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École doctorale n◦626
Ecole Doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
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A B S T R A C T

Future developments of lighter, more compact and powerful motors – driven by
environmental and sustainability considerations in the transportation industry –
involve higher stresses, currents and electromagnetic fields. For the components
used in electric motors – especially for the ferromagnetic ones – strong couplings
between mechanical, thermal and electromagnetic effects arise, which are ampli-
fied by the higher loads. They affect the machine’s performance, thus requiring
a consistent multiphysics modeling for the motors’ design. Understanding and
modeling these couplings has recently become an important subject of research.
The work presented here proposes a coupled electromagnetic-thermomechanical
continuum theory together with analytical and numerical (finite element) tools for
the solutions of boundary value problems arising in electric motors.

In the first part of the work, using the direct approach of continuum mechanics,
based on a Eulerian (current configuration) approach, a general modeling frame-
work coupling the electromagnetic, thermal and mechanical fields is derived from
the basic principles of thermodynamics using the eddy current approximation. Al-
though the proposed theory is general enough to account for a wide range of
material behaviors, particular attention is paid to the derivation of the coupled
constitutive equations for isotropic materials under small strain but arbitrary mag-
netization. As a first application, the theory is employed for the analytical model-
ing of the rotor and stator of idealized electric motor configurations for which we
calculate the electric current, magnetic, stress and temperature fields. At the rotor,
the different components of the stress tensor and body force vector are compared
to their purely mechanical counterparts due to inertia, quantifying the significant
influence of electromagnetic phenomena. At the stator, comparison with coarser
models found in the electrical engineering literature is provided, quantifying the
influence of the proposed model on the elastic stress and strains’ amplitudes.

In the second part of the work, a variational formulation of the problem is pre-
sented based on a Lagrangian (reference configuration) approach and shown to be
equivalent to the direct approach. The numerical implementation of the proposed
model – via a user element in a general purpose finite element code and account-
ing for non-linear material behavior – is validated by comparison of the results
from the analytical models of the simplified stator configuration to the numeri-
cal results for small values of the magnetic field (range of linear behavior for the
magnetic field). Calculations are then performed on more complex stator configu-
rations with a more intense magnetic field, using a non-linear magnetic response
that accounts for magnetic saturation (a Langevin-type model), in order to put
forward the capacities of the proposed formulation and obtain results for realistic
engineering applications.
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R É S U M É

Le développement de moteurs électriques plus légers, compacts et puissants – en-
trainé par l’électrification rapide dans le domaine des transports en réponse aux
enjeux environnementaux de notre époque – entraine une augmentation des con-
traintes, des courants et des champs magnétiques dans les composants des mo-
teurs. Ces composants – notamment les composants ferromagnétiques – présen-
tent des couplages forts de leurs propriétés magnéto-thermo-mécaniques, exacer-
bées dans des moteurs plus fortement sollicités. Les chargements mécaniques et
thermiques de la machine influencent ses propriétés magnétiques et la concep-
tion de moteurs toujours plus performants nécessite alors d’avoir recours à des
modélisations multi-physiques fiables. La compréhension et la modélisation de
ces couplages est devenu un sujet de préoccupation important pour les industriels
et fait l’objet de nombreux travaux de recherche. Les travaux présentés ici pro-
posent une théorie couplée électromagnétique-thermomécanique du milieu con-
tinu et le développement d’outils analytiques et numériques pour la résolution de
problèmes aux limites dans les moteurs électriques.

Dans la première partie de ce travail, un cadre de modélisation général couplant
les champs électromagnétique, thermique et mécanique est dérivé des principes
fondamentaux de la thermodynamique en utilisant l’approche directe de la mé-
canique des milieux continus en configuration Eulérienne (configuration courante)
dans l’approximation des courants de Foucault. Cette formulation est capable de
décrire un large panel de comportements couplés et non-linéaires d’origine mag-
nétique, mécanique et thermique. Une attention particulière est portée à la déri-
vation des équations constitutives couplées pour le cas de matériaux isotropiques
en petite déformation mais magnétisation arbitraire. En exemple d’application, la
théorie est utilisée pour la modélisation du rotor et du stator de configurations
idéalisées de moteurs électriques pour lesquelles nous calculons les courants élec-
triques, le champ magnétique et les champs de contraintes et de température. Au
rotor, les différentes composantes du tenseur de contraintes et des forces volu-
miques sont comparées aux contraintes et aux efforts d’origine uniquement mé-
canique liés aux forces centrifuges, quantifiant l’influence significative des phéno-
mènes électromagnétiques. Au stator, nous présentons une comparaison avec des
modèles plus simples habituellement utilisés pour la modélisation des moteurs
électriques, et quantifions l’influence du modèle proposé sur l’amplitude des con-
traintes élastiques et des déformations.

Dans la seconde partie de ce travail, une formulation variationnelle basée sur
une approche Lagrangienne (configuration de référence) est proposée et son équiv-
alence avec la formulation obtenue par l’approche directe est démontrée. L’im-
plémentation numérique du modèle proposé – via la définition d’un « user ele-
ment » dans un code de calcul aux éléments-finis généraliste et tenant compte de
comportements matériaux non-linéaires – est validé par comparaison des résultats
numériques aux résultats des modèles analytiques obtenus pour la modélisation
du stator en configuration simplifiée, dans le cas de petits champs magnétiques
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(domaine de comportement linéaire pour le champ magnétique). Des calculs sont
par la suite effectués sur des configurations de stator plus complexes sous champ
électromagnétique plus intense, présentant une réponse magnétique non-linéaire
avec saturation (modèle de type Langevin), afin de mettre en avant les capacités
de la formulation proposée et d’obtenir des résultats plus proches d’applications
techniques réalistes.
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I N T R O D U C T I O N

The increasing importance and market share of hybrid and purely electric vehi-
cles – in the urgent quest to reduce the transportation industry’s carbon footprint
– drives the development of higher performance electric motors in terms of ef-
ficiency, power density, reliability, higher rotation velocity, reduced weight and
costs. Accurate modeling of both the electromagnetic (i.e. magnetic flux) and ther-
momechanical (i.e. stresses and temperature fields) is an indispensable part of their
design.

a brief descriptions of a typical electric motor

To set the stage we start by showing the cross-section of a typical motor, consisting
of a turning part, termed “rotor” and a fixed part, termed “stator” separated by an
“airgap”, as seen in Figure 0.1.

Figure 0.1: Cross-section of a typical motor, showing rotor, airgap and stator, with current
supply coil domains.

Stator windings or coils are supplied by multi-phase alternating currents to cre-
ate a rotating magnetic field. The rotor can have permanent magnets or conducting
bars (cage rotor). It can also be made of a plain ferromagnetic material in the case
of very high speed machines. In the case of magnets, the motor is called “syn-
chronous” given the rotor spins at the same frequency as the stator magnetic field.
Motors having rotors with conducting bars or plain ferromagnetic (but without
magnets) rely on induction: the rotating stator field induces currents at the rotor,
which in turn trigger Lorentz forces creating the rotor motion. An angular velocity
differential, called “slip”, between the rotor and the stator results and the motor is
called “asynchronous”. The dark region at the center of the rotor indicates the motor
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2 contents

shaft, which transmits the mechanical load (torque). The bulk of the rotor and sta-
tor are usually made of ferromagnetic materials with high magnetic susceptibility
to enhance and channel the magnetic flux.

motivation and scope

Modeling of electric motors has in the past been a topic studied predominantly
by the electrical engineering community. The focus has been on the calculation of
the magnetic field and resulting torque and iron losses for different motor designs
using both analytical and numerical methods.

Since the late 90s, stress calculations in electric motors have appeared as a result
of noise and vibrations concerns. Moreover, future developments of lighter, more
compact and powerful motors will involve higher stresses, currents and electro-
magnetic fields. As a result, strong couplings between mechanical, thermal and
electromagnetic effects will consequently arise and a consistent multiphysics mod-
eling approach is required for the motors’ design. Typical simulations – the bulk
of which are presented in the electrical engineering literature – involve a stepwise
process, where the resolution of Maxwell’s equations provides the Lorentz and
magnetic forces which are subsequently used as the external body forces for the
resolution of Newton’s equations of motion. Existing approximate methods are in-
adequate to deal with the true multiphysics nature of the electric motor problem,
thus requiring a consistent continuum mechanics modeling approach.

In recent years, considerable developments occurred in the field of continuum
thermodynamics with the advent of coupled electromagnetic-thermomechanical
theories derived using both the direct and variational methods of continuum me-
chanics. The former, using an Eulerian approach, provides the governing equa-
tions and valuable information about the constitutive laws. The latter, using a La-
grangian approach confirms the results of the direct method (a highly nontrivial
result in multiphysics problems) and is useful for numerical solutions of the re-
sulting realistic boundary value problems (for a typical example see Figure 0.1).

The goal of the present work is a thermodynamically consistent continuum for-
mulation of the coupled electromagnetic-thermomechanical problem of elec-
tric motors, followed by the analytical and numerical tools required for the
solution of the resulting boundary value problem and illustrated by different
examples.

outline

This thesis is divided into two parts: Part I pertains to the direct approach of
continuum mechanics and presents the analytical solution of a simplified motor
(rotor and stator part). Part II pertains to the variational formulation of the problem
and uses the finite element method to solve a realistic problem (stator part). A
detailed literature review is given, as required, at the introduction of each part.
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In Chapter 1 of Part we present a very general theory of non-relativistic elec-
trodynamics as the ground to all future developments. In Chapter 2, the general
theory is specified to the modeling of electric motors by introducing the eddy cur-
rent approximation. Attention is paid to the derivation of the coupled constitutive
equations for isotropic materials under small strain but arbitrary magnetization.
In Chapter 3 the analytical solution of a simplified motor boundary value prob-
lem is presented (rotor and stator). For the rotor, we calculate the magnetic field
in addition to the temperature field, the magnetic, total and elastic stresses in the
rotor and the torque as a function of the applied current and the slip parameter
(equivalent to the mechanical torque). The results for three different rotor materi-
als (electric steel, copper and aluminum) using realistic geometric and operational
regime values and material parameters are presented. For the stator case, we cal-
culate the magnetic, stresses and displacement fields. The results are compared to
the standard model usually used in the electric engineering literature. In Chapter
4, the work of Part I is concluded with a critical review and suggestions for future
work

The essential contributions of Part I are:

• Proposing a general framework, based on the direct approach of contin-
uum mechanics using the principles of electromagnetism, mechanics and
thermodynamics, suitable for the modeling of coupled thermo-magneto-
mechanical problems in electric motors;

• A proper linearization of the constitutive relations in the small strains, ar-
bitrary magnetization regime for materials with coupled magneto-mechan-
ical behaviors;

• Examples of analytical boundary value problems for simplified electric
motors to calculate temperature fields and identify different contribu-
tions of stress and body forces.

The developments of Part I up to the rotor boundary value (Section 3.1) have been published
in Hanappier, Charkaluk, and Triantafyllidis, 2021a. The complementary stator boundary
value problem developments (Section 3.2) have been submitted for publication. The corre-
sponding manuscript is Hanappier, Charkaluk, and Triantafyllidis, 2021b.

In Chapter 5 of Part II, the variational formulation for the general electrody-
namic problem in Chapter 1 is presented in Section 5.1. An eddy current approxi-
mation of the variational formulation is presented in Section 5.2, and based of the
developments from Chapter 2. In Chapter 6, the numerical implementation of the
problem via a user element in a general purpose final element code is presented
for the quasi-static case (no induced currents nor acceleration terms). The choice
of element types and specific free energy are detailed. In Chapter 7, finite element
analysis of stator boundary value problems are performed in the spirit of the an-
alytical problem from Section 3.2. A magnetic material behavior that accounts for
magnetic saturation is defined. In Section 7.1, FEM results are validated by compar-
ison with the analytical results from Section 3.2 in the linear range (small magnetic
fields). In Section 7.2, the finite element analysis of a more realistic stator geome-
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try with teeth and slots at large magnetic fields is performed to put forward the
capacities of the numerical code developed. In Chapter 8, we conclude the work of
Part II with a critical review and suggestions for future work.

The essential contributions of Part II are:

• Proposing a general variational formulation for the study of coupled
magneto-mechanical problems in electric motors, under finite strain and
arbitrary magnetic fields and showing its consistency with the direct ap-
proach of continuum mechanics in Part I (a non-trivial result for coupled
problems);

• A numerical implementation of the variational formulation for finite ele-
ment analysis of electric motor problems and verification of the code by
comparison with the analytical results of Part I;

• Numerical calculation of stresses, strains and magnetic fields in a realis-
tic stator under large magnetic fields accounting for magneto-mechanical
couplings.

The developments of Part II, with improvements on the material behavior, have been sub-
mitted for publication. The corresponding manuscript is Hanappier, Charkaluk, and Tri-
antafyllidis, 2021c.
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G E N E R A L E L E C T R O M A G N E T I C T H E O RY F O R T H E
C O N T I N U U M

literature review In the late 90s, stress calculations in electric motors have
appeared as a result of noise and vibrations concerns (Reyne et al., 1987; Reyne,
Sabonnadière, and Imhoff, 1988). At the time already, concerns regarding the intri-
cate coupling between magnetic and mechanical aspects in ferromagnetic materials
were raised. These materials with high magnetic permeability constitute the bulk of
electric motors. They are used to enhance and channel the magnetic flux within the
machine to improve performance. They have intrinsic strongly coupled magnetic
and mechanical behavior (Cullity and Graham, 2011; Fonteyn, 2010; Fonteyn et al.,
2010b; Fonteyn et al., 2010a). First, they develop important magnetization, which
triggers body forces of magnetic origin in addition to the Lorentz force due to cur-
rents (e.g. see Reyne et al., 1987). They foremost expand when applied a magnetic
field, a phenomenon called magnetostriction (Joule, 1847; Lee, 1955; Du Trémolet
De Lacheisserie, 1993). More recently, interest in computing stresses in electric mo-
tors also arose for questions of motor performance, as the magnetostriction effect
is accompanied by it reverse phenomena, referred to as inverse magnetostriction or
Villari effect: stresses in ferromagnetic materials stretch and reorient the magnetic
domains within the material. This modifies the material’s permeability to the mag-
netic field and hence its magnetization. In turn the machine’s performance that
relies on magnetization may be affected. This led to studies of the effect of stresses
due to centrifugal forces on magnetization (Rekik, Hubert, and Daniel, 2014), or
stresses due to manufacturing and assembling processes (for instance Daikoku et
al., 2005; Bernard and Daniel, 2015 for shrink fitting, or Takezawa et al., 2006 for
punching of electrical steel sheets). Consequently, important research is now led on
the characterization of electrical steel sheets used in electric motors (e.g. see Aydin
et al., 2017). For the design of future electric motors with optimized performance,
modeling tools are required that can properly account for these fine material char-
acterization and their coupled magneto-mechanical behavior. This is the ground to
the current work.

As pointed out by Reyne et al., 1987, the first difficulty in the formulation of
magneto-mechanical problems was the evaluation of the distribution of local elec-
tromagnetic body forces, for which various expressions were suggested but none
achieving general agreement. Since then, continuum mechanics has advanced this
problem calling to consistent thermodynamic formulations of continuum electro-
magnetism1, specifying material behaviors through the definition of a continuum’s
specific free energy from which derives combined thermo-magneto-mechanical
stresses giving the interface and body forces of electromagnetic origin. The multi-
plicity of the different formulations, direct as well as variational, is however still to-
day a source of confusion. Different (albeit equivalent) expressions for the Maxwell

1 For an interesting summary of the most important developments in the field the reader is referred
to the introduction of Kankanala and Triantafyllidis, 2004

7
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stress and electromagnetic body forces can be obtained and are thus responsible
for the difficulty in the correct modeling of stresses in electric motors. For further
discussion on this issue, the interested reader is referred to the article by Kankanala
and Triantafyllidis, 2004 and book by Hutter, van de Ven, and Ursescu, 2006.

Regarding the direct approach of continuum mechanics, which uses conserva-
tion laws to derive the equations of the problem, particularly helpful is the work of
Kovetz, 2000 where the body forces due to the electromagnetic field are accounted
for through a generalized linear momentum and a generalized Cauchy stress. Their
precise form is not postulated but further given as deriving from a specific free en-
ergy by application of fundamental principles of mechanics and thermodynamics.
The postulate is on the form of the flux of electromagnetic-energy, namely Poynt-
ing’s vector. The theory developed in this book has been used in many domains
(Kankanala and Triantafyllidis, 2004; Thomas and Triantafyllidis, 2009; Dorfmann
and Ogden, 2003; Dorfmann and Ogden, 2004; Dorfmann and Ogden, 2005) and
Steigmann, 2009 makes the case of its equivalence with other formulations such
as those reviewed in Hutter, van de Ven, and Ursescu, 2006. It has been taken to
the modeling of electric motors in the recent work by Fonteyn, 2010; Fonteyn et al.,
2010b; Fonteyn et al., 2010a. However several approximations are used (e.g. a small
strain approximation involving non frame-indifferent invariants and the angular
momentum balance principle is not imposed) and may be revisited.

It should be noted that in the following approach, we adopt a macroscopic view
of the continua and derive macroscopic constitutive relations. Other recent ap-
proaches address the characterization of the magneto-mechanical couplings through
multiscale approaches (Daniel, 2018; Daniel, Bernard, and Hubert, 2020). Because
these approaches include more physics, their advantage lies in the constitutive
laws being described with fewer parameters (Aydin et al., 2017). These methods are
very well suited to the understanding of the underlying physics behind magneto-
mechanical couplings, and as such offer great insight for the optimization of mag-
netic behavior. They however have the drawback of much greater computational
costs when applied to the modeling of electric motor problems (e.g. see Daniel,
Bernard, and Hubert, 2020). Because of this last point, and because recent, they
where not included in the scope of the present work.

As a final note, other phenomena of importance in electric motors are: magnetic
hysteresis that creates losses, and in particular the influence of stress on magnetic
hysteresis is studied (e.g. see Daniel, Rekik, and Hubert, 2014; Bernard and Daniel,
2015; Rasilo et al., 2016); anisotropy, with grain oriented electrical steel sheets now
used to improved machines performance (Lopez et al., 2009; Cassoret et al., 2014;
Sugawara and Akatsu, 2013). Moreover, strong currents influence temperature due
to ohmic effects, temperature may influence magnetization and electrical conduc-
tivity but also stresses through thermal expansion, and so on. Although they are
beyond the scope of the present work, the theory exposed is aimed general enough
to be able to account for these effect.

outline To set the stage, and in an effort, for consistency, to start from the most
general problem before applying restrictions suitable for electric motor problems
in a later Chapter 2, the general formulation for coupled electro-magneto-thermo-
mechanical boundary value problems are presented in this chapter. The derivation
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is mostly taken from Kovetz, 2000, and presented here for self-sufficiency and
clarity of the work exposed in this thesis.

The method adopted is the current configuration, direct approach of contin-
uum mechanics.

The governing equations and interface conditions are derived from conservation
principles of electromagnetism, mechanics and thermodynamics. As in Kovetz,
2000, the conservation principles are written in current configuration (or Eulerian
coordinates). The equations in reference configuration (or Lagrangian coordinates)
are then derived from the current configuration’s equations using kinematic rela-
tions.

In Section 1.1, we introduce a few formal conventions as preliminaries. In Section
1.2 the governing equations of the problem are derived based on conservation
principles of electromagnetism, mechanics and thermodynamics. In Section 1.3,
these governing equations are taken to the reference configuration. In Section 1.4,
the constitutive relations are derived based on the restrictions imposed by the
second principle of thermodynamics and the angular momentum balance. They
are finally taken to the reference configuration in Section 1.5.

1.1 conventions

operators Coordinate-free (dyadic) continuum mechanics notation is used
with bold scripts referring to tensors, regular scripts to scalars. Let v(x, t) and
w(x, t) two vectors and t(x, t) and r(x, t) two second order tensor. We note,

(vw)ij = viwj , (v·t)j = vitij , t : r = tijrij ,

(∇·v) = ∂ivi , (∇·T ) = ∂itij ,

(∇v)ij = ∂ivj , (v∇)ij = ∂jvi ,

(∇×v)i = εijk∂jvk ,

(1.1)

where εijk is the Levi-Civita permutation symbol and with the usual Einstein
summation convention on repeated indices.

current configuration and reference configuration As is usual
in continuum mechanics, we introduce the current deformed configuration and the
reference initial undeformed configuration. The position in current configuration is
denoted x and mapped to the position in reference configuration X by a one to one
mapping: x = x(X, t). The displacement u of a material point between its position
in the current configuration and its position in the reference configuration links
the position vectors X and x, and we introduce the deformation gradient F and its
determinant J

x = X+u ; F =
∂x

∂X
; J = det(F) . (1.2)

Eulerian (current configuration) fields are written using lowercase letters, while
capital letters are used for their Lagrangian (reference configuration) counterparts.
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Basis vectors of the current configuration are denoted (ê1, ê2, ê3). Those of the
reference configuration are denoted (Ê1, Ê2, Ê3).

Should additionally be mentioned that the method adopted in the following
tacitly assumes adequate smoothness of the fields involved.

interfaces An electric motor comprises different constituents with different
physical properties. As a result, our model will encompass multiple material do-
mains, separated by interfaces. These interfaces usually introduce discontinuities,
ruled by interface conditions. Only material domains are considered here, i.e. an
interface at a point x propagates with the material velocity

.
x.

spatial derivatives Whenever used in the following, ∂i() denotes the partial
derivative with respect to the position component of the current configuration
∂()/∂xi. Similarly ∂I() denotes the partial derivative with respect to the position
component Xi of the reference configuration ∂()/∂XI.

time derivatives For fields f(x, t)of the current configuration – either scalars
or vectors here – , the partial derivative with respect to time ∂f/∂t is defined as the
derivative with respect to time of f holding x fixed. We define the total time deriva-
tive df

dt =
.
f, as the time derivative holding X fixed and for the same fields f(x, t) of

the current configuration, because x = x(X, t) is also a function of time,
.
f =

∂f

∂t
+

.
x·(∇f) . (1.3)

Finally, the flux derivative
∗
f of the vector field f(x, t) of the current configuration is

defined as
d
dt

∫
s(t)

f·n ds ≡
∫
s(t)

∗
f·n ds =⇒

∗
f ≡ ∂f

∂t
+

.
x(∇·f) −∇×(

.
x×f) , (1.4)

where s(t) is an arbitrary moving surface.

kelvin-stokes’ theorem Kelvin-Stokes’ theorem applied to an arbitrary mov-
ing surface s(t) with boundary ∂s(t) states∫

s(t)
(∇×f)·nds =

∫
∂s(t)

f·sdl . (1.5)

gauss’ divergence theorem The divergence theorem applied to an arbi-
trary volume element v(t) with boundary ∂v(t) and containing a surface of discon-
tinuity s(t) states∫

∂v(t)
n·fds =

∫
v(t)
∇·fdv+

∫
s(t)∩v(t)

n · [[f]]ds , (1.6)

where f is an arbitrary tensor field.

transport theorem For time derivatives of volume integrals on the current
configuration, Reynold’s transport theorem will be used, which states

d
dt

∫
v(t)

fdv =

∫
v(t)

∂f

∂t
dv+

∫
∂v(t)

f
( .
x·n

)
ds−

∫
s(t)∩v(t)

[[f]]
( .
x·n

)
ds , (1.7)
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where v(t) is an arbitrary control volume with boundary ∂v(t) and s(t) is a material
surface of discontinuity inside the control volume (moving with local velocity

.
x).

Applying the divergence theorem to the second and third terms of the right hand
side of the previous equation then provides

d
dt

∫
v(t)

fdv =
∫
v(t)

[
∂f

∂t
+∇·

( .
xf
)]

dv . (1.8)

other useful theorem From Kovetz, 2000 (§56.): If f(a) is differentiable,
f(Q·a) = f(a) for every orthogonal matrix Q if, and only if,

ai
∂f

∂aj
= aj

∂f

∂ai
. (1.9)

1.2 governing equations in current configuration

As a foreword to the introduction of the electromagnetic equations, we mention
here that the governing equations of electromagnetism derive from 3 fondamen-
tal principles: the charge conservation principle, the electromagnetic field princi-
ple, and the aether frame principle. The charge conservation principle results in
Maxwell-Gauss and Maxwell-Ampère’s laws, which state the behavior of two elec-
tric charge and current potentials: the electric displacement field d and h-field h.
The electromagnetic field principle expresses the behavior of the electromagnetic
field (e,b). The aether frame principle links the charge and current potentials (d,h)
to the electromagnetic field (e,b) via two material response fields: the polarization
p and magnetization m. The interested reader is referred to Kovetz, 2000 for a
more detailed account on electromagnetism.

1.2.1 Charge conservation principle

As we mentionned above, the conservation of electric charge is usually split into
two equations, commonly referred to as Maxwell-Gauss’ and Maxwell-Ampère’s
laws.

maxwell-gauss’s law states that the volumetric electric charges q are sources
of electric displacement d. Applied to an arbitrary moving control volume v(t),∫

∂v(t)
d·nds =

∫
v(t)

qdv , (1.10)

where ∂v(t) is the surface boundary of the control volume v(t) and n is the out-
ward pointing unit normal to the surface.

From standard arguments involving the arbitrariness of the control volume and
Gauss’s divergence theorem, one obtains the pointwise form of Gauss’s law with
its associated interface conditions2,

∇·d = q , n·JdK = 0 , (1.11)

2 The present formulation does not consider surface electric charges. Should they be considered, they
should be added to the right handside of the interface condition.
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∇ ≡ ∂()/∂x is the gradient operator in the current configuration and ∇·d thus
denotes the divergence of d. JK denotes the jump – oriented by the normal n – in a
field quantity across an interface.

ampère’s law states that the circulation of the magnetomotive intensity3 h ≡
h−

.
x×d about any moving closed contour ∂s(t) is driven by the time variation

of the flux of electric displacement d and by the flux of the conduction current j

through the contour,∫
∂s(t)

h·sdl = d
dt

∫
s(t)

d·nds+
∫
s(t)

j·nds , (1.12)

where s(t) is any moving surface with boundary ∂s(t), s is the unit tangent to the
contour and n is the unit surface normal oriented by the contour tangent s.

From standard arguments involving the arbitrariness of the control surface and
Stoke’s theorem we obtain Ampère’s law in local form and the associated interface
condition,

∇×h =
∗
d+j , n×JhK = κ , (1.13)

where κ is a surface conduction current density and
∗
() is the flux derivative intro-

duced in (1.4).
From the definition of the magnetomotive intensity h ≡ h−

.
x×d and the expres-

sion of the flux derivative (1.4) the pointwise form of Maxwell-Ampère’s equation
(1.13) is equivalent to the more usual formulation4,

∇×h =
∂d

∂t
+ j , n×JhK+ (n·

.
x) JdK = κ ; j ≡ j + q

.
x , (1.14)

where j is the total current density, which combines the conduction current density
and the convection of electric charges. The interface condition accounts for the
continuity of the normal component of d (1.11).

Finaly, one can verify that the combination of Maxwell-Gauss’ and Maxwell-
Ampère’s laws results in the conservation of electric charges: if we apply Maxwell-
Ampère’s law on the surface boundary ∂v(t) of an arbitrary control volume v(t),
the circulation of h cancels out (if one cuts the surface boundary ∂v(t) in two parts,
they each have opposite circulation of h on their line boundary). Using Gauss’s
law, the flux of the electric displacement through ∂v(t) is replaced by the volume
integral of electric charges and the charge conservation equation in integral form
is obtained,

d
dt

∫
v(t)

qds+
∫
s(t)

j·nds = 0 , (1.15)

or in local form,

.
q+ q∇·

.
x+∇·j = 0 , and equivalently

∂q

∂t
+∇·j = 0 . (1.16)

3 It was shown by Minkowski that the magnetomotive intensity h is the relevant quantity to consider
for moving media.

4 Should surface electric charges be considered, they should be added to the right handside of the
interface condition.



1.2 governing equations in current configuration 13

1.2.2 The electromagnetic field principle

A second principle of electromagnetism is based on the primitive concept of an
electromagnetic field (e,b) behaving according to two laws often referred to as
Maxwell-Faraday’s law and the no magnetic monopole law.

the no-magnetic monopole law – also referred to as Maxwell-Thomson’s
equation – states the conservation of the flux of the magnetic field b. In other
terms, there are no local monopolar sources of magnetic field contained within an
arbitrary moving control volume v(t),∫

∂v(t)
b·nds = 0 , (1.17)

where as introduced before ∂v(t) is the closed surface boundary of v(t) and n is
the outward unit normal to the surface.

Using the standard arguments introduced before, the pointwise form of Maxwell-
Thomson’s equation then writes

∇·b = 0 , n·JbK = 0 . (1.18)

maxwell-faraday’s law states that the circulation of the electromotive in-
tensity e ≡ e+

.
x×b5 on a closed contour ∂s(t) balances the time variations of the

flux of the magnetic field b through the enclosed surface s(t),∫
∂s(t)

e·sdl = −
d
dt

∫
s(t)

b·nds . (1.19)

Here again, n is the outward pointing normal to the surface. s is the tangent to the
contour ∂s(t) oriented according to the right hand rule.

From arguments similar to those used with Maxwell-Gauss’ law, Maxwell-Fara-
day’s induction law transforms in pointwise form into

∇×e = −
∗
b , n×JeK = 0 , (1.20)

where
∗
() is the flux derivative introduced in (1.4).

From the expression of the electromotive intensity e and the flux derivative ex-
pression (1.4), the pointwise form of Maxwell-Faraday’s law can also be expressed
in the more usual form,

∇×e = −
∂b

∂t
, n×JeK− (n·

.
x) JbK = 0 . (1.21)

As a final important comment: applying the divergence operator to the second
form of Maxwell-Faraday’s law (1.21), one gets ∂

∂t
(∇·b) = 0. As a consequence,

∇·b is a constant in time, function of the space variable x only. The only element
that the no-monopole law adds is the initial condition ∇·b = 0 everywhere. As a

5 It was shown by Minkowski that the electromotive intensity e is the relevant quantity to consider
for moving media.
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result, the no-monopole law is not to be viewed as an additional governing equation but
rather as an initial (or gauge) condition. For that reason, Kovetz, 2000 (§8.) mentions
that Maxwell-Faraday’s law and the no-monopole law should be viewed as a single
principle of conservation of magnetic flux that includes a governing equation and
a gauge.

electromagnetic potentials An electric scalar potential φ and a magnetic
vector potential a can conveniently be defined so that the two previous no monopole
and Maxwell-Ampère laws are automatically enforced, setting

e ≡ −∇φ−
∂a

∂t
, JφK− (n·

.
x)(n·JaK) = 0 ;

b ≡ ∇×a , n×JaK = 0 .
(1.22)

The potentials (φ,a) thus defined are not-unique. A gauge condition – such as the
Coulomb gauge ∇·a = 0 for instance – needs to be additionally given to ensure
uniqueness of the fields. The details leading to the boundary conditions on the
potentials (φ,a) can be found in Kovetz, 2000 (§10.).

1.2.3 Aether frame principle

The aether frame principle postulates the existence of a Euclidian inertial frame in
which the electromagnetic field (e,b) and the charge and current potentials (d,h)
are linked via the relationship

d = ε0e+p ,

h =
1

µ0
b−m ,

(1.23)

where ε0 is the electric permittivity of vacuum and µ0 is the magnetic perme-
ability of vacuum. The polarization p and the magnetization m6 traduce a material
response7 to the electromagnetic field (e,b). In vacuum, p =m = 0.

1.2.4 Conservation of mass

A first principle of mechanics is the conservation of mass, which states that the
mass contained within a material control volume v(t) is preserved,

d
dt

∫
v(t)

ρdv = 0 . (1.24)

Applying the transport theorem yields the pointwise form of the equation,

.
ρ+ ρ(∇· .

x) = 0 . (1.25)

6 The magnetization m is also referred to as the Minkowski magnetization.
7 The polarization and magnetization create effects similar to electric currents and charges, usually

referred to as bound charges and currents – as opposed to the free charges and currents q and j.
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From this mass equation, we straightforwardly get an expression for
.
ρ that proves

very useful in the following:
.
ρ = −ρI : (

.
x∇)8. Because all interfaces considered

here are material interfaces – no flow of particles and mass through the interfaces
– there is no jump condition associated to the mass conservation principle.

1.2.5 Conservation of linear momentum

A second mechanical principle is the conservation of linear momentum, which
generalized for an electromagnetic-mechanical problem.

The benefit of the following formulationa based on Kovetz, 2000 is that it makes
no postulate on the form of the forces induced by electromagnetic effects. As a
result, it avoids the confusion generated by the multiplicity of electromagnetic
force expressions (albeit often equivalent) used in the literature.

a Also see Steigmann, 2009 for a detailed account of the formulation by Kovetz, 2000.

The formulation postulates an unknown generalized electro-magneto-mechanical linear
momentum density g whose rate of variation depends on known external body force
distributions f9 – typically gravity – and on a flux of generalized traction forces t on
the boundary of an arbitrary material control volume v(t),

d
dt

∫
v(t)

ρgdv =
∫
v(t)

ρfdv+
∫
∂v(t)

tds . (1.26)

In doing so, we assume that the electro-magnetic effects are correctly described by
surface forces distributed across the entire body. Following Cauchy’s theorem10,
the traction t depends linearly on the normal n at an interface and we introduce
the generalized Cauchy stress σ defined by

t ≡ n·σ . (1.27)

As t may include both mechanical and electromagnetic surface forces, the total
Cauchy stress σ also mixes both electromagnetic and mechanical stresses.

Note the generalized density of momentum ρg, which for an electromagnetic-me-
chanical system does not reduce to the momentum density of the solid ρ

.
x only. The

electro-magnetic fields (photons) also possess momentum to account for. Hence
the momentum density ρg, which is unknown for now but whose expression
will later be derived in the form of a constitutive relation from thermodynamic
arguments; and similarly for the total stress σ.

Localization of the linear momentum balance principle provides,

ρ
.
g = ∇·σ+ ρf , n·JσK = tm , (1.28)

where tm in the jump condition models a surface traction applied at the interface.

8 The double tensor contraction “:” introduced is defined as a : b ≡ aijbij.
9 Note that the body force distribution f is per unit volume.

10 Cauchy’s theorem is based on the postulate that the traction t depends only on the normal n to the
interface, that is only on its orientation (in addition to position and time).
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1.2.6 Conservation of angular momentum

Lastly for mechanical principles, the conservation of angular momentum applied
to an arbitrary control material control volume v(t) and generalized to electro-
magneto-mechanical systems writes11

d
dt

∫
v(t)

x∧ ρgdv =
∫
v(t)

x∧ ρfdv+
∫
∂v(t)

x∧ tds , (1.29)

where one can notice the contribution x∧ρg of the generalized momentum density.
Localization provides,

ρ
.
x∧g = σ−σT . (1.30)

Here again there is no associated interface condition because all interface propa-
gate at the speed of the material. Further the model does not account for surface
torques.

1.2.7 First principle of thermodynamic

The first principle of thermodynamics is the conservation of energy,

d
dt

∫
v(t)

ρεdv =
∫
v(t)

ρf·
.
xdv+

∫
∂v(t)

t·
.
xds

+

∫
v(t)

ρrdv+
∫
∂v(t)

(−q)·nds

+

∫
∂v(t)

(−e×h)·nds .

(1.31)

It balances the rate of change of the specific12 total energy ε (i.e. of the solid and of
the electromagnetic field) contained within the control volume v(t) by the power
supplied externally. r is the rate of heating per unit mass13 – or specific rate of
heating – and q14 is the surface heat flux lost to the surroundings (i.e. pointing
outward).

It is at this level – the energy balance – that the coupling between electro-
magnetism and thermomechanics is introduced in the formalism of Kovetz,
2000, via the postulate of a flux of electromagnetic energy e×h, also called
Poynting’s vector, leaving the control volume through its boundary ∂v(t).a.

a See Kovetz, 2000 (§54.) for the motivations behing this postulate.

Using Cauchy’s tetrahedron relation t = n·σ and the divergence theorem, the
pointwise form of the energy balance is obtained, together with an interface condi-
tion:

ρ
.
ε = ρ(f· .

x+ r) +∇·
(
σ· .
x−q−e×h

)
,

n·
q
−σ· .

x+q+e×h
y
= 0 .

(1.32)

11 The wedge product of two vectors a and b is defined as: a∧b ≡ ab−ba.
12 By specific we mean per unit mass.
13 More generally r could be any rate of external supply of energy.
14 The vector heat flux q is not to be confused with the scalar charge density q.
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Accounting for the jump conditions on e and h, the energy interface condition
further becomes,

−n·
q
σ·

.
x
y
+n·JqK+ κ·(n×e) = 0 . (1.33)

1.2.8 Second principle of thermodynamic

The second principle of thermodynamics dictates the sens of evolution of the sys-
tem stating that the rate of change of the overall entropy of an arbitrary material
control volume v(t) exceeds, or at best equals, the entropy supply of thermal origin:
the volume and surface heating divided by the local absolute temperature T ,

d
dt

∫
v(t)

ρsdv >
∫
v(t)

ρr

T
dv+

∫
∂v(t)

n·
(
−q

T

)
ds , (1.34)

where s is the specific entropy distribution.
This expression is known as the Clausius-Duhem inequality and localization

provides,

ρ
.
s >

ρr

T
−∇·

(q
T

)
, n·

rq
T

z
> 0 . (1.35)

1.3 governing equations in the reference configuration

In the previous section the governing equations of the general electro-magneto-
thermo-mechanical problem where derived in the current (Eulerian) configura-
tion. In the present section, the governing equations are taken to the reference
(Lagrangian) configuration, as the reference configuration fields that emerge will
be useful in the following. These derivations are standard and can be found in
Thomas and Triantafyllidis, 2009; Lax and Nelson, 1976; Kankanala and Triantafyl-
lidis, 2004; Hutter, van de Ven, and Ursescu, 2006; Eringen and Maugin, 1990.

The kinematic relations used to relate volume, oriented line and oriented surface
elements of the current configuration to those of the reference configuration are

dv = JdV , sdl = (F·S)dL , nds = (JF−T ·N)dS , (1.36)

with F the deformation gradient and J its determinant. The volume and surface
control volumes v(t) and s(t) of the current configuration turn into the fixed refer-
ence configuration volume V and surface S.

1.3.1 Electromagnetic conservation laws

1.3.1.1 Maxwell-Gauss’ law

With the above kinematic relations, Maxwell-Gauss’ law (1.10) transforms into∫
∂V

D·NdS =

∫
V

QdV , (1.37)
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where V is an arbitrary control volume of the reference configuration, D is the
reference configuration electric displacement and Q is the reference configuration volume
charge density defined by

D ≡ JF−1·d , Q ≡ Jq . (1.38)

Localization yields,

∇·D = Q , N·JDK = 0 . (1.39)

Note the difference between ∇, the gradient operator in the current configuration,
and ∇, the gradient operator in the reference configuration.

1.3.1.2 Maxwell-Ampere’s law

The integral form of Maxwell-Ampère’s law (1.12) becomes in the reference config-
uration,∫

∂S

H·SdL =

∫
S

.
D·NdS+

∫
S

J·NdS , (1.40)

where H, respectively J, is the reference configuration counterpart to the magne-
tomotive intensity h, respectively electric current j, in the reference configuration,
defined as

H ≡ h·F , J ≡ JF−1·j . (1.41)

Localization provides,

∇×H =
.
D+J, N×JHK = K , (1.42)

where K = JF−1·κ is the reference configuration current sheet .

1.3.1.3 No magnetic monopole law

Transposition of the no magnetic monopole law (1.17) in reference configuration
provides,∫

∂V

B·NdS = 0 , (1.43)

where the reference configuration magnetic field B is defined as,

B ≡ JF−1·b . (1.44)

Localization provides,

∇·B = 0 , N·JBK = 0 . (1.45)
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1.3.1.4 Maxwell-Faraday’s law

For Maxwell-Faraday’s law (1.19), the transposition to the reference configuration
leads to,∫

∂S

E·SdL = −
d
dt

∫
S

B·NdS , (1.46)

with the reference configuration magnetic field B introduced in (1.44) and the
reference configuration electromotive intensity E defined as

E ≡ e·F . (1.47)

Localization leads to the following pointwise Faraday’s equation and associated
interface condition in reference configuration

∇×E = −
.
B , N×JEK = 0 . (1.48)

1.3.1.5 Electromagnetic potentials

The electromagnetic potentials derived in (1.22) can also be taken to the reference
configuration and we get15,

E = −∇Φ−
.
A ,

B =∇×A ,
(1.49)

where the reference configuration electromotive intensity E and magnetic fields
B were introduced earlier and the reference configuration electric potential Φ and the
reference configuration magnetic vector potential A are defined by,

Φ ≡ φ−
.
x·a ,

A ≡ a·F .
(1.50)

As in the current configuration, the reference configuration potential formulation
(1.50) identically satisfies the reference configuration Maxwell-Faraday and No
magnetic monopole law (1.48) and (1.45). (1.49) does not uniquely define A and Φ:
the necessity of a gauge condition applies to the reference configuration as well.

