
HAL Id: tel-03530823
https://theses.hal.science/tel-03530823

Submitted on 17 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Properties of words and competing risk processes under
semi-Markov hypothesis

Brenda Ivette Garcia Maya

To cite this version:
Brenda Ivette Garcia Maya. Properties of words and competing risk processes under semi-Markov
hypothesis. Probability [math.PR]. Université de Technologie de Compiègne, 2020. English. �NNT :
2020COMP2569�. �tel-03530823�

https://theses.hal.science/tel-03530823
https://hal.archives-ouvertes.fr


 
 
 
 
 
            Par Brenda Ivette GARCIA MAYA 

 
 
 
 

 
 

      Thèse présentée  
      pour l’obtention du grade 
      de Docteur de l’UTC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Properties of words and competing risk processes  
under semi-Markov hypothesis 

Soutenue le 29 septembre 2020 
Spécialité : Mathématiques Appliquées et Statistique : Laboratoire de 
Mathématiques Appliquées de Compiègne (Unité de recherche EA-
2222) 
 

  D2569   



SORBONNE UNIVERSITÉS, UNIVERSITÉ DE
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T H È S E

présentée par

Brenda Ivette GARCIA MAYA

pour l'obtention du grade de Docteur

Nikolaos Limnios,
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Résumé

Notre thèse est dédiée, en grande partie, à certains problèmes de biologie (séquences
biologiques et analyse de la durée de vie avec risks compétitifs) sous l’hypothèse
semi-markovienne.

Au cours des années récentes, calculer les propriétés des mots dans les séquences
stochastiques a été un sujet d’intérêt à l’intersection de mathématiques appliquées
et de biologie. Dans la littérature, un grand nombre de méthodes ont abordé cette
problématique sous l’hypothèse que la séquence des symboles soit modélisée par un
processus de Markov. Cependant, l’hypothèse markovienne a quelques inconvénients.
Dans un processus de Markov, le temps de séjour dans un état est modélisé par la
loi exponentielle (géométrique) en temps continu (discret). Au contraire, dans un
processus de semi-Markov le temps de séjour peut être modélisé par n’importe quelle
loi de probabilité. Donc, pour calculer les propriétés des mots dans des séquences
aléatoires d’une façon plus générale, dans cette thèse, on a considéré que la séquence
biologique est modélisé par un processus semi-markovien. On a calculé la loi et le
nombre moyen des fois que les éléments d’un ensemble spécifique apparaissent dans
une séquence des lettres. En suit, nous avons obtenu la loi des grandes nombres
et nous avons aussi présenté le théorème de la limite central pour la fréquence
d’apparition des mots. Pour montrer l’applicabilité de notre modèle, on a cherché
une enzyme spécifique dans une séquence d’ADN provenant d’un bactériophage.

Les problèmes de risques compétitives forment un autre sujet d’intérêt en durée de vie.
En général, les problèmes de risques compétitives ont été abordés à partir d’un point
de vu statistique. Dans cette thèse, on présente les problèmes de risques compétitives
dans le cadre de semi-Markov. On considère des processus de semi-Markov en temps
continu et discret avec un nombre fini d’états transitoires et absorbants. Chaque
état absorbant représente un mode de défaillance (dans la fiabilité d’un système)
ou la cause de mort d’un individu (dans le cadre d’analyse de survie). On exprime
la probabilité qu’une défaillance apparaisse au temps donné en raison d’une cause
spécifique. On donne la loi jointe de la durée de vie et de la cause de défaillance en
utilisant la fonction de transition d’un processus semi-markovien en temps continu
et en temps discret, respectivement. Quelques exemples sont donnés pour illustration.

Nous présentons également une méthode de résolution des équations de renouvelle-
ment markovien en temps continu, en se basant sur les algorithmes bien établis
des équations correspondantes en temps discret. Le grand avantage tiré par cette
approche est que la série infinie de la fonction de renouvellement, en temps continu,
est remplacée, en temps discret, par une série finie. Des résultats pour l’estimation
de l’erreur sont également établis. Pour illustrer cette approche nous proposons une
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application numérique concernant les cyber-attaques où les fonctions de transitions
conditionnelles sont de lois de Weibull.

Mots clés. Processus semi-markovien, premier temps d’arrivée, théorème de la
limite central, loi forte des grands nombres, théorème ergodique, fonction de renou-
vellement markovien, méthode de discrétisation, risques compétitives, analyse de
survie.

Organisation de la thèse.
La thèse est organisée comme suit: dans le chapitre 1 on présente une introduction aux
processus de semi-Markov en temps continu et discret, on donne une bref description
des principaux travaux où les propriétés des mots dans une séquence stochastique
sont abordées et on présente la théorie classique des risques compétitives. Dans
le chapitre 2, on calcule la loi du temps (position) de la première occurrence d’un
mot à travers d’une séquence semi-markovienne, on présente également la variance
de cette variable aléatoire. Dans le chapitre 3 on étend les résultats présentés au
deuxième chapitre, et on donne le théorème de la limite centrale, la loi forte des
grandes nombres et le théorème ergodique pour un sous-ensemble de mots tirés d’un
alphabet fini. Dans le chapitre 4 on abord le sujet des risques compétitives à partir
du point de vu des processus semi-markoviens. Dans le chapitre 5 on présente une
méthode de discrétisation pour calculer les fonctions de renouvellement markovien
au temps continu, et on donne quelques exemples numériques. Finalement dans le
chapitre 6 on présente quelques générales conclusions et perspectives.



Summary

Our thesis is dedicated in big part, to solving certain problems in biology (biologic
sequences and lifespan using the competing risk framework) under semi-Markovian
hypothesis.

In recent years, computing the properties of words through random sequences has
become a topic of interest in the intersection between mathematics and biology. In
the literature, a vast number of methods have tackled this problem under the assump-
tion that sequences of symbols are modeled by Markov processes. Nevertheless, the
markovian hypothesis has some disadvantages. In Markov processes, the sojourn time
is modeled by the exponential (geometric) distribution in continuous (discrete) time.
By contrast, in semi-Markov processes the sojourn time in a state can be modeled
by any probability law. Therefore, in order to propose a more general approach to
compute the properties of words through a random sequence, in this PhD work we
consider that biological sequences are modeled by semi-Markovian discrete processes.
We also compute the average number of times that the elements from a specific set of
words appear through a sequence of letters. To achieve our goal, we use the strong law
of large numbers and we provide the central limit theorem. To prove the application
of our proposed model, we find a particular enzyme in a bacteriophage DNA sequence.

Competing risk problems conform another interesting topic in the lifespan domain.
In general, competing risk problems have been dealt with a statistic approach. In
this thesis, we present competing risk models within a semi-Markov framework. We
consider continuous and discrete time semi-Markov processes with a finite number of
transient and absorbing states. Each absorbing state represents a failure mode (in
reliability of a system) or a cause of death of an individual (in survival analysis). We
express the probability that a failure occurs at a given time due to a unique cause.
We give the joint distribution of the lifetime and the failure cause via the transition
function of the semi-Markov process in continuous and discrete-time respectively.
Some examples are given for illustration.

We also present a method for solving continuous time Markovian renewal equations,
based on well-established algorithms in their discrete time corresponding counterparts.
The great advantage drawn by this approach is that the infinite series of the renewal
function, in continuous time, is replaced, in discrete time, by a finite series. Results
for error estimation are also established. To illustrate this approach we propose
a digital application concerning cyber-attacks where the functions of conditional
transitions are of the Weibull type.

Key Words. semi-markovian process, first hitting time, central limit theorem, strong
law of large numbers, ergodic theorem, continuous time markovian renewal function,
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discretization method, competing risk, extended semi-Markov Ph-distributions, sur-
vival analysis.

Theses organization.
This thesis is organized as follows: In chapter 1 we give an introduction of continuous
and discrete time semi-Markov processes, we present a brief description of the main
works which tackle properties of words in stochastic sequences and we present the
classical theory of competing risk processes. In chapter 2 we compute the first hitting
time (position) of the first apparition of a word through a semi-Markov sequence,
we also present the variance of this random variable. In chapter 3 we extend the
results presented in the second chapter, and we also provide the central limit theorem,
strong law of large numbers and the ergodic theorem for a set of words taken from a
fine alphabet. In chapter 4 we present competing risk problems from the point of
view of semi-Markov processes. In chapter 5 we present a discretization method to
handle discrete time Markov renewal functions and we give some numerical examples.
Finally in chapter 6 we present some general conclusions and perspectives.



Chapter 1

Introduction

In this chapter we present the main models used and developed in the present thesis,
as well the corresponding bibliography.

1.1 Semi-Markov models in continuous time

The most suited mathematical models for describing the stochastic behaviors of a
system along time are based on stochastic processes. The most popular stochastic
process to model a system is the Markov process. In the Markov theory, the systems
have different states, the probability to go from one state to another only depends
on the present state. The time spent by the system in each state has an exponential
distribution function in a continuous time process (geometric distribution in a discrete
sequence). In real life, this hypothesis not always holds true. This is the reason
why semi-Markov processes fit better than the Markov hypothesis. They offer the
possibility of any distribution function to model the sojourn time between states.

The Semi-Markov processes (SMPs) have an extensive history. They were simulta-
neously introduced by Levy [1954], Smith [1955], and Takács [1954]. Feller [1964]
generalized the classic renewal theory to semi-Markovian processes. Limit theorems
were proposed by Yackel [1966], Grigorescu and Oprişan [1976], Athreya and Ney
[1978], Nummelin [1978] and Malinovskii [1987]. Other complementary theories were
proposed by Çinlar [1969], Kaplan and Sil’vestrov [1980] and Shurenkov and Eleiko
[1979]. These processes have been highly used by engineers in mechanics, informatics,
communication, etc. SMPs offer the possibility of any distribution function to model
the sojourn time between states. This is the main feature of SMPs in fact, a process
which conserves the Markov hypothesis at jump points and where the sojourn time
in a state can be modeled by any distribution function is a SMP. In the sequel we
shall formally define continuous-time semi-Markov processes.

1
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1.1.1 continuous-time semi-Markov framework

In this subsection, we shall introduce the basic definitions for continuous-time semi-
Markov processes.

Consider a (finite) set, say E, and an E-valued jump stochastic process Z = (Zt)t∈R+ .
Let 0 =: S0 ≤ S1 ≤ ... ≤ Sn ≤ Sn+1 ≤ ... be the jump times of Z, and J0, J1, J2, ...
the successive visited states of Z at jump points. Let N := {0, 1, 2, ...} be the set of
nonnegative integers.

DEFINITION 1. (Limnios and Oprişan [2001]). The stochastic process (Jn, Sn)n∈N
is said to be a Markov renewal process (MRP), with state space E, if it satisfies
almost sure (a.s.), the following equality

P(Jn+1 = j, Sn+1 − Sn ≤ t | J0, ..., Jn;S1, ..., Sn) = P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn)

for all j ∈ E, all t ∈ R+ and all n ∈ N.

We assume that the above probability is independent of n and Sn. In this case
the MRP is called time homogeneous. The MRP (Jn, Sn)n∈N is determined by its
transition kernel

Qij(t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i) (1.1)

and its initial distribution α, where α(i) := P(J0 = i), i ∈ E. It is worth noting here
that Qii(t) ≡ 0, for all i ∈ E.
Let us define also the counting process N(t), t ≥ 0, of the number of jumps, i.e.,

N(t) = sup{n ≥ 0 : Sn ≤ t}. (1.2)

The SMP Z is connected to (Jn, Sn)n∈N by

Zt = JN(t), and Jn = ZSn , n ≥ 0.

Therefore (Jn) is called the embedded Markov chain (EMC) of process (Zt).

The distribution function of the sojourn time in state i ∈ E is given by

Hi(t) :=
∑
j∈E

Qij(t), t ≥ 0.

It defines the distribution function of the sojourn time spent by (Zt) in i ∈ E. Let
Fij(t) := P(Sn+1− Sn ≤ t | Jn = i, Jn+1 = j) be the conditional distribution function
of the holding time in state i before visiting state j. Let

pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N,

be the transition probability of the EMC (Jn). The semi-Markov kernel is also a
function of the transition probability matrix of process (Jn), and the conditional
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distribution Fij(t) as we can observe in the following equation:

Fij(t) = P(Sn+1 − Sn ≤ t | Jn+1 = j, Jn = i)

=
Qij(t)

pij
,

then Qij(t) = pijFij(t).
Another important function is the semi-Markov transition function at continuous
time P(t) = (Pij(t); i, j ∈ E, t ∈ R+) defined by

Pij(t) := P(Zt = j | Z0 = i), i, j ∈ E, t > 0, (1.3)

which is the conditional marginal law of the process. We shall study this function in
the next subsection.
The mean sojourn time of Z in state i is denoted by mi. If the EMC (Jn) is ergodic,
i.e., irreducible and positive recurrent, with stationary probability ν = (νi, i ∈ E),
and the mean sojourn time in every state is finite, i.e., for every i ∈ E,

mi :=

∫ ∞
0

(1−Hi(t))dt <∞, and m :=
∑
i∈E

νimi > 0, m <∞.

Therefore, it can be proved, see e.g., Limnios and Oprişan [2001], that

lim
t→∞

Pij(t) =
νimi

m
=: πi

where π is the stationary distribution of process Z.
It is worth noticing that, in general, the stationary distribution π of the SMP Z is
not equal to the stationary distribution ν of the embedded Markov chain (Jn).

1.1.2 Backward and forward recurrence times processes in
continuous time

Other processes of interest for the SMPs are the backward and forward recurrence
time processes. In the following we shall introduce these important processes.

DEFINITION 2. (Limnios and Oprişan [2001]). Given the MRP (Jn, Sn), for t ∈ R+

we define the following recurrence times processes

Bt = t− SN(t) and Vt = SN(t)+1 − t,

where N(t) is defined in Equation (1.2). The process (Bt)t∈R+ is called the backward
recurrence time process of process (Zt) and (Vt)t∈R+ is the forward recurrence time
process of process (Zt). Figure 1.1 presents a SM trajectory in which we observe the
recurrence times processes. At time S0 = 0 the process (Zt) starts at state i, then
the process (Zt) makes its first jump at time S1 to state j. At time Sn the process
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(Zt) arrives to state κ. At time t the process (Zt) has spend u times in κ therefore
the value for the backward process at t is Bt = u. The process (Zt) will change its
state at time Sn+1 therefore, the value for the forward process at t is Vt = v. We
can notice that the total sojourn time in a state at time t is the sum between the
backward and the forward recurrence time in a state.

Figure 1.1: Sample path of a semi-Markov process where we can observe the
backward and forward recurrence time at time t.

1.1.3 Nature of different states of a MRP

Let us now discuss the nature of different states of a MRP.

� A MRP is irreducible, if and only if, its EMC (Jn) is irreducible.

� A state i is recurrent (transient) in the MRP, if and only if, it is recur-
rent(transient) in the EMC.

� For an irreducible finite MRP, a state i is positive recurrent in the MRP, if,
and only if, it is recurrent in the EMC, and if for all j ∈ E, mj <∞.

� If the EMC of a MRP is irreducible and recurrent, then all the states are posi-
tive recurrent, if and only if, m := νm :=

∑
i∈E νimi <∞, and null-recurrent,

if and only if, m =∞ (where ν is the stationary probability of EMC (Jn)).

� A state i is said to be periodic with a > 0 if Gii(·) (the distribution function
of the random variable Si2 − Si1) is discrete concentrated on {ka : k ∈ N},
where process (Sin)n≥0 represents the successive times of visit to state i. Such
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a distribution is said to be periodic. In the opposite case it is called aperiodic.
We can notice that the term period has a completely different meaning from
the corresponding one of the classic Markov chain theory.

1.1.4 Continuous time Markov renewal theory

In the following, we shall define the Markov renewal equations (MREs) and give
some elements of the Markov renewal theory.
Let us consider a real-valued measurable function ϕ : E ×R+ −→ R+, and define its
Stieltjes’ convolution by Q(t) as follows

Q ∗ ϕ(i, t) =
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s), (1.4)

see Limnios [2012b]. Now, for any i, j ∈ E the n-fold Stieltjes’ convolution of Qij(t)
by itself is

Q
(n)
ij (t) =


δij if n = 0,
Qij(t) if n = 1,∑

k∈E
∫ t

0
Qik(ds)Q

(n−1)
kj (t− s) if n ≥ 2.

We can observe that we have also the following fundamental equality

Q
(n)
ij (t) = Pi(Jn = j, Sn ≤ t),

see e.g., Limnios and Oprişan [2001]. Here Pi means the conditional probability on
the event {Z0 = i}.
Let us define the Markov renewal function ψij(t), i, j ∈ E, t ≥ 0, by

ψi,j(t) := Ei
∞∑
n=0

1{Jn=j,Sn≤t}

=
∞∑
n=0

Pi(Jn = j, Sn ≤ t)

=
∞∑
n=0

Q
(n)
ij (t), (1.5)

we can observe that Ei means the conditional expected value on the event {Z0 = i}.
Let us write the Markov renewal function, see Equation (1.5), in matrix form

ψ(t) = (I(t)−Q(t))(−1) =
∞∑
n=0

Q(n)(t), (1.6)
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where the notation A(−1) means the inverse matrix function in the convolution sense.
This can also be written as

ψ(t) = I(t) +Q ∗ ψ(t), (1.7)

where I(t) = I, is the identity matrix for t ≥ 0 and I(t) = 0, for t < 0.
Equation (1.7) is a special case of a MRE. A general MRE is as follows

Θ(t) = L(t) +Q ∗Θ(t),

where Θ(t) = (Θij(t))i,j∈E, L(t) = (Lij(t))i,j∈E are matrix-valued measurable func-
tions, with Θij(t) = Lij(t) = 0 for t < 0. The function L(t) is a given matrix-valued
function and Θ(t) is an unknown matrix-valued function.

PROPOSITION 1. (Limnios and Oprişan [2001]). The transition function P (t) =
(Pij(t); i, j ∈ E, t ∈ R+) satisfies the following MRE

P (t) = I(t)−H(t) +Q ∗ P (t), (1.8)

where H(t) = diag(Hi(t)) is a diagonal matrix. Last Equation (1.8) has the unique
solution

P (t) = ψ ∗ (I(t)−H(t)).

In the next subsection, we shall give the equivalent definition for a discrete time
SMP.

1.2 Discrete time semi-Markov processes

There are some processes which are observed in fixed periods of time. For instance,
the profit of a company in a month, the number of car accidents per week, the
number of infections of a certain disease per semester. These processes can be
considered like stochastic processes at discrete-time. i.e., if the events are modeled by
a stochastic process Zk, they will be observed at discrete time points k = 0, 1, 2, ....
In the semi-Markov domain many authors have proposed these kind of models for
different applications, see e.g., Janssen [2013], Ross [2013], Rachelson et al. [2008],
Limnios and Oprişan [2001], etc. In this thesis we are specially interested in modeling
DNA sequences, where every nucleotide in the DNA can be considered as a time
unit. Before presenting this model in next subsection, we shall introduce the basic
definitions for the semi-Markov chains.

1.2.1 Semi-Markov framework at discrete time

Let us formally define discrete time SMPes (as we have written before, we shall use
the term chain for a discrete-time stochastic process). Let us consider a random
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system (Zk)k∈N with finite state space E = {1, 2, ..., s}. Let us denote by (Sn)n∈N
the successive time points when a state changes in (Zk), i.e., by definition let S0 := 0,
and

Sn+1 := inf{k > Sn : Zk 6= ZSn}, n ≥ 0,

with the convention inf Ø = +∞. Process (Sn) is also called renewal points or jump
points of process (Zk). Let (Jn)n∈N be the chain which records (Zk) at points (Sn),
i.e., Jn = ZSn . Let (Xn)n∈N be the successive sojourn times in the visited states. By
convention X0 := S0 := 0 and Xn+1 := Sn+1 − Sn, n ∈ N. The relation between
process (Zk) and process (Jk) is given by

Zk = JN(k), or equivalently, Jn = ZSn , n, k ∈ N,

where N(k) := max{n ∈ N : Sn ≤ k} is the counting process of the number of jumps
in [1, k] ⊂ N. If the following relation holds true a.s.

P(Jn+1 = j, Sn+1 − Sn = k | J0 = ·, ..., Jn = i;S0 = ·, ..., Sn = ·)
= P(Jn+1 = j, Sn+1 − Sn = k | Jn = i). (1.9)

The process (Jn, Sn) is called the Markov renewal chain (MRC) of process (Zk). In
other words, if process (Zk) has entered to state i ∈ E at its last jump n ∈ N, the
probability that the process passes k ∈ N units of time in i ∈ E, after passing to state
j ∈ E, is independent of process up to the nth jump. In other words, we basically
have the Markovian property with the difference that the memoryless property does
not act on the calendar points k. The memoryless property acts at visited states
(J0, J1, ..., Jn, Jn+1, ...). This is what we called before as a more flexible Markovian
hypothesis. Noticing that we use index k ∈ N for the calendar time, and index n ∈ N
for the number of jumps of (Zk). Therefore if Equation (1.9) holds true, then (Zk) is
called semi-Markov chain (SMC). Moreover, if the rigth-hand-side term of Equation
(1.9) is independent of n, then (Zk) and (Jn, Sn) are said to be (time homogeneous)
and we define the discrete-time semi-Markov kernel q = (qij(k); i, j ∈ E, k ∈ N) by

qij(k) := P(Jn+1 = j, Sn+1 − Sn = k | Jn = i), n ≥ 0, k ∈ N. (1.10)

The semi-Markov kernel satisfies the following three properties:

1. 0 ≤ qij(k), i, j ∈ E, k ∈ N,
2. qij(0) = 0, i, j ∈ E,

3.
∞∑
k=0

∑
j∈E

qij(k) = 1, i ∈ E.

The semi Markov chain is defined by its semi-Markov kernel and its initial distribution
α(i) := P(Z0 = i) = P(J0 = i), i ∈ E.
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We define the cumulative semi-Markov kernel by

Qij(k) := P(Jn+1 = j,Xn+1 ≤ k | Jn = i) =
k∑
l=0

qij(l), i, j ∈ E, k ∈ N.

It is worth noticing that the semi-Markov kernel considered here is independent
of n, which means that the SMC is homogeneous in time. If semi-Markov kernel
is time homogeneous then (Jn) is an homogeneous Markov chain. We denote by
p = (pij)i,j∈E its transition probability matrix, i.e.,

pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N. (1.11)

We do not allow transitions to the same state, i.e., pii = 0 for any i ∈ E. Note that
pij can be expressed in terms of the semi-Markov kernel by pij =

∑∞
k=0 qij(k). Let

us denote by
fij(k) = P(Xn+1 = k | Jn = i, Jn+1 = j) (1.12)

the conditional sojourn time distribution, conditioned by the next state to be visited.
We want the chain spends at least one time unit in a state, that is, fij(0) = 0, for
any states i, j ∈ E. Obviously, for any states i, j ∈ E and non-negative integer k we
have

qij(k) = pijfij(k).

The sojourn time distribution in state i is

hi(k) := P(Xn+1 = k | Jn = i) =
∑
j∈E

qij(k), k ∈ N.

The cumulative distribution function of sojourn time in state i ∈ E is

Hi(k) := P(Xn+1 ≤ k | Jn = i) =
k∑
l=0

hi(k), k ∈ N. (1.13)

The conditional cumulative distribution of the waiting time Xn+1, n ∈ N, is

Fij(k) := P(Xn+1 ≤ k | Jn = i, Jn+1 = j) =

{
Qij(k)

pij
, if pij 6= 0,

1∞(k), if pij = 0.
(1.14)

The main difference between Markov and semi-Markov discrete time processes is
the distribution function Fij(k). In a Markov chain this function is geometric with
parameter 1− pii, where p is the transition probability matrix; on the other hand, in
the SMP the distribution function Fij(k) can be of any type.

