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Résumé

Notre thèse est dédiée, en grande partie, à certains problèmes de biologie (séquences biologiques et analyse de la durée de vie avec risks compétitifs) sous l'hypothèse semi-markovienne.

Au cours des années récentes, calculer les propriétés des mots dans les séquences stochastiques a été un sujet d'intérêt à l'intersection de mathématiques appliquées et de biologie. Dans la littérature, un grand nombre de méthodes ont abordé cette problématique sous l'hypothèse que la séquence des symboles soit modélisée par un processus de Markov. Cependant, l'hypothèse markovienne a quelques inconvénients. Dans un processus de Markov, le temps de séjour dans un état est modélisé par la loi exponentielle (géométrique) en temps continu (discret). Au contraire, dans un processus de semi-Markov le temps de séjour peut être modélisé par n'importe quelle loi de probabilité. Donc, pour calculer les propriétés des mots dans des séquences aléatoires d'une façon plus générale, dans cette thèse, on a considéré que la séquence biologique est modélisé par un processus semi-markovien. On a calculé la loi et le nombre moyen des fois que les éléments d'un ensemble spécifique apparaissent dans une séquence des lettres. En suit, nous avons obtenu la loi des grandes nombres et nous avons aussi présenté le théorème de la limite central pour la fréquence d'apparition des mots. Pour montrer l'applicabilité de notre modèle, on a cherché une enzyme spécifique dans une séquence d'ADN provenant d'un bactériophage.

Les problèmes de risques compétitives forment un autre sujet d'intérêt en durée de vie. En général, les problèmes de risques compétitives ont été abordés à partir d'un point de vu statistique. Dans cette thèse, on présente les problèmes de risques compétitives dans le cadre de semi-Markov. On considère des processus de semi-Markov en temps continu et discret avec un nombre fini d'états transitoires et absorbants. Chaque état absorbant représente un mode de défaillance (dans la fiabilité d'un système) ou la cause de mort d'un individu (dans le cadre d'analyse de survie). On exprime la probabilité qu'une défaillance apparaisse au temps donné en raison d'une cause spécifique. On donne la loi jointe de la durée de vie et de la cause de défaillance en utilisant la fonction de transition d'un processus semi-markovien en temps continu et en temps discret, respectivement. Quelques exemples sont donnés pour illustration.

Nous présentons également une méthode de résolution des équations de renouvellement markovien en temps continu, en se basant sur les algorithmes bien établis des équations correspondantes en temps discret. Le grand avantage tiré par cette approche est que la série infinie de la fonction de renouvellement, en temps continu, est remplacée, en temps discret, par une série finie. Des résultats pour l'estimation de l'erreur sont également établis. Pour illustrer cette approche nous proposons une Résumé viii application numérique concernant les cyber-attaques où les fonctions de transitions conditionnelles sont de lois de Weibull.

Mots clés. Processus semi-markovien, premier temps d'arrivée, théorème de la limite central, loi forte des grands nombres, théorème ergodique, fonction de renouvellement markovien, méthode de discrétisation, risques compétitives, analyse de survie.

Organisation de la thèse. La thèse est organisée comme suit: dans le chapitre 1 on présente une introduction aux processus de semi-Markov en temps continu et discret, on donne une bref description des principaux travaux où les propriétés des mots dans une séquence stochastique sont abordées et on présente la théorie classique des risques compétitives. Dans le chapitre 2, on calcule la loi du temps (position) de la première occurrence d'un mot à travers d'une séquence semi-markovienne, on présente également la variance de cette variable aléatoire. Dans le chapitre 3 on étend les résultats présentés au deuxième chapitre, et on donne le théorème de la limite centrale, la loi forte des grandes nombres et le théorème ergodique pour un sous-ensemble de mots tirés d'un alphabet fini. Dans le chapitre 4 on abord le sujet des risques compétitives à partir du point de vu des processus semi-markoviens. Dans le chapitre 5 on présente une méthode de discrétisation pour calculer les fonctions de renouvellement markovien au temps continu, et on donne quelques exemples numériques. Finalement dans le chapitre 6 on présente quelques générales conclusions et perspectives.

Chapter 1 Introduction

In this chapter we present the main models used and developed in the present thesis, as well the corresponding bibliography.

Semi-Markov models in continuous time

The most suited mathematical models for describing the stochastic behaviors of a system along time are based on stochastic processes. The most popular stochastic process to model a system is the Markov process. In the Markov theory, the systems have different states, the probability to go from one state to another only depends on the present state. The time spent by the system in each state has an exponential distribution function in a continuous time process (geometric distribution in a discrete sequence). In real life, this hypothesis not always holds true. This is the reason why semi-Markov processes fit better than the Markov hypothesis. They offer the possibility of any distribution function to model the sojourn time between states.

The Semi-Markov processes (SMPs) have an extensive history. They were simultaneously introduced by [START_REF] Levy | Processus semi-markoviens[END_REF], [START_REF] Smith | Regenerative stochastic processes[END_REF], and [START_REF] Takács | Some investigations concerning recurrent stochastic processes of a certain type[END_REF]. [START_REF] Feller | On semi-Markov processes[END_REF] generalized the classic renewal theory to semi-Markovian processes. Limit theorems were proposed by [START_REF] Yackel | Limit theorems for semi-Markov processes[END_REF], [START_REF] Grigorescu | Limit theorems for J-X processes with a general state space[END_REF], [START_REF] Athreya | Limit theorems for semi-Markov processes[END_REF], [START_REF] Nummelin | Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space[END_REF] and [START_REF] Malinovskii | Limit theorems for recurrent semi-Markov processes and Markov renewal processes[END_REF]. Other complementary theories were proposed by C ¸inlar [1969], [START_REF] Kaplan | Theorems of the invariance principle type for recurrent semi-Markov processes with arbitrary phase space[END_REF] and [START_REF] Shurenkov | Limit distributions of time averages for a semi-Markov process with finite number of states[END_REF]. These processes have been highly used by engineers in mechanics, informatics, communication, etc. SMPs offer the possibility of any distribution function to model the sojourn time between states. This is the main feature of SMPs in fact, a process which conserves the Markov hypothesis at jump points and where the sojourn time in a state can be modeled by any distribution function is a SMP. In the sequel we shall formally define continuous-time semi-Markov processes.

continuous-time semi-Markov framework

In this subsection, we shall introduce the basic definitions for continuous-time semi-Markov processes.

Consider a (finite) set, say E, and an E-valued jump stochastic process Z = (Z t ) t∈R + . Let 0 =: S 0 ≤ S 1 ≤ ... ≤ S n ≤ S n+1 ≤ ... be the jump times of Z, and J 0 , J 1 , J 2 , ... the successive visited states of Z at jump points. Let N := {0, 1, 2, ...} be the set of nonnegative integers. DEFINITION 1. [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]). The stochastic process (J n , S n ) n∈N is said to be a Markov renewal process (MRP), with state space E, if it satisfies almost sure (a.s.), the following equality P(J n+1 = j, S n+1 -S n ≤ t | J 0 , ..., J n ; S 1 , ..., S n ) = P(J n+1 = j, S n+1 -S n ≤ t | J n ) for all j ∈ E, all t ∈ R + and all n ∈ N.

We assume that the above probability is independent of n and S n . In this case the MRP is called time homogeneous. The MRP (J n , S n ) n∈N is determined by its transition kernel

Q ij (t) := P(J n+1 = j, S n+1 -S n ≤ t | J n = i) (1.1)
and its initial distribution α, where α(i) := P(J 0 = i), i ∈ E. It is worth noting here that Q ii (t) ≡ 0, for all i ∈ E.

Let us define also the counting process N (t), t ≥ 0, of the number of jumps, i.e., N (t) = sup{n ≥ 0 : S n ≤ t}.

(1.2)

The SMP Z is connected to (J n , S n ) n∈N by Z t = J N (t) , and J n = Z Sn , n ≥ 0.

Therefore (J n ) is called the embedded Markov chain (EMC) of process (Z t ).

The distribution function of the sojourn time in state i ∈ E is given by

H i (t) := j∈E Q ij (t), t ≥ 0.
It defines the distribution function of the sojourn time spent by (Z t ) in i ∈ E. Let F ij (t) := P(S n+1 -S n ≤ t | J n = i, J n+1 = j) be the conditional distribution function of the holding time in state i before visiting state j. Let

p ij := P(J n+1 = j | J n = i), i, j ∈ E, n ∈ N,
be the transition probability of the EMC (J n ). The semi-Markov kernel is also a function of the transition probability matrix of process (J n ), and the conditional distribution F ij (t) as we can observe in the following equation:

F ij (t) = P(S n+1 -S n ≤ t | J n+1 = j, J n = i) = Q ij (t) p ij , then Q ij (t) = p ij F ij (t).
Another important function is the semi-Markov transition function at continuous time P(t) = (P ij (t); i, j ∈ E, t ∈ R + ) defined by

P ij (t) := P(Z t = j | Z 0 = i), i, j ∈ E, t > 0, (1.3)
which is the conditional marginal law of the process. We shall study this function in the next subsection.

The mean sojourn time of Z in state i is denoted by m i . If the EMC (J n ) is ergodic, i.e., irreducible and positive recurrent, with stationary probability ν = (ν i , i ∈ E), and the mean sojourn time in every state is finite, i.e., for every i ∈ E,

m i := ∞ 0 (1 -H i (t))dt < ∞, and m := i∈E ν i m i > 0, m < ∞.
Therefore, it can be proved, see e.g., [START_REF] Limnios | Semi-Markov processes and reliability[END_REF], that

lim t→∞ P ij (t) = ν i m i m =: π i
where π is the stationary distribution of process Z.

It is worth noticing that, in general, the stationary distribution π of the SMP Z is not equal to the stationary distribution ν of the embedded Markov chain (J n ).

Backward and forward recurrence times processes in continuous time

Other processes of interest for the SMPs are the backward and forward recurrence time processes. In the following we shall introduce these important processes.

(Z t ) arrives to state κ. At time t the process (Z t ) has spend u times in κ therefore the value for the backward process at t is B t = u. The process (Z t ) will change its state at time S n+1 therefore, the value for the forward process at t is V t = v. We can notice that the total sojourn time in a state at time t is the sum between the backward and the forward recurrence time in a state. 

Nature of different states of a MRP

Let us now discuss the nature of different states of a MRP.

A MRP is irreducible, if and only if, its EMC (J n ) is irreducible.

A state i is recurrent (transient) in the MRP, if and only if, it is recurrent(transient) in the EMC.

For an irreducible finite MRP, a state i is positive recurrent in the MRP, if, and only if, it is recurrent in the EMC, and if for all j ∈ E, m j < ∞.

If the EMC of a MRP is irreducible and recurrent, then all the states are positive recurrent, if and only if, m := νm := i∈E ν i m i < ∞, and null-recurrent, if and only if, m = ∞ (where ν is the stationary probability of EMC (J n )).

A state i is said to be periodic with a > 0 if G ii (•) (the distribution function of the random variable S i 2 -S i 1 ) is discrete concentrated on {ka : k ∈ N}, where process (S i n ) n≥0 represents the successive times of visit to state i. Such a distribution is said to be periodic. In the opposite case it is called aperiodic. We can notice that the term period has a completely different meaning from the corresponding one of the classic Markov chain theory.

Continuous time Markov renewal theory

In the following, we shall define the Markov renewal equations (MREs) and give some elements of the Markov renewal theory.

Let us consider a real-valued measurable function ϕ : E × R + -→ R + , and define its Stieltjes' convolution by Q(t) as follows

Q * ϕ(i, t) = k∈E t 0 Q ik (ds)φ(k, t -s), (1.4) 
see Limnios [2012b]. Now, for any i, j ∈ E the n-fold Stieltjes' convolution of Q ij (t) by itself is

Q (n) ij (t) =    δ ij if n = 0, Q ij (t) if n = 1, k∈E t 0 Q ik (ds)Q (n-1) kj (t -s) if n ≥ 2.
We can observe that we have also the following fundamental equality

Q (n) ij (t) = P i (J n = j, S n ≤ t),
see e.g., [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]. Here P i means the conditional probability on the event {Z 0 = i}.

Let us define the Markov renewal function ψ ij (t), i, j ∈ E, t ≥ 0, by

ψ i,j (t) := E i ∞ n=0 1 {Jn=j,Sn≤t} = ∞ n=0 P i (J n = j, S n ≤ t) = ∞ n=0 Q (n) ij (t),
(1.5) we can observe that E i means the conditional expected value on the event {Z 0 = i}.

Let us write the Markov renewal function, see Equation (1.5), in matrix form

ψ(t) = (I(t) -Q(t)) (-1) = ∞ n=0 Q (n) (t), (1.6)
where the notation A (-1) means the inverse matrix function in the convolution sense. This can also be written as

ψ(t) = I(t) + Q * ψ(t), (1.7) 
where I(t) = I, is the identity matrix for t ≥ 0 and I(t) = 0, for t < 0. Equation (1.7) is a special case of a MRE. A general MRE is as follows

Θ(t) = L(t) + Q * Θ(t),
where Θ(t) = (Θ ij (t)) i,j∈E , L(t) = (L ij (t)) i,j∈E are matrix-valued measurable functions, with Θ ij (t) = L ij (t) = 0 for t < 0. The function L(t) is a given matrix-valued function and Θ(t) is an unknown matrix-valued function.

PROPOSITION 1. [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]). The transition function P (t) = (P ij (t); i, j ∈ E, t ∈ R + ) satisfies the following MRE

P (t) = I(t) -H(t) + Q * P (t), (1.8)
where

H(t) = diag(H i (t)) is a diagonal matrix. Last Equation (1.8) has the unique solution P (t) = ψ * (I(t) -H(t)).
In the next subsection, we shall give the equivalent definition for a discrete time SMP.

Discrete time semi-Markov processes

There are some processes which are observed in fixed periods of time. For instance, the profit of a company in a month, the number of car accidents per week, the number of infections of a certain disease per semester. These processes can be considered like stochastic processes at discrete-time. i.e., if the events are modeled by a stochastic process Z k , they will be observed at discrete time points k = 0, 1, 2, .... In the semi-Markov domain many authors have proposed these kind of models for different applications, see e.g., Janssen [2013], [START_REF] Ross | Applied probability models with optimization applications[END_REF], [START_REF] Rachelson | A simulation-based approach for solving generalized semi-Markov decision processes[END_REF], [START_REF] Limnios | Semi-Markov processes and reliability[END_REF], etc. In this thesis we are specially interested in modeling DNA sequences, where every nucleotide in the DNA can be considered as a time unit. Before presenting this model in next subsection, we shall introduce the basic definitions for the semi-Markov chains.

Semi-Markov framework at discrete time

Let us formally define discrete time SMPes (as we have written before, we shall use the term chain for a discrete-time stochastic process). Let us consider a random system (Z k ) k∈N with finite state space E = {1, 2, ..., s}. Let us denote by (S n ) n∈N the successive time points when a state changes in (Z k ), i.e., by definition let S 0 := 0, and

S n+1 := inf{k > S n : Z k = Z Sn }, n ≥ 0,
with the convention inf Ø = +∞. Process (S n ) is also called renewal points or jump points of process (Z k ). Let (J n ) n∈N be the chain which records (Z k ) at points (S n ), i.e., J n = Z Sn . Let (X n ) n∈N be the successive sojourn times in the visited states. By convention X 0 := S 0 := 0 and X n+1 := S n+1 -S n , n ∈ N. The relation between process (Z k ) and process (J k ) is given by

Z k = J N (k) , or equivalently, J n = Z Sn , n, k ∈ N,
where N (k) := max{n ∈ N : S n ≤ k} is the counting process of the number of jumps in [1, k] ⊂ N. If the following relation holds true a.s.

P(J n+1 = j, S n+1 -S n = k | J 0 = •, ..., J n = i; S 0 = •, ..., S n = •) = P(J n+1 = j, S n+1 -S n = k | J n = i).
(1.9)

The process (J n , S n ) is called the Markov renewal chain (MRC) of process (Z k ). In other words, if process (Z k ) has entered to state i ∈ E at its last jump n ∈ N, the probability that the process passes k ∈ N units of time in i ∈ E, after passing to state j ∈ E, is independent of process up to the nth jump. In other words, we basically have the Markovian property with the difference that the memoryless property does not act on the calendar points k. The memoryless property acts at visited states (J 0 , J 1 , ..., J n , J n+1 , ...). This is what we called before as a more flexible Markovian hypothesis. Noticing that we use index k ∈ N for the calendar time, and index n ∈ N for the number of jumps of (Z k ). Therefore if Equation (1.9) holds true, then (Z k ) is called semi-Markov chain (SMC). Moreover, if the rigth-hand-side term of Equation (1.9) is independent of n, then (Z k ) and (J n , S n ) are said to be (time homogeneous) and we define the discrete-time semi-Markov kernel q = (q ij (k); i, j ∈ E, k ∈ N) by

q ij (k) := P(J n+1 = j, S n+1 -S n = k | J n = i), n ≥ 0, k ∈ N.
(1.10)

The semi-Markov kernel satisfies the following three properties:

1. 0 ≤ q ij (k), i, j ∈ E, k ∈ N, 2. q ij (0) = 0, i, j ∈ E, 3. ∞ k=0 j∈E q ij (k) = 1, i ∈ E.
The semi Markov chain is defined by its semi-Markov kernel and its initial distribution α(i)

:= P(Z 0 = i) = P(J 0 = i), i ∈ E.
We define the cumulative semi-Markov kernel by

Q ij (k) := P(J n+1 = j, X n+1 ≤ k | J n = i) = k l=0 q ij (l), i, j ∈ E, k ∈ N.
It is worth noticing that the semi-Markov kernel considered here is independent of n, which means that the SMC is homogeneous in time. If semi-Markov kernel is time homogeneous then (J n ) is an homogeneous Markov chain. We denote by p = (p ij ) i,j∈E its transition probability matrix, i.e.,

p ij := P(J n+1 = j | J n = i), i, j ∈ E, n ∈ N.
(1.11)

We do not allow transitions to the same state, i.e., p ii = 0 for any i ∈ E. Note that p ij can be expressed in terms of the semi-Markov kernel by

p ij = ∞ k=0 q ij (k). Let us denote by f ij (k) = P(X n+1 = k | J n = i, J n+1 = j) (1.12)
the conditional sojourn time distribution, conditioned by the next state to be visited. We want the chain spends at least one time unit in a state, that is, f ij (0) = 0, for any states i, j ∈ E. Obviously, for any states i, j ∈ E and non-negative integer k we have

q ij (k) = p ij f ij (k).
The sojourn time distribution in state i is

h i (k) := P(X n+1 = k | J n = i) = j∈E q ij (k), k ∈ N.
The cumulative distribution function of sojourn time in state i ∈ E is

H i (k) := P(X n+1 ≤ k | J n = i) = k l=0 h i (k), k ∈ N. (1.13)
The conditional cumulative distribution of the waiting time X n+1 , n ∈ N, is

F ij (k) := P(X n+1 ≤ k | J n = i, J n+1 = j) = Q ij (k) p ij , if p ij = 0, 1 ∞ (k), if p ij = 0.
(1.14) DEFINITION 3. (Garcia-Maya et al. [Submitted in 2020]). For any i ∈ E the smallest subset C i in N such that

k∈C i h i (k) = 1,
is the support of h i . By consequence

r i := sup C i . (1.15)
is the maximum sojourn time in state i.

Other important quantity for investigating the evolution of SMCs is the probability that starting from state i ∈ E at time zero, the SMC will do the nth jump at time k to state j, i.e.,

P(J n = j, S n = k | J 0 = i), i, j ∈ E; k, n ∈ N.
(1.16)

After giving an expression for this last probability, we shall introduce the definition of the convolution between two functions. Let ϕ(i, k), i, j ∈ E, k ∈ N, be a measurable function and define the convolution of ϕ by q as

(q * ϕ) ij (k) := r∈E k l=0 q ir (l)φ rj (k -l).
The n-fold convolution of q by itself is defined recursively by

q (0) ij (k) := δ ij 1 {k=0} , q (1) ij (k) := q ij (k), and 
q (n) ij (k) := r∈E k l=0 q ir (l)q (n-1) rj (k -l), n ≥ 2.
The following proposition computes an expression for probability Equation (1.16)

PROPOSITION 2. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). For all i, j ∈ E, for all n, k ∈ N, we have

P(J n = j, S n = k | J 0 = i) = q
Obviously, for k = 0 or i = j, this probability is zero. On the other hand, if i = j and k = 0, the probability is one, thus the result follows.

For n = 1, the result obviously holds true, by definition.

For n ≥ 2

P(J n = j, S n = k | J 0 = i) = r∈E k-1 l=1 P(J n = j, S n = k, J 1 = r, S 1 = l | J 0 = i) = r∈E k-1 l=1 P(J n = j, S n = k | J 1 = r, S 1 = l, J 0 = i)P(J 1 = r, S 1 = l | J 0 = i) = r∈E k-1 l=1 P(J n-1 = j, S n-1 = k -l | J 0 = r)P(J 1 = r, X 1 = l | J 0 = i) = r∈E k-1 l=1 q (n-1) rj (k -l)q ir (l) = q (n) ij (k).
As a direct application of the previous proposition, we have the following lemma.

