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Chapter 1

Introduction

1.1 Models of Computation

AModel of Computation (MoC) is a model describing how a set of arithmetic
and logical operations are performed in order to produce an output given
an input. Three main categories of MoCs are distinguished: sequential,
functional, and concurrent [45].

The sequential MoCs are those described in automata theory [31]. In au-
tomata theory, a computational problem is modelled as a formal language.
A formal language is a set of strings where each string is a sequence of char-
acters of an alphabet. For example, the computational problem of verifying
whether a graph is connected can be expressed using a language containing
the string format of all connected graphs. For a given language, an automa-
ton is designed in order to determine if a string belongs to that language, or
in other word to accept an instance of the computational problem. For ex-
ample, the language corresponding to the connected graphs problem is a set
of the string format of all connected graphs and an automaton determines if
a string belongs to this language, or in other words if a graph is connected.

Chomsky has proposed a classification of formal languages according to
the formal grammar used to recognize them: regular languages (type 3),
context-free languages (type 2), context-sensitive languages (type 1) and re-
cursively enumerable languages (type 0) [17]. The model of computation to
express the regular languages is Finite State Machine (FSM). This model
consists of a number of control states and transitions between them. By
observing a character in a string, the machine decides how to change the
state. The amount of memory that this machine needs is fixed and very
limited since the machine only remembers its current state. In order to rec-
ognize context-free languages, extra information about the context is needed.
Push-Down Automata (PDA) adds a stack to express this class of languages.
For recognizing context-sensitive and recursively enumerable languages more
powerful memory models are needed. The Linear Bounded Automata (LBA)
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is used for recognizing context-sensitive languages by adding a tape (array
of memory cells) with a head that can read, write, move forward and back-
ward. The length of its tape is bounded in the length of the input. A set of
rules determines how the head moves. Finally, the Turing machine is used to
recognize recursively enumerable languages. It is similar to an LBA except
that the length of its tape is unbounded. Turing machines are capable of
simulating any computer algorithm.

Sequential MoCs not only allow recognizing a language, but can also
produce an output for a given input string. Mealy and Moore machines
are examples of MoCs which produce output. Therefore, in the context
of automata theory, an MoC is an automaton describing how a language is
recognized and (optionally) how an output string is computed given an input
string.

In the functional MoCs such as lambda calculus [18], computations are
expressed based on functions. In order to solve a computational problem, a
set of functions is defined and applied to an input. By binding and substi-
tuting variables, the corresponding output is produced. Lambda calculus is
Turing complete, that is, it is capable of simulating any Turing machine.

In the concurrent MoCs, the computation is performed by a set of com-
ponents that interact with each other using communication channels. In [35],
an MoC is defined as a set of laws governing the interaction of components.
Each component computes an output given an input using a set of math-
ematical and logical operations. The set of all components form a graph
of computation in which the vertices of the graph represent the computa-
tion units and the edges of the graph represent the communication channels.
Concurrent MoCs are suitable for modelling applications in the domain of
signal, image, and data processing, because signals are streams of data trans-
ferred over communications channels and processed by a set of computation
units.

This thesis focuses on a well-known concurrent MoC proposed by E. Lee
and D. Messerschmitt : Synchronous Dataflow (SDF) [37]. It is deterministic
in the sense that for a stream of inputs, it always produces the same stream
of outputs regardless of the order of execution of its components. Besides
determinism, two important properties of SDF are boundedness and liveness.
Boundedness ensures that an SDF graph can be executed in bounded mem-
ory while liveness ensures that it always executes without deadlock. Other
standard concurrent MoCs are Petri Nets [42, 43] and Process Networks [33].

A taxonomy of MoCs is shown in Figure 1.1 [45].

1.2 Motivation

Concurrent MoCs are suitable for modelling signal processing systems, such
as multimedia processing system. In the following, we take a multimedia
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Figure 1.1: Taxonomy of Models of Computation [45]

processing example, characterize its main features, discuss about the ex-
isting MoCs for modelling this type of application, and finally identify the
shortcoming of the existing MoCs. Here will reside the main motivation of
this work.

A multimedia application usually consists of a number of predefined func-
tions also called filters connected to each other in the form of a graph. Each
filter receives data (which can be audio, image, video, or text) from its inputs,
processes the data, and sends the data it has produced to the next filters.
Some of these filters are independent and, on a multi-processor architecture,
they can be executed in parallel.

Let us consider a simple application in which (1) a multimedia stream
containing video and audio is received from a source (which can be a video
file, or a camera), (2) this multimedia stream is decoded, images are sent to
a filter and audio samples to another filter, (3) the image processing filter
detects and extracts edges, (4) the audio processing filter reduces noises in
the audio samples, (5) images containing only edges and audio samples with
reduced noise are encoded into a new video stream by an encoder, (6) and
finally the multimedia stream is sent to a sink (which can be a video file,
a network channel, or a display). This application can be modelled as the
computation graph shown in Figure 1.2.

Such kinds of applications can be modelled using concurrent MoCs such
as SDF which models an application as a graph of filters. Moreover, on a
multi-processor architecture, different bindings between filters and processors
yield different performances. Since SDF provides scheduling facilities to
optimize the performance metrics of graphs, using such MoC yields better
performance. Two of the most common performance metrics for dataflow
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Figure 1.2: A simple multimedia application

applications are latency and throughput. In the previous example, binding
edge extraction and noise reduction functions to different processors results
in a higher throughput.

Furthermore, suppose that in our multimedia application example we
have enough processors, that the quality of the input video increases and
that edge extraction becomes a more time consuming function. In this case,
we can add new edge extraction filters in order to process consecutive images
in parallel to maintain the throughput. To do so, the configuration of the
graph must change when the video quality changes, that is, the graph must
be reconfigured while executing the application. Another kind of reconfig-
uration might be needed if the luminosity of the images lowers and a night
filter needs to be added to the graph. The reconfiguration might also be
needed when a filter is to be replaced by another one. For example, a dif-
ferent noise reduction filter might be needed because the noise in the input
signal surpasses a threshold. For all these scenarios, the graph needs to be
reconfigured.

The SDF MoC models an application using a static graph, meaning that
the configuration of the graph cannot be changed dynamically. Extensions of
SDF exist in which an application is modelled by a bounded number of graphs
in different configurations. One of those MoCs, Scenario-Aware Dataflow
(SADF) [25, 52], models an application using several SDF graphs and a
finite state machine. By changing the state of the machine, the executing
datafow graph can be changed. For the use cases we discussed above, a small
number of configurations is enough and SADF can model such applications.

However, if in the previous example, the number of different video qual-
ities is unknown, then adding many edge detection filters may be needed
and the number of different configuration becomes unknown. Reconfigura-
tion requirements have been studied in different extensions of SDF MoC, but
none of them addresses the problem of modelling an unbounded number of
configurations. In this thesis, the problem of reconfiguration of SDF MoC is
studied and a new MoC called Reconfigurable Dataflow (RDF) is proposed
to solve this problem.
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1.3 Contribution

RDF is an MoC that extends SDF with transformation rules. Each transfor-
mation rule determines how the dataflow graph currently executing can be
modified to another graph. A simple rule, such as a rule adding a new filter
between two filters, can produce an unbounded number of configurations.
The RDF MoC is designed to allow dynamic reconfigurations of SDF graphs
while preserving the boundedness and liveness properties of the graphs.

The RDF MoC is an extension of SDF. An RDF graph is similar to an
SDF graph except that each actor has a type. The types allow adding an
unbounded number of actors as instances of a finite set of actor types. To
allow the number of input or output edges of an actor to change dynamically,
a generic actor type with variable arity is proposed. An RDF application also
contains a controller to specify how and when a graph may be reconfigured.
The controller specifies a number of transformation rules. Each rule consists
of a left-hand side and a right-hand side. The left-hand side is a pattern that
should match a subgraph in the current RDF graph. The subgraph which is
matched is substituted by the subgraph specified by the right-hand side of the
transformation rule. The rules are applied depending on conditions involving
various criteria (throughput, latency, buffer occupancy, ...). From an initial
RDF graph and a few number of transformation rules, an unbounded number
of different RDF graphs can be generated, and this is a key feature of the
RDF MoC.

SDF graphs have two important properties: They can be shown to be
consistent and live. For the RDF MoC, we have to ensure that these prop-
erties are preserved after reconfigurations. Static analyses are proposed to
ensure that a transformation rule is valid and that it preserves these prop-
erties.

Regarding the performance analysis of RDF, we have focused on latency
and throughput. We have considered a widely used class of transformation
rules and computed bounds for the impact of a rule on latency and through-
put of the graph.

An implementation of RDF is proposed. When a transformation rule
needs to be applied, the dataflow graph must be paused, the subgraph
matched to the left-hand side must be substituted by the right-hand side
of the rule, and the execution must be resumed. All data structures and
algorithms to implement these mechanisms are elaborated. The most com-
mon conditions that may be used in practice to trigger transformation rules
are presented. Graph matching is in general a costly operation. A practical
approach to make the pattern matching efficient is proposed. Experimenta-
tions are performed in order (1) to show that transformation rules can be
used to change the parallelization levels of a graph and therefore improve
the performance of the graph, and (2) to show that the runtime cost of ap-
plying a reconfiguration is small and that the implementation can be used
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for practical applications.
Finally, a small case study is implemented to illustrate what can be done

using RDF. It is based on the application presented above that extracts
edges from images. At runtime, the execution time of one of the actors
is increased. It is first implemented using SDF and the throughput of the
graph decreases when that actor becomes more time consuming. The same
application is then implemented using RDF. This time, once the execution
time of that actor increases, the loss of throughput is detected by a condition
and a transformation rule is applied, which increases the parallelization level
of the RDF graph. As a result, the throughput is maintained at the level it
was before.

The structure of the document is as follows. In chapter 2, we review
existing dataflow MoCs. We study SDF and some of its extensions. We
discuss how those extensions address the problem of reconfiguration and
what are their limitations. In chapter 3, we present the RDF MoC along
with its static analyses. In chapter 4, we propose methods for analyzing the
impact of transformation rules on latency and throughput of RDF graphs. In
chapter 5, we describe our implementation of RDF in detail, conduct some
experiments, and finally present a case study. We conclude in chapter 6
by summarizing our contributions and proposing some avenues for future
research. An appendix provides further details on the RDF prototype.
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Chapter 2

Dataflow Models of
Computation

Lee et al. define a concurrent MoC as a set of laws governing the interaction
of computation units, communication links, and memory [35]. These laws de-
fine how the the inputs can be computed concurrently given the inputs. This
category of MoCs is called concurrent [45] which includes Process Networks,
Petri Nets, Synchronous Dataflow, and their extensions. The concurrent
models of computations (MoCs) describe the organization of communication
links and computation units at a high level; they do not describe in details
the whole application. In particular, the detailed behavior of computation
units is not described by these MoCs.

There are different sub-classes of concurrent MoCs. A dataflow MoC
is a concurrent MoC in which there is no notion of time and message. It
models the computation using a directed graph in which vertices are the
computation units, the edges are the communication links, and data flows
on these edges. Each dataflow MoC defines its own laws for consuming,
processing, and producing data. A dataflow MoC is usually characterized by
its analyzability, expressiveness, and reconfigurability.

The analyzability concerns the complexity of analyzing applications spec-
ified in the MoC. For example, how complex it is to determine whether or
not an application deadlocks (which is called liveness analysis), or whether
it runs in bounded memory (which is called boundedness). Other types of
analysis include performance analyses such as latency or throughput analy-
sis.

The expressiveness concerns the ease of expression and compactness of
applications of the MoC. Usually the more an MoC is expressive, the less it is
analyzable. For example, a dataflow MoC may provide special control oper-
ators to modify the flow of data through the graph. These control operators
make the MoC more expressive because a broader range of applications can
be described by the MoC. However, analyzing such an MoC is more involved
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and complex. One of the MoCs providing such control operators is BDF
MoC presented in section 2.4.2. The control operators of BDF make is more
expressive, but they also make boundedness and liveness undecidable [36].

Finally the reconfigurability concerns the ability of the MoC to recon-
figure the applications at runtime. For example, if an MoC allows chang-
ing some parameters of an application at run-time, then the MoC is more
reconfigurable. One example of such parameters is the number of data a
computation unit produces at each execution. The focus of this thesis is on
reconfigurable dataflow MoCs.

In sections 2.1 and 2.2, we discuss two early dataflow MoCs : Petri Nets
(PNs) and Kahn Process Networks (KPNs). In sections 2.3 and 2.4, we
present Synchronous Dataflow (SDF), some of its extensions and finally we
summarize.

2.1 Petri Net

The Petri net model [42, 43] is an MoC describing concurrent processes. It
models computations as a directed bipartite graph with two types of vertices:
places and transitions. Transitions represent computation units and places
represent memory. Arcs specify which places and transitions are connected.
Since each arc connects a place to a transition, no two vertices of the same
type can be connected to each other and hence the graph is bipartite. The
places from which an arc is connected to a given transition are called the
input places of this transition, while the places to which an arc is connected
from a given transition are the output places of this transition.

Places may contain tokens that abstract away the available resources. At
any given time, the state of a Petri net, called its marking, is the number
of tokens contained in each of its places. Upon initialization, the state of a
Petri net is called its initial marking.

Each arc is labeled with a positive integer called its multiplicity. Transi-
tions may fire, to make the Petri net evolve. When a transition fires, (1) from
each of its input places, it consumes as many tokens as the multiplicity of
the associated arc, and (2) onto each of its output places, it produces as
many tokens as the multiplicity of the associated arc. A transition can only
fire when there are enough tokes in all of its input places, in which case it
is said to be enabled. Petri net is a concurrent MoC because, from a given
marking, several transitions may be enabled.

An example of a Petri net is shown in Figure 2.1. Transitions are repre-
sented by squares and places by circles. There are two tokens in the place p1,
which enables both transitions t2 and t3, so both can execute concurrently.
Once they have been executed, each produces one token in the place p2. The
multiplicity of each arc is (implicitly) 1.

A marking is reachable if starting from the initial marking, a sequence of
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t1
p1

t2

t3

p2
t4

Figure 2.1: An example of a Petri net

execution of transitions results in that marking. Petri nets have a decidable
reachability.

Boundedness and liveness of Petri nets are also decidable. A place in a
Petri net is k-bounded if it does not contain more than k tokens in any reach-
able marking. A Petri net is called k-bounded if all its places are k-bounded.
For liveness analysis, different degrees of liveness are defined; a transition
can be either dead which means it never executes, or live at different levels
of liveness depending on whether it sometimes, often, or always executes.

Petri nets are not deterministic, which means that the order in which
transitions are fired (and tokens are produced) cannot be determined. In-
deed, when any two transitions are enabled (regardless of whether they share
an input place or not) the MoC does not specify in which order they are fired.
For example, in Figure 2.1 we cannot determine in what order the two tokens
produced by executions of t1 are consumed by t2 and t3.

2.2 Process Network

Kahn Process Network (KPN) [33] is an MoC to express concurrent pro-
cesses. KPN models the computation as a directed graph made of processes
connected with channels of communication and running in parallel. Pro-
cesses are functions transforming input streams of data into output streams.
The channels are assumed to be unbounded first-in first-out (FIFO) queues.
The functions are continuous, preventing the processes to send outputs after
it has received an infinite amount of input, and they are monotone, meaning
that the partial order of an input stream is preserved once it is processed.
An example of a KPN graph with four processes p1, p2, p3, and p4 and four
channels c1, c2, c3, and c4 is shown in Figure 2.2.

p1

p2

p3

p4

c1

c2

c3

c4

Figure 2.2: An example of a KPN graph
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A process cannot test for emptiness of its input channels; whenever a
process attempts to read from an empty input channel, it blocks and waits
until some data has been produced and sent to that buffer by its predecessor
process. Once the data is read from the input channels, the process computes
the outputs and writes them on the output channels. Writing on output
channels is never blocking. Therefore, a process can be in two states; either
it is active, computing and writing, or it is waiting because it is blocked on
some of its empty input channel. If we see the processes as functions and the
communication channels as variables, then a process network can be seen as
a system of equations on streams.

A KPN can be shown to be deterministic, which means that for a given
sequence of inputs, the sequence of outputs is unique no matter how the
processes are executed; their execution order does not impact the sequences
produced on channels. A KPN could become non-deterministic if it was
allowed to check for emptiness, to write to more than one channel, or if more
than one process could read from the same channel or by sharing variables. If
a process were allowed to check for emptiness, it could perform two different
actions depending on the time the input arrives. This would imply that two
different sequences of input data would produce two different sequences of
outputs because of the variations in arrival of data. Similarly, if more than
one process were allowed to read from one input channel, depending on the
schedule of the processes in two different executions, different inputs would
be read by the processes and as a result different outputs would be produced.

2.3 Synchronous Dataflow

The Synchronous Dataflow (SDF) MoC [38] models computation with a
graph of computations units and communication channels. An SDF graph is
a directed graph, where vertices, which are called actors, represent compu-
tation units. Actors are connected by edges, which represent communication
channels. A channel is a first-in first-out (FIFO) buffer. Each atomic data
written to or read from these buffers is called a token. A channel can contain
a number of tokens before starting the execution. These tokens are called
initial tokens.

The atomic execution of a given actor, which is also called actor firing,
consumes data tokens from all its incoming edges (its inputs) and produces
data tokens to all its outgoing edges (its outputs). The number of tokens
consumed (resp. produced) on a given edge at each firing is called the con-
sumption (resp. production) rate. An actor can fire only when all its input
edges contain enough tokens, that is, at least the number specified by the
consumption rate of the corresponding edge. In SDF, all rates are constant
integers known at compile time.
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2.3.1 Definition

Formally, an SDF graph is defined by a 4-tuple G = (V,E, ρ, ι) where:

• V is a finite set of actors; among those, we distinguish source actors
that have no incoming edges, and sink actors that have no outgoing
edges;

• E is a finite set of directed edges connecting two actors (E ⊆ V × V );

• ρ : E → N\{0} × N\{0} is a function that returns for each edge a
pair (x, y), where x is the non-null production rate of its origin actor
(producer) and y is the non-null consumption rate of its destination
actor (consumer);

• ι : E → N is a function that returns for each edge the number of its
initial tokens (possibly 0).

A port is the connection point between an actor and an edge. The con-
nection between an incoming edge (resp. outgoing edge) and an actor is the
input port (resp. output port). An actor has a list of input ports and a list
of output ports.

Figure 2.3 shows a simple SDF graph G1 with 3 actors A, B, and C.
The edge between A and B has a production (resp. consumption) rate of 2
(resp. 3). The edge (C,A) has 3 initial tokens.

A B C

3

2

1

3 1 2

3

actor edgeport

rate
initial tokens

Figure 2.3: The SDF graph G1.

Each edge has zero or more tokens at any moment. The state of an
SDF graph is the vector of the number of tokens present on each edge. The
initial state of a graph is the vector of the number of initial tokens on its
edges. For instance, the initial state of G1 is the vector [0; 0; 3] for the edge
ordering [(A,B); (B,C); (C,A)]. Once A fires, it consumes 1 token from the
2 initial tokens available on the edge (C,A) and it produces 2 tokens on the
edge (A,B). As a result the state of the dataflow graph changes to [2; 0; 2]
where the first element represent the 2 new tokens produced by A on the
edge (A,B).

The minimal iteration of an SDF graph is a smallest set of firings of
its actors such that (1) all actors fire at least once, and (2) the graph is
returned to its initial state. For instance, the minimal iteration of G1 is
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(A3, B2, C1), where Xi means that actor X fires i times. We note solG(X)
the number of firings of X (also called the minimal solution of X) in the
minimal iteration of the graph G, or sol(X) when no ambiguity can arise.
In the example, we have sol(A) = 3, sol(B) = 2, and sol(C) = 1. The basic
repetition vector ~Z indicates the number of firings of actors (their solutions)
per minimal iteration. For G1, it is ~ZG1 = [3, 2, 1] (for actors’ ordering
[A,B,C]). An iteration may be also not minimal. In an iteration which is
not minimal, each actor is fired as many times as its solution multiplied by
an arbitrary integer k. For example for k = 2, a non-minimal repetition
vector corresponding to a non-minimal iteration for the graph G1 is [6, 4, 2].
When we refer to solution or repetition vector, we mean always the minimal
solution or minimal repetition vector.

We can represent an SDF graph using a topology matrix, similar to the
way graphs are represented using an adjacency matrix in graph theory. The
topology matrix of the SDF graph G, denoted by ΓG, is a |E| × |V | matrix
where |E| and |V | are the sizes of E and V . The value of the element γi,j of
ΓG can be either a positive integer, a negative integer, or zero.

It is a positive integer if the jth actor of V , that is vj , is the origin actor
of the ith edge of E, that is ei. In this case the value of γi,j is the production
rate of the edge ei. The value of γi,j is negative if vj is the destination actor
of ei and its value is the consumption rate of the edge ei. Finally the value
of γi,j is zero if vj is neither the origin actor, nor the destination actor of ei.
For example, for the graph G1 of Figure 2.3, we have:

ΓG1 =

A B C( )2 −3 0 (A,B)
0 1 −2 (B,C)
−1 0 3 (C,A)

Later, we see how the topology matrix is used to check whether all actors
have non-null solutions.

SDF has been used for many practical applications in numerous domains,
including signal processing, automatic control, and embedded systems. Two
important implementations of SDF are Ptolemy II [20] and SDF3 [51].

2.3.2 Static analysis

Compared to KPN, SDF enforces constant production and consumption
rates and it is, for this reason, amenable to more static analyses than KPN.
We present three analyses provided by the SDF MoC: consistency, bounded-
ness and liveness.

Consistency ensures that a given SDF graph has valid rates, which en-
sures that tokens do not accumulate on the edges during the execution. As a
corollary, a consistent graph can run in bounded memory. Liveness ensures
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that the graph can run infinitely without any deadlock. All these analyses
are performed statically, that is before executing the graph.

Consistency and Boundedness

An SDF graph is said to be consistent if it admits a non null repetition vector.
The repetition vector is obtained by solving the following system of balance
equations with the solution of actors as variables. Each edge X p q−→ Y is
associated with the balance equation sol(X) · p = sol(Y ) · q, which states
that all tokens produced by X during an iteration must be consumed by Y
within the same iteration. The system has |E| equations and |V | variables.
The SDF graph is consistent if and only if this system of equations admits
a non-null solution, that is a repetition vector [38]. If the system does not
have a non-null solution, the graph is inconsistent.

This system of balance equation can also be expressed using the topology
matrix. For the topology matrix ΓG of a given graph G, and its repetition
vector ~ZG, we have:

ΓG · ~ZG = 0

For example for the graph G1, the system of balance equations can be
defined either by the three equations (on the left), or equivalently, by the
matrix equation (on the right).

2 · sol(A) = 3 · sol(B)
sol(B) = 2 · sol(C)

3 · sol(C) = sol(A)

 2 −3 0
0 1 −2
−1 0 3

 ·
sol(A)

sol(B)
sol(C)

 = 0

Both methods give the same minimal non-null solutions: sol(A) = 3,
sol(B) = 2, sol(C) = 1.

On the other hand, if we change the production rate of the edge (A,B) to
3, then the system does not have a non-null solution anymore and the graph
becomes inconsistent. Indeed, after three firings of A, the actor B would
be able to produce 3 tokens for C. The actor C would then consume only
2 of them, thereby producing 3 tokens on the edge (C,A). This behavior
continues, and as a result tokens get accumulated on the edge (B,C).

In [7], an algorithm for computing the repetition vector with time com-
plexity O(|V | + |E|) is proposed. The algorithm initially sets the solution
of a random actor to 1, and by traversing the graph (by breath first search
or depth first search) finds the solutions of actors. The result is the solution
of actors as rational numbers. By multiplying them by the least common
multiple of all the fractions, minimal integer solutions are obtained.

An important consequence of consistency is that tokens do not get ac-
cumulated on edges. A consistent graph can therefore be executed infinitely
with bounded memory (buffers).
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Liveness

A schedule is a sequence of firings, so that each actor fires as many times as
its solution in the repetition vector. Not all such sequences are valid, since
an actor can be fired only when it has enough input tokens. A schedule is
obtained by symbolic computation: When an actor cannot be fired, then
that firing is non-eligible, and otherwise it is eligible. A schedule containing
only eligible firings is called admissible. An admissible schedule ensures that
the graph returns to its initial state and that each actor is eventually fired.
A consistent SDF graph is said to be live if it has an admissible schedule [38].
A live SDF graph can execute infinitely without deadlock. In the following,
we often use schedule for admissible schedule.

In order to compute a schedule, we use a symbolic computation algorithm
that keeps track of the state of the graph and repeatedly adds the eligible
firings to the schedule until either no actor can be fired, or until all actors
have been fired as many times as their solutions. This class of scheduling
algorithms are called class-S algorithms [38].

Among all admissible schedules, we distinguish single appearance sched-
ules (SAS) (also called flat SASs in [1]) where, once factorized (i.e., any
sequence of n consecutive firings of actor X is replaced by Xn), each actor
appears exactly once.

For example, the graph G1 admits the schedule {A;A;B;A;B;C}, but
the schedule {A;B;A;A;B;C} is not admissible, because after the first firing
of A there are only 2 tokens on the edge (A,B) and B cannot be fired. The
graph has one flat SAS: {A3;B2;C1}. In this thesis, whenever we talk about
SAS, we mean a flat SAS. An example of a non-flat SAS is {(A;B;C)2}
which is equivalent to {A;B;C;A;B;C}.

Any SAS S induces a total order relation between actors, noted ≺S , such
that X ≺S Y if and only if X appears before Y in S. An acyclic SDF graph
always admits an SAS. A cyclic SDF graph can be converted to an acyclic
graph if each cycle includes at least one saturated edge, that is, an edge
(X,Y ) that contains enough initial tokens to fire Y at least sol(Y ) times.
The equivalent acyclic SDF graph is obtained by removing all the saturated
edges from the cyclic SDF graph. Therefore, such acyclic graphs admit an
SAS.

2.3.3 Performance analysis

Besides the static analyses of consistency, boundedness and liveness, SDF
also allows performance analysis related to timing and memory consumption.
Two important timing metrics are throughput and latency. The throughput
measures the number of iterations completed per time unit, and the latency
measures the number of time units it takes for an iteration to be completed.
An important memory metric is the minimal size of buffers for the graph
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to be live. These metrics can also be related. For example, an interesting
property is the minimum buffer size that allows maximal throughput.

Each analysis is important for a category of applications. For example,
in video streaming applications, the throughput is the most important one,
because no matter how late the video is delivered, it is important that it is de-
livered at a desirable throughput in terms of images per second. In contrast,
in a control-command application, latency analysis is the most important
one, because no matter the throughput, it is important that commands are
delivered as fast as possible.

In the previous section, we considered only the sequential execution of
actors and we were only concerned with the total order of execution of ac-
tors. The schedules we discussed in the liveness analyses were sequential and
unaware of any notion of time. In this part, we add the notion of time and
consider parallel executions. A parallel schedule must choose the processor
for each firing of actor as well as the time instants at which the actor must
be fired. The performance analysis depends on the chosen scheduling pol-
icy. We may for instance look for a parallel schedule that maximizes the
throughput.

On a multi-processor with multiple distributed memories, the communi-
cation costs between the processors are significant. For this kind of archi-
tecture, it is important to find an assignment of actors to processors (called
placement) which minimizes the communication costs.

We first introduce some definitions about parallel scheduling and perfor-
mance metrics, and then we discuss parallel schedules, latency and through-
put analyses.

Definitions

For an SDF graph G = (V,E, ρ, ι), we define the following scheduling related
functions, where time, duration, and the number of processors are modeled
using integer numbers. Time starts from the first firing of a graph. It is also
assumed that the processors are homogeneous, so the execution time of an
actor on all cores is the same.

• start : V × N → Time is a function that returns for each actor v its
start time start(v, f) for a given firing f .

• t : V → Duration is a function that returns for each actor v its
execution time t(v).

