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SUMMARY

As part of a French-German joint research
project, this thesis tackles issues related
to video-based surveillance networks, more
specifically their design in terms of optimal
camera placement and the integration of
user input for deployment in the context
of decision support systems. We begin
with an in-depth review of two bodies
of literature, one related to our practical
application and the other to a popular and
closely related theoretical problem.  This
survey covers both problem modelling and
solving, and highlights several open lines of
research. In terms of modelling, we begin
by focusing on the design of a middle ground
between unrealistic simplicity and prohibitive
complexity, both popular extremes in optimal
camera placement literature. We design an
instance generation and preprocessing frame-
work which uses real-world data to extract
accurate information about our surveillance
area. Taking advantage of the availability
of such instances, we then move on to
benchmarking the state of the art, a study
which had so far not been performed, most
likely due to the large number of problem
variants and constraints in the literature.
Our results suggest several hypotheses on
the complexity of the problem, which we
investigate further. Our conclusions lead
us to the construction of a new model for
our problem, which we then use to design a
time-efficient solving algorithm. The latter is
then integrated into a small decision support
system through which a user can negotiate
solutions with the solver until the output is
deemed satisfactory.

RESUME

Cette these, contribution a un projet de
recherche franco-allemand, s’intéresse aux
réseaux de vidéo-protection, plus particulie-
rement au probleme de placement optimal
de cameras et a lintégration de cette
problématique au sein de systémes d’aide a
la décision. Nous commencons avec une revue
approfondie de deux corpus, 'un portant sur
notre application et I'autre sur un populaire
probleme théorique 1lié a cette dernicere.
Cette étude couvre a la fois modélisation et
résolution, et met en avant diverses pistes
de recherche. En terme de modélisation, nous
nous intéressons particulierement a la mise au
point d'un compromis entre les deux extrémes
typiques de la littérature : trop simpliste ou
trop cofiteux. Nous implémentons ainsi un
systéeme de génération et de pré-traitement
d’instances basé sur des données réelles et
capable d’extraire une représentation fidele
de la zone a couvrir. Ces instances nous
permettent ensuite de mettre en place une
étude comparative de I’état de ’art, jusqu’ici
resté sans point de référence en raison du
large panorama de variantes et de contraintes
autour de mnotre probleme. Nos résultats
posent plusieurs hypothéses au sujet de la
complexité de ce dernier. Nos conclusions
associées nous permettent de construire un
nouveau modele, que nous utilisons afin de
définir un algorithme de résolution efficace,
et directement intégrable a un systeéme d’aide
a la décision. Un prototype est d’ailleurs
implémenté afin de permettre a un utilisateur
de négocier avec ’algorithme jusqu’a obtenir
une solution jugée satisfaisante.
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INTRODUCTION

The OPMOoPS project

This thesis is part of a joint research project called OPMoPS which brings together
the French Agence Nationale de la Recherche (ANR) and the German Bundesmin-
isterium fiir Bildung und Forschung (BMBF) on the subject of organised pedestrian
movement in public spaces. The project focuses on the preparation and crisis man-
agement for urban parades and demonstration marches with high conflict potential.
It was launched in 2017 and is currently coordinated by Dr. Julien Lepagnot from the
Université de Haute-Alsace, France. The official translated summary of the project
is given below.

Parades of highly controversial groups and political demonstration marches
are considered a major threat to urban security, since the diametrically
opposed opinions of the participants and opponents may result in violence
or even terror attacks. Due to the movement of the urban parades and
demonstration marches (in the following abbreviated by UPM) through
large parts of cities and the resulting space and time dynamics, it is par-
ticularly difficult for forces of civil security (abbreviated in the following
by FCS) to guarantee safety at these types of urban events without en-
dangering one of the most important indicators of a free society. In this
proposal, partners representing the FCS (police and industry) will coop-
erate with researchers from academic institutions to develop a decision
support tool which can help them both in the preparation phase and
crisis management situations of UPMs. The development of this tool
will be driven by the needs of the FCS but also by research results on
the social behaviour of the participants and opponents. The latter and
the assessment of legal and ethical issues related to proposed technical
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solutions are an important part of the proposed research. Specific tech-
nical issues which the French-German consortium will have to include
the following: optimisation methods to plan UPM routes, transportation
to and from the UPM, location and personnel planning of FCS, control
of UPMs using stationary and moving cameras, as well as simulation
methods, including their visualisation, with specific emphasis on social
behaviour. The methods will be applicable to the preparation for and
organisation of UPMs as well as to crisis management for ad-hoc UPMs
or unexpected events. At the end of the funding period a decision tool
will be available which shows the potential of the approach and which
will be marketable under a foreseeable amount of time and work.

(ANR:
Agence Nationale de la Recherche, anr.fr/Project-ANR-16-SEBM-0004)

The OPMoPS project brings together partners with various backgrounds in the
fields of psychology, sociology, law enforcement, software engineering, mathematics,
computer science, crowd dynamics simulation and law. The full list of institutions
involved in this joint effort is given below, along with a diagram which illustrates the
role of each partner and highlights ours.

o The University of Koblenz and Landau ;

e The Munich University of Applied Sciences ;
o The University of Kaiserslautern ;

o The University of Upper Alsace ;

o INRIA Rennes ;

o« ONHYS SAS ;

o virtualcitySYSTEMS GmbH ;

e VdS Schadenverhutung GmbH ;

o The Rhineland-Palatinate Police School ;

o Le Centre de Recherche de I'Ecole des Officiers de la Gendarmerie Nationale.
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Thesis outline

One of the first questions which arise when designing video surveillance infrastructure
is that of determining the appropriate positions and orientations for cameras such
that our coverage and cost objectives are met. From a computational standpoint,
this problem is widely recognised as complex, and a significant amount of research
has been put into solving it efficiently. This interest has only been vivified in the last
few years with the launch of a handful of defence projects by countries around the
globe, all of them conscious of today’s need for a better approach to global security.

In this thesis, we introduce a different approach to solving the optimal camera
placement problem in such a context. While most of the literature has so far focused
on defining clear operational constraints and aiming for optimality from there, it
would appear that such approaches tend to be rather difficult to implement for town
officials and law enforcement officers working on the field. Through discussions with
our partners, including the aforementioned field experts, it has become clear that any
new approach should be designed with a user at its centre. In other words, an ideal
system would not provide just one solution, but rather would continuously take in
feedback from a user and adjusting until a satisfying solution is found. We describe
such an approach in this report.

We begin in Chapter I with a review of two bodies of literature: that of optimal
camera placement, and that of the very closely related set cover problem. We then
move on to Chapter II in which a new instance generation and preprocessing frame-
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work is introduced to reach a compromise between the extremes typically found in
the literature. Several hypotheses about the complexity of our problem are then sug-
gested for Chapter III. This part of our study includes a benchmark of the state of
the art as well as the confirmation of several observations made earlier. These serve
as the basis for the design of our human-assisted optimisation approach, which we
describe in Chapter IV. More detailed introductions can be found at the beginning
of each chapter.



CHAPTER 1

LITERATURE REVIEW

Introduction

camera placement problem and its underlying set covering problem. We

start with the former and introduce its origins as well as its influence
in the field of computer vision. We quickly move on to surveillance applications,
namely target tracking and, of course, global and persistent surveillance. We then
focus on this last aspect and review the literature on surveillance area modelling,
sensor representation and visibility analysis approaches. With these foundations in
place, we proceed to studying solving methods, both deterministic and stochastic.
We then move on to the popular set covering problem, the structure of which is
fundamentally identical to that of basic camera placement models. We highlight
the strong relationship between the two problems, a connection which we found
was seldom made in the literature. This allows us to continue on to solving methods
which we extensively review and compare while regularly referring to optimal camera
placement when possible.

W e begin by reviewing the current state of the art for both the optimal

Related publication

[119] Julien Kritter et al. “On the optimal placement of cameras for surveillance
and the underlying set cover problem”. In: Applied Soft Computing 74 (Jan. 2019),
pp. 133-153. DOL: 10.1016/7j.aso0c.2018.10.025

7
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I.1 Origins and introductory applications

The optimal camera placement problem finds its root in a famous geometry problem
dating back 1987: the art gallery problem (AGP). Seminal work on the AGP is cred-
ited to O'Rourke for his contribution Art Gallery Theorems and Algorithms [153],
although earlier references can be found, namely work by Klee (published by Hons-
berger [94]) and Chvatal [39]. An art gallery is given as a two-dimensional simple
polygon which corresponds to the building’s floor plan. The goal is to place guards
inside the gallery such that for any point inside the polygon, there is at least one
guard to which it can be connected by a segment without intersecting with any of
the polygon’s edges. We say that the polygon’s area must be entirely covered by
the guards (Figure 1.1). It has been shown that for any polygon with n vertices,
the optimal solution (which minimises the number of guards) requires no more than
[5] guards, all of which can be placed on the polygon’s vertices [74, 39]. Several
variants of the problem exist such as the watchmen route problem [36], which
uses mobile guards, or the floodlight illumination problem [22], in which light
sources replace the guards. For more information about these variants, the reader is
referred to [106, 31, 61, 65, 181, 86].

Figure I.1: An instance of the Art Gallery Problem with n = 9, and a solution with
3 guards

The optimal camera placement problem is of course a much more constrained
variant of the AGP. To begin with, cameras do not have unlimited range. In fact,
due to image quality requirements which are usually enforced by applications, the
range of a camera is often much more limited than one might expect. Furthermore, no
camera model can achieve 360-degree visibility, although some can achieve something
very close, as we will see later.

Computer vision is one of the most active fields of research when it comes to
optimal camera placement, and has introduced many of the constraints and objectives
used in modern models. This is particularly true with photogrammetry problems
for scene or object reconstruction from camera images. In this case, finding the next
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best view [167] is particularly important, and an optimal placement of the cameras
is essential to achieve high-quality solutions and remodels. A typical example of
this problem can be found in work by Olague and Mohr [154]. For earlier and more
generic work, the reader is referred to “A survey of sensor planning in computer
vision” by Tarabanis, Allen, and Tsai [183].

Still in computer vision, feature extraction also appears to significantly benefit
from optimal camera positions. In this case, strong image quality requirements are
typically enforced, since the images produced by the cameras feed sensitive image
analysis algorithms. Work by Fehr, Fiore, and Papanikolopoulos [69] can be cited
here, as it formalises not only camera fields of view, but also the elements which
are to be covered and around which the images must be of sufficiently high qual-
ity. Distinctions are made between the requirements for gait classification, facial
recognition and other image processing problems, and a new quality function taking
into account issues such as foreshortening, ground coverage or resolution is defined.
For more details about how such image-related constraints typically integrate into
optimisation models, the reader is referred to a 2016 survey by Liu, Sridharan, and
Fookes [125].

Regarding surveillance applications, target tracking is a very popular problem,
which often benefits from progress in both computer vision and optimisation. Work
by Ercan et al. [62] tackles one of the problem’s variants: target localisation. The
authors therefore attempt to locate objects in a given environment while attempting
to minimise communication costs. A recurrent idea in such application is that of
hand-off rates. This new constraint forces optimisation algorithms to not only
cover the targets but also to ensure there is always a coverage overlap between two
neighbouring cameras (see Figure 1.2). This ensures that when a target reaches the
edge of one camera’s frustum, it also enters that of another to secure the hand-off
and ensure the network never loses track of the target.