LEMMA 1. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). Let M E be the set of real matrices on E × E and let M E (N) be the set of real matrices on E × E which evolves in a discrete time k ∈ N. Let us consider the Markov renewal chain (J n , S n ) n∈N and q ∈ M E (N) its associated semi-Markov kernel. Then, for all n, k ∈ N such that n ≥ k + 1 we have q (n) (k) = 0.

Proof. It is clear that the jump time process (S n ) n∈N verifies the relation S n ≥ n, n ∈ N. Writting Equation (1.17) for n and k ∈ N such that n ≥ k + 1, we obtain the desired result.

Discrete time backward and forward recurrence times processes

Now, let (B k ) be the backward recurrence times process for the SMC (Z k ) (also called the current life or age), defined by

B k := k -max{S m : S m ≤ k} and B k := k if S 1 > k. (1.18)
In essence, the backward time at position k is the number of steps spent in state Z k since the last jump. Notice that, if k coincides with a renewal point, the value of B k is zero. After a renewal point, B k grows one by one until another renewal point, and so on. Let r i be the maximum sojourn time in state i, see Equation (1.15), then the maximum value for the backward time in state i ∈ E, is

l i := r i -1. (1.19)
Let (V k ) be the forward recurrence time of the SMC (Z k ) (also called the residual or excess lifetime), defined by

V k := S N (k)+1 -k
In essence, the forward time at position k is the number of steps the sequence (Z k ) will spend in state Z k until next jump.

Classification for states in SMC

Until this point we are prepared to define the basic characteristics of the associated Markov renewal chain (MRC) (J n , S n ): communication between classes, transitivity, recurrence and periodicity. After introducing these points we shall define the first passage time in state j ∈ E.

For any j ∈ E, let

S j 0 := inf{k ∈ N * : J N (k) = j} (1.20)
be a random variable which represents the first hitting time of state j.

We consider v ij (•) its distribution function i.e.,

v ij (k) := P i (S j 0 = k), k ≥ 1. (1.21) We set V ij (k) := k =1 v ij (
) for the corresponding cumulative distribution function and µ ij for the mean first passage time from state i to state j for the SMC (Z k ), i.e., ) represents the return time to state i. Observe that the sojourn time in state i ∈ E is also a random variable, we shall define its mean by

µ ij := E i (S j 0 ) = k>0 v ij (k). Observe that if i = j, v ii (•
m i := E[S 1 | J 0 = i] = k≥0 (1 -H i (k)).
(1.22)

We shall give the classification for states in SMC (Z k ). For this purpose, note that V ij (∞) is the probability that the SMC will go from state i to j at some k ∈ N. If V ij (∞) = 0 that means that there is zero probability that the SMC will arrive at state j starting from i. Using this two remarks for V ij (•) we have the following definition.

elements which communicates between them belongs to the same communication class. All classes are closed.

2. The SMC (MRC) is said to be irreducible if there is only one class.

3. A state i is said to be recurrent if V ij (∞) = 1 and transient if V ii (∞) < 1. A recurrent state i is positive recurrent if µ ij < ∞ and null recurrent if µ ii = ∞.
If all the states are (positive/null) recurrent, the SMC (MRC) is said to be (positive/null) recurrent.

4. The SMC (MRC) is said to be ergodic if it is irreducible and positive recurrent.

5. Let d > 1 be a positive integer. A state i ∈ E is said to be d-periodic (aperiodic) if the distribution v ij (•) is d-periodic (aperiodic).
6. The SMC is d-periodic, d > 1, if all states are d-periodic. Otherwise, it is called aperiodic.

We can also define the limit distribution of a SMC DEFINITION 5. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). For a SMC (Z k ) k∈N , the limit distribution π = (π 1 , ..., π |E| ) T is defined, when it exits, by π j = lim k→∞ P ij (k), for every i, j ∈ E.

Note that in the case where the EMC (J n ) is ergodic (recurrent positive, irreducible and aperiodic), for any state i ∈ E we have the following relation between the mean recurrence time of i in the Markov chain (J n ) denoted by µ * ii and the stationary distribution

µ * ii = 1 ν(i) ,
see [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF].

Discrete-time Markov renewal theory

In this section, we shall study Markov Renewal Equations (MRE). Our objective is to investigate the existence and the uniqueness of solution for this type of equations.

We also find an explicit form of the transition function P of the SMC (Z k ), written in terms of the semi-Markov kernel q. First we shall present some important results in the sense of the convolution functions.

DEFINITION 6. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). Let A ∈ M E (N) be a matrix function.

If there exist a matrix function B ∈ M E (N) such that

B * A = I (1.23)
then B is called the left inverse of A, in the convolution sense, and it is denoted by B = A (-1) .

The left inverse of a matrix not always exists, next proposition gives the necessary conditions to guarantee its existence.

PROPOSITION 3. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). The left inverse of a matrix A ∈ M E (N) exists and is unique iff detA(0) = 0. If we denoted by B the partial inverse of A, i.e., B = A (-1) ∈ M E (N). The partial inverse is given by the recursive formula

B(n) = [A(0)] -1 if n = 0, -( n-1 l=0 B(l)A(n -l))[A(0)] -1 if n ≥ 1.
(1.24)

Proof. To compute the left inverse of A we have to solve Equation (1.23), where

B ∈ M E (N) is an unknown matrix function. Equation (1.23) is equivalent to n l=0 B(n -l)A(l) = I(n), n ∈ N,
where for n = 0 we have B(0)A(0) = I(0) = I, which holds iff A(0) is invertible. Therefore B(0) = [A(0)] -1 and for n > 1 we have

n l=0 B(n -l)A(l) = I(n) = 0, which yields B(n) = - n-1 l=0 B(l)A(n -l) [A(0)] -1 .
Let us write the Markov renewal function (MRF)

ψ(k) := (I -q) (-1) (k), (1.25)
where I is the identity matrix of dimension |E| × |E|. The following result provides the mathematical expression of ψ(k).

PROPOSITION 4. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). The matrix-valued function ψ = (ψ(k); k ∈ N) is given by

ψ(k) = k n=0 q (n) (k), k ∈ N.
(1.26)

Proof. Applying Proposition 3, we obtain that the left inverse of the matrix-valued function (I -q) exist and is unique.

For all n, k ∈ N, we have

∞ n=0 q (n) * (I -q)(k) = ∞ n=0 q (n) (k) - ∞ n=0 q (n) * q(k) = ∞ l=0 q (l) (k) - ∞ l=1 q (l) (k) = q (0) (k) = I(k).
(1.27)

As the left inverse of (I -q)(k) is unique, see Proposition 3, we obtain that

ψ(k) = ∞ n=0 q (n) (k).
Applying Lemma 1, we have q (n) (k) = 0, for n > k hence we obtain that ψ is given by

ψ(k) = k n=0 q (n) (k).
(1.28)

We would like to obtain another expression for ψ. For any states i, j ∈ E (not necessary distinct) and any positive integer k ∈ N, from Proposition 2 and Lemma 1 we get

ψ i,j (k) = P k n=0 {J n = j, S n = k} | J 0 = i ≤ 1.
In other words, ψ i,j (k) represents the probability that starting at time 0 in state i ∈ E, the SMC will do a jump to state j at time k.

Using ψ i,j (k) the following proposition computes the probability that SMP (Z k ) stays in state j ∈ E at time k ∈ N with backward time u knowing that it started at initial time in state i ∈ E.

PROPOSITION 5. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). For all i, j ∈ E and k ∈ N we have

P i (Z k = j, B k = u) = [1 -H j (u)]ψ i,j (k -u), for u = 0, 1, ..., k 0 elsewhere therefore P(Z k = j, B k = u) = ψ •j (k -u)[1 -H j (u)].
Proof. For all u = 0, 1, ..., k we have

P i (Z k = j, B k = u) = k-u n=0 P(J n = j, S n = k -u, S n+1 > k | J 0 = i) = k-u n=0 P(S n+1 > k | J n = j, S n = k -u, J 0 = i) •P(J n = j, S n = k -u | J 0 = i) = k-u n=0 P(S n+1 -S n > u | J n = j)P(J n = j, S n = k -u | J 0 = i) = [1 -H j (u)]ψ i,j (k -u).
The chain (Z k , B k ) k∈N is a Markov chain with state E × N, see e.g., [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]. The following theorem provides its transition probability matrix.

THEOREM 1. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). For every i, j ∈ E and k ∈ N such that P(Z k = i, B k = u) > 0 the transition probability matrix of the Markov chain u) , if u = u + 1 and i = j 0, elsewhere.

(Z k , B k ) k∈N is P(Z k+1 = j, B k+1 = u | Z k = i, B k = u) =      q ij (u+1) 1-H i (u) , if u = 0 and i = j 1-H i (u+1) 1-H i (
Proof. see [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF].

Another point of interest, strictly related to ψ, it is the Markov renewal function, defined as the expected number of visits to a certain state, up to a given time. More precisely, we have the following definition.

DEFINITION 7. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). Markov Renewal Function (MRF).

Let us define the Markov renewal function

Ψ = (Ψ i,j (k), i, j ∈ E, k ≥ 0) by Ψ i,j (k) := E i [N * j (k)], i, j ∈ E, k ∈ N,
where N * j (k) is the number of visits of (Z k ) to state j ∈ E in the interval [0, k]. To be specif,

N * j (k) := N (k) n=0 1 {Jn=j} = k n=0 {J n = j, S n ≤ k}.
It is easy to see that the Markov renewal function can be expressed as follows:

Ψ(k) = k l=0 ψ(l).
(1.29) Indeed, we have

Ψ i,j (k) := E i [N * j (k)] = E i k n=0 1 {Jn=j,Sn≤k} = k n=0 P(J n = j, S n ≤ k | J 0 = i) = k n=0 k l=0 P(J n = j; S n = l | J 0 = i) = k l=0 k n=0 q (n) ij (l)
From Lemma 1 we know that q

(n) ij (l) = 0 for n > l and we get

Ψ i,j (k) = k l=0 l n=0 q (n) ij (l) = k l=0 ψ(l). Remark. One can check that a state is recurrent iff Ψ(∞) = ∞ and transient iff Ψ(∞) < ∞.
DEFINITION 8. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). Discrete-time Markov renewal equation.

Let L = (L ij (k); i, j ∈ E, k ∈ N) ∈ M E (N) be an unknown matrix-valued function and G = (G ij (k); i, j ∈ E, k ∈ N) ∈ M E (N) be a known matrix-valued function. The equation L(k) = G(k) + q * L(k), k ∈ N, (1.30)
is called a discrete-time Markov renewal equation (DTMRE).

In the sequel, we shall see that ψ and Ψ are solutions of MRE. With the above definition, we shall compute an easy expression for P(k), see Equation (1.37). Observing

Equation (1.27) it is clear that (I -q) * ψ(k) = I(k), so ψ = (ψ(k); k ∈ N) is the solution of the MRE ψ(k) = I(k) + q * ψ(k), k ∈ N. (1.31)
Second, writing the previous equation for k ∈ N, 0 < k < ν, ν ∈ N fixed, and taking the sum, we obtain .32) This means that the matrix renewal function Ψ = (Ψ(k); k ∈ N) is the solution of the MRE Ψ(ν) = I + q * Ψ(ν), ν ∈ N.

ν k=0 ψ(k) = ν k=0 I(k) + ν k=0 q * ψ(k). ( 1 
(1.33)

The next theorem shows that DTMRE, see definition (8), has a unique solution.

THEOREM 2. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). The DTMRE, see Equation (1.30), has a unique solution

L = (L ij (k); i, j ∈ E, k ∈ N) ∈ M E (N),
where

L(k) = ψ * G(k).
Proof. By Equation (1.30), for k ∈ N

L(k) = G(k) + q * L (I -q) * L(k) = G(k) L(k) = (I -q) (-1) * G(k).
Therefore by definition of ψ, see Equation (1.25), we have

L(k) = ψ * G(k).
(1.34)

Then, we show that ψ * G(k) is the unique solution of the renewal equation. Let L be another solution of Equation (1.30). We obtain

(L -L )(k) = q (n) * (L -L )(k), k ∈ N, (1.35)
with n an arbitrary positive integer. Taking n > k in Equation (1.30) and recalling that q (n) (k) = 0 for n > k, see Lemma 1, we get L(k) = L (k), k ∈ N.

DEFINITION 9. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). The transition function of the SMC (Z k ) is the matrix-valued function P = (P i,j (k); i, j ∈ E, k ∈ N) ∈ M E (N) defined by

P ij (k) := P(Z k = j | Z 0 = i), i, j ∈ E, k ∈ N.
The following result consists in a recursive formula for computing the transition function P of the SMC (Z k ) which is an example of a MRE.

PROPOSITION 6. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]). For all i, j ∈ E and for all k ∈ N, we have 

P ij (k) = [1 -H i (k)]δ ij + r∈E k l=0 q ir (l)P rj (k -l), ( 
P(k) = (I -H)(k) + q * P(k), k ∈ N.
(1.37)

Proof. For all i, j ∈ E and for all k ∈ N, we have

P ij (k) = P(Z k = j | Z 0 = i) = P(Z k = j, S 1 > k | Z 0 = i) + P(Z k = j, S 1 ≤ k | Z 0 = i) = (1 -H i (k))δ ij + r∈E k l=0 P(Z k = j, Z S 1 = r, S 1 = l | Z 0 = i) = (1 -H i (k))δ ij + r∈E k l=0 P(Z k = j | Z S 1 = r, S 1 = l, Z 0 = i)P(J 1 = r, S 1 = l | J 0 = i) = (1 -H i (k))δ ij + r∈E k l=0 P(Z k-l = j | Z 0 = r)P(J 1 = r, X 1 = l | J 0 = i) = (1 -H i (k))δ ij + r∈E k l=0 P rj (k -l)q ir (l).
Observe the last equation is a DTMRE, see Definition 8, where L(k) = P(k) and G(k) = (I -H), therefore by Theorem 2 we have

P(k) = ψ * (I -H)(k) = (δI -q) (-1) * (I -H(k)), k ∈ N.

Construction of the Estimators

Let us consider an estimator for the semi-Markov kernel q ij (k), see Equation (1.10); the conditional sojourn time distribution f ij (k), see Equation (1.12); and the transition probability p ij , see Equation (1.11). Let M ∈ N * be a fixed arbitrary time and N (M ) the discrete-time counting process of the number of jumps in [1, M ]. For any states i, j ∈ E and positive integer k ∈ N, k ≤ M , we define the following empirical estimators .40) where N ij (k, M ) is the number of transitions of the EMC from i to j, up to time M , with sojourn time in state i equal to k, 1 ≤ k ≤ M , i.e.,

pij (M ) := N ij (M ) N i (M ) , (1.38) fij (k, M ) := N ij (k, M ) N ij (M ) , (1.39) qij (k, M ) := N ij (k, M ) N i (M ) , ( 1 
N ij (k, M ) := N (M ) n=1 1 {J n-1 =i,Jn=j,Xn=k} = M n=1 1 {J n-1 =i,Jn=j,Xn=k,Sn≤M } . Therefore N ij (M ) := M k=1 N ij (k, M ) and N i (M ) := j∈E N ij (M ).
Note that the proposed estimators are natural estimators. For instance, the probability p ij that the system goes from state i to state j is estimated by the number of transitions from state i to j, up to time M divided by the total number of transitions from state i to any state j up to time M . Estimators (1.38), (1.39) and (1.40) verify nice asymptotic properties as consistency and asymptotic normality, see [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF].

Properties of words through a sequence

Looking for a specific word (pattern or motif) through a sequence of symbols is useful in many areas. For instance, in digital transactions lots of patterns have to be compared and identified to make possible a particular operation, see e.g., [START_REF] Jungck | Identification of patterns in stateful transactions[END_REF], de Haan and Rotmans [2011], [START_REF] Jansen | Patterns and transitions of query reformulation during web searching[END_REF]; in web navigation identification of patterns is useful for determining particular behaviors in web customers see e.g., [START_REF] Papadopoulou | Some results on modeling biological sequences and web navigation with a semi Markov chain[END_REF], [START_REF] Bobbitt | Dynamics of social interactive behavior: A computerized procedure for analyzing trends, patterns, and sequences[END_REF], [START_REF] Paraskevopoulos | Identification and characterization of human behavior patterns from mobile phone data. D4D Challenge session[END_REF]; in communications, identifying a particular pattern is useful to mediate the spread of information see e.g., [START_REF] Jaffe | Gender identification, interdependence, and pseudonyms in cmc: Language patterns in an electronic conference[END_REF], [START_REF] Bailey | Identifying patterns of communication in patients attending memory clinics: a systematic review of observations and signs with potential diagnostic utility[END_REF]; in databases it could be the keyword for certain research see e.g., [START_REF] Pederson | Intelligent observation and identification database system[END_REF]; in biology a word can determine a particular instruction for a given biology function, or it can be the responsible for a particular illness see e.g., [START_REF] Willett | Searching for pharmacophoric patterns in databases of three-dimensional chemical structures[END_REF], [START_REF] Farré | Identification of patterns in biological sequences at the alggen server: Promo and malgen[END_REF], [START_REF] Kitano | Computational systems biology[END_REF], etc. In one hand, searching a particular word over a chain formed by a big quantity of symbols is a very cumbersome task and in most cases it can not be achieved by simple inspection. In the other hand, it is of interest to know general properties of words in a sequence, i.e., frequency, mean number of words, mean number of symbols between two successive words, etc. There are different approaches to study the searching problem, for instance one of them is using probabilistic models.

In probabilistic models the efficiency and precision depend chiefly on the kind of dependency between symbols. For example independently and identically distributed Bernoulli trials or Markovian sequences. Whatever be the distribution of symbols in a stochastic sequence, there are different techniques to study the searching problem, for instance some algorithms propose an automatic treatment. To mention one of them, in the article [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF], the authors computed the probability of the first hitting time of a word in a binary alphabet using a finite deterministic automata. In the following we shall describe this model. [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF] used a binary alphabet A = {a, b}. Any infinite sequence formed by the elements of A is denoted by X = A N . In this article, the authors considered the symbols in the sequence to be independent and identically distributed (i.i.d.) Bernoulli trials. They searched the word w = abaabab. To achieve their goal, the authors used the prefixes of the word which consist in writing the word symbol by symbol from its first letter until the word is completed, i.e., the prefixes set is {a, ab, aba, abaa, abaab, abaaba, abaabab}. The idea of computing the first hitting time of the word in the sequence of symbols X is to embed a Markov prefix sequence through the sequence of symbols. To arrive until this point they used a deterministic finite automata, which is defined as follows DEFINITION 10. [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF]). Deterministic finite automata We call a deterministic finite automata (DFA) a five tuple (A, Q, s, F, δ) where 1. A is a finite set of symbols (in particular cases A is a finite alphabet), 2. Q is a finite set of states, 3. s ∈ Q is an initial state, 4. F ⊂ Q is a non empty set of final or accepted states, 5. δ : Q × A → Q is a transition function that takes like an input a state and a symbol and returns a state.

For every sequence of symbols

X = a 1 a 2 • • • a d ∈ A d , d ≥ 2 and q ∈ Q, we recursively define δ(q, a 1 a 2 • • • a d ) = δ(δ(q, a 1 • • • a d-1 ), a d ). A word w = w 1 • • • w h is accepted (or recognized) by a DFA if δ(s, w) ∈ F.
The set of all words accepted by a DFA is called its language. [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF] worked with a DFA: (A, Q, s, F, δ), where they make the following considerations Considerations for a DFA 1.

