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Contributions a la dynamique linéaire, au processus de rafle, et a4 la régularité
des applications Lipschitziennes

Résumé:
Cette thése traite de trois thémes liés aux opérateurs linéaires définis sur des espaces de

dimension infinie et de deux sujets de I'analyse réelle et de ’analyse variationelle dans des
espaces de dimension finie.

Le premier chapitre contient les préliminaires de la théorie des espaces de Banach qui seront
utilisés dans les trois premiers thémes. Le deuxiéme chapitre est une caractérisation de
certains types d’operateurs linéaires bornées en termes de la différentiabilité des fonctions
lipschitziennes. Nos résultats incluent une caractérisation pour les opérateurs de rang fini,
compacts, limités et faiblement compacts. Les troisiéme et quatriéme chapitres concernent
la dynamique linéaire : nous étudions respectivement l’epsilon-hypercyclicité et les opéra-
teurs dits "sauvages". Nous établissons un critére d’epsilon-hypercyclicité avec lequel nous
pouvons construire des opérateurs epsilon-hypercycliques dans une large classe d’espaces de
Banach séparables. En ce qui concerne les opérateurs sauvages, nous obtenons quelques ré-
sultats sur leurs spectres et sur la fermeture en norme de ’ensemble des opérateurs sauvages
dans l'espace des opérateurs linéaires bornés. De plus, nous introduisons et explorons le
concept d’ensembles asymptotiquement séparés pour construire des opérateurs linéaires avec
des propriétés dynamiques intéressantes. Le cinquiéme chapitre est une généralisation de
I'inégalité de Kurdyka-t.ojasiewicz pour les fonctions multivoques qui ne sont pas nécessaire-
ment définissables dans une structure o-minimale. Nous caractérisons les fonctions multi-
voques lisses qui satisfont une désingularisation de la codérivée en termes de longueur des
orbites du processus de rafle associé ainsi que de 'intégrabilité du talweg orienté. Le dernier
chapitre est consacré aux fonctions Lipschitz absolument minimales (AML). La contribution
principale est une caractérisation de la régularité de les fonctions AML planaires en termes
de la régularité de la norme sous-jacente.

Mots-clés: Opérateurs linéaires, dynamique linéaire, epsilon-hyperciclicité, inégalité K¥.,
processus de rafle, régularité des fonctions.
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Contributions to linear dynamics, sweeping process and regularity of Lipschitz
functions

Abstract:

This thesis deals with three topics related to linear operators defined on infinite dimensional
spaces and two topics of real analysis and variational analysis in finite dimensional spaces.

The first chapter contains preliminaries on Banach space theory which will be relevant for
the three topics related to linear operators. The second chapter is a characterization of some
types of bounded linear operators in terms of the differentiability of Lipschitz functions.
Our results include a characterization for the classes of finite rank, compact, limited and
weakly compact operators. The third and fourth chapters are inscribed in linear dynamics
on infinite dimensional spaces, studying epsilon-hypercyclicity and wild operators respec-
tively. We establish an epsilon-hypercyclicity criterion based on which we can construct
epsilon-hypercyclic operators in a large class of separable Banach spaces. With respect to
wild operators, we establish results about their spectra and about the norm closure of the
set of wild operators in the space of linear bounded operators. In addition, we introduce and
explore the concept of asymptotically separated sets to construct linear operators with inter-
esting dynamical properties. The fifth chapter is a generalization of the Kurdyka-f.ojasiewicz
inequality for multivalued maps which are not necessarily definable in an o-minimal structure.
We characterize smooth multivalued functions which satisfy a certain desingularization of the
coderivative in terms of the length of the solutions of the related sweeping process as well as
the integrability of the oriented talweg. The last chapter is devoted to absolutely minimizing
Lipschitz (AML) functions. The main contribution in this subject is a characterization of
the regularity of planar AML functions in terms of the regularity of the underlying norm.

Key words: Linear operators, linear dynamic, epsilon-hypercyclicity, Kh-inequality, sweep-
ing process, regularity of functions.
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Contribuciones a la dindmica lineal, a los procesos de barrido y a la regularidad
de funciones Lipschitz

Resumen:

En la presente tesis se estudian tres temas relacionados a la teoria de operadores lineales
definidos en espacios de Banach de dimension infinita y dos topicos del andlisis real y anélisis
variacional en espacios de dimension finita.

El primer capitulo contiene los fundamentos de la teoria de espacios de Banach que seran
utilizados durante los primeros tres temas abarcados por esta tesis. En segundo capitulo se
caracterizan algunas clases de operadores lineales acotados con respecto a la diferenciabilidad
de un conjunto de funciones Lipschitz. Nuestros resultados pueden ser utilizados para carac-
terizar los operadores de rango finito, compactos, limitados y débilmente compactos. El tercer
y cuarto capitulo estan enmarcados en la teoria de dindmicas lineales: estudiaremos la épsilon-
hiperciclidad y los operadores salvajes. Se establece un criterio de épsilon-hiperciclicidad, el
que permite la construccion de operadores épsilon-hiperciclicos (que no son hiperciclicos) en
una gran clase de espacios de Banach separables. En lo que respecta a operadores salvajes,
se obtienen resultados en las siguientes tres lineas: sus espectros, la (no) estabilidad para
el producto en la clase de operadores salvajes y la adherencia en norma del conjunto de
operadores salvajes en el espacio de los operadores lineales acotados. Mas aiin, se introduce
y se explora el concepto de conjuntos asintéticamente separados, ademés de establecer su
relacion con la construccion de operadores lineales con ciertas propiedades dinamicas intere-
santes. El quinto capitulo es una generalizacion de la desigualdad de Kurdyka-f.ojasiewicz
para funciones multivaluadas que no son (necesariamente) definibles en una estructura o-
minima. Ademaés de establecer una desigualdad tipo Kurdyka-Lojasiewicz, esta desigualdad
es caracterizada para la clase de funciones multivaluadas lisas en términos del largo de curva
de las orbitas del proceso de barrido, asi como de la integrabilidad del la funcién talweg
orientado. El altimo capitulo esta dedicado a la funciones Lipschitz absolutamente minimas
(AML). La contribucién principal es una caracterizacion de la regularidad de las funciones
AML planares en funcién de la regularidad de la norma subyacente.

Palabras clave: Operadores lineales, dinamica lineal, épsilon-hiperciclicidad, desigualdad
KY., procesos de barrido, regularidad de funciones.
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Notation

R,C

K

Kn

XY, Z

H

X*

XeaY
L(X)Y)
L(X)

|- |

- llx or [l
Lip(f)

D

T

Bx,Bx

Sx

B(z,r) or B,(z)
Br
S:R=R"

Real and complex fields.

Real or complex field.

n-dimensional euclidean space

Banach spaces

Hilbert space

Dual space of X

Direct sum of X and Y

Space of bounded operators from X to Y
Space of bounded operators from X to X
The module on K.

The norm on X

Lipschitz constant of a function f
Complex open unit disk

Complex unit circle

The open and closed unit ball of X centered at 0.
The unit sphere of X

The open ball of center x and radius r
The open ball of center 0 and radius r

A multivalued map

The effective domain of S

Limiting normal cone of C C R™ at x € C.
Limiting coderivative of S at (¢, x)
Closure of A

Interior of A

Boundary of A

Algebraic interior of A

V is contained in a compact subset of the open set U.



Introduction Générale

Cette thése est divisée en 6 chapitres qui explorent différents aspects de la théorie des opéra-
teurs, de analyse variationnelle et de ’analyse réelle. Dans le premier chapitre introductif,
nous fournissons les fondements de la théorie des espaces de Banach qui seront utilisés dans
les chapitres 2, 3 et 4 et qui ne sont pas nécessairement standard. KEnsuite, nous contin-
uons avec cing chapitres qui traitent de cing problémes différents et qui peuvent étre lus
indépendamment. Du deuxiéme au quatriéme chapitre, nous traitons de problémes liés a la
classification des opérateurs bornés et a la dynamique linéaire qui ne se produisent que dans
des espaces de Banach de dimension infinie. D’autre part, dans le cinquiéme et le sixiéme
chapitres, nous présentons deux sujets différents, ot 'espace sous-jacent est de dimension
finie, concernant respectivement le processus de rafle et la régularité des fonctions lipschitzi-
ennes.

Chapitre 2 : p-opérateurs et différentiabilité

L’étude de différentes notions de différentiabilité de fonctions est I'un des principaux sujets
de la théorie de la régularité des fonctions définies dans les espaces de Banach réels de dimen-
sion infinie. Les notions les plus connues de différentiabilité sont celles au sens de Fréchet,
Gateaux et Hadamard. Ces notions de différentiabilité sont comprises dans le cadre plus
abstrait de la différentiabilité donnée par une bornologie. Nous rappelons qu’une bornologie
sur un espace de Banach X est une famille de sous ensembles bornés de X qui recouvre
X, qui est stable par unions finies et qui est héréditaire pour l'inclusion. Par exemple, la
famille des ensembles bornés (resp. ensembles finis, ensembles relativement compacts) est
une bornologie qui peut étre définie sur tout espace de Banach. La différentiabilité uniforme
sur les éléments de cette famille est la différentiabilité au sens de Fréchet (resp. Gateaux,
Hadamard).

Soit 5 une bornologie sur X. Un opérateur borné T € L(Y,X) est un [S-opérateur si
TB(y,r) € p pour tout y € Y et pour tout r > 0. Pour motiver ce chapitre, nous intro-
duisons le concept suivant : un ensemble A C X est dit limité si, pour toute suite (z}),, C X*
qui converge pour la topologie faible* vers 0, nous avons que

lim sup{z)(x): z € A} =0.

n—o0

Comme la famille des ensembles limités est une bornologie, un opérateur 7' : ¥ — X est
limité si T(By) est un sous ensemble limité de Y. M. Bachir dans [II] a caractérisé les



opérateurs limités en terme de la différentiabilité des fonctions convexes:

Théoréme (Bachir) Soient X et Y deuz espaces de Banach. Soit T 1Y — X un opérateur
linéaire borné. Alors, T est limité si et seulement si, pour toute fonction convere et continue
f X — R qui est Gdateauz différentiable en x = Ty, la fonction fol est Fréchet différentiable
en .

Motivés par le résultat précédant, avec M. Bachir et G. Flores, nous avons établi dans [13]
des caractérisations similaires pour les opérateurs compacts et pour les opérateurs de rang
fini. Nous utiliserons la définition suivante :

Définition Soit 8 une bornologie sur X. Nous dirons que B satisfait la propriété (S) si pour
tout ensemble borné A C X tel que A & 5, il existe une suite (z,), C A et 6 > 0 tels que
pour toute suite croissante (ng)r C N et pour toute suite (yx)r qui satisfait |yx — xp, || < 0
pour tout k € N, Uensemble {yy : k € N} n’appartient pas a (.

Par exemple, la bornologie de Hadamard (des ensembles relativement compacts) satisfait la
propriété (S). De la méme maniére, la bornologie des ensembles limités ainsi que celle des
ensembles relativement faiblement-compacts satisfont la propriété (S) (Section [2.2).

Nous dirons qu’une bornologie § sur X est convexe si, pour tout A € (3, 'enveloppe con-
vexe co(A) et x + AA appartiennent a 5, pour tous z € X, A € R. Notons que, si [ est une
bornologie convexe sur X, alors T € L(Y, X) est un S-opérateur si et seulement si T'(By ) € .

Le résultat suivant caractérise certaines classes d’opérateurs linéaires tels que les opérateurs
limités, compacts et faiblement-compacts.

Théoréme A Soient X et Y deux espaces de Banach réels et soit [ une bornologie conveze
sur X qui satisfait la propriété (S). Soit T € L(Y,X). Alors, T est un [-opérateur si et
seulement si, pour toute fonction lipschitzienne f : X — R, B-différentiable en x = Ty, alors
la fonction f ol est Fréchet différentiable en y.

Avant d’énoncer la caractérisation des opérateurs de rang fini, nous avons besoin de la défi-
nition suivante.

Définition Soient X et Y deux espaces de Banach. Nous dirons qu’une fonction f: X —Y
est finiment lipschitzienne si pour tout sous espace affine Z de X, la restriction f|z est une
fonction lipschitzienne.

Par exemple, tout opérateur linéaire f : X — Y est finiment lipschitzien. Nous sommes
maintenant en mesure d’énoncer la deuxiéme contribution principale de ce chapitre.

Théoréme B Soient X et Y deuz espaces de Banach réels. Soit T € L(Y,X). Alors T
est de rang fini si et seulement si, pour toute fonction finiment lipschitzienne f : X — R,
Gateaux différentiable en x = Ty, la fonction foT est Fréchet différentiable en y.



Chapitre 3 : Critére d’epsilon-hypercyclicité

Dans ce chapitre, le corps sous-jacent peut étre fixé comme R ou C. Une maniére naturelle de
classer les opérateur linéaires passe par la dynamique engendrée par 'action de I'opérateur
sur espace sous-jacent. Autrement dit, si 7' € L(X) et z € X, nous étudierons les propriétés
de Torbite de z sous I'action de T', 'ensemble Orby(z) := {T"z : n € N}. Soit T' € L(X)
fixé. Nous dirons que I'orbite de x € X sous l'action T est réguliére si la suite (||T"z]|),
tend vers 0, ou tend vers l'infini ou bien reste uniformément loin de 0 et de l'infini. Cette
notion de régularité provient de la remarque suivante : si X est un espace de dimension finie
et T € L(X), alors toute orbite de T est réguliére. D’un autre coté, si X est un espace de di-
mension infinie, nous savons qu’il y a des opérateurs avec des orbites non-réguliéres. En effet,
dans [85], S. Rolewicz a construit des opérateurs 7' € L£(X), ot X est ¢o(N) ou #(N), avec
p € [1,00), pour lesquels il y a un vecteur z € X avec une orbite dense. Plus précisément,
il a considéré 'opérateur 2B, ou B : X — X est le décalage & gauche sur X i.e., si (e,)n
est la base canonique de X, Bey = 0 et Be, =e,_1 si n > 1. Un opérateur qui posséde un
vecteur avec une orbite dense s’appelle hypercyclique et le vecteur associé s’appelle vecteur
hypercyclique. A la lumiére de cet exemple, la question suivante est naturelle : a quel point
les orbites irréguliéres peuvent-elles étre différentes 7

Dans cette ligne, ces derniéres décennies, la communauté a intensifié les efforts pour mieux
comprendre les phénomeénes purement infini dimensionnel de la dynamique linéaire. Un
outil notable pour déterminer si un opérateur est hypercyclique est le critére d’hypercyclicité
suivant.

Théoréme [67, Critere d’hypercyclicité/
Soit X un espace de Banach, réel ou compleze, séparable et soit T € L(X). Supposons qu’il
eriste une suite croissante (n(k))r C N, deuzr ensembles denses dans X, Dy et Dy, et une
suite des fonctions Syu) : Dy — X tels que :

(1) limj_yoo 7"z = 0 pour tout x € D;.

(2) limp—so0 Sneyy = 0 pour tout y € Ds.

(3) limy oo T”(k)Sn(k)y =y pour tout y € Ds.
Alors T est hypercyclique.

Dans [15], C. Badea, S. Grivaux et V. Miiller ont introduit le concept suivant :

Définition Soit ¢ € (0,1), soit X un espace de Banach réel ou compleze et soit T € L(X).
Lopérateur T est dit e-hypercyclique s’il existe x € X wvérifiant

VyeX\{0}, 3neNtelque [Tz —y| <ellyl.

Comme conséquence de la définition, tout opérateur hypercyclique est e-hypercyclique pour
tout € > 0. Notons que pour tout opérateur linéaire T' € L(X), le vecteur 0 est un vecteur
I-hypercyclique. Les auteurs ont construit dans [15], pour tout € € (0,1) fixé, un opérateur
e-hypercyclique qui n’est pas hypercyclique dans ¢}(N). Deux ans plus tard, F. Bayart a
construit dans [I6] un opérateur e-hypercyclique qui n’est pas hypercyclique dans ¢*(N).



La contribution principale de ce chapitre est le critére d’epsilon-hypercyclicité suivant. No-
tons que les opérateurs construits dans [15, [16] satisfont ce critére.

Théoréme C (Critére d’epsilon-hypercyclicité) Soit X un espace de Banach réel ou com-
plexe, soit T € L(X) et soit € € (0,1). On se donne Dy un sous ensemble dense dans X et
Dy :={yr : k € N} C X tel que, pour tout x € X \ {0}, il existe une infinité d’entiers k € N
tels que yx € B(x,e||z||). Enfin, on se donne une suite croissante (n(k))r C N et une suite
des fonctions Syu) : Dy — X wvérifiant:

(1) limg_so0 |T"® || = 0 pour tout x € Dy,

(2) Timgsoo [|Snmyell = 0,
Alors T est §-hypercyclique pour tout 6 > ¢.

Comme dans le cas du critére d’hypercyclicité, nous fournissons une preuve constructive et
une preuve topologique (basée sur le théoréme de Baire). De plus, a aide du Théoréme C,
nous pouvons construire des opérateurs dans des espaces de Banach plus généraux. En fait,
nous obtenons le résultat suivant.

Théoréme D Soit X un espace de Banach séparable qui posséde un sous espace complémenté
isomorphe a c¢o(N) ou a P(N), avec p € [1,00). Alors, pour tout € > 0, il existe un opérateur
dans X qui est e-hypercyclique mais pas hypercyclique.

Chapitre 4 : Opérateurs sauvages et ensembles asymptotiquement
séparés

Soit X un espace de Banach réel ou complexe et soit T un opérateur borné dans X. Le
théoréme de Banach-Steinhaus implique que I'ensemble des points dont l'orbite est non-
bornée (sous 'action de T') est vide ou dense dans X. Si X est un espace de dimension finie,
pour tout z € X, Porbite {T"z : n € N} est non-bornée si et seulement si la suite (||7"x]|)s,
tend vers l'infini. Sur la base de ces observations, G. Prajitura a proposé la conjecture
suivante : ’ensemble
Ar ={z e X : lim |T"z| = oo}
n—oo

est-il toujours vide ou dense dans X7 Deux années aprés, P. Hajek et R. Smith ont réfuté
cette conjecture. En fait, pour tout espace X de dimension infinie avec une base symétrique,
ils ont construit un opérateur borné 7" dans X tel que I’ensemble Ar est non-vide et non-
dense dans X, voir [61]. J.M. Augé a construit dans [§] un opérateur borné qui réfute la
conjecture de Prajiturd dans tout espace de Banach séparable de dimension infinie.

Nous avons besoin de la définition suivante :
Définition Un ensemble ' C X est dit asymptotiquement séparé s’il existe une suite (x), C

X* telle que

i) liminf, . |25 (z)| = 0, pour tout x € F.



i) lim, o0 |25 (2)] = 00, pour tout x € X \ F.

Dans [8], existence d’un ensemble asymptotiquement sé¢paré non-trivial ' C K2, a savoir

{(z,y) €K || < Jyl},

permet la construction d’un opérateur qui réfute la conjecture de Prajitura.

Dans la premiére partie de ce chapitre, nous explorons les ensembles asymptotiquement
séparés dans des espaces de Banach et nous en donnons des application a la dynamique
linéaire. Le résultat suivant donne quelques exemples d’ensembles asymptotiquement séparés
que nous avons trouvés dans ce travail.

Théoréme E Soit X un espace de Banach réel ou complexe et soit F' C X. Supposons une
de deur conditions suivantes :

i) dim(X) < 0o et F' est union d’hyperplans linéaires tel que F'\ {0} est ouvert.
i) X est séparable et F' est égale a {0} ou est un sous espace fermé de X.

Alors F est asymptotiquement séparé. De plus, tout espace de Banach de dimension deuz ou
supérieure contient un sous ensemble asymptotiquement séparé qui est dense el tel que son
complémentaire est dense aussi.

Pour un opérateur 7' € L£(X), nous définissons I'ensemble de points récurrents :

Ry :={x € X : liminf ||T"x — z| = 0}.
n—o0

Définition Soit X un espace de Banach réel ou complexe. Un opérateur T € L(X) est dit
sauvage si {Ap, Ry} est une partition de X en deuz ensembles qui ont un intérieur non-vide.

L’existence d’opérateurs sauvages dans tout espace de Banach séparable et de dimension
infinie est démontrée dans [8]. Le prochain résultat montre le lien entre la dynamique linéaire
et les ensembles asymptotiquement séparés. Ce théoréme est une généralisation du résultat
principal de [§].

Théoréme F Soit X un espace de Banach réel ou complexe, séparable et de dimension
infinie. Soit V' un sous espace fermé de X, complémenté et de codimension infinie. Soit
F CV un ensemble asymptotiquement séparé dans V. Alors, il existe un opérateur T € L(X)
tel que Ry = P~Y(F) et Ap = P~Y(V\ F), ou P € L(X) est une projection bornée sur V.

Comme conséquence du Théoréme F, un exemple intéressant d’ensemble asymptotiquement
séparé implique 'existence d’un opérateur linéaire borné avec une dynamique intéressante.

En fait, si nous appliquons le Théoréme E, le Théoréme F et le fait que tout espace de Banach
de dimension infinie peut étre décomposé comme V G W, avec V' un sous espace de dimension
finie qui est plus grande ou égale a deux, nous obtenons le corollaire suivant.

Corollaire Soit X un espace de Banach séparable et de dimension infinie. Alors



o [l existe T € L(X) tel que {Ar, Rr} est une partition de X et les deuz ensembles sont
denses dans X.

o [l existe T € L(X) tel que {Ar, Rr} est une partition de X et Ar U {0} est un sous
espace de codimension finie.

o [l existe T € L(X) sauvage tel que Ar U {0} est fermé.

Dans la seconde partie de ce chapitre nous étudions quelques propriétés des opérateurs
sauvages. Plus précisément, le théoréme suivant donne les résultats que nous avons obtenus
dans les trois directions suivantes : la non-stabilité par produit de la classe des opérateurs
sauvages, la construction d’opérateurs sauvages non-inversibles et la taille de 'adhérence en
norme de I'ensemble des opérateurs sauvages.

Théoréme G Soit X un espace de Banach compleze, séparable et de dimension infinie.
Alors :

o [l existe T € L(X) sauvage tel que T T n’est pas sauvage dans X & X.

e Si X a une base symétrique, il existe T € L(X) qui est sauvage mais qui n'est pas
inversible.

e S5i X a une base inconditionnelle (e,),, tout opérateur linéaire borné qui est diagonal
par rapport a (e,), avec valeurs propres de module 1, appartient & la adhérence en
norme de 'ensemble des opérateurs sauvages dans L(X).

Chapitre 5: désingularisation des processus de rafle lisses.

Ce chapitre est le début de la deuxiéme partie de cette thése, dans laquelle nous étudions
quelque aspects de ’analyse réelle et de ’analyse variationelle dans 1’espaces de dimension
finie. Dans ce chapitre R™ désigne I'espace euclidien de dimension n.

Il est bien connu que toute fonction lisse de classe C!, f : R® — R, qui est définissable dans
une structure o-minimale, a un nombre fini de valeurs critiques. K. Kurdyka a montré dans
[68] que si 7 € f(R™) est une valeur critique et si U est un sous ensemble ouvert, borné et non-
vide de R™, alors il existent p > 0 et une fonction lisse de classe C!, ¢ : [F,7 + p] — [0, +00),
qui satisfont

V(%o fz)| >1, pour tout x € U tel que f(z) € (7,7 + p). (1)

L’inégalité précédente généralise, au cas o-minimal, une inégalité du gradient démontré pour
Lojasiewicz dans [70] pour la classe de fonctions C! et sous analytique. L’expression est
maintenant connu sous le nom l'inégalité de Kurdyka-Fojasiewicz (en abrégé inégalité KL.).

Les deux inégalités mentionnées ci-haut ont été étendues a des fonctions non-lisses (resp.
sous analytiques et o-minimales), voir [24, 25]. Ces inégalités nous permettent un controle
uniforme sur la longueur des orbites bornées du (sous)gradient, voir [71], 68, 24]. Ce con-
trole reste vrai pour la longueur de courbes de gradient par morceaux, i.e., courbes obtenues
par la concaténation d’un nombre au plus dénombrable de courbes de gradient {7;}i>1, ou
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v C f7H[ri1,m)) et {r}; est une suite décroissante sur (7,7 + p), qui converge vers 7. Ce
type de courbes posséde un nombre au plus dénombrable de discontinuités.

En dehors du cadre o-minimal, I'inégalité KL peut étre fausse méme pour des fonctions
lisses de classe C? |26, Section 4.3] ou méme pour des fonctions lisses de classe C* avec un
valeur critique unique [76, p. 12|. J. Bolte, A. Daniilidis, O. Ley et L. Mazet, dans [26],
ont considéré le probléme de caractériser I'existence d’une fonction désingularisante ¢ et de
la validité de 'inégalité (1)) pour une valeur critique isolée supérieurement 7 d’une fonction
semiconvexe coercive f définie dans un espace de Hilbert (la fonction f n’étant nécessaire-
ment pas définissable dans un structure o-minimale).

Nous définissons maintenant la dynamique générée par une fonction multivoque

Définition Soit S : R = R"™ une fonction multivoque et soit I C dom(S) un intervalle
non-trivial de R. Une courbe absolument continue v : I — R™ est dite solution (orbite) du
processus de rafle défini par S si

—(t) € Nsy((£)), Vpp t €1,
v(t) € S(t) pour tout t € I,

ot Ngwy(7(t)) est le cone normal limite de S(t) au point y(t). Nous désignons par AC(S,I)
(PAC(S, 1)) l’ensemble des orbites absolument continues (absolument continues par morceaus
respectivement) générées par le processus de rafle défini par S dans Uintervalle I C dom(S).

Soit S : R = R"™ une fonction multivoque. Le graphe de S sera noté par

S ={(t,x) e RxR": z € S(t)}

Définition Soit S : R = R” une fonction multivoque. La codérivée de S a (t,x) € S en
u € R™ est définie par :

D*S(t,x)(u) :={a€R: (a,—u) € Ns(t,x)}.

En 2017, A. Daniilidis et D. Drusvyatskiy, dans [41], ont montré que pour toute fonction mul-
tivoque S : R = R"”, définissable dans une structure o-minimale et pour toute valeur critique
t € R, il existe une fonction qui désingularise la codérivée D*S(t,-) autour de ¢. Ce résultat
implique un controle uniforme sur la longueur des orbites bornées du processus de rafle défini
par S. Ce résultat récupére les résultats de K. Kurdyka dans [68]. En fait, il suffit de consid-
érer la fonction multivoque S définie par les sous-niveaux d’une fonction lisse et définissable f.

La contribution principale de ce chapitre est liée a la désingularisation de la codérivée ap-
pliquée aux fonctions multivoques qui ne sont pas nécessairement définissable dans une struc-
ture o-minimale. Nous avons besoin les définitions suivantes.

Définition Soit S : R = R™ une fonction multivoque.



i) Pour tout (t,x) € S, le module asymétrique de la codérivée D*S(t,x) est défini par:
|D*S(t, x)" = sup{max(a,0) : a € D*S(t,x)(u), [lul <1},
0w nous faisons la convention sup(0) = 0.
ii) Le talweg orienté de S, noté o' : dom(S) — R U {oo}, est défini par:

' (t) = sup {||D*S(t,z)|T}, pour tout t € dom(S).
zeS(t)

Notre travail s’inscrit dans le cadre de la définition et les hypothéses (A1), (A2) et (A3)
suivantes.

Définition Nous dirons que S : R = R"™ est un processus de rafle lisse i

— S est une sous variété lisse, connexe, fermé et de classe Ct de R"*, de dimension au plus
n; ou

— S est une sous variété a bord de dimension n+ 1 dont la frontiere OS est une variété lisse
de classe Ct et de dimension n.

Hypothéses Soit S : R = R" une fonction multivoque et soit T := sup(dom(S)). Nous

dirons que S satisfait

(A1) Ihypothése d’existence : pour tout (t,x) € S, avec || D*S(t, z)|t < 400, il existe §, > 0
et au moins une orbite v, € AC(S;[t,t +,)) tels que v,.(t) = x.

(A2) I'hypothése de régularité supérieure en t € dom(S), avec t < T : il existe & > 0 tel que
o' (t) < +o0o pour tout t € (t,£+ ).

(A3) T’hypothése de continuité ent € dom(S), avect < T : il existe § > 0 tel que la fonction
multivoque t = 0S N ({t} NR™) est continue pour la métriqgue de Pompeiu-Hausdorff
sur (t,t+96) (Peut-étre il y a une discontinuité en t).

Maintenant, nous sommes préts a énoncer notre résultat principal.

Théoréme H Soit S : R = R"™ un processus de rafle lisse avec des valeurs bornées qui
satisfait (A1). Soit T = {t € dom(S) : (A2)-(A3) sont vérifiés t}. Soita € T (typiquement
une valeur critique de D*S).

Les assertions suivantes sont équivalentes :

a) (Désingularisation de la codérivée) Il existe b > a, p > 0 et un homeomorphisme
U [0,p] = [a,b], qui est un C'-diffeomorphisme entre (0,p) et (a,b), avec ¥'(r) > 0
pour tout v € (0, p), tels que:

|D*(SoW)(r,z)|" <1, pour tout r € (0,p), pour tout x € S(V(r)).

b) (Contréle uniforme de la longueur des orbites) Il existe b > a et une fonction
croissante o : [a,b] — RY, avec o(a) = 0, tels que pour tous a < t; < ty < b et
v € AC(S, [t1,ta]), il tient que :

() = / I8l < ot) — o(t).

t1
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c) (Contréle uniforme de la longueur des orbites par morceaux) Il existe b > a
et M < oo tels que pour toute v € PAC(S, [a,b]) il tient que:

to
() = / 14 < M.
t1

d) (Intégrabilité du talweg) Il existe b > a tel que

/ab ©!(t) < o0.

De plus, dans ce chapitre nous fournissons également une caractérisation de la désingularisa-
tion de la codérivée d’un processus de rafle lisse en terme de la dynamique discréte générée par
la fonction multivoque donnée, a savoir, les suites générées par 'algorithme "Catching-up".

Chapitre 6 : Fonctions AML dans les espaces de dimension deux

A la différence du chapitre 5, dans ce chapitre, (R™, || - ||) désigne un espace de dimension n
équipé avec une norme || - || (non nécessairement euclidienne).

Nous nous proposons d’étudier la régularité des fonctions lipschitziennes. Soit &4 C R™ un
ensemble ouvert non-vide. Le théoréme de Rademacher dit que si f : i/ — R est une fonction
localement lipschitzienne, alors f est differentiable presque partout. Dans ce travail, nous
nous concentrons sur la classe de fonctions définie comme suit :

Définition Soit (R™, || -||) un espace normé de dimension n et soit U C R™ un ouvert non-
vide. Nous dirons qu’une fonction localement lipschitzienne f : U — R est || - ||-Lipschitz
absolument minimale (en abrégé || - ||-AML) si pour tout ouvert non-vide V CC U et pour
toute fonction lipschitzienne g : V — R telle que g = f sur OV, alors

Lip(g) > Lip(fly).

S’il n’y a pas de confusion avec la norme || - ||, nous écririons simplement fonction AML.

L’existence de fonctions AML non-triviales et la régularité de ces fonctions font partie des
principaux problémes de cette théorie. Dans le cas euclidien, G. Aronsson a montré dans [6]
que pour les fonctions f : U — R de classe C?, f est AML si et seulement si elle est une
solution classique de I'équation du Laplacien-infini, i.e., la fonction satisfait

DNoof = 0if0;f0%f =0, dans U. (ooL)

ij=1
En 1993, R. Jensen a démontré que la famille des fonctions AML coincide avec les solutions
de I'équation (ool au sens de viscosité. De plus, R. Jensen a démontré I’existence et 'unicité

de la solution au sens de viscosité du probléme de Cauchy gouverné pour 1’équation (ooL))
avec condition au bord continue, voir [64].
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Maintenant, nous rappelons quelques résultats qui concernent la régularité de cette classe de
fonctions. O. Savin a démontré dans [89] que les fonctions AML définies sur un ouvert de
(R% || - ||l2) (équipé avec la norme euclidienne) sont contintiment différentiables. Dans [48], L.
Evans et C. Smart ont montré que les fonctions AML définies sur un ouvert de (R, || - ||2)
sont partout différentiables. Toutefois, la continuité de la dérivée reste une question ouverte
pour n > 3.

Le théoréme principal de ce chapitre est le suivant.

Théoréme I Soit X un espace normé de dimension 2. Les assertions suivantes sont équiv-
alentes :

a) La norme sous-jacente est différentiable sur X \ {0}.

b) Toute fonction AML définie sur un ouvert de X est continiment différentiable.

c¢) Toute fonction AML définie sur un ouvert de X est partout différentiable.

Au début de 2021, F. Peng, C. Wang et Y. Zhou ont généralisé le résultat de régularité de O.
Savin aux fonctions absolument minimisantes par rapport & un Hamiltonien convexe définies
sur un ouvert de (R? || - ||2), voir [77]. Ce résultat généralise également notre Théoréme I
aussi. Toutefois, la preuve fournie dans [77] se base sur la structure euclidienne sous-jacente,
alors que notre preuve est complétement non-euclidienne.
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(General Introduction

This thesis is divided into 6 chapters which explore different aspects of Operator Theory,
Variational Analysis and Real Analysis. In the first introductory chapter, we present the
fundamentals of the Banach space theory which will be used in Chapters 2, 3 and 4. Then,
we continue with five chapters which deal with five different problems and can be read in-
dependently. From the second to the fourth chapter we deal with problems arising from
the classification of bounded operators and linear dynamics which occur only in infinite di-
mensional Banach spaces. On the other hand, in the fifth and sixth chapter we present two
different problems in finite dimensional spaces, concerning sweeping processes and regularity
of Lipschitz functions respectively.

Chapter 2: (S-operators and differentiability:

The study of distinct notions of differentiability has been one of the main topics in the theory
of regularity of functions defined in general real Banach spaces. The most common notions of
differentiability are given by the ones in the sense of Fréchet, Gateaux and Hadamard. These
notions of differentiability are enclosed in the more abstract setting of the differentiability
given by a bornology. Let us recall that a bornology is a family of bounded subsets of X which
is a covering of X, is stable under finite unions and hereditary under inclusion. For instance,
the family of bounded sets (resp. finite sets, relatively compact sets) is a bornology that
can be defined on each Banach space and the uniform differentiability with respect to these
sets consists exactly on the Fréchet (resp. Gateaux, Hadamard) differentiability. Let 8 be a
bornology in X, we say that a bounded operator T' € L(Y, X) is a S-operator if TB(y,r) €
for all y € Y and r» > 0. To motivate this chapter, let us introduce the following definition.
A set A C X is said limited if, for any sequence (z7), C X*, weakly*-convergent to 0, we
have that
lim sup{z;(x): = € A} =0.

n—o0

Observe that the family of limited sets of a Banach space form a bornology. Moreover, a
bounded linear operator 7" : X — Y is limited if and only if T'(By) is a limited subset of Y.
In [11], M. Bachir characterized limited operators in terms of the differentiability of convex
functions as follows:

Theorem (Bachir) Let X and Y be two real Banach spaces. Let T : Y — X be a bounded
operator. Then, T s limited if and only if, for every f : X — R continuous convex function,
foT is Fréchet differentiable at y whenever f is Gateaux differentiable at x = TYy.
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Motivated by this result, with M. Bachir and G. Flores in [I3], we obtained two characteri-
zations, the first one for compact operators and the second one for finite rank operators. In
order to state our results, let us introduce the following property on bornologies.

Definition Let 5 be a bornology on X. We say that [ satisfies the property (S) if for every
bounded set A C X such that A ¢ B, there are a sequence (x,), C A and § > 0 such that for
any increasing sequences (ng) C N and for any sequence (yx)i satisfying ||y — xn, || < 9, the
set {yx : k € N} does not belong to (.

It is not hard to see that the bornology of relatively compact sets satisfies property (S). Also,
the bornology of limited sets and the one of relatively weakly-compact sets satisfy property

(S), see Section [2.2]

We use the following notation: A bornology 5 on X is said to be convex if for any A € £,
the convex envelop co(A) and = + AA belong to (5, for any x € X and A € R. Observe that,
if 5 is a convex bornology on X, T € L(Y, X) is a f-operator if T(By) € 5. The following
result characterizes several kind of operators including limited, compact and weakly-compact
operators.

Theorem A Let X and Y be two real Banach spaces and let 5 be a convex bornology on X
satisfying property (S). Let T : Y — X be a bounded linear operator. Then T is a B-operator
if and only if for every Lipschitz function f : X — R, B differentiable at x = Ty, the function
foT is Fréchet differentiable at y.

In order to state a characterization for finite rank operators we introduce the following class
of functions.

Definition Let X and Y be two Banach spaces. A function f : X — Y is called finitely
Lipschitz if for any finite dimensional affine subspace Z of X, the restriction f|z is Lipschitz.

For instance, any linear map from X to Y is finitely Lipschitz. Thus, the second main
contribution of this chapter reads as follows:

Theorem B Let X and Y be two real Banach spaces. Let T :'Y — X be a bounded linear
operator. Then T has finite rank if and only if for every finitely Lipschitz function f : X — R,
Gateaux differentiable at x = Ty, the function f o T is Fréchet differentiable at y.

Chapter 3: Epsilon-Hypercyclicity Criterion

In this chapter, the underlying scalar field can be fixed as R or C. A natural way to clas-
sify linear operators is through the dynamic generated by the action of the operator on the
underlying space. That is, for a given operator ' € £(X) and x € X, the study of the
properties of the orbit of x under the action of T: Orby(z) := {T™z : n € N}. Let us
fix T e L(X). It is considered that the orbit of x € X under 7T is regular if the sequence
(IT™x]|)», either tends to 0 or tends to co or remains bounded away from 0 and oo as n tends
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to oo. This notion of regularity comes from the fact that if X is a finite dimensional Banach
space, then any orbit generated by the action of any linear operator is regular. Moreover,
it is known that there are operators defined on infinite dimensional spaces with non-regular
orbits. Indeed, in [85], S. Rolewicz constructed operators T € L(X), where X is ¢o(N) or
¢P(N) with p € [1,00), such that there is a vector z € X with dense orbit. More precisely, he
considered the operator 2B, where B : X — X is the backward shift on X, i.e., if (e, ), is the
canonical basis of X, Beg = 0 and Be,, = e,_; for all n > 1. An operator which has a vector
with dense orbit is called hypercyclic and the associated vector is called hypercyclic vector.
Regarding this example as an operator with irregular orbits, a natural question arises: How
different can be the irregular orbits?

In this line, the effort of the community to understand purely infinite dimensional phenomena
in linear dynamics has increased during the last decades. A remarkable tool to determine if
a given operator is hypercyclic is the so-called Hypercyclicity Criterion.

Theorem [67, Hypercyclicity Criterion] Let X be a separable real or complex Banach space
and let T € L(X). If there exists an increasing sequence of integers (n(k)), C N, two dense
sets Dy, Dy C X and sequence of maps Sy : Dy — X such that:

(1) limg_so0 |T"®z|| = 0 for any x € D;.

(2) limy—so0 [[Snyyll = 0 for any y € Ds.

(3) limy_0o HT”(’“)Sn(k)y —y|| =0 for any y € D,.
Then T is hypercyclic.

In [15], C. Badea, S. Grivaux and V. Miiller, introduced the following notion:

Definition Let e € (0,1), let X be a real or complexr Banach space and let T € L(X). The
operator T is called e-hypercyclic if there is x € X such that

Vye X\ {0}, IneN, [Tz -yl <<yl

It is clear that each hypercyclic operator is e-hypercyclic for all € > 0. Also, the vector 0
would be a 1-hypercyclic vector for each bounded operator. In the mentioned paper, [15],
for e € (0,1) fixed, it is constructed an e-hypercyclic operator which is not hypercyclic on
(*(N). Two years later, F. Bayart in [16] constructed an e-hypercyclic operator which is not
hypercyclic on (*(N).

The main contribution of this chapter is a criterion for epsilon-hypercyclicity. As a remark,
the operators constructed in [15] [16] satisfy the following criterion.

Theorem C (Epsilon-Hypercyclicity Criterion) Let X be a separable real or complex Banach
space, let T € L(X) and let € € (0,1). Let Dy be a dense set on X. Let Dy := {y;, : k € N}
be a countable subset of X. Assume further that for each v € X \ {0}, there are infinitely
many integers k € N such that y, € B(z,¢||z|). Let (n(k))r C N be an increasing sequence
and let Sy : Dy — X be a sequence of maps such that:

14



(1) limg_yoo |T"® || = 0 for all x € Dy,

(2) limysoo [|Sn el =0,

(3) limp—oo | T7® Sy ys — il = 0.
Then, T is 6-hypercyclic for all § > €.

In the fashion of the Hypercyclic Criterion, we present a constructive proof and a topological
proof of our criterion. Moreover, with the help of Theorem C, we are able to further enhance
the construction and obtain e-hypercyclic operators which are not hypercyclic. In fact, we
obtain the following result.

Theorem D Let X be a separable Banach space which admits a complemented isomorphic
copy of co(N) or P(N), with p € [1,00). Then, for any ¢ > 0, X admits an e-hypercyclic
operator which is not hypercyclic.

Chapter 4: Wild operators and asymptotically separated sets

Let X be a real or complex Banach space and let T" be a bounded operator on X. The
Banach-Steinhaus Theorem implies that the set of points with unbounded orbits under the
action of T must be either dense or empty. If X is a finite dimensional space and since the
orbits of T" are regular, an orbit {T"x : n € N} is unbounded if and only if the sequence
(IIT™x])» tends to infinity. Based on these observations, G. Prijiturd proposed the following
conjecture: is the set
Ar ={z e X : lim ||T"z| = oo}
n—0o0

either empty or dense? Two year later, P. Hajek and R. Smith refuted this conjecture
by constructing a bounded operator T on each infinite dimensional Banach space with a
symmetric basis, such that the set Ar was a nonempty non-dense set, see [6I]. In [§],
J.M. Augé construct a counterexample for mentioned conjecture on each infinite dimensional
separable Banach space. Before proceeding, we need the following definition.

Definition A set ' C X is called asymptotically separated if there exist (z7), C X* such
that

i) liminf, o |2} (2)| =0, for all z € F.
i) lim, o0 |25 (2)] = 00, for allz € X \ F.