Authors for such an approach include Bodor, Schrater, and Papanikolopoulos,
who worked from a set of predefined target trajectories in a given surveillance perime-
ter, and optimised the network layout so as to maximise image quality for motion
coverage along these paths [19]. This work has been extended in [20] so as to include
mobile cameras, and in [148, 149], Natarajan et al. used partially observable Markov
processes to control the orientation of cameras as targets move freely across the
surveillance area. For this approach, Fusco and Gupta [78] had previously worked
on target coverage, and defined the objective function as the minimisation of each
point’s dark (uncovered) time. A similar application has also been studied by Konda
and Conci [116], who used the cameras’ feeds to switch them from global area cover-

age to target tracking and back, depending on whether or not individuals were being
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detected within the coverable perimeter.

Figure 1.2: Hand-off margins in a generic sensor network. Objects may leave the
range of any sensor but always remain visible to the network

When it comes efficient tracking, static camera infrastructures can often be seen
as insufficient. Targets can indeed be unpredictable and unless there are many of
them, most of the infrastructure will likely be inactive most of the time. To better
tackle this issue, modern literature has started to include mobile cameras. In real-
world applications, these often represent UAVs (unmanned aerial vehicles), although
some camera models can still pan and tilt after setup while having a fixed mounting
point. For this, references include Bodor et al. [20] who positioned cameras so as to
maximise activity detection accuracy in a given area, and Natarajan et al. [148, 149
who allowed the cameras to rotate when necessary.

Bringing UAVs into the model, an early search-theoretic approach to the problem
can be found in [10], in which Baum and Passino split the search area into smaller
regions and minimise the time required to cover the whole environment with a given
fleet of UAVs. Allowing for some a priori probabilistic data about target distribution,
Flint, Polycarpou, and Fernandez-Gaucherand [76] lay out a dynamic programming
algorithm for path planning which maximises information gain for static targets.
Considering both known and unknown target locations, Sinha, Kirubarajan, and
Bar-Shalom proposed a fully decentralised algorithm with which UAVs are able to
track known targets while detecting unknown ones, and share available information
with other drones in range, for later path planning [173]. Others authors include
Tang and Ozguner [182], who focus on information age, and minimise the overall
time between two observations of a target in the environment. A gradient algorithm
is used when only one UAV is available, and a decentralised implementation tackles
the problem with a fleet. At this stage, a 2006 review of heuristics for coordinated
target tracking was published by Wise and Rysdyk in [187|. Later work along those
lines involves Kim and Kim [110], who consider single target tracking with multiple

9
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UAVs in an occluded environment. Starting from a circular path around the target,
the algorithm adjusts the route so as to take into account buildings for occlusion,
and ensures that the target is visible by at least one drone at all times. This work
was inspired by Rafi et al. [161] and Peot et al. [158], although the environment is
free of possible occlusion in the former, and the latter is limited to static objects.
An extension to evasive targets was later suggested by Kim and Crassidis [109]. In a
simpler environment, Ding, Rahmani, and Egerstedt also published work related to
target (convoy) tracking when the trajectories are known and paths may be planned
in advance [55]. More recently, Zorbas et al. made additional contributions on this
problem [201, 160, 202] and used linear programming as well as greedy heuristics to
minimise both fleet size and energy consumption. Extensions have allowed for moving
targets using time windows, and clustering methods to reduce problem size. In less
deterministic conditions, work by Capitan, Merino, and Ollero involving partially
observable Markov processes may also be mentioned here [28].

I[.2 Camera placement for global and persistent
surveillance

Overview

In the context of surveillance applications, global area coverage is certainly among the
most studied problems in the literature. It is typically concerned with the placement
of cameras across a given surveillance area following one of two strategies: (1) to
maximise coverage with a limited number of cameras or (2) to minimise cost, or the
number of cameras, under the constraint that no region of the surveillance area should
remain unwatched. One of the first papers to consider complete area coverage while
minimising network cost was authored by Horster and Lienhart [95], although Erdem
and Sclaroff [63] provide an applicable and more general approach. These papers were
later frequently referenced for further research and more specific applications. This
is the case in work by David, Idasiak, and Kratz [53], which minimises the cost per
covered unit, therefore relaxing the complete coverage constraint. Another variant
can be found in one of two problems modelled by Murray et al. in [145], for which
exactly p cameras must be distributed over regions of varying importance. A simpler
model for this problem, without the network size constraint (p), was also proposed
by Yabuta and Kitazawa [190]. More generally, the idea of partitioning the area into
weighted regions (and defining so-called essential regions) is very recurrent, [41, 98]
being two more examples.
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The use of the hand-off rate (see Section I.1) in fitness evaluation has also ap-
peared in area coverage problems. Murray et al. [145] derived a multiobjective backup
coverage location problem from [52] in order to aim at a trade-off between primary
coverage, with at least one camera, and backup (or overlapping) coverage, supported
by at least two cameras at any time. The problem’s reduction to a single objective
formulation using the weighted sum method highlights the contradictory nature of
the two goals. For further work on this case, the same authors proposed another
solving approach in [111]. A study of the impact of hand-off rates was performed by
Yao et al. [193, 192], who compare their work to that of Erdem and Sclaroff [63]. Re-
sults must however be put into perspective as the solving methods are very different
in nature.

Surveillance applications with a clearer focus on security have also emerged lately,
adding constraints on network robustness or defining the objective function in terms
of how efficient the solution would be in case of an emergency. With this in mind,
Morsly, Djouadi, and Aouf [140] define the best interceptor placement problem, for
which cameras are set up to maximise the efficiency of human agents, should an in-
truder be detected. For a variant, Konda and Conci [115] consider the possibility of
network reconfigurations in scenarios involving the sudden shutting down of cameras.
With similar concerns, Rebai et al. [163] adjust the typical problem formulation to
add so-called network protection constraints according to which a feasible solution
must ensure that cameras watch each other as well as the surveillance area. With a
different end goal, Zhang et al. have also approached the problem with connectivity
constraints in [196], and suggest the design of a collaborative network of nodes for
information processing. Beyond the specifics of camera networks, such issues are
often encountered when positioning wireless sensors: recent work along those lines
includes [162, 164]. Finally, although it does not address security itself, work from
Zhao and Cheung [198, 199] may also be mentioned here, as it addresses privacy
concerns. Using methods previously studied by the authors [35], the approach opti-
mises the placement of cameras in order to ensure the cutting-out and inpainting of
preselected individuals wearing visual tags on their chests.

Extending on the mention of mobiles cameras in Section I.1, a smaller amount
of research has also been conducted on area surveillance with UAVs. Early work
has involved Girard, Howell, and Hedrick [82], with an application to border or
perimeter control. A five-layer implementation spans across operation planning and
low-level control. Considering dynamic perimeters such as those emerging in forest
fires and oil spills, Kingston, Beard, and Holt also tackled the problem and allowed
for perimeter variation and fleet reinforcement [113]. This work was later specialised
for road surveillance in [112]. More generically, another approach was later suggested
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by Savla, Bullo, and Frazzoli [170]. Rather than to seek coverage of the entire area,
the authors used the facility location problem as a model and minimised the worst-
case travel time required by any UAV to reach any given point in the environment.
For persistent surveillance, work by Nigam and Kroo can be mentioned instead,
as the authors consider the problem of minimal information age across a sampled
surveillance area [151, 152]. Using 3D models as a basis for space representation,
Cheng, Keller, and Kumar extended typical mission planning work and proposed an
algorithm which ensures that the trajectory followed by a UAV covers all buildings
in the area at one time or another [34]. Regarding dynamic camera representation,
work by Ahmadzadeh et al. may also be referenced here, as it tackles a coverage
problem through path planning, and considers the changes in the field of view of a
UAV as it banks and turns [2|. A distributed approach to coverage was later studied
by Schwager, Julian, and Rus [171], although the paper only considers simple two-
dimensional polygons as a potential surveillance area.

Surveillance areas

The following sections will provide more details about each of the core aspects of
optimal camera placement. They will focus on our application, that is, area coverage
or global surveillance. We begin with the modelling of the surveillance area.

In the art gallery problem (see Section I.1), the surveillance area is modelled
using a two-dimensional polygon. The coverage area is therefore continuous and the
solution’s feasibility is measured by intersecting the guards’ ranges with the gallery.
While this may appear to be the most straightforward approach, there has been,
to the best of our knowledge, no significant study of optimal camera placement in
continuous space. In every reference mentioned in this review, surveillance areas
are modelled using discrete components. This may be explained by several reasons.
The first, computational, is that a realistic environment model would likely require
the use of complex geometrical constructs, for which computations such as area
and volume intersection are either unknown or prohibitively expensive. Another
motivation comes from the very nature of the optimisation methods used, which
often require the definition of a discrete solution neighbourhood. In any case, while
often being computationally more expensive, the discrete approach also displays some
important realistic elements for both space and cameras, such as the fact that the
latter simply cannot be placed anywhere in space to begin with.

In order to bring the problem into the discrete domain however, a sampling
procedure must be designed. The literature includes several options, most of which
work in two-dimensional space, as is the case in the AGP. Early work can be at-
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tributed to Erdem and Sclaroff [63], and Horster and Lienhart [95], who used linear
integer programs which cannot work without discrete points to cover. The approach
here is quite simple: a sampling frequency is chosen and applied to both the z- and
y-axes to yield a discrete grid of points. An example of this approach can be found
in Figure [.3. It should be noted that while a very significant amount of research has
used this model [5, 53, 198, 193, 199, 140, 37, 164], it has in fact been extended to
three-dimensional spaces by Andersen and Tirthapura [4].

Figure 1.3: A sampled floor plan, similar to the exhibition hall example found in
several papers, with example coverage points

Other approaches for space sampling include the use of square rectangular grids,
as is the case in [145, 111] : for their work on both primary and overlapping coverage,
Murray et al. lay a regular grid on the surveillance area and consider each cell as a
unit of coverage demand, to be satisfied by at least one camera. Similar work can be
found in [41, 196, 77]. In their privacy-aware work [198], Zhao and Cheung reuse the
work done by Horster and Lienhart but use dynamic sampling frequencies, adjusted
based on the results of the optimisation process so far. Yabuta and Kitazawa [190]
have chosen to sample their floor plan by extending wall lines to draw large, variable-
sized, weighted rectangular regions, the centres of which act as the points to cover.
Although this method appears to simplify the sampling process, it does come at the
cost of a lesser degree of accuracy and applicability to arbitrary environments. A
similar model was used by Indu et al. [98], who sample the 3D surveillance area by
extracting rectangular boxes of varying importance.

At the other end of the spectrum comes a set of methods which use the full
strength of 3D modelling and rendering software to evaluate the quality of a solution.
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In [101], Janoos et al. define the environment using a detailed triangular mesh, which
includes a ground plane to surveil and several types of structures which may cause
occlusion. The concept of region importance is also brought forward through the use
of so-called saliency and activity maps, which respectively quantify the structural
importance of a point, and the amount of human activity recorded on it.

Camera representation

Next comes the matter of modelling the coverage of a single camera. This effectively
provides us with the required geometrical data to determine which of the ground
samples are covered by placing a camera in a given configuration. The actual process
will be introduced in the next section.

