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Abstract

With the rise in volume of data from various sources, we have an increasing need of recom-

mender systems, which provide a data filtering to help users to find appropriate information.

To satisfy even more users’ needs and generate more relevant recommendations, a new kind of

recommender systems called Context-Aware Recommender System (CARS) integrates contex-

tual information related to the users in their recommendation process. However there exists

no unique definition for context. In this thesis we firstly identify relevant context factors for

CARSs, to improve upon previous propositions, which can be used for a large spectrum of ap-

plications. Then we propose a new context representation and approach to integrate this kind

of information into a recommender system. We make a relevant representation of the context,

based on the influence of context on ratings, calculated using the Pearson Correlation Coeffi-

cient. We present a pre-filtering and a post-filtering context-aware recommender systems based

on this representation. We propose a method to generate explanations for our context-aware

recommendations. Also, we demonstrate that our approach can reduce the well-known sparsity

problem of CARS and outperform state of the art approaches.
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Résumé

Avec l’augmentation du volume de données produit par diverses sources, nous avons un besoin

croissant de systèmes de recommandation, qui filtrent les données pour aider les utilisateurs

à trouver l’information appropriée. Afin de satisfaire encore plus les besoins des utilisateurs

et générer des recommandations plus pertinentes, un nouveau type de systèmes de recom-

mandation, nommé système de recommandation contextuel (CARS), intègre les informations

contextuelles des utilisateurs dans le processus de recommandation. Cependant, il n’existe tou-

jours pas de définition unique du contexte. L’objectif de cette thèse est, dans un premier temps,

d’identifier les facteurs de contexte pertinents pour les CARSs, afin d’améliorer les précédentes

propositions de l’état de l’art, et pouvant être utilisés pour un large éventail d’applications.

Ensuite, nous proposons une nouvelle représentation du contexte, ainsi qu’une approche pour

intégrer ce type d’information dans un système de recommandation. Nous représentons le con-

texte en nous basant sur l’influence du contexte sur les scores donnés par les utilisateurs aux

éléments, calculée à l’aide du Coefficient de Corrélation de Pearson. Ensuite nous filtrons les

données à partir de ces représentations, afin de les intégrer dans le processus de recommanda-

tion. Nous présentons deux approches de recommandations contextuelles à base de pré-filtrage

et post-filtrage. De plus, nous proposons une méthode pour générer des explications pour

nos recommandations contextuelles. Par des expérimentations, nous démontrons que notre ap-

proche réduit la parcimonie, problématique bien connue des CARS, et peut également améliorer

les performances de l’état de l’art.
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Résumé Etendu

Les systèmes de recommandation traditionnels (basés sur des techniques à base de contenu

et/ou de filtrage collaboratif) ont prouvé leur efficacité dans différents domaines [83], comme

la musique, les films, les lieux d’intérêt, les articles de recherche, les cours en ligne, etc. Mais

ils ont pour limite de ne pas tenir compte de la situation contextuelle dans laquelle se trouve

l’utilisateur au moment où il veut utiliser la recommandation. En effet, ces informations peuvent

influencer ses préférences pour les éléments recommandables [6]. Par exemple, pour choisir un

film à regarder, l’utilisateur aura des préférences différentes s’il souhaite regarder le film avec un

enfant ou avec son partenaire. Dans ce cas, un système de recommandation contextuel (CARS),

intégrant les informations contextuelles de l’utilisateur dans son processus, peut fournir des

recommandations plus pertinentes [4].

Dans cette thèse, nous proposons une approche de recommandation contextuelle, qui intègre

les informations contextuelles des utilisateurs en les modélisant en fonction de leur influence

sur les notes données par les utilisateurs aux éléments. Nous allons tout d’abord décrire notre

module de filtrage à base de corrélation (CBF), qui sera ensuite intégré dans le processus de

recommandation sous forme d’approches pré- et post-filtrage.

Filtrage à base de corrélation

L’objectif principal de notre approche de filtrage est de transformer l’ensemble des données

contextuelles initiales qui est multidimensionnel (utilisateur × item× contexte→ note) en un

ensemble de données bidimensionnel (utilisateur × item → note) contenant uniquement les

données relatives au contexte de l’utilisateur cible. En ce qui concerne l’état de l’art sur les

CARS [40], notre approche est, dans un sens, plus centrée sur l’utilisateur, puisque nous pro-

posons de calculer l’influence du contexte sur les notes en fonction des items ou des utilisateurs à

l’aide du coefficient de corrélation de Pearson (PCC) [27] entre le contexte et les notes. Le PCC

nous permet de saisir plus précisément cette influence, et donc de calculer des similarités plus

précises entre les contextes, une étape importante dans notre processus de pré/post-filtrage. De

plus, nous utilisons les caractéristiques statiques des items/utilisateurs (e.g. la catégorie d’un

film, ou l’âge et le genre des utilisateurs) pour améliorer notre modèle.
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Figure 1: Châıne de traitement de filtrage à base de corrélation

Méthodologie

L’ensemble du processus de filtrage à base de corrélation (CBF), illustré dans la figure 1, peut

être décomposé en quatre étapes : (1) représentation des conditions de contexte (valeur pos-

sible pour chaque facteur de contexte), (2) représentation des contextes, (3) identification des

contextes similaires en calculant la similarité entre le contexte de l’utilisateur cible et les autres

contextes, et (4) construction d’un ensemble de données bidimensionnel qui rassemble les notes

données dans les contextes similaires au contexte de l’utilisateur cible. Notez que pour les

opérations de certaines étapes, nous proposons différentes extensions :

Étape 1 : Comme dit précédemment, pour la recherche des contextes similaires, nous avons be-

soin d’une représentation pertinente du contexte. Le contexte de l’utilisateur est principalement

exprimé par des données nominales (comme matin, printemps, heureux, etc.). Pour mesurer

les similarités entre ces données nous pouvons faire appel à des ressources externes comme les

ontologies. Cependant, ce type de ressources est en général spécifique à un domaine, et il est

difficile de trouver une ontologie générique qui puisse être utilisée pour n’importe quel domaine

d’application. Nous proposons donc une représentation numérique des contextes en fonction de

leur influence sur les notes. Nous mesurons cette influence en calculant les coefficients de corréla-

tion de Pearson (PCC) entre la variable note r, et chaque variable de condition de contexte cj ,

avec j ∈ [1, n], où n est le nombre total des variables de condition de contexte. Nous proposons

la mesure de corrélation PCC (avec des valeurs comprises entre -1 et 1) car elle est beaucoup

utilisée en statistique pour mesurer l’association entre deux variables, et cela correspond à ce

8



User Item Rating Time Companion Season

U1 I1 3 morning family spring

U1 I2 1 evening alone summer

U2 I1 5 noon friend spring

U3 I6 4 morning alone autumn

(a) Matrice originale

User Item Rating
Time=

Morning

Time=

Noon

Time=

Evening

Time=

Night

Companion

=Alone

Companion

=Family

Companion

=Friends

Season=

Summer

Season=

Winter

Season=

Spring

Season=

Autumn

U1 I1 3 1 0 0 0 0 1 0 0 0 1 0

U1 I2 1 0 0 1 0 1 0 0 1 0 0 0

U2 I1 5 0 1 0 0 0 0 1 0 0 1 0

U3 I6 4 1 0 0 0 1 0 0 0 0 0 1

(b) Matrice transformée

Table 1: Transformation de matrice de données

que nous recherchons, puisque nous souhaitons saisir l’influence des conditions de contexte sur

les notes.

Dans un environnement contextuel, une observation est le croisement des variables utilisa-

teur, item, notes et des différents facteurs de context (e.g. type de jour, saison, lieu, social, etc).

Pour appliquer le PCC, nous transformons les facteurs de contexte en variables binaires (voir

tableau 1). Donc Xt = (ut, it, rt, c1t, c2t, ..., cnt) est la t-ième observation, qui représente la note

rt donnée par l’utilisateur ut à l’item it dans le contexte c1t, c2t, ..., cnt, où n est le nombre total

des conditions de contexte, et cpt = 1 signifie que la p-ième condition de contexte est présente

dans le contexte de l’utilisateur, et cpt = 0 signifie qu’elle ne l’est pas. Par exemple, dans

l’exemple du tableau 1b, nous avons une notation de 1 à 5, où 1 signifie que l’utilisateur n’a pas

aimé l’item, et 5 signifie qu’il l’a beaucoup apprécié. Donc la première ligne, l’observation X1=

(U1, I1, 3, matin=1, midi=0, soir=0, nuit=0, seul=0, famille=1, amis=0, été=0, hiver=0,

printemps=1, autumn=0) signifie que U1 a donné la note 3 à l’item I1, lorsqu’il a utilisé cette

item avec sa famille, un matin de printemps.

� Extension 1.1 : Pour obtenir une valeur plus précise, nous calculons l’influence du

contexte sur les notes en fonction de l’item ou de l’utilisateur.

(a) basée sur les items : La raison pour laquelle l’influence basée sur les items pourrait

être intéressante est que le contexte peut influencer les notes différemment, selon

les items. Par exemple, dans le cas d’une recommandation de points d’intérêt, un

temps neigeux aura une influence positive sur les centres de sports d’hiver, mais une

influence négative sur les parcs naturels. C’est pourquoi il est important de calculer

cette influence en fonction des points d’intérêt.

Ainsi, la corrélation basée sur les items entre les notes et la condition de contexte cj

est calculée par l’équation 1.

wcji = PCCi(r, cj) =
∑
k∈K(rk − ri)(cjk − cji)√∑

k∈K(rk − ri)2
√∑

k∈K(cjk − cji)2
(1)
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Dans notre calcul de PCC, les sommes sont faites sur K, qui est l’ensemble des

observations Xk = (uk, i, rk, c1k, c2k, ..., cnk) où l’item est égal à i. ri représente la

moyenne des notes données à l’item i, et cji représente la valeur moyenne de la

condition de contexte cj sur les observations où l’item est égal à i.

(b) basée sur les utilisateurs : L’étude de l’influence en fonction des utilisateurs est

également intéressante. En effet, on peut dire que l’influence du contexte sur les notes

peut également dépendre des utilisateurs, et qu’elle sera différente d’un utilisateur à

un autre. Par exemple, une ”personne très liée à sa famille”aimerait pratiquer des ac-

tivités avec sa famille, alors qu’une autre personne préférerait pratiquer des activités

entre amis. Le contexte social influence donc différemment ces deux personnes.

Dans ce cas, la corrélation basée sur les utilisateurs entre les notes r et la condition

de contexte cj est calculée par l’équation 2.

wcju = PCCu(r, cj) =
∑
k∈K(rk − ru)(cjk − cju)√∑

k∈K(rk − ru)2
√∑

k∈K(cjk − cju)2
(2)

où K est l’ensemble des observations Xk = (u, ik, rk, c1k, c2k, ..., cnk) de l’utilisateur

u. ru est la moyenne des notes données par l’utilisateur u, tandis que cju est la valeur

moyenne de la condition de contexte cj sur les observations de l’utilisateur u.

� Extension 1.2 : Sur la base des explications ci-dessus, nous pouvons construire une

représentation vectorielle pour chaque condition de contexte, par l’une des deux méthodes

suivantes :

(a) non-groupé (”not-clustered”) : La taille du vecteur de représentation des condi-

tions de contexte est le nombre total d’items ou d’utilisateurs, et les valeurs de ce

vecteur (entre -1 et 1) sont égales aux valeurs de PCC basées sur les items/utilisateurs

entre le vecteur note et le vecteur condition du contexte.

(b) groupé (”clustered”) : Dans les applications de recommandation, le nombre to-

tal d’items/utilisateurs est souvent très élevé, et le calcul de la corrélation demande

donc beaucoup de ressources. Afin de limiter ce coût de calcul, nous proposons

de regrouper les items/utilisateurs en un nombre limité de groupes, et de calculer

l’influence en fonction des groupes d’items/utilisateurs. De plus, comme le nombre

de notes connues est souvent très faible, la stratégie de regroupement pourrait aider

le PCC à saisir plus précisément la corrélation entre les conditions du contexte et

les notes. En effet, plus les données disponibles pour deux variables sont impor-

tantes, meilleures sont les corrélations obtenues à l’aide du PCC. En regroupant les

items/utilisateurs, nous regroupons les notes de plusieurs items/utilisateurs en une

seule variable, et le PCC sera donc calculé sur des variables plus riches.
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Figure 2: Exemples de représentations de conditions de contexte basées sur des clusters (Step 1)

La figure 2 illustre quelques exemples de représentations de conditions de contexte

basées sur des clusters. Dans cet exemple, nous avons regroupé les items en 4 groupes

différents. Dans l’exemple de représentation matin (”morning”), la valeur 0.54 illustre

l’influence positive de matin sur les notes du premier groupe d’items (calculées par

PCC), tandis que la valeur -0.91 fait référence à sa forte influence négative sur les

notes du troisième groupe d’items.

Étape 2 : Nous pouvons à présent représenter chaque contexte en fonction des conditions de

contexte qui le composent (étape 2 de la figure 1).

� Extension 2.1 : Nous proposons ici deux façons différentes de construire cette représen-

tation :

(a) agrégation : Chaque contexte peut être représenté par un vecteur dont les valeurs

sont égales à l’agrégation des valeurs de ses conditions de contexte (méthode égale-

ment utilisée par Codina et al. dans [40]). La figure 3 illustre quelques exem-

ples de représentations de contexte basées sur la technique d’agrégation. Par ex-

emple, la valeur 0.25 du premier contexte < matin, famille, printemps > (”<

morning, family, spring >”) correspond à l’influence de ce contexte sur les notes

données aux items du premier cluster, et est égale à la valeur moyenne des trois

valeurs correspondantes (pour le cluster 1) des représentations vectorielles de matin,

famille et printemps (dans la figure 2).

(b) concaténation : Par une analyse plus approfondie de la technique d’agrégation

proposée par Codina et al. dans [40], nous avons réalisé que dans certains cas, cette

agrégation peut neutraliser les influences des conditions de contexte. Expliquons ce

fait par un exemple : imaginons qu’un contexte soit composé de trois facteurs temps,

compagnon et saison, et que l’on veuille calculer la similarité entre deux contextes

C1 : < matin, famille, printemps > et C2 : < soir, seul, été >. Supposons que

le calcul du PCC de chaque condition de contexte pour le cluster 1, donne une

11



Figure 3: Exemples de représentation de la situation contextuelle par agrégation (Étape 2)

Figure 4: Exemple de la représentation de la situation contextuelle W〈morning,family,spring〉 par concaté-

nation (Étape 2)

grande valeur négative (proche de -1) pour matin et seul, une grande valeur positive

(proche de 1) pour famille et soir et une valeur neutre (proche de 0) pour printemps

et été. Supposons que ce schéma se répète pour les autres clusters. Dans ce cas,

l’agrégation des valeurs des conditions de contexte pour chaque cluster (pour C1 :

(−1 + 1 + 0)/3 = 0 et pour C2 : (1 + (−1) + 0)/3 = 0), donne des valeurs similaires

pour les deux contextes C1 et C2. Ainsi, contrairement à ce que l’on attendait, nous

obtenons une grande similarité. Pour éviter cela, nous proposons de représenter le

contexte par un vecteur plus large, en concaténant les vecteurs de ces conditions de

contexte, au lieu d’agréger leurs valeurs (voir Figure 4).

Étape 3 : Maintenant que nous avons représenté chaque contexte, nous pouvons trouver les

contextes les plus similaires au contexte cible s∗ en calculant la similarité entre chaque contexte

possible s et le contexte cible s∗.

� Extension 3.1 : Cette similarité peut être calculée par différentes mesures. Nous pro-

posons ici les deux mesures suivantes :

(a) Similarité cosinus : on peut obtenir la similarité entre les représentations vecto-

rielles −→ws et −−→ws∗ par la mesure de similarité cosinus illustrée par l’équation 3, où d

est la dimension du vecteur −→ws.

sim(s, s∗) = cosine(−→ws,−→ws∗) = wTs ws∗√∑d
i=0w

2
s,i

√∑d
i=0w

2
s∗,i

(3)
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d1

d2

C1(0.2, -0.1)

C2(0.2, 0.1)

C3(1,0.5)

α

Figure 5: Illustration géométrique de la similarité cosinus entre différents vecteurs

La similarité cosinus est très utilisée dans les systèmes de recommandation en raison

de sa rapidité de calcul et de son efficacité à gérer la parcimonie. Mais cette mesure

n’est pas sensible à l’échelle et dans notre application, cette propriété pourrait affecter

les résultats attendus. Voici un exemple pour expliquer ce fait : considérons trois

contextes différents C1[0.2,−0.1], C2[0.2, 0.1] et C3[1, 0.5] (les deux dimensions des

contextes sont choisies pour rendre l’exemple plus simple). Nous pouvons voir que

les deux contextes C1 et C2 ont des petites valeurs comparables (faisant référence

à leur influence sur les notes), contrairement à C3 qui a des valeurs beaucoup plus

importantes. En théorie, nous nous attendons donc à une plus grande similarité

entre C1 et C2, et à une plus petite entre C1 et C3. Mais la mesure de similarité

cosinus, nous donne deux similarités exactement identiques, car C3 est un vecteur

mis à l’échelle de C1 (C3 = 5 ·C1). En effet, la similarité cosinus entre deux vecteurs

correspond à l’angle entre eux. Comme vous pouvez le voir dans la figure 5 qui est

une illustration géométrique de notre exemple, l’angle α entre C1 et C2 correspond

également à l’angle entre C1 et C3.

Ainsi, dans les cas où les différentes échelles modifient la signification du vecteur et

doivent être prises en compte, nous devons garder à l’esprit que la mesure de simi-

larité cosinus ignore cette différence d’échelle. Dans notre approche CBF, les valeurs

des représentations des vecteurs de contexte illustrent l’influence des conditions de

contexte sur les notes. Ainsi, une petite valeur comme 0.2 signifie une petite influence

et une grande valeur 1 signifie une influence maximale. Comme nous voulons saisir

cette différence dans notre calcul de similarité, la mesure de similarité cosinus n’ai

pas forcément la meilleure option.

(b) Similarité euclidienne : Pour éviter le problème de la similarité cosinus, nous

proposons de calculer la similarité entre deux contextes s et s∗ par la similarité

euclidienne qui correspond à l’opposé de la distance euclidienne entre leurs vecteurs

(Equation 4) :

sim(s, s∗) = 1
euclidean(−→ws,−→ws∗)

= 1√∑d
i=0(ws,i − ws∗,i)2

(4)

13



Étape 4 : Nous pouvons à présent transformer l’ensemble des données contextuelles multidi-

mensionnelles en un ensemble de données bidimensionel. Pour cela, nous sélectionnons les notes

données dans les contextes similaires, identifiés à l’étape 3, et nous les rassemblons dans une

matrice bidimensionel.

Alternative pour le calcul de corrélation : La figure 1 et les étapes expliquées ci-dessus

ont détaillé le processus de filtrage de notre approche CBF. Notez que dans ce modèle, dans

la première étape, nous avons utilisé le PCC pour calculer l’influence du contexte sur les notes

pour représenter le contexte. Au lieu du PCC, nous pouvons penser à d’autres méthodes pour

saisir cette influence. Une autre proposition pourrait être de modéliser cette influence par la

différence entre la moyenne des notes données lorsque la condition de contexte est présente et

les notes données lorsque celle-ci est absente. L’équation 5 illustre cette technique que nous

avons appelée technique de déviation moyenne.

wcji =
r̄icj=1 − r̄icj=0

rmax − rmin
(5)

Pour normaliser cette valeur afin qu’elle soit comprise entre [-1, 1], nous l’avons divisée par

la différence entre les valeurs maximales et minimales possibles des notes.

Pertinence du contexte

L’intégration d’informations contextuelles vise à améliorer les performances du système de

recommandation [77]. En théorie, on peut supposer que l’ensemble complet des informations

contextuelles est pertinent et que tous les facteurs de contexte sont d’importance égale.

Cependant, selon l’application, certains facteurs de contexte pourraient avoir un impact plus

important que d’autres. La prise en compte de certains peut même introduire plus de bruit

que de la vraie information. Par exemple, dans le cas de la recommandation de musique,

l’activité de l’utilisateur a plus d’impact sur ses préférences que sa géo-localisation. Dans ce

même exemple, un facteur de contexte comme la saison, qui n’a pas vraiment d’impact sur les

préférences musicales de l’utilisateur, peut introduire plus de bruit que de la vraie information

dans le processus de recommandation. Il est donc important d’identifier les facteurs de contexte

pertinents et/ou considérer leur degré d’impact dans le processus de recommandation afin

d’éviter une perte de performance. De plus, nous devons noter que la collecte automatique

de certains facteurs de contexte (comme l’humeur de l’utilisateur ou son contexte social) est

encore presque impossible et qu’ils doivent être renseignés directement par l’utilisateur. Ainsi,

cette identification des facteurs de contexte pertinents permettrait également de minimiser

l’effort demandé à l’utilisateur pour spécifier son contexte, ce qui n’est pas négligeable [34].
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Dans cette thèse, nous proposons différentes méthodes pour considérer la pertinence du

contexte dans sa représentation. Nous les avons regroupées en trois catégories d’approches : (a)

les approches par pondération, où nous calculons un poids wfi
pour chaque facteur de contexte

fi et l’utilisons pour pondérer le vecteur de condition correspondant dans la représentation

du contexte, (b) les approches par filtrage, qui sont une façon plus stricte de considérer la

pertinence du contexte, où dans une configuration binaire nous ignorons les facteurs de contexte

non pertinents et excluons leurs vecteurs de la représentation du contexte. Et (c) les approches

hybrides, qui sont une combinaison des deux premières approches, où comme l’approche par

filtrage, nous identifions les facteurs de contexte pertinents pour ne garder que ceux-ci, et comme

l’approche par pondération nous pondérons leurs vecteurs correspondants dans la représentation

du contexte.

Recommandation contextuelle à base de corrélation

Les informations contextuelles des utilisateurs peuvent être intégrées dans le processus de recom-

mandation de trois manières différentes : Les méthodes pré-filtrage, post-filtrage et contextual

modeling [6] . Dans cette thèse, nous présentons deux approches différentes pour l’intégration

de notre module de filtrage basé sur la corrélation dans un processus de recommandation

afin de produire des recommandations contextuelles. Nous proposons une première configura-

tion par pré-filtrage nommée Correlation-Based Pre-Filtering (CBPF), et une seconde nommée

Correlation-Based Post-Filtering (CBPoF).

Les approches par pré-filtrage constituent une classe particulière des systèmes de recomman-

dation contextuels (CARS) basés sur l’idée de filtrer les données contextuelles de manière à

ajuster les données d’entrée d’un système de recommandation (traditionnel) afin d’améliorer

son efficacité. Alors que les approches par post-filtrage appliquent d’abord une technique de

recommandation traditionnelle sur les données en ignorant le contexte, puis contextualisent la

liste de recommandations résultante en filtrant ou en réordonnant les items de la liste.