1.3.2 Principles of mechanics

1.3.2.1 Conservation of mass

The conservation of mass (1.24) transposed to the reference configuration provides,

d
dt

∫
V

ρ0dV = 0 , (1.51)

15 A derivation is provided in Appendix A.1
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where the mass density in reference configuration ρ0 is defined as

ρ0 ≡ Jρ , (1.52)

From the integral law follows the localized equation,

.
ρ0 = 0 . (1.53)

1.3.2.2 Conservation of linear momentum

The linear momentum balance (1.26) transforms into,

d
dt

∫
V

ρ0gdv =
∫
V

ρ0fdv+
∫
∂V

TdS , (1.54)

where we introduce the surface traction in the reference configuration T and the gener-
alized first Piola-Kirchhoff stress Π – following from application of Nanson’s formula
(1.36)3 and the Cauchy stress definition (1.27) –,

T ≡ tds
dS

= N·Π , Π ≡ JF−1·σ , (1.55)

arriving at an analogous of Cauchy’s tetrahedron relation in the reference configu-
ration.

From localization the pointwise form of the conservation of linear momentum
in reference configuration follows,

ρ0
.
g =∇·Π+ ρ0f , N·JΠK = Tm , (1.56)

where Tm is the external mechanical surface traction in reference configuration.

1.3.2.3 Conservation of angular momentum

In the reference configuration, the integral form of the angular momentum balance
(1.29) transposes to,

d
dt

∫
V

x∧ ρ0gdV =

∫
V

x∧ ρ0fdV +

∫
∂V

x∧ TdS , (1.57)

and localization provides,

ρ0
.
x∧g = F·Π−ΠT ·FT . (1.58)

1.3.3 Principles of thermodynamics

1.3.3.1 First principle of thermodynamic

The first principle of thermodynamics (1.31) transforms into,

d
dt

∫
V

ρ0εdV =

∫
V

ρ0f·
.
xdV +

∫
∂V

T ·
.
xdS+

∫
V

ρ0rdV

+

∫
∂V

(−Q)·NdS+
∫
∂V

(−E×H)·NdS ,
(1.59)
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which nicely points out the analog of Poynting’s vector in the reference configura-
tion E×H16 and introduces the reference configuration heat flux Q17,

E×H = JF−1·(e×h) , Q = JF−1·q . (1.60)

Using the relation T = N·Π and the divergence theorem, the pointwise form of
the energy balance in reference configuration reads,

ρ0
.
ε = ρ0(f·

.
x+ r) +∇·

(
Π·

.
x−Q−E×H

)
,

N·
q
−Π·

.
x+Q+E×H

y
= 0 .

(1.61)

Accounting for the jump conditions on E and H, the energy interface condition
yields,

−N·
q
Π·

.
x
y
+N·JQK+K·(N×E) = 0 . (1.62)

1.3.3.2 Second principle of thermodynamic

With the previous development, the second principle of thermodynamics (1.34)
becomes in reference configuration

d
dt

∫
V

ρ0sdV >
∫
V

ρ0r

T
dV +

∫
∂V

N·
(
−Q

T

)
dS , (1.63)

and localization provides,

ρ0
.
s >

ρ0r

T
−∇·

(
Q

T

)
, N·

s
Q

T

{
> 0 . (1.64)

1.4 constitutive relations and dissipation

1.4.1 Completeness of the system of equations and constitutive relations

As a summary, the governing equations of the problem are, in the current configu-
ration,

Maxwell-Gauss ∇·d = q (1 equation)

Maxwell-Faraday ∇×e = −
∗
b (3 equations)

Maxwell-Ampère ∇×h = j +
∗
d (3 equations)

conservation of mass
.
ρ+ ρ(∇·

.
x) = 0 (1 equation)

linear mom. balance ρ
.
g = ∇·σ+ ρf (3 equations)

angular mom. balance ρ
.
x∧g = σ−σT (3 equations)

conservation of energy ρ
.
ε = ρ(f·

.
x+ r) +∇·

(
σ·

.
x−q−e×h

)
(1 equation)

16 Note that despite the same notation “×”, the cross product operators acting on fields of the current
and reference configuration are not the same (the two configurations have different base vectors).
The shift from one operator to the other when changing configuration is detailed in Appendix A.2
(equation A.6).

17 The reference configuration heat fluxQ is not to be confused with the reference configuration charge
density Q.
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The total count gives 15 governing equations. The no-monopole law does not ap-
pear in the count: as explained in the comment accompanying (1.18) it only adds
a gauge condition for the magnetic field b to the information on b included in
Maxwell-Faraday’s law. For that reason, it shall not be viewed as a governing equa-
tion.

The unknown independent fields of the problem are:

e (3 unknowns), b (3 unknowns), p (3 unknowns), m (3 unknowns),

j (3 unknowns) q (1 unknown),

g (3 unknown), ρ (1 unknown), x (3 unknowns), σ (9 unknowns),

ε (1 unknown), s (1 unknown), T (1 unknown), q (3 unknowns).

The total amounts to 38 unknowns. The electric displacement d and the h-field h,
and similarly the electromotive and magnetomotive intensities e and h, are not
counted as they are linked to e, b, p and m by the aether relations (not accounted
for in the equations count here above) and the definitions of e and h. The body
forces f and the heat source r are out of the count because they are external known
quantities.

As a result, 15 governing equations for 38 unknowns means that the problem lacks
23 additional equations. These are to be provided by 23 constitutive relations that
describe the material behavior and the links it imposes between the different vari-
ables. These constitutive equations are expected for the following variables,

for momentum g (3 equations)

for stress σ (6 equations)

for polarization p (3 equations)

for magnetization m (3 equations)

for heat-flux q (3 equations)

for conduction currents j (3 equations)

for energy ε (1 equation)

for entropy s (1 equation)

This amounts to the 23 equations expected. Note that only 6 equations are expected
for stress given the angular momentum balance that links three stress components
to the others.

The constitutive relations are to be given as hypotheses on the material behavior,
be them guessed or based on experimental measurements. However they cannot
be any: they need to obey restrictions set by the physics. These restrictions are
applied hereafter. Some arise from the application of the second principle of ther-
modynamics – these are subsequently derived using the Coleman and Noll, 1963

method, as in Kovetz, 2000 –, others are due to the angular momentum balance.
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1.4.2 Restrictions from the second principle of thermodynamics

In order to derive the restrictions on the constitutive relations set by the second
principle of thermodynamics, the Coleman and Noll method first dictates a rear-
rangement of the Clausius-Duhem inequality. Second, it is convenient to introduce
a specific free energy ψ and work with this last constitutive variable instead of the
total energy ε. Third, assumptions can be made on the set of thermodynamic state
variables of the problem according to the material behavior one wishes to consider.
Finally, mathematical arguments yield the restrictions on the constitutive relations
in the form of equations linking the different constitutive variables and the state
variables of the problem. These steps followed hereafter are all part of the Coleman
and Noll, 1963 method.

rearranging the clausius-duhem inequality The material behavior –
and thus the constitutive equations – should be independent of the external loads
to the problem. As a result, in order to find the constitutive restrictions set by the
second principle of thermodynamics, one first needs take out the body force and
heat supply terms ρf and ρr from (1.64). This is done by expressing ρf and ρr

with respect to the other variables of the problem, based on a rearrangement of
the linear momentum balance (1.28) and energy balance (1.32). We get for ρf,

ρf = ρ
.
g−∇·σ , (1.65)

and for ρr,

ρr = ρ
.
ε− ρ

.
g· .
x+∇·q+∇·(e×h) − σT : (

.
x∇) . (1.66)

This last expression accounts for the introduction of the above expression for ρf in
the energy equation.

The Clausius-Duhem inequality (1.64) is then multiplied by T > 0. The term
∇·(−q/T) is expanded and ρr is replaced by its expression (1.66), yielding,

ρ
.
sT − ρ

.
ε+ ρ

.
g·

.
x−∇·(e×h) + σT : (

.
x∇) −

q

T
·(T∇) > 0 . (1.67)

The computation of the divergence of Poynting’s vector, calling to Maxwell’s laws
in the process, provides (see Kovetz, 2000),

−∇·(e×h) = j·e−p· .
e−m·

.
b+ ε0(e×b)·

..
x

+

[(
ε0e·e+

1

µ0
b·b+e·p−m·b− ε0(e×b)·

.
x

)
I

− ε0ee−
1

µ0
bb−ep+mb− ε0(e×b)

.
x

]
: (

.
x∇)

+
d
dt

[
ε0
2
e·e+ 1

2µ0
b·b+e·p− ε0(e×b)·

.
x

]
,

(1.68)

where we introduced the Lorentz magnetization defined as,

m ≡m+
.
x×p . (1.69)
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specific free energy postulate Instead of working with the total specific
energy of the continuum ε, we introduce the specific free energy of the solid ψ defined
in Kovetz, 2000,18

ψ ≡ ε− Ts−g·
.
x+

1

2

.
x·

.
x−

1

ρ

[
ε0
2
e·e+ 1

2µ0
b·b+e·p− ε0(e×b)·

.
x

]
. (1.70)

The material time derivative of ψ, accounting for the mass conservation equation
(1.25) in the computation of

.
ρ, gives

.
ψ =

.
ε−

.
Ts− T

.
s−

.
g· .
x−g· ..x+ .

x· ..x

−
1

ρ

d
dt

[
ε0
2
e·e+ 1

2µ0
b·b+e·p− ε0(e×b)·

.
x

]
−
1

ρ
I : (

.
x∇)

[
ε0
2
e·e+ 1

2µ0
b·b+e·p− ε0(e×b)·

.
x

]
.

(1.71)

Thus replacing for ψ instead of ε in the Clausius-Duhem inequality (1.67) now
provides,

−ρ
.
ψ− ρs

.
T − (ρg− ρ

.
x− ε0e×b)·

..
x−p· .

e−m·
.
b

+(σT − τT ) : (
.
x∇) +j·e−

q

T
·(∇T) > 0 .

(1.72)

In the computation of expression (1.72), many terms from the expression of
.
ψ and

−∇·(e×h) simplify or rearrange. The stress component τ that we introduced to
simplify the expression is defined as,

τ ≡ ε0
(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
bm− (b·m)I

)
+pe+

.
xε0(e×b) .

(1.73)

thermodynamic state variables In the following, we limit our scope to
material behaviors that are function of the set of thermodynamic variables:

F,
.
x, e, b, T , ∇T . (1.74)

All constitutive variables g, σ, p, m, q, j, ψ and s are consequently a priori
functions of this set of state variables. These include

.
x because for consistency

with classical thermo-mechanics g is expected to reduce to
.
x in the absence of an

electromagnetic field. More advanced material behaviors – not treated here – may
be considered by adding higher order gradients or time derivatives in the set of
state variables. A set of internal state variables ξmay also be introduced, as is done
in Thomas and Triantafyllidis, 2009.

This choice of state variables yields in particular,

ψ = ψ(F,
.
x, e, b, T , ∇T , ξ) , (1.75)

and using the chain rule, we have
.
ψ =

∂ψ

∂F
:

.
F+

∂ψ

∂
.
x
· ..x+ ∂ψ

∂e
· .
e+

∂ψ

∂b
·

.
b+

∂ψ

∂T

.
T +

∂ψ

∂∇T
·

.
(∇T) +

∂ψ

∂ξ
·

.
ξ . (1.76)

18 Note that in the absence of electromagnetic fields, g reduces to
.
x and ψ to the Helmholtz specific

free energy ψ = u− Tη, with u = ε− 1/2(
.
x·

.
x) the internal energy of the system, as expected from

classical thermomechanics.
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Replacing
.
ψ by the above, the entropy inequality (1.72) finally becomes[
σT − τT − ρ

∂ψ

∂F
·FT
]
: (

.
x∇) −

[
ρ
∂ψ

∂
.
x
+ ρg− ρ

.
x− ε0e×b

]
·

..
x

−

[
ρ
∂ψ

∂e
+p

]
· .
e−

[
ρ
∂ψ

∂b
+m

]
·

.
b− ρ

[
∂ψ

∂T
+ s

]
.
T

+
∂ψ

∂∇T
:

.
(∇T) − ρ

∂ψ

∂ξ
·

.
ξ+j·e−

q

T
·(∇T) > 0 .

(1.77)

necessary constitutive relations By the Coleman and Noll, 1963 prin-
ciple, for any given thermodynamic state of the system { F,

.
x, e, b, T , ∇T , ξ },

the inequality (1.77) has to hold true for any admissible thermodynamic evolution
of the system. The rates of evolution

.
x∇,

.
e,

.
b,

.
T ,

.
(∇T) and

..
x are mathematically

unconstrained one to the others by the governing equations exposed earlier thus
admissible thermodynamic processes can be designed where they each assume ar-
bitrary values. Consequently, the terms that they multiply should all equal 0. This
exhibits the necessary constitutive equations of the problem,

σ = ρF·
(
∂ψ

∂F

)T
+ ε0

(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
bm− (b·m)I

)
+pe+

.
xε0(e×b) ,

g = −
∂ψ

∂
.
x
+

.
x+

1

ρ
ε0(e×b) ,

p = −ρ
∂ψ

∂e
, m = −ρ

∂ψ

∂b
, s = −

∂ψ

∂T
,

∂ψ

∂∇T
= 0 .

(1.78)

A few comments are in order: First, it immediately arises from the Coleman and Noll
method that given the definition (1.70) for ψ and the chosen set of state variables
(1.74), by the second principle of thermodynamics the free energy ψ is independent
of ∇T .

Second, with the set of state variables considered here, it is a constitutive equa-
tion for the Lorentz magnetization m introduced in (1.68) – not the Minkowski
magnetization m – that naturally arises. This argument is of paramount impor-
tance in Kovetz, 2000 in further establishing that ψ is independent of

.
x. Indeed, it

is shown in Kovetz, 2000 that p and m are invariant under Galilean transforma-
tions and consequently independent of

.
x. As a consequence, given the constitutive

equations for p and m, ∂
∂

.
x

(
∂ψ
∂e

)
= ∂
∂

.
x

(
∂ψ
∂b

)
= 0. Permuting the derivatives implies

∂ψ
∂

.
x

is independent of e and b: ∂ψ
∂

.
x
= ∂ψ
∂

.
x
(F, .
x, T , ∇T , ξ). In the case where e and

b are zero (no electromagnetic field), the linear momentum density g is expected
to reduce to

.
x for consistency with classical thermo-mechanics. By the constitutive

relation (1.78)2 for g, this implies ∂ψ
∂

.
x

= 0 for e = b = 0, and because ∂ψ
∂

.
x

is
independent of e and b, ∂ψ

∂
.
x
= 0 always. Consequently,

ψ = ψ(F, e, b, T , ξ) and g =
.
x+

1

ρ
ε0(e×b) . (1.79)
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With this expression for g, we are now in a position to give a more concise than
in (1.70) expression for the solid’s free energy density

ρψ(F,e,b, T ,ξ) = ρε− ρTη−
ρ

2

.
x·

.
x−

[
ε0
2
e·e+ 1

2µ0
b·b+e·p

]
;

alternatively ρε = ρψ+ ρTη+
ρ

2

.
x·

.
x+

[
ε0
2
e·e+ 1

2µ0
b·b+e·p

]
.

(1.80)

The above expression has a clear physical interpretation: the solid’s free energy
density (per unit current volume) ρψ is obtained from the corresponding total
energy density ρε of the continuum by subtracting the thermal contribution, the
kinetic energy of the solid and the energy of the electromagnetic field with an
additional Legendre transform between fields e and p. Note that in vacuum T = 0,
.
x = p = 0 and the total energy density per unit volume ρε = 1

2

[
ε0e·e+ 1

µ0
b·b

]
19

such that ρψ = 0, which motivates calling ψ the specific free energy “of the solid”.
Regarding the Cauchy stress expression (1.78)1, one can observe that in the ab-

sence of an electromagnetic fields, the stress reduces to ρF·
(
∂ψ
∂F

)T
with ψ reduced

to the Helmoltz free energy20 as is usual for classical thermomechanics. Another
important point is that in the presence of an electromagnetic field, the ρF·

(
∂ψ
∂F

)T
term, which is often confusedly termed “mechanical” in the literature, is not nec-
essarily purely mechanical given ψ depends on F but may also depend on e,b, T
and ξ as per (1.79) and previous developments.

As mentionned in Kankanala and Triantafyllidis, 2004: “The contribution to the
general stress measure that does not depend on the F derivative of the free energy is termed
by some authors (e.g. Tiersten, 1964) as the “Maxwell stress””. However, Kankanala and
Triantafyllidis, 2004 also stress out “Different choices of arguments of the free energy
result in different Maxwell stresses”. For that reason, different authors have different
expressions for the Maxwell-stress, which creates confusion. In order to avoid it,
the aforementioned definition of the Maxwell-stress is not used in the sequel. The
only Maxwell-stress tensor we may refer to is the Maxwell-stress in vacuum, given
its unambiguous definition (e.g. see Griffiths, 2017):

σ
MW

= ε0

(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
. (1.81)

To conclude with a summary, the necessary constitutive relations are:

ψ = ψ(F,e,b, T ,ξ) , g =
.
x+

1

ρ
ε0(e×b) ,

p = −ρ
∂ψ

∂e
, m = −ρ

∂ψ

∂b
, s = −

∂ψ

∂T
,

σ = ρF·
(
∂ψ

∂F

)T
+ ε0

(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
bm− (b·m)I

)
+pe+

.
xε0(e×b) .

(1.82)

19 Note that in vacuum, the energy density per unit mass ε is ill-defined (no mass) and ρε represents
an energy per unit volume, non-null despite ρ = 0 because of the electromagnetic field’s energy.

20 See footnote 18 associated to the free energy definition (1.70)
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dissipation and sufficient constitutive relations Once the neces-
sary constitutive relations established, from equation 1.72 now only remains the
dissipation of the system

D = −ρ
∂ψ

∂ξ
·

.
ξ+j·e−

q

T
·(∇T) > 0 . (1.83)

At this point no further details can be given about a generalized Ohm’s law for the
conduction current density j and a generalized Fourier’s law for the heat flux q,
on how they depend on the thermodynamic state variables, other than (1.83) has
to be satisfied by21

j = j(F,e,b, T , ∇T ,ξ) , q = q(F,e,b, T , ∇T ,ξ) , (1.84)

where it is assumed for simplicity that these vector fields are independent on
.
x. The

well known forms of these relations require further assumptions about linearity
and decoupling between different physical mechanisms and will be discussed in
Section 2.2.

1.4.3 New form of the governing equations accounting for the constitutive relations

With the expressions for σ and g now known from (1.82), the linear momentum
and energy balances can be rewritten in more suitable forms.

linear momentum balance Based on calculation details given in Kovetz,
2000, the divergence of the Cauchy stress tensor σ and the time derivative of g,
both obtained in (1.82), have expressions

∇·σ = ∇·

(
ρF·
(
∂ψ

∂F

)T)
+ ρ

d
dt

(
1

ρ
ε0(e×b)

)
+ qe+j×b

+m×(∇×b) +m·(∇b) +p·(∇e) +
∗
p×b ,

.
g =

..
x+

d
dt

(
1

ρ
ε0(e×b)

)
.

(1.85)

Replacing ∇·σ and
.
g by the above expressions in the linear momentum balance

(1.28) provides,

ρ
..
x = ∇·

(
ρF·
(
∂ψ

∂F

)T)
+ ρf+ qe+j×b

+m×(∇×b) +m·(∇b) +p·(∇e) +
∗
p×b .

(1.86)

21 For more details on the implication of the dissipation inequality on the possible expressions for j

and q, the reader is referred to the very interesting discussion in Kovetz, 2000 (§57.).
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The terms ∇·
(
ρF·
(
∂ψ
∂F

)T )
+ ρf account for the mechanical forces applied to and in

the material, but may also include additional electromagnetic contributions to the
force given ψ(F,e,b, T ,ξ) by (1.82). The force term qe+j×b is the Lorentz force
generalization to continua (e.g. see Steigmann, 2009 or Kovetz, 2000). Finally, the
remaining terms denote yet other forces developed due to the magnetization and
polarization of a body placed in non uniform and time varying e and b fields22.
It should be noted that up to here, no constitutive law has been given for ψ and
as such, the precise expression of the body forces that have electromagnetic origin
remains unknown. It will likely be different from one material to another as they
may have different constitutive behaviors. Only has been enforced up to know
that the problem formulation be consistent with thermodynamics, which places
constraints from the physics on the possible material behaviors and yields the
body forces deriving from σ linked to ψ through (1.82) and (1.86).

temperature equation Replacing ρf using (1.65) in the energy equation
(1.32) (as was done with the Clausius-Duhem inequality), one gets

ρ
.
ε = ρr+ ρ

.
g· .
x−∇·q−∇·(e×h) +σT : (

.
x∇) . (1.87)

From the definition of the specific free energy given by (1.80),

ρ
.
ε = ρ

.
ψ+ ρ

.
Ts+ ρT

.
s+ ρ

.
x·

..
x+

[
ε0
2
e2 +

1

2µ0
b2 +e·p

]
I : (

.
x∇)

+
d
dt

[
ε0
2
e2 +

1

2µ0
b2 +e·p

]
.

(1.88)

With the expression for g in (1.82),

ρ
.
g·

.
x = ρ

..
x·

.
x+

d
dt

[
ε0(e×b)·

.
x
]
− ε0(e×b)·

..
x+

[
ε0(e×b)·

.
x)
]
I : (

.
x∇) . (1.89)

Integrating the above results together with the expression for the divergence of the
Poynting vector given by (1.68), and the stress constitutive relation provided by
(1.82), the energy equation results in,

ρ
.
ψ+ ρT

.
s = ρr−∇·q− ρ

.
Ts+j·e−p· .

e−m·
.
b+ ρ

∂ψ

∂F
·FT : (

.
x∇) . (1.90)

Finally, since by the chain rule and the constitutive relations for s, p and m,

ρ
.
ψ = ρ

∂ψ

∂F
·FT : (

.
x∇) + ρ

∂ψ

∂e
· .
e+ ρ

∂ψ

∂b
·

.
b+ ρ

∂ψ

∂T

.
T

= ρ
∂ψ

∂F
·FT : (

.
x∇) −p· .

e−m·
.
b− ρs

.
T ,

(1.91)

the energy equation reduces to,

ρT
.
s = ρr−∇·q+j·e . (1.92)

22 These may or may not balance other forces of electromagnetic origin from the ψ-derivative term.
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1.4.4 Restrictions from the angular momentum balance

From the constitutive expression for g and σ in (1.82), application of the angular
momentum balance (1.30) provides,

F·
(
∂ψ

∂F

)T
−

(
∂ψ

∂F

)
·FT +b∂ψ

∂b
−
∂ψ

∂b
b+e

∂ψ

∂e
−
∂ψ

∂e
e = 0 . (1.93)

To obtain this equation, the expressions of p and m in the stress expression where
replaced by their constitutive expressions in (1.82).

From Kovetz, 2000 (§54.-56.), this expression combined to the mathematical the-
orem (1.9) imposes on the free specific energy functional ψ(F,e,b, T ,ξ):

ψ(F, e, b, T , ξ) = ψ(Q·F, Q·e, Q·b, T , ξ) , (1.94)

for every orthogonal tensor Q. From the polar decomposition theorem, the defor-
mation gradient F can be expressed as F = R·U (left polar decomposition), where
R is proper orthogonal and U is symmetric positive definite, yielding for the pre-
vious expression:

ψ(F, e, b, T , ξ) = ψ(Q·R·U, Q·e, Q·b, T , ξ) , (1.95)

for any Q ∈ SO(3), still. Choosing the particular case Q = RT as R ∈ SO(3) and
noting that RT ·R = I and RT = U−1·FT :

ψ(F, e, b, T , ξ) = ψ(U, U−1·FT ·e, U−1·FT ·b, T , ξ) . (1.96)

It follows that the specific free energy is constrained by the material frame indiffer-
ent principle to be a functional of the set of arguments U, U−1·FT ·e, U−1·FT ·b,
T , ξ, or equivalently any combination of these arguments. This provides what
Kovetz, 2000 refers to as the specific free energy in reduced form, for which two
different possible expressions are proposed hereafter.

first possible combination of arguments One first combination is ob-
tained by the left contraction of the first 3 arguments with U (since U is positive
definite, it is uniquely related to U·U), leading to

ψ = ψ̂(C,E, B̃, T ,ξ) ; C ≡ FT ·F = U·U , E = e·F, B̃ ≡ b·F , (1.97)

where we introduced the right Cauchy-Green deformation tensor C and the La-
grangean field B̃ ≡ b·F and one can recognize the Lagrangean electromotive in-
tensity E. Note that the Lagrangean field B̃ is not the Lagrangean magnetic field
defined in section 1.3. This new functional ψ̂ is linked to the original functional ψ
brought by the Coleman-Noll method by ψ(F,e,b, T ,ξ) = ψ̂(C,E,B, T ,ξ). Conse-
quently23,

∂ψ

∂e
= F·∂ψ̂

∂E
,

∂ψ

∂b
= F·∂ψ̂

∂B̃
,

∂ψ

∂F
= 2F·∂ψ̂

∂C
+e

∂ψ̂

∂E
+b

∂ψ̂

∂B̃
, (1.98)

and the constitutive relations written in terms of ψ̂ follow:

23 The partial derivatives of ψ are partial derivatives with respect to the variables F,e,b, T ,ξ while the
partial derivatives for ψ̂ are partial derivatives with respect to the variables C,E, B̃, T ,ξ.
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p = −ρF·∂ψ̂
∂E

, m = −ρF·∂ψ̂
∂B̃

, s = −
∂ψ̂

∂T
,

σ = 2ρF·∂ψ̂
∂C
·FT + ε0

(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
mb+bm− (b·m)I

)
+

.
xε0(e×b) .

(1.99)

second possible combination of arguments Another combination pro-
vides the set of arguments C, e·F, JF−1·b, T , ξ, by multiplying B̃ in the first
formulation by J≡ det(F) = det(U) and left-contracting with C−1, both uniquely
related to U. One recognizes the Lagrangian electromotive intensity E=e·F and
the Lagrangian magnetic field B= JF−1·b (see Section 1.3). This leads to the func-
tional,

ψ = Ψ(C, E, B, T , ξ) ; C ≡ FT ·F , E = e·F , B ≡ JF−1·b . (1.100)

The new functional Ψ is linked to the original functional ψ brought by the
Coleman-Noll method by ψ(F,e,b, T ,ξ) = Ψ(C,E,B, T ,ξ). Consequently24,

∂ψ

∂e
= F· ∂Ψ

∂E
,

∂ψ

∂b
= JF−T ·∂Ψ

∂B
,

∂ψ

∂F
= 2F· ∂Ψ

∂C
+e

∂Ψ

∂E
+

((
JF−T ·∂Ψ

∂B

)
·b
)
F−T−

(
JF−T ·∂Ψ

∂B

)(
F−1·b

)
,

(1.101)

and the constitutive relations written in terms of Ψ follow:

p = −ρF· ∂Ψ
∂E

, m = −ρJF−T ·∂Ψ
∂B

, s = −
∂Ψ

∂T
,

σ = 2ρF· ∂Ψ
∂C
·FT + ε0

(
ee−

1

2
(e·e)I

)
+
1

µ0

(
bb−

1

2
(b·b)I

)
+

.
xε0(e×b) .

(1.102)

a comment on material frame indifference : The principle of material
frame indifference (or objectivity) is used in the literature to infer the reduced form
of the specific free energy obtained above (e.g. see Dorfmann and Ogden, 2003).

The principle of material frame indifference places restrictions on the constitu-
tive relations by imposing transformation requirements on the constitutive vari-
ables. The transformation considered is a Euclidian transformation,

x ′ = Q(t)·x+ c(t) , t ′ = t , (1.103)

24 The partial derivatives of ψ are partial derivatives with respect to the variables F,e,b, T ,ξ while the
partial derivatives for Ψ are partial derivatives with respect to the variables C,E,B, T ,ξ.
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whereQ(t) is a time dependent orthogonal matrix and c(t) is an arbitrary time de-
pendent vector. Quoting Tadmor, Miller, and Elliott, 2011 (Section 6.3.3), ”The basic
postulate of the principle of material frame-indifference is that all variables for which consti-
tutive relations are required must be objective tensors”. Our understanding is thus that
the material frame indifference principle should apply to all variables for which
constitutive relations are required, and thus that s,p,m,σ and g be objective i.e.
transform into s,Q·p,Q·m,Q·σ·QT ,Q·g under any Euclidian transformation
(1.103).

From Hutter, van de Ven, and Ursescu, 2006, under a Euclidian transformation,
the electromagnetic fields transform according to,

e ′ = Q·e , b ′ = Q·b , (1.104)

for Q proper orthogonal25. The deformation gradient transforms as F ′ = Q·F.
Given the transformation law for e and e = e+

.
x×b,

e ′ = Q·
[
e−

(
QT ·(

.
Q·x+

.
c)×b

)]
, (1.105)

where we used the relation (M·a)×(M·b) = det(M)(M−1)T ·(a×b) for any
matrix M and vector fields a,b. One can observe that as a direct consequence
of (1.94) inferred from the angular momentum balance, the constitutive relations
obtained for ψ, s,p and m are indeed objective. The constitutive relations for σ
and g however are not. Thus objectivity does not apply to all the constitutive
variables. For that reason, the treatment of Kovetz, 2000 based on the application
of the angular momentum balance is here preferred over the application of the
principle of material frame indifference. Note that Tadmor, Miller, and Elliott, 2011

(Section 6.3.7) make the case that the material frame indifference principle is a
restrictive hypothesis on the macroscopic behavior of a material but does not have
to hold true by the laws of physics.

1.5 constitutive relations in reference configuration

As was done for the governing equations, the constitutive relations can be ex-
pressed in the reference configuration. These reference configuration expressions
will later be very useful to the derivation of a variational formulation of the prob-
lem in Chapter 5. The transforms are here performed for the formulation that has
the specific free energy in reduced form Ψ(C,E,B, T ,ξ) in (1.100) as it is the one
that will be used in the variational formulation.

stress expression Based on the constitutive relations in (1.102) the expres-
sion for the first Piola-Kirchhoff stress Π = JF−1 ·σ expressed with fields of the
reference configuration yields,

Π = 2ρ0
∂Ψ

∂C
·FT + Jε0

(
(C−1·E)E−

1

2
(E·C−1·E)I

)
·F−1

+
1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1+ (F−1· .

x)
(
JC−1·ε0E×B

)
·F−1,

(1.106)

25 In the more general case of orthogonal transforms Q, because b is an axial vector, b ′ = det(Q)Q·b.
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where we account for ρ0 = ρJ and by analogy with (1.47) we introduced the refer-
ence configuration electric field, which we define as,

E ≡ e·F , (1.107)

The E×B term in (1.106) is derived using the mathematical relation in Appendix A.2
(equation A.6)26 and expression (1.106) includes the reference configuration coun-
terpart Π

MW
= JF−1·σ

MW
of the Maxwell stress in vacuum (1.81),

Π
MW

= Jε0

(
(C−1·E)E−

1

2
(E·C−1·E)I

)
·F−1

+
1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1 .

(1.108)

momentum density Transposition of the linear momentum density in (1.82)
to the reference configuration is obtained using the field transformations for E
(1.107) and B (1.44) and the mathematical relation (A.6) for the cross product,

ρ0g = ρ0
.
x+

(
(JC−1·ε0E)×B

)
·F−1 . (1.109)

aether relations Transposition of the aether relations for d in (1.23) to the
reference configuration, is performed using the field transformations for D (1.38)
and E (1.107) and the constitutive expression for polarization in (1.102),

D = JF−1·(ε0e+p)

= JC−1·ε0E− ρ0
∂Ψ

∂E
.

(1.110)

For transposition of the aether relations for h in (1.23) to the reference configura-
tion, we introduce, by analogy with (1.41), a Lagrangian h-field

H ≡ h·F . (1.111)

Using the aether relation for h in (1.23) then, the Lorentz magnetization expression
from (1.69), the field transformation (1.44), and the constitutive expressions for
polarization and magnetization in (1.102),

H =

(
1

µ0
b−m+

.
x×p

)
·F

=
1

µ0J
C·B+ ρ0

∂Ψ

∂B
− (F−1· .

x)×ρ0
∂Ψ

∂E
.

(1.112)

Similarly for the Lagrangian magnetomotive intensity H, using the field transfor-
mation in (1.41), and the definition of the magnetomotive intensity h = h−

.
x×d,

H =
1

µ0
b·F−m·F− (

.
x×ε0e)·F

=
1

µ0J
C·B+ ρ0

∂Ψ

∂B
− (F−1·

.
x)×(JC−1·ε0E) .

(1.113)

Here again, the above derivation uses ρ0 = ρJ and the identity (A.6).

26 As already mentioned before, despite the same notation “×”, the cross product acting on fields of
the current configuration is not the same operator as the cross product acting on the fields of the
reference configuration. Appendix A.2 (equation A.6) details the shift from one operator to the other
when changing configuration.
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energy density Based on the energy density expression from (1.80) and the
constitutive equation for polarization from (1.102), the energy density in the refer-
ence configuration, expressed as a functional of the Lagrangian fields, is

ρ0ε = ρ0

(
Ψ(C,E,B, T ,ξ) +Tη+

1

2

.
x· .
x−E· ∂Ψ

∂E

)
+
Jε0
2
E·C−1·E+

1

2µ0J
B·C·B .

(1.114)





2
D I R E C T F O R M U L AT I O N F O R E L E C T R I C M O T O R P R O B L E M S

In the previous section, a careful derivation of the general equations for a contin-
uum electromagnetic problem, following (Kovetz, 2000), was recalled. Now that
the stage is set and all the subtleties of the formulation identified, this chapter pro-
vides further approximation of the governing equations and constitutive relations
for application to electric motor problems.

A convenient approximation for certain applications of electromagnetism - in
particular the modeling of electric machines - is the eddy current approximation,
which consists of ignoring the electric energy of the problem as compared to
its magnetic counterpart (e.g. see Hiptmair and Ostrowski, 2005). The interested
reader is referred to Alonso Rodriguez and Valli, 2010 for an extensive review
(focused on linear material behaviors), and mathematical justification of the ap-
proximation. In the field of coupled magneto-mechanical problems, the eddy cur-
rent approximation as for example been applied to the modeling of electromag-
netic forming processes (Thomas and Triantafyllidis, 2009), or Magnetic Resonance
Imaging (MRI) scanners (Ledger et al., 2016). Although not mentioned there, the
eddy current approximation is the framework also adopted in the related work of
Fonteyn, 2010; Fonteyn et al., 2010b; Fonteyn et al., 2010a. Compared to these later
works, the following includes the angular momentum balance in the eddy current
approximation. This fundamental principle of mechanics places restrictions on the
form of the specific free-energy as highlighted in Section 1.4.4, which should not
be neglected. As detailed in the following, it results in a symmetric total stress σ
in the eddy current approximation, which other related works, despite their signif-
icant contribution, do not have (Fonteyn, 2010; Fonteyn et al., 2010b; Fonteyn et al.,
2010a).

Electric motors experience only small strains in standard operation. They how-
ever operate under large magnetic fields (often up to magnetic saturation levels).
The derivation of the constitutive relations for an isotropic magnetoelastic mate-
rial for small strain ε, but arbitrary magnetic field b, although straightforward
requires lengthy calculations. Such derivations are not always done consistently in
the available literature; a linearized version of the invariants is often considered,
thus violating the objective nature of the free energy (equivalently the angular
momentum balance) since the small strain tensor ε is not objective. Although the
proper calculations have been presented in the literature a long time ago by Pao
and Yeh, 1973, following the early works on magnetoelasticity by Brown, 1966, a di-
rect integration in our framework is not possible due to the different formulations
adopted (e.g. different independent variables of the free energy densities, differ-
ent definitions of total stress etc.). A linearization of the constitutive relations can
also be found in Eringen and Maugin, 1990 however for small strains ε and small
magnetic field b altogether.

In the following, Section 2.1 presents the eddy current approximation of the
problem. Section 2.2 highlights a few material behavior hypothesis one can take,

35
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at least as a first approximation, for electric motor problems. It also highlights
how the small strain constitutive relations for magnetization and stresses can be
obtained by linearization with respect to the small strain tensor ε of the general
constitutive relations that follow from the previous thermodynamically consistent
derivation.

2.1 eddy current approximation

2.1.1 Applicability

In Hiptmair and Ostrowski, 2005, the eddy current approximation has been justified
for time invariant, local, isotropic, and linear material behavior - i.e. ohmic con-
ductors, with linear magnetization - provided the size of the control volume that
is considered is small compared to the wavelength of the electromagnetic waves,
which traduces:

L
√
εµω� 1 , (2.1)

where L is the characteristic length of the control volume, ε1 and µ are the absolute
permittivity and permeablility of the medium and ω is the angular frequency
of the time-harmonic excitation. A second condition needs to be observed: the
characteristic time-scale needs to be small compared to the relaxation time of the
electric space charges. This traduces:

ω
ε

γ
� 1 , (2.2)

where γ is the electrical conductivity of the medium. Hiptmair and Ostrowski,
2005 also draws attention to the fact that thin or sharp geometries are particular
cases of non applicability of the eddy-current formulation2.

Some works can be found that extend the eddy current approximation to cases of
γ, µ and ε inhomogeneous in space (e.g; for instance Buffa, Ammari, and Nédélec,
2000) but no formal justification of an extension to the case of non linear mag-
netization, where the magnetic permeability µ depends on the magnetic field b,
was found in the literature. This case is important to electric motors where mag-
netization is often subject to saturation or hysteresis. Assumption is taken in the
present framework that extension of the eddy current approximation to non linear
magnetic materials holds.

For automotive electric motor applications3, electric polarization can be neglected
and the permittivity is that of vacuum: ε0 = 8.85×10−12 F/m. The characteristic
length is at maximum of the order of the rotor diameter, that is around 0.2 m. The
typical frequency is on the order of the kHz. The magnetic permeability can typi-
cally reach around 5×10−3N/A2. Thus L

√
εµω ≈ 2.6×10−4 and the first condition

(2.1) is satisfied. The electrical conductivity is on the order of 2×106 S/m. Thus
ω εγ ≈ 4×10

−14 and the second condition (2.2) is met.

1 Not to be confused with the energy ε everywhere else in this document.
2 In their work, Buffa, Ammari, and Nédélec, 2000 further investigate the impact of topology on the

eddy current approximation.
3 Emphasis is on typical machines for automotive applications given the support of Stellantis through

the André-Citroën Research Chair, Ecole polytechnique.
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2.1.2 Application to the problem

governing equations The eddy current approximation neglects the free electric
charges (and hence Gauss’ equation (1.11)) and results in ignoring the displace-
ment current ∂d/∂t and the convection of electric charges q

.
x, and hence j = j,

in Maxwell-Ampère’s law (1.13) (e.g. see Hiptmair and Ostrowski, 2005, Alonso
Rodriguez and Valli, 2010, Thomas and Triantafyllidis, 2009). The simplified set
of electromagnetic equations governing the problem and the associated interface
conditions reduce to,

∇×h = j , n×JhK = κ ;

∇×e = −
∂b

∂t
, n×JeK− (n·

.
x) JbK = 0 ;

∇·b = 0 , n·JbK = 0 .

(2.3)

Note that based on (1.16), the approximate charge conservation with q neglected
is now ∇·j = 0, which is automatically satisfied given (2.3)1. As a consequence
of neglecting the electric displacement d, the magnetomotive intensity h = h

(see equation 1.12), and because neglecting d implies neglecting p per (1.23), the
Lorentz magnetization m = m (see equation 1.69). The electromotive intensity
remains e = e+

.
x×b, as defined in (1.19).

One more simplification is made possible by the eddy current approximation,
consistent with ignoring the electric energy of the system (and Gauss’s law), which
allows the potential formulation in (1.22) for the electric field e to be expressed
only in terms of the magnetic potential vector a only, such that the electric potential
φ is neglected and the potential formulation becomes,

e = eapp −
∂a

∂t
;

b = ∇×a ,
(2.4)

where eapp is an externally applied electric field (typically to the coil that drives
the system, e.g. see Thomas and Triantafyllidis, 2009).

Regarding the other mechanical and thermodynamic governing equations of
the problem, the general form of the mass balance, linear momentum balance,
angular momentum balance, energy balance and entropy inequality in Chapter 1

remain unaltered in the eddy current approximation. The approximation however
results in significant changes to the constitutive relations of the problem, exposed
hereafter.

constitutive relations As a consequence of neglecting the polarization d,
and consequently p linked to ψ through the constitutive relation in (1.82),

∂ψ

∂e
= 0 =⇒ ψ = ψ(F,b, T ,ξ) , (2.5)

such that the specific free energy is no longer electro-magneto-thermo-mechanical
but only magneto-thermo-mechanical. It justifies saying that the eddy current ap-
proximation consists in neglecting the energy associated to the electric field.
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For stresses, following in particular Thomas and Triantafyllidis, 2009, the eddy
current approximation implies that electric field terms can be ignored compared
to their magnetic counterparts in the expression for the stress tensor in (1.82)1. As
such, in the eddy current approximation the stress expression reduces to,

σ = 2ρF·
(
∂ψ

∂F

)T
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
bm− (b·m)I

)
. (2.6)

Accordingly, expression (1.81) for the Maxwell-stress in vacuum reduces to,

σ
MW

=
1

µ0

(
bb−

1

2
(b·b)I

)
. (2.7)

The linear momentum density g and stresses σ are linked through the linear mo-
mentum balance (1.28). Consequently, because neglected in σ, electric field terms
are neglected in g as well for consistency, and g now reduces to the usual linear
momentum density,

g =
.
x . (2.8)

A similar eddy current approximation for g and σ is performed in Thomas and
Triantafyllidis, 2009 (no magnetization) or Ledger et al., 2016 (with magnetization).

