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Introduction

When studying non-linear beam dynamic in accelerator physics, the main focus is on beam quality and particularly on long-term beam stability. Indeed, since cathodic rays and the work of E. Rutherford on his atomic model theory (1907)(1908)(1909)(1910)(1911)(1912)(1913)(1914)(1915)(1916)(1917)(1918)(1919)) which prompted J. Cockcroft and E. Walton to create the first 500 kV electrostatic accelerator (1928)(1929)(1930)(1931)(1932), particle accelerators have diversified and been more specific for use. These accelerators must provide particle beams at ever greater energies for fundamental physics experiments. This implies an increase in their size as well as some magnetic or physic constraints in the design of elements which compose the ring. This is the case at CERN with the LHC of 27 km circumference, for example. In order to reach high peak magnetic field, accelerators depend more and more on decisive technological advances such as superconducting magnets. Those magnets have also strong magnetic field non-linearities, that may deteriorate the long-term stability of the machine. Therefore, they need to be accurately known and corrected, otherwise, the number of events in the experiments would decrease and the accelerator elements will be degraded faster than expected.

In 1985, a new program named TEAPOT [START_REF] Schachinger | TEAPOT: A thin element accelerator program for optics and tracking[END_REF] was presented for fast and exact particle tracking in an accelerator with magnet errors and misalignments. It is a method in order to improved the accuracy of the tracking using thin lens compared to thick lens. It was shown that it improves the accuracy of the Twiss parameters and amplitude detuning terms calculation and the computational speed of the tracking. A comparison with program from the same period (MARYLIE and RACETRACK) has shown better results, in particular compared to RACETRACK. In 2013, H. Burkhardt [START_REF] Burkhardt | Improved TEAPOT method and tracking with Thick quadrupoles for the LHC and its upgrade[END_REF] has also shown a good accuracy between the thick and thin lens simulation in the estimation of the LHC dynamic aperture. However, as specify in [START_REF] Schachinger | TEAPOT: A thin element accelerator program for optics and tracking[END_REF], TEAPOT neglects the Fringe Field and consider only the hard edge approach of the magnetic Field.

In a paper from 1999 [START_REF] Venturini | Accurate computation of transfer maps from magnetic field data[END_REF], M. Venturini has presented a new method to compute the 3D vector potential using the generalized gradient. This method can use the magnetic field from direct measurement or computation with the aid of some 3D electromagnetic code. The vector potential obtained using this method can then be used in transfer maps derived from the Lie algebra. He has shown that the reconstruction of the magnetic field using this approach is very accurate. Following this works, A. V. Bogomyagkov [START_REF] Bogomyagkov | ANALYSIS OF THE NON-LINEAR FRINGE EFFECTS OF LARGE APERTURE TRIPLETS FOR THE HL-LHC PROJECT[END_REF] has estimated analytically the contribution of the HL-LHC inner triplet quadrupoles Fringe Field to the amplitude detuning and chromaticity. However, the latter studies have only consider the pure quadrupolar 3D magnetic field (b 2 ).

In a report, E. H. Maclean [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF] presents an overview of the beam stability measurements against magnets nonlinearities in the LHC, using different observable such as the variation of the number of oscillations per revolution as a function of the amplitude of particles. In this study, the measurements were compared to simulation predictions using the values of non-linear magnetic field harmonics measured element by element. This allowed them to show an improvement in beam stability and a gap between model predictions and beam-based corrections. They have shown that this discrepancy cannot be explained by the uncertainties of their actual model. However, their study used averaged field harmonics along the magnet, without considering the harmonics longitudinal distribution.

All of these studies showed that the Hard Edge model using thin lens with constant step size is not sufficient to accurately describe the movement of particles inside a magnetic field. It has also been shown that an improvement in beam stability is correlated to the accuracy of non-linearity corrections (Ref. [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]). Finally, a discrepancy is observed between the LHC corrector strength predictions from the model using magnetic field measurements and their beambased estimations.

The aim of this thesis is to investigate if the Fringe Field in the LHC and HL-LHC type magnets can explain some of the discrepancy observed. More in general, the objective is to model and quantify the effect of the 3D magnetic field on different beam based observables.

The first chapter introduces the accelerators to which our studies are applied. It preliminary reviews their respective achievements and objectives. This lead us to aboard the definition of the Luminosity. Then, their Interaction Regions, Final Focusing magnets and correctors package are described. As shown in Ref. [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF], the main sources of non-linearities at collision energy are the Inner Triplet magnets in the LHC near ATLAS and CMS. This is explained by the fact that the betatronic functions are the highest in those region. On other hand, since Inner Triplet magnets are superconductors, it is expected to have great discrepancy between the harmonics values in the center of the magnet and the extremities. Those points tend to suggest that small discrepancies between the Model and reality in those regions could have major impact on Beam Dynamic.

The second chapter reviews the definition of the Fringe Field. The idea is to show that the notion of Fringe Field often used, has lost one of its element through time. First section reviews what are the multipoles harmonics and how they are measured. Then, the Fringe Field definition given by H. Wiedmann [START_REF] Wiedemann | Particle accelerator physics[END_REF] is compared to its representation though time thanks to the work of G. E. Lee-Whiting [START_REF] Lee-Whiting | Third-order aberrations of a magnetic quadrupole lens[END_REF], E. Forest [START_REF] Forest | Leading order hard edge fringe fields effects exact in (1 + δ) and consistent with Maxwell's equations for rectilinear magnets[END_REF] and M. Venturini [START_REF] Venturini | Accurate computation of transfer maps from magnetic field data[END_REF]. In the final section of this chapter, the method to obtain the 3D vector potential from this last paper is derived.

Using this 3D vector potential, the perturbation theory considering the Fringe Field is studied in the 3 rd chapter.

After defining the approximated Hamiltonian used in this thesis and reminding some basics about linear transverse beam dynamics, a decomposition of the vector potential contributions to the Hamiltonian perturbative part is derived.

Then, their impacts on three different beam-based observables are studied. First, we study the variation of revolution frequencies in the phase-spaces as the actions increase, i.e. the amplitude detuning (AD). Then, we look at the different Fringe Field contributions to the Resonance Driving Terms (RDTs). Finally, the non-linear variation of the beta-beating measurement as the actions increase (i.e. amplitude beta-beating or ABB) is studied.

The following 4 th chapter focuses on how to accurately track a charged particle into a magnetic element with a good compromise with the CPU time. After quickly reminding what is a simplectic map, the three models that are compared in this thesis (i.e. the Hard Edge, the Hard Edge with Head and the Lie2 models) are presented. The implementation in the CERN transport code, SixTrack, of the last model is also presented.

In the 5 th chapter, the impact of the three models, presented in chapter 4, on the amplitude detuning is studied.

This beam-based observable refers to the variation of the transverse Phase-Space angular frequency (i.e. the tune)

with respect to the action of the particle. It is the most direct and stable measurement of beam non-linearities.

The impact of the model on the correctors strength expected to correct this amplitude detuning, is also quantified and compared to present strength specifications. Those correctors are used to correct locally non-linearities (i.e.

reduce the beam Resonance Driving Terms (RDTs), Ref. [START_REF] Giovannozzi | SPECIFICATION OF A SYSTEM OF CORRECTORS FOR THE TRIPLETS AND SEPARATION DIPOLES OF THE LHC UPGRADE[END_REF]). Both predictions for the HL-LHC and comparison with measurements for LHC are discussed.

In the 6 th chapter, a new beam-based observable is considered. That is the variation of the measured betatronic function deviation from nominal values with the action of the particle. There are two methods to measure it, either from the Amplitude of the main Spectral Line or from the Phase of the main Spectral Line of Beam Position Monitor (BPM) reading along the machine. In this thesis, we focus on the former. As in the case of the amplitude detuning we look at both predictions for HL-LHC and existing or possible measurements in LHC. At first, a comparison between the Hard-Edge and Hard-Edge with Heads models is made for the HL-LHC optics. Then, an analysis of several amplitude detuning measurements, performed during the LHC machine studies, are made in order to check if the phenomena is already observed in the LHC. And finally, three configurations of octupole are proposed in order to generate a horizontal amplitude beta-beating of +500 %µm -1 . This choice is made such that this phenomena is higher that the Beam Position Monitors noise.

In the last chapter, the same models comparison as in the 5 th chapter, is made on the Dynamic Aperture (DA) but only for the HL-LHC project. The DA is defined as the region of stable motion of the particles against magnet nonlinearities and is often used to define tolerances on magnets conception in the design phase of circular accelerators.

Unlike amplitude detuning, there is no analytic calculation of Dynamic Aperture including field errors and corrections.

Its computation relies on tracking simulations therefore an accurate, symplectic and efficient non linear transfer map is necessary for large hadrons storage rings, as the LHC. This is the main motivation for defining the 3 rd model described in chapter 4.

Chapter 1

The The beams from LINAC2 are further accelerated in the four Proton Synchrotron Booster (PSB) rings to 1.4 GeV, then by the Proton Synchrotron (PS) to 26 GeV. The Super Proton Synchrotron (SPS) at the end of the injection chain delivers protons for the LHC with an energy of 450 GeV through two over 3 km long transfer lines (TI2 and TI8).

After the LHC injection phase that lasts 20 to 30 minutes, the beams are accelerated in about 20 minutes using a specially designed superconducting radio-frequency system (RF) to an energy of up to 7 TeV. This system consists of Sixteen cavities of high-purity niobium, which deliver an accelerating voltage of up to 16 MV per beam. In 2008, the CERN inaugurated the Large Hadron Collider (LHC) also referred as the world's highest energy collider (see Ref. [START_REF] Shiltsev | Modern and Future Colliders[END_REF]). It supports a broad particle-physics program at the energy frontier [START_REF] Gianotti | Physics potential and experimental challenges of the LHC luminosity upgrade[END_REF]. Among others, its goals are to check the Higgs Boson existence, find candidate for Dark Matter or find indices of new physics beyond the Standard Model. Since the 1 st run in 2009, the LHC was the source of many discoveries such as the following non exhaustive list:

The Large Hardon Collider

• the 1 st quark-gluon plasma (the densest matter thought to exist besides black holes) [START_REF] Rafelski | Melting hadrons, boiling quarks[END_REF],

• the χ b1 (3P) and χ b2 (3P) bottomonium state [START_REF]Observation of a New χ b State in Radiative Transitions to Υ(1S) and Υ(2S) at ATLAS[END_REF][START_REF]Observation of the χ b1 (3P ) and χ b2 (3P ) and Measurement of their Masses[END_REF],

• the Higgs Boson [START_REF] Cho | Higgs Boson Makes Its Debut After Decades-Long Search[END_REF][START_REF] Chatrchyan | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF][START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF],

• a very rare decay of the B s meson into two muons (B 0 s → µ + µ -, matching the prediction from the nonsupersymmetrical Standard Model rather than the many branches of supersymmetry [START_REF]Measurement of the B 0 s → µ + µ -Branching Fraction and Search for B 0 → µ + µwith the CMS Experiment[END_REF]),

• two excited states of the bottom Xi baryon Ξ ,- b and Ξ * - b [START_REF]Observation of Two New Ξb Baryon Resonances[END_REF] • the existence of pentaquarks or tetraquarks such as Z(4430) [START_REF]Observation of the Resonant Character of the Z(4430) State[END_REF], X(4274), X(4500), X(4700) and X(4140) [START_REF]Amplitude analysis of B + → J/ψφK + decays[END_REF].

In order to make those discoveries, the LHC has been designed to reach a Peak luminosity of 1.0 × 10 34 cm -2 sec -1 at the main experiments (see Ref. [START_REF]the LHC Main Ring. CERN Yellow Reports: Monographs[END_REF]). Inside a ring of 27 km of circumference, two proton beams circulate in opposite direction at an energy of 6.5 TeV (equivalent to a speed of 0.999 999 991 c). Each beam make more or less 11 000 revolutions per second. The accelerator in itself, is composed of 1 232 Dipoles used to bend the beam into the 27 km circumference and 392 main Quadrupoles used to focus and defocus the beam in order to keep the beam into a stable oscillating motion [START_REF]the LHC Main Ring. CERN Yellow Reports: Monographs[END_REF]. Their cables are composed of filament of superconductive niobium-titane (NbTi) inside copper, and kept at a temperature of 1.9 K with liquid helium.

In Fig. 1.2, it can be seen that the ring is divided in 8 arcs each composed of 21 FODO cells and 8 straight insertions for different functionalities:

Point 1: ATLAS: A particle detector using multiple layer of calorimeter for multiporpose experiments.

Point 2: ALICE: A particle detector for interaction between heavy ions for studying quark-gluon plasma.

Point 3: Momentum Collimation region.

Point 4: Region where the beam is kept at reference energy with Radio-Frequency Cavities.

Point 5: CMS: A particle detector similar to ATLAS and for similar purpose but with different detector technologies.

Point 6: Extraction region.

Point 7: Betatron Collimation region.

Point 8: LHCb: a particle detector specialized in the b-physics in order to measure the parameters of CP violation and help explaining the matter-antimatter asymmetry.

It is also important to note that there are two points of Injection from the SPS into the LHC for the two beams. They are located near ALICE (point 2) and LHCb (Point 8). Coming from the Arcs (from the right side in Fig. 1.3), each beam passes through the matching section quadrupoles Q 4 to Q 7 followed by the Separation Dipoles 1 and then the Inner Triplet (IT) before reaching the experiment. The Interaction Points (IP) is the position where the 2 beams collide at a center-of-mass energy from 13 TeV to 14 TeV in the last LHC Run. This sequence is called the Interaction Regions (IR). The goal of the IT quadrupoles, also known as Final Focusing quadrupoles, is to make the betatronic function at the IP the lowest possible 2 and equal in both transverse axis in order to have a round beam. To reach this goal, the size of the beam in the IT quadrupoles is the highest along the accelerator. This implies that those quadrupoles must have a very strong magnetic field and a very big physical aperture. In the LHC, those Final Focusing magnet are called MQXA for Q1 and Q3, and MQXB for Q2. The IT (Q1, Q2, Q3 in Fig. 1.3) is composed of four single-aperture quadrupoles with a coil aperture of 70 mm.

The LHC Interaction Regions and Inner Triplet magnets

The magnets are cooled with superfluid helium at 1.9 K. Two types of quadrupoles are used in the triplet, 6.6 m long 1 Two dipoles called D1 and D2 set to make the beams pass from two tube-lines in the Arcs to one in the IR. 2 The value of the betatronic function at the IP is called β * .

MQXA magnets designed and developed by KEK (Japan) and 5.7 m long MQXB magnets designed and built by FNAL (USA). Together with the orbit correctors MCBX, skew quadrupoles MQSX and multipole spool pieces were supplied by CERN [START_REF]the LHC Main Ring. CERN Yellow Reports: Monographs[END_REF]. Alongside the LHC main dipoles, the high-gradient, wide-aperture IT quadrupoles are the most demanding magnets in the collider, see Tab. The LHC Inner Triplet magnet of type MQXA has a strong b 4 which comes from the ovalization of the coils and iron (Ref. [START_REF]FiDeL home: the Field Model of the LHC[END_REF]), and how the connection is made in one of the magnet extremity. The measured values of the integrated harmonics and their STD are reported in Table 1.3 for the body, connector (CS) and non-connector side (NC) 1 . The effect on the field harmonics of the beam screen will be discussed in section 5.2.

Table 1.3: Field harmonics integrated strengths on the full magnet, the connector side (CS) and the non-connector side (NC) of the MQXA family of LHC IT Quadrupoles [START_REF]FiDeL home: the Field Model of the LHC[END_REF]. These are the integrated measurements of the harmonics without the beam screen. The luminosity recipe for round beams is given by:

L = n b N 1 N 2 γf rev 4πβ * n F (φ, β * , , σ s ) (1.1)
where n b are the number of bunches, N are the number of proton per bunch, γ is the relativistic factor, f rev is the revolution frequency, β * is the betatron function at the collision point, n is the normalized emittance of the bunches and F is the geometric reduction factor due to the crossing angle. A number of performance optimisation of the LHC complex are required to maximise luminosity:

• maximize bunch intensities

• minimize the beam emittance

• minimize beam size at the collision point

• maximize number of bunches

• compensate for 'F '

• Improve machine 'Efficiency'

The higher bunch intensities and the reduction of emittance will be achieved by the injector complex upgrades, with some limitation on the bunch population due to the longitudinal acceptance of the LHC of bunches that are longitudinally stable in the SPS, at injection [START_REF]High-Luminosity Large Hadron Collider[END_REF]. The reduction of the beam sizes at the collision point will be possible thanks to new inner triplet magnets with larger apertures and realized with new Nb 3 Sn superconducting cables, instead of NbTi cables used for LHC. The maximum number of bunches is limited to 288 by machine protection considerations for the SPS extraction and injection in the LHC. The compensation for the geometric redaction factor F will be realised installing new equipment in the ring such as the superconducting RF crab cavities [START_REF] Palmer | Energy scaling, crab crossing and the pair problem[END_REF][START_REF] Oide | Beam-beam collision scheme for storage-ring colliders[END_REF][START_REF] Sun | Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider[END_REF].

They are deflecting cavity which rotate the beam along the horizontal or vertical axis. In 2018, first beam tests of such crab cavities with protons were successfully performed at the CERN SPS [START_REF] Carver | First machine development results with HL-LHC crab cavities in the SPS. First machine developments result with HL-LHC crab cavities in the SPS[END_REF]. With all these improvements the instantaneous (or peak) luminosity of about 19 × 10 34 cm -2 s -1 could be achieved, therefore luminosity levelling techniques will be implemented. The technique of luminosity levelling allows sustaining the operational luminosity, and the associated event pile-up, at a constant level over a significant time by means of several methods:

(i) a gradual reduction of the beta function at the interaction point β * , (ii) crossing angle variation, (iii) changes in the RF voltage of crab cavities or more sophisticated crabbing schemes [START_REF] St Éphane | Pile up management at the high-luminosity LHC and introduction to the crab-kissing concept[END_REF],

(iv) dynamic bunch-length reduction, (v) controlled variation of the transverse separation between the two colliding beams.

The (i) method require higher beta function in the IR and then a new family of quadrupoles called MQXFS with a bigger physical aperture (150 cm). In Table 1.4 the beam parameters to obtain such performances are reported. 

The HL-LHC High-Luminosity Interaction Regions and MQXFS Inner Triplet magnets

The main change in the LHC that are relevant for our studies are the one which concern the Interaction Regions. A schematic layout of the very final part of those region is shown in Fig. 1.4. The main differences are: Thick boxes are magnets, thin boxes are cryostats (Ref. [START_REF] Alonso | High-Luminosity Large Hadron Collider (HL-LHC)[END_REF]).

• Maintain the distance from the first magnet to the collision point at 23 m which imply Increasing the aperture of the Final Focusing quadrupole from 70 mm to 150 mm to allow a smaller β * ;

• Select the Nb 3 Sn technology for the quadrupoles, allowing doubling the aperture at constant integrated gradient without a too large increase in the triplet length

• Recover the 10 m of additional space required by the triplet and the correctors, and to gain further space to insert the crab cavities;

• Replace the 20-m-long normal conducting magnet D1 operating at 1.28 T with a superconducting 6.27 m long magnet, operating at 5.6 T, thus recovering ∼15 m;

• Increase the apertures of D1 and D2 dipoles and associated correctors: D1 from 60 mm to 150 mm, D2 from 80 mm to 105 mm. For the new dipoles D1 and D2, Nb-Ti superconductor has been chosen;

• A new Non-linear correctors package which correct all the normal and skew harmonics up to the 6 order;

• Add horizontal and vertical orbit correctors close to D2 (not present in the LHC) with a nominal strength of 5 T/m. The HL-LHC Inner Triplet magnet of type MQXFS is a family of Quadrupole using Nb 3 Sn cables. They can reach higher magnetic field (11-12 T) as report in Tab. 1.5. In this case, the strongest allowed harmonics to take into consideration is the b 6 . The values of the integrated harmonics is reported in Table 1.6 and with a longitudinal profile shown in Figure 2.1. The beam screen will also be changed and it's new design will generate a b 6 but since its orientation is not know, it will be ignored for the following studies. 

What are the harmonics used for beam dynamic simulation?

The representation of the magnetic field of the accelerator elements usually takes the following form as a multipole expansion (Ref. [START_REF] Tom Ás | Direct Measurement of Resonance Driving Therms in the Super Proton Synchrotron (SPS) of CERN using Beam Position Monitors[END_REF][START_REF] Br | Field Quality Specification for the LHC Main Dipole Magnets[END_REF]):

B y (x, y, s) + iB x (x, y, s) = n∈N ( B n,c (s) + iB n,s (s) )( x + iy ) n-1 (2.1)
The transverse magnetic field is decomposed as B n,u with u ∈ {s, c} respectively for normal and skew n thorder harmonics. The order n corresponds to half the number of pole in the equivalent magnet: 1 for Dipole, 2 for Quadrupole, 3 for Sextupole, etc. The same harmonic field components can be measured as Fourier expansion of the radial component of the magnetic field B ρ , which is usually measured with rotating coils:

B ρ (ρ, φ, z) = n∈N ( B n,c (z) cos(nφ) + B n,s (z) sin(nφ) )ρ n-1 (2.2)
In fact, as magnets are not perfect, each magnetic field contains not only the main multipole, for which the magnet is designed, but also other harmonics such as: allowed harmonics (due to the geometry of the magnet)

and not-allowed harmonics (due to geometrical errors during its construction). These two last kind of harmonics are called magnetic field errors. In simulation codes, those harmonics are normalized by the reference magnetic field

B ref (B ref = B 2,
s for normal quadrupole) while measured at a reference radius R ref [START_REF] Br | Field Quality Specification for the LHC Main Dipole Magnets[END_REF]. This reference field is usually taken in the center of the magnet, where the field is constant. Using the MAD convention1 [START_REF]MAD -Methodical Accelerator Design[END_REF][START_REF] Br | Field Quality Specification for the LHC Main Dipole Magnets[END_REF], those normalized harmonics divided by the accelerator Bρ A = P 0 c2 , are noted as b n for the normal and a n for the skew harmonics component as in Tab. 1.2 and 1.6:

B n,c B ref = 1 (n -1)!B ref R n-1 ref ∂ n-1 B y ∂x n-1 ρ=R ref ,s B n,s B ref = 1 (n -1)!B ref R n-1 ref ∂ n-1 B x ∂x n-1 ρ=R ref ,s = b n × 10 -4 Bρ A = a n × 10 -4 Bρ A (2.3)
In the designing phase of an accelerator, each magnet harmonics is defined by 3 values. These 3 values represent the effect of the magnet manufacturing incertitude on the harmonics: the systematic error b n,S , the uncertainty b n,U and the random component b n,R (respectively for the Skew harmonics, Ref. [START_REF] Giovannozzi | SPECIFICATION OF A SYSTEM OF CORRECTORS FOR THE TRIPLETS AND SEPARATION DIPOLES OF THE LHC UPGRADE[END_REF]).

b n = b n S + ξ U 1.5 b n U + ξ R b n R a n = a n S + ξ U 1.5 a n U + ξ R a n R (2.4)
where ξ U is Gaussian distributed random variable cut at 1.5 σ for each class of magnet and ξ R is Gaussian distributed random variable cut at 3 σ different for each magnet. Once the magnets are build, the values b n and a n can be replaced by the measured ones, as in the LHC [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]. In beam dynamic studies, these harmonics are used to compute the correctors specification (Ref. [START_REF] Giovannozzi | SPECIFICATION OF A SYSTEM OF CORRECTORS FOR THE TRIPLETS AND SEPARATION DIPOLES OF THE LHC UPGRADE[END_REF]). They are also used to estimate different configurations of the accelerator for dynamic aperture studies (Ref. [START_REF] De | Specifications of the Field Quality at Injection Energy of the New Magnets for the HL-LHC Upgrade Project[END_REF]).

