
HAL Id: tel-03533030
https://theses.hal.science/tel-03533030v1

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static type and value analysis by abstract interpretation
of Python programs with native C libraries

Raphaël Monat

To cite this version:
Raphaël Monat. Static type and value analysis by abstract interpretation of Python programs with
native C libraries. Programming Languages [cs.PL]. Sorbonne Université, 2021. English. �NNT :
2021SORUS263�. �tel-03533030�

https://theses.hal.science/tel-03533030v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par
Raphaël Monat

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Static Type and Value Analysis by Abstract Interpretation
of Python Programs with Native C Libraries

Thèse soutenue le 22 Novembre 2021 devant le jury composé de :

Antoine Miné Sorbonne Université & CNRS, France Directeur de thèse
Isabella Mastroeni Università di Verona, Italie Rapportrice
Anders Møller Aarhus Universitet, Danemark Rapporteur
Emmanuel Chailloux Sorbonne Université & CNRS, France Président du jury
Francesco Logozzo Facebook Seattle, États-Unis Examinateur
Peter Müller ETH Zürich, Suisse Examinateur
Alan Schmitt INRIA Rennes, France Examinateur

Abstract

In this thesis, we aim at designing both theoretically and experimentally methods for the au-
tomatic detection of potential bugs in software – or the proof of the absence thereof. This
detection is done statically by analyzing programs’ source code without running them. We rely
on the abstract interpretation framework to derive sound, computable semantics. In particular,
we focus on analyzing dynamic programming languages. The target of this work is the analysis
of Python programs combined with native C libraries.

The abstract interpretation workflow requires a concrete semantics, which will be approxi-
mated to create sound computable analyses. Our first step is thus to define the uncomputable,
collecting semantics of Python formally. This semantics relies on previous work and retro-
engineering from the source code of the reference interpreter. We took special care to make
the semantics explainable by providing references to the actual implementation’s source code
for each case of the semantics.

We have implemented all the analyses presented in this thesis within the Mopsa framework.
From a static analysis developer’s perspective, Mopsa has a double goal. It aims at reducing
the cost of lifting an abstract domain from a toy language to a real-world one. It also aspires to
define relational analyses composed of loosely coupled abstract domains that can cooperate.
We take particular care to define all our abstract domains independently from each other.
Mopsa’s core is language agnostic, making Mopsa suitable to analyze different programming
languages. The analyses rely on some general use domains, such as numerical domains, the
recency abstraction of dynamic memory allocation, and the loop iterator.

We present a first analysis aiming at detecting type-related errors in Python programs. It
does so by inferring both the nominal and structural types of objects. Python’s type annota-
tions can be reused to support libraries. This analysis is refined into a value analysis which
is more precise and infers numerical invariants for the manipulated builtin numeric values.
These analyses rely on abstractions of dynamic memory allocation and data structures that
we have adapted to the case of dynamic programming languages. Both analyses scale to real-
world benchmarks a few thousand lines long used by Python developers.

Most Python programs rely on libraries written in C for the sake of performance or code
reuse. We define a multilanguage analysis that can detect runtime errors in every part of a
multilanguage program: in the Python part, in the C part, and at the boundary between the
languages. Before defining this analysis, we provide an overview of the different interoperabil-
ity mechanisms available between Python and C, and we define a collecting semantics for the
interoperability mechanism provided by the reference interpreter. This analysis can tackle tests
of popular, real-world libraries a few thousand lines of C and Python long in a few minutes.

Résumé

Dans cette thèse, nous avons pour objectif de concevoir, à la fois théoriquement et expérimen-
talement, des méthodes pour la détection automatique de bogues potentiels dans les logiciels
– ou la preuve de leur absence. Ces méthodes sont statiques : elles analysent le code source
des programmes sans les exécuter. Nos travaux s’inscrivent dans le cadre de l’interprétation
abstraite pour dériver une sémantique sûre et décidable. Le principal objet de ce travail est
l’analyse des langages de programmation dynamiques. En particulier, ce travail se concentre
sur les programmes écrits en Python, qui peuvent appeler des bibliothèques écrites en C.