Let us define the support of hi and the maximum sojourn time in i ∈ E.
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DEFINITION 3. (Garcia-Maya et al. [Submitted in 2020]). For any i ∈ E the
smallest subset Ci in N such that ∑

k∈Ci

hi(k) = 1,

is the support of hi. By consequence

ri := sup Ci. (1.15)

is the maximum sojourn time in state i.

Other important quantity for investigating the evolution of SMCs is the probability
that starting from state i ∈ E at time zero, the SMC will do the nth jump at time k
to state j, i.e.,

P(Jn = j, Sn = k | J0 = i), i, j ∈ E; k, n ∈ N. (1.16)

After giving an expression for this last probability, we shall introduce the definition of
the convolution between two functions. Let ϕ(i, k), i, j ∈ E, k ∈ N, be a measurable
function and define the convolution of ϕ by q as

(q ∗ ϕ)ij(k) :=
∑
r∈E

k∑
l=0

qir(l)φrj(k − l).

The n-fold convolution of q by itself is defined recursively by

q
(0)
ij (k) := δij1{k=0},

q
(1)
ij (k) := qij(k),

and

q
(n)
ij (k) :=

∑
r∈E

k∑
l=0

qir(l)q
(n−1)
rj (k − l), n ≥ 2.

The following proposition computes an expression for probability Equation (1.16)

PROPOSITION 2. (Barbu and Limnios [2008]). For all i, j ∈ E, for all n, k ∈ N, we
have

P(Jn = j, Sn = k | J0 = i) = q
(n)
ij (k). (1.17)

Proof. We prove the result by induction. For n = 0, we have

P(J0 = j, S0 = k | J0 = i) = q
(0)
ij (k).
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Obviously, for k 6= 0 or i 6= j, this probability is zero. On the other hand, if i = j
and k = 0, the probability is one, thus the result follows.
For n = 1, the result obviously holds true, by definition.
For n ≥ 2

P(Jn = j, Sn = k | J0 = i)

=
∑
r∈E

k−1∑
l=1

P(Jn = j, Sn = k, J1 = r, S1 = l | J0 = i)

=
∑
r∈E

k−1∑
l=1

P(Jn = j, Sn = k | J1 = r, S1 = l, J0 = i)P(J1 = r, S1 = l | J0 = i)

=
∑
r∈E

k−1∑
l=1

P(Jn−1 = j, Sn−1 = k − l | J0 = r)P(J1 = r,X1 = l | J0 = i)

=
∑
r∈E

k−1∑
l=1

q
(n−1)
rj (k − l)qir(l) = q

(n)
ij (k). �

As a direct application of the previous proposition, we have the following lemma.

LEMMA 1. (Barbu and Limnios [2008]). Let ME be the set of real matrices on
E×E and letME(N) be the set of real matrices on E×E which evolves in a discrete
time k ∈ N. Let us consider the Markov renewal chain (Jn, Sn)n∈N and q ∈ME(N)
its associated semi-Markov kernel. Then, for all n, k ∈ N such that n ≥ k + 1 we
have q(n)(k) = 0.

Proof. It is clear that the jump time process (Sn)n∈N verifies the relation Sn ≥ n,
n ∈ N. Writting Equation (1.17) for n and k ∈ N such that n ≥ k + 1, we obtain the
desired result. �

1.2.2 Discrete time backward and forward recurrence times
processes

Now, let (Bk) be the backward recurrence times process for the SMC (Zk) (also
called the current life or age), defined by

Bk := k −max{Sm : Sm ≤ k} and Bk := k if S1 > k. (1.18)

In essence, the backward time at position k is the number of steps spent in state Zk
since the last jump. Notice that, if k coincides with a renewal point, the value of Bk

is zero. After a renewal point, Bk grows one by one until another renewal point, and
so on.
Let ri be the maximum sojourn time in state i, see Equation (1.15), then the
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maximum value for the backward time in state i ∈ E, is

li := ri − 1. (1.19)

Let (Vk) be the forward recurrence time of the SMC (Zk) (also called the residual or
excess lifetime), defined by

Vk := SN(k)+1 − k

In essence, the forward time at position k is the number of steps the sequence (Zk)
will spend in state Zk until next jump.

1.2.3 Classification for states in SMC

Until this point we are prepared to define the basic characteristics of the associated
Markov renewal chain (MRC) (Jn, Sn): communication between classes, transitivity,
recurrence and periodicity. After introducing these points we shall define the first
passage time in state j ∈ E.
For any j ∈ E, let

Sj0 := inf{k ∈ N∗ : JN(k) = j} (1.20)

be a random variable which represents the first hitting time of state j.

We consider vij(·) its distribution function i.e.,

vij(k) := Pi(Sj0 = k), k ≥ 1. (1.21)

We set Vij(k) :=
∑k

`=1 vij(`) for the corresponding cumulative distribution function
and µij for the mean first passage time from state i to state j for the SMC (Zk), i.e.,
µij := Ei(Sj0) =

∑
k>0 vij(k). Observe that if i = j, vii(·) represents the return time

to state i. Observe that the sojourn time in state i ∈ E is also a random variable,
we shall define its mean by

mi := E[S1 | J0 = i] =
∑
k≥0

(1−Hi(k)). (1.22)

We shall give the classification for states in SMC (Zk). For this purpose, note that
Vij(∞) is the probability that the SMC will go from state i to j at some k ∈ N.
If Vij(∞) = 0 that means that there is zero probability that the SMC will arrive
at state j starting from i. Using this two remarks for Vij(·) we have the following
definition.

DEFINITION 4. (Barbu and Limnios [2008]). Let (Zk)k∈N be a SMC with state
space E and (Jn, Sn)n∈N the associated MRC.

1. If Vij(∞)Vij(∞) > 0, we shall say that i and j communicate and it is denoted
by the symbol i↔ j. The communication is an equivalent relation on E. The
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elements which communicates between them belongs to the same communica-
tion class. All classes are closed.

2. The SMC (MRC) is said to be irreducible if there is only one class.

3. A state i is said to be recurrent if Vij(∞) = 1 and transient if Vii(∞) < 1. A
recurrent state i is positive recurrent if µij <∞ and null recurrent if µii =∞.
If all the states are (positive/null) recurrent, the SMC (MRC) is said to be
(positive/null) recurrent.

4. The SMC (MRC) is said to be ergodic if it is irreducible and positive recurrent.

5. Let d > 1 be a positive integer. A state i ∈ E is said to be d-periodic (aperiodic)
if the distribution vij(·) is d-periodic (aperiodic).

6. The SMC is d-periodic, d > 1, if all states are d-periodic. Otherwise, it is
called aperiodic.

We can also define the limit distribution of a SMC

DEFINITION 5. (Barbu and Limnios [2008]). For a SMC (Zk)k∈N, the limit distri-
bution π = (π1, ..., π|E|)

T is defined, when it exits, by πj = limk→∞Pij(k), for every
i, j ∈ E.

Note that in the case where the EMC (Jn) is ergodic (recurrent positive, irreducible
and aperiodic), for any state i ∈ E we have the following relation between the mean
recurrence time of i in the Markov chain (Jn) denoted by µ∗ii and the stationary
distribution

µ∗ii =
1

ν(i)
,

see Barbu and Limnios [2008].

1.2.4 Discrete-time Markov renewal theory

In this section, we shall study Markov Renewal Equations (MRE). Our objective is
to investigate the existence and the uniqueness of solution for this type of equations.
We also find an explicit form of the transition function P of the SMC (Zk), written
in terms of the semi-Markov kernel q. First we shall present some important results
in the sense of the convolution functions.
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DEFINITION 6. (Barbu and Limnios [2008]). Let A ∈ME(N) be a matrix function.
If there exist a matrix function B ∈ME(N) such that

B ∗A = I (1.23)

then B is called the left inverse of A, in the convolution sense, and it is denoted by
B = A(−1).

The left inverse of a matrix not always exists, next proposition gives the necessary
conditions to guarantee its existence.

PROPOSITION 3. (Barbu and Limnios [2008]). The left inverse of a matrix A ∈
ME(N) exists and is unique iff detA(0) 6= 0. If we denoted by B the partial inverse
of A, i.e., B = A(−1) ∈ME(N). The partial inverse is given by the recursive formula

B(n) =

{
[A(0)]−1 if n = 0,

−(
∑n−1

l=0 B(l)A(n− l))[A(0)]−1 if n ≥ 1.
(1.24)

Proof. To compute the left inverse of A we have to solve Equation (1.23), where
B ∈ME(N) is an unknown matrix function. Equation (1.23) is equivalent to

n∑
l=0

B(n− l)A(l) = I(n), n ∈ N,

where for n = 0 we have B(0)A(0) = I(0) = I, which holds iff A(0) is invertible.
Therefore B(0) = [A(0)]−1 and for n > 1 we have

n∑
l=0

B(n− l)A(l) = I(n) = 0,

which yields B(n) = −
(∑n−1

l=0 B(l)A(n− l)
)

[A(0)]−1. �

Let us write the Markov renewal function (MRF)

ψ(k) := (I− q)(−1)(k), (1.25)

where I is the identity matrix of dimension |E| × |E|. The following result provides
the mathematical expression of ψ(k).

PROPOSITION 4. (Barbu and Limnios [2008]). The matrix-valued function ψ =
(ψ(k); k ∈ N) is given by

ψ(k) =
k∑

n=0

q(n)(k), k ∈ N. (1.26)

Proof. Applying Proposition 3, we obtain that the left inverse of the matrix-valued
function (I− q) exist and is unique.
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For all n, k ∈ N, we have(
∞∑
n=0

q(n)

)
∗ (I − q)(k) =

(
∞∑
n=0

q(n)

)
(k)−

(
∞∑
n=0

q(n)

)
∗ q(k)

=
∞∑
l=0

q(l)(k)−
∞∑
l=1

q(l)(k)

= q(0)(k) = I(k). (1.27)

As the left inverse of (I− q)(k) is unique, see Proposition 3, we obtain that

ψ(k) =
∞∑
n=0

q(n)(k).

Applying Lemma 1, we have q(n)(k) = 0, for n > k hence we obtain that ψ is given
by

ψ(k) =
k∑

n=0

q(n)(k). � (1.28)

We would like to obtain another expression for ψ. For any states i, j ∈ E (not
necessary distinct) and any positive integer k ∈ N, from Proposition 2 and Lemma 1
we get

ψi,j(k) = P

(
k⋃

n=0

{Jn = j, Sn = k} | J0 = i

)
≤ 1.

In other words, ψi,j(k) represents the probability that starting at time 0 in state
i ∈ E, the SMC will do a jump to state j at time k.
Using ψi,j(k) the following proposition computes the probability that SMP (Zk) stays
in state j ∈ E at time k ∈ N with backward time u knowing that it started at initial
time in state i ∈ E.

PROPOSITION 5. (Barbu and Limnios [2008]). For all i, j ∈ E and k ∈ N we have

Pi(Zk = j, Bk = u) =

{
[1−Hj(u)]ψi,j(k − u), for u = 0, 1, ..., k
0 elsewhere

therefore
P(Zk = j, Bk = u) = ψ·j(k − u)[1−Hj(u)].
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Proof. For all u = 0, 1, ..., k we have

Pi(Zk = j, Bk = u) =
k−u∑
n=0

P(Jn = j, Sn = k − u, Sn+1 > k | J0 = i)

=
k−u∑
n=0

P(Sn+1 > k | Jn = j, Sn = k − u, J0 = i)

·P(Jn = j, Sn = k − u | J0 = i)

=
k−u∑
n=0

P(Sn+1 − Sn > u | Jn = j)P(Jn = j, Sn = k − u | J0 = i)

= [1−Hj(u)]ψi,j(k − u). �

The chain (Zk, Bk)k∈N is a Markov chain with state E × N, see e.g., Barbu and
Limnios [2008]. The following theorem provides its transition probability matrix.

THEOREM 1. (Barbu and Limnios [2008]). For every i, j ∈ E and k ∈ N such
that P(Zk = i, Bk = u) > 0 the transition probability matrix of the Markov chain
(Zk, Bk)k∈N is

P(Zk+1 = j, Bk+1 = u
′ | Zk = i, Bk = u)

=


qij(u+1)

1−Hi(u)
, if u

′
= 0 and i 6= j

1−Hi(u+1)
1−Hi(u)

, if u
′
= u+ 1 and i = j

0, elsewhere.

Proof. see Chryssaphinou et al. [2008].
Another point of interest, strictly related to ψ, it is the Markov renewal function,
defined as the expected number of visits to a certain state, up to a given time. More
precisely, we have the following definition.

DEFINITION 7. (Barbu and Limnios [2008]). Markov Renewal Function (MRF).
Let us define the Markov renewal function Ψ = (Ψi,j(k), i, j ∈ E, k ≥ 0) by

Ψi,j(k) := Ei[N∗j (k)], i, j ∈ E, k ∈ N,

where N∗j (k) is the number of visits of (Zk) to state j ∈ E in the interval [0, k]. To
be specif,

N∗j (k) :=

N(k)∑
n=0

1{Jn=j} =
k∑

n=0

{Jn = j, Sn ≤ k}.

It is easy to see that the Markov renewal function can be expressed as follows:

Ψ(k) =
k∑
l=0

ψ(l). (1.29)



Introduction 16

Indeed, we have

Ψi,j(k) := Ei[N∗j (k)]

= Ei

[
k∑

n=0

1{Jn=j,Sn≤k}

]

=
k∑

n=0

P(Jn = j, Sn ≤ k | J0 = i)

=
k∑

n=0

k∑
l=0

P(Jn = j;Sn = l | J0 = i)

=
k∑
l=0

k∑
n=0

q
(n)
ij (l)

From Lemma 1 we know that q
(n)
ij (l) = 0 for n > l and we get

Ψi,j(k) =
k∑
l=0

l∑
n=0

q
(n)
ij (l) =

k∑
l=0

ψ(l).

Remark. One can check that a state is recurrent iff Ψ(∞) = ∞ and transient iff
Ψ(∞) <∞.

DEFINITION 8. (Barbu and Limnios [2008]). Discrete-time Markov renewal
equation.
Let L = (Lij(k); i, j ∈ E, k ∈ N) ∈ ME(N) be an unknown matrix-valued function
and G = (Gij(k); i, j ∈ E, k ∈ N) ∈ ME(N) be a known matrix-valued function.
The equation

L(k) = G(k) + q ∗ L(k), k ∈ N, (1.30)

is called a discrete-time Markov renewal equation (DTMRE).

In the sequel, we shall see that ψ and Ψ are solutions of MRE. With the above defini-
tion, we shall compute an easy expression for P(k), see Equation (1.37). Observing
Equation (1.27) it is clear that (I − q) ∗ ψ(k) = I(k), so ψ = (ψ(k); k ∈ N) is the
solution of the MRE

ψ(k) = I(k) + q ∗ ψ(k), k ∈ N. (1.31)

Second, writing the previous equation for k ∈ N, 0 < k < ν, ν ∈ N fixed, and taking
the sum, we obtain

ν∑
k=0

ψ(k) =
ν∑
k=0

I(k) +
ν∑
k=0

q ∗ ψ(k). (1.32)
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This means that the matrix renewal function Ψ = (Ψ(k); k ∈ N) is the solution of
the MRE

Ψ(ν) = I + q ∗Ψ(ν), ν ∈ N. (1.33)

The next theorem shows that DTMRE, see definition (8), has a unique solution.

THEOREM 2. (Barbu and Limnios [2008]). The DTMRE, see Equation (1.30), has
a unique solution L = (Lij(k); i, j ∈ E, k ∈ N) ∈ME(N), where

L(k) = ψ ∗G(k).

Proof. By Equation (1.30), for k ∈ N

L(k) = G(k) + q ∗ L

(I− q) ∗ L(k) = G(k)

L(k) = (I− q)(−1) ∗G(k).

Therefore by definition of ψ, see Equation (1.25), we have

L(k) = ψ ∗G(k). (1.34)

Then, we show that ψ ∗G(k) is the unique solution of the renewal equation. Let L
′

be another solution of Equation (1.30). We obtain

(L− L
′
)(k) = q(n) ∗ (L− L

′
)(k), k ∈ N, (1.35)

with n an arbitrary positive integer. Taking n > k in Equation (1.30) and recalling
that q(n)(k) = 0 for n > k, see Lemma 1, we get L(k) = L

′
(k), k ∈ N. �

DEFINITION 9. (Barbu and Limnios [2008]). The transition function of the SMC
(Zk) is the matrix-valued function P = (Pi,j(k); i, j ∈ E, k ∈ N) ∈ME(N) defined by

Pij(k) := P(Zk = j | Z0 = i), i, j ∈ E, k ∈ N.

The following result consists in a recursive formula for computing the transition
function P of the SMC (Zk) which is an example of a MRE.

PROPOSITION 6. (Barbu and Limnios [2008]). For all i, j ∈ E and for all k ∈ N,
we have

Pij(k) = [1−Hi(k)]δij +
∑
r∈E

k∑
l=0

qir(l)Prj(k − l), (1.36)

where for all k ∈ N, let us define H(k) := diag(Hi(k); i ∈ E), H := (H(k); k ∈ N),
where Hi(·) is the sojourn time cumulative distribution function in state i ∈ E, see
definition. In matrix-valued function, Equation (1.36) becomes,

P(k) = (I−H)(k) + q ∗P(k), k ∈ N. (1.37)
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Proof. For all i, j ∈ E and for all k ∈ N, we have

Pij(k) = P(Zk = j | Z0 = i)

= P(Zk = j, S1 > k | Z0 = i) + P(Zk = j, S1 ≤ k | Z0 = i)

= (1−Hi(k))δij +
∑
r∈E

k∑
l=0

P(Zk = j, ZS1 = r, S1 = l | Z0 = i)

= (1−Hi(k))δij +
∑
r∈E

k∑
l=0

P(Zk = j | ZS1 = r, S1 = l, Z0 = i)P(J1 = r, S1 = l | J0 = i)

= (1−Hi(k))δij +
∑
r∈E

k∑
l=0

P(Zk−l = j | Z0 = r)P(J1 = r,X1 = l | J0 = i)

= (1−Hi(k))δij +
∑
r∈E

k∑
l=0

Prj(k − l)qir(l).

Observe the last equation is a DTMRE, see Definition 8, where L(k) = P(k) and
G(k) = (I−H), therefore by Theorem 2 we have

P(k) = ψ ∗ (I−H)(k) = (δI− q)(−1) ∗ (I−H(k)), k ∈ N.

1.2.5 Construction of the Estimators

Let us consider an estimator for the semi-Markov kernel qij(k), see Equation (1.10);
the conditional sojourn time distribution fij(k), see Equation (1.12); and the transi-
tion probability pij, see Equation (1.11). Let M ∈ N∗ be a fixed arbitrary time and
N(M) the discrete-time counting process of the number of jumps in [1,M ]. For any
states i, j ∈ E and positive integer k ∈ N, k ≤M , we define the following empirical
estimators

p̂ij(M) :=
Nij(M)

Ni(M)
, (1.38)

f̂ij(k,M) :=
Nij(k,M)

Nij(M)
, (1.39)

q̂ij(k,M) :=
Nij(k,M)

Ni(M)
, (1.40)

where Nij(k,M) is the number of transitions of the EMC from i to j, up to time M ,
with sojourn time in state i equal to k, 1 ≤ k ≤M , i.e.,

Nij(k,M) :=

N(M)∑
n=1

1{Jn−1=i,Jn=j,Xn=k} =
M∑
n=1

1{Jn−1=i,Jn=j,Xn=k,Sn≤M}.
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Therefore

Nij(M) :=
M∑
k=1

Nij(k,M)

and
Ni(M) :=

∑
j∈E

Nij(M).

Note that the proposed estimators are natural estimators. For instance, the proba-
bility pij that the system goes from state i to state j is estimated by the number of
transitions from state i to j, up to time M divided by the total number of transitions
from state i to any state j up to time M . Estimators (1.38), (1.39) and (1.40) verify
nice asymptotic properties as consistency and asymptotic normality, see Barbu and
Limnios [2008].

1.3 Properties of words through a sequence

Looking for a specific word (pattern or motif) through a sequence of symbols is
useful in many areas. For instance, in digital transactions lots of patterns have
to be compared and identified to make possible a particular operation, see e.g.,
Jungck and Helms [2013], de Haan and Rotmans [2011], Jansen et al. [2007]; in web
navigation identification of patterns is useful for determining particular behaviors in
web customers see e.g., Papadopoulou [2013], Bobbitt et al. [1969], Paraskevopoulos
et al. [2013]; in communications, identifying a particular pattern is useful to mediate
the spread of information see e.g., Jaffe et al. [1999], Bailey et al. [2018]; in databases
it could be the keyword for certain research see e.g., Pederson [2016]; in biology a
word can determine a particular instruction for a given biology function, or it can
be the responsible for a particular illness see e.g., Willett [1995], Farré et al. [2003],
Kitano [2002], etc. In one hand, searching a particular word over a chain formed by
a big quantity of symbols is a very cumbersome task and in most cases it can not be
achieved by simple inspection. In the other hand, it is of interest to know general
properties of words in a sequence, i.e., frequency, mean number of words, mean
number of symbols between two successive words, etc. There are different approaches
to study the searching problem, for instance one of them is using probabilistic models.
In probabilistic models the efficiency and precision depend chiefly on the kind of
dependency between symbols. For example independently and identically distributed
Bernoulli trials or Markovian sequences. Whatever be the distribution of symbols in
a stochastic sequence, there are different techniques to study the searching problem,
for instance some algorithms propose an automatic treatment. To mention one of
them, in the article Crochemore and Stefanov [2003], the authors computed the
probability of the first hitting time of a word in a binary alphabet using a finite
deterministic automata. In the following we shall describe this model.
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Crochemore and Stefanov [2003] used a binary alphabet A = {a, b}. Any infinite
sequence formed by the elements of A is denoted by X = AN. In this article, the
authors considered the symbols in the sequence to be independent and identically
distributed (i.i.d.) Bernoulli trials. They searched the word w = abaabab. To achieve
their goal, the authors used the prefixes of the word which consist in writing the
word symbol by symbol from its first letter until the word is completed, i.e., the
prefixes set is {a, ab, aba, abaa, abaab, abaaba, abaabab}. The idea of computing the
first hitting time of the word in the sequence of symbols X is to embed a Markov
prefix sequence through the sequence of symbols. To arrive until this point they used
a deterministic finite automata, which is defined as follows

DEFINITION 10. (Hopcroft et al. [2001]). Deterministic finite automata
We call a deterministic finite automata (DFA) a five tuple (A,Q, s,F , δ) where

1. A is a finite set of symbols (in particular cases A is a finite alphabet),

2. Q is a finite set of states,

3. s ∈ Q is an initial state,

4. F ⊂ Q is a non empty set of final or accepted states,

5. δ : Q×A → Q is a transition function that takes like an input a state and a
symbol and returns a state.

For every sequence of symbols X = a1a2 · · · ad ∈ Ad, d ≥ 2 and q ∈ Q, we recursively
define δ(q, a1a2 · · · ad) = δ(δ(q, a1 · · · ad−1), ad). A word w = w1 · · ·wh is accepted (or
recognized) by a DFA if δ(s, w) ∈ F . The set of all words accepted by a DFA is
called its language.
Crochemore and Stefanov [2003] worked with a DFA: (A,Q, s,F , δ), where they
make the following considerations

Considerations for a DFA 1.

1. A is the alphabet. For this particular work A = {a, b},

2. Q is the prefix set. For this particular work Q = {ε = 1, a = 2, ab = 3, aba =
4, abaa = 5, abaab = 6, abaaba = 7, abaabab = 8}. The prefixes are enumerated
to make the distinction between a simple letter and a prefix, where the symbol ε
is used in case of non one of the symbols a, ab, aba, abaa, abaab, abaaba, abaabab
appear in the sequence X,
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3. s = ε is the initial state,

4. F = {w} is the final state,

5. the function δ : Q×A → Q is defined as the longest prefix that can be formed
with the concatenation between a symbol and a prefix.