In reality, those equations (2.3)-(2.4) hide the Fringe Field information. The harmonics are considered constant along the longitudinal axis, either by taking them from the 2D magnetic field simulations or averaged over the whole magnet length, as done for the integrated measurements. The longitudinal distribution of the harmonics for the HLLHC MQXFS, is shown Fig. 2.1 as computed with 3D magnetic field simulations.

How the definition of Fringe Field has evolved with time?

Since the 1970s, a lot of studies have been made in order to convey the Fringe Field information to beam dynamic studies as shown in Refs. [START_REF] Lee-Whiting | Third-order aberrations of a magnetic quadrupole lens[END_REF][START_REF] Forest | Leading order hard edge fringe fields effects exact in (1 + δ) and consistent with Maxwell's equations for rectilinear magnets[END_REF]. The Fringe Field of a quadrupole will generate an octupole-like harmonics; for sextupoles, it will be a decapole-like; for octupoles, a dodecapole-like; and so on. In those paper, the Fringe Field definition is reduced to modeling the effect of the longitudinal derivatives of the harmonics (B z ). In MAD-X/PTC [START_REF]MAD -Methodical Accelerator Design[END_REF] for example, this is equivalent to set the flag FRINGE as True.

If this notion is sufficient when considering only the magnet main harmonics, it is not enough to describe the behaviour of the other harmonics, allowed or not. In Ref. [START_REF] Wiedemann | Particle accelerator physics[END_REF], H. Wiedemann uses a more global definition by comparing it to the Hard Edge model (i.e. the magnetic field is constant inside and null outside the magnet without any gradient in the transition). He describes the Fringe Field as follows:

In reality, however, since nature does not allow sudden changes of physical quantities (natura non facit saltus) the hard edge model is only an approximation, although for practical purposes a rather good one.

In a real magnet the field strength does not change suddenly from zero to full value but rather follows a smooth transition from zero to the maximum field. Sometimes, the effects due to this smooth field transition or fringe field are important and [...].
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In fact, the Fourier representation of the other harmonics strengths can change suddenly and greatly (even their signs) in the extremity of the magnet as shown in Fig. 2.1. This comes from the complexity of the structure in its heads, in particular in the connector side. As a quick comparison, this is equivalent to have multipoles in the magnet extremities with strength different from its center. This taken into consideration, studying the Fringe Field consists in considering two notions:

1. the notion of harmonics derivatives (at the order l), i.e. ∂ l B n,u /∂z l (with u ∈ {s, c}) or B z .

2. the notion of harmonics longitudinal distribution, i.e. B n,u (z) (with u ∈ {s, c}).

Usually, the magnet designers try to reduce those extra harmonics since they are a source of instability in beam dynamics. But, the extremities are very complex to handle, in particular on the connector side. So, they try to compensate non-linearities from one side with the other or with the center. Another important point to consider is the variation of the particle radius from one magnet extremity to the other in region where strong focusing is required (like the LHC interaction region).

3D vector potential

In order to describe or simulate the particles motion inside an accelerator, the Hamiltonian formalism is widely used with the relation du dt = [H, u] ∀ u ∈ {Q, P } for any function u of the canonical variables (Q, P ) and with the Poisson bracket defined as:

[H, u] = ∂H ∂P ∂u ∂Q - ∂H ∂Q ∂u ∂P (2.5)
In the expression of the relativistic Hamiltonian H, the magnetic field is commonly represented in the form of vector potential A such as of a charged particle in a electromagnetic field:

H = c (m p c) 2 + P -q A( Q) 2 2 + qV (2.6) 
where q and m p are respectively the charge and mass of the particle (here a proton), c is the speed of light and V is a scalar potential.

There are many possible representation of the potential vector, like using finite elements as in [START_REF] Simona | Numerical methods for the simulation of particle motion in electromagnetic fields[END_REF]. [START_REF] Venturini | Accurate computation of transfer maps from magnetic field data[END_REF] is the first record we have found of the computation of the 3D vector potential from the harmonics longitudinal profile, using Generalized Gradient. More details can be found in [START_REF] Mitchell | Calculation of Realistic Charged-Particle Transfer maps[END_REF].

Using Maxwell equations, it is known that the magnetic field B is related to a scalar potential ψ and the vector potential A by the equation B = ∇ψ = ∇ × A. From this follows the Laplace equation:

∇ • B(ρ, φ, z) = ∇ 2 ψ(ρ, φ, z) = 0 (2.7)
Let's suppose that the scalar potential can be decomposed into 3 distinct functions for each of the cylindrical coordinates, i.e. ψ(ρ, φ, z) = R(ρ)P (φ)Z(z). Since we are considering a finite magnet, some boundary conditions have to be taken into consideration such as:

• the scalar potential decrease outside the magnet along the longitudinal axis, i.e. lim z→±∞ ψ = const.,

• the scalar potential is constant at the center of the magnet, i.e. ∂ψ ∂z z=0 = const.,

• the scalar potential is 2π-periodic by rotation around the z-axis, i.e. ψ(ρ, ψ + 2nπ, z) = ψ(ρ, ψ, z) ∀n ∈ N,

• because of the poles symmetry, the scalar potential is null at the center of the magnet, i.e. ψ| ρ=0 = 0, It results that equation (2.7) could be transformed into:

∇ 2 ψ(ρ, φ, z) = 0 ⇒              d 2 Z dz 2 -k 2 Z = 0 d 2 P dφ 2 -n 2 P = 0 ρ 2 d 2 R dρ 2 + ρ dR dρ -(kρ) 2 + n 2 R = 0 (2.8)
The solutions to the system (2.8) are proportional to:

Z(z) ∝ e ±ikz ; P (φ) ∝ e ±inφ ; R(ρ) ∝ I ±n (kρ), K ±n (kρ) (2.9) 
where I ±n and K ±n respectively the first and second kind modified Bessel functions. Considering that the last boundary condition can't be satisfied by the second kind since lim

kρ→0 K ±n (kρ) = ∞, it can be stated that R(ρ) ∝ I ±n (kρ). Since B ρ (ρ = R ref , φ, z
) is a real number and considering that :

B ρ (ρ = R ref , φ, z) = n∈N B n,c (R ref , z) cos(nφ) + B n,s (R ref , z) sin(nφ) = ∂ψ(ρ, φ, z) ∂ρ ρ=R ref (2.10)
it can be assumed that similarly to the magnetic field in Eq. (2.

2), the scalar potential can be expressed as:

ψ = n∈N ψ n,c (ρ, z) cos(nφ) + ψ n,s (ρ, z) sin(nφ) ∝ n,k∈N C n,k I n (kρ)e i(kz+nφ) (2.11)
It follows that for u ∈ {s, c}.:

Bn,u (R ref , k) = 1 √ 2π +∞ -∞
B n,u e -ikz dz (2.12)

ψ n,u (ρ, z) = 1 √ 2π +∞ -∞ I n (kρ) kI n (kR ref )
Bn,u e ikz dk (2.13) By using I n (kρ) Ascending Series into Eq. (2.13) i.e.

I n (kρ) = ∞ l=0 1 l!(l + n)! kρ 2 2l+n
, the scalar potential harmonics expression becomes:

ψ n,u (ρ, z) = ∞ l=0 (-1) l n! 2 2l l!(l + n)! C [2l] n,u (z)ρ 2l+n (2.14)
with the Generalized Gradient given by:

C [l] n,u (z) = i l 2 n n! 1 √ 2π +∞ -∞ k n+l-1 I n (R ref k) Bn,u (R ref , k)e ikz dk (2.15) C [l]
n,s (z) and C

[l]

n,c (z) are respectively called the normal and skew Generalized Gradients. As high order derivatives are fast dumped by the factor n!

2 2l l!(l + n)!
, the sum over l is usually done from 0 to ND, where ND represents the maximum accuracy of the magnetic field reconstruction.

Since ∇ × A = ∇ψ is the relation between the scalar potential and the vector potential, it leaves the former with a degree of freedom, i.e. a gauge. Defining a vector potential such that A = A + ∇λ, where λ is an arbitrary scalar, it can be shown that

∇ × A = ∇ × A + ∇ × ∇λ = ∇ × A .
In this thesis, we will use the Coulomb-free gauge such that A φ = 0 in order to express the theory. On the contrary, we will use the Horizontal Coulomb-free gauge (A x = 0) for the simulation. Because it increases the computational speed, without changing the field content (for even numbers of derivatives). The construction of the vector potential from the scalar potential (Eq. (2.13-2.14))

with the Coulomb-free gauge is given by:

A ρ = ∞ n=1 ρ cos(nφ) n ∂ψ n,s ∂z -ρ sin(nφ) n ∂ψ n,c ∂z (2.16) A z = ∞ n=1 -ρ cos(nφ) n ∂ψ n,s ∂z + ρ sin(nφ) n ∂ψ n,c ∂z (2.17)
The Generalized Gradients from normal harmonics are noted as

C [l]
n,s and the ones from the skew harmonics as C

[l]

n,c with n, the order of the harmonics and [l], the "order" of the longitudinal derivative. The Madx integrated strengths can be related to the Generalized Gradients as follow:

K n-1 = B ref b n Bρ A × 10 -4 = n Bρ A C [0] n,s (z) dz 
(respectively for the skew).

A x (x, y, z) = ∞ n ∞ l (-1) l (n -1)! 2 2l l!(l + n)!   n/2 p=0 l q=0 n 2p l q (-1) p x n+2(l-p-q)+1 y 2(p+q) C [2l+1] n,s (z) 
- (n-1)/2 p=0 l q=0 n 2p + 1 l q (-1) p x n+2(l-p-q) y 2(p+q)+1 C [2l+1] n,c (z) 
  (2.18)

A y (x, y, z) = ∞ n ∞ l (-1) l (n -1)! 2 2l l!(l + n)!   n/2 p=0 l q=0 n 2p l q (-1) p x n+2(l-p-q) y 2(p+q)+1 C [2l+1] n,s (z) 
-

(n-1)/2 p=0 l q=0 n 2p + 1 l q (-1) p x n+2(l-p-q)-1 y 2(p+q+1) C [2l+1] n,c (z) 
  (2.19) A z (x, y, z) = ∞ n ∞ l (-1) l (n -1)!(2l + n) 2 2l l!(l + n)!   n/2 p=0 l q=0 n 2p l q (-1) p x n+2(l-p-q) y 2(p+q)+1 C [2l] n,s (z) - (n-1)/2 p=0 l q=0 n 2p + 1 l q (-1) p x n+2(l-p-q)-1 y 2(p+q) C [2l] n,c (z)   (2.20) ***
In this chapter we have reviewed how the magnetic field is decomposed and used for beam dynamic studies.

The definition of the notion of Fringe Field is given to show that it is composed of two notions: the derivatives of the multipole harmonics and the longitudinal distribution of the harmonics along the magnet. Expressions (2.18-2.20) give a representation of the Vector Potential as functions of a coefficient C, that depends on z (computed using Eq. (2.15)), and a polynomial in the x and y transverse dimensions. This formalism is suitable for solving the equation of motion in numerical simulations where derivatives/integration of the vector potential are required, as is discussed in the next two chapters.

Chapter 3

Fringe Field Perturbation Theory

Particle motion in accelerators follows Lorentz equations. In storage rings the particle motion in the transverse plane can be modeled by an harmonic oscillator (small oscillation around reference orbit) [START_REF] Wiedemann | Particle accelerator physics[END_REF]. Another way to express the particle motion is to consider Hamiltonian mechanics [START_REF] Goldstein | Classical mechanics. eng. 3[END_REF]. This allows to easily disentangle the linear and non-linear fields contributions to the particle motion.

The first section reviews some basis of linear beam dynamics and the definition of the Hamiltonian perturbative part. In the second section, the Hamiltonian perturbative part is decomposed into the contribution from the main harmonics and the Fringe Field ones. The case of Octupole, Octupole-like, Dodecapole and Dodecapole-like contributions are detailed. Then, a brief definition of the Lie algebra and the Lie operator are given as well as how they are useful when solving the Hamiltonian equation of motions. This allows us to explain how the contributions from section 3.2 are linked to the Resonance Driving Terms in section 3.4 and the Amplitude Detuning in section 3.5. Then, using the definition of the Resonance Driving Terms, the non-linear variation of the Beta-Beating with the action, called Amplitude Beta-Beating, is derived when computed from the spectral line amplitude. Finally, the limit to observe this latter phenomena is discussed in the last section.

Linear and non-linear beam dynamics

The description of the path of a charged particle in a magnetic field is usually described with 3 pairs of canonical variables. As shown in Figure 3.1, the coupled coordinates (x, p x ) and (y, p y ) represent the local transverse positions and normalized momenta inside the magnets and (s, δ) represent the curvilinear positions1 and momenta deviation in the accelerator. In this thesis, we add another couple (z, p z ) to represent the longitudinal position and momenta inside the magnet. As can be noted in Fig. 3.1, the longitudinal and the curvilinear axes are locally collinear. The particle position is given with respect to a reference particle. This implies that the transverse coordinate can be decomposed into

u = u c + u β + u δ for u ∈ {x, y}.
Here, u β represents the on momentum motion of the particle around the reference particle. u c stands for the difference between the reference particle closed orbit and the magnet center. It can create magnetic field feed-down which makes the beam see lower multipoles artificially by polynomial expansion.

Meanwhile, u δ is the impact of the total energy deviation. Similarly, this can generate a chromatic feed-down dependent of this deviation. In the case of the momentum, they are normalized by the total momentum of the reference particle P 0 . For the sake of simplicity, let's consider the case with zero dispersion (u δ ≈ 0) and magnet perfectly aligned (u c ≈ 0).

When a charged particle moves through a static magnetic field, its path is ruled by the conservation of the relativist Hamiltonian:

K 6D [x, p x , y, p y , s, δ|σ] = -(1 + δ) 2 -(p x -a x ) 2 -(p y -a y ) 2 -a z (3.1)
where σ represents the physical cylindrical slice of the magnet in this context. Similarly to the momentum, the vector potential a = (a x , a y , a z ) is normalized by P 0 c/q with q the particle charge and c the speed of light. This

Hamiltonian could be approximate by a new 8D Hamiltonian using the square root Taylor expansion with the paraxial approximation (p z p x , p y ), and introducing the longitudinal canonical variables (z, p z ) as shown by Y. K. Wu in [START_REF] Wu | Explicit symplectic integrator for s -dependent static magnetic field[END_REF]:

K 8D [x, p x , y, p y , z, p z , s, δ|σ] = (p x -a x ) 2 2(1 + δ) + (p y -a y ) 2 2(1 + δ) + δ + p z -a z (3.2)
This approximated Hamiltonian can then be decomposed into K = H 0 + H p where the respective linear and perturbative terms are defined as:

H 0 = p 2 x 2(1 + δ) + p 2 y 2(1 + δ) + δ + p z - 1 2ρ 2 A x 2 -K 1 (x 2 -y 2 ) (3.
3)

H p = -a z - p x a x + p y a y (1 + δ) + a 2 x + a 2 y 2(1 + δ) (3.4)
H 0 describes the linear motion in presence of ideal dipoles and quadrupoles fields (respectively, 1/2ρ 2 A an K 1 being their strengths). H p describes the motion in presence of realistic magnetic field including non-linear magnetic fields errors (b n derivatives, b 3 , b 4 , . . . ) and deviation from H 0 (∆b 1 and ∆b 2 ).

For now, let's consider only the first term of the Hamiltonian H 0 . By using the Hamiltonian mechanic described at the beginning of sec. 2.3, the Hill's differential equations can be derived:

0 = ∂p x ∂s -[H 0 , x] = ∂ 2 x ∂s 2 + 1 ρ 2 A + 2K 1 x (3.5) 0 = ∂p y ∂s -[H 0 , y] = ∂ 2 y ∂s 2 -2K 1 y (3.6) 
Assuming that K = 1

ρ 2 A + 2K 1 or K = -2K 1
, the Hill's equation can be obtained:

0 = ∂ 2 u ∂s 2 + Ku (3.7)
As the beam pass through the accelerator, it will cross a succession of focusing and defocusing quadrupoles. As it is well known, the solution of Eq.(3.7) is a sum of a sinus and cosinus when K > 0 and exponential when K < 0. So the beam will be in a oscillating state in both transverse planes. By plotting the transverse momenta as a function of the transverse positions, as shown in Fig. 3.2, the particle describes an ellipse turn after turn.

In their paper [START_REF] Courant | Theory of the Alternating-Gradient Synchrotron[END_REF], E. D. Courant and H. S. Snyder used this approach coupled with the periodicity property of a circular accelerator in order to demonstrate the existence of:

• the Courant-Snyder invariants 2J u , also known as Action or Amplitude, which corresponds to the area of the ellipse in Fig. 3.2. They can be obtained using the formula:

2J u = β u (s)p 2 u (s) + 2α u (s)u(s)p u (s) + γ u (s)u 2 (s) (3.8) 
• the Twiss Parameters (α u (s), β u (s) and γ u (s)) which characterize the ellipse at a position s in the accelerator, as shown in Fig. 3.2. They follow the properties:

1 = β u (s)γ u (s) -α 2 u (s) (3.9) α u (s) = - β u (s) 2 (3.10)
• the phase advance µ u (s) = ∆µ u (s, 0) between two positions in the accelerator which is given by:

∆µ u (s 1 , s 0 ) = s1 s0 ds β u (s) (3.11)
• the tunes Q u which is the number of the particle oscillation after one turn (one revolution in the circular accelerator) and which can be obtained with: We have now the solutions of the Hill's equation which takes the following form at a position s in the accelerator and after N revolutions:

Q u = µ u 2π = 1 2π ds β u (s) (3.12)
u(s) = 2J u β u (s) cos(µ u N + µ u (s)) (3.13) p u (s) = - 2J u β u (s) [sin(µ u N + µ u (s)) + α u (s) cos(µ u N + µ u (s))] (3.14) 
All of this taken into consideration, we can now define a matrix A defined at a position s. This allows us to transform from a normalized canonical variable (ũ, pu ) to the canonical variable (u, p u ).

   u p u    =    β u (s) 1/2 0 -α(s)β u (s) -1/2 β u (s) -1/2    A(s)    ũ pu    (3.15)

Hamiltonian perturbative terms from the 3D vector potential

Using the Hamiltonian perturbative part given by the expression Eq. (3.4), different contributions can be identified. In order to simplify the following explanation, we consider that the normalized vector potential is expressed in the form

a u =
∞ n ∞ l a u;n,l ∀u ∈ {x, y, z} with n, the harmonics order and l its derivative order, as seen in Eq. ( 2.18-2.20). The different contributions can be summarized as:

• V HE = ∞ n
a z;n,0 contains the main harmonics of the magnet. In this regard, the main difference, compared to the previous studies, is that we consider a distribution non-uniform of the harmonics inside the magnet.

• V F F ;pa = - ∞ n ∞ l=0 p x a x;n,l + p y a y;n,l (1 + δ)
, the momenta multiplied by the transverse vector potential. This vector potential contains the harmonics odd derivatives and so, this Hamiltonian term acts as a (n + 2l + 2)-multipole like.

• V F F ;az = - ∞ n ∞ l=1
a z;n,l , the harmonics even derivatives in the longitudinal vector potential. This Hamiltonian term acts as a (n + 2l)-multipole like.

• V F F ;a 2 = ∞ n ∞ l=0 a 2 x;n,l + a 2 y;n,l 2(1 + δ)
, the square of the transverse vector potential. This Hamiltonian term acts as a 2(n + l + 1)-multipole like.

Using these definitions, the perturbative part of the Hamiltonian is now decomposed in 4 terms1 :

H p = V HE + V F F ;pa + V F F ;az + V F F ;a 2 + O(2) (3.16)
Now, using Eq. (3.15) and the expression of the vector potential Eq. (2.18-2.20), the different contributions can be expressed as a function of the normalized canonical variables. Those canonical variables can be replaced by

the complex Courant-Snyder coordinates h (w),u± = ũ ± ip u = √ 2J u e ∓i(µuN +µu(w)) with ũ = (h (w),u+ + h (w),u-)/2
and pu = i(h (w),u-h (w),u+ )/2. This way, the Hamiltonian perturbative part at a multipole position (w) can be expressed as the following sum:

H p (w) = jklm h w,jklm h j (w),x+ h k (w),x-h l (w),y+ h m (w),y- (3.17)
All the Hamiltonian terms listed previously (V HE , V F F ;pa , etc) add similarly in the h w,jklm . Now, as discussed in the previous chapter, the Fringe Field is not only composed of the B z but also of the longitudinal variation of the harmonics. Which means that the same multipole can have different strength values along the magnet, as the betatronic function.

Normal Octupole perturbative terms

Octupolar contributions to the pertubative Hamiltonian come from normal octupole harmonics and from normal quadrupole harmonics.

