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Contributions à la dynamique linéaire, au processus de ra�e, et à la régularité
des applications Lipschitziennes

Résumé:

Cette thèse traite de trois thèmes liés aux opérateurs linéaires dé�nis sur des espaces de
dimension in�nie et de deux sujets de l'analyse réelle et de l'analyse variationelle dans des
espaces de dimension �nie.

Le premier chapitre contient les préliminaires de la théorie des espaces de Banach qui seront
utilisés dans les trois premiers thèmes. Le deuxième chapitre est une caractérisation de
certains types d'operateurs linéaires bornées en termes de la di�érentiabilité des fonctions
lipschitziennes. Nos résultats incluent une caractérisation pour les opérateurs de rang �ni,
compacts, limités et faiblement compacts. Les troisième et quatrième chapitres concernent
la dynamique linéaire : nous étudions respectivement l'epsilon-hypercyclicité et les opéra-
teurs dits "sauvages". Nous établissons un critère d'epsilon-hypercyclicité avec lequel nous
pouvons construire des opérateurs epsilon-hypercycliques dans une large classe d'espaces de
Banach séparables. En ce qui concerne les opérateurs sauvages, nous obtenons quelques ré-
sultats sur leurs spectres et sur la fermeture en norme de l'ensemble des opérateurs sauvages
dans l'espace des opérateurs linéaires bornés. De plus, nous introduisons et explorons le
concept d'ensembles asymptotiquement séparés pour construire des opérateurs linéaires avec
des propriétés dynamiques intéressantes. Le cinquième chapitre est une généralisation de
l'inégalité de Kurdyka-�ojasiewicz pour les fonctions multivoques qui ne sont pas nécessaire-
ment dé�nissables dans une structure o-minimale. Nous caractérisons les fonctions multi-
voques lisses qui satisfont une désingularisation de la codérivée en termes de longueur des
orbites du processus de ra�e associé ainsi que de l'intégrabilité du talweg orienté. Le dernier
chapitre est consacré aux fonctions Lipschitz absolument minimales (AML). La contribution
principale est une caractérisation de la régularité de les fonctions AML planaires en termes
de la régularité de la norme sous-jacente.

Mots-clés: Opérateurs linéaires, dynamique linéaire, epsilon-hyperciclicité, inégalité K�,
processus de ra�e, régularité des fonctions.
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Contributions to linear dynamics, sweeping process and regularity of Lipschitz
functions

Abstract:

This thesis deals with three topics related to linear operators de�ned on in�nite dimensional
spaces and two topics of real analysis and variational analysis in �nite dimensional spaces.

The �rst chapter contains preliminaries on Banach space theory which will be relevant for
the three topics related to linear operators. The second chapter is a characterization of some
types of bounded linear operators in terms of the di�erentiability of Lipschitz functions.
Our results include a characterization for the classes of �nite rank, compact, limited and
weakly compact operators. The third and fourth chapters are inscribed in linear dynamics
on in�nite dimensional spaces, studying epsilon-hypercyclicity and wild operators respec-
tively. We establish an epsilon-hypercyclicity criterion based on which we can construct
epsilon-hypercyclic operators in a large class of separable Banach spaces. With respect to
wild operators, we establish results about their spectra and about the norm closure of the
set of wild operators in the space of linear bounded operators. In addition, we introduce and
explore the concept of asymptotically separated sets to construct linear operators with inter-
esting dynamical properties. The �fth chapter is a generalization of the Kurdyka-�ojasiewicz
inequality for multivalued maps which are not necessarily de�nable in an o-minimal structure.
We characterize smooth multivalued functions which satisfy a certain desingularization of the
coderivative in terms of the length of the solutions of the related sweeping process as well as
the integrability of the oriented talweg. The last chapter is devoted to absolutely minimizing
Lipschitz (AML) functions. The main contribution in this subject is a characterization of
the regularity of planar AML functions in terms of the regularity of the underlying norm.

Key words: Linear operators, linear dynamic, epsilon-hypercyclicity, K�-inequality, sweep-
ing process, regularity of functions.
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Contribuciones a la dinámica lineal, a los procesos de barrido y a la regularidad
de funciones Lipschitz

Resumen:

En la presente tesis se estudian tres temas relacionados a la teoría de operadores lineales
de�nidos en espacios de Banach de dimensión in�nita y dos tópicos del análisis real y análisis
variacional en espacios de dimensión �nita.

El primer capítulo contiene los fundamentos de la teoría de espacios de Banach que serán
utilizados durante los primeros tres temas abarcados por esta tesis. En segundo capítulo se
caracterizan algunas clases de operadores lineales acotados con respecto a la diferenciabilidad
de un conjunto de funciones Lipschitz. Nuestros resultados pueden ser utilizados para carac-
terizar los operadores de rango �nito, compactos, limitados y débilmente compactos. El tercer
y cuarto capítulo están enmarcados en la teoría de dinámicas lineales: estudiaremos la épsilon-
hiperciclidad y los operadores salvajes. Se establece un criterio de épsilon-hiperciclicidad, el
que permite la construcción de operadores épsilon-hipercíclicos (que no son hipercíclicos) en
una gran clase de espacios de Banach separables. En lo que respecta a operadores salvajes,
se obtienen resultados en las siguientes tres lineas: sus espectros, la (no) estabilidad para
el producto en la clase de operadores salvajes y la adherencia en norma del conjunto de
operadores salvajes en el espacio de los operadores lineales acotados. Más aún, se introduce
y se explora el concepto de conjuntos asintóticamente separados, además de establecer su
relación con la construcción de operadores lineales con ciertas propiedades dinámicas intere-
santes. El quinto capítulo es una generalización de la desigualdad de Kurdyka-�ojasiewicz
para funciones multivaluadas que no son (necesariamente) de�nibles en una estructura o-
mínima. Además de establecer una desigualdad tipo Kurdyka-�ojasiewicz, esta desigualdad
es caracterizada para la clase de funciones multivaluadas lisas en términos del largo de curva
de las órbitas del proceso de barrido, así como de la integrabilidad del la función talweg
orientado. El último capítulo está dedicado a la funciones Lipschitz absolutamente mínimas
(AML). La contribución principal es una caracterización de la regularidad de las funciones
AML planares en función de la regularidad de la norma subyacente.

Palabras clave: Operadores lineales, dinámica lineal, épsilon-hiperciclicidad, desigualdad
K�, procesos de barrido, regularidad de funciones.
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Notation

R,C Real and complex �elds.
K Real or complex �eld.
Kn n-dimensional euclidean space
X, Y, Z Banach spaces
H Hilbert space
X∗ Dual space of X
X ⊕ Y Direct sum of X and Y
L(X, Y ) Space of bounded operators from X to Y
L(X) Space of bounded operators from X to X
| · | The module on K.
‖ · ‖X or ‖ · ‖ The norm on X
Lip(f) Lipschitz constant of a function f
D Complex open unit disk
T Complex unit circle
BX , BX The open and closed unit ball of X centered at 0.
SX The unit sphere of X
B(x, r) or Br(x) The open ball of center x and radius r
Br The open ball of center 0 and radius r
S : R⇒ Rn A multivalued map
dom(S) The e�ective domain of S
NC(x) Limiting normal cone of C ⊂ Rn at x ∈ C.
D∗S(t, x) Limiting coderivative of S at (t, x)
A Closure of A
int(A) Interior of A
∂A Boundary of A
core(A) Algebraic interior of A
V ⊂⊂ U V is contained in a compact subset of the open set U .
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Introduction Générale

Cette thèse est divisée en 6 chapitres qui explorent di�érents aspects de la théorie des opéra-
teurs, de l'analyse variationnelle et de l'analyse réelle. Dans le premier chapitre introductif,
nous fournissons les fondements de la théorie des espaces de Banach qui seront utilisés dans
les chapitres 2, 3 et 4 et qui ne sont pas nécessairement standard. Ensuite, nous contin-
uons avec cinq chapitres qui traitent de cinq problèmes di�érents et qui peuvent être lus
indépendamment. Du deuxième au quatrième chapitre, nous traitons de problèmes liés à la
classi�cation des opérateurs bornés et à la dynamique linéaire qui ne se produisent que dans
des espaces de Banach de dimension in�nie. D'autre part, dans le cinquième et le sixième
chapitres, nous présentons deux sujets di�érents, où l'espace sous-jacent est de dimension
�nie, concernant respectivement le processus de ra�e et la régularité des fonctions lipschitzi-
ennes.

Chapitre 2 : β-opérateurs et di�érentiabilité

L'étude de di�érentes notions de di�érentiabilité de fonctions est l'un des principaux sujets
de la théorie de la régularité des fonctions dé�nies dans les espaces de Banach réels de dimen-
sion in�nie. Les notions les plus connues de di�érentiabilité sont celles au sens de Fréchet,
Gâteaux et Hadamard. Ces notions de di�érentiabilité sont comprises dans le cadre plus
abstrait de la di�érentiabilité donnée par une bornologie. Nous rappelons qu'une bornologie
sur un espace de Banach X est une famille de sous ensembles bornés de X qui recouvre
X, qui est stable par unions �nies et qui est héréditaire pour l'inclusion. Par exemple, la
famille des ensembles bornés (resp. ensembles �nis, ensembles relativement compacts) est
une bornologie qui peut être dé�nie sur tout espace de Banach. La di�érentiabilité uniforme
sur les éléments de cette famille est la di�érentiabilité au sens de Fréchet (resp. Gâteaux,
Hadamard).

Soit β une bornologie sur X. Un opérateur borné T ∈ L(Y,X) est un β-opérateur si
TB(y, r) ∈ β pour tout y ∈ Y et pour tout r > 0. Pour motiver ce chapitre, nous intro-
duisons le concept suivant : un ensemble A ⊂ X est dit limité si, pour toute suite (x∗n)n ⊂ X∗

qui converge pour la topologie faible∗ vers 0, nous avons que

lim
n→∞

sup{x∗n(x) : x ∈ A} = 0.

Comme la famille des ensembles limités est une bornologie, un opérateur T : Y → X est
limité si T (BY ) est un sous ensemble limité de Y . M. Bachir dans [11] a caractérisé les

2



opérateurs limités en terme de la di�érentiabilité des fonctions convexes:

Théorème (Bachir) Soient X et Y deux espaces de Banach. Soit T : Y → X un opérateur
linéaire borné. Alors, T est limité si et seulement si, pour toute fonction convexe et continue
f : X → R qui est Gâteaux di�érentiable en x = Ty, la fonction f◦T est Fréchet di�érentiable
en y.

Motivés par le résultat précédant, avec M. Bachir et G. Flores, nous avons établi dans [13]
des caractérisations similaires pour les opérateurs compacts et pour les opérateurs de rang
�ni. Nous utiliserons la dé�nition suivante :

Dé�nition Soit β une bornologie sur X. Nous dirons que β satisfait la propriété (S) si pour
tout ensemble borné A ⊂ X tel que A /∈ β, il existe une suite (xn)n ⊂ A et δ > 0 tels que
pour toute suite croissante (nk)k ⊂ N et pour toute suite (yk)k qui satisfait ‖yk − xnk‖ ≤ δ
pour tout k ∈ N, l'ensemble {yk : k ∈ N} n'appartient pas à β.

Par exemple, la bornologie de Hadamard (des ensembles relativement compacts) satisfait la
propriété (S). De la même manière, la bornologie des ensembles limités ainsi que celle des
ensembles relativement faiblement-compacts satisfont la propriété (S) (Section 2.2).

Nous dirons qu'une bornologie β sur X est convexe si, pour tout A ∈ β, l'enveloppe con-
vexe co(A) et x+ λA appartiennent à β, pour tous x ∈ X, λ ∈ R. Notons que, si β est une
bornologie convexe surX, alors T ∈ L(Y,X) est un β-opérateur si et seulement si T (BY ) ∈ β.

Le résultat suivant caractérise certaines classes d'opérateurs linéaires tels que les opérateurs
limités, compacts et faiblement-compacts.

Théorème A Soient X et Y deux espaces de Banach réels et soit β une bornologie convexe
sur X qui satisfait la propriété (S). Soit T ∈ L(Y,X). Alors, T est un β-opérateur si et
seulement si, pour toute fonction lipschitzienne f : X → R, β-di�érentiable en x = Ty, alors
la fonction f ◦ T est Fréchet di�érentiable en y.

Avant d'énoncer la caractérisation des opérateurs de rang �ni, nous avons besoin de la dé�-
nition suivante.

Dé�nition Soient X et Y deux espaces de Banach. Nous dirons qu'une fonction f : X → Y
est �niment lipschitzienne si pour tout sous espace a�ne Z de X, la restriction f |Z est une
fonction lipschitzienne.

Par exemple, tout opérateur linéaire f : X → Y est �niment lipschitzien. Nous sommes
maintenant en mesure d'énoncer la deuxième contribution principale de ce chapitre.

Théorème B Soient X et Y deux espaces de Banach réels. Soit T ∈ L(Y,X). Alors T
est de rang �ni si et seulement si, pour toute fonction �niment lipschitzienne f : X → R,
Gâteaux di�érentiable en x = Ty, la fonction f ◦ T est Fréchet di�érentiable en y.

3



Chapitre 3 : Critère d'epsilon-hypercyclicité

Dans ce chapitre, le corps sous-jacent peut être �xé comme R ou C. Une manière naturelle de
classer les opérateur linéaires passe par la dynamique engendrée par l'action de l'opérateur
sur l'espace sous-jacent. Autrement dit, si T ∈ L(X) et x ∈ X, nous étudierons les propriétés
de l'orbite de x sous l'action de T , l'ensemble OrbT (x) := {T nx : n ∈ N}. Soit T ∈ L(X)
�xé. Nous dirons que l'orbite de x ∈ X sous l'action T est régulière si la suite (‖T nx‖)n
tend vers 0, ou tend vers l'in�ni ou bien reste uniformément loin de 0 et de l'in�ni. Cette
notion de régularité provient de la remarque suivante : si X est un espace de dimension �nie
et T ∈ L(X), alors toute orbite de T est régulière. D'un autre côté, si X est un espace de di-
mension in�nie, nous savons qu'il y a des opérateurs avec des orbites non-régulières. En e�et,
dans [85], S. Rolewicz a construit des opérateurs T ∈ L(X), où X est c0(N) ou `p(N), avec
p ∈ [1,∞), pour lesquels il y a un vecteur x ∈ X avec une orbite dense. Plus précisément,
il a considéré l'opérateur 2B, où B : X → X est le décalage à gauche sur X, i.e., si (en)n
est la base canonique de X, Be0 = 0 et Ben = en−1 si n ≥ 1. Un opérateur qui possède un
vecteur avec une orbite dense s'appelle hypercyclique et le vecteur associé s'appelle vecteur
hypercyclique. À la lumière de cet exemple, la question suivante est naturelle : à quel point
les orbites irrégulières peuvent-elles être di�érentes ?

Dans cette ligne, ces dernières décennies, la communauté a intensi�é les e�orts pour mieux
comprendre les phénomènes purement in�ni dimensionnel de la dynamique linéaire. Un
outil notable pour déterminer si un opérateur est hypercyclique est le critère d'hypercyclicité
suivant.

Théorème [67, Critère d'hypercyclicité]

Soit X un espace de Banach, réel ou complexe, séparable et soit T ∈ L(X). Supposons qu'il
existe une suite croissante (n(k))k ⊂ N, deux ensembles denses dans X, D1 et D2, et une
suite des fonctions Sn(k) : D2 → X tels que :

(1) limk→∞ T
n(k)x = 0 pour tout x ∈ D1.

(2) limk→∞ Sn(k)y = 0 pour tout y ∈ D2.

(3) limk→∞ T
n(k)Sn(k)y = y pour tout y ∈ D2.

Alors T est hypercyclique.

Dans [15], C. Badea, S. Grivaux et V. Müller ont introduit le concept suivant :

Dé�nition Soit ε ∈ (0, 1), soit X un espace de Banach réel ou complexe et soit T ∈ L(X).
L'opérateur T est dit ε-hypercyclique s'il existe x ∈ X véri�ant

∀ y ∈ X \ {0}, ∃ n ∈ N tel que ‖T nx− y‖ ≤ ε‖y‖.

Comme conséquence de la dé�nition, tout opérateur hypercyclique est ε-hypercyclique pour
tout ε > 0. Notons que pour tout opérateur linéaire T ∈ L(X), le vecteur 0 est un vecteur
1-hypercyclique. Les auteurs ont construit dans [15], pour tout ε ∈ (0, 1) �xé, un opérateur
ε-hypercyclique qui n'est pas hypercyclique dans `1(N). Deux ans plus tard, F. Bayart a
construit dans [16] un opérateur ε-hypercyclique qui n'est pas hypercyclique dans `2(N).
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La contribution principale de ce chapitre est le critère d'epsilon-hypercyclicité suivant. No-
tons que les opérateurs construits dans [15, 16] satisfont ce critère.

Théorème C (Critère d'epsilon-hypercyclicité) Soit X un espace de Banach réel ou com-
plexe, soit T ∈ L(X) et soit ε ∈ (0, 1). On se donne D1 un sous ensemble dense dans X et
D2 := {yk : k ∈ N} ⊂ X tel que, pour tout x ∈ X \ {0}, il existe une in�nité d'entiers k ∈ N
tels que yk ∈ B(x, ε‖x‖). En�n, on se donne une suite croissante (n(k))k ⊂ N et une suite
des fonctions Sn(k) : D2 → X véri�ant:

(1) limk→∞ ‖T n(k)x‖ = 0 pour tout x ∈ D1,

(2) limk→∞ ‖Sn(k)yk‖ = 0,

(3) limk→∞ ‖T n(k)Sn(k)yk − yk‖ = 0.

Alors T est δ-hypercyclique pour tout δ > ε.

Comme dans le cas du critère d'hypercyclicité, nous fournissons une preuve constructive et
une preuve topologique (basée sur le théorème de Baire). De plus, à l'aide du Théorème C,
nous pouvons construire des opérateurs dans des espaces de Banach plus généraux. En fait,
nous obtenons le résultat suivant.

Théorème D Soit X un espace de Banach séparable qui possède un sous espace complémenté
isomorphe à c0(N) ou à `p(N), avec p ∈ [1,∞). Alors, pour tout ε > 0, il existe un opérateur
dans X qui est ε-hypercyclique mais pas hypercyclique.

Chapitre 4 : Opérateurs sauvages et ensembles asymptotiquement
séparés

Soit X un espace de Banach réel ou complexe et soit T un opérateur borné dans X. Le
théorème de Banach-Steinhaus implique que l'ensemble des points dont l'orbite est non-
bornée (sous l'action de T ) est vide ou dense dans X. Si X est un espace de dimension �nie,
pour tout x ∈ X, l'orbite {T nx : n ∈ N} est non-bornée si et seulement si la suite (‖T nx‖)n
tend vers l'in�ni. Sur la base de ces observations, G. Pr jitur  a proposé la conjecture
suivante : l'ensemble

AT := {x ∈ X : lim
n→∞

‖T nx‖ =∞}

est-il toujours vide ou dense dans X? Deux années après, P. Hajek et R. Smith ont réfuté
cette conjecture. En fait, pour tout espace X de dimension in�nie avec une base symétrique,
ils ont construit un opérateur borné T dans X tel que l'ensemble AT est non-vide et non-
dense dans X, voir [61]. J.M. Augé a construit dans [8] un opérateur borné qui réfute la
conjecture de Pr jitur  dans tout espace de Banach séparable de dimension in�nie.

Nous avons besoin de la dé�nition suivante :

Dé�nition Un ensemble F ⊂ X est dit asymptotiquement séparé s'il existe une suite (x∗n)n ⊂
X∗ telle que

i) lim infn→∞ |x∗n(x)| = 0, pour tout x ∈ F .
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ii) limn→∞ |x∗n(x)| =∞, pour tout x ∈ X \ F .

Dans [8], l'existence d'un ensemble asymptotiquement séparé non-trivial F ⊂ K2, à savoir

{(x, y) ∈ K2 : |x| ≤ |y|},

permet la construction d'un opérateur qui réfute la conjecture de Pr jitur .

Dans la première partie de ce chapitre, nous explorons les ensembles asymptotiquement
séparés dans des espaces de Banach et nous en donnons des application à la dynamique
linéaire. Le résultat suivant donne quelques exemples d'ensembles asymptotiquement séparés
que nous avons trouvés dans ce travail.

Théorème E Soit X un espace de Banach réel ou complexe et soit F ⊂ X. Supposons une
de deux conditions suivantes :

i) dim(X) <∞ et F est union d'hyperplans linéaires tel que F \ {0} est ouvert.
ii) X est séparable et F est égale à {0} ou est un sous espace fermé de X.

Alors F est asymptotiquement séparé. De plus, tout espace de Banach de dimension deux ou
supérieure contient un sous ensemble asymptotiquement séparé qui est dense et tel que son
complémentaire est dense aussi.

Pour un opérateur T ∈ L(X), nous dé�nissons l'ensemble de points récurrents :

RT := {x ∈ X : lim inf
n→∞

‖T nx− x‖ = 0}.

Dé�nition Soit X un espace de Banach réel ou complexe. Un opérateur T ∈ L(X) est dit
sauvage si {AT , RT} est une partition de X en deux ensembles qui ont un intérieur non-vide.

L'existence d'opérateurs sauvages dans tout espace de Banach séparable et de dimension
in�nie est démontrée dans [8]. Le prochain résultat montre le lien entre la dynamique linéaire
et les ensembles asymptotiquement séparés. Ce théorème est une généralisation du résultat
principal de [8].

Théorème F Soit X un espace de Banach réel ou complexe, séparable et de dimension
in�nie. Soit V un sous espace fermé de X, complémenté et de codimension in�nie. Soit
F ⊆ V un ensemble asymptotiquement séparé dans V . Alors, il existe un opérateur T ∈ L(X)
tel que RT = P−1(F ) et AT = P−1(V \ F ), où P ∈ L(X) est une projection bornée sur V .

Comme conséquence du Théorème F, un exemple intéressant d'ensemble asymptotiquement
séparé implique l'existence d'un opérateur linéaire borné avec une dynamique intéressante.

En fait, si nous appliquons le Théorème E, le Théorème F et le fait que tout espace de Banach
de dimension in�nie peut être décomposé comme V ⊕W , avec V un sous espace de dimension
�nie qui est plus grande ou égale à deux, nous obtenons le corollaire suivant.

Corollaire Soit X un espace de Banach séparable et de dimension in�nie. Alors
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� Il existe T ∈ L(X) tel que {AT , RT} est une partition de X et les deux ensembles sont
denses dans X.

� Il existe T ∈ L(X) tel que {AT , RT} est une partition de X et AT ∪ {0} est un sous
espace de codimension �nie.

� Il existe T ∈ L(X) sauvage tel que AR ∪ {0} est fermé.

Dans la seconde partie de ce chapitre nous étudions quelques propriétés des opérateurs
sauvages. Plus précisément, le théorème suivant donne les résultats que nous avons obtenus
dans les trois directions suivantes : la non-stabilité par produit de la classe des opérateurs
sauvages, la construction d'opérateurs sauvages non-inversibles et la taille de l'adhérence en
norme de l'ensemble des opérateurs sauvages.

Théorème G Soit X un espace de Banach complexe, séparable et de dimension in�nie.
Alors :

� Il existe T ∈ L(X) sauvage tel que T ⊕ T n'est pas sauvage dans X ⊕X.

� Si X a une base symétrique, il existe T ∈ L(X) qui est sauvage mais qui n'est pas
inversible.

� Si X a une base inconditionnelle (en)n, tout opérateur linéaire borné qui est diagonal
par rapport à (en), avec valeurs propres de module 1, appartient à la adhérence en
norme de l'ensemble des opérateurs sauvages dans L(X).

Chapitre 5: désingularisation des processus de ra�e lisses.

Ce chapitre est le début de la deuxième partie de cette thèse, dans laquelle nous étudions
quelque aspects de l'analyse réelle et de l'analyse variationelle dans l'espaces de dimension
�nie. Dans ce chapitre Rn désigne l'espace euclidien de dimension n.

Il est bien connu que toute fonction lisse de classe C1, f : Rn → R, qui est dé�nissable dans
une structure o-minimale, a un nombre �ni de valeurs critiques. K. Kurdyka a montré dans
[68] que si r̄ ∈ f(Rn) est une valeur critique et si U est un sous ensemble ouvert, borné et non-
vide de Rn, alors il existent ρ > 0 et une fonction lisse de classe C1, ψ : [r̄, r̄ + ρ]→ [0,+∞),
qui satisfont

‖∇(ψ ◦ f)(x)‖ ≥ 1, pour tout x ∈ U tel que f(x) ∈ (r̄, r̄ + ρ). (1)

L'inégalité précédente généralise, au cas o-minimal, une inégalité du gradient démontré pour
�ojasiewicz dans [70] pour la classe de fonctions C1 et sous analytique. L'expression (1) est
maintenant connu sous le nom l'inégalité de Kurdyka-�ojasiewicz (en abrégé inégalité K�).

Les deux inégalités mentionnées ci-haut ont été étendues à des fonctions non-lisses (resp.
sous analytiques et o-minimales), voir [24, 25]. Ces inégalités nous permettent un contrôle
uniforme sur la longueur des orbites bornées du (sous)gradient, voir [71, 68, 24]. Ce con-
trôle reste vrai pour la longueur de courbes de gradient par morceaux, i.e., courbes obtenues
par la concaténation d'un nombre au plus dénombrable de courbes de gradient {γi}i≥1, où
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γi ⊂ f−1([ri+1, ri)) et {ri}i est une suite décroissante sur (r̄, r̄ + ρ), qui converge vers r̄. Ce
type de courbes possède un nombre au plus dénombrable de discontinuités.

En dehors du cadre o-minimal, l'inégalité K�(1) peut être fausse même pour des fonctions
lisses de classe C2 [26, Section 4.3] ou même pour des fonctions lisses de classe C∞ avec un
valeur critique unique [76, p. 12]. J. Bolte, A. Daniilidis, O. Ley et L. Mazet, dans [26],
ont considéré le problème de caractériser l'existence d'une fonction désingularisante ψ et de
la validité de l'inégalité (1) pour une valeur critique isolée supérieurement r̄ d'une fonction
semiconvexe coercive f dé�nie dans un espace de Hilbert (la fonction f n'étant nécessaire-
ment pas dé�nissable dans un structure o-minimale).

Nous dé�nissons maintenant la dynamique générée par une fonction multivoque

Dé�nition Soit S : R ⇒ Rn une fonction multivoque et soit I ⊂ dom(S) un intervalle
non-trivial de R. Une courbe absolument continue γ : I → Rn est dite solution (orbite) du
processus de ra�e dé�ni par S si{

−γ̇(t) ∈ NS(t)(γ(t)), ∀p.p t ∈ I,
γ(t) ∈ S(t) pour tout t ∈ I,

où NS(t)(γ(t)) est le cône normal limite de S(t) au point γ(t). Nous désignons par AC(S, I)
(PAC(S, I)) l'ensemble des orbites absolument continues (absolument continues par morceaux
respectivement) générées par le processus de ra�e dé�ni par S dans l'intervalle I ⊂ dom(S).

Soit S : R⇒ Rn une fonction multivoque. Le graphe de S sera noté par

S := {(t, x) ∈ R× Rn : x ∈ S(t)}

Dé�nition Soit S : R ⇒ Rn une fonction multivoque. La codérivée de S à (t, x) ∈ S en
u ∈ Rn est dé�nie par :

D∗S(t, x)(u) := {a ∈ R : (a,−u) ∈ NS(t, x)}.

En 2017, A. Daniilidis et D. Drusvyatskiy, dans [41], ont montré que pour toute fonction mul-
tivoque S : R⇒ Rn, dé�nissable dans une structure o-minimale et pour toute valeur critique
t ∈ R, il existe une fonction qui désingularise la codérivée D∗S(t, ·) autour de t. Ce résultat
implique un contrôle uniforme sur la longueur des orbites bornées du processus de ra�e dé�ni
par S. Ce résultat récupère les résultats de K. Kurdyka dans [68]. En fait, il su�t de consid-
érer la fonction multivoque S dé�nie par les sous-niveaux d'une fonction lisse et dé�nissable f .

La contribution principale de ce chapitre est liée à la désingularisation de la codérivée ap-
pliquée aux fonctions multivoques qui ne sont pas nécessairement dé�nissable dans une struc-
ture o-minimale. Nous avons besoin les dé�nitions suivantes.

Dé�nition Soit S : R⇒ Rn une fonction multivoque.
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i) Pour tout (t, x) ∈ S, le module asymétrique de la codérivée D∗S(t, x) est dé�ni par:

‖D∗S(t, x)|+ = sup{max(a, 0) : a ∈ D∗S(t, x)(u), ‖u‖ ≤ 1},

où nous faisons la convention sup(∅) = 0.

ii) Le talweg orienté de S, noté ϕ↑ : dom(S)→ R ∪ {∞}, est dé�ni par:

ϕ↑(t) = sup
x∈S(t)

{‖D∗S(t, x)|+}, pour tout t ∈ dom(S).

Notre travail s'inscrit dans le cadre de la dé�nition et les hypothèses (A1), (A2) et (A3)
suivantes.

Dé�nition Nous dirons que S : R⇒ Rn est un processus de ra�e lisse si
� S est une sous variété lisse, connexe, fermé et de classe C1 de Rn+1, de dimension au plus
n ; ou

� S est une sous variété à bord de dimension n+ 1 dont la frontière ∂S est une variété lisse
de classe C1 et de dimension n.

Hypothèses Soit S : R ⇒ Rn une fonction multivoque et soit T := sup(dom(S)). Nous
dirons que S satisfait

(A1) l'hypothèse d'existence : pour tout (t, x) ∈ S, avec ‖D∗S(t, x)|+ < +∞, il existe δx > 0
et au moins une orbite γx ∈ AC(S; [t, t+ δx)) tels que γx(t) = x.

(A2) l'hypothèse de régularité supérieure en t ∈ dom(S), avec t < T : il existe δ > 0 tel que
ϕ↑(t) < +∞ pour tout t ∈ (t, t+ δ).

(A3) l'hypothèse de continuité en t ∈ dom(S), avec t < T : il existe δ > 0 tel que la fonction
multivoque t ⇒ ∂S ∩ ({t} ∩ Rn) est continue pour la métrique de Pompeiu-Hausdor�
sur (t, t+ δ) (Peut-être il y a une discontinuité en t).

Maintenant, nous sommes prêts à énoncer notre résultat principal.

Théorème H Soit S : R ⇒ Rn un processus de ra�e lisse avec des valeurs bornées qui
satisfait (A1). Soit T := {t ∈ dom(S) : (A2)�(A3) sont véri�és t}. Soit a ∈ T (typiquement
une valeur critique de D∗S).

Les assertions suivantes sont équivalentes :

a) (Désingularisation de la codérivée) Il existe b > a, ρ > 0 et un homeomorphisme
Ψ : [0, ρ]→ [a, b], qui est un C1-di�eomorphisme entre (0, ρ) et (a, b), avec Ψ′(r) > 0
pour tout r ∈ (0, ρ), tels que:

‖D∗(S ◦Ψ)(r, x)|+ ≤ 1, pour tout r ∈ (0, ρ), pour tout x ∈ S(Ψ(r)).

b) (Contrôle uniforme de la longueur des orbites) Il existe b > a et une fonction
croissante σ : [a, b] 7→ R+, avec σ(a) = 0, tels que pour tous a ≤ t1 < t2 ≤ b et
γ ∈ AC(S, [t1, t2]), il tient que :

`(γ) :=

∫ t2

t1

‖γ̇‖ ≤ σ(t2)− σ(t1).
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c) (Contrôle uniforme de la longueur des orbites par morceaux) Il existe b > a
et M <∞ tels que pour toute γ ∈ PAC(S, [a, b]) il tient que:

`(γ) :=

∫ t2

t1

‖γ̇‖ ≤M.

d) (Intégrabilité du talweg) Il existe b > a tel que∫ b

a

ϕ↑(t) <∞.

De plus, dans ce chapitre nous fournissons également une caractérisation de la désingularisa-
tion de la codérivée d'un processus de ra�e lisse en terme de la dynamique discrète générée par
la fonction multivoque donnée, à savoir, les suites générées par l'algorithme "Catching-up".

Chapitre 6 : Fonctions AML dans les espaces de dimension deux

À la di�érence du chapitre 5, dans ce chapitre, (Rn, ‖ · ‖) désigne un espace de dimension n
équipé avec une norme ‖ · ‖ (non nécessairement euclidienne).

Nous nous proposons d'étudier la régularité des fonctions lipschitziennes. Soit U ⊂ Rn un
ensemble ouvert non-vide. Le théorème de Rademacher dit que si f : U → R est une fonction
localement lipschitzienne, alors f est di�erentiable presque partout. Dans ce travail, nous
nous concentrons sur la classe de fonctions dé�nie comme suit :

Dé�nition Soit (Rn, ‖ · ‖) un espace normé de dimension n et soit U ⊂ Rn un ouvert non-
vide. Nous dirons qu'une fonction localement lipschitzienne f : U → R est ‖ · ‖-Lipschitz
absolument minimale (en abrégé ‖ · ‖-AML) si pour tout ouvert non-vide V ⊂⊂ U et pour
toute fonction lipschitzienne g : V → R telle que g = f sur ∂V, alors

Lip(g) ≥ Lip(f |V).

S'il n'y a pas de confusion avec la norme ‖ · ‖, nous écririons simplement fonction AML.

L'existence de fonctions AML non-triviales et la régularité de ces fonctions font partie des
principaux problèmes de cette théorie. Dans le cas euclidien, G. Aronsson a montré dans [6]
que pour les fonctions f : U → R de classe C2, f est AML si et seulement si elle est une
solution classique de l'équation du Laplacien-in�ni, i.e., la fonction satisfait

4∞f :=
n∑

i,j=1

∂if∂jf∂
2
ijf = 0, dans U . (∞L)

En 1993, R. Jensen a démontré que la famille des fonctions AML coïncide avec les solutions
de l'équation (∞L) au sens de viscosité. De plus, R. Jensen a démontré l'existence et l'unicité
de la solution au sens de viscosité du problème de Cauchy gouverné pour l'équation (∞L)
avec condition au bord continue, voir [64].
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Maintenant, nous rappelons quelques résultats qui concernent la régularité de cette classe de
fonctions. O. Savin a démontré dans [89] que les fonctions AML dé�nies sur un ouvert de
(R2, ‖ · ‖2) (équipé avec la norme euclidienne) sont continûment di�érentiables. Dans [48], L.
Evans et C. Smart ont montré que les fonctions AML dé�nies sur un ouvert de (Rn, ‖ · ‖2)
sont partout di�érentiables. Toutefois, la continuité de la dérivée reste une question ouverte
pour n ≥ 3.

Le théorème principal de ce chapitre est le suivant.

Théorème I Soit X un espace normé de dimension 2. Les assertions suivantes sont équiv-
alentes :

a) La norme sous-jacente est di�érentiable sur X \ {0}.
b) Toute fonction AML dé�nie sur un ouvert de X est continûment di�érentiable.

c) Toute fonction AML dé�nie sur un ouvert de X est partout di�érentiable.

Au début de 2021, F. Peng, C. Wang et Y. Zhou ont généralisé le résultat de régularité de O.
Savin aux fonctions absolument minimisantes par rapport à un Hamiltonien convexe dé�nies
sur un ouvert de (R2, ‖ · ‖2), voir [77]. Ce résultat généralise également notre Théorème I
aussi. Toutefois, la preuve fournie dans [77] se base sur la structure euclidienne sous-jacente,
alors que notre preuve est complètement non-euclidienne.
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General Introduction

This thesis is divided into 6 chapters which explore di�erent aspects of Operator Theory,
Variational Analysis and Real Analysis. In the �rst introductory chapter, we present the
fundamentals of the Banach space theory which will be used in Chapters 2, 3 and 4. Then,
we continue with �ve chapters which deal with �ve di�erent problems and can be read in-
dependently. From the second to the fourth chapter we deal with problems arising from
the classi�cation of bounded operators and linear dynamics which occur only in in�nite di-
mensional Banach spaces. On the other hand, in the �fth and sixth chapter we present two
di�erent problems in �nite dimensional spaces, concerning sweeping processes and regularity
of Lipschitz functions respectively.

Chapter 2: β-operators and di�erentiability:

The study of distinct notions of di�erentiability has been one of the main topics in the theory
of regularity of functions de�ned in general real Banach spaces. The most common notions of
di�erentiability are given by the ones in the sense of Fréchet, Gâteaux and Hadamard. These
notions of di�erentiability are enclosed in the more abstract setting of the di�erentiability
given by a bornology. Let us recall that a bornology is a family of bounded subsets ofX which
is a covering of X, is stable under �nite unions and hereditary under inclusion. For instance,
the family of bounded sets (resp. �nite sets, relatively compact sets) is a bornology that
can be de�ned on each Banach space and the uniform di�erentiability with respect to these
sets consists exactly on the Fréchet (resp. Gâteaux, Hadamard) di�erentiability. Let β be a
bornology in X, we say that a bounded operator T ∈ L(Y,X) is a β-operator if TB(y, r) ∈ β
for all y ∈ Y and r > 0. To motivate this chapter, let us introduce the following de�nition.
A set A ⊂ X is said limited if, for any sequence (x∗n)n ⊂ X∗, weakly∗-convergent to 0, we
have that

lim
n→∞

sup{x∗n(x) : x ∈ A} = 0.

Observe that the family of limited sets of a Banach space form a bornology. Moreover, a
bounded linear operator T : X → Y is limited if and only if T (BX) is a limited subset of Y .
In [11], M. Bachir characterized limited operators in terms of the di�erentiability of convex
functions as follows:

Theorem (Bachir) Let X and Y be two real Banach spaces. Let T : Y → X be a bounded
operator. Then, T is limited if and only if, for every f : X → R continuous convex function,
f ◦ T is Fréchet di�erentiable at y whenever f is Gâteaux di�erentiable at x = Ty.
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Motivated by this result, with M. Bachir and G. Flores in [13], we obtained two characteri-
zations, the �rst one for compact operators and the second one for �nite rank operators. In
order to state our results, let us introduce the following property on bornologies.

De�nition Let β be a bornology on X. We say that β satis�es the property (S) if for every
bounded set A ⊂ X such that A /∈ β, there are a sequence (xn)n ⊂ A and δ > 0 such that for
any increasing sequences (nk) ⊂ N and for any sequence (yk)k satisfying ‖yk − xnk‖ ≤ δ, the
set {yk : k ∈ N} does not belong to β.

It is not hard to see that the bornology of relatively compact sets satis�es property (S). Also,
the bornology of limited sets and the one of relatively weakly-compact sets satisfy property
(S), see Section 2.2.

We use the following notation: A bornology β on X is said to be convex if for any A ∈ β,
the convex envelop co(A) and x+ λA belong to β, for any x ∈ X and λ ∈ R. Observe that,
if β is a convex bornology on X, T ∈ L(Y,X) is a β-operator if T (BY ) ∈ β. The following
result characterizes several kind of operators including limited, compact and weakly-compact
operators.

Theorem A Let X and Y be two real Banach spaces and let β be a convex bornology on X
satisfying property (S). Let T : Y → X be a bounded linear operator. Then T is a β-operator
if and only if for every Lipschitz function f : X → R, β di�erentiable at x = Ty, the function
f ◦ T is Fréchet di�erentiable at y.

In order to state a characterization for �nite rank operators we introduce the following class
of functions.

De�nition Let X and Y be two Banach spaces. A function f : X → Y is called �nitely
Lipschitz if for any �nite dimensional a�ne subspace Z of X, the restriction f |Z is Lipschitz.

For instance, any linear map from X to Y is �nitely Lipschitz. Thus, the second main
contribution of this chapter reads as follows:

Theorem B Let X and Y be two real Banach spaces. Let T : Y → X be a bounded linear
operator. Then T has �nite rank if and only if for every �nitely Lipschitz function f : X → R,
Gâteaux di�erentiable at x = Ty, the function f ◦ T is Fréchet di�erentiable at y.

Chapter 3: Epsilon-Hypercyclicity Criterion

In this chapter, the underlying scalar �eld can be �xed as R or C. A natural way to clas-
sify linear operators is through the dynamic generated by the action of the operator on the
underlying space. That is, for a given operator T ∈ L(X) and x ∈ X, the study of the
properties of the orbit of x under the action of T : OrbT (x) := {T nx : n ∈ N}. Let us
�x T ∈ L(X). It is considered that the orbit of x ∈ X under T is regular if the sequence
(‖T nx‖)n either tends to 0 or tends to∞ or remains bounded away from 0 and∞ as n tends
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to ∞. This notion of regularity comes from the fact that if X is a �nite dimensional Banach
space, then any orbit generated by the action of any linear operator is regular. Moreover,
it is known that there are operators de�ned on in�nite dimensional spaces with non-regular
orbits. Indeed, in [85], S. Rolewicz constructed operators T ∈ L(X), where X is c0(N) or
`p(N) with p ∈ [1,∞), such that there is a vector x ∈ X with dense orbit. More precisely, he
considered the operator 2B, where B : X → X is the backward shift on X, i.e., if (en)n is the
canonical basis of X, Be0 = 0 and Ben = en−1 for all n ≥ 1. An operator which has a vector
with dense orbit is called hypercyclic and the associated vector is called hypercyclic vector.
Regarding this example as an operator with irregular orbits, a natural question arises: How
di�erent can be the irregular orbits?

In this line, the e�ort of the community to understand purely in�nite dimensional phenomena
in linear dynamics has increased during the last decades. A remarkable tool to determine if
a given operator is hypercyclic is the so-called Hypercyclicity Criterion.

Theorem [67, Hypercyclicity Criterion] Let X be a separable real or complex Banach space
and let T ∈ L(X). If there exists an increasing sequence of integers (n(k))k ⊂ N, two dense
sets D1, D2 ⊂ X and sequence of maps Sn(k) : D2 → X such that:

(1) limk→∞ ‖T n(k)x‖ = 0 for any x ∈ D1.

(2) limk→∞ ‖Sn(k)y‖ = 0 for any y ∈ D2.

(3) limk→∞ ‖T n(k)Sn(k)y − y‖ = 0 for any y ∈ D2.

Then T is hypercyclic.

In [15], C. Badea, S. Grivaux and V. Müller, introduced the following notion:

De�nition Let ε ∈ (0, 1), let X be a real or complex Banach space and let T ∈ L(X). The
operator T is called ε-hypercyclic if there is x ∈ X such that

∀ y ∈ X \ {0}, ∃ n ∈ N, ‖T nx− y‖ ≤ ε‖y‖.

It is clear that each hypercyclic operator is ε-hypercyclic for all ε > 0. Also, the vector 0
would be a 1-hypercyclic vector for each bounded operator. In the mentioned paper, [15],
for ε ∈ (0, 1) �xed, it is constructed an ε-hypercyclic operator which is not hypercyclic on
`1(N). Two years later, F. Bayart in [16] constructed an ε-hypercyclic operator which is not
hypercyclic on `2(N).

The main contribution of this chapter is a criterion for epsilon-hypercyclicity. As a remark,
the operators constructed in [15, 16] satisfy the following criterion.

Theorem C (Epsilon-Hypercyclicity Criterion) Let X be a separable real or complex Banach
space, let T ∈ L(X) and let ε ∈ (0, 1). Let D1 be a dense set on X. Let D2 := {yk : k ∈ N}
be a countable subset of X. Assume further that for each x ∈ X \ {0}, there are in�nitely
many integers k ∈ N such that yk ∈ B(x, ε‖x‖). Let (n(k))k ⊂ N be an increasing sequence
and let Sn(k) : D2 → X be a sequence of maps such that:
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(1) limk→∞ ‖T n(k)x‖ = 0 for all x ∈ D1,

(2) limk→∞ ‖Sn(k)yk‖ = 0,

(3) limk→∞ ‖T n(k)Sn(k)yk − yk‖ = 0.

Then, T is δ-hypercyclic for all δ > ε.

In the fashion of the Hypercyclic Criterion, we present a constructive proof and a topological
proof of our criterion. Moreover, with the help of Theorem C, we are able to further enhance
the construction and obtain ε-hypercyclic operators which are not hypercyclic. In fact, we
obtain the following result.

Theorem D Let X be a separable Banach space which admits a complemented isomorphic
copy of c0(N) or `p(N), with p ∈ [1,∞). Then, for any ε > 0, X admits an ε-hypercyclic
operator which is not hypercyclic.

Chapter 4: Wild operators and asymptotically separated sets

Let X be a real or complex Banach space and let T be a bounded operator on X. The
Banach-Steinhaus Theorem implies that the set of points with unbounded orbits under the
action of T must be either dense or empty. If X is a �nite dimensional space and since the
orbits of T are regular, an orbit {T nx : n ∈ N} is unbounded if and only if the sequence
(‖T nx‖)n tends to in�nity. Based on these observations, G. Pr jitur  proposed the following
conjecture: is the set

AT := {x ∈ X : lim
n→∞

‖T nx‖ =∞}

either empty or dense? Two year later, P. Hajek and R. Smith refuted this conjecture
by constructing a bounded operator T on each in�nite dimensional Banach space with a
symmetric basis, such that the set AT was a nonempty non-dense set, see [61]. In [8],
J.M. Augé construct a counterexample for mentioned conjecture on each in�nite dimensional
separable Banach space. Before proceeding, we need the following de�nition.

De�nition A set F ⊂ X is called asymptotically separated if there exist (x∗n)n ⊂ X∗ such
that

i) lim infn→∞ |x∗n(x)| = 0, for all x ∈ F .
ii) limn→∞ |x∗n(x)| =∞, for all x ∈ X \ F .

In [8], the existence of a non-trivial asymptotically separated set F ⊂ K2, namely

{(x, y) ∈ K2 : |x| ≤ |y|},

allows the construction of an operator which refutes Pr jitur 's conjecture. In the �rst
part of this chapter we explore the asymptotically separated sets de�ned in both �nite and
in�nite dimensional spaces and its consequences in linear dynamics. The following theorem
summarizes some of the examples of asymptotically separated sets that can be found in this
work.

Theorem E Let X be a complex or real Banach space and let F ⊂ X.
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i) If dim(X) <∞ and F is a union of linear hyperplanes such that F \ {0} is open, or
ii) if X is separable and F is equal to {0} or a closed subspace of X,

then F is asymptotically separated. Moreover, any Banach space of dimension at least 2
admits a dense asymptotically separated subset with dense complement.

In order to continue, let us de�ne the recurrent set of a linear operator T ∈ L(X) by

RT := {x ∈ X : lim inf
n→∞

‖T nx− x‖ = 0}.

De�nition Let X be a real or complex Banach space. An operator T ∈ L(X) is called wild
if AT and RT form a partition of X and both sets have nonempty interior.

In [8] it is proved that each separable in�nite dimensional Banach space admits a wild op-
erator. The link between linear dynamics and asymptotically separated sets comes from the
following theorem, which is a generalization of the main result of [8].

Theorem F Let X be a separable in�nite dimensional real or complex Banach space. Let V
be a complemented, in�nite codimensional subspace of X. Let F ⊆ V be an asymptotically
separated subset in V . Then there exists an operator T ∈ L(X) such that RT = P−1(F ) and
AT = P−1(V \ F ), where P ∈ L(X) is a projection onto V .

In virtue of Theorem F, any (non-trivial) example of asymptotically separated set leads to the
existence of a linear operator with interesting dynamics. In fact, combining Theorem E and
Theorem F and the fact that any in�nite dimensional Banach space X can be decomposed
as V ⊕ W , with V a �nite dimensional subspace (of dimension at least 2), we obtain the
following corollary.

Corollary Let X be a separable in�nite dimensional Banach space. Then:

� There is T ∈ L(X) such that AT and RT form a partition of X and both sets are dense.

� There is T ∈ L(X) such that AT and RT form a partition of X and AT ∪{0} is a �nite
codimensional subspace.

� There is T ∈ L(X) wild such that AT ∪ {0} is closed.

In the second part of this chapter we study some properties of wild operators. More precisely,
the following theorem gives some results obtained in three di�erent directions: the non-
stability under products of the class of wild operators, the construction of non-invertible wild
operators and the size of the norm-closure of the set of wild operators.

Theorem G Let X be a separable in�nite dimensional complex Banach space. Then

� X admits a wild operator T ∈ L(X) such that T ⊕ T is not wild on X ⊕X.

� if X has a symmetric basis, then X admits a non-invertible wild operator.

� if X has an unconditional basis (en)n, then each diagonal operator with respect to (en),
with only unitary eigenvalues, belongs to the norm-closure of the set of wild operators
in L(X).
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Chapter 5: Desingularization of smooth sweeping processes

This chapter is the beginning of the second part of this thesis, in which we turn our attention
to some aspects of Variational Analysis and Real Analysis in �nite dimensional spaces. In
this chapter Rn denotes the n-dimensional vector space endowed with the canonical euclidean
norm.

It is well-known that every C1 smooth function f : Rn → R which is de�nable in some o-
minimal structure has �nitely many critical values. K. Kurdyka [68] showed that if r̄ ∈ f(Rn)
is a critical value and U is a nonempty open bounded subset of Rn, then there exist ρ > 0
and a C1-smooth function ψ : [r̄, r̄ + ρ]→ [0,+∞) satisfying

‖∇(ψ ◦ f)(x)‖ ≥ 1, for all x ∈ U such that f(x) ∈ (r̄, r̄ + ρ). (2)

The above inequality generalizes to o-minimal functions the �ojasiewicz gradient inequality
(established in [70] for the class of C1 subanalytic functions) and is nowadays known as the
Kurdyka-�ojasiewicz inequality (in short, K�-inequality).