In [8], the existence of a non-trivial asymptotically separated set F' C K2, namely
{(z,y) e K*: 2| < yl},

allows the construction of an operator which refutes Prajiturd’s conjecture. In the first
part of this chapter we explore the asymptotically separated sets defined in both finite and
infinite dimensional spaces and its consequences in linear dynamics. The following theorem
summarizes some of the examples of asymptotically separated sets that can be found in this
work.

Theorem E Let X be a complex or real Banach space and let F C X.
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i) If dim(X) < oo and F is a union of linear hyperplanes such that F'\ {0} is open, or
ii) if X is separable and F is equal to {0} or a closed subspace of X,

then F' is asymptotically separated. Moreover, any Banach space of dimension at least 2
admits a dense asymptotically separated subset with dense complement.

In order to continue, let us define the recurrent set of a linear operator 7' € L(X) by

Ry :={r € X : liminf ||T"z — z|| = 0}.
n—o0

Definition Let X be a real or complex Banach space. An operator T € L(X) is called wild
if Ar and Ry form a partition of X and both sets have nonempty interior.

In [§] it is proved that each separable infinite dimensional Banach space admits a wild op-
erator. The link between linear dynamics and asymptotically separated sets comes from the
following theorem, which is a generalization of the main result of [§].

Theorem F Let X be a separable infinite dimensional real or complex Banach space. Let V
be a complemented, infinite codimensional subspace of X. Let I C V be an asymptotically
separated subset in V. Then there exists an operator T € L(X) such that Ry = P7'(F) and
Apr = P YV \ F), where P € L(X) is a projection onto V.

In virtue of Theorem F, any (non-trivial) example of asymptotically separated set leads to the
existence of a linear operator with interesting dynamics. In fact, combining Theorem E and
Theorem F and the fact that any infinite dimensional Banach space X can be decomposed
as V @ W, with V a finite dimensional subspace (of dimension at least 2), we obtain the
following corollary.

Corollary Let X be a separable infinite dimensional Banach space. Then:
o ThereisT € L(X) such that A and Ry form a partition of X and both sets are dense.

o ThereisT € L(X) such that Ar and Ry form a partition of X and ApU{0} is a finite
codimensional subspace.

o There isT € L(X) wild such that Ax U{0} is closed.

In the second part of this chapter we study some properties of wild operators. More precisely,
the following theorem gives some results obtained in three different directions: the non-
stability under products of the class of wild operators, the construction of non-invertible wild
operators and the size of the norm-closure of the set of wild operators.

Theorem G Let X be a separable infinite dimensional complex Banach space. Then
o X admits a wild operator T € L(X) such that T ® T is not wild on X © X.
e if X has a symmetric basis, then X admits a non-invertible wild operator.

e if X has an unconditional basis (ey,),, then each diagonal operator with respect to (e,),
with only unitary eigenvalues, belongs to the norm-closure of the set of wild operators

in L(X).
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Chapter 5: Desingularization of smooth sweeping processes

This chapter is the beginning of the second part of this thesis, in which we turn our attention
to some aspects of Variational Analysis and Real Analysis in finite dimensional spaces. In
this chapter R"™ denotes the n-dimensional vector space endowed with the canonical euclidean
norm.

It is well-known that every C' smooth function f : R® — R which is definable in some o-
minimal structure has finitely many critical values. K. Kurdyka [68] showed that if 7 € f(R")
is a critical value and U is a nonempty open bounded subset of R”, then there exist p > 0
and a C'-smooth function ¢ : [F, 7 + p| — [0, +00) satisfying

V(o f)z)] > 1, for all z € U such that f(z) € (7,7 + p). (2)

The above inequality generalizes to o-minimal functions the Lojasiewicz gradient inequality
(established in [70] for the class of C' subanalytic functions) and is nowadays known as the
Kurdyka-FLojasiewicz inequality (in short, KE-inequality).

Both the Lojasiewicz and the KE-inequality have been further extended to nonsmooth (sub-
analytic and respectively o-minimal) functions, see [24] 25]. These inequalities allow to control
uniformly the lengths of the bounded (sub)gradient orbits, see [71] 68, 24]. The same is true
for the lengths of the piecewise gradient curves, that is, curves obtained by concatenating
countably many gradient curves {7; };>1, where v C f~'([ri11,71)) and {r;}; is a strictly de-
creasing sequence in (7,7 + p) converging to 7. (These curves have at most countably many
discontinuities. )

Outside the framework of o-minimality the Kl-inequality may fail even for C2-smooth
functions [26, Section 4.3| or for C*°-smooth function with a unique critical value [76, p. 12].
J.Bolte, A. Daniilidis, O. Ley and L. Mazet in |26] considered the problem of characterizing
the existence of a desingularization function ¢ and the validity of (2)-inequality for an upper
isolated critical value 7 of a semiconvex coercive function f defined in a Hilbert space (where
f is not necessarily a definable function).

In order to continue, let us introduce the dynamic generated by a multivalued function and
its coderivative.

Definition Let S : R = R" be a multivalued map and I C dom(S) be a nonempty interval
of R. We say that the absolutely continuous curve v : I — R" is a solution (orbit) of the
sweeping process defined by S if

—4(t) € Ny ((t)), Vae t €1,
~v(t) € S(t) for allt € 1,

where Ngy(v(t)) stands for the normal cone of S(t) aty(t). We denote by AC(S,I) (PAC(S,I))

the set of absolutely continuous (resp. piecewise absolutely continuous) orbits of the sweeping
process defined by S on the interval I C dom(S).
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For a multivalued map S : R = R™, we denote its graph by § := {(t,x) € RxR": z € S(t)}

Definition Let S : R = R" be a multivalued function. The (limiting) coderivative of S at
(t,z) € S inu € R" is defined as follows:

D*S(t,x)(u) :={a €R: (a,—u) € Ns(t,x)}.

Recently, A. Daniilidis and D. Drusvyatskiy [41] showed that every multivalued map S : R =
R™ with definable graph admits a desingularization of its graphical coderivative D*S(t,-)
around any critical value t € R. This result yields a uniform bound for the lengths of all
bounded orbits of the sweeping process defined by S. The aforementioned results of [41] are
also covering the results of Kurdyka in [68] by considering a sweeping process mapping S
related to the sublevel sets of the smooth definable function f.

The main contribution of this chapter is the desingularization of the coderivative for mul-
tivalued functions which are not necessarily definable in some the o-minimal structure. In
order to state our main result, let us introduce some definitions.

Definition Let S: R = R" be a multivalued function.

i) For every (t,z) € S, the asymmetric modulus of the coderivative D*S(t,x) is defined
as follows:

ID*S(t, x)|" = sup{max(a,0) : a € D*S(t,)(u), [u] <1},

where we adopt the convention sup(f)) = 0.
ii) The oriented talweg function of S denoted by ¢ is defined as follows:

o' (t) = sup {||D*S(t,z)|T}, for all t € dom(S).
zeS(t)

The setting of our work is described in the following definition and the assumptions (A1),
(A2) and (A3) given below.

Definition We say that S : R = R" is a smooth sweeping process if either
— S is a closed connected Ct-smooth submanifold of R™ of dimension at most n ; or

- S is a connected smooth manifold with boundary of dimension n + 1 such that 0S is a
Ct-smooth manifold of dimension n.

Assumption Let S : R = R" be a multivalued map and let T := sup(dom(S)). We say that
S satisfies the

(A1) existence assumption: for every (t,x) € S with | D*S(t,x)|" < +oo, there exist §, > 0
and at least one orbit v, € AC(S;[t,t + 0,)) such that v,(t) = x.

(A2) upper regular assumption at t € dom(S) with t < T: if there exists § > 0 such that
o < 400 on (£,T+9).
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(A3) continuity assumption at ¢ € dom(S) with ¢ < T: if there exists & > 0 such that the
multivalued map t = 0S N ({t} NR™) is continuous for the Pompeiu-Hausdorff metric
on (t,t+0) (it may be discontinuous at t).

Now, we are ready to state our main result.

Theorem H Let S : R = R"™ be a smooth sweeping process with bounded values that sat-
isfies (A1). Let T := {t € dom(S) : (A2)-(A3) are fulfilled at t}. Let a € T (typically a
critical value for D*S).

The following assertions are equivalent:

a) (Desingularization of the coderivative) There exist b > a, p > 0 and a homeo-
morphism U : [0, p] — [a, b], which is a C*-diffeomorphism between (0, p) and (a,b) with
U'(r) > 0 for every r € (0, p), such that:

|D*(S o W) (r,z)|" <1, forallr € (0,p), for all x € S(¥(r)).

b) (Uniform length control for the absolutely continuous orbits) There exist b > a
and an increasing continuous function o : [a,b] — RY with o(a) = 0 such that for every
a <ty <ty <band~y e AC(S, |t t2]) we have:

() = / 1A < o(t2) — oty).

c) (Length bound for the piecewise absolutely continuous orbits) There exist b > a
and M < oo such that for every v € PAC(S, [a,b]) we have:

to
() = / 14 < M.
t1

d) (Integrability of the talweg) There exists b > a such that

/ab ©'(t) < 0.

Also, in this chapter we provide a characterization of the desingularization of the coderivative
for smooth sweeping processes in terms of the discrete dynamic generated by the given
multivalued map, namely, the sequences generated by the Catching-Up Algorithm.

Chapter 6: AML functions in two dimensional spaces:

In contrast to Chapter 5, in this chapter (R", || - ||) denotes an n-dimensional vector space
R™ equipped with a (not necessarily Euclidean) norm || - ||.

This chapter is devoted to the regularity of Lipschitz functions. Let &/ C R™ be a nonempty
open set. By Rademacher Theorem, any locally Lipschitz function f : U/ — R is differentiable
almost everywhere. In this work we study the regularity of the following subfamily of locally
Lipschitz functions.
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Definition Let (R, || -||) be a finite dimensional normed space and let U C R™ a nonempty
open set. We say that a locally Lipschitz function f:U — R is a || - ||-absolutely minimizing
Lipschitz function (|| - ||FAML for short) if for any nonempty open set ¥V CC U and any

Lipschitz function g : V — R such that glay = flay, then

Lip(g) > Lip(fly).

If no confusion arises from the underlying norm on R"™, we simple say AML functions.

The existence of non-trivial AML functions and their regularity are some of the main issues of
this theory. In the Euclidean setting, Aronsson proved that a C2-smooth function, f : U — R
is AML if and only if it is a classical solution of the equation governed by the infinity-
Laplacian, i.e. the function f satisfies

Noof = ZL &f@jf@?jf =0, onU (ool))

i,j=1

in the classical sense, see [6]. In 1993, Jensen showed that the family of AML functions co-
incides with the solutions of Equation (ooll) in the viscosity sense. Moreover, Jensen proved
existence and uniqueness in the sense of viscosity of the Cauchy problem given by the Equa-
tion (ooL|) with a continuous boundary condition, see [64].

Let us now summarize some results concerning the regularity of this class of functions. In the
seminal paper [89], O. Savin proved that AML functions defined on open subsets of (R?, [|]|2)
(equipped with an Euclidean norm) are continuously differentiable. In [48], L. Evans and C.
Smart proved that AML functions defined on open subsets of (R, || - ||2) are differentiability
everywhere. However, the continuity of the differential remains open for n > 3.

The main theorem of this chapter reads as follows.

Theorem I Let X be a 2 dimensional Banach space. The following statements are equiva-
lent.

a) The underlying norm is differentiable in X \ {0}.

b) Every AML function defined on an open subset of X is continuously differentiable.

¢) Every AML function defined on an open subset of X is everywhere differentiable.

In the early 2021, F. Peng, C. Wang and Y. Zhou generalized Savin’s result to absolutely
minimizing functions under convex Hamiltonians defined on open sets of (R?, || - ||2). This
result also generalizes our Theorem I. However, the proof presented in [77] relies in the
underlying Euclidean structure of (R?,|| - ||2), in contrast with our purely non-Euclidean
technique to prove Theorem I.
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Chapter 1

General Facts of Banach space Theory

The aim of this chapter is to give the fundamentals to develop the first part of this thesis.
Functional Analysis and Banach space theory have been widely developed along the whole
20th century. We present some well-known facts of three distinct areas, namely: bornologies,
bases and linear dynamics. In fact, Section contains the basics for Chapter 2. On the
other hand, Section and Section are the main bricks to Chapters 3 and 4. We point
out that in Section the usual framework is a real Banach space while in Section and
Section the underlying scalar field can be either R or C.

1.1 Bornologies, differentiability and linear operators

Let us start with the definition of a bornology on Banach spaces.

Definition 1.1 [63, Page 18] Let X be a real Banach space. A bornology on X, denoted by
B, is any nonempty family of bounded subsets of X that satisfies the following properties:

1. B is a covering of X, i.e. X =|J{A: A€ S},

2. B 1is hereditary under inclusion, i.e. if A€ B and B C A, then B € j3,

3. [ is stable under finite union, i.e. if A,B € [, then AU B € f3.

For a given Banach space, the most common bornologies are the following: Fréchet, the
family of all bounded sets; Gateaux, the family of all finite sets and (weakly-)Hadamard,
the family of all relatively (weakly-)compact sets. One of the uses of bornologies is to define
different notions of differentiability as follows.

Definition 1.2 Let 2 be an nonempty open subset of X and let B be a bornology on X. A
function f:Q =Y is said B differentiable at © € Q, with differential T € L(X,Y), if

f(ZE+tZ)—f(I) —T(Z)

" =0, VA € .

lim sup
t—=0 ;e

We denote the [ differential of f at x by dgf(z) :=T.

Observe that, in the sense of Definition [I.2] Gateaux and Fréchet differentiability correspond
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to the weakest and strongest notions of differentiability. A well known result asserts that if
f is Fréchet differentiable at some point z, then f is continuous at . However, this does not
hold true whenever we interchange Fréchet for Gateaux. In what follows, we present a folklore
result on differentiability of Lipschitz functions. Recall that a function f: Q) C X — Y is
said K-Lipschitz if

|f(z) — f(2)]| < K||lx — 2|, for all z,y € X.

The Lipschitz constant of f is the lowest constant K such that f is a K-Lipschitz function
and it is denoted by Lip(f).

Proposition 1.3 Let f: Q2 C X — Y be a Lipschitz function. Assume that f is Gateaux
differentiable at x € int(Q2). Then, f is Hadamard differentiable at x.

Proor. Let dgf(x) be the Gateaux differential of f at z. Let us show that f is in fact
Hadamard differentiable and the Hadamard differential dg f(x) coincides with dg f(z). Let
A be a compact subset of X and € > 0. Let A, be a finite e-net of A. Then, since ||d¢ f(2)]| <
Lip(f), for any t # 0, we compute

[ 1) _ | < g |2 )= S0
z€A z€A
[ L 210 gy + s tala: - 2
o+ ta.)  f(a)

< 2eLip(f) + sup
z€A

—daf(z)(a.)

Y

t

where a, € A. is chosen such that ||z — a.|| < e. Therefore, since A is a finite set, sending ¢
to 0 we obtain that

flz+1t2) = f(2)

I daf(a)(2) | < 2eLin(f).

lim sup
t—=0 e

Finally, since € > 0 is arbitrary, we conclude that dg f(z) is the Hadamard differential of f
at z. [

As a direct consequence we have:

Corollary 1.4 Let f : Q C X — Y be a Lipschitz function. Assume that X s finite-
dimensional. Then, Gdteaur and Fréchet differentiability coincide for f.

According to [43], we can consider the Banach spaces of 3 differentiable functions.
Proposition 1.5 [/5, Section 2] Let X be a real Banach space and let B be a bornology

on X. Then, the vector space C2(X) of bounded, Lipschitz continuous and everywhere 3
differentiable functions from X to R is a Banach space when it is equipped with the norm

111 = [[flloe + s fllos
=sup{[f(z)| : = € X} +sup{||dgf(2)] - =€ X},

where f € CP(X).
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To end this section, and in the spirit of [63, Chapter 1], we introduce the following definition.

Definition 1.6 Let X and Y be two Banach spaces and let B be a bornology on'Y. We say
that a linear operator T : X — Y is a B-operator if TB(x,r) € 8 for allz € X and all r > 0.

Observe that, for any bornology £ in Y, a S-operator T': X — Y is continuous. Indeed, this
is due to the fact that T By €  and that any bornology is made up of bounded sets. That
is, in this notation, an operator is bounded if and only if it is a Fréchet-operator. Further,
the classifications of compact and weakly compact operator are related to the Hadamard and
weakly-Hadamard bornology respectively.

1.2 Bases in Banach spaces

In this section, we introduce several notions of bases for real or complex Banach spaces. Bases
allow us to treat certain Banach spaces as sequence spaces. According to [60], a sequence
(en,er)n € X x X*is a biorthogonal system if e (e,,) = 1 if n = m, and € (e,,,) = 0if n # m.
A complete survey about the importance of biorthogonal systems in Banach space theory
can be found in [60]. In what follows, we introduce some important kinds of biorthogonal

systems.

Definition 1.7 A sequence (e,), C X is called a Schauder basis of X if for any x € X,
there is a unique sequence of scalars (ay,), C K such that

o0

T = g anen,.

n=1

Observe that, if (e,), is a Schauder basis of X, then it induces a canonical biorthogonal
system. Namely, (e,,e}), C X x X* where ¢ is defined by the n-th scalar obtained in the
series defining z in terms of (e,),. Also, notice that every Hamel basis of a finite dimen-
sional Banach space is a Schauder basis in the sense of Definition . However, in [47], P.
Enflo constructed an infinite dimensional separable Banach space that lacks of Schauder basis.

Definition 1.8 [1, Definition 3.1.4] A Schauder basis (e,), C X is said C-unconditional if,
for all N € N,

N N
Z anenll < K anen
n=1 n=1

whenever ai, ...,ay,by,...,by are scalars satisfying |a,| < |by| for all m = 1,...,N. The

Schauder basis (ey,),, is said unconditional if it is C-unconditional for some C' > 0.

In [56], W. Gowers and B. Maurey constructed a separable infinite dimensional Banach space
X such that no sequence (e,), C X is an unconditional basis in the infinite dimensional sub-
space Span(e, : n € N). On the other hand, any orthonormal basis of a separable Hilbert
space is l-unconditional. More generally, the canonical basis of /?(N), with p € [1, 00), or of
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¢o(N) is 1-unconditional. The following proposition is a well-known result concerning uncon-
ditional basis and renorming a Banach space.

Proposition 1.9 Let X be a Banach space with an unconditional basis (e,), C X. Then,
there erists a renorming on X such that (e,), is a 1-unconditional basis.

Let us introduce the last notion of biorthogonal system of this section.

Definition 1.10 Let (e,,¢€), C X x X* be a biorthogonal system. We say that (e,,e), (or
just (en)n) is a bounded M-basis if:

1. X =span(e, :n € N),

2. X* =span* (e :n € N), and

3. sup{|len||/le]] : m € N} < K < 0.

The concept of bounded M-basis is weaker than the notion of Schauder basis. In fact, In [75]
R. Ovsepian and A. Pelczyniski showed that every separable Banach space admits a bounded
M-basis. We present here the more precise formulation found in [60].

Theorem 1.11 [60, Theorem 1.27] Let X be a separable real or complex Banach space.
Then, X admits a bounded M-basis. Moreover, the constant K can be chosen as 1 + ¢ with
e > 0 arbitrarily small.

1.3 Dynamics of linear operators

Linear dynamic is a rapidly increasing area of Functional Analysis which deals with the
study of dynamical systems generated by the action of a bounded linear operator 7" on some
topological vector space X. In this work we are interested in the case whenever X is an
infinite dimensional Banach space. To fix notation, for x € X, we say that the orbit of T" at
x is the set

Orbyr(z) == {T"x : n € N}.

In [85], S. Rolewicz stated that linear dynamics in finite dimensional spaces are regular in
the following sense.

Theorem 1.12 [85, Page 1] Let X be a finite dimensional real or compler normed space
and let T € L(X). Let x € X. Then, one of the following assertions holds true:

1. lim, o || T"z|| = oo.
2. lim, o ||T"2| = 0.
3. 0<a<|[Trz|| < p < oo foralln € N.

SKETCH OF THE PROOF. Let us give some comments of the proof for the case whenever X is
a complex vector space. If X is a real vector space, we can do the same analysis with its
complexification. Since T is a linear operator, it admits a Jordan canonical form Mp. That
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is, a block diagonal matrix such that each block is a Jordan block. Let x = z* +2! +2¢ be the
unique decomposition of x such that z* belongs to the span of the union of the generalized
eigenspaces associated to eigenvalues of T' of modulus less than 1, 2! belongs to the span
of the union of the generalized eigenspaces of T' associated to eigenvalues of modulus equal
to 1 and 2% belongs to the span of the union of the generalized eigenspaces associated to
eigenvalues of 7' of modulus greater than 1.

Now we proceed with the analysis of || T"z||. Tt is straightforward that ||7"z|| tends to infinity
as n tends to infinity if x¢ # 0. Also, it is clear that || 7"z tends to 0 as n tends to infinity.
So, to end the analysis, we can assume that x = z!. That is, = belongs to the span of the
union of the generalized eigenspaces associated to eigenvalues of T of modulus equal to 1. If
x can be written as a sum of eigenvectors of 7', then x satisfies (2). The last case is whenever
x belongs to the span of the union of the generalized eigenspaces associated to eigenvalues
of modulus 1 but it cannot be decomposed in eigenvectors. It is not difficult to see that x
satisfies (1). O

Remark 1.13 In the proof of Theorem if 1€ # 0, then |[T"z| grows exponentially to
infinity. On the other hand, if x¢ = 0 and z' # 0 cannot be decomposed in eigenvectors of
T, then ||T™z|| grows polynomially to infinity.

To continue, we need some definitions to motivate our work.

Definition 1.14 Let X be a real or complex Banach space and let T' € L(X). We say that
T is cyclic if there is © € X such that

span(Orbr(z)) = X.
The vector x s called a cyclic vector for T.

Observe that if X is a d-dimensional space and {e, : n = 1,...,d} is a basis of X, the
operator T € L(X) defined by the following permutation of the basis:

Teq=e1, and Te, =e,,1, foralln=1,....d -1,

is cyclic and the vectors {ey, k =1,...,d} are cyclic vectors for T.

Definition 1.15 Let X be a real or complex Banach space and let T' € L(X). We say that
T is supercyclic if there s x € X such that

KOYbT(ZE) = X.
The vector x is called a supercyclic vector for T'.

Observe that if X is a 2-dimensional space and {ej,es} is a basis of X, 6 is an irrational
multiple of 7 and T" € £(X) is the operator defined by:

T(x1e1 + xeeq) := x1(cos(0)e; + sin()ey) + xo(—sin(f)e; + cos()ey), for all 21,25 € K

is supercyclic and the vectors {ex, k = 1,...,d} are supercyclic vectors for T. Let us continue
with the last definition of this chapter.

25



Definition 1.16 Let X be a Banach space and let T be a linear bounded operator on X. We
say that T hypercyclic if there is x € X such that

The vector x is called an hypercyclic vector for T.

Observe that, thanks to Theorem [1.12] there is no hypercyclic operators defined on finite
dimensional spaces. However, in [85], S. Rolewicz showed examples of hypercyclic operators
defined on infinite dimensional Banach spaces.

Example 1.17 Let p € [1,00) and let (e,), be the canonical coordinates of (P(N). Let
B € L(¢P(N)) defined by Be; = 0 and Be, = e,_1 if n > 2. The operator B is commonly
called the backward shift on (P(N). Then, AB is hypercyclic in P(N) if and only if |\| > 1.

The examples given by S. Rolewicz seem to be the first examples constructed in Banach
spaces. However, 40 years before in [16], Birkhoff showed an example of a hypercyclic op-
erator constructed on a Fréchet space. Since [85], linear dynamics has been a prolific area
in functional analysis. Indeed, these definitions are related to the following subspace/subset
invariant problems: Does there exist a linear operator 7' : X — X without non-trivial in-
variant closed subspace/subset? In fact, an operator 7' € £(X) has no non-trivial invariant
closed subspace if and only if each non-zero vector of X is a cyclic vector for 7. On the other
hand, an operator 7" has no non-trivial invariant closed subset if and only if each non-zero
vector of X is a hypercyclic vector for T. Let us give some comments about these problems.
P. Enflo, in [47], showed the first operator with no non-trivial closed subspace in an infinite
dimensional Banach space. In the same work, P. Enflo constructed the Banach space and the
operator. C. Read, in |82], constructed an operator on ¢!(N) with no non-trivial invariant
closed subsets. On the other hand, in [4], S. Argyros and R. Haydon constructed a separable
infinite dimensional Banach space X such that every operator T' € £(X) has a non-trivial
invariant subspace.

Nowadays, thanks to the joint effort of researchers to understand these kind of phenomena,
such as the hypercyclicity, there is a vast literature in which we can find several distinct
classifications that strengthen the concept of hypercyclicity, such as frequent hypercyclicity,
weak mixing, among others. Further information can be found in [18§].

We end this section by presenting an important tool to check if a given operator is hypercyclic,
the so-called Hypercyclicity Criterion. It appeared for first time (in a particular case) in
Kitai’s PhD thesis [67]. In what follows, we present the version found in [I8] applied to
Banach spaces.

Theorem 1.18 [I8, Theorem 1.6] Let X be a separable real or complexr Banach space and
let T € L(X). If there exist an increasing sequence of integers (n(k))r C N, two dense sets
Dy, Dy C X and sequence of maps Syx) : Do — X such that:

1. limy_oo T"®z = 0 for any z € D;.
2. limg 00 Spkyy = 0 for any y € Ds.
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3. limy_ o0 T”(k)Sn(k)y =y for any y € D.
Then T is hypercyclic.

Let us show that the operator given in Example satisfies the Hypercyclicity Criterion.
Let p € [1,00), let |[A] > 1 and let (e,,),, be the canonical basis of /?(N). Let B be the backward

shift on (P(N) and let F' be the forward shift on (P(N), that is, Fe,, = e, for all n € N. Let
us set D; = Dy := span({e, : n € N}), the sequence n(k) := k and the map S, := N\ FF*
for all £ € N. Then, we can easily apply the Hypercyclicity Criterion on AB. Thus, AB is a

hypercyclic operator defined on /?(N).
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Chapter 2

p-operators and differentiability

This chapter is devoted to understand the interplay between bornologies, linear operators
and differentiability on real Banach spaces. To do this, we follow the structure of a result
of M. Bachir given in [I1], precisely, Theorem below. The basics and the corresponding
notation related to this chapter can be found in Chapter 1, Section This chapter is
partially based in [13], which is a joint work with M. Bachir and G. Flores. However, one of
the main results of this chapter, Theorem is a generalization of the main result of [13].
In this chapter all Banach spaces are real.

2.1 Introduction

It is a well-known fact that differentiability in the sense of bornologies (see Definition
implies distinct properties of the functions depending on the chosen bornology. In this frame-
work, the most common bornologies are those of finite, relatively compact and bounded sets.
Each one of them is related to some type of differentiability, namely, Gateaux, Hadamard
and Fréchet respectively, see [T9]. To motivate this work we need the following definition
which can be found in [30].

Definition 2.1 Let X be a Banach space. A bounded subset A of X is said limited if for
any weak™ null sequence (x,,)%, the following limit holds:

lim sup [(x},x)| = 0.

That is, sequentially weakly* convergence is uniform on A.

We know that every relatively compact subset in a Banach space is limited, but the converse
is false in general. The family of limited subsets of a Banach space form a bornology, which
will be called the limited bornology. Recalling Definition for a bornology # on X and an
operator T' € L(Y, X), we say that T is a S-operator if T'(By (y,7)) € § for all y € Y and all
r > 0. The study of limited operator is an interesting line of research. Further information
on limited sets and limited operators can be found in [30, 65 [74]. The next theorem, which is
the motivation of this chapter, characterizes limited operators in terms of the differentiability
of convex functions via the composition with the operator.
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Theorem 2.2 (71, Theorem 1] Let X and Y be two real Banach spaces, let U be a nonempty
convex open subset of X and let T € L(Y,X). Then, T is limited if and only if for every
convex continuous function f :U — R, foT is Fréchet-differentiable at y € Y whenever f
18 Gdteauz-differentiable at Ty € U.

In this sense, a limited operator transforms (for convex functions) Gateaux-differentiability
(the weakest type) into Fréchet-differentiability (the strongest type) via composition. Bear-
ing this in mind, we can go further. Mimicking the structure of Theorem [2.2 in [13], we
proved that compact operators are characterized by the differentiability of Lipschitz func-
tions. Another way to express these results is the fact that in infinite-dimensional spaces,
what prevents a continuous convex function f : X — R which is Gateaux-differentiable at
some point from being Fréchet-differentiable at the same point is the fact that the identity
operator on X is not limited, whereas what prevents a general Lipschitz function which is
Gateaux-differentiable to be Fréchet-differentiable is the fact that the identity operator on X
is not compact. The non-compactness of the identity operator in infinite dimensional spaces
is the well known Riesz theorem. On the other hand, the fact that the identity operator is
not limited in infinite dimensional spaces has been discovered independently by Josefson in
[65] and Nissenzweig in [74].

To state the first main result of this chapter, we need the following two definitions.

Definition 2.3 Let 3 be a bornology on X. We say that B is a convex bornology if for any
Aep:
1. the conver envelope of A, co(A), belongs to B, and

2. x4+ AA belongs to B for any x € X and any X € R.

For instance the limited, Hadamard, weak-Hadamard and Fréchet bornologies are convex
bornologies.

Definition 2.4 Let 3 be a bornology on X. We say that § satisfies the property (S) if for
every bounded set A C X such that A ¢ 3, there is a sequence (x,,), C A and 6 > 0 such that
for any increasing sequences (ny) C N and for any sequence (yx)r satisfying ||yx — xn, || < 0

for all k € N, the set {yy : k € N} does not belong 3.

Although property (S) could seem artificial, in Sectionit is established that the Hadamard,
weakly-Hadamard and Limited bornologies satisfy it. Moreover, the Fréchet bornology triv-
ially satisfies property (S). Our first main result of this chapter reads as follows.

Theorem 2.5 Let X and Y be two Banach spaces and let 5 be a convexr bornology on X
satisfying property (S). Let T € L(Y,X). Then T is a B-operator if and only if for every
Lipschitz function f : X — R, B-differentiable at x = Ty, foT s Fréchet-differentiable at y.

Remark 2.6 Thanks to Proposition Proposition [2.12 and Proposition |2.15, we can
apply Theorem[2.5to compact (recovering the main result of [13]), weakly-compact and limited
operators. We point out that, to the best of our knowledge, this a new characterization for
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weakly-compact operators.

To present our second main result of this chapter, let us introduce a new class of functions
with still some Lipschitz flavour.

Definition 2.7 We say that a function f:U C X — Z is finitely Lipschitz if for every finite
dimensional affine subspace Y of X such that UNY # O, f|ryrwy is Lipschitz. We denote by
FLip(U, Z) the linear space of finitely Lipschitz functions from U C X to Z. In the case of
Z =R, we simply write FLip(U).

Observe that finitely Lipschitz functions do not need to be continuous. Indeed, any linear
functional from an infinite dimensional Banach space to another Banach space is finitely
Lipschitz.

Theorem 2.8 Let X and Y be two Banach spaces and let T € L(Y,X). Then, T has finite
rank if and only if for every Banach space Z and every continuous finitely Lipschitz function
f: X — Z, Gateaux-differentiable at x = Ty, f oT is Fréchet-differentiable at y € Y.

Remark 2.9 Theorem|[2.5 and Theorem[2.8 remain true if we change Z by R or if we restrict
the domain of the Lipschitz functions (finitely-Lipschitz functions resp.) to some open subset
of X.

This chapter is organized as follows: In Section we give some comments on property
(S) and we construct a useful Lipschitz function. Section is devoted to the proof of
Theorem and together with some results on spaceability /lineability. In Section
we present an alternative (and simplified) proof of Theorem [2.2] Finally, we end this chapter
with Section which contains some applications of Theorem

2.2 Property (S) and the construction of a Lipschitz func-
tion

We start this section by showing that if a given bornology satisfies property (5), then it must
contain all relatively compact sets, see Definition Then, we show that the Hadamard,
limited and weak-Hadamard bornology satisfy property (S). We end this section with the
construction of a Lipschitz function that will be used in the forthcoming sections.

Proposition 2.10 Let X be a Banach space and let 5 be a bornology on X. If B satisfies
property (S), then it contains the relatively compact sets of X.

Proor. Let us proceed by contradiction. Let A be a relatively compact subset of X such that
A ¢ (. Let (z,), C Aand § > 0 be the sequence and the positive number given by property
(S). Since A is a relatively compact set, there is a subsequence (z, )i of (z,), convergent
to T € X. Up to a subsequence, we can assume that || — x,, || < 0 for all k£ € N. Thus, the
sequence (yi)x defined by vy, = T satisfies that ||y — z,, || < d for all k& € N. Property (5)
implies that {y, : £ € N} = {Z} ¢ (3, which is a contradiction. O
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Proposition implies that a bornology on a finite dimensional Banach space satisfies
property (S) if and only if it is the Fréchet bornology. Thus, in this section X will always
denote an infinite dimensional Banach space.

Proposition 2.11 The Hadamard bornology on X satisfies property (.S).

Proor. Let A C X be a bounded non-relatively compact set. Then there exists a sequence
(zy)n C A with no accumulation points. Up to a subsequence, which we denote by (x,),,
we find ¢ > 0 such that ||z, — x| > o for all n # m. Therefore, if we choose § = o0/4,
then any sequence (yi)y satisfying ||yx — x5, || < 0, for some increasing sequence (ny), has no
accumulation points. Thus, the set {y; : k£ € N} is not relatively compact. ]

Proposition 2.12 The Limited bornology on X satisfies property (S).

Proor. Let A C X be a bounded non-limited set. Then there is a weak*-null sequence
(x})n C Bx+ which does not converge to 0 uniformly on A. Hence, up to a subsequence of
(x)n, there exist a sequence (x,), C A and o > 0 such that |z}(z,)| > o for all n € N.
Considering 0 = 0/2, we obtain that any vector y, € B(zy,,,d), with (ng), an increasing
sequence, satisfies |2}, (yx)| > 0 /2. Therefore, the set {y, : k € N} is not limited. O

The following result concerns the weak-Hadamard bornology. It can be found inside the
proof of |28 Theorem 1].

Proposition 2.13 The weak-Hadamard bornology on X satisfies property (.5).

Proor. Let A C X be a bounded non-relatively weakly-compact set. By the Eberlein-
Smulian Theorem, there is a sequence (xn)n C X with no weakly-convergent subsequence.
By contradiction, suppose that no subsequence of (z,) satisfies the statement of property
(S). Then, there exist an increasing sequence (n(1, j)); C N and a sequence (Z}L(IJ))J' weakly-
convergent to z' such that z}b(l’j) € B(zna,),1) for all j € N. Inductively, for k& > 2, there
exist a subsequence (n(k, j)); of (n(k—1,7)); and (25, ;)); weakly-convergent sequence to z*
such that zﬁ(k’j) € B(n, ), 1/k) for all j € N. Let us show that the sequence (2*); converges
in norm to some z*° € X. Indeed, let k < [. Recalling that the norm is a weakly-lower semi
continuous and that (n(l, j)); is a subsequence of (n(k,7));, we obtain

k k

1
n(Lj T

| =

2% = 2l < limjinfllzne) = 2upll < lminllzie,) = 2w+ B = 2apl <

proving that (2*), is a norm-Cauchy sequence. We claim that (Zp (k1)) Weakly-converges to
z®. Let 2* € Sx- and € > 0. Let ng € N such that ny* < /3. Thus, ||z¥ — 2| < /3 for

all k > no. Since the sequence (z,0 . ); is weakly-convergent to 2", there is mo € N such

that [(z*, 2" — 270 )| < /3 for all j > mg. Observe that, for any k > ng, there is jx € N

such that n(k, k) = n(ng, ji). Hence, for k large, we have that j, > mg and then
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(&, Taety = 2N < 1" Latmanie) = 2ot )|+ 1@ 2000 = 20+ (&7, 270 — 29|

S CAE ol B

concluding that the sequence (l’n(k,k))k weakly-converges to 2*°. Therefore, this contradicts
the fact that (x,) has no weakly convergent subsequence. O

The last ingredient of the proof of Theorem is the Lipschitz function constructed in
Proposition below. This function is used to prove Theorem and we conveniently
modify it to prove also Theorem [2.8) and Corollary In [28] a similar construction is

used to prove certain properties of non-reflexive spaces. Let us continue with the following
definitions. For a set A C X, the cone generated by A is the set

cone(A) :={\x:x € A, A>0}.

Definition 2.14 Let X be a Banach space, let (x,), C X be a sequence such that ||z,| =
|z1]| for alln € N and let o € (0, ||z4]|).

1. We say that (x,,), is o-separated if ||z, — x| > o for all n,m € N, with n # m.

2. We say that (x,), is o-cone separated if the sets {cone(B(x,,0)) \ {0} : n € N} are
pairwise disjoint.

By definition, a o-cone separated sequence is 20-separated. Conversely, we have the following
result.

Proposition 2.15 Let (z,), C X be a o-separated sequence. Then (x,), is o/4-cone sepa-
rated.

Proor. Let z € X \ {0} and 0 < a < ||z||. Let us define the set
x
P,(x) = {Hy ty € B(x,a)} C 0B(0,||z]|).

Observe that cone(B(z, «)) = cone(P,(z)). In what follows, we prove that P,(x) C B(z, 2a).
Indeed, if y € B(x, «), then:

I 10 [ =]

r— -yl < |z =yl + ||y — v
[yl [yl

= llz =yl + iyl = lz[l| < 2|z =yl < 20

So, cone(B(x,a)) NOB(0, ||z]|) = cone(P,(x)) NIB(0, ||z]|) = P.(x) C B(x,2a).

Let (x,), be a o-separated sequence. Then, ||z,| = ||z1]| for all n € N and o < |[|z4]|.
Since P,/4(zn) C B(zy, §) for each n € N, the sets {F,/4(x,) : n € N} are pairwise disjoint.
Indeed, if there are n,m € N, with n # m, such that P,/4(x,) N P,ja(2m) # 0, then there is

Yy - PJ/4(ZEn) N PU/4(]]m).
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However, this implies that ||z, — z,,,|| < ||z, — y|| + ||y — zm|| < o which is a contradiction.
Finally, since

cone{B(z,,0/4)} = cone{ P, 4(x,)},

we get that (x,), is o/4-cone-separated, because the cones do not intersect in the sphere
0B(0, [|l[))-
O

The core of a set A C X, denoted by core(A) C X, is the set defined by

core(A):={r € A:Vy € Sx,3t >0, (v —ty,z +ty) C A}.

Proposition 2.16 Let f : X — R be a function. If v € core({f = f(z)}), then f is
Gateauz-differentiable at x with Gateauz-differential equals to dg f(x) = 0.

Proor. Let x € X and let A ={y € X : f(y) = f(x)}. Let us assume that = € core(A).
Then, for each y € X, there exists ¢, > 0 such that f(z+ty) = f(z) for all |t| < t,. Therefore,

flz+ty) — f(x)
t

lim
t—0

=0, for all y € X.

Thus, the directional derivative of f at = in any direction is equal to 0. Hence, f is Gateaux-
differentiable at = and dg f(x) = 0. O

Finally, we present the mentioned Lipschitz function.

Proposition 2.17 Let B be a convex bornology on X, distinct from the Fréchet bornology,
satisfying property (S). Let A ¢ [ be a nonempty symmetric bounded conver set. Then, there
exist 0 > 0 and a o-separated sequence (x,,), C A such that the Lipschitz function f : X — R
defined by

f(z) := dist <93,X\HB <%7%>> , forall x € X,
18 B-differentiable at 0 but not Fréchet-differentiable at 0.

Proor. Let (z,), C Aandlet § > 0 given by property (S5). Since A is bounded and § contains
the relatively compact sets, we can assume, up to a subsequence, that (||z,]|), converges to
a > 0. Further, maybe shrinking ¢, taking again a subsequence and perturbing the sequence
(n)n, (recall that A is a symmetric convex set), we can assume that ||z,|| = « for every
n € N. Since the sequence (z,), does not have accumulation points, up to a subsequence,
we can assume that (z,), is a o-separated sequence, for some o > 0. Let us redefine o by
o :=min{d,c}. Let f: X — R be the 1-Lipschitz function on X defined by

f(z) := dist (:U,X\ U B (%,%)) , for all z € X.
n=1
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By Proposition and Proposition f is Gateaux-differentiable at 0, with Gateaux-
differential equal to dgf(0) = 0. However, since nf(z,/n) = o/4, f is not Fréchet-
differentiable at 0. Finally, it only remains to prove that f is [-differentiable at 0. We
proceed by contradiction. Suppose, for some symmetric convex set W € [, the ratio of
differentiability does not converge uniformly on W. That is, there exist a null sequence
(tx) C R, (wg)r € W and € > 0 such that:

‘M > ¢, WneN.
k

Since W is symmetric, we can assume that (t,), is a sequence of positive numbers. Also, since
f(tgwy) > 0, there is a sequence (n;) C N such that tywy, € B(z,, /nk, o/4ng). Due to the
fact that W is bounded and that (tzwy)x converges to 0, we can assume, up to a subsequence,
that (ng)x is increasing. We have two different cases now. If the sequence (wy); tends to 0,
the set {wy : k € N} is relatively compact. However, the quotient of differentiability at a
point of Gateaux differentiability converges uniformly on relatively compact sets for Lipschitz
functions (see Theorem [I.3)). This contradicts the fact that e > 0. Therefore, we can assume
that (wg)g is not a norm-null sequence and then, up to a subsequence, the sequence (||wg/|)x
converges to some v > 0. Since tywy, € B(xzp, /nk,o/4ng), then nitywy € B(x,,,0/4),
Therefore,

nile € — ? , a J .
[wrll - 4wkl [[wxl] 4w
Thus, the sequence (fxn;), accumulates in [% — Z, % + Z|. Passing through a subsequence,

we assume that (txng), converges to some A > 0. Hence, there is K € N such that \wy, €
B(zy,,0), for all £ > K. This is a contradiction with the property (.5) for the bornology £,
since (Awg)ry C AW € f and || Awg — 2, || <o <6 forall k > K. O

2.3 Characterization of S-operators

This section is devoted to prove both theorems stated in the introduction of this chapter.
Also, we present some results of spaceability and lineability related to the proposed charac-
terizations. Let us start with the proof Theorem

Proor ofF TueorEM 2.5 The necessity is straightforward and it does not require property
(S). Indeed, let T': Y — X be a [-operator and let f : X — Z be a Lipschitz function
p-differentiable at © = T'y. We claim that the Fréchet-differential of f o T" at y is equal to
dgf(Ty) o T. Indeed, observe that

foT(y+tu)— foT(y)

%1_{% ;‘euBli , —dgf(Ty)Tu|| =
. flz —tv) — f(x) _
%1_{% v:ggy ; —dgf(z)v|| =0,

where the last equality relies in the fact that T By € . Conversely, we proceed by contra-
diction. Assume that 7" is not a S-operator. Then T'By ¢ (. Since ( is a convex bornology
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which satisfies property (S), Proposition [2.17] gives us a o-separated sequence (x,,) C T'By
and a 1-Lipschitz function f: X — R defined by

f(z) == dist <x,X\ @ B (% %)) ,

which is S-differentiable 0. Let us see that foT is not Fréchet-differentiable at 0. Since foT
is positive and f o T(0) = 0, the only candidate for Fréchet-differential of f o T at 0 is the
functional 0. Let (y,) C By such that Ty, = x,. We notice that

foT(yTn) —fOT(O) Tn o
% :nf(;) :Z, \V/TLGN,
showing that f o T is not Fréchet-differentiable at 0. [

Let T : Y — X be a bounded non-3-operator where (3 is a convex bornology satisfying Prop-
erty (S). Then, the set of Lipschitz functions, Gateaux differentiable at 0 such that foT
is not Fréchet differentiable at 0, denoted by F, is dense in the space of Lipschitz, Gateaux
differentiable functions at 0 (for the topology generated by the Lipschitz seminorm). In what
follows, we want to measure the size of the set F in an algebraic sense. To do this, let us
introduce the following concepts. Let a be a cardinal number. A set A C X is said a-lineable
if AU {0} contains a subspace of dimension . A set A C X is said a-spaceable, if AU {0}
contains a closed subspace of dimension a. The following corollary states that the set F is
c-spaceable, meaning that it contains an isometric copy of a Banach space of dimension of the
continuum. More on lineability and spaceability can be found in [5], [3], [59] and references
therein.