Figure 1.2 shows a graphical representation of DFA previously described.

Figure 1.2: Graphical representation of the DFA with A = {a, b} for computing
the first hitting time of w = abaabab.

In Crochemore and Stefanov [2003] it is shown that even if the sequences of letters
X is formed by i.i.d. Bernoulli trails, the sequence of prefixes is a Markov sequence
where the probability to pass from prefix q to prefix q′ is the probability to pass from
the last letter of q to the last letter of q′, if there is a ∈ A such that δ(q, a) = q′. In
other words, if X = X1X2 · · ·Xi · · · is an i.i.d. sequence formed by the elements of A,
then the sequence Y = Y0Y1 · · ·Yi defined by

Y0 = s and Yi = δ(Yi−1,Xi), i ≥ 1

is a Markov chain with transition matrix

P(p, p′) =

{
P(X1 = a) if δ(p, a) = p′,
0 if p′ /∈ δ(p,A).
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Therefore the transition matrix has the expression

P =



1 2 3 4 5 6 7 8

1 q p 0 0 0 0 0 0
2 0 q p 0 0 0 0 0
3 q 0 0 p 0 0 0 0
4 0 0 q 0 p 0 0 0
5 0 q 0 0 0 p 0 0
6 q 0 0 0 0 0 p 0
7 0 0 0 0 q 0 0 p
8 0 0 0 0 0 0 0 1


where the letter p denotes the probability to have a success. Of course we can notice
that p+ q = 1. It is not difficult to see that the time to absorption at state eight can
be viewed as the waiting time until reaching the word abaabab in an independent
Bernoulli trial. The authors define the time to abortion in state eight as follows

τ := inf{n ∈ N : Xn = 8}. (1.41)

Therefore they obtained the following table for the cumulative distribution function
(cdf) F (x) of the first hitting time of the word abaabab

x F(x) x F(x)
6 0.00000000 7 0.00781250
8 0.01171875 9 0.01757812

15 0.04943848 16 0.05516052
24 0.09879988 25 0.10415334
44 0.19994631 45 0.20469458
66 0.29815051 67 0.30231602
92 0.39878769 93 0.40235591

122 0.49711254 123 0.50009720
160 0.59891921 161 0.60129964
208 0.69860187 209 0.70039068
276 0.79893126 277 0.80012461
393 0.89979901 394 0.90039371
509 0.94976751 510 0.95006564
780 0.98999111 781 0.99005051

.

In the model described above we can observe that Crochemore and Stefanovc com-
puted in an easy way the first hitting time of a word in a sequences of letters.
Nevertheless they considered a binary alphabet and they used the hypothesis that
the sequence of letters is modeled by i.i.d. Bernoulli trails, but in most of real
applications this hypothesis does not hold true. For this reason Chryssaphinou et al.
[2008], proposed a mathematical model where the sequence of symbols is modeled by
a semi-Markov sequence. In this work, for v, h ∈ N, the authors consider a finite set
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of words W = {w1, w2, ..., wv} of equal length h. They focus on the waiting time for
the first word occurrence from set W through a semi-Markov sequence (Zk). The
corresponding probability distribution as well as the mean waiting time and the
variance were obtained. In the following we shall describe some details of this last
work.

Chryssaphinou et al. [2008] consider a semi-Markov sequence (Zk)k∈N with EMC
(Jn, Sn)n∈N and semi-Markov kernel q = (qij(k); i, j ∈ A, k ∈ N) where the alphabet
A := {a1, a2, ..., al}, l ≥ 2, is the state space of SMC (Zk). They take into account
that if (Zk) is a semi-Markov sequence therefore the chain (Zk, Bk) is a Markov chain
(MC) with transition probability matrix p̃, i.e.,

p̃((i, u), (j, v)) := P(Zk+1 = j, Bk+1 = v | Zk = i, Bk = u)

where

P(Zk+1 = j, Bk+1 = v | Zk = i, Bk = u) =


qij(u+1)

1−Hi(u)
if i 6= j and v = 0,

1−Hi(u+1)
1−Hi(u)

if i = j and v = u+ 1,

0 elsewhere.

see Proposition 5. In this article the authors proposed an h-dimensional Markov
process (Zk, Bk)k∈N, where Zk := (Zk, .., Zk+h−1) and Bk := (Bk, ..., Bk+h−1) to
compute the first hitting time of words taken form a subset W ⊂ Ah where Ah
represents the set of all words of size h formed by the letters in the alphabet A. For
every zj ∈ Ah, let Kj be a subset of Ah × Nh where

Kj := {(zj, b) ∈ Ah × N : p̃((a
zj
1 , b1), (a

zj
2 , b2)) · · · p̃((azjh−1, bh−1), (a

zj
h , bh)) > 0}.

In other words, the set Kj represents the word z̄j and all possible backwards time
for each letter in the word. Clearly for all i, j = 1, ..., l we have, Ki ∩i 6=j Kj = Ø.
Therefore the set which contains all words of size h and the corresponding backward
time for each word is denoted by K :=

⋃l
j=1Kj, this is the state space of MC

(Zk, Bk). It can be noticed that K ⊂ Ah × Nh.
The initial distribution of MC (Zk, Bk)k∈N is a function of Markov discrete process
(Zk, Bk). This initial distribution is denoted by α and has the following expression

α(z, b) = [P((Z0, B0) = (az1, u1))]· p̃((az1, b1), (az2, b2)) · · · p̃((azh−1, bh−1), (azh, bh)).

where z = az1a
z
2 · · · azh and b̄ = b1b2 · · · bh. The transition probability of MC (Zk, Bk)

is given by

P̃ ((zi, b), (zj, b
′

)) = p̃((azih , bh), (a
zj
h , b

′

h)) · 1{azjs =a
zi
s+1;s=1,...,h−1} · 1{b′s=bs+1;s=1,...,h−1}.

It will be said that w = w1w2 · · ·wh occurs at time k in the sequence (Zk) if and
only if Zk−h+1 = w1, ..., Zk = wh, i.e., Zk−h+1 = w. Let TW := min{k ≥ 0 :
(Zk−h+1, Bk−h+1) = (wj, ·), wj ∈ W} be the random variable which determines the
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first hitting time of an element wj ∈ W in the sequence (Zk, Bk). To give the
law, the expected value and the variance of the random variable TW the authors
proposed a partition of the state space K according with the elements in W. Let
KW :=

⋃
wj∈W Kj be the elements in K which contains an element from W .

Now, the probability function, the mean and the variance of TW can be computed .

PROPOSITION 7. (Chryssaphinou et al. [2008]). The hitting time to W is given by

P(TW = k) =


0 for k < h− 1,
αKW · 1|KW | k = h− 1,

αKc
W
· (P̃KWcKcW )k−hP̃Kc

WKW
· 1|Kc

W | for k ≥ h,

its mean waiting time is

E(TW) = h− 1 + αKc
W
· (I − P̃Kc

WK
c
W

)−11|Kc
W |,

and its variance

Var(TW) = P̃Kc
W
·[2(I−P̃Kc

WK
c
W

)−1−I](I−P̃Kc
WK

c
W

)−11|Kc
W |−[P̃Kc

W
(I−P̃Kc

WK
c
W

)−11|Kc
W |]

2,

where the set Kc
W = K \KW are the elements in K which do not contain an element

from W, the vector 1|Kc
W | is a column vector of ones with dimension the cardinal

of Kc
W , the initial distribution α = (αKc

W
, αKW ) is the initial distribution of process

(Zk, Bk), where αKc
W

represents the initial distribution of states i ∈ Kc
W and αKW

represents the initial distribution of states i ∈ KW , matrix P̃Kc
WK

c
W

is the restriction

of matrix P̃ on Kc
W ×Kc

W . Since Kc
W is a proper subset of the state space K of an

irreducible and aperiodic Markov chain (Zk, Bk) the matrix (I − P̃Kc
WKcW

)−1 exists.

The inconvenience with the model proposed by Chryssaphinou et al. is its imple-
mentation. If the length of the sequence of symbols is huge, it is almost impossible
to compute the transition matrix P̃ . In this thesis we shall improve this part. But
identifying a word through a sequence of symbols is not the only point in which
we are interested. It is well know that words are not always uniformly distributed
through a random sequence, some words are more frequent than others. Therefore we
are also interested in identifying how many times a word appears through a random
sequence, i.e., we are interested in the frequency of a word. Statistical distribution
of word counts in a Markovian sequence of letters, see Schbath [2000], and optimal
Markov chain embedding through deterministic finite automata, see Nuel [2008], are
used to compute the frequency. In the following we shall describe these two last
mentioned works.

Schbath [2000] considered the number of overlapping occurrence of an h-letter word
w = w1w2 · · ·wh on the alphabet A, through a Markov sequence (Xk)k∈N with state
space A, transition probability matrix

P(ai, aj) := P(Xk+1 = aj | Xk = ai) ai, aj ∈ A.
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and stationary distribution: π̌(ai), ai ∈ A. For instance, in the sequence

ACGAATAATAAATAAGGCAATAA,

there are four occurrences of AATAA (starting at positions 4,7,11 and 19).
Before computing the probability that the word w appears c ∈ N times in the MC
(Xk) it is necessary to introduce the period of a word which is defined as follows

DEFINITION 11. (Schbath [2000]). A period of a word w = w1w2 · · ·wh is denoted by
ϕ(w) and it is an integer p ∈ {1, ..., h−1} such that wi = wi+p, for all i ∈ {1, ..., h−1};
a period then corresponds to a possible lag between two overlapping occurrences of
w.

Schbat denoted by N(w) the number of occurrences of w through the MC (Xk). The
random variable which determines if an occurrence of w starts at position k in the
sequence (Xk) is defined as follows

Yk := 1{an occurence of w starts at position k in the sequence},

the count N(w) is given by

N(w) =
n−h+1∑
i=1

Yi.

Therefore the probability that the word appears at certain position through the
sequence and its stationary distribution is

π̌(w) = π̌(w1)
h−1∏
j=i

P(wj, wj+1).

The mean and the variance of the count N(w) are given by the following expressions

E[N(w)] = (n− h+ 1)π̌(w),

and

Var[N(w)] = (n− h+ 1)π(w) + 2
∑

p ∈ ϕ(w)
p ≤ h− 2

(n− h− p+ 1)π̌(w1 · · ·wpw1 · · ·wh)

+π̌2(w)

(
−(n− h+ 1)2 +

2

π̌(w)

n−2h+1∑
d=1

(n− 2h+ 2− d)Pd(wh, w1)

)

where ϕ(w) is the period set of w, see Definition 11.

Another way to compute the number of times that a word w appears through a MC
is presented by Nuel [2008]. He considers a finite alphabet A := {a1, a2, ..., al}, l ≥ 2
and a word w formed by the elements of A. As Crochemore and Stefanov [2003], he
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embedded a Markov prefix sequence through the sequence of symbols using a DFA:
(A,Q, s,F , δ), which accepts or recognizes the word w, see definition 10. Nuel made
the same considerations as Crochemore and Stefanov for the DFA, see consideration
for the DFA 1.
In Nuel’s work the sequence of letters X is modeled by an m-order Markov sequence.
He introduced the definition of ambiguity as follows.

DEFINITION 12. (Nuel [2008]). A DFA (A,Q,F , s, δ) in which there exist q ∈ Q
and a, b ∈ Am such that a 6= b and δ(q, a) = δ(q, b) is called m-ambiguos. A DFA
which is not m-ambiguous is called m-unambiguos.

He also defined the partial m-inverse of a prefix p ∈ Q.

DEFINITION 13. (Nuel [2008]). For any DFA (A,Q, s,F , δ), we define for any
q ∈ Q, and m ≥ 1, its partial m-inverse as follows

δ−m(q) := {a ∈ Am there exists p ∈ Q, δ(p, a) = q}

Hence, such a DFA is m-unambiguous if for all δ−m(q) are singletons. Next theorem
shows how to embed a pattern through an m-order MC.

THEOREM 3. (Nuel [2008]). If X = X1 · · ·Xn is an m-order Markov sequence,
m ≥ 1, on A with transition probability P , if w is a pattern, and if (A,Q, s,F , δ)
is an m-unambiguos DFA which recognizes a w, then the sequence Y∗ = Y∗m · · ·Y∗n,
n > m, defined by

Y∗0 = s and Y∗i = δ(Y∗i−1,Xi) for all 1 ≤ i ≤ n

is an 1-order Markov chain of prefixes with transition matrix

P̃ ∗(p, q) =

{
P(Xm+1 = b | X1 · · ·Xm = δ−m(p)), if δ(p, b) = q,
0, if q /∈ δ(p,A).

(1.42)

and such that occurrences of w in X correspond to occurrences of a subset of letters
in Y∗.

Nicodeme et al. [2002] showed that it is possible to build an m-unambiguous DFA
starting from a DFA m-ambiguousby duplicating states until the ambiguities are
removed.
Let w be a word and let (A,Q, s,F , δ) be a DFA which recognizes w. The transition
probability matrix of the chain Y is P̃ ∗ = P + Q, where Q contains all transitions
towards final state w and P contains all transitions toward regular states. To
compute the probability that a word w appears c ∈ N times through the m-order
Markov sequence: X, Nuel defined a Finite Markov Chain Embedding (FMCE): Z,
as follows

DEFINITION 14. (Nuel [2008]). For any c ∈ N, we define the FMCE Z by

Zj :=

{
(Y∗j , Nj) if Ni < c,
f if Nj ≥ c,
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where Nj is the number of pattern occurrences of w in X1 · · ·Xj.

PROPOSITION 8. (Nuel [2008]). Ordering the cL+ 1 states of Z as
{(1, 0), ..., (L, 0), (1, 1), ..., (L, 1), ..., (1, c − 1), ..., (L, c − 1), f = (w, c)}, the corre-
sponding transition matrix is given by

P((i1, i2)(j1, j2)) =


P(i1, j1) if i1 6= w, j1 6= w, i2 = j2,
Q(i1, j1) if i1 6= w, j1 = w, j2 = i2 + 1
1 if (i1, i2) = (j1, j2) = f
0 otherwise.

The next proposition computes the probability that the word w is repeated c times
until position n through the Markov sequence X.

PROPOSITION 9. (Nuel [2008]). Let us consider a partition of the state space of
FMCE, Z. Such that

U := {(1, 0), ..., (L, 0), (1, 1), ..., (L, 1), ...(1, c− 1), ...(L, c− 1)}

and
D := {(w, c)}.

Therefore, for i ∈ U

P(N < c | X0 = i) = P(X0 = i)Pu×u1|U |

where Pu×u is the restriction of P in states U × U and 1|U | is a vector of ones of size
|U |.

Even if Markov chains describe a sequence of symbols better than Bernoulli trials,
the main drawback in Markov hypothesis is that it can not take into account general
distributions in the sojourn time in a state. The sojourn time in a state must
be governed by the geometric distribution. In contrast discrete-time semi-Markov
processes generalize the Markov hypothesis, they allow the distribution function in
a state to be of any type. For this reason in this thesis we shall focus on counting
the number of times that a biological sequence is repeated through a DNA sequence
by any one of its configurations. We provide the strong law of large numbers for
a word sequence. To achieve our goal, we consider two cases: DNA is modeled by
an ergodic Markov sequence, and DNA is modeled by a SMC. For both hypothesis
we also present the Central Limit Theorem. Even more we are also interested in
computing the number of times that the elements from a specific set of words appear
through the DNA sequence. But these are not the only problems that we tackle in
this theses. Likewise we are also interested in competing risk problems. Competing
risk analysis refers to a special type of survival analysis that aims to calculate the
probability of an event in the presence of competing events. In next subsection we
shall introduce competing risk analysis.
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1.4 Competing risk (CR)

In standard survival data, subjects are supposed to experience only one type of
event over follow-up, that means in standard survival analysis we are interested in
only one cause of failure. But, in real life, individuals (or machines) can experiment
more than one cause of death (or more than one cause of failure). For instance,
patients could die from a heart attack or breast cancer, or even a traffic accident.
There are more than one pathway that can cause the death of a person, but finally
the death occurs by one specific cause. Figure 1.3 exemplifies these three causes
of death. In engineering, competing risks refer to the cause of breakdown for a
machine. For instance if we consider a computer, it can stop working for different
reasons, for instance, hardware problems, computational virus or software problems.
Figure 1.4 represents these three causes of failure. When we are interested in de-
termining the cause of death (or the cause of failure) in presence of many possible
causes, we refer to these events as “competing events”. Competing risk analysis
refers to a special type of survival analysis that aims to correctly calculate the
probability of an event in presence of competing events. In competing risks there
are two random variables of interest T is the time to failure, and C the cause of failure.

Figure 1.3: Example of three competing risk of death

Figure 1.4: Example of three competing risk of failure
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There are mainly three different ways to specify the distribution function of the time
to failure T: the survivor function, the probability function, and the hazard function.
The survivor function stands for the probability that the event occurs after a fixed
time t, that is,

F(t) := P(T > t), 0 ≤ t <∞.

We can notice that if F denotes the cumulative distribution function (cdf) of the
random variable T, therefore we also have F(t) = 1− F(t) for 0 ≤ t <∞. When T is
a continuous variable, the probability function is defined as

f(t) =
d(1− F(t))

dt
=
dF(t)

dt
, 0 ≤ t <∞.

Obviously, it holds that F(t) =
∫∞
t

f(u)du. Finally, the hazard rate function stands
for the rate of that event occurs instantaneously after the time t when it is known
that it does not happen before t; that is,

λ(t) := lim
∆t→0

P(t < T ≤ t+ ∆t | T > t)

∆t

=
f(t)

F(t)
=
−d
dt

log(F(t)), 0 ≤ t <∞.

Integrating with respect to t and taking into account that F(0) = 1, it holds the
equality

F(t) = exp

{
−
∫ t

0

λ(u)du

}
= exp{−Λ(t)}, 0 ≤ t <∞,

where Λ(t) =
∫ t

0
λ(u)du is known as the cumulative hazard function.

Traditional methods for competing risk estimate the function of interest. The Kaplan
Meier (KM) method is one of the most popular, see, e.g., Pintilie [2011], Austin
et al. [2016], Lacny et al. [2018], etc. KM method allows one to estimate the survival
function. The typical formula for the KM estimator is

F̂(t) =
∏
ti≤t

ni − di
ni

,

where t1 < t2 < t3 < ... are the ordered time points at which an event was observed,
ni represents the number of patients at risk at time ti and di is the number of events
at time ti. This formula can be transformed through algebraic manipulation to
express the probability of event as:

F̂(t) = 1− F̂(t) =
∑
ti≤t

di
ni
F̂(ti−1). (1.43)

In the presence of CR there are at least 2 types of events: event of interest, identified
with the subscript e, and the competing risk event, identified with the subscript
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c. Prentice et al. [1978] introduced the formula for the probability of an event of
interest in the presence of CR

P̂e(t) =
∑
ti≤t

dei
ni

F̂(ti−1), (1.44)

where dei is the number of events of interest. It is of interest to point out the relation
between Equations (1.43) and (1.44). Since di is the number of all events at ti, it
can be conceived as the sum of the number of events of interest dei and the number
of CR events dci at time ti. As such, the probability of any type of event can be
decomposed as follows:

Probability of all events = P̂e(t) + P̂c(t)

=
∑
ti≤t

dei
ni

F̂(ti−1) +
∑
ti≤t

dci
ni

F̂(ti−1)

=
∑
ti≤t

(dei + dci)F̂(ti−1)

ni
=
∑
ti≤t

di
ni
F̂(ti−1).

Thus the probability of all events can be decomposed in the probabilities for each
type of event.

Another important method for competing risk is Nelson-Aalen (NA), see e.g. Tsiatis
[2005], Njamen [2017]. The NA estimator, as the KM estimator, is a non-parametric
estimator. It is used in survival theory, reliability engineering and life insurance to
estimate the failure time of an event. For that method the standard mathematical
formulation is as follows: let T = {T1, ...,TN} be the times to event and let T =
{T1, ..., TN} be the censor times. Let F and G be the cdfs for the time to event
and the censor time, respectively. The observed times are Z = {Z1, ...,ZN} where
Zj = min{Tj, Tj}, 1 ≤ j ≤ N . In addition, it is also known what time is really
observed; i.e., the final available information are the pairs {(Z1, δ1), ..., (ZN , δN)},
where δj = 1{Tj≤Tj}, i.e., δj takes the value 1 if the time to an event is observed and
0 otherwise. Therefore the Nelson-Aalen (NA) Estimator for the cumulative hazard
function is

Λ̂(t) =
n∑
i=1

δicN(Ri)1{Zi≤t},

where Ri is the rank of Zi among Z1,Z2, ...,ZN and cN (i) = 1
(N−i+1)

, for i = 1, 2, ..., N .

Competing risk are a natural extension of (Markov) phase-type distribution (Ph-
distribution), see, e.g., Lindqvist and Kjølen [2018]. In the sequence, we shall describe
this last reference. Lindqvist and Kjølen [2018] presented an extension of the phase-
type methodology for modeling lifetime distributions to include the case of competing
risk. This is done by considering finite state Markov processes in continuous time
with more than one absorbing state, letting each absorbing state correspond to a
particular risk or cause of failure. First Lindqvist and Kjølen introduce the classical
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phase-type distribution. The authors state that a phase-type distribution can be
described in terms of a Markov process {X(t); t ≥ 0}, where the system moves
through some or all K transient states, or phases, before moving to a single absorbing
state K+ 1. The time of absorption, T, is then said to have a phase-type distribution.
The infinitesimal generator G of the Markov process is a (K + 1)× (K + 1) matrix
given on blocks form as

G =

(
Θ `
0 0

)
, (1.45)

where Θ is the K× K matrix corresponding to the transitions between the transient
states, ` is the K× 1 vector defining direct transition from the transient states to the
absorbing state, while 0 is a 1× K vector of zeros. The authors define P(t) as the
matrix of transition probabilities, i.e., Pij(t) = P(X(t) = j | X(0) = i) where

P(t) = eGt =
∞∑
i=0

Gi t
i

i!
.

It can be shown that this implies that

P(t) =

(
eΘt Θ−1(eΘt−I)`
0 1

)
.

From this last equation, an expression for the cumulative distribution function of T,

F(t) = P(T ≤ t) = P(X(t) = K + 1) = αΘ−1(eΘt−I)`,

where α is the initial distribution of the Markov process, i.e., α(i) = P(X(0) = i),
for i = 1, ...,K + 1. In standard phase-type distributions, it is considered the time
to failure T by a unique cause. In competing risk, it is supposed that the system
can experience m > 1 competing failure causes. To clarify the idea, suppose the
Markov process {X(t); t ≥ 0} has K transient states and m > 1 absorbing states,
named K+ 1,K+ 2, ...,K+m. Letting T be the time of absorption (in any one of the
absorbing states), and let C be the cause of failure, which is represented by the state
where absorption occurs, i.e., C = K + j if X(T) = K + j; j = 1, 2, ...,m. The pair
(T, C) can be viewed as an observation from a classical competing risk process with
causes K + 1, ...,K +m. By extending the matrix (1.45) to encompass m absorbing
states, we obtain the infinitesimal generating matrix of Markov process to be the
(K +m)× (K +m) matrix given on block form as

G =

(
Θ L
01 02

)
, (1.46)

where as before, Θ is the K× K matrix corresponding to the transition between the
transient states. The vector ` is now replaced by the K×m matrix L which contains
transitions from the transient states to the absorbing states. Furthermore, 01 and 02

are, respectively, m× K and m×m matrices of zeros.
It can shown that matrix (1.46) implies that the matrix of transition probabilities
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Pij(t) is given by

P(t) =

(
eΘt Θ−1(eΘt − I)L
01 I

)
, (1.47)

where I is the K× K identity matrix. From (1.47) the authors obtained expressions
for the subdistribution functions, given by

Fj(t) := P(T ≤ t, C = j) = P(X(t) = j) = αΘ−1(eΘt−I)Lvj

for j = 1, ...,m. By differentiation, the authors got the sub-densities

fj(t) = F
′

j(t) = αeΘtLvj,

where α is the initial distribution of the Markov chain and vj is the m-vector with
j-th element equal to 1 and the rest equal to 0. Therefore, the cause-specific hazard
rate is given by

λj(t) = lim
∆t→0

P(T ≤ t+ ∆t, C = j | T > t)

∆t
=

F
′
(t)

P(T > t)
=
αeΘtLvj

αeΘt1k
,

where 1k is a k-vector of ones.
One of the aims in this thesis is to extend these results to semi-Markov models which
are the generalization of Markov processes see Limnios and Oprişan [2001].