To summarize, for the constitutive relations in the eddy current approximation,

ψ = ψ(F,b, T ,ξ) , g =
.
x , m = −ρ

∂ψ

∂b
, s = −

∂ψ

∂T

σ = ρF·
(
∂ψ

∂F

)T
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
bm− (b·m)I

)
.

(2.9)

According to the previous developments m was replaced by m in the expres-
sions. The constitutive law for p – neglected – was taken out. Save for ψ that now
depends on (F,b, T ,ξ) where relevant, the entropy constitutive equality in (1.82)
recalled above, together with the dissipation inequality in (1.83) remain unaltered.
To conclude, equation (1.80) that links the total energy of the system to the specific
free energy becomes, in the eddy current approximation,

ρε = ρψ(F,b, T ,ξ) + ρTη+
ρ

2

.
x·

.
x+

[
1

2µ0
b·b

]
. (2.10)

linear momentum balance Replacing for the simplified expressions for g
and σ in the linear momentum balance (1.28) now provides,

ρ
..
x = ∇·

(
ρF·
(
∂ψ

∂F

)T)
+ ρf+j×b+m×(∇×b) +m·(∇b) . (2.11)

The interface conditions n·JσK = tm remains unchanged. The Lorentz forces is now
reduced to j×b. Other magnetic contribution to forces follow from the remaining
terms, including the ψ-derivative given ψ may depend on b. The motion equation
obtained differs from that of the general case (1.86) by the terms q and p now
neglected. Consistently, this justifies the approximations made in the expressions
(2.9) for the stress and linear momentum density.
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temperature equation Save for ψ that now depends on (F,b, T ,ξ), the en-
ergy equation in (1.92) remains unaltered. For self sufficiency of this chapter, we
recall:

ρT
.
s = ρr−∇·q+j·e . (2.12)

angular momentum balance An important point that this work particu-
larly aims to highlight is the following:

As a consequence of g =
.
x, the angular momentum balance (1.29) becomes,

σT −σ = 0 , (2.13)

now requiring a symmetric total stress σ as part of the eddy current approxi-
mation.

This requirement of symmetry of the total stress σ is not new and generally admit-
ted in the literature on magneto-mechanical problems, in particular related to the
modeling of magneto-rheological elastomers (e.g. in Dorfmann and Ogden, 2003

for problems with linear magnetization and negligible polarization, in Kankanala
and Triantafyllidis, 2004; Dorfmann, Ogden, and Saccomandi, 2004 for problems
with negligible currents and displacement field but arbitrary magnetization). We
make the case here that it more generally extends to problems in the eddy current
approximation that have currents and arbitrary magnetization altogether.

Other related works on electric motor modeling that follow the approach
adopted here (see Fonteyn, 2010; Fonteyn et al., 2010b; Fonteyn et al., 2010a)
do not have this symmetric total stress. They do generally acknowledge it
has to be symmetrical (Fonteyn et al., 2010c; Belahcen et al., 2006; Fonteyn,
2010), however the small strain expressions for stresses that they provide vio-
lates the stress symmetry a. Because the angular momentum is a fundamental
principle of mechanics, stress symmetry should be considered. We believe it
further helps in establishing the constitutive laws from experimental character-
ization as it restricts, by the physics, the panel of possible constitutive relations
(and thus possibly the number of parameters to fit). We show in the follow-
ing Section 2.2 how a careful small strain linearization can be performed that
preserves the symmetry of the total stress.

a In the derivation of their small strain expressions, they replace ρF·
(
∂ψ
∂F

)T
not symmetrical in

(2.9) – as a consequence of the symmetry on σ and asymmetry of the remaining terms in σ –
by ρ∂ψ∂ε symmetric by nature given the symmetry of the small strain tensor ε.

The symmetry of σ in the eddy current approximation is also verified when
working with the stress expressions that have ψ̂ or Ψ from (1.99) and (1.102) as
derived from enforcement of the angular momentum balance in the general case
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in Chapter 1. In these expressions, neglecting the electric field terms with respect
to their magnetic counterparts indeed provides the symmetric stress expressions,

σ = 2ρF·∂ψ̂
∂C
·FT + 1

µ0

(
bb−

1

2
(b·b)I

)
−
(
mb+bm− (b·m)I

)
;

σ = 2ρF· ∂Ψ
∂C
·FT + 1

µ0

(
bb−

1

2
(b·b)I

)
.

(2.14)

Finally, and consistently with (2.5), regarding the arguments of the specific free
energy in reduced form ψ̂ and Ψ derived from imposing the angular momentum
balance in Section (1.4.4), because of negligible p,

∂ψ̂

∂E
=
∂Ψ

∂E
= 0 =⇒ ψ = ψ̂(C, B̃, T ,ξ) = Ψ(C,B, T ,ξ) . (2.15)

material frame indifference A comment on material frame indifference
is here in order. One can observe that based on the transformation of the fields e

and b under Euclidian transformation in (1.104), all the constitutive variables of
the problem, including σ are, in the eddy current approximation, now objective4.
Only the linear momentum density g =

.
x is not, as in classical mechanics.

2.1.3 In reference configuration

Following the development in Chapter 1, the governing equations and the constitu-
tive relations of the problem in the eddy current approximation can be transposed
to the reference configuration. These reference configuration expressions will later
be very useful to the derivation of a variational formulation of the problem in
Chapter 5. The transforms are here performed for the formulation of the constitu-
tive relations that has ψ = Ψ(C,E,B, T , ξ) in (1.100) as it is the one that will be
used in the variational formulation.

With the fields H,E,B,K as defined in Chapter 1, the set of Maxwell equations
(2.3) transposes to

∇×H = J , N×JHK = K ;

∇×E = −
.
B , N×JEK = 0 ;

∇·B = 0 , N·JBK = 0 ,

(2.16)

and as a result of h = h, H = H. Further as ∂Ψ∂E = 0 in the eddy current approxi-
mation, the expression for H in (1.113) becomes,

H =
1

µ0J
C·B+ ρ0

∂Ψ

∂B
, (2.17)

and the same expression is obtained neglecting the electric field in the expression
for H in (1.112), showing consistency with H = H.

4 At least for Euclidian transformations that exclude symmetries.
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The potential formulation from (2.4), with A defined in Chapter 1, becomes

E = −
.
A ;

B =∇×A .
(2.18)

The linear momentum balance, accounting for g =
.
x yields in reference configu-

ration,

ρ0
..
x =∇·Π , N·JΠK = Tm . (2.19)

Based on the constitutive relations in (2.14) the expression for the first Piola-
Kirchhoff stress Π = JF−1·σ expressed with fields of the reference configuration
yields,

Π = 2ρ0
∂Ψ

∂C
·FT + 1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1 , (2.20)

where we account for ρ0 = ρJ. Expression (2.20) includes the reference configura-
tion counterpart Π

MW
= JF−1·σ

MW
of the Maxwell stress in vacuum (1.81), which

becomes in the eddy current approximation,

Π
MW

=
1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1 . (2.21)

Finally based on (2.10), the eddy current approximation for the Lagrangian total
energy density, expressed with fields of the reference configuration provides,

ρ0ε = ρ0

(
Ψ(C,B, T ,ξ) + Tη+

1

2

.
x· .
x

)
+

1

2µ0J
B·C·B . (2.22)

2.2 constitutive behavior

In this section, without loss of generality and for use in electric motor problems
we solve in Chapter 3, a few assumptions are made on the material behavior, prior
to a discussion on the electromagnetic forces that results.

2.2.1 Assumptions on the materials considered

The eddy current problem formulated thus far is general, accounting for nonlinear
magnetic and mechanical material response, both constitutive and kinematic (finite
strains), as well as dissipative phenomena. However certain simplifications can be
made; the resulting expressions for the constitutive laws are given progressively
below, as more assumptions are introduced from one step to the next. For the
remaining of Part I, we work with the specific free energy functional ψ̂(C, B̃, T ,ξ).
The only motivation for this choice was an easier linearization in small strains –
compared to expressions with Ψ(C,B, T) –, which is displayed hereafter.
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absence of mechanical and magnetic dissipation Two main sources
of dissipation are possible: plasticity in the metallic parts and magnetic hysteresis
of the ferromagnetic ones, requiring the specification of evolution laws for the in-
ternal variables ξ. A typical electric motor in its steady-state regime experiences
only small elastic strains, thus plasticity is neglected. However, it can sustain large
magnetization, often up to saturation level. For electric motor applications soft
magnetic materials with high permeability and low hysteresis are used. They con-
sist of “electric steels” (also termed “silicon steels, relay steels, transformer steels”), i.e.
iron alloys tailored to produce specific magnetic properties: small hysteresis area
resulting in low power loss per cycle, low core loss and high permeability (see
Cullity and Graham, 2011). Hence, magnetic hysteresis can be neglected in a first
approximation5. Consequently internal variables ξ are not required for material
description, i.e. ∂ψ/∂ξ = 0, and the specific free energy is a function of strain,
magnetic field and temperature: ψ̂(C, B̃, T).

material isotropy Isotropy of the material response implies that its specific
free energy is a function of six invariants (and temperature), i.e. ψ̂(C, B̃, T) =

ψ̂(I1, I2, I3, J̃1, J̃2, J̃3, T), where Ii are the invariants of the right Cauchy-Green ten-
sor C and J̃i are the coupled magneto-mechanical invariants of C and B̃ given in
(2.23)6.

decoupling of physical phenomena It is assumed that thermo-mechanical,
thermo-magnetic couplings can be neglected, resulting in a separate thermal contri-
bution ψ̂th constructed under the assumption of a constant specific heat coefficient
cε. It is further assumed that, in the absence of magnetic fields, the free energy of
the solid is ψ̂e(I1, I2, I3) and that the magneto-mechanical coupling is described
by the magnetic interaction energy ψ̂m(J̃1, J̃2, J̃3).

ψ̂(C, B̃, T) = ψ̂e(I1, I2, I3) + ψ̂m(J̃1, J̃2, J̃3) + ψ̂th(T) ;

ψ̂th = −cεT [ln (T/T0) − 1] ,

I1 = tr(C) , I2 =
1
2(tr(C)

2 − tr(C·C)) , I3 = det(C) ,

J̃1 = B̃·C−1·B̃ , J̃2 = B̃·B̃ , J̃3 = B̃·C·B̃ ,

(2.23)

where T0 is a reference temperature.
The implication of isotropy and decoupling on the generalized Ohm and Fourier

laws in (1.84) is discussed next. We assume that the conduction current density j

depends solely on the electromotive force e and that the heat flux q is only a
function of the temperature gradient ∇T

j = γ(‖e‖)e ; q = −k(‖∇T‖)∇T , (2.24)

5 Although not considered here, we point out that the study of hysteresis and in particular its relation
to stresses (which further justifies the present work) for evaluation and reduction of losses is part
of the hot topics of modern research on electric motors (e.g. see Daniel, Rekik, and Hubert, 2014;
Bernard and Daniel, 2015; Rasilo et al., 2016).

6 We note J̃i the coupled magneto-mechanical invariants involving B̃ to allow distinction from the
invariants Ji involving B in Chapter 6.
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where the scalar electrical conductivity γ(‖e‖) > 0 and the scalar thermal conduc-
tivity k(‖∇T‖) > 0, as dictated by the dissipation inequality (1.83). The norm-
dependence of these two scalar quantities is due to material isotropy.

small strain approximation For the electric motor applications of interest
here, we adopt the small strain approximation, i.e. ‖ε‖ � 1, with ε ≡ (1/2)(∇u+

u∇) the small strain tensor. Using a Taylor series expansions in ε about the reference
configuration of the quantities involved up to first order in ε and neglecting terms
of order ε b7, we obtain a total stress σ as the sum of a purely elastic part

e
σ(ε)8

and a purely magnetic part
m
σ(b)

σ =
e
σ+

m
σ ; m =

χ(‖b‖)
µ(‖b‖)

b ;

e
σ ≡ λtr(ε)I+ 2Gε ,
m
σ ≡ 1

µ0

[
bb−

1

2
(b·b)I

]
−
χ(‖b‖)
µ(‖b‖)

[bb− (b·b)I] + Λ(‖b‖)
µ(‖b‖)

bb ,

χ(‖b‖)
µ(‖b‖)

= −2ρ0

[
∂ψ̂m

∂J̃1
+
∂ψ̂m

∂J̃2
+
∂ψ̂m

∂J̃3

]
C=I

,

Λ(‖b‖)
µ(‖b‖)

= 2ρ0

[
∂ψ̂m

∂J̃2
+ 2

∂ψ̂m

∂J̃3

]
C=I

,

(2.25)

where χ(‖b‖) is the material’s magnetic susceptibility, µ(‖b‖) = µ0[1+ χ(‖b‖)] its
magnetic permeability and Λ(‖b‖) a magneto mechanical coupling coefficient9. It is im-
portant to note that at this stage our isotropic material model is valid for small
strains but arbitrary magnetization – the typical case of interest in magnetic mo-
tors – and that the corresponding magnetic susceptibility, magnetic permeability
and magnetomechanical coupling coefficient are functions of the norm of the mag-
netic field b (due to isotropy). We should also mention another consequence of
small strain: the density equals its reference counterpart, i.e. ρ = ρ0, thus justify-
ing its appearance (2.25). A remark is in order at this point about the expressions
presented in (2.25); they differ from similar expressions presented by other authors
(e.g. Aydin et al., 2017; Fonteyn, 2010) in view of our use of the objective invariants
J̃k in our linearization procedure instead of their simplified, non-objective counter-
parts, together with the decooupling hypothesis we made (significant assumption).
The interested reader can find the details of these lengthy derivations in B.1.

We stress that the small strain linearization performed here is the proper way
to retrieve the small strain constitutive relations based on the general expres-

7 The small strain constitutive expressions that include terms order ε b and the justification for the
omission of these terms in (2.25) are given in B.1. In the completely analogous – e → b, p →
m, ε0 → µ−10 – electroelastic problems neglecting the coupling terms is justified by assuming the
small strain is of the same order as the square of the moderate electric fields, e.g. see Tian et al., 2012;
Lefèvre and Lopez-Pamies, 2017.

8 The elastic part of the free energy ψ̂e is independent of the magnetic field; upon linearization at
C = I one obtains the classical Lame constants λ and G appearing in (2.25).

9 This coefficient gives the curvature of the strain vs magnetic field in a stress-free uniaxial magne-
tostriction experiment.
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sions obtained from the principles of electromagnetism, mechanics and ther-
modynamics and preserves the restrictions imposed by these principles, in partic-
ular the symmetry of σ in the eddy current approximation. It is of course
not in general new (e.g. Pao and Yeh, 1973; Eringen and Maugin, 1990; Tian
et al., 2012; Lefèvre and Lopez-Pamies, 2017), however in the field of electric
motor modeling, the small strain expressions typically used up to know have
not been derived along those lines, which is the cause of the non symmetric
total stresses they lead to (Fonteyn et al., 2010c; Belahcen et al., 2006; Fonteyn,
2010). The small strain expressions we derived and propose, in particular their
most general version given in Appendix B.1 (no decoupling hypothesis on the
specific free energy) give a precise insight on the form of the constitutive rela-
tions: they identify clearly the terms in ε that result from magneto-mechanical
couplings, and coefficients that depend on ||b|| only. They may help greatly
in fitting experimental data for material characterization (e.g. see Aydin et al.,
2017).

linear magnetic behavior In further applications in Chapter 3 a linear
magnetic behavior is considered such that µ, χ and Λ in (2.25) are constants and
the expressions for stresses and magnetization are:

σ =
e
σ+

m
σ ;

e
σ ≡ λtr(ε)I+ 2Gε ,

m =
χ

µ
b ;

m
σ ≡ 1

µ0

[
bb−

1

2
(b·b)I

]
−
χ

µ
[bb− (b·b)I] + Λ

µ
bb ,

χ, Λ, µ constants .

(2.26)

2.2.2 Resulting body forces of electromagnetic origin

To gain insight for later applications in Chapter 3, we derive the forces of electro-
magnetic origin that result from the constitutive behavior derived previously, in
the case of a linear magnetic behavior (χ,Λ,µ all constants).

From (2.26), the expression for the electromagnetic part of the stress can be recast
into,

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
+
χ

2µ
(b·b)I+ Λ

µ
bb . (2.27)

Accounting for the no-magnetic monopole law (1.18) and Maxwell-ampère’s law
(1.13) in the derivation, the first term in the stress expression provides the Lorentz
forces. Accounting for the consitutive magnetization equation in (2.26), the second
term provides a magnetization force term usually found in the literature (e.g. see
Eringen and Maugin, 1990 §3.5 who derive this macroscopic body force term from
statistical averaging of a microscopic electromagnetic theory; or Hirsinger and Bil-
lardon, 1995, Tiersten, 1990; or Dorfmann and Ogden, 2003 citing Pao, 1978). Ac-
counting for the no magnetic monopole law (1.18) the last term provides a mag-



2.2 constitutive behavior 45

netostriction force term. These three contributions are highlighted below, together

with the resulting global forces of electromagnetic origin
m

f ,

∇·
(
1

µ

[
bb−

1

2
(b·b)I

])
= j×b , Lorentz ;

∇·
(
χ

2µ
(b·b)I

)
=m·(b∇) , magnetization induced ;

∇·
(
Λ

µ
bb

)
=
Λ

µ
b·(∇b) , magnetostrictive ;

m

f ≡ ∇·
m
σ = j×b+m·(b∇) +

Λ

µ
b·(∇b) ; m =

χ

µ
b .

(2.28)

For future reference on boundary value problem applications in Chapter 3, it
is convenient to reorganize the stress expression and electromagnetic body force
terms into,

m
σ =

1+Λ

µ

(
bb−

1

2
(b·b)I

)
+
χ+Λ

2µ
(b·b)I ;

m

f =
1+Λ

µ
j×b+

χ+Λ

2µ
∇(b·b) ,

(2.29)

which interestingly highlights that the magnetostriction body forces can be split
into a contribution proportional to the Lorentz force and another proportional to
the magnetization force according to (2.28).

2.2.3 Resulting traction at interfaces

Because of the interface condition for stresses n·JσK from (1.28), surface traction
occurs at interfaces between two materials with distinct magnetic properties. In
electric motors, these traction occur at interfaces between the ferromagnetic motor
components and air (in the airgap region or in the motor surrounding) and are of
significant importance given the high magnetic properties of ferromagnetic materi-
als (Fonteyn et al., 2010a). To gain insight and prepare for analytical computation
in Chapter 3, the expression of these surface traction at an interface between air
and a material that has total stress given by (2.26) are derived below in the 2D,
linear magnetic behavior case (χ,Λ,µ all constants).

Figure 2.1: An interface between a material domain and air in 2D.

The interface is oriented by a local normal n, and we denote t the in plane
tangent, as pictured in Figure 2.1. Air is assimilated to vacuum10 with stresses

m
σext

10 Assimilating air to vacuum is standard hypothesis in the literature.
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equal to Maxwell’s stresses in vacuum (2.7). The interface is free of any surface
currents. In the material the total stress has elastic

e
σ and magnetic

m
σ components.

The interface condition n·JσK = 0 yields an electromagnetic surface traction n·
e
σ

induced by the jump in magnetic properties, and we have for the normal and
tangent components,

n·JσK = 0 =⇒


e
σnn =

m
σextnn −

m
σnn = −

Λ

µ
b2n −

χ2

2
µ0h

2
t ;

e
σnt =

m
σextnt −

m
σnt = −Λbnht ,

(2.30)

where the continuity of bn and ht at interfaces (see interface conditions in (1.18)
and (1.13)) are accounted for. As a result of its continuity, bn – respectively ht
– in (2.30) is unambiguously defined: it has the same value on each side of the
interface and there is no necessity of an index referencing to the side, hence the
interest for expressions involving br and ht at interfaces free of surface currents.
These expressions are used in the stator boundary value problem of Section 3.2,
where they are particularly suited. In the rotor boundary value problem of Section
3.1 other (equivalent) form of the expressions are preferred. Finally, in the case
where the interface has surface currents κ, other expressions are involved given
the discontinuity in h (n×JhK = κ).
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A N A LY T I C A L M O T O R B O U N D A RY VA L U E P R O B L E M S

This section pertains to analytical steady-state regime solution of idealized electric
motor configurations as an application of the theory developed in Chapter 2.

literature review A particular class of analytical methods used by the elec-
trical engineering community, termed “subdomain methods” (e.g. see: Lubin, Mezani,
and Rezzoug, 2011a, Devillers et al., 2016) constitute an approximate but efficient
tool used for evaluation of the magnetic field distribution in motor concepts at
the preliminary design stage. A wide range of machine technologies, both syn-
chronous or asynchronous, can be addressed, even accounting for non trivial ge-
ometries such as idealized rotor and stator teeth and slots (Boughrara, Lubin, and
Ibtiouen, 2013; Lubin, Mezani, and Rezzoug, 2011a; Lubin, Mezani, and Rezzoug,
2011b; Lubin, Mezani, and Rezzoug, 2012).

In their recent works motivated by vibroacoustic analysis and design of electric
motors, Pile et al., 2019b; Pile et al., 2019a; Pile et al., 2020 investigate analytical
expressions for surface forces acting on a stator. They stress out the preference for
analytical or semi-analytical methods for fast vibroacoustic design and optimiza-
tion analyses at low computational cost. Their work however considers a restrictive
expression for the magnetic stress tensor resulting in no body forces at the stator
(under the hypothesis of negligible stator currents) and a restricted surface traction
expressions. These particular works show that electric motor’s design would bene-
fit from analytical tools for the fine evaluation of forces, stresses and displacement
fields.

outline To the author’s knowledge, complete and detailed analytical compu-
tations of stresses in electric motor problems, and in particular based on the theo-
retical framework exposed earlier, do not exist in the literature. Such computations
would greatly help in gaining insight on the coupled magneto-mechanical electric
motor problem. They would provide benchmarks for validation of more evolved
numerical tools. They could also help in the design of electric motors in the spirit
of the pre-design analytical magnetic field computations mentioned in the above
literature review.

At first, in Section 3.1, calculation are performed on the rotor of an asynchronous
induction electric motor. The solid cylindrical rotor geometry adopted here for the
sake of the analytical treatment of the boundary value problem, although uncom-
mon in typical induction motors that have slots for conducting wires, is used for
high frequency applications (see Gieras and Saari, 2012). The novelty here lies in
the analytical computation of the different body forces, stresses and temperature
fields, performed using classical methods of elasticity. The results for three differ-
ent rotor materials (electric steel, copper and aluminum) using realistic geometric
and operational regime values and material parameters are presented.

47
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In a second time in Section 3.2, calculations are performed on a cylindrical sta-
tor to provide an extension of the rotor calculation to this thinner component,
more likely to deform and a major focus of noise and vibration analyses (Pile et
al., 2019b; Pile et al., 2019a; Pile et al., 2020). The analytical treatments highlights
slight differences proper to this component compared to the rotor case. The results
for the magnetic, stress and displacement fields are provided and later compared
with the results obtained for different constitutive laws for stress: (1) neglecting
the magnetostriction coefficient Λ; (2) the stress expression typically used in the
vibroacoustic literature (Pile et al., 2019b; Pile et al., 2019a; Pile et al., 2020). This sta-
tor case is also meant as a reference for the validation of numerical finite element
tools developed in Part II of this work.

Both analytical problems provide simplified strong basis for the understanding
of the coupled magneto-mechanical behaviors in electric motors. They show how
the analytical magnetic field computations presented by the electrical engineer-
ing community (e.g. Lubin, Mezani, and Rezzoug, 2011a; Gieras and Saari, 2012),
can be complemented by mechanics. Details for the setting of the corresponding
boundary value problems are given below.

for both problems To allow for analytical solutions, the motor geome-
tries and the material behaviors are simplified using a 2D, plane strain frame-
work and a isotropic, homogeneous, linearized material response based on the
constitutive equations derived in Section 2.2. In particular, the constitutive
laws for stresses and magnetization are as derived in (2.26). The magnetic sus-
ceptibility χ and permeability µ, the magneto-mechanical coupling coefficient
Λ, the electrical conductivity γ, the thermal conductivity k, the Lamé constants
λ, G and the mass density ρ0 are all given constants.

3.1 rotor boundary value problem

3.1.1 Problem description

The cross-section of the simplified induction motor is shown in Figure 3.1; the
motor is considered infinitely long in the normal to the plane and under plane
strain conditions. It is composed of a cylindrical ferromagnetic rotor (domain D1 :

0 6 r 6 R1), surrounded by a cylindrical tubular stator (domain D3 : R2 6 r 6
R3), separated by an airgap (domain D2 : R1 6 r 6 R2). Two different polar
coordinate systems are used: the stator’s fixed reference frame S(r, θs, z) and the
rotor’s moving frame R(r, θ, z), where θ ≡ θs −Ωt, with Ω the clockwise angular
velocity of the rotor, as shown in Figure 3.1.

Following Lubin, Mezani, and Rezzoug, 2011a, the motor is loaded by a current
sheet of surface density κ perpendicular to the plane located on the internal radius
of the stator. This current sheet models typical stator coils or windings supplied
by a poly-phased (usually three-phased) alternating electric current of angular fre-
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Figure 3.1: Cross-section of the simplified electric motor, indicating rotor, airgap and stator
domains and corresponding frames.

quencyω. The coils or windings are organized in p pairs per phase and the applied
surface current density is1

κ = κ0 cos(pθs −ωt)êz , (3.1)

with κ0 the oscillation’s amplitude in A/m. This current sheet rotates around the
z-axis at the angular frequencyω/p. It creates a rotating magnetic field of the same
angular frequency, which triggers induced currents at the rotor. The interaction of
the induced currents in the rotor with the magnetic field creates Lorentz forces that
result in the rotor spinning at an angular frequencyΩ. Given that the phenomenon
relies on induction, an angular frequency differential exists between the stator field
and the rotor: Ω < ω/p. We thus define the relative angular frequency ωr together
with the slip parameter s

ωr = ω− pΩ ; s ≡ ωr
ω

, (3.2)

where the angular velocitiesω andΩ are constants, since the steady-state response
of the motor is modeled.

Some additional assumptions are necessary to solve the problem.
i) Infinite permeability, rigid stator It is assumed that the stator’s strains are negligi-

ble – thus guaranteeing a constant radius current sheet – and that it has an infinite
permeability, i.e. µ3 −→∞, resulting in a negligible stator h-field

r > R2 : h3 = (∇×a3)/µ3 ≈ 0 . (3.3)

ii) Constant temperature airgap The air in the airgap is assumed to be maintained
at a constant temperature Ta by forced ventilation. Due to ohmic losses the rotor
temperature rises, but a convective heat exchange discharges its excess heat in the
airgap. The corresponding radiation condition is

r = R1 : q·êr = −k(∇T)·êr = hc(T(R1) − Ta) , (3.4)

1 For simplicity only the fundamental time harmonic of the current supply is considered here.
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where hc is the convection coefficient and T is the rotor temperature field.2

iii) No external mechanical body forces No purely mechanical body forces, intro-
duced in (1.26) are considered, i.e. f = 0, since gravity effects are assumed negligi-
ble compared to inertia and magnetic contributions.

iv) Constant velocity and acceleration Assuming a small slip s (ωr � Ω) and a small
vibration amplitude, we can ignore the rates of the displacement

.
u and

..
u in the

velocity and acceleration terms, by keeping only their Ω-dependent contributions,
thus considerably simplifying the resulting algebra

.
x ≈ rΩêθ ,

..
x ≈ −rΩ2êr . (3.5)

One consequence is a constant inertia term −ρ0rΩ
2êr in the linear moment

balance (2.11). The other consequence of (3.5)1 are the simpler expressions of the
electromotive intensity e = e +

.
x×b and the material time derivative Ṫ , when

expressed in the moving rotor frame (recall θ ≡ θs −Ωt)

e =

[
−
∂a

∂t
+

.
x×b

]
S

= −

[
∂a

∂t
+Ω

∂a

∂θs

]
S

= −
∂a

∂t

∣∣∣∣
R

,

.
T =

[
∂T

∂t
+

.
x·(∇T)

]
S

=

[
∂T

∂t
+Ω

∂T

∂θs

]
S

=
∂T

∂t

∣∣∣∣
R

.
(3.6)

Henceforth all equations are written in the rotor frame R and all field quanti-
ties are functions of (r, θ, t). These governing equations and boundary conditions
for the idealized, 2D motor are summarized below. The variables of the problem
are the rotor and airgap vector potential a = azêz, more precisely its unique
component az ≡ a, the rotor temperature T and the rotor elastic stress3

e
σ. The

parameters of the problem are the rotor electrical conductivity γ, magnetic perme-
ability µ = µ0(1+ χ), mass density ρ0, specific heat capacity cε, heat conductivity
k, rotation angular velocity Ω, the airgap temperature Ta, convection coefficient
hc, magnetic permeability µ0, the current angular frequency ωr and the number
of pole pairs p. Specific values of these parameters are later given in Table 3.1 of
Section 3.2.3.

D1 :



∇×b = µγe ,

ρ0cε
∂T

∂t
− k∇2T = γe·e ,

∇·(eσ+
m
σ) = −ρ0rΩ

2êr ,

∂D1 :



êr×JhK = 0 ,

êr·JbK = 0 ,

êr·(k(∇T)) = −hc(T − Ta) ,

êr·
(
e
σ+

r
m
σ

z)
= 0 ,

(3.7)

2 The temperature field is only defined for the rotor, the T1 notation is not used (the subscript 1 is left
out as superfluous).

3 The elastic stress field is only defined in the rotor, the
e
σ1 notation is not used as unnecessary (the

subscript 1 is left out as superfluous).
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D2 :



∇×b = 0 ,

T = Ta ,

σ =
m
σ =

1

µ0

(
bb−

1

2
(b·b)I

) (
with ∇·

m
σ = 0

)
,

∂D2 :


êr×h = κ0 cos(pθ−ωrt)êz ,

êr·JbK = 0 ,

D1 ∪D2 : a = a(r, θ, t)êz , e = −
∂a

∂t
, b = ∇×a =

1

r

∂a

∂θ
êr −

∂a

∂r
êθ .

(3.8)

In the stress boundary condition on ∂D1 there is no elastic stress field in the airgap,
i.e.

e
σ2 = 0; in contrast to the magnetic stress field

m
σ that exists in both the rotor and

the airgap (where it equals Maxwell-stress in vacuum). The boundary condition
on the radial component of the magnetic field on ∂D2 simply provides the leak of
magnetic field to the stator domain D3. The boundary condition on the tangent
component of the airgap h-field accounts for the negligible stator h-field based on
(3.3) and without ambiguity the index referring to the airgap side on h is dropped.

v) External torque applied at rotor’s center To balance the moment produced by
the shear stresses, it is assumed that an external mechanical torque is applied at
the center line of the rotor (r = 0) along the z-axis. The resulting torque per unit
rotor length Têz is

T = r2
∫2π
0

σrθ(r, θ)dθ , (3.9)

and will be shown to be a constant, function of the relative angular frequency
T(ωr) with T(0) = 0.

3.1.2 Dimensionless boundary value problem

To guide the physical interpretation of the results, the following dimensionless
variables and parameters of the problem are introduced

r

R1
→ r, ωrt→ t,

a

µ0κ0R1
→ a,

k(T − Ta)

γω2r(µ0κ0)
2R41

→ T ,
σ

ρ0R
2
1Ω

2
→ σ, (3.10)

together with the airgap normalized thickness parameter ζ ≡ R2−R1
R1

.

Henceforth, for simplicity the dimensionless variables and field quantities of
the problem, r, t, a, T , σ are denoted by the same symbol as their dimen-
sioned counterparts.
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The governing equations and associated interface and boundary conditions (in
the rotor frame) are given below,4 starting with the magnetic potential a(r, θ, t)

∇2a1 = α
2∂a1
∂t

, α2 ≡ µγωrR21 ; 0 6 r 6 1 ,

∇2a2 = 0 ; 1 6 r 6 1+ ζ ,

∂a1
∂r

= (1+ χ)
∂a2
∂r

,
∂a1
∂θ

=
∂a2
∂θ

; r = 1 ,

∂a2
∂r

= cos(pθ− t) ; r = 1+ ζ .

(3.11)

The governing equation and boundary condition for the rotor’s temperature
field T(r, θ, t) are

F−1∂T

∂t
−∇2T =

(
∂a1
∂t

)2
, F ≡ k

ρ0cεωrR
2
1

; 0 6 r 6 1 ,

B
∂T

∂r
+ T = 0 , B ≡ k

R1hc
; r = 1 ,

(3.12)

with F and B the “Fourier” and “Biot” dimensionless coefficients respectively.
Finally, the governing equations and boundary conditions for the rotor’s elastic

stress field
e
σ(r, θ, t) are5

∇· eσ = f , f ≡ sjα2
∂a1
∂t
×(∇×a1) − sm∇

(
‖∇×a1‖2

)
− rêr ; 0 6r 6 1 ,

e
σrr =

s0
2

[(
∂a2
∂θ

)2
−

(
∂a2
∂r

)2]
− (
sj

2
+ sm)

(
∂a1
∂θ

)2
+ (
sj

2
− sm)

(
∂a1
∂r

)2
; r = 1 ,

e
σrθ = −s0

∂a2
∂θ

∂a2
∂r

+ sj
∂a1
∂θ

∂a1
∂r

; r = 1 ,

sj ≡ s0
1+Λ

1+ χ
, sm ≡

s0
2

χ+Λ

1+ χ
, s0 ≡

µ0κ
2
0

ρ0R
2
1Ω

2
.

(3.13)

s0 is an equivalent of the “Stuart” number for magnetic fluids and gives the ratio of
Maxwell over inertia stress magnitudes. The dimensionless coefficients sj and sm
appearing in the expressions for the total stress in the rotor σ1 (sum of the elastic
e
σ and the magnetic

m
σ components respectively; see 2.26) depend on its magnetic

properties while the total stress tensor in the airgap σ2 (Maxwell stress in vacuum;
see 2.7) depends only on s0. The corresponding expressions for the magnetic field
and the total stress in each domain are given by

σ1 =
e
σ+

m
σ ,

m
σ = sjb1b1 + (sm −

sj

2
)(b1·b1)I , b1 = ∇×a1 ; 0 6 r 6 1 ,

σ2 =
m
σ = s0[b2b2 −

1

2
(b2·b2)I] , b2 = ∇×a2 ; 1 6 r 6 1+ ζ .

4 Only the radius of each domain of validity is recorded, since in all domains the angle θ ∈ [0, 2π) and
the time t ∈ R+.

5 Henceforth the rotor’s body force is denoted by f, taking the symbol used in (1.26) for the purely
mechanical body force.
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(3.14)

We first solve (3.11) to find the magnetic potential a, thus obtaining the ohmic
dissipation for the heat equation (3.12), which is then used to determine the rotor’s
temperature field T . The magnetic potential gives the body forces for the linear
momentum balance in (3.13), thus providing the rotor’s elastic field

e
σ.

3.1.2.1 Magnetic Potential

Solving the linear problem in (3.11) subject to the harmonic loading in (3.1), is more
efficiently done in the complex domain, where the magnetic potential ak(r, θ, t)
takes the form

ak(r,Θ) = <{āk(r) exp(−iΘ)} = Ak(r) cosΘ+Bk(r) sinΘ , k = 1, 2 ;

Θ ≡ pθ− t ,
(3.15)

where āk(r) = Ak(r) + iBk(r) is the complex6 magnetic potential amplitude that
depends only on r.

In the rotor domain, (3.11) results in a Bessel differential equation for the com-
plex amplitude ā1(r)

r2
d2ā1
dr2

+ r
dā1
dr

+ (ᾱ2r2 − p2)ā1 = 0 =⇒ ā1(r) = ĀJp(ᾱr) ;

ᾱ2 ≡ −iα2 ,

(3.16)

where the constant α2 is defined in (3.11) and Jp denotes a Bessel function of
the first kind. The above expression for ā1 accounts for the fact that there is no
singularity in r = 0, and hence explains the absence of a Bessel function of the
second kind in the general solution.

In the airgap domain, (3.11) gives a Laplace equation for the complex amplitude
ā2(r)

r2
d2ā2
dr2

+ r
dā2
dr

− p2ā2 = 0 =⇒ ā2(r) = B̄r
p + C̄r−p . (3.17)

The complex-valued constants Ā, B̄ and C̄ appearing in (3.16) and (3.17) are deter-
mined using the interface and boundary conditions in (3.11), and are found to be

Ā =
2h

Jp(ᾱ) + ḡ
,

B̄ = h

[
1−

2ḡ

[Jp(ᾱ) + ḡ][1+ (1+ ζ)−2p]

]
,

C̄ = h

[
1−

2ḡ

[Jp(ᾱ) + ḡ][1+ (1+ ζ)2p]

]
,

ḡ ≡
[
Jp(ᾱ) −

ᾱ

p
Jp+1(ᾱ)

][
(1+ ζ)p + (1+ ζ)−p

(1+ ζ)p − (1+ ζ)−p

]
1

1+ χ
,

h ≡ (1+ ζ)

p[(1+ ζ)p − (1+ ζ)−p]
.

(3.18)

6 Complex quantities are henceforth denoted by an overbar (¯).
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Using (3.18), the sought real amplitudes Ak(r) and Bk(r) in (3.15) are given
in terms of their complex counterparts found in (3.16) and (3.17), i.e. Ak(r) =

<{āk(r)} , Bk(r) = = {āk(r)} ; k = 1, 2.

3.1.2.2 Rotor temperature

From the linearity of the governing equations for the temperature field in (3.12) and
the magnetic potential solution in the rotor in (3.16), the forcing term in the conduc-
tion equation is found to be: (∂a1/∂t)2 = 0.5[(B1(r))2 + (A1(r))

2] + 0.5[(B1(r))2 −
(A1(r))

2] cos(2Θ) −A1(r)B1(r) sin(2Θ). The use of superposition and complex for-
mulation lead to the following rotor temperature field T(r, θ, t)

T(r,Θ) = T0(r) +<
{
T̄(r) exp(−i2Θ)

}
; Θ ≡ pθ− t , (3.19)

where the function T0(r) is real and T̄(r) is complex. The real function T0(r) is
found from (3.12) to be

d2T0
dr2

+
1

r

dT0
dr

= −
B1
2+A1

2

2
=⇒ T0(r)= c0 −

1

2

∫r
0

(
1

r

∫r
0

[B21 +A
2
1]rdr

)
dr, (3.20)

with the unknown constant c0 to be determined from the boundary condition.
Also recall A1(r) and B1(r) are functions of r.

Solving for the complex function T̄(r) is reduced to solving a Bessel differential
equation with a forcing term through the superposition of a homogeneous and a
particular solution T̄p(r), as follows

r2
d2T̄
dr2

+ r
dT̄
dr

+
(
β̄2r2−(2p)2

)
T̄ = r2

ā21
2

=⇒ T̄(r)= c̄J2p(β̄r) + T̄p(r);

T̄p(r) =
π

4

[
−J2p(β̄r)

∫r
0

Y2p(β̄r)ā
2
1rdr+ Y2p(β̄r)

∫r
0

J2p(β̄r)ā
2
1rdr

]
;

β̄2 ≡−
2i

F
;

(3.21)

where the unknown constant c̄ in the homogeneous part of the solution will be
specified from the boundary condition. In solving (3.21) we made use of the fact
that the solution is bounded at r = 0, and hence there is no contribution from the
Bessel function of the second kind Y2p to the homogeneous part of the solution.
However, Y2p does enter under the integrals in the expressions for the particular
solution T̄p(r) as seen above. Also recall ā1(r) in the expressions is a function of r.

Finally, the boundary condition at r = 1 in (3.12) splits into two boundary con-
ditions: one for T0(r) that gives c0 and the other for T̄(r) that provides c̄

c0 =
1

2

[∫1
0

1

r

∫r
0

[B1
2+A1

2]rdr dr+B

∫1
0

[B1
2+A1

2]rdr

]
,

c̄ =
π

4

[∫1
0

Y2p(β̄r)ā
2
1rdr−

Y2p(β̄) +Bβ̄Y ′2p(β̄)

J2p(β̄) +Bβ̄J ′2p(β̄)

∫1
0

J2p(β̄r)ā
2
1rdr

]
,

(3.22)

where J ′2p and Y ′2p denote the derivatives of the first and second kind Bessel func-
tions of order 2p with respect to their argument. Also recall ā1(r), A1(r), B1(r) are
functions of r.