1. A is the alphabet. For this particular work A = {a, b}, 2. Q is the prefix set. For this particular work Q = {ε = 1, a = 2, ab = 3, aba = 4, abaa = 5, abaab = 6, abaaba = 7, abaabab = 8}. The prefixes are enumerated to make the distinction between a simple letter and a prefix, where the symbol ε is used in case of non one of the symbols a, ab, aba, abaa, abaab, abaaba, abaabab appear in the sequence X, 3. s = ε is the initial state, 4. F = {w} is the final state, 5. the function δ : Q × A → Q is defined as the longest prefix that can be formed with the concatenation between a symbol and a prefix. In [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF] it is shown that even if the sequences of letters X is formed by i.i.d. Bernoulli trails, the sequence of prefixes is a Markov sequence where the probability to pass from prefix q to prefix q is the probability to pass from the last letter of q to the last letter of q , if there is a ∈ A such that δ(q, a) = q . In other words, if

X = X 1 X 2 • • • X i • • • is an i.i.d. sequence formed by the elements of A, then the sequence Y = Y 0 Y 1 • • • Y i defined by Y 0 = s and Y i = δ(Y i-1 , X i ), i ≥ 1
is a Markov chain with transition matrix

P(p, p ) = P(X 1 = a) if δ(p, a) = p , 0 if p / ∈ δ(p, A).
Therefore the transition matrix has the expression

P =            
1 2 3 4 5 6 7 8 1 q p 0 0 0 0 0 0 2 0 q p 0 0 0 0 0 3 q 0 0 p 0 0 0 0 4 0 0 q 0 p 0 0 0 5 0 q 0 0 0 p 0 0 6 q 0 0 0 0 0 p 0 7 0 0 0 0 q 0 0 p 8 0 0 0 0 0 0 0 1

           
where the letter p denotes the probability to have a success. Of course we can notice that p + q = 1. It is not difficult to see that the time to absorption at state eight can be viewed as the waiting time until reaching the word abaabab in an independent Bernoulli trial. The authors define the time to abortion in state eight as follows

τ := inf{n ∈ N : X n = 8}.
(1.41) In the model described above we can observe that Crochemore and Stefanovc computed in an easy way the first hitting time of a word in a sequences of letters. Nevertheless they considered a binary alphabet and they used the hypothesis that the sequence of letters is modeled by i.i.d. Bernoulli trails, but in most of real applications this hypothesis does not hold true. For this reason [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF], proposed a mathematical model where the sequence of symbols is modeled by a semi-Markov sequence. In this work, for v, h ∈ N, the authors consider a finite set of words W = {w 1 , w 2 , ..., w v } of equal length h. They focus on the waiting time for the first word occurrence from set W through a semi-Markov sequence (Z k ). The corresponding probability distribution as well as the mean waiting time and the variance were obtained. In the following we shall describe some details of this last work. [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF] consider a semi-Markov sequence (Z k ) k∈N with EMC (J n , S n ) n∈N and semi-Markov kernel q = (q ij (k); i, j ∈ A, k ∈ N) where the alphabet

A := {a 1 , a 2 , ..., a l }, l ≥ 2, is the state space of SMC (Z k ). They take into account that if (Z k ) is a semi-Markov sequence therefore the chain (Z k , B k ) is a Markov chain (MC) with transition probability matrix p, i.e., p((i, u), (j, v)) := P(Z k+1 = j, B k+1 = v | Z k = i, B k = u)
where

P(Z k+1 = j, B k+1 = v | Z k = i, B k = u) =      q ij (u+1) 1-H i (u) if i = j and v = 0, 1-H i (u+1) 1-H i (u) if i = j and v = u + 1, 0 elsewhere.
see Proposition 5. In this article the authors proposed an h-dimensional Markov process (Z k , B k ) k∈N , where Z k := (Z k , .., Z k+h-1 ) and B k := (B k , ..., B k+h-1 ) to compute the first hitting time of words taken form a subset W ⊂ A h where A h represents the set of all words of size h formed by the letters in the alphabet A. For every z j ∈ A h , let K j be a subset of A h × N h where

K j := {(z j , b) ∈ A h × N : p((a z j 1 , b 1 ), (a z j 2 , b 2 )) • • • p((a z j h-1 , b h-1 ), (a z j h , b h )) > 0}.
In other words, the set K j represents the word zj and all possible backwards time for each letter in the word. Clearly for all i, j = 1, ..., l we have,

K i ∩ i =j K j = Ø.
Therefore the set which contains all words of size h and the corresponding backward time for each word is denoted by

K := l j=1 K j , this is the state space of MC (Z k , B k ). It can be noticed that K ⊂ A h × N h . The initial distribution of MC (Z k , B k ) k∈N is a function of Markov discrete process (Z k , B k ).
This initial distribution is denoted by α and has the following expression

α(z, b) = [P((Z 0 , B 0 ) = (a z 1 , u 1 ))]• p((a z 1 , b 1 ), (a z 2 , b 2 )) • • • p((a z h-1 , b h-1 ), (a z h , b h )).
where

z = a z 1 a z 2 • • • a z h and b = b 1 b 2 • • • b h . The transition probability of MC (Z k , B k ) is given by P ((z i , b), (z j , b )) = p((a z i h , b h ), (a z j h , b h )) • 1 {a z j s =a z i s+1 ;s=1,...,h-1} • 1 {b s =b s+1 ;s=1,...,h-1} .
It will be said that w

= w 1 w 2 • • • w h occurs at time k in the sequence (Z k ) if and only if Z k-h+1 = w 1 , ..., Z k = w h , i.e., Z k-h+1 = w. Let T W := min{k ≥ 0 : (Z k-h+1 , B k-h+1) = (w j ,
•), w j ∈ W} be the random variable which determines the first hitting time of an element w j ∈ W in the sequence (Z k , B k ). To give the law, the expected value and the variance of the random variable T W the authors proposed a partition of the state space K according with the elements in W. Let K W := w j ∈W K j be the elements in K which contains an element from W.

Now, the probability function, the mean and the variance of T W can be computed .

PROPOSITION 7. [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF]). The hitting time to W is given by

P(T W = k) =    0 for k < h -1, α K W • 1 |K W | k = h -1, α K c W • ( PK W c K c W ) k-h PK c W K W • 1 |K c W | for k ≥ h,
its mean waiting time is

E(T W ) = h -1 + α K c W • (I -PK c W K c W ) -1 1 |K c W | , and its variance Var(T W ) = P K c W •[2(I-P K c W K c W ) -1 -I](I-P K c W K c W ) -1 1 |K c W | -[ P K c W (I-P K c W K c W ) -1 1 |K c W | ] 2 , where the set K c W = K \ K W are the elements in K which do not contain an element from W, the vector 1 |K c W | is a column vector of ones with dimension the cardinal of K c W , the initial distribution α = (α K c W , α K W ) is the initial distribution of process (Z k , B k ), where α K c W represents the initial distribution of states i ∈ K c W and α K W represents the initial distribution of states i ∈ K W , matrix PK c W K c W is the restriction of matrix P on K c W × K c W . Since K c
W is a proper subset of the state space K of an irreducible and aperiodic Markov chain (Z k , B k ) the matrix (I -P K c

WK c W

) -1 exists.

The inconvenience with the model proposed by Chryssaphinou et al. is its implementation. If the length of the sequence of symbols is huge, it is almost impossible to compute the transition matrix P . In this thesis we shall improve this part. But identifying a word through a sequence of symbols is not the only point in which we are interested. It is well know that words are not always uniformly distributed through a random sequence, some words are more frequent than others. Therefore we are also interested in identifying how many times a word appears through a random sequence, i.e., we are interested in the frequency of a word. Statistical distribution of word counts in a Markovian sequence of letters, see [START_REF] Schbath | An overview on the distribution of word counts in Markov chains[END_REF], and optimal Markov chain embedding through deterministic finite automata, see [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF], are used to compute the frequency. In the following we shall describe these two last mentioned works. [START_REF] Schbath | An overview on the distribution of word counts in Markov chains[END_REF] considered the number of overlapping occurrence of an h-letter word w = w 1 w 2 • • • w h on the alphabet A, through a Markov sequence (X k ) k∈N with state space A, transition probability matrix

P(a i , a j ) := P(X k+1 = a j | X k = a i ) a i , a j ∈ A.
and stationary distribution: π(a i ), a i ∈ A. For instance, in the sequence ACGAAT AAT AAAT AAGGCAAT AA, there are four occurrences of AAT AA (starting at positions 4,7,11 and19).

Before computing the probability that the word w appears c ∈ N times in the MC (X k ) it is necessary to introduce the period of a word which is defined as follows DEFINITION 11. [START_REF] Schbath | An overview on the distribution of word counts in Markov chains[END_REF]). A period of a word w = w 1 w 2 • • • w h is denoted by ϕ(w) and it is an integer p ∈ {1, ..., h-1} such that w i = w i+p , for all i ∈ {1, ..., h-1}; a period then corresponds to a possible lag between two overlapping occurrences of w.

Schbat denoted by N (w) the number of occurrences of w through the MC (X k ). The random variable which determines if an occurrence of w starts at position k in the sequence (X k ) is defined as follows

Y k := 1 {an occurence of w starts at position k in the sequence} , the count N (w) is given by N (w) = n-h+1 i=1 Y i .
Therefore the probability that the word appears at certain position through the sequence and its stationary distribution is π(w) = π(w 1 )

h-1 j=i P(w j , w j+1 ).

The mean and the variance of the count N (w) are given by the following expressions

E[N (w)] = (n -h + 1)π(w),
and

Var[N (w)] = (n -h + 1)π(w) + 2 p ∈ ϕ(w) p ≤ h -2 (n -h -p + 1)π(w 1 • • • w p w 1 • • • w h ) +π 2 (w) -(n -h + 1) 2 + 2 π(w) n-2h+1 d=1 (n -2h + 2 -d)P d (w h , w 1 )
where ϕ(w) is the period set of w, see Definition 11.

Another way to compute the number of times that a word w appears through a MC is presented by [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]. He considers a finite alphabet A := {a 1 , a 2 , ..., a l }, l ≥ 2 and a word w formed by the elements of A. As [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF], he embedded a Markov prefix sequence through the sequence of symbols using a DFA: (A, Q, s, F, δ), which accepts or recognizes the word w, see definition 10. Nuel made the same considerations as Crochemore and Stefanov for the DFA, see consideration for the DFA 1. In Nuel's work the sequence of letters X is modeled by an m-order Markov sequence. He introduced the definition of ambiguity as follows.

DEFINITION 12. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). A DFA (A, Q, F, s, δ) in which there exist q ∈ Q and a, b ∈ A m such that a = b and δ(q, a) = δ(q, b) is called m-ambiguos. A DFA which is not m-ambiguous is called m-unambiguos.

He also defined the partial m-inverse of a prefix p ∈ Q.

DEFINITION 13. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). For any DFA (A, Q, s, F, δ), we define for any q ∈ Q, and m ≥ 1, its partial m-inverse as follows

δ -m (q) := {a ∈ A m there exists p ∈ Q, δ(p, a) = q}
Hence, such a DFA is m-unambiguous if for all δ -m (q) are singletons. Next theorem shows how to embed a pattern through an m-order MC.

THEOREM 3. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]).

If X = X 1 • • • X n is an m-order Markov sequence, m ≥ 1, on A with transition probability P , if w is a pattern, and if (A, Q, s, F, δ) is an m-unambiguos DFA which recognizes a w, then the sequence Y * = Y * m • • • Y * n , n > m, defined by Y * 0 = s and Y * i = δ(Y * i-1 , X i ) for all 1 ≤ i ≤ n
is an 1-order Markov chain of prefixes with transition matrix

P * (p, q) = P(X m+1 = b | X 1 • • • X m = δ -m (p)), if δ(p, b) = q, 0, if q / ∈ δ(p, A). (1.42)
and such that occurrences of w in X correspond to occurrences of a subset of letters in Y * . [START_REF] Nicodeme | Motif statistics[END_REF] showed that it is possible to build an m-unambiguous DFA starting from a DFA m-ambiguousby duplicating states until the ambiguities are removed.

Let w be a word and let (A, Q, s, F, δ) be a DFA which recognizes w. The transition probability matrix of the chain Y is P * = P + Q, where Q contains all transitions towards final state w and P contains all transitions toward regular states. To compute the probability that a word w appears c ∈ N times through the m-order Markov sequence: X, Nuel defined a Finite Markov Chain Embedding (FMCE): Z, as follows DEFINITION 14. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). For any c ∈ N, we define the FMCE Z by

Z j := (Y * j , N j ) if N i < c, f if N j ≥ c,
where N j is the number of pattern occurrences of w in X 1 • • • X j .

PROPOSITION 8. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). Ordering the cL + 1 states of Z as {(1, 0), ..., (L, 0), (1, 1), ..., (L, 1), ..., (1, c -1), ..., (L, c -1), f = (w, c)}, the corresponding transition matrix is given by

P((i 1 , i 2 )(j 1 , j 2 )) =        P(i 1 , j 1 ) if i 1 = w, j 1 = w, i 2 = j 2 , Q(i 1 , j 1 ) if i 1 = w, j 1 = w, j 2 = i 2 + 1 1 if (i 1 , i 2 ) = (j 1 , j 2 ) = f 0 otherwise.
The next proposition computes the probability that the word w is repeated c times until position n through the Markov sequence X.

PROPOSITION 9. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). Let us consider a partition of the state space of FMCE, Z. Such that

U := {(1, 0), ..., (L, 0), (1, 1), ..., (L, 1), ...(1, c -1), ...(L, c -1)} and D := {(w, c)}.
Therefore, for i ∈ U

P(N < c | X 0 = i) = P(X 0 = i)P u×u 1 |U |
where P u×u is the restriction of P in states U × U and 1 |U | is a vector of ones of size |U |.

Even if Markov chains describe a sequence of symbols better than Bernoulli trials, the main drawback in Markov hypothesis is that it can not take into account general distributions in the sojourn time in a state. The sojourn time in a state must be governed by the geometric distribution. In contrast discrete-time semi-Markov processes generalize the Markov hypothesis, they allow the distribution function in a state to be of any type. For this reason in this thesis we shall focus on counting the number of times that a biological sequence is repeated through a DNA sequence by any one of its configurations. We provide the strong law of large numbers for a word sequence. To achieve our goal, we consider two cases: DNA is modeled by an ergodic Markov sequence, and DNA is modeled by a SMC. For both hypothesis we also present the Central Limit Theorem. Even more we are also interested in computing the number of times that the elements from a specific set of words appear through the DNA sequence. But these are not the only problems that we tackle in this theses. Likewise we are also interested in competing risk problems. Competing risk analysis refers to a special type of survival analysis that aims to calculate the probability of an event in the presence of competing events. In next subsection we shall introduce competing risk analysis.

Competing risk (CR)

In standard survival data, subjects are supposed to experience only one type of event over follow-up, that means in standard survival analysis we are interested in only one cause of failure. But, in real life, individuals (or machines) can experiment more than one cause of death (or more than one cause of failure). For instance, patients could die from a heart attack or breast cancer, or even a traffic accident.

There are more than one pathway that can cause the death of a person, but finally the death occurs by one specific cause. Figure 1.3 exemplifies these three causes of death. In engineering, competing risks refer to the cause of breakdown for a machine. For instance if we consider a computer, it can stop working for different reasons, for instance, hardware problems, computational virus or software problems. Figure 1.4 represents these three causes of failure. When we are interested in determining the cause of death (or the cause of failure) in presence of many possible causes, we refer to these events as "competing events". Competing risk analysis refers to a special type of survival analysis that aims to correctly calculate the probability of an event in presence of competing events. In competing risks there are two random variables of interest T is the time to failure, and C the cause of failure. The survivor function stands for the probability that the event occurs after a fixed time t, that is,

F(t) := P(T > t), 0 ≤ t < ∞.
We can notice that if F denotes the cumulative distribution function (cdf) of the random variable T, therefore we also have

F(t) = 1 -F(t) for 0 ≤ t < ∞.
When T is a continuous variable, the probability function is defined as

f(t) = d(1 -F(t)) dt = dF(t) dt , 0 ≤ t < ∞.
Obviously, it holds that

F(t) = ∞ t f(u)du.
Finally, the hazard rate function stands for the rate of that event occurs instantaneously after the time t when it is known that it does not happen before t; that is,

λ(t) := lim ∆t→0 P(t < T ≤ t + ∆t | T > t) ∆t = f(t) F(t) = -d dt log(F(t)), 0 ≤ t < ∞.
Integrating with respect to t and taking into account that F(0) = 1, it holds the equality

F(t) = exp - t 0 λ(u)du = exp{-Λ(t)}, 0 ≤ t < ∞,
where Λ(t) = t 0 λ(u)du is known as the cumulative hazard function.

Traditional methods for competing risk estimate the function of interest. The Kaplan Meier (KM) method is one of the most popular, see, e.g., [START_REF] Pintilie | An introduction to competing risks analysis[END_REF], [START_REF] Austin | Introduction to the analysis of survival data in the presence of competing risks[END_REF], [START_REF] Lacny | Kaplan-Meier survival analysis overestimates cumulative incidence of health-related events in competing risk settings: a meta-analysis[END_REF], etc. KM method allows one to estimate the survival function. The typical formula for the KM estimator is

F(t) = t i ≤t n i -d i n i ,
where t 1 < t 2 < t 3 < ... are the ordered time points at which an event was observed, n i represents the number of patients at risk at time t i and d i is the number of events at time t i . This formula can be transformed through algebraic manipulation to express the probability of event as:

F(t) = 1 -F(t) = t i ≤t d i n i F(t i-1 ). (1.43)
In the presence of CR there are at least 2 types of events: event of interest, identified with the subscript e, and the competing risk event, identified with the subscript c. [START_REF] Prentice | The analysis of failure times in the presence of competing risks[END_REF] introduced the formula for the probability of an event of interest in the presence of CR

Pe (t) = t i ≤t d ei n i F(t i-1 ), (1.44)
where d ei is the number of events of interest. It is of interest to point out the relation between Equations (1.43) and (1.44). Since d i is the number of all events at t i , it can be conceived as the sum of the number of events of interest d ei and the number of CR events d ci at time t i . As such, the probability of any type of event can be decomposed as follows:

Probability of all events = Pe (t) + Pc (t)

= t i ≤t d ei n i F(t i-1 ) + t i ≤t d ci n i F(t i-1 ) = t i ≤t (d ei + d ci ) F(t i-1 ) n i = t i ≤t d i n i F(t i-1 ).
Thus the probability of all events can be decomposed in the probabilities for each type of event.

Another important method for competing risk is Nelson-Aalen (NA), see e.g. Tsiatis [2005], [START_REF] Njamen | Convergence of the Nelson-Aalen estimator in competing risks[END_REF]. The NA estimator, as the KM estimator, is a non-parametric estimator. It is used in survival theory, reliability engineering and life insurance to estimate the failure time of an event. For that method the standard mathematical formulation is as follows: let T = {T 1 , ..., T N } be the times to event and let T = {T 1 , ..., T N } be the censor times. Let F and G be the cdfs for the time to event and the censor time, respectively. The observed times are Z = {Z 1 , ..., Z N } where Z j = min{T j , T j }, 1 ≤ j ≤ N . In addition, it is also known what time is really observed; i.e., the final available information are the pairs {(Z 1 , δ 1 ), ..., (Z N , δ N )}, where δ j = 1 {T j ≤T j } , i.e., δ j takes the value 1 if the time to an event is observed and 0 otherwise. Therefore the Nelson-Aalen (NA) Estimator for the cumulative hazard function is

Λ(t) = n i=1 δ i c N (R i )1 {Z i ≤t} , where R i is the rank of Z i among Z 1 , Z 2 , ..., Z N and c N (i) = 1 (N -i+1) , for i = 1, 2, ..., N .
Competing risk are a natural extension of (Markov) phase-type distribution (Phdistribution), see, e.g., [START_REF] Lindqvist | Phase-type models and their extension to competing risks[END_REF]. In the sequence, we shall describe this last reference. [START_REF] Lindqvist | Phase-type models and their extension to competing risks[END_REF] presented an extension of the phasetype methodology for modeling lifetime distributions to include the case of competing risk. This is done by considering finite state Markov processes in continuous time with more than one absorbing state, letting each absorbing state correspond to a particular risk or cause of failure. First Lindqvist and Kjølen introduce the classical phase-type distribution. The authors state that a phase-type distribution can be described in terms of a Markov process {X(t); t ≥ 0}, where the system moves through some or all K transient states, or phases, before moving to a single absorbing state K + 1. The time of absorption, T, is then said to have a phase-type distribution.

The infinitesimal generator G of the Markov process is a (K + 1) × (K + 1) matrix given on blocks form as

G = Θ 0 0 , (1.45)
where Θ is the K × K matrix corresponding to the transitions between the transient states, is the K × 1 vector defining direct transition from the transient states to the absorbing state, while 0 is a 1 × K vector of zeros. The authors define P(t) as the matrix of transition probabilities, i.e., P ij (t) = P(X(t) = j | X(0) = i) where

P(t) = e Gt = ∞ i=0 G i t i i! .
It can be shown that this implies that

P(t) = e Θt Θ -1 (e Θt-I ) 0 1 .
From this last equation, an expression for the cumulative distribution function of T,

F(t) = P(T ≤ t) = P(X(t) = K + 1) = αΘ -1 (e Θt-I ) ,
where α is the initial distribution of the Markov process, i.e., α(i) = P(X(0) = i), for i = 1, ..., K + 1. In standard phase-type distributions, it is considered the time to failure T by a unique cause. In competing risk, it is supposed that the system can experience m > 1 competing failure causes. To clarify the idea, suppose the Markov process {X(t); t ≥ 0} has K transient states and m > 1 absorbing states, named K + 1, K + 2, ..., K + m. Letting T be the time of absorption (in any one of the absorbing states), and let C be the cause of failure, which is represented by the state where absorption occurs, i.e., C = K + j if X(T) = K + j; j = 1, 2, ..., m. The pair (T, C) can be viewed as an observation from a classical competing risk process with causes K + 1, ..., K + m. By extending the matrix (1.45) to encompass m absorbing states, we obtain the infinitesimal generating matrix of Markov process to be the (K + m) × (K + m) matrix given on block form as

G = Θ L 0 1 0 2 , (1.46)
where as before, Θ is the K × K matrix corresponding to the transition between the transient states. The vector is now replaced by the K × m matrix L which contains transitions from the transient states to the absorbing states. Furthermore, 0 1 and 0 2 are, respectively, m × K and m × m matrices of zeros. It can shown that matrix (1.46) implies that the matrix of transition probabilities P ij (t) is given by

P(t) = e Θt Θ -1 (e Θt -I)L 0 1 I , (1.47)
where I is the K × K identity matrix. From (1.47) the authors obtained expressions for the subdistribution functions, given by F j (t) := P(T ≤ t, C = j) = P(X(t) = j) = αΘ -1 (e Θt-I )Lv j for j = 1, ..., m. By differentiation, the authors got the sub-densities

f j (t) = F j (t) = αe Θt Lv j ,
where α is the initial distribution of the Markov chain and v j is the m-vector with j-th element equal to 1 and the rest equal to 0. Therefore, the cause-specific hazard rate is given by

λ j (t) = lim ∆t→0 P(T ≤ t + ∆t, C = j | T > t) ∆t = F (t) P(T > t) = αe ΘtLv j αe Θt 1 k ,
where 1 k is a k-vector of ones.