Chapter 2

Identification of Words in
Biological Sequences Under the
semi-Markov Hypothesis

Genomic sequences 1 are likely to be the most sophisticated information databases
created by nature through the evolution process. For this reason, model DNA
sequences via mathematical tools are challenged questions for mathematicians and
biologists. In most cases DNA sequences are compared to a stochastic process
governed by four nitrogenous bases: Adenine (A), Cytosine (C), Thymine (T) and
Guanine (G). In probabilistic models the efficiency and precision depend chiefly on
the kind of dependency between symbols. For instance, Stefanov et al. [1997], Robin
and Daudin [1999] and Chadjiconstantinidis et al. [2000] model DNA sequences
derived from independently and identically distributed Bernoulli trials; Antzoulakos
[2001], Fu and Chang [2002] between others authors consider DNA sequences are
modeled by a Markov chain.
Given a genome sequence it is interesting to recognize a word (pattern), counting
the number of or determine the first position that this appears, see, e.g., Abadi and
Vergne [2008], Li et al. [2016], Li et al. [2018], Sigwart and Garbett [2018], Hebert
et al. [2003] and Robin et al. [2007].
Seek a particular word over a chain formed by a big quantity of nucleotides is a very
cumbersome task and in most cases it can not be achieved by simple inspection.
There are a number of models and algorithms which propose an automatic treatment
for the searching problem in a few seconds see, e.g., Aboluion [2011], Srivastava
and Baptista [2016], Stefanov et al. [2011], Picard et al. [2011], Codish et al. [2017],
Montemanni [2015], Glaz et al. [2006], Crochemore and Stefanov [2003] and Nuel
[2008], Touyar et al. [2008].

1This chapter develops the content of an article which appears in the journal ’Computational
Biology’ put in shape to be inserted in this thesis.
Garcia-Maya, B. I., and Limnios, N. (2020). Identification of Words in Biological Sequences Under
the Semi-Markov Hypothesis. Journal of Computational Biology, 27(5), 683-697.
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In this chapter we find a pattern in a DNA sequence under the hypothesis that DNA
is modeled by a semi-Markov chain. The semi-Markov hypothesis allows us to take
into account general distributions in the sojourn time in a state. To achieve our goal
we use the prefixes chain. Suppose we search the word (pattern) w = ACCT in a
DNA sequence. We construct the word step by step from its first symbol to its last
one. The elements of this construction are called prefixes, i.e., consider the following
DNA sequence from a bacteriophage:
GGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAG

TTCTTCTTCGTCATAACTTAATGTTTTTATTTAAAATACCCTCTGAAAAG...

and suppose we want to compute the first position of w = ACCT , i.e., we want to
compute how many nucleotides have to appear in the DNA before w. To do this,
we use the prefixes of w, which is the set {A,AC,ACC,ACCT}. For this example,
it is clear that the first appearance of w occurs at position (starting from zero) 11.
Using the chain of the longest prefix of the word and all possible backwards times
for each prefix, it is computed the distribution for the (first) hitting position of the
word in a sequence of letters. To show the applicability of our proposed model, we
test it in a bacteriophage DNA sequence. We present, the distribution function,
the expected value, the variance and the standard deviation of the random variable
which represents the (first) hitting position of the word. The word occurrence rate is
also presented.

2.1 Prefix chain of a single word

Let us consider a finite alphabet, say A = {a1, ..., al}, 2 ≤ l < ∞. A word formed
by the elements of A is represented by w := w1w2 · · ·wh where w1, w2, ..., wh ∈ A.
The length of the word is expressed by |w| and represents its number of letters, in
this case |w| = h, where h ∈ N∗. We shall denote the set of all words of size h ∈ N∗
formed by the elements of A by Ah. As an example, suppose the set of letters is
A = {a, b} and h = 2 therefore Ah = {aa, ab, ba, bb}. Based on the structure of a
word w ∈ Ah, we shall define its prefix set

Ew = {ε, w1, w1w2, ..., w1w2 · · ·wh−1, w}, (2.1)

where symbol ε denotes the empty prefix which is used in case of none of the symbols
{w1, w1w2, ..., w1w2 · · ·wh−1, w} appears in the sequence. Observe that |ε| = 0.
Let

δEw : Ew ×A → Ew (2.2)

be a mapping such that for a prefix q ∈ Ew and a letter a ∈ A, δEw(q, a) is defined
as the longest suffix of qa (concatenation of q and a) in the prefix set Ew. To clarify
this definition observe the follow examples.
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EXAMPLE 1. if A = {a, b}, w = ba, the prefix set is Ew = {ε, b, ba}, then

δEw(ε, a) = ε, δEw(ε, b) = b,
δEw(b, a) = ba, δEw(b, b) = b,
δEw(ba, a) = ε, δEw(ba, b) = b,

In Figure 2.1 we can observe the graphic representation of example 1, where to not
confuse letters with prefixes, the prefix set is numerated as follows {1 = ε, 2 = b, 3 =
ba}.

Figure 2.1: Graphic representation of example 1

EXAMPLE 2. Suppose we add one letter to the alphabet and we search the same
word as in example 1, i.e., A = {a, b, c} and w = ba. The prefix set does not change
Ew = {ε, b, ba} due to w is the same, nevertheless the results for δEw are different
due to the alphabet has one letter more. The results for δEw are:

δEw(ε, a) = ε, δEw(ε, b) = b, δEw(ε, c) = ε,
δEw(b, a) = ba, δEw(b, b) = b, δEw(b, c) = ε,
δEw(ba, a) = ε, δEw(ba, b) = b, δEw(ba, c) = ε.

In Figure 2.2 we can observe the graphic representation of example 2, where the
prefixes are numerate as in Figure 2.1.
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Figure 2.2

Observe that, for p ∈ Ew the set {i ∈ A : δEw(p, i) = ε} has more than one element
if |A| > 2. Therefore δEw(p, i) is not a one-to-one mapping in general. According to
Nicodeme et al. [2002], new elements can be added to Ew such that δEw(p, i) becomes
a one-to-one mapping for p fixed. If p and q are two prefixes such that q is different
from prefix ε, i.e., q = w1w2 · · ·wl for w1, w2, · · · , wl ∈ A where 1 ≤ l ≤ h and, if
there is some i ∈ A such that δEw(p, i) = q, therefore i is the last letter of q, i.e.,
i = wl for this reason for p fixed only when δEw results in ε, i.e., δEw(p, i) = ε, the
function δEw is not one to one. The empty prefix ε will be labeled according to the
letter which is added to p to obtain ε, that means, instead of writing

δEw(p, i) = ε,

it will be written
δEw(p, i) = εi.

Let
E := ∪i∈A\{w1}{εi} ∪ {w1, w1w2, ..., w1w2 · · ·wh−1, w}, (2.3)

be the extended state space of Ew in which for p ∈ E and i ∈ A, δ(p, i) is now
a one-to-one mapping. The previous definition of δEw can be extended as follows,
δE : E×A → E. Henceforth, this last definition will be considered.

The partial inverse of δE is the function δ−1
E : E −→ A and it is defined as follows:

for all p ∈ E,

δ−1
E (p) := {i ∈ A where there exist q ∈ E, such that δ(q, i) = p}. (2.4)

Roughly speaking, the partial inverse of prefix p gives the last letter of p, i.e., if
p = ba, δ−1

E (p) = a. Observe that the partial inverse defined in E is one-to-one.



Identification of Words in Biological Sequences Under the semi-Markov Hypothesis37

2.2 Prefix process in the semi-Markov case

In the considering problem: computing the first hitting position of a word (pattern)
in a biological sequence. The biological sequence is modeled by a semi-Markov chain
(Zk), see subsection 1.2, the state space A is the genomic alphabet: Adenine (A),
Cytosine (C), Thymine (T) and Guanine (G); the maximum sojourn time in a state
i ∈ A, see Equation (1.19), represents the maximal number of nucleotides that can
be found together through the DNA sequence. The general idea is to compute the
first hitting position of the word using the prefix process. In the sequel of this section
we shall define the embedded prefix chain in the semi-Markov process.

Let us consider a stochastic process (Zk)k∈N which models a sequence of letters taken
from a finite alphabet A. If w is a word from A, the embedded prefix chain is defined
as follows.

DEFINITION 15. (Garcia-Maya and Limnios [2020]). The prefix chain of w =
w1 · · ·wh ∈ Ah embedded in the SMC (Zk) and defined in E, see Equation (2.3), is
denoted by Y := (Yk)k∈N where

Y0 :=

{
w1 if Z0 = w1,
εi if Z0 = i, i ∈ A \ {w1},

and
Yk := δE(Yk−1, Zk), k ≥ 1.

EXAMPLE 3. If the alphabet is A = {a, b, c} and the word is w = ba then, if the
elements of the prefix set E are listed as follows E = {εa = 0, εc = 1, b = 2, ba = 3}.
For the following sample

Z : aaaccba...

we have as result
Y : 0001123...

We shall say that a word w = w1w2 · · ·wh ∈ Ah occurs at time k in the sequence
(Zk) iff

Zk−h+1 = w1, Zk−h+2 = w2, ..., Zk = wh.

Observe that w ∈ W has positive probability to appear in the sequence (Zk) if

P(Zk−h+2 = w2 | Zk−h+1 = w1) · · ·P(Zk = wh | Zk−1 = wh−1) > 0. (2.5)

To avoid trivialities we shall consider Equation (2.5) is always positive.
The number of positions we have to wait for an occurrence of w in (Zk) correspond
to the number of positions we have to wait for an occurrence of w in (Yk), see Nuel
[2008]. Therefore w has positive probability to appear in (Zk) iff w has positive
probability to appear in (Yk) and the number of positions we have to wait for an
occurrence of w in (Zk) correspond to the number of positions we have to wait for
an occurrence of w in (Yk).
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Observe that to embed a prefix process in a semi-Markov chain it is necessary to
add the backward recurrence time corresponding to each prefix. Let (Yk, Bk) be the
process of prefixes and backward times. To define the state space of (Yk, Bk), let us
introduce the blocks of the word. If w = i · · · i︸ ︷︷ ︸

h

, i ∈ A and, h ∈ N∗, we shall say that

w is a block of i′s of length h and it will be denoted

w = i(h), i ∈ A, h ∈ N, 1 ≤ h <∞.

If w is not a block, it can be obtained by concatenating words which are blocks, see
Karaliopoulou [2009]. That is, w can be expressed as

w = w(1)w(2) · · ·w(η), (2.6)

where w(1) = i1
(n1), w(2) = i2

(n2), ..., w(η) = iη
(nη), for i1, i2, ..., iη ∈ A and

n1, n2, ..., nη ∈ N∗, such that n1 + n2 + · · ·+ nη = |w|. Noticing that a prefix is also
a word, therefore it can be represented by the concatenation of blocks. We shall
introduce the backward time for each prefix

DEFINITION 16. (Garcia-Maya and Limnios [2020]). We shall define the backward
position time of a prefix p = w1w2 · · ·wl−1wl for 1 ≤ l ≤ h, as the size of its last
block minus one. This definition comes from the time (the number of positions) we
have stayed in the last letter of the prefix since the last jump (renewal point). Notice
that, in general the backward time of a prefix is different from the backward time
Bk of the letters, see Equation (1.18). The backward time of a prefix will be denoted
by B(p).

EXAMPLE 4. Let w = bbaab be a word from the alphabet A = {a, b}, and let
p = bba be a prefix of w. Then, it is clear that, the backward time of p is, B(p) = 0.

Now, we are ready to introduce the backward times for each prefix through the
semi-Markov process. Let l∗p, be the set of backward times which correspond to prefix

p. If i ∈ A is the partial inverse of p, i.e., i = δ−1
E (p), see Equation (2.4), and n1 is

the size of the first block of w, see Equation (2.6), then

l∗p =


[[0, li]] , if |p| = 0,
B(p), if |p| 6= n1 and |p| 6= 0,
[[B (p) , li]] , if |p| = n1.

(2.7)

where [[a, b]] denotes an interval of integers, i.e., a subset of N. Let

Kp(E) := {(p, n) : p ∈ E, n ∈ l∗p} (2.8)

be the set which represents the prefix p ∈ E and its backward times, by consequence
the set

K(E) :=
⋃
p∈E

Kp(E) (2.9)
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represents all prefixes in E and their corresponding backward times. Clearly we have:
Kp(E) ∩Kq(E) = Ø, if p 6= q. The set K(E) is the state space of process (Yk, Bk).
Algorithm 1 proposed here (see Appendix) provide the state space K(E).

PROPOSITION 10. (Garcia-Maya and Limnios [2020]). The process (Yk, Bk)k∈N
is a Markov chain with state space K(E) and initial distribution α(i) = P(Z0 = i),
i ∈ A. Let us consider p ∈ E, i = δ−1

E (p). Then the initial distribution of the process
(Yk, Bk) is formally defined by

P(Y0 = p,B0 = u) =


α(w1)1{u=0} if p = w1,
α(i)1{u=0} if p = εi, i ∈ A \ {w1},
0 otherwise,

and its transition probabilities are

P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u) =


qia(u+1)
1−Hi(u)

1{δE(p,a)=q} if i 6= a, v = 0,
1−Hi(u+1)

1−Hi(u)
1{δE(p,a)=q} if i = a, v = u+ 1,

0 otherwise.
(2.10)

Proof. The initial distribution comes from the definition of Y0, see Definition 15, and
the backward position time at starting time, see Equation (1.18). We shall use here
the fact that (Zk, Uk) is a Markov chain with known transition probability, see e.g.,
Barbu and Limnios [2008]. Let p ∈ E be a prefix and suppose that there exists a ∈ A
such that δ(p, a) = q, for some q ∈ E. If p = w1w2 · · ·wl−1wl for 1 ≤ l ≤ h, then

P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u)

= P(Zk+1 = a,Bk+1 = v | Zk = wl, Bk = u, Zk−1 = wl−1, Bk−1 = ·, ...,
Zk−l+1 = w1, Bk−l+1 = ·),

= P(Zk+1 = a,Bk+1 = v | Zk = wl, Bk = u). (2.11)

If p = εj for j ∈ A \ {w1}, then

P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u)

= P(Zk+1 = a,Bk+1 = v | Zk = j, ·, Bk−1 = ·, ..., Zk−i+1 = ·, Bk−i+1 = ·),
= P(Zk+1 = a,Bk+1 = v | Zk = j, Bk = u). (2.12)

To denote in a general the transition probability, let i = δ−1
E (p) be the partial inverse

of p. Therefore in Equations (3.4) and (3.5) Zk = i, thus

P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u) = P(Zk+1 = a,Bk+1 = v | Zk = i, Bk = u).
(2.13)

If k + 1 is a renewal time for (Zk) then v = 0 and i 6= a, yields

P(Zk+1 = a,Bk+1 = v | Zk = i, Bk = u) =
qia(u+ 1)

1−Hi(u)
, (2.14)
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if k + 1 is not a renewal time for (Zk) then v = u+ 1 and a = i, yields

P(Zk+1 = a,Bk+1 = v | Zk = i, Bk = u) =
1−Hi(u+ 1)

1−Hi(u)
(2.15)

see Barbu and Limnios [2008], so, the proposition is proved . �
To simplify the notation, let P̌ be the transition probability matrix and β the initial
distribution of process (Yk, Bk) respectively, such that

P̌ ((p, u), (q, v)) := P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u) (2.16)

and
β(p, u) := P(Y0 = p,B0 = u). (2.17)

Algorithm 2 proposed here (see appendix B) computes the transition probability
matrix P̌ .

If (Jn, Sn)n∈N is irreducible, then Markov chain (Zk, Bk) is irreducible too, see
Chryssaphinou et al. [2008]. We shall prove, in the next proposition, the same
properties for (Yk, Bk), i.e., the irreducibility and aperiodicity.

PROPOSITION 11. (Garcia-Maya and Limnios [2020]). Let A be an alphabet,
such that |A| ≥ 2. If the Markov renewal process (Jn, Sn) with state space A× N
is irreducible and aperiodic, then process (Yk, Bk) with state space K(E) is also
irreducible and aperiodic.

Proof. Let be (p, u), (q, v) ∈ K(E) and i = δ−1
E (p). If q = w1 or q = εa with

a ∈ A \ {w1} the proof is a direct consequence of the irreducibility of (Zk, Bk). If
q = w1w2 · · ·w`, with 1 < ` ≤ h. Let q1 = w1, q2 = w1w2, ..., q = w1w2 · · ·w`, be
the consecutive prefixes from w1 to q = w1w2 · · ·w` and (q1, u1), (q2, u2), ..., (q, v) the
consecutive couples in E× N, such that for 1 ≤ i ≤ `− 1

ui+1 =

{
0 if wi 6= wi+1

ui + 1 elsewhere

due to the irreducibility of (Zk, Bk), for (i, u) ∈ A× N there exist n ∈ N∗ such that,
for m ∈ N

P(Zm+n = w1, Bm+n = u1 | Zm = i, Bm = u) > 0,

by Proposition 10

P̌ ((w1, u1), (w1w2, u2))× · · · × P̌ ((w1w2 · · ·w`−1, u`−1), (w1w2 · · ·w`, u`)) > 0.

Therefore there exist n1 = n+ `− 1 such that

P(Ym+n1 = q, Bm+n1 = v | Ym = p,Bm = u) > 0.
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The aperiodicity of (Yk) is a direct consequence of the aperiodicity of (Zk). Let
q = w1 ∈ E be a prefix formed by one letter and let d be its period, by the aperiodicity
of (Zk) it is clear that d = 1. Therefore (Yk) is aperiodic. �

2.3 The hitting time of the word

Let Nw be the number of elements in the sequence of letters before the first hitting
position of w, to define the random variable Nw we use the prefix chain and its
backward time i.e.,

Nw := min{k ≥ 0 : (Yk, Bk) = (w, · ) ∈ K(E)}. (2.18)

As it has been noted in Section 2.2, an occurrence of w in (Zk) corresponds to an
occurrence of w in (Yk). The following proposition gives the probability law of Nw.

PROPOSITION 12. (Garcia-Maya and Limnios [2020]). Let {W c,W} be a partition
of the state space K(E) such that W := {(w, ·) ∈ K(E)} and W c := K(E) \W . Let
1 be a column vector of ones with size |W c|. Let P̌w = P̌ |W c×W c and βw be the
restrictions respectively, on W c ×W c and W c of the transition matrix P̌ and the
initial distribution β. Then

P(Nw = n) =


0 if n < h− 1,
βw(P̌w)h−11 if n = h− 1,
βwP̌

n−1
w [I − P̌w]1 if n ≥ h.

Proof. For n < h − 1 it is obvious. For n = h − 1, let p1 = w1, p2 = w1w2,...,
ph−1 = w1w1 · · ·wh−1, w = w1w1 · · ·wh−1wh be the consecutive prefixes from w1 to
w, then

P(Nw = h− 1) =
∑
uh∈lw

∑
uh−1∈lph−1

· · ·
∑
u2∈lp2

∑
u1∈lp1

P̌ ((ph−1, uh−1), (w, uh))

· · · P̌ ((p1, u1), (p2, u2))P(Y0 = p1, B0 = u1),

where the set lp is the set of backward times which corresponds to the prefix p, see
Equation (2.7). For n ≥ h

P(Nw > n) = P((Yk, Bk) ∈ W c, k ∈ {0, 1, ..., n})
=

∑
(qn,un)∈W c

∑
(qn−1,un1 )∈W c

· · ·
∑

(q0,u0)∈W c

P̌ ((qn−1, un−1), (qn, un))

· · · P̌ ((q0, u0), (q1, u1))P(Y0 = q0, B0 = u0)

=
∑

(qn,un)∈W c

∑
(q0,u0)∈W c

P̌ n((q0, u0), (qn, un))P(Y0 = q0, B0 = u0),
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and therefore

P(Nw = n) = βw(P̌w)n−11− βw(P̌w)n1

= βw(P̌w)n−1[I − P̌w]1. �

PROPOSITION 13. (Garcia-Maya and Limnios [2020]). Under the same hypothesis,
as in Proposition 3.9, where f(h− 1) = P(Nw = h− 1). The generating function of
Nw, i.e., G(s) := E(sNw), for |s| ≤ 1 is

G(s) = sh−1f(h− 1)1{h≥1} + sβw(sP̌w)h−1(I − sP̌w)−1(I − P̌w)1{h≥1}1.

Proof. By definition of the generating function and Proposition 3.9, we write:

G(s) =
∑
k≥h−1

P(Nw = k)sk

= sh−1f(h− 1)1{h≥1} +
∑
k≥h

skβwP̌
k−1
w [I − P̌w]1. (2.19)

Due to the fact that W c is a proper subset of the state space K(E) of an irreducible
and aperiodic Markov chain, we write∑

k≥0

(sP̌w)k = (I − sP̌w)−1 (2.20)

see Neuts [1981b].

Therefore∑
k≥h

skβwP̌
k−1
w [I − P̌w]1 = shβwP̌

h−1
w

∑
h≥0

(sP̌w)k(I − P̌w)1

= sβw(sP̌w)h−1(I − sP̌w)−1(I − P̌w)1{h≥1}1,

hence

G(s) = sh−1f(h− 1)1{h≥1} + sβw(sP̌w)h−1(I − sP̌w)−1(I − P̌w)1{h≥1}1. �

LEMMA 2. (Garcia-Maya and Limnios [2020]). The n derivate of (I − sP̌w) holds
the follow property

d

ds
(I − sP̌w)−n = n(I − sP̌w)−(n+1)P̌w = nP̌w(I − sP̌w)−(n+1).
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PROPOSITION 14. (Garcia-Maya and Limnios [2020]). The mean and variance of
Nw are respectively

E(Nw) = (h− 1)f(h− 1)1{h≥2} + βw[Q+ hP̌ h−2
w ]P̌w1 (2.21)

and for h ≥ 3

Var(Nw) = 2(h− 1)f(h− 1) + a+ b+ c+ d− (E(Nw))2, (2.22)

where:

a = 2βwP̌
2
wQ

21

b = 2βwP̌wQ1

c = hβwP̌
h
wQ1

d = h2P̌ h−1
w 1

Q = (I − P̌w)−1.

Proof. Using the generating function of Nw, G(s), and Lemma 2, we get

dG(s)

ds
= (h− 1)sh−2f(h− 1)1{h≥2} (2.23)

+βw
[
(I − sP̌w)−1 + h(sP̌w)h−2

]
(sP̌ )(I − sP̌w)−1(I − P̌w)1,

which yields

dG(s)

ds

∣∣∣
s=1

= E(Nw) = (h− 1)f(h− 1)1{h≥2} + βw
[
(I − P̌w)−1 + h(P̌w)h−2

]
P̌1.