Both the �ojasiewicz and the K�-inequality have been further extended to nonsmooth (sub-
analytic and respectively o-minimal) functions, see [24, 25]. These inequalities allow to control
uniformly the lengths of the bounded (sub)gradient orbits, see [71, 68, 24]. The same is true
for the lengths of the piecewise gradient curves, that is, curves obtained by concatenating
countably many gradient curves {γi}i≥1, where γi ⊂ f−1([ri+1, ri)) and {ri}i is a strictly de-
creasing sequence in (r̄, r̄ + ρ) converging to r̄. (These curves have at most countably many
discontinuities.)

Outside the framework of o-minimality the K�-inequality (2) may fail even for C2-smooth
functions [26, Section 4.3] or for C∞-smooth function with a unique critical value [76, p. 12].

J.Bolte, A. Daniilidis, O. Ley and L. Mazet in [26] considered the problem of characterizing
the existence of a desingularization function ψ and the validity of (2)-inequality for an upper
isolated critical value r̄ of a semiconvex coercive function f de�ned in a Hilbert space (where
f is not necessarily a de�nable function).

In order to continue, let us introduce the dynamic generated by a multivalued function and
its coderivative.

De�nition Let S : R ⇒ Rn be a multivalued map and I ⊂ dom(S) be a nonempty interval
of R. We say that the absolutely continuous curve γ : I → Rn is a solution (orbit) of the
sweeping process de�ned by S if{

−γ̇(t) ∈ NS(t)(γ(t)), ∀a.e. t ∈ I,
γ(t) ∈ S(t) for all t ∈ I,

where NS(t)(γ(t)) stands for the normal cone of S(t) at γ(t). We denote by AC(S, I) (PAC(S, I))
the set of absolutely continuous (resp. piecewise absolutely continuous) orbits of the sweeping
process de�ned by S on the interval I ⊂ dom(S).
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For a multivalued map S : R⇒ Rn, we denote its graph by S := {(t, x) ∈ R×Rn : x ∈ S(t)}

De�nition Let S : R ⇒ Rn be a multivalued function. The (limiting) coderivative of S at
(t, x) ∈ S in u ∈ Rn is de�ned as follows:

D∗S(t, x)(u) := {a ∈ R : (a,−u) ∈ NS(t, x)}.

Recently, A. Daniilidis and D. Drusvyatskiy [41] showed that every multivalued map S : R⇒
Rn with de�nable graph admits a desingularization of its graphical coderivative D∗S(t, ·)
around any critical value t ∈ R. This result yields a uniform bound for the lengths of all
bounded orbits of the sweeping process de�ned by S. The aforementioned results of [41] are
also covering the results of Kurdyka in [68] by considering a sweeping process mapping S
related to the sublevel sets of the smooth de�nable function f .

The main contribution of this chapter is the desingularization of the coderivative for mul-
tivalued functions which are not necessarily de�nable in some the o-minimal structure. In
order to state our main result, let us introduce some de�nitions.

De�nition Let S : R⇒ Rn be a multivalued function.

i) For every (t, x) ∈ S, the asymmetric modulus of the coderivative D∗S(t, x) is de�ned
as follows:

‖D∗S(t, x)|+ = sup{max(a, 0) : a ∈ D∗S(t, x)(u), ‖u‖ ≤ 1},

where we adopt the convention sup(∅) = 0.

ii) The oriented talweg function of S denoted by ϕ↑ is de�ned as follows:

ϕ↑(t) = sup
x∈S(t)

{‖D∗S(t, x)|+}, for all t ∈ dom(S).

The setting of our work is described in the following de�nition and the assumptions (A1),
(A2) and (A3) given below.

De�nition We say that S : R ⇒ Rn is a smooth sweeping process if either

� S is a closed connected C1-smooth submanifold of Rn+1 of dimension at most n ; or

� S is a connected smooth manifold with boundary of dimension n + 1 such that ∂S is a
C1-smooth manifold of dimension n.

Assumption Let S : R⇒ Rn be a multivalued map and let T := sup(dom(S)). We say that
S satis�es the

(A1) existence assumption: for every (t, x) ∈ S with ‖D∗S(t, x)|+ < +∞, there exist δx > 0
and at least one orbit γx ∈ AC(S; [t, t+ δx)) such that γx(t) = x.

(A2) upper regular assumption at t ∈ dom(S) with t < T: if there exists δ > 0 such that
ϕ↑ < +∞ on (t, t+ δ).
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(A3) continuity assumption at t ∈ dom(S) with t < T: if there exists δ > 0 such that the
multivalued map t ⇒ ∂S ∩ ({t} ∩ Rn) is continuous for the Pompeiu-Hausdor� metric
on (t, t+ δ) (it may be discontinuous at t).

Now, we are ready to state our main result.

Theorem H Let S : R ⇒ Rn be a smooth sweeping process with bounded values that sat-
is�es (A1). Let T := {t ∈ dom(S) : (A2)�(A3) are ful�lled at t}. Let a ∈ T (typically a
critical value for D∗S).

The following assertions are equivalent:

a) (Desingularization of the coderivative) There exist b > a, ρ > 0 and a homeo-
morphism Ψ : [0, ρ]→ [a, b], which is a C1-di�eomorphism between (0, ρ) and (a, b) with
Ψ′(r) > 0 for every r ∈ (0, ρ), such that:

‖D∗(S ◦Ψ)(r, x)|+ ≤ 1, for all r ∈ (0, ρ), for all x ∈ S(Ψ(r)).

b) (Uniform length control for the absolutely continuous orbits) There exist b > a
and an increasing continuous function σ : [a, b] 7→ R+ with σ(a) = 0 such that for every
a ≤ t1 < t2 ≤ b and γ ∈ AC(S, [t1, t2]) we have:

`(γ) :=

∫ t2

t1

‖γ̇‖ ≤ σ(t2)− σ(t1).

c) (Length bound for the piecewise absolutely continuous orbits) There exist b > a
and M <∞ such that for every γ ∈ PAC(S, [a, b]) we have:

`(γ) :=

∫ t2

t1

‖γ̇‖ ≤M.

d) (Integrability of the talweg) There exists b > a such that∫ b

a

ϕ↑(t) <∞.

Also, in this chapter we provide a characterization of the desingularization of the coderivative
for smooth sweeping processes in terms of the discrete dynamic generated by the given
multivalued map, namely, the sequences generated by the Catching-Up Algorithm.

Chapter 6: AML functions in two dimensional spaces:

In contrast to Chapter 5, in this chapter (Rn, ‖ · ‖) denotes an n-dimensional vector space
Rn equipped with a (not necessarily Euclidean) norm ‖ · ‖.

This chapter is devoted to the regularity of Lipschitz functions. Let U ⊂ Rn be a nonempty
open set. By Rademacher Theorem, any locally Lipschitz function f : U → R is di�erentiable
almost everywhere. In this work we study the regularity of the following subfamily of locally
Lipschitz functions.
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De�nition Let (Rn, ‖ · ‖) be a �nite dimensional normed space and let U ⊂ Rn a nonempty
open set. We say that a locally Lipschitz function f : U → R is a ‖ · ‖-absolutely minimizing
Lipschitz function (‖ · ‖-AML for short) if for any nonempty open set V ⊂⊂ U and any
Lipschitz function g : V → R such that g|∂V = f |∂V , then

Lip(g) ≥ Lip(f |V).

If no confusion arises from the underlying norm on Rn, we simple say AML functions.

The existence of non-trivial AML functions and their regularity are some of the main issues of
this theory. In the Euclidean setting, Aronsson proved that a C2-smooth function, f : U → R
is AML if and only if it is a classical solution of the equation governed by the in�nity-
Laplacian, i.e. the function f satis�es

4∞f :=
n∑

i,j=1

∂if∂jf∂
2
ijf = 0, on U (∞L)

in the classical sense, see [6]. In 1993, Jensen showed that the family of AML functions co-
incides with the solutions of Equation (∞L) in the viscosity sense. Moreover, Jensen proved
existence and uniqueness in the sense of viscosity of the Cauchy problem given by the Equa-
tion (∞L) with a continuous boundary condition, see [64].

Let us now summarize some results concerning the regularity of this class of functions. In the
seminal paper [89], O. Savin proved that AML functions de�ned on open subsets of (R2, ‖·‖2)
(equipped with an Euclidean norm) are continuously di�erentiable. In [48], L. Evans and C.
Smart proved that AML functions de�ned on open subsets of (Rn, ‖ · ‖2) are di�erentiability
everywhere. However, the continuity of the di�erential remains open for n ≥ 3.

The main theorem of this chapter reads as follows.

Theorem I Let X be a 2 dimensional Banach space. The following statements are equiva-
lent.

a) The underlying norm is di�erentiable in X \ {0}.
b) Every AML function de�ned on an open subset of X is continuously di�erentiable.

c) Every AML function de�ned on an open subset of X is everywhere di�erentiable.

In the early 2021, F. Peng, C. Wang and Y. Zhou generalized Savin's result to absolutely
minimizing functions under convex Hamiltonians de�ned on open sets of (R2, ‖ · ‖2). This
result also generalizes our Theorem I. However, the proof presented in [77] relies in the
underlying Euclidean structure of (R2, ‖ · ‖2), in contrast with our purely non-Euclidean
technique to prove Theorem I.
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Chapter 1

General Facts of Banach space Theory

The aim of this chapter is to give the fundamentals to develop the �rst part of this thesis.
Functional Analysis and Banach space theory have been widely developed along the whole
20th century. We present some well-known facts of three distinct areas, namely: bornologies,
bases and linear dynamics. In fact, Section 1.1 contains the basics for Chapter 2. On the
other hand, Section 1.2 and Section 1.3 are the main bricks to Chapters 3 and 4. We point
out that in Section 1.1 the usual framework is a real Banach space while in Section 1.2 and
Section 1.3, the underlying scalar �eld can be either R or C.

1.1 Bornologies, di�erentiability and linear operators

Let us start with the de�nition of a bornology on Banach spaces.

De�nition 1.1 [63, Page 18] Let X be a real Banach space. A bornology on X, denoted by
β, is any nonempty family of bounded subsets of X that satis�es the following properties:

1. β is a covering of X, i.e. X =
⋃
{A : A ∈ β},

2. β is hereditary under inclusion, i.e. if A ∈ β and B ⊂ A, then B ∈ β,
3. β is stable under �nite union, i.e. if A,B ∈ β, then A ∪B ∈ β.

For a given Banach space, the most common bornologies are the following: Fréchet, the
family of all bounded sets; Gâteaux, the family of all �nite sets and (weakly-)Hadamard,
the family of all relatively (weakly-)compact sets. One of the uses of bornologies is to de�ne
di�erent notions of di�erentiability as follows.

De�nition 1.2 Let Ω be an nonempty open subset of X and let β be a bornology on X. A
function f : Ω→ Y is said β di�erentiable at x ∈ Ω, with di�erential T ∈ L(X, Y ), if

lim
t→0

sup
z∈A

∥∥∥∥f(x+ tz)− f(x)

t
− T (z)

∥∥∥∥ = 0, ∀A ∈ β.

We denote the β di�erential of f at x by dβf(x) := T .

Observe that, in the sense of De�nition 1.2, Gâteaux and Fréchet di�erentiability correspond
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to the weakest and strongest notions of di�erentiability. A well known result asserts that if
f is Fréchet di�erentiable at some point x, then f is continuous at x. However, this does not
hold true whenever we interchange Fréchet for Gâteaux. In what follows, we present a folklore
result on di�erentiability of Lipschitz functions. Recall that a function f : Ω ⊂ X → Y is
said K-Lipschitz if

‖f(x)− f(z)‖ ≤ K‖x− z‖, for all x, y ∈ X.
The Lipschitz constant of f is the lowest constant K such that f is a K-Lipschitz function
and it is denoted by Lip(f).

Proposition 1.3 Let f : Ω ⊂ X → Y be a Lipschitz function. Assume that f is Gâteaux
di�erentiable at x ∈ int(Ω). Then, f is Hadamard di�erentiable at x.

Proof. Let dGf(x) be the Gâteaux di�erential of f at x. Let us show that f is in fact
Hadamard di�erentiable and the Hadamard di�erential dHf(x) coincides with dGf(x). Let
A be a compact subset of X and ε > 0. Let Aε be a �nite ε-net of A. Then, since ‖dGf(x)‖ ≤
Lip(f), for any t 6= 0, we compute

sup
z∈A

∥∥∥∥f(x+ tz)− f(x)

t
− dGf(x)(z)

∥∥∥∥ ≤ sup
z∈A

∥∥∥∥f(x+ tz)− f(x+ taz)

t

∥∥∥∥
+

∥∥∥∥f(x+ taz)− f(x)

t
− dGf(x)(az)

∥∥∥∥+ ‖dGf(x)(az − z)‖

≤ 2εLip(f) + sup
z∈A

∥∥∥∥f(x+ taz)− f(x)

t
− dGf(x)(az)

∥∥∥∥ ,
where az ∈ Aε is chosen such that ‖z − az‖ ≤ ε. Therefore, since Aε is a �nite set, sending t
to 0 we obtain that

lim
t→0

sup
z∈A

∥∥∥∥f(x+ tz)− f(x)

t
− dGf(x)(z)

∥∥∥∥ ≤ 2εLip(f).

Finally, since ε > 0 is arbitrary, we conclude that dGf(x) is the Hadamard di�erential of f
at x.

As a direct consequence we have:

Corollary 1.4 Let f : Ω ⊂ X → Y be a Lipschitz function. Assume that X is �nite-
dimensional. Then, Gâteaux and Fréchet di�erentiability coincide for f .

According to [43], we can consider the Banach spaces of β di�erentiable functions.

Proposition 1.5 [43, Section 2] Let X be a real Banach space and let β be a bornology
on X. Then, the vector space Cβ

u (X) of bounded, Lipschitz continuous and everywhere β
di�erentiable functions from X to R is a Banach space when it is equipped with the norm

‖f‖1 : = ‖f‖∞ + ‖dβf‖∞
= sup{|f(x)| : x ∈ X}+ sup{‖dβf(x)‖ : x ∈ X},

where f ∈ Cβ
u (X).
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To end this section, and in the spirit of [63, Chapter 1], we introduce the following de�nition.

De�nition 1.6 Let X and Y be two Banach spaces and let β be a bornology on Y . We say
that a linear operator T : X → Y is a β-operator if TB(x, r) ∈ β for all x ∈ X and all r > 0.

Observe that, for any bornology β in Y , a β-operator T : X → Y is continuous. Indeed, this
is due to the fact that TBX ∈ β and that any bornology is made up of bounded sets. That
is, in this notation, an operator is bounded if and only if it is a Fréchet-operator. Further,
the classi�cations of compact and weakly compact operator are related to the Hadamard and
weakly-Hadamard bornology respectively.

1.2 Bases in Banach spaces

In this section, we introduce several notions of bases for real or complex Banach spaces. Bases
allow us to treat certain Banach spaces as sequence spaces. According to [60], a sequence
(en, e

∗
n)n ⊆ X×X∗ is a biorthogonal system if e∗n(em) = 1 if n = m, and e∗n(em) = 0 if n 6= m.

A complete survey about the importance of biorthogonal systems in Banach space theory
can be found in [60]. In what follows, we introduce some important kinds of biorthogonal
systems.

De�nition 1.7 A sequence (en)n ⊂ X is called a Schauder basis of X if for any x ∈ X,
there is a unique sequence of scalars (an)n ⊂ K such that

x =
∞∑
n=1

anen.

Observe that, if (en)n is a Schauder basis of X, then it induces a canonical biorthogonal
system. Namely, (en, e

∗
n)n ⊂ X ×X∗ where e∗n is de�ned by the n-th scalar obtained in the

series de�ning x in terms of (en)n. Also, notice that every Hamel basis of a �nite dimen-
sional Banach space is a Schauder basis in the sense of De�nition 1.7. However, in [47], P.
En�o constructed an in�nite dimensional separable Banach space that lacks of Schauder basis.

De�nition 1.8 [1, De�nition 3.1.4] A Schauder basis (en)n ⊂ X is said C-unconditional if,
for all N ∈ N, ∥∥∥∥∥

N∑
n=1

anen

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑
n=1

bnen

∥∥∥∥∥
whenever a1, ..., aN , b1, ..., bN are scalars satisfying |an| ≤ |bn| for all n = 1, ..., N . The
Schauder basis (en)n is said unconditional if it is C-unconditional for some C > 0.

In [56], W. Gowers and B. Maurey constructed a separable in�nite dimensional Banach space
X such that no sequence (en)n ⊂ X is an unconditional basis in the in�nite dimensional sub-
space span(en : n ∈ N). On the other hand, any orthonormal basis of a separable Hilbert
space is 1-unconditional. More generally, the canonical basis of `p(N), with p ∈ [1,∞), or of
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c0(N) is 1-unconditional. The following proposition is a well-known result concerning uncon-
ditional basis and renorming a Banach space.

Proposition 1.9 Let X be a Banach space with an unconditional basis (en)n ⊂ X. Then,
there exists a renorming on X such that (en)n is a 1-unconditional basis.

Let us introduce the last notion of biorthogonal system of this section.

De�nition 1.10 Let (en, e
∗
n)n ⊂ X ×X∗ be a biorthogonal system. We say that (en, e

∗
n)n (or

just (en)n) is a bounded M-basis if:

1. X = span(en : n ∈ N),

2. X∗ = spanω
∗
(e∗n : n ∈ N), and

3. sup{‖en‖‖e∗n‖ : n ∈ N} ≤ K <∞.

The concept of bounded M-basis is weaker than the notion of Schauder basis. In fact, In [75]
R. Ovsepian and A. Peªczy«ski showed that every separable Banach space admits a bounded
M-basis. We present here the more precise formulation found in [60].

Theorem 1.11 [60, Theorem 1.27] Let X be a separable real or complex Banach space.
Then, X admits a bounded M-basis. Moreover, the constant K can be chosen as 1 + ε with
ε > 0 arbitrarily small.

1.3 Dynamics of linear operators

Linear dynamic is a rapidly increasing area of Functional Analysis which deals with the
study of dynamical systems generated by the action of a bounded linear operator T on some
topological vector space X. In this work we are interested in the case whenever X is an
in�nite dimensional Banach space. To �x notation, for x ∈ X, we say that the orbit of T at
x is the set

OrbT (x) := {T nx : n ∈ N}.

In [85], S. Rolewicz stated that linear dynamics in �nite dimensional spaces are regular in
the following sense.

Theorem 1.12 [85, Page 1] Let X be a �nite dimensional real or complex normed space
and let T ∈ L(X). Let x ∈ X. Then, one of the following assertions holds true:

1. limn→∞ ‖T nx‖ =∞.

2. limn→∞ ‖T nx‖ = 0.

3. 0 < α < ‖T nx‖ < β <∞ for all n ∈ N.

Sketch of the proof. Let us give some comments of the proof for the case whenever X is
a complex vector space. If X is a real vector space, we can do the same analysis with its
complexi�cation. Since T is a linear operator, it admits a Jordan canonical form MT . That
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is, a block diagonal matrix such that each block is a Jordan block. Let x = xL+x1+xG be the
unique decomposition of x such that xL belongs to the span of the union of the generalized
eigenspaces associated to eigenvalues of T of modulus less than 1, x1 belongs to the span
of the union of the generalized eigenspaces of T associated to eigenvalues of modulus equal
to 1 and xG belongs to the span of the union of the generalized eigenspaces associated to
eigenvalues of T of modulus greater than 1.

Now we proceed with the analysis of ‖T nx‖. It is straightforward that ‖T nx‖ tends to in�nity
as n tends to in�nity if xG 6= 0. Also, it is clear that ‖T nxL‖ tends to 0 as n tends to in�nity.
So, to end the analysis, we can assume that x = x1. That is, x belongs to the span of the
union of the generalized eigenspaces associated to eigenvalues of T of modulus equal to 1. If
x can be written as a sum of eigenvectors of T , then x satis�es (2). The last case is whenever
x belongs to the span of the union of the generalized eigenspaces associated to eigenvalues
of modulus 1 but it cannot be decomposed in eigenvectors. It is not di�cult to see that x
satis�es (1).

Remark 1.13 In the proof of Theorem 1.12, if xG 6= 0, then ‖T nx‖ grows exponentially to
in�nity. On the other hand, if xG = 0 and x1 6= 0 cannot be decomposed in eigenvectors of
T , then ‖T nx‖ grows polynomially to in�nity.

To continue, we need some de�nitions to motivate our work.

De�nition 1.14 Let X be a real or complex Banach space and let T ∈ L(X). We say that
T is cyclic if there is x ∈ X such that

span(OrbT (x)) = X.

The vector x is called a cyclic vector for T .

Observe that if X is a d-dimensional space and {en : n = 1, ..., d} is a basis of X, the
operator T ∈ L(X) de�ned by the following permutation of the basis:

T ed = e1, and T en = en+1, for all n = 1, ..., d− 1,

is cyclic and the vectors {ek, k = 1, ..., d} are cyclic vectors for T .

De�nition 1.15 Let X be a real or complex Banach space and let T ∈ L(X). We say that
T is supercyclic if there is x ∈ X such that

KOrbT (x) = X.

The vector x is called a supercyclic vector for T .

Observe that if X is a 2-dimensional space and {e1, e2} is a basis of X, θ is an irrational
multiple of π and T ∈ L(X) is the operator de�ned by:

T (x1e1 + x2e2) := x1(cos(θ)e1 + sin(θ)e2) + x2(− sin(θ)e1 + cos(θ)e2), for all x1, x2 ∈ K

is supercyclic and the vectors {ek, k = 1, ..., d} are supercyclic vectors for T . Let us continue
with the last de�nition of this chapter.
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De�nition 1.16 Let X be a Banach space and let T be a linear bounded operator on X. We
say that T hypercyclic if there is x ∈ X such that

OrbT (x) = X.

The vector x is called an hypercyclic vector for T .

Observe that, thanks to Theorem 1.12, there is no hypercyclic operators de�ned on �nite
dimensional spaces. However, in [85], S. Rolewicz showed examples of hypercyclic operators
de�ned on in�nite dimensional Banach spaces.

Example 1.17 Let p ∈ [1,∞) and let (en)n be the canonical coordinates of `p(N). Let
B ∈ L(`p(N)) de�ned by Be1 = 0 and Ben = en−1 if n ≥ 2. The operator B is commonly
called the backward shift on `p(N). Then, λB is hypercyclic in `p(N) if and only if |λ| > 1.

The examples given by S. Rolewicz seem to be the �rst examples constructed in Banach
spaces. However, 40 years before in [16], Birkho� showed an example of a hypercyclic op-
erator constructed on a Fréchet space. Since [85], linear dynamics has been a proli�c area
in functional analysis. Indeed, these de�nitions are related to the following subspace/subset
invariant problems: Does there exist a linear operator T : X → X without non-trivial in-
variant closed subspace/subset? In fact, an operator T ∈ L(X) has no non-trivial invariant
closed subspace if and only if each non-zero vector of X is a cyclic vector for T . On the other
hand, an operator T has no non-trivial invariant closed subset if and only if each non-zero
vector of X is a hypercyclic vector for T . Let us give some comments about these problems.
P. En�o, in [47], showed the �rst operator with no non-trivial closed subspace in an in�nite
dimensional Banach space. In the same work, P. En�o constructed the Banach space and the
operator. C. Read, in [82], constructed an operator on `1(N) with no non-trivial invariant
closed subsets. On the other hand, in [4], S. Argyros and R. Haydon constructed a separable
in�nite dimensional Banach space X such that every operator T ∈ L(X) has a non-trivial
invariant subspace.

Nowadays, thanks to the joint e�ort of researchers to understand these kind of phenomena,
such as the hypercyclicity, there is a vast literature in which we can �nd several distinct
classi�cations that strengthen the concept of hypercyclicity, such as frequent hypercyclicity,
weak mixing, among others. Further information can be found in [18].

We end this section by presenting an important tool to check if a given operator is hypercyclic,
the so-called Hypercyclicity Criterion. It appeared for �rst time (in a particular case) in
Kitai's PhD thesis [67]. In what follows, we present the version found in [18] applied to
Banach spaces.

Theorem 1.18 [18, Theorem 1.6] Let X be a separable real or complex Banach space and
let T ∈ L(X). If there exist an increasing sequence of integers (n(k))k ⊂ N, two dense sets
D1, D2 ⊂ X and sequence of maps Sn(k) : D2 → X such that:

1. limk→∞ T
n(k)x = 0 for any x ∈ D1.

2. limk→∞ Sn(k)y = 0 for any y ∈ D2.
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3. limk→∞ T
n(k)Sn(k)y = y for any y ∈ D2.

Then T is hypercyclic.

Let us show that the operator given in Example 1.17 satis�es the Hypercyclicity Criterion.
Let p ∈ [1,∞), let |λ| > 1 and let (en)n be the canonical basis of `p(N). Let B be the backward
shift on `p(N) and let F be the forward shift on `p(N), that is, F en = en+1 for all n ∈ N. Let
us set D1 = D2 := span({en : n ∈ N}), the sequence n(k) := k and the map Sk := λ−kF k

for all k ∈ N. Then, we can easily apply the Hypercyclicity Criterion on λB. Thus, λB is a
hypercyclic operator de�ned on `p(N).
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Chapter 2

β-operators and di�erentiability

This chapter is devoted to understand the interplay between bornologies, linear operators
and di�erentiability on real Banach spaces. To do this, we follow the structure of a result
of M. Bachir given in [11], precisely, Theorem 2.2 below. The basics and the corresponding
notation related to this chapter can be found in Chapter 1, Section 1.1. This chapter is
partially based in [13], which is a joint work with M. Bachir and G. Flores. However, one of
the main results of this chapter, Theorem 2.5, is a generalization of the main result of [13].
In this chapter all Banach spaces are real.

2.1 Introduction

It is a well-known fact that di�erentiability in the sense of bornologies (see De�nition 1.2)
implies distinct properties of the functions depending on the chosen bornology. In this frame-
work, the most common bornologies are those of �nite, relatively compact and bounded sets.
Each one of them is related to some type of di�erentiability, namely, Gâteaux, Hadamard
and Fréchet respectively, see [79]. To motivate this work we need the following de�nition
which can be found in [30].

De�nition 2.1 Let X be a Banach space. A bounded subset A of X is said limited if for
any weak∗ null sequence (xn)∗n, the following limit holds:

lim
n→∞

sup
x∈A
|〈x∗n, x〉| = 0.

That is, sequentially weakly∗ convergence is uniform on A.

We know that every relatively compact subset in a Banach space is limited, but the converse
is false in general. The family of limited subsets of a Banach space form a bornology, which
will be called the limited bornology. Recalling De�nition 1.6, for a bornology β on X and an
operator T ∈ L(Y,X), we say that T is a β-operator if T (BY (y, r)) ∈ β for all y ∈ Y and all
r > 0. The study of limited operator is an interesting line of research. Further information
on limited sets and limited operators can be found in [30, 65, 74]. The next theorem, which is
the motivation of this chapter, characterizes limited operators in terms of the di�erentiability
of convex functions via the composition with the operator.
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Theorem 2.2 [11, Theorem 1] Let X and Y be two real Banach spaces, let U be a nonempty
convex open subset of X and let T ∈ L(Y,X). Then, T is limited if and only if for every
convex continuous function f : U → R, f ◦ T is Fréchet-di�erentiable at y ∈ Y whenever f
is Gâteaux-di�erentiable at Ty ∈ U .

In this sense, a limited operator transforms (for convex functions) Gâteaux-di�erentiability
(the weakest type) into Fréchet-di�erentiability (the strongest type) via composition. Bear-
ing this in mind, we can go further. Mimicking the structure of Theorem 2.2, in [13], we
proved that compact operators are characterized by the di�erentiability of Lipschitz func-
tions. Another way to express these results is the fact that in in�nite-dimensional spaces,
what prevents a continuous convex function f : X → R which is Gâteaux-di�erentiable at
some point from being Fréchet-di�erentiable at the same point is the fact that the identity
operator on X is not limited, whereas what prevents a general Lipschitz function which is
Gâteaux-di�erentiable to be Fréchet-di�erentiable is the fact that the identity operator on X
is not compact. The non-compactness of the identity operator in in�nite dimensional spaces
is the well known Riesz theorem. On the other hand, the fact that the identity operator is
not limited in in�nite dimensional spaces has been discovered independently by Josefson in
[65] and Nissenzweig in [74].

To state the �rst main result of this chapter, we need the following two de�nitions.

De�nition 2.3 Let β be a bornology on X. We say that β is a convex bornology if for any
A ∈ β:

1. the convex envelope of A, co(A), belongs to β, and

2. x+ λA belongs to β for any x ∈ X and any λ ∈ R.

For instance the limited, Hadamard, weak-Hadamard and Fréchet bornologies are convex
bornologies.

De�nition 2.4 Let β be a bornology on X. We say that β satis�es the property (S) if for
every bounded set A ⊂ X such that A /∈ β, there is a sequence (xn)n ⊂ A and δ > 0 such that
for any increasing sequences (nk) ⊂ N and for any sequence (yk)k satisfying ‖yk − xnk‖ ≤ δ
for all k ∈ N, the set {yk : k ∈ N} does not belong β.

Although property (S) could seem arti�cial, in Section 2.2 it is established that the Hadamard,
weakly-Hadamard and Limited bornologies satisfy it. Moreover, the Fréchet bornology triv-
ially satis�es property (S). Our �rst main result of this chapter reads as follows.

Theorem 2.5 Let X and Y be two Banach spaces and let β be a convex bornology on X
satisfying property (S). Let T ∈ L(Y,X). Then T is a β-operator if and only if for every
Lipschitz function f : X → R, β-di�erentiable at x = Ty, f ◦T is Fréchet-di�erentiable at y.

Remark 2.6 Thanks to Proposition 2.11, Proposition 2.12 and Proposition 2.13, we can
apply Theorem 2.5 to compact (recovering the main result of [13]), weakly-compact and limited
operators. We point out that, to the best of our knowledge, this a new characterization for
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weakly-compact operators.

To present our second main result of this chapter, let us introduce a new class of functions
with still some Lipschitz �avour.

De�nition 2.7 We say that a function f : U ⊂ X → Z is �nitely Lipschitz if for every �nite
dimensional a�ne subspace Y of X such that U ∩ Y 6= ∅, f |(Y ∩U) is Lipschitz. We denote by
FLip(U , Z) the linear space of �nitely Lipschitz functions from U ⊂ X to Z. In the case of
Z = R, we simply write FLip(U).

Observe that �nitely Lipschitz functions do not need to be continuous. Indeed, any linear
functional from an in�nite dimensional Banach space to another Banach space is �nitely
Lipschitz.

Theorem 2.8 Let X and Y be two Banach spaces and let T ∈ L(Y,X). Then, T has �nite
rank if and only if for every Banach space Z and every continuous �nitely Lipschitz function
f : X → Z, Gâteaux-di�erentiable at x = Ty, f ◦ T is Fréchet-di�erentiable at y ∈ Y .

Remark 2.9 Theorem 2.5 and Theorem 2.8 remain true if we change Z by R or if we restrict
the domain of the Lipschitz functions (�nitely-Lipschitz functions resp.) to some open subset
of X.

This chapter is organized as follows: In Section 2.2 we give some comments on property
(S) and we construct a useful Lipschitz function. Section 2.3 is devoted to the proof of
Theorem 2.5 and 2.8, together with some results on spaceability/lineability. In Section 2.4
we present an alternative (and simpli�ed) proof of Theorem 2.2. Finally, we end this chapter
with Section 2.5 which contains some applications of Theorem 2.5.

2.2 Property (S) and the construction of a Lipschitz func-

tion

We start this section by showing that if a given bornology satis�es property (S), then it must
contain all relatively compact sets, see De�nition 2.4. Then, we show that the Hadamard,
limited and weak-Hadamard bornology satisfy property (S). We end this section with the
construction of a Lipschitz function that will be used in the forthcoming sections.

Proposition 2.10 Let X be a Banach space and let β be a bornology on X. If β satis�es
property (S), then it contains the relatively compact sets of X.

Proof. Let us proceed by contradiction. Let A be a relatively compact subset of X such that
A /∈ β. Let (xn)n ⊂ A and δ > 0 be the sequence and the positive number given by property
(S). Since A is a relatively compact set, there is a subsequence (xnk)k of (xn)n convergent
to x ∈ X. Up to a subsequence, we can assume that ‖x− xnk‖ ≤ δ for all k ∈ N. Thus, the
sequence (yk)k de�ned by yk = x satis�es that ‖yk − xnk‖ ≤ δ for all k ∈ N. Property (S)
implies that {yk : k ∈ N} = {x} /∈ β, which is a contradiction.
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Proposition 2.10 implies that a bornology on a �nite dimensional Banach space satis�es
property (S) if and only if it is the Fréchet bornology. Thus, in this section X will always
denote an in�nite dimensional Banach space.

Proposition 2.11 The Hadamard bornology on X satis�es property (S).

Proof. Let A ⊂ X be a bounded non-relatively compact set. Then there exists a sequence
(xn)n ⊂ A with no accumulation points. Up to a subsequence, which we denote by (xn)n,
we �nd σ > 0 such that ‖xn − xm‖ ≥ σ for all n 6= m. Therefore, if we choose δ = σ/4,
then any sequence (yk)k satisfying ‖yk − xnk‖ ≤ δ, for some increasing sequence (nk), has no
accumulation points. Thus, the set {yk : k ∈ N} is not relatively compact.

Proposition 2.12 The Limited bornology on X satis�es property (S).

Proof. Let A ⊂ X be a bounded non-limited set. Then there is a weak∗-null sequence
(x∗n)n ⊂ BX∗ which does not converge to 0 uniformly on A. Hence, up to a subsequence of
(x∗n)n, there exist a sequence (xn)n ⊂ A and σ > 0 such that |x∗n(xn)| ≥ σ for all n ∈ N.
Considering δ = σ/2, we obtain that any vector yk ∈ B(xnk , δ), with (nk)k an increasing
sequence, satis�es |x∗nk(yk)| ≥ σ/2. Therefore, the set {yk : k ∈ N} is not limited.

The following result concerns the weak-Hadamard bornology. It can be found inside the
proof of [28, Theorem 1].

Proposition 2.13 The weak-Hadamard bornology on X satis�es property (S).

Proof. Let A ⊂ X be a bounded non-relatively weakly-compact set. By the Eberlein-
�Smulian Theorem, there is a sequence (xn)n ⊂ X with no weakly-convergent subsequence.
By contradiction, suppose that no subsequence of (xn) satis�es the statement of property
(S). Then, there exist an increasing sequence (n(1, j))j ⊂ N and a sequence (z1

n(1,j))j weakly-
convergent to z1 such that z1

n(1,j) ∈ B(xn(1,j), 1) for all j ∈ N. Inductively, for k ≥ 2, there
exist a subsequence (n(k, j))j of (n(k−1, j))j and (zkn(k,j))j weakly-convergent sequence to z

k

such that zkn(k,j) ∈ B(xn(k,j), 1/k) for all j ∈ N. Let us show that the sequence (zk)k converges
in norm to some z∞ ∈ X. Indeed, let k < l. Recalling that the norm is a weakly-lower semi
continuous and that (n(l, j))j is a subsequence of (n(k, j))j, we obtain

‖zk − zl‖ ≤ lim inf
j
‖zkn(l,j) − zln(l,j)‖ ≤ lim inf

j
‖zkn(l,j) − xn(l,j)‖+ ‖xn(l,j) − zln(l,j)‖ ≤

1

k
+

1

l
,

proving that (zk)k is a norm-Cauchy sequence. We claim that (xn(k,k))k weakly-converges to
z∞. Let x∗ ∈ SX∗ and ε > 0. Let n0 ∈ N such that n−1

0 ≤ ε/3. Thus, ‖zk − z∞‖ ≤ ε/3 for
all k ≥ n0. Since the sequence (zn0

n(n0,j)
)j is weakly-convergent to zn0 , there is m0 ∈ N such

that |〈x∗, zn0 − zn0

n(n0,j)
〉| ≤ ε/3 for all j ≥ m0. Observe that, for any k > n0, there is jk ∈ N

such that n(k, k) = n(n0, jk). Hence, for k large, we have that jk > m0 and then
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|〈x∗, xn(k,k) − z∞〉| ≤ |〈x∗, xn(n0,jk) − zn0

n(n0,jk)〉|+ |〈x
∗, zn0

n(n0,jk) − z
n0〉|+ |〈x∗, zn0 − z∞〉|

≤ n−1
0 +

ε

3
+ ‖zn0 − z∞‖ ≤ ε,

concluding that the sequence (xn(k,k))k weakly-converges to z∞. Therefore, this contradicts
the fact that (xn) has no weakly convergent subsequence.

The last ingredient of the proof of Theorem 2.5 is the Lipschitz function constructed in
Proposition 2.17 below. This function is used to prove Theorem 2.5 and we conveniently
modify it to prove also Theorem 2.8 and Corollary 2.21. In [28] a similar construction is
used to prove certain properties of non-re�exive spaces. Let us continue with the following
de�nitions. For a set A ⊂ X, the cone generated by A is the set

cone(A) := {λx : x ∈ A, λ ≥ 0}.

De�nition 2.14 Let X be a Banach space, let (xn)n ⊂ X be a sequence such that ‖xn‖ =
‖x1‖ for all n ∈ N and let σ ∈ (0, ‖x1‖).

1. We say that (xn)n is σ-separated if ‖xn − xm‖ ≥ σ for all n,m ∈ N, with n 6= m.

2. We say that (xn)n is σ-cone separated if the sets {cone(B(xn, σ)) \ {0} : n ∈ N} are
pairwise disjoint.

By de�nition, a σ-cone separated sequence is 2σ-separated. Conversely, we have the following
result.

Proposition 2.15 Let (xn)n ⊂ X be a σ-separated sequence. Then (xn)n is σ/4-cone sepa-
rated.

Proof. Let x ∈ X \ {0} and 0 < α < ‖x‖. Let us de�ne the set

Pα(x) :=

{
‖x‖
‖y‖

y : y ∈ B(x, α)

}
⊂ ∂B(0, ‖x‖).

Observe that cone(B(x, α)) = cone(Pα(x)). In what follows, we prove that Pα(x) ⊂ B(x, 2α).
Indeed, if y ∈ B(x, α), then:∥∥∥∥x− ‖x‖‖y‖y

∥∥∥∥ ≤ ‖x− y‖+

∥∥∥∥y − ‖x‖‖y‖y
∥∥∥∥

= ‖x− y‖+ |‖y‖ − ‖x‖| ≤ 2‖x− y‖ < 2α.

So, cone(B(x, α)) ∩ ∂B(0, ‖x‖) = cone(Pα(x)) ∩ ∂B(0, ‖x‖) = Pα(x) ⊂ B(x, 2α).

Let (xn)n be a σ-separated sequence. Then, ‖xn‖ = ‖x1‖ for all n ∈ N and σ < ‖x1‖.
Since Pσ/4(xn) ⊂ B(xn,

σ
2
) for each n ∈ N, the sets {Pσ/4(xn) : n ∈ N} are pairwise disjoint.

Indeed, if there are n,m ∈ N, with n 6= m, such that Pσ/4(xn) ∩ Pσ/4(xm) 6= ∅, then there is

y ∈ Pσ/4(xn) ∩ Pσ/4(xm).
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However, this implies that ‖xn − xm‖ ≤ ‖xn − y‖ + ‖y − xm‖ < σ which is a contradiction.
Finally, since

cone{B(xn, σ/4)} = cone{Pσ/4(xn)},

we get that (xn)n is σ/4-cone-separated, because the cones do not intersect in the sphere
∂B(0, ‖x‖).

The core of a set A ⊂ X, denoted by core(A) ⊂ X, is the set de�ned by

core(A) := {x ∈ A : ∀y ∈ SX ,∃t > 0, (x− ty, x+ ty) ⊂ A}.

Proposition 2.16 Let f : X → R be a function. If x ∈ core({f = f(x)}), then f is
Gâteaux-di�erentiable at x with Gâteaux-di�erential equals to dGf(x) = 0.

Proof. Let x ∈ X and let A = {y ∈ X : f(y) = f(x)}. Let us assume that x ∈ core(A).
Then, for each y ∈ X, there exists ty > 0 such that f(x+ty) = f(x) for all |t| < ty. Therefore,

lim
t→0

f(x+ ty)− f(x)

t
= 0, for all y ∈ X.

Thus, the directional derivative of f at x in any direction is equal to 0. Hence, f is Gâteaux-
di�erentiable at x and dGf(x) = 0.

Finally, we present the mentioned Lipschitz function.

Proposition 2.17 Let β be a convex bornology on X, distinct from the Fréchet bornology,
satisfying property (S). Let A /∈ β be a nonempty symmetric bounded convex set. Then, there
exist σ > 0 and a σ-separated sequence (xn)n ⊂ A such that the Lipschitz function f : X → R
de�ned by

f(x) := dist

(
x,X \

∞⋃
n=1

B
(xn
n
,
σ

4n

))
, for all x ∈ X,

is β-di�erentiable at 0 but not Fréchet-di�erentiable at 0.

Proof. Let (xn)n ⊂ A and let δ > 0 given by property (S). Since A is bounded and β contains
the relatively compact sets, we can assume, up to a subsequence, that (‖xn‖)n converges to
α > 0. Further, maybe shrinking δ, taking again a subsequence and perturbing the sequence
(xn)n, (recall that A is a symmetric convex set), we can assume that ‖xn‖ = α for every
n ∈ N. Since the sequence (xn)n does not have accumulation points, up to a subsequence,
we can assume that (xn)n is a σ-separated sequence, for some σ > 0. Let us rede�ne σ by
σ := min{δ, σ}. Let f : X → R be the 1-Lipschitz function on X de�ned by

f(x) := dist

(
x,X \

∞⋃
n=1

B
(xn
n
,
σ

4n

))
, for all x ∈ X.
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By Proposition 2.15 and Proposition 2.16, f is Gâteaux-di�erentiable at 0, with Gâteaux-
di�erential equal to dGf(0) = 0. However, since nf(xn/n) = σ/4, f is not Fréchet-
di�erentiable at 0. Finally, it only remains to prove that f is β-di�erentiable at 0. We
proceed by contradiction. Suppose, for some symmetric convex set W ∈ β, the ratio of
di�erentiability does not converge uniformly on W . That is, there exist a null sequence
(tk) ⊂ R, (wk)k ⊂ W and ε > 0 such that:∣∣∣∣f(tkwk)

tk

∣∣∣∣ ≥ ε, ∀n ∈ N.

SinceW is symmetric, we can assume that (tn)n is a sequence of positive numbers. Also, since
f(tkwk) > 0, there is a sequence (nk) ⊂ N such that tkwk ∈ B(xnk/nk, σ/4nk). Due to the
fact thatW is bounded and that (tkwk)k converges to 0, we can assume, up to a subsequence,
that (nk)k is increasing. We have two di�erent cases now. If the sequence (wk)k tends to 0,
the set {wk : k ∈ N} is relatively compact. However, the quotient of di�erentiability at a
point of Gâteaux di�erentiability converges uniformly on relatively compact sets for Lipschitz
functions (see Theorem 1.3). This contradicts the fact that ε > 0. Therefore, we can assume
that (wk)k is not a norm-null sequence and then, up to a subsequence, the sequence (‖wk‖)k
converges to some ν > 0. Since tkwk ∈ B(xnk/nk, σ/4nk), then nktkwk ∈ B(xnk , σ/4),
Therefore,

nktk ∈
[

α

‖wk‖
− σ

4‖wk‖
,

α

‖wk‖
+

σ

4‖wk‖

]
.

Thus, the sequence (tknk)k accumulates in [α
ν
− σ

4ν
, α
ν

+ σ
4ν

]. Passing through a subsequence,
we assume that (tknk)k converges to some λ > 0. Hence, there is K ∈ N such that λwk ∈
B(xnk , σ), for all k ≥ K. This is a contradiction with the property (S) for the bornology β,
since (λwk)k ⊂ λW ∈ β and ‖λwk − xnk‖ ≤ σ ≤ δ for all k ≥ K.

2.3 Characterization of β-operators

This section is devoted to prove both theorems stated in the introduction of this chapter.
Also, we present some results of spaceability and lineability related to the proposed charac-
terizations. Let us start with the proof Theorem 2.5.

Proof of Theorem 2.5. The necessity is straightforward and it does not require property
(S). Indeed, let T : Y → X be a β-operator and let f : X → Z be a Lipschitz function
β-di�erentiable at x = Ty. We claim that the Fréchet-di�erential of f ◦ T at y is equal to
dβf(Ty) ◦ T . Indeed, observe that

lim
t→0

sup
u∈BY

∥∥∥∥f ◦ T (y + tu)− f ◦ T (y)

t
− dβf(Ty)Tu

∥∥∥∥ =

lim
t→0

sup
v∈TBY

∥∥∥∥f(x− tv)− f(x)

t
− dβf(x)v

∥∥∥∥ = 0,

where the last equality relies in the fact that TBY ∈ β. Conversely, we proceed by contra-
diction. Assume that T is not a β-operator. Then TBY /∈ β. Since β is a convex bornology
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which satis�es property (S), Proposition 2.17 gives us a σ-separated sequence (xn) ⊂ TBY

and a 1-Lipschitz function f : X → R de�ned by

f(x) := dist

(
x,X \

∞⋃
n=1

B
(xn
n
,
σ

4n

))
,

which is β-di�erentiable 0. Let us see that f ◦T is not Fréchet-di�erentiable at 0. Since f ◦T
is positive and f ◦ T (0) = 0, the only candidate for Fréchet-di�erential of f ◦ T at 0 is the
functional 0. Let (yn) ⊂ BY such that Tyn = xn. We notice that

f ◦ T (yn
n

)− f ◦ T (0)
1
n

= nf(
xn
n

) =
σ

4
, ∀n ∈ N,

showing that f ◦ T is not Fréchet-di�erentiable at 0.

Let T : Y → X be a bounded non-β-operator where β is a convex bornology satisfying Prop-
erty (S). Then, the set of Lipschitz functions, Gâteaux di�erentiable at 0 such that f ◦ T
is not Fréchet di�erentiable at 0, denoted by F , is dense in the space of Lipschitz, Gâteaux
di�erentiable functions at 0 (for the topology generated by the Lipschitz seminorm). In what
follows, we want to measure the size of the set F in an algebraic sense. To do this, let us
introduce the following concepts. Let α be a cardinal number. A set A ⊂ X is said α-lineable
if A ∪ {0} contains a subspace of dimension α. A set A ⊂ X is said α-spaceable, if A ∪ {0}
contains a closed subspace of dimension α. The following corollary states that the set F is
c-spaceable, meaning that it contains an isometric copy of a Banach space of dimension of the
continuum. More on lineability and spaceability can be found in [5], [3], [59] and references
therein.

Corollary 2.18 Let X and Y be two Banach spaces. Let β be a convex bornology on X
satisfying property (S). Let T ∈ L(Y,X) be a bounded non-β operator. The set of real-
valued Lipschitz functions in Lip0(X) which are β-di�erentiable at 0 but f ◦T is not Fréchet-
di�erentiable at 0, contains a subset isometric to `∞(N), up to the function 0.

Proof. Let σ > 0 and let (xn)n ⊂ TBY be a σ-separated sequence given by Proposition
2.17. Let (yn)n ⊂ BY such that Tyn = xn. For each p ∈ N prime number de�ne the sets
Bp,n = B(

xpn

pn
, σ

4pn
) and Bp := ∪nBp,n. As in Proposition 2.17, for each p ∈ N, we de�ne

fp : X → R by
fp(x) = dist(x,X \Bp), for all x ∈ X,

which is 1-Lipschitz, β-di�erentiable at 0 and the compositions fp◦T is not Fréchet-di�erentiable
at 0. In what follows, (pi)i stands for an enumeration of the prime numbers. By Proposi-
tion 2.15, the interior of the supports of the functions {fpi : i ∈ N} are pairwise disjoint.
Therefore, (fpi)i ⊂ Lip0(X) is a sequence of linearly independent functions. Moreover, if
µ ∈ `∞(N), the function

fµ(x) :=
∞∑

i=1

µifpi(x),
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is well de�ned, because for each x ∈ X there is at most one non-zero term in the series, and
‖µ‖∞-Lipschitz. Also, since fµ|supp(fpi )

= µifpi|supp(fpi )
and that Lip(fpi) = 1 for all i ∈ N, we

have that Lip(fµ) ≥ |µi| for all i ∈ N. Thus, the operator L : `∞(N) → Lip0(X) given by
Lµ = fµ is an isometry. Since (xn)n is a σ-separated sequence, Proposition 2.15 implies that
0 ∈ core(X \∪kBpki

) and by Proposition 2.16 Lµ is Gâteaux-di�erentiable at 0. Moreover, an
analogous argument of the proof of Theorem 2.5 shows that Lµ is, in fact, β-di�erentiable at
0. However, if µ ∈ `∞(N) and µ 6= 0, fµ is not Fréchet-di�erentiable at 0. Indeed, if µk 6= 0,
then

lim inf
n→∞

|(fµ ◦ T )(ypnk/p
n
k)− (fµ ◦ T )(0)|

1/pnk
= lim inf

n→∞
pnk(|µkfpk(xpnk/p

n
k)− µkfpk(0)|)

≥ lim inf
n→∞

pnk
|µk|σ
4pnk

=
|µk|σ

4
> 0.

Now, we continue with the proof of Theorem 2.8.