• For a normal Octupole (b 4 ):

Using Eq. (2.20) and Eq. (3.15), it follows:

V HE = -a z;4,0 = C [0] 4,s x 4 -6x 2 y 2 + y 4 (3.18) = C [0] 4,s β 2 x x4 -6β x β y x2 ỹ2 + β 2 y ỹ4 (3.19) 
Then considering that ũ = (h u-+ h u+ )/2, we can develop: • For the 1 st derivative of a normal Quadrupole (b 2 ): Now, let's considering that ũ = (h u-+ h u+ )/2 and pu = i(h (w),u-h (w),u+ )/2, we can develop:

ũ4 = 1 16 h 4 u-+ 4h 3 u-h u+ + 6h 2 u-h 2 u+ + 4h u-h 3 u+ + h 4 u+ (3.20) x2 ỹ2 = 1 16 h 2 x-+ 2h x-h x+ + h 2 x+ h 2 y-+ 2h y-h y+ + h 2 y+ = 1 16 h 2 x-h 2 y-+ 2h x-h x+ h 2 y-+ h 2 x+ h 2 y- +2h 2 x-h y-h y+ + 4h x-h x+ h y-h y+ + 2h 2 x+ h y-h y+ +h 2 x-h 2 y+ + 2h x-h x+ h 2 y+ + h 2 x+ h 2 y+ (3.
VF F ;pa = - pxax;2,0 + pyay;2,0 1 + δ = - C [1] 2,s 1 + δ x 3 px 6 - xpxy 2 -x 2 ypy 2 - y 3 py 6 (3.22) = - C [1] 2,s 1 
ũ3 pu = i 16 h 3 u-+ 3h 2 u-h u+ + 3h u-h 2 u+ + h 3 u+ [h u--h u+ ] = i 16 h 4 u-+ 2h 3 u-h u+ + 0h 2 u-h 2 u+ -2h u-h 3 u+ -h 4 u+ (3.24) xp x ỹ2 = i 16 h 2 x-+ 0h x-h x+ -h 2 x+ h 2 y-+ 2h y-h y+ + h 2 y+ = i 16 h 2 x-h 2 y-+ 0h x-h x+ h 2 y--h 2 x+ h 2 y- +2h 2 x-h y-h y+ + 0h x-h x+ h y-h y+ -2h 2 x+ h y-h y+ +h 2 x-h 2 y+ + 0h x-h x+ h 2 y+ -h 2 x+ h 2 y+ (3.25) x2 ỹ py = i 16 h 2 x-+ 2h x-h x+ + h 2 x+ h 2 y-+ 0h y-h y+ -h 2 y+ = i 16 h 2 x-h 2 y-+ 2h x-h x+ h 2 y-+ h 2 x+ h 2 y- +0h 2 x-h y-h y+ + 0h x-h x+ h y-h y+ + 0h 2 x+ h y-h y+ -h 2 x-h 2 y+ -2h x-h x+ h 2 y+ -h 2 x+ h 2 y+ (3.26)
As up u = ũp uα u ũ2 , we can add Eq. (3.20) to Eq. (3.24), and Eq. (3.21) to Eq. (3.25) and (3.26). It follows that: • For the 2 nd derivative of a normal Quadrupole (b 2 ):

ũ3 (p u -α u ũ) = 1 16 (i -α u )h 4 u--(2i -4α u )h 3 u-h u+ + 6α u h 2 u-h 2 u+ -(2i + 4α u )h u-h 3 u+ -(i + α u )h 4 u+ (3.27) xỹ 2 (p x -α x x) = 1 16 (i -α x )h 2 x-h 2 y--2α x h x-h x+ h 2 y--(i + α x )h 2 x+ h 2 y- +2(i -α x )h 2 x-h y-h y+ -4α x h x-h x+ h y-h y+ -2(i + α x )h 2 x+ h y-h y+ +(i -α x )h 2 x-h 2 y+ -2α x h x-h x+ h 2 y+ -(i + α x )h 2 x+ h 2 y+ (3.28) x2 ỹ(p y -α y ỹ) = 1 16 (i -α y )h 2 x-h 2 y-+ 2(i -α y )h x-h x+ h 2 y-+ (i -α y )h 2 x+ h 2 y- -2α y h 2 x-h y-h y+ -4α y h x-h x+ h y-h y+ -2yα y h 2 x+ h y-h y+ -(i + α y )h 2 x-h 2 y+ -2(i + α y )h x-h x+ h 2 y+ -(i + α y )h 2 x+ h 2 y+ (3.
V F F ;Aaz = -a z;2,1 = - C [2] 2,s 12 x 4 -y 4 (3.30) = - C [2] 2,s 12 β 2 x x4 -β 2 y ỹ4 (3.31)
Following the same procedure of the previous points, we obtain the coefficients h w,jklm in Tab. 3.1. 

term n = 4 N D = 0 n = 2 N D = 1 n = 2 N D = 2 x4 h w,4000 C [0] 4,s β 2 x 16 C [1] 2,s βx(αx -i) 32(1 + δ) -C [2] 2,s β 2 x 96 x3 px h w,3100 C [0] 4,s β 2 x 4 C [1] 2,s βx(2αx -i) 16(1 + δ) -C [2] 2,s β 2 x 24 p4 x h w,2200 3C [0] 4,s β 2 x 8 3C [1] 2,s βxαx 16(1 + δ) -C [2] 2,s β 2 x 16 ỹ4 h w,0040 C [0] 4,s β 2 y 16 -C [1] 2,s βy(αy -i) 32(1 + δ) C [2] 2,s β 2 y 96 ỹ3 py h w,0031 C [0] 4,s β 2 y 4 -C [1] 2,s βy(2αy -i) 16(1 + δ) C [2] 2,s β 2 y 24 p4 y h w,0022 3C [0] 4,s β 2 y 8 -3C [1] 2,s βyαy 16(1 + δ) C [2] 2,s β 2 y 16 h w,2020 -3C [0] 4,s βxβy 8 C [1] 2,s βx(αy -i) -βy(αx -i) 32(1 + δ) 0 xpx ỹ2 h w,1120 -3C [0] 4,s βxβy 4 C [1] 2,s βx(αy -i) -βyαx 16(1 + δ) 0 x2 ỹ2 h w,0220 -3C [0] 4,s βxβy 8 C [1] 2,s βx(αy -i) -βy(αx + i) 32(1 + δ) 0 x2 ỹ py h w,2011 -3C [0] 4,s βxβy 4 C [1] 2,s βxαy -βy(αx -i) 16(1 + δ) 0 h w,1111 -3C [0] 4,s βxβy 2 C [1] 2,s βxαy -βyαx 8(1 + δ) 0
The formal expression of these terms can be computed by a python code using the sympy library. The main functions are shown in Appendix A. They have been tested by comparing the amplitude detuning terms (see section 3.5) computed with these functions and the one reported in [START_REF] White | Direct amplitude detuning measurement with ac dipole[END_REF], when using the vector potential convention of MadX. These expressions are also the base of the analytical prediction compared in chapter 5 and 6 with tracking simulations.

Normal Dodecapole perturbative terms

Dodecapole contributions to the pertubative Hamiltonian come from normal b 6 harmonics and from normal octupole b 4 harmonics. The third and forth derivatives of the quadrupole harmonics can also generate dodecapole contribution, but they are usually very small.

• For a normal 12-pole (b 6 ):

V HE = C [0] 6,s x 6 -15x 4 y 2 + 15x 2 y 4 -y 6 (3.32) = C [0] 6,s β 3 x x6 -15β 2 x β y x4 ỹ2 + 15β x β 2 y x2 ỹ4 -β 3 y ỹ6 (3.33)
• For the 1 st derivative of a normal octupole (b 4 ):

V F F ;pa = C [1] 4,s 4(1 + δ) x 5 p x -6x 3 p x y 2 + x 4 yp y + xp x y 4 -6x 2 y 3 p y + y 6 (3.34) = C [1] 4,s 4(1 + δ) x5 (p x -α x x) -6x 3 ỹ2 (p x -α x x) + x4 ỹ(p y -α y ỹ) +xỹ 4 (p x -α x x) -6x 2 ỹ3 (p y -α y ỹ) + ỹ5 (p y -α y ỹ) (3.35)
• For the 2 nd derivative of a normal octupole (b 4 ):

V F F ;az = 3C [2]
4,s -

x 6 40 + x 4 y 2 8 + x 2 y 4 8 - y 6 40 (3.36) = 3C [2]
4,s -

β 3 x x6 40 + β 2 x β y x4 ỹ2 8 + β x β 2 y x2 ỹ4 8 - β 3 y ỹ6 40
(3.37)

• For the 1 st derivative of a normal quadrupole (b 2 ):

V F F ;a 2 = (C [1] 2,s ) 2 24(1 + δ) -x 6 + x 4 y 2 -x 2 y 4 + y 6 (3.38) = (C [1] 2,s ) 2 24(1 + δ) -β 3 x x6 + β 2 x β y x4 ỹ2 -β x β 2 y x2 ỹ4 + β 3 y ỹ6 (3.39)
The different contributions are reported in Table 3.2 also computed with the Python function of Appendix A.

As can be seen in Table 3.1 and 3.2, the Fringe Field contributions add to the same Hamiltonian terms as the main harmonics but with different signs and coefficients. In particular, the derivatives of the main quadrupole field add to the hamiltonian terms excited by the normal octupole. The derivatives of the octupole field components add to the hamiltonians terms excited by the dodecapole field. In certain cases, those terms can be complex. 

Main

Fringe Field 

term n = 6 N D = 0 n = 4 N D = 1 n = 4 N D = 2 n = 2 N D = 1 x6 h w,6000 C [0] 6,s β 3 x 64 C [1] 4,s β 2 x (αx -i) 256(1 + δ) -3C [2] 4,s β 3 x 2560 -C [1]2 2,s β 3 x 256(1 + δ) x5 px h w,5100 3C [0] 6,s β 3 x 32 C [1] 4,s β 2 x (3αx -2i) 128(1 + δ) -9C [2] 4,s 3β 3 x 1280 -3C [1]2 2,s β 3 x 128(1 + δ) h w,4200 15C [0] 6,s β 3 x 64 5C [1] 4,s β 2 x (3αx -i) 256(1 + δ) -15C [2] 4,s β 3 x 512 -15C [1]2 2,s β 3 x 256(1 + δ) h w,3300 5C [0] 6,s β 3 x 16 5C [1] 4,s β 2 x αx 64(1 + δ) -3C [2] 4,s β 3 x 128 -5C [1]2 2,s β 3 x 64(1 + δ) x4 ỹ2 h w,4020 -15C [0] 6,s β 2 x βy 64 C [1] 4,s β 2 x (αy -i) -6βxβy(αx -i) 256(1 + δ) C [2] 4,s β 2 x βy 64 C [1]2 2,s β 2 x βy 256(1 + δ) x3 px ỹ2 h w,3120 -15C [0] 6,s β 2 x βy 16 C [1] 4,s β 2 x (αy -i) -3βxβy(2αx -i) 64(1 + δ) C [2] 4,s β 2 x βy 16 C [1]2 2,s β 2 x βy 64(1 + δ) x4 ỹ py h w,2220 -15C [0] 6,s 3β 2 x βy 32 C [1] 4,s 3β 2 x (αy -i) -18βxβyαx 128(1 + δ) C [2] 4,s 3β 2 x βy 32 C [1]2 2,s β 2 x βy 128(1 + δ) h w,1320 -15C [0] 6,s β 2 x βy 16 C [1] 4,s β 2 x (αy -i) -3βxβy(2αx + i) 64(1 + δ) C [2] 4,s β 2 x βy 16 C [1]2 2,s β 2 x βy 64(1 + δ) h w,0420 -15C [0] 6,s β 2 x βy 64 C [1] 4,s β 2 x (αy -i) -6βxβy(αx + i) 64(1 + δ) C [2] 4,s β 2 x βy 64 C [1]2 2,s β 2 x βy 256(1 + δ) h w,4011 -15C [0] 6,s β 2 x βy 32 C [1] 4,s β 2 x αy -6βxβy(αx -i) 128(1 + δ) C [2] 4,s β 2 x βy 32 C [1]2 2,s β 2 x βy 128(1 + δ) h w,3111 -15C [0] 6,s β 2 x βy 8 C [1] 4,s β 2 x αy -3βxβy(2αx -i) 32(1 + δ) C [2] 4,s β 2 x βy 8 C [1]2 2,s β 2 x βy 32(1 + δ) h w,2211 -15C [0] 6,s 3β 2 x βy 16 C [1] 4,s 3β 2 x αy -18βxβyαx 64(1 + δ) C [2] 4,s 3β 2 x βy 16 3C [1]2 2,s β 2 x βy 64(1 + δ) x2 ỹ4 h w,2040 -15C [0] 6,s βxβ 2 y 64 C [1] 4,s β 2 y (αx -i) -6βxβy(αy -i) 256(1 + δ) C [2] 4,s βxβ 2 y 64 -C [1]2 2,
β 2 y (αx -i) -6βxβy(αy + i) 64(1 + δ) C [2] 4,s βxβ 2 y 64 -C [1]2 2,s βxβ 2 y 256(1 + δ) h w,1140 -15C [0] 6,s βxβ 2 y 32 C [1] 4,s β 2 y αx -6βxβy(αy -i) 128(1 + δ) C [2] 4,s βxβ 2 y 32 -C [1]2 2,s βxβ 2 y 128(1 + δ) h w,1131 -15C [0] 6,s βxβ 2 y 8 C [1] 4,s β 2 y αx -3βxβy(2αy -i) 32(1 + δ) C [2] 4,s βxβ 2 y 8 -C [1]2 2,s βxβ 2 y 32(1 + δ) h w,1122 -15C [0] 6,s 3βxβ 2 y 16 C [1] 4,s 3β 2 y αx -18βxβyαy 64(1 + δ) C [2] 4,s 3βxβ 2 y 16 -3C [1]2 2,s βxβ 2 y 64(1 + δ) ỹ6 h w,0060 C [0] 6,s β 3 y 64 C [1] 4,s β 2 y (αy -i) 256(1 + δ) -3C [2] 4,s β 3 y 2560 -C [1]2 2,s β 3 y 256(1 + δ) ỹ5 py h w,0051 3C [0] 6,s β 3 y 32 C [1] 4,s β 2 y (3αy -2i) 128 -9C [2] 4,s 3β 3 y 1280 -3C [1]2 2,s β 3 y 128(1 + δ) h w,0042 15C [0] 6,s β 3 y 64 5C [1] 4,s β 2 y (3αy -i) 256(1 + δ) -15C [2] 4,s β 3 y 512 -15C [1]2 2,s β 3 y 256(1 + δ) h w,0033 5C [0] 6,s β 3 y 16 5C [1] 4,s β 2 y αy 64(1 + δ) -3C [2] 4,s β 3 y 128 -5C [1]2 2,s β 3 y 64(1 + δ)

Lie algebra for non-linear beam dynamics

Starting from Eq. (3.13) and Eq. (3.14), which describe the evolution of the trajectory vector from the start of a magnet to a point s, one can also rewrite them in more elegant way in matrix notation. In particular, assuming the magnetic field of a quadrupole begin and end abruptly at the beginning and end of the magnets, these matrices are (more details are in chapter 4):

   x p x    s =    cos( √ kL) k -1/2 sin( √ kL) -k 1/2 sin( √ kL) cos( √ kL)       x p x    0 if k > 0 (3.40)    x p x    s =    cosh( |k|L) |k| -1/2 sinh( |k|L) |k| 1/2 sinh( |k|L) cosh( |k|L)       x p x    0 if k < 0 (3.41)
Those transformations from a point 0 to a point s are called transfer maps. In this case, these matrices are linear and satisfy the symplecticity condition.

This condition is very important for us, as we study the impact of the 3D vector potential on beam based observable such as the dynamic aperture. Proton beams have a long lifetime, therefore the computation of dynamic aperture usually need to be computed up to 10 5 revolutions in the machine or even more. The symplectic property is a guaranty that total energy of the system is preserved through the transformation.

Definition 3.3.1 (Symplecticity). Let f be a differentiable transformation such that f ( q, p) : U -→ R 2d with q and p two canonical vectors of size d in U ⊂ R 2d an open set. f is symplectic if its Jacobian matrix J( q, p) is symplectic, i.e. if it satisfies:

J( q, p) T S J( q, p) = S (3.42)

with:

S =    0 I -I 0    (3.43)
In the case of non-linear magnetic field elements, similar transfer matrices are historically derived trough Taylor expansion of the final coordinates at the position s around the initial one [START_REF] Draft | Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics[END_REF]:

z a,s = K a + b R ab z b,0 + bc T abc z b,0 z c,0 + U abcd z b,0 z c,0 z d,0 + . . . (3.44)
where z a,s ∈ {x, p x , . . . } at the position s. The matrix R is the linear matrix while T and U contains the non-linear field treated as aberrations. In general, T and U do not satisfy the simplecticity conditions and require a high number of coefficients to be evaluated.

Lie Algebra offers the possibility of both analysing the impact of non-linear magnetic field on a linear optics and computing non-linear transfer maps. Using the same linear vector space as z in our case, the definition of a Lie algebra is: Definition 3.3.2 (Lie algebra (Ref. [START_REF] Dragt | Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics[END_REF])). A Lie algebra A over a field of numbers F is defined as a linear vector space supplemented by a rule/operator for multiplying two vectors to yield a third vector.

A × A -→ A (x , y) -→ x • y (3.45)
The rule is noted as [x, y] = x • y. In order to be called an algebra, it must follows the following axiom for all

x, y, z ∈ A and a, b ∈ F:

1. Bilinearity: [x + y, z] = [x, z] + [y, z], [x, y + z] = [x, y] + [x, z] and [ax, by] = ab[x, y]
To be called a Lie algebra, 2 additional axioms must be followed:

2. Anticommutativity: [x, y] = -[y, x] 3. The Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0
From a group (B, ) with B a linear vector space and an operator, a Lie algebra can easily be build using the operator:

[x, y] = x y -y x ∀ x, y ∈ B (3.46)
A famous example is called the Lie Operator. It is defined as follows given a function of this linear space:

: f := u∈{x,y,... } ∂f ∂p u ∂ ∂u - ∂f ∂u ∂ ∂p u (3.47)
When a differential equation needs to be solved other the same space (such as dU dt = : f : U ), the solution over an interval L is given by the exponentiation of this same operator, also known as Lie Transformation:

U | t+L = M U | t = e :f :dt U | t (3.48)
This exponential form has some very useful properties that can be used to simplify the equations. When the exponential form of the Lie operator is applied to a coordinate of the space, it transforms this coordinate according to the system described by the operator : f :. It is worth noticing that this coincides with the definition of transfer map.

Our goal here is to describe the motion of a particle through the accelerator. For that, we can solve the differential equation from the Hamiltonian mechanics. These differential equations which rule the motion between those two points of the accelerator are:

du ds = ∂H ∂p u , dp u ds = - ∂H ∂u (3.51)
where u is in {x, y, . . . }. These equations can be summarized in the following form using the Poison Bracket introduced in Eq. (2.5) and linked to the definition of the Lie operator:

du ds = [H, u] = : H : U for all u in {x, p x , y, p y , . . . } (3.52)
In fact, given the previous definition in Eq. (3.47), the Poisson Bracket is clearly related to the Lie operator, with the Hamiltonian as function f applied to the canonical variable u:

: H := u∈{x,y,... } ∂H ∂p u ∂ ∂u - ∂H ∂u ∂ ∂p u (3.53)
Then, the solution of the Hamiltonian equations over an interval of length L is given by the following equation. If

: H : is s-invariant in this interval, an approximation can also be made:

U | s+L = e :H: ds U | s ≈ e L:H: U | s ≈ ∞ k=0 (L : H :) k k! U | s (3.54)
with:

: H : U = [H, U ] (3.55) 
:

H : 2 U = [H, [H, U ]] (3.56) 
. . . As a side note, if we look back at the expression of the Poisson bracket (Eq. (2.5)) and the Lie Operator (Eq. (3.47), it appears that they can be expressed in a matrix form:

: H : = -∇H S ∇ (3.57)
with S being the same matrix as the one used for the definition of a symplectic transformation.

Therefore, Lie Algebra and Lie Group transformations provide a tool to generate transfer maps by solving Hamilton equations. These transfer maps are symplectic at any order of the Hamiltonian. In the next section, we discuss how they can help analysing the impact of the perturbative terms of the Hamiltonian on the particle coordinates, while in the next chapter we use them to derive a new non-linear transfer map for tracking simulations.

Resonance driving terms and spectral lines

As stated in the previous section, one way to solve the Hamiltonian equations between two positions s 1 and s 2 in the accelerator, consists in using a Lie transformation (i.e. a Lie transfer map or Lie map). Let's define a map1 to transport a particle in a system assuming the Hamiltonian is invariant on this interval:

M(s 1 , s 2 ) = exp(: ∆σH :) = k : ∆σH : k k! (3.58)
Here, H and ∆σ corresponds respectively to the Hamiltonian and the step size between s 1 and s 2 . The term : ∆σH :

is called the Lie Operator and when applied to a canonical variable or function f , it operates as a Poisson Bracket, i.e. : ∆σH : f = ∆σ[H, f ]. In Section 3.1, it has been shown that a matrix A exists in linear beam dynamic, which allows the normalisation of the canonical variables into a pure rotation space. In this space, the transfer map of a particle from a position s 1 to s 2 is just a rotation matrix R(s 1 , s 2 ) in those normalised phase-spaces. Then, in the linear space, the transfer map M is a composition of those two matrices, as shown in:

A -1 (s 1 ) (u, p u |s 1 ) -→ (ũ, pu |s 1 ) M(s 1 , s 2 )   R(s 1 , s 2 ) (u, p u |s 2 ) ←- (ũ, pu |s 2 ) A(s 2 ) (3.59)
As discussed in the previous sections, the Hamiltonian is composed of a linear H 0 and a perturbative terms H p .

So, the next step is to check if a similar process can be applied to the motion described by the perturbative part of the Hamiltonian H p . In [START_REF] Forest | Normal form methods for complicated periodic systems: a complete solution using differential algebra and lie operators[END_REF], E. Those eigenvectors are similar to the complex Courant-Snyder coordinates mentioned in sec. 3.2. The difference is that 2I u is by definition invariant along the accelerator while 2J u is only in the linear case. They also demonstrate that as the perturbative terms of the Hamiltonian is a polynomial using those eigenvectors (see Eq. (3.17)), the normalization map A can only be computed using the Hamiltonian terms satisfying:

(j -k)Q x + (l -m)Q y = p ∀ p ∈ Z (3.61)
Knowing such constrain, three conditions can be derived:

• Eq. (3.61) is equal to 0. We will note it as H AD and it contains the Hamiltonian h jklm terms such that j = k and l = m. It will be studied in sec. 3.5 for the variation of the tunes with the actions.

• Eq. (3.61) is equal to p, a non-integer. We will note it as H RDT . These terms describe additional Resonance Driving Terms (RDT).

• Eq. (3.61) is equal to p, an integer. We will note it as H R . It contains the rest of the h j klm terms, the source of beam instabilities.

The initial Hamiltonian can now be expressed as jklm . They are given by the following expression, as demonstrate by A. Franchi in [START_REF] Franchi | Studies and Measurements of Linear Coupling and Nonlinearities in Hadron Circular Accelerators[END_REF]:

H = H 0 + H p = H 0 + H AD + H RDT + H R
f (b) jklm = h jklm 1 -e 2πi[(j-k)Qx+(l-m)Qy] = w h w,jklm e i[(j-k)∆µx(b,w)+(l-m)∆µy(b,w)] 1 -e 2πi[(j-k)Qx+(l-m)Qy] (3.62)
where ∆µ 

(b-w) u = µ (b) u -µ (w) u (mod Q u )
As a results, we obtain the Normal Forms described independently in Ref. [START_REF] Forest | Normal form methods for complicated periodic systems: a complete solution using differential algebra and lie operators[END_REF]46,[START_REF] Bartolini | Normal form via tracking or beam data[END_REF]. The general expression of the complex Phase-Space Courant-Snyder variables at a position (b) and after N revolutions, becomes: Since the terms h x,± and h y,± are a sum of exponential, they are transformed into distinct Dirac in the Fourier space, i.e. spectral line. We will note H h± (n x , n y ) and V h± (n x , n y ) the Fourier Transform of respectively h x,± and h y,± at a frequency of n x Qx+n y Q y . From (3.64) and (3.65), it appears that there is a connection between (j, k, l, m) and (n x , n y ):

h (b) x,- = 2I x e i[µxN +µ (b) x,0 ]   1 -2i jklm jf (b) jklm 2I j+k 2 -1 x 2I l+m 2 y e i[(k-j)(µxN +µ (b) x,0 )+(m-l)(µyN +µ (b) y,0 )]   (3.64) h (b) y,- = 2I y e i[µyN +µ (b) y,0 ]   1 -2i jklm lf (b) jklm 2I j+k 2 x 2I l+m 2 -1 y e i[(k-j)(µxN +µ (b) x,0 )+(m-l)(µyN +µ
H h± (n x , n y ) = H h± (1 + k -j, m -l) with j = 0 (3.66) V h± (n x , n y ) = V h± (k -j, 1 + m -l) with l = 0 (3.67)
So, if n x and n y are imposed, we can easily find all the Resonance Driving Terms which sum into the same spectral line, i.e. j = k + 1n x and l = mn y for the horizontal plane, and j = kn x and l = m + 1n y for the vertical plane. Let's focus on Octupolar field contribution to the main spectral line at the frequency ±Q x for the horizontal plane and ±Q y for the vertical plane 1 :

H (b) h-(1, 0) = 2I x e iµ (b) x,0 (3.68) 
H (b) h-(-1, 0) = -2i 2I x e -iµ (b)
x,0 j,l 0

(j + 2)f (b) (j+2)jll 2I j x 2I l y ≈ -2i 2I x e -iµ (b) x,0 3f (b) 3100 2I x + 2f (b) 2011 2I y (3.69) V (b) h-(0, 1) = 2I y e iµ (b) y,0 (3.70) 
V (b) h-(0, -1) = -2i 2I y e -iµ (b) y,0 j,l 0 (l + 2)f (b) jj(l+2)l 2I j x 2I l y ≈ -2i 2I y e -iµ (b) y,0 3f (b) 0031 2I y + 2f (b) 1120 2I x (3.71)
These expressions shows how the octupole magnetic field acts on the main spectral lines of the tune, when looking at the Fourier Transforms of particles positions at one place in the accelerators (usually measured by turnby-turn BPMs). These lines are usually used to reconstruct the linear parameters of the accelerator, i.e. the beta-function and the phase. Therefore, in presence of non-linear magnetic field this measurement can be biased, and a dependence on the particle action is expected in the same fashion as the variation of the tune with amplitude.

In the following sections we will derive analytical expressions for the variation of tune and for the variation of the measured beta-function with the amplitude of the particle.

Amplitude detuning

Following Ref. [START_REF] White | Direct amplitude detuning measurement with ac dipole[END_REF], the Direct and Cross Amplitude Detuning (AD) as a function of the normalized amplitude 2J u (u ∈ {x, y}) is given by:

∆Q u = 1 2π ∂ H p ∂J u di (3.72) 
with H p = H AD since the other terms have 0 average, and i the position along the ring. The curvilinear integral is over one revolution in the accelerator.

