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S U M M A RY

For any Internet service provider or network operator, it is crucial to quickly
and efficiently diagnose the problems that occur on the network. The benefits
of a good fault diagnosis system are mainly to minimize the costs of network
and service operations and to enhance the customer’s quality of experience.
One major challenge for any diagnosis system concerns the discovery of
new faults, that are unknown to the current version of the diagnosis system.
The exploratory process for finding new faults can prove to be expensive
and time consuming for internet service providers.

In this thesis, we explore an alternative approach based on learning meth-
ods, in order to build learning-based diagnosis systems. Our study explores
Probabilistic Graphical Models that are capable of clustering patterns of
faults in an unsupervised and a semi-supervised manner. We demonstrate
the efficiency of our models on real use-cases of large scale data, extracted
from Fiber-to-the Home (FTTH) services based on Gigabit-capable Passive
Optical Networks.

Our contributions are as follows:

• We propose the Infinite Categorical Mixture Model (Echraibi et al.,
2020b) for unsupervised clustering of faults from categorical network
data, with simultaneous learning of the number of clusters. We show
that our model achieves competitive results, and allows for the identi-
fication and interpretation of clusters of faults.

• We propose the Infinite Mixed-type semi-supervised Mixture Model,
extending the categorical model to treat continuous and categorical
data. We also introduce semi-supervision in the form of labels pro-
vided by domain experts to guide the clustering process towards
relevant fault clusters.

• We propose the Deep Infinite Mixture Model for semi-supervised dis-
covery of faults from noisy large scale data of GPON-FTTH networks.
The model leverages the power of deep neural networks to learn
hidden representations relevant to the fault diagnosis task, and the
exploration and clustering capability of infinite mixtures to identify
clusters of faults.

• We introduce a novel approach to train deep probabilistic graphical
models, namely Generalized Stochastic Backpropagation (Echraibi et
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al., 2020a). Our approach gives a theoretical framework for comput-
ing low variance estimates of gradients often arising in probabilistic
graphical models.

• We introduce a general end-to-end infinite deep probabilistic mix-
ture model, entitled the Dirichlet Process Deep Latent Mixture Model
(Echraibi et al., 2020c). We demonstrate that the model is capable
of learning representative hidden features of clusters of faults, while
simultaneously clustering them without a prior knowledge on the
number of clusters.

• Finally, we demonstrate that shallow infinite mixture models can prove
interpretable, in the sense where identified clusters can be traced to
network variables (or root-causes). We also give a general method
of interpreting clustering results of the deep models, using standard
approaches such as decision trees.
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1

I N T R O D U C T I O N

1.1 network failure diagnosis

Identifying faults in networks is of crucial importance to any Internet service
provider. An accurate diagnosis system capable of identifying faults, can
improve the customer’s experience, decrease the down time of network
operations, and more importantly reduce the costs of an Internet service
provider in terms of interventions to repair the network.

A considerable amount of research has been done to construct and main-
tain operational fault diagnosis systems in all domains, ranging from net-
work operations to industrial plants and applications (Mosterman and
Biswas, 1999; Tembo et al., 2017). However, the research scope for solving
the diagnosis task is often specific to the domain, and can even vary in
definition.

In the network management community, the diagnosis task is divided
into three sub-tasks. The first is the detection step, which can be done
proactively, it aims at deciding if a customer experiences a problem and if
further investigations are required. The second is the isolation step, where
the goal is to identify the root cause of the problem given the current
technical status or available data. Third, the mitigation step covers all the
actions required to fix the problem (Ayoubi et al., 2018; Boutaba et al., 2018;
Cherrared et al., 2019; Steinder and Sethi, 2004).

The first step, consisting in identifying if a fault occurred on the network,
is often associated with detecting anomalous behavior. The methods often
adopted for this task are Anomaly Detection approaches (Chandola, Banerjee,
and Kumar, 2009a). For the specific application that we study across the
thesis, i.e. fault diagnosis of broadband access services, these methods are
not considered, since fault detection is a direct outcome of a customer call
to the Internet service provider’s hotline.

Thus, we are rather interested in the isolation step, where we know that
a fault has occurred on the network, and we must identify the cause or

1
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the nature of the fault. The scope of our application is fault diagnosis
of Fiber-to-the Home (FTTH) services based on Gigabit-capable Passive
Optical Networks (GPON) (Chanclou et al., 2006; Gigabit-capable passive
optical networks (G-PON): ONT management and control interface specification
2008; Gigabit-capable passive optical networks (GPON): General characteristics
2008).

With the various modern applications of machine learning, the objective is
to build models capable of classifying faults from GPON-FTTH network data
derived from operations of Orange networks. Furthermore, the challenge
is to build adaptable systems. In the sense that, if a new fault appears on
the network (due to changes or other phenomena) the model is capable of
clustering the new fault, given that a signature of the fault exists in the data
encountered.

1.2 network diagnosis as a machine learning
problem

In order to introduce the network diagnosis task as a machine learning
problem, we need to first discuss the current status of diagnosis for an
Internet service provider such as Orange, and for the research community
in general. Currently, in most real-world operational diagnosis systems,
the preferred method is Expert Systems. Specifically for Orange, the expert
system is called DELC (Diagnostic Expert de la Ligne Client) or expert diagnostic
for the customer’s line.

An Expert System is a rule-based system, where given a certain determinis-
tic condition on the network variables an alarm is triggered to alert if a fault
happened. This has its advantages and its drawbacks. The first advantage is
that these rules can be constructed directly given enough expert knowledge,
and they are interpretable and clear to other network or domain experts.
However, the drawbacks are numerous. The first if the network is large
the expertise and time required to build the expert system are enormous,
maintaining it is even more challenging and requires tremendous resources.
Second, if a new fault occurs due to changes in the network, the system has
to be revisited, which can prove even more daunting. Third, since the rules
are deterministic, the expert system cannot always conclude when some
variables are missing.

The first approach that has been considerably researched for the diagnosis
task are Bayesian Networks (Koller and Friedman, 2009; Tembo et al., 2017).
A Bayesian Network is a probabilistic model of the network variables with
dependencies. The model can be constructed by an expert, the dependencies
represent causal relations between variables of the network. The objective of
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a bayesian network is to model the propagation of faults through variables
of the network, thus by reversing the process, we can identify the root
cause. The advantage of these models is that they can be learned from data
(conditional probabilities estimated from data). However, as expert systems,
bayesian networks are highly specific to the application: if a new fault or a
change occurs on the real network, the bayesian network has to be revisited
which is often an expensive task.

Classical machine learning methods have also been explored for the
diagnosis task. One approach is to consider the traditional supervised
learning scheme, where a classifier is trained using data labeled according
to the different known types of failures (Adda, Qader, and Al-Kasassbeh,
2017; Baras et al., 1997; Chen et al., 2002; Chen et al., 2004). These classifiers
are numerous: they can range from simple models such as Naive-Bayes
classifiers (Zhang, 2005), to Support-Vector Machines (SVMs) (Cortes and
Vapnik, 1995), and even Neural Networks (Rumelhart, Hinton, and Williams,
1985).

Although these methods are appealing, they require a retraining of the
classification model with new features and new labeled data for new types
of faults, which generally are not available, especially when the fault is
very recent. With the Bayesian network framework, taking into account
new types of failures, new data or new equipment would mean updating
the Bayesian graph by adding and/or removing nodes and edges as well
as changing conditional probabilities of the edges. This would require a
high network expertise and may be unrealistic if the network is too complex.
Though it is possible to derive the Bayesian graph from data (Koller and
Friedman, 2009), it becomes unfeasible in practice when dealing with large
datasets composed of hundreds or thousands of features.

Furthermore, in order to discover new faults, one needs to perform some
data exploration and to find clusters corresponding to new types of faults.
The current standard approach is an expert investigation of the data "by
hand" in order to identify these clusters. Unsupervised clustering methods
can be used to reach good performance. However, using such approaches
is often dependent on model assumptions that could hurt the results, such
as distance metrics in high dimensional spaces (Aggarwal, Hinneburg, and
Keim, 2001; Kriegel, Kröger, and Zimek, 2009). In addition, the clusters
may be relevant from a technical point of view (e.g. grouping individuals
because they use the same type of equipment), but this type of clustering
does not provide any new information that could be used to highlight a
new fault. The obvious way to bypass this issue is to resort to cumbersome
feature selection and preprocessing of the data by hand, which requires
deep expert knowledge of the environment that is constantly changing, and
can be expensive time-wise.
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In this thesis, we present a general framework based on Probabilistic
Graphical Models to learn and identify clusters of faults. We argue for a
specific range of probabilistic graphical models namely, Dirichlet Process
Mixtures or Dirichlet Process Deep Mixtures. These models we propose
are capable of clustering faults without knowing the number of clusters (or
faults), they can identify hidden features relevant to the diagnosis task, and
more importantly, they include expert knowledge in terms of supervision
(or semi-supervision) in the form of labels in order to guide and improve
fault identification from data.

1.3 structure and research questions

This thesis is divided into two parts: in Part i, we introduce shallow prob-
abilistic graphical models. Specifically, Infinite Mixture Models that are
capable of identifying clusters of faults from network data, in an unsuper-
vised and a semi-supervised way. In Part ii, we evolve these models to
include deep hidden representations. The goal of the hidden representations
is to construct features relevant for the diagnosis task. These features are
constructed to deal with noisy and complex large scale data. Combined
with the infinite mixtures, we can use these representations to reach better
results on such datasets.

In order to give a guide of the manuscript, the contributions made in Part i
are an attempt to answer the following research questions:

Question 1: Can we develop models capable of identifying clusters adapted to
network data, specifically, categorical data, without knowing a priori the number of
clusters?

Our contribution to answer this question is the Infinite Categorical Mixture
Model (Echraibi et al., 2020b). The model is introduced in chapter 3. We
extend the definition of Dirichlet Process mixtures to the categorical variable
case and we show how to use mean-field variational inference to learn
the model efficiently. We show that our model is capable of identifying
clusters of faults without knowing a priori the number of clusters and we
demonstrate how the model assumptions lead to better performance in
terms of accuracy.

Question 2: Can we extend the Dirichlet process mixtures to deal with contin-
uous and categorical variables simultaneously, and also take into account expert
knowledge in terms of supervision?

In this contribution, we extend the infinite categorical mixture model to a
Mixed-type model, that can deal with continuous and categorical variables.
The model also takes into account semi-supervision from experts in the
form of labels. We evaluate the model on network data and we show its
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competitiveness with state-of-the art baselines. This work is presented in
chapter 4 and is based partially on work from (Echraibi et al., 2019).

We have introduced shallow probabilistic graphical models, in the form
of infinite mixture models, that could be applied to mixed-type data. A
problem remains, these models cannot create complex combinations of
data in order to discover clusters. In other words, feature creation is not
possible. However, in most real-world applications, data is noisy and of large
dimensionality. Thus, feature creation is necessary, in Part ii, we develop
models and methods in order to accomplish this goal, and the main research
question addressed are the following:

Question 3: Can we construct highly relevant representations or features for the
diagnosis task, in order to improve performance?

In order to answer this question, in chapter 5, we combine deep learning
representations and infinite mixture models to perform fault discovery in a
partially labeled large scale dataset. Our model is called Deep Infinite Mixtures
(Echraibi et al., 2021b). We train a deep neural network to recognize labeled
faults and build low dimensional hidden representations relevant to the
diagnosis task. Then, an infinite Gaussian mixture model is applied on the
unlabeled part in order to recognize clusters of faults based on the hidden
representation. We evaluate the model on a large scale real-world GPON-
FTTH dataset, we show that the model can identify classes of known faults
with high accuracy, and that the hidden representation on the unlabeled
faults lead to recognizable clusters.

Deep learning and infinite mixtures live in two different universes of meth-
ods. Their combination is not natural in the sense we do not have an
end-to-end global model, capable of learning features and clustering. Thus,
the following question naturally emerges:

Question 4: Can we construct an end-to-end deep probabilistic model capable of
learning hidden representations and of performing clustering?

It turns out this is possible through deep generative models, which are a
class of probabilistic graphical models. The problem of deep generative
models is the training process that involves computing estimates of gradients
that are often of large variance. In our contributions Generalized Stochastic
Backpropagation, and Stochastic Backpropagation through Fourier Transforms
(Echraibi et al., 2020a, 2021a), we present a method to derive low-variance
estimates of these gradients. This work is presented in chapter 6.

In chapter 7, we use generalized stochastic backpropagation to train our
proposed end-to-end Dirichlet Process Deep Latent Mixture Model (Echraibi
et al., 2020c). We evaluate our model on open datasets and on real-world
large scale GPON-FTTH data for the fault diagnosis and discovery task.
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Finally, in chapter 8, we discuss the interpretability of our models. We show
that shallow models are naturally interpretable. Deep models, however,
are more challenging in terms of interpretability. We discuss how to use
decision trees to retrace the decision leading to a fault cluster, making it
understandable for a domain expert.

The previous chapters discussed constitute the body of work done during
the thesis. In chapter 2, we additionally introduce some background notions
necessary for reading this manuscript. Following the body of the manuscript,
we give a conclusion and directions of interesting future research in chapter 9.
In the following figure we give a guide for reading this thesis, specifically the
dependencies between the chapters. The background chapter is necessary
for the comprehension of practically all chapters. The variational inference
appendix is used in all chapters except chapter 6. Chapter 6 is a theoretical
contribution of the thesis, that stands on its own, and is used in chapter 7.

Part I

Categorical mixture 
model

Chapter 3

Mixed-type model 
Chapter 4

Part II

Deep Infinite Mixture 
Chapter 5

Generalized 
Stochastic Backprop 

Chapter 6

Dirichlet Process 
Latent Mixture 

Chapter 7

Appendices

Variational
Inference
Appendix A

Detailed 
Calculations  
Appendix B

Background
Chapter 2

Figure 1: Summary of the structure of the document
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B A C KG R O U N D

In this chapter we present background subjects relevant to the overall
manuscript, as well as the mathematical notations used throughout the
manuscript. In the case where some additional materiel is relevant, it will
be introduced in the relevant chapter. The current chapter is organized
as follows: in section 2.1 we introduce important notations. In section 2.2
we present Probabilistic Graphical Models on which the whole manuscript
is based. In sections 2.3 and 2.4, we present Markov Chain Monte Carlo
and Variational Inference methods, required for inference and learning in
probabilistic graphical models. In section 2.5, we give an introduction of
deep learning methods required for the second part of the manuscript.

2.1 notations

The following table gathers a non exhaustive list of mathematical notations
and conventions which will be used throughout the manuscript chapters:

Notation Definition

x We denote by a lowercase letter a scalar or a scalar valued
random variable.

x We denote by a bold lowercase letter a vector or a vector
valued random variable.

X We denote by an uppercase bold letter a tensor or a
tensor valued random variable.

xi denotes the ith scalar of vector x.

x−i denotes the vector x without the ith entry xi.

fθ(·) or f (·;θ) denotes a function f dependent on parameters θ.

f (x) denotes element-wise application of a function f on x.

7
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Notation Definition

1[condition] represents the indicator function, that is equal to 1 if
condition is true, 0 otherwise.

p(·) denotes a probability distribution over a continuous ran-
dom variable x, or a probability mass function if x is
discrete.

p(·|x) denotes a probability distribution conditionally to the
value of the random variable x.

x ∼ p(·) indicates that the random variable x follows the probabil-
ity distribution p(·).

N (·;µ, Σ) denotes the multivariate normal distribution of mean µ,
and covariance matrix Σ, defined by:

N (x;µ, Σ) =
1√

(2π)ddet(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ),

where d represents the dimension of x and det(·) denotes
the determinant operator.

Beta(·; γ1, γ2) denotes the beta distribution of parameters γ1 and γ2,
defined by:

Beta(β; γ1, γ2) =
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)
βγ1−1(1− β)γ2−1,

where Γ represents the gamma function.

Cat(·;π) denotes the categorical distribution of parameters π, de-
fined by:

Cat(z;π) =
K

∏
k=1
π
1[z=k]
k s.t.

K

∑
k=1
πk = 1,

where z takes values in the discrete set {1, ..., K}.

Dir(·;α, K) represents the Dirichlet distribution of parameters α and
K, defined by:

Dir(x;α, K) =
1

B(α)

K

∏
k=1

xαk−1
k s.t.

K

∑
k=1

xk = 1

where B(·) represents the multivariate beta function.

∇x f represents the gradient of a scalar function f w.r.t. to the
variable x, defined by:

[∇x f ]i =
∂ f
∂xi

.
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Notation Definition

Ex∼p Expectation taken w.r.t. the random vari-
able x following the distribution p(·).

H[p] or H[p(x)] represents the entropy of probability dis-
tribution p(·) defined by:

H[p] = −
∫

p(x) log p(x)dx

DKL[q||p] or DKL[q(x)||p(x)] represents the Kullback-Leibler divergence
between two probability distributions q(·)
and p(·) defined by:

DKL[q||p] =
∫

q(x) log
q(x)
p(x)

dx

.

The previous notations are not exhaustive, if necessary additional notations
will be introduced in the relevant chapters.

2.2 probabilistic graphical models

Probabilistic Graphical Models (PGMs) are a class of models aimed at
specifying the dependency structure over random variables of the problem
treated. The advantages of such representations are numerous, the most
important of which are:

• The ability to visualize the implications and properties of the model
(dependency between interacting random variables).

• PGMs motivate the design and discovery of new models, generalizing
previous models.

• They provide an approach to manipulate complex probabilistic com-
putations through graphs.

PGMs are a central topic throughout the thesis. For a brief introduction,
consider two vector random variables h and x, where the h random variable
is hidden or unobserved (i.e. no samples of data exist for such variables),
and the x random variable is observed, thus samples of this random variable
are available. Let us further assume that the random variable x depends on
the random variable h. This provides us with a probabilistic graphical model
specified by the previous assumptions. One can visualize this model by



10 background

xh

Figure 2: An example of a PGM.

image

position objectorientation

Figure 3: A generative model of an
image.

sketching the dependencies as presented in figure 2. Observable variables are
denoted by gray circles, hidden variables are denoted by clear circles. Arrows
or directed edges between the circles represent causality or conditional
dependency, for example, in our case x depends on h.

Probabilistic graphical models provide us with a clear modeling paradigm
for interacting parts in an environment, thus making them highly inter-
pretable and subject to inspection. In addition, PGMs can be seen as genera-
tive models, where the observable quantities are generated based on hidden
or unobserved factors (hidden variables). This approach is very useful for
modeling causality in real-world applications. A classical example is given
in figure 3, where an image is considered as an observable random variable.
One can represent the process by which an image is generated based on
the orientation and position of objects in it, by supposing that the object,
position, and orientation are hidden factors on which the image depends.

Maximum Likelihood (ML) based learning

Let us reconsider the previous toy model of figure 2. Creating a model in
the sense of PGMs is the task of specifying a joint probability distribution
over the random variables pθ(x, h) often parameterized by some learnable
parameters θ. Given N samples of the observed random variable x, inde-
pendent and identically distributed (i.i.d.): x(1:N) = {x(n)}N

n=1, the objective
is to maximize the likelihood w.r.t. the parameters θ defined by:

l(θ) =
N

∑
n=1

log pθ(x(n)). (2.1)

Maximizing the function l is done mainly through the computation of the
gradient ∇θl, either by setting it to zero and deriving a fixed point equation,
or through gradient ascent algorithms. However, computing the gradient
requires marginalization over the hidden variables h:

pθ(x) =
∫

pθ(x, h)dh. (2.2)

Exact marginalization is often intractable, except for simple models. We will
revisit different approaches to bypass this issue in later sections.
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Inference of hidden variables

In our modeling assumptions, hidden variables are generally what interests
us, they often represent an interesting feature of the problem that has to be
inferred from the data, for example, a class, or the position of an object as
shown in figure 3. The inference process requires the computation of the
posterior of the latent or hidden variables knowing the observed random
variables. Namely, it requires the computation of the quantity:

pθ(h|x) =
pθ(x, h)

pθ(x)
(Bayes rule)

=
pθ(x, h)∫
pθ(x, h)dh

(2.3)

thus facing the same issue of marginalizing over the hidden variables.

For further details on probabilistic graphical models, we suggest the
following books by Bishop (2006), Koller and Friedman (2009), and Murphy
(2012).

2.3 markov chain monte carlo methods

As discussed in section 2.2, the main issue with the learning and inference
of probabilistic graphical models, is the exact marginalization of equation
(2.2). Fortunately, Markov Chain Monte Carlo (MCMC) methods provide
us with a class of approaches to bypass the issue of exact marginalization
through sampling based approximations (Hastings, 1970). The main two
problems solved by such approaches are the following:

• Problem 1: generating S samples {x(s)}S
s=1 from a given probability

distribution p(x) = p(x1, ..., xd).

• Problem 2: The estimation of quantities of the form:

Ex∼p[ f (x)] =
∫

f (x)p(x)dx. (2.4)

Often what interests us is problem 2, however, by solving problem 1,
problem 2 becomes trivial. Indeed, for the time being let us suppose that
problem 1 is solved, i.e. we have obtained S samples {x(s)}S

s=1 drawn from
the probability distribution p(·). An estimator of the expectation is given by:

Î =
1
S

S

∑
s=1

f (x(s)). (2.5)

Notice that if {x(s)}S
s=1 are generated from the probability distribution p(·)

the expectation of Î is equal to Ex∼p[ f (x)]. Furthermore, the variance of the
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estimator is proportional to S−1, thus the more samples drawn the more
accurate the estimator becomes.

The theory of Markov chains provides us with a general formalism in
order to evaluate sampling algorithms, in terms of consistency of the samples
w.r.t. the desired sampled distribution (Neal, 1993). Starting from an initial
probability distribution denoted by π(0)(x) the Markov chain simulator
constructs a probability distribution at time t: π(t)(x). The objective is that
at convergence: t → ∞, π(t)(x) converges to the target distribution p(x).
The Markov chain simulator is defined by the initial probability distribution
π(0)(x), and the transition kernel T(x′, x) such that:

π(t+1)(x′) =
∫

T(x′, x)π(t)(x)dx. (2.6)

In order to guarantee uniqueness of convergence to the target distribution,
some required properties have to be respected. Namely, the invariance
property, i.e. the target distribution has to be invariant under the kernel:

p(x′) =
∫

T(x′, x)p(x)dx (2.7)

and the ergodicity property, i.e. the Markov chain converges to the target
distribution irrespective of the choice of the initial distribution π(0)(x).

Throughout the manuscript we will focus on the Gibbs sampling algorithm
(Geman and Geman, 1984), which is an instance of Markov Chain Monte
Carlo algorithms, where the transition kernel is given by:

T(x′, x) =
d

∏
j=1

p(x′j|x−j). (2.8)

The key advantage of Gibbs sampling is in the fact that it utilizes the
conditional distributions p(xj|x−j), which are often easy to derive in closed
form. Algorithm 1 summarizes the procedure of Gibbs sampling.

A complete review of Markov Chain Monte Carlo methods is beyond the
scope of the thesis, however for more details on MCMC methods we highly
recommend the book by MacKay, 2003 and the seminal papers by Hastings
(1970) and Neal (1993).

2.4 variational inference

Variational inference is a class of approaches that provide us with an alter-
native way of computing or approximating the posterior of equation 2.3,
without resorting to exact marginalization. Variational methods have their
origin in the early work of Euler on the calculus of variations, where the
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Algorithm 1 Gibbs sampling

Initialize x(0)

for t = 1...∞ do
sample x(t)1 ∼ p(x1|x

(t−1)
−1 )

sample x(t)j ∼ p(xj|x
(t)
1 , ..., x(t)j−1, x(t−1)

j+1 , ..., x(t−1)
d )

sample x(t)d ∼ p(xd|x
(t)
−d)

end for
return x(∞)

idea is to minimize a functional (a function of a function) with respect to
its argument, which is also a function. The calculus of variations is closely
related to standard calculus, often we only require the computation of a
functional derivative, i.e. elementary changes of the functional subject to
small changes in the argument function (Feynman, Leighton, and Sands,
1964).

In the case of probabilistic graphical models, we transform the inference
problem into an optimization problem of a certain functional. The functional
is derived from the likelihood of equation (2.1) and often referred to as
the evidence lower bound or (ELBO), a term that we will use throughout
the manuscript. Let us reconsider our toy probabilistic graphical model of
figure 2, defined by the joint distribution pθ(x, h) over the x and h random
variables. The evidence lower bound is derived through Jensen’s inequality
as follows:

l(θ) = log pθ(x(1:N))

= log
∫

pθ(x(1:N), h)dh

= log
∫ q(h)pθ(x(1:N), h)

q(h)
dh

≥
∫

q(h) log
pθ(x(1:N), h)

q(h)
dh := L(θ, q). (2.9)

The main idea of variational inference is to introduce an auxiliary probabil-
ity distribution q(h) over the hidden random variables, called the variational
distribution. Throughout the thesis we will reserve the letter q to denote
variational distributions as opposed to true model distributions denoted
by p. The variational distribution serves as an approximate or surrogate
posterior over the hidden random variables, and the main objective is to find
the probability distribution q that maximizes the evidence lower bound L at
θ fixed. In order to show the relation between q(h) and the true posterior
pθ(h|x(1:N)), we can rewrite the evidence lower bound as:

L(θ, q) =
∫

q(h) log
pθ(x(1:N), h)

q(h)
dh
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=
∫

q(h) log
pθ(h|x(1:N))pθ(x(1:N))

q(h)
dh

=
∫

q(h) log
pθ(h|x(1:N))

q(h)
dh + log pθ(x(1:N))

∫
q(h)dh

= l(θ)−DKL[q(·)||pθ(·|x(1:N))]. (2.10)

Where DKL represents the Kullback-Leibler divergence, a measure of dis-
tance between two probability distributions. Notice that the evidence lower
bound is a functional of the probability distribution q(·), hence the varia-
tional aspect of the problem.

The objective of the variational distribution is to approximate the true pos-
terior. This can be seen through the Kullback-Leibler term, by maximizing
the evidence lower bound w.r.t. q, we minimize the Kullback-Leibler term,
thus minimizing the distance between the approximate posterior q and the
true posterior pθ(·|x(1:N)). The optimization problem can be written as:

max
q
L(θ, q) s.t.