Having determined T0(r) and T̄(r), one can find from (3.19) the rotor tempera-
ture field T(r,Θ).
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3.1.2.3 Rotor stresses

The principle of superposition is used again for determining the rotor’s elastic
stress field

e
σ. Recalling the definitions for f in (3.13) and the solution for the

magnetic potential a1 in (3.15) and (3.16), the body forces can be expressed as
f(r,Θ) = N(r) + ∇V(r,Θ)7, where N(r) is not derivable from a potential (non-
conservative part of the force field), while the remaining terms are derivable from
a potential V(r,Θ).

f =N+∇V ;

N = −
sjα

2

2

p

r
(A21 +B

2
1)êθ ;

V(r,Θ) = V0(r) + Vcs(r,Θ) , Vcs = Vc(r) cos(2Θ) + Vs(r) sin(2Θ) ,

V0(r) = −
r2

2
+
sjα

2

2

∫r
0

(A1B
′
1−A

′
1B1)dr−

sm

2

(
p2

r2
(A21+B

2
1) + (A ′21 +B ′21 )

)
,

Vc(r) = −
sjα

2

2
A1B1 −

sm

2

(
p2

r2
(B21 −A

2
1) + (A ′21 −B ′21 )

)
,

Vs(r) =
sjα

2

2

(A21 −B
2
1)

2
− sm

(
p2

r2
A1B1 +A

′
1B
′
1

)
.

(3.23)

Consequently, the rotor’s elastic stress field
e
σ is decomposed as follows

e
σ(r,Θ) =

e
σ
N

(r) +
e
σ
V

(r,Θ) +
e
σ
h

(r,Θ) ,


∇·
e
σ
N

= N ,

∇·
e
σ
V

= ∇V ,

∇·
e
σ
h

= 0 ,

(3.24)

where each one of the constituent fields
e
σ
N

,
e
σ
V

,
e
σ
h

corresponds, in view of (2.25),
to a compatible elastic strain field, i.e. derivable from a displacement field. By
abuse of terminology we call these elastic stress fields elastically compatible.

Using the expression for N(r) from (3.23), an elastically compatible particular
solution for

e
σ
N

(r) is found8 by solving the tangential equilibrium ODE,

d
e
σ
N

rθ

dr
+
2

r

e
σ
N

rθ= −
sjα

2

2

p

r
(A21+B

2
1) =⇒ e

σ
N

rθ= −
sjα

2

2

p

r2

∫r
0

r(A21+B
2
1)dr . (3.25)

An elastically compatible particular solution for the elastic stress field
e
σ
V

is
found using the Airy stress function method in polar coordinates (see Barber, 2010).

7 Given the electromagnetic part of the forcing
m
f = −∇·

m
σ in (3.13), it is tempting to choose

e
σ = −

m
σ as

a particular solution to the electromagnetic forcing
m
f . However, this particular solution is ineligible

as it does not satisfy the compatibility condition (see Barber, 2010), thus leading to the proposed
approach (for additional details see Appendix B.3).

8 Because we look for a particular solution only, integration constants are discarded.
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The components of
e
σ
V

can be expressed in terms of a stress potential φ
V

as follows

e
σ
V

rr=
1

r

∂φ
V

∂r
+
1

r2
∂2φ

V

∂θ2
+V ,

e
σ
V

θθ=
∂2φ

V

∂r2
+V ,

e
σ
V

rθ= −
∂

∂r

(
1

r

∂φ
V

∂θ

)
;

∇2φ
V
= −

1− 2ν

1− ν
V .

(3.26)

The stress potential φ
V

is found (see footnote 8), by solving the Laplacian in (3.26)
with the help of (3.23)

φ
V
(r,Θ)=−

1−2ν

1−ν

(∫r
0

1

r

∫r
0

V0rdrdr+
r2p

4p

∫r
0

Vcsr
−2p+1dr−

r−2p

4p

∫r
0

Vcsr
2p+1dr

)
. (3.27)

The components of the elastically compatible homogeneous solution stress field
e
σ
h

are expressed in terms of the potential φh

e
σ
h

rr =
1

r

∂φ
h

∂r
+
1

r2
∂2φ

h

∂θ2
,
e
σ
h

θθ =
∂2φ

h

∂r2
,
e
σ
V

rθ = −
∂

∂r

(
1

r

∂φ
V

∂θ

)
;

∇4φ
h
= 0 .

(3.28)

Solving the biharmonic equation for φ
h

in (3.28) we obtain9

φh(r,Θ) = Φ01
r2

2
+Φ02θ+

(
Φc1r

2p +Φc2r
2p+2

)
cos(2Θ)

+
(
Φs1r

2p +Φs2r
2p+2

)
sin(2Θ) .

(3.29)

The final expressions for
e
σ
h

,
e
σ
V

are obtained from (3.28) and (3.28) but are too
cumbersome to be recorded here; they are given in Appendix B.4. The six constants
Φ01,Φ02,Φc1,Φc2,Φs1,Φs2 are determined by the r = 1 boundary conditions in
(3.13)

e
σ
V

rr(1,Θ) +
e
σ
h

rr(1,Θ) =
s0
2

[(
∂a2
∂θ

)2
−

(
∂a2
∂r

)2]
− (
sj

2
+sm)

(
∂a1
∂θ

)2
+ (
sj

2
−sm)

(
∂a1
∂r

)2
,

e
σ
N

rθ(1,Θ) +
e
σ
V

rθ(1,Θ) +
e
σ
h

rθ(1,Θ) = −s0
∂a2
∂θ

∂a2
∂r

+ sj
∂a1
∂θ

∂a1
∂r

.

(3.30)

From the decomposition in radial, cosine and sine terms (see footnote 9), result
three equations for the normal and three equations for the tangential boundary
conditions, thus uniquely determining the sought constants. The full expressions
for the stress at the rotor (elastic and magnetic components) can be then deter-
mined from (3.14) and (3.24).

9 The solution is extracted from the general Michell, 1899 solution. Given the form of the body forces

and boundary conditions, only those terms consistent with a solution of the form
e
σ =

e
σ0(r) +

e
σc(r) cos(2Θ) +

e
σs(r) sin(2Θ) are kept. Also, all terms leading to stress singularities in r = 0 are

excluded except for the Φ02θ term required for the torque at r = 0.
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3.1.2.4 Rotor torque

We are now in a position to give the expression for the torque/unit length T.
Recalling (3.9) and using the results for the stress field obtained above, one has

T = 4πρ0Ω
2R41s0p

(
h

‖Jp(ᾱ) + ḡ‖

)2
=
{
Jp(ᾱ)ᾱ

∗Jp+1(ᾱ)
∗} , (3.31)

where ( )∗ denotes complex conjugation. This result gives the torque in terms of
geometry, applied current (poles, amplitude and frequency), magnetic and electric
properties and density of the rotor. Remarkably, T is independent of the mechani-
cal properties of the rotor, i.e. its shear modulus G and Poisson ratio ν.

As the torque is a function of slip velocity ωr, it is instructive to find from (3.31)
the initial slope of the T(ωr) curve. Using asymptotics of the Bessel functions with
respect to ᾱ for ‖ᾱ‖2 = α2 = ωrµγR21 << 1, one obtains

T≈ ωr
2πγ

p(1+p)

[
µ0κ0(1+ χ)(1+ ζ)R1

(1+ζ)p+(1+ζ)−p+(1+χ)[(1+ζ)p−(1+ζ)−p]

]2
+O(ωr)

2. (3.32)

One should keep in mind that the above expression gives only the initial slope of
the T(ωr) curve, but depending on the problem, the range of validity of this linear
approximation can be very small.

3.1.3 Results and discussion

Although we solve an idealized motor, the results presented here correspond to
materials, geometries and operating parameters found in the electrical engineering
literature. The dimensionless quantities introduced in (3.10) allow a direct compar-
ison of the results to related physically meaningful quantities.

3.1.3.1 Material, geometry and operating parameters

The motor geometry and operating parameters used in the calculations are shown
in Table 3.1. The study covers three materials typically found in electric motors:
electrical steel, copper and aluminum. Despite the different motor architecture, the
same values as in Lubin, Mezani, and Rezzoug, 2011a are used whenever possible.
The peak value of the current sheet is presently reduced to 1.3×104A/m – from
8×104A/m in Lubin, Mezani, and Rezzoug, 2011a – in order to keep the maximum
value of the magnetic field in the steel rotor below saturation,10 phenomenon not
accounted for here.

Unfortunately, not all needed parameters can be found for a particular electric
steel, thus requiring the use of experimental data from the open literature for com-
parable materials. The value for the magneto-mechanical coupling coefficient Λ is
fitted from Aydin et al., 2017, for the no-prestressed case, as detailed in Appendix
B.2. A typical value for the magnetic susceptibility χ = 4000 for electric steel is
adopted, while the elastic constants ν and E are taken from Belahcen et al., 2006.

10 The chosen current sheet amplitude results in a maximum magnetic field of about 1.3T for the base
case motor (steel rotor), roughly corresponding to the onset of magnetic field saturation for typical
electrical steels (e.g. M400-50A), see Rekik, Hubert, and Daniel, 2014.
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Geometry

Rotor radius R1 6 cm

Airgap parameter ζ = (R2 − R1)/R1 0.05 (base case)

Number of pole pairs p 2

Operating parameters

Peak value of current sheet κ0 1.3×104 A/m

Angular velocity of current supply ω 100π rad/s

Slip s = ωr/ω 2% (base case)

External temperature Ta 20◦C

Convection coefficient hc 40 W/m2/K

Material properties Electrical steel Copper Aluminum

Electric conductivity γ 2.67×106 S/m 5.96×107 S/m 3.5×107 S/m

Magnetic susceptibility χ 4, 000 ≈ 0 ≈ 0

Magneto-mechanical coupling Λ −1, 800 ≈ 0 ≈ 0

Mass density ρ0 7, 650 kg/m3 8, 940 kg/m3 2, 700 kg/m3

Young’s modulus E 183×109 Pa 117×109 Pa 69×109 Pa

Poisson ratio ν 0.34 0.33 0.32

Specific heat capacity cε 480 J/kg/K 385 J/kg/K 921 J/kg/K

Thermal conductivity k 45 W/m/K 397 W/m/K 225 W/m/K

Table 3.1: Motor geometry, operating parameters and rotor material properties for the rotor
boundary value problem

The rest of the material parameters – not given in Belahcen et al., 2006 and Aydin
et al., 2017 – are taken from the open literature, as it is also done for the case of
copper and aluminum, where we assume negligible magnetic effects (χ = Λ = 0).

The base case motor, which serves as a benchmark, is made of electric steel,
has an airgap parameter ζ = 0.05 and a slip parameter s = 0.02. The rest of the
geometric and operating parameters are kept fixed, independently of the rotor
material, as shown below in Table 3.1.

As discussed in Subsection 3.1.1, the equations are solved in the rotor frame R

and all field quantities are functions of (r,Θ), where Θ = pθ− t and p the motor
pole number (here taken p = 2). The results here are a snapshot of these rotating
fields at t = 0 and are presented by plotting the corresponding field quantity at
(r, θ).

3.1.3.2 Magnetic field in rotor and airgap

Magnetic field calculations for realistic geometries are routine for the electrical
engineering community. The results for the current simple motor geometry are
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presented here solely for the purpose of explaining the resulting force and strain
fields.

The magnetic field plots in Figure 3.2 and Figure 3.3 show the contours of the
dimensionless (normalized by µ0κ0) magnetic field ‖b‖ = (b2r + b

2
θ)
1/2 for three

different values of the slip parameter s = 0.02, 0.05, 0.10 in the case of a steel rotor
with an airgap parameter ζ = 0.05. Notice that the magnetic field increases away
from the center and peaks in a localized zone near the rotor periphery. As the slip
s (equivalently the relative velocity ωr) increases, the localized high magnetization
zone narrows, (e.g. see Jackson, 1999 that the skin depth δ = (2/γωrµ)

1/2). The
four localized magnetic field zones are a result of the number of poles (p = 2).

The high permeability of the rotor material (χ = 4000 for electric steel) drastically
increases its magnetic field, thus masking the variations of the considerably smaller
– by one order of magnitude – strength of the magnetic field in the airgap in
Figures 3.2. To remedy this, Figure 3.3 shows only the airgap magnetic field (hiding
the rotor magnetic field) for the s = 0.02 slip motor of Figure 3.2(a).

(a) ‖b‖ for s = 0.02 (b) ‖b‖ for s = 0.05 (c) ‖b‖ for s = 0.10

Figure 3.2: Magnetic field norm ‖b‖ for a steel rotor (normalized by µ0κ0), for different
values of the slip parameter s.

Figure 3.3: Magnetic field norm ‖b‖ in the airgap region (normalized by µ0κ0) for the base
case motor in Figure 3.2(a).

The influence of changing motor geometry is presented in Figure 3.4 for three
different airgap parameters ζ = 0, 02, 0.05, 0.10 in a steel rotor and a slip value
s = 0.02. As expected, reducing the airgap size does not affect the distribution of
the magnetic field, but increases drastically the maximum strength of the field.

Comparison of the magnetic fields for different rotor materials is presented in
Figure 3.5, where the results for the high magnetic susceptibility steel are con-
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(a) ‖b‖ for ζ = 0.02 (b) ‖b‖ for ζ = 0.05 (c) ‖b‖ for ζ = 0.10

Figure 3.4: Magnetic field norm ‖b‖ for a steel rotor (normalized by µ0κ0), for different
values of the airgap parameter ζ.

(a) ‖b‖ – steel (b) ‖b‖ – copper (c) ‖b‖ – aluminum

Figure 3.5: Magnetic field norm ‖b‖ (normalized by µ0κ0), for different rotor materials in
motors with s = 0.02, ζ = 0.05.

trasted to the non-magnetic copper and aluminum rotors. The slip and airgap
parameters are kept at their default value s = 0.02, ζ = 0.05. Notice that for both
the copper and aluminum rotors the maximum value of the magnetic field is two
orders of magnitude less than in steel. One can also observe that the normalized
magnetic field for aluminum and copper reaches its maximum value at the rotor
boundary, given the absence of magnetization in these materials. The slightly larger
extent for the maximum magnetic field zone for the copper rotor, is attributed to
its higher electrical conductivity which results in higher induced currents than in
aluminum.

3.1.3.3 Rotor temperature field

The full-field dimensionless temperature11 (T − Ta)/Ta → T(r,Θ) for the base case
steel rotor is presented in Figure 3.6; the normalization with respect to the refer-
ence temperature Ta adopted here as a more physically meaningful choice. Since
the mean field dominates, the Θ-dependent variations are completely masked by
the scale used to plot Figure 3.6(a). TheΘ-dependent variation <

{
T̄(r) exp(−i2Θ)

}
,

whose amplitude is four orders of magnitude lower than the mean, is plotted by
itself in Figure 3.6(b). According to the values given in Table 3.1 for the thermal

11 Here T denotes absolute temperature in K and not its normalized counterpart defined in (3.10).



3.1 rotor boundary value problem 61

characteristics of the idealized motor, the almost uniform temperature increase of
the rotor is a mere 0.086◦C from an ambient airgap temperature of 20◦C, with the
maximum temperature occurring at the center.

(a) Full temperature field T(r,Θ) (b) Θ-variation <
{
T̄(r)e−i2Θ

}
Figure 3.6: Normalized temperature increase for the steel rotor (base case); (a) full field

and (b) angular variation.

The influence of the rotor material on the dimensionless temperature increase
T(r,Θ) in the base case motor is presented next in Figure 3.7. In comparing the
results for steel in (a), copper in (b) and aluminum in (c), we notice that the temper-
ature increase is almost uniform over the rotor, with the highest increase 0.086◦C
occurring in steel, 0.062◦C for copper and 0.037◦C for aluminum.

(a) T(r,Θ) – steel (b) T(r,Θ) – copper (c) T(r,Θ) – aluminum

Figure 3.7: Normalized temperature increase T for the base case motor: (a) steel, (b) copper
and (c) aluminum rotors.

Ohmic dissipation is the sole dissipation mechanism considered, as discussed in
the first remark of Subsection 2.2 and depends on the relative frequency ωr. The
relatively low frequency used (about 1Hz, we consider ωr at 2% slip) explains the
very low temperature increase found here.

3.1.3.4 Rotor current density, Lorentz and magnetic body forces

Current density The dimensionless current density field j = jz = −γ(∂a/∂t), (nor-
malized by κ0/R1) for the base case motor is presented in Figure 3.8 for steel (a),
copper (b) and aluminum (c) rotors, respectively. The currents for steel are form-
ing thin plumes near the rotor surface because of the high magnetic permeability
that concentrates the magnetic field at the rotor-airgap interface – see Figure 3.5(a)
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– limiting its penetration into the rotor. The current distribution for copper and
aluminum rotors is very similar, given the absence of magnetization. Notice in
Figure 3.8 that the maximum current values for steel are the lowest while the
corresponding ones for copper are the highest, as expected by the different rotor
material conductivities according to Table 3.1.

(a) j(r,Θ) - steel (b) j(r,Θ) - copper (c) j(r,Θ) - aluminum

Figure 3.8: Current density j (normalized by κ0/R1), for the base case motor: (a) steel, (b)
copper and (c) aluminum rotors.

Lorentz, magnetization and magnetostricive body forces The different components

of the magnetic body force
m

f , defined as the divergence of the magnetic stress
m
σ

in (2.25), are
m

f ≡ ∇·
m
σ = j×b+m·(b∇) +

Λ

µ
b·(∇b) ; m =

χ

µ
b , (3.33)

where µ = µ0(1+ χ). The three different magnetic body force components in (3.33)
are: the Lorentz body force: j×b, a magnetization body force: m·(b∇) and a magne-
tostriction force: (Λ/µ)b·(∇b). The last two components are absent in non-magnetic
copper and aluminum (χ ≈ Λ ≈ 0).

Figure 3.9 shows the amplitude of the three different components of the elec-
tromagnetic force, (normalized by the amplitude of the centrifugal force density
ρ0R1Ω

2), for the base case motor with a steel rotor case. The first important ob-
servation is that the Lorentz forces are negligible, with their maximum value of
the order of 1% of the inertial forces. A straightforward dimensional analysis in-
dicates ‖j‖ ≈ ‖b‖/(µR1), giving ‖j×b‖ ≈ ‖b‖2/(µR1) for the Lorentz component
of the body force, compared to the magnetic χ‖b‖2/(µR1) and magnetostrictive
Λ‖b‖2/(µR1) components.

Observe that the magnetization force is larger than its inertial counterpart – up
to approximately forty times at the rotor’s edge due to the highest magnetic field
gradients there, according to Figure 3.5(b) – pointing to the importance of account-
ing for magnetization body forces in electric motor models. The magnetostrictive
forces are not negligible and peak at about 160% of their inertial counterpart (or
about 5% of the maximum magnetization forces), a somewhat surprising result in
view of the same order χ and Λ coefficients from Table 3.1 but explained by the
different expressions for the corresponding forces in (3.33).

The results in Figure 3.10 compare the magnetic body force (normalized by
ρ0R1Ω

2) of the base motor for the different rotor materials. Recall that the mag-
netic body force is just the Lorentz force for the copper and aluminum rotors, in
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(a) Lorentz
‖j×b‖

(b) Magnetization
‖m·(b∇)‖

(c) Magnetostriction
‖(Λ/µ)b·(∇b)‖

Figure 3.9: Comparison of the different magnetic body forces (normalized by ρ0R1Ω2) for
the base case motor with a steel rotor.

(a) ‖
m
f ‖ – steel (b) ‖

m
f ‖ – copper (c) ‖

m
f ‖ – aluminum

Figure 3.10: Comparison of the total magnetic body force ‖
m
f ‖ (normalized by ρ0R1Ω2)

for the base case motor with steel, copper and aluminum rotors. Notice that
the magnetic body force is the Lorentz force j×b for the two non-magnetic
materials.

view of their negligible magnetic properties. We emphasize again the orders of
magnitude difference in the magnetic body force between the magnetic (steel) and
the non-magnetic (copper, aluminum) materials. The Lorentz forces for the copper
and aluminum rotor cases are comparable, given their close electric conductivity
(see Table Table 3.1). Notice however that although the maximum current density
is higher in the better conducting copper, the corresponding maximum Lorentz
force is higher for the aluminum rotor.

3.1.3.5 Total and elastic stresses

In order to better assess the influence of the electromagnetic effects on the total σ
and elastic

e
σ stresses, we propose to compare them to the purely mechanical (only

inertial body forces applied), plane strain elastic stress solution
i
σ for the spinning
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rotor of the base case motor under angular velocity Ω, a straightforward linear
elasticity calculation resulting in the following stress field12

i
σrr =

ρ0R
2
1Ω

2

8

(
3− 2ν

1− ν
−
3− 2ν

1− ν
r2
)

,
i
σrθ = 0 ,

i
σθθ =

ρ0R
2
1Ω

2

8

(
3− 2ν

1− ν
−
1+ 2ν

1− ν
r2
)

.
(3.34)

The maximum value for
i
σrr and

i
σθθ is [ρ0(3− 2ν)/8(1− ν)](R1Ω)2 and occurs at

the rotor’s center r = 0. For a more meaningful comparison to the purely mechan-
ical stresses due to inertial effects, all future stress results are normalized by this
maximum value, instead of ρ0(R1Ω)2 used thus far.

(a) σrr(r,Θ) (b) σrθ(r,Θ) (c) σθθ(r,Θ)

Figure 3.11: Dimensionless total stresses in rotor and airgap (normalized by the maximum
inertial stress): (a) normal, (b) shear and (c) hoop, for the base case steel motor.

The normalized total stress components for the base case motor with the steel
rotor are presented in Figure 3.11, – with the stress fields shown both in the rotor
and the airgap – where one can see the continuity of the normal σrr and shear σrθ
components at the rotor-airgap interface.

The total normal stress σrr is always positive, never exceeding the maximum,
purely inertial value, as seen in Figure 3.11(a). It monotonically increases away
from the rotor’s edge and reaches its maximum at the center, region where the elec-
tromagnetic effects are negligible, in contrast to the rotor’s edge. The total shear
stress σrθ varies symmetrically between approximately ±5% of the maximum (nor-
mal) inertial stress13, following the angular pattern imposed by the cos(2Θ) and
sin(2Θ) terms. Also notice in Figure 3.11(b) the singularity in r = 0 – truncated in
the figure – due to the external torque applied there. The total hoop stress σθθ is
positive in most of the central domain, where inertial effects dominate, with the
same maximum value as for the purely inertial case. The influence of the magnetic
field is however evident on the rotor’s edge, where a compressive stress of the
same absolute value as the maximum inertial stress does appear.

The normalized elastic stress
e
σ components in the rotor are given in Figure 3.12

and differ significantly from their total stress counterparts σ, as a simple compar-

12 Recall that r denotes the radius normalized by R1.
13 The rotor has no shear stresses for the purely inertial loading; plotting the shear stress over the

maximum value of the inertial stress (which corresponds to the radial and hoop stresses) allows the
comparison of its magnitude with respect to the normal stresses.
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(a)
e
σrr(r,Θ) (b)

e
σrr(r,Θ) (c)

e
σrr(r,Θ)

Figure 3.12: Dimensionless elastic stresses in rotor (normalized by the maximum inertial
stress): (a) normal, (b) shear and (c) hoop, for the base case steel motor.

ison between Figure 3.11 and Figure 3.12 shows. The elastic stress components

are approximately their inertial counterparts
i
σ, given by (3.34), due to the weak

magnetic fields at the center of the rotor. However, due to the strong magnetic
fields at the rotor boundary, boundary layers develop near its edge resulting in
strong compressive components, up to 250% times for the normal and 125% for
the hoop components respectively, higher than the corresponding maximal iner-
tial stress. For the shear stress component, a comparison between Figure 3.11(b)
and Figure 3.12(b) shows larger elastic shear stresses, in particular near the rotor’s
edge, due to the mechanical torque produced.

3.1.3.6 Rotor torque

Figure 3.13: Dimensionless torque T (normalized by πρ0R
4
1Ω

2s0) vs slip coefficient
s = ωr/ω for the base case motor with three different rotor materials.
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The torque T, normalized14 by πρ0R41Ω
2s0, is plotted in Figure 3.13 as a function

of the slip coefficient s. For low κ0 values (where the magnetic field remains below
the saturation level for steel for all slip values considered15) the steel rotor shows
higher torque than its copper and aluminum counterparts across almost all the
slip range, only slightly dominated by the copper rotor in a region around 5− 10%
slip.

For high κ0 values, the monotonic increase of the torque as a function of slip for
steel – due to its linear magnetic response – is misleading, as saturation may occur,
which is not accounted for in the model. In the base case motor, the magnetic field
for the steel rotor is already close to saturation for κ0 = 1.3×104, s = 2% with a
value of 1.3T (see Figure 3.2(a)). In this case, it is expected that due to magnetic
saturation, the steel torque-slip curve above s = 2% should be reaching a maximum
torque, as is the case for the copper and aluminum rotors. For s = 5% or higher,
the copper motor would produce a larger torque than its steel counterpart.

3.1.4 Conclusion for the rotor problem

As a first example of application, the theory presented in Chapters 1 and 2 is
employed for the analytical modeling of the rotor of an idealized asynchronous
motor for which we calculate the magnetic, thermal, stress fields and torque. To
better assess the influence of magnetization on stresses, three different rotor mate-
rials are examined: electric steel, copper and aluminum and different airgap and
slip parameters are considered using realistic geometric and operational regime
values (see Lubin, Mezani, and Rezzoug, 2011a) and material parameters (see Ay-
din et al., 2017). Given the linearized magnetic constitutive model adopted for the
sake of an analytical solution, the applied current amplitude is chosen to produce
magnetic fields below saturation levels.

Magnetic field results show, as expected, the presence of a boundary layer at
the rotor’s edge for the steel case and more diffuse patterns for the non-magnetic
materials; about two order of magnitude difference is observed in the maximum
magnetic field between the magnetic and non-magnetic materials. Comparing the
Lorentz, magnetization and the magnetostrictive forces in the steel rotor case we
find that the first are negligible (more than three orders of magnitude less for the
first compared to the last two). Moreover, magnetostrictive body forces – resulting
from the constitutive coupling between stress and magnetization effects – although
smaller that their magnetic counterparts, are considerably higher than the Lorentz.
This is an important finding of our calculations, since the former are usually ne-
glected in the electric motor calculations available in the literature. As expected the
magnetic body forces found in the steel rotor are concentrated along a boundary
layer and significantly higher than their counterparts for the non-magnetic materi-
als that are more diffusely distributed, thus explaining the importance of magnetic
rotors for the production of a much higher torque for a given current amplitude,
as long as the magnetic field remains below saturation levels.

14 The normalization quantity is the product of the rotor’s area πR21 by the electromagnetic stress term
ρ0R

2
1Ω
2s0 = µ0κ

2
0.

15 As shown in (3.1.3.2), the peak value of the magnetic field increases with slip.
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Due to the realistic thermal parameters used in the calculations, the tempera-
ture increase in the rotor is negligible with the temperature maximum appearing
in the rotor’s center. Significant differences are found in the current density distri-
bution between the magnetic and non-magnetic materials, with a boundary layer
appearing in the first and diffuse patterns in the second case.

The analytical solution of the model allows the comparison of the different parts
of the stress tensor (elastic and total) to the purely mechanical stresses due to iner-
tia, revealing the significant influence of electromagnetic phenomena on the result-
ing stress state. Although the maximum value of total stress’ normal components
never exceed their purely inertial counterparts, the corresponding elastic stress
components do so by developing a stress concentration boundary layer where
compressive radial and hoop stresses can be up to three times higher than the
maximum inertial value. Moreover, elastic shear stresses are considerably higher
than the total stress and concentrated on a boundary layer about the rotor’s edge.

3.2 stator boundary value problem

3.2.1 Problem description

Figure 3.14: Cross-section of the simplified electric motor, indicating rotor, airgap and sta-
tor domains, together with boundary conditions for the magnetic field.

The cross-section of the simplified electric motor considered here is shown in Fig-
ure 3.14; as for the rotor problem the motor is considered infinitely long in the
normal to the plane and under plane strain conditions. It is composed of a cylin-
drical ferromagnetic rotor (domain D1 : 0 6 r 6 R1), surrounded by a cylindri-
cal tubular stator (domain D3 : R2 6 r 6 R3), separated by an airgap (domain
D2 : R1 6 r 6 R2). Air surrounds the motor (domain D4 : R3 6 r). The in-
terface between the different domains are denoted ∂D1,∂D2,∂D3 and shown in
Figure 3.14. S(r, θ, z) denotes the stator’s fixed reference frame.
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The motor is loaded by a known rotating magnetic potential distribution16 at the
rotor boundary ∂D1,

∂D1 : a(R1, θ, t) = a0 cos(pθ−ωt)êz , (3.35)

with a0 the oscillation’s amplitude in T .m. This magnetic potential supply, inspired
by Pile et al., 2019b, rotates around the z-axis at the angular frequency ω/p and
creates a rotating radial field component,

∂D1 : êr·b(R1, θ, t) = −b0 sin(pθ−ωt) ; b0 =
a0p

R1
(3.36)

It typically models the field produced by a permanent magnet rotor17 with p pairs
of magnets producing a radial magnetic field and rotating at the angular frequency
ω.

No stator coils are considered, hence the absence of a stator current sheet in
contrast to the rotor boundary value problem 3.1. Such a problem description is
equivalent to an experiment where we rotate the permanent magnet rotor with the
stator being unsupplied and unconnected electrically (open circuit).

In this stator boundary value problem, temperature aspects are not considered.
They have already been exposed in 3.1. Some additional assumptions are necessary
to solve the problem. They are:

i) No external mechanical body forces Gravity effects are neglected. No purely me-
chanical body forces, introduced in (1.26) are considered, i.e. f = 0.

ii) Negligible velocity and acceleration We neglect the material velocity and acceler-
ation terms.

iii) Negligible stator currents We assume the stator is made of ferromagnetic lami-
nates stacked along the z-direction. These laminates are electrically insulated such
that they prevent significant induced electric currents in the z-direction. This ar-
chitecture is typical in electric motor to reduce Joule’s losses and improve the
machine’s efficiency. It is a typical assumption to neglect them (e.g. see Pang et al.,
2006). Maxwell-Ampère’s equation at the stator in this case provides,

D3 : ∇×h = 0 , (3.37)

This further translates into ∇×b = 0 given the linear magnetization. Another
direct consequence is the Lorentz force j×b = 0 and the stator is only subject to
the magnetization body force ∇· χ2µ(b·b)I = m·(b∇) and to the magnetostriction
body force ∇·Λµ (bb) =

Λ
µb·(∇b) (see 2.28).

iv) Magnetic insulation at the stator external boundary We assume that the stator
magnetically shields the motor i.e. that no magnetic field flows out of the motor,

∂D3 : n·b = 0 (3.38)

16 For simplicity a single time harmonic for the magnetic potential supply is considered.
17 This model is rather crude but adopted here in the sake of simplifications
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This hypothesis is common in the electric motor literature (e.g. see Gieras, 2010

§3.9.1)18. As a direct consequence, the Maxwell-stress on the air side at the outer
stator surface is,

∂D3 : σrr =
1

2µ0
b2r −

µ0
2
h2θ = −

µ0
2
h2θ , σrθ = brhθ = 0 (3.39)

where hθ is continuous accross the interface by the interface condition on h19.
Henceforth all equations are written in the stator frame S and all field quantities

are functions of (r, θ, t). These governing equations and boundary conditions for
the idealized, 2D motor are summarized below.

D2 :


∇×b = 0 ,

σ =
m
σ =

1

µ0

(
bb−

1

2
(b·b)I

)
,

D3 :


∇×b = 0,

∇·(eσ+
m
σ) = 0 ,

∂D1 : êr·b = −b0 sin(pθ−ωt) ,

∂D2 :



êr×JhK = 0 ,

êr·JbK = 0 ,

êr·(
e
σ+

r
m
σ

z
) = 0 ,

∂D3 :


êr·JbK = 0 ,

êr·(−
e
σ+

r
m
σ

z
) = 0 ,

D2 ∪D3 : a = a(r, θ, t)êz , b = ∇×a =
1

r

∂a

∂θ
êr −

∂a

∂r
êθ .

(3.40)

In the interface condition for stresses on ∂D2 and ∂D3, there is no elastic stress field
in the air regions

e
σ = 020, in contrast to the magnetic stress field

m
σ that exists in

both the stator and air regions (where it equals Maxwell-stress in vacuum). Based
on the expressions for the Maxwell-stress in air (see 2.7) and the magnetic stress

18 The hypothesis of magnetic insulation on the outer stator surface is in particular used for finite ele-
ment analyses as it frees from meshing and solving the magnetic field in the air regions surrounding
the motor. This hypothesis may however be questionned in some cases (e.g. see Pang et al., 2006).

19 Given the continuity on hθ no index to refer to the side of the interface at which the value is taken
is required

20 The elastic stress field is only defined in the stator, the domain index notation
e
σ3 is not used as

unnecessary.
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field
m
σ at the stator (see 2.26) the expressions of the stress boundary conditions

can be further expanded to provide21,

∂D2 :
e
σrr = −

χ2

2
µ0h

2
θ −

Λ

µ
b2r ;

e
σrθ = −Λbrhθ

∂D3 :
e
σrr = −

χ2

2
µ0h

2
θ ;

e
σrθ = 0

(3.41)

where the continuity conditions for br and hθ at the interfaces are accounted for
together with the condition of no leak of magnetic field br(R3, θ) = 0.

3.2.2 Dimensionless boundary value problem

To guide the physical interpretation of the results, we define the reference mag-
netic22, reference stress and reference displacement fields

bref ≡
pa0
R2

, σref ≡
b2ref
µ0

, εref ≡
uref
R2
≡ σref
2G

, (3.42)

and the following dimensionless variables and parameters of the problem are in-
troduced

r

R2
→r, r1≡

R1
R2

, r3≡
R3
R2

, ωt→t, a

a0
→a,

σ

σref
→σ,

u

uref
→u . (3.43)

Henceforth, for simplicity the dimensionless variables and field quantities of
the problem, r, t, a, σ are denoted by the same symbol as their dimensioned
counterparts.

For future reference, note that given the normalization of radii by R2, r = 1 corre-
sponds to the domain boundary ∂D2 between the airgap and stator.

The governing equations and the associated interface and boundary conditions
(in the stator frame) are given below,23 starting with the magnetic potential a

∇2a2 = 0 ; r1 6 r 6 1 ,

∇2a3 = 0 ; 1 6 r 6 r3 ,

a2 = cos(pθ− t) ; r = r1,

(1+ χ)
∂a2
∂r

=
∂a3
∂r

,
∂a2
∂θ

=
∂a3
∂θ

; r = 1 ,

∂a3
∂θ

= 0 ; r = r3 .

(3.44)

21 As a result of its continuity, br – respectively hθ – in the boundary conditions is unambiguously
defined: it has the same value on each side of the interface and there is no necessity of an index
referencing to the side.

22 By choosing bref = pa0/R2 - which is close to b0 in (3.36) given R2 close to R1 in the application
later on - we meant to compare to the input rotor radial field b0.

23 Only the radius of each domain of validity is recorded, since in all domains the angle θ ∈ [0, 2π) and
the time t ∈ R+.
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The governing equations and boundary conditions for the stator’s elastic stress
field

e
σ are24

∇·
e
σ =

m

f ,
m

f ≡ −sm∇

(
1

p2
‖∇×a3‖2

)
, sm ≡

1

2

χ+Λ

1+ χ
; 16r6r3 ,

e
σrr = −

χ2

2(1+χ)2

(
1

p

∂a3
∂r

)2
−
Λ

1+χ

(
1

p

∂a3
∂θ

)2
;
e
σrθ =

Λ

1+χ

1

p2
∂a3
∂r

∂a3
∂θ

; r = 1 ,

e
σrr = −

χ2

2(1+χ)2

(
1

p

∂a3
∂r

)2
;

e
σrθ = 0 ; r = r3 ,

(3.45)

The stress interface conditions directly derive from (3.41). The expression for the

body force of electromagnetic origin arises from its definition
m

f ≡ −∇·
m
σ. Com-

pared to the rotor stress equations (3.13), a body force term - the Lorentz force j×b
- drops out because of the assumption of negligible stator currents. The dimension-
less coefficient sm appearing in the body force expression depend on the magnetic
properties (χ,Λ) of the stator material.

We first solve (3.44) to find the magnetic potential a. This magnetic potential
gives the body force and interface traction for the linear momentum balance in
(3.45), thus providing the stator’s elastic stress field

e
σ.

3.2.2.1 Magnetic Potential

The solution to (3.44) subject to the harmonic loading in (3.36), takes the form25

ak(r,Θ) = Ak(r) cosΘ , k = 1, 2 ; Θ ≡ pθ− t , (3.46)

where Ak(r) is the magnetic potential amplitude that depends only on r.
In the airgap domain, (3.44) gives a Laplace equation for the amplitude A2(r)

r2
d2A2
dr2

+ r
dA2
dr

− p2A2 = 0 =⇒ A2(r) = Dr
p + Er−p . (3.47)

In the stator domain, given the absence of electric currents (3.44) results in a
Laplace equation as well for the amplitude A3(r)

r2
d2A3
dr2

+ r
dA3
dr

− p2A3 = 0 =⇒ A3(r) = Fr
p +Gr−p . (3.48)

24 Henceforth the stator’s body force is denoted by f, taking the symbol used in (1.26) for the purely
mechanical body force.

25 As opposed to the rotor case calculation in Section 3.1.2.1, solving in the complex domain is not
necessary because of the absence of time derivatives of a (associated to rotor induced currents in the
rotor problem).
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The constants D, E, F and G appearing in (3.47) and (3.48) are determined using
the interface and boundary conditions in (3.44), and are found to be

D =

[
χr
p
3 − (2+ χ)r−p3

]
χ(rp3 − r

−p
3 )(rp1 + r

−p
1 ) + 2(rp3r

−p
1 − r−p3 r

p
1 )

,

E =

[
(2+ χ)rp3 − χr

−p
3

]
χ(rp3 − r

−p
3 )(rp1 + r

−p
1 ) + 2(rp3r

−p
1 − r−p3 r

p
1 )

,

F =
−2(1+ χ)r−p3

χ(rp3 − r
−p
3 )(rp1 + r

−p
1 ) + 2(rp3r

−p
1 − r−p3 r

p
1 )

,

G =
2(1+ χ)rp3

χ(rp3 − r
−p
3 )(rp1 + r

−p
1 ) + 2(rp3r

−p
1 − r−p3 r

p
1 )

.

(3.49)

3.2.2.2 Stator stresses

The principle of superposition is used again for determining the stator’s elastic

stress field
e
σ. Recalling the definitions for

m

f in (3.45) and the solution for the mag-
netic potential a3 in (3.46) and (3.48), the body forces can be entirely (as opposed
to the forces of the rotor problem in Section 3.1) expressed as the gradient of a

potential V(r,Θ):
m

f (r,Θ) = ∇V(r,Θ)26.

m

f = ∇V ; V(r,Θ) = V0(r) + Vc(r) cos(2Θ) ,

V0(r) = −
sm

2

(
p2

r2
A23 +A

′2
3

)
,

Vc(r) = −
sm

2

(
−
p2

r2
A23 +A

′2
3

)
.

(3.50)

Consequently, the stator’s elastic stress field
e
σ is decomposed as follows

e
σ(r,Θ) =

e
σ
h

(r,Θ) +
e
σ
V

(r,Θ) ,

∇·
e
σ
V

= ∇V ,

∇·
e
σ
h

= 0 ,
(3.51)

where
e
σ
h

and
e
σ
V

are respectively the general solution to the homogeneous stress
equation and a particular solution to the stress equation. Each one of the con-
stituent fields

e
σ
h

,
e
σ
V

corresponds, in view of (2.26), to a compatible elastic strain
field, i.e. derivable from a displacement field. By abuse of terminology we call
these elastic stress fields elastically compatible.

An elastically compatible particular solution for the elastic stress field
e
σ
V

is
found using the Airy stress function method in polar coordinates (see Barber, 2010

26 Given the electromagnetic forcing
m
f = −∇·

m
σ in (3.45), it is tempting to choose

e
σ = −

m
σ as a

particular solution to the elastic stress equation. However, this particular solution is ineligible as it
does not satisfy the compatibility condition (see Barber, 2010), thus leading to the proposed approach
(for additional details see Appendix B.3).
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and the rotor boundary value problem in section 3.1). The components of
e
σ
V

can
be expressed in terms of a stress potential φ

V
as follows

e
σ
V

rr =
1

r

∂φ
V

∂r
+
1

r2
∂2φ

V

∂θ2
+ V ,

e
σ
V

θθ =
∂2φ

V

∂r2
+ V ,

e
σ
V

rθ = −
∂

∂r

(
1

r

∂φ
V

∂θ

)
;

∇2φ
V
= −

1− 2ν

1− ν
V .

(3.52)

The stress potential φ
V

is found27, by solving the Laplacian in (3.52) with the help
of (3.50)

φ
V
(r,Θ) = −

1− 2ν

1− ν

( ∫r
0

1

r

∫r
0

V0rdr dr

+

[
r2p

4p

∫r
0

Vcr
−2p+1dr−

r−2p

4p

∫r
0

Vcr
2p+1dr

]
cos(2Θ)

)
.

