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chaı̂nes logistiques B2B à l’aide de la
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Résumé

Les systèmes d’information des entreprises connaissent aujourd’hui une évolution rapide.

Dans le contexte de la chaîne logistique, cette évolution est marquée par l’introduction des

nouvelles technologies comme l’Internet des Objets. Puisque la chaîne logistique implique

plusieurs intervenants, elle exige le partage des données entre les intervenants pour assurer

la traçabilité des produits tout au long de la chaîne logistique.

Dans leurs architectures actuelles, les systèmes de traçabilité sont centralisés chez l’un

des intervenants de la chaîne logistique. Par conséquence, ils ne garantissent pas le partage

sécurisé des données de traçabilité et ne permettent pas d’assurer l’accord des intervenants

sur les données partagées et la bonne application des règles de traitement convenues pour ces

données.

Par ailleurs, la qualité des données de l’Internet des Objets reste un frein au développement

des nouvelles architectures de traçabilité. La prise en compte de la qualité de données de ces

objets permettra d’assurer la confiance des intervenants dans les données collectées et de

faciliter l’automatisation du processus de collecte des données de traçabilité.

L’introduction de l’internet des objets comme nouvelle source de données dans ces archi-

tectures génère un volume important de données, et pour tirer profit de ce gros volume de

données, il faut assurer un traitement efficace et intelligent des données collectées. Cela per-

mettra d’améliorer les décisions prises par le système de traçabilité.

Plusieurs travaux ont été proposés dans la littérature en utilisant la blockchain pour sur-

monter les problèmes susmentionnés. Cependant, peu de travaux se sont intéressés à cette

problématique de traçabilité dans les chaînes logistiques B2B, caractérisées par les besoins

de limitation d’accès aux données et les contraintes de performance sur le temps de réponse

de ces architectures.

L’objectif principal de cette thèse est d’aller au-delà de l’état de l’art actuel et de proposer

une architecture de traçabilité basée sur la blockchain et l’Internet des Objets et adaptée aux

besoins des chaînes logistiques B2B.

Pour répondre aux besoins susmentionnés du contexte logistique B2B, la nouvelle archi-

tecture proposée dans le cadre de cette thèse utilise les blockchains permissives qui offrent

une gestion des droits d’accès aux données et permettent de répondre aux exigences de per-

formances des intervenants de la chaîne logistique.

Nous utilisons également les smart contracts pour implémenter le processus de traçabilité.

Ceci permet d’assurer l’accord de l’ensemble des intervenants sur la bonne exécution de ce pro-

cessus tel qu’il a été convenu. Afin de faciliter le déploiement du smart contract proposé dans

différents contextes de traçabilité des chaînes logistique sans avoir besoins des développe-
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ments spécifiques, le smart contract proposé dans le cadre de cette thèse est générique. Il

gère également les points de suivi logistique qui sont utilisés largement aujourd’hui dans le

domaine logistique. Il permettra aussi de prendre des décisions automatiques basées sur des

données collectées automatiquement par les objets connectés.

La qualité des données collectées automatiquement par les objets connectés a un impact di-

rect sur la qualité des décisions prises automatiquement par le système proposé. Pour assurer

la qualité des données collectés et par conséquence, la qualité des décisions, notre proposition

inclut un module de qualification des données des objets connectés. Ce module fournit aux

intervenants des données de haute qualité et un contrôle et suivi fins de la qualité des données

basés sur les exigences qualité des intervenants.

De plus, l’Internet des Objets génère un volume important de données et pour assurer un

traitement efficace et intelligent de cet important volume de données, le smart contract de

traçabilité proposé est renforcé avec des capacités d’apprentissage en utilisant l’apprentissage

profond.

En outre, toutes les propositions de la thèse ont été évaluées et leurs évaluations montrent

des résultats prometteurs pour le déploiement de l’architecture de traçabilité proposée dans

la chaîne logistique afin d’améliorer toujours et encore la traçabilité.
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Abstract

Nowadays, company information systems are witnessing a very fast evolution. In the logistic

chain context, this fast evolution is characterized by the introduction of new technologies such

as the Internet of Things. Since the logistic chain involves multiples stakeholders, it requires

data sharing among all these stakeholders to ensure products traceability in the whole logis-

tic chain. Traditional traceability systems are used by the stakeholders for traceability data

sharing. However, these traditional systems are centralized and do not guarantee the secure

sharing of data and the stakeholders agreement on the shared data and its processing rules.

Many works have been proposed in the literature using blockchain to overcome the above is-

sues. The main objective of this thesis is to go beyond the current state of the art and propose

a blockchain-IoT based traceability architecture adapted to the B2B logistic chain context. In

addition, the IoT data quality is a hindrance to the development of this kind of traceability ar-

chitectures. To overcome this issue and ensure the stakeholders trust in the collected data and

facilitate the automation of the traceability data collection process, the proposed architecture

includes an IoT data qualification module providing the stakeholders with high data quality

and fine data quality control and monitoring based on the stakeholders quality requirements.

Moreover, the IoT generates a huge data volume and to ensure an efficient and intelligent data

management of this huge data volume, the proposed architecture is boosted with learning ca-

pabilities using Deep Learning. Furthermore, all the thesis propositions have been evaluated

and their evaluation shows promising results for the deployment of the proposed traceability

architecture in the logistic chain to help the stakeholders in their traceability daily life struggle.
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Chapter 1

Introduction

1.1 Research Context

Goods moving is not a recent human activity, as witnessed by the famous Silk Road [13]. Like

all the other human activities, it has been overwhelmed by the last centuries communication

and transport revolution.

The transport domain revolution has contributed to the transportation cost decrease and

allowed the transport of raw materials to be transformed far from their sources and to be

distributed as finished or semi-finished products all around the globe. The activity behind

this process is called in our days the supply chain. Similarly, the communication revolution

has accelerated the information flow sharing. Therefore, it has participated in the development

of efficient supply chain.

The International Organization for Standardization (ISO) defines the supply chain as “a

linked set of resources and processes that begins with the sourcing of raw material and extends

through the delivery of products or services to the end user across the modes of transport. It

may include vendors, manufacturing facilities, logistics providers, internal distribution centers,

distributors, wholesalers, and other entities that lead to the end user” [59]. In this thesis, we

focus on the Logistics part of the supply chain.

The logistics term is originated from the military domain. It has been used in 1811 by

Wilhelm Müller in his book “The elements of the science of war”. In this book, he stated that

“Logistics embraces all the details of moving and supplying armies” [98]. Despite the growth of

the supply chain domain, the logistics is still considered today as the most important part of

the supply chain domain.

The Council of Supply Chain Management Professionals (CSCMP), defines the logistics as

“the process of planning, implementing, and controlling procedures for the efficient and effective

transportation and storage of goods including services, and related information from the point of

origin to the point of consumption for the purpose of conforming to customer requirements” [34].
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The term logistic chain designates “a dual network consisting of goods and information flows

down-and upstream” [37].It is responsible of goods movement, from a point of origin to a desti-

nation point. To achieve the goods movement mission, the logistic chain relies on transporta-

tion, storage, and other services. Therefore, the logistic chain involves multiple stakeholders.

The ISO defines stakeholder as a “person or entity having a vested interest in the organization’s

performance, success, or the impact of its activities” [59].

In this thesis, we focus on the activity related to the transport operation and the sharing

of all its related data among all the stakeholders. A transport operation involves at least three

stakeholders: a shipper (at the origin of the transport request), a carrier (in charge of transport

operation) and a consignee (the recipient of the transported shipment). Many other stakehold-

ers can also be involved in this process, among them: Logistic Service Providers, Customs,

Insurance companies and Banks. We refer to an object handled by the stakeholders in the

transport operation as a shipment.

A shipment is defined by [60] as “Household Goods (HHG) items transported and/or stored

under the terms of a single bill of lading, waybill, or contract of carriage irrespective of the quantity

or number of containers, packages, or pieces”. In this thesis, we use the term shipment to

designate any object entrusted to the carrier by the shipper, to be forwarded to the consignee.

All the involved stakeholders need to share traceability data about the shipment progress in

the logistic chain.

The shipments movements inside the logistic chain are accompanied by information flows to

ensure an efficient execution of the logistic chain process, users’ visibility of ongoing shipments

movements and process transparency.

Due to the growing number of shipments to be moved, today, the logistic chain faces many

challenges. The shipments require more sophisticated physical tools to be moved. The ship-

ments movements also generate tremendous information flows that require more elaborated

logistic chain information systems to accompany the shipments movements and ensure a full

traceability of these movements inside the logistic chain.

The traceability is defined by ISO [58] as “the ability to trace the history, application, or

location, including for a product the origin of materials and parts, the processing history, and the

distribution and location of the product after delivery”.

Nowadays, the traceability is no longer a need it is a requirement in many domains, espe-

cially in food industry. Recently there were many scandals, such as Bovine Spongiform En-

cephalopathy (BSE) which mainly affected the United Kingdom between 1986 and the 2000s [42]

and the horsemeat scandal in 2013 which affected many European countries [104]. These

scandals prove the necessity of advanced traceability tools to guarantee the product traceabil-

ity and quality for the customers and make easy the industrial product recall and authorities

audit and investigations processes.

To achieve this traceability in the Business to Business (B2B) logistic chain, it is important
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to collect data about the shipment transport and storage conditions, such as the temperature

and the delivery dates agreed between the stakeholders. For this purpose, traceability systems

are used to track the shipment movements and trace the collected traceability data.

In this thesis, we refer to the data collected during shipment transit as traceability data,

the system in charge of collecting, saving and sharing those data as traceability system and

the whole process of data collection and processing as the traceability process.

Many discoveries have marked the history of the logistic chains, such as the Barcode inven-

tion in 1952 [96] which was a game-changer in the warehouse and the inventory management.

In the domain of transport, the invention of containers in 1956 [92] was a stepping-stone, es-

pecially for the maritime transport. The Radio Frequency IDentification (RFID) tags invention

in 1973 [123] overwhelmed the tracking management in the whole logistic chain and many

other domains.

The reliability of a traceability system depends on the quality of its input data and the data

collection process (manual or automatic). Traditionally, the traceability data collection in the

logistic chain is based on manual tools such as faxes, phone calls, and emails. The traceability

data is collected in a centralized system on one of the stakeholders’ sides. With the growing

number of goods to be moved in the logistic chain physical flows, faxes, phone calls and email

tools show rapidly their limits. The stakeholders could no longer rely only on these tools for

data collection.

The introduction of new Information and Communication Technologies (ICT) in the trace-

ability process is considered as a competitive advantage for companies [87]. Among these tech-

nologies, the Internet of Things (IoT) and the blockchain are considered as the most promising

for the logistic domain according to [64] and [6]. As depicted in Figure 1.1, we can see the

growing academic interest in IoT and blockchain for the logistics domain.

Figure 1.1: Research trends results using Web of Science1 search tool with the keywords IoT,

blockchain and logistics

Before going further in the discussion of new technologies integration in traceability sys-
1https://www.webofknowledge.com
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tems, it is important to understand these systems. The following section presents the archi-

tecture of traditional traceability systems and their limitations.

1.2 Traditional Traceability Architectures

In logistic information systems, the three-tier architecture is widely used. As indicated by its

name, this architecture is composed of three tiers [5], as depicted in Figure 1.2.

Presentation Tier Functional Tier Data Tier

Figure 1.2: Three-Tier Architecture

• The presentation tier is responsible of the data presentation for the final user and the

user interface;

• The functional tier is responsible of business rules, data processing and the communi-

cation with the presentation and data tiers;

• The data tier is responsible of data storage and management.

This thesis focus on the research and development issues related to the functional tier. The

presentation and data tiers are out of the scope of this thesis.

As depicted in Figure 1.3, in the existing logistic traceability architectures, each stakeholder

has its own traceability system. They use communication technologies such as Electronic Data

Interchange (EDI) and web services to exchange the traceability data.
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Figure 1.3: Traceability systems traditional architecture

The traceability data is classified in three types according to [126]: Master, Transactional

and Condition Status. Master data are permanent, such as Origin, Destination, Weight etc.

Transactional data are related to the shipment milestones progress, such as Departure, Ar-

rival etc. Condition Status data are related to the shipment transport conditions, such as

temperature, humidity etc.

As a responsible of the transport operation, the Carrier collects and centralizes the big part

of the traceability data. From the waiting for Pickup Shipper notification until the final delivery

to the Consignee.

The Shipper collects and centralizes data about the shipment preparation, waiting for

pickup and pickup operations.

The Consignee collects and centralizes data about the delivery operation. He also identifies

the status of the shipment at delivery and reports any non-compliance with the negotiated

delivery terms, for example, a damaged shipment.
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1.3 Limitations of Traditional Traceability Architectures

The stakeholders work together for the good functioning of the logistic chain. In this order,

they need to share traceability data collected about the shipment progress in the whole logistic

chain. However, the traditional traceability architectures present several limitations for the

good accomplishment of data sharing.

1.3.1 Centralization

One of the big challenges of the traditional traceability architectures is: the centralization of

data on one of the stakeholder sides. When the other stakeholders need to access the data,

either they establish an EDI or webservice link with the IS of the data holder, or they ask him

for an access to this data through any available medium (website for example).

There are many risks related to this data centralization issue. The data holder represents a

single point of failure. If this system goes down, the traceability data that it holds is no longer

available. Also, for the other stakeholders, there is no guarantee of the correct application of

the agreed data collection and management rules.

1.3.2 Passive Data Collection Process

In traditional traceability architecture, the shipment data is collected using barcode scanning,

RFID tags reading, Sensor values gathering or manually by the stakeholder workers.

Those passive data collection methods limit the data collection covering. For example,

an RFID reader is needed to get data from the RFID tags. Consequently, the data collection

possibilities are limited to the points of the logistic chain in which RFID readers are installed.

1.4 MyTower

The PhD took place in the company MyTower. MyTower is a company specialized in logis-

tic software edition. Currently, the company main marketed solutions are shipper Transport

Management System (TMS) and Global Trade Management (GTM) software. The TMS, as indi-

cated by its name, helps the shippers in the management of all their transport processes, the

search and booking of a transport, until delivery and transport freight management. It also

integrates Key Performance Indicators (KPI) for transport process performance monitoring and

improvement. The GTM is used for custom process management.

The TMS integrates a Track & Trace (TT) module connected to the carrier systems to collect

shipment traceability data sent by these systems. The TMS is developed using the traditional

architecture of traceability systems presented above. It is deployed in a Software as a Service
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(SaaS) mode handled by MyTower or on promise on the shipper side. Consequently, it suffers

from the limitations related to the centralization and the passive data collection issues.

The thesis objectives are to explore the questions related to the limitations of the existing TT

module architecture. How decentralized, secured, and trusted architecture of the TT module

can be implemented? How IoT sources can be integrated in this kind of architecture to improve

data collection? How can the collected IoT data quality be ensured to ensure the stakeholders

trust in the system and to facilitate the automation of the traceability process? How can an

efficient and intelligent data processing be implemented to take advantage of all the collected

data and to help the stakeholders in the traceability process improvement decisions?

To highlight real needs from a specific logistic chain context, we present in the next section,

the thesis use case related to the medical equipment cold chain.

1.5 Medical equipment cold chain use case

The medical equipment cold chain is an emblematic example of the B2B logistic chain. For

some of the transported equipment, temperature monitoring is required. Because of this spe-

cific constraint, it is handled by specific transport means. The shipper specifies the required

transport conditions, such as temperature interval depending on the product type. Then, the

carrier uses temperature-controlled trucks, containers, and/or boxes to ensure the product

transport under the required temperature interval.

We have chosen this use case for two reasons. Firstly, the requirement of transport condi-

tions monitoring, such as shipment transport temperature that needs an active data collection

process. Secondly, we worked with a MyTower customer specialized in the production of med-

ical equipment and we were able to discuss with this customer about their traceability needs

for this specific cold chain context. We refer to this customer in the thesis as the shipper.

In this context, the shipper main traceability needs are tracking, tracing, secure sharing

of the collected data and transparency in the whole traceability process. For the tracking, the

shipper needs an active data collection process that gives the visibility on ongoing shipment

transport operation. This process should not depend only on the data sent afterword by the

carrier. The collected data needs to be traced, shared with the other stakeholders (the carrier

and the consignee) transparently and in a secured manner. The quality of the collected data

is not only a customer need but a requirement for the adoption, the trust, and the stakeholder

adherence to the target traceability solution.

For the shipper, some of the equipment, such as perishable medical diagnostic kits used

in blood tests, need to be transported under strict conditions with a temperature between a

minimum of +2 and a maximum of +8 °Celsius. The non-compliance with this temperature

interval may render the medical diagnostic kits unusable. The stakeholders should be notified

of any temperature non-compliance.
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For visibility and transparency purpose, the stakeholders need to securely share all the

traceability data created manually or collected automatically by the IoT data sources. The

stakeholders need also to be sure that the traceability data processing is conform to the agreed,

and the traceability data availability should not depend on the availability of one of the stake-

holder systems.

In the traditional traceability architectures presented in Section 1.2, the stakeholders use

a milestones-based traceability system. The milestones are tracking points agreed with the

carrier to monitor the shipment progress in the logistic chain. For example: Pickup, Departure,

Arrival, Customs and Delivery as shown in Figure 1.4.

Figure 1.4: Examples of logistics transport milestones

The carrier should communicate about the state of each agreed milestone to the other

stakeholders. The milestones are set manually in the system, and the degree of automation of

data collect about these milestones depends on the degree of digitalization of the carrier.

It is worth noting that when the stakeholders trust and adhere to the data collected and

sent by the IoT data sources, we will no longer need the milestones manual data collection. All

the needed traceability data about the transport operation progress will be provided by the IoT

data sources, and the progress milestones could be inferred automatically from the IoT data.

The shipper is responsible for the shipment creation in the traceability system, with all

the data required by the carriers for the good execution of the transport operation, such as

the origin, destination, transport temperature thresholds, milestones and IoT data reception

interval.

In this scenario, we focus on the management of traceability related incidents. Those inci-

dents are of three types depending on their detection and declaration process.

The first type are the incidents that should be detected automatically by the traceability sys-

tem, based on the data sent by the carrier or the IoT data sources, such as the non-compliance

with the negotiated transport temperature interval or the negotiated milestone date.

The second type are the incidents that could be declared manually by the stakeholders

such as material damage.
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The last type are the incidents related to the data quality. The target system should han-

dle this kind of incident to incentivize the stakeholders to improve their source data quality

according to a list of agreed data quality rules.

1.6 Research questions

From the above sections, we can highlight three issues in the current state of the art of trace-

ability systems that we propose to address in this PhD. In the next subsections, we briefly

present each issue and the associated proposition.

1.6.1 Decentralization

The centralization of the existing traceability systems on one stakeholder side (the shipper

in the thesis use case) represents a risk for transparent data sharing among all transport

operation stakeholders, data availability, and stakeholder agreement on the correct application

of the agreed data processing rules. Additionally, the traceability data collection process relies

essentially on the data provided by the carrier, which is a real issue for data availability.

The advent of new tools such as EDI and Webservices has accelerated the processes of data

collection, data sharing capabilities among all the logistic chain stakeholders and improved the

user visibility and the logistic chain traceability. However, the EDI and Webservices sharing

methods have created a large traceability system that depends on traceability data shared

among the stakeholders but without any guarantee that these data will be processed in the

same manner on each stakeholder side, in compliance with the data processing rules agreed

between the stakeholders. In case of discrepancy issue between the stakeholders on the shared

traceability data, there are no clear and transparent processes to resolve it.

The decentralization of the traceability system architecture could help to overcome the above

issues, by allowing transparent data sharing and data availability among all the stakeholders.

However, the target decentralization technology should have the ability to ensure the data and

processes security and the stakeholders agreement.

From that statement we identify the first research question handled by this PhD.

(RQ1) How can we ensure a decentralized, secured processing and a transparent

sharing of the collected traceability data while integrating IoT data sources and

guaranteeing the stakeholders’ agreement on all the collected traceability data and

its processing rules?

According to [6], the blockchain is a promising technology for the logistic domain. It helps

in the development of distributed and secured architectures, and its consensus mechanism

ensures stakeholders agreement on the processes and the collected data. In this thesis, we
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propose to implement a blockchain based traceability architecture to answer the RQ1.

1.6.2 Data quality

In this work, we combine blockchain with IoT to provide the target architecture with field data

collected automatically from the logistic chain. The combination of blockchain and IoT provides

the stakeholders with transparency and visibility of the logistic chain operations.

Moreover, due to the limited resources of IoT objects and consequently their limited capacity

to secure and verify the quality of their data, the IoT data should not be integrated directly in

the target traceability architecture. This could lead to unsound decisions, such as “incident

detection” based on unsound IoT data. For example, the shipment temperature collected dur-

ing the transport operation should reflect the real transport temperature. Otherwise, it could

be source of incident loss or false incident alerts. In both cases the stakeholder transport con-

dition visibility and transparency requirements are not met, and the full traceability process

is seriously affected.

Another issue in the existing traceability systems is that with the growing adoption of the IoT

for the data collection, an automation of the data collection process and traceability decisions is

possible. However, the quality of the collected IoT data is a big hindrance to the development of

these automated systems. The data quality means that the following data facets are controlled

and monitored by the stakeholders and ensured by the target traceability architecture. The

traceability system should ensure that the collected data reflects the reality of the shipment

transport conditions. Also, to ensure the full goods traceability, there should be no gap in the

collected IoT data. In case of a traceability data provided by multiple sources, the target system

should ensure the stakeholders agreement on the final data to be considered. Additionally, to

improve the tracking process and consequently the stakeholders’ visibility, the data should

be compliant with the agreed data providing time interval. Moreover, to identify easily the

elements affecting the collected IoT data quality, a fine control and monitoring of the IoT data

quality is required by the stakeholders. Furthermore, as an important part of the traceability

process, the IoT data quality control and monitoring processes should be shared securely

and transparently among all the stakeholders to guarantee their agreement on the IoT data

qualification rules and ensures the correct application of the agreed data quality measurement

methods.

In this context, the second research question is:
(RQ2) How the IoT data quality could be ensured for traceability data in decen-
tralized architectures? What are the methods to be used to measure and monitor

the collected IoT data quality while ensuring the stakeholders’ agreement on the

correct application of these methods?

We propose in this thesis to integrate in the target traceability architecture an IoT data

qualification process, to answer the RQ2. This proposition has many advantages: not only, it

provides a quality degree to each shipment related IoT event and a performance measure of its
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associated data source, but it also helps the users to choose the most trustworthy data source

and facilitates the detection of damaged ones to repair or replace them.

1.6.3 Intelligent management of the collected data

The IoT integration in the target traceability architecture generates a huge volume of data

related to the shipment progress in the logistic chain. This provides the stakeholders with a

fine shipments’ traceability.

In addition, the huge volume of traceability data generated by the IoT constitutes a gold

mine for the traceability system decisions improvement. However, due to its volume, it could

not be handled neither by human operators, nor by classic traceability systems.

To take advantage of all the collected data for the traceability system decisions improvement,

the target traceability architecture requires an efficient and intelligent management of the huge

volume of traceability data generated by the IoT. For example, the collected traceability data

could be used to train Artificial Intelligence (AI) algorithms to predict traceability incidents

and anticipate the to-do actions to avoid the predicted incidents. The daily goods movement

and transportation costs forecasting are also among the possible AI use cases in the target

traceability architecture.

Hence, our last research question targets this issue.
(RQ3) How can we ensure an efficient and intelligent processing of all the collected

traceability data, while taking advantage of all this data for traceability improve-
ment decisions?

To answer this last question, we propose in this thesis to integrate DL mechanism in the

target traceability architectures.