One of the aims in this thesis is to extend these results to semi-Markov models which are the generalization of Markov processes see [START_REF] Limnios | Semi-Markov processes and reliability[END_REF].

Chapter 2

Identification of Words in Biological Sequences Under the semi-Markov Hypothesis

Genomic sequences1 are likely to be the most sophisticated information databases created by nature through the evolution process. For this reason, model DNA sequences via mathematical tools are challenged questions for mathematicians and biologists. In most cases DNA sequences are compared to a stochastic process governed by four nitrogenous bases: Adenine (A), Cytosine (C), Thymine (T) and Guanine (G). In probabilistic models the efficiency and precision depend chiefly on the kind of dependency between symbols. For instance, [START_REF] Stefanov | Explicit distributional results in pattern formation[END_REF], [START_REF] Robin | Exact distribution of word occurrences in a random sequence of letters[END_REF] and [START_REF] Chadjiconstantinidis | Joint distributions of successes, failures and patterns in enumeration problems[END_REF] model DNA sequences derived from independently and identically distributed Bernoulli trials; [START_REF] Antzoulakos | Waiting times for patterns in a sequence of multistate trials[END_REF], [START_REF] Fu | On probability generating functions for waiting time distributions of compound patterns in a sequence of multistate trials[END_REF] [START_REF] Crochemore | Waiting time and complexity for matching patterns with automata[END_REF] and [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF], [START_REF] Touyar | Poisson approximation for the number of repeats in a stationary Markov chain[END_REF].

In this chapter we find a pattern in a DNA sequence under the hypothesis that DNA is modeled by a semi-Markov chain. The semi-Markov hypothesis allows us to take into account general distributions in the sojourn time in a state. To achieve our goal we use the prefixes chain. Suppose we search the word (pattern) w = ACCT in a DNA sequence. We construct the word step by step from its first symbol to its last one. The elements of this construction are called prefixes, i.e., consider the following DNA sequence from a bacteriophage: GGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAG TTCTTCTTCGTCATAACTTAATGTTTTTATTTAAAATACCCTCTGAAAAG... and suppose we want to compute the first position of w = ACCT , i.e., we want to compute how many nucleotides have to appear in the DNA before w. To do this, we use the prefixes of w, which is the set {A, AC, ACC, ACCT }. For this example, it is clear that the first appearance of w occurs at position (starting from zero) 11.

Using the chain of the longest prefix of the word and all possible backwards times for each prefix, it is computed the distribution for the (first) hitting position of the word in a sequence of letters. To show the applicability of our proposed model, we test it in a bacteriophage DNA sequence. We present, the distribution function, the expected value, the variance and the standard deviation of the random variable which represents the (first) hitting position of the word. The word occurrence rate is also presented.

Prefix chain of a single word

Let us consider a finite alphabet, say A = {a 1 , ..., a l }, 2 ≤ l < ∞. A word formed by the elements of A is represented by w := w 1 w 2 • • • w h where w 1 , w 2 , ..., w h ∈ A.

The length of the word is expressed by |w| and represents its number of letters, in this case |w| = h, where h ∈ N * . We shall denote the set of all words of size h ∈ N * formed by the elements of A by A h . As an example, suppose the set of letters is A = {a, b} and h = 2 therefore A h = {aa, ab, ba, bb}. Based on the structure of a word w ∈ A h , we shall define its prefix set

E w = {ε, w 1 , w 1 w 2 , ..., w 1 w 2 • • • w h-1 , w}, (2.1) 
where symbol ε denotes the empty prefix which is used in case of none of the symbols

{w 1 , w 1 w 2 , ..., w 1 w 2 • • • w h-1 , w} appears in the sequence. Observe that |ε| = 0. Let δ Ew : E w × A → E w (2.2)
be a mapping such that for a prefix q ∈ E w and a letter a ∈ A, δ Ew (q, a) is defined as the longest suffix of qa (concatenation of q and a) in the prefix set E w . To clarify this definition observe the follow examples.

EXAMPLE 1. if A = {a, b}, w = ba, the prefix set is E w = {ε, b, ba}, then δ Ew (ε, a) = ε, δ Ew (ε, b) = b, δ Ew (b, a) = ba, δ Ew (b, b) = b, δ Ew (ba, a) = ε, δ Ew (ba, b) = b,
In Figure 2.1 we can observe the graphic representation of example 1, where to not confuse letters with prefixes, the prefix set is numerated as follows {1 = ε, 2 = b, 3 = ba}. 

δ Ew (ε, a) = ε, δ Ew (ε, b) = b, δ Ew (ε, c) = ε, δ Ew (b, a) = ba, δ Ew (b, b) = b, δ Ew (b, c) = ε, δ Ew (ba, a) = ε, δ Ew (ba, b) = b, δ Ew (ba, c) = ε.
In Figure 2.2 we can observe the graphic representation of example 2, where the prefixes are numerate as in Figure 2.1. Observe that, for p ∈ E w the set {i ∈ A : δ Ew (p, i) = ε} has more than one element if |A| > 2. Therefore δ Ew (p, i) is not a one-to-one mapping in general. According to [START_REF] Nicodeme | Motif statistics[END_REF], new elements can be added to E w such that δ Ew (p, i) becomes a one-to-one mapping for p fixed. If p and q are two prefixes such that q is different from prefix ε, i.e., q

= w 1 w 2 • • • w l for w 1 , w 2 , • • • , w l ∈ A where 1 ≤ l ≤ h and, if
there is some i ∈ A such that δ Ew (p, i) = q, therefore i is the last letter of q, i.e., i = w l for this reason for p fixed only when δ Ew results in ε, i.e., δ Ew (p, i) = ε, the function δ Ew is not one to one. The empty prefix ε will be labeled according to the letter which is added to p to obtain ε, that means, instead of writing

δ Ew (p, i) = ε, it will be written δ Ew (p, i) = ε i . Let E := ∪ i∈A\{w 1 } {ε i } ∪ {w 1 , w 1 w 2 , ..., w 1 w 2 • • • w h-1 , w}, (2.3) 
be the extended state space of E w in which for p ∈ E and i ∈ A, δ(p, i) is now a one-to-one mapping. The previous definition of δ Ew can be extended as follows,

δ E : E × A → E.
Henceforth, this last definition will be considered.

The partial inverse of δ E is the function δ -1 E : E -→ A and it is defined as follows: for all p ∈ E, δ -1 E (p) := {i ∈ A where there exist q ∈ E, such that δ(q, i) = p}.

(2.4)

Roughly speaking, the partial inverse of prefix p gives the last letter of p, i.e., if p = ba, δ -1 E (p) = a. Observe that the partial inverse defined in E is one-to-one.

Prefix process in the semi-Markov case

In the considering problem: computing the first hitting position of a word (pattern) in a biological sequence. The biological sequence is modeled by a semi-Markov chain (Z k ), see subsection 1.2, the state space A is the genomic alphabet: Adenine (A), Cytosine (C), Thymine (T) and Guanine (G); the maximum sojourn time in a state i ∈ A, see Equation (1.19), represents the maximal number of nucleotides that can be found together through the DNA sequence. The general idea is to compute the first hitting position of the word using the prefix process. In the sequel of this section we shall define the embedded prefix chain in the semi-Markov process.

Let us consider a stochastic process (Z k ) k∈N which models a sequence of letters taken from a finite alphabet A. If w is a word from A, the embedded prefix chain is defined as follows.

DEFINITION 15. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). The prefix chain of w = We shall say that a word

w 1 • • • w h ∈ A h embedded in the SMC (Z k ) and defined in E, see Equation (2.3), is denoted by Y := (Y k ) k∈N where Y 0 := w 1 if Z 0 = w 1 , ε i if Z 0 = i, i ∈ A \ {w 1 }, and 
Y k := δ E (Y k-1 , Z k ), k ≥ 1.
w = w 1 w 2 • • • w h ∈ A h occurs at time k in the sequence (Z k ) iff Z k-h+1 = w 1 , Z k-h+2 = w 2 , ..., Z k = w h .
Observe that w ∈ W has positive probability to appear in the sequence (Z k ) if

P(Z k-h+2 = w 2 | Z k-h+1 = w 1 ) • • • P(Z k = w h | Z k-1 = w h-1 ) > 0.
(2.5)

To avoid trivialities we shall consider Equation (2.5) is always positive.

The number of positions we have to wait for an occurrence of w in (Z k ) correspond to the number of positions we have to wait for an occurrence of w in (Y k ), see [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]. Therefore w has positive probability to appear in (Z k ) iff w has positive probability to appear in (Y k ) and the number of positions we have to wait for an occurrence of w in (Z k ) correspond to the number of positions we have to wait for an occurrence of w in (Y k ).

Observe that to embed a prefix process in a semi-Markov chain it is necessary to add the backward recurrence time corresponding to each prefix. Let (Y k , B k ) be the process of prefixes and backward times. To define the state space of (Y k , B k ), let us introduce the blocks of the word. If

w = i • • • i h , i ∈ A and, h ∈ N * , we shall say that
w is a block of i s of length h and it will be denoted

w = i (h) , i ∈ A, h ∈ N, 1 ≤ h < ∞.
If w is not a block, it can be obtained by concatenating words which are blocks, see [START_REF] Karaliopoulou | On the number of word occurrences in a semi-Markov sequence of letters[END_REF]. That is, w can be expressed as

w = w(1)w(2) • • • w(η), (2.6) 
where w(1

) = i 1 (n 1 ) , w(2) = i 2 (n 2 ) , ..., w(η) = i η (nη) , for i 1 , i 2 , ..., i η ∈ A and n 1 , n 2 , ..., n η ∈ N * , such that n 1 + n 2 + • • • + n η = |w|.
Noticing that a prefix is also a word, therefore it can be represented by the concatenation of blocks. We shall introduce the backward time for each prefix DEFINITION 16. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). We shall define the backward position time of a prefix p = w 1 w 2 • • • w l-1 w l for 1 ≤ l ≤ h, as the size of its last block minus one. This definition comes from the time (the number of positions) we have stayed in the last letter of the prefix since the last jump (renewal point). Notice that, in general the backward time of a prefix is different from the backward time B k of the letters, see Equation (1.18). The backward time of a prefix will be denoted by B(p). EXAMPLE 4. Let w = bbaab be a word from the alphabet A = {a, b}, and let p = bba be a prefix of w. Then, it is clear that, the backward time of p is, B(p) = 0. Now, we are ready to introduce the backward times for each prefix through the semi-Markov process. Let l * p , be the set of backward times which correspond to prefix p. If i ∈ A is the partial inverse of p, i.e., i = δ -1 E (p), see Equation (2.4), and n 1 is the size of the first block of w, see Equation (2.6), then

l * p =    [[0, l i ]] , if |p| = 0, B(p), if |p| = n 1 and |p| = 0, [[B (p) , l i ]] , if |p| = n 1 . (2.7)
where [[a, b]] denotes an interval of integers, i.e., a subset of N. Let

K p (E) := {(p, n) : p ∈ E, n ∈ l * p } (2.8)
be the set which represents the prefix p ∈ E and its backward times, by consequence the set

K(E) := p∈E K p (E) (2.9)
represents all prefixes in E and their corresponding backward times. Clearly we have:

K p (E) ∩ K q (E) = Ø, if p = q. The set K(E) is the state space of process (Y k , B k ).
Algorithm 1 proposed here (see Appendix) provide the state space K(E).

PROPOSITION 10. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). The process (Y k , B k ) k∈N is a Markov chain with state space K(E) and initial distribution α(i

) = P(Z 0 = i), i ∈ A. Let us consider p ∈ E, i = δ -1 E (p).
Then the initial distribution of the process (Y k , B k ) is formally defined by

P(Y 0 = p, B 0 = u) =    α(w 1 )1 {u=0} if p = w 1 , α(i)1 {u=0} if p = ε i , i ∈ A \ {w 1 }, 0 otherwise,
and its transition probabilities are

P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) =      q ia (u+1) 1-H i (u) 1 {δ E (p,a)=q} if i = a, v = 0, 1-H i (u+1) 1-H i (u) 1 {δ E (p,a)=q} if i = a, v = u + 1, 0 otherwise.
(2.10)

Proof. The initial distribution comes from the definition of Y 0 , see Definition 15, and the backward position time at starting time, see Equation (1.18). We shall use here the fact that (Z k , U k ) is a Markov chain with known transition probability, see e.g., [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]. Let p ∈ E be a prefix and suppose that there exists a ∈ A such that δ(p, a) = q, for some q ∈ E.

If p = w 1 w 2 • • • w l-1 w l for 1 ≤ l ≤ h, then P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) = P(Z k+1 = a, B k+1 = v | Z k = w l , B k = u, Z k-1 = w l-1 , B k-1 = •, ..., Z k-l+1 = w 1 , B k-l+1 = •), = P(Z k+1 = a, B k+1 = v | Z k = w l , B k = u).
(2.11)

If p = ε j for j ∈ A \ {w 1 }, then P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) = P(Z k+1 = a, B k+1 = v | Z k = j, •, B k-1 = •, ..., Z k-i+1 = •, B k-i+1 = •), = P(Z k+1 = a, B k+1 = v | Z k = j, B k = u).
(2.12)

To denote in a general the transition probability, let i = δ -1 E (p) be the partial inverse of p. Therefore in Equations (3.4) and (3.5) Z k = i, thus

P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) = P(Z k+1 = a, B k+1 = v | Z k = i, B k = u).
(2.13) If k + 1 is a renewal time for (Z k ) then v = 0 and i = a, yields

P(Z k+1 = a, B k+1 = v | Z k = i, B k = u) = q ia (u + 1) 1 -H i (u) , (2.14) 
if k + 1 is not a renewal time for (Z k ) then v = u + 1 and a = i, yields

P(Z k+1 = a, B k+1 = v | Z k = i, B k = u) = 1 -H i (u + 1) 1 -H i (u) (2.15)
see [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF], so, the proposition is proved .

To simplify the notation, let P be the transition probability matrix and β the initial distribution of process (Y k , B k ) respectively, such that P ((p, u), (q, v)) (2.17)

:= P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) (2.
Algorithm 2 proposed here (see appendix B) computes the transition probability matrix P . [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF]. We shall prove, in the next proposition, the same properties for (Y k , B k ), i.e., the irreducibility and aperiodicity.

If (J n , S n ) n∈N is irreducible, then Markov chain (Z k , B k ) is irreducible too, see
PROPOSITION 11. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). Let A be an alphabet, such that |A| ≥ 2. If the Markov renewal process (J n , S n ) with state space A × N is irreducible and aperiodic, then process (Y k , B k ) with state space K(E) is also irreducible and aperiodic.

Proof. Let be (p, u), (q, v) ∈ K(E) and i = δ -1 E (p). If q = w 1 or q = ε a with a ∈ A \ {w 1 } the proof is a direct consequence of the irreducibility of (Z k , B k ). If q = w 1 w 2 • • • w , with 1 < ≤ h. Let q 1 = w 1 , q 2 = w 1 w 2 , ..., q = w 1 w 2 • • • w , be the consecutive prefixes from w 1 to q = w 1 w 2 • • • w and (q 1 , u 1 ), (q 2 , u 2 ), ..., (q, v) the consecutive couples in E × N, such that for 1 ≤ i ≤ -1

u i+1 = 0 if w i = w i+1 u i + 1 elsewhere due to the irreducibility of (Z k , B k ), for (i, u) ∈ A × N there exist n ∈ N * such that, for m ∈ N P(Z m+n = w 1 , B m+n = u 1 | Z m = i, B m = u) > 0,
by Proposition 10

P ((w 1 , u 1 ), (w 1 w 2 , u 2 )) × • • • × P ((w 1 w 2 • • • w -1 , u -1 ), (w 1 w 2 • • • w , u )) > 0.
Therefore there exist n 1 = n + -1 such that

P(Y m+n 1 = q, B m+n 1 = v | Y m = p, B m = u) > 0.
The aperiodicity of (Y k ) is a direct consequence of the aperiodicity of (Z k ). Let q = w 1 ∈ E be a prefix formed by one letter and let d be its period, by the aperiodicity of (Z k ) it is clear that d = 1. Therefore (Y k ) is aperiodic.

The hitting time of the word

Let N w be the number of elements in the sequence of letters before the first hitting position of w, to define the random variable N w we use the prefix chain and its backward time i.e.,

N w := min{k ≥ 0 : (Y k , B k ) = (w, • ) ∈ K(E)}.
(2.18)

As it has been noted in Section 2.2, an occurrence of w in (Z k ) corresponds to an occurrence of w in (Y k ). The following proposition gives the probability law of N w .

PROPOSITION 12. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). Let {W c , W } be a partition of the state space K(E) such that W := {(w, •) ∈ K(E)} and W c := K(E) \ W . Let 1 be a column vector of ones with size |W c |. Let Pw = P | W c ×W c and β w be the restrictions respectively, on W c × W c and W c of the transition matrix P and the initial distribution β. Then

P(N w = n) =    0 if n < h -1, β w ( Pw ) h-1 1 if n = h -1, β w P n-1 w [I -Pw ]1 if n ≥ h. Proof. For n < h -1 it is obvious. For n = h -1, let p 1 = w 1 , p 2 = w 1 w 2 ,..., p h-1 = w 1 w 1 • • • w h-1 , w = w 1 w 1 • • • w h-1
w h be the consecutive prefixes from w 1 to w, then

P(N w = h -1) = u h ∈lw u h-1 ∈lp h-1 • • • u 2 ∈lp 2 u 1 ∈lp 1 P ((p h-1 , u h-1 ), (w, u h )) • • • P ((p 1 , u 1 ), (p 2 , u 2 ))P(Y 0 = p 1 , B 0 = u 1 ),
where the set l p is the set of backward times which corresponds to the prefix p, see Equation (2.7). For n ≥ h

P(N w > n) = P((Y k , B k ) ∈ W c , k ∈ {0, 1, ..., n}) = (qn,un)∈W c (q n-1 ,un 1 )∈W c • • • (q 0 ,u 0 )∈W c
P ((q n-1 , u n-1 ), (q n , u n ))

• • • P ((q 0 , u 0 ), (q 1 , u 1 ))P(Y 0 = q 0 , B 0 = u 0 ) = (qn,un)∈W c (q 0 ,u 0 )∈W c P n ((q 0 , u 0 ), (q n , u n ))P(Y 0 = q 0 , B 0 = u 0 ), Identification of Words in Biological Sequences Under the semi-Markov Hypothesis 42 and therefore

P(N w = n) = β w ( Pw ) n-1 1 -β w ( Pw ) n 1 = β w ( Pw ) n-1 [I -Pw ]1.
PROPOSITION 13. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). Under the same hypothesis, as in Proposition 3.9, where f (h -1) = P(N w = h -1). The generating function of N w , i.e., G(s) := E(s Nw ), for |s| ≤ 1 is

G(s) = s h-1 f (h -1)1 {h≥1} + sβ w (s Pw ) h-1 (I -s Pw ) -1 (I -Pw )1 {h≥1} 1.
Proof. By definition of the generating function and Proposition 3.9, we write:

G(s) = k≥h-1 P(N w = k)s k = s h-1 f (h -1)1 {h≥1} + k≥h s k β w P k-1 w [I -Pw ]1. (2.19)
Due to the fact that W c is a proper subset of the state space K(E) of an irreducible and aperiodic Markov chain, we write k≥0 (s Pw ) k = (I -s Pw ) -1 (2.20)

see Neuts [1981b].