• end : V ×N→ Time is a function that returns for each actor v its end
time end(v, f) for a given firing f .
We have ∀v ∈ V, 0 < f, end(v, f) = start(v, f) + t(v).
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• proc : V × N → Processor is a function that returns for each actor
v and a given firing f the processor proc(v, f) on which the actor is
fired.

Parallel schedule

A parallel schedule S(G) defines for each firing of actors its start time and
the processor on which the actor is executed.

S(G) = {(start(v, f), proc(v, f)) | v ∈ V, 1 < f}

We narrow down the scope of the problem by assuming that autocon-
currency is not allowed, which means that firings of the same actor cannot
take place in parallel, that is, start(v, f + 1) ≥ end(v, f). We also assume
that once an actor is assigned to a processor, it is executed only on that pro-
cessor, that is, ∀i, j, proc(v, i) = proc(v, j). So, we can simply write proc(v)
to indicate the processor on which the actor v executes.

In this thesis, we focus on as soon as possible (ASAP) scheduling policy.
In this policy which is also referred to as self-timed execution, an actor is
ready to fire as soon as it has enough tokens on its input edges. Therefore
the scheduler must only define the processor on which each actor is executed.
Assuming that there are enough processors, that is, the number of processors
is greater than or equal to the number of actors, an actor executes as soon
as it is ready. Otherwise, an actor must wait for other actors on the same
processor to finish executing. We focus on the simplest case in which the
number of processors is sufficient.

In a parallel dataflow execution, the execution starts with a prologue
followed by a steady state. During the steady state, the start time of firing
of a given actor in the schedule is periodic, that is, ∀v, i, start(v, i+ sol(v))−
start(v, i) = C, where C is a constant. We see later that this is related to
the throughput in the steady state.

In Figure 2.4, the ASAP schedule of the SDF graph A
3 2−→ B where

t(A) = 5 and t(B) = 3 is shown. The first iteration in this schedule is the
prologue phase (from time 0 to 16), and the steady state starts from the
second iteration (from time 10 to 26). In the prologue phase, the first firing
of the actor B starts just after the first firing of A in the iteration, while
in the steady state, the first firing of B in an iteration must wait for the
previous iteration to end. Later, we discuss about latency and throughput
using this example.

The ASAP execution guarantees that the graph can be executed without
deadlock, provided that each buffer has at least the minimal size required
for liveness [41]. The liveness analysis supposes that buffer sizes are infinite,
but in practice buffers are bounded and the graph may not be live if the
buffer sizes are not sufficient.
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Figure 2.4: ASAP schedule of the SDF graph A
3 2−→ B, where t(A) =

5, t(B) = 3.

An SDF graph can be converted to a directed acyclic graph (DAG) [37]
and the scheduling techniques for DAGs can be also used for SDF graphs. In
order to convert an SDF graph to a DAG, the graph is transformed to a sim-
plified form called Homogeneous SDF (HSDF) graph in which a single firing
of the original SDF graph is represented by a unique actor [37]. HSDF is a
restriction of SDF in which all production and consumption rates are equal
to 1. By transforming an SDF graph to an HSDF graph, the computation
of latency and throughput becomes simpler. The equivalent HSDF graph of
the SDF graph G1 of the Figure 2.3 is shown in Figure 2.5.

A1

A2

A3

B1

B2

C1

Figure 2.5: The HSDF graph equivalent to the SDF graph G1.

Each of the 3 firings of the actor A in an iteration is represented by a
single actor (namely A1, A2, and A3), and similarly for the 2 firings of B
(namely B1 and B2). The solution of actor C is 1, therefore there is a single
actor C1 in the HSDF graph. Each firing of actor C provides 3 tokens which
are respectively consumed by 3 firings of the actor A, hence by A1, A2, and
A3 in the HSDF graph. Similarly, the initial tokens on the edge (C,A) in the
original SDF graph are distributed among 3 firings of A. In the equivalent
HSDF, these initial tokens are distributed on the 3 edges (C1, A1), (C1, A2),
and (C1, A3).
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Latency

The end-to-end latency of a given iteration of a graph is the largest end time
of the last firings of all actors minus the smallest start time of the first firings
of all actors in that iteration. Formally, the latency of the ith iteration is

LG(i) = max
v∈V

end(v, i · sol(v))−min
v∈V

start(v, (i− 1) · sol(v) + 1)

For example, in Figure 2.4, the latency of each iteration in prologue or in
steady state is 16, that is, ∀i,LG(i) = 16. For the second iteration, we have:

LG(2) = max
v∈V

end(v, 2 · sol(v))−min
v∈V

start(v, sol(v) + 1)

= max(20, 26)−min(10, 16) = 26− 10 = 16

For any edge e = (x, y) with ρ(e) = (p, q) and ι(e) = d, we can establish
the following relations:

start(y, k) ≥ end(x,
⌈k · q − d

p

⌉
)

start(y, k) ≥ end(y, k − 1)

The kth firing of the actor y of the edge (x, y) can start only if all required
tokens for that firing are produced, that is, k ·q tokens. The edge has d initial
tokens, therefore the actor x needs to fire dk·q−dp e times, before the kth firing
of y can take place.

Therefore, if y has only (x, y) as incoming edge, in an ASAP schedule
with enough processors, we have:

start(y, k) = max(end(x,
⌈k · q − d

p

⌉
), end(y, k − 1))

If the actor y has multiple incoming edges, then in an ASAP schedule,
we need to compute the maximum end time over all predecessors x of y, so
the starting time of the kth firing of y is:

start(y, k) = max( max
∀x,(x,y)∈E

(end(x,
⌈k · cons((x, y))− ι((x, y))

prod((x, y))

⌉
)),

end(y, k − 1))

where prod((x, y)) and cons((x, y)) are the production and consumption
rates of the edge (x, y) respectively.

For example, in Figure 2.4, the 5th firing of actor B occurs only after the
4th of actor A. Using the formula, we have:

start(B, 5) = max(end(A,

⌈
5 · 2

3

⌉
= 4), end(B, 4))

= max(20, 19) = 20
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The notion of multi-iteration latency is the execution duration DG(n) of
the first n iterations. It is equal to the end time of the last firing of the
nth iteration. In the sequel, we will use the multi-iteration latency DG(n) to
compute the period and the throughput of an SDF graph.

An algorithm to find the minimal latency for SDF graphs is proposed in
[28] both for single-processors and multi-processors with sufficient resources
to exploit all available parallelism. By adding one source and one sink to the
graph, it produces a so-called latency graph used to compute the minimal
end-to-end latency. In order to compute the minimum latency between the
source and the sink actors, the latency of all paths between those two actors
must computed. The number of all these paths is exponential in the number
of actors of the graph, and therefore, the computation of the latency is also
exponential in the number of actors.

In [48], it is proposed to use max-plus algebra to compute a tighter worst-
case latency estimate than other existing approaches. The complexity of this
approach is still exponential in the size of the dataflow graph, but it is shown
to be practical for realistic case-studies.

Throughput

The period of a given iteration i of a graph G is the largest end time of the
last firings of all actors in ith iteration minus the largest end time of the last
firings of all actors in the (i− 1)th iteration.

PG(i) = max
v∈V

end(v, i · sol(v))−max
v∈V

end(v, (i− 1) · sol(v))

The throughput of a given iteration is defined as the inverse of the period
of that iteration:

TG(i) =
1

PG(i)

In Figure 2.4, the period of the first iteration (the prologue) is 16, but
from the second iteration the period is 10. So the throughput during the
steady state is 1

10 .
In a sequential execution where there is no parallelism, each iteration

starts once its previous iteration has finished. In such case, the period of an
iteration is equal to the end-to-end latency. When there is parallelism, the
average period PG can be computed as the average time an iteration takes.
Therefore, we can compute the average period as follows:

PG = lim
n→∞

DG(n)

n

where we recall that DG(n) is the multi-iteration latency of G. The average
throughput is the inverse of the average period:

TG =
1

PG
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ASAP scheduling allows a graph to reach its maximum throughput [9,
11], provided that the buffer sizes are sufficient. This throughput for an
acyclic graph depends only on the actor whose execution of all its firings is
the longest in an iteration. It is equal to:

TG =
1

maxv∈V sol(v) · t(v)

The reason is as follows. In an ASAP schedule with enough processors,
each actor executes on a single processor. In the steady state, at each it-
eration, each actor must wait for its inputs to be ready except any actor
vm for which its sol(vm) · t(vm) is maximum. This is because all immediate
predecessors of vm take at most sol(vm) · t(vm) to complete their execution
during an iteration. The actor vm executes continuously in the steady state.
Therefore, during the steady state, the period of an iteration is the dura-
tion the actor vm takes to execute, and the throughput is the inverse of the
period.

The throughput of an SDF graph can be computed by converting it into
an HSDF graph and by finding the inverse of the maximum cycle mean
(MCM) of the equivalent HSDF graph [50]. The cycle mean of a cycle is
equal to the sum of execution times of the actors in the cycle divided by the
number of initial tokens on the edges of this cycle [47]. This approach may
be impractical for large graphs, because the complexity of the conversion
from SDF to HSDF is exponential in the number of actors. Moreover, in
order to compute the MCM, all cycles have to be found. The number of all
cycles are also exponential in the number of actors.

In [27], an approach for computing the throughput is proposed in order
to avoid transforming the SDF graph into an HSDF graph. This approach,
which is based on a state space exploration, does not improve the complexity
which is exponential in the size of the dataflow graph, but it is shown to
perform better than other existing approaches in practice.

2.4 Extensions of Synchronous Dataflow

We can categorize dataflow MoCs into two classes : static dataflow MoCs [29]
and dynamic dataflow MoCs [6]. The static MoCs cannot change at run-time
whereas the ones in the second class provide mechanisms for reconfiguring
the dataflow graph. We can further distinguish two types of reconfiguration:
Parameterization and dynamic change of the topology of the graph.

By parameterization, we mean replacing a constant value by a parameter
whose value can change dynamically. Features of a dataflow model that
can be parameterized include values of production and consumption rates
and numbers of initial tokens. The functions of actors can be also subject
of change, which may result in change in the execution time of the actor.
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There are also some MoCs such as Cycle-static dataflow (CSDF) [8] which
allow the production and consumption rates to be changed without providing
parameters, but rather by choosing the rate among a finite and statically
known number of values.

If a dataflow MoC changes the set of actors and edges at run-time, we say
that it changes the topology. For example, by allowing the state of a commu-
nication channel to be enabled or disabled using parameters, the topology
can change during the execution. Another way to change the topology is to
replace a dataflow graph by another one.

We present the class of MoCs allowing parameterization and the class of
MoCs that allow dynamic change of the topology in turn. MoCs that allow
enabling and disabling edges using parameters are also presented into the
second class.

2.4.1 MoCs supporting parameterization

Parameterization refers to the change of constant values of the MoC by
parameters. For example, rates are constant in SDF, but they may need
to be changed for a specific application. An actor may need to consume
a certain number of tokens during a time interval and another number of
tokens during another interval. In this section, we present dataflow MoCs
allowing the parameterization of some of their features.

Parametric Synchronous Dataflow (PSDF)

Parametric Synchronous Dataflow (PSDF) is the first parametric dataflow
MoC that was proposed [5]. A PSDF actor is parameterized with a set
of parameters. These parameters can be used to change the production
and consumption rates, number of initial tokens and the functionality of an
actor. The parametric rates can only take positive value (null rates are not
allowed).

A PSDF actor is either a normal actor as in SDF with possibly parametric
rates, or it is a hierarchical actor. An example of a hierarchical actor is shown
in Figure 2.6. The input and output ports of a hierarchical actor, which
are called interface ports, are connected to the actors in the higher level of
hierarchy. Each hierarchical actor consists of a mandatory graph called the
body graph with possibly parametric rates which models the functionality of
the hierarchical actor, and two optional graphs called init and subinit graphs
which are responsible for setting the parameters.

In the Figure 2.6, the body graph consists of 3 actors, actor A connected
to an input interface port with a parametric rate p on its output edge, actor
B with an internal parameter g to change its functionality, and actor C
connected to an output interface port. The subinit graph contains a single
actor that sets the parameter g and the init graph contains a single actor that
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sets the parameter p. The schedule for this hierarchical actor is {A;Bp;Cp},
where Bp stands for the repetition of B’s firings p times. If the solution
of this hierarchical actor in its parent graph is x, then the schedule of an
iteration becomes {(A;Bp;Cp)x}.

set g set p

A B(g) C
p 1 1 1

InitSubInit

Body
interface

input ports
inetrface

output port

Figure 2.6: An example of a hierarchical actor in a PSDF graph

A hierarchical actor communicates with its parent actor, that is, the
actor containing it, using the interface ports. The init graph is used to set
the parameters and is called at the beginning of each firing of the parent
actor, while the subinit graph is used to configure the parameters at the
beginning of each iteration of the body graph, therefore it is invoked more
frequently than the init graph. For example, in Figure 2.6, the hierarchical
actor has two input interface ports and one output interface port. The init
graph which sets the parameter p (output rate of A) is called each time the
parent graph of the hierarchical actor starts its firing. The subinit graph
that sets the parameter g (which may modify the functionality of the actor
B) is called at the beginning of the iteration of the body graph.

Each hierarchical actor is analyzed separately. PSDF checks that all
configurations of the body graph of every hierarchical actor are consistent
and live.

Another MoC which is very similar to PSDF and offers hierarchical data-
flow with parameters is Parameterized and Interfaced Synchronous Dataflow
(PiSDF) [19]. It is simpler than PSDF as it does not separate init, subinit
and body graphs. Each hierarchical actor is executed at each iteration. The
idea of parameterization of PSDF has also been used to extend cyclo-static
dataflow (CSDF), resulting in PCSDF [34].

In all these MoCs, it is not possible to modify the topology of the dataflow
graph, although it is possible to change the functionality of actors, which can
be seen as replacing actors.

Schedulable Parametric Dataflow (SPDF)

Schedulable Parametric Dataflow (SPDF) [23] is a parametric dataflow MoC
where each rate is either a positive integer, or a parameter, or a product of
positive integers and parameters.
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Setting the parameters of an SPDF graph can occur within an iteration
and it is not restricted to iteration boundaries as in PSDF. Each parameter
has a unique actor, its modifier, which may modifying it. The actors that
have parametric rates are the users of parameters. The modification is done
according to a period. The annotation p@π attached to an actor A indicates
that the modifier actor A can set the value of the parameter p at every π
firings of A. Periods can also be parametric. The number of modifications of
a parameter p by A with the annotation p@π within an iteration is computed
symbolically as sol(A)/π. This is called the frequency of p, which must denote
an integer (i.e., π must be a divisor of sol(A)). The frequency can also be
parametric, but it cannot be a symbolic fraction since it has to be an integer.
The values of parameters are communicated by the modifiers to the users
through special communication links that are added automatically by the
compiler. These edges, which control the behavior of the SPDF graph, are
called control edges.

Figure 2.7 shows a simple example of an SPDF graph. The actor A is the
modifier of the parameter p and it can modify it every p firing (annotation
p@p). The repetition vector, symbolically computed, is [2p, 2, 3], therefore
the actual frequency of the modification of parameter p is 2. There is also
a parametric single appearance schedule {A2p;B2;C3}. The expression A2p

means that A is executed 2p times consecutively. Each (implicit) control
edge is added by the compiler. In Figure 2.7 we depict the control edge
from A (the modifier of p) to B (the unique user of p) as dashed arrow, with
the annotation [p] to show that the control edge from A to B carries the
parameter p.

A B C
1

1

p

p

3 2
p@p

[p]

Figure 2.7: An example of a SPDF graph

Boundedness and liveness of SPDF graphs can be analyzed statically.
These analyses are symbolic, that is, they are performed with regard to the
parameters of the graph. For example, the solution of the actor A which is 2p
is symbolic. Similarly, a symbolic schedule is expressed using the parameters
of the graph. Because of the flexibility of rate modification, consistency is
not sufficient for boundedness. In order to guarantee boundedness, every
parameter p must be modified at the boundaries of the local iteration of
the subgraph made of the users of p. This subgraph is called the region of
parameter p. For liveness, it must be also verified that there is a directed
path in the dataflow graph from each modifier to all the users. This prevents
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the control edges to introduce non-live cycles.
Similar to PSDF, SPDF does not allow changing actors or edges. There-

fore, in terms of dynamic change of topology it is the similar to PSDF,
although it provides a higher degree of flexibility in terms of rate modifica-
tion.

2.4.2 MoCs supporting dynamic topology

In the following, we present the dataflow MoCs that allow the topology of
the dataflow graph to be changed dynamically.

Variable Rate Dataflow (VRDF)

Variable Rate Dataflow (VRDF) [54] is an MoC with parametric rates. The
domain of a parameter can contain zero, but needs at least one strictly
positive value. By accepting null rates, VRDF also allows changing the
topology of the graph in the sense that a null rate disables its port.

Parameters can change within the iterations and they are set by a mod-
ifier actor which can modify their value at any of its firings. Because of this
parameterization mechanism, consistency (evaluated as in SDF by check-
ing the existence of a non-null repetition vector) does not imply necessarily
boundedness and more restrictions are needed. Each parameter is used by at
most two actors, its modifier, and one possible user. For any two actors using
the same parameter, their symbolic solutions must be equal. For liveness, a
symbolic schedule must be found.

Figure 2.8 shows an example of a VRDF graph. It respects all the con-
straints, since the solutions of both actors A and B are 2 and the parameter
p is used in the output port of its modifier as well as the input port of its
user. The iteration is (A2, B2, C). Similar to SPDF, the control channel
from A to B (depicted as a dashed arrow) specifies explicitly the parameter
it carries, which is p in this example.

A B C
p p 1 2

[p]

Figure 2.8: An example of a VRDF graph

The idea of parameterization of VRDF has also been applied to CSDF,
resulting in Variable Rate Phased Dataflow (VPDF) [55] in which actors pe-
riodically change phase while their rates change according to their sequence
of rates. Those rates are parametric as in VRDF.

Although changing the topology of the graph is possible in VRDF and
VPDF (as ports can be deactivated using null rates), it is limited. For
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example, suppose a graph needs to add actors to the graph at runtime.
Firstly, all those actors must be foreseen in the initial graph. Secondly,
VRDF allows only at most two actors to use the same parameter and as a
result the number of required parameters for enabling and disabling n actors
is linear in n.

In Figure 2.8, if p = 0, then the graph is reconfigured into the graph
B

1 2−→ C. The iteration changes to (B2, C). Since A does not fire anymore,
there must be a mechanism in place in order to change the value of p again,
otherwise the graph cannot be reconfigured again. Therefore, the capability
of VRDF for dynamic changes of topology is not only limited, but also raises
issues [10].

Boolean Dataflow (BDF)

Boolean Dataflow (BDF) [16] is one of the early MoCs that allows changing
the topology of the graph in a very limited way. It adds the ability of
conditional branching to SDF by using two special actors, switch and select.
The switch actor has a single input edge and two output edges, labeled true
and false and an additional incoming edge to communicate a boolean token
to the actor (see Figure 2.9). If the value of the boolean token is true, the
actor sends its output on the edge labeled true, otherwise the output is sent
to the edge labeled false. The select actor is the dual of this actor. It has
two inputs labeled true and false and one single output, and the value of the
boolean parameter determines which input is read by the actor.

Figure 2.9 shows a simple example of a BDF graph. The control input b
is fed to both the switch and select actors. In this way, if the value of the
control input b is true, the flow goes from A to B to D, otherwise, the flow
passes through C instead of B.

A

B

C

DSwitch T
F

T
F Select

b

Figure 2.9: An example of a BDF graph

For consistency analysis, a probabilistic rate pi is assigned to each control
input bi. This probabilistic rate corresponds to the probability of a control
input to take true or false values. For example, a switch actor with the
probability p for taking true values is supposed to produce np tokens on its
output labeled true after n firings and n(1− p) tokens on its output labeled
false. The vector ~p contains the probabilities for all control inputs. The

25



system of balance equations of BDF contains such probabilistic values. If
the system of balance equations for a given BDF graph has solutions for ~p,
the graph is strongly consistent and therefore it is consistent and bounded.
The liveness analysis also takes these probabilities into consideration.

The Integer Dataflow (IDF) MoC [15] extends BDF with switch and
select actors that select one edge among many edges according to the value
of a control integer parameter. Dynamic change of topology is possible using
BDF and IDF but in a limited way because actors have to be foreseen in the
graph and as in VRDF only edges can be dynamically enabled and disabled.

Boolean Parametric Dataflow (BPDF)

Boolean Parametric Dataflow (BPDF) [3, 2, 4] is another parametric data-
flow MoC that also allows dynamic change of the topology. These changes
are done using parametric boolean conditions on edges. The conditions ei-
ther activate or deactivate their associated edges and as a result change the
topology of the graph. However, new actors cannot be added to the graph.

Similar to SPDF, the production and consumption rates are either posi-
tive integers or a product of integers and parameters, although changing the
value of parameters is only possible at iteration boundaries. Unlike VRDF
in which at most two actors can share a given rate parameter, in BPDF
boolean and integer parameters can be shared among any number of actors.

BPDF provides in addition a mechanism to activate and deactivate edges
using boolean conditions on the edges. These conditions are expressed using
boolean parameters that can be changed within iterations. Each edge in
a BPDF graph can have a boolean condition which is a combination of
conjunctions and disjunctions and negations on a set of boolean parameters.
If the condition evaluates to true, then the edge is activated and it behaves as
an SDF edge. If the condition evaluates to false, then the edge is deactivated
and its origin and destination actors do not write on nor read from it. When
no boolean condition is specified, the edge behaves as an SDF edge.

A given boolean parameter can appear in several edge conditions in order
to activate and deactivate them at the same time. For example, a single
parameter b can be used to make a mutual exclusion between two edges
labeled by two conditions b and ¬b, whereas this facility is not provided in
VRDF.

Similar to the parametric rates in SPDF, each boolean parameters in
BPDF has a unique modifier. All actors that are the origin or destination
of an edge with a condition containing b are the users of the parameter b.
Unlike the rate parameters, the boolean parameters can be modified within
iterations. At each firing, if the value of a parameter b changes, its modifier
propagates this new value of b to all the users of b. As in SPDF, each modifier
of a boolean parameter specifies its period π, that is, the number of firings
between two consecutive changes of a parameter. It is written as b@π. The

26



frequency of change of a boolean parameter b denoted by freq(b) is defined
as the symbolic solution of its modifierM , divided by the period of change π
of the parameter, that is, freq(b) = sol(M)/π. Two restrictions are imposed
on frequencies. First, the frequency of each boolean parameter must be an
integer. Second, for every boolean parameter b with freq(b) and for all users
U of the parameter b, the value freq(b)/sol(U) must be an integer. If these
two conditions hold, the BPDF graph under study is called period safe.

An example of a BPDF graph is shown in Figure 2.10. The iteration is
(Ap,M1, B1, C1, D1, N1, Ep). The graph contains two boolean parameters b
and b′. The modifier of both parameters is the actor M . The period of both
parameters b and b′ is 1, which is equal to the solution of actor M . It means
that they can be changed at each iteration and their frequency of change is
1. As a result, at each iteration the application may change from executing
B to C and vice-versa. There is also one rate parameter p which can be
changed at the beginning of each iteration.

A M

B

C

D

N E

b

¬b

b′

b

¬b

b′
b@1

b′@1

p p

Figure 2.10: An example of a BPDF graph

If a BPDF graph is consistent and period safe, then it is bounded. This
ensures that for any given edge with a boolean condition C, the number
of tokens produced on that edge is equal the number of tokens consumed
on that edge during any iteration, no matter what values the condition C
takes during the iteration. For consistency analysis, because of the presence
of parametric rates, the system of balance equation has symbolic solutions.
This symbolic consistency analysis does not take the boolean conditions into
account. For liveness analysis, the control edges for communicating the pa-
rameters (both integer and boolean) must be taken into account.

One of the applications of BPDF is to model an environment where the
dataflow channels of SDF may be lossy and retransmission protocols must
be considered. In such environment, retransmissions need to activate and
deactivate ports of the graph. A translation of SDF graphs where some
channels may be lossy into BPDF has been proposed in [21].

Dynamic change of topology is possible using BPDF as it was shown
in the example. However, as all previous MoCs, all the topologies must be
foreseen at compile-time and all the actors must be present in the BPDF
graph.
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Scenario-Aware Dataflow (SADF)

The Scenario-Aware Dataflow (SADF) MoC [25, 52] and its extensions such
as Parameterized SADF (πSADF) [49] are MoCs which add a finite state
machine (FSM) to the dataflow graph. By adding an FSM, these MoCs can
specify several dataflow graphs and the FSM describe how to switch from
one graph to another.

An SADF application consists of an FSM with a number of states, each
associated with a dataflow graph. A state in SADF is called a scenario,
which is one of the possible topologies of the application. At the end of
each iteration, a transition can take place in the FSM to change the current
dataflow graph.

Figure 2.11 shows an SADF application consisting of two scenarios and
one FSM. In these graphs all rates are equal to 1. The finite state machine
consists of two states S1 and S2 for scenario 1 and scenario 2 respectively.
In scenario 2 the actor D is added. The execution starts with the state
S1. After each iteration, the state can change non-deterministically to the
scenario S2 or remain in S1 (non-deterministically because none of these two
transitions are labeled with a condition). There is also a transition from S2
to S1 which shows that the state can change non-deterministically from S2
to S1.

S1

S2

A M

B

C N E

A M

B

C

D

N E

Scenario 1

Scenario 2

Figure 2.11: An instance of the SADF MoC

In SADF, the scenarios are SDF graphs with constant rates, whereas in its
parameterized extension (πSADF), the rates can be either positive integers
or products of positive integers and parameters. In πSADF, restrictions are
imposed to guarantee boundedness and liveness. First, if a dataflow edge
contains initial tokens, then the solution of its destination actor cannot be
parametric and it must be a constant integer. Moreover, any edge with
initial tokens must be saturated, that is, the number of initial tokens on the
edge must be greater than the solution of its destination actor multiplied by
the maximum value of its input rate. This requires that for each parameter,
its maximum value must be specified. Second, each graph must have a
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possibly parametric single appearance schedule. Third, the self-loops, that
is, the edges with the same origin and destination, must have exactly one
initial token and rates equal to 1. The graphs of all scenarios are analyzed
statically and all must be consistent and live. πSADF also proposes methods
to compute the worst-case throughput based on max-plus algebra assuming
that the scheduling policy is self-timed [26, 48].

As it was shown in Figure 2.11, using SADF it is possible to change the
topology dynamically. However, the number of topologies is bounded by the
number of states of the FSM, and in πSADF, the number of possible configu-
rations of each scenario is dependent on the maximum values of parameters.
All possible topologies must be foreseen and be specified as a scenario.

Parameterized sets of modes Runtime Environment (PRUNE)

Parameterized sets of modes Runtime Environment (PRUNE) [13, 12] is a
parametric dataflow MoC that captures the functionality of data dependent
signal processing algorithms that require reconfiguration. Parameterized sets
of modes (PSM) [39] refers to the ability of modeling a collection of config-
urations, where one or more parameters are used in order to choose a mode
from the collection.

Each dataflow edge has a single rate which denotes the production and
consumption rate of that edge. Each port of an actor is either a control port,
a static port, or a dynamic port. Static ports are similar to the ports in SDF
with a single constant positive rate. The rate of the dynamic ports can take
two values: a fixed positive integer or zero. Therefore, a dynamic port can
be activated and deactivated. The control ports control the activation of the
dynamic ports. The consumption rate of the control ports is always one.
An actor can be static or dynamic. Static actors have only static ports and
they are similar to SDF actors with constant rates. Dynamic actors have
control and dynamic ports and can contain also static ports. Before firing,
a dynamic actor consumes one token from each of its control ports. Based
on the value of the control tokens it has just read, it sets the value of the
rates of its dynamic ports to either zero or their constant value. Then, it
consumes data from the ports with non-null rates, processes the data, and
finally produces data to the ports with non-null rates. Each data channel
can contain zero or one initial token, while the control channels never contain
any initial token.

In Figure 2.12, we can see an example of a PRUNE graph. Each edge
carries a single rate corresponding to its consumption and production rates.
Actor Q controls the output dynamic ports of the actor M connected to
actor C. It can set it to either zero or one and, in this way, the edge (M,C)
can be activated or deactivated.