Although space can be modelled in both 2D and 3D using rather similar ap-
proaches, the representation of a camera’s viewing frustum (the polytope in which
all points are visible to the sensor) has taken many forms in the literature, with good
reasons. To begin with, it is worth considering three types of cameras: static, pan-
tilt-zoom (PTZ) and omnidirectional. Static cameras are placed and orientated once
using the values output by the optimisation method. PTZ cameras are initialised in
the same way, but can later be instructed to pan (vertical axis), tilt (horizontal axis),
zoom, or any combination of those within given ranges. Omnidirectional cameras
are static, but have a distorted torus-shaped viewing frustum, with 360-degree cov-
erage around their mounting points. In two dimensions, these cameras are usually
defined by their sole position (z,y), while static and PTZ cameras, which need to
be oriented, take the form of a 5-tuple (z,y, ¢, 8, () which includes the pan, tilt and
zoom parameters, in that order. In 3D, a z parameter is simply added. Throughout
this document, we will use the term camera candidate to represent those 5-tuples.

In two dimensions, Horster and Lienhart [95] have chosen to use simple isosceles
triangles, with the vertex angle on the camera, to represent a sensor’s coverage of
the ground plane. Visibility analysis can then be conducted in advance by running a
point-in-triangle test for every ground sample, and every possible assignment of
the aforementioned camera parameters. To allow for such an approach, parameters
¢, # and ¢ must be subjected to the same sampling procedure as the environment. As
was the case for these authors’ space models, this representation has been reused in
several papers including [193, 140, 192 and [87] which also includes omnidirectional
cameras. For a variant, Yabuta and Kitazawa [190] slightly adjust the representation
by replacing triangles with circular sectors, which tend to be more recurrent in early
2D-oriented literature [148, 143].

While extending the problem from two to three dimensions doesn’t strongly affect
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space representation, it does raise a problem for camera modelling. A paper by Zhang
et al. [196] actually highlights this problem: if a camera, placed at a given height,
is modelled as a triangle or circular sector, then a blind spot is created right under
the camera’s nose (Figure 1.4). A small area within the sector, near the camera,
is in fact not visible in practice. Given the camera parameters given above, and
technical specifications (resolution, focal length or Charge-Coupled Device width and
height [77]), it is possible to use projection matrices to compute the coordinates of a
parallelepipedic region ahead of the camera’s nose, which delimits the true section of
the ground plane visible by a camera. Work using this approach has included [69],
in which Fehr, Fiore, and Papanikolopoulos use the projected region, taking into
account the camera’s height, to treat the problem in two dimensions. A similar
projection is used in [140], although in this case the cameras are set up looking
straight down from the ceiling, which eliminates any possible blind spot as far as
ground coverage is concerned. Konda and Conci have also used this approach for
their work towards network robustness [115] and later for a tracking problem [116].
Zhang et al. also suggested the use of a simpler model using a cone in [196] (reused
in [164]), which therefore projects a disk rather than a polygon on the ground plane.
While it does solve the blind spot problem, this representation is less accurate as
far as the camera’s field of view is concerned. A 2012 survey by Mavrinac and Chen
which surveys geometric models for coverage can be found in [134].

Figure 1.4: The blind spot problem created by 2D space representation and 3D
camera placement. A part of the red area is covered in the 2D model, but becomes
invisible as the camera is placed in practice

Visibility analysis procedures

As was mentioned in the previous section, defining the camera model’s representation
allows us to determine which ground samples are seen or covered by which camera
candidates. The methods used to actually perform this computation for a given
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camera model are numerous, and optimal camera placement literature includes a
good number of them.

In 2D, simple point-in-triangle or point-in-sector algorithms may be used, and
extended to 3D (point in cone, point in pyramid). While these methods show several
advantages, including straightforward parallelisability, it is worth mentioning some
authors who have decided to use more applied approaches. They include Angella,
Reithler, and Gallesio [5], who used OpenGL [88] depth maps, and a potentially
expensive ray tracing algorithm, to determine whether an object or point is visible.
Hengel et al. use a similar approach in [91].Fantini and Chaimowicz [68], on the
other hand, delegated the modelling work and visibility analysis to full-blown game
engines, namely Half-Life and Irrlicht, although these are closer to the original AGP
formulation in that they model human vision (in first-person shooter games) rather
than camera coverage. Another technique may also be found in work by Murray
et al. [145], who used GIS technology to compute each camera’s viewshed (a more
generic definition for the viewing frustum). In spite of their higher computational
cost, an advantage of these approaches is that they are able to tackle problems
which arise in realistic environments such as occlusion. Targeting that problem,
in [138], Mittal and Davis detail the formulation of a probabilistic framework for
dynamic occlusion caused by moving objects (humans), which was integrated into
their tracking tool, M2Tracker [136]. An application of the approach can be found
in [137] by the same authors, and an insight into how static occlusion may be tackled
in complex environments has been given in [101] by Janoos et al.

Solving the problem deterministically

While most of the work in exact methods comes from a transformation to a known
Karp problem [105] (see Section 1.3), some deterministic approaches which address
the camera placement problem are worth mentioning. Early work towards exact
solving must be attributed to Erdem and Sclaroff [63] and Horster and Lienhart
[95], who formulated the 2D camera placement problem using binary linear integer
programs (BIPs). Horster and Lienhart formulated the problem in a straightforward
fashion, including coverage constraints and minimising the size or cost (when several
types of cameras were available) of the infrastructure. In the objective function (I.1)
and its associated constraints (1.2), z,,, is set to 1 when a camera is placed at (x,y)
with orientation . The binary function ¢ maps every camera candidate to the set of
grid cells it is able to cover. The program was solved to optimality using LPSolve [17]
on two space grids: 12x12 with 2 possibles orientations, and 8x6 with 16 possible
orientations. These configurations correspond to 288 and 768 camera candidates
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(variables) respectively, and typically incur rather large, fast-growing search spaces.
The paper concludes by highlighting the need for a more scalable approach.
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Work by Erdem and Sclaroff goes further along the lines of BIP solving and ap-
proaches the problem from a more AGP-like angle. The surveillance area is modelled
as a convex polygon with convex polygonal holes (obstacles), and a section of the
paper is dedicated to visibility analysis algorithms applicable in such a setting. Tak-
ing into considerations the need of higher-level image processing tasks, Erdem and
Sclaroff suggest the inclusion of visibility or resolution constraints into the visibility
algorithms. This creates a distinction between a camera’s original visibility polygon,
as it would be considered for the AGP, and a camera’s feasibly visible region: the
set of grid cells for which it can ensure sufficient image quality. To apply this addi-
tional restriction, the authors reduce the visibility polygon to points within a certain
radius, effectively using partially occluded circular sectors as a field of view repre-
sentation. The resulting visibility matrix is then used to construct the binary linear
program, which is solved in MATLAB [133]. Experiments were run with a resolution
of 100x100 grid cells, on floor plans including an exhibition hall and a parking lot.
It is inferred that while a denser sampling of space and camera parameters would
pull the solution towards the continuous optimum, it is often unnecessary to sample
extensively to achieve satisfying near-optimality.

Giving up optimality, several papers can be mentioned which use heuristic ap-
proaches to solve the problem. Angella, Reithler, and Gallesio [5] introduce a branch-
ing greedy algorithm which maintains a memory of solutions near its construction
path: whenever a tie has to be broken, the greedy registers both solutions so that it
may eventually explore them both. The approach helps the algorithm escape from
local optima by exploring several greedy routes in that fashion. For their camera
orientation problem [144], Munishwar and Abu-Ghazaleh suggest a greedy approach
over the set of all possible pans, and the availability of known camera locations allows
for a hierarchical approach. Cameras are clustered based on their position, and a
cluster leader solves the panning problem in its cluster before broadcasting its local
solution. Another paper [143] from the same authors adds a distributed approach
to the problem, for which clusters are assigned priorities to avoid overlaps between
local solutions: the overlapping cover is allocated to the cluster with higher priority.
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In their approach to 3D space sampling [4], Andersen and Tirthapura compare the
results of a basic CPLEX [97] configuration for Branch-and-Bound, an adapted ran-
domised greedy and ITEG, a greedy-based improvement heuristic introduced in [132].
In an attempt to compromise between network cost and coverage quality, Rebai et al.
formulated the problem as a multiobjective binary linear program in [163], and com-
bined the objectives into one through three approaches. The first, the weighted-sum
method, simply aggregates the two contradictory objectives into one linear expres-
sion, with weights A and 1 — A\. Another solution is the two-phase method, based
on the adaptive exploration of a Pareto front between the two objectives. Finally,
the e-constraint method converts one of the objectives into a constraint, and can
be likened to a reverse Lagrangian relaxation [73]. All three methods were tested
using a default CPLEX configuration [97]. Other papers using a greedy algorithm
for either solving or initialisation include [78], and a 2013 review by Zhao et al. on
BIP formulations and approximation methods can be found in [200].

Recent literature includes work by Yaagoubi et al. [189], who proposed a Voronoi
segmentation of the surveillance areas using the buildings as cell generators, based
on work by Dong [56]. A deterministic algorithm is applied which places cameras
uniformly along the Voronoi edges such that they may cover the building entrances.
The authors use omnidirectional cameras and focus on covering building walls and
the roads in-between buildings, which approximately lay on the Voronoi edges.

For works which provided details on both environment modelling and solving
approaches, a summary of this section can be found in Table I.1. The “space” column
refers to the dimensionality of the surveillance area, while the “viewsheds” column
indicates which camera representation model is used in the paper. The “occlusion”
column holds a checkmark when the paper considers this additional constraint when
performing visibility analysis computations. It is worth mentioning at this stage
that due to the high diversity of applications and variants of the OCP, there is, to
this day, no established benchmark to perform a fair numerical comparison of the
algorithms applied to it. In this section, we therefore focus on design-related aspects
but do not attempt to compare propositions based on their efficiency, as we feel this
would inevitably create a bias.

Metaheuristic approaches

Given the ANP-hardness of the problem, the use of exact, optimality-oriented meth-
ods, becomes prohibitive as dimensionality increases. For this reason, researchers
have come up with a variety of metaheuristic algorithms which aim at providing
good approximations in a budgeted amount of time.
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Ref. Type Space Viewsheds Occlusion
[63] Single-objective BIP 2D Circular sectors v
[95] Single-objective BIP 2D Triangles X
5] Greedy (branching) 3D Depth maps 4
(144, 143]  Greedy (distributed) 2D Circular sectors X
[163] Multi-objective BIP 3D Cones X
[189] Voronoi segmentation 3D Disks (projection) v

Table I.1: Deterministic solving methods for the optimal camera placement problem

In the branch of evolutionary methods, genetic algorithms (GAs) [93] have been
regularly tested on that problem. David, Idasiak, and Kratz [53] compare their
implementation to an exact Branch-and-Bound algorithm. Their objective function
uses bonuses for coverage and penalties for sensor setup, therefore relaxing the full
coverage constraint. A parameter, the gain, defines how much more coverage a
camera must provide to the current solution in order to be selected by the genetic
operators. With a concern for backup coverage, Kim, Murray, and Xiao [111] used
a GA to tackle the problem from a multiobjective angle and build a Pareto front
of metaheuristic solutions. The algorithm is based on elitism, through which only
non-dominated solutions can be carried into the next generation, and infeasibility
is tackled by adjusting the chromosome structure before crossover. The results are
two pools of individuals, one for each objective, defining the Pareto front. Similar
work with GAs by Indu et al. [98] can be noted, although the authors focus on
maximising both primary and overlapping coverage. With their game-based model,
Fantini and Chaimowicz [68] also used GAs when the instance size exhausted their
exact algorithm. In this case, the fitness function used to evaluate individuals focused
on the number of watchmen and the ground samples they collectively covered.