1.7 Contributions

This thesis relies on the blockchain integration with the IoT and Deep Learning (DL) to an-

swer the above-research questions and develop a decentralized, secured, transparent, trusted,

automated and intelligent traceability system. In this context, the main contributions of this

thesis are the following:

Blockchain-IoT based Architecture We propose a blockchain-IoT based architecture to han-

dle the traceability data and ensure a secure and a transparent traceability process executed in

the same manner among all the traceability process stakeholders. The proposed architecture

introduces a generic traceability smart contract handling contractual milestones, incidents

and IoT data and sources’ management. It is evaluated using a permissioned blockchain, and

the evaluation results show promising results for the proposed architecture.
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IoT Data Qualification Process In the blockchain-IoT traceability architecture, we also pro-

pose to handle the collected IoT data quality to improve the resulting decisions and facilitate

the system automation. To achieve the IoT data quality control and monitoring, we propose to

handle four relevant IoT data quality facets for the logistic chain context. Firstly, the Accuracy

to ensure that collected IoT data represents the reality of shipment conditions. Secondly, the

Completeness to ensure that there is no gap in the collected IoT data. Thirdly, the Consistency

to ensure the users agreement on the traceability data collected from multiples sources. Fi-

nally, the Currentness to ensure that the collected data is timely valid. For each IoT data quality

facet, we propose in this thesis a corresponding measurement method to quantify, control and

easily monitor the target architecture IoT data quality. For the fine control of the data quality,

we propose also an IoT data quality model that ensure the stakeholders with a data quality vis-

ibility at each level of the manipulated objects. All the proposed IoT data quality facets and the

quality model are implemented in the blockchain to ensure the stakeholders agreement on the

correct application of these data qualification methods. The proposed IoT data qualification

process is evaluated using a publicly available dataset, and the evaluation results show clearly

how this module can be used to control and ensure the data quality, without a considerable

impact on the time related to the IoT data integration in the blockchain.

Deep Learning for Intelligent Data Management Furthermore, to cope with the huge vol-

ume of data collected by the IoT, we propose to integrate AI techniques in the target architecture

for efficient data processing, analyze and to push forward the development of proactive sys-

tems with predictive capabilities instead of traditional reactive traceability systems. As one of

the most efficient advanced in the AI domain, we propose in this thesis to integrate a Deep

Learning (DL) model in the target architecture. This will enhance the proposed traceability

architecture with self-learning capabilities and will ensure an efficient and intelligent process-

ing of all the available data without the need of any human intervention. In this context, we

propose an adequate method to ensure the stakeholders’ agreement on the DL model training,

update, and output result processes. The DL-Blockchain integration proposition is evaluated

on traceability incidents prediction on a real logistic chain traceability dataset.

1.8 The Manuscript Plan

The rest of this manuscript is structured as follows.

Chapter 2 provides the required background knowledge about the main technologies used in

the thesis proposition, namely the blockchain and the IoT. For each one of these technologies,

we present a detailed explanation of its underlying components, its application and contribu-

tions in the logistic domain and their related challenges.
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Chapter 3 addresses the limitations of traceability architectures. After a literature review

of blockchain, IoT and blockchain-IoT based traceability architectures, the chapter details the

blockchain-IoT based architecture proposed in this thesis to answer the RQ1 and ensure a

decentralized and secure sharing of traceability data and transparent traceability process ex-

ecution among the logistic chain stakeholders. The chapter also presents an implementation

of the proposed architecture and an evaluation of this architecture based on the stakeholders’

requirements.

Chapter 4 presents a study of the state-of-the-art of IoT data qualification and the thesis

proposition to answer the RQ2 using an IoT data qualification module for blockchain based

logistic chain traceability architectures. In the proposed module, we address the quality facets

related to the IoT data Accuracy, Completeness, Consistency and Currentness using a mea-

surement methods implemented inside the traceability smart contract to ensure the stake-

holders agreement on these data qualification methods.

Chapter 5 discusses the works related to the AI and blockchain integration and answers the

RQ3 by presenting the thesis proposition of DL integration inside the blockchain chain for

efficient data processing and to equip the traceability blockchain based system with big data

analyze and prediction capabilities. A use case of traceability data incident prediction is used

to evaluate and show the relevancy of the chapter proposition.

Chapter 6 concludes this manuscript through a review of the contributions used to answer

the thesis research questions and a presentation of some perspectives for future works.
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Chapter 2

Background

For a better understanding of the thesis contributions, it is important to introduce some back-

ground elements related to the concepts and paradigms used in the thesis propositions.

In this chapter, Section 2.1 introduces the blockchain and its main underlying technologies

such as asymmetric cryptography, hash function, consensus mechanism, distributed ledger

and smart contracts. In Section 2.2, we present the IoT, its usage context and some of the

issues related to its integration in logistic chain traceability blockchain-based architectures.

Finally, Section 2.3 concludes this background chapter.

2.1 Blockchain

The blockchain paradigm has been introduced by Satoshi Nakamoto with Bitcoin Cryptocur-

rency in 2008 [99]. It uses a secured and shared tamper-proof ledger to store transactions.

Furthermore, it was firstly proposed to handle cryptocurrencies, but it rapidly shows its

capacity to be used in many other domains, such as: citizenship services, health care, com-

mercial, business, and industrial applications, according to [121] and [27]. The logistic chain

with its multiple stakeholders was among the first use cases of the blockchain technology

outside the cryptocurrency domain.

However, blockchain technology faces many challenges in its long road for industrial adop-

tion. According to [6], among its main challenges, there are: the development of blockchain

standards, overcome its current technical limitations, organization and culture related to this

technology and its sharing paradigm.

In this thesis, we propose to explore the implementation of blockchain-based architecture,

to ensure the stakeholders’ agreement on traceability data, its processing rules, and the result-

ing decisions. We also study how the IoT could be integrated in the blockchain architecture

to improve data collection. Furthermore, we investigate how blockchain based data quality
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verification can be integrated in this architecture to ensure the quality of the collected IoT data

and the transparency of the data quality rules. Finally, for efficient data processing, intelligent

and automated improvement decisions, we also investigate how can the blockchain be used to

ensure the stakeholders’ agreement on DL models training, update and prediction processes.

To understand the blockchain technology and how the security and the immutability of

its distributed ledger are achieved, we introduce below some of its underlying mechanisms,

namely: the asymmetric cryptography, the hashing, and the consensus.

2.1.1 Asymmetric Cryptography

The asymmetric cryptography uses a combination of two different keys: a public and a private

key, to ensure a secure communication between two parties. For these two keys, at least one

should not be computable from the other, as stated by [116].

The public key is shared with all the communication parties and can be used to encrypt

messages destinated to the public key owner. It is also used to verify that a message has been

encrypted by the corresponding private key owner.

The private key is only known by its owner and is used to encrypt messages destinated to

the other parties. The private key owner uses it also to decrypt messages received from the

other parties and encrypted with its public key.

2.1.2 Cryptographic Hash Function

A cryptographic hash function is a function that takes an input i and gives an output o of fixed

size, verifying that finding i from o is a hard problem and there is not another i′ ̸= i that could

generate the same output o, as stated by [36].

Hash functions are very useful in verifying data integrity, no matter what the data size is.

The data is compressed in a fixed size output, and to verify that a data has not been altered,

we just need to compare the known output with the hash result of the data to be verified. If

the result is the same, this means that the data is the same as the origin, otherwise the data

has been altered.

2.1.3 The Consensus Mechanism

The consensus mechanism is the core component of the blockchain. It defines the next block

generation policy and ensures the blockchain participants agreement on blocks order.

The next block in the blockchain is generated by a leader elected among the blockchain

nodes. There are two mechanisms for the leader election. The first one is the lottery known

also as the Nakamoto Consensus. It is based on the Proof of Work (PoW). The node that resolves
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the PoW puzzle is elected as a leader for the next block generation. The second mechanism is

the vote. It uses many vote rounds to find a consensus among the blockchain nodes on the

next leader election.

It is worth noting that the consensus mechanism is responsible of the next blockchain

generation leader. However, there is another mechanism that is responsible of securing the

chaining of blocks in the blockchain distributed ledger. This mechanism will be presented in

the next section.

Among the main used consensus algorithms, there are:

• Proof of Work (PoW): It is the most famous consensus mechanism due to its usage by

Bitcoin and Ethereum. In PoW, to generate the next block, the blockchain participants

try to resolve a puzzle by finding a nonce value verifying that when added into the block,

the block hash result starts with a number of required zero bits. This activity is called

the mining, and the miners with more CPU (Central Processing Unit) power are more

likely to generate the next block due to the huge calculation made in search of the nonce

value. Consequently, this consensus mechanism is energy inefficient [91]. However, this

algorithm has proven its scalability in large scale blockchain networks such as Bitcoin

and Ethereum.

• Proof of Stake (PoS): To address the energy inefficiency problem of the PoW, the PoS has

been introduced firstly by Peercoin [119]. It proposes to link the mining power to the per-

centage of coins owned by the miner. This reduces considerably the energy consumption

and improves the security of the consensus mechanism.

• Practical Byzantine Fault Tolerance (PBFT) [29]: In this consensus mechanism, a node

broadcasts a message and when it receives 2F + 1 responses with the same value from

the other nodes, the response value is considered valid. Such as F is the maximum

number of tolerated byzantine nodes, which is a third of all the network nodes in the

PBFT. Therefore, the agreement is reached more quickly than in the PoW, with less

energy consumption. The PBFT is largely used by permissioned blockchains such as

Hyperledger Fabric [14].

• Replicated And Fault Tolerant (RAFT) [101]: It is divided into two main steps. The

first one is the leader election and the second one is the logs replication. In the leader

election step, one node is selected to act as a leader and in case of crash a new leader is

elected. In the log replication step, the leader accepts commands from clients, replicates

its logs to the other network nodes and in case of conflict, the node content is overridden

with the leader logs. This algorithm guarantees a high transaction throughput. However,

it is not designed to handle byzantine faulty nodes. The RAFT is supported by some of

permissioned blockchains such as Hyperledger Fabric [14].

• Proof of Elapsed Time (PoET): It has been proposed by Intel1 to address the byzantine

faulty nodes problem in blockchain network. It relies on the use of a Trusted Execution
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Environment (TEE) to select the miner that will generate the next block. A function is exe-

cuted in the TEE generating random timer values for the participant nodes, and the node

with the lowest timer value wins the next block generation. This reduces consequently

the required amount of calculation for the next block generation, however it relies on the

TEE such as the Intel Software Guard Extensions (SGX) implementation which is restric-

tive for the algorithm execution on network with different hardware architectures. This

algorithm is used by Hyperledger Sawtooth [71], a permissioned blockchain implemented

by Intel.

In the B2B logistic chain context, the PoW algorithm is not usable due to its huge resource

consumption and the time required to validate a transaction. For example, in the Bitcoin

blockchain network, a transaction could be considered as valid when 6 blocks have been gen-

erated after the transaction block. The Bitcoin blocks are generated every 10 minutes. This

means that the user should wait 60 minutes (1 hour) after its transaction block generation, to

consider this transaction as valid.

The PoS links the mining power to the number of coins which is not compatible with the

traceability needs. Indeed, in the logistic chain traceability context, we do not need coins to

handle the traceability data. Furthermore, all the stakeholders are at the same level in the

traceability process. There is not a stakeholder that has more power in this process than the

others.

Since the number of the B2B logistic chain stakeholders is limited and their identities are

known, the risk of byzantine failure is limited, and consequently there is no need for PBFT like

algorithms.

Furthermore, in the target traceability architecture, the IoT collected data will generate a

huge number of transactions. Therefore, we focus in this thesis on the use of decentralized and

secured consensus algorithms that will guarantee a high throughput for traceability related

transactions, such as the RAFT and the PoET. It is worth noting that in the evaluations we

did not have an SGX environment and we just used a simulated version of the PoET.

2.1.4 The Distributed Ledger

The Distributed Ledger is a register that holds all the blockchain transaction history, and each

blockchain participant holds a copy of this ledger.

In the distributed ledger, transactions are stored in blocks and each block contains a refer-

ence to its parent block. This reference is a hash of the parent block, as depicted in Figure 2.1.

This creates a list of chained blocks and gives to the technology its name blockchain. The

first block in the blockchain is called the Genesis block. It contains the blockchain initial

configuration.
1https://www.intel.com
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Figure 2.1: Blockchain

The above-described ledger is hard to alter by a malicious user, because any modification

in a block content will result in a different hash for this block and this will break the local

copy of the user, but not all the other participant copies and they will easily detect this data

alteration attempt, which will be refused by the blockchain consensus mechanism.

Each blockchain participant has a pair of public and private keys. The public key is the

user id in the blockchain. The private key is used to sign transactions and transactions’ blocks

submitted by the user, and this facilitates the identification of transactions and blocks origin.

The other participants use the user public key to verify transactions and blocks origin.

2.1.5 Blockchain Implementations

The blockchain is implemented as permissionless such as Bitcoin [99] and permissioned such

as Hyperledger Fabric [14]. On one hand, permissionless blockchains do not have any control

on transactions read/write accesses. On the other hand, permissioned blockchains have in-

tegrated mechanisms to control users’ transactions read/write accesses, and these accesses

are granted to a limited and known number of users.

The blockchain could be deployed in public, consortium, or private environment [23].

• Public blockchain: read and write access in the blockchain are open to everyone. Any

user in the world can join the network, read, and write transactions in the blockchain.

It also guarantees the user’s anonymity. This type of deployment is more adapted to

Business to Customer (B2C) or Customer to Customer (C2C) contexts.

• Consortium blockchain: a list of pre-selected nodes control read and write access in

the blockchain. It is useful in a context of multiples organizations with data secure share

needs, as in the B2B logistic chain context.

• Private blockchain: only one organization controls all the rights in the blockchain

In the B2B logistic chain context, the blockchain implementation choice depends on the

stakeholders requirements.

On one hand, public blockchains can be used by companies that don’t have any problem
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to work with anonymous suppliers or consumers or share their logistic chain on a publicly

accessible ledger. This mode of work raises juridical and ethical issues for companies; however,

it is a fully transparent work mode.

On the other hand, private blockchain is deployed only by one of the stakeholders but take

advantage of blockchain secured and distributed architecture. In this context, the blockchain

is controlled only by its deployer which is a real problem for transparency, trust, and the system

availability for the other stakeholders.

Therefore, the consortium blockchain implementation is more adapted to the logistic chain

B2B context in which all the stakeholders’ identities are known, and the blockchain is con-

trolled not only by one stakeholder entity, but by a consortium of stakeholders. The blockchain

nodes are also deployed for each one of the stakeholders. This guarantees more transparency,

stakeholders’ trust, and system availability on each stakeholder side.

2.1.6 Smart Contracts

As stated by [120], smart contract designates the hard coding of all contract clauses in a hard-

ware or software to be executed automatically in a secured and distributed environment. In the

blockchain, the smart contract are self-executed programs that run on the top of blockchain.

They are used to develop business application on the top of the blockchain. Bitcoin pro-

posed a script language for smart contract development; however, it was very limited. In the

end of 2013, Ethereum [22] came with an integrated framework for smart contract develop-

ment. Since, it has become a standard in blockchain implementations to integrate the support

of smart contracts. The recent permissioned blockchains support smart contracts develop-

ment in many of wide used languages such as Java in Hyperledger Fabric [14] and Python in

Hyperledger Sawtooth [71].

In the logistic domain, the smart contracts could be used to write the business rules agreed

between the logistic chain stakeholders. Hence, these rules will be shared and executed trans-

parently among all the logistic chain stakeholders.

Like any other pieces of code, smart contracts are vulnerable to bugs and attacks [102]. On

one hand, the bugs will just require the stakeholders’ agreement to deploy a new version of the

smart contract including the bugs corrections. On the other hand, in the B2B context, attacks

risks are reduced due to the limited number of stakeholders and their identities known by

each other. Each stakeholder is responsible of the transactions originated from his blockchain

nodes.

Further details and discussions about smart contracts for logistic chain traceability will be

presented in the literature study of Chapter 3.
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2.1.7 Blockchain Pros And Cons

Pros

Among the main advantages of the blockchain, there are: the elimination of the need for

a trusted third party to carry out transactions, the transparency and immutability through

the shared registry and the fact that the transactions cannot be deleted or altered, also the

blockchain data are of high quality because they are complete, consistent, dated and widely

available. It is also worth noting that by using the shared ledger of transactions, the risks of

data loss or its unavailability due to any failure, are largely reduced.

In the logistic domain, the blockchain helps in the secure and transparent data sharing

among all the logistic chain stakeholders. It also brings the stakeholders trust in the logistic

information system through the shared and tamper-proof transaction ledger. Hence, it en-

sures traceability, reduces the costs and risks, facilitates the management and improves the

sustainability and the flexibility as stated by [76] and [17].

Cons

One of the biggest cons of the blockchain is the time it takes for a transaction to be validated.

For example, it can take up to several hours on the Bitcoin platform, due to the size of the Bit-

coin network. The use of permissioned blockchain such as Hyperledger Sawtooth for example,

will limit this delay [25], because it allows the use of the PoET consensus algorithm, which is

one of the fastest in terms of response time and the least greedy in terms of resources.

Additionally, the access to the logistic chain data must not be opened to everyone, this

problem can also be resolved via the use of permissioned blockchains that offer a management

of the blockchain access and the transactions execution rights.

Moreover, the consensus algorithms used in the blockchain, in particular the PoW, are very

greedy in terms of calculations and therefore in energy consumption. Also, the redundancy

of data and the redundancy of calculations required each time to decide whether a new block

can be added to the blockchain, are greedy in energy consumption.

Finally, the blockchain is a complete paradigm shift, it means moving from a centralized

to a decentralized network. This may lead to problems of adoption and integration of this

technology by customers in existing ecosystems.

Although the blockchain technology remains at its infancy, many of its identified cons are

related to the permissionless implementation. The development of permissioned blockchains

opens new opportunities for the adoption of this technology in the logistic domain, especially

in B2B contexts. The adoption of this technology accelerates in the domains in which the

traceability and transparency are legal and final users’ requirements as for example in Phar-

maceutical [114, 19, 80] and Food [84, 28, 21] supply chains.
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2.2 Internet of Things (IoT)

The term IoT has been used in first time by Kevin ASHTON, in 1999 [15]. There is no universal

definition of this term, but the main idea of the IoT is that everyday objects can be equipped

with the ability to sense the environment, communicating with other objects, and send the

sensed data through the internet, as stated by [130]. Additionally, the IoT is a value chain

of hardware, connectivity, software infrastructures in the cloud and applications and services

that are implemented around this value chain.

In terms of connectivity, today, there are emerging networks for IoT called Low Power Wide

Area Networks (LPWAN), such as: Sigfox, LoRa and Weightless [11]. These networks are de-

signed specifically for the IoT as they are low energy protocols. Also, they allow two-way com-

munication between objects and the outside world, using the LPWAN network and the network

provider’s cloud for internet connectivity.

The IoT technology provides the users with visibility and transparency, using near real time

data collected from the field. It is used in many domains, such as Smart Infrastructure (homes,

buildings, energy grids), Health Care, Supply Chain, Logistics and Societal Applications, ac-

cording to [130]. Also, authors in [16] state that the IoT could help in facing many societal

challenges such as: Health, Food security and Smart transport; through the monitoring of

people health, smart farming and the management of logistic issues.

However, the adoption of the IoT technology faces many challenges related to resilience, se-

curity and trust [16]. Additionally, according to [97], the standardization of IoT communication

protocols and the sensor energy supplying are among the main IoT technical challenges. The

security of objects used to collect the IoT data is also a big concern, as stated by [51]. These

objects have limited resources and could not ensure the security of their collected data.

In the logistic chain context, the Radio-Frequency Identification has been used to identify

and track shipments. In the cold chain, data loggers have also been used to monitor the

shipment transport conditions. In both cases, the data visibility was limited, and users could

not get any data about the shipments when the transport operation is ongoing. Therefore,

there is a real need to use new connected solutions to improve the traceability data collection

mechanisms.

The integration of the IoT in the logistic chain improves the stakeholder’s visibility, the

tracking, and the traceability of the transported shipments through the entire logistic chain.

This integration is about “sensing and sense making” as stated by [64]. Sensing through the

whole logistic chain monitoring and sense making by taking advantage of the huge amount

of data generated by the IoT for the logistic chain improvement decisions. Many recent works

propose to use this technology especially for traceability improvement as in [7], [83] and [42].

Nevertheless, the integration of IoT collected data in blockchain based architecture faces

many challenges related to the tremendous volume of data generated by the IoT, the blockchain
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immutability nature and its automation capabilities using smart contracts.

Due to the data volume generated by the IoT and the blockchain immutability, the quality

of the IoT data to be integrated in the blockchain need to be ensured. Furthermore, the data

quality rules, as the others logistic traceability rules, need to be shared among the logistic

chain stakeholders

Moreover, the blockchain automation capability using smart contract emphasizes the IoT

data quality issue. Automatic decisions could be enshrined in the smart contract and should

not be taken based on unsound data. Therefore, the IoT data qualification needs to be explored

for blockchain based architectures.

In the logistic chain traceability context, the collected IoT data should reflect the real trans-

port conditions status. It should also be received at the right time. Furthermore, all the agreed

and consequently expected data should be received. Additionally, this data must be concor-

dant with the other stakeholder’s data if it concerns the same transport operation. Further

discussions about the IoT data quality will be presented in Chapter 4.

2.3 Conclusion

In this chapter, we detailed the main components used in the thesis propositions, namely the

blockchain and the IoT. For each component, we presented its underlying technologies and

the main issues related to its introduction in the target logistic chain traceability architecture.

The next chapters present the contributions of this thesis. This starts by the blockchain-IoT

based traceability logistic architecture in the following chapter.
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Chapter 3

Blockchain-IoT Based Logistic
Traceability Architecture

3.1 Introduction

The logistic chain traceability stakeholders need visibility and transparency about the ship-

ments transport conditions and progress in the whole logistic chain. For this purpose, trace-

ability systems are used to collect and handle shipments traceability data, from the pickup by

the carrier until the delivery to the consignee.

Traceability systems evolved with the introduction of new information technologies. In the

logistic chain, this digitization process [70] has changed the companies and the workers pro-

cesses and life.

This chapter describes the introduction of blockchain and IoT in traceability architectures,

to create a new generation of traceability systems, ensuring the secure and transparent sharing

of traceability data among stakeholders. In this new generation of traceability systems, the

main part of the traceability data is collected in near real time using IoT connected objects.

Many recent works have proposed to use this combination of blockchain and IoT to develop

new traceability systems, such as those presented in Hinckeldeyn and Jochen [53], Wen et al.

[128] and Hasan et al. [50]. However, in those works, there is no focus on the enterprise context.

This context requires the usage of permissioned blockchain with an access reserved only to the

stakeholders. For supply chain digitization companies such as MyTower, the proposed trace-

ability smart contract needs to be generic. This will help in the reuse of this smart contract for

any logistic chain context, without need of more development. The traceability smart contract

genericity is not covered by the existing works in state of the art. Additionally, the milestones

management needs to be integrated in the proposed traceability systems. The milestones are

widely used in our days to handle the shipment tracking, and their integration facilitates new

traceability systems adoption. Moreover, the IoT data sources, the transport conditions and
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the traceability incidents generic management are important part of the traceability process

that are not considered yet in the literature.

There are two main challenges for proposing blockchain-IoT based traceability architecture.

Firstly, the selection of a blockchain implementation adapted to the enterprise context as dis-

cussed in Section 2.1.5 of Chapter 2. Finally, the implementation of traceability rules in a

generic smart contract, especially the management of IoT data sources, transport conditions,

milestones, and incident detection and management rules.

The proposed architecture evaluation is presented in Section 3.5 to prove the ability of the

proposed architecture to be deployed in real life production scenarios.

The main contributions of this chapter are:

• The proposition and the implementation of a logistic traceability architecture based on

blockchain and IoT and adapted to the enterprise context;

• A Generic Traceability Smart Contract handling IoT data sources, transport conditions,

contractual milestones and incident detection and management.

The rest of this chapter is organized as follows: in Section 3.2 we present the chapter re-

search questions. In Section 3.3 we study the literature of blockchain and IoT based traceability

architectures. Section 3.4 presents the proposed blockchain-IoT architecture. The proposed

architecture implementation and evaluation results are presented in Section 3.5. Finally, Sec-

tion 3.6 concludes this chapter.

3.2 Research Questions

To overcome the traditional traceability systems limitations that have been presented in Chap-

ter 1 and answer the thesis RQ1, this chapter addresses the following sub-research questions:

• RQ1.1: How can we conceive decentralized logistic traceability architectures? The decen-

tralized architecture should guarantee a secure data sharing and stakeholders’ agreement

on the shared traceability data;

• RQ1.2: How IoT data sources could be introduced in this decentralized traceability ar-

chitecture? The IoT provides traceability architecture with filed traceability data collected

automatically in near real time;

• RQ1.3: How can we propose generic logistic traceability solution that could be easily

reused in many logistic traceability context, with an integrated handling of transport

conditions, milestones, and incident detection and management?

The work on these research questions helps in the development of new generation of logis-

tic traceability decentralized and secured architectures, with automatic filed data collection
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capabilities.

3.3 State-of-the-art of Blockchain and IoT for Logistic Trace-

ability

This section presents and discusses the existing works in the state-of-the-art using IoT and

blockchain to handle traceability data.