PRUNE ensures consistency and liveness statically using some design
constraints. For example, one constraint is that each pair of dynamic ports
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Figure 2.12: An example of a PRUNE graph

connected to each other must be controlled using the same control port.
Another constraint is that a dynamic actor may have only dynamic input
ports or dynamic output ports, but not both. The imposed constraints
ensure that all possible topologies are consistent and live.

Dynamic reconfiguration is possible in PRUNE, but still it is limited. Al-
though using a set of control edges allows creating several topologies, still all
actors must be present in the initial graph. Similar to BPDF, PRUNE allows
activating and deactivating edges, but because of the constraints, it appears
less expressive. Compared to SADF, it is more difficult for PRUNE to define
very different dataflow graphs in one application. SADF may changes the
topology by changing completely the graph, whereas PRUNE as BPDF is
limited to activate and deactivate edges.

2.5 Summary

The focus in this thesis is the class of concurrent models of computations
and, more precisely, dataflow MoCs. These models can be characterized and
classified using criteria, such as analyzability, expressiveness, and reconfig-
urability. The more a model is analyzable, the easier we can analyze it for
certain properties such as liveness, boundedness, and non-functional prop-
erties such as latency and throughput. The more expressive an MoC is, the
larger the class of applications it can express. Usually, more analyzable mod-
els are less expressive. Finally, the more reconfigurable an MoC is, the more
its applications can adapt to the environment. The focus of this thesis is the
reconfigurability of the paradigmatic dataflow MoC, that is, Synchronous
Dataflow (SDF).

In this chapter, we studied SDF and discussed about its key static analy-
ses, that is, boundedness and liveness. We also studied performance analyses
of SDF. Based on the notions of start time of an actor and its execution
time, we defined latency and throughput and discussed how they can be
computed. Parallel scheduling of a graph amounts to allocating time and
processing units to each of its actors. We defined the scheduling policy we
focus on, which is the ASAP or self-time policy. In a self-timed execution,
an actor is executed as soon as it is ready and has enough tokens on its
incoming edges.
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We studied different extensions of SDF, focusing on dynamic reconfigura-
tions. We presented Parameterized Synchronous Dataflow (PSDF), Schedu-
lable Parametric Dataflow (SPDF), Boolean Parametric Dataflow (BPDF),
Variable Rate Dataflow (VRDF), Parameterized sets of modes Runtime En-
vironment (PRUNE), Boolean Dataflow (BDF), and Scenario-Aware Data-
flow (SADF).

PSDF and SPDF only allow changing the consumption and production
rates of the actors. PSDF also allows changing the functionality of an actor,
but it is a very limited reconfiguration facility.

VRDF, BPDF, and PRUNE allow changing the topology of the dataflow
graph by different techniques. VRDF allows rates to be zero, so that an actor
can be deactivated, BPDF allows edges to be deactivated using boolean pa-
rameters, and PRUNE allows ports of actors to be deactivated by providing
dynamic ports. Although these MoCs are different in terms of expressive-
ness, in terms of reconfigurability they all have the same disadvantage: all
possible configurations must be known before starting the execution. BDF
is another MoC which allows changing the topology using two special actors
called switch and select.

SADF allows changing the topology by changing the state of the ap-
plication, each state being a different dataflow graph. The disadvantage is
that the number of configurations we can have at compile is bounded and in
practice usually small.

To conclude, all the MoCs we studied permit in practice a small number
of configurations, which in addition must be foreseen before execution. They
allow dynamic changes of the topology by enumerating all possible graphs
at compile-time. In this thesis, we address this shortcoming and propose
Reconfigurable Dataflow (RDF), a new MoC allowing to add and remove
actors and edges at run-time. All possible configurations of an RDF appli-
cation do not have to be explicitly stated at design time and their number
can be arbitrary large or even unbounded.
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Chapter 3

Reconfigurable Dataflow

Dynamic reconfiguration refers to the use of mechanisms to change dynami-
cally the topology of the graph. Two graphs have the same topology if there
is a bijection f from the set of actors of the first graph G to the set of actors
of the second graph H such that the edge A p q−→ B is present in G if and
only if the edge f(A)

p q−→ f(B) is present in H. In such a case, the two
graphs are called isomorphic. Two isomorphic graphs have the same number
of actors and the same number of edges.

Different extensions of the SDF MoC provide mechanisms for reconfigu-
ration differently. Some allow changing topology by providing a mechanism
to activate and deactivate edges and ports, and some by replacing a graph
by another graph. One drawback of all these existing dataflow MoCs is that
the number of topologies they can generate at execution time is bounded
and is known at design time.

In this chapter, we introduce the Reconfigurable Dataflow (RDF) MoC
which allows dynamic reconfigurations in such a way that the number of
topologies generated by an instance of the MoC can be unbounded. For
instance, in a multimedia application, an unbounded number of image pro-
cessing filters can be added. We also provide static analyses to verify that
all possible topologies generated by a given RDF application are connected,
bounded, and live. The mechanism used by RDF to achieve reconfigura-
bility is the concept of graph transformation (or graph rewriting) which is
elaborated in this chapter.

3.1 The Reconfigurable Dataflow MoC

The RDF MoC extends SDF with actor types, explicit ports, and a reconfig-
uration controller. The reconfiguration controller consists of a set of trans-
formation rules and a set of conditions. A transformation rule is a graph
rewrite rule describing how the current dataflow graph is modified. A graph
is modified by replacing one of its sub-graphs by another sub-graph. A con-
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dition is a boolean expression describing when the transformation rules are
applied. By applying a transformation rule, actors and communication links
can be moved, suppressed and/or added. Adding new actors motivates the
introduction of actor types. A type can be seen as a class of actors having
the same functionality. Types allow transformation rules to introduce new
actors in the graph as new type instances. For instance, a video application
may require to introduce dynamically several noise filters at different places
in the graph. This may be done by introducing new actors, instances of the
noise filter type, in the graph. Transformation rules, types and instances
allow the number of actors and the size of RDF graphs to be unbounded.

RDF also introduces explicit actor ports to allow transformation rules to
select specific edges more easily. For instance, ports allow to discriminate
between two edges of the same actor bearing the same rates.

Overall, an RDF application is specified as a pair (G,C) where:

• G is an initial dataflow graph, basically an SDF graph where each actor
is equipped with a type;

• C is a reconfiguration controller, which consists first, of a set of trans-
formation rules that specifies how an RDF graph may be transformed,
and second, of a set of conditions to specify when the transformation
rules should be applied.

An RDF application starts by executing its initial graph, until a first
transformation rule is applied, resulting in a new graph that is executed,
and so on and so forth. The transformation rules allow a potentially infinite
number of graphs to be produced dynamically from the initial graph.

3.1.1 Dataflow graph

RDF graphs extend SDF graphs with a set of actor types T and a notion of
ports. Formally, an RDF graph is defined as a tuple G = (T, V,E, ι) where

• T ⊆ IdT ×N×N× (N∗ → N∗)× (N∗ → N∗) is a finite set of types con-
sisting of a unique identifier, a number of input and output ports, and
two functions returning the rate associated with input and output ports
respectively. A type t = (i, k1, k2, f1, f2) has the identifier i, k1 input
ports, k2 output ports, and the function f1(j) (resp. f2(j)) returns
the rate associated with the jth input port (resp. output port). The
functions idof , nbin, nbout , finr , foutr return the identifier, number
of input ports, number of output ports, input and output rate func-
tions of their type argument respectively. For instance, finr(t,nbin(t))
returns the rate of the last input port of type t;

• V ⊆ T × N∗ is a finite set of actors, each one consisting of a type
(τ ∈ T ) and an index (i ∈ N∗). The functions typeof and indof
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return the type and index of their actor argument. Among actors, we
distinguish source actors that have no incoming ports, and sink actors
that have no outgoing ports.

• E ⊆ (V × N∗) × (V × N∗) is a finite set of directed edges. An edge
((a, i), (b, j)) connects the ith output port of actor a to the jth input
port of actor b.

• ι : E → N is a function that returns, for each edge, the number of its
initial tokens (possibly 0).

In the following, we use capital letters for type identifiers from the set
IdT . Typically an actor is denoted by its type identifier and an index: A2 de-
notes an actor of type A.

We consider only well-formed graphs, i.e., properly connected and typed
graphs. Formally,

Definition 1 (Well-formedness). An RDF graph is well formed if it is
(weakly) connected, its actors are fully linked and its edges are valid.

An RDF graph G is (weakly) connected if there exists an undirected path
between any two actors a and a′, which we write a ∗←→

G
a′. Formally,

Definition 2 (Graph connectivity). An RDF graph G = (T, V,E, ι) is
(weakly) connected if ∀(a, a′) ∈ V × V, a

∗←→
G

a′

Actors are fully linked if all their ports are connected by edges. Formally,

Definition 3 (Actors fully linked). An RDF graph G = (T, V,E, ι) has its
actors fully linked if

∀a ∈ V,∀ 1 ≤ i ≤ nbin(typeof (a)),∀ 1 ≤ o ≤ nbout(typeof (a)),
∃!(a′, o′, a′′, i′) ∈ V × N∗ × V × N∗,

s.t. ((a′, o′), (a, i)) ∈ E ∧ ((a, o), (a′′, i′)) ∈ E

Edges are valid if they connect only actors of the graph and only through
ports permitted by the actors’ type. Formally,

Definition 4 (Edge validity). An RDF graph G = (T, V,E, ι) has valid
edges if

∀((a, o), (b, i)) ∈ E, o ≤ nbout(typeof (a)) ∧ i ≤ nbin(typeof (b))

To facilitate the reading, RDF graphs are often represented as in SDF
with implicit ports and explicit rates. The graph G0 of the Figure 3.1(a)
is an RDF graph where A1, B1 and C1 are actors of types A, B and C
respectively. The graph has the same repetition vector and schedules as its
SDF version. Its schedule is {A3

1;C
3
1 ;B2

1}.
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The ports can also be explicit. The input ports are numbered from 1 to
n, and output ports from 1 to m, where n and m are integers. The graph
G0 is shown in the Figure 3.1(b) with explicit ports and implicit rates. The
notation •j indicates the port number j. In Figure 3.1(b), the actor A1 has
two output ports •1 and •2, the actor B1 has two input ports •1 and •2,
and the actor C1 has one input port •1 and one output port •1.

A1 B1

C1

1

2

3

3

1 2

(a)

A1 B1

C1

•1

•2

•1

•2

•1 •1

(b)

Figure 3.1: Graph G0 with (a) explicit rates and implicit ports, and (b) ex-
plicit ports and implicit rates (foutr(A, 1) = 1, foutr(A, 2) = 2,finr(B, 1) =
3,finr(B, 2) = 3,finr(C, 1) = 1, foutr(C, 1) = 2).

We could also show both ports and rates on the figure, but for simplicity
of the representation, we use either rates or ports.

3.1.2 Reconfiguration controller

The reconfiguration controller of RDF specifies when and how the current
dataflow graph is modified. The basic operations are transformation rules
which are specified as graph rewrite rules determining how a sub-graph of the
current dataflow graph is replaced by another sub-graph. A transformation
program combines the transformation rules in different ways. The controller
has a reconfiguration program which specifies the conditions for applying the
transformation programs.

Therefore, the reconfiguration program consists of a sequence of pairs of
conditions and transformation programs:

[cond1 : P1; . . . ; condn : Pn]

Each condition condi is a boolean expression. For instance, a condition
may check whether the throughput of the current dataflow graph is superior
or inferior of a certain value. More details on the concrete examples of condi-
tions are provided in chapter 5. The language for describing conditions is not
part of the RDF MoC, because it involves elements (such as the throughput)
that are external to the RDF application (see section 5.1.3) and because it
does not interfere with static analyses.

The simplest option for transformation programs is to consider them
made of a single transformation. This is the language we have used to
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implement RDF (see chapter 5). Many more expressive options are possible.
We describe in the following one possible and more expressive language.

A transformation program can be a combination of transformation rules
(see section 3.1.3) with the following syntax:

P ::= tr Transformation rule
| P1 B P2 : P3 Choice
| P ∗ Iteration

The application of a transformation rule on a given RDF graph G is said
to be successful if it has matched a subgraph of G. The choice construction
P1 B P2 : P3 tries to apply P1; if it was successful then P2 is applied next,
otherwise P3 is applied. The iteration P ∗ applies P as long as it is successful.
We may write P1;P2 for the program P1 B P2 : P2 which applies P1 and P2

in sequence regardless P1 is successful or not.
If one condition condi is satisfied, then the controller stops the execution

of the RDF graph (see chapter 5 for more details), applies the transformation
program specified by Pi, and finally resumes the execution. Only one pair
(condi : Pi) is selected. If more than one condition is true, then the first true
condition in the sequence is chosen.

An issue with the above transformation language, however, is that an
iteration P ∗ may loop infinitely. To guarantee the termination of such itera-
tions, a solution would be to enforce that P decreases some measure (e.g., the
number of actors of type T in the graph).

To ensure that a controller always preserves the connectivity, consistency
and liveness of the dataflow graphs it transforms, it is sufficient to verify that
the initial graph satisfies these properties and that each individual transfor-
mation rule preserves them (see section 3.2). Individual transformation rules
(and their analysis) is the technical heart of RDF which are presented next.

3.1.3 Transformation rules

Graph rewriting refers to the process of converting a graph to a new graph
using rewrite rules which replace a sub-graph by a new sub-graph. An RDF
transformation rule tr is a graph rewrite rule of the form

tr : lhs V rhs

which selects a sub-graph matching the pattern lhs from the current dataflow
graph, and replacing it by the graph rhs. We use the set-theoretic approach
of [46] to graph rewriting: the terms lhs and rhs can be seen as non empty
sets of edges. Actors names, types, and rates in lhs are either specified by
constant values or possibly with pattern variables matching names, types
and rates.

As it is standard in programming languages, pattern matching amounts
to finding a variable substitution identifying the pattern with a sub-term. In
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RDF, a pattern lhs matches a sub-graph of a given dataflow graph G if there
is a substitution σ mapping name (resp. types, rates) variables to actual
names (resp. types, rates) in G such that the set of edges of σ(lhs) belongs
to G: i.e., σ(lhs) ⊆ G. If lhs has no variables, the substitution σ is empty
and the lhs is to be found as a sub-graph of G. The rule tr : lhs V rhs
removes the matched sub-graph and replaces it by rhs after substituting its
variables by their matches, i.e., σ(rhs).

In all examples, we note α, β, . . . the pattern variables matching types, x,
y, . . . the pattern variables matching indices, r1, r2, . . . the pattern variables
matching rates, and p1, p2, . . . the pattern variables matching ports. For
instance, Ax matches any actor of type A, and βy matches any actor.

As an example, consider the transformation rule tr1 depicted in Figure 3.2
and the dataflow graph in Figure 3.3. In the transformation rule tr1, an actor
of type B is replaced by an actor of type E.

αx By βz V αx Et βz
r1 3 1 r2 r1 3 1 r2

Figure 3.2: The transformation rule tr1.

I1 A1 B1 C1 O1
1 1 2 3 1 1 2 1

Figure 3.3: The dataflow graph G1.

The terms αx and βx match any actor of any type, whereas the term By
matches any actor of type B. When applied to the graph of Figure 3.3, the
rule matches the subgraph

A1
2 3−→ B1

1 1−→ C1

and yields the substitution

σ = {α 7→ A, x 7→ 1, r1 7→ 2, y 7→ 1, r2 7→ 1, β 7→ C, z 7→ 1}

As a consequence, the rule tr1 replaces the actor B1 by a new actor E1. It
transforms the graph of Figure 3.3 into the graph of Figure 3.4.

I1 A1 E1 C1 O1
1 1 2 3 1 1 2 1

Figure 3.4: The resulting graph tr1(G1)

For the same reasons as we represent graphs with rates instead of ex-
plicit ports, we use patterns matching rates instead of ports. In the case of
ambiguity, we may use explicit port indexes •1, •2, . . . or port variables •p1,
•p2, . . . in the transformation rules.
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Static conditions

In a given transformation rule, the numbers of incoming and outgoing ports
and the rates of all incoming and outgoing ports of each actor must be
consistent with its type. Actors occurring in the lhs and rhs must have the
same number of edges in both parts (condition (C1)). Actors occurring only
in lhs or rhs must be fully linked: they must have explicit types and all
their ports connected (conditions (C2) and (C3)). These conditions must
be respected by each transformation rule:

• (C1) Actors occurring in both sides must have the same edges and
ports connected in the rhs and in the lhs. For an actor with an un-
known type (i.e., denoted by a pattern variable), since it was fully
linked before the transformation, it remains so afterwards.

In tr1, αx and βy keep the same edges and rates in lhs and rhs.

• (C2) An actor occurring in the lhs but not in the rhs is suppressed. To
be valid, all incoming and outgoing edges of that actor should appear
in the lhs. Otherwise, suppressing an actor would create dangling
edges. To verify this point, the type of removed actors must appear
explicitly in the rule. Indeed, when the type is known, the numbers
of incoming and outgoing edges are also known and the rule can be
checked statically.

In tr1, the actor that is suppressed has type B and has only one in-
coming and one outgoing edge.

• (C3) When an actor with variable index occurs in the rhs but not in
the lhs, it represents a new actor (instance of the given type) that must
therefore be created. The type of such an actor must be explicit and it
must be fully linked.

In tr1, Et represents a new actor with an explicit type E. It must
be verified that the type E have only one incoming and one outgoing
edges.

Additional constraints are needed to be checked in order to preserve
connectivity, consistency and liveness of the graphs (see section 3.2).

In summary, a transformation rule tr : lhs V rhs applied to a graph G
can be seen as the set rewrite rule

X ∪ σ(lhs)︸ ︷︷ ︸
G

V X ∪ σ(rhs)︸ ︷︷ ︸
G′ = tr(G)

(3.1)

The graphG is the set of edgesX∪σ(lhs) where σ is the substitution returned
by the pattern matching. The resulting graph G′ = tr(G) is G where the
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sub-graph σ(lhs) is replaced by the sub-graph σ(rhs). The context X (the
graph or set of edges surrounding the matched part) remains unchanged.

Initial tokens raise semantic issues. For instance, if a transformation
has an rhs with initial tokens, we would need a way to specify the origin
or values of these tokens. To keep things simple, we allow the initial RDF
graph to have edges with initial tokens but impose that transformations do
not manipulate them. In other words, an edge with initial tokens can neither
be matched nor created.

An example of an RDF application is depicted in Figure 3.5. It con-
sists of an initial dataflow graph with three actors A1, B1, and C1 and two
transformation programs each being a single transformations rule: tradd and
trrem. The first transformation rule adds a new instance of an actor of
type B between two actors of types B and C and the second transforma-
tion rule removes an actor of type B connecting two actors of types B and
C. When the condition cond1 (resp. cond2) holds, the transformation rule
tradd (resp. trrem) is applied. The conditions are left unspecified here. This
example shows how an unbounded number of graphs can be created using
RDF, because the rule tradd can be applied an arbitrary number of times.

Dataflow graph

Reconfiguration controller

Transformation rules

Transformation programs

A1 B1 C1

Bx Cy
tradd
V Bx Bz Cy

Bx Bz Cy
trrem
V Bx Cy

cond1 : tradd

cond2 : trrem

Figure 3.5: An example of an RDF application

3.1.4 Variable arity actors

RDF transformation rules may add and remove actors and sometimes the
number of input/output of actors (i.e., their arity) may need to be changed
dynamically. For instance, it might be convenient to have actors with 1, 2,
or 3 input ports depending on the configuration in which it is used. Different
types of variable arity actors can be used depending on the application. We
first discuss two kinds of applications requiring two different types of actors
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with variable arity and we present those actor types. Then, we study one
application on parallel matrix multiplication requiring both kinds of variable
arity actors.

Actor Z

Consider an actor Sum which (1) receives n integer tokens x1, ..., xn each
one from its n input ports, (2) computes the sum of those integer values,
and (3) sends the computed sum as an integer token on its single output
port. If during the execution of the application, the number of integers to
be summed changes, we need a variable arity actor.

The actor Sum which may have a parametric number of input ports,
could be emulated by an actor Sump with parametric rate p (such parametric
actors can be found in PSDF). The actor Sump has one single input port with
parametric rate p and one single output port. At each execution, it reads
p integers from its single input port, computes the sum of those p integers,
and writes the result on its output port. The value of the parameter p of
actor Sump corresponds to the input arity of the actor Sum.

Consider another example: An image processing actor F1 receives an
image, processes it and sends it to another actor F2. If during the execution,
we also need to display the output of the actor F1, using an actor F3, we
apply a transformation rule in order to connect also F1 to F3. The actor F1

now needs to duplicate its processed image on both of its output ports.
The number of inputs of actor Sum and outputs of actor F changes

dynamically. Both of these examples can be implemented by variable arity
actors. We can also imagine a Sum actor which needs to duplicate its out-
put tokens on several ports. Therefore, an actor can have both inputs and
outputs of variable arity.

Actor Z in Figure 3.6 is a generic variable arity actor with variable num-
bers of n inputs and m outputs. The rate of each input port is the constant
value k and the rate of each output port is the constant value l. The semantic
of the execution of actor Z is similar to standard SDF actors. At each firing,
it consumes k tokens from each of its input ports, performs a computation,
and finally produces l tokens on each of its output ports.

Z
k
...
k

l
...
l

mn

Figure 3.6: Generic variable arity actor Z

Each actor of type Z can perform a different computation. In general, its
processing can be expressed as a function taking a list of size n and producing
a list of size m at each of its firing. For example, the actor Sum is a function
which consumes a list of n inputs and produces a list of size 1.
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When a transformation adds or removes edges of a variable arity actor
of type Z, the number of its ports are updated. Moreover, new ports are
added at the end of the list of ports, while removing the ith port makes the
(i+ 1)th port become the ith and so on.

The actor Z is similar to normal SDF actors. The actor Sum with 1,
2, ..., N inputs can be seen as N different actors Sum1, Sum2, ..., SumN .
Therefore, introducing actor Z does not change the static analyses of RDF.

Actor X

Consider the following dataflow graph where the filter F1 is applied on images
produced by the actor I1.

I1 F1 O1
1 1 1 1

If the resolution of produced images increases dynamically, it might be
needed to add a filter F2 in parallel to F1 and to change the graph into

I1 S1

F1

F2

J1 O1
1 2 1

1

1 1

1 1

1

1

2 1

where the split actor S1 reads two image blocks and distributes them to the
two filters F1 and F2 and where the join actor J1 reads two image blocks
and passes them to O1. Provided enough computing resources, the actors
F1 and F2 can be fired in parallel and the throughput is improved. If a third
parallel level of computation is needed, one would have to introduce a new
filter between the split and join actors to distribute and gather the three
images.

To allow such transformation rules an arbitrary number of times, RDF
provides a special actor type X with variable arity (see Figure 3.7). The
consumption rate on each of its incoming edges is q and the production rate
on each of its outgoing edges is p where p and q are two unique parameters.
Unlike in PSDF, these parameters cannot be modified by an actor. The
value of the parameter p is always equal to the number of input ports of an
actor of type X and the value of the parameter q is equal to the number of
its output ports. At each firing, an actor of type X consumes p ·q tokens and
distributes them on its q outputs. It does not perform any computation.

Two special cases of actorX with variable arity are depicted in Figure 3.8.
The split actor of type S has a single input and a variable number of outputs.
The rate of its incoming edge is q. In other words, S is an actor X in which
p = 1. It consumes q tokens from its single input and distributes them on its
q outputs. The join actor of type J is symmetric, having a variable number
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X
q
...
q

p
...
p

qp

Figure 3.7: Actors X with variable arity

of inputs and a single output. The rate on its single output is p and the
number of its input edges is equal to the value of p. So J is a special case of
actor X in which q = 1. It consumes 1 token from each of its p inputs and
gathers them on its single output of rate p. 1

Sq ... J...
p

q p

(a) (b)

Figure 3.8: Actors with variable arity: (a) split and (b) join.

A variable arity Xk actor is associated with the unique parameters ik
(representing input rates or number of output ports) and ok (representing
output rates or number of input ports). For split actor Sk and join actor
Jk, we note the corresponding parameters sk and jk respectively. Solving
balance equations is performed according to those parameters as in paramet-
ric variants of SDF [10]. In this way, consistency is checked for all possible
values of parameters.

When a transformation adds or removes edges of a variable arity actor
Xk:

• the number of ports nbin(Xk) and nbout(Xk) are updated;

• the values of the parametric rates are changed so that nbout(Xk) = ik
and nbin(Xk) = ok;

• the functions finr and foutr are updated such that:

– ∀1 ≤ ` ≤ ik,finr(Xk)(`) = ok,

– ∀1 ≤ ` ≤ ok, foutr(Xk)(`) = ik.

Note that ports are implemented as lists and adding a new edge in-
volves adding a new port at the end of the list, while removing the
edge of the `th port makes the (`+ 1)th port become the `th and so on.

1The notion of split and join are also defined in StreamIt [53], which is a high-level
language for representing streaming applications. Split and join actors are used there to
specify independent parallel streams of data. StreamIt is based on message passing MoCs
and not SDF.
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To allow these updates, the functions nbin, nbout , finr , and foutr must
now take as their first argument an actor instead of a type. Indeed, before
introducing variable arity actors, all the actors of a given type T had exactly
the same number of input and output ports. This is not the case anymore
with variable arity actors.

Variable arity actors entail additional conditions on transformation rules.
According to condition C2, suppressing a variable arity actor would require
to select all its edges whose number cannot be statically known. Creating
a new variable arity actor is also difficult since it involves introducing new
parameters that play a role in the solutions of connected actors. Variable
arity actors therefore should be anticipated in the initial graph. Moreover,
transformations rules must ensure that variable arity actors remain fully
linked, that is, they have at least one incoming and one outgoing edge.
Hence, we have the following additional conditions:

• (C4) Variable arity actors cannot be suppressed nor be created by
transformation rules.

• (C5) If a transformation rule removes an incoming (resp. outgoing)
edge from a variable arity actor, then that actor must occur in the rhs
with at least one incoming (resp. outgoing) edge.

The previous example can be dealt with by using the initial graph and
transformation rule of Figure 3.9 which add a new parallel level of compu-
tation (here with a new instance Fy of the filter of type F ) to process the
incoming data. A controller may apply that transformation rule when, for
instance, the throughput drops below a certain threshold. The reverse trans-
formation could also be added to free computing resources when possible or
needed.

(a)I1 S1 F1 J1 O1
1 s1 1 1 1 1 j1 1

(b)S1 Fx J1
1 1 1 1 V S1

Fx

Fy

J2
1

1

1

1

1

1

1

1

Figure 3.9: Adaptive image filtering: (a) initial dataflow graph and (b)
transformation rule

Note that the iteration does not change between the initial graph and
the graph after one application of the rule. It remains (Is11 , S1, F1, J1, O

j1
1 ),

but since the values of the parameters s1 and j1 change, the actual number
of firings of untouched actors I1 and O1 changes.
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The initial graph of the Figure 3.10 is inconsistent since it requires that
the parameters denoting the number of outgoing (resp. incoming) edges of
S1 (resp. J1) be equal, i.e., s1 = j1. Even though that condition is satisfied
in the initial graph, it might be invalidated by some transformation rule
(e.g., by adding an edge between S1 and a new sink actor).

I1 S1 F1 J1 O1
1

1

s1 1 1 1 1 j1 1

1

Figure 3.10: An inconsistent cyclic graph

A simple extension to alleviate this problem would be to allow consistency
checking to produce such additional constraints and to statically check that
all the transformations respect these constraints (see section 3.3.2).

Although it is possible for normal actors to specify their ports in a pat-
tern, for actors with variable arity, we do not know their current number of
ports. In any pattern involving variable arity actors, we can always use •1 to
denote the first port because it always exists, and we introduce the notation
•last to denote the last port of a variable arity actor. These notations allow,
for instance, specific edges to be removed from variable arity actors.