Corollary 2.18 Let X and Y be two Banach spaces. Let B be a convex bornology on X
satisfying property (S). Let T € L(Y,X) be a bounded non-f operator. The set of real-
valued Lipschitz functions in Lipy(X) which are B-differentiable at O but foT is not Fréchet-
differentiable at 0, contains a subset isometric to (*°(N), up to the function 0.

Proor. Let ¢ > 0 and let (z,), C TBy be a o-separated sequence given by Proposition
Let (yn)n C By such that Ty, = z,. For each p € N prime number define the sets
B,, = B(*2,:%) and B, :=U,B,,. As in Proposition for each p € N, we define

p'n 9 4pn

fp X = Rby

fp(x) =dist(xz, X \ B,), for all z € X,

which is 1-Lipschitz, 8-differentiable at 0 and the compositions f,0T" is not Fréchet-differentiable
at 0. In what follows, (p;); stands for an enumeration of the prime numbers. By Proposi-
tion the interior of the supports of the functions {f,, : i € N} are pairwise disjoint.
Therefore, (fy,); C Lipy(X) is a sequence of linearly independent functions. Moreover, if
p € °(N), the function

flt(m) = Z Mifpi($)7
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is well defined, because for each x € X there is at most one non-zero term in the series, and
|| 11]|o-Lipschitz. Also, since fylsupp(s,,) = Hifplsupp(s,,) and that Lip(f,,) =1 for all i € N, we
have that Lip(f,) > |w| for all i € N. Thus, the operator L : (*(N) — Lip,(X) given by
Ly = f, is an isometry. Since (x,), is a o-separated sequence, Proposition implies that
0 € core(X \ UpB,x) and by Proposition Lp is Gateaux-differentiable at 0. Moreover, an
analogous argument of the proof of Theorem shows that Lu is, in fact, S-differentiable at
0. However, if © € ¢>°(N) and p # 0, f, is not Fréchet-differentiable at 0. Indeed, if p, # 0,
then

oo W0 T g /28) = (£, 2 T)(0)

noo 1/p; = lim inf i (| f (@ /P%) = 1S (0)])

— > 0.
nsoo P 4pn 4

Now, we continue with the proof of Theorem [2.8]

Proor or TuroreMm 2.8 The necessity part goes along the lines of the necessity of Theorem
2.5l Let T : Y — X be a bounded finite rank operator and let f : X — Z be a finitely
Lipschitz function, Gateaux-differentiable at * = Ty. Since TY is a finite dimensional
subspace of X, the function g := f|ry is Lipschitz and Fréchet-differentiable at T'y. Then, if
drg(Ty) denotes the Fréchet-differential of g at T'y and t € R, with ¢ # 0, we have that

[(f o T)(y +th) = (f o T)(y) — (drg(Ty) o T)(th)|

su
hesy f
. I/ (Ty + tu) — f(Ty) — tdpg(Ty)(u)||
u€T By ’t|
_ g Ny +tu) = g(Ty) — tdrg(Ty)(u)]
u€eT By |t|

From the last line, since g is Fréchet-differentiable at Ty, we deduce that the first supremum
tends to 0 as t tends to 0. Then f oT is Fréchet-differentiable at y, with Fréchet-differential
equal to dgg(Ty) o T.

In order to prove the sufficiency we proceed by contradiction. Suppose that T': Y — X is
a bounded operator such that TY is infinite dimensional. By Riesz Theorem, there exists
a bounded o-separated sequence (z,), in TY, with ¢ > 0. Recall that ||z,| = ||z1] for all
n € N. For n € N, let 4, € Y such that Ty, = x,,. Now, for n € N, we define the sets

anB( o )
nllynll” 4nl[ynl

Since (x,,), is a o-separated sequence, by Proposition [2.15] we deduce that the family (B,,),
is pairwise disjoint. Thus, for each n € N, the function f, : X — R defined by

fo@) = |lynl|ld(z, X \ B,), forallxze X
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is ||yn||-Lipschitz and the interior of the supports of the functions f, are pairwise disjoint.
Consider now f : X — R defined by

f(x) :=sup fu(z) = ifn(x), for all x € X.
" n=1

It is easy to see that this function is well defined.

We claim that f € FLip(X). Let V be a finite dimensional affine subspace of X and suppose
that V intersects infinitely many different balls (B,,),, namely (B, ). Since the sequence of
balls converges to the singleton {0} and V is a closed affine subspace, we deduce that V' is a
linear subspace (i.e. 0 € V). Take any sequence (vy)g such that vy, € V N B,,. If we consider
v}, = ng||yk||vk, we see that for k,j € N,

g

4

g

0 <y, = @ | < Ny, — Vil + ([0, = vl + [0 — 2, || < 1

+ ||, — V5| +

which implies that (v},)r C V does not have accumulation points. This leads to a contradiction
because V' is finite dimensional and (v},); is bounded. Indeed,

g
o401 <l = 2|+ ol < 5+ 0,

where M = ||z,,|| (for all n). Therefore, V' intersects only finitely many different balls (B,,),,
namely (B, )~_,. Since the interior of the supports of the functions f,, are pairwise disjoint,
it follows that

Lip(fly) < max{Lip(f,,): k=1,..,N} = max{|lyn.| : k=1,...., N},

which proves the claim, i.e., f € FLip(X). Notice that f is continuous. In fact, we need to
check the continuity of f only at 0 which easily follows from the fact that f (n@;”) =o/4n
for all n € N and that f(0) = 0. Indeed, let m € N and z € X such that f(z) > o/4m.
Then, there is m € {1,2,...,n — 1} such that € B,,. Therefore,

] > ||| B o ] A||zg]| — o _ AM — o
T mllymll Am||yml| T k<n-1 4kl 4(n — 1) supge, 1 llywll

Observe that 0 belongs to the core of the set {f = 0}. Thus, by Proposition [2.16] we deduce
that f is Gateaux-differentiable at 0, and dg f(0) = 0. However, we notice that

foT (n‘fm) — foT(0)

o o
lim inf = liminfn||y,||—————-0=— >0,
e L w0 T
which shows that f oT" is not Fréchet-differentiable at 0. [

Finally, we state the following result of lineability. Its proof is analogous to the non-
topological part of the proof presented for Corollary [2.18]
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Corollary 2.19 Let X and Y be two Banach spaces. Let T € L(Y, X) be an operator with
infinite rank. Then the set F C FLip(X) of finitely Lipschitz functions f which are Gateauz-
differentiable at 0 but f o T is not Fréchet-differentiable at 0, contains a subset algebraically
isomorphic to (>°(N), up to the function 0.

We end this section with a smooth version of Theorem Let CE(X) and CF(X) be
the Banach spaces of bounded, Lipschitz continuous and everywhere Gateaux-differentiable
(everywhere Fréchet-differentiable resp.) functions. Recall that these spaces are Banach
spaces endowed with the norm || f||1 := || f||cc + ||dgf]|sc, Where 8 is the Gateaux bornology
(Fréchet resp.), see [43]. We say that a Banach space X admits a smooth bump function if
there exists b € CF(X) with b # 0 and with bounded support. The existence of a smooth
bump function is intimately related with the geometry of the underlying Banach space.
Observe that if X admits a bump function b € CF(X), then by choosing zy € int(supp(b))
and A > 0 large, the function b(A\(- — z¢)) is a smooth bump function with b(0) # 0 and
supp(b) C By. Further information on this subject can be found in [44] [79].

Proposition 2.20 Let X be a Banach space and let B be a convex bornology, different from
the Fréchet bornology, satisfying property (S). Assume further that X admits a smooth bump
function b € CF(X) with b(0) = 1 and supp(b) C Bx. Let A ¢ B be a bounded symmetric
conver set. Then, there exist o > 0 and a o-separated sequence (x,), C A such that the

Lipschitz function defined by
=1 [4n x
3o=SN"Zp (2 (. I
=300 (7 (-5)

n=

belongs to CF(X) and f is B-differentiable at O but not Fréchet-differentiable at 0.

Corollary 2.21 Let X and Y be two Banach spaces and let T € L(Y, X). Assume further
that X admits a smooth bump function. Then, T is a compact operator if and only if for
every f € CE(X), foT € CF(X).

The proof of Proposition [2.20] and of Corollary are analogous to the one presented for
Proposition and Theorem respectively.

2.4 Alternative proof of Theorem

In [I1], the proof of Theorem is quite technical. However, in this section we provide
a simplified proof of this result. To start, we establish that Gateaux-differentiability and
limited-differentiability coincide for continuous convex functions. In fact, this partial result
clarifies the picture about Theorem Let us recall the following two results that can be
found in [29].

Proposition 2.22 (29, Proposition 8.1.1] Let B be a bornology on X. Let (x}), C X* be a
bounded sequence. Let f: X — R be the convex function defined by:

) =su {o.0iw) - 1

n n
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Then, [ is B-differentiable at O if and only if (z},)n —-, 0, where 73 denotes the topology of
the uniform convergence on [3-sets on X*.

Theorem 2.23 [29, Theorem 8.1.3] Let X be a Banach space with bornologies B; C [s.
Then, the following assertions are equivalent:

(a) T3, and T, agree sequentially in X*.
(b) py-differentiability and [y-differentiability coincide for continuous convex functions.

The following proposition can be seen as the analogous for convex functions of the well known
result of differentiability of Lipschitz functions, Theorem [I.3]

Proposition 2.24 Let X be a Banach space. Gateauz-differentiability and limited-differentia-
bility coincide for continuous convez functions.

Proor. We use Theorem with the bornologies f;= Gateaux and fo= limited. Let

(x¥), C X* be a sequence 7g,-convergent to 0, i.e., (z}), is a weak*-null sequence. Let

A C X be limited set on X. By definition of limited set, we have that

lim sup |z} (z)| = 0.
n—00 rc A

Since A was an arbitrary limited set on X, we have that (z}),, converges to 0 for 75,. Applying
Theorem we obtain the desired result. O

Now, we can present a simplified proof of Theorem As it can be noticed, our approach
is completely different from the one presented in [16].

ALrERNATIVE PROOF OF Turorem 221 Thanks to Proposition the necessity of Theorem
is straightforward. In fact, it is analogous to the necessity of Theorem [2.5] Conversely,
we proceed by contradiction. Let T': Y — X be a bounded non-limited operator. Then, there
exists a weak*-null sequence (z7), C X* and a sequence (y,), C By such that = (Ty,) > 2.
Let us consider the function f : X — R defined by:

flx) = max{(),sup {x,’;(:p) — %}} , for all z € X,

which is Gateaux-differentiable at 0, thanks to Proposition Since f is a positive function
and f(0) = 0, we know that dgf(0) = 0. In fact, the only candidate to Fréchet-differential
to foT at 0 is also the functional 0. However, the computation

rer(5)2n(3- 1)

shows that f o T is not Fréchet-differentiable at 0. O]

2.5 Some consequences of Theorem [2.5

2.5.1 Gelfand-Phillips spaces
Let us start with the definition of a Gelfand-Phillips space.
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Definition 2.25 A Banach space X is called a Gelfand-Phillips space, if all limited sets in
X are relatively norm-compact.

It is easy to see that X is a Gelfand-Phillips space, if and only if every limited operator
with range in X is compact (see [45, Introduction, (C)]). In what follows, we present a
characterization of Gelfand-Phillips spaces in terms of differentiability of Lipschitz functions.
This result was discussed with M. Bachir.

Theorem 2.26 Let X be a Banach space. Then, X is a Gelfand-Phillips space if and
only if Gdteauz-differentiability and limited-differentiability coincide for real-valued Lipschitz
functions on X.

Proor. Suppose that X is a Gelfand-Phillips space, then limited sets and relatively com-
pact sets coincide in X. Thus, Limited-differentiability and Hadamard-differentiability coin-
cide for real-valued Lipschitz functions on X. Therefore, thanks to Theorem Gateaux-
differentiability and limited-differentiability coincide for Lipschitz function defined on X.
Conversely, suppose that Gateaux-differentiability and Limited-differentiability coincide for
real-valued Lipschitz functions defined on X. Let Y be any Banach space and let T : Y — X
be a limited operator. We prove that T'is a compact operator. To thisend, let f : U/ C X — R
be any Lipschitz function. Then, by the necessity of Theorem with S equal to the limited
bornology, f o T is Fréchet-differentiable at y € Y whenever f is Gateaux-differentiable at
Ty € X (<= Limited-differentiable at Ty). Hence, thanks to the sufficiency of Theorem
with £ equal to the Hadamard bornology, T  is a compact operator. Thus, each limited
operator with range in X is compact. So X is a Gelfand-Phillips space. m

2.5.2 A Banach-Stone like theorem

In order to present our second application of Theorem [2.5] we need the following definition
and axioms which were introduced in [I2] and [I0] respectively.

Definition 2.27 (The property P") Let (X,d) be a complete metric space and let (A, |||
be a closed subspace of Cy(X) (the space of all real-valued bounded continuous functions on
X ). We say that A satisfies property PY if, for each sequence (x,), C X, the two following
assertions are equivalent:

1. The sequence (x,,), converges in (X,d).

2. The associated sequence of Dirac masses (0, )n converges in (A*, ||-||«), where the Dirac
mass associated to a point x € X, is the continuous linear functional 6, : ¢ € A — p(x).

Axioms. Let (X,d) be a complete metric space and let A be a space of functions included
in Cy(X). We say that the space A satisfies the axioms (A;)-(AL) if the space A satisfies:

(A1) The space (A, | -||) is a Banach space such that || - || > || - || -
(Az) The space A contains the constants.

(As) For each n € N there exists a positive constant M, such that for each x € X there

exists a function h, : X — [0,1] such that h, € A, ||h,| < M,, h,(z) = 1 and
1

diam(supp(h,)) < 25. This axiom implies in particular that the space A separates
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the points of X.

(AI) The space A has the property PF.

A simple adaptation of the proof given in [I2, Proposition 2.5] shows that the spaces Cf (X)
have property P¥. In addition, if we assume that these spaces contain a bump function
respectively, then they will satisfy the axiom (Asz). Thus, the spaces C&(X) and CF(X)
satisfy the axioms (A;)-(AL) whenever they contain a bump function respectively, and so
we can apply the extension of the Banach-Stone theorem established in [10, Corollary 1.3.].

In the sequel, we prove Theorem which is a consequence of |10, Corollary 1.3.] and
Corollary

Theorem 2.28 Let X and Y be two Banach spaces having a bump function in CF(X) and
CE(Y) respectively. Then, the following assertions are equivalent.

1. There exists an isomorphism ® : CZ(X) — CE(Y) such that [|®(f)]lee = ||fllec and
IdF(@()llse = ldeflleo for all f € CF (X).

2. X and'Y are isometrically isomorphic and of finite dimension.

The proof will be given after the following lemma.

Lemma 2.29 For every a,b € X, we have

| f(a) — f(D)]

_pll = WAS) = JUI
o= 5 feCf(X)\?(l)l}l?||dproo>0 |dE £l

_ sup |f(a) — f(b)|.

FeCS (XN O} daflos0  1daf Nl

Proor. By Hahn-Banach theorem, there exists a unit vector z, € X* such that |la — b|| =
) ,(a —b). For each w > 0, let a,, : R — R be a C'-smooth, 1-Lipschitz function such that

tif |t] < w,
au(t) =<9 w+lift>w+2,
—w—1ift < —w—2.

Let us consider the function f,(z) = a, o 2 ,(z), for all z € X. We have that f, € Cf (X)
and is 1-Lipschitz for every w > 0. By choosing wy > 2 max{||a/|, ||b||},

[fuo(@) = fun (D) = aw, 0 254 (a) — vy © 2 ()]
= g p(a) — 25, (0)]
= |33:,b(a —b)|
= [la—0l|.
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Moreover, ||dg fu,|l = 1. Since Lip(f) = ||da f||« for functions in C(X), it follows that

| f(a) — f(b)|

Bl > AL = JAO)1
a=2ll = FecE M) Jdaslmso 1671l

§ (@) - £(8)

sup
FeCFCOOMldr floo>0 AP Sl

Z ’fwo(a)_fwo(b)‘
= |la —b].

]

ProoF or TurorEM 2281 Since ® is an isometric isomorphism for the norm || - ||, thanks to
[10, Corollary 1.3.], there exist an homeomorphism 7" : Y — X and a continuous function
e Y — {#£1} such that ®(f)(y) = e(y)f o T(y) for all f € CF(X) and all y € Y. Since
Y is a connected space, we have that ¢ is constant equal to 1 or —1. Replacing & by —& if
necessary, we can assume without loss of generality that ®(f) = fo T for all f € CZ(X).
We are going to prove that 7' is an isometry. Let y;,y2 € Y. Using Lemma and the fact
that ||[dp(®(f))]lee = ||daf]leo for all f € CF(X), we have

[f(T(y1)) = f(T ()]

1T(y1) = T(y2)l| = sup 3
FECE (XN} ldg flloe >0 lde f1loo
T — T
_ sup |[foT(y) — foT(y2)l
FECE(X\{0},lde fllo>0 lde f 1o

_ s [D(f)(y1) — D(f) ()]
= p

recsoMobldafloeso  I1AR(P(F)) ]
_ sup l9(y1) — 9(v2)|

0eCF (N {0hldrglw>0 197Gl

= [y — 22l

Thus, T : Y — X is a surjective isometry. From Mazur-Ulam theorem [93], T is an affine map,
equivalently T'—T'(0) is linear. Finally, 7'—7(0) is a linear surjective isometry from Y onto X.
So X and Y are isometrically isomorphic. On the other hand, since foT € CF(Y'), whenever
f € CE(X), then T—T(0) is a compact operator by Corollary 2.21] Therefore, thanks to the
Riesz theorem, X and Y are finite dimensional. Thus, X and Y are finite dimensional and
isometrically isomorphic spaces. The converse is clear. Indeed, since Gateaux and Fréchet-
differentiability coincides for Lipschitz functions in finite dimensional Banach space, we have
that CF(X) = CF(X). On the other hand, if T: Y — X is an isometric isomorphism, then
the operator given by ®(f) = foT is an isomorphism between C{ (X ) and Cf (V) satisfying
the two desired conditions. O

Proposition 2.30 Let X and Y be two Banach spaces having a bump function in CF(X)
and CE(Y') respectively. Let T € L(Y,X). Then, the following assertions are equivalent.

1. T is a compact operator with dense range.
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2. The operator ® : CE(X) — CL(Y) defined by ®(f) = foT is a well-defined injective
bounded linear operator.

Proor. Suppose that 7' is compact. Then foT € CI(Y) whenever f € CF(X) by the
necessity of Theorem 2.5 so ® maps CZ(X) into Cf'(Y). By the density of the range of T, ®
is injective. Then, it is clear that ® is a bounded linear operator satisfying ||®(f)|lc < ||f]loo

and ||[dp(®@(f)lee < lldaflleolT| for all f € CF(X). Conversely, since ® maps CF(X)
into CI'(Y), by Corollary [2.21] the operator T' is compact. Suppose by contradiction that

T(Y) # X. There exists o € X such that zo & T'(Y'). By the Hahn-Banach theorem, there
exists a continuous linear map 2" € X* such that 2*(zo) = 1 and z*|757 = 0. Let o : R - R

be a C'-smooth function such that

20-1if1 <t <2
a(t)y=«¢ 4ift >4
0if ¢t <0.

Let us define fy(r) = aox*. Thus, fo € CF(X) and we have fy o T = 0. Thus, ®(fy) =
®(0) = 0 but fy # 0 since fo(xg) = 1. This contradicts the injectivity of ®. O
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Chapter 3
Epsilon-Hypercyclicity Criterion

In this chapter we explore the epsilon-hypercyclicity phenomenon, a concept introduced
in [I5] and also developed in [I6]. Concretely, we deal with the construction of epsilon-
hypercyclic operators which are not hypercyclic. The main contribution of this chapter is a
sufficient condition for a given operator to be epsilon-hypercyclic (Theorem . The basics
and notation to carry out this chapter can be found in Chapter 1, Section and Section
. In what follows, the results are mainly based on the preprint [90]. Our results hold true
in either real or complex Banach spaces.

3.1 Introduction

Let X be a separable infinite dimensional real or complex Banach space and let T be a
linear bounded operator on X. During the last decades, the effort of the researchers to
find dynamics of bounded operators which are purely infinite-dimensional phenomena but
different from hypercyclicity has increased. For instance, N. Feldman in [5I] solve negatively
the following question: Let ¢ > 0. Does there exist a bounded non-hypercyclic operator T’
on X having a vector x € X such that Orbr(z) meets every ball of radius €7 In this line, C.
Badea, S. Grivaux and V. Miiller introduced the following concept in [15].

Definition 3.1 Let X be a Banach space. Let € € (0,1). A bounded operator T on X is
called e-hypercyclic if there exists a vector x such that for all y € X \ {0}, there existsn € N
for which

1Tz =yl < ellyl-
The vector x is said to be an e-hypercyclic vector for T

Clearly, each hypercyclic operator is e-hypercyclic for every ¢ > 0. So, we already know
that e-hypercyclic operators exist in every separable infinite dimensional Banach space, see
|2] and [2I]. Also, every linear operator is 1-hypercyclic. Indeed, the origin satisfies the
inequality of e-hypercyclicity for ¢ = 1. However, it remains open if each separable infinite
dimensional Banach space admits an e-hypercyclic which is not hypercyclic. Up to the best
of our knowledge, in the literature we can find the construction of such an operator in ¢*(IN)
and (?(N), see [15] and [I6] respectively. We point out that the construction of F. Bayart in
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[16] is a nice modification of the one made by C. Badea, S. Grivaux and V. Miiller in [I5].
Also, we can find other mentions of e-hypercyclicity in [I7], [20] and [80].

In this work, we introduce the following e-Hypercyclicity Criterion (Theorem [3.2)) and we use
it to prove that several classical Banach spaces that admits e-hypercyclic operators which
are not hypercyclic, see examples below.

Theorem 3.2 (e-Hypercyclicity Criterion) Let X be a separable real or complex Banach
space, let T € L(X) and let € € (0,1). Let Dy be a dense subset of X. Let Dy := {y;, : k € N}
be a countable subset of X. Assume further that for each v € X \ {0}, there are infinitely
many integers k € N such that y, € B(x,e||z|)). Let (n(k))rx C N be an increasing sequence
and let Sy : Dy — X be a sequence of maps such that:

(1) limy_o |[T"® || = 0 for all x € Dy,
(2) limp—oo || Snmyell = 0,
Then, T 1is §-hypercyclic for all 6 > ¢.

We use the preceding criterion to extended the construction of e-hypercyclic operators which
are not hypercyclic made in [I6] to more general spaces, including cy(N) and ?(N), with
p € [1,00), see Theorem Moreover, using a stability result on products, Proposition
we are able to extend further previous construction obtaining, Theorem which
implies:

Theorem 3.3 Let X be a separable real or complex Banach space. Assume that X contains a
complemented subspace isomorphic to co(N) or (P(N), forp € [1,00). Then, for anye € (0,1),
X admits an e-hypercyclic operator which is not hypercyclic.

Before proceeding with some corollaries, let us recall the following classical result of Sobzyck
[89]: Let X be a separable Banach space and let E be a closed subspace of X. Let T €
L(E, co(N)). Then there exists a bounded operator T' € £(X, co(N)) such that T|p = T. We
denote by C(K) the Banach space of continuous functions on the compact space K. This
space is endowed with the norm of the maximum.

Corollary 3.4 Let € € (0,1). The following Banach spaces admit e-hypercyclic operators
which are not hypercyclic:

1. 7(X) for p € [1,4+00) and co(X) whenever X is a (finite or infinite dimensional)
separable Banach space.

2. Any separable infinite dimensional LP space.

3. Any separable infinite dimensional space X containing an isomorphic copy of co(N).
Particularly, all separable infinite dimensional C(K) spaces enjoy this property.

Proor. (1) and (2) are directs from Theorem [3.3] On the other hand, (3) is a consequence of
Sobzyck’s Theorem. Indeed, ¢o(N) must be complementable on X. Therefore, by Theorem
B.3l X admits an e-hypercyclic operator which is not hypercyclic. Now, let us assume that
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X is a separable infinite dimensional C'(K) space. Then, K must be an infinite metrizable
compact set. Hence, X admits a complemented subspace isometric to ¢o(N). For details see
[T, Proposition 4.3.11]. O

This chapter is organized as follows. In Section we provide a constructive proof of our
e-Hypercyclic Criterion. In Section [3.3] in the spirit of the Hypercyclic Criterion, we present
a proof based on the Baire-category theorem of Theorem In Section we introduce
some notation to extended the construction of e-hypercyclic operators found in [16]. Section
B.5]is devoted to prove the main theorem about constructions of epsilon-hypercyclic operators
which are not hypercyclic, Theorem [3.20, In Section we discuss why a natural choice for
an e-Hypercyclicity Criterion is, in fact, equivalent to the Hypercyclicity Criterion. Finally,
we end this chapter with some proofs of simple but useful facts about epsilon-hypercyclicity
used through this chapter.

Notation: In only this chapter 0 € N.

3.2 A constructive proof of the epsilon-Hypercyclicity Cri-
terion

In the fashion of the Hypercyclicity Criterion, Theorem for which we can find a con-
structive proof and a topological proof based on the Baire-category theorem, see [I8, Chapter
1], we provide two distinct proofs of our criterion of epsilon-hypercyclicity. Let us start with
the constructive proof.

CONSTRUCTIVE PROOF OF THE e-HYPERCYCLICITY CRITERION. Let us construct a d-hypercyclic vec-
tor for T, for any 0 > . Let (i) C RT be any sequence of positive numbers such that
(k*ng)r converges to 0. Observe that the series >, n; is convergent. Let {z; : k € N} be a
countable dense subset of X \ {0}. Let my € N such that

H'ZO - ymoH < SHZ()Hv HSn(mo)ymOH <o and HTn(mO)Sn(mo)ymo - ymo” < To-

By density of D; and continuity of 7', there is zg € D; such that ||zg|| < no and ||T™0x¢ —
Ymoll < mo. Let & > 1 and let us assume that (z;); C D; and (m;); C N are already defined
for all i < k— 1. Let p, > 0 be a positive number such that ||[77™)uy|| < 27* for all ||Jul| < py
and for all i < k. Redefine n; := min{ng, px}. Let m; be an integer such that my > my_1,
| T ) 2| < my for all i < k,

12k = Ymi | < ellzill, 1|Sngmayymill < e and [T Sy Yy, — Yl < 1.
By density of Dy, there is 7, € D; such that |lzy|| < nx and |72y, — v, || < 72

Now, since |z < nx for all k € N, the vector T = Y _p- 2z € X is well defined. We claim
that T is a d-hypercyclic vector for T, for all 6 > . Indeed, let j € N. Then:
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Jj— 00
T — 2 < ST 1T, g+ i, 5+ 3 177
k=0 k=j+1

<@+ D +elzll+ Do 2"
k=j+1

Now, let z € X and let (j(1)); be an increasing sequence such that (z;q)); converges to z.
Then

|0 — || < T m%—aawwwa—ﬂ

< () + Dy +ellzioll + Z 2% + ||z — 2,
k=j()+1

expression which tends to ¢||z|| as l tends to infinity. Therefore, if 6 > ¢ and z # 0, for [
large enough, we have that ||[T(m0)zT — || < §||2]|. O

Remark 3.5 From the proof, notice that if the sequence (z;u)); converges to z, then

lim sup || T"™0)7 — 2| < ¢||2|).
l—o00

Remark 3.6 The previous criterion can be applied to the operators constructed in [15] and
[16]. In fact, this can be done similarly as we do in the proof Theorem .

In [86], M. de la Rosa and C. Read proved that there are hypercyclic operators which do not
satisfy the Hypercyclic Criterion. Therefore, our epsilon-Hypercyclicity Criterion leads to
the following natural question: Does there exist an epsilon-hypercyclic operator which does
not satisfies the epsilon-Hypercyclicity Criterion?

By definition, every hypercyclic operator is e-hypercyclic for all € > 0. In [I5] it is shown
that the converse is also true, i.e. if an operator is e-hypercyclic for each ¢ > 0, then it is
hypercyclic. In this line, we have the following result.

Proposition 3.7 Let X be a separable infinite dimensional Banach space and let T € L(X).
If T satisfies the Hypercyclicity Criterion, then it satisfies the e-Hypercyclicity Criterion for
each € > 0.

Proor. Let T be a bounded operator satisfying the Hypercyclicity Criterion. Let Dy, Dy C X,
(n(k))r € N and (Spu))r given by the mentioned criterion. Since X is separable, with-
out loss of generality, we can assume that D, is a countable dense set. Let us enumer-
ate Dy := {yr : k € N}. To achieve the e-Hypercyclic-Criterion we only need to construct
a subsequence of (n(k))y, namely (m(k))x, which satisfies hypothesis (2) and (3) of Theo-
rem 3.2, To this end, let us define m(0) € {n(k) : k& € N} such that [|S,o)yoll < 1 and
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IT™O8, 90 — woll < 1. Let k > 1 and suppose that we have constructed (m(j)); for all
Jj <k —1. Let us fix m(k) € {n(j) : 7 € N} such that
m(k) > ms =1, ISmppell <57 and 1T Som — gl < K7

Now, it is straightforward that hypothesis (1), (2) and (3) of the e-Hypercyclicity Criterion
are satisfied for the sequence (m(k)), and the maps (S, ). Finally, since Dy is dense,
the intersection of Dy with any open set must be an infinite set. Therefore, T satisfies the
e-Hypercyclicity Criterion for each € > 0. [

3.3 A topological proof of the Epsilon-Hypercyclic Crite-
rion

Let us start with the following definitions.

Definition 3.8 Let X be a separable Banach space, let ¢ € (0,1) and let T € L(X). We
define the sets:

eHC(T) :={x € X : x is an e-hypercyclic vector for T'}
eTHC(T) :={x € X : x is an d-hypercyclic vector for T, ¥ § > €}.

Observe that x € et HC(T) if and only if

f [T -yl < ellyll, Vy € X.

Also, notice that if T satisfies the e-hypercyclicity criterion, then et HC(T) is a nonempty
set. Albeit simple, let us continue with the following proposition.

Proposition 3.9 Let X be a separable Banach space, let T € L(X) and let € € (0,1). Then
the sets eHC(T) and e HC(T) are stable under non-zero scalar multiplication.

Proor. Let us check first eHC(T). Let A € K\ {0}. Let x € eHC(T') and let y € X be a
non-zero vector. Therefore, there exists n € N such that

17" — A"yl < el Ayl

Multiplying the last expression by A, we conclude that \x € ¢HC(T). The second part
follows by noticing that

eTHC(T) = () SHC(T).

0€(e,1)

]

In order to provide the Baire-category based on proof of our e-hypercyclicity criterion, we
need the following proposition.
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Proposition 3.10 Let X be a separable Banach space, let T € L(X) and let ¢ € (0,1).
Then

o o . 1
s =N UT (5 (bl (e+1))) (3.)
k=1y€eD n=0
where D is any countable subset of X \ {0}, dense in X. Therefore, e HC(T) is a Gs set.

Proor. Let D C X \ {0} be any countable dense set.

Let x € et HC(T). Then, for any y € D and for any k > 1, there exists n,; € N such that

1
e =yl < (=4 1) ol
which is exactly the translation of the right-hand part of Equation (3.1)).

Let € X be a vector belonging to the set defined in the right-hand part of equality (3.1]).
Let z € X \ {0}. The following computation shows that x € et HC(T):

inf ||T"z — z|| < inf inf ||T"2 — —z|| < inf —z|| < .
f |77 — 2] < inf inf |77 — gl + ly — 21| < in ellyll + lly = 2] < <)l

Now we can provide an alternative proof of Theorem [3.2]

TOPOLOGICAL PROOF OF THEOREM Let T' € L(X) satisfying the e-Hypercyclicity Criterion.
Let us show that the set e HC(T') is nonempty, and thus, T is é-hypercyclic for every 6 > .
Let D C X \ {0} be any countable dense set. By Proposition we have that

e =N AUz <B (y Iyl (5 + %))) |

k=1y€D n=0

Therefore, thanks to Baire-category Theorem, if the set

e Y (oo -+ 1))

is open and dense for each y € D and each integer k > 1, then the set e™ HC(T) is nonempty
as well.

Let y € D and k > 1. Since T is continuous, we only have to prove the density of the set A, ;.
Let z € X and let r > 0. We prove that A, ;N B(z,1) # (. Let 1 € D; be a vector such that
|z — 21|| < r/2. By definition of Dy and hypothesis (1), (2) and (3) of the e-Hypercyclicity
Criterion, let 7 € N large enough such that

o [Tz || < |yl
o ||y —y;ll <ellyll
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o [Snpysll < /2.

o 17"DS0Gyys — w5l < gyl
Let x5 = Sy(j)y; and set « := @1 + x2. We claim that € A, N B(z,r). First, ||z — z|| <
|z1 — 2|| + [|z2|| < r. Second, observe that x € A, if and only if there exists n € N such
that T"(z) € B(y, ||lyll(e + k1)). So, followed by the computation

TP =y < [T Dy | 4+ TPy = 5] + gy —

< L+ 1+ eliol = ol e+

we prove that © € A, ;. Therefore A, is dense in X. Finally, the Baire-category Theorem
finishes the proof of Theorem [3.2] O

As a direct consequence of the topological proof of Theorem presented above we get:

Corollary 3.11 Let X be a separable Banach space, let T € L(X) and let e € (0,1). Assume
that T satisfies the e-Hypercyclicity Criterion. Then, e HC(T) is a Gs-dense set.

3.4 Infinite direct sum of a Banach space

Let X be a Banach space. It is common to consider the Banach space of p-summable
sequences on X, with p € [1,00) or space of sequences on X which converge to 0, i.e. the
space (P(X), with p € [1,00), or ¢o(X) respectively. That is, for p € [1, 00)

CX) = {(2n)n © X0 Y JlanlP < oo},

n=0

endowed with the norm ||(z,)n|| = (O ||2,]|?)*/?. The definition of ¢y(X) is analogous. In
what follows, we introduce a generalized version of these spaces.

Definition 3.12 Let X and Y be two Banach spaces. Let (f,), C Y be a normalized 1-
unconditional basis of Y. We denote by @, X the vector space defined by

B X = {(wa)n € X" D llanllxfu €Y}
Y n=0

We endow this space with the norm |- || defined by || (xn)nll = | Yovep |Znllx fully- A standard
procedure shows that (Dy X, || - ||) is a Banach space.

The 1-unconditionality of (f,), C Y in Definition implies the triangle inequality of the
norm on P, X. Clearly, the space constructed in Definition depends on the chosen
l-unconditional basis (f,), of Y, but we omit it for sake of brevity. If X is either ¢y(N) or
(?(N), with p € [1,00), then X is isometric to @@y X, whenever we use the canonical basis
of X. Also, notice that for all (z,), € @, X, the sequence (||z,|/x), converges to 0.
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3.5 Construction of epsilon-hypercyclic operators

In this section we prove Theorem [3.20] which is an abstract version of Theorem [3.3] To do
this, we show first the existence of e-hypercyclic operators which are not hypercyclic in a
particular class of Banach spaces, using mainly Bayart’s ideas, [16]. Then, we extend further
this construction using a result of stability under products, Proposition [3.19]

Theorem 3.13 Let X and Y be two infinite dimensional separable Banach spaces. Assume
that Y admits a 1-unconditional basis (f,), such that the associated backward shift operator
is continuous. Then, for every ¢ € (0,1), the space @y X, related to (f,), admits an e-
hypercyclic operator which is not hypercyclic.

The proof is divided in two main parts. In the first one, we formally construct the candidate
of e-hypercyclic operator, whereas in the second part we prove that the operator is well de-
fined, e-hypercyclic but not hypercyclic. Let us point out that, in the second part, step 3,
we use our e-Hypercyclicity Criterion.

Let us start the proof of Theorem [3.13]

First part: Let (e,), C X be a normalized bounded M-basis given by the classical result of
Ovsepian and Pelczynski, Theorem , and let (ef),, C X* be the associated coordinates
sequence. Let b = sup, |le}|| < co. Let ¢ € (0,1), let &« > 1 and let d € N, with d > 1,
such that 20790 < . Let (Ax)r C N be a rapidly increasing sequence which will be specified
later on, in Proposition Let (ng), and (n}), be two increasing sequences defined by
no=mn5=0n,=n, ;+d+1+A;and n, =np+d+ 1+ Ay, for all £ > 1. It is clear
that k <nj_, for all k > 2. For k € N and o, 8 € K, we define the diagonal operator, with
respect to (e,)n, Diop on X by:

Diop=0ld+ (1 —0)ej®@ey+ (B —0)efz @ ege.
Since Dy, 5 is a rank 2 perturbation of oId, it is a bounded operator with norm
[ Drosll < lof(1+2b) 4 5]b +b.

Moreover, whenever o and 3 are different from 0 and k£ > 1, Dk_’flrﬁ = Dy, 51 g1 easily follows.
For each k € N, we define the operator Ny := ef. ® eg, i.e. Ni(z) = ep(x)eg for all z € X.
Notice that (||Ng||)x is uniformly bounded. Indeed, ||Ni| < b, for all £ € N. Also, for each
J > 1, we define the operator S; on X as follows. Let k € N be the unique integer such that
ny_y < j < nj, then we set:

(D, 1 n,  +1<j<nl_, +d,
Dkll_Nk j:n;i,_lﬁ—d-l—l,

Dys s nhy  +d+2<i<nl,+d+1+ Ay =m,
Sj={ Diia ng+1 <7 <np+ Ay,

Dy 11+ Ny J=n+Ap+1,

Dy g+ Ap +2<j <np+d+ Ay,

b, JEn+d+ 1+ Ay =n.
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Notice that each S; is an upper-triangular operator on X with respect to the sequence (e, ).
Further, observe that (Dk’;’1 :I:Nk)_1 = Dy o1 F Ni. The following three properties are direct
from the definition of the operators ;.

(Qo) Sjeo = e for all j > 1.

(Q1) Spy---Si=Idforall k> 1.

(Q2) For k>1,p¢ {0,k*} and i€ {n},---,nj,, — 1}, S;'--- S 'e, = o' e, holds.
Let us now formally define the operator 7 on €, X. Let z = (z,,), € @, X, then:

Tz = (S; ey, Sy ag, - ),

ie., T is a backward shift on @, X with weights (S, '),
Second part: Step 1: T is a well-defined, bounded operator on @ X.

Proposition 3.14 Each operator S; is bounded and invertible. Moreover, the sequence
(HSJ_IH)] is uniformly bounded.

Proor. Let 7 > 1. Assume that there are £ € N and 0,3 € R such that S; = Dj ..
Recalling that S;' = Dy -1 3-1, we get that ||S;Y < |o7!|(1 + 2b) 4+ [67'|b + b. Since
o€ {at,a" """  and B € {a7!,1,a}, we conclude that [|S; || < a(1 + 3b) + b, which
is a constant independent of j. Otherwise, if S; = Dy 411 £ Nj, then Sj_1 = Dpa1 F Ng.
Therefore, HSJ_1|| < ||Dganll +b < a(l + 2b) + 2b, which is a constant independent of j as
well. 0

Let (f,)n be the l-unconditional basis on Y used to construct the space @, X. Thanks to
Proposition we know that there exists a constant C' > 0 such that ||S;1z| < C||z||
for all x € X and for all n € N. Let K > 0 be the norm of the backward shift operator
associated to the basis (f,,),. Then, for z = (z,,), € P, X we get

<K

Y

I72] = = KC|-,

Y

oS
Z |‘S;1$n|’an—1
n=1

Z CHanan
n=0

which implies the well definition and continuity of 7'
Step 2: T is not a hypercyclic operator.

Proposition 3.15 The sequence (||S;Sj_1---51||); is bounded by a constant M(d) which
depends only on d.