The logistic chain with its multiple stakeholders is a promising domain for blockchain tech-

nology application, as stated by [117], [62] and [106]. With the advent of this technology, and

its secure sharing architecture, the actors of the logistic chain domain start to think about the

use of this technology, to meet their traceability data secure sharing needs [6].

In the logistic chain the use of the blockchain allows the secure sharing of not only the

traceability data but also all the rules agreed by the stakeholders for the data handling and

ensure the correct application of those rules on each stakeholder’s side using blockchain smart

contract. Also, it helps in the meeting of the key supply chain management objectives such

as cost, quality, speed, dependability, risk reduction, sustainability and flexibility as stated

by [76]

The blockchain is used in some existing works to share manual collected traceability data.

This is a first step of the integration of the blockchain technology in the logistic chain. In this

thesis, it is proposed also to integrate in the blockchain filed traceability data collected auto-

matically by IoT connected objects. The IoT connected objects provide the proposed traceability

architecture with secured, accurate and fresh traceability data [64]. This is a big step forward

in the logistic chain digitization.

The combination of blockchain and IoT to tackle the traceability problem in logistic chains

is a recent research trend. In the literature, several solutions have been proposed using

blockchain, IoT or their combination. These works are studied based on the following cri-

teria:

(C1): Blockchain for traceability data: Does the work uses blockchain to handle traceability

data

(C2): IoT for traceability data collection: Does the work uses IoT objects to collect some or

all of the traceability data?;

In the following sections we discuss the works related to C1, C2 and the combination of

these two criteria (C1&C2).
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3.3.1 Blockchain for Traceability Data (C1)

The blockchain usage in logistic chain provides the stakeholders with a distributed, secured,

and trusted architecture for traceability data sharing.

The logistic chain with its multiple stakeholders was among the first use cases of the

blockchain technology outside the cryptocurrency domain.

In the literature, many works propose to use blockchain to tackle the logistic chain trace-

ability issue. In this subsection, the focus is on the works that use only the blockchain. The

combination of blockchain and IoT is studied later in a dedicated subsection.

The selected works are studied based on the following sub criteria:

(C1.1): Generic traceability smart contract how the collected traceability data are handled

in the blockchain? Are they just saved in the blockchain or there is a smart business process

implemented on the top of the blockchain to handle those data? The implemented smart con-

tract is it generic? This means that it can be used for other logistic traceability context. Are

transport conditions handled by the smart contract?;

(C1.2): Contractual milestones: the contractual milestones are widely used in traditional

traceability system. It is important to handle them to facilitate the adoption of the proposed

traceability solution, before passing to the fully automated traceability system using the auto

collected IoT data;

(C1.3): Incidents management: incidents are elements of the daily life in the logistic chain

and the lack of secured and transparent process for their management affects seriously the

data quality of traceability systems;

(C1.4): Blockchain implementation: the blockchain implementation is a determinant crite-

rion in the target traceability architecture. We focus here on the blockchain implementation

choice in the proposed works. Is it permissionless (e.g., Bitcoin and Ethereum) or permis-

sioned (e.g., Hyperledger Fabric)? Due to the integrated access management support, the high

transactions throughput, permissioned blockchains are more adapted to the B2B logistic chain

use cases.

After the definition of the related works study criteria, we start the study and discussion of

these works.

To achieve information sharing and synchronization in the supply chain, Chang et al. [31]

proposed to re-engineer the traceability business process based on the blockchain. Using the

proposed solution, they promise real time tracking, costs reduction, and payment lead time

reduction using digital currency. In addition, they proposed to introduce control points for

B2B supply chain scenarios by modifying the data structure without giving more details on

how to do that. Authors in [31] proposition includes on-chain and off-chain data manage-

ment process. On-chain data designate the data saved inside the blockchain and off-chain

are the data saved outside the blockchain. This is an interesting proposition to alleviate the

blockchain data charge. However, in the B2B logistic context, all the data agreed between
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the stakeholders should be enshrined in the blockchain ledger for traceability and further au-

dit purpose. Off-chain data technique could be used in future work for file storage, and the

hash of sensitive files such as the Proof of Delivery (PoD) document should be stored inside

the blockchain to ensure the document tamper-proof. Also, in B2B logistic context, the usage

of permissioned blockchain with a limited numbers of stakeholders improves the blockchain

transactions throughput and eliminates transactions fees used by permissionless blockchains.

Finally, it is worth noting that the payment of logistic transactions between the stakeholders

are out of the scope of this thesis. Consequently, we did not discuss the [31] payment process

proposition.

Imeri and Khadraoui [57] proposed a blockchain based solution to handle the traceability

issue in the Transport of Dangerous Goods (TDG) among all its stakeholders. The authors’

proposition includes a smart contract for shipment emergency case management. However,

as stated by the authors, it is used only for incident notifications. It does not cover the whole

incident lifecycle management, from the incident creation till its closing by all the incident con-

cerned stakeholders. Additionally, the authors’ proposition includes a portal for data access

management. Based on this access management, a stakeholder can decide to share a data

with only one other specific stakeholder, and the other stakeholders will not see this shared

data.

To tackle the food safety traceability problem, a combination of blockchain and EPCIS (Elec-

tronic Product Code Information Services), is proposed by Lin et al. [84]. This combination

addresses the issue of trust transfer among the supply chain stakeholders. The authors also

used an enterprise-level smart contract to handle sensitive data management issue. In ad-

dition, they proposed to address the blockchain data explosion problem, using a dynamic

on-chain & off-chain data management. Finally, the authors implemented a prototype of their

proposition using Ethereum. In the conclusion, authors in Lin et al. [84] state that their im-

plementation could not handle huge data volume and suffers from throughput issue due the

unoptimized consensus algorithm.

Westerkamp et al. [129] model the manufacturing process in a supply chain traceability

system using Non-Fungible Tokens (NFT). The proposed mechanism aims to preserve the trace-

ability of product transformations, by addressing the supply chain common issue of physical

goods projection onto digital representation. For each type of goods, authors propose to im-

plement a smart contract responsible of generating the unique NFT. Then, a transformation

recipe is created with the tokens to be transformed as input and a new token as output corre-

sponding to the new product. The authors proposition also handles certified goods that can be

used equally in new product creation process. They also handle a list of roles involved in the

product transformation such as resources suppliers, producers, and logistic and retail firms.

Finally, the authors presented a prototypical implementation of the proposed traceability sys-

tem using Ethereum smart contract. The shipment transport involves multiple stakeholders,

implies responsibility transfer between them and there is no transformation of shipment dur-

ing the whole transport operation. Consequently, the traceability solution proposed by [129]
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could not be used to cover the shipment transport traceability process. However, it can be

used in earlier logistic stages such as shipment preparation at the packaging step as stated by

the authors.

Yong et al. [131] proposed a traceability solution for vaccine supply chain. Their proposed

solution handles three main processes of vaccine supply chain. Firstly, the vaccine produc-

tion in compliance with the Good Manufacturing Practice (GMP). Secondly, the vaccine lot re-

lease. Finally, the vaccine inoculation to a recipient. Also, the authors proposed an Ethereum

based implementation of their solution including virtual coins for vaccine payment handling.

Additionally, the proposition includes some intelligent recommendation modules for vaccine

demand forecasting, vaccine production enterprise credibility evaluation and intelligent inoc-

ulation to assist the potential vaccine recipient. The proposed vaccine traceability solution

detects vaccine expiration incidents. However, these incidents are related to the vaccine life-

cycle management rather than the supply chain process.

Cui et al. [35] proposed a blockchain-based framework to provide traceability for electronic

devices in the supply chain. The proposed framework can use Electronic Chip ID (ECID) or

Physically Unclonable Functions (PUF) for unique devices’ identification. Then, the generated

unique ID is used to initialize and register the device in the blockchain. In addition, the

framework ensures device ownership transfer for traceability purpose. Finally, the authors

presented an implementation of their proposed framework using Hyperledger Fabric smart

contract. However, the traceability framework proposed by the authors is not applicable for

shipments which are not only electronic devices. This framework could be useful to track the

IoT objects used to collect the traceability data.

For reducing overall cargo unit transport time and improving the logistic data sharing

among the stakeholders, The SmartLog project proposed a blockchain based architecture. The

target transport time for this blockchain pilot project is “in accordance with the EU’s targets for

road, rail, air and water transport networks in the Baltic/North Sea region” [95]. In first time,

the project proposes to connect some port management systems for port operators’ visibility

improving, speed increasing and cost saving. According to the author in [95], The SmartLog

blockchain will store transactions related to the intermodal containers movements and status.

However, there is no details about the technical implementation of this project. Knowing that

this project was The SmartLog project was intended to end in the summer of 2019, there is no

information about its status in august 2021.

In 2018, UPS7 applied for a patent to use blockchain in shipment tracking [8]. The patented

system proposes to go beyond the tracking by handling all the shipment process, from the

transport operation to the payment using cryptocurrencies, such as Bitcoin and Ethereum.

Also, the system automatically determines a shipment transportation plan through the avail-

able transportation networks. However, there is no more information in the patent description

about the technical implementation, the used smart contract, contractual milestones, or inci-

dents management.
7United Parcel Service https://www.ups.com/
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Table 3.1 summarizes the studied works in this subsection and how they meet the identified

criteria.

References of
research works

Generic traceability
smart contract
(C1.1)

Contractual
milestones
(C1.2)

Incident
management
(C1.3)

Blockchain
implementation
(C1.4)

Chang et al. [31] N/A B2B control

points

N/A N/A

Imeri and

Khadraoui [57]

N/A N/A Smart con-

tract for

incident noti-

fication

N/A

Lin et al.

[84], West-

erkamp et al.

[129] and Yong

et al. [131]

N/A N/A N/A Permissionless

(Ethereum)

Cui et al. [35] N/A N/A N/A Permissioned

(Hyperledger

Fabric)

This work Generic smart con-

tract with generic

transport conditions

Contractual

milestones

management

Incidents

auto detec-

tion and

qualification

in the smart

contract

Permissioned

(Hyperledger

Fabric)

Table 3.1: Blockchain related works comparison

All the above discussed works mention the usage of blockchain for traceability data man-

agement. However, there is no reference in these works to the IoT usage for traceability data

collection. Consequently, their propositions are limited in terms of traceability data collection

capabilities and could not provide the users with fresh data collected automatically from the

logistic chain as we propose in this chapter.

3.3.2 IoT for Traceability Data Collection (C2)

The usage of IoT objects to collect shipment traceability data provides traceability system stake-

holders with fresh filed data about shipment progress in the logistic chain. It also improves

the performances in terms of delivery time, the available traceability data quality, reduce the

risk of shipment loss and accelerating the logistic chain digital transformation process. Con-

sequently, performance, visibility and transparency throughout the entire logistic chain are
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improved.

This subsection focusses on the works using the IoT without blockchain. The works com-

bining blockchain and IoT will be studied in the next subsection.

In the literature there are many works using the IoT for traceability purpose. As an example

of these works, there is the Luggage tracker project [7] developed by Sigfox5 and Louis Vuitton6.

This project allows passenger to track their luggage in major world airports. It uses an IoT tag

embedded in Louis Vitton luggage to collect data about the luggage position. The collected

data is communicated to the cloud using Sigfox Network.

Li et al. [83] proposed a Real Time Monitoring Traceability System for a bacteria cold chain.

Their solution is based on the use of the IoT to monitor bacteria storage and transportation

progress in the cold chain. For this purpose, the authors designed and developed an electronic

device composed of the following modules: sensing, information processing, GPRS wireless

communication and power supply. Using TLINK Cloud Service Platform, the authors also de-

veloped a mobile and PC software to provide the users with a cold chain real-time environment

monitoring.

Gialelis et al. [44] proposed a traceability platform based on the usage of low cost IoT node.

On one hand, the proposed IoT node is composed of a microcontroller and radio module, a

power supply module and an input/output module for sensors connecting. The evaluation of

the proposed module shows a coverage distance of around 25 Km, a low energy consumption

that could maintain the node endure for approximately 3.5 years, and a global cost of 40€ per

IoT node. On the other hand, the traceability platform is composed of two modules. A first

module for data aggregation and transmission and a second module for data processing. In

addition to the product visibility and quality assurance, the traceability platform provides the

users with many services such as an increased traceability.

However, the afore-discussed works relies on centralized solutions to handle the collected

traceability data. Consequently, their traceability solutions suffer from availability and users

trust issues. To overcome these issues, we propose in this thesis to combine the IoT technology

with the blockchain to develop secured, decentralized, and trusted traceability solution.

3.3.3 Blockchain-IoT Traceability Architectures (C1 & C2)

The combination of blockchain and IoT is a recent research trend. In the logistic traceability

domain, this combination provides the traceability stakeholders with fresh filed data collected

automatically, processed, and shared securely among all these stakeholders.

In the literature, many works propose to work with this combination to deal with the prob-

lems of traceability data collection and secure sharing.
5https://www.sigfox.com/
6https://www.louisvuitton.com/
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For an efficient track and trace of goods, easy customs formalities and counterfeit detec-

tion, a Smart Storage Containers prototype is proposed by Hinckeldeyn and Jochen [53].

Their proposition is based on the use of connected smart storage containers and blockchain

smart contracts. The smart containers use weight sensors to detect the available product

quantity. When this quantity flows below a defined threshold, the smart container orders au-

tomatically the needed product quantity. After the reception of the ordered quantity, the smart

container automatically verifies the order weight and triggers the payment of the order using

cryptocurrencies. The authors implemented a prototype of their proposition using Ethereum

smart contract and a Raspberry Pi for the smart container control. Finally, the authors high-

lighted several limitations to their proposed prototype, such as the limited used hardware for

the blockchain, the centralization of the IoT used protocol (MQTT) and blockchain scalability

and smart contract verification. However, authors in Hinckeldeyn and Jochen [53] proposed

to handle the storage, which is an important part of the logistic chain, but different from the

transport operation in terms of process and requirements. The transport operation involves

multiple stakeholders with their own connected IoT objects used to collect the traceability data.

Additionally, the Ethereum blockchain implementation suffers from scalability limitations as

stated by the authors. It also did not handle users’ access rights. Consequently, it is not

adapted to the B2B logistic chain context.

Wen et al. [128] proposed a privacy compliant traceability solution. It is based on the

use of Attribute-Based Encryption (ABE). This technique allows the users with the right role

attributes and that satisfies the access policy to decrypt the encrypted data. The authors

implemented their proposition using Ethereum. However, the focus of authors in [128] was on

data privacy rather than the traceability process. Their proposed approach could be integrated

in the works that use permissionless blockchains to handle the shared data privacy. In the B2B

logistic chain context, the permissionless blockchains are not suitable for the aforementioned

reasons.

The shipment management system by Hasan et al. [50] is a combination of IoT-enabled

shipment and Ethereum smart contracts. The IoT-enabled container monitors the shipments

transport conditions using IoT sensors. The smart container handles the notifications con-

ditions in case of non-compliance with the agreed transport conditions. The smart contract

handles the transport operation creation and tracing. It also traces the non-compliance no-

tifications. The authors presented an implementation of their proposed traceability solution

using Raspberry Pi and Ethereum smart contracts. However, their proposition handles only

some limited package status and transport conditions that could not cover all different contexts

specific needs in terms of status and transport conditions. Additionally, the non-compliance

notifications handling at the smart containers level presents a security and agreement issue

on these notifications’ conditions. In this chapter, we propose to handle these notifications

at the smart contract level. Also, the smart contract creation for each shipment presents an

efficiency issue for the blockchain smart contracts management. For the B2B logistic chain

context, we propose to create one digital smart contract for each physical collaboration contract

signed between a shipper, a carrier, and a consignee.
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In the Agri-Food supply chain Caro et al. [25] proposed AgriBlockIoT, a solution for trace-

ability management. This solution is a layered combination of IoT and blockchain to create

a transparent, fault tolerant and controllable ledger. The authors proposition also explores

the integration of edge devices such as gateways as blockchain nodes. In the evaluation, the

authors compared Ethereum and Hyperledger Fabric and show that Hyperledger Fabric has

a better latency, network, and CPU load performances in comparison to Ethereum. How-

ever, Caro et al. [25] results were preliminaries, and they did not show any advanced usage of

smart contracts to control business logic such as incident related process as proposed in this

chapter.

A reference implementation of a blockchain-based logistics monitoring system was designed

and implemented by Helo and Hao [52] for parcels tracking. They proposed an architecture

of four layers. A bottom layer composed of IoT objects and responsible of real-time data col-

lection from Global Positioning System (GPS), RFID, sensors, and barcodes. A second layer

responsible logistic operations data. A third layer handling the business logic such as logistic

monitoring and access management. A top layer in charge of users’ management. The authors

select Ethereum to develop their proposed architecture. However, as stated before, this imple-

mentation is not suitable for the B2B logistic chain context, due to its transaction throughput,

transaction gas fees and its permissionless nature.

For Soybean supply chain traceability, Salah et al. [111] proposed an architecture based

on the usage of Ethereum smart contracts. They proposed to use IoT-enabled containers and

packages to collect data about the shipment quality and conditions. The main objective of

the authors’ proposed approach is to guarantee the traceability of Soybean from the farmer to

the final consumer. To handle the traceability related files (images, videos etc.), the authors

proposed to use InterPlanetary File System (IPFS) which is a distributed file system and adapted

to the combination with blockchain based system. We propose to use the same tools in future

works to handle the B2B logistic chain traceability files. However, the authors architecture was

proposed specifically to handle the Soybean supply chain process and could not be applied

to handle other processes with different requirement and different supply chain processes.

Additionally, there was no results about the evaluation of the proposed architecture to prove

its capacity to be used in real world scenario.

In the domain of Food Supply Chain (FSC), Casino et al. [28] proposed to model the food

traceability using a blockchain based approach. They used Ethereum for the implementation

of their proposition. Additionally, their approach includes the usage of IPFS to store collected

IoT data and alleviate the blockchain data charge for performance improvement. They also

proposed to use smart contracts only for the FSC downstream (wholesalers, distributors, and

retailers) and not for the FSC upstream (farmers, food producers and manufacturers). The

IPFS usage is a good idea to implement the above discussed on-chain and off-chain approach.

However, it should be used carefully to store only the data that are generally less disputed

by the blockchain stakeholders such as files and metadata. In contrast, all the data agreed

between the stakeholders and that could be used to generate traceability incident, such as
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transport conditions collected by the IoT, should be stored in the blockchain. Finally, the

authors proposed to implement only the downstream process using smart contracts. However,

the whole traceability process involves multiple stakeholders from the farmers to the retailers,

and they need to ensure the correct application of the agreed traceability rules. Consequently,

the whole traceability process should be implemented using smart contracts for traceability

rules trust and transparency, especially traceability incident handling related rules.

To track eggs from farm to consumer, Bumblauskas et al. [21] proposed an architecture

based on Hyperledger Sawtooth blockchain implementation. Their architecture captures trace-

ability and engagements data at every step of the supply chain using IoT. It also includes a

proxy authentication server to handle stakeholders access rights levels and ensure that users

access only to authorized data. However, in [21], the proposed traceability solution focus only

on traceability data and not on the traceability process and its different stakeholders’ interac-

tions. This is a final consumer centered view and do not consider the supply chain stakehold-

ers traceability process agreement and transparency needs. It is also a limited usage of the

blockchain and especially its smart contract future. Beside the blockchain traceability feature,

we propose in this chapter to take advantage of smart contracts to implement the B2B logistic

chain traceability process.

IBM Corporation7 and GTD Solution8 proposed TradeLens which is a supply chain platform

based on Hyperledger Fabric [3]. It provides users with real time access to shipping documents

and tracking data including IoT sensors data such as temperature and container weight. Ac-

cording to [3] report, TradeLens also handles shipping milestones and exceptions. However,

there are no details about how this handling is accomplished.

Table 3.2 summarizes the studied works in this subsection and how they meet the identified

criteria.
7https://www.ibm.com/
8https://www.gtdsolution.com/
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References of
research works

Generic traceability
smart contract
(C1.1)

Contractual
milestones
(C1.2)

Incident
management
(C1.3)

Blockchain
implementation
(C1.4)

Hinckeldeyn and

Jochen [53]

Generic smart con-

tract for smart stor-

age

N/A N/A Permissionless

(Ethereum)

Wen et al. [128] Generic smart con-

tract (without trans-

port conditions)

N/A N/A Permissionless

(Ethereum)

Hasan et al. [50] Smart contract with

hard coded shipment

status and transport

conditions

N/A N/A Permissionless

(Ethereum)

Caro et al. [25] N/A N/A Recording

detected

anomalies

Permissionless

and Per-

missioned

(Ethereum and

Hyperledger

Sawtooth)

Helo and Hao

[52], Salah et al.

[111] and Casino

et al. [28]

N/A N/A N/A Permissionless

(Ethereum)

Bumblauskas

et al. [21]

N/A N/A N/A Permissioned

(Hyperledger

Sawtooth)

This work Generic smart con-

tract with generic

transport conditions

Contractual

milestones

management

Incidents

auto detec-

tion and

qualification

in the smart

contract

Permissioned

(Hyperledger

Fabric)

Table 3.2: Blockchain and IoT related works comparison

In brief, in the above studied works, there was no work which meet all the related works

study criteria. Consequently, we decided to implement in this chapter a traceability archi-

tecture with a generic smart contract (C1.1), handling contractual milestones (C1.2), with

incident management (C1.3) and based on a permissioned blockchain (C1.4) for B2B logistic

chain context.
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3.4 The Proposed Blockchain-IoT Architecture for Logistic

Traceability

The main purpose of the proposed architecture is to provide the stakeholders with a fully

automated traceability system. For this, it is needed to increase the user trust in the collected

traceability data.

In order to meet the above requirements, the target architecture depicted in Figure 3.1

is proposed. This architecture allows the secure sharing and handling of traceability data,

through the introduction of two components: the blockchain and the IoT data sources. These

components are introduced on the top of the traditional architecture presented in Chapter 1

(Figure 1.3). In the target architecture, the blockchain component replaces the EDI and web-

services exchanges used in traditional traceability architectures.
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Figure 3.1: Traceability systems target architecture
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To ensure the collection, transmission, and consolidation of IoT data in the target architec-

ture, we propose a three layers model.

A first layer for perception allowing to collect shipment transport conditions data, such as:

a GPS position to locate a parcel or a container, a temperature and/or a humidity level to

monitor a goods packaging state.

A second transmission layer based on LPWAN networks depending on the network choice

and the network card integrated in the object. This layer ensures the transmission of the

collected data through the object network and the provider’s cloud network.

A third application layer, which is the heart of this architecture. This layer is based on

blockchain and allowing to clean, consolidate, analyze, and present the collected traceability

data to the stakeholders.

The two main components of the proposed traceability architecture are presented in the

following sections.

3.4.1 IoT Data Sources

In the proposed traceability architecture, the IoT data could be received from many IoT data

sources. Each stakeholder could assign one or many of its IoT data sources to a shipment in

which it has a stakeholder role, at any time during the shipment progress in the logistic chain.

The only condition to do so is that the IoT data source and the shipment have been already

created in the smart contract.

The assignment of an IoT data source to a shipment is for a limited period. Every data

source assigned to a shipment sends IoT data about the shipment transport conditions at a

fixed time interval defined in the shipment smart contract instance. If a data related incident

is detected by the smart contract, it is automatically affected to the IoT data source owner

declared in the smart contract. The smart contract has a detailed description of the IoT data

source specifications collected at the data source creation in the smart contract.

In the proposed architecture, the shipper has a principal IoT data source which is the

shipment connected object accompanying the shipment. The role of this object is to collect

data about the shipment transport conditions, throughout the transport operation. To send

the collected data to the shipper IS (Information System), the connected object uses an LPWAN

(Low Power Aera Network) network Gateway which transmits the received messages to the IoT

Cloud Data Platform (IoTCDP) before their reception in the shipper IS.

The shipper IS sends to the shipper node the received messages including the connected

object id of the messages. This connected object id is used by the smart contract to link the

received IoT messages to the right shipment in the smart contract. In this context, the data

is pushed by the IoT object. The pull/push of data from/to the connected object is out of the
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scope of our work. The shipment connected object collects data about the shipment pickup,

transport and delivery conditions.

Each stakeholder could declare other IoT data sources, such as IoT data sources related to

factories, warehouses, transport vehicles etc. In general, every data source that can collect and

send automatically measures about the shipments could be declared by the stakeholder as an

IoT data source. Moreover, all the IoT data sources, except the shipment connected object, help

to collect data about the shipment conditions in a specific segment of the transport operation.