(3.53)

The components of the elastically compatible homogeneous solution stress field
e
σ
h

are expressed in terms of the potential φh

e
σ
h

rr =
1

r

∂φ
h

∂r
+
1

r2
∂2φ

h

∂θ2
,
e
σ
h

θθ =
∂2φ

h

∂r2
,
e
σ
h

rθ = −
∂

∂r

(
1

r

∂φ
h

∂θ

)
;

∇4φ
h
= 0 .

(3.54)

Solving the biharmonic equation for φ
h

in (3.54) we obtain28

φh(r,Θ) =Φ01r2 +Φ02r2 ln(r) +Φ03 ln(r) +Φ04θ

+
(
Φc1r

−2p+2 +Φc2r
2p +Φc3r

−2p +Φc4r
2p+2

)
cos(2Θ)

+
(
Φs1r

−2p+2 +Φs2r
2p +Φs3r

−2p +Φs4r
2p+2

)
sin(2Θ)

(3.55)

The final expressions for
e
σ
h

,
e
σ
V

are obtained from (3.54) and (3.52) but are too
cumbersome to be recorded here; they are given in B.5. The 12 integration constants
Φ01,Φ02,Φ03,Φ04,Φc1,Φc2,Φc3,Φc4,Φs1,Φs2,Φs3,Φs4 are determined by the
r = 1 and r = r3 boundary conditions in (3.45). From the decomposition in radial,
cosine and sine terms (see footnote 28), result three equations for the normal and
three equations for the tangential boundary conditions at each radius r = 1 and
r = r3, thus uniquely determining the sought constants. The expression for the
total stress at the stator (elastic and magnetic components) can then be determined
from (2.26). Appendix B.5 further provides the expressions for the displacement
field based on Barber, 2010.

3.2.3 Results and discussion

Although we solve an idealized motor, the results presented in this section corre-
spond to materials, geometries and operating parameters found in the electrical
engineering literature. comparison of the results to related physically meaningful
quantities.

27 Because we look for a particular solution only, integration constants are discarded.
28 The solution is extracted from the general Michell, 1899 solution. Given the form of the body forces

and boundary conditions, only those terms consistent with a solution of the form
e
σ =

e
σ0(r) +

e
σc(r) cos(2Θ) +

e
σs(r) sin(2Θ) are kept. However as opposed to the calculation for the rotor problem

in Section 3.1.2.3, no condition of torque or no-singularity in r = 0 can here be exploited to further
reduce the number of integration constants.
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3.2.3.1 Material, geometry and operating parameters

The motor geometry and operating parameters used in the calculations are shown
in Table 3.14. The study is based on Pile et al., 2019b: the geometric and material
parameters used are values communicated by its authors and typical for electric
motors. Of the parameters needed, only the magnetostriction coefficient Λ was
not provided. As for the rotor case (Section 3.1), Λ is fitted from Aydin et al.,
2017, for the no-prestressed case, as detailed in Appendix B.2. The results obtained
are valid in the range of linear magnetic behavior given magnetic saturation is
not accounted for here. The values for a0 - corresponding to ||b||max = 1.3T at
the stator, value considered as the onset of magnetic saturation29 - and ω in the
table are purely indicative given that they do not influence the normalized results
provided hereafter.

Geometry

Rotor radius R1 42.5 mm

Stator inner radius R2 45 mm

Stator outer radius R3 50 mm

Number of pole pairs p 2

Operating parameters

Peak value of the magnetic potential a0 6.1×10−3 T.m

Angular velocity of the rotor ω 100π rad/s

Material properties Electrical steel

Magnetic susceptibility χ 2, 500

Magneto-mechanical coupling Λ −1.3×103

Mass density ρ0 7, 650 kg/m3

Young’s modulus E 215×109 Pa

Poisson ratio ν 0.3

Table 3.14: Motor geometry, operating parameters and material properties for the stator
boundary value problem

As discussed in Subsection 3.2.1, the equations are solved in the stator frame
S(r, θ, t) and all field quantities are functions of (r,Θ), where Θ = pθ− t and p
the motor pole number (here taken p = 2). The results here are a snapshot of
these rotating fields at t = 0 and are presented by plotting the corresponding field
quantity at (r, θ).

3.2.3.2 Magnetic field in stator and airgap

Figure 3.15 displays the norm of the airgap and stator magnetic field, normalized
by the reference magnetic field bref. The high magnetic stator permeability dras-

29 See for instance Rekik, Hubert, and Daniel, 2014 that reports values for the onset of magnetic field
saturation for typical electrical steels (e.g. M400-50A) around 1.3T .
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tically increases the magnetic field intensity to a maximum amplitude reaching
more than 4.5 times the input magnetic field bref. The streamlines of the mag-
netic field are plotted in order to highlight how the magnetic field is “bent” at the
airgap-stator interface by the important difference in magnetic permeabilities. This
“bending” and concentration of the magnetic field explains the magnetic-shielding
properties of the stator - it contains the magnetic field within - and justifies our
approximation br = 0 in r3.

Figure 3.15: Norm of the normalized magnetic field: ||b||
bref

.

3.2.3.3 Traction and body forces

Figure 3.16 pictures the norm of the stator body forces of electromagnetic origin
m

f = −∇·
m
σ. The streamlines are plotted in order to visualize the direction of the

local forces. Figure 3.17 provides additional information by plotting the radial and
tangent force components. All forces are normalized by the reference force ampli-
tude fref = σref

R2
. The radial and tangent force components have comparable am-

plitudes. The radial component remains positive everywhere and pulls the stator
in the +êr direction. Because evenly distributed between compression and tension
along the stator in the êθ direction, the tangent force component does not con-
tribute to the stator’s expansion and induces no torque along êz (no global pull in
êθ).

Figure 3.18 pictures the distribution along êθ of the surface traction terms that
result from the jump in stresses accross the stator boundaries in r2 and r3. The
surface traction results are normalized by the reference stress σref. As expected
from the interface conditions in (3.45) given the form of the solution for a, the
radial traction components are cosine and the tangent ones are sine. The traction
on both stator boundaries are dominantly radial, and dominantly pull in the −êr
direction. They seem to pull with much higher intensity than the electromagnetic
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Figure 3.16: Norm of the normalized body forces of electromagnetic origin in the stator:
||
m
f ||

σref/R2
.

(a)

m
f r(r,Θ)
σref/R2

(b)

m
f θ(r,Θ)
σref/R2

Figure 3.17: Components (a) radial and (b) tangent of the normalized body forces of elec-
tromagnetic origin in the stator.
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Figure 3.18: Normalized electromagnetic surface traction at interfaces ∂D2 and ∂D3: radial
e
σrr
σref

and tangent
e
σrθ
σref

.

body forces (Figure 3.17), however this is just a misleading inkling due to the
normalization of the body forces by the radius R2 and the fact that body forces act
in volume while surface traction act on surfaces. A proper comparison involves the
surface traction and

m
σ the electromagnetic part of the stress (see Figure 3.19) from

which the body forces derive, and shows that body forces effects are not negligible
compared to traction at the interfaces. This concurs with the observations made on the

(a)
m
σrr(r,Θ)
σref

(b)
m
σrθ(r,Θ)
σref

(c)
m
σθθ(r,Θ)
σref

Figure 3.19: Normalised magnetic part of the stresses in stator, accounting for magne-
tostriction (Λ = −1.3×103): (a) normal, (b) shear and (c) hoop.

rotor boundary value problem (Section 3.1) that body forces are not negligible in
ferromagnetic materials and that they may still be significant despite the negligible
currents j = 0 because of force contributions other than the Lorentz force. The
radial surface traction acting on the outer boundary has amplitude comparable to
the radial traction on the inner stator boundary. Regarding tangent traction, as for
the electromagnetic body forces θ-component (Figure 3.17) the traction terms in the
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êθ direction are purely sinusoidal in θ - no average component - and thus induce
neither expansion neither pull in êθ. The fact that neither the surface traction nor the
body forces induce any resultant pull in êθ - or resultant torque along êz - explains why
no boundary conditions on u where required in the solution process in Section 3.2.
The null tangent traction force on the stator’s outer boundary is explained by the
boundary condition imposed on br(r3) = 0 (hypothesis of magnetic insulation).
The tangent traction on the inner boundary r2 acts in opposition to the body forces
in θ - positive when the body forces are negative and reciprocally.

The pics of positive values for the radial traction in r = r2 are explained by the
traction term of (3.45) that involves the magnetostriction coefficient Λ and the
radial magnetic field br. They correspond to regions where the magnetic field is
dominantly radial (see Figure 3.15). In comparison, the corresponding pics for the
radial traction in r3 never go above zero because of the hypothesis br = 0. In these
regions where the magnetic field is dominantly radial, the moderate difference
between the pics of the radial traction in r2 and those of the radial traction in r3
highlights the moderate influence of the radial component of the magnetic field
and that the traction forces are mostly due to the tangent magnetic field component. The
tangent component of the magnetic field is indeed the “large” component on a
circular stator given the jump condition JhθK = 0 at interfaces with air and the
large difference in magnetic permeability.

The stator takes on the difference between the surface traction forces in r2 and r3,
which is thus of more comparable amplitude with the electromagnetic body forces.
Furthermore, the difference between radial surface forces in r2 and r3 alternates
between positive and negative, which is likely to introduce bending. Similarly the
net shear forces due to the interface forces alternate between positive and negative.

3.2.3.4 Total and elastic stresses

Figure 3.20 provides the normal, shear and hoop total stress components normal-
ized by the reference stress σref that quantifies a stress input due to the input
magnetic field in r1. It shows a clear dominance of the hoop component with a dis-
tribution traducing bending. Here again the symmetrical amplitude on the shear
stress component explains the absence of resulting torque along êz (recall (3.9)).

(a)
σrr(r,Θ)
σref

(b)
σrθ(r,Θ)
σref

(c)
σθθ(r,Θ)
σref

Figure 3.20: Normalized total stresses in stator, accounting for magnetostriction (Λ =

−1.3×103): (a) normal, (b) shear and (c) hoop.
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The normal stress components highlights regions of push (θ = 0+ kπ2 , k = 1, ...4)
and pull (θ = π

4 +k
π
2 , k = 1, ...4) along the êr direction, yet of much smaller ampli-

tude than the surface traction acting on the stator boundaries (Figure 3.18) acting
along −êr.

Figure 3.21 shows the distribution of the normal, shear and hoop elastic stress
components, normalized by the reference stress σref. The important differences
between the result for the elastic stresses

e
σ and the total stresses σ =

e
σ+

m
σ attests

of significant electromagnetic stresses
m
σ and consequently of the point previously

made that the electromagnetic body forces (∇·
m
σ) are not negligible. The results of

Figure 3.21 show that the shear elastic stress is an order lower in magnitude when
compared to the dominant radial and hoop elastic stresses. The normal elastic
stress component is mostly compressive. The significant hoop stress component
alternates zones of traction and compression on each side of the stator circular
middle line, which indicates significant bending effects. This is highlighted by the
radial displacement in Figure 3.22, which is positive in regions of negative normal
elastic stress

e
σrr and vice-versa. This radial displacement “against” the normal

stress is explained by the dominant bending along êz acting against
e
σrr.

(a)
e
σrr(r,Θ)
σref

(b)
e
σrθ(r,Θ)
σref

(c)
e
σθθ(r,Θ)
σref

Figure 3.21: Normalised elastic stresses in stator, accounting for magnetostriction (Λ =

−1.3×103): (a) normal, (b) shear and (c) hoop.

(a)
ur(r,Θ)
uref

(b)
uθ(r,Θ)
uref

Figure 3.22: Normalized displacements in stator, magnified 4×106 times, accounting for
magnetostriction (Λ = −1.3×103): (a) radial, (b) tangent. The central circle pic-
tures the rotor boundary ∂D1.
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3.2.4 A comparison with other models

To gain insight on the benefits of the previous analytical developments, an inter-
esting comparison is that of the results obtained for the previous stator boundary
value problem (in the following referred to as Model 1) with the result one would
obtain in two other cases of expressions for

m
σ, referred to as Model 2 and Model 3.

Model 2 has the same expression as used in the previous stator stress computations,
however for the particular case Λ = 0 i.e. not accounting for any magnetostriction
contribution. Model 3 is a model that has been recently proposed by (Pile et al.,
2019a; Pile et al., 2019b; Pile et al., 2020) for vibroacoustic analysis of electric mo-
tors. These studies are most often performed at design or predesign stages for
optimization of motor designs, and favor analytic or semi-analytic expressions of
force distributions for fast analyses at reduced computational costs. In an approx-
imation, the model proposed reduces the electromagnetic stress at the stator to

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
, (3.56)

which is referred to as the “Maxwell tensor” for its similarity with the Maxwell
stress in vacuum (same expression with µ = µ0). As detailed in Subsection 2.2.2,
this expression for

m
σ accounts for the Lorentz force only and under the hypothesis

of no stator currents the resulting magnetic body force
m

f = ∇·
m
σ = j×b = 0. The

stress equation to solve on the elastic stress becomes simply

D3 : ∇·
e
σ = 0 . (3.57)

At the air-stator interfaces in r2 and r3, the stress jump condition in terms of the
continuous br and hθ components become,

∂D2 ∪ ∂D3 :


e
σrr =

1

2

χ

µ
b2r +

1

2
µ0χh

2
θ

e
σrθ = 0

. (3.58)

Analytic calculation for this model are performed in a similar fashion as in Sec-
tion 3.2.2 and on the same stator problem (same geometry, same material param-
eters), save for the changed stress expression. The magnetic field distribution is
unaffected and remains the same. For stress calculation, because of the absence
of electromagnetic body forces in this model due to the hypothesis of no stator
currents, only remains the homogeneous stress field solution, with constants to
be determined from application of the aforementioned stress boundary conditions
(3.58) in r2 and r3.

Figure 3.23 provides a comparison of the radial component of interface forces
in r2 and r3 obtained for the three models. The plot is over the range θ ∈ [0,π]
for clarity of the figure, and extendable to [0, 2π] by the π/2-periodicity of the
problem (fields in cos(2Θ) and sin(2Θ)). The radial surface forces are significantly
different between Model 1, 2 and Model 3. This difference is due to the stress
term χ

2µ(b·b)I added in our models. Between Model 1 and Model 2, one observes
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a slight contribution of the magnetostrictive term Λ
µbb, which as explained in

Subsection 3.2.3.3 introduces some bending in Model 1, which is not occurring in
Model 2. The contribution is much lower than that of magnetization forces, which
concurs with observations made for the rotor case in Section 3.1. As to the tangent
component of the surface forces, no comparison plot is provided given Model
2 and Model 3 both have zero tangent surface forces in r2 and r3. The tangent
surface forces for Model 1 is given in Figure 3.18. It should finally be noted that
if the interface traction on the external stator boundary for Model 3 is negligible
as a result of the magnetic insulation hypothesis br = 0 - which justifies that it
be neglected in the associated literature (Pile et al., 2019b; Pile et al., 2019a; Pile
et al., 2020) - it is not negligible for Model 1 and Model 2 and should definitely
be accounted for. Further, because of its importance, it raises the question of the
impact of the negligible magnetic flux leakage hypothesis on the external stator
boundary br = 0.

Figure 3.23: For the three models compared, radial normalized surface traction
e
σrr
σref

at
interfaces ∂D2 and ∂D3.

The general stress, elastic stress and displacement results obtained in the two
configurations of Model 2 and Model 3 have distributions similar - though dif-
ferent - to the ones obtained in 3.2.3.4. To lighten this section, they are given in
Appendix B.6. In order to highlight the differences between the three models, the
following provides comparison plots for the range over which the stress, elastic
stress and displacement components span for all (r, θ) ∈ D3 (stator). For the total
stresses, Figure 3.24 shows the same comparable results for all three models, sug-
gesting the same total stress distribution for all three models (confirmed by looking
at the additional results in Appendix B.6). Indeed, all three models solve the same
equation for the total stresses ∇·σ = 0 with the same boundary conditions that
σ be equal to the Maxwell stress in air on each boundary of the stator. Because
the magnetic field distribution remains unchanged from one model to another, the
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Maxwell stress in air domains remains unchanged. Same equation, same boundary
conditions: same results logically follow30 for σ. As a result of all three models hav-

Figure 3.24: For the three models compared, range of values across all (r,Θ) ∈ D3 for the
normalized total stress σ

σref
: for the normal, shear, and hoop stress compo-

nents.

ing the same total stress σ but different expressions for
m
σ, significant differences

occur for
e
σ31, as highlighted in Figure 3.25. One can observe from Figure 3.24 and

Figure 3.25 - and additional results in Appendix B.6.2 - that Model 3 has
e
σ = σ,

following
m
σ = 0 as a result of the negligible currents and thus negligible body

forces32. The differences on the elastic stresses between Model 1 and Model 3 are
then mostly on the radial σrr (roughly a factor 10), and shear σrθ (roughly a factor
2) stresses. The difference is much less significant on the hoop stress σθθ.

Regarding the displacement field, comparison results are given in Figure 3.26

for the radial displacement ur(r,Θ) and tangent displacement uθ(r,Θ). It was also
judge interesting to perform the comparison on the non-harmonic “static” fraction
u0r of the radial displacement field33. The most striking difference between Model
1 and Model 3 is on the u0r distribution (roughly a factor 5 on the amplitude of
the spectrum of values, roughly a fator 7 on the minimum value). Further, this
distribution of u0r is centered around 0 for Model 1, while values are compressive
(contraction of the stator) for Model 3. The amplitude spanned by the total radial
displacement ur is roughly unchanged between Models 1 and 3 (4% shorter for
Model 3). The difference is slightly higher for the tangent displacement uθ (the
amplitude is 13% higher compared to Model 1). Both model have the tangent dis-

30 The slight differences observed on the results for σθθ in Figure 3.24 are attributed to numerical
errors in the numerical solution of the integration constants of the analytical stress field expressions.

31 Recall
e
σ = σ−

m
σ .

32 Recall in the case of Model 3 ∇·
m
σ = j×b.

33 Recall the displacement u(r,Θ) = u0(r) +uc(r) cos(2Θ) + us(r) sin(2Θ).
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Figure 3.25: For the three models compared, range of values across all (r,Θ) ∈ D3 for the

normalized elastic stress
e
σ
σref

: for the normal, shear, and hoop stress compo-
nents.

placement uθ centered around 0 (no rotation of the stator, as already highlighted).
Overall, the differences between Model 1 and Model 3 concur with the observa-
tions made on the rotor boundary value problem in 3.1 that in materials with strong
magneto-mechanical couplings and high magnetic properties such as ferromagnetic materi-
als, other forces than the Lorentz force appear and are significant. The observation that
the so-called “Maxwell stress tensor” is not enough to describe the behavior of mate-
rials that have strongly coupled magneto mechanica-behavior was already made by
some authors based on theoretical grounds (e.g. see Bossavit, 2011,Bossavit, 2015).
It is here quantified on a practical example. This point may be valuable for the im-
provement of the typical vibroacoustic design tools that neglect volume forces and
include interface forces only (Pile et al., 2019b; Pile et al., 2019a; Pile et al., 2020).
It remains interesting to see that for the present study these vibroacoustic tools,
although approximate, still provide a close approximation of the amplitudes (max-
imum value minus minimum value) for the radial displacement ur (4% difference)
and the tangent displacement uθ (13% difference). The average stator contraction
however is significantly different.

The comparison between Model 1 and Model 2
34 highlights the impact of the

magnetostriction coefficient Λ. The impact on the radial elastic stress component
is negligible. The difference is on the shear and hoop component of the elastic
stress (roughly a factor 2 for both). As previously detailed, the magnetic field in
the stator is mostly along êθ and stronger in that direction. Magnetostriction can
be expected to act in the direction of the field mostly35. As a consequence, its im-
pact on the shear and hoop components mostly seems sound. The consequences

34 Recall Model 2 is the same as Model 1 save for the magnetostriction coefficient Λ = 0.
35 Recall the magnetostrition has effect the elongation of the grains in the direction of the applied field.
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on the displacement fields - going from no magnetostriction in Model 2 to magne-
tostriction accounted for in Model 1 - are a decreased amplitude for uθ (roughly
30%) and an average contraction u0r of the stator centered around 0 instead of
negative everywhere in the case of Model 2. This observations seems consistent
as the magnetostriction contribution added when going from Model 2 to Model 1

elongates the stator in the direction of the field - mostly in êθ as previously men-
tioned -, which consequently tends to stator expansion. Save for the shift in u0r , the
amplitude of the radial displacement remains unchanged (under 2% difference).

Figure 3.26: For the three models compared, range of values across all (r,Θ) ∈ D3 for the
displacement, normalized by uref: for the mean radial displacement u0r(r), for
the total radial displacement ur(r,Θ) and for the total tangent displacement
uθ(r,Θ).

3.2.5 Conclusion for the stator problem

As a second example of application, the theory presented in Chapters 1 and 2 is
employed for the analytical modeling of the stator of an idealized synchronous
motor for which we calculate the magnetic, stress and displacement fields. The
most important results discussed for the stator analytical boundary value problem
are:

main results :
• We highlighted based on a practical analytical example that the magneto-

mechanical couplings in the ferromagnetic materials found in electric
motors are not finely described by a material Maxwell-like stress tensor

m
σ =

1
µ(bb − 1

2(b·b)I) commonly used as an approximation in the electric
motor literature (Pile et al., 2019b; Pile et al., 2019a; Pile et al., 2020). This
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was already explained in for instance Bossavit, 2011; Bossavit, 2015 based
on theoretical grounds. It is here quantified.

• In electric motor problems with materials that have strong magnetic
properties and a strong magneto-mechanical coupled behavior, such as
the ferromagnetic materials, body forces are just as important as traction of
electromagnetic origin at interfaces, justifying the analysis and calculation
of total stresses in the bulk;

• Traction forces are mostly due to the tangent magnetic field component, much
larger than the radial component. This for instance suggests that FEM
methods should focus on the precision of the tangent magnetic field;

• Traction forces are significant on both internal and external stator surfaces,
which raises the question of computing the external magnetic field in air
around the stator - instead of the magnetic insulation hypothesis br = 0
on the stator’s periphery - to see if it impacts the traction boundary con-
dition;

• The stator tends to contract in addition to ovalization, which concurs
with the existing literature (e.g. see Fonteyn et al., 2010a).





4
C O N C L U S I O N O F PA RT I

The essential contributions of Part I are:

• Proposing a general framework, based on the direct approach of contin-
uum mechanics using the principles of electromagnetism, mechanics and
thermodynamics, suitable for the modeling of coupled thermo-magneto-
mechanical problems in electric motors;

• A proper linearization of the constitutive relations in the small strains, ar-
bitrary magnetization regime for materials with coupled magneto-mechan-
ical behaviors;

• Examples of analytical boundary value problems for simplified electric
motors to calculate temperature fields and identify different contribu-
tions of stress and body forces.

discussion Using the direct approach of continuum mechanics, based on the
work of Kovetz, 2000, a general framework that couples the electromagnetic, ther-
mal and mechanical effects is derived and subsequently applied to formulate the
boundary value problem for electric motors. Particular attention is paid to the
derivation of the coupled constitutive equations for isotropic materials under small
strain but arbitrary magnetization, an important highlight of this work: in the field
of electric motors and associated literature, the small strain expressions typically
used do not comply with the angular momentum balance, an essential principle
of mechanics. Due to the complex geometry of a typical electric motor (see Figure
0.1) and to the non-linear and coupled material behavior, numerical solutions of
the governing equations are required. To gain insight, the theory is applied to the
modeling of two idealized analytical boundary value problems.

As a first application, we calculate the magnetic, thermal, and stress fields at
the rotor of an idealized asynchronous motor that has significant induced currents.
Comparing the Lorentz, magnetization and the magnetostrictive forces for a ro-
tor made of electrical steel, we find that the first are negligible and the second
dominant. Magnetostrictive body forces – resulting from the constitutive coupling
between stress and magnetization effects – although smaller than their magnetic
counterparts, are considerably higher than the Lorentz. The comparison of the dif-
ferent parts of the stress tensor (elastic and total) to the purely mechanical stresses
due to inertia, reveals the significant influence of electromagnetic phenomena on
the resulting stress state. As a result of the significant induced currents due the
skin effect, a stress concentration boundary layer develops about the rotor’s edge.

A second example of application addresses the stator of an idealized permanent
magnet motor for which we calculate the magnetic, stress and displacement fields.
Three models are compared that include the Lorentz forces only, the Lorentz and
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magnetization forces or the Lorentz, magnetization and magnetostriction forces
altogether. As for the rotor case, significant differences in the elastic stress and
displacement fields are observed between the models, which confirms the signif-
icant influence of the magnetization and magnetostriction forces. A comparison
with existing tools and approximations of the force terms typically used for the
vibroacoustic analyses of electric machines is discussed.

Both problems are solved using realistic material parameters, geometric and
operational regime values and show how classical methods of elasticity can be
used for the analytical solution of coupled magneto-mechanical motor problems.
They both show clearly the importance of correctly accounting for the coupled
magneto-mechanical effects and both interface traction and body forces of elec-
tromagnetic origin for the accurate calculation of elastic stress and displacement
fields in electric motors. The proposed methodology for solving general boundary
value problems is applicable to more complicated motor geometries and nonlin-
ear constitutive responses that include moderate strains, magnetic saturation and
dissipative effects. For these problems, a numerical approach based on coupled
variational principles is necessary, which is the object of Part II of this thesis.

suggestions for future work on analytical methods Despite the
theory provided being general enough to account for a wide range of couplings
between mechanical, magnetic and temperature fields, the analytical models pro-
vided here take assumptions on the coupling terms and the material behavior may
be further refined.

For the tractability of the analytical calculation, some of the coupling terms be-
tween the magnetic field and the strains were neglected. Further investigation on
the ability to account for these coupled terms - of order greater than 2 in b - in
analytical calculation would be interesting, in particular for a better understanding
of the vibroacoustics of electric motors.

The analytical method provided may possibly be extendable to the analytic mod-
eling of more complex geometries - accounting for stator and rotor teeth and slots
for instance - in the spirit of Lubin, Mezani, and Rezzoug, 2011a, Lubin, Mezani,
and Rezzoug, 2011b, Lubin, Mezani, and Rezzoug, 2012.

The small strain but arbitrary magnetization expression provided, because de-
rived from expressions that comply with thermodynamics and with the angular
momentum balance, include physical restrictions that are usually not accounted
for in the characterization of electrical steels. Their performance at fitting the ex-
perimental data, likely with fewer coefficients to be determined, should be investi-
gated.
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5
VA R I AT I O N A L F O R M U L AT I O N F O R E L E C T R I C M O T O R
P R O B L E M S

In addition to the coupled magneto-mechanical behavior mentioned throughout
the beginning of this work, a typical electric motor, depicted in Figure 0.1, has a
complex geometry and non-linear (in particular magnetic) material behavior re-
quiring numerical solution. This chapter pertains to the derivation of a suitable
variational formulation for the subsequent numerical finite-element analysis of
electric motor problems. The numerical implementation is later detailed in Chap-
ter 6 and examples of application to electric motor problems are given in Chapter 7.

literature review The first FEM computations for stresses in electric mo-
tors used a stepwise, uncoupled, approach: electric currents and magnetic fields
where calculated using a purely electromagnetic model; the electromagnetic body
force vector was then introduced as the external body force in a purely mechani-
cal model to calculate the resulting stress state (e.g. see: Reyne, Sabonnadière, and
Imhoff, 1988; Javadi et al., 1995). The above-described approximate methods are
inadequate to deal with the true multiphysics nature of the electric motor prob-
lem. Recognizing these issues, recent work by Fonteyn, 2010; Fonteyn et al., 2010b;
Fonteyn et al., 2010a takes into account magnetoelastic coupling effects for the
numerical stress calculation in electric motors. They propose a weighted residual
Galerkin method based on the small strain current configuration (Eulerian) govern-
ing equations (linear momentum balance and Ampère’s law), which they obtain
from the direct approach. Because the numerical implementation is solved in the
bulk ferromagnetic material only (for the coupled problem), it does not retrieve
the Maxwell stress in the airgap region1. The last has a significant influence on the
solution of the equation of motion. As a consequence, the formulation of Fonteyn,
2010; Fonteyn et al., 2010b artificially adds the contribution of the airgap Maxwell
stress at the interface nodes between the airgap and the ferromagnetic components.

It should be mentioned here that various commercial packages exist which claim
the ability to solve the magneto-mechanical problems (for instance see Ledger et
al., 2016; Pile, Devillers, and Le Besnerais, 2018 for a review of various available
packages). However coupled problems can take many forms depending on the
semantics one uses - weak couplings, strong couplings, stepwise couplings by sub-
sequently solving the equations of motion and the equations of electromagnetism,
etc... - and it is very difficult to finely grasp in a reasonable amount of time what
these codes truly solve and how. Further, these coupled modules are “rigid” in the
sense that one has to comply with the possibilities that they offer and what they
do not allow. As mentionned in Ledger et al., 2016, this leads to the conclusion that

1 The Maxwell stress pervades vacuum – and air regions typically assimilated to vacuum – that sur-
rounds the motor components. This stress is responsible for surface traction that arise at the in-
terface between air and a magnetic materials as a result of their distinct magnetic properties (see
Section 2.2.3).
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it is often easier to develop one’s own codes. Through the possibility of defining
user elements, the general purpose finite element code Abaqus, offers the possibility
of defining one’s own coupled FEM tools, and call to the software’s solver only.

The energies of electromagnetic and coupled electro-magneto-mechanical prob-
lems are known, at least for non-dissipative problems. As such, variational for-
mulations exists in the literature for the modeling of purely electromagnetic prob-
lems, which do not require the use of the Galerkin method. A review of varia-
tional formulations for electromagnetic problem is presented in Lazzari and Nibbi,
2000, among which is a least action principle formulation for which we also refer
the reader to the work of Lax and Nelson, 1976. Other authors have suggested
variational formulations for coupled-electromagnetic thermomechanical problems
based on Hamilton’s principle. Some of them are referred to in the introduction
of Lazzari and Nibbi, 2000, among which Maugin, 1980 which proposes a vari-
ational formulation based on the Method of Virtual Powers and a series of im-
portant works around Lagrangian approaches (Trimarco, 2007; Trimarco, 2005; Tri-
marco, 2002; Trimarco and Maugin, 2001; Maugin, 1993) that are our interest here.
This Hamilton principle based formulation has been applied to the modeling of
magneto-rheological elastomers (Kankanala and Triantafyllidis, 2004) or electro-
magnetic forming processes (Thomas and Triantafyllidis, 2009). The formulation
is Lagrangian as a requirement to retrieve the Maxwell stress contribution, and
consequently it is a finite strain formulation. Despite the electric motors being typ-
ically subject to small strains, we shall propose here an extension of this variational
formulation to the electric motor problem.

summary and outline Following the approach of Thomas and Triantafyl-
lidis, 2009, a Hamilton principle based variational formulation is considered here
as a particularly efficient solution for the modeling of coupled electro-magneto-
mechanical problems. For ease of derivation, it is written on the reference La-
grangian configuration and thus involves large strains although application to elec-
tric motor problem in Chapter 7 leads to small strains. We believe starting from
the most general problem before restricting it for particular application ensures
we remain consistent throughout the development. For that reason, in the spirit
of Part I that proposes a formulation for very general coupled electromagnetic-
thermomechanical problems prior to applying restrictions suitable for the mod-
eling of electric motors, we first propose a general variational formulation for dy-
namic electromagneto-mechanical problems, before restricting the formulation to a
more suitable form for the particular case of electric motor problems (eddy current
approximation).

In the following, Section 5.1 proposes a Lagrangian for the general variational
formulation of dynamic electro-magneto-mechanical problems. Applying Hamil-
ton’s principle, we show that the Lagrangian suggested complies with the theory
obtained from the direct approach in Chapter 1, a non trivial result for coupled
problems. In Section 5.2, we restrict the formulation in the eddy current approxi-
mation for use in electric motor problems. We show that upon applying Hamilton’s
principle the governing equations of the electric motor (eddy current) problem ob-
tained from the direct approach in Chapter 2 are retrieved.
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Nota: For simplicity and without loss of generality, the formulations provided here-
after in Sections 5.1 and 5.2 do not account for any dissipation effects, and conse-
quently internal variables ξ (see Chapter 1) are dropped. Temperature aspects are
discarded as well2. Despite this, the theory exposed in Sections 5.1 and 5.2 remains
able to encompass a wide range of non-linear coupled electro-magneto-mechanical
phenomena. Also note that in this part of the thesis, we work with the form of the
specific energy ψ = Ψ(C,E,B) that has the true Lagrangian magnetic field B3 (see
Section 1.4.4).

5.1 a formulation for general electro-magneto-mechanical prob-
lems

Following Kankanala and Triantafyllidis, 2004; Thomas and Triantafyllidis, 2009,
we write the variational formulation of the problem in the reference configuration.
Doing so eases the calculation of variations: as terminals of integrals are fixed in the
reference configuration, only the variations of the integrand need to be accounted
for.

5.1.1 A Lagrangian density for purely electromagnetic problems

The proposed variational formulation is based on the φ−a potential formulation
such that conveniently two of Maxwell’s law are identically satisfied by construc-
tion: Maxwell-Faraday’s law and the no-magnetic monopole law (see Section 1.2.2).

From Lax and Nelson, 1976, a current configuration purely electromagnetic La-
grangian density can be defined for the study of moving and deformable bodies
with no polarization nor magnetization,

l(φ,a) =
ε0
2
(e·e) − 1

2µ0
(b·b) + j·a− qφ . (5.1)

In the above, e and b are functions of the potentials φ and a through (1.22). The
potentials are taken as the Lagrangian’s generalized coordinates such that when
applying Hamilton’s principle, the Euler-Lagrange equations for φ and a respec-
tively yield Maxwell-Gauss and Maxwell-Ampère’s laws for media with no polar-
ization nor magnetization (Lax and Nelson, 1976). Note that j and q are externally
applied quantities held constant in the process of applying Hamilton’s principle of
variations (later in Section 5.2.2).

Passing the pure electromagnetic Lagrangian density l (5.1) to the reference
configuration provides the reference configuration Lagrangian density l0 (Lax and
Nelson, 1976),

l0 = Jl =
ε0J

2
E·C−1·E−

1

2µ0J
B·C·B+J·A−QΦ , (5.2)

2 We showed previouly in Part I how temperature and internal variables can be accounted for to
model dissipative behaviors. These developments may help in the derivation of variational formula-
tions that account for dissipative behaviors such as thermo-mechanical couplings, thermo-magnetic
couplings and magnetic hysteresis, which are particularly relevant to the modeling of electric motors.

3 In contrast to ψ = ψ̂(C,E, B̃) where B̃ is not the true counterpart of the Eulerian magnetic field b.
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where we recall the field transformations (see equations (1.38), (1.41), (1.44), (1.50)
and (1.107)),

E = e·F , J = JF−1·j , A = a·F ,

B = JF−1·b , Q = Jq , Φ = φ−
.
u·a .

(5.3)

Notice that here and subsequently,
.
x in the expressions derived in Part I is changed for

.
u =

.
x given x = X+u and variations will subsequently be taken with respect to u.

As a consequence of the transformation for Φ, the reference configuration con-
duction current J stems out in l0 (5.2), while it was the total current j = j + q

.
x

that figured in l (5.1). It should also be noted for future derivation that E is related
to the Lagrangian electromotive intensity E through,

E =E− (F−1· .
u)×B , (5.4)

and that the Lagrangian electromotive intensity E and magnetic field B are related
to the Lagrangian potentials Φ, A through (1.49).

Upon applying Hamilton’s principle with Lagrangian generalized coordinatesΦ
andA, the Euler-Lagrange equations forΦ andA yield the reference configuration
Maxwell-Gauss and Maxwell-Ampère’s laws for media with no polarization nor
magnetization (Lax and Nelson, 1976). J and Q are externally applied quantities,
held constant when taking the variations.

5.1.2 A general coupled electromagnetic-mechanical Lagrangian

In order to account for mechanics, as well as magnetization and polarization, the
pure electromagnetic Lagrangian density provided above needs to be completed
with other terms. Based on Thomas and Triantafyllidis, 2009

4, the solids specific
free energyψ, the kinetic energy and the work of the external body forces f and sur-
face tractions tm are added to provide the reference configuration total Lagrangian
of the system L. For a body occupying a domain Ω,

L ≡
∫

R3

(
l0 − ρ0ψ+

1

2
ρ0(

.
u·

.
u) + ρ0f·u

)
dV +

∫
∂Ω

Tm·udS . (5.5)

Integration over R3 is necessary in order to account for the electromagnetic field
in both the body Ω and its surrounding space Ω/R3. The density ρ0(X) 6= 0 for
X ∈ Ω and ρ0(X) = 0 for X ∈ R3/Ω. The traction Tm = tmds/dS is the reference
configuration counterpart of the current configuration surface traction tm applied
on the boundary ∂Ω of domainΩ. The specific free energy ψ is the same functional
as that defined in Chapter 1. It makes the link between the variational and direct
approaches and we have,5

ψ = ψ(F, e, b) = Ψ(C, E, B) . (5.6)

4 Note that an important difference is that the specific free energy of the solid in Thomas and Tri-
antafyllidis, 2009 is purely mechanical because of the negligible polarization and magnetization
assumptions.

5 Recall that compared to Chapter 1, temperature and internal variables are not considered here.
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The Lagrangian in Thomas and Triantafyllidis, 2009 is the same as (5.5) however
with ψ(F, T , ξ) because not accounting neither for polarization nor magnetization.
The fundamental difference here lays in (5.6), which enables to account for polariza-
tion and magnetization. Similar formulations are also proposed in Trimarco, 2007

and the referred literature (Trimarco, 2005; Trimarco, 2002; Trimarco and Maugin,
2001; Maugin, 1993), mostly based on a formulation with material energy depend-
ing on the polarization and magnetization (p,m) instead of electromotive and
magnetic fields (e,b) – and reference configuration counterparts – and without
the electric charge and current contributions.

In the Lagrangian L (5.5), J and Q contained in l0, together with f and Tm are
externally applied quantities. They are considered fixed when applying the varia-
tional principle. The independent fields are Φ, A and u. In the following, we will
derive the Euler–Lagrange equations of the corresponding Hamilton’s variational
principle and show that they do yield Gauss’s law for variations with respect to Φ,
Ampère’s law for variations with respect to A, and the linear momentum balance
for variations with respect to u.

Note that in the spirit of Hamilton’s principle, the Lagrangian is defined as

L = K −P . (5.7)

with K and P respectively the kinetic and potential energies. This motivates the
“-” sign in front of the specific free energy contribution in (5.5) and “+” sign in
front of the external work of applied loads. An interesting question – though not
crucial to our problem – arises as to what is kinetic and what is potential in the
pure electromagnetic Lagrangian densities (5.1) and (5.2) and in the Lagrangian
of the coupled problem (5.5), as the electromagnetic fields may add contributions
to the classical kinetic energy 1

2ρ
.
x·

.
x. We refer the reader to the work of Trimarco,

2005 for a discussion on that matter.

5.1.3 Application of Hamilton’s principle of variations

We form the action integral F by integration of the Lagrangian L between arbi-
trary times t1 and t2,

F ≡
∫t2
t1

Ldt . (5.8)

By Hamilton’s principle, the action integral F is stationary, thus6

δF = 0, (5.9)

with conditions δΦ = 0, δA = 0 and δu = 0 at t = t1 and t = t2. Given the
generalized coordinates Φ, A and u, this reduces to

F,Φ[δΦ] = F,A[δA] = F,u[δu] = 0 , (5.10)

which provides the so-called Euler-Lagrange equations, together with interface
conditions, derived hereafter.

6 Here and subsequently, δ denotes the variation of a functional.
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5.1.3.1 Variations with respect to Φ

For the variation with respect to Φ, based on intermediate derivations provided in
Appendix A.3,

F,Φ[δΦ] =

∫t2
t1

∫
R3

(l0,Φ − ρ0Ψ,Φ) [δΦ]dVdt

=

∫t2
t1

∫
R3

(
(JC−1·ε0E)·[−∇(δΦ)] −QδΦ− ρ0

∂Ψ

∂E
·[−∇(δΦ)]

)
dVdt

=

∫t2
t1

∫
R3

(
−D·∇(δΦ) −QδΦ

)
dVdt .

(5.11)

In the above, the reference configuration electric displacement D stems out from
recognizing the transpose of the aether relation to the reference configuration in
(1.110).

Now an integration by part needs to be applied. Deriving from the divergence
theorem, it only applies with smooth fields. The fields considered here are reason-
ably assumed smooth on subdomains between surface interfaces, but piecewise
smooth only over the whole space domain R3, that is discontinuous across inter-
faces. Thus the integration domain R3 needs to be split into the various subdo-
mains separated by the interfaces. For simplicity, is assumed here that only two
subdomains (and one interface) exist: one “motor part" (or material) domain and
outside vacuum. The following can however be generalized to any number of sub-
domains. The material domain is Ω, as already used before. Its surface boundary
is ∂Ω. The “vacuum" subdomain is what remains, that is R3/Ω. Thus, applying
the integration by part on each subdomain, with a unit normal to the interface N,
and a jump JfK = f+ − f− of a field f across the interface oriented by the normal
N:

F,Φ[δΦ] =

∫t2
t1

{∫
Ω

(∇·D−Q)δΦdV +

∫
R3/Ω

(∇·D−Q)δΦdV

−

∫
∂Ω0

N·JDK δΦ
}

dt

=

∫t2
t1

{∫
R3

(∇·D−Q)δΦdV −

∫
∂Ω0

N·JDKδΦ
}

dt .