For the variance of Nw, the derivate of Equation (2.23) will be computed as follows:

d

ds
(h− 1)sh−2f(h− 1) = (h− 1)(h− 2)sh−3f(h− 1)1{h≥3}, (2.24)

d

ds
[(I − sP̌w)−1 +h(sP̌w)h−2] = (I − sP̌w)−2P̌w +h(h− 2)(sP̌w)h−3P̌w1{h≥3}, (2.25)

and

d

ds
(sP̌w)(I − sP̌w)−1 = (sP̌w)(I − sP̌w)−2P̌w + P̌w(I − sP̌w)−1. (2.26)
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Then, using Equations (2.25) and (2.26) and simplifying terms, it yields for h ≥ 3

d

ds
[(I − sP̌w)−1 + h(sP̌w)h−2](sP̌w)(I − sP̌w)−1 =

{
2(sP̌w)(I − sP̌w)−2 (2.27)

+[1 + h(sP̌w)h−1](I − sP̌w)−1

+(h− 1)h(sP̌w)h−2
}

(I − sP̌w)−1P̌w.

Therefore, using Equations (2.24) and (2.27) for h ≥ 3:

d2G(s)

ds2
= (h− 1)(h− 2)sh−3f(h− 1) + βw

{
2(sP̌w)(I − sP̌w)−2

+[1 + h(sP̌w)h−1](I − sP̌w)−1

+(h− 1)h(sP̌ )h−2
}

(I − sP̌w)−1P̌ (I − P̌ )1. (2.28)

Therefore for h ≥ 3,

d2G(s)

ds2

∣∣∣
s=1

=(h−1)(h−2)f(h−1)+βw
{

2P̌ 2
w(I−P̌w)−2+[P̌w+hP̌ h

w](I−P̌w)−1+(h−1)hP̌ h−1
w

}
1.

Using the expression

Var(Nw) =
d2G(s)

ds2

∣∣∣
s=1

+
dG(s)

ds

∣∣∣
s=1
−
(
dG(s)

ds

∣∣∣
s=1

)2

,

we get for h ≥ 3,

Var(Nw) = (h− 1)2f(h− 1) + a+ b+ c+ d− (E(Nw))2,

where:

a = 2βwP̌
2
wQ

21,

b = 2βwP̌wQ1,

c = hβwP̌
h
wQ1,

d = h2P̌ h−1
w 1,

Q = (I − P̌w)−1.

2.4 A genomic application

The mathematical model proposed in this theses can be implemented in any irre-
ducible semi-Markov chain with finite state space, to show one of its applications, in
this section we present a genomic example.
Let us consider the DNA sequence of bacteriophage. This DNA includes 48502
nucleotides. In this case the genomic alphabet is A = {A, T,G,C} and consider the
pattern w = CCCGGG which is the enzyme SmaI. The SmaI enzyme is a DNA
cutter. That is, when it finds the ’CCCGGG’ fragment it applies and cuts the DNA
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in the middle of this fragment, i.e., into ’...CCC’ and ’GGG...’.
The semi-Markov kernel is estimated according with Equation (1.40). The probability
that the SmaI enzyme appears after k nucleotides is observed in figure 2.3. The
random variable Nw counts the numbers of nucleotides before the apparition of the
enzyme and it is defined according with Equation (2.18). The probability function of
Nw is denoted fw(k) := P(Nw = k), this probability is computed using Preposition
3.9.

In figure 2.4 we can observe that the SmaI enzyme does not appears frequently in
the DNA. The word occurrence rate for k ≥ 1 is given by the rate function

λ̌(k) =

{
1− F̄w(k)

F̄w(k−1)
, F̄w(k − 1) 6= 0

0, otherwise,

where F̄w(k) = 1− Fw(k) and Fw(k) :=
∑k

l=0 fw(l). Figure 2.5 gives the values for
the distribution function Fw(k). In the continuous time, the rate function takes
values also greater than one, in the discrete-time case it takes values only in the
interval [0, 1]. For this reason, in an other context Roy and Gupta [1992] proposed
another rate function as follows:

r(k) = −ln(1− λ̌(k)). (2.29)

Nevertheless, when λ̌(k) is close to 0, we have obviously

r(k) ∼= λ̌(k).

In the case of the present example, the values λ̌(k) are very small, so, Figure 2.4
represents also the function r(k).

Considering that DNA sequence has 48502 nucleotides, i.e., it has size M = 48502
and using the expressions:

E(Nw · 1{Nw≤M}) =
M∑

k=h−1

kfw(k),

E(T 2
w · 1{Nw≤M}) =

M∑
k=h−1

k2fw(k),

where fw(k) := P(Nw = k) is obtaining according with Proposition 3.9, the expected
value E(Nw · 1{Nw≤M}) and the standard deviation σ(Nw · 1{Nw≤M}) are computed.
Hence, we obtain :

E(Nw · 1{Nw≤M}) = 6335.9,

σ(Nw · 1{Nw≤M}) = 6266.7.
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Considering different lengths for the DNA sequence, i.e., considering different values
for M , the mean value of Nw for each M are observed in Figure 2.6. If we take into
account that DNA sequence has infinity length, the mean value of Nw is computed
according with Equation (2.21). The variance is computed using Equation (2.22),
therefore for the bacteriophage DNA sequence we have the values:

E(Nw) = 6367.6,

σ(Nw) = 6354.9.

Notice in Figure 2.6, the value E(Nw · 1{Nw≤M}) reach E(Nw) as M becomes large
enough, as it was expected by the dominated converge theorem. It is worth noticing
that the standard deviation here is high. This is due to the fact that the evolution
of the rate of occurrence of the word is small. After position 9, it becomes geometric,
as we can see in Figure 2.4. According with Geometric distribution with success
probability p, the variance is given by formula

V ar(X) =
1− p
p2

.

Observing that variance grows if p decrease. In our model the rate of occurrence
of the word is tiny, we can see in same Figure 2.4 that after position 9, we have
p = λ̌(9) = 1.6× 10−4 which means that the probability to have a success is small,
this gives the big value for the standard deviation.
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Figure 2.3: Probability law of Nw, i.e., fw(k) := P(Nw = k)
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Figure 2.4: Rate of occurrence of the word w in the DNA sequence
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Figure 2.5: Cumulative distribution function of Nw, i.e., Fw(k) := P(Nw ≤ k)
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Figure 2.6: Expected value of Nw for different values of M in the DNA

2.5 Concluding remarks

In this chapter we proposed a new model and algorithm that can be implemented in
real applications to compute the first hitting position (time) of a word (pattern) in
a semi-Markov sequence. Although Chryssaphinou et al. [2008] proposed the only
theoretical model before this work, for words occurrence in discrete time semi-Markov
chains, the Chryssaphinou method’s cannot be implemented because the cardinality
of the state space is huge. It has |A|h × (M − h) elements, where M represents the
length of the semi-Markov chain (Zk), |A| is the alphabet cardinality and h is the
length of the pattern. Notice that, if the values of h and/or M grow, the cardinality
of the state space becomes enormous, this makes difficult the implementation. By
contrast, the model proposed here needs less memory space than the one proposed
by Chryssaphinou et al. [2008]. This model is based on prefixes and its extended
state space, with these assumptions process (Yk, Bk) becomes a Markov chain where
its transition matrix P̌ is easily written. For a word w with length |w| = h and
maximum value for the backward time of a prefix: γ = max{l∗p : p ∈ E}, we need a
state space of cardinality (h+ |A| − 1)× γ at most.

Moreover, we proposed results for the (first) position time to w, its law, its mean,
its variance and its generating function. As we can see in Figure 2.6, the value
E(Nw · 1{Nw≤M}) reach E(Nw), as M becomes large enough, as it was expected by
the dominated converge theorem.

It is worth noticing that for words of length one, i.e., a letter, our algorithm recovers
the Markov process (Zk, Bk). Of course, this work (algorithm) could be used for
any irreducible semi-Markov sequence with finite state space and any finite word
(pattern).



Chapter 3

Asymptotic properties of words in
Markov and semi-Markov
sequences

Biomolecules 1 have a wide range of sizes and structures and perform a big number
of functions. They play a crucial role in bio-informatics and modern biology. Similar
to the way the order of letters in an alphabet is used to form a word, the order
of nitrogen bases in a DNA sequence forms biomolecules, which in the language of
biology, tells cells to do a specific function. In most cases biomolecules have more
than one form to be encrypted. For instance, restrictions enzymes that cleaves DNA
into fragments are recognized by more than one particular pattern. For instance, the
EcoRI enzyme is recognized by the sequences GAATTC and CTTAAG; the BamHI
enzyme is recognized by the sequences GGATCC and CCTAGG, etc.

In this chapter we compute the average number of times that a biomolecule appears
through the DNA by any of its configurations, in other words, we compute the
average number of times that the elements from a specific set of words W appear
through a sequence of letters (Zk). Where the sequence of letters (Zk) represents the
DNA sequence and the biomolecule is represented by the set of words W . To achieve
our goal we use the strong law of large numbers. We also provide the central limit
theorem for a sequence of patterns. Additionally, we treat the problem of finding a
specific biomolecule by any of its configurations. We also compute which of those
configurations is more probable to occur at first. In other words, we identify the first
hitting time in which the elements from a specific set of words W appear through
a sequence of letters (Zk). To resolve the problem, we consider two cases: DNA is
modeled by an ergodic Markov sequence and DNA is modeled by a semi-Markov

1This chapter develops the content of an article submitted in 2020 put in shape to be inserted in
this thesis.
Garcia-Maya, B.I., Karaliopoulou, M., and Limnios, N. (2020) Asymptotic properties of words in
Markov and semi-Markov sequences.
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chain. Even if Markov sequences model properly sequences of letters, see e.g., Nur
et al. [2009], Wheeler et al. [2012], Jääskinen et al. [2014], etc. The semi-Markov case
is more general, see e.g., Barbu and Limnios [2008], D’Amico et al. [2013], Janssen
[2013]. It considers general probabilities laws on N instead of the geometric only law
in the Markov case.

3.1 The prefix chain of a set of words

In Chapter 2 we presented the prefixes of a single word, in this chapter we shall
introduce the prefixes of a set of words. First we shall consider that the sequence of
letters is modeled by a Markov chain (Xk) after this, we shall give the analogous
results for a semi-Markov chain (Zk).

Let us consider a particular set of words taken from Ah, we shall denote this set by
W . As we can observe in Section 2.1, the set of prefixes for a single word is denoted
by Ew, see Equation (2.1), therefore the prefixes of a set of words W ⊂ Ah denoted
by Ẽ∗ is the union Ẽ∗ :=

⋃
w∈W Ew.

Let δẼ∗ : Ẽ∗ ×A → Ẽ∗ be a function analogously defined as Equation (2.2), i.e., it
is the longest suffix of qa ∈ Ẽ∗ (concatenation of q ∈ Ẽ∗ and a ∈ A) in the prefix set
Ẽ∗. Observe the following examples for δẼ∗

EXAMPLE 5. If A = {a, b, c}, W = {ab, aa} the prefix set is Ẽ∗ = {ε, a, ab, aa},
then

δẼ∗(ε, a) = a δẼ∗(ε, b) = ε δẼ∗(ε, c) = ε
δẼ∗(a, a) = aa δẼ∗(a, b) = ab δẼ∗(a, c) = ε
δẼ∗(ab, a) = a δẼ∗(ab, b) = ε δẼ∗(ab, c) = ε
δẼ∗(aa, a) = aa δẼ∗(aa, b) = ab δẼ∗(aa, c) = ε

Observe that, for p ∈ Ẽ∗ the set {i ∈ A : δẼ∗(p, i) = ε} has more than one element.
For the same reasons explained in Section 2.1 the prefix ε will be tagged according
to the letter which is concatenated to p to results in ε. After redefining the prefix ε
we shall introduce the set F . Let us consider a set F which contains the letters in
A that are different from the first letter of any word w = w1w2 · · ·wh ∈ W , i.e.,

F := {i ∈ A : i 6= w1, for all w = w1w2 · · ·wh ∈ W}. (3.1)

For p ∈ Ẽ∗ and i ∈ A instead of having

δẼ∗(p, i) = ε,

we will have
δẼ∗(p, i) = εi,
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where i ∈ F .
Therefore,

E∗ := (∪w∈WEw)
⋃

(∪i∈Fεi) (3.2)

is the prefix set of W in which δE∗ : E∗ ×A → E∗ is a one to one mapping. Observe
that the partial inverse of δE∗ , defined in E∗, i.e., δ−1

E∗ : E∗ → A, see Equation(2.4),
it is one-to-one. We can notice that W ⊂ Ah and W ⊂ E∗.
From now we shall denote by ` the cardinality of E∗, i.e., ` := |E∗|. Next definition
presents the generalization of Definition 15. It introduces the prefix process of a set
of words W .

DEFINITION 17. The prefix chain of W embedded in the Markov chain (Xk) and
defined in E∗, see Equation (3.2), is denoted by Y ∗ := (Y ∗k )k∈N where

Y ∗0 :=

{
w1 if X0 = w1, for some w = w1w2, · · ·wh ∈ W ,
εi if X0 = i with i ∈ F ,

and
Y ∗k := δE∗(Y

∗
k−1,Xk), k ≥ 1.

where F is defined in Equation (3.1).

PROPOSITION 15. (Nuel [2008]). If the sequence of letters is modeled by a Markov
chain (Xk), the prefix process (Y ∗k ) defined in E∗ is a Markov chain too with initial
distribution

α∗(p) = P(Y ∗0 = p) =


α∗(w1) if p = w1 for some w = w1w2 · · ·wh ∈ W ,
α∗(i) if p = εi, i ∈ F ,
0 otherwise.

and transition probability matrix

P̃ (p, q) := P(Y ∗k+1 = q | Y ∗k = p), q, p ∈ E∗;

where

P̃ (p, q) =

{
P(Xk+1 = a | Xk = δ−1(p)) if δE∗(p, a) = q
0 elsewhere.

(3.3)

Proof. The initial distribution comes from the definition of Y ∗0 , see Definition 17.
For the transition probability matrix. Consider a prefix p ∈ E∗ and suppose that
there exists a ∈ A such that δE∗(p, a) = q, for some q ∈ E∗. If p = w1w2 · · ·wl−1wl
for 1 ≤ l ≤ h, then

P(Y ∗k+1 = q, | Y ∗k = p, ) = P(Xk+1 = a | Xk = wl, Zk−1 = wl−1, ...,Xk−l+1 = w1),

= P(Xk+1 = a | Xk = wl). (3.4)

If p = εj for j ∈ F , then

P(Y ∗k+1 = q | Y ∗k = p) = P(Xk+1 = a, | Xk = j,Xk−1 = ·, ...,Xk−l+1 = ·),
= P(Xk+1 = a, | Xk = j). (3.5)
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To denote in general the transition probability, let i = δ−1
E∗(p) be the partial inverse

of p. Therefore in Equations (3.4) and (3.5) Xk = i, thus

P(Y ∗k+1 = q, | Y ∗k = p) = P(Xk+1 = a | Xk = i),

which proves the proposition. �
Next Proposition proves that if the sequences of letters (Xk) is an irreducible and
aperiodic Markov chain, then prefix chain (Y ∗k ) has also the same properties.

PROPOSITION 16. If process of letters (Xk) is modeled by an irreducible and
aperiodic Markov chain then the prefix chain (Y ∗k ) described in Definition 17 has the
same properties.

Proof. Let be p, q ∈ E∗ and i = δ−1
E∗(p). Suppose Y ∗m = p, m ∈ N. If q = w1 or

q = εa, a ∈ F the proof is a direct consequence of the irreducibility of (Xk). If
q = w1w2 · · ·wl, with 1 < l ≤ h. Let q1 = w1, q2 = w1w2, ..., q = w1w2 · · ·wl, be the
consecutive prefixes from wj1 to q = w1w2 · · ·wl. Due to the irreducibility of (Xk),
for w1 ∈ A there exist n ∈ N∗ such that

P(Xm+n = w1 | Xm = i) > 0.

Therefore

P(Y ∗m+1 = q1 | Y ∗m = p)P(Y ∗m+2 = q2 | Y ∗m+1 = q1) · · ·P(Y ∗m+l = ql | Y ∗m+l−1 = ql−1) > 0

Hence there exist n1 = n+ ` such that

P(Y ∗m+n1
= q | Y ∗m = p) > 0.

The aperiodicity of (Y ∗k ) is a direct consequence of the aperiodicity of (Xk). Let
q = w1, w ∈ W be a prefix formed only by one letter and let d be its period, by the
aperiodicity of (Xk) it is clear that d = 1. Therefore (Y ∗k ) is aperiodic. �

By Proposition 16 we have shown that if the sequence of letters is an ergodic Markov
chain then the sequence of prefixes has the same properties. Next Proposition
provides the stationary distribution of the prefix process (Y ∗k ). We can notice that
if P and π̌ are the transition probability matrix and the stationary distribution
(respectively) of the process of letters (Xk), i.e.,

Pn(i, j)→ π̌(j), i, j ∈ A, n→∞ (3.6)

then, the stationary distribution of the prefix process is a function of the stationary
distribution of the sequence of letters.

PROPOSITION 17. The stationary distribution of prefix process (Y ∗k ) denoted by π̃
is a function of the stationary distribution of the sequence of letters (Xk) where
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π̃(p) =

{
π̌(j) if j = δ−1(p) and |p| = 0 or |p| = 1,
π̌(w1)P(w1, w2)× · · · × P(wl−1, wl) if p = w1w2 · · ·wl for 1 < l ≤ h.

(3.7)

Proof: If p is a prefix formed by only one letter or it has not letters, i.e., if p = j,
j ∈ A \ F or p = εj, j ∈ F then, the stationary distribution of p is a direct
consequence of the stationary distribution of process (Xk). In the other hand,
if p is formed by more than one letter, i.e., p = w1w2 · · ·wl for 1 < l ≤ h and
p1 = w1, p2 = w1w2, ..., p = w1w2 · · ·wl are the consecutive prefixes from p1 = w1 to
p = w1w2 · · ·wl, then it is clear that the stationary distribution of prefix p is

π̃(p) = π̌(p1)P̃ (p1, p2)× · · · × P̃ (pl−1, pl)

= π̌(w1)P(w1, w2)× · · · × P(wl−1, wl). �

The number of times that the elements from W are repeated in the sequence (Xk)
correspond to the average number of times that the elements from W are repeated
in prefix process (Y ∗k ) see Nuel [2008]. This average number is a function of the
transition probability of process (Xk) as we can observe in the following proposition.

PROPOSITION 18. For the ergodic Markov chain of prefixes (Y ∗k ) with stationary
distribution π̃ (see Equation 3.7), the frequency of words from the set W is

1

n

n∑
k=0

1{Y ∗k ∈W}
a.s−→

∑
w∈W

π̌(w1)P(w1, w2)× · · · × P(wl−1, wl), n −→∞.

where w = w1w2 · · ·wh ∈ Ah.

Proof: The proof is a direct consequence of the strong law of large numbers for an
ergodic Markov chain, see e.g., Barbu and Limnios [2008]. �
The central limit theorem (CLT), for an ergodic Markov chain, establishes the average
of the sum of its terms tends toward a normal distribution even if the original variables
are not normally distributed, see e.g., Limnios and Oprişan [2001]. The goal of the
following Proposition is to describe the central limit theorem for the prefix process.

PROPOSITION 19. For an ergodic Markov chain (Y ∗k ) with stationary distribution
π̃, we have

√
n

(
1

n

n∑
k=0

1{Y ∗k ∈W} − S
)

d−→ N (0, σ2
W), n→∞

where

σ2
W :=

∑
pi∈W

(
π̃(p1)[δp1pi − π̃(pi)], ..., π̃(p|E∗|)[δp|E∗|pi − π̃(pi)]

)
×(2Ž − I)

(
S̃(p1), ..., S̃(p|E∗|)

)T
.
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such that S :=
∑

p∈W π̃(p), S̃(p) := 1{p∈W} − S, for p ∈ E∗ and Ž := (I − P̃ + Π)
−1

is the fundamental matrix of P̃ and Π is defined as follows

Π :=


π̃(p1) π̃(p2) · · · π̃(p|E|)
π̃(p1) π̃(p2) · · · π̃(p|E|)
...
π̃(p1) π̃(p2) · · · π̃(p|E|)

 .

Proof:
For an ergodic Markov chain (Y ∗k ) with stationary distribution π̃ by the CLT, we
have

√
n

(
1

n

n∑
k=0

1{Y ∗k ∈W} − S
)

d−→ N (0, σ2
W), n→∞

where the variance is expressed by σ2
W = S̃diag(π̃)[2Ž − I]S̃T , see Trevezas and

Limnios [2009]. The matrix Ž is the fundamental matrix of process (Y ∗k ) and it is
defined by Ž := (I − P̃ + Π)−1, such that I is the identity matrix of size |E∗| × |E∗|,
P̃ is the transition matrix of process (Y ∗k ). Therefore

σ2
W :=

(
S̃(p1), ..., S̃(p|E∗|)

) π̃(p1) · · · 0
. . .

0 · · · π̃(p|E∗|)

 (2Ž − I)

 S̃(p1)
...

S̃(p|E∗|)


=

(
S̃(p1)π̃(p1), ..., S̃(p|E∗|)π̃(p|E∗|)

)
(2Ž − I)

 S̃(p1)
...

S̃(p|E∗|)


=

(
1{p1∈W}π̃(p1)−

∑
pi∈W

π̃(pi)π̃(p1), ...,1{p|E∗|∈W}π̃(p|E∗|)−
∑
pi∈W

π̃(pi)π̃(p|E∗|)

)

(2Ž − I)

 S̃(p1)
...

S̃(p|E∗|)


=

(∑
pi∈W

π̃(p1)[δp1pi − π̃(pi)], ...,
∑
pi∈W

π̃(p|E∗|)[δp|E∗|pi − π̃(pi)]

)

(2Ž − I)

 S̃(p1)
...

S̃(p|E∗|)


=

∑
pi∈W

(
π̃(p1)[δp1pi − π̃(pi)], ..., π̃(p|E∗|)[δp|E∗|pi − π̃(pi)]

)

(2Ž − I)

 S̃(p1)
...

S̃(p|E∗|)

 . �
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Additionally in this chapter we compute the first hitting position in which an element
from W appears in the sequence (Xk). We consider the words w ∈ W like absorbing
states. To achieve this goal we make a partition of the state space E∗, such that
E∗ = E∗0 ∪ E∗1 where E∗1 are the prefixes which belong to the set W and E∗0 are the
elements of E∗ which are different from the set W , i.e., E∗0 = E∗ \W and E∗1 =W ,
it is clear that E∗0 ∩ E∗1 = Ø. We also decompose the initial distribution α∗, see
Proposition 15, where α∗0 and α∗1 are the restrictions of the initial distributions in
states E∗0 and E∗1 and receptively. Let (Ỹk) be a prefix process defined as the prefix
process (Y ∗k ), see Definition 17, but with transition probability matrix

R̃ =

(
P̃00 P̃01

0 I

)
, (3.8)

where P̃ij is the restiction of P̃ in states E∗i ×E∗j for i, j ∈ {0, 1}. Observe that 0 is
the zero matrix of size E∗1 × E∗0 and I is the identity matrix of size E∗1 × E∗1 .

The time that process (Ỹk) has to wait until an element from W arrives is a random
variable and it is defined as follows

T := inf{k ≥ 0 : Ỹk ∈ W}. (3.9)

We are interested in computing the distribution function of T and also the probability
that (Ỹk) reaches W by a specific element wj ∈ W. Therefore, let us denote the
random variable

W := {wj ∈ W : ỸT = wj}. (3.10)

The random variable W takes the value wj if wj is the first element from W that
appears in the prefixes chain (Ỹk). For the bi-dimensional random variable (T,W )
we define its distribution function as

Gj(k) := P(T ≤ k,W = wj)

and its law by
gj(k) := P(T = k,W = wj). (3.11)

Last Equation represents the probability that process (Ỹk) reaches the set W at time
k by the element wj ∈ W. It is easy to observe that for every wj ∈ W, Equation
(3.11) can be written as

gj(k) = P(Ỹk = wj, Ỹl ∈ E0; l = 0, ..., k − 1).