Only, the shipment connected object that accompanies the shipment continues to collect data

about the shipment transport conditions during the whole transport operation.

3.4.2 Traceability Smart Contract

The logistic chain stakeholders need to share and ensure the agreement on traceability data

sources management and handling rules, and the decisions taken automatically by the trace-

ability system. According to [86], this data sharing fluidifies the data flow and makes easy the

logistic chain management, through decision making process based on filed data collected in

near real-time from the logistic chain. To meet these needs, the proposition is to implement a

blockchain traceability smart contract.

The proposed traceability smart contract holds the shipment and IoT data sources manage-

ment rules. This means that it allows the data sources and shipment creation, update, and

the assignment of an IoT data sources to a shipment.

Regarding the traceability decisions, they are automatically taken by the smart contract

based on the collected data. These decisions are related to the shipment incident detection in

case of non-compliance of the received data with the agreed transport conditions.

Moreover, the proposed smart contract handles contractual logistic milestones created man-

ually and agreed by the stakeholders, to monitor the shipment progress in the logistic chain. It

is worth noting that these milestones are implemented in the smart contract only to facilitate

the stakeholder’s adoption of the proposed solution. The objective of the proposed architecture

is that finally the stakeholders use only the data collected automatically by the IoT data sources

instead of the manual contractual milestones, to automate the whole traceability process.

Transactions In The Proposed Blockchain Based Architecture

In the proposed traceability architecture, the blockchain is used to save all the transactions at

every step of the shipment progress in the logistic chain. Each write or update action in the

ledger is considered as a transaction that is enshrined in the distributed ledger. For example,

the creation of and IoT data source or the reception of an IoT data event. Also, the shipment

progress milestones are considered as transactions to be traced because they mark a shift in

the shipment legal responsibility between the logistic chain stakeholders.
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Table 3.3 depicts milestones’ transactions examples and the stakeholders of each milestone,

in a standard transport operation scenario.

Transaction The stakeholders

Pickup The shipper and the carrier

Delivery The carrier and the consignee

Table 3.3: Traceability Transactions Examples

For each transaction, Table 3.4 depicts some examples of the data to be saved in the

blockchain.

Data Type

The transaction unique identifier Alphanumeric

The transaction Date & hour Timestamp

Shipment number Alphanumeric

Stakeholders’ IDs Alphanumeric list

Table 3.4: Traceability Transactions Data

The Proposed Traceability Smart Contract Class Diagram

To handle the shipment traceability in the logistic chain, we propose the class diagram depicted

in Figure 3.2. It is worth noting that for some classes, such as the Shipment, the properties

shown in the diagram are only a subset of all the class properties.

The Shipment represents the object entrusted by the shipper to the carrier in order to be

delivered to the consignee. It is the main entity of the class diagram. The stakeholders involved

in the shipment transport operation are saved in its stakeholders list.

The Assignment is used to handle the IoTDataEvent received during the relationship period

between a Shipment and an IoTDataSource. This period runs from the timestamp sartAssiTime

to the timestamp endAssiTime. In contrast to the Shipment-IoTDataSource relationship cre-

ated manually by the users, the end of this relationship is set automatically by the traceability

smart contract, when the delivery to the consignee is confirmed.

The ShipmentMilestone marks the shipment progress in the logistic chain. It has a list of

stakeholders involved directly in the accomplishment of the milestone and a negotiated Date

agreed between these stakeholders. The non-compliance of the milestone actualDate with its

negotiatedDate results in a shipment incident.

The ShipmentCondition depicts the agreed transport conditions. It is worth noting that

in this thesis we focus on the monitoring of bounded measures with a min-max interval re-

quirement, such as min-max temperature, which is the main measure used in the thesis use
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Shipment

- id: Long
- pickupTimestamp: Timestamp
- deliveryTimestamp: Timestamp
- origin: String
- destination: String
- mode: String

ShipmentCondition

- id: Long
- code: String
- label: String
- min: Long
- max: Long

ShipmentIncident

- id: Long
- label: String
- creationTime: Timestamp
- closingTime: Timestamp

has a

1

0..*

has a
1

0..*

IoTDataEvent

- id: Long
- srcId: String
- timestamp: Timestamp
- receptionTimestamp: Timestamp

IoTMeasure

- id: Long
- code: String
- label: String

IoTMeasureValue

- id: Long
- code: String
- value: Double
- minValue: Double
- maxValue: Double
- precision: Double

Assignment

- id: Long
- startAssiTime: Timestamp
- endAssiTime: Timestamp
- lastReceivedEvtTimestamp: Long

related

0..*

0..*

1..*

1..*

assigned
1..*

0..*

ShipmentMilestone

- id: Long
- code: String
- label: String
- negotiatedDate: Date
- actualDate: Date

related

0..*

1

IoTDataSource

- id: String
- name: String
- startTimestamp: Timestamp
- measureIntervalInSeconds: Integer

related
0..*

0..*

ShipmentContract

+ createShipment(shipment:Shipment): Shipment 
+ queryShipmentById(shpId: String): Shipment 
+ createIoTDataSource(src:IoTDataSource): IoTDataSource 
+ queryIoTDataSourceById(srcId:String): IoTDataSource 
+ addIoTDataEvent(srcId: String, evt: IoTDataEvent): IoTDataEvent
+ queryIoTDataEventById(evtId: String): IoTDataEvent
+ assignSrcToShp(srcId: String, shpId: String, startTime: Timestamp, endTime: Timestamp): Shipment
+ updateShipmentMilestone(shpId: String, milestone: ShipmentMilestone): Shipment
+ createShipmentIncident(shpId: String, incident: ShipmentIncident): Shipment
+ confirmShipment(stakeholderId: String, shpId: Shipment): Shipment
+ confirmMilestone(stakeholderId: String, shpId: String, milestoneCode: String): ShipmentMilestone
+ confirmIncident(stakeholderId: String, shpId: String,  incidentId: String): ShipmentIncident

has m
easureSpecifications

0..1

0..*

Stakeholder

- id: Long

involves
3..* 0..*

involves

1..*

0..*

involves

1..*

0..*

involves

1..*

0..*

owned by

1

0..*

Figure 3.2: Traceability Smart Contract Class Diagram

case.

The ShipmentIncident handles the shipment transport conditions related incidents. These

incidents are of two types. The first type are incidents created automatically when a non-

compliance with the milestone agreed date is detected. The second type are incidents related

to the non-compliance with the agreed transport conditions, such as transport temperature.

The ShipmentContract class contains the implementation of all the traceability smart

contract methods. This class depends on the classes linked to it through dotted lines, as

depicted in Figure 3.2. It uses those classes as input in its methods.

After this description of the proposed smart contract classes diagram, we describe in the

next section the main methods of this smart contract.

The Proposed Traceability Smart Contract Main Methods

The ShipmentContract class main methods are: createShipment, createIoTDataSource, assignIoT-

Datasource, addIoTEvent and updateMilestone.
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The createShipment method is called by the shipment initiator to create a new shipment.

It takes as argument a description of the shipment to be created with all its related elements:

description, milestones, transport conditions and stakeholders.

The createIoTDataSource as indicated by its name, this method is used by the stakeholders

to create IoT data sources. It takes as arguments a detailed description of the data sources

and all its related measures specifications.

The assignSrcToShp method is used to create the temporal relationship between the data

sources and shipments. This relationship is for the period specified by its start and end times-

tamp. It is at the maximum for the whole shipment progress time in the logistic chain, such

as the relationship between the shipment connected object and the shipment.

The addIoTDataEvent method, depicted in Algorithm 1, is called by the stakeholder IS when

a new IoT data event is received from an existing IoT data source. It takes as argument the

blockchain transaction context ctx and the received IoTDataEvent event. The method adds

the event to the IoT data sources event list. After this operation, the event is sent to all the

shipments related to the data source. Also, the event measures are verified to create eventually

a shipment incident in case of non-compliance with the agreed transport conditions.

Algorithm 1: addIoTDataEvent
Input :

srcId ; // The IoT data source id

event ; // The IoT Data event

reqComp← GetCompanyFromContext() ; // Get the requestor company

stateShps← GetShipmentBySrcId(srcId) ; // Get the shipment assigned to the event

source from the blockchain ledger

foreach Shipment shp in stateShps do
if reqComp ∈ shp.stakholders then

AddEventToShpCondEvt(shp.shipmentCondition,evt);

updatedShipments.add(shp);

isOutRangeEvent←
IsEventOutOfShipmentConditionRange(shp.shipmentCondition,evt);

if isOutRangeEvent then
GenerateShipmentConditionNonComplianceIncident(shp.shipmentCondition,evt);

end

end
else

ThrowUnauthorizedUpdateError();

end

end

Output
:

updatedShipments
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The updateMilestone method depicted in Algorithm 2, is used for manual update of the ship-

ment declared milestones by the stakeholders. As indicated previously, this manual method

is used temporarily before the full automation of the traceability system using the received IoT

data events.

Algorithm 2: updateMilestone
Input :

shpID ; // The id of the shipment to be updated

mlstToUpdate ; // The milestone to be updated

reqComp← GetCompanyFromContext() ; // Get the requestor company

stateShp← GetShipmentById(shpID) ; // Get the shipment from the blockchain ledger

stateMlst← GetMilestoneByCode(stateShp, mlstToUpdate.code);

if reqComp ∈ stateMlst.stakholders then
stateMlst.actualDate← mlstToUpdate.actualDate;

if mlstToUpdate.actualDate after stateMlst.negotiatedDate then
GenerateMilestoneNonComplianceIncident(stateMlst);

end
updatedMilestone← stateMlst;

end
else

ThrowUnauthorizedUpdateError();

end

Output
:

updatedMilestone

The manual confirmation methods such as confirmShipment, confirmMilestone and con-

firmIncident are proposed in the smart contract to engage the stakeholder’s responsibility in

each one of these actions. However, it is worth noting that this confirmation aligns with the

manual contractual milestones’ usage. There is no confirmation in the automated scenario

that use IoT data. In this scenario, the confirmation is done automatically based on the auto-

matically collected IoT data.

The stakeholders’ interaction with the smart contract

On each stakeholder side, there are two types of users, the administrators and the simple

users. Administrators are in charge of the smart contract deployment and the blockchain

access management.

Each user has its own pair of public and private keys. Their public key are used as their

identifier in the blockchain network. The private keys are keeped secretly by the users and

they use them to sign their transactions.
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Traceability Smart Contract Conclusion

In brief, the above-described smart contract and its related classes do not hold any reference

to a specific logistic chain context. Consequently, it meets the genericity criterion (C1.1) and

could be used in any logistic chain context. Additionally, the contractual milestones man-

agement criteria (C1.2) is fulfilled through the handling of a generic milestone class and an

updateMilestone method in the smart contract. Finally, the incident management have been

integrated in the IoT events integration and milestones update methods, to meet the incident

management criterion (C1.3). The proposed traceability architecture evaluation is presented

in the following section.

3.5 Evaluation of the Proposed Blockchain-IoT Traceability

Architecture

This section presents an implementation of the proposed Blockchain-IoT traceability archi-

tecture. Some performance tests and results are also presented, to prove the ability of the

proposed architecture to be deployed in real life production scenarios. Finally, the proposed

architecture is evaluated based on performance test results.

3.5.1 Evaluation Environment

The evaluation tests were done on a Virtual Machine (VM) on which all the evaluation com-

ponents have been deployed using Docker. The evaluation test machine has the following

characteristics (Table 3.5):

Machine element Details

Operating System (OS) Ubuntu 18.04.4 desktop amd64

Central Processing Unit (CPU) 4 CPU Intel(R) Core™ i7-8565U

Random Access Memory (RAM) 8G

Virtual Disk 50G

Table 3.5: Test Machine Characteristics

3.5.2 Hyperledger Fabric Based Implementation

The proposed architecture has been implemented using Hyperledger Fabric or simply Fab-

ric. Fabric is a permissioned blockchain implementation designed for enterprise purposes. It

presents many advantages in comparison to other permissioned blockchain implementations,

among them: a parametrized consensus protocol, a node architecture based on the notion of

organization to establish a trust model more adapted to the enterprise context and the support
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of Java, Javascript and Go languages for smart contracts writing [14]. Fabric addresses the

limitations of order-execute architectures used by previous blockchain implementations.

In order-execute architecture, the transactions are ordered first using the consensus mech-

anism and then executed in the same order on all the network peers. This raises issues related

to transaction sequential execution which limits the blockchain transactions throughput, the

handling of non-deterministic transactions and smart contract execution confidentiality.

Fabric proposed an execute-order-validate architecture to overcome the above limitations.

The Proposed architecture executes sequentially only related transactions, otherwise, transac-

tions are executed in parallel, which significantly improves the transaction throughout. It also

supports the development of smart contracts in generic languages such as Java, Javascript

and Go. Moreover, Fabric proposes to install and execute smart contracts in an isolated en-

vironment only on concerned peer sides; however, the blockchain state is shared among all

the blockchain peers. This ensures the smart contract execution confidentiality, while taking

advantage of the shared and secured data ledger.

The Fabric main components are the Membership Service Provider (MSP) in charge of main-

taining the node identities, the Ordering Service Nodes (OSN) responsible of channels’ manage-

ment and transactions ordering in these channels, and the Chaincodes which are the smart

contracts in the Fabric terms. Figure 3.3 depicts an example of Fabric network, with a feder-

ated MSPs and Running multiple chaincodes.

Source: [14]

Figure 3.3: Fabric Network Example

Table 3.6 depicts the software versions that have been used for the development and the
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deployment of the traceability smart contract.

Software Version

Hyperledger Fabric Docker Images Tag 1.4.6

Hyperledger Fabric COUCH Docker Images Tag 0.4.20

Hyperledger Fabric Java Chaincode 1.4.3

Hyperledger Fabric Gateway Java 1.4.1

Docker 19.03.6

Java 1.8.0

Eclipse IDE 2019-12

(4.14.0)

Table 3.6: Test software versions

For this evaluation, as depicted in Figure 3.4, a Hyperledger Fabric architecture has been

implemented, with three stakeholders interacting with the blockchain: a shipper, a carrier and

a consignee.

mytower-channel

Orderer 1

ShipperCA

Shipper Peer0
(Endorser)

Shipper Peer1

CouchDB0
CouchDB1

Shipper

CarrierCA

Carrier

Carrier Peer0
(Endorser)

Carrier Peer1

CouchDB2

CouchDB3

Consignee

Consignee
Peer0

(Endorser)
Consignee

Peer1

CouchDB4

CouchDB5

ConsigneeCA

Application Client
Orderer 2

Orderer 3
RAFT

Figure 3.4: Hyperledger Fabric evaluation architecture

The stakeholders have been created as independent Hyperledger Fabric organizations. Each

organization hosts the following components: (1) Certificate Authority, responsible of the or-

ganization user certificates management; (2) Two peers, with a local CouchDB database for

each peer. One of the two peers is designated as the endorser peer, which is responsible of the

correct execution of the smart contract on the organization side.
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All the endorser peers are connected to a channel called « mytower-channel ». The transac-

tion order is handled by a RAFT [101] cluster of three ordering nodes, as depicted in Figure 3.4.

3.5.3 Test and evaluation

We don’t evaluate the Hyperledger Fabric performance itself, this subject has already been

treated by [14] and [132]. The evaluation objective is rather to test the performance of the

proposed architecture for its usability in logistic chain traceability system.

To let a sufficient time for the stakeholders blockchain nodes synchronization, the Hyper-

ledger Fabric block creation timeout has been set to 1 second and the maximum number of

transactions per block to 15. This means that after the reception of a new transaction, the

system will trigger the block creation either after a waiting time of 1 second or after a total

number of 15 new transactions is reached.

The test starts by enrolling a network admin on the shipper side. This enrollment consists

of requesting the Shipper Certificate Authority (ShipperCA) for the admin identity creation in

the network. The generated public key and private key for the admin are saved on the client test

machine file system. Then, a second request is sent to the ShipperCA using the admin identity

to register a new simple user that will be used in the test of the smart contract methods. As for

the admin, the new user identity is saved on the Application Client test machine file system.

Performance Definition

The performance of a software solution is among the most important evaluation criteria. There

are many aspects to be considered in the performance criterion, such as the per request re-

sponse time, the number of requests per time unit and so on. In the B2B logistic chain con-

text, the number of stakeholders is limited, and the shipment requests are initiated only by

the shipper. The number of per time unit request is also limited. For example, in the thesis

use case, the shipper has an average of 412 shipments per day, as will be presented in the

evaluation dataset of Chapter 5. Consequently, we focus on the per request response time as

our performance measure metric.

The architecture proposed in this chapter focuses on the functional tier of the three-tier

architecture, as presented in Figure 1.2 of Chapter 1. Consequently, the response time to be

measured and evaluated is for this functional tier. However, this response time includes the

response time of the data tier.

According to the response time performance classification established by [108], we can

classify the blockchain based architecture in the category “Complex or Ambiguous Search or

Save Operations”, due to the blockchain required calculations and replications operations.

This category targets a response time of maximum 5 seconds.
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Because of this thesis focus on functional tier in the three-tier architecture, we propose to

define a maximum target response time of 3 seconds for this functional tier. This represents

60% of the global maximum target response time. Therefore, the remaining target maximum

response time for the presentation tier is 2 seconds to do the basic operation of data presen-

tation. This basic operation should take less than 2 seconds as stated by [108].

Based on our final users’ requirements and the work of [108] and [135], we defined an ac-

ceptable per request time response of 3 seconds for the proposed architecture. This maximum

response type is applicable to the create, read, and update requests.

Performance Evaluation Results

Due to a lack of testing data, we have used auto generated batches of data to test the proposed

architecture. We have generated three batches of objects to be tested (e.g., Shipment and

IoTDataEvent). A first batch of 500 objects, a second batch of 1000 objects, and a last batch

of 2000 objects. This helps to monitor the response time evolution according to the batch

number of objects evolution. The batches are launched sequentially in the same order for

each round. A test round is a process in which we start the test environment, we launch all

the test batches, we collect the test results, we stop all the docker containers and we clean the

test environment. Then, we could start a new test round.

Tables 3.7, 3.8 and 3.9 summarize the test results for the main smart contract methods

(i.e. createShipment, createIoTDataSource, assignSrcToShp, addIoTEvent and updateMilestone)

for the first, second and last round respectively. The columns represent the number of objects

in the test batch. For each batch, we present the Average (AVG) and the Standard Deviation

(STD) response time in seconds. The result precision is two digits after the decimal point,

rounding off from the third decimal place.

Method
500 1000 2000

AVG (s) STD (s) AVG (s) STD (s) AVG (s) STD (s)

createShipment 1.24 0.03 1.25 0.02 1.25 0.05

createIoTDataSource 1.16 0.02 1.16 0.02 1.15 0.01

assignSrcToShp 1.18 0.02 1.18 0.03 1.18 0.02

addIoTEvent 1.19 0.02 1.2 0.05 1.19 0.02

updateMilestone 1.17 0.02 1.16 0.02 1.3 0.05

Table 3.7: The Smart Contract Test Results (Round 1)

63



Method
500 1000 2000

AVG (s) STD (s) AVG (s) STD (s) AVG (s) STD (s)

createShipment 1.47 0.06 1.46 0.05 1.25 0.02

createIoTDataSource 1.29 0.05 1.26 0.04 1.16 0.02

assignSrcToShp 1.3 0.05 1.3 0.04 1.19 0.03

addIoTEvent 1.34 0.05 1.28 0.08 1.19 0.02

updateMilestone 1.32 0.04 1.18 0.03 1.17 0.02

Table 3.8: The Smart Contract Test Results (Round 2)

Method
500 1000 2000

AVG (s) STD (s) AVG (s) STD (s) AVG (s) STD (s)

createShipment 1.26 0.04 1.26 0.02 1.46 0.05

createIoTDataSource 1.16 0.03 1.16 0.02 1.3 0.04

assignSrcToShp 1.17 0.02 1.19 0.02 1.3 0.05

addIoTEvent 1.19 0.02 1.29 0.07 1.19 0.04

updateMilestone 1.17 0.04 1.31 0.04 1.32 0.05

Table 3.9: The Smart Contract Test Results (Round 3)

The average (AVG) response time of the five tested methods did not exceed 1.47 seconds

and the maximum standard deviation (STD) was around 0.08 seconds. These response time

results meet largely the maximum response time of 3 seconds defined in the above section.

However, further tests are needed to confirm the performance of this architecture in a real

distributed environment with large network constraints and more stakeholders, since those

elements could impact the architecture performance.

3.5.4 Discussion

In this evaluation section, we have presented an implementation of the proposed IoT-Blockchain

based traceability architecture using Hyperledger Fabric. The evaluation shows promising re-

sults for the architecture test and deployment in logistic chain traceability real life scenario.

In comparison to the state-of-the-art works, this architecture has the advantages of generic

smart contract handling contractual milestones and incident management using permissioned

blockchain.

It is worth noting that the performance tests done in this evaluation do not include parallel

blockchain calls. All the calls to the blockchain are done sequentially. This can explain the

low transaction throughput of the proposed architecture (more than 1 second per operation)

in comparison to some works in the state of the art as the 0.021 second required to set a value

in a Hyperledger Sawtooth blockchain based architecture according to [25]. However, this low
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throughput meets largely the performance requirements for the target use cases. It is also

better than the throughput results of more than 16 seconds for Ethereum [25]. The proposed

architecture response time performance could be improved by parallel calls tests and the work

on fine tuning of Hyperledger Fabric settings such as the block generation time out and the

maximum number of transactions per block.

3.6 Conclusion

In this chapter, a literature study of logistic chain traceability architectures has been presented.

This literature study helped in the identification of centralization and passive data collection

as the main limitations of the existing traceability architectures. A new Blockchain-IoT based

architecture has been presented to address the identified limitations, with a generic traceabil-

ity smart contract handling IoT data sources, transport conditions, milestones and incident

management. The proposed architecture has been evaluated using the evaluation criteria

identified from the stakeholders’ requirements. This evaluation gives promising results for the

deployment of the proposed architecture in real life logistic scenarios.

The blockchain based architectures is a new paradigm in the computer science domain

and more specifically in logistic chain traceability systems. Its adoption will face stakeholders’

reticence in first time due to its intrusive character. This could easily be overcome by explaining

to the stakeholders the benefits of this technology, starting by the secure sharing and the

tamper-proof of blockchain data and processes which facilitate the development of reliable

traceability systems.

To implement a fully automated traceability systems and get stakeholders adherence, the

collected IoT data quality needs to be ensured. This issue will be addressed in the next chap-

ter.
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Chapter 4

IoT Data Qualification In
Blockchain Based Traceability
Architectures

4.1 Introduction

The advent of blockchain technology and smart contracts helps in the development of new

traceability systems. Such systems allow the logistic chain stakeholders to achieve the se-

cure and transparent sharing of traceability data, using the blockchain secured and dis-

tributed ledger. In addition, smart contracts allow the stakeholders to share data handling

and decision-making rules, to ensure that the same agreed rules are applied by all the stake-

holders.

Increasingly, IoT devices are used to automatically collect field data. Those data are used

both for traceability purpose and to take automatic decisions, such as the creation of ship-

ment incidents, when one or more of the negotiated shipment transport conditions are not

respected. As a result, the human intervention is limited in the process, as well as process

error probability.

In traditional traceability architecture, the existing data sharing methods such as EDI and

Webservices do not provide the stakeholders with a good data quality. Gharehgozli et al.

[43] gave some examples of the identified data quality problems in intermodal transportation.

Among them, duplicated, wrong and timely inaccurate data.

New traceability architectures have been proposed in the literature combining smart con-

tracts and IoT for the development of trusted [24] and automated systems. However, the IoT

data quality is a hindrance to the development and adoption of this new generation systems.

The data quality is an important topic in information systems [20]. It becomes critical
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when the resulting decision of the information could engage the responsibility of one of the

information system stakeholders. This is the case of the traceability system to be proposed.

The existing works in the literature propose to integrate the IoT data directly into the smart

contract, as in [50], [21], [28] and [128]. This could lead to unsound decisions taken by the

smart contract based on erroneous data collected and sent directly to the smart contract by

the IoT data sources.

To overcome this issue, we propose to implement in the smart contract an IoT data qual-

ification module to define and control the quality of the collected IoT data and ensuring the

transparency and the stakeholders’ agreement on the data qualification rules. The proposed

quality module handles a selection of IoT data quality dimensions adapted to the logistic chain

context, to measure different facets of the data quality. Also, the visibility of the data quality

is improved with the management of different quality levels in the manipulated objects, and

the introduction of data quality incidents in addition to the existing traceability incidents.