∫
q(h)dh = 1. (2.11)

The optimization problem of equation (2.11) is often intractable over the
entire space of possible probability distributions. Hence, an often used
strategy is to restrict the space of search. One of the most used restrictions is
what we call the mean-field hypothesis (Jaakkola, 2001; Jordan et al., 1999),
in which we suppose that the variational distribution respects a factorization
condition:

q(h) = ∏
j

q(hj). (2.12)

Another recent popular approach is to choose a specific distribution and
parameterize it through some set of parameters φ: qφ. In this case the
optimization is transferred to the parameters φ, thus returning to classical
optimization methods over the function L(θ,φ) with respect to its parame-
ters (Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014).

The final piece of the puzzle is to ensure that the optimization of L w.r.t.
the parameters θ follows the maximum likelihood criterion. This is the
case here, and it can easily be proven under the hypothesis that the optimal
solution of (2.11) q∗ approximates the true posterior. Indeed, if:

q∗(·) ≈ pθ(·|x(1:N)) then, DKL[q∗(·)||pθ(·|x(1:N))] ≈ 0, (2.13)

and thus with equation (2.10), we can deduce that:

L(θ, q∗) ≈ l(θ). (2.14)

Hence maximizing L(θ, q∗) w.r.t. θ is equivalent to maximum likelihood
estimation.
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For further details on Variational Inference methods for probabilistic
graphical models we highly recommend the book by Wainwright, Jordan,
et al. (2008).

2.5 deep learning

Deep learning as a field has retained considerable interest from researchers
from all disciplines in recent years. The ability of deep neural networks to
solve with high accuracy machine learning tasks ranging from classification
and regression to reinforcement learning, is one of the most noteworthy
breakthroughs in recent history. Our interest throughout the thesis in neural
networks will be mainly in their ability to learn complex features relevant
to the task at hand. For this purpose, we will present neural networks as
generalized function approximators, defined by the application of successive
linear and nonlinear functions (Rosenblatt, 1961). A neural network in our
case will be defined by a function often denoted by g, such as:

gθ = f (L) ◦ σ ◦ f (L−1) ◦ ... ◦ σ ◦ f (2) ◦ σ ◦ f (1). (2.15)

where each function f l represents the lth application of the linear or fully
connected layer, defined by:

f (l)(h) = hTWl + bl (2.16)

Wl, and bl represent the weight matrix and bias vector for the lth layer. ◦
represents the composition of functions operator. Between each application
of two linear layers, a non linear function is applied denoted by σ. Through-
out the manuscript this function will denote the Rectified Linear Unit (Nair
and Hinton, 2010) defined by:

σ(h) = max(0, h) (2.17)

We will be restricted to the previously defined structure of neural networks
as it is sufficient for our applications. The overall parameters of the neural
network are assembled in the vector denoted by θ. The parameters are
optimized to minimize some cost function relevant to some task, we will
often denote this function by C . The optimization is done using a stochastic
gradient descent algorithm with momentum (Sutskever et al., 2013) or a
close variant such as the ADAM optimizer (Kingma and Ba, 2014).

The computation of the gradient of the loss function ∇θC is done by
the classical backpropagation algorithm (Werbos, 1982). The algorithm is
based on the chain rule of calculus, C can be seen as the composition of two
functions u and v, that is C = u(y) and y = v(x), then:

∂C

∂xi
= ∑

j

∂C

∂yj

∂yj

∂xi
(2.18)
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For further details on Deep learning methods and neural network archi-
tectures, we highly recommend the following book by Goodfellow et al.
(2016).
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I N F I N I T E C AT E G O R I C A L M I X T U R E
M O D E L S F O R FAU LT C LU ST E R I N G

3.1 introduction

Identifying fault patterns in large telecommunication network and service
infrastructures is a difficult task. Most of the considered technical solutions
rely either on rule based expert systems or hand crafted expert Bayesian
networks (Kogeda, Agbinya, and Omlin, 2006; Kogeda and Agbinya, 2006;
Tembo et al., 2017). Although these approaches have had tremendous
success, one of the unsung drawbacks is the data processing and the expert
knowledge required to build the diagnosis model or rules. For expert
systems, for example, the rules created by the expert require knowledge of
the existing fault, and the identification of the variables describing the fault.
This process requires data processing by hand by an expert of the domain,
which is an expensive and time consuming task. Also, the maintenance of
the model or rules in the long run can be a significant issue for operational
teams.

Recently, machine learning techniques have been tremendously successful
in the identification and the extraction of patterns in various domains. In
the context of our problem, similar approaches can be used to identify
patterns of faults from diagnosis data. This task is thus an unsupervised
machine learning task, where labels are not available and obtaining them
is as complex as the data processing required to construct expert rules.
However, the data gathered from various devices and services in the network
is often structured in the form of a table, where each variable takes some
range of values.

Clustering such data, gathered from telecommunication networks and
services presents many challenges. The first and the main challenge is the
unknown number of clusters of faults in the data. The second challenge is
the types and multivariate nature of the data. The data is multi-dimensional
and can contain categorical and continuous variables. Therefore, classical
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clustering algorithms where the number of clusters is to be set a priori
require some form of model selection. Furthermore, classical approaches
such as KMeans suppose a specific probability distribution for each cluster.
These modeling assumptions, including the assumption on the number of
clusters, can hurt the performance of the clustering when the data do not
comply with such assumptions, which is often the case when dealing with
real-world applications.

In this chapter, we present an infinite multivariate categorical mixture
model to identify patterns of faults in an unsupervised setting, without
any prior expert knowledge, and without the requirement to know a priori
the number of different fault patterns. The model is based on the Dirichlet
Process (Ferguson, 1973), which allows for learning the number of clusters
from the data. However, the Dirichlet Process supposes an infinite number
of clusters which translates to an intractable inference problem on the model.
Our contributions are the following:

• We propose an infinite multivariate categorical mixture model for
clustering categorical data (section 3.3).

• We show how to perform approximate inference on the model, in
order to extract the clusters from the data using Variational Inference
(section 3.4).

• We demonstrate how the model is able to identify root causes of faults
in a synthetic dataset generated from a real-world expert Bayesian
Network (section 4).

• We also demonstrate the clustering performance of the model on real
operational data acquired from the Fixed Access Network and the
Local Area Network (section 5).

3.2 background

3.2.1 Mixture Models as Probabilistic Graphical Models

x

z

Figure 4: Graphical representa-
tion of a mixture model.

Mixture models are one of the simplest
forms of probabilistic graphical models. The
objective of mixture models is to model the
distribution of an observable random vari-
able x as a mixture of base distributions.
The main application goal is to identify
patterns captured by the base distributions.
The assumption is that the observable ran-
dom variable x depends on a latent variable
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denoted by z taking values in a discrete set {1, ..., K}, with probabilities
πk = p(z = k). Depending on the value taken by z, the random variable x
follows some base probability distribution p(z)θ , where θ and π are parame-
ters of the model to be learned to fit the data through maximum likelihood
(2.1). Figure 4 shows a graphical representation of a mixture model.

3.2.2 The Dirichlet Process

In a classical mixture model, we must specify a number of components
(or clusters) for the random variable z. Identifying the "correct" number of
components is a task full of challenges, that has been tackled through model
selection approaches (Bishop, 2006). The Dirichlet process (Ferguson, 1973)
allows us to identify directly the number of components much more natu-
rally. The idea behind the Dirichlet process is to suppose an infinite number
of components, and specify a prior on the creation of new components. The
creation of new components has a prior probability defined by draws from
a beta distribution, formally:

βk ∼ Beta(·; 1, η)

πk = βk

k−1

∏
l=1

(1− βl) (3.1)

The probability of the kth component being active is governed by draws
from the beta distribution of hyperparameter η. One way to think of such
construction is through the stick-breaking construction (Sethuraman, 1994).
The stick breaking construction is as follows, πk represents the length of
the kth piece broken from a stick of length 1. If the concentration parameter
is small, πk will be large (close to 1) at the first times the stick is broken,
therefore the stick will be broken a small number of times (small number
of clusters). If η is large, πk will be small (close to 0) and the stick can be
broken a large number of times (large number of clusters). The probability
that the (n + 1)th data point belongs to a new cluster k∗ or to K existing
clusters is (Murphy, 2012):

P[zn+1 = z|z1:n, η] =
1

η + n

[
η1[z = k∗] +

K

∑
k=1

nk1[z = k]

]
(3.2)

where nk is the number of data points in cluster k. If η → ∞ a new cluster
would be created for each data point, and if η → 0 all data points are
concentrated in the first cluster. The intuition behind the Dirichlet process
is the following: as the number of data points increases, we allow the
number of clusters to grow according to the concentration parameter and
the clusters already assigned. New samples are assigned to existing clusters
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if they match, otherwise a new cluster is created for them. Therefore the
Dirichlet Process allows the mixture model to cluster the data and identify
automatically the number of clusters necessary to explain the data.

3.2.3 Notations

In our case, we consider that the random variable x represents the variables
or features of a network such as an equipment status, an alarm, or a physical
metric. We only consider categorical random variables. Continuous variables
such as optical powers or temperatures are discretized, using standard
methods such as equal frequency or equal width discretization. Thus, each
random variable takes values in a setEi = {v1i, ..., v|xi|i}, where |xi| is the
number of modalities of variable xi. Let x(1:N) represent N samples of
the vector x = [x1, ..., xd]

T of dimension d. We denote by z(1:N) N random
variables, where zn represents the fault cluster of sample xn.

3.3 infinite categorical mixture models

3.3.1 Structure and Definition

Using the stick-breaking construction introduced in the previous section for
the weights πk of the kth cluster, the generative process for our proposed
Infinite Categorical Mixture Model is:

z ∼ Cat(·|π) =
∞

∏
k=1
π
1[z=k]
k (3.3)

Bki ∼ Dir(·;αi, |xi|) ∝ ∏
v∈Ei

Bαiv−1
k,i,v (3.4)

s.t ∑
v∈Ei

Bk,i,v = 1 (3.5)

xi|z = k, B ∼ Cat(·|Bki) = ∏
v∈Ei

B1[xi=v]
k,i,v (3.6)

where πk is defined through the Dirichlet process defined in the previous
section.

Figure 5 shows a graphical representation of the generative process of the
model. The observed variable x depends on the cluster assignment z, and the
parameters B. We adopt a full bayesian approach where we consider the pa-
rameters of the model as random variables themselves. Thus, the parameters
B have a prior that we choose as a Dirichlet prior with hyperparameters α.
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x z

B β

α η

Figure 5: Graphical representation of
the model in plate notation.

Based on the assignment of cluster z
a sample xi for dimension i is drawn
based on the conditional probability for
variable xi taking a certain value v ∈ Ei,
defined by the B tensor:

Bk,i,v = p[xi = v|z = k] (3.7)

The Dirichlet prior on the parameters
B is governed by the hyperparameter
α called the concentration parameter.
It allows us to inject prior knowledge
about the modalities of variable xi. αiv
thus represents a weight for modality v
in the Dirichlet distribution associated with variable xi. In the case where
no information is available we use an uninformative prior αiv = 1

|xi|
.

3.3.2 Learning and Inference

In order to fit the model to the data and identify the clusters representing
the different types of network failures, we need to compute or approximate
the posterior distribution:

p(z(1:N), B, β|x(1:N)) =
p(z(1:N), B, β, x(1:N))

p(x(1:N))
(3.8)

Markov Chain Monte Carlo (MCMC) approaches are commonly used to fit
such models (Neal, 2000). The main idea behind these approaches is to run
a Markov chain long enough (until convergence) where the stationary distri-
bution at convergence is the posterior of interest as defined in equation (3.8).
The advantage of MCMC methods is that they are guaranteed to converge
to the true posterior. However, one major drawback of such approaches
arises with large datasets, in this case, MCMC methods are very expensive
computationally (Blei, Kucukelbir, and McAuliffe, 2017). Variational infer-
ence by comparison can utilize all the optimization tools to bypass this issue,
such as Stochastic optimization and distributed optimization (Robbins and
Monro, 1951), making the inference run faster. Furthermore, in terms of
predictive accuracy it has been shown that variational inference and MCMC
methods often have the same performance (Blei, Jordan, et al., 2006; Braun
and McAuliffe, 2010).

In the next section we detail the variational inference approach for our
proposed model.
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3.4 variational inference for the icmm

3.4.1 The mean field approximation

In order to introduce the variational inference approach, we denote by
ζ = ζ1:m = {z(1:N), B, β} the vector grouping all the hidden variables of the
model. Solving the inference problem of the model amounts to determining
p(ζ|x(1:N)). As detailed in section 2.4, closed form solutions for this quantity
are intractable. Variational inference and the mean-field approximation allow
us to approximate this intractable distribution by a set of distributions for
which the inference is tractable, namely the mean field family. A distribution
q is said to be in the mean field family for variables ζ, if it verifies:

q(ζ) =
m

∏
l=1

q(ζl) (3.9)

The main idea of variational inference is to approximate the intractable
distribution (3.8), by finding the closest mean field family member in terms
of Kullback-Leibler divergence i.e.:

q∗ = min
q

DKL

[
q(·)||p(·|x(1:N))

]
(3.10)

By exploiting the factorization in the mean field family, we can show that
the solution q∗ verifies the following fixed point equations:

log q∗(ζl) = const + Eζ−l∼q∗
[
log p(ζ, x(1:N))

]
∀l (3.11)

For an explicit derivation of this criterion we refer the reader to appendix A.
In the case of our model, the mean-field family is defined as :

q(z(1:N), B, β) =
N

∏
n=1

q(zn)
d

∏
i=1

T

∏
k=1

q(Bk,i)
T

∏
k=1

q(βk) (3.12)

We also suppose that q(βT = 1) = 1 hence q(zn > T) = 0, i.e. the number
of clusters is truncated to an upper bound on the true number of clusters
(Blei, Jordan, et al., 2006). A noteworthy aspect of this approach is that the
true posterior given by (3.8) has an infinite number of factors, however the
approximate distribution q is constrained based on the previous conditions.
Therefore, the true model is unchanged however the minimization problem
is relaxed in order to be solved efficiently.

3.4.2 Optimal Variational Distributions and Update Equations

By applying equation (3.11) to our Infinite Categorical Mixture Model, we
obtain:

log q∗(z(n)) = const + E{z−n,β,B}∼q∗
[
log p(z(1:N), B, β, x(1:N))

]
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Algorithm 2 Variational Inference for the ICMM

Input: x(1:N), T, η

Initialize φ, ε,γ1,γ2
L(0) = −∞
for t = 1...∞ do

Compute: γ(t)1,k ∀k (3.16)

Compute: γ(t)2,k ∀k (3.17)

Compute: ε(t)k,i,v ∀v, ∀k, ∀i (3.18)

Compute: φ(t)
n,k ∀n, ∀k (3.15)

Compute: L(t) (3.19)
if L(t) changes by less than 10−6 then

break
end if

end for
zn = arg max

k
φnk ∀n

return z(1:N),φ

log q∗(Bk,i) = const + E{z(1:N),β,B−{k,i}}∼q∗

[
log p(z(1:N), B, β, x(1:N))

]
log q∗(βk) = const + E{z(1:N),β−k,B}∼q∗

[
log p(z(1:N), B, β, x(1:N))

]
(3.13)

And by substituting the expression of p(z(1:N), B, β, x(1:N)) resulting from
the graphical representation of the model (Figure 5), we then deduce the
following approximating distributions:

q∗(z(n)) = Cat(zn;φn)

q∗(Bk,i) = Dir(Bk,i; εk,i, |xi|)
q∗(βk) = Beta(βk;γ1,k,γ2,k) (3.14)

And the mean field fixed point equations for the parameters are the follow-
ing, where ψ is the digamma function (proofs given in appendix B.1):

logφnk =
d

∑
i=1

∑
v∈Ei

1[x(n)i = v][ψ(εk,i,v)− ψ( ∑
v′∈Ei

εk,i,v′)]

+ ψ(γ1,k)− ψ(γ1,k + γ2,k) (3.15)

+
k−1

∑
l=1

[ψ(γ2,l)− ψ(γ1,l + γ2,l)]

s.t
T

∑
k=1
φnk = 1

γ1,k = 1 +
N

∑
n=1

φnk (3.16)
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γ2,k = η +
N

∑
n=1

T

∑
l=k+1

φnl (3.17)

εk,i,v = αi,v +
N

∑
n=1

φnk1[x
(n)
i = v] (3.18)

Thus, the identification of the optimal approximating distribution is done
by iterating the previous equations. The stopping criterion is defined using
the Kullback-Leibler divergence:

L(q) = −DKL

[
q(·)||p(·, x(1:N))

]
(3.19)

At convergence the value of L should reach a plateau corresponding to a
lower bound on the likelihood. Algorithm 2 summarizes the procedure for
learning the approximating posterior and for inferring the clusters.

3.5 experiments

We test our proposed model on the task of fault clustering in two datasets.
The first one is a synthetic dataset generated using an expert bayesian net-
work, and the second one a real dataset collected from equipment deployed
in a real fiber-to-the-home network. We evaluate our model in compar-
ison with other clustering baselines. Furthermore, we also compare the
Variational Inference approach with the Gibbs sampling approach.

3.5.1 Datasets

Synthetic dataset

In order to test our model in a controlled environment, we reuse the work
done by Tembo et al. (2017). The authors designed an expert bayesian
network that reflects the behaviour of a real GPON-FTTH network. The
bayesian network is depicted on figure 6 where the colored top nodes
represent the root causes and the other nodes the observations coming from
the network. Note here that the bayesian network is only used to generate a
synthetic dataset similar to operational data, it is not used in the clustering
method.

In order to generate the synthetic data for the experiment, we simulate
a fault by activating the root cause for the fault, and we sample the visible
variables. Here we sampled 6 uncorrelated faults (for more details on the
expert bayesian network and remaining variables, we refer the reader to
(Tembo et al., 2017)):
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Figure 6: Expert Bayesian Network of the FTTH GPON (Tembo et al., 2017). Colored
nodes are possible root causes whereas non-colored nodes are observa-
tions.

• AltONT: highlights a problem with the power supply of the optical
network termination (ONT). This hidden variable controls the current
of the ONT IONT, the Dying Gasp alarm DG, and the electric voltage
of the ONT VONT.

• AltOLT: describes a problem with the power supply of the optical line
termination (OLT). It controls similar variables for the OLT, VOLT and
IOLT.

• FaultyONT: denotes whether the ONT is faulty, and symbolizes the
global state for an ONT. It controls the alarms TIA (Transmission
Interference Alarm), DOW (Drift Of Windows), and SF (Signal Fail) or
SD (Signal Degraded).

• FiberDB: represents the state of the drop optical fiber and controls
RxONT the power at which the ONT receives the signal.

• IOS: (Image Operating System) refers to an incompatibility between
the OS of an OLT and the OS of an ONT. It controls the variable SWV
describing the software version alarm.

• TcOLT: represents the temperature of the OLT.

We sampled 150 data points for each fault, using the likelihood weighted
sampling method, based on the conditional distribution tables of each obser-
vation given the root cause (Fung and Chang, 1990). Therefore we generate
for each fault a pattern of the visible variables for a specific customer equip-
ment (ONT). The resulting dataset contains 900 samples, where each sample
represents a realization of the 29 visible nodes of the Bayesian network.
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Figure 7: Network scope for fault pattern extraction from real operational data

Dataset Classes Features Instances Label rate

Synthetic 6 29 900 100 %

Real-world 8 85 41185 29.4 %

Table 1: Description of each dataset.

Real-world dataset

The second dataset used for evaluation is collected from a real world operat-
ing GPON-FTTH and Local area network depicted in figure 7. For the fixed
access network we collected data describing the status of the OLT, and the
status of the ONT (olt_status, ont_status, ont_download_status), in addition
to continuous metrics such as the powers of transmission and reception in
each equipment. For the local area network, we collected data describing
the status of the router and the different services provided such as, IPTV,
VOD (Video On Demand) and VoIP. We also collected data describing the
account status of the client.

The data collected corresponds to instances where some faults are known
(identified) and others where the fault is not known to experts or expert
systems. The unidentified fault could be the same as a known fault or
entirely novel to the system. In this chapter, we focus on the unidentified
faults representing 70.6 % of the dataset. We adopt a full unsupervised
method, i.e. we consider that no ground truth is available and we attempt
to identify patterns blindly.

Table 1 summarizes each dataset and its characteristics.

3.5.2 Baselines and Metrics

We compare our clustering approach to other state of the art clustering
methods, where the number of clusters is not required and is determined
automatically. The baselines chosen are the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) (Ester et al., 1996), the affinity propa-
gation clustering method (Frey and Dueck, 2007), the mean shift clustering
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AltONT AltOLT FaultyONT FiberDB IOS TcOLT

cluster 11 150 0 0 0 0 0

cluster 25 0 132 0 0 0 0

cluster 5 0 0 148 0 0 0

cluster 3 0 0 1 150 0 2

cluster 39 0 1 0 0 147 3

cluster 17 0 17 1 0 3 145
cluster 1 0 0 0 0 0 0

...
...

...
...

...
...

...
cluster 50 0 0 0 0 0 0

Table 2: Confusion Matrix of the Infinite Categorical Mixture Model on the synthetic
dataset.

method (Comaniciu and Meer, 2002), and the infinite Gaussian mixture
model (IGMM) (Rasmussen et al., 1999).

The evaluation metric is the clustering accuracy, it is similar to the classi-
fication accuracy, however, in the clustering task the clusters are not iden-
tifiable with the labels, i.e. the clusters can change from one run of the
algorithm to another. Therefore we need to test all possible combinations
and choose the best one. The clustering accuracy is defined as in (Xie,
Girshick, and Farhadi, 2016):

ACC = max
m∈M

∑N
n=1 1 [ln = m(zn)]

N

where zn is the cluster assignment, ln the true label and M the set of all
possible one-to-one mappings.

3.6 results

3.6.1 Clustering results on the synthetic dataset

Here, we report the clustering results of our model on the synthetic dataset.
First, we compare our model with the considered baselines. In table 3, we
report the mean and standard deviation of the clustering accuracy for each
model over 10 runs. A search over the hyperparameters of each model
has been performed and the best performing model is selected for each
baseline. As shown our model outperforms all models considerably. This
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Table 3: Comparison between our model and the baselines.

Methods
Affinity

propagation Mean shift DBSCAN IGMM Ours

Accuracy 0.35 ± 0.0 0.69 ±0.0 0.29 ± 0.0 0.57 ± 0.09 0.9 ± 0.07

shows the advantage of explicitly modeling a clustering problem to match
the specificity of the data. Using classical approaches blindly often leads to
poor results.
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runs.

Second, we report the evidence lower
bound of equation (3.19) across varia-
tional inference iterations, for 10 runs of
the model with their standard deviation.
The evidence lower bound gives us a
criterion for evaluating the convergence
of the model. As depicted in figure 8,
the evidence lower bound increases un-
til reaching a plateau, which indicates
that the model has converged.

Finally, in table 2, we report the confu-
sion matrix for the best model (highest
elbo). As shown, the confusion matrix is
diagonal with the majority of instances
well clustered to their ground-truth classes of faults. Furthermore, and more
importantly, the advantage of the Dirichlet process is clearly demonstrated.
We start with 50 clusters, however only 6 are filled corresponding to the
ground-truth classes, the others are kept empty. Therefore, the model clus-
ters the data and automatically identifies the correct number of clusters.

3.6.2 Variational inference vs Gibbs sampling

We report the results of the comparison between the Gibbs sampling fitting
of the model and the variational inference method. We compare the two
approaches in terms of complexity and accuracy on the synthetic dataset.
As seen in figures 9 and 10, both methods arrive at high accuracy, they
have the same performance in terms of predictive accuracy around 90 %.
However, as the number of instances in the dataset increases, we see that the
Gibbs sampling convergence time increases considerably. In contrast with
the variational inference approach the convergence time stays stable. This is
a foreseeable consequence, that stems from the fact that iterations of Gibbs
sampling can only be done sequentially and are of complexity O(NKD),
where N is the number of instances, K the number of classes, and D the
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Figure 9: Convergence time as a func-
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stances for the variational
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pling approaches.
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dimension of the observable random variable x. Variational inference on
the other hand, has complexity O(NK) (updates of φ, others are negligible).
Furthermore, the updates of variational inference can be written in matrix
form that can be run in parallel form.

3.6.3 Pattern recognition on real-world data

In this second experiment, we apply our clustering model on real operational
network data. However in this setup we don’t have access to a ground
truth so the aim of this experiment is to demonstrate the benefit of our
clustering model in a data exploration process. We obtained 6 main clusters
corresponding to known problems. We report for each cluster the number
of customers assigned to the cluster and the most common pattern, i.e.
characteristic values that the variables take and the counts for each variable
(Figure 11). Furthermore, we give an interpretation based on network
expertise to understand what kind of problem the customers are facing in
each cluster.

• Cluster 37: (600 clients) This cluster gathers customers with a prob-
lem on the remote PVR for the IPTV: Remote_PVR = Missing, and
all other values correspond to an operational state of the client’s
line: (client_account_status=1, OLT_status=OK, router_status=Enabled,
ONT_status=NODEFECT...).

• Cluster 30: (> 2500 clients) In this cluster the ONT is not detected:
(ONT_status = Missing), where all other services are operational
(router_status=Enabled, voip_status=Ok, tv_profile_status=operational
... ).
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• Cluster 43: (≈ 2500 clients) This cluster corresponds to the optimal
behavior of the network and services, all equipment are detected and
all services are operational.

• cluster 44: (≈ 550 clients) This cluster describes a problem with
the router where the router is disabled (router_status=DISABLED,
router_ipv6_status=DISABLED), however all other equipments are
operational and client account status is activated.

• Cluster 40: (≈ 27 clients) This cluster represents the case where an ac-
count is suspended and the VOIP service is down (client_account_status
= 0, tv_profile_status=SUSPENDED, VOIP_status=KO), however all
pieces of equipment are operational.

• Cluster 12: (≈ 130 clients) This cluster gathers clients with deac-
tivated WiFi (router_WiFi_status = Down, router_status=Enabled),
and all other equipment is operational (ont_status = NODEFECT,
OLT_status=OK...).

This experiment shows that our clustering method can be helpful in a
data exploration process where the number of clusters is not known a priori.
With a simple network expertise we can see that the clusters are relevant
and describe a particular behaviour on the network.