Therefore k≥h s k β w P k-1 w [I -Pw ]1 = s h β w P h-1 w h≥0 (s Pw ) k (I -Pw )1 = sβ w (s Pw ) h-1 (I -s Pw ) -1 (I -Pw )1 {h≥1} 1, hence G(s) = s h-1 f (h -1)1 {h≥1} + sβ w (s Pw ) h-1 (I -s Pw ) -1 (I -Pw )1 {h≥1} 1.
LEMMA 2. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). The n derivate of (I -s Pw ) holds the follow property

d ds (I -s Pw ) -n = n(I -s Pw ) -(n+1) Pw = n Pw (I -s Pw ) -(n+1) .
PROPOSITION 14. (Garcia-Maya and [START_REF] Garcia-Maya | Identification of words in biological sequences under the semi-Markov hypothesis[END_REF]). The mean and variance of N w are respectively

E(N w ) = (h -1)f (h -1)1 {h≥2} + β w [Q + h P h-2 w ] Pw 1 (2.21)
and for h ≥ 3 (2.22) where:

Var(N w ) = 2(h -1)f (h -1) + a + b + c + d -(E(N w )) 2 ,
a = 2β w P 2 w Q 2 1 b = 2β w Pw Q1 c = hβ w P h w Q1 d = h 2 P h-1 w 1 Q = (I -Pw ) -1 .
Proof. Using the generating function of N w , G(s), and Lemma 2, we get

dG(s) ds = (h -1)s h-2 f (h -1)1 {h≥2} (2.23) +β w (I -s Pw ) -1 + h(s Pw ) h-2 (s P )(I -s Pw ) -1 (I -Pw )1, which yields dG(s) ds s=1 = E(N w ) = (h -1)f (h -1)1 {h≥2} + β w (I -Pw ) -1 + h( Pw ) h-2 P 1.
For the variance of N w , the derivate of Equation (2.23) will be computed as follows: Then, using Equations (2.25) and (2.26) and simplifying terms, it yields for h ≥ 3

d ds (h -1)s h-2 f (h -1) = (h -1)(h -2)s h-3 f (h -1)1 {h≥3} , (2.24) d ds [(I -s Pw ) -1 + h(s Pw ) h-2 ] = (I -s Pw ) -2 Pw + h(h -2)(s Pw ) h-3 Pw 1 {h≥3} , (2.
d ds [(I -s Pw ) -1 + h(s Pw ) h-2 ](s Pw )(I -s Pw ) -1 = 2(s Pw )(I -s Pw ) -2 (2.27) +[1 + h(s Pw ) h-1 ](I -s Pw ) -1 +(h -1)h(s Pw ) h-2 (I -s Pw ) -1
Pw .

Therefore, using Equations (2.24) and (2.27) for h ≥ 3:

d 2 G(s) ds 2 = (h -1)(h -2)s h-3 f (h -1) + β w 2(s Pw )(I -s Pw ) -2 +[1 + h(s Pw ) h-1 ](I -s Pw ) -1 +(h -1)h(s P ) h-2 (I -s Pw ) -1 P (I -P )1.
(2.28)

Therefore for h ≥ 3,

d 2 G(s) ds 2 s=1 =(h-1)(h-2)f (h-1)+β w 2 P 2 w (I-Pw ) -2 +[ Pw +h P h w ](I-Pw ) -1 +(h-1)h P h-1 w 1.

Using the expression

Var(N w ) = d 2 G(s) ds 2 s=1 + dG(s) ds s=1 - dG(s) ds s=1 2 ,
we get for h ≥ 3,

Var(N w ) = (h -1) 2 f (h -1) + a + b + c + d -(E(N w )) 2 ,
where:

a = 2β w P 2 w Q 2 1, b = 2β w Pw Q1, c = hβ w P h w Q1, d = h 2 P h-1 w 1, Q = (I -Pw ) -1 .

A genomic application

The mathematical model proposed in this theses can be implemented in any irreducible semi-Markov chain with finite state space, to show one of its applications, in this section we present a genomic example. Let us consider the DNA sequence of bacteriophage. This DNA includes 48502 nucleotides. In this case the genomic alphabet is A = {A, T, G, C} and consider the pattern w = CCCGGG which is the enzyme SmaI. The SmaI enzyme is a DNA cutter. That is, when it finds the 'CCCGGG' fragment it applies and cuts the DNA in the middle of this fragment, i.e., into '...CCC' and 'GGG...'. The semi-Markov kernel is estimated according with Equation (1.40). The probability that the SmaI enzyme appears after k nucleotides is observed in figure 2.3. The random variable N w counts the numbers of nucleotides before the apparition of the enzyme and it is defined according with Equation (2.18). The probability function of N w is denoted f w (k) := P(N w = k), this probability is computed using Preposition 3.9.

In figure 2.4 we can observe that the SmaI enzyme does not appears frequently in the DNA. The word occurrence rate for k ≥ 1 is given by the rate function

λ(k) = 1 -Fw(k) Fw(k-1) , Fw (k -1) = 0 0, otherwise,
where Fw (k) = 1 -F w (k) and F w (k) := k l=0 f w (l). Figure 2.5 gives the values for the distribution function F w (k). In the continuous time, the rate function takes values also greater than one, in the discrete-time case it takes values only in the interval [0, 1]. For this reason, in an other context [START_REF] Roy | Classifications of discrete lives[END_REF] proposed another rate function as follows:

r(k) = -ln(1 -λ(k)).
(2.29) Nevertheless, when λ(k) is close to 0, we have obviously

r(k) ∼ = λ(k).
In the case of the present example, the values λ(k) are very small, so, Figure 2.4 represents also the function r(k).

Considering that DNA sequence has 48502 nucleotides, i.e., it has size M = 48502 and using the expressions:

E(N w • 1 {Nw≤M } ) = M k=h-1 kf w (k), E(T 2 w • 1 {Nw≤M } ) = M k=h-1 k 2 f w (k),
where f w (k) := P(N w = k) is obtaining according with Proposition 3.9, the expected value E(N w • 1 {Nw≤M } ) and the standard deviation σ(N w • 1 {Nw≤M } ) are computed.

Hence, we obtain :

E(N w • 1 {Nw≤M } ) = 6335.9, σ(N w • 1 {Nw≤M } ) = 6266.7.
Considering different lengths for the DNA sequence, i.e., considering different values for M , the mean value of N w for each M are observed in Figure 2.6. If we take into account that DNA sequence has infinity length, the mean value of N w is computed according with Equation (2.21). The variance is computed using Equation (2.22), therefore for the bacteriophage DNA sequence we have the values:

E(N w ) = 6367.6, σ(N w ) = 6354.9.

Notice in Figure 2.6, the value E(N w • 1 {Nw≤M } ) reach E(N w ) as M becomes large enough, as it was expected by the dominated converge theorem. It is worth noticing that the standard deviation here is high. This is due to the fact that the evolution of the rate of occurrence of the word is small. After position 9, it becomes geometric, as we can see in Figure 2.4. According with Geometric distribution with success probability p, the variance is given by formula

V ar(X) = 1 -p p 2 .
Observing that variance grows if p decrease. In our model the rate of occurrence of the word is tiny, we can see in same Figure 2.4 that after position 9, we have p = λ(9) = 1.6 × 10 -4 which means that the probability to have a success is small, this gives the big value for the standard deviation. 

Concluding remarks

In this chapter we proposed a new model and algorithm that can be implemented in real applications to compute the first hitting position (time) of a word (pattern) in a semi-Markov sequence. Although [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF] proposed the only theoretical model before this work, for words occurrence in discrete time semi-Markov chains, the Chryssaphinou method's cannot be implemented because the cardinality of the state space is huge. It has |A| h × (M -h) elements, where M represents the length of the semi-Markov chain (Z k ), |A| is the alphabet cardinality and h is the length of the pattern. Notice that, if the values of h and/or M grow, the cardinality of the state space becomes enormous, this makes difficult the implementation. By contrast, the model proposed here needs less memory space than the one proposed by [START_REF] Chryssaphinou | On discrete time semi-Markov chains and applications in words occurrences[END_REF]. This model is based on prefixes and its extended state space, with these assumptions process (Y k , B k ) becomes a Markov chain where its transition matrix P is easily written. For a word w with length |w| = h and maximum value for the backward time of a prefix: γ = max{l * p : p ∈ E}, we need a state space of cardinality (h + |A| -1) × γ at most. Moreover, we proposed results for the (first) position time to w, its law, its mean, its variance and its generating function. As we can see in Figure 2.6, the value E(N w • 1 {Nw≤M } ) reach E(N w ), as M becomes large enough, as it was expected by the dominated converge theorem.

It is worth noticing that for words of length one, i.e., a letter, our algorithm recovers the Markov process (Z k , B k ). Of course, this work (algorithm) could be used for any irreducible semi-Markov sequence with finite state space and any finite word (pattern).

Chapter 3 Asymptotic properties of words in Markov and semi-Markov sequences

Biomolecules1 have a wide range of sizes and structures and perform a big number of functions. They play a crucial role in bio-informatics and modern biology. Similar to the way the order of letters in an alphabet is used to form a word, the order of nitrogen bases in a DNA sequence forms biomolecules, which in the language of biology, tells cells to do a specific function. In most cases biomolecules have more than one form to be encrypted. For instance, restrictions enzymes that cleaves DNA into fragments are recognized by more than one particular pattern. For instance, the EcoRI enzyme is recognized by the sequences GAAT T C and CT T AAG; the BamHI enzyme is recognized by the sequences GGAT CC and CCT AGG, etc.

In this chapter we compute the average number of times that a biomolecule appears through the DNA by any of its configurations, in other words, we compute the average number of times that the elements from a specific set of words W appear through a sequence of letters (Z k ). Where the sequence of letters (Z k ) represents the DNA sequence and the biomolecule is represented by the set of words W. To achieve our goal we use the strong law of large numbers. We also provide the central limit theorem for a sequence of patterns. Additionally, we treat the problem of finding a specific biomolecule by any of its configurations. We also compute which of those configurations is more probable to occur at first. In other words, we identify the first hitting time in which the elements from a specific set of words W appear through a sequence of letters (Z k ). To resolve the problem, we consider two cases: DNA is modeled by an ergodic Markov sequence and DNA is modeled by a semi-Markov chain. Even if Markov sequences model properly sequences of letters, see e.g., [START_REF] Nur | Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis[END_REF], [START_REF] Wheeler | Dfam: a database of repetitive dna based on profile hidden Markov models[END_REF], [START_REF] Jääskinen | Bayesian clustering of dna sequences using Markov chains and a stochastic partition model[END_REF], etc. The semi-Markov case is more general, see e.g., [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF], D'Amico et al. [2013], Janssen [2013]. It considers general probabilities laws on N instead of the geometric only law in the Markov case.

The prefix chain of a set of words

In Chapter 2 we presented the prefixes of a single word, in this chapter we shall introduce the prefixes of a set of words. First we shall consider that the sequence of letters is modeled by a Markov chain (X k ) after this, we shall give the analogous results for a semi-Markov chain (Z k ).

Let us consider a particular set of words taken from A h , we shall denote this set by W. As we can observe in Section 2.1, the set of prefixes for a single word is denoted by E w , see Equation ( 2 

then δ Ẽ * (ε, a) = a δ Ẽ * (ε, b) = ε δ Ẽ * (ε, c) = ε δ Ẽ * (a, a) = aa δ Ẽ * (a, b) = ab δ Ẽ * (a, c) = ε δ Ẽ * (ab, a) = a δ Ẽ * (ab, b) = ε δ Ẽ * (ab, c) = ε δ Ẽ * (aa, a) = aa δ Ẽ * (aa, b) = ab δ Ẽ * (aa, c) = ε
Observe that, for p ∈ Ẽ * the set {i ∈ A : δ Ẽ * (p, i) = ε} has more than one element. For the same reasons explained in Section 2.1 the prefix ε will be tagged according to the letter which is concatenated to p to results in ε. After redefining the prefix ε we shall introduce the set F . Let us consider a set F which contains the letters in A that are different from the first letter of any word w = w 1 w 2 • • • w h ∈ W, i.e.,

F := {i ∈ A : i = w 1 , for all w = w 1 w 2 • • • w h ∈ W}.
(3.1)

For p ∈ Ẽ * and i ∈ A instead of having

δ Ẽ * (p, i) = ε, we will have δ Ẽ * (p, i) = ε i , where i ∈ F . Therefore, E * := (∪ w∈W E w ) (∪ i∈F ε i ) (3.2)
is the prefix set of W in which δ E * : E * × A → E * is a one to one mapping. Observe that the partial inverse of δ E * , defined in E * , i.e., δ -1 E * : E * → A, see Equation(2.4), it is one-to-one. We can notice that W ⊂ A h and W ⊂ E * . From now we shall denote by the cardinality of E * , i. 

Y * 0 := w 1 if X 0 = w 1 , for some w = w 1 w 2 , • • • w h ∈ W, ε i if X 0 = i with i ∈ F , and 
Y * k := δ E * (Y * k-1 , X k ), k ≥ 1.
where F is defined in Equation (3.1). PROPOSITION 15. [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]). If the sequence of letters is modeled by a Markov chain (X k ), the prefix process (Y * k ) defined in E * is a Markov chain too with initial distribution

α * (p) = P(Y * 0 = p) =    α * (w 1 ) if p = w 1 for some w = w 1 w 2 • • • w h ∈ W, α * (i) if p = ε i , i ∈ F , 0 otherwise.
and transition probability matrix

P (p, q) := P(Y * k+1 = q | Y * k = p), q, p ∈ E * ; where P (p, q) = P(X k+1 = a | X k = δ -1 (p)) if δ E * (p, a) = q 0 elsewhere. (3.3)
Proof. The initial distribution comes from the definition of Y * 0 , see Definition 17. For the transition probability matrix. Consider a prefix p ∈ E * and suppose that there exists a ∈ A such that δ E * (p, a) = q, for some q

∈ E * . If p = w 1 w 2 • • • w l-1 w l for 1 ≤ l ≤ h, then P(Y * k+1 = q, | Y * k = p, ) = P(X k+1 = a | X k = w l , Z k-1 = w l-1 , ..., X k-l+1 = w 1 ), = P(X k+1 = a | X k = w l ). (3.4) If p = ε j for j ∈ F , then P(Y * k+1 = q | Y * k = p) = P(X k+1 = a, | X k = j, X k-1 = •, ..., X k-l+1 = •), = P(X k+1 = a, | X k = j). (3.5)
To denote in general the transition probability, let i = δ -1 E * (p) be the partial inverse of p. Therefore in Equations (3.4) and (3.5) X k = i, thus

P(Y * k+1 = q, | Y * k = p) = P(X k+1 = a | X k = i),
which proves the proposition.

Next Proposition proves that if the sequences of letters (X k ) is an irreducible and aperiodic Markov chain, then prefix chain (Y * k ) has also the same properties. PROPOSITION 16. If process of letters (X k ) is modeled by an irreducible and aperiodic Markov chain then the prefix chain (Y * k ) described in Definition 17 has the same properties.

Proof. Let be p, q ∈ E * and i

= δ -1 E * (p). Suppose Y * m = p, m ∈ N. If q = w 1 or q = ε a , a ∈ F the proof is a direct consequence of the irreducibility of (X k ). If q = w 1 w 2 • • • w l , with 1 < l ≤ h. Let q 1 = w 1 , q 2 = w 1 w 2 , ..., q = w 1 w 2 • • • w l , be the consecutive prefixes from w j 1 to q = w 1 w 2 • • • w l .
Due to the irreducibility of (X k ), for w 1 ∈ A there exist n ∈ N * such that

P(X m+n = w 1 | X m = i) > 0. Therefore P(Y * m+1 = q 1 | Y * m = p)P(Y * m+2 = q 2 | Y * m+1 = q 1 ) • • • P(Y * m+l = q l | Y * m+l-1 = q l-1 ) > 0
Hence there exist n 1 = n + such that

P(Y * m+n 1 = q | Y * m = p) > 0.
The aperiodicity of (Y * k ) is a direct consequence of the aperiodicity of (X k ). Let q = w 1 , w ∈ W be a prefix formed only by one letter and let d be its period, by the aperiodicity of (X k ) it is clear that d = 1. Therefore (Y * k ) is aperiodic.

By Proposition 16 we have shown that if the sequence of letters is an ergodic Markov chain then the sequence of prefixes has the same properties. Next Proposition provides the stationary distribution of the prefix process (Y * k ). We can notice that if P and π are the transition probability matrix and the stationary distribution (respectively) of the process of letters (X k ), i.e.,

P n (i, j) → π(j), i, j ∈ A, n → ∞ (3.6)
then, the stationary distribution of the prefix process is a function of the stationary distribution of the sequence of letters.

PROPOSITION 17. The stationary distribution of prefix process (Y * k ) denoted by π is a function of the stationary distribution of the sequence of letters (X k ) where

π(p) = π(j) if j = δ -1 (p) and |p| = 0 or |p| = 1, π(w 1 )P(w 1 , w 2 ) × • • • × P(w l-1 , w l ) if p = w 1 w 2 • • • w l for 1 < l ≤ h.
(3.7)

Proof: If p is a prefix formed by only one letter or it has not letters, i.e., if p = j, j ∈ A \ F or p = ε j , j ∈ F then, the stationary distribution of p is a direct consequence of the stationary distribution of process (X k ). In the other hand, if p is formed by more than one letter, i.e., p = w 1 w 2 • • • w l for 1 < l ≤ h and

p 1 = w 1 , p 2 = w 1 w 2 , ..., p = w 1 w 2 • • • w l are the consecutive prefixes from p 1 = w 1 to p = w 1 w 2 • • • w l , then it is clear that the stationary distribution of prefix p is π(p) = π(p 1 ) P (p 1 , p 2 ) × • • • × P (p l-1 , p l ) = π(w 1 )P(w 1 , w 2 ) × • • • × P(w l-1 , w l ).
The number of times that the elements from W are repeated in the sequence (X k ) correspond to the average number of times that the elements from W are repeated in prefix process (Y * k ) see [START_REF] Nuel | Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata[END_REF]. This average number is a function of the transition probability of process (X k ) as we can observe in the following proposition.

PROPOSITION 18. For the ergodic Markov chain of prefixes (Y * k ) with stationary distribution π (see Equation 3.7), the frequency of words from the set W is

1 n n k=0 1 {Y * k ∈W} a.s -→ w∈W π(w 1 )P(w 1 , w 2 ) × • • • × P(w l-1 , w l ), n -→ ∞. where w = w 1 w 2 • • • w h ∈ A h .
Proof: The proof is a direct consequence of the strong law of large numbers for an ergodic Markov chain, see e.g., [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]. The central limit theorem (CLT), for an ergodic Markov chain, establishes the average of the sum of its terms tends toward a normal distribution even if the original variables are not normally distributed, see e.g., [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]. The goal of the following Proposition is to describe the central limit theorem for the prefix process.

PROPOSITION 19. For an ergodic Markov chain (Y * k ) with stationary distribution π, we have

√ n 1 n n k=0 1 {Y * k ∈W} -S d - → N (0, σ 2 W ), n → ∞
where

σ 2 W := p i ∈W π(p 1 )[δ p 1 p i -π(p i )], ..., π(p |E * | )[δ p |E * | p i -π(p i )] ×(2 Ž -I) S(p 1 ), ..., S(p |E * | ) T .
such that S := p∈W π(p), S(p) := 1 {p∈W} -S, for p ∈ E * and Ž := (I -P + Π)

-1

is the fundamental matrix of P and Π is defined as follows

Π :=      π(p 1 ) π(p 2 ) • • • π(p |E| ) π(p 1 ) π(p 2 ) • • • π(p |E| ) . . . π(p 1 ) π(p 2 ) • • • π(p |E| )     
.

Proof:

For an ergodic Markov chain (Y * k ) with stationary distribution π by the CLT, we have

√ n 1 n n k=0 1 {Y * k ∈W} -S d - → N (0, σ 2 W ), n → ∞
where the variance is expressed by [START_REF] Trevezas | Variance estimation in the central limit theorem for Markov chains[END_REF]. The matrix Ž is the fundamental matrix of process (Y * k ) and it is defined by Ž := (I -P + Π) -1 , such that I is the identity matrix of size |E * | × |E * |, P is the transition matrix of process (Y * k ). Therefore

σ 2 W = Sdiag(π)[2 Ž -I] ST , see
σ 2 W := S(p 1 ), ..., S(p |E * | )    π(p 1 ) • • • 0 . . . 0 • • • π(p |E * | )    (2 Ž -I)    S(p 1 ) . . . S(p |E * | )    = S(p 1 )π(p 1 ), ..., S(p |E * | )π(p |E * | ) (2 Ž -I)    S(p 1 ) . . . S(p |E * | )    = 1 {p 1 ∈W} π(p 1 ) - p i ∈W π(p i )π(p 1 ), ..., 1 {p |E * | ∈W} π(p |E * | ) - p i ∈W π(p i )π(p |E * | ) (2 Ž -I)    S(p 1 ) . . . S(p |E * | )    = p i ∈W π(p 1 )[δ p 1 p i -π(p i )], ..., p i ∈W π(p |E * | )[δ p |E * | p i -π(p i )] (2 Ž -I)    S(p 1 ) . . . S(p |E * | )    = p i ∈W π(p 1 )[δ p 1 p i -π(p i )], ..., π(p |E * | )[δ p |E * | p i -π(p i )] (2 Ž -I)    S(p 1 ) . . . S(p |E * | )    .
Additionally in this chapter we compute the first hitting position in which an element from W appears in the sequence (X k ). We consider the words w ∈ W like absorbing states. To achieve this goal we make a partition of the state space E * , such that where Pij is the restiction of P in states E * i × E * j for i, j ∈ {0, 1}. Observe that 0 is the zero matrix of size E * 1 × E * 0 and I is the identity matrix of size

E * = E * 0 ∪ E *
E * 1 × E * 1 .
The time that process ( Ỹk ) has to wait until an element from W arrives is a random variable and it is defined as follows

T := inf{k ≥ 0 : Ỹk ∈ W}. (3.9)
We are interested in computing the distribution function of T and also the probability that ( Ỹk ) reaches W by a specific element w j ∈ W. Therefore, let us denote the random variable W := {w j ∈ W : ỸT = w j }.