In this thesis, the kinematic and second order terms will be neglected. Following Ref. [START_REF] White | Direct amplitude detuning measurement with ac dipole[END_REF], the equations for the 1 A more detailed expression using for quadrupole, octupole and dodecapole contributions is given in Appendix B.
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Direct and Cross Amplitude Detuning for the harmonics b 4 and b 6 are:

∆Q x = q 2πp 0 c i 3 8 β 2 x b 4 i (2J x ) + 5 16 β 3 x b 6 i (2J x ) 2 - 3 4 β x β y b 4 i (2J y ) + 15 16 β x β 2 y b 6 i (2J y ) 2 - 15 8 β 2 x β y b 6 i (2J x 2J y ) (3.73) ∆Q y = q 2πp 0 c i 3 8 β 2 y b 4 i (2J y ) - 5 16 β 3 y b 6 i (2J y ) 2 - 3 4 β x β y b 4 i (2J x ) - 15 16 β 2 x β x b 6 i (2J x ) 2 (3.74) + 15 8 β x β 2 y b 6 i (2J x 2J y )
where the b n indicates that the relative high order field harmonics are averaged for the positions i belonging to the same element and are kept constant over the length of the magnet. They can be computed with finite element codes

or measured with rotating coils. Using Table 3.1 and 3.2, the previous equations can be extended to consider the gradient derivatives and different values for the field harmonics along the same element:

∆Q x = 1 π j,l jh jjll (2J x ) j-1 (2J y ) l (3.75) = j+l<3 1 2π i 3 8 4β 2 x C [0] 4,s + 2β x α x C [1]
2,s -

2 3 β 2 x C [2] 2,s i 2J x - 3 4 4β x β y C [0]
4,s -

1 3 (β x α y -β y α x )C [1] 2,s i 2J y + 5 16 6β 3 x C [0] 6,s + 3 2 β 2 x α x C [1]
4,s -

9 20 β 3 x C [2] 4,s i (2J x ) 2 (3.76) + 15 16 6β x β 2 y C [0] 6,ts + 1 5 β y β y α x 2 -3β x α y C [1] 4,s + 3 20 β x β 2 y C [2] 4,s i (2J y ) 2 - 15 8 6β 2 x β y C [0]
6,s -

1 5 β x β x α y 2 -3β y α x C [1]
4,s -

3 20 β 2 x β y C [2] 4,s i 2J x 2J y ∆Q y = 1 π j,l lh jjll (2J x ) j (2J y ) l-1 (3.77) = j+l<3 1 2π i 3 8 4β 2 y C [0] 4,s -2β y α y C [1] 2,s + 2 3 β 2 y C [2] 2,s i 2J y - 3 4 4β x β y C [0] 4,s - 1 3 (β x α y -β y α x )C [1] 2,s i 2J x - 5 16 6β 3 y C [0] 6,s - 3 2 β 2 y α y C [1] 4,s + 9 20 β 3 y C [2] 4,s i (2J y ) 2 (3.78) - 15 16 6β 2 x β y C [0]
6,s -

1 5 β x β x α y 2 -3β y α x C [1]
4,s -

3 20 β 2 x β y C [2] 4,s i (2J x ) 2 + 15 8 6β x β 2 y C [0] 6,s + 1 5 β y β y α x 2 -3β x α y C [1] 4,s + 3 20 β x β 2 y C [2] 4,s i 2J x 2J y
From these equations, it appears clearly that the non-linearities act on amplitude detuning as weighted sum of the multipolar strengths with the Twiss parameters as weight powers. In regions where those weights can vary inside one magnet and/or have big values, not taking into consideration the longitudinal distribution of the non-linear harmonics can bias the prediction for the detuning with Amplitude.

Equations (3.75) and (3.77) will be used in chapter 5 for the analytical prediction and compared to the fit of numerical data from tracking simulations.

Non-linear variation of the measured betatronic function when computed from the Amplitude of the main Spectral Line

The Beta-Beating is defined as the variation of the measured betatronic function deviation from nominal values.

There are two methods to measure the Betatronic function, either using the phase from the main spectral line between N Beam Position Monitors [START_REF] Castro-Garcia | Luminosity and beta function measurement at the electron-positron collider ring LEP[END_REF] (BPM) or using the amplitude of the main spectral line at 1 BPM [START_REF] Garcia | Optics-measurement-based Beam Position Monitor Calibration[END_REF]. In this section, the non-linear variation of the amplitude beta-beating measured with the latter method is derived.

The starting hypothesis of this method to measure β u is that the particle is still in the linear regime, as shown in Sec. 3.1. The turn-by-turn position of the particle can be parametrized as (similarly to Eq. (3.13)):

u ≈ 2J u β u (s) cos(2πQ u N + µ u (s)) (3.79)
Then, through the Fourier Transform of the particle positions measured at a position (b), it is possible to estimate the horizontal and vertical β-function (respectively β x,A and β y,A ). In the linear domain, the following expressions can be derived using the actions and the spectral line at Q x and Q y , i.e. H

x (1, 0) and V (b) y (0, 1) respectively:

β x,A (b) ≈ |H (b) x (1, 0)| 2 2J x ≈ β x (b) |H (b) x (1, 0)| 2 2J x β y,A (b) ≈ |V (b) y (0, 1)| 2 2J y ≈ β y (b) |V (b) ỹ (0, 1)| 2 2J y (3.80)
The attentive reader might have noticed that here, the action is noted as 2J u while in the previous section, it was 2I u .

In fact, one of the prerequisites is to know the action before hand which is not the case, particularly in a non-linear regime of motion. So, they are estimated by computing the average over all the BPMs of the machine:

2J x = |H (b) x (1, 0)| 2 β x,P (b) (b) 2J y = |V (b) y (0, 1)| 2 β y,P (b) (b) 
(3.81)

with β x,P and β y,P being the horizontal and vertical β-function from the spectral line phase. This aspect is discussed in more detail in Sec. 3.7. For now on, we consider that 2J u = 2I u .

In the section 3.4, the expression of h x,-and h y,-spectral line at the respective frequency ±Q x and ±Q y has been given for Octupolar contributions. Since ũ = (h

(b) u,-+ h (b)
u,-)/2, the spectral lines of the normalized positions follow:

2H (b) x (1, 0) = H (b) h-(1, 0) + H (b) h-(-1, 0) = 2I x e iµx(b) 1 + 6if (b) 3100 2I x + 4if (b) 2011 2I y (3.82) 2V (b) ỹ (0, 1) = V (b) h-(0, 1) + V (b) h-(0, -1) = 2I y e iµy(b) 1 + 6if (b) 0031 2I y + 4if (b) 1120 2I x (3.83) Let's decompose f (b)
jklm into polar coordinates with q (b) jklm , its phase and a

(b)
jklm , its amplitude. Using r = jklm, it can be demonstrated that:

1 + 2i r a r e -iqr 2 = 1 + 4 r a r sin(q r ) + 4 r a 2
r + 8 r<r a r a r cos(q rq r ) (3.84)

= 1 + 4 r {f r } + 4 r a 2 r + 8 r<r {f r f r } (3.85)
Thus, applied to Eqs. (3.82) and (3.83), the Octupolar contributions to the spectral line amplitudes in the normalised space follows: 2011 cos(q

|2H (b) x (1, 0)| 2 = 2I x 1 + 12a (b) 3100 sin(q (b) 3100 )(2I x ) + 8a (b) 2011 sin(q (b) 2011 )(2I y ) + 36a (b)2 3100 (2I x ) 2 +16a (b)2 2011 (2I y ) 2 + 48a (b) 3100 a (b) 2011 cos(q (b) 3100 -q (b) 2011 )(2I x )(2I y ) (3.86) = 2I x Ξ (b) x (2I x , 2I 
(b) 0031 -q (b) 1120 )(2I x )(2I y ) (3.88) = 2I y Ξ (b) y (2I x , 2I y ) (3.89)
The expressions of Ξ (b) u (2I x , 2I y ) -1 correspond to the beta-beating measured from the Amplitude of the main spectral line as a function of the particle actions. We call it Direct and Cross Amplitude Beta-beating (ABB).

In chapter 6, simulations are made by exciting f 3100 , and they are compared to the analytical prediction using

Ξ (b)
x (2I x , 2I y ) -1.

Discussion about the perturbation of the ABB measurement

The formalism developed in section 3.6 is for a perfect circular accelerator and for only the 1 st term of the Taylor series of the Lie algebra (Eq. ( 11) from [START_REF] Bartolini | Normal form via tracking or beam data[END_REF]). In reality, there are different sources of errors distributed along the accelerator (in particular, b 2 , b 4 , b 6 , beam-beam [START_REF] Goncalves | Computation of Optics Distortions due to Beam-Beam Interactions in the FCC-hh[END_REF], etc...) and high order Resonance Driving Terms that may impact the Amplitude beta-beating. For example, octupoles second order RDTs generate dodecapole-like RDTs. A more general expression of the amplitude beta-beating is added in Appendix B.

Precision and accuracy of diagnostic elements can affect the measurement of the Amplitude beta-beating. In [START_REF] García-Tabar És Valdivieso | Optics-measurement-based beam position monitor calibrations in the LHC insertion regions[END_REF], it is reported that the BPM Calibration errors apply a factor to the measurement of the particle position. This factor can be estimated using the method from the same paper. C Another source of discrepancy is the noise in the measurements. As shown in Section 6.2.2, it pollutes all spectral line parameters. This is not negligible in the beta-beating computed from the phase of the main spectral

line ∆β/β (b)
u,P at low actions. All of those also affect the estimation of the action which is not directly measurable. Following Ref. [START_REF] García-Tabar És Valdivieso | Optics-measurement-based beam position monitor calibrations in the LHC insertion regions[END_REF], this estimation is given by:

2J x = |2H (b) x (1, 0)| 2 C (es,b) x ((∆β/β) (b)
x,P + 1)

(b) = 2I x C (ma,b) x C (es,b) x Ξ x(2I x , 2I y ) ((∆β/β) (b) 
x,P + 1)

(b) (3.90) 2J y = |2V (b) ỹ (0, 1)| 2 C (es,b) y ((∆β/β) (b) y,P + 1) (b) = 2I y C (ma,b) y C (es,b) y Ξ ỹ (2I x , 2I y ) ((∆β/β) (b) 
y,P + 1) (b) (3.91) 
All taken into consideration, the actual measurement of the beta-beating from the Amplitude of the main spectral line follows:

∆β β (b) u,A = 2I u 2J u C (ma,b) u C (es,b) u Ξ (b) ũ (2I x , 2I y ) -1 (3.92)
Now, let's make a thought experiment and suppose that at one position of the accelerator, all order of all Resonance Driving Terms are set to zero except f (b) 3100 responsible for Direct Amplitude beta-beating. As the actions increase, the horizontal beta-beating changes with the actions and this implies that particles ellipse should cross each others. This is what is represented as the f (b) 3100 case in Fig. 3.3. In fact, the statement "all order of all Resonance Driving Terms are set to zero excepts f (b) 3100 " is partially incorrect. It is still correct to assume that higher order RDTs can be compensated by first order RDTs from higher harmonics, but some RDTs cannot be set to zero. By definition, f The impact of the 3D vector potential on the amplitude detuning is derived analytically. A new quantity is defined as the variation of the beta-function with amplitude, as measured from the amplitude of the main spectral line of Beam Position Monitors. It is called Amplitude Beta-beating.

In the next chapter we will see how the same 3D vector potential can enter in the derivation of a new non-linear transfer map for tracking simulations.

Chapter 4 Transfer Maps models

This chapter describes the different models of Transfer maps that will be compared in this thesis. Each of the next three sections presents what are respectively called Hard Edge, the Hard Edge with Head and the Lie2 models and which effects they can model.

Definition of the Hard Edge model

As mentioned previously, tracking a particle through a quadrupole end up solving Eq. (3.7). The solution of this ODE is the transfer maps M HE,T hick , also known as Thick lens matrix, computing the particle trajectory from one side to the other of the magnet is:

k > 0 k < 0 M HE,T hick =    cos( √ kL) k -1/2 sin( √ kL) -k 1/2 sin( √ kL) cos( √ kL)       cosh( |k|L) |k| -1/2 sinh( |k|L) |k| 1/2 sinh( |k|L) cosh( |k|L)    (4.1)
Then, the particles tracking from a position s to s + L is done by (u, p u )

T s+L = M HE (u, p u ) T s with the vector of canonical variables (u, p u ) T s . As mentioned before, the strength k is consider the same over the whole element magnetic length L. Both of them are symplectic. However, for particle simulations, the computation of the trigonometric and hyperbolic functions is very slow and often replaced by the 1 st -order approximation in numerical code. This leads to the following matrix which is not symplectic:

M HE,1-oT hick =    1 L ±|k|L 1    (4.2)
Another approach consists in using Thin lens instead, also known as Kick and Drift. As its name suggest, it is multiplication of two transfer matrices, respectively K and D. Each of them is symplectic. There are different schools here, either the Kick is between two half Drift, or the inverse or the Kick is followed by a single Drift, respectively:

M HE,T hin =    1 L/2 0 1       1 0 ±kL 1       1 L/2 0 1    =    1 ± kL 2 /2 L(1 ± kL 2 /4) ±kL 1 ± kL 2 /2    (4.3) or M HE,T hin =    1 0 ±kL/2 1       1 L 0 1       1 0 ±kL/2 1    =    1 ± kL 2 /2 L ±kL(1 ± kL 2 /4) 1 ± kL 2 /2    (4.4) or M HE,T hin =    1 0 ±kL 1       1 L 0 1    =    1 L ±kL 1 ± kL 2    (4.5)
As can be seen by comparing the Transfer matrices (4.3), (4.4), and (4.5), different transfer maps can be used to describe the same system. In Ref. [START_REF] Schachinger | TEAPOT: A thin element accelerator program for optics and tracking[END_REF], it is shown that the best way to approximate the Thick matrix with Thin lens is to subdivide the magnet into multiple small Kicks and Drifts with different magnetic lengths (as we move further from the center, the length decrease). In the study, they made the demonstration with the matrix (4.3). The numerical codes Madx/PTC [START_REF]MAD -Methodical Accelerator Design[END_REF] and SixTrack [START_REF]SixTrack -6D Tracking Code[END_REF], used at CERN for beam dynamic simulations, use the same matrix. For the magnet of interest for this thesis, previous studies at CERN have shown the necessity to use 16 subdivisions with identical magnetic length (see the top panel of Fig. 4.2 at the end of this chapter).

Definition of the Hard Edge with Head model

A first approach to take into consideration the longitudinal distribution of the harmonics is to add multipole on the two sides of the magnet. With this, the magnet is divided into 3 elements defined as (see the central panel of Fig. 4.2):

• the body, i.e. the section with constant magnetic field along the z-axis, is noted BD;

• the end with the connector1 side is noted as CS or LE;

• the end with the non-connector side is noted as N C or RE.

The heads (or ends) are defined as {z ∈ R : B z (x, y, z) = 0, ∀ x, y ∈ R} or {z ∈ R : A x (x, y, z) = 0 and/or A y (x, y, z) = 0, ∀ x, y ∈ R}.

In order to have the same integrated harmonics values given by the magnet designers, two conditions must be satisfied. First of all the harmonic strength given to us b n,T T (which is considered as the average value along the magnet) must follows:

b n,T T = b n,BD L BD + b n,LE L LE + b n,RE L RE L T T (4.6)
Then, the magnetic length of the whole magnet L T T must be preserved, which lead to:

L T T = L BD + L LE + L RE (4.7)
In the simulations that will follow, the magnetic lengths of the extremity are computed from the 3D magnetic models.

The uncertainty and the random component (b n,u and b n,R ) of the magnetic field harmonics are considered constant all along the magnet, and assigned completely to the body. The implementation in Madx is made such that the total magnetic length of the element is kept for the body. The body magnetic strength (b n,BD ) is normalized by L BD /L T T and zero length Kicks are added to the magnet extremities.

The Lie2 Transfer map

This Lie2 Transfer map and the program computing the vector potential from CERN magnetic field maps were developed at the LEDA laboratory from the CEA. The main goal was to check the impact of non-linear perturbation from z-dependent magnetic field on single particle trajectory.

They are the results of 3 internships and 2 doctorates under the supervision of B. Dalena (CEA, France), J. Payet (CEA, France), O. Napoly (CEA, France) and L. Bonaventura (MOX, Polytechnico di Milano, Italy). The inital step to develop the vector potential computing method from CERN magnetic field maps was made by O. Gabouev. His work were then used and improved in accuracy by A. Simona who develop a C++ algorithm which can compute the vector potential from different type of magnetic field maps [START_REF] Simona | Numerical methods for the simulation of particle motion in electromagnetic fields[END_REF]. On my side, I developed, optimized and validate the symplecticity of this Lie2 Transfer map which can use the vector potential computed previously. Finally, with the initial help from A. Simona and B. Dalena, we interface our code into SixTrack.

How to generate Transfer Map using Lie algebra.

The Lie2 model developed for this study is derived from the equivalent Hamiltonian (Eq. (3.2)). The Hamiltonian is then divided in 4 terms as follows:

K 8D (x, p x , y, p x , z, p z , s, δ|σ) = p z -δ K1 -a z K2 + (p x -a x ) 2 2(1 + δ) K3 + (p y -a y ) 2 2(1 + δ) K4 (4.8)
Using the technique proposed by H. Yoshida in Ref. [START_REF] Yoshida | Construction of higher order symplectic integrators[END_REF] which demonstrated that exp(L : A + B :) = exp(L :

A :) exp(L : B :) + O(L 2 ), the operator exp(-∆σ : K :) can be subdivided. However, the terms with (p ua u ) 2 are problematic since both canonical variables are updated at the same time. To solve this, we need to transform the momenta into mechanical momenta which will be made by K 3 =a x dx and K 4 =a y dy. This leads to the following concatenation of maps: transfer map corresponding to the terms of this Table is symplectic. In fact, computing the Jacobian of each transfer map leads to: J(M ) T S J(M ) = S.

M (∆σ) =
J K1 =          1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1          J K2 =          1 0 0 0 0 1 0 0 ∆σ 2 ∂ 2 az ∂x 2 ∆σ 2 ∂ 2 az ∂x∂y 1 0 ∆σ 2 ∂ 2 az ∂x∂y ∆σ 2 ∂ 2 az ∂y 2 0 1          (4.12) J K 3 =          1 0 0 0 0 1 0 0 ∂ax ∂x ∂ax ∂y 1 0 ∂ax ∂y ∂ 2 ax ∂y 2 dx 0 1          J K3 =          1 0 -∆σ 2(1+δ) 0 0 1 0 0 0 0 1 0 0 0 0 1          (4.13) J K 4 =          1 0 0 0 0 1 0 0 ∂ 2 ay ∂x 2 dy ∂ay ∂x 1 0 ∂ay ∂x ∂ay ∂y 0 1          J K4 =          1 0 0 0 0 1 0 -∆σ 2(1+δ) 0 0 1 0 0 0 0 1          (4.14)
For the moment, we focus only on the transverse canonical pairs. The quadrupole is expected to do not change δ and have a very small effect on s. The final transfer map can be summarised as shown in the scheme of Eq. (4.15): 

   p x p y    i+1/7 =    p x p y    i + ∆σ 2    ∂a z (x i , y i , i) ∂x ∂a z (x i , y i , i) ∂y    -    a x (x i , y i , i) ∂a x (x i , y i , i) ∂y dx    x i+2/7 = x i+1/7 + ∆σ 2 p x,i+1/7 1 + δ    p x p y    i+3/7 =    p x p y    i+2/7 +    a x x i+2/7 ,
p x,i+5/7 1 + δ    p x p y    i+1 =    p x p y    i+6/7 +    a x x i+6/7 , y i+6/7 , i ∂a x x i+6/7 , y i+6/7 , i ∂y dx    + ∆σ 2     ∂a z x i+6/7 , y i+6/7 , i ∂x ∂a z x i+6/7 , y i+6/7 , i ∂y    

Implementation into SixTrack.

After implementing the integrator from Eq. (4.15), the goal was to patch it into SixTrack without modifying the optics.

This Fringe Field module is controlled by the FFIE block. The 4 following subroutine are the main elements for the interface between SixTrack and the code we developed.

• subroutine ffield parseInputLine(inLine, iLine, iErr):

This subroutine can be used when the input of SixTrack are read. Using the Keyword FFIE in the input . . . 

NEXT FFIELD ---------------------

+ i + j)
Coefficient of the Horner polynomial of the vector potential for the axis x (see Eq. (2.18)).

Ay m -(1 + i + j)
Coefficient of the Horner polynomial of the vector potential for the axis y (see Eq. (2.19)).

Az m -(1 + i + j)
Coefficient of the Horner polynomial of the vector potential for the axis z (see Eq. (2.20)).

Table 4.2: Input parameter in the Fringe Field profile files.

• subroutine ffield enterQuad(ffi) and subroutine ffield exitQuad(ffi)

Those last two subroutines are used in SixTrack 6D tracking. The code will automatically detect the beginning and end of the quadrupole and respectively call those subroutines. In order to operate efficiently, the adjacent elements must have a different name!

The lower frame of Fig. 4.2 schematically represents the process. Once the code detect that the particles are at the beginning of the quadrupole, they are tracked back with an anti-Drift of length length tot-length quad.

From this point, the particle are tracked with the integrator (4.15) using the vector potential from the file in.

Now, the particles are considered inside the quadrupole, so they are tacked back with an anti-Quad computed from the vector potential coefficients. Finally, a Drift of length length tot-length quad return the particles to the initial position. Once the particles are at the quadrupole end, the routine is reverse.

All this process is done in order to not add any extra quadrupolar strength in the optics. Since the anti-quad are δ-dependent, they have been computed for different ranges in [-δ, δ] and the adequate matrix is then selected depending of the particle δ. This was done in order to keep the tracking fast but it is not adapted for multi-type particles tracking that was developed in SixTrack at the end of this thesis.

Body Heads

Lie2:

HE+Heads: HE: Finally, a new non-linear transfer map has been derived with the aim to analyse the impact on the particle motion of a more realistic magnetic field description of the magnet ends. In the following three chapters, these three models are used to perform tracking simulations and to compute three different quantities that can also be measured with beam in real accelerators.

53 linear detuning due to second order effects from main sextupoles. Table 5.1 shows the fitted values with respect to the predicted ones. For each model, the simulated AD is compared to the theoretical AD from equations (3.75) and (3.77). The simulated detuning with amplitude is fitted with a 4 th order polynomial (motivated by using smallest degree for the best score, and its robustness over fitting procedures).

0

Amplitude detuning with all the harmonics

Table 5.1: Amplitude detuning coefficients from Fig. 5.1 fitted with a 4 th -order polynomial and for an Amplitude in µm. It appears clearly in Fig. 5.1 and Tab. 5.1 that the Amplitude Detuning is sensible to the longitudinal distribution of the harmonics in the magnet, i.e. the model. This is also confirmed by the fact that the simulations agree well with the analytical prediction up to an amplitude of ∼ 3.0 × 10 -2 µm.

Fit Analytical

Case

The good agreement between the HE+Heads and the Lie2 ND0 model shows that one additional kick in each of the extremity gives a good approximation of the longitudinal distribution of the expected non-linearities. Nevertheless, the Lie2 model yields the best representation, if accuracy is more important than computational cost.

The discrepancy between the Lie2 models with and without derivatives (ND0 and ND6, respectively) shows an additional linear detuning generated by the 1 st and 2 nd derivatives of the b 2 harmonics, as expected from equations (3.75) and (3.77). We just note that this effect is of the same order as the effect due to the 2 nd -order Sextupoles for the ATS optics [START_REF] Fartoukh | Achromatic telescopic squeezing scheme and application to the LHC and its luminosity upgrade[END_REF] with 15 cm β * , foreseen for HL-LHC project. In order to understand the origin of the discrepancy for amplitude higher than 3.0 × 10 -2 µm in Fig. 5.1, the same analysis is repeated considering only the b 6 harmonics error in the final focus quadrupoles. Since the error are generated using random number as explained in 4, the second order AD will be different from the previous section.

