle génératif conditionné par
un multi-ensemble d’élements & combiner dans la
génération finale. CompVAE démontre comment
des propriétés globales — des manipulations ensem-
blistes dans ce cas — peuvent é&tre atteintes par
la seule conception structurale. Ce modéle est de
plus validé empiriquement sur des données réelles,
pour la génération de courbes de consommation élec-
trique.

La troisiéme contribution, Boltzmann Tuning
of Generative Models (BTGM), est un cadre per-
mettant d’ajuster un modéle génératif pré-entrainé
selon un critére extérieur, en trouvant les ajuste-
ments minimaux nécessaire. Ceci est fait tout en
controlant finement quelles variables latentes sont
ajustées, et comment elles le sont. Nous démon-
trons empiriquement comment BTGM peut étre
utilisé pour spécialiser un modéle déja entrainé, ou
pour explorer les parties extrémes d’une distribution
générée.

Title:

Keywords:

Abstract: Deep Latent Variable Models are gen-
erative models combining Bayesian Networks and
deep learning, illustrated by the renowned Varia-
tional Autoencoder. This thesis focuses on their
structure, understood as the combination of 3 as-
pects: the Bayesian Network graph, the choice of
probability distribution families for the variables,
and the neural architecture. We show that and how
several aspects and properties of those models can
be understood and controlled through this structure,
without altering the training objective constructed
from the Evidence Lower Bound.

The first contribution concerns the impact of
the observation model — the probabilistic modeling
of the observed variables — on the training process:
how it determines the demarcation between signal
and noise and its impact on training dynamic when
its scale parameter is learned rather than fixed. It
then behaves similarly to a simulated annealing pro-

Deep Latent Variable Models: from properties to structures

Generative Models, Deep Learning, Latent Variable Models, Bayesian Networks

cess.

The second contribution, CompVAE, is centered
on the hierarchical structure of latent variables: a
generative model conditioned by a multi-set of ele-
ments to be combined in the final generation. Com-
pVAE demonstrates how global properties — ensem-
blist manipulations in this case — can be achieved
by solely structural design. The model is further-
more empirically validated on real data to generate
electrical consumption curves.

The third contribution, Boltzmann Tuning of
Generative Models (BTGM), is a framework for
adjusting trained generative models according to
an externally provided criterion while finding the
minimal required adjustments. This is done while
finely controlling which latent variables are adjusted
and how the are. We empirically demonstrate how
BTGM can be used to specialize a trained model or
to explore the extreme parts of a generative distri-
bution.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
Route de I’'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Résumé / Abstract
	Remerciements
	Contents
	Publications
	Introduction
	Introduction to Probabilistic Graphical Models
	Independence relations as graphs
	Bayesian Networks
	Markov Networks

	Inference
	Exact inference on discrete variables
	Approximate inference with Monte Carlo methods
	Variational inference

	Training from data
	Maximum Likelihood training of a graphical model
	Bayesian regularization and Maximium A-Posteriori
	Structure learning

	Summary

	Latent Variables modeling
	Latent Variables and the ELBO
	Latent variables as a modeling tool
	Interpretability
	Abstract variables for expressiveness

	Training challenges of Latent Variable Models
	Likelihood and marginalization
	Abstract variables and identifiability

	Variational Inference
	The Evidence Lower Bound
	Mean-Field approximation for posteriors
	Flexible posterior approximation using Normalizing Flows

	Model training with Expectation-Maximization
	Exact inference in Gaussian Mixture Models
	Approximate inference with Variational EM

	Summary

	Deep Latent Variable Models
	The Variational Auto-Encoder
	Amortized Inference
	The Reparametrization Trick
	Link with Auto-Encoders

	Advanced latent models
	Powerful encoders and complex latent spaces
	Learned latent distributions

	Discrete latent variables
	Impact of the Inference Model
	Summary

	Hierarchical Deep LVMs
	The ELBO with hierarchical latent variables
	Optimization of hierarchical structures
	Gradient flow
	Stability problems
	Alternative training formulations
	Key design considerations

	Graph Structure Learning
	Summary

	Observation models
	Probabilistic interpretation of observed variables
	Perceptual distances for images
	Gaussian observation and choice of distance
	NN-based perceptual distances

	Autoregressive observation models
	Recurrent Neural Networks for sequential data
	PixelRNN and PixelCNN for image generation
	WaveNet for audio generation

	RealNVP and flows-based observation models
	The Posterior Collapse Phenomenon
	Summary

	The Manifold Hypothesis and Quasi-Deterministic Observations
	The Manifold Hypothesis
	Quasi-deterministic observation models
	The Gaussian observation and its limitations
	Hierarchical quasi-deterministic observations

	Noise Variance and data resolution
	Modeling an hypersphere
	Experimental study of manifold approximation

	Summary
	Proof of Theorem 6.1

	Dynamics of Variance Learning
	Observation variance fitting
	Learning a global noise variance
	Learning a local noise variance (z)
	Empirical study

	The risk of deterministic collapse
	The dynamics of variance learning as an annealing process
	Summary and perspectives
	Observation tempering and link with -VAE

	Properties of latent structures
	Properties-oriented structures
	Generative classifiers for robustness
	Semi-supervised learning with VAEs
	Combining probabilistic and deterministic latent variables
	Failure of the fully probabilistic approach
	Deep Variational Bayes Filter

	Typed anomaly detection
	The two kinds of anomalies
	Conditional anomaly detection
	Empirical validation

	Summary

	Compositional VAE: structure-enforced properties
	A latent space supporting composition
	Definition of the latent structure
	Handling the variable number of parts in neural architecture

	Inference model over multi-sets
	The recurrent network approach
	Correlated Gaussian prediction
	Using graph neural networks

	Empirical results
	1D artificial problem
	2D artificial problem
	Electrical curves composition

	Summary and perspectives
	Determinant of the covariance matrix
	Computing the KL divergence on {Wi}

	Latent manipulation from Boltzmann principles
	Boltzmann distributions and Pareto exploration
	Principle of maximum (relative) entropy
	Exploration of the Pareto front

	The Boltzmann tuning of Generative Models
	Generalizing to multiple variables
	Using normalizing flows
	Comparing and selecting the f criterion

	Case studies
	Case 1: Conditioning a distribution
	Case 2: Extreme values of a distribution
	Case 3: Fine-tuning a generative model

	Summary and perspectives
	Derivation of the MaxEnt solution
	Proofs of the derivative formulas
	Monte-Carlo Prediction of * E E E E f and DKL(p)

	Conclusion and Perspectives
	Bibliography