(5.12)

As a result for variations with respect to Φ, one finally gets from the fundamental
lemma of the calculus of variations,

X ∈ Ω : ∇·D = Q ;

X ∈ ∂Ω : N·JDK = 0 ;
with:

{
D = JF−1·d ,

Q = Jq ,
(5.13)

where one recognizes the reference configuration counterpart of Maxwell-Gauss’s
law derived in Section 1.3.
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5.1.3.2 Variations with respect to A

For variations with respect to A, based on intermediate derivations provided in
Appendix A.3,

F,A[δA] =

∫t2
t1

∫
R3

(l0,A − ρ0Ψ,A) [δA]dVdt

=

∫t2
t1

∫
R3

{
− (JC−1·ε0E)·

d
dt

(δA) +J·δA

+

(
(F−1·

.
u)×(JC−1·ε0E)) −

1

µ0
C·B

)
·(∇×δA)

+ ρ0
∂Ψ

∂E
· d
dt

(δA) − ρ0
∂Ψ

∂B
·(∇×δA)

}
dVdt

=

∫t2
t1

∫
R3

{
−D· d

dt
(δA) +J·δA−H·(∇×δA)

}
dVdt .

(5.14)

In the above, the reference configuration electric displacement D and magnetomo-
tive intensity H stem out from recognizing the transpose of the aether relations to
the reference configuration in (1.110) and (1.113).

As for the variations with respect to Φ, integration by part, in both time and
space here, needs to be applied. The same separation of space between the volume
Ω occupied by the body and the surrounding space Ω/R3 is considered, together
with similar assumptions regarding the smoothness of the fields: smooth on subdo-
mains between surface interfaces, but likely discontinuous across interfaces. Time
and space integrals commute as the space integral is on the reference configuration.
Integrating by part in time for the term in D accounting for δA(t1) = δA(t2) = 0,
and integrating by part in space for the term in H accounting for the interface
discontinuities as previously exposed,

F,A[δA] =

∫t2
t1

{∫
R3

( .
D+J−∇×H

)
·δAdV −

∫
∂Ω

(N×JHK)·δAdS
}

dt . (5.15)

As a result for variations with respect to A, one finally gets from the fundamen-
tal lemma of the calculus of variations,

X ∈ Ω : ∇×H =
.
D+J ;

X ∈ ∂Ω : N×JHK = 0 ;
with:


D = JF−1·d ,

H = h·F ,

J = JF−1·j ,

(5.16)

where one recognizes the reference configuration counterpart of Maxwell-Ampère’s
law derived in Section 1.3.
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5.1.3.3 Variations with respect to u

For variations with respect to u, based on intermediate derivations provided in
Appendix A.3,

F,u[δu] =

∫t2
t1

{∫
R3

[
(l0,u − ρ0Ψ,u) [δu] + ρ0

.
u· d

dt
(δu) + ρ0f·δu

]
dV

+

∫
∂Ω

Tm·δudS
}

dt

=

∫t2
t1

{∫
R3

[
− Jε0

(
(C−1·E)E−

1

2
(E·C−1·E)I

)
·F−1 :∇δu

− Jε0

(
(F−1·

.
u)((C−1·E)×B)·F−1

)
:∇δu

−
1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1 :∇δu

+
(
(JC−1·ε0E)×B)·F−1

)
· d
dt

(δu)

− 2ρ0

(
∂Ψ

∂C
·FT
)

:∇δu

+ ρ0
.
u· d

dt
(δu) + ρ0f·δu

]
dV +

∫
∂Ω

Tm·δudS
}

dt

=

∫t2
t1

{∫
R3

[
−Π :∇δu+ ρ0g·

d
dt

(δu) + ρ0f·δu
]

dV

+

∫
∂Ω

Tm·δudS
}

dt .

(5.17)

In the above, Π and g stem out from recognizing the expressions for the refer-
ence configuration first Piola-Kirchhoff stress and momentum density respectively
given in (1.106)and (1.109). Of crucial importance is to note here that the reference
configuration counterpart of Maxwell’s stress in vacuum (1.108) included in Π is
retrieved thanks to the transposition of the current configuration l to l0 in the
reference configuration. This transposition leads to l0(Φ,A,u) when l(Φ,A) only,
such that Π

MW
results from taking the variations of l0 with respect to u. This

favors the present choice of a Lagrangian based formulation, justifying the finite
strain approach.

Then integrating by parts in space and time following the methodology previ-
ously introduced,

F,u[δu] =

∫t2
t1

{∫
R3

(
∇·Π− ρ0

.
g+ ρ0f

)
·δudV −

∫
∂Ω

(N·JΠK− Tm)·δudS
}

dt , (5.18)

and from the fundamental lemma of calculus of variations, one finally retrieves
from variations with respect to u,

X ∈ Ω : ρ0
.
g =∇·Π+ ρ0f ;

X ∈ ∂Ω : N·JΠK = Tm ,
(5.19)

where one recognizes the reference configuration counterpart of the linear momen-
tum balance derived in Section 1.3.
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Because the potentials Φ and A are not uniquely defined (see Section 1.3), a
3D numerical implementation of this variational principle further requires the
implementation of a gauge condition for the potentials, which can be included
through a penalty term in the Lagrangian L (e.g. see Kankanala and Triantafyllidis,
2004). In 2D, the Coulomb gauge condition is automatically enforced: a potential
A = A(x,y)êZ implies the Coulomb gauge ∇·A = 0.

5.2 a formulation in the eddy current approximation

In the following, an eddy current approximation of the general coupled electro-
magneto-mechanical formulation exposed in the previous section 5.1 is proposed.
As for the most general electromagnetic-thermomechanical formulation exposed
in the previous section, the proposed variational formulation is based on the φ−a

potential formulation (1.22).

5.2.1 Lagrangian of the problem

Neglecting the electric charge and the electric field energy (see Section 2.1), the
reference configuration pure electromagnetic Lagrangian density l (5.1) becomes
in the eddy current approximation:

l(a) = −
1

2µ0
(b·b) +j·a . (5.20)

As a result of neglecting electric charges q in the eddy current approximation the
total current j is reduced to the conduction current j (see Section 2.1), thus j now
appearing in (5.20), in contrast to j in (5.1).

Transposition to the reference configuration provides,

l0(u,A) = Jl = −
1

2µ0J
B·C·B+J·A , (5.21)

where we recall the field transformations (see equations (1.41), (1.44) and (1.50))

J = JF−1·j , B = JF−1·b , A = a·F , (5.22)

and the Lagrangian magnetic field B is related to the Lagrangian potential A
through (1.49).

Based on (5.5), the reference configuration total Lagrangian of the system be-
comes,

L =

∫
R3

(
l0 − ρ0Ψ+

1

2
ρ0(

.
u·

.
u) + ρ0f·u

)
dV +

∫
∂Ω

(Tm·u+K·A)dS , (5.23)

with Tm = tmds/dS. Here again, Ω denotes the domain occupied by the body and
∂Ω its surface. The density ρ0(X) 6= 0 for X ∈ Ω and ρ0(X) = 0 for X ∈ R3/Ω.
Integration over R3 is necessary in order to account for the electromagnetic field in
both the body Ω and its surrounding space Ω/R3. Having in mind the calculation
of similar boundary value problems as in 3, the possibility of imposing a current
sheet K on the boundary ∂Ω of the body is added in (5.23). In the eddy current
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approximation the specific free energy of the medium is now ψ = Ψ(C,B) such
that the dependence on the electromotive intensity E is dropped (see Section 2.1).
Thomas and Triantafyllidis, 2009 obtains the same Lagrangian as (5.23) in the eddy
current approximation, save for a specific free energy that only depends on F –
together with T ,ξ that we dropped here – as a result of negligible magnetization in
their case, and except for the current sheet term as well. The proposed Lagrangian
in (5.23) adds the possibility to account for magnetization.

In the Lagrangian L, J contained in l0 together with f, Tm and K are exter-
nally applied quantities. They are considered fixed when applying the variational
principle. As a result of the eddy current approximation, the electric potential
Φ disappears from the expressions, as already discussed in Section 2.1, and the
independent fields are now only A and u. In the following, we will derive the
Euler–Lagrange equations of the corresponding Hamilton’s variational principle
and show that they yield the corresponding eddy current approximation of Am-
père’s law for variations with respect to A and of the linear momentum balance
for variations with respect to u.

5.2.2 Application of Hamilton’s principle of variations

The action integral F is formed by integration of the Lagrangian L between ar-
bitrary times t1 and t2 and, by Hamilton’s principle of variation, is stationary,7

δF = 0 , F ≡
∫t2
t1

Ldt . (5.24)

with conditions δA = 0 and δu = 0 at t = t1 and t = t2. With A and u the
independent fields (generalized coordinates), this reduces to:

F,A[δA] = F,u[δu] = 0 . (5.25)

In the process of performing the calculus of variations hereafter, aside computa-
tions from Appendix A.3 are used, filtering out the terms that depend on E, ∂Ψ∂E ,
Q, Φ as a result of the eddy current approximation.

5.2.2.1 Variations with respect to A

For variations with respect to A, based on intermediate derivations provided in
Appendix A.3,

F,A[δA] =

∫t2
t1

{∫
R3

(l0,A − ρ0Ψ,A) [δA]dVdt+
∫
∂Ω

K·δAdS
}

dt

=

∫t2
t1

{∫
R3

[
J·δA−

(
1

µ0
B·C+ ρ0

∂Ψ

∂B

)
·(∇×δA)

]
dV +

∫
∂Ω

K·δAdS
}

dt

=

∫t2
t1

{∫
R3

[
J·δA−H·(∇×δA)

]
dV +

∫
∂Ω

K·δAdS
}

dt .

(5.26)

7 Recall δ denotes the variation of a functional.
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In the above, the reference configuration magnetomotive intensity H stem out
from recognizing the reference configuration expression in (2.17).

As for previous derivations, space is separated into the volume Ω occupied by
the body and the surrounding spaceΩ/R3, and similar assumptions regarding the
smoothness of the fields are considered: smooth on subdomains between surface
interfaces, but likely discontinuous across interfaces. Integrating by part in space
the term in H, accounting for the interface discontinuities as previously exposed,

F,A[δA] =

∫t2
t1

{∫
R3
(J−∇×H)·δAdV +

∫
∂Ω

(K−N×JHK)·δAdS
}

dt . (5.27)

From the fundamental lemma of calculus of variations, one finally retrieves from
variations with respect to A,

X ∈ Ω : ∇×H = J ;

X ∈ ∂Ω : N×JHK = K ;
with:

{
H = h·F ,

J = JF−1·j ,
(5.28)

where one recognizes the reference configuration counterpart of Maxwell-Ampère’s
law in the eddy current approximation derived in Section 2.1.3.

5.2.2.2 Variations with respect to u

For variations with respect to u, based on intermediate derivations provided in
Appendix A.3,

F,u[δu] =

∫t2
t1

{∫
R3

[
(l0,u − ρ0Ψ,u) [δu] + ρ0

.
u· d

dt
(δu) + ρ0f·δu

]
dV

+

∫
∂Ω

Tm·δudS
}

dt

=

∫t2
t1

{∫
R3

[(
1

µ0J

(
1

2
(B·C·B)I−B(C·B)

)
·F−1 − 2ρ0

∂Ψ

∂C
·FT
)

:∇δu

+ ρ0
.
u· d

dt
(δu) + ρ0f·δu

]
dV +

∫
∂Ω

Tm·δudS
}

dt

=

∫t2
t1

{∫
R3

[
−Π :∇δu+ ρ0

.
u· d

dt
(δu) + ρ0f·δu

]
dV +

∫
∂Ω

Tm·δudS
}

dt .

(5.29)

In the above,Π stems out from recognizing the expressions for the reference con-
figuration first Piola-Kirchhoff stress in the eddy current approximation in (2.20).
As for the general formulation in Section 5.1, we emphasize that the reference
configuration counterpart of Maxwell’s stress in vacuum (1.108) included in Π is
retrieved thanks to the transposition of the current configuration l to l0 in the
reference configuration. This transposition leads to l0(A,u) when l(A) only, such
that Π

MW
results from taking the variations of l0 with respect to u. This favors

the present choice of a Lagrangian based formulation, justifying the finite strain
approach.

Then integrating by parts in space and time following the methodology previ-
ously introduced,

F,u[δu] =

∫t2
t1

{∫
R3

(
∇·Π− ρ0

..
u+ ρ0f

)
·δudV +

∫
∂Ω

(Tm−N·JΠK)·δudS
}

. (5.30)
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From the fundamental lemma of calculus of variations, one finally retrieves from
variations with respect to u,

X ∈ Ω : ρ0
.
g =∇·Π+ ρ0f

X ∈ ∂Ω : N·JΠK = Tm
(5.31)

where one recognizes the reference configuration counterpart of the linear momen-
tum balance derived in Section 2.1.

5.2.3 The particular 2D, Quasi-static case

A particular case for application of the variational formulation is that of 2D bound-
ary value problems similar to the stator problem in Section 3.2, where induced cur-
rents and acceleration terms are neglected. Based on the previous developments
in Section 5.2, the Lagrangian of the system is, when neglecting the external body
force (gravity), the acceleration term and with no surface traction, no current sheet
and in 2D,

L = −

∫
R2

(
ρ0Ψ+

1

2µ0J
B·C·B−J·A

)
dS (5.32)

Integration over R2 results of the restriction to a 2D space. As a result of neglect-
ing the induced current and acceleration terms, this formulation includes no time
derivatives and can be solved quasistaticaly. As a consequence, the variational prin-
ciple is reduced to the extremization of L, as in Kankanala and Triantafyllidis,
2004. As a result of the 2D hypothesis (in-plane magnetic field), the magnetic vec-
tor potential A = A(X1,X2)ê3 (vector ê3 denotes the normal to the plane and
X1,X2 the in-plane components of the position vector), such that the Gauge con-
dition ∇·A is automatically satisfied. As a result of Ampère’s law and in plane
H field, the externally applied currents can only be of the form J = J(X1,X2)ê3,
which further concurs with the charge conservation principle ∇·J = 0.
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N U M E R I C A L I M P L E M E N TAT I O N

outline In this chapter, we develop a numerical implementation of the varia-
tional formulation in Section 5.2 for application to boundary value problems sim-
ilar to the stator problem in Section 3.2. These problems are 2D, have negligible
induced currents, and we additionaly neglect acceleration terms. They are solved
by extremization of the Lagrangian (5.32) as exposed in Section 5.2.3.

In Section 6.1 we derive the matrix form of the problem. In Section 6.2 the form of
the specific free energy is discussed. In Section 6.3 a few additional implementation
details are presented. The numerical implementation is later used for FEM analysis
of motor problems in Chapter 7.

6.1 matrix form of the problem

6.1.1 Lagrangian of the problem

Neglecting the magnetic field energy in regions of space where the field is assumed
negligible, the integral of the energy can be restricted to a 2D domain S, which we
further discretize into Ne discrete finite elements S =

∑Ne
I=1A

I
e such that based on

(5.32) the Lagrangian ,

L =

Ne∑
I=1

−

∫
AIe

(
P(F,B) −J·A

)
dAe ; P(F,B) ≡ ρ0Ψ+

1

2µ0J
B·C·B , (6.1)

where we introduce the energy P1 in order to simplify the expressions obtained in
the following.

We introduce the frame of reference R : {ê1, ê2, ê3} with ê1,ê2 in-plane and ê3
the normal to the plane. The position components along the directions of R are
denoted X1,X2,X3.

Recall that in order to find the solution of the solution we aim to extremize (6.1)
with respect to the independent variables u and A, and in 2D,

u = u1(X1,X2)ê1 + u2(X1,X2)ê2 ; A = A(X1,X2)ê3 . (6.2)

By Section 5.2.3, the externally applied current density J = Jê3 such that in (6.1)
J·A = JA.

6.1.2 Element and vector of unknowns

Our focus here was not on the choice of elements and constant strain triangular
2D elements - one integration point at the element centroid - where chosen as

1 Notice P = ρ0ε the total energy density in the reference configuration (see equation (2.22) with
neglected kinetic and thermal contributions).

103
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the simplest element for FEM formulations. Because A and u are the indedent
variables of the problem, the vector of degrees of freedom for the element is

qTe =

{
u
(1)
1 , u(1)2 , A(1), u(2)1 , u(2)2 , A(2), u(3)1 , u(3)2 , A(3)

}
, (6.3)

where indices (1), (2), (3) refer to the nodes of the element as depicted in Figure 6.1.

Figure 6.1: Constant strain triangular elements used for the FEM formulation.

The element vector of unknowns at the center of the element is, together with
its interpolation,

δq = {δu, δA}T = N·δqe . (6.4)

The matrix [N] is the shape function matrix evaluated at the center of the element,

[N] =


Nc1 0 0 Nc2 0 0 Nc3 0 0

0 Nc1 0 0 Nc2 0 0 Nc3 0

0 0 Nc1 0 0 Nc2 0 0 Nc3

 ;

Nc1 = N1(X
c
1,Xc2) ; Nc2 = N2(X

c
1,Xc2) ; Nc3 = N3(X

c
1,Xc2) .

(6.5)

The index “c” refers to the center of the element. The three bi-linear shape functions
Ni are,

N1(X1,X2) =
1

2Ae

[
X
(2)
1 X

(3)
2 −X

(3)
1 X

(2)
2 + (X

(2)
2 −X

(3)
2 )X1 − (X

(2)
1 −X

(3)
1 )X2

]
;

N2(X1,X2) =
1

2Ae

[
X
(3)
1 X

(1)
2 −X

(1)
1 X

(3)
2 + (X

(3)
2 −X

(1)
2 )X1 − (X

(3)
1 −X

(1)
1 )X2

]
;

N3(X1,X2) =
1

2Ae

[
X
(1)
1 X

(2)
2 −X

(2)
1 X

(1)
2 + (X

(1)
2 −X

(2)
2 )X1 − (X

(1)
1 −X

(2)
1 )X2

]
.

(6.6)
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Recall Ae is the surface of the element. At the center of the element, the evaluation
of the shape functions and their derivatives provides,

Nc1(X
c
1,Xc2) = N

c
2(X

c
1,Xc2) = N

c
3(X

c
1,Xc2) =

1

3
;

∂N1
∂X1

=
X
(2)
2 −X

(3)
2

2Ae
;

∂N2
∂X1

=
X
(3)
2 −X

(1)
2

2Ae
;

∂N3
∂X1

=
X
(1)
2 −X

(2)
2

2Ae
;

∂N1
∂X2

=
X
(2)
1 −X

(3)
1

2Ae
;

∂N2
∂X2

=
X
(3)
1 −X

(1)
1

2Ae
;

∂N3
∂X2

=
X
(1)
1 −X

(2)
1

2Ae
.

(6.7)

The index “c” refering to the center of the element is dropped in the shape func-
tion derivations given they are constant. We then finally introduce the matrix [G]

associated with the element shape functions and their derivatives at the center of
the element such that,{

u1,
∂u1
∂X1

,
∂u1
∂X2

, u2,
∂u2
∂X1

,
∂u2
∂X2

, A, B1, B2

}
= G·qe , (6.8)

with

[G] =



Nc1 0 0 Nc2 0 0 Nc3 0 0

∂N1
∂X 0 0 ∂N2

∂X 0 0 ∂N3
∂X 0 0

∂N1
∂Y 0 0 ∂N2

∂Y 0 0 ∂N3
∂Y 0 0

0 Nc1 0 0 Nc2 0 0 Nc3 0

0 ∂N1
∂X 0 0 ∂N2

∂X 0 0 ∂N3
∂X 0

0 ∂N1
∂Y 0 0 ∂N2

∂Y 0 0 ∂N3
∂Y 0

0 0 Nc1 0 0 Nc2 0 0 Nc3

0 0 ∂N1
∂Y 0 0 ∂N2

∂Y 0 0 ∂N3
∂Y

0 0 −∂N1∂X 0 0 −∂N2∂X 0 0 −∂N3∂X



. (6.9)

Note that the previous accounts for B1 = − ∂A
∂X2

and B2 = ∂A
∂X1

as a result of
B =∇×A. As a result, the matrix [G] conveniently enables to retrieve at the center
of element the magnetic potential A, the magnetic field B and the displacement
field u and derivatives u∇ = F− I.

6.1.3 Force vector and stiffness matrix

In order to find the solution to our problem, we want to extremize the energy L,
which is reduced to solving the discretized problem in matrix form,

[K][Q] = [F] , (6.10)

where [Q] is the global vector of nodal variables of the problem, [K] is the global
stiffness matrix and [F] is the global force vector. [Q], [K] and [F] are composed
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by an assembly of respectively the element vector of degrees of freedom qe, the
individual element stiffness matrices [Ke] and the element force vector [Fe].

The load vector for the element is obtained by the first variation of L,

Fe·δqe =
∫
Ae

[
∂P

∂Fαβ
δFαβ +

∂P

∂Bε
δBε −JδA

]
dAe , (6.11)

where the partial derivatives of Pwith respect to F need to be understood as deriva-
tives holding B to be consistent with variations taken with respect to variables u
and A. Defining the intermediate load vector FFEe and integrating over the element,

[Fe] = Ae[F
FE
e ][G] ;

[FFEe ] ≡
{
0,

∂P

∂F11
,
∂P

∂F12
, 0,

∂P

∂F21
,
∂P

∂F22
, −J,

∂P

∂B1
,
∂P

∂B2

} . (6.12)

The stiffness (tangent) matrix for the element is obtained by the second variation
of L,

∆qe·Ke·δqe =
∫
Ae

[
∂2P

∂Fαβ∂Fδγ
δFαβ∆Fδγ +

∂2P

∂Bε∂Fδγ
δBε∆Fδγ

+
∂2P

∂Fαβ∂Bζ
δFαβ∆Bζ +

∂2P

∂Bε∂Bζ
δBε∆Bζ

]
dAe .

(6.13)

Defining the intermediate stiffness matrix KFEe and integrating over the element,

[Ke] = Ae[G][KFEe ][G] ;

[KFEe ] ≡



0 0 0 0 0 0 0 0 0

0 ∂2P
∂F11∂F11

∂2P
∂F11∂F12

0 ∂2P
∂F11∂F21

∂2P
∂F11∂F22

0 ∂2P
∂F11∂B1

∂2P
∂F11∂B2

0 ∂2P
∂F12∂F11

∂2P
∂F12∂F12

0 ∂2P
∂F12∂F21

∂2P
∂F12∂F22

0 ∂2P
∂F12∂B1

∂2P
∂F12∂B2

0 0 0 0 0 0 0 0 0

0 ∂2P
∂F21∂F11

∂2P
∂F21∂F12

0 ∂2P
∂F21∂F21

∂2P
∂F21∂F22

0 ∂2P
∂F21∂B1

∂2P
∂F21∂B2

0 ∂2P
∂F22∂F11

∂2P
∂F22∂F12

0 ∂2P
∂F22∂F21

∂2P
∂F22∂F22

0 ∂2P
∂F22∂B1

∂2P
∂F22∂B2

0 0 0 0 0 0 0 0 0

0 ∂2P
∂B1∂F11

∂2P
∂B1∂F12

0 ∂2P
∂B1∂F21

∂2P
∂B1∂F22

0 ∂2P
∂B1∂B1

∂2P
∂B1∂B2

0 ∂2P
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.

(6.14)

The numerical implementation is performed in Abaqus via a user element, which
we provide with the element stiffness matrix [Ke] and the element force vector [Fe].
The algorithm solves the extremization problem using a Newton-Raphson scheme.
For the definition of [K] and [F], the first and second order derivatives of P with
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respect to F and B need to be provided, which requires the definition of the specific
free-energy ψ, provided in Section 6.2.

As a final note, one can realize based on the developments in Section 5.2 and 2.1
that,

Π =

(
∂P

∂F

)T
; H =

∂P

∂B
, (6.15)

such that the components of Π and H at the center of the element are conveniently
given by the components of the load vector [F].

6.2 choice of a specific free energy

A single user element type is defined for the modeling of the various motor do-
mains that can include air and ferromagnetic domains made of electrical steel. As
a consequence, the specific free energy we define is to be suited to the modeling of
all two material types: air and electrical steel, both assumed isotropic.

For isotropic materials in 2D, the specific free energy can be expressed as a func-
tion of only 4 invariants I1, I2, J1 and J2 out of the 6 invariants for a 3D isotropic
description,

Ψ(C,B) = ψ(I1, I2, J1, J2) ;

I1 = tr(C) ; I2 = det(C) = J2 ; J1 = B·B ; J2 = B·C·B .
(6.16)

The specific free energy is decomposed into a purely mechanical part and a
magneto-mechanical part,

ρ0Ψ(C,B) = ρ0ψmech(C) + ρ0ψmag(C,B) . (6.17)

mechanical energy For the mechanical specific free energy ψmech(C) a neo-
hookean behavior is chosen,

ρ0ψmech(I1, I2) =
λ

2
(J− 1)2 +

G

2
(I1 − 3− 2 ln J)

=
λ

2
(I2 − 2

√
I2 + 1) +

G

2
(I1 − 3− ln I2)

=Wmech(I1, I2) ,

(6.18)

where λ is the first Lamé coefficient and G the shear coefficient. More appropriate
and refined choices may be relevant for modeling metals (e.g. see Thomas and
Triantafyllidis, 2009) but a neo-hookean suits our purpose well here given only
small strains are expected at first. In the small strain regime, this neo-hookean
energy provides the elastic stress-strain relation

e
σ = λtr(ε) + 2Gε, with ε the

small strain tensor previously introduced (see Chapter 2). For the modeling of air
domains, the Lamé coefficients λ and G will be reduced to a negligible fraction of
the Lamé coefficients of the other materials in presence so that the parasitic elastic
stresses induced by the domain deformation are insignificant (in the finite-element
analyses performed in Chapter 7 we use a Young modulus for air 10−5 that of the
steel components).
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magnetic energy Air has no magnetic properties (no magnetization) and as
such in air domains ψmag will be taken to zero. As a consequence, the chosen
form for the magnetic specific free energy ψmag is tailored to the modeling of
ferromagnetic domains only. In the following, we focus on the modeling of an
anhysteretic magnetic behavior of these ferromagnetic domains.

In the choice of a magnetic specific free energy, we are guided by the develop-
ments of Chapter 2 such that we expect to get back the expressions for stresses
and strains obtained in Section 2.2 in the small strain regime. For simplicity, the
magnetostriction stress contribution in Λ

µbb is however here neglected.
For the choice of the magnetic part of the specific free-energy ψmag(C,B), a

Langevin-type model that accounts for saturation of the magnetic field is used,
taking inspiration in Danas, 2017,

ρ0ψmag(I2, J2) =
α2sms

A

[
ln

(
A

αs

√
J2
I2

)
− ln sinh

(
A

αs

√
J2
I2

)]
; A≡ 3χ

msµ
,

=Wmag(I2, J2)

(6.19)

where ms is the value of magnetization at saturation, and αs is a correction coef-
ficient we introduce to obtain a better fit to experimental data on typical electrical
steels. The reader is referred to Appendix C.1 for additional details on the deriva-
tion of this expression and the inclusion of the correction coefficient αs, and for the
verification that the specific free energy suggested complies with the constitutive
laws used in Chapter 2. Note that we matched here the constitutive behavior in
small strains, small magnetization (linear regime) to the expressions from Section
2.2 - not accounting for magnetostriction - and to experimental data for magnetic
saturation at zero stresses (Appendix C.1) to the best. However, for more accurate
material behavior, the magneto-mechanical couplings in the model, i.e. influence
of stresses on magnetization or magnetostriction, should be further investigated
and compared to experimental data (e.g. see Aydin et al., 2017).

Nota: This material behavior has been further improved in the later manuscript
submitted for publication Hanappier, Charkaluk, and Triantafyllidis, 2021c.

Based on the definition of the specific free energy, the first and second order
derivatives of P required for the stiffness matrix and load vector can be derived.
The expressions are provided in Appendix C.3. Their derivation requires the deriva-
tives of ρ0ψmech and ρ0ψmag with respect to the invariants, which are provided
in Appendix C.2.

6.3 other implementation details

6.3.1 Abaqus variables used

We use the variables 1,2, 11 in Abaqus. Variables 1 and 2 are the nodal displace-
ments U, respectively along directions X and Y of the reference configuration given
the FEM code is writen in cartesian coordinates. Variables 11 of abaqus is used as
A, the component along Z of the magnetic vector potential.
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6.3.2 Treating infinite magnetic field values in 0

To avoid infinite values in the limit ||b||→ 0, the first and second order derivatives
are given their asymptotic expressions for ||b|| ∈ [0, ζ] where ζ is a small parameter.
We set2 ζ =

√
2 10−7. The asymptotic expressions are provided in Appendix C.2.

6.3.3 Treating air and copper domains

For air domains, the magnetic susceptibility χ is set to zero in the input file, and
the first and second Lamé coefficient are set to 10−5 that of the material. Through
a IF statement in the user element definition, a magnetic susceptibility χ = 0 sets
the material volume energy W = 0, such that only remains for the total energy in
air,

P(F,B) =
1

2µ0J
B·C·B , (6.20)

which yields Maxwell’s stress in vacuum and the aether relation h = 1
µ0
b (see

Section 5.2).

6.3.4 Boundary conditions

The default boundary condition setups in Abaqus enable to prescribe UX, UY and
A. An additional DISP subroutine is used to apply complex boundary conditions,
such as A = A0 cos(pθ) for the magnetic potential (in the spirit of Section 3.2 and
further detailed in Chapter 7).

6.3.5 Load definitions

Should it be necessary, the FEM code developed enables the application of traction
boundary conditions at the nodes. These condition are not passed on to the UEL.
They are directly accounted for by Abaqus in the final assembly of the matrix of
the whole problem.

2 There is no particular reason for the
√

(2). In the code the inequality is set on the invariant J1 = B·B
and 2 10−7 just worked well.
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outline This section provides results obtained for the modeling of stator ge-
ometries using the numerical finite-element implementation previously presented
in Chapter 6. These examples of application are meant to highlight the possibilities
offered by the variational formulation presented and the FEM code developed.

In Section 7.1, the very same idealized stator problem as in Section 3.2 is solved
using the FEM code. At small values of the magnetic field (range of linear magnetic
behavior), the FEM results are compared to the analytical results from Section 3.2
for validation of the code. Results at larger magnetic field values (range of non
linear magnetic behavior) are then given. In Section 7.2, the FEM code is used to
obtain results for the magnetic field, stresses and strains on a more realistic stator
geometry taken from Devillers et al., 2018 that includes teeth and slots, and at
large magnetic field values.

7.1 fem simulation of the idealized stator problem

Nota: In the following, “analytical results” or “analytical computations” refer to the ana-
lytical results for the idealized stator problem in Section 3.2.

7.1.1 Problem description

geometry In this first example of application, we reproduce the boundary
value problem of Section 3.2. The motor geometry is recalled in Figure 7.1 and
its dimensions in Table 7.1. Because of the symmetries of the geometry - and of the
loading later defined - computations are performed on a quarter motor only, hence
the quarter motor geometry pictured. The naming of the lateral boundaries in the
cut regions (surfaces of symmetries) in ∂D1l : θ = 0 and ∂D2l : θ = π

2 is introduced
for future reference.

materials Table 7.1 recalls the material parameters of the problem. Compared
to the analytical boundary value problem of section 3.2, the FEM implementation
adds the non linear magnetic behavior based on the specific free energy definition
(6.19). It requires two additional material parameters: the magnetization at satu-
ration ms, and the correction coefficient αs. A typical value of ms = 1.25×106 is
found in Aydin et al., 2017 (Material 1 - M330-50A non-oriented Si-Fe electrical
steel) and adopted here. From the developments in Appendix C, we take αs = 35.
Nota: In the following, the loads and boundary conditions of the problem are set to match
the conditions described in the analytical stator problem in Section 3.2. We work with fields
of the reference configuration because the variational principle is written in the reference
configuration. We introduce the stator frame of reference in the reference configuration
S(R, θ).

111
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Figure 7.1: Cross-section of the quarter idealized electric motor, indicating rotor, airgap
and stator domains and associated boundaries.

Geometry

Rotor bore radius R1 42.5 mm

Stator yoke bore radius R2 45 mm

Stator outer radius R3 50 mm

Number of pole pairs p 2

Operating parameters

Peak value of the magnetic potential a0 1.4×10−1 T/m

Angular velocity of current supply ω 100π rad/s

Material properties Si-Fe NO Electrical steel

Initial magnetic susceptibility χ 2, 500

Magnetization at saturation ms 1.25×106 A/m

Correction coefficient αs 35

Mass density ρ0 7, 650 kg/m3

Young’s modulus E 215×109 Pa

Poisson ratio ν 0.3

Table 7.1: For FEM: motor geometry, operating parameters and material properties for the
stator idealized boundary value problem.
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loading As in Section 3.2 the rotor comprises p-pairs (p = 2 here) of perma-
nent magnets that produce a rotating radial magnetic field BR = −B0 sin(pθ −
pΩt) at the rotor boundary, with B0 the amplitude of the field and Ω the rotation
velocity of the rotor. This condition is enforced by setting the Dirichlet boundary
condition,

∂D1 : A =
R1B0
p

cos(pθ) . (7.1)

The FEM results will corresponds to a snapshot of the solution to the problem
at time t = 0 and the solution at any time t is obtained by a rotation of angle
Ωt. As described later on, the displacements will be prescribed on ∂D1 such that
the boundary condition (7.1) for A (Lagrangian) is equivalent to the boundary
condition on a (Eulerian) in Section 3.2.

magnetic boundary conditions On the outer stator boundary magnetic
insulation is enforced setting,

∂D3 : A = 0 =⇒ N·B = 0 . (7.2)

Given the small strains involved (as per later results or the analytical solution), this
corresponds to the boundary condition set for the Eulerian b in Section 3.2.

By the magnetic field-magnetic potential relation B = ∇×A, any radial plane
of symmetry for A is a plane of anti-symmetry for Br and consequently Br = 0

throughout that plane. As a consequence, we let the boundary condition on ∂D1l
and ∂D2l - which are surfaces of symmetry for both the geometry andA - free such
that the natural Neumann boundary condition is enforced

∂D1l ,∂D2l : êθ×H = 0 =⇒ Br = 0 . (7.3)

mechanical boundary conditions The displacements are constrained on
∂D1. Given the symmetries, we allow radial displacements on ∂D1l and ∂D2l but
prescribe tangent displacements. On ∂D3 the displacements are let free. As a result,
we set

∂D1 : ur = uθ = 0 ;

∂D1l ,∂D2l : uθ = 0 .
(7.4)

As a result of the free radial displacements on ∂D1l and ∂D2l , and of the free
radial and tangent displacements on ∂D3, the natural Neumann boundary condi-
tions provide,

∂D1l ,∂D2l : Πrθ = 0 ;

∂D3 : Πrr = Πrθ = 0 ,
(7.5)

which sets equivalent constraints on the Eulerian stress field σ given the small
strains involved (as per later results or the analytical solution).



114 simulation of electric motor problems

normalization In order to evaluate saturation levels in the machine, the fol-
lowing results are normalized with respect to reference values at magnetic satura-
tion,

aref = R2µ0ms , bref = µ0ms , href = mref = ms ,

σref = µ0m
2
s , uref =

R2µ0m
2
s

2G
.

(7.6)

mesh convergence The FEM results will be compared to analytical results
and the comparison replaces the need for mesh convergence studies.

7.1.2 Results at small magnetic field values

For the calculations, we use a fine unstructured mesh that includes a total of 27,783

elements, with a characteristic size of 2×10−4m throughout all domains, refined
at 1.2×10−4m at the rotor (∂D1), inner stator (∂D2) and lateral symmetry bound-
aries (∂D1l ,∂D2l ). The magnetic field input at the rotor boundary ∂D1 is given an
amplitude of 1%bref = 1%µ0ms. In the following, averaging across neighboring
elements is used for display, with the Abaqus default threshold of 75%1. Two sep-
arate averaging regions are defined for the airgap and stator domains such that
the interface is not included - fields not averaged across the interface - so that the
discontinuities are clearly visible.

Figure 7.2 presents the FEM results for the norm of the magnetic field normal-
ized by the reference magnetic field at saturation bref = µ0ms. It shows that the
stator magnetic field amounts to roughly 5 times the input magnetic field and 5%
of the reference saturation value - roughly 7×10−2T in true value -. At such low
values, the magnetic field falls in the linear range of the b-h curve. The results for

Figure 7.2: FEM results for the idealized stator at small b: norm of the normalized mag-
netic field: ||b||

µ0ms
.

1 If two neighboring elements have values that differ by more than 75%, no averaging is performed.
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the true displacements’ tangent and radial components are given in Figures 7.4(a)
and 7.5(a). The displacements, magnified 107 times, are of order 10−10m and fall
in the small strain linear range. The linearity of the problem, both in b and strains,
is further confirmed by the computation converging in a single iteration, and jus-
tifies comparison with the analytical results from Section 3.2 for validation of the
code (recall the analytical problem has linear magnetization).

validation of the results for nodal variables Figures 7.3(a),7.4(a)
and 7.5(a) provide the FEM results obtained for the nodal variables of the problem,
namely the true magnetic potential A2 and the true radial and tangent displace-
ment components ur and uθ. By “true” we mean “not noramlized”. The magnified
deformation shows the same pattern as obtained in 3.2. To further confirm the ac-
curacy of the FEM results, we plot in Figures 7.3(b),7.4(b) and 7.5(b) the values
for the normalized nodal variables along a radial path at different cross sections
θ =

{
0, π8 , π4

}
, and superimpose them with analytical results. The graphs show a

very good accuracy for the magnetic potential A3 and the tangent displacement
uθ. The results very slightly deviate for ur close to the stator external edge in r3,
with a maximum error of 6%. Note that in the graph 7.5(b) for uθ the curves at
θ = 0 and θ = π

4 superimpose such that one appears missing but is not. Further,
for obvious reasons of sense, we suppressed the airgap region is the graphs of ur
and uθ.

(a) A: FEM (b) A
R2µ0ms

: FEM vs. analytical

Figure 7.3: FEM results for the idealized stator at small b, for the magnetic potential: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field.

2 Recall the vector potential a has a single component a along z.
3 Note that given we are in small strain, the FEM code’s nodal Lagrangian variable A equals the

eulerian a.
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(a) ur: FEM (b) 2Gur
R2µ0m2s

: FEM vs. analytical

Figure 7.4: FEM results for the idealized stator at small b, for the radial displacement: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field. Overall true deformation is magnified 107 times.

(a) uθ: FEM (b) 2Guθ
R2µ0m2s

: FEM vs. analytical

Figure 7.5: FEM results for the idealized stator at small b, for the tangent displacement: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field. Overall true deformation is magnified 107 times.

validation of the results for derived variables The magnetic fields
B and H and the stress field Π - equivalently their Eulerian counterpart b,h,σ
given the small strains - derive from the nodal variables A and u and involve the
derivatives of these nodal variables. Verifying their accuracy is important as well,
especially given we use constant strain - and constant b-field - triangular elements
and given the importance to our problem of the interface conditions that involve
those fields.

Following the approach adopted for the nodal variables, we show the FEM re-
sults for the radial magnetic field (Figure 7.6), the tangent h-field (Figure 7.7), and
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the radial, shear and hoop stress components (Figures 7.8, 7.9, 7.10) and compare
them with analytical results. The focus is placed on the components br and hθ
solely here - not hr and bθ - given they are the quantities involved in the interface
conditions for b and h. The comparison with the analytical data shows a very good
accuracy for the magnetic components br and hθ. The small jump that is visible at
the airgap-stator interface for br is explained by the sharp gradients and the fact
that the variable is element based and computed at the element centroids, slightly
off the interface on each sides of it. The same goes for the small jumps in hθ near
the airgap-stator interface and the rotor boundary.

(a) FEM (b) FEM vs. analytical

Figure 7.6: FEM results for the idealized stator at small b, for the normalized radial mag-
netic field br

µ0ms
: (a) FEM, (b) FEM vs. analytical results.

(a) FEM (b) FEM vs. analytical

Figure 7.7: FEM results for the idealized stator at small b, for the normalized tangent h-
field hθ

ms
: (a) FEM, (b) FEM vs. analytical results.

The stress results (Figures 7.8, 7.9 and 7.10) also show a good accuracy in the
airgap and stator regions. For σrr and σrθ the small jumps at the airgap-stator
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interface, where the fields should be continuous, are slightly more pronounced
than for br and hθ. We explain this by the computation of σ at the element cen-
troid together with the fact that σ depends on b2, such that the small uncertainties
observed on br and hθ multiply and further impact stresses. Throughout the sta-
tor domain the stress curves are slightly noisier than for br and hθ, which may
similarly be due to the dependence of stresses on the squared magnetic field that
multiplies the errors on b, when b spatial derivative of the nodal variable A al-
ready suffers an accuracy one order lower than A. In θ = 0, the results for σrr is
off, which we explain by a spurious stress mode that develops from the corner in
r3, where σrθ is off by roughly the same magnitude. Although it needs to be care-
fully monitored, the previous developments show that this error, which seems in

(a) FEM (b) FEM vs. analytical

Figure 7.8: FEM results for the idealized stator at small b, for the normalized radial stress
component σrr

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.