Similar in their nature-inspired aspect, particle swarm optimisation (PSO) algo-
rithms [107] have also displayed some popularity. Early work includes Conci and
Lizzi [41] for coverage with essential regions, although very few details are given
about the algorithm. In two papers [140, 141], Morsly, Djouadi, and Aouf focus on
PSO for their best interceptor strategy, and for camera placement in general. The
earlier paper introduces probability-inspired binary particle swarm optimisation for
this problem, and compares it favourably to two PSO variants: improved [80] and
novel [108], along with other metaheuristics. The method improves on the standard
binary PSO algorithm by computing particle velocities based on each bit’s likelihood
to be 1. This probability is based on the bit’s value in the current best global solu-
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tion. More recently, this approach has been extended by Fu, Zhou, and Deng [77],
who used a different update operator once the new velocities have been computed.
PSO can also be found in work by Konda and Conci [115], which remains in the
continuous domain for camera parameters, but evaluates a particle’s fitness using
the sampled floor plan and a ray tracing algorithm. Further experiments with PSO
were conducted in [188] by Xu, Lei, and Hendriks. The paper compares three ways
of handling violating dimensions in infeasible solutions: absorbing (reset to its initial
value), reflecting (set to its opposite value), penalising (strong fitness penalty for
infeasibility).

Artificial bee colonies (ABCs) [104] and artificial spiders have also been tested on
the problem, with two publications [37, 38] by Chrysostomou and Gasteratos. In this
work, additional visibility constraints are formulated (resolution, viewing distance,
occlusion) and aggregated into the fitness function for evaluation. The algorithm
then proceeds as usual, identifying elite sites for neighbourhood exploration (local
search) and dispatching the remaining bees randomly (global search). The authors
later provided summarised results for both coverage maximisation and cost minimi-
sation [37], however the absence of more numerical data renders the comparison with
other algorithms rather unfair. An extension involving so-called artificial spiders to
the process is also attributed to the same authors [38]. In this paper, artificial bees
are used to determine the optimal number of cameras, while the spiders algorithm
computes their actual positions and orientations. Unfortunately, the inner workings
of this newly added bio-inspired method are not thoroughly defined. Table 1.2 brings
together the aforementioned nature-inspired methods.

Ref. Type Space Viewsheds Occlusion
53] GA 3D Depth maps v
111] GA - - -
98] GA 3D Circular sectors X
[41] PSO 2D Circular sectors v
[140] PSO 2D Triangles X
[141] PSO 2D Pyramids (projection) X
68] GA 3D Human eyesight v
[115] PSO 3D Pyramids v
[188] PSO 2D Circular sectors X
[77] PSO 2D Pyramids (projection) X
137, 38] ABC 3D Pyramids v

Table 1.2: Nature-inspired approaches to the optimal camera placement problem
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Other metaheuristics for optimal camera placement (Table 1.3) have included
simulated annealing (SA) [114] and its transdimensional variant (TDSA) [26], differ-
ential evolution (DE) [177], and custom local search algorithms. Simulated annealing
has been used by Janoos et al. [101] in order to help the Nelder-Mead method [150],
used for solving, escape the local optima it tends to easily fall into. Transdimensional
simulated annealing has been explored by Liu et al. [126, 127] for the same prob-
lem. The idea is to consider a stochastic optimisation framework which allows SA to
evaluate both changes in parameter values (moving a camera) and in dimensionality
(adding or removing a camera). Attempts to use differential evolution for optimal
camera placement are still very recent, with first one work [195] by Zhang et al. The
metaheuristic requires the same adjustment as PSO to tackle combinatorial prob-
lems, and behaves similarly to genetic algorithms, save that the crossover operator is
based on a problem-specific difference function between individuals rather than on a
selective union of their properties. In their paper, Zhang et al. represent an individ-
ual as a vector of camera indices, and the following crossover operator is iteratively
applied. For every individual in the population, two others are randomly selected,
and their element-wise difference is computed. The result is then scaled down using
a fixed zoom factor, and added to the first individual to create a so-called mutant.
Then, when constructing the next generation, each gene of the original individual is
replaced with the corresponding one in the mutant, with given crossover probability.
A small bias in the algorithm ensures that at least one mutant bit is carried over.
More recent work involving DE for the OCP can also be found in [25] by Brévilliers
et al. While the paper focuses on preprocessing distribution and parallelisability, it
also includes a hybrid set-based DE algorithm inspired from work by Maravilha,
Ramirez, and Campelo [130]. In their implementation, mutant individuals are gen-
erated by combining a random solution with two others taken from the population.
Once set operators have been applied, a mutant is defined which consists only of
cameras registered in the aforementioned solutions. A smaller instance, restricted to
this mutant’s cameras, is then solved exactly using CPLEX [97], which effectively
serves as a crossover operator. The resulting solution can then be evaluated for
selection into the next generation.

For the sake of completeness, the following papers may also be noted which in-
troduce other search procedures for the problem. In [141], Morsly et al. include a
tabu search (TS) algorithm [84, 85], along with generic GA and SA implementations
for comparison with their own PSO work. Fantini and Chaimowicz define a back-
tracking exhaustive search algorithm in [68], and use it whenever the instance size
permits it. Finally, for their work in generic sensors network design [164], Rebai
et al. propose a local search procedure, the neighbourhood for which is defined by
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adding a so far unused sensor location to the graph, and removing existing elements
which were made redundant by the new node.

Ref. Type Space Viewsheds Occlusion
[101] Nelder-Mead/SA 3D OpenGL 4
68] Backtracking 3D Human eyesight v
127] TDSA 2D Disks v
[195] DE 3D Pyramids v
[25] DE 3D Pyramids X

Table 1.3: Other metaheuristics for the optimal camera placement problem

1.3 The set covering problem

Definition and relationship to camera placement

Most of the specifics for the optimal camera placement problem are usually treated
in the visibility analysis phase, during which the instance translates into a visibility
matrix from each camera to each point in the discretised space. As an example,
consider the Figure 1.3 floor plan used in Section I1.2. The sampling process for this
case defines an OCP instance with 37 ground samples. Using the walls around and
inside the building, 60 possible camera locations can be selected. For the sake of
simplicity, we will assume that the orientation sampling process ran on a 27 range
for all positions. Given a § pan sampling frequency (12 possible pan angles) and
one possible tilt angle, the 60 aforementioned positions correspond to 60 * 12 x 1 =
720 possible camera candidates for the optimisation process to choose from (see
Figure 1.5b).

Before this can happen however, the ground samples and camera candidates
need to be matched. In other words, the optimisation algorithm needs to know
which candidates can cover which points. This stage was discussed in more details
in Section 1.2, and typically yields a visibility graph of which Figure I.5a shows a
subgraph. From this perspective, the reader may recognise the popular dominating
set graph theory problem, whose combinatorial equivalent is one of Karp’s well-known
NP-hard problems: set cover [105]. In a generic manner, it is usually formulated as
follows:
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Figure 1.5: Bottom-right corner of the Figure 1.3 floor plan with the associated
camera candidates. The horizontal field-of-view was set to 65° and the range to 2
units

Problem (set cover). Given a set of elements I (rows) to be covered, and a collection
of sets J (columns) such that the union of all sets in J is L, find the smallest subset
C C J such that \J,.oe = I. In other words, determine the smallest subset of J
which covers . By assigning a cost to each column, the problem can also be that of
finding the subset with minimal cost.

For convenience, we will also be using the notations Z; for the set of rows covered
by column j, and J; for that of the columns which cover ¢. Letting Z be the set of
all coverable ground samples in the surveillance area, and J the covers of all camera
candidates, expressed as subsets of Z determined through visibility analysis (see
Section 1.2 and Figure 1.5), the optimal camera placement problem is structurally
identical to set cover, and is therefore N'P-hard.

In spite of this relationship, to the best of our knowledge, most set cover literature
has yet to find its way into work done on optimal camera placement. Furthermore,
there appears to have been no published works which bring knowledge acquired from
the OCP into SCP literature. Given that the former is a specialisation of the latter,
the reader might argue that this comes as no surprise. It is also worth noting that
any extension of the surveillance area in an OCP instance, or worse, the inclusion of
an additional dimension, generates a significant growth of Z, making transformations
to set cover highly sensitive to dimension changes in the original camera placement
problem.
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Instance reduction

To lighten the curse of dimensionality for the SCP, two main instance reduction
procedures were defined by Beasley [12]. The first, column domination, identifies
dominated columns—that is, columns whose covers are subsets of others. More
formally, the set of removable dominated columns is given by:

D={jeJ|3 eT.jcj}

It is worth noting that this pruning procedure is more straightforward on unicost
instances, since weighted variants would have to take cost into consideration [165].
The second method, column inclusion, is a look-ahead procedure identifying columns
which have a monopoly over some rows. In that case, to ensure coverage, the columns
are immediately added to the solution and removed from the instance before solving.
More formally, the set of included columns is given by:

I={jedl|Ji#1}
Jj'ed
J'#3
These procedures have found their way into many pieces of recent set cover optimi-
sation literature, including but not limited to [123, 165, 51]. They have been used
and extended in this thesis, although the second procedure (inclusion) was found to
not be suitable for human-assisted optimisation, as will be shown in Chapter IV.

Greedy and heuristic algorithms

As a well-known problem, set cover has obviously attracted a lot of attention from re-
search in deterministic methods, even though its AP-hardness makes the use of exact
methods highly impractical. Pioneering work on the problem is usually attributed
to Chvatal who designed a greedy procedure [40] for the problem, and proved that
it would never overshoot the optimal solution by more than a factor of Zfil % with
d = max.c7 |e|, the maximal cardinality in J. A tighter bound was later found by
Parekh [157], and more recently, Felici et al. pointed out an a-priori upper bound
using probabilistic methods [71]. Since these early papers, the development of better
greedy algorithms for set cover has remained a popular line of research, and many
algorithms, both deterministic and stochastic, still use them to build or repair solu-
tions. A recent paper by Chandu [33] reports on tests involving a generic set-based
greedy, which includes several columns at once. Ablanedo-Rosas and Rego [1] also
suggested the use of surrogate models for problem relaxation and compared several
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update rules including Chvatal’s. A 2016 review of various greedy heuristics was
published by Vasko, Lu, and Zyma in [186].

As a note on the connection between our two problems, it is worth noting that
OCP literature has in fact included the use of greedy algorithms, as we have seen
in Section 1.2. While the algorithms mentioned there were typically tailored for
the OCP, the key ideas remain quite similar. In fact, when considering Chvatal’s
selection operator—which maximises coverage at every iteration—one can draw a
parallel with the work of Angella, Reithler, and Gallesio [5] and Munishwar and
Abu-Ghazaleh [144, 143].