3.7 discussion & prior work

Machine learning techniques for fault detection in telecommunication net-
works are promising. Bayesian networks have been dominant in this domain
(Kogeda, Agbinya, and Omlin, 2006; Kogeda and Agbinya, 2006; Tembo
et al., 2017). The main advantage of Bayesian network modeling is their easy
interpretable nature. Root causes of faults are modeled by variables of the
Bayesian network and inference can be performed in order to determine the
root cause from the observable variables. This approach however, requires
expert knowledge of the specific domain of faults and a time consuming
task to build the Bayesian network and all the dependencies between the
variables. Recently, researchers have been interested in learning the struc-
ture of the Bayesian network from data (Koller and Friedman, 2009), and
such approaches have been successfully used for the self-diagnosis problem
(Bennacer et al., 2014). However, the main problem, in such approaches, is
the loss of the interpretability. The structure learned from the data can be
one of a class of equivalence of optimal structures, hence, this often results
in structures that are optimal but hard to interpret.

The second group of machine learning approaches, are anomaly detection
based approaches (Chandola, Banerjee, and Kumar, 2009b; Hood and Ji,
1997). Although these methods allow for accurate detection of anomalies
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Figure 11: Assignments defining each cluster from most occurring to least occurring
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from data, their main drawback is that all anomalies identified are grouped
in a single cluster. Classifying each anomaly requires either a relabeling
process by hand or a clustering process. Therefore, the natural reformulation
of the self-diagnosis problem is as a clustering problem. Clustering types
of faults from the data has been previously proposed (Adda, Qader, and
Al-Kasassbeh, 2017; Hashmi, Darbandi, and Imran, 2017). However, most of
these approaches rely on classical algorithms where the number of clusters
is known a priori or estimated by model selection. On the contrary, our
approach allows for automatic determination of the number of clusters and
requires no intervention from an expert. A post processing of the clusters by
an expert is still needed in order to identify the fault present in each cluster
and the related root cause. (Chen et al., 2004) proposed a method based on
decision trees to accomplish this task.

3.8 limitations

Clustering patterns of faults in network data can be achieved using the
categorical mixture model approach as proposed in this chapter. However,
two main limitations arise and are quite clear at this stage. The first, is the
fact that the model can be applied only to categorical random variables.
Thus, continuous variables have to be preprocessed in advance. The second
limitation stems from the fact that labels are often available as discussed in
subsection 3.5.1. However, the proposed infinite mixture model as formu-
lated can only cluster the data in an unsupervised manner, without taking
advantage of the existing labels available. In the next chapter, we extend the
definition of the mixture models to treat categorical and continuous random
variables alike. Furthermore, we show how we can use semi-supervision
using the labels available to guide the clustering based on the ground-truth
available.

3.9 conclusion

We have introduced the infinite categorical mixture model, for clustering
faults in categorical network data. We showed how the model can be used
to analyze data gathered from telecommunication networks and services
and how to discover fault patterns in an unsupervised manner. The model
is capable of identifying the correct number of clusters to analyze the data
using the Dirichlet process. We showed how Variational Inference can be
used to perform inference on the model. This approach allows inference to
scale well with the dimensionality of the data, and the convergence of the
model can be determined explicitly.
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S E M I -S U P E RV I S I O N A N D
M I X E D -TY P E I N F I N I T E M I X T U R E
M O D E L S

4.1 introduction

In the previous chapter, we have explored the problem of clustering faults
from network data in an unsupervised manner. As discussed, the previous
model, i.e. the infinite categorical mixture model, was capable of identifying
patterns of faults and simultaneously inferring the number of faults from the
data. However, as its name suggests the model only deals with categorical
random variables, meaning that continuous random variables need to be
preprocessed in order for the model to be applied. It turns out our model can
be generalized to continuous and categorical random variables by expanding
the definition of the emission distributions of the visible random variables.

Furthermore, in most real-world applications of diagnostics some expert
knowledge is available. The expert knowledge is often represented by partial
labels, i.e. an expert looks at a data point and determines which class of
fault it belongs too. The infinite categorical mixture model of the previous
chapter does not use this extra-information of partial labels. Fortunately,
semi-supervised learning methods could be applied to take advantage of
both large amounts of unlabeled data and a small fraction of labeled data
(Chapelle, Scholkopf, and Zien, 2009).

With slight modifications to our previous infinite categorical mixture
model, we could bypass these issues. Indeed, probabilistic graphical models
can incorporate labels as observable random variables. This approach has
been successfully applied to classical mixture models with the Expectation-
Maximization algorithm (Nigam et al., 2000; Seeger, 2006). Furthermore,
continuous data can be incorporated in the probabilistic graphical model
through continuous distributions such as the Gaussian distribution. The
challenge that arises is the non-conjugacy between the categorical distribu-

35
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tions and the continuous ones, making classical inference methods such as
Gibbs sampling non viable.

In this chapter, we generalize the previous infinite categorical mixture
model to a semi-supervised mixed-type infinite mixture model capable
of dealing with categorical and continuous distributions alike, and also
capable of incorporating expert knowledge in the form of partial labels. Our
contributions are the following:

• We start by giving a formal definition of the semi-supervised mixed-
type infinite mixture model as a probabilistic graphical model.

• We show how to solve the inference problem through mean-field
variational inference similarly to the previous chapter, and how to use
the model to make predictions on future data samples.

• We apply our model on a real-world semi-supervised fault cluster
identification problem from GPON-FTTH data, and we compare our
model to classical baselines.

4.2 notations

We start by defining additional notations in this section in order to rigorously
introduce the semi-supervision and the continuous random variables. We
keep the same definition for the visible random variables as in the previous
chapter, i.e. x = [x1, ...., xd]. However, within the d random variables
considered, there exists two subsets, those of the continuous and categorical
random variables. We denote xC = {xj, if j is a continuous dimension}
the vector of continuous random variables, and we denote the vector of
categorical random variables by xD = {xj, if j is a categorical dimension}.

Second, in order to introduce the semi-supervision, we consider the set
of indexes of the whole dataset of N instances denoted by {1, ..., N} =
Dl ∪ Du where Du = {n ∈ {1, ..., N}, s.t. x(n) is unlabeled} denotes the
indexes of the observed instances that are unlabeled, and, Dl = {n ∈
{1, ..., N}, s.t x(n) is labeled} denotes the indexes of the observed instances
that are labeled. We denote the nth label for instance x(n) by y(n).

Finally, we introduce the Wishart distribution, that will serve as a prior in
the continuous case over precision matrices. The Wishart distribution is a
distribution defined on the space of p× p symmetric, non-negative, definite
matrices Λ. Its density function is defined as:

W(Λ; L, ν) =
det(Λ)

ν−p−1
2 exp{−1

2 tr(L−1Λ)}
2

νp
2 det(L)

ν
2 Γp(

ν
2 )

, (4.1)



4.3 model description 37

where L is called the scale matrix, ν is a scalar called the degrees of free-
dom, tr() represents the trace function and Γp represents the multivariate
gamma function. The Wishart distribution serves as a conjugate prior for
the precision matrix of a multivariate normal distribution.

4.3 model description

4.3.1 Structure and definition

The proposed model in this chapter is an extension of the infinite categorical
mixture model to the continuous case, with the advantage of introducing
semi-supervision. Certain aspects of the previous model remain unchanged,
namely, the Dirichlet process and the cluster hidden variables, defined by
the following generative process, which is the same as the previous chapter:

βk ∼ Beta(·; 1, η) ∀k ∈ N∗ (4.2)

πk = βk

k−1

∏
l=1

(1− βl) (4.3)

z ∼ Cat(·|π). (4.4)

Following the generation of the cluster hidden random variable z, we need
to specify the emission distributions of the hidden random variables x =
[xD, xC ]. We can follow the same procedure as the last chapter to model the
categorical random variables, that is:

∀i ∈ D Bki ∼ Dir(·;αi, |xi|) (4.5)
xi|z = k, B ∼ Cat(·|Bk,i), (4.6)

where the parameters B and the sets Ei are defined in the same way as in
subsection 3.3.1.

The last part of the puzzle is to specify emission distributions over the
continuous observable random variables given the cluster assignment. In
this model, we opt for the simplest of modeling and we will explore its
limitations in later chapters. We will suppose that the continuous random
vector is Gaussian with conjugate priors on the mean and precision matrix
(inverse of the covariance matrix):

xC |z = k, M, Λ ∼ N (·; Mk, Λ−1
k ), (4.7)

where the M = [Mk,j] and Λ = [Λk,i,j] are respectively the mean and
precision matrices for each cluster.
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Figure 12: Graphical representation of the mixed-type infinite mixture model in
plate notation.

In this approach, we also adopt a full bayesian setting where the mean
and precision matrices are considered random variables with Gaussian and
Wishart conjugate priors respectively:

∀k Mk|Λk ∼ N (·;µ0, (κ0Λk)
−1) (4.8)

Λk ∼ W(·; L0, ν0) (4.9)

The previous bayesian priors are standard in classical Gaussian mixture
models (Murphy, 2012). {µ0, κ0, L0, ν0} are hyperparameters to be set empir-
ically.

In Figure 12 we report a graphical representation of the mixed-type infinite
mixture model and the dependencies between the random variables.

4.3.2 Semi-supervision as partially observable cluster variables

One way to incorporate the partial labels in a probabilistic graphical model is
to consider the values as observations of the corresponding hidden variables,
i.e. the cluster hidden variable. This approach was introduced by (Seeger,
2006). The approach consists in supposing that if x(n) is labeled, in its
generative process its cluster variable z(n) has to correspond to its label y(n).
This approach generalizes quite nicely to our probabilistic model.

In our case, the condition would be:

p(x(n), z(n) 6= y(n)) = 0 ∀n ∈ Dl. (4.10)

The subtlety of this condition remains in the inference process. The previous
criterion of equation (3.19) no longer holds as a variational lower bound
in this case. In the next section, we show how to generalize it to the semi-
supervised case, and how to derive the corresponding variational update
equations.
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4.4 variational inference for the mixed-type
model

4.4.1 The semi-supervised variational lower bound

The semi-supervision condition of equation (4.10) requires us to revisit the
likelihood of our model. Indeed, with this condition the likelihood can be
decomposed into two terms:

log p(x(1:N)) = ∑
n∈Dl

log p(x(n)) + ∑
n∈Du

log p(x(n))

= ∑
n∈Dl

log p(x(n), z(n) = y(n)) + ∑
n∈Du

log p(x(n))

The last equality follows from the fact that ∀n ∈ Dl : p(x(n), z(n) 6= y(n)) = 0.
Given the decomposition of the log likelihood, the corresponding variational
lower bound also involves two terms for the labeled and unlabeled terms.

Let us denote by ζ = {β, z(1:N), M, Λ, B} the set of all hidden random
variables, and ζ−z(1:N) the set without the z random variables. Similarly to
chapter 2, using the Jensen inequality as in equation (2.9), and introducing
the variational distribution q(·) over the hidden variables, we have:

log p(x(1:N)) ≥ ∑
n∈Dl

∫
q(ζ−z(n)) log

p(x(n), ζ−z(n) , z(n) = y(n))
q(ζ−z(n))

dζ−z(n)

+ ∑
n∈Du

∫
q(ζ) log

p(x(n), ζ)
q(ζ)

dζ = Lss(q) (4.11)

The new semi-supervised evidence lower bound Lss can be written in the
form of a Kullback-Leibler divergence, by simply noticing that the semi-
supervision condition can be transferred to the variational distribution, that
is: ∀n ∈ Dl : q(z(n) = y(n)) = 1. We force the labeled instances to also have
a variational posterior that respects the labelisation. The semi-supervised
evidence lower bound in this case can be re-written as:

Lss(q) = −DKL

[
q(·)||p(·, x(1:N))

]
s.t ∀n ∈ Dl : q(z(n) = y(n)) = 1 (4.12)

Since the semi-supervised evidence lower bound can be written as a
Kullback-Leibler divergence, we can apply mean-field variational inference
in order to find the optimal mean-field distribution maximizing Lss, and
thus fitting the model to the observed data. In the next subsection, we apply
the mean-field variational inference approach to derive the update equations
of the optimal q.
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4.4.2 Mean-field variational inference

As discussed in the previous subsection, optimizing the model to fit the
data amounts to finding the optimal variational distribution maximizing the
semi-supervised evidence lower bound of equation (4.12). i.e.:

q∗ = arg max
q

Lss(q) s.t ∀n ∈ Dl : q(z(n) = y(n)) = 1 (4.13)

In order to apply the mean-field approach of Appendix A, we need to
specify the variational family. For the discrete dimensions, we keep the
same variational factorization as the previous chapter. As for the continuous
dimensions, we use a standard variational family for Gaussian mixtures,
where the mean and precision random variables are not independent (Mur-
phy, 2012). The variational family of the distribution q has the following
form over the set of hidden random variables {β, z(1:N), M, Λ, B}:

q({β, z(1:N), M, Λ, B}) =
N

∏
n=1

q(zn)
T

∏
k=1

q(βk)

×∏
i∈D

q(Bk,i)q(Mk|Λk)q(Λk) (4.14)

Given the previous variational family, solving equation (4.13) leads to the
following parametric variational distributions:

q∗(zn) = Cat(zn;φn)

q∗(Bk,i) = Dir(Bk,i; εk,i, |xi|) ∀i ∈ D
q∗(βk) = Beta(βk;γ1,k,γ2,k) (4.15)

q∗(Mk|Λk) = N (Mk;µk, (κkΛk)
−1)

q∗(Λk) =W(Λk; Lk, νk)

Note that the hidden variables corresponding to the discrete dimensions
remain unchanged. The variational distribution of the continuous part
are simply Gaussian and Wishart distributions of variational parameters
{Lk, νk,µk, κk}.

The Variational update equations of the discrete part and beta random
variables remain familiar as well:

γ1,k = 1 +
N

∑
n=1

φn,k γ2,k = η +
N

∑
n=1

T

∑
l=k+1

φn,l (4.16)

εk,i,v = αi,v +
N

∑
n=1

φn,k1[x
(n)
i = v] ∀i ∈ D (4.17)
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Algorithm 3 Variational Inference for the mixed type infinite mixture model

Input: x(1:N), T, η, µ0, κ0, L0, ν0,α
Initialize φ
L(0)ss = −∞
for t = 1...∞ do

Compute: γ(t)1,k ,γ(t)2,k , κ
(t)
k , ν

(t)
k ∀k (4.16)(4.19)

Compute: ε(t)k,i,v ∀v, ∀k, ∀i (4.17)
Compute: µk, Lk ∀k (4.18)(4.20)
Compute: φ(t)

n,k ∀n, ∀k (4.21)

if L(t)ss changes by less than 10−6 then
break

end if
end for
return φ, L, ν,µ, κ,γ, ε

For the variational parameters corresponding to the continuous dimensions,
i.e. {Lk, νk,µk, κk}, the update equations are the following:

µk =
κ0µ0 + ∑N

n=1 φn,kx(n)C
κk

(4.18)

κk = κ0 +
N

∑
n=1

φn,k νk = ν0 +
N

∑
n=1

φn,k + 1 (4.19)

L−1
k = L−1

0 + κ0(µk −µ0)(µk −µ0)
T

+
N

∑
n=1

φn,k(x
(n)
C −µk)(x

(n)
C −µk)

T (4.20)

Finally, the variational parameters representing the cluster probabilities φ
have a different form, they depend naturally on the continuous and discrete
dimensions simultaneously:

log φn,k = −
1
2

[
|C|
κk

+ νk(x
(n)
C −µk)

TLk(x
(n)
C −µk)

]
+ ∑

i∈D
∑

v∈Ei

1[x(n)i = v][ψ(εk,i,v)− ψ( ∑
v′∈Ei

εk,i,v′)]

+
1
2

[ |C|
∑
i=1

ψ

(
νk + 1− i

2

)
+ log det(Lk)

]
(4.21)

+ ψ(γ1,k)− ψ(γ1,k + γ2,k)

+
k−1

∑
l=1

[ψ(γ2,l)− ψ(γ1,l + γ2,l)] + const

s.t
T

∑
k=1
φn,k = 1 and, φn,yn = 1 ∀n ∈ Dl
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A proof of the previous equations is given in appendices B.1 and B.2. Given
all the variational fixed point equations for the parameters, we need only to
iterate them until convergence of Lss in order to fit the model. Algorithm 3

summarizes the process.

4.4.3 The predictive distribution

Given a trained model through the variational inference method, one needs
to make predictions of classes using such model. Formally, given a new
instance x(N+1), one needs to determine the probability that the hidden
cluster variable z(N+1) is equal to a certain value k, given all the observations
x(1:N+1). Meaning, we need to compute the following probability:

p(z(N+1) = k|x(1:N+1)) ∝ p(z(N+1) = k, x(N+1)|x(1:N)) (4.22)

Computing the previous quantity requires a marginalization over all the
hidden variables except z(N+1). Which leads to the follwing computation:

p(z(N+1) = k|x(1:N+1)) ∝∫
p(z(N+1) = k, x(N+1), B, M, Λ, β|x(1:N))dMdΛdβdB

∝
∫

p(x(N+1)|z(N+1) = k, B, M, Λ) (4.23)

× p(z(N+1) = k|β)p(B, M, Λ, β|x(1:N))dMdΛdβdB

In order to compute this integral, we need to compute the posterior of the
parameters p(B, M, Λ, β|x(1:N)). Unfortunately, as discussed in previous
chapters a closed form of this posterior is intractable. However, variational
inference gives us an approximation of this posterior: q∗. Therefore, we can
use this approximation to compute the integral (Blei, Jordan, et al., 2006):

p(z(N+1) = k|x(1:N+1)) ∝∼
∫

p(x(N+1)|z(N+1) = k, B, M, Λ)

× p(z(N+1) = k|β)q∗(B, M, Λ, β)dMdΛdβdB (4.24)

∝∼ Eβ∼q∗ [πk(β)] ∏
j∈D

EBk,j∼q∗ [Cat(x(N+1)
j |Bk,j)]

×EMk,Λk∼q∗ [N (x(N+1)
C ; Mk, Λk)]

Furthermore, all the expectations of the previous equation can be computed
in closed form (see Appendix B), and lead to the following final form of the
predictive distribution:
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Algorithm 4 Cluster prediction for future samples

Input: x(N+1),φ, L, ν,µ, κ,γ, ε
Compute: Θk ∀k (4.26)
Approximate: p(z(N+1) = k|x(1:N+1)) ∀k (4.25)
ẑ(N+1) = arg max

k
p(z(N+1) = k|x(1:N+1))

return ẑ(N+1)

p(z(N+1) = k|x(1:N+1)) ∝∼
γ1,k

γ1,k + γ2,k
∏
l<k

γ2,l

γ1,l + γ2,l
∏
j∈D

[ ε
k,j,x(N+1)

j

∑v∈Ej
εk,j,v

]

×

√(
κk

π(κk + 1)

)p det
(
(L−1

k + Θ−1
k )−1

) νk+1
2 Γp(

νk+1
2 )

det(Lk)
νk
2 Γp(

νk
2 )

, (4.25)

where p represents the cardinal of the set C, and Θk is p × p symmetric
non-negative definite matrix defined by:

Θ−1
k =

1
κk + 1

(κkµk + x(N+1)
C )(κkµk + x(N+1)

C )T + κkµkµ
T
k + x(N+1)

C x(N+1)
C

T

(4.26)

A detailed derivation of the previous equation is given in Appendix B.
Following from the previous computation, predicting the cluster of the
N + 1 sample is simply done by taking the value of k representing the
maximum of the probability. Algorithm 4 summarizes the process.

4.5 experiments and results

In this section, we demonstrate the ability of the semi-supervised mixed-type
mixture model to learn to classify faults in a semi-supervised fashion.

4.5.1 Experimental setup and baselines

Our experimental setup in this chapter is the following, we consider the
real-world dataset presented in chapter 3. This dataset is comprised of
categorical variables (Alarms, status of equipment,...), and continuous vari-
ables (transmission and reception powers, bit error rates, ...). The categorical
variables are treated in the same way as the previous chapter. As for the
continuous variables, we scale their values between 0 and 1 using min-max
scaling. We use the labeled part of the dataset. The evaluation metrics
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reported are computed over a held-out 10 % of the overall dataset. We use
five cross-validation runs, and we report the mean and standard deviation
of each metric.

In the previous chapter we showed how we can cluster patterns of faults in
an unsupervised manner. In this chapter, we evaluate the semi-supervised
classification capability of our model compared to some state-of-the-art
baselines. The baselines considered are some of the best performing semi-
supervised learning methods, namely, Label Propagation (Zhur and Ghahra-
mani, 2002) and Transductive Support Vector Machines (TSVM) (Joachims,
1999).

4.5.2 Evaluating convergence of the model
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Figure 13: semi-supervised evidence
lower bound across varia-
tional inference iterations.

Same as the previous chapter the first
task is to ensure that the update equa-
tions of the variational inference are
correct and lead to model convergence,
we report the semi-supervised evidence
lower bound of equation (4.12) across
updates of the variational parameters.
As shown in Figure 13, the evidence
lower bound increases monotonically
and converges to a plateau, which in-
dicates that the equations derived are
correct and that the model is well fitted.

4.5.3 Evaluating the classification accuracy
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Figure 14: Accuracy of the model
across variational infer-
ence iterations.

Second, we evaluate the classification
accuracy of our model on the held-out
datasets. We report the evolution of the
classification accuracy across iterations.
Same as the evidence lower bound the
classification accuracy should increase
and converge to a stable value. As
shown in Figure 14, it is the case, the ac-
curacy converges steadily over all runs
to a value of about 94 % corresponding
to 6 % error rate on the test set.

Finally, we evaluate our model in comparison with the considered base-
lines, Label Propagation and Transductive Support Vector Machines (TSVM)
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Table 4: Comparison between our model and the baselines.

Methods
Label

Propagation TSVMs (Linear) TSVMs (RBF) Ours

Accuracy 0.95 ± 0.01 0.59 ± 0.02 0.62 ± 0.04 0.94 ± 0.01

with Linear and Gaussian kernels. In Table 4 we report the results of
the comparison. The model is competitive with label propagation, with it
scoring slightly better (one percent better) than our model on the dataset.
Linear and Gaussian TSVMs perform much poorly compared to our model
and label propagation. This could be a result of the assumptions behind
the Transductive SVM. There is no guarantee that the classes in the data
considered are separable linearly, or in the space generated by the kernel.

4.6 discussion & prior work

In the semi-supervised learning literature, two approaches to assign classes
to samples with prior knowledge have been extensively studied. The first
approach supposes that all the different classes are present in the labeled part
of the dataset, thus the number of classes is known. The model then attempts
to propagate the labels to the unlabeled set, by respecting some notion
of similarity. The previously introduced methods Transductive Support
Vector Machines (Joachims, 1999) and label propagation (Bengio, Delalleau,
and Le Roux, 2006) and (Zhur and Ghahramani, 2002) belong to this first
approach. The Transductive Support Vector Machine model leverages the
unlabeled data in the learning of the decision boundary between classes
unlike classical support vector machines where only the labeled data is used.
Label propagation, on the other hand, is a graph based approach where
the labeled and unlabeled data points represent nodes of the graph, and
edges represent similarities between the nodes. The known labels are then
propagated through the graph to label the unlabeled nodes. However, in
some real world applications of data mining and information retrieval, the
number of possible clusters is unknown and not all clusters are partially
labeled, making the utility of such methods limited.

The second approach is based on the classical KMeans clustering al-
gorithm, where constraints are added in order to guide the clustering,
and improve the performance (Wagstaff et al., 2001). The constraints are
constructed from the partial labels, must-link constraints assure that two
samples must have the same label, and cannot-link constraints assure that
two samples shouldn’t be labeled the same. (Basu, Banerjee, and Mooney,
2004) proposed a Hidden Markov Random Field (HMRF) formulation of this
model and later introduced distance learning to identify relevant features
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to the clustering (Basu, Bilenko, and Mooney, 2004). In this approach it is
possible to find a hidden cluster not present in the partial labels. However,
because it is based on the KMeans algorithm, the number of clusters must
be known or some sort of model selection needs to be applied to estimate
it. For a detail review of these approaches, we refer the reader to (Chapelle,
Scholkopf, and Zien, 2009).

By comparison, our approach does not suppose a fixed number of clusters
but rather learns it directly from the data. More importantly, the modeling
assumption are in accordance with the data types and structure, categorical
variables remain as such and continuous variables are modeled as such.
Thus, no distance learning is required to evaluate relevant features. In
addition, the model in its semi-supervised form can adjust the parameters
to the known labels of faults, however, if a new fault pattern emerges the
Dirichlet Process mixture part automatically creates a new cluster for it.

4.7 limitations

Although the infinite mixed-type semi-supervised mixture model can suc-
cessively model the known labels of faults, and through its Dirichlet process
mixture cluster new patterns, it remains that the model only functions cor-
rectly if the necessary information is directly correlated to the cluster hidden
variable. Under this assumption, there is no need to create new features
from the data in order to classify or cluster the faults correctly. The previ-
ous setting leads to good results, in highly specific applications with low
dimensional datasets, that can be heavily preprocessed. In most real-world
applications, we can collect hundreds if not thousands of variables and
even with thorough preprocessing, noise remains, making shallow models
perform poorly. In order to reach good performance in this case, one needs
to use models capable of creating latent features relevant to each class, which
naturally leads us to deep learning based methods.

4.8 conclusion

In this chapter, we extended the Infinite Mixture Model to the semi-supervised
case with mixed type variables (continuous and categorical). We showed
how to learn the model using variational inference, and how to make predic-
tions using the model. In the next part of the manuscript, we discuss how
to enlarge the scope of infinite mixture models to include feature learning
using deep learning methods. These methods as we will show are necessary
to deal with high dimensional noisy datasets, that require good feature
creation to classify and identify patterns of faults.
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D E E P I N F I N I T E M I X T U R E M O D E L S
F O R FAU LT D I S C OV E RY

5.1 introduction

In chapters 3 and 4, we have introduced infinite mixture models for fault
clustering and classification from network data. We generalized the approach
to deal with categorical and continuous hidden variables in the presence
of expert knowledge in the form of labels. A major limitation however
of the previous approach is its inability to create new, and possibly more
informative features for the classification task. In this chapter, we discuss
how to combine the infinite mixture model approach with deep learning
methods in order to solve this problem. We call this approach Deep Infinite
Mixture Models.