(a) FEM (b) FEM vs. analytical

Figure 7.9: FEM results for the idealized stator at small b, for the normalized shear stress
component σrθ

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.
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(a) FEM (b) FEM vs. analytical

Figure 7.10: FEM results for the idealized stator at small b, for the normalized hoop stress
component σθθ

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.

the end due to the modeling of a quarter motor only, does not significantly impact
the solution away from the boundary (as shown by the consistency of all other
results with anaytical results).

concluding remarks As a result, we show by comparison with analyt-
ical results that for fields falling in the linear range of the problem, the FEM
code developed provide accurate results throughout the airgap and stator do-
mains, as well as at interfaces and boundaries. Only for ur do the FEM results
show a slightly high error (6%). This may be explained by the spurious trac-
tion stress solution that develops in θ = 0 and - by symmetry - in θ = π

2 , which
is consistent with an overestimation of ur(r3, θ = 0) > 0.

The comparison with the analytical results also ensure the validity of the
mesh. Despite the very fine mesh, the computation ran in under 5 seconds on
a standard computer. Given the fast computation time, there was no motiva-
tion for further mesh convergence studies to investigate if the mesh can be
coarsened.

We further verified from the FEM results, that given the small strain regime,
the Lagrangian and Eulerian fields coincide, and that the Jacobian of the de-
formation J = 1. In addition the stress and deformation gradient results are
symmetrical.

7.1.3 Results at large magnetic field values

In this section, before refining the stator geometry (the object of the later Section
7.2), we investigate the effect of magnetic saturation at higher values of the mag-
netic field. However, the model described in (6.19), with its correction coefficient
αs = 35, has a major drawback : if it fits correctly to typical values from the litera-
ture at reasonable magnetic fields - fields below 1T, see Appendix C -, it multiplies
by αs the magnetization limit at saturation ms. As a result, it starts being com-
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pletely off realistic material behavior above 1T, and one has to go to unrealisticly
high values of the magnetic field (> 10T) - and consequently of the stresses and
strains that follow - in order to start seeing the effect of saturation. For that reason,
we decided here to revert back to the initial uncorrected Langevin model (αs = 1).
This enables to get an idea of the effect of magnetic saturation at realistic values of
the magnetic field, even though the reader should bear in mind that saturation oc-
curs too soon and too gradually when compared to typical electrical steel behavior
(see Figure C.1 in Appendix subsection C.1.3).

In the following calculation, we increased the input magnetic field at the rotor
boundary 20 folds compared to the previous calculation (Subsection 7.1.2) so that it
now equals 20%µ0ms. The mesh remains unchanged. The computation now takes
four iterations to converge, suggesting non-linearities as expected. The computa-
tion ran in under 10 seconds on a standard computer.

As shown by Figure 7.11, the magnetic field at the stator reaches 77% of the
reference saturation value - roughly 1.2T in true value - and the effect of magnetic
saturation are clearly visible by the “squared” patern around the low magnetic
field regions as opposed to the circular pattern in Figure 7.2. These patterns are
explained by the fact that as the magnetic field saturates in the regions of high
magnetic field, the regions expand over the low magnetic field regions.

Figure 7.11: FEM results for the idealized stator at large b: norm of the normalized mag-
netic field: ||b||

µ0ms
.

The results for the true displacements’ tangent and radial components are given
in Figures 7.13(a) and 7.14(a). The displacements, magnified 2×104 times, are of
order 0.2µm and therefor still fall in the small strain linear range for the elastic
stress-strain relation.

Nota: Prior to the following developments, we stress out that analytical computations from
Section 3.2 have linear magnetic behavior, while the FEM computations performed at large
b in the present section has non-linear magnetic behavior. Still, comparison with analyt-
ical results is provided in the following in order to highlight the influence of magnetic
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saturation. The computation results are given, but not thoroughly discussed (only a few
comments of verification order are made).

results for nodal variables Figures 7.12(a),7.13(a) and 7.14(a) provide
the results obtained for the nodal variables of the problem A, ur and uθ and a
comparison with the analytical results obtained in Section 3.2 in the case of lin-
ear magnetization. Here again, the FEM colormap shows the true values of the
fields while the comparison plots are normalized. The graphs show a clearly dis-
tinct behavior due to the magnetic saturation that modifies the magnetic potential
distribution.

verification of the boundary and interface conditions As a first
check, we verify that the boundary conditions of the problem are correctly fulfilled
(A(r3, θ) = 0, A(r1, θ) = A0 cos(pθ), uθ(r, θ = 0) = uθ(r, θ = π

2 ) = 0). Further, the
continuity condition for A at the airgap-stator interface is verified as well, which
implies the continuity condition for br observed in Figure 7.15. The discontinuity
of the r-derivative of A at the airgap-stator interface satisfies the interface condition
on hθ as observed in Figure 7.16. Finaly for stresses, the continuity conditions on
σrr and σrθ at the airgap-stator interface are verified. The slight jumps of the
fields at the interface remain controlled. Recall that theses were already observed
in the linear magnetization regime (Section 7.1.2), with similar relative amplitude.
They are attributed to an offset triggered by the evaluation of the element based
variables at the mesh elements’ centroids - which does not exactly coincide with
the interface - together with amplification of the errors on the magnetic fields as
the stresses depend on the square of the magnetic field components. Finally, the
boundary condition σrr(r3, θ) = σrθ(r3, θ) = 0 is fulfilled, except for the slight
spurious stress solution in θ = 0 already observed in Section 7.1.2

(a) A: FEM (b) A
R2µ0ms

: FEM vs. analytical

Figure 7.12: FEM results for the idealized stator at large b, for the magnetic potential: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field.
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(a) ur: FEM (b) 2Gur
R2µ0m2s

: FEM vs. analytical

Figure 7.13: FEM results for the idealized stator at large b, for the radial displacement: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field. Overall true deformation is magnified 107 times.

(a) uθ: FEM (b) 2Guθ
R2µ0m2s

: FEM vs. analytical

Figure 7.14: FEM results for the idealized stator at large b, for the tangent displacement: (a)
FEM results for the true field, (b) FEM vs. analytical results for the normalized
field. Overall true deformation is magnified 107 times.
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(a) FEM (b) FEM vs. analytical

Figure 7.15: FEM results for the idealized stator at large b, for the normalized radial mag-
netic field br

µ0ms
: (a) FEM, (b) FEM vs. analytical results.

(a) FEM (b) FEM vs. analytical

Figure 7.16: FEM results for the idealized stator at large b, for the normalized tangent
h-field hθ

ms
: (a) FEM, (b) FEM vs. analytical results.
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(a) FEM (b) FEM vs. analytical

Figure 7.17: FEM results for the idealized stator at large b, for the normalized radial stress
component σrr

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.

(a) FEM (b) FEM vs. analytical

Figure 7.18: FEM results for the idealized stator at large b, for the normalized shear stress
component σrθ

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.

(a) FEM (b) FEM vs. analytical

Figure 7.19: FEM results for the idealized stator at large b, for the normalized hoop stress
component σθθ

µ0m
2
s

: (a) FEM, (b) FEM vs. analytical results.
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7.2 fem simulation of a refined stator geometry

7.2.1 Problem setup

geometry FEM simulations are further performed on a slotted stator geome-
try to highlight the capacities of the code. The stator geometry is inspired by the
benchmark machine of Devillers et al., 2018. Figure 7.20 shows the stator geome-
try, with the stator domain D3 in grey and the airgap domain D2 in green4. The
mesh is displayed. Table 7.20 provides the values for the geometrical parameters.
Because of the symmetries of the geometry - and of the loading later defined -
computations are performed on a quarter motor only. ∂D1 denotes the boundary
with the rotor, ∂D3 denotes the stator external boundary. ∂D1l and ∂D2l denotes
the lateral surfaces of symmetries in θ = 0 and θ = π

2 respectively. The stator teeth
are labeled 1 to 4 for future reference.

Figure 7.20: Refined stator: geometry and mesh. In grey the stator, in green the airgap.

Rotor bore radius R1 45 mm

Stator bore radius R2 48 mm

Stator tooth length Htooth 20 mm

Stator outer radius R3 73 mm

Stator slot width Ws 18°

Number of stator teeth Zs 12

Number of pole pairs p 2

Table 7.20: For FEM: motor geometry for the refined stator boundary value problem.

materials Regarding the material behavior, we use the same material param-
eters as previously in Section 7.1.2, given in Table 7.1. The model used for the

4 D1 is reserved to the rotor domain (not shown in Figure 7.20).
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specific free-energy is the uncorrected model (αs = 1), for the reasons previously
exposed in 7.1.3.

loading In the following we work with fields of the reference configuration because
the variational principle is written in the reference configuration. We introduce the stator
frame of reference in the reference configuration S(R, θ).

As in the stator problem of Section 3.2 or the experimental setup in Devillers
et al., 2018, we assume the rotor comprises p-pairs of permanent magnets that
produce a rotating radial magnetic field of amplitude B0 at the rotor boundary,

∂D1 : N·B = −B0 sin(pθ− pΩt) , (7.7)

where Ω is the clockwise rotation velocity of the rotor. In the present study we set
p = 2.

For solving on a quarter motor only, the loading needs to fulfill some symme-
try conditions that match with the symmetry conditions on the geometry. Namely,
the problem can only be solved if the magnetic field input is symmetric or anti-
symmetric across the lateral faces D1l and D2l . This restricts the modeling possi-
bilities to the discrete times t = nπ

2pΩ , n ∈ N+. The following computations are
performed setting,

∂D1 : A =
R1B0
p

cos(pθ) , (7.8)

such that it corresponds to a snapshot of the solution to the problem with load-
ing (7.7) at any time t = n2π

pΩ , n ∈ N+, for which the magnetic potential A is
symmetrical in θ = 0 and θ = π

2 .
A typical motor would include copper winding in the inter-teeth slots, supplied

by alternating currents to produce the excitation stator magnetic field. These are
not considered here. Neither are they on the test bench that inspired the motor’s
geometry in Devillers et al., 2018.

magnetic boundary conditions On the outer stator boundary, we assume
magnetic insulation, such that we set,

∂D3 : A = 0 =⇒ N·B = 0 . (7.9)

By the magnetic field-magnetic potential relation B = ∇×A, any radial plane
of symmetry for A is a plane of anti-symmetry for Br and consequently Br = 0

throughout the plane. As a consequence, we let the boundary condition on ∂D1l
and ∂D2l free such that the natural Neumann boundary condition is enforced

∂D1l ,∂D2l : êθ×H = 0 =⇒ Br = 0 . (7.10)

Note that had we set A to be anti-symmetric across the boundaries ∂D1l and ∂D2l -
such that occurs at times t = pi

pΩ + nπ
pΩ , n ∈ N+ -, Bθ would be anti-symmetric

across the boundaries, and consequently Bθ = 0. This would then have required
to set a Dirichlet boundary condition A = constant5, compliant with the loading
and boundary conditions on ∂D1 and ∂D3.

5 For the reason that Bθ = −∂A∂r .
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mechanical boundary conditions The displacements are constrained on
∂D1. Given the symmetries, we allow radial displacements on ∂D1l and ∂D2l but
prescribe tangent displacements. On ∂D3 the displacements are let free. As a result,
we set

∂D1 : ur = uθ = 0 ;

∂D1l ,∂D2l : uθ = 0 .
(7.11)

As a result of the free radial displacements on ∂D1l and ∂D2l , and of the free
radial and tangent displacements on ∂D3, the natural Neumann boundary condi-
tions provide,

∂D1l ,∂D2l : Πrθ = 0 ;

∂D3 : Πrr = Πrθ = 0 .
(7.12)

mesh convergence Mesh convergence is studied in Appendix C.4. Three
mesh configurations: coarse, fine and extrafine, are studied. The fine mesh - dis-
played in Figure 7.20 - is judged accurate enough and retained for the computa-
tions. It consists of 22,182 elements of approximate global size 0.5mm (recall the
typical length scales from Table 7.20). The computations run in roughly 8s CPU
time on a standard computer.

7.2.2 Results at large magnetic field values

Simulations were performed with an input magnetic field B0 = 80%µ0ms ≈ 1.26T 6

which corresponds to the strength of typical neodymium permanent magnets used
in electric motors (e.g. see Devillers et al., 2018). Figure 7.21 shows the norm of the
magnetization at the stator reaching roughly 72% of the saturation magnetization
ms, at which the effect of the non-linear magnetization are significant (recall the
uncorrected model - αs = 1 - used in the calculation has saturation effects occur-
ring very early, as per Figure C.1 in Appendix C.1.3). Here again the computations
show that the stator experiences only small strains, as per the displacement values
reported in Figures 7.22. The results for the tangent and radial displacements are
given in Figure 7.22. The displacements, magnified 3, 000 times, are of order 2µm
at most. They still fall in the small strain linear range for the elastic stress-strain
relation. One can observe the similarity of the deformation pattern - ovalization
- with that of the idealized stator in Sections 3.2 and 7.1. Given the small strains,
the current configuration and reference configuration variables are equivalent7 and
the results hereafter are presented for the current configuration variables, which
appears as a more natural choice.
Nota: In the following, we denote by “stator casing” - or “stator crown” in some figures
-, the tubular part of the stator, as opposed to the complementary “teeth part”. In all the
graphs that show curves for the field values along radial paths, the “stator teeth” domain
is highlighted, but note that not all paths go through a tooth.

6 To reach similar values of the stator magnetic field=, the increase in input magnetic field is much
more significant here than for the idealized stator in Subsection 7.1.3 because the airgap is now much
bigger as a result of the stator slots.

7 This point was further verified as both Eulerian and Lagrangian fields are outputs of the FEM code.
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Figure 7.21: FEM results for the refined stator, for the normalized norm of the magnetiza-
tion: ||m||

ms
.

verification of the boundary conditions As a first check, we verify
that the boundary conditions of the problem are correctly fulfilled. Starting with
the Dirichlet boundary conditions (7.8), (7.9) and (7.11), Figure 7.22 shows the
boundary condition uθ = 0 is correctly satisfied on ∂D1l and ∂D2l . The airgap
mesh displacements are not pictured in Figure 7.22 but the prescribed displace-
ment condition on the rotor boundary ∂D1 is fulfilled as well. Figure 7.23

8 shows
the proper implementation of the loading condition on ∂D1 and A = 0 on ∂D3.
Figure 7.24 shows the consistency with the boundary conditions on Br.

For the Neumann boundary conditions, Figure 7.24 shows the proper implemen-
tation of (7.10) on the boundary ∂D1l . The fact that Br is not exactly zero on the
boundary is attributed to the fact that B is evaluated at the elements centroid. Re-
garding (7.12), Figure 7.27 shows the proper implementation of the boundary con-
dition on the boundary ∂D1l and ∂D3. Similarly, the slight deviation from Πrθ = 0

on ∂D1l is attributed to the evaluation of the field at the elements centroid and not
directly on the boundary. It is all the same for the condition Πrθ = 0 on ∂D3, espe-
cially for the cut in θ = π

12 where the gradients in σrθ are very steep. Verification
with the extrafine mesh showed the σrθ distribution is correct and does tend to
zero at the boundary.

verification of the interface conditions Further, the continuity con-
dition for A at the airgap-stator interfaces is verified (Figure 7.23), which implies
the continuity for br along the θ-cuts as observed in Figure 7.24. The jumps on
bθ observed at airgap-stator interfaces along the θ-cuts (Figure 7.25) are due to
the continuity condition on hθ and the difference in magnetic permeability of the
two mediums. It should be noted that the jump are likely much underestimated

8 The author apologies to the reader for he did not find the command that allows plotting simultane-
ously the airgap and stator domain together with the delimitation between the two, and hence the
unclear figures when the fields are continuous across interfaces like is the case for A, although at
least it makes the case of continuity.



7.2 fem simulation of a refined stator geometry 129

(a) ur (b) uθ

Figure 7.22: FEM results for the refined stator: (a) radial displacement, in [m] (b) tangent
displacement, in [m]. Overall true deformation is magnified 3, 000 times.

Figure 7.23: FEM results for the refined stator, for the magnetic potential A [T/m].

as a result of the inaccurate b-h curve due to the uncorrected model for ψ used
(αs = 1) (see Appendix C.1). Finally for stresses, the continuity conditions on σrr
and σrθ at the airgap-stator interface are verified along the θ-cuts (see Figures 7.26

and 7.27). The slight jumps of the fields at the interface are attributed to the eval-
uation of the fields at the elements centroids and not directly at the interfaces. It
was also verified aside the results plotted here that the continuity conditions for
σrθ and σθθ across the lateral faces of the teeth were satisfied, except maybe near
the base corner of the teeth where sharp stress concentrations arise. The teeth tips
seems to be preserved from the problem. This issue may benefit from further in-
vestigation not undertaken here9. It could also be due once again to the evaluation
of the fields at the elements centroids. Regarding the magnetic fields, continuity
of bθ and hr across the lateral faces of the teeth was verified as well. As opposed
to stress results, no continuity issues were observed near the teeth base corners

9 The corner of the teeth could be rounded for instance like in yet even more realistic stator geometries
(Fonteyn, 2010)
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and teeth tips. Given the variations of the fields are much smoother than for the
stress field, this goes in the sense of explaining the apparent discontinuities for the
stress fields in corner regions by the offset due to the evaluation of the fields at the
elements’ centroids.

(a) Stator only (b) Cuts at θ = {0◦, 15◦, 30◦, 45◦}

Figure 7.24: FEM results for the refined stator, for the normalized radial magnetic field
br
µ0ms

: (a) at the stator only, (b) over the whole domain for different θ-cuts.

(a) Stator only (b) Cuts at θ = {0◦, 15◦, 30◦, 45◦}

Figure 7.25: FEM results for the refined stator, for the normalized tangent magnetic field
bθ
µ0ms

: (a) at the stator only, (b) over the whole domain for different θ-cuts.

other observations The two middle stator teeth (2) and (3) are pushed ap-
part as the stator casing is being bent.

Figures 7.24 and 7.25 show that the magnetic field concentrates around edges
and in particular at the teeth tips where the airgap thickness that separates from
the input magnetic field is reduced. Radial field is as expected more intense in the
teeth (Figure 7.24), which channel the magnetic field to the stator casing were the
field lines are then bent to align along the θ-direction and thus bθ dominates in
the casing (Figure 7.25).
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(a) Stator only (b) Cuts at θ = {0◦, 15◦, 30◦, 45◦}

Figure 7.26: FEM results for the refined stator, for the normalized radial stress component
σrr
µ0m

2
s

: (a) at the stator only, (b) over the whole domain for different θ-cuts.

(a) Stator only (b) Cuts at θ = {0◦, 15◦, 30◦, 45◦}

Figure 7.27: FEM results for the refined stator, for the normalized shear stress component
σrθ
µ0m

2
s

: (a) at the stator only, (b) over the whole domains for different θ-cuts.

(a) Stator only (b) Cuts at θ = {0◦, 15◦, 30◦, 45◦}

Figure 7.28: FEM results for the refined stator, for the normalized hoop stress component
σθθ
µ0m

2
s

: (a) at the stator only, (b) over the whole domains for different θ-cuts.
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Figure 7.25 shows the tangent field gradually decays with distance to the source,
except at tangent airgap-stator interfaces where it surges as a result of the differ-
ence in magnetic permeability. Despite the rather high magnetic field values at the
stator near its external radius, the external field is much lower as a consequence
of the ratio of magnetic permeability between the stator and ambient air, and the
modeling assumption of negligible external field holds. One may still object that
given the very gradual decrease of bθ along a radius, the external field component
is not much lower than in the airgap in the regions of high bθ at the stator.

Given µ0ms is of order 1T, the magnetic field in the stator reaches values of order
1T (Figure 7.24 and 7.25). Given the model retained for the material behavior has
saturation effects occurring too soon compared to typical experiments on electrical
steel sheets (see Appendix C.1), it can be expected that a simulation with more
accurate material behavior would lead to higher magnetic field values, however
more localized as saturation effects tend to extend the regions of highest magnetic
fields.

The reference stress µ0m2s is of order 106 Pa, such that stresses are of order 1MPa
(Figures 7.26, 7.27 and 7.28). Stresses consequently falls in the range of reported
magneto-mechanical couplings in electrical steels (magnetostriction and most im-
portantly inverse magneto-striction, i.e. influence of the stress state on the mag-
netic permeability of the material), e.g. see Aydin et al., 2017. These high stresses
with impact on the magnetic properties of the machine further occur in the stator
casing, a region particularly important to the operation of the electric motor as
it is meant to bend the magnetic field lines to keep the field within the machine
and offer the least resistance to its flux. As we mentioned that the peaks of mag-
netic field tend to be lowered by our imperfect magnetization model, so is true of
the peaks of stresses that should reach higher values with a more accurate model
for the material behavior and hence have an even more important impact on the
magnetic permeability of the material. Further, in a more realistic motor, coils or
windings supplied with high currents are held between the stator teeth and may
further greatly alter the stress state of the stator as they are subjected to the Lorentz
forces.

The stress figures 7.26, 7.27 and 7.28 show that the stresses in the teeth, in par-
ticular for σrr and σrθ, are not negligible compared to stresses in the stator casing.
Hence the teeth are likely to contribute significantly to the stator forces, stresses
and displacement fields. Note that for σrr in the stator casing region, some irreg-
ularities seem to occur along the paths θ = π

12 and θ = π
4 (Figure 7.26). These are

attributed to the mesh as computations performed on the extrafine mesh showed
smoother curves.

From Figure 7.27 we see that apart from fairly localized regions, σrθ is mostly
negative, i.e. compressive, throughout the stator, highlighting a global tendency of
the stator to shrink under the application of the magnetic field further highlighted
by the mostly negative values for ur in Figure 7.22. This tendency was already
reported in Section 3.2 on the idealized stator geometry.

In Figure 7.28 we recognize in the stator casing region the same hoop stress
distribution σθθ, characteristic of bending, as already observed in Section 3.2.
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main elements Based on the previous discussion, the following main
points are made:

1. the variational formulation and numerical implementation work well,
with a non linear coupled material behavior, and a complex geometry.

2. stresses of the order of the MPa can be reached, especially in θθ. These
stresses are of a magnitude that is likely to affect the magnetic properties
of the machine (see for instance Aydin et al., 2017, Daniel, Bernard, and
Hubert, 2020).

3. Displacement are of the order 1µm, comparable to reported magnetostric-
tion in typical electrical steels (see for instance Aydin et al., 2017).

Points 2. and 3. highlight and justify the necessity for accurate evaluation of
stresses and strains in electric motors and the development of the present code.
These first results are obtained with a material behavior that would still benefit
from further refinement - as highlighted in the discussion and in Section 6.2
- in order to confirm the previous results but the capacities of this numerical
implementation is demonstrated.





8
C O N C L U S I O N O F PA RT I I

The essential contributions of Part II are:

• Proposing a general variational formulation for the study of coupled
magneto-mechanical problems in electric motors, under finite strain and
arbitrary magnetic fields and showing its consistency with the direct ap-
proach of continuum mechanics in Part I (a non-trivial result for coupled
problems);

• A numerical implementation of the variational formulation for finite ele-
ment analysis of electric motor problems and verification of the code by
comparison with the analytical results of Part I;

• Numerical calculation of stresses, strains and magnetic fields in a realis-
tic stator under large magnetic fields accounting for magneto-mechanical
couplings.

discussion In Part II, a general variational formulation for fully coupled-magneto-
mechanical problems in electric motors is proposed and a numerical implementa-
tion is subsequently applied to the finite element analysis of a practical motor
problem. The variational formulation is based on Hamilton’s principle of varia-
tions.

As part of an effort to start from the most general framework before a careful ap-
plication of the suitable approximations for electric motor problems, a Lagrangian
for general electro-magneto-mechanical dynamic problems is first presented. An
eddy current approximation version of the Lagrangian is then proposed for the
modeling of electric motor problems. For both the general and approximated La-
grangian expressions, an explicit derivation of the application of Hamilton’s princi-
ple is performed. Particular attention is paid to the clarity of the derivation and we
show that the corresponding Euler-Lagrange equations consistently reduce to the
governing equations and interface conditions obtained from the direct approach in
Part I, a non-trivial result for coupled problems. Despite its use for electric motor
problems that are usually small strains, the formulation proposed is based on a
reference configuration (Lagrangian) approach, which enables to properly retrieve
the Maxwell-stress contribution in the linear momentum balance.

The variational formulation is then implemented in a general purpose finite ele-
ment code (Abaqus), via the definition of a user element. It is applied to a practical
quasi-static stator boundary value problem neglecting induced currents and accel-
eration terms. A constitutive law for the specific free energy is suggested which
accounts for magnetic saturation. The airgap is modeled (meshed) in order to ac-
count for the Maxwell-stress in the airgap and at interfaces. In the small magnetic
field regime, the numerical implementation is validated by the finite element anal-
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ysis of the stator problem of Part I and comparison with the analytical results
obtained. Comparison shows a good match of the numerical and analytical results.
Calculations are then performed on a more complex stator configuration that in-
cludes teeth and slots, and at large magnetic field. Despite some inaccuracies in
the material behavior, this last example of application puts forward the capacities
of the proposed formulation. It shows results for realistic engineering applications
and the peak values obtained for the stresses - of order 1 MPa - fall in the range of
non-negligible magneto-mechanical couplings.

Additional element: In the first section of Part II, the general variational formulation
for electro-magneto-mechanical dynamic problems presented goes beyond the scope of elec-
tric motors and may benefit other applications. To the best of the authors knowledge, the
link between this variational formulation and the direct approach of continuum mechanics
through the derivation of the Euler Lagrange equations does not exist in such clear and
simple terms in the literature and is believed to be a useful contribution of the present
work.

suggestions for future works Our focus in this work was on the theory
for the variational formulation and its implementation. The FEM model accounts
for hypotheses on the material behavior, clearly mentioned throughout the thesis,
that may be further investigated and improved. In particular, the modeling of the
coupled magneto-mechanical behavior of electrical steels could be better fitted to
experimental data (Aydin et al., 2017) using the small strain linearization from
Part I. A Langevin model for magnetization written in terms of h, instead of b
here, would also seem to be a better model of the behavior of electrical steels. The
implementation of such a model requires non-trivial manipulations involving a
Legendre transform and the inversion of the Langevin function.

The variational formulation may be enriched to account for more physics such
as the temperature and couplings between temperature and magnetization or tem-
perature and stresses (thermal expansion) for instance. The framework exposed in
this thesis is general enough to enable the inclusion of these physics.

Induced currents and acceleration terms were neglected. A further investigation
on how they could be implemented would be beneficial, especially for induced
currents that play a significant role in electric machines. The problem would then
become dynamic and likely much more computational intensive. The rotor was not
accounted for as well. Should it be, the question of accounting for moving meshes
and parts arises.

The FEM code developed is based on constant strain triangular elements for sim-
plicity, and because no problems of computational time or precision challenged
this choice. It is likely however that different element types may be better suited
given the distribution of the fields encountered in the analytic calculation. This
would be even more true for dynamic computations if induced currents are in-
cluded (Ledger et al., 2016).

Finally, all the previous work would greatly benefit from comparison with ex-
perimentation, the only guide that may accurately judge on the accuracy of the
physics and of the material behaviors considered and remove uncertainties.
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C A L C U L U S D E TA I L S

a.1 derivation of the reference configuration electric and mag-
netic potentials

We have,

e ≡ −∇φ−
∂a

∂t
and E = e·F

b ≡ ∇×a B = JF−1·b
(A.1)

Thus, given the transformations E = e·F and B = JF−1·b,

E = −(∇φ)·F− ∂a
∂t
·F+

( .
u×(∇×a)

)
·F

= −∇φ−

(
∂a

∂t
−
[ .
u·(a∇) −

.
u·(∇a)

])
·F

= −∇φ−
( .
a− (

.
u·a)∇+a·( .

u∇)
)
·F

= −∇φ−
.
a·F− (

.
u·a)∇+a·(

.
u∇)

= −∇(φ−
.
u·a) − d

dt
(a·F)

(A.2)

B = JF−1·(∇×a)
= JF−1Ii ε

ijk∂j(ak)êI

= JF−1Ii ε
ijk∂J(ak)F

−1
Jj êI

= εIJKFkK∂J(ak)êI

= εIJK
(
∂J(akFkK) − ak∂J(FkK)

)
êI

=∇×(a·F)

(A.3)

Note that the above uses the fact that F·F−1 = F−1·F = I such that as solutions
to these two equations, F and F−1 are:

FkK =
cofactor(F−1Kk)

det(()F−1)
=
J

2
εijkεIJKF−1Ii F

−1
Jj

F−1Kk =
cofactor(FkK)

det(()F)
=
1

2J
εijkεIJKFiIFjJ

(A.4)
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As a result,

JεijkF−1Ii F
−1
Jj = εijk

1

2
εilmεILMFlLFmMF

−1
Jj

= (δjlδkm − δjmδkl)
1

2
εILMFlLFmMF

−1
Jj

=
1

2
εILM(FjLFkM − FkLFjM)F−1Jj

=
1

2
(εIJMFkM − εILJFkL)

= εIJKFkK

(A.5)

a.2 other identity

Another direct consequence of (A.5), is the following identity: for two arbitrary
fields a and b of the current configuration,

a×b = J
[
(F−1·a)×(F−1·b)

]
·F−1 (A.6)

Note that despite a same symbol “×”, the cross product acting on the fields of the
current configuration is not the same as the cross product acting on the fields of
the reference configuration given the distinct sets of basis vectors.

a.3 intermediate variations calculus for application of hamil-
ton’s principle

Intermediate computations of the variations of the different terms of the Lagrangian
are performed here to help in the application of Hamilton’s principle in 5. The in-
dependent fields (generalized coordinates) of the variational principle are Φ, A
and u. Consequently for any scalar or tensor field f, δf should be expressed as a
function of δΦ, δA, δu and derivatives.

As a first step, one can derive the variations δE, δB, δF, δF−1 and δJ,

δE = −∇(δΦ) −
d
dt

(δA)

δB =∇×(δA)
δF = (δu)∇

δF−1 =
∂F−1Ii
∂FjJ

δFjJêIêi = −F−1Ij F
−1
Ji δFjJêIêi = −F−1·((δu)∇)·F−1

δJ =
∂J

∂F
: δF = JF−T : (δu)∇ = (JF−1) :∇δu

(A.7)

For variations of the right Cauchy-Green tensor C, starting with its definition C ≡
FT ·F,

δC = (δF)T ·F+ FT ·δF
δC−1 = −F−1·δF·C−1 −C−1·(δF)T ·F−T

(A.8)
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and then for any symmetric second order tensor Γ, accounting for the symmetries
of C and C−1,

Γ : δC = 2Γ : (FT ·δF) = 2(Γ·FT ) :∇δu
Γ : δC−1 = −2Γ :

(
F−1·δF·C−1

)
= −2C−1·Γ·F−1 :∇δu

(A.9)

Finally, for any vector T , recalling E = E− (F−1·
.
u×B) (5.4), and accounting for

the expression for δF−1 from (A.7) in the process,
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(A.10)

From all the previous then,

δ

(
ε0J

2
E·C−1·E

)
=
(ε0
2
E·C−1·E

)
δJ+

ε0J

2
EE : δC−1 + ε0JE·C−1·δE

=
(ε0
2
E·C−1·E

)
(JF−1) :∇δu

− ε0J
(
C−1·EE·F−1

)
:∇(δu)

− (ε0JC
−1·E)·∇(δΦ) − (ε0JC

−1·E)· d
dt

(δA)

−
(
(F−1·

.
u)((ε0JC

−1·E)×B)·F−1
)
:∇δu

+
(
(ε0JC

−1·E)×B)·F−1
)
· d
dt

(δu)

+
(
(F−1·

.
u)×(ε0JC−1·E)

)
·(∇×δA)

(A.11)

δ

(
1

2µ0J
B·C·B

)
= −

(
1

2µ0J2
B·C·B

)
δJ+

1

2µ0J
BB : δC+

1

µ0J
B·C·δB

= −

(
1

2µ0J2
B·C·B

)
(JF−1) :∇δu

+
1

µ0J

(
BB·FT

)
:∇δu+

1

µ0J
B·C·(∇×A)

(A.12)

As a result, one has now for the variation of l0 with respect to Φ, A and u,

l0,Φ[δΦ] =

(
ε0J

2
E·C−1·E

)
,Φ

[δΦ] −QδΦ

= −(JC−1·ε0E)·∇(δΦ) −QδΦ

(A.13)
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l0,A[δA] =

(
ε0J

2
E·C−1·E

)
,A

[δA] −

(
1

2µ0J
B·C·B

)
,A

[δA] +J·δA

= −
(
JC−1·ε0E

)
· d
dt

(δA) +
(
(F−1·

.
u)×(JC−1·ε0E)

)
·(∇×δA)

−
( 1

µ0J
C·B

)
·(∇×δA) +J·δA

(A.14)

l0,u[δu] =

(
ε0J

2
E·C−1·E

)
,u
[δu] −

(
1

2µ0J
B·C·B

)
,u
[δu]

= −Jε0

(
(C−1·E)E−

1

2
(E·C−1·E)I

)
·F−1 :∇δu

− Jε0

(
(F−1· .

u)((C−1·E)×B)·F−1
)
:∇δu

−
1

µ0J

(
B(C·B) − 1

2
(B·C·B)I

)
·F−1 :∇δu

+
(
(JC−1·ε0E)×B)·F−1

)
· d
dt

(δu)

(A.15)

Regarding the variations of the specific free energy ρ0Ψ now,

ρ0Ψ,Φ[δΦ] = ρ0

(
∂Ψ

∂E

)
·(−∇(δΦ)) (A.16)

ρ0Ψ,A[δA] = ρ0

(
∂Ψ

∂E

)
·
(
−

d
dt

(δA)

)
+ ρ0

(
∂Ψ

∂B

)
·(∇×δA) (A.17)

ρ0Ψ,u[δu] = ρ0
∂Ψ

∂C
: δC

=

[
2ρ0

∂Ψ

∂C
·FT
]
: (∇δu) =

[
JF−1·

(
2ρF· ∂Ψ

∂C
·FT
)]

: (∇δu)
(A.18)

where in the above, we used the fact that, for any scalar or tensor field f(C,E,B),

∂f

∂C

∣∣∣∣
(Φ,A)

=
∂f

∂C

∣∣∣∣
(E,B)

(A.19)

given fixing (Φ,A) fixes (E,B).
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b.1 isotropic , small strain, arbitrary magnetization constitutive

laws

The derivation of the constitutive laws for an isotropic magnetoelastic material for
small strain ε, but arbitrary magnetic field b, although straightforward requires
lengthy calculations. Although such calculations have been presented in the litera-
ture a long time ago by Pao and Yeh, 1973, following the early works on magnetoe-
lasticity by Brown, 1966, a direct comparison with our results is not possible due to
the different formulations adopted (e.g. different independent variables of the free
energy densities, different definitions of total stress etc.). A similar derivation can
also be found in Eringen and Maugin, 1990 however for small strains ε and small
magnetic field b altogether. Such derivations are not always done consistently in
the available literature; a linearized version of the invariants is often considered,
thus violating the objective nature of the free energy since the small strain tensor
ε is not objective.

Derivations are presented here for two different scenarios: the first assumes the
most general form of Helmholtz free energy ψ̂(Ik, J̃k, T) and the second is based
on the decoupled form ψ̂ = ψ̂e(Ik) + ψ̂m(J̃k) + ψ̂th(T) proposed in (2.23). In both
cases terms in ε b are kept, providing a more general result than the one presented
in (2.25).

b.1.1 General form of free energy

Recall that the current configuration expressions for the magnetization and total
stress in (2.9) are found by differentiating the Helmoltz free energy ψ̂(C, B̃, T).
In the case of an isotropic material ψ̂(C, B̃, T) = ψ̂(I1, I2, I3, J̃1, J̃2, J̃3, T) whose
invariants are expressed in terms of the right Cauchy-Green tensor C ≡ FT ·F and
B̃ ≡ b·F according to (2.23).

Applying the chain rule of differentiation to the expressions in (2.9), one obtains

m = −
2ρ0√
I3

(
∂ψ̂

∂J̃1
I+

∂ψ̂

∂J̃2
c+

∂ψ̂

∂J̃3
c2

)
·b ,

σ =
2ρ0√
I3

[
∂ψ̂

∂I1
c+

∂ψ̂

∂I2
(tr(c)c− c2) +

∂ψ̂

∂I3
det(c)I−

∂ψ̂

∂J̃1
bb+

∂ψ̂

∂J̃3
(c·b)(c·b)

]
+
1

µ0

(
bb−

1

2
(b·b)I

)
−
(
mb+bm− (b·m)I

)
,

(B.1)
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where the left Cauchy-Green tensor c ≡ F·FT appears naturally in the constitutive
relations (B.1). The subsequent algebra of small strain linearization is considerably
simplified by noting that the invariants involved can be alternatively expressed in
terms of c and b as follows

I1 = tr(c), I2 =
1

2
(tr(c)2 − tr(c·c)), I3 = det(c) ; c ≡ F·FT ,

J̃1 = b·b = ‖b‖2, J̃2 = b·c·b, J̃3 = b·c2·b .

(B.2)

Expanding the expressions in (B.1) about c = I up to the first order in the small
strain tensor ε ≡ (1/2)(∇u+u∇), for ‖ε‖ � 1, we obtain up to O(‖ε‖2)

m ≈m(c=I,b, T) +
∂m

∂c

∣∣∣
c=I

: 2ε, σ ≈ σ(c=I,b, T) +
∂σ

∂c

∣∣∣
c=I

: 2ε ;

c− I ≈ 2ε .

(B.3)

After lengthy algebraic manipulations of (B.1) and (B.3), the following expres-
sion for the magnetization m is found involving the scalar quantities ζi(‖b‖) , i =
1, · · · , 4

m = ζ1b+ ζ2tr(ε)b+ ζ3(b·ε·b)b+ ζ4ε·b ;

ζ1(‖b‖) ≡ −2ρ0

[
∂ψ̂

∂J̃1
+
∂ψ̂

∂J̃2
+
∂ψ̂

∂J̃3

]
c=I

,

ζ2(‖b‖) ≡ −ζ1(‖b‖) − 4ρ0
[
∂

∂I1
+ 2

∂

∂I2
+
∂

∂I3

] [
∂ψ̂

∂J̃1
+
∂ψ̂

∂J̃2
+
∂ψ̂

∂J̃3

]
c=I

,

ζ3(‖b‖) ≡ −4ρ0

[
∂

∂J̃2
+ 2

∂

∂J̃3

] [
∂ψ̂

∂J̃1
+
∂ψ̂

∂J̃2
+
∂ψ̂

∂J̃3

]
c=I

,

ζ4(‖b‖) ≡ −4ρ0

[
∂ψ̂

∂J̃2
+ 2

∂ψ̂

∂J̃3

]
c=I

.

(B.4)

A further simplification can be made for small strains in the expression of ζ2: since
|−ζ1tr(ε)b| << |−ζ1b|, one has ζ2 ≈ −4ρ0

[
∂
∂I1

+ 2 ∂∂I2 +
∂
∂I3

] [
∂ψ̂

∂J̃1
+ ∂ψ̂

∂J̃2
+ ∂ψ̂

∂J̃3

]
c=I

.
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The corresponding small strain linearization expressions yield a total stress σ as
the sum of an elastic

e
σ, a magnetic

m
σ and a magnetostrictive

ms
σ (involving terms

of the order ε b) component

σ =
e
σ+

m
σ +

ms
σ ;

e
σ ≡ λtr(ε)I+ 2Gε ,

m
σ ≡ 1

µ0

[
bb−

1

2
(b·b)I

]
− ζ1 [bb− (b·b)I] − ζ4

2
bb ,

ms
σ ≡ Σ0I+ [Σ1bb+ ζ2(b·b)I]tr(ε) + [Σ2I+ Σ4bb+ ζ3(b·b)I](b·ε·b)

+Σ3[(b·ε)b+b(ε·b)] ,

λ(‖b‖) ≡ 2ρ0

[
∂ψ̂

∂I3
−
∂ψ̂

∂I1

]
c=I

+ 4ρ0

[(
∂

∂I1
+ 2

∂

∂I2
+
∂

∂I3

)(
∂ψ̂

∂I1
+ 2

∂ψ̂

∂I2
+
∂ψ̂

∂I3

)]
c=I

G(‖b‖) = 2ρ0

[
∂ψ̂

∂I1
+
∂ψ̂

∂I2

]
c=I

Σ0(‖b‖) ≡ 2ρ0

[
∂ψ̂

∂I1
+ 2

∂ψ̂

∂I2
+
∂ψ̂

∂I3

]
c=I

Σ1(‖b‖) ≡ −ζ2(‖b‖) −
1

2
ζ4(‖b‖) + Σ2(‖b‖)

Σ2(‖b‖) = ζ4(‖b‖) + 4ρ0

[(
∂

∂J̃2
+ 2

∂

∂J̃3

)(
∂ψ̂

∂I1
+ 2

∂ψ̂

∂I2
+
∂ψ̂

∂I3

)]
c=I

Σ3(‖b‖) ≡ −ζ4(‖b‖) + 4ρ0

[
∂ψ̂

∂J̃3

]
c=I

Σ4(‖b‖) ≡ −ζ3(‖b‖) + 4ρ0

[(
∂

∂J̃2
+ 2

∂

∂J̃3

)(
∂ψ̂

∂J̃2
+ 2

∂ψ̂

∂J̃3

)]
c=I

(B.5)

and are expressed in terms of seven magnetic field-dependent coefficients: the two
Lamé coefficients λ(‖b‖) and G(‖b‖) plus five more scalars Σi(‖b‖) , i = 0, · · · , 41.
This expansion proves that in a first order approximation in ε, the coefficients in
the expressions for m and σ depend solely on ||b||. The fact that λ and G – and
hence the Young’s modulus E – may depend on ||b|| is referred to as the ∆E effect
(see e.g. Daniel and Hubert, 2009).