Proor. Let 7 > 1 and let & € N such that nj_; < j < nj. Then, by property (Qy),
SjSj1---S1 = Sj---Sn_ 41 Let X; = span(eg,e2) and let X, = span(e, : n # 0,k%).
Observe that X is isomorphic to X; @ X,. Indeed, let P = ej @ ey + €;> ® €52 and let
@ =1 — P. Then, P and @) are bounded parallel projections onto X; and X5 respectively.
In fact, [|P|| < 2b. Since Id = P + @, we get that ||S;--- S |l < |1+ S 1Pl +

1S+ Sw_ +1Q|l. Thanks to (Q1) and (Qs), it follows that S;--- S,  11Q = a” U "-1Q.
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Thus, [S;---Sw_ 1@l < [|Q] £ 1+ 2b. On the other hand, regarding the operator

Sj Sy +1P, we can notice that
Sj ce S”;c_ﬁ‘lp = (GI + O'jGZQ) ®e; + Bj622 X ex2, where ’O’j’, ﬂj € [0, Oéd],

with which we conclude that [|S;--- S, 1P| < b(1 +2a“), a constant independent of j.
Finally, the proof is finished choosing M (d) = 1 + 3b + 2ba. O

Let us check that T is a non-hypercyclic operator. Suppose that z = (eg,0,---) is a cluster
point of the orbit of some w € @, X, under the action of 7. Therefore, there exists
(mg)r C N an increasing sequence such that (7™ w); converges to z. Hence, the first
coordinate of T™*w, which is S;* - - - S;Liwmk, tends to ey as k tends to infinity. However, we
have that

i, = €oll = 1S+~ S1 (S -+ Sy, — €9 (3:2)
< M(A)[Sy - Sy, — el

which implies that (wy,, ), converges to e;. This contradicts the fact that w € @, X because
(||wk|)x does not converge to 0.

Remark 3.16 The operator T is not 6-hypercyclic for any 6 < 1/M(d). Indeed, let w € @, X.
Thanks to triangle inequality and replacing the vector z by the vector Az in (3.2)) we get that

(A=l sup{fjwll : k€ N} _ [[Aeof|  [lwgll
M(d) M(d) — M(d)  M(d)
< ISt S twr = Aeo|
< | T*w — Az||,  for all k € N.

Let us fir 6 < 1/M(d). Since sup{||wi| : k € N} is finite, we can choose A € K with large
modulus to show that w is not a 6-hypercyclic vector for T'. Finally, since w is an arbitrary
vector, T is not a §-hypercyclic operator.

Step 3: T is an e-hypercyclic operator.

Proposition 3.17 There exist two sequences (z¥)y, (2F), C @y X such that
(1) (a%)y is dense in @y X,
(2) ||2F — 2% < 2a7%||2*||, for all k > 2, and
(3) Snprs - Sisr2f || < 27% for every k> 2 and for every j =0,---  k—1.
(4) For each k, there is Ny € N such that 2§ = 0 for all j > Nj.

Proor. Let (zF), C @, X \ {0} be a sequence which satisfies the following two properties:
1. @y X ={zF: ke N}

2. For each k € N, 2* = (f,--- ,2j_,0,---), where each 2} € span(e, : n <k —1).
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Let k > 2. In order to define 2*, let us fix j < k and [ € N such that nj ; < j < n). We
know that [ < k. Let us define v;’? € X by:

e (2% )ep ifn,_, <j<n;_,+d,
RIS LG o "t e ) (ah)epe ifnj_ +d+1<j<nj +d+1+0=n
I (ef + ozAl*(j*”l)e;)(x;?)ekz it +1<j5<n+4,
e (25 )ex if j>n+ A+ 1.
Set v% = (vf, v}, -+ ,vp_1,0,---) and 2* = 2F + ¥, Observe that [[of| < 2a79b||2¥|, for all
j€{0,1,--- ,k—1}. Since the space €, X is constructed with a 1-unconditional basis of

Y, we conclude that ||2% — 2*|| < 2a79b||2*||. So, it only remains to prove property (3). Let
k>2and j€{0,--- ,k—1}. For the sake of brevity, let us set ¢/ € K by v} = cjez2. Let
[ € N such that n;_; < j <nj. Then, we get
Sppii Sj+1Zf = S S1(STt - 5;12;?)

= Snﬁj - Sn;,1+1(57:;171+1 - Sj—l(x’? + U’?))

J J
_ -1 —1/, .k ji—n!_ .k
_Snk+j...sn;<,1+1(5n271+l.”Sj ($])+a 1 11}],),
_ s j—n_ d k d=Ap+j k
= Snyti 5"2_1+1<Sn;_1+1 S;(x5)) + o’ M1 (—afcleg + cjer2).

where the second equality comes from (Q;), the third one is due to (Qy) and the fact that

[ < k and in the last line we have assumed that Ay is bigger than k. To continue, let us set

the vector h := S;Zl 41° Sj_l(xf) and the operators P = e¢j ® ey and () = [ — P. Then,
-1

since the operators {S; : j > 1} are upper-triangular with respect to the M-basis (e,),, we

conclude that Qh € span{e, : 0 < n < k}. Thus, we get

E _ j—n] d k d—Ap+j .k
Snk+j s Sj+1zj = Onp4j Sn;_l—i-l(Ph + Qh) + o’ l_1<—Oé Cjeo + o k jCjek2>,

- B o, . B .
= [Ph — adtd "lflc?eo] + (et n’“*l)Qh + @/ M-t A’“HC?ekza

where in the second line we have used property (Qp) and that the operator S; restricted to
span(e, : 0 < n < k) is equal to a™'Id for all j € [n}_, + 1,n} — 1]. Since ny +j —n)_, =
Jj+ Ar+d+1 and ||Qh] does not depend on Ay, because [ < k, the third term in the last
expression tends to 0 as Ay tends to infinity. Also, since I < k and || = [[v}]| < 20| 25|
does not depend on Ay, the fourth term in the last expression tends to 0 as A, tends to
infinity. On the other hand, the coefficients cf were chosen to cancel the expression enclosed
in square brackets. Finally, if we choose Ay large enough (with A, > k), we can ensure that
1Snts - - Siwrzfll < 275, O

Proor or THroreMm B3l We already know that 7' is a bounded non-hypercyclic operator on
D, X. Let us show that T" is e-hypercyclic, using the e-Hypercyclicity Criterion, Theorem
B.2l Let (z%); and (2*)), be sequences given by Proposition Let us set

Dl = {(yl)IE@X 3N6N7y1:0> leN}?
Y

which is dense in @, X. Let Dy := {z* € @, X : k > 2}. Let w € @, X be a vector
different from 0 and let (z*); be a subsequence of (z*); which converges to w. Let p > 2a790.
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We claim that, for k large enough, 2™ € B(w, p||lwl|). In fact, applying Proposition [3.17] (2)
we obtain that

lw — 2" < flw — 2™ + [la™ — 2™ < lw — ™[] + 207%™,

Since p > 2a~9b and (z™*),, converges to w, the claim is proved. Thus, there are infinitely
many k € N such that z* € B(w, p||lwl||). Let (n(k)) = nj be the sequence constructed in
the first part. Now, we check the three hypotheses of the e-Hypercyclicity Criterion. Let us
define the map U : D; — D; as the formal right inverse of 7. i.e. U is defined by

Uy)i =T ()i = (0, S1yo, Sayr, - -+ ), V()i € Dy
Let U,y := T-"®. With this, hypotheses (1) and (3) are straightforward. Indeed, let
y € D;. Since (n(k)); tends to infinity and T is a backward shift, we have that T"*)y = 0 for
k large enough. Hypothesis (3) follows from the formula T"®) U,y = Id, which is valid in D,
thanks to Proposition (3.17) (d). Finally, hypothesis (2) is implied by Proposition [3.17 (c).
Indeed, let k£ > 2. By triangle inequality we have that
k—1
U2 < D MUy (0,0, 25,0, )| < k27,
=0
expression which tends to 0 as k tends to oco. Hence, T is a p’-hypercyclic operator for any

¢’ > p. Finally, since p can be chosen arbitrary close to 2a~9b, and then p < ¢, we finally
get that 7' is an e-hypercyclic operator. O

Remark 3.18 Notice that the sequence (Ag)y used in the construction of the e-hypercyclic
operator T can be replaced by any sequence of integers (A )y such that A, < A}, for allk € N.
Moreover, observe that the operator constructed in Theorem|[3.13 satisfies the e-Hypercyclicity
Criterion associated to the sequence (ny)x, where

k—1
np=(2k — 1)(d+ 1)+ A +2> Aj, VE> 1.

j=1

In order to extend further our result we recall that there exist hypercyclic operators in each
infinite dimensional separable Banach space, see [2] and [2I]. Further, in [69], Leon-Saavedra
and Montes-Rodriguez showed that the operator constructed in [21I] satisfies the Hypercyclic-
ity Criterion. The following proposition states the stability of the epsilon-hypercyclicity
property on products of two operators which satisfy the Hypercyclicity Criterion and the
Epsilon-Hypercyclicity Criterion respectively. In fact, Proposition can be seen as a gen-
eralization of the necessity part of the following theorem of Bés and Peris, [22, Theorem
2.3]: T € L(X) satisfies the Hypercyclicity Criterion if and only if T & T € L(X @ X) is
hypercyclic.

Proposition 3.19 Let X and Y be two separable infinite dimensional Banach spaces and let
e €(0,1). Let T € L(X) satisfying the Hypercyclicity Criterion. Let S € L(Y') satisfying the
e-Hypercyclicity Criterion. Further, assume that the sequences of integers provided by both
criteria are the same. Then, the operator T ® S is §-hypercyclic on X @Y, for all § > ¢,
where X @Y 1is equipped with the norm of the mazimum.
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Before proceeding with the proof of Proposition we recall the following simple fact: If
T satisfies the Hypercyclicity Criterion for some sequence (n(k))x, then the operator satisfies
this criterion for any subsequence (n(k(j)));.

Proor. Let (n(k))x be an increasing sequence of integers, let D, Dy C X be two dense sets
and let (Unm))r a sequence of maps, provided by the Hypercyclicity Criterion for 7. Let
DY CY be adense set, let DY :={z; : k € N} C Y and let (Vi))x be a sequence of maps
provided by the e-Hypercyclicity Criterion for S, all of them related to the sequence (n(k))g.

Let (vx)r € Y \ {0} be a dense sequence such that v; # v; if i # j. Summarizing the
constructive proof of Theorem [3.2] we can obtain a subsequence of (zj)g, which we still
denote by (zx)r, a sequence (y)r C DY and a fast decreasing null sequence (1), C RT such
that:

o ||vx — zi|| < ellug]], for all k € N,
o llyull < e for all k € N,

o ||[S"®)y|| < my for all i < K,

o ||S"®)y — 2z || <y, for all k € N.

Further, the vector y = ), vy, is 0-Hypercyclic, for all § > €. For each i € N, let us consider an
increasing sequence (k(i, j)); such that vy ;) converges to v;, as j tends to infinity. Inductively,
we define the sets Ny := {£(0,7) : j € N} and, for i > 1, Nj := {k(i,7) : j € N} \ U,-; N
Since the sequence (v )y is injective, the sets N; are infinite for each i € N. Observe that, by
Remark the expression

lim sup ||S”(t)y — vil] < elluil (3.3)

teNg, t—oo

holds true for each k£ € N.

Now, let us construct a hypercyclic vector x of T" adapted to y in the following sense: the set
{T"z :n € N;} is dense in X for each j € N. Assume that Dy is a countable set and fix an
enumeration of it, i.e. Dy = {w; : [ € N}. Let us define the following total order on N?: for
(i, ), (k, 1) € N?, we write

1,7) =2 (k1) if i+j<k+l or i+j=k+INi>k
Let m(0,0) S N() and 20,0 € DiX such that HUm(Op)w()H S 17 H.Z‘Q()H S 1 and ||Tm(0’0).%'0 - w0|| S 1.

Now, let us proceed by induction. Let k,I € N. Suppose that we have constructed m(i, j)
and z;; for all (i,5) < (k,1). Let m(k,l) € Ny and z;; € Dy such that

o m(k,1) > m(i, j) for all (i, 5) < (k,1).

° ||Tm(k’l)5(:i’j|| < p(k,1), for all (i,7) < (k,1),
° ||Tm(i’j)xkvl|| < 27% for all (i,7) < (k,1),
o || Ungpwill < p(k,1),

o [lzuyll < p(k,1),

o | T™F D0y —will < p(k, 1),

26



where p : N> — RT is a decreasing function (for <) such that (k+1)3p(k, 1) tends to 0 whenever
(k,1) tends to infinity through the order <. Thus, we claim that the vector x = Zi,jzo x;; 1s
well defined and a hypercyclic vector for T'. Moreover, for each i € N, the set

{109y j € N} is dense in X. (3.4)

Indeed, the claim follows from the next computation and the fact that (w;); is dense in X.
Let (k,1) € N2 Then we get

L I D N e o D FA
(1.5)=(k,0) (kD)= (i,5)

1 2 -
Sp(kal)((lchH )2““” )+1)+ d o2,
(h)=(i.9)

where the last expression tends to 0 as k tends to infinity. Observe that, by construction,
the sequence (m(i,j)); C N; for all i € N.

Let us equip the product space X @ Y with the norm of the maximum, ie. |(a,bd)|| =
max{||al x, ||bl]ly}, for all (a,b) € X @Y. Let us prove that the vector (z,y) is d-hypercyclic
for T @ S, for all 6 > e. Combining (3.3]) and (3.4]), we obtain that

inf (7 @ 50z, ) — (0,0 < 0.0 < ell(@,u)ll, ¥a € XV ke N

Let (a,b) € X @Y # (0,0), using triangle inequality and the previous inequality we get

f (T ® S5)"(x,y) — (a,0)|| < inf ell(a, vl +[I(a, b) = (a, vp)l| < el{(a, B

Since (vy)y is dense in Y and (a, b) # (0,0), by definition of infimum we finally conclude that
(x,y) is d-hypercyclic for each 6 > e. O

Finally, the next result is an abstract version of the one presented in the introduction.

Theorem 3.20 Let X be a separable Banach space. Assume that X admits an infinite di-
mensional complemented subspace V' of the form V. = @ Z, where Y and Z satisfy the
assumptions of Theorem[3.13 Then X admits an e-hypercyclic operator which is not hyper-
cyclic.

Proor oF TueoreM B3l Theorem [3.3]is exactly Theorem whenever the space V' is either
co(N) or ¢7(N), for p € [1, c0). O

Proor oF THEOREM B.20 Let € > 0. Let V = €, Z be the complemented subspace given by
the statement. Let W be a topological complement of V' on X. Without loss of generality,
we assume that W is infinite dimensional. Otherwise, considering (f,,), as the basis of YV’
used in the construction of V', we replace Y by span(f, : n > 1) and W by W & Z, which
is infinite dimensional. Let us consider T be any bounded hypercyclic operator on W that
satisfies the Hypercyclicity Criterion. Let (ng), be a sequence of integers provided by the
Hypercyclicity Criterion for 7. By Theorem [3.13] there is an e-hypercyclic operator S on
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V' which is not hypercyclic. Moreover, by Remark [3.18, we can choose S that satisfies the
e-Hypercyclicity Criterion for a sequence (my ), of the form

k—1
my=2k(d+1)+2) A;j+ A, forallk>1.

J=1

Since, for each j € N, we can choose A; as large as we want, we can (and shall) assume
that the sequence (my) is a subsequence of (ny),. Therefore, since T  also satisfies the
Hypercyclicity Criterion for the sequence (my)x, we can apply Proposition to deduce
that S @ T is d-hypercyclic on V @ W, for all 6 > . However, S @ T is not hypercyclic.
Indeed, notice that V and W are complemented spaces and both are invariant for S @ T. If
S @ T were hypercyclic, then both restriction, S @ T'|y and S @ T'|y would be hypercyclic as
well. However, S @ T'|y = S, which is not hypercyclic.

]

3.6 A remark on the epsilon-Hypercyclicity Criterion

One of the main differences between the proposed e-Hypercyclicity Criterion and the Hyper-
cyclicity Criterion is the necessity of an enumeration of the set Dy. In fact, there are several
criteria having a structure similar to the Hypercyclicity Criterion, in which the corresponding
set D, is not necessarily enumerated. For instance, regarding the criteria for supercyclicity,
cyclicity or frequent hypercyciclity stated in [I8, Theorem 1.14, Exercise 1.4 and Theorem
6.18] respectively, the conditions at each point of Dy is identical. However, the next result
says that we cannot naively avoid this technicality.

Proposition 3.21 Let X be an infinite dimensional separable Banach space, let T € L(X)
and let € € (0,1). Let Dy be a dense set in X. Let Dy be a subset of X such that Dy N
B(z,¢||x||) is nonempty for all x € X \ {0}. Let (n(k))x C N be an increasing sequence and
let Spy : Dy — X be a sequence of maps such that:

1. limy_yoo [|T"® || = 0 for all v € Dy,

2. limy o0 || Snyyl| = 0, for all y € D,

8. limy o0 [|[ T W Sy — yl| = 0 for all y € Ds.
Then, T satisfies the Hypercyclicity criterion.

Let us recall that an operator T on X is called cyclic if there exists a vector x € X such that
span(Orby(z)) is dense in X, see Definition [1.14]

Proor. It is enough to show that T®T is a cyclic operator on X @ X. Indeed, if T®T is cyclic,
then T'& T is hypercyclic by [53, Proposition 4.1| and, finally, 7" satisfies the Hypercyclicity
Criterion by [22, Theorem 2.3]. Since the argument is analogous to the one presented in the
proof of Proposition we present only a sketch of the proof. First, we fix a sequence
(k) € X \ {0} which is dense in X. Let us consider a countable partition (N;); of N such
that N; is an infinite set for each j € N. By Remark we can construct a vector z; € X
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and an increasing sequence (k(i)); C N such that:

limsup [|T"*Dz —v;|| < ellv;|, V j € N.

iEN]', i—oo
Now, we construct a vector 25 adapted to z; in the following sense:

liminf || 77*0) 2, — 2| <e|lz||, Vo € X\ {0},V j € N.
ieN;, i—oo
Finally, (21, 29) is an e-hypercyclic vector for T®T on X @& X whenever this space is endowed

with the norm of the maximum. Hence, by Proposition below, (z1, z2) is a cyclic vector
for T T, and so T satisfies the Hypercyclicity Criterion. n

3.7 Elementary results

Proposition 3.22 Let (X1, || ||1) and (Xa, ||-||2) be two isomorphic Banach spaces. Assume
that, for each € > 0, X1 admits an e-hypercyclic operator which is not hypercyclic. Then X,
enjoys the same property.

Proor. Let T' € L(X;, X3) be an isomorphism between X; and X,. Let ¢ € (0,1) and let
S be an e-hypercyclic operator on X; which is not hypercyclic. We claim that T'ST~! is
a || T||||7~|e-hypercyclic but not hypercyclic operator on X,. Indeed, let x € X, be an
e-hypercyclic vector for S. Let y € X5 and n € N be an integer such that ||S"z — T 1y||; <
e|T'y|l;. Now, we can observer that

IS T=H(Tx) =yl < |TNIS"2 = Tyl < ITINT"lellyll,

concluding that Tz is an || T||||T||e-hypercyclic vector for T'ST~!. Finally, TST~! cannot
be hypercyclic since this property is preserved under conjugacy. O]

Proposition 3.23 Let T be an e-hypercyclic operator on X, with ¢ € (0,1). Then T is a
cyclic operator.

Proor. It is a direct consequence of the following well-known result: for any closed subspace
Y of X, different from X, and any § > 0 there exists a unit vector z € X \ Y such that
dist(z,Y) > 1 — 4. Assume now, towards a contradiction, that 7" is a non-cyclic operator.
Let Y = span(Orbr(x)), where x is an e-hypercyclic vector for 7. Let 6 € (e,1) and let
z € X \'Y be a unit vector such that dist(z,Y) > 0. Therefore B(z,0) NY = (). Hence,
x is not a d-hypercyclic vector, and thus, x cannot be an e-hypercyclic vector, which is a
contradiction. O]
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Chapter 4

Asymptotically separated sets and wild
operators

In this chapter we continue the study of linear bounded operators whose dynamics is a
purely infinite dimensional phenomenon. Precisely, we focus our attention to wild operators,
a concept introduced in [8] by J.M. Augé, and we define and explore the asymptotically
separated sets. The fundamentals and notation to go throughout this chapter can be found
in Chapter 1, Section and Section In what follows, the whole chapter is mainly based
on the work [91].

4.1 Introduction

Let X be a real or complex Banach space and let T" be a bounded operator on X. If X is a
finite dimensional vector space, the possible dynamics of 7" in terms of the sequence (||T"z||),
have been completely determined in Theorem[T1.12] The conclusion of the mentioned theorem
is the following: if dim(X) < oo, for any x € X, we have that either the sequence (||7"x]|),
goes to infinity, or goes to 0, or else is bounded away from 0 and infinity.

Let us denote by A}, C X the set of points with unbounded orbits under the action of T'. It
follows that A/ is a Gs-set. Moreover, thanks to the Banach-Steinhaus Theorem theorem,
Al is in fact either empty or Gs-dense. Indeed, if there are x € X and € > 0 such that
B(z,¢) does not contain points with unbounded orbit, then we realize that the orbit of any
vector z € B(0,¢) is bounded (it is enough to consider 7"z = T"(x + z) — T"x, for any
n € N). Thus, the sequence (||7"]), is bounded and therefore, A’ is empty.

In finite dimensional dynamics, a sequence (||7"z||),, is unbounded if and only if it tends to
infinity. Therefore, for any linear operator 7' : K — K", the set:

Ap ={zx € K": lim ||T"z| = oo},
n—o0

is either empty or dense, where K stands for R or C. This fact motivated the following
conjecture proposed by G. Prijiturd, [8I]: Let X be a Banach space and let T € L(X).
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Then the set Ar is either empty or dense. P. Hajek and R. Smith, in [61], constructed a
bounded operator which refutes Prajiturd’s conjecture on each infinite dimensional separable
Banach space with symmetric basis. Two year later, this result was extended by J.M. Augé
in [8] who constructed such an operator on each infinite dimensional separable Banach space.

In order to continue, let us fix the set A7 and the recurrent set Ry of a linear operator
T € L(X) by:

Ar:={r e X : lim ||[T"z| = 0} and Rp:={zr€ X : liminf|7T"z — z| = 0}.
n—00 n—00

Definition 4.1 Let T be a linear bounded operator defined on a Banach space X. We say that
T is a wild operator (or that T has a wild dynamic) if both sets Ar and Ry have nonempty
interior and form a partition of X. The set of wild operators on X is denoted by W(X).
The set of linear bounded operators on X which refutes Prajiturd’s conjecture is denoted by
RP(X).

Let us state the main result of [8] which corresponds to the existence of wild operators on
infinite dimensional separable Banach spaces.

Theorem 4.2 [8, Theorem 1.1] Let X be an infinite dimensional separable (real or compler)
Banach space. Then there exists a wild operator T on X. Moreover, T can be taken of the
form I + N, where N is a nuclear operator.

In section we summarize the construction made in [8] but in a slightly generalized way.

Remark 4.3 For an infinite dimensional separable Banach space X, it follows that W(X) C
RP(X). Indeed, let Y be a closed hyperplane of X, and let Z be a 1-dimensional subspace

of X such that X~: Y@ Z. Let T € W) given by Theorem . Let T be the operator
on X defined by T(y + z) :== T(y) where y € Y and z € Z. We have that Az = Ar + Z
and Rz = Rr + {0}, where the former set is not dense and the last one has empty interior.

Therefore, T € RP(X)\ W(X).

The following definition plays an important role in Section in which these sets are used
to construct operators with interesting dynamical properties.

Definition 4.4 Let F be a subset of X. We say that F is asymptotically separated in X if
there exists a sequence (gn)n € X* such that:

(i) For all x ¢ F, lim,,_, |gn(x)| = +o00.
(i) For all x € F, liminf,_, |g.(z)| = 0.
We say that the sequence (gn)n asymptotically separates F'.

It is clear that any asymptotically separated set must be a balanced G cone, see forthcoming
Proposition . Also, {0} and K are the only asymptotically separated subsets in K. Indeed,
it is enough to consider the sequence (n), and (0), which asymptotically separate {0} and
K respectively.
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Let us summarize the contributions of this chapter: we explore in depth the notion of asymp-
totically separated sets, considering both finite and infinite dimensional spaces. For instance,
the following sets are asymptotically separated: in finite dimensional spaces, subsets which
are union of linear hyperplanes and such that they are open after removing the origin; in
separable Banach spaces, the set {0} and each closed subspace. For general Banach spaces,
we construct a dense asymptotically separated set with dense complement. In Section [4.3] we
write down the proof of Theorem stressing the importance of asymptotically separated
sets. Thanks to this, we obtain operators T" such that the sets Ay and Ry form a partition
of the underlying Banach space. For instance, we obtain an operator T such that {Ar, Ry}
form a partition of X in two dense sets. In this case, both Ar and the set of vectors with
unbounded recurrent orbits are dense in X. Moreover, we present several results concerning
wild operators. Among them, we study the stability under products, invertibility and norm-
approximation, see Theorem Theorem [4.45] and Theorem respectively.

The outline of this chapter is as follows: In Section we study asymptotically separated
sets. In Section we show how the existence of a non-trivial asymptotically set helps in
the construction of a linear bounded operator 7' on a separable infinite dimensional Banach
spaces such that {Ar, Rr} forms a partition of X. In Section we investigate geometrical
aspects of the set of recurrent points of a given operator, Ry. In Section [4.5, we focus our
study to spectral properties of wild operators, and we construct a non-invertible wild opera-
tor whenever the ambient space admits a symmetric basis. Further, we present an example
of a wild operator such that its spectrum is equal to the closed unit disk. Finally, Section
is devoted to the norm closure of the set W(X). In particular, whenever the ambient space is
an infinite dimensional separable Hilbert space, every unitary operator can be approximated
by wild operators.

Notation: For A, B C X, we write dist(A, B) = inf{||lx —y| : z € A, y € B}.

4.2 Asymptotically separated sets

In this section we explore in depth which kind of sets can be asymptotically separated,
see Definition First of all, the notion of asymptotically separated set is stable under
isomorphism: If || - ||; and || - |2 are equivalent norms on a given vector space X, then the
asymptotically separated sets of (X, || -||1) and (X, | - ||2) coincide. Therefore, whenever X
is a finite dimensional space, we assume that it is endowed with an euclidean norm. Albeit
simple, the next proposition delimits the sets which can be asymptotically separated.

Proposition 4.5 Let F C X be an asymptotically separated set. Then F' is a balanced G
cone.

Proof. Let (g,), C X* be a sequence that asymptotically separates F'. Then

F=NNUs (-5)

neENmeNp>m
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which is clearly a Gs set. Moreover, since both properties defining asymptotically separated
sets are stable under non-zero scalar multiplication, F' is a balanced cone. O]

Observe that both properties defining asymptotically separated sets are stable under non-
zero scalar multiplication. Thus, to show that a given set F' C X is asymptotically separated
in X we only need to check the property in F'N Sy and Sx \ F. In [§] it is observed that
the closed set {z = (21,20) € K? : |21] < |22|} is asymptotically separated. The following
proposition shows that if ¢/ is the open set {z = (21, 20) € K? : |21| < |22]}, then &/ U {(0,0)}
is asymptotically separated as well.

Proposition 4.6 Let U C K¢ be a nonempty set which is union of linear hyperplanes and
let 0 € K9 be the origin. If U\ {0} is open, then U is asymptotically separated.

Proor. If U = K9, it is enough to consider the sequence (g,), C (K¢)* defined by g, = 0 for
all n € N. Thus, we assume that U C K%. Let us set S = Sga. For g € (K%)*, we define the
number

a(g) = dist(ker(g) N S,0U N S).

Notice that if ker(g) C U, then ker(g) NS is a compact set contained in Y N S. Since U N S
is open in S and OU N S # (), we get that a(g) > 0. Let us define

U, ={xcld: Igec (K, zecke(qg) CU, alg) >27"}.

It is clear that for k large enough, Uy, # ) and |J, U, = U. Since U,, N S is totally bounded,
we can find E, C U, NS a finite 4 "-net of U, N S. Let G,, C (K9)* be a finite set such
that each g € G, satisfies that ||g|| = 3" and ker(g) C U,,, and that for each = € E,,, there is
g € G, satisfying g,(x) = 0. Notice that, if g € G,,, then a(g) > 27". Indeed, this is due to
the fact ker(g) C U,.

Let (gn)n be a sequence generated by an enumeration of | J, G, where we first find the ele-
ments of (G1, then the elements of G5, and so on. We prove that this sequence asymptotically
separates U.

Let z € S. If x € U, there exist f € (K9)* and N € N such that z € ker(f) and a(f) > 27%.
Therefore, for each n > N, there exists g € G, such that d(z, ker(g)) < 47". Thus, recalling
that ||g|| = 3" we get
: 3"

l9(2)| = llglldist(z, ker(g)) < -7,
which tends to 0 as n tends to infinity. On the other hand, if z ¢ U and g € G,,, we know
that « ¢ U D U,, D ker(g) N S. Therefore, dist(z, ker(g) NS) > a(g) > 27". Finally, we get
that

dist(z, ker(g) N S) S 3"

V2 T2

which tends to oo as n tends to infinity. O]

l9(x)[ = [|gldist(z, ker(g)) = 3"
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In the previous proof, the euclidean structure of K" is only used to obtain the last bound.
We continue with a useful example.

Corollary 4.7 Let X = K9, where d > 2. There exists an asymptotically separated set
U C X with nowhere dense, nonempty complement such that U \ {0} is open.

Proor. Let (ex)d_, C K9 be a basis and let (ef){_, C (K9)* be its associated coordinate
functionals. Let & C K¢ defined by

U:= (KN {z e K ef(z) #0 and e} (z) = 0,Vk # 1}).

Clearly, the complement of U is nowhere dense in X. We claim that U/ is asymptotically
separated. Let us show that ¢/ is union of linear hyperplanes. Let u € U \ {0}. By definition
of U, there is j # 1 such that ej(u) # 0. Let us consider 2* € K* defined by

r* = ej(u)e] — ej(u)e].

An easy computation gives to us that u € ker(z*) C Y. Thus, U is union of linear hyperplanes.
Since U \ {0} is an open set, Proposition [4.6] finishes the proof. O

For closed sets, we have the following result.

Proposition 4.8 Let F' be a nonempty closed subset of a Banach space X which is union of
linear hyperplanes. Suppose that there exists Y C X* such that F N By is o(X,Y)-compact
in X and, for all x € F, there exists x* € Y such that v € ker(z*) C F. Then F is
asymptotically separated.

Proor. Let us consider the set H := {z* € Y* : ker(z*) C F}. Notice that, for every
a, € > 0, the family of sets {z*7'((—¢,¢)) : 2* € H, ||2*| = a} is a 0(X,Y)-open covering
of FN Bx. Let (6,), € Ry be a decreasing sequence converging to 0. Let n € N. By
compactness, there is a finite sequence (gnx)r € H such that {g, ;(—cn,en) : k} is a finite

open covering of F'N Bx and ||gn k|| = en'’? for all k. Let us denote by (g, )m the sequence
obtained by the concatenation of the finite sequences (g1 )k, (92.1)r and so on. We claim
that F is asymptotically separated by (g,,). Let x € Sx. If z € F, then for each n € N, there
is k(n) € N, depending on z, such that |g, xm)(z)| < &,. Hence, liminf |g,,(x)] = 0. On the
other hand, if z € Sx \ F, we have that for all n € N:

1
|9,k (@)| = [|gn plldist(z, ker(gn i) > en*dist(z, F),
which tends to infinity as n tends to infinity. m

Remark 4.9 As a consequence of the proof of Proposition[{.§ and the Banach-Alaoglu The-
orem, we deduce that for each dual space X, there exists a sequence (z), C X* such that
lim,, ||z%|| = 0o and which asymptotically separates X. Indeed, it is enough to consider Y as

the canonical injection of the predual of X into X*.

Since weak* and norm topology coincide for finite dimensional spaces, we obtain a key Propo-
sition of [§].
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Corollary 4.10 [8, Proposition 2.1] Let F be a nonempty closed subset of K¢ which is union
of linear hyperplanes. Then F is asymptotically separated.

Corollary 4.11 Let X be a Banach space of dimension at least 2. Then there exists a
sequence (xF) C X* which asymptotically separates X and satisfies lim,, ||z} = oco.

Proor. Let Y be a two dimensional subspace of X and let P : X — X be a bounded
projection onto Y. By Remark there exists a sequence (y*) C Y* such that asymptotically
separates Y and the sequence (||yX||), goes to infinity. For each n € N, let z¥ € X* be any
extension of ¥ to the space X. Thus, the sequence (z o P), asymptotically separates X
and the sequence of norms diverges to infinity. [

Another result about closed asymptotically separated sets in general Banach spaces can be
found in |9, Proposition 4.6.4].

Now, we present two examples of asymptotically separated set which are not enclosed by
the previous results: the set containing only the origin is asymptotically separated in any
separable Banach space and, secondly, the existence of a dense asymptotically separated set
which has dense complement in any Banach space of dimension at least 2. Let us start with
the finite dimensional case.

Proposition 4.12 Let X = K4, with d > 1, and let 0 be the origin of X. Then the set
F = {0} is asymptotically separated.

Proor. If X = K then it is enough to consider the sequence (n), which asymptotically
separates {0}. Let us assume that d > 2. Let us consider the sequence (g7), € X* defined
by gi = (n%,n%t ... ,n) for all n € N. We claim that the sequence (g), asymptotically
separates F. To this end, let z = (z1,...,2q4) € Sx. Let j € {1,...,d} such that z; # 0 and
x; =0 for all i < j. If j = d, then the sequence (|g,(x)|), = (n|xa|)n, which tends to infinity.
Thus, we assume that 1 < j < d. Since all the coordinates of x are bounded by 1, there
exists N € N such that

] Lol +1

dni—1 — nk—l

Now, for n > N, we can compute

. VYn >N, Vk > j.

d d
_d Lk a | |7l ||
) =[St (- 3
k=j k=j+1
st (30 Jul ) g e
- dni—t  npk-1 )] —
k=j+1 k=j+1
expression which tends to infinity as n tends to infinity, finishing the proof. O

Before proceeding with the next proposition, we recall a result of Ovsepian and Petczynski,
[75]: Each separable Banach space admits a normalized bounded M-basis, see Theorem [1.11]
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Proposition 4.13 Let X be a separable real or complex Banach space and let 0 be the origin
of X. Then the set {0} is asymptotically separated.

Proor. If X is a finite-dimensional space, the result follows from Proposition Thus, we
assume that X is infinite dimensional. Let (e,), € X be a normalized bounded M-basis of
X with (e,)* C X* its associated biorthogonal system. Let C' > 1 such that sup |le}| < C.

For each n € N, let (a,;); C R be a sequence of positive real numbers such that:
1. lim o,y =0.
n—oo

(0771

2.

o0
> > apy, foralll <i<mn.
j=it1
Now, for n € N, let us consider

o0
T =e] + Zamefﬂ e X",
i=1
which is well defined since the series is absolutely convergent. Let 5, = n/a,, and let
gn = Bnxt for each n € N. We claim that the sequence (g,), asymptotically separates {0}.

Indeed, let x € Sx. Since span®” (e} : n € N) = X* we know that e (z) # 0 for some n € N.
Let j =min{n € N: ef(z) # 0}. If j = 1, then we get

n

9a(2)] = B, (|e;<x>| - Cllal Zan,i> > i (Jet] = S0 ).

and, applying property and using the fact that (3,), tends to co, we see that the sequence
(lgn(z)|)n tends to infinity as n tends to infinity. If 2 < j < n, then:

|9n ()] = Bn (an,j—ﬂe;f(x)l - Oémk—lle;’;(x)I)

k>j+1

% QO j—
> o (angile (@)] = Cllaf =221
> 0252 (je) - L),

n,n n

where we have used triangle inequality in the first line and the boundedness of the biorthog-
onal system and property in the second one. Finally, since o, 1/, > 1 for all n > j,
we deduce that the sequence (|g,(x)|), tends to infinity. O

Corollary 4.14 Let X be a separable real or complexr Banach space and let Y be a closed
subspace of X. Then'Y is asymptotically separated. In particular, every finite dimensional
subspace of X is asymptotically separated.

Proor. Let @ : X — X/Y be the canonical quotient linear map. By Proposition [4.13] let
(gn)n € (X/Y)* be a sequence that asymptotically separates the origin in X/Y. It follows
that the sequence (g, o @), C X* asymptotically separates Y. n
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We continue with the proof of the existence of a dense asymptotically separated set with
dense complement in each Banach space of dimension at least 2. In fact, this result is a
consequence of the following theorem.

Theorem 4.15 Let X = K?, with K = R or C. Let (2}), be a sequence in X* and let
U=X\U,ker(z}). Then the set U U {0} is asymptotically separated.

Corollary 4.16 Let X be a real or complex Banach space of dimension at least 2. Then
there exists an asymptotically separated set U C X such that U and U° are dense for the
norm topology.

Proor. Let P : X — X be a bounded projection onto any two dimensional subspace Y of
X. Let (y:), € Y* be a sequence of norm one linear functions, dense in Sy-. Then, by

Theorem {4.15] the set
0 - (Y\Ukerm)) U0}

is asymptotically separated by some sequence (g, ), C Y*. It is clear that the set U/ = P~1(O)
is asymptotically separated in X by the sequence (g, o P),,. Moreover, by the Open mapping
theorem, Y and X \ U are dense in X since O and Y \ O are dense in Y. O

To prove Theorem let us start with the following elementary lemma.

Lemma 4.17 Let X = K2. Let z* € X* be a norm one linear functional. Let o € (0,1)
and G = X \ U{ker(v*) : |ly*]| =1, [|[z* —y*|| < a}. Then, dist(ker(z*)NSx,GNSx) = a.
Moreover, if dist(y, ker(z*) N Sx) > « and ||y|| =1, then y € G.

Proor. Let us denote S = Sx. Let z € ker(z*) NS and let y € GNS. Let us set z = (z1, 22)
and y = (y1,y2). Let z*,y* € X* be the linear functionals defined by z* = (—%3,%;) and
yv* = (=7, 7). In the case whenever K = R, 7 = v for all v € K. It is clear that
125l = llv*ll = 1, [z —yl| = [|z* — y*||, 2 € ker(z*) and y € ker(y*). Since X is a two
dimensional space, there exists A € K, with |A\| = 1, such that Az* = z*. Recalling that
y € G and that y € ker(Ay*), we obtain that

Iz =yl = 12" =yl = [l" = A" = e,

showing that dist(z, G) > «a. Since z is an arbitrary point in ker(z*)NS, dist(ker(z*)NS, G) >
a. Let ¢ > 0 and y € S such that dist(y, ker(z*) NS) = a+¢e. Let z € ker(z*) N Sx. Then
1Az —y|]| > o+ ¢, for all |A] = 1. Tt follows that ||[A\z — py|| > a + ¢ for all |A\| = |p| = 1.
Proceeding as before, since X is a two dimensional euclidean space, the last computation gives
us that ||2* — y*|| > a + ¢, for all norm one linear functional y* € Y* such that y € ker(y*).
Finally, by definition of GG, we conclude that y € G.

]

Proor or TuroreMm 15l Without loss of generality, we assume that X is endowed with an
Euclidean norm. Let us fix S = Sx. IFU/U{0} = {0}, the result follows from Proposition [4.13]
Let us assume that & U {0} # {0}. Observe that, since dim(X) = 2, for any two non-zero
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linear functionals, z*,y* € X*, we have that ker(z*) = ker(y*) or ker(z*) N ker(y*) = {0}.
Thus, we deduce that & U {0} can be written as union of linear hyperplanes. Therefore, if
the set {ker(z%) : n € N} is finite and U # (), the result follows from Proposition So, we
assume that (z7), is a sequence of linear functionals of norm one such that z} # Az} , for all
n # mand all [A\| = 1, i.e., ker(z) # ker(z?,) for all n # m. Observe that, in this case, U # ()

Let us define a; = 2 and, for n > 2
o, = min{dist(ker(z}) N S, ker(zy) N S) : j,k <n, j#k},

which is a strictly positive real number. By compactness of the unit sphere, we have that
(o) 1s a decreasing sequence which converges to 0. Let us consider three sequences of
positive numbers, (5,)n, (00)n, (Vn)n € R, which will be specified later on. For each n, we
consider

G, =X\ U {ker(a:*) szt =1, dist(a*, {z} : k <n}) < 5—"} :

n

Let (2,k)r be a finite o,-net of G, N S. For each z,4, consider g, € X* such that
Gnk(Tnk) = 0 and that ||g,kl| = v > 0. Observe that ker(g,x) = Kz,p C G, U {6}
Indeed, this is because G, U {6} is union of linear hyperplanes and that, for each vector
x # 0, there is only one linear hyperplane containing it (this argument holds true only in two
dimensional spaces).

We claim that the sequence (g,), obtained by the concatenation of (g1 )k, (92.4)k, and so
on, asymptotically separates U if the sequences (5,)n, (04), and (7). are correctly chosen.
To this end, let x € S\ U. Then, there exists N € N such that x € ker(z%). For every
n > N, applying Lemma [£.17] we get that:

, dist(x, ker(gnx) N .S) ap,
k()| = ||gni||dist(z, ker(g, > llgn : >, , 4.1
|n4e(2)| = [[gn.1||dist( (n)) = 1| gnnll NG W7 (4.1)

which must tend to infinity when n tends to infinity. On the other hand, let x € Y N S. Let
us define 5
pn(x) = a—ndist(x, {ye S: Ik <n, z;(y) =0}).

If lim sup,, p,(x) > 1, then x € G,, for infinitely many n € N. Indeed, let ¢ > 0 and (n;); C N

be an increasing sequence such that p,, () > 1+ ¢ for all [ € N. Then, we get that
O,

dist(z,{y € S: Ik <ny, 2;(y) =0}) > (1 +¢e)——".forall l €N

ny

Applying Lemma we deduce that = € G, for all [ € N. Now, let us consider n such
that z € G,,. Picking g, , such that dist(x, ker(g, x)) < o,, we have that

|gn,k(‘r)‘ = Hgn7k||diSt($7ker(gn,k)) < TYnOn, (4'2)

which must tend to 0 as n tends to infinity. Now, let us assume that limsup p,(z) < 1. If
we suppose that

Opy1
< 4.3
< 2, (1.3

=8
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then, by the triangle inequality and Lemma [4.17] we can show that eventually there is exactly
one &} € {z} : k < n} such that ’8" ~dist(z, ker 27, N S) = pn(x). Moreover, the sequence (27,),,
is stationary. Indeed, let and N e N such that pn(x) < 2for all n > N. Let n > N. Then,
we have that dist(z, ker 2% N.S) < 2a,,/5, < a,11/3. Since 11 < vy, if there are two linear
functionals 2, , and &} , in {7} : k < n} such that dist(z, ker 2} ; N S) < 2a,/6, fori=1,2,
then the triangle inequality implies that

dist(ker 2, ; N S, ker , , N .S) < dist(x, ker 2, ; N S) + dist(z, ker 2}, , N 5)

o
SQ n+1

< Opy-

Thus, by definition of «,, Z;; = Z; ; and the choice of &}, is unique. Also, observe that
since (), converges to 0 as n tends to infinity, the sequence (dist(x,kerZ})), converges
to 0 as well. Moreover, we deduce that z), = 2y, for all n > N. Indeed, recalling that
dist(x, ker(z:) NS) < apq1/3 for all n > N, we have that

dist(ker(z;) N S, ker(z; ;) N S) < %;1 + a?Q < Qpy1, for alln > N.