Parallel matrix multiplication

We illustrate the use of both types of variable arity actors in a concrete
example. Multiplication of matrices is an operation which can be performed
in parallel. This is because when computing C = A×B, the element ci,j of
the matrix C is obtained by computing the dot product of ith row of A and
jth column of B. Therefore, each element of the matrix C can be computed
independently only by having access to one row of A and one column of B.
We can implement this mechanism using a dataflow graph in different ways.
One way is to dedicate one actor for computing one row of C. For computing
one row of C, each actor needs one row of A and the whole matrix B.

The parallel matrix multiplication application continuously receives two
matrices AN×K and BK×M and computes the resulting matrix CN×M . The
application consists ofN actors each computing one of the rows of C. Assume
that during the execution of the application, the number of rows of A and
columns of B may change. As a result, the number of actors for computing
C needs to be changed and the two types of variable arity actors presented
before are useful.

The dataflow graph of this application is Gpm (Figure 3.11) in which all
rates which are not indicated are equal to 1. The parallel matrix multipli-
cation application consists of five types of actors : A, B, Dup, S, Multiply,
J , and C. At each firing, the A1 actor sends tokens each containing a row
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of the matrix A. The actor B1 sends the matrix B in a single token at each
iteration. The actor S1 receives s1 rows of the matrix A (here s1 = 4) and
sends each row on one of its outputs. The actor Dup1 duplicates its input
on all its output ports. Each actor Multiply receives a token containing
one row of the matrix A on its first input and a token containing the whole
matrix B on its second input. Then, it computes one row of the matrix C
and sends this row as a single token. The actor J receives j1 rows of matrix
C (here j1 = 4) and serializes them on its output as j1 tokens. The actor
C1 receives the rows of the matrix C, reconstructs the whole matrix C and
displays the result. In this example, Dup1 is a variable arity actor of kind
Z, and the two actors S1 and J1 are both variations of actor X.

A1

B1

S1

Dup1

Multiply1

Multiply2

Multiply3

Multiply4

J1 C1

s1

j1

Figure 3.11: The parallel matrix multiplication dataflow graph Gpm

In the dataflow graph Gpm of Figure 3.11, the matrix A has 4 rows.
But during the execution of the graph, the dimensions of the matrix A may
change and therefore there is a need for reconfiguration. Suppose that the
number of rows of A changes from 4 to 5. In this case one more Multiply
actor is needed. The transformation rule trpm in Figure 3.12 shows how one
such actor can be added.

S1

Dup1

Multiplyx J1 V
S1

Dup1

Multiplyx

Multiplyy

J1

Figure 3.12: The transformation rule trpm

3.2 Static Analyses

Improving the expressivity and dynamicity of SDF should not come at the
price of losing consistency and liveness analyses. We have to guarantee that
the transformation rules preserve these properties on the transformed graphs.
We also need to ensure that the transformation rules preserve the connectiv-
ity of the graphs so that the graphs remain well-formed. A simple approach
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would be to verify dynamically whether a transformation rule yields a con-
sistent, live, and connected graph. The disadvantage of this approach is
that the user cannot know which transformation rules would fail. Moreover,
there would be a cost of trying to apply transformation rules and verifying
resulting graphs. We follow another approach which involves verifying stat-
ically whether a transformation rule always produces a consistent, live, and
connected graph.

We study here how connectivity, consistency, and liveness can be an-
alyzed and guaranteed statically for RDF applications. It is sufficient to
ensure that:

• these three properties hold for the initial graph (SDF static analyses
can be reused for that matter);

• assuming the considered properties hold for a given graph G, for each
individual transformation rule tr, the properties still hold for the trans-
formed graph tr(G).

An RDF transformation program is said to be valid if all its transforma-
tion rules preserve the three properties. Therefore, a valid RDF application
transforms, produces, and runs only well-formed, consistent, and live graphs.
We present in turn the conditions that a transformation rule must satisfy to
preserve these properties.

3.2.1 Well-formedness

We establish a sufficient condition on a given transformation rule such that
a well-formed graph remains so after applying that rule. We have to show
that actors remain fully-linked, edges remain valid and the graph remains
connected.

First, we state a condition to be respected by a given transformation rule,
so that by applying it to a connected graph, the resulting graph remains
connected. Afterwards, as a corollary, we show that a given transformation
rule respecting the static conditions and the condition for connectivity always
results in a well-formed graph if applied to a well-formed graph.

RDF graphs are always connected by definition, that is, there is an undi-
rected path between every pair of vertices. A transformation rule removing
edges could easily transform a connected graph into several disconnected
ones. Theorem 1 states that, in order to guarantee that connectivity is pre-
served by a transformation rule tr : lhs V rhs, it is sufficient to ensure that
rhs is a connected (pattern) graph (x ∗←→

rhs
y states that there is an undi-

rected path between x and y in rhs). Note that lhs may match disconnected
sub-graphs.
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Theorem 1. Let G be a connected graph and tr : lhs V rhs be a transfor-
mation rule such that:

∀x, y ∈ rhs, x
∗←→
rhs

y (Crhs)

then tr(G) is a connected graph.

For the proof of the theorem, we recall the following facts and notations:

• A graph is seen as a set of edges and transformations as set rewriting
rules. A transformation rule tr : lhs V rhs applied to a graph G
consists in finding a substitution σ such that G = X ∪ σ(lhs). The
graph is then rewritten into tr(G) = X ∪ σ(rhs).

• We write x −→
A

y for an edge between actors x and y belonging to

graph A (set of edges) and use the corresponding transitive closure
x

+−→
A

y (resp. reflexive transitive closure x ∗−→
A

y) to denote paths
in A. We write x ←→

A
y to denote that there is an edge from x to

y or from y to x in graph A. We use the corresponding transitive
closure x +←→

A
y (resp. reflexive transitive closure x ∗←→

A
y) to denote

an undirected path between x and y in A.

• We say that an actor x belongs to graph A (and write x ∈ A) if there
is an edge in A having x as its source or destination vertex.

Proof. Let x and y be two distinct actors ∈ tr(G); we must prove that
x

+←→
tr(G)

y. We consider tr as the set rewriting G = X∪σ(lhs) V X∪σ(rhs) =

tr(G). Note that condition (Crhs) implies that forall x, y in σ(rhs), we have
x

∗←→
σ(rhs)

y.

We distinguish the following exclusive cases: (A) x and y are in σ(rhs);
(B) x and y are not in σ(rhs); (C) x is in σ(rhs) whereas y is not. The last
case (y ∈ σ(rhs) and x 6∈ σ(rhs)) is identical to case (C).

Case (A): x ∈ σ(rhs) and y ∈ σ(rhs).
By condition (Crhs) we have x +←→

σ(rhs)
y for any two distinct actors x and

y of rhs. We therefore conclude that x +←→
tr(G)

y.

Case (B): x 6∈ σ(rhs) and y 6∈ σ(rhs).
Actors x and y belong to X and therefore to G. Since G is a connected

graph we have x +←→
G

y. Recall that an actor belonging to lhs but not to rhs

is removed from the graph. Therefore neither x nor y belong to σ(lhs). The
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undirected path between x and y in G must start and finish with an edge
in X, meaning that it has one of the the following forms:

x
+←→
X

y

x
+←→
X

x1
+←→

σ(lhs)
x2

+←→
X

. . .
+←→

σ(lhs)
xn

+←→
X

y with n ≥ 1

For the first path, since x +←→
X

y, then by definition x +←→
tr(G)

y.

For the second path, since x1, . . . , xn belong to X and belong to σ(lhs),
they also belong to σ(rhs). Indeed, recall that, by definition of tr, actors
belonging to the edges of X, cannot be suppressed by tr (Condition (C2)).

By condition (Crhs), we have x1
+←→

σ(rhs)
xn and, edges in X being un-

touched by tr, we have x +←→
X

x1
+←→

σ(rhs)
xn

+←→
X

y. We therefore conclude

that x +←→
tr(G)

y. If n = 1, then x +←→
X

x1
+←→
X

y, therefore x +←→
X

y, and by

definition x +←→
tr(G)

y.

Case (C): x ∈ σ(rhs) and y 6∈ σ(rhs).
As in Case (B), y belongs to X hence to G and does not belong to σ(lhs).

However, either x occurs in σ(lhs) or does not. We consider both cases in
turn.

Sub-Case (C1): x ∈ σ(lhs).
Since y belongs to the connected graph G, we have x +←→

G
y. This path

can be one of the following forms:

x
+←→
X

y

x
+←→
X

x1
+←→

σ(lhs)
x2

+←→
X

. . .
+←→

σ(lhs)
xn

+←→
X

y with n ≥ 1

x
+←→

σ(lhs)
x1

+←→
X

x2
+←→

σ(lhs)
. . .

+←→
σ(lhs)

xn
+←→
X

y with n ≥ 1

For the first path, since x +←→
X

y, then by definition x +←→
tr(G)

y.

For the second and third paths, on the one hand, since xn belongs to X
and to σ(lhs), it also belongs to σ(rhs) and, by hypothesis, x also belongs
to σ(rhs). Therefore, by condition (Crhs), x +←→

σ(rhs)
xn, hence x

+←→
tr(G)

xn.

On the other hand, edges in X such as xn
+←→
X

y, being untouched by tr,

we have xn
+←→

tr(G)
y. Putting both facts together, we therefore conclude that

x
+←→

tr(G)
y.

Sub-Case (C2): x 6∈ σ(lhs).
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In that case x is a fresh actor created by tr. But there must be another
actor xi in σ(rhs) belonging also to σ(lhs). Otherwise, it would mean that
all actors in σ(lhs) were suppressed by tr. This would only be possible if
they were not linked to any other actor in G, so if lhs had matched the whole
graph. Since y belongs to tr(G) and not to σ(rhs) this cannot be the case.

As a consequence, by condition (Crhs) there is a path x +←→
σ(rhs)

xi. We can

use the same reasoning as in Sub-Case (C1) to show that there is a path
xi

+←→
tr(G)

y. By transitivity, we therefore conclude that x +←→
tr(G)

y.

A well-formed dataflow graph remains so after applying a transforma-
tion rule respecting the static conditions and the condition for connectivity,
that is, all actors remain fully linked, all edges remain valid, and the graph
remains connected. Formally :

Corollary 1. Let G be a well-formed graph and tr : lhs V rhs be a trans-
formation rule satisfying the conditions (C1), (C2), (C3), (C5) and (Crhs),
then tr(G) is a well-formed graph.

Proof. Condition (C1) ensures that the remaining actors (those in intersec-
tion of lhs and rhs) keep the same ports connected, so they remain fully
linked. Condition (C3) ensures that newly created actors are fully linked.
Variable arity actors are fully linked if they have at least one incoming and
outgoing edge, which is guaranteed by condition (C5). The actors not present
in the transformation rule remain untouched in the graph. Therefore, all ac-
tors in the transformed graph remain fully linked.

All edges in the rhs (new and remaining) must be checked to connect
valid ports. Condition (C2) ensures that removing an actor cannot create
dangling edges. Therefore, all edges occurring in the graph remain valid.

Given a connected graph and a rule respecting the condition (Crhs), the
resulting graph after applying the rule is connected.

Putting all facts together, when a transformation rule satisfying the con-
ditions (C1), (C2), (C3), (C5) and (Crhs) is applied to a well-formed graph,
the resulting graph is well-formed.

Clearly, the transformation tr1 in Figure 3.2 preserves connectivity, but
the following one

Ax By V Ax Oz Iw By
r1 r2 1 1r1 r2

is invalid. Its right-hand term is not connected. Applying this transformation
to G1 (Figure 3.3) would produce two disconnected graphs.
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3.2.2 Consistency

The resulting graph after applying a transformation rule must remain con-
sistent: its system of balance equations should have non-zero solutions. Our
condition for consistency, stated in Theorem 2, enforces a stronger property:
all actors remaining in the transformed graph keep their original solution.

For each transformation rule tr : lhs V rhs, we check that both graphs
lhs and rhs are consistent and we compute the (possibly symbolic) smallest
non-null solutions of their actors. Actors occurring both in lhs and rhs must
have the same solution. New actors (i.e., occurring only in rhs) only need
to have a non-null solution, which is implied by the condition that the rhs
is consistent.

Theorem 2. Let G be a consistent graph and let tr : lhs V rhs be a trans-
formation rule such that lhs and rhs are consistent and

∀x ∈ lhs ∩ rhs, sol lhs(x) = sol rhs(x) (Csol)

then tr(G) is consistent.

Note that we write solA(x) to denote the minimal solution of actor x
in the system of equations corresponding to the graph (or pattern) A. If A
is a pure SDF graph, this solution is an integer; if A has pattern variables
matching rates, the solution can also be computed and is, in general, sym-
bolic. If a graph (or pattern) has actors of variable arity, it also contains
actors with parametric solutions. It is quite simple to deal with symbolic
systems of equations and to define their minimal symbolic solutions [22].

Proof. First, consider a graph G (a set of edges) that can be partitioned into
two disjoint subsets of edges (two subgraphs)G1 andG2, that is, G = G1∪G2

and G1 ∩ G2 = ∅. As far as balance equations are concerned, the system
of equations of G is the union of the systems of equations of G1 and G2.
If G is consistent (i.e., its system of balance equation has a solution) then
clearly G1 and G2 are also consistent. For any actor x such that x ∈ G1 or
x ∈ G2, solG(x) is also a solution of x in G1 or G2. This solution may be
not minimal for the system of balance equations of G1 or G2 because G may
enforce additional constraints, but we have:

∃k ∈ N∗,∀x ∈ Gi, solG(x) = k solGi(x), i ∈ {1, 2}

Dually, if G1 and G2 are consistent and if there exist two integers k1 and
k2 such that, for any common actor x, k1solG1(x) = k2solG2(x), then G is
also consistent. The solutions k1solG1(x) and k2solG2(x) are also solutions
for the system of equations of G. The minimal (i.e., coprime) pair of integers
k1 and k2 gives the minimal solutions for G.

Lemma 1 formalizes this fact.
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Lemma 1. Let G be an RDF graph partitioned into G1 and G2. We have:

G is consistent ⇔


G1 is consistent

∧ G2 is consistent
∧ ∃(k1, k2) ∈ N× N,∀x ∈ G1 ∩G2

k1solG1(x) = k2solG2(x)

Now, letG be a consistent graph, let tr be a transformation rule satisfying
condition (Csol) described as:

X ∪ σ(lhs)︸ ︷︷ ︸
G

V X ∪ σ(rhs)︸ ︷︷ ︸
tr(G)

The condition sol lhs(x) = sol rhs(x) means that the common minimal
symbolic solutions of the system of balance equations of the graphs lhs
and rhs are syntactically equal. It follows that any graph matching the
lhs (resp. rhs) using a substitution σ accepts the solutions solσ(lhs)(x) (resp.
solσ(rhs)(x)) for x. These concrete solutions may not be minimal though.

Since G is consistent, by Lemma 1, X and σ(lhs) are also consistent and
there exist k1 and k2 such that, for any actor x in X ∩ σ(lhs), we have:

k1solX(x) = k2solσ(lhs)(x)

Furthermore, let (m1,m2) be the minimal (coprime) pair of (k1, k2) where
m1 = k1

gcd(k1,k2)
and m2 = k2

gcd(k1,k2)
. We thus have:

∀x ∈ X, solG(x) = m1solX(x) and ∀x ∈ σ(lhs), solG(x) = m2solσ(lhs)(x)

Condition (Csol) ensures that the solutions of common actors in σ(lhs)
and σ(rhs) are the same. The common actors between X and σ(rhs) belong
also to σ(lhs) (the others are fresh actors), therefore m1 and m2 can be used
to make the solutions equal. As a result, for any shared actor between X
and σ(rhs), we have:

m1solX(x) = m2solσ(rhs)(x)

and, by Lemma 1, the graph tr(G) is consistent. Furthermore, since m1 and
m2 are coprime, they correspond to the minimal solutions of tr(G):

∀x ∈ X, soltr(G)(x) = m1solX(x)

and ∀x ∈ σ(rhs), soltr(G)(x) = m2solσ(rhs)(x)

The proof holds for variable arity actors. The condition and the previous
reasoning deal with symbolic solutions which can also accommodate param-
eters of X actors. An actor Z of n inputs and m outputs can be seen as m ·n
different configurations and in each configuration, the actor Z is a normal
SDF actors, so the reasoning remains the same.
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Remark: We could have chosen a weaker condition for Theorem 2,
namely ∃k, sol lhs(x) = ksol rhs(x). This would allow a transformation to
weaken some constraints (e.g., by removing edges) so that the minimal solu-
tions of the rhs are possibly smaller than the solutions of lhs. In that case,
consistency would be still preserved, the solutions of all actors would remain
valid, although they might not be minimal anymore.

Example: The transformation rule tr1 of Figure 3.2 preserves consistency.
Both the lhs and rhs are consistent and their common actors have the same
symbolic solutions. Indeed, the solutions of actors in the lhs are

sollhs(x) sollhs(y) =
r1 · sollhs(x)

3
sollhs(z) =

r1 · sollhs(x)

3 · r2

and those of actors in rhs are:

solrhs(x) solrhs(t) =
r1 · solrhs(x)

3
solrhs(z) =

r1 · solrhs(x)

3 · r2

The common actors x and z keep their integer solutions and the fresh actor
t has a non-null integer solution.

This rule applied to the graph G1 yields the consistent graph tr1(G1)
(Figure 3.4). The actors I1, A1, C1, and O1 keep their solutions (3, 3, 2, and
4, respectively) and the solutions of the new actor E1 is 2.

αx Ay βz
tr2

V αx Bw βz
r1 1 2 r2 r1 3 1 r2

Figure 3.13: The transformation rule tr2.

On the other hand, the transformation tr2 in Figure 3.13 is invalid. The
reason is that, even though rhs is consistent (triviality, because it is acyclic),
the solution of actor z changes from 2.r1.sol(x)

r2
to r1.sol(x)

3.r2
. In the particular

case of G1, rule tr2 produces a consistent graph but all solutions change
(soltr2(G1)(I1) = 9, sol(B1) = 1, etc.).

In general, such rules can produce inconsistent graphs. For instance,
when applied to the graph of Figure 3.14a, tr2 would produce the inconsistent
graph of Figure 3.14b. We have solG2(H1) = 2, and yet H1 has no solution
in tr2(G2). The reason is that the edge (E1, H1) enforces a constraint on the
solution of H1 that cannot be seen in the transformation rule alone.

3.2.3 Liveness

A consistent graph is live if and only if it can be scheduled (see section 2.3.2).
We present here sufficient conditions on transformation rules so that they
preserve liveness for graphs with single appearance schedules (SAS). Recall
also that, as stated in section 3.2.1, transformation rules do not match nor
create edges with initial tokens.
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E1

A1

H1

1

1 2

1

2 1

(a) G2

E1

B1

H1

1

3 1

1

2 1

(b) tr2(G2)

Figure 3.14: Consistent (a) and inconsistent (b) graphs.

For each transformation rule tr : lhs V rhs, it suffices to check that rhs
is acyclic and that tr does not add a directed path between common actors
of lhs and rhs that did not exist before. These conditions ensures that tr
cannot introduce new cycles.

Theorem 3. Let G be a live graph with an SAS and tr : lhs V rhs a
transformation rule such that

rhs is live and ∀x, y ∈ lhs ∩ rhs, x
+−→
rhs

y ⇒ x
+−→
lhs

y (Clive)

then tr(G) is live and admits an SAS.

Proof. It is well known that any consistent acyclic SDF graph has a single
appearance schedule [1]. We therefore focus on cycles and first prove the fol-
lowing lemma which states that a transformation respecting condition (Clive)
cannot create new cycles.

Lemma 2. Let tr : lhs V rhs a transformation rule satisfying condi-
tion (Clive) then

∀G, x +−→
tr(G)

x⇒ x
+−→
G

x

Proof. Consider the rewriting G = X ∪ σ(lhs) V X ∪ σ(rhs) = tr(G), there
are two cases depending on whether or not x belongs to X:

1. x ∈ X
The path x +−→

tr(G)
x is either made of all subpaths in X, or it is made

of alternating subpaths from X and σ(rhs). It can take one of the
following forms depending on whether the path starts and terminates
with a subpath in X or in σ(rhs):

x
+−→
X

x

x
+−→
X

x1
+−→

σ(rhs)
x2

+−→
X

. . .
+−→

σ(rhs)
xn

+−→
X

x

x
+−→
X

x1
+−→

σ(rhs)
x2

+−→
X

. . .
+−→
X

xn
+−→

σ(rhs)
x

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
σ(rhs)

xn
+−→
X

x

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
X

xn
+−→

σ(rhs)
x
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In the first case, all actors in the path are untouched by the transfor-
mation rule, therefore x +−→

G
x.

In all other cases, actors x, x1, . . . , xn belong to X: x ∈ X by hypoth-
esis and each xi is either the source or destination vertex of an edge
in X. Subpaths in X, xi

+−→
X

xj , are unchanged by tr and therefore

occur also in G. For subpaths in σ(rhs), xi
+−→

σ(rhs)
xj , we know that

xi ∈ X and xj ∈ X. Note that an actor in σ(rhs) is either a new actor
created by tr, or belongs also to σ(lhs). Since xi ∈ X and xj ∈ X,
then xi and xj must also belong σ(lhs). In that case, condition (Clive)
enforces that the path xi

+−→
σ(lhs)

xj exists. Therefore, in each of the

above cases, we have x +−→
G

x by transitivity.

2. x 6∈ X

The path x +−→
tr(G)

x can take one of the two following forms:

x
+−→

σ(rhs)
x

x
+−→

σ(rhs)
x1

+−→
X

x2
+−→

σ(rhs)
. . .

+−→
X

xn
+−→

σ(rhs)
x

The first case is impossible because it is a self-cycle in rhs. Indeed, con-
dition (Clive) enforces rhs to be live and since tr can only manipulate
edges without initial tokens, σ(rhs) must be acyclic.

In the second case, we apply the same reasoning as before. All xis
(except x) belong to X and x1

+−→
G

xn. We also have xn
+−→

σ(rhs)
x1

with x1 ∈ X and xn ∈ X. Since x1 and xn also belong to σ(lhs),
condition (Clive) ensures that xn

+−→
σ(lhs)

x1. Hence we have x +−→
G

x.

We now return to the proof of Theorem 3. A consistent SDF graph admits
an SAS (or a flat SAS following the terminology of [1]) iff all its cycles have
a saturated edge, that is, an edge with enough initial tokens to permit its
destination actor to complete all its firings in this SAS for one iteration.
Indeed, consider a cycle x0 −→ x1 −→ . . . xn −→ x0 in a graph G with an
SAS. Then, the first actor of that cycle occurring in the SAS, say xi, must
perform all its firings consecutively before any other (in particular xi−1) can
fire. The edge xi−1 −→ xi must therefore be saturated with initial tokens.

Since transformation tr does not introduce new cycles (Lemma 2), nor
removes (matches) any edge with initial tokens, nor changes the solution of
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actors (Theorem 2), all cycles remain with a saturated edge in tr(G). We
can therefore conclude that tr(G) is live and admits an SAS.

The transformation rule tr1 of Figure 3.2 preserves liveness. Indeed, the
rhs does not introduce new directed paths between actors occurring both in
lhs and rhs (i.e., between Ax, βy and Cz).

In contrast, the transformation tr3 in Figure 3.15 is invalid. Actor Yy
is connected to Zz in the rhs but not in the lhs. If the only schedule in
the initial graph is one where Zz needs to be fired before Yy, then rule tr3
produces a deadlocked (i.e., non live) graph.

Xx

Yy

Zz

Tt
tr3

V Xx

Yy

Zz

Tt

Figure 3.15: The transformation rule tr3 (all rates are 1).

Such a case is shown in Figure 3.16. The rule tr3 transforms the live
graph G3 of Figure 3.16a, which admits only the SAS {X1;Z1;W1;Y1;T1}
into the deadlocked graph tr3(G3) of Figure 3.16b.

X1

Y1

Z1

T1W1

(a) G3

X1

Y1

Z1

T1

W1

(b) tr3(G3)

Figure 3.16: Live (a) and deadlocked (b) graphs (all rates are 1).

3.3 Extensions

In the previous section, we imposed some constraints on the transformation
rules in order to ensure that they preserve connectivity, consistency and
liveness of dataflow graphs. Moreover, for variable arity actor X, we enforced
that the parameters of each actor are unique. In this section, we propose an
extension of liveness analysis and an extension of the actor X allowing some
of the constrains to be relaxed.

3.3.1 Liveness analysis

In Theorem 3, the sufficient condition for liveness enforces that the initial
dataflow graph has a single appearance schedule (SAS). We propose in this
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section a sufficient condition to guarantee liveness for dataflow graphs that
do not have an SAS, because this is the case of many live cyclic graphs.

In order to introduce that new condition, we define the following func-
tions:

• Schedules(G) which returns the set of all schedules of the graph G.

• schedS which returns, for each actor A ∈ V , the array of number of
disjoint firings of A in the schedule S. For example, if S is of the
form . . . Ay . . . Az . . . with no other occurrences of A than those two,
then schedS(A) = [y, z]. Note that sol(A) =

∑
i∈schedS(A) i. Of course,

when S is an SAS, schedS returns an array with a single integer for all
actors.

The RDF graph G4 in Figure 3.17 is a consistent RDF graph with the
iteration (A5

1, B
2
1 , C

5
1 ). It is also a live RDF graph with the schedule S =

{A3
1;B

1
1 ;C2

1 ;A2
1;B

1
1 ;C3

1}. The sched function for the schedule S is

schedS = {(A1, [3, 2]), (B1, [1, 1]), (C1, [2, 3])}

.

A1 B1

C1

2 5

1

1

5

2

3

Figure 3.17: RDF graph G4

Intuitively, the condition for liveness must ensure that all possible sched-
ules in lhs have a corresponding schedule in rhs. The condition for liveness
is formally defined as follows:

∀Slhs ∈ Schedules(lhs), ∃Srhs ∈ Schedules(rhs)

such that ∀x ∈ lhs ∩ rhs, schedSlhs (x) = schedSrhs (x)

and ∀y ∈ rhs − lhs, schedSrhs (y) 6= ∅ (3.2)

In other word, for each schedule Slhs in the lhs, there must exist a schedule
Srhs such that for each common actor x between lhs and rhs, the array of
the number of disjoint firings of x in both lhs and rhs is equal. Moreover,
each appearing actor y must be schedulable in Srhs .

Example: The transformation rule tr4 (Figure 3.19) is applied to the
RDF graph G4. The transformation adds a new actor Dy between actors Ax
and Bz. The resulting graph tr4(G4) of the Figure 3.18 is obtained, which
is consistent and live with the following schedule

{A3
1;D

3
1;B1

1 ;C2
1 ;A2

1;D
2
1;B1

1 ;C3
1}.
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A1 B1

C1

D1

2 5

1

1

5

2

2 2

3

Figure 3.18: Resulting graph tr4(G4)

The transformation rule preserves consistency since the rhs is consis-
tent and the solutions of actors Ax and Bz remain the same (sol(Ax) and
2·sol(Ax)

5 ). The solution for the new added actor Dx is identical to that of Ax,
i.e., sol(Ax).

In order to check that tr4 preserves liveness, for each schedule of lhs, we
must find a corresponding schedule of rhs. The schedules of lhs are

Schedules(lhs) = {S1 = {A5
x;B2

z},S2 = {A3
x;Bz;A

2
x;Bz},

S3 = {A4
x;Bz;A

1
x;Bz}}.

Similarly, we can compute all schedules of rhs.
Consider the schedule S2. If actor Ax fires 3 times according to the first

element of its sched vector, it produces 6 tokens which can be consumed by
3 firings of the new actor Dy. Three firings of Dy will enable actor Bz to
fire once according to the first element of its sched vector. One token will
remain on the edge (Dy, Bz). For the second round, actor Ax fires 2 times
according to the second element of its sched vector. This will enable Dy to
fire 2 times. The 4 tokens produced and 1 token remaining from the previous
firing allows Bz to fire another time. In this way, the sched vector for actor
Dy is calculated as [3, 2].