Pré-filtrage à base de corrélation

Un problème de recommandation est souvent considéré comme un problème de remplissage de

matrice ou tenseur. Un système de recommandation estime d’abord les notes manquantes, puis

recommande à chaque utilisateur les items avec les notes estimées les plus élevées. Dans le cas des

approaches de recommandation contextuelles par pré-filtrage, nous intégrons les informations

contextuelles de l’utilisateur dans la phase d’estimation des notes manquantes. Notre approche

de pré-filtrage à base de corrélation, comme l’approche de pré-filtrage basée sur la réduction [4],

fait l’hypothèse qu’un utilisateur évaluera un item de manière similaire dans deux contextes

similaires. Sur la base de cette hypothèse, pour recommander un item à un utilisateur dans un
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Figure 6: Châıne de traitement CBPF

contexte spécifique, nous identifions les notes données dans les contextes similaires à ce contexte

spécifique, et appliquons une technique de recommandation traditionnelle bidimensionnelle sur

cette sélection. Pour identifier les contextes similaires nous utilisons notre module de filtrage

à base de corrélation (CBF). Nous proposons une configuration par pré-filtrage de ce module,

que nous avons nommé Correlation-Based Pre-Filtering (CBPF).

Méthodologie

La figure 6 illustre les deux principales étapes de notre approche de recommandation con-

textuelle par pré-filtrage basée sur la corrélation (CBPF).

Étape 1 : Nous transformons l’ensemble des données contextuelles multidimensionnelles en un

ensemble de données bidimensionnel basé sur le contexte de l’utilisateur cible, en appliquant le

module de filtrage à base de corrélation. Ce module de filtrage permet de réduire la parcimonie

de l’ensemble de données contextuelles initiales, qui a un impact positif sur la performance du

système de recommandations.

Étape 2 : Nous appliquons ensuite une technique de recommandation traditionnelle bidimen-

sionnelle [50] sur cette sélection de notes, afin d’obtenir des recommandations contextuelles.

Notre approche étant générique, tout type de technique de recommandation bidimensionnelle

peut être appliqué, mais nous proposons ici la technique BiasedMF [55], qui est une technique

de décomposition de matrice très performante.
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Notre approche présente deux principaux avantages techniques : a) elle peut être facile-

ment ”branchée” à n’importe quel système de recommandation bidimensionnel existant : en

effet, cette caractéristique permet aux entreprises, qui souhaitent bénéficier des informations

contextuelles disponibles dans leur processus de recommandation, de réutiliser leur système de

recommandation existant et de ”brancher” le module de filtrage en amont, b) notre approche est

également configurable : nous proposons plusieurs alternatives pour les différentes parties de

l’algorithme (différentes représentations du contexte, mesures de similarité, algorithmes de clus-

tering, techniques de corrélation, etc.). En fonction de la nature des données et des ressources

disponibles, nous pouvons appliquer différentes configurations.

Post-filtrage à base de corrélation

Comme mentionné précédemment, les informations contextuelles des utilisateurs peuvent être

intégrées dans le processus de recommandation de trois manières différentes : Les méthodes pré-

filtrage, post-filtrage et contextual modeling. Étant dans un contexte industriel, où un système

de recommandation traditionnel existe déjà, nous nous sommes tout d’abord intéressés à la

technique de pré-filtrage, qui est beaucoup utilisée dans la littérature, et avons proposé une

approche de recommandation contextuelle par pré-filtrage basée sur la corrélation (CBPF) entre

les contextes et les notes. Ensuite nous avons proposé une adaptation post-filtrage de notre

approche, appelée Correlation-Based Post-Filtering (CBPoF). Notre principale motivation est

le nombre très restreint de recherches sur la comparaison des approches par pré- et post-filtrage

dans les CARS.

Méthodologie

La figure 7 illustre la châıne de traitement de notre approche CBPoF pour recommander une

liste d’items à l’utilisateur u∗ qui se trouve dans le contexte s∗. Comme toutes les approches

par post-filtrage, nous transformons d’abord l’ensemble des données multidimensionnelles en

un ensemble de données bidimensionnel en ignorant les informations contextuelles. Ensuite,

nous appliquons une technique de recommandation traditionnelle à cet ensemble de données

sans contexte, pour lequel nous obtenons des prédictions de notes pour l’utilisateur u∗ (r̂u∗,i).

Nous proposons à présent d’identifier les voisins contextuels de l’utilisateur cible u∗, que nous

appelons G. G est l’ensemble des utilisateurs similaires à u∗ dans son contexte s∗. Ce voisinage

est identifié en calculant la similarité cosinus entre l’utilisateur cible u∗ et tous les utilisateurs

qui ont notés des items dans des contextes similaires à s∗. Dans ce processus, l’identification

des contextes similaires est effectuée sur la base de notre approche de filtrage basé sur la

corrélation (CBF), également utilisée dans CBPF. Enfin, nous contextualisons les notes prédites

en fonction de la distribution des notes données par le voisinage de G. Et nous proposons une

liste de recommandations basées sur ces éstimations de notes contextuelles (r̂u∗,i,s∗).
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Figure 7: Châıne de traitement CBPoF pour recommander un item à l’utilisateur u∗ dans le contexte s∗

L’équation 6 illustre la combinaison convexe utilisée pour contextualiser les prédictions de

notes non-contextuelle r̂u∗,i. La prédiction de note de l’item i par l’utilisateur u∗ dans le contexte

s∗ (r̂u∗,i,s∗) est égale à la somme pondérée de la prédiction de note non-contextuelle r̂u∗,i et de

la moyenne des notes données par les voisins de l’utilisateur u∗.

r̂u∗,i,s∗ = α× r̂u∗,i + (1− α)×
∑
g∈G rg,i

|G|
(6)

Un système de recommandation contextuelle doit jongler entre deux paramètres : la per-

sonnalisation et la contextualisation de ses prédictions. Le coefficient α qui a une valeur entre

0 et 1, nous permet de paramétrer ces deux aspets : en augmentant sa valeur, nous aug-

mentons l’impact de la prédiction non-contextuelle et donc la partie personnalisation, tandis

qu’en la diminuant, nous donnons plus d’importance à la partie contextualisation. Dans le pre-

mier cas, les recommandations sont plus influencées par les similarités des préférences avec les

autres utilisateurs, tandis que dans le second, nous mettons l’accent sur l’impact du contexte

de l’utilisateur sur ses préférences.

18



Explications pour les recommandations contextuelles

La possibilité de fournir des explications pour les recommandations faites aux utilisateurs est

un sujet qui a beaucoup attiré l’attention de la communauté des systèmes de recommandations.

Une explication peut clarifier les raisons pour lesquelles un item spécifique est proposé.

Comme l’indiquent Tintarev et Masthoff dans [96], proposer une explication à l’utilisateur

peut présenter de multiples avantages : transparence, en expliquant le fonctionnement du

système; scrutabilité, en permettant aux utilisateurs d’indiquer au système quand il est

mauvais; confiance, en augmentant la confiance des utilisateurs envers le système; efficacité, en

aidant les utilisateurs à prendre de bonnes décisions; suasivité, en convainquant les utilisateurs

d’essayer ou d’acheter un item; rendement, en aidant les utilisateurs à prendre des décisions

plus rapidement; et satisfaction, en augmentant la facilité ou le plaisir d’utilisation d’un item.

Dans les systèmes de recommmandations traditionnels, les explications sont souvent

basées sur le contenu (e.g. ”Nous vous recommandons A parce que vous avez aimé B”),

sur les préférences (e.g. ”Nous vous proposons A en fonction de vos préférences”) ou sur

la collaboration (e.g. ”Les gens qui aiment A ont également aimé B”). Ce sujet n’est pas

encore bien exploré dans le domaine des systèmes de recommandations contextuelles. À notre

connaissance, seuls quelques travaux ont été réalisés sur ce sujet ([19, 60, 105]). Néanmoins, la

prise en compte du contexte de l’utilisateur dans le processus de recommandation permet non

seulement d’améliorer la qualité des recommandations, mais peut également être utilisée pour

expliquer pourquoi un item est recommandé [19].

Dans cette thèse, nous proposons une méthode pour générer des explications pour les items

que nos approches CBPF et CBPoF recommandent, en nous basant sur le résultat de notre

module de detection de pertinence des facteurs de contexte :

Supposons que notre CARS recommande l’item i à l’utilisateur u∗ dans le contexte

s∗ : c1, c2, c3, ..., cm où m est le nombre total des facteurs de contexte. Dans le processus de

recommandation, nous identifions les facteurs de contexte les plus pertinents, sur la base de

notre module de détection de pertinence du contexte (par les techniques de pondération ou de

filtrage). Nous proposons de générer l’explication pour l’item recommandé, en utilisant soit

le facteur de contexte le plus impactant identifié par la technique de pondération (le facteur

de contexte ayant le poids le plus élevé), soit l’ensemble des facteurs de contexte pertinents

identifiés par la technique de filtrage.

Exemple : Pour un exemple de recommandations contextuelles de films où nous avons

trois facteurs de contexte temps, contexte social et saison, les poids obtenus par la technique

de pondération de notre module de détection de pertinence du contexte, pour ces facteurs de
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contexte sont respectivement de 0.37, 0.55 et 0.31. Ainsi, dans ce cas, le facteur de contexte

qui a le plus grand impact positif sur la prédiction de la note du film i est le contexte social.

Supposons que la valeur du contexte social de l’utilisateur u∗ soit � en famille �. Par

conséquent, l’explication que nous pouvons apportée pour l’item recommandé i ressemblerait

à: � Nous vous proposons le film i qui est intéressant à regarder en famille �.

Finalement, dans cette thèse nous avons proposé deux approches de recommandation con-

textuelles, qui intègrent les informations sur le contexte des utilisateurs par un module de filtrage

à base de corrélation. Nos experimentations sur quatre jeux de données différents montent les

bonnes performances de nos approches. Ce travail ouvre la voie vers de nombreuse perspectives,

comme son adaption aux données implicites ou à la recommandation pour groupe d’utilisateurs.
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Chapter 1

Introduction

1.1 Background

The available data and information on the web is becoming increasingly important while the

users can easily be overwhelmed by these data and information. This is why we need strong

filtering techniques to retrieve the appropriate information. One of these techniques is that

based on recommendation. A Recommender System (RS) proposes items that can potentially

be of interest for the user. Traditional recommender systems, which are essentially based on

users’ ratings on items, represented by a two-dimensional matrix (user × item→ rating), have

proven their reliability through the years, and are adopted by many platforms and companies.

However, they had the limitation of not taking into account the contextual information of the

users. In fact, the context in which a user is, at the moment she wants to use the item, can

influence her preferences and choices. As an example, when choosing a movie to watch, the

user will have different preferences depending on whether she wants to watch the movie with

her kid or with her partner. Riboni and Bettini in [82] show a correlation between the user

behavior and her context, which explains the importance of integrating the user context in the

recommendation process. In these recent years a new family of recommendation approaches has

emerged called context-aware recommendation. Such approaches try to improve the relevance

of recommendations by adding information about the actual context of the user.

1.2 Research Motivations

Recently, by the growth of connected devices and Internet of Things (IoT), users’ contextual

information is more and more available and used in different information systems. So it would

be interesting for many companies which already have a RS in production, to improve their

recommendations by collecting this kind of additional information and integrating it into their

RS. Thus, the very first question that we try to answer in this thesis is the following: what

are the relevant and meaningful pieces of contextual information to collect so as to
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be used in CARSs (Context-Aware Recommender Systems)? In fact the importance

of taking into account contextual information about the users is now evident, but still there

exists no universal definition of it in the literature. Many researchers, from different domains,

have worked on this concept, and proposed different categorizations of context factors from

different points of view, but we can hardly find a complete and generic proposition that could

be applied universally to any recommendation domains (e.g. music, movie, etc). Therefore,

our first objective is to study the notion of context, and propose a generic and hierarchical

categorization of context factors for context-aware recommendation, in order to be applied to a

large spectrum of application domains.

After identifying and gathering interesting contextual information, the second question is

how to integrate this kind of information into the RS with minimal implementa-

tion cost and no need of external data sources? In fact in the industrial world, finan-

cially, it is important to upgrade existing information systems while re-using them instead of

re-implementing the whole systems from scratch. Furthermore, the accessibility to external in-

formation resources (like ontologies) could be difficult. As a result, in the case of context-aware

recommendation, a data-driven method which could be plugged in to the existing traditional

RS is more appreciated. So, to recommend an item to a user in a specific context, we pro-

pose a pre-filtering approach that uses contextual information to filter the rating data based on

the actual context of the user, and apply a traditional recommendation technique only on this

selection of ratings. Indeed by this filtering phase we transform the multidimensional initial

contextual dataset (user × item× context→ rating) to a 2D dataset (user × item→ rating)
based on the user context, which then allows us to apply any kind of traditional recommender

system on this reduced dataset.

This filtering can be done in several ways: one choice could be to select only ratings done in

contexts which match exactly the actual user context (exact pre-filtering [4]). The problem of

this strict filtering is that due to the small available number of ratings in each context situation1,

the resulting rating matrix will be extremely sparse, and recommendations for only restricted

number of users/items could be produced. Indeed one of the main challenges in the domain of

recommender systems in general is the data-sparsity due to the very large number of users and

items in real-world applications. This limitation is even more pronounced for context-aware

recommender systems, where the dimensions of the utility matrix are augmented by the con-

text, especially when we have fine granularity in contextual information. This filtering strategy,

not only does not overcome this challenge, but emphasizes it even more. The opposite filtering

strategy to overcome this sparsity problem would be to consider the ratings done in all contex-

tual situations, but this is as if we ignore the contextual information.

So the third question is what is the optimal strategy to filter ratings, without accen-

tuating the sparsity problem and in order to be applicable to any recommendation

1Please note that in thorough this document context and context situation are used as synonyms.
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domain? An idea could be to find the most similar contexts to the actual context of the target

user, and select ratings done in these similar contexts. The user context is mostly expressed

by nominal data (e.g. morning, spring, happy, etc.). So, the similarities among contexts could

be found by the help of some external resources like ontologies. But in practice, these kind of

resources (especially in the case of ontologies) are very hard to be gathered in a generic way,

and are mostly domain-specific. Thus, to be able to find similar contexts, without the need of

such external resources and in a generic way, we need a significant numerical representation of

the context. So now, the main question is how to represent the context in order to be

able to find the proper similarities between each pair of contexts, which lead us to

user-centric recommendations? We answer this question by proposing a new data-driven

context-aware recommendation approach, called Correlation-Based Pre-Filtering (CBPF), in

order to efficiently integrate the contextual information of the users into the recommendation

process, by modeling it with item/user-based influence of context on ratings. Our approach is

in a sense, more user-centric, as we propose to model this influence based on the item- or user-

based Pearson Correlation Coefficient (PCC) [27] between context and ratings. The distinctive

feature of using PCC allows us to catch more precisely the influence of context on ratings,

and so to compute more accurate similarities between contexts, which is a crucial point in our

pre-filtering process. In addition, we use content information about items/users to improve our

model, like, for instance, the category of a film or the age or gender of users.

In the context representation, usually all context factors are integrated into the context repre-

sentation in the same way. However in real world applications, depending on the application

domain, some context factors could have more impact on users’ choices than others. Thus, the

next question is: how can we efficiently take into account the impact degree of dif-

ferent context factors in the recommendation process? Toward this end, we propose a

hybrid method to consider the context factors relevances, which filter irrelevant context factors

and weight relevant ones in the context vector representations. Evaluations show the positive

effect of this method on the recommendation performances.

In our CBPF approach, we plug a correlation-based filtering module before a traditional RS

in a pre-filtering configuration. Our last question is the following: is it possible to adapt

this approach in a post-filtering configuration? And how will be the performances

comparison between the pre-filtering and the post-filtering? There exists three fam-

ilies of approach for CARS: pre-filtering, post-filtering and contextual modeling approaches.

Contrary to contextual modeling approaches where the whole recommendation process have to

be implemented from scratch, the pre-filtering and post-filtering methods have the advantage

of re-using an existing traditional RS, and plug the filtering module to it. We present our

correlation-based pre-filtering approach, and propose a post-filtering adaptation of it, that we

named correlation-based post-filtering (CBPoF). As there is very few research on the compar-

ison of pre- and post-filtering approaches in CARS, we try to compare these two families of
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approaches based on our correlation-based filtering proposition.

1.3 Summary of Contributions

This section describes the main contributions of this thesis to the context-aware recommender

systems field:

1. In this thesis, we first study the notion of context, and propose a generic and hierarchic

categorization of different context factors for context-aware recommender systems, in order

to be applied to a large spectrum of application domains (like music, movies, news, etc.).

2. We propose a novel context-aware recommendation algorithm, based on a correlation-based

filtering module:

� We present a pre-filtering and a post-filtering adaptation of this approach. Indeed we

can easily plug our correlation-based filtering module in a pre-filtering configuration

(CBPF ), as well as a post-filtering one (CBPoF ).

� This algorithm is data-driven, with no need of external resources like ontologies.

� The algorithm is parametric: we design a generic algorithm, where we can spec-

ify different types of measures and techniques, depending on the data and available

resources. In our experimental analysis, we suggest some choices based on the char-

acteristics of the data.

� Our propositions try to provide answers to two well-known challenges of the context-

aware recommender systems, sparsity and explanations: besides the sparsity reduc-

tion that our correlation-based filtering module achieves in our CBPF approach, we

are able to generate explanations for recommendations based on our context relevance

detector.

� Also, in this thesis, we guarantee the reproducibility of our approach by exposing a

detailed pseudo-code of it.

3. This thesis is an industrial CIFRE 2 thesis, funded by ANRT 3 and the Coheris 4 com-

pany. One of the objectives of this thesis is the integration of the proposed context-aware

recommendation approach into the Analytics and Artificial Intelligence (AAI) platform of

Coheris.

1.4 List of Publications

Publications of the contributions of this work are the followings:

2Convention Industrielle de Formation par la Recherche
3Association Nationale Recherche Technologie: http://www.anrt.asso.fr
4https://www.coheris.com
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� Z. Vahidi Ferdousi, E. Negre and D. Colazzo. (Poster) Context-Aware Recommender

Systems: An Overview. In MATHIAS 2016, International scientific conference organized

by TOTAL Research & Development, 2016.

� Z. Vahidi Ferdousi, E. Negre and D. Colazzo. Context Factors in Context-Aware Recom-

mender Systems. In AISR 2017: Atelier interdisciplinaire sur les systèmes de recomman-

dation, 2017. [101]

� Z. Vahidi Ferdousi, D. Colazzo and E. Negre. Correlation-based pre-filtering for context-

aware recommendation. In Proceedings of the 16th IEEE International Conference on

Pervasive Computing and Communications Workshops (CoMoRea). IEEE, 2018. [99]

� Z. Vahidi Ferdousi, D. Colazzo, E. Negre. Recommandations contextuelles à base de

correlations. In JdS 2018: Journées de Statistique, 2018. [100]

� Z. Vahidi Ferdousi, D. Colazzo, E. Negre. CBPF: leveraging context and content infor-

mation for better recommendations. ADMA 2018: International Conference on Advanced

Data Mining and Applications, 2018. [98]5

1.5 Organization of the Thesis

In addition to this introductory chapter, this document is organized as follows:

� Chapter 2 presents the related work of the subject, organized in three main parts: firstly,

we present the notion of context, its different factors and context modeling approaches.

Secondly, we discuss about recommender systems, by presenting the major recommen-

dation approaches proposed in the literature: content-based, collaborative filtering and

hybrid approaches, but also the similarity measures used in these approaches. And finally,

we present context-aware recommender systems, the main approaches: pre-filtering, post-

filtering and contextual modeling, and describe different existing methods. In the following

chapters, some of the methods presented here are used for performance comparisons.

� Chapter 3 details the background material used within the thesis. We describe some

statistical models, machine learning and recommendation techniques used in our project.

� Chapter 4 presents a new, hierarchical and generic categorization of context factors

proposed for context-aware recommender systems.

� Chapter 5 proposes Correlation-Based Filtering approach, a filtering module that aims

to transform the multi-dimensional contextual dataset to a 2D dataset, based on the

influence of context on ratings. This filtering module will be the core of a pre-filtering or

post-filtering context-aware recommender system.

5Please note that the last contribution (CBPoF) is a post-ADMA work which is not yet published.
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� Chapter 6 describes Correlation-Based Pre-Filtering (CBPF), the proposed context-

aware recommendation approach that alleviates the data-sparsity limitation of CARS by

modeling a data-driven representation of context and integrating it in the pre-filtering

phase of recommendation. In this chapter, we also propose a post-filtering adapta-

tion of our correlation-based filtering approach, named Correlation-Based Post-Filtering

(CBPoF).

� Chapter 7 reports the experimental analysis done to evaluate the pre-filtering (CBPF)

and post-filtering (CBPoF) adaptation of our approach , and discusses the results. We

evaluated our approach on four datasets of movie, music and tourism, and compared it

with some well-known context-aware recommendation approaches of the state of the art.

� Chapter 8 makes conclusive remarks and explains the future research lines to be inves-

tigated.
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Chapter 2

Related Work

This chapter overviews related work in the field of CARS (Context-Aware Recommender Sys-

tem). For a better understanding of this type of recommendation, we start this chapter with

a review of the notion of context, different context factors and context modeling approaches

proposed in the literature. Next, we overview the main traditional recommendation approaches

and similarity measures used in these approaches, by pointing out their strongest and weakest

features. After this introduction to context and RS (Recommender System), we move on to

context-aware recommendation, and present the major approaches in this field, by describing

some well-known context-aware recommendation approaches of the literature.

2.1 Context

The notion of context has been studied by numerous researchers since the 90’s and many def-

initions have been proposed for it. Bazire and Brézillon in [24] have explored and compared

150 different definitions for the context in various domains, like artificial intelligence, cognitive

psychology, philosophy and linguistics. The authors conclude that because of the multiform

nature of the context, it is difficult to find a unique definition.

In our research, we choose the definition proposed by Abowd et al. in [2], a clear and generic

definition, which is the most widely accepted one in the context-aware computing community:

“Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.”
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2.1.1 Context Factors

To be able to collect relevant contextual information and use it in an application, we need

something more than this abstract definition. In fact, the context of a user is generally composed

of a number of elements named context factors. Therefore, we study the multiple categorizations

that have been proposed in the literature to describe the possible categories and values of context

factors. Some of them correspond to a specific domain like contextual information retrieval [95]

or context-aware recommender systems [3], and some of them are more generally proposed

for contextual applications [2, 16, 117]. We can find more than 15 categories among these

propositions. Table 2.1 shows some of the most relevant categorizations:
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1 [2, 16] x x x x

2 [117] x x x x x

3 [3] x x x x

4 [72] x x x x x x

5 [28] x x x x

6 [38] x x x x

7 [45] x x x x

Table 2.1: Comparison of different context categorizations

� Abowd et al. in [2] and Baldauf et al. in [16] proposed a categorization based on three

types of entity: places, people and objects. Abowd et al. [2] define their context categories

as follow: location, represents information that help to determine what other objects

or people are near the entity and what activity is occurring near it. Identity, regroups

many pieces of related information such as phone numbers, addresses, email addresses,

birth-date, list of friends, relationships to other people in the environment, etc. Activity,

determines what is occurring in the situation, and finally the last context category is time.