1 A further simplification is possible for small strains: since terms in ζ1εbb (respectively ζ4εbb)
are negligible in front of terms in ζ1bb (respectively ζ4bb), one obtains Σ1 ≈ −ζ2 + Σ2, Σ2 ≈
4ρ0

[(
∂
∂J̃2

+ 2 ∂
∂J̃3

)(
∂ψ̂
∂I1

+ 2 ∂ψ̂∂I2 + ∂ψ̂
∂I3

)]
c=I

and Σ3 ≈ 4ρ0
[
∂ψ̂

∂J̃3

]
c=I
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b.1.2 Decoupled form of the free energy

Under the additional hypothesis of additive decomposition for the specific free en-
ergy ψ = ψ̂e(I1, I2, I3) + ψ̂m(, J̃1, J̃2, J̃3) + ψ̂th(T) in (2.23), one obtains the simplifi-
cation ζ2 = −ζ1 yielding from (B.4) the following expression for the magnetization
m

m = ζ1[1− tr(ε)]b+ ζ3(b·ε·b)b+ ζ4ε·b ,

ζ1(‖b‖) = −2ρ0

[
∂ψ̂m

∂J̃1
+
∂ψ̂m

∂J̃2
+
∂ψ̂m

∂J̃3

]
c=I

,

ζ3(‖b‖) = −4ρ0

[
∂

∂J̃2
+ 2

∂

∂J̃3

] [
∂ψ̂m

∂J̃1
+
∂ψ̂m

∂J̃2
+
∂ψ̂m

∂J̃3

]
c=I

,

ζ4(‖b‖) = −4ρ0

[
∂ψ̂m

∂J̃2
+ 2

∂ψ̂m

∂J̃3

]
c=I

.

(B.6)

The corresponding expressions for the elastic
e
σ, magnetic

m
σ and magnetostric-

tive
ms
σ components of the total stress σ simplify from their corresponding coun-

terparts in (B.5) into

e
σ = λtr(ε)I+ 2Gε ,

m
σ =

1

µ0

[
bb−

1

2
(b·b)I

]
− ζ1 [bb− (b·b)I] − ζ4

2
bb ,

ms
σ = [Σ4bb+ ζ3(b·b)I](b·ε·b) + Σ3 [(b·ε)b+b(ε·b))] ,

(B.7)

where the scalars ζ1, ζ3, ζ4 are given in (B.6) and Σ3 and Σ4 given in (B.5) but
with ψ̂ replaced by ψ̂m. In deriving (B.7) from (B.5) under the decoupling hy-
pothesis, the pre-stress Σ0 and the corresponding Lamé coefficients λ,G are now
constants independent of the magnetic field b. It is further assumed that the elas-
tic prestress Σ0 = 0. Five functions of ‖b‖ are thus need to characterize the re-
sponse of an isotropic, small strain, decoupled-energy, magnetoelastic material:
ζ1, ζ3, ζ4,Σ3,Σ4.

A final remark is in order here to connect the above results to the constitutive
equation in (2.25) that neglects the magnetostrictive stress component

ms
σ . The rea-

son for this simplification is that for small strains (‖ε‖ � 1) and assuming that the
constants appearing in

m
σ and

ms
σ are of the same order of magnitude, one deduces

that ‖
ms
σ ‖ � ‖

m
σ‖. In the field of dielectric elastomers – a completely analogous

problem where e → b, p → m, ε0 → µ−10 – similar results that neglect the cou-
pled terms are justified under the typical hypothesis of small strain and moderate
electric field: ε = O(ζ), e = O(

√
ζ), where ζ a vanishingly small parameter (e.g. see

Tian et al., 2012; Lefèvre and Lopez-Pamies, 2017). The two coefficients ζ1 and ζ4
needed for the determination of

m
σ are related to the magnetic susceptibility χ(‖b‖)

and magnetostrictive coefficientΛ(‖b‖) by: ζ1(‖b‖) = χ(‖b‖)/[µ0(1+χ(‖b‖))] and
ζ4(‖b‖) = −2Λ(‖b‖)/[µ0(1+ χ(‖b‖))].



B.2 experimental determination of the magneto-mechanical coupling coefficient 147

b.2 experimental determination of the magneto-mechanical cou-
pling coefficient

Of all the material constants required for the constitutive model in (2.25) only
the magneto-mechanical coupling coefficient Λ in (2.25) is not readily available
and needs to be found from experiments. Its determination is based here on re-
sults presented by Aydin et al., 2017 who provide analytical calculations as well as
experimental data from Rekik, Hubert, and Daniel, 2014, for the uniaxial magne-
tostriction vs. the magnetic field for electrical steel samples under different levels
of mechanical prestress; a schematic of the setup is depicted in Figure B.1 based
on the description of the typical experimental setup from Belahcen et al., 2006.

Figure B.1: Schematics of the magnetostriction setup.

A thin plate of electrical steel is subjected to an external magnetic field b0ê1
along its axial direction, resulting in an axial magnetic field b1 = (1 + χ)b0 (as-
sumed uniform) inside the specimen, where χ is the material’s magnetic suscepti-
bility2. The plate is also subjected to an externally applied uniaxial stress σextê1ê1
and hence the total stress σ is the sum of the applied stress and the Maxwell stress
in vacuum due to the magnetic field b0

σ =
e
σ+

m
σ = σextê1ê1 +

1

µ0

[
b0b0 −

1

2
(b0·b0)I

]
(B.8)

where the expressions for the elastic and magnetic part of the total stress are given
by (2.25). The corresponding strain and the stress fields in the plate are assumed
uniform with edge effects near the corners and edges of the plate neglected.

Consequently the resulting axial strain ε11 is made of an elastic component
σext/E plus a component proportional to the square of the magnetic field strength
ζm(b1)

2, where the curvature coefficient ζm depends on the magnetic constants

2 The materials used for holding the plate have no magnetic properties.
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(susceptibility χ and magneto-mechanical coupling Λ). A straightforward calcula-
tion from (B.8) and (2.25), considering that the specimen’s lateral strain is ε22 =

ε33, gives two independent equations
(λ+ 2G)ε11 + 2λε22 = σext +

(b0)
2

2µ0

[
1− (1+ χ)2 − 2Λ(1+ χ)

]
,

λε11 + 2(λ+G)ε22 = −
(b0χ)

2

2µ0
,

(B.9)

where the Lamé constants are given in terms of Young’s modulus E and Poisson
ratio ν by G = E/2(1+ ν) and λ = νE/(1+ ν)(1− 2ν). From (B.9) one obtains the
sought relation between the axial strain, the external stress and the magnetic field
as well as the expression for the curvature coefficient ζm

ε11 =
σext

E
+ ζm(b1)

2 ;

ζm = ζmχ + ζmΛ , ζmχ ≡ −
(12 − ν)χ

2 + χ

Eµ0(1+ χ)2
, ζmΛ ≡

−Λ

Eµ0(1+ χ)
.

(B.10)

In decomposing the curvature ζm into a magnetic susceptibility ζmχ and a magneto-
mechanical ζmΛ component we follow the approach of Daniel et al., 2003

3 , where
the coefficients ζmχ and ζmΛ correspond respectively to the magnetic suscepti-
bility χ and the magneto-mechanical coupling Λ parts of the magnetic stress

m
σ

defined in (2.25).
For the no external stress case (σext = 0) the data from Aydin et al., 2017,

which are based on the approach adopted in Daniel et al., 2003, provide the same
magneto-mechanical coupling curvature ζmΛ = 2×10−6 T−2 for the two materi-
als analyzed. Unfortunately, the values for ν associated to these materials are not
reported there. We assume typical values for steel: in the rotor problem (section
3.1) we consider ν = 0.34, E = 183GPa and a magnetic susceptibility χ = 4×103,
resulting in Λ ≈ −1.8×103 which is used in our calculations, as seen in Table 3.1.
For the stator problem (section 3.2) we consider ν = 0.3, E = 215GPa and a mag-
netic susceptibility χ = 2.5×103, resulting in Λ ≈ −1.3×103 which is used in our
calculations, as seen in Table 3.14.

b.3 the compatibility equation and its implications for the rotor

and stator boundary value problems

The strain-displacement relations for 2D problems in polar coordinates are,

εrr =
∂ur

∂r
; εθθ =

1

r

(
∂uθ
∂θ

+ ur

)
; εrθ =

1

2

(
1

r

∂ur

∂θ
+
∂uθ
∂r

−
uθ
r

)
, (B.11)

from which results the compatibility equation that strains need to verify4:

3 In Daniel et al., 2003 and subsequent work by this research group by “pure magnetostrictive” strains
they refer to the strains due to the magneto-mechanical coupling Λ.

4 The reader is referred to Barber, 2010 §2.2 for additional information on the compatibility equation.



B.3 the compatibility equation and its implications for the rotor and stator boundary value problems 149

1

r2
∂2εrr

∂θ2
+
∂2εθθ
∂r2

−
2

r

∂2εrθ
∂r∂θ

−
1

r

∂εrr

∂r
+
2

r

∂εθθ
∂r

−
2

r2
∂2εrθ
∂θ

= 0 . (B.12)

In the rotor and stator problems, we look for a solution elastic stress field in the
form,

e
σ =

e
σ
h
+
e
σ
p

, (B.13)

where
e
σ
h

is the solution to the homogeneous stress equation ∇·
e
σ = 0 and

e
σ
p

is
a particular solution to the complete stress equations (3.13) – rotor problem – and
(3.45) – stator problem –.

Similarly the strain is decomposed into ε = εh + εp where ε, εh and εp are

linked to
e
σ,

e
σ
h

and
e
σ
p

via the stress-strain relationship. In 2D plane strains5,
εrr =

1+ ν

E
((1− ν)σrr − νσθθ)

εθθ =
1+ ν

E
((1− ν)σθθ − νσrr)

εrθ =
1+ ν

E
σrθ

(B.14)

The homogeneous solution elastic stress field
e
σ
h

is found using the Airy stress
function method. This method relies on the solution of the equations in (3.28) -
rotor problem - and (3.54) - stator problem - on φh. Because these equations derive
from the compatibility equation for strains (see Barber, 2010 §4.4.1), the resulting

strain field εh associated to
e
σ
h

is compatible6. Because the total strain ε is required
to be compatible, and εh is compatible, then by transitivity the particular solution
e
σ
p

should be such that the resulting strains εp be compatible as well.
Given the stress equations in (3.13) - rotor problem - and (3.45) - stator problem

- , it would be tempting to choose
e
σ
p
= −

m
σ as a particular solution for the elastic

stress field7. However, we verified8 in both the rotor and stator problems that this
solution leads to a non-compatible particular solution strain field εp. As such, the

particular solution
e
σ
p
= −

m
σ - to the electromagnetic part of the forcing - is not

compatible with finding the homogeneous solution stress field from the Airy stress
function method. Hence the methodology used in the rotor and stator problems of

Section 3.1 and Section 3.2, which expresses the body force term
m

f = −∇·
m
σ as the

gradient of a potential V - added to a directly integrable force term N in the case
of the rotor problem -.

5 Here we provide the relations linking the true non-normalized stress and strain fields.
6 Compatible is to be understood as “fulfills the compatibility equation (B.12)”
7 All particular solution to the centrifugal forces set aside in the case of the rotor problem.
8 We computed the left hand side of (B.12), which would not equal 0 throughout the whole stator

domain.
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b.4 stress and displacement fields for the rotor boundary value

problem

The expressions for the stress and displacement fields solution to the rotor bound-
ary value problem in Section 3.1 are detailed below.

b.4.1 Particular and homogeneous solution stress fields

From (3.26) and (3.27), the particular solution stress field
e
σ
V

components are

e
σ
V

rr = V −
1

2

1− 2ν

1− ν

(
2

r2

∫r
0

rV0dr− (2p− 1)r
2p−2

∫r
0

Vcs

r2p−1
dr+

2p+ 1

r2p+2

∫r
0

r2p+1Vcsdr
)

e
σ
V

θθ =
νV

1− ν
+
1

2

1− 2ν

1− ν

(
2

r2

∫r
0

rV0dr− (2p− 1)r2p−2
∫r
0

Vcs

r2p−1
dr+

2p+ 1

r2p+2

∫r
0

r2p+1Vcsdr
)

e
σ
V

rθ =
1

2

1− 2ν

1− ν

(
(2p− 1)r2p−2

∫r
0

V∗cs
r2p−1

dr+
2p+ 1

r2p+2

∫r
0

r2p+1V∗csdr
)

(B.15)

where V∗cs ≡ Vs cos(2Θ) −Vc sin(2Θ) and the V potential components are given by
(3.23).

From (3.28) and (3.29), the homogeneous solution stress field
e
σ
h

components are
(see Barber, 2010 Table 8.1)

e
σ
h

rr = Φ01 +
(
(2p− 4p2)Φc1r

2p−2 + (2p+ 2− 4p2)Φc2r
2p
)

cos(2Θ)

+
(
(2p− 4p2)Φs1r

2p−2 + (2p+ 2− 4p2)Φs2r
2p
)

sin(2Θ)

e
σ
h

θθ = Φ01 +
(
2p(2p− 1)Φc1r

2p−2 + (2p+ 2)(2p+ 1)Φc2r
2p
)

cos(2Θ)

+
(
2p(2p− 1)Φs1r

2p−2 + (2p+ 2)(2p+ 1)Φs2r
2p
)

sin(2Θ)

e
σ
h

rθ =
Φ02
r2

−
(
2p(2p− 1)Φs1r

2p−2 + 2p(2p+ 1)Φs2r
2p
)

cos(2Θ)

+
(
2p(2p− 1)Φc1r

2p−2 + 2p(2p+ 1)Φc2r
2p
)

sin(2Θ)

(B.16)

Application of the stress boundary condition in (3.30) provides the six Φ constants
of integration in (B.16).

b.5 stress and displacement fields for the stator boundary value

problem

The expressions for the stress and displacement fields solution to the stator bound-
ary value problem in Section 3.2 are detailed below.
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b.5.1 Particular and homogeneous solution stress fields

From (3.52) and (3.53), the particular solution stress field
e
σ
V

components are

e
σ
V

rr = V −
1

2

1− 2ν

1− ν

(
2

r2

∫r
r2

rV0dr

−

[
(2p− 1)r2p−2

∫r
r2

Vc

r2p−1
dr−

2p+ 1

r2p+2

∫r
r2

r2p+1Vcdr
]

cos(2Θ)
)

e
σ
V

θθ =
ν

1− ν
V +

1

2

1− 2ν

1− ν

(
2

r2

∫r
r2

rV0dr

−

[
(2p− 1)r2p−2

∫r
r2

Vc

r2p−1
dr−

2p+ 1

r2p+2

∫r
r2

r2p+1Vcdr
]

cos(2Θ)
)

e
σ
V

rθ = −
1

2

1− 2ν

1− ν

[
(2p− 1)r2p−2

∫r
r2

Vc

r2p−1
dr

+
2p+ 1

r2p+2

∫r
r2

r2p+1Vcdr
]

sin(2Θ)

(B.17)

From (3.28) and (3.29), the homogeneous solution stress field
e
σ
h

components are
(see Barber, 2010 Table 8.1)

e
σ
h

rr = 2Φ01 +Φ02 + 2Φ02 ln(r) +
Φ03
r2

+
[
(−4p2 − 2p+ 2)Φc1r

−2p + (2p− 4p2)Φc2r
2p−2

− (2p+ 4p2)Φc3r
−2p−2 + (−4p2 + 2p+ 2)Φc4r

2p
]

cos(2Θ)

+
[
(−4p2 − 2p+ 2)Φs1r

−2p + (2p− 4p2)Φs2r
2p−2

− (2p+ 4p2)Φs3r
−2p−2 + (−4p2 + 2p+ 2)Φs4r

2p
]

sin(2Θ)

(B.18)

e
σ
h

rθ =
Φ04
r2

− 2p
[
(−2p+ 1)Φs1r

−2p + (2p− 1)Φs2r
2p−2

− (2p+ 1)Φs3r
−2p−2 + (2p+ 1)Φs4r

2p
]

cos(2Θ)

+ 2p
[
(−2p+ 1)Φc1r

−2p + (2p− 1)Φc2r
2p−2

− (2p+ 1)Φc3r
−2p−2 + (2p+ 1)Φc4r

2p
]

sin(2Θ)

(B.19)

e
σ
h

θθ = 2Φ01 + 3Φ02 + 2Φ02 ln(r) −
Φ03
r2

+
[
(−2p+ 2)(−2p+ 1)Φc1r

−2p + 2p(2p− 1)Φc2r
2p−2

+ 2p(2p+ 1)Φc3r
−2p−2 + (2p+ 2)(2p+ 1)Φc4r

2p
]

cos(2Θ)

+
[
(−2p+ 2)(−2p+ 1)Φs1r

−2p + 2p(2p− 1)Φs2r
2p−2

+ 2p(2p+ 1)Φs3r
−2p−2 + (2p+ 2)(2p+ 1)Φs4r

2p
]

sin(2Θ)

(B.20)
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It is noticeable in these equations that the purely radius-dependent part of the
stress component

e
σrr involves three constants: Φ01,Φ02,Φ03. The boundary con-

ditions in (3.45) provides only 2 equations: one in r = 1, another in r = r3. To
solve for the integration constants, an additional equation is required. It is brought
by the requirement that the tangent displacement uθ be single valued in θ, which
imposes Φ02 = 0 (see (B.23) and discussion below).

On the contrary, the stress boundary condition on
e
σrθ in r = 1 and r = r3

provide for the r-dependent part of the stress component two equation for one
unknown Φ04. This is not inconsistent but due to a link between the boundary
condition in r = 1 and r = r3 through the magnetic field equations.

b.5.2 Displacement field

In plane strain, the stress-strain relationship
e
σ = λtr(ε) + 2Gε provides, for the

normalized fields,

(1− ν)
e
σrr − ν

e
σθθ =

∂ur

∂r

− ν
e
σrr + (1− ν)

e
σθθ =

1

r

(
∂uθ
∂θ

+ ur

)
e
σrθ =

1

2

(
1

r

∂ur

∂θ
+
∂uθ
∂r

−
uθ
r

) (B.21)

By superposition, the displacement u = uV +uh associated respectively to stresses
e
σ
V

and
e
σ
h

.

homogeneous solution displacement field The homogeneous solution
normalized displacement field uh is given by (see Barber, 2010 Table 9.1 to be read
with κ = 3− 4ν for plane strain),

uhr = 2Φ01(1− 2ν)r+Φ02
[
2(1− 2ν)r ln(r) − r

]
−
Φ03
r

+ 2

[
(1− 2ν+ p)Φc1r

−2p+1 − pΦc2r
2p−1

+ pΦc3r
−2p−1 +Φc4(1− 2ν− p)r

2p+1

]
cos(2θ)

+ 2

[
(1− 2ν+ p)Φs1r

−2p+1 − pΦs2r
2p−1

+ pΦs3r
−2p−1 +Φs4(1− 2ν− p)r

2p+1

]
sin(2θ)

(B.22)



B.6 stator problem : other constitutive laws for stresses 153

uhθ = 2Φ02(2− 2ν)rθ−
Φ04
r

+ 2

[
(2− 2ν− p)Φs1r

−2p+1 − pΦs2r
2p−1

− pΦs3r
−2p−1 −Φs4(2− 2ν+ p)r

2p+1

]
cos(2θ)

− 2

[
(2− 2ν− p)Φc1r

−2p+1 − pΦc2r
2p−1

− pΦc3r
−2p−1 −Φc4(2− 2ν+ p)r

2p+1

]
sin(2θ)

(B.23)

As detailed in Barber, 2010 this solution discards rigid body motions. The require-
ment that uθ = uhθ +u

V

θ (uVθ is given below) be single valued in θ imposes Φ02 = 0.

particular solution displacement field Given the particular solution
stress field (B.17) and (B.21), the sought solution uV(r,Θ) takes the form,

uVr (r,Θ) = uV
0
r (r) + uVc(r) cos(2Θ) ; uVθ(r,Θ) = u

Vs
θ (r) sin(2Θ) (B.24)

From (B.21)2, given the form of uθ,

uV0r (r) = r
[
(1− ν)

e
σV0θθ − ν

e
σV0rr

]
=
1− 2ν

1− ν

1

r

∫r
r2

rV0dr (B.25)

From (B.21)2 given (B.24),

uVsθ =
1

2p

[
r
(
(1− ν)

e
σ
c

θθ − ν
e
σ
c

rr

)
− uVcr

]
(B.26)

From (B.21)3, given (B.26),

uVcr =
1

4p2 − 1

[
−4pr

e
σVsrθ + r

2

(
(1− ν)

∂
e
σVcθθ
∂r

− ν
∂
e
σVcrr

∂r

)
− r
∂uVcr

∂r

]
(B.27)

The term ∂uV
c

r

∂r is directly given by (B.21)1, and the stress r-derivatives are com-
puted from (B.17).

b.6 stator problem : other constitutive laws for stresses

b.6.1 Not accounting for the magnetostriction coefficent

Additional results are presented for Model 2 to which the results of Model 1 is
compared in Section 3.2.4. For Model 2 we do not account for the magnetostriction
term included in Model 1 (case Λ = 0), such that the magnetic stress expression is,

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
+
χ

µ
(b·b)I (B.28)
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The stress boundary conditions are,

∂D2 ∪ ∂D3 :


e
σrr = −

1

2
µ0χ

2h2θ

e
σrθ = 0

(B.29)

The stress equation we solve for stresses is (neglecting induced currents at the
stator and thus the Lorentz force),

D3 : ∇·
e
σ = −

χ

µ
b·(b∇) (B.30)

Figure B.2 pictures the total stress distribution at the stator in the same condi-
tions and motor configuration than given in Table 3.14, save for Λ = 0 now. Fig-
ure 3.21 pictures the elastic stress field. Figure B.4 pictures the displacement field,
with the deformation magnified 200 times showing the ovalization at the stator.
The fields are normalized by the reference stress σref and reference displacement
uref introduced in (3.42).

(a)
σrr(r,Θ)
σref

(b)
σrθ(r,Θ)
σref

(c)
σθθ(r,Θ)
σref

Figure B.2: Normalized total stresses in stator, in the case Λ = 0 (Model 2): (a) normal, (b)
shear and (c) hoop.

(a)
e
σrr(r,Θ)
σref

(b)
e
σrθ(r,Θ)
σref

(c)
e
σθθ(r,Θ)
σref

Figure B.3: Normalised elastic stresses in stator, in the case Λ = 0 (Model 2): (a) normal, (b)
shear and (c) hoop.
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(a)
ur(r,Θ)
uref

(b)
uθ(r,Θ)
uref

Figure B.4: Normalized displacements in stator, magnified 4 106 times, in the case Λ = 0

(Model 2): (a) radial, (b) tangent. The central circle pictures the rotor boundary
∂D1.

b.6.2 An other typical model found in the literature: the Maxwell Tensor model

Additional results are presented for Model 3 to which the results of our model is
compared in Section 3.2.4. For this typical model found in the literature (Pile et al.,
2019a; Pile et al., 2019b) and to which the results of our model is compared to in
Section 3.2.4,

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
(B.31)

The stress boundary conditions are,

∂D2 ∪ ∂D3 :


e
σrr =

1

2

χ

µ
b2r +

1

2
µ0χh

2
θ

e
σrθ = 0

(B.32)

The stress equation we solve for is,

D3 : ∇· eσ = 0 (B.33)

Figure B.5 pictures the total stress distribution at the stator in the same con-
ditions and motor configuration than given in Table 3.14. Figure B.6 pictures the
elastic stress field. Figure B.7 pictures the displacement field, with the deformation
magnified 200 times showing the ovalization at the stator. The fields are normal-
ized by the reference stress σref and reference displacement uref introduced in
(3.42). It is striking to note that the no stator current hypothesis, leading to ∇·

m
σ = 0

implies
m
σ = 0 given the same results for

e
σ and σ shown by Figures B.5 and B.6.
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(a)
σrr(r,Θ)
σref

(b)
σrθ(r,Θ)
σref

(c)
σθθ(r,Θ)
σref

Figure B.5: Normalized total stresses in stator, for the comparison model found in the
literature (Model 3): (a) normal, (b) shear and (c) hoop.

(a)
e
σrr(r,Θ)
σref

(b)
e
σrθ(r,Θ)
σref

(c)
e
σθθ(r,Θ)
σref

Figure B.6: Normalised elastic stresses in stator, for the comparison model found in the
literature (Model 3): (a) normal, (b) shear and (c) hoop.

(a)
ur(r,Θ)
uref

(b)
uθ(r,Θ)
uref

Figure B.7: Normalized displacements in stator, magnified 4 106 times, for the comparison
model found in the literature (Model 3): (a) radial, (b) tangent. The central circle
pictures the rotor boundary ∂D1.



C
F U RT H E R D E TA I L S R E G A R D I N G T H E N U M E R I C A L
I M P L E M E N TAT I O N

c.1 choice of a specific free energy

The choice of the magnetic specific free energy ψmag in Section 6.2 was arrived at
after a few iterations detailed below.

At first, a specific free energy model from Danas, 2017 was taken. The consti-
tutive equations for the magnetization and stress field in small strains and small
magnetic field (linear regime) were derived and compared to the expressions in
Section 2.2. Because the stress expressions did not match, a second model for ψmag
was derived, matching both the small strain magnetization and stress expressions
in Section 2.2. The small strain and small magnetic field magnetization curve was
then compared to typical values for electrical steel (Aydin et al., 2017)1. A mis-
match was observed leading to the final model for ψmag in Section 6.2 including
a correction factor αs.

c.1.1 First model - the Langevin model

One first possibility for the magneto-mechanical part of the free specific energy is
to use a Langevin model, which reads with the current configuration fields (Danas,
2017)

ρ0ψmag(F,b) =
ms

A
J
[
ln(A

√
b·b) − ln(sinh(A

√
b·b))

]
; A =

3

ms

χ

µ
(C.1)

Note that this model for ψmag presents a magneto-mechanical coupling through
the J = det(F) factor.

The first order derivatives of ψmag are,

ρ
∂ψmag

∂b
= −msA

[
1

A
√
b·b

−
1

tanh(A
√
b·b)

]
b

||b||

ρF·
(
∂ψmag

∂F

)T
= ms

[
ln(A

√
b·b) − ln(sinh(A

√
b·b))

]
I

(C.2)

The expressions for the magnetization and the magnetic part of the stress
m
σ =

σ−
e
σ that derive from ψmag are obtained using (2.9). In the small magnetic field

and small strain regime, we show

m = −
χ

µ
b+O(||b||3)

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
+O(||b||4)

(C.3)

1 We compare to the magnetization curves obtained in the zero pre-stress case.

157



158 further details regarding the numerical implementation

Comparing with the small strain linear magnetic field expressions in (2.25), the
correct expression is retrieved form but the expression

m
σ does not match. Working

with the second tanh model provided in Danas, 2017 leads to the same small strain
small magnetic field expressions (C.3). This justifies the investigation of the choice
for ψmag in (C.4), where the J factor is dropped compared to (C.1).

Note that in the Langevin model, given the
m
σ expression (C.3) the magnetic

force
m

f is reduced to the Lorentz force only following 2.2.2.

c.1.2 Second model - modified Langevin model

In order to retrieve both magnetization and stress expressions matching (2.25), we
propose to amend the Langevin model of section (C.1.1) by taking out the J factor,
leading to the modified Langevin-type formulation

ρ0ψmag(b) =
ms

A

[
ln(A

√
b·b) − ln(sinh(A

√
b·b))

]
; A =

3

ms

χ

µ
(C.4)

This model forψmag no longer presents the magneto-mechanical coupling through
the J = det(F) factor such that this formulation in terms of the Eulerian field b is
independent of the deformation gradient F. It is coupled in C and B = JF−1 ·b
however when written in terms of the Lagrangian fields.

The first order derivatives of ψmag are then,

ρ
∂ψmag

∂b
= −msA

[
1

A
√
b·b

−
1

tanh(A
√
b·b)

]
b

||b||
; ρF·

(
∂ψ̃mag

∂F

)T
= 0 (C.5)

such that the expressions for the magnetization and the magnetic part of the stress
m
σ = σ −

e
σ lead to the expected relations (2.25) in the small magnetic field and

small strain regime,

m = −
χ

µ
b+O(||b||3)

m
σ =

1

µ

(
bb−

1

2
(b·b)I

)
+
χ

2µ
(b·b)I+O(||b||4)

(C.6)

One question remains: how do these expressions fit with typical experimental data
in particular concerning the ferromagnetic electrical steels we hope to model. This
comparison is provided in Section C.1.3.

c.1.3 Comparison with experimental data

Comparison was made with the magnetization data available in Aydin et al., 2017

for typical electrical steel. It is presented in Figure C.1 where we plot the exper-
imental b-h curve at zero pre-stress obtained for M330-50A grade electrical steel
(Figure 1 of Aydin et al., 2017)2, and the b-h curve obtained with the modified

2 The experimental b-h curve data from Aydin et al., 2017 was retrieved from the plots pictured in the
article using a plot digitizer.
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Langevin model (C.4). The material parameters used for the calculation, all pro-
vided in Aydin et al., 2017 are: the magnetic susceptibility χ = 2.15 103, the ma-
terial magnetic permeability µ = µ0(1+ χ), and the magnetization at saturation
ms = 1.25 106. The results show that the modified Langevin model does not in-
crease rapidly enough with ||h||. For that reason, we introduce a correction factor
αs that multiplies the magnetization at saturation ms such that the specific free
energy,

ρ0ψmag(b) =
α2sms

A

[
ln
(
A

αs

√
b·b
)
−ln

(
sinh

(
A

αs

√
b·b
))]

; A =
3

ms

χ

µ
. (C.7)

This model is additionally plotted in Figure C.1. A correction factor αs = 35 pro-
vides a satisfying match to the M350-50A grade steel data from (Aydin et al., 2017).
Note that the match is valid in the range of the experimental data provided in the
article: ||b|| ∈ [0, 1.1T ]. At large magnetic fields however, the data may lack accuracy
given the model (C.7) tends to αs times the magnetization at saturation ms.

Figure C.1: Comparison of the b-h curves obtained for various models with experimental
data for M350-50A grade electrical steel from Aydin et al., 2017.

c.1.4 Other literature references

Various formulations are available for modeling the magnetization of anhysteretic
isotropic ferromagnetic materials. Following the pioneering work of Langevin, P.,
1905, these formulations do rely on Langevin functions - or associated tanh, sig-
moid or double Langevin models -. However they all describe the magnetization
as a function of the h-field (Langevin, P., 1905; Steentjes et al., 2017), or even an
equivalent h-field that accounts for the coupling of domain magnetization with
the bulk magnetization as in the seminal work of Jiles and Atherton, 1986. Such
formulations in h were not straightforward to integrate in the proposed FEM code
based on the Lagrangian B field. Other formulations are proposed in the form of
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Taylor expansions with respects to the isotropic invariants however in small strains
and involving a significant number of parameters (Aydin et al., 2017). These rea-
sons motivated the choice of the simpler functional (C.7), with its correction factor
to fit at best experimental magnetization curves at least on magnetic field values
up to around 1T.

c.2 free-energy derivatives

This appendix provides the first and second order derivatives of the volume free
energy W = ρ0ψ needed in the FEM code. They are based on the specific-free-
energy definition in (6.17), (6.18) and (6.19).

c.2.1 Derivatives for ψmech

∂Wmech
∂I1

=
G

2
;

∂Wmech
∂I2

=
λ

2

(
1−

1√
I2

)
−
G

2I2

∂2Wmech

∂I2
2

= −
λ

4I2
√
I2

−
G

2I22

(C.8)

c.2.2 Derivatives for ψmag

To lighten the following expressions, we define X ≡ A
αs

√
J2
I2

(recall A ≡ 3χ
µms

), and
we have

∂Wmag

∂I2
= −

α2sms

A

X

2I2

[
1

X
−

1

tanh(X)

]
∂Wmag

∂J2
=
msA

2I2X

[
1

X
−

1

tanh(X)

]
∂2Wmag

∂I22
=
α2sms

A

1

4I22

[
2− 3

X

tanh(X)
+

X2

tanh2(X)
−X2

]
∂2Wmag

∂J22
= −

α2smsA
3

4I22X
2

[
2

X2
−

1

X tanh(X)
−

1

tanh2(X)
+ 1

]
∂2Wmag

∂J2∂I2
= −

msA

4I22

[
−

1

X tanh(X)
+

1

tanh2(X)
− 1

]
(C.9)
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When b tends to zero, i.e. J2 tends to zero, a Taylor expansion of the derivatives
in (C.9) provides,

∂Wmag

∂I2
= −

α2sms

2I2A

(
−
X2

3
+
X4

45

)
+O(X6)

∂Wmag

∂J2
=
msA

2I2

(
−
1

3
+
X2

45
−
2X4

945

)
+O(X6)

∂2Wmag

∂I22
=
α2sms

A

1

4I22

(
−
4

3
X2
)
+O(X4)

∂2Wmag

∂J22
= −

α2smsA
3

4I22

(
−
2

45
+
8X2

945

)
+O(X4)

∂2Wmag

∂J2∂I2
= −

msA

4I22

(
−
2

3
+ 4

X2

45

)
+O(X4)

(C.10)

These expressions are used in the FEM code in the limit ||b|| < ζ, ζ a small parame-
ter, as the code cannot evaluate the expressions in (C.9) for arbitrarily small values
of b because of diverging terms. For consistency of the equations, the first order
derivatives have to be Taylor expanded to one order higher in X2 than the second
order derivatives.

c.2.3 Derivatives of the invariants

We also provide the derivatives of the invariants with respect to (C,B):

∂I1
∂C

= I ;
∂I2
∂C

= I2C
−1 ;

∂J2
∂C

= BB ;

∂J1
∂B

= 2B ;
∂J2
∂B

= 2C·B
(C.11)

c.3 derivatives of the energy P

The derivatives of P with respect to (F,B) are associated to the derivative of the
energy W through, for first order derivatives,

∂P

∂Fkl
=
∂W

∂Fkl
+

1

2µ0J

[
∂J3
∂Fkl

−
J3
2I3

∂I3
∂Fkl

]
∂P

∂Bk
=
∂W
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+

1

2µ0J

∂J3
∂Bk

(C.12)
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and for second order derivatives,

∂2P
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]
(C.13)

The derivatives of the total free energy W with respect to (F,B) is linked to its
derivatives with respect to the invariants through,

∂W

∂Fij∂Fkl
=

∂2W

∂Iα∂Iβ

∂Iα
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∂2Iα
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(C.14)

Finally, the derivatives of the invariants of the problem I1, I2, J2 given in 6.16 with
respect to (F,B) are, for first order derivatives,

∂I1
∂Fkl

= 2Fkl ;
∂I2
∂Fkl

= 2I2F
−1
lk ;

∂J2
∂Fkl

= 2FkmBmBl ;

∂J2
∂Bk

= 2CkmBm

(C.15)

and for second order derivatives,

∂2I1
∂Fij∂Fkl

= 2δikδjl ;
∂2I3

∂Fij∂Fkl
= 2I3

[
2F−1ji F

−1
lk − F−1jk F

−1
il

]
;

∂2J3
∂Fij∂Fkl

= 2δikBjBl ;
∂2J3
∂Bk∂Bl

= 2Ckl ;

∂2J3
∂Fij∂Bk

= 2δkjFimBm + 2FikBj

(C.16)

c.4 mesh convergence study for the refined stator problem

Three mesh configurations were tested for mesh convergence analysis of the re-
fined stator model from Section 7.2.

• Coarse mesh: 5,822 elements, with uniform approximate global size 1mm.
Computation ran in 2.2s CPU time.

• Fine mesh: 22,182 elements, with uniform approximate global size 0.5mm.
Computation ran in 8.5s CPU time.
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• Extrafine mesh: 86,604 elements, with uniform approximate global size 0.25mm.
Computation ran in 39s CPU time.

For size comparison, recall the airgap size a teeth tip is 3mm. The parameters,
inputs and boundary conditions used for the computations are those presented in
Section 7.2.

In the following, we compare the results obtained for the nodal variables A, ur,
uθ, together with the derived magnetic and stress fields Br, Bθ, Πrr, Πrθ, Πθθ, for
a section θ = 30◦, i.e. at the center line passing through the second bottom stator
teeth. The path is highlighted in orange on Figure C.2. This section is presumed
representative of the whole problem.

Figure C.2: In orange, path along which the fields are evaluated for mesh convergence
analysis, here plotted on the fine mesh.

nodal variables Figures C.3 compares the results obtained for the nodal
variables of the problem A, ur, uθ (of the reference configuration) for the different
mesh fineness. It shows that the magnetic potential A is predicted with very good
accuracy with the coarse mesh and does not require further refinement. For the
displacement fields however, the coarse mesh results are slightly too inaccurate.
Despite slight differences with the results obtained with the extrafine mesh, the
fine mesh is a satisfying compromise.
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(a) Magnetic potential A (b) Displacement ur (c) Displacement uθ

Figure C.3: Refined stator: FEM results for the nodal variables along the path θ = 30◦, for
different mesh fineness. Variables are plotted against the path length from 0 at
rotor radius, to 28mm at the stator external radius.

derived magnetic and stress fields Figures C.4, C.5 show the results
obtained for the derived magnetic and stress fields (of the reference configuration)
for the different mesh fineness. It shows that the results are much less sensitive
to the mesh fineness than the results for the nodal variables. The most important
differences are near the boundaries or interface of the problem or near the peak
regions for the fields were the coarse mesh shows slight inaccuracies.

(a) Magnetic field Br (b) Magnetic field Bθ

Figure C.4: Refined stator: FEM results for the magnetic field along the path θ = 30◦, for
different mesh fineness. Variables are plotted against the path length from 0 at
rotor radius, to 28mm at the stator external radius.
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(a) Πrr
µ0m2s

(b) Πrθ
µ0m2s

(c) Πθθ
µ0m2s

Figure C.5: Refined stator: FEM results for the nodal variables along the path θ = 30◦, for
different mesh fineness. Variables are plotted against the path length from 0 at
rotor radius, to 28mm at the stator external radius.

conclusion Overall, the coarse mesh is slightly poor. Given the result differ-
ences between the fine and extrafine mesh are very narrow, the fine mesh is judged
accurate enough and used in the subsequent computations.
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Mots clés : Moteurs électriques ; Couplages multiphysiques ; Mécanique des solides ; Electromagnétisme ;
Solutions analytiques ; Eléments-finis

Résumé : Le développement de moteurs électriques
plus légers, compacts et puissants – entrainé
par l’électrification rapide dans le domaine des
transports en réponse aux enjeux environnemen-
taux de notre époque – entraine une augmenta-
tion des contraintes, des courants et des champs
magnétiques dans les composants des moteurs.
Ces composants – notamment les composants fer-
romagnétiques – présentent des couplages forts de
leurs propriétés magnéto-thermo-mécaniques, exa-
cerbées dans des moteurs plus fortement sollicités.
Les chargements mécaniques et thermiques de la

machine influencent ses propriétés magnétiques et
la conception de moteurs toujours plus performants
nécessite alors d’avoir recours à des modélisations
multi-physiques fiables. La compréhension et la
modélisation de ces couplages est devenu un su-
jet de préoccupation important pour les industriels
et fait l’objet de nombreux travaux de recherche.
Les travaux présentés ici proposent une théorie
couplée électromagnétique-thermomécanique du mi-
lieu continu et le développement d’outils analytiques
et numériques pour la résolution de problèmes aux
limites dans les moteurs électriques.
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Abstract : Future developments of lighter, more com-
pact and powerful motors – driven by environmen-
tal and sustainability considerations in the transpor-
tation industry – involve higher stresses, currents
and electromagnetic fields. For the components used
in electric motors – especially for the ferromagnetic
ones – strong couplings between mechanical, ther-
mal and electromagnetic effects arise, which are am-
plified by the higher loads. They affect the machi-

ne’s performance, thus requiring a consistent multi-
physics modeling for the motors’ design. Understan-
ding and modeling these couplings has recently be-
come an important subject of research. The work
presented here proposes a coupled electromagnetic-
thermomechanical continuum theory together with
analytical and numerical (finite element) tools for the
solutions of boundary value problems arising in elec-
tric motors.
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