For all schedules S1, S2, and S3 we can find a corresponding schedule in
rhs, therefore the transformation rule tr4 is valid.

Ax Bz V Ax Dy Bz
2 5 2 2 2 5

Figure 3.19: Transformation rule tr4

On the other hand, if the transformation tr5 (Figure 3.20) is applied to
the RDF graph G4, the resulting graph tr5(G4) (Figure 3.21) is consistent
but not live.

Ax Bz V Ax Dy Bz
2 5 2 10 10 5

Figure 3.20: Transformation rule tr5
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A1 B1

C1

D1

2 5

1

1

5

2

10 10
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Figure 3.21: Consistent non-live resulting graph tr5(G4)

In tr5, the lhs has three schedules S1, S2, and S3. Regarding actor Ax
we have

schedS1(Ax) = [5], schedS2(Ax) = [3, 2], and schedS3(Ax) = [4, 1].

According to the condition (3.2), for all schedules in the lhs, a schedule
in rhs must exist such that the sched function returns the same value for all
common actors and such that the sched function of new appearing actors is
not empty. For the schedule S1, we can find the schedule S4 = {A5

x;D1
y;B

2
z},

where schedS4(Dy) = [1]. However, for S2 and S3, there is no schedule of
rhs. The only schedule of rhs is S4. Using S2 and S3, the actor Ax fires 3
times and 4 times in one iteration respectively, none of which is enough for
the actor Dy to start firing.

3.3.2 Variable arity actors

In section 3.1.4, we enforced each parameter associated with variable arity
actor X to be unique. Some graphs may require to establish constraints be-
tween those parameters. For instance, the dataflow graph of the Figure 3.10
at page 44, requires the constraint s1 = j1.

We describe a different approach allowing constrains between parameters
of variable arity actors.

The initial graph has a number of n actors of variable arity, each hav-
ing one (in case of actor S and J) or two parameters (in case of actor X).
Constraints between those parameters can be obtained from the system of
balance equations or stated by the user. For instance cstr1 : s1 = j1, indi-
cates that the values of s1 and j1 must always be equal. These constraints
must be respected by transformation rules. If a transformation rule tr ma-
nipulates the parameter p, it must preserve all the constraints associated
with p.

For the graph G5 (Figure 3.22), suppose we have the constraint cstr1 :
s1 = j1. The transformation rule tr6 is valid, because it increments the
values of both s1 and j1 by 1 and preserves the constraint.

On the other hand, if we have another constraint cstr2 : s1 = s2, then
the tr6 is no more valid, because it changes the value of s1, but not s2.
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I1 S1

S2

A1

B1

J1

J2

O1
s1

s2

j1

j2

Figure 3.22: The dataflow graph G5

S1 Ax J1
tr6

V S1

Ax

Ay

J1

Figure 3.23: Transformation rule tr6

3.4 Summary

Reconfigurability is one of the criteria on which we can compare models
of computation. The reconfigurability refers to the ability of an MoC to
deal with changes at execution time. In the previous chapter, we studied
a number of existing extensions of SDF found in the literature and we saw
how each can handle a limited form of reconfiguration. We distinguished two
types of reconfigurations: parameterization and dynamic change of topology.

Although these mechanisms make it possible to change the configuration
of the graph dynamically, they all share a disadvantage. The number of
configurations they can produce using one instance of an MoC is bounded in
theory and small in practice since modeling large graphs with large numbers
of configurations requires using many parameters and enumerating explicitly
all configurations.

In this chapter, a new MoC was proposed to overcome this disadvantage.
The Reconfigurable Dataflow (RDF) MoC is an extension of SDF which
proposes to use graph rewriting rules for handling reconfigurations. The
RDF MoC uses dataflow graphs similar to SDF graphs except that each
actor has a type. Using the notion of type allows creating an unbounded
number of instances of a given type. Besides the initial dataflow graph, an
RDF application has a controller that defines when and how the graph must
be reconfigured. To define "when" the change happens, the controller offers
a set of conditions which are boolean expressions (examples are presented
in the next chapter). To define "how" the dataflow graph is changed, the
controller offers a set of transformation programs. A transformation program
is a combination of transformation rules. A transformation rule is a graph
rewrite rule made of: a left-hand side pattern graph to determine which sub-
graph of the dataflow graph must be replaced by the right-hand side graph.
Once such sub-graph is found matching the pattern of the left-hand side, it
is replaced by the graph specified in the right-hand side of the rule. In this
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way, a large or even unbounded number of configurations can be obtained
using even one single transformation rule applied multiple times.

Some transformation rules require the number of input and output edges
of an actor to be changed. Variable arity actors are actors allowing this
flexibility. RDF introduces two generic types of variable arity actors: actor
Z and actor X. These actors have a variable number of inputs (each input
edge having the same parametric rate) and a variable number of outputs
(each output edge having the same parametric rate). The actor Z simply
allows changing the number of inputs and outputs dynamically. The actor
X however has this extra property that, at each of its firings, it produces the
same number of tokens that it consumes. Two special cases of actor X are
called split and join actors. The split actor receives q tokens from its single
input and distributes the q tokens each on one of its q outputs. The join
actor receives p tokens each one from one of its p inputs and gathers them
on its single output. These actors allow distributing the computation along
different parallel levels of computation.

We discussed how an RDF application can be analyzed statically in or-
der to ensure that all possible configurations at run-time remain well-formed,
bounded, and live. For this purpose, a number of sufficient conditions were
proposed. For well-formedness, we must ensure all graphs produced at run-
time are connected. The condition to ensure that given a connected graph, a
transformation rule produces a connected graph is that the right-hand side
of the transformation rule must be a connected graph. To preserve bound-
edness, the solutions of actors must not be changed by a transformation
and new actors must have integer solutions. Moreover, the parametric so-
lutions in the transformation rules must be natural numbers. This ensures
that given a consistent graph, the transformation rule produces a consistent
graph. Finally to ensure liveness, a transformation rule must not create any
new directed cycle. Therefore, given a live graph and a transformation rule,
the sufficient condition for the resulting graph to be live is that the right-
hand side of the rule is live and for each path in the right-hand side of the
rule, the path also exists in the left-hand side. The liveness condition is only
for the graph with single appearance schedules.

In the next chapter, we present two performance analyses. We describe
how the impact of transformation rules on the latency and throughput can
be analyzed.
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Chapter 4

Performance Analysis

Performance measurement of dataflow graphs refers to the process of ana-
lyzing time-related or memory-related aspects of the execution of dataflow
graphs. Two important time-related performance metrics of dataflow graphs
are latency and throughput. As defined before, the end-to-end latency of a
given iteration of a graph is the largest end time minus the smallest start
time among all firings in that iteration. The throughput is the inverse of the
period where the period of a given iteration i of a graph is the largest end
time of the firing of all actors in ith iteration minus the largest end time of
the firings of all actors in the (i− 1)th iteration.

In RDF, knowing the impact of the transformation rules on the latency
and the throughput of dataflow graphs would be useful. Consider a recon-
figuration program applying a transformation rule only if the latency of the
resulting graph is within a threshold. If we know the impact of a transfor-
mation rule on latency, and there is a deadline to respect, we would avoid
applying transformation rules which may violate the deadlines. In this case,
the impact of the transformation rule on latency have to be computed stat-
ically. Consider another application which applies specific transformation
rules that increases the throughput, when it becomes too low. This applica-
tion has to choose which transformation rule to apply based on their impact
on the throughput.

The impact of a transformation rule on a performance metric can be eval-
uated either dynamically (at run-time) or statically (at compile-time). The
dynamic approach is expensive in terms of computation and does not provide
any information to the programmer at design time. In order to compute the
impact of a transformation rule dynamically, the performance metric of the
graph must be computed before and after applying the transformation rule.

In the static approach, the performance metric of the resulting dataflow
graph obtained by applying a transformation rule is computed without any
knowledge of the current graph and by considering only the rule. Of course,
such impact can only be approximated. This is the topic of this chapter,
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where we compute statically an upper bound of the impact of applying a
transformation rule on the latency and the throughput of any RDF graph.

In this chapter, we obtain formulas for the impact of transformation rules
on latency and throughput. These formulas depend on execution times and
solutions of actors in the transformation rules. In some cases, the values of
all execution times and solutions are known and the formulas give numerical
values statically. In other cases, the formulas remain symbolic and can be
instantiated dynamically to compute the impact of rules on the performance
metrics.

4.1 Analysis of the impact on latency

We propose to compute statically an upper bound of the impact of a trans-
formation rule on the latency of an arbitrary graph. Each rule must be
analyzed once at compile time. This information can be used by the de-
signer to modify or add rules. It can also be used during the execution by
the controller.

We consider a class of widely used transformation rules. For a given
transformation rule tr : lhs V rhs belonging to that class, and any arbitrary
dataflow graph G with the latency LG, we compute an upper bound of
the change of latency. That is, if the resulting graph is tr(G) with the
latency Ltr(G) and the rule increases the latency, an upper bound for ∆L =
Ltr(G) −LG is computed. Otherwise, when the latency decreases, the upper
bound is computed for ∆L = LG − Ltr(G).

We first study two examples in which we compute the schedules of a graph
before and after applying a transformation rule inserting an actor between
two other actors. Then, we give a formula to compute an upper bound on
the impact of this insert transformation rule on the latency. The formula
is then generalized for all classes of transformation rules which insert and
remove actors between two actors with a few constraints. Finally, at the end
of this section, we present the application of the analyses on some examples.

For all these calculations, we suppose that the scheduling policy is ASAP
and that there are enough processors in order to assign one processor to
each actor. The analysis depends on the execution time and solutions of
actors. If all execution times and solutions are known, we can compute a
numerical upper bound statically. Otherwise, the impact of transformation
rule on latency is a symbolic formula whose parameters must be retrieved
dynamically. In such cases, we cannot have a numerical information about
the impact of the rule on the latency before starting the execution.

In the following examples, transformation rules of the form trinsert (Fig-
ure 4.1), where p, q, r ∈ N and (p · q) mod r = 0, insert one actor between
two existing actors in a graph. On both sides of the transformation rule, we
have sol(x) = q and sol(y) = p and the new actor z of type γ is such that
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sol(z) = (p · q)/r.

αx βy
trinsert

V αx γz βy
p q p r r q

Figure 4.1: Generic rule trinsert which inserts a new actor γz between αx
and βy.

Example 1: Consider an instance of the transformation rule trinsert, in
which p = 2, q = 3, and r = 6 (Figure 4.2) and consider the graph G1

of Figure 4.3. The execution times of the actors in the graph are t(I) =
1, t(O) = 1, t(A) = 5, and t(B) = 3 and their solutions are sol(I1) =
sol(A1) = 3 and sol(B1) = sol(O1) = 2. The iteration of the graph G1 is
(I31 , A

3
1, B

2
1 , O

2
1) and its ASAP schedule is shown in Figure 4.4. The latency

of the first iteration of G1 is 20, LG1 = 20.

Ax By
tr1

V Ax Cz By
2 3 2 6 6 3

Figure 4.2: Transformation rule tr1

I1 A1 B1 O1
2 3

Figure 4.3: Graph G1
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A1 A1 A1

B1 B1

O1 O1

1 6 11 16 20

p1

p2

p3

p4

Figure 4.4: ASAP schedule for the graph G1.

Applying the transformation rule tr1 on the graph G1 yields the graph of
Figure 4.5. Suppose that the execution time of the actor C1 is 4. The ASAP
schedule of the graph tr1(G1) is shown in the Figure 4.6, where the solution
of the new actor C1 is 1. The latency of the first iteration of tr1(G1) is 27
Ltr1(G1) = 27. Here, the latency is incremented by 7 (∆L = 7).

I1 A1 C1 B1 O1
2 36 6

Figure 4.5: The resulting graph tr1(G1)
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Figure 4.6: ASAP schedule for the graph tr1(G1).

Example 2: Suppose now that the dataflow graph is not a chain, but
rather the graph G2 shown in Figure 4.7. The execution time of the actors
in the graph are t(S) = 1, t(J) = 1, t(A) = 3, t(B) = 2, t(D) = 4, and
t(E) = 11. The ASAP schedule for the graph G2 is shown in the Figure 4.8.
The latency of the first iteration is 24.

S1 D1 A1 B1 J1

E1

2 33 2

Figure 4.7: Graph G2

time

processors

S1S1

D1 D1

A1 A1 A1

B1 B1

E1 E1

J1 J1

1 24

p1

p2

p3

p4

p5

p6

Figure 4.8: The schedule of the graph G2.

The execution time of the actor C1 is 4 as before. The ASAP schedule
of the resulting graph tr1(G2) is as shown in Figure 4.9.

We notice that in this example the latency is not affected by the trans-
formation rule, because the critical path (S1, E1, J1) is not impacted by the
transformation rule.

In these two examples, we see that it is not possible to compute the
exact impact of a transformation rule on the latency without knowing the
dataflow graph to which it is dynamically applied. Since this information
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Figure 4.9: The schedule of the graph tr1(G2).

is not available at compile-time, the best we can hope for is to compute an
upper bound of the impact of the transformation rule on latency.

In the following, we study the impact of transformation rules on the
latency of arbitrary graphs. In proposition 1, we consider a simple trans-
formation rule that inserts a new actor between two connected actors. We
compute an upper bound on the impact of the rule on the latency of any
graph. In proposition 2, we generalize the previous result, by considering a
large class of transformation rules where the lhs and rhs are acyclic graphs
with a single source and a single sink actor.

In all examples and proofs, we only study the latency of the first iteration,
which is the first iteration of the prologue and is used as an approximation
of the average latency.

We use the following notations:

• endG(A) is the end time of last firing of a given actor A in an iteration
of the graph G.

• σ(x) is the actor in the graph matched by the variable x in the trans-
formation rule considered.

Proposition 1 establishes an upper bound on the impact of an insert
transformation rule on the latency of an arbitrary dataflow graph. The
transformation rule trinsert inserts one actor z between two actors x and y.
Intuitively, the impact on latency is computed as follows. We first compute
the minimum time at which the part of the dataflow graph matching the
left-hand side of the rule would terminate. Then, we compute the maximum
time at which the part of the dataflow graph matching the right-hand side
of the transformation rule would terminate. The difference gives an upper
bound on the impact of this rule on the latency of the graph.

Proposition 1. Let G1 be a graph with latency LG1, trinsert : x
p q−→ y V

x
p r−→ z

r q−→ y be a valid transformation rule, and LG2 be the latency of the
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resulting graph G2 = trinsert(G1). The impact of the transformation rule on
the latency is ∆L = LG2 − LG1 with

∆L ≤ (sol(y)− 1) · t(y) + sol(z) · t(z) (4.1)

Proof. Let G1 be any RDF graph and G2 = trinsert(G1). The subgraphs
of the dataflow graphs G1 and G2 matched respectively by the left-hand
side and right-hand side of the transformation rule trinsert both terminate
their execution with σ(y) (the actor that y matches). In order to compute the
upper bound on ∆L, we first calculate the smallest time instant at which the
actor σ(y) would terminate in G1 before applying the transformation rule,
that is, min∀G1(endG1(σ(y))). We then calculate the largest time instant
at which the actor σ(y) would terminate after applying the transformation
rule, that is, max∀G2(endG2(σ(y))). Then, the maximum impact of the rule
on the latency is

∆L ≤ max
∀G2

(endG2(σ(y)))−min
∀G1

(endG1(σ(y))).

First, suppose that the actor σ(y) has no other immediate predecessor
than σ(x) and that the graph is acyclic. We study afterwards how to relax
these hypotheses.

Before applying trinsert, once σ(x) has finished all its firings, it takes in
the best case only one firing of σ(y) to complete all the firings of σ(y). For
instance, when sol(x) > sol(y) and t(x) > t(y), the actor σ(y) must be fired
only once to reach endG1(σ(y)) (this case is illustrated in Figure 4.10-left).
Therefore, we will have:

min
∀G1

(endG1(σ(y))) = endG1(σ(x)) + t(y) (4.2)

After applying trinsert, once σ(x) has finished its last firing in the iter-
ation, there remains at the worst case, sol(y) firings of the actor σ(y) and
sol(z) firings of the actor σ(z) (this case is illustrated in Figure 4.10-right).
An example of this case is when r = p · q. In this case, the actor σ(x) must
be executed q times before the only firing of actor σ(z). After the execution
of actor σ(z), the actor σ(y) will be executed p times. Because each actor
runs on a dedicated core, the execution of the actors σ(y) and σ(z) cannot
be delayed by any other actor. Therefore, we have:

max
∀G2

(endG2(σ(y))) = endG2(σ(x)) + sol(y) · t(y) + sol(z) · t(z) (4.3)

Since the graphs G1 and G2 are acyclic, the transformation rule does
not impact the execution of the graph before σ(x) and, endG1(σ(x)) =
endG2(σ(x)). From equations (4.2) and (4.3), we conclude:

∆L ≤ (sol(y)− 1) · t(y) + sol(z) · t(z) (4.4)
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Figure 4.10: The best case ASAP schedule for the graphs G1 and the worst
case ASAP schedule for G2.

The best case ASAP schedule for the graphs G1 and G2 are shown in
Figure 4.10.

We now relax the two hypotheses mentioned earlier. Suppose that σ(y)
has other immediate predecessors in addition to σ(x). Among all its pre-
decessors, let m be the one that finishes its last firing later than all the
predecessors of σ(y). In other word, m = arg maxu∈pred(σ(y)) endG1(u). If
m = σ(x), the result is the same as what was computed in equation (4.4).
Otherwise, the execution of m may only lower ∆L, and the upper bound of
equation (4.4) remains correct (Figure 4.11 illustrates this case).

time

processors

x ... x

m ... m

y ... y

p1

p2

p3

time

processors

x ... x

m ... m

y ... y

z ... z

p1

p2

p3

p4

Figure 4.11: The best case form ASAP schedule for the graphs G1 and the
worst case form ASAP schedule for G2 when there exists an actor m 6= x
which finishes its last firing later than all the predecessors of σ(y).

Suppose now that the graph G1 is cyclic. According to the liveness
conditions, it must have a single appearance schedule (SAS). The existence
of an SAS ensures that each cycle has at least a saturated edge. Recall that
a saturated edge is an edge that provides its sink actor with enough tokens
so that this actor can complete all its firings in one iteration. To compute
the schedule, the saturated edges can be removed from G1 and the resulting
graph can be treated as an acyclic graph. Moreover, the liveness condition
also ensures that no cycle is created and that transformation rules do not
manipulate edges with initial tokens. Therefore, the graph G2 has the same
saturated edges and also can be treated as an acyclic graph. The bounds on
the impact of a transformation rule on latency remain unchanged.

Consider the example 1 presented on page 63, where p = 2, q = 3, and
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r = 6. In this case sol(x) = 3, sol(y) = 2, and sol(z) = 1. For the execution
times, we have t(x) = 5, t(y) = 3, and t(z) = 4. According to proposition 1,
we have

∆L ≤ (sol(y)− 1) · t(y) + sol(z) · t(z) = 4 + 3 = 7

If we apply this transformation rule tr1 to the graph G1, the upper bound
we have found is the exact value of ∆L. If we choose a different value for r,
of course the exact value of the ∆L might be less than the upper bound.

Indeed, in example 2 presented on page 64, the actual value of ∆L is 0,
which is less than the upper bound 7.

We now generalize the previous result, by considering a larger class of
transformation rules. In this class, the lhs and rhs of the rule are acyclic
graphs with a single source and a single sink actor.

The use the following definition and notation:

• A source-sink acyclic (pattern) graph is a connected acyclic graph hav-
ing a single source actor and a single sink actor.

• P (G) is the set of simple paths in a source-sink acyclic graph G with
source actor x and sink actor y (excluding the source x in each path).
Each path in P (G) is a sequence (c1, .., cn, y) which contains a set of
actors in G such that the edges (x, c1), ... , (cn−1, cn), (cn, y) belong
to G and ∀i, j, i 6= j =⇒ ci 6= cj .

Proposition 2. Let G1 be a graph with latency LG1, and tr : H1 V H2 be
a transformation rule, such that:

• H1 and H2 are two source-sink acyclic graphs, both having the source
actor x and the sink actor y;

• the latency of H2 is greater than H1.

. Let LG2 be the latency of the resulting graph G2 = tr(G1). The impact of
the transformation rule tr on the latency of the graph is ∆L = LG2 − LG1

with

∆L ≤ max
path∈P (H2)

∑
c∈path

sol(c) · t(c)− max
path∈P (H1)

∑
c∈path

t(c) (4.5)

Proof. The idea of the proof is similar to the previous proposition. First, we
compute the minimum time instant at which the left-hand side the transfor-
mation rule would terminate. In order to determine this value, all the paths
of the graph of the left-hand side must be compared to each other to find
which path terminates last. Then, we compute the maximum time instant at
which the right-hand side of the transformation rule would terminate. Sim-
ilarly, we have to find which path terminates last by comparing all paths of
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the graph of the right-hand side. Finally the difference computes the upper
bound on the impact of the rule on the latency.

We follow the same reasoning as in proposition 1 to compute

∆L ≤ max
∀G2

(endG2(σ(y)))−min
∀G1

(endG1(σ(y))).

As before, we first suppose that all actors in H1 and H2 except x are not
connected to any actor outside the rule, and that the graph is acyclic. We
relax these constraints later.

Before applying the transformation rule, once the actor σ(x) has finished
firing, we must compute the minimum time it takes for the actor σ(y) to
complete its firings. In the best case, the time needed to execute each path
(c1, c2, ..., cn, y) in H1 is t(c1)+ ...+ t(cn)+ t(y). This means that in the best
case, once the actor σ(x) has finished firing, only one firing remains for the
actor c1, then only one firing of actor c2, and so on. Among all such paths in
H1, we choose the path for which the summation

∑
n∈path t(n) is maximum,

because that is the path which finishes executing last and σ(y) cannot finish
earlier. Therefore, we have:

min
∀G1

(endG1(σ(y))) = endG1(σ(x)) + max
path∈P (H1)

∑
c∈path

t(c) (4.6)

After applying the transformation rule, once the actor σ(x) has finished
firing, we must compute the maximum time it takes for the actor σ(y) to
complete its firings. In the worst case, the time needed to execute each path
(c1, c2, ..., cn, y) in H2 is sol(c1) · t(c1)+ ...+sol(cn) · t(cn)+sol(y) · t(y). This
means that in the worst case, once the actor σ(x) has finished firing, there
remains sol(c1) firings of the actor c1, and once the actor c1 has finished, there
remains sol(c2) firing of actor c2, and so on. In the worst case, the production
and consumption rates on the edge between ci and ci+1 is such that ci+1

cannot start executing before ci has completed all its firings. Among all the
paths inH2, we choose the path for which the summation

∑
c∈path sol(c)·t(c)

is maximum, because that is the path which makes σ(y) finishes the last.
Therefore, we have:

max
∀G2

(endG2(σ(y))) = endG2(σ(x)) + max
path∈P (H2)

∑
c∈path

sol(c) · t(c) (4.7)

Since the graphs G1 and G2 are acyclic and no actor before the actor x is
changed by the transformation rule, therefore endG1(σ(x)) = endG2(σ(x))
From equations (4.6) and (4.7), we conclude:

∆L ≤ max
path∈P (H2)

∑
c∈path

sol(c) · t(c)− max
path∈P (H1)

∑
c∈path

t(c) (4.8)
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As in proposition 1, the two previous constraints can be relaxes. After
applying the transformation rule, if there is an actor m outside the trans-
formation rule connected to any actor z in H1 and H2, which terminates its
execution after all the predecessors of the actor z in the rule, then it would
reduce ∆L, but the computed maximum value remains a valid upper bound.
Moreover, as discussed in the proof of proposition 1, the upper bound also
works for cyclic graphs with an SAS.

Example 3: Consider the graph G3 shown in Figure 4.12. The solutions
of actors are sol(I1) = sol(S1) = sol(A1) = sol(C1) = 3 and sol(B1) =
sol(J1) = sol(O1) = 2 and assume that the execution time of all actors is 1.
The ASAP schedule for the graph G3 is shown in Figure 4.13.

I1 S1

A1 B1

C1

J1 O1

2
2 2 3 3

3

2
2 2

3

Figure 4.12: Graph G3

time

processors

I1 I1 I1

S1 S1 S1

A1 A1 A1

B1 B1

C1 C1 C1

J1 J1

O1 O1

1 8

p1

p2

p3

p4

p5

p6

p7

Figure 4.13: The schedule for the graph G3

The latency of the first iteration is 8. For this schedule, we have:

endG3(J) = endG3(S1) + max
path∈{(A1,B1,J1),(C1,J1)}

∑
c∈path

t(c)

= endG3(S1) +max(1 + 1 + 1, 1 + 1) = endG3(S1) + 3

If we apply the transformation rule tr2 shown in Figure 4.14 on G3, we
obtain the graph shown in Figure 4.15. The solutions of the new actors are
sol(D1) = sol(E1) = sol(F1) = sol(K1) = 1.

The schedule of the graph tr2(G3) is shown in Figure 4.16. The latency
of the first iteration is 15, therefore Ltr2(G3) − LG3 = 15 − 8 = 7. For this
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Figure 4.14: The transformation rule tr2
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Figure 4.15: Resulting graph tr2(G3)

schedule, we have:

end tr2(G3)(J1) = end tr2(G3)(S1)

+ max
path∈{(D1,A1,E1,B1,F1,J1),(K1,C1,J1)}

∑
c∈path

sol(c) · t(c)

= end tr2(G3)(S1) +max(1 + 3 + 1 + 2 + 1 + 2, 1 + 2 + 2)

= end tr2(G3)(S1) + 10
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Figure 4.16: The schedule of the resulting graph tr2(G3)
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According the equation 4.8, we have:

∆L ≤ max
path∈P (H2)

∑
m∈path

sol(m) · t(m)− max
path∈P (H1)

∑
n∈path

t(n)

= 10− 3 = 7

For the graph G3, the impact of tr2 on the latency reaches the upper
bound. If in G3, we add an actor L1 between S1 and J1 with execution time
t(L) = 8, then ∆L would be 0.

We have a similar result for the transformation rules improving the la-
tency.

Proposition 3. Let G1 be a graph with latency LG1, and tr : H1 V H2 be
a transformation rule, such that:

• H1 and H2 are two source-sink acyclic graphs, both having the source
actor x and the sink actor y;

• the latency of H2 is less than H1.

Let LG2 be the latency of the resulting graph G2 = tr(G1). The impact of the
transformation rule tr on the latency of the graph is ∆L = LG1 − LG2 with

∆L ≤ max
path∈P (H1)

∑
c∈path

sol(c) · t(c)− max
path∈P (H2)

∑
c∈path

t(c) (4.9)

Proof. This proposition is the dual of the proposition 2 and its proof follows
the same reasoning.

Example 4: Consider the graph G4 shown in Figure 4.17 where t(A) = 1
and t(S) = t(B) = t(J) = 2. The ASAP schedule for G4 is shown in
Figure 4.18. The latency of the graph is 12.

S1

A1

B1

J1
2

3 3
3

2
6 6

3

Figure 4.17: Graph G4

If we apply the transformation rule tr3 (Figure 4.19) on the graph G4,
we obtain the resulting graph tr3(G4) which is scheduled as in Figure 4.20.
The latency of the resulting graph is 9, therefore the improvement is ∆L =
12− 9 = 3 which is the upper bound of the proposition 3, ∆L ≤ 6− 3 = 3.

If now we suppose that the execution time of all actors is 2, then LG4 = 12
and Ltr3(G4) = 10 and ∆L = 12 − 10 = 2. According to the proposition
3, ∆L ≤ 4. If the incoming rate and outgoing rate of the actor B is 2,
LG4 = Ltr3(G4) = 10, therefore ∆L = 0. According to proposition 3, ∆L ≤
10− 4 = 6.

72



time

processors

S1 S1 S1

A1 A1

B1

J1 J1

2 12

p1

p2

p3

p4

Figure 4.18: The ASAP schedule for the graph G4
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Figure 4.19: Transformation rule tr3
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Figure 4.20: The ASAP schedule for the resulting graph tr3(G4)

4.2 Analysis of the impact on throughput

In this section, we compute bounds of the impact of a transformation rule
on the throughput. We focus on acyclic graphs and we illustrate our results
on several examples.