Baldauf et al. [16] proposed a similar categorization, but defined slightly differently: they

defined the identity as a unique identifier for each entity. The location represents

an entity position, co-location, proximity, etc. The status (or activity) regroups the

intrinsic properties of an entity, e.g. temperature and lightning for a room, processes

running currently on a device, etc. And time is used for timestamps to accurately define

situation, ordering events, etc.
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� Zimmermann et al. [117] distinguish four types of entity: natural entity, human entity,

artificial entity and group entity, and explain their context categorization based on these

four entity types: individuality, regroups information about the entity the context is

bound to, which could be different based on the entity type: for human entity, the user

properties such as preferences in language, color schemes, modality of interaction, menu

options or security properties, and numberless other personal favorites. For artificial en-

tity, the computing hardware descriptions, the product documentation, an application or

service. And for group entity, characteristics that members of the group may share includ-

ing interests, skills, cultural background or kinship ties in a social sense; and computing

power, network connections, or display size in a technological sense. Time, the time zone

of the client, the current time or any virtual time. Location, that can be physical or

virtual (e.g. the IP address as a position within a computer network). The activities the

entity is currently and in future involved in, described by explicit goals, tasks, and actions.

And relations that an entity has established to other entities (persons, things, devices,

services or information). In this category they identified three types of relations: social

relations, which represent social aspects of the current entity context: informations about

friends, neutrals, enemies, neighbors, co-workers, and relatives, the role that the person

plays in this relationship, and the level of intimacy and sharing. Functional relations,

identified when one entity makes use of the other entity for a certain purpose and with a

certain effect. And compositional relations, which are relations between a whole and its

parts.

Villegas et al. [104] proposed a similar categorization based on the four categories described

above.

� Adomavicius et al. [3] proposed the following four categories of context factors: physical

context, like time, position, and activity of the user, but also the weather, light, and

temperature when the recommendation is supposed to be used. Social context, which

refers to the presence and the role of other people (either using or not using the application)

around the user, and whether the user is alone or in a group when using the application.

Interaction media, which represents the description of the device used to access the

system, the type of media that are browsed and personalized (text, music, images movies,

etc.). And the modal context, which refers to the current state of mind of the user, the

user’s goals, mood, experience and cognitive capabilities.

� Nguyen [72] identifies five dimensions for the context of a user: temporal dimension,

like the user time zone, current time, virtual time, the beginning and the end of a situation,

the duration of an event, an activity, a consulted resource, a planning, etc. The spatial

dimension, like the object location (physical and virtual) or absolute position. And more

specific characteristics like the place longitude, latitude, area, or the object orientation,
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movement direction, speed, acceleration, etc. The dispositif dimension, which refers

to information about devices, like screen size, screen resolution, processor power, RAM

(Random-Access Memory), etc. The environment dimension, refers to the noise level,

abnormal rate of carbon monoxide, etc. The user dimension, refers to some general

informations like the name, age, birthday, nationality, mother tongue, etc., but also to

some information related to the application domain like the goal, preferences, knowledge,

competences, roles, center of interests, etc. And the last dimension named scenario,

refers to the user intention, informations, knowledge, environment objects, etc.

� Benouaret [28] categorizes the user context by four categories: user profile, referring

to user preferences and demographic informations. Location, represents user location

defined by GPS (Global Positioning System). Time (morning/ night/ etc.), and activity,

which represents the current user activity.

Akermi and Faiz [9] use the same context categorization.

� Chen and Kotz [38] propose the following categories: computing context, like network

connectivity, communication cost and bandwidth, etc. User context, which refers to in-

formation like user profile, location and social situation. Physical context, like lighting,

noise, traffic condition and temperature. And time context, which refers to time of a

day, week, month and season of the year.

This context category is also used by Azouaou and Desmoulins in [13].

� Gu et al. [45] categorize contextual information about a user in four classes person,

location, computational entity and activity.

� We can also add in this list the proposition of Schilit et al. [87], which is a more abstract

decomposition of the user context. The authors identify three important aspects of context

as: where you are, who you are with, and what objects are around you. These aspects

define location and identity of people and objects in close surroundings (like the lighting,

noise level, network connectivity, and even the social situation, e.g. whether you are with

your manager or with a co-worker).

Based on these propositions of the context categorization and their categories definitions,

we can extract some points that will help us to propose a generic categorization:

� We can find a first difference in the definition of entity types. Baldauf et al. in [16]

categorize entities in 3 types: places, people and objects, while Zimmermann et al. [117]

define four entity types: natural, human, artificial and group entity.

We based our proposition (that we present in Chapter 4) on the first one, because it

decomposes entities based on their nature, so it seems more differentiable. Indeed, the

second one is slightly more detailed, but we can find some intersections between the

categories.
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� By comparing definitions made by different authors, we can find different granularities of

context categorization, indeed some are more general than others. For example Adomavi-

cius et al. [3] defined a physical context as a context type representing not only the time,

the position, and the user activity, but also some environment properties like the weather,

the light and the temperature at the moment of the recommendation. This big context

category, include some more specific context categories of other propositions like location

[2, 16, 72, 87, 117], time [2, 16, 72, 117], user activity [2, 16, 117] or status of place entity

[16].

� In some cases, different authors named differently the same category. For example inter-

action media in [3], dispositif in [72] and individuality for artificial entity in [117], all refer

to descriptions of devices (hardwares) or softwares used in the interaction.

� In some cases, different authors defined the same category, in different levels, with more

or less details. It is the case for the social relation of the user [2, 3, 117]. Adomavicius

et al. [3] focus only on the presence and the role of people around the user when using

the application, and the fact that the user used the application alone or in group. But

Zimmermann et al. [117] and Abowd et al. [2] go further by analyzing user’s relations with

other people [2] and entities [117], user’s friends [2, 117] or even enemies [117], co-workers

[117], relatives [117], etc. Zimmermann et al. in [117] explore even more than only social

relations, and propose two other subdivided categories for entity relations: functional

relations and compositional relations.

� We can also note that in some cases, authors classified the same properties in different

categories. For example, Adomavicius et al. [3] classify the user’s goal, beside the user’s

experiences and cognitive capabilities in the modal context, while Nguyen [72] puts it in

the user context, beside general informations like the user name, age, nationality, etc.

As this study shows, a numerous identification and categorizations of context factors have

been proposed in the literature. After having analyzed the characteristics of each one, we will

propose in Chapter 4, a generic context categorizations for CARS, in order to be applied to a

large spectrum of application domains.

2.1.2 Context Modeling

After identifying and collecting the relevant context factors, we can integrate them into different

variety of context-aware applications. To define a context-aware application, we choose the

definition of Abowd et al. [2] which mentions the dependence between the use of context and

the user’s task:

“A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task.”
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The representation of contextual information in a context-aware application is a question

that has been studied by several researchers. The main models presented in the literature

to represent and store context data are the followings: key-value, mark-up scheme, graphical,

object-oriented, logic-based, ontology-supported models [49, 16], graph/tree models and domain

specific language [49]. Few comparisons have been made among these models. While key-value

models are the simplest ones, some researchers demonstrate that ontologies can be more

expressive [90, 58], while being flexible and extensible models [58]. However ontologies are

domain-specific and can not be used generically.

In this first part of our state of the art chapter, we studied the literature of the context,

its definition, factors categorizations and modeling approaches. The next part focus on the

recommender system literature.

2.2 Recommender System

Nowadays, we are faced with a rise of the amount of data on the web, provided by different

sources. As a consequence, a user can quickly be overwhelmed by the huge volume of informa-

tion. RSs [50] aim to help the user to find her appropriate information among all others, by

providing suggestions for items the user is likely to be interested in. In RSs the users’ preferences

over items are illustrated via ratings into a utility matrix (user×item→ rating). These ratings

can be collected explicitly by asking directly the users to rate items, or implicitly by inferring

from the user behavior and her interactions on the application, like clicks on items or item

purchases. Technically, a recommendation problem is often viewed as a 2D matrix completion

problem. In a nutshell, the aim of the recommender system is to estimate missing ratings of

the utility matrix, and then to recommend to each user her corresponding items with higher

estimated rates.

2.2.1 Recommendation Approaches

Recommendations are principally based on three main approaches [5], content-based, collabora-

tive filtering and hybrid approaches (illustrated in Figure 2.1):

2.2.1.1 Content-Based Approaches

In this family of approaches, beside the utility matrix, the characteristics of items are also

used to do the recommendations. The RS tends to recommend items similar to the ones

the user liked in the past. The similarity among items is computed based on the associated

characteristics of compared items.
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Figure 2.1: Recommendation approaches (adapted from [50])

Example 2.2.1. As an example of movie recommendation, the Table 2.2 shows the charac-

teristics of the available movies (the genre and the year of production of each movie), with the

ratings given by the user (1 if he liked the movie, and 0 if not). Suppose the movies that John

liked in the past are: The passenger, a 2018 action movie and Transformers 5, a 2017 sci-fi

movie. Based on what he liked in the past, a content-based approach will recommend to him,

recent movies of action or sci-fi genre, which are Fast & furious 8 and Star wars 8.

Movie Genre Year Rating

The passenger action 2018 1

Her romance 2013 0

Fast & furious 8 action 2017 ?

Transformers 5 sci-fi 2017 1

Life as we know it comedy 2010 ?

Star wars 8 sci-fi 2017 ?

Table 2.2: Example of movie recommendation by a content-based approach

2.2.1.2 Collaborative Filtering Approaches

This category of recommendation approaches is based on two key assumptions [85]: users who

had similar tastes in the past will have similar tastes in the future, and users’ preferences

remain stable and consistent over time. The implementation can be user-based, which is based

on users’ neighborhood, or item-based [61], which is based on items’ similarity. So in the

user-based case, the RS will recommend items that people with similar tastes (her neighbors)
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liked in the past. The similarity among tastes of two users is computed based on the similarity

in the rating history of the users [84].

Example 2.2.2. Table 2.3 illustrates a simplified example of utility matrix, with 1 and 0 instead

of ratings, where 1 means that the user liked the corresponding item, and 0 means that she did

not like it. In this example our target user is U4 and we want to know which one of the items

I2 or I4 to recommend to her. In the case of user-based collaborative filtering, we can see that

U4 is very similar to U1, because both of them liked I1 and I5 and disliked I3. So in this case,

a good recommendation for U4 would be I2, an item liked by U1.

I1 I2 I3 I4 I5

U1 1 1 0 1

U2 0 1 1

U3 0 1 1

U4 1 ? 0 ? 1

Table 2.3: Example of utility matrix for collaborative filtering

There exist two classes of collaborative filtering techniques [91]:

1. memory-based techniques, basically compute the similarity among users or items to build

neighborhoods methods. Different similarity measures (cosine, Pearson correlation coeffi-

cient, etc.) and score functions (simple, weighted or normalized average) are proposed in

the literature to identify the neighborhoods,

2. model-based techniques are machine learning techniques like clustering, decision tree, SVM,

matrix factorization methods, etc. [5, 29] that try to build a global model to estimate

missing ratings.

2.2.1.3 Hybrid Approaches

Hybrid approaches try to combine the previous approaches, in order to take advantages of both

of them. Jannach et al. [50] propose three different ways to do this combination:

1. by a monolithic exploiting of different features, where features/knowledge sources of dif-

ferent paradigms are combined in a single recommendation component,

2. by a parallel use of several systems, where several existing recommendation techniques

are applied in parallel, and their outputs are combined based on some weighting or voting

scheme,
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3. by a pipelined invocation of different systems, where we have a list of recommendation

techniques, executed consecutively. In this pipeline successor’s recommendations are re-

stricted by predecessor, which means that one recommender system pre-processes some

input for the subsequent one.

Approaches Advantages Disadvantages

Content-

based
– User independence : no need for data

on other users [64].

– Able to recommend to users with unique

tastes [70].

– Able to recommend new and unpopular

items [64].

– Transparency: explanations on how the

recommender system works can be pro-

vided [64].

– No issues with low matrix density [70].

– Limited content analysis: finding fea-

tures can be hard (images, movies, mu-

sic) [64, 5].

– Overspecialization [64, 70, 5].

– Cold-start problem for new users [64,

70, 5].

– Impossible to represent everything us-

ing keywords [70].

Collaborative

filtering
– Requires minimal knowledge engineer-

ing efforts [70].

– Produces good-enough results in most

cases.

– No need of item’s descriptions.

– Cold start problem for new

users/items [5, 29].

– Sparsity [5, 70].

– Scalability [29].

– Use limited information [29].

– Require a large number of reliable “user

feedback data points” to bootstrap [70].

– Require products to be standardized

(users should have bought exactly the

same product).

– Data security issues [70].

Hybrid
– The solution for some recommendation

challenges like data sparsity and gray

sheep [91].

Table 2.4: Advantages and disadvantages of different recommendation approaches
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2.2.1.4 Other Approaches

In the literature, we can find some less common approaches like knowledge-based [35],

trust-based [11], graph-based [83], group-based recommendations [83] or social filtering [29].

Table 2.4 lists some advantages and disadvantages of the three main content-based, collab-

orative filtering and hybrid approaches. In content-based approaches, as we based the recom-

mendations on the previous items that the user liked, without the need of any data from other

users, we can propose recommendations even to users with unique tastes. Moreover, new and

unpopular items have their chance to be recommended. However, this specificity can lead to an

overspecialization of the recommendations, and contrary to collaborative filtering approaches,

the degree of novelty would be limited, hence the user is going to be recommended items similar

to those already rated. As a result, this kind of recommendation techniques would be useful for a

limited range of applications [64]. On the other hand, collaborative filtering approaches have the

advantage of no needing item’s descriptions and characteristics, which are sometimes difficult to

be gathered (e.g. for images, movies, etc.). But they are sensible to sparsity, and have to deal

with low-density utility matrix. Also, as they are black boxes, it is almost impossible to explain

the user why a certain items is recommended to her. Conversely, in the case of content-based

approaches, we can provide explanation about the list of recommendations by explicitly listing

the characteristics and descriptions of the recommended items. Hybrid methods can be good

solutions to limit the drawbacks of these two families of approaches.

2.2.2 Similarity Measures Used in Recommendation

Different similarity measures can be used in recommendation approaches to measure the simi-

larity between different entities (e.g. two users, two items, etc.). As an example we explain the

formulas used for computing the similarity between two users u and v, or two items i and j:

1. Jaccard similarity: By this measure we ignore rating values in the utility matrix and

focus only on the sets of items rated. The idea is that users are more similar if they

have more common ratings. This measure is useful when we have only information about

purchases and not more detailed ratings. Equation 2.1 illustrated the similarity between

users u and v, where Iu and Iv are respectively the set of items rated by u and v.

simjacc(u, v) = |Iu ∩ Iv|
|Iu ∪ Iv|

(2.1)

2. Cosine similarity: The cosine of the angle between the vector representations of two

entities (users/items) can be calculated to measure the similarity between them. So, the
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cosine similarity between two items i and j would be computed as follows in equation 2.2:

simcos(i, j) =
−→
i .
−→
j

‖i‖ ‖j‖
(2.2)

3. Adjusted Cosine similarity: This measure is a modified form of the cosine similarity

that takes into account the difference between the rating schemes of users. Indeed, some

users tend to rate items highly in general, while some other are more severe and tend to

rate items with lower ratings (Equation 2.3, where Ru,i is the rating that user u gives to

item i, and Ru is the average ratings given by user u).

simadjCos(i, j) =
∑
u∈U (Ru,i −Ru)(Ru,j −Ru)

(
√∑

u∈U (Ru,i −Ru)2
√∑

u∈U (Ru,j −Ru)2
(2.3)

4. Pearson Correlation Coefficient: This measure is based on how much the ratings

given by common users for a pair of items (Ru,i, Ru,j) deviate from average ratings for

those items (Ri, Rj) (Equation 2.4). The resulted values are between -1 and 1.

simpcc(i, j) =
∑
u∈U (Ru,i −Ri)(Ru,j −Rj)

(
√∑

u∈U (Ru,i −Ri)2
√∑

u∈U (Ru,j −Rj)2
(2.4)

5. Other measures: We can add some less common similarity measures, based on asym-

metric cosine [8], Euclidean distance [41], Manhattan distance [41], Log-Likelihood [42],

Spearman’s rank correlation coefficient [88], etc. that can also be used in recommendation

techniques [68].

Now that we have introduced the two main components of a CARS: the context and the RS,

and presented their properties, in the next section, we can describe different CARS approaches

to integrate the contextual information of users into the recommendation process.

2.3 Context-Aware Recommender System

CARSs aim to take into account the users’ contextual information in order to propose more

relevant and personalized recommendations [6]. So instead of the 2D rating function of

traditional RSs (R : user × item → rating), in CARSs we have a multidimensional function,

R : user × item × context → rating [4]. As mentioned previously, the context of a user is

composed of a number of context factors like time, location, weather, companion, etc.. To

each one of these context factors some values can be associated, called context conditions. For

example possible context conditions for time could be morning, afternoon, evening and night,

and for companion could be alone, friend, family, etc..
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Figure 2.2: Approaches for incorporating context in recommender systems [6]

Example 2.3.1. A simple example of context-aware movie recommendation dataset is illus-

trated by Table 2.5. In this example we want to estimate the rating that user U1 would give to

the animation Toy Story 3, if she watch it with a children. As the previous experiences of U1

show, she did not like to watch another animation (Monsters, Inc) when she watch it with her

partner, but she liked to watch it with a children. So she will probably like to watch a similar

animation (Toy Story 3) in a similar context, so the estimated rating would be high.

User Movie Rating Companion

U1 Monsters, Inc 2 Partner

U1 Monsters, Inc 5 Children

U2 Taken 4 Friend

U1 Toy Story 3 ? Children

Table 2.5: Example for context-aware movie recommendation

The integration of contextual information in CARSs can be done by relying on either pre-

filtering, post-filtering or contextual modeling [6] as illustrated in Figure 2.2, where U, I and C

refer respectively to the user, item and contextual dimensions, R refers to ratings, and i1, i2, i3, ...

refers to the list of contextual recommendations for user u in context c.
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2.3.1 Pre-filtering Approaches

In pre-filtering approaches, contextual information is used to select only appropriate data based

on the target user context situation, and then a traditional recommendation technique is applied

on this selection. Numerous approaches have been proposed in this category. We can mention:

the reduction-based approach [4], with its two variants exact pre-filtering and generalized pre-

filtering ; the splitting approaches: item splitting [23], user splitting [17] and UI splitting [110];

the Differential Context Modeling (DCM) approach, and its two variants Differential Context

Relaxation (DCR) and Differential Context Weighting (DCW), proposed in [109]; and the Dis-

tributional Semantic Pre-Filtering (DSPF) approach [40].

In the following, we briefly describe DSPF, DCM and Splitting approaches, which will be com-

pared with our proposed approach in the experimental chapter. We choose these well-known

approaches because similarly to ours, these context-aware approaches make use of context sim-

ilarities in their context integration process.

2.3.1.1 DSPF

DSPF [40] models the influence of context on ratings based on the difference between context-

free rating and the rating given in the specific context. So each context is represented based on

this model to be used in the pre-filtering phase of the approach. Based on the assumption that

two context situations are similar if their composing context conditions influence users’ ratings

in a similar way, at first each context condition (c) is represented by a vector (wc) containing

the item-based or user-based influence of the context condition on ratings. For example in the

item-based case, the influence of the context condition c on ratings of item i, noted as wci, is

computed based on the difference between the rating given by user u for item i in this context

situation (ruic), and the predicted context-free rating (r̂ui), as illustrated in Equation 2.5:

wci = 1
|Ric|+ β

∑
ruic∈Ric

(ruic − r̂ui) (2.5)

where Ric is the set of ratings for item i in condition c, and β is a decay factor for decreasing

the estimated deviation when |Ric| is small. The context-free rating, r̂ui, is calculated by the

baseline context-free predictor of [56], which is the sum of the overall average ratings (µ) and

the observed deviations of user u (bu) and item i (bi): r̂ui = µ + bu + bi. Then, the context

situation representation (ws) is made by an aggregation of the context conditions (c) composing

this context (s) (equation 2.6).

ws = 1
|s|
∑
c∈s

wc (2.6)

Finally, based on these context representations, similarities between contexts are computed

and ratings given in contexts similar to that of the target user are selected. A traditional

recommendation can then be obtained on this selection.
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In DSPF, the representation of the context by the influence of contexts on ratings is effective,

but the computation of this influence is not user-centric enough. In fact, in this computation the

context-free ratings are computed by the equation r̂ui = µ+bu+bi, which is only behavior-based

and not personalized. Suppose we want to estimate the context-free ratings of an over-rated

science-fiction movie (with a highly positive bi), by two strict users (with a highly negative bu)

who have radically different interests (one who loves science-fiction movies and the other who

hates them). In this case, contrary to what is expected, the estimated ratings will be the same

for these two persons. Therefore the influence calculated by this measure would be biased, and

the values of context similarities in the pre-filtering phase would not be very relevant, which

will affect the recommendation results.

2.3.1.2 DCM

DCM [109] is based on the user-based collaborative filtering algorithm [91]. The authors propose

to separate the algorithm into different functional components, and apply differential context

constraints to each component, in order to maximize the performance of the whole algorithm.

They divide the approach into two parts: the differential part, and the modeling part, which

can be performed by context relaxation (DCR) or context weighting (DCW). The idea of DCR

is to find an optimal context relaxation for each component of the recommendation algorithm.

But DCR is a strict action, and there will be a sparsity problem in cases where we have less

contextual information. Thereby, the authors proposed DCW, which assumes that the more

similar the contexts of two ratings were given, the more valuable those ratings will be in making

predictions. So in DCW, they do not filter out certain ratings, but assign a score to all ratings

based on context. The similarity between two contexts is computed by the Jaccard similarity

between their sets of known conditions. And in both of these DCM variants, the optimal weights

are computed based on the Particle Swarm Optimization (PSO) [97] method.

2.3.1.3 Context-Aware Splitting Approaches (CASA)

Three different variants of splitting approaches have been proposed in the literature: Baltrunas

and Ricci propose the item splitting in [23]. Its basic idea is to identify the context condition

in which items are rated significantly differently, and split each item into two new ones based

on this context condition. Toward this end, the algorithm iterates over all context conditions

of each context factor, and evaluates the splits based on the impurity criteria. The outcome is

multiple copies of each item based on the contexts in which they have been rated. Therefor the

context dimensions are eliminated from the initial data matrix, transforming it to a 2D matrix.

The user splitting proposed in [17] conducts a similar treatment with respect to users. And

finally Zheng et al. propose in [110] a combination of these two approaches, named UI splitting.

They propose to split both users and items of the dataset, by an application of item splitting
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followed by user splitting on the resulting output.

2.3.2 Contextual Modeling Approaches

Contextual modeling approaches try to extend traditional recommendation techniques by inte-

grating directly contextual information into the recommendation algorithm. Some of the most

popular propositions in this category are the followings: Tensor Factorization (TF) and its

variants multiverse recommendation [52] and factorization machine [81]; the deviation-based

Context-Aware Matrix Factorization (CAMF) [21] with its several derived model: CAMF-C,

CAMF-CI, CAMF-CC and CAMF-CU ; Contextual Sparse Linear Method (CSLIM) [113]; the

similarity-based approaches of CAMF and CSLIM [115] with their three versions ICS, LCS and

MCS ; and the context-aware collaborative filtering proposed by Chen in [37].

In the following, we briefly describe the deviation-based CAMF approach, for which good per-

formances have been reported in the literature. In the experimental chapter, we will compare

it to our proposed approach.