En suivant le déroulement usuel de l’interprétation abstraite, nous partons d’une séman-
tique concrète, qui sera ensuite approximée pour créer des analyses sûres et calculables. Notre
première étape consiste donc à définir formellement la sémantique collectrice, et non cal-
culable, de Python. Cette sémantique s’appuie sur des travaux antérieurs et sur une rétro-
ingénierie à partir du code source de l’interprète de référence. Nous avons pris soin de rendre
la sémantique explicable en mettant, pour chaque cas, des références vers le code source
correspondant dans l’interprète.

Nous avons implémenté toutes les analyses présentées dans cette thèse dans le logiciel
intitulé Mopsa. Du point de vue de l’implémentation des analyses statiques, Mopsa a un dou-
ble objectif. Il vise tout d’abord à réduire le coût du passage d’un domaine abstrait fonc-
tionnant sur un langage jouet à un langage de programmation réel. Il aspire également à
définir des analyses relationnelles composées de domaines abstraits faiblement couplés qui
peuvent coopérer. Nous prenons un soin particulier à définir tous nos domaines abstraits
de manière indépendante les uns des autres. Le noyau de Mopsa n’est pas spécialisé pour
l’analyse d’un langage en particulier, ce qui rend Mopsa apte à analyser différents langages
de programmation. Les analyses s’appuient sur certains domaines généraux, tels que les do-
maines numériques et l’itérateur de boucle.

Nous présentons une première analyse visant à détecter les erreurs liées aux types dans
les programmes Python. Elle le fait en déduisant les types nominaux et structurels des ob-
jets. Les annotations de type de Python peuvent être utilisées pour supporter des librairies.
Cette analyse est raffinée en une analyse de valeur qui est plus précise et infère des invari-
ants numériques. Ces deux analyses reposent sur des abstractions du mécanisme d’allocation
dynamique de mémoire et des abstractions de structures de données que nous avons adap-
tées au cas des langages de programmation dynamiques. Nos analyses fonctionnent sur des
benchmarks réels de quelques milliers de lignes utilisés par les développeurs Python.

La plupart des programmes Python s’appuient sur des bibliothèques écrites en C, afin
d’améliorer leurs performances ou de réutiliser du code existant. Nous définissons une analyse
multilangage qui peut détecter les erreurs à l’exécution dans chaque partie d’un programme
multilangage : dans la partie Python, dans la partie C, et à la frontière entre les langages. Avant
de définir cette analyse multilangage, nous fournissons un aperçu des différents mécanismes
d’interopérabilité disponibles entre Python et C, ainsi que la définition d’une sémantique col-
lectrice pour le mécanisme d’interopérabilité fourni par l’interprète de référence. Notre anal-
yse multilangage est capable d’analyser en quelques minutes les tests de bibliothèques pop-
ulaires, issues du monde réel, faisant quelques milliers de lignes de C et de Python.

Acknowledgments & Remerciements

I am deeply grateful to Isabella Mastroeni and Anders Møller for having agreed to review this
dissertation in the busy months of September and October.

I would like to thank Emmanuel Chailloux, Francesco Logozzo, Peter Müller and Alan Schmitt
for agreeing to participate to the defense committee.

Merci Antoine pour toutes les discussions extrêmement enrichissantes et tes conseils avisés.
Merci pour tes relectures infatigables, dans les moindres détails, avec des corrections, mais
aussi des suggestions d’améliorations, ainsi que des idées de travaux futurs. Rien que pour le
manuscrit, les différents brouillons cumulent autour de 800 annotations.

Merci Abdelraouf : sans toi et ni Mopsa, cette thèse aurait pris beaucoup plus de temps, et
l’analyse multilangage n’aurait pas été si facile à faire ! Je me rappelle encore des après-midi
passés en début de thèse à dessiner des diagrammes de séquence pour comprendre com-
ment l’analyse de Python pourrait marcher. J’ai gardé cette approche pour illustrer l’analyse
multilangage dans les figures 11.6, 11.7 et 11.8.

Merci à vous deux pour votre bienveillance constante, pour avoir toujours trouvé du temps
pour discuter malgré vos emplois du temps chargés, et pour toutes les discussions captivantes
autour de Mopsa.

Merci Alan et Pierre-Évariste pour vos précieux conseils lors des comités de suivi.

Merci à Daniel Hirschkoff, Simon Castellan et Jean-Marie Madiot pour m’avoir fait tomber
dans la potion magique des langages de programmation en L3, et fait découvrir – entre autres
– les rudiments de l’analyse de programmes.