Proof of Theorem 2.8. The necessity part goes along the lines of the necessity of Theorem
2.5. Let T : Y → X be a bounded �nite rank operator and let f : X → Z be a �nitely
Lipschitz function, Gâteaux-di�erentiable at x = Ty. Since TY is a �nite dimensional
subspace of X, the function g := f |TY is Lipschitz and Fréchet-di�erentiable at Ty. Then, if
dFg(Ty) denotes the Fréchet-di�erential of g at Ty and t ∈ R, with t 6= 0, we have that

sup
h∈BY

‖(f ◦ T )(y + th)− (f ◦ T )(y)− (dFg(Ty) ◦ T )(th)‖
|t|

= sup
u∈TBY

‖f(Ty + tu)− f(Ty)− tdFg(Ty)(u)‖
|t|

= sup
u∈TBY

‖g(Ty + tu)− g(Ty)− tdFg(Ty)(u)‖
|t|

From the last line, since g is Fréchet-di�erentiable at Ty, we deduce that the �rst supremum
tends to 0 as t tends to 0. Then f ◦ T is Fréchet-di�erentiable at y, with Fréchet-di�erential
equal to dGg(Ty) ◦ T .

In order to prove the su�ciency we proceed by contradiction. Suppose that T : Y → X is
a bounded operator such that TY is in�nite dimensional. By Riesz Theorem, there exists
a bounded σ-separated sequence (xn)n in TY , with σ > 0. Recall that ‖xn‖ = ‖x1‖ for all
n ∈ N. For n ∈ N, let yn ∈ Y such that Tyn = xn. Now, for n ∈ N, we de�ne the sets

Bn = B

(
xn

n‖yn‖
,

σ

4n‖yn‖

)
.

Since (xn)n is a σ-separated sequence, by Proposition 2.15, we deduce that the family (Bn)n
is pairwise disjoint. Thus, for each n ∈ N, the function fn : X → R de�ned by

fn(x) = ‖yn‖d(x,X \Bn), for all x ∈ X
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is ‖yn‖-Lipschitz and the interior of the supports of the functions fn are pairwise disjoint.
Consider now f : X → R de�ned by

f(x) := sup
n
fn(x) =

∞∑
n=1

fn(x), for all x ∈ X.

It is easy to see that this function is well de�ned.

We claim that f ∈ FLip(X). Let V be a �nite dimensional a�ne subspace of X and suppose
that V intersects in�nitely many di�erent balls (Bn)n, namely (Bnk)k. Since the sequence of
balls converges to the singleton {0} and V is a closed a�ne subspace, we deduce that V is a
linear subspace (i.e. 0 ∈ V ). Take any sequence (vk)k such that vk ∈ V ∩Bnk . If we consider
v′k := nk‖yk‖vk, we see that for k, j ∈ N,

σ ≤ ‖xnk − xnj‖ ≤ ‖xnk − v′k‖+ ‖v′k − v′j‖+ ‖v′j − xnj‖ ≤
σ

4
+ ‖v′k − v′j‖+

σ

4
.

which implies that (v′k)k ⊂ V does not have accumulation points. This leads to a contradiction
because V is �nite dimensional and (v′k)k is bounded. Indeed,

‖v′k‖ ≤ ‖v′k − xnk‖+ ‖xnk‖ ≤
σ

4
+M,

where M = ‖xn‖ (for all n). Therefore, V intersects only �nitely many di�erent balls (Bn)n,
namely (Bnk)

N
k=1. Since the interior of the supports of the functions fn are pairwise disjoint,

it follows that

Lip(f |V ) ≤ max{Lip(fnk) : k = 1, ..., N} = max{‖ynk‖ : k = 1, ..., N},

which proves the claim, i.e., f ∈ FLip(X). Notice that f is continuous. In fact, we need to
check the continuity of f only at 0 which easily follows from the fact that f( xn

n‖yn‖) = σ/4n

for all n ∈ N and that f(0) = 0. Indeed, let m ∈ N and x ∈ X such that f(x) > σ/4m.
Then, there is m ∈ {1, 2, ..., n− 1} such that x ∈ Bm. Therefore,

‖x‖ ≥ ‖xm‖
m‖ym‖

− σ

4m‖ym‖
≥ inf

k≤n−1

4‖xk‖ − σ
4k‖yk‖

=
4M − σ

4(n− 1) supk≤n−1 ‖yk‖
.

Observe that 0 belongs to the core of the set {f = 0}. Thus, by Proposition 2.16, we deduce
that f is Gâteaux-di�erentiable at 0, and dGf(0) = 0. However, we notice that

lim inf
n→∞

f ◦ T
(

yn
n‖yn‖

)
− f ◦ T (0)

1
n

= lim inf
n→∞

n‖yn‖
σ

4n‖yn‖
− 0 =

σ

4
> 0,

which shows that f ◦ T is not Fréchet-di�erentiable at 0.

Finally, we state the following result of lineability. Its proof is analogous to the non-
topological part of the proof presented for Corollary 2.18.
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Corollary 2.19 Let X and Y be two Banach spaces. Let T ∈ L(Y,X) be an operator with
in�nite rank. Then the set F ⊂ FLip(X) of �nitely Lipschitz functions f which are Gâteaux-
di�erentiable at 0 but f ◦ T is not Fréchet-di�erentiable at 0, contains a subset algebraically
isomorphic to `∞(N), up to the function 0.

We end this section with a smooth version of Theorem 2.5. Let CG
b (X) and CF

b (X) be
the Banach spaces of bounded, Lipschitz continuous and everywhere Gâteaux-di�erentiable
(everywhere Fréchet-di�erentiable resp.) functions. Recall that these spaces are Banach
spaces endowed with the norm ‖f‖1 := ‖f‖∞ + ‖dβf‖∞, where β is the Gâteaux bornology
(Fréchet resp.), see [43]. We say that a Banach space X admits a smooth bump function if
there exists b ∈ CG

b (X) with b 6= 0 and with bounded support. The existence of a smooth
bump function is intimately related with the geometry of the underlying Banach space.
Observe that if X admits a bump function b ∈ CG

b (X), then by choosing x0 ∈ int(supp(b))
and λ > 0 large, the function b(λ(· − x0)) is a smooth bump function with b(0) 6= 0 and
supp(b) ⊂ BX . Further information on this subject can be found in [44, 79].

Proposition 2.20 Let X be a Banach space and let β be a convex bornology, di�erent from
the Fréchet bornology, satisfying property (S). Assume further that X admits a smooth bump
function b ∈ CG

b (X) with b(0) = 1 and supp(b) ⊂ BX . Let A /∈ β be a bounded symmetric
convex set. Then, there exist σ > 0 and a σ-separated sequence (xn)n ⊂ A such that the
Lipschitz function de�ned by

f(·) :=
∞∑
n=1

1

n
b

(
4n

σ

(
· − xn

n

))
belongs to CG

b (X) and f is β-di�erentiable at 0 but not Fréchet-di�erentiable at 0.

Corollary 2.21 Let X and Y be two Banach spaces and let T ∈ L(Y,X). Assume further
that X admits a smooth bump function. Then, T is a compact operator if and only if for
every f ∈ CG

b (X), f ◦ T ∈ CF
b (X).

The proof of Proposition 2.20 and of Corollary 2.21 are analogous to the one presented for
Proposition 2.17 and Theorem 2.5 respectively.

2.4 Alternative proof of Theorem 2.2

In [11], the proof of Theorem 2.2 is quite technical. However, in this section we provide
a simpli�ed proof of this result. To start, we establish that Gâteaux-di�erentiability and
limited-di�erentiability coincide for continuous convex functions. In fact, this partial result
clari�es the picture about Theorem 2.2. Let us recall the following two results that can be
found in [29].

Proposition 2.22 [29, Proposition 8.1.1] Let β be a bornology on X. Let (x∗n)n ⊂ X∗ be a
bounded sequence. Let f : X → R be the convex function de�ned by:

f(x) = sup
n

{
0, x∗n(x)− 1

n

}
.
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Then, f is β-di�erentiable at 0 if and only if (x∗n)n →τβ 0, where τβ denotes the topology of
the uniform convergence on β-sets on X∗.

Theorem 2.23 [29, Theorem 8.1.3] Let X be a Banach space with bornologies β1 ⊆ β2.
Then, the following assertions are equivalent:

(a) τβ1 and τβ2 agree sequentially in X∗.

(b) β1-di�erentiability and β2-di�erentiability coincide for continuous convex functions.

The following proposition can be seen as the analogous for convex functions of the well known
result of di�erentiability of Lipschitz functions, Theorem 1.3.

Proposition 2.24 Let X be a Banach space. Gâteaux-di�erentiability and limited-di�erentia-
bility coincide for continuous convex functions.

Proof. We use Theorem 2.23 with the bornologies β1= Gâteaux and β2= limited. Let
(x∗n)n ⊂ X∗ be a sequence τβ1-convergent to 0, i.e., (x∗n)n is a weak∗-null sequence. Let
A ⊆ X be limited set on X. By de�nition of limited set, we have that

lim
n→∞

sup
x∈A
|x∗n(x)| = 0.

Since A was an arbitrary limited set onX, we have that (x∗n)n converges to 0 for τβ2 . Applying
Theorem 2.23 we obtain the desired result.

Now, we can present a simpli�ed proof of Theorem 2.2. As it can be noticed, our approach
is completely di�erent from the one presented in [16].

Alternative proof of Theorem 2.2. Thanks to Proposition 2.24, the necessity of Theorem
2.2 is straightforward. In fact, it is analogous to the necessity of Theorem 2.5. Conversely,
we proceed by contradiction. Let T : Y → X be a bounded non-limited operator. Then, there
exists a weak∗-null sequence (x∗n)n ⊂ X∗ and a sequence (yn)n ⊂ BY such that x∗n(Tyn) ≥ 2.
Let us consider the function f : X → R de�ned by:

f(x) = max

{
0, sup

{
x∗n(x)− 1

n

}}
, for all x ∈ X,

which is Gâteaux-di�erentiable at 0, thanks to Proposition 2.22. Since f is a positive function
and f(0) = 0, we know that dGf(0) = 0. In fact, the only candidate to Fréchet-di�erential
to f ◦ T at 0 is also the functional 0. However, the computation

nf ◦ T
(yn
n

)
≥ n

(
2

n
− 1

n

)
= 1,

shows that f ◦ T is not Fréchet-di�erentiable at 0.

2.5 Some consequences of Theorem 2.5

2.5.1 Gelfand-Phillips spaces

Let us start with the de�nition of a Gelfand-Phillips space.
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De�nition 2.25 A Banach space X is called a Gelfand-Phillips space, if all limited sets in
X are relatively norm-compact.

It is easy to see that X is a Gelfand-Phillips space, if and only if every limited operator
with range in X is compact (see [45, Introduction, (C)]). In what follows, we present a
characterization of Gelfand-Phillips spaces in terms of di�erentiability of Lipschitz functions.
This result was discussed with M. Bachir.

Theorem 2.26 Let X be a Banach space. Then, X is a Gelfand-Phillips space if and
only if Gâteaux-di�erentiability and limited-di�erentiability coincide for real-valued Lipschitz
functions on X.

Proof. Suppose that X is a Gelfand-Phillips space, then limited sets and relatively com-
pact sets coincide in X. Thus, Limited-di�erentiability and Hadamard-di�erentiability coin-
cide for real-valued Lipschitz functions on X. Therefore, thanks to Theorem 1.3, Gâteaux-
di�erentiability and limited-di�erentiability coincide for Lipschitz function de�ned on X.
Conversely, suppose that Gâteaux-di�erentiability and Limited-di�erentiability coincide for
real-valued Lipschitz functions de�ned on X. Let Y be any Banach space and let T : Y → X
be a limited operator. We prove that T is a compact operator. To this end, let f : U ⊂ X → R
be any Lipschitz function. Then, by the necessity of Theorem 2.5 with β equal to the limited
bornology, f ◦ T is Fréchet-di�erentiable at y ∈ Y whenever f is Gâteaux-di�erentiable at
Ty ∈ X (⇐⇒ Limited-di�erentiable at Ty). Hence, thanks to the su�ciency of Theorem
2.5 with β equal to the Hadamard bornology, T is a compact operator. Thus, each limited
operator with range in X is compact. So X is a Gelfand-Phillips space.

2.5.2 A Banach-Stone like theorem

In order to present our second application of Theorem 2.5, we need the following de�nition
and axioms which were introduced in [12] and [10] respectively.

De�nition 2.27 (The property P F ) Let (X, d) be a complete metric space and let (A, ‖·‖)
be a closed subspace of Cb(X) (the space of all real-valued bounded continuous functions on
X). We say that A satis�es property P F if, for each sequence (xn)n ⊂ X, the two following
assertions are equivalent:

1. The sequence (xn)n converges in (X, d).

2. The associated sequence of Dirac masses (δxn)n converges in (A∗, ‖·‖∗), where the Dirac
mass associated to a point x ∈ X, is the continuous linear functional δx : ϕ ∈ A 7→ ϕ(x).

Axioms. Let (X, d) be a complete metric space and let A be a space of functions included
in Cb(X). We say that the space A satis�es the axioms (A1)-(AF4 ) if the space A satis�es:

(A1) The space (A, ‖ · ‖) is a Banach space such that ‖ · ‖ ≥ ‖ · ‖∞.
(A2) The space A contains the constants.

(A3) For each n ∈ N there exists a positive constant Mn such that for each x ∈ X there
exists a function hn : X → [0, 1] such that hn ∈ A, ‖hn‖ ≤ Mn, hn(x) = 1 and
diam(supp(hn)) < 1

n+1
. This axiom implies in particular that the space A separates
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the points of X.

(AF4 ) The space A has the property P F .

A simple adaptation of the proof given in [12, Proposition 2.5] shows that the spaces Cβ
b (X)

have property P F . In addition, if we assume that these spaces contain a bump function
respectively, then they will satisfy the axiom (A3). Thus, the spaces CG

b (X) and CF
b (X)

satisfy the axioms (A1)-(AF4 ) whenever they contain a bump function respectively, and so
we can apply the extension of the Banach-Stone theorem established in [10, Corollary 1.3.].
In the sequel, we prove Theorem 2.28 which is a consequence of [10, Corollary 1.3.] and
Corollary 2.21.

Theorem 2.28 Let X and Y be two Banach spaces having a bump function in CG
b (X) and

CF
b (Y ) respectively. Then, the following assertions are equivalent.

1. There exists an isomorphism Φ : CG
b (X) → CF

b (Y ) such that ‖Φ(f)‖∞ = ‖f‖∞ and
‖dF (Φ(f))‖∞ = ‖dGf‖∞ for all f ∈ CG

b (X).

2. X and Y are isometrically isomorphic and of �nite dimension.

The proof will be given after the following lemma.

Lemma 2.29 For every a, b ∈ X, we have

‖a− b‖ = sup
f∈CFb (X)\{0},‖dF f‖∞>0

|f(a)− f(b)|
‖dFf‖∞

= sup
f∈CGb (X)\{0},‖dGf‖∞>0

|f(a)− f(b)|
‖dGf‖∞

.

Proof. By Hahn-Banach theorem, there exists a unit vector x∗a,b ∈ X∗ such that ‖a − b‖ =
x∗a,b(a− b). For each ω > 0, let αω : R→ R be a C1-smooth, 1-Lipschitz function such that

αω(t) =


t if |t| ≤ ω,
ω + 1 if t ≥ ω + 2,
−ω − 1 if t ≤ −ω − 2.

Let us consider the function fω(x) = αω ◦ x∗a,b(x), for all x ∈ X. We have that fω ∈ CF
b (X)

and is 1-Lipschitz for every ω > 0. By choosing ω0 ≥ 2 max{‖a‖, ‖b‖},

|fω0(a)− fω0(b)| = |αω0 ◦ x∗a,b(a)− αω0 ◦ x∗a,b(b)|
= |x∗a,b(a)− x∗a,b(b)|
= |x∗a,b(a− b)|
= ‖a− b‖.

41



Moreover, ‖dFfω0‖∞ = 1. Since Lip(f) = ‖dGf‖∞ for functions in CG
b (X), it follows that

‖a− b‖ ≥ sup
f∈CGb (X)\{0},‖dGf‖∞>0

|f(a)− f(b)|
‖dGf‖∞

≥ sup
f∈CFb (X)\{0},‖dF f‖∞>0

|f(a)− f(b)|
‖dFf‖∞

≥ |fω0(a)− fω0(b)|
= ‖a− b‖.

Proof of Theorem 2.28. Since Φ is an isometric isomorphism for the norm ‖ · ‖∞, thanks to
[10, Corollary 1.3.], there exist an homeomorphism T : Y → X and a continuous function
ε : Y → {±1} such that Φ(f)(y) = ε(y)f ◦ T (y) for all f ∈ CG

b (X) and all y ∈ Y . Since
Y is a connected space, we have that ε is constant equal to 1 or −1. Replacing Φ by −Φ if
necessary, we can assume without loss of generality that Φ(f) = f ◦ T for all f ∈ CG

b (X).
We are going to prove that T is an isometry. Let y1, y2 ∈ Y . Using Lemma 2.29 and the fact
that ‖dF (Φ(f))‖∞ = ‖dGf‖∞ for all f ∈ CG

b (X), we have

‖T (y1)− T (y2)‖ = sup
f∈CGb (X)\{0},‖dGf‖∞>0

|f(T (y1))− f(T (y1))|
‖dGf‖∞

= sup
f∈CGb (X)\{0},‖dGf‖∞>0

|f ◦ T (y1)− f ◦ T (y2)|
‖dGf‖∞

= sup
f∈CGb (X)\{0},‖dGf‖∞>0

|Φ(f)(y1)− Φ(f)(y2)|
‖dF (Φ(f))‖∞

= sup
g∈CFb (Y )\{0},‖dF g‖∞>0

|g(y1)− g(y2)|
‖dFg‖∞

= ‖y1 − y2‖.

Thus, T : Y → X is a surjective isometry. FromMazur-Ulam theorem [93], T is an a�ne map,
equivalently T−T (0) is linear. Finally, T−T (0) is a linear surjective isometry from Y ontoX.
So X and Y are isometrically isomorphic. On the other hand, since f ◦T ∈ CF

b (Y ), whenever
f ∈ CG

b (X), then T −T (0) is a compact operator by Corollary 2.21. Therefore, thanks to the
Riesz theorem, X and Y are �nite dimensional. Thus, X and Y are �nite dimensional and
isometrically isomorphic spaces. The converse is clear. Indeed, since Gâteaux and Fréchet-
di�erentiability coincides for Lipschitz functions in �nite dimensional Banach space, we have
that CG

b (X) = CF
b (X). On the other hand, if T : Y → X is an isometric isomorphism, then

the operator given by Φ(f) = f ◦T is an isomorphism between CF
b (X) and CF

b (Y ) satisfying
the two desired conditions.

Proposition 2.30 Let X and Y be two Banach spaces having a bump function in CG
b (X)

and CF
b (Y ) respectively. Let T ∈ L(Y,X). Then, the following assertions are equivalent.

1. T is a compact operator with dense range.
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2. The operator Φ : CG
b (X) → CF

b (Y ) de�ned by Φ(f) = f ◦ T is a well-de�ned injective
bounded linear operator.

Proof. Suppose that T is compact. Then f ◦ T ∈ CF
b (Y ) whenever f ∈ CG

b (X) by the
necessity of Theorem 2.5, so Φ maps CG

b (X) into CF
b (Y ). By the density of the range of T , Φ

is injective. Then, it is clear that Φ is a bounded linear operator satisfying ‖Φ(f)‖∞ ≤ ‖f‖∞
and ‖dF (Φ(f))‖∞ ≤ ‖dGf‖∞‖T‖ for all f ∈ CG

b (X). Conversely, since Φ maps CG
b (X)

into CF
b (Y ), by Corollary 2.21 the operator T is compact. Suppose by contradiction that

T (Y ) 6= X. There exists x0 ∈ X such that x0 6∈ T (Y ). By the Hahn-Banach theorem, there
exists a continuous linear map x∗ ∈ X∗ such that x∗(x0) = 1 and x∗|T (Y ) = 0. Let α : R→ R
be a C1-smooth function such that

α(t) =


2t− 1 if 1 ≤ t ≤ 2
4 if t ≥ 4
0 if t ≤ 0.

Let us de�ne f0(x) = α ◦ x∗. Thus, f0 ∈ CG
b (X) and we have f0 ◦ T = 0. Thus, Φ(f0) =

Φ(0) = 0 but f0 6= 0 since f0(x0) = 1. This contradicts the injectivity of Φ.
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Chapter 3

Epsilon-Hypercyclicity Criterion

In this chapter we explore the epsilon-hypercyclicity phenomenon, a concept introduced
in [15] and also developed in [16]. Concretely, we deal with the construction of epsilon-
hypercyclic operators which are not hypercyclic. The main contribution of this chapter is a
su�cient condition for a given operator to be epsilon-hypercyclic (Theorem 3.2). The basics
and notation to carry out this chapter can be found in Chapter 1, Section 1.2 and Section
1.3. In what follows, the results are mainly based on the preprint [90]. Our results hold true
in either real or complex Banach spaces.

3.1 Introduction

Let X be a separable in�nite dimensional real or complex Banach space and let T be a
linear bounded operator on X. During the last decades, the e�ort of the researchers to
�nd dynamics of bounded operators which are purely in�nite-dimensional phenomena but
di�erent from hypercyclicity has increased. For instance, N. Feldman in [51] solve negatively
the following question: Let ε > 0. Does there exist a bounded non-hypercyclic operator T
on X having a vector x ∈ X such that OrbT (x) meets every ball of radius ε? In this line, C.
Badea, S. Grivaux and V. Müller introduced the following concept in [15].

De�nition 3.1 Let X be a Banach space. Let ε ∈ (0, 1). A bounded operator T on X is
called ε-hypercyclic if there exists a vector x such that for all y ∈ X \ {0}, there exists n ∈ N
for which

‖T nx− y‖ ≤ ε‖y‖.

The vector x is said to be an ε-hypercyclic vector for T .

Clearly, each hypercyclic operator is ε-hypercyclic for every ε > 0. So, we already know
that ε-hypercyclic operators exist in every separable in�nite dimensional Banach space, see
[2] and [21]. Also, every linear operator is 1-hypercyclic. Indeed, the origin satis�es the
inequality of ε-hypercyclicity for ε = 1. However, it remains open if each separable in�nite
dimensional Banach space admits an ε-hypercyclic which is not hypercyclic. Up to the best
of our knowledge, in the literature we can �nd the construction of such an operator in `1(N)
and `2(N), see [15] and [16] respectively. We point out that the construction of F. Bayart in
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[16] is a nice modi�cation of the one made by C. Badea, S. Grivaux and V. Müller in [15].
Also, we can �nd other mentions of ε-hypercyclicity in [17], [20] and [80].

In this work, we introduce the following ε-Hypercyclicity Criterion (Theorem 3.2) and we use
it to prove that several classical Banach spaces that admits ε-hypercyclic operators which
are not hypercyclic, see examples below.

Theorem 3.2 (ε-Hypercyclicity Criterion) Let X be a separable real or complex Banach
space, let T ∈ L(X) and let ε ∈ (0, 1). Let D1 be a dense subset of X. Let D2 := {yk : k ∈ N}
be a countable subset of X. Assume further that for each x ∈ X \ {0}, there are in�nitely
many integers k ∈ N such that yk ∈ B(x, ε‖x‖). Let (n(k))k ⊂ N be an increasing sequence
and let Sn(k) : D2 → X be a sequence of maps such that:

(1) limk→∞ ‖T n(k)x‖ = 0 for all x ∈ D1,

(2) limk→∞ ‖Sn(k)yk‖ = 0,

(3) limk→∞ ‖T n(k)Sn(k)yk − yk‖ = 0.

Then, T is δ-hypercyclic for all δ > ε.

We use the preceding criterion to extended the construction of ε-hypercyclic operators which
are not hypercyclic made in [16] to more general spaces, including c0(N) and `p(N), with
p ∈ [1,∞), see Theorem 3.13. Moreover, using a stability result on products, Proposition
3.19, we are able to extend further previous construction obtaining, Theorem 3.20, which
implies:

Theorem 3.3 Let X be a separable real or complex Banach space. Assume that X contains a
complemented subspace isomorphic to c0(N) or `p(N), for p ∈ [1,∞). Then, for any ε ∈ (0, 1),
X admits an ε-hypercyclic operator which is not hypercyclic.

Before proceeding with some corollaries, let us recall the following classical result of Sobzyck
[89]: Let X be a separable Banach space and let E be a closed subspace of X. Let T ∈
L(E, c0(N)). Then there exists a bounded operator T̃ ∈ L(X, c0(N)) such that T̃ |E = T . We
denote by C(K) the Banach space of continuous functions on the compact space K. This
space is endowed with the norm of the maximum.

Corollary 3.4 Let ε ∈ (0, 1). The following Banach spaces admit ε-hypercyclic operators
which are not hypercyclic:

1. `p(X) for p ∈ [1,+∞) and c0(X) whenever X is a (�nite or in�nite dimensional)
separable Banach space.

2. Any separable in�nite dimensional Lp space.

3. Any separable in�nite dimensional space X containing an isomorphic copy of c0(N).
Particularly, all separable in�nite dimensional C(K) spaces enjoy this property.

Proof. (1) and (2) are directs from Theorem 3.3. On the other hand, (3) is a consequence of
Sobzyck's Theorem. Indeed, c0(N) must be complementable on X. Therefore, by Theorem
3.3, X admits an ε-hypercyclic operator which is not hypercyclic. Now, let us assume that
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X is a separable in�nite dimensional C(K) space. Then, K must be an in�nite metrizable
compact set. Hence, X admits a complemented subspace isometric to c0(N). For details see
[1, Proposition 4.3.11].

This chapter is organized as follows. In Section 3.2 we provide a constructive proof of our
ε-Hypercyclic Criterion. In Section 3.3, in the spirit of the Hypercyclic Criterion, we present
a proof based on the Baire-category theorem of Theorem 3.2. In Section 3.4 we introduce
some notation to extended the construction of ε-hypercyclic operators found in [16]. Section
3.5 is devoted to prove the main theorem about constructions of epsilon-hypercyclic operators
which are not hypercyclic, Theorem 3.20. In Section 3.6, we discuss why a natural choice for
an ε-Hypercyclicity Criterion is, in fact, equivalent to the Hypercyclicity Criterion. Finally,
we end this chapter with some proofs of simple but useful facts about epsilon-hypercyclicity
used through this chapter.

Notation: In only this chapter 0 ∈ N.

3.2 A constructive proof of the epsilon-Hypercyclicity Cri-

terion

In the fashion of the Hypercyclicity Criterion, Theorem 1.18, for which we can �nd a con-
structive proof and a topological proof based on the Baire-category theorem, see [18, Chapter
1], we provide two distinct proofs of our criterion of epsilon-hypercyclicity. Let us start with
the constructive proof.

Constructive proof of the ε-Hypercyclicity Criterion. Let us construct a δ-hypercyclic vec-
tor for T , for any δ > ε. Let (ηk)k ⊂ R+ be any sequence of positive numbers such that
(k2ηk)k converges to 0. Observe that the series

∑
k ηk is convergent. Let {zk : k ∈ N} be a

countable dense subset of X \ {0}. Let m0 ∈ N such that

‖z0 − ym0‖ ≤ ε‖z0‖, ‖Sn(m0)ym0‖ < η0 and ‖T n(m0)Sn(m0)ym0 − ym0‖ < η0.

By density of D1 and continuity of T , there is x0 ∈ D1 such that ‖x0‖ < η0 and ‖Tm0x0 −
ym0‖ < η0. Let k ≥ 1 and let us assume that (xi)i ⊂ D1 and (mi)i ⊂ N are already de�ned
for all i ≤ k− 1. Let ρk > 0 be a positive number such that ‖T n(mi)u‖ ≤ 2−k for all ‖u‖ ≤ ρk
and for all i < k. Rede�ne ηk := min{ηk, ρk}. Let mk be an integer such that mk > mk−1,
‖T n(mk)xi‖ < ηk for all i < k,

‖zk − ymk‖ ≤ ε‖zk‖, ‖Sn(mk)ymk‖ < ηk and ‖T n(mk)Sn(mk)ymk − ymk‖ < ηk.

By density of D1, there is xk ∈ D1 such that ‖xk‖ < ηk and ‖T n(mk)xk − ymk‖ < ηk.

Now, since ‖xk‖ < ηk for all k ∈ N, the vector x =
∑∞

k=0 xk ∈ X is well de�ned. We claim
that x is a δ-hypercyclic vector for T , for all δ > ε. Indeed, let j ∈ N. Then:

46



‖T n(mj)x− zj‖ ≤
j−1∑
k=0

‖T n(mj)xk‖+ ‖T n(mj)xj − ymj‖+ ‖ymj − zj‖+
∞∑

k=j+1

‖T n(mj)xk‖

≤ (j + 1)ηj + ε‖zj‖+
∞∑

k=j+1

2−k.

Now, let z ∈ X and let (j(l))l be an increasing sequence such that (zj(l))l converges to z.
Then

‖T n(mj(l))x− z‖ ≤ ‖T n(mj(l))x− zj(l)‖+ ‖zj(l) − z‖

≤ (j(l) + 1)ηj(l) + ε‖zj(l)‖+
∞∑

k=j(l)+1

2−k + ‖zj(l) − z‖,

expression which tends to ε‖z‖ as l tends to in�nity. Therefore, if δ > ε and z 6= 0, for l
large enough, we have that ‖T n(mj(l))x− z‖ ≤ δ‖z‖.

Remark 3.5 From the proof, notice that if the sequence (zj(l))l converges to z, then

lim sup
l→∞

‖T n(mj(l))x− z‖ ≤ ε‖z‖.

Remark 3.6 The previous criterion can be applied to the operators constructed in [15] and
[16]. In fact, this can be done similarly as we do in the proof Theorem 3.13.

In [86], M. de la Rosa and C. Read proved that there are hypercyclic operators which do not
satisfy the Hypercyclic Criterion. Therefore, our epsilon-Hypercyclicity Criterion leads to
the following natural question: Does there exist an epsilon-hypercyclic operator which does
not satis�es the epsilon-Hypercyclicity Criterion?

By de�nition, every hypercyclic operator is ε-hypercyclic for all ε > 0. In [15] it is shown
that the converse is also true, i.e. if an operator is ε-hypercyclic for each ε > 0, then it is
hypercyclic. In this line, we have the following result.

Proposition 3.7 Let X be a separable in�nite dimensional Banach space and let T ∈ L(X).
If T satis�es the Hypercyclicity Criterion, then it satis�es the ε-Hypercyclicity Criterion for
each ε > 0.

Proof. Let T be a bounded operator satisfying the Hypercyclicity Criterion. LetD1,D2 ⊂ X,
(n(k))k ⊂ N and (Sn(k))k given by the mentioned criterion. Since X is separable, with-
out loss of generality, we can assume that D2 is a countable dense set. Let us enumer-
ate D2 := {yk : k ∈ N}. To achieve the ε-Hypercyclic-Criterion we only need to construct
a subsequence of (n(k))k, namely (m(k))k, which satis�es hypothesis (2) and (3) of Theo-
rem 3.2. To this end, let us de�ne m(0) ∈ {n(k) : k ∈ N} such that ‖Sm(0)y0‖ ≤ 1 and
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‖Tm(0)Sm(0)y0 − y0‖ ≤ 1. Let k ≥ 1 and suppose that we have constructed (m(j))j for all
j ≤ k − 1. Let us �x m(k) ∈ {n(j) : j ∈ N} such that

m(k) > m(k − 1), ‖Sm(k)yk‖ ≤ k−1, and ‖Tm(k)Sm(k)yk − yk‖ ≤ k−1.

Now, it is straightforward that hypothesis (1), (2) and (3) of the ε-Hypercyclicity Criterion
are satis�ed for the sequence (m(k))k and the maps (Sm(k))k. Finally, since D2 is dense,
the intersection of D2 with any open set must be an in�nite set. Therefore, T satis�es the
ε-Hypercyclicity Criterion for each ε > 0.

3.3 A topological proof of the Epsilon-Hypercyclic Crite-

rion

Let us start with the following de�nitions.

De�nition 3.8 Let X be a separable Banach space, let ε ∈ (0, 1) and let T ∈ L(X). We
de�ne the sets:

εHC(T ) :={x ∈ X : x is an ε-hypercyclic vector for T}
ε+HC(T ) :={x ∈ X : x is an δ-hypercyclic vector for T, ∀ δ > ε}.

Observe that x ∈ ε+HC(T ) if and only if

inf
n∈N
‖T nx− y‖ ≤ ε‖y‖, ∀ y ∈ X.

Also, notice that if T satis�es the ε-hypercyclicity criterion, then ε+HC(T ) is a nonempty
set. Albeit simple, let us continue with the following proposition.

Proposition 3.9 Let X be a separable Banach space, let T ∈ L(X) and let ε ∈ (0, 1). Then
the sets εHC(T ) and ε+HC(T ) are stable under non-zero scalar multiplication.

Proof. Let us check �rst εHC(T ). Let λ ∈ K \ {0}. Let x ∈ εHC(T ) and let y ∈ X be a
non-zero vector. Therefore, there exists n ∈ N such that

‖T nx− λ−1y‖ ≤ ε‖λ−1y‖.

Multiplying the last expression by λ, we conclude that λx ∈ εHC(T ). The second part
follows by noticing that

ε+HC(T ) =
⋂

δ∈(ε,1)

δHC(T ).

In order to provide the Baire-category based on proof of our ε-hypercyclicity criterion, we
need the following proposition.
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Proposition 3.10 Let X be a separable Banach space, let T ∈ L(X) and let ε ∈ (0, 1).
Then

ε+HC(T ) :=
∞⋂
k=1

⋂
y∈D

∞⋃
n=0

T−n
(
B

(
y, ‖y‖

(
ε+

1

k

)))
, (3.1)

where D is any countable subset of X \ {0}, dense in X. Therefore, ε+HC(T ) is a Gδ set.

Proof. Let D ⊂ X \ {0} be any countable dense set.

Let x ∈ ε+HC(T ). Then, for any y ∈ D and for any k ≥ 1, there exists ny,k ∈ N such that

‖T ny,kx− y‖ ≤
(
ε+

1

k

)
‖y‖,

which is exactly the translation of the right-hand part of Equation (3.1).

Let x ∈ X be a vector belonging to the set de�ned in the right-hand part of equality (3.1).
Let z ∈ X \ {0}. The following computation shows that x ∈ ε+HC(T ):

inf
n∈N
‖T nx− z‖ ≤ inf

y∈D
inf
n∈N
‖T nx− y‖+ ‖y − z‖ ≤ inf

y∈D
ε‖y‖+ ‖y − z‖ ≤ ε‖z‖.

Now we can provide an alternative proof of Theorem 3.2.

Topological proof of Theorem 3.2. Let T ∈ L(X) satisfying the ε-Hypercyclicity Criterion.
Let us show that the set ε+HC(T ) is nonempty, and thus, T is δ-hypercyclic for every δ > ε.
Let D ⊂ X \ {0} be any countable dense set. By Proposition 3.10 we have that

ε+HC(T ) :=
∞⋂
k=1

⋂
y∈D

∞⋃
n=0

T−n
(
B

(
y, ‖y‖

(
ε+

1

k

)))
.

Therefore, thanks to Baire-category Theorem, if the set

Ay,k :=
⋃
n∈N

T−n
(
B

(
y, ‖y‖

(
ε+

1

k

)))
is open and dense for each y ∈ D and each integer k ≥ 1, then the set ε+HC(T ) is nonempty
as well.

Let y ∈ D and k ≥ 1. Since T is continuous, we only have to prove the density of the set Ay,k.
Let z ∈ X and let r > 0. We prove that Ay,k∩B(z, r) 6= ∅. Let x1 ∈ D1 be a vector such that
‖z − x1‖ < r/2. By de�nition of D2 and hypothesis (1), (2) and (3) of the ε-Hypercyclicity
Criterion, let j ∈ N large enough such that

� ‖T n(j)x1‖ < 1
2k
‖y‖

� ‖y − yj‖ ≤ ε‖y‖.
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� ‖Sn(j)yj‖ < r/2.

� ‖T n(j)Sn(j)yj − yj‖ < 1
2k
‖y‖.

Let x2 = Sn(j)yj and set x := x1 + x2. We claim that x ∈ Ay,k ∩ B(z, r). First, ‖x − z‖ ≤
‖x1 − z‖ + ‖x2‖ < r. Second, observe that x ∈ Ay,k if and only if there exists n ∈ N such
that T n(x) ∈ B(y, ‖y‖(ε+ k−1)). So, followed by the computation

‖T n(j)x− y‖ ≤ ‖T n(j)x1‖+ ‖T n(j)x2 − yj‖+ ‖yj − y‖

<
1

2k
‖y‖+

1

2k
‖y‖+ ε‖y‖ = ‖y‖

(
ε+

1

k

)
,

we prove that x ∈ Ay,k. Therefore Ay,k is dense in X. Finally, the Baire-category Theorem
�nishes the proof of Theorem 3.2.

As a direct consequence of the topological proof of Theorem 3.2 presented above we get:

Corollary 3.11 Let X be a separable Banach space, let T ∈ L(X) and let ε ∈ (0, 1). Assume
that T satis�es the ε-Hypercyclicity Criterion. Then, ε+HC(T ) is a Gδ-dense set.

3.4 In�nite direct sum of a Banach space

Let X be a Banach space. It is common to consider the Banach space of p-summable
sequences on X, with p ∈ [1,∞) or space of sequences on X which converge to 0, i.e. the
space `p(X), with p ∈ [1,∞), or c0(X) respectively. That is, for p ∈ [1,∞)

`p(X) := {(xn)n ⊂ XN :
∞∑
n=0

‖xn‖p <∞},

endowed with the norm ‖(xn)n‖ = (
∑
‖xn‖p)1/p. The de�nition of c0(X) is analogous. In

what follows, we introduce a generalized version of these spaces.

De�nition 3.12 Let X and Y be two Banach spaces. Let (fn)n ⊂ Y be a normalized 1-
unconditional basis of Y . We denote by

⊕
Y X the vector space de�ned by

⊕
Y

X := {(xn)n ∈ XN :
∞∑
n=0

‖xn‖Xfn ∈ Y }.

We endow this space with the norm ‖·‖ de�ned by ‖(xn)n‖ = ‖
∑∞

n=0 ‖xn‖Xfn‖Y . A standard
procedure shows that (

⊕
Y X, ‖ · ‖) is a Banach space.

The 1-unconditionality of (fn)n ⊂ Y in De�nition 3.12 implies the triangle inequality of the
norm on

⊕
Y X. Clearly, the space constructed in De�nition 3.12 depends on the chosen

1-unconditional basis (fn)n of Y , but we omit it for sake of brevity. If X is either c0(N) or
`p(N), with p ∈ [1,∞), then X is isometric to

⊕
X X, whenever we use the canonical basis

of X. Also, notice that for all (xn)n ∈
⊕

Y X, the sequence (‖xn‖X)n converges to 0.
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3.5 Construction of epsilon-hypercyclic operators

In this section we prove Theorem 3.20, which is an abstract version of Theorem 3.3. To do
this, we show �rst the existence of ε-hypercyclic operators which are not hypercyclic in a
particular class of Banach spaces, using mainly Bayart's ideas, [16]. Then, we extend further
this construction using a result of stability under products, Proposition 3.19.

Theorem 3.13 Let X and Y be two in�nite dimensional separable Banach spaces. Assume
that Y admits a 1-unconditional basis (fn)n such that the associated backward shift operator
is continuous. Then, for every ε ∈ (0, 1), the space

⊕
Y X, related to (fn), admits an ε-

hypercyclic operator which is not hypercyclic.

The proof is divided in two main parts. In the �rst one, we formally construct the candidate
of ε-hypercyclic operator, whereas in the second part we prove that the operator is well de-
�ned, ε-hypercyclic but not hypercyclic. Let us point out that, in the second part, step 3,
we use our ε-Hypercyclicity Criterion.

Let us start the proof of Theorem 3.13.

First part: Let (en)n ⊂ X be a normalized bounded M-basis given by the classical result of
Ovsepian and Peªczy«ski, Theorem 1.11, and let (e∗n)n ⊂ X∗ be the associated coordinates
sequence. Let b = supn ‖e∗n‖ < ∞. Let ε ∈ (0, 1), let α > 1 and let d ∈ N, with d > 1,
such that 2α−db < ε. Let (∆k)k ⊂ N be a rapidly increasing sequence which will be speci�ed
later on, in Proposition 3.17. Let (nk)k and (n′k)k be two increasing sequences de�ned by
n0 = n′0 = 0, nk = n′k−1 + d + 1 + ∆k and n′k = nk + d + 1 + ∆k, for all k ≥ 1. It is clear
that k ≤ n′k−1 for all k ≥ 2. For k ∈ N and σ, β ∈ K, we de�ne the diagonal operator, with
respect to (en)n, Dk,σ,β on X by:

Dk,σ,β = σId + (1− σ)e∗0 ⊗ e0 + (β − σ)e∗k2 ⊗ ek2 .

Since Dk,σ,β is a rank 2 perturbation of σId, it is a bounded operator with norm

‖Dk,σ,β‖ ≤ |σ|(1 + 2b) + |β|b+ b.

Moreover, whenever σ and β are di�erent from 0 and k ≥ 1, D−1
k,σ,β = Dk,σ−1,β−1 easily follows.

For each k ∈ N, we de�ne the operator Nk := e∗k2 ⊗ e0, i.e. Nk(x) = e∗k2(x)e0 for all x ∈ X.
Notice that (‖Nk‖)k is uniformly bounded. Indeed, ‖Nk‖ ≤ b, for all k ∈ N. Also, for each
j ≥ 1, we de�ne the operator Sj on X as follows. Let k ∈ N be the unique integer such that
n′k−1 < j ≤ n′k, then we set:

Sj :=



Dk, 1
α
,α n′k−1 + 1 ≤ j ≤ n′k−1 + d,

Dk, 1
α
,1 −Nk j = n′k−1 + d + 1,

Dk, 1
α
, 1
α

n′k−1 + d + 2 ≤ j ≤ n′k−1 + d + 1 + ∆k = nk,

Dk, 1
α
,α nk + 1 ≤ j ≤ nk + ∆k,

Dk, 1
α
,1 +Nk j = nk + ∆k + 1,

Dk, 1
α
, 1
α

nk + ∆k + 2 ≤ j ≤ nk + d + ∆k,

D
k,α

n′
k
−n′

k−1
−1
, 1
α

j = nk + d + 1 + ∆k = n′k.
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Notice that each Sj is an upper-triangular operator on X with respect to the sequence (en)n.
Further, observe that (Dk, 1

α
,1±Nk)

−1 = Dk,α,1∓Nk. The following three properties are direct
from the de�nition of the operators Sj.

(Q0) Sje0 = e0 for all j ≥ 1.

(Q1) Sn′k · · ·S1 = Id for all k ≥ 1.

(Q2) For k ≥ 1, p /∈ {0, k2} and i ∈ {n′k, · · ·, n′k+1 − 1}, S−1
1 · · ·S−1

i ep = αi−n′kep holds.

Let us now formally de�ne the operator T on
⊕

Y X. Let z = (xn)n ∈
⊕

Y X, then:

Tz = (S−1
1 x1, S

−1
2 x2, · · ·),

i.e., T is a backward shift on
⊕

Y X with weights (S−1
n )n.

Second part: Step 1: T is a well-de�ned, bounded operator on
⊕

Y X.

Proposition 3.14 Each operator Sj is bounded and invertible. Moreover, the sequence
(‖S−1

j ‖)j is uniformly bounded.

Proof. Let j ≥ 1. Assume that there are k ∈ N and σ, β ∈ R such that Sj = Dk,σ,β.
Recalling that S−1

j = Dk,σ−1,β−1 , we get that ‖S−1
j ‖ ≤ |σ−1|(1 + 2b) + |β−1|b + b. Since

σ ∈ {α−1, αn
′
k−n

′
k−1−1} and β ∈ {α−1, 1, α}, we conclude that ‖S−1

j ‖ ≤ α(1 + 3b) + b, which
is a constant independent of j. Otherwise, if Sj = Dk,α−1,1 ± Nk, then S−1

j = Dk,α,1 ∓ Nk.
Therefore, ‖S−1

j ‖ ≤ ‖Dk,α,1‖ + b ≤ α(1 + 2b) + 2b, which is a constant independent of j as
well.

Let (fn)n be the 1-unconditional basis on Y used to construct the space
⊕

Y X. Thanks to
Proposition 3.14, we know that there exists a constant C > 0 such that ‖S−1

n x‖ ≤ C‖x‖
for all x ∈ X and for all n ∈ N. Let K > 0 be the norm of the backward shift operator
associated to the basis (fn)n. Then, for z = (xn)n ∈

⊕
Y X we get

‖Tz‖ =

∥∥∥∥∥
∞∑
n=1

‖S−1
n xn‖Xfn−1

∥∥∥∥∥
Y

≤ K

∥∥∥∥∥
∞∑
n=0

C‖xn‖Xfn

∥∥∥∥∥
Y

= KC‖z‖,

which implies the well de�nition and continuity of T .

Step 2: T is not a hypercyclic operator.

Proposition 3.15 The sequence (‖SjSj−1 · · ·S1‖)j is bounded by a constant M(d) which
depends only on d.

Proof. Let j ≥ 1 and let k ∈ N such that n′k−1 ≤ j < n′k. Then, by property (Q1),
SjSj−1 · · ·S1 = Sj · · ·Sn′k−1+1. Let X1 = span(e0, ek2) and let X2 = span(en : n 6= 0, k2).
Observe that X is isomorphic to X1 ⊕ X2. Indeed, let P = e∗0 ⊗ e0 + e∗k2 ⊗ ek2 and let
Q = I − P . Then, P and Q are bounded parallel projections onto X1 and X2 respectively.
In fact, ‖P‖ ≤ 2b. Since Id = P + Q, we get that ‖Sj · · ·Sn′k−1+1‖ ≤ ‖Sj · · ·Sn′k−1+1P‖ +

‖Sj · · ·Sn′k−1+1Q‖. Thanks to (Q1) and (Q2), it follows that Sj · · ·Sn′k−1+1Q = α−(j−n′k−1)Q.
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Thus, ‖Sj · · ·Sn′k−1+1Q‖ ≤ ‖Q‖ ≤ 1 + 2b. On the other hand, regarding the operator
Sj · · ·Sn′k−1+1P , we can notice that

Sj · · ·Sn′k−1+1P = (e∗1 + σje
∗
k2)⊗ e1 + βje

∗
k2 ⊗ ek2 , where |σj|, βj ∈ [0, αd],

with which we conclude that ‖Sj · · ·Sn′k−1+1P‖ ≤ b(1 + 2αd), a constant independent of j.
Finally, the proof is �nished choosing M(d) = 1 + 3b+ 2bαd.

Let us check that T is a non-hypercyclic operator. Suppose that z = (e0, 0, · · · ) is a cluster
point of the orbit of some w ∈

⊕
Y X, under the action of T . Therefore, there exists

(mk)k ⊂ N an increasing sequence such that (Tmkw)k converges to z. Hence, the �rst
coordinate of Tmkw, which is S−1

1 · · ·S−1
mk
wmk , tends to e0 as k tends to in�nity. However, we

have that

‖wmk − e0‖ = ‖Smk · · ·S1(S−1
1 · · ·S−1

mk
wmk − e0)‖ (3.2)

≤M(d)‖S−1
1 · · ·S−1

mk
wmk − e0‖,

which implies that (wmk)k converges to e0. This contradicts the fact that w ∈
⊕

Y X because
(‖wk‖)k does not converge to 0.

Remark 3.16 The operator T is not δ-hypercyclic for any δ < 1/M(d). Indeed, let w ∈
⊕

Y X.
Thanks to triangle inequality and replacing the vector z by the vector λz in (3.2) we get that

‖λz‖
M(d)

− sup{‖wk‖ : k ∈ N}
M(d)

≤ ‖λe0‖
M(d)

− ‖wk‖
M(d)

≤ ‖S−1
1 · · ·S−1

k wk − λe0‖
≤ ‖T kw − λz‖, for all k ∈ N.

Let us �x δ < 1/M(d). Since sup{‖wk‖ : k ∈ N} is �nite, we can choose λ ∈ K with large
modulus to show that w is not a δ-hypercyclic vector for T . Finally, since w is an arbitrary
vector, T is not a δ-hypercyclic operator.

Step 3: T is an ε-hypercyclic operator.

Proposition 3.17 There exist two sequences (xk)k, (zk)k ⊂
⊕

Y X such that

(1) (xk)k is dense in
⊕

Y X,

(2) ‖zk − xk‖ ≤ 2α−db‖xk‖, for all k ≥ 2, and

(3) ‖Snk+j · · ·Sj+1z
k
j ‖ ≤ 2−k for every k ≥ 2 and for every j = 0, · · · , k − 1.

(4) For each k, there is Nk ∈ N such that zkj = 0 for all j ≥ Nk.

Proof. Let (xk)k ⊂
⊕

Y X \ {0} be a sequence which satis�es the following two properties:

1.
⊕

Y X = {xk : k ∈ N}.
2. For each k ∈ N, xk = (xk0, · · · , xkk−1, 0, · · · ), where each xkj ∈ span(en : n ≤ k − 1).
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Let k ≥ 2. In order to de�ne zk, let us �x j < k and l ∈ N such that n′l−1 ≤ j < n′l. We
know that l < k. Let us de�ne vkj ∈ X by:

αd+j−n′l−1vkj =


e∗0(xkj )ek2 if n′l−1 ≤ j ≤ n′l−1 + d,

(e∗0 + αj−(n′l−1+d+1)e∗l2)(x
k
j )ek2 if n′l−1 + d + 1 ≤ j ≤ n′l−1 + d + 1 + ∆l = nl

(e∗0 + α∆l−(j−nl)e∗l2)(x
k
j )ek2 if nl + 1 ≤ j ≤ nl + ∆l,

e∗0(xkj )ek2 if j ≥ nl + ∆l + 1.