In the following proposition, we consider the class of all acyclic graphs for
which the throughput is defined by the actor with the highest load, that is,
the actor v having the maximum sol(v) · t(v). Either (1) the transformation
rule adds an actor with a higher load to the graph and in that case the
throughput is decreased, or (2) the rule removes the actor with the highest
load and in that case the throughput is increased, or (3) the transformation
does not change the throughput. Since the transformation rule is applied to
an unknown graph, its actor with the highest load is not known, therefore
we can only compute approximate bounds.

Proposition 4. Let G1 be an acyclic graph with throughput TG1 with each
actor being executed on a processor according to an ASAP schedule, let tr :
lhs V rhs be a transformation rule, and TG2 be the throughput of the resulting
graph G2 = tr(G1). The impact of the transformation rule on the throughput
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of the graph is ∆T = | TG2 − TG1 | such that :

∆T ≤ | 1

maxv∈Vrhs sol(v) · t(v)
− 1

maxv∈Vlhs sol(v) · t(v)
| (4.10)

Proof. Since G1 is acyclic and each actor is being executed on a processor
according to an ASAP schedule, its throughput is:

TG1 =
1

maxv∈VG1
sol(v) · t(v)

(4.11)

Let m be the actor such that m = argmaxv∈VG1
sol(v) · t(v). We do not

know if m is present in the transformation rule tr, but we know that there
is an actor x such that x = argmaxv∈Vlhssol(v) · t(v) and there is an actor y
such that y = argmaxv∈Vrhssol(v) · t(v). We distinguish the following cases:

• Case A : sol(x) · t(x) > sol(y) · t(y). If m = x, then sol(x) · t(x) =
sol(m) · t(m), hence m cannot be in the rhs of tr because this would
contradict the inequality sol(x) · t(x) > sol(y) · t(y). In other words,
m is suppressed by tr. In this case, the throughput is increased and
the impact of tr on the throughput is 1

sol(y)·t(y) −
1

sol(x)·t(x) . If m 6= x,
then m 6∈ lhs, then m is not suppressed by tr and therefore belongs to
tr(G1). In this case the throughput remains unchanged.

• Case B : sol(x) · t(x) < sol(y) · t(y). If sol(y) · t(y) > sol(m) · t(m),
then the throughput is decreased and the impact of the rule on the
throughput is 1

sol(y)t(y) −
1

sol(x)t(x) . Otherwise, the throughput is un-
changed.

• Case C : sol(x) · t(x) = sol(y) · t(y). In this case the throughput does
not change.

To summarize, the transformation rule either does not change the through-
put or its impact on the throughput is | 1

maxv∈Vrhs sol(v)·t(v)−
1

maxv∈Vlhs sol(v)·t(v) |.

Example 5 : Consider the graph G5 shown in the Figure 4.21. The exe-
cution times of actors are respectively t(A) = 2, t(B) = 4, and t(C) = 3.
The throughput of the graph is TG5 = 1

sol(C1)·t(C1)
= 1

9 .
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1

1 2

3

Figure 4.21: Graph G5
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In the transformation rule tr4 shown in Figure 4.22, the execution time of
the actorD is 2. If we apply the transformation rule tr4, then the throughput
of the resulting graph G6 = tr4(G5) (shown in Figure 4.23) becomes TG6 =
1
6·2 = 1

12 . The actual impact of tr4 on G5 is ∆T =| 1
12 −

1
9 |=

1
36 .
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2 3

tr4

V A1 B1D1
2 31 1

Figure 4.22: Transformation rule tr4
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Figure 4.23: The resulting graph G6 = tr4(G5)

According to the equation 4.10, we have :

∆T ≤ | 1

sol(D1) · t(D1)
− 1

sol(B1) · t(B1)
| =| 1

12
− 1

8
|=| − 1

24
|= 1

24

As expected from proposition 4, the actual ∆T is less than the upper bound
: 1

36 <
1
24 .

If we suppose that t(C) = 1, we have TG5 = 1
sol(B1)·t(B1)

= 1
8 and thrG6 =

1
sol(D1)·t(D1)

, therefore ∆T = 1
24 and the computed bound is reached.

Now suppose that t(C) = 5. In this case, the throughput remains un-
changed, that is, TG6 = TG5 = 1

15 . Since we do not have any information
about the dataflow graph at compile-time, we can only say that ∆T ≤ 1

24 ,
although for this dataflow graph ∆T = 0.

Throughput in terms of tokens per second

Another unit for measuring the throughput of dataflow graphs is the number
of tokens per second instead of the number of iterations per second. First, we
see on an example why this unit is important for measuring the throughput,
and then we discuss how we can compute the impact of a transformation
rule on throughput measured in terms of this unit.

Consider the dataflow graph G7 shown in Figure 4.24. The execution
time of actor A1 is 10 second and the execution time of the other actors is 1
second. The throughput of the graph is 1

10 iterations per second.
If we apply the transformation rule tr5 (Figure 4.25) on G7, the graph

tr5(G7) is obtained (Figure 4.26). The throughput of the resulting graph
tr5(G7) remains unchanged, that is, 1

10 iteration per second.
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Figure 4.24: Graph G7
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Figure 4.25: Transformation rule tr5
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Figure 4.26: The resulting graph tr5(G7)

Although the throughput has not changed in terms of iteration per sec-
ond, the number of tokens processed in one iteration and consumed by the
sink actor O1 is doubled. In G7 the throughput is 1

10 token per second,
whereas in tr5(G7), the throughput is 2 · 1

10 = 1
5 token per second.

By increasing the parallel levels of computation, we can process more
tokens per second and therefore we improve the throughput in terms of
tokens per second. Therefore, instead of measuring the throughput (number
of iterations per time unit) TG of a graph G, we consider a closely related
measure: the number of tokens produced by the graph per time unit denoted
by HG. For a graph with single sink O, this measure is equal to the number
of tokens consumed by O per time unit.

For a graph with a single sink actor consuming n tokens per iteration we
have

HG = n · TG (4.12)

with
TG =

1

maxv∈V sol(v) · t(v)
(4.13)

This measure is more informative than the throughput since the graph and
its iteration may change dynamically.

In proposition 4, we showed that ∆T < | Trhs − Tlhs |. For the impact
of the transformation rule on the throughput in terms of tokens per second,
supposing that the sink actor of a graph never changes, we have:

∆H < | Hrhs −Hlhs | (4.14)

where Hlhs (resp. Hrhs) is Tlhs (resp. Trhs) multiplied by the solution of the
sink actor before (resp. after) applying the transformation rule.
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In the graph G7, the iteration is (Ip1 , S1, A1, J1, O
q
1). The solution of the

actor O1 is therefore q. After applying the transformation rule tr5, the value
of q is increased by 1. Therefore, if the solution of O1 is k ∈ N before applying
the transformation rule, it is k+ 1 after applying the rule. According to the
equation 4.14, we have :

∆H ≤ | (k + 1) · 1

10
− k · 1

10
|= 1

10

We computed before HG7 = 1
10 and Htr5(G7) = 1

5 , therefore, ∆H = 1
10 . The

computed upper bound is reached in this example.
This number of tokens consumed per time unit is a measure that we use in

the next chapter to characterize transformation rules improving throughput.

4.3 Summary

The impact of a transformation rule on a performance metric of the dataflow
graphs can be dynamically computed by analyzing the performance metric
before and after applying the transformation rule and computing the differ-
ence. However, this dynamic analysis approach does not give any information
about the impact of each transformation rule on the performance metrics of
a graph to the designer at compile-time.

Static performance analysis, on the other hand, is a way to provide some
feedback about the impact of transformation rules on performance metrics
of graphs statically. In this chapter, we focused on two performance metrics,
that is, latency and throughput. Of course, since a transformation rule can
be applied to different graphs unknown at compile time, a precise analysis
is impossible. However, for some classes of transformation rules, we pro-
vided upper bounds on the impact of transformation rules on latency and
throughput of dataflow graphs.

All formulas on the impact of transformation rules on latency and through-
put obtained in this chapter depend on the execution times and solutions
of actors in the transformation rule. However, if the types of all actors are
known, their execution times are known and if at least one actor in the pat-
tern is labeled by its name, then its solution along with the solutions of other
actors may also be known. Labeling an actor by its name is a technique used
in the next chapter for pattern matching. Therefore, the bounds are either
numerical, or they are symbolic and can be instantiated dynamically.
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Chapter 5

Implementation

In chapter 3, we presented RDF, but we did not specify how it was im-
plemented. For instance, once a condition becomes true a transformation
program is applied, but we have not discussed what kinds of conditions are
used in practice and what steps are needed to apply the transformations.
Before applying a transformation rule, the left-hand side of a rule must be
matched into the graph. The efficiency of pattern matching remains to be
addressed. Finally, once a transformation rule is applied, new appearing ac-
tors must be placed on available processing units, so a strategy is needed to
perform such placement.

In section 5.1, we address all these questions by describing our proto-
type implementation of RDF. In section 5.2, we show some experiments
performed using this prototype. We measure the costs incurred to perform
a transformation rule for some examples. We also show an example in which
by applying a transformation rule, the level of parallelization is increased
and as a result, the throughput of the graph is increased. In section 5.3,
we present a case study of RDF in the domain of video processing where
the throughput may decrease due to some external changes. RDF allows to
dynamically increase the level of parallelization and, as a result, to maintain
the throughout.

5.1 System description

We have implemented a prototype of RDF to perform experiments, to eval-
uate reconfiguration costs and to explore its practicality. In this section,
we present the main characteristics of our prototype. In particular, we de-
scribe how an RDF application is executed in normal mode i.e., between
reconfigurations, the steps needed to perform a reconfiguration, the kinds
of conditions the controller may use, how the pattern matching of a trans-
formation is made efficient, and finally how to deal with the placement of
actors on a multi-core architecture when actors can be added or removed
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dynamically.

5.1.1 Standard execution

The initial dataflow graph is built by creating each actor as an instance
of its type and by allocating a circular buffer for each of its output ports.
For an actor A and an output port with rate p, the size of the allocated
buffer corresponds to p · sol(A) tokens. This is enough to achieve maximal
throughput but smaller bounds are known for special classes of graphs. The
types of tokens as well as the values of initial tokens, which are not part of
the model, must be specified in the application (e.g., integer, real, array of
bit, etc.). Then, the communication links (edges) are created by providing
to each input port a reference to the output port it connects to. Depending
on the architecture (e.g., single or multiple servers), actors can communicate
through shared memory or message passing. Our prototype runs on a single
multi-core machine and uses only buffers in shared memory to communicate.
Finally, a thread is created for the controller and for each actor.

If multiple servers were used, then the address of the machine on which
each actor runs should be specified. Then, each machine would be requested
to create its own actors. For each input port, a message socket would be
opened. Moreover, the actors should be provided with information related
to the address of the machine and the port of their successors.

We first discuss how actors are executed between reconfigurations and
what data structures are needed to implement them. Then, we discuss how
actor communicate with each other through buffers and what data structure
is needed to implement these buffers.

Actor’s execution

Algorithm 1 presents the procedure ExcuteActor for the execution of a
generic actor with n input ports and m output ports. The actor runs in an
infinite loop which performs the following steps. At each iteration, it is fired
as many time times as its solutions in one iteration. At each firing, it calls
the Consume function on each of its input ports, it retrieves the tokens,
processes the tokens (i.e., applies the actor’s functionality), and finally calls
the Produce function on each of its output ports to write the produced
tokens on the corresponding buffers.

Once an iteration is finished, the function WaitIfPaused is called. This
functions checks if the controller asked to pause the graph for a reconfigura-
tion. For this matter, the controller must notify the actor whether it is time
to pause, and it must tell the actor until which iteration it has to continue
its execution. Once the actor is paused, it has to wait for a signal from the
controller to resume. This procedure is discussed more in section 5.1.2.
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The data structure of Actor is presented in algorithm 1. The integer val-
ues solution and iteration are the solution and current iteration number
of the actor. The array ips (resp. ops) of type InputPort (resp. OutputPort)
is the list of input (resp. output) ports of the actor. The function f denotes
the functionality of the actor. It takes as many argument as the number of
input ports and returns as many values as the number of output ports. The
integer values n and m are the number of input and output ports of the actor
respectively. The boolean value paused indicates whether the controller has
requested the actor to be paused. In order to pause the graph, the con-
troller must pause all actors first (see algorithms 4 and 6). The integer value
iter_max is the iteration number at which the actor must pause. It is the
iteration number of the actor which is the fastest actor and has the largest
iteration number among all actors of the dataflow graph. All actors needs
to reach this iteration. Its value is set by the controller. The signal sig is
used to notify the actor that the values of paused and/or iter_max have
changed.

Communication through buffers

All buffers are created in the shared memory. Synchronization mechanisms
of the circular buffers ensure that the execution rules of SDF are respected,
that is, actors block when trying to read from empty buffers and when trying
to write on full buffers.

When a consumer wants to read from a buffer through its input port, it
first verifies if there are enough tokens to read according to its consumption
rate (see functions Consume and Read in algorithm 2). If there are less
available tokens than the rate, it waits for the signal prod_sig which is
sent by the producer each time it produces (see the function Produce in
algorithm 3). This signal prod_sig is part of the data structure Buffer
(algorithm 2). It may be the case that after a production, there are still not
enough tokens available, and in that case the consumer keeps waiting. Once
the consumer successfully reads its buffer, it updates the number of tokens
available on the buffer and sends the signal cons_sig to the producer.

A producer cannot write on a buffer when there is not enough space,
that is, when the number of empty locations on the buffer is less that its
production rate. In this case, it has to wait for signal cons_sig from the
consumer until enough number of locations is available on its buffer. Once it
has finished writing, it updates the number of tokens available on the buffer
and sends the signal prod_sig to the consumer (see functions Produce and
Write in algorithm 3).

The data structure InputPort is presented in algorithm 2. It has an
integer value cons_rate which is the consumption rate of the input port.
The input port reads token with this rate from its associated buffer. The
dual data structure OutputPort is similar and described in algorithm 3.
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Algorithm 1 Actor’s execution
1: procedure ExecuteActor(Actor actor)
. The procedure executes a given actor and checks after each iteration
whether the controller has requested the actor to pause.

2: actor.iteration := 1;
3: n := actor.n;
4: m := actor.m;
5: while true do
6: firing := 1;
7: while firing <= actor.solution do
8: it_1 := Consume(actor.ips[1]);
9: ...

10: it_n := Consume(actor.ips[n]);
11: ot_1, ..., ot_m := actor.f(it_1, ..., it_n);
12: Produce(actor.ops[1], ot_1);
13: ...
14: Produce(actor.ops[m], ot_m);
15: firing := firing + 1;
16: end while
17: WaitIfPaused(actor)
18: actor.iteration := actor.iteration + 1;
19: end while
20: end procedure
21:
22: procedure WaitIfPaused(Actor actor)

. The procedure pauses the actor if the controller has requested to
pause.

23: while actor.paused ∧ actor.iteration == actor.iter_max do
24: wait_for_signal(actor.sig)
25: end while
26: end procedure
27:
28: structure Actor
29: int solution; int iteration;
30: function f; int n; int m;
31: InputPort array ips; OutputPort array ops;
32: bool paused; int iter_max; signal sig;
33: end structure

The data structure Buffer (algorithm 2) has the integer values size and
nb_tokens which denote the size of the buffer and the number of tokens in the
buffer. The signal prod_sig (resp. cons_sig) is the signal for the producer
(resp. consumer) on the buffer to notify the consumer (resp. producer) that
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it has produced on (resp. consumed from) the buffer. The array is the array
containing the data (tokens) on the buffer. The integer values r_idx and
w_idx are the indexes to the last accessed location in the array for reading
and writing.

Algorithm 2 Consumption from an input port
1: procedure Consume(InputPort ip)
. The procedure returns a list of tokens read by a given input port ip.

2: while ip.buffer.nb_tokens < ip.cons_rate do
3: wait_for_signal(ip.buffer.prod_sig);
4: end while
5: it := Read(ip.buffer, ip.cons_rate);
6: send_signal(ip.buffer.cons_sig);
7: return it;
8: end procedure
9:

10: procedure Read(Buffer buffer, Integer r)
. The procedure returns r tokens from the buffer.

11: buffer.nb_tokens := buffer.nb_tokens - r;
12: last := (buffer.r_idx + r - 1) % buffer.size;
13: it[1 .. r] := buffer.array[buffer.r_idx .. last];
14: buffer.r_idx := last;
15: return it;
16: end procedure
17:
18: structure InputPort
19: int cons_rate;
20: Buffer buffer;
21: end structure
22:
23: structure Buffer
24: int size; int nb_tokens;
25: signal prod_sig; signal cons_sig;
26: array array; int r_idx; int w_idx;
27: end structure

Since each actor runs on a separate thread, actors can be executed in
parallel independently of each other according to an ASAP policy; an actor
fires as soon as it has enough tokens on its input ports. Note that we do not
consider auto-concurrency, because each actor is running in a single thread
and each firing can happen only after the previous firing has ended.

Each port specifies the type of tokens for its buffer, so when a circular
buffer is created, enough memory is allocated for each location on the buffer.
The circular buffer is implemented using an array and an index to the last
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Algorithm 3 Production on an output port
1: procedure Produce(OutputPort op, output tokens ot)
. The procedure writes the list of tokens ot to the output port op.

2: while op.buffer.size - op.buffer.nb_tokens < op.prod_rate
do

3: wait_for_signal(op.buffer.cons_sig)
4: end while
5: Write(op.buffer, ot, op.prod_rate);
6: send_signal(op.buffer.prod_sig)
7: end procedure
8:
9: procedure Write(Buffer buffer, output tokens ot, Integer r)
. The procedure writes r output tokens ot on the buffer.

10: buffer.nb_tokens := buffer.nb_tokens + r;
11: last := (buffer.w_idx + r - 1) % buffer.size;
12: buffer.array[buffer.w_idx .. last] := ot[1 .. r];
13: buffer.w_idx := last;
14: end procedure
15:
16: structure OutputPort
17: int prod_rate;
18: Buffer buffer;
19: end structure

filled cell, where the index returns to the first cell once reached the last cell
(see algorithms 2 and 3). By default, the size of the buffer of a port with
rate p of an actor A is set to accommodate p · sol(A) tokens. This size
can also be specified by the programmer of the application and must assure
that no deadlock is created. For each edge (A,B) with production rate p
and consumption rate q, the minimum buffer size to ensure that the graph
executes without deadlock is p+q−gcd(p, q) [7]. This is sufficient to prevent
deadlocks but not to achieve maximal throughput. According to [11] for a
graph without any undirected cycle, if the buffer of every edge (A,B) with
production rate p and consumption rate q is at least 2(p + q − gcd(p, q)),
then the ASAP execution of the graph achieves the maximal throughput.

5.1.2 Reconfigurations

In chapter 3, we presented an expressive language for the reconfiguration
program of the controller. In our prototype, we considered a simplified ver-
sion of this language in which the reconfiguration program is specified as a
list of single transformation rules triggered by conditions: [cond1 : lhs1 V
rhs2; . . . ; condn : lhsn V rhsn]. The rules are ordered and only the first
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applicable one is considered at each reconfiguration. The conditions will be
described in 5.1.3.

The process of a reconfiguration is described in algorithm 4. The proce-
dure of the controller takes a dataflow graph G and a reconfiguration program
P. The structure of a graph (type Graph) is presented in algorithm 4. A graph
has an array of actors and an array of edges. An edge is a pair of actors. A
rule (type Rule) has a left-hand side lhs and a right-hand side rhs both of
type Graph. A reconfiguration program (type Program) is made of an ar-
ray of program elements progs (type ProgramElement) and an integer value
size denoting the size of the array. A program element itself is made of a
string value cond which is the condition triggering the rule and a subgraph
which is matched in the left-hand side of the rule. The value of the subgraph
is null either if the controller has not yet processed its associated program
element or if it has processed but has not found any subgraph in the dataflow
graph matching the rule.

The controller, which runs on its own thread, finds the transformation
rules whose left-hand side matches the current graph (FindMatchingRules).
Since the graph does not change between two consecutive transformations,
finding matching rules is done once after each reconfiguration. It is performed
in parallel with execution of the dataflow graph and its cost is reduced.

The controller checks every t units of time whether a transformation rule
is applicable. A transformation rule is applicable when its condition is true
and its left-hand side matches the current dataflow graph. The value of t,
which can be specified by the programmer, must be large enough, so that
the graph has enough time to return to its steady state and so that condi-
tions (e.g., throughput) can be measured correctly. The procedure Appli-
cableRule in algorithm 5 finds the transformation for which the condition
holds and for which the procedure FindMAtchingRules has found a sub-
graph. If a rule is applicable, then the reconfiguration is performed.

Reconfigurations cannot be performed any time during the execution.
Transforming the dataflow graph in the middle of an iteration or when actors
are not in the same iteration would cause data loss. A reconfiguration should
only occur in a consistent state, that is, after an iteration has completed and
the graph has returned to its initial state. By the initial state, we mean the
initial state of the graph after the previous reconfiguration. Moreover, all
actors must have completed the same iteration.

Before reconfiguring the graph, the execution must be paused. The func-
tion Pause, called by the controller to stop the execution, is presented in
algorithm 6. The controller sets the value of actor.paused for all actors to
true. It also requests the iteration number of all actors and computes the
largest iteration number. It then sets the value of actor.iter_max for all
actors, so that they continue until the end of that iteration and pause.

Once all actors reach the iteration iter_max, the controller knows that
the graph is back to its initial state, that is, the same state as it was just after
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Algorithm 4 Reconfiguration steps
1: procedure Controller(Graph G, Program P)
. The controller takes a reference of the current dataflow graph G and a
controller program P. If an applicable rule is found, the controller pauses,
reconfigures, and finally resumes the graph.

2: FindMatchingRules(G, P);
3: while true do
4: wait(t units of time);
5: idx := ApplicableRule(P);
6: if idx != null then
7: Pause(G);
8: Reconfigure(G, P, idx);
9: Resume(G);

10: FindMatchingRules(G, P);
11: end if
12: end while
13: end procedure
14:
15: structure Graph
16: Actor array actors; Actor pair array edges;
17: end structure
18:
19: structure Rule
20: Graph lhs; Graph rhs;
21: end structure
22:
23: structure ProgramElement
24: string cond; Rule rule; Graph subgraph;
25: end structure
26:
27: structure Program
28: ProgramElement array progs; int size;
29: end structure

the previous reconfiguration. The controller performs the transformation
rule which may involve removing actors and edges (i.e., buffers). It may
also create actors with fresh new names on new threads and edges with
newly allocated buffer. A valid transformation rule always removes an actor
along with all its edges, so there never remain disconnected buffers. When
a transformation rule replaces an edge, the references from input ports to
corresponding output ports are updated (see the function Reconfigure in
algorithm 6).

After reconfiguring the graph, the controller asks all actors to resume
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Algorithm 5 Finding applicable rule and matching rules
1: procedure ApplicableRule(Program P)
. The procedure takes a reconfiguration program P and returns the first
matching rule whose associated condition holds.

2: idx := 0;
3: while idx < P.size do
4: if P.progs[idx].cond == true

and P.progs[idx].subgraph != null then
5: return idx;
6: end if
7: idx := idx + 1;
8: end while
9: return null

10: end procedure
11:
12: procedure FindMatchingRules(Graph G, Program P)

. The procedure takes the reference of the current dataflow graph G and
a reconfiguration program P and finds the matching rules.

13: idx := 0;
14: while idx < P.size do
15: P.progs[idx].subgraph := null;
16: FindMatching(G, P.progs[idx]);
17: idx := idx + 1;
18: end while
19: end procedure
20:
21: procedure FindMatching(Graph G, ProgramElement PE)

. This procedure implements pattern matching and finds for the pattern
PE.rule.lhs in the graph G. Once a pattern is matched, it fills the
PE.subgraph with a reference to the matched subgraph. The pattern
matching is described in section 5.1.4.

22: end procedure

their executions by setting the value of the actor.paused to false. It then
sends the signal actor.sig so that the threads of actors sleeping on those sig-
nal wake up and continue their execution (see the function Resume in algo-
rithm 6). The execution proceeds as before, each actor on its own thread fir-
ing as soon as possible. Finally, after the reconfiguration, the controller looks
for the rules matching the new graph by calling FindMatchingRules.
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Algorithm 6 Pausing, reconfiguring, and resuming the graph
1: procedure Pause(Graph G)
. The procedure pauses all actors of the current dataflow graph G at an
iteration number.

2: max := 0;
3: for each actor in G.actors do
4: iter := actor.iteration;
5: actor.paused := true;
6: actor.iter_max := iter;
7: max := maximum(max, iter);
8: end for
9: for each actor in G.actors do

10: actor.iter_max = max;
11: send_signal(actor.sig);
12: end for
13: end procedure
14:
15: procedure Reconfigure(Graph G, Program P, idx)

. This procedure (1) waits for all actors to reach the iteration iter_max,
(2) creates the appearing actors of the P.progs[idx].rule with fresh
new names, (3) deallocates the disappearing actors and edges (buffers)
of the P.progs[idx].rule from the graph G, and (4) establishes new
connections.

16: end procedure
17:
18: procedure Resume(Graph G)

. The procedure resumes all actors of the current dataflow graph G.
19: for each actor in G.actors do
20: actor.paused := false;
21: send_signal(actor.sig);
22: end for
23: end procedure

5.1.3 Program conditions

In this section, we present the conditions that can be used in the reconfigu-
ration program. A condition is a boolean expression of variables which may
belong to four categories: performance metrics, model parameters, actor-
specific variables, and system variables. Other categories might also be con-
sidered.

Performance metrics: There are three important performance metrics
for which we can decide to change the configuration of the graph: through-
put, latency, and buffer occupancy.
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For instance, when the throughput of the dataflow graph is above or
below some threshold, or the latency of an iteration is above a threshold
(which indicates that a deadline is at risk), or the occupancy of a buffer is
too high (which means that the tokens accumulate and may not be treated in
time), a transformation rule may be triggered. Therefore, a reconfiguration
may be performed to prevent that the throughput of a system drops below a
threshold, to prevent a deadline miss or to prevent token accumulation. One
way of coping with these situations is by increasing the level of parallelism
in some part of the graph.

Similarly, if the throughput is too high, or the latency or the buffer
occupancy is too low (which indicates that resources are over-utilized), some
resources can be released by decreasing the level of parallelism.

Examples of conditions in this category are throughput(A) > m, la-
tency(A) > n, or occupancy(AB) < o, where A is an actor, AB is an edge,
and m,n,o are constant integers.

Model parameters: A reconfiguration might be allowed only if some
parameters of the model (e.g., the parameter of a variable arity actor) remain
in a range of values. For example, consider a graph with two split and join
actors which control the parallelization level. If this arity increases to a
certain value, we may have to prevent the parallelism level to increase.

Example of a condition in this category is output_arity(S) < k where
S is a split actor and k is an integer. The condition ensures that the re-
configuration is performed only if the arity of the split actor is less than a
threshold.

Actor-specific variables: Some actors may provide a number of func-
tions for returning the values of their internal variables. Based on the values
of these variables, the controller can decide to change the configuration of
the graph. For example, based on the number of macroblocks in an image,
we may want to change the configuration of a multimedia RDF application.
A decoder actor possesses the information about the macroblocks. This in-
formation can be accessible to the controller if the actor provides a function
to return it.

One example of this style of condition is macroblocks(A) = k where A
is an actor for which the function macroblocks is defined and exposed to be
used by the controller and k is an integer.

Environmental variables: A condition can also refer to the number
of units of time that has passed since some event (e.g., the first firing of an
actor). For example, because of energy concern, we would like to change the
type of a decoder after some period of time. Another environmental variable
is the absolute time. For example, when the night falls, we may need to
add a night filter to an image processing application. We can imagine other
environmental variables such as temperature, humidity, etc.