In any case, although greedies are very attractive in that they quickly provide
acceptable primal bounds for other heuristics on which to build, the usual Branch-
and-Bound scheme remains the only way to explore the search space exhaustively
and find a provably optimal solution. While the usual approach—which uses the
problem’s linear relaxation, the simplex algorithm and variable-based branching—
has remained prohibitive for A/P-hard problems, several observations on the SCP
have allowed the implementation to be customised so as to speed up gap reduction.
Early success along those lines must be credited to Etcheberry [66] who suggested a
new branching strategy and the use of Lagrangian [73] rather than linear relaxation
at every node. The enumeration algorithm uses subgradient optimisation to acquire
better Lagrange multipliers and a possibly better lower bound at every step. Balas
and Ho later designed a primal-dual enumeration algorithm [9] using dual and greedy
primal heuristics, as well as cutting planes and variable fixing for gradual instance
reduction. The branching scheme is taken from [66], and Beasley extended the work
with a three-phase algorithm for dual bounds in [12]. This paper also elaborated on
the previous instance reduction procedure, which uses the latest Lagrangian costs and
dual bound to eliminate columns at every iteration. Further work on this approach
can be found in [13, 15, 8, 29, 191, 32| and a review entitled “Algorithms for the Set
Covering Problem” by Caprara, Toth, and Fischetti can be found in [30].

Moving on to other approaches, a paper [131] by Marchiori and Steenbeek intro-
duces an elitist algorithm which gradually reduces the problem by maintaining a core
of elite columns. At every iteration a randomised greedy is restarted from the most
frequently selected columns so far, and the score of every column in the resulting
cover increases. An optimisation routine then prunes the solution using a pairwise
variant of the column domination algorithm introduced earlier. In a similar attempt
to avoid local optima, Lan, DePuy, and Whitehouse introduced a non-deterministic
greedy algorithm [123] which sometimes selects columns within an acceptable range
of the greedy choice. A neighbourhood search heuristic is then used to improve the
resulting solution, and the overall proposition has proven to be quite effective.
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With a focus on the more difficult unicost variant of the SCP, Gao et al. propose
a row-weighting local search algorithm (RWLS) in [79]. In this approach, every row
is first assigned a weight, initialised at 1. Every column which is not in the current
solution is then given a score corresponding to the sum of its uncovered rows’ weights.
Columns in the current cover are scored negatively, by summing up the weights of
the rows they are the only ones to cover, and assigning the opposite values. Given
these attributes, a local search algorithm is then run which first breaks feasibility by
removing selected columns with high, albeit negative scores. An additional column is
then removed, and a uncovered row is chosen randomly. The highest-scoring column
for this row is added to the solution, and the weights of the remaining uncovered
rows increased. A tabu list is used to prevent loops, and timestamps help break ties
by ensuring that recently selected columns cannot be reused immediately. As will be
confirmed in Chapter I1I, this proposition by Gao et al. is among the most promising
approaches for both the unicost SCP and the OCP.

Nature-inspired methods

Although some of the algorithms introduced earlier can reach thousands of rows and
columns, the sampling processes used for optimal camera placement can generate
SCP instances which can reach as far as or beyond the challenges of the standard OR-
Library [13] (typically used for SCP benchmarking), even for simplistic surveillance
areas. Acknowledging the existence of such large instances in practice, the set cover
community has given a significant amount of time to metaheuristics, which effectively
sacrifice optimality in order to yield acceptable solutions in a limited amount of time.

Among those, the greedy randomised adaptive search procedure (GRASP) was
introduced using the SCP Feo and Resende [72] and effectively removes the determin-
ism in Chvatal’s algorithm. Instead of always choosing the column with the most un-
covered elements in its cover, the algorithm picks one randomly among those within
a given factor of that maximum gain. To benefit from randomness, the procedure
is repeated several times, and the best solution across all iterations is returned with
its redundant columns removed. Following up on GRASPs, Bautista and Pereira
derive a specialised routine in [11], inspired from efficient SAT-solving heuristics,
for the reputably harder to solve unicost SCP. The instance is reduced to SAT, the
original N'P-complete problem [42], for which many heuristics and solvers have been
designed.

Another early and influential paper to tackle the SCP metaheuristically was pub-
lished by Beasley and Chu in 1996 [14]. The authors introduced an efficient genetic
algorithm for set cover which, to this day, remains a good reference for comparison.
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The selection operator is tournament-based: the population is randomly split in two
groups, and the best of each are matched iteratively until both groups are empty.
The crossover operator is fitness-biased, meaning that the value of each of the child’s
bits is more likely to come from the parent with better fitness. The mutation operator
flips each bit with some probability, and the authors decided to dynamically adjust
the mutation rate as the algorithm converges. Infeasible solutions are repaired using
a greedy heuristic, duplicate solutions are ignored, and a steady-state replacement
policy is used for population updating: new solutions replace below-average individ-
uals. This implements elitism, in that above-average individuals cannot be replaced.
A 1997 review [128] of GAs for the SCP was later published by Lorena and de Souza
Lopes which highlights the high performance of even a classical GA implementation
on this problem.

Later work includes [3] by Aickelin, which tackles the problem less directly.
Rather than to attempt to solve the problem straightforwardly by manipulating
columns, the algorithm aims at finding the best ordering of rows, using a so-called
decoder as a fitness function. Once an ordering has been generated within the GA’s
population, it is deterministically decoded into an SCP solution by a greedy algo-
rithm which iterates over the rows and for each one selects the most interesting
column. The greedy’s parameters, which define a column’s attractiveness, are also
part of the GA’s individuals and are optimised along with the ordering.

A more straightforward GA implementation has also been attempted for the
SCP by Kornilakis and Stamatopoulos in [117], with an application to airline crew
pairing. The objective function uses application-specific penalties, while the other
components are typical of the usual GAs. The selection operator uses a fitness-
biased roulette wheel, the crossover operator is uniform, meaning genes may come
from either parents with equal probability. The mutation operator is less standard:
a fixed number of genes is selected in the individual, and each of them is flipped with
a probability based on the density of zeros in the population’s fittest individual.

Solar, Parada, and Urrutia also extend regular GAs in [174] by introducing a
parallel implementation of the algorithm. The authors generate several populations,
running their own GAs independently and waiting for each other at the end of each
generation. Then, each algorithm sends its best individual to a designated master
node, which picks the best among them and broadcasts it back to all other nodes.
Individuals follow a binary representation, and infeasible solutions are repaired greed-
ily. Another, more recent attempt involving parallel genetic algorithms can be found
in [197] by Zhang et al.

An example which tackles the infeasibility cases emerging during crossover can
be found in [64] by Eremeev. Rather than to use an indicator vector mapping J —
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{0,1}, a chromosome is made up of |Z| genes, the values of which are indices of J. A
gene therefore represents a row, and its value corresponds to a column which covers it.
Once two parents have been randomly selected with the usual fitness bias, the union
of their columns is used to define a small SCP subproblem, which can be reduced
and solved. Given a valid initial population, in which all genes reference columns
actually covering their rows, and considering the above crossover operator, one can
see that the algorithm will indeed never generate infeasible solutions. The mutation
operator does not compromise this property, and simply changes a row’s column to
another which covers it, with given probability for each gene. It is worth noting that
the infeasibility problem tackled here has been the subject of more recent work, with
Bilal, Galinier, and Guibault proposing an unconstrained set cover formulation in
[18], based on gains and penalties in the objective function.

Acknowledging the efficiency of genetic algorithms on the SCP, Crawford et al.
proposed a variant called cultural algorithms [46, 44] which adds longer-term memory
into the original GA design. The authors defined a so-called belief space which,
across generations, retains two individuals, used during crossover: best fitness and
most diverse so far. The belief space is updated at the end of every generation if a
new individual acquires a better value for one of these two metrics. The mutation
operator and the repair function are taken from Beasley and Chu [14].

Genetic algorithms made up the first references in OCP Section 1.2 earlier. The
constraint relaxation approach found in both Bilal, Galinier, and Guibault [18] and
David, Idasiak, and Kratz [53] is one of very few elements found in both bodies of
literature, in spite of the approach’s popularity in SCP papers. The reader will note
that this relates to the weighted SCP, which may explain this discrepancy.

Ant colony optimisation (ACO) algorithms [57] have been applied to the SCP,
with early work by Lessing, Dumitrescu, and Stiitzle in [124]. The paper high-
lights the importance of good initial heuristic information, which is used before the
pheromones trails are sufficiently strong, and compares several approaches. In their
work, Lessing, Dumitrescu, and Stiitzle use these seven sources of heuristic data and
compare them using three ACO algorithms: the original ant colony system [57] by
Dorigo, Maniezzo, and Colorni, the MAX-MZN ant system [178] by Stiitzle and
Hoos, and a hybrid variant combining the previous two [179]. The approximate non-
deterministic tree-search (ANTS) algorithm [129] by Maniezzo is also included for
comparison, and a local r-flip search is used for neighbourhood exploration (within
r column changes). This local search algorithm, which has been applied standalone
on the SCP, was brought forward by Yagiura, Kishida, and Ibaraki in [191]. Lessing,
Dumitrescu, and Stiitzle concluded that without local search, cover gain was the
most interesting source of heuristic data. When a local search procedure was added,
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Lagrangian lower bounds proved more efficient.

Later work with ACOs has included [43] by Crawford and Castro, who suggested
the use of constraint programming and restricted arc consistency to detect infeasible
partial solutions ahead of time, as well as solution postprocessing as an alternative
to local search. Inspired by the original ACO results on the travelling salesman
problem, Ren et al. proposed another approach [165] and tackled the problem in
a row-oriented fashion. At every iteration, the ants select uncovered rows at ran-
dom and columns are chosen, using the ant colony’s information, among those which
can cover them. A similar approach which appears to be less dependent on local
search improvement can be found in [142] by Mulati and Constantino. Valenzuela
et al. [185] later referenced both Aickelin [3] and Crawford and Castro [43], and pro-
posed a hybrid method involving ACO, scatter search [83], and a genetic algorithm
to tune the parameters of the previous two. The latter uses fitness-biased random
selection, single-point crossover and random uniform mutation. The ant colony fol-
lows its original implementation. More recently, Al-Shihabi, Arafeh, and Barghash
proposed the use of linear relaxations for initial problem reduction, and adjusted
the implementation of the MAX-MZN ant system for the SCP [172]. To this day
and to the best of our knowledge, ACOs have yet to yield interesting results on the
unicost SCP or on the OCP.

As far as nature-inspired methods are concerned, two others popular metaheuris-
tics are also worth mentioning here. Crawford et al. suggest the use of an artificial
bee colony for the SCP in [48]. The population is initialised by selecting a random
column for each row, and worker bees adjust their position by adding and removing
columns based on a randomly selected food source. Infeasible solutions are repaired,
presumably greedily, although the paper does not provide more information. The
results seem to suggest that ABCs are particularly efficient on large-scale SCP in-
stances. Earlier work had included [180] by Sundar and Singh which combined the
method with a local search procedure, with promising results. More recently, Bal-
aji and Revathi [7] proposed PSO as an approach for the SCP. The authors used a
variant [81] introduced by Garcia and Perez, inspired from frogs rather than birds,
and designed for combinatorial problems. Similar inspiration can be found in [51], in
which Crawford et al. apply the shuffled frog leaping algorithm, originally formulated
by Eusuff and Lansey in [67], to the SCP. The algorithm was adjusted for binary-
encoded individuals through the use of transformation functions originally studied by
Mirjalili and Lewis in [135]. Other metaheuristics inspired from nature include [103]
by Joshi, Rowe, and Zarges who exploited recent advances on our understanding of
the human immune system to develop a parallel germinal centre artificial immune
system algorithm. Work along the same lines can be found in [184] by Tasnim, Rouf,
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and Rahman.