The following result expresses the probability law and the distribution function of
(T,W ).
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PROPOSITION 20. The law and the distribution function of (T,W ) for the above
Markov chain (Ỹk) are

gj(k) := P(T = k,W = wj) =


0, k < h− 1;

α̃(wj1)P̃ (pj1, p
j
2) · · · P̃ (pjh−1, p

j
h), k = h− 1;

α̃0P̃
k−1
00 P̃01ej, k > h− 1.

and
Gj(k) := P(T ≤ k,W = wj) = α̃0(I − P̃00)−1(I − P̃ k

00)P̃01ej, (3.12)

respectively where ej is a column vector of size |E∗0 | where all its entries are zeros,
except the entry which corresponds to wj which takes the value one.

Proof. For k < h − 1 is obvious. For k = h − 1 suppose wj = wj1w
j
2 · · ·w

j
h with

wj1, w
j
2, · · · , w

j
h ∈ A and let us consider pj1 := wj1, p

j
2 := wj1w

j
2, ..., p

j
h := wj1w

2
j · · ·w

j
h

the consecutive prefixes of wj. Therefore

gj(h− 1) = P(T = h− 1,W = wj)

= P(Ỹ0 = pj1, Ỹ1 = pj2, ..., Ỹh−1 = pjh),

= α̃(wj1)P̃ (pj1, p
j
2) · · · P̃ (pjh−1, p

j
h).

For k > h− 1, we have

gj(k) = P(T = k,W = wj)

= P(Ỹk = wj, Ỹl ∈ E0; l = 0, ..., k − 1),

=
∑
v∈E0

∑
j∈E0

P(Ỹ0 = j)P̃ k−1
00 (i, v)P̃01(v, wj).

Expressing the last equation in matrix form, we have

gj(k) = α̃0P̃
k−1
00 P̃01ej.

For the distribution function, we have

Gj(k) =
k∑
l=0

P(T = l,W = wj)

=
k∑
l=1

α̃0P̃
l−1
00 P̃01ej.

The sum of the above series is

k∑
l=1

P̃ l−1
00 = (I − P̃00)−1(I − P̃ k

00),
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where I is the identity matrix of size |E0| × |E0|, therefore we have

Gj(k) = α̃0(I − P̃00)−1(I − P̃ k
00)P̃01ej. �

Even if Markov processes model properly sequences of symbols. The main drawback
of Markov hypothesis is that they cannot take into account general distributions in
the sojourn time in a state by contrast discrete-time semi-Markov processes generalize
discrete time Markov chains. In semi-Markov processes the distribution function of
the sojourn time in a state can be any one. In next section we shall provide the
analogues properties if the sequence of letters is modeled by a semi-Markov chain.

3.2 Properties of words in Semi-Markov sequences

Similarly to the Markov case we shall embed the prefix chain in a semi-Markov
sequence to present the central limit theorem, the strong law of large numbers and
to compute the first hitting position of the elements in W through the sequence of
letters.

Consider the sequence of letters is modeled by a semi-Markov chain (Zk). Let (Yk)
be the prefix process defined as in Definition 17 but embedded in the SMC (Zk) i.e.,

Y0 :=

{
w1 if Z0 = w1, for some w = w1w2, · · ·wh ∈ W ,
εi if Z0 = i with i ∈ F ,

and
Yk := δE∗(Yk−1, Zk), k ≥ 1.

If we use a semi-Markov sequence (Zk) we need to introduce the backward time
process for each prefix, let us denote by (Yk, Bk) this process. In the sequel we shall
introduce the state space of this process.

Consider the prefixes of the set of words W : E∗, see Equation (3.2). Let

Kp(E
∗) := {(p, n) : n ∈ l∗p}, p ∈ E∗ (3.13)

be the set which represents the prefix p ∈ E∗ and its backward times where l∗p is
defined according with Equation (2.7). The set

K(E∗) :=
⋃
p∈E∗

Kp(E
∗) (3.14)

represents all prefixes in E∗ and their corresponding backward times. Clearly we
have: Kp(E

∗) ∩Kq(E
∗) = Ø, if p 6= q. The set K(E∗) is the state space of process

(Yk, Bk).
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PROPOSITION 21. (Garcia-Maya et al. [Submitted in 2020]). The process (Yk, Bk)k∈N
is a Markov chain with state space K(E∗). Let us consider p ∈ E∗, i = δ−1

E∗(p) and
α(i) = P(Z0 = i). Then the initial distribution of the process (Yk, Bk) is

P(Y0 = p,B0 = u) =


α∗(w1)1{u=0} if p = w1, for some w = w1w2 · · ·wh ∈ W
α∗(i)1{u=0} if p = εi, i ∈ F ,
0 otherwise,

and its transition probabilities are

P(Yk+1 = q, Bk+1 = v | Yk = p,Bk = u) =


qia(u+1)
1−Hi(u)

1{δE∗ (p,a)=q} if i 6= a, v = 0,
1−Hi(u+1)

1−Hi(u)
1{δE∗ (p,a)=q} if i = a, v = u+ 1,

0 otherwise,
(3.15)

where δ−1
E∗(p) is the partial inverse of prefix p, F is a set defined as in Equation (3.1)

and 1A is the indicator function of A.

Proof. The proof is analogous to the proof in Proposition 10. �

To simplify the notation let us denote by P the transition probability matrix of
process (Yk, Bk), i.e.,

P ((q, v), (p, u)) := P(Yk+1 = p,Bk+1 = v | Yk = p,Bk = u) (3.16)

and
α(p, u) := P((Y0, B0) = (p, u)) (3.17)

its initial distribution.
It has been proved in Proposition 11 that if (Zk, Bk) is an irreducible and aperiodic
Markov chain, then the sequence (Yk, Bk) has the same properties. If π is the
stationary distribution of Markov process (Zk, Bk). Then the stationary distribution
of (Yk, Bk) denoted by π is a function of π, where for m ∈ l∗p

π(p,m) =


π(δ−1(p),m) if |p| = 0 or |p| = 1;∑

u∈lp
∑

ul−1∈lpl−1
· · ·
∑

u2∈lp2

∑
u1∈lp1

P ((pl−1, ul−1), (p, u)) · · ·P ((p1, u1), (p2, u2))π(p1, u1) if p = w1 · · ·w`,
1 < ` ≤ h.

(3.18)

If prefix p has the expression p = w1w2 · · ·w`, 1 < ` ≤ h then the prefixes p1 = wi1,
p2 = wi1w

i
2, ..., p = wi1w

i
2 · · ·wi` are the consecutive prefixes from p1 = w1 to

p = w1w2 · · ·w` and (p1, u1), (p2, u2), ..., (p, u) are the consecutive couples in E∗ × lp,
such that for 1 ≤ j ≤ `− 1

uj+1 =

{
0 if wj 6= wj+1,
uj + 1 elsewhere .
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The average number of times that the elements {(p, u) : (p, u) ∈ (W , ·)} are repeated
through the sequence (Yk, Bk) is a function of the transition probability matrix of
process (Zk, Bk) as we observe in the following proposition.

PROPOSITION 22. (Garcia-Maya et al. [Submitted in 2020]). For an ergodic Markov
chain (Yk, Bk) with stationary distribution π (see Equation 3.18) the average number
of times that the elements from W appear through process (Yk, Bk) is

1

n

n∑
k=0

1{(Yk,Bk)∈(W,·)}
a.s.−−→

∑
p∈W

∑
u∈lp

∑
ul−1∈lpl−1

· · ·
∑
u2∈lp2

∑
u1∈lp1

P ((pl−1, ul−1), (p, u))

· · ·P ((p1, u1), (p2, u2))π(p1, u1), n −→∞.

where p1 = w1, p2 = w1w2, ..., p = w = w1w2 · · ·wh are the consecutive prefixes from
p1 = w1 to w = w1w2 · · ·wh.

Proof: By the strong law of large numbers for an ergodic Markov chain

1

n

n∑
k=0

1{(Yk,Bk)∈(W,·)}
n→∞−−−→

∑
(p,u)∈K(E∗)

π(p, u)1{(p,u)∈(W,·)}

where∑
(p,u)∈K(E∗)

π(p, u)1{(p,u)∈(W,·)} =
∑

(p,u)∈(W,·)

π(p, u)

=
∑
p∈W

∑
u∈lp

∑
ul−1∈lpl−1

· · ·
∑
u2∈lp2

∑
u1∈lp1

P ((pl−1, ul−1), (p, u))

· · ·P ((p1, u1), (p2, u2))π(p1, u1).

The following proposition describes the word frequencies using prefix and backward
process.

PROPOSITION 23. (Garcia-Maya et al. [Submitted in 2020]). For an ergodic Markov
chain (Yk, Bk) with stationary distribution π, we have

√
n

(
1

n

n∑
k=0

1{(Yk,Bk)∈(W,·)} − S
)

d−→ N (0, σ2
W), n −→∞

where

σ2
W =

∑
(pi,ui)∈(W,·)(
π(p1, u1)[δ(p1,u1)(pi,ui) − π(pi, ui)], ..., π(p|K(E∗)|, u|K(E∗)|)[δ(p|K(E∗)|,u|K(E∗)|)(pi,ui) − π(pi, ui)]

)
×(2Z − I)

 S(p1, u1)
...

S(p|K(E∗)|, u|K(E∗)|)

 . (3.19)
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such that S(p, u) := 1{(p,u)∈(W,·)} − S and S :=
∑

(p,u)∈(W,·) π(p, u).

Proof: For an ergodic Markov chain (Yk, Bk) with state space K(E∗) and stationary
distribution π by the CLT, we have

√
n

(
1

n

n∑
k=0

1{(Yk,Bk)∈(W,·)} −
∑

(p,u)∈(W,·)

π(p, u)

)
n→∞−−−→ N (0, σ2),

where σ2 = Sdiag(π)[2Z − I]S
T

such that S(p, u) := 1{(p,u)∈(W,·)} − S and
S :=

∑
(p,u)∈(W,·) π(p, u). The matrix Z is the fundamental matrix of process (Yk, Bk)

and it is defined by Z := (I − P + Π)−1, such that I is the identity matrix of size
|K(E∗)|×|K(E∗)|, P is the transition matrix of process (Yk, Bk) and Π = limn→∞ P .
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Therefore

σ2
W :=

(
S(p1, u1), ..., S(p|K(E∗)|, u|K(E∗)|)

) π(p1, u1) · · · 0
. . .

0 · · · π(p|K(E∗)|, u|K(E∗)|)


(2Z − I)

 S(p1, u1)
...
S(p|K(E∗)|, u|K(E∗)|)


=

(
S(p1, u1)π(p1, u1), ..., S(p|K(E∗)|, u|K(E∗)|)π(p|K(E∗)|, u|K(E∗)|)

)
(2Z − I)

 S(p1, u1)
...
S(p|K(E∗)|, u|K(E∗)|)


=

1{(p1,u1)∈(W,·)}π(p1, u1)−
∑

(pi,ui)∈(W,·)

π(pi, ui)π(p1, u1), ...,

1{(p|K(E∗)|,u|K(E∗)|)∈(W,·)}π(p|K(E∗)|, u|K(E∗)|)−
∑

(pi,ui)∈(W,·)

π(pi, ui)π(p|K(E∗)|, u|K(E∗)|)


(2Z − I)

 S(p1, u1)
...
S(p|K(E∗)|, u|K(E∗)|)


=

 ∑
(pi,ui)∈(W,·)

π(p1, u1)[δ(p1,u1)(pi,ui) − π(pi, ui)], ...,

∑
(pi,ui)∈(W,·)

π(p|K(E∗)|, u|K(E∗)|)[δ(p|K(E∗)|,u|K(E∗)|)(pi,ui) − π(pi, ui)]


(2Z − I)

 S(p1, u1)
...
S(p|K(E∗)|, u|K(E∗)|)


=

∑
(pi,ui)∈(W,·)(
π(p1, u1)[δ(p1,u1)(pi,ui) − π(pi, ui)], ..., π(p|K(E∗)|, u|K(E∗)|)[δ(p|K(E∗)|,u|K(E∗)|)(pi,ui) − π(pi, ui)]

)
(2Z − I)

 S(p1, u1)
...
S(p|K(E∗)|, u|K(E∗)|)

 . �
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Let (Ỹk, Bk) be a process defined as process (Yk, Bk) but with transition probability
matrix R̃ where

R̃ = P(Ỹk+1 = q,Bk+1 = v | Ỹk = p,Bk = u) =



qia(u+1)
1−Hi(u)1{δE∗(p,a)=q} if i 6= a, v = 0,
1−Hi(u+1)

1−Hi(u) 1{δE∗(p,a)=q} if i = a, v = u+ 1,

q 6= p
1 if p = q
0 otherwise.

(3.20)
The time that process (Ỹk, Bk) has to wait until an element from W arrives is a random

variable and it is defined as follows

T̃ := inf{k ≥ 0 : (Ỹk, Bk) ∈ (W, ·)}. (3.21)

We are interested in computing the distribution function of T̃ and also the probability that
(Ỹk, Bk) reaches (W, ·) by a specific element wj ∈ W . Therefore, let us denote the random
variable

W̃ := {wj ∈ W : ỸT = wj , Bk = ·}. (3.22)

The random variable W̃ takes the value wj if wj is the first element from W that appears
in the chain (Ỹk, Bk). To provide the distribution function of (T̃ , W̃ ) we shall decompose
the state space K(E∗) according with states K0 and K1 where K0 := {(Ỹk, Bk) ∈ K(E∗) :
Ỹk /∈ W} and K1 := {(Ỹk, Bk) ∈ K(E∗) : Ỹk ∈ W}. We shall consider R̃ the transition
probability matrix of process (Ỹk, Bk), where R̃ is defined as follows

R̃ = P(Ỹk+1 = q,Bk+1 = v | Ỹk = p,Bk = u) =



qia(u+1)
1−Hi(u)1{δE∗ (p,a)=q} if i 6= a, v = 0,
1−Hi(u+1)

1−Hi(u) 1{δE∗ (p,a)=q} if i = a, v = u+ 1

and q 6= p
1 p = q
0 otherwise.

(3.23)

PROPOSITION 24. The law and the distribution function of (T̃ , W̃ ) for the Markov chain
(Ỹk, Bk) are:

gi(k) := P(T̃ = k, W̃ = wi)

=


0, k < h− 1;

α(wi1, 0)P ((pi1, u1), (pi2, u2)) · · ·P ((pih−1, uh−1), (pih, uh), k = h− 1;

α0P
k−1
00 P 01ei, k > h− 1;

therefore its distribution function is

Gi(k) := P(T̃ ≤ k, W̃ = wi) = α0(I − P 00)−1(I − P k00)P 10ej , (3.24)

where ei is a column vector of size |K1| where all its entries are zeros, except the entry
which corresponds to wi which takes the value one.

Proof. For k < h− 1 it is obvious. For k = h− 1, let pi1 := wi1, pi2 := wi1w
i
2,

pih−1 := wi1w
i
1 · · ·wih−1, pih := wi = wi1w

i
1 · · ·wih−1w

i
h be the consecutive prefixes from wi1 to
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wi, then

gi(k = h− 1) = P(T̃ = h− 1, W̃ = wi)

= P(Ỹ0 = pi1, B0 = 0)P(Ỹ1 = pi2, B1 = u2 | Ỹ0 = pi1, B0 = 0),

· · ·P(Ỹh−1 = pih, Bh−1 = uh | Ỹh−2 = pih−1, Bh−2 = uh−1)

= α(wi1, 0)R̃((pi1, 0), (pi2, u2)) · · · R̃((pih−1, uh−1), (pih, uh)),

where for 1 ≤ j ≤ h − 1, uj+1 are the elements in l∗p such that for pij = wi1 · · ·wij and

pij+1 = wi1 · · ·wij+1 we have

uj+1 =

{
0 if wij 6= wij+1

uj + 1 elsewhere .

For k > h− 1, we have

ḡj(k) = P(T̃ = k, W̃ = wj) (3.25)

= P(Ỹk = wj , Bk = · such that (Ỹl, Bl) ∈ K0; l = 0, ..., k − 1),

=
∑

uh∈l∗
wj

∑
(pih−1,uh−1)∈K0

∑
(p,u0)∈K0

P(Ỹ0 = p,B0 = u0)

×R̃k−1
00 ((p, u0), (pih−1, uh−1))R̃01((pih−1, uh−1), (wj , uh)).

Expressing the last equation in matrix form, we have

ḡj(k) = α̃0R̃
k−1
00 R̃01ej .

For the distribution function, we have

Gj(k) =
k∑
l=0

P(T = l,W = wj)

=
k∑
l=1

α̃0R̃
l−1
00 R̃01ej .

The sum of the above series is

k∑
l=1

R̃l−1
00 = (I − R̃00)−1(I − R̃k00),

where I is the identity matrix of size |K0| × |K0|, therefore we have

Gj(k) = α̃0(I − R̃00)−1(I − R̃k00)R̃01ej . �

3.3 Example

To show one of the implementations of the proposed model, in this section we present a
genomic example where DNA is modeled by a Markov and semi-Markov process and we
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present the number of times that the word CG is repeated through the DNA sequence.
We also searched the enzyme SmaI by its two possible configurations.

Let us consider a bacteriophage DNA sequence. The genomic alphabet is A = {A, T,G,C}
where the letters A, T , G, C represent the nucleotides adenine, thymine, guanine and
cytosine respectively. In this application, we count the average number of times that
the word CG is repeated through the DNA. For this word in the Markov case the main
and variance computed according with Propositions 18 and 19 are 0.0869 and 0.0709
respectively. The analogous results for the semi-Markov case according with Propositions
22 and 23 are 0.0500723 and 0.052394. Additionally we search the SmaI enzyme by any of
its two configuration, i.e., ’CCCGGG’ and ’GGGCCC’. Considering DNA is modeled by
a Markov chain, the distribution function of the first hitting position of the SmaI enzyme
is computing using Equation (3.12). In figure 3.1 we can observe the results for both words.
Similarly, we also consider DNA sequence is modeled by a semi-Markov chain. Under
this hypothesis the distribution function of the first hitting position of the SmaI enzyme
is computing using Equation (3.24). In figure 3.2 we can observe which pattern of the
enzyme is more probable to appear at first under the semi-Markov hypothesis. Analyzing
figures 3.1 and 3.2 we can observe that the configuration CCCGGG has a big probability
to appear at first time even if DNA is modeled by Markov or semi-Markov chain.

Figure 3.1: Probability to reach SmaI by any of its configuration under Markov
hypothesis
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Figure 3.2: Probability to reach SmaI by any of its configuration under semi-
Markov hypothesis

3.4 Concluding remarks

In this chapter we count the number of times that the elements from a set W are repeated
through the DNA, i.e., we provide the strong law of large numbers for a set W. We
considered two possibilities to model DNA sequences. We consider DNA is modeled by
an ergodic Markov sequence and DNA is modeled by a semi-Markov chain. For both
hypothesis the Central Limit Theorem has been presented. The results that appear in
the semi-Markov case can be deduced to the results in the Markov case when we have a
geometric distribution. We also computed the first hitting position of the elements from the
set of words W through the DNA sequence. To show one of its applications we computed
the first hitting position of an enzyme through a DNA sequence.





Chapter 4

Phase-type Semi-Markov
Distributions and Competing
Risks

We present 1 here competing risks models within a semi-Markov process framework via the
semi-Markov phase-type distribution. We consider semi-Markov processes in continuous
and discrete time with a finite number of transient states and a finite number of absorbing
states. Each absorbing state represents a failure mode (in reliability of a system) or a
cause of death of an individual (in survival analysis). We express the probability a failure
occurs at a certain time due to a unique cause. This is an extension of the continuous-time
Markov competing risks model presented in Lindqvist and Kjølen [2018]. We give the joint
distribution of the lifetime and the failure cause via the transition function of semi-Markov
process in continuous and discrete-time cases. Some examples are given for illustration.

4.1 Introduction

In competing risks there are two random variables of interest T is the time to failure, and C
is the cause of failure, see, e.g., Crowder [2001], Aalen [1995], Lindqvist and Kjølen [2018].
For instance, we can consider that a person could die for different causes, lung cancer,
heart attack, HIV, etc. If we are interested in knowing the time to death and the cause of
death, the model therefore has to include more than one absorbing state (failure state), see
e.g., Crowder [2001],Crowder [2012]. Thus, if the interest is focused on a specific cause of
failure in presence of different causes, we are in the case of a competing risks models. In
engineering, competing risks refer to the lifetime of a machine and its cause of breakdown.
For instance, if we consider a car, it can stop working because of electrical problems, dead
battery, malfunctioning sensors, etc. The idea of competing risks is to model a process

1This chapter develops the content of an article submitted in 2020 put in shape to be inserted in
this thesis.
Garcia-Maya, B.I., Limnios, and N., Lindqvist, B. (2019). Competing Risks Modeling by Extended
Phase-type Semi-Markov Distributions.

67



Phase-type Semi-Markov Distributions and Competing Risks 68

where the system is exposed to several causes of failure and its eventual failure is attributed
exactly to only one of them.

A natural extension of (Markov) phase-type distribution (Ph-distribution), see, e.g., Neuts
[1981a], Aalen [1995], Asmussen and O’Cinneide [2006], is the semi-Markov Ph-distribution
in continuous or discrete-time. See, e.g., Limnios [2012a], where the Ph-distribution is
defined in semi-Markov processes for both continuous and discrete time. The aim here
is to extend semi-Markov processes to competing risks models (see, e.g., Crowder [2001],
Beyersmann et al. [2011], Crowder [2012]).

4.2 Semi-Markov process and extended ph-type

distributions

Let us consider a semi-Markov process Z = (Zk)k∈N with state space E = {1, 2, ..., r + 1},
where states E0 := {1, 2, ..., r} are the transient states and state {r + 1} is an absorbing
state. Let (Jn, Sn), n ≥ 0, be the (embedded) Markov Renewal Process (MRP) of Z. Let
i, j be two elements of E. Then the semi-Markov kernel Q(t) is defined as follows,

Qij(t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i), n ≥ 0, t ∈ R+. (4.1)

Let α be the initial distribution of the semi-Markov process Z, i.e., α(i) := P(Z0 =
i) = P(J0 = i), i ∈ E. Let Pij(t) := P(Zt = j | Z0 = i), for i ∈ E0, j ∈ E be the
transition function of the semi-Markov (Zk). Of course, we have Pr+1,j(t) = 0, j ∈ E0 and
Pr+1,r+1(t) = 1, for t ≥ 0, see section 1.2.

Consider now a partition of the semi-Markov kernel and the initial law, following sets E0

and {r + 1}, as follows:

Q(t) =

[
Q0(t) L(t)
01×r 0

]
(4.2)

and α = (α0, 0), where α0 is the sub-vector corresponding to transient states E0. The
matrix Q0(t) is the restriction of the semi-Markov kernel over the transient states E0 ×E0,
an r × r matrix function, and L(t) is an r × 1 column vector function.

Consider also the matrix

H :=

[
H0(t) 0

0 H1(t)

]
(4.3)

where H0(t) := diag(H i(t), i = 1, ..., r) is the restriction of the sojourn times survival
functions on the transient states, i.e., H i(t) := 1−

∑
j∈E Qij(t) and

H1(t) := diag(H i(t), i = r + 1, ..., r + m) is the restriction of the sojourn times survival
functions on the absorbing states.
The closed form solution of a semi-Markov phase-type distribution, say F on [0,∞), is (see,
e.g., ?Limnios [2012a]),

F (t) := 1− F (t) = α0(I −Q0(t))(−1) ∗H0(t) (4.4)
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where I is the identity matrix for t ≥ 0, and the zero matrix for t < 0, and

(I − Q0(t))(−1) =
∑

n≥0Q
(n)
0 (t) where Q

(n)
0 is the n-fold convolution of Q0 (see, e.g., ?),

i.e.,

Q0
(n)
ij (t) =


δij1{t≥0} n = 0

Q0ij(t) n = 1∑
k∈E

∫ t
0 Q0ik(ds)Q0

(n−1)
kj (t− s) n ≥ 2.