Moreover, the proposed IoT data quality module does not only increase the integrated data

quality, but also the stakeholder’s trust and adherence to the resulting automatic decisions.

The main contributions of this chapter are threefold:

• The literature review of IoT data qualification highlights that the data quality of a system

is assessed by means of several dimensions. Considering the logistic chain properties,

the first contribution is to identify the most relevant IoT data qualification dimensions

and provide measurement methods for each of them.

• To help the stakeholders to get an end-to-end visibility of the data quality and to identify

the quality issues causes, the second contribution aims at measuring the data quality at

four levels: IoT data events, IoT data sources, shipments and IoT data sources-shipments

associations.

• To ensure the stakeholders agreement on the traceability data, the data qualification

rules, and the decisions taken based on the data, such as the creation of incidents, the

third contribution consists in integrating the data qualification measurement methods in

a traceability smart contract.

The rest of the chapter is organized as following. Section 4.2 highlights the research ques-

tions related to the IoT data qualification. In Section 4.3, we present the evaluation criteria

used to validate that the proposition meet the stakeholders’ requirements. The works related

to the IoT data qualification are discussed in Section 4.4. Section 4.5 describe the proposed

IoT data qualification approach. The proposition evaluation is presented in Section 4.6. Sec-

tion 4.7 concludes the chapter.
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4.2 IoT Data Qualification Research Questions

In this chapter, we address the thesis RQ2 through six sub-research questions related to the

IoT data quality in the logistic chain context.

RQ2.1: How accurate are the data? In other words, do the data reflect the reality of the

shipment transport operation? Measuring data accuracy avoids the use of unreliable data.

RQ2.2: Are the data complete? Indeed, the existence of gaps in the collected data may

affect the shipment traceability.

RQ2.3: Are the data consistent? The consistency issue arises when the collected data

assigned to a shipment comes from several sources with possibly discrepancies leading to

incidents. In this case, an agreement could be defined to tolerate a minimum deviation between

the data, for example, a gap of 0.5 ◦C in the temperature may be considered as acceptable.

RQ2.4: Are the data timely valid? That is, are the data compliant with the receiving window

agreed between the stakeholders? The non-respect of this interval may significantly affect the

stakeholder’s visibility and the required transparency of ongoing transport operations.

Each above question reflects a facet (dimension) of the quality process that this chapter

addresses and thus the main contributions of this chapter are to propose quality measures

for each dimension identified as relevant in the logistic chain context namely: accuracy, com-

pleteness, consistency and currentness.

In addition, to the above quality dimensions questions, there is a concern about quality

granularity. RQ2.5: How can the system provide different levels of quality: data events, IoT

data sources and per shipment performances? This high precision quality monitoring facili-

tates the identification at the right time of the data sources that need to be repaired or removed.

Finally, there is a question concerning transparency. RQ2.6: How can the data and the

data quality measurement rules be shared securely among the stakeholders to ensure their

agreement on the correct application of these rules? To address this issue, we propose to

implement the above quality measures into a smart contract, to ensure the agreement of all

the stakeholders on the correct application of the proposed quality measures.

4.3 IoT Data Qualification Evaluation Criteria

In this evaluation we worked on the existing traceability architecture presented and evaluated

in Chapter 3. For data quality management and evaluation, we define in this chapter the

thresholds and the indexes. The thresholds are the values that are defined by the stakeholders

to express their data quality level requirements. The indexes are the output of the data quality

measurements methods that will be defined and detailed in Section 4.5.
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The thresholds and indexes values are expressed in values ranging from 0 to 1, 0 for no

quality and 1 for the strict quality control. In Table 4.1, we establish a classification of these

values to help in the presentation and the analysis of data quality evaluation results.

Data Quality Thresholds and Indexes Interval Label Code

[0, 0.5) Poor quality P

[0.5, 0.7) Low quality L

[0.7, 0.9) Good quality G

[0.9, 1] High quality H

Table 4.1: Data Quality Thresholds And Indexes Classification

4.4 State-of-the-art of IoT Data Qualification

Data quality is not a recent research topic. The first data quality studies concerned databases.

Many data quality aspects have been considered such as the accuracy, consistency, and relia-

bility to improve the quality of data inputs into databases and handle databases incompatibility

and time critical delivery data [81].

With the advent of the IoT as new data sources, the existing data quality studied aspects

needed to be extended to the specificities of those new data sources. The data collected from

IoT data sources need to be controlled even more due to the limited capacity of these sources

to ensure the security and the quality of their data. The “Never trust user input” should evolve

to “Never trust things input”, as stated by Karkouch et al. [69].

Moreover, the emergence of blockchain opens new opportunities for systems that involve

multiple stakeholders. The logistic chain domain, which involves multiple stakeholders, pro-

vides relevant use cases for this technology [118], especially for traceability purpose [106].

The blockchain promotes the development of smart logistics [62], using smart contracts, as

presented in Chapter 3.

Before providing a literature review, it is important first to define some terms used in the

domain of data quality and their meaning in the logistic context.

4.4.1 Data Quality Definitions

Data quality dimensions are attributes representing a single aspect of the data quality, as

stated by Richard Y. Wang [109]. In this chapter, we consider the following data quality dimen-

sions: accuracy, completeness, consistency and currentness.

The accuracy, as stated by ISO-25012 [61], refers to: “the degree to which data has at-

tributes that correctly represent the true value of the intended attribute of a concept or event
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in a specific context of use”. In the logistic traceability context, it is difficult to know if a received

measurement reflects the real shipment situation, especially when the shipment transport op-

eration is ongoing. However, we can define an accuracy measurement method based on the

received measure and the measure source specifications.

The completeness, according to ISO-25012 [61], corresponds to “the degree to which subject

data associated with an entity has values for all expected attributes and related entity instances

in a specific context of use”. In the logistic traceability context, the completeness depicts the

fact that all the expected events have been received by a data source or a shipment according

to the update interval agreed by all the stakeholders.

The consistency, according to ISO [61], refers to “The degree to which data has attributes

that are free from contradiction and are coherent with other data in a specific context of use”.

It is also referred to as concordance in some works [85]. In the logistic traceability context, the

consistency dimension corresponds to the degree of coherence between IoT data events sent

by different IoT data sources and related to the same shipment.

The currentness was defined by ISO [61] as: “The degree to which data has attributes that

are of the right age in a specific context of use”. It is also referred to as timeliness, currency,

freshness, delay or contemporaneous, in some works [85, 80]. In the logistic traceability con-

text, an event is considered of the right age when it is received at the expected time according

to the update interval agreed by the stakeholders and defined in the smart contract.

4.4.2 Related Works Study Criteria

In this chapter, we study the works related to the IoT data quality issue according to three

criteria:

(C1) Quality dimensions: what are the quality dimensions used and what are their corre-

sponding measurement methods;

(C2) Quality levels: what levels of quality visibility are provided and what is the proposed

quality model;

(C3) Blockchain smart contracts for data quality management: are blockchain smart con-

tracts used to handle the agreed data quality rules?

Quality Dimensions (C1)

The IoT data quality issue has been addressed using data quality dimensions. For this purpose,

the traditional data quality dimensions [109] have been used and adapted to the IoT context

needs [85].

The definition of the IoT quality dimensions and their corresponding measurement methods

facilitates their usage and application in the target IoT based systems. Due to the lack of

works on IoT data using quality dimensions in the logistic chain context, we selected some

70



representative related works from other domains.

Many of the existing works show the interest of using those quality dimensions for IoT data

quality handling. In each work, the authors selected the dimensions relevant to their domain

and defined the corresponding measurement methods for the selected quality dimensions.

Li et al. [82] defined and measured the Currency, Availability, and Validity metrics in a

pervasive environment (IoT context) and the problem of data expiration (data no longer usable).

For the Currency measurement, the authors used a linear decline function max[0, (1 − Age
T exp )],

where Age is the difference between current and update time and T exp is the valid lifetime

provided by domain experts. To scale the data Currency, authors introduced the concept of

data Volatility. It is the update probability between the last update and the current time.

However, it is worth noting that, in the traceability context, the data do not expire. It is

important to get all the data for traceability purpose even though the data received late will

have a poor currentness quality index. The authors also proposed the Availability dimension

which is “the percentage of the time that there is an unexpired data object provided by the

source” [82]. This is a mixture of the Completeness and the Currentness dimensions. In this

chapter, we choose to separate the two dimensions for fine monitoring of the data quality.

Additionally, the authors data Validity dimension proposition corresponds to our Accuracy

dimension in which we used only static rules for Accuracy measurement. Finally, the authors

highlight the possible usage of dynamic rules for data validation which is a good idea and we

need to study in future work how it can be applied in the logistic context.

Sicari et al. [115] proposed a quality-aware and secured architecture handling: Timeliness,

Completeness, Accuracy and Precision. The author’s Timeliness measurement proposition fo-

cus on the time interval between the data sampling and the data reception by their middleware.

For Timeliness measurement, authors used the same Currentness measurement method dis-

cussed above in [82]. In their Completeness measurement method, the authors used a general

method of the number of collected values in comparison to the number of expected values.

We will use the same measurement method in our proposition. However, we will detail it for

every quality measurement level. While for the Accuracy measurement, the authors proposed

to measure each value Accuracy based on a reference value, in our proposition we propose to

also integrate the measure dimensions in the reference values comparison to consider multi-

dimensional measure values.

The Valid.IoT framework for determining the quality of heterogeneous information sources

was proposed by Kuemper et al. [77], using the dimensions of Completeness, Timeliness, Plau-

sibility, Artificiality and Concordance. For the Completeness, the authors used a standard

measurement method based on the missed and expected values. To measure the Timeliness,

the authors used a method based on a reward punishment algorithm. In our proposition, we

use a close method for the Currentness based on a quality index updated with every new inte-

grated IoT data event. The authors’ Concordance measurement method consider only the sen-

sors’ locations. In the logistic chain context, the sensors Concordance relationship is defined

not only by their assignment to the same shipment but also by the measurement time interval
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defining the received events relationships. This means that the collected IoT data events are

measuring the same transport conditions monitored at the same defined time interval. The

Plausibility is an interesting quality metric that need to be handled in future work to consider

the measurement context knowledge. However, in the logistic chain traceability context, we do

not use interpolated data due to traceability requirements of real collected data. Consequently,

the Artificiality quality metric is not applicable. Finally, authors in [77] proposed an interface

to handle the quality metric requests at an atomic level of quality vector, a full quality vector

and an extended quality document. This is more an aggregation of the collected quality metrics

than the definition of quality measurement levels with real corresponding business entities as

in our quality measurement levels proposition.

To ensure a real-time data allocation and data quality in multiple partitions collection and

storage, Kolomvatsos [74] proposed a real time data pre-processing mechanism, using Fuzzy

Logic and handling the Accuracy dimension. The author’s proposition is developed for dis-

tributed data storage system that could include different data at every node of the distributed

system. This is completely different from our blockchain based architecture which should

maintain the same data at every node copy of the distributed ledger.

In the domain of Ambient Assisted Living (AAL) systems, Kara et al. [67] proposed a quality

evaluation model. Their approach is based on the definition and execution of quality metrics

and the use of fuzzy logic to evaluate the metrics and decide of the data quality level. There are

many data quality dimensions in the authors proposition, such as the Accuracy, the Complete-

ness, and the Precision. However, there were no details about the methods used to measure

these dimensions.

In the same precedent domain, Erazo-Garzon et al. [39] defined, measured, and evaluated

the quality of data collected from an intelligent pillbox, using seven data quality dimensions,

among them the Accuracy, the Completeness and the Currentness. For the Accuracy and the

Completeness measurement, the authors highlight the usage of correctly detected events and

events used by the AAL system. However, there were no details in the paper about how these

notions of correctly detected and used events are measured. To measure the Currentness,

the authors include in their formula the maximum time in which the data becomes "old" or

outdated. As discussed before, these notion of "old" or outdated do not apply in the logistic

traceability context. In addition, authors in [39] defined fixed quality metrics weights which

is an interesting idea to consider the metrics importance for the data consumer. In our data

quality module, we propose to include a parameterized weight for each handled data quality

metric.

All the above discussed works use some of or all our required IoT quality dimensions. How-

ever, their measurements methods do not meet our needs of dimensions definition and mea-

surement at different levels: data event, data source and shipment.
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Quality Levels (C2)

In the logistic chain context, the stakeholders need to be provided with a full quality visibility at

different levels of the manipulated objects. This is the second study criterion (C2). It is helpful

for the data quality management and simplifies the investigation in case of discrepancy between

the stakeholders IoT data sources. Some works proposed data quality models to handle this

issue.

Fagúndez et al. [41] work on a data quality model to assess sensors data quality in the

health domain, using the dimensions of Accuracy, Completeness, Freshness, and Consistency.

In their proposition, authors designed a conceptual schema for data window and its attached

data quality information. In this schema the authors highlight the dimensions application at

the stream window level. However, they did not provide details about the used measurement

methods and the applicability of the used dimension at the data event, or the data source

levels.

A generic data quality metamodel for data stream management was proposed by Karkouch

et al. [68]. This generic model handles the data quality dimensions of Accuracy, Timeliness

and Completeness. However, there were no details in their proposition about the measure-

ment methods of these data quality dimensions, neither in the generic model nor in specific

implementation for the evaluation. Also, their dimensions application was limited to the data

item level (data event), and they do not cover the other levels of data quality measurement

such as the data source for example. Additionally, in the evaluation of their work, the authors

used only the Accuracy and Completeness dimensions. Besides, the above discussed elements

about Karkouch et al. [68] work, their data model is a good start to implement our target IoT

data quality model.

The above cited models do not meet the logistic chain context needs. On the one hand, the

data sources in the logistic chain are reused and assigned to different shipments in different

transport operations. On the other hand, to meet the criterion (C2) in our proposition, we

provide the stakeholders with a full visibility of the data quality at different object levels, using

an adequate quality model.

Blockchain Smart Contracts for Data Quality Management (C3)

Traceability data and its quality measurment methods need to be shared securely among the

stakeholders to ensure their agreement on the data quality and the correct application of the

agreed data quality measurement methods. This is the third study criterion (C3). The following

representative works from the literature propose IoT-blockchain based architectures to handle

this issue.

With the advent of smart devices, crowdsensing platforms are emerging to collects and share

the smart devices sensors’ data. There are many recent works, proposing to use the blockchain
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in order to improve the quality of the collected data, such as the works of Gu et al. [47], Nguyen

and Ali [100], Wei et al. [127], Cheng et al. [33], Huang et al. [55], Zou et al. [136] and Javaid

et al. [65]. Their propositions are based essentially on users’ reviews, reputation, and reward

mechanisms to incentivize the users to improve the quality of their provided data. Those

mechanisms are not applicable in the logistic chain context, in which the stakeholders are

known and responsible of their provided data.

Casado-Vara et al. [26] proposed an IoT data quality framework based on the use of a

blockchain, in the context of smart homes. Their solution uses a vote method based on the

game theory to ensure the accuracy and the consistency of data collected among multiple

sensors. Using cooperative coalition, “sensors are forced to cooperate to evaluate whether the

temperature of the central sensor is correct in relation to their neighbourhood” [26]. To find a

cooperative temperature, authors proposed to calculate an average temperature of all sensors,

then the absolute value of the difference between each sensor temperature and the average

temperature is calculated. This difference is used to establish a confidence interval and only

sensors temperature that belong to this interval will be considered in the coalition voting pro-

cess. However, their proposed approach does not involve multiple stakeholders, each having

its own data sources with different technical characteristics. Consequently, it could not be

used in the logistic chain context.

In the context of a fish farm, Hang et al. [48] proposed a blockchain based architecture to

ensure agriculture data integrity. Their proposed fish farm architecture is composed of four

components: fish farm, blockchain network, data storage, and end-user. They proposed a fish

farm management smart contract deployed in the blockchain component. This smart contract

includes an outlier filtering. However, there is no details in the article about the method used

for outlier filtering. Outside the blockchain, the authors used an outlier filter to removes

measurements beyond the expected values and predict future values. This outlier filter uses

a Kalman filter algorithm.

Leal et al. [80] presented the European-Union-funded SPuMoNI project for end-to-end trace-

ability and data integrity, in the domain of pharmaceutical manufacturing. This project ad-

dressed the problem of temporal and multi-source variability using probability distribution

methods. Also, it used multi-agent system for data integrity checks close to the data source.

In addition, it used Ethereum based architecture to ensure the end-to-end traceability of phar-

maceutical products and processes. However, there were no details in the article about the

methods used to quantify and measure the data quality in the SPuMoNI project.

It is worth noting that in the logistic chain context, we do not need to estimate sensor

measurement data, so we should just report these data as they are sent by sensors. If some

data are missed or out of the expected ranges, this results in a quality incident on which the

involved stakeholders need to agree.

In our proposition, we implement the data quality measurement methods in a blockchain

smart contract to ensure a secured sharing and agreement of all the stakeholders on the
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correct application of the agreed measurement methods and the resulting data quality.

Table 4.2 summarizes the selected related works and how they meet the studied three

criteria.
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Quality dimension
(C1)

Quality levels
(C2)

Use of blockchain
smart contracts
for data quality
management (C3)

IoT

Li et al. [82] Currentness and oth-

ers

Data N/A

Sicari et al. [115] Accuracy, Currentness,

Completeness and oth-

ers

Data and Stream

window

N/A

Kuemper et al. [77] Accuracy and Consis-

tency

Data and Data

Source

N/A

Kolomvatsos [74] Accuracy Data N/A

Kara et al. [67] Accuracy, Complete-

ness and others

Data N/A

Erazo-Garzon

et al. [39]

Accuracy, Complete-

ness, Consistency

(lack of measurement

method), Currentness

and others.

Data and Data

source

N/A

IoT Data Quality models

Karkouch et al.

[68]

Accuracy and Com-

pleteness (in the evalu-

ation)

Data and Stream

window

N/A

Fagúndez et al.

[41]

Accuracy, Complete-

ness, Freshness and

Consistency

Data and Stream

window

N/A

Blockchain and IoT Crowdsensing platforms

Gu et al.

[47], Nguyen

and Ali [100], Wei

et al. [127], Cheng

et al. [33], Huang

et al. [55], Zou

et al. [136] and

Javaid et al. [65]

N/A N/A Data quality en-

sured through

reviews, reputa-

tions and rewards

mechanisms im-

plemented in

blockchain smart

contracts

Blockchain, IoT and data qualification

Casado-Vara et al.

[26]

Accuracy and Consis-

tency

N/A Accuracy quali-

fied outside the

blockchain smart

contract and Con-

sistency inside it

Hang et al. [48] Accuracy (outliers fil-

tering)

N/A Outlier’s filtering

inside and outside

the blockchain

smart contract

Leal et al. [80] Accuracy, Consistency

(multi-source variabil-

ity) and Currentness

(Contemporaneous)

N/A Data qualification

outside and inside

the blockchain

smart contract

Our proposition Accuracy, Complete-

ness, Consistency and

Currentness

Data, Data source,

Shipment and

Shipment data

source relation-

ship (equivalent to

Stream window)

Data qualified

using quality

dimensions im-

plemented in a

Blockchain smart

contract

Table 4.2: Related works comparison summary
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4.4.3 Related Works Study Conclusion

In the above studied works related to the IoT data qualification, we did not find any work

meeting all the fixed study criteria of quality dimension (C1), quality levels (C2) and blockchain

smart contracts integration for data quality management (C3). The proposed approach to meet

all these criteria is presented in the following section.

4.5 The Proposed IoT Data Qualification for Logistic Chain

In this thesis, the data qualification refers to the definition of data quality measurement meth-

ods and the application of these methods on every data received and handled by the smart

contract.

We focus on the qualification of traceability IoT data. Because this data is automatically

collected and used by the smart contract for incident detection, its qualification is essential

for building reliable and automated traceability system.

Thanks to a data quality study adapted to the logistic chain domain, we have identified (i)

relevant IoT data quality dimensions and their respective (ii) measurement methods.

The IoT data quality model purpose is to be implemented in the traceability smart contract,

to assess the shipment data quality and consequently improve the incidents creation process.

Among the quality models proposed in the state of the art, the one proposed by [68] was

the closest to the logistic chain needs of IoT data quality dimensions and levels handling.

Consequently, we decided to implement and extend this model for the logistic chain domain.

As depicted in Figure 4.1, we added into the Shipment class some data quality attributes to

measure and monitor the data quality at the shipment level using a specific list of data quality

dimensions for the shipment. To help the users with an aggregated data quality vision, the

qualityConfidenceIndex gives an overview of the data quality at the shipment level based on its

data history. For the same purpose at the dimensions level and for fine data quality monitoring,

the dimensionsQualityIndex gives the same data quality overview, but it is organized by data

quality dimension. The incident threshold control gives the stakeholders the required tools to

define the quality incident triggering threshold at the shipment level. This is exactly what the

globalDataQualityThreshold is used for. In the same manner, to define and control shipment

quality incidents triggering at the data event level, we added the dataQualityIndexThreshold

attribute. For fine quality incident thresholds control, we provided the stakeholders with the

dataQualityIndexDimensionsThresholds in which they can define the quality incident triggering

threshold by data quality dimension, based on the stakeholder’s context requirements.

For capturing the data quality during the association of the IoTDataSource and the Shipment,

we enriched the Assignment class which reflects their temporary relationship, with new data

quality measurement attributes.
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Shipment

- id: Long
- pickupTimestamp: Timestamp
- deliveryTimestamp: Timestamp
- origin: String
- destination: String
- mode: String
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- globalDataQualityThreshold: Double
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

ShipmentCondition

- id: Long
- code: String
- label: String
- min: Long
- max: Long

ShipmentIncident

- id: Long
- label: String
- creationTime: Timestamp
- closingTime: Timestamp

has a

1

0..*

has a 1

0..*

IoTDataEvent

- id: Long
- srcId: String
- timestamp: Timestamp
- receptionTimestamp: Timestamp
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

IoTMeasurement

- id: Long
- code: String
- label: String
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>

IoTMeasurementValue

- id: Long
- code: String
- value: Double
- minValue: Double
- maxValue: Double
- precision: Double

Assignment

- id: Long
- startAssiTime: Timestamp
- endAssiTime: Timestamp
- lastReceivedEvtTimestamp: Long
- confidenceIndex: Long
- dimensionsQualityIndex: Map<String, Double>

related

0..*

0..*

1..*

1..*

assigned
1..*

0..*

ShipmentMilestone

- id: Long
- code: String
- label: String
- negotiatedDate: Date
- actualDate: Date

related

0..*

1

IoTDataSource

- id: String
- name: String
- startTimestamp
- measureIntervalInSeconds: Integer
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

related

0..*

0..*

has measureSpecifications

0..1

1..*

1

Stakeholder

- id: Long

involves
3..* 0..*

involves

1..*

0..*

involves

1..*

0..*

involves

1..*

0..*

owned by

1

0..*

ShipmentContract

+ createShipment(shipment:Shipment): Shipment 
+ queryShipmentById(shpId: String): Shipment 
+ createIoTDataSource(src:IoTDataSource): IoTDataSource 
+ queryIoTDataSourceById(srcId:String): IoTDataSource 
+ addIoTDataEvent(srcId: String, evt: IoTDataEvent): IoTDataEvent
+ queryIoTDataEventById(evtId: String): IoTDataEvent
+ assignSrcToShp(srcId: String, shpId: String, startTime: Timestamp, endTime: Timestamp): Shipment
+ updateShipmentMilestone(shpId: String, milestone: ShipmentMilestone): Shipment
+ createShipmentIncident(shpId: String, incident: ShipmentIncident): Shipment
+ confirmShipment(stakeholderId: String, shpId: Shipment): Shipment
+ confirmMilestone(stakeholderId: String, shpId: String, milestoneCode: String): ShipmentMilestone
+ confirmIncident(stakeholderId: String, shpId: String,  incidentId: String): ShipmentIncident
+ createIoTQualityDimension(qDim: IoTQualityDimension): IoTQualityDimension
+ queryIoTQualityDimensionById(id: List<String>): List<IoTQualityDimension>

QualityIncident

- id: Long
- label: String
- creationTime: Timestamp
- closingTime: Timestamp

IoTQualityDimension

# code: String;
# name: String
# weight: Integer
# timeToleranceThreshold: Integer

+ caculateDimensionConfidenceIndex(shipment:Shipment): Double 
+ caculateDimensionConfidenceIndex(ioTDataSource:IoTDataSource): Double 
+ caculateDimensionConfidenceIndex(ioTDataEvent:IoTDataEvent): Double 
+ caculateDimensionConfidenceIndex(ioTMeasure:IoTMeasurement): Double 

IoTQualityAccuracy IoTQualityCompleteness IoTQualityConsistency IoTQualityCurrentness

related

0..*

1
involves

1..*

0..*
related0..* 1..1

h
as sh

ip
m

en
tQ

u
ality

D
im

en
sio

n

0..1

0..*

h
as so

u
rceQ

u
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D
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n

0..1

0..*

Figure 4.1: IoT Data Quality Class Diagram

Moreover, we highlighted in Figure 4.1 all the model entities and attributes added for the

quality assessment purpose. The main class of this model is the Shipment which has its own

IoTQualityDimension and its own IoTDataSource affected to it through the Assignment class. It

is worth noting that the IoTQualityDimension has a weight attribute defining the importance

of the dimension according to the stakeholders needs.