Therefore, by definition of a,41, Z;, = 2, for all n > N.

Now, since the sequence (dist(z, ker(z}))), tends to 0, we conclude that = € ker(z}) C S\U.
This contradicts the fact that © € U.

Summarizing, we have that the sequence (g,), asymptotically separates U U {0} whenever
the conditions (4.1)), (4.2)) and (4.3 are satisfied, namely:

lim ~,— = o0, lim ~,0, =0 and 6, < Bpapi1,Vn € N.
n—oo 6,,,7( n—oo

So, if we consider 3, = 6, /ani1, Yn = n/any1 and o, = a,41/n?, the three conditions are
satisfied and the result is achieved. O]

The final aim of this section is to try to advance in the following question: Let U C X be a
Gs set which is union of linear hyperplanes. Is it true that U is asymptotically separated?
In the following, we present two result which corresponds to a partial positive result in R?
and a kind of negative result in ¢!(N).

Let us start with the case whenever the ambient space is R?. Before starting, let us introduce
some important notation.

Notation 4.18 For each n € N, let U, C R? be a set union of linear hyperplanes such that
U, \ {0} is open. Let S be the unit sphere of R? equipped with an euclidean norm. Assume
that (Uy,), is decreasing in the sense of inclusion. Then, for n € N, we denote by

1. {U,;: 1 <i<m,}, an enumeration of the connected components of U, NS, and by

2. AUnsk 1 < k < my;}, an enumeration of the connected components of Upi1 NS
contained in U, ;, for each 1 <i < m,,.
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Now, we can state our result.

Theorem 4.19 Let (U,), be a decreasing sequence of subsels of R? such that, for each
n € N, U, is a nonempty union of linear hyperplanes such that U, \ {0} is open. According
to Notation assume that my € N U {oo} and that my; is finite for all n € N and
1 <i<m,. ThenU =), Uy, is asymptotically separated.

The hypothesis of Theorem establishes that, for each n € N and 1 < i < m,, Uy;
contains only finitely many connected components of U,11 NS, ie., Up; N (Upt1 NS) is a
finite union of arcs. On the other hand, for n € N, the set U, N .S may have infinitely many
connected components. Theorem [£.19] allows us to recover all previous results whenever the
ambient space is R?. Indeed, sets &/ C R? union of linear hyperplanes which are closed,
or U \ {0} open, or U = {0}, or the set stated in Theorem satisfy the hypotheses of
Theorem [£.19

Before proving Theorem [4.19] we need some extra definitions. Notice that, in Notation [4.18]
the sets U,; and U, are open arcs in S, so they can be identified (and we do) as open
intervals in (R, (mod 27)). In order to simplify notation, an open arc I = {(cos(t),sin(t)) :
a<t<blCS, witha,be Rand a <b < a+ 2, will be denoted by I = (a,b). We write
the length of T by A(I) = |b— a| € [0,2x]. For n € N, we say that the n-(center, left, right)
contraction of I = (a,b) is the arc defined by:

E,(I)=(1-2"")a+2"b,2"a+ (1 —27")b),
Fo(I)=((1=2"")a+27"b,b),
Foo(I) = (a,2"a+ (1 —27")b),
respectively. It is clear that this definition does not depend on the representation of [

whenever I # S. Finally, for an open arc I C S, we define [(I),r(I) € R as a selection such
that [ = (I(I),r(I)). i.e. {(I) and () are the left and right extremity of I respectively.

Proor oF THEOREM 19l In the first step of this proof, we construct an auxiliary sequence
(Asm)m of subsets of S such that:
i) For each m € N, A,, is compactly contained in U,,,
ii) for each m € N, dist(4,,, oU,, N S) > 0 and
iii) the sequence (A,,),, satisfies

uns=1J 4n

neNm>n

The second step of the proof starts recalling ii). Then, for each m, we consider a finite
sequence of linear functionals such that acts nicely on A,,. Finally, we show that the con-
catenation of the mentioned sequences asymptotically separates ¢. A similar technique was
used before in this chapter, for instance, in the proof of Proposition [4.6]

Let us mention a simple case that we treat it separately: If & = R?, we simply consider the
constant sequence equal to 0 € (R?)* which asymptotically separates R?. Then, we assume
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that U; C R2.

Let Uy NS = (U2} U, as in Notation , where m; € NU {oo}. For each n > 2, let
us assume that the sequence of arcs (U, ;); is ordered in such a way that first we find the
sets contained in U ;, followed by the ones contained in U 5, and so on. This is possible
because there are only finitely many connected components of ¢, NS contained in U ;, for
each 1 <i<my. Forl € N, let (p. ), be the sequence of integers defined by

Prk = max {i eN:U,; C U ML]} =max{i € N:U; CU .}

Jj<k

First step: Construction of the set A,, for n € N. For A;, we just consider A; = Fy(U ;).
Let us define Ay. For each k € {1,...,m1 1}, we set A; 1, depending on the relation between
Ui and Uy 1 . There are four different cases: If Uy 1 = Uy 1k, then we set Ay, = Fo(Usq).
If U 11 is compactly contained in U 1, then we set Ay, = U1, If none of the previous
cases hold, but I(U; 1) = l(U11 k), then we set Ay = Fo(Uy 1) In the last case, whenever
r(Uia) = r(Uyig) but LUy 1) # L(Urak), we set Ayq g = Fro(Uy 1 k). Taking this into account,
we define A, by:

mi,1 mi 2

Ay = U Arg U U Fo(Uy o).
k=1 k=1

Observe that the first union is indexed over all the connected components of Uy N .S which
are contained in U;; whereas the second one is indexed over the connected components of
Uy NS which are contained in U 2. Let us now write down the general case. Let t € N
with ¢ > 2. Forie {1,...,p;—1:-1} and k € {1,...,m;_1;}. We set A;_1;; depending on the
relation between U;_1;x and U;_1;, as it was done when we have defined A,. Then, we set

U1k if U;_1 ;1 is compactly contained in U1 ;

) BUeaie) i Uiaie = Uy,

" Frolli—1ik) i 1(U—1ix) = WUi—1), r(Us—13x) F 7(Up—1;)
Fr,t(“tfl,i,k) if l(“i%l,i,k) 7’é l(“tfl,i); T(“tfl,i,k> = T(utfl,i)-

Finally, we define A; by:

Dt—1,6—1 Mt—1,i Dt,t
Ay = U U Ai1ip U U Fy(Uy;).
i=1 k=1 i:pt7t71+1

By definition, A; is compactly contained on U,,. Moreover, since A; is a finite union of arcs,
we have that dist(A,,, U, N S) > 0. So, i) and ii) are already satisfied.

Let us prove iii), that is, Y NS = (,cy U,psn Am- First, for each m € N, observe that each
set participating in the union defining A,, is a subset of U,,, therefore A,, C U,,. Since the
sequence (U,), is decreasing for the inclusion, then A,, C U, for all m > n. t Therefore,
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Conversely, let us fix z € U NS. We need to prove that x is contained in infinitely many
sets A,,. Observe that for each n € N, there exists only one i(n) € N, with i(n) < m,,, such
that o € U, ;n) (i(n) obviously depends on z). Let Uy, = (), Un ). Since each U, ;) is an
interval, U, is an interval as well. In fact, U, is the connected component of & N S which
contains x. Now, we divide our analysis in four cases. We recall that, for an interval U C R,
A(U) denotes its length.

First case: = € int(U,). Let 6 > 0 such that (x — d,x + ) C U,. Let N € N such that
§ > 27" AUp,i(ny) for all n > N. Then, for every n > max{N,i(1)}, z € A,;, whenever
x € Upix. Thus, z € A, for each n > 1+ max{N,i(1)}.

Second case: x € OU, and there exists 6 > 0 such that [z,z + J) C U,. Since the sequence
({(Unitny))n converges to [(U,) = x and l(L{ ny) 7  for all n, we deduce that there exists an
increasing sequence (n;); such that [(U, ) 7é I(Up,~1i(n;~1y) for all j € N. Let N € N such
that 0 > 27" AUy, i(n) for all n > N. Then for every n; > max{N,i(l) + 1}, v € Anj 1k
whenever & € Uy, 1% Thus, z € A, for each n; > max{N,i(1) + 1}.

Third case: x € OU, and there exists § > 0 such that (z — J,z] C U,. Tt is analogous to the
previous case.

Last case: U, = {x}. Let us proceed by contradiction. For each n € N, let k(n) €
{1, ..., mpim } such that @ € Uy, jn) k) (k(n) obviously depends on ). Observe that

un,i(n),k(n) = un+1,i(n+1), for all n € N.

Suppose that there exists N € N, such that N > i(1) + 1 and = ¢ A, for all n > N.
Then, U,415n+1) can not be compactly contained in U, ;) whenever n > N. Otherwise,
Apin) k) = Untiins1), and therefore x € A,y. Let us fix n > N. Without loss of
generality, we suppose that

l<un i( n)) l(un+1 i( n+1)) and

1 1
WS (l(un+1,i(n+1)>7 (1 — 2n+1> I (Uni1,in+1)) + ﬁr(un-i—l,i(n—f—l))

ie. v ¢ A,yi. Recalling that both sequences (I(Upiim)))m and (r(Um,iom)))m converge to x,
we can define

M = minfm € N: m 2 n, (WUniin) 7 U siionsn)}-
It follows that M > n + 1. We claim that x € A1, which would be a contradiction. By

definition of M, we have that AM—I,i(M—l),k:(M—l) = E,M(UM,i(N[)) and that AM,i(M),k(M) =
Fr,M+1<uM+1,i(]\/[+l))~ Since x ¢ AM, then x ¢ -Fl,M(uM,l(M)) and we can deduce that:
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T ¢ [ l(Unriary) + <1 — %) r(Untiany)s T(Unii M))) , and then

1 1
T ¢ [WZ(UMHJ(MH)) + (1 - 2M+1> T(UM,i(M))J’(UM,i(M))) :
Finally, since 7(Unriary) = 7(Uni+1,i(m41)), we conclude that
r € Foyr(Uniionsny) S Anrga.

Second step: Construction of the sequence which asymptotically separates U. First,since
U, is a symmetric set, U; = —U;, and A; C U;, we have that

Ay U—A; C U, and dist(Ag, 0U, N S) = dist(A; U —Ay, 0U; N S), for all t € N.

So, after redefining A; := A, U —A;, properties i), ii) and iii) still remain true (they were
given at the beginning of the proof).

Thanks to ii), we know that the sequence (dist(A;, dU; N S)), is strictly positive. Let us
consider a decreasing sequence (ay); C R, convergent to 0, such that

0 < oy < dist(Ag,0U; N S), for all t € N,

For each t € N, let us consider X; be a finite a;/3"-net of A;. Consider now the finite set
Gy C (R*)* of all linear functionals g satisfying that ||g|| = 2!/a; and g(z) = 0 for some
x € X;. In particular, for each z € X; there is a linear functional g € G, such that g(x) = 0.
Let us define the sequence (g,), C (R?)* by the concatenation of enumerations of the sets
(1, G2 and so on. We claim that (g,), asymptotically separates U.

Let x € S. If z € U, then liminf, |g,(x)] = 0. Indeed, let ¢ € N such that x € A;. Let
z' € X; and g € Gy such that g(2’) =0 and ||z — 2'|| < a;/3". Then,
2t
/

lg(x)] < lgllllz — 2" < _ﬁ’
which tends to 0 as t tends to co. Recalling that U NS = (), oy Uy Ams @ belongs
to infinitely many sets A;, so liminf, |g,(x)| = 0. On the other hand, if + ¢ U, then
lim,, |gn(x)| = co. Indeed, since x ¢ U, there exists N € N such that x ¢ U, for all n > N.
Thus, x ¢ A, for all n > N (recall that A, C U,,). By definition of «; and since the sequence
(U, N S), is decreasing for the inclusion, we get that

diSt(.fE,At) Z diSt(At,aut,1 N S) 2 g, Vit 2 N + 1.
Hence, for any g € Gy, since ker(g) NS C A; we get:
2! dist(z, ker(g) N S) 2!

l9(x)| = llglldist(z, ker(g)) > o NG 7

which tends to infinity as ¢ tends to infinity.
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To present the last result of this section, we need the following definition. We say that a set
F C X, union of linear hyperplanes, is inner-asymptotically separated if it is asymptotically
separated by a sequence (g,) such that ker(g,) C F, for all n € N. As a remark, all previous
examples of asymptotically separated sets which are union of linear hyperplanes are, in fact,
inner-asymptotically separated.

Theorem 4.20 There exists a closed set F C (Y(N), union of linear hyperplanes, which is
not inner-asymptotically separated.

Before proving Theorem we need the following three lemmas.

Lemma 4.21 There exists a norm-discrete, linearly independent subset of the sphere of
(>(N) which is w*-homeomorphic to the Cantor set K C [0, 1].

Proor. This is a straightforward corollary of [88, Theorem 1|, but we are going to use an
explicit construction. Let us consider the following directed infinite binary tree T = (V, E)
where V' denotes the nodes and F the edges. Let us write

V={(ni):0<n<oo, 0<i<2" -1},

where (0,0) is the root of 7. There is an edge from (n,i) to (m,j) if and only if m =n + 1
and j —2i € {0,1}. Let us consider the bijection o : V' — N defined by o(n,i) = 2" + 1.
Let @« C V be a maximal branch of T, starting from (0,0), and let us consider the set
Ay ={neN:3zx € a, n=oc(x)} Itis clear that there exist uncountable many different
maximal branches, and that if o # 8 are maximal branches, then A, N Ag is a nonempty
finite set. By construction, there is a straightforward identification between the set {4,

a maximal branch} and the classical Cantor set K C [0, 1]. From now on, we write the former
set as {A, : a € K}. For each «, let us consider z, € (*°(N) as the indicator function of
A,. That is, if (ef), is the canonical coordinate vectors of *°(N), then z¥ corresponds to
the w*-limit defined by the series » _, e;. It is clear that the set {z}, : o € K} is a
norm-discrete subset of the sphere of /*°(N). Finally, the map i: a € K — z} € (*(N) is a
one-to-one continuous function, where ¢*°(N) is endowed with its w*-topology. Since K is a
Hausdorff compact space, we deduce that i is an homeomorphism onto its image. O

In the following, we use explicitly the set {2} }aex constructed in Lemma m

Lemma 4.22 The set F =, ker(z}) C €1(N) is norm-closed and w-dense.
Proor. Recalling that ¢*°(N) is the dual space of ¢!(N), we notice that
F = Uker ) C 1(N).
Let us start proving that F is norm-closed in £*(N). Consider x € ¢!(N) such that dist(z, F) =
0. Consider a sequence (z}), C {2} }sex such that dist(z, ker(z})) < 1/n. Since the w*-

topology of ¢*°(N) is metrizable on bounded sets, there is a subsequence of (z}), which we
still denote by (x}), w*-convergent to z* € {x} }aEK Since

|2, ()| = [l | dist(z, z7,) < 1/n,
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we conclude that x*(z) = 0, and thus, € F. This shows that F' is norm-closed. On the
other hand, let « ¢ F' and let U be a neighbourhood of 0 in the weak topology. We prove that
x+U intersects F. Since U is an open set for the weak topology, there exist € > 0 and a finite
sequence (f;); € Spoqy) such that (), fi'(—¢,€) C U. Then, U contains a finite codimensional
subspace of /!(N) that we call V. Now, consider o € K. If (z + V) Nker(z}) =0, then V C
ker(z?). So, assuming by contradiction that z +V N F = (), then V C (1, ker(z},), vector
space which does not have finite codimension since the set {z} }, is linearly independent. [

Lemma 4.23 Let x* € (*°(N) such that ker(z*) C F. Then there ezists f € C\ {0} and
a € K such that x* = [x),

Proor. Let (e,), be the canonical basis of /!(N). Observe that e; does not belong to F, then
z*(e1) # 0. Without loss of generality, we assume that x*(e;) = 1. Let z*(e,) = z,, € C.
If x, # 0, then e; — e,/x,, € F, which is only possible if z,, = 1. Then, the image of
the canonical basis (e,), of /*(N) by z* is contained in {0,1}. Let us prove that, for each
n € N, 2*(eq(n,)) is equal to 1 for only one i < 2". Let n € N. Suppose that for all i < 2",
T (€o(n,i)) = 0. Then ), e,(n) € ker(a*), which is a contradiction. Indeed, ), e,(,,i) does not
belong to the kernel of any z. Suppose now that there exist two indexes i and j such that
T (€o(n,i)) = T*(€o(ny)) = 1. Then, the vector e; — (€y(n i) + €o(n,j))/2 belongs to the kernel of
z*. Since ker(z*) C F, we conclude that necessarily i = j.

Finally, let us consider a maximal branch of T, 5 = {(n,1,) : n < N}, starting from (0, 0)
such that 2*(e,((n,))) = 1. If N = oo, then we are done, because clearly 3 € K, and then
" € {x}}ack. If N < o0, let (N,j) be the node in T such that *(es(n;))) = 1. Then,
the vector ZMN €x((nin)) — Neg(n,;) € kerz™ but it does not belong to F, which yields a
contradiction. O]

In the next proof, we use the following notation: for z* € ¢>°(N), we say that its support is
the set supp(z*) := {n € N: z*(e,) # 0}, where (e,), is the canonical basis of ¢!(N).

Proor or Turorem 201 Let us suppose that F' is inner-asymptotically separated by (g,), €
¢>°(N). By Lemma there are two sequences, x: C {2z} },ex and (8,), C C, such that
Gn = Bnxr. Since F C (1(N), then (f3,), must tend to infinity. Since K is uncountable, there
exists a € K such that 2%, ¢ {z} : n € N}. Let B = {k € supp(z}) : In € N, k € supp(z})}.
We have two cases, B is finite or B = A,. If B is finite, then let us consider n € supp(z})\ B.
The vector e; —e,, belongs to F' but |g,(e; —e,)| = |5n| which inferior limit is infinity instead
of 0. Thus, we assume that B = A,. Let us consider an increasing sequence (Ng), C N, such
that, for each k, |B,| > 3% if n > Nj. Let (ng), C N be the sequence defined by induction as
follows: set ng = 1 and, for kK > 1

ng = min{j € supp(x}) : j ¢ supp(z;,), for all n < Ny, j > ng_1}.

Consider x = e; — Y., 2 %e,,. Clearly, x € ker(z}). However, if t € [Ny, Ni;1), we have
that -

k
|9:(2)| = [Bil |27 ()] < [Bi] (1 - 22‘j> > 3h27",
j=1
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expression which tends to infinity as ¢ tends to infinity. Since x € F', we get a contradiction.
m

Remark 4.24 A natural question is whether or not F' is asymptotically separated. Further,
whether we can find such a set in any infinite dimensional Banach space or, in separable
Banach spaces with non-separable dual. In [88] and [55] it can be found an abstract approach
of Proposition . In fact, the construction in [88, Theorem 1] is a generalization of the

set {xt}aex used in Theorem |4.20)

4.3 Construction of wild operators

In this section we deal with the construction of a wild operator in an arbitrary separable
infinite dimensional Banach space X. We follow the ideas of 8 Section 3|, but we emphasize
the role of asymptotically separated sets. The main result of this section reads as follows:

Theorem 4.25 Let X be a separable infinite dimensional real or complex Banach space. Let
V' be an complemented, infinite codimensional subspace of X. Let F' C 'V be an asymptotically
separated subset in V. Then there exists an operator T € L(X) such that Ry = P~ (F) and
Ar = P7Y(F¢), where P € L(X) is a bounded projection onto V.

Let us start with the following three corollaries, which are consequences of the examples of
asymptotically separated sets obtained in Section [4.2]

Corollary 4.26 (Theorem FEvery infinite dimensional separable Banach space X admits
an operator T such that Ar and Rt form a partition of X and both have nonempty interior.
Moreover, the following two cases are possible:

1. Ry is closed (and therefore Ar is open), and
2. Rr\ {0} is open (and therefore A U {0} is closed).

Proor. Let V' = span{v;,v2} C X be a two dimensional subspace of X. The corollary follows
thanks to Theorem .25 and the sets:

{veV:v=avy +bvy |a] <|b|} and {v €V : v =av, + by, |a| < |b] or v = 0},

which are asymptotically separated thanks to Corollary and Proposition [4.6] respectively.
m

Corollary 4.27 FEvery infinite dimensional separable Banach space X admits an operator T
such that A7 is a nonempty and nowhere dense set.

Proor. Let V' be a finite dimensional subspace of X such that dim(V') > 2. It is enough to
apply Theorem with any asymptotically separated set of V' given by Corollary O

Corollary 4.28 FEvery infinite dimensional separable Banach space X admits an operator T
such that Ar and Ry form a partition of X and both are dense.
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Proor. Let V' be a finite dimensional subspace of X such that dim(V') > 2. It is enough to
apply Theorem with any asymptotically separated set of V' given by Corollary [4.16] []

Remark 4.29 Notice that, in Corollary[{.28, the set Ur = {x € X : Orby(z) is unbounded}
contains Ar, and it is a dense Gs of X. The set Ry is also a dense Gg, so Ur N Ry, the set
of points x € X such that x is recurrent under T and Orbr(z) is unbounded is a dense G

of X.

4.3.1 The complex case

From now on, let X be a separable complex Banach space and let V' be a subspace of X
satisfying the hypothesis of Theorem [{.25] Let P be a bounded projection onto V. Let
W = (Id — P)(X), a topological complement of V in X. Let @) = Id — P be the bounded
projection onto W, parallel to V. The following easy proposition will help us in the forth-
coming computations.

Proposition 4.30 Let T, S, R € L(X) such that T =S + R, RS = R and R?> = 0. Then
r € Ry if liminf, ||S"z — x| V |[(I + S + ...S" 1) Rx|| = 0.

Proor. It is clear since T" = S" 4+ (I + S+ ...S" ")R. O

Let us start with the proof of Theorem Consider a normalized bounded M-basis (e, ),
on W and its associated biorthogonal system (ef), € W* given by Theorem [I.11} Thus,
span(e, :n € N) =W, |le,]| =1 for all n € N, sup,, ||e}|| = K < oo and €(e;,) = J,,,, for all
n, m € N, where 4, ,, stands for the Kronecker’s symbol. Let us extended every e to X by

Oon V.

Let F' C V be a set asymptotically separated by (f,,), C V*. If F =V, then P~}(F) = X and
our theorem has a trivial solution, namely, T' = Id, the identity operator. Thus, we assume
that F¥ C V and then the sequence (|| f,||)» must diverge to infinity. Let (m,),>—1 C N be a
rapidly increasing sequence so that the following two conditions are satisfied:

Mmp—2

My |Mpeq for all n > N, and Z

n>1

[fn]] < 00, (4.4)

n—1

where mg = m_; = 1. Let (A\,), € C be the sequence defined by A, = e%, for all n € N.
Let us formally define the operators S and R on X by:

S=TId+> (A —1)(e}0Q) @ ey, R:Zm l(fnoP)(X)en,
n=1 n=1 n—

where z* ® x stands for the tensor product between x* € X* and z € X, i.e., x* ® x is the
l-rank operator on X defined by z* ® z(y) = 2*(y)x.

Proposition 4.31 For a sequence (my,), C N satisfying Condition (4.4), S and R are well
defined and bounded operators.
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Proor. For both operators, it is enough to show that their own series converges in the norm
operator topology. Considering that the estimation | — 1| <t holds true for ¢ > 0, we can
get

D O =1D)(es 0 Q) @enll <D 1A — 1l Q1 len
n=1 n=1

oo
T
§K||Q||Zm—<007
n=1 n

where the last inequality is a consequence of the second part of condition . This proves
that the series defining S absolutely converges. Analogously, using the second part of con-
dition and that |le,|| = 1 for all n € N, it can be shown that the series defining R is
absolutely convergent as well. O]

Straightforward computations give us that RS = R and R? = (0. We claim that the bounded
operator T = S + R satisfies the statement of Theorem For [ € N, let us set \,; =
-1 \k . .
k—o Arn- By induction, we get that:

Ta=Sv+I+S+..+8" I)Rx—x—l—z n—1(eroQ)(x en+z And fan)

Now we can prove the complex case of Theorem In order to do this, we show that
Ry = P7Y(F) and A7 = PY(V\ F). Let z € P7'(F). Then

o0

D (= 1)(e; 0 Q) @ eq(x)

n=k+1

< IISUIISHPIIGJIIIIe Il Z A =1

n=k+1

527 = =

kaﬂ'

< Kllz[llQIl Y

n=k+1 My,

where in the first line we have used the first part of condition (4.4). ie. A\2™ = 1 for all
n < k. Thanks to the second part of condition , the last series converges. Therefore,
the last expression tends to 0 as k tends to infinity. On the other hand, since Px € F, let
(k1) € N be an increasing sequence such that |fy,(Px)| — 0. Then, we compute

> Anﬂnz _
I+ S+ ...+ 8™ ""Re| = Z_m kll - fo(Px)en

n=1 n-
)\k‘[ 2mp, —1 > |An2mk 1|

S A PQ: e, —+ ! A n PQJ en
| 3 ey

=N 2myy
<2 fi, (P2)| +1P]| ) — anH
n:lirl n—
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where in the last inequality we have used that |le,|| = 1 and that |A\,| < ¢, for any ¢ € N.
The second part of condition (4.4) implies that the last series converges. Therefore, the
previous expression tends to 0 as [ tends to infinity. By Proposition we have proven
that P~!(F) C Ry. Finally, it only remains to prove that P~!(F¢) C Ay. We start with the
following fact.

Proposition 4.32 [8, Fact 3.6/ For my_1 <1 < my, |Ag| > %mk_l

Proor. Notice that, since )\, is a geometric sum, we have that:

s . T
1 —e'me | [sin(3)
Al = | ——=| = |57= |-
— e mip Sln(m)
Now, since 2|y| < |sin(y)| < |y| for all y € [0, 5], we obtain the desired inequality. O

Let x € P7Y(F°) and let | € [my, myy1). Then:
K(QUIT x| = (e, 0 Q)(S'z + (I + S + ... + 87 ") Ra)]

A ;
> P |fr(Pa)| = lej 0 Q(S'z)]
mME—1

2
2 —|fu(P2)| = K[QIl]z]-

Since |fx(Pz)| tends to infinity as k tends to infinity, we finally deduce that © € Ap. This
finishes the proof of Theorem [4.25] O

Remark 4.33 Let X be a separable infinite dimensional complex Banach space, V be a
complemented subspace X with infinite codimension, F be an asymptotically separated set in
V' and (fn)n its related sequence of linear functionals. Then, we can observe that the previous
proof shows that for each sequence (m,) satisfying condition 7 there exists a bounded
operator T on X, solution of Theorem [{.25, such that

liminf || 7?2 — z|| = 0, for all z € Ry = P(F),
n—oo
where P is a bounded projection onto V.
Remark 4.34 As a by-product of the above construction, it can be shown that the identity

operator on X belongs to the norm closure of W(X). Indeed, the norm of T' — Id depends
on the values of the sequence (my,), as it can be computed:

oo oo 1
IT - I1d| < Z(An—1)(e;ocg)®en+zm (foo P)®e,
n=1 n=1 n—1

S — £l
< KIQIS o =11+ 1P) 3 220
n=1 n=1 n—

This fact is going to be useful in Section[{.6, which is dedicated to study the norm closure of
W(X).
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4.3.2 The real case

In this subsection we sketch the construction of an operator on a real Banach space which
solves Theorem as it was done in [8] to construct a wild operator.

In the context of Theorem for real spaces, let us consider the following objects: Let
P € L(X) be a projection onto V and let @ = Id — P. Let W := Q(X) which is a
topological complement of V' in X. Notice that W is an infinite dimensional closed subspace
of X. Let (e,), C X be a normalized bounded M-basis of W and let (ef), C W* be the
associated biorthogonal system given by Theorem Let K :=sup, |le.||- Let (fn)n, C V*
be a sequence which asymptotically separates F' # V. Then, lim, , ||fa]] = oco. Let
(my)n>-1 C N be an increasing sequence such that m_; = mgy = 1,

o)

Mp|Mpt1, foralln € N, and Z Hn=2 anH < 00. (4.5)

My —
n=1 n

Let (0x)r C R be the sequence defined by 6 = s for all k € N.

Proposition 4.35 The linear maps S, R : X — X defined by

S :=Id + Z(COS(Hk) —1)(e5 0 Q) ® egy + sin(fy) (el 0 Q) ® eqp

k=1

+ Z (cos(bx) — 1)(€5),_ 1 0 Q) ® eg_1 — sin(by)(e5, 0 Q) ® egp_1,
k=1

=1
R: Z kaP ®62k7

m
—1 k-1

are well defined and continuous.

Proor. The proposition directly follows from the fact that the series involved in the definition
of S and R converge in the norm topology of bounded operators. Indeed, for S it is enough
to notice that

sin(z)| < |z| and  |cos(z) — 1| < 2?, for all x € R,

and that (6x)x decreases fast to 0 due to condition (4.5). On the other hand, the continuity
of R follows directly from condition (4.5). O

Observe that, for any k € N, the operator S restricted to span(eg;_1,es) is a rotation of
angle 6.

In order to sketch the proof of Theorem [4.25] we continue with some properties of the operator
T := S + R. To see this, observe first that B2 = 0 and RS = R. Thus,

=S"+(Id+S+..+S" R (4.6)
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Proposition 4.36 Let (my), C N be a sequence satisfying condition (4.5). Let S € L(X)
constructed by Proposition and let n € N. Then

S" =Id+ (cos(nf) — 1)(e3; 0 Q) ® eay + sin(nby) (3 1 0 Q) @ ez

k=1

+ Z cos(nby) — 1)(e3,_1 0 Q) ® egp—1 — sin(nby)(e3, 0 Q)  egp_1.
k=1

Moreover, lim;_, S?Miy = x for all v € X.

Proor. The formula for S™ follows by direct computation. Let us check the second part of
the proposition. Let x € X and j € N. Then

S —x = Z (cos(2m;0y) — 1)e5, (Q(x))ear + sin(2m;0y ez, (Q(x))exw
k=1

+ Z cos(2m;by) — 1)e5,_1(Q(z))ex—1 — sin(2m;0)es, (Q(x))ear_1.
k=1

Thus, since 0, = mlk for all k, we have that

o

5%z — || < ) | cos(2my6y) — Ullesill QN2 + [ sin(m;6) ez Q1 1]
k=j+1

+ D Teos(2myh) — Ulles QN 2] + | sin(2m;6) ez Q|21

k=j+1

2m;m 2 2m;m
<y 2K||Q||||xr|(( ) 4 2 )

k=j+1

where the last expression tends to 0 as k tends to co due to condition (4.5)).

Thanks to Proposition [4.36 for [ > 0, we have that

o0

1 .
SZR = E o (fk o P) (059 (cos(l@k)e% — 31n(l<9k)e2k_1),
-1

k=1

we obtain

n—1 %)
1
SY) R = o P) ® (trm€2k — Men€2or_1),
(; ) Z; M1 (f ® (Hkn€2k — Mhn€2k-1)
where p., = S0 cos(10;) and 7., = S i— sin(16;) for all k,t € N,

In the following proposition we summarize some simple but useful estimations.
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Proposition 4.37 Let k.t € N and let x; 1= pg1€2k — Mir€2k—1. Then:
i)zt =0 for all t multiple of 2my,.
i) e max(|pel, [7rel) < llowell < 2t
111) kaﬂ‘/H Z ﬁmk,l, fOT' all t € [mk,l,mk].
Proor. Statement i) follows directly from the periodicity of the functions cos and sin. State-

ment ii) follows from the evaluation of xy, in e}, _, and e},. Statement iii) is a consequence
of Proposition and the estimation

1
max (||, [Mee]) > V2

[l
Finally, thanks to condition (4.5]), equality (4.6]), Proposition and Proposition we

can proceed as in the complex case to prove that
Ry =P YF) and Apr=P YV \F),
which finishes the sketch of the proof of the real part of Theorem [4.25]

4.4 Properties of wild operators

In this section, we investigate geometric aspects of the recurrent set Ry of a bounded operator
T defined on a Banach space. This will be applied to the study of the recurrent points of
wild operators.

Proposition 4.38 Let X be a Banach space, let T be a bounded operator on X, let x € X

and € > 0. Suppose that for every x1, xo € B(x,¢) there ezists a strictly increasing sequence
(kn)n € N such that T*rx; — x; fori=1, 2. Then Ry = X.

Proor. Since —Rr C Ry, we deduce that B(—xz,e) C Ry. Let x; € B(x,¢), 3 € B(—x,¢)
and an increasing sequence (k,), C N such that T*»z; — x; for i = 1, 2. Then:

li}lnTk” (x1 4+ x2) = 21 + .

Since B(0,¢e) C B(x,¢) + B(—x,¢), we deduce that B(0,e) C Ry. Therefore, Rr = X. O

Remark 4.39 Analogous to the preceding proof, if for x1, o € Rr there exists such a
sequence (k,), C N, then we can prove that span(xq,x2) C Ry. Due this simple fact, we are
able to prove a certain non-stability on the class of wild operators. See Theorem [{.42

Corollary 4.40 Let T be a bounded operator on X such that Ry # X and int(Ry) # 0.
Then there exists an uncountable set C' C Ry such that:

lim inf max{||T"z — z||, || T"y — y||} > 0, for allz,y € C, = #y.
n—oo
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Proor. Since Ry # X and int(Rr) # 0, by Proposition we know that there exist two
distinct vectors x, y € int(Ry) such that any increasing sequence (k,) € N does not satisfy
both limits T*z — x and T*"y — y simultaneously. In other words:

lim inf max{||T"z — z||, ||T"y — y||} > 0. (4.7)
n—oo

Since x € int(Ryr), there exists € > 0 such that, for every A € C with |[A| < g, we have
xr+ Ay € Ry. We claim that the set C' := {x + Ay : |\| < ¢} proves Corollary .40}

Let A, A2 € C such that Ay # Xy and |A| < € for i = 1, 2. Suppose that the inferior
limit (4.7) is equal to 0 for # + Ay for i = 1, 2. Then, there exists a strictly increasing
sequence (k,), € N such that:

Hm T (x + \y) =z + Ay, fori=1, 2.

This implies that lim T*y = y by subtracting both expressions (i = 1 and i = 2), but it also
implies that lim 7%z = z, which is a contradiction. O

The following definition will be used only in the next result, Proposition 4.41 We say that
a wild operator has standard form if it can be written as T = S + R, where R?2 =0, RS = R
and the sequence (||.S™]|), is bounded.

In order to present an example in the complex case, let us recall from Subsection the
complementary subspaces V and W of X, the respective bounded projections P and (), the
sequence (\,), C C and the bounded M-basis (e,), C W. Let us check that, the operator
T:=S+ R e L(X) (awild operator whenever F' and V' \ F have nonempty interior relative
to V') constructed in Subsection , the complex case, has standard form whenever (e,),, is
a c-unconditional basis of W. Indeed, we only need to show that (||S*||)x is bounded. Notice
that, for any x € X and k € N, the following estimation holds:

1S*]| = < lz = Q)Il +

r+ ) (A = 1D(e; 0 Q(x))en

< |[Pzf| + cf| Q| < [=[[([[P]] + ¢l Q1)
Thus, the sequence (||S*|)x is bounded.

SN (e 0 Q(a))en

Proposition 4.41 Let T' = S + R be a wild operator having standard form on X. Let us
assume that ker(R) is a complemented subspace of X. Then, for any V closed subspace X,
topological complement of ker(R), we have that Ay = P~Y(V N Ar) and Ry = P~Y(V N Ry),
where P € L(X) is the projection onto V', parallel to ker(R).

Proor. Notice first that 7" = S"+(S" "1 +5" 24 ... +1)R. Let V be a topological complement
of ker(R) on X and let P : X — X be the projection onto V' parallel to ker(R). Since the
operators {S™ : n € N} are uniformly bounded, then ||7"x|| goes to infinity if and only if
|(S"! + S"2 4 ... + I)Rx|| goes to infinity. Also, since R = RP, we can deduce that:

x € Ar if and only if Px € Arp,
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obtaining the characterization for Ap. Since Ar and Ry form a partition of X, this concludes
the proof. n

For a Banach space X and k € N, we write the product space containing k-tuples of elements
of X by X = @le X. We may endow this space with any product norm and we do it with
the norm of the maximum, i.e.

|Ix|| = max{||z||, i=1,...,k}, for any x € X,

where x = (x1, 9, ....,xx). Further, for an operator 7' : X — X and k € N, we define the
operator T = @ik:l T:X —Xby T(x)=(Tz,Txs,...,Tx)) where x = (21, Ta, ...., Tf).

Theorem 4.42 Let X be a separable infinite dimensional Banach space. There exists T €
W(X) such that T:=T @& T is not a wild operator on X := X & X.

Proor. Let V be a two dimensional subspace of X and let F' be an asymptotically separated
set in V such that F' and V \ F have nonempty interior relative to V. Let T : X — X be
the operator constructed in Section complex case, using V' and F' as the complemented
subspace and the asymptotically separated set respectively. Reasoning by contradiction, let
us assume that T is a wild operator on X. Since Rt has nonempty interior in X, there exist
e > 0 and 1,29 € X such that B(xy,e) X B(xg,¢) C Ry. Consider the bounded projection
P € L(X) onto V with which T is constructed. Then, Ry = P~'(F) and A7 = P}V \ F).
We prove that Rr NV = V, which is a contradiction since A7 # (). By the Open Mapping
theorem, we can choose y; € B(xj,¢) for each i = 1,2, such that the set {Py; : 1= 1,2} is
linearly independent. Notice now that, since y = (y1,y2) € Rt, we have that:

liminf |[T"y —y|| =0 = liminf max{||[T"y; — w| : i=1,2} =0.
n—oo n—o0

Therefore, there exists an increasing sequence (k,,) C N such that (7T™y;); tends to y; as j
tends to infinity, for i = 1,2. Thus, for each (\;, \2) € C*¥ we have that

2 2
jlggo " ; Aiyi = ; A

However, P(3.2  \yi) = Soo APy € Rp NV for any (A, \g) € C2. Followed by the linear
independence of { Py;, Py>}, we get that R NV = V. Thus, F =V and therefore Ry = X,
which is a contradiction. O

Remark 4.43 Let T € L(X) be the operator used in the proof of Proposition . Notice
that a similar argument (given in the proof of Proposition we can show that, for any
d > 2, the operator @id:l T is not a wild operator on @id:l X.

The us continue with the last result of this section.

Proposition 4.44 Let X be an infinite dimensional Banach space. Let T be a bounded
operator on X and let k € N. If T := @F | T belongs to W(E@r_, X), then int(Ry) U {0}

contains a subspace of dimension d.
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Proor. Let us write X := @F | X. If T € W(X), then Ry has nonempty interior in X.
Therefore, there exist € > 0 and (x;)F_; C X such that

I, B(xi,¢) C Rr.

Shrinking ¢ if necessary, we assume that {x; : i = 1,...,k} is a linearly independent set. Let
Y =span(x; :1=1,...,k). We claim that Y C int(R) U {0}. Indeed, let y € Y\ {0} and let
(M)i € K such that y = Zle Aizi. Let us assume that \; £ 0. As we did in the proof of
Proposition for all x € B(x1,¢) there exists an increasing sequence (n;); C N such that

lim max{||T"z — x|, ||T™x; — x| : i=2,....,k} =0
j—00

Thus, thanks to the triangle inequality we obtain that

k k
Jim [T\ + > hewk) = Mz A = 0.

i=2 i=2
Finally, since x is an arbitrary vector of B(xy,¢), we get that
k
B(0,Me) +y = MB(z1,e) + Y Mexy, C Ry,

i=2

which shows that y € int(Rr). O

4.5 Spectral properties of wild operators

This section is devoted to give some remarks about spectral properties of wild operators on
complex Banach spaces. To the best of our knowledge, in the literature there is only the con-
struction of invertible wild operators. Also, it is known that the spectrum of a wild operator
must remain included in the unit disk. For the sake of completeness we present this result in
Proposition Along to this and to the next section, we use the concepts of unconditional
and symmetric basis. For a precise definition of these bases, we refer to [I] and Chapter 1,

Section [1.2

We proceed with the construction of a non-invertible wild operator and then, we show the
existence of a wild operator whose spectrum coincide exactly with the closed unit disk.

Theorem 4.45 Any infinite dimensional Banach spaces having a symmetric basis admits a
non-invertible wild operator.
Before proceeding with the proof of the theorem, we need the following definition that can

be found in [46, Chapter 4] and [38].

Definition 4.46 Let X be a Banach space and let T be a bounded operator on X. We say
that T is a rigid operator if there exists an increasing sequence (ng) C N such that

lilgnT”k:L’ =z, Ve X.
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Proposition 4.47 Let X be an infinite dimensional (real or complex) Banach space having
a symmetric basis and let (my,,), C N be an increasing sequence such that nm,|m,1. Then
there is a non-invertible rigid operator S on X such that for each x € X, lim,, S*™x = x.