Amplitude detuning for only

The results are shown in Fig. 5.2 and Tab. 5.2.

In this case, there is no discrepancy between the theory and the simulation for all the models. This comforts us in the idea that the previous discrepancy comes from higher order harmonics that are not taken into consideration in the analytic calculation.

Precision of the Lie2 model and optimal order of the Generalized Gradient derivatives

In Ref. [START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF], the accuracy and efficiency of different integration and interpolation methods were studied and compared, including the Lie2 model presented here. In this section, we compare the tracking using the Lie2 transfer map with the reference model from [START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF], a 6 th order Gauss method, using AD as figure of merit. Figure 5.3 shows the impact on the AD for the two integration methods and two step sizes. A small difference of about 10 -5 appears when going at amplitude higher than 0.02 µm, which is due to the step size in z. The two integration methods reproduce the same detuning with amplitude for a non-linear transfer map of 2 cm step size. In Fig. 5.4, two interpolation methods (mean and spline) are compared for two step sizes. The mean interpolation method seems more stable, with an error of the order of 10 -5 which is also the precision of the frequency analysis of turn by turn BPMs data. We conclude that the step size in z has more impact on the precision of the model than the integration or the interpolation method chosen, which is also consistent with the results published in Ref. [START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF].

Figure 5.5 shows the impact of the order of gradients derivatives on the Amplitude Detuning. It appears that the 1 st derivative generates half of the 1 st -order Amplitude Detuning. This is not observed for the Horizontal plane ) with the referential model (Gauss6) from Ref. [START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF] on the Amplitude Detuning for dz =2 cm (top) and 4 cm (bottom). The right plot is a zoom over the high amplitude. All the points for dz =2 cm and the mean points for dz =4 cm are superposed.

because of the Gauge used. In fact, in order to further speed-up tracking the horizontal-free Coulomb gauge is chosen, which requires in general between 20% and 25% less coefficients evaluation of the vector potential in Eq. (2.18), (2.19) and (2.20) with respect to the azimuthal-free gauge [START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF]. Nevertheless for even number of derivatives all the gauges produce exactly the same magnetic field by definition, and as a consequence will result in the same amplitude detuning. It is also important to note that no significant discrepancy can be observed for a number of derivatives higher than 2. Following Ref. [START_REF] Sim Br Üning | Dynamic Aperture Studies for the LHC Separation Dipoles[END_REF][START_REF] Abelleira | FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies[END_REF], a simple correction procedure of the resonance driving terms can be done by setting the following coefficients to 0 (respectively normal and skew):

Correction of non-linearities

c(b n ; p, q, k, m) = IR ds K n-1 (s)β p/2
x β q/2 y e ±i[(p-2k)∆µx±(q-2m)∆µy] (5.1) c(a n ; p, q, k, m) = IR ds KS n-1 (s)β p/2 x β q/2 y e ±i[(p-2k)∆µx±(q-2m)∆µy] (5.

2)

The normal and skew errors can be identified by their strength, K n-1 and KS n-1 , respectively. We can easily see that the Resonance Driving Terms f jklm (see Eq. (3.62)) is proportional to c(b n ; p, q, k, m) and c(a n ; p, q, l, m). This is especially true, if we enlighten that p = j + k and q = l + m.

As it is the amplitude detuning that we want to correct here, we only focus on c(b n ; p, q, k, m) = 0 with p = 2l and q = 2m. Let's write the equation for the horizontal (p = 2k, q = 0) and vertical (p = 0, q = 2m) amplitude detuning (for k, m ∈ N * ). This selection makes the complex exponential of Eq. ( 5.1) to be equal to 1 and since p + q = j + k + l + m = n, the equation can be simplified. Finally, let's separate the correctors from the rest of the errors by identifying their positions as L and R, respectively for the Left and Right side of the Interaction Point:

     c(b n ; n, 0, n/2, 0) = K n-1,L β n/2 x,L + K n-1,R β n/2 x,R + IR ds K n-1 (s)β n/2 x = 0 c(b n ; 0, n, 0, n/2) = K n-1,L β n/2 y,L + K n-1,R β n/2 y,R + IR ds K n-1 (s)β n/2 y = 0 (5.3)
We end up with an inverse problem easily solvable, A K + h = 0. We define:

• K as a vector that contains the correctors strength that need to be find;

K =    K n-1,L K n-1,R    (5.4)
• A as a matrix that contains the correctors factor contributing to the coefficients c(b n ; p, q, k, m);

A =    β n/2 x,L β n/2 x,R β n/2 y,L β n/2 y,R    (5.5)
• h as a vector that contains the contributing to the coefficients c(b n ; p, q, k, m) from the element of the Interaction Region.

h = IR K n-1 (s)    β n/2
x (s)

β n/2 y (s)    (5.6)
The solution of this inverse problem provides the Left (L) and Right (R) side corrector strengths:

   K n-1,L K n-1,R    = -    β n/2 x,L β n/2 x,R β n/2 y,L β n/2 y,R    -1 IR K n-1,s    β n/2 x,s β n/2 y,s    (5.7)
As mentioned in the previous section, the Detuning with Amplitude and similarly all the RDTs are sensitive to the longitudinal distribution of the high order field harmonics. Since the non-linear corrections are computed in order to cancel the main RDTs, as a result, the correctors strength used to correct them is also sensitive to the longitudinal distribution of the non-linearities. The shift stays within the correctors specification also for the dodecapole corrector. The difference between the shift for the HE+Heads and the Lie2 models, as well as the effect of the gradients derivatives, is negligible in this case.

As explained in the previous chapter, only the longitudinal distribution of the systematic part of the errors is studied. The random part of the harmonics is considered equally distributed in the magnet, since this random component is computed using 2D Monte Carlo simulations. Therefore, measurements of the longitudinal profile for all the harmonics (above all the ones that do not have a systematic component) is essential to be able to model them accurately in the calculation of the correction.

Octupole and dodecapole correction in LHC

During the LHC commissioning while using amplitude detuning and feed-down data, the beam based values for the octupole corrector strengths have been estimated for both side of the ATLAS and CMS interaction points (respectively IP1 and IP5). A discrepancy is found between beam-based values for the octupole correctors and predicted ones from magnetic field measurements [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]. At collision energy, the main source of this octupole errors are the final focus quadrupoles composing the inner triplet (IT) of the LHC optics.

The Final Focusing quadrupoles in those regions are composed of two families, named MQXA and MQXB. The former have been developed and built at the KEK (Japan) while at FermiLab (USA) for the latter. The IT quadrupoles Q 1 and Q 3 are from the MQXA family while the Q 2 are from the MQXB family. Different potential sources have been studied to explain this discrepancy (detector solenoid Fringe Field, Beam Screen, magnets manufacturing imperfection, etc.). In the CERN magnets documentation [START_REF]FiDeL home: the Field Model of the LHC[END_REF], it is reported that because of its geometry, the MQXA type quadrupoles have an ovalization of its iron and coil. This generates a systematic b 4 , which is normally not allowed. It is also worth noticing that the Beam Screen geometry generates another b 4 harmonics in the Final Focusing quadrupoles.

In section 5.1, we have shown that considering the Fringe Field, i.e. the longitudinal harmonics distribution inside the HL-LHC Inner Triplet could give a change up to 13% in the non-linear corrector strength. The goal here is to repeat this study for the LHC Inner Triplet. Our starting point is the Return End (RE) of the 3D magnetic model (made with the CERN Roxie code [START_REF] Magnets | Superconductors and Cryostats Group. ROXIE -Electromagnetic simulation and Optimization of accelerator magnets[END_REF], used for magnetic field computation and magnet design) and the mechanical drawings of the MQXA magnets, given to us by H. Nakamoto (KEK). We aim to reconstruct a model for the MQXA as built in the machine. This is the result of S. Bagnis internship in collaboration with C. Lorin from CEA IRFU/DACM/LEAS. Unfortunately, none of this information could be found for the MQXB magnet.

The 3D magnetic model of MQXA

The aim is to reconstruct the machine-like 3D model of the magnet including the coil, the collar, the yoke as well as the Beam Screen (BS) as oriented in the machine. The BS is a 1 mm thick cut circle with a 0.5 mm thick cooling tube on each flat side. The material of the Beam Screen corresponds to a magnetic permeability of 1.0025 as for the collar. The one of IP1 is vertically oriented while in IP5 it is horizontally oriented as shown in Fig. 5 (respectively, the circle inner radius and semi-major/ the flat side inner distance to the aperture center).

The systematic values of the b 4 , b 8 , etc was supposed to come from an ovalization due to a dipole-like yoke assembly [START_REF] Yamamoto | Analysis of mechanical tolerances of a low-/spl beta/ quadrupole magnet for the LHC[END_REF]. In order to simulate this ovalization in the Roxie magnetic model, the coils blocks have been displaced

homogeneously by 50 µm (positive for the x-axis and negative for the y-axis) and the iron yoke elliptically deformed.

The design of the magnet RE is straightforward to generate in Roxie. Its dimensions were extract from mechanical drawings with a precision of about 1 mm in the longitudinal position of each block. The Lead End (LE) of the magnet is more complex to reconstruct in Roxie. The layer jumps, the internal splice due to the conductor grading in the second layer, and the conductors leads have been carefully modeled. A specificity of the MQXA magnet is the use of normal and mirror coils that breaks the quadrupolar symmetry in the layer jump area and more generally all over the LE. This specificity is another source of b 4 . Figure 5.9 shows the 3D reconstruction of the coil return and lead ends. 

MQXA field quality

With the Roxie, it is possible to compute Field Harmonics and, in particular, the longitudinal distribution of such Harmonics with the desired step in z. The integrated value of b 4 , considering the ovalization of the Coils and Iron, and the detailed description of the LE, is slightly lower with respect to the total integrated measured value, including its error (i.e. 1.30 ±0.11 units).

The Beam Screens impact the b 4 and b 6 harmonics as can be seen in Table 5.3. While no major difference is visible in the longitudinal harmonics distribution, as shown in Fig. 5.11. The Beam Screen contributions are close to the ones considered in the WISE database1 (i.e. +0.14 for IP5 and -0.12 for IP1).

The WISE total values for the Q 3 magnets are bigger than the total ones from our machine-like 3D model of 0.2 units (or more), as shown in Fig. 5.12. Figure 5.13 shows the comparison between the beam-based estimations, the predicted values using the reference WISE total harmonics (W) and the predictions using our machine-like 3D model, reported in Tab. 5.3. The Roxie simulation with the smaller Beam Screen of the Q 1 magnet didn't converge, so the same values as Q 3 are used in this analysis. Its impact is expected to be less important than the Q 3 and the Q 2 (of type MQXB), due to the lower β-function in Q 1 . Since we have no information of the MQXB Fringe Field, we use the WISE values for these magnets. As explained in [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF], the WISE prediction are pretty accurate for IP1 while pretty far for IP5. With this approximation the 3D HE model predict values shift to the upper left, decreasing the accuracy for IP1 but improving for IP5. Taking into consideration the harmonic longitudinal distribution apply a small shift in the lower left direction so it cannot explained the discrepancy with the Beam-Based measurements.

Effect of 3D magnetic field on non-linear corrector strength

In Fig. 5.13, the prediction for the HE and HE+Heads obtained by our 3D magnetic analysis are shown, together with the WISE predictions but without the beam-based values. There is no clear evidence of second order amplitude detuning from Beam-Based measurements in LHC. While, using the WISE values quite a strong correction should be needed in both IPs. In this respect, it is worth noticing that our 3D magnetic model gives a total b 6 which is significantly lower than the WISE values, going in the direction of the Beam-Based measurements. The HE+Heads model produce a shift in the same direction found for b 4 but bigger. In this chapter, we have evaluated the impact of the 3D realistic description of the inner triplet magnetic field on the amplitude detuning and on the calculation of the non-linear correctors strengths. In the case of HL-LHC, using computed longitudinal harmonics provided by magnet designers and tracking simulations, we show that the impact of the derivatives of the main quadrupole field (octupole-like) is small (∼ 4%), while the impact of the longitudinal distribution of the dodecapole harmonics can be as high as ∼ 13% with respect to the maximum corrector strength.

Our preliminary studies for the case of LHC show similare results. The effects of the longitudinal distribution of the octupole harmonics is small while the dodecapole one is high.

In the next chapter, we look at a more local observable in order to define another way to evaluate the non-linear field strengths in the accelerator, that is the variation of the measured beta-function with the particle amplitude.

69 Amplitude beta-beating is stronger but still very small, a discrepancy of ∼1 % at an action of 0.04 µm. Nonetheless, the discrepancy between the two models can hardly be seen in the RMS (red line in both plots), particularly for the horizontal plane. This is caused by the fact that most of the time, the horizontal Amplitude beta-beating tends to decrease the original beta-beating instead of increasing. In the vertical plane, it might be possible to see the difference but for that we have to compare with the precision of the measurements.
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Search for Amplitude Beta-beating in the LHC

The first time this phenomena has been hypothesized was during a HL-LHC WP2 meeting at CERN in 2018 where we presented our first results of the Fringe Field impact on the Amplitude Detuning and Dynamic Aperture. During this meeting, the question was raised if a variation of the deviation of the Betatronic functions from the model (i.e.

Beta-Beating) could be observed with the action, and used to detect local variation of multipoles strengths in the machine.
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Analysis of LHC turn-by-turn data

Our preliminary step was to check if this phenomena has already been observed during one of the Machine Development (MD). During those tests on the LHC, the beam physicists team uses the AC dipole [START_REF] Tom Ás | Normal form of particle motion under the influence of an ac dipole[END_REF] to increase the particle action in order to measure Amplitude detuning, as shown in Fig. 6.4. In the following plots, nob means that amplitude detuning has been corrected using the non-linear correctors in the insertion regions, sb4 and sb6 mean that there are, respectively, uncorrected first and second order amplitude detuning (Ref. [START_REF] Ewen | Report from LHC MD 1391: First tests of the variation of amplitude detuning with crossing angle as an observable for high-order errors in low-β * colliders[END_REF][START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF][START_REF] Ewen | Report from LHC MD 2158: IR-nonlinear studies[END_REF][START_REF] Werner | Report and Analysis from LHC MD 3311: Amplitude detuning at end-of-squeeze[END_REF]). Figure 6.5 shows the variation of both Horizontal and Vertical RMS beta-beating while the action in the horizontal axis increases. It appears that the horizontal beta-beating varies with the action but the decrease in 1/2J x of the RMS beta-beating can mainly be explained by the signal-to-noise improvement (see in Section 6.2.2). This is particularly clear when looking at the evolution of beta-beating for each of the BPMs, as shown in the right side of Fig. 6.6 for the MD 2158 (25-07-2017) (where the amplitude detuning has been computed using as reference the tunes from the model). If we look at certain BPMs, it might be possible to see Amplitude beta-beating but it is covered by the noise when all the BPM are considered. Some BPMs stand out such as "BPM.14L3.B1" whose horizontal beta-beating strongly increases for low action and then, decrease a bit slower. From the theory, this could be explained by very strong b 4 and b 6 near the BPM with the right phase advance between them but we can hardly see the same behaviour in the nearby BPMs, and as far as we known no such strong harmonics where reported.

If we compared it to the behaviour in a latter Machine Development shown in the left side of Fig. 6.6 (MD 3311 made the 16/06/2018), it appears that the initial beta-beating greatly improved for this BPM (even if over the whole machine the beta-beating stays within ±20% in both axis). A linear Horizontal Amplitude Beta-Beating might appears of the order of few percents. With the noise mentioned previously, we cannot ascertain with great confidence if this is the case. More data are needed. 

Impact of the BPMs noise

In this section we try to quantify how much the noise impacts our observables and the accuracy of the algorithm, used in the previous section to analyze the LHC turn-by-turn data. In this section, we will try to answer the following question: Can the level of noise σ BP M be estimated directly from the spectrum and what are the incertitude of the reconstructed signal parameters (i.e. frequency Q, amplitude A and phase P ) of a noised sinusoidal signal x(t)? In Ref. [START_REF] Starck | Sparse image and signal processing: wavelets and related geometric multiscale analysis[END_REF], J. L. Starck presents a method to measure the noise sigma. It is called the Median Absolute Deviation (MAD) and one option to define the reconstructed noise sigma from the FFT of the signal x(t) is:

x(t) = A cos(Qt + P ) + σ BP M N (0, 1) (6.1 
σ MAD = 1.4826 × median (|fft(x) -mean (fft(x))|) (6.2) 
The Fourier Transform of a signal is very sparse and for high amplitude signal. This can have a non-trivial impact on the mean over the different frequency of the FFT. This raises the questions: what information this averaged FFT provides, and how does it affect the median of the FFT amplitudes. So, another MAD algorithm is proposed:

σ MAD2 = 1.4826 × median (|fft(x)|) (6.3) 
Figure 6.7 shows the evolution of statistics of σ MAD divided by σ BP M as a function of the size (T ) of the sample for the FFT. Different noise levels with and without a sinusoidal signal are compared. The statistics was computed using 100 seeds and the RMS value of σ MAD is noted as σ σ MAD . The red lines correspond to the result of a fit of the mean value and the RMS (dashed line) without sinusoidal signal.

Without sinusoidal signal, there is a direct relation between the ratio σ MAD /σ BP M and the sample size. MAD2

gives much more stable results than MAD with also a ratio σ MAD /σ BP M closer to 1/ √ T in average. As can be seen in the plots on the right side of Fig. 6.7, the resulting error in the sigma noise is less than 1/100 of ratio signal amplitude over sigma noise. The expressions of the fit are:

• For the original MAD equation:

σ MAD = σ BP M × (1.4 ± 0.55)/ √ T (6.4) 
• For our approximation MAD2:

σ MAD2 = σ BP M × 1.235( √ T ± 1)/T (6.5)
If a sinusoidal signal is added, a similar offset and a sinusoidal response are observed for both MAD evaluations.

Removing the mean in the expression of MAD only affect the RMS. Since MAD and MAD2 have in average a similar behaviour, this can only come from the median of the FFT amplitudes. It seems to be correlated with the size of the sample and the sinusoidal signal Amplitude and Frequency. A first explanation actually studied, could come from the Fourier Transform formalism where, as reported in Ref. [START_REF] Laskar | The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping[END_REF]:

T /2 -T /2 Ae i(ω-ν)t T dt = 2A sin((ω -ν)T /2) (ω -ν)T (6.6)
Figure 6.8 shows the statistics of the discrepancy between the actual and measured spectral line parameters as a function of the signal amplitude divide by σ BP M . Two Frequency Analysis algorithms are compared: NAFF (Ref. [START_REF]NAFF -Numerical Analysis of Fundamental Frequencies[END_REF]) and SUSSIX (Ref. [START_REF] Bartolini | SUSSIX: A computer code for frequency analysis of non-linear betatron motion[END_REF][START_REF] Bartolini | A Computer Code for Frequency Analysis of Non-Linear Betatron Motion[END_REF]). Those two algorithms are based on iterative routines to measure the tune frequency and are widely used in the accelerator community. The NAFF algorithm has mostly been developed by J. Laskar in the nineties while SUSSIX is based on the TUNEWT algorithm developed by A. Bazzani in the midnineties and further developed and tested since then [START_REF] Biancacci | FFT corrections for tune measurements[END_REF]. The statistics has been obtained using 100 seeds and with samples of size T = 1000. The red line correspond to the fitted RMS value. It is known that there is an offset on the frequency given by the NAFF algorithm. As it is not related to this study, it has been taken into account in our theory as an offset (Offset N AF F ). ∆A/A ∆P ∆Q

NAFF ±3 σ BP M 1.4A √ T ±2.25π σ BP M 1.4A √ T ±2.1 × 10 -4 σ BP M 1.4A √ T + Offset N AF F SUSSIX ±2 σ BP M 1.4A √ T ±1.25π σ BP M 1.4A √ T ±1.05 × 10 -4 σ BP M 1.4A √ T
Clearly, the 1/2J x decrease observed in the RMS of all the LHC BPMs (Fig. 6.5) is correlated to the improvement of the ratio signal over noise. Compared to NAFF, the SUSSIX algorithm gives better results with a gain of a factor 2 in the fit coefficient for the reconstructed tune and phase, and a factor 1.5 for the reconstructed amplitude.

Machine Development proposal in the LHC with controlled Amplitude

Beta-Beating

In this section, we are going to test the theory developed in Sec. 3.6. The aim is to increase on purpose the measured amplitude beta-beating using the octupoles installed in the LHC machine, without first order amplitude detuning. In order to be above the BPM noise level discussed in the previous section, 5% horizontal amplitude beta-beating at 0.01 µm is used as target value. To do so, we use the same approach as in Section 5.1.4 and solve the system h = A K with :

• h: a vector of target Hamiltonian contributions described in Eq. 

A =                  β 2 x o 1 β 2 x o 2 β 2 x o 3 β 2 x o 4 β 2 x o 5 . . . βxβy| o 1 βxβy| o 2 βxβy| o 3 βxβy| o 4 βxβy| o 5 . . . β 2 y o 1 β 2 y o 2 β 2 y o 3 β 2 y o 4 β 2 y o 5 . . . β 2 x cos(-2∆φx) o 1 β 2 x cos(-2∆φx) o 2 β 2 x cos(-2∆φx) o 3 β 2 x cos(-2∆φx) o 4 β 2 x cos(-2∆φx) o 5 . . . β 2 x sin(-2∆φx) o 1 β 2 x sin(-2∆φx) o 2 β 2 x sin(-2∆φx) o 3 β 2 x sin(-2∆φx) o 4 β 2 x sin(-2∆φx) o 5 . . . . . . . . . . . . . . . . . . . . .                  (6.7)
• K: a vector of octupole o i integrated strengths.

In h, we fix h 2200 , h 1111 , h 0022 to be zeros. The terms (f

(b) 3100
) is defined such that it generates the 5 % horizontal amplitude beta-beating, using the expressions for Ξ u in Eq. (3.87-3.89). The other terms can be either fixed to zeros or free parameters. As the target values of h are fixed at a Reference BPM, the system has a unique solution.

In the LHC, there are three types of octupoles: the main octupoles in the Arc cells used for Landau damping (named MO); the octupole correctors attached to every-other dipoles in the Arc cells (named MCO); and the octupole correctors in the Interaction Regions (named MCOX). Using these types of octupoles, we have defined 3 different configurations of the machine, that are described in the following subsections. The optics used for the tracking simulation is the Injection LHC 2018 with β * = 11 m and the particles tracked are on momentum. In the first configuration studied, called HABB case 1, h is composed of:

Octupolar correctors in

• h 2200 , h 1111 and h 0022 equal to zeros such that they don't generate the direct and cross amplitude detuning;

• the Resonance Driving terms f (b) 3100 with its real and imaginary parts respectively equal to zeros and 5/12 µm -1 such that the direct horizontal amplitude beta-beating increase by 5 % when the action reach 0.01 µm;

• the Resonance Driving terms f (b) 0031 is also set to zero such that the direct vertical amplitude beta-beating is trivial.

All the other Resonance Driving Terms are unconstrained in the inversion of h = A K. The reference BPM, called "BPM.34R8.B1", is at the position S= 18 325.04 m. It is located near the middle of the arc between the IP8 and IP1. Figure 6.9 shows only the values of the Resonance Driving Terms related to the direct (f 3100 ) and cross (f 1120 ) amplitude beta-beating when the action increase in the x-plane. Those values are plot for each BPMs across the LHC and the reference BPM is marked in red (if the Resonance Driving Term is let free, only red dot is shown at the BPM position). Since the vector h has a size of 7 in this case (3 for the Amplitude Detuning terms and 2 × 2 for the Resonance Driving Terms), we choose to use only the octupole correctors (MCOX) in IR1, IR2, IR5 and IR8. Their respective integrated strengths are reported in Table 6.1.