2.3.2.1 Deviation-based CAMF

CAMF [21] is an extension of matrix factorization [57]. The deviation-based version tries to

take into account the context situation of users by integrating additional model parameters Bijcj

in the matrix factorization equation. So the rating of item i by user u in the context situation

c1...ck will be estimated by the Equation 2.7:

r̂uic1...ck
= −→pu.−→qi + ī+ bu +

k∑
j=1

Bijcj (2.7)

where k is the total number of contextual factors, ī is the average of the item i ratings,

bu is the baseline parameter for user u, −→pu ∈ V is the column vector representation of

the user u, and −→qi ∈ Q the column vector representation of the item i in the factorized

matrices V and Q. Depending on the version of CAMF, the Bijcj parameters will model

different granularities of the interaction of context with ratings: CAMF-C uses one single

parameter for each context condition, CAMF-CI uses one parameter per context condition

and item pair, and CAMF-CC uses one parameter for each context condition and item category.

CAMF proved its effectiveness to improve recommendation performance in comparison to

context-free recommendation and some of the context-aware recommendation approaches, but

like other contextual modeling approaches, it has the disadvantage of needing to be implemented

from scratch, with no possibility of re-using recommendation techniques already in production.
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2.3.3 Post-filtering Approaches

In post-filtering approaches, first a context-free recommendation algorithm is applied on the

data by ignoring the contextual information, and then the resulting recommendation list is

contextualized by filtering or reordering items. This category of approach has received less

attention than the two previous categories, but we can still cite the content-based post-filtering

model [48]; and the weight post-filtering and filter post-filtering approaches proposed by Pan-

niello et al. in [78]. The authors of this article propose to contextualize the predicted ratings

(from the traditional recommender system) as follows: the basic idea is to firstly compute the

contextual probability Ps(u, i), which is the probability that the user u liked the item i in the

context s. This probability is equal to the number of similar users to u (her neighbors) who

liked the same item i in her context s, divided to the total number of neighbors who rated this

item. Then the predicted ratings are either weighted based on this probability, by multiply-

ing the predicted ratings by their corresponding probability (weight post-filtering), or filtered

by eliminating items for which the corresponding probability is less than a threshold (filter

post-filtering).

2.3.4 Conclusion

Among the above mentioned approaches (pre-filtering, post-filtering and contextual modeling)

there is no clear winner [78], and the experiments showed that effectiveness depends on the

dataset and the exact application domain.

Like post-filtering approaches, one of the advantages of pre-filtering, in comparison to contextual

modeling, is the re-usability of traditional recommendation techniques. Post-filtering techniques

are characterized by the fact that a context-free recommendation is firstly done, and only af-

ter that, a reordering or filtering is done on the recommendation list by taking into account

contextual information. So, much of the recommendation has been done without considering

contextual information. Instead, in pre-filtering approaches, the user’s contextual information

is set as first class citizen, and this is used at the first stage of the process to guide the recom-

mendation based on it. This is the reason why pre-filtering approaches have gained substantial

attention by the research community, and most of the proposed CARS approaches in the lit-

erature are pre-filtering approaches [47]. Therefore in this thesis, we first led our approach in

the pre-filtering direction, but also adapted it to post-filtering, in order to take advantage of the

re-usability of the filtering module and compare these two families of approaches.

2.4 Context Relevance in CARS

In the literature some definitions for the context have been proposed, and many studies have

proved the effectiveness of taking into account the contextual information of the user in the
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recommendation process [6]. But depending on the application, not all of the available contex-

tual information is relevant. So, before integrating this kind of information into the system, we

have to identify the relevant piece of information. Indeed in some cases irrelevant contextual

information could cause a decrease in the recommendation performances. Also note that the

automatic acquisition of some contextual information (like user’s mood) is still hard or even

impossible, and have to be specified directly by the user. So, avoiding useless user’s effort in

the data acquisition phase is also valuable. These two points are the main motivations for the

identification of context relevance in CARS.

Here we mention some propositions in the literature:

� In [20], the authors conducted a work on the tourism domain, and ask users to imagine

a given situation and evaluate the influence of the corresponding context conditions on

their ratings. The main problem of such approaches is the fact that users rate differently

in real and supposed contexts.

� Odic et al. in [73] compared two different approaches: in the first one (assessment) the

users are asked to specify the relevancy of contextual information (similarly to [20]), and in

the second approach (detection) the relevancy detection is done by the mean of statistical

testing. They applied the Freeman-Halton test, which is the Fisher’s exact test extended

to contingency tables larger than 2x2. The null hypothesis of the test is that the context

factor fi and the ratings are independent. The reject of the null hypothesis shows that the

context factor fi is relevant. Each one of these approaches has their positive and negative

points: Contrary to the detection approach, in the assessment approach we don’t need

a substantial number of rating data. But, assessment is intrusive (asking users to spend

time on this task), and obtained from hypothetical situations, while the detection is made

on real situation data, and done without the need of user’s effort. The results showed that

the detection performs better, which prove the fact that the users are not always aware

of what really influences their decisions.

� The authors of [102] applied a Las Vegas Filter (LVF) algorithm, which repeatedly gener-

ates random subsets of contextual factors and returns the subset with the best evaluation,

based on an inconsistency criterion.

� Braunhofer et al. [34] propose to compute a personalized relevance score for a context

factor and user-item pair by the mean of a method called Largest Deviation . For each

user and item pair, whose rating is acquired, they first compute the impact of each context

condition, which is equal to the absolute deviation between the rating prediction when

this specific condition holds and the context-free rating prediction. Then the relevance

score for the corresponding context factor will be the aggregation (arithmetic mean) of

the impacts of the possible context conditions for that context factor.
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� Codina proposes in his thesis [39] to quantify the relevance of the contextual information

at condition level instead of factor level. Therefor the relevance of context conditions will

be the variance of their corresponding semantic vectors (presented in section 2.3.1.1).

rc = 1
l

l∑
i=0

(wci − µc)2 (2.8)

The Equation 2.8 shows the relevance (rc) of a context condition c, where wc is the

influence vector of c with respect to items or users, and µc is its mean influence.

This relevance measure can be used in two different ways: (a) the weighting method, in

which the representation of a context situation is modified by using a weighted average

of the vectors of its composing conditions (the weights correspond to the relevancies of

each context condition); (b) the filtering method, in which the q least relevant context

conditions are excluded in the context representations computation.

In this section, we state the importance of context relevance consideration in CARS recommen-

dation process. The previous works on this point, described above, have shown the positive

impact of this consideration on the recommendation performances.

2.5 Research Topics in CARS

In this section, we give a brief overview of different active research topics in the domain of

CARS, by exposing recent works:

� Some works focus on a specific domain application of CARS, like tourism [12, 14, 67,

36], music [79], videos on Youtube [1], news [63], indoor shopping [75], post popularity

prediction in social media [66], OLAP queries [71], etc. Contrary to these domain-specific

propositions, in this thesis we propose a generic context-aware recommendation approach,

in order to be applied to various application domains.

� Different methods have been proposed to be applied on CARS: ontologies [14, 12], cased-

based reasoning [15], hidden Markov models [7], neural network based model [62], deep-

learning and/or embedding-based CARS [86, 10], sequential predictions [111], etc. Our

CARS proposition is a data-driven approach, with a correlation-based representation of

the context, by modeling its influence on ratings in the recommendation process.

� Some works propose combinations of different families of RS: Véras et al. proposed a

hybrid approach named CD-CARS that combines Cross-Domain RS (which try to enhance

the quality of recommendations in a target domain by considering ratings from source and

target domains) and CARS [103]. A context-aware group recommender system is proposed

by Khoshkangini et al. in [54]. Some other works used the opinion mining information
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beside the contextual information in CARS [94]. In this thesis, we focus on the context-

aware recommendation, by leveraging the dynamic user context and the static user/item

content information for user-centric recommendations.

� Well-known RS challenges still get attention of the CARS community, like cold start [31,

32, 108], sparsity [107] and explanation problem [44]. In our work, we try to address the

sparsity and explanation problem by a filtering approach.

� We concentrate our effort on the contextual information identification and its integration

to the RS to provide context-aware recommendations. Different other aspects of the

context are also studied in CARS, like context extraction [92, 93], context suggestion [116]

and context-driven RS [76].

2.6 Synthesis

In this chapter, we review the related work done on the domain of context, recommender systems,

and context-aware recommender systems. We notice that there does not yet exist a universal

definition of the notion of context, and several categorizations, from different points of view,

have been proposed. Consequently, in this thesis, we try to propose a generic categorization

of context factors for CARSs so as to be used for any application domains (like music, movies,

news, etc.) to identify context factors. Also, the previous research in the literature demonstrates

that integrating such contextual information into the recommendation process can improve the

resulting recommendations. From this line of research, the second objective of this thesis is to

propose a new data-driven approach to transform any existing traditional recommender system

into a CARS, in order to produce more user-centric recommendations. We adapted our context-

aware recommendation approach to two families of CARS: pre-filtering and post-filtering.

We also point out that it could be interesting to take into account the impact degree of context

factors in the recommendation process. So, we consider this aspect in our proposed approach

in order to improve the recommendation results.
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Chapter 3

Preliminaries

This chapter surveys the background material used within this thesis. Besides stating conven-

tions, we summarize some statistical models, machine learning and recommendation techniques

used in our project.

3.1 Conventions

In the next chapters, we will use some expressions about contextual information. For a better

understanding we explain each one by some examples.

� Context or context situation 1 refers to the set of information that describes the situation

of an entity. For example the current context or context situation of James could be

<morning, alone, happy, at home>, which means this is a morning where James is happy

and alone at home.

� Context factor: Each context situation is composed of some context factors. In our

example (<morning, alone, happy, at home>), the context of James is composed of the

four context factors: time, social, mood and location.

� Context condition: To each context factor, some values can be associated. The possible

values of a context factor are called context conditions. For example {morning, noon,

evening and night} would be the context conditions associated to the context factor time.

3.2 Clustering Techniques

Clustering is a Machine Learning technique that aims to group similar data points together, in

order to have data points with similar features in the same group, while data points in different

1Note that in information system, context and situation are stating for two different concepts. But in this

thesis, we do not focus on this subject and use these two equivalently.
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groups have highly dissimilar features. It is a non-supervised learning method, used in many

fields, including, information retrieval, image analysis, pattern recognition, etc.

Different categorizations of clustering techniques have been proposed in the literature. For

an exhaustive list, see [106]. Here we listed the most widely used clustering methods which are

associated to one of the following four categories:

� Centroid-based clustering (based on partition):

In this family of clustering methods, the center of data points corresponds to the center

of the corresponding cluster. The main advantage of them is their relatively low time

complexity. The two most famous techniques in this category are K-means [65] and K-

medoids [53].

For K-means, we first have to select a number (k) of groups/clusters. This can be done

by taking a quick look at the data and trying to identify distinct groupings. Then we

randomly select k data points as the center of these clusters. The distance between each

data points of the dataset and each cluster center is computed to classify them in the group

which center is closest to each one. Based on this classification, the centers of clusters are

recomputed, and in an iterative process the last two steps are repeated until the cluster

centers do not change much between iterations.

K-medoids is a version of K-means which deals with discrete data.

� Hierarchical clustering:

The basic idea of this family of approach is to construct a hierarchical relationship among

data points in order to cluster them. In these algorithms, each data point is first treated

as a single cluster, and then iteratively merge pairs of most similar clusters into a new

cluster until there is only one cluster left. At the end we can select the number of clusters

by choosing when to stop combining the clusters. This is the bottom-up version of this

algorithm, also known as Hierarchical Agglomerative Clustering (HAC). A reverse method,

top-down version is also applicable [51].

� Distribution-based clustering:

This clustering approach cluster data points based on their distribution. When there

exist multiple distributions in the dataset, data generated from the same distribution will

belong to the same cluster. The Gaussian Mixture Models (GMM) [80] are well-known

models of this family of approaches, which use the Expectation-Maximization (EM) [69]

optimization algorithm to find Gaussian parameters. In these models, as K-Means, we first

select the number of clusters, and initialize randomly the Gaussian distribution parameters

for each cluster. Then by computing the probability of belonging to a particular cluster,

we associate each data point to the cluster for which the Gaussian’s center is the closest

to that data point. Based on these probabilities, we recompute the parameters of the

Gaussian distributions such that we maximize the probabilities of data points within the
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clusters. The last two steps are repeated until the distributions do not change much

between iterations.

� Density-based clustering:

The basic idea of density-based clustering techniques is to define clusters as areas of high

density, in sort to associate to the same cluster, data points which are in a region of the

data space with high density. These algorithms do not assign outliers to clusters and

consider them as noise. DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) [43] is the most well-known model in this family of approaches. DBSCAN works

with two parameters epsilon(ε) and minPoints threshold. We begin with an arbitrary

starting data point, and associate all data points within the ε distance as its neighborhood.

If the size of the neighborhood is equal or greater than the minPoints threshold, the current

data point becomes the first point in the new cluster, otherwise it will be labeled as noise.

Then the neighbor data points are also be part of the same cluster and the last step will

be repeated for all of the new data points just added to the cluster. Then, a new unvisited

point is retrieved and processed, which will leads to the discovery of a further cluster

or noise. And we will repeat this whole process until all data points will be visited and

marked as a cluster member or noise.

Each class of approaches has its advantages, centroid-based techniques have relatively low

time complexity, hierarchical clustering and density-based techniques do not require a pre-

defined number of clusters and distribution-based techniques are more realistic by giving the

probability of belonging of data points to clusters [106]. We can not define a clustering approach

as the best one. However K-means and HAC are two of the most popular clustering techniques.

In our approach, we used the HAC technique in order to cluster the items or users. We will

explain more in section 7.1.2.

3.3 Matrix Factorization

Matrix factorization (MF) [57] methods came from the collaborative filtering approaches, which

become more and more popular, due to their good performances, especially since the Netflix

prize [25]. Multiple MF models have been proposed to improve recommendation performances

by adding some weights or regularizations parameters.

The basic idea behind matrix factorization methods is to decompose the (user-item) utility

matrix into two lower dimensionality rectangular matrices qi and pu (Figure 3.1). Each item i

will be associated to a vector in qi, and each user u will be associated to a vector in pu. Then

the missing rating of user u for item i would be predicted by the product of these two lower

dimensional latent matrices (Equation 3.1, where r̂ui is the predicted rating of user u to item

i).
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Figure 3.1: Matrix Factorization

r̂ui = qTi pu (3.1)

The system learns the factor vectors pu and qi by minimizing the squared error on the set

of known ratings, as follows in Equation 3.2.

min
q·,p·

∑
(u,i)∈κ

(
rui − qTi pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2

)
(3.2)

Note that in order to avoid overfitting the known ratings, a regularization is done in this

process. In this equation κ is the set of (user, item) pairs in the training set, for which the

ratings is known, rui refers to the rating of user u to item i, and λ controls the extent of

regularization.

Two different approaches can be used to minimize the above equation [57]:

� Stochastic Gradient Descent (SGD) [30], which has the benefit of implementation ease and

fast running time. In this algorithm, for each observation in the training set (u, i, rui), the

system predicts the rating (rui), and computes the associated prediction error (eui):

eui = rui − qTi pu (3.3)

Based on this error, the system modifies the parameters in the opposite direction of the

gradient, by a magnitude proportional to γ, as follow in Equations 3.4.

qi ← qi + γ · (eui · pu − λ · qi)

pu ← pu + γ · (eui · qi − λ · pu)
(3.4)

� Alternating Least Squares (ALS) [26], which is favorable to use in case of parallelization,

or when we work with implicit data. The algorithm alternates between optimizing pu and
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qi. In each step, the system fixes one of them, and recomputes the other one by solving a

least-squares problem. This process is repeated until convergence.

SGD has the advantage of being easier and faster than ALS. This is why in this thesis we

used an SGD-based matrix factorization technique, named BiasedMF [55] (explained below),

in our recommendation process.

3.3.1 BiasedMF

In the rating prediction process presented above, the MF tries to capture the interactions

between users and items (Equation 3.1). But it could be interesting to also take into account

the effects of either users or items on the ratings. This is the idea of a matrix factorization

technique proposed by Koren in [55], where these effects are known as user/item biases. By this

way, for example, we would take into consideration the fact that some users are more critical,

and tend to rate lower than the average, or some items tend to be usually overrated.

So, the bias involved in rating rui, denoted bui in Equation 3.5 will be the sum of the overall

average rating (µ) and the observed deviation of item i (bi) and user u (bu).

bui = µ+ bi + bu (3.5)

Thus instead of the Equation 3.1, the prediction of the rating of the user u for the item i

would be calculated as follows in Equation 3.6:

r̂ui = µ+ bi + bu + qTi pu (3.6)

Then, the system will minimize the following regularized squared error to learn the latent

factors pu and qi:

min
p·,q·,b·

∑
(u,i)∈κ

(
rui − µ− bu − bi − pTu qi

)2
+ λ(‖ pu

∥∥∥2+
∥∥∥ qi‖2 + b2

u + b2
i

)
(3.7)

3.4 Conclusion

In this chapter we first explained some expressions about contextual information that we use in

this thesis: context/context situation, context factor and context condition.

We detailed and compared different families of clustering techniques. We use the clustering in

the representation of the context in our correlation-based filtering approach.

Finally, we described a matrix factorization technique, BiasedMF, that we use in our pre-filtering

and post-filtering approaches (CBPF and CBPoF ) as the traditional 2D recommendation tech-

nique.
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Chapter 4

Context Factors in Recommender

Systems

Much research has proved that context-aware recommender systems (CARSs) can outperform

the traditional recommender systems (RSs) by proposing more relevant recommendations to

users [6]. However their performances are impacted by the contextual information, which is not

clear [24]. In this thesis our main focus is on the integration method of contextual information

into the recommendation process. Though, in an industrial context, the first step for developing

a context-aware recommender system is to identify and collect this contextual information. As

mentioned in the Chapter 2, the context has been studied by researchers of various domains. But

due to the lack of consensus, there does not yet exist a standard definition for the context. In

this chapter, our objective is to identify and propose concrete and clear information to describe

the context of the users, by improving the representation of the user context in the case of

CARS. We propose a hierarchical categorization of context factors. Our proposition allows to

be applied to a large spectrum of application domains of CARS.

4.1 Context Categorization

In this thesis, we took the well-known context definition of Abowd et al. in [2], which says that

the context is any information that can be used to characterize the situation of an entity. This

entity could be a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves.

Based on this definition, to reach a complete and appropriate context model for CARSs, we

propose to identify all possible context factors. Our objectives for this new proposition of context

factors categorization are to answer the needs of CARS, while (1) satisfying the definition of

Abowd et al. [2], (2) improving the previous propositions, (3) allowing to work with context in

different levels, and (4) allowing its application to a large spectrum of application domains.

We have been inspired by the context factors proposition of Adomavicius et al. in [3], and
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Figure 4.1: Context categorization in CARSs

we have completed and structured it in a hierarchical manner. Our hierarchical categorization

(illustrated in Figure 4.1) has three principal categories of context: physical, personal and

technical context. The user context is the union of these categories of context and their respective

dimensions:

1. The physical context represents all aspects that can be influenced by the geographic

position of the user. We have gathered four dimensions in this category:

(a) Temporal dimension like the moment of the day, weekday/weekend, the season, events

(birthday, new year, etc), etc,

(b) Spatial dimension that can be represented by exact geographic positions (GPS coor-

dinates, longitude/latitude) or nominal classes (at work, at home, in travel, etc),

(c) Environmental dimension that can represent environmental characteristics like the

temperature, the weather, the brightness or the noise level of the user’s place, and/or

the local situation of that place, like a war, a natural disaster, economic crisis, etc,

(d) Equipment dimension that regroups all non-human entities (objects or spaces) that

is around the user, like barbecue, home appliance, printer, garden/terrace, etc.

2. The personal context represents personal information about the user, and has four

dimensions:
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(a) Demographic dimension gathers information about the identity of the user (name,

age, gender, nationality, etc),

(b) Social dimension is about the presence and the role of the persons around the user.

Depending on the use case, it can be only the persons who accompanied the user while

using the application (e.g. music recommendation in car), the persons with whom

the user want to share the activity (e.g. going to theater with friends or cooking

a recipe to share with friends), or going further by considering subtle relations like

friends, family, colleagues, neighbors, etc (recommendation of persons or news on

social networks),

(c) Psychophysiological 1 dimension represents psychological and physiological aspects

of the user, like her state of mind, her mood, her degree of tiredness, etc.

(d) Cognitive dimension refers to the user experiences, her objectives, constraints, activ-

ity, etc.

3. The technical context gathers characteristics of the devices used by the user to access

the application:

(a) Hardware dimension refers to the material used by the user to access the CARS, like

the device, processors, network capacity, etc.

(b) Data dimension refers to manipulated data by the application, its type (text, audio,

video, image, etc), sources, quality, validity period, exactitude, etc.

In section 7 (Table 7.1) we will show that we can clearly use this categorization in three

different domains (movie, tourism and music), which validate its genericity and applicability to

different domains.

Example 4.1.1. Based on this proposition, available and interesting contextual information for

a context-aware movie recommender system could be time, day type, season, location, weather,

companion, emotion and mood, as illustrated in Figure 4.2.

1”Combining or involving mental and bodily processes” (Merriam-Webster)
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Figure 4.2: Example of context factors in movie recommendations

4.2 Conclusion

In this chapter, we proposed our viewpoint on the user context and the categorization of its

different factors for CARSs. As mentioned in Chapter 2, several authors have proposed different

categorizations for the context. Differently, our model of the user context is much richer than

that of previous propositions, so we expect our model meets the requirements of larger spectrum

of application domains.

In fact, contrary to Abowd et al. in [2] we include environmental, technical, psychological

and cognitive context. The categorization of Adomavicius et al. in [3] misses demographical

and equipment context, and the one of Nguyen [72] misses psycophysiological and equipment

context. Differently from Zimmermann et al. in [117] we propose a categorization based on a

different viewpoint of entity types, and a more clear and concrete proposition than the one of

Baldauf et al. in [16].

It should be noted that depending on the application, some context factors can play a more

important role than others. For example, in the case of recipe recommendation, factors like

season, objects and tools around the user, and her cooking competence would be more impor-

tant. While in music recommendation, activity and psychophysiology context would be more

influencing.

As long as we know, our proposition of context factors is the most complete categorization.

Referring to it can guaranty to do not missing interesting contextual information in the phase

of identification and collection of context.
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Chapter 5

From Multi-Dimensional to 2D Data

Based on Context Influence

Traditional recommender systems (based on content-based and/or collaborative filtering tech-

niques) have proved their effectiveness in different areas [83], including music, movies, places of

interest, news, research articles, online courses, etc. But they have the limitation of not consid-

ering the contextual situation in which the user is, at the moment she wants to use the item. In

fact this information can roughly influence her preferences for items [6]. As an example, when

choosing a movie to watch, the user will have different preferences depending on whether she

wants to watch the movie with a kid or with her partner. In this case, a context-aware recom-

mender system (CARS), integrating such contextual information about the user in its process,

can provide more relevant recommendations [4].

In this thesis, we propose a context-aware recommendation approach, that integrates contextual

information about users by modeling it with the influence of context on ratings. This chapter

presents the core of our context-aware recommender system, named correlation-based filtering

module, and the next chapter describes its integration into the recommendation process within

pre- and post-filtering approaches.