Deep learning methods have demonstrated tremendous capability of
learning representative features for classification tasks, especially for un-
structured data such as images (Krizhevsky, Sutskever, and Hinton, 2012).
Thanks to the ever increasing size of datasets that are labeled, deep learning
can use this massive scale of data to reach good performance on a number of
tasks ranging from classical supervised learning to reinforcement learning.
Extending the paradigm to network data is very appealing, network data is
often labeled through expert systems, is massive in terms of dimensionality
and number of instances, thus deep learning methods can be applied to
extract features in this domain as well.

The challenge of the diagnosis task in telecommunication networks is
the discovery or clustering task. It is not sufficient to classify correctly
known faults, but we need to also discover new patterns of faults. The
literature of deep learning is still lacking in this task, and the subject is
still widely unexplored and an active area of research. The closest deep
learning paradigm is Zero-Shot Learning (ZSL), where some classes are
known and others are hidden (Xian, Schiele, and Akata, 2017). However,
in most applications of zero-shot learning extra semantic information is
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available (for example, a description of an image in words accompanying
the image). This makes these approaches inapplicable for the diagnosis
task, due to the fact that such information is often not available (Larochelle,
Erhan, and Bengio, 2008; Socher et al., 2013).

In this chapter, we propose an approach based on deep neural networks
and infinite Gaussian Mixture Models (GMM). Our approach combines
the power of neural networks, and the exploration potential of infinite
mixture models. The neural network identifies useful features for the fault
discovery process (based on the labeled faults), then the infinite mixture
model clusters the data based on the neural network representation. Thus,
the fault discovery process is done on a more representative space of the
faults.

We demonstrate our approach on data derived from GPON-FTTH net-
works, we show that the neural network is capable of identifying relevant
features for the diagnosis task. Furthermore, we show that the clustering
approach automatically identifies clusters of relevant faults. The remainder
of the chapter is organized as follows:

• In section 5.2, we frame the problem of discovering new types of faults
as a deep learning problem and we give an overview of the overall
model.

• In section 5.3, we detail the feature extraction task as a deep learning
classification task.

• In section 5.4 we introduce the infinite Gaussian mixture model for
clustering new faults based on the extracted features.

• Finally, in section 5.5, we show how our approach can explore an unla-
beled part of a more complex GPON-FTTH dataset in order to identify
new types of faults that were previously considered as unidentified
faults by an expert system.

5.2 problem description & model overview

5.2.1 Problem statement

Discovering and diagnosing faults from network data is extremely challeng-
ing due to three key properties of large telecommunication networks:

• Scale: when dealing with large telecommunication networks, the scale
of the data in terms of dimensionality and the number of instances
adds to the complexity of the diagnosis system, and restricts further
the approaches that one can adopt to solve the diagnosis problem.
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• Novelty: a second issue is the adaptability of the diagnosis system.
Given a dynamic corpus of data gathered from the network, the system
needs to identify previously known faults if they occur, in addition to
clustering and identifying new patterns of faults.

• Noise: when dealing with network data, not all features and data
dimensions will be relevant for a specific fault, hence adding noise
to the relevant information. Therefore, an efficient diagnosis system
needs to filter out the noise in some way in order to identify relevant
features for the fault in question.

A learning-based efficient diagnosis system thus needs to identify and learn
previously known patterns of faults, discover new patterns unknown to the
experts or the expert system, and finally identify patterns relevant to actual
faults on the network.

5.2.2 Data specification

The first challenge encountered when dealing with network data is the
multi-typed nature of variables. For example, when treating data gathered
from the optical network, one finds continuous variables such as power
levels, and variables taking discrete, categorical, or binary values such as
alarms of some specific device. In order to create the data corpus, we start
by normalizing the continuous variables by subtracting the minimum and
then scaling the values (dividing by the maximum minus the minimum
value). For the categorical variables, we use the one-hot encoding i.e. if a
variable Xi takes values in a set {c1, ..., cK}, then we create a representation in
{0, 1}K, for which the kth column is equal to 1 if the variable Xi is equal to ck.
The resulting training data X ∈ RN×D contains N lines, each representing
a customer’s data vector, and D columns, each representing a variable of
the network. Given the large amount of data gathered D is often very
high (D >> 1, with often hundreds of variables). In addition to the data
vector, for some customers, expert systems have identified the corresponding
fault, thus providing us with a label. We denote these labels y ∈ RN, each
line represents the label given to a customer. A label yn takes values in
{−1, 1, ..., K}, where {1, ..., K} represent the known classes, and the value
−1 represents an unknown class, as a convention. The key problem is
to identify the labels of the class −1. This label could belong to the set
of existing known faults (i.e. to the set of known classes {1, ..., K}) or a
completely new set of faults occurring in the network. For what follows, we
will denote xn ∈ RD the data vector corresponding to the nth customer, and
suppose that the samples are independent and identically distributed.
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Figure 15: Overview of the diagnosis system.

5.2.3 Overview of the model

As shown in Figure 15, the diagnosis model is composed of three main
blocks. The first one is the feature extractor, which will be a multi-layer
perceptron or a neural network, responsible for compressing the data into
a low dimensional feature vector containing the relevant information. The
second one is the softmax unit responsible for classifying the known faults,
its output is fed to the loss function in order to train the feature extractor.
The final block is the clustering model responsible for identifying new
patterns of faults based on the feature vector extracted.

The feature extractor represents the backbone of the system. Learning a
good feature extractor is crucial for the performance of the diagnosis system.
The feature extractor allows us to solve the scale and noise challenges
simultaneously. The scale problem is solved by compressing the high
dimensional raw data vector into a compact low dimensional manifold.
The learned low dimensional manifold holds the information to correctly
classify the known classes, thus creating noiseless features containing only
the important information for each class.

The novelty challenge is tackled by the clustering model, which is in
our case an infinite Gaussian mixture model. Based on learned features,
the clustering model tries to identify new patterns or clusters of customer
features, each cluster corresponding to a new unknown class. Then a final
process of validation is done by an expert to identify relevant or correct new
fault clusters. These correct clusters are then treated as labeled classes, the
-1 labels being changed into positive values representing the new known
classes. These new known classes are then re-fed to the feature extractor. In
the following sections, we detail the model architectures of each block.



5.3 feature extraction & classification 53

1000000

0.92

0001000

.

.

.

1
0
0
0
0
0
0

0.92
.
.
.
0
0
0
1
0
0
0

Linear + ReLU

Linear + ReLU

Linear + ReLU

Linear + ReLU

0.54
1.1

.

.
Linear + 
Softm

ax

Data vector

Feature vector

Figure 16: Architecture of the feature extractor followed by the softmax unit.

5.3 feature extraction & classification

5.3.1 Feature extractor architecture

The feature extractor in our case is a deep feed forward neural network,
that takes as input a data vector xn ∈ RD and outputs a low dimensional
feature vector denoted fn ∈ Rp, where p << D represents the dimension
of the feature manifold. As a remainder, we can think of a neural network
as a nonlinear function, built by successive applications of linear layers and
nonlinear activation functions. Formally, we denote the overall parameters
of the neural network θ, and:

fn = gθ(xn)

= σ ◦ f (L−1) ◦ ... ◦ σ ◦ f (2) ◦ σ ◦ f (1)(xn) (5.1)

where, each function f (l) represents the lth application of a linear or fully
connected layer, defined by:

f (l)(h) = hTWl + bl (5.2)

Wl, and bl represent the weight matrix and bias vector for the lth layer. ◦
represents the composition of functions operator. Between each applica-
tion of two linear layers, a non linear function is applied, denoted by σ,
representing the ReLU activation function defined by

σ(h) = max(0, h) (5.3)

where the max is taken term by term.
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For our application, we consider a neural network with 4 hidden layers
(L− 1 = 4), where the dimension of each layer is about half of that of the
previous layer. The previous choices are based on common practices in
the deep learning community. The choice of the number of layers is done
by cross-validation, where we choose the lowest number of hidden layers
for which the classification error rate does not change. An overview of the
architecture of the feature extractor is given in Figure 16. We detail the loss
function and the learning process in the next subsection.

5.3.2 Learning features by classification

In order to learn the parameters of the feature extractor, we define a clas-
sification task based on the K known classes. Given the feature vector of a
customer denoted by fn, the softmax unit outputs the probability of each
customer being in class k as:

P[yn = k|fn] =
efT

n WL,k+bL,k

∑K
j=1 efT

n WL,j+bL,j
. (5.4)

where WL, bL are the weights and biases of the last layer of the whole neural
network (feature extractor followed by the softmax unit). The optimization
of the parameters of the neural network is done by minimising the cross-
entropy loss function defined as:

C (θ) = −
N

∑
n=1

K

∑
k=1
1[yn = k] log Pθ[yn = k|fn], (5.5)

where θ represents the set of weights of the neural network. Learning θ

is done by gradient descent and the standard backpropagation algorithm
(Goodfellow et al., 2016). Following the previous learning process, we learn
a feature extractor and a classifier of the known classes {1, ..., K}. In the next
section, we show how to identify outlier clusters representing new patterns
of faults.

5.4 clustering model

In the clustering process, the goal is to identify new patterns or clusters of
unseen faults in unlabeled data (i.e. data with -1 label). The key trick in our
method consists in applying the clustering process to the feature manifold.
The assumption is that the feature manifold is a more representative space
in terms of filtered noise and relevant features than the original data space.
Furthermore, applying the clustering process (step 3 of Algorithm 5) in the
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Algorithm 5 Deep Infinite Gaussian Mixture Model

Input: X, y
Initialize parameters
# Step 1: Training of the feature extractor on labeled data
compute θ∗ by minimizing (5.5)
# Step 2: Feature computation of unlabeled data
compute fn using the last hidden layer
# Step 3: Clustering process on unlabeled data
compute q∗ by minimizing (5.7)
return ẑn = arg maxk q∗(zn = k) ∀n

low dimensional feature manifold reduces considerably the complexity and
execution time of the approach.

Given that the neural network learned highly expressive features for the
known classes, it is highly likely that all information not relevant to the
diagnosis task has been filtered. Furthermore, the low dimensional space of
the last hidden layer is separated linearly with respect to each known class.
Thus, outliers and new clusters should exist in a region outside the class
regions.

The previous assumptions and deductions give guidance for the choice
of the clustering model. The linearly separable nature of the feature space
suggests that a simple Gaussian mixture model should be sufficient in
order to identify clusters in it. Coupled with a Dirichlet process the Infinite
Gaussian Mixture model can also learn the number of clusters directly
without specifying it in advance, in the same manner as in the previous
chapters.

5.4.1 Dirichlet Process Gaussian Mixture Model

We adopt the same formulation of the infinite Gaussian mixture as in
chapter 4. The only exception is that the observable random variables are
no longer the data samples, but the feature vector representation given by
the neural network. The generative process is thus the following:

∀k βk ∼ Beta(1, η)

πk = βk

k−1

∏
l=1

(1− βl)

Λk ∼ W(·; L0, ν0)

µk|Λk ∼ N (·|m0, (κ0Λk)
−1) (5.6)

z|π ∼ Cat(·|π) i.e. P[z = k] = πk

fn|zn = k,µ, Λ ∼ N (·|µk, Λ−1
k )
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Where, {z1:N,µ, Λ, β} represent the hidden random variables to infer, and
f1:N represent the feature vector of the observable random variables.

5.4.2 Variational Inference for the DPGMM

In the same manner as in the previous chapters, we can apply mean-field
variational inference to perform inference of the hidden random variables
given the observations, using the following minimization criterion:

q∗ = arg min
q

DKL [q||p(·, f1:N)] (5.7)

The optimal variational distributions have a familiar form, same as the last
chapter given by:

q∗(βk) = Beta(βk; γ1,k, γ2,k)

q∗(µk|Λk) = N (µk; mk, (κkΛk)
−1)

q∗(Λk) = W(Λk; Lk, νk)

q∗(zn) = Cat(zn; φn) (5.8)

Where the variational parameters are updated iteratively using the following
equations:

γ1,k = 1 +
N

∑
n=1

φnk γ2,k = η +
N

∑
n=1

T

∑
l=k+1

φnl (5.9)

κk = κ0 +
N

∑
n=1

φnk νk = ν0 +
N

∑
n=1

φnk + 1 (5.10)

mk =
κ0m0 + ∑N

n=1 φnkfn

κk
(5.11)

L−1
k = L−1

0 + κ0(mk −m0)(mk −m0)
T

+
N

∑
n=1

φnk(fn −mk)(fn −mk)
T (5.12)

log φnk = −1
2

[
d
κk

+ νk(fn −mk)
TLk(fn −mk)

]
+

1
2

[
d

∑
i=1

ψ

(
νk + 1− i

2

)
+ log det(Lk)

]
+ ψ(γ1,k)− ψ(γ1,k + γ2,k)

+
k−1

∑
l=1

[ψ(γ2,l)− ψ(γ1,l + γ2,l)] (5.13)

The details of the computation of q∗ are given in appendix A. A complete
overview of the learning process is given in Algorithm 5.
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5.5 experimental evaluations

5.5.1 Dataset description

Fault type # instances (N)

FTTH access OK 19604

Fiber cut 18282

Degraded fiber 6906

ONT-home gateway problem 6782

Gateway update problem 6050

Bad gateway configuration 3732

Account suspended 1527

TV problem 1396

Unknown Faults 21962

TOTAL 86241

Table 5: Description of the different
classes in the dataset.

We evaluate our approach on real net-
work data. The dataset is built from the
technical data for 86241 fiber customers.
In one part of the dataset, thanks to a
legacy diagnosis system (in our case an
expert system based on deterministic
rules), the customers have been classi-
fied into 8 known types of faults (includ-
ing a normal behavior) as described in
Table 5. This labelled sub-dataset corre-
sponds to 64279 customers. Another
part of the dataset (21962 customers)
cannot be classified by the legacy diag-
nosis system, and the corresponding customers thus fall into the "unknown
faults" category.

Network scope # variables Description

Wide Area Network 652 GPON (OLT, ONT...)
Home LAN 446 Gateway, home devices

Internet Session 256 DHCP
Services 204 VoIP, TV

Offer 41 Customer offer profile
Miscellaneous 225 -

TOTAL 1824

8297 (after One-Hot Encoding)

Table 6: Overview of the network
variables in the dataset.

For each customer, we collected 1824

features coming from different parts of
the network that describe the state of the
customer’s line. These variables mainly
characterize the properties of the FTTH
GPON optical system, the Home Gate-
way (HG), some services used by the
customer (e.g. TV, VoIP) and the Inter-
net session (see Table 6). For instance,
we have a set of variables describing the
GPON properties such as the optical powers received (Rx) or transmitted
(Tx) by the Optical Line Termination (OLT) at the central office, and by the
Optical Network Termination (ONT) at the customer side, in addition to
the properties of the ONT and OLT (temperature, voltage, version etc.), the
alarms encountered by the OLT, and so on.

The dataset is thus composed of a mix of categorical variables and numeri-
cal variables. The numerical features are normalized in [0, 1] using min-max
scaling. The categorical variables are encoded using the one-hot encoding,
as explained in section 5.2, in order to obtain a numerical dataset. Thus the
final dataset is composed of N = 86241 instances and D = 8297 variables.

In order to evaluate the classification task on the known classes, the
labeled dataset is split into a training set and a test set, where each represent
80% and 20% respectively. The metrics for evaluations are reported over 5
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epoch: 0 epoch: 2 epoch: 4 epoch: 6 epoch: 8

Figure 17: 2-D representation of the feature manifold across epochs of training.

cross validation runs, we report the mean and the standard deviation for
each metric. The clustering evaluation is done on the entire unknown fault
dataset in a single run.

5.5.2 Evaluation of the Feature Extractor

The first evaluation is that of the neural network representing the feature
extractor. Extracting relevant features for the known classes is crucial for
a good classification score, and for efficiently filtering noisy features for
the subsequent clustering task. The key desirable feature of the hidden
data manifold represented by the last hidden layer of the feature extractor
is to be separable for each known class. In order to represent this data
manifold, we compute the hidden features on the test set after each epoch
(full pass of stochastic gradient descent on the training set), we then trans-
form the features into a 2D representation using kernel principal component
analysis. This procedure shows plots of the hidden feature points in a 2D
representation based on a Gaussian proximity measure.

As shown in Figure 17, the hidden representation is disorganised at the
first epochs of training the neural network, the classes are not well separated
based on the similarity measure. However, as we converge to the optimum
parameters, the hidden feature manifold becomes more separable with
respect to each class (epoch 8). This suggests that the features extracted are
representative of each class modeled. In addition, the structure is in the
form of "lumps" which is coherent with Gaussian model assumptions.

Figure 18: (Left) 2-D representation in
the feature space. (Right)
2-D representation of the
raw data.

In order to demonstrate the effective-
ness of the feature extractor further, we
compare the raw two dimensional repre-
sentation on the unknown faults dataset,
and the two dimensional representation
of the features extracted using the same
dataset. As shown in Figure 18, the 2D
representation on the extracted features
is much more organized than the 2D
representation on the raw data. Further-
more, the 2D representation of the features shows clear patterns of clusters



5.5 experimental evaluations 59

Table 7: The confusion matrix on the known classes.
Predicted classes

1 2 3 4 5 6 7 8
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1 1288 96 10 39 63 13 14 4

2 47 3619 0 0 0 45 14 7

3 0 0 6024 3 12 5 2 4

4 0 1 5 18590 0 304 621 83

5 1 1 8 1 18258 7 6 0

6 1 5 9 226 0 6580 74 11

7 2 0 0 56 1 10 6710 3

8 1 0 3 22 0 2 4 1364
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Figure 19: Loss function on the test set across iterations of gradient descent. Accu-
racy on the test set across epochs.

unlike the raw data representations. This suggests that the feature extractor
is capable of identifying features that permit us to separate and identify
different clusters in the unknown fault dataset.

5.5.3 Evaluation of the Softmax Unit

The softmax unit classifies the known faults. As a standard evaluation
process we report the loss function (5.5) on the test set across training
iterations. We report the mean and standard deviation over 5 different
runs. As shown in Figure 19 (left) the loss function converges to the set of
parameters representing of the minimum of (5.5).

In addition, we report the classification accuracy on the test set. As shown
in Figure 19 (right) the classification accuracy increases across training
iterations and reaches a high value, showing that the classifier is well trained
and robust to errors. This is demonstrated also by the confusion matrix
between the known classes, reported in table 7. The standard deviation
across the different validation runs is very small, suggesting that the classifier
generalizes very well on unseen test set samples.
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iteration: 1 iteration: 5 iteration: 10 iteration: 20 iteration: 100

Figure 21: The clustering process of the infinite Gaussian mixture model on the
latent feature manifold across iterations of variational inference.

5.5.4 Evaluation of the Clustering Model
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Figure 20: Log probability of mixture
across iterations.

In order to evaluate the clustering
model, we begin by evaluating the fit-
ting of the model to the unknown fault
data. The latent infinite Gaussian mix-
ture model is a probabilistic generative
model, a standard approach of evaluat-
ing such models is to compute the log
likelihood or the log probability of the
data under the model across iterations.
As shown in Figure 20, the log probabil-
ity increases across iterations of updates
of variational inference, and converges
smoothly to a plateau, which suggests the convergence of the model.

The objective of the infinite latent Gaussian mixture model is to cluster
patterns in the latent representation of unknown faults. In order to evaluate
this clustering process, we report the clusters identified by the model in
the 2D representation, across iterations of variational inference updates. As
shown in Figure 21, the model starts with random clusters that do not fit
the patterns in the unknown faults dataset. Across training iterations the
ellipsoids representing the clusters fit with more accuracy the patterns seen
in the 2D representation.

Furthermore, using the Dirichlet Process which learns the number of
clusters, we see that across iterations of training of the clustering model, the
number of clusters changes, in order to evaluate which number of clusters
better fits the data. Thus, the model automatically identifies the number of
clusters needed to converge to the optimal fit.

5.6 limitations

We have discussed how to combine the power of deep learning representa-
tions and the exploration capacity of Infinite Mixture Models, in order to
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discover faults in large noisy datasets. There are obvious limitations of the
proposed combination, first, in the case where new faults are discovered
a retraining process has to be re-implemented on the neural network side,
which could prove expensive. Second, the unlabeled part only serves in
the clustering part not the training of the deep model, thus wasting this
unlabeled information that could prove useful for better performance and
generalization. And last, the model is naturally sequential thus even the
clustering process has to be repeated each time new labels are introduced. A
natural answer to all these concerns, would be to consider deep generative
models, where the feature learning and clustering are simultaneously done,
making the model trainable end-to-end.

5.7 conclusion

In this chapter, we have introduced the Deep Infinite Mixture Model com-
bining deep learning representations and Infinite mixture models in order
to explore and identify faults in noisy datasets. The proposed model is
sequential and composed of multiple bricks, making training and inference
expensive. A natural extension can be proposed using deep generative mod-
els, where intermediate hidden random variables would represent the high
level features necessary for the clustering and classification task. However, a
major challenge in training deep generative models using variational infer-
ence, lies in the difficulty of backpropagating gradients through multiple
layers of hidden random variables, with nonlinear activations. Specifically,
the estimation of gradients of functions of the form L(θ) := Ez∼qθ

[log p(z)]
is very difficult in deep generative models. Classical estimators often lead
to high variance and make the learning of these models unstable. In the
next chapter, we present an original approach developed in the thesis, to
compute low variance estimates of these gradients.
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G E N E R A L I Z E D STO C H A ST I C
B A C K P R O PA G AT I O N

6.1 introduction

In the previous chapter, we discussed how to combine neural networks and
mixture models to learn and cluster faults based on highly representative
features of neural networks. A natural extension is to consider an end-to-
end deep generative model that models deep hidden features and cluster
assignments simultaneously. The general formalism for these models are
what is called deep belief networks (Mnih and Gregor, 2014; Neal, 1992),
which are mainly deep neural networks with stochastic neurons instead
of deterministic neurons. These models have become crucial in multiple
domains, such as generative modeling (Kingma and Welling, 2013; Mnih and
Gregor, 2014; Rezende, Mohamed, and Wierstra, 2014), deep reinforcement
learning (Sutton et al., 2000), and attention mechanisms (Mnih, Heess,
Graves, et al., 2014).

Training these models amounts to performing gradient descent on func-
tions of the form L(θ) := Ez∼qθ

[ f (z)] with respect to the parameters θ. The
difficulty encountered in training these models arises in the computation
of gradients of L(θ), which requires to backpropagate the gradient through
the random variable z. One of the first and most commonly used methods
is the score function or reinforce method (Glynn, 1989; Williams, 1992),
that requires the computation and estimation of the derivative of the log
probability function. For applications with high dimensionality however,
it has been noted that reinforce gradients have high variance, making the
training process unstable (Rezende, Mohamed, and Wierstra, 2014).

Recently, significant progress has been made in tackling the variance
problem. The first class of approaches that deals with continuous random
variables are reparameterization tricks. In that case a standardization func-
tion is introduced, that separates the stochasticity from the dependency
on the parameters θ. This allows to transport the derivative inside the
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expectation and to sample from a fixed distribution, resulting in low vari-
ance gradient (Figurnov, Mohamed, and Mnih, 2018; Kingma and Welling,
2013; Naesseth et al., 2017; Rezende, Mohamed, and Wierstra, 2014; Ruiz,
AUEB, and Blei, 2016; Titsias and Lázaro-Gredilla, 2014). The second class of
approaches concerns discrete random variables, for which a direct reparam-
eterization is not known. The first solution uses the score function gradient
with control variate methods to reduce its variance (Gu et al., 2016; Mnih
and Gregor, 2014). The second consists in introducing a continuous relax-
ation admitting a reparameterization trick of the discrete random variable,
thus being able to backpropagate low-variance reparameterized gradients
by sampling from the concrete distribution (Grathwohl et al., 2018; Jang, Gu,
and Poole, 2016; Maddison, Mnih, and Teh, 2016; Tucker et al., 2017).

Although recent developments have advanced the state-of-the-art in terms
of variance reduction and performance, stochastic backpropagation (i.e. com-
puting gradients through random variables) still lacks theoretical foundation.
In particular, the following questions remain open: How to develop stochas-
tic backpropagation rules, where the derivative is transferred explicitly to
the function f for a broader range of distributions? And can the discrete and
deterministic cases be interpreted in the sense of stochastic backpropagation?
In this chapter, we provide a new method to address these questions, and
our main contributions are the following:

• We present a theoretical framework based on the link between the
multivariate Fourier transform and the characteristic function, that
provides a standard method for deriving stochastic backpropagation
rules, for any distribution of practical interest discrete or continuous.

• We show that deterministic backpropagation can be interpreted as
a special case of stochastic backpropagation, where the probability
distribution qθ is a Dirac delta distribution, and that the discrete case
can also be interpreted as backpropagating a discrete derivative.

• We generalize previously known estimators, and provide new stochas-
tic backpropagation rules for the special cases of the Laplace, gamma,
beta, and Dirichlet distributions.

• We demonstrate experimentally that the resulting new estimators are
competitive with state-of-the art methods on simple tasks.

6.2 background & preliminaries

Let (E, λ) be a d-dimensional measure space equipped with the standard
inner product, and f be a square summable positive real valued function
on E, that is, f : E → R+, with

∫
E | f (z)|

2λ(dz) < ∞. Let qθ be an arbitrary
parameterized probability density on the space E. We denote by ϕθ its
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characteristic function, defined as: ϕθ(ω) := Ez∼qθ
[eiωTz]. We denote by f̂

the Fourier transform of the function f defined as:

f̂ (ω) := F{ f }(ω) =
∫

E
f (z)e−iωTzλ(dz). (6.1)

The inverse Fourier transform is given in this case by:

f (z) := F−1{ f̂ }(z) =
∫

Rd
f̂ (ω)eiωTzµ(dω), (6.2)

where µ(dω) represents the measure in the Fourier domain. In this chapter
we treat the cases where E = Rd for which µ(dω) = dω

(2π)d , and the case
where E is a discrete set, for which the measure µ is defined as: µ(dω) =
1[ω ∈ [−π, π]d] dω

(2π)d . Throughout the chapter, we reserve the letter i to

denote the imaginary unit: i2 = −1. To denote higher order derivatives of
the function f , we use the multi-index notation (Saint Raymond, 2018). For
a multi-index n = (n1, ..., nd) ∈Nd, we define:

∂n
z :=

∂|n|

∂zn1
1 ...∂znd

d
where |n| =

d

∑
j=1

nj and ωn :=
d

∏
j=1

ω
nj
j .