Proor. Let (e,), be a normalized b-symmetric basis of X. Let us rewrite the basis as
(en,k)zozlz:f. For each n € N, consider the operator A, on span({e,, : k = 1,...,2m,}),
defined by:

1 .
Anen,l = ﬁen’g, Anem = OpCpitl Vi= 2, ceey an — ]., Anemzmn = Qpueq, (48)
where a?™~! = n. By the growth condition on (my,),, it can be deduced that 2 > a,, > a, 1,

2Mn

for all n > 2, and that the sequence (a;"'1), is bounded by some strictly positive constant
C > 1 independent of n. We define the operator S on span({e,x : n,k}) by Se,r = Anen k-
Since the sequence (o, ), is bounded and (e, ), is a symmetric basis, the operator S is bounded
and can be continuously extended to X, extension which we still denote by S. By the
Open mapping Theorem, the operator S can not be invertible. Indeed, we can notice that
|Senall = 1/n, but |le, || = 1. Let us check now that S is a rigid operator. Let x € X be a
vector different from 0. Since (e,), is a Schauder basis, then z =) >, #, 1€, ;. Recalling
that A?™n is the identity operator on span({e, : k}) and that m,|m, 1, we compute

0o 2mpy 00 2mp
57w = all = 1D D warA*™eni = > > wukens
n=1 k=1 n=1 k=1
0o 2my 0o 2mp
=l >0 D wnnd?ens = D ) wnsonsl
n=j+1 k=1 n=j+1 k=1
oo 2mp
< (bC+ 1) Z Z T kenk |
n=j+1 k=1
which tends to 0 as j tends to infinity. O

Observe that Proposition [4.47] can be extend to Banach spaces containing an infinite dimen-
sional complemented subspace with symmetric basis. Indeed, if Y is the subspace containing
a symmetric basis, it is enough to extended the operator defined in Proposition by the
identity in any subspace which is a topological complement of Y. Now, we can proceed with
the proof of Theorem [4.45]

Proor or Turorem 45l Let X be an infinite dimensional Banach space with symmetric basis
(en)n. Let us define Y} = span({eq,—1 : n € N}) and Y, = span({es, : n € N}). Since (e,),
is a symmetric basis, the natural associated projections onto Y; and Y5 are continuous. Let
T € W(Y1) be an operator constructed as in Section [4.3] associated to the a sequence (my,),
that satisfies both growth conditions, condition (4.4) and nm,|m,,; for all n € N. Let
S € L(Y>) be an operator given by Proposition [4.47] related to the same sequence (my),.
Thus, we define U € L(X) by U(xz) = T(y1) + S(y2), where y; is the projection of z on Y}, for
i=1, 2. We prove that U is a non-invertible wild operator on X. Indeed, let y; € Ry C Y;.
By Remark [£.33] we know that liminf ||7%™"y; — y1]| = 0. Then, since (S*""ys),, converges
to ys for each yo € Ys, we deduce that Ry 4+ Yo C Ry. On the other hand, a straightforward
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computation shows that Ay + Y, C Ay, showing that U is a wild operator. Finally, since Y;
and Y, are complementary subspaces of X, both spaces are U-invariant and the restriction
Uly, = S € L(Y3) is not invertible, we get that the operator U is not invertible either. [

Remark 4.48 In fact, Theorem holds true in any infinite dimensional Banach space
with an infinite dimensional complemented subspace with symmetric basis.

Theorem [£.45] asserts that 0 can be part of the spectrum of a wild operator 7. In fact, 0
is in the continuous spectrum of 7. Moreover, it is easy to check that its point spectrum,
0,(T), must be a subset of T. In [§] and [38], it is proved that each wild and rigid operators
have spectral radius equals to 1 respectively. For the sake of completeness, we shall show
how this is a consequence of the spectral radius formula and the following result of Miiller
and Vrsovsky:

Proposition 4.49 [73, Theorem 3] Let X be a real or complex Banach space. Let T be an

operator on X. If
> <
2R <%

then Ar s dense in X.

Lemma 4.50 [8, Before of Proposition 4.1][38, Proposition 2.20] Let X be a complex Banach
space and let T be a bounded operator such that Ry has nonempty interior. Then r(T) = 1.
Particularly, wild operators and rigid operators have spectral radius equal to 1.

Proor. Let r = r(T). If r < 1 —e < 1, there exists an N € N such that for all n > N,
IT"|| < (1 — &)™, which tends to 0. Then, for every point x € X, its orbit under 7" would
tend to 0, which is a contradiction since Ry # {0}.

If r > 14 ¢ > 1, there exists an N € N such that for all n > N, [|[T"|| > (1 +¢)". Then,
using Proposition we get a contradiction since the set of recurrent point Ry would have
empty interior. O

Then, for all T € W(X) we have that ¢(T) C D, and o(T) N'T # (. But invoking Riesz
decomposition theorem we can get the following result, which has been stated in [38] for rigid
operators.

Proposition 4.51 Let X be a complex Banach space X and let T be a bounded operator
such that Rr has nonempty interior. Then each connected component of o(T') intersects the
unit circle T.

Proor. Let C be a connected component of o(T"). Suppose that C' # o(T'), then there exist
two disjoint open sets U; and U, such that UyNo(T) # 0 fori=1, 2, o(T) C U; UU; and
C C U;. By Riesz decomposition theorem, there exist two T-invariant subspaces X; and X,
of X such that X = X; & Xy, and the restrictions satisty o(T|x,) = Ui No(T), fori=1, 2.
Since 7(T) = 1, we have that r(T|x,) < 1. If (T|x,) is strictly less than 1, as in the first
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case of Lemma [4.50] we can deduce that the set of recurrent point of T" must be contained
in X5. Therefore, Ry would have empty interior. Finally, a standard argument finishes the
proof. O

Remark 4.52 Proposition is a spectral property that the operators in F'P(X) do not
enjoy necessarily, unlike of Lemma [{.50] which remains true for them. In fact, the spectrum
of the operator T' constructed in Remark is o(T) = {exp(ir/m,) : n € N} U{0,1},
whenever the wild part is constructed as in Section associated to the sequence (my),.
For details on the computation of o(T), see [§].

Remark 4.53 Proposition [/.51] shows that if T is a non-invertible wild operator or non-
invertible rigid operator, then for all r € [0,1], there exists A € C, |\ = r, such that
Aea(T).

Corollary 4.54 Any infinite dimensional complex Banach space having a symmetric ba-
sis admits a non-invertible wild operator whose spectrum is exactly D. This result remains
true for infinite dimensional Banach spaces which contain a complemented subspace having
symmetric basis.

Proor. Let X be an infinite dimensional Banach space having a symmetric basis. Let X3
and X5 be two infinite dimensional complementary subspaces of X, both having symmetric
basis. Let V be a finite dimensional subspace of X; and F' be an asymptotically separated
set in V' such that F' and V \ F' have nonempty interior. Let (f,), € V* be a sequence of
linear functional that asymptotically separates F'. Let us consider an increasing sequence of
integers (m,,), that satisfies both condition and n!m,,|m,, 1, for all n € N. Let (e,), be
a symmetric basis in Xs. Let us consider a countable partition of N, {N; : i}, such that each
N; is an infinite set. For i € N, let us define the subspaces

Xoi =5pan(e,: n€N;) and Y,; =5span(e,: je N\ {i},n e N;).

Observe that, for each i € N, Xy ; and Y5; are complementary subspaces of X,. Let (n(i, k))x
be the increasing enumeration of N;. Let S; be a bounded operator on Xy ; constructed as
in Proposition using the sequence (M) ). Observe that, since nlmy,|my,1,it follows
that kmy,q k) |manie41) for all i, k& € N. Moreover, all the coefficients used to construct S; are
uniformly bounded by a constant independent of i. Let (¢;); be an enumeration of the set
{a+0bi€D: abe Q} Letusfix j € N By Remark we know that there exists
A € 0(S;) such that |\| = |g;|. Let p; be a j-root of unity such that dist(g;, p;0(S;)) < 27/3.
Now, we can define the bounded operator S on X5 by the formula

Se, = p;S;e,, for all n € N;j.

Since (e,), is a symmetric basis in X5, we can deduce that S is a bounded, rigid operator.
Moreover, its associated sequence can be chosen as (2m,,),. Also, for each i, observe that
Xs; and Ys; are invariant subspaces for S. Let us now consider 7' € W(X}) be an operator
constructed as in Section associated to the sequence (m,,),. Analogous to the proof of
Theorem we define the bounded operator U on X by the formula U(z) = Tx; + Sxo,
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where z; is the projection of x onto Xj, for i = 1, 2. As in Theorem [4.45] we conclude that
U is a wild operator. Indeed, Ay = Ar+ X, and Ry = Ry + X5. Observe now that, for each
i, Xo; and Yy; + X, are complementary subspaces on X and both spaces are U-invariant.
Hence, noticing that p;S; € £(X3;) is the restriction of U to the subspaces X, ;, we get that
a(U) 2 a(pSi), for all i. Therefore, o(U) 2 J;o(pS;) 2 D. Finally, Lemma finishes
the proof.

]

Remark 4.55 Let X be an infinite dimensional separable complex Banach space with sym-
metric basis. In the £7“00f of Corollary we show that X admits a bounded rigid operator
S such that o(S) = D.

4.6 Approximation result

In [8], it is shown that the set W(X) is dense in £(X) for the strong operator topology
and that Id is a cluster point of W(X) for the norm topology, see Remark In [9,
Proposition 4.4.1], we can find that any diagonal operator on a Banach space X having a
symmetric basis can be approximated in norm by operators in RP(X). We improve this
result by showing that they can be approximated by wild operators. Moreover, thanks to
the Weyl-von Neumann-Berg Theorem ([19] or [36, Theorem 39.4]), we can say more about
the closure of W(X) whenever X is a separable infinite dimensional Hilbert space.

Theorem 4.56 Let X be a separable infinite dimensional complex Banach space having a
normalized unconditional basis (ey,),. Then, the set of unitary diagonal operators with respect
to (en)n is contained in the norm closure of W(X), i.e. bounded linear operators D such that
De,, € Te,, for all n € N. Moreover, if X is a separable infinite dimensional complex Hilbert
space, each unitary operator belongs to the norm closure of W(X).

Before proving Theorem we need the following proposition.

Proposition 4.57 Let X be an infinite dimensional complex Banach space with a normalized
unconditional basis (ey,),. Let D be a unitary diagonal operator, with respect to (e,)n, on X
having only finitely many eigenvalues. Then D belongs to the norm closure of W(X).

Proor. Let {a;}; C T be the set of eigenvalues of D. Let us assume that each q; is a root
of unity. Let us call X' := ker(D — o;Id). Since X is infinite dimensional and X = &Y X',
we can assume that X! is infinite dimensional. To fix notation, for € X, we denote by z'
the canonical projection of x onto X'. Recall that these projections are bounded since the
basis (e,), is unconditional. Let 7} be a wild operator on X1, constructed as in section
Let (my,), be the sequence of positive integers with which 77 is constructed. We impose that
a™ =1, for all i < N. Consider the bounded operator T' defined by Tx' = a;Tiz! and
Tx' = Dx' = oy for each i greater than 1. We can notice that:
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Ar={r € X : lim |[T"z|| = o0} = {z € X : lim ||T"z'|| = oo}
n—o00 n—00

N
={r € X: lim |a}||T]'z"]| = 0o} = Ap, + EBXi.
n—o0

i=2
and also that:
Rr={ze X: lirllgioglf |T"x — x| = 0}
D{reX: linrr_1>ioro1fmax{HT2m"aci —a2Y:i=1,..,N} =0}

N
D) E B 1 2mn 1 1 — — i
OD{reX: hgggngTl r —x| =0} RTl—i-@X,

and then T belongs to W(X). Bearing in mind Remark [£.34] for any ¢ > 0, there exists
Ty € W(X1) such that |U|x1 — T1|| < e. Finally, since (e,), is an unconditional basis of X,
we can deduce that [|[U — T zx) < C||U|x1 — T?||z(x1), for some positive constant C' > 0
depending only on the unconditional constant of (e,),, achieving the result whenever the
set of eigenvalues are roots of unity. A standard argument finishes the proof for the general
case. [

Proor or THeoreM 56l Let D be an unitary diagonal operator on X with respect to the
unconditional basis (e,),. For each n € N, let v, € T be the complex number such that
De,, = a,e,. For k € N, let Dy be the bounded diagonal operator on X defined by Dye, =
Qg n€n, Where:

af o =1, arg(ay,) — arg(ay ) € [0,27/k), Vn € N.

n

Since (e,,) is an unconditional basis, we have that Dy, is a bounded operator. Moreover, since
k-roots of unity are finite, by Proposition Dy, belongs to W(X). Finally, if (e,), is a
b-unconditional basis, we can easily get that |D — Dy|| < 2bm/k, achieving the first part of
the theorem.

For the second part, let U € B(X) be an unitary operator, where X is a separable Hilbert
space. Let € > 0. Since U is a normal operator, invoking Weyl-von Neumann-Berg Theorem,
there exist a diagonalizable operator D, a compact operator K such that N = D + K
and ||K|| < e. Let (e,), be the orthonormal sequence associated to D. Notice that D =
Y2 ane, ® e, for some sequence (o) C C. Since ||[Ue,|| =1 for all n € N, we get:

\anF = (Dey, De,,)
= || Nen||* — 2Re((Ney, Key)) + || Ke,|?
>1-2||K|>1-2e.

On the other hand, |, | < ||D[| < [[N||+[|K|| < 1+¢. Let us define the diagonal operator D
by De,, = anen, where &, = 22.. Notice that |D—D|| < 1—+/1 — 2¢, when £ < 1/2. Finally,

|an |
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since every unitary diagonal operator belongs to the norm closure of W(X), we conclude that
U can be approximated by wild operators on X as well. O

Remark 4.58 We can notice that the first part of Theorem/|].56] is analogous to the following
result: the set of complex bounded sequences x = (x,,), such that card({x; : 1 € N}) is finite,
18 dense in the space of bounded sequences £°°.
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Chapter 5

Desingularization of smooth sweeping
processes

Chapter 5 and 6 form the second part of this thesis. From now on, we explore different
issues on finite dimensional spaces. In the present chapter, we generalize the Kt.-inequality
for real-analytic or semi-algebraic functions to multivalued map. This new inequality is
a desingularization for the coderivative, which is an abstract notion of differentiability for
multivalued maps, see Definition Moreover, we provide several characterizations for
multivalued maps which satisfy the mentioned inequality involving, for instance, length of
the curves solutions of the related sweeping process, see Definition [5.2]

5.1 Kurdyka-Lojasiewicz inequality

It is well-known that every C' smooth function f : R® — R which is definable in some o-
minimal structure has finitely many critical values. Kurdyka [68] showed that if 7 € f(R")
is a critical value and U is a nonempty open bounded subset of R", then there exist p > 0
and a C'-smooth function v : [F, 7 4 p] — [0, +00) satisfying

V(o f)(z)] > 1, for all o € U such that f(z) € (7,7 + p). (5.1)

The above inequality generalizes to o-minimal functions the Lojasiewicz gradient inequality
(established in [70] for the class of C' subanalytic functions) and is nowadays known as
the Kurdyka-F.ojasiewicz inequality (in short, Kb-inequality). For definitions and properties
of o-minimal functions the reader is referred to [94]. Both the Lojasiewicz and the KE-
inequality have been further extended to nonsmooth (subanalytic and respectively o-minimal)
functions, see 24, 25]. These inequalities allow to control uniformly the lengths of the
bounded (sub)gradient orbits, see |71, [68] 24] .

One of the main features of Kurdyka’s work [68] was to consider the so-called talweg function
m(r) = it (IV/@)]: f@)=r}, e+ (52)

which captures the worst behaviour (closer to criticality) of the gradient at the level set
[f = r]. Kurdyka used the above function to defined the talweg set V(r) consisting of points
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x € f~Yr) with ||V f(x)|| < 2m(r). He then made use of a definable version of the curve
selection lemma to obtain a smooth curve r — 6(r) € V(r) which is directly linked to
the desingularizing function 1. A straightforward consequence of is that the length
of every bounded gradient curve ¥ = —V f(v) contained in f~!((7,7 + p)) is majorized by
(74 p)—1(0) (and therefore it is bounded). The same is true for the lengths of the piecewise
gradient curves, that is, curves obtained by concatenating countably many gradient curves
{m}is1, where v C f~'([riz1,71)) and (r;); is a strictly decreasing sequence in (7,7 + p)
converging to 7. These curves have countably many discontinuities.

Outside the framework of o-minimality the Kt-inequality may fail even for C2-smooth
functions |26, Section 4.3] or for C*-smooth function with a unique critical value [76] p.
12]. Bolte, Daniilidis, Ley and Mazet in [26] considered the problem of characterizing the
existence of a desingularization function v and the validity of for an upper isolated
critical value 7 of a semiconvex coercive function f defined in a Hilbert space. (A function
f is called coercive, if it has bounded sublevel sets. This assumption replaces the use of an
open bounded set U in Kurdyka’s result.) We reproduce below one of the main results of the
aforementioned work, see [26, Theorem 20|, for the special case where the function is smooth
and defined in finite dimensions.

Theorem 5.1 (characterization of the KE-inequality) Let f : R® — R U {400} be a C*-
smooth (or more generally C*-smooth semi-convex) coercive function and ¥ € f(R™) an upper
wsolated critical value. The following statements are equivalent:

a) (KE-inequality) There exist p > 0 and a smooth function i : [F,7+ p) — [0,00) such
that
V(o f)(@)|| > 1, for all x € f~1((F, 7+ p)).

b) (Length control for gradient curves) There exist p > 0 and a strictly increasing
continuous function o : [F,7 + p) — [0,00) with o(7) = 0 such that

t—T

/0 [(®)[ldt < o(f(7(0))) = Lim o (f(y(£))),  (we may have T' = +o0)

for all gradient curves v : [0,T) — R™ with v([0,T)) C f~*((7,7 + p)).
¢) (Length bound for piecewise gradient curves) There exist p, M > 0 such that

T
| Il <
0
for all piecewise gradient curves v : [0,T) — R™ with v([0,T)) C f~1((7,7 + p)).
d) (Integrability condition) There exists p > 0 such that the function

1
re  sup —————, r € (r, 7+ p),
zef—1 ) [V (@)]]

is finite-valued and belongs to LY(7,7 + p).

Recently, Daniilidis and Drusvyatskiy [41] showed that every multivalued map S : R = R"
with definable graph admits a desingularization of its graphical coderivative D*S : R® = R
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around any critical value ¢t € R. (Relevant definitions and a more precise statement are given
in Section [5.2.3]) This result yields a uniform bound for the lengths of all bounded orbits
of the sweeping process defined by S (see forthcoming Definition . The aforementioned
results of [41] are also covering the results of Kurdyka in [68] by considering a sweeping process
mapping S related to the sublevel sets of the smooth definable function f (c.f. Remark [5.9).

The main contributions of this work are the following:

e Without assuming o-minimality, we characterize the desingularization of the coderiva-
tive of a smooth sweeping process (see Definition by establishing an analogous
result to Theorem This is the main result of this work, which is resumed in Sec-
tion £.3.21

e Since the evolution of the sweeping process is not reversible in time, we introduce in
Definition [5.3| an asymmetric version of the modulus for the coderivative of a multival-
ued map S, ||D*S(t,x)|", that captures the orientation of the dynamics. (In [41], the
prevailing assumption of o-minimality made it possible to work directly with the usual
modulus.)

e We establish an asymmetric version of [84, Theorem 9.40] (sometimes known as the
Mordukhovich Criterion) relating the asymmetric modulus of the coderivative to the
oriented calmenss of the multivalued map (Proposition [5.26). We then obtain The-
orem [5.17] (Section which relates the desingularization of the coderivative with
the length of discrete sequences given by the catching—up algorithm. (This algorithm
can be perceived as the proximal algorithm over a function f whenever the multivalued
map S is defined by the sublevel sets of f.)

The outline of this chapter is as follows: In Section we fix our notation, we quote
preliminary results of variational analysis required in the sequel. In Section we fix
our setting, explain our assumptions and state the two main results (Theorem and
Theorem . The proofs of these results together with other auxiliary results will be given
in Section

5.2 Notation and Preliminaries

The notation used along this chapter is standard and follows the lines of |[84]. For any two
nonempty sets A, B C R", the excess of A over B is given by ex (4, B) := sup{d(z, B) : = € A}
and their Hausdorff-Pompeiu distance is defined by dist (A4, B) := max {ex (A4, B), ex (B, A)}.

Let C' C R"™ be a closed set and let x € R™. The set of projections of x at C' is defined by
Projo(z) :={y € C': ||z — y[| = d(z,C)}. The Fréchet normal cone to C' at x € C, denoted
by Nec(x), is the set of vectors v € R™ satisfying

limsup Y8 <
vec |y — 7
Y—T

The limiting normal cone to C' at z, denoted by N¢(z), consists of all vectors v € R" such
that there exists a sequence (x;); C C' and v; € Ng(x;) satisfying z; — x and v; — v.

94



5.2.1 Sweeping process dynamics

Let S : R = R™ be a multivalued map. The effective domain of S, denoted by dom(S5), is
the set {t e R: S(t) # 0}. We denote by S = gph(S) the graph of the multivalued map S,
that is,

S =gph(S) :={(t,z) e R*"™: z € S(t)}.

Let us introduce the following dynamical system, known as sweeping process, determined by
the multivalued function S. The definition implicitely implies that dom(S) has nonempty
interior, and is often an interval (possibly unbounded). In particular, in our seeting (c.f
Assumptions in Section dom(S) will always be an interval (possibly unbounded).

Definition 5.2 (sweeping process dynamics) Let S : R = R" be a multivalued map and
I C dom(S) be a nonempty interval of R. We say that the absolutely continuous curve
v I — R"™ is a solution (orbit) of the sweeping process defined by S if

{—W(t) € Nsw(7(t)); Vae t €1, (5.3)

~v(t) € S(t) for allt € I,

where Ngy(v(t)) stands for the normal cone of S(t) at v(t).

Notice that can be formally satisfied by curves with possible discontinuities (the set of
discontinuities has then to be of measure zero). For our purposes it is useful to consider the
class of piecewise absolutely continuous curves, that is, curves v : I — R™ whose possible
discontinuities are contained in a closed countable set D and being absolutely continuous
on any interval subset of I\ .D. This latter set is open, therefore it is a countable union of
disjoint intervals .J;, and 7 is required to be absolutely continuous on each J;.

Notation (AC(S,I), PAC(S,I)). We denote by AC(S,I) (respectively PAC(S,I)) the set of
absolutely continuous (respectively, piecewise absolutely continuous) orbits of the sweeping
process defined by S on the interval I C dom(S). The length of a (piecewise) absolutely
continuous curve v : I — R™ is given by the formula

o) = / 1)l

5.2.2 Coderivative, (oriented) modulus and (oriented) talweg.

Let S : R = R" be a multivalued map with closed values.

Definition 5.3 (Coderivative) The (limiting) coderivative of S at (t,x) € S in u € R" is
defined as follows:
D*S(t,z)(u) :={a€R: (a,—u) € Ns(t,z)}.

Therefore D*S(t,z) : R* = R is a multivalued map and
(u,a) € gph D*S(t,xz) if and only if (a, —u) € Ns(t, z).

95



Since gph D*S(t, x) is a cone, the map D*S(t, x) is positively homogeneous and we can define
its modulus via the formula:

|D*S(t,z)||" := sup {|a]: a € D*S(t,z)(u)}.

[[ull<1

Although the above definition of a modulus is classical and relates nicely to the Lipschitz
continuity of S (c.f. [84, Theorem 9.40]), the symmetry of the absolute value of R (repre-
senting the time in our dynamics) does not fit to the non-reversible dynamics of the sweeping
process. To remedy this, one needs to replace |a| in the above formula by a® := max{0,a}
which eventually gives rise to the following definition.

Definition 5.4 (Asymmetric modulus of coderivative) For every (t,x) € S we define the
asymmetric modulus of the coderivative D*S(t,x) as follows:

ID*S(t, 2)[" = sup{a” : a € D*S(t,x)(u), [lull <1},
where we adopt the convention sup(()) = 0.

The following example give some insight about the difference between the two moduli.

Example 5.5 Let f : R® — R be a C'-smooth function and set
Sry=[f<r]={xeR": f(x)<r}, for all r € R.

This defines a multivalued map S : R = R™ associated to f (the graph S of S is the epigraph
of f). Let x € S(r).
If f(z) <r, then x € int(S(r)) and Ns(r,x) = {0}, yielding | D*S(r,z)||" = || D*S(r,z)|" =
0. On the other hand, since the normal space of gph(f) at (z, f(z)) is exactly R(V f(x), —1),
if f(x) =7, then Ns(r,z) =R, (=1,V f(z)). Thus,

1

| D*S(t, )| = 7@ but  ||[D*S(t,x)|" = 0.

We now define the oriented talweg function associated to the multivalued map S : R = R".
This captures the worst case (larger value of the oriented modulus of the coderivative) on
each set S(t), t € R. This function will play an important role in our main result.

Definition 5.6 (oriented talweg) The oriented talweg function of S denoted by ' is defined

as follows:

o' (t) = sup {||D*S(t,z)|T}, for all t € dom(S).
zeS(t)

Remark 5.7 (Asymmetric structures) In [{1)] the usual talweg function ¢ has been consid-
ered, based on the (symmetric) modulus of the coderivative.

o(t) = Sup){||D*S(t,x)H+}, for all t € dom(S).

zeS(t
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The difference between ¢ and @' is that the modula |D*S(t,z)||*, (t,2) € S, are now replaced
by their asymmetric versions ||D*S(t,x)|". The reader might notice that a®™ := max{0,a} is
a typical asymmetric norm of R and ||D*S(t,x)|" can be seen as a natural asymmetrization
of the modulus ||D*S(t,x)||*. The use of asymmetric objects seems to be a natural tool in
nonsmooth dynamics as well as in operations research (orientable graphs). More details on
asymmetric structures can be found in [32] and [{2].

5.2.3 Desingularization of the coderivative (definable case).

We now recall the main result of [4I]. If S : R =2 R™ is a multivalued map with a closed
bounded graph S, then assuming that S is definable in some o-minimal structure, for every
a € R there exists p > 0 and a strictly increasing, continuous function ¥: [0, p] — R that is
C'-smooth on (0, p), it satisfies ¥(0) = a and ¥'(r) > 0 for all r € (0, p) and

|D*(SoW)(r,z)|t <1 for all r € (0, p) and all z € S(V(r)). (5.4)

It is easily seen that ¥ is an homeomorphism between [0, p|] and [a, b] where b = ¥(p) and
a diffeomorphism between (0, p) and (a,b). Inequality (5.4) has a particular interest when
a € R is a critical value of the coderivative D*S of the sweeping process, that is,

o(t) = sup |[|[D*S(t,z)||" = +oo.
z€S(t)

In this case we say that U desingularizes the (modulus of the coderivative around the) critical
value a. The assumption of o-minimality on S guarantees that the set of critical values is
finite. In [41] it has further been established, as consequence of , that all bounded orbits
of the sweeping process S have finite length and that the talweg function ¢ is integrable on
[a, b].

Let us notice that [[D*S(t,z)|"™ < ||[D*S(t,z)||T (and consequently () < ¢(t)) for all
t € [a,b) and = € S(t). Therefore, we obtain the following.

Corollary 5.8 (desingularization of oriented coderivative — definable case) If S : R = R”
is a multivalued map with a closed definable bounded graph, then for every a € R (possibly
critical for the oriented modulus) there exists p > 0 and b > a such that:

(1). there exists an increasing homeomorphism W: [0, p| — [a, b] which is C*-diffeomorphism
on (0, p) such that:

[|D*(S o W) (r,z)|" <1 for all r € (0,p) and all x € S(¥(r)). (5.5)

(ii). fab o' (t) < oo (the oriented talweg function is integrable).

Remark 5.9 [Relation with the KL-inequality] (i). The described desingularization of the
coderivative can be seen as a generalization of the KE-inequality for C*-smooth definable func-
tions (established by Kurdyka in [68]) in the following sense: let f: R" — R be a C*-smooth
coercive function which s definable in some o-minimal structure. Then, the multivalued
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function

(5.6)

SfZR:iRn
S =[f<—t], teR

is o-minimal (it is definable in the same o-minimal structure as f) and the desingularization
of its gradient described in can be deduced from the desingularization coderivative of S
and vice versa. We refer the reader to [{1, Section 5.1] for more details.

(i1). In [{1], the assumption that S is unbounded has not been considered, and similarly to
(5.2), the supremum of the definition of ¢(t) had to be taken over S(t) NU, where U C R™ is
a fixed open bounded set, which gives rise to a talweg function ps depending on U. Fven if
Section we deal with potentially unbounded sweeping processes, we do not need to make
use of U, thanks to the assumptions given in Section [5.5.1]

5.3 Characterization of desingularization of the coderiva-
tive

We are interested in sweeping process mappings S that are not o-minimal (we shall assume
smoothness of their graph instead). Under some mild assumptions, we shall characterize the
existence of a desingularizing function ¥ that desingularizes the asymmetric modulus of the
coderivative (c.f. Corollary . We give below our setting.

5.3.1 Assumptions, setting
Let S : R = R" be a multivalued map with closed graph S.

Definition 5.10 (smooth sweeping process) We say that S is a smooth sweeping process if
either

— S is a closed connected C'-smooth submanifold of R™ of dimension at most n ; or

- 8 is a connected smooth manifold of full dimension with boundary and 9S is a C'-smooth
manifold of dimension n.

It is clear that the above assumption is satisfied if S is a sweeping process associated to a
C'-smooth function f (c.f. Example or Remark . As a consequence of this assumption
we have the following result, which compares the modules versus the asymmetric modulus of
D*S.

Lemma 5.11 Let S : R = R" be a smooth sweeping process and (t,z) € S. If either

(a). S is a smooth manifold or (b). ||ID*S(t,x)|" >0

we have

ID*S(t,2)[" = |D*S(t, =)

Proor. If S is a smooth submanifold of R™*!, the requested equality holds true for every
(t,z) € S as a consequence of the fact that the limiting normal cone at any point coincides
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with the normal space of the manifold at the same point. On the other hand, if S is a
manifold of full dimension with boundary such that 0§ is also a smooth manifold, then the
normal cone Ng(t,z) is either {0} or a ray generated by an outer pointing normal vector
(s,y) of S at (¢,x). The conclusion follows. O

Connectedness of S yields that dom(S) is an interval (possibly unbounded). We shall use
the following notation:

T = sup(dom(S)) € R U {+o0}.
We also define the multivalued map Hg : R = R*™! by

Hs(t) :=08 N ({t} xR"), forallteR.

Assumption 5.12 We say that S satisfies the:

(A1) existence assumption if for every (t,z) € S with || D*S(t, z)|t < 400, there exist §, > 0
and at least one orbit v, € AC(S;[t,t + 0,)) such that v,(t) = x.

(A2) upper regular assumption at ¢ € dom(S) with t < T, if there exists § > 0 such that
@1 (t) < +oo for all t € (¢, T+ ).

(A3) continuity assumption at t € dom(S) with t < T, if there exists & > 0 such that the
multivalued map Hg is continuous for the Pompeiu-Hausdorff metric on (t,t + 0) (it
may be discontinuous at t).

Let us make some comments about the above assumptions:

Assumption (Al) ensures the existence of orbits issued from any non-critical point. This
assumption is satisfied if the sweeping process is defined via where f is a Cl'-smooth
function, since in this case the existence of gradient orbits ¥ = —V f(y) is guaranteed, and
these orbits are also orbits for the sweeping process Sy, up to a suitable change of variable,
see Remark Assumption (A1) is also fulfilled if S is a definable sweeping process, see
[41], Section 6] or [57]. In the general case, classical existence results go back to the seminal
work of J.J. Moreau [72] for convex-valued multifunctions which are Lipschitz continuous
under the Hausdorff-Pompieu metric. Since then, several extensions have been obtained, see
[33, B4, [66] and references therein.

Assumption (A2) is automatically satisfied in the definable case, since in this case the set of
critical values is finite. In the general case, this assumption is analogous to the hypothesis
made in |26, Section 3.3] that the critical values of f are upper isolated (see also statement
of Theorem 5.1)).

Assumption (A3) is the more restrictive, although it comes naturally from our setting. It is
satisfied for the sweeping process S; defined in whenever f is convex or quasiconvex.
In general, a smooth multivalued map ¢ = S(t) is not necessarily monotone in the sense of
set-inclusion and the sets S() are not assumed convex (or of the same homology), therefore
(A3) is required to guarantee a control on the behavior of the boundaries. In particular, the
following result holds. (For the definitions of outer and inner semicontinuity of a multifunction
the reader is referred to [84, Chapter 5|.)
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Proposition 5.13 Let S : R = R" be a smooth sweeping process with bounded values and
a,b € R such that (a,b) C dom (S). If Hg is continuous on (a,b), then S is also continuous
on (a,b).

Proor. Let I be a nontrivial interval contained in a compact subset of (a,b). It is sufficient
to prove that S is continuous on I. Since & C R"™! is closed and S(t) = SN ({t} x R"), for
every t € R, the map S has closed (therefore, compact) values and S is outer semicontinuous.
Let us assume, towards a contradiction, that S is not continuous on I, that is, there exists
t € I such that S is not inner semicontinuous at . We deduce that there exist T € S(1),
e > 0 and a sequence (1), C dom (S), converging to ¢, such that

d(z,S(ty)) > e, forall ke N.
The above easily yields that (¢,z) € S\ int (S), that is, (¢,7) € S. However, since
{ti} x B(T,e)NS =1,
this contradicts the continuity of Hg at t. O

Remark 5.14 In general, the converse of Proposition|5.15 is not true. To see this, set
S:=Rx[-22)\{(t,z) eR*: (t—1)>+2° <1}
and consider the sweeping process S : R = R defined by
Sit)=8n ({t} xR?).

It follows easily that S is a smooth sweeping process. Moreover, S is continuous at every
t € R, but Hg is discontinuous at 0.

5.3.2 Characterizations via continuous dynamics

Before we proceed, let us set

T :={t € dom(S) : (A2)—(A3) are fulfilled at ¢}.

Observe that, if t € T, then there is § > 0 such that [t,t+0) C T.
We are now ready to state the main result of this work. The proof will be given in Sec-

tion B.4.2]

Theorem 5.15 Let S : R = R" be a smooth sweeping process with bounded values that
satisfies (A1). Let a € T (typically a critical value for D*S).

The following assertions are equivalent:

a) (Desingularization of the coderivative) There exist b > a, p > 0 and a homeo-
morphism U : [0, p] — [a, b], which is a C*-diffeomorphism between (0, p) and (a,b) with
V' (r) > 0 for every r € (0, p), such that:

|D*(S o W) (r,z)|" <1, forallr € (0,p), for all x € S(¥(r)). (5.7)

100



b) (Uniform length control for the absolutely continuous orbits) There exist b > a
and an increasing continuous function o : [a,b] — Rt with o(a) = 0 such that for every
a <ty <ty <band~ye AC(S,t1,ts]) we have:
l(y) < o(tz) — o(ta).

¢) (Length bound for the piecewise absolutely continuous orbits) There existb > a
and M < oo such that for every v € PAC(S, [a,b]) we have:

((y) < M.

d) (Integrability of the talweg) There exists b > a such that
b
/ ©'(t) < .

5.3.3 Characterizations via discrete dynamics

We first need the following definition.

Definition 5.16 (piecewise catching-up sequence) Let S : R = R"™ be a multivalued map
with closed values.

(1). A (finite or infinite) sequence ((ti,x;))is0 C S is called a catching-up sequence for S if
(ti)i>0 is strictly increasing and

Tip1 € Projs(tm)(aji), fori>0.
(ii). A (finite or infinite) sequence of the form
(18, Y0), (4, YD), - (1, Y0, (8, Vi), (B Vi), (8, V), ..
18 called o piecewise catching-up sequence for S if for every 7 >0
(¢, Ylj))fzo C S is a catching-up sequence for S and tf;j =)t

Now we are ready to state our second result which complements Theorem

Theorem 5.17 The statements (a)-(d) of Theorem[5.15 are also equivalent to the following:

e) (Uniform control of catching-up sequences) There exist b > a and a continuous
increasing function o : [a,b] — [0,00), with o(a) = 0, such that for every catching-up
sequence ((ti, xi))iso C S with {ti}i>0 € (a,b), and every k > 1 we have

k
D Mz — |l < olt) — alto). (5.8)

i=0

101



f) (Length bound for piecewise catching-up sequences) There exist b > a and C <
oo such that for any piecewise catching-up sequence

{(tf,Y;]) J=0,1¢€ {Oa>k]}}

with
a<ty<t]<..<tp =ty<ty<..<b
we have:
k;
M v, Y <c
>0 i=0
5.4 Proofs

In this section we give proofs to our two main results, Theorem (Subsection [5.4.2)) and
Theorem (Subsection [5.4.4). To do so, we shall need some auxiliary results (Subsec-
tion [5.4.1) and a new notion of oriented calmness (Subsection |5.4.3)).

5.4.1 Auxiliary results

The first result concerns continuity of the moduli maps.

Lemma 5.18 (continuity of the (oriented) modulus on 0S) Let S : R = R" be a smooth
sweeping process. Then, the functions

(L) |D*S(ta)[t  and (L) | D*S(ta)|*
are continuous on OS for the usual topology on R U {4+00}.

Proor. Let us start with the case & has no interior. Thanks to Lemma [5.11 we have
that ||D*S(t, )|t coincides with || D*S(¢,x)||* for any (¢,z) € S. Then, the continuity of
both functions is a direct consequence of the continuity of the normal spaces of a smooth
manifold in the Grasmannian. Let us continue with the case S has interior. Let (t,x) € 00S.
Then Ng(t,x) coincide with the ray of exterior normal vectors of S at (¢, x). Therefore, the
continuity of (¢,x) — ||[D*S(¢t,z)||" and (¢,z) — [|[D*S(¢, z)|T follows from the continuity of
the unit outer normal vector of a smooth manifold of full dimension with boundary. O]

The second result asserts continuity of the (oriented) talweg function. Let us recall from
Subsection that the multivalued function Hg : R = R" is defined by Hg(t) := S N
({t} x R™), for all t € R.

Lemma 5.19 (continuity of the (oriented) talweg function) Let S : R = R"™ be a smooth
sweeping process such that S(t) is bounded for all t € R. Let [a,b] C dom(S) such that Hg
is continuous for the Pompeiu-Hausdorff metric on [a,b]. Then the talweg functions ©' and
@ are continuous on |a,b|, where the image space R U {+oo} is considered with its usual

topology.
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Proor. Set K := Hg([a,b]), which is a compact set. Since

¢'(t) = max |D*S(t,x)|" (respectively, (t) = max |[|[D*S(t,z)||T).
zeHg(t) z€H;5(t)

the result follows from Lemma [5.18 and the continuity of Hg. [

Proposition 5.20 (diffeomorphic rescaling of time) Let S : R = R" be a multivalued map
and v € AC(S, (a,b)). If U :(0,p) — (a,b) is a C'-smooth diffeomorphism such that W' (r) >
0 for all v € (0, p), then ¥ = v oV is an orbit of the sweeping process defined by S := S oW,

that is, 7 € AC(S5, (0, p)).

Proor. It is straighforward that ¥ = v o U is an absolutely continuous curve. Since VU is
a bi-Lipschitz homeomorphism on each compact interval contained in (0, p) we deduce that
for any null subset A of (a,b) the set W7'(A) is also null (with respect to the Lebesgue
measure). If 7 is the set of points of differentiability of ~ for which holds, it follows
that J := U~!((a,b) \ Z) is a null set and for every r € (0,p) \ J it holds:

7(r) = (yo W) (r) =" (¥(r)¥(r) € Nswe) (7 (¥(r))),

yielding that 74 is an orbit solution of the sweeping process defined by S o V. O]

In the sequel, given a curve v : I — R"™ we define its lifting ¢ : I — R"*! by

((t) = @t@), tel

Proposition 5.21 (geometric facts) Let S : R = R" be a smooth sweeping process.
Fiz t € dom(S)\ {T} and z € S(t). Then:
a) If there is & > 0 such that © € S(t), for all t € (t,t + ), then a < 0 for all (a,u) €
Ns(t, 7).
b) If |D*S(t,z)|t > 0, then for any 7 >t and v € AC(S, [t,T)) with v(t) = T, there exists
0 > 0 such that
C(t) :== (t,v(t)) € S, for all t € [t,t+9).

c¢) If int(S) is nonempty and Ns(t,7) = Ry (o, u) with a < 0, then there is § > 0 such
that & € S(t) for allt € [t,t +0).

Proor. (a). If (£,Z) € int (S) then Ns(¢,z) = {(0,0)} and the conclusion follows trivially. In
the case when (¢,Z) € 98, since dS is a smooth manifold, the limiting normal cone Ns(t, Z)
is equal to the Fréchet normal cone and is contained in the normal space of dS at (¢, 7).
Therefore, for any (o, u) € Ns(t,%) and t € (¢, + d), we have (¢,7) € S and

i ((a,u),(t—t,z—7))
BN TP

(b). Let 7 > ¢ and v € AC(S,[t,7)) with v(t) = Z and assume ||D*S(t,z)|" > 0. Since
(t,y) — ||D*S(t,y)|" is continuous on IS (Lemma [5.18), there exists a neighborhood V of
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(t,7) such that for all (¢,y) € VN IS we have || D*S(t,y)|t > 0. Therefore, there is 6 > 0
such that ||D*S(¢(¢))|" > 0 and consequently, ((t) € S for all t € [t,f + 9).

(c). It follows from our assumption that dim (0S) = n and (a,u) is a nonzero outer normal
vector of S at (¢,7). Without loss of generality, let us assume that (o, ) is a unit vector.
Since int(S) # 0, we deduce that (£,7)—A(«,u) € S for all A > 0 sufficiently small. Let
us assume, reasoning to a contradiction, that there exists a decreasing sequence (t;)r C R
converging to ¢ such that z ¢ S(t;), for all k¥ € N. Let us now take a decreasing sequence
(Ak)r € RT that converges to 0 and satisfies (£, 7) — A\x(a,u) € S for all k. Let 2z, € R"*! be
any vector such that

ZE € oS ﬂ [(tk,i‘>, (f—)\ka,ﬁc—)\ku)] ,

where [ (tx,Z), (£ — Ao, T — Agu) | stands for the line segment joining the points (¢4, Z) and
(t — Apa, T — A\u). It follows easily that (zy), converges to (¢, %) and that

= (0T o
<||Zk—(Z,T)||’( ’ )> < ((1,0), (e, u)) :

Let d be any accumulation point of the sequence (z, — (t,2))/||zx — (¢, z)||. Then, d belongs
to the Bouligand tangent cone of S, which coincides with the tangent space of S at the same
point. Therefore d should be orthogonal to the normal vector (o, u). However, (d, (o, u)) <
a < 0, which leads to a contradiction. O

The following lemma is crucial in the proof of our main theorem since it relates the value
of the coderivative with the velocity of the orbit of the sweeping process. The proof follows
closely the proof of [41, Theorem 4.1| where a similar result has been established for the
usual modulus ||D*S(t,v(t))||"-

Lemma 5.22 Let S : R = R" be a smooth sweeping process and v € AC(S,[a,b)). Then,
1@ = [D*St A )T,
for all t € [a,b) such that —3(t) € Ngw(7(t)) and [|[D*S(t,v(t))|" is finite.