Examples of conditions of this kind are time() = m meaning that the
absolute time is m or elapsed_time(A,k) = n meaning that n units of time
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is passed since the kth firing of actor A.
Of course, this list of conditions is not exhaustive and other kinds of

conditions may be considered without changing the rest of implementation.

5.1.4 Pattern matching

After each reconfiguration, the controller checks which transformation rules
match the current graph, that is, the left-hand side of which rules match
a subgraph of the dataflow graph. The problem of matching a graph to a
subgraph of another graph is called the subgraph isomorphism problem [24].

Given two graphs G = (VG, EG) and H = (VH , EH), the subgraph iso-
morphism problem asks whether G contains a subgraph (V,E) isomorphic
to H, that is, a subset V ⊆ VG and a subset E ⊆ EG such that |V | = |VH |,
|E| = |EH |, and there exists a bijection f : VH → V satisfying

∀(u, v) ∈ EH ⇔ (f(u), f(v)) ∈ E.

The subgraph isomorphism problem is NP-complete [24]. It can be solved
in polynomial time if G is a forest and H is a tree. For directed graphs, it
remains NP-complete even if G is acyclic and H is a directed tree.

If the pattern (left-hand side of the rule) does not contain any variable,
then the pattern matching is equivalent to the subgraph isomorphism prob-
lem. But if the pattern has variables, the bijection f maps the set of actors
of VH to the set of actors of V in such a way that the substitution function
σ finds unique values for all variables of the pattern. Supposing that the
pattern contains only variables for the names, the pattern matching problem
may be formalized as follows.

Given a pattern lhs = (Vlhs , Elhs) and a dataflow graph G = (VG, EG),
the pattern matching problem tries to find a subgraph G isomorphic to lhs,
that is, a subset V ⊆ VG and a subset E ⊆ EG such that |V | = |Vlhs |,
|E| = |Elhs |, and there exists a substitution function σ : Vlhs → V satisfying

∀(u, v) ∈ Elhs ⇔ (σ(u), σ(v)) ∈ E.

The substitution function σ(x) returns the actor in a graph matched to the
actor x in the left-hand side of a transformation rule.

Graph pattern matching therefore is a potentially costly operation that
may involve graph exploration and backtracking. In our implementation, we
impose constraints such that pattern matching is linear in the size of the lhs.
We enforce that the lhs has at least one named actor serving as a root and
that all the edges of the pattern can be traversed starting from roots and
following explicit ports.

Matching such an lhs consists in selecting the named actors and proceed-
ing by following the named ports. These constraints ensure that the whole
lhs can be traversed and that the whole subgraph matching the lhs can be
selected without backtracking.
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Consider, for instance, the following pattern which may appear as the
lhs of a transformation rule :

αx A5 βy γz B3
•p1 •1 •2 •p2 •p3 •1 •p4 •3

This pattern has two explicitly named actors that can be directly selected
in the graph: A5 and B3. Note that these actors must appear the initial
graph since transformation rules do not know the names of dynamically cre-
ated actors. From these roots, αx, βy and γz can be selected unambiguously.
Indeed, the edges (αx, A5) and (A5, βy) can be followed by the input port
1 and output port 2 of A5 respectively. The edge (γz, B3) can be followed
using the input port 3 of B3 and finally (βy, γz) from the input port 1 of γz.

If the actor A were not named, pattern matching would have to consider
all typed A actors of the graph. Similarly, if the output port of A5 were a
variable, pattern matching would have to consider all possible ports. In both
cases, this may involve failure and backtracking.

Note that these constraints can be relaxed. For instance, if the type A
has a single input port, the pattern does not need to make it explicit. If the
second output port ofA is the only one to have the rate 4 then the pattern can
use that rate instead. The point is that the matching should proceed without
performing any choice and therefore in linear time. It is always possible to
make pattern precise enough by introducing dummy named actors to act as
pointers on the graph and as roots in patterns. Another stricter constraint
would be to force only one actor to be named where all ports are explicit
and named.

Of course, if the patterns are small, then in practice the exponential time
could be acceptable depending of the type of the application. In that case,
we can have a looser constraint. For instance, we can only force one single
actor to be named. The time complexity would remain exponential in the
size of the left-hand side of the rule, but if the left-hand side is small, that
time complexity would be acceptable in practice.

We now consider another example in which variable arity actors are
present. Consider the dataflow graph G1 in the Figure 5.1 and two transfor-
mation rules tr1 and tr2 in the Figure 5.2.

Src S1

A1

B1

J1 Snk

Figure 5.1: Dataflow graph G1

We can match the lhs of tr1 in linear time because the pattern matching
algorithm chooses the named actor S1, then it retrieves the last (second)
port •last and directly matches the actor B1, then it follows the output port
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S1 Bx J1
•last

•1 •1
•last V

tr1
S1

Bx

By

J1

•last
•1

•1

•1

•1

•last

S1 Bx J1
•p1 •1 •1 •p2 V

tr2
S1

Bx

By

J1

•p1
•1

•1

•1

•1

•p2

Figure 5.2: The transformation rules tr1 can be matched in linear time in
the size of its left-hand side, but the tr2 cannot.

•1 of the actor B1 and reaches J1 without any backtrack. On the other
hand, the pattern matching of the transformation rule tr2 follows one of the
ports of S1, possibly the first, and does not find an actor of type B and must
backtrack. This rule is therefore rejected.

5.1.5 Placement strategy

When placing RDF actors on a multi-processor or multi-server systems, dif-
ferent strategies can be adopted depending on the performance metric needed
to be optimized. In particular, we may choose to maximize throughput or
to minimize the latency.

In this section, we focus on a placement strategy that aims to improve
performance by optimizing two criteria: load balancing and communica-
tion costs. The goal is to distribute RDF actors across multiple processors
while minimizing inter-actor communication costs. It ensures that proces-
sors are equally overloaded and dependent actors are collocated on the same
processor. Intuitively this exploits the intrinsic parallelism while reducing
communication overheads due to parallelism.

Assuming that the processors and communication channels are homoge-
neous, the stated multi-criteria optimization problem can be expressed as a
graph partitioning problem [24]. Given a graph G = (V,E), with a weight
w(v) for each vertex v ∈ V and a distance d(e) for each edge e ∈ E, the
graph partitioning decision problem tries to find whether there exists a par-
tition of V into disjoint sets V1, ..., Vm such that the sum of weights in each
partition is less than some value K ∈ N, that is,

∀i, 1 6 i 6 m,
∑
v∈Vi

w(v) 6 K

and such that if Ei,j ⊆ E is the set of edges that have their two endpoints
in Vi and Vj , where i 6= j, then the sum of distances of these edges is less
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than some value J ∈ N, that is,

∀i, j, 1 6 i, j 6 m, i 6= j,
∑
e∈Ei,j

d(e) 6 J

The load of an actor A with execution time t(A) is sol(A)·t(A) during one
iteration. The flow of an edge (A,B) with production rate p and consumption
rate q is sol(A) · p (= sol(B) · q) tokens during an iteration.

For a dataflow graph, we take the load of an actor as its weight, and the
flow of an edge as its distance. In the graph partitioning problem, the sum
of weights and distances are unitless. In the dataflow placement problem,
the sum of loads of actor is a duration and the sum of flows is a number of
tokens. Since each communication channel has a capacity in terms of tokens
per second and channels are assumed to be homogeneous, we express the
sum of flows in terms of time units. If the size of tokens on different edges
is different, we can multiply the flow of each edge by the size of its tokens
(expressed in terms of bytes for instance). Therefore, we optimize loads and
flows in terms of time units.

However, the graph partitioning problem being NP-complete [24], we
have to rely on approximations. We formalize a simple heuristic to deal with
placement after reconfiguration.

Heuristic

We assume that the initial dataflow graph has been placed either through
an approximation or exact algorithm and focus on a heuristic to place new
actors and existing actors whose edges are changed by a reconfiguration.
When a transformation rule is applied, some actors remain in the graph,
and their neighbors remain unchanged. These actors are not needed to be
re-assigned. But if the neighbors of an actor change, then that actor may
need to be re-assigned to another processor as well.

At reconfiguration time, we know the load L(pr) on each processor pr,
that is, the sum of execution time of actors placed on the processor pr
multiplied by their solutions:

L(pr) =
∑

a∈P (pr)

sol(a) · t(a)

where P (pr) is the set of all actors placed on the processor pr.
We now consider how to place actor a with load sol(a) · t(a) and the set

of incoming edges in(a) and outgoing edges out(a).
Note that the buffer of an edge (a, b) can be put either on the producer

side or the consumer side. If the buffer is empty most of the time, then it
would be better to place the buffer on the consumer side. Indeed, the cost
for the consumer to check if the buffer has enough token will be lower. If
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the buffer is full most of the time, then it would be better to place it on the
producer side, which lower the cost of checking a full buffer for the producer.
We assume that in the average case, buffers are neither empty nor full most
of the time. In this case, it does not matter where to place the buffers and
we can keep buffers at the producer side as explained before.

In a single-criteria optimization problem in which the communication
costs are ignored, assuming that the processors are homogeneous, an obvious
policy is to place the new actor on a processor with the minimum load:

arg min
pr∈Pr

L(pr)

where Pr is the set of all processors.
In our multi-criteria problem, we have to consider also the flow of each

communication link. The extra communication cost which is produced by
placing actor a on processor pr is as follows:

Ca(pr) =
∑

e∈{e | (e=(a,b)∈out(a)
∨ e=(b,a)∈in(a))
∧ b/∈P (pr)}

d(e)

In the above formula, if actor a is placed on the processor pr, then Ca(pr)
computes the sum of the flows of the communication links between a and its
neighbors not placed on pr. In other word, it computes the sum of the flows
transmitted through distant links.

We can use approximation algorithms to solve the stated problem. This
placement strategy may be used on a multi-server architecture, where the
communication costs are significant. We have not experimented it, because
our implementation of RDF is for a single multi-core server with shared
memory. For this architecture, the performance of Linux scheduler is satis-
factory.

Linux scheduler

In the experiments, we used the Linux scheduler. We describe here how
it works and how it deals with load balancing and communication costs.
Linux’s Completely Fair Scheduler (CFS) divides the processor’s cycles among
threads [40]. The scheduler slices the time of the processor and assigns
threads to these slices. In order to define the size the slices, the scheduler
sets a fixed interval during which each thread must run at least once. Each
interval is divided among threads in proportion to their priorities. In our
case, the priority of all threads are equal, so the interval is divided equally.
When a thread runs, it accumulates its run time. Once the thread run time
exceeds its assigned time slice, it is pre-empted from the processor if there
is another thread ready to execute.
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Threads are organized in a run queue, implemented as a red-black tree.
In this tree, the threads are sorted in the increasing order of their run time.
The scheduler always picks the thread with smallest run time.

In case of a multi-core architecture with a shared memory, each core has
its own run queue. In this case, the run queues must be kept balanced. The
scheduler periodically runs a load-balancing algorithm to keep the queues
roughly balanced. The scheduler also takes the cache and memory hierar-
chy into account and favors keeping threads which communicate more on
the same core to improve cache reuse, and thus reducing latency to access
memory.

For RDF, each actor runs on a separate thread and the Linux scheduler
places them in such a way that the load is balanced on all cores. Moreover,
if two actors communicate through a buffer, since the producer wakes up the
consumer thread, according to the Linux placement strategy, they are placed
such that the cache coherency overhead reduces which results in lower com-
munication cost. For a multi-server architecture, the Linux scheduler is likely
to be inefficient since it does not have information about the communication
costs.

5.2 Experiments

We now describe the experiments we have performed using our RDF imple-
mentation. Our objectives were to evaluate reconfiguration costs, and show
how RDF can be used to change levels of parallelization and dynamically
improve performance.

For the experiments, we used an Intel(R) Core(TM) i7-8700 CPU @
3.20GHz with 12 cores running Linux. A single shared memory is available
to which all cores have access. A single L3 data cache is shared between all
cores. Each core has also two dedicated L1 and L2 caches.

For the performance metric of a given graph G, we use the throughput
in terms of tokens per second HG introduced on page 75 in chapter 4. For a
graph with a single sink actor consuming n tokens per iteration we have

HG = n · TG

with TG denoting the standard notion of throughput. In the following, we
often use the term throughput to refer to the number of tokens consumed
per second.

5.2.1 Reconfiguration costs

An important metric to evaluate is the cost of reconfigurations in terms
of time units. Indeed, RDF would lose part of its interest for streaming
applications if reconfiguration takes too long. This cost can be decomposed
in two parts:

94



Rule Matching cost (µs) Transformation cost (ms)
insert10 40 1.44
insert20 35 2.56
insert30 45 3.88
insert40 50 4.88
remove10 225 0.75
remove20 530 1.49
remove30 881 2.43
remove40 1420 3.66

Table 5.1: Transformation costs

• the cost of the transformation itself, i.e., matching the lhs and replac-
ing it by the rhs, possibly creating/removing actors and communica-
tion links.

• the total reconfiguration cost including the time taken to pause the
execution of the graph, to transform the graph, and to resume the
execution until the graph reaches again its steady state and maximal
throughput.

In order to measure the transformation costs, we consider the following
transformation rules:

• insertN : I → O V I → Ax1 → ...→ AxN → O

• removeN : I → Ax1 → ...→ AxN → O V I → O

for N ∈ {10, 20, 30, 40} and t(I) = t(O) = t(A) = 10ms.

Therefore, we experiment using in total 8 transformation rules which
create and remove N actors respectively. The initial graph for all 4 trans-
formation rules insertN is I → O. For each transformation rule removeN ,
the initial graph is I → A1 → ...→ AN → O. For each transformation rule
tr, the controller consists of a single condition

time()=1s : tr

In Table 5.1, the matching and transformation costs are shown. To obtain
the values, experiments are performed three times each and the average value
is computed.

The matching costs are linear in the size of the rule, due to the fact that
there is no backtracking while matching. The transformation costs are linear
in the size of the rule, since the number of actors and buffers to construct or
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Graph Reconfiguration cost (ms)
H5 95
H10 116
H15 132
H20 156

Table 5.2: Reconfiguration costs

destruct is main part of the cost. For standard transformation rules, which
involve less than 10 actors, the expected cost is around 1ms.

The global reconfiguration costs are evaluated by comparing an execution
with a dummy transformation (lhs V lhs) with the same execution without
any transformation.

To measure the reconfiguration costs, we use the initial graphs HN as
specified below:

• HN : I → A1 → ... → AN → O where N ∈ {5, 10, 15, 20}, t(I) =
t(O) = t(A) = 10ms.

Graphs with different number of actors are used to show that the reconfigu-
ration cost is linear in the number of actors.

We use a dummy transformation rule I → A1 V I → A1 and measure
the total execution time for the graphs HN with and without applying that
rule once. The difference between these two execution times determines the
total reconfiguration costs. Table 5.2 shows that reconfiguration costs are
around 100ms. They are much higher than the cost of the transformation
alone.

To summarize, we noticed that the transformation cost is linear in the
size of transformation rules. They are in the order of 1ms for rules with
up to 40 actors. Rules inserting actors are more time consuming than rules
removing actors, therefore constructing buffers and actors takes longer than
deallocating them. For global reconfiguration costs, they are dependent on
the number of edges since tokens need to be consumed before pausing the
graph and buffers need to be emptied. We showed that reconfiguration costs
are in the order of 100ms for graphs with up to 20 actors.

5.2.2 Parallelization impact

We show here how RDF can be used in order to increase the throughput in
terms of tokens per second (H) of an application by increasing parallelism.

The dataflow graph G2 used in this example is shown in Figure 5.3, where
as usual, rates are 1 when they are not explicitly mentioned. It consists of
the following actors. Src is a source actor that produces an integer number,
S is a split actor, A simply copies its input to its output, J is a join actor, and
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Snk a sink actor consuming integers. Using busy loops, we set the execution
times of Src and Snk to 10ms each, S and J to 2ms each, and A to 50ms.

Src S1 A1 J1 Snk
p q

Figure 5.3: Dataflow graph G2

Two transformation rules tr3 and tr4 adding and removing an actor A
respectively, are used (Figure 5.4). At time instants 5s and 10s, the trans-
formation rule tr3 is applied and at time 20s and 25s, the transformation
rule tr4 is applied.

S1 A1 J1 V
tr3

S1

A1

Ax

J1

S1

A1

Ax

J1 V
tr4

S1 A1 J1

Figure 5.4: Transformation rules tr3 and tr4

The experiments were performed using 12 cores. The throughput of the
graph is shown in Figure 5.5. After the first and second time applying the
transformation rule tr3, the throughput increases from 20 to 40 and 60 to-
kens/second. By applying the transformation rule tr4 twice, the throughput
returns to its initial value.

As it was expected, after the first and second transformation, the through-
put increases from 20 to nearly 38.7 and 57.4 tokens/second. By applying
the second transformation twice, the throughput returns to its initial value.
If the throughput is not exactly multiplied by 2 and then 3 it is of course due
to the light overhead of the split and join actors which have to distribute and
gather tokens. Provided sufficient resources, those two rules are sufficient to
adapt the application to any required throughput as they can be applied as
many times as needed. With other dynamic MoCs such as SADF, we would
have to plan for a fixed number of configurations statically.

5.3 Case study

SDF was designed for signal processing applications. Video streaming ap-
plications fit well into this model of computation. We show how features of
RDF can be used in this domain.

Our case study is an application that captures a video stream from a
source, decodes the video stream into images, detects the edges in the de-
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Figure 5.5: Throughput of the graph on 12 cores

coded images, and finally displays the images with a constant frame rate.
The frame rate is measured in terms of frames per second.

Dynamic adaptive streaming protocols allow changing the video quality
based on network bandwidth. So, if bandwidth allows, the video can be
streamed with a higher quality. Suppose that during the streaming, the video
quality increases. As a result, the processing of images becomes more time
consuming and if the application is not aware of this change, it will not be
able to display the images with the desired frame rate. Even when sufficient
processing power is available, if the application is unaware of changes, it will
not use it.

This application is modeled with RDF and we show how it can avoid re-
source under-utilization and maintain the throughput. We model the initial
application using the graph V1 → S1 → C1 → J1 → P1. Actor V1 captures
the video stream, decodes the stream, and sends the decoded images, actor
S1 distributes the image, actor C1 receives an image and extracts the edges
using an edge detection algorithm, actor J1 gather the image, and finally
actor P1 displays the received image.

Suppose that V1 captures the video at 25 frame per second (fps) and P1

displays the images at 25fps. When the quality of the input video stream
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increases, the edge detection takes longer. The images cannot be displayed
at 25fps anymore, and the throughput drops to 15fps. By modeling this
application using RDF, we can add other edge detection actors C2, ..., Cn
between S1 and J1 in parallel. The actor S1 distributes images between those
edge detection actors to improve the throughput of the video display. If the
video quality decreases, the edge detection becomes faster and the output
buffer of the actor S1 becomes empty most of the time. In that case, some
of those edge detection actors are not necessary and we can remove them.

This application is shown in Figure 5.6. The transformation rule trinc is
applied when the quality of the input video increases and the throughput at
the actor P1 decreases and therefore goes below 20fps. On the other hand,
if the quality of the input video decreases, the buffer of the edge (V1, S1)
remains empty most of the time. The transformation trdec is applied when
the buffer occupancy goes below 10 tokens.

Dataflow graph

Reconfiguration controller

Transformation rules

Transformation programs

V1 S1 C1 J1 P1
p q

S1 Cx J1
trinc

V S1
Cx

Cw
J1

S1
Cx

Cw
J1

trdec
V S1 Cx J1

throughput(P1) < 20 : trinc

occupancy(V1, S1) < 10 : trdec

Figure 5.6: An adaptive video processing application

We have implemented this use case partially. Since our input video
stream has a constant quality, we simulate the change of quality using a
dummy actor whose execution time artificially increases. Moreover, we have
only implemented the case where the throughput drops and parallel levels of
computations needs to be increased.

The dataflow graph G3 is shown in Figure 5.7. It contains the same
actors as before plus D1, the dummy actor which produces extra load.

The execution times of actors V1 and P1 are 40ms. In a video streaming
scenario where the resolution of the input video may vary, the size of images
increases and some image processing actors may take longer than usual. This
is modeled using D1 whose execution time increases after 100 iterations from
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V1 S1 C1 D1 J1 P1
p q

Figure 5.7: Edge detection dataflow graph G3 with simulation of the changes
of video quality

30ms to 60ms, and then after 200 iterations to 120ms.
By modeling this application using SDF, we see that the throughput

decreases from 1
40·10−3 = 25 tokens per second to 1

60·10−3 = 16.6 and finally
to 1

120·10−3 = 8.3 (Figure 5.8).
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Figure 5.8: Throughput of the edge detection application in SDF

If we model the same application using RDF, we can reconfigure the
graph when the throughput decreases and add a parallel level of computation
between the split and join and therefore process more tokens (images) per
second. The transformation program is specified as:

throughput(P1) < 20 : tr5;

The transformation rule tr5, shown in Figure 5.9, increases the paral-
lelism of computations. The execution time of actors D1 is increased from
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30ms to 60ms at iteration 112, the condition becomes true and tr5 is ap-
plied. Edges are detected using two parallel levels of computations (C1, D1)
and (C2, D2). Then again the execution time of actor D1 and D2 is increased
from 60ms to 120ms at iteration 202, the condition becomes true and C3

and D3 are added. Actor D1, D2, and D3 always share the same execution
time. By applying the transformation rule tr5 twice, we obtain the resulting
graph G4 shown in Figure 5.10.

S1 Cx Dy J1 V
tr5

S1

Cx

Cw

Dy

Ds

J1

Figure 5.9: Transformation rule tr5 to add one parallel level of computation
in the edge detection application

V1 S1

C1

C2

C3

D1

D2

D3

J1 P1
p q

Figure 5.10: The resulting graph G4 after applying the transformation rule
tr5 to G3 twice

In Figure 5.11, we see the throughput measured at the sink actor. In the
beginning, the actor V1 is the actor with the highest load, for which the value
of sol(i) · t(i) is the largest. According to formula 4.13, the throughput is
calculated as TG = 1

0.040 = 25 iterations/second. Since one token is consumed
per iteration, the token production is HG = 1 · TG = 25 tokens/second.
Because of the overheads, the actual value is 23.5.

When the execution time of actor D1 increases to 60ms at iteration 112,
the actor D1 becomes the slowest, (i.e., sol(i) · t(i) = 0.06). So the through-
put is determined by actor D1, and TG = 1

0.06 = 16.6 iterations/second and
HG = 1 · TG = 16.6 tokens/second.

At iteration 112 when the throughput has decreased, the transformation
is applied and the throughput is again determined by actor V1 (i.e., sol(V1) ·
t(V1) = 0.08 whereas sol(D1) · t(D1) = 0.06). The execution time of actor
V1 is 40ms and its solution after the reconfiguration is 2. Therefore, TG =

1
2·0.040 = 12.5 iterations/second and HG = 2 · TG = 25 tokens/second. Note
that because of overheads, the throughput is around 24 tokens/second in
practice.

When the execution time of actors D1 and D2 increases to 120ms at
iteration 202, the throughput decreases to HG = 2 · 1

0.12 = 16.6 tokens/sec-
ond. The condition becomes true and the transformation rule is applied
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for the second time and the throughput returns to HG = 3 · 1
3·0.040 = 25

tokens/second.
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Figure 5.11: Throughput of the edge detection application in RDF

In this case study, we saw how transformations triggered by conditions on
throughout can increase the parallelism of computations in a video processing
example and how the throughput can be maintained at a desired value.

As for the quality of experience, we noticed in this case study that the
reconfiguration costs are small and seamless. Transitions from one graph to
another are smooth and the user is not disturbed by the transformations.

5.4 Summary

In this chapter, we described our prototype implementation of RDF. In the
first part, we explained how actors are executed, how the reconfigurations
take place, and what conditions are used to trigger transformation rules. We
also explained solutions for pattern matching and dynamic actor placement.

In the second part, we presented the experiments we have conducted
using the prototype. We started by describing the architecture and perfor-
mance metrics that were used, then we evaluated reconfiguration costs and
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showed with an example how RDF can be used to improve dynamically the
throughput of a graph.

In the third part, we detailed a case study in which RDF is used for a
small concrete application. The application retrieves a video stream, decodes
and extracts edges from images, and displays the result. If the computation
becomes more time consuming, RDF can cope with the decrease of through-
put by changing the parallel levels of computation in order to maintain the
throughput at the desired level. The reconfigurations are barely noticed in
the displayed video stream.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

An SDF dataflow graph is not adaptive, that is, its topology cannot change
at run-time and its rates are fixed during the execution. Some MoCs (such as
PSDF) have addressed this problem by replacing the static integer rates with
parameters so that they can be changed dynamically. Some MoCs (such as
BPDF) have gone further by allowing edges to be enabled and disabled using
parameters in such a way that the topology of the graph can be changed to
some extent. Some other MoCs (such as SADF) allow dynamic change of
the topology of the dataflow graphs by describing an application as a small
set of SDF graphs from which the executing graph can be selected when a
reconfiguration is needed. Although SADF can handle applications which
need to change the topology of graphs, it cannot be used when the number
of required configurations is unbounded or even very large.

In this thesis, we proposed RDF, an MoC that allows an unbounded
number of reconfigurations. For this purpose, RDF introduces the concept
of transformation rule. Conceptually, a transformation rule is a graph rewrite
rule that replaces a subgraph of the dataflow graph by another subgraph and
therefore modifies the topology of the dataflow graph to which it is applied.
RDF dataflow graphs are similar to SDF graphs except that each actor has a
type and port are explicit. Actor types allow an unbounded number of new
actors to be created during the execution as instances of those types. Explicit
ports allow the transformation rules to choose specific ports for connecting
actors.

Each RDF application consists of an initial dataflow graph and a recon-
figuration controller. The initial graph consists of a set of actor types, a
set of actors, a set of edges, and a function returning the initial tokens of
each edge. An actor type defines the number of input and output ports
of that type along with the rate of each of its ports. The controller has a
reconfiguration program that specifies the transformation programs and the
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conditions to trigger them. A transformation program is a combination of
transformation rules and a condition is a boolean expression. The conditions
and the transformation programs determine respectively when and how the
dataflow graph must be reconfigured.

A transformation rule consists of a left-hand side (lhs) and a right-hand
side (rhs). Its lhs is a pattern graph, that is, a graph containing variables
for the name, type, rate, and ports of actors. An lhs matches a subgraph of
the dataflow graph if a subgraph is found in the graph which is isomorphic
to the lhs and if a one-to-one mapping from the set of variable of the lhs
to the set of constant values of the dataflow graph is found such that each
variable in the lhs finds a unique value. Once a rule, that is, the lhs of the
rule matches a subgraph of the dataflow graph, its rhs pattern graph replaces
the matched subgraph after substituting its variables by constant values.

The graph obtained from applying a transformation rule to a graph must
be a valid dataflow graph. A transformation rule must respect the following
conditions in order to be valid: (1) The number of input and output edges
and rates of each actor must correspond to its type. (2) When an actor is
removed, meaning that it is present in lhs but not in rhs, its type must be
known and all its edges must be present in the lhs of the transformation
rule, otherwise this actor would be suppressed while some of its edges would
remain in the graph. (3) When an actor is created, meaning that it is
present in rhs but not in lhs, its type must be known, so that statically we
can determine whether it is correctly connected.

Static analyses have been proposed in order to ensure that the impor-
tant properties of the dataflow graphs, that is consistency and liveness, are
preserved by any valid transformation rule. Moreover, the RDF graphs are
connected and the transformation rules must preserve its connectivity. The
condition for connectivity is that the rhs of the transformation rule must
be a connected graph. The condition for consistency is that the solutions of
actors that remain in the graph do not change and that new actors created
by the rule have integer solutions. The condition for liveness is that if there
is a path between two actors in the rhs of the rule, then there must be also
a path between those two actors in the lhs. This condition ensures that no
new cycle is created by a transformation rule and that the graph remains
live. Therefore, an RDF application with an initial graph which is connected,
consistent, and live and with a set of transformation rules respecting those
conditions always produce connected, consistent, and live graphs.