(4.5)

For the non singularity of this matrix see Section 4.3.

It is worth noticing here that the semi-Markov Ph-distributions on [0,∞), given by (4.4),
is a dense class for the weak topology, in the set of all probability distributions on [0,∞),
since this class includes as a particular case the dense class of Markov Ph-distributions
(e.g., Neuts [1981a]).

4.3 Semi-Markov process and competing risks

In this section we are going to extend the semi-Markov Ph-distributions to the competing
risks setting, as it has been done for the Markov case by Lindqvist and Kjølen [2018].
Let us consider a continuous-time semi-Markov process (Zt, t ∈ R+), with state space
E = {1, 2, ..., r + 1}, where states E0 := {1, 2, ..., r} are the transient states and state
{r+ 1} is an absorbing state and initial distribution α. We shall decompose the state space
E in transient E0 (good performance states) and absorbing states E1 (failures states), i.e.,
E = E0 ∪E1. We shall consider r ≥ 1 transient states and m ≥ 2 absorbing states. Under
these conditions, we shall give the main results for the extended semi-Markov continuous
time Ph-distribution. The time that the process has to wait until it arrives to a failure
state (an absorbing state) is a random variable. It is known as time to absorption T. We
define this time as follows,

T := inf{k ≥ 0 : Zk ∈ E1}. (4.6)

The lifetime T and the cause of failure, C, with values in the set {1, ...,m}, depend on Zt.
More precisely, we have {T ≤ t, C = j} = {Zt = r + j}. This is the key relation of the
connection between competing risks and the extended Semi-Markov Ph-distributions.

Consider now the partition of the semi-Markov kernel Q, and the initial law, in this new
situation following the partition E0, E1 of E, as follows:

Q(t) =

[
Q0(t) L(t)
0m×r 0m×m

]
(4.7)

and α = (α0, α1), notice that, in this particular case α1 is the zero vector of dimension
1× r. The function L(t) is now an r ×m matrix.

Consider also the diagonal matrix H0(t) := diag(H i(t), i = 1, ..., r) and H1(t) = 0, so
H1(t) = I the identity matrix, for t ≥ 0, and 0m×m otherwise.
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PROPOSITION 25. (Limnios and Oprişan [2001]). For an absorbing semi-Markov process
as described above, the transition function is given by

P (t) =

[
(I −Q0)(−1) ∗H0(t) (I −Q0)(−1) ∗ L(t)
0m×r I(t)

]

Proof. For any fixed t ≥ 0, the matrix Q0(t) is sub-stochastic, i.e., there is at least an
index i ∈ E0 such that

∑
j∈E0

Q0(i, j) < 1. So, (Q0(t))n goes to zero, as n goes to infinity
(see, e.g., Theorem 3.65 in Girardin and Limnios [2018]). But, from Lebesgue-Stieltjes

integral and Equation (4.5) we have Q
(n)
0 (t) ≤ (Q0(t))n, so Q

(n)
0 (t) goes to zero, as n goes

to infinity. Consequently, the matrix I −Q0(t) is non-singular.

The transition function P (t) of the semi-Markov process satisfies the following Markov
renewal equation (see, e.g., ?)

P (t) = H(t) +Q ∗ P (t),

where H(t) is defined as in Equation (4.3). Now, for the same reasons as previously, the
matrix I −Q(t) is non singular for any fixed t in the interior of the support of Q, and then
via the convolution algebra, we get

P (t) = (I −Q)(−1) ∗H(t).

Let us consider the inversion formula of a bloc matrix, (see Lu and Shiou [2002]), i.e., in
case where A and D are square and non singular matrices, we have(

A B
0 D

)−1

=

(
A−1 −A−1BD−1

0 D−1

)
.

Now, from the partition of the semi-Markov kernel matrix (4.2), and that of the diagonal
matrix H(t), and the non singularity of (I−Q0)(t) and I(t) for any t ≥ 0, and the linearity
of the convolution operation, we get, straightforwardly, the desired results.

Then the probability that the absorbing state is the state j ∈ E1, starting from a state
i ∈ E0, is given by the (i, j) entry of the matrix (I −Q0)(−1) ∗ L(t). �

Let us denote the distribution function of (T, C) (i.e. the cumulative incidence function) by
Fij(t) := Pi(T ≤ t, C = j) and the corresponding failure rate λij(t), for initial state i ∈ E0,
and cause j ∈ E1, conditional on survival up to time t, (which is the cause-specific hazard
in the competing risks terminology,)

λij(t) := lim
h↓0

Pi(t < T ≤ t+ h,C = j | T > t)

h
.

It is worth noticing here that for fixed i ∈ E0, j ∈ E1, Fij(t) is a sub-distribution function.

Let us define the matrix functions F(t) := (Fij(t); i ∈ E0, j ∈ E1) and
λ(t) := (λij(t); i ∈ E0, j ∈ E1).

PROPOSITION 26. (Limnios and Oprişan [2001]). Suppose that the entries of the matrix
function L, in the semi-Markov (cumulative) kernel (4.2), have Radon-Nikodym derivatives.
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Then the distribution function matrix F(t) and the conditional, on survival up to time t,
failure rate matrix λ(t), are given by

F(t) = (I −Q0)(−1) ∗ L(t)

and

λij(t) =
ei(I −Q0)(−1) ∗ `(j)

ei(I −Q0)(−1) ∗H0(t)1r
,

where `(t) := L′(t), the pointwise derivatives of L with respect to t and
ei := (0, ..., 0, 1, 0, ..., 0) with 1 in the i-th entry.

Remark. In the case when we consider a general initial distribution α0 on E0, then the
above formula can be written as Fj(t) := P(T ≤ t, C = j) = α0(I −Q0)(−1) ∗ L(j) and

λj(t) = lim
h↓0

P(t < T ≤ t+ h,C = j | T > t)

h
=

α0(I −Q0)(−1) ∗ `(j)
α0(I −Q0)(−1) ∗H0(t)1r

.

Proof. We have Fj(t) := P(T ≤ t, C = j) = P(Zt = j). So, by Proposition 1, we get
F(t) = α0P12(t), and the result follows.

Let us now consider the probabilities Rik = Pi(ZT = r + k) = Pi(C = k), for starting in
state i ∈ E0 and being absorbed in state k = 1, ...,m, and define the matrix
R := (Rik; i = 1, ..., r; k = 1, ...,m). Consider also the transition probability matrix P of
the embedded Markov chain (Jn) of the semi-Markov process (Zt) (see, e.g., ?) and its
partition following sets E0, E1, i.e.,

P =

[
P0 P1

0m×r I

]
.

PROPOSITION 27. (Limnios and Oprişan [2001]). We have

R = (I − P0)−1P1.

Proof. Since this probability depends only on the transition probabilities of the embedded
Markov chain, the proof of the result is straightforward by Markov chain theory (see, e.g.,
Girardin and Limnios [2018]).
Examples in continuous time Let us consider a four states semi-Markov process, i.e.,
let E = {1, 2, 3, 4}, where states 1, 2 are transient and states 3, 4 are absorbing states, i.e.,
E0 = {1, 2} and E1 = {3, 4}. The semi-Markov kernel of this process is Q(t),

Q(t) =


0 Q12(t) Q13(t) 0

Q21(t) 0 0 Q24(t)
0 0 0 0
0 0 0 0


with the following blocks of its partition:

Q0(t) =

[
0 Q12(t)

Q21(t) 0

]
, L(t) =

[
Q13(t) 0

0 Q24(t)

]
.
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Now we have the following block matrix of the transition function

P12(t) = (I −Q0)(−1) ∗ L(t) = M ∗
[

Q13(t) Q12 ∗Q24(t)
Q21 ∗Q13(t) Q24(t)

]
where M(t) := (1−Q21 ∗Q13)(−1)(t) = 1 +

∑∞
k=1(Q21 ∗Q13)(k)(t). This is a usual renewal

type function.

So, we have

F1(t) = α0P12(t)e1 = α(1)M ∗Q13(t) + α(2)M ∗Q21 ∗Q13(t)

and
F2(t) = α0P12(t)e1 = α(1)M ∗Q12 ∗Q24(t) + α(2)M ∗Q24(t).

The primes here mean derivatives with respect to t.

We also calculate the cause specific failure rates λj(t), for j = 1, 2, as follows:

λ1(t) =
α(1)M ∗Q′13(t) + α(2)M ∗Q21 ∗Q′13(t)

M ∗ [α(1)Q13 ∗H1(t) + α(1)Q12 ∗Q24H2(t) + α(2)Q12 ∗Q13 ∗H1(t) + α(2)Q24 ∗H2(t)]

λ2(t) =
α(1)M ∗Q12 ∗Q24(t)′ + α(2)M ∗Q24(t)′

M ∗ [α(1)Q13 ∗H1(t) + α(1)Q12 ∗Q24H2(t) + α(2)Q12 ∗Q13 ∗H1(t) + α(2)Q24 ∗H2(t)]

where H1(t) = 1 − (Q12(t) + Q13(t)) and H2(t) = 1 − (Q21(t) + Q24(t)), for t ≥ 0, and
α(i) := P(Z0 = i), for i = 1, 2.

Finally, the matrix R is

R = (1− p12p21)−1

[
p13 p12p24

p21 p24

]
where pij := Qij(∞), for i, j ∈ E0 and pij := δij for i, j ∈ E1 (Kronecker’s δ).

It is worth noticing that from p12 + p13 = 1 and p21 + p24 = 1, we can see that R is a
stochastic matrix.

4.4 The discrete-time competing risk

Discrete-time semi-Markov setting. Let (Zk), k ∈ N be a semi-Markov discrete-time process,
i.e., a semi-Markov chain (SMC) with state space E, and (Jn, Sn), n ∈ N, its embedded
Markov renewal chain, see section 1.2.

We shall make the same considerations for the semi-Markov chain (Zk)k∈N as in continuous
time, i.e., we shall decompose the state space in transient (good performance states) and
absorbing states (failures states), i.e., E = E0 ∪ E1. We shall consider r ≥ 1 transient
states and m ≥ 2 absorbing states. We shall also make a partition the semi-Markov kernel
following the states E0 and E1, i.e.,

q(k) =

(
q0(k) q1(k)
0 0

)
. (4.8)
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Observe that the first zero in the second line is the m× r zero matrix and the second one
is the m×m matrix; q0(k) and q1(k) are the restriction of q(k) on E0 × E0 and E0 × E1

respectively. The next proposition gives the main result for the extended Semi-Markov
Ph-distribution in discrete time.

PROPOSITION 28. (Garcia-Maya et al. [Submitted in 2020]). For a semi-Markov discrete-
time process (Zk), k ∈ N with state space E and initial distribution α as described
above,

gj(k) := P(T = k,C = j) =

{
0, k = 0;

α0(I − q0)(−1) ∗ q1(k)ej , k ∈ N∗;

Therefore

Gj(k) = P(T ≤ k,C = j) =
k∑
l=0

α0(I − q0)(−1) ∗ q1(l)ej ,

where ej is a column vector of size |E1| where all its coordinates are zero except the
coordinate which correspond to state j.

Proof: Set

gij(k) = Pi(T = k,C = j), i ∈ E0, j + r ∈ E1.

Obviously, we have:

gj(k) =
∑
i∈E0

αigij(k). (4.9)

Now, we can write:

gij(k) = Pi(T = k,C = j, S1 ≥ k) + Pi(T = k,C = j, S1 < k)

= Pi(J1 = r + j, S1 = k) +
∑
l≤k−1

∑
p∈E0

Pi(T = k, Zk = j, S1 = l, J1 = p).

Then:

gij(k) = qi,r+j(t) +
k∑
l=0

∑
p∈E0

qip(l)gpj(k − l). (4.10)

This is a discrete-time Markov renewal equation which in matrix form gives:

g(k) = q1(k) + q0 ∗ g(k).

Its solution is
g(k) = (I − q0)(−1) ∗ q1(k) (4.11)

see e.g., Barbu and Limnios [2008]. Equation (4.11) combined with Equation (4.9) gives
the desired result. �

Examples in discrete time
We present an example of semi-Markov chain with two absorbing states, i.e., we consider
two causes of failure. For these examples the state space is E = {1, 2, 3, 4}, with up states:
1 and 2; and down states: 3 and 4, i.e., the first cause of failure is the state 3, and the
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second cause of failure is the state 4.

As it was mentioned in the previous sections, for a Markov process in discrete time, the
sojourn time in a state, see Equation (1.14), always has geometric distribution on N∗ i.e.,
for all i, j ∈ E,

fij(0) := 0

and
fij(k) := p(1− p)k−1, p ∈ [0, 1], k ≥ 1.

In a semi-Markov chain, fij(k) could be any distribution. In this example every fij(·) is a
discrete-time Weibull distribution, i.e.,

fij(k) := Wai,bj(k)

where
Wa,b(0) := 0

and
Wa,b(k) := a(k−1)b − akb , k ≥ 1.

see Nakagawa and Osaki [1975]. For this particular example

q(k) =
(
qij(k)

)
1≤i,j≤4

=


0 p12f12(k) p13f13(k) p14f14(k)
p21f21(k) 0 0 p24f24(k)
0 0 0 0
0 0 0 0

 , k ∈ N,

where pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N. In the next figure we show the extended
Phase-type distribution of the random pair (T, C) for a semi-Markov chain. In figure 4.1,
the system is modeled by a semi-Markov discrete-time process. In the figure we can observe
that the process enter to the absorbing state three (first cause of failure) and, the absorbing
state four (second cause of failure).
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Figure 4.1: Probability of absorption before time k for states 3 and 4 for a
semi-Markov chain

4.5 Concluding remarks

We have presented competing risks models for semi-Markov process in discrete and contin-
uous time via phase-type distributions. We considered stochastic systems which always
start in a functional state and for which there are a finite number of absorbing states. Each
absorbing state may represents a failure mode in reliability applications and a cause of
death of an individual in survival analysis. We derived expressions for the probability that
failures occur at a certain time due to a given cause. We also gave the joint distribution of
the lifetime and the cause of failure. In further work we aim at using the model as a basis
for statistical estimation problems under semi-Markov assumptions.





Chapter 5

Using semi-Markov chains to solve
semi-Markov processes

5.1 Introduction

Even though SMCs and SMPs 1 model properly a vast quantity of real problems most of
them requires the Markov renewal equation (MRE) to be solved. The MRE finds applica-
tions in many areas of applied probability including reliability, queueing systems, inventory
management, risk theory and decision analysis, see e.g., Hou et al. [2017], Asmussen et al.
[2016], Dhulipala and Flint [2020],Wang [2017], etc. When the Markov renewal equation
(MRE) is required in the solution of these problems, the semi-Markov hypothesis generates
some difficulties. This is due to the Markov renewal equation is a function of convolutions
products. The convolution of a function is a recursive method that demands a big com-
putational memory to be implemented and even more in continuous time semi-Markov
process. In a discrete-time semi-Markov process the Markov renewal function is expressed
as a finite series of the semi-Markov kernel convolution product, instead in the continuous
case, it is expressed in terms of an infinite series. This give an important advantage to
discrete-time semi-Markov processes in numerical calculus.

A number of methods have studied the discretization of the MRE. For instance, in Barbu
et al. [2004] the authors proposed a computation procedure for solving the corresponding
Markov renewal equation, necessary for reliability measurements. In Barbu and Limnios
[2006] the authors obtained empirical estimators for the semi-Markov kernel and the
semi-Markov transition function, which allows to present a discretization of then MRE. In
Elkins and Wortman [2001] it was developed tight bounds and an algorithm to compute
the Markov renewal kernel. Knowledge of the kernel allows to solve Markov renewal
equations numerically. In Li and Luo [2005] upper and lower bounds are studied for the
solutions of Markov renewal equations. These bounds are applied to a shock model and an

1This chapter develops the content of an article submitted in 2020 put in shape to be inserted in
this thesis.
Wu, B., Garcia-Maya, B.I., and Limnios, N., (2020). Using semi-Markov chains to solve semi-Markov
processes.
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age-dependent branching process under Markovian environment, etc.

The main idea in this chapter is to use SMCs to handle SMPs, whith this idea MRE can
be expressed as a finite series of semi-Markov kernel convolution product, instead of an
infinite series in SMPs. This good property of SMCs facilitates the computational cost
making possible the implementation of the theoretical models. In order to illustrate our
method, we present an example concerning cyber-attacks where it is evaluated the system
availability.

We want to emphasize that this model and all mathematical results shown in this chapter
were taken from the article Wu et al. [Submitted in 2020].

5.2 Continuous-time MRE solution given by discrete-

time method

In this section we shall present an algorithm which computes the MRE of SMPs, see
Equation (1.6). To achieve our goal first we shall present a discretization of the semi-
Markov kernel.
For a given SMP Z(t) with continuous semi-Markov kernel Q(t) and state space E :=
{1, 2, . . . , s}, we define an SMC Zh(k), where k ∈ N and h > 0, such that the semi-Markov
kernel qh(k) is given by the equation

qh(k) := Q(kh)−Q((k − 1)h) for k ≥ 1, and qh(0) := 0.

Then, the transition function matrix of the SMP, denoted by P(t), which satisfies Equation
(1.8), has an approximate solution

Ph(k) = ψh ∗ (I−Hh)(k), k ∈ N, (5.1)

where ψh can be calculated by Equation (1.6) based on qh.

In the remainder of this chapter, let h denote the step size of discretization. Note that
the matrix functions which refer to SMC Zh(k) are denoted with index h, for example,
Ph. Instead, matrix functions which refer to SMP Z(t) are denoted without index h, for
example, P.

Let us denote the matrix norm by ‖ · ‖, defined as

‖A‖(k) := max
i,j∈E

|Aij(k)| ,

where A is a matrix-valued function. Consider now the function Aij(t) defined on ME(N)
such that Aij(t) = 0 for all i, j ∈ E and t < 0, and define the following norm on [0, t]:

|||A|||(t) = sup
0≤u≤t

‖A‖(u).
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Now the continuous-time semi-Markov kernel Q(t) can be approximated by Q̃h(t), which
is defined by

Q̃h(t) ≡ Qh(k − 1)

when (k − 1)h ≤ t < kh. Meanwhile, the transition function matrix of the SMP P(t) can
be correspondingly approximated by P̃h(t), which is stated in the following proposition.

PROPOSITION 29. (Wu et al. [Submitted in 2020]). If for any fixed t > 0, kh → t as
k →∞ (h ↓ 0), then

‖P̃h −P‖(t)→ 0, as h ↓ 0.

Proof. The cumulative semi-Markov kernel for the SMC Zh(k) is given by

Qh(k) =
∑
l≤k

qh(l) = Q(kh),

which implies that the cumulative distribution function of the sojourn time for the SMC
Zh(k) can be written as

Hh(k) = H(kh).

If we consider a bounded matrix A of dimensions s× s and its corresponding pointwise
discrete version Ah, we get easily that

qh ∗Ah(k) = Q ∗A(kh). (5.2)

And then, for any n ≥ 1, we get, by induction from Equation (5.2), that

q
(n)
h (k) = Q(n)(kh),

which follows that, for any k ∈ N,

ψh(k) = ψ(kh).

Further, we have

Ph(k) = ψh ∗ (I−Hh)(k) = ψ ? (I−H)(kh) = P(kh).

And then, if kh → t as k → ∞ (h ↓ 0), we get by continuity that ψ ? (I −H)(kh) →
ψ ? (I−H)(t), namely,

Ph(k)→ P(t) as k →∞ (h ↓ 0),

element-wise, and then

max
i,j∈E

∣∣∣P̃h;ij(t)−Pij(t)
∣∣∣ = max

i,i∈E
|Ph;ij(k − 1)−Pij(t)| → 0, as h ↓ 0. �

In the following, two useful propositions are presented for bounding the error for the
transition function matrix due to discretization.
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Let us define
δh := max

{i,j∈E},{k:kh<t}
qhij(k),

where qh(k) = [qhij(k)]. Obviously, when k →∞ or h→ 0, δh → 0.

Recall that Q̃h(t) ≡ Qh(k − 1) when (k − 1)h < t < kh, which is an extension of the
discrete-time semi-Markov kernel to the continuous-time case. Based on Proposition 4.3
in Limnios and Oprisan (2012), we can obtain the distance between transition function
matrices based on semi-Markov kernels Q̃h(t) and Q(t) in the following proposition.

PROPOSITION 30. (Wu et al. [Submitted in 2020]). The distance between transition
function matrices, P̃h(t) and P(t), verifies the following inequality∣∣∣∣∣∣∣∣∣P̃h −P

∣∣∣∣∣∣∣∣∣(t) 6 min{κ(Q̃h,Q)(t), κ(Q, Q̃h)(t)},

where
κ(Q̃h,Q)(t) = s2 · ‖ψh‖(t) ·

∣∣∣∣∣∣∣∣∣Q̃h −Q
∣∣∣∣∣∣∣∣∣(t) · (2‖ψ‖(t) + 1).

Moreover, we have the following proposition which can avoid the inverse in the convolution
seance.

PROPOSITION 31. (Wu et al. [Submitted in 2020]). If for a fixed time t > 0, the matrices
(I− P̃h(t)) and (I−P(t)) are non-singular, then∣∣∣∣∣∣∣∣∣P̃h −P

∣∣∣∣∣∣∣∣∣(t) 6 min{λ(Q̃h,Q)(t), λ(Q, Q̃h)(t)}

where

λ(Q̃h,Q)(t) = δh · s2 ·max
i,j

[I−Q(t)]−1(i, j) · (2 max
i,j

[I− Q̃h(t)]−1(i, j) + 1).

Meanwhile, let us denote by Ph,i the probability distribution of the SMC Zh, and Pi the
probability distribution of the SMP Z, conditional on starting from state i ∈ E. According
to Karr’s theorem (Karr 1975) (see also Limnios and Oprisan 2012), we get the following
result.

PROPOSITION 32. (Wu et al. [Submitted in 2020]). For any i ∈ E, the following weak
convergence holds true

Ph,i ⇒ Pi as h ↓ 0.

In the following subsection, we shall give some numerical examples to illustrate our proposed
model.

5.3 Numerical examples in reliability problem

In order to illustrate our mathematical model, we consider a reliability application where it
is analyzed the sequential cyber-attacks that was explored in Liu et al. [2019]. In this last
article it was explored the Trojan attacks. A Trojan horse or Trojan is a type of malware
that is often disguised as legitimate software. Trojans are employed by hackers trying to
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get access to users’ systems. The trojan attacks were designed to commit crimes one of the
most important of them is stealing identity. The way trojan horses operate is by tricking
cyber users. Users are typically tricked by some form of social networks into loading and
executing Trojans on their systems. We might think we have received an email from some-
one we know and we click on what looks like a legitimate attachment. But we have been
tricked. Once activated, Trojans cyber-criminals can get access to the computational system.

A system which is exposed to Trojan attack is assumed to evolve according to an homoge-
neous SMP with four states, which are

� state 0: when systems work normally.

� state 1: when users receive Trojan virus links.

� state 2: when malicious links are clicked.

� state 3: when users make payment according to links.

The state transition diagram is illustrated by Figure 5.1.

Figure 5.1: State transition diagram of systems subject to Trojan attacks

Hence, the system works when it is in states 0, 1 and 2, and fails due to the completed
fraud in state 3. The initial distribution is assumed to be α = ( 1 0 0 0 ).

We aim to calculate the instantaneous availability A(t) of the system. The instantaneous
availability of a system S at time t ∈ R+ is the probability that the system is in an
operational state at time t (independently that the system has fail or not in [0, t)). To
compute the availability of the system the state space is partitioned in two groups of states:
the operational or functional states, i.e., the up states which will be denoted by the letter
U and the failure states, i.e., the down states which will be denoted by the letter D. For
this particular example the up states is U = {0, 1, 2} and the down states are D = {3}.
Therefore the instantaneous availability of a semi-Markov process at time t ∈ R+ is

A(t) := P(Zt ∈ U).