Merci aux précédents thésards d’Antoine : Caterina, Thibault, Ghiles et Matthieu, pour les
discussions intéressantes, vos conseils, et les modèles que vous fournissez. Bon courage à
David, Guillaume et Francesco.

APR est un environnement à la fois accueillant et stimulant pour faire une thèse. Merci
au bureau 303 (ou assimilés) pour le bout de chemin fait ensemble : Alice, Vincent, Marwan,
Boubacar, Clément, Steven, Yi-Ting, Martin, Jules, Mehdi, Mat(t)hieu, Keanu et Pierre. Merci à
Romain (Demangeon) pour toutes les discussions impromptues qui permettent de changer
d’air, et pour m’avoir mis le pied à l’étrier de l’enseignement. Merci aussi à Maryse, Mathieu,
Pascal, Frédéric, Tong, Emmanuel, Antoine (Genitrini), Philippe et Tali pour les enseignements
donnés ensembles.

Denis, merci de m’avoir proposé de t’aider sur cet à-côté que semblait être le reverse-
engineering des impôts durant un cours d’escrime. Je suis heureux que l’on ait pû faire évoluer
cela un vrai projet de recherche et de transfert vers la DGFiP. Cela m’a conforté dans mon
positionnement du côté “pratique” des méthodes formelles, et dans l’intérêt de pouvoir suivre
ses propres pistes. Merci Jonathan pour ton aide précieuse lors de la rédaction de l’article CC.
Merci aux agents de la DGFiP pour leur accueil et leur patience.

vi

Merci à Romain (Dubessy) de m’avoir appris à gérer un groupe d’escrimeurs. Cela m’a
beaucoup facilité la prise de parole face à des groupes de TD. Merci à Alex, et Jean-Pierre pour
votre animation de l’ECE. Merci à Mathilde pour l’enseignement des groupes débutants à deux
en 2019, et la reprise du flambeau cette année. Merci aux habitués du club pour ces années
passées ensemble : Adrien, Arthur, Charles, Denis (de nouveau), Irène, José, Kim, Léo, Marion,
Mathilde, Philippine, Soazic, Théo, Yoko, Vincent, ...

I’ve been glad to meet fencers from all over Europe during competitions, and make friends
from Amsterdam, Mainz and Polytechnique.

Merci à Guillaume pour tes cours d’escrime à la fac, qui permettent toujours de se changer
la tête dans la bonne humeur, tout en progressant quelque soit le niveau de départ. Merci
aussi à Maria (Mihaescu) et Lucas pour l’opposition fournie au fil des années.

Merci à Maria (Boritchev), Titouan, Isao, Etienne, Victor, Arthur, Amandine, Simon et Jean-
Yves pour les années passées à Lyon ensemble. Maria, on essaiera de moins factoriser nos
soutenances dans une autre vie !

Loïc, Carole, je suis toujours aussi heureux de vous avoir rencontrés en prépa, et de vous
voir quand nos emplois du temps s’alignent. Merci à Fanny, Louise, Marc, Sylvain et Victor pour
tous les moments passés ensembles.

Merci à mes parents et à mes soeurs pour votre soutien continu. Je ne serais jamais arrivé
jusque là sans vous.

Laura, merci pour tout.

Contents

Abstract i

Résumé iii

Acknowledgments & Remerciements v

I Background 1

1 Introduction 3
1.1 Software bugs and what can be done about it . 3

1.1.1 A first approach: testing . 3
1.1.2 An impossibility theorem . 4
1.1.3 Deductive program verification . 4
1.1.4 Symbolic execution . 4
1.1.5 Model checking . 5
1.1.6 Static analysis by abstract interpretation . 5

1.2 The challenges of analyzing dynamic programming languages 5
1.3 Contributions & outline . 6

2 Static Analysis by Abstract Interpretation 9
2.1 A Toy Imperative Language, Imp . 9
2.2 Semantics of Imp . 10

2.2.1 Semantics of expressions . 11
2.2.2 Semantics of statements . 12
2.2.3 Comparing states . 13

2.3 Inferring ranges of Imp variables . 16
2.3.1 The interval domain . 16
2.3.2 Concretization . 17
2.3.3 Interval transfer functions . 18
2.3.4 Abstract semantics of expressions . 18
2.3.5 Abstract semantics of statements . 20
2.3.6 Basic statements . 20
2.3.7 Conditionals . 20
2.3.8 Terminating loop analyses . 22
2.3.9 Improving the analysis with congruences . 25