(3.10)

The random variable W takes the value w j if w j is the first element from W that appears in the prefixes chain ( Ỹk ). For the bi-dimensional random variable (T, W ) we define its distribution function as

G j (k) := P(T ≤ k, W = w j )
and its law by g j (k) := P(T = k, W = w j ).

(3.11)

Last Equation represents the probability that process ( Ỹk ) reaches the set W at time k by the element w j ∈ W. It is easy to observe that for every w j ∈ W, Equation (3.11) can be written as

g j (k) = P( Ỹk = w j , Ỹl ∈ E 0 ; l = 0, ..., k -1).
The following result expresses the probability law and the distribution function of (T, W ).

PROPOSITION 20. The law and the distribution function of (T, W ) for the above Markov chain ( Ỹk ) are (3.12) respectively where e j is a column vector of size |E * 0 | where all its entries are zeros, except the entry which corresponds to w j which takes the value one.

g j (k) := P(T = k, W = w j ) =    0, k < h -1; α(w j 1 ) P (p j 1 , p j 2 ) • • • P (p j h-1 , p j h ), k = h -1; α0 P k-1 00 P01 e j , k > h -1. and G j (k) := P(T ≤ k, W = w j ) = α0 (I -P00 ) -1 (I -P k 00 ) P01 e j ,
Proof. For k < h -1 is obvious. For k = h -1 suppose w j = w j 1 w j 2 • • • w j h with w j 1 , w j 2 , • • • , w j h ∈ A and let us consider p j 1 := w j 1 , p j 2 := w j 1 w j 2 , ..., p j h := w j 1 w 2 j • • • w j h
the consecutive prefixes of w j . Therefore

g j (h -1) = P(T = h -1, W = w j ) = P( Ỹ0 = p j 1 , Ỹ1 = p j 2 , ..., Ỹh-1 = p j h ), = α(w j 1 ) P (p j 1 , p j 2 ) • • • P (p j h-1 , p j h ).
For k > h -1, we have

g j (k) = P(T = k, W = w j ) = P( Ỹk = w j , Ỹl ∈ E 0 ; l = 0, ..., k -1), = v∈E 0 j∈E 0 P( Ỹ0 = j) P k-1 00 (i, v) P01 (v, w j ).
Expressing the last equation in matrix form, we have

g j (k) = α0 P k-1 00 P01 e j .
For the distribution function, we have

G j (k) = k l=0 P(T = l, W = w j ) = k l=1 α0 P l-1 00 P01 e j .
The sum of the above series is

k l=1 P l-1 00 = (I -P00 ) -1 (I -P k 00 ),
where I is the identity matrix of size |E 0 | × |E 0 |, therefore we have

G j (k) = α0 (I -P00 ) -1 (I -P k 00 ) P01 e j .
Even if Markov processes model properly sequences of symbols. The main drawback of Markov hypothesis is that they cannot take into account general distributions in the sojourn time in a state by contrast discrete-time semi-Markov processes generalize discrete time Markov chains. In semi-Markov processes the distribution function of the sojourn time in a state can be any one. In next section we shall provide the analogues properties if the sequence of letters is modeled by a semi-Markov chain.

Properties of words in Semi-Markov sequences

Similarly to the Markov case we shall embed the prefix chain in a semi-Markov sequence to present the central limit theorem, the strong law of large numbers and to compute the first hitting position of the elements in W through the sequence of letters.

Consider the sequence of letters is modeled by a semi-Markov chain (Z k ). Let (Y k ) be the prefix process defined as in Definition 17 but embedded in the SMC (Z k ) i.e.,

Y 0 := w 1 if Z 0 = w 1 , for some w = w 1 w 2 , • • • w h ∈ W, ε i if Z 0 = i with i ∈ F , and 
Y k := δ E * (Y k-1 , Z k ), k ≥ 1.
If we use a semi-Markov sequence (Z k ) we need to introduce the backward time process for each prefix, let us denote by (Y k , B k ) this process. In the sequel we shall introduce the state space of this process.

Consider the prefixes of the set of words W: E * , see Equation (3.2). Let

K p (E * ) := {(p, n) : n ∈ l * p }, p ∈ E * (3.13)
be the set which represents the prefix p ∈ E * and its backward times where l * p is defined according with Equation (2.7). The set

K(E * ) := p∈E * K p (E * ) (3.14)
represents all prefixes in E * and their corresponding backward times. Clearly we have:

K p (E * ) ∩ K q (E * ) = Ø, if p = q. The set K(E * ) is the state space of process (Y k , B k ).
PROPOSITION 21. (Garcia-Maya et al. [Submitted in 2020]). The process (Y k , B k ) k∈N is a Markov chain with state space K(E * ). Let us consider p ∈ E * , i = δ -1 E * (p) and α(i) = P(Z 0 = i). Then the initial distribution of the process (Y k , B k ) is

P(Y 0 = p, B 0 = u) =    α * (w 1 )1 {u=0} if p = w 1 , for some w = w 1 w 2 • • • w h ∈ W α * (i)1 {u=0} if p = ε i , i ∈ F , 0 otherwise,
and its transition probabilities are

P(Y k+1 = q, B k+1 = v | Y k = p, B k = u) =      q ia (u+1) 1-H i (u) 1 {δ E * (p,a)=q} if i = a, v = 0, 1-H i (u+1) 1-H i (u) 1 {δ E * (p,a)=q} if i = a, v = u + 1, 0 otherwise, (3.15) where δ -1 E * (p)
is the partial inverse of prefix p, F is a set defined as in Equation (3.1) and 1 A is the indicator function of A.

Proof. The proof is analogous to the proof in Proposition 10.

To simplify the notation let us denote by P the transition probability matrix of process (Y k , B k ), i.e., P ((q, v), (p, u)) 

:= P(Y k+1 = p, B k+1 = v | Y k = p, B k = u) (3.
* p π(p, m) =            π(δ -1 (p), m) if |p| = 0 or |p| = 1; u∈lp u l-1 ∈lp l-1 • • • u 2 ∈lp 2 u 1 ∈lp 1 P ((p l-1 , u l-1 ), (p, u)) • • • P ((p 1 , u 1 ), (p 2 , u 2 ))π(p 1 , u 1 ) if p = w 1 • • • w , 1 < ≤ h. (3.18) If prefix p has the expression p = w 1 w 2 • • • w , 1 < ≤ h then the prefixes p 1 = w i 1 , p 2 = w i 1 w i 2 , ..., p = w i 1 w i 2 • • • w i are the consecutive prefixes from p 1 = w 1 to p = w 1 w 2 • • • w and (p 1 , u 1 ), (p 2 , u 2 ), ..., (p, u) are the consecutive couples in E * × l p , such that for 1 ≤ j ≤ -1 u j+1 = 0 if w j = w j+1 , u j + 1 elsewhere .
The average number of times that the elements {(p, u) : (p, u) ∈ (W, •)} are repeated through the sequence (Y k , B k ) is a function of the transition probability matrix of process (Z k , B k ) as we observe in the following proposition.

PROPOSITION 22. (Garcia-Maya et al. [Submitted in 2020]). For an ergodic Markov chain (Y k , B k ) with stationary distribution π (see Equation 3.18) the average number of times that the elements from W appear through process (Y k , B k ) is

1 n n k=0 1 {(Y k ,B k )∈(W,•)} a.s. --→ p∈W u∈lp u l-1 ∈lp l-1 • • • u 2 ∈lp 2 u 1 ∈lp 1 P ((p l-1 , u l-1 ), (p, u)) • • • P ((p 1 , u 1 ), (p 2 , u 2 ))π(p 1 , u 1 ), n -→ ∞.
where

p 1 = w 1 , p 2 = w 1 w 2 , ..., p = w = w 1 w 2 • • • w h are the consecutive prefixes from p 1 = w 1 to w = w 1 w 2 • • • w h .
Proof: By the strong law of large numbers for an ergodic Markov chain

1 n n k=0 1 {(Y k ,B k )∈(W,•)} n→∞ ---→ (p,u)∈K(E * ) π(p, u)1 {(p,u)∈(W,•)} where (p,u)∈K(E * ) π(p, u)1 {(p,u)∈(W,•)} = (p,u)∈(W,•) π(p, u) = p∈W u∈lp u l-1 ∈lp l-1 • • • u 2 ∈lp 2 u 1 ∈lp 1 P ((p l-1 , u l-1 ), (p, u)) • • • P ((p 1 , u 1 ), (p 2 , u 2 ))π(p 1 , u 1 ).
The following proposition describes the word frequencies using prefix and backward process.

PROPOSITION 23. (Garcia-Maya et al. [Submitted in 2020]). For an ergodic Markov chain (Y k , B k ) with stationary distribution π, we have

√ n 1 n n k=0 1 {(Y k ,B k )∈(W,•)} -S d - → N (0, σ 2 W ), n -→ ∞ where σ 2 W = (p i ,u i )∈(W,•) π(p 1 , u 1 )[δ (p 1 ,u 1 )(p i ,u i ) -π(p i , u i )], ..., π(p |K(E * )| , u |K(E * )| )[δ (p |K(E * )| ,u |K(E * )| )(p i ,u i ) -π(p i , u i )] ×(2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    . (3.19) such that S(p, u) := 1 {(p,u)∈(W,•)} -S and S := (p,u)∈(W,•) π(p, u).
Proof: For an ergodic Markov chain (Y k , B k ) with state space K(E * ) and stationary distribution π by the CLT, we have

√ n 1 n n k=0 1 {(Y k ,B k )∈(W,•)} - (p,u)∈(W,•) π(p, u) n→∞ ---→ N (0, σ 2 ),
where

σ 2 = Sdiag(π)[2Z -I]S T such that S(p, u) := 1 {(p,u)∈(W,•)} -S and 
S := (p,u)∈(W,•) π(p, u). The matrix Z is the fundamental matrix of process (Y k , B k )
and it is defined by Z := (I -P + Π) -1 , such that I is the identity matrix of size

|K(E * )| × |K(E * )|, P is the transition matrix of process (Y k , B k ) and Π = lim n→∞ P .
Therefore

σ 2 W := S(p 1 , u 1 ), ..., S(p |K(E * )| , u |K(E * )| )    π(p 1 , u 1 ) • • • 0 . . . 0 • • • π(p |K(E * )| , u |K(E * )| )    (2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    = S(p 1 , u 1 )π(p 1 , u 1 ), ..., S(p |K(E * )| , u |K(E * )| )π(p |K(E * )| , u |K(E * )| ) (2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    =   1 {(p 1 ,u 1 )∈(W,•)} π(p 1 , u 1 ) - (p i ,u i )∈(W,•) π(p i , u i )π(p 1 , u 1 ), ..., 1 {(p |K(E * )| ,u |K(E * )| )∈(W,•)} π(p |K(E * )| , u |K(E * )| ) - (p i ,u i )∈(W,•) π(p i , u i )π(p |K(E * )| , u |K(E * )| )   (2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    =   (p i ,u i )∈(W,•) π(p 1 , u 1 )[δ (p 1 ,u 1 )(p i ,u i ) -π(p i , u i )], ..., (p i ,u i )∈(W,•) π(p |K(E * )| , u |K(E * )| )[δ (p |K(E * )| ,u |K(E * )| )(p i ,u i ) -π(p i , u i )]   (2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    = (p i ,u i )∈(W,•) π(p 1 , u 1 )[δ (p 1 ,u 1 )(p i ,u i ) -π(p i , u i )], ..., π(p |K(E * )| , u |K(E * )| )[δ (p |K(E * )| ,u |K(E * )| )(p i ,u i ) -π(p i , u i )] (2Z -I)    S(p 1 , u 1 ) . . . S(p |K(E * )| , u |K(E * )| )    .
present the number of times that the word CG is repeated through the DNA sequence. We also searched the enzyme SmaI by its two possible configurations.

Let us consider a bacteriophage DNA sequence. The genomic alphabet is A = {A, T, G, C} where the letters A, T , G, C represent the nucleotides adenine, thymine, guanine and cytosine respectively. In this application, we count the average number of times that the word CG is repeated through the DNA. For this word in the Markov case the main and variance computed according with Propositions 18 and 19 are 0.0869 and 0.0709 respectively. The analogous results for the semi-Markov case according with Propositions 22 and 23 are 0.0500723 and 0.052394. Additionally we search the SmaI enzyme by any of its two configuration, i.e., 'CCCGGG' and 'GGGCCC'. Considering DNA is modeled by a Markov chain, the distribution function of the first hitting position of the SmaI enzyme is computing using Equation (3.12). In figure 3.1 we can observe the results for both words.

Similarly, we also consider DNA sequence is modeled by a semi-Markov chain. Under this hypothesis the distribution function of the first hitting position of the SmaI enzyme is computing using Equation (3.24). In figure 3.2 we can observe which pattern of the enzyme is more probable to appear at first under the semi-Markov hypothesis. Analyzing figures 3.1 and 3.2 we can observe that the configuration CCCGGG has a big probability to appear at first time even if DNA is modeled by Markov or semi-Markov chain. 

Concluding remarks

In this chapter we count the number of times that the elements from a set W are repeated through the DNA, i.e., we provide the strong law of large numbers for a set W. We considered two possibilities to model DNA sequences. We consider DNA is modeled by an ergodic Markov sequence and DNA is modeled by a semi-Markov chain. For both hypothesis the Central Limit Theorem has been presented. The results that appear in the semi-Markov case can be deduced to the results in the Markov case when we have a geometric distribution. We also computed the first hitting position of the elements from the set of words W through the DNA sequence. To show one of its applications we computed the first hitting position of an enzyme through a DNA sequence.

Chapter 4

Phase-type Semi-Markov Distributions and Competing Risks

We present1 here competing risks models within a semi-Markov process framework via the semi-Markov phase-type distribution. We consider semi-Markov processes in continuous and discrete time with a finite number of transient states and a finite number of absorbing states. Each absorbing state represents a failure mode (in reliability of a system) or a cause of death of an individual (in survival analysis). We express the probability a failure occurs at a certain time due to a unique cause. This is an extension of the continuous-time Markov competing risks model presented in [START_REF] Lindqvist | Phase-type models and their extension to competing risks[END_REF]. We give the joint distribution of the lifetime and the failure cause via the transition function of semi-Markov process in continuous and discrete-time cases. Some examples are given for illustration.

Introduction

In competing risks there are two random variables of interest T is the time to failure, and C is the cause of failure, see, e.g., [START_REF] Crowder | Classical competing risks[END_REF], [START_REF] Aalen | Phase type distributions in survival analysis[END_REF], [START_REF] Lindqvist | Phase-type models and their extension to competing risks[END_REF].

For instance, we can consider that a person could die for different causes, lung cancer, heart attack, HIV, etc. If we are interested in knowing the time to death and the cause of death, the model therefore has to include more than one absorbing state (failure state), see e.g., [START_REF] Crowder | Classical competing risks[END_REF], [START_REF] Crowder | Multivariate survival analysis and competing risks[END_REF]. Thus, if the interest is focused on a specific cause of failure in presence of different causes, we are in the case of a competing risks models. In engineering, competing risks refer to the lifetime of a machine and its cause of breakdown.

For instance, if we consider a car, it can stop working because of electrical problems, dead battery, malfunctioning sensors, etc. The idea of competing risks is to model a process where the system is exposed to several causes of failure and its eventual failure is attributed exactly to only one of them.

A natural extension of (Markov) phase-type distribution (Ph-distribution), see, e.g., Neuts [1981a], [START_REF] Aalen | Phase type distributions in survival analysis[END_REF], [START_REF] Asmussen | Matrix-exponential distributions[END_REF], is the semi-Markov Ph-distribution in continuous or discrete-time. See, e.g., Limnios [2012a], where the Ph-distribution is defined in semi-Markov processes for both continuous and discrete time. The aim here is to extend semi-Markov processes to competing risks models (see, e.g., [START_REF] Crowder | Classical competing risks[END_REF], [START_REF] Beyersmann | Competing risks and multistate models with R[END_REF], [START_REF] Crowder | Multivariate survival analysis and competing risks[END_REF]).

Semi-Markov process and extended ph-type distributions

Let us consider a semi-Markov process Z = (Z k ) k∈N with state space E = {1, 2, ..., r + 1}, where states E 0 := {1, 2, ..., r} are the transient states and state {r + 1} is an absorbing state. Let (J n , S n ), n ≥ 0, be the (embedded) Markov Renewal Process (MRP) of Z. Let i, j be two elements of E. Then the semi-Markov kernel Q(t) is defined as follows,

Q ij (t) := P(J n+1 = j, S n+1 -S n ≤ t | J n = i), n ≥ 0, t ∈ R + . (4.1) 
Let α be the initial distribution of the semi-Markov process Z, i.e., α(i) := P(Z 0 = i) = P(J 0 = i), i ∈ E. Let P ij (t) := P(Z t = j | Z 0 = i), for i ∈ E 0 , j ∈ E be the transition function of the semi-Markov (Z k ). Of course, we have P r+1,j (t) = 0, j ∈ E 0 and P r+1,r+1 (t) = 1, for t ≥ 0, see section 1.2.

Consider now a partition of the semi-Markov kernel and the initial law, following sets E 0 and {r + 1}, as follows:

Q(t) = Q 0 (t) L(t) 0 1×r 0 (4.2)
and α = (α 0 , 0), where α 0 is the sub-vector corresponding to transient states E 0 . The matrix Q 0 (t) is the restriction of the semi-Markov kernel over the transient states E 0 × E 0 , an r × r matrix function, and L(t) is an r × 1 column vector function.

Consider also the matrix

H := H 0 (t) 0 0 H 1 (t) (4.3)
where H 0 (t) := diag(H i (t), i = 1, ..., r) is the restriction of the sojourn times survival functions on the transient states, i.e., H i (t) := 1 -j∈E Q ij (t) and H 1 (t) := diag(H i (t), i = r + 1, ..., r + m) is the restriction of the sojourn times survival functions on the absorbing states.

The closed form solution of a semi-Markov phase-type distribution, say F on [0, ∞), is (see, e.g., ? Limnios [2012a]),

F (t) := 1 -F (t) = α 0 (I -Q 0 (t)) (-1) * H 0 (t) (4.4)
where I is the identity matrix for t ≥ 0, and the zero matrix for t < 0, and

(I -Q 0 (t)) (-1) = n≥0 Q (n) 0 (t) where Q (n) 0
is the n-fold convolution of Q 0 (see, e.g., ?), i.e.,

Q 0 (n) ij (t) =      δ ij 1 {t≥0} n = 0 Q 0ij (t) n = 1 k∈E t 0 Q 0ik (ds)Q 0 (n-1) kj (t -s) n ≥ 2.
(4.5)

For the non singularity of this matrix see Section 4.3.

It is worth noticing here that the semi-Markov Ph-distributions on [0, ∞), given by (4.4), is a dense class for the weak topology, in the set of all probability distributions on [0, ∞), since this class includes as a particular case the dense class of Markov Ph-distributions (e.g., Neuts [1981a]).

Semi-Markov process and competing risks

In this section we are going to extend the semi-Markov Ph-distributions to the competing risks setting, as it has been done for the Markov case by [START_REF] Lindqvist | Phase-type models and their extension to competing risks[END_REF].

Let us consider a continuous-time semi-Markov process (Z t , t ∈ R + ), with state space E = {1, 2, ..., r + 1}, where states E 0 := {1, 2, ..., r} are the transient states and state {r + 1} is an absorbing state and initial distribution α. We shall decompose the state space E in transient E 0 (good performance states) and absorbing states E 1 (failures states), i.e., E = E 0 ∪ E 1 . We shall consider r ≥ 1 transient states and m ≥ 2 absorbing states. Under these conditions, we shall give the main results for the extended semi-Markov continuous time Ph-distribution. The time that the process has to wait until it arrives to a failure state (an absorbing state) is a random variable. It is known as time to absorption T. We define this time as follows,

T := inf{k ≥ 0 : Z k ∈ E 1 }. (4.6)
The lifetime T and the cause of failure, C, with values in the set {1, ..., m}, depend on Z t . More precisely, we have {T ≤ t, C = j} = {Z t = r + j}. This is the key relation of the connection between competing risks and the extended Semi-Markov Ph-distributions.