5.1 Correlation-Based Filtering

The main objective of our filtering approach is to transform the initial contextual dataset which

is multi-dimensional (user×item×context→ rating) to a 2-dimensional dataset (user×item→
rating) containing only the data pertaining to the target user context.

With respect to CARS state of the art [40], our approach is, in a sense, more user-centric, as we

propose to compute the influence of context on ratings based on the item- or user-based PCC

(Pearson Correlation Coefficient) [27] between context and ratings. The distinctive feature of

using PCC allows us to catch more precisely this influence, and so to compute more accurate

similarities between contexts, which is a crucial point in our pre/post-filtering process. In
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Figure 5.1: Correlation-based filtering process chain

addition, we use content information about items/users to improve our model, like, for instance,

the category of a film, or the age or gender of users.

5.1.1 Methodology

The whole filtering process of CBF (Correlation-Based Filtering), illustrated in Figure 5.1, can

be decomposed in the following four steps: (1) building the context condition representations,

(2) based on the results of the first step, building the context situation representations, (3)

identifying similar contexts by computing the similarity between the target user context and

the other contexts, (4) building a 2D local dataset which gathers the ratings given in similar

contexts. Note that for the operations of some steps we propose different extensions:

Step 1 : As said before, to be able to find similar contexts, we need a strong representation

of them. Indeed the user context is mostly expressed by nominal data (e.g. morning, spring,

happy, etc.). One way to measure the semantic relations and similarities among contexts could

be by the help of external resources like ontologies. However, this kind of resources are mainly

domain-specific, and it is hard to find a generic ontology which can be used for any application

domain. So, we propose a numerical representation of contexts based on their influence on

ratings. We compute this influence by calculating the PCC of the rating variable r, and each

context condition variable cj , with j ∈ [1, n], where n is the total number of context condition

variables. We choose this correlation measure because in statistics, PCC (with values between

-1 and 1) is widely used to measure the strength of association between two variables, and this
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User Item Rating Time Companion Season

U1 I1 3 morning family spring

U1 I2 1 evening alone summer

U2 I1 5 noon friend spring

U3 I6 4 morning alone autumn

(a) Original matrix

User Item Rating
Time=

Morning

Time=

Noon

Time=

Evening

Time=

Night

Companion

=Alone

Companion

=Family

Companion

=Friends

Season=

Summer

Season=

Winter

Season=

Spring

Season=

Autumn

U1 I1 3 1 0 0 0 0 1 0 0 0 1 0

U1 I2 1 0 0 1 0 1 0 0 1 0 0 0

U2 I1 5 0 1 0 0 0 0 1 0 0 1 0

U3 I6 4 1 0 0 0 1 0 0 0 0 0 1

(b) Transformed matrix

Table 5.1: Transformed rating matrix

corresponds to what we want, since we want to catch the influence of context conditions on

ratings.

In a context-aware environment, an observation will be the cross-tabulation of the variables

of user, item, rating and m different context factors (e.g. daytype, season, location, social, etc).

To apply PCC, we transform context factors into binary variables (see Table 5.1). So let us

denote with Xt = (ut, it, rt, c1t, c2t, ..., cnt) the tth observation, which represents the evaluation

rt of the user ut for the item it in the context situation c1t, c2t, ..., cnt, where as said before, n

is the total number of context conditions, and cpt = 1 means that the p-th context condition

is present in the context of the user, and cpt = 0 means that it is not present. For instance, in

the example of the Table 5.1, we have a notation from 1 to 5, where 1 means that the user did

not really like the item, and 5 means that she liked it very much. The observation in this table

X1= (U1, I1, 3, morning=1, noon=0, evening=0, night=0, alone=0, family=1, friends=0,

summer=0, winter=0, spring=1, autumn=0) means that U1 had evaluated the item I1 by 3,

when he consumed the item with his family in a morning of spring.

� Extension 1.1: To obtain a more precise influence of context on ratings, we compute

the item- or user-based influence of context on ratings.

(a) item-based: The reason why the item-based influence could be interesting is that

the context can influence the ratings differently, according to items. For example in

the case of points of interest recommendation, a snowy weather will have a positive

influence on some winter sport centers, but a negative influence on natural parks.

This is why it is important to compute this influence according to items.

So the item-based correlation between the ratings and a context condition cj is cal-

culated as follows in Equation 5.1.

wcji = PCCi(r, cj) =
∑
k∈K(rk − ri)(cjk − cji)√∑

k∈K(rk − ri)2
√∑

k∈K(cjk − cji)2
(5.1)
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In our PCC calculation, the summations are taken over K, which is the set of obser-

vations Xk = (uk, i, rk, c1k, c2k, ..., cnk) where the item is equal to i. ri represents the

mean of ratings done for the item i, and cji represents the mean value of the context

condition cj over observations where the item is equal to i.

(b) user-based: It has to be noted that the user-based influence on ratings is also

interesting. Indeed, we can say that the influence of context on ratings also depends

on users, and will differ from one user to another. For example, a ”family person”

could like to practise activities with her family, whereas another person may not

like this and prefer to practise activities with her friends. So the social context will

influence differently these two persons.

In this case the user-based correlation between the ratings r and a context condition

cj is calculated as follows in Equation 5.2.

wcju = PCCu(r, cj) =
∑
k∈K(rk − ru)(cjk − cju)√∑

k∈K(rk − ru)2
√∑

k∈K(cjk − cju)2
(5.2)

where K is the set of observations Xk = (u, ik, rk, c1k, c2k, ..., cnk) with user u. ru

is the mean of the ratings given by the user u, while cju is the mean value of the

context condition cj over observations for user u.

Note that in the following sections/chapters, the suffix IB refers to the item-based version

of our approach, and UB refers to the user-based version.

� Extension 1.2: Based on the above explanations, we can build a vector representation

for each context condition, by one of the two followings methods:

(a) non-clustered: The size of the context condition representation vector will be the

total number of items or users, and the values of this vector (between -1 and 1) are

equal to the item- or user-based PCC between the rating vector and the context

condition vector.

(b) clustered: In real world recommendation problems, the total number of items/users

is often very large, and the correlation calculation would be computationally con-

suming. To overcome this computational cost we propose to cluster items/users

into a limited number of groups, and to compute the influence based on clusters of

items/users. Also, as the number of known ratings is often very poor, the clustering

strategy could help the PCC to catch more precisely the correlation between context

conditions and ratings. Indeed as the available data for two variables increases,

possibilities of catching real correlations by means of PCC increases as well. By

clustering the items/users, we regroup the ratings of multiple items/users in a single

rating variable, and so the PCC will be computed on richer variables.
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Figure 5.2: Examples of representation of cluster-based context condition by PCC values ∈ [−1, 1]
(Step 1)

This clustering could be done by different clustering approaches, and based on

the available static information about items’ characteristics (e.g. genre, year of

production, etc)/users’ characteristics (e.g. age, sex, etc), or directly based on the

ratings.

Figure 5.2 illustrates some examples of the resulting cluster-based context condition

representations. In this example we clustered the items in 4 different clusters. In

the morning representation example, the value 0.54 refers to the positive influence

of morning on the ratings of the first items cluster (computed by PCC), while the

value −0.91 refers to its strong negative influence on the ratings of the third items

cluster.

Note that in the following sections/chapters, the letter C in the suffix CIB and CUB

refers to the cluster-based versions of the approach.

Step 2: We can now represent each context situation based on its composing context conditions

(step 2 of Figure 5.1).

� Extension 2.1: Here we propose two different ways to build this representation:

(a) aggregation: Each context situation can be represented by a vector with values

equal to the mean aggregation of the values of its corresponding composed context

conditions (also used by Codina et al. in [40]). The Figure 5.3 illustrates some ex-

amples of context representations based on the aggregation technique. For example,

the value 0.25 of the first context situation < morning, family, spring > refers to

the influence of this context situation on the ratings of the first items clusters, and

is equal to the mean value of the three corresponding values (for cluster 1) of the

vector representation of morning, family and spring (in Figure 5.2).
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Figure 5.3: Examples of representation of context situation by aggregation (Step 2)

Figure 5.4: Example of the representation of the context situation W〈morning,family,spring〉 by concate-

nation (Step 2)

(b) concatenation: By a much deeper analysis of the aggregation technique proposed

by Codina et al. in [40], we have realized that taking mean value over composed

context condition correlations, can neutralize the influence of each context condition;

this is as if we ignore these contextual information in the recommendation process.

Let us explain this fact with an example: imagine that a context situation is com-

posed of three context factors time, companion and season, and one wants to compute

the similarity between two context situations C1: < morning, family, spring > and

C2: < evening, alone, summer >. Suppose that computing the PCC of each context

condition for cluster 1, gives a large negative value (near -1) for morning and alone,

a large positive value (near 1) for family and evening and a neutral value (near 0) for

spring and summer. Suppose this kind of pattern is repeated for the other clusters.

In this case, aggregating over the values of context conditions for each cluster (for

C1: (−1 + 1 + 0)/3 = 0 and for C2: (1 + (−1) + 0)/3 = 0), gives similar values for

both context situations C1 and C2. Hence it yields an extremely high similarity,

contrary to what was expected.

To avoid this, we propose to represent context situation by a larger vector, by con-

catenating vectors of composed context conditions, instead of aggregating their values

(see Figure 5.4).

Note that in the following sections/chapters, the suffix AG in the acronym of the approach

(e.g. CBPF-CIB-AG) refers to the aggregation extension, and the suffix CN (e.g. CBPF-

CIB-CN ) refers to the concatenation extension.
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Step 3: Now that we have represented each context, we can find the contexts most similar

to the target context s∗ by computing the similarity between every possible context s and the

target context s∗.

� Extension 3.1: This similarity can be computed by different measures. Here we propose

the two following ones:

(a) Cosine similarity: we can obtain the similarity between the vector representations
−→ws and −−→ws∗ by the mean of cosine similarity measure illustrated in Equation 5.3,

where d is the dimension of vector −→ws.

sim(s, s∗) = cosine(−→ws,−→ws∗) = wTs ws∗√∑d
i=0w

2
s,i

√∑d
i=0w

2
s∗,i

(5.3)

The cosine similarity is very used in recommender systems because of its speed and its

efficiency for sparse data. But this measure is scale-invariant and in our application

this property could affect the expected results. Let us explain it throw an example:

Consider three different contexts C1[0.2,−0.1], C2[0.2, 0.1] and C3[1, 0.5] (the only

two dimensions of the contexts are chosen for making the example simpler). We can

see that the two contexts C1 and C2 have comparable small values (referring to their

influence on ratings), contrary to C3 which have much larger values. So in theory

we expect a larger similarity between C1 and C2, and a much smaller one between

C1 and C3. But by the cosine similarity measure, these two similarities will have

exactly the same value, because the C3 is a scaled vector of C1 (C3 = 5 ·C1). Indeed

the cosine similarity between two vectors corresponds to the angle between them. As

you can see in Figure 5.5 which is a geometrical illustration of our example, the angle

α between C1 and C2 corresponds also to the angle between C1 and C3.

So in the cases where scaling vectors change the meaning of the vector and has to be

considered, we have to keep in mind that the cosine similarity measure will ignore this

scaling difference. In our CBF approach, the values of context vector representations

illustrate the influence of context conditions on ratings. So a small value like 0.2
would mean a small influence and the large value 1 means a maximum influence. As

we want to catch this difference in our similarity computation, the cosine similarity

measure could not be the best option.

(b) Euclidean similarity: To overcome the cosine similarity weakness, we propose to

compute the similarity between two contexts s and s∗ by the euclidean similarity

which corresponds to the inverse of the euclidean distance between their vectors

(Equation 5.4):
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d1

d2

C1(0.2, -0.1)

C2(0.2, 0.1)

C3(1,0.5)

α

Figure 5.5: Geometrical illustration of cosine similarity between different vectors

sim(s, s∗) = 1
euclidean(−→ws,−→ws∗)

= 1√∑d
i=0(ws,i − ws∗,i)2

(5.4)

Step 4: Now we can transform the multidimensional contextual dataset to a 2D dataset. For

that, we select the ratings given in the similar context situations, found in the Step 3, and make

a 2D local dataset.

Alternative for correlation computation: The Figure 5.1 and the above explained steps

detailed the filtering process of our CBF approach. Note that in this model, in the first step, we

used the PCC to compute the influence of context on ratings in order to represent the context.

Indeed the PCC value between the rating variable r and each context condition variable cj refers

to the influence of cj on the ratings. Instead of the PCC we can think of other methods to catch

this influence. Another proposition could be to model this influence by the difference between

the mean of ratings given when the context condition is present and those given when this one

is absent. Equation 5.5 illustrates this technique that we named mean deviation technique. For

example, in the case of the context condition morning, the difference between the mean values

of ratings given when it was morning and when it was not would illustrate the influence of the

context condition morning.

wcji =
r̄icj=1 − r̄icj=0

rmax − rmin
(5.5)

To normalize this value in order to be in the range of [-1, 1] we divided it by the difference

between the maximum and minimum possible values of ratings.

In this chapter we have kept the PCC proposition as the main approach for computing the

influence of contexts on ratings and representing the context vector. But in the experimentation

phase we also test the outlined above proposition (mean deviation), to compare the performances

of these different methods.
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5.1.2 Pseudo-code

In this section, we detail the pseudo-code of our correlation-based filtering algorithm, in order

to guarantee its reproducibility.

The Algorithm 1 describes the CBFiltering function with the objective of transforming the

initial multi-dimensional dataset to a 2D local dataset, which regroups the ratings given in

contexts similar to the context of the target user. This filtering function is used in the pre-

filtering approach (CBPF ), as well as the post-filtering approach (CBPoF ). In the former, the

module is plugged before the traditional recommender system, while in the latter, it is plugged

after it (we detail CBPF and CBPoF in the next chapter).

In this algorithm, S is the 2D transcript of all context situations present in T , and M

is a 2D matrix, with users or items ids in rows and static characteristics of users or items

in columns. Note that here what we call static characteristics are different from contextual

information. The contextual information describes the situation of the user at a specific time,

it is dynamic and will potentially differ from time t to time t + 1 (like location, weather, etc).

But static characteristics are some information about users or items which are static and do

not change over time (like user’s gender, movie’s director, etc). Here we use this information

for clustering users/items, though in cases such information is not available, the clustering

could be done directly based on ratings.

In the filtering process, if the chosen representation model is cluster-based, we first apply a

clustering on items or users, in order to replace their ids by the corresponding cluster ids in the

contextual dataset T (lines 1 to 4). In line 5 we binarize the matrix S to be able to compute the

correlation between context conditions and ratings (see the binarized example of Table 5.1b).

Then (lines 6 to 10), for each context condition we create a vector representation, following an

iterative process described in Algorithm 2 (createContextConditionRepresentation). Based on

these context condition representations, the vector representations of the target user context

(line 11) and other contexts of the dataset (line 13) are created (detailed in Algorithm 3,

transformContextRepresentation). Then, in line 14, the similarities between the target user

context s∗ and other contexts sk are computed by a similarity measure like the cosine or

the euclidean similarity. The most similar contexts to the target user one, which are those

whose similarity is greater than the threshold t, are identified (lines 15 to 17), and finally their

corresponding data are selected as a local dataset (line 19).

Algorithm 2 creates the vector representation of each context condition (step 1 of the

process chain in Figure 5.1). The size of these vectors depends to the representation model r,

and is equal to the total number of users (in case of UB), items (in case of IB), users clusters

(in cases of CUB-AG or CUB-CN ) or items clusters (in cases of CUI-AG or CUI-CN ). Lines 1
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Algorithm 1 : CBFiltering

Input : T : multi-dimensional tensor of contextual rating data,

u∗: the target user,

s∗: the context situation of the target user,

M : matrix of items/users characteristics,

S: matrix of context situations (the 2D transcript of all the context situations

present in T ),

t: similarity thresholds,

r: model of context representation

∈ {IB/UB,CIB −AG/CUB −AG,CIB − CN/CUB − CN}.
Result : L: local dataset of ratings given in contexts similar to the context s∗ of the

user u∗.

1 if r is a cluster-based model then

2 clusters←− clusteringItemsOrUsers(M);
3 T ←− replaceIdsByClusterIds(T, clusters);
4 end

5 binarization(S);

6 foreach f ∈ contextFactorsOf(S) do

7 foreach c ∈ contextConditionsOf(f) do

8 ccRepresentations[c]←− createContextConditionRepresentation(c, r);
9 end

10 end

11 s∗ ←− transformContextRepresentation(s∗, r, ccRepresentations);
12 foreach sk ∈ S do

13 sk ←− transformContextRepresentation(sk, r, ccRepresentations);
14 simk ←− computeSimilarity(sk, s∗);
15 if simk ≥ t then

16 S
′ ←− addToSimilarContext(sk);

17 end

18 end

19 L←− createLocalDataset(T, S′);
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to 9 identify the set (e) of users/items or clusters of users/items based on r. For each element

of e, we create an array of the corresponding ratings, ratingArray (line 11), and an array

of the corresponding context conditions values, ccArray (line 12). The values of the vector

representations of each context condition are equal to the PCC between these two arrays of

the corresponding observations in T (line 13 and 14).

Algorithm 2 : createContextConditionRepresentation

Input : T : multi-dimensional tensor of contextual rating data,

c : context condition,

r: model of context representation

∈ {IB/UB,CIB −AG/CUB −AG,CIB − CN/CUB − CN}.
Result : ccRepc: vector representation of the context condition c.

1 if r is IB then

2 e = set of items ids

3 else if r is UB then

4 e = set of users ids

5 else if r is CIB −AG||CIB − CN then

6 e = set of items cluster ids

7 else

8 e = set of users cluster ids

9 end

10 foreach io ∈ e do

11 ratingArrayio ←− array of ratings given to/by io in T ;

12 ccArrayio ←− array of the values of context condition c of io observations in T ;

13 pccio = PearsonCorrelationCoefficient(ratingArrayio, ccArrayio);
14 ccRepc[io] = pccio

15 end

16 return ccRepc

Algorithm 3 illustrates the step 2 of the recommendation process chain and has as objective

to create a numerical vector representation for each context situation, based on the results of

Algorithm 2. Two different techniques are proposed: by the aggregation technique (lines 2 to

12), we create a numerical vector of the same size of the context conditions vectors, and the

value of each cell will be the mean value of the corresponding values of its composed context

conditions. If the concatenation technique is chose (lines 13 to 18), we create a numerical vector

by concatenating the vector representations of its composed context conditions.

The next section presents a variation of our CBF approach which takes into account the different

impact degrees of context factors.
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Algorithm 3 : transformContextRepresentation

Input : s: context situation

S: matrix of context situations (the 2D transcript of all the context situations

present in T )

ccRep: context condition representations

r: model of context representation

∈ {IB/UB,CIB −AG/CUB −AG,CIB − CN/CUB − CN}
Result : ctxReps: representation of the context s

1 switch technique of r do

2 case AG do

3 foreach io ∈ items/users or cluster of items/users do

4 foreach f ∈ contextFactorsOf(S) do

5 c←− contextConditionV alue(f, s);
6 pcc←− ccRepcc[io];
7 pccSum+ = pcc;

8 counter++;

9 end

10 ctxReps[io]←− pccSum÷ counter;
11 end

12 end

13 case CN do

14 foreach f ∈ contextFactorsOf(S) do

15 c←− contextConditionV alue(f, s);
16 ctxReps ←− concatenate(ctxReps, ccRepc);
17 end

18 end

19 end

20 return ctxReps;
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5.2 Context Relevance

The integration of contextual information aims to improve the performance of the RS [77]. In

theory it could be assumed that the complete set of contextual information is significant and all

context factors are equally important. But in real-world cases, depending on the application,

some context factors could have a more important impact than others. Considering some

context factors can even may cause more noise than effective information. For example, in

the case of music recommendation, the activity of the user is more impacting her preferences

than her location. Also in this example a context factor like the season, which does not really

impact the listening preferences of the user, can produce more noise than information in the

recommendation process. So, identifying relevant context factors and/or considering their

impact degree in the recommendation process is important to avoid performance degradation.

Furthermore, we have to note that the automatic acquisition of certain context factors (like

the user’s mood or her social context) is still almost impossible and has to be specified directly

by the user. So this relevant context factors identification would also minimize the user’s effort

to specify her context, which is not negligible [34].

In this thesis we propose different methods to consider the context relevance in its represen-

tation. We regrouped them in three categories of approaches: weighting, filtering and hybrid

approaches:

I. weighting approach, where we compute a weight wfi
for each context factor fi and use

it to weight the corresponding condition vector in the context representation.

To obtain this weight, we first compute the correlation between the ratings r and each

context condition cj (based on PCC) as follows:

wcj = PCC(r, cj) =
∑
o∈O(ro − r)(cjo − cj)√∑

o∈O(ro − r)2
√∑

o∈O(cjo − cj)2
(5.6)

We consider the contextual dataset as a set of observations O, where each observation

o = (uo, io, ro, c1o, c2o, ..., cno) is composed of the evaluation ro of the user uo for the item

io in the context situation c1o, c2o, ..., cno, where n is the total number of context conditions.

In the Equation 5.6 the summation is taken over all observations (O) of the dataset. ro

and cjo are respectively the value of the rating and the value of the context condition

cj for the observation o. r represents the mean of ratings over all observations, and cj

represents the mean value of the context condition cj over all observations.

Then we propose to compute the weight corresponding to each context factor fi by one

of the two followings methods:

(a) We can attribute to each context factor fi, a weight equal to the average of the

absolute value of its possible context conditions cj (equation 5.7).
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Figure 5.6: Process chain with the weighting module

wfi
=
∑
cj∈Fi

| wcj |
|Fi|

(5.7)

Where Fi is the set of possible context conditions of the context factor fi. As an

example, for the context factor f1 = time, the set F1 of its possible context conditions

would be {morning, noon, evening, night}.

We consider the absolute value of wcj because here, what is interesting for us is the

strength of the impact of context factors, and not their positive or negative influence.

(b) By exploring the datasets, we realized that in some cases, for each context factor,

all of possible context conditions do not occur equally (please refer to the diagram

of Figure 7.1, which illustrates the context conditions frequencies of a real-world

dataset). Because of that, we propose a second notion of weight where we take into

account the number of occurrences of each context condition in this aggregation.

Therefore we will have the following weight equation:

wfi
=

∑
cj∈Fi

#Ofi=cj

#Ofi 6=unknown
| wcj |

|Fi|
(5.8)

Where we multiply the weight wcj by the ratio of the number of observations for

which the context condition cj is present to the total number of observations where

the context factor fi is known.

Figure 5.6 illustrates the modified filtering process chain which includes the weighting

module (between the initial steps 1 and 2 ): after the first step where we have repre-
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sented each context condition by a vector representation, just before aggregating or

concatenating them to obtain the context representation (step 2 ), we add step 1.w

where we compute the weights of all context factors wfi
for i ∈ [1,m] (where m is

the total number of context factors), and step 2.w where we multiply the values of

each context condition vector by its corresponding wfi
. The subsequent steps (2, 3

and 4 ) remain the same.