In the logistic chain context, we need to distinguish different application levels of each IoT

quality dimension, for quality visibility at every object level. The quality index resulting from a

quality dimension application is calculated differently for each dimension related class in the

schema. In some cases (detailed in the next sections), a quality dimension is not defined for

some entities of the schema. For example, the completeness dimension is not defined for the
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entities IoTDataEvent and IoTMeasure, it is used only for entities with an update time interval

constraint such as IoTDataSource and Shipment.

Furthermore, we introduce in this model a qualityConfidenceIndex, to provide users with

an overview of the data quality for the main objects handled in the model, which are: the

Shipment, the IoTDataSource, the Assignment and the IoTDataEvent. We calculate this index

for the IoTDataSource and the Assignment as an average of their events quality dimensions.

For the Shipment quality index calculation, we use the quality indexes of its related Assignment

objects. Regarding the IoTDataEvent, we use the average quality of its related IoTMeasure.

The calculation of the quality index considers the quality dimensions’ weights fixed by the

users for IoTDataSource and Shipment. The methods used to calculate the quality dimensions

are detailed in the next sections.

The quality thresholds are set by the stakeholders to define the minimum accepted quality

indexes. Values that do not respect this quality will be stored for traceability purpose but

will not be used for dynamic incident detection purpose. To monitor the compliance of the

received data according to both the quality threshold and the shipment transport conditions

defined in the smart contract, we added into the model QualityIncident class. It results from

a non-compliance with the agreed quality thresholds. The ShipmentIncident results from a

non-compliance with the agreed transport conditions. If a newly received event generates a

DataQualityIncident, this event is only saved by the smart contract, but not used to take any

decision.

4.5.1 Accuracy

The accuracy measurement method is based on the data source specifications (precision, and

minimum and maximum values). Using this method, we can ensure that the received mea-

surement is a possible normal value that can be sent by the concerned data source; therefore,

it could be used by the traceability smart contract, for example to create an incident if the

received measurement is out of the ranges fixed by the shipper for this specific measurement.

In case of inaccuracy, the received measurement could not be used in any business process,

and it will just be saved in the blockchain for further audit purpose.

In the following subsection we detail the accuracy calculation method depending on the

object level.

Accuracy levels

We identify five accuracy levels: the measurement value accuracy AccMsrV al, the measure accu-

racy AccMsr, the event accuracy AccEvt, the IoT data source accuracy AccSrc and the shipment

accuracy AccShp.

The measurement value accuracy as indicated by its name is related to only one value
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of the measurement. It is used to indicate if a value of the measurement is in the ranges of

logic and acceptable values of this specific measurement value, based on the IoT data source

specifications. For example, consider a measurement value m, with precision p and FThmin

and FThmax are respectively the min and the max possible values given by the IoT data source

fabricant.

We calculate the measurement value accuracy AccMsrV al using the following formula:

AccMsrV al =





1 If (m− p) ≥ FThmin and (m+ p) ≤ FThmax

m−FThmin

p if (m− p) < FThmin and m ≥ FThmin

FThmax−m
p if (m+ p) > FThmax and m ≤ FThmax

0 otherwise

(4.1)

The IoT measurement is composed of n IoT measurement values, and consequently we cal-

culate the IoT measurement accuracy AccMsr as an average of all its IoT measurement values’

accuracies:

AccMsr =

n∑
i=1

AccMsrV ali

n
(4.2)

The IoT data event accuracy AccEvt corresponds to an overview of the accuracies of all

its related measurements. This is useful in the logistic chain context, where the event is

considered as a coherent set of measurements. If this is not the case, the accuracy calculated

at the measurement level can directly be used, and the event accuracy can be ignored. However,

for an event with n related measurements, the event accuracy corresponds to the average of

all the event related measurements’ accuracies:

AccEvt =

n∑
i=1

AccMsri

n
(4.3)

The IoT data source accuracy AccSrc gives an overview of all the data source related events

accuracies, it is related to the history of events received from the IoT data source. In the

logistic chain context, it is important to consider this history of events in the calculation of

data source accuracy, because it indicates the reliability of the data source since it has been

deployed and used in the traceability system. If the users are interested only in the data source

measurement accuracies, the accuracy calculated at the measurement level could be reused

at the data source level in order to give them a data source accuracy per measurement. The

accuracy of an IoT data source corresponds to the accuracy average of all its related IoT data

events:

AccSrc =

n∑
i=1

AccEvti

n
(4.4)
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Finally the shipment level accuracy emphasizes all the shipment related IoT data sources’

accuracies for the specific time period in which a data source is assigned to a shipment. Ev-

ery shipment is considered as an independent transport operation that should have its own

accuracy value. For a shipment with n assignments to IoT data sources, the accuracy AccShp

corresponds to the average of all the shipment IoT data sources assignments. For each as-

signment accuracy AccAssigni
, the number of events nEvtAssign to be considered in the accuracy

calculation, corresponds to the number of events sent by the data source for this specific

shipment assignment relationship:

AccShp =

n∑
i=1

AccAssigni

n
such as AccAssigni

=

nEvtAssign∑
j=1

AccEvtj

nEvtAssign
(4.5)

4.5.2 Completeness

The completeness measurement method calculates the gap in the data reception for a specific

object. It concerns the levels of the data source, the assignment, and the shipment.

Completeness levels

At the IoT data source level, the completeness is calculated based on the source startT imestamp,

the source measure interval I, the number of received IoT events n from the data sources and

the reception timestamp of the last IoT data event lastT imestamp, related to the data source:

ComSrc =




1 If n ≥ lastT imestamp−startT imestamp

I

n∗I
lastT imestamp−startT imestamp otherwise

(4.6)

The Assignment completeness ComAssign means that all the expected IoT data events of the

assigned IoT data source Src, have been received by the shipment during the data source and

shipment association time period enshrined in the smart contract. Consequently, for the ship-

ment, the IoT data event frequency is at least one IoT data event per IoT update time interval

I defined in the smart contract. The ComAssign highlights for the stakeholders the capacity

of each data source to send all the expected data during its association with a shipment.

This helps the stakeholders to decide on the reusability of the data source for further ship-

ments in case of a good Completeness value, otherwise, to take over the data source to identify

the Completeness source problem. The ComAssign evolves during the shipment and the data

source association time period, and it is recalculated for every new IoT data event reception

at the timestamp evtT imestamp, based on the current number of received IoT data events n,

the shipment update interval I, the data source shipment assignment startAssignT ime and

endAssignT ime timestamps.
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ComAssign =





1 If n ≥ evtT imestamp−startAssignTime
I

and evtT imestamp ∈]startAssignT ime, endAssignT ime]

Or

n ≥ endAssignTime−startAssignTime
I

and evtT imestamp > endAssignT ime

n∗I
endAssignTime−startAssignTime If evtT imestamp > endAssignT ime

0 otherwise

(4.7)

At the shipment level, the completeness ComShp gives an idea of the Completeness trend of

all the shipment related IoT data sources. It is calculated as a ComAssign average of the nAssign

data sources assigned to the Shipment:

ComShp =

nAssign∑
i=1

ComAssigni

nAssign
(4.8)

Completeness incidents

The completeness problem reflects the missing IoT data events. Many reasons could be at the

origin of missing IoT data events: network errors, synchronization problems or device mal-

functions [90]. If it is not handled, missing data affects seriously the reliability of the data

collected through the IoT data sources. We propose to generate a completeness incident, if the

completeness index of the object fall below the completeness threshold fixed by the stakehold-

ers.

4.5.3 Consistency

It is important to calculate the coherence degree between related different IoT data events

and to alert the stakeholders in case of incoherence detection. The stakeholders should take

a corrective action, such as identifying and removing failing data sources or adapting new

threshold values etc.

The main IoT data source in this work is the shipment connected object. However, others

IoT data sources could be added by any of the shipment transport stakeholders. When two

or more IoT data sources assigned to the shipment monitor the same transport conditions,

then we calculate the consistency of those data sources, by comparing their measurements.

This comparison considers two tolerance thresholds: the time tolerance threshold Ttth and

the measurement tolerance threshold Mtth. Those two thresholds should be defined at the

shipment creation for every IoT data sources assigned to the shipment, of course through a

mutual agreement between the stakeholders in charge of those IoT data sources.
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Consistency levels

The consistency dimension concerns the levels of: IoT data event and shipment. When an IoT

data event Evti is received from source Srci at a timestamp Rti, and contains a list Msri of

measurements, the smart contract check if there are other events related to the shipment and

sent by other IoT data sources, verifying that for each event Evtj, received from source Srcj at

the timestamp Rtj, and containing a list Msrj of measurements:





Srci ̸= Srcj

|Rti −Rtj | ≤ Ttth

Msri ∩Msrj ̸= ∅ IoTMeasurements compared using their codes. See Figure 4.1

(4.9)

If there is only one IoT data source for the shipment, or there is no IoT data events verifying

the above conditions, then there is no consistency calculation to do. Otherwise, the event
consistency is calculated using the following method:

ConEvti =





1 ∀m ∈Msri ∩Msrj , |V almi
− V almj

| ≤Mtth V almi
is the value of m in Msri, and

V almj is the value of m in Msrj

NbConEvti

NbEvt NbConEvti is the number of events

concordant with Evti, and NbEvt

is the total number of events

verifying the above consistency

conditions
(4.10)

The shipment consistency ConShp gives an overview of the shipment data consistency be-

tween all the data sources related to the shipment and monitoring the same transport condi-

tions. It is calculated as an average of the shipment related Assignment consistency: ConAssign.

ConShp =

n∑
i=1

ConAssigni

n
such as ConAssigni

=

nEvtAssign∑
j=1

ConEvtj

nEvtAssign
(4.11)

4.5.4 Currentness

In the logistic traceability context, the Currentness dimension may not be critical. Indeed, the

most important is to detect incidents, even though the data is received late. However, Cur-

rentness may reveal incidents concerning data acquisition. Thus, in the proposed traceability
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smart contract, the stakeholders have the ability to define the shipment Currentness threshold

accordingly to the use case.

Currentness levels

We consider the following Currentness levels: IoT data event, IoT data source and shipment.

For an IoT data event ei, the currentness CurEvti is calculated based on the previous event

reception timestamp ti−1, the update interval defined in the smart contract I, the expected next

event timestamp ti+1 which is equal to ti−1 + 2 ∗ I and the current event reception timestamp

ti. The t0 corresponds to the start time of the shipment and the IoT data source assignment

relationship. For the shipments, the interval I is a shipper requirement that should be met

through the sending of an IoT measurement to the smart contract, every time that this interval

has elapsed. Consequently, the Currentness indicates not only the quality of the data but

also the meet degree of one of the more important shipper requirements defined in the smart

contract, the shipment update interval I. The event Currentness at the shipment level is

calculated using the following formula:

CurEvti =




1− |(ti−1+I)−ti|

I If ti ∈]ti−1, ti+1[

0 otherwise

(4.12)

Furthermore, the CurEvti at the IoT data source level is calculated using the same above

method, but it is worth noting that the IoT data source has its own update interval that could

be different from the shipment update interval. Regarding the IoT data source, the Current-

ness corresponds to the degree in which the data source has met the update interval time

requirement, in the history of all its related events, including the last received event. This

dimension helps the users in the choice of the data sources to be assigned to the shipment,

users will always choose the data source with the highest Currentness among the available

data sources. The IoT data source Currentness CurSrc is calculated as the average of all the

data source related IoT events:

CurSrc =

n∑
i=1

CurEvti

n
(4.13)

From the shipment perspective, the Currentness indicates the degree in which the ship-

per update time interval requirement has been met for the shipment by all its related data

sources, during the shipment data sources association time period. To measure the Current-

ness performance of the shipment data source association, the Currentness calculated for

this association CurAssign is saved in the Assignment object. This CurAssign is useful when the

shipment stakeholders need to investigate a low shipment Currentness, it helps to identify the

shipment related data source(s) responsible(s) of the low Currentness value. The shipment

Currentness CurShp corresponds to the average CurAssigni
of all its n related Assignment ob-
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jects. The CurAssign is calculated as a CurEvtj average of the nEvtAssign events received from

the data source for the shipment, during their Assignment association:

CurShp =

n∑
i=1

CurAssigni

n
such as CurAssigni

=

nEvtAssign∑
j=1

CurEvtj

nEvtAssign
(4.14)

Currentness incidents

There are two currentness control points, the reception of the IoT measurement by the stake-

holder Information System (shipper IS, carrier IS or consignee IS) and the reception of the

measurement by the smart contract. In case of non-reception of the IoT measurement by the

stakeholder IS, this leads to a missing update on the smart contract side. The IoT data source

is configured to send a measurement every n seconds. If this interval has elapsed and no

new measurement has been received from the IoT data source, the situation is considered as

a missing update problem.

The missing update is not critical if the IoT update interval Isc of the smart contract is larger

than n seconds, because the smart contract generally does not wait for a new measurement

as long as this update interval does not expire. In contrast, if the update interval is equal to n

seconds, the stakeholder IS notifies the smart contract in case of missing data. Once notified,

the smart contract assigns a missing update related incident to the data source owner. The

update-missing incident created by the smart contract for every non received expected event,

traces the history of missing data incidents related to an IoT data source. The origins of this

kind of incidents are multiple, for example: the IoT data source is not able to connect to the

IoT network, the IoT data source has internal problem or an IoT cloud data platform problem.

4.5.5 Conclusion of the IoT Data Qualification Proposition

In this section, we detailed the IoT data qualification proposition. This proposition includes

an IoT data quality model adapted to the logistic chain context, and handling the accuracy,

completeness, consistency and currentness dimensions. For each dimension, we presented

the object levels concerned by the dimension, the dimension calculation methods at each

defined level and the incidents related to the dimension.

The following section presents the implementation of the IoT data qualification proposition

into a smart contract and the evaluation of this implementation.

4.6 Evaluation of the Proposed IoT Data Qualification

The objectives of this section are: (i) to evaluate the proposed quality measures; (ii) to evaluate

the impact of the IoT data quality module on the number of created incidents; and (iii) to
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evaluate the impact of the IoT data quality module on the IoT data event insertion time in the

blockchain.

We evaluated the proposed quality measures to measure their pertinence and performance.

We also monitored the number of quality incidents created to highlight the impact of the quality

module. The number of shipment incidents was also monitored to emphasize the impact of

the quality module on the business decisions.

The IoT data event insertion time in the blockchain was also measured in the evaluation

tests. Firstly with the quality module activated and then with the quality module inactivated.

This is to evaluate the impact of the proposed quality module on the data event insertion time

and ensure the final users that this time is acceptable while ensuring the data quality.

4.6.1 Smart Contract Architecture

For the implementation purpose, we used the same architecture presented in Chapter 3. It is

based on the use of Hyperledger Fabric as the blockchain implementation, with three peers

(stakeholders): a shipper, a carrier and a consignee.

In the existing traceability smart contract, we updated the addIoTEvent smart contract

method with the following new functionalities: (i) calculate the event quality measures; and (ii)

update the IoT data source and the quality measures of the shipments related to this IoT data

source. Additionally, we enriched all the smart contract data model classes with the attributes

presented in Figure 4.1 to handle the data quality.

4.6.2 Evaluation Experimental Choices

Due to a lack of real data to evaluate the proposed architecture in the selected use case, we

chose to simulate IoT logistic data with a well-known dataset in the IoT domain.

The Intel Berkeley dataset is a collection of sensors’ data, collected by Intel research team

in the Intel Berkeley Research lab, between 28 February and 5 April 2004 [88]. An example of

the dataset content is depicted in Table 4.3.

Date Time Event ID Sensor ID Temperature Humidity Light Voltage

12 March 2004 16:29:04.084098 39302 1 21.8308 43.5855 165.6 2.53812

14 March 2004 15:45:11.669786 44974 2 26.9464 41.814 264.96 2.54901

19 March 2004 19:01:21.094445 59766 3 21.9092 45.1103 39.56 2.44412

... ... ... ... ... ... ... ...

Table 4.3: Samples of the Intel Berkeley dataset

To adapt this dataset to logistic chain context, we considered every sensor as an IoT data

source. This gives us 54 data sources to be handled. For the shipments, we used every 24 h of
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sensor data collection as a shipment, which results in 2052 shipments (54 sensors multiplied

by 38, the number of data collection days), for the whole dataset.

Furthermore, we considered only the temperature measurements in this evaluation be-

cause it is the main measurement of the thesis medical equipment use case, but the module

could be used to handle any other measurement type.

We began the evaluation phase by defining the user’s quality thresholds requirements for

all the data sources and shipments. We used the same threshold for the data sources, the

shipments and the above-presented data quality dimensions. We made a series of tests by

varying the defined threshold, going from 0 (no quality constraints) to 1 (strict quality), to show

the impact of these thresholds on the number of created quality and shipments incidents.

In this evaluation, we established a weight measure from 1 for low importance to 4 for

high importance. For the quality dimensions based on their importance for the thesis use

case, we chose the following weights: a weight of 4 for the accuracy, the completeness, and the

consistency, which are the most important for our users, and a weight of 1 for the currentness,

which is not as critical as the other dimensions, as explained in Section 4.5.

For the shipment incidents, we chose an accepted temperature interval of 20 to 25 ◦C based

on the work of Hui et al. [56]. This corresponds to an office ambient temperature interval

comparable to the Intel dataset collection context. Beyond this temperature interval, if the

received event quality is compliant with the shipment quality threshold, this event results in

a shipment incident created for all the shipments that have an active assignment relationship

with the event data source.

There was no information in the dataset about the sensor’s precision value. Consequently,

we chose to set this value to 0.5 ◦C, which is a recurrent precision value of temperature sensors.

In the following evaluation results, we did not consider the sensor 5 from which we did not

see any event. We also ignored some other events with the sensor IDs 55, 56 and 58, because

in the dataset reference the number of sensors was only 54, and events coming from the same

sensor with the same event number (113,474 events in the dataset).

There were also 355 events in the dataset that we could not parse correctly due to their

data presentation errors and 526 incomplete lines, from which we could not get all the event

required data. This results in a total of 2,199,327 events integrated correctly in this evaluation,

from a total of 2,313,682 events present in the dataset.

We used the event timestamp in the dataset as an event reception timestamp in this evalua-

tion. Moreover, we used this timestamp to order and identify the events, for shipment incident

creation and closing purpose. The results of this choice were 10,299 duplicated events, be-

cause they had the same timestamp as previously received events from the same sensor.

Furthermore, we use the quality threshold to define stakeholders’ requirements of events

quality indexes to be integrated in the data source or sent to shipments. All the events with
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a quality index below the defined quality threshold value result in a quality incident and are

not used to create shipment incidents in case of non-compliance with the agreed transport

conditions. If the quality incident is detected by the data source, it will not send the event to

its related shipments.

4.6.3 Results Concerning the Accuracy, Completeness and Currentness
Dimensions

Firstly, regarding the accuracy, the sensors used to collect the Intel Berkeley dataset, a valid

temperature value should be in the range of 0–50 ◦C according to [1], otherwise we consider

this temperature as inaccurate.

Regarding the completeness, we used the following parameters: the update interval of 31 s,

the maximum timestamp among the already integrated events timestamps, the start IoT data

source and the shipment start timestamp. We set the IoT data source start timestamp at 28

February 2004 at 00:00:00 am, and, for the shipment, the start timestamp is the shipment

date and the start time set at 00:00:00 am and the end at 11:59:59 pm.

Concerning the currentness, we used the measure interval of 31 s given for the dataset.

We used this same update interval for the data sources and the shipments. In our tests, we

did not consider the difference that could exist between the event reception timestamp and the

event production timestamp. This difference could affect the test and need to be addressed in

future works.

Table 4.4 shows the classification of quality results obtained for the sensors (data sources),

regarding the different quality dimensions defined in this work and using multiple quality

threshold values. Those results show that in the 53 retained sensors: 43 have a good accuracy,

29 have a poor completeness and 29 have a lower currentness.

Quality Threshold Accuracy Completeness Currentness Quality index

0, 0.5, 0.7, 0.9 and 1 0P 1L 43G 9H 29P 22L 2G 0H 1P 29L 20G 3H 0P 38L 15G 0H

Table 4.4: Sources quality evaluation results

Regarding the global sensor quality index, most sensors (38) have a low-quality index. If

the quality threshold is set to a good quality value (e.g., 0.7), only 15 sensors are usable, and,

in the case of threshold of high quality (e.g., 0.9), there is no usable sensor in this dataset.

Thanks to the quality module, all the events with a quality incident problem are not in-

tegrated into the shipments assigned to the event data source, and this keeps the shipment

events quality at the level fixed and agreed by all the stakeholders. For example, in the case of

Sensor 45, when we set the quality threshold at 1, 9% of the events received from this sensor

have not been integrated into the source related shipments, due to their quality problems.
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In Table 4.5, we can clearly see the impact of the threshold choice on the percentage of

quality incidents. This percentage represents the events that do not respect the agreed quality

thresholds. The events are filtered at the data source level according to the selected quality

threshold value.

Shipments Quality
Threshold

Percentage of Quality
Incidents

Percentage of Shipments
Incidents

0 0 0.21

0.5 25 0.4

0.7, 0.9 and 1 21 0.3

Table 4.5: Quality and shipments incidents results according to the quality threshold

Consequently, the percentage of quality incidents drops from around 25% of the total re-

ceived events for a threshold at 0.5 to around 21% when the quality threshold was greater or

equal to 0.7. The percentage of shipment incidents evolution is not linear due to the shipments

number evolution depending on the selected quality threshold, as depicted in Table 4.6.

Shipments Quality
Threshold

Number of Shipments
Without Any Event

Number of Shipments with
at Least One Event

0 421 1631

0.5, 0.7, 0.9 and 1 821 1231

Table 4.6: Shipments events number evolution

Regarding the shipments quality results, it is important to note that there were 421 ship-

ments for which we did not receive any event, no matter what the quality threshold value was.

This number increases to 821 shipments, when we set the quality threshold at 0.5, 0.7, 0.9 or

1, as depicted in Table 4.6. Consequently, we did not consider those shipments in the follow-

ing shipment quality results, because all our quality dimension calculations are based on the

events values and timestamps.

Table 4.7 shows that the percentage of shipments with a high accuracy level increase as

the shipments quality thresholds increases, and this is the same for the currentness. The

percentage of events with a poor completeness index increases due to events blocked by the

quality threshold at the data source level.

Quality Threshold Accuracy
(in %)

Completeness
(in %)

Currentness
(in %)

Quality index
(in %)

0 26P 1L 1G 72H 48P 29L 19G 4H 18P 30L 40G 13H 27P 16L 44G 13H

0.5, 0.7, 0.9 and 1 0P 0L 0G 100H 64P 19L 17G 1H 12P 32L 41G 15H 2P 47L 42G 10H

Table 4.7: Shipments quality evaluation results
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The shipment quality index is also improved by the quality threshold increase; for example,

we went from 27% of poor data quality shipments when the quality threshold was at 0 to only

2%, when the quality threshold was up to 0.5.

4.6.4 Results Concerning the Consistency Dimension

For the consistency evaluation, we selected four groups of sensors placed in proximity zones,

as depicted in Figure 4.2: {1, 2, 3}, {11, 12, 13}, {15, 16, 17} and {49, 50, 51}. For each group,

we linked each sensor to all its related sensors shipments in the same sensors group. The total

Figure 4.2: Intel Berkeley sensors arrangement diagram.

number of shipments related to the selected groups was 456 (12 sensors multiplied by 38 data

collection days). Whatever the quality threshold value was, there were 84 shipments related

to the selected sensors groups, for which we did not receive any event from the sensors. This

number increases to 171 shipments when we set the quality threshold at 0.5, 0.7, 0.9 or 1,

due to the events quality filtering at the data source level.