Consider now the partition of the semi-Markov kernel Q, and the initial law, in this new situation following the partition E 0 , E 1 of E, as follows:

Q(t) = Q 0 (t) L(t) 0 m×r 0 m×m (4.7)
and α = (α 0 , α 1 ), notice that, in this particular case α 1 is the zero vector of dimension 1 × r. The function L(t) is now an r × m matrix.

Consider also the diagonal matrix H 0 (t) := diag(H i (t), i = 1, ..., r) and H 1 (t) = 0, so H 1 (t) = I the identity matrix, for t ≥ 0, and 0 m×m otherwise.

PROPOSITION 25. [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]). For an absorbing semi-Markov process as described above, the transition function is given by

P (t) = (I -Q 0 ) (-1) * H 0 (t) (I -Q 0 ) (-1) * L(t) 0 m×r I(t)
Proof. For any fixed t ≥ 0, the matrix Q 0 (t) is sub-stochastic, i.e., there is at least an index i ∈ E 0 such that j∈E 0 Q 0 (i, j) < 1. So, (Q 0 (t)) n goes to zero, as n goes to infinity (see, e.g., Theorem 3.65 in [START_REF] Girardin | Applied Probability: From Random Sequences to Stochastic Processes[END_REF]). But, from Lebesgue-Stieltjes integral and Equation (4.5) we have

Q (n) 0 (t) ≤ (Q 0 (t)) n , so Q (n)
0 (t) goes to zero, as n goes to infinity. Consequently, the matrix I -Q 0 (t) is non-singular.

The transition function P (t) of the semi-Markov process satisfies the following Markov renewal equation (see, e.g., ?)

P (t) = H(t) + Q * P (t),
where H(t) is defined as in Equation (4.3). Now, for the same reasons as previously, the matrix I -Q(t) is non singular for any fixed t in the interior of the support of Q, and then via the convolution algebra, we get

P (t) = (I -Q) (-1) * H(t).
Let us consider the inversion formula of a bloc matrix, (see [START_REF] Lu | Inverses of 2× 2 block matrices[END_REF]), i.e., in case where A and D are square and non singular matrices, we have

A B 0 D -1 = A -1 -A -1 BD -1 0 D -1 .
Now, from the partition of the semi-Markov kernel matrix (4.2), and that of the diagonal matrix H(t), and the non singularity of (I -Q 0 )(t) and I(t) for any t ≥ 0, and the linearity of the convolution operation, we get, straightforwardly, the desired results.

Then the probability that the absorbing state is the state j ∈ E 1 , starting from a state i ∈ E 0 , is given by the (i, j) entry of the matrix (I -Q 0 ) (-1) * L(t).

Let us denote the distribution function of (T, C) (i.e. the cumulative incidence function) by F ij (t) := P i (T ≤ t, C = j) and the corresponding failure rate λ ij (t), for initial state i ∈ E 0 , and cause j ∈ E 1 , conditional on survival up to time t, (which is the cause-specific hazard in the competing risks terminology,)

λ ij (t) := lim h↓0 P i (t < T ≤ t + h, C = j | T > t) h .
It is worth noticing here that for fixed i ∈ E 0 , j ∈ E 1 , F ij (t) is a sub-distribution function.

Let us define the matrix functions F(t) := (F ij (t); i ∈ E 0 , j ∈ E 1 ) and λ(t) := (λ ij (t); i ∈ E 0 , j ∈ E 1 ).

PROPOSITION 26. [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]). Suppose that the entries of the matrix function L, in the semi-Markov (cumulative) kernel (4.2), have Radon-Nikodym derivatives.

Then the distribution function matrix F(t) and the conditional, on survival up to time t, failure rate matrix λ(t), are given by

F(t) = (I -Q 0 ) (-1) * L(t)
and

λ ij (t) = e i (I -Q 0 ) (-1) * (j) e i (I -Q 0 ) (-1) * H 0 (t)1 r ,
where (t) := L (t), the pointwise derivatives of L with respect to t and e i := (0, ..., 0, 1, 0, ..., 0) with 1 in the i-th entry.

Remark. In the case when we consider a general initial distribution α 0 on E 0 , then the above formula can be written as F j (t) := P(T ≤ t, C = j) = α 0 (I -Q 0 ) (-1) * L(j) and

λ j (t) = lim h↓0 P(t < T ≤ t + h, C = j | T > t) h = α 0 (I -Q 0 ) (-1) * (j) α 0 (I -Q 0 ) (-1) * H 0 (t)1 r .
Proof. We have F j (t) := P(T ≤ t, C = j) = P(Z t = j). So, by Proposition 1, we get F(t) = α 0 P 12 (t), and the result follows.

Let us now consider the probabilities R ik = P i (Z T = r + k) = P i (C = k), for starting in state i ∈ E 0 and being absorbed in state k = 1, ..., m, and define the matrix R := (R ik ; i = 1, ..., r; k = 1, ..., m). Consider also the transition probability matrix P of the embedded Markov chain (J n ) of the semi-Markov process (Z t ) (see, e.g., ?) and its partition following sets E 0 , E 1 , i.e., P = P 0 P 1 0 m×r I .

PROPOSITION 27. [START_REF] Limnios | Semi-Markov processes and reliability[END_REF]). We have R = (I -P 0 ) -1 P 1 .

Proof. Since this probability depends only on the transition probabilities of the embedded Markov chain, the proof of the result is straightforward by Markov chain theory (see, e.g., [START_REF] Girardin | Applied Probability: From Random Sequences to Stochastic Processes[END_REF]).

Examples in continuous time Let us consider a four states semi-Markov process, i.e., let E = {1, 2, 3, 4}, where states 1, 2 are transient and states 3, 4 are absorbing states, i.e., E 0 = {1, 2} and E 1 = {3, 4}. The semi-Markov kernel of this process is

Q(t), Q(t) =     0 Q 12 (t) Q 13 (t) 0 Q 21 (t) 0 0 Q 24 (t) 0 0 0 0 0 0 0 0    
with the following blocks of its partition:

Q 0 (t) = 0 Q 12 (t) Q 21 (t) 0 , L(t) = Q 13 (t) 0 0 Q 24 (t) .
Now we have the following block matrix of the transition function

P 12 (t) = (I -Q 0 ) (-1) * L(t) = M * Q 13 (t) Q 12 * Q 24 (t) Q 21 * Q 13 (t) Q 24 (t)
where

M (t) := (1 -Q 21 * Q 13 ) (-1) (t) = 1 + ∞ k=1 (Q 21 * Q 13 ) (k) (t)
. This is a usual renewal type function.

So, we have

F 1 (t) = α 0 P 12 (t)e 1 = α(1)M * Q 13 (t) + α(2)M * Q 21 * Q 13 (t) and F 2 (t) = α 0 P 12 (t)e 1 = α(1)M * Q 12 * Q 24 (t) + α(2)M * Q 24 (t).
The primes here mean derivatives with respect to t.

We also calculate the cause specific failure rates λ j (t), for j = 1, 2, as follows:

λ 1 (t) = α(1)M * Q 13 (t) + α(2)M * Q 21 * Q 13 (t) M * [α(1)Q 13 * H 1 (t) + α(1)Q 12 * Q 24 H 2 (t) + α(2)Q 12 * Q 13 * H 1 (t) + α(2)Q 24 * H 2 (t)] λ 2 (t) = α(1)M * Q 12 * Q 24 (t) + α(2)M * Q 24 (t) M * [α(1)Q 13 * H 1 (t) + α(1)Q 12 * Q 24 H 2 (t) + α(2)Q 12 * Q 13 * H 1 (t) + α(2)Q 24 * H 2 (t)]
where

H 1 (t) = 1 -(Q 12 (t) + Q 13 (t)) and H 2 (t) = 1 -(Q 21 (t) + Q 24 (t)
), for t ≥ 0, and α(i) := P(Z 0 = i), for i = 1, 2.

Finally, the matrix R is R = (1 -p 12 p 21 ) -1 p 13 p 12 p 24 p 21 p 24

where p ij := Q ij (∞), for i, j ∈ E 0 and p ij := δ ij for i, j ∈ E 1 (Kronecker's δ).

It is worth noticing that from p 12 + p 13 = 1 and p 21 + p 24 = 1, we can see that R is a stochastic matrix.

The discrete-time competing risk

Discrete-time semi-Markov setting. Let (Z k ), k ∈ N be a semi-Markov discrete-time process, i.e., a semi-Markov chain (SMC) with state space E, and (J n , S n ), n ∈ N, its embedded Markov renewal chain, see section 1.2.

We shall make the same considerations for the semi-Markov chain (Z k ) k∈N as in continuous time, i.e., we shall decompose the state space in transient (good performance states) and absorbing states (failures states), i.e., E = E 0 ∪ E 1 . We shall consider r ≥ 1 transient states and m ≥ 2 absorbing states. We shall also make a partition the semi-Markov kernel following the states E 0 and E 1 , i.e.,

q(k) = q 0 (k) q 1 (k) 0 0 . (4.8)
Observe that the first zero in the second line is the m × r zero matrix and the second one is the m × m matrix; q 0 (k) and q 1 (k) are the restriction of q(k) on E 0 × E 0 and E 0 × E 1 respectively. The next proposition gives the main result for the extended Semi-Markov Ph-distribution in discrete time.

PROPOSITION 28. (Garcia-Maya et al. [Submitted in 2020]). For a semi-Markov discretetime process (Z k ), k ∈ N with state space E and initial distribution α as described above,

g j (k) := P(T = k, C = j) = 0, k = 0; α 0 (I -q 0 ) (-1) * q 1 (k)e j , k ∈ N * ; Therefore G j (k) = P(T ≤ k, C = j) = k l=0 α 0 (I -q 0 ) (-1) * q 1 (l)e j ,
where e j is a column vector of size |E 1 | where all its coordinates are zero except the coordinate which correspond to state j.

Proof: Set

g ij (k) = P i (T = k, C = j), i ∈ E 0 , j + r ∈ E 1 .
Obviously, we have:

g j (k) = i∈E 0 α i g ij (k). (4.9)
Now, we can write:

g ij (k) = P i (T = k, C = j, S 1 ≥ k) + P i (T = k, C = j, S 1 < k) = P i (J 1 = r + j, S 1 = k) + l≤k-1 p∈E 0 P i (T = k, Z k = j, S 1 = l, J 1 = p).
Then:

g ij (k) = q i,r+j (t) + k l=0 p∈E 0 q ip (l)g pj (k -l). (4.10)
This is a discrete-time Markov renewal equation which in matrix form gives:

g(k) = q 1 (k) + q 0 * g(k).
Its solution is g(k) = (I -q 0 ) (-1) * q 1 (k) (4.11) see e.g., [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis[END_REF]. Equation (4.11) combined with Equation (4.9) gives the desired result.

Examples in discrete time

We present an example of semi-Markov chain with two absorbing states, i.e., we consider two causes of failure. For these examples the state space is E = {1, 2, 3, 4}, with up states: 1 and 2; and down states: 3 and 4, i.e., the first cause of failure is the state 3, and the second cause of failure is the state 4.

As it was mentioned in the previous sections, for a Markov process in discrete time, the sojourn time in a state, see Equation (1.14), always has geometric distribution on N * i.e., for all i, j ∈ E, f ij (0) := 0 and

f ij (k) := p(1 -p) k-1 , p ∈ [0, 1], k ≥ 1.
In a semi-Markov chain, f ij (k) could be any distribution. In this example every f ij (•) is a discrete-time Weibull distribution, i.e.,

f ij (k) := W ai,bj (k) where W a,b (0) := 0 and W a,b (k) := a (k-1) b -a k b , k ≥ 1.
see [START_REF] Nakagawa | The discrete Weibull distribution[END_REF]. For this particular example

q(k) = q ij (k) 1≤i,j≤4 =     0 p 12 f 12 (k) p 13 f 13 (k) p 14 f 14 (k) p 21 f 21 (k) 0 0 p 24 f 24 (k) 0 0 0 0 0 0 0 0     , k ∈ N,
where p ij := P(J n+1 = j | J n = i), i, j ∈ E, n ∈ N. In the next figure we show the extended Phase-type distribution of the random pair (T, C) for a semi-Markov chain. In figure 4.1, the system is modeled by a semi-Markov discrete-time process. In the figure we can observe that the process enter to the absorbing state three (first cause of failure) and, the absorbing state four (second cause of failure). 

Concluding remarks

We have presented competing risks models for semi-Markov process in discrete and continuous time via phase-type distributions. We considered stochastic systems which always start in a functional state and for which there are a finite number of absorbing states. Each absorbing state may represents a failure mode in reliability applications and a cause of death of an individual in survival analysis. We derived expressions for the probability that failures occur at a certain time due to a given cause. We also gave the joint distribution of the lifetime and the cause of failure. In further work we aim at using the model as a basis for statistical estimation problems under semi-Markov assumptions.

Chapter 5

Using semi-Markov chains to solve semi-Markov processes

Introduction

Even though SMCs and SMPs1 model properly a vast quantity of real problems most of them requires the Markov renewal equation (MRE) to be solved. The MRE finds applications in many areas of applied probability including reliability, queueing systems, inventory management, risk theory and decision analysis, see e.g., [START_REF] Hou | On the existence and uniqueness of solution of Markov renewal equations and applications[END_REF], Asmussen et al.

[2016], [START_REF] Dhulipala | Series of semi-Markov processes to model infrastructure resilience under multihazards[END_REF], [START_REF] Wang | Variance and volatility swaps and futures pricing under geometric Markov renewal processes and stochastic volatility models[END_REF], etc. When the Markov renewal equation (MRE) is required in the solution of these problems, the semi-Markov hypothesis generates some difficulties. This is due to the Markov renewal equation is a function of convolutions products. The convolution of a function is a recursive method that demands a big computational memory to be implemented and even more in continuous time semi-Markov process. In a discrete-time semi-Markov process the Markov renewal function is expressed as a finite series of the semi-Markov kernel convolution product, instead in the continuous case, it is expressed in terms of an infinite series. This give an important advantage to discrete-time semi-Markov processes in numerical calculus.

A number of methods have studied the discretization of the MRE. For instance, in [START_REF] Barbu | Discrete-time semi-Markov model for reliability and survival analysis[END_REF] the authors proposed a computation procedure for solving the corresponding Markov renewal equation, necessary for reliability measurements. In [START_REF] Barbu | Empirical estimation for discrete-time semi-Markov processes with applications in reliability[END_REF] the authors obtained empirical estimators for the semi-Markov kernel and the semi-Markov transition function, which allows to present a discretization of then MRE. In [START_REF] Elkins | On numerical solution of the Markov renewal equation: tight upper and lower kernel bounds[END_REF] it was developed tight bounds and an algorithm to compute the Markov renewal kernel. Knowledge of the kernel allows to solve Markov renewal equations numerically. In [START_REF] Li | Upper and lower bounds for the solutions of Markov renewal equations[END_REF] upper and lower bounds are studied for the solutions of Markov renewal equations. These bounds are applied to a shock model and an

Now the continuous-time semi-Markov kernel Q(t) can be approximated by Qh (t), which is defined by Qh

(t) ≡ Q h (k -1)
when (k -1)h ≤ t < kh. Meanwhile, the transition function matrix of the SMP P(t) can be correspondingly approximated by Ph (t), which is stated in the following proposition.

PROPOSITION 29. (Wu et al. [Submitted in 2020]). If for any fixed t > 0, kh → t as k → ∞ (h ↓ 0), then Ph -P (t) → 0, as h ↓ 0.

Proof. The cumulative semi-Markov kernel for the SMC Z h (k) is given by

Q h (k) = l≤k q h (l) = Q(kh),
which implies that the cumulative distribution function of the sojourn time for the SMC Z h (k) can be written as

H h (k) = H(kh).
If we consider a bounded matrix A of dimensions s × s and its corresponding pointwise discrete version A h , we get easily that

q h * A h (k) = Q * A(kh).
(5.2)

And then, for any n ≥ 1, we get, by induction from Equation (5.2), that

q (n) h (k) = Q (n) (kh),
which follows that, for any k ∈ N,

ψ h (k) = ψ(kh).
Further, we have

P h (k) = ψ h * (I -H h )(k) = ψ (I -H)(kh) = P(kh).
And then, if kh → t as k → ∞ (h ↓ 0), we get by continuity that ψ (I -H)(kh) → ψ (I -H)(t), namely,

P h (k) → P(t) as k → ∞ (h ↓ 0),
element-wise, and then max

i,j∈E Ph;ij (t) -P ij (t) = max i,i∈E |P h;ij (k -1) -P ij (t)| → 0, as h ↓ 0.
In the following, two useful propositions are presented for bounding the error for the transition function matrix due to discretization.

Let us define δ

h := max {i,j∈E},{k:kh<t} q h ij (k), where q h (k) = [q h ij (k)]. Obviously, when k → ∞ or h → 0, δ h → 0.
Recall that Qh (t) ≡ Q h (k -1) when (k -1)h < t < kh, which is an extension of the discrete-time semi-Markov kernel to the continuous-time case. Based on Proposition 4.3 in Limnios and Oprisan (2012), we can obtain the distance between transition function matrices based on semi-Markov kernels Qh (t) and Q(t) in the following proposition.

PROPOSITION 30. (Wu et al. [Submitted in 2020]). The distance between transition function matrices, Ph (t) and P(t), verifies the following inequality

Ph -P (t) min{κ( Qh , Q)(t), κ(Q, Qh )(t)}, where κ( Qh , Q)(t) = s 2 • ψ h (t) • Qh -Q (t) • (2 ψ (t) + 1).
Moreover, we have the following proposition which can avoid the inverse in the convolution seance.

PROPOSITION 31. (Wu et al. [Submitted in 2020]). If for a fixed time t > 0, the matrices (I -Ph (t)) and (I -P(t)) are non-singular, then

Ph -P (t) min{λ( Qh , Q)(t), λ(Q, Qh )(t)} where λ( Qh , Q)(t) = δ h • s 2 • max i,j [I -Q(t)] -1 (i, j) • (2 max i,j
[I -Qh (t)] -1 (i, j) + 1).

Meanwhile, let us denote by P h,i the probability distribution of the SMC Z h , and P i the probability distribution of the SMP Z, conditional on starting from state i ∈ E. According to Karr's theorem (Karr 1975) (see also Limnios and Oprisan 2012), we get the following result.

PROPOSITION 32. (Wu et al. [Submitted in 2020]). For any i ∈ E, the following weak convergence holds true P h,i ⇒ P i as h ↓ 0.

In the following subsection, we shall give some numerical examples to illustrate our proposed model.

Numerical examples in reliability problem

In order to illustrate our mathematical model, we consider a reliability application where it is analyzed the sequential cyber-attacks that was explored in [START_REF] Liu | Probabilistic modeling and analysis of sequential cyberattacks[END_REF]. In this last article it was explored the Trojan attacks. A Trojan horse or Trojan is a type of malware that is often disguised as legitimate software. Trojans are employed by hackers trying to get access to users' systems. The trojan attacks were designed to commit crimes one of the most important of them is stealing identity. The way trojan horses operate is by tricking cyber users. Users are typically tricked by some form of social networks into loading and executing Trojans on their systems. We might think we have received an email from someone we know and we click on what looks like a legitimate attachment. But we have been tricked. Once activated, Trojans cyber-criminals can get access to the computational system.

A system which is exposed to Trojan attack is assumed to evolve according to an homogeneous SMP with four states, which are state 0: when systems work normally. Hence, the system works when it is in states 0, 1 and 2, and fails due to the completed fraud in state 3. The initial distribution is assumed to be α = ( 1 0 0 0 ).

We aim to calculate the instantaneous availability A(t) of the system. The instantaneous availability of a system S at time t ∈ R + is the probability that the system is in an operational state at time t (independently that the system has fail or not in [0, t)). To compute the availability of the system the state space is partitioned in two groups of states: the operational or functional states, i.e., the up states which will be denoted by the letter U and the failure states, i.e., the down states which will be denoted by the letter D. For this particular example the up states is U = {0, 1, 2} and the down states are D = {3}. Therefore the instantaneous availability of a semi-Markov process at time t ∈ R + is

A(t) := P(Z t ∈ U ).
It is well-known that if the system state evolution is governed by an SMP, the availability A(t) is expressed by the following equation

A(t) = αP(t)1 s,r ,
where 1 s,r is an s-dimensional vector with 1's as first r components and 0's as last s -r ones. In this example, we have s = 4 and r = 3 and P(t) is the transition matrix of the SMP (Z t ), see Equation (1.3). Then, we can calculate the point-wise availability of the system by computing the transition function matrix P(t).