Example 5.2.1. In the case of our filtering module (illustrated in Figure 5.6, which

will be used in a context-aware movie recommender system), where we have three

context factors time, social and season, the resulting weights of the step 1.w for these

context factors are respectively 0.37, 0.55 and 0.31. So, in step 2.w, to obtain the

weighted representations of context conditions, we multiply the values of the vectors

Wmorning, Wnoon, Wevening and Wnight (context conditions of time) by 0.37, the values

of vectors Walone, Wfamily and Wfriend (context conditions of social) by 0.55, and the

values of the vectors Wsummer, Wspring, Wwinter and Wautomn (context conditions of

season) by 0.31.

II. filtering approach is a more strictly way to consider context relevance, where in a binary

configuration we ignore the non significant context factors and exclude their vectors from

the context representation. Here we propose two different methods to identify these non

significant context factors:

(a) The first strategy is based on a weight threshold, defined empirically. In the context

representation, we keep only context factors for which we have a weight greater than

a certain threshold.

(b) Another strategy is based on a causal inference test [89], and the relevant context

factors are identified as follows: we perform multiple execution of our CARS, where

each time we ignore one of the context factors (fi). If the performance do not change

or increase, we can conclude that considering this specific context factor have no

influence or negative influence on the performance (noisy context factor). And if

the performance decrease, it means that this context factor is a relevant factor and

should be considered in the recommendation process to have better results. By this

way we identify the important and relevant context factors and consider only these

ones in the context representation.

III. hybrid approach which is a combination of the two former approaches, where like the

filtering approach, we identify the relevant context factors to keep only these ones, and

like the weighting approach we weight their corresponding vectors in the context repre-

sentation.
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In the literature some propositions focus on context factor scale like [74], and some others

on context condition scale like [39]. By the hybrid approach we combine these two levels in

our relevance consideration. In fact we obtain for each context factor a weight based on the

weights of its corresponding possible context conditions, and then we filter on a factor level the

irrelevant context factors.

Note that in the following sections, weighting a refers to the approach which uses Equa-

tion 5.7 to compute the relevance of each context factors, and weighting b refers to the one

which uses the Equation 5.8 instead. filtering a refers to the filtering method based on a weight

threshold, and filtering b refers to the filtering method based on causal inference test. Also, as

the Table 5.2 show, the hybrid a refers to the method combining the weighting b and filtering a

methods, and hybrid b refers to the combination of methods weighting b and filtering b. (It

should be noted that in our hybrid combinations, we only use the weighting b methods, because

it uses a more complete weighting formula (Equation 5.8) than weighting a.)

Approach weighting a weighting b filtering a filtering b

hybrid a x x

hybrid b x x

Table 5.2: Hybrid combinations

5.3 Conclusion

In this chapter we present our Correlation-Based Filtering approach, to transform the

multi-dimensional contextual dataset to a 2D dataset based on the contextual information.

This filtering approach will be used in the recommendation process of a CARS (which will be

discussed in the next chapter). In this approach, we propose a vector representation of the

context, based on its influence on ratings. We model this influence based on the correlation

between the ratings and the context, calculated by the PCC or a mean deviation method.

This numerical vector representation of the context allows us to catch the similarities between

different contexts, and identify the most similar contexts to the target user one. Then we can

filter only ratings done in these similar contexts, and create a 2D matrix which reassemble

these selected ratings.

We offer different configurations of this approach for the context representation:

� item-based vs. user-based,

� clustered vs. non clustered,
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� aggregation vs. concatenation technique,

� different correlation techniques: PCC vs. the mean deviation,

� different similarity measures: Cosine vs. Euclidean similarities,

� different techniques to take into account the effect of context relevance: weighting, filtering

or hybrid techniques.

The effectiveness of each configuration will be discussed in the experimental chapter (Chapter 7).

In the next chapter, we will propose two context-aware recommendation methods, which in-

tegrate the context of the users in their recommendation process by the mean of the correlation-

based filtering module.
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Chapter 6

Correlation-Based Context-Aware

Recommendation

In this chapter we present two different approaches for the integration of our correlation-based

filtering module in a recommendation process to produce context-aware recommendations.

We propose to plug our filtering module, either in a pre-filtering configuration or a post-filtering

one: we named the former approach Correlation-Based Pre-Filtering (CBPF) and the latter

Correlation-Based Post-Filtering (CBPoF).

Pre-filtering approaches are a particular class of CARSs (context-aware recommender systems)

based on the idea of pre-processing contextual data so as to tune the input of a given (traditional)

recommender system (RS) in order to increase its effectiveness. While post-filtering approaches

firstly apply a traditional recommendation technique on the data by ignoring the context, and

then contextualize the resulting recommendation list by filtering or re-ordering the recommended

items.

6.1 Correlation-Based Pre-Filtering

A recommendation problem is often viewed as a matrix/tensor completion problem. A rec-

ommender system firstly estimates missing ratings, and then recommends to each user her

corresponding items with highest estimated ratings.

In the case of pre-filtering CARSs, we want to integrate the user contextual information into

the estimation phase of missing ratings. Our correlation-based pre-filtering approach, like the

reduction-based pre-filtering approach [4], makes the hypothesis that a user will rate an item

similarly in two similar contexts. Based on this hypothesis, to recommend an item to a user in

a specific context, we can identify ratings given in contexts similar to this specific context, and

apply a traditional 2D recommendation technique on this selection.

One of the main challenges in this procedure is to identify correctly the similar contexts to the

target user context. As in general, the context is mainly categorical data (like time= {morning,
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Figure 6.1: Correlation-based pre-filtering process chain

noon, evening}, social= {alone, family, friends}, etc), the automatic similarity computation

between two context instances is not trivial. In a specific domain, we can ask experts to deter-

mine and quantify the similarity between different context components or use ontology-based

approaches. But as we want a generic approach which can be applied to any domain, we use the

Correlation-Based Filtering module (described in the previous chapter), which is a data-driven

approach with a numeric representation of the context, to compute context similarities automat-

ically. We propose a pre-filtering configuration of this module, that we named Correlation-Based

Pre-Filtering (CBPF).

6.1.1 Methodology

Figure 6.1 illustrates the steps of the correlation-based pre-filtering method to produce

context-aware recommendations.

Step 1: Transforming the multidimensional contextual dataset to a 2D dataset based on

the context of the target user, by applying the correlation-based filtering module (described in

section 5.1.1). This filtering module can allow to reduce the very high sparsity of the initial

contextual dataset, which impact the recommendations accuracy.

Step 2: We then apply a traditional 2D recommendation technique [50] on this selec-

tion of ratings (local dataset), to obtain contextual recommendations. As our approach is

generic and parametric, any kind of 2D recommendation technique can be applied, but here we

suggest the BiasedMF technique [55], which is a good performing matrix factorization technique.

84



Our approach has two main technical advantages: (a) it is easily pluggable to any existing

2D recommender system: indeed this feature allows companies, which want to take benefit of

the available contextual information in their recommendation process, to re-use their existing

recommendation engine and plug the pre-filtering module prior to it. (b) it is also configurable:

we propose some alternatives for the different parts of the algorithm (different context repre-

sentations, similarity measures, clustering algorithms, correlation techniques, etc. detailed in

the previous chapter). Depending on the dataset and the available resources, we can configure

differently these features.

6.1.2 Pseudo-code

This section details the pseudo-code of CBPF in order to guarantee the reproducibility of the

algorithm.

Algorithm 4 : CBPF

Input : T : multi-dimensional tensor of contextual rating data,

u∗: the target user,

s∗: the context situation of the target user,

M : matrix of items/users characteristics,

S: matrix of context situations (the 2D transcript of all the context situations

present in T ),

t: similarity thresholds,

r: model of context representation

∈ {IB/UB,CIB −AG/CUB −AG,CIB − CN/CUB − CN}.
Result : recomList: list of recommended items for user u∗ in context s∗.

1 L←− CBFiltering(T,M, S, t, r, u∗, s∗);
2 recomList←− 2DRecommender(L);

The Algorithm 4 shows the procedure of CBPF to recommend relevant items to user u∗ in

context s∗. It takes as input a set of contextual rating data of users (T : user×item×context −→
rating), a set of items/users characteristics (M), the minimum similarity required to designate

a context as similar to the target user one (t), and the intended context representation (r).

In this algorithm, first (line 1), the multi-dimensional dataset (T ) is transformed to a 2D

dataset (L) by the CBFiltering module (described later in Algorithm 1). Then (line 2), a

traditional 2D recommender system is applied on this 2D dataset and in result we would have

a recommendation list for the target user in her context. In our experiments we used one of

the best performed 2D recommendation technique: BiasedMF, a matrix factorization method

proposed by Koren in [55] (see section 3.3.1 for the details of the algorithm). But as our approach

is generic and configurable, any other type of 2D recommender system (e.g. itemKNN, userKNN,
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SVD++, etc. [91]) can be plugged to our pre-filtering module.

6.2 Correlation-Based Post-Filtering

As mentioned before, the contextual information of the users can be integrated in the recom-

mendation process in three different ways: pre-filtering, post-filtering and contextual modeling

methods. Being positioned in an industrial context, where a traditional recommender system

already exists, we were first interested in pre-filtering technique which is mostly used in the

literature, and proposed a Correlation-Based Pre-Filtering (CBPF) approach based on the cor-

relation between contexts and ratings. Since there is not a real winner between these approaches,

we propose a post-filtering adaptation of our approach, called Correlation-Based Post-Filtering

(CBPoF). Our main motivation is that there is very few research on the comparison of pre-

and post- filtering approaches in CARS. Panniello et al. demonstrate in [78] that in some cases

post-filtering can beat pre-filtering technique. In our case, as we plugged our correlation-based

filtering module in a pre-filtering process, we would like to plug it in a post-filtering one, in or-

der to compare the performances of these two families of CARS based on our correlation-based

approach.

6.2.1 Methodology

Figure 6.2 illustrates the post-filtering process chain to recommend a list of appropriate items

to the user u∗ who is in the context s∗. Like all post-filtering approaches, first we transform the

multi-dimensional dataset to a 2D context-free dataset by ignoring the contextual information.

Then, we apply a traditional recommendation technique to this context-free dataset, for which

we obtain a set of predicted ratings for user u∗ (r̂u∗,i). Now, we propose to identify the

contextual neighbors of the target user u∗, that we call G. G is the set of similar users to u∗

in her context s∗. This neighborhood is identified by computing the cosine similarity between

the target user u∗ and all users who have rated items in contexts similar to s∗ (here we used

the cosine similarity which is mostly used in collaborative filtering techniques to determine the

similarities between users, but other similarity measures can as well be used). In this process,

the similar contexts identification is done based on our correlation-based filtering approach,

also used in CBPF (steps 1 to 4 described in section 6.1.1).

Now we contextualize the predicted ratings based on the distribution of ratings of G. And

propose a list of recommendations based on these contextual predicted ratings (r̂u∗,i,s∗).

The equation 6.1 illustrates the convex combination used to contextualize the context-free

predicted rating r̂u∗,i. The predicted rating of item i by user u∗ in context s∗ (r̂u∗,i,s∗) is the

weighted sum of the context-free predicted rating r̂u∗,i and the mean of ratings done by the

neighbors of user u∗. As said before, G is the set of u∗’s neighbors in contexts similar to s∗, so
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Figure 6.2: Post-filtering context-aware recommendation process chain to recommend relevant items to

user u* in context s*

rg,i refers to the rating of the neighbor g ∈ G for item i.

r̂u∗,i,s∗ = α× r̂u∗,i + (1− α)×
∑
g∈G rg,i

|G|
(6.1)

A context-aware recommender system has to juggle with two parameters: the personalization

and the contextualization of its predictions. The coefficient α which has a value between 0 and

1, allows us to set up these two parameters: by increasing its value we rise the impact role of

the context-free prediction and so the personalization part, while decreasing it will give more

importance to the contextualization part. In the former, the recommendations are focused on

the similarity of preferences with other users, while in the latter, we put the stress on the impact

of user’s context on her preferences.

6.2.2 Pseudo-code

Algorithm 5 describes the recommendation process of our post-filtering approach, CBPoF, to

recommend items to user u∗ in context s∗. Its inputs are a set of contextual rating data of

users (T : user × item × context −→ rating), a set of items/users characteristics (M), the

minimum similarity required to designate a context as similar to the target user one (t), the

intended context representation (r) and the coefficient α.

In this algorithm, first (line 1), the context dimensions of the initial dataset T are ignored by
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Algorithm 5 : CBPoF

Input : T : multi-dimensional tensor of contextual rating data,

u∗: the target user,

s∗: the context situation of the target user,

M : matrix of items/users characteristics,

S: matrix of context situations (the 2D transcript of all the context situations

present in T ),

t: similarity thresholds,

r: model of context representation

∈ {IB/UB,CIB −AG/CUB −AG,CIB − CN/CUB − CN},
α: coefficient of the contextualizing equation.

Result : recomList: list of recommended items for user u∗ in context s∗.

1 R←− mTo2Dimensions(T );
2 PR←− 2DRecommender(R);
3 similarCtxDS ←− CBFiltering(T,M, S, t, r, u∗, s∗);
4 CPRu∗ ←− contextualizePredictedRatings(PR, similarCtxDS, α);
5 recomList←− topN(CPRu∗)

transforming it to a 2D dataset (R). In line 2 a traditional 2D recommendation technique is

applied on this context-free dataset. For example, in our case, we used the matrix factorization

method BiasedMF [55]. The result would be a list of predicted ratings (PR). Then (line 3), we

apply our correlation-based filtering module (detailed in Algorithm 1) on the initial contextual

dataset T , in order to obtain a matrix of ratings given in contexts similar to the target user

one, s∗ (similarCtxDS). Now (line 4), based on this matrix we can contextualize the predicted

ratings (detailed in Algorithm 6) and recommend the top N items with highest scores for user

u∗ (line 5).

Algorithm 6 : contextualizePredictedRatings

Input : PR: list of predicted ratings,

similarCtxDS: matrix of ratings given in similar contexts,

α: coefficient of the contextualizing equation.

Result : CPR: contextualized predicted ratings.

1 foreach pr ∈ PR do

2 G←− computeNeighbors(pr.u, similarCtxDS);
3 m←− computeMeanNeighborsRatings(pr.i, G, similarCtxDS);
4 pr.r ←− α× pr.r + (1− α)×m
5 end
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Algorithm 6 illustrates the process of contextualizing the context-free predicted ratings of

the first step of CBPoF. It has as input PR, the set of (context-free) predicted ratings, where

each instance is a triplet of (user u, item i, predicted rating r), and the parameter α.

To contextualize the predicted ratings of each instance, we first (line 2) identify the neighbor-

hood (N) of its user pr.u in similarCtxDS: we do this by computing the similarity between

the rating vectors of the user pr.u and all users who have rated items in contexts similar to

the context of the target user s∗ (here we used the cosine similarity which is mostly used

in collaborative filtering techniques to determine the similarities between users, but other

similarity measures can as well be used). Then (line 3), we compute the mean of ratings

done by its neighborhood for item pr.i (m). Now (line4), we can contextualize each predicted

rating based on a weighted sum of the context-free predicted rating (pr.r) and the value of m,

weighted by the pre-defined coefficient α.

We detailed our pre-filtering and post-filtering context-aware recommendation approaches.

In the next section, we denote that we are able to generate explanations for our context-aware

recommendations.

6.3 Explanations for Context-Aware Recommendations

One of the topics that gets attention in the recommender systems field is the possibility to

provide explanations about the recommendations to the user. An explanation can clarify

the reasons why a specific item is proposed. As indicated by Tintarev and Masthoff in [96]

proposing an explanation to the user can have multiple advantages: transparency, by explaining

how the system works; scrutability, by allowing users to tell the system it is wrong; trust,

by increasing users confidence in the system; effectiveness, by helping users to make good

decisions; persuasiveness, by convincing users to try or buy an item; efficiency, by helping users

to make decisions faster; and satisfaction, by increasing the ease of usability or enjoyment of

an item.

In traditional RS, explanations are often content-based (e.g. “We recommend you A

because you liked B”), preference-based (e.g. “Your preferences suggest that you would like A”)

or collaborative-based (e.g. “People who like A, also liked B”) [96].

This interesting topic is not yet well exposed in the context-aware recommendation domain.

To our knowledge, only few work focused on this issue ([19, 60, 105]). Nonetheless, taking

into account the user contextual situation in the recommendation process not only allows to

improve the quality of the recommendations, but it can also be used to explain why an item is

recommended [19].
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In this research direction, we propose a method to generate adequate explanations about the

items that our CBPF and CBPoF approaches recommend, based on the result of our context

relevance detector (described in Section 5.2):

Suppose our CARS recommends an item i to the user u∗ in context s∗ : c1, c2, c3, ..., cm where

m is the total number of context factors. In the recommendation process, we identify the

most relevant context factors, based on our context relevance module (by weighting or filtering

techniques). We propose to generate the explanation of the recommended item, by using either

the most impacting context factor revealed by the weighting technique (the context factor with

the highest weight), or the set of relevant context factors identified by the filtering technique.

Example 6.3.1. If we return to our context-aware movie recommendation (Example 5.2.1),

where we have three context factors time, social and season, the resulting weights, obtained by

the weighting technique of our context relevance module, for these context factors are respectively

0.37, 0.55 and 0.31. So, in this case, the context factor which has the largest positive impact on

the rating prediction for the movie i is the social context.

Suppose that the value of the social context of user u∗ is family. Therefore, the explanation

phrase for her recommended item i would be like “It is great to watch the movie i with family”.

6.4 Conclusion

In this chapter, we propose to integrate our Correlation-Based Filtering (CBF) approach in

a pre-filtering and post-filtering configurations to produce context-aware recommendations.

The former named correlation-based pre-filtering (CBPF) and the later correlation-based

post-filtering (CBPoF). For recommending an item to a user in a specific context, we do as

follow:

In CBPF, we first filter ratings based on the context of the target user by our Correlation-based

filtering module, and then apply a traditional RS on this selection of data.

In our post-filtering proposition, CBPoF, we first apply a traditional RS in the initial data

while ignoring the contextual information, and then propose to contextualize the context-free

predicted ratings based on a convex combination (Equation 6.1) reached from the Correlation-

Based Filtering method.

Table 6.1 illustrates different versions of our approach and their specific attributes described

in the previous chapter.

To each one of the versions of Table 6.1 we can apply a weighting, filtering or hybrid method

in order to consider the context relevance.

The context can be represented by the correlation between ratings and contexts computed by

either the PCC (Equations 5.1 and 5.2) or the mean deviation formula (Equation 5.5).

Also different similarity measures can be used in the computation of similarities among
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Approach item-based user-based non-clustered clustered aggregation concatenation
p
re

-fi
lt

e
ri

n
g

CBPF-IB x x x

CBPF-CIB-AG x x x

CBPF-CIB-CN x x x

CBPF-UB x x x

CBPF-CUB-AG x x x

CBPF-CUB-CN x x x

p
o
st

-fi
lt

e
ri

n
g

CBPoF-IB x x x

CBPoF-CIB-AG x x x

CBPoF-CIB-CN x x x

CBPoF-UB x x x

CBPoF-CUB-AG x x x

CBPoF-CUB-CN x x x

Table 6.1: Different versions of our CBPF and CBPoF approaches

contexts. We detailed the cosine and euclidean similarities respectively in Equations 5.3

and 5.4.

We also propose a method to generate explanations for our context-aware recommendations,

based on the results of our context relevance detector.

In the next chapter, we will evaluate and compare these different versions of CBPF and

CBPoF, discuss about the properties of each one and compare with baselines and state of the

art approaches.
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Chapter 7

Experimental Analysis

In the two previous chapters, we first present a filtering approach to transform a multi-

dimensional contextual dataset to a 2D dataset named Correlation-Based Filtering approach.

Then we propose two context-aware recommender systems which integrate this filtering module

in their recommendation process, in order to take into account the user context and gener-

ate context-aware recommendations: Correlation-Based Pre-Filtering (CBPF) and Correlation-

based Post-Filtering (CBPoF).

This chapter evaluates the features and performances of our proposed context-aware recommen-

dation approaches.

7.1 Datasets and Parameters

In this section, we report about our experimental analysis. We first describe the four datasets

that we used, we then report about parameters used in our approach, and the metrics for

experimental evaluation.

7.1.1 Datasets

We evaluated our approach on four real world datasets, which are well-known among the CARS

community: (a) CoMoDa, a contextual dataset for movie recommendation, collected from sur-

veys [59]. In this dataset, context situations are defined by 12 different context factors: time,

day type, season, location, weather, social context, end emotion, dominant emotion, mood, phys-

ical context, decision and interaction; (b) STS [33], a tourism dataset, containing contextual

ratings for places of interest, collected using a mobile tourist application. In this dataset,

context situations are expressed using 14 context factors: distance, available time, tempera-

ture, crowdedness, knowledge of surroundings, season, budget, day time, weather, companion,

mood, weekday, travel goal and means of transport ; (c) the Music dataset, containing ratings

for contextual music recommendation, collected by an in-car music recommender developed by
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Baltrunas et al. [18]. In this dataset we have a total number of 8 context factors (driving style,

landscape, mood, natural phenomena, road type, sleepiness, traffic conditions and weather), but

it has this specificity that for each context situation, the value of only one context factor is

known; and (d) the Trip dataset [112], a larger tourism dataset scripted from online reviews on

tripadvisor.com, with the unique context factor trip type.1

We have to note that there are only few contextually tagged rating datasets available, and these

four are amongst the more popular ones used in the literature.

7.1.1.1 Mapping to our generic context factor categorization

In Table 7.1, we have mapped the context factors of these four datasets to our proposed context

categories presented in Chapter 4. We can see that for these datasets, we can find contextual

information about mostly all categories except the categories of technical context (hardware and

data), equipment and demographic context. The two first ones can be useful in more specific ap-

plications, like recipe recommendation where equipment would be an important context factor,

or software recommendation, where technical context would matter. The last one, demographic

context has a particularity. Indeed, the demographic category is not an entire dynamic category

like other context categories, but a semi-dynamic category. So depending on the application,

information of this category like age, genre, etc, could be taken into account either as contex-

tual information of the user, or as static characteristics of her. The former will be the case of

applications where the time spent between two consecutive recommendations is very long, like

recommendations done for buying a car or a house. In these cases attributes like the age of

the user will count like contextual information, because it is likely that from one purchase to

another their values change. But in applications like music or movie recommendations, we will

not have enormous changes of these demographic information along recommendations. So we

will treat these kind of information like static characteristics of the user. This is the case for

our application examples of movie, travel and music recommendation, and this explain why this

context category is empty.

7.1.1.2 Items/users characteristics information

In these datasets beside the contextual information about the users, we also have some (static)

characteristics about items/users which will essentially be used in the clustering phase. In

CoMoDa we have movies’ characteristics like the genre, year, language, country, director, actors

and budget. But also the age, gender, city and country of the users. In STS we have the point

of interest category and some static information about the users like the birth-date, gender,

openness to experience, conscientiousness, extroversion, agreeableness and emotional stability.

1The three last context-aware datasets are available on the repository of the CARSKit application: https:

//github.com/irecsys/CARSKit/tree/master/context-aware_data_sets
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Context Factors CoMoDa STS Music Trip

Physical

Temporal time,

daytype,

season.

available

time,

season,

daytime,

weekday.

- -

Spatial location crowdedness landscape,

road type,

traffic condi-

tion.