To clarify the multi-index notation, let us consider the example where d = 3,
and n = (1, 0, 2), in this case:

∂n
z =

∂3

∂z1∂z2
3

and, ωn = ω1ω2
3.

The objective is to derive stochastic backpropagation rules, similar to that
of (Rezende, Mohamed, and Wierstra, 2014), for functions of the form:
L(θ) := Ez∼qθ

[ f (z)], for any arbitrary distribution qθ , discrete or continuous.

6.3 generalized stochastic backpropagation

Stochastic backpropagation rules similar to that of (Rezende, Mohamed,
and Wierstra, 2014) can in fact be derived for any continuous distribution,
under certain conditions on the characteristic function. In the following
theorem we present the main result of this chapter concerning the derivation
of Generalized stochastic backpropagation rules.

Theorem 1. (Continuous Stochastic Backpropagation) Let f ∈ C∞(Rd, R+), un-
der the condition that ∇θ log ϕθ is a holomorphic function of iω, then there exists a
unique set of real numbers {an(θ)}n∈Nd such that:

∇θL = ∑
|n|≥0

an(θ)Ez∼qθ
[∂n

z f (z)] . (6.3)
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Where {an(θ)}n∈Nd are the Taylor expansion coefficients of ∇θ log ϕθ(ω):

∇θ log ϕθ(ω) = ∑
|n|≥0

an(θ)(iω)n. (6.4)

Proof. Let us rewrite L in terms of f̂ :

L(θ) =
∫

qθ(z) f (z)λ(dz)

=
∫

qθ(z)F−1[ f̂ ](z)λ(dz)

=
∫

Rd
f̂ (ω)

∫
E

qθ(z)eiωTzλ(dz)µ(dω) Fubini’s theorem

=
∫

Rd
f̂ (ω)ϕθ(ω)µ(dω).

(6.5)

By introducing the derivative under the integral sign, and using the rein-
force trick (Williams, 1992) applied to ϕθ , where∇θ ϕθ(ω) = ϕθ(ω)∇θ log ϕθ(ω),
(6.5) becomes:

∇θL =
∫

Rd
f̂ (ω)ϕθ(ω)∇θ log ϕθ(ω)µ(dω). (6.6)

Under analyticity conditions of the gradient of the log characteristic
function, we can expand the gradient term ∇θ log ϕθ(ω), in terms of Taylor
series around zero as:

∇θ log ϕθ(ω) = ∑
|n|≥0

an(θ)(iω)n. (6.7)

Putting everything together, and replacing the characteristic function by its
expression, the gradient of L becomes:

∇θL =
∫

Rd
f̂ (ω)

∫
E

qθ(z)eiωTz ∑
|n|≥0

an(θ)(iω)nµ(dω)λ(dz). (6.8)

By rearranging the sums using Fubini’s theorem a second time, we obtain
the following expression for the gradient:

∇θL = Ez∼qθ

F−1

ω 7→ ∑
|n|≥0

an(θ)(iω)n f̂ (ω)

 (z)


= ∑
|n|≥0

an(θ)Ez∼qθ

[
F−1

{
ω 7→ (iω)n f̂ (ω)

}
(z)
]

= ∑
|n|≥0

an(θ)Ez∼qθ
[∂n

z f (z)] .

(6.9)
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Identically, we can follow the same procedure for discrete random vari-
ables. We suppose that qθ factorizes over disjoint cliques of the dependency
graph, where each dimension zj takes values in a discrete space Val(zj). In
theorem 2 we derive the result concerning the discrete case.

Theorem 2. (Discrete Stochastic Backpropagation) Let E be a discrete space: E =

∏d
j=1 Val(zj), and C the set of disjoint cliques of the dependency graph over z, that

is,
qθ(z) = ∏

c∈C
qθ(zc)

then,
∇θL = ∑

c∈C
∑

zc 6=z∗c

∇θqθ(zc)Ez−c∼qθ
[D f (z−c, zc)] . (6.10)

Where:

• z∗c : represents the normalizing assignment qθ(z∗c ) = 1−∑zc 6=z∗c qθ(zc).

• D f (z−c, zc) := f (z−c, zc)− f (z−c, z∗c ). (6.11)

Proof. The characteristic function for the factored distribution is given by:

ϕθ(ω) = ∏
c∈C

ϕ
(c)
θ (ωc), where,

ϕ
(c)
θ (ωc) = ∑

zc 6=z∗c

qθ(zc)eiωT
c zc +

(
1− ∑

zc 6=z∗c

qθ(zc)

)
eiωT

c z∗c . (6.12)

Thus the gradient of the log characteristic function becomes:

∇θ log ϕ
(c)
θ (ωc) = ∑

zc 6=z∗c

∇θqθ(zc)

[
eiωT

c zc − eiωT
c z∗c

ϕ
(c)
θ (ωc)

]
. (6.13)

By plugging this expression to (6.6), we obtain:

∇θL = ∑
c∈C

∑
zc 6=z∗c

∇θqθ(zc)
∫

∏
c′ 6=c

ϕ
(c′)
θ (ωc′)

[
eiωT

c zc − eiωT
c z∗c
]

f̂ (ω)µ(dω)

= ∑
c∈C

∑
zc 6=z∗c

∇θqθ(zc)Ez−c∼qθ
[D f (z−c, zc)] .

(6.14)

The estimator of (6.10) has been derived in the literature through Rao
Blackwellization of the score function gradient, and it has been known
under different names (Asadi et al., 2017; Cong et al., 2019; Titsias and
Lázaro-Gredilla, 2015). Theorem 2 shows that the discrete case can also be
seen as backpropagating a derivative of the function f , in this case a discrete
derivative given by (6.11).
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6.4 applications of generalized stochastic back-
propagation

Following from the previous section, we derive the stochastic backpropaga-
tion estimators for certain commonly used distributions.
The multivariate Gaussian distribution: In this case qθ(z) = N (z; µθ, Σθ).
The log characteristic function is given by: log ϕθ(ω) = iµT

θ ω+ 1
2Tr
[
Σθi2ωωT].

Thus by applying theorem 1, we recover the stochastic backpropagation rule
of (Rezende, Mohamed, and Wierstra, 2014):

∇θL = Ez∼qθ

{(
∂µθ

∂θ

)T
∇z f (z) +

1
2

Tr
[(

∂Σθ

∂θ

)
∇2

z f (z)
]}

, (6.15)

where, ∇z and ∇2
z, represent the gradient and hessian operators.

The multivariate Dirac distribution: qθ(z) = δaθ
(z), the log characteristic

function of the Dirac distribution is given by: log ϕθ(ω) = iωTaθ. Thus the
stochastic backpropagation rule of the Dirac is given by:

∇θL =

(
∂aθ

∂θ

)T
Ez∼δaθ

[∇z f (z)] =
(

∂aθ

∂θ

)T
∇z f (aθ), (6.16)

resulting in the classical backpropagation rule. In other words, the determin-
istic backpropagation rule is a special case of stochastic backpropagation
where the distribution is a Dirac delta distribution. This result provides a
link between probabilistic graphical models and classical neural networks.
The multivariate Bernoulli: qθ(z) = ∏d

j=1 B(zj; π
(j)
θ ), where π

(j)
θ = P[zj =

1]. By applying theorem 2, we obtain the local expectation gradient of
(Titsias and Lázaro-Gredilla, 2015):

∇θL =
d

∑
j=1

∂π
(j)
θ

∂θ
Ez−j∼qθ

[
f (z−j, 1)− f (z−j, 0)

]
. (6.17)

The multivariate categorical: qθ(z) = ∏d
j=1 cat(zj; π

(j)
θ ), where the dimen-

sions are independent and take values in the set {1, ..., K}. Similarly to the
Bernoulli case, we obtain the following stochastic backpropagation rule:

∇θL =
d

∑
j=1

K−1

∑
k=1

∂πθ
(j)
k

∂θ
Ez−j∼qθ

[
D f (z−j, k)

]
. (6.18)

The Laplace distribution: qθ(z) = L(z; µθ, bθ), in this case the log charac-
teristic function is the following: log ϕθ(ω) = iµθω− log(1 + b2

θω2), using
the Taylor series expansion for the function x 7→ 1

1−x , we get the following
stochastic backpropagation rule for the Laplace distribution:

∇θL =
∂µθ

∂θ
Ez

[
d f
dz

(z)
]
+

1
b2

θ

∂b2
θ

∂θ

∞

∑
n=1

b2n
θ Ez

[
d2n f
dz2n (z)

]
. (6.19)
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The gamma distribution: qθ(z) = Γ(z; kθ, µθ), the log characteristic function
of the Gamma distribution is given by: log ϕθ(ω) = −kθ log(1− iµθω). By
expanding it using Taylor series of the logarithm function, we obtain the
following stochastic backpropagation rule:

∇θL =
∞

∑
n=1

[
1
n

∂kθ

∂θ
+

kθ

µθ

∂µθ

∂θ

]
µn

θ Ez∼qθ

[
dn f
dzn (z)

]
. (6.20)

The estimator of (6.20) gives a stochastic backpropagation rule for the gamma
distribution and, hence also applies by extension to the special cases of the
exponential, Erlang, and chi-squared distributions.
The beta distribution: qθ(z) = Beta(z; αθ, βθ), in this case the characteristic
function is the confluent hypergeometric function: ϕθ(ω) = 1F1(αθ; αθ +
βθ; iω). A series expansion of the gradient of the log of this function is
not trivial to derive. However, we can use the parameterization linking the
gamma and beta distributions to derive a stochastic backpropagation rule.
Indeed, if ζ1 ∼ Γ(αθ, 1) and ζ2 ∼ Γ(βθ, 1) , then z = g(ζ1, ζ2) = ζ1

ζ1+ζ2
∼

Beta(αθ, βθ). By substituting in the gamma stochastic backpropagation rule,
we obtain:

∇θL =
∞

∑
n=1

1
n

{
∂αθ

∂θ
Eζ1,ζ2

[
∂n f
∂ζn

1

(
ζ1

ζ1 + ζ2

)]
+

∂βθ

∂θ
Eζ1,ζ2

[
∂n f
∂ζn

2

(
ζ1

ζ1 + ζ2

)]}
.

(6.21)
The Dirichlet distribution: qθ(z) = Dir(z; K, αθ), following the same proce-
dure, as for the beta distribution and using the following parameterization:
zk =

ζk
∑K

j=1 ζj
with, ζk ∼ Γ(α(k)θ , 1), we obtain:

∇θL =
∞

∑
n=1

1
n

{
K

∑
k=1

∂α
(k)
θ

∂θ
Eζj∀j

[
∂n f
∂ζn

k

(
ζ1

∑K
j=1 ζj

, ...,
ζK

∑K
j=1 ζj

)]}
. (6.22)

6.5 approximations of generalized stochastic
backpropagation

The Generalized stochastic backpropagation gradient as presented in previ-
ous sections presents two major computational bottlenecks for non-trivial
distributions. The first is the computation of infinite series, and the second
is evaluating higher order derivatives of the function f . Depending on the
application, the function f could be chosen in order to bypass the compu-
tational bottlenecks. A trivial example, is if the higher order derivatives
of the function f vanish at a certain order: ∂n

z f = 0. Another example, is
the exponential function f (z) = exp(εTz). From the fact that it obeys the
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following partial differential equation ∂ f
∂zj

(z) = εj f (z), one can deduce that
the stochastic backpropagation rule reduces in this case to:

∇θL = ∇θ log ϕθ (−iε)Ez∼qθ
[ f (z)] (6.23)

In most real world applications however, the infinite sum will not often
reduce to a tractable expression such as that of the exponential. An example
of this case is the evidence lower bound of a generative model with Bernoulli
observations. In this case, the natural solution is to truncate the sum up
to a finite order. The assumption (although it might be wrong), is that
the components associated to higher frequencies of the gradient of the log
characteristic function, do not contribute as much. In this case the gradient
of the log characteristic function of (6.7), is truncated and becomes:

∇θ log ϕθ(ω) = ∑
n≤N

an(θ)(iω)n + o((iω)N). (6.24)

6.6 experiments

In our experimental evaluations, we test the stochastic backpropagation
estimators of equations 6.19 and 6.20 for the gamma and Laplace distribu-
tions. In the case of the gamma estimator, we use toy examples where we
can derive exact stochastic backpropagation rules without truncating the
infinite sum. As for the Laplace stochastic backpropagation rule, we test the
estimator in the case of Bayesian logistic regression with Laplacian priors
and variational posteriors on the weights. We compare our estimators with
the pathwise (Jankowiak and Karaletsos, 2019; Jankowiak and Obermeyer,
2018), and score function estimators, in addition to the weak reparameteri-
zation estimator in the gamma case (Ruiz, AUEB, and Blei, 2016). We do
not use control variates in our setup, the goal is to verify the exactness of
the proposed infinite series estimators and how they compare to current
state-of-the-art methods in simple settings. In all our experiments, we use
the Adam optimizer to update the weights (Kingma and Ba, 2014), with a
standard learning rate of 10−3. In all the curves, we report the mean and
standard deviation for all the metrics considered over 5 iterations.

6.6.1 Toy problems

In the toy problem setting, we test the gamma stochastic backpropagation
rule following the same procedure as (Mohamed et al., 2019). We consider
the following cases:
Toy problem 1: L(θ) = Ez∼qθ

[
||z− ε||2

]
, where qθ(z) = ∏d

j=1 Γ(zj; k j, µj),
θ = {k, µ}, and ε = .49. In this case, we only need to compute the first and
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Figure 22: Training loss and log variance of the gradients for the different estimators
for f (z) = ∑d

j=1(zj − ε)2 for d ∈ {1, 10, 100}.
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Figure 23: Training loss and log variance of the gradients for the different estimators
for f (z) = ∑d

j=1 exp(−εzj) for d ∈ {1, 10, 100}.

second order derivatives of the function f .
Toy problem 2: L(θ) = Ez∼qθ

[
∑d

j=1 exp(−εzj)
]
, in this case, the infinite

sum transfers to ε, which results in the following estimator: ∇θL =
∇θ log ϕθ (εi)Ez∼qθ

[ f (z)].
In figures 22 and 23 we report the training loss and log variance of the gradi-
ent across iterations of gradient descent for different values of the dimension
d ∈ {1, 10, 100}. The stochastic backpropagation estimator converges to the
minimal value in all cases faster than the other estimators and the variance
of the gradient is competitive with the pathwise gradient in the learning
regime (number of iterations < 10000).

6.6.2 Bayesian logistic regression with Laplacian Priors

We evaluate the Laplace stochastic backpropagation estimator using a
Bayesian logistic regression model (Jaakkola and Jordan, 1997), similarly
to (Mohamed et al., 2019). In our case, we substitute the normal prior and
posterior on the weights with Laplace priors and posteriors. We adopt
the same notations of (Murphy, 2012), where the data, target and weight
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Figure 24: Bayesian Logistic Regression with Laplacian priors
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Figure 25: (Left) Bias and variance of the gradient for different values of the trun-
cation level at a fixed parameter value. (Right-top) Mean square error
between the Laplace gradient estimator and the score function and repa-
rameterization estimators across iterations. (Right-bottom) Norm of the
gradient estimators.

variables are respectively: xn ∈ Rd, yn ∈ {−1, 1}, and w. The probabilistic
model in our case is the following:

p(w) =
d

∏
j=1

L(wj, 0, 1) p(y|x, w) = σ(yxTw), (6.25)

where σ represents the sigmoid function. We consider Laplacian variational
posteriors of the form qθ(w) = ∏d

j=1 L(wj, µj, bj), with θ = {µ, b}. The
evidence lower bound of a single sample is given by:

L(xn, yn; θ) = Ew∼qθ

[
log σ(ynxT

n w)
]
−DKL[qθ||p], (6.26)

where the Kullback-Leibler divergence between the two Laplace distributions
is the following:

DKL[qθ||p] =
d

∑
j=1

{
|µj|+ bje

−
|µj |
bj − log bj − 1

}
. (6.27)

We test the model on the UCI women’s breast cancer dataset (Dua and Graff,
2017), with a batch size of 64 and 50 samples from the posterior to evaluate
the expectation. In the case of the stochastic backpropagation estimator
we truncate the infinite series for the scale parameter b of equation 6.19

to N = 4 and N = 8. In figure 24, we report the training evidence lower
bound, the log variance of the gradient, and the accuracy computed on the
entire dataset for the different estimators. The stochastic backpropagation
estimator converges faster than the considered estimators and the variance
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is significantly lower. We also notice that the truncation level of the infinite
series for the scale parameter has little effect on the outcome. In figure
25, we report the bias and variance of the estimator at different values of
the truncation level, for a fixed parameter value during the training phase
(epoch=100). The bias and variance do not vary much, with the truncation
level in this case. This result confirms the intuition of neglecting higher
frequencies presented in section 6.5. In addition, we compare the mean
squared error between the Laplace stochastic backpropagation estimator and
the score function and reparameterization estimators. As shown in figure
25 the mean squared error is small, thus the values of the gradients across
iterations are close. However, the reparameterization gradient is closer to
our estimator than the score function gradient, probably due to the fact that
the reparameterization gradient is more stable and has lower variance.

6.7 related work & discussion

Computing gradients through stochastic computation graphs has received
considerable attention from the community, due to its application in many
fields. The first general approach that provides a closed form solution for any
probability distribution is the score function method (Glynn, 1989; Schulman
et al., 2015; Sutton et al., 2000; Williams, 1992). The main inconvenience
of this approach, is that it results in high variance gradients when the
dimension of the random variable becomes high. In order to bypass this
issue, the second approach consisted in designing control variates to reduce
the variance of the score function estimator (Mnih and Gregor, 2014; Paisley,
Blei, and Jordan, 2012; Ranganath, Gerrish, and Blei, 2014; Tokui and Sato,
2017; Weaver and Tao, 2013). In addition to the score function gradient,
it was proposed to use an importance weighted estimator instead of the
classical score function with a multi-sample objective (Burda, Grosse, and
Salakhutdinov, 2015; Mnih and Rezende, 2016).

The second class of approaches is that concerning reparameterization
tricks (Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014).
Through the decoupling of the computation of the gradient from the expec-
tation, reparameterization tricks have shown that they provide low-variance
gradients using often a single sample. The issue for these methods is the
necessity to find a reparameterization for each probability distribution. Cer-
tain distributions such as the Gaussian are easy to reparametrize but others
like the gamma are not. In addition, discrete random variables do not admit
an easy reparameterization as well. Recently, these issues has been partially
solved through implicit reparameterization, the generalized reparameteriza-
tion gradient, and the pathwise gradient (Figurnov, Mohamed, and Mnih,
2018; Jankowiak and Obermeyer, 2018; Ruiz, AUEB, and Blei, 2016). For the
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discrete case, continuous relaxations that are reparameterizable have been
proposed and combined with control variate methods (Grathwohl et al.,
2018; Gu et al., 2016; Jang, Gu, and Poole, 2016; Maddison, Mnih, and Teh,
2016; Tucker et al., 2017).

Our approach, in contrast provides a new broad family of stochastic
backpropagation rules derived using the Fourier transform. One interesting
aspect of our approach is the fact that the weighting an is separated from
the expectation of the higher order derivatives of the function f . Thus the
sampled variable does not intervene in the weighting in contrast to other
methods such as reparameterization and pathwise gradients. In addition,
by applying the derivative to the function f with respect to some variable zj,
terms that do not depend on this variable are eliminated. Thus the other
random variables in them do not need to be sampled, which results in lower
variance.

It is worth noting that deriving stochastic backpropagation rules using the
Fourier transform has been proposed for the Gaussian case (Fellows, Ciosek,
and Whiteson, 2018). In our work, we extend it to non Gaussian distributions
by way of the characteristic function, and exploiting the invariance of the
functional inner product under Fourier transformation (Parseval’s theorem).

6.8 conclusion

In this chapter, we presented a new method to compute gradients through
random variables for any probability distribution, by explicitly transferring
the derivative to the random variable using the Fourier transform. Our
approach gives a framework to be applied for any distribution, where the
gradient of the log characteristic function is analytic, resulting in a new
broad family of stochastic backpropagation rules, that are unique for each
distribution.

In the next chapter, we present the Infinite Latent Gaussian Model, an end-
to-end model to discover clusters of faults by learning representative deep
hidden features. We show how Generalized Stochastic Backpropagation is
used to perform variational inference to learn the model parameters.
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D I R I C H L E T P R O C E S S D E E P L AT E N T
M I X T U R E S F O R FAU LT
I D E N T I F I C AT I O N

7.1 introduction

In the previous chapter, we have showed how to backpropagate gradients
through random variables efficiently. In what follows, we introduce an over-
all deep generative model capable of learning the hidden features and cluster
assignment simultaneously. We show how to use Generalized Stochastic
Backpropagation to learn these models, through variational inference. Our
model is a generalization of the classical infinite mixture of chapters 3 and 4,
with random variables representing hidden features and a Dirichlet process
Mixture on the last hidden layer of random variables.

As discussed in previous chapters, nonparametric Bayesian priors, such
as the Dirichlet Process (DP), have been widely adopted in the probabilis-
tic graphical community. Their ability to generate an infinite amount of
probability distributions using a discrete latent variable makes them ideally
suited for automatic model selection. The most famous applications of the
DP have been however limited to classical probabilistic graphical models
such as Dirichlet Process Mixture Models and Hierarchical Dirichlet Process
Hidden Markov Models (Blei, Jordan, et al., 2006; Fox et al., 2008; Zhang,
Gultekin, and Paisley, 2016).

Recently, deep generative models such as Deep Latent Gaussian Mod-
els (DLGMs) and Variational AutoEncoders (VAEs) (Kingma and Welling,
2013; Rezende, Mohamed, and Wierstra, 2014) have shown huge success in
modeling and generating complex data structures such as images. Various
proposals to generalize these models to the mixture and nonparametric
mixture cases have been made (Dilokthanakul et al., 2016; Jiang et al., 2016;
Nalisnick, Hertel, and Smyth, 2016; Nalisnick and Smyth, 2016). Introducing
such priors on top of the deep generative model can improve its generative
capabilities, preserve class structure in the latent representation space, and

75
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offer a nonparametric way of performing model selection with respect to
the size of the generative model.

The main challenge posed by such models lies in the inference process.
Deep generative models with continuous latent variables owe their success
mainly to the reparameterization trick (Kingma and Welling, 2013; Rezende,
Mohamed, and Wierstra, 2014). This approach provides an efficient and
scalable method for obtaining low variance estimates of the gradient of the
variational lower bound with respect to variational posterior parameters.
Applying this approach directly to the variational posterior of the DP is not
straight-forward, due to the fact that a reparameterization trick for the beta
distributions is hard to obtain (Ruiz, AUEB, and Blei, 2016). One approach to
bypass this issue have been proposed by (Nalisnick and Smyth, 2016), where
the authors used the Kumaraswamy distribution (Kumaraswamy, 1980)
as a higher entropy alternative for the beta distribution in the variational
posterior. However, by deriving the nature of the variational posterior
directly from the variational lower bound, we can show that the appropriate
distribution is in fact the beta distribution.

In this chapter we provide an alternative treatment of the variational
posterior of Dirichlet Process Deep Latent Mixtures (DP-DLM), where we
combine classical variational inference to derive the variational posteriors
of the beta distributions and cluster hidden variables, and neural varia-
tional inference for the hidden variables of the latent Gaussian model. This
leads to gradient ascent updates over the parameters present in nonlinear
transformations where Generalized Stochastic Backpropagation can be ap-
plied knowing the cluster assignment. As for the remaining parameters,
closed-form solutions can be obtained by maximization of the evidence
lower bound. The remainder of the chapter is organized as follows:

• In section 7.2, we introduce our proposition of Dirichlet process deep
latent mixtures, with nonlinear stochastic hidden layers.

• In section 7.3, we show how to perform variational inference on the
model, using Generalized Stochastic Backpropagation of chapter 6.

• In section 7.5, we demonstrate our model on the MNIST (LeCun and
Cortes, 2010) open source dataset, and more importantly, in the context
of fault identification of our noisy dataset of chapter 5.

7.2 dirichlet process deep latent mixtures

Generalizing deep latent models to the Dirichlet process mixture case can
be obtained by adding a Dirichlet process prior on the hidden cluster
assignments. We denote these cluster assignments by z. Following the
assignment of a cluster hidden variable, a deep latent model is defined for
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β zn

h(l+1)
n1

h(l+1)
npl+1

h(l)
n1

h(l)
npl

l ∈ {0, ..., L− 1}

n ∈ {1, ..., N}

Figure 26: The graphical representation of the generative process of the model, with
the convention x = h(0).

the assigned cluster similar to (Rezende, Mohamed, and Wierstra, 2014). We
adopt the stick-breaking construction of the Dirichlet Process (Sethuraman,
1994). The generative process of the model (Figure 26) is given by:

βk ∼ Beta(·; 1, η)

πk = βk

k−1

∏
l=1

(1− βl)

zn|π ∼ Cat(·|π)

h(L)
n |zn = k ∼ p(·|θ, zn = k)

h(l)
n |h

(l+1)
n , zn = k ∼ p(·|g(l)k (h(l+1)

n )) ∀1 ≤ l ≤ L− 1

xn|h(1)
n , zn = k ∼ p(·|g(0)k (h(1)

n ))

where h(l)
n ∈ Rpl is the lth layer hidden representation constructed by sam-

pling a base distribution p(·|g(l)k (h(l+1)
n )) with parameters computed using

a nonlinear transformation g(l)k (h(l+1)
n ) = σ(W(l)

k h(l+1)
n + b(l)

k ). W(l)
k and

b(l)
k are the weight and bias parameters for the lth hidden layer and kth

cluster assignment. The base distribution in this formulation is general,
but it can be specified to any classical distribution, for example a Gaussian,
with parameters {m(l)

k ,C(l)
k } = g(l)k (h(l+1)

n ), that is p(h(l)
n |g

(l)
k (h(l+1)

n )) =

N (h(l)
n ;m(l)

k ,C(l)
k ). The last hidden layer is generated using a prior p(·|θ, zn =

k) with parameters θ. In the Gaussian example, we have p(·|θ, zn = k) =
N (h(L)

n ;m(L)
k ,C(L)

k ), with θk = {m
(L)
k ,C(L)

k }.
We denote by η the concentration parameter of the Dirichlet process, which

is a hyperparameter to be tuned manually. The emission distribution of the
observable xn is usually chosen to be a normal distribution for continuous



78 dirichlet process deep latent mixtures for fault identification

variables or the Bernoulli distribution for binary variables. We denote the
parameters of the generative model by:

Θ = {θ1:∞, W(0:L−1)
1:∞ , b(1:L−1)

1:∞ }

The model thus has an infinite number of parameters due to the Dirichlet
process prior. Furthermore, the posterior distribution of the hidden variables
cannot be computed in closed-form. In order to perform inference on the
model we need to use approximate methods such as Markov Chain Monte
Carlo (MCMC) or Variational Inference. As discussed in previous chapters,
MCMC methods are not suitable for high dimensional models, convergence
of the Markov chain to the true posterior can prove to be slow and hard to
diagnose (Blei, Kucukelbir, and McAuliffe, 2017).