Furthermore, we set in this evaluation the tolerance time interval to 31 s and the consis-

tency tolerance temperature to 0.5 ◦C. This means that two events are considered as eligible

to the consistency test only when their timestamps difference is lower than 31 s, and they are

considered as concordant if their reported temperatures difference is lower than 0.5 ◦C.

Table 4.8 summarizes the consistency evaluation results for the selected sensors groups.

The group {1, 2, 3} has at least 76% of its shipments with a high consistency index. Those

results show that the events reported by the group {1, 2, 3} were more concordant than those

reported by the other groups.

90



Quality Threshold Sensors group Consistency (in %)

0 {1, 2, 3} 0P 3L 21G 76H

{11, 12, 13} 0P 0L 73G 27H

{15, 16, 17} 0P 0L 74G 26H

{49, 50, 51} 0P 0L 68G 32H

0.5, 0.7, 0.9 and 1 {1, 2, 3} 0P 0L 15G 85H

{11, 12, 13} 0P 0L 62G 38H

{15, 16, 17} 0P 0L 88G 12H

{49, 50, 51} 0P 0L 81G 19H

Table 4.8: Shipments consistency evaluation results

The consistency results for the selected groups were generally good to high, except for 3%

of shipments related to the group {1, 2, 3}, when the quality threshold was at 0. This shows

the impact of the quality threshold on the consistency quality results.

4.6.5 Impact of the IoT Data Quality Module on the IoT Data Event In-
sertion

For the smart contract IoT data quality evaluation, and due to our blockchain architecture

response time (around 1 s per operation), we selected a sample of 3000 events from the dataset.

This sample corresponds to the first 1000 events received from the Sensors 1–3 on 28 February

2004.

The average response time of the addIoTEvent using the 3000 events data sample was

around 1.7 s, with an average standard deviation of 0.174 s. When we disabled the quality

module, with the same data sample, the average response time of this method drops to around

1.6 s, with an average standard deviation of 0.158 s.

This result shows that the proposed IoT data quality module adds only around 0.1 s to the

event integration time. The additional quality module cost is acceptable regarding the data

quality improvement brought by this module.

4.6.6 Related Works Discussion

As shown in Section 4.4, the works of Casado-Vara et al. [26], Hang et al. [48] and Leal et al. [80]

are the closest to our work.

Casado-Vara et al. [26] proposed a vote method to address the accuracy and the consistency

problems. Their vote method is based on the game theory to find a cooperative temperature

among all the used temperature sensors. It is not applicable in the logistic chain context,
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because we have different data sources owned by different stakeholders, and we need to report

all the data sent by those data sources for audit purpose.

In case of discrepancy between the stakeholder’s data sources related to the same ship-

ment, we need to trace this discrepancy, and, if it goes below the fixed quality threshold, a

corresponding quality incident is created by the smart contract. However, the vote method

in [26] could be used in the very specific case of many shipments with similar data sources,

the same shipper, the same carrier and from which we want to have a global measure trend.

Hang et al. [48] proposed a Hyperledger Fabric based architecture. This blockchain imple-

mentation choice is perfectly adapted to the logistic chain use case, and we used the same

in the architecture presented in Chapter 3. However, they did provide any details in their

article about the method used to handle the outlier filtering inside their proposed smart con-

tract. Outside the blockchain, they addressed the accuracy problem (outlier filtering) using

the Kalman filter, the consistency and the currentness.

It is worth noting that the standard version of Kalman filter did not meet the logistic chain

transport conditions needs, because the outlier interval limits are not fixed and evolve accord-

ing to the received data. This could be problematic when the Kalman filter goes in fail mode,

as stated by Berman [18]. The usage of an assisted version of the Kalman filter needs to be

explored in future work.

Leal et al. [80] proposed an Ethereum traceability-based architecture. Their Ethereum

choice is justified by the solution monetization goal. However, we chose to work with Hyper-

ledger Fabric which does not need any cryptocurrency management and has an organization

architecture more adapted to the B2B logistic chain context, in terms of data access levels

management.

In addition, authors in [80] addressed the accuracy, consistency and currentness problems

using probability distribution methods, but they did not provide further details about their

application and evaluation of those methods.

Furthermore, the authors of [80] proposed to filter the data inside and outside the blockchain,

which is a good idea, and we already have in our architecture the inside blockchain data filter-

ing. Besides, we need to explore the adding of a data filtering first level outside the blockchain,

in future works.

The outside blockchain filtering needs to be done carefully, because it should not prevent

the blockchain from getting the required traceability data; although, in some cases these data

will be outliers, they need to be traced for further audit purposes.
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4.6.7 Conclusions on the Evaluation

This evaluation section demonstrates the pertinence of the proposed IoT data quality module

and the impact of this module on the data to be used in the traceability smart contract. The

entire data qualification process is executed in a secured and distributed application on which

users agree on every datum to be included, on its qualification process and decisions to be

taken based on this datum.

It is worth noting that quality thresholds choice has a huge impact on data filtering process

set at data source level. The events with a quality index below the defined quality threshold

will never be sent to the shipment. This leads directly to data loss at the shipment level. For

this reason, stakeholders may prefer selecting a good quality threshold ([0.7,0.9]), rather than

a high one ([0.9,1]).

Although the proposed architecture evaluation shows encouraging results, this architecture

still needs to be tested in a real-life scenario with real logistic data and additional stakeholders

to get more information about its real performances.

4.7 Conclusion

In this chapter, we proposed a distributed architecture and a smart contract to enhance the IoT

data quality in the context of logistic traceability. The proposed architecture uses a model of

IoT data quality with four main data quality dimensions: accuracy, currentness, completeness

and consistency.

We also proposed an approach for the calculation of the selected data quality dimensions.

The dimensions calculation results are used in our traceability smart contract to set and con-

trol the data quality of events, data sources, shipments and shipments data sources associa-

tions.

The proposed architecture ensures the stakeholders agreement on the data quality calcula-

tion and application rules, and consequently their trust in the decisions taken automatically

by the traceability smart contract. We evaluated our proposed IoT data quality assessment

architecture based on an online available dataset, and the results show the relevancy of this

architecture.

This work could be extended by evaluating the scalability of the proposition when adding

more stakeholders and real logistic chain data. The approach used to calculate the quality

dimensions could be combined with algorithms, such as DBSCAN [40] or an assisted version

of the Kalman filter [66], to improve the quality index calculation.

The blockchain data charge could be alleviated by adding in this architecture a first level of

data filtering on each stakeholder side. The IoT data sources’ security and interoperability also
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need to be addressed. Also, the architecture evaluation needs to be done in a real-life scenario

to ensure its performance in the context of logistic chain traceability.

Finally, the volume of data collected from IoT objects and qualified by the proposed archi-

tecture could not be handled neither by human operators nor by classic smart contracts. This

issue is addressed in the next chapter.
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Chapter 5

Deep Learning Integration in
Blockchain: A Traceability
Incidents Prediction Use Case

5.1 Introduction

The advent of new traceability systems based on the Internet of Things (IoT) and blockchain

improves data collection, security, and transparency of traceability systems.

However, the volume of data collected by this new generation of traceability systems could

not be handled neither by human operators nor by classic blockchain smart contracts. Con-

sequently, enhancing smart contracts with self-learning capabilities may ensure an efficient

processing of all the available data while taking advantage from this data for logistic chain

improvement decisions.

DL could help in this matter, as one of the most promising recent advances in AI domain.

According to [134], the DL could be defined as “a process not only to learn the relation among

two or more variables but also the knowledge that governs the relation as well as the knowledge

that makes sense of the relation”. The DL is a subdomain of Machine Learning (ML) which is

a subdomain of the AI, as depicted in Figure 5.1.

However, to integrate DL in blockchain based systems, we should ensure that the same

learning and prediction processes have been applied by all the blockchain stakeholders. In

addition to the model accuracy, the response time of the DL model to be selected is a determi-

nant criterion for the DL model evaluation and selection.

The DL-blockchain integration ensures the stakeholders’ agreement on the model train,

update, and prediction processes. The incident detection process gains in trust, transparency,

and the incidents learning, and prediction processes are totally automated.
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Artificial Intelligence Machine Learning Deep Learning

Figure 5.1: Artificial Intelligence, Machine Learning and Deep Learning Relationship

In the literature, the AI and blockchain combination has been studied by many of recent

works, such as [112], [38] and [32] . However, there are few works on the AI integration inside

the blockchain as in [124], [49] and [125]. In these works, some technical limitations to this

integration have been reported by the authors, related essentially to the absence of support of

some ML required mathematical functions by the blockchain used implementations: Quorum

in [124] and Ethereum in [49] and [125].

To overcome the above limitations and answer the thesis RQ3, we propose in this chapter

to implement a DL model using TensorFlow which is a framework implemented by Google

Research Team for ML algorithm expression, implantation and execution [9].

Then the implemented DL model is integrated in Hyperledger Sawtooth which is a frame-

work for enterprise-grade blockchain building, putting the focus on security, scalability, and

modularity, with a support of Python and many other languages for smart contracts develop-

ment, according to [71].

The TensorFlow and Hyperledger Sawtooth combination allows to take advantage of adapted

technologies for Self-Learning systems development, with Tensorflow for Deep Learning, Hyper-

ledger Sawtooth for the blockchain and Python for Self-Learning Smart Contracts development.

The proposed architecture for DL integration in blockchain is implemented and evaluated

using a real logistic shipment dataset, to show the viability and the effectiveness of this archi-

tecture.

To explore the DL integration in blockchain based systems, the main contributions of this

chapter are:

• the selection of a Deep Learning (DL) model for traceability incident prediction, to handle

proactively these incidents;

• the integration of the selected DL model, its related training, prediction, and update pro-

cesses into a traceability blockchain smart contract;

• the performance evaluation of the proposed architecture using a real logistic chain ship-

ment dataset

96



The rest of this chapter is organized as follows. Section 5.2 discusses the ML and blockchain

integration literature. The DL model selection method is detailed in Section 5.3. In Sec-

tion 5.4, we present the proposed architecture for DL model integration in the blockchain. The

proposed DL blockchain integration implementation and evaluation results are highlighted in

Section 5.5. Section 5.6 concludes the chapter.

5.2 Machine Learning and Blockchain Integration Related

Works

In this section, we study the research works that integrated ML approaches into Blockchain

based architectures, using the following criteria:

(C1) ML model blockchain integration: where is deployed the ML model in the architecture?

Inside or outside the blockchain? In the literature, both solutions have been proposed. In

our context, data and learning process security and transparency among stakeholders is a

key issue. Therefore, we need to deploy the ML model and its related processes inside the

blockchain.

(C2) ML model training mode: Is the model training done offline, online or both? This ques-

tion is crucial, and the answer depends on several factors among them, the training data

availability, and the stability of the environment. Online training is appropriate when real

world data are provided continually for training. In this case, the system continues to learn

new concepts while preserving already learned information. On the contrary, offline training

uses pre-acquired and stored data. This more classical learning mode guaranties stability for

ground concepts. In our use case, these two conflicting requirements are needed to both ini-

tialize the process and deal with a dynamic environment.

(C3) Learning approach: which learning approach is used by the authors, supervised, semi-

supervised or unsupervised? Supervised learning uses labeled data whereas unsupervised

learning consists of working with unlabeled data. However, for anomaly detection, Semi-

supervised learning is a much more popular option since anomalies are rare events and gen-

erally, only few data are labelled. Since the incidents are rare events in our context, in this

chapter we are focusing on semi-supervised learning methods.

(C4) Blockchain implementation: What blockchain implementation is used? Is it permis-

sioned or permissionless? Permissioned blockchains ensure for each one of the stakeholders

the identity of the other. Since in this thesis we focus on B2B logistic chain in which the stake-

holders’ number is limited and they are known, permissioned blockchain are more suitable

in this context.

(C5) Application domain: what is the domain of application of the work? This chapter targets

a prediction process for logistic traceability incident.

A Systematic Literature Review (SLR) on Artificial Intelligence and Blockchain integration is

proposed by [38]. In this SLR, the authors highlighted the key benefits of this integration and

its main studies: classification or clustering, distributed management, security improvement
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and prediction or decision making.

Since blockchain and AI technology are data driven, Chen et al. [32] proposed a research

review on their combination. Their review shows some applications of this combination for Bit-

coin transaction entity classification, Bitcoin price prediction without deep methods, privacy

preserving, computing power allocation using deep methods, IoT, and Bitcoin mining using

Reinforcement Learning.

Blockchain and AI integration challenges are reviewed by [112]. According to these authors,

the Blockchain and AI integration provides application with enhanced data security, improved

trust on Robotic decisions, collective decision making and high efficiency.

The works to be compared with our work could be divided into two main categories according

to the ML model integration type (outside or inside the blockchain).

5.2.1 ML model outside the blockchain

An LSTM (Long Short-Term Memory) model trained outside the blockchain and integrated

in a smart contract is proposed in [89]. It implements a credit evaluation system that adopts

blockchain technology to strengthen the supervision and management of traders in food supply

chain.

Authors in [46] trained a Neural Network to classify incident reports submitted by users

using the report content analysis (high, middle priority). The result of the analyze is submitted

to an Ethereum smart contract that handles the report lifecycle, passing by acquisition, use,

archival and disposal steps.

The integration of AI in the blockchain and the limitations related to this integration were

explored in [12]. The authors identified the following elements as the main factors influenc-

ing this integration: the mining mechanism, the choice of data storage on or off-chain, the

blockchain types (public or private) and the blockchain data integrity. Due to the cost of trans-

action processing in public blockchain, the authors proposed to train the AI model on off-chain

data, then the smart contract could use the model through APIs (Application Program Inter-

faces) implemented specifically for this purpose. The authors gave some application examples,

essentially on a recommendation engine for supply chain contract negotiation. However, they

did not cover supply chain incidents management.

To meet the food industry traceability requirement, [72] proposed an optimized architecture

based on the combination of blockchain, IoT and Advanced Deep Learning (ADL). The IoT

collects data throughout the entire supply chain, and the blockchain ensures a secure and

trusted environment for the collected data sharing. The ADL is used to handle the supply

and demand forecasting. The authors proposed to combine LSTM and GRU (Gated Recurrent

Units) models, with a Genetic Algorithm (GA). The GA is used for the LSTM and GRU models

hyperparameters optimization.
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A literature review of Reinforcement Learning (RL) integration in Blockchain-Industrial In-

ternet of Things (IIoT) enabled Networks, is proposed by [63]. According to the authors, among

the main opportunities of this integration application there are: the forking events minimiza-

tion, energy efficiency improvement, minimization of the time to finality, transaction through-

put enhancing, link security improvement and average block Time reduction. In addition, the

authors presented a case study on forking events minimization using a Q-learning approach.

Finally, the authors identified some challenges and open research questions, among them, the

integration of the RL into the blockchain for performance improvement network higher gains,

and the development of new methods for appropriate RL technique selection.

For drug recommendation and Supply Chain Management, [10] proposed an architecture

combining DL and blockchain. On one hand, a DL approach is used to analyze users’ drugs

reviews and develop a drug recommendation module for patients. On the other hand, a Hy-

perledger Fabric blockchain is used for the supply chain management and to ensure drugs

traceability among all their stakeholders: suppliers, manufacturer, distributors, pharmacies,

hospitals, doctors, and patients.

For Perishable Food Supply Chain Tracing, [113] proposed a blockchain based architec-

ture to secure the data sharing and improve the data quality. The blockchain data is used

by an IBM Watson Machine Learning platform for perishable food expiration date prediction.

Furthermore, a Fuzzy Logic approach is used to evaluate the food quality based on humidity,

temperature sensors and the transit time.

This first category of works does not integrate the ML model inside the blockchain and

consequently there is no guarantees for the blockchain stakeholders on the correct application

of the agreed model training, update, and prediction processes

5.2.2 ML model inside the blockchain

The trust and automation problems of machine learning were addressed in [124]. The author

proposed a blockchain smart contract-based framework, in which submission and rewards

methods for machine learning models were implemented using a smart contract. He used

Association Rule Mining (ARM) as demonstration example for his proposed blockchain ma-

chine learning integration framework. However, as stated by the author, his work was at a

preliminary stage and the evaluation was limited due to his limited dataset and his blockchain

implementation choice.

For incremental learning on blockchain, [49] proposed a smart contract implementation for

training and updating machine learning models inside the blockchain. The authors proposed

an incentive mechanism to encourage users to submit data that improve the model’s accuracy.

However, users can use freely the smart contract model to predict data. In addition, the

authors highlighted some limitations related to the implementation of machine learning in

Ethereum, such as the gas cost and the absence of support of Floating-Point Numbers.
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While the trust and automation are handled by the blockchain in blockchain machine learn-

ing based architecture, the data efficiency still needs to be addressed to bring this kind of

architecture in the edge. To address this issue, [125] proposed an approach in three steps:

model training in off-chain, model saving in a secured and immutable ASTORE data format to

be compatible with the blockchain, using the saved model to score new data online.

Authors in [49] and [125] worked with Ethereum which is a permissionless blockchain, with

a cryptocurrency gas cost, an energy-intensive consensus algorithm (Proof of Work), and conse-

quently is not adapted to the enterprise context which needs more a permissioned blockchain.

Additionally, the Ethereum Virtual Machine (EVM) lacks of native support of many represen-

tations and functions, such as Floating Point Numbers and exp() function, required by many

of machine learning techniques, as stated by [78].

5.2.3 Related works conclusion

After the above study of the related works, we did not find any work meeting all the criteria

of model integration inside the blockchain (C1), with offline and online training support (C2),

using a semi-supervised learning approach (C3), and a permissioned blockchain (C4), for lo-

gistic traceability incident prediction (C5). Consequently, we decided to select a deep learning

model adapted to the traceability incident prediction needs, and we integrated it inside a per-

missioned blockchain. The blockchain smart contract ensures the model training, updating,

and predicting processes. This provides the logistic chain stakeholders with a self-learning

smart contract, an automated, trusted, and transparent learning and prediction process, and

guarantees the stakeholders agreement on the model management and its resulting incident

predictions.

Table 5.2.3 summarizes the related works comparison.
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Ref. ML model
blockchain
integration
(C1)

ML
model
training
mode
(C2)

Learning
approach
(C3)

Blockchain
implementation
(C4)

Application domain
(C5)

[89] Outside Offline Supervised Hyperledger

Fabric (Permis-

sioned)

Trader’s credibility

evaluation in food

supply chain

[46] Outside Offline Supervised Ethereum (Per-

missionless)

Cyber incident re-

ports classification

and incident man-

agement

[12] Outside Offline Not specified Not specified Supply chain con-

tract negotiation

[72] Outside Offline Supervised Hyperledger

Fabric (Permis-

sioned)

Food Provenance,

and the supply and

demand forecasting

[63] Outside Online Reinforcement Not specified Blockchain-Enabled

IIoT Networks

[10] Outside Offline

and On-

line

Supervised Hyperledger

Fabric (Permis-

sioned)

Drug Recommen-

dation and Supply

Chain Management

[113] Outside Not spec-

ified

Not specified Ethereum (Per-

missionless)

Perishable Food Sup-

ply Chain Traceabil-

ity

[124] Inside Offline Unsupervised (in

the evaluation)

Quorum (Per-

missioned)

Pharmaceutical

domain (in the evalu-

ation)

[73] Inside Online Supervised Hyperledger

Fabric (Permis-

sioned)

Character Recogni-

tion and Healthcare

domains (in the eval-

uation)

[49] Inside Online

and Of-

fline

Supervised Ethereum (Per-

missionless)

Movie reviews (in the

evaluation)

[125] Inside Offline Supervised Ethereum (Per-

missionless)

Autonomous driving

This
work

Inside Offline

and On-

line

Semi-supervised Hyperledger

Sawtooth (Sup-

ports Permis-

sioned and

Permissionless)

Logistic traceability

incidents

Table 5.1: ML and Blockchain Integration Related Works Comparison
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5.3 DL Model Selection

In this work, we focus on DL approaches because they outperform the classical ML approaches,

in terms of accuracy and properties relationships discovery, according to many recent works [75]

and [94].

Traceability incidents are considered as anomalies in the logistic chain normal function-

ing. In DL, autoencoders are widely used to handle the anomaly detection problem, as stated

by [30]. Consequently, we decide to implement autoencoders for the logistic chain incident

prediction.

An autoencoder is “a neural network that is trained to attempt to copy its input to its

output” [45]. It is composed of an encoder and a decoder that are trained together. The encoder

learns to compress the data and the decoder tries to minimize its reconstruction error.

The number of shipments generating incidents in the studied logistic chain dataset repre-

sents less than 10%. This is a real learning challenge. Therefore, as stated before, we decided

to use a semi-supervised learning approach, and to train the model to be selected only on

shipments with incidents to increase the model sensibility to this kind of shipments.

In the literature, there are many approaches to evaluate and select neural network models.

In this work, we used the model evaluation, optimization and algorithm selection method pro-

posed by [107]. It mainly consists of three steps: firstly, the performance estimation, secondly

the hyperparameter optimization and finally the model and algorithm comparison.

To implement the traceability incident detection autoencoder, we study in this chapter the

three main types of DL networks:

• Dense Neural Networks (DNN): the basic architecture in DL neural networks. They consist

of fully connected layers. This means that every neuron in a layer receives connections

from all the neurons in the previous neighboring layer.

• Recurrent Neural Networks (RNN): proposed by [110] in 1986. They adjust repeatedly

the neurons connection weights in the network and introduce hidden layers for features

extraction. These kinds of neural networks are suitable for sequential data prediction

where current state is influenced by historical data. Classical RNN suffer from a short

historical data memory issue and instability related to network weights as stated by [105].

To overcome these issues, some new types of RNN were proposed in the literature such

as Long Short-Term Memory (LSTM) [54].

• Convolutional Neural Networks (CNN): proposed by [79] in 1990 for Handwritten Charac-

ter Recognition. They preserve input data spatial configuration and ensure translation

invariance property. Nowadays, they are widely used in computer vision and recommen-

dation systems.

This study purpose is to measure the performance of these neural networks in term of
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accuracy over the shipment dataset and select the more efficient network to be adopted for the

traceability incident prediction autoencoder.

5.4 DL Model Integration In The Blockchain

Nowadays, to develop trusted and self-learning information systems based on DL, the key issue

is to ensure data reliability and security, and this is exactly what the blockchain provides.

The blockchain offers natural complementarity with DL and opens new opportunities for

the development of Self-Learning Smart Contracts (SLSC) [12], through the integration of DL

model training and prediction processes into the smart contract logic. Therefore, we believe

that this type of hybridization is essential for the cross-fertilization between DL and smart

contracts. The DL model provides smart contract with self-learning capabilities, and the DL

process gains automation, trust, and transparency from the smart contract.

In the logistic context, the SLSC integration is done on the top of the traceability architec-

ture presented in Chapter 3, as depicted in Figure 5.2. The blockchain stakeholders are the

shipper, the carrier, and the consignee. Each stakeholder has its own blockchain nodes and is

responsible of the data integrated in the blockchain through its Information System (IS). These

data are collected from many sources, for example RFID and Barcodes’ readers, IoT Sensors,

Connected Warehouses, Factories etc.

This architecture is designed to handle traceability data related to the transport operations.

For every new transport operation, the DL model indicates its incident predictions based on

the transport data provided by the shipper. This raises two possible cases:

• The model predicts an incident for this transport operation, then it is tagged with a pre-

dicted incident for stakeholders’ information and action.

• No incident is predicted by the model, the transport operation is tagged as predicted

incident free.

Whatever the real results of the transport operation in terms of incident, and the exactitude

of the model prediction, the model is updated with this transport operation.

5.5 Evaluation

The main objective of this section is to show the feasibility and evaluate the relevancy of the

proposed DL-blockchain integration architecture, in terms of model accuracy and per opera-

tion response time.

It is worth noting that we used another blockchain implementation in this evaluation. How-
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Figure 5.2: DL in Blockchain Based Traceability Architecture

ever, the core traceability architecture proposition is still the same as evaluated in Chapter 3.

Therefore, we must, test the performance criterion to verify that it has not been impacted by

the blockchain implementation modification.

The business requirements of this evaluation are the followings: a model accuracy of at least

50% for incidents prediction and a response time less or equal to 3 seconds for any operation,

according to the performance criterion presented in Chapter 3.