Set vk = (vk0 , v
k
1 , · · · , vkk−1, 0, · · · ) and zk = xk + vk. Observe that ‖vkj ‖ ≤ 2α−db‖xkj‖, for all

j ∈ {0, 1, · · · , k − 1}. Since the space
⊕

Y X is constructed with a 1-unconditional basis of
Y , we conclude that ‖zk − xk‖ ≤ 2α−db‖xk‖. So, it only remains to prove property (3). Let
k ≥ 2 and j ∈ {0, · · · , k − 1}. For the sake of brevity, let us set ckj ∈ K by vkj = ckj ek2 . Let
l ∈ N such that n′l−1 ≤ j < n′l. Then, we get

Snk+j · · ·Sj+1z
k
j = Snk+j · · ·S1(S−1

1 · · ·S−1
j zkj )

= Snk+j · · ·Sn′k−1+1(S−1
n′l−1+1 · · ·S

−1
j (xkj + vkj ))

= Snk+j · · ·Sn′k−1+1(S−1
n′l−1+1 · · ·S

−1
j (xkj ) + αj−n

′
l−1vkj ),

= Snk+j · · ·Sn′k−1+1(S−1
n′l−1+1 · · ·S

−1
j (xkj )) + αj−n

′
l−1(−αdckj e0 + αd−∆k+jckj ek2).

where the second equality comes from (Q1), the third one is due to (Q2) and the fact that
l < k and in the last line we have assumed that ∆k is bigger than k. To continue, let us set
the vector h := S−1

n′l−1+1 · · ·S
−1
j (xkj ) and the operators P = e∗0 ⊗ e0 and Q = I − P . Then,

since the operators {Sj : j ≥ 1} are upper-triangular with respect to the M -basis (en)n, we
conclude that Qh ∈ span{en : 0 < n < k}. Thus, we get

Snk+j · · ·Sj+1z
k
j = Snk+j · · ·Sn′k−1+1(Ph+Qh) + αj−n

′
l−1(−αdckj e0 + αd−∆k+jckj ek2),

= [Ph− αd+j−n′l−1ckj e0] + α−(nk+j−n′k−1)Qh+ αj−n
′
l−1+d−∆k+jckj ek2 ,

where in the second line we have used property (Q0) and that the operator Sj restricted to
span(en : 0 < n < k) is equal to α−1Id for all j ∈ [n′k−1 + 1, n′k − 1]. Since nk + j − n′k−1 =
j + ∆k + d + 1 and ‖Qh‖ does not depend on ∆k, because l < k, the third term in the last
expression tends to 0 as ∆k tends to in�nity. Also, since l < k and |ckj | = ‖vkj ‖ ≤ 2α−db‖xkj‖
does not depend on ∆k, the fourth term in the last expression tends to 0 as ∆k tends to
in�nity. On the other hand, the coe�cients ckj were chosen to cancel the expression enclosed
in square brackets. Finally, if we choose ∆k large enough (with ∆k > k), we can ensure that
‖Snk+j · · ·Sj+1z

k
j ‖ ≤ 2−k.

Proof of Theorem 3.13. We already know that T is a bounded non-hypercyclic operator on⊕
Y X. Let us show that T is ε-hypercyclic, using the ε-Hypercyclicity Criterion, Theorem

3.2. Let (xk)k and (zk)k be sequences given by Proposition 3.17. Let us set

D1 := {(yi)i ∈
⊕
Y

X : ∃N ∈ N, yi = 0, ∀i ≥ N},

which is dense in
⊕

Y X. Let D2 := {zk ∈
⊕

Y X : k ≥ 2}. Let w ∈
⊕

Y X be a vector
di�erent from 0 and let (xmk)k be a subsequence of (xk)k which converges to w. Let ρ > 2α−db.
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We claim that, for k large enough, zmk ∈ B(w, ρ‖w‖). In fact, applying Proposition 3.17 (2)
we obtain that

‖w − zmk‖ ≤ ‖w − xmk‖+ ‖xmk − zmk‖ ≤ ‖w − xmk‖+ 2α−db‖xmk‖,

Since ρ > 2α−db and (xmk)k converges to w, the claim is proved. Thus, there are in�nitely
many k ∈ N such that zk ∈ B(w, ρ‖w‖). Let (n(k)) = nk be the sequence constructed in
the �rst part. Now, we check the three hypotheses of the ε-Hypercyclicity Criterion. Let us
de�ne the map U : D1 → D1 as the formal right inverse of T . i.e. U is de�ned by

U(yi)i = T−1(yi)i = (0, S1y0, S2y1, · · · ), ∀(yi)i ∈ D1.

Let Un(k) := T−n(k). With this, hypotheses (1) and (3) are straightforward. Indeed, let
y ∈ D1. Since (n(k))k tends to in�nity and T is a backward shift, we have that T n(k)y = 0 for
k large enough. Hypothesis (3) follows from the formula T n(k)Un(k) = Id, which is valid in D2

thanks to Proposition (3.17) (d). Finally, hypothesis (2) is implied by Proposition 3.17 (c).
Indeed, let k ≥ 2. By triangle inequality we have that

‖Un(k)z
k‖ ≤

k−1∑
j=0

‖Un(k)(0, · · · , 0, zkj , 0, · · · )‖ ≤ k2−k,

expression which tends to 0 as k tends to ∞. Hence, T is a ρ′-hypercyclic operator for any
ρ′ > ρ. Finally, since ρ can be chosen arbitrary close to 2α−db, and then ρ < ε, we �nally
get that T is an ε-hypercyclic operator.

Remark 3.18 Notice that the sequence (∆k)k used in the construction of the ε-hypercyclic
operator T can be replaced by any sequence of integers (∆′k)k such that ∆k ≤ ∆′k, for all k ∈ N.
Moreover, observe that the operator constructed in Theorem 3.13 satis�es the ε-Hypercyclicity
Criterion associated to the sequence (nk)k, where

nk = (2k − 1)(d + 1) + ∆k + 2
k−1∑
j=1

∆j, ∀k ≥ 1.

In order to extend further our result we recall that there exist hypercyclic operators in each
in�nite dimensional separable Banach space, see [2] and [21]. Further, in [69], León-Saavedra
and Montes-Rodríguez showed that the operator constructed in [21] satis�es the Hypercyclic-
ity Criterion. The following proposition states the stability of the epsilon-hypercyclicity
property on products of two operators which satisfy the Hypercyclicity Criterion and the
Epsilon-Hypercyclicity Criterion respectively. In fact, Proposition 3.19 can be seen as a gen-
eralization of the necessity part of the following theorem of Bès and Peris, [22, Theorem
2.3]: T ∈ L(X) satis�es the Hypercyclicity Criterion if and only if T ⊕ T ∈ L(X ⊕ X) is
hypercyclic.

Proposition 3.19 Let X and Y be two separable in�nite dimensional Banach spaces and let
ε ∈ (0, 1). Let T ∈ L(X) satisfying the Hypercyclicity Criterion. Let S ∈ L(Y ) satisfying the
ε-Hypercyclicity Criterion. Further, assume that the sequences of integers provided by both
criteria are the same. Then, the operator T ⊕ S is δ-hypercyclic on X ⊕ Y , for all δ > ε,
where X ⊕ Y is equipped with the norm of the maximum.
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Before proceeding with the proof of Proposition 3.19, we recall the following simple fact: If
T satis�es the Hypercyclicity Criterion for some sequence (n(k))k, then the operator satis�es
this criterion for any subsequence (n(k(j)))j.

Proof. Let (n(k))k be an increasing sequence of integers, let DX1 ,DX2 ⊂ X be two dense sets
and let (Un(k))k a sequence of maps, provided by the Hypercyclicity Criterion for T . Let
DY1 ⊂ Y be a dense set, let DY2 := {zk : k ∈ N} ⊂ Y and let (Vn(k))k be a sequence of maps
provided by the ε-Hypercyclicity Criterion for S, all of them related to the sequence (n(k))k.

Let (vk)k ⊂ Y \ {0} be a dense sequence such that vi 6= vj if i 6= j. Summarizing the
constructive proof of Theorem 3.2, we can obtain a subsequence of (zk)k, which we still
denote by (zk)k, a sequence (yk)k ⊂ DY1 and a fast decreasing null sequence (ηk)k ⊂ R+ such
that:

� ‖vk − zk‖ ≤ ε‖vk‖, for all k ∈ N,
� ‖yk‖ ≤ ηk for all k ∈ N,
� ‖Sn(k)yi‖ ≤ ηk for all i < k,

� ‖Sn(k)yk − zk‖ ≤ ηk for all k ∈ N.
Further, the vector y =

∑
k yk is δ-Hypercyclic, for all δ > ε. For each i ∈ N, let us consider an

increasing sequence (k(i, j))j such that vk(i,j) converges to vi, as j tends to in�nity. Inductively,
we de�ne the sets N0 := {k(0, j) : j ∈ N} and, for i ≥ 1, Ni := {k(i, j) : j ∈ N} \

⋃
k<iNk.

Since the sequence (vk)k is injective, the sets Ni are in�nite for each i ∈ N. Observe that, by
Remark 3.5, the expression

lim sup
t∈Nk, t→∞

‖Sn(t)y − vk‖ ≤ ε‖vk‖, (3.3)

holds true for each k ∈ N.

Now, let us construct a hypercyclic vector x of T adapted to y in the following sense: the set
{T nx : n ∈ Nj} is dense in X for each j ∈ N. Assume that DX2 is a countable set and �x an
enumeration of it, i.e. DX2 = {wl : l ∈ N}. Let us de�ne the following total order on N2: for
(i, j), (k, l) ∈ N2, we write

(i, j) � (k, l) if i + j < k + l or i + j = k + l ∧ i ≥ k.

Letm(0, 0) ∈ N0 and x0,0 ∈ DX1 such that ‖Um(0,0)w0‖ ≤ 1, ‖x0,0‖ ≤ 1 and ‖Tm(0,0)x0 − w0‖ ≤ 1.
Now, let us proceed by induction. Let k, l ∈ N. Suppose that we have constructed m(i, j)
and xi,j for all (i, j) ≺ (k, l). Let m(k, l) ∈ Nk and xk,l ∈ DX1 such that

� m(k, l) > m(i, j) for all (i, j) ≺ (k, l).

� ‖Tm(k,l)xi,j‖ ≤ ρ(k, l), for all (i, j) ≺ (k, l),

� ‖Tm(i,j)xk,l‖ ≤ 2−k−l, for all (i, j) ≺ (k, l),

� ‖Um(k,l)wl‖ < ρ(k, l),

� ‖x(k,l)‖ ≤ ρ(k, l),

� ‖Tm(k,l)x(k,l) − wl‖ ≤ ρ(k, l),
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where ρ : N2 → R+ is a decreasing function (for�) such that (k+l)3ρ(k, l) tends to 0 whenever
(k, l) tends to in�nity through the order �. Thus, we claim that the vector x =

∑
i,j≥0 xi,j is

well de�ned and a hypercyclic vector for T . Moreover, for each i ∈ N, the set

{Tm(i,j)x : j ∈ N} is dense in X. (3.4)

Indeed, the claim follows from the next computation and the fact that (wl)l is dense in X.
Let (k, l) ∈ N2. Then we get

‖Tm(k,l)x− wl‖ ≤
∑

(i,j)≺(k,l)

‖Tm(k,l)xi,j‖+ ‖Tm(k,l)xk,l − wl‖+
∑

(k,l)≺(i,j)

‖Tm(k,l)xi,j‖

≤ ρ(k, l)

(
(k + l + 1)(k + l + 2)

2
+ 1

)
+

∑
(k,l)≺(i,j)

2−i−j,

where the last expression tends to 0 as k tends to in�nity. Observe that, by construction,
the sequence (m(i, j))j ⊂ Ni for all i ∈ N.

Let us equip the product space X ⊕ Y with the norm of the maximum, i.e. ‖(a, b)‖ =
max{‖a‖X , ‖b‖Y }, for all (a, b) ∈ X ⊕ Y . Let us prove that the vector (x, y) is δ-hypercyclic
for T ⊕ S, for all δ > ε. Combining (3.3) and (3.4), we obtain that

inf
j∈N
‖(T ⊕ S)m(i,j)(x, y)− (a, vk)‖ ≤ ε‖(0, vk)‖ ≤ ε‖(a, vk)‖, ∀ a ∈ X, ∀ k ∈ N.

Let (a, b) ∈ X ⊕ Y 6= (0, 0), using triangle inequality and the previous inequality we get

inf
n∈N
‖(T ⊕ S)n(x, y)− (a, b)‖ ≤ inf

k∈N
ε‖(a, vk)‖+ ‖(a, b)− (a, vk)‖ ≤ ε‖(a, b)‖.

Since (vk)k is dense in Y and (a, b) 6= (0, 0), by de�nition of in�mum we �nally conclude that
(x, y) is δ-hypercyclic for each δ > ε.

Finally, the next result is an abstract version of the one presented in the introduction.

Theorem 3.20 Let X be a separable Banach space. Assume that X admits an in�nite di-
mensional complemented subspace V of the form V =

⊕
Y Z, where Y and Z satisfy the

assumptions of Theorem 3.13. Then X admits an ε-hypercyclic operator which is not hyper-
cyclic.

Proof of Theorem 3.3. Theorem 3.3 is exactly Theorem 3.20 whenever the space V is either
c0(N) or `p(N), for p ∈ [1,∞).

Proof of Theorem 3.20. Let ε > 0. Let V =
⊕

Y Z be the complemented subspace given by
the statement. Let W be a topological complement of V on X. Without loss of generality,
we assume that W is in�nite dimensional. Otherwise, considering (fn)n as the basis of Y
used in the construction of V , we replace Y by span(fn : n ≥ 1) and W by W ⊕ Z, which
is in�nite dimensional. Let us consider T be any bounded hypercyclic operator on W that
satis�es the Hypercyclicity Criterion. Let (nk)k be a sequence of integers provided by the
Hypercyclicity Criterion for T . By Theorem 3.13, there is an ε-hypercyclic operator S on
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V which is not hypercyclic. Moreover, by Remark 3.18, we can choose S that satis�es the
ε-Hypercyclicity Criterion for a sequence (mk)k of the form

mk = 2k(d + 1) + 2
k−1∑
j=1

∆j + ∆k, for all k ≥ 1.

Since, for each j ∈ N, we can choose ∆j as large as we want, we can (and shall) assume
that the sequence (mk)k is a subsequence of (nk)k. Therefore, since T also satis�es the
Hypercyclicity Criterion for the sequence (mk)k, we can apply Proposition 3.19 to deduce
that S ⊕ T is δ-hypercyclic on V ⊕W , for all δ > ε. However, S ⊕ T is not hypercyclic.
Indeed, notice that V and W are complemented spaces and both are invariant for S ⊕ T . If
S⊕T were hypercyclic, then both restriction, S⊕T |V and S⊕T |W would be hypercyclic as
well. However, S ⊕ T |V = S, which is not hypercyclic.

3.6 A remark on the epsilon-Hypercyclicity Criterion

One of the main di�erences between the proposed ε-Hypercyclicity Criterion and the Hyper-
cyclicity Criterion is the necessity of an enumeration of the set D2. In fact, there are several
criteria having a structure similar to the Hypercyclicity Criterion, in which the corresponding
set D2 is not necessarily enumerated. For instance, regarding the criteria for supercyclicity,
cyclicity or frequent hypercyciclity stated in [18, Theorem 1.14, Exercise 1.4 and Theorem
6.18] respectively, the conditions at each point of D2 is identical. However, the next result
says that we cannot naively avoid this technicality.

Proposition 3.21 Let X be an in�nite dimensional separable Banach space, let T ∈ L(X)
and let ε ∈ (0, 1). Let D1 be a dense set in X. Let D2 be a subset of X such that D2 ∩
B(x, ε‖x‖) is nonempty for all x ∈ X \ {0}. Let (n(k))k ⊂ N be an increasing sequence and
let Sn(k) : D2 → X be a sequence of maps such that:

1. limk→∞ ‖T n(k)x‖ = 0 for all x ∈ D1,

2. limk→∞ ‖Sn(k)y‖ = 0, for all y ∈ D2,

3. limk→∞ ‖T n(k)Sn(k)y − y‖ = 0 for all y ∈ D2.

Then, T satis�es the Hypercyclicity criterion.

Let us recall that an operator T on X is called cyclic if there exists a vector x ∈ X such that
span(OrbT (x)) is dense in X, see De�nition 1.14.

Proof. It is enough to show that T⊕T is a cyclic operator onX⊕X. Indeed, if T⊕T is cyclic,
then T ⊕ T is hypercyclic by [53, Proposition 4.1] and, �nally, T satis�es the Hypercyclicity
Criterion by [22, Theorem 2.3]. Since the argument is analogous to the one presented in the
proof of Proposition 3.19, we present only a sketch of the proof. First, we �x a sequence
(vk)k ⊂ X \ {0} which is dense in X. Let us consider a countable partition (Nj)j of N such
that Nj is an in�nite set for each j ∈ N. By Remark 3.5, we can construct a vector z1 ∈ X
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and an increasing sequence (k(i))i ⊂ N such that:

lim sup
i∈Nj , i→∞

‖T n(k(i))z1 − vj‖ ≤ ε‖vj‖, ∀ j ∈ N.

Now, we construct a vector z2 adapted to z1 in the following sense:

lim inf
i∈Nj , i→∞

‖T n(k(i))z2 − x‖ ≤ ε‖x‖, ∀x ∈ X \ {0},∀ j ∈ N.

Finally, (z1, z2) is an ε-hypercyclic vector for T ⊕T on X⊕X whenever this space is endowed
with the norm of the maximum. Hence, by Proposition 3.23 below, (z1, z2) is a cyclic vector
for T ⊕ T , and so T satis�es the Hypercyclicity Criterion.

3.7 Elementary results

Proposition 3.22 Let (X1, ‖ ·‖1) and (X2, ‖ ·‖2) be two isomorphic Banach spaces. Assume
that, for each ε > 0, X1 admits an ε-hypercyclic operator which is not hypercyclic. Then X2

enjoys the same property.

Proof. Let T ∈ L(X1, X2) be an isomorphism between X1 and X2. Let ε ∈ (0, 1) and let
S be an ε-hypercyclic operator on X1 which is not hypercyclic. We claim that TST−1 is
a ‖T‖‖T−1‖ε-hypercyclic but not hypercyclic operator on X2. Indeed, let x ∈ X1 be an
ε-hypercyclic vector for S. Let y ∈ X2 and n ∈ N be an integer such that ‖Snx− T−1y‖1 ≤
ε‖T−1y‖1. Now, we can observer that

‖TSnT−1(Tx)− y‖2 ≤ ‖T‖‖Snx− T−1y‖1 ≤ ‖T‖‖T−1‖ε‖y‖2,

concluding that Tx is an ‖T‖‖T−1‖ε-hypercyclic vector for TST−1. Finally, TST−1 cannot
be hypercyclic since this property is preserved under conjugacy.

Proposition 3.23 Let T be an ε-hypercyclic operator on X, with ε ∈ (0, 1). Then T is a
cyclic operator.

Proof. It is a direct consequence of the following well-known result: for any closed subspace
Y of X, di�erent from X, and any δ > 0 there exists a unit vector z ∈ X \ Y such that
dist(z, Y ) ≥ 1 − δ. Assume now, towards a contradiction, that T is a non-cyclic operator.
Let Y = span(OrbT (x)), where x is an ε-hypercyclic vector for T . Let δ ∈ (ε, 1) and let
z ∈ X \ Y be a unit vector such that dist(z, Y ) > δ. Therefore B(z, δ) ∩ Y = ∅. Hence,
x is not a δ-hypercyclic vector, and thus, x cannot be an ε-hypercyclic vector, which is a
contradiction.
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Chapter 4

Asymptotically separated sets and wild

operators

In this chapter we continue the study of linear bounded operators whose dynamics is a
purely in�nite dimensional phenomenon. Precisely, we focus our attention to wild operators,
a concept introduced in [8] by J.M. Augé, and we de�ne and explore the asymptotically
separated sets. The fundamentals and notation to go throughout this chapter can be found
in Chapter 1, Section 1.2 and Section 1.3. In what follows, the whole chapter is mainly based
on the work [91].

4.1 Introduction

Let X be a real or complex Banach space and let T be a bounded operator on X. If X is a
�nite dimensional vector space, the possible dynamics of T in terms of the sequence (‖T nx‖)n
have been completely determined in Theorem 1.12. The conclusion of the mentioned theorem
is the following: if dim(X) <∞, for any x ∈ X, we have that either the sequence (‖T nx‖)n
goes to in�nity, or goes to 0, or else is bounded away from 0 and in�nity.

Let us denote by A′T ⊂ X the set of points with unbounded orbits under the action of T . It
follows that A′T is a Gδ-set. Moreover, thanks to the Banach-Steinhaus Theorem theorem,
A′T is in fact either empty or Gδ-dense. Indeed, if there are x ∈ X and ε > 0 such that
B(x, ε) does not contain points with unbounded orbit, then we realize that the orbit of any
vector z ∈ B(0, ε) is bounded (it is enough to consider T nz = T n(x + z) − T nx, for any
n ∈ N). Thus, the sequence (‖T n‖)n is bounded and therefore, A′T is empty.

In �nite dimensional dynamics, a sequence (‖T nx‖)n is unbounded if and only if it tends to
in�nity. Therefore, for any linear operator T : Kn → Kn, the set:

AT := {x ∈ Kn : lim
n→∞

‖T nx‖ =∞},

is either empty or dense, where K stands for R or C. This fact motivated the following
conjecture proposed by G. Pr jitur , [81]: Let X be a Banach space and let T ∈ L(X).
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Then the set AT is either empty or dense. P. Hájek and R. Smith, in [61], constructed a
bounded operator which refutes Pr jitur 's conjecture on each in�nite dimensional separable
Banach space with symmetric basis. Two year later, this result was extended by J.M. Augé
in [8] who constructed such an operator on each in�nite dimensional separable Banach space.
In order to continue, let us �x the set AT and the recurrent set RT of a linear operator
T ∈ L(X) by:

AT := {x ∈ X : lim
n→∞

‖T nx‖ =∞} and RT := {x ∈ X : lim inf
n→∞

‖T nx− x‖ = 0}.

De�nition 4.1 Let T be a linear bounded operator de�ned on a Banach space X. We say that
T is a wild operator (or that T has a wild dynamic) if both sets AT and RT have nonempty
interior and form a partition of X. The set of wild operators on X is denoted by W(X).
The set of linear bounded operators on X which refutes Pr jitur 's conjecture is denoted by
RP (X).

Let us state the main result of [8] which corresponds to the existence of wild operators on
in�nite dimensional separable Banach spaces.

Theorem 4.2 [8, Theorem 1.1] Let X be an in�nite dimensional separable (real or complex)
Banach space. Then there exists a wild operator T on X. Moreover, T can be taken of the
form I +N , where N is a nuclear operator.

In section 4.3, we summarize the construction made in [8] but in a slightly generalized way.

Remark 4.3 For an in�nite dimensional separable Banach space X, it follows thatW(X) (
RP (X). Indeed, let Y be a closed hyperplane of X, and let Z be a 1-dimensional subspace

of X such that X = Y ⊕ Z. Let T ∈ W(Y ) given by Theorem 4.2. Let T̃ be the operator

on X de�ned by T̃ (y + z) := T (y) where y ∈ Y and z ∈ Z. We have that AT̃ = AT + Z
and RT̃ = RT + {0}, where the former set is not dense and the last one has empty interior.

Therefore, T̃ ∈ RP (X) \W(X).

The following de�nition plays an important role in Section 4.3, in which these sets are used
to construct operators with interesting dynamical properties.

De�nition 4.4 Let F be a subset of X. We say that F is asymptotically separated in X if
there exists a sequence (gn)n ⊆ X∗ such that:

(i) For all x 6∈ F , limn→∞ |gn(x)| = +∞.

(ii) For all x ∈ F , lim infn→∞ |gn(x)| = 0.

We say that the sequence (gn)n asymptotically separates F .

It is clear that any asymptotically separated set must be a balanced Gδ cone, see forthcoming
Proposition 4.5. Also, {0} and K are the only asymptotically separated subsets in K. Indeed,
it is enough to consider the sequence (n)n and (0)n which asymptotically separate {0} and
K respectively.
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Let us summarize the contributions of this chapter: we explore in depth the notion of asymp-
totically separated sets, considering both �nite and in�nite dimensional spaces. For instance,
the following sets are asymptotically separated: in �nite dimensional spaces, subsets which
are union of linear hyperplanes and such that they are open after removing the origin; in
separable Banach spaces, the set {0} and each closed subspace. For general Banach spaces,
we construct a dense asymptotically separated set with dense complement. In Section 4.3 we
write down the proof of Theorem 4.2, stressing the importance of asymptotically separated
sets. Thanks to this, we obtain operators T such that the sets AT and RT form a partition
of the underlying Banach space. For instance, we obtain an operator T such that {AT , RT}
form a partition of X in two dense sets. In this case, both AT and the set of vectors with
unbounded recurrent orbits are dense in X. Moreover, we present several results concerning
wild operators. Among them, we study the stability under products, invertibility and norm-
approximation, see Theorem 4.42, Theorem 4.45 and Theorem 4.56 respectively.

The outline of this chapter is as follows: In Section 4.2 we study asymptotically separated
sets. In Section 4.3, we show how the existence of a non-trivial asymptotically set helps in
the construction of a linear bounded operator T on a separable in�nite dimensional Banach
spaces such that {AT , RT} forms a partition of X. In Section 4.4, we investigate geometrical
aspects of the set of recurrent points of a given operator, RT . In Section 4.5, we focus our
study to spectral properties of wild operators, and we construct a non-invertible wild opera-
tor whenever the ambient space admits a symmetric basis. Further, we present an example
of a wild operator such that its spectrum is equal to the closed unit disk. Finally, Section 4.6
is devoted to the norm closure of the setW(X). In particular, whenever the ambient space is
an in�nite dimensional separable Hilbert space, every unitary operator can be approximated
by wild operators.

Notation: For A,B ⊆ X, we write dist(A,B) = inf{‖x− y‖ : x ∈ A, y ∈ B}.

4.2 Asymptotically separated sets

In this section we explore in depth which kind of sets can be asymptotically separated,
see De�nition 4.4. First of all, the notion of asymptotically separated set is stable under
isomorphism: If ‖ · ‖1 and ‖ · ‖2 are equivalent norms on a given vector space X, then the
asymptotically separated sets of (X, ‖ · ‖1) and (X, ‖ · ‖2) coincide. Therefore, whenever X
is a �nite dimensional space, we assume that it is endowed with an euclidean norm. Albeit
simple, the next proposition delimits the sets which can be asymptotically separated.

Proposition 4.5 Let F ⊂ X be an asymptotically separated set. Then F is a balanced Gδ

cone.

Proof. Let (gn)n ⊂ X∗ be a sequence that asymptotically separates F . Then

F =
⋂
n∈N

⋂
m∈N

⋃
p≥m

g−1
p

(
− 1

n
,

1

n

)
,
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which is clearly a Gδ set. Moreover, since both properties de�ning asymptotically separated
sets are stable under non-zero scalar multiplication, F is a balanced cone.

Observe that both properties de�ning asymptotically separated sets are stable under non-
zero scalar multiplication. Thus, to show that a given set F ⊂ X is asymptotically separated
in X we only need to check the property in F ∩ SX and SX \ F . In [8] it is observed that
the closed set {z = (z1, z2) ∈ K2 : |z1| ≤ |z2|} is asymptotically separated. The following
proposition shows that if U is the open set {z = (z1, z2) ∈ K2 : |z1| < |z2|}, then U ∪ {(0, 0)}
is asymptotically separated as well.

Proposition 4.6 Let U ⊂ Kd be a nonempty set which is union of linear hyperplanes and
let ~0 ∈ Kd be the origin. If U \ {~0} is open, then U is asymptotically separated.

Proof. If U = Kd, it is enough to consider the sequence (gn)n ⊂ (Kd)∗ de�ned by gn = 0 for
all n ∈ N. Thus, we assume that U ( Kd. Let us set S = SKd . For g ∈ (Kd)∗, we de�ne the
number

α(g) = dist(ker(g) ∩ S, ∂U ∩ S).

Notice that if ker(g) ⊂ U , then ker(g) ∩ S is a compact set contained in U ∩ S. Since U ∩ S
is open in S and ∂U ∩ S 6= ∅, we get that α(g) > 0. Let us de�ne

Un := {x ∈ U : ∃g ∈ (Kd)∗, x ∈ ker(g) ⊂ U , α(g) > 2−n}.

It is clear that for k large enough, Uk 6= ∅ and
⋃
n Un = U . Since Un ∩ S is totally bounded,

we can �nd En ⊆ Un ∩ S a �nite 4−n-net of Un ∩ S. Let Gn ⊆ (Kd)∗ be a �nite set such
that each g ∈ Gn satis�es that ‖g‖ = 3n and ker(g) ⊂ Un, and that for each x ∈ En, there is
gx ∈ Gn satisfying gx(x) = 0. Notice that, if g ∈ Gn, then α(g) > 2−n. Indeed, this is due to
the fact ker(g) ⊂ Un.

Let (gn)n be a sequence generated by an enumeration of
⋃
nGn, where we �rst �nd the ele-

ments of G1, then the elements of G2, and so on. We prove that this sequence asymptotically
separates U .

Let x ∈ S. If x ∈ U , there exist f ∈ (Kd)∗ and N ∈ N such that x ∈ ker(f) and α(f) > 2−N .
Therefore, for each n ≥ N , there exists g ∈ Gn such that d(x, ker(g)) ≤ 4−n. Thus, recalling
that ‖g‖ = 3n we get

|g(x)| = ‖g‖dist(x, ker(g)) ≤ 3n

4n
,

which tends to 0 as n tends to in�nity. On the other hand, if x /∈ U and g ∈ Gn, we know
that x /∈ U ⊇ Un ⊇ ker(g) ∩ S. Therefore, dist(x, ker(g) ∩ S) ≥ α(g) > 2−n. Finally, we get
that

|g(x)| = ‖g‖dist(x, ker(g)) ≥ 3n
dist(x, ker(g) ∩ S)√

2
≥ 3n

2n
√

2
,

which tends to ∞ as n tends to in�nity.
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In the previous proof, the euclidean structure of Kn is only used to obtain the last bound.
We continue with a useful example.

Corollary 4.7 Let X = Kd, where d ≥ 2. There exists an asymptotically separated set
U ⊂ X with nowhere dense, nonempty complement such that U \ {0} is open.

Proof. Let (ek)
d
k=1 ⊂ Kd be a basis and let (e∗k)

d
k=1 ⊂ (Kd)∗ be its associated coordinate

functionals. Let U ⊆ Kd de�ned by

U := (Kd \ {x ∈ Kd : e∗1(x) 6= 0 and e∗k(x) = 0,∀k 6= 1}).

Clearly, the complement of U is nowhere dense in X. We claim that U is asymptotically
separated. Let us show that U is union of linear hyperplanes. Let u ∈ U \ {0}. By de�nition
of U , there is j 6= 1 such that e∗j(u) 6= 0. Let us consider x∗ ∈ K∗ de�ned by

x∗ := e∗1(u)e∗j − e∗j(u)e∗1.

An easy computation gives to us that u ∈ ker(x∗) ⊂ U . Thus, U is union of linear hyperplanes.
Since U \ {0} is an open set, Proposition 4.6 �nishes the proof.

For closed sets, we have the following result.

Proposition 4.8 Let F be a nonempty closed subset of a Banach space X which is union of
linear hyperplanes. Suppose that there exists Y ⊂ X∗ such that F ∩ BX is σ(X, Y )-compact
in X and, for all x ∈ F , there exists x∗ ∈ Y such that x ∈ ker(x∗) ⊆ F . Then F is
asymptotically separated.

Proof. Let us consider the set H := {x∗ ∈ Y ∗ : ker(x∗) ⊆ F}. Notice that, for every
α, ε > 0, the family of sets {x∗−1((−ε, ε)) : x∗ ∈ H, ‖x∗‖ = α} is a σ(X, Y )-open covering
of F ∩ BX . Let (εn)n ⊆ R+ be a decreasing sequence converging to 0. Let n ∈ N. By
compactness, there is a �nite sequence (gn,k)k ⊆ H such that {g−1

n,k(−εn, εn) : k} is a �nite

open covering of F ∩ BX and ‖gn,k‖ = ε
−1/2
n for all k. Let us denote by (gm)m the sequence

obtained by the concatenation of the �nite sequences (g1,k)k, (g2,k)k and so on. We claim
that F is asymptotically separated by (gm). Let x ∈ SX . If x ∈ F , then for each n ∈ N, there
is k(n) ∈ N, depending on x, such that |gn,k(n)(x)| ≤ εn. Hence, lim inf |gm(x)| = 0. On the
other hand, if x ∈ SX \ F , we have that for all n ∈ N:

|gn,k(x)| = ‖gn,k‖dist(x, ker(gn,k)) ≥ ε
− 1

2
n dist(x, F ),

which tends to in�nity as n tends to in�nity.

Remark 4.9 As a consequence of the proof of Proposition 4.8 and the Banach-Alaoglu The-
orem, we deduce that for each dual space X, there exists a sequence (x∗n)n ⊂ X∗ such that
limn ‖x∗n‖ =∞ and which asymptotically separates X. Indeed, it is enough to consider Y as
the canonical injection of the predual of X into X∗.

Since weak∗ and norm topology coincide for �nite dimensional spaces, we obtain a key Propo-
sition of [8].
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Corollary 4.10 [8, Proposition 2.1] Let F be a nonempty closed subset of Kd which is union
of linear hyperplanes. Then F is asymptotically separated.

Corollary 4.11 Let X be a Banach space of dimension at least 2. Then there exists a
sequence (x∗n) ⊂ X∗ which asymptotically separates X and satis�es limn ‖x∗n‖ =∞.

Proof. Let Y be a two dimensional subspace of X and let P : X → X be a bounded
projection onto Y . By Remark 4.9, there exists a sequence (y∗n) ⊂ Y ∗ such that asymptotically
separates Y and the sequence (‖y∗n‖)n goes to in�nity. For each n ∈ N, let x∗n ∈ X∗ be any
extension of y∗n to the space X. Thus, the sequence (x∗n ◦ P )n asymptotically separates X
and the sequence of norms diverges to in�nity.

Another result about closed asymptotically separated sets in general Banach spaces can be
found in [9, Proposition 4.6.4].

Now, we present two examples of asymptotically separated set which are not enclosed by
the previous results: the set containing only the origin is asymptotically separated in any
separable Banach space and, secondly, the existence of a dense asymptotically separated set
which has dense complement in any Banach space of dimension at least 2. Let us start with
the �nite dimensional case.

Proposition 4.12 Let X = Kd, with d ≥ 1, and let ~0 be the origin of X. Then the set
F = {~0} is asymptotically separated.

Proof. If X = K, then it is enough to consider the sequence (n)n which asymptotically
separates {~0}. Let us assume that d ≥ 2. Let us consider the sequence (g∗n)n ⊆ X∗ de�ned
by g∗n =

(
nd, nd−1, ..., n

)
for all n ∈ N. We claim that the sequence (g∗n)n asymptotically

separates F . To this end, let x = (x1, ..., xd) ∈ SX . Let j ∈ {1, ..., d} such that xj 6= 0 and
xi = 0 for all i < j. If j = d, then the sequence (|gn(x)|)n = (n|xd|)n, which tends to in�nity.
Thus, we assume that 1 ≤ j < d. Since all the coordinates of x are bounded by 1, there
exists N ∈ N such that

|xj|
dnj−1

≥ |xk|+ 1

nk−1
, ∀n ≥ N, ∀k > j.

Now, for n ≥ N , we can compute

|gn(x)| = nd

∣∣∣∣∣
d∑
k=j

xk
nk−1

∣∣∣∣∣ ≥ nd

(
|xj|
nj−1

−
d∑

k=j+1

|xk|
nk−1

)

≥ nd

(
d∑

k=j+1

|xj|
dnj−1

− |xk|
nk−1

)
≥

d∑
k=j+1

nd−k+1

expression which tends to in�nity as n tends to in�nity, �nishing the proof.

Before proceeding with the next proposition, we recall a result of Ovsepian and Peªczy«ski,
[75]: Each separable Banach space admits a normalized boundedM -basis, see Theorem 1.11.
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Proposition 4.13 Let X be a separable real or complex Banach space and let ~0 be the origin
of X. Then the set {~0} is asymptotically separated.

Proof. If X is a �nite-dimensional space, the result follows from Proposition 4.12. Thus, we
assume that X is in�nite dimensional. Let (en)n ⊆ X be a normalized bounded M-basis of
X with (en)∗ ⊆ X∗ its associated biorthogonal system. Let C ≥ 1 such that sup ‖e∗n‖ ≤ C.
For each n ∈ N, let (αn,i)i ⊂ R be a sequence of positive real numbers such that:

1. lim
n→∞

αn,1 = 0.

2.
αn,i
n

>
∞∑

j=i+1

αn,j, for all 1 ≤ i ≤ n.

Now, for n ∈ N, let us consider

x∗n = e∗1 +
∞∑

i=1

αn,ie
∗
i+1 ∈ X∗,

which is well de�ned since the series is absolutely convergent. Let βn = n/αn,n and let
gn = βnx

∗
n for each n ∈ N. We claim that the sequence (gn)n asymptotically separates {0}.

Indeed, let x ∈ SX . Since spanw
∗
(e∗n : n ∈ N) = X∗ we know that e∗n(x) 6= 0 for some n ∈ N.

Let j = min{n ∈ N : e∗n(x) 6= 0}. If j = 1, then we get

|gn(x)| ≥ βn

(
|e∗1(x)| − C‖x‖

∞∑
i=1

αn,i

)
≥ βn

(
|e∗1(x)| − (n+ 1)C

n
αn,1‖x‖

)
,

and, applying property (1) and using the fact that (βn)n tends to∞, we see that the sequence
(|gn(x)|)n tends to in�nity as n tends to in�nity. If 2 ≤ j ≤ n, then:

|gn(x)| ≥ βn

(
αn,j−1|e∗j(x)| −

∑
k≥j+1

αn,k−1|e∗k(x)|

)
≥ βn

(
αn,j−1|e∗j(x)| − C‖x‖αn,j−1

n

)
≥ n

αn,j−1

αn,n

(
|e∗j(x)| − C‖x‖

n

)
.

where we have used triangle inequality in the �rst line and the boundedness of the biorthog-
onal system and property (2) in the second one. Finally, since αn,j−1/αn,n ≥ 1 for all n ≥ j,
we deduce that the sequence (|gn(x)|)n tends to in�nity.

Corollary 4.14 Let X be a separable real or complex Banach space and let Y be a closed
subspace of X. Then Y is asymptotically separated. In particular, every �nite dimensional
subspace of X is asymptotically separated.

Proof. Let Q : X → X/Y be the canonical quotient linear map. By Proposition 4.13, let
(gn)n ∈ (X/Y )∗ be a sequence that asymptotically separates the origin in X/Y . It follows
that the sequence (gn ◦Q)n ⊂ X∗ asymptotically separates Y .
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We continue with the proof of the existence of a dense asymptotically separated set with
dense complement in each Banach space of dimension at least 2. In fact, this result is a
consequence of the following theorem.

Theorem 4.15 Let X = K2, with K = R or C. Let (x∗n)n be a sequence in X∗ and let
U = X \

⋃
n ker(x∗n). Then the set U ∪ {0} is asymptotically separated.

Corollary 4.16 Let X be a real or complex Banach space of dimension at least 2. Then
there exists an asymptotically separated set U ⊆ X such that U and U c are dense for the
norm topology.

Proof. Let P : X → X be a bounded projection onto any two dimensional subspace Y of
X. Let (y∗n)n ⊆ Y ∗ be a sequence of norm one linear functions, dense in SY ∗ . Then, by
Theorem 4.15, the set

O =

(
Y \

⋃
n

ker(y∗n)

)
∪ {0}

is asymptotically separated by some sequence (gn)n ⊆ Y ∗. It is clear that the set U = P−1(O)
is asymptotically separated in X by the sequence (gn ◦P )n. Moreover, by the Open mapping
theorem, U and X \ U are dense in X since O and Y \ O are dense in Y .

To prove Theorem 4.15, let us start with the following elementary lemma.

Lemma 4.17 Let X = K2. Let x∗ ∈ X∗ be a norm one linear functional. Let α ∈ (0, 1)
and G = X \

⋃
{ker(y∗) : ‖y∗‖ = 1, ‖x∗ − y∗‖ ≤ α}. Then, dist(ker(x∗)∩ SX , G∩ SX) = α.

Moreover, if dist(y, ker(x∗) ∩ SX) > α and ‖y‖ = 1, then y ∈ G.

Proof. Let us denote S = SX . Let z ∈ ker(x∗)∩ S and let y ∈ G∩ S. Let us set z = (z1, z2)
and y = (y1, y2). Let z∗, y∗ ∈ X∗ be the linear functionals de�ned by z∗ = (−z2, z1) and
y∗ = (−y2, y1). In the case whenever K = R, v = v for all v ∈ K. It is clear that
‖z∗‖ = ‖y∗‖ = 1, ‖z − y‖ = ‖z∗ − y∗‖, z ∈ ker(z∗) and y ∈ ker(y∗). Since X is a two
dimensional space, there exists λ ∈ K, with |λ| = 1, such that λz∗ = x∗. Recalling that
y ∈ G and that y ∈ ker(λy∗), we obtain that

‖z − y‖ = ‖z∗ − y∗‖ = ‖x∗ − λy∗‖ ≥ α,

showing that dist(z,G) ≥ α. Since z is an arbitrary point in ker(x∗)∩S, dist(ker(x∗)∩S,G) ≥
α. Let ε > 0 and y ∈ S such that dist(y, ker(x∗) ∩ S) = α + ε. Let z ∈ ker(x∗) ∩ SX . Then
‖λz − y‖ ≥ α + ε, for all |λ| = 1. It follows that ‖λz − ρy‖ ≥ α + ε for all |λ| = |ρ| = 1.
Proceeding as before, sinceX is a two dimensional euclidean space, the last computation gives
us that ‖x∗ − y∗‖ ≥ α + ε, for all norm one linear functional y∗ ∈ Y ∗ such that y ∈ ker(y∗).
Finally, by de�nition of G, we conclude that y ∈ G.

Proof of Theorem 4.15. Without loss of generality, we assume that X is endowed with an
Euclidean norm. Let us �x S = SX . If U∪{0} = {0}, the result follows from Proposition 4.13.
Let us assume that U ∪ {0} 6= {0}. Observe that, since dim(X) = 2, for any two non-zero
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linear functionals, x∗, y∗ ∈ X∗, we have that ker(x∗) = ker(y∗) or ker(x∗) ∩ ker(y∗) = {0}.
Thus, we deduce that U ∪ {0} can be written as union of linear hyperplanes. Therefore, if
the set {ker(x∗n) : n ∈ N} is �nite and U 6= ∅, the result follows from Proposition 4.6. So, we
assume that (x∗n)n is a sequence of linear functionals of norm one such that x∗n 6= λx∗m, for all
n 6= m and all |λ| = 1, i.e., ker(x∗n) 6= ker(x∗m) for all n 6= m. Observe that, in this case, U 6= ∅

Let us de�ne α1 = 2 and, for n ≥ 2

αn = min{dist(ker(x∗j) ∩ S, ker(x∗k) ∩ S) : j, k ≤ n, j 6= k},

which is a strictly positive real number. By compactness of the unit sphere, we have that
(αn)n is a decreasing sequence which converges to 0. Let us consider three sequences of
positive numbers, (βn)n, (σn)n, (γn)n ⊆ R, which will be speci�ed later on. For each n, we
consider

Gn = X \
⋃{

ker(x∗) : ‖x∗‖ = 1, dist(x∗, {x∗k : k ≤ n}) ≤ αn
βn

}
.

Let (xn,k)k be a �nite σn-net of Gn ∩ S. For each xn,k, consider gn,k ∈ X∗ such that
gn,k(xn,k) = 0 and that ‖gn,k‖ = γn > 0. Observe that ker(gn,k) = Kxn,k ⊆ Gn ∪ {~0}.
Indeed, this is because Gn ∪ {~0} is union of linear hyperplanes and that, for each vector
x 6= ~0, there is only one linear hyperplane containing it (this argument holds true only in two
dimensional spaces).

We claim that the sequence (gm)m obtained by the concatenation of (g1,k)k, (g2,k)k, and so
on, asymptotically separates U if the sequences (βn)n, (σn)n and (γn)n are correctly chosen.
To this end, let x ∈ S \ U . Then, there exists N ∈ N such that x ∈ ker(x∗N). For every
n ≥ N , applying Lemma 4.17, we get that:

|gn,k(x)| = ‖gn,k‖dist(x, ker(gn,k)) ≥ ‖gn,k‖
dist(x, ker(gn,k) ∩ S)√

2
≥ γn

αn

βn
√

2
, (4.1)

which must tend to in�nity when n tends to in�nity. On the other hand, let x ∈ U ∩ S. Let
us de�ne

ρn(x) =
βn
αn

dist(x, {y ∈ S : ∃k ≤ n, x∗k(y) = 0}).

If lim supn ρn(x) > 1, then x ∈ Gn for in�nitely many n ∈ N. Indeed, let ε > 0 and (nl)l ⊆ N
be an increasing sequence such that ρnl(x) ≥ 1 + ε for all l ∈ N. Then, we get that

dist(x, {y ∈ S : ∃k ≤ nl, x
∗
k(y) = 0}) ≥ (1 + ε)

αnl
βnl

. for all l ∈ N

Applying Lemma 4.17, we deduce that x ∈ Gnl for all l ∈ N. Now, let us consider n such
that x ∈ Gn. Picking gn,k such that dist(x, ker(gn,k)) ≤ σn, we have that

|gn,k(x)| = ‖gn,k‖dist(x, ker(gn,k)) ≤ γnσn, (4.2)

which must tend to 0 as n tends to in�nity. Now, let us assume that lim sup ρn(x) ≤ 1. If
we suppose that

αn
βn
≤ αn+1

6
, (4.3)
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then, by the triangle inequality and Lemma 4.17 we can show that eventually there is exactly
one x̂∗n ∈ {x∗k : k ≤ n} such that βn

αn
dist(x, ker x̂∗n ∩ S) = ρn(x). Moreover, the sequence (x̂∗n)n

is stationary. Indeed, let and N ∈ N such that ρn(x) < 2 for all n ≥ N . Let n ≥ N . Then,
we have that dist(x, ker x̂∗n ∩S) ≤ 2αn/βn ≤ αn+1/3. Since αn+1 ≤ αn, if there are two linear
functionals x̂∗n,1 and x̂∗n,2 in {x∗k : k ≤ n} such that dist(x, ker x̂∗n,i ∩ S) ≤ 2αn/βn for i = 1, 2,
then the triangle inequality implies that

dist(ker x̂∗n,1 ∩ S, ker x̂∗n,2 ∩ S) ≤ dist(x, ker x̂∗n,1 ∩ S) + dist(x, ker x̂∗n,2 ∩ S)

≤ 2
αn+1

3
< αn.

Thus, by de�nition of αn, x̂∗n,1 = x̂∗n,1 and the choice of x̂∗n is unique. Also, observe that
since (αn)n converges to 0 as n tends to in�nity, the sequence (dist(x, ker x̂∗n))n converges
to 0 as well. Moreover, we deduce that x̂∗n = x̂∗n+1 for all n ≥ N . Indeed, recalling that
dist(x, ker(x̂∗n) ∩ S) ≤ αn+1/3 for all n ≥ N , we have that

dist(ker(x̂∗n) ∩ S, ker(x̂∗n+1) ∩ S) ≤ αn+1

3
+
αn+2

3
< αn+1, for all n ≥ N.

Therefore, by de�nition of αn+1, x̂∗n = x̂∗n+1 for all n ≥ N .

Now, since the sequence (dist(x, ker(x̂∗n)))n tends to 0, we conclude that x ∈ ker(x̂∗N) ⊂ S \U .
This contradicts the fact that x ∈ U .

Summarizing, we have that the sequence (gn)n asymptotically separates U ∪ {0} whenever
the conditions (4.1), (4.2) and (4.3) are satis�ed, namely:

lim
n→∞

γn
αn
βn

=∞, lim
n→∞

γnσn = 0 and 6αn ≤ βnαn+1, ∀n ∈ N.

So, if we consider βn = 6αn/αn+1, γn = n/αn+1 and σn = αn+1/n
2, the three conditions are

satis�ed and the result is achieved.

The �nal aim of this section is to try to advance in the following question: Let U ⊂ X be a
Gδ set which is union of linear hyperplanes. Is it true that U is asymptotically separated?
In the following, we present two result which corresponds to a partial positive result in R2

and a kind of negative result in `1(N).

Let us start with the case whenever the ambient space is R2. Before starting, let us introduce
some important notation.

Notation 4.18 For each n ∈ N, let Un ⊂ R2 be a set union of linear hyperplanes such that
Un \ {0} is open. Let S be the unit sphere of R2 equipped with an euclidean norm. Assume
that (Un)n is decreasing in the sense of inclusion. Then, for n ∈ N, we denote by

1. {Un,i : 1 ≤ i ≤ mn}, an enumeration of the connected components of Un ∩ S, and by

2. {Un,i,k : 1 ≤ k ≤ mn,i}, an enumeration of the connected components of Un+1 ∩ S
contained in Un,i, for each 1 ≤ i ≤ mn.
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Now, we can state our result.

Theorem 4.19 Let (Un)n be a decreasing sequence of subsets of R2 such that, for each
n ∈ N, Un is a nonempty union of linear hyperplanes such that Un \ {0} is open. According
to Notation 4.18, assume that m1 ∈ N ∪ {∞} and that mn,i is �nite for all n ∈ N and
1 ≤ i ≤ mn. Then U =

⋂
n Un is asymptotically separated.