As the reader may recall from Section 1.2, ABCs have not been tremendously
popular in OCP literature (see work by Chrysostomou and Gasteratos [37, 38]). PSO,
on the other hand, ranks among the most popular approaches. The designs however
remain very different as far as their key features are concerned: SCP literature seems
to bring forward the idea of different neighbourhoods or clusters used in the update
equations, while OCP papers stray further away from the continuous versions of the
algorithm.

Among other approaches, simulated annealing has also been applied to the SCP,
with a 1995 publication [100] by Jacobs and Brusco. For this algorithm, the initial
solution is built by iteratively selecting a random row, and including the first col-
umn to cover it into the solution. Redundant columns are then removed, and the
cooling process begins. Neighbourhood search is performed by first dropping a fixed
proportion of columns from the solution, and repairing it by adding columns the
costs of which are within a given factor of the maximum column cost in the instance.
The algorithm was tested for various parameter values, and improved many of the
best known solutions at the time. Brusco, Jacobs, and Thompson later explored the
idea again in [27], for instances with strong cost-to-coverage correlation and using
a so-called morphing procedure for local search on partial solutions. For another
single-solution approach, Musliu define a local-search procedure [146] using a move-
oriented neighbourhood, which allows for the easy use of a tabu list to avoid cycles.
The authors define a constructive and a destructive move, and set rules on their
usability at each given stage of the algorithm.

Finally, being a popular problem, the SCP has also led to the creation or testing
of recent algorithms, inspired from concepts mostly unexplored in the field of meta-
heuristics. These include physics ([147, 6, 166, 175]), chemistry ([194]), wildlife ([49,
45, 47]), pyrotechnics ([50]), music ([168]) and sports ([102]), among others. The list
of all such propositions is quite extensive: we therefore refer the reader to [119] for
complete details and numerical comparisons.

Review

While we were able to establish some connections between OCP and SCP litera-
ture, this relationship is clearly under-exploited. Very little of the knowledge we
have about the set covering problem has found its way into camera placement lit-
erature, or vice-versa. As will be shown in Chapter II, OCP instances do tend to
have specific characteristics which call for tailored algorithms. Nonetheless, a better



32 CHAPTER I. LITERATURE REVIEW

understanding of the leading algorithms for set cover does provide valuable insight.
As a summary, we provide a list of said algorithms in Table 1.4, focusing on the
weighted set cover problem. As far as the unweighted variant is concerned, the state
of the art is much simpler. The RWLS algorithm mentioned earlier remains mostly
unchallenged, although very recent work seems to suggest hybridising approaches
might be promising [159].

Year Ref. Type Proposition

1999  [29] Heuristic Lagrangian-based framework
2000 [131] Metaheuristic Elitist evolutionary algorithm
2006 [191] Heuristic 3-flip neighbourhood search
2007 [123] Heuristic Non-deterministic greedy algorithm

2010  [6] Metaheuristic Gravity-inspired search algorithm
2010 [180] Metaheuristic ~Artificial bee colony with local search
2014 [194] Metaheuristic Chemical reaction optimisation
2015 [172] Metaheuristic MAX-MZIN ant colony optimisation

Table 1.4: The 8 algorithms which reached 100% BKS on the 1987 and 1990 OR-
Library instances

In this thesis, several elements will be taken from set cover literature and inte-
grated into our approach. This includes extended reduction procedures, weighting
schemes, greedy heuristics as well as another, closely-related problem variant which
we introduce in Chapter IV.



CHAPTER 11

PROBLEM FORMULATION AND
INSTANCE GENERATION

Introduction

plications which surround the optimal camera placement problem, we now

establish the modelling basis for this thesis. In this chapter, we begin by rein-
troducing a basic set cover, full coverage formulation of our problem. This model,
combined with feedback from other research partners, then serves as a basis for the
design of an instance generation procedure which brings optimal camera placement
into the real world. We introduce tailored sampling procedures which capture knowl-
edge from the layout of the given area, using real world, publicly available data. The
integration and extension of reduction procedures from set cover literature is also
discussed and a first solve using three basics algorithms yields interesting hypotheses
to be studied in Chapter III and used in Chapter IV.

H aving reviewed the wide variety of variants, constraints, objectives and ap-

Related publication

[120] Julien Kritter et al. “On the real-world applicability of state-of-the-art algo-
rithms for the optimal camera placement problem”. In: 6th 2019 International Con-
ference on Control, Decision and Information Technologies (CoDIT). IEEE, Apr.
2019. por: 10.1109/CoDIT.2019.8820295

33



34CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

II.1 Problem formulation and generation
overview

In order to first focus on real-world data processing, we begin with a very simple
formulation, which follows that of the set cover problem or early camera placement
literature [63, 95]. We therefore work from a set of ground samples Z, defined
as points in a 3D cartesian coordinate system, and a set of camera candidates J
for which we add orientation information in the form of a normalised 3D vector.
A visibility matrix A with elements a;; is also available and maps sets Z and J
together. The problem is therefore given by the following binary integer program, in
which decision variables x; determine whether or not a candidate is selected.

171
min Za:j (IL.1)
j=1
7]
> ayr; =1 Vi 1<i<|T| (11.2)
j=1

This formulation is of course that of the unicost set cover problem, and enforces
full coverage across the entire surveillance area while minimising cost.

Before such a model can be used however, a procedure needs to be designed to
acquire Z, J and elements a;; of the visibility matrix. Several approaches have been
put forward by the authors reviewed in Chapter I, however those approaches tend
to be either overly simplistic or very computationally expensive. In this thesis, we
propose a middle ground between those two extremes, which captures information
from the real world while mostly keeping algorithm complexity down. To this end,
our approach uses data sources. The first is the OpenStreetMap (OSM) database
[155].

OpenStreetMap is a free, editable map of the whole world that is be-
ing built by volunteers largely from scratch and released with an open-
content license.

(The OpenStreetMap wiki: about OpenStreetMap)

OSM is a very complete, user-contributed world map (Figure II.1) which not
only provides layout information such as roads or buildings but also an extensive
tagging system which stores a significant amount of metadata for each element. In
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Figure I1.1: The OpenStreetMap web viewer

this thesis, we use OSM to set the bounds of our surveillance area and generate both
ground samples and camera candidates.

One drawback of OSM however is that, as a map, its data is two-dimensional.
While building dimensions are available through the tagging system, ground elevation
remains unknown and our instances remain flat. To solve this issue, we introduce
another data source: NASA’s Shuttle Radar Topography Mission (SRTM) data [176].
With over 80% of the Earth covered, the SRTM provides ground elevation data for
every l-degree longitude, 1-degree latitude square on the planet. At 1 arc second
resolution, this represents an elevation value in meters for every 30 meters square.

With this data available, our instance generation procedure is as follows. First,
OSM entities which are relevant to our problem are parsed and sorted. The geo-
graphic coordinates of each element are then transformed into a local three-dimensional
cartesian coordinate system, which greatly simplifies our computations while remain-
ing very accurate for our use cases. Elevation is then brought in, and the sampling
process can begin. Ground elements such as roads and open areas are processed to
yield ground samples, while buildings and walls provide camera candidates. Every

pair is then passed on to the visibility analysis and instance reduction algorithms
before the instance can be stored on disk.
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II.2 Sampling procedures

OpenStreetMap entities and coordinate system transform

OpenStreetMap data revolves around four main entities: nodes, ways, relations
and tags. Nodes are points in space given by a latitude and a longitude coordinates.
They may represent elements of interest on their own such as traffic lights or electric
poles, but are mostly used to build ways. These are sequences of nodes which can
form lines or polygons to represent roads, buildings, open areas and various sorts
of infrastructure. Relations do not correspond to physical elements but rather serve
as a way to associate nodes and ways together. It is therefore common to find
relations which group several building ways to represent them as parts of institutions
or administrative regions. Finally, tags are key-value pairs which can be associated
with any of the aforementioned entities. They provide extensive metadata about the
nature and description of every feature on the map. They allow us, for example, to
determine whether a polygon way is a building or a park.

Before we use this information to classify and process entities, we first need to
move into a more convenient coordinate system. While we could, indeed, work in
the geographic system from beginning to end, this seems like an unnecessary struggle
given that our transform will only incur a minor precision loss, provided that our
surveillance areas do not span across extremely large regions. This can reasonably
be assumed since, in practice, CCTV infrastructure is designed locally and hardly
ever goes beyond the scale of a city or conurbation. At this level, the loss of accuracy
remains barely perceptible.

Our transform requires two stages. The first will convert the geographic co-
ordinates (latitude, longitude) into Earth-Centred, Earth-Fixed (ECEF) geocentric
cartesian coordinates. In other words, our nodes are repositioned into a system which
has its origin at the Earth’s centre. Its horizontal axes (z and y) are aligned with
the prime meridian and the equator line, while the vertical (z) axis follows the di-
rection of the true north. For a node at latitude ¢ and longitude A, the transform
is given by Equation (I1.4). Equation (I1.3) is an intermediary step for the compu-
tation of the prime vertical radius of curvature at latitude ¢. This corresponds to
the perpendicular distance from the surface at latitude ¢ to the polar axis [23]. It is
computed using two parameters a and b which are the lengths of the Earth’s major
and minor semi-axes respectively. In Equation I1.4, F represents the Earth’s squared
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eccentricity and is given by (%)2

2

a
" Vatcos?(¢) + b2sin?(¢) (IL.3)
ncos(¢p)cos(A)
ecefyy = | ncos(d)sin(N) (IL.4)
nEsin(p)

Since we are working on small areas (relative to the Earth surface), the coordinates of
our points in the ECEF system are bound to be very close. Since such a configuration
does not exactly agree with a computer’s approach to floating point numbers, our
selected transform includes a second step to move from ECEF to ENU (East, North,
Up) coordinates. This second system relies on the use of a local tangent plane.
Given a reference point at (¢g, Ag), such a plane is defined by its normal vector,
tangent to the Earth’s surface at the reference. For our work, we have consistently
chosen this point at the centre of the surveillance area’s bounding box. The two
other (orthogonal) axes are then set in the direction of the Earth’s true north axis
for one, and that of the east for the other. ECEF coordinates can then be translated
onto this plane using Equation (I1.7). Equation (II.5) computes the difference vector
between a given node’s ECEF coordinates (¢, A\) and that of the reference point.
Equation (I1.6) is included for notational convenience.

d = (dy,dy, d.) = ecef s, —ecef sz (IL.5)
t = dycos(No) + dysin(Ng) (IL.6)
T —dysin(Ao) + dycos(Xo)
enugy = [y | = | —tsin(po) + d.cos(do) (IL.7)
z tcos(po) + d.sin(e¢o)

Note that by using the meter as the unit in the first step, we ensure that the ENU
coordinates also follow this rule, save for the minor loss of precision incurred in the
second step.