It is well-known that if the system state evolution is governed by an SMP, the availability
A(t) is expressed by the following equation

A(t) = αP(t)1s,r,

where 1s,r is an s-dimensional vector with 1’s as first r components and 0’s as last s− r
ones. In this example, we have s = 4 and r = 3 and P(t) is the transition matrix of the
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SMP (Zt), see Equation (1.3). Then, we can calculate the point-wise availability of the
system by computing the transition function matrix P(t).

5.3.1 Exponentially distributed sojourn times - Markov case

In order to verify the effectiveness of the proposed method, let us first consider a Markov
case where the sojourn time in each state is exponentially distributed. As it is well known
the transition matrix of a Markov process at continuous time is a function of its infinitesimal
generator. In this case the infinitesimal generator is given by

G =


−0.2 0.2 0 0
0.01 −0.11 0.1 0
0.15 0.3 −0.85 0.4

0 0 0.5 −0.5

 ,

then the transition probability matrix in the Markov process is

P (t) =


0 1− e−0.2t 0 0

1
11

(
1− e−0.11t

)
0 10

11

(
1− e−0.11t

)
0

3
17

(
1− e−0.85t

)
6
17

(
1− e−0.85t

)
0 8

17

(
1− e−0.85t

)
0 0 1− e−0.5t 0

 .

Therefore if the state evolution of the system is governed by a Markov process, the system
availability can be calculated by

A(t) = αeGt1s,r. (5.3)

To compute the availability of the continuous system we shall make a discretization of the
time. We shall consider three different approximations where the step time are h = 0.05,
h = 0.01 and h = 0.001. We consider the approximate results when t = 1. The exact value
calculated by Equation (5.3) and the three consider approximations are illustrated the
following figure.
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Figure 5.2: Exact and approximate values of the availability A(t) in Markov
case.

It can be seen from Figure 5.2 that the smaller h is, the closer the approximation is to the
exact value, which is consistent with Proposition 29. When h = 0.001, the approximate
value of A(t) nearly coincides with the exact value.

Meanwhile, we can estimate approximation errors based on Propositions 30 and 31, whose
results are shown in Table 5.1. Note that in Table 5.1, Ā(1) represents the approximate
result of the system availability at time t = 1 obtained by employing the proposed method
in subsection 5.2, where the discretization for the transition probability matrix in the
Markov case is given by the expression

Ph(k) = eGkh − eG(k−1)h, k ≥ 1 and Ph(0) := 0.

.

Table 5.1: Computation errors of Markov case.

h 0.1 0.05 0.01 0.001
Ā(1) 0.999315 0.999210 0.999124 0.999105

Ā(1)− A(1) 0.000212 0.000108 0.000022 0.000002
Estimated error by Proposition 30 0.037180 0.009013 0.000352 0.000005
Estimated error by Proposition 31 1.34437 0.654051 0.128003 0.01823

From Table 5.1, we can see that a decreased h reduces the estimated errors obtained
by Propositions 30 and 31. Meanwhile, the effect of Proposition 30 is better than the
estimation effect of Proposition 31, which is the penalty of Propositions 31 by reducing the
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computational complexity.

In next subsection we shall apply the mathematic discretization in a semi-Markov process.
For this end, we shall consider sojourn times in a states are governed by a Weibull
distribution function.

5.3.2 Weibull distributed sojourn times - semi-Markov case

In this section, the sojourn time in each state is assumed to follow the Weibull distribution
with scale and shape parameters (αij , βij) as Table 5.2 shows, which is identical to those
in Liu et al. (1990). The cumulative distribution function of the Weibull distribution is

Fij (t;αij , βij) = 1− exp

[
−
(

t
αij

)βij]
.

Table 5.2: Baseline values of model parameters of Weibull distribution.

CDF Parameter values
F01 α01 = 1/0.034, β01 = 0.54
F10 α10 = 1/0.0125, β10 = 0.86
F12 α12 = 1/0.106, β12 = 2
F20 α20 = 1/0.15, β20 = 1
F21 α21 = 1/0.2, β21 = 1
F23 α23 = 1/0.0023, β23 = 0.072
F32 α32 = 1/0.39, β32 = 1

Based on Equation (5.3), we set h = 0.1, h = 0.05, h = 0.01 and h = 0.001. We consider
the approximation when t = 2. We can draw the curves of system point-wise availabilities
as Figure 5.3 shows.
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Figure 5.3: Approximate values of A(t) under the semi-Markov hypothesis.

5.4 Conclusions

In this chapter, we presented a novel method to solve the continuous-time MRE based
on the algorithm from discrete-time case. This method sheds new light on handling
continuous-time SMPs which has versatility and flexibility in distributions of sojourn times
with good approximate results. The error bounds caused by discretization for transition
function matrices of continuous-time SMPs are studied, which provide an efficient way to
decide the step size of discretization.

The proposed method is applied to any problem modeled by finite state space continuous-
time semi-Markov processes. The proposed model has many applications for instance
in reliability problems (as above) for availability, reliability, maintainability, etc. The
effectiveness of our method is verified under the Markov case where the exact value of
the system availability can be obtained in order to make comparisons with our results.
Meanwhile, the case where sojourn times follow Weibull distributions is considered and
computed to illustrate the applicability of our method in SMPs.





Chapter 6

Conclusions and Perspectives

SMPs have become increasingly important in probability and statistical modeling because
they have a lot of applications. The popularity of SMPs is because they allow to model
the sojourn time in a state by any distribution function. In the Markov context, the
waiting times between states are geometric distributed (in discrete time) or exponentially
distributed (in continuous time). This is the reason why SMPs fit better than Markov
hypothesis for real problems.

In this thesis, we tackled DNA analysis and competing risk problems from a point of
view of SMPs. We proposed a model and an algorithm that can be implemented in real
applications to compute the first hitting position (time) of a set of words (patterns) in
a semi-Markov sequence. This model is based on prefixes and its extended state space.
For a word w with length |w| = h and maximum value for the backward time of a prefix:
γ = max{l∗p : p ∈ E∗}, we need a state space of cardinality (h + |A| − 1) × γ at most.
We also estimate the number of times that a word w, from a specific set of words W, is
repeated through out the DNA by any of its configurations, i.e., we provide the strong law
of large numbers for a word sequence. To this problem, we consider two cases: DNA is
modeled by an ergodic Markov sequence, and DNA is modeled by a semi-Markov chain.
For both hypothesis we presented the Central Limit Theorem.

We have also tackle competing risks models from the point of view of semi-Markov processes
in discrete and continuous time via phase-type distributions. We considered stochastic
systems which always start in a functional state and for which there are a finite number of
absorbing states. Each absorbing state represents a failure mode in reliability applications
and a cause of death of an individual in survival analysis. We derived expressions for the
probability that failures occur at certain time due to a given cause. We also gave the joint
distribution of the lifetime and the cause of failure.

Continuous-time MRE are difficult to solve because they are expressed in terms of infinite
series of the convolution kernel. In this thesis we presented an algorithm to express MRE at
continous time using SMCs. The error bounds caused by discretization were also obtained.
These bounds provide the efficiency of the proposed algorithm. The proposed method is
applied to any problem modeled by finite state space continuous-time semi-Markov process.

87
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6.1 Perspectives for extension of the present work

During the development of this thesis many ideas have been appeared which for lacking of
time were not developed through this work but they can be considered as a future work.
In the following paragraphs we would like to mention some of them:

� Firstly, identify how many different patterns of particular length are presented in a
random finite sequence has been of interest in recent years. Trifonov [1990] named
this problem as: the complexity of a sequence. It is well known that patterns are
not always uniformly distributed and not all patterns appear in a finite stochastic
sequence. To mention an example, crowd of scenarios suggest that the number of
patterns of particular length through the DNA sequence is far less than the total
number of patterns, see, e.g., Manfred and Winkler-Oswatitsch [1996]; Kauffman
[1993]; Yockey [1992]. This means that every sub-sequence in the DNA has a specific
function. Identify how many different patterns (words or motifs) of particular length
are presented in a DNA sequence is fundamental to understand the structure and
function of organisms, see, e.g., Badis et al. [2009], Taft et al. [2007], Blin et al.
[2018].
After Trifonov the problem of determining the complexity function for finite sequence
has been considered by several authors. Like a future work we would like to compute
the probability that a stochastic finite sequence reaches c ∈ N different patterns of
size h ∈ N, after k ∈ N positions (from the beginning of the sequence). We shall
consider the hypothesis that the stochastic sequence is modeled by a semi-Markov
chain. To exemplify the problem we give an example. Considering that genomic
sequences are the result of a certain stochastic process governed by four nucleotides
represented by the following set A = {A, T,G,C}, until the position 5 (starting from
0) the number of different patterns of size h = 3 in the following DNA sequence
taken from a bacteriophage:
GGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAG
TTTCCGTTCTTCTTCGTCATAACTTAATGTTTTTATTTAAAATACCCTCTG...
is 4 and are the patterns: {GGG,GGC,GCG,CGG}. This problem has been en-
countered in biology, but it can also be encountered in other fields.

� Another point of improvement is in competing risk models. The states of semi-Markov
systems can be divided into three categories: a normal working subset, a defective
working subset and a breakdown subset which contains an absorbing state where
the system cannot escape once entering it. If the number of transitions between
the normal and defective working subsets exceeds a given value, the system will be
abandoned due to the high maintenance costs. So, we are interested in computing
the number of transitions between normal and effective working during a time interval.

� Speech recognition works using algorithms through acoustic and language modeling.
Acoustic modeling represents the relationship between linguistic units of speech
and audio signals; language modeling matches sounds with word sequences to help
distinguish between words that sound similar. It is well known that hidden Markov
models (HMM) are used to make speech recognition. HMM is a stochastic process
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that is not directly observable, but it can be observed through another set of stochas-
tic processes that produce the sequence of observations Van der Hoek and Elliott
[2019]. The five components that characterize Hidden Markov Models are: number
of hidden states in HMM, number of observation symbols per state, state transition
probability distribution, observation symbol probability distribution in each state
and initial state probability distribution. Nevertheless, these models have a number
of limitations. The major of them, is the duration of conversations which should be
exponentially distributed. For this reason we propose a hidden semi-Markov process
for modeling speech recognizing.

� We proposed like a future work to develop a Randomly Stitched System (RSS)
based in a continuous time SMP with discrete state space. The idea is to propose
a controller for a Unmanned Aerial Vehicles (UAV) taking into acount that the
availability of the position is modeled by a switching process where the state space
makes reference to the GPS signal quality and which is modeled by a SMP. The GPS
quality will be classify in: good, bad and fair. Depending of the state of the GPS
signal the UAV determines if its position measure is the real position or the UAV is
lost.
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Appendix B

Algorithm

We present here two algorithms that are needed in order to work with our model (proposed
in the chapter 2) in practical problems. Where A is the alphabet, w is the word, q is the
semi-Markov kernel of the SMC (Zk), E is the extended state space of Ew, n1 is the size of
the first block of w and K(E) is the state space of process (Yk, Bk).
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Algorithm 1 State space K(E)

. Require: A, q, E, n1

. Initialization
for every a ∈ A do

. Compute ra according with Equation (1.15)
end for
for every p ∈ E do

if |p| == 0 then
for i = 1 until i = rδ−1(p) do

. add state (p, i− 1) to K(E)
end for

end if
if |p| 6= 0 and |p| 6= n1, i.e., p = w1w2 · · ·wl, l 6= n1 and 1 ≤ l ≤ h then

. Let δ−1
E (p) = wl,

. i=1,

. backward-time = 0
while δ−1

E (p) == wl−i do
.backward-time = backward-time + 1
. i = i+ 1

end while
. add state (p, backward-time) to K(E)

end if
if |p| = n1 then

for i = n1 until i = rδ−1
E (p) do

. add the state (p, i) to K(E)
end for

end if
end for
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Algorithm 2 Transition probability matrix P̌

. Require: A, q, E, K(E)

. Initialization
for every (p, u), (q, v) ∈ K(E) do

for every a ∈ A do
if δE(p, a) == q then

if δ−1
E (p) == a and u+ 1 = v then
P̌ ((p, u), (q, v)) = Equation(2.15)

else if δ−1
E (p) 6= a and v == 0 then

P̌ ((p, u), (q, v)) = Equation(2.14)
end if

else
P̌ ((p, u), (q, v)) = 0

end if
end for

end for





Appendix C

Notation and abbreviations

SMPs semi-Markov processes
MC Markov chain
MP Markov process
MRP Markov renewal process
a.s. almost sure
EMC embedded Markov chain
MREs Markov renewal equations
SMCs semi-Markov chains
MRC Markov renewal chain
EMC embedded Markov chain
MRF Markov renewal function
DTMRE discrete-time Markov renewal equation
r.v. random variable
i.i.d. independent and identically distributed
DFA determinism finite automata
FMCE finite Markov chain embedding
cdf cumulative distribution function
KM Kaplan Meier
CR competing risk
NA Nelson-Aalen
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E finite state space of a SMC and/or SMP
N natural numbers {0, 1, 2, ..}
N∗ set of numbers {1, 2, 3, ...}
R+ set of positive real numbers
P probability measure
(Zt)t∈R+ continuous time semi-Markov process
n ∈ N renewal time
S = (Sn)n∈N jump times of process (Zt) or (Zk)
J = (Jn)n∈N embedded Markov chain (EMC)
(Jn, Sn)n∈N Markov renewal process (MRP)
Qij(t), i, j ∈ E; t ∈ R+ transition kernel of semi-Markov process (Zt)

ψ(t), t ∈ R ψ(t) =
∑∞

n=0Q
(n)(t)

N(t) number of jumps of SMP (Zt) in the interval time [0, t]
α(i), i ∈ E initial distribution of SMP (Zt) and/or SMC (Zk)
Hi(·) cumulative distribution function of the sojourn time

in state i ∈ E
H(t) diagonal matrix H(t) := diag(Hi(t))
Fij(·) i, j ∈ E conditional distribution function of the holding time in state

i before visiting state j
p = (pij)i,j∈E transition function of EMC (Jn)
P(t) = (Pij(t); i, j ∈ E, t ∈ R+) transition function of (Zt)
ν stationary distribution of the EMC (Jn)
mi mean sojourn time in state i ∈ E
µ∗ii mean passage time from state i to state j
π stationary distribution of SMP (Zt)
Bt backward recurrence time of SMP (Zt)
Vt forward recurrence time of SMP (Zt)
k ∈ N calendar time
(Zk)k∈N discrete time semi-Markov process i.e., SMC
(Xn)n∈N successive sojourn times between successive jumps
q = (qij(k); i, j ∈ E, k ∈ N) discrete-time semi-Markov kernel
Qij(k), i, j ∈ E; k ∈ N cumulative semi-Markov kernel of SMC (Zk)
fij(·) conditional sojourn time distribution conditioned by

next state to be visited
hi(·) sojourn time distribution in state i
Ci support of hi
ri maximum sojourn time in state i
li maximum value for the backward time in state i
ME real matrice on E × E
ME(N) real matrice on E × E which evolves in a discrete time k ∈ N
I(t) = I identity matrix in ME(N)
A ∗B discrete-time matrix convolution product of A,B ∈ME(N)

A(−1) left inverse in the convolution sense of A ∈ME(N)

A(n) n-fold convolution of A ∈ME(N)

ψ(k), k ∈ N ψ(k) =
∑k

n=0 q
(n)(k)

Ψ = (Ψi,j(k), i, j ∈ E, k ≥ 0) Markov renewal function
q̂ estimator of q
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A finite alphabet
w = w1w2 · · ·wh word of size h formed by the letters w1, w2, .., wh ∈ A
|w| number of symbols of the word w
Ah the set of words of size h formed by the elements in A
zj an element from Ah
(Zk, Bk)k∈N MC with state E × N
p̃ transition probability matrix of MC (Zk, Bk)

(Zk, Bk)k∈N h-dimensional Markov process where

Zk := (Zk, .., Zk+h−1) and Bk := (Bk, ..., Bk+h−1)
Kj subset of Ah × Nh which represents the word z̄j and

all possible backwards time for each letter in the word

K state space of Markov process (Zk, Bk)

α(z, u) initial distribution of MC (Zk, Bk)

P̃ transition probability of Markov process (Zk, Bk)
1A indication function of A
TW r.v. which determines the first hitting time of an element form the set W
1|A| column vector of ones with size cardinality of A

X = (Xk)k∈N Markov chain (different from the MCE (Jn))
P transition probability matrix of MC X

π̌ stationary distribution function of MC X

(A,Q, s,F , δ) determinism finite automata (DFA) where A is a finite set of symbols,
Q is a set of states, s ∈ Q is the initial state, F ⊂ Q is a set of accepted
states and δ : Q×A → Q is a transition function

ε empty prefix
Ew prefix set of the word w
δEw : Ew ×A → Ew function which is defined as the longest prefix in Ew

that can be formed with the concatenation between
a prefix in Ew and an element from A

δ−1
Ew

(·) partial inverse of δEw
E extended state space of Ew
Y = (Yk) chain of prefixes embedded in a SMC (Zk) and defined in E
w(η) η ∈ N block of the word w
l∗p backward times for prefix p through the SMC (Zk)

Kp(E) prefix p ∈ E and its corresponding backward times
K(E) all prefixes in E and its backward times
(Yk, Bk) chain of prefixes and backward times defined in E
P̌ transition matrix of the Markov chain (Yk, Bk)
β initial distribution of the Markov chain (Yk, Bk)
Nw number of elements in (Zk) before the first position of w
E(T ) expected value of the r.v. T
Var(T ) variance of the r.v. T
σ(T ) standard deviation of the r.v. T

λ̌ word occurrence rate
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W subset of Ah
F set of letters in A that are different from the first letter of any

word w ∈ W
Ẽ∗ prefix set of W
E∗ extended state space of Ẽ∗

Y ∗ := (Y ∗k )k∈N prefix chain of W embedded in MC (Xk) and defined in E∗

α∗ initial distribution of prefix chain Y ∗

P̃ transition probability matrix of prefix chain Y ∗

π̃ stationary distribution of prefix process Y ∗

Ỹ = (Ỹk) prefix process defined as prefix process Y ∗ but where the elements in W
are consider absorbing states

R̃ transition probability matrix of prefix process Ỹ

T r.v. which represents the time that process (Ỹk) has to wait until
an element from W arrives

W r.v. which takes the value wj if wj is the first element from W that

appears in the prefixes chain (Ỹk)
Gj(k) cdf of the r.v. (T,W )
gj(k) pdf of the r.v. (T,W )
(Yk) prefix chain embedded in SMC (Zk) and defined in E∗

(Yk, Bk)k∈N chain of prefixes and backward times defined in K(E∗)

P transition probability matrix of process (Yk, Bk)
α initial distribution of process (Yk, Bk)
π stationary distribution of process (Yk, Bk)

(Ỹk, Bk) process of prefixes and backward times defined as process (Yk, Bk) but where
the elements in W are considered absorbing states

R̃ transition probability matrix of process (Ỹk, Bk)

T̃ r.v. which represents the time that process (Ỹk, Bk) has to wait until
an element from W arrives

W̃ r.v. that takes the value wj if wj is the first element from W that

appears in the chain (Ỹk, Bk)

gi(k) cdf of the r.v. (T̃ , W̃ )

Gi(k) pdf of the r.v. (T̃ , W̃ )
‖ · ‖ matrix norm
A(t) instantaneous availability of a system
G infinitesimal generator of a Markov process
T time to failure
C cause of failure
gj(k) pdf of a r.v. (T, C)
Gj(k) cdf of a r.v. (T, C)
λ hazard function
Λ cumulative hazard function
Fj(t) sub-distribution function Fj(t) := P(T ≤ t, C = j)
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E. Çinlar. Introduction to stochastic processes. Prentice Hill, 1975, N.J

M. Codish, M. Frank, and V. Lagoon. The dna word design problem: A new constraint
model and new results. In IJCAI, pages 585–591, 2017.

M. Crochemore and V. T. Stefanov. Waiting time and complexity for matching patterns
with automata. Information Processing Letters, 87(3):119–125, 2003.

M. Crowder. Classical competing risks. Chapman & Hall/CRC, 2001.

M. J. Crowder. Multivariate survival analysis and competing risks. Chapman and Hall/CRC,
2012.

G. D’Amico, F. Petroni, and F. Prattico. First and second order semi-Markov chains for
wind speed modeling. Physica A: Statistical Mechanics and its Applications, 392(5):
1194–1201, 2013.

J. H. de Haan and J. Rotmans. Patterns in transitions: understanding complex chains of
change. Technological Forecasting and Social Change, 78(1):90–102, 2011.

S. L. Dhulipala and M. M. Flint. Series of semi-Markov processes to model infrastructure
resilience under multihazards. Reliability Engineering & System Safety, 193:106659,
2020.

D. Elkins and M. Wortman. On numerical solution of the Markov renewal equation: tight
upper and lower kernel bounds. Methodology and Computing in Applied Probability, 3
(3):239–253, 2001.
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N. Limnios and G. Oprişan. Semi-Markov processes and reliability. Springer Science &
Business Media, 2001.

B. H. Lindqvist and S. H. Kjølen. Phase-type models and their extension to competing
risks. In Recent Advances in Multi-state Systems Reliability, pages 107–120. Springer,
2018.

Q. Liu, L. Xing, and C. Zhou. Probabilistic modeling and analysis of sequential cyber-
attacks. Engineering Reports, 1(4):e12065, 2019.

T.-T. Lu and S.-H. Shiou. Inverses of 2× 2 block matrices. Computers & Mathematics
with Applications, 43(1-2):119–129, 2002.

V. Malinovskii. Limit theorems for recurrent semi-Markov processes and Markov renewal
processes. Journal of Soviet Mathematics, 36(4):493–502, 1987.

E. Manfred and R. Winkler-Oswatitsch. Steps towards life. a perspective on evolution,
1996.

R. Montemanni. Combinatorial optimization algorithms for the design of codes: a survey.
Journal of Applied Operational Research Vol, 7(1):37, 2015.



Bibliography 105

T. Nakagawa and S. Osaki. The discrete Weibull distribution. IEEE Transactions on
Reliability, 24(5):300–301, 1975.

M. Neuts. Matrix-geometric solutions an algorithmic approach. The Johns Hopkins
University Press, Baltimore, MD, 1981a.

M. Neuts. Matrix-geometric solutions–an algorithmic approach, 1981b.

P. Nicodeme, B. Salvy, and P. Flajolet. Motif statistics. Theoretical Computer Science,
287(2):593–617, 2002.

D. Njamen. Convergence of the Nelson-Aalen estimator in competing risks. International
Journal of Statistics and Probability, 6(3):9–23, 2017.

G. Nuel. Pattern Markov chains: optimal Markov chain embedding through deterministic
finite automata. Journal of Applied Probability, 45(1):226–243, 2008.

E. Nummelin. Uniform and ratio limit theorems for Markov renewal and semi-regenerative
processes on a general state space. In Annales de l’IHP Probabilités et statistiques,
volume 14, pages 119–143, 1978.

D. Nur, D. Allingham, J. Rousseau, K. L. Mengersen, and R. McVinish. Bayesian
hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis.
Computational Statistics & Data Analysis, 53(5):1873–1882, 2009.

A. A. Papadopoulou. Some results on modeling biological sequences and web navigation
with a semi Markov chain. Communications in statistics-Theory and Methods, 42(16):
2853–2871, 2013.

P. Paraskevopoulos, T.-C. Dinh, Z. Dashdorj, T. Palpanas, and L. Serafini. Identification
and characterization of human behavior patterns from mobile phone data. D4D Challenge
session, NetMob, 2013.

J. C. Pederson. Intelligent observation and identification database system, 2016.

F. Picard, S. Schbath, E. Lebarbier, P. Neuvial, and J. Chiquet. Statistiques et génome.
La Gazette des Mathématiciens, 130:51–82, 2011.

M. Pintilie. An introduction to competing risks analysis. Revista Española de Cardioloǵıa
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