We have studied the impact of the transformation rules on the perfor-
mance of the RDF graph. Specifically, we have focused on the two most
relevant performance metrics for dataflow applications: the latency and the
throughput. We have identified a class of transformation rules that are of
practical interest, for which we have computed bounds of their impact on
latency and throughput.

We have implemented the RDF MoC in a prototype. In the prototype, a
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transformation program consists of a single transformation rule. Therefore,
the reconfiguration program is a set of rules triggered by conditions. A con-
dition is a boolean expression measuring throughput, latency, or buffer occu-
pancy. The reconfiguration controller implements the program of the RDF
application: In parallel with the execution of the graph, the controller checks
which transformation rules match the current graph. It also regularly checks
whether the conditions corresponding to the matching rules hold. The first
matching rule in the program whose condition holds is applicable. Once an
applicable rule is found, the controller applies its corresponding transforma-
tion rule by pausing the graph, reconfiguring the graph, and finally resuming
the execution. After each reconfiguration, the controller again checks for the
matching rules using a pattern matching algorithm. The pattern matching is
a costly operation and in order to reduce the costs, we have proposed simple
constraints.

Experimentations showed that the reconfiguration costs are small and
that RDF can be used in practice. We also have shown that RDF can be
used to change the level of parallelism in a dataflow graph and therefore
to improve the throughput of the graph. Finally, a simple case study is
presented. The application consists of actors for decoding a video stream,
processing the images produced by the decoder, and finally to encode the
processed images. In this case study, the execution time of one of the actors in
dataflow graph increases. In SDF, that would result in a loss of throughput.
By using RDF, the loss of throughput is detected by one of the conditions
and a transformation rule is applied to increase the level of parallelism of
the graph allowing to maintain the throughput at the right level.

6.2 Future work

Several extensions of RDF can be considered to make it more expressive or
analyzable and its implementation can be studied for other architectures.
We may also find other applications which can be modeled using the RDF
MoC. We discuss some possible extensions and applications for future works.

Extensions

The rates in RDF are constant, like in SDF. An interesting extension of RDF
would be to parameterize the rates as in BPDF and PSDF. The extension
would require to extend the static analyses for consistency and liveness in
order to take parameters into account.

The static analyses of the RDF to ensure preserving consistency and
liveness enforce some constraints causing some transformation rules to be
rejected. We should study how these static analyses could be modified to
cope with (1) non-connected graphs and transformation rules, and (2) trans-
formation rules involving cyclic graphs and graphs with initial tokens. A
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subject of future work would be to find new conditions for preserving the
consistency and liveness while keeping the constraints on the dataflow graph
and the transformation rules to a minimum.

The performance analyses we studied address latency and throughput.
We have focused on a class of useful transformation rules. In future, we could
consider a larger class of transformation rules and to find the impact of those
rules on latency, throughput, and possibly other performance metrics such
as resource utilization.

RDF has been implemented for a multi-core architecture. The implemen-
tation could be extended to more general architectures with multi-servers
communicating through messages. In this case, the controller would need
to have information about the available servers and processors, and a place-
ment heuristic would map the actors in order to optimize the communication
costs. In such an implementation, the actors would need to communicate
through messages on the network. Since the network quality changes, the
controller should probe the network and decide how to re-map actors. We
have studied the use of RDF in a single case-study. More use-cases would
help to find other useful extensions.

Applications

Two application domains seem promising for RDF: computer vision and
machine learning.

Computer vision algorithms can be used for many applications such as
tracking objects in a video, detecting objects in images and so on. Those
applications use graphs made of several multimedia processing filters and
SDF look suitable for them. OpenCV [14] is an open source software library
offering functions for performing computer vision algorithms. Different re-
configuration requirements of the applications described in this library should
be studied. RDF could be used to extend the library to handle dynamic re-
configurations. Moreover, using dataflow, those applications can be executed
efficiently on multi-processors and, in an environment where the resources
change, RDF and its potential extensions might be useful.

Machine learning algorithms are used in many different areas such as
automatic translations of texts, automatic recognition of content of speech,
and automatic recognition of objects in images. Those algorithms usually
use neural networks, where computations are described by acyclic graphs
where each vertex is a neuron which has a number of inputs and outputs
and performs a specific operation. Dataflow MoCs look suitable to express
and implement such applications.

The neural networks are usually large and require efficient scheduling and
placement. A research direction would be to study applications of dataflows
for the efficient parallel implementation of such networks. In some applica-
tions, the topology of the computation graph depends on the input data, and
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therefore the topology of the graph must change dynamically. RDF may be
applied to model and implement dynamic neural networks.

In [30], the dynamic neural networks are divided into three categories:
(1) sample-wise dynamic networks adapting the topology based on input
data, (2) spatial-wise dynamic networks adapting the topology based on
spatial information in spatial data such as images, and (3) temporal-wise
networks adapting the topology based on temporal information in sequential
data such as texts. In all those categories, networks of different sizes are
to be used for different inputs. Often those networks are similar to each
other and differ only in the number of layer of neurons. In such cases, a
few RDF transformation rules can add and remove layers of neurons and
produce many different networks.

More research is needed to asses if RDF can be used to model the ap-
plications in the domains of computer vision and machine learning where
reconfigurations are required and to implement them more efficiently.
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Appendix A

Implementation Details

We describe here the prototype we have implemented in detail. In sec-
tion A.1, we describe how an RDF application can be specified in a high
level language, that is, how the initial dataflow graph and the reconfigura-
tion program are specified. We explain how the prototype can be used having
been provided by some off-the-shelf actor types. In section A.2, we explain
how a new actor type can be implemented. In section A.3, we present the
details of the implementation by explaining the attributes and functions of
all structures used in the implementation. The prototype is implemented in
C++ language.

A.1 Specifications

We explain in this section how the initial dataflow graph and the reconfigu-
ration program of an RDF application are specified in a high-level language.

Dataflow graph. In order to specify an RDF graph, we use a subset
of the Dataflow Interchange Format (DIF) [44, 32]. DIF is a general spec-
ification format for arbitrary dataflow models. Its objective is to facilitate
reusing dataflow graphs from different implementations of dataflow-based
tools, by providing a common and yet extensible semantic to represent data-
flow graphs. It captures all necessary information for modeling a dataflow
graph along with information required for static and performance analyses,
while hiding the details of implementation of computations and communica-
tions.

The DIF specifies a dataflow application using a number of nested blocks.
Each block contains parts of the attributes of the application. The outer-
most block contains the name of the MoC and the name of the application
(e.g., rdf canny). The topology of the dataflow graph is specified in the
topology block. The production and consumption rates are specified in the
production and consumption blocks. If rates are not specified they take the
default value 1. For instance, the dataflow graph V1 → S1 → C1 → D1 →
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J1 → P1 is specified as below.

rdf canny {
topology { nodes = V1, S1, C1, D1, J1, P1;
edges = e1(V1,S1), e2(S1,C1), e3(C1,D1),

e4(D1, J1), e5(J1,P1); }
production { e1 = 1; e2 = 1; ... }
consumption { e1 = 1; e2 = 1; ... }

}

Attributes of actors are specified in the actor block of DIF. These at-
tributes are metadata that the actor needs during its execution. The com-
putational behavior (i.e., the type) of all actors must be specified by the
computation keyword followed by the type of the actor. Other attributes
include the name of the file an actor needs as its input or output, calibration
values for image processing tasks, etc. We can also assign a port to an edge.
For instance, the assignment output1 = e2; as an attribute of the actor S1
connects its output port output1 to the edge e2.

rdf canny { ...
actor V1 { computation = VideoCapture; file_name = in.mp4; }
actor C1 { computation = Canny; }
actor S1 { computation = Split; output1 = e2; } ...

}

There are certain parameters that are required by the reconfiguration
controller. For instance, the controller needs to know whether the user needs
to print all log messages on the screen or not. The log messages contain
information concerning the execution of actors, that is, at what time a firing
is performed, at what iteration an actor is, what messages an actor has
printed, at what time a reconfiguration is performed, how the topology of the
graph is changed during a reconfiguration, and so on. Such information can
be used to debug an application. Another parameter concerns the scheduling
policy of the dataflow graph. The scheduling either is performed using the
default Linux scheduler, or the user manually sets the computation cores on
which each actor must execute.

Parameters are specified in the parameter block as below. When the
value of the variable logging is set to true, the debugging messages are
printed out. By setting the value of the variable scheduling to false and
setting the cpu attributes actors, processing cores are assigned to them.
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rdf canny { ...
actor V1 { cpu = 1; ... }
parameter { logging = true; scheduling = false; }

}

Transformation rules. We have extended DIF to specify RDF appli-
cations. Besides the initial graph, an RDF application must also specify the
set of transformation rules which are used by the reconfiguration program.
A transformation rule is specified in the rule block, and the left-hand side
and the right-hand sides of the rules are specified in the lhs and rhs blocks.

A constant name starts with an uppercase (e.g., S1) and a variable starts
with a lowercase (e.g., x). During the pattern matching, each variable is
substituted by an actor name, an actor type, or a rate. New actors are
specified by variables and are given fresh names when added to the graph.

The following rule

S1 Ax J1
tr1

V S1

Ax

Ay

J1

is specified in DIF as:

rdf canny { ...
rule tr1 {
lhs {
topology { nodes = S1, x, J1;
edges = e1(S1, x), e2(x, J1); }

actor x { computation = A; } ...
}
rhs {
topology { nodes = S1, x, y, J1;
edges = e1(S1, x), e2(x, J1), e3(S1, y), e4(y, J1); }

actor y { computation = A; } ...
}

}
}

Reconfiguration program. The controller monitors the execution of
the dataflow graph. It has a reconfiguration program consisting of pairs of
conditions and transformation rules. It regularly checks in order the condi-
tions in program. As soon as one condition is evaluated to true, its corre-
sponding transformation rule is applied to the graph. The reconfiguration
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program is specified in the main block as a pair of conditions and transfor-
mation rules (i.e., condition : rule). A condition consists of four parts.
It is of the form of actor.metric operator value. A performance metric
at a given actor is measured and compared using a comparison operator
with a certain value.

For instance, we can measure the throughput at a given actor and apply
a transformation only if its throughput is less than, equal to, or greater than
a certain value. In the following example, the throughput at the actor P1
is compared with the value 40. If the throughput is less than 40 tokens per
second, then the transformation rule tr2 is applied. Each actor has also
a timer that measures for how long an actor has been executed. In the
following example, if the timer of the actor V1 reaches the value 5000ms,
the transformation rule tr1 is applied.

rdf canny { ...
main {
V1.timer = 5000 : tr1;
P1.throughput < 40 : tr2;

}
}

A.2 Actor types

In the previous section, we saw how an RDF application can be specified.
There are built-in types of actors which can be used to build an application.
In this section, we explain how new types can be developed.

A new actor must inherit from the Actor class and define a set of ports
along with their data types during the construction. Primitive token types
Int and Str for two-byte integers and strings are provided. The token type
Mat for matrices containing image structures of OpenCV library can also be
used.

At initialization, actors can read the attributes set in the dataflow graph
specified as DIF. Those attributes include the address of the file a video
reader needs to read, or the threshold values an actor needs for its internal
algorithms. During the execution, each actor reads from its input ports and
write to its output ports. Finally, once an actor finishes its execution, it
destroys its ports and it is itself destroyed by the controller.

Construction. An actor can create input and output ports using the
functions createInputPort and createOutputPort. These ports can be
connected only to one other port. Variable arity actors have ports which can
connect to multiple ports. The function createInputPortVector is used for
creating an input port of variable arity. Similarly, for creating an output
port of variable arity the function createOutputPortVector is used .
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The following code snippet illustrates the construction of the actor type
Canny. This type has one input and one output port both of type Mat. It
receives an image, extracts the edges from the image using the canny edge
detection algorithm, and finally writes the resulting image on its output
port. For its edge detection algorithms, the actor has an attribute threshold
specifying the granularity of the edge detection. Its value can be set by a
user as an attribute in DIF specification of the application.

class Canny : public Actor {
private:
InputPort<Mat> * input;
OutputPort<Mat> * output;
int threshold;

public:
Canny(const string& name) : public Actor(name) {
input = createInputPort<Mat>("input");
output = createOutputPort<Mat>("output");

}
}

Initialization. During the initialization phase, the actor reads its at-
tributes. The function propEmpty checks if the value of an attribute (prop-
erty) is empty. To retrieve the values of attributes, two functions getProp,
getPropInt, and getPropFloat are provided (for string, integer, and float).

In the example below, if the attribute threshold is set, then the actor
reads its value, otherwise it sets it to a default value.

class Canny : public Actor { ...
void init() {
if (!propEmpty("threshold"))
threshold = getPropInt("threshold");

else
threshold = 100;

}
}

Execution. During the execution, the actor needs to read and write.
The functions consume and produce are used respectively for reading from
input ports and writing to output ports. Once the consume function is
called, a number of places in the buffer corresponding to the rate of a given
port is blocked. The actor fills those places and release them afterwards.
The release function is called for releasing the buffer of a given port. By
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releasing a port by all consumers, the producer is allowed to produce a new
token on that buffer’s place. Similarly, once the produce function is called,
a number of places in the buffer corresponding to the rate of a given port
is blocked for the producer and no consumer is allowed to read from those
places until the place is released using the release function.

The functions consume, produce, and release can be called on nor-
mal ports (i.e., InputPort and OutputPort) as well as variable arity ports
(i.e., InputPortVector and OutputPortVector). By calling consume (resp.
produce) on a variable arity port, a vector v of vectors ui is returned to be
read by a consumer (resp. to be written by a producer). Each element of
the vector v corresponds to one of the ports (i) and each element ui is itself
a vector of tokens whose size is the rate of the port i.

Once a consumer blocks places on a buffer, it can get references of the
tokens by invoking get function. Similarly, a producer blocks places on the
buffer and sets the values of those places by invoking the set function. The
clone returns a copy of the value of a given place of a buffer. For variable
arity ports, get and setmust be called on the elements of the vector returned
by consume and produce.

The example below illustrates how a Canny actor reads from its input
and writes to its output. It blocks one place on its input port and one on
its output port and retrieves the references in and out. Using the function
get, it gets the image on the buffer. By invoking the cv::Canny function,
it extracts the edges. It fill the output buffer by calling the set function.
Finally, the actor releases the buffers by calling release on both its input
and output ports and let its predecessor to produce and its successor to
consume tokens on their corresponding buffers. The type cv::Mat is used to
store images in OpenCV and the type Mat is a token type holding cv::Mat.

class Canny : public Actor { ...
void run() {
cv::Mat image, edges;
vector<Mat *> in = consume(input);
vector<Mat *> out = produce(output);
image = *in[0]->get();
cv::Canny(image, edges, threshold, 2*threshold);
out[0]->set(edges);
release(input);
release(output);

}
}

Destruction. To destroy ports, the destroyPort function is called. As
a result, all the resources acquired by the port are released. This function
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is called when the actor finishes its execution. The controller destroys the
actor and the actor destroys its ports before its destruction.

class Canny : public Actor { ...
~Canny() { destroyPort(input); destroyPort(output); }

}

A.3 System structure

The structure of RDF prototype consists of these main classes: Actor, Edge,
Buffer Port, Token, Graph, Rule, and Controller. In this section, we
describe those classes and their attributes and functions in a high level.

Actor

An actor has a name and a type. It has a list of input ports (inputPorts) and
output ports (outputPorts) accessed by their name. It also has a solution,
the number of its current firing (stepno), the number of its current itera-
tion (iterno) and the number of its current firing in an iteration (fireno).
We have the following the equality: stepno = (iterno-1) * solution +
fireno. The boolean paused indicates that the actor must pause for a re-
configuration. The value of the iter_max is set by the controller to indicate
until which iteration the actor must continue executing before pausing for a
reconfiguration.

class Actor {
string name, type;
map<string, IPort*> inputPorts;
map<string, OPort*> outputPorts;
int solution, stepno, iterno, fireno;
bool paused; int iter_max;

}

Initialization and execution. Each concrete actor has to implements
the virtual function init which is called to initialize the actor. At the
initialization, an actor sets the attributes it need during the execution. When
an actor is reinitialized after a reconfiguration, the function reinit is called.
It may be the case that the attributes an actor needs change. For instance,
a rule may change the thresholds used in algorithms of an actor at each
reconfiguration. If this function is not implemented by the concrete actor,
by default the init function is called. The virtual function run, which defines
the behavior of an actor, needs to be implemented by each concrete actor.
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virtual void init() = 0; virtual void reinit();
virtual void run() = 0;

Creating ports. The function createInputPort creates a new input
port and adds it to the list of input ports. The type of tokens on the created
input port is specified by T. The type T must be a subclass of the Token
class (see section Token). Similarly, the function createOutputPort creates
a new output port.

template <typename T>
InputPort<T>* createInputPort(string name);
OutputPort<T>* createOutputPort(string name);

Consumption and production. The function consume consumes as
many tokens as the consumption rate of a given input port. It first locks
the buffer of the port by calling port.lock(). Then it returns a number of
places equal to the consumption rate of the port from its buffer by calling
port.get(). Similarly, the function produce produces as many tokens as
the production rate of a given output port. Once it has read from or written
to a buffer, the actor uses the function release to unlock the buffer of its
input or output port.

A user can set an attribute of a source actor so that it terminates its
execution at a certain moment (for instance, when it reaches a certain iter-
ation). Once that source actor reaches the last token, it sets the status of
its produced tokens to end-of-stream by calling the function setEOS. Other
actors terminate their execution once they read a token with such status.

template <typename T>
vector<T*> consume(InputPort<T> * port);
vector<T*> produce(OutputPort<T> * port);
void setEos(OutputPort<T> * port);
void release(InputPort<T> * port);
void release(OutputPort<T> * port);

Pausing, resuming, and running actors. Using the function pause
before each reconfiguration, the controller pauses the actor. This function
sets the values of paused and iter_max which are protected by mutexes.
Those values are read in the function runActor. The function resume is used
by the controller to resume the execution of the actor. It also manipulates
the value of paused and notifies the actor to wake up.
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The function runActor executes an actor by executing its iterations until
an end-of-stream is reached. The status of an actor is set to end-of-stream
once it reads a token with such status or when the actor itself sets the status
of a token to end-of-stream. Before execution, the actor checks whether all
its ports are connected. During the execution, if the function pause has set
the value of the paused, the actor waits until woken up using a signal sent by
resume function. The function startRun creates a thread to start running
an actor. If the user has chosen the computation core, then the thread is
put on the specified core. The system function pthread_setaffinity_np is
used for assigning the thread of an actor to a core. The function waitRun
waits for the thread which is created in startRun. The controller uses this
function for synchronizing actors.

void pause(); void resume();
void startRun(); void waitRun(); void runActor();

Non-functional metrics. The function getTime gets the value of the
actor’s timer. The timer starts counting when the actor starts executing
and counts in milliseconds. The function getThroughput gets the value of
the actor’s throughput in one iteration. The difference between the start
time of the last firing of an actor in the iteration i and the last firing in the
the iteration i − 1 is the period of the iteration i. The throughput of an
iteration is the inverse of the period of that iteration. The result is returned
in terms of iteration per seconds. The function getLatency gets the value of
the actor’s latency in one iteration. The difference between the end time of
the last firing of an actor in iteration i and the first firing in the iteration i is
the latency of the iteration i. The result is returned in terms of milliseconds.
The function getOccupancy returns the number of tokens in the buffer of a
given port. All these functions are used by the controller in the function
getApplicableRule for verifying the conditions.

int getThroughput(); int getLatency();
int getOccupancy(string port); int getTime();

Edge

An edge has a name, a source actor src_actor, a sink actor snk_actor. It
has the name of the port of its source actor (src_port) and the name of the
port of its sink actor (snk_port) as well as their rates, i.e., src_rate and
snk_rate.
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class Edge {
string name, src_actor, snk_actor, src_port, snk_port;
int src_rate, snk_rate;

}

Buffer

A buffer is a circular list of data. The output ports are the owners of buffers
and the input ports are the users. The output ports create buffers while
the input ports have only a reference to the buffers A buffer has an array of
tokens of the generic type T with a specified size .

template <typename T>
class Buffer { T ** tokens; int size; }

Accessing the buffer. The constructor Buffer<T> creates an array of
a given size. The function at is used to read an element of the buffer at a
given index.

Buffer<T>(int s); T * at(int idx);

Port

Two interfaces for input and output ports inherit from the class Port. Each
port has a name and a rate.

class Port { string name; int rate; }

Input port. The input port inherits from the Port class. Each input
port has a generic type T which is the type of the tokens on its buffers. An
input port has a reference to the buffer created by an output port and an
index for accessing the buffer.

template <typename T>
class InputPort: public Port {
Buffer<T> * buffer; int index;

}
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The input port has a constructor to create the port with a given name.
The function setBuffer sets the buffer of the input port. When connecting
two ports through an edge, an output port uses this function to give a ref-
erence of its buffer to the input port. The function unsetBuffer clears the
buffer’s pointer of the input port. When removing an edge and disconnect-
ing two ports, an output port uses this function to disconnect itself from the
input port.

InputPort<T>(string name);
void setBuffer(Buffer * buf); void unsetBuffer();

The function lock calls consumerLock() on buffer.at(index) and locks
one place in the buffer. The function unlock unlocks the last place in the
buffer and increases the value of index. The function get gets the reference
of a given token from the port by calling buffer.at(index).

void lock(); void unlock(); T * get();

Output port. Similar to the input port, the output port inherits from
the Port class. It has a generic type T which is the type of the tokens of its
buffers. An output port has a buffer of the generic type T with a specified
size. It has also index for accessing the buffer.

template <typename T>
class OutputPort: public Port {
Buffer<T> * buffer; int size, index;

}

The output port has a constructor OutputPort<T> to create the port
with a given name. The function setBufferSize sets the size of the buffer
of the port. The function connectPort connects the output port to a given
input port. It sets the buffer’s reference of its associated input port by
calling in.setBuffer(buffer). The function disconnectPort detach the
connection between the output port and a given input port. It also clears
the buffer’s reference of its associated input port using in.unsetBuffer().
Similar to the input port, the functions lock, unlock, and get are used to
lock, unlock, and get one place from the buffer respectively.

OutputPort<T>(string name); void setBufferSize(int s);
int connectPort(Port* in); int disconnectPort(Port* in);
void lock(); void unlock(); T * get();
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Token

Each token has a status. The enumeration Status lists the different statuses
of a token. The status OK indicates that the token has been read or written
correctly, ERROR indicates that an error has occurred while reading or writing
the token, and EOS indicates that the end-of-stream has reached. A source
actor can set the status of tokens to end-of-stream to terminate the execution.

enum Status { OK, ERROR, EOS };

The Token class has a data of generic type T and a status. Concrete
token classes must inherit from this class.

template <typename T>
class Token { Status status; T * data; };

Manipulating tokens. The function get returns a pointer to the data
of the token. The virtual function set sets the data. Its implementation uses
a simple copy of the memory. A concrete token, implemented as a sub-class
of the Token class, can override this function for other kinds of copying data.
The virtual function clone returns a cloned copy of the data. This function
can also be overridden by concrete tokens. A token is cloned when an actors
needs to manipulate the data of the token locally without impacting the data
on the buffer.

T * get(); virtual void set(T& data); virtual T clone();

Synchronizations. The functions consumerLock and consumerUnlock
are used to lock and unlock the token for the consumers and the functions
producerLock and producerUnlock to lock and unlock the token for the
producer. Input and output ports use these functions on each place of a
given buffer.

void consumerLock(); void consumerUnlock();
void producerLock(); void producerUnlock();

Graph

The class Graph is made of the name of the dataflow graph, the set of all
actors and edges of the graph accessed by their names, and a list of param-
eters params. For instance, one of the parameters is scheduling. If it is set
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to false, then Linux chooses the placement of actors on cores, otherwise if it
is set to true, then the user chooses the core for each actor. When graphs
are used in rules, they may contain variables. When the name or type of a
given actor is variable, it starts with a lowercase letter. The production and
consumption rates can also be variables starting with a lowercase letter.

class Graph {
string name;
map<string, Actor *> actors;
map<string, Edge *> edges;
map<string, string> params;

}

Connectivity, consistency and liveness. The function connected
returns true if the graph is connected. The function solve finds the solutions
of all actors in the graph. It returns 0 if the graph is consistent, and -1 if
inconsistent. The function sas returns a list of single appearance schedules
(SASs) of the graph. If no SAS is found, an empty list is returned.

bool connected(); int solve(); vector<string> sas();

Connecting and disconnecting actors. The function connectActors
create an edge between two actors in the dataflow graph with the correspond-
ing rates. The function disconnectActors disconnects two actors. It is used
when an edge between to actors is to be removed and each input port has to
clear its pointer to the buffer of its associated output ports. The parameters
src and snk are the source and the sink actors of the edge. The parame-
ter edge gives the name of the edge. The parameters p and c denote the
production and consumption rates of the edge respectively.

void connectActors(Actor * src, Actor * snk,
string edge, int p, int c);

void disconnectActors(Actor * src, Actor * snk, string edge);

Initialization and termination. The function init initializes the
dataflow graph, by calling the init functions of each actor. Actors initialize
the attributes they need at execution in this phase. The function check_eos
returns true if any of the actors reaches the end-of-stream.

void init(); bool check_eos();
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Pausing and resuming. The function pause pauses the dataflow graph
according to the following steps : (1) the value of the attribute paused is set
to true for all actors, (2) the iteration number of all actors is retrieved and
among those iteration numbers, the maximum value iter_max is computed,
and (3) all actors are requested to resume until the iteration iter_max and
pause. The function resume resumes all actors of the dataflow graph by
setting the value of their paused attribute to false and signaling them.

int pause(); void resume();

Rule

A rule has a name and a reference to the current dataflow graph g on which
the the rule should be applied. It has a left-hand side graph lhs and a right-
hand side graph rhs. The rule also has the resulting graph after applying
the rule.

class Rule { string name; Graph * g, lhs, rhs, res; };

Static analyses. The function staticConditions returns true if all
static conditions hold. The functions connectivity, consistency, and
liveness return true if the rule preserves connectivity, consistency, and
liveness respectively. The function verify checks whether the transforma-
tion is valid, that is, all static conditions hold and it preserves connectivity,
consistency, and liveness.

bool connectivity(); bool consistency(); bool liveness();
bool staticConditions(); int verify();

Applying a rule. The function matching returns true if the rule is
matched in the current dataflow graph. The names and types of actors and
production and consumption rates can be parametric. The function apply
applies the rule on the current dataflow graph. It replace the sub-graph
corresponding to the lhs of the rule by its corresponding rhs after substituting
the variables. The function return the resulting graph and keeps a reference
in the attribute res.

bool matching(); Graph * apply(Graph * graph);
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Reconfiguration controller

The class ProgramElement is used for the structure of an element of the
reconfiguration program which is in the form of (condition : rule) and is used
by the controller. An element of the program is in the form of actor.metric
operand threshold : rule. A non-functional metric is measured and
requested from an actor. Then, its value is compared using an operand
with a threshold. If the condition holds, the rule is applied.

class ProgramElement {
string actor; string metric;
char operand; int threshold; string rule;

};

The Controller class has a reference to the initial graph and a reference
to the currently executing graph, that is, curr_graph. It has the list of
all transformation rules accessed by their names and the reconfiguration
program which is the list of all program elements progs.

class Controller {
Graph * graph, curr_graph;
map<string, Rule *> rules; vector<ProgramElement> progs;

};

Executing an application. The function getApplicableRule returns
an applicable rule, that is, a rule whose condition holds. It uses the functions
getTime, getThroughput, getLatency, and getOccupancy provided by ac-
tors. The function run runs the dataflow graph according to the following
steps: (1) while the end-of-stream is not reached (!graph.check_eos()),
(2) get the applicable rule r = getApplicableRule(), (3) if there is no ap-
plicable rule, wait and then continue the while loop, (4) if an applicable
rule exists, then pause the graph (graph.pause()), (5) apply the rule to
the current graph (r.apply(cur_graph)), and finally (6) resume the graph
(graph.resume()) and continue the while loop.

Rule * getApplicableRule(); void run();
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