In the following sub-sections, we detail a Proof of Concept of the proposed architecture.

Firstly, we start by the dataset preparation and the initial DL model production using Ten-

sorFlow. Secondly, we detail the DL model integration in the Hyperledger Sawtooth based

architecture. Finally, we conclude the evaluation section by a discussion of the evaluation

results.
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5.5.1 Dataset Preparation

The dataset preparation was divided into six steps. The first one was the work with MyTower

business team on the identification of the relevant shipment data listed in Table 5.2.

Data column Description

Pick slip Shipment item id

Number of parcels Number of parcels in the shipment.

Origin Shipment origin country.

Carrier code Carrier ID in the shipper system.

Number of destination Number of destinations in the shipping request.

Number of pick slip Number of items in the shipment.

Creation date Date and time of the transport request creation in the shipper

system.

Date of availability The date of shipment availability indicated by the shipper.

Pickup negotiated date The shipment pickup agreed execution date between the shipper

and the carrier.

Delivery negotiated

date

The shipment delivery agreed execution date between the shipper

and the carrier.

Shipment volume and

weight

The shipment volume and weight indicated by the shipper.

Consignee code Consignee ID in the shipper system.

Consignee name Consignee company name.

Consignee address Number, street, and complements.

Consignee zip code and

city name

Consignee Country The consignee country code. It is a simple number identifying

each country in the dataset. We do not consider the origin country

because there is one origin country in the shipment dataset.

Lead time Number of days between the carrier shipment pickup and delivery

dates.

Transport mode Air, Road or Sea

Truck Pickup truck number.

PO Ref. Purchase Order Reference.

Service Level The code of the transport service level agreed with the carrier.

Deadline Delivery deadline hour.

Multi-provider A value of 0 (No) or 1(Yes) indicating if the shipping operation in-

volves multiples service providers.

Equipment A value of 0 (No) or 1(Yes) indicating if the transported product is

a medical equipment.

Dry ice A value of 0 (No) or 1(Yes) indicating if the shipment transportation

requires dry ice.

Dangerous A value of 0 (No) or 1(Yes) indicating if the shipment contains dan-

gerous goods.

Incident A value of 0 (No) or 1(Yes) indicating if the shipment generated an

incident

Table 5.2: Shipment Dataset Columns

The second step was the work on a data base dumping provided by the MyTower technical

team to extract all the relevant data identified with the business team. The third step was

the data transformation. For example, we extracted from the shipment creation date: the day

of the week, the month, the day of the month. All these extracted data could be eventually
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a source of shipment incident. The fourth step was the labels encoding using the Pandas

framework (Version 1.2.4) [93] factorize function. This function helps in obtaining a numeric

representation of an array values. The fifth step was the data normalization using Sklearn

framework (Version 0.24.2)[103]. This step is important for the test of many neural network

models, such as RNN, due to their sensibility to the input data.

The final step in the data preparation was the division of the dataset into training, vali-

dation, and test datasets. The extracted dataset is composed of 377,971 shipments, in the

ascending order of their shipment creation date time. These shipments were collected be-

tween December 2016 and February 2021, by the shipper TMS. We divided this dataset into

a training dataset including the first 264,579 shipments (70%), a validation dataset of 75,594

shipments (20%), and the remaining 37,798 shipments (10%) were used as the test dataset. It

is worth noting that for the autoencoder training, we used only 16702 shipments (4.4%) which

correspond to the number of shipments with incidents in the training dataset.

5.5.2 Model Selection Training and Tests

The objective of this section is to compare the performance of the studied neural networks over

the shipment dataset, in terms of (1) validation accuracy results and (2) generated model file

size.

For the generated models, we choose to store them in HDF5 format, because this format

generates a single file easy to handle and store.

The model used in this evaluation is an autoencoder composed of an encoder with 4 layers

(36, 16, 8 and 4 nodes respectively) and a decoder with 3 layers (8, 16 and 36 nodes respec-

tively).

We used a common model configuration in anomaly detection [122, 133], with a ReLU

(Rectified Linear Unit) activation function for all the hidden layers, a sigmoid one for the output

layer and an ADAM optimizer. Also, to adapt the input data to the input structure of RNN(LSTM)

and the One-dimensional CNN(Conv-1D), input data was reshaped by adding a time unit of 1.

For the DNN, the input data was used directly without any reshape need.

In this work, we are interested in the incident detection, and we chose to train the model

only on the training dataset shipments related to an incident to increase the model sensibility

to this kind of shipments. However, the validation is done using the whole validation dataset

including shipments with and without incidents.

We implemented the models using the TensorFlow framework (Version 2.4.1)[9], and we

modified only the hidden layers by setting them to the neural network type to be tested.

In the training process, we set the epochs number to 20 and the batch size to 32, to reduce

the model training time in the target blockchain architecture.
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As depicted in Figure 5.3, the validation loss results of the LSTM model is low (around 0.12

for its lower value).

Figure 5.3: RNN (LSTM) Training and validation loss results

The confusion matrix of the LSTM model is depicted in Figure 5.4. It shows how the model

handle the normal and incident shipment classification, by comparing the real shipment class

with the one predicted by the LSTM model.

Figure 5.4: RNN (LSTM) Confusion Matrix

The models’ test results are depicted in Table 5.3.
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DNN RNN (LSTM) CNN (Conv-1D)

Global validation shipments accuracy 50.17% 50.30% 50.01%

Normal validation shipments accuracy 50.18% 50.11% 50.07%

Incident validation shipments accuracy 50.08% 52.07% 49.52%

Generated model (HDF5) size in KB 73.2 161.9 73.5

Table 5.3: Models’ validation and training results

The models’ accuracy results on the validation dataset were close, however the RNN (LSTM)

performed slightly better on the incident detection, with a big size file model in comparison to

the DNN and the CNN (Conv-1D).

The model generated file size is an important criterion to consider in the model choice

because a new version of the model is generated and saved on the Traceability Transaction

Processor (TTP) node file system after each training operation. However, in this work we focus

more on the model accuracy on the incident detection which is the main goal of this study.

For the following model integration into the blockchain, and regarding the above presented

results, we choose to work with the RNN (LSTM) model. However, it is worth noting that we tried

many model configurations and hidden and output layers combinations, but we were unable

to go beyond the above presented accuracy results. We think that the data augmentation is

the last avenue to explore to improve the model accuracy. For this purpose, we will need more

data and more discriminant columns in the dataset to be able to identify the shipments with

incidents and have consequently a model accuracy eligible to production deployment in real

life logistic chain traceability scenario.

5.5.3 Hyperledger Sawtooth Network Configuration

We used the 1.1.2 release of Hyperledger Sawtooth to implement a blockchain architecture

including the three selected stakeholders: the shipper, the carrier, and the consignee. All the

architecture nodes are implemented using Docker to facilitate the lifecycle management of each

node.

Each one of the stakeholders has the following list of nodes:

• Client: in charge of preparing and submitting the transaction batches used to group

transactions. The client submits these batches to the REST API.

• REST API: the main role of this node is to adapt the communication with the validator

to HTTP/JSON Standards. This communication could also be achieved using custom

client-validator communication API, without need of the REST API node.

• Validator: as indicated by its name, this node validates the transaction batches submitted

108



by the client. It is also responsible of blocks creation, consensus and communication

maintaining with the other network node. It is the main node of the architecture.

• PoET Engine: provides the Proof of Elapsed Time (PoET) consensus functionality to the

architecture. It communicates with the validator through the consensus API

• PoET Validator Registry Transaction Processor: it handles the new validators addition

into the network through the PoET consensus

• Setting Transaction Processor: stores all the on-chain configuration settings. For exam-

ple, the validator block wait time, max transactions per block and the keys authorized to

update settings.

• TTP: this is the business process node that handles the incident prediction model initial-

ization method, the tracking events creation and the model training and update process.

It is the Traceability Smart Contract node, TTP in Hyperledger Sawtooth terms.

Figure 5.5 shows the architecture view on the shipper side. The other stakeholders have

their own nodes on their sides, with the same architecture.

Shipper Validator

- Initialize the incident prediction model
- Create shipments
- Train and update the prediction model
- Update the ledger state 

Shipper PoET Engine

Shipper Client

create transaction and batches

Shipper REST API

Shipper Settings
Transaction Processor

Shipper PoET Validator
Registry Transaction

Processor

TCP 4004
TCP 5050

TCP 4004

Shipper Traceability Transaction Processor

TCP 4004

TCP 8008

Figure 5.5: Hyperledger Sawtooth and Deep Learning Integration Architecture (Shipper view)

In the Hyperledger Sawtooth settings, we set the consensus algorithm to PoET which is a

Crash Fault Tolerant (CFT) algorithm. It is adapted to companies’ private collaboration net-

works context in which the risk of byzantine failure is limited. We also set the block initial and

target generation waiting time to 10 seconds to let a sufficient time to the model training and

update processes execution. The Sawtooth settings are depicted in Source Code 5.1.
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sawtooth . consensus . algorithm .name=PoET

sawtooth . consensus . algorithm . version=0.1

sawtooth . poet . target_wait_time=10

sawtooth . poet . in i t ia l_wait_t ime=10

Source Code 5.1: Hyperledger Sawtooth Consensus Settings

For the blockchain performance monitoring we used a combination of InfluxDB (V 1.7.8)

and Grafana (V 4.6.3). InfluxDB is high-performance data store built specifically for timeseries

data [4]. Grafana is a powerful metrics visualization and query framework [2]. The combina-

tion of InfluxDB and Grafana allows the collection and the visualization of performance metrics

in real-time. We set the shipper Rest API and the shipper validator components to send their

performance metrics (transaction process duration, CPU, RAM, etc) to the InfluxDB compo-

nent. The collected data is then consulted using a customized Sawtooth dashboard on the

Grafana component, as depicted in Figure 5.6.

Shipper ValidatorShipper REST API

                Grafana Dashboard

HTTP 8086

TCP 4004

HTTP 8086

Figure 5.6: Hyperledger Sawtooth Performance Monitoring using InfluxDB and Grafana

5.5.4 Blockchain and Deep Learning Integration Settings

In this evaluation, the integration of DL models into the blockchain goes through the following

steps.

Firstly, on the file system of the Traceability Transaction Processor (TTP) node, we deployed

the model that will be used to initialize the blockchain architecture. In this chapter, we focus

on the stakeholders’ agreement on the model output rather than the model file itself. The

agreement on model file needs to be addressed in future work.

Secondly, it is important to ensure the determinism of the model output results in the

blockchain context. The model prediction and training operations are executed on each stake-

holder TTP instance, and for blockchain coherence, these operations should give the same

results on each TTP instance. For this purpose, we set the deterministic configuration in the

used frameworks with a random fixed value for the seed used as a start value by random

generators. We also activate the deterministic options in TensorFlow, as depicted in Source

Code 5.2.
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import os , random

import numpy as np

import tensorflow as t f

seed=42

random. seed ( seed )

t f .random. set_seed ( seed )

np.random. seed ( seed )

os . environ [ ’PYTHONHASHSEED ’ ] = str ( seed )

os . environ [ ’TF_DETERMINISTIC_OPS ’ ] = ’1 ’

os . environ [ ’TF_CUDNN_DETERMINISTIC ’ ] = ’1 ’

Source Code 5.2: TensorFlow Deterministic Settings

The TTP contains two main methods. The first one is used for the model training settings

initialization, such as the batch size and the epochs. The second method is used for shipment

creation, incident prediction and model training and update. For the sake of clarity, we call

this method the shipment creation method. In the following discussion we will focus on this

method and its related performance, because the first method is used only for the initialization.

We tested the performance of the shipment creation method using the test dataset. To

go around the Sawtooth back pressure Deny of Service (DoS) protection mechanism, we set

manually a waiting before submission interval of 30 seconds between the shipment batches,

on the client side.

The shipment creation transactions are submitted by batch of 32 shipments. According to

number of shipments in the dataset, the shipper handles an average of 412 shipments per day

which is largely covered by the 32 shipment per 30 seconds configuration.

5.5.5 Evaluation Results And Discussion

In Figure 5.7, we can see the response time evolution of the shipment creation method with

the LSTM model, during the test time. This result shows a mean transaction process duration

up to 5 seconds. It does not meet the evaluation requirement of maximum 3 seconds per

operation.

The LSTM Sawtooth performance test could not be completed with the current configuration

because of the high transaction processing duration. Due to the long transaction processing

duration and the Sawtooth backpressure protection mechanism, we got around 45 batch re-

jection, 80 minutes after the performance test start. To complete this test, we had to set a

bigger wait time interval (at least 180 seconds) between the client batch submission which will

take around 2.5 days for the whole test dataset.

We think that there are two main reasons of the poor performances related to the LSTM

model training and updating time. Firstly, the complexity of the LSTM nodes and the cal-
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Figure 5.7: Sawtooth-LSTM Transaction Processing duration (99th Percentile)

culation required by this model, and it is worth noting that we work in a deterministic and

constrained model train and update environment. Secondly, the necessity of data reshaping

before its usage by the LSTM model.

Consequently, we decide to do the tests with the DNN model which was the second-best

model according to the models’ accuracy results on the validation dataset. As depicted in

Figure 5.8, this model shows a mean transaction duration processing less than 1 second

which meets largely the evaluation per operation requirement. This test took around 9.5 hours

to integrate the whole test dataset.

Figure 5.8: Sawtooth-DNN Transaction Processing duration (99th Percentile)

The above evaluation results show promising results for the integration of ML processes

inside blockchain based architecture.
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5.5.6 Evaluation conclusion

In this evaluation, we showed the feasibility and the effectiveness of a DL integration in

blockchain architecture using TensorFlow and Hyperledger Sawtooth.

The evaluation results show that this architecture meets the above presented performance

requirements of model precision and the maximum per operation time response, for the studied

shipment incidents prediction use case. However, this is only a first step in the long road of

DL integration in blockchain. There are still many issues to be addressed in future works on

this topic:

Firstly, the prediction model accuracy could be improved by working on the model architec-

ture and fine tuning. We also need to predict the incident type and go beyond the simple action

of incident prediction by recommending the stakeholders some actions to avoid the predicted

incident. However, to be able to do so, we need more data than what we have. This should be

addressed in future work in collaboration with the customer.

Secondly, in this evaluation, we directly used the normalized data to train, validate and test

the proposed architecture. The correspondence between the normalized and the original data

needs to be addressed in future work.

Finally, to secure the model used for incident prediction, we need to ensure that the same

model version has been used on each stakeholder side. This issue could be addressed by

working on unique signature for the generated model that could be stored on the blockchain

to ensure the security and the uniqueness of the prediction model, and the stakeholders’

agreement on the model file.

5.6 Conclusion

In this chapter, we proposed an architecture for DL integration in Blockchain using a traceabil-

ity incident prediction use case. Firstly, we studied the state of the art of ML and blockchain

integration and defined five criteria to check. Secondly, we selected a DL model adapted to the

logistic chain traceability incident prediction and we integrated this model in an enterprise

adapted blockchain, to secure and ensure the stakeholders’ agreement on the model train-

ing, updating and its output prediction results. The obtained solution fulfills the pre-defined

criteria. Finally, we evaluated the proposed architecture using a real logistic chain shipment

dataset, and the evaluation results show the viability and the relevancy of the proposed archi-

tecture.

It is worth noting that this work is only a first step in the DL integration in blockchain. How-

ever, it opens new opportunities for the development of trusted DL and self-learning blockchain

based systems.
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To improve the proposed architecture, future works will focus on improving the model accu-

racy, handling the data normalization, securing the generated model by integrating a hash of

this model in the blockchain and exploring model-less learning approaches for DL integration

in blockchain architectures.

Finally, in the logistic chain, the traceability is not the unique use case for this integration.

It could be used for example in transport booking and price predictions. Beyond the logistic

domain, this integration could be used in any application involving multiple stakeholders and

requiring transparency and stakeholders’ agreement on the ML processes. It would merely be

necessary to adapt the blockchain settings to the stakeholders’ numbers and to use an ML

model suitable for the context dataset. However, the blockchain-ML integration remains the

same as in the architecture proposed in this chapter.
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Chapter 6

Conclusion and Perspectives

In this thesis we have addressed the following logistic chain traceability enhancement issues.

Firstly, the decentralized, secured, and transparent sharing of the traceability data and its

related processing rules among all the stakeholders. Secondly, The IoT data qualification and

the stakeholder’s agreement on the data qualification rules. Finally, the efficient and intelligent

management of the huge data volume generated by the IoT data source.

6.1 Contributions

In this objective, we focused on the three contributions presented below.

1. We have proposed a traceability architecture combining blockchain and IoT. The proposed

architecture uses blockchain and smart contracts to implement a secure and trusted

traceability process shared among all the logistic chain stakeholders. Through a generic

traceability smart contract, the proposed architecture handles the logistic chain mile-

stones as well as incident management based on data collected automatically using the

IoT.

2. This architecture allows to push forward the traceability automation for detection of in-

cidents and decision making. In this context, it is essential to ensure user trust in the

traceability process. For this purpose, we have included in the architecture an IoT data

qualification module. The proposed module uses blockchain smart contract to qualify

IoT data. It deals with the following data quality dimensions: Accuracy, Completeness,

Consistency and Currentness. The stakeholders may define quality thresholds for data

quality control. The use of the smart contract ensures the stakeholders’ agreement on

the IoT data qualification rules. They agree on the definition and the implementation of

each data quality dimension using the smart contract. The IoT data quality is calculated

and aggregated at four levels: (1) IoT data event, (2) IoT data source, (3) shipment and (4)

IoT data source-shipment relationship. This provides the stakeholders with a fine con-
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trol and monitoring of the IoT data quality and allows the detection of defective IoT data

sources.

3. Moreover, to take advantage of the high volume of data collected by the IoT and be able

to detect proactively traceability incidents and improvement actions, we have proposed to

empower the traceability smart contract with learning capabilities using DL. This propo-

sition secures the DL model results and its related data and guarantees the stakeholders

agreement on the DL model training and update processes using smart contract. Fur-

thermore, the blockchain and DL combination was evaluated on a logistic chain incident

prediction use case. This evaluation shows the feasibility and the relevancy of this com-

bination.

The above propositions were evaluated using autogenerated, online available and real lo-

gistic chains datasets. The evaluation shows promising results for the proposed architecture,

the IoT data qualification and the blockchain DL integration proposition.

Based on the evaluations results, the traceability architecture proposed in this thesis is

ready to be tested in real life logistic chain scenario. The deployment of the proposed architec-

ture will help the logistic chain stakeholders in their daily struggle for visibility, transparency

of the traceability data and processes, through the secure sharing of shipments traceability

data, and the automation of the whole traceability data collection and process.

The work achieved in this thesis and its evaluation results open already new opportuni-

ties for the development of decentralized, secured, transparent, automated, and intelligent

traceability systems. This kind of systems will be a game changer in the logistic chain busi-

ness collaboration and will greatly improve the traceability process security and transparency

among all the logistic chain stakeholders. However, the architecture performance needs to be

validated in real life scenario with more stakeholders, more traceability data and real network

communication constraints.

It is worth noting that blockchain based traceability architectures adoption in the enterprise

context is not merely a simple technology evolution. It is a paradigm change that will gener-

ate many challenges related to the user experience and the responsibilities in the blockchain

network usage and maintenance. These challenges study and exploration will facilitate the

adoption of blockchain based architectures, not only in the logistic domain, but in all the

domains in which the blockchain is applicable.

6.2 Perspectives

Although the proposed Blockchain-IoT based traceability architecture is showing promising re-

sults on the evaluation, we have identified many areas toward the stakeholder’s perfect trace-

ability architecture.
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We believe that the data collected in this architecture could be used directly in logistic

chain accounting systems for bill generation and inter stakeholders’ payment execution. This

raises questions about the blockchain based billing systems and the money to be used for

payment execution: classical money, standard cryptocurrencies, or a specific logistic chain

cryptocurrency. However, this will be a big step forward in the whole logistic chain automation.

Moreover, the real-time data flows management has not been covered in this thesis. It is a

very interesting research area, especially for blockchain based architectures, and the growing

number of IoT data sources to be handled. To consider the real-time management constraints,

the traceability architecture needs to be adapted on each stakeholder side.

Furthermore, the IoT data qualification approach proposed in this thesis covers only some

main data quality dimensions, namely: Accuracy, Completeness, Consistency and Current-

ness. It could be enhanced by including other data quality dimensions such as Credibility,

Accessibility, Compliance, Confidentiality and Efficiency. Also, the methods proposed for the

IoT data quality dimensions were static. They can be improved using dynamic algorithms such

as DBSCAN [40], an assisted version of the Kalman filter [66] or quality learning methods using

DL.

Finally, the blockchain-DL integration is a very recent approach in the literature, and the

work proposed in this thesis is only a first step in this integration. Therefore, to push forward

this integration, model-less learning approaches, such as Reinforcement Learning need to be

explored. These approaches do not need to handle a learning model file, and consequently

they could present a better blockchain integration option compared to the model-based ones.
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Résumé : Les systèmes d’information des entre-
prises connaissent aujourd’hui une évolution rapide.
Dans le contexte de la chaine logistique, cette
évolution est marquée par l’introduction des nouvelles
technologies comme l’Internet des Objets. Puisque la
chaine logistique implique plusieurs intervenants, elle
exige le partage des données entre les intervenants
pour assurer la traçabilité des produits tout au long de
la chaine logistique. Les systèmes de traçabilité tra-
ditionnels sont centralisés et ne garantissent pas le
partage sécurisé des données et l’accord des inter-
venants sur les données partagées et leurs règles de
traitement. Plusieurs travaux ont été proposés dans
la littérature en utilisant la blockchain pour surmon-
ter les problèmes susmentionnés. L’objectif principal
de cette thèse est d’aller au-delà de l’état de l’art
actuel et de proposer une architecture de traçabilité
basée sur la blockchain et l’Internet des Objets et
adaptée aux chaines logistiques B2B. Par ailleurs,
la qualité des données de l’Internet des Objets est
un frein au développement de ce type d’architecture

de traçabilité. Pour surmonter ce problème, et assu-
rer la confiance des intervenants dans les données
collectées et faciliter l’automatisation du processus
de collection des données de traçabilité, l’architec-
ture proposée inclut un module de qualification des
données de l’Internet des Objets. Ce module fournit
aux intervenants des données de haute qualité et un
contrôle et suivi fins de la qualité des données basés
sur les exigences qualité des intervenants. De plus,
l’Internet des Objets génère un volume important de
données et pour assurer un traitement efficace et in-
telligent de cet important volume de données, l’ar-
chitecture proposée est renforcée avec des capacités
d’apprentissage en utilisant l’apprentissage renforcé.
En outre, toutes les propositions de la thèse ont été
évaluées et leurs évaluations montrent des résultats
prometteurs pour le déploiement de l’architecture de
traçabilité proposée dans la chaine logistique pour ai-
der les intervenants dans leur lutte quotidienne pour
la traçabilité.

Title : Enhancing the traceability of B2B logistic chains using blockchain, IoT and Deep Learning
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Abstract : Nowadays, company information systems
are witnessing a very fast evolution. In the logistic
chain context, this fast evolution is characterized by
the introduction of new technologies such as the In-
ternet of Things. Since the logistic chain involves mul-
tiples stakeholders, it requires data sharing among all
these stakeholders to ensure products traceability in
the whole logistic chain. Traditional traceability sys-
tems are used by the stakeholders for traceability data
sharing. However, these traditional systems are cen-
tralized and do not guarantee the secure sharing of
data and the stakeholders agreement on the shared
data and its processing rules. Many works have been
proposed in the literature using blockchain to over-
come the above issues. The main objective of this the-
sis is to go beyond the current state of the art and pro-
pose a blockchain-IoT based traceability architecture
adapted to the B2B logistic chain context. In addition,

the IoT data quality is a hindrance to the development
of this kind of traceability architectures. To overcome
this issue and ensure the stakeholders trust in the col-
lected data and facilitate the automation of the tracea-
bility data collection process, the proposed architec-
ture includes an IoT data qualification module provi-
ding the stakeholders with high data quality and fine
data quality control and monitoring based on the sta-
keholders quality requirements. Moreover, the IoT ge-
nerates a huge data volume and to ensure an efficient
and intelligent data management of this huge data vo-
lume, the proposed architecture is boosted with lear-
ning capabilities using Deep Learning. Furthermore,
all the thesis propositions have been evaluated and
their evaluation shows promising results for the de-
ployment of the proposed traceability architecture in
the logistic chain to help the stakeholders in their tra-
ceability daily life struggle.
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