The hypothesis of Theorem 4.19 establishes that, for each n ∈ N and 1 ≤ i ≤ mn, Un,i
contains only �nitely many connected components of Un+1 ∩ S, i.e., Un,i ∩ (Un+1 ∩ S) is a
�nite union of arcs. On the other hand, for n ∈ N, the set Un ∩ S may have in�nitely many
connected components. Theorem 4.19 allows us to recover all previous results whenever the
ambient space is R2. Indeed, sets U ⊂ R2 union of linear hyperplanes which are closed,
or U \ {0} open, or U = {0}, or the set stated in Theorem 4.15 satisfy the hypotheses of
Theorem 4.19.

Before proving Theorem 4.19, we need some extra de�nitions. Notice that, in Notation 4.18,
the sets Un,i and Un,i,k are open arcs in S, so they can be identi�ed (and we do) as open
intervals in (R, (mod 2π)). In order to simplify notation, an open arc I = {(cos(t), sin(t)) :
a < t < b} ( S, with a, b ∈ R and a < b < a + 2π, will be denoted by I = (a, b). We write
the length of I by λ(I) = |b− a| ∈ [0, 2π]. For n ∈ N, we say that the n-(center, left, right)
contraction of I = (a, b) is the arc de�ned by:

Fn(I) =
(
(1− 2−n)a+ 2−nb, 2−na+ (1− 2−n)b

)
,

Fl,n(I) =
(
(1− 2−n)a+ 2−nb, b

)
,

Fr,n(I) =
(
a, 2−na+ (1− 2−n)b

)
,

respectively. It is clear that this de�nition does not depend on the representation of I
whenever I 6= S. Finally, for an open arc I ( S, we de�ne l(I), r(I) ∈ R as a selection such
that I = (l(I), r(I)). i.e. l(I) and r(I) are the left and right extremity of I respectively.

Proof of Theorem 4.19. In the �rst step of this proof, we construct an auxiliary sequence
(Am)m of subsets of S such that:

i) For each m ∈ N, Am is compactly contained in Um,
ii) for each m ∈ N, dist(Am, ∂Um ∩ S) > 0 and
iii) the sequence (Am)m satis�es

U ∩ S =
⋂
n∈N

⋃
m≥n

Am.

The second step of the proof starts recalling ii). Then, for each m, we consider a �nite
sequence of linear functionals such that acts nicely on Am. Finally, we show that the con-
catenation of the mentioned sequences asymptotically separates U . A similar technique was
used before in this chapter, for instance, in the proof of Proposition 4.6.

Let us mention a simple case that we treat it separately: If U = R2, we simply consider the
constant sequence equal to 0 ∈ (R2)∗ which asymptotically separates R2. Then, we assume
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that U1 ( R2.

Let U1 ∩ S =
⋃m1

i=1 U1,i, as in Notation 4.18, where m1 ∈ N ∪ {∞}. For each n ≥ 2, let
us assume that the sequence of arcs (Un,i)i is ordered in such a way that �rst we �nd the
sets contained in U1,1, followed by the ones contained in U1,2, and so on. This is possible
because there are only �nitely many connected components of Un ∩ S contained in U1,i, for
each 1 ≤ i ≤ m1. For l ∈ N, let (pl,k)k be the sequence of integers de�ned by

pl,k := max

{
i ∈ N : Ul,i ⊆

⋃
j≤k

U1,j

}
= max{i ∈ N : Ul,i ⊆ U1,k}.

First step: Construction of the set An, for n ∈ N. For A1, we just consider A1 = F1(U1,1).
Let us de�ne A2. For each k ∈ {1, ...,m1,1}, we set A1,1,k depending on the relation between
U1,1 and U1,1,k. There are four di�erent cases: If U1,1 = U1,1,k, then we set A1,1,k = F2(U1,1).
If U1,1,k is compactly contained in U1,1, then we set A1,1,k = U1,1,k. If none of the previous
cases hold, but l(U1,1) = l(U1,1,k), then we set A1,1,k = Fl,2(U1,1,k). In the last case, whenever
r(U1,1) = r(U1,1,k) but l(U1,1) 6= l(U1,1,k), we set A1,1,k = Fr,2(U1,1,k). Taking this into account,
we de�ne A2 by:

A2 =

m1,1⋃
k=1

A1,1,k ∪
m1,2⋃
k=1

F2(U1,2,k).

Observe that the �rst union is indexed over all the connected components of U2 ∩ S which
are contained in U1,1 whereas the second one is indexed over the connected components of
U2 ∩ S which are contained in U1,2. Let us now write down the general case. Let t ∈ N
with t ≥ 2. For i ∈ {1, ..., pt−1,t−1} and k ∈ {1, ...,mt−1,i}. We set At−1,i,k depending on the
relation between Ut−1,i,k and Ut−1,i, as it was done when we have de�ned A2. Then, we set

At−1,i,k =


Ut−1,i,k if Ut−1,i,k is compactly contained in Ut−1,i

Ft(Ut−1,i,k) if Ut−1,i,k = Ut−1,i,

Fl,t(Ut−1,i,k) if l(Ut−1,i,k) = l(Ut−1,i), r(Ut−1,i,k) 6= r(Ut−1,i)

Fr,t(Ut−1,i,k) if l(Ut−1,i,k) 6= l(Ut−1,i), r(Ut−1,i,k) = r(Ut−1,i).

Finally, we de�ne At by:

At :=

pt−1,t−1⋃
i=1

mt−1,i⋃
k=1

At−1,i,k ∪
pt,t⋃

i=pt,t−1+1

Ft(Ut,i).

By de�nition, At is compactly contained on Um. Moreover, since At is a �nite union of arcs,
we have that dist(Am, ∂Um ∩ S) > 0. So, i) and ii) are already satis�ed.

Let us prove iii), that is, U ∩ S =
⋂
n∈N

⋃
m≥nAm. First, for each m ∈ N, observe that each

set participating in the union de�ning Am is a subset of Um, therefore Am ⊂ Um. Since the
sequence (Un)n is decreasing for the inclusion, then Am ⊂ Un for all m ≥ n. t Therefore,
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U ⊇
⋂
n∈N

⋃
m≥nAm.

Conversely, let us �x x ∈ U ∩ S. We need to prove that x is contained in in�nitely many
sets An. Observe that for each n ∈ N, there exists only one i(n) ∈ N, with i(n) ≤ mn, such
that x ∈ Un,i(n) (i(n) obviously depends on x). Let Ux =

⋂
n Un,i(n). Since each Un,i(n) is an

interval, Ux is an interval as well. In fact, Ux is the connected component of U ∩ S which
contains x. Now, we divide our analysis in four cases. We recall that, for an interval U ⊂ R,
λ(U) denotes its length.

First case: x ∈ int(Ux). Let δ > 0 such that (x − δ, x + δ) ⊂ Ux. Let N ∈ N such that
δ > 2−nλ(Un,i(n)) for all n ≥ N . Then, for every n ≥ max{N, i(1)}, x ∈ An,i,k whenever
x ∈ Un,i,k. Thus, x ∈ An for each n ≥ 1 + max{N, i(1)}.

Second case: x ∈ ∂Ux and there exists δ > 0 such that [x, x + δ) ⊂ Ux. Since the sequence
(l(Un,i(n)))n converges to l(Ux) = x and l(Un,i(n)) 6= x for all n, we deduce that there exists an
increasing sequence (nj)j such that l(Unj ,i(nj)) 6= l(Unj−1,i(nj−1)) for all j ∈ N. Let N ∈ N such
that δ > 2−nλ(Un,i(n)) for all n ≥ N . Then, for every nj ≥ max{N, i(1) + 1}, x ∈ Anj−1,i,k

whenever x ∈ Unj−1,i,k. Thus, x ∈ Anj , for each nj ≥ max{N, i(1) + 1}.

Third case: x ∈ ∂Ux and there exists δ > 0 such that (x− δ, x] ⊂ Ux. It is analogous to the
previous case.

Last case: Ux = {x}. Let us proceed by contradiction. For each n ∈ N, let k(n) ∈
{1, ...,mn,i(n)} such that x ∈ Un,i(n),k(n) (k(n) obviously depends on x). Observe that

Un,i(n),k(n) = Un+1,i(n+1), for all n ∈ N.

Suppose that there exists N ∈ N, such that N ≥ i(1) + 1 and x /∈ An for all n ≥ N .
Then, Un+1,i(n+1) can not be compactly contained in Un,i(n) whenever n ≥ N . Otherwise,
An,i(n),k(n) = Un+1,i(n+1), and therefore x ∈ An+1. Let us �x n ≥ N . Without loss of
generality, we suppose that

l(Un,i(n)) = l(Un+1,i(n+1)), and

x ∈
(
l(Un+1,i(n+1)),

(
1− 1

2n+1

)
l(Un+1,i(n+1)) +

1

2n+1
r(Un+1,i(n+1))

]
,

i.e. x /∈ An+1. Recalling that both sequences (l(Um,i(m)))m and (r(Um,i(m)))m converge to x,
we can de�ne

M = min{m ∈ N : m ≥ n, l(Um,i(m)) 6= l(Um+1,i(m+1))}.

It follows that M ≥ n + 1. We claim that x ∈ AM+1, which would be a contradiction. By
de�nition of M , we have that AM−1,i(M−1),k(M−1) = Fl,M(UM,i(M)) and that AM,i(M),k(M) =
Fr,M+1(UM+1,i(M+1)). Since x /∈ AM , then x /∈ Fl,M(UM,i(M)) and we can deduce that:
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x /∈
[

1

2M
l(UM,i(M)) +

(
1− 1

2M

)
r(UM,i(M)), r(UM,i(M))

)
, and then

x /∈
[

1

2M+1
l(UM+1,i(M+1)) +

(
1− 1

2M+1

)
r(UM,i(M)), r(UM,i(M))

)
.

Finally, since r(UM,i(M)) = r(UM+1,i(M+1)), we conclude that

x ∈ Fr,M+1(UM+1,i(M+1)) ⊆ AM+1.

Second step: Construction of the sequence which asymptotically separates U . First,since
Ut is a symmetric set, Ut = −Ut, and At ⊂ Ut, we have that

At ∪ −At ⊂ Ut and dist(At, ∂Ut ∩ S) = dist(At ∪ −At, ∂Ut ∩ S), for all t ∈ N.

So, after rede�ning At := At ∪ −At, properties i), ii) and iii) still remain true (they were
given at the beginning of the proof).

Thanks to ii), we know that the sequence (dist(At, ∂Ut ∩ S))t is strictly positive. Let us
consider a decreasing sequence (αt)t ⊂ R, convergent to 0, such that

0 < αt ≤ dist(At, ∂Ut ∩ S), for all t ∈ N.

For each t ∈ N, let us consider Xt be a �nite αt/3t-net of At. Consider now the �nite set
Gt ⊂ (R2)∗ of all linear functionals g satisfying that ‖g‖ = 2t/αt and g(x) = 0 for some
x ∈ Xt. In particular, for each x ∈ Xt there is a linear functional g ∈ Gt such that g(x) = 0.
Let us de�ne the sequence (gn)n ⊂ (R2)∗ by the concatenation of enumerations of the sets
G1, G2 and so on. We claim that (gn)n asymptotically separates U .

Let x ∈ S. If x ∈ U , then lim infn |gn(x)| = 0. Indeed, let t ∈ N such that x ∈ At. Let
x′ ∈ Xt and g ∈ Gt such that g(x′) = 0 and ‖x− x′‖ ≤ αt/3

t. Then,

|g(x)| ≤ ‖g‖‖x− x′‖ ≤ 2t

αt

αt
3t
,

which tends to 0 as t tends to ∞. Recalling that U ∩ S =
⋂
n∈N

⋃
m≥nAm, x belongs

to in�nitely many sets At, so lim infn |gn(x)| = 0. On the other hand, if x /∈ U , then
limn |gn(x)| = ∞. Indeed, since x /∈ U , there exists N ∈ N such that x /∈ Un, for all n ≥ N .
Thus, x /∈ An for all n ≥ N (recall that An ⊂ Un). By de�nition of αt and since the sequence
(Un ∩ S)n is decreasing for the inclusion, we get that

dist(x,At) ≥ dist(At, ∂Ut−1 ∩ S) ≥ αt, ∀t ≥ N + 1.

Hence, for any g ∈ Gt, since ker(g) ∩ S ⊆ At we get:

|g(x)| = ‖g‖dist(x, ker(g)) ≥ 2t

αt

dist(x, ker(g) ∩ S)√
2

≥ 2t√
2
,

which tends to in�nity as t tends to in�nity.
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To present the last result of this section, we need the following de�nition. We say that a set
F ⊆ X, union of linear hyperplanes, is inner-asymptotically separated if it is asymptotically
separated by a sequence (gn) such that ker(gn) ⊆ F , for all n ∈ N. As a remark, all previous
examples of asymptotically separated sets which are union of linear hyperplanes are, in fact,
inner-asymptotically separated.

Theorem 4.20 There exists a closed set F ⊆ `1(N), union of linear hyperplanes, which is
not inner-asymptotically separated.

Before proving Theorem 4.20, we need the following three lemmas.

Lemma 4.21 There exists a norm-discrete, linearly independent subset of the sphere of
`∞(N) which is w∗-homeomorphic to the Cantor set K ⊆ [0, 1].

Proof. This is a straightforward corollary of [88, Theorem 1], but we are going to use an
explicit construction. Let us consider the following directed in�nite binary tree T = (V,E)
where V denotes the nodes and E the edges. Let us write

V = {(n, i) : 0 ≤ n <∞, 0 ≤ i ≤ 2n − 1},

where (0, 0) is the root of T . There is an edge from (n, i) to (m, j) if and only if m = n + 1
and j − 2i ∈ {0, 1}. Let us consider the bijection σ : V → N de�ned by σ(n, i) = 2n + i.
Let α ⊆ V be a maximal branch of T , starting from (0, 0), and let us consider the set
Aα := {n ∈ N : ∃x ∈ α, n = σ(x)}. It is clear that there exist uncountable many di�erent
maximal branches, and that if α 6= β are maximal branches, then Aα ∩ Aβ is a nonempty
�nite set. By construction, there is a straightforward identi�cation between the set {Aα :
α maximal branch} and the classical Cantor setK ⊆ [0, 1]. From now on, we write the former
set as {Aα : α ∈ K}. For each α, let us consider x∗α ∈ `∞(N) as the indicator function of
Aα. That is, if (e∗n)n is the canonical coordinate vectors of `∞(N), then x∗α corresponds to
the w∗-limit de�ned by the series

∑
n∈Aα e∗n. It is clear that the set {x∗α : α ∈ K} is a

norm-discrete subset of the sphere of `∞(N). Finally, the map i : α ∈ K 7→ x∗α ∈ `∞(N) is a
one-to-one continuous function, where `∞(N) is endowed with its w∗-topology. Since K is a
Hausdor� compact space, we deduce that i is an homeomorphism onto its image.

In the following, we use explicitly the set {x∗α}α∈K constructed in Lemma 4.21.

Lemma 4.22 The set F =
⋃
α∈K ker(x∗α) ⊂ `1(N) is norm-closed and w-dense.

Proof. Recalling that `∞(N) is the dual space of `1(N), we notice that

F =
⋃
α

ker(x∗α) ⊂ `1(N).

Let us start proving that F is norm-closed in `1(N). Consider x ∈ `1(N) such that dist(x, F ) =
0. Consider a sequence (x∗n)n ⊆ {x∗α}α∈K such that dist(x, ker(x∗n)) ≤ 1/n. Since the w∗-
topology of `∞(N) is metrizable on bounded sets, there is a subsequence of (x∗n), which we
still denote by (x∗n), w∗-convergent to x∗ ∈ {x∗α}α∈K . Since

|x∗n(x)| = ‖x∗n‖dist(x, x∗n) ≤ 1/n,
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we conclude that x∗(x) = 0, and thus, x ∈ F . This shows that F is norm-closed. On the
other hand, let x /∈ F and let U be a neighbourhood of 0 in the weak topology. We prove that
x+U intersects F . Since U is an open set for the weak topology, there exist ε > 0 and a �nite
sequence (fi)i ⊆ S`∞(N) such that

⋂
i f
−1
i (−ε, ε) ⊆ U . Then, U contains a �nite codimensional

subspace of `1(N) that we call V . Now, consider α ∈ K. If (x+ V )∩ ker(x∗α) = ∅, then V ⊆
ker(x∗α). So, assuming by contradiction that x+ V ∩ F = ∅, then V ⊆

⋂
α∈K ker(x∗α), vector

space which does not have �nite codimension since the set {x∗α}α is linearly independent.

Lemma 4.23 Let x∗ ∈ `∞(N) such that ker(x∗) ⊆ F . Then there exists β ∈ C \ {0} and
α ∈ K such that x∗ = βx∗α

Proof. Let (en)n be the canonical basis of `1(N). Observe that e1 does not belong to F , then
x∗(e1) 6= 0. Without loss of generality, we assume that x∗(e1) = 1. Let x∗(en) = xn ∈ C.
If xn 6= 0, then e1 − en/xn ∈ F , which is only possible if xn = 1. Then, the image of
the canonical basis (en)n of `1(N) by x∗ is contained in {0, 1}. Let us prove that, for each
n ∈ N, x∗(eσ(n,i)) is equal to 1 for only one i < 2n. Let n ∈ N. Suppose that for all i < 2n,
x∗(eσ(n,i)) = 0. Then

∑
i eσ(n,i) ∈ ker(x∗), which is a contradiction. Indeed,

∑
i eσ(n,i) does not

belong to the kernel of any x∗α. Suppose now that there exist two indexes i and j such that
x∗(eσ(n,i)) = x∗(eσ(n,j)) = 1. Then, the vector e1 − (eσ(n,i) + eσ(n,j))/2 belongs to the kernel of
x∗. Since ker(x∗) ⊆ F , we conclude that necessarily i = j.

Finally, let us consider a maximal branch of T , β = {(n, in) : n < N}, starting from (0, 0)
such that x∗(eσ((n,i))) = 1. If N = ∞, then we are done, because clearly β ∈ K, and then
x∗ ∈ {x∗α}α∈K . If N < ∞, let (N, j) be the node in T such that x∗(eσ((N,j))) = 1. Then,
the vector

∑
n<N eσ((n,in)) − Neσ(N,j) ∈ kerx∗ but it does not belong to F , which yields a

contradiction.

In the next proof, we use the following notation: for x∗ ∈ `∞(N), we say that its support is
the set supp(x∗) := {n ∈ N : x∗(en) 6= 0}, where (en)n is the canonical basis of `1(N).

Proof of Theorem 4.20. Let us suppose that F is inner-asymptotically separated by (gn)n ⊆
`∞(N). By Lemma 4.23, there are two sequences, x∗n ⊆ {x∗α}α∈K and (βn)n ⊆ C, such that
gn = βnx

∗
n. Since F ( `1(N), then (βn)n must tend to in�nity. Since K is uncountable, there

exists α ∈ K such that x∗α /∈ {x∗n : n ∈ N}. Let B = {k ∈ supp(x∗α) : ∃n ∈ N, k ∈ supp(x∗n)}.
We have two cases, B is �nite or B = Aα. If B is �nite, then let us consider n ∈ supp(x∗α)\B.
The vector e1− en belongs to F but |gn(e1− en)| = |βn| which inferior limit is in�nity instead
of 0. Thus, we assume that B = Aα. Let us consider an increasing sequence (Nk)k ⊆ N, such
that, for each k, |βn| ≥ 3k if n ≥ Nk. Let (nk)k ⊆ N be the sequence de�ned by induction as
follows: set n0 = 1 and, for k ≥ 1

nk = min{j ∈ supp(x∗α) : j /∈ supp(x∗n), for all n ≤ Nk, j > nk−1}.

Consider x = e1 −
∑

k≥1 2−kenk . Clearly, x ∈ ker(x∗α). However, if t ∈ [Nk, Nk+1), we have
that

|gt(x)| = |βt||x∗t (x)| ≤ |βt|

(
1−

k∑
j=1

2−j

)
≥ 3k2−k,
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expression which tends to in�nity as t tends to in�nity. Since x ∈ F , we get a contradiction.

Remark 4.24 A natural question is whether or not F is asymptotically separated. Further,
whether we can �nd such a set in any in�nite dimensional Banach space or, in separable
Banach spaces with non-separable dual. In [88] and [55] it can be found an abstract approach
of Proposition 4.21. In fact, the construction in [88, Theorem 1] is a generalization of the
set {x∗α}α∈K used in Theorem 4.20.

4.3 Construction of wild operators

In this section we deal with the construction of a wild operator in an arbitrary separable
in�nite dimensional Banach space X. We follow the ideas of [8, Section 3], but we emphasize
the role of asymptotically separated sets. The main result of this section reads as follows:

Theorem 4.25 Let X be a separable in�nite dimensional real or complex Banach space. Let
V be an complemented, in�nite codimensional subspace of X. Let F ⊆ V be an asymptotically
separated subset in V . Then there exists an operator T ∈ L(X) such that RT = P−1(F ) and
AT = P−1(F c), where P ∈ L(X) is a bounded projection onto V .

Let us start with the following three corollaries, which are consequences of the examples of
asymptotically separated sets obtained in Section 4.2.

Corollary 4.26 (Theorem 4.2) Every in�nite dimensional separable Banach space X admits
an operator T such that AT and RT form a partition of X and both have nonempty interior.
Moreover, the following two cases are possible:

1. RT is closed (and therefore AT is open), and

2. RT \ {0} is open (and therefore AT ∪ {0} is closed).

Proof. Let V = span{v1, v2} ⊆ X be a two dimensional subspace of X. The corollary follows
thanks to Theorem 4.25 and the sets:

{v ∈ V : v = av1 + bv2, |a| ≤ |b|} and {v ∈ V : v = av1 + bv2, |a| < |b| or v = 0},

which are asymptotically separated thanks to Corollary 4.10 and Proposition 4.6 respectively.

Corollary 4.27 Every in�nite dimensional separable Banach space X admits an operator T
such that AT is a nonempty and nowhere dense set.

Proof. Let V be a �nite dimensional subspace of X such that dim(V ) ≥ 2. It is enough to
apply Theorem 4.25 with any asymptotically separated set of V given by Corollary 4.7.

Corollary 4.28 Every in�nite dimensional separable Banach space X admits an operator T
such that AT and RT form a partition of X and both are dense.

76



Proof. Let V be a �nite dimensional subspace of X such that dim(V ) ≥ 2. It is enough to
apply Theorem 4.25 with any asymptotically separated set of V given by Corollary 4.16.

Remark 4.29 Notice that, in Corollary 4.28, the set UT = {x ∈ X : OrbT (x) is unbounded}
contains AT , and it is a dense Gδ of X. The set RT is also a dense Gδ, so UT ∩RT , the set
of points x ∈ X such that x is recurrent under T and OrbT (x) is unbounded is a dense Gδ

of X.

4.3.1 The complex case

From now on, let X be a separable complex Banach space and let V be a subspace of X
satisfying the hypothesis of Theorem 4.25. Let P be a bounded projection onto V . Let
W = (Id − P )(X), a topological complement of V in X. Let Q = Id − P be the bounded
projection onto W , parallel to V . The following easy proposition will help us in the forth-
coming computations.

Proposition 4.30 Let T, S, R ∈ L(X) such that T = S + R, RS = R and R2 = 0. Then
x ∈ RT if lim infn ‖Snx− x‖ ∨ ‖(I + S + ...Sn−1)Rx‖ = 0.

Proof. It is clear since T n = Sn + (I + S + ...Sn−1)R.

Let us start with the proof of Theorem 4.25. Consider a normalized bounded M-basis (en)n
on W and its associated biorthogonal system (e∗n)n ⊆ W ∗ given by Theorem 1.11. Thus,
span(en : n ∈ N) = W , ‖en‖ = 1 for all n ∈ N, supn ‖e∗n‖ = K <∞ and e∗n(em) = δn,m for all
n, m ∈ N, where δm,n stands for the Kronecker's symbol. Let us extended every e∗n to X by
0 on V .

Let F ⊆ V be a set asymptotically separated by (fn)n ⊆ V ∗. If F = V , then P−1(F ) = X and
our theorem has a trivial solution, namely, T = Id, the identity operator. Thus, we assume
that F ( V and then the sequence (‖fn‖)n must diverge to in�nity. Let (mn)n≥−1 ⊆ N be a
rapidly increasing sequence so that the following two conditions are satis�ed:

mn|mn+1 for all n ≥ N, and
∑
n≥1

mn−2

mn−1

‖fn‖ <∞, (4.4)

where m0 = m−1 = 1. Let (λn)n ⊆ C be the sequence de�ned by λn = e
iπ
mn , for all n ∈ N.

Let us formally de�ne the operators S and R on X by:

S = Id +
∞∑
n=1

(λn − 1)(e∗n ◦Q)⊗ en, R =
∞∑
n=1

1

mn−1

(fn ◦ P )⊗ en,

where x∗ ⊗ x stands for the tensor product between x∗ ∈ X∗ and x ∈ X, i.e., x∗ ⊗ x is the
1-rank operator on X de�ned by x∗ ⊗ x(y) = x∗(y)x.

Proposition 4.31 For a sequence (mn)n ⊆ N satisfying Condition (4.4), S and R are well
de�ned and bounded operators.
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Proof. For both operators, it is enough to show that their own series converges in the norm
operator topology. Considering that the estimation |eit − 1| ≤ t holds true for t ≥ 0, we can
get

∞∑
n=1

‖(λn − 1)(e∗n ◦Q)⊗ en‖ ≤
∞∑
n=1

|λn − 1|‖e∗n‖‖Q‖‖en‖

≤ K‖Q‖
∞∑
n=1

π

mn

<∞,

where the last inequality is a consequence of the second part of condition (4.4). This proves
that the series de�ning S absolutely converges. Analogously, using the second part of con-
dition (4.4) and that ‖en‖ = 1 for all n ∈ N, it can be shown that the series de�ning R is
absolutely convergent as well.

Straightforward computations give us that RS = R and R2 = 0. We claim that the bounded
operator T = S + R satis�es the statement of Theorem 4.25. For l ∈ N, let us set λn,l =∑l−1

k=0 λ
k
n. By induction, we get that:

T lx = Slx+ (I + S + ...+ Sl−1)Rx = x+
∞∑
n=1

(λln − 1)(e∗n ◦Q)(x)en +
∞∑
n=1

λn,l
mn−1

fn(Px)en.

Now we can prove the complex case of Theorem 4.25. In order to do this, we show that
RT = P−1(F ) and AT = P−1(V \ F ). Let x ∈ P−1(F ). Then

‖S2mkx− x‖ =

∥∥∥∥∥
∞∑

n=k+1

(λ2mk
n − 1)(e∗n ◦Q)⊗ en(x)

∥∥∥∥∥
≤ ‖x‖ sup

j∈N
‖ej‖‖e∗j‖‖Q‖

∞∑
n=k+1

|λ2mk
n − 1|

≤ K‖x‖‖Q‖
∞∑

n=k+1

2mkπ

mn

,

where in the �rst line we have used the �rst part of condition (4.4). i.e. λ2mk
n = 1 for all

n ≤ k. Thanks to the second part of condition (4.4), the last series converges. Therefore,
the last expression tends to 0 as k tends to in�nity. On the other hand, since Px ∈ F , let
(kl)l ⊆ N be an increasing sequence such that |fkl(Px)| → 0. Then, we compute

‖(I + S + ...+ S2mkl−1−1)Rx‖ =

∥∥∥∥∥
∞∑
n=1

λn,2mkl−1

mn−1

fn(Px)en

∥∥∥∥∥
≤
∥∥∥∥λkl,2mkl−1

mkl−1

fkl(Px)en

∥∥∥∥+
∞∑

n=kl+1

|λn,2mkl−1
|

mn−1

‖fn(Px)en‖

≤ 2|fkn(Px)|+ ‖P‖
∞∑

n=kl+1

2mkl−1

mn−1

‖fn‖,
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where in the last inequality we have used that ‖en‖ = 1 and that |λk,t| ≤ t, for any t ∈ N.
The second part of condition (4.4) implies that the last series converges. Therefore, the
previous expression tends to 0 as l tends to in�nity. By Proposition 4.30, we have proven
that P−1(F ) ⊆ RT . Finally, it only remains to prove that P−1(F c) ⊆ AT . We start with the
following fact.

Proposition 4.32 [8, Fact 3.6] For mk−1 ≤ l ≤ mk, |λk,l| ≥ 2
π
mk−1

Proof. Notice that, since λk,l is a geometric sum, we have that:

|λk,l| =

∣∣∣∣∣1− e
i lπ
mk

1− e
i π
mk

∣∣∣∣∣ =

∣∣∣∣∣sin( lπ
2mk

)

sin( π
2mk

)

∣∣∣∣∣ .
Now, since 2

π
|y| ≤ |sin(y)| ≤ |y| for all y ∈ [0, π

2
], we obtain the desired inequality.

Let x ∈ P−1(F c) and let l ∈ [mk,mk+1). Then:

K‖Q‖‖T lx‖ ≥ |(e∗k ◦Q)(Slx+ (I + S + ...+ Sl−1)Rx)|

≥ |λk,l|
mk−1

|fk(Px)| − |e∗k ◦Q(Slx)|

≥ 2

π
|fk(Px)| −K‖Q‖‖x‖.

Since |fk(Px)| tends to in�nity as k tends to in�nity, we �nally deduce that x ∈ AT . This
�nishes the proof of Theorem 4.25. �

Remark 4.33 Let X be a separable in�nite dimensional complex Banach space, V be a
complemented subspace X with in�nite codimension, F be an asymptotically separated set in
V and (fn)n its related sequence of linear functionals. Then, we can observe that the previous
proof shows that for each sequence (mn) satisfying condition (4.4), there exists a bounded
operator T on X, solution of Theorem 4.25, such that

lim inf
n→∞

‖T 2mnx− x‖ = 0, for all x ∈ RT = P−1(F ),

where P is a bounded projection onto V .

Remark 4.34 As a by-product of the above construction, it can be shown that the identity
operator on X belongs to the norm closure of W(X). Indeed, the norm of T − Id depends
on the values of the sequence (mn)n as it can be computed:

‖T − Id‖ ≤

∥∥∥∥∥
∞∑
n=1

(λn − 1)(e∗n ◦Q)⊗ en +
∞∑
n=1

1

mn−1

(fn ◦ P )⊗ en

∥∥∥∥∥
≤ K‖Q‖

∞∑
n=1

|λn − 1|+ ‖P‖
∞∑
n=1

‖fn‖
mn−1

.

This fact is going to be useful in Section 4.6, which is dedicated to study the norm closure of
W(X).
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4.3.2 The real case

In this subsection we sketch the construction of an operator on a real Banach space which
solves Theorem 4.25 as it was done in [8] to construct a wild operator.

In the context of Theorem 4.25 for real spaces, let us consider the following objects: Let
P ∈ L(X) be a projection onto V and let Q = Id − P . Let W := Q(X) which is a
topological complement of V in X. Notice that W is an in�nite dimensional closed subspace
of X. Let (en)n ⊂ X be a normalized bounded M -basis of W and let (e∗n)n ⊂ W ∗ be the
associated biorthogonal system given by Theorem 1.11. Let K := supn ‖en‖. Let (fn)n ⊂ V ∗

be a sequence which asymptotically separates F 6= V . Then, limn→∞ ‖fn‖ = ∞. Let
(mn)n≥−1 ⊂ N be an increasing sequence such that m−1 = m0 = 1,

mn|mn+1, for all n ∈ N, and
∞∑
n=1

mn−2

mn−1

‖fn‖ <∞. (4.5)

Let (θk)k ⊂ R be the sequence de�ned by θk = π
mk

, for all k ∈ N.

Proposition 4.35 The linear maps S,R : X → X de�ned by

S :=Id +
∞∑
k=1

(cos(θk)− 1)(e∗2k ◦Q)⊗ e2k + sin(θk)(e
∗
2k−1 ◦Q)⊗ e2k

+
∞∑
k=1

(cos(θk)− 1)(e∗2k−1 ◦Q)⊗ e2k−1 − sin(θk)(e
∗
2k ◦Q)⊗ e2k−1,

R :=
∞∑
k=1

1

mk−1

(fk ◦ P )⊗ e2k,

are well de�ned and continuous.

Proof. The proposition directly follows from the fact that the series involved in the de�nition
of S and R converge in the norm topology of bounded operators. Indeed, for S it is enough
to notice that

|sin(x)| ≤ |x| and | cos(x)− 1| ≤ x2, for all x ∈ R,

and that (θk)k decreases fast to 0 due to condition (4.5). On the other hand, the continuity
of R follows directly from condition (4.5).

Observe that, for any k ∈ N, the operator S restricted to span(e2k−1, e2k) is a rotation of
angle θk.

In order to sketch the proof of Theorem 4.25, we continue with some properties of the operator
T := S +R. To see this, observe �rst that R2 = 0 and RS = R. Thus,

T n = Sn + (Id + S + ...+ Sn−1)R. (4.6)
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Proposition 4.36 Let (mk)k ⊂ N be a sequence satisfying condition (4.5). Let S ∈ L(X)
constructed by Proposition 4.35 and let n ∈ N. Then

Sn =Id +
∞∑
k=1

(cos(nθk)− 1)(e∗2k ◦Q)⊗ e2k + sin(nθk)(e
∗
2k−1 ◦Q)⊗ e2k

+
∞∑
k=1

(cos(nθk)− 1)(e∗2k−1 ◦Q)⊗ e2k−1 − sin(nθk)(e
∗
2k ◦Q)⊗ e2k−1.

Moreover, limj→∞ S
2mjx = x for all x ∈ X.

Proof. The formula for Sn follows by direct computation. Let us check the second part of
the proposition. Let x ∈ X and j ∈ N. Then

S2mjx− x =
∞∑
k=1

(cos(2mjθk)− 1)e∗2k(Q(x))e2k + sin(2mjθk)e
∗
2k−1(Q(x))e2k

+
∞∑
k=1

(cos(2mjθk)− 1)e∗2k−1(Q(x))e2k−1 − sin(2mjθk)e
∗
2k(Q(x))e2k−1.

Thus, since θk = π
mk

for all k, we have that

‖S2mjx− x‖ ≤
∞∑

k=j+1

| cos(2mjθk)− 1|‖e∗2k‖‖Q‖‖x‖+ | sin(2mjθk)|‖e∗2k−1‖‖Q‖‖x‖

+
∞∑

k=j+1

| cos(2mjθk)− 1|‖e∗2k−1‖‖Q‖‖x‖+ | sin(2mjθk)|‖e∗2k‖‖Q‖‖x‖.

≤
∞∑

k=j+1

2K‖Q‖‖x‖

((
2mjπ

mk

)2

+
2mjπ

mk

)

where the last expression tends to 0 as k tends to ∞ due to condition (4.5).

Thanks to Proposition 4.36, for l ≥ 0, we have that

SlR :=
∞∑
k=1

1

mk−1

(fk ◦ P )⊗ (cos(lθk)e2k − sin(lθk)e2k−1),

we obtain (
n−1∑
l=0

Sl

)
R =

∞∑
k=1

1

mk−1

(fk ◦ P )⊗ (µk,ne2k − ηk,ne2k−1),

where µk,t =
∑t−1

l=0 cos(lθk) and ηk,t =
∑t−1

l=0 sin(lθk) for all k, t ∈ N.

In the following proposition we summarize some simple but useful estimations.
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Proposition 4.37 Let k, t ∈ N and let xk,t := µk,te2k − ηk,te2k−1. Then:

i) xk,t = 0 for all t multiple of 2mk.

ii) 1
K

max(|µk,t|, |ηk,t|) ≤ ‖xk,t‖ ≤ 2t.

iii) ‖xk,t‖ ≥ 2√
2πC

mk−1, for all t ∈ [mk−1,mk].

Proof. Statement i) follows directly from the periodicity of the functions cos and sin. State-
ment ii) follows from the evaluation of xk,t in e∗2k−1 and e∗2k. Statement iii) is a consequence
of Proposition 4.32 and the estimation

max(|µk,t|, |ηk,t|) ≥
1√
2

∣∣∣∣∣
t∑
l=0

exp

(
iπ

mk

l

)∣∣∣∣∣
Finally, thanks to condition (4.5), equality (4.6), Proposition 4.36 and Proposition 4.37, we
can proceed as in the complex case to prove that

RT = P−1(F ) and AT = P−1(V \ F ),

which �nishes the sketch of the proof of the real part of Theorem 4.25.

4.4 Properties of wild operators

In this section, we investigate geometric aspects of the recurrent set RT of a bounded operator
T de�ned on a Banach space. This will be applied to the study of the recurrent points of
wild operators.

Proposition 4.38 Let X be a Banach space, let T be a bounded operator on X, let x ∈ X
and ε > 0. Suppose that for every x1, x2 ∈ B(x, ε) there exists a strictly increasing sequence
(kn)n ⊆ N such that T knxi → xi for i = 1, 2. Then RT = X.

Proof. Since −RT ⊆ RT , we deduce that B(−x, ε) ⊆ RT . Let x1 ∈ B(x, ε), x2 ∈ B(−x, ε)
and an increasing sequence (kn)n ⊂ N such that T knxi → xi for i = 1, 2. Then:

lim
n
T kn(x1 + x2) = x1 + x2.

Since B(0, ε) ⊆ B(x, ε) +B(−x, ε), we deduce that B(0, ε) ⊆ RT . Therefore, RT = X.

Remark 4.39 Analogous to the preceding proof, if for x1, x2 ∈ RT there exists such a
sequence (kn)n ⊆ N, then we can prove that span(x1, x2) ⊆ RT . Due this simple fact, we are
able to prove a certain non-stability on the class of wild operators. See Theorem 4.42.

Corollary 4.40 Let T be a bounded operator on X such that RT 6= X and int(RT ) 6= ∅.
Then there exists an uncountable set C ⊆ RT such that:

lim inf
n→∞

max{‖T nx− x‖, ‖T ny − y‖} > 0, for all x, y ∈ C, x 6= y.
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Proof. Since RT 6= X and int(RT ) 6= ∅, by Proposition 4.38 we know that there exist two
distinct vectors x, y ∈ int(RT ) such that any increasing sequence (kn) ⊆ N does not satisfy
both limits T knx→ x and T kny → y simultaneously. In other words:

lim inf
n→∞

max{‖T nx− x‖, ‖T ny − y‖} > 0. (4.7)

Since x ∈ int(RT ), there exists ε > 0 such that, for every λ ∈ C with |λ| < ε, we have
x+ λy ∈ RT . We claim that the set C := {x+ λy : |λ| < ε} proves Corollary 4.40.

Let λ1, λ2 ∈ C such that λ1 6= λ2 and |λi| < ε for i = 1, 2. Suppose that the inferior
limit (4.7) is equal to 0 for x + λiy for i = 1, 2. Then, there exists a strictly increasing
sequence (kn)n ⊆ N such that:

limT kn(x+ λiy) = x+ λiy, for i = 1, 2.

This implies that limT kny = y by subtracting both expressions (i = 1 and i = 2), but it also
implies that limT knx = x, which is a contradiction.

The following de�nition will be used only in the next result, Proposition 4.41. We say that
a wild operator has standard form if it can be written as T = S +R, where R2 = 0, RS = R
and the sequence (‖Sn‖)n is bounded.

In order to present an example in the complex case, let us recall from Subsection 4.3.1 the
complementary subspaces V and W of X, the respective bounded projections P and Q, the
sequence (λn)n ⊂ C and the bounded M -basis (en)n ⊂ W . Let us check that, the operator
T := S +R ∈ L(X) (a wild operator whenever F and V \ F have nonempty interior relative
to V ) constructed in Subsection 4.3.1, the complex case, has standard form whenever (en)n is
a c-unconditional basis of W . Indeed, we only need to show that (‖Sk‖)k is bounded. Notice
that, for any x ∈ X and k ∈ N, the following estimation holds:

‖Skx‖ =

∥∥∥∥∥x+
∞∑
n=1

(λkn − 1)(e∗n ◦Q(x))en

∥∥∥∥∥ ≤ ‖x−Q(x)‖+

∥∥∥∥∥
∞∑
n=1

λkn(e∗n ◦Q(x))en

∥∥∥∥∥
≤ ‖Px‖+ c‖Qx‖ ≤ ‖x‖(‖P‖+ c‖Q‖).

Thus, the sequence (‖Sk‖)k is bounded.

Proposition 4.41 Let T = S + R be a wild operator having standard form on X. Let us
assume that ker(R) is a complemented subspace of X. Then, for any V closed subspace X,
topological complement of ker(R), we have that AT = P−1(V ∩AT ) and RT = P−1(V ∩RT ),
where P ∈ L(X) is the projection onto V , parallel to ker(R).

Proof. Notice �rst that T n = Sn+(Sn−1+Sn−2+...+I)R. Let V be a topological complement
of ker(R) on X and let P : X → X be the projection onto V parallel to ker(R). Since the
operators {Sn : n ∈ N} are uniformly bounded, then ‖T nx‖ goes to in�nity if and only if
‖(Sn−1 + Sn−2 + ...+ I)Rx‖ goes to in�nity. Also, since R = RP , we can deduce that:

x ∈ AT if and only if Px ∈ AT ,
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obtaining the characterization for AT . Since AT and RT form a partition of X, this concludes
the proof.

For a Banach space X and k ∈ N, we write the product space containing k-tuples of elements
of X by X =

⊕k
i=1X. We may endow this space with any product norm and we do it with

the norm of the maximum, i.e.

‖x‖ = max{‖xi‖, i = 1, ..., k}, for any x ∈ X,
where x = (x1, x2, ...., xk). Further, for an operator T : X → X and k ∈ N, we de�ne the
operator T =

⊕k
i=1 T : X→ X by T(x) = (Tx1, Tx2, ..., Txk) where x = (x1, x2, ...., xk).

Theorem 4.42 Let X be a separable in�nite dimensional Banach space. There exists T ∈
W(X) such that T := T ⊕ T is not a wild operator on X := X ⊕X.

Proof. Let V be a two dimensional subspace of X and let F be an asymptotically separated
set in V such that F and V \ F have nonempty interior relative to V . Let T : X → X be
the operator constructed in Section 4.3, complex case, using V and F as the complemented
subspace and the asymptotically separated set respectively. Reasoning by contradiction, let
us assume that T is a wild operator on X. Since RT has nonempty interior in X, there exist
ε > 0 and x1, x2 ∈ X such that B(x1, ε)× B(x2, ε) ⊆ RT. Consider the bounded projection
P ∈ L(X) onto V with which T is constructed. Then, RT = P−1(F ) and AT = P−1(V \ F ).
We prove that RT ∩ V = V , which is a contradiction since AT 6= ∅. By the Open Mapping
theorem, we can choose yi ∈ B(xi, ε) for each i = 1, 2, such that the set {Pyi : i = 1, 2} is
linearly independent. Notice now that, since y = (y1, y2) ∈ RT, we have that:

lim inf
n→∞

‖Tny− y‖ = 0 =⇒ lim inf
n→∞

max{‖T nyi − yi‖ : i = 1, 2} = 0.

Therefore, there exists an increasing sequence (kn) ⊆ N such that (T njyi)j tends to yi as j
tends to in�nity, for i = 1, 2. Thus, for each (λ1, λ2) ∈ Ck we have that

lim
j→∞

T nj
2∑

i=1

λiyi =
2∑

i=1

λiyi.

However, P (
∑2

i=1 λiyi) =
∑2

i=1 λiPyi ∈ RT ∩ V for any (λ1, λ2) ∈ C2. Followed by the linear
independence of {Py1, Py2}, we get that RT ∩ V = V . Thus, F = V and therefore RT = X,
which is a contradiction.

Remark 4.43 Let T ∈ L(X) be the operator used in the proof of Proposition 4.42. Notice
that a similar argument (given in the proof of Proposition 4.42) we can show that, for any
d ≥ 2, the operator

⊕d
i=1 T is not a wild operator on

⊕d
i=1 X.

The us continue with the last result of this section.

Proposition 4.44 Let X be an in�nite dimensional Banach space. Let T be a bounded
operator on X and let k ∈ N. If T :=

⊕k
i=1 T belongs to W(

⊕k
i=1X), then int(RT ) ∪ {0}

contains a subspace of dimension d.
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Proof. Let us write X :=
⊕k

i=1 X. If T ∈ W(X), then RT has nonempty interior in X.
Therefore, there exist ε > 0 and (xi)

k
i=1 ⊂ X such that

Πd
i=1B(xi, ε) ⊂ RT.

Shrinking ε if necessary, we assume that {xi : i = 1, ..., k} is a linearly independent set. Let
Y = span(xi : i = 1, ..., k). We claim that Y ⊂ int(R) ∪ {0}. Indeed, let y ∈ Y \ {0} and let
(λi)i ⊂ K such that y =

∑k
i=1 λixi. Let us assume that λ1 6= 0. As we did in the proof of

Proposition 4.42, for all x ∈ B(x1, ε) there exists an increasing sequence (nj)j ⊂ N such that

lim
j→∞

max{‖T njx− x‖, ‖T njxi − xi‖ : i = 2, ..., k} = 0

Thus, thanks to the triangle inequality we obtain that

lim
j→∞
‖T nj(λ1x+

k∑
i=2

λkxk)− λ1x+
k∑

i=2

λkxk‖ = 0.

Finally, since x is an arbitrary vector of B(x1, ε), we get that

B(0, λ1ε) + y = λ1B(x1, ε) +
k∑

i=2

λkxk ⊂ RT ,

which shows that y ∈ int(RT ).

4.5 Spectral properties of wild operators

This section is devoted to give some remarks about spectral properties of wild operators on
complex Banach spaces. To the best of our knowledge, in the literature there is only the con-
struction of invertible wild operators. Also, it is known that the spectrum of a wild operator
must remain included in the unit disk. For the sake of completeness we present this result in
Proposition 4.50. Along to this and to the next section, we use the concepts of unconditional
and symmetric basis. For a precise de�nition of these bases, we refer to [1] and Chapter 1,
Section 1.2.

We proceed with the construction of a non-invertible wild operator and then, we show the
existence of a wild operator whose spectrum coincide exactly with the closed unit disk.

Theorem 4.45 Any in�nite dimensional Banach spaces having a symmetric basis admits a
non-invertible wild operator.

Before proceeding with the proof of the theorem, we need the following de�nition that can
be found in [46, Chapter 4] and [38].

De�nition 4.46 Let X be a Banach space and let T be a bounded operator on X. We say
that T is a rigid operator if there exists an increasing sequence (nk) ⊆ N such that

lim
k
T nkx = x, ∀x ∈ X.
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Proposition 4.47 Let X be an in�nite dimensional (real or complex) Banach space having
a symmetric basis and let (mn)n ⊂ N be an increasing sequence such that nmn|mn+1. Then
there is a non-invertible rigid operator S on X such that for each x ∈ X, limn S

2mnx = x.

Proof. Let (en)n be a normalized b-symmetric basis of X. Let us rewrite the basis as
(en,k)

∞
n=1

2mn
k=1 . For each n ∈ N, consider the operator An on span({en,k : k = 1, ..., 2mn}),

de�ned by:

Anen,1 :=
1

n
en,2, Anen,i := αnen,i+1 ∀i = 2, ..., 2mn − 1, Anen,2mn := αne1, (4.8)

where α2mn−1
n = n. By the growth condition on (mn)n, it can be deduced that 2 > αn ≥ αn+1

for all n ≥ 2, and that the sequence (α2mn
n+1 )n is bounded by some strictly positive constant

C > 1 independent of n. We de�ne the operator S on span({en,k : n, k}) by Sen,k = Anen,k.
Since the sequence (αn)n is bounded and (en)n is a symmetric basis, the operator S is bounded
and can be continuously extended to X, extension which we still denote by S. By the
Open mapping Theorem, the operator S can not be invertible. Indeed, we can notice that
‖Sen,1‖ = 1/n, but ‖en,1‖ = 1. Let us check now that S is a rigid operator. Let x ∈ X be a
vector di�erent from 0. Since (en)n is a Schauder basis, then x =

∑
n

∑
k xn,ken,k. Recalling

that A2mn
n is the identity operator on span({en,k : k}) and that mn|mn+1, we compute

‖S2mjx− x‖ = ‖
∞∑
n=1

2mn∑
k=1

xn,kA
2mjen,k −

∞∑
n=1

2mn∑
k=1

xn,ken,k‖

= ‖
∞∑

n=j+1

2mn∑
k=1

xn,kA
2mjen,k −

∞∑
n=j+1

2mn∑
k=1

xn,ken,k‖

≤ (bC + 1)‖
∞∑

n=j+1

2mn∑
k=1

xn,ken,k‖,

which tends to 0 as j tends to in�nity.

Observe that Proposition 4.47 can be extend to Banach spaces containing an in�nite dimen-
sional complemented subspace with symmetric basis. Indeed, if Y is the subspace containing
a symmetric basis, it is enough to extended the operator de�ned in Proposition 4.47 by the
identity in any subspace which is a topological complement of Y . Now, we can proceed with
the proof of Theorem 4.45.