Figure 6.10 shows how both beta-beating vary across the LHC when the horizontal action increases using the configuration of octupolar correctors mentioned before (see Table 6.1). The tracking simulation where made using SixTrack and the position at each BPMs are analysed with the BetaBeat.src code. The color of the dots corresponds to the particle action given by BetaBeat.src. As the action is computed using the linear approximation, as discussed in Sec. The simulated cross Amplitude Beta-Beating (∆β y /β y ) also agrees well with the theory for low action, but a discrepancy appears at high action. The three regions observed previously, are not clearly defined here. But it can still be noted that the cross Amplitude Beta-Beating is smaller between IP1 and IP2. As a reminder, f 2011 is not minimized in this case. The second configuration studied, called Amplitude Beta-Beating axe X case 2, is very similar to case 1 but we decide to choose a different reference BPM in order to check how the machine responds. In this case, the reference BPM is "BPM.34R3.B1" at the position S= 1663.60 m. It is located near the middle of the arc between the IP3 and IP4. Similarly to the previous subsection, the Resonance Driving Terms responsible for the direct and cross Amplitude Beta-Beating are shown in Figure 6.11 for all the BPMs across the LHC. Once again, only the octupole correctors in IR1, IR2, IR5 and IR8 are used. Their respective integrated strengths are shown in Table 6.2. Figure 6.12 shows how both beta-beating vary across the LHC when the horizontal action increases using the configuration of correctors mentioned before (see Table 6.2). In this case, the direct Amplitude Beta-Beating is almost the same along the machine compared to case 1 in which most of the direct ABB is concentrated between IP8 and IP1. Also, the section with the lowest cross Amplitude Beta-Beating amplitude is now between IP2 and IP5.

Octupolar correctors in

Regions delimited by the strongest octupoles can still be seen. As the action increases, a discrepancy between the prediction from the model and the simulation appears, in particular between the IP2 and IP4. For the cross Amplitude Beta-Beating, a phenomena equivalent to an offset can be observed between IP3 and IP5 which is not predicted by the theory. This configuration generates a strong ABB across the accelerator and particularly between IP8 and IP1 where it can reach a direct and cross Amplitude Beta-Beating of respectively 10 and 20 % or more around an action of 0.01 µm.

Octupolar correctors in the IRs and in the Arcs, and "BPM.34R3.B1" as reference

In the third configuration studied, called HABB axe X case 3, the goal is to check if constraining all octupolar Resonance Driving Terms while solving h = A K, improve the Beam dynamic. The reference BPM is the same as in case 2, ("BPM.34R3.B1"). The Resonance Driving Terms responsible for the direct and cross Amplitude In this case, both direct and cross Amplitude Beta-Beating are the strongest between IP8 and IP1 where it can be expected to reach a bit more than 10 % ABB around an action of 0.01 µm. Around the reference BPM (between IP3 and IP4), the value of the direct Amplitude Beta-Beating change a lot. This can be explained by the presence of correctors used to constrain the Resonance Driving Term all across this section.

Here, the discrepancy between the simulation and the theory is more evident as the action increases with respect to previous cases. Only the direct Amplitude Beta-Beating in the arc between IP8 and IP1 is still relatively well predicted. At high action, the discrepancy is more an oscillation and an amplification of the predicted direct and cross ABB. The discrepancy observed could be explained by the octupole 2 nd -order Resonance Driving Terms which act as dodecapolar RDTs, as shown in [START_REF] Franchi | First simultaneous measurement of sextupolar and octupolar resonance driving terms in a circular accelerator from turn-by-turn beam position monitors data[END_REF]. This possibility has not been implemented in our analytical code yet. Beta-Beating observed at the BPM doesn't appear here. It can also be noted that even if the same constraints are imposed (case 1 and 2), the evolution of the RMS beta-beating with the action can be very different and the goal of 5 % horizontal beta-beating at 0.01 µm is not necessarily reached in the RMS beta-beating.

Up to now, we have only studied the amplitude beta-beating when it is computed from the spectral line amplitude.

Another method is possible using the phase advance between 3 BPMs 1 with the following relation:

∆β u,1 β u,1 P = cot (∆µ me u (s 2 , s 1 
))cot (∆µ me u (s 3 , s 1 )) cot (∆µ mo u (s 2 , s 1 ))cot (∆µ mo u (s 3 , s 1 )) -1 (6.8)

with ∆µ u (s j , s k ) the phase advance between the BPMs j and k. Figure 6.18 shows how the direct beta-beating computed from the phase of the main spectral line and its discrepancy with respect to the one computed from the amplitude of the main spectral line, vary across the LHC for the three configurations studied. We are still working on the theory for this measurement method of the amplitude beta-beating. Using Eq. (6.8) for the reconstruction of the beta-beating has many limits. First of all, if the phase advance between the BPMs is ∼ 90 • or if ∆µ mo u (s 2 , s 1 ) ∼ ∆µ mo u (s 3 , s 1 ) mod(2π), the measurement is greatly sensible to the noise. Secondly, Eq. (6.8) work really well when there are no non-linear error between the BPMs.

Nonetheless, since the two methods should behave similarly, using the difference between them could be used to detect local errors. In fact, the major differences between the methods are where the strongest octupoles are located, as shown in Fig. 6.18.

1 The results could be improved using the N BPMs methods. In this chapter, we have evaluated the impact of the HE+Heads model on the variation of the measured betafunction with the particle amplitude. Using tracking simulations for the HL-LHC project, we found that the effect is very small (of the order of few per cent). When looking at the LHC machine development data, we show that this effect can be hardly seen given the present Beam Position Monitors noise levels. The possibility to enhance the variation of the measured beta-function with the amplitude of the particle is studied using different octupole corrector configurations of LHC and compared with the theory developed in chapter 3. The limits of the theory and of the procedure to enhance the measured amplitude beta-beating are discussed.

In the following and last chapter, we study the impact of the 3D realistic magnetic field description on the third observable, i.e. Dynamic Aperture. No analytic description of this observable is possible. Contrary to detuning and beta-beating that vary according to even multipole and multipole-like errors, the Dynamic Aperture is a cumulative effect of all the multipoles errors present in the accelerator and their mutual interference.

Chapter 7

Dynamic aperture

Dynamic aperture (DA) is a quantity often used to define the performance of an accelerator against magnets imperfections. It is defined as the area of the stable phase-space region spanned by a particle in an accelerator and it is evaluated using particle tracking simulations [START_REF] Todesco | Dynamic aperture estimates and phase-space distortions in nonlinear betatron motion[END_REF] or measured by different techniques [START_REF] Maclean | Innovative method to measure the extend of the stable phase-space region of proton synchrotrons[END_REF].

In this chapter, we study the impact of the three different models described in section 4 on the computation of Dynamic Aperture, focusing in particular on the effect of the b 6 correctors. In the first section, the impact of the number of generalized gradient derivatives on DA is discussed. In the second section, the impact of the 3 models on Dynamic Aperture is studied for different angles in the x-y plane. Finally, in the last section, we study their impact on the time evolution of the DA. In both case, we also observe what happen when the non-linear correctors are applied.

The Dynamic Aperture is computed simulating the particles motion over 10 4 revolutions with initial conditions distributed on a polar grid, so as to have 30 pairs of particles (different initial conditions) for each interval of 2σ (beam size1 ) from 0 to 28. Eleven angles in the x-y phase space are scanned, where x and y are in units of linear beam dimensions. The initial momentum offset δ is set to 27 × 10 -5 (which is equivalent to 2/3 of the LHC RF bucket design). The Dynamic Aperture values are defined as the initial amplitudes (in number of beam size σ) of particles lost in 10 4 turns. This procedure for the DA simulations is the same used for LHC DA studies [START_REF] Fartoukh | Dynamic aperture computation for the as-built CERN Large Hadron Collider and impact of main dipoles sorting[END_REF] and it was found to provide a precision of about 0.5 beam σ at 10 

Evolution of the Dynamic Aperture with number of revolution

Starting from the ensemble of initial amplitude of particles losts in the x-y phase space, which define the Dynamic Aperture shown in the previous section, the DA as a function of turns can be defined as [START_REF] Maclean | Innovative method to measure the extend of the stable phase-space region of proton synchrotrons[END_REF]:

DA(N ) = 2 π π/2 0 r s (θ; N ) dθ (7.1)
where N is the number of revolutions of the particle in the accelerator (called turns), r s is the last stable particle (disregarding stability islands non-connected to the origin) and θ is the angle in the x-y phase space. Thus, a value of DA can be calculated for each turn, which is shown in Fig. 7.4 for one configuration of the machine. In this configuration of the machine (seed), the Lie2 model maintains a higher DA value for longer numbers of turns (above 2000). The impact of the b 6 correction varies according to the model as in the case of the DA vs angle. Once again when the b 6 correction is applied no improvement in the Dynamic Aperture evolution is visible for the HE+Heads model. 

Conclusion

The main goal of this thesis is to quantify the impact of the quadrupole fringe fields on the protons beam dynamics of LHC upgrade in Luminosity. We focus our studies on the final focus quadrupoles of the high luminosity insertions of LHC and HL-LHC. They are the main sources of non-linearities at collision energy and the variation of the beta function along these magnets is not small. As discussed in chapter 2, the concept of Fringe Field has diverged from its former definition to be only the magnetic field B z . Using the 3D vector potential from generalized gradients defined in Ref. • la d ériv ée longitudinale des harmoniques ∂b n /∂z (i.e. la reconstruction du champ magn étique longitudinal); 1 1 unit correspond à une variation relative sur le champ de 10 -4 à un rayon de r éf érence donn é; 17 cm dans le cas du LHC 110

• la distribution longitudinale des harmoniques b n (z).

Diff érentes études sur la mod élisation du champ de fuite ont port é sur l'impact de la composante longitudinale B z du champ magn étique. Ainsi, ces études prennent seulement en compte la moiti é de la d éfinition du champ de fuite. Tout comme avec les mesures, la variation longitudinale des harmoniques est cach ée, n églig ée.

Afin de repr ésenter de la mani ère la plus r éaliste le champ magn étique 3D, nous utilisons les Gradients G én éralis és pr ésent és dans [START_REF] Venturini | Accurate computation of transfer maps from magnetic field data[END_REF] Les trois param ètres suivants, introduits par leur travaux et caract érisant cet ellipse, sont utilis és et étudi és dans cette th èse (u ∈ {x, y}):

• l'action 2J u est un invariant. Il correspond à l'aire de cette ellipse.

• la fonction b étatronique β u (s) est un des param ètres de Twiss qui caract érisent la forme de l'ellipse. Sa racine carr ée est proportionnelle à l'enveloppe du faisceau de particules le long de l'acc él érateur.

• le nombre d'onde Q u ou "tune" en anglais. Il correspond au nombre d'oscillations r éalis ées dans l'espace des phases par la particule apr ès une r évolution dans l'acc él érateur. • l' écran faisceau ajoute bien une erreur octupolaire de l'ordre de ±0.12 units suivant son orientation (pris en compte dans WISE) mais aussi une erreur de type dod écapolaire de l'ordre de 0.08 units (non pris en compte dans WISE);

• l'effet de l' écran faisceau n'est pas le m ême dans les extr émit és que dans la partie centrale de l'aimant;

• les valeurs totales des erreurs octupolaires et dod écapolaires sont syst ématiquement plus petits de 0.2 units dans le mod èle 3D par rapport aux mesures. 

Abstract:

In order to boost the precision of the physics measurements, an improvement of a factor 10 of the LHC luminosity is planned for the next decade. A key ingredient of this upgrade is the need to use a new technology for the superconducting magnets which allows increasing the available peak field at a given aperture. The field quality of this new technology influences the beam dynamics; in large rings very little effects can have an important impact on the long term motion of the particle in the accelerator. This motion can be studied by means of transfer maps. For the individual elements of the beam line, these maps can in general depend sensitively on non-linear fringefield and high-multipole effects, usually concentrated at magnets extremities. The inclusion of these effects in the particle dynamics requires a detailed and re-alistic model of the full magnetic field, including its fringe fields. The accurate description of the field can be obtained by various finite element field codes, in form of 3-dimensional field data on a grid. Starting from these field maps (or equivalent magnetic measurements) and using Fourier analysis, it is possible to compute the transfer map. In this thesis, a new transfer map describing this 3D field imperfections has been developed and implemented into the CERN Tracking code, SixTrack. This allows to quantify for the first time the impact of such imperfections on beam-based observables such as Amplitude Detuning, measured Amplitude Beta-Beating and Dynamic Aperture. When possible an analytical expression have been derived and compared to simulations.
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 2997 ABBDirect and Cross Amplitude Beta-Beating.
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 1 , B u Magnetic field (u ∈ {x, y, z} or u ∈ {ρ, φ, z} depending of the coordinate system). 3 MeV/c b n , a n Respectively n th -order Normal and Skew harmonics normalized by the reference magnet strength B ref (see Eq. (2.4)). -10 -4

  Large Hadron Collider and its upgrade in Luminosity At the end of the World War II, the European research potential in Physics has almost disappeared. So, a small group of scientists and politics proposed the creation of an European Scientific Laboratory starting with R. Dautry, P. Auger and L. Kowarski from France, E. Amaldi from Italy and N. Bohr from Denmark. In 1949, during an European Conference for the culture, L. de Broglie made officially this proposal and in 1952, eleven European governments agreed to the creation of the CERN (i.e. "Conseil Europ éen pour la Recherche Nucl éaire") at Meyrin (Switzerland) near the French-Swiss border. Its creation is effective in September 1954, the 29 th when twelve European States 1 members of the CERN Council signed the CERN convention [10]. And since its beginning, the CERN purposes are clearly oriented to Research in Accelerator and Particle Physics (and Astro-Particle Physics) and to "make generally available [...] its experimental and theoretical work" [10]. Since then, the CERN has build many accelerator, increasing in energy generation after generation ((p) for proton and (e) for electron/positron). Fig. 1.1 shows the latest CERN accelerator complex. The milestones of this project are: 1957: the Synchro-Cyclotron (SC, Beam Energy 600(p)MeV, Circ. 15.7 m) 1960: the Protons Synchrotron (PS, Beam Energy 28(p)-0.5(e)GeV, Circ. 628 m), 1971: the Super Protons Synchrotron (SPS, Beam Energy 450(p)-20(e)GeV, Circ. 7 km), 1981: the Large Electron Positron collider (LEP, Beam Energy 55-100(e)GeV, Circ. 27 km), 2008: the Large Hadron Collider (LHC, Beam Energy 6.5(p)TeV, Circ. 27 km). 1 European Stat members of the CERN Council in 1954: Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom and Yugoslavia These developments have been rewarded with major discoveries such as: neutral currents (Gargamelle, 1973), W and Z bosons (UA1 and UA2, 1983), the direct CP violation (NA48 at CERN and KTeV at Fermilab, 1999) and a boson with mass around 125 GeV/c 2 consistent with the Higgs boson (ATLAS and CMS, 2012).
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 11 Figure 1.1: The CERN accelerators complex (© 2016-2020 CERN).
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 11 Presentation of the Large Hadron Collider

Figure 1 . 2 :

 12 Figure 1.2: Structure of the LHC and 3D view of the Beams from the Inner Triplet (IT) to the Interaction Point (IP).

Figure 1 . 3 :

 13 Figure 1.3: Schematic layout of the right side of IR1. (see Ref. [23]).

Figure 1 . 4 :

 14 Figure 1.4: Schematic layout of the magnets in the current IR region till Q 4 of the LHC (top) and HL-LHC (bottom).Thick boxes are magnets, thin boxes are cryostats (Ref.[START_REF] Alonso | High-Luminosity Large Hadron Collider (HL-LHC)[END_REF]).

Figure 2 . 1 :

 21 Figure 2.1: Normal harmonics sampled at ∆z = 2mm for the prototype of HL-LHC Inner Triplet quadrupole (MQXFS).

Figure 3 . 1 :

 31 Figure 3.1: Beam trajectory inside an accelerator.

Figure 3 . 2 :

 32 Figure 3.2: Pointcar é section and Twiss parameters, with x = p u and = 2J u .

  21) Combining Eq. (3.19) and Eqs. (3.20-3.21), we obtain the coefficient h w,jklm in Tab. 3.1.

  29) Combining Eq. (3.23) with Eq. (3.27), (3.28) and (3.29), we obtain the coefficient h w,jklm in Tab. 3.1.

  For two function A and B and O(2) being the error terms, it follows that: exp(: A + B :) = exp(: A :)exp(: B :) + O(2) (3.49) exp(: A :)exp(: B :) = exp(: A + B : +O(2)) (3.50)

  Forest, M. Berz and J. Irwin demonstrated that a normalization map A(b) = exp(: F(b) :) exists: A -1 (b)e :∆σH(b): A(b) = e :∆σ H(b): (3.60) They show that combinations of the eigenvectors ξ (b) u± = √ 2I u exp(∓i(µ u N + µ u (b)) acts as excited resonances 1 .

  and it becomes H = H0 + HAD + HR in the normalized space. We now need to describe the normalization map A with its generating function F. As mentioned previously, the normalization process presented by E. Forest, M. Berz and J. Irwin introduces new resonances to the trajectory of the particles. In the Poincar é section, this results in a deformation of the ellipse. These resonances linked to the H RDT term of the Hamiltonian, are used to describe the generating function F. This function is a polynomial of the eigenvectors ξ x± and ξ y± , similar to the perturbative term of the Hamiltonian in Eq. (3.17), the exponents being the same: j, k, l and m. The strength of these resonances computed at a position (b) and excited by multipolar errors at (w), will be noted as f (b)

  is the phase advance between the error source (w) and the position of the observation (b). Using those generating function terms, the expression of the Courant-Snyders variables becomes h (b) u± = exp(: F(b) :)ξ u± ] + O(2). That being said, the eigenvectors as the Courant-Snyders variables are not canonical variable. Using a simple change of variable, the Poisson bracket of two generating functions f and g can be expressed with those eigenvectors as:

  action 2I u , and µ (b) u,0 the initial phase at the observation position (b).

  the BPM (b) and its estimated value in order to take into account possible errors or deviation with time in the estimation of the Calibration factors.

  prevent ellipses to cross each other by introducing an action smear. *** In this chapter, the 3D vector potential expression derived in chapter 2 has been used to compute the terms of the perturbative Hamiltonian that are commonly neglected. These terms add to the same resonances terms generated by normal octupole and dodecapole magnetic field.
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 33 Figure 3.3: The left side shows of the Phase Space, respectively from top to bottom, the perfect linear case (ref), the case with only f (b) 3100 and with both f (b) 3100 and f (b) 1300 in Eq. (3.64). The right side shows the expression of the Direct Amplitude beta-beating Eq. (3.87) for different actions.

Figure 4 . 1 :

 41 Figure 4.1: Example of keyword command for SixTrack in the input file fort.3.

Figure 4 . 2 :

 42 Figure 4.2: Schematic representation of the three models compared in this thesis. HE, HE+Head and Lie2 respectively refer to the Hard Edge, Hard Edge with extra multipole in the magnet ends, and the model develop from the Lie algebra.
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 51 Figure 5.1: Amplitude detuning for the horizontal (left) and the vertical plane (right).

Figure 5 .

 5 Figure 5.1 shows the simulated Amplitude Detuning in both planes with all the non-linear errors (except for b 4 ) for all the models. The horizontal error bars correspond to the minimum and maximum amplitude over the 10 3 revolutions and are centered on the initial amplitude. The vertical error bars correspond to the uncertainty of the correction for

the b 6 Figure 5 . 2 :

 652 Figure 5.2: Amplitude detuning for the horizontal plane (left) and the vertical plane (right).
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 53 Figure 5.3: Comparison of the Lie2 model (for ND6) with the referential model (Gauss6) from Ref. [57] on the Amplitude Detuning for two different step sizes in z. The right plot is a zoom over the high amplitude. For each step size, the values for the model are superposed.
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 54 Figure 5.4: Comparison of the Lie2 model (for ND6) with the referential model (Gauss6) from Ref.[START_REF] Simona | High order time integrators for the simulation of charged particle motion in magnetic quadrupoles[END_REF] on the Amplitude Detuning for dz =2 cm (top) and 4 cm (bottom). The right plot is a zoom over the high amplitude. All the points for dz =2 cm and the mean points for dz =4 cm are superposed.
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 55 Figure 5.5: Horizontal (left) and vertical (Right) Amplitude Detuning for different numbers of gradients derivatives considered in the Lie2 model. The Vector Potential is computed with the Horizontal Free Coulomb gauge (see Ref. [57]).
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 56 Figure 5.6: Single aperture elements in LHC (left) and HL-LHC (right) insertion regions. The three (splitted) quadrupoles composing each inner triplet (Q1, Q2 and Q3) are in blue, blue dots represent the position of the quadrupoles connectors, the first separation dipole is in yellow and the non-linear correctors are in purple (top panel). The horizontal and vertical β functions are shown in the bottom panel.

Figure 5 .

 5 Figure 5.7 shows the correlation of the non-linear correctors strength at both sides of the high luminosity IPs for these 60 seeds. Since only the systematic component of the error as a longitudinal distribution (while the uncertainty and random component are equally distributed), it results in a systematic shift between the HE model and the others. The octupole-like generated by b 2 and b 2 produces a systematic shift in the octupole corrector strength of about 4% with respect to the b 4 corrector specification given in Ref. [9]. In the case of b 6 correction, the systematic shift is around 13%, always with respect to the present corrector specification. The shifts are symbolised by arrows in Fig. 5.7.
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 57 Figure 5.7: Integrated strength of the b 4 (called KCOX, left) and b 6 (called KCTX right) corrector computed for different models in IR1 and IR5, with 60 seeds.
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 58 Figure 5.8: Cross-section of the Q 3 magnet, the IP1 Right side (3R1, left) and the IP5 Left side (3L5, right) with their Beam Screen are shown.
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 59 Figure 5.9: MQXA Return Ends (RE, left) and Lead Ends (LE, right).
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 510 Figure 5.10: Comparison of the harmonics longitudinal distribution from the Roxie 3D machine-like model (continuous lines) and the longitudinal magnetic measurements performed at the KEK (dots). Courtesy of H. Nakamoto (KEK).
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 511 Figure 5.11: Longitudinal profile of the harmonics in the Q 3 magnet from the Left side of IP5.

Figure 5 .

 5 10 shows a comparison of the longitudinal b 4 and b 6 harmonics computed from the 3D magnetic model described in the previous section and the values for the Lead End, as measured at KEK with the rotating coil technique for steps of 2 cm. In order to speed up the computation, we have shorten the length of the central and constant field of the magnet. The model and the measurements agree pretty well in the case of b 6 harmonics. They show overall good agreement in the case of b 4 harmonics, with a visible difference in the region between -0.75 and -0.5 m.

Figures 5 .

 5 Figures 5.13 and 5.14 shows the correlation of the non-linear correctors strength (respectively octupole and dodecapole correctors) at both sides of the high luminosity IPs for 60 machine configurations (given by the b 2 random errors).
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 512 Figure 5.12: Total harmonics values from the WISE database and from the Roxie machine-like 3D model.
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 513 Figure 5.13: Integrated strength of the b 4 corrector computed for different models in IR1 and IR5, and 60 slightly different b 2 values.
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 514 Figure 5.14: Integrated strength of the b 6 corrector computed for different models in IR1 and IR5, and 60 slightly different b 2 values.
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 61 Figure 6.1: Projection of simulated Horizontal (left) and Vertical (right) beta-beating computed from the spectral amplitude for different action on the horizontal axis, for all the HL-LHC BPMs, when the b 4 harmonics is not corrected, and for the HE model.
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 6263 Figure 6.2: Projection of simulated Horizontal (left) and Vertical (right) beta-beating computed from the spectral amplitude for different action on the horizontal axis, for all the HL-LHC BPMs, when the b 6 harmonics is not corrected, and for the HE model.

Figure 6 .