In the next section, we show how to use variational inference and Gen-
eralized Stochastic Backpropagation to learn the model. We show that by
choosing a suitable structure for the variational posterior, closed-form solu-
tions can be obtained for the updates of the truncated variational posteriors
of the beta distributions, and the variational posteriors of the cluster hidden
variables. As for the remaining parameters, gradient ascent coupled with
Generalized Stochastic Backpropagation are used to learn the variational
posteriors of the hidden layers and model parameters.

7.3 structured variational inference

For a brief review of variational methods, we denote by x1:N the N sam-
ples present in the dataset supposed to be independent and identically
distributed. The log-likelihood of the model is intractable due to the re-
quired marginalization of all the hidden variables. In order to bypass
this marginalization, we introduce an approximate distribution qΦ and use
Jensen’s inequality to obtain a lower bound (Jordan et al., 1999):

l(Θ) = ln pΘ(x1:N)

= ln

[
∑
z1:N

∫
pΘ(x1:N, z1:N, h(1:L)

1:N , β)dh(1:L)
1:N dβ

]

≥ E
z1:N ,h(1:L)

1:N ,β∼qΦ

[
ln

pΘ(x1:N, z1:N, h(1:L)
1:N , β)

qΦ(z1:N, h(1:L)
1:N , β|x1:N)

]
= L(Θ, Φ). (7.1)

We have shown that if the distribution qΦ is a good approximation of the
true posterior, maximizing the evidence lower bound (ELBO) with respect
to the model parameters Θ is equivalent to maximizing the log-likelihood
(cf, chapter 2). For deep generative models, most state-of-the-art methods
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use inference networks to construct the posterior distribution (Nalisnick and
Smyth, 2016; Rezende, Mohamed, and Wierstra, 2014). For deep mixture
models with discrete latent variables, this approach leads to a mixture
density variational posterior where the reparameterization trick requires
additional investigation (Graves, 2016). Our approach combines standard
variational Bayes and neural variational inference. We approximate the true
posterior using the following structured variational posterior:

qΦ(z1:N, h(1:L)
1:N , β|x1:N) =

N

∏
n=1

L

∏
l=1

q
ψ
(l)
zn
(h(l)

n |xn, zn)

× qφn(zn|xn)
T

∏
t=1

qγt(βt|x1:N), (7.2)

where T is a truncation level for the variational posterior of the beta distri-
butions obtained by supposing that q(βT = 1) = 1 (Blei, Jordan, et al., 2006).
We assume a factorized posterior over the hidden layers h(1:L)

n , where the
intra-layer dependencies are conserved.

7.3.1 Deriving the variational posteriors qφn and qγt

Deriving the nature of the posterior distributions of the hidden layers h(1:L)
n

using the variational approach is intractable due to the nonlinearities present
in the model. Thus, we take a similar approach to (Rezende, Mohamed, and
Wierstra, 2014), and we assume that the variational posterior is specified
by an inference network, where the parameters of the distribution are the
outputs of auxiliary nonlinear transformations of parameters ψ

(l)
t . For

example, in the Gaussian case:

q
ψ
(l)
t
(h(l)

n |xn, zn = t) = N
(

h(l)
n ; µ

ψ
(l)
t
(xn), Σ

ψ
(l)
t
(xn)

)
, (7.3)

where µ
ψ
(l)
t
(xn), Σ

ψ
(l)
t
(xn) are outputs of a one layer neural network of pa-

rameters ψ
(l)
t (Further details provided in Appendix A.2).

In contrast to the hidden layers, we can use the proposed variational
posterior of equation (7.2) to derive closed-form solutions for qφn and qγt .
Let us consider the Kullback–Leibler definition of the ELBO L:

L(Θ, Φ) = −DKL [qΦ(·|x1:N)||pΘ(·, x1:N)] .

By plugging the variational posterior and isolating βt terms and zn terms,
we can analytically derive the optimal distributions qγt and qφn maximizing
L (see Appendix B):

q∗γt
(βt|x1:N) = Beta(βt; γ1,t, γ2,t)
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q∗φn(zn|xn) = Cat(zn; φn),

where the fixed point equations for the variational parameters φn and γt are:

γ1,t = 1 +
N

∑
n=1

φn,t γ2,t = η +
N

∑
n=1

T

∑
r=t+1

φn,r (7.4)

log φn,t = const + Eβ∼q[log πt]

+ E
h(1:L)

n ∼q
ψ
(1:L)
t

[
log p(xn, h(1:L)

n |zn = t)
]

+ ∑
l

H

[
q

ψ
(l)
t
(·|zn = t, xn)

]
s.t.

T

∑
t=1

φn,t = 1

The fixed point equation of φn,t, requires the evaluation of the expectation
over the hidden layers, this can be performed by sampling from the varia-
tional posterior of each hidden layer and then forwarding the sample using
the generative model:

E
h(1:L)

n ∼q
ψ
(1:L)
t

[
log p(xn, h(1:L)

n |zn = t)
]

≈ 1
S

S

∑
s=1

log p
(

xn, h(1:L)(s)
n,t |zn = t

)
(7.5)

where: h(l)(s)
n,t ∼ q

ψ
(l)
t
(·|xn, zn = t).

A key insight here is the following: if a cluster t is incapable of recon-
structing a sample xn from the variational posterior, this will reinforce the
belief that xn should not be assigned to that cluster.

7.3.2 Generalized Stochastic Backpropagation

We next show how to perform stochastic backpropagation in order to max-
imize L with respect to the parameters Θ = {W(0:L−1)

1:T , b(0:L−1)
1:T , θ1:T} and

Ψ = ψ
(1:L)
1:T . Similarly to the previous section, we isolate the terms in the

evidence lower bound dependent on Ψ and Θ. We have:

L(Ψ, Θ) = const + ∑
n,t

φn,t

{
∑

l
H

[
q

ψ
(l)
t
(h(l)

n |zn = t, xn)

]
+ E

h(1:L)
n ∼q

ψ
(1:L)
t

[
log pΘ(xn, h(1:L)

n |zn = t)
] }

. (7.6)

By taking the expectation over the hidden cluster variables zn, we obtain
conditional expectations over the hidden layers h(1:L)

n knowing the cluster
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Algorithm 6 Variational Inference for the DP-DLM
Input: x1:N, T, η, α

Initialize φ, Θ, Ψ
while not converged do

update: γt ∀t (7.4)
for each epoch do

Θ← Θ + α∇ΘL
Ψ← Ψ + α∇ΨL

end for
update: φn,t ∀n, ∀t (7.5)

end while

assignment. In order to apply Generalized Stochastic Backpropagation of
chapter 6, let f (h(1:L)

n ) = log p(xn, h(1:L)
n |zn = t). Using Theorem 1, we have:

∇ΨL = ∑
|m|≥0

am(Ψ)E
h(1:L)

n ∼qΨ

[
∂m

h(1:L)
n

f (h(1:L)
n )

]
(7.7)

In the Gaussian case, for example, that is:

q
ψ
(l)
t
(h(l)

n |xn, zn = t) = N
(

h(l)
n ; µ

ψ
(l)
t
(xn), Σ

ψ
(l)
t
(xn)

)
,

we have:

∇
ψ
(l)
t
L = E

h(1:L)
n ∼qΨ


∂µ

ψ
(l)
t
(xn)

∂ψ
(l)
t

T

∇
h(l)

n
f (h(1:L)

n )

+
1
2

Tr

∂Σ
ψ
(l)
t
(xn)

∂ψ
(l)
t

∇2
h(l)

n
f (h(1:L)

n )

 . (7.8)

The gradient and hessian of the function f can be computed using standard
automatic differentiation packages such as PyTorch (Baydin et al., 2018;
Paszke et al., 2019). The expectation can be estimated using a standard Monte
Carlo estimator, the same as equation (7.5). The entropy term of equation
(7.6) can be computed analytically, thus gradients can be obtained using
standard backpropagation (2.18). As for the Θ parameters, the expectation
is independent of these parameters thus:

∇ΘL = ∑
n,t

φn,t

{
E

h(1:L)
n ∼q

ψ
(1:L)
t

[
∇Θ log pΘ(xn, h(1:L)

n |zn = t)
] }

, (7.9)

which could be also estimated using standard backpropagation and a Monte
Carlo estimator. Given the estimated values of these gradients, we can use
standard gradient ascent to fit the parameters of the model in parallel with
the cluster assignments. Algorithm 6 summarizes the process.



82 dirichlet process deep latent mixtures for fault identification

7.4 semi-supervised learning (ssl)

7.4.1 SSL using the DP-DLM

In this section, similarly to chapter 4 we consider a partially labeled dataset
x1:N = Dl ∪ Du, where Dl = {xn, yn}n is the labeled part, yn represents
the label of the sample xn, and Du represents the unlabeled part. The log
likelihood can be divided for the labeled and unlabeled parts as:

l(Θ) = log pΘ(x1:N)

= ∑
xn∈Dl

log pΘ(xn) + ∑
xn∈Du

log pΘ(xn)

= ∑
xn∈Dl

log pΘ(xn, zn = yn) + ∑
xn∈Du

log pΘ(xn).

The last equation follows from the fact that pΘ(xn|zn 6= yn) = 0. By dividing
the labeled and unlabeled parts of the dataset, we can follow the same
approach presented in section 7.3 in order to derive a variational inference
algorithm. In this case, the fixed point updates and the gradient ascent steps
remain unchanged if we set φn,yn

= 1 for a labeled xn sample.

7.4.2 The predictive distribution

In order to make predictions using the model, we need to evaluate the
predictive distribution. Given a new sample xN+1, the objective is to evaluate
the following quantity p(zN+1 = k|x1:N+1). In the same way as in chapter
4, we can use the variational posterior to approximate the true posterior,
which in turn leads to simpler expectation terms:

p(zN+1 = k|x1:N+1) ∝ p(zN+1 = k, xN+1|x1:N)

∝∼ Eβ∼q [πk(β)]

×E
h(1:L)

N+1∼q
ψ
(1:L)
k

[
p
(

xN+1|gΘ(h
(1:L)
N+1), zn = k

)]
(7.10)

where gΘ(·) represents the forward pass over the generative model. The
expectation with respect to the beta terms can be computed in closed-form
as a product of expectations over the beta posteriors. The second expectation
can be evaluated using a Monte-Carlo estimator same as equation (7.5).
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kNN (k=5) DGM SB-DGM Ours

6.13± .13 4.86± .14 3.95± .15 2.90± .17

Table 8: Semi-supervised classification error (%) on the MNIST test set with 10 %
labelisation. Comparison with (Nalisnick and Smyth, 2016)

.

7.5 experiments on open-source data

In the previous section, we proposed a novel deep generative model. In
order to demonstrate our model, we start by evaluating it on public open-
source data. Given the general form of our model and its deep structure, we
chose to evaluate it on open-source image data, following the standards of
the generative modeling community.

7.5.1 Evaluation of the semi-supervised classification

We evaluate the semi-supervised classification capabilities of the model. We
train a two hidden layer DP-DLM model (L = 2) on the MNIST dataset (Le-
Cun and Cortes, 2010) with train-valid-test splits equal to {45000, 5000, 10000}
similarly to (Nalisnick and Smyth, 2016), with 10 % labelisation randomly
drawn. We train our algorithm until converenge using 5 cross-validation
runs, and we evaluate our model on the test set. We report the mean and
standard deviation of the classification error in percentages in Table 8. Our
method produces a competitive score with existing state-of-the art methods:
Deep Generative Models (DGM) (Kingma et al., 2014) and Stick-Breaking
Deep Generative Models (SB-DGM) (Nalisnick and Smyth, 2016). Unlike the
previous approaches, the loss was not up-weighted for the labeled samples.
Figure 27 (left) shows the t-SNE projections (Maaten and Hinton, 2008a)
obtained with 10 % of the labels provided. We notice that by introducing a
small fraction of labels the class structure was highly preserved in the latent
space.

7.5.2 Data generation and visualization

To further test our model, we generate samples for each cluster from the
models trained on both the MNIST and SVHN (Netzer et al., 2011) datasets.
The MNIST model is trained in an unsupervised manner, and the SVHN
model is trained with semi-supervision where we provide 1000 randomly
generated labels. The samples obtained are represented in figure 28. For
the unsupervised model, we notice that the clusters are representative of



84 dirichlet process deep latent mixtures for fault identification

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10

5

0

5

10

Classes
0
1
2
3
4
5
6
7
8
9

Classes
0
1
2
3
4
5
6
7
8
9

10 5 0 5 10

10

5

0

5

10

Classes
0
1
2
3
4
5
6
7
8
9

Classes
0
1
2
3
4
5
6
7
8
9

Figure 27: (Left) t-SNE plot of the second stochastic hidden layer on the MNIST test
set for the semi-supervised (10% labels) version of the DP-DLM. (Right)
t-SNE plot of the second stochastic hidden layer on the MNIST test set
for the unsupervised version of the DP-DLM.

Figure 28: Generated samples from the DP-DLM model for the unsupervised ver-
sion on the MNIST dataset (left) and the semi-supervised version on the
SVHN dataset (right).

the shape of each digit. We plot the t-SNE (Maaten and Hinton, 2008b)
projections of the MNIST test set of the unsupervised model in Figure 27

(right). We notice that the digits belonging to the same true class tend
to group with each other. However, two groups of the same class can be
very separated in the embedding space. The interpretation we can draw
from this effect is that the DP-DLM tends to separate the latent space in
order to distinguish between the variations of hidden representations of the
same class. The clusters obtained are not always representative of the true
classes which is a common effect with infinite mixture models. In a full
unsupervised setting, data can be explained by multiple correct clustering
results. This effect can simply be countered by adding a small supervision
(figure 27 left).



7.6 experiments on gpon-ftth data 85

0 500 1000
iterations

150

100

50

Ev
id

en
ce

 lo
we

r b
ou

nd

5 10
epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Mixed-type model

DP-LMM

Figure 29: (Left) Evidence lower bound across learning iterations. (Right) Compari-
son of the accuracy between the Semi-supervised mixed type mixture
and the Dirichlet process deep latent mixture.

7.6 experiments on gpon-ftth data

In this section of experiments, we fit our Dirichlet Process Deep Latent
Mixture model in order to model clusters of faults in the noisy GPON-FTTH
dataset of chapter 5. Our goal is to demonstrate the representational power
in the hidden feature space, as well as, the classification of known faults and
exploration of new ones.

7.6.1 Experimental setup

In this setting, we consider all known faults of the noisy dataset as presented
in Table 5, in addition to the unknown faults. In training, we up-sample
low represented classes to get a balanced dataset for each class. We use our
Dirichlet process deep latent mixture to model the known classes and to
cluster simultaneously the unknown fault data.

We consider four hidden layers in our probabilistic graphical model (L =
4), with Gaussian priors and variational posteriors. The visible variables x
follow a Gaussian distribution if the dimension is continuous and a Bernoulli
distribution with one-hot encoding if the dimension is categorical.

We implement Algorithm 6, with the following hyperparameters. The
learning rate α is chosen to be equal to .001, decreasing exponentially across
iterations. The parameters are learned using stochastic gradient descent
with batch size equal to 256, with 100 epochs (passes over the dataset). The
truncation level is set to T = 50 as an upper bound on the number of clusters.
And the concentration parameter is set to η = 1/T (uniformative prior).
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epoch: 0 epoch: 2 epoch: 4 epoch: 6 epoch: 8 epoch: 10
Account suspension
Gateway problem
New fault 1
Fiber cut
New fault 2

Figure 30: 2D representation of the last hidden layer for each class, and clusters
discovered.

7.6.2 Model convergence

Following the same procedure as for previous chapters, in order to assess
model convergence, we report the evidence lower bound of equation (7.1).
In Figure 29 (left), we can see that the evidence lower bound increases
monotonically across iterations reaching a plateau. This indicates that the
model is well-fitted and that the optimal variational parameters Ψ and Θ
have been identified.

7.6.3 Semi-supervised classification results

In order to demonstrate the benefits of using deep representations, we
compare the Dirichlet process deep latent mixture model and the infinite
semi-supervised mixed-type mixture model of chapter 4. We evaluate the
classification accuracy on the known labels of the noisy dataset for both
models. We use a held out dataset unseen during training, containing a .1
fraction of the whole dataset. We run the experiment for five cross-validation
runs, and we report the mean and standard deviation for the accuracy.

In Figure 29 (right), we report the classification accuracy across training
epochs (passes over the dataset), for the eight known labels. As it can be
noticed the DP-DLM outperforms considerably the mixed-type mixture.
Furthermore, the shallow semi-supervised mixture model has really poor
performance on this dataset. This result is to be expected seeing how the
dataset contains many dimensions of noise (not relevant for faults). The
DP-DLM has the capacity to compress and filter these dimensions into a
more informative representation in the hidden layers. This capability is not
available with classical shallow mixtures.
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7.6.4 Cluster identification & visualisation

A second useful characteristic of our generative model is its capacity to give
us a two dimensional representation of the hidden features. This provides
us with a way of visualizing discovered clusters and learned classes. This is
done by fixing the dimension of the last hidden layer to two (pL = 2).

In order to demonstrate the usefulness of this 2D representation, we
report the evolution of clusters across learning iterations in Figure 30. For
visualisation purposes we use three known classes, and two discovered
clusters. As it can be seen the clusters are well separated in the feature space,
which suggests that the model has learned useful features to separate these
clusters.

7.7 conclusion

In this chapter, we introduced a novel model, the Dirichlet Process Deep
Latent Mixture Model, for semi-supervised cluster discovery. We have
shown how to use variational inference coupled with Generalized Stochastic
Backpropagation to learn the model. We demonstrated the model on public
open-source data, and GPON-FTTH data for the fault discovery task. We
have shown that our model is competitive of state-of-the art methods in
terms of semi-supervised classification. We have shown as well, that the
model can be used to learn clusters of faults from network data.

The remaining issue after the cluster discovery process is the cluster
interpretation problem. Interpretability of machine learning algorithms is
still an open research field, with many questions. In the next and last chapter
of the thesis, we will discuss the interpretability of the models introduced.
We will show which models are interpretable by construction, and for the
non-interpretable models, we will give a standard approach to interpret the
clusters of faults obtained, so that network experts can fully exploit them.
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FAU LT C LU ST E R I N T E R P R E TAT I O N
F O R D O M A I N E X P E RT S

In the previous chapters, we have presented multiple models for fault
diagnosis in GPON-FTTH data. We have tested their accuracy on known
faults, and presented their clustering results on unknown and unlabeled
instances corresponding to new faults. The clustering results present clear
patterns in the data either using the shallow models or the deep models.

However, a problem remains, in order to exploit and make use of these
clusters, we need to present them in a comprehensible way to network
experts. In other words, either we need to specify directly a pattern of
reoccurring variables for each fault, or retrace the fault using deterministic
decisions of the sort "if-else" on the network variables.

Interpretability in machine learning is still considered as an open question,
with many sub-areas of interesting research avenues. The multitude of
models that perform predictions in a black-box way has moved this question
to the center of the field, especially if we want to ensure reliability of our
algorithms. The majority of the research focuses on making decisions or
predictions of a model interpretable (Fong and Vedaldi, 2017; Lundberg
and Lee, 2017; Ribeiro, Singh, and Guestrin, 2016). Others, focus on specific
models and mainly deep neural networks given their multiple applications
(Agarwal et al., 2020; Fong, Patrick, and Vedaldi, 2019; Selvaraju et al., 2017;
Yosinski et al., 2015).

Although these methods are widely popular in the machine learning
community, their application for the network diagnosis task could prove
limited. This is due to the fact, that in the machine learning community
we would like to investigate how the model reached a decision, but in the
network community we would like to determine why the model reached a
decision. Investigating gradients and visualising hidden layers is useful for
the machine learners but not for the network experts.

Therefore, in this chapter, we will go through each of the models presented
and their results, and we will detail which are naturally interpretable, and

89



90 fault cluster interpretation for domain experts
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router_WiFiScheduler_status=FALSE
tv_profile_status=SUSPENDED

router_WiFi_status=UP
router_WiFiCommSecured_status=DEACTIVATED

rfs_status=OPERATIONAL
client_account_status=0.0

SVOD_ftth_status=OPERATIONAL
router_pnp_status=TRUE

router_line_status=UP
router_ipv6_status=ENABLED

olt_status=OK
voip_status=VOIP_KO

TVconf_ftth_status=OPERATIONAL
router_status=ENABLED

uhd_device_status=Missing
ont_status=Missing

ont_download_status=Missing
router_WiFiComm_status=DEACTIVATED

RemotePVR_status=OPERATIONAL
router_sfp_status=OK

router_plug&play_status=Missing
router_plug&play_status=PNP_ERROR

router_sfp_status=Missing
RemotePVR_status=Missing

router_WiFiComm_status=ACTIVATED
ont_status=INACT

router_plug&play_status=EUA_CERTIFIED
ont_download_status=INACTIVE

uhd_device_status=UP

Cluster 40

Figure 31: Interpretation of fault cluster 40, corresponding to an account suspension
of the customer on the network.

which are not. For the deep models that are not easily interpretable, we will
give a method based on decision trees to investigate the clustering results of
these models.

8.1 interpretability of shallow mixture models

The infinite mixture models introduced in chapters 3 and 4 directly model
clusters from the data available. Thus in order to interpret the cluster, it
suffices to inspect the emission distributions of the observable variables for
each cluster on the fitted model. In what follows, we detail how to perform
this task for each model.

8.1.1 The Infinite Categorical Mixture Model

Recall that the emission distribution of the Infinite Categorical Mixture
model is defined as:

xi|z = k, B ∼ Cat(·|Bk,i) = ∏
v∈Ei

B1[xi=v]
k,i,v (8.1)

Meaning, for a certain value v ∈ Ei, Bk,i,v represents the probability of
dimension i taking value v, supposing the cluster assignment is k:

Bk,i,v = p[xi = v|z = k] (8.2)

Thus, in order to interpret cluster z = k, one only needs to use the
posterior of B (in this case, the variational posterior q∗) to sample from the
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Figure 32: Posterior distributions of the visible variables given the cluster assign-
ment.

generative model by fixing z = k. Then, by counting the values occurring
for each dimension, we get which occurrences contribute the most.

As an example on the dataset considered for experiments in chapter 3, we
report the analysis for a clearly identified cluster in Figure 31. The cluster
represents customers for which the account is suspended, this is clear by
noticing that the values taken by the variables client account status equal to
0, and tv profile status being suspended. For more examples of explained
clusters, we refer the reader back to chapter 3, subsection 3.6.3.

8.1.2 Continuous Dimensions and the Mixed-type Model

The Mixed-type Mixture model adds continuous dimensions to the categori-
cal ones. The categorical ones thus can be treated in the same manner as the
previous subsection, for the continuous dimensions however, we recall that:

xC |z = k, M, Λ ∼ N (·; Mk, Λ−1
k ) (8.3)

where xC is the observable vector of continuous variables, following a Gaus-
sian distribution of mean and covariance matrix Mk, and Λ−1

k respectively,
under the assumption that the cluster assignment z = k. In this case, if in
the model assumptions we suppose that the dimensions are uncorrelated,
that is, Λ−1

k = σ2
k I, we can plot the mixture posterior distributions directly

for each cluster and dimension. Thus, we have an interpretation of the mean
values taken by each fault cluster.

As demonstrated in Figure 32, we plot the posterior distributions for three
variables: Optical line termination transmission powers (OLTTx), Optical
network termination transmission powers (ONTTx), and The down bit error
count (BEC). All values are normalized between 0 and 1, -1 represents the
case where an equipment is not responding thus providing no value. We
plot the distributions for two recognizable clusters z = 1, and z = 3. As it
can be seen, the cluster z = 1 represents the case where there is a problem
with the OLT, where values are centered around −1. As for cluster z = 3,
it represents normal behavior with (BEC equal to 0, and ONT equal to 1),
however the OLT transmission power is slightly low ( approximately 0.6).
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Figure 33: An example of a decision rule leading to cluster 4.

Figure 34: Clear decision leading to cluster 3.

8.2 interpretability of deep models

Deep models presented in chapters 5 and 7 are much more challenging to
interpret. The introduction of non-linear hidden layers, either stochastic
or deterministic, creates new features that help performance but heart
interpretability. This is due to the fact that there is no way to reverse the
process back to the original data. However, these models do provide us with
cluster representing new patterns as demonstrated in previous chapters.
Furthermore, the data is structured and can be read by experts of the domain.
The challenge is to be able to link the clusters identified to patterns in the
data.

In order to accomplish this task, we propose to train a decision tree
classifier (Breiman et al., 1984) on the unknown fault data with the cluster
labels as the true labels of the classifier. Thus, the resulting decision tree
classifier gives us a path of logical statements on the features leading to each
cluster discovered. This provides a readable interpretable rule that can be
exploited by experts of the network domain to identify the fault.