Proof of Theorem 4.45. LetX be an in�nite dimensional Banach space with symmetric basis
(en)n. Let us de�ne Y1 = span({e2n−1 : n ∈ N}) and Y2 = span({e2n : n ∈ N}). Since (en)n
is a symmetric basis, the natural associated projections onto Y1 and Y2 are continuous. Let
T ∈ W(Y1) be an operator constructed as in Section 4.3 associated to the a sequence (mn)n
that satis�es both growth conditions, condition (4.4) and nmn|mn+1 for all n ∈ N. Let
S ∈ L(Y2) be an operator given by Proposition 4.47 related to the same sequence (mn)n.
Thus, we de�ne U ∈ L(X) by U(x) = T (y1) +S(y2), where yi is the projection of x on Yi, for
i = 1, 2. We prove that U is a non-invertible wild operator on X. Indeed, let y1 ∈ RT ⊆ Y1.
By Remark 4.33, we know that lim inf ‖T 2mny1 − y1‖ = 0. Then, since (S2mny2)n converges
to y2 for each y2 ∈ Y2, we deduce that RT + Y2 ⊆ RU . On the other hand, a straightforward
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computation shows that AT + Y2 ⊆ AU , showing that U is a wild operator. Finally, since Y1

and Y2 are complementary subspaces of X, both spaces are U -invariant and the restriction
U |Y2 = S ∈ L(Y2) is not invertible, we get that the operator U is not invertible either.

Remark 4.48 In fact, Theorem 4.45 holds true in any in�nite dimensional Banach space
with an in�nite dimensional complemented subspace with symmetric basis.

Theorem 4.45 asserts that 0 can be part of the spectrum of a wild operator T . In fact, 0
is in the continuous spectrum of T . Moreover, it is easy to check that its point spectrum,
σp(T ), must be a subset of T. In [8] and [38], it is proved that each wild and rigid operators
have spectral radius equals to 1 respectively. For the sake of completeness, we shall show
how this is a consequence of the spectral radius formula and the following result of Müller
and Vr²ovsk�y:

Proposition 4.49 [73, Theorem 3] Let X be a real or complex Banach space. Let T be an
operator on X. If

∞∑
k=1

1

‖T k‖
<∞,

then AT is dense in X.

Lemma 4.50 [8, Before of Proposition 4.1][38, Proposition 2.20] Let X be a complex Banach
space and let T be a bounded operator such that RT has nonempty interior. Then r(T ) = 1.
Particularly, wild operators and rigid operators have spectral radius equal to 1.

Proof. Let r = r(T ). If r < 1 − ε < 1, there exists an N ∈ N such that for all n ≥ N ,
‖T n‖ ≤ (1 − ε)n, which tends to 0. Then, for every point x ∈ X, its orbit under T would
tend to 0, which is a contradiction since RT 6= {0}.

If r > 1 + ε > 1, there exists an N ∈ N such that for all n ≥ N , ‖T n‖ ≥ (1 + ε)n. Then,
using Proposition 4.49 we get a contradiction since the set of recurrent point RT would have
empty interior.

Then, for all T ∈ W(X) we have that σ(T ) ⊆ D, and σ(T ) ∩ T 6= ∅. But invoking Riesz
decomposition theorem we can get the following result, which has been stated in [38] for rigid
operators.

Proposition 4.51 Let X be a complex Banach space X and let T be a bounded operator
such that RT has nonempty interior. Then each connected component of σ(T ) intersects the
unit circle T.

Proof. Let C be a connected component of σ(T ). Suppose that C 6= σ(T ), then there exist
two disjoint open sets U1 and U2 such that Ui ∩ σ(T ) 6= ∅ for i = 1, 2, σ(T ) ⊂ U1 ∪ U2 and
C ⊆ U1. By Riesz decomposition theorem, there exist two T -invariant subspaces X1 and X2

of X such that X = X1 ⊕X2, and the restrictions satisfy σ(T |Xi
) = Ui ∩ σ(T ), for i = 1, 2.

Since r(T ) = 1, we have that r(T |X1) ≤ 1. If r(T |X1) is strictly less than 1, as in the �rst
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case of Lemma 4.50, we can deduce that the set of recurrent point of T must be contained
in X2. Therefore, RT would have empty interior. Finally, a standard argument �nishes the
proof.

Remark 4.52 Proposition 4.51 is a spectral property that the operators in FP (X) do not
enjoy necessarily, unlike of Lemma 4.50 which remains true for them. In fact, the spectrum
of the operator T constructed in Remark 4.3 is σ(T ) := {exp(iπ/mn) : n ∈ N} ∪ {0, 1},
whenever the wild part is constructed as in Section 4.3, associated to the sequence (mn)n.
For details on the computation of σ(T ), see [8].

Remark 4.53 Proposition 4.51 shows that if T is a non-invertible wild operator or non-
invertible rigid operator, then for all r ∈ [0, 1], there exists λ ∈ C, |λ| = r, such that
λ ∈ σ(T ).

Corollary 4.54 Any in�nite dimensional complex Banach space having a symmetric ba-
sis admits a non-invertible wild operator whose spectrum is exactly D. This result remains
true for in�nite dimensional Banach spaces which contain a complemented subspace having
symmetric basis.

Proof. Let X be an in�nite dimensional Banach space having a symmetric basis. Let X1

and X2 be two in�nite dimensional complementary subspaces of X, both having symmetric
basis. Let V be a �nite dimensional subspace of X1 and F be an asymptotically separated
set in V such that F and V \ F have nonempty interior. Let (fn)n ∈ V ∗ be a sequence of
linear functional that asymptotically separates F . Let us consider an increasing sequence of
integers (mn)n that satis�es both condition (4.4) and n!mn|mn+1 for all n ∈ N. Let (en)n be
a symmetric basis in X2. Let us consider a countable partition of N, {Ni : i}, such that each
Ni is an in�nite set. For i ∈ N, let us de�ne the subspaces

X2,i = span(en : n ∈ Ni) and Y2,i = span(en : j ∈ N \ {i}, n ∈ Nj).

Observe that, for each i ∈ N, X2,i and Y2,i are complementary subspaces of X2. Let (n(i, k))k
be the increasing enumeration of Ni. Let Si be a bounded operator on X2,i constructed as
in Proposition 4.47 using the sequence (mn(i,k))k. Observe that, since n!mn|mn+1,it follows
that kmn(i,k)|mn(i,k+1) for all i, k ∈ N. Moreover, all the coe�cients used to construct Si are
uniformly bounded by a constant independent of i. Let (qj)j be an enumeration of the set
{a + bi ∈ D : a, b ∈ Q}. Let us �x j ∈ N. By Remark 4.53, we know that there exists
λ ∈ σ(Sj) such that |λ| = |qj|. Let ρj be a j-root of unity such that dist(qj, ρjσ(Sj)) ≤ 2π/j.
Now, we can de�ne the bounded operator S on X2 by the formula

Sen = ρjSjen, for all n ∈ Nj.

Since (en)n is a symmetric basis in X2, we can deduce that S is a bounded, rigid operator.
Moreover, its associated sequence can be chosen as (2mn)n. Also, for each i, observe that
X2,i and Y2,i are invariant subspaces for S. Let us now consider T ∈ W(X1) be an operator
constructed as in Section 4.3 associated to the sequence (mn)n. Analogous to the proof of
Theorem 4.45, we de�ne the bounded operator U on X by the formula U(x) = Tx1 + Sx2,
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where xi is the projection of x onto Xi, for i = 1, 2. As in Theorem 4.45, we conclude that
U is a wild operator. Indeed, AU = AT +X2 and RU = RT +X2. Observe now that, for each
i, X2,i and Y2,i + X1 are complementary subspaces on X and both spaces are U -invariant.
Hence, noticing that ρiSi ∈ L(X2,i) is the restriction of U to the subspaces X2,i, we get that
σ(U) ⊇ σ(ρiSi), for all i. Therefore, σ(U) ⊇

⋃
i σ(ρiSi) ⊇ D. Finally, Lemma 4.50 �nishes

the proof.

Remark 4.55 Let X be an in�nite dimensional separable complex Banach space with sym-
metric basis. In the proof of Corollary 4.54 we show that X admits a bounded rigid operator
S such that σ(S) = D.

4.6 Approximation result

In [8], it is shown that the set W(X) is dense in L(X) for the strong operator topology
and that Id is a cluster point of W(X) for the norm topology, see Remark 4.34. In [9,
Proposition 4.4.1], we can �nd that any diagonal operator on a Banach space X having a
symmetric basis can be approximated in norm by operators in RP (X). We improve this
result by showing that they can be approximated by wild operators. Moreover, thanks to
the Weyl-von Neumann-Berg Theorem ([19] or [36, Theorem 39.4]), we can say more about
the closure of W(X) whenever X is a separable in�nite dimensional Hilbert space.

Theorem 4.56 Let X be a separable in�nite dimensional complex Banach space having a
normalized unconditional basis (en)n. Then, the set of unitary diagonal operators with respect
to (en)n is contained in the norm closure of W(X), i.e. bounded linear operators D such that
Den ∈ Ten for all n ∈ N. Moreover, if X is a separable in�nite dimensional complex Hilbert
space, each unitary operator belongs to the norm closure of W(X).

Before proving Theorem 4.56 we need the following proposition.

Proposition 4.57 Let X be an in�nite dimensional complex Banach space with a normalized
unconditional basis (en)n. Let D be a unitary diagonal operator, with respect to (en)n, on X
having only �nitely many eigenvalues. Then D belongs to the norm closure of W(X).

Proof. Let {αi}Ni=1 ⊂ T be the set of eigenvalues of D. Let us assume that each αi is a root
of unity. Let us call X i := ker(D − αiId). Since X is in�nite dimensional and X = ⊕Ni=1X

i,
we can assume that X1 is in�nite dimensional. To �x notation, for x ∈ X, we denote by xi

the canonical projection of x onto X i. Recall that these projections are bounded since the
basis (en)n is unconditional. Let T1 be a wild operator on X1, constructed as in section 4.3.
Let (mn)n be the sequence of positive integers with which T1 is constructed. We impose that
αm1

i = 1, for all i ≤ N . Consider the bounded operator T de�ned by Tx1 = α1T1x
1 and

Txi = Dxi = αix
i for each i greater than 1. We can notice that:
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AT = {x ∈ X : lim
n→∞

‖T nx‖ =∞} = {x ∈ X : lim
n→∞

‖T nx1‖ =∞}

= {x ∈ X : lim
n→∞

|αn1 |‖T n1 x1‖ =∞} = AT1 +
N⊕

i=2

X i.

and also that:

RT = {x ∈ X : lim inf
n→∞

‖T nx− x‖ = 0}

⊇ {x ∈ X : lim inf
n→∞

max{‖T 2mnxi − xi‖ : i = 1, ..., N} = 0}

⊇ {x ∈ X : lim inf
n→∞

‖T 2mn
1 x1 − x1‖ = 0} = RT1 +

N⊕
i=2

X i,

and then T belongs to W(X). Bearing in mind Remark 4.34, for any ε > 0, there exists
T1 ∈ W(X1) such that ‖U |X1 − T1‖ ≤ ε. Finally, since (en)n is an unconditional basis of X,
we can deduce that ‖U − T‖L(X) ≤ C‖U |X1 − T 1‖L(X1), for some positive constant C > 0
depending only on the unconditional constant of (en)n, achieving the result whenever the
set of eigenvalues are roots of unity. A standard argument �nishes the proof for the general
case.

Proof of Theorem 4.56. Let D be an unitary diagonal operator on X with respect to the
unconditional basis (en)n. For each n ∈ N, let αn ∈ T be the complex number such that
Den = αnen. For k ∈ N, let Dk be the bounded diagonal operator on X de�ned by Dken =
αk,nen, where:

αkn,k = 1, arg(αn)− arg(αn,k) ∈ [0, 2π/k), ∀n ∈ N.

Since (en) is an unconditional basis, we have that Dk is a bounded operator. Moreover, since
k-roots of unity are �nite, by Proposition 4.57, Dk belongs to W(X). Finally, if (en)n is a
b-unconditional basis, we can easily get that ‖D −Dk‖ ≤ 2bπ/k, achieving the �rst part of
the theorem.

For the second part, let U ∈ B(X) be an unitary operator, where X is a separable Hilbert
space. Let ε > 0. Since U is a normal operator, invoking Weyl-von Neumann-Berg Theorem,
there exist a diagonalizable operator D, a compact operator K such that N = D + K
and ‖K‖ ≤ ε. Let (en)n be the orthonormal sequence associated to D. Notice that D =∑∞

i=1 αnen ⊗ en for some sequence (αn) ⊆ C. Since ‖Uen‖ = 1 for all n ∈ N, we get:

|αn|2 = 〈Den, Den〉
= ‖Nen‖2 − 2Re(〈Nen, Ken〉) + ‖Ken‖2

≥ 1− 2‖K‖ ≥ 1− 2ε.

On the other hand, |αn| ≤ ‖D‖ ≤ ‖N‖+‖K‖ ≤ 1+ε. Let us de�ne the diagonal operator D̂
by D̂en = α̂nen, where α̂n = αn

|αn| . Notice that ‖D−D̂‖ ≤ 1−
√

1− 2ε, when ε < 1/2. Finally,
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since every unitary diagonal operator belongs to the norm closure ofW(X), we conclude that
U can be approximated by wild operators on X as well.

Remark 4.58 We can notice that the �rst part of Theorem 4.56 is analogous to the following
result: the set of complex bounded sequences x := (xn)n such that card({xi : i ∈ N}) is �nite,
is dense in the space of bounded sequences `∞.

91



Chapter 5

Desingularization of smooth sweeping

processes

Chapter 5 and 6 form the second part of this thesis. From now on, we explore di�erent
issues on �nite dimensional spaces. In the present chapter, we generalize the K�-inequality
for real-analytic or semi-algebraic functions to multivalued map. This new inequality is
a desingularization for the coderivative, which is an abstract notion of di�erentiability for
multivalued maps, see De�nition 5.3. Moreover, we provide several characterizations for
multivalued maps which satisfy the mentioned inequality involving, for instance, length of
the curves solutions of the related sweeping process, see De�nition 5.2.

5.1 Kurdyka-�ojasiewicz inequality

It is well-known that every C1 smooth function f : Rn → R which is de�nable in some o-
minimal structure has �nitely many critical values. Kurdyka [68] showed that if r̄ ∈ f(Rn)
is a critical value and U is a nonempty open bounded subset of Rn, then there exist ρ > 0
and a C1-smooth function ψ : [r̄, r̄ + ρ]→ [0,+∞) satisfying

‖∇(ψ ◦ f)(x)‖ ≥ 1, for all x ∈ U such that f(x) ∈ (r̄, r̄ + ρ). (5.1)

The above inequality generalizes to o-minimal functions the �ojasiewicz gradient inequality
(established in [70] for the class of C1 subanalytic functions) and is nowadays known as
the Kurdyka-�ojasiewicz inequality (in short, K�-inequality). For de�nitions and properties
of o-minimal functions the reader is referred to [94]. Both the �ojasiewicz and the K�-
inequality have been further extended to nonsmooth (subanalytic and respectively o-minimal)
functions, see [24, 25]. These inequalities allow to control uniformly the lengths of the
bounded (sub)gradient orbits, see [71, 68, 24] .

One of the main features of Kurdyka's work [68] was to consider the so-called talweg function

m(r) = inf
x∈U
{||∇f(x)|| : f(x) = r}, r ∈ (r̄, r̄ + ρ), (5.2)

which captures the worst behaviour (closer to criticality) of the gradient at the level set
[f = r]. Kurdyka used the above function to de�ned the talweg set V(r) consisting of points
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x ∈ f−1(r) with ||∇f(x)|| ≤ 2m(r). He then made use of a de�nable version of the curve
selection lemma to obtain a smooth curve r 7→ θ(r) ∈ V(r) which is directly linked to
the desingularizing function ψ. A straightforward consequence of (5.1) is that the length
of every bounded gradient curve γ̇ = −∇f(γ) contained in f−1((r̄, r̄ + ρ)) is majorized by
ψ(r̄+ρ)−ψ(0) (and therefore it is bounded). The same is true for the lengths of the piecewise
gradient curves, that is, curves obtained by concatenating countably many gradient curves
{γi}i≥1, where γi ⊂ f−1([ri+1, ri)) and (ri)i is a strictly decreasing sequence in (r̄, r̄ + ρ)
converging to r̄. These curves have countably many discontinuities.

Outside the framework of o-minimality the K�-inequality (5.1) may fail even for C2-smooth
functions [26, Section 4.3] or for C∞-smooth function with a unique critical value [76, p.
12]. Bolte, Daniilidis, Ley and Mazet in [26] considered the problem of characterizing the
existence of a desingularization function ψ and the validity of (5.1) for an upper isolated
critical value r̄ of a semiconvex coercive function f de�ned in a Hilbert space. (A function
f is called coercive, if it has bounded sublevel sets. This assumption replaces the use of an
open bounded set U in Kurdyka's result.) We reproduce below one of the main results of the
aforementioned work, see [26, Theorem 20], for the special case where the function is smooth
and de�ned in �nite dimensions.

Theorem 5.1 (characterization of the K�-inequality) Let f : Rn → R ∪ {+∞} be a C2-
smooth (or more generally C1-smooth semi-convex) coercive function and r̄ ∈ f(Rn) an upper
isolated critical value. The following statements are equivalent:

a) (K�-inequality) There exist ρ > 0 and a smooth function ψ : [r̄, r̄+ ρ)→ [0,∞) such
that

‖∇(ψ ◦ f)(x)‖ ≥ 1, for all x ∈ f−1((r̄, r̄ + ρ)).

b) (Length control for gradient curves) There exist ρ > 0 and a strictly increasing
continuous function σ : [r̄, r̄ + ρ)→ [0,∞) with σ(r̄) = 0 such that∫ T

0

‖γ̇(t)‖dt ≤ σ(f(γ(0)))− lim
t→T

σ(f(γ(t))), (we may have T = +∞)

for all gradient curves γ : [0, T )→ Rn with γ([0, T )) ⊂ f−1((r̄, r̄ + ρ)).

c) (Length bound for piecewise gradient curves) There exist ρ,M > 0 such that∫ T

0

‖γ̇(t)‖dt ≤M,

for all piecewise gradient curves γ : [0, T )→ Rn with γ([0, T )) ⊂ f−1((r̄, r̄ + ρ)).

d) (Integrability condition) There exists ρ > 0 such that the function

r 7→ sup
x∈f−1(r)

1

‖∇f(x)‖
, r ∈ (r̄, r̄ + ρ),

is �nite-valued and belongs to L1(r, r + ρ).

Recently, Daniilidis and Drusvyatskiy [41] showed that every multivalued map S : R ⇒ Rn
with de�nable graph admits a desingularization of its graphical coderivative D∗S : Rn ⇒ R
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around any critical value t ∈ R. (Relevant de�nitions and a more precise statement are given
in Section 5.2.3.) This result yields a uniform bound for the lengths of all bounded orbits
of the sweeping process de�ned by S (see forthcoming De�nition 5.2). The aforementioned
results of [41] are also covering the results of Kurdyka in [68] by considering a sweeping process
mapping S related to the sublevel sets of the smooth de�nable function f (c.f. Remark 5.9).

The main contributions of this work are the following:

� Without assuming o-minimality, we characterize the desingularization of the coderiva-
tive of a smooth sweeping process (see De�nition 5.10) by establishing an analogous
result to Theorem 5.1. This is the main result of this work, which is resumed in Sec-
tion 5.3.2.

� Since the evolution of the sweeping process is not reversible in time, we introduce in
De�nition 5.3 an asymmetric version of the modulus for the coderivative of a multival-
ued map S, ‖D∗S(t, x)|+, that captures the orientation of the dynamics. (In [41], the
prevailing assumption of o-minimality made it possible to work directly with the usual
modulus.)

� We establish an asymmetric version of [84, Theorem 9.40] (sometimes known as the
Mordukhovich Criterion) relating the asymmetric modulus of the coderivative to the
oriented calmenss of the multivalued map (Proposition 5.26). We then obtain The-
orem 5.17 (Section 5.3.3) which relates the desingularization of the coderivative with
the length of discrete sequences given by the catching�up algorithm. (This algorithm
can be perceived as the proximal algorithm over a function f whenever the multivalued
map S is de�ned by the sublevel sets of f .)

The outline of this chapter is as follows: In Section 5.2, we �x our notation, we quote
preliminary results of variational analysis required in the sequel. In Section 5.3, we �x
our setting, explain our assumptions and state the two main results (Theorem 5.15 and
Theorem 5.17). The proofs of these results together with other auxiliary results will be given
in Section 5.4.

5.2 Notation and Preliminaries

The notation used along this chapter is standard and follows the lines of [84]. For any two
nonempty setsA, B ⊂ Rn, the excess ofA overB is given by ex (A,B) := sup{d(x,B) : x ∈ A}
and their Hausdor�-Pompeiu distance is de�ned by dist (A,B) := max {ex (A,B), ex (B,A)}.

Let C ⊆ Rn be a closed set and let x ∈ Rn. The set of projections of x at C is de�ned by
ProjC(x) := {y ∈ C : ‖x− y‖ = d(x,C)}. The Fréchet normal cone to C at x ∈ C, denoted
by N̂C(x), is the set of vectors v ∈ Rn satisfying

lim sup
y∈C
y→x

〈v, y − x〉
‖y − x‖

≤ 0.

The limiting normal cone to C at x, denoted by NC(x), consists of all vectors v ∈ Rn such
that there exists a sequence (xi)i ⊂ C and vi ∈ N̂C(xi) satisfying xi → x and vi → v.
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5.2.1 Sweeping process dynamics

Let S : R ⇒ Rn be a multivalued map. The e�ective domain of S, denoted by dom(S), is
the set {t ∈ R : S(t) 6= ∅}. We denote by S = gph(S) the graph of the multivalued map S,
that is,

S = gph (S) := {(t, x) ∈ Rn+1 : x ∈ S(t)}.

Let us introduce the following dynamical system, known as sweeping process, determined by
the multivalued function S. The de�nition implicitely implies that dom(S) has nonempty
interior, and is often an interval (possibly unbounded). In particular, in our seeting (c.f
Assumptions in Section 5.3.1) dom(S) will always be an interval (possibly unbounded).

De�nition 5.2 (sweeping process dynamics) Let S : R ⇒ Rn be a multivalued map and
I ⊂ dom(S) be a nonempty interval of R. We say that the absolutely continuous curve
γ : I → Rn is a solution (orbit) of the sweeping process de�ned by S if{

−γ̇(t) ∈ NS(t)(γ(t)), ∀a.e. t ∈ I,
γ(t) ∈ S(t) for all t ∈ I,

(5.3)

where NS(t)(γ(t)) stands for the normal cone of S(t) at γ(t).

Notice that (5.3) can be formally satis�ed by curves with possible discontinuities (the set of
discontinuities has then to be of measure zero). For our purposes it is useful to consider the
class of piecewise absolutely continuous curves, that is, curves γ : I → Rn whose possible
discontinuities are contained in a closed countable set D and being absolutely continuous
on any interval subset of I�D. This latter set is open, therefore it is a countable union of
disjoint intervals Ji, and γ is required to be absolutely continuous on each Ji.

Notation (AC(S, I), PAC(S, I)). We denote by AC(S, I) (respectively PAC(S, I)) the set of
absolutely continuous (respectively, piecewise absolutely continuous) orbits of the sweeping
process de�ned by S on the interval I ⊂ dom(S). The length of a (piecewise) absolutely
continuous curve γ : I → Rn is given by the formula

`(γ) :=

∫
I

‖γ̇(t)‖dt.

5.2.2 Coderivative, (oriented) modulus and (oriented) talweg.

Let S : R⇒ Rn be a multivalued map with closed values.

De�nition 5.3 (Coderivative) The (limiting) coderivative of S at (t, x) ∈ S in u ∈ Rn is
de�ned as follows:

D∗S(t, x)(u) := {a ∈ R : (a,−u) ∈ NS(t, x)}.

Therefore D∗S(t, x) : Rn ⇒ R is a multivalued map and

(u, a) ∈ gphD∗S(t, x) if and only if (a,−u) ∈ NS(t, x).
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Since gphD∗S(t, x) is a cone, the map D∗S(t, x) is positively homogeneous and we can de�ne
its modulus via the formula:

‖D∗S(t, x)‖+ := sup
‖u‖≤1

{ |a| : a ∈ D∗S(t, x)(u)} .

Although the above de�nition of a modulus is classical and relates nicely to the Lipschitz
continuity of S (c.f. [84, Theorem 9.40]), the symmetry of the absolute value of R (repre-
senting the time in our dynamics) does not �t to the non-reversible dynamics of the sweeping
process. To remedy this, one needs to replace |a| in the above formula by a+ := max{0, a}
which eventually gives rise to the following de�nition.

De�nition 5.4 (Asymmetric modulus of coderivative) For every (t, x) ∈ S we de�ne the
asymmetric modulus of the coderivative D∗S(t, x) as follows:

‖D∗S(t, x)|+ = sup{a+ : a ∈ D∗S(t, x)(u), ‖u‖ ≤ 1},

where we adopt the convention sup(∅) = 0.

The following example give some insight about the di�erence between the two moduli.

Example 5.5 Let f : Rn → R be a C1-smooth function and set

S(r) = [f ≤ r] := {x ∈ Rn : f(x) ≤ r}, for all r ∈ R.

This de�nes a multivalued map S : R⇒ Rn associated to f (the graph S of S is the epigraph
of f). Let x ∈ S(r).

If f(x) < r, then x ∈ int(S(r)) and NS(r, x) = {0}, yielding ‖D∗S(r, x)‖+ = ‖D∗S(r, x)|+ =
0. On the other hand, since the normal space of gph(f) at (x, f(x)) is exactly R(∇f(x),−1),
if f(x) = r, then NS(r, x) = R+(−1,∇f(x)). Thus,

‖D∗S(t, x)‖+ =
1

‖∇f(x)‖
, but ‖D∗S(t, x)|+ = 0.

We now de�ne the oriented talweg function associated to the multivalued map S : R⇒ Rn.
This captures the worst case (larger value of the oriented modulus of the coderivative) on
each set S(t), t ∈ R. This function will play an important role in our main result.

De�nition 5.6 (oriented talweg) The oriented talweg function of S denoted by ϕ↑ is de�ned
as follows:

ϕ↑(t) = sup
x∈S(t)

{‖D∗S(t, x)|+}, for all t ∈ dom(S).

Remark 5.7 (Asymmetric structures) In [41] the usual talweg function ϕ has been consid-
ered, based on the (symmetric) modulus of the coderivative.

ϕ(t) = sup
x∈S(t)

{‖D∗S(t, x)‖+}, for all t ∈ dom(S).
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The di�erence between ϕ and ϕ↑ is that the modula ‖D∗S(t, x)‖+, (t, x) ∈ S, are now replaced
by their asymmetric versions ‖D∗S(t, x)|+. The reader might notice that a+ := max{0, a} is
a typical asymmetric norm of R and ‖D∗S(t, x)|+ can be seen as a natural asymmetrization
of the modulus ‖D∗S(t, x)‖+. The use of asymmetric objects seems to be a natural tool in
nonsmooth dynamics as well as in operations research (orientable graphs). More details on
asymmetric structures can be found in [32] and [42].

5.2.3 Desingularization of the coderivative (de�nable case).

We now recall the main result of [41]. If S : R ⇒ Rn is a multivalued map with a closed
bounded graph S, then assuming that S is de�nable in some o-minimal structure, for every
a ∈ R there exists ρ > 0 and a strictly increasing, continuous function Ψ: [0, ρ]→ R that is
C1-smooth on (0, ρ), it satis�es Ψ(0) = a and Ψ′(r) > 0 for all r ∈ (0, ρ) and

‖D∗(S ◦Ψ)(r, x)‖+ ≤ 1 for all r ∈ (0, ρ) and all x ∈ S(Ψ(r)). (5.4)

It is easily seen that Ψ is an homeomorphism between [0, ρ] and [a, b] where b = Ψ(ρ) and
a di�eomorphism between (0, ρ) and (a, b). Inequality (5.4) has a particular interest when
a ∈ R is a critical value of the coderivative D∗S of the sweeping process, that is,

ϕ(t) = sup
x∈S(t)

‖D∗S(t, x)‖+ = +∞.

In this case we say that Ψ desingularizes the (modulus of the coderivative around the) critical
value a. The assumption of o-minimality on S guarantees that the set of critical values is
�nite. In [41] it has further been established, as consequence of (5.4), that all bounded orbits
of the sweeping process S have �nite length and that the talweg function ϕ is integrable on
[a, b].

Let us notice that ‖D∗S(t, x)|+ ≤ ‖D∗S(t, x)||+ (and consequently ϕ↑(t) ≤ ϕ(t)) for all
t ∈ [a, b) and x ∈ S(t). Therefore, we obtain the following.

Corollary 5.8 (desingularization of oriented coderivative � de�nable case) If S : R ⇒ Rn
is a multivalued map with a closed de�nable bounded graph, then for every a ∈ R (possibly
critical for the oriented modulus) there exists ρ > 0 and b > a such that:

(i). there exists an increasing homeomorphism Ψ: [0, ρ] → [a, b] which is C1-di�eomorphism
on (0, ρ) such that:

||D∗(S ◦Ψ)(r, x)|+ ≤ 1 for all r ∈ (0, ρ) and all x ∈ S(Ψ(r)). (5.5)

(ii).
∫ b
a
ϕ↑(t) <∞ (the oriented talweg function is integrable).

Remark 5.9 [Relation with the K�-inequality] (i). The described desingularization of the
coderivative can be seen as a generalization of the K�-inequality for C1-smooth de�nable func-
tions (established by Kurdyka in [68]) in the following sense: let f : Rn → R be a C1-smooth
coercive function which is de�nable in some o-minimal structure. Then, the multivalued
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function {
Sf : R⇒ Rn

Sf (t) = [f ≤ −t], t ∈ R
(5.6)

is o-minimal (it is de�nable in the same o-minimal structure as f) and the desingularization
of its gradient described in (5.1) can be deduced from the desingularization coderivative of S
and vice versa. We refer the reader to [41, Section 5.1] for more details.

(ii). In [41], the assumption that S is unbounded has not been considered, and similarly to
(5.2), the supremum of the de�nition of ϕ(t) had to be taken over S(t)∩U , where U ⊂ Rn is
a �xed open bounded set, which gives rise to a talweg function ϕS depending on U . Even if
Section 5.3 we deal with potentially unbounded sweeping processes, we do not need to make
use of U , thanks to the assumptions given in Section 5.3.1.

5.3 Characterization of desingularization of the coderiva-

tive

We are interested in sweeping process mappings S that are not o-minimal (we shall assume
smoothness of their graph instead). Under some mild assumptions, we shall characterize the
existence of a desingularizing function Ψ that desingularizes the asymmetric modulus of the
coderivative (c.f. Corollary 5.8). We give below our setting.

5.3.1 Assumptions, setting

Let S : R⇒ Rn be a multivalued map with closed graph S.

De�nition 5.10 (smooth sweeping process) We say that S is a smooth sweeping process if
either

� S is a closed connected C1-smooth submanifold of Rn+1 of dimension at most n ; or

� S is a connected smooth manifold of full dimension with boundary and ∂S is a C1-smooth
manifold of dimension n.

It is clear that the above assumption is satis�ed if S is a sweeping process associated to a
C1-smooth function f (c.f. Example 5.5 or Remark 5.9). As a consequence of this assumption
we have the following result, which compares the modules versus the asymmetric modulus of
D∗S.

Lemma 5.11 Let S : R⇒ Rn be a smooth sweeping process and (t, x) ∈ S. If either

(a). S is a smooth manifold or (b). ‖D∗S(t, x)|+ > 0

we have
‖D∗S(t, x)|+ = ‖D∗S(t, x)‖+.

Proof. If S is a smooth submanifold of Rn+1, the requested equality holds true for every
(t, x) ∈ S as a consequence of the fact that the limiting normal cone at any point coincides
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with the normal space of the manifold at the same point. On the other hand, if S is a
manifold of full dimension with boundary such that ∂S is also a smooth manifold, then the
normal cone NS(t, x) is either {0} or a ray generated by an outer pointing normal vector
(s, y) of S at (t, x). The conclusion follows.

Connectedness of S yields that dom(S) is an interval (possibly unbounded). We shall use
the following notation:

T = sup(dom(S)) ∈ R ∪ {+∞}.

We also de�ne the multivalued map HS : R⇒ Rn+1 by

HS(t) := ∂S ∩ ({t} × Rn), for all t ∈ R.

Assumption 5.12 We say that S satis�es the:

(A1) existence assumption if for every (t, x) ∈ S with ‖D∗S(t, x)|+ < +∞, there exist δx > 0
and at least one orbit γx ∈ AC(S; [t, t+ δx)) such that γx(t) = x.

(A2) upper regular assumption at t ∈ dom(S) with t < T, if there exists δ > 0 such that
ϕ↑(t) < +∞ for all t ∈ (t, t+ δ).

(A3) continuity assumption at t ∈ dom(S) with t < T, if there exists δ > 0 such that the
multivalued map HS is continuous for the Pompeiu-Hausdor� metric on (t, t + δ) (it
may be discontinuous at t).

Let us make some comments about the above assumptions:

Assumption (A1) ensures the existence of orbits issued from any non-critical point. This
assumption is satis�ed if the sweeping process is de�ned via (5.6) where f is a C1,1-smooth
function, since in this case the existence of gradient orbits γ̇ = −∇f(γ) is guaranteed, and
these orbits are also orbits for the sweeping process Sf , up to a suitable change of variable,
see Remark 5.9. Assumption (A1) is also ful�lled if S is a de�nable sweeping process, see
[41, Section 6] or [57]. In the general case, classical existence results go back to the seminal
work of J.J. Moreau [72] for convex-valued multifunctions which are Lipschitz continuous
under the Hausdor�-Pompieu metric. Since then, several extensions have been obtained, see
[33, 34, 66] and references therein.

Assumption (A2) is automatically satis�ed in the de�nable case, since in this case the set of
critical values is �nite. In the general case, this assumption is analogous to the hypothesis
made in [26, Section 3.3] that the critical values of f are upper isolated (see also statement
of Theorem 5.1).

Assumption (A3) is the more restrictive, although it comes naturally from our setting. It is
satis�ed for the sweeping process Sf de�ned in (5.6) whenever f is convex or quasiconvex.
In general, a smooth multivalued map t ⇒ S(t) is not necessarily monotone in the sense of
set-inclusion and the sets S(t) are not assumed convex (or of the same homology), therefore
(A3) is required to guarantee a control on the behavior of the boundaries. In particular, the
following result holds. (For the de�nitions of outer and inner semicontinuity of a multifunction
the reader is referred to [84, Chapter 5].)
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Proposition 5.13 Let S : R ⇒ Rn be a smooth sweeping process with bounded values and
a, b ∈ R such that (a, b) ⊂ dom (S). If HS is continuous on (a, b), then S is also continuous
on (a, b).

Proof. Let I be a nontrivial interval contained in a compact subset of (a, b). It is su�cient
to prove that S is continuous on I. Since S ⊂ Rn+1 is closed and S(t) = S ∩ ({t} × Rn), for
every t ∈ R, the map S has closed (therefore, compact) values and S is outer semicontinuous.
Let us assume, towards a contradiction, that S is not continuous on I, that is, there exists
t̄ ∈ I such that S is not inner semicontinuous at t̄. We deduce that there exist x ∈ S(t),
ε > 0 and a sequence (tk)k ⊂ dom (S), converging to t, such that

d(x, S(tk)) ≥ ε, for all k ∈ N.

The above easily yields that (t̄, x̄) ∈ S \ int (S), that is, (t, x) ∈ ∂S. However, since

{tk} ×B (x, ε) ∩ S = ∅,

this contradicts the continuity of HS at t.

Remark 5.14 In general, the converse of Proposition 5.13 is not true. To see this, set

S := (R× [−2, 2]) \
{

(t, x) ∈ R2 : (t− 1)2 + x2 ≤ 1
}

and consider the sweeping process S : R⇒ R de�ned by

S(t) = S ∩
(
{t} × R2

)
.

It follows easily that S is a smooth sweeping process. Moreover, S is continuous at every
t ∈ R, but HS is discontinuous at 0.

5.3.2 Characterizations via continuous dynamics

Before we proceed, let us set

T := {t ∈ dom(S) : (A2)�(A3) are ful�lled at t}.

Observe that, if t ∈ T , then there is δ > 0 such that [t, t+ δ) ⊂ T .
We are now ready to state the main result of this work. The proof will be given in Sec-
tion 5.4.2.

Theorem 5.15 Let S : R ⇒ Rn be a smooth sweeping process with bounded values that
satis�es (A1). Let a ∈ T (typically a critical value for D∗S).

The following assertions are equivalent:

a) (Desingularization of the coderivative) There exist b > a, ρ > 0 and a homeo-
morphism Ψ : [0, ρ]→ [a, b], which is a C1-di�eomorphism between (0, ρ) and (a, b) with
Ψ′(r) > 0 for every r ∈ (0, ρ), such that:

‖D∗(S ◦Ψ)(r, x)|+ ≤ 1, for all r ∈ (0, ρ), for all x ∈ S(Ψ(r)). (5.7)
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b) (Uniform length control for the absolutely continuous orbits) There exist b > a
and an increasing continuous function σ : [a, b] 7→ R+ with σ(a) = 0 such that for every
a ≤ t1 < t2 ≤ b and γ ∈ AC(S, [t1, t2]) we have:

`(γ) ≤ σ(t2)− σ(t1).

c) (Length bound for the piecewise absolutely continuous orbits) There exist b > a
and M <∞ such that for every γ ∈ PAC(S, [a, b]) we have:

`(γ) ≤M.

d) (Integrability of the talweg) There exists b > a such that∫ b

a

ϕ↑(t) <∞.

5.3.3 Characterizations via discrete dynamics

We �rst need the following de�nition.

De�nition 5.16 (piecewise catching-up sequence) Let S : R ⇒ Rn be a multivalued map
with closed values.

(i). A (�nite or in�nite) sequence ((ti, xi))i≥0 ⊂ S is called a catching-up sequence for S if
(ti)i≥0 is strictly increasing and

xi+1 ∈ ProjS(ti+1)(xi), for i ≥ 0.

(ii). A (�nite or in�nite) sequence of the form

(t00, Y
0

0 ), (t01, Y
0

1 ), . . . , (t0k0 , Y
0
k0

), (t10, Y
1

0 ), (t11, Y
1

1 ), . . . , (t1k1 , Y
1
k1

), . . .

is called a piecewise catching-up sequence for S if for every j ≥ 0

((tji , Y
j

i ))
kj
i=0 ⊂ S is a catching-up sequence for S and tjkj = tj+1

0 .

Now we are ready to state our second result which complements Theorem 5.15.

Theorem 5.17 The statements (a)-(d) of Theorem 5.15 are also equivalent to the following:

e) (Uniform control of catching-up sequences) There exist b > a and a continuous
increasing function σ : [a, b] → [0,∞), with σ(a) = 0, such that for every catching-up
sequence ((ti, xi))i≥0 ⊂ S with {ti}i≥0 ∈ (a, b), and every k ≥ 1 we have

k∑
i=0

‖xi+1 − xi‖ ≤ σ(tk)− σ(t0). (5.8)
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f) (Length bound for piecewise catching-up sequences) There exist b > a and C <
∞ such that for any piecewise catching-up sequence{

(tji , Y
j

i ) : j ≥ 0, i ∈ {0, . . . , kj}
}

with

a < t00 < t01 < . . . < t0k0 = t10 < t11 < . . . < b

we have: ∑
j≥0

kj∑
i=0

‖Y j
i+1 − Y

j
i ‖ ≤ C.

5.4 Proofs

In this section we give proofs to our two main results, Theorem 5.15 (Subsection 5.4.2) and
Theorem 5.17 (Subsection 5.4.4). To do so, we shall need some auxiliary results (Subsec-
tion 5.4.1) and a new notion of oriented calmness (Subsection 5.4.3).

5.4.1 Auxiliary results

The �rst result concerns continuity of the moduli maps.

Lemma 5.18 (continuity of the (oriented) modulus on ∂S) Let S : R ⇒ Rn be a smooth
sweeping process. Then, the functions

(t, x) 7→ ‖D∗S(t, x)|+ and (t, x) 7→ ‖D∗S(t, x)‖+

are continuous on ∂S for the usual topology on R ∪ {+∞}.

Proof. Let us start with the case S has no interior. Thanks to Lemma 5.11, we have
that ‖D∗S(t, x)|+ coincides with ‖D∗S(t, x)‖+ for any (t, x) ∈ S. Then, the continuity of
both functions is a direct consequence of the continuity of the normal spaces of a smooth
manifold in the Grasmannian. Let us continue with the case S has interior. Let (t, x) ∈ ∂∂S.
Then NS(t, x) coincide with the ray of exterior normal vectors of S at (t, x). Therefore, the
continuity of (t, x)→ ‖D∗S(t, x)‖+ and (t, x)→ ‖D∗S(t, x)|+ follows from the continuity of
the unit outer normal vector of a smooth manifold of full dimension with boundary.

The second result asserts continuity of the (oriented) talweg function. Let us recall from
Subsection 5.3.1 that the multivalued function HS : R ⇒ Rn is de�ned by HS(t) := ∂S ∩
({t} × Rn), for all t ∈ R.

Lemma 5.19 (continuity of the (oriented) talweg function) Let S : R ⇒ Rn be a smooth
sweeping process such that S(t) is bounded for all t ∈ R. Let [a, b] ⊂ dom(S) such that HS

is continuous for the Pompeiu-Hausdor� metric on [a, b]. Then the talweg functions ϕ↑ and
ϕ are continuous on [a, b], where the image space R ∪ {+∞} is considered with its usual
topology.
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Proof. Set K := HS([a, b]), which is a compact set. Since

ϕ↑(t) = max
x∈HS(t)

‖D∗S(t, x)|+ (respectively, ϕ(t) = max
x∈HS(t)

‖D∗S(t, x)||+).

the result follows from Lemma 5.18 and the continuity of HS.

Proposition 5.20 (di�eomorphic rescaling of time) Let S : R ⇒ Rn be a multivalued map
and γ ∈ AC(S, (a, b)). If Ψ : (0, ρ)→ (a, b) is a C1-smooth di�eomorphism such that Ψ′(r) >
0 for all r ∈ (0, ρ), then γ̃ = γ ◦Ψ is an orbit of the sweeping process de�ned by S̃ := S ◦Ψ,
that is, γ̃ ∈ AC(S̃, (0, ρ)).

Proof. It is straighforward that γ̃ = γ ◦ Ψ is an absolutely continuous curve. Since Ψ is
a bi-Lipschitz homeomorphism on each compact interval contained in (0, ρ) we deduce that
for any null subset A of (a, b) the set Ψ−1(A) is also null (with respect to the Lebesgue
measure). If I is the set of points of di�erentiability of γ for which (5.3) holds, it follows
that J := Ψ−1((a, b) \ I) is a null set and for every r ∈ (0, ρ) \ J it holds:

γ̃′(r) = (γ ◦Ψ)′(r) = γ′(Ψ(r))Ψ′(r) ∈ NS(Ψ(r))(γ(Ψ(r))),

yielding that γ̃ is an orbit solution of the sweeping process de�ned by S ◦Ψ.

In the sequel, given a curve γ : I → Rn we de�ne its lifting ζ : I → Rn+1 by

ζ(t) = (t, γ(t)), t ∈ I.

Proposition 5.21 (geometric facts) Let S : R⇒ Rn be a smooth sweeping process.
Fix t ∈ dom(S) \ {T} and x̄ ∈ S(t). Then:

a) If there is δ > 0 such that x̄ ∈ S(t), for all t ∈ (t, t + δ), then α ≤ 0 for all (α, u) ∈
NS(t, x̄).

b) If ‖D∗S(t, x̄)|+ > 0, then for any τ > t and γ ∈ AC(S, [t, τ)) with γ(t) = x̄, there exists
δ > 0 such that

ζ(t) := (t, γ(t)) ∈ ∂S, for all t ∈ [t, t+ δ).

c) If int(S) is nonempty and NS(t, x̄) = R+(α, u) with α < 0, then there is δ > 0 such
that x̄ ∈ S(t) for all t ∈ [t, t+ δ).

Proof. (a). If (t, x̄) ∈ int (S) then NS(t̄, x̄) = {(0, 0)} and the conclusion follows trivially. In
the case when (t, x) ∈ ∂S, since ∂S is a smooth manifold, the limiting normal cone NS(t, x̄)
is equal to the Fréchet normal cone and is contained in the normal space of ∂S at (t, x̄).
Therefore, for any (α, u) ∈ NS(t̄, x̄) and t ∈ (t, t+ δ), we have (t, x̄) ∈ S and

lim sup
t↘t

〈(α, u), (t− t, x̄− x̄)〉
‖(t− t, x̄− x̄)‖

= α ≤ 0.

(b). Let τ > t and γ ∈ AC(S, [t, τ)) with γ(t) = x̄ and assume ‖D∗S(t, x̄)|+ > 0. Since
(t, y) 7→ ‖D∗S(t, y)|+ is continuous on ∂S (Lemma 5.18), there exists a neighborhood V of
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(t, x̄) such that for all (t, y) ∈ V ∩ ∂S we have ‖D∗S(t, y)|+ > 0. Therefore, there is δ > 0
such that ‖D∗S(ζ(t))|+ > 0 and consequently, ζ(t) ∈ ∂S for all t ∈ [t, t+ δ).

(c). It follows from our assumption that dim (∂S) = n and (α, u) is a nonzero outer normal
vector of S at (t, x̄). Without loss of generality, let us assume that (α, u) is a unit vector.
Since int(S) 6= ∅, we deduce that (t, x̄)−λ(α, u) ∈ S for all λ > 0 su�ciently small. Let
us assume, reasoning to a contradiction, that there exists a decreasing sequence (tk)k ⊂ R
converging to t such that x̄ /∈ S(tk), for all k ∈ N. Let us now take a decreasing sequence
(λk)k ⊆ R+ that converges to 0 and satis�es (t, x̄)− λk(α, u) ∈ S for all k. Let zk ∈ Rn+1 be
any vector such that

zk ∈ ∂S
⋂ [

(tk, x̄), (t− λkα, x̄− λku)
]
,

where
[

(tk, x̄), (t− λkα, x̄− λku)
]
stands for the line segment joining the points (tk, x̄) and

(t− λkα, x̄− λku). It follows easily that (zk)k converges to (t, x̄) and that〈
zk − (t, x)

‖zk − (t, x)‖
, (α, u)

〉
≤ 〈 (1, 0), (α, u) 〉 = α.

Let d be any accumulation point of the sequence (zk− (t, x))/‖zk− (t, x)‖. Then, d belongs
to the Bouligand tangent cone of ∂S, which coincides with the tangent space of S at the same
point. Therefore d should be orthogonal to the normal vector (α, u). However, 〈d, (α, u)〉 ≤
α < 0, which leads to a contradiction.

The following lemma is crucial in the proof of our main theorem since it relates the value
of the coderivative with the velocity of the orbit of the sweeping process. The proof follows
closely the proof of [41, Theorem 4.1] where a similar result has been established for the
usual modulus ‖D∗S(t, γ(t))‖+.

Lemma 5.22 Let S : R⇒ Rn be a smooth sweeping process and γ ∈ AC(S, [a, b)). Then,

‖γ̇(t)‖ = ‖D∗S(t, γ(t))|+,

for all t ∈ [a, b) such that −γ̇(t) ∈ NS(t)(γ(t)) and ‖D∗S(t, γ(t))|+ is �nite.

Proof. Let t ∈ [a, b) be a point of di�erentiability of γ such that −γ̇(t) ∈ NS(t)(γ(t)) and
that ‖D∗S(t, γ(t))|+ is �nite.

First case: γ̇(t) = 0.

If ζ(t) := (t, γ(t)) ∈ int (S), the desired equality holds trivially, while if ζ(t) ∈ ∂(S), then
ζ̇(t) = (1, 0) belongs to the tangent space of ∂S at ζ(t). Since S is a smooth sweeping process,
the normal cone NS(ζ(t)) is contained in the normal space of ∂S at ζ(t). Therefore,

〈(1, 0), NS(ζ(t))〉 = {0}.

Hence, if (α, u) ∈ NS(ζ(t)), then α = 0. Thus, ‖D∗S(ζ(t))|+ = 0.

Second case: γ̇(t) 6= 0.
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Then ζ(t) ∈ ∂S and ζ̇(t) belongs to the tangent space of ∂S at ζ(t). As in the �rst case, we
obtain that

〈(1, γ̇(t)), NS(ζ(t))〉 = {0}.

Hence, for every (α, u) ∈ NS(ζ(t)) with ‖u‖ = 1 we have α + 〈γ̇(t), u〉 = 0. Thanks to
Cauchy-Schwartz inequality, we obtain

‖γ̇(t)‖ ≥ ‖D∗S(ζ(t)|+.

By Proposition 5.21 (c), we can assume that

sup
‖u‖≤1

{a : a ∈ D∗S(t, x)(u)} ≥ 0.

Setting H = {t}×Rn we have {t}×S(t) = H ∩S. Due to the fact that −γ̇(t) ∈ NS(t)(γ(t)),
we have:

(1,−γ̇(t)) ∈ N{t}×S(t)(ζ(t)).

In addition, since ‖D∗S(t, γ(t))|+ <∞, we have that (t, 0) ∈ NS(t, γ(t)) only if t = 0. Hence,
applying the calculus rule [84, Theorem 6.42], we get

NH∩S(ζ(t)) ⊂ NH(ζ(t)) +NS(ζ(t)) = R× {0}+NS(ζ(t)).

Therefore, the inclusion (λ,−γ̇(t)) ∈ NS(ζ(t)) holds for some λ ∈ R. By orthogonality
between normal and tangent vectors, we get that:

〈(λ,−γ̇(t)), (1, γ̇(t))〉 = 0.

and thus λ = ‖γ̇(t)‖2. After normalization, we obtain:(
‖γ̇(t)‖,− γ̇(t)

‖γ̇(t)‖

)
∈ NS(ζ(t)),

which readily yields ‖D∗S(t, γ(t))|+ ≥ ‖γ̇(t)‖, as claimed.

Let us �nally quote the following result, which is a restatement of [26, Proposition 47]. For
the sake of completeness, we present its proof.