-

Environmental weather weather weather -

Equipment - - - -

Personal

Demographic - - - -

Social social companion - -

Psychophysiological end

emotion,

dominant

emotion,

mood,

physical.

mood mood,

sleepiness.

-

Cognitive decision,

interaction.

knowledge of

surroundings,

budget,

travel goal.

driving style trip type

Technical
Hardware - - - -

Data - - - -

Table 7.1: Correlation between the contextual information in datasets and our context categorization

(Chapter 4)
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Characteristics CoMoDa STS Music Trip

#ratings 2296 2534 4012 14063

#users 121 325 42 2371

#items 1197 249 139 2269

rating scale 1-5 1-5 1-5 1-5

rating’s mean 3.83 3.47 2.37 4.13

rating’s median 4 4 2 4

rating’s standard deviation 1.05 1.29 1.48 0.93

non-contextual sparsity 98.41% 96.86% 31.27% 99.73%

contextual sparsity 99.99% 99.99% 99.99% 99.94%

#context factors 12 14 8 1

#context conditions 49 59 26 5

#items characteristics 7 1 5 3

#users characteristics 2 7 0 2

Table 7.2: Datasets’ descriptive statistics

For the Music dataset we have some static information about the songs like the title, the artist

name and the music category. And finally in the Trip dataset we have the user state and time

zone, but also the city, state and time zone of hotels.

7.1.1.3 Descriptive statistics

Table 7.2 illustrates some descriptive statistics about these datasets. Note that we calculated

the non-contextual and contextual sparsities respectively by means of the following equations

(Equation 7.1 and 7.2):

1− #ratings
#users×#items (7.1)

1− #ratings
#users×#items×

∏m
i=0 |CCfi

|
(7.2)

In the latter, we consider the dimensions of contextual information: m is the total number

of context factors, fi refers to the i-th context factor, and |CCfi
| refers to the number of context

conditions of the context factor fi. Due to the large number of contextual information, this

sparsity is extremely high (at least 99.94%)

As Table 7.2 shows, contrary to the Music dataset, the three other datasets are very sparse

(while ignoring the context). In addition, the Music and STS datasets have the disadvantage

of a lack of fully context situation information. The ratings of the four datasets go from 1 to 5.
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But the distribution of the ratings are not similar: in CoMoDa, STS and Trip, the items are

mostly well rated, with a mean of around 3.5-4 and a median of 4. But in the Music dataset, the

rating distribution is more important in the middle and lower part. In fact we have a median

of 2 and a mean of 2.37.

7.1.1.4 Context conditions frequencies

The number of occurrences of context conditions of each factor is not always balanced. Fig-

ures 7.1, 7.2, 7.3 and 7.4 illustrate their distribution for the four datasets. In these plots, each

bar corresponds to a context factor, and each colored partition in a bar illustrates the percentage

of a possible value.
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Figure 7.1: Context conditions distribution of CoMoDa context factors

97



di
st
an

ce

tim
eA

va
ila

bl
e

te
m

pe
ra

tu
re

cr
ow

de
dn

es
s

kn
ow

le
dg

eO
fS

ur
ro

un
di

ng
s

se
as

on

bu
dg

et

da
yt

im
e

wea
th

er

co
m

pa
ni

on

m
oo

d

wee
kd

ay

tr
av

el
G
oa

l

tr
an

sp
or

t
80

82

84

86

88

90

92

94

96

98

100

102

100 100 100 100 100 100 100 100 100 100 100 100 100 100100 100 100 100 100 100 100 100 100 100 100 100
99.3

100100 100 100 100 100 100 100 100 100 100 100 100

98.4

100100 100 100 100 100 100 100 100 100 100 100 100

98.1

100100 100 99.9 100 100 100 100 100
99.3

100 100 100

97.5

100100 100

96.9

100 100 100 100

96

99.2 99.5 100 100

97.1

100100 100

94.2

100 100

96.7

100

96

97.7
98.6 98.9

100

97

99.3
100

97.1

86.5

99

92.5

94.3

98.4

91.8

96.7
97.5

96.5

100

96.7

98.4

87.7

93.7

84.6

93.1

88.4
89.1

93.8

91.8
92.8 92.4

96

97.4
96.5

97.8

82

84.9 84.4

85.8 85.9
86.8

89.4 89

91
92

93
94

95.9
96.8

co
n
te

x
t

co
n
d
it

io
n
s

d
is

tr
ib

u
ti

on
(%

)

unknown v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 7.2: Context conditions distribution of STS context factors
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Figure 7.4: Context conditions distribution of Trip context factor

The first blue color in a bar of these plots corresponds to the percentage of not specified

value by the user (unknown), and the others correspond to the possible context conditions.

For example in Figure 7.1, the first bar (in left) illustrates the distribution of possible values

of the context factor time, which are from bottom to top : unknown (4.5%), morning (5.3%),

afternoon (21.3%), evening (45.8%) and night (23.1%). In this case we can see that almost the

half of observations occurred in the evening (45.8%), while only 5.3% occurred in morning. We
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can observe this kind of more or less imbalance feature for all of the context factors of CoMoDa,

as well as for the unique context factor of the Trip dataset (Figure 7.4). The case of STS and

Music is roughly different: these two datasets are not as well specified as CoMoDa in term of

contextual information. As we can see in Figures 7.2 and 7.3, for each context factor, more than

80% of the observations have lack of contextual information. For the rest, similarly to CoMoDa

and Trip, we can see an imbalance of context conditions in STS, while in Music, the proportion

of context condition frequencies is balanced.

7.1.2 Modeling Parameters

In this section, we will explain some modeling parameters such as the clustering process, the

context similarity threshold and the context-free algorithm used in our experimentations, in

order to ensure the reproducibility.

The item/user clustering in the first step needs some pre-treatments:

Firstly we have put aside non-characteristic parameters of items/users, like actors and directors

in the CoMoDa dataset, and artist in the Music dataset. By non-characteristic, we mean that

they will not be of help for clustering, as each one has a huge number of possible values in

comparison to the total number of items/users. Moreover some characteristics have redundant

information, like the hotel city, state and time zone in the Trip dataset. In this case we can

keep only one of these characteristics, like the state.

Generally, items’ or users’ characteristics are a mixture of numerical and nominal variables. We

have made these uniform by transforming numerical variables such as year and budget of movies

in CoMoDa, and age of users in CoMoDa and STS datasets (note that we transform birthday

to age in the STS dataset, for an easier treatment). By an analysis of the data distribution, we

have created two classes for the year variable: ancient movies, those realized before 1988, and

recent movies, realized after this date. For the budget variable, we have made tree segmentations

of weak budget (less than 18,000,000 $), moderate budget (between 18,000,000 and 50,000,000

$) and large budget (more than 50,000,000 $). And for age, we grouped by interval of 5 years.

In some cases where we do not have equally distributed values of variables, a grouping is needed:

in CoMoDa, for movie language, we have 28 different languages, but 88.61% of movies are in

English. So we have replaced the values of languages other than English by a new value ”other”,

and we have done a similar treatment for the movie country variable; in STS, the Point Of

Interest (POI) category is defined by a number from 1 to 29. We have kept the POI categories

1, 3, 4 and 9, and we have grouped all others in a single cluster, because the frequency of each

one was less than 5% of the total.

After these pre-treatments, we can cluster items or users. Depending on the available infor-

mation about items’ or users’ characteristics, two strategies exist for the clustering:

� in case of more than one available characteristic, we can apply a standard clustering
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algorithm like Hierarchical Clustering (HC) based on these characteristics. We choose

the HC technique, which contrary to k-means does not require a pre-defined number of

clusters. HC uses a bottom-up approach, it starts to place each item in a cluster, and

iteratively merges the two closest clusters (represented in a dendrogram), until all the

items are merged into a single cluster. By interpreting the dendogram, we can stop at

whatever number of clusters we find appropriate.

� otherwise, if we have only one characteristic (e.g. POI category in STS or music category

in Music datasets), we can directly use this variable as cluster identifier.

So we applied HC on the items and users of CoMoDa. As result, the best segmentation proposed

was 4 items’ clusters and 5 users’ clusters. In the case of STS, we obtain 2 clusters of users by

HC. But for clustering items, as we had only one characteristic about them, which is the POI

category, we used it directly as cluster number. For Music, where we had 5 characteristics about

items: music category, title, artist, mp3 and image url. We used the music category, which is

between 1 and 10, as items cluster number. And finally for Trip we use the states of items and

users as items and users cluster id.

In step 3 of our correlation-based filtering approach (Figure 5.1), we need to set a similarity

threshold for identifying the most similar contexts. To identify the best threshold for each

dataset, we evaluate the approach on the dataset by different threshold from 0.1 to 0.9, and

select the one that yielded better prediction accuracy (minimum MAE). So, we set the similarity

threshold equal to 0.6 for CoMoDa, 0.3 for STS, and 0.5 for Music and Trip. A similarity

threshold equal to 0.5 means that when we want to select local datasets, we select ratings that

have been given in context situations which are more than 50% similar to the target user context

situation.

The traditional (context-free) recommendation technique used in the last step of our ap-

proach is the Biased Matrix Factorization model [57] (from LibRec Java API [46]), which is one

of the best-performing techniques reported in the state of the art [40].

7.1.3 Evaluation Parameters

For the evaluation of our approach, we avoided to exclude items or users with low counts, in order

to match as closely as possible the conditions of real recommendation applications. Due to the

relatively small size of our datasets, we evaluated our approach based on 5-fold cross-validation.

As many research in the domain, we used Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) metrics to evaluate the rating estimation. As illustrated in Equations 7.3 and

7.4, where n is the total number of ratings, these metrics compute the difference between the

actual (ri) and predicted ratings (r̂i), but the RMSE penalizes large errors more. Lower values

of these metrics show better performances.
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MAE = 1
n

n∑
i=1
|ri − r̂i| (7.3)

RMSE =

√√√√ 1
n

n∑
i=1

(ri − r̂i)2 (7.4)

Note that due to the small size of the available contextual datasets, we obtain very low

values for recommendation performance metrics such as Precision and Recall, which are not

enough representative of the CARS performances. This is the reason why we have abandoned

these metrics, and based our evaluations on the rating estimations metrics.

7.2 Results and Discussion

We implemented our approach by Java (jdk 1.8) in the Eclipse IDE, and evaluated our approach

in seven steps: (1) we compared the performances of the derived versions of our approach in

term of context representation in the pre-filtering configuration, (2) we studied the sparsity

reduction obtained by our pre-filtering method, (3) we evaluated the effect of context relevance

consideration in the recommendation performances, (4) we studied the difference of performance

by different similarity measures, (5) we compared the performances of pre- and post-filtering

adaptation of our approach, (6) we compared our context-aware recommendation approaches

with a context-free recommendation approach and two baselines, and finally, (7) we compared

our approaches with well-known state of the art CARS approaches.

7.2.1 Comparing Different Context Representations

Tables 7.3 and 7.4 illustrate the performances of the derived versions of our CBPF approach, in

terms of rating estimation, respectively by the PCC and the mean deviation (see Section 5.1.1)

methods. CBPF-IB and CBPF-UB refer to the item- and user-based correlation model,

CoMoDa STS Music Trip

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBPF-IB 0.84 1.05 0.95 1.19 1.25 1.51 0.82 1.06

CBPF-CIB-AG 0.84 1.05 0.87 1.10 1.25 1.50 0.81 1.05

CBPF-CIB-CN 0.84 1.05 0.97 1.19 1.21 1.44 0.81 1.05

CBPF-UB 0.85 1.05 0.95 1.18 1.27 1.50 0.82 1.06

CBPF-CUB-AG 0.84 1.05 0.86 1.09 — — 0.81 1.05

CBPF-CUB-CN 0.81 1.02 0.98 1.22 — — 0.81 1.05

Table 7.3: MAE/RMSE of the derived techniques of our CBPF approach (with PCC )
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CoMoDa STS Music Trip

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBPF-IB 0.84 1.05 0.95 1.18 1.23 1.48 0.81 1.05

CBPF-CIB-AG 0.84 1.05 0.87 1.10 1.23 1.48 0.82 1.06

CBPF-CIB-CN 0.85 1.06 1.02 1.25 1.20 1.43 0.82 1.06

CBPF-UB 0.83 1.05 0.96 1.19 1.23 1.48 0.81 1.05

CBPF-CUB-AG 0.84 1.05 0.86 1.09 — — 0.81 1.04

CBPF-CUB-CN 0.77 0.99 0.99 1.23 — — 0.81 1.04

Table 7.4: MAE/RMSE of the derived techniques of our CBPF approach (with mean deviation)

CBPF-CIB-AG and CBPF-CUB-AG refer to the correlation models based on the cluster of

items or users, with the aggregation technique, and finally CBPF-CIB-CN and CBPF-CUB-CN

refer to the same model, but with the concatenation technique (Please refer to the Extension

2.1 of the Section 6.1.1).

As we can see in both tables (7.3 and 7.4), there is not a single winner between the different

context representation models. Contrary to the STS dataset where we obtain better results by

the aggregation technique, for the datasets CoMoDa and Music the concatenation technique

perform better. The case of the Trip dataset is a bit different: in this dataset the user context

is expressed by only one context factor. So, the context representation by the aggregation and

concatenation models will be exactly the same, and this is why the results of these two families

of models are identical for this dataset.

However in any case we can note that by clustering items/users we not only gain in term of com-

putation cost but also in term of rating estimation performance. This confirms the fact that the

more variables are rich, better we can catch the correlation between them. Another interesting

point is that it seams the user-based influence model gives comparable or slightly better results

(CBPF-CUB-CN for CoMoDa, CBPF-CUB-AG for STS and CBPF-CUB-AG/CN for Trip).

It could show that the influence of contexts on ratings is more user-based than item-based (but

have to be tested on more datasets). Note that we could not do this comparison on the Music

dataset, because we did not have information about users’ characteristics for user clustering.

By comparing the performances of the models based on PCC (Table 7.3) and the ones based

on mean deviation (Table 7.4), we can see that in most cases the mean deviation performances

are comparable or better than PCC. This can be explained by the relatively small size of the

datasets, and the fact that the PCC is impacted by the number of available data. Indeed, by

PCC it is harder to catch the real correlation in small datasets. Because in PCC we have

a product function (see Equation 5.1) which represent the interaction of ratings and context
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condition values. So the more data we have, the best we can model this interaction, and the

PCC value will be more significant. Whereas the meanDeviation method compute a more

simple correlation between ratings and contexts, only based on the mean value of ratings done

when a certain context condition is present and when it is not.

The winner models for each dataset is illustrated in bold: while for STS, Music and Trip we

have comparable results, for CoMoDa we have an improvement by the mean deviation (MAE

decrease from 0.81 to 0.77).

We can conclude that the choice of the best model depends strongly to the application and

data. But in any cases the clustering strategy have to be taken in order to not only reduce

computational cost, but also catch more precise correlation which results in more relevant

context representations.

7.2.2 Sparsity Reduction

As stated earlier, one of the main challenges of context-aware recommender systems is data

sparsity: producing relevant recommendations, while limited amount of user’s ratings are

available to train the recommendation model.

Our pre-filtering approach, CBPF, tries to decrease the sparsity (or augment the density) level

of the dataset which will be used as the input of the recommender system, by transforming

the initial multi-dimensional dataset to a 2-dimensional dataset. This is done by filtering the

initial data and selecting only ratings given in contexts similar to the target user one (by our

correlation-based filtering module).

Table 7.5 displays the density of data for each dataset, before (first line) and after (second

line) doing the correlation-based pre-filtering. The former density is computed by the Equa-

tions 7.5 and the later is done by Equation 7.6 (where m is the total number of context factors,

and |CCfi
| refers to the number of possible context conditions for the context factor fi).

#ratings
#users×#items×

∏m
i=0 |CCfi

|
(7.5)

#ratingssimilarContexts
#users×#items (7.6)

The results of Table 7.5 demonstrate that in most cased (expected for Trip), the density

has been substantially augmented by CBPF : it has increased the data density by 39 times for

CoMoDa, 93 times for STS or even 208 times for Music. The only dataset for which the pre-

filtering does not change the sparsity level is the Trip dataset, because its contextual information

is already limited by only one context factor, and five context conditions.
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Density CoMoDa STS Music Trip

contextual density 0.01% 0.01% 0.01% 0.06%

pre-filtered density 0.39% 0.93% 2.08% 0.06%

Table 7.5: Density of the multi-dimensional contextual dataset vs. pre-filtered 2D dataset

7.2.3 Effect of Context Relevance Consideration

CoMoDa STS Music
PPPPPPPPPPP
Models

Versions (CBPF-CUB-CN) (CBPF-CUB-AG) (CBPF-CIB-CN)

MAE RMSE MAE RMSE MAE RMSE

CBPF without context relevance 0.81 1.02 0.86 1.09 1.21 1.44

CBPF Weighting (a) 0.82 1.03 0.87 1.11 1.20 1.44

CBPF Weighting (b) 0.82 1.03 0.87 1.11 1.20 1.43

CBPF Filtering (a) 0.81 1.02 0.86 1.09 1.20 1.44

CBPF Filtering (b) 0.79 0.99 0.81 1.03 1.20 1.43

CBPF Hybrid (a) 0.82 1.03 0.84 1.07 1.20 1.44

CBPF Hybrid (b) 0.75 0.95 0.8 1.03 1.19 1.42

Table 7.6: Best MAE/RMSE performances of the CBPF versions with context relevance consideration

Table 7.6 shows the best performance among the different versions of CBPF, where we consider

the context relevance in the recommendation process (see Section 5.2). The Trip dataset is the

absent of this analysis section, because of its single context factor.

For each dataset we test the different propositions of integrating the context relevance, on the

best performing CBPF model based on the results reported in Table 7.3. So, for CoMoDa, we

test on CBPF-CUB-CN, for STS we test on CBPF-CUB-AG and for Music we test on CBPF-

CIB-CN approach. The weight threshold used in methods filtering (a) and hybrid (a) is set

empirically to the maximum context factor weight divided by 2.

The results show that taking into account the context relevance can effectively improve the

performances of the CARS. Between the different proposed methods, the last one which is the

hybrid method (b) give us the best performances. In this method we identify the relevant context

factors based on an offline causal inference test and integrate a weighted vector representation

of them into the context representation, while ignoring the irrelevant context factors.

From this, we can conclude that not all contextual information is useful to take into account

in the recommendation process. Some of them would be noise, and it is not only crucial to

detect the relevant contextual information, but also treat each one based on their impact degree

for a better recommendation.
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Let us take a closer look at the context factors weights and their relevance identified by the

different methods proposed in section 5.2. Figures 7.5a, 7.5b and 7.5c illustrate the weights

computed by the weighting (b) method (Equation 5.8) for the three datasets CoMoDa, STS

and Music.

Based on these weight values, in the filtering (a) method, we set the weight threshold

(weightmax/2) for each dataset: for the CoMoDa dataset we obtain a threshold equal to 0.90,

for STS : 2.43 and for Music: 0.57. Then the context factors with a weight greater than its

corresponding threshold are marked as relevant context factors.

Note that we test multiple threshold formulas (weightmax − weightmin/2, weightmin/2, mean

of weights, etc), and choose the best performing one which is the half of the maximum weight

(weightmax/2).

Tables 7.7a, 7.7b and 7.7c show the relevant context factors identified by each filtering methods

a or b. The green mark (3) means the context factor is identified as relevant and the red one

(7) means it is identified as irrelevant.

Contrary to the case of STS and Music where we have some common context factors detected

as relevant by the two methods, in the case of CoMoDa there is no intersection between the

two sets of identified relevant context factors.
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(a) CoMoDa

distance
timeAvailable

temperature
crowdedness

knowledgeOfSurroundings

season
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daytime
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transport

4.24
3.08

1.24
2.57

1.44
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(c) Music

Figure 7.5: Context factors weights
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Table 7.7: Context relevance detection results by the methods filtering(a) and filtering(b)

Context factors filtering(a) filtering(b)

time 7 7

daytype 7 7

season 7 7

location 7 7

weather 7 7

social 7 7

endEmo 7 3

dominantEmo 7 3

mood 3 7

physical 3 7

decision 3 7

interaction 3 7

(a) CoMoDA

Context factors filtering (a) filtering (b)

distance 3 7

timeAvailable 3 7

temperature 7 7

crowdedness 3 3

knowledgeOfSurroundings 7 7

season 7 7

budget 7 7

daytime 3 3

weather 7 7

companion 7 7

mood 7 7

weekday 3 3

travelGoal 7 7

transport 7 7

(b) STS

Context factors filtering(a) filtering(b)

drivingStyle 7 7

landscape 7 7

mood 7 7

naturalphenomena 3 3

roadType 3 7

sleepiness 3 3

trafficConditions 7 3

weather 7 7

(c) Music
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7.2.4 Euclidean vs. Cosine Similarity

CoMoDa STS Music Trip

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Cosine 0.75 0.95 0.8 1.03 1.19 1.42 0.81 1.05

Euclidean 0.83 1.04 0.93 1.19 1.0 1.26 0.81 1.05

Table 7.8: Euclidean vs. Cosine similarity performances

Table 7.8 illustrates the comparison between the resulting performances of similarity mea-

sures cosine and euclidean. Here the best results for each dataset is reported (see Table 7.6).

Contrary to Music where the euclidean similarity outperforms the cosine, for CoMoDa and STS

we have considerably better results with the cosine similarity.

To explain this difference, we have to take a closer look to the datasets: two main points differ-

entiate the Music dataset from the two other datasets: (1) comparing to CoMoDa and STS, in

the Music dataset, we have more available rating data (around 4000 ratings for Music, compar-

ing to around or less than 2500 ratings for STS and CoMoDa), (2) but less available contextual

information: only 8 context factors (comparing to 12 or 14) and the particularity that the value

of only one context factor is known for each observation. This two points make potentially

more scaled context vectors, which are not well treated by the cosine similarity measure. For

the Trip dataset, results show that the similarity measure does not affect the recommendation

performances.

7.2.5 Pre-Filtering vs. Post-Filtering

CoMoDa STS Music Trip

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBPF 0.75 0.95 0.80 1.03 1.0 1.26 0.81 1.05

CBPoF 0.81 1.01 0.59 0.76 0.88 1.09 0.87 1.12

Table 7.9: Recommendation performance of CBPF vs. CBPoF

Table 7.9 shows a comparison of the best results of CBPF (Correlation-Based Pre-Filtering)

vs. CBPoF (Correlation-Based Post-Filtering). In the second line the results correspond to

the following configurations: the CBPoF-CUB-CN for CoMoDa, with α equal to 0.7, the

CBPoF-CUB-AG for STS, with α equal to 0.5, the CBPoF-CIB-CNT for Music with α equal

to 0.9, and the CBPoF-CUB-CNT with α equal to 0.5 for Trip (we will discuss about the

value of α bellow in the next paragraph). The results show that in some cases the pre-filtering
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Figure 7.6: Effect of α on the MAE performance of CBPoF

adaptation of our approach dominates the post-filtering (CoMoDa and Trip) and in some other

cases (STS and Music) the post-filtering outperforms. Contrary to STS and Music where

there is a lack of full declared contextual information, the datasets CoMoDa and Trip contains

more complete contextual data for each observation. Indeed as the Figures 7.2 and 7.3 show,

for each context factors of STS and Music, the value of more than 80% of the observations are

not reported and unknown. This fact could explain the reason why in cases like CoMoDa and

Trip where the contextual information is well-reported for each observation, the pre-filtering

approach performs better.