Proor. Let t € [a,b) be a point of differentiability of v such that —4(t) € Ngu(y(t)) and
that || D*S(¢,v(t))|" is finite.

First case: 4(t) = 0.

If ¢(t) := (t,7(t)) € int (S), the desired equality holds trivially, while if {(t) € J(S), then
C(t) = (1, 0) belongs to the tangent space of dS at ((t). Since S is a smooth sweeping process,
the normal cone Ng({(t)) is contained in the normal space of S at ((t). Therefore,

((1,0), Ns(¢(t))) = {0}
Hence, if (a,u) € Ns(¢(t)), then o = 0. Thus, ||[D*S({(t))|" = 0.

Second case: (t) # 0.
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Then ((t) € 0S and C(t) belongs to the tangent space of S at ((t). As in the first case, we
obtain that

((1,4(8)), Ns(¢(2))) = {0}.

Hence, for every (a,u) € Ns(¢(t)) with ||u|| = 1 we have a + (%(t),u) = 0. Thanks to
Cauchy-Schwartz inequality, we obtain

151 = 1D*S(C @)™
By Proposition [5.21] (¢), we can assume that

sup {a: a€ D*S(t,x)(u)} > 0.

flull<1

Setting H = {t} x R™ we have {t} x S(t) = HNS. Due to the fact that —¥(t) € Ngu(7(t)),
we have:

(1, =%(t)) € Nyyxsn (C(1))-

In addition, since || D*S(t,v(t))]t < oo, we have that (¢,0) € Ns(¢,v(¢t)) only if t = 0. Hence,
applying the calculus rule [84, Theorem 6.42|, we get

Nnns(C(t)) € Nu(¢(t) + Ns(C(t)) =R x {0} + Ns(¢(1)).

Therefore, the inclusion (A, —%(t)) € Ns(((¢)) holds for some A € R. By orthogonality
between normal and tangent vectors, we get that:

(A, =3(1)), (1,7(8))) = 0.

and thus A\ = ||§(¢)||?. After normalization, we obtain:

D
(1501~ 8- & s(ew,

which readily yields ||[D*S(t,v(t))|T > ||¥(t)]|, as claimed. O

Let us finally quote the following result, which is a restatement of [26, Proposition 47|. For
the sake of completeness, we present its proof.

Proposition 5.23 Let b > a and T" be a collection of absolutely continuous curves ~y defined
in some nontrivial interval J C (a,b) with values in R"™, where J = [inf(J),sup(J)). Assume
that for each t € (a,b) there exist e, > 0 and v € T' with dom () = [t,t + &;). Moreover,
assume that if v € T', then for any ti,ty € (t,t + &), the restriction y|g, 1) € I'. Then
there exist a countable partition {I,}nen of (a,b) into intervals I, of nonempty interior and
a piecewise absolutely continuous curve v : (a,b) — R such that ~|;, €T.

Proor. Let ¢ € (a,b). We first construct a curve with domain [c,b) and then we deal with
the interval (a,b).
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First part: Let us consider I'. the family of curves on R™ such that v € I'. if and only if
dom(y) = [e,t), with ¢ € (¢,d], and «y is a concatenation of at most countable many curves
in I'. It is clear that I'. is nonempty since v, € I'...

Let us consider the partial order < on I'. defined as follows: for any ~',v? € T'., v' < ~?
if and only if dom(y') € dom(y?) and 7*|gom(,1) = 7'. Let us apply Zorn’s Lemma in the
partially ordered set (I, <). Let (7*)xea C I be a chain for <. Since 7| jom 2y = 7™ for
all \; < Ay, we can define 7 : [ J{dom(7}) : A € A} — R" as follows:

A(t) := v*(t), where t € dom(~).

Let us check that 7 € T'.. It easily follows that there is d € (¢, b] such that dom(5) = [e, d).
Let (tn)n>0 C (¢, d) be a strictly increasing sequence, convergent to d, such that ¢ty = c¢. Let
us consider ()\,), C A be an increasing sequence such that, for all n > 1, [c,t,) C dom(y*).
Therefore, thanks to the properties of I', for all n > 1, the curve [tn_1,tn) 1S @& concate-
nation of countable many curves in I'. Noticing now that 7 is the concatenation of family
{7 itn_1.00) : m € N}, we conclude that 5 can be constructed as a concatenation of countable
many curves in I'. Thus, 7 € T'. and it is an upper bound for the chain (y*)y. Therefore,
thanks to Zorn’s lemma, there exists 7., € I'c, a maximal element for <. If we suppose
that dom(v.,) = [c,d), with d < b, then we can concatenate 74 to 7., to contradict the
maximality of .. Therefore, dom(v.;) = [c, ).

Second part: Let us construct a curve with domain equal to (a,b). Let (c,), C (a,b)
be a decreasing sequence such that ¢, tends to a as n tends to infinity and let ¢y = b.
Applying the first part of the proof to each interval [¢,, ¢,11), with n € N, we obtain a curve
Y = Yemien - |Cns Cn—1) — R™ which is made by the concatenation of countable many curves
of I'. Therefore, the curve v : (a,b) — R™ constructed by the concatenation of the curves
(7 )n proves the proposition. Indeed, for each n, let us consider {1, : k € N} be a partition
of intervals with nonempty interior of dom(v,) such that v,|;,, € I' for all k € N. Thus, the
partition of (a,b) can be chosen as {I,,, : n € N, k € N}. O

We are now ready to prove our main result.

5.4.2 Proof of Theorem [5.15]
We prove (a) = (b) = (¢) = (d) = (a).

a) = b) : Let U : [0,p] — [a,b] be given by (a). Let v € AC([t1,ts],S). Since V¥ is a
C'-smooth function, dgph((S o ¥)|«,,)) is a smooth manifold. By Proposition voW €
AC([0, p), S o ¥). Applying Lemma we deduce that

=||D*(S o ¥)(r,y(T(r)|" <1, Vaeor € (a,d).
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Since WV is increasing and smooth, by change of variables we obtain:

to ) \I/_l(tQ) ) . \I’_l(tg)
/ 14 (r)ldr = / 14 (2 ()] () dr = /
t1 \I/_l(tl) ‘I/_l(tl)

\\ (tz)
S / dr = \I’_l(tg) — \Ij_l(tl).
TL(t)

T (r)|| dr

‘ d(yo )

Therefore (b) is satisfied by setting o := UL

b) = c¢) : Since o is an increasing function and o(a) = 0, statement (c¢) follows by setting
M = o(b).

c) = d) : Let b > a and let M > 0 given by statement c). Let ' : (a,b) - RU {400} be
the oriented talweg function of S and let us assume, towards a contradiction, that for any
c € (a,b) the function ¢! is not integrable on (a,c). By Lemma the function (¢, z) —
|D*S(t,x)|" is continuous on dS. By assumptions (A2)—(A3), shrinking b if necessary, we
may assume that o'(t) < oo for all t € (a,b) and that the multivalued map t = Hg(t) is
continuous on (a,b). By Lemma , ¢! is continuous on (a,b).

By Lemma [5.22} if J is a nontrivial interval of (a,b) then for any v € AC(S,J) we have
17| = || D*S(t,~(t))|" for almost every ¢t € J. Let k € N and t € (a,b) and define a curve
vk as follows:

o If ©7(t) =0, take 7 € AC(S, [t, 7)) be any curve such that 7 —t < 1/k.

o If p(t) > 0, since Hg(t) is compact, there exists x € S(t) such that || D*S(t, z)|
©'(t). Thanks to assumption (A1) and Lemma we can take vF € AC(S, [t,T)), for
some T > t, such that v(¢) = = and

+

kE—1
14 (s)]| > TgoT(s), for almost every s € (¢, 7).

Gluing together, thanks to Proposition [5.23, we obtain v* € PAC(S, (a,b)) such that for
almost every t € (a,b)

0, if t € Ay

@) > 175 @)| > fu(t) == —
e () >[5 @) > fi(t) %@T(t), it e (a,0)\ Ay

where A = {t € (a,b) : ¢'(t) =0} and Ay = (a,b) N (A +[0,1/k]) for all k € N.
The continuity of ¢! yields that A is a closed set relatively to (a,b). Therefore, A = NpenAg.
Then, for all t € (a,b), fr(t) 7 ©'(t) as k tends to infinity. Hence, by the Monotone

Convergence Theorem, (f; fr)r converges to f(f ¢!, which is infinity. Thus, there is K € N

such that
/yw ]dt>/fK Bt > M,

which contradicts statement (c) since v € PAC(S, (a,b)).

d) = a) : Let us assume that the oriented talweg function ¢! is integrable on [a, b] for some
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b > a. As a consequence of assumptions (A2) and (A3), shrinking b if necessary, we may
assume that o' is continuous on [a,b] and ¢T(t) < oo for all ¢t € (a,b]. Let p = max{p', 1}
which is an integrable continuous majorant of ©' and set

0(t) ::/ ®(s)ds, fort € [a,b].

Since ¥ is positive and integrable on [a, b], we set p := 6(b) and define ¥ : [0, p| — [a,b] as
the inverse function of 6, that is, ¥U(r) = 67!(r). Since 0'(t) = p(t) € [1,+00), for every
€ (a, b}, it follows that W is Cl—smooth n (0, p), with derivative

<1, forallre(0,p).

Thus, ¥ is a Lipschitz homeomorphism between [0, p| and [a, b]. Finally, using the chain rule
for coderivatives [84, Theorem 10.37], we deduce that

DS (W (r), )"
P(¥(r))

The proof is complete. O

|D* (S o W) (r,z)|" <

<1, forallre(0,p).

5.4.3 Oriented calmness

Before proceeding with the proof of Theorem we need to introduce the modulus of
oriented calmness and establish a result analogous to the Mordukhovich criterium for the
oriented modulus of the coderivative. Let us first recall that the Lipschitzian graphical mod-
ulus of S : R = R™ at t for z is defined by

Lip S(t,z) := inf{x > 0] 3¢ > 0, § > 0, such that
S(ta) N B(z,d) C S(t1) + k|ta — t1|B, for all t1,ts € (t —e,t +¢)},

where B stands for the open unit ball.

We recall that the multivalued function S has the Aubin property at t for = if and only if
Lip S(t,z) < oo. More precisely, we have the following (see [84, Theorem 9.40]).

Theorem 5.24 For every (t,x) € S such that |D*S(t,x)||t < oo it holds:

Lip S(t,a) = | D*S(t, 2)*.
Motivated by the above, we introduce the following graphical modulus.

Definition 5.25 (oriented calm modulus) Let S : R = R" be a multivalued map and (t,x) €
S. The oriented calm graphical modulus, denoted by calm'S, at t for = is defined by

calm'S(t,z) :=inf{x > 0] e > 0, 0 > 0, such that
S(t) N B(xz,0) C S(t1) + k|t — t|B for all t; € (t,t+¢)}.
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Observe that, if S is a single-valued function and calm'S(t, z) < oo, then S is calm at ¢ to the
right. More information on the notion of calmness for multivalued maps can be found in [62]
and references therein. We are now ready to give the oriented version of Theorem [5.24]

Proposition 5.26 (oriented calm vs oriented modulus) Let S : R = R"™ be a smooth sweep-
ing process, t € dom(S) \ {T} and x € S(t) such that | D*S(t,x)|" < +o00. Then

calm'S(t, x) = | D*S(t, z)|*.
Proor. Let us first notice that calm’S(¢, 2) < Lip S(t,z). We consider two cases:
Case 1: ||D*S(t,z)|t = 0.
If |D*S(t,x)||" = 0, then calm'S(t,x) = 0. If |D*S(t,x)||" > 0, then, by Lemma S
is a manifold of full dimension with boundary 0S which is a smooth manifold of dimension

n. Let us assume by contradiction that calm'S(t,z) > 0. Then, for every k € N such that
k=' < calm'S(t, z), there exists y, € S(t) N B(z, 1/k) such that
1
) B, for some t; € (¢, t + —).

yk¢5(tk)+<t;€_t 2

Set ¢y :=inf{r € (t,t+3): yp ¢ S(r)}. It is clear that (¢4, yx) € S and that yj is not right-
locally stationary for S at t;. Thus, by Proposition (¢), for every k € N and (g, vx) €
Ns(ty, yr), we have S, > 0. Since Ng(t,z) is a ray and {(tx, yx) }x — (¢,2), the continuity
of unit outer normal vectors of S on JS ensures that § > 0 whenever (3,v) € Ns(t,x).
This leads to the equality ||[D*S(t,z)|t = ||D*S(t,x)||*, which is a contradiction. Therefore,
calm'S(t, ) = 0.
Case 2: ||D*S(t,z)|" = a > 0.
In this case, we deduce from Lemma [5.11{(b) that

1D°S(t,2)1* = DS (D) = Lip 5(1,2) 2 calm’5(t,2),

By Lemma and compactness of the unit ball of R"™, there exists u € R™ with |lu|| =1
such that («,u) € Ns(t,z). Let (tx)r>1 C R be a decreasing sequence that converges to
t. Let (yr)k>1 C R™ be a sequence that satisfies y, € Proj(z, S(tx)) for each £ € N. By
compactness of the unit sphere of R"™!, up to a subsequence we deduce that

tp, — 1 —
lim (k » Yk J}') _ (ﬁ,@),
koo || (t — T yk — )|

where (f,v) belongs to the tangent space of S at (¢,xz) and S > 0. Since S is a smooth
sweeping process, it follows that

(o, u) L(5,v) yielding (u, vy = —af.
Since calm'S(t, ) < ||D*S(t, )|t < 400,  must be a strictly positive number. Therefore

o =2l _ I ol _
koo 1 —1 g g

implying that
calm'S(t,x) > o = || D*S(t,z)|*.

The proof is complete. O
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Lemma 5.27 (controlling excess of S(tg)) Let S : R = R™ be a smooth sweeping process
and [tg,t;] C dom(S). Then

ex (S(t), S()) == sup d(z, S(h)) < ( sup gm)) (11— to)

CEES(to) tE[to,tl]

and

dist(S(to), S(t1)) < < sup 80(75)> (t1 — to).

tG[to,tl]
Proor. Let us first notice that

K:= sup ¢'(t) > ||D*S(t,z)|" = calm'S(t,z), forallt € [ty,t,] and z € S(¢t).

tE(to,t1]

If K = oo, there is nothing to prove. Let K < 400 and assume, towards a contradiction,
that for some § > 0 we have

ex (S(tg), S(t1)) > (K +0)(t1 — to).
Let 7 € R be defined by
T:=1inf {t € [to, t1] : ex(S(to),S(t)) > (K +)(t —tg) }.

By Proposition and the definition of the graphical modulus calm', for each = € S(t),
there is e, > 0 and ¢, > 0 such that

0
S(to) N B(x,0,) C S(t) + (K + §)|t —to|B, forallt € [to,to+ €s).
Let £, > 0 be the supremum of all € > 0 such that:
)
x e S(t) + (K + §)|t - t0|B, for all t € [to,to + 6).

If 7 = to, then there exists a sequence (zy), C S(7) such that &,, < 1/k, for all £ > 1. Since
S(7) is compact, the sequence (zy); has some cluster point € S(7). By Proposition [5.26]
there exist ez > 0 and dz > 0 such that
J
S(to) N B(z,0z) C S(t) + (K + §)|t —to| B, for all t € [to,to + £z).

which contradicts the maximality of £,,, for k large enough. This establishes that ¢, < 7.
Proceeding in the same way, we can actually show that 7 > ¢;. Indeed, assuming 7 < {4,
and using the same argument as above (with ¢y in the place of 7) together with the triangle
inequality we get a contradiction. Therefore, for any 6 > 0 we have:

ex(S(to), S(t1)) < (K +9)(t1 — o),

which finishes the first assertion of the lemma.

For the second part, we follow the same procedure to estimate the reverse excess ex (S(t1), S(to)),
and conclude thanks to the fact that dist(S(to), S(t1)) = max{ex(S(to), S(t1)), ex(S(t1), S(to))}-
The details are left to the reader. ]

Now, we proceed with the proof of our second main result.
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5.4.4 Proof of Theorem [5.17.

We recall from Section the definition of 7 and fix a € 7. We prove (a) = (e) = (f) =
(d).

a) = e) : Let b > a such that the statements (a) to (d) of Theorem hold true, and that
the oriented talweg (' takes finite values on (a,b) (c.f. Assumption (A2)). We set

o(t) = /t S (s)ds, e (ab].

By (d) the above integral is well-defined and o is continuous with o(a) = 0. Let { (¢, ;) }iso C
S be any catching-up sequence for S. Let & > 1. We shall prove that (5.8)) holds for k. By
Proposition S is continuous on the interval [ty,#;] and by Lemma [5.19} o' is continuous
(and finite), hence Riemann integrable there. Let {sij}?:O be a partition of the interval
[ti,ti1], 1€ {0,..., k — 1}, with width

i i 1 -
jeg)l,{fl.i(ki} 8501 — 85 < N’ forallie {0,...,k—1}.

Notice that for every i € {0,...,k — 1}, we have si, = t; and s}, = t;41. We set
2 =i € S(t) and for each 7 € {0,...,k — 1} we pick zji-Jrl € Projs(sjﬂ)(zji-).

Then using triangle inequality and the fact that

|zig1 — 2| = d(z1, S(ti41))) < Hziifi - ZioH-
"
:S(s‘ki)

we deduce from Lemma [5.27 that:

ki—l ki_l
\mﬂ—@usilmﬂ—%uéii(sw wm)@ﬂrwa.

j=0 j=0 \F€ls)s)1q]

Taking the limit as N tends to infinity, we obtain that

tit1
H%H—mns/’ o1(s)ds
t;

and consequently,
123
to

Z |z — || < / Ol (t)dt = o(ty,) — o(to).

e) = f) : It follows directly by taking M = o(b).

f) = d) : Let b > a and M > 0 be given by statement (f). By (A2)-(A3), shrinking b if
necessary, we may assume that ¢'(t) < oo, for all t € (a,b) and 9S is continuous on (a,b).
Notice that for any compact interval [c,d] C (a,b), the function ¢ is continuous and finite
on [c,d], therefore Riemann integrable. We shall prove that its integral is bounded by M
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(independently of the values of ¢ and d).

To this end, let tyg € [¢,d] and N € N. By compactness, there exists z € S(ty) such
that [|[D*S(to, z)|T = ¢'(to). If ¢'(to) < %, we set t; := min{ty + +,d}, zo = = and
Yo € Projg,)(wo). Observe that

|zo — ol = 0> (t1 — to) (g&T(to) — %) .

If ¢(t) > +, by Proposition since calm'S(t,z) = ¢'(t), there are o € S(t,) and
t1 € (to, min{to + +,b}) such that any yo € Projg,)(zo) satisfies

20 — yoll > (t1 — to) (w(m) - %) .

Using transfinite induction we obtain an increasing net {¢y}<a C [c, d] indexed over a ordinal
A, such that tg = ¢, ty =d, 0 < tyy1 —ty < 1/N for all A < A, and for any limit ordinal
a < A, t, :=sup{ty: A < a}. Also, we get a net {(z,,yx)}r<a such that y, € Projs(tMl)(:ﬁ,\)
and

1
lzx — yall > (Eag1 — ) ((pT(tA) — N) , for all A < A.

Observe that, since the intervals (¢, t)11)x<a are pairwise disjoint and they intersect Q, A is
a countable ordinal. For every finite subset /' C A we have

d—c
D lles—wall =D (b — )" (8) — N

AEF AEF

Since {(tx, ), (tr,yr) : A € F'} is a subsequence of a piecewise catching-up sequence for S,
taking the supremum over all finite families F' of A we get

d—c
M > ey =yl =D (b — 02! (8) — N
A<A A<A

Taking the limit as N goes to infinity we obtain:

d
M > / @' (t)dt.
Since the above inequality is independent of the interval [c, d], we deduce that ¢ is integrable
on (a,b). O
5.5 A non-desingularizable smooth sweeping process

In Section we state a characterization of the (5.7)-inequality for smooth sweeping pro-
cesses by assuming assumptions (Al), (A2) and (A3). In this last section, we provide a
smooth sweeping process S : R = R which cannot be desingularized at 0 in the sense of
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inequality (5.7)), i. e. there are no 1, d, > 0 and ¥ : (0,6;) — (0, d2) diffeomorphism, with
U'(t) > 0 for all t € (0,0;), such that

|D*SoW(t,z)|" <1, forallt € (0,d,), z € S(V()).

In order to start the construction, let b : R — R be any positive C*°-smooth function such
that b(0) = 1 and supp(b) C [—1,1]. Let f: R — R be the function defined by:

> 1
f(z) = Z 2 n(n+2)y (2”” (m — 27)) , for all z € R. (5.9)
n=1

Observe that the previous series is well defined because, for each z € R, at most one term is
different from zero. In what follows, let us summarize some properties of f.

Fact 5.28 Let f : R — R be the function constructed in (5.9). Then, f is non-negative
and C*-smooth. Also, supp(f) C [0,5/8]. Moreover, for each n € N, there is a non-trivial
interval J, C [27"71 27" such that f|;, = 0.

Proor. By construction, the function f is non-negative. On the other hand, for k € N, we
have that the k-th derivative of f is

= 1
FW(z) = 22y (2”“ (x — 27)) , for all z € R.

n=1
The last fact is satisfied by choosing J,, := 27"73[5, 6]. O

Now, let us consider the curve 7; : [—1,1] — R? defined by

(t) = (/_tlf(s)ds, —t) for all t € [—1,1].

Let M := [ f(s)ds and let 7, : [0, M] — R? be the curve defined by 75(t) = (£, —3).

Let D C R? be the closed bounded region delimited by gph(v1), gph(72), {0} x [=3,1] and
{M} x [-3,—1]. Let S : R =2 R be any smooth sweeping process such that

gph(Slp.an) :=D.

Proposition 5.29 The multivalued map S : R = R constructed above is a smooth sweeping
process such that it cannot be desingularized at 0 in the sense of inequality (5.7)). In particular,
it does not satisfy assumptions (A2) and (A3) at 0.

Proor. Let us denote by O the origin of R?. The proposition easily follows from the fact that
the multivalued map S is decreasing on [0, M], O € dgph(S) and the set dgph(S) contains
infinitely many vertical line segments on (0, 1) which accumulates at O. O
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Chapter 6

AML functions in two dimensional spaces

In this final chapter we focus our study on the regularity of real-valued Lipschitz functions.
We study absolutely minimizing Lipschitz functions (AML for short) defined in two dimen-
sional normed spaces. The main contribution of this chapter is the characterization of the
Cl-smoothness of AML functions in terms of the smoothness of the underlying norm. A
more general result was obtained by F. Peng, C. Wang and Y. Zhou in [77], published in the
early 2021. This work is discussed in the introduction of the chapter.

6.1 Introduction

Let n > 2 and 2 C R™ be a nonempty, open and connected set, where R™ is equipped
with an euclidean norm. Aronsson in [6] studied the class of C?-smooth infinite-harmonic
functions defined on €). That is, classical solutions u : 2 — R of the equation given by the
infinity-Laplacian, i.e.

Aol := Z Ug; Uy, Uy, = 0 (ooL))
i,j=1
We shall see below that solving the infinity-Laplacian is related to the following optimal
Lipschitz extension problem: let g : 92 — R be a continuous function. Find a function
u : 0 — R such that g = u|sq and that, for every open set V compactly contained in € and
for every function h : V — R such that u|ay = hlsv, the following estimate holds:

Lip(ul) < Lip(h[y).

The above problem leads to the following definition.

Definition 6.1 Let (X, || ||) be a finite dimensional Banach space and let 2 be a nonempty
open subset of X. We say that a locally Lipschitz function u : @ C X — Risa | - |-
absolute minimizing Lipschitz function (|| - ||-AML function for short), if for every open set
V' compactly contained in Q0 and for every function g : V — R such that ulgy = glav, the
following estimate holds:

Lip(uly) < Lip(gly)-

If no confusion arises from the underlying norm on X, we just say AML functions.
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Let us now present some results in the euclidean setting. Aronsson showed that C2-smooth
infinity-harmonic functions coincide with C?-smooth AML functions, see [6]. Jensen proved
that functions which are solutions of equation in the viscosity sense are exactly the
AML functions. Further, Jensen proved the existence and uniqueness of a viscosity solution
of the Cauchy problem given by Equation and a continuous boundary condition, see
[64]. A link between this theory and the stochastic Tug-of-war game theory is presented in
[78].

The regularity of AML functions is one of the main issue in this field. In the seminal paper
[87], O. Savin proved that planar || - ||--AML functions are continuously differentiable, that
is, AML functions defined on open subsets of (R?, || - ||2) are C'-smooth. L. Evans and C.

Smart proved that planar || - |[;-AML functions are C*-smooth for some o > 0, see [48].
Also, provided with tools from capacity theory, in [95] we can find an alternative proof of
the smoothness of planar || - ||;-AML functions. Further results assert that AML functions

in (finite dimensional) euclidean spaces are at least everywhere differentiable, see [49] [50].
However, the continuity of the differential remains an open question in higher dimensions.

The main question we address here is the following.

Question 6.2 If (X, |- ||) is a finite dimensional normed space, which property of the norm
guarantees the smoothness of all || - ||-AML functions defined on open subsets of X ?

In order to continue, let us recall that B,(x¢) and B, stand for the open ball of radius r
centered at xp and at the origin respectively. We also need the following definitions. Let
u:Q C X — R bean AML function and let x € Q. For r € (0, dist(x,0)), we set

S(z,r)t =S, (z,r)" = |ﬁl§firw'

By Corollary [6.12]
S(x) = Su(z) == hII(l) S(z,r)" exists and 0< S(x) < ST(z, 7).

Our main results read as follows:

Theorem 6.3 Let X be a finite dimensional Banach space with differentiable norm and let
Q be a nonempty open subset of X. Let u:Q C X — R be an AML function. Then for each
x € Q and r < dist(x, 0Q), there exists a vector e}, . € X*, with ||} .|| = S(x), such that

x

lu(y) —u(z) —e; . (y — z)|
max —0asr — 0.
yeB,(z) r

Observe that, thanks to Theorem [6.3] in order to prove that an || - [|~FAML-function is dif-
ferentiable at some x € (2, it is enough to prove that the net (e} ), converges as 7 tends to
0. A nice example given by D. Preiss (mentioned in [39, [77]) shows that there is a Lipschitz

115



function from R to R which is non-differentiable at 0, but with a net of linear maps (ef ),
satisfying the conclusion of Theorem However, the convergence of the mentioned net,
and moreover the continuity of the differential, is guaranteed by the following theorems.

Theorem 6.4 Let X be a 2-dimensional normed space with differentiable norm. There exists
a function 6 : (0,00) — (0,00) satisfying the following property: Given an AML function
u: By C X — R such that S(0) # 0 and € > 0, if there exists e; € X* such that

sup |u(z) —ej(z)| < 6(e)lle]],

reBy

then lim sup ||eg,. — e7|| < elley]|.
r—0

Theorem 6.5 Let X be a 2 dimensional Banach space. The following statements are equiv-
alent.

a) The underlying norm is differentiable in X \ {0}.
b) Each AML function defined on an open subset of X is continuously differentiable.
¢) Each AML function defined on an open subset of X is everywhere differentiable.

The proof of Theorem [6.5] relies on Theorem [6.3] and Theorem [6.4]

Proor oF TueoreM 6.5 The implication from b) to ¢) is trivial and the implication from c)
to a) is given by Corollary [6.17] which asserts that the underlying norm of X, restricted to
X \ {0}, is an AML function. So, we only have to prove that a) implies b).

Let u : © € X — R be an AML function. Let zy € €). Let us first prove that u is
differentiable at x(. Since we are only interested by the differentiability of u, replacing if
necessary u by Ru(=2) — u(xo) for some R > 0, we can assume that 2o = 0, u(0) = 0 and
B, C Q. By Theorem there exists (e}), C X* such that |[e}| = S(0) for every r < 1 and

lu(z) —e*(z)| < ro(r), for all x € B,,

where o : R, — R is a positive function such that o(r) tends to 0 as r tends to 0. If S(0) =
then ef = 0 for all » > 0, so u is differentiable at 0, «'(0) = 0 and |[«/(0)|| = S(0). We now
assume S(0) > 0. Let us prove that e} converges as r tends to 0. Let € > 0. We fix s = s(¢)
such that o(s) < d(¢)S(0). The functlon v := Lu(s-) is well defined on B; and, for all 2 € By,
we have |[v(z) — e (z)] < d(e)|leX]|- Accordlng to Theorem [6.4) applied to the function v, we
get

limsup [lef — e < eles]l.
T—r

If ¢ is any accumulation point of (e:(s))g, the above inequality implies that for every ¢ > 0,
limsup |le; — ¢|| < 5(0).
r—0
We have proved that (ef), converges to £. Therefore, u is differentiable at 0 and «'(0) = ¢.

Moreover, since ||ef|| = S(0) for all r, we have that ||u'(0)|| = S(0). Using again Theorem
we get :

116



Claim. If u is any AML function defined on_El such that S(0) > 0, e} is a non zero linear
functional and |u(z) — ef(x)| < d(¢)|lef|| on By, then ||[u/(0) — ef|| = lim,, |l — || < e.

Let us now check the continuity of «’. If S(0) > 0, fix ¢ > 0 and denote § = (¢). Let
0 < 7y < dist(0,09) such that, for all 7 < 1o, o(r) < 46()S(0)/2. Fix r < ro. The function
v(-) = u(r-)/r restricted to By satisfies
0 ) —
lv(z) —e)(x)] < 55(0) = §||eﬂ| for all z € B;.

By the above claim, we obtain that [|u/(0) — e}|| < ellej||. Let y € Byjp. If w: By — R is
defined by w(-) := 2(u(% - +y) — €;(y)), we have |w(z) — e(z)| < 6|e;|| on B;. The above
claim shows that ||w'(0) — ef|| = ||v/(y) — €| < ¢]|ef||, and hence, ||u/(0) — /(y)| < 225(0).
This proves the continuity of u’ at 0.

Let us prove the continuity of «’ in the case S(0) = 0. Let us fix ¢ > 0. By definition of
S(0), there exists 0 < r < dist(0,99) such that S(0,r)" < e. By the continuity of S(-, )",
S(xz,r)" < e in a neighbourhood W of 0. Finally, ||/(z)| = S(z) < S(z,7)" < ¢ for all
reW.

]

Furthermore, as a consequence of Theorem we obtain the following two corollaries. The
proofs of these results are given in Section [6.5]

Corollary 6.6 Let X be a two dimensional normed space with differentiable norm. There
exists a function p : [0,1] — R, satisfying limy o p(t) = 0, such that for any AML function
u: By — R, with Lip(u) < 1, the following inequality holds:

I/ () = ' ()]l < p(lle = yll), for all z,y € Byys.

As a consequence of Corollary [6.6] we obtain

Corollary 6.7 Let X be a two dimensional normed space. The underlying norm on X 1is
differentiable if and only if every AML function v : X — R with a linear growth at infinity,
1. e.

u(z)] < CA+[lz]]), Vo e X,

for some C' >0, is an affine function.

F. Peng, C. Wang and Y. Zhou, in [77], follow a different approach to study AML functions
which encompasses Question In the mention paper, it is considered as underlying space
an n-dimensional euclidean space (R™, || - ||2) and a convex Hamiltonian formulation of the
AML-property. More precisely, let H : R" — R be a coercive, convex function. It is said
that a locally Lipschitz function u : 2 C R — R is an AMpy function if for any nonempty
open set V, compactly contained in €, and for any Lipschitz function g : V' — R such that
uloy = glov, the following estimate holds:

ess sup(H (i|y)) < esssup(H(g')).
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Observe that previous essential suprema are well defined thanks to the Rademacher Theo-
rem. Indeed, this theorem assert that any locally Lipschitz function defined on a nonempty
open subset of R™ is differentiable almost everywhere.

Let H : R®™ — R be a norm on R™. Then a locally Lipschitz function v : € R* — R
is AMy if and only if uw is || - ||[FAML, where H can be seen as the canonical dual norm of
|| - |- Therefore, Question can be generalized in the following sense: Which properties on
the convex Hamiltonian H guarantees the smoothness of all AMy functions defined on open
subsets of R™?

The main results of [77] read as follow:

Theorem 6.8 [77, Theorem 1.1] Let n > 2 and let H : R" — R be a conver and coercive
function such that the level set H'({c}) does not contain any line segment for any c € R.
Then, for any u € AMy(QQ), with Q C R"™ a nonempty open set, any v € Q0 and any null
sequence (1;); C Ry, there is a subsequence (1, )i and a vector e € R™ such that

max ‘U<y)_u(x>—e(y—$)|_>0 CLS]C-)OO,

yEETik (z) rik

where H(e) = lim,_gesssup(||v' ()| : v € B,(x)).

Theorem 6.9 [77, Theorem 1.2] Let H : R? — R be a convexr and coercive conver function
such that the level set H=1({c}) does not contain any line segment for any ¢ € R. Then, for
any Q C R? nonempty open set and u € AMy (), u is Ct-smooth. Moreover, if Q = R? and
u € AMy(R?) has a linear growth at infinity, then u is a linear function in R

Even though the results of [77] can be applied to general normed spaces by setting H as the
desired norm, the technique used to obtain these theorems relies on the euclidean structure
of the ambient space R?. A notable difference between our approach and the one presented
in [77)] is the fact that in the mentioned work they avoid dealing with positively homogeneous
convex functions while we work directly with them, see |77, point 2) in Section 1.1]. Also,
probably since we deal only with norms and not with general convex, coercive functions as

in [77], our proofs of Theorem [6.3| and Theorem [6.5| are shorter.

This chapter is organized as follows: In the next section we present some basic results of
AML functions, several examples to motivate Question and we introduce two moduli for
the norm which turn to be important tools to prove Theorem Section [6.3] is devoted to
Theorem In Section [6.4] we prove Theorem We end this chapter with the proofs of

Corollary and Corollary [6.7]

Notations: For two functions u,v : Q@ C X — R, we denote by [u < v] the set {z €
Q: wu(x) <wv(x)} For two sets V., C X, we write V' CC Q whenever V' is compactly
contained in €.
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6.2 Properties of AML functions and two dimensional
spaces

This section is divided in three parts: we summarize some results of AML functions that are
common in the literature, we give some examples to motivate our results and we introduce
two modulus of the norm which will be used to prove Theorem In the sequel, X denotes
a finite dimensional real normed space and {2 a nonempty open subset of X.

6.2.1 Comparison with cones

The following geometric property is the main tool to work with AML functions.

Definition 6.10 Let u : Q@ C X — R be a continuous function. We say that u satisfies
comparison with cones from above if for every bounded open set V CC QQ, every xo € X and
every a,b € R for which

u(z) < C(x) := a+bljz — x|

holds in O(V \{zo}), then u < C in 'V as well. Analogously, we define comparison with cones
from below. A function satisfies comparison with cones if it satisfies comparison with cones
it from above and below.

In fact, the property of comparison with cones characterizes AML functions.

Proposition 6.11 [7, Proposition 2.1][31, Theorem 6.4] Let u : 2 C X — R be a continuous
function. Then u enjoys comparisons with cones if and only if it is AML.

The next result is a consequence of Proposition [6.11] Tts proof follows without changes from
its euclidean counterpart found in [40].

Corollary 6.12 [/0, Lemma 2.4 & Lemma 2.7 (i)] Let u : Q@ C X — R be an AML function.
Then, for r < dist(z, 0R), the quantities:

S+(Q(j’ 7’) ‘— mmax M and S*(x’ 7,,) ‘— —  1nin U,(y) - U(I’)
yE€IBy () r yEIBy(z) r

are non negative. Moreover, for all x € ), the functions ST(x,-) and S™(z,-) are non
decreasing in r and

lim S*(z,r) = lim S~ (xz, 7).

r—0 r—0

If we denote by S(x) = S,(x) the common limit, we have

S(z) = lim sup M
’I'—}OyGBT(x) T

Notice that, since AML functions defined on open sets are locally Lipschitz, for any » > 0,
the functions S*(-,7) and S™(-,7) are continuous in {z € Q : dist(z, Q) > r}.
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Corollary 6.13 Let u: ) C X — R be an AML function and let R > 0 such that Bgr C .
Assume that v = ¢} on B, where ¢ € X* and e # 0. If ||xo|| = R, then S(zo) > 0.

PROOF. Since_ER C (, there exists y € 9B; and t > 0 such that the segment [zg, xo + ty] is
included in By and €j(y) # 0. If ej(y) > 0,

u(z) — u(zo) ulro +ry) —ulro) _ .

S(x(]) Tl—r>I(1) xeng%:éo) r B Tl_I)I(l) T eo(y> >0
On the other hand, if ef(y) < 0,
S(rg) = —lim min u(@) = ulzo) > —lim uzo +ry) = ulo) = —ep(y) > 0.
r—0 x€0Br(x0) T r—0 T

]

Corollary 6.14 Let u: Q C X — R be an AML function. Assume that there exist x € (Q,
W C Q neighborhood of x and a function f : W — R satisfying w < f in W. Then,
S(z) < Lip(f) in the following cases:

1. f() =u(z) + || - —z| for some ¢ >0, or
2. f is an affine function on W and f(z) = u(z) .

Proor. Both cases follow directly by computing S(z) in terms of S(z,-)*.

6.2.2 Examples of AML functions

Albeit simple, the following proposition will allow us to provide several examples of AML
functions.

Proposition 6.15 Let u: Q2 C X — R be a Lipschitz function. Assume that for every open
set V.CC Q and for each x € V, there exist x1,15 € OV, with the open segment (x1,xs)
included in V', such that x € (v1,%2) and uljz, 4, @5 an affine function with slope equal to
Lip(u). Then u is AML.

Proor. If Lip(u) = 0, the conclusion follows trivially. So, we assume that Lip(u) > 0. Let
V cC Q be a bounded open set. Let g : V — R be a function such that g and u coincide
in V. If g # u, without loss of generality there exists x € V such that g(z) > u(z). Let
x1, 2 € OV be two vectors such that = € (x1,22) C V, u|f, 2, is an affine function of slope
Lip(u) and u(z2) > u(x) > u(xy). Then, we get

go(r) — glw) _ ula) — ula)

= Lip(u).
[ = ]| [ = 1]

Lip(g) >

Therefore, v is an AML function.
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Corollary 6.16 Let P : R® — R and Q : R® — R"! be the projections onto the first
coordinate and onto the last n — 1 coordinates respectively. Let u : (R™|| - |l1) — R be a
function defined by u(z) = P(x) + g o Q(x), where g : (R™ 1| - |l1) — R is a 1-Lipschitz
function. Then, u is AML.

Proor. It is enough to apply Proposition [6.15 at segments included in lines of the form
r + Req, with x € R™.

]

Corollary 6.17 Let C C X be a closed convex set. Then, the function u : X\ C — R defined
by u(x) = dist(z, C) is AML. In particular, the restriction of the norm || - || to X \ {0} is
|- ||-AML.

Proor. Let x € X \ C and let y, € C be one projection of x to C. That is, ||z — y.| =
min{||z — z|| : z € C}. It is enough to apply Proposition [6.15] at segments included in
half-lines of the form y, + Ry (z — y,), with z € X \ C.

O

Corollary 6.18 Let X be a finite dimensional normed space with non-differentiable norm.
Then there exists a || - ||-FAML function u : X — R such that u(z) < ||z|| for all x € X and
u s not everywhere differentiable.

Proor. Since the norm is not differentiable, we can find a norm one vector z € X and two
distinct functionals, u},us € X* of norm 1 such that uj(z) = uj(z) = 1. The function
w:=max{uj,us} : X — R is not differentiable in the whole line Rz and satisfies u(z) < ||z|
for all x € X. To see that u is AML, it is enough to apply Proposition at segments
included in lines of the form x + Rz, with z € X.

O
Our final example shows that the set of smooth AML functions depends on the underlying

norm.

Proposition 6.19 Let p > 2. The function u : R*\ {0} = R defined by u(z,y) = ||(z, )|,
is || - lp-AML but not || - ||2-AML.

Proor. By Corollary [6.17], we already know that w is || - | ,-AML. Let us prove the second part
of the proposition. Since p > 2, u is a C? function. Then, u is || - ||--AML only if Au =0
in the classical sense. However, A, u((1/3)Y/?,(2/3)'/P) = 374%12(]) -1+ 22h — 22*%),
which is 0 only if p = 2.

[

6.2.3 The moduli a and p
For z* € X* with ||z*|| = 1, the face of the unit ball defined by z* is the set

Fp. :=[z* = 1]N By,
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and for § > 0, the slice of the closed unit ball defined by z* and of depth [ is the set
S(x*,B) = [z*>1-p]NB;
For z* € X* with ||z*|| = 1 and o > 0, we consider the following union of faces
H(a*,a) = | (B o 10 —a")| < a, |0°] =1} C 0By,
For z* € X*\ {0}, we define H(z*, «) := H(x*/||z*||, ). The set H(z*, «) is a compact
subset of X*. Now, we define, for x* unit vector of X* and § > 0,
alz*, ) :=sup{a € R: H(z",a) C S(z*,5)},

and «of) = inf{a(z*,B) : ||z*|| = 1}. Also, for z* € X*, with ||z*|| = 1, and ¢ > 0 we
define

p(z*,0) :=sup{p: S(z*,p)NIB; C H(z",0)},
and p(o) := inf{p(z*, o) : |z*|| = 1}.

Let us present two examples: If X is an euclidean space, then a(z*, 8) = (23)/? for every
unit vector z* and 8 € (0,2). If X = (R?,| - ||) and z* is the unit linear map defined by
x*((x1,22)) = x1, then a(z*, f) = 2 for every 5 > 0. The next proposition generalizes the
first example.

Proposition 6.20 Let X be a finite dimensional normed space with differentiable norm.
Then, for any unilt vector z* € X*, éin% a(z*, B) = 0. In particular, [lgirré a(B) = 0.
— —

Proor. Let z* € X* of norm one and let ¢ > 0. Let y* € X* such that ||z* — y*|| = € and
|ly*|| = 1. Since X is a finite dimensional normed space, Fy« is compact. Moreover, since
the norm is differentiable, F,« N F~ = (). By continuity of * and compactness of F«, there
exists ¢ > 0 such that
max{z*(y): ye Fp}=1—c
Thus, if § < ¢, Fy» ¢ S(z*, 8), and since Fy» C H(z*, ¢), we get
H(z",e) ¢ S(z*, B).

Thus, a(z*, ) < e whenever 8 < c.