As an example, we revisit the clusters identified using the deep models
in previous chapters, and we apply our method to them. In Figure 33, we
give an example of such a decision path for the forth cluster discovered in
the unknown fault dataset of chapter5. As it can be seen the decision rule
mainly involves transmission and reception powers of the optical network
termination of the GPON-FTTH network. This suggests a problem with
Optical Network Termination (ONT). Another example where the decision
is quite clear is given in Figure 34, where the issue is the link between the
livebox (lb) or home router of the client and the Optical Network Termination
(ONT).
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C O N C LU S I O N

9.1 thesis work summary

In this thesis, we have presented a class of probabilistic graphical models,
based on Dirichlet process mixtures and deep generative models, in order
to cluster faults from network data. Our models are capable of identifying
clusters of faults without knowing a priori the number of clusters using the
Dirichlet process. In addition, we presented how to extend the Dirichlet pro-
cess mixtures to include latent hidden representations. These representations
can learn features relevant to the fault identification task.

Furthermore, we introduced a novel method called Generalized Stochastic
Backpropagation to compute low-variance gradients of the evidence lower
bound with respect to the variational distribution. Our approach was used
to train the proposed end-to-end Dirichlet Process Deep Latent Mixture Model
for fault classification and discovery. Our approach also generalizes previous
estimators and proposes new ones to other distributions.

We validated the presented models in the context of the fault diagnosis
and discovery task. However, the models can be used in larger sense to
other tasks in various domains. The theoretical results presented can be
applied to other fields of machine learning ranging from reinforcement
learning (Sutton and Barto, 2018) to attention mechanisms (Mnih, Heess,
Graves, et al., 2014; Vaswani et al., 2017). The experimental results show that
our models are able to classify with high accuracy known faults as well as
clustering new patterns of faults.

The interpretation of new faults is straight-forward for shallow models.
In this case, we can compute statistics relevant to each fault class, and
investigate the variables occurring for each fault using these models. We
can thus deduce the root cause of a fault cluster. As for deep models, where
the interpretation is not straight-forward, we can use the clusters found
as labels, to train highly interpretable models, such as decision trees, in
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order to retrace the path of decision leading to the cluster. This leads to an
interpretation even for the deep models.

9.2 perspectives

In this thesis we have discussed Dirichlet process mixtures and Dirichlet
process deep mixtures for the fault classification and clustering problem.
The extensions of these models and their application to different domains
provide us with many interesting avenues for future research perspectives.

The first item treated is the clustering of faults using Dirichlet process
mixtures. As discussed in chapters 3 and 4, we can see two main benefits
with these models. The first is the learning of the number of clusters
simultaneously with the cluster assignments. The second is their ability
to treat continuous and categorical variables at the same time. However,
the Dirichlet process is not the only non-parametric prior that can perform
clustering and identify clusters. Other priors such as the mixture of finite
mixtures prior (Miller and Harrison, 2015) can identify the number of
clusters as well. Furthermore, the assumption behind the Dirichlet Process
is that the size of clusters decreases as the number of clusters grows. This
assumption follows intuition when dealing with clusters of faults, yet further
experimental evaluations need to be performed to validate it. In the case
where new faults keep occurring with homogeneous sizes of clusters, other
priors might be better suited for the infinite models.

Furthermore, we have assumed in the shallow infinite mixtures that the
visible variables are independent. This assumption is clearly violated when
dealing with network variables. These variables are often correlated and can
be described by a Bayesian network with dependencies. A natural extension
of the models would be to include these dependencies in the definition of
the mixture models, and to re-derive the mean-field equations to include
them. This could improve performance of the models in terms of accuracy
and generalization. This conjecture could be verified in future work.

In part ii of the manuscript, we have discussed the extension of the infinite
mixture models to include neural networks as feature extractors. Although
their efficacy has been proven in chapters 5 and 7, we opted for simple fully
connected architectures with a fixed number of hidden layers. The effect
of these hyperparameters can be significant in terms of the effectiveness
of the feature extractor. Furthermore, given that network data can easily
be reconstructed into data originating from graphs, we can explore new
architectures that are specifically invented to handle such data, such as,
Graph Neural Networks (Gori, Monfardini, and Scarselli, 2005; Kipf and
Welling, 2016; Scarselli et al., 2008). Such models can prove effective in
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learning features specific to graph data, that are not accessible to classic
fully connected layers, where the relationship between the elements of the
layers is not taken into account.

Moreover we have introduced a new method of computing low-variance
gradients through random variables in chapter 6. These computations arise
in multiple domains ranging from deep learning, probabilistic models to
reinforcement learning. However, we have not extensively tested our ap-
proach in different domains as is usually done in the machine learning
community. This aspect still needs some investigation and could be an-
other avenue of future research. This work may include building a generic
library for generalized stochastic backpropagation that could be used in
multiple applications. Also, for nontrivial distributions the approach re-
quires computations of infinite sums of higher derivatives, which is often of
great complexity. Thus further experimental and theoretical work has to be
performed to deal with these aspects.

Finally, in this work we have focused mainly on the isolation step of the
diagnosis problem, i.e. identifying a fault cluster and its cause. However,
the detection step consisting of identifying anomalies can also benefit from
the work done in this thesis. Indeed, the models introduced can be adapted
to be applied to anomaly detection problems, for example, we can construct
a probabilistic model that assigns normal data a high probability, and thus
anomolous data is naturally assigned a low probability. In addition, the
mitigation step can be addressed using approaches such as Markov Decision
Processes and Reinforcement learning (Sutton and Barto, 2018), where the
theoretical methods introduced in this thesis could be of use. And last, all
that is discussed can be applied to other areas of network management
applications, such as Intrusion Detection Systems (IDS), repair agents, and
more. All these are interesting areas of future research, that could widen the
application of probabilistic graphical models to solve network management
problems.
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A P P E N D I C E S





A

VA R I AT I O N A L I N F E R E N C E

a.1 mean field variational inference

In this appendix, we provide a review of mean field variational inference
specifically the problem of solving equation (3.10):

q∗ = arg min
q

DKL

[
q||p(·|x(1:N))

]
. (A.1)

Let ζ = ζ1:M represent the hidden random variables to infer, and x(1:N)

represent the data vector of the observable random variable x. We have:

DKL

[
q||p(·|x(1:N))

]
= ∑

ζ

q(ζ) log
q(ζ)

p(ζ|x(1:N))
(A.2)

= ∑
ζ

q(ζ) log
q(ζ)

p(ζ, x(1:N))
+ log p(x(1:N)) (A.3)

= DKL

[
q||p(·, x(1:N))

]
+ log p(x(1:N))︸ ︷︷ ︸

independent of q

(A.4)

Thus the minimization criterion of equation A.1 is equivalent to the follow-
ing:

q∗ = arg min
q

DKL

[
q||p(·, x(1:N))

]
. (A.5)

Notice that the last minimizing criterion uses the joint distribution that is
known, in contrast to the posterior distribution that is intractable. Let us
denote by L the function to be minimized, we have

L(q) = DKL

[
q(ζ)||p(ζ, x(1:N))

]
= ∑

ζ

q(ζ) log
q(ζ)

p(ζ, x(1:N))

= ∑
ζm

∑
ζ−m

q(ζm)q(ζ−m)︸ ︷︷ ︸
eq (3.9) Factorisation

log
q(ζm)q(ζ−m)

p(ζ, x(1:N))
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= ∑
ζm

q(ζm)[− ∑
ζ−m

q(ζ−m) log p(ζ, x(1:N)) + log q(ζm)]

− ∑
ζm

q(ζm)︸ ︷︷ ︸
=1

H[q(ζ−m)]

= ∑
ζm

q(ζm)
[
−Eζ−m∼q

[
log p(ζ, x(1:N))

]
+ log q(ζm)

]
−H[q(ζ−m)]

= DKL [q(ζm)|| f (ζm)]−H[q(ζ−m] (A.6)

where :
f (ζm) ∝ exp

(
Eζ−m∼q

[
log p(ζ, x(1:N))

])
(A.7)

Given the decomposition of L(q) to a term depending on q(ζm) and a term
depending on q(ζ−m), we can minimize with respect to each q(ζm), ∀m:

q∗(ζm) = arg min
q(ζm)

L(q(ζm)q∗(ζ−m))

= arg min
q(ζm)

[DKL [q(ζm)|| f ∗(ζm)]−H[q∗(ζ−m]]

= arg min
q(ζm)

DKL [q(ζm)|| f ∗(ζm)]

where f ∗(ζm) ∝ exp
(

Eζ−m∼q∗
[
log p(ζ, x(1:N))

])
= f ∗(ζm)

Therefore, the solution to equation (A.1) is in the form of fixed point equa-
tions often referred to as the mean field update equations of the form:

log q∗(ζm) = const + Eζ−m∼q∗
[
log p(ζ, x(1:N))

]
∀m (A.8)

a.2 neural variational inference

In the previous section we discussed mean field variational inference. In
this section, we provide a review of neural variational inference for deep
generative models, such as the model presented in chapter 7. As a remainder
the evidence lower bound in this case is that of equation 7.1. The neural
variational posterior is that of the hidden layers h(1:L)

n , for the l + 1 layer in
the Gaussian case we have:

q
ψ
(l+1)
t

(h(l+1)
n |xn, zn = t) = N

(
h(l+1)

n ; µ
ψ
(l+1)
t

(xn), Σ
ψ
(l+1)
t

(xn)

)
. (A.9)

Where, µ
ψ
(l+1)
t

(xn), and Σ
ψ
(l+1)
t

(xn) are outputs of single hidden layer neural

networks often called the encoder, that is:

{µ
ψ
(l+1)
t

(xn), Σ
ψ
(l+1)
t

(xn)} = σ
(
[1, xT

n ]ψ
(l+1)
t

)
(A.10)
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Figure 35: Graphical representation of the different processes in the neural varia-
tional model.

In order to optimize for the variational distribution, it suffices to optimize
the parameters ψ

(l+1)
t .

Given the outputs of the decoder defining the variational distribution, we
sample h(l+1)

n from q:

h(l+1)
n ∼ q

ψ
(l+1)
t

(·|xn, zn = t), (A.11)

Then we forward it through the probabilistic model to construct the mean
and covariance for the next layer as outputs of another neural network called
the decoder:

{m(l)
t ,C(l)

t } = σ(W(l)
t h(l+1)

n + b(l)
t ). (A.12)

Then the loss function minimization calibrates the parameters in order to
accurately reconstruct the data xn. A summary of this process is given in
Figure 35.





B

F U RT H E R D E TA I L S O F
C A LC U L AT I O N S

b.1 variational inference for the infinite cat-
egorical mixture model

In order to derive the mean-field equations of the Infinite Categorical Mixture
model, we must compute the conditional expectations of equation (3.13), we
start by specifying the joint distribution of the model as described in chapter
3:

log p(z(1:N), B, β, x(1:N)) =
N

∑
n=1

log p(z(n), B, β, x(n))

= ∑
n

[
log p(x(n)|z(n), B) + log p(z(n)|β)

+ log p(B) + log p(β)
]

In order to determine the optimal variational distributions and the update
equations, we need to compute the conditional expectations of the mean-field
equations for each hidden random variable.

b.1.1 Computing q∗(zn):

log q∗(z(n)) = const + E{z−n,β,B}∼q∗
[
log p(z(1:N), B, β, x(1:N))

]
= const + E{z−n,β,B}∼q∗

[
∑
m

[
log p(x(m)|z(m), B)

+ log p(z(m)|β) + log p(B) + log p(β)
] ]
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104 further details of calculations

The main trick of the mean-field equation calculation is to recognize that
all expectations and terms not dependent on z(n) are constant values, hence
can be integrated in the constant term. Thus, we get:

log q∗(z(n)) = const + EB∼q∗
[
log p(x(n)|z(n), B)

]
+ Eβ∼q∗

[
log p(z(n)|β)

]
= const + EB∼q∗

[
∑

i
log Cat(x(n)i |Bz(n),i,:)

]
+ Eβ∼q∗

[
log πz(n)(β)

]
Given that z(n) is a categorical random variable, we deduce that:

q∗(z(n)) = Cat(zn;φn)

with:

logφn,k = const + EB∼q∗

[
∑

i
log Cat(x(n)i |Bk,i,:)

]
+ Eβ∼q∗ [log πk(β)]

s.t
T

∑
k=1
φnk = 1

b.1.2 Computing q∗(Bk,i):

Using the same principle, we have:

log q∗(Bk,i) = const + E{z(1:N),β,B−k,i}∼q∗

[
log p(z(1:N), B, β, x(1:N))

]
= const + log p(Bk,i) + ∑

n

[
E{z(n),B−k,i}∼q∗ log p(x(n)|z(n), B)

]
= const + log Dir(Bk,i; |xi|;αi) + ∑

n
φn,k log Cat(x(n)i |Bk,i)

= const + ∑
v∈Ei

(
αiv + ∑

n
φn,k1[x

(n)
i = v]− 1

)
log Bk,i

= log Dir(Bk,i; |xi|; εi)

Where:
εi,v = αiv + ∑

n
φn,k1[x

(n)
i = v] ∀v ∈ Ei

b.1.3 computing q∗(βk):

Following the same procedure for the variables βk, we get:

log q∗(βk) = const + E{z(1:N),β−k,B}∼q∗

[
log p(z(1:N), B, β, x(1:N))

]
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= const + log p(βk) + ∑
n

E{z(n),β−k}∼q∗

[
log p(z(n)|β)

]
= const + log Beta(βk; 1, η) + ∑

n

T

∑
l=1

φn,lEβ−k∼q∗ [log πl(β)]

= const + (η − 1) log(1− βk)

+ ∑
n

T

∑
l=1

φn,lEβ−k∼q∗

[
log βl + ∑

t<l
log(1− βt)

]
= const + (η − 1) log(1− βk) + ∑

n
φn,k log βk

+ ∑
n

T

∑
l=1

∑
t<l

φn,lEβ−k∼q∗ [log(1− βt)]

= const + (η − 1) log(1− βk) + ∑
n

φn,k log βk

+ ∑
n

T

∑
t=k+1

φn,t log(1− βk)

= log Beta(βk;γ1,k,γ2,k)

With:

γ1,k = 1 +
N

∑
n=1

φnk γ2,k = η +
N

∑
n=1

T

∑
l=k+1

φnl

Finally, given all the variational distributions we need to compute the
expectations for the φ equation, using standard results of expectations of
Dirichlet and beta distributions we have:

EB∼q∗

[
∑

i
log Cat(x(n)i |Bz(n),i,:)

]
=

d

∑
i=1

∑
v∈Ei

1[x(n)i = v][ψ(εk,i,v)−ψ( ∑
v′∈Ei

εk,i,v′)]

and,

Eβ∼q∗ [log πk(β)] = ψ(γ1,k)− ψ(γ1,k + γ2,k) +
k−1

∑
l=1

[ψ(γ2,l)− ψ(γ1,l + γ2,l)]

Where ψ represents the digamma function.

b.2 variational inference for the mixed-type
model

The Mixed-Type model is an extension of the Infinite Categorical Mixture
Model to incorporate continuous random variables and semi-supervision.
The variational inference updates for the random variables B, β remain the
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same, new variational updates need to be computed for M, Λ, and the
variational equation for the random variables z needs to be updated to
incorporate the continuous part of the data.

b.2.1 Computing q∗(zn):

Using the same procedure as before, but for the new model, we have:

log q∗(z(n)) = const +
N

∑
m=1

Ez−n,B,β,M,Λ∼q∗
[
log p(z(m), B, β, M, Λ, x(m))

]
= const + EB∼q∗

[
∑
i∈D

log Cat(x(n)i |Bz(n),i,:)

]
+ Eβ∼q∗

[
log πz(n)(β)

]
+ EM,Λ∼q∗ [logN (x(n)C ; Mz(n) , Λz(n))]

b.2.2 Computing the variational posterior of the mean and precision matrix:

In order to compute q∗(Mk, Λk), we apply the same principle except in this
case to the couple {Mk, Λk}, we have:

log q∗(Mk, Λk) = const + ∑
m

Ez(1:N),B,β,M−k,Λ−k∼q∗

[
log p(z(m), B, β, M, Λ, x(m))

]
= const + ∑

n,k
φn,k logN (x(n)C ; Mk, Λk)

+ logN (Mk, µ0, κ0Λk) + logW(Λk; L0; ν0)

Using results of conjugate Gaussian and Wishart distributions, we can
rewrite the last equation as:

log q∗(Mk, Λk) = logN (Mk;µk, κkΛk) + logW(Λk; Lk; νk)

By correspondence between the terms, we can deduce, the following equa-
tions for the parameters:

µk =
κ0µ0 + ∑N

n=1 φn,kx(n)C
κk

(B.1)

κk = κ0 +
N

∑
n=1

φn,k νk = ν0 +
N

∑
n=1

φn,k + 1 (B.2)

L−1
k = L−1

0 + κ0(µk −µ0)(µk −µ0)
T

+
N

∑
n=1

φn,k(x
(n)
C −µk)(x

(n)
C −µk)

T (B.3)
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Finally, in order to give a closed-form for the parameters φ, we must use
the last distribution to compute the {Mk, Λk} expectation:

EM,Λ∼q∗ [logN (x(n)C ; Mk, Λk)] = −
1
2

[
|C|
κk

+ νk(x
(n)
C −µk)

TLk(x
(n)
C −µk)

]
+

1
2

[ |C|
∑
i=1

ψ

(
νk + 1− i

2

)
+ log det(Lk)

]

b.3 predictive distribution of the mixed-type
model

As a remainder, the predictive distribution of the mixed-type model is
approximately proportional to :

p(z(N+1) = k|x(1:N+1)) ∝∼ Eβ∼q∗ [πk(β)] ∏
j∈D

EBk,j∼q∗ [Cat(x(N+1)
j |Bk,j)]

×EMk,Λk∼q∗ [N (x(N+1)
C ; Mk, Λk)]

In order to derive this quantity, we need to compute the different expecta-
tions, this is possible using results of conjugacy.

b.3.1 Computing the beta expectation:

Eβ∼q∗ [πk(β)] = Eβt∼Beta(·;γ1,t,γ2,t)∀t[βk ∏
l<k

(1− βl)]

=
γ1,k

γ1,k + γ2,k
∏
l<k

γ2,l

γ1,l + γ2,l

b.3.2 Computing the B expectation:

EBk,j∼q∗ [Cat(x(N+1)
i |Bk,i)] =

∫
Dir(Bk,i; εk,i, |xi|)Cat(x(N+1)

i |Bk,i)dBk,i

=
Γ(∑v εk,i,v)

∏v Γ(εk,i,v)
∏

v

∫
B
εk,i,v−1+1[x(N+1)

i =v]
k,i,v dBk,i,v

=
Γ(∑v εk,i,v)

∏v Γ(εk,i,v)

∏v Γ(εk,i,v + 1[x
(N+1)
i = v])

Γ(∑v(εk,i,v + 1[x
(N+1)
i = v]))

=

ε
k,i,x(N+1)

j

∑v∈Ej
εk,i,v
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b.3.3 Computing the normal expectation:

EMk,Λk∼q∗ [N (x(N+1)
C ; Mk, Λk)] =

∫
N (x(N+1)

C ; Mk, Λk)

N (Mk;µk, (κkΛk)
−1)W(Λk; Lk, νk)dMkdΛk

=
∫

I(Λk)W(Λk; Lk, νk)dΛk

Where,

I(Λk) =
∫
N (Mk;µk, (κkΛk)

−1)N (x(N+1)
C ; Mk, Λk)dMk

=

√(
κk

2π(κk + 1)

)p√
det(Λk) exp

{
−1

2
tr
[
ΛkΘ−1

k

]}
with,

Θ−1
k =

1
κk + 1

(κkµk + x(N+1)
C )(κkµk + x(N+1)

C )T + κkµkµ
T
k + x(N+1)

C x(N+1)
C

T

Thus we have:

EMk,Λk∼q∗ [N (x(N+1)
C ; Mk, Λk)]

=

√(
κk

2π(κk + 1)

)p
∫

det(Λk)
νk+1−p−1

2 exp
{
−1

2 tr[(L−1
k + Θ−1

k )Λk]
}

dΛk

2
νk p

2 det(Lk)
νk
2 Γp(

νk
2 )

=

√(
κk

2π(κk + 1)

)p 2
(νk+1)p

2 det
(
(L−1

k + Θ−1
k )−1

) νk+1
2 Γp(

νk+1
2 )

2
νk p

2 det(Lk)
νk
2 Γp(

νk
2 )

=

√(
κk

π(κk + 1)

)p det
(
(L−1

k + Θ−1
k )−1

) νk+1
2 Γp(

νk+1
2 )

det(Lk)
νk
2 Γp(

νk
2 )

b.4 variational inference for the dirichlet pro-
cess deep latent mixture

The evidence lower bound of equation 7.1 can be written as :

L(Θ, Φ) = −DKL [qΦ(·|x1:N)||pΘ(·, x1:N)] ,

in the following we develop this equation in order to derive the nature of
the variational posteriors and their fixed point updates.
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b.4.1 Computing qγt(βt|x1:N):

L = ∑
z1:N

∫
qΦ(z1:N, h(1:L)

1:N , β|x1:N) log
pΘ(x1:N, z1:N, h(1:L)

1:N , β)

qΦ(z1:N, h(1:L)
1:N , β|x1:N)

dh(1:L)
1:N dβ

= ∑
z1:N

∫
qΦ(z1:N, h(1:L)

1:N , |x1:N)qΦ(β|x1:N)

[
log p(x1:N, h(1:L)

1:N |z1:N)

+ log p(z1:N, β)

]
dh(1:L)

1:N dβ−H[qΦ]

= const︸ ︷︷ ︸
independent of β

+
T

∏
t=1

∫ 1

0
q(βt)

[
∑
n

∑
zn

q(zn) log p(zn|β)

+ ∑
t′
(log p(βt′)− log q(βt′))

]
dβt

= const +
∫ 1

0
q(βt)

[
∑
n

∑
zn

q(zn) log p(zn|β) + log p(βt)− log q(βt)

]
dβt

= const +
∫ 1

0
q(βt)

[
∑
n

∑
k

q(zn = k)(log βk

+ ∑
l<k

log(1− βl)) + (η − 1) log(1− βt)− log q(βt)

]
dβt

= const +
∫ 1

0
q(βt)

[
(∑

n
q(zn = t)) log βt

+ (η + ∑
n

T

∑
r=t+1

q(zn = r)− 1) log(1− βt)− log q(βt)

]
dβt

= const−DKL [q(βt)||Beta(βt; γ1,t, γ2,t)]

The distribution q∗(βt) maximizing L, minimizes the kullback-leibler term.
Hence:

q∗γt
(βt|x1:N) = Beta(βt; γ1,t, γ2,t)

γ1,t = 1 +
N

∑
n=1

q(zn = t) γ2,t = η +
N

∑
n=1

T

∑
r=t+1

q(zn = r)

b.4.2 Computing qφn(zn|xn):

By isolating the terms dependent on zn in L, we obtain:

L = ∑
z1:N

∫
qΦ(z1:N, h(1:L)

1:N , β|x1:N) log
pΘ(x1:N, z1:N, h(1:L)

1:N , β)

qΦ(z1:N, h(1:L)
1:N , β|x1:N)

dh(1:L)
1:N dβ
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= const + ∑
zn

q(zn)

{∫
q(h(1:L)

n |xn, zn) log

[
p(xn|h(1:L)

n )p(h(1:L)
n |zn)

q(h(1:L)
n |xn, zn)

]
dh(1:L)

n

+ Eβ∼q[log p(zn|β)]− log q(zn)

}
= const−DKL [q(zn)||Cat(zn; φn)]

Hence, the optimal distribution q∗φn
(zn|xn) maximizing L satisfies:

q∗φn(zn|xn) = Cat(zn; φn)

where,

log φn,k = const +
∫

q(h(1:L)
n |xn, zn = k) log

[
p(xn, h(1:L)

n |zn = k)

q(h(1:L)
n |xn, zn = k)

]
dh(1:L)

n + Eβ∼q[log πk]

= const + E
h(1:L)

n ∼q
ψ
(1:L)
k

[
log p(xn, h(1:L)

n |zn = k)
]

+ Eβ∼q[log πk] + ∑
l

H

[
q

ψ
(l)
k
(·|zn = k, xn)

]
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A D D I T I O N A L T H E O R E T I C A L
C O N T R I B U T I O N S

c.1 stochastic backpropagation for reinforce-
ment learning

In the reinforcement learning setting, we would like to optimize the long
term expected reward. We follow the notation of (Sutton et al., 2000) and
we denote this expected reward ρ(π), where the policy π depends on
parameters φ. The policy gradient theorem states:

∇φρ = ∑
s

dπ(s)∇φEa∼π(·|s;φ) [Q
π(s, a)] (C.1)

where Qπ represents the action-value function, and dπ represents the station-
ary distribution, or the discounted weighting of probabilities under policy
π, depending on the problem formulation. In both cases, we can apply the
results of generalized stochastic backpropagation to the expectation inside
the sum. For discrete RL, where the action space is A =

{
a(1), ..., a(K)

}
, we

obtain the following expression for the gradient:

∇φρ = ∑
s

dπ(s)
K−1

∑
k=1

∂π(a(k)|s; φ)

∂φ

[
Qπ(s, a(k))−Qπ(s, a(K))

]
(C.2)

In the special case of episodic tasks, we would like to optimize the expected
sum of rewards ρ(π) = Eτ∼qφ [R(τ)]. The function R maps a trajectory τ =
(s1:T, a1:T) to the sum of rewards obtained from the environment: R(τ) =
∑T

t=1 rt(st, at). The dynamics are encoded via the probability distribution qφ,
where for a set of parameters φ, we have:

qφ(s1:T, a1:T) = q(s1)
T

∏
t=1

π(at|st; φ)q(st+1|st, at) (C.3)
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In this case, by exploiting the dependency structure of the distribution qφ,
on which the expectation is taken, equation (C.2) transforms into:

∇φρ =
T

∑
t=1

K−1

∑
k=1

Es1:t,a1:t−1

{
∂π(a(k)|st; φ)

∂φ

[
Est+1:T ,at+1:T

[
T

∑
t′=t

rt′(st′ , at′)|at = a(k)
]

− Est+1:T ,at+1:T

[
T

∑
t′=t

rt′(st′ , at′)|at = a(K)
]]}

(C.4)

In contrast to the Actor-Critic estimator (Sutton et al., 2000), the stochastic
backpropagation estimator only needs the actor neural network of parame-
ters φ to output the values of the policy. However, it does require looking
ahead to get the expected cumulative reward of each action at time step t,
which is an expensive task. In the supplementary materiel we provide a
detailed derivation of equation (C.4).

c.2 stochastic backpropagation for mixture den-
sity distributions

Stochastic backpropagation through mixture density posteriors have been
studied recently (Graves, 2016; Roeder, Wu, and Duvenaud, 2017). Following
from the last section, we provide an alternative way of deriving stochastic
backpropagation rules for mixture density distributions, as long as the base
distributions of the mixture admits a stochastic backpropagtion rule. Let us
consider a mixture density distribution of the form qφ(z) = ∑K

k=1 πφkq(k)φ (z),

where the component base distributions are q(k)φ for all k. In this case, we
can rewrite the function L as :

L(φ) = Eh∼cat(πφ)

{
E

z∼q(h)φ

[ f (z)]
}

(C.5)

Following from equation (C.5), we can apply the categorical stochastic
backpropagation rule on the first expectation, thus obtaining the following
expression for the gradient:

∇φL =
K−1

∑
k=1

∂πφk
∂φ

[g(k)− g(K)] + Eh∼cat(πφ)

{
∇φE

z∼q(h)φ

[ f (z)]
}

(C.6)

where g(k) := E
z∼q(k)φ

[ f (z)]. For the second term, we can re-apply stochastic

backpropagation to derive a stochastic gradient for each base component
and simply take the expectation over the class random variable.
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c.3 the dirac distribution: the link between neu-
ral networks and pgms

x h(1) . . . h(L) y

Figure 36: A hidden variable probabilistic model, where the observed variables are
the data x and target y, with L hidden stochastic layers h(1:L).