Figure 7.6 shows the evolution of MAE for CBPoF depending on the value of α. As said in

the previous chapter, the value of α (which could be between 0 and 1) is set to determine the

distribution of the impact degree between the personalization and the contextualization part

of the context-aware recommendation task. A higher value will give more importance to the

personalization, while a lower value makes the context impact more important.

In the case of our four datasets: for Music we obtain better results, which can even beat the

pre-filtering performances, by a very high α (0.9). This means that the context is not impacting

a lot the results, and can be explained by the nature of the dataset, where there is a poor

contextual information for each observation. For STS and Trip, we have an equally distributed

impact of the two aspects (personalization and contextualization). For CoMoDa an α equal to

0.7 give a higher importance to the personalization, while keeping still the impact of the context

in its recommendations.
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Figure 7.7: MAE improvement (%) of CBPF with respect to context-free MF and baselines
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7.2.6 Comparing CBPF and CBPoF with Baseline Methods

Figures 7.7 and 7.8 illustrate the MAE improvement that our correlation-based approaches,

respectively CBPF and CBPoF, make over the context-free recommendation and the base-

lines. The performance improvements are expressed in percentage and computed as follows in

Equation 7.7:

Improvementbaseline = (
MAEbaseline −MAECBFP/CBPoF

MAEbaseline
)× 100 (7.7)

The context-free recommendation technique used in this experimentation is a Matrix Fac-

torization (MF) technique named BiasedMF, proposed by Koren in [55] (technique described

in section 3.3.1). The comparison of our context-aware recommendation and this context-free

matrix factorization confirms that users’ contextual information can help the recommender to

improve its performance.

The first baseline we used is the exact pre-filtering approach proposed by Adomavicius et al.

in [4], and the second one is a binary pre-filtering method which uses a binary representation

of the context in a pre-filtering configuration. In this method, we represented the context by

means of a binary vector with a size equal to the total number of context conditions, where the

value of each cell is equal to 1 if the corresponding context condition is present in the context

situation, or equal to 0 if it is not present. We did a pre-filtering recommendation using this

binary context representation.

As Figures 7.7 and 7.8 show, except for the post-filtering of Trip (discussed in the next para-

graph), the two versions of our approach outperform these baselines. The improvements over

the exact pre-filtering show that the idea of filtering the ratings based on the ones done in sim-

ilar contexts is effective. And the improvements over the binary pre-filtering show the positive

effect of representing the context based on the influence of context on ratings.

In the case of Trip, we can see that the post-filtering can not beat the pre-filtering approaches,

even the simple ones (exact pre-filtering and binary pre-filtering). The explanation that we can

bring for this observation is that a single context factor can not efficiency conduct the contex-

tualization of the results of a context-free recommender system in a post-filtering configuration.

So, in cases where we have very limited contextual information, pre-filtering approaches have

to be adopted.

7.2.7 Comparing CBPF and CBPoF with the State of the Art

Finally, we compared our approach with four well-known state of the art approaches, which

report interesting performances in the literature and in some cases their models are more

closer to our approach: (a) DSPF (Distributional Semantic Pre-Filtering) [40], (b) DCM

(Differential Context Modeling) [109], (c) Splitting approaches [110] and (d) Deviation-based
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CoMoDa STS Music Trip

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBPF 0.75 0.95 0.80 1.03 1.0 1.26 0.81 1.05

CBPoF 0.81 1.01 0.59 0.76 0.88 1.09 0.87 1.12

DSPF 0.86 1.08 1.26 1.62 1.76 2.49 0.84 1.06

DCM 0.79 1.04 0.96 1.24 1.11 1.41 0.87 1.14

Splitting 0.82 1.03 0.82 1.18 0.65 1.0 0.88 1.13

CAMF 0.76 1.02 1.03 1.37 0.82 1.06 0.87 1.12

Table 7.10: Comparison with state of the art

CAMF (Context-Aware Matrix Factorization) [21]. In fact DSPF and CAMF approaches try

to model the context based on the influence of contexts on ratings, and DCM and DSPF uses

the similarities among contexts in their approaches. Each one of these approaches have different

versions (cited in Chapter 2). We tested all the possible versions, and the performances of the

best version of each approach, in terms of rating estimation are illustrated in Table 7.10 for

each dataset.

We have to note that we exclude ranking-based approaches (such as similarity-based CAMF or

CSLIM approaches) from our comparison, because as explained before, we based our evaluation

on rating estimation metrics. Indeed, we can categorize the CARS algorithm to rating-based

and ranking-based algorithms. Contrary to rating-based ones, which first estimate the missing

ratings of the dataset and then recommend items with highest rates, the ranking-based CARS

algorithms, generate a ranking of items and recommend the best ranked items. So MAE/RMSE

could not be evaluated for this kind of algorithms.

We tested state of the art algorithms by relying on the CARSkit Java API [114]. So for each

dataset, we report the performances of the followings versions:

� CoMoDa: the hybrid (b) version of CBPF-CUB-CN, CBPoF-CUB-CN, DSPF-IB, DCW,

UISplitting and CAMF-CU,

� STS : the hybrid (b) version of CBPF-CUB-AG, CBPoF-CUB-AG, DSPF-IB, DCW, Item-

Splitting and CAMF-CU,

� Music: the hybrid (b) version of CBPF-CIB-CN (with euclidean similarity), CBPoF-CIB-

CNT, DSPF-UB, DCW, UserSplitting and CAMF-CU,

� Trip: CBPF-CUB-CN, CBPoF-CUB-CNT, DSPF-UB, DCW, UISplitting and CAMF-

CU.
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The reported results are average of multiple executions based on 5-fold cross-validation. For

each dataset, the values in bold are statistically significant better (95% confidence level) than

other approaches. The statistical significance has been calculated using the Wilcoxon rank test.

The illustrated performances in Table 7.10 show that, our correlation-based filtering approach

can outperfoms state of the art in most cases: CBPF outperforms the state of the art for

CoMoDa and Trip, and CBPoF dominates in the case of STS. Though in the case of Music the

performances of our approach are not as good as the state of the art.

The four datasets used in our experimentations are from different domains (movie, tourism and

music), with different characteristics in terms of density, rating distribution and the number of

available context and content information. For the case of Music where CBPF is not very well

performing, by consulting the Table 7.2, we can observe that this dataset is built on rating data

of very few users (only 42 users), with limited contextual information. But our correlation-based

filtering approach is essentially based on context representations and work well when we have

enough user in the system, because it is the users who convey the contextual information. This

can explain why we have good performances for CoMoDa, STS and Trip, but not for Music.

7.3 Conclusion

This chapter details our experimental analysis, where we evaluate our approach on four

different contextual datasets (Comoda, STS, Music and Trip), and analyze performances based

on the characteristics of these datasets.

We can summarize the experiment observations as follows:

� Our experiments validate the positive effect of taking into account contextual information

about the user in the recommendation process.

� We proved that our correlation-based approach can easily be plugged to any 2D recom-

mender system in a pre-filtering configuration, as well as a post-filtering configuration.

This point allows us to keep the eventual existing traditional 2D recommender system,

and contextualize it by plugging our filtering module.

� Furthermore, experimental results show that the PCC can effectively catch the influence

of context on ratings, but in the cases of small datasets, the mean deviation method could

be more efficient.

� Based on the experimental results, we can conclude that there is not a single winner be-

tween the user- or item-based versions of CBPF/CBPoF, and it depends on the dataset.

A similar conclusion can also be done for the comparison of the aggregation and concate-

nation techniques.
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� However, due to the large number of items/users, clustering them has shown to have

beneficial effects. In fact, besides the computational cost reduction, our results indicate

that grouping items/users can roughly help the model to catch more significantly the

influence of context on ratings.

� In addition, we observe that the consideration of context relevance is crucial in the rec-

ommendation process. For this purpose, a hybrid method which filter irrelevant context

factors and weigh relevant ones in the context representation is the best option.

� Moreover, between the cosine and euclidean similarity measures, we can not define a single

winner, and it also depends on the nature of the dataset. In cases where we have poor

contextual information, the euclidean similarity can outperforms the cosine one.

� Also, we demonstrate that our pre-filtering approach (CBPF ), can effectively reduce the

sparsity problem of the multi-dimensional contextual datasets, by transforming them to

2D datasets, with the consideration of only ratings done in contexts similar to the target

user one.

� Depending on the quality of the contextual available data, we can choose to execute a

pre-filtering (CBPF ) or a post-filtering (CBPoF ): in cases where more complete contex-

tual dataset is available, the pre-filtering can outperform, while when the context is only

partially reported, we can have better outcomes with the post-filtering approach.
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Chapter 8

Conclusions and Future Work

This chapter briefly summarizes the contributions of this thesis, makes conclusive remarks and

indicates some directions for future work.

8.1 Conclusions

In this thesis we work on the integration of contextual information into the recommendation

process, in order to propose user-centric recommendations. This research is motivated from

one hand by the increasing volume of information on the web, which in consequence, rose the

need of information filtering techniques such as recommendation; and from the other hand,

the availability of more and more connected devices, which can provide contextual information

about the user, and can be integrated into the recommendation techniques in order to provide

more relevant recommendations.

From this line of research, we first try to identify the relevant and meaningful contextual

information to collect and integrate into the recommendation process. Indeed, the notion

of context have grabbed attention of multiple communities since last decades. However

there exists not yet a universal definition of it in the literature, and many context factors

categorizations, from different points of views have been proposed. By adopting the definition

of context as “... any information that can be used to characterize the situation of an entity

...” [2], we propose a new, generic and hierarchical categorization of context factors for CARSs

(Context-Aware Recommender Systems). We identify the user context as the union of three

categories of context and their respective dimensions: the physical context (with its temporal,

spacial, environmental and equipment dimensions), the personal context (with its demographic,

social, psychophysiological and cognitive dimensions), and the technical context (with its two

hardware and data dimensions). We show that our proposition of context factors categorization

can meet the requirements of larger spectrum of application domains (e.g. music, movies,

tourism, etc.).
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Then, we propose a new approach to integrate such contextual information into the

recommendation process. Being in an industrial context, we set an objective of minimal

implementation cost and need of external data sources. Indeed, many companies have already

a traditional recommender system in production, and want to upgrade it by benefiting from

the emerging contextual data in their recommendation process. Our proposed approach, CBF

(Correalation-Based Filtering), is a data-driven filtering method that uses the contextual

information about the users to filter the ratings pertaining to the target user context in order

to efficiently guide the recommendations based on it. It has the advantage to be easily plugged

in to any traditional recommender system already in production.

Different filtering strategies can be applied: aiming to tackle the data-sparsity problem of RSs

(Recommender Systems), we propose to filter ratings on the basis of the most similar contexts

to the target user one.

In this case, the choice of the context representation is crucial inasmuch it will influence the

results of the context similarities computations, and thus impact the recommendation results

relevance. In CBF, we model the context of the users based on the influence of context on

ratings, computed by the Pearson Correlation Coefficient (PCC). The distinctive feature of

using PCC allows us to catch this influence more precisely, and so to compute more accurate

similarities between contexts. We propose two context-aware recommendation methods

based on our correlation-based filtering approach: a pre-filtering method, Correlation-Based

Pre-Filtering (CBPF) and a post-filtering one, Correlation-Based Post-Filtering (CBPoF).

We offer several extensions of our approach in order to improve its performances: we propose an

alternative for correlation computation, named mean deviation. In this method we model the

influence of context on ratings by the difference between the mean of ratings given when the con-

text condition is present and those given when this one is absent. Our experiments demonstrate

that this correlation method is more suitable for small datasets, as the PCC computation needs

a considerable amount of data to catch the real correlation between two variables. Moreover,

we show that the influence of the context on ratings could be either item-based or user-based.

And we demonstrate that, depending on the dataset, by computing the item-based correlation

between the context and ratings, in some cases, and the user-based correlation, in some other

cases, we can obtain better performances. Also, we demonstrate that clustering the items/users,

not only reduces computational cost, but also increases performances, since it regroups more

data in each one of the two variables (context, ratings) that we want to compute the correlation.

Another point that we explore in our context-aware recommendation proposition is the

impact degree of each context factors. Indeed, in real world applications, not all context

factors have the same importance and impact on ratings. Depending on the application,

some context factors can play a more important role than others. For example, in the
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case of recipe recommendation, factors like season, available tools around the user, and her

cooking competence would be more important. While in music recommendation, activity and

psychological context would be more influencing. So, to take this fact into consideration,

we propose a hybrid method which filter irrelevant context factors and weight relevant ones

in the context vector representations. Experiments show a significant improvement in the

performances of our CARS by this method.

Moreover, our approach tries to answer two well-known problem of CARSs: sparsity and

recommendation explanation. Indeed, we demonstrate that CBPF can efficiently reduce the

sparsity level of the dataset which is the input of the recommendation technique. Besides, we

proposed a method to generate explanations for our context-aware recommendations based on

the context relevance.

Also, as there is very few research in the literature on the comparison of pre- and post-

filtering approaches, we compare them based on our correlation-based filtering proposition.

We demonstrate that the winner between CBPF and CBPoF is not always the same, and

depends on the richness of the available contextual information. Indeed, the pre-filtering can

outperform when more complete contextual information is available, while post-filtering can

better manage when context is only partially reported.

To summarize, the performed experimental evaluations proved the effectiveness of taking into

account the contextual information into the recommendation process. Also, comparisons with

some well-known state of the art approaches show that our correlation-based filtering approach

can outperform state of the art approaches. However, our thesis shows that the context-aware

recommendation problem remains a data mining problematic, and the performance of a method

strongly depends on the nature of the data on which it is applied. It is therefore quite difficult

to propose a single generic approach that we could apply as is to any dataset and always obtain

the best results. As we can see in the literature, among the numerous CARS propositions, we

cannot distinguish a winning approach for all cases. So, we propose a configurable framework,

with some parameters to obtain the best rendering in terms of performance for each data.

Nevertheless, by a deep data analysis of different type of datasets, we suggest appropriate

configurations according to the characteristics of the data.

8.2 Future Work

In this section, we discuss the possible further improvements of the proposed approach, as well

as promising lines of future research:
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Reducing computational cost by clustering strategy. In our correlation-based filtering

approach presented in Chapter 5, we mentioned that by clustering items/users, we gain in terms

of computational cost in the correlation computing phase. We can gain even more by clustering

context situations. Indeed, a limitation of CBF, especially when the number of possible context

situations increases, is the cost of contexts similarities and local model building computations.

So in the future, we would like to apply a clustering on context situations (similarly to [40]) to

limit these computational costs.

Different clustering strategy. In our experiments we cluster items/users based on their

available static characteristics information. However, this kind of information is not always

available, so it would be interesting to test other clustering strategies, like clustering items/users

based on ratings. For example, to cluster users, we can represent each user by a vector rep-

resentation of her ratings for items, and apply a clustering technique based on these vector

representations. Though, we are conscious that the huge sparsity of ratings data, could signifi-

cantly affect the clustering result quality by this method.

User satisfaction study. In Section 6.3, we propose a method to generate explanations for

recommendations to users, based on the most relevant context factor. We would like to evaluate

our approach by conducting a user study to measure user satisfaction.

The effectiveness of our CARS explanations can be evaluated by one of the two followings ways:

the first option is to measure the ratings done prior to and after consumption. The second

option is to test the same system with and without an explanation facility, and compare the

satisfaction of the users who receive explanations for their recommended items, with the ones

that do not receive any explanations [96].

Combination of correlation-based and ontology-based approaches. Our correlation-

based filtering approach demonstrates that we can efficiently integrate the contextual informa-

tion about the user, by a data-driven method, without the need of external data sources. Our

approach computes the correlation between context and ratings to model the influence of context

on ratings. However, in the case of very sparse datasets, where the available data to compute

efficiently this correlation is limited, a combination of correlation-based and ontology-based

approaches could improve the overall recommendation performances.

Adaptation to group recommendations. Recommender systems intended for group rec-

ommendation have gained more attention in these recent years. As the context of the group

members are more or less similar, it would be interesting to try to adapt our context-aware

recommendations to group. An idea could be to do an aggregation of the results of the CARS

for each group member. Two aggregation strategies could be adopted: rate aggregation or
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rank aggregation. In the former strategy, we estimate the missing rating for each member

group, and aggregate the corresponding values of the group members to obtain the resulting

estimated ratings for the group. The later strategy, inspired by the results of [22], takes a set

of predicted ranked lists, one for each group member, and produce one combined and ordered

recommendations’ list for the group.

Implicit data. In this thesis, as most of research in CARS field, we applied our context-

aware recommendation approach on explicit data, where the preferences of users for items

in different contexts are expressed by ratings (e.g. 1 to 5). However in many real-world

recommendation applications, such explicit user feedback is not available, and it is much easier

to collect implicit feedback from the behavior and actions of users on the applications, like

user clicks, purchases, etc. This kind of implicit feedback provides indirect indication of the

user preferences, and so its integration in the recommendation process is more challenging

than explicit ratings. Indeed, such observed implicit feedbacks indicate more the positive

association between users and items in different contexts, and we have an absence of indicators

of negative association between these factors. Therefore the adaptation of CBF and its corre-

lation computation to implicit user feedback can be a promising research line for future research.

To conclude, in this section we discussed some propositions of future research among others.

CARS is an active research field, where some well-known RS challenges are still poorly explored,

like the cold start (phenomena which occurs for new user, new item or new context), scalability

or the gray sheep users problem (users with unusual tastes). We can add these subjects to

the above list, which make interesting new directions for research. Also, a more complete

evaluation of our approach, based on other evaluation metrics like recommendation accuracy,

diversity, coverage, novelty, serendipity, etc. would be interesting. For this, a prior stage of

large context-aware data collection is needed. Indeed, for now, the available context-aware

datasets are very small in comparison to real-word traditional recommendation datasets. And

it is essential to test the evaluation metrics cited above, on large context-aware datasets to

obtain reliable results.
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Acronyms

2D 2-Dimention.

AG Aggregation.

ALS Alternating Least Squares.

ANRT Association Nationale Recherche Technologie.

API Application Program Interface.

CAMF Context-Aware Matrix Factorization.

CARS Context-Aware Recommender System.

CBPF Correlation-Based Pre-Filtering.

CBPoF Correlation-Based Post-Filtering.

CIFRE Convention Industrielle de Formation par la Recherche.

CN Concatenation.

CSLIM Contextual Sparse Linear Method.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DCM Differential Context Modeling.

DCR Differential Context Relaxation.

DCW Differential Context Weighting.

DSPF Distributional Semantic Pre-Filtering.

EM Expectation-Maximization.

GMM Gaussian Mixture Models.
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GPS Global Positioning System.

HAC Hierarchical Agglomerative Clustering.

HC Hierarchical Clustering.

IB Item-Based.

IDE Integrated Development Environment.

IoT Internet of Things.

LVF Las Vegas Filter.

MAE Mean Absolute Error.

MF Matrix Factorization.

OLAP Online Analytical Processing.

PCC Pearson Correlation Coefficient.

POI Point Of Interest.

PSO Particle Swarm Optimization.

RAM Random-Access Memory.

RMSE Root Mean Squared Error.

RS Recommender System.

SGD Stochastic Gradient Descent.

STS South Tyrol Suggests.

SVM Support Vector Machine.

TF Tensor Factorization.

UB User-Based.
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R. Schwaiger. Incarmusic: Context-aware music recommendations in a car. E-Commerce

and web technologies, pages 89–100, 2011.

[19] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci. Context-aware places of interest recom-

mendations and explanations. In Joint Proceedings of the Workshop on Decision Making

and Recommendation Acceptance Issues in Recommender Systems (DEMRA 2011) and

the 2nd Workshop on User Models for Motivational Systems: The Affective and the Ra-

tional Routes to Persuasion (UMMS 2011). CEUR Workshop Proceedings, volume 740,

pages 19–26, 2011.

[20] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci. Context relevance assessment and exploita-

tion in mobile recommender systems. Personal and Ubiquitous Computing, 16:507–526,

2012.

[21] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization techniques for context aware

recommendation. In RecSys, pages 301–304. ACM, 2011.

126



[22] L. Baltrunas, T. Makcinskas, and F. Ricci. Group recommendations with rank aggregation

and collaborative filtering. In Proceedings of the fourth ACM conference on Recommender

systems, pages 119–126, 2010.

[23] L. Baltrunas and F. Ricci. Experimental evaluation of context-dependent collaborative

filtering using item splitting. User Modeling and User-Adapted Interaction, 24, 2014.
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[102] B. Vargas-Govea, G. González-Serna, and R. Ponce-Medellın. Effects of relevant con-

textual features in the performance of a restaurant recommender system. ACM RecSys,

11(592):56, 2011.
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RÉSUMÉ

Avec l’augmentation du volume de données produit par diverses sources, nous avons un besoin croissant de systèmes de recomman-

dation, qui filtrent les données pour aider les utilisateurs à trouver l’information appropriée. Afin de satisfaire encore plus les besoins

des utilisateurs et générer des recommandations plus pertinentes, un nouveau type de systèmes de recommandation, nommé système

de recommandation contextuel (CARS), intègre les informations contextuelles des utilisateurs dans le processus de recommandation.

Cependant, il n’existe toujours pas de définition unique du contexte. L’objectif de cette thèse est, dans un premier temps, d’identifier les

facteurs de contexte pertinents pour les CARSs, afin d’améliorer les précédentes propositions de l’état de l’art, et pouvant être utilisés

pour un large éventail d’applications. Ensuite, nous proposons une nouvelle représentation du contexte, ainsi qu’une approche pour

intégrer ce type d’information dans un système de recommandation. Nous représentons le contexte en nous basant sur l’influence du

contexte sur les scores donnés par les utilisateurs aux éléments, calculée à l’aide du Coefficient de Corrélation de Pearson. Ensuite

nous filtrons les données à partir de ces représentations, afin de les intégrer dans le processus de recommandation. Nous présentons

deux approches de recommendations contextuelles à base de pré-filtrage et post-filtrage. De plus, nous proposons une méthode pour

générer des explications pour nos recommandations contextuelles. Par des expérimentations, nous démontrons que notre approche

réduit la parcimonie, problématique bien connue des CARS, et peut également améliorer les performances de l’état de l’art.
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ABSTRACT

With the rise in volume of data from various sources, we have an increasing need of recommender systems, which provide a data

filtering to help users to find appropriate information. To satisfy even more users’ needs and generate more relevant recommendations, a

new kind of recommender systems called CARS integrates contextual information related to the users in their recommendation process.

However there exists no unique definition for context. In this thesis we firstly identify relevant context factors for CARSs, to improve

upon previous propositions, which can be used for a large spectrum of applications. Then we propose a new context representation and

approach to integrate this kind of information into a recommender system. We make a relevant representation of the context, based on

the influence of context on ratings, calculated using the Pearson Correlation Coefficient. We present a pre-filtering and a post-filtering

context-aware recommender systems based on this representation. We propose a method to generate explanations for our context-

aware recommendations. Also, we demonstrate that our approach can reduce the well-known sparsity problem of CARS and outperform

state of the art approaches.
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