The following propositions will be used in the proof of Theorem [6.4]

Proposition 6.21 Let X be a finite dimensional normed. Then, o(B) > B > 0 for every
g > 0.

Proof. Let z* y* € X* be unit linear functionals such that ||z* — y*|| < 8. Then,

(y) =y (y) + (" —y")(y) > 1 -3, for all y € Fs.
Thus, F,» C S(z*, 3) and therefore, a(z*, 5) > .
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Proposition 6.22 Let X be a finite dimensional normed space with differentiable norm.
For any o > 0, p(o) > 0. Therefore, for any unit vector x* € X*, and for any unit vector
re X\ H(z* o), z(x) <1—p(co) holds.

Proor. Let o > 0. Notice that, if o > 2, there is nothing to prove since H(z*,0) = 0B; for
any ||z*|] = 1. So, we assume that o < 2. Let 2* € X* with ||z*| = 1.

Step 1: p(z*,0) > 0. Let us define
G = JF Iyl =1 and [|l2* — y*| > o}.

Clearly, G is a compact set which depends on z* and o. Since X has differentiable norm, we
have that F,- N G = (). Therefore, there exists p > 0 such that

max{z*(h): he G} :=1—p.

Thus, p(z*,0) > p > 0.

Step 2: For any z* € X* unit linear functional, there exists 0 > 0 and ¢ > 0 such that
p(y*,0) > ¢ for all y* such that ||y* — z*|| < 0 and ||y*|| = 1.
Indeed, let z* € X* with ||z*|| = 1. Let e € (0,0). By step 1, we know that p := p(z*,0—¢) >
0 and that S(z*,5) N 9B, C H(z*,0 — ¢) whenever § < p. Define 6 := min{p/2,e}. If
|z* —y*|| <6, with ||y*|| = 1, and if 8 = p/2 + ||z* — y*||, we get that
S(y*, p/2)NOBy C S(z*,8)NOBy C H(z*,0 —¢e) C H(y",0).

Therefore,

p(y*,o) > g >0, whenever ||z* —y*|| <.

Step 3: p(o) > 0. Since X is finite dimensional, the conclusion follows directly from the
compactness of the unit sphere of X* and step 2.

]

6.3 Proof of Theorem (6.3

To prove Theorem 6.3} we mainly follow the ideas of [39] where we can find the proof of the
theorem whenever X is an euclidean space. Let us start with some geometric facts which
allow us to avoid the euclidean arguments used in the mentioned work. We point out that
Proposition and Proposition hold true in general Banach spaces.

Proposition 6.23 Let X be a normed space. Let x € OBy and let V = 0By NOBy(x). Then
for all y € V, the segment [—x,y| is contained in V.
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Proor. Let y € V. Since B, C By(x), there exists a closed hyperplane [f* = 1] which is
tangent at y to both B; and By(z) simultaneously. Observe that this implies that || f*]| = 1,
f*(y) =1, |ly]| = 1 and f*(y — x) = 2. Hence, we conclude that f*(—z) = 1. Now, let
z € [—x,y|. Therefore, there is A\ € [0,1] such that z = A(—z) + (1 — A\)y. By triangular
inequality, we obtain that ||z]| < 1 and ||z — || < 2. By linearity of f*, we get that f*(z) =1
and f*(z — x) = 2. Therefore, z € V.

[]

Remark 6.24 In Proposition[6.23, if X has a differentiable norm, then f* is unique. Indeed,
it must be the support functional of —x. Therefore, V is contained in [f* = 1].

Before stating the next proposition, we recall that in finite dimensional normed spaces the
notions of Gateaux differentiability and Fréchet differentiability coincide for convex functions.
Therefore, Proposition [6.25] can be used, for instance, in finite dimensional normed spaces
with differentiable norm.

Proposition 6.25 Let X be a Banach space. Let u™,u~ € Sx such that the norm is Gdteaux
differentiable at u™ and u~ with differential u* and —u* respectively. Let f : X — R be a
1-Lipschitz function such that f(tu™) =t and f(tu™) = —t for all t > 0. Then f = u*.

Proor. First case: Let us start with v € ker(u*). By the differentiability of the norm,
there exists a sequence (g,), C R™ which tends to 0 as n tends to infinity and such that the
following expression

max{|[lnu™ — v|| — [lnu™ |, [[lnu” — vl = [[nu” |||} < en

holds true for all n € N. Now, if n is large enough, n > f(v) and then

flwt) = f(v) _ n— ()

1>
lnut —o|| — n+e,

?

this implies f(v) > —g, for all n large. Thus, f(v) > 0. For the reverse inequality, observe

that
|[f(nu”) = f)| _ n+ flv)

|lnu=—v|| T n+e,

1>

I

holds true for all n > 0. Finally, we arrive to f(v) < ¢,, for all n > 0. Therefore f(v) <0,
implying that f(v) = 0.

Second case: Let v € X \ ker(u*). Without loss of generality, assume that u*(v) = a > 0.
Let us consider the function g : X — R defined by g(z) = f(z + au™) — a. Clearly, g is a
1-Lipschitz function such that g(tut) =t for all £ > 0. We claim that g(tu~) = —t for all
t > 0. Indeed, let us fix ¢ > 0. For s > 0, we have that v*(—au’ + su™) = —a — s. Thus,
| —au® +su”|| = a+s. Also, since g(0) =0, g(—au™ + su~) = —a— s and g is 1-Lipschitz,
g must be linear along the segment [0, —au™ + su™], i.e.

g A (—au™ +su7)) = —Aa+s),Y\ € [0,1],Vs > 0.

124



If s > t, we can set A = t/s. Using the continuity of g, sending s to infinity, we get that
g(tu™) = —t. Finally, the function g satisfies the hypothesis to apply the first case at the
vector v — au® € ker(u*). Hence, we get that g(v — au™) = 0. Thus, by definition of g,
f(v) = a, finishing the proof.

O

The following corollary directly follows from Proposition In fact, this result is obtained
in [39] whenever X is an euclidean space.

Corollary 6.26 Let X be a Banach space. Let uw € 0By such that the norm is Gateaux
differentiable at u with differential u*. Let f : X — R be a 1-Lipschitz function such that
f(tu) =t for allt € R. Then f = u*.

Let us continue with the following lemma.

Lemma 6.27 Let X be a finite dimensional Banach space and let ) be a nonempty open
subset of X. Let u : Q C X — R be an AML function and let x € ). Then, the following
assertions are equivalent:

i) For each r € (0,dist(x,09)), there exists a vector (e},.), C X*, with [le} || = S(z),
such that
u(y) — —ek (y—
I e R B
y€Br(z) r

ii) For any decreasing sequence (r;);, convergent to 0, there are a subsequence (7j))r and
e* € X*, with |e*|| = S(x), such that

max [uly) — u(x) — ey — o) — 0 as k — oo.

yeBy, ) () (k)

Proor. i) = ii). This is due to the compactness of closed bounded subsets of X*.

ii) = i). Reasoning by contradiction, if i) does not hold true, then there are ¢ > 0 and a
sequence (r;);, convergent to 0, such that

lu(y) — u(z) —e"(y — )|

max > ¢ forall j €N, forall e* € X*, ||e*]| = S(z).
yEB’f“]‘ (I) rj
This clearly contradicts statement ii). ]

Now, we can provide the proof of Theorem

Proor oF TuroreM 6.3l Let x € Q. We prove Lemma ii). Let (r;); C R* be a sequence
which converges to 0. For each j € N, let us define v; : rj_l(Q — ) — R* by

u(r +rjy) — u(w)

T

vi(y) =
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For each compact subset K of X, the functions v; are well defined on K for j large enough.
Since u is a locally Lipschitz function, (v;);|x form an equi-Lipschitz family vanishing at 0.
So by Arzela-Ascoli Theorem, up to a subsequence, we can assume that the sequence (v;)
converges uniformly on compact subsets of X towards a Lipschitz function v vanishing at 0.
i.e. v(y) = lim; v;(y) for any y € X. If v linear, then we can take e* = v.

So, to prove Theorem it remains to show that v is necessary linear. Let S(x) be computed
with the function u (see Corollary [6.12]). Since a locally uniform limit of functions satisfying
comparison with cones satisfies comparisons with cones, we can apply Corollary on v as
well. From now on, we define the quantities

v(z) —v(y)

v(z) —v(y) _ .
Lt = == 2 and L = — =
(yr)i= max ————— and L7(y,r):= = min ————=

for y € X and r > 0. Also, we define the corresponding values

L+(y) = lim L+(y, r) and L (y)=lim L (y,7),

r—0 r—0

where L(y) = L (y) = L™ (y), by Corollary

Proposition 6.28 Assume that max{L (y,r),L"(y,r)} < S(x) for all > 0 and for all
y € X. Further, assume that L*(0) = S(x) = L=(0). Then v is linear.

Proor. The first assumption implies that Lip(v) < S(x). Thanks to the monotonicity of
L*(0, ) (see Corollary and the second assumption of the statement, we get that S(z) <
min{L~(0,r), L7 (0,r)}, and therefore, S(x) = L*(0,7) = L(0,r). Further, this implies
that Lip(v) > S(x), and then Lip(v) = S(x). By continuity of v and compactness of closed
bounded sets, let 2z, z~ € 0B, be such that

rTr

Lo(0.r) = L2 0(0) _ vl

Therefore:

L(0,7) = L™(0,r) = S(z) = %_)

Observe that the function v is an S(z)-Lipschitz function such that

o(zh) —v(z;) = 28(@)r < S(@)llzF - = . (6.1)

T

Since 2,7,z € 0B, ||z — 2 || < 2r, and together with (6.1]), we get that ||z —z || = 2r and

that v is an affine function on [z, zF]. Moreover, since v(0) = 0, we have that v(z}) = S(x)r
and v(z,) = =S(x)r.

Let u* € X* be the norm one linear functional such that u*(z;") = 1. By Proposition [6.23]and
Remark|[6.24] we deduce that u*(z;) = —1. Indeed, if u*(z;) < —1, then z; ¢ 0B1NIBy(2]").
Thus, ||2;7 — 27 || < 2, which contradicts the fact that Lip(v) = S(x). Let r > 1. Let us
show that u*(z;5) = r. Indeed, since v(0) = 0, v(z") = S(x)r and v is S(z)-Lipschitz, v must
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be linear along the segment [0, z|. Therefore, the vector 2,7 /||z|| may take the place of 2
because v(z,} /|| z1]]) = S(z). If u*(z) < r, then u*(z/||zF]) < 1. By Proposition and
Remark we get that

‘ .

which contradicts the fact that Lip(v) = S(z). As a direct consequence of u*(z;) = r we get
that u*(z,) = —r.

+
_ 2

—— <2
N ’

Since X is a finite dimensional space, there exist a sequence (r(n)), C R™ which goes to
infinity and two vectors ¢*, ¢~ € 0B; such that

-
z
lim ;(n) = ¢ .
n=oo || 270 |
Clearly u*(¢") = 1 and u*(¢~) = —1. As a consequence of the continuity of v and its linear

behavior along the lines [0, z;“(n)], with slope S(z), we get that v(tg™) = tS(x) for all t > 0.
Analogously, we get that v(tq~) = —tS(z). Finally, applying Proposition [6.25, we conclude
that v = S(z)u*. O

To finish the proof of Theorem [6.3] it remains to prove the hypothesis of Proposition [6.28]
We point out that the this part of the proof follows as in the proof given in [39], where X is
an euclidean space.

To this end, let us start with the case of the superscript +. Let y € X and z € 9B,(y) such

that

v(z) —v(y) u(rjz +x) —u(rjy + x)

LT = = i . 6.2
(,7) . Jim o (6.2)

Since 7z € 0B,,,(r;y) we get that
ulryz + @) = ulryy + ) < St(rjy+a,ryr) < St (rjy +x, R), (6.3)

’f’j’l“

for r;r < R < dist(r;y + =, 0U). Notice that in (6.3)), the first and second inequality are due
to the definition of S and to Corollary respectively. Combining (6.2)), (6.3) and using
the continuity of the function S*(-, R), we get that

L*(y,r) < lim S*(rjy +x, R) < S*(z, R).
j—00

Finally, sending R to 0 we obtain that L™ (y,r) < S(z). To prove the second hypothesis, let
us consider y = 0. Then, we compute

L*(0,7r) = max v(2) = max lim ulryz+ @) = u(:z:)
2€0B, T 2€0B, j—0o0 ;T

By compactness of 0B, and continuity of u, for each j there exists z; € 0B, satisfying

u(rjz; + o) = max u(rjz + ).
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Let us consider any cluster point Z of (z;); C 0B,. Let (j(n)) be a subsequence such that
Zj(n) — Z. Using the fact that v is Lipschitz in a neighborhood of x, we prove that

u(rjmz +x) — u(z) uw(rjmz + ) — u(w)

L*(0,7) > lim = lim max
n—00 Ti(m)T n—00 z€0B, Tin)T
= lim S*(z,rjmr) = S(x).
n—oo

Therefore, sending r to 0 we get that L*(0) > S(x). Thus, L*T(0) = S(x). The case with
superscript — is analogous. This ends the proof of Theorem [6.3

]

6.4 Proof of Theorem

O. Savin, in [87], proved that every planar AML function is continuously differentiable when-
ever the underlying space is endowed with an euclidean norm. In the sequel, we generalize
the technique developed in the mentioned paper to prove Theorem For the sake of com-
pleteness, we provide the proofs of Proposition [6.29] and Lemma [6.32] which follow without
significant changes from the work [87].

From now on, X denotes a 2 dimensional Banach space equipped with a differentiable norm.
The proof of Theorem [6.4] uses Theorem [6.3] and the following two propositions.

Proposition 6.29 [87, Lemma 1] Let u : Q@ C X — R be an AML function where § is
a nonempty open and convex set containing 0 and that u does not coincide with an affine
function on any neighborhood of 0. Then, for every open subset W of  containing 0, there
ezisty € W and an affine function g := e*+u(y)—e*(y), where e* € X* satisfies ||e*|| = S(y),
such that the one of the sets [u > g] and [u < g] has at least two distinct connected components
intersecting W.

Proor. Let W be an open subset of 2 containing 0. Then, there exists a segment [21, 20] C W
such that u is not affine restricted to it. Thus, there is an affine function ¢ on [z1, 25] and a
point y € (21, z2) such that u(y) = ¢(y) and

u >0 in [z, 29] and u(z) > l(z), fori=1,2 or
u < in [z, 29] and u(z) < €(z), fori=1,2.

We treat the first case, the second one is similar. From Theorem there exists vectors e},

such that |le; || = S(y) and

i e [u(r) —u(y) — e (v —y)|

r—0 mEET(y) r

=0.
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By compactness, there is a sequence (r;);, which converges to 0, such that e, — €. There-
fore, |le*|| = S(y) and

lim max Ju(z) = 9(@))| = 0. (6.4)
=09 4e B, (y) r;

where g is the affine function defined by g(z) = e*(z) —e*(y) +u(y). Since u > £in [21, 25| and
u(y) = L(y), the limit (6.4]) implies that ¢ coincides with £in [z1, 22|, and then, zq, 20 € [u > g].

Reasoning by contradiction, suppose that there exists a polygonal line v C [u > g] connecting
the point z; and z5. Let I' be the union of « with the segment [z, 23], and U be the union
of all bounded connected component of X \ I". Let A* € X* be a non-zero linear functional
such that h*(ze — 21) = 0. Using the fact that y ¢ v and replacing h* by —h* if necessary,
there exists § > 0 such that Bs(y) N [h* > 0] C U. Since v is compactly contained in [u > g],
there exists € > 0 such that v > g + eh* on 7, hence also on I'. We have u > g + ¢h* on
OU C T'. Since u is an AML function, u > g +¢eh* on U, so u — g > eh* on Bs(y) N [h* > 0].
This contradicts the limit , finishing the proof. ]

The assumptions of Proposition [6.30] are explained by the conclusions of Theorem and
Proposition [6.29]

Proposition 6.30 Let p > 0. Let u: B, C X — R be an AML function and let e € X*
such that
sup{lu(z) —ej(z)], z € B,} < Apllei].

Further, assume that there exists e* € X* such that [u > e*] has at least two distinct connected
components that intersect B,js. Then, for € > 0, there exists A(e) > 0 such that if A < A(e),

le” = eqll < eller]].

Proor. If e] = 0, then u is identically 0 in B,. Therefore, the second hypothesis cannot
occur. So, without loss of generality, we assume that ej # 0. Let R = C(e, X)) > 0 given by

Lemma [6.31] Let us define A(g) :=

. If w: Bgg — R is the function defined by

6C (g, X)

w(x) = 6r u <ﬁ> ,
plleill” \6R
and if A < A(g), the function w satisfies
(H1) sup{|w(z) — G0 g€ Ber} < 1.

lletl
(H2) The set [w > ﬁ] has at least two distinct connected components that intersect Bp.
1

Therefore, Proposition follows from Lemma below.

]

Lemma 6.31 For every ¢ > 0, there exists a constant C(e, X) > 0 with the following
property : Let e >0, R> C(e, X) and u : Bgg — R be an AML function satisfying
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(H1) sup{|u(z) —ef(z)|: = € Bsr} <1 for some |e] =1,
(H2) There exists a linear functional e* € X* such that the set [u > e*| has at least two
distinct connected components that intersect Bg.

Then
o — e < e.

Proor or LEMMA [631 Let f* = e] —e* and let ¢ > 0. Without loss of generality, assume
that f* # 0. By (H1), we have that

[f* < —1] N Bgr C [U < e*]
[f*>1]N Bsr C [u > €]

Thus, by hypothesis (H2), we can find a connected component U of [u > e*] that intersects
Bpr and that is included in the strip S := [|f*| < 1] of width 2||f*||=%. If R > ||f*||7!, the
set S N 0Bg is the union of two disjoint arcs of 0Bg. Observe that U cannot be compactly
contained in Bgg. Otherwise, it would contradict the AML property of u (comparing against
e* on U). Consider a polygonal line I' € & C S that starts in By and exits Bgp. Let 29 € X
be a vector such that ||zy|| = 3R and f*(zo) = 0. Replacing x¢ by —zq if necessary, we can
assume that T' intersects the two distinct arcs of S N dBg(x¢). Let v : Bar — R be the
function defined by v(+) := u(- + x¢) — e} (xp). Observe that by (H1),

lv(x) — e (2)] < |u(z + 20) — €}(xo + )| < 1, for all x € Bag,
and that, due to the fact that f*(z¢) = 0, y € [v > ¢e*] if and only if y + 29 € [u > €*].
Therefore, replacing u by v (and x¢ by —x if necessary), hypothesis (H1) and (H2) imply:
(H1") max{|u(z) — e(x)| : = € Bag} < 1 for some |ef| = 1.
(H2) If R > ||f*]|7' = |let — e*||7", the set [u > e*] N Byr has a connected component

U, included in S = [|f*| < 1], which contains a polygonal line I' connecting the two
distinct arcs of S N 0Bx.

Lemma [6.37] follows from the next two lemmas.

Lemma 6.32 [87, Lemma 3] Let 0 < v < 1. If R > Cy(v) := 20v~2, then
le*] > 1 — .

In order to state the second lemma, let us recall that if e* # 0 and g > 0, the set

n(e D) U o 2w},

where Fh* = [h* = ]_] N Bl.

*

e

h* —
el

Lemma 6.33 Let u be AML satisfying (H1’) and (H2), let ||e*|| > v > 0 and 5 > 0. There
exists Cy = Cy(7, B) such that if R > Cy, then

iﬁ{vwm:heH(&§>}<y
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Let us finish the proof of Lemma [6 Since X is a finite dimensional space with differential
norm, X * is uniformly convex. Hence, there exists o(¢) > 0 such that for any two unit vectors

¥, y* in X+ (), then ||z* — y*|| < e. If 7,8 > 0 are small, we have
B+v<1l—0(e/2). (6.5)
and
g + —g <= (6.6)

Let us fix 8 = (¢) and v = () satisfying (6.5) and (6.6), and define
C(e, X) = max{C1(7), Ca(7, B)}-
Assume that R > C(e, X). Lemma implies that

le*]l > 1 -1, (6.7)
and Lemma |6.33| implies the existence of a unit vector h* € X* satisfying ||h* — HZ— | < 5/2
and a vector b € Fj« such that |f*(h)| <. So h € H(e*,3/2), and since Proposition [6.21]

implies /2 < f < 04(|2:||,5), we have

(1= B)[le*]l < e*(h). (6.8)
The condition |f*(h)| <~ implies that
e"(h) <ej(h)+v<1+7. (6.9)

Conditions (6.7), and imply

lef + Al = (7 +h*)(h) Z e"(h) =7+ 1= (A =B)e*+1—-7y= (1 =B =7 +1-1.

Thus, |3 > 1 — 5 — 8 > 0(¢/2), therefore ||} — h*|| < /2. Conditions (6.7),

and also imply
L= < Jle’]] < =22
< S
So,
e 6 _ﬁ
[[e*|] 155

Finally, we get that ||e* — ef|| < ¢, finishing the proof of Lemma [6.31]

Hh*—e*us\h _ e =1 < <

In the sequel, we prove Lemma [6.32] Lemma [6.33 and Theorem [6.4]

Proor oF Lemma 6321 Reasoning by contradiction, let us assume that |[e*|| < 1 —~. Since
f*=ef —e* and ||ef]| = |le1]| = ej(e1) = 1, we have that 2 > || f*|| > f*(e1) > v. Let
Yo := —4y te, and let y; be the point of intersection of {te; : ¢ > 0} with the line [f* = 1].
We have ||y1|| = f*(e1)™! <71, so

4771 < lyy — ol < 5yt

131



Figure 6.1: Lemma [6.32} The set E,,.

Since R > Cy := 2072 > | f*||”", we can apply (H2’), and we also have yo € By and
Y1 € BR(yo) C BQR .

For ¢ > 0, let V, be the function defined on X by

Ve(x) := €1(yo) + 1+ cllz — ol|-
Notice that, for ¢ > ||e*||, the set

E..={xe X :V.(z) <e" ()}

is convex and compact. We claim that u(yo) < V.(yo) < e*(yo). Indeed, yo € B, so condition
(H1’) implies the first inequality. On the other hand, V.(yo) = €} (yo)+1 = ¢*(yo)+f*(y0)+1 =
e*(yo) + 1 — 4f*(e1)/, this implies the second inequality.

Let m := max{c > |le*]| : E.Nd([u < e*] N Byg) # 0}. The claim implies yy € E. for
every ¢ > 0. Since the diameter of E, tends to 0 as ¢ tends to infinity, we conclude that E,
converges to {yo} in Hausdorff-Pompeiu distance. The claim also implies u(yo) < €*(yo), so

m < 0o. Now, we set

Y %
1——=> e

o=l ~ 2
The equality [[y1 —yol| = €7 (y1—yo) implies Ve, (y1) = €7 (yo) +ly1 —wol —1 = e (y1) — f* (1) =
e*(y1). Therefore, y; € E,,, and we know that yo € E,,, so the segment [yo,y] is included
in the convex E,,. Since [y, y1] crosses all the strip S, it must intersect the polygonal line
[ given by (H2') which is included in [u > e*]. Therefore, E,, N d([u < e*] N Bar) # 0,
this shows that m > ¢y. The compact E,, is included in Bsg. Indeed, let © € FE,,. Since
le*]| < 1 —1, we get

Co =1

0 <e™(z) = Vin(2) <€ (y0) = Vin(yo) + (1 =7 = m)l[z = wol|-

Using the inequalities m > 1 — /2 and e*(yo) — Vin(y0) < 8/, we obtain ||z — yol| < 16772,
and so ||z|| < 20y~2? < R. Therefore, if z,, € E,, N O([u < €*] N Bag), then |z,.| < R,
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and so z,, € dlu < e*], and by continuity of u, we have that u(z,) = e*(x,,). Notice
now, by definition of m, we have that v < V,, in 9(E,, \ {yo}). Hence, by comparisons
with cones, u < V, in E,,. Since V,, is an affine function restricted to [x,,,yo] and that
U(Tm) = Vin(2m) > Vin(vo), we get

Vi (Yr) — Vin(21) g

S(zp) =—lim min MZ—lim :m>0021—§, (6.10)

r—0 yeaBr(zm) T r—0 T

where y, is the point of intersection of 0B, (z,,) with [z,,,70]. However, we claim that
S(x,,) < |le*]| + 2R™!. To this end, let » > 0 small and let U’ be the open set relative
to Bg(z,,) defined as the union of all connected components of [u > e*] N Bg(z,,) that
intersect B, (z,,). If U’ = (), then u < e* in B,(z,,). Therefore, since u(z,,) = e*(,,), by
Corollary we get that S(x,,) < ||e*]|, this proves the claim in this case. If U’ # (), from
(H2") we have that U’ C S provided that r < dist(z,,,I"). For € 9U’ N Bg(x,,), we have
that u(z) = e*(x). For x € U' N 0Bg(zm),

u(z) <e*(x)+2 <e*(zn,) + Rlle|| + 2,

where the first inequality follows as in (6.13]), in the proof of Lemma Therefore, com-

parison with cones implies
u(z) < e*(xm) + (|e*]| + 2R ||z — 2|, for all z € U' N Bg(zm). (6.11)

Combining (6.11)) and the fact that u < e* in B,(1,,) \ U, we get that the inequality (6.11)
holds in B,(x,,). By Corollary |6.14] we conclude that

S(zm) < |le*]| + 2R

Since R > Cy > 5y~!, we arrive to S(x,,) <1 — /2. The last inequality contradicts (6.10]),
finishing the proof of Lemma [6.32

]

Proor or LEmma 6331 If ||f*]| < ~, the conclusion is direct. For this, let us assume that
| f*]| > ~. If we further assume that Cy > 3/, since R > (s, the conclusion of hypothesis
(H}) is available for us. Reasoning by contradiction, we have

inf{\f*(h)\: heH(e*,g)} > 4. (6.12)

Let e be a unit vector in X such that e*(e) = ||e*||, and let zq be the point of intersection of
0S8 with the half line {—te : ¢t > 0}. We have that xo = —tge, where ¢, satisfies

1= to|f*(e)| = to7.

So, ||zo|l = to < 1/y < Cy/3 < R/3. Thus —xg € Bg(wy) C Bag. Hypothesis (H1") and
(H2’) imply

lu(z) — e*(x)| < |u(z) — e (z)] + |e*(z) —ef(x)| <2, forall x €U N Br(xo).
u(z) = e*(x) for all z € OU N Br(xo).
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Figure 6.2: Lemma [6.33} Ball of radius R centered at x.

Hence, if x € U N IBg(xo),

u(z) S @) 12 (@) + sup oy — o) +2 (6.1
yESﬂaBR(:Eo)

Since R > Csy, |f*(Rh)| > 3 for every h € H(e*, /2). Therefore, |f*(Rh — x¢)| > 2 > 1 for
every h € H(e*, 3/2), i.e.

(SN OBgr(xg)) N (RH(e*,8/2) — o) = 0.
By Proposition [6.22) with ¢ = /2, we obtain p € (0,1) depending on 3, such that
e*(x —xo) < (1= p)|le*|||lx — zo||, for all z € SN IBg(x). (6.14)

Let us assume now that Cy > 3/(yp) > 3/v. Since R > C5 and ||e*|| > v, we get R||e*||p > 2.
Combining (6.13)) and (6.14) we get

u(x) < e*(zg) + |le¥||||x — xol| for all z € U N OBRr(zo).
From comparisons with cones, we obtain
u(z) < e*(zo) + ||e*||||z — 0|, for all z € U N Bg(xp).
In particular,
u(z) < e*(x), for all z € U N Bg(zo) N{xg +te: t >0}

This is a contradiction with (H3) since U N Br(wo) N {xg +te: t > 0} necessarily intersects
r.

]

Now, we are able to present the proof of Theorem [6.4]

Proor or TuroreMm [6.4. If |[ef|| = 0, there is nothing to prove. If ||ef|| # 0, by homogeneity,
we can assume ||ef|| = 1. By Theorem there exists (e ), C X* such that [[ej .|| = S(0)
for every r and

lu(z) — u(0) — e, ()| < ro(r), for all z € B,, (6.15)
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where 0 : R, — R is a positive function such that o(r) tends to 0 as r tends to 0.

Let us fix € > 0, we need to find 0 := d(g) > 0 such that, if |u(z) —ej(x)| < J in By, then

limsup [leg, — €] < e, (6.16)

r—0

First case: Suppose that u is not identical to an affine function in any neighborhood of 0.
We show that if 0 < §;(¢) = min{A(¢/4)/4,1/2} where X is the function given in Propo-
sition [6.30} then holds. Let r € (0,1/2) such that o(r) < A(e/4)S(0)/4. Thanks to
Proposition replacing v by —u if necessary, there exist y € B, /24 and a linear functional
e* € X* satisfying ||e*|| = S(y) and such that the set

O=[u>e"+uly) —e(y)NB;

has at least two distinct connected components intersecting B, 24 . The function v(-) =
u(- +y) — u(y) is well defined on Bjs,. Let us check that v satisfies the hypothesis of
Proposition The set [v > e*] = (O — y) N By, has at least two distinct connected
components intersecting Er/w - §1/12- On the other hand, for x € El/Q we have

0(z) = e1(2)] < |u(z +y) — et (@ +y)| + [uly) —ei(y)] < 20,
Since 26 < A(e/4)/2, thanks to Proposition applied with p = 1/2, we get

le* — e < = (6.17)
4
Since |u(z) —ef(x)] < Jin By and ||ef|| = 1, we obtain
1
les, ]l = S(0) < S+ (0, —) =2 max u(z)—u(0) <1+ 40. (6.18)
) 2 :EeaBl/Q

We now apply Proposition m to the function v on Er/g. The set [v > e*] N B,/ has at
least two distinct connected components which intersect B, /5. On the other hand, thanks

to (6.15), for « € B, » we have that
[o(x) = e, ()] < Julz +y) = u(0) — e, (z + )| + |uly) —w(0) — €5, (y)| < 2ra(r).

Since 20(r) < A(e/4)lles,.||/2, we get that
() — e, ()] < g)\(s/4)||e37r||, for all = € B, s

Finally, we can apply Proposition with p = r/2 to obtain

elleg 1+46 3
Il (a0 e 619

= 4 = Za
Combining (6.17) with (6.19) we get that |[e] —ef || < e. Thus (6.16) is satisfied in this case

whenever 6 < d;(¢).

le” —ep Il <
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Second case: Suppose that there exists e € X* such that u = ef in a neighborhood of 0.
Let o
R=max{r € (0,1]; [u=e€}] C B, }.

If R > 1/2, notice that ef, = e satisfies (6.15) whenever » < 1/2. Assume § < ¢/2 and
lu(z) — ej(x)] < 0 in By. Since u = ¢ in Bys, we get limsup, ,, [lef,. — ef]] = [lef — efl| <e.

If R < 1/2, there exists xy € 0Bg such that u is not idgltical to an affine function in any
neighborhood of zy. Let us define the AML function v : B; — R by

v(s) = u(§ + x9) — u(xo).

Since v is not affine in any neighborhood of 0, we wish to apply the first case to the function
v. According to Theorem [6.3] there exists (e ), C X* such that [lef || = S(zo) for every
re(0,1)

lu(z) — u(zo) — et (x — x0)| < r5(r), for all x € B,(x),

To,T
where o : R, — R is a positive function such that &(r) tends to 0 as r tends to 0. So, for
r € (0,1/2), we have

*

lv(z) —v(0) — exTw(x)\ = |u(§ + x9) — u(zg) — e’;o?r(gﬂ <ra(r), forallz € B,. (6.20)

Let us suppose that § < §;(g/2)/2. Since |u(x) —eX(z)| < 6 in By, we have, for every z € B,
x x €
[v(2) = 5 (@)] < Jul5 + o) = €1(5 + o)l + [ulzo) — €f(z0)| < 01(3)- (6.21)

Let us check that S,(0) > 0. We know that [leg|| = S.(0) # 0. Since [|zo]| = R and u = e
on Br we can apply Corollary to get

Conditions (6.20) and (6.21) allow to apply the first case to v. We get

er e €
li L _ Zor —. 6.22
P2 T 2| = (6.22)

Let us show now that e} , tends to ej as r tends to 0. Reasoning by contradiction, assume
that there exists a null sequence (r7); such that e . converges to some h* # ej. So, there
exists z € 0By and t > 0 such that the open segment (zg,z¢ + tz) is included in U and
(5 — h*)(z) # 0. Finally, we compute

u(zg + ri2) — u(xo) .

lim - exo,ri(z) - 68(2) - h*(Z) 7& 0,

i—oo Ti

which contradicts Theorem . Hence, €} . converges to e and, from (6.22)) we get

*
xo,T

<e.

limsup ||ej, — ef|| = [lef — e}l| = limsup ||ef, , — e}
r—0 r—0

Thus, (6.16)) is satisfied whenever §(e) = min{d;(¢/2)/2,¢/2} = min{A\(g/8)/8,1/4,¢/2}.
[
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6.5 AML functions with linear growth

In this final section we prove that AML functions with linear growth at infinity are affine
functions, Corollary [6.7] Let us start with Corollary

PrOOF OF COROLLARY [6.6l Let us proceed by contradiction. That is, for each n € N, there are
a 1-Lipschitz AML function u, : By = R, ¢ > 0 and x,,,y, € By/3 such that

1
lun () =)l 2 € and [l —yall < —.

By redefining u,(z) := 2(u, (% + yn) — un(yn)), we can assume that y,, = 0, u,(0) = 0 and
that

2
lin(@n) —w,(0) 26 and - lzaf] < . (6.23)

Since (uy), is a sequence of 1-Lipschitz functions such that u,(0) = 0, by the Arzela-Ascoli
Theorem, there is a subsequence, which we still denote by (u,),, that converges uniformly
on compact sets to a 1-Lipschitz function u., : By — R. Moreover, since (u,), is a sequence
of AML functions, 1. is an AML function as well.

Thanks to Theorem Uo 18 differentiable at 0. Since u.,(0) = 0, we have that
max{|us(z) — v’ (0)(x)] : = € B,} <ro(r), forall r € (0,1),

where o(r) tends to 0 as r tends to 0. Let us fix » € (0,1). Then, due to the uniform
convergence on compact sets, there is N € N such that

max{|u, (z) — u, (0)(x)| : © € Byjo} < 2ro(r), for all n > N.

Therefore

max{|u, ( +y) — un(x) —ul (0)(y)| : x € B,|| <2ro(r), Yy € Byja, Vn > N.  (6.24)

[e.9]

As a consequence of Theorem considering r > 0 such that 20(r) < §(¢/4), we have that

inequality (6.24)) implies
4, () = w (0)| < . Var € Bys, ¥ > N.

The last expression contradicts (6.23)) by choosing n > N such that 4 < rn. O

In order to prove Corollary we need the following proposition that can be found in |77,
Corollary 2.10].

Proposition 6.34 Let X be a finite dimensional normed space. Let u: X — R be an AML
function with a linear growth at infinity. Then, u is Lipschitz.
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Proor. Let C' > 0 such that
lu(z)] < C(1+ ||z]), for all x € X.
Let us fix x € X. Then, we have that
u(y) —u(x)] < CC+ lyll + ll=]]) < CB+2||zl)) <3C|z —yl, for all y € OB(z, [lx] +1).
Therefore, by comparison with cones (Proposition , we have that
u(y) — u(x)] < 3C|x —yl], for all y € B(z, [lz]| +1).
Since x € X is arbitrary, we follows that u is 3C-Lipschitz. n

Proor or COROLLARY [6.71 Let us start with the case whenever the underlying norm is not
differentiable. Thanks to Corollary there is an AML function defined on X with linear
growth but not linear. On the other hand, if the underlying norm is differentiable, let
u: X — R be an AML function with linear growth at infinity. By Proposition uis a
Lipschitz function. Let zo € X. For R > 0, let us consider the function

1
vp(z) = Eu(Rx), for all z € X.

Observe that Lip(vg) = Lip(u) for all R > 0. Thanks to Corollary [6.6|applied to v restricted
to Bi, we have that

[/ (0) — (o) || = [1'(0) — v'(R™"o) || < Lip(u)p(R™"||zoll), for all R > 2[lz.

Therefore, by sending R to infinity, we obtain that «' is constant. Thus, u is an affine
function.

O
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Conclusions

In this thesis, by mainly using tools from functional analysis and variational analysis we
have obtained results in the following five different topics: classification of linear bounded
operators, construction of e-hypercyclic operators, wild operators, desingularization of the
coderivative for multivalued functions (applied to sweeping process) and regularity of Lips-
chitz functions.

In Chapter [2| we have explored the interplay between linear bounded operators 7' € L(Y, X)
defined on infinite dimensional Banach spaces and the regularity properties of real-valued
Lipschitz functions f : X — R and the composition f oT. We have introduced an abstract
property on bornologies 3, that we called property (S), which is satisfied by the Fréchet,
Hadamard, weakly-Hadamard and limited bornologies. Then, if [ is a convex bornology
on X, different from Fréchet, satisfying property (S), we have characterized [-operators
T € L(Y, X), in terms of the differentiability properties of f and f o7, where f runs over an
appropriate set of functions. Our result characterizes compact, limited and weakly-compact
operators. Also, we have introduced the notion of finitely Lipschitz functions to characterize
finite-rank operators in a similar way.

In Chapter [3] we have investigated the e-hypercyclicity. Following the constructions of e-
hypercyclic non-hypercyclic operators on ¢! (N) and /?(N), the former one given by C. Badea,
S. Grivaux and V. Miiller [15] and the last one given by F. Bayart [16], we have constructed
e-hypercyclic operators which are not hypercyclic in a larger class of infinite dimensional
separable Banach spaces. In order to obtain our results, we have developed an e-hypercyclic
criterion, inspired in the well known hypercyclic criterion. Also, we have obtained a suffi-
cient condition for which the product between an hypercyclic operator and a e-hypercyclic
operator remains e-hypercyclic on the product space.

In Chapter 4] motivated by the construction of a wild operator made by J.M. Augé in [§], we
have introduced and explored the notion of asymptotically separated set. Several examples
of asymptotically separated sets, in both finite and infinite dimensional Banach spaces, are
given. Moreover, we have established the connection between asymptotically separated sets
and the construction of linear operators T € £(X) such that the space X is partitioned in the
sets Ay :={z € X : lim, ||T"|| = oo} and Ry := {z € X : liminf ||7"x — z|| = 0}. We end
this chapter with the following results on wild operators: there is a wild operator (T € L(X))
such that the product with itself (T@&T € L(X ® X)) is not wild on the product space, there
are non-invertible wild operators defined on infinite dimensional spaces with symmetric basis
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and we study the norm-closure of the set of wild operators in the space of bounded linear
operators.

In Chapter [5| we have proposed and characterized a generalization of the K¥.-inequality for
multivalued maps which are not necessarily definable in an o-minimal structure. The Kk-
inequality, firstly obtained by S. Lojasiewicz [70] for real-analytic functions and then extended
by K. Kurdyka [68] for C!-smooth definable functions, is a gradient inequality which can be
seen as a desingularization of the gradient around a critical point. On the other hand, our
inequality can be seen as the desingularization of the coderivative of a multivalued map. The
results obtained in this chapter are mainly inspired by the following two works: A. Daniilidis
and D. Drusvyatskiy in [41] established a generalization of the K¥.-inequality for multivalued
maps which are definable in some o-minimal structure and J. Bolte, A. Daniilidis, O. Ley
and L. Mazet in [26] explored the class of semi-convex functions such that satisfies a KE-like
inequality, characterizing these functions in terms of the length of gradient orbits as well
as in term of the integrability of the talweg. In the same line, under mild assumptions, we
characterize a class of multivalued maps that satisfy our generalization of the Kt.-inequality
for multivalued maps (or our desingularization for the coderivative) in terms of the length
of the orbits given by the sweeping process governed by the same multivalued function, in
terms of the integrability of the talweg function and also in terms of the length of the discrete
sequences generated by the Catching-up algorithm.

In Chapter [6] we have studied regularity properties of the absolutely minimizing Lipschitz
functions (for short AML) defined on open subsets of finite dimensional normed spaces. O.
Savin in [87] proved that planar AML functions defined on open sets of a two dimensional
euclidean space are continuously differentiable. We have provided a non-euclidean interpre-
tation of the proof of the mentioned result of O. Savin to obtain that AML functions, defined
on open subset of a two dimensional normed space X, are continuously differentiable if and
only if the underlying norm is differentiable everywhere in X \ {0}.

Perspectives

The perspectives from this thesis are numerous. Here we list the most straightforward with
respect to the results and techniques developed in this work:

In Chapter [2| we have characterized several classes of bounded linear operators in terms of
the differentiability of a given class of functions. For compact, limited and weakly-compact
operators we have used different subfamilies of Lipschitz functions. On the other hand, for
finite-rank operators we have introduced the notion of finitely Lipschitz functions. A nat-
ural line of research is to find which other classes of linear operators can be characterized
in terms of the differentiability properties of a given class of functions. For instance, it is
interesting to know if it is possible such a characterization for the class of Hilbert-Schmidt op-
erators defined on a Hilbert space, or more generally, for the Schatten p-class, with p € [1, 00).

According to Chapter 3] the existence of e-hypercyclic operators in general separable Banach
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spaces still remains open. Moreover, the development of the e-hypercyclicity criterion leads to
the following natural question: Does every e-hypercyclic operator satisfy our e-hypercyclicity
criterion?

In Chapter {4 we have introduced and studied the asymptotically separated sets. We have
provided several examples, nevertheless, a complete description of this kind of sets remains
open. With respect to wild operators, there are at least two natural questions that follows
from our work: the construction (if it exists) of a wild operator 7" such that T'® T is wild
in the product space and the construction (if it exists) of a non-invertible wild operator in a
general separable infinite dimensional Banach space.

In Chapter [5| we have characterized smooth sweeping process maps that satisfy certain desin-
gularization of their coderivative. An interesting line of research is the study of the same
kind of desingularization but on more general multivalued maps (which are not necessarily
definable on an o-minimal structure). For instance, for multivalued maps such that their
graph is Whitney stratifiable.

In Chapter [6] we have proved that planar AML functions are continuously differentiable if
the underlying norm is differentiable everywhere (except at 0). Since our technique strongly
relays in some two dimensional arguments, it is not direct how to apply it to AML functions
defined on open subsets of R™, with n > 3. However, and recalling that AML functions can
be defined in any metric space, a natural framework to generalize our technique is on AML
functions defined on open subsets of a two dimensional Finsler manifold.
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