Exponentially distributed sojourn times -Markov case

In order to verify the effectiveness of the proposed method, let us first consider a Markov case where the sojourn time in each state is exponentially distributed. As it is well known the transition matrix of a Markov process at continuous time is a function of its infinitesimal generator. In this case the infinitesimal generator is given by

G =     -0.2 0.2 0 0 0.01 -0.11 0.1 0 0.15 0.3 -0.85 0.4 0 0 0.5 -0.5     ,
then the transition probability matrix in the Markov process is

P (t) =     0 1 -e -0.2t 0 0 1 11 1 -e -0.11t 0 10 11 1 -e -0.11t 0 3 17 1 -e -0.85t 6 17 1 -e -0.85t 0 8 17 1 -e -0.85t 0 0 1 -e -0.5t 0     .
Therefore if the state evolution of the system is governed by a Markov process, the system availability can be calculated by A(t) = αe Gt 1 s,r .

(5.3)

To compute the availability of the continuous system we shall make a discretization of the time. We shall consider three different approximations where the step time are h = 0.05, h = 0.01 and h = 0.001. We consider the approximate results when t = 1. The exact value calculated by Equation (5.3) and the three consider approximations are illustrated the following figure. It can be seen from Figure 5.2 that the smaller h is, the closer the approximation is to the exact value, which is consistent with Proposition 29. When h = 0.001, the approximate value of A(t) nearly coincides with the exact value.

Meanwhile, we can estimate approximation errors based on Propositions 30 and 31, whose results are shown in Table 5.1. Note that in Table 5.1, Ā(1) represents the approximate result of the system availability at time t = 1 obtained by employing the proposed method in subsection 5.2, where the discretization for the transition probability matrix in the Markov case is given by the expression P h (k) = e Gkh -e G(k-1)h , k ≥ 1 and P h (0) := 0.

. 5.1, we can see that a decreased h reduces the estimated errors obtained by Propositions 30 and 31. Meanwhile, the effect of Proposition 30 is better than the estimation effect of Proposition 31, which is the penalty of Propositions 31 by reducing the computational complexity.

In next subsection we shall apply the mathematic discretization in a semi-Markov process. For this end, we shall consider sojourn times in a states are governed by a Weibull distribution function.

Weibull distributed sojourn times -semi-Markov case

In this section, the sojourn time in each state is assumed to follow the Weibull distribution with scale and shape parameters (α ij , β ij ) as Table 5.2 shows, which is identical to those in Liu et al. (1990). The cumulative distribution function of the Weibull distribution is Based on Equation (5.3), we set h = 0.1, h = 0.05, h = 0.01 and h = 0.001. We consider the approximation when t = 2. We can draw the curves of system point-wise availabilities as Figure 5.3 shows. 

F ij (t; α ij , β ij ) = 1 -exp -t α ij β ij .

Conclusions

In this chapter, we presented a novel method to solve the continuous-time MRE based on the algorithm from discrete-time case. This method sheds new light on handling continuous-time SMPs which has versatility and flexibility in distributions of sojourn times with good approximate results. The error bounds caused by discretization for transition function matrices of continuous-time SMPs are studied, which provide an efficient way to decide the step size of discretization.

The proposed method is applied to any problem modeled by finite state space continuoustime semi-Markov processes. The proposed model has many applications for instance in reliability problems (as above) for availability, reliability, maintainability, etc. The effectiveness of our method is verified under the Markov case where the exact value of the system availability can be obtained in order to make comparisons with our results. Meanwhile, the case where sojourn times follow Weibull distributions is considered and computed to illustrate the applicability of our method in SMPs.

Chapter 6

Conclusions and Perspectives

SMPs have become increasingly important in probability and statistical modeling because they have a lot of applications. The popularity of SMPs is because they allow to model the sojourn time in a state by any distribution function. In the Markov context, the waiting times between states are geometric distributed (in discrete time) or exponentially distributed (in continuous time). This is the reason why SMPs fit better than Markov hypothesis for real problems.

In this thesis, we tackled DNA analysis and competing risk problems from a point of view of SMPs. We proposed a model and an algorithm that can be implemented in real applications to compute the first hitting position (time) of a set of words (patterns) in a semi-Markov sequence. This model is based on prefixes and its extended state space. For a word w with length |w| = h and maximum value for the backward time of a prefix: γ = max{l * p : p ∈ E * }, we need a state space of cardinality (h + |A| -1) × γ at most. We also estimate the number of times that a word w, from a specific set of words W, is repeated through out the DNA by any of its configurations, i.e., we provide the strong law of large numbers for a word sequence. To this problem, we consider two cases: DNA is modeled by an ergodic Markov sequence, and DNA is modeled by a semi-Markov chain. For both hypothesis we presented the Central Limit Theorem.

We have also tackle competing risks models from the point of view of semi-Markov processes in discrete and continuous time via phase-type distributions. We considered stochastic systems which always start in a functional state and for which there are a finite number of absorbing states. Each absorbing state represents a failure mode in reliability applications and a cause of death of an individual in survival analysis. We derived expressions for the probability that failures occur at certain time due to a given cause. We also gave the joint distribution of the lifetime and the cause of failure.

Continuous-time MRE are difficult to solve because they are expressed in terms of infinite series of the convolution kernel. In this thesis we presented an algorithm to express MRE at continous time using SMCs. The error bounds caused by discretization were also obtained. These bounds provide the efficiency of the proposed algorithm. The proposed method is applied to any problem modeled by finite state space continuous-time semi-Markov process.

Perspectives for extension of the present work

During the development of this thesis many ideas have been appeared which for lacking of time were not developed through this work but they can be considered as a future work. In the following paragraphs we would like to mention some of them: Firstly, identify how many different patterns of particular length are presented in a random finite sequence has been of interest in recent years. [START_REF] Trifonov | Making sense of the human genome. Structure and methods: proceedings of the Sixth Conversation in the Discipline Biomolecular Stereodynamics held at the State University of New York at Albany[END_REF] named this problem as: the complexity of a sequence. It is well known that patterns are not always uniformly distributed and not all patterns appear in a finite stochastic sequence. To mention an example, crowd of scenarios suggest that the number of patterns of particular length through the DNA sequence is far less than the total number of patterns, see, e.g., [START_REF] Manfred | Combinatorial optimization algorithms for the design of codes: a survey[END_REF]; [START_REF] Kauffman | The origins of order: Self-organization and selection in evolution[END_REF]; [START_REF] Yockey | Information theory & molecular biology[END_REF]. This means that every sub-sequence in the DNA has a specific function. Identify how many different patterns (words or motifs) of particular length are presented in a DNA sequence is fundamental to understand the structure and function of organisms, see, e.g., [START_REF] Badis | Diversity and complexity in dna recognition by transcription factors[END_REF], [START_REF] Taft | The relationship between non-protein-coding dna and eukaryotic complexity[END_REF], [START_REF] Blin | Patscanui: An intuitive web interface for searching patterns in dna and protein data[END_REF]. After Trifonov the problem of determining the complexity function for finite sequence has been considered by several authors. Like a future work we would like to compute the probability that a stochastic finite sequence reaches c ∈ N different patterns of size h ∈ N, after k ∈ N positions (from the beginning of the sequence). We shall consider the hypothesis that the stochastic sequence is modeled by a semi-Markov chain. To exemplify the problem we give an example. Considering that genomic sequences are the result of a certain stochastic process governed by four nucleotides represented by the following set A = {A, T, G, C}, until the position 5 (starting from 0) the number of different patterns of size h = 3 in the following DNA sequence taken from a bacteriophage: GGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAG TTTCCGTTCTTCTTCGTCATAACTTAATGTTTTTATTTAAAATACCCTCTG... is 4 and are the patterns: {GGG, GGC, GCG, CGG}. This problem has been encountered in biology, but it can also be encountered in other fields.

Another point of improvement is in competing risk models. The states of semi-Markov systems can be divided into three categories: a normal working subset, a defective working subset and a breakdown subset which contains an absorbing state where the system cannot escape once entering it. If the number of transitions between the normal and defective working subsets exceeds a given value, the system will be abandoned due to the high maintenance costs. So, we are interested in computing the number of transitions between normal and effective working during a time interval. Speech recognition works using algorithms through acoustic and language modeling. Acoustic modeling represents the relationship between linguistic units of speech and audio signals; language modeling matches sounds with word sequences to help distinguish between words that sound similar. It is well known that hidden Markov models (HMM) are used to make speech recognition. HMM is a stochastic process that is not directly observable, but it can be observed through another set of stochastic processes that produce the sequence of observations [START_REF] Van Der Hoek | Introduction to Hidden Semi-Markov Models[END_REF]. The five components that characterize Hidden Markov Models are: number of hidden states in HMM, number of observation symbols per state, state transition probability distribution, observation symbol probability distribution in each state and initial state probability distribution. Nevertheless, these models have a number of limitations. The major of them, is the duration of conversations which should be exponentially distributed. For this reason we propose a hidden semi-Markov process for modeling speech recognizing.
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 11 Figure 1.1: Sample path of a semi-Markov process where we can observe the backward and forward recurrence time at time t.
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 1 Figure 1.2 shows a graphical representation of DFA previously described.
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 12 Figure 1.2: Graphical representation of the DFA with A = {a, b} for computing the first hitting time of w = abaabab.

Figure 1 . 3 :

 13 Figure 1.3: Example of three competing risk of death
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 3 If the alphabet is A = {a, b, c} and the word is w = ba then, if the elements of the prefix set E are listed as follows E = {ε a = 0, ε c = 1, b = 2, ba = 3}. For the following sample Z : aaaccba... we have as result Y : 0001123...

  16) and β(p, u) := P(Y 0 = p, B 0 = u).

  )(I -s Pw ) -1 = (s Pw )(I -s Pw ) -2 Pw + Pw (I -s Pw ) -1 .(2.26)Identification of Words in Biological Sequences Under the semi-Markov Hypothesis 44

  .1), therefore the prefixes of a set of words W ⊂ A h denoted by Ẽ * is the union Ẽ * := w∈W E w . Let δ Ẽ * : Ẽ * × A → Ẽ * be a function analogously defined as Equation (2.2), i.e., it is the longest suffix of qa ∈ Ẽ * (concatenation of q ∈ Ẽ * and a ∈ A) in the prefix set Ẽ * . Observe the following examples for δ Ẽ * EXAMPLE 5. If A = {a, b, c}, W = {ab, aa} the prefix set is Ẽ * = {ε, a, ab, aa},

  e., := |E * |. Next definition presents the generalization of Definition 15. It introduces the prefix process of a set of words W. DEFINITION 17. The prefix chain of W embedded in the Markov chain (X k ) and defined in E * , see Equation (3.2), is denoted by Y * := (Y * k ) k∈N where

  16) and α(p, u) := P((Y 0 , B 0 ) = (p, u)) (3.17) its initial distribution. It has been proved in Proposition 11 that if (Z k , B k ) is an irreducible and aperiodic Markov chain, then the sequence (Y k , B k ) has the same properties. If π is the stationary distribution of Markov process (Z k , B k ). Then the stationary distribution of (Y k , B k ) denoted by π is a function of π, where for m ∈ l
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 31 Figure 3.1: Probability to reach SmaI by any of its configuration under Markov hypothesis
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 41 Figure 4.1: Probability of absorption before time k for states 3 and 4 for a semi-Markov chain

  state 1: when users receive Trojan virus links. state 2: when malicious links are clicked. state 3: when users make payment according to links. The state transition diagram is illustrated by Figure 5.1.
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 51 Figure 5.1: State transition diagram of systems subject to Trojan attacks
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 52 Figure 5.2: Exact and approximate values of the availability A(t) in Markov case.
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 53 Figure 5.3: Approximate values of A(t) under the semi-Markov hypothesis.

  

  

  Rate of occurrence of the word w in the DNA sequence Expected value of N w for different values of M in the DNA
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Figure 2.5: Cumulative distribution function of N w , i.e., F w (k) := P(N w ≤ k)

  1 where E * 1 are the prefixes which belong to the set W and E * 0 are the elements of E * which are different from the set W, i.e., E * 0 = E * \ W and E *

				1 = W,
	it is clear that E * 0 ∩ E * 1 = Ø. We also decompose the initial distribution α * , see
	Proposition 15, where α * 0 and α * 1 are the restrictions of the initial distributions in states E * 0 and E * 1 and receptively. Let ( Ỹk ) be a prefix process defined as the prefix
	process (Y * k ), see Definition 17, but with transition probability matrix	
	R =	P00 P01 0 I	,	(3.8)

Table 5 .

 5 1: Computation errors of Markov case.

	h	0.1	0.05	0.01	0.001
	Ā(1)	0.999315 0.999210 0.999124 0.999105
	Ā(1) -A(1)	0.000212 0.000108 0.000022 0.000002
	Estimated error by Proposition 30 0.037180 0.009013 0.000352 0.000005
	Estimated error by Proposition 31 1.34437 0.654051 0.128003 0.01823

From Table

Table 5 . 2 :

 52 Baseline values of model parameters of Weibull distribution.

	CDF	Parameter values
	F 01	α 01 = 1/0.034, β 01 = 0.54
	F 10	α 10 = 1/0.0125, β 10 = 0.86
	F 12	α 12 = 1/0.106, β 12 = 2
	F 20	α 20 = 1/0.15, β 20 = 1
	F 21	α 21 = 1/0.2, β 21 = 1
	F 23 α 23 = 1/0.0023, β 23 = 0.072
	F 32	α 32 = 1/0.39, β 32 = 1
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  • • • w h word of size h formed by the letters w 1 , w 2 , .., w h ∈ A |w| number of symbols of the word w A h the set of words of size h formed by the elements in A z j an element from A h (Z k , B k ) k∈N MC with state E × N p transition probability matrix of MC (Z k , B k ) (Z k , B k ) k∈N h-dimensional Markov process where Z k := (Z k , .., Z k+h-1 ) and B k := (B k , ..., B k+h-1 ) K j subset of A h × N h which represents the word zj and all possible backwards time for each letter in the word K state space of Markov process (Z k , B k ) α(z, u) initial distribution of MC (Z k , B k ) P transition probability of Markov process (Z k , B k ) 1 A indication function of A T W r.v. which determines the first hitting time of an element form the set W 1 |A| column vector of ones with size cardinality of AX = (X k ) k∈N Markov chain (different from the MCE (J n )) P transition probability matrix of MC X π stationary distribution function of MC X (A, Q, s, F, δ) determinism finite automata (DFA) where A is a finite set of symbols, Q is a set of states, s ∈ Q is the initial state, F ⊂ Q is a set of accepted states and δ : Q × A → Q is atransition function ε empty prefix E w prefix set of the word w δ Ew : E w × A → E w function which is defined as the longest prefix in E w that can be formed with the concatenation between a prefix in E w and an element from A δ -1 Ew (•) partial inverse of δ Ew E extended state space of E w Y = (Y k ) chain of prefixes embedded in a SMC (Z k ) and defined in E w(η) η ∈ N block of the word w l * p backward times for prefix p through the SMC (Z k ) K p (E) prefix p ∈ E and its corresponding backward times K(E) all prefixes in E and its backward times (Y k , B k ) chain of prefixes and backward times defined in E P transition matrix of the Markov chain (Y k , B k ) β initial distribution of the Markov chain (Y k , B k ) N w number of elements in (Z k ) before the first position of w := (Y * k ) k∈N prefix chain of W embedded in MC (X k ) and defined in E * α * initial distribution of prefix chain Y * P transition probability matrix of prefix chain Y * π stationary distribution of prefix process Y * Ỹ = ( Ỹk ) prefix process defined as prefix process Y * but where the elements in W are consider absorbing states R transition probability matrix of prefix process Ỹ T r.v. which represents the time that process ( Ỹk ) has to wait until an element from W arrives W r.v. which takes the value w j if w j is the first element from W that appears in the prefixes chain ( Ỹk ) G j (k) cdf of the r.v. (T, W ) g j (k) pdf of the r.v. (T, W ) (Y k ) prefix chain embedded in SMC (Z k ) and defined in E * (Y k , B k ) k∈N chain of prefixes and backward times defined in K(E * ) P transition probability matrix of process (Y k , B k ) α initial distribution of process (Y k , B k ) π stationary distribution of process (Y k , B k ) ( Ỹk , B k ) process of prefixes and backward times defined as process (Y k , B k ) but where the elements in W are considered absorbing states R transition probability matrix of process ( Ỹk , B k ) T r.v. which represents the time that process ( Ỹk , B k ) has to wait until an element from W arrives W r.v. that takes the value w j if w j is the first element from W that appears in the chain ( Ỹk , B k ) g i (k) cdf of the r.v. ( T , W ) G i (k) pdf of the r.v. ( T , W )

	W		subset of A h
	F		set of letters in A that are different from the first letter of any
			word w ∈ W
	Ẽ *		prefix set of W
	E *		extended state space of Ẽ *
	Y •		matrix norm
	A(t)		instantaneous availability of a system
	G		infinitesimal generator of a Markov process
	T		time to failure
	C		cause of failure
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* j (t) := P(T ≤ t, C = j)
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availability of the position is modeled by a switching process where the state space makes reference to the GPS signal quality and which is modeled by a SMP. The GPS quality will be classify in: good, bad and fair. Depending of the state of the GPS signal the UAV determines if its position measure is the real position or the UAV is lost.

Let ( Ỹk , B k ) be a process defined as process (Y k , B k ) but with transition probability matrix R where

1-H i (u) 1 {δ E * (p,a)=q} if i = a, v = u + 1, q = p 1 if p = q 0 otherwise.

(3.20) The time that process ( Ỹk , B k ) has to wait until an element from W arrives is a random variable and it is defined as follows T := inf{k ≥ 0 : ( Ỹk , B k ) ∈ (W, •)}.

(3.21)

We are interested in computing the distribution function of T and also the probability that ( Ỹk , B k ) reaches (W, •) by a specific element w j ∈ W. Therefore, let us denote the random variable

The random variable W takes the value w j if w j is the first element from W that appears in the chain ( Ỹk , B k ). To provide the distribution function of ( T , W ) we shall decompose the state space K(E * ) according with states K 0 and K 1 where

We shall consider R the transition probability matrix of process ( Ỹk , B k ), where R is defined as follows

PROPOSITION 24. The law and the distribution function of ( T , W ) for the Markov chain ( Ỹk , B k ) are:

therefore its distribution function is (3.24) where e i is a column vector of size |K 1 | where all its entries are zeros, except the entry which corresponds to w i which takes the value one.

where for 1 ≤ j ≤ h -1, u j+1 are the elements in l * p such that for

Expressing the last equation in matrix form, we have ḡj (k) = α0 Rk-1 00 R01 e j .

For the distribution function, we have

The sum of the above series is

where I is the identity matrix of size |K 0 | × |K 0 |, therefore we have

Example

To show one of the implementations of the proposed model, in this section we present a genomic example where DNA is modeled by a Markov and semi-Markov process and we age-dependent branching process under Markovian environment, etc.

The main idea in this chapter is to use SMCs to handle SMPs, whith this idea MRE can be expressed as a finite series of semi-Markov kernel convolution product, instead of an infinite series in SMPs. This good property of SMCs facilitates the computational cost making possible the implementation of the theoretical models. In order to illustrate our method, we present an example concerning cyber-attacks where it is evaluated the system availability.

We want to emphasize that this model and all mathematical results shown in this chapter were taken from the article Wu et al. [Submitted in 2020].

Continuous-time MRE solution given by discretetime method

In this section we shall present an algorithm which computes the MRE of SMPs, see Equation (1.6). To achieve our goal first we shall present a discretization of the semi-Markov kernel.

For a given SMP Z(t) with continuous semi-Markov kernel Q(t) and state space E := {1, 2, . . . , s}, we define an SMC Z h (k), where k ∈ N and h > 0, such that the semi-Markov kernel q h (k) is given by the equation q h (k) := Q(kh) -Q((k -1)h) for k ≥ 1, and q h (0) := 0.

Then, the transition function matrix of the SMP, denoted by P(t), which satisfies Equation (1.8), has an approximate solution

where ψ h can be calculated by Equation (1.6) based on q h .

In the remainder of this chapter, let h denote the step size of discretization. Note that the matrix functions which refer to SMC Z h (k) are denoted with index h, for example, P h . Instead, matrix functions which refer to SMP Z(t) are denoted without index h, for example, P.

Let us denote the matrix norm by • , defined as

where A is a matrix-valued function. Consider now the function A ij (t) defined on M E (N) such that A ij (t) = 0 for all i, j ∈ E and t < 0, and define the following norm on [0, t]: 

Appendix B Algorithm

We present here two algorithms that are needed in order to work with our model (proposed in the chapter 2) in practical problems. Where A is the alphabet, w is the word, q is the semi-Markov kernel of the SMC (Z k ), E is the extended state space of E w , n 1 is the size of the first block of w and K(E) is the state space of process (Y k , B k ).

Algorithm 1 State space K(E)

. Require: A, q, E, n 1 . Initialization for every a ∈ A do . Compute r a according with Equation (1.15) end for for every