 6 Figure 6.3 shows the effect of the same b 6 as in Fig.6.2 for the HE+Heads model. In this case, the 2 nd -order

Figure 6 . 4 :

 64 Figure 6.4: Measurements of the Amplitude detuning on horizontal axis for different Machine Development (MD) on the LHC. nob means a flat Amplitude detuning, sb4 and sb6 mean that there are respectively uncorrected b 4 and b 6 ..

Figure 6 . 5 :

 65 Figure 6.5: Variation of the Horizontal (left) and Vertical (right) RMS beta-beating computed from the spectral line amplitude for different actions on horizontal axis, for different LHC MD data.

Figure 6 . 6 :

 66 Figure 6.6: Projection of measured Horizontal beta-beating computed from the spectral line amplitude for different actions on horizontal axis. Those values were measured for the MD 3311 of 16/06/2018 (Left) and the MD 20158 of 25/07/2017. The blue dash lines correspond to the individual LHC BPMs while the beta-beating mean and RMS are respectively in green and red. The BPM named BPM.14L3.B1 is unlighted in orange.

1 .Figure 6 . 7 :

 167 Figure 6.7: Evolution of the measured noise using the MAD (top) and MAD2 (bottom) formula as a function of the sample size with (right) and without (left) a signal with Q = 0.62002π.

Figure 6 . 8 :

 68 Figure 6.8: Evolution of the spectral line parameters (top: Amplitude, middle: Phase, bottom: Frequency) as a function of the sample size when measured with NAFF (left) or SUSSIX (right).

  (3.62) which act on Amplitude detuning and Resonance Driving Terms (at a reference BPM (b)), i.e. (h 2200 , h 1111 , h 0022 , (f . . . );• A: a matrix of respectively Amplitude detuning and Resonance Driving Terms coefficients between the source of the b 4 (octupole correctors o i ) and the BPM (b);
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 69 Figure 6.9: Prediction for case 1 of the values of the Resonance Driving Terms f 3100 (left) and f 1120 (right) at all the BPM positions. The reference BPM "BPM.34R8.B1" (S= 18 325.04 m) is marked in red.

Figure 6 . 10 :

 610 Figure 6.10: Direct (top) and cross (bottom) Amplitude Beta-Beating from spectral line amplitude for case 1. On the left are the results of the simulations, and on the right the difference between the simulations and Ξ u from Sec. 3.6. The action (noted 2J x ) is the average over BPMs measured from spectral line amplitude.

Figure 6 . 11 :

 611 Figure 6.11: Prediction for case 2 of the values of the Resonance Driving Terms f 3100 (left) and f 1120 (right) at all the BPMs position. The reference BPM "BPM.34R3.B1" (S= 1663.60 m) is marked in red.
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 612 Figure 6.12: Direct (top) and cross (bottom) Amplitude Beta-Beating from spectral line amplitude for case 2. On the left are the results of the simulations, and on the right the difference between the simulations and Ξ u from Sec. 3.6. The action (noted 2J x ) is the average over BPMs measured from spectral line amplitude.
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 613 Figure 6.13: Prediction for case 3 of the values of the Resonance Driving Terms f 3100 (left) and f 1120 (right) at all the BPMs positions. The reference BPM "BPM.34R3.B1" (S= 1663.60 m) is marked in red.

Figure 6 . 14 :Figure 6 .

 6146 Figure 6.14: Direct (top) and cross (bottom) Amplitude Beta-Beating from spectral line amplitude for case 3. On the left are the results of the simulations, and on the right the difference between the simulations and Ξ u from Sec. 3.6. The action (noted 2J x ) is the average over BPMs measured from spectral line amplitude.

Figure 6 .

 6 Figure 6.16 shows the evolution of horizontal and vertical beta-beating measured at the reference BPMs, as a function of the horizontal action. The linear direct and cross Amplitude Beta-Beating is well predicted by the theory.
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 6615616617 Figure 6.17 shows how horizontal and vertical RMS beta-beating vary as the horizontal action increases. Both beta-beating have a very linear behaviour, as we would expect having octupolar errors. The second order Amplitude
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 618 Figure 6.18: Direct Amplitude Beta-Beating from spectral line phase (left) and its difference with the Amplitude Beta-Beating computed from the spectral line amplitude (right). The results are shown for the 3 different cases.
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 73 Figure 7.3: Dynamic Aperture at 10 4 as a function of phase space angles with b 6 correctors OFF (left), and with b 6 correctors ON (right). Dots represents the 60 different configurations of the machine according to random component of the magnets errors.

Figure 7 . 4 :

 74 Figure 7.4: Dynamic Aperture as a function of particle revolutions (turns) with b 6 correctors OFF (left), and with b 6 correctors ON (right) for one machine configuration. The HE+Heads model is used to compute the correction in the Lie2 ND2 case.

Figure 7 .

 7 Figure 7.5 shows statistics from the 60 different machine configurations. As for the case Dynamic Aperture at 10 4 revolutions as a function of the angle, the random part of the errors dominates over the systematic part, resulting in much less difference between the models when looking at their mean values. The only significant difference seems to be on the spread between the minimum and maximum DA values, which is reduced in the Lie2 model, as one can also glimpse in Fig. 7.3.
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 75 Figure 7.5: Dynamic Aperture as a function of particle revolutions (turns) with b 6 correctors OFF (left), and with b 6 correctors ON (right). The minimum and maximum (dashed lines) together with the mean values (full lines) over 60 different configurations of the machine according to random component of the magnets errors are shown for each model.

  [START_REF] Venturini | Accurate computation of transfer maps from magnetic field data[END_REF], an analytic expression for Amplitude Detuning and RDTs have been derived, for the first time. The measurements of Amplitude Detuning and RDTs during commissioning of the accelerator are used to measure the effective strength of high order harmonics seen by the beam in the accelerator, and to estimate correctors values. In this thesis, we have also explored the possibility to use a new beam-based observable to measure and correct local sources of non-linear errors. An analytic expression of the non-linear variation of the beta-beating measurement with the action, called amplitude beta-beating, have been derived for the first time. The analytical studies have been complemented with numerical simulations of particle tracking in the accelerator.For these simulations, an accurate, symplectic and efficient non linear transfer map have been derived for the representation of the quadrupole vector potential and implemented into the CERN tracking code, SixTrack. This new transfer map has been compared to 2 other representations of the magnetic field: the Hard-Edge model with a uniform distribution of the harmonics along the magnet; and the Hard-Edge with Heads model, similar to the Hard-Edge model but with two additional Kicks in the magnet ends. This allows to quantify the impact of the 3D distribution of the magnetic fields on beam dynamics. We consider three beam based observable: the amplitude detuning with the correctors strength, the amplitude beta-beating, and the dynamic aperture.Applied in the case of HL-LHC project, the impact of the 3D magnetic field distribution is not negligible and has to be taken into account, especially when comparing computed with beam based measured values. The impact on the b 6 corrector strength can be up to about 13% with respect to the present corrector specification. The impact of the first and second derivatives of the quadrupole field (octupole-like) accounts for 4% of present octupole corrector specification. The modification to the corrector strength is in the present design specification, so no big impact is expected from the design point of view. State of art measurements of Dynamic Aperture in the LHC presents an quadrip ôles de grande ouverture physique, appel ée Triplet de Focalisation Final (IT). Des correcteurs sont accol és à ces quadrip ôles. La publication[START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF], d émontre que pour le LHC, la principale source de non-lin éarit é à l' énergie de collision provient des quadrip ôles de l'IT aux niveaux d'ATLAS et de CMS. Cela s'explique par le fait que i) un faisceau de taille minimale au niveau de l'IP, implique une tr ès grande taille de faisceau dans ces quadrip ôles et ii) les aimants du LHC et de HL-LHC sont supraconducteurs. Les harmoniques composant leur champ magn étique peuvent varier grandement entre leur partie centrale et leurs extr émit és. Tous ces points sugg èrent que de petits écarts entre le mod èle et les mesures avec le faisceau dans ces r égions peuvent avoir un impact significatif sur la dynamique du faisceau.Dans le second chapitre, nous revenons sur la d éfinition des harmoniques du champ magn étique et du champ de fuite. Les harmoniques b n et a n correspondent respectivement à des oscillations normales et tourn ées du champ magn étique lorsqu'il est mesur é sur un cercle dans le plan transverse et centr é sur l'axe de l'aimant. On appelle harmonique principale, celle qui correspond au nombre de p ôles de l'aimant divis é par 2 (n = 2 pour les quadrip ôles par exemple). Des d éfauts g éom étriques peuvent ajouter d'autres harmoniques, consid ér ées comme des termes d'erreurs magn étiques non-lin éaires. Les mesures étant g én éralement r éalis ées avec une bobine tournante, la force de ces harmoniques est moyenn ée sur la totalit é de l'aimant. Ce faisant, elles sont consid ér ées comme constantes tout au long de l'aimant pour devenir nulles soudainement aux extr émit és. Cette approximation est appel ée Hard-Edge (ou champ franc). Dans le cas du LHC, des mesures pr écises à 0.2 units 1 ont ét é r éalis ées sur ces quadrip ôles et sont stock ées dans la base de donn ées WISE; base de donn ées recueillant toutes les inductions magn étiques mesur ées de tous les él éments du LHC. Pour HL-LHC qui était encore en phase de conception lors de cette th èse, les aimants n'ont pas encore ét é construits. Dans ce cas, à la partie syst ématique des harmoniques s'ajoutent deux termes al éatoires comme montr é dans Eq. (2.4). Cela permet de mod éliser les incertitudes de construction des aimants et les diff érentes configurations d'erreur dans la machine.Bien entendu, le mod èle hard-edge ne repr ésente pas parfaitement la r éalit é comme H. WIEDEMANN le rappelle dans Particle Accelerator Physics. Le passage de 0 à la valeur nominale du champ magn étique de l'aimant n'est pas soudain et nous appelons Champs de Fuite (i.e. "Fringe Field" en anglais) cette r égion de transition. Lorsque l'on regarde le champ magn étique sous la forme d'harmoniques comme dans Fig.2.1, on peut observer une transition douce pour l'harmonique principale mais cette transition est plus perturb ée pour les autres harmoniques. On peut aussi remarquer que la pr ésence à une extr émit é des connecteurs servant à alimenter en courant les bobines supra-conductrices, brise la sym étrie longitudinale des harmoniques. Ainsi, lorsque nous parlons de champ de fuite, nous d ésignons le champ magn étique 3D complet que nous pouvons r ésumer en 2 points:

La section 3 . 2

 32 étudie plus en d étails le second terme de l'Hamiltonien H p . Celui-ci d écrit la perturbation du mouvement g én ér ée par des erreurs non-lin éaires du champ magn étique et des écarts par rapport à H 0 . Par la suite, diff érents sous-termes sont identifi és dans le terme H p . Nous ne citons que les 4 sous-termes suivants:• V HE contient les harmoniques du champ magn étique. La principale diff érence par rapport aux travaux ant érieurs étant que nous consid érons la r épartition longitudinale de celles-ci le long des aimants.• V F F ;pa et V F F ;a 2 contiennent les effets des d ériv ées impaires des harmoniques. Elles agissent dans l'Hamiltonien comme des multip ôles équivalents 1 respectivement d'ordre (n + 2l + 2) et 2 × (n + 2l + 1). Ce ph énom ène est b étatronique avec l'action est d évelopp ée, pour la premi ère fois. Il y a deux m éthodes pour la mesurer à partir de la ligne spectrale principale: soit en utilisant l'avance de phase entre 3 BPMs (Beam Position Monitors), soit en utilisant l'amplitude à 1 BPM. Nous nous focalisons sur la seconde m éthode. En faisant apparaître la d épendance avec l'action dans l'expression de l'amplitude des lignes spectrales H(-1, 0) et V (0, -1), nous obtenons un nouvel observable pour la d éviation b étatronique. La derni ère section discute des incertitudes sur la mesure de l'action et du nouvel observable.Les expressions th éoriques de deux des observables étant d étaill ées, le chapitre 4 discute la pr écision de calcul des trajectoires des particules dans les multip ôles magn étiques. Comme nous étudions l'ouverture dynamique dans un acc él érateur hadronique circulaire, nos sch émas num ériques doivent correspondre à certains crit ères de temps de calcul et de symplecticit é.Dans un premier temps, nous revenons sur la fac ¸on dont les trajectoires de particules sont normalement calcul ées. Le Hard-Edge (HE) est pr ésent é, correspondant à un sch éma de type saute-mouton (i.e. une s équence de matrices "kick" et "drift"). Dans notre cas, l' él ément magn étique est divis é en 16 sous-él éments plus courts pour un bon compromis entre la pr écision et la vitesse de calcul.Dans la seconde section, une premi ère approche est propos ée pour prendre en compte la distribution longitudinale des harmoniques le long de l'aimant. Elle consiste à ajouter des "kicks" additionnels aux extr émit és du mod èle HE. Il est n éanmoins important que les forces multipolaires totales des él éments soient conserv ées. Pour cela, nous divisons les aimants en 3 sections: l'extr émit é avec les connecteurs (CS ou LE), la partie centrale avec un champ magn étique constant (BD) et l'extr émit é sans les connecteurs (NC ou RE). Les équations (4.6) et (4.7) doivent être satisfaites. Nous notons ce mod èle HE+Heads. Pour finir, la derni ère section introduit le sch éma num érique que nous avons d évelopp é au CEA de Saclay. Il s'agit de l'aboutissement de 3 stages et 2 th èses r éalis és sous la direction de B. Dalena, J. Payet et O. Napoly du CEA et en collaboration avec L. Bonaventura de Polytechnico di Milano, Italie. Les objectifs étaient de calculer le potentiel vecteur avec la plus grande pr écision possible, à partir d'une carte magn étique (simul ée ou mesur ée)fournie par les concepteurs des aimants, puis de traduire ce potentiel vecteur en carte de transport pour nos simulations de dynamique de faisceau. Ce sch éma num érique, pr ésent é dans la premi ère partie de cette section, a ét é impl ément é dans le code de calcul de trajectoire de particules SixTrack, d évelopp é au CERN[START_REF]SixTrack -6D Tracking Code[END_REF]. La proc édure pour l'impl émenter dans SixTrack, est rapidement d étaill ée dans la seconde partie de cette section. Nous notons ce mod èle Lie2 et pr écisons le nombre de d ériv ées du Gradient G én éralis é en indiquant: ND0 lorsqu'il n'y en a aucune, et ND6 lorsque nous nous arr êtons au sixi ème ordre.Ces 3 mod èles correspondent à diff érentes repr ésentations du champ magn étique comme illustr é dans la figure 4.2. Des simulations avec le code SixTrack sont r éalis ées et leurs effets sur diff érents observables sont compar és dans les 3 derniers chapitres. Les observables de la dynamique faisceau sont respectivement dans ces chapitres: i) la variation du nombre d'onde avec l'amplitude (i.e. l'"amplitude detuning"), ii) la variation de la mesure de la fonction b étatronique avec l'amplitude (i.e. l'"amplitude beta-beating") et iii) l'ouverture dynamique.Le chapitre 5 étudie l'impact des 3 mod èles, pr ésent és dans le chapitre 4, sur la variation du nombre d'onde avec l'action, i.e. "amplitude detuning". Cette observable est la mesure la plus directe et la plus stable des effets des non-lin éarit és du champ magn étique sur la dynamique faisceau. Il est couramment utilis é lors des p ériodes de r églage du LHC, pour corriger les erreurs multipolaires pr ésentes dans les aimants de la machine.Dans un premier temps pour HL-LHC, des écarts mesurables sont observ és entre les 3 mod èles dans les simulations du "amplitude detuning", que ce soit pour la distribution longitudinale des harmoniques ou les d ériv ées du gradient. Dans le second cas, aucun impact mesurable n'est observ é pour des d ériv ées d'ordre sup érieur à 2. Concernant l'impact sur la correction de l'amplitude detuning, ,nous observons aussi un d écalage lorsque l'on exprime la force d'un correcteur d'un c ôt é de l'IP en fonction de l'autre. Dans le cas des d ériv ées du gradient, le d écalage des forces des correcteurs octupolaire est de ∼ 4 % par rapport aux sp écifications du correcteur alors que dans le cas de la distribution longitudinale des harmoniques, l'effet sur la force des correcteurs dod écapolaires est plus significatif (∼ 13 %). Dans tous les cas, le mod èle HE+Heads est d éj à une tr ès bonne approximation du mod èle Lie2 si on ignore les d ériv ées du gradient. N éanmoins, cette machine étant encore en phase de conception, les incertitudes de configuration magn étiques restent pr édominantes. Dans le cas de LHC, il a ét é report é un d écalage entre les corrections obtenues à partir de mesures avec le faisceau et les pr édictions du mod èle [5], qui utilise les valeurs des multip ôles connus des aimants du LHC et stock ées dans la base de donn ées WISE [24]. Nous nous sommes alors pos é la question si ce d écalage pourrait être expliqu é par la distribution longitudinale des harmoniques le long des él éments. D'autre part, la pr ésence d'un écran faisceau a soulev é la question de son influence sur le champ de fuite par rapport au champ de la partie centrale. Pour cela, le code de simulation de champ magn étique Roxie [60] a ét é utilis é pour recr éer le mod èle magn étique 3D d'une des deux familles de quadrip ôle de la r égion d'interaction du LHC (Q 1 et Q 3 ). Aucune information sur la structure m écaniques 3D de la seconde famille (Q 2 ) n'a ét é retrouv ée et le mod èle magn étique 3D du Q 1 avec l' écran faisceau n'a pas converg é. N éanmoins, à partir des r ésultats du Q 3 nous avons pu observer que:
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  Dynamique des faisceaux de particules non-lin éaire pour les upgrades du LHC Mots cl és: Physique des acc él érateurs, Dynamique non-lin éaire, Sch émas symplectiques R ésum é: La r éalisation des futurs collisionneurs circulaires de protons d épend d'avanc ées technologiques d écisives. En particulier, les aimants supraconducteurs seront construits en technologie Nb3Sn, ce qui permettra d'augmenter leur ouverture et leur champ magn étique. La qualit é du champ (i.e. l'homog én éit é) de cette nouvelle technologie va influencer la dynamique du faisceau. Des m éthodes avanc ées de mod élisation et de simulation doivent être utilis ées et ult érieurement d évelopp ées pour la conception des futures acc él érateurs. En effet, des imperfections du champs magn étique des aimants, m ême tr ès faible, pourraient avoir un impact important en limitant les performance de l'anneau, en particulier sur la dynamique de faisceau à long terme. La prise en compte de ces effets exige un mod èle d étaill é et r éaliste du champ magn étique des aimants, y compris de ses champs de fuite. La description de ces champs magn étiques peut-être obtenue, sous la forme de champ à 3 dimensions sur une grille ou sous la forme d'harmoniques longitudinales, par diff érents codes à él éments finis (par exemple le code ROXIE du CERN) et/ou par des mesures directement sur les aimants. Pour d écrire de fac ¸on r éaliste les effets de ces champs sur la dynamique du faisceau à long terme, il est n écessaire de pouvoir utiliser ces informations dans les codes qui simulent le transport des particules. Dans cette th èse, une nouvelle carte de transfert pour d écrire ces imperfections de champ a ét é d évelopp ée et impl ément ée dans le code de transport du CERN, SixTrack. Celle-ci a permis de quantifier pour la premi ère fois l'impact des imperfections 3D du champ sur des observables faisceau, tel que la variation du nombre d'onde et de la fonction b étatronique de la machine avec l'amplitude et l'ouverture dynamique. Quand cela est possible, une expression analytique a ét é d ériv ée et compar ée aux simulations. Title: 3D non-linear beam dynamics for the LHC upgrades Keywords: Accelerator Physics, Nonlinear beam dynamics, Symplectic maps
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	1: LHC Final Focusing Quadrupoles (MQXA and MQXB) main parameters (Ref. [23])
	Type	MQXA	MQXB
	Coil inner diameter	70 mm	70 mm
	Magnetic length	6.37 m	5.5 m
	Operating temperature	1.9 K	1.9 K
	Nominal gradient	215 T/m	215 T/m
	Nominal current	7149 A	11 950 A
	Cold bore diameter OD/ID	66.5/62.9 mm	66.5/62.9 mm
	Peak field in coil	8.6 T	7.7 T
	Cable width, cable 1/2	11/11 mm	15.4/15.4 mm
	Mid-thickness, cable 1/2	1.487/1.340 mm	1.456/1.146 mm
	Keystone angle, cable 1/2	2.309/1.319 deg.	1.079/0.707 deg.
	No of strands, cable 1/2	27/30	37/46
	Strand diameter, cable 1/2	0.815/0.735 mm	0.808/0.650 mm
	Cu/SC Ratio, cable 1/2	1.2/1.9	1.3/1.8
	Filament diameter, cable 1/2	10/10 µm	6/6 µm

.2 The High-Luminosity LHC 1.2.1 Presentation of the High-Luminosity upgrade of the LHC

  If the LHC reach a Luminosity of 150 fb -1 by the end of 2018, this project of upgrade wants to reach 250 fb -1 per years. This implies a peak luminosity of 5 × 10 34 cm -2 s -1 at the experiments.

	1After 10 years of exploitation, the LHC IT magnets need to be replaced. On the other hand, a lot of questions have
	not been answered yet (New physic, Dark Matter, ...) and some new questions appear (the Higgs size, single or
	multiple peak, ...). Therefore, it was decided to increase of the Luminosity 1 in order to increase the likelihood to
	observe rare events, with minimum change to the machine. This upgrade of Luminosity is called High-Luminosity
	LHC or HL-LHC.												
			b 3	b 4	b 5	b 6	b 7	b 8	b 10	a 3	a 4	a 5	a 6	a 7	a 8
	6677 A (6.8 TeV)	Ave	0.04	1.30 0.00	0.33	0.00	0.02 -0.01 0.21 -0.02	0.01	-0.03 0.00 0.00
		Std	0.31	0.11 0.04	0.09	0.04	0.01	0.01	0.01	0.37	0.28	0.04	0.02 0.01
	CS, l=0.34 m	Ave	-0.26 1.17 0.01 -0.54	0.00	-	-0.08 0.24	0.08	0.04	-0.06 0.00 0.00
		Std	1.20	0.14 0.17	0.10	0.02	-	0.01	1.20	0.26	0.14	0.04	0.01 0.01
	NC, l=0.62 m	Ave	0.21	2.07 0.05	2.59	-0.01	-	-0.06 0.59	0.04	-0.06	0.09	0.03 0.00
		Std	1.20	0.14 0.17	0.10	0.02	-	0.17	0.01	0.02	0.01	0.01	0.00 1.20

Table 1 .

 1 4: Comparison of beam parameters between the LHC and the HL-LHC project.