Now that each node is associated with cartesian coordinates local to our surveil-
lance area, we are ready to integrate our elevation data. As was mentioned earlier,
the SRTM data provides an elevation value in meters for every 30-meter square on
Earth. A straightforward approach is therefore to add this value to the z coordinate
of every node in each square. This however would generate a tiling effect on the floor,
especially where the nodes are too densely packed together. To compensate for this,
we have implemented smoothing into our elevation process. For a given node, we
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first locate the associated SRTM tile in the dataset and determine in which quadrant
of this tile our node lies. Based on this, we also fetch the two neighbouring tiles. For
example, if our node is in the north-west quadrant of its tile, we fetch the northern
and western neighbours. A weighted average elevation value is then computed based
on the distances between our node and the centres of the three aforementioned tiles.
This effectively transforms the original tiled landscape into a smooth curved surface
which better represents the ground.

With the transform and elevation complete, we can now move up to the other
OSM entities. It should be noted that while they are essential for the implementation,
relations can effectively be ignored by conceptually transferring their tags over to
their node or way members. In the rest of this section, we will therefore focus on
nodes (points) and ways (polylines and polygons).

Using the tagging system and filtering rules dictated by the users and the study
case, we separate nodes and ways into what well call ground and structural entities.
Put simply, ground entities yield ground samples, that is, points in space that must
be covered and which represent our continuous surveillance area. Structural entities
yield camera candidates which can provide said coverage. Note that this topology will
be reformulated in Chapter IV as we integrate more application-specific constraints
into our model.

Ground entities

Ground entities are divided into three categories for processing. Ground points are
single points of interest represented as nodes in the data. They typically include
pedestrian crossings but may represent all sorts of elements. Only one location is of
interest in this case: that of the node. Ground lines are OSM ways and represent
various types of roads. Finally, ground polygons are used for open areas such as
parks, parking lots, pedestrian areas, and so on.

Locations of interest along a ground line are computed using a simple 3D poly-
line walk. Starting at the first node, the algorithm advances along the line at a
predetermined frequency and registers its location at every stop. When the sam-
pling frequency does not exactly divide the way’s length, the samples are centred by
removing the excess margin at both ends. At every registered location so far, the
algorithm also takes into account the road’s width, which we extract from tags or
default values set to represent regulatory lane widths. This information is used by
walking orthogonally to the lane at a preset frequency and registering new locations.
Two parameters are therefore required for ground line sampling: the ground length
frequency fé for the walk along the way and the ground width frequency f;’ for the
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orthogonal walks (both in meters). Their exact use is illustrated in Figure 11.2: the
darker samples follow the line using parameter fé while the lighter ones surround
them at distance f;".

node
sampling location

Figure I1.2: Illustration for the ground line sampling procedure

Ground polygons require more steps, especially as there are no guarantees about
their convexity. Various approaches have been tried to sample these geometries and
we have selected the following, which we illustrate in Figure I1.3. First, the polygon
is triangulated using an ear-slicing algorithm. We used an implementation from
Mapbox [59] which the authors reported to be inspired from [75, 58]. Each triangle
is then processed individually. First, the vertex which connects the two longest
edges is identified. Lines are then drawn parallel to the remaining edge at frequency
fé and locations of interest are registered by walking those lines at frequency [
following the same process as for ground lines. When the triangle is too small for
the length-wise walk, a single location is registered in its centre instead.

Now that locations of interest have been extracted from all available entities, the
third dimension must be taken into consideration. To account for human height,
additional locations are registered above the ones available so far, using three new

min o will bound the coverage altitude levels while f7 will

parameters: ag"" and ay
determine the frequency at which new locations are to be registered.

All the coordinates computed so far serve as our set of ground samples Z. The
sampling process has ensured that this set is a fair representation of the surveillance
area’s layout as it is described on the map. Of course, as the reader will no doubt
notice, this process already requires a significant number of parameters. These will
be further studied in Chapter III and effectively eliminated in Chapter IV.
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w
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Figure I1.3: Illustration for the ground polygon sampling procedure

Structural entities

Once again, structural entities are divided into three groups: First, structure points
represent traffic lights and electric poles, among other things: they are nodes of
interest on which cameras can be set up. Then come structure lines which correspond
to walls and other similar elements. Finally, structure polygons describe buildings.

The process once again starts by identifying locations of interest, only this time,
two more elements must be identified: a normal vector which will serve as the starting
axis for pan sampling, and an angle which bounds the process. Structure nodes
consist of a single location of interest, with a normal vector set to an arbitrary vector
parallel to the ground, and a pan angle of 360 degrees. Structure lines are walked just
like ground lines, although at each stop the algorithm registers two configurations:
one of each side of the OSM way with the associated normal vectors and pan angles
of 180 degrees. Note that this requires a new parameter, f!, which represents the
sampling frequency along a wall.

Structure polygons require a little bit more thought since a lot of them will share
walls or corners. In order to avoid sampling along those and to determine valid pan
angles at every location, we propose the following approach, illustrated in Figure I11.4.
The algorithm proceeds iteratively on triplets of consecutive nodes: previous, current
and next until all nodes have been set as current once. For every triplet, two angles
are first computed: o, and «,: they represent the available openings between the
building’s walls and those of any other structure. This is achieved by keeping track
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of node-to-way mappings in the OSM data. Whenever one angle is zero, then the
associated wall (current to previous or current to next) is shared and should not
be sampled. When possible however, configurations are registered much like for
structure lines, with only the outward normal vectors considered. The «, and ay,
angles also determine whether or not cameras can be placed at the current node
itself, both towards the previous and next nodes. They then serve as pan angle
values, and their bisector is used as the normal vector for sampling (again, parallel
to the ground).

previous

o—0

Figure I1.4: Illustration for the structure polygon sampling procedure

At this point, our algorithm has only registered possible locations, with the associ-
ated normal vectors and pan angles. Just as we did in the previous section, we begin
the actual sampling by duplicating those locations at several altitude values, this
time using parameters agm"7 a, " and f¢, similar to those used earlier for ground
sampling. This time however, these parameters take into account the building’s
height configuration to ensure no camera is placed in the air.

Pan angle sampling may then begin. The available angle is divided into smaller
sectors using parameter f? (typically, a fraction of 7) again centring the subdivision
by padding away from the wall. Whenever the available angle is too small for the
selected parameter, a single pan angle is chosen at the bisector. For every selected pan
vector, it is then possible to compute the final orientation samples using parameter
fL for the tilt angles. Here, the available interval is given by the pan vector, parallel
to the ground, and the wall, orthogonal to it. The available tilting room is therefore
always 7 and experiments suggest that the tilting frequency should not be set above

& to ensure optimisation algorithms are given enough options to chose from (see
Chapter III).
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Visibility analysis and online instance reduction

With both ground samples and camera candidates now available (see Figure I1.5 for
a visual example), we are now able to compute the visibility matrix which maps
them together. In other words, for each sample 7 and each candidate j, we compute
the binary value a;; which is set to one if and only if j sees ¢ in our surveillance
area. As we have seen in Section 1.2, the literature includes a wide variety of options
for this process. One issue however is that those tend to be at both extremes of
the complexity spectrum, using either simple two-dimensional geometrical tests or
full-blown game engines or ray tracing algorithms.
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Figure I1.5: Result of the sampling procedure for a subarea of the city of Strasbourg,
France. Ground level does not match building base level in renders.

As will be seen later on, our instance generation process tends to create very
heavy instances as it is able to tackle large surveillance areas. It would therefore be
very impractical to use expensive visibility analysis algorithms which would require
way too much time and scale poorly. Since realism is one of the main foci of our
work however, we cannot simplify the process too much. As a middle ground, we
propose the following approach. First, we define three consecutive tests to be applied
to sample-candidate pairs, with one failure short-circuiting the sequence. The first is
a simple range test: the distance between the sample and the candidate is measured,
and the test succeeds if that value is below the range of the camera model. This
range 7 is computed beforehand using Equation (I1.8), which depends on the model’s
horizontal resolution Rj, in pixels, its horizontal field of view f, in radians and an
operational parameter P which enforces an image quality constraint in pixels-per-
meter. This approach was borrowed from earlier work on optimal indoor camera
placement [24] although, as we will mention later, we have used much more tolerant
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values for P. It is indeed not the goal of our research to design CCTV infrastructure
for facial recognition or similar image processing pipelines. Our focus is on crowd
analysis, for which high-resolution video capture is not really desirable (and in fact
requires more constraints to be considered, many of them legal).

Ry
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The second check to be performed relates to the orientation of the candidate.
We have chosen to use oblique square pyramids to represent a candidate’s frustum,
with the orientation vector aligned with the segment which connects the apex to the
centre of the base. When projected onto the ground plane, the frustum has a paral-
lelepipedic shape and therefore takes into account the blind spot problem mentioned
in Section I.2. Our use of this particular model was inspired from work by Fu, Zhou,
and Deng [77] to which the reader is referred for more details. Our implementation
however differs and tends to be more intuitive given our use of vectors for candidate
representation. To check whether or not a sample lies within a candidate’s frustum,
we begin by computing the four side planes of the pyramid (see Figure 11.6). To
do so, we first compute the vertical plane in which the orientation vector lies. We
use a dot-normal notation for planes and attach them to the candidate’s mounting
position. This first plane is then rotated by half the camera’s horizontal field-of-view
angle around the vertical axis at the candidate’s position, once in each direction, to
yield the left and right planes. For the other two planes, we start with the verti-
cal plane from earlier and rotate it around the candidate’s orientation vector by 3
radians. We then compute the second axis of rotation by acquiring a vector orthog-
onal to the orientation vector in this plane. We then rotate around that vector by
half the camera’s vertical field-of-view angle in both directions to acquire the top
and bottom planes. For these computations, we make sure to proceed such that each
plane’s normal vector is oriented inwards. The relative position of the ground sample
is then easily checked with four dot products between each plane’s normal and the
vector which connects the attach points to the sample. If all four dot products are
positive, the point lies within the camera’s frustum. Note that we do not compute
the pyramid’s base plane at any point. This is unnecessary thanks to the previous
range check. It is also very convenient since the pyramid’s base can have almost any
shape now that the ground has been elevated.

If we reach this point, we know that in an empty environment, our candidate
would cover our sample. This brings us to our last check: occlusion. With trees,
walls, street corners and other elements taken into account, there is no certainty that
the line of sight between the candidate and the sample is clear. As we have seen
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(a) Top view (outside, to- (b) Side view (outside, towards
wards the top plane) the left plane)

Figure I1.6: Computing bounding planes for a vector-defined square pyramid frustum

earlier, several authors have chosen to use complex ray-tracing algorithms to tackle
occlusion. To save on computational cost, we have decided to reuse the data we al-
ready have and generate a three-dimensional triangular mesh of all registered sources
of occlusion in the surveillance area, which can easily be identified and reconstructed
using a set of filter rules on OSM tags (see Figure 11.7 for an example). This idea
for using meshes had already been applied to the AGP by Fantini and Chaimowicz
[68] who mentioned an implementation for the Half-Life game and the Illricht game
engine [99]. For our implementation, we decided to use the available OSM data and
the Moller-Trumbore algorithm for ray-triangle intersection [139]. Our first experi-
ments used OSM2World [156] for mesh generation, which had been extended to use
our coordinate system, however we integrated the process into our code base later
on.