Proposition 5.23 Let b > a and Γ be a collection of absolutely continuous curves γ de�ned
in some nontrivial interval J ⊂ (a, b) with values in Rn, where J = [inf(J), sup(J)). Assume
that for each t ∈ (a, b) there exist εt > 0 and γt ∈ Γ with dom (γ) = [t, t + εt). Moreover,
assume that if γ ∈ Γ, then for any t1, t2 ∈ (t, t + εt), the restriction γ|[t1,t2) ∈ Γ. Then
there exist a countable partition {In}n∈N of (a, b) into intervals In of nonempty interior and
a piecewise absolutely continuous curve γ : (a, b)→ R such that γ|In ∈ Γ.

Proof. Let c ∈ (a, b). We �rst construct a curve with domain [c, b) and then we deal with
the interval (a, b).
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First part: Let us consider Γc the family of curves on Rn such that γ ∈ Γc if and only if
dom(γ) = [c, t), with t ∈ (c, d], and γ is a concatenation of at most countable many curves
in Γ. It is clear that Γc is nonempty since γc ∈ Γc.

Let us consider the partial order � on Γc de�ned as follows: for any γ1, γ2 ∈ Γc, γ1 � γ2

if and only if dom(γ1) ⊆ dom(γ2) and γ2|dom(γ1) = γ1. Let us apply Zorn's Lemma in the
partially ordered set (Γc,�). Let (γλ)λ∈Λ ⊂ Γc be a chain for �. Since γλ2|dom(γλ1 ) = γλ1 for
all λ1 < λ2, we can de�ne γ̂ :

⋃
{dom(γλ) : λ ∈ Λ} → Rn as follows:

γ̂(t) := γλ(t), where t ∈ dom(γλ).

Let us check that γ̂ ∈ Γc. It easily follows that there is d ∈ (c, b] such that dom(γ̂) = [c, d).
Let (tn)n≥0 ⊂ (c, d) be a strictly increasing sequence, convergent to d, such that t0 = c. Let
us consider (λn)n ⊂ Λ be an increasing sequence such that, for all n ≥ 1, [c, tn) ⊂ dom(γλn).
Therefore, thanks to the properties of Γ, for all n ≥ 1, the curve γλn|[tn−1,tn) is a concate-
nation of countable many curves in Γ. Noticing now that γ̂ is the concatenation of family
{γλn|[tn−1,tn) : n ∈ N}, we conclude that γ̂ can be constructed as a concatenation of countable
many curves in Γ. Thus, γ̂ ∈ Γc and it is an upper bound for the chain (γλ)λ. Therefore,
thanks to Zorn's lemma, there exists γc,b ∈ Γc, a maximal element for �. If we suppose
that dom(γc,b) = [c, d), with d < b, then we can concatenate γd to γc,b to contradict the
maximality of γc,b. Therefore, dom(γc,b) = [c, b).

Second part: Let us construct a curve with domain equal to (a, b). Let (cn)n ⊂ (a, b)
be a decreasing sequence such that cn tends to a as n tends to in�nity and let c0 = b.
Applying the �rst part of the proof to each interval [cn, cn+1), with n ∈ N, we obtain a curve
γn := γcn,cn−1 : [cn, cn−1)→ Rn which is made by the concatenation of countable many curves
of Γ. Therefore, the curve γ : (a, b) → Rn constructed by the concatenation of the curves
(γn)n proves the proposition. Indeed, for each n, let us consider {In,k : k ∈ N} be a partition
of intervals with nonempty interior of dom(γn) such that γn|In,k ∈ Γ for all k ∈ N. Thus, the
partition of (a, b) can be chosen as {In,k : n ∈ N, k ∈ N}.

We are now ready to prove our main result.

5.4.2 Proof of Theorem 5.15

We prove (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a).

a) ⇒ b) : Let Ψ : [0, ρ] → [a, b] be given by (a). Let γ ∈ AC([t1, t2], S). Since Ψ is a
C1-smooth function, ∂gph((S ◦ Ψ)|(0,ρ)) is a smooth manifold. By Proposition 5.20, γ ◦ Ψ ∈
AC([0, ρ), S ◦Ψ). Applying Lemma 5.22, we deduce that

∣∣∣∣d (γ ◦Ψ)

dr
(r)

∣∣∣∣ = ‖D∗(S ◦Ψ)(r, γ(Ψ(r)))|+ ≤ 1, ∀a.e r ∈ (a, d).
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Since Ψ is increasing and smooth, by change of variables we obtain:∫ t2

t1

‖γ̇(τ)‖dτ =

∫ Ψ−1(t2)

Ψ−1(t1)

‖γ̇(Ψ(r))‖ Ψ̇(r)dr =

∫ Ψ−1(t2)

Ψ−1(t1)

∥∥∥∥d (γ ◦Ψ)

dr
(r)

∥∥∥∥ dr

≤
∫ Ψ−1(t2)

Ψ−1(t1)

dr = Ψ−1(t2)−Ψ−1(t1).

Therefore (b) is satis�ed by setting σ := Ψ−1.

b) ⇒ c) : Since σ is an increasing function and σ(a) = 0, statement (c) follows by setting
M := σ(b).

c) ⇒ d) : Let b > a and let M > 0 given by statement c). Let ϕ↑ : (a, b)→ R ∪ {+∞} be
the oriented talweg function of S and let us assume, towards a contradiction, that for any
c ∈ (a, b) the function ϕ↑ is not integrable on (a, c). By Lemma 5.18, the function (t, x) 7→
‖D∗S(t, x)|+ is continuous on ∂S. By assumptions (A2)�(A3), shrinking b if necessary, we
may assume that ϕ↑(t) < ∞ for all t ∈ (a, b) and that the multivalued map t ⇒ HS(t) is
continuous on (a, b). By Lemma 5.19, ϕ↑ is continuous on (a, b).

By Lemma 5.22, if J is a nontrivial interval of (a, b) then for any γ ∈ AC(S, J) we have
‖γ̇(t)‖ = ‖D∗S(t, γ(t))|+ for almost every t ∈ J . Let k ∈ N and t ∈ (a, b) and de�ne a curve
γkt as follows:

� If ϕ↑(t) = 0, take γkt ∈ AC(S, [t, τ)) be any curve such that τ − t < 1/k.

� If ϕ↑(t) > 0, since HS(t) is compact, there exists x ∈ S(t) such that ‖D∗S(t, x)|+ =
ϕ↑(t). Thanks to assumption (A1) and Lemma 5.19, we can take γkt ∈ AC(S, [t, τ)), for
some τ > t, such that γ(t) = x and

‖γ̇kt (s)‖ > k − 1

k
ϕ↑(s), for almost every s ∈ (t, τ).

Gluing together, thanks to Proposition 5.23, we obtain γk ∈ PAC(S, (a, b)) such that for
almost every t ∈ (a, b)

ϕ↑(t) ≥ ‖γ̇k(t)‖ ≥ fk(t) :=


0, if t ∈ Ak

k − 1

k
ϕ↑(t), if t ∈ (a, b) \ Ak.

where A = {t ∈ (a, b) : ϕ↑(t) = 0} and Ak = (a, b) ∩ (A+ [0, 1/k]) for all k ∈ N.
The continuity of ϕ↑ yields that A is a closed set relatively to (a, b). Therefore, A = ∩k∈NAk.
Then, for all t ∈ (a, b), fk(t) ↗ ϕ↑(t) as k tends to in�nity. Hence, by the Monotone
Convergence Theorem, (

∫ b
a
fk)k converges to

∫ b
a
ϕ↑, which is in�nity. Thus, there is K ∈ N

such that ∫ b

a

‖γ̇K(t)‖dt ≥
∫ b

a

fK(t)dt > M,

which contradicts statement (c) since γK ∈ PAC(S, (a, b)).

d) ⇒ a) : Let us assume that the oriented talweg function ϕ↑ is integrable on [a, b] for some
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b > a. As a consequence of assumptions (A2) and (A3), shrinking b if necessary, we may
assume that ϕ↑ is continuous on [a, b] and ϕ↑(t) < ∞ for all t ∈ (a, b]. Let ϕ = max{ϕ↑, 1}
which is an integrable continuous majorant of ϕ↑ and set

θ(t) :=

∫ t

a

ϕ(s)ds, for t ∈ [a, b].

Since ϕ is positive and integrable on [a, b], we set ρ := θ(b) and de�ne Ψ : [0, ρ]→ [a, b] as
the inverse function of θ, that is, Ψ(r) = θ−1(r). Since θ′(t) = ϕ(t) ∈ [1,+∞), for every
t ∈ (a, b], it follows that Ψ is C1-smooth on (0, ρ), with derivative

Ψ′(r) =
1

ϕ(Ψ(r))
≤ 1, for all r ∈ (0, ρ).

Thus, Ψ is a Lipschitz homeomorphism between [0, ρ] and [a, b]. Finally, using the chain rule
for coderivatives [84, Theorem 10.37], we deduce that

‖D∗ (S ◦Ψ) (r, x)|+ ≤ ‖D
∗S(Ψ(r), x)|+

ϕ(Ψ(r))
≤ 1, for all r ∈ (0, ρ).

The proof is complete. �

5.4.3 Oriented calmness

Before proceeding with the proof of Theorem 5.17, we need to introduce the modulus of
oriented calmness and establish a result analogous to the Mordukhovich criterium for the
oriented modulus of the coderivative. Let us �rst recall that the Lipschitzian graphical mod-
ulus of S : R⇒ Rn at t for x is de�ned by

LipS(t, x) := inf{κ > 0| ∃ε > 0, δ > 0, such that

S(t2) ∩B(x, δ) ⊂ S(t1) + κ|t2 − t1|B, for all t1, t2 ∈ (t− ε, t+ ε)},

where B stands for the open unit ball.

We recall that the multivalued function S has the Aubin property at t for x if and only if
LipS(t, x) <∞. More precisely, we have the following (see [84, Theorem 9.40]).

Theorem 5.24 For every (t, x) ∈ S such that ‖D∗S(t, x)‖+ <∞ it holds:

LipS(t, x) = ‖D∗S(t, x)‖+.

Motivated by the above, we introduce the following graphical modulus.

De�nition 5.25 (oriented calm modulus) Let S : R⇒ Rn be a multivalued map and (t, x) ∈
S. The oriented calm graphical modulus, denoted by calm↑S, at t for x is de�ned by

calm↑S(t, x) := inf{κ > 0| ∃ε > 0, δ > 0, such that

S(t) ∩B(x, δ) ⊂ S(t1) + κ|t1 − t|B for all t1 ∈ (t, t+ ε)}.
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Observe that, if S is a single-valued function and calm↑S(t, x) <∞, then S is calm at t to the
right. More information on the notion of calmness for multivalued maps can be found in [62]
and references therein. We are now ready to give the oriented version of Theorem 5.24.

Proposition 5.26 (oriented calm vs oriented modulus) Let S : R⇒ Rn be a smooth sweep-
ing process, t ∈ dom(S) \ {T} and x ∈ S(t) such that ‖D∗S(t, x)|+ < +∞. Then

calm↑S(t, x) = ‖D∗S(t, x)|+.

Proof. Let us �rst notice that calm↑S(t, x) ≤ LipS(t, x). We consider two cases:

Case 1 : ‖D∗S(t, x)|+ = 0.

If ‖D∗S(t, x)‖+ = 0, then calm↑S(t, x) = 0. If ‖D∗S(t, x)‖+ > 0, then, by Lemma 5.11 S
is a manifold of full dimension with boundary ∂S which is a smooth manifold of dimension
n. Let us assume by contradiction that calm↑S(t, x) > 0. Then, for every k ∈ N such that
k−1 < calm↑S(t, x), there exists yk ∈ S(t) ∩B(x, 1/k) such that

yk /∈ S(tk) +

(
t′k − t
k

)
B, for some t′k ∈ (t, t+

1

k
).

Set tk := inf{r ∈ (t, t+ 1
k
) : yk /∈ S(r)}. It is clear that (tk, yk) ∈ ∂S and that yk is not right-

locally stationary for S at tk. Thus, by Proposition 5.21 (c), for every k ∈ N and (βk, vk) ∈
NS(tk, yk), we have βk ≥ 0. Since NS(t, x) is a ray and {(tk, yk)}k → (t, x), the continuity
of unit outer normal vectors of S on ∂S ensures that β ≥ 0 whenever (β, v) ∈ NS(t, x).
This leads to the equality ‖D∗S(t, x)|+ = ‖D∗S(t, x)‖+, which is a contradiction. Therefore,
calm↑S(t, x) = 0.
Case 2 : ‖D∗S(t, x)|+ = α > 0.

In this case, we deduce from Lemma 5.11(b) that

‖D∗S(t, x)|+ = ‖D∗S(t, x)‖+ = LipS(t, x) ≥ calm↑S(t, x).

By Lemma 5.18 and compactness of the unit ball of Rn, there exists u ∈ Rn with ‖u‖ = 1
such that (α, u) ∈ NS(t, x). Let (tk)k≥1 ⊂ R be a decreasing sequence that converges to
t. Let (yk)k≥1 ⊂ Rn be a sequence that satis�es yk ∈ Proj(x, S(tk)) for each k ∈ N. By
compactness of the unit sphere of Rn+1, up to a subsequence we deduce that

lim
k→∞

(tk − t, yk − x)

‖(tk − t, yk − x)‖
= (β, v),

where (β, v) belongs to the tangent space of S at (t, x) and β ≥ 0. Since S is a smooth
sweeping process, it follows that

(α, u)⊥(β, v) yielding 〈u, v〉 = −αβ.

Since calm↑S(t, x) ≤ ‖D∗S(t, x)|+ < +∞, β must be a strictly positive number. Therefore

lim
k→∞

‖yk − x‖
tk − t

=
‖v‖
β
≥ |〈u, v〉|

β
= α,

implying that
calm↑S(t, x) ≥ α = ‖D∗S(t, x)|+.

The proof is complete.
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Lemma 5.27 (controlling excess of S(t0)) Let S : R ⇒ Rn be a smooth sweeping process
and [t0, t1] ⊂ dom(S). Then

ex (S(t0), S(t1)) := sup
x∈S(t0)

d(x, S(t1)) ≤

(
sup

t∈[t0,t1]

ϕ↑(t)

)
(t1 − t0)

and

dist(S(t0), S(t1)) ≤

(
sup

t∈[t0,t1]

ϕ(t)

)
(t1 − t0).

Proof. Let us �rst notice that

K := sup
t∈[t0,t1]

ϕ↑(t) ≥ ‖D∗S(t, x)|+ = calm↑S(t, x), for all t ∈ [t0, t1] and x ∈ S(t) .

If K = ∞, there is nothing to prove. Let K < +∞ and assume, towards a contradiction,
that for some δ > 0 we have

ex (S(t0), S(t1)) > (K + δ)(t1 − t0).

Let τ ∈ R be de�ned by

τ := inf { t ∈ [t0, t1] : ex (S(t0), S(t)) > (K + δ)(t− t0) } .

By Proposition 5.26 and the de�nition of the graphical modulus calm↑, for each x ∈ S(t0),
there is εx > 0 and δx > 0 such that

S(t0) ∩B(x, δx) ⊂ S(t) + (K +
δ

2
)|t− t0|B, for all t ∈ [t0, t0 + εx).

Let ε̃x > 0 be the supremum of all ε > 0 such that:

x ∈ S(t) + (K +
δ

2
)|t− t0|B, for all t ∈ [t0, t0 + ε).

If τ = t0, then there exists a sequence (xk)k ⊂ S(τ) such that ε̃xk < 1/k, for all k ≥ 1. Since
S(τ) is compact, the sequence (xk)k has some cluster point x ∈ S(τ). By Proposition 5.26,
there exist εx > 0 and δx > 0 such that

S(t0) ∩B(x, δx) ⊂ S(t) + (K +
δ

2
)|t− t0|B, for all t ∈ [t0, t0 + εx).

which contradicts the maximality of ε̃xk , for k large enough. This establishes that t0 < τ .
Proceeding in the same way, we can actually show that τ ≥ t1. Indeed, assuming τ < t1,
and using the same argument as above (with t0 in the place of τ) together with the triangle
inequality we get a contradiction. Therefore, for any δ > 0 we have:

ex(S(t0), S(t1)) ≤ (K + δ)(t1 − t0),

which �nishes the �rst assertion of the lemma.
For the second part, we follow the same procedure to estimate the reverse excess ex (S(t1), S(t0)),
and conclude thanks to the fact that dist(S(t0), S(t1)) = max{ex(S(t0), S(t1)), ex(S(t1), S(t0))}.
The details are left to the reader.

Now, we proceed with the proof of our second main result.
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5.4.4 Proof of Theorem 5.17.

We recall from Section 5.4.2 the de�nition of T and �x a ∈ T . We prove (a)⇒ (e)⇒ (f)⇒
(d).

a) ⇒ e) : Let b > a such that the statements (a) to (d) of Theorem 5.15 hold true, and that
the oriented talweg ϕ↑ takes �nite values on (a, b) (c.f. Assumption (A2)). We set

σ(t) =

∫ t

a

ϕ↑(s)ds, t ∈ (a, b].

By (d) the above integral is well-de�ned and σ is continuous with σ(a) = 0. Let {(ti, xi)}i≥0 ⊂
S be any catching-up sequence for S. Let k ≥ 1. We shall prove that (5.8) holds for k. By
Proposition 5.13, S is continuous on the interval [t0, tk] and by Lemma 5.19, ϕ↑ is continuous
(and �nite), hence Riemann integrable there. Let {si

j}
ki
j=0 be a partition of the interval

[ti, ti+1], i ∈ {0, . . . , k − 1}, with width

max
j∈{0,...,ki}

|si
j+1 − si

j| <
1

N
, for all i ∈ {0, . . . , k − 1}.

Notice that for every i ∈ {0, . . . , k − 1}, we have si
0 = ti and si

ki
= ti+1. We set

zi
0 := xi ∈ S(ti) and for each j ∈ {0, . . . , ki − 1} we pick zi

j+1 ∈ ProjS(sj+1)(z
i
j).

Then using triangle inequality and the fact that

‖xi+1 − xi‖ = d(xi, S(ti+1)︸ ︷︷ ︸
=S(siki

)

)) ≤ ‖zi
ki
− zi

0‖.

we deduce from Lemma 5.27 that:

‖xi+1 − xi‖ ≤
ki−1∑
j=0

‖zi
j+1 − zi

j‖ ≤
ki−1∑
j=0

(
sup

t∈[sij ,s
i
j+1]

ϕ↑(t)

)
(sj+1 − sj) .

Taking the limit as N tends to in�nity, we obtain that

‖xi+1 − xi‖ ≤
∫ ti+1

ti

ϕ↑(s)ds

and consequently,
k−1∑
i=0

‖xi+1 − xi‖ ≤
∫ tk

t0

ϕ↑(t)dt = σ(tk)− σ(t0).

e) ⇒ f) : It follows directly by taking M = σ(b).

f) ⇒ d) : Let b > a and M > 0 be given by statement (f). By (A2)�(A3), shrinking b if
necessary, we may assume that ϕ↑(t) < ∞, for all t ∈ (a, b) and ∂S is continuous on (a, b).
Notice that for any compact interval [c, d] ⊂ (a, b), the function ϕ↑ is continuous and �nite
on [c, d], therefore Riemann integrable. We shall prove that its integral is bounded by M
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(independently of the values of c and d).

To this end, let t0 ∈ [c, d] and N ∈ N. By compactness, there exists x ∈ S(t0) such
that ‖D∗S(t0, x)|+ = ϕ↑(t0). If ϕ↑(t0) < 1

N
, we set t1 := min{t0 + 1

N
, d}, x0 = x and

y0 ∈ ProjS(t1)(x0). Observe that

‖x0 − y0‖ ≥ 0 ≥ (t1 − t0)

(
ϕ↑(t0)− 1

N

)
.

If ϕ↑(t) ≥ 1
N
, by Proposition 5.26, since calm↑S(t, x) = ϕ↑(t), there are x0 ∈ S(t0) and

t1 ∈ (t0,min{t0 + 1
N
, b}) such that any y0 ∈ ProjS(t1)(x0) satis�es

‖x0 − y0‖ ≥ (t1 − t0)

(
ϕ↑(t0)− 1

N

)
.

Using trans�nite induction we obtain an increasing net {tλ}λ≤Λ ⊂ [c, d] indexed over a ordinal
Λ, such that t0 = c, tΛ = d, 0 < tλ+1 − tλ ≤ 1/N for all λ < Λ, and for any limit ordinal
α ≤ Λ, tα := sup{tλ : λ < α}. Also, we get a net {(xλ, yλ)}λ≤Λ such that yλ ∈ ProjS(tλ+1)(xλ)
and

‖xλ − yλ‖ ≥ (tλ+1 − tλ)
(
ϕ↑(tλ)−

1

N

)
, for all λ < Λ.

Observe that, since the intervals (tλ, tλ+1)λ<Λ are pairwise disjoint and they intersect Q, Λ is
a countable ordinal. For every �nite subset F ⊂ Λ we have∑

λ∈F

‖xλ − yλ‖ ≥
∑
λ∈F

(tλ+1 − tλ)ϕ↑(tλ)−
d− c
N

.

Since {(tλ, xλ), (tλ, yλ) : λ ∈ F} is a subsequence of a piecewise catching-up sequence for S,
taking the supremum over all �nite families F of Λ we get

M ≥
∑
λ<Λ

‖xλ − yλ‖ ≥
∑
λ<Λ

(tλ+1 − tλ)ϕ↑(tλ)−
d− c
N

.

Taking the limit as N goes to in�nity we obtain:

M ≥
∫ d

c

ϕ↑(t)dt.

Since the above inequality is independent of the interval [c, d], we deduce that ϕ↑ is integrable
on (a, b). �

5.5 A non-desingularizable smooth sweeping process

In Section 5.3 we state a characterization of the (5.7)-inequality for smooth sweeping pro-
cesses by assuming assumptions (A1), (A2) and (A3). In this last section, we provide a
smooth sweeping process S : R ⇒ R which cannot be desingularized at 0 in the sense of
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inequality (5.7), i. e. there are no δ1, δ2 > 0 and Ψ : (0, δ1) → (0, δ2) di�eomorphism, with
Ψ′(t) > 0 for all t ∈ (0, δ1), such that

‖D∗S ◦Ψ(t, x)|+ ≤ 1, for all t ∈ (0, δ1), x ∈ S(Ψ(t)).

In order to start the construction, let b : R → R be any positive C∞-smooth function such
that b(0) = 1 and supp(b) ⊂ [−1, 1]. Let f : R→ R be the function de�ned by:

f(x) =
∞∑
n=1

2−n(n+2)b

(
2n+2

(
x− 1

2n

))
, for all x ∈ R. (5.9)

Observe that the previous series is well de�ned because, for each x ∈ R, at most one term is
di�erent from zero. In what follows, let us summarize some properties of f .

Fact 5.28 Let f : R → R be the function constructed in (5.9). Then, f is non-negative
and C∞-smooth. Also, supp(f) ⊂ [0, 5/8]. Moreover, for each n ∈ N, there is a non-trivial
interval Jn ⊂ [2−n−1, 2−n] such that f |Jn ≡ 0.

Proof. By construction, the function f is non-negative. On the other hand, for k ∈ N, we
have that the k-th derivative of f is

f (k)(x) =
∞∑
n=1

2(k−n)(n+2)b

(
2n+2

(
x− 1

2n

))
, for all x ∈ R.

The last fact is satis�ed by choosing Jn := 2−n−3[5, 6].

Now, let us consider the curve γ1 : [−1, 1]→ R2 de�ned by

γ1(t) :=

(∫ t

−1

f(s)ds,−t
)
, for all t ∈ [−1, 1].

Let M :=
∫ 1

−1
f(s)ds and let γ2 : [0,M ]→ R2 be the curve de�ned by γ2(t) = (t,−3).

Let D ⊂ R2 be the closed bounded region delimited by gph(γ1), gph(γ2), {0} × [−3, 1] and
{M} × [−3,−1]. Let S : R⇒ R be any smooth sweeping process such that

gph(S|[0,M ]) := D.

Proposition 5.29 The multivalued map S : R⇒ R constructed above is a smooth sweeping
process such that it cannot be desingularized at 0 in the sense of inequality (5.7). In particular,
it does not satisfy assumptions (A2) and (A3) at 0.

Proof. Let us denote by O the origin of R2. The proposition easily follows from the fact that
the multivalued map S is decreasing on [0,M ], O ∈ ∂gph(S) and the set ∂gph(S) contains
in�nitely many vertical line segments on (0, 1) which accumulates at O.
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Chapter 6

AML functions in two dimensional spaces

In this �nal chapter we focus our study on the regularity of real-valued Lipschitz functions.
We study absolutely minimizing Lipschitz functions (AML for short) de�ned in two dimen-
sional normed spaces. The main contribution of this chapter is the characterization of the
C1-smoothness of AML functions in terms of the smoothness of the underlying norm. A
more general result was obtained by F. Peng, C. Wang and Y. Zhou in [77], published in the
early 2021. This work is discussed in the introduction of the chapter.

6.1 Introduction

Let n ≥ 2 and Ω ⊂ Rn be a nonempty, open and connected set, where Rn is equipped
with an euclidean norm. Aronsson in [6] studied the class of C2-smooth in�nite-harmonic
functions de�ned on Ω. That is, classical solutions u : Ω → R of the equation given by the
in�nity-Laplacian, i.e.

∆∞u :=
n∑

i,j=1

uxiuxjuxixj = 0 (∞L)

We shall see below that solving the in�nity-Laplacian is related to the following optimal
Lipschitz extension problem: let g : ∂Ω → R be a continuous function. Find a function
u : Ω→ R such that g = u|∂Ω and that, for every open set V compactly contained in Ω and
for every function h : V → R such that u|∂V = h|∂V , the following estimate holds:

Lip(u|V ) ≤ Lip(h|V ).

The above problem leads to the following de�nition.

De�nition 6.1 Let (X, ‖ · ‖) be a �nite dimensional Banach space and let Ω be a nonempty
open subset of X. We say that a locally Lipschitz function u : Ω ⊂ X → R is a ‖ · ‖-
absolute minimizing Lipschitz function (‖ · ‖-AML function for short), if for every open set
V compactly contained in Ω and for every function g : V → R such that u|∂V = g|∂V , the
following estimate holds:

Lip(u|V ) ≤ Lip(g|V ).

If no confusion arises from the underlying norm on X, we just say AML functions.
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Let us now present some results in the euclidean setting. Aronsson showed that C2-smooth
in�nity-harmonic functions coincide with C2-smooth AML functions, see [6]. Jensen proved
that functions which are solutions of equation (∞L) in the viscosity sense are exactly the
AML functions. Further, Jensen proved the existence and uniqueness of a viscosity solution
of the Cauchy problem given by Equation (∞L) and a continuous boundary condition, see
[64]. A link between this theory and the stochastic Tug-of-war game theory is presented in
[78].

The regularity of AML functions is one of the main issue in this �eld. In the seminal paper
[87], O. Savin proved that planar ‖ · ‖2-AML functions are continuously di�erentiable, that
is, AML functions de�ned on open subsets of (R2, ‖ · ‖2) are C1-smooth. L. Evans and C.
Smart proved that planar ‖ · ‖2-AML functions are C1,α-smooth for some α > 0, see [48].
Also, provided with tools from capacity theory, in [95] we can �nd an alternative proof of
the smoothness of planar ‖ · ‖2-AML functions. Further results assert that AML functions
in (�nite dimensional) euclidean spaces are at least everywhere di�erentiable, see [49, 50].
However, the continuity of the di�erential remains an open question in higher dimensions.

The main question we address here is the following.

Question 6.2 If (X, ‖ · ‖) is a �nite dimensional normed space, which property of the norm
guarantees the smoothness of all ‖ · ‖-AML functions de�ned on open subsets of X?

In order to continue, let us recall that Br(x0) and Br stand for the open ball of radius r
centered at x0 and at the origin respectively. We also need the following de�nitions. Let
u : Ω ⊂ X → R be an AML function and let x ∈ Ω. For r ∈ (0, dist(x, ∂Ω)), we set

S(x, r)+ = Su(x, r)
+ := max

‖y−x‖=r

u(y)− u(x)

r
.

By Corollary 6.12,

S(x) = Su(x) := lim
r→0

S(x, r)+ exists and 0 ≤ S(x) ≤ S+(x, r).

Our main results read as follows:

Theorem 6.3 Let X be a �nite dimensional Banach space with di�erentiable norm and let
Ω be a nonempty open subset of X. Let u : Ω ⊂ X → R be an AML function. Then for each
x ∈ Ω and r < dist(x, ∂Ω), there exists a vector e∗x,r ∈ X∗, with ‖e∗x,r‖ = S(x), such that

max
y∈Br(x)

|u(y)− u(x)− e∗x,r(y − x)|
r

→ 0 as r → 0.

Observe that, thanks to Theorem 6.3, in order to prove that an ‖ · ‖-AML-function is dif-
ferentiable at some x ∈ Ω, it is enough to prove that the net (e∗x,r)r converges as r tends to
0. A nice example given by D. Preiss (mentioned in [39, 77]) shows that there is a Lipschitz
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function from R to R which is non-di�erentiable at 0, but with a net of linear maps (e∗0,r)r
satisfying the conclusion of Theorem 6.3. However, the convergence of the mentioned net,
and moreover the continuity of the di�erential, is guaranteed by the following theorems.

Theorem 6.4 Let X be a 2-dimensional normed space with di�erentiable norm. There exists
a function δ : (0,∞)→ (0,∞) satisfying the following property: Given an AML function
u : B1 ⊂ X → R such that S(0) 6= 0 and ε > 0, if there exists e∗1 ∈ X∗ such that

sup
x∈B1

|u(x)− e∗1(x)| ≤ δ(ε)‖e∗1‖,

then lim sup
r→0

‖e∗0,r − e∗1‖ ≤ ε‖e∗1‖.

Theorem 6.5 Let X be a 2 dimensional Banach space. The following statements are equiv-
alent.

a) The underlying norm is di�erentiable in X \ {0}.
b) Each AML function de�ned on an open subset of X is continuously di�erentiable.

c) Each AML function de�ned on an open subset of X is everywhere di�erentiable.

The proof of Theorem 6.5 relies on Theorem 6.3 and Theorem 6.4.

Proof of Theorem 6.5. The implication from b) to c) is trivial and the implication from c)
to a) is given by Corollary 6.17, which asserts that the underlying norm of X, restricted to
X \ {0}, is an AML function. So, we only have to prove that a) implies b).

Let u : Ω ⊂ X → R be an AML function. Let x0 ∈ Ω. Let us �rst prove that u is
di�erentiable at x0. Since we are only interested by the di�erentiability of u, replacing if
necessary u by Ru

( ·−x0
R

)
− u(x0) for some R > 0, we can assume that x0 = 0, u(0) = 0 and

B1 ⊂ Ω. By Theorem 6.3, there exists (e∗r)r ⊂ X∗ such that ‖e∗r‖ = S(0) for every r < 1 and

|u(x)− e∗r(x)| ≤ rσ(r), for all x ∈ Br,

where σ : R+ → R is a positive function such that σ(r) tends to 0 as r tends to 0. If S(0) = 0,
then e∗r = 0 for all r > 0, so u is di�erentiable at 0, u′(0) = 0 and ‖u′(0)‖ = S(0). We now
assume S(0) > 0. Let us prove that e∗r converges as r tends to 0. Let ε > 0. We �x s = s(ε)
such that σ(s) ≤ δ(ε)S(0). The function v := 1

s
u(s·) is well de�ned on B1 and, for all x ∈ B1,

we have |v(x) − e∗s(x)| ≤ δ(ε)‖e∗s‖. According to Theorem 6.4 applied to the function v, we
get

lim sup
r→0

‖e∗r − e∗s‖ ≤ ε‖e∗s‖.

If ` is any accumulation point of (e∗s(ε))ε, the above inequality implies that for every ε > 0,

lim sup
r→0

‖e∗r − `‖ ≤ εS(0).

We have proved that (e∗r)r converges to `. Therefore, u is di�erentiable at 0 and u′(0) = `.
Moreover, since ‖e∗r‖ = S(0) for all r, we have that ‖u′(0)‖ = S(0). Using again Theorem 6.4,
we get :
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Claim. If u is any AML function de�ned on B1 such that S(0) > 0, e∗1 is a non zero linear
functional and |u(x)− e∗1(x)| ≤ δ(ε)‖e∗1‖ on B1, then ‖u′(0)− e∗1‖ = limr→∞ ‖e∗r − e∗1‖ ≤ ε.

Let us now check the continuity of u′. If S(0) > 0, �x ε > 0 and denote δ = δ(ε). Let
0 < r0 < dist(0, ∂Ω) such that, for all r ≤ r0, σ(r) ≤ δ(ε)S(0)/2. Fix r < r0. The function
v(·) = u(r·)/r restricted to B1 satis�es

|v(x)− e∗r(x)| ≤ δ

2
S(0) =

δ

2
‖e∗r‖ for all x ∈ B1.

By the above claim, we obtain that ‖u′(0) − e∗r‖ ≤ ε‖e∗r‖. Let y ∈ Br/2. If w : B1 → R is
de�ned by w(·) := 2

r
(u( r

2
· +y) − e∗r(y)), we have |w(x) − e∗r(x)| ≤ δ‖e∗r‖ on B1. The above

claim shows that ‖w′(0)− e∗r‖ = ‖u′(y)− e∗r‖ ≤ ε‖e∗r‖, and hence, ‖u′(0)− u′(y)‖ ≤ 2εS(0).
This proves the continuity of u′ at 0.

Let us prove the continuity of u′ in the case S(0) = 0. Let us �x ε > 0. By de�nition of
S(0), there exists 0 < r < dist(0, ∂Ω) such that S(0, r)+ < ε. By the continuity of S(·, r)+,
S(x, r)+ < ε in a neighbourhood W of 0. Finally, ‖u′(x)‖ = S(x) ≤ S(x, r)+ < ε for all
x ∈ W .

Furthermore, as a consequence of Theorem 6.4 we obtain the following two corollaries. The
proofs of these results are given in Section 6.5.

Corollary 6.6 Let X be a two dimensional normed space with di�erentiable norm. There
exists a function ρ : [0, 1] → R, satisfying limt→0 ρ(t) = 0, such that for any AML function
u : B1 → R, with Lip(u) ≤ 1, the following inequality holds:

‖u′(x)− u′(y)‖ ≤ ρ(‖x− y‖), for all x, y ∈ B1/2.

As a consequence of Corollary 6.6 we obtain

Corollary 6.7 Let X be a two dimensional normed space. The underlying norm on X is
di�erentiable if and only if every AML function u : X → R with a linear growth at in�nity,
i. e.

|u(x)| ≤ C(1 + ‖x‖), ∀x ∈ X,
for some C > 0, is an a�ne function.

F. Peng, C. Wang and Y. Zhou, in [77], follow a di�erent approach to study AML functions
which encompasses Question 6.2. In the mention paper, it is considered as underlying space
an n-dimensional euclidean space (Rn, ‖ · ‖2) and a convex Hamiltonian formulation of the
AML-property. More precisely, let H : Rn → R be a coercive, convex function. It is said
that a locally Lipschitz function u : Ω ⊂ Rn → R is an AMH function if for any nonempty
open set V , compactly contained in Ω, and for any Lipschitz function g : V → R such that
u|∂V = g|∂V , the following estimate holds:

ess sup(H(u′|V )) ≤ ess sup(H(g′)).
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Observe that previous essential suprema are well de�ned thanks to the Rademacher Theo-
rem. Indeed, this theorem assert that any locally Lipschitz function de�ned on a nonempty
open subset of Rn is di�erentiable almost everywhere.

Let H : Rn → R be a norm on Rn. Then a locally Lipschitz function u : Ω ⊂ Rn → R
is AMH if and only if u is ‖ · ‖-AML, where H can be seen as the canonical dual norm of
‖ · ‖. Therefore, Question 6.2 can be generalized in the following sense: Which properties on
the convex Hamiltonian H guarantees the smoothness of all AMH functions de�ned on open
subsets of Rn?

The main results of [77] read as follow:

Theorem 6.8 [77, Theorem 1.1] Let n ≥ 2 and let H : Rn → R be a convex and coercive
function such that the level set H−1({c}) does not contain any line segment for any c ∈ R.
Then, for any u ∈ AMH(Ω), with Ω ⊂ Rn a nonempty open set, any x ∈ Ω and any null
sequence (ri)i ⊂ R+, there is a subsequence (rik)k and a vector e ∈ Rn such that

max
y∈Brik (x)

|u(y)− u(x)− e · (y − x)|
rik

→ 0 as k →∞,

where H(e) = limr→0 ess sup(‖u′(y)‖′ : y ∈ Br(x)).

Theorem 6.9 [77, Theorem 1.2] Let H : R2 → R be a convex and coercive convex function
such that the level set H−1({c}) does not contain any line segment for any c ∈ R. Then, for
any Ω ⊂ R2 nonempty open set and u ∈ AMH(Ω), u is C1-smooth. Moreover, if Ω = R2 and
u ∈ AMH(R2) has a linear growth at in�nity, then u is a linear function in R2.

Even though the results of [77] can be applied to general normed spaces by setting H as the
desired norm, the technique used to obtain these theorems relies on the euclidean structure
of the ambient space R2. A notable di�erence between our approach and the one presented
in [77] is the fact that in the mentioned work they avoid dealing with positively homogeneous
convex functions while we work directly with them, see [77, point 2) in Section 1.1]. Also,
probably since we deal only with norms and not with general convex, coercive functions as
in [77], our proofs of Theorem 6.3 and Theorem 6.5 are shorter.

This chapter is organized as follows: In the next section we present some basic results of
AML functions, several examples to motivate Question 6.2 and we introduce two moduli for
the norm which turn to be important tools to prove Theorem 6.4. Section 6.3 is devoted to
Theorem 6.3. In Section 6.4 we prove Theorem 6.4. We end this chapter with the proofs of
Corollary 6.6 and Corollary 6.7.

Notations: For two functions u, v : Ω ⊂ X → R, we denote by [u < v] the set {x ∈
Ω : u(x) < v(x)}. For two sets V,Ω ⊂ X, we write V ⊂⊂ Ω whenever V is compactly
contained in Ω.
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6.2 Properties of AML functions and two dimensional

spaces

This section is divided in three parts: we summarize some results of AML functions that are
common in the literature, we give some examples to motivate our results and we introduce
two modulus of the norm which will be used to prove Theorem 6.4. In the sequel, X denotes
a �nite dimensional real normed space and Ω a nonempty open subset of X.

6.2.1 Comparison with cones

The following geometric property is the main tool to work with AML functions.

De�nition 6.10 Let u : Ω ⊂ X → R be a continuous function. We say that u satis�es
comparison with cones from above if for every bounded open set V ⊂⊂ Ω, every x0 ∈ X and
every a, b ∈ R for which

u(x) ≤ C(x) := a+ b‖x− x0‖

holds in ∂(V \{x0}), then u ≤ C in V as well. Analogously, we de�ne comparison with cones
from below. A function satis�es comparison with cones if it satis�es comparison with cones
it from above and below.

In fact, the property of comparison with cones characterizes AML functions.

Proposition 6.11 [7, Proposition 2.1][31, Theorem 6.4] Let u : Ω ⊂ X → R be a continuous
function. Then u enjoys comparisons with cones if and only if it is AML.

The next result is a consequence of Proposition 6.11. Its proof follows without changes from
its euclidean counterpart found in [40].

Corollary 6.12 [40, Lemma 2.4 & Lemma 2.7 (i)] Let u : Ω ⊂ X → R be an AML function.
Then, for r < dist(x, ∂Ω), the quantities:

S+(x, r) := max
y∈∂Br(x)

u(y)− u(x)

r
and S−(x, r) := − min

y∈∂Br(x)

u(y)− u(x)

r

are non negative. Moreover, for all x ∈ Ω, the functions S+(x, ·) and S−(x, ·) are non
decreasing in r and

lim
r→0

S+(x, r) = lim
r→0

S−(x, r).

If we denote by S(x) = Su(x) the common limit, we have

S(x) = lim
r→0

sup
y∈Br(x)

u(y)− u(x)

r
.

Notice that, since AML functions de�ned on open sets are locally Lipschitz, for any r > 0,
the functions S+(·, r) and S−(·, r) are continuous in {x ∈ Ω : dist(x, ∂Ω) > r}.
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Corollary 6.13 Let u : Ω ⊂ X → R be an AML function and let R > 0 such that BR ⊂ Ω.
Assume that u = e∗0 on BR, where e∗0 ∈ X∗ and e∗0 6= 0. If ‖x0‖ = R, then S(x0) > 0.

Proof. Since BR ⊂ Ω, there exists y ∈ ∂B1 and t > 0 such that the segment [x0, x0 + ty] is
included in BR and e∗0(y) 6= 0. If e∗0(y) > 0,

S(x0) = lim
r→0

max
x∈∂Br(x0)

u(x)− u(x0)

r
≥ lim

r→0

u(x0 + ry)− u(x0)

r
= e∗0(y) > 0.

On the other hand, if e∗0(y) < 0,

S(x0) = − lim
r→0

min
x∈∂Br(x0)

u(x)− u(x0)

r
≥ − lim

r→0

u(x0 + ry)− u(x0)

r
= −e∗0(y) > 0.

Corollary 6.14 Let u : Ω ⊂ X → R be an AML function. Assume that there exist x ∈ Ω,
W ⊂ Ω neighborhood of x and a function f : W → R satisfying u ≤ f in W . Then,
S(x) ≤ Lip(f) in the following cases:

1. f(·) = u(x) + c‖ · −x‖ for some c > 0, or

2. f is an a�ne function on W and f(x) = u(x) .

Proof. Both cases follow directly by computing S(x) in terms of S(x, ·)+.

6.2.2 Examples of AML functions

Albeit simple, the following proposition will allow us to provide several examples of AML
functions.

Proposition 6.15 Let u : Ω ⊂ X → R be a Lipschitz function. Assume that for every open
set V ⊂⊂ Ω and for each x ∈ V , there exist x1, x2 ∈ ∂V , with the open segment (x1, x2)
included in V , such that x ∈ (x1, x2) and u|[x1,x2] is an a�ne function with slope equal to
Lip(u). Then u is AML.

Proof. If Lip(u) ≡ 0, the conclusion follows trivially. So, we assume that Lip(u) > 0. Let
V ⊂⊂ Ω be a bounded open set. Let g : V → R be a function such that g and u coincide
in ∂V . If g 6= u, without loss of generality there exists x ∈ V such that g(x) > u(x). Let
x1, x2 ∈ ∂V be two vectors such that x ∈ (x1, x2) ⊂ V , u|[x1,x2] is an a�ne function of slope
Lip(u) and u(x2) > u(x) > u(x1). Then, we get

Lip(g) ≥ g(x)− g(x1)

‖x− x1‖
>
u(x)− u(x1)

‖x− x1‖
= Lip(u).

Therefore, u is an AML function.
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Corollary 6.16 Let P : Rn → R and Q : Rn → Rn−1 be the projections onto the �rst
coordinate and onto the last n − 1 coordinates respectively. Let u : (Rn, ‖ · ‖1) → R be a
function de�ned by u(x) = P (x) + g ◦ Q(x), where g : (Rn−1, ‖ · ‖1) → R is a 1-Lipschitz
function. Then, u is AML.

Proof. It is enough to apply Proposition 6.15 at segments included in lines of the form
x+ Re1, with x ∈ Rn.

Corollary 6.17 Let C ⊂ X be a closed convex set. Then, the function u : X\C → R de�ned
by u(x) = dist(x,C) is AML. In particular, the restriction of the norm ‖ · ‖ to X \ {0} is
‖ · ‖-AML.

Proof. Let x ∈ X \ C and let yx ∈ C be one projection of x to C. That is, ‖x − yx‖ =
min{‖x − z‖ : z ∈ C}. It is enough to apply Proposition 6.15 at segments included in
half-lines of the form yx + R+(x− yx), with x ∈ X \ C.

Corollary 6.18 Let X be a �nite dimensional normed space with non-di�erentiable norm.
Then there exists a ‖ · ‖-AML function u : X → R such that u(x) ≤ ‖x‖ for all x ∈ X and
u is not everywhere di�erentiable.

Proof. Since the norm is not di�erentiable, we can �nd a norm one vector z ∈ X and two
distinct functionals, u∗1, u

∗
2 ∈ X∗ of norm 1 such that u∗1(z) = u∗2(z) = 1. The function

u := max{u∗1, u∗2} : X → R is not di�erentiable in the whole line Rz and satis�es u(x) ≤ ‖x‖
for all x ∈ X. To see that u is AML, it is enough to apply Proposition 6.15 at segments
included in lines of the form x+ Rz, with x ∈ X.

Our �nal example shows that the set of smooth AML functions depends on the underlying
norm.

Proposition 6.19 Let p > 2. The function u : R2 \ {0} → R de�ned by u(x, y) = ‖(x, y)‖p
is ‖ · ‖p-AML but not ‖ · ‖2-AML.

Proof. By Corollary 6.17, we already know that u is ‖·‖p-AML. Let us prove the second part
of the proposition. Since p > 2, u is a C2 function. Then, u is ‖ · ‖2-AML only if ∆∞u ≡ 0

in the classical sense. However, ∆∞u((1/3)1/p, (2/3)1/p) = 3−4 p−1
p 2(p − 1)(1 + 22− 4

p − 22− 2
p ),

which is 0 only if p = 2.

6.2.3 The moduli α and ρ

For x∗ ∈ X∗ with ‖x∗‖ = 1, the face of the unit ball de�ned by x∗ is the set

Fx∗ := [x∗ = 1] ∩B1,
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and for β > 0, the slice of the closed unit ball de�ned by x∗ and of depth β is the set

S(x∗, β) := [x∗ > 1− β] ∩B1

For x∗ ∈ X∗ with ‖x∗‖ = 1 and α > 0, we consider the following union of faces

H(x∗, α) :=
⋃
{Fh∗ : ‖h∗ − x∗‖ ≤ α, ‖h∗‖ = 1} ⊂ ∂B1.

For x∗ ∈ X∗ \ {0}, we de�ne H(x∗, α) := H(x∗/‖x∗‖, α). The set H(x∗, α) is a compact
subset of X∗. Now, we de�ne, for x∗ unit vector of X∗ and β > 0,

α(x∗, β) := sup{α ∈ R : H(x∗, α) ⊂ S(x∗, β)},

and α(β) := inf{α(x∗, β) : ‖x∗‖ = 1}. Also, for x∗ ∈ X∗, with ‖x∗‖ = 1, and σ > 0 we
de�ne

ρ(x∗, σ) := sup{ρ : S(x∗, ρ) ∩ ∂B1 ⊂ H(x∗, σ)},
and ρ(σ) := inf{ρ(x∗, σ) : ‖x∗‖ = 1}.

Let us present two examples: If X is an euclidean space, then α(x∗, β) = (2β)1/2 for every
unit vector x∗ and β ∈ (0, 2). If X = (R2, ‖ · ‖∞) and x∗ is the unit linear map de�ned by
x∗((x1, x2)) = x1, then α(x∗, β) = 2 for every β > 0. The next proposition generalizes the
�rst example.

Proposition 6.20 Let X be a �nite dimensional normed space with di�erentiable norm.
Then, for any unit vector x∗ ∈ X∗, lim

β→0
α(x∗, β) = 0. In particular, lim

β→0
α(β) = 0.

Proof. Let x∗ ∈ X∗ of norm one and let ε > 0. Let y∗ ∈ X∗ such that ‖x∗ − y∗‖ = ε and
‖y∗‖ = 1. Since X is a �nite dimensional normed space, Fy∗ is compact. Moreover, since
the norm is di�erentiable, Fx∗ ∩ Fy∗ = ∅. By continuity of x∗ and compactness of Fy∗ , there
exists c > 0 such that

max{x∗(y) : y ∈ Fy∗} = 1− c.
Thus, if β < c, Fy∗ 6⊂ S(x∗, β), and since Fy∗ ⊂ H(x∗, ε), we get

H(x∗, ε) 6⊂ S(x∗, β).

Thus, α(x∗, β) ≤ ε whenever β < c.

The following propositions will be used in the proof of Theorem 6.4.

Proposition 6.21 Let X be a �nite dimensional normed. Then, α(β) ≥ β > 0 for every
β > 0.

Proof. Let x∗, y∗ ∈ X∗ be unit linear functionals such that ‖x∗ − y∗‖ < β. Then,

x∗(y) = y∗(y) + (x∗ − y∗)(y) > 1− β, for all y ∈ Fy∗ .

Thus, Fy∗ ⊂ S(x∗, β) and therefore, α(x∗, β) ≥ β.
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Proposition 6.22 Let X be a �nite dimensional normed space with di�erentiable norm.
For any σ > 0, ρ(σ) > 0. Therefore, for any unit vector x∗ ∈ X∗, and for any unit vector
x ∈ X \H(x∗, σ), x∗(x) ≤ 1− ρ(σ) holds.

Proof. Let σ > 0. Notice that, if σ ≥ 2, there is nothing to prove since H(x∗, σ) = ∂B1 for
any ‖x∗‖ = 1. So, we assume that σ < 2. Let x∗ ∈ X∗ with ‖x∗‖ = 1.

Step 1: ρ(x∗, σ) > 0. Let us de�ne

G :=
⋃
{Fy∗ : ‖y∗‖ = 1 and ‖x∗ − y∗‖ ≥ σ}.

Clearly, G is a compact set which depends on x∗ and σ. Since X has di�erentiable norm, we
have that Fx∗ ∩G = ∅. Therefore, there exists ρ > 0 such that

max{x∗(h) : h ∈ G} := 1− ρ.

Thus, ρ(x∗, σ) ≥ ρ > 0.