	Nominal

LHC HL-LHC HL-LHC Parameter design report standard BCMS

  

	Beam energy in collision [TeV]	7	7	7
	Particles per bunch, N [10 11 ]	1.15	2.2	2.2
	Number of bunches per beam	2808	2748	2604
	Beam current [A]	0.58	1.09	1.03
	Crossing angle in ATLAS and CMS	285	590	590
	Minimum β * [m]	0.55	0.15	0.15
	Levelled luminosity [10 34 cm -2 s -1 ]	-	5.0	5.0
	Virtual Luminosity with crab cavity [10 34 cm -2 s -1 ]	(1.18)	19.54	18.52
	n [µm]	3.75	2.50	2.50
	L [eVs]	2.50	2.50	2.50
	r.m.s. energy spread [0.0001]	1.13	1.13	1.13
	r.m.s. bunch length [cm]	7.55	7.55	7.55
	Total loss factor R 0 without crab cavity	0.836	0.305	0.305
	Total loss factor R 1 with crab cavity	(0.981)	0.829	0.829
	Beam-beam/IP without crab cavity	0.0031	0.0033	0.0033
	Beam-beam/IP with crab cavity	(0.0038)	0.0011	0.0011
	Events/crossing without levelling and crab cavity	(27)	198	198
	Events/crossing with levelling and crab cavity	(27)	138	146
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	.5: HL-LHC Final Focusing Quadrupoles (MQXSF) main parameters (Ref. [31])
	Type	MQXFA	MQXFB
	Coil inner diameter	150 mm	150 mm
	Magnetic length	4.20 m	7.174 m
	Operating temperature	1.9 K	1.9 K
	Nominal gradient	132.2 T/m	132.2 T/m
	Nominal current	16 230 A	16 230 A
	Cable width	18.363 mm	18.363 mm
	Mid-thickness in./ou.	1.530/1.658 mm 1.530/1.658 mm
	Keystone angle 1	0.40 deg.	0.40 deg.
	No of strands	40	40
	Strand diameter	0.850 mm	0.850 mm
	Cu/SC Ratio	1.20	1.20
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	6: Estimated of the principal field harmonics in units at 50 mm of the HL-LHC IT Quadrupoles type MQXFS.
	The beam screen effect has not been taken into consideration (Ref. [25]).				
			L [m]	b3	b4	b5	b6	b10	b14	a2	a3	a4	a5	a6	a10	a14
	Q1 and Q3	Sys	3.459	0.000 0.000 0.000	0.323	-0.175 -0.856	-2.985	0.000 0.000	0.000 0.210	0.006	-0.021
		U,R		0.820 0.570 0.420	1.100	0.200	0.023	10.000	0.650 0.650	0.430 0.310	0.040	0.005
	Q2a and Q2b	Sys	6.409	0.000 0.000 0.000 -0.075	-0.148 -0.862	-1.753	0.000 0.000	0.000 0.124	0.004	-0.012
		U,R		0.820 0.570 0.420	1.100	0.200	0.023	10.000	0.650 0.650	0.430 0.310	0.040	0.005

Chapter 2 What do we mean by Fringe Field?

  After some discussion with Magnet designers and Beam Dynamic experts, it appears that a nuance in the definition of Fringe Field has disappeared over the many beam dynamics studies. As this can lead to some misunderstanding, it is necessary to clarify what we mean by Fringe Field.
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 3 1: Normal Octupole and Octupole-like perturbative terms, computed using the codes in Appendix A.

	Magnetic	h w,jklm	Main	Fringe Field

Table 3 .

 3 2: Normal dodecapole and dodecapole-like perturbative terms, computed using the codes in Appendix A.

	Magnetic
	h w,jklm

Table 5 .

 5 2: Amplitude detuning coefficients from Fig.5.2 fitted with a 4 th -order polynomial and for an Amplitude in µm.

								Fit			Analytical		
				Case		∂Qx/∂(2Jx)	∂ 2 Qx/∂(2Jx) 2	∂Qx/∂(2Jx) ∂ 2 Qx/∂(2Jx) 2	
				HE			(0.8 ± 0.3) × 10 -3	-0.64 ± 0.03		0		-0.58	
				HE+Heads	(0.6 ± 0.3) × 10 -3	0.38 ± 0.03		0		0.39	
				Lie2 ND0	(0.7 ± 0.4) × 10 -3	0.28 ± 0.03		0		0.33	
				Lie2 ND6	(11.4 ± 0.4) × 10 -3	0.34 ± 0.04	10.9 × 10 -3		0.33	
				Case		∂Qy/∂(2Jy)	∂ 2 Qy/∂(2Jy) 2	∂Qy/∂(2Jy)	∂ 2 Qy/∂(2Jy) 2	
				HE			(-0.2 ± 0.5) × 10 -3	-1.64 ± 0.07		0		-1.59	
				HE+Heads	(-0.5 ± 0.5) × 10 -3	-0.59 ± 0.06		0		-0.62	
				Lie2 ND0	(-0.3 ± 0.5) × 10 -3	-0.74 ± 0.07		0		-0.67	
				Lie2 ND6	(11.0 ± 0.4) × 10 -3	-0.80 ± 0.05	10.9 × 10 -3		-0.67	
		2.0	×10 3 Lie2 mean ND6 dz=2cm Lie2 mean ND6 dz=4cm Gauss6 mean ND6 dz=2cm Gauss6 mean ND6 dz=4cm				2.35 2.40 2.45	×10 3 Lie2 mean ND6 dz=2cm Lie2 mean ND6 dz=4cm Gauss6 mean ND6 dz=2cm Gauss6 mean ND6 dz=4cm	
	Q x -C 1 *2Jx	1.0 1.5							Q x -C 1 *2Jx	2.20 2.25 2.30					
		0.5								2.10 2.15					
		0.0	0	1	2	3 2Jx [ m]	4	5 ×10 2	2.05	4.6	4.7	4.8	4.9 2Jx [ m]	5.0	5.1	×10 2 5.2

Table 5 .

 5 3: Harmonics in the different sections of the MQXA magnet. C+I refer to the magnet with only the iron, 3R1 and 3L5 refer to the Beam Screen type and orientation.

	Struc.	Roxie	Lmag	b 1	b 3	b 4	b 6
		Total	6.37	0.30 0.02 1.05	0.03
	C+I	Body LE	-0.41	0.00 0.00 1.03 -0.28 4.68 0.38 1.33 4.45
		RE	0.20	0.00 0.00 1.01 -0.19
	C+I+3L5	Total Body LE	6.37 -0.41	0.30 0.02 1.19 -0.05 0.00 0.00 1.17 -0.36 4.68 0.38 1.44 4.39
		RE	0.20	0.00 0.00 1.21 -0.30
	C+I+3R1	Total Body LE	6.37 -0.41	0.30 0.02 0.93 -0.05 0.00 0.00 0.90 -0.37 4.68 0.38 1.48 4.68
		RE	0.20	0.00 0.00 0.82 -0.30

Table 6 .

 6 1: Integrated strength (K in m -3 ) of octupole correctors for case 1.

	Name	MCOX3.L5 MCOX3.R5 MCOX3.L8 MCOX3.R8 MCOX3.L1 MCOX3.R1 MCOX3.R2
	K	1739.11	-207.69	1468.17	-2142.16	-148.01	-1384.10	680.42

Table 6 .

 6 2: Integrated strength (K in m -3 ) of octupole correctors for case 2.

	Name	MCOX3.L5 MCOX3.R5 MCOX3.L8 MCOX3.R8 MCOX3.L1 MCOX3.R1 MCOX3.R2
	K	-1383.16	-600.26	-1516.33	-266.81	-277.32	2243.62	1799.75

Table 6 .

 6 3: Integrated strength (K in m -3 ) of octupole correctors for case 3. Beating when the horizontal action increases, are shown in Figure6.13. In this case, all the octupole types are needed in order to constrain all the octupolar Amplitude Detuning and Resonance Driving Term contributions. Their respective strengths are shown in Table6.3. Figure6.14 shows how both beta-beating vary across the LHC when the horizontal action increases.

	Name	MCOX3.L5	MCOX3.R5	MCOX3.L8	MCOX3.R8	MCOX3.L1	MCOX3.R1	MCOX3.R2
	K	41.16	157.02	1790.83	-132.91	57.64	-1029.57	-861.83
	Name	MOF.A34B1	MOF.A45B1	MOF.A67B1	MOF.A78B1	MOF.A12B1	MOF.A23B1	
	K	-482.22	603.50	40.75	-180.60	247.70	-248.26	
	Name	MOD.A34B1	MOD.A45B1	MOD.A67B1	MOD.A78B1	MOD.A12B1	MOD.A23B1	
	K	-482.22	603.50	40.75	-180.60	247.70	-248.26	
	Name	MCO.A34B1 MCO.A56B1 MCO.A67B1 MCO.A81B1 MCO.A12B1 MCO.A23B1	
	K	92.48	-248.54	66.49	-35.61	-153.18	266.23	
	Beta-							

  5 turns[START_REF] Hayes | The influence of Computer Errors on Dynamic Aperture Results Using SixTrack[END_REF]. Since in the machine configurations we study in this paper the Dynamic Aperture converges very quickly to its asymptotic value, we expect the same type of precision in the DA results for this comparison between models. Figure 7.2: Dynamic Aperture at 10 4 as a function of x-y space angles with b 6 correctors OFF (left), and with b 6 correctors ON (right) for one configuration of the machine. The HE+Heads model has been used to compute correction of b 6 in the case of Lie2 ND2 tracking.

	DA(10 4 ) [ ]	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0	20 HE+ heads 40 angles [ ] HE Lie2 ND2	60	80	) [ ] DA(10 4	4 5 6 7 8 9 10 11 13 18 17 16 15 14 12	0	20 HE+ heads 40 angles [ ] HE Lie2 ND2 HE+heads cor 60	80
	DA(10 4 ) [ ]	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0	20	40 angles [ ] HE+ heads min DA 60 80 HE min DA Lie2 ND2 min DA	) [ ] DA(10 4	4 5 6 7 8 9 10 11 13 18 17 16 15 14 12	0	20 HE+ heads min DA 40 60 angles [ ] HE min DA Lie2 ND2 HE+heads cor min DA 80

  et qui sont li és au Potentiel Vecteur 3D. Ce Potentiel Vecteur est utilis é dans cette th èse pour les simulations de dynamique faisceau. L'expression pour calculer les Gradients G én éralis és est donn ée par Eq. (2.15) et le passage de ceux-ci au Potentiel Vecteur 3D est donn é par Eq. (2.18), (2.19) et (2.20).Gr âce à ce potentiel vecteur 3D, des expressions analytiques peuvent être d évelopp ées pour diff érents observables de la dynamique faisceau, comme d écrit dans le troisi ème chapitre. La premi ère section de ce chapitre est consacr ée à l'expression de l'Hamiltonien d écrivant le mouvement des particules charg ées dans un champ magn étique de type multipolaire. En utilisant une premi ère approximation dite paraxiale (i.e. le moment total de la particules est consid ér é comme bien sup érieur aux moments transverses), un nouvel Hamiltonien est d écrit.Cet Hamiltonien est ensuite d écompos é en 2 termes H 0 et H p . Le premier terme correspond à la dynamique des particules en pr ésence de dip ôles et de quadrip ôles. Les travaux de Courant et Snyder[START_REF] Courant | Theory of the Alternating-Gradient Synchrotron[END_REF] ont montr é que le mouvement des particules d écrit une ellipse tour apr ès tour dans l'espace des phases (i.e. section de Pointcar é).

The connectors and non-connector side are also respectively called Lead End (LE) and Return End (RE).

The Luminosity is a measure of the number of potential collisions per surface unit over a given period of time. It is an essential indicator of an accelerator's performance and is measured in inverse femtobarns (fb -1 ), i.e. one inverse femtobarn equates to 100 million million collisions.

In order to simplify our calculus, we use the USA convention for n which state that for a dipole n = 1 while in the MAD convention n = 0.

ρ A refers to the radius of the accelerator ring, to be distinguished from ρ the radius inside the magnet.

t and s are often used interchangeable in papers. This is the results of a proper change of variable which end-up by dividing by the square of the speed.

The last term O(2) is the error term and contains the rest of the Taylor series, among which are the Kinetic terms with p 4 x + p 4 y . But as the subject of this thesis are big hadronic circular accelerators, their contribution are negligible. For these terms, the same following method can also be applied.

More details about the construction of such transfer map are discuss in Sec. 4.3.

To be more general, in[START_REF] Forest | Normal form methods for complicated periodic systems: a complete solution using differential algebra and lie operators[END_REF], the authors consider two kinds of motion: stable and unstable. The eigenvectors mentioned here are for the first kind. For the latter, the complex 'i' have to be removed from the equations.

The connector corresponds to the region where the cable separate from the coils and reach the power supplies. The notion of connector side is often used in beam dynamics while for magnet design, it is preferred to speak about Lead and Return End.

WISE is the database which contains the measured integrated harmonics for each element of the LHC ring, as mentioned in section 1.1.2.

The relation between σ and the particle action in the normalized phase-space

2Ju is: σ = √ 2Ju.

On note l'ordre de l'harmonique n et leurs d ériv ées respectivement paire (2l) et impaire (2l + 1).

Remerciements

l'action, la variation de la d éviation b étatronique avec l'action et l'ouverture dynamique.

Dans le cas d'un acc él érateur en phase de conception comme HL-LHC, les incertitudes magn étiques des aimants et de configuration de la machine sont bien sup érieures aux effets du champ de fuite. Mais ceux-ci peuvent n éanmoins servir de limite inf érieure pour la marge lors du choix des sp écifications des correcteurs. Dans le cas d'un acc él érateur d éj à construit comme le LHC, prendre en compte le champ de fuite peut permettre de r éduire les écarts entre le mod èle et les corrections à partir d'observations sur le faisceau. N éanmoins, pour prendre en compte ces effets, une grande pr écision des champs magn étiques et des mod èles d'ordre sup érieur à ceux utilis és actuellement restent n écessaires.

tout au long de ma th èse.

file fort.3 will automatically prepare our code for the tracking. As shown in Fig. 4.1, it can be followed by 3 flags controlling the Quadrupoles to take into consideration for the study, the multipoles to skip and the files containing the Fringe Field coefficients. The Keyword NEXT delimits the end of the block.

-FFQN quadname in ex

The FFQN flag selects which quadrupole (name) has a longitudinal description in additional files that will be loaded in the study and links it to the type of Fringe Field that will be used (additional file). Here, quadname is a chain of character corresponding to the name of quadrupole for the Fringe Field study.

Those names must be the same as in the single block (SING in fort.2). Following the quadrupole name, two integers (in and ex) correspond to the index of the fringe field file to use respectively at the beginning and end of the quadrupole. Those integers correspond to the order of the Fringe Field files in fort.3 (see FFFI).

-FFMS multname

The FFMS flag specifies the name of the multipoles to skip in the tracking, in order to not increase the integrated non-linearities if multipole kicks are already added for the quadrupole in the optics definition.

We used this flag to remove the additional Kick from the HE+Heads lattice which is replaced by the Lie2 models. Here, multname is a chain of character corresponding to the name of multipole skipped. As previously, the name must be the same as in the single block (SING in fort.2).

-FFFI file length quad length tot [aperture]

The FFFI flag is followed by the files where the different Fringe Field vector potential coefficient are saved. Those coefficient are saved using the format shown in Table 4.2. Here, file corresponds to the path to the fringe field file. length quad corresponds to the length inside the quadrupole, i.e. integrated magnetic length of the equivalent quadrupole for this file. length tot corresponds to the Total length of integration inside the file. Those are used to define the longitudinal position of the integrator in the optics definition. Finally, aperture represents the physical aperture of the quadrupole, or the maximum aperture at which you trust the representation of the Vector Potential. This parameter is optional and by default, it is fixed to 0.080 m.

• subroutine ffield mod link(iErr):

If there is the keyword FFIE in fort.3, this subroutine is called. It's goal is to check in the quadrupole and mutlipole selected using the previous procedure exist in the lattice. If the quadrupole is found, then the subroutine ffield mod ChckQuad(i,norm,iErr) is called to load the Fringe Field file and normalized the coefficients. The Chapter 5

Amplitude detuning and local harmonics correction

In this chapter, the impact of the Fringe Field on the Amplitude Detuning (AD) and its correction will be studied. The AD is a quantity often used during commissioning of the accelerator to quantify the strengths of the higher orders field errors and to derive the correction [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]. The theory behind the AD is described in section 3.5.

In the first section, the prediction for the first and second order amplitude detuning are discussed as well as the non-linear corrector strengths, comparing the 3 models of Chp. 4 for HL-LHC. In the final section, a first attempt to quantify the impact of the longitudinal distribution of the harmonics in LHC is reported.

HL-LHC first and second order amplitude detuning predictions

In this section, we simulate the particles motion over 10 3 revolutions purely on the vertical or horizontal plane, without the dodecapole correction. The initial positions are set to be below the Dynamic Aperture value (i.e. 0<2J u ≤ 0.05 µm for a normalized emittance of 2.5 µm), and their initial momentum offset δ is 0. As a comparison, the maximum measured amplitude reached in the LHC is of the order of 0.3 µm for a β * of 25 cm (see Ref. [START_REF] Ewen | Report from LHC MD 1391: First tests of the variation of amplitude detuning with crossing angle as an observable for high-order errors in low-β * colliders[END_REF][START_REF] Ewen | Report from LHC MD 2158: IR-nonlinear studies[END_REF][START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]).

For the sake of the graphic visibility, the b 4 multipole error components have been removed from the simulation.

And the linear amplitude detuning from the main sextupole second order has been subtracted in the AD using the linear coefficient C1 (about 1.8 ± 0.1 × 10 -2 µm -1 and 1.75 ± 0.1 × 10 -2 µm -1 , in the x and y-planes respectively) compatible with the 1 st order anharmonicity given by MADX PTC (Ref. [START_REF]MAD -Methodical Accelerator Design[END_REF]).

Chapter 6 Amplitude Beta-Beating

In this chapter, a new beam-based observable called the Amplitude Beta-Beating (ABB), is studied numerically. The theory is described in section 3.6, where it is explained that Resonance Driving Terms acting on the Spectral Ray H(-1,0) and V(0,-1) are respectively associated to the horizontal (HABB) and vertical beta-beating (VABB).

In the first section, predictions for HL-LHC are presented, using tracking simulations. For this, the simulation from the amplitude detuning analysis are reused to extract the turn-by-turn positions of the particle at each Beam Position Monitors (BPM). Those positions are then analysed by the BetaBeat.src, a CERN code for beam based measurements data analysis [START_REF]Beta-Beat Source -Python-tool package of the optics measurements and corrections group (OMC)[END_REF], in order to extract the beta-beating at each BPMs for different horizontal actions.

In the second section, some data taken in LHC Machine Developments (MD) studies are analysed, to check if ABB is actually visible in the real machine. This analysis is then compared to what we should expect from the BPMs noise. In the last section, three configurations of the LHC using octupole to generate an HABB stronger than the noise are proposed.

HL-LHC predictions

While studying the impact of the longitudinal harmonics distribution inside HL-LHC Inner Triplet on Amplitude detuning and Dynamic Aperture using the HLLHCv1.0 optics (see chapter 5 and 7), we have also checked if Amplitude beta-beating could be measured.

As shown in Fig. 6.1, the foreseen b 4 harmonics in the Interaction Region Inner Triplet generates a linear Amplitude beta-beating of the order of 1 to 3 % at an action of 0.04 µm.

In Figure 6.2 is shown what happen when only the b 6 is considered. This time a 2 nd -order Amplitude beta-beating appears but once again very small (a discrepancy of less than 1 % at an action of 0.04 µm). Both figures are for the Hard-Edge model.

Impact of the Generalized Gradient derivatives on beam stability

As discussed in section 4, in the case of Lie2 the numbers of gradients derivatives can be specified in the reconstruction of the vector potential used for the tracking. 

Impact of the model on Dynamic Aperture as a function of angles in the x-y space for HL-LHC

The Dynamic Aperture values for the eleven x-y space angles scanned in the simulations are shown in Fig. [START_REF] Maclean | Innovative method to measure the extent of the stable phase-space region of proton synchrotrons[END_REF] with respect to prediction by numerical simulations using measured integrated values of non-linearities. This value is higher than the difference found between the Dynamic Aperture prediction from the different models in the case of HL-LHC. In particular, being able to reproduce accurately the longitudinal profile of each of the harmonics of the final focus magnets is more important than higher order derivatives.

The possibility to see the effect of the 3D magnetic field distribution on the LHC beam-based measurements has also been studied. In particular in the case of the amplitude detuning and beta-beating measurements. During the LHC commissioning while using amplitude detuning and feed-down data, the beam based values for the octupole corrector strengths have been estimated for both side of the ATLAS and CMS interaction points (respectively IP1 and IP5). A discrepancy is found between beam-based values for the octupole correctors and predicted ones from magnetic field measurements [START_REF] Maclean | New approach to LHC optics commissioning for the nonlinear era[END_REF]. This has triggered us to reconstruct a machine-like 3D model of the magnet including the coil, the collar, the yoke as well as the Beam Screen. This has only been possible for the Q 3 and Q 1 final focus quadrupole of LHC, which are called MQXA type magnets. The simulations agree quite well with the KEK measurements of the Connector Side (Lead End). It appears that the LHC ellipsoidal Beam Screen not only add a b 4 harmonics along the magnet (as previously reported) but also the b 6 . Its contribution doesn't necessarily sum in the same way in the body and the in connector side. Unfortunately, the Q 1 simulation with the Beam Screen never converged so the same values as the Q 3 have been used for its heads in our analysis. Also, no mechanical drawing for the Q 2 have been found so only the Hard Edge model have been used for the Tracking simulations. Concerning the Amplitude Beta-Beating, the prediction for HL-LHC is of the order of few percents when the action increase up to 0.01 µm, depending on the Beam Position Monitors localization in the machine. The impact of the Fringe Field on the Amplitude Beta-Beating is of the same order of magnitude.

By analysing LHC machine development data, it appears that the main obstacle to observe this phenomena is the noise. If the amplitude beta-beating could be observed for some Beam Position Monitors, those behaviour was not observed in the nearby ones.

To be able to observe it over the noise level, three octupole configurations using the LHC correctors are proposed, without first order amplitude detuning. Through the tracking simulations, the amplitude beta-beating agree quite well with the theory, the discrepancies being explained by the fact that the 2 nd order of the RDTs was not taken into consideration for the predictions. Changing the octupoles strengths could make the amplitude beta-beating more or less localized along the accelerator and drastically deteriorate the dynamic aperture.

Precise description of the non-linear beam dynamics of the large hadronic machine, such as LHC and its upgrades requires accurate magnetic fields measurement of the key element of the accelerator and their realistic magnetic fields modeling in the optics model of the machine. Similarly, the impact of the longitudinal distribution of the field on feed-down effect due to crossing angle or magnet displacements, should also be studied in the future.

99

Appendix A

Python functions to compute the

Hamiltonian coefficients

In this appendix are presented two python functions which calculate the Hamiltoninan contribution to the RDTs. In order to operate, the python script need to import the sympy library for the symbolic real, complex and functions, and numpy for the general functions. The particle parameters are defined as follows: ------------------------------------------------------------------------------x, y, px, py = symbols('x y px py', real=True) zeta_xm, zeta_xp, zeta_ym, zeta_yp = symbols('zeta_xm zeta_xp zeta_ym zeta_yp', complex=True)

# Twiss parameter #- ------------------------------------------------------------------------------betx, bety, alpx, alpy,Dphix,Dphiy = symbols('betx bety alpx alpy Dphix Dphiy', real=True)

Given the perturbative Hamiltonian of Eq. (3.4) with the vector potential defined in Eq. (2.18,2.19,2.20), and using the parameters previously defined, the two following functions prints the h 

This implies the following expressions for the beta-beating:

But, in Appendix C of [START_REF] Franchi | First simultaneous measurement of sextupolar and octupolar resonance driving terms in a circular accelerator from turn-by-turn beam position monitors data[END_REF], it is reported that:

x,0 cosh(4|f

x (1, 0) For quadrupole, n = 2 which means that Or(D m F g) = Or(g) and the higher order of the quadrupole RDTs will 106 only add on the same term jklm. But this is not the case for higher order multipole. As example, for sextupoles, the polynomial order can only increase (Or(D m F g) = m + Or(g)) and all Spectral Lines are excited; for octupoles, it's RDTs equivalent to even harmonics; and so on. So let's define the final RDT coefficient g

jklm which is the sum of all order RDT terms acting on the same spectral line with the same exponent of 2I x and 2I y . We define the angle of g and L'objectif de cette th èse est de mod éliser et de quantifier les effets 3D du champ magn étique sur des observables mesurables avec le faisceau. J'ai propos é une mod élisation analytique et num érique des effets 3D de champ.

J'ai ensuite appliqu é mon nouveau mod èle de simulation au projet HL-LHC pour pr édire l'impact des non lin éarit és dans les cartes de champ calcul ées. En parall èle, une étude exp érimentale a ét é men ée sur le LHC afin de v érifier si le champ de fuite des aimants pouvait expliquer les écarts observ és entre les simulations et les mesures.

Le premier chapitre pr ésente les deux acc él érateurs étudi és au cours de cette th èse: le LHC et HL-LHC.

Apr ès un rapide rappel de leurs accomplissements et de leurs objectifs respectifs, ainsi que de comment cal-