In this section, we explore the connection between neural networks and
probabilistic graphical models following from the stochastic backpropaga-
tion rule of the Dirac delta distribution. To this end, let us consider the
probabilistic graphical model of figure 36. The observed random variables
in this model are denoted x and y representing the data and target variables.
We place the analysis in a supervised learning context, but the argument is
valid for unsupervised models as well. As usual the goal is to maximize the
log likelihood for the data samples (x, y), which is intractable, given that
we need to integrate over the hidden variables. However using variational
inference, we can maximize an evidence lower bound of the form:

L(θ; x, y) = Eh(1:L)∼qθ(·|x)

[
log p(y, h(1:L), x)

]
+ H[qθ(·|x)] (C.7)

As suggested in the Dirac stochastic backpropagation rule, let us assume
that the variational posteriors and priors are Dirac delta distribution of the
form:

∀l : qθ(h(l+1)|h(l)) = p(h(l+1)|h(l)) = δ
a(l+1)(W(l+1)T

h(l)+b(l+1))
(h(l+1)) (C.8)

where, the a(l), W(l), and b(l) represent respectively the activation functions,
the weights and biases for layer l, with the convention x := h(0) . Under
these assumptions, the Kullback-Leibler divergence term is equal to zero,
and the evidence lower bound reduces to the the log-likelihood of a classic
neural network:

L(θ; x, y) = log p(y|gθ(x)),

with,
gθ(x) = a(L)(W(L)(....a(1)(W(1)x + b(1))...).

Thus, when using neural networks we are indirectly using a probabilistic
graphical model and making the strong assumption that the hidden layers
follow a parameterized Dirac distribution knowing the previous layer.





D

A D D I T I O N A L E X P E R I M E N TA L
VA L I DAT I O N S

d.1 experiments using discrete stochastic back-
propagation

We evaluate the Bernoulli and Categorical Stochastic Backpropagation es-
timators (BSB and CSB) of equations 6.17 and 6.18 on standard generative
modeling benchmark tasks, using the MNIST and Omniglot datasets (Lake,
Salakhutdinov, and Tenenbaum, 2013; LeCun and Cortes, 2010). We use the
REBAR, RELAX, and Gumbel-softmax (or Concrete) estimators as baselines
for our comparison (Grathwohl et al., 2018; Jang, Gu, and Poole, 2016; Mad-
dison, Mnih, and Teh, 2016; Tucker et al., 2017). The Bernoulli stochastic
backpropagation is compared to the REBAR and RELAX estimators for three
models: the sigmoid belief network of one and two stochastic hidden layers
(Neal, 1992) and the variational autoencoder. In this case, we adopt the
same architectures as (Grathwohl et al., 2018). The categorical stochastic
backpropagation estimator is compared to the Gumbel-softmax estimator
(Jang, Gu, and Poole, 2016; Maddison, Mnih, and Teh, 2016) using two
models: a variational autoencoder and a single layer belief network with
categorical priors. In this case, we set the dimension of the hidden layer to
d = 20 and the number of modalities for each dimension to K = 10.

All models are trained using the ADAM optimizer (Kingma and Ba, 2014)
using a standard learning rate α = 10−4 and batch size of 100. We train
the models for 500 epochs on the MNIST dataset and 100 epochs on the
Omniglot dataset, longer learning epochs leads to overfitting and lower
performance on the test sets for all estimators and models. We perform
5 iterations of training in all experiments and we report the mean and
standard deviation of each performance metric considered.

For all models and estimators, we report the mean marginal test likelihood
in tables 9 and 10 for both datasets. The test likelihood is estimated via
importance sampling using 200 samples from the variational posterior. In
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Dataset Model REBAR RELAX BSB (S=1) BSB (S=5) BSB (S=10)

MNIST
one layer SBN -114.14 ± 0.44 -114.55 ± 0.48 -110.87 ± 0.2 -110.70 ± 0.11 -110.59 ± 0.08
two layer SBN -101.33 ± 0.04 -101.09 ± 0.07 -99.74 ± 0.3 -100.44 ± 0.28 -100.66 ± 0.21

Bern. VAE -127.76 ± 0.84 -128.06 ± 2.66 -107.4 ± 1.47 -108.46 ± 0.37 -109.19 ± 1.31

Omniglot
one layer SBN -123.66 ± 0.05 -123.82 ± 0.17 -113.53 ± 0.21 -114.34 ± 0.16 -114.37 ± 0.19

two layer SBN -117.81 ± 0.17 -117.89 ± 0.04 -102.05 ± 0.19 -102.16 ± 0.09 -102.29 ± 0.14

Bern. VAE -136.83 ± 0.31 -136.53 ± 0.32 -126.94 ± 0.81 -128.69 ± 0.34 -129.48 ± 0.38

Table 9: Test likelihood for the Bernoulli stochastic backpropagation (BSB) estimator
compared to the REBAR and RELAX estimators. We report the mean and
standard deviation over 5 runs.
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Figure 37: The training evidence lower bound on the MNIST training set (top) and
the log variance of the gradient (bottom) over 5 runs. Comparison with
the REBAR and RELAX estimators.

all cases the stochastic backpropagation estimator, a control variate free
method outperforms the baselines. In the case of the one layer sigmoid
belief network the BSB estimator exhibits an increase of performance of
about 4 nats in the case of the MNIST dataset and 10 nats in the case of the
Omniglot dataset. We also vary the number of samples used to estimate the
expectation in the stochastic backpropagation rule S ∈ {1, 5, 10}. We notice
that using a single sample estimate does not hurt performance and leads to
a faster training process.

We estimate the mean variance of the gradients w.r.t the parameters
of the models using exponential moving averages of the first and second
moments computed by the ADAM optimizer. The BSB estimator significantly
outperforms the REBAR, RELAX estimators in terms of variance reduction
with a difference of about 2 nats in the case of sigmoid belief networks, and
1 nat in the case of the categorical variational autoencoder on the mnist
dataset, leading to a more stable training process as shown in figures 37 and
38.
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Dataset Model Gumbel-softmax CSB (S=1) CSB (S=5) CSB (S=10)

MNIST
one layer -113.46 ± 0.59 -107.48 ± 0.37 -107.24 ± 0.31 -107.33 ± 0.13
Cat. VAE -122.97 ± 5.68 -103.49 ± 0.73 -102.68 ± 0.63 -101.78 ± 0.88

Omniglot
one layer -125.76 ± 0.24 -122.49 ± 0.80 -122.98 ± 0.30 -122.98 ± 0.21
Cat. VAE -140.25 ± 1.99 -130.20 ± 0.74 -131.66 ± 0.84 -131.63 ± 1.05

Table 10: Test likelihood for the categorical stochastic backpropagation (CSB) esti-
mator, compared to the Gumbel-softmax estimator. We report the mean
and standard deviation over 5 runs.

Figure 38: Training evidence lower bound and
the log variance of the gradient for
the categorical VAE on the MNIST
dataset.

Model GS
CSB
(S=1)

CSB
(S=5)

CSB
(S=10)

one Linear
layer

4.11 (s) 6.32 (s) 10.93 (s) 16.83 (s)

Cat.
VAE

4.13 (s) 7.32 (s) 13.29 (s) 21.94 (s)

Table 11: Execution time of one
epoch of training on
the mnist dataset per
estimator, per model.

Finally, we evaluate the computational overhead of the categorical stochas-
tic backpropagation estimator compared the Gumbel-softmax estimator. We
compare the two estimators in terms of execution time of one epoch of
training. The comparison is done using GPU implementations on a NVIDIA
GeForce RTX 2080 Ti GPU, where the stochastic backpropagation rule of
equation (6.18) is vectorized, thus leveraging the parallel batch treatment of
the GPU. As shown in table 11, the Gumbel-softmax method is faster than
stochastic backpropagation (S = 1) by a difference of about 3 seconds per
training epoch. This is due to the forward passes performed to compute
each of the terms in equation (6.18). The variance reduction and the increase
in performance outweigh however the computational cost.

d.2 reinforcement learning application

In the reinforcement learning setting, we compare the stochastic backpropa-
gation estimator of equation (C.4) to the famous actor-critic baseline (Sutton
et al., 2000). We compare the two methods on the classical cart-pole bench-
mark of openAI gym (Brockman et al., 2016). The Actor network in both
cases is a two layer neural network with dimensions equal to [64, 32] and
hyperbolic tangent activation functions. The A2C method requires the critic
network which serves as the baseline in the A2C gradient estimator. The
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Figure 39: Mean and standard deviation of the cumulative reward (left) and the log
variance of the gradient for the actor network (right) over 5 iterations of
the training process for the cart-pole task.

critic neural network considered also has two hidden layers of the same
dimensionality with ReLU activation functions.

The actor and policy networks are trained using the ADAM optimizer,
with a learning rate α = 10−3. We compute the cumulative reward at the
completion of each episode of the environment, then we update the weights
using a single step of gradient descent.

As shown in figure 39, the discrete stochastic backpropagation estimator
outperforms the A2C estimator in the sense that it converges faster to
the optimal policy. We also estimate the mean variance of the gradient
of the policy network. As demonstrated at convergence the stochastic
backpropagation estimator has a lower variance of about 1 nat compared to
the A2C estimator, leading to more stable training process.
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R É S U M É E N F R A N Ç A I S

L’identification des pannes dans les réseaux est d’une importance cruciale
pour tout fournisseur de services Internet. Un système de diagnostic précis,
capable d’identifier les pannes, peut améliorer l’expérience client, diminuer
l’indisponibilité du réseau, et surtout réduire les coûts d’interventions sur le
terrain pour le fournisseur d’accès Internet.

Compte tenu des enjeux économiques, de nombreux travaux de recherche
ont été menés pour construire et maintenir des systèmes de diagnostic
de pannes opérationnels dans tous les domaines, allant des opérations de
réseau aux installations et applications industrielles. Cependant, le champ
de recherche pour résoudre la tâche de diagnostic est souvent spécifique au
domaine, et peut même varier dans sa définition.

Afin de donner une définition formelle de la tâche de diagnostic telle
qu’elle est couramment admise dans la communauté de gestion de réseau,
nous devons la diviser en trois étapes. La première étape est l’étape de
détection, qui peut être effectuée de manière proactive, elle vise à décider si
un client rencontre un problème et si des investigations supplémentaires sont
nécessaires. La seconde est l’étape d’isolement, où l’objectif est d’identifier
la cause racine du problème compte tenu de l’état technique actuel ou des
données disponibles. Troisièmement, l’étape de réparation couvre toutes les
actions nécessaires pour résoudre le problème.

La première étape, consistant à identifier si une panne s’est produite sur le
réseau, est souvent associée à la détection d’un comportement anormal. Les
méthodes souvent associées à cette tâche sont des approches de détection
d’anomalies. Pour l’application spécifique que nous étudions tout au long de
la thèse, à savoir le diagnostic de pannes des services d’accès à large bande,
ces méthodes ne sont pas considérées : en effet, une panne est déclarée
détectée à la suite d’un appel client.

Ainsi, nous nous intéressons plutôt à l’étape d’isolement, où l’on sait
qu’une panne s’est produite sur le réseau, et il faut identifier la cause ou
la nature de la panne. Nous nous intéressons plus spécifiquement au diag-
nostic des pannes des services FTTH (Fiber to the home). Considérant les
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différentes applications modernes de l’apprentissage automatique, l’objectif
est de construire des modèles capables de classifier les pannes à partir des
données du réseau GPON-FTTH issues du fonctionnement des réseaux
Orange. De plus, l’enjeu est de construire des systèmes adaptables, dans le
sens où, si une nouvelle panne apparaît sur le réseau (due à changements
logiciels ou techniques) le modèle est capable de regrouper ensemble les
instances de la nouvelle panne, étant donné qu’une signature de la panne
existe dans les données rencontrées.

l’apprentissage automatique appliqué au diag-
nostic réseau

Afin d’introduire la tâche de diagnostic de réseau comme un problème
d’apprentissage automatique, nous devons d’abord discuter de l’état actuel
du diagnostic pour Orange en particulier, et pour la communauté de
recherche en général. Actuellement, dans la plupart des systèmes de diag-
nostic opérationnels du monde réel, la méthode préférée est les systèmes
experts. Spécifiquement pour Orange, le système expert est appelé DELC
(Diagnostic Expert de la Ligne Client).

Un système expert est un système basé sur des règles, où, étant donné une
certaine condition sur les variables du réseau, une alarme est déclenchée
pour alerter si une panne s’est produite et indiquer le cas échéant la cause
racine de la panne. Cela a ses avantages et ses inconvénients. Le premier
avantage est que ces règles peuvent être construites directement avec suff-
isamment de connaissances spécialisées, et elles sont interprétables et claires
pour les autres experts du réseau ou du domaine. Cependant, les incon-
vénients sont nombreux. Le premier si le réseau est suffisamment grand,
l’expertise et le temps requis pour construire le système expert sont énormes,
le maintenir est encore plus difficile. Deuxièmement, si une nouvelle panne
se produit en raison de changements dans le réseau, le système doit être
revisité, ce qui peut s’avérer encore plus complexe. Troisièmement, puisque
les règles sont déterministes, le système expert ne peut pas toujours conclure
lorsque certaines variables sont manquantes.

La première approche qui a fait l’objet de nombreuses recherches pour la
tâche de diagnostic fait appel aux réseaux bayésiens. Un réseau bayésien
est un modèle probabiliste des variables de réseau avec dépendances. Le
modèle peut être construit par un expert, les dépendances représentent
des relations causales entre les variables du réseau. L’objectif d’un réseau
bayésien est de modéliser la propagation des pannes à travers les variables
du réseau bayésien, ainsi en inversant le processus, on peut identifier la
cause racine. L’avantage de ces modèles est qu’ils peuvent être appris à
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partir de données (probabilités conditionnelles estimées à partir de données).
Cependant, l’inconvénient reste le même que les systèmes experts : ils sont
très spécifiques à l’application, si une nouvelle panne ou un changement
survient sur le réseau réel, le réseau bayésien doit être revisité ce qui est
souvent une tâche coûteuse.

Des méthodes classiques d’apprentissage automatique ont également été
explorées pour la tâche de diagnostic. Une approche consiste à considérer
le schéma d’apprentissage supervisé traditionnel, où un classificateur est
appris à l’aide de données étiquetées selon les différents types de pannes
connus. Ces classificateurs sont nombreux et peuvent aller de modèles sim-
ples tels que les classificateurs Naive-Bayes, aux Support-Vector Machines
(SVM), et même aux réseaux de neurones.

Bien que ces méthodes soient attrayantes, en utilisant ces approches,
nous aurions besoin de réapprendre notre modèle de classification avec de
nouvelles données étiquetées pour de nouveaux types de pannes, qui ne
sont généralement pas disponibles, surtout lorsque la panne est très récente.
En utilisant les réseaux bayésiens, la prise en compte de nouveaux types
de pannes, de nouvelles données ou de nouveaux équipements reviendrait
à mettre à jour le graphe bayésien en ajoutant et/ou en supprimant des
nœuds et des arêtes ainsi qu’en modifiant les probabilités conditionnelles
des arêtes. Cela nécessiterait une grande expertise du réseau et peut être
irréaliste si le réseau est trop complexe. Bien qu’il soit possible de dériver le
graphe bayésien à partir de données, cela devient impossible en pratique
lorsqu’il s’agit de grands ensembles de données composés de centaines ou
de milliers d’entités.

D’autre part, afin de découvrir de nouvelles pannes, il faut effectuer une
exploration des données et trouver des clusters correspondant à de nouveaux
types de pannes. L’approche standard actuellement, consiste pour un expert
à étudier les données "à la main" afin d’identifier ces clusters. Les méthodes
de clustering non supervisées peuvent être utilisées pour obtenir de bonnes
performances. Cependant, l’utilisation de telles méthodes dépend souvent
d’hypothèses de modèle qui pourraient nuire aux performances, telles que
les métriques de distance dans les espaces de grande dimension. De plus,
dans les méthodes non supervisées, les clusters peuvent être pertinents d’un
point de vue technique (par exemple, regrouper des individus parce qu’ils
utilisent le même type d’équipement), mais ce type de clustering n’apporte
aucune information nouvelle qui pourrait être utilisée pour mettre en évi-
dence une nouvelle panne. Le moyen évident de contourner ce problème
est de recourir à une sélection fastidieuse de variables caractéristiques et à
un prétraitement manuel des données, ce qui nécessite une connaissance
approfondie de l’environnement en constante évolution et peut être coûteux
en temps.
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Dans cette thèse, nous présentons un cadre général basé sur des modèles
probabilistes graphiques pour apprendre et identifier des clusters de pannes.
Nous plaidons en faveur d’un type spécifique de modèles probabilistes
graphiques, à savoir les mélanges à base de processus de Dirichlet ou les
mélanges profonds à base de processus de Dirichlet. Ces modèles que nous
proposons sont capables de clusteriser les pannes sans connaître le nombre
de clusters (ou de pannes), ils peuvent identifier des signatures cachées
pertinentes pour la tâche de diagnostic, et plus important encore, ils incluent
des connaissances expertes en termes de supervision (ou semi-supervision)
sous forme d’étiquettes pour guider et améliorer l’identification des pannes
à partir des données.

structure de la thèse et questions de recherches

Cette thèse est divisée en deux parties: dans la partie I, nous introduisons des
modèles probabilistes graphiques superficiels. Plus précisément, des mod-
èles de mélange infini capables d’identifier des clusters de pannes à partir de
données de réseau, de manière non supervisée et semi-supervisée. Dans la
partie II, nous faisons évoluer ces modèles pour inclure des représentations
cachées profondes. Le but des représentations cachées est de construire des
signatures pertinentes pour la tâche de diagnostic. Ces fonctionnalités sont
conçues pour traiter des données à grande échelle bruitées et complexes.
Combiné avec les mélanges infinis, nous pouvons utiliser ces représentations
pour obtenir de meilleurs résultats sur de tels ensembles de données. Afin
de guider la lecture du manuscrit, les contributions apportées dans la partie
I tentent de répondre aux questions de recherche suivantes:

Question 1 : Peut-on développer des modèles capables d’identifier des clus-
ters adaptés aux données du réseau, notamment des données catégorielles,
sans connaître a priori le nombre de clusters ?

Notre contribution pour répondre à cette question est le modèle de
mélange infini catégoriel. Le modèle est présenté au chapitre 3. Nous
étendons la définition des mélanges à base de processus de Dirichlet au cas
des variables catégorielles multidimensionnelles et nous montrons comment
utiliser l’inférence variationnelle de type champ-moyen pour apprendre
le modèle efficacement. Nous montrons que notre modèle est capable
d’identifier des clusters de pannes sans connaître a priori le nombre de
clusters et nous montrons comment les hypothèses du modèle conduisent à
de meilleures performances en termes de précision.

Question 2 : Peut-on étendre les mélanges à base de processus de Dirich-
let pour traiter simultanément des variables continues et catégorielles, et
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prendre également en compte les connaissances expertes en termes de su-
pervision ?

Dans cette contribution, nous étendons le modèle de mélange catégoriel
infini à un modèle de type mixte, qui peut traiter des variables continues et
catégorielles. Le modèle prend également en compte la semi-supervision
d’experts sous forme de labels. Nous évaluons le modèle sur les données
du réseau et nous montrons ses très bonnes performances comparées à des
modèles références de l’état de l’art. Ce travail est présenté dans le chapitre
4.

Nous avons introduit des modèles probabilistes graphiques superficiels,
sous la forme de modèles de mélanges infinis, qui pourraient être appliqués
à des données de type mixte. Un problème demeure, ces modèles ne
peuvent pas créer de combinaisons complexes de données qui seraient
nécessaires pour découvrir des clusters. En d’autres termes, aucune création
de signatures n’est possible. Cependant, dans la plupart des applications du
monde réel, les données sont bruitées et de grande dimensionnalité. Ainsi,
la création de signatures ou "features" est nécessaire. Dans la partie II, nous
développons des modèles et des méthodes afin d’atteindre cet objectif, et la
principale question de recherche abordée est la suivante:

Question 3: Pouvons-nous construire des représentations ou des signatures
très pertinentes pour la tâche de diagnostic, afin d’améliorer les perfor-
mances ?

Afin de répondre à cette question, dans le chapitre 5, nous combinons des
représentations de l’apprentissage profond et des modèles de mélange infini
pour effectuer la découverte de pannes dans un ensemble de données à
grande échelle partiellement étiqueté. Nous parlons pour cette approche de
modèles de mélanges infinis profonds. Nous créons un réseau de neurones
profond pour reconnaître les pannes étiquetées et construire des représenta-
tions cachées de faible dimension pertinentes pour la tâche de diagnostic.
Ensuite, un modèle de mélange gaussien infini est appliqué sur la partie
non étiquetée afin de reconnaître les clusters de pannes sur la base de la
représentation cachée. Nous évaluons le modèle sur un ensemble de don-
nées GPON-FTTH du monde réel à grande échelle, nous montrons que
le modèle peut identifier des classes de pannes connues avec une grande
précision, et que la représentation cachée sur les pannes non étiquetées
conduit à des clusters reconnaissables.

Le deep learning et les mélanges infinis vivent dans deux univers de
méthodes différents. Leur combinaison n’est pas naturelle, dans le sens où
nous n’avons pas de modèle global de bout en bout, capable d’apprendre
des signatures et de faire du clustering. Ainsi se pose naturellement la
question suivante:
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Question 4: Peut-on construire un modèle probabiliste profond de bout
en bout capable d’apprendre des représentations cachées et d’effectuer du
clustering ?

Il s’avère que cela est possible grâce aux modèles génératifs profonds,
qui sont une classe de modèles probabilistes graphiques. Le problème des
modèles génératifs profonds est le processus d’apprentissage qui implique
le calcul des estimateurs de gradients qui sont souvent de grande variance.
Dans nos contributions Rétropropagation stochastique généralisée et Rétro-
propagation stochastique par transformées de Fourier, nous présentons une
méthode pour dériver des estimateurs à faible variance de ces gradients. Ce
travail est présenté au chapitre 6.

Dans le chapitre 7, nous utilisons la rétropropagation stochastique général-
isée pour former notre modèle de mélange latent profond à base de pro-
cessus de Dirichlet de bout en bout. Nous évaluons notre modèle sur des
ensembles de données ouverts et sur des données GPON-FTTH à grande
échelle du monde réel pour la tâche de diagnostic et de découverte des
pannes.

Enfin, au chapitre 8, nous discutons de l’interprétabilité de nos mod-
èles. Nous montrons que les modèles superficiels sont naturellement inter-
prétables. Les modèles profonds, cependant, sont plus difficiles en termes
d’interprétabilité. Nous discutons de la façon d’utiliser les arbres de déci-
sion pour retracer la décision menant à un cluster de pannes, la rendant
compréhensible pour un expert du domaine.
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Résumé : Pour tout fournisseur d'accès 
Internet ou opérateur de réseau, il est crucial 
d'identifier rapidement et efficacement les 
problèmes qui surviennent sur le réseau. Les 
avantages d'un bon système de diagnostic des 
pannes sont principalement de minimiser les 
coûts d'exploitation du réseau et d'améliorer la 
qualité de l'expérience du client. Un défi majeur 
pour tout système de diagnostic concerne la 
découverte de nouvelles pannes, inconnus de la 
version actuelle du système de diagnostic. Le 
processus exploratoire pour trouver de 
nouvelles pannes peut s'avérer coûteux et long 
pour les fournisseurs de services Internet. 

Dans cette thèse, nous explorons une 
approche alternative basée sur des méthodes 
d'apprentissage, afin de construire des 
systèmes de diagnostic autonomes. Notre 
étude explore des modèles graphiques 
probabilistes capables de regrouper des motifs 
de pannes de manière non supervisée et semi-
supervisée. Nous démontrons l'efficacité de 
nos modèles sur des cas d'utilisation réels de 
données à grande échelle, extraites de réseaux 
et de services 'Fibre-to-the-Home' (FTTH). 
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Abstract :  For any Internet service provider or 
network operator, it is crucial to quickly and 
efficiently diagnose the problems that occur on 
the network. The benefits of a good fault 
diagnosis system are mainly to minimize the 
costs of network and service operations and to 
enhance the customer's quality of experience. 
One major challenge for any diagnosis system 
concerns the discovery of new faults, that are 
unknown to the current version of the diagnosis 
system. The exploratory process for finding new 
faults can prove to be expensive and time 
consuming for internet service providers. 

In this thesis, we explore an alternative 
approach based on learning methods, in order 
to build learning-based diagnosis systems. Our 
study explores Probabilistic Graphical Models 
that are capable of clustering patterns of faults 
in an unsupervised and a semi-supervised 
manner. We demonstrate the efficiency of our 
models on real use-cases of large scale data, 
extracted from Fiber-to-the Home (FTTH) 
services based on Gigabit-capable Passive 
Optical Networks.  
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