Step 2: For any x∗ ∈ X∗ unit linear functional, there exists δ > 0 and c > 0 such that

ρ(y∗, σ) > c for all y∗ such that ‖y∗ − x∗‖ < δ and ‖y∗‖ = 1.

Indeed, let x∗ ∈ X∗ with ‖x∗‖ = 1. Let ε ∈ (0, σ). By step 1, we know that ρ := ρ(x∗, σ−ε) >
0 and that S(x∗, β) ∩ ∂B1 ⊂ H(x∗, σ − ε) whenever β < ρ. De�ne δ := min{ρ/2, ε}. If
‖x∗ − y∗‖ < δ, with ‖y∗‖ = 1, and if β = ρ/2 + ‖x∗ − y∗‖, we get that

S(y∗, ρ/2) ∩ ∂B1 ⊂ S(x∗, β) ∩ ∂B1 ⊂ H(x∗, σ − ε) ⊂ H(y∗, σ).

Therefore,

ρ(y∗, σ) ≥ ρ

2
> 0, whenever ‖x∗ − y∗‖ < δ.

Step 3: ρ(σ) > 0. Since X is �nite dimensional, the conclusion follows directly from the
compactness of the unit sphere of X∗ and step 2.

6.3 Proof of Theorem 6.3

To prove Theorem 6.3, we mainly follow the ideas of [39] where we can �nd the proof of the
theorem whenever X is an euclidean space. Let us start with some geometric facts which
allow us to avoid the euclidean arguments used in the mentioned work. We point out that
Proposition 6.23 and Proposition 6.25 hold true in general Banach spaces.

Proposition 6.23 Let X be a normed space. Let x ∈ ∂B1 and let V = ∂B1 ∩ ∂B2(x). Then
for all y ∈ V , the segment [−x, y] is contained in V .
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Proof. Let y ∈ V . Since B1 ⊂ B2(x), there exists a closed hyperplane [f ∗ = 1] which is
tangent at y to both B1 and B2(x) simultaneously. Observe that this implies that ‖f ∗‖ = 1,
f ∗(y) = 1, ‖y‖ = 1 and f ∗(y − x) = 2. Hence, we conclude that f ∗(−x) = 1. Now, let
z ∈ [−x, y]. Therefore, there is λ ∈ [0, 1] such that z = λ(−x) + (1 − λ)y. By triangular
inequality, we obtain that ‖z‖ ≤ 1 and ‖z−x‖ ≤ 2. By linearity of f ∗, we get that f ∗(z) = 1
and f ∗(z − x) = 2. Therefore, z ∈ V .

Remark 6.24 In Proposition 6.23, if X has a di�erentiable norm, then f ∗ is unique. Indeed,
it must be the support functional of −x. Therefore, V is contained in [f ∗ = 1].

Before stating the next proposition, we recall that in �nite dimensional normed spaces the
notions of Gâteaux di�erentiability and Fréchet di�erentiability coincide for convex functions.
Therefore, Proposition 6.25 can be used, for instance, in �nite dimensional normed spaces
with di�erentiable norm.

Proposition 6.25 Let X be a Banach space. Let u+, u− ∈ SX such that the norm is Gâteaux
di�erentiable at u+ and u− with di�erential u∗ and −u∗ respectively. Let f : X → R be a
1-Lipschitz function such that f(tu+) = t and f(tu−) = −t for all t ≥ 0. Then f ≡ u∗.

Proof. First case: Let us start with v ∈ ker(u∗). By the di�erentiability of the norm,
there exists a sequence (εn)n ⊂ R+ which tends to 0 as n tends to in�nity and such that the
following expression

max{|‖nu+ − v‖ − ‖nu+‖|, |‖nu− − v‖ − ‖nu−‖|} ≤ εn

holds true for all n ∈ N. Now, if n is large enough, n > f(v) and then

1 ≥ f(nu+)− f(v)

‖nu+ − v‖
≥ n− f(v)

n+ εn
,

this implies f(v) ≥ −εn for all n large. Thus, f(v) ≥ 0. For the reverse inequality, observe
that

1 ≥ |f(nu−)− f(v)|
‖nu− − v‖

≥ n+ f(v)

n+ εn
,

holds true for all n > 0. Finally, we arrive to f(v) ≤ εn, for all n > 0. Therefore f(v) ≤ 0,
implying that f(v) = 0.

Second case: Let v ∈ X \ ker(u∗). Without loss of generality, assume that u∗(v) = α > 0.
Let us consider the function g : X → R de�ned by g(x) = f(x + αu+) − α. Clearly, g is a
1-Lipschitz function such that g(tu+) = t for all t ≥ 0. We claim that g(tu−) = −t for all
t > 0. Indeed, let us �x t > 0. For s > 0, we have that u∗(−αu+ + su−) = −α − s. Thus,
‖−αu+ + su−‖ = α+ s. Also, since g(0) = 0, g(−αu+ + su−) = −α− s and g is 1-Lipschitz,
g must be linear along the segment [0,−αu+ + su−], i.e.

g(λ(−αu+ + su−)) = −λ(α + s),∀λ ∈ [0, 1], ∀s > 0.
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If s > t, we can set λ = t/s. Using the continuity of g, sending s to in�nity, we get that
g(tu−) = −t. Finally, the function g satis�es the hypothesis to apply the �rst case at the
vector v − αu+ ∈ ker(u∗). Hence, we get that g(v − αu+) = 0. Thus, by de�nition of g,
f(v) = α, �nishing the proof.

The following corollary directly follows from Proposition 6.25. In fact, this result is obtained
in [39] whenever X is an euclidean space.

Corollary 6.26 Let X be a Banach space. Let u ∈ ∂B1 such that the norm is Gateaux
di�erentiable at u with di�erential u∗. Let f : X → R be a 1-Lipschitz function such that
f(tu) = t for all t ∈ R. Then f ≡ u∗.

Let us continue with the following lemma.

Lemma 6.27 Let X be a �nite dimensional Banach space and let Ω be a nonempty open
subset of X. Let u : Ω ⊂ X → R be an AML function and let x ∈ Ω. Then, the following
assertions are equivalent:

i) For each r ∈ (0, dist(x, ∂Ω)), there exists a vector (e∗x,r)r ⊂ X∗, with ‖e∗x,r‖ = S(x),
such that

max
y∈Br(x)

|u(y)− u(x)− e∗x,r(y − x)|
r

→ 0 as r → 0.

ii) For any decreasing sequence (rj)j, convergent to 0, there are a subsequence (rj(k))k and
e∗ ∈ X∗, with ‖e∗‖ = S(x), such that

max
y∈Brj(k) (x)

|u(y)− u(x)− e∗(y − x)|
rj(k)

→ 0 as k →∞.

Proof. i)⇒ ii). This is due to the compactness of closed bounded subsets of X∗.

ii) ⇒ i). Reasoning by contradiction, if i) does not hold true, then there are ε > 0 and a
sequence (rj)j, convergent to 0, such that

max
y∈Brj (x)

|u(y)− u(x)− e∗(y − x)|
rj

≥ ε for all j ∈ N, for all e∗ ∈ X∗, ‖e∗‖ = S(x).

This clearly contradicts statement ii).

Now, we can provide the proof of Theorem 6.3.

Proof of Theorem 6.3. Let x ∈ Ω. We prove Lemma 6.27 ii). Let (rj)j ⊂ R+ be a sequence
which converges to 0. For each j ∈ N, let us de�ne vj : r−1

j (Ω− x)→ R∗ by

vj(y) =
u(x+ rjy)− u(x)

rj
.
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For each compact subset K of X, the functions vj are well de�ned on K for j large enough.
Since u is a locally Lipschitz function, (vj)j|K form an equi-Lipschitz family vanishing at 0.
So by Arzela-Ascoli Theorem, up to a subsequence, we can assume that the sequence (vj)
converges uniformly on compact subsets of X towards a Lipschitz function v vanishing at 0.
i.e. v(y) = limj vj(y) for any y ∈ X. If v linear, then we can take e∗ = v.

So, to prove Theorem 6.3, it remains to show that v is necessary linear. Let S(x) be computed
with the function u (see Corollary 6.12). Since a locally uniform limit of functions satisfying
comparison with cones satis�es comparisons with cones, we can apply Corollary 6.12 on v as
well. From now on, we de�ne the quantities

L+(y, r) := max
z∈∂Br(y)

v(z)− v(y)

r
, and L−(y, r) := − min

z∈∂Br(y)

v(z)− v(y)

r
,

for y ∈ X and r > 0. Also, we de�ne the corresponding values

L+(y) = lim
r→0

L+(y, r) and L−(y) = lim
r→0

L−(y, r),

where L(y) = L+(y) = L−(y), by Corollary 6.12.

Proposition 6.28 Assume that max{L−(y, r), L+(y, r)} ≤ S(x) for all r > 0 and for all
y ∈ X. Further, assume that L+(0) = S(x) = L−(0). Then v is linear.

Proof. The �rst assumption implies that Lip(v) ≤ S(x). Thanks to the monotonicity of
L±(0, ·) (see Corollary 6.12) and the second assumption of the statement, we get that S(x) ≤
min{L−(0, r), L+(0, r)}, and therefore, S(x) = L+(0, r) = L−(0, r). Further, this implies
that Lip(v) ≥ S(x), and then Lip(v) = S(x). By continuity of v and compactness of closed
bounded sets, let z+

r , z
−
r ∈ ∂Br be such that

L±(0, r) = ±v(z±r )− v(0)

r
= ±v(z±r )

r
.

Therefore:

L+(0, r) = L−(0, r) = S(x) =
v(z+

r )− v(z−r )

2r
.

Observe that the function v is an S(x)-Lipschitz function such that

v(z+
r )− v(z−r ) = 2S(x)r ≤ S(x)‖z+

r − z−r ‖. (6.1)

Since z+
r , z

−
r ∈ ∂Br, ‖z+

r −z−r ‖ ≤ 2r, and together with (6.1), we get that ‖z+
r −z−r ‖ = 2r and

that v is an a�ne function on [z−r , z
+
r ]. Moreover, since v(0) = 0, we have that v(z+

r ) = S(x)r
and v(z−r ) = −S(x)r.

Let u∗ ∈ X∗ be the norm one linear functional such that u∗(z+
1 ) = 1. By Proposition 6.23 and

Remark 6.24, we deduce that u∗(z−1 ) = −1. Indeed, if u∗(z−1 ) < −1, then z−1 /∈ ∂B1∩∂B2(z+
1 ).

Thus, ‖z+
1 − z−1 ‖ < 2, which contradicts the fact that Lip(v) = S(x). Let r > 1. Let us

show that u∗(z+
r ) = r. Indeed, since v(0) = 0, v(z+

r ) = S(x)r and v is S(x)-Lipschitz, v must
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be linear along the segment [0, z+
r ]. Therefore, the vector z+

r /‖z+
r ‖ may take the place of z+

1

because v(z+
r /‖z+

r ‖) = S(x). If u∗(z+
r ) < r, then u∗(z+

r /‖z+
r ‖) < 1. By Proposition 6.23 and

Remark 6.24, we get that ∥∥∥∥z−1 − z+
r

‖z+
r ‖

∥∥∥∥ < 2,

which contradicts the fact that Lip(v) = S(x). As a direct consequence of u∗(z+
r ) = r we get

that u∗(z−r ) = −r.

Since X is a �nite dimensional space, there exist a sequence (r(n))n ⊂ R+ which goes to
in�nity and two vectors q+, q− ∈ ∂B1 such that

lim
n→∞

z±r(n)

‖z±r(n)‖
= q±.

Clearly u∗(q+) = 1 and u∗(q−) = −1. As a consequence of the continuity of v and its linear
behavior along the lines [0, z+

r(n)], with slope S(x), we get that v(tq+) = tS(x) for all t ≥ 0.
Analogously, we get that v(tq−) = −tS(x). Finally, applying Proposition 6.25, we conclude
that v = S(x)u∗.

To �nish the proof of Theorem 6.3, it remains to prove the hypothesis of Proposition 6.28.
We point out that the this part of the proof follows as in the proof given in [39], where X is
an euclidean space.

To this end, let us start with the case of the superscript +. Let y ∈ X and z ∈ ∂Br(y) such
that

L+(y, r) =
v(z)− v(y)

r
= lim

j→∞

u(rjz + x)− u(rjy + x)

rjr
. (6.2)

Since rjz ∈ ∂Brjr(rjy) we get that

u(rjz + x)− u(rjy + x)

rjr
≤ S+(rjy + x, rjr) ≤ S+(rjy + x,R), (6.3)

for rjr < R < dist(rjy + x, ∂U). Notice that in (6.3), the �rst and second inequality are due
to the de�nition of S+ and to Corollary 6.12 respectively. Combining (6.2), (6.3) and using
the continuity of the function S+(·, R), we get that

L+(y, r) ≤ lim
j→∞

S+(rjy + x,R) ≤ S+(x,R).

Finally, sending R to 0 we obtain that L+(y, r) ≤ S(x). To prove the second hypothesis, let
us consider y = 0. Then, we compute

L+(0, r) = max
z∈∂Br

v(z)

r
= max

z∈∂Br
lim
j→∞

u(rjz + x)− u(x)

rjr
.

By compactness of ∂Br and continuity of u, for each j there exists zj ∈ ∂Br satisfying

u(rjzj + x) = max
z∈∂Br

u(rjz + x).
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Let us consider any cluster point z of (zj)j ⊂ ∂Br. Let (j(n)) be a subsequence such that
zj(n) → z. Using the fact that u is Lipschitz in a neighborhood of x, we prove that

L+(0, r) ≥ lim
n→∞

u(rj(n)z + x)− u(x)

rj(n)r
= lim

n→∞
max
z∈∂Br

u(rj(n)z + x)− u(x)

rj(n)r

= lim
n→∞

S+(x, rj(n)r) = S(x).

Therefore, sending r to 0 we get that L+(0) ≥ S(x). Thus, L+(0) = S(x). The case with
superscript − is analogous. This ends the proof of Theorem 6.3.

6.4 Proof of Theorem 6.4

O. Savin, in [87], proved that every planar AML function is continuously di�erentiable when-
ever the underlying space is endowed with an euclidean norm. In the sequel, we generalize
the technique developed in the mentioned paper to prove Theorem 6.4. For the sake of com-
pleteness, we provide the proofs of Proposition 6.29 and Lemma 6.32 which follow without
signi�cant changes from the work [87].

From now on, X denotes a 2 dimensional Banach space equipped with a di�erentiable norm.
The proof of Theorem 6.4 uses Theorem 6.3 and the following two propositions.

Proposition 6.29 [87, Lemma 1] Let u : Ω ⊂ X → R be an AML function where Ω is
a nonempty open and convex set containing 0 and that u does not coincide with an a�ne
function on any neighborhood of 0. Then, for every open subset W of Ω containing 0, there
exist y ∈ W and an a�ne function g := e∗+u(y)−e∗(y), where e∗ ∈ X∗ satis�es ‖e∗‖ = S(y),
such that the one of the sets [u > g] and [u < g] has at least two distinct connected components
intersecting W .

Proof. LetW be an open subset of Ω containing 0. Then, there exists a segment [z1, z2] ⊂ W
such that u is not a�ne restricted to it. Thus, there is an a�ne function ` on [z1, z2] and a
point y ∈ (z1, z2) such that u(y) = `(y) and

u ≥ ` in [z1, z2] and u(zi) > `(zi), for i = 1, 2 or

u ≤ ` in [z1, z2] and u(zi) < `(zi), for i = 1, 2.

We treat the �rst case, the second one is similar. From Theorem 6.3, there exists vectors e∗y,r
such that ‖e∗y,r‖ = S(y) and

lim
r→0

max
x∈Br(y)

|u(x)− u(y)− e∗y,r(x− y)|
r

= 0.
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By compactness, there is a sequence (ri)i, which converges to 0, such that e∗y,ri → e∗. There-
fore, ‖e∗‖ = S(y) and

lim
i→∞

max
x∈Bri (y)

|u(x)− g(x))|
ri

= 0. (6.4)

where g is the a�ne function de�ned by g(x) = e∗(x)−e∗(y)+u(y). Since u ≥ ` in [z1, z2] and
u(y) = `(y), the limit (6.4) implies that g coincides with ` in [z1, z2], and then, z1, z2 ∈ [u > g].

Reasoning by contradiction, suppose that there exists a polygonal line γ ⊂ [u > g] connecting
the point z1 and z2. Let Γ be the union of γ with the segment [z1, z2], and U be the union
of all bounded connected component of X \ Γ. Let h∗ ∈ X∗ be a non-zero linear functional
such that h∗(z2 − z1) = 0. Using the fact that y /∈ γ and replacing h∗ by −h∗ if necessary,
there exists δ > 0 such that Bδ(y)∩ [h∗ > 0] ⊂ U . Since γ is compactly contained in [u > g],
there exists ε > 0 such that u ≥ g + εh∗ on γ, hence also on Γ. We have u ≥ g + εh∗ on
∂U ⊂ Γ. Since u is an AML function, u ≥ g + εh∗ on U , so u− g ≥ εh∗ on Bδ(y) ∩ [h∗ > 0].
This contradicts the limit (6.4), �nishing the proof.

The assumptions of Proposition 6.30 are explained by the conclusions of Theorem 6.3 and
Proposition 6.29.

Proposition 6.30 Let ρ > 0. Let u : Bρ ⊂ X → R be an AML function and let e∗1 ∈ X∗
such that

sup{|u(x)− e∗1(x)|, x ∈ Bρ} ≤ λρ‖e∗1‖.

Further, assume that there exists e∗ ∈ X∗ such that [u > e∗] has at least two distinct connected
components that intersect Bρ/6. Then, for ε > 0, there exists λ(ε) > 0 such that if λ ≤ λ(ε),

‖e∗ − e∗1‖ ≤ ε‖e∗1‖.

Proof. If e∗1 = 0, then u is identically 0 in Bρ. Therefore, the second hypothesis cannot
occur. So, without loss of generality, we assume that e∗1 6= 0. Let R = C(ε,X) > 0 given by

Lemma 6.31. Let us de�ne λ(ε) :=
1

6C(ε,X)
. If w : B6R → R is the function de�ned by

w(x) :=
6R

ρ‖e∗1‖
u
( ρx

6R

)
,

and if λ < λ(ε), the function w satis�es

(H1) sup{|w(x)− e∗1(x)

‖e∗1‖
| : x ∈ B6R} ≤ 1.

(H2) The set [w > e∗

‖e∗1‖
] has at least two distinct connected components that intersect BR.

Therefore, Proposition 6.30 follows from Lemma 6.31 below.

Lemma 6.31 For every ε > 0, there exists a constant C(ε,X) > 0 with the following
property : Let ε > 0, R ≥ C(ε,X) and u : B6R → R be an AML function satisfying
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(H1) sup{|u(x)− e∗1(x)| : x ∈ B6R} ≤ 1 for some ‖e∗1‖ = 1,

(H2) There exists a linear functional e∗ ∈ X∗ such that the set [u > e∗] has at least two
distinct connected components that intersect BR.

Then
‖e∗ − e∗1‖ ≤ ε.

Proof of Lemma 6.31. Let f ∗ = e∗1 − e∗ and let ε > 0. Without loss of generality, assume
that f ∗ 6= 0. By (H1), we have that

[f ∗ < −1] ∩B6R ⊂ [u < e∗]

[f ∗ > 1] ∩B6R ⊂ [u > e∗]

Thus, by hypothesis (H2), we can �nd a connected component U of [u > e∗] that intersects
BR and that is included in the strip S := [|f ∗| ≤ 1] of width 2‖f ∗‖−1. If R > ‖f ∗‖−1, the
set S ∩ ∂BR is the union of two disjoint arcs of ∂BR. Observe that U cannot be compactly
contained in B6R. Otherwise, it would contradict the AML property of u (comparing against
e∗ on U). Consider a polygonal line Γ ⊂ U ⊂ S that starts in BR and exits B6R. Let x0 ∈ X
be a vector such that ‖x0‖ = 3R and f ∗(x0) = 0. Replacing x0 by −x0 if necessary, we can
assume that Γ intersects the two distinct arcs of S ∩ ∂BR(x0). Let v : B2R → R be the
function de�ned by v(·) := u(·+ x0)− e∗1(x0). Observe that by (H1),

|v(x)− e∗1(x)| ≤ |u(x+ x0)− e∗1(x0 + x)| ≤ 1, for all x ∈ B2R,

and that, due to the fact that f ∗(x0) = 0, y ∈ [v > e∗] if and only if y + x0 ∈ [u > e∗].
Therefore, replacing u by v (and x0 by −x0 if necessary), hypothesis (H1) and (H2) imply:

(H1') max{|u(x)− e∗1(x)| : x ∈ B2R} ≤ 1 for some ‖e∗1‖ = 1.

(H2') If R > ‖f ∗‖−1 = ‖e∗1 − e∗‖−1, the set [u > e∗] ∩ B2R has a connected component
U , included in S = [|f ∗| ≤ 1], which contains a polygonal line Γ connecting the two
distinct arcs of S ∩ ∂BR.

Lemma 6.31 follows from the next two lemmas.

Lemma 6.32 [87, Lemma 3] Let 0 < γ < 1. If R ≥ C1(γ) := 20γ−2, then

‖e∗‖ ≥ 1− γ.

In order to state the second lemma, let us recall that if e∗ 6= 0 and β > 0, the set

H

(
e∗,

β

2

)
:=
⋃{

Fh∗ :

∥∥∥∥h∗ − e∗

‖e∗‖

∥∥∥∥ ≤ β

2
, ‖h∗‖ = 1

}
,

where Fh∗ := [h∗ = 1] ∩B1.

Lemma 6.33 Let u be AML satisfying (H1') and (H2'), let ‖e∗‖ ≥ γ > 0 and β > 0. There
exists C2 = C2(γ, β) such that if R ≥ C2, then

inf

{
|f ∗(h)| : h ∈ H

(
e∗,

β

2

)}
< γ.
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Let us �nish the proof of Lemma 6.31. Since X is a �nite dimensional space with di�erential
norm, X∗ is uniformly convex. Hence, there exists σ(ε) > 0 such that for any two unit vectors
x∗, y∗ in X∗ satisfying ‖x∗+y∗

2
‖ > σ(ε), then ‖x∗ − y∗‖ < ε. If γ, β > 0 are small, we have

β + γ < 1− σ(ε/2). (6.5)

and
β

2
+
γ + β

1− β
<
ε

2
. (6.6)

Let us �x β = β(ε) and γ = γ(ε) satisfying (6.5) and (6.6), and de�ne

C(ε,X) := max{C1(γ), C2(γ, β)}.

Assume that R ≥ C(ε,X). Lemma 6.32 implies that

‖e∗‖ ≥ 1− γ, (6.7)

and Lemma 6.33 implies the existence of a unit vector h∗ ∈ X∗ satisfying ‖h∗ − e∗

‖e∗‖‖ ≤ β/2

and a vector h ∈ Fh∗ such that |f ∗(h)| ≤ γ. So h ∈ H(e∗, β/2), and since Proposition 6.21
implies β/2 < β ≤ α( e∗

‖e∗‖ , β), we have

(1− β)‖e∗‖ < e∗(h). (6.8)

The condition |f ∗(h)| ≤ γ implies that

e∗(h) ≤ e∗1(h) + γ ≤ 1 + γ. (6.9)

Conditions (6.7), (6.8) and (6.9) imply

‖e∗1 + h∗‖ ≥ (e∗1 + h∗)(h) ≥ e∗(h)− γ + 1 ≥ (1− β)‖e∗‖+ 1− γ ≥ (1− β)(1− γ) + 1− γ.

Thus, ‖ e∗1+h∗

2
‖ ≥ 1 − γ − β ≥ σ(ε/2), therefore ‖e∗1 − h∗‖ ≤ ε/2. Conditions (6.7), (6.8)

and (6.9) also imply

1− γ ≤ ‖e∗‖ ≤ 1 + γ

1− β
.

So,

‖h∗ − e∗‖ ≤
∥∥∥∥h∗ − e∗

‖e∗‖

∥∥∥∥+ |‖e∗‖ − 1‖ ≤ β

2
+
γ + β

1− β
≤ ε/2.

Finally, we get that ‖e∗ − e∗1‖ ≤ ε, �nishing the proof of Lemma 6.31.

In the sequel, we prove Lemma 6.32, Lemma 6.33 and Theorem 6.4.

Proof of Lemma 6.32. Reasoning by contradiction, let us assume that ‖e∗‖ < 1 − γ. Since
f ∗ = e∗1 − e∗ and ‖e∗1‖ = ‖e1‖ = e∗1(e1) = 1, we have that 2 ≥ ‖f ∗‖ ≥ f ∗(e1) > γ. Let
y0 := −4γ−1e1, and let y1 be the point of intersection of {te1 : t ≥ 0} with the line [f ∗ = 1].
We have ‖y1‖ = f ∗(e1)−1 < γ−1, so

4γ−1 < ‖y1 − y0‖ < 5γ−1.
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Figure 6.1: Lemma 6.32: The set Em.

Since R ≥ C1 := 20γ−2 > ‖f ∗‖−1, we can apply (H2'), and we also have y0 ∈ BR and
y1 ∈ BR(y0) ⊂ B2R .

For c ≥ 0, let Vc be the function de�ned on X by

Vc(x) := e∗1(y0) + 1 + c‖x− y0‖.

Notice that, for c > ‖e∗‖, the set

Ec := {x ∈ X : Vc(x) ≤ e∗(x)}

is convex and compact. We claim that u(y0) ≤ Vc(y0) < e∗(y0). Indeed, y0 ∈ BR, so condition
(H1') implies the �rst inequality. On the other hand, Vc(y0) = e∗1(y0)+1 = e∗(y0)+f ∗(y0)+1 =
e∗(y0) + 1− 4f ∗(e1)/γ, this implies the second inequality.

Let m := max{c > ‖e∗‖ : Ec ∩ ∂([u < e∗] ∩ B2R) 6= ∅}. The claim implies y0 ∈ Ec for
every c > 0. Since the diameter of Ec tends to 0 as c tends to in�nity, we conclude that Ec
converges to {y0} in Hausdor�-Pompeiu distance. The claim also implies u(y0) < e∗(y0), so
m <∞. Now, we set

c0 := 1− 2

‖y1 − y0‖
> 1− γ

2
> ‖e∗‖.

The equality ‖y1−y0‖ = e∗1(y1−y0) implies Vc0(y1) = e∗1(y0)+‖y1−y0‖−1 = e∗1(y1)−f ∗(y1) =
e∗(y1). Therefore, y1 ∈ Ec0 , and we know that y0 ∈ Ec0 , so the segment [y0, y1] is included
in the convex Ec0 . Since [y0, y1] crosses all the strip S, it must intersect the polygonal line
Γ given by (H2') which is included in [u > e∗]. Therefore, Ec0 ∩ ∂([u < e∗] ∩ B2R) 6= ∅,
this shows that m ≥ c0. The compact Em is included in B2R. Indeed, let x ∈ Em. Since
‖e∗‖ < 1− γ, we get

0 ≤ e∗(x)− Vm(x) ≤ e∗(y0)− Vm(y0) + (1− γ −m)‖x− y0‖.

Using the inequalities m > 1− γ/2 and e∗(y0)− Vm(y0) ≤ 8/γ, we obtain ‖x− y0‖ < 16γ−2,
and so ‖x‖ < 20γ−2 ≤ R. Therefore, if xm ∈ Em ∩ ∂([u < e∗] ∩ B2R), then ‖xm‖ < R,
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and so xm ∈ ∂[u < e∗], and by continuity of u, we have that u(xm) = e∗(xm). Notice
now, by de�nition of m, we have that u ≤ Vm in ∂(Em \ {y0}). Hence, by comparisons
with cones, u ≤ Vm in Em. Since Vm is an a�ne function restricted to [xm, y0] and that
u(xm) = Vm(xm) ≥ Vm(y0), we get

S(xm) = − lim
r→0

min
y∈∂Br(xm)

u(y)− u(xm)

r
≥ − lim

r→0

Vm(yr)− Vm(xm)

r
= m > c0 ≥ 1− γ

2
, (6.10)

where yr is the point of intersection of ∂Br(xm) with [xm, y0]. However, we claim that
S(xm) ≤ ‖e∗‖ + 2R−1. To this end, let r > 0 small and let U ′ be the open set relative
to BR(xm) de�ned as the union of all connected components of [u > e∗] ∩ BR(xm) that
intersect Br(xm). If U ′ = ∅, then u ≤ e∗ in Br(xm). Therefore, since u(xm) = e∗(xm), by
Corollary 6.14 we get that S(xm) ≤ ‖e∗‖, this proves the claim in this case. If U ′ 6= ∅, from
(H2') we have that U ′ ⊂ S provided that r < dist(xm,Γ). For x ∈ ∂U ′ ∩ BR(xm), we have
that u(x) = e∗(x). For x ∈ U ′ ∩ ∂BR(xm),

u(x) ≤ e∗(x) + 2 ≤ e∗(xm) +R‖e∗‖+ 2,

where the �rst inequality follows as in (6.13), in the proof of Lemma 6.33. Therefore, com-
parison with cones implies

u(x) ≤ e∗(xm) + (‖e∗‖+ 2R−1)‖x− xm‖, for all x ∈ U ′ ∩BR(xm). (6.11)

Combining (6.11) and the fact that u ≤ e∗ in Br(xm) \ U ′, we get that the inequality (6.11)
holds in Br(xm). By Corollary 6.14, we conclude that

S(xm) ≤ ‖e∗‖+ 2R−1.

Since R ≥ C1 ≥ 5γ−1, we arrive to S(xm) ≤ 1− γ/2. The last inequality contradicts (6.10),
�nishing the proof of Lemma 6.32.

Proof of Lemma 6.33. If ‖f ∗‖ ≤ γ, the conclusion is direct. For this, let us assume that
‖f ∗‖ > γ. If we further assume that C2 ≥ 3/γ, since R ≥ C2, the conclusion of hypothesis
(H ′2) is available for us. Reasoning by contradiction, we have

inf

{
|f ∗(h)| : h ∈ H

(
e∗,

β

2

)}
≥ γ. (6.12)

Let e be a unit vector in X such that e∗(e) = ‖e∗‖, and let x0 be the point of intersection of
∂S with the half line {−te : t > 0}. We have that x0 = −t0e, where t0 satis�es

1 = t0|f ∗(e)| ≥ t0γ.

So, ‖x0‖ = t0 ≤ 1/γ ≤ C2/3 ≤ R/3. Thus −x0 ∈ BR(x0) ⊂ B2R. Hypothesis (H1') and
(H2') imply

|u(x)− e∗(x)| ≤ |u(x)− e∗1(x)|+ |e∗(x)− e∗1(x)| ≤ 2, for all x ∈ U ∩BR(x0).

u(x) = e∗(x) for all x ∈ ∂U ∩BR(x0).
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Figure 6.2: Lemma 6.33: Ball of radius R centered at x0.

Hence, if x ∈ U ∩ ∂BR(x0),

u(x) ≤ e∗(x) + 2 ≤ e∗(x0) + sup
y∈S∩∂BR(x0)

e∗(y − x0) + 2 (6.13)

Since R ≥ C2, |f ∗(Rh)| ≥ 3 for every h ∈ H(e∗, β/2). Therefore, |f ∗(Rh − x0)| ≥ 2 > 1 for
every h ∈ H(e∗, β/2), i.e.

(S ∩ ∂BR(x0)) ∩ (RH(e∗, β/2)− x0) = ∅.

By Proposition 6.22, with σ = β/2, we obtain ρ ∈ (0, 1) depending on β, such that

e∗(x− x0) ≤ (1− ρ)‖e∗‖‖x− x0‖, for all x ∈ S ∩ ∂BR(x0). (6.14)

Let us assume now that C2 ≥ 3/(γρ) > 3/γ. Since R ≥ C2 and ‖e∗‖ ≥ γ, we get R‖e∗‖ρ ≥ 2.
Combining (6.13) and (6.14) we get

u(x) ≤ e∗(x0) + ‖e∗‖‖x− x0‖ for all x ∈ U ∩ ∂BR(x0).

From comparisons with cones, we obtain

u(x) ≤ e∗(x0) + ‖e∗‖‖x− x0‖, for all x ∈ U ∩BR(x0).

In particular,

u(x) ≤ e∗(x), for all x ∈ U ∩BR(x0) ∩ {x0 + te : t > 0}.

This is a contradiction with (H ′2) since U ∩BR(x0) ∩ {x0 + te : t > 0} necessarily intersects
Γ.

Now, we are able to present the proof of Theorem 6.4.

Proof of Theorem 6.4. If ‖e∗1‖ = 0, there is nothing to prove. If ‖e∗1‖ 6= 0, by homogeneity,
we can assume ‖e∗1‖ = 1. By Theorem 6.3, there exists (e∗0,r)r ⊂ X∗ such that ‖e∗0,r‖ = S(0)
for every r and

|u(x)− u(0)− e∗0,r(x)| ≤ rσ(r), for all x ∈ Br, (6.15)
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where σ : R+ → R is a positive function such that σ(r) tends to 0 as r tends to 0.

Let us �x ε > 0, we need to �nd δ := δ(ε) > 0 such that, if |u(x)− e∗1(x)| ≤ δ in B1, then

lim sup
r→0

‖e∗0,r − e∗1‖ ≤ ε, (6.16)

First case: Suppose that u is not identical to an a�ne function in any neighborhood of 0.
We show that if δ ≤ δ1(ε) = min{λ(ε/4)/4, 1/2} where λ is the function given in Propo-
sition 6.30, then (6.16) holds. Let r ∈ (0, 1/2) such that σ(r) ≤ λ(ε/4)S(0)/4. Thanks to
Proposition 6.29, replacing u by −u if necessary, there exist y ∈ Br/24 and a linear functional
e∗ ∈ X∗ satisfying ‖e∗‖ = S(y) and such that the set

O = [u > e∗ + u(y)− e∗(y)] ∩B1

has at least two distinct connected components intersecting Br/24 . The function v(·) :=
u(· + y) − u(y) is well de�ned on B1/2. Let us check that v satis�es the hypothesis of
Proposition 6.30. The set [v > e∗] = (O − y) ∩ B1/2 has at least two distinct connected
components intersecting Br/12 ⊂ B1/12. On the other hand, for x ∈ B1/2 we have

|v(x)− e∗1(x)| ≤ |u(x+ y)− e∗1(x+ y)|+ |u(y)− e∗1(y)| ≤ 2δ.

Since 2δ ≤ λ(ε/4)/2, thanks to Proposition 6.30 applied with ρ = 1/2, we get

‖e∗ − e∗1‖ ≤
ε

4
. (6.17)

Since |u(x)− e∗1(x)| ≤ δ in B1 and ‖e∗1‖ = 1, we obtain

‖e∗0,r‖ = S(0) ≤ S+

(
0,

1

2

)
= 2 max

x∈∂B1/2

u(x)− u(0) ≤ 1 + 4δ. (6.18)

We now apply Proposition 6.30 to the function v on Br/2. The set [v > e∗] ∩ Br/2 has at
least two distinct connected components which intersect Br/12. On the other hand, thanks
to (6.15), for x ∈ Br/2 we have that

|v(x)− e∗0,r(x)| ≤ |u(x+ y)− u(0)− e∗0,r(x+ y)|+ |u(y)− u(0)− e∗0,r(y)| ≤ 2rσ(r).

Since 2σ(r) ≤ λ(ε/4)‖e∗0,r‖/2, we get that

|v(x)− e∗0,r(x)| ≤ r

2
λ(ε/4)‖e∗0,r‖, for all x ∈ Br/2.

Finally, we can apply Proposition 6.30 with ρ = r/2 to obtain

‖e∗ − e∗0,r‖ ≤
ε‖e∗0,r‖

4
≤ (1 + 4δ)ε

4
≤ 3ε

4
, (6.19)

Combining (6.17) with (6.19) we get that ‖e∗1− e∗0,r‖ ≤ ε. Thus (6.16) is satis�ed in this case
whenever δ ≤ δ1(ε).
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Second case: Suppose that there exists e∗0 ∈ X∗ such that u = e∗0 in a neighborhood of 0.
Let

R = max
{
r ∈ (0, 1]; [u = e∗0] ⊂ Br

}
.

If R ≥ 1/2, notice that e∗0,r = e∗0 satis�es (6.15) whenever r ≤ 1/2. Assume δ ≤ ε/2 and
|u(x)− e∗1(x)| < δ in B1. Since u = e∗0 in B1/2, we get lim supr→0 ‖e∗0,r − e∗1‖ = ‖e∗0 − e∗1‖ ≤ ε.

If R < 1/2, there exists x0 ∈ ∂BR such that u is not identical to an a�ne function in any
neighborhood of x0. Let us de�ne the AML function v : B1 → R by

v(·) := u(
·
2

+ x0)− u(x0).

Since v is not a�ne in any neighborhood of 0, we wish to apply the �rst case to the function
v. According to Theorem 6.3, there exists (e∗x0,r)r ⊂ X∗ such that ‖e∗0,r‖ = S(x0) for every
r ∈ (0, 1)

|u(x)− u(x0)− e∗x0,r(x− x0)| ≤ rσ̃(r), for all x ∈ Br(x0),

where σ̃ : R+ → R is a positive function such that σ̃(r) tends to 0 as r tends to 0. So, for
r ∈ (0, 1/2), we have

|v(x)− v(0)−
e∗x0,r

2
(x)| = |u(

x

2
+ x0)− u(x0)− e∗x0,r(

x

2
)| ≤ rσ̃(r), for all x ∈ Br. (6.20)

Let us suppose that δ ≤ δ1(ε/2)/2. Since |u(x)− e∗1(x)| ≤ δ in B1, we have, for every x ∈ B1

|v(x)− e∗1
2

(x)| ≤ |u(
x

2
+ x0)− e∗1(

x

2
+ x0)|+ |u(x0)− e∗1(x0)| ≤ δ1(

ε

2
). (6.21)

Let us check that Sv(0) > 0. We know that ‖e∗0‖ = Su(0) 6= 0. Since ‖x0‖ = R and u = e∗0
on BR we can apply Corollary 6.13 to get

Sv(0) =
Su(x0)

2
> 0.

Conditions (6.20) and (6.21) allow to apply the �rst case to v. We get

lim sup
r→0

∥∥∥∥e∗1
2
−

e∗x0,r
2

∥∥∥∥ ≤ ε

2
. (6.22)

Let us show now that e∗x0,r tends to e∗0 as r tends to 0. Reasoning by contradiction, assume
that there exists a null sequence (ri)i such that e∗x0,ri converges to some h∗ 6= e∗0. So, there
exists z ∈ ∂B1 and t > 0 such that the open segment (x0, x0 + tz) is included in U and
(e∗0 − h∗)(z) 6= 0. Finally, we compute

lim
i→∞

u(x0 + riz)− u(x0)

ri

− e∗x0,ri(z) = e∗0(z)− h∗(z) 6= 0,

which contradicts Theorem 6.3. Hence, e∗x0,r converges to e∗0 and, from (6.22) we get

lim sup
r→0

∥∥e∗0,r − e∗1
∥∥ = ‖e∗0 − e∗1‖ = lim sup

r→0

∥∥e∗x0,r − e∗1
∥∥ ≤ ε.

Thus, (6.16) is satis�ed whenever δ(ε) = min{δ1(ε/2)/2, ε/2} = min{λ(ε/8)/8, 1/4, ε/2}.
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6.5 AML functions with linear growth

In this �nal section we prove that AML functions with linear growth at in�nity are a�ne
functions, Corollary 6.7. Let us start with Corollary 6.6.

Proof of Corollary 6.6. Let us proceed by contradiction. That is, for each n ∈ N, there are
a 1-Lipschitz AML function un : B1 → R, ε > 0 and xn, yn ∈ B1/2 such that

‖u′n(xn)− u′n(yn)‖ ≥ ε and ‖xn − yn‖ <
1

n
.

By rede�ning un(x) := 2(un
(
x
2

+ yn
)
− un(yn)), we can assume that yn = 0, un(0) = 0 and

that

‖u′n(xn)− u′n(0)‖ ≥ ε and ‖xn‖ <
2

n
. (6.23)

Since (un)n is a sequence of 1-Lipschitz functions such that un(0) = 0, by the Arzela-Ascoli
Theorem, there is a subsequence, which we still denote by (un)n, that converges uniformly
on compact sets to a 1-Lipschitz function u∞ : B1 → R. Moreover, since (un)n is a sequence
of AML functions, u∞ is an AML function as well.

Thanks to Theorem 6.5, u∞ is di�erentiable at 0. Since u∞(0) = 0, we have that

max{|u∞(x)− u′∞(0)(x)| : x ∈ Br} ≤ rσ(r), for all r ∈ (0, 1),

where σ(r) tends to 0 as r tends to 0. Let us �x r ∈ (0, 1). Then, due to the uniform
convergence on compact sets, there is N ∈ N such that

max{|un(x)− u′∞(0)(x)| : x ∈ Br/2} ≤ 2rσ(r), for all n > N.

Therefore

max{|un(x+ y)− un(x)− u′∞(0)(y)| : x ∈ Br‖ ≤ 2rσ(r), ∀y ∈ Br/2, ∀n > N. (6.24)

As a consequence of Theorem 6.4, considering r > 0 such that 2σ(r) < δ(ε/4), we have that
inequality (6.24) implies

‖u′n(x)− u′∞(0)‖ ≤ ε

4
, ∀x ∈ Br/2, ∀n > N.

The last expression contradicts (6.23) by choosing n > N such that 4 < rn.

In order to prove Corollary 6.7, we need the following proposition that can be found in [77,
Corollary 2.10].

Proposition 6.34 Let X be a �nite dimensional normed space. Let u : X → R be an AML
function with a linear growth at in�nity. Then, u is Lipschitz.
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Proof. Let C > 0 such that

|u(x)| ≤ C(1 + ‖x‖), for all x ∈ X.

Let us �x x ∈ X. Then, we have that

|u(y)− u(x)| ≤ C(2 + ‖y‖+ ‖x‖) ≤ C(3 + 2‖x‖) ≤ 3C‖x− y‖, for all y ∈ ∂B(x, ‖x‖+ 1).

Therefore, by comparison with cones (Proposition 6.11), we have that

|u(y)− u(x)| ≤ 3C‖x− y‖, for all y ∈ B(x, ‖x‖+ 1).

Since x ∈ X is arbitrary, we follows that u is 3C-Lipschitz.

Proof of Corollary 6.7. Let us start with the case whenever the underlying norm is not
di�erentiable. Thanks to Corollary 6.18, there is an AML function de�ned on X with linear
growth but not linear. On the other hand, if the underlying norm is di�erentiable, let
u : X → R be an AML function with linear growth at in�nity. By Proposition 6.34, u is a
Lipschitz function. Let x0 ∈ X. For R > 0, let us consider the function

vR(x) =
1

R
u(Rx), for all x ∈ X.

Observe that Lip(vR) = Lip(u) for all R > 0. Thanks to Corollary 6.6 applied to vR restricted
to B1, we have that

‖u′(0)− u′(x0)‖ = ‖v′(0)− v′(R−1x0)‖ ≤ Lip(u)ρ(R−1‖x0‖), for all R > 2‖x0‖.

Therefore, by sending R to in�nity, we obtain that u′ is constant. Thus, u is an a�ne
function.

138



Conclusions

In this thesis, by mainly using tools from functional analysis and variational analysis we
have obtained results in the following �ve di�erent topics: classi�cation of linear bounded
operators, construction of ε-hypercyclic operators, wild operators, desingularization of the
coderivative for multivalued functions (applied to sweeping process) and regularity of Lips-
chitz functions.

In Chapter 2 we have explored the interplay between linear bounded operators T ∈ L(Y,X)
de�ned on in�nite dimensional Banach spaces and the regularity properties of real-valued
Lipschitz functions f : X → R and the composition f ◦ T . We have introduced an abstract
property on bornologies β, that we called property (S), which is satis�ed by the Fréchet,
Hadamard, weakly-Hadamard and limited bornologies. Then, if β is a convex bornology
on X, di�erent from Fréchet, satisfying property (S), we have characterized β-operators
T ∈ L(Y,X), in terms of the di�erentiability properties of f and f ◦T , where f runs over an
appropriate set of functions. Our result characterizes compact, limited and weakly-compact
operators. Also, we have introduced the notion of �nitely Lipschitz functions to characterize
�nite-rank operators in a similar way.

In Chapter 3 we have investigated the ε-hypercyclicity. Following the constructions of ε-
hypercyclic non-hypercyclic operators on `1(N) and `2(N), the former one given by C. Badea,
S. Grivaux and V. Müller [15] and the last one given by F. Bayart [16], we have constructed
ε-hypercyclic operators which are not hypercyclic in a larger class of in�nite dimensional
separable Banach spaces. In order to obtain our results, we have developed an ε-hypercyclic
criterion, inspired in the well known hypercyclic criterion. Also, we have obtained a su�-
cient condition for which the product between an hypercyclic operator and a ε-hypercyclic
operator remains ε-hypercyclic on the product space.

In Chapter 4, motivated by the construction of a wild operator made by J.M. Augé in [8], we
have introduced and explored the notion of asymptotically separated set. Several examples
of asymptotically separated sets, in both �nite and in�nite dimensional Banach spaces, are
given. Moreover, we have established the connection between asymptotically separated sets
and the construction of linear operators T ∈ L(X) such that the space X is partitioned in the
sets AT := {x ∈ X : limn ‖T n‖ =∞} and RT := {x ∈ X : lim inf ‖T nx− x‖ = 0}. We end
this chapter with the following results on wild operators: there is a wild operator (T ∈ L(X))
such that the product with itself (T ⊕T ∈ L(X⊗X)) is not wild on the product space, there
are non-invertible wild operators de�ned on in�nite dimensional spaces with symmetric basis
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and we study the norm-closure of the set of wild operators in the space of bounded linear
operators.

In Chapter 5 we have proposed and characterized a generalization of the K�-inequality for
multivalued maps which are not necessarily de�nable in an o-minimal structure. The K�-
inequality, �rstly obtained by S. �ojasiewicz [70] for real-analytic functions and then extended
by K. Kurdyka [68] for C1-smooth de�nable functions, is a gradient inequality which can be
seen as a desingularization of the gradient around a critical point. On the other hand, our
inequality can be seen as the desingularization of the coderivative of a multivalued map. The
results obtained in this chapter are mainly inspired by the following two works: A. Daniilidis
and D. Drusvyatskiy in [41] established a generalization of the K�-inequality for multivalued
maps which are de�nable in some o-minimal structure and J. Bolte, A. Daniilidis, O. Ley
and L. Mazet in [26] explored the class of semi-convex functions such that satis�es a K�-like
inequality, characterizing these functions in terms of the length of gradient orbits as well
as in term of the integrability of the talweg. In the same line, under mild assumptions, we
characterize a class of multivalued maps that satisfy our generalization of the K�-inequality
for multivalued maps (or our desingularization for the coderivative) in terms of the length
of the orbits given by the sweeping process governed by the same multivalued function, in
terms of the integrability of the talweg function and also in terms of the length of the discrete
sequences generated by the Catching-up algorithm.

In Chapter 6 we have studied regularity properties of the absolutely minimizing Lipschitz
functions (for short AML) de�ned on open subsets of �nite dimensional normed spaces. O.
Savin in [87] proved that planar AML functions de�ned on open sets of a two dimensional
euclidean space are continuously di�erentiable. We have provided a non-euclidean interpre-
tation of the proof of the mentioned result of O. Savin to obtain that AML functions, de�ned
on open subset of a two dimensional normed space X, are continuously di�erentiable if and
only if the underlying norm is di�erentiable everywhere in X \ {0}.

Perspectives

The perspectives from this thesis are numerous. Here we list the most straightforward with
respect to the results and techniques developed in this work:

In Chapter 2 we have characterized several classes of bounded linear operators in terms of
the di�erentiability of a given class of functions. For compact, limited and weakly-compact
operators we have used di�erent subfamilies of Lipschitz functions. On the other hand, for
�nite-rank operators we have introduced the notion of �nitely Lipschitz functions. A nat-
ural line of research is to �nd which other classes of linear operators can be characterized
in terms of the di�erentiability properties of a given class of functions. For instance, it is
interesting to know if it is possible such a characterization for the class of Hilbert-Schmidt op-
erators de�ned on a Hilbert space, or more generally, for the Schatten p-class, with p ∈ [1,∞).

According to Chapter 3, the existence of ε-hypercyclic operators in general separable Banach
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spaces still remains open. Moreover, the development of the ε-hypercyclicity criterion leads to
the following natural question: Does every ε-hypercyclic operator satisfy our ε-hypercyclicity
criterion?

In Chapter 4 we have introduced and studied the asymptotically separated sets. We have
provided several examples, nevertheless, a complete description of this kind of sets remains
open. With respect to wild operators, there are at least two natural questions that follows
from our work: the construction (if it exists) of a wild operator T such that T ⊕ T is wild
in the product space and the construction (if it exists) of a non-invertible wild operator in a
general separable in�nite dimensional Banach space.

In Chapter 5 we have characterized smooth sweeping process maps that satisfy certain desin-
gularization of their coderivative. An interesting line of research is the study of the same
kind of desingularization but on more general multivalued maps (which are not necessarily
de�nable on an o-minimal structure). For instance, for multivalued maps such that their
graph is Whitney strati�able.

In Chapter 6 we have proved that planar AML functions are continuously di�erentiable if
the underlying norm is di�erentiable everywhere (except at 0). Since our technique strongly
relays in some two dimensional arguments, it is not direct how to apply it to AML functions
de�ned on open subsets of Rn, with n ≥ 3. However, and recalling that AML functions can
be de�ned in any metric space, a natural framework to generalize our technique is on AML
functions de�ned on open subsets of a two dimensional Finsler manifold.
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