For each pair which passes the range and frustum checks, we go through the
available mesh faces and look for intersections with the candidate-sample segment.
When no such intersection can be found, the occlusion check passes and the pair is
registered. As the reader will probably notice, this process can still be quite expensive
if implemented in a straightforward manner. Iterating over all ground samples and
all camera candidates would indeed make the algorithm extremely sensitive to the
size and complexity of the surveillance area. We can however significantly alleviate
this computational burden with two tricks: localised visibility analysis and online
instance reduction. The former starts with a simple observation. As the surveillance
area grows, the number of possible samples for a candidate increases, however the
proportion of positively checked pairs decreases. For every new ground sample, only
the pairs which involve nearby candidates will be validated, while a huge number of
others will fail the range check. The same can be said about occlusion faces, with
only a small subset being of interest for every pair. As it so happens, even this simple
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Figure I1.7: An example of an occlusion mesh built using OSM data

check can turn out to be very costly as instances scale up, not to mention the even
simpler instructions related to iterating over such large sets. We have been able to
eliminate this overhead by running an entity-oriented analysis. Rather than iterate
over candidates after the sampling procedure has completed, we instead iterate over
the OSM elements (buildings, walls, ...) which yield them. For every structure en-
tity, we begin by computing its bounding box and extending it in all directions by
the camera model’s range r. This box is then used as a query to an r-tree spatial
index data structure which contains all ground entities (a similar query is performed
to fetch the relevant occlusion faces). This allows us to quickly acquire a list of all
nearby ground entities which may have samples within the aforementioned coverage
box. We can then sample both the structure entity and the local ground entities
to yield camera candidates and ground samples. The analysis is then performed on
those small subsets only, since any other pair for the current structure entity would
necessarily fail the range check. After comparing with straightforward implemen-
tations, the advantage of r-trees has proven to be major, beating even our initial
massively parallel implementation on GPU devices. The reader is referred to [89] by
Guttman for more information about these spatial indices and their performance.
For our work, we have chosen to use the Boost.Geometry implementation [21] with
the R* balancing algorithm [16].

As the visibility analysis validates pairs, those need to be stored for further pro-
cessing, including instance reduction. Given the algorithms which we plan to apply
to this problem, the following characteristics are desirable. First, iterating over a
candidate’s sample set should be quick. Similarly, we should be able to efficiently
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access all covering candidates for a sample. Samples and candidates should therefore
ideally be consecutively indexed for a random-access container, which should con-
tain ordered coverage sets on which intersections and differences can be efficiently
computed. The first approach which comes to mind is the use of maps (or any other
indexed tree-like structure). One would connect candidates to their samples and
another would map entries in the other direction. This however has two drawbacks:
insertion is very costly and reduction would require even more costly reindexing op-
erations if we are to have constant-time access to our coverage sets. Additionally,
this structure would not exactly agree with the reduction algorithms, which require
sets to be sorted by size rather than by candidate index.

We instead propose the following approach: when a pair is validated by the
analysis, we store it as a tuple of indices in a random-access container. After a first
candidate sort, we can tag each pair with the size of its candidate’s cover. Domination
and inclusion checks can then be performed rather efficiently by repetitively applying
a quicksort algorithm [92]. The process for both reduction checks is described in
Algorithms 1 and 2. It should however be noted that these two procedures affect
each other. For example, a reduction performed while checking for inclusion can
create the conditions necessary for additional domination reduction. For this reason,
these procedures are to be repeated until there are no more changes.

Once all pairs have been processed, samples and candidates can be efficiently rein-
dexed by sorting the container twice again. It can then be transformed into actual
sets, which we store in random-access containers again. The final data structures al-
low us to access the cover set for any sample or candidate in constant-time and iterate
over said sets in linear time. The analysis process itself will have used constant-time
insertions while the final reindexing and packing into sets can be brought down to lin-
ear time thanks to the repetitive use of the quicksort algorithm. The latter of course
performs in logarithmic time on average and linear time in worst-case scenarios. The
overall process as it was first implemented is summarised in Algorithm 3.

As we started working on even larger surveillance areas however, we noticed that
the space complexity of the first phase (pair registration) became unmanageable. We
started storing this data using disk-backed, memory-cached containers but the 1/0O
overhead also became impractical eventually. This is where our second trick comes
in: online instance reduction. The important observation here has to do with the way
the visibility analysis loops are structured: pairs will not be registered in a random
order, but rather one structure entity at a time. This means that consecutive pairs
are very likely to involve nearby candidates and samples. In other words: pairs are
being processed in a sensible positional order, one area of the map at a time. It
can also be noted that once we move on to another candidate, we are certain no
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more pair will appear for the previous one. This is a very useful piece of information
for the domination checks: pairs are coming in such that two consecutive candidate
blocks actually correspond to nearby areas and therefore have a high probability of
dominating one another. This enables us to save a lot of time on instance reduction
by performing partial domination checks as the analysis is being performed, and a
final domination check on the pairs at the end. The overall process, to be run with
C CPU cores available, is best described using pseudocode, which we provide in
Algorithm 4 and illustrate in Figure I1.8.

I1.3 First instances and observations

For our first set of tests, we selected 8 areas extracted from the following 8 European
cities, most of them home to fellow OPMoPS collaborators: Berlin, Kaiserlautern,
London, Munich, Rennes, Mulhouse, Valbonne and Mainz. The area codes as well as
the associated OpenStreetMap identifiers are summarised in Table II.1. The symbol
column refers to a code we will be using later on to label our instances.

OSM ID Symbol Location (postal code)

1402158 b Berlin Mitte (10117)
1186690 k Kaiserslautern (67655)

51800 1 City of London (various)
1100773 m Miinchen city centre (80335)
6796357 r Rennes city centre (various)
Custom u Mulhouse city centre (various)
92482 v Valbonne (06560)

1236525 z Mainz city centre (55118)

Table II.1: The 8 locations used as our first test set

For these instances, our filtering rules for sampling and occlusion handling were
rather simple. Anything tagged as a road or an open public area such as a park or
pedestrian way was registered as a ground entity. Buildings, walls and poles were
used as structure ways, and the first two also served as the basis for the construction
of the occlusion mesh.

As we mentioned earlier in Chapter II, generating an instance from an area also
requires us to set sampling parameters. In order to understand their influence bet-
ter, we created a set of 4 sampling configurations, which we indexed from 0 (su-
perficial) to 3 (intensive). The corresponding parameter values are reported in Ta-
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bles I1.2 and I1.3. The camera model used has resolution 1920x 1080 and is expected
to perform at 25 pixels-per-meter.

Cfg. fé fw f; amin a™me®

g g g
0 10 2 1 0 1
1 7T 2 1 0 1
2 D 1 1 0 2
3 3 1 1 0 2

Table 11.2: First set of ground sampling parameter values

Cfg. f; f& ai™ af* fP f
0 6 1 3 3 I =z
1 5 1 3 3 I =
2 4 1 3 4 T I
3 3 1 3 4 T =

Table I1.3: First set of candidate sampling parameter values

We labelled our instances using the symbol for the area suffixed with the config-
uration number such that, for example, applying configuration 3 to the Berlin area
yields instance b3. The generation was performed at the Tier 2 Strasbourg high-
performance computing cluster [96] using 2.5-2.67GHz Intel processors. The basic
statistics for this first set of 32 instances are reported in Table I1.4. The last three
columns provide the numbers of ground samples and camera candidates, as well as
the density of the visibility matrix. All instances have been reduced.

The first observation to be made is that of scale. To date, the only widely
recognised benchmark for set covering problems is the OR Library [13] which we
mentioned in Chapter I. Looking at the statistics, our instances are clearly much
larger. In fact, only the 4 largest RAIL instances exceed our own statistics, and
only so in regards to set J. It should also be noted that these instances have not
been reduced. When it comes to density however, our values are several orders of
magnitude below that of the benchmark.

In order to get a first idea of the solution landscape for our instances, we ran
three basic solving algorithms. The first is random: it processes ground samples
in a random sequence and for each of them selects a random candidate, unless the
sample is already covered. The second is greedy and selects the most interesting
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candidate (ie. the one which brings the most new samples into the solution) at every
iteration, breaking ties randomly. The last one is CPLEX’s default configuration,
which involves a Branch-and-Cut algorithm at its core, which we stopped after 1 hour
(we will label this as BIP for Binary Integer Program). The random and greedy
algorithms were both run 30 times and the average solution size was computed.
Table I1.5 reports on the results. The last two columns are the difference between
the BIP and greedy results, which we take as a measure of the effective solving range.
Indeed, the greedy algorithm is among the most time-efficient approaches, while the
BIP strives for optimality, which makes it fitness-efficient. In the last column, we
scale this absolute gap over the size of J.

As we can see, the improvement on the solutions is relatively small when we
move from a greedy to a one hour BIP solve, especially given that CPLEX reported
duality gaps below 10% (many below 5%) for all instances except b3. Since the
greedy algorithm performs much more time-efficiently, it therefore appears as though
striving for optimality on our instances comes at very high computational cost and
does not yield much of a reward. The results also suggest that our instances are much
simpler to solve than standard benchmarks or previous work using high-resolution,
uniform sampling grids by Brévilliers et al. [24]. In the latter, many of the instances
remained unsolved by CPLEX. The only clear element of difference between this
work and ours is the average instance density. It would appear that our instance
generation framework yields very low-density matrices which severely lower the curse
of dimensionality for the problem. In Chapter III, we take a closer look at this
observation and bring forward hypotheses which will help us approach the problem
from a different angle.

Review

Being able to create instances from open real-world data presents two main ad-
vantages. First, our process has no dependency whatsoever on limited-access data
sources and is designed to work on an area without any data preprocessing required.
Second, we ensure that the instances are always tailored for their study cases and
avoid making assumptions regarding the area’s geometry or complexity. In this
chapter, we therefore introduced such an instance generation framework and covered
coordinate system changes, ground sampling, camera candidate sampling, occlusion
modelling, as well as efficient visibility analysis and reduction algorithms.

Instances were then generated using several cities involved in our research project.
From these, we were able to acquire a first picture of the solution landscape when
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using a full-coverage set covering model, as has so far typically been done in the
literature. After running several basic algorithms, we noticed a significant difference
in complexity between our instances and previous works. We suspect this is due to
our generation framework and our particular application, which yield simpler, lower-
density instances. We believe interesting hypotheses could stem from this knowledge
and may reveal new solving approaches, perhaps better suited to the specifics of our
research project. We explore these possibilities in Chapter III.
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Symbol Cfg. |Z| |J| Density
0 9645 3854  0.0018

. 1 12526 4301 0.0018
9 168773 51245  0.0010

3 288968 87287  0.0010

0 8610 3829  0.0014

. 1 12374 4548  0.0013
2 158528 53003  0.0010

3 263767 87843  0.0009

0 13881 5800  0.0012

| 1 19940 7608 0.0011
2 190677 61722  0.0008
3309447 98309  0.0008

0 6862 2846  0.0028

1 7978 2861  0.0034

m 9 112457 33517  0.0017
3193275 54800  0.0016

0 2678 1160 0.0059

N 1 2778 967 0.0087
9 42209 12458  0.0044

3 69902 19625  0.0040

0 900 446  0.0131
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