2.3.9.1 Deriving the semantics . 26
2.3.9.2 Cooperation between congruences and intervals 27

2.4 Extending Imp and its analyses . 28
2.4.1 Extending Imp with strings . 28
2.4.2 Using ghost variables to track string length 29

viii Contents

2.4.3 Breaking out of a loop . 31
2.4.4 Relational invariants . 33
2.4.5 Summarization of string content . 35
2.4.6 Combining string length and summarization 38

2.5 Defining modular concretization functions . 39
2.5.1 Generic approach . 39
2.5.2 String summary domain . 40
2.5.3 String length domain . 41
2.5.4 Combining both concretizations . 42

2.6 Conclusion . 43

II Base Abstractions 45

3 Mopsa 47
3.1 Related work . 47

3.1.1 Infer . 48
3.1.2 TAJS . 49
3.1.3 Frama-C . 49
3.1.4 Astrée . 50
3.1.5 Framework of Keidel et al. 50

3.2 Abstract syntax tree (AST) . 51
3.2.1 Elementary expressions and statements . 51
3.2.2 A domain handling while loops . 53
3.2.3 Extending the AST with Python and C loops 54
3.2.4 Dynamically rewriting Python and C loops 55

3.3 Domains . 56
3.3.1 Defining analyses by combining domains . 56
3.3.2 Domain signature . 57

3.3.2.1 Domain type and lattice operations (lines 24-33) 58
3.3.2.2 The need for a manager (lines 2-15) 58
3.3.2.3 Flow, wrapper of the global abstract state 58
3.3.2.4 Cases, postconditions and evaluations (lines 18-19) 60
3.3.2.5 Transfer functions on expressions and statements (lines 36-38) 60
3.3.2.6 Utilities (lines 41-44) . 63

3.3.3 The simplified case of non-relational domains 63
3.3.4 Reduced products and their pitfalls . 63
3.3.5 Communication between domains . 66

3.4 Hooks . 66
3.5 Formalization . 67
3.6 Conclusion . 70

4 Abstracting Dynamic Memory Allocation 73
4.1 The recency abstraction . 73

4.1.1 Motivation . 73
4.1.2 Concrete semantics . 74
4.1.3 The recency abstraction . 75
4.1.4 Abstract semantics . 77
4.1.5 Concretizations . 79

4.1.5.1 Recency abstraction . 79
4.1.5.2 Heap abstraction . 79

4.2 Variable policies for the recency abstraction . 80

Contents ix

4.3 Abstract garbage collection (AGC) . 82
4.4 Related work . 84
4.5 Conclusion . 84

5 Abstracting Containers 85
5.1 Dynamic arrays . 85

5.1.1 Array operations . 85
5.1.2 Length abstraction . 87
5.1.3 Summarization abstraction . 89
5.1.4 Reduced product . 91
5.1.5 Variation: abstracting sets . 92

5.2 Dictionaries . 93
5.2.1 Dictionary operations . 93
5.2.2 Whole smashing . 95

5.3 Related work . 96
5.4 Conclusion . 97

III Pure Python Programs 99

6 Concrete Semantics of Python 101
6.1 Concrete state . 103
6.2 Core language . 107

6.2.1 Literals . 107
6.2.2 Variables . 107
6.2.3 Nominal types . 108
6.2.4 Structural types (attributes) . 110
6.2.5 Subscript . 111
6.2.6 Conditionals . 113
6.2.7 Loops . 113
6.2.8 Exceptions . 115
6.2.9 With context manager . 116
6.2.10 Function declaration . 118
6.2.11 Class declaration . 119
6.2.12 Decorators . 119
6.2.13 Calls . 120
6.2.14 Unary operators . 120
6.2.15 Binary operators . 120

6.2.15.1 Arithmetic operators . 121
6.2.15.2 Comparison operators . 123

6.2.16 Other binary operators . 123
6.3 Builtin objects . 125

6.3.1 Object . 125
6.3.2 Functions and methods . 127
6.3.3 Type . 130
6.3.4 Booleans . 132
6.3.5 Integers . 132
6.3.6 Range objects . 132
6.3.7 Containers . 133
6.3.8 Iterators . 134
6.3.9 super . 134
6.3.10 Generators . 137

x Contents

6.4 Correctness . 141
6.4.1 Tests from previous works . 142
6.4.2 CPython’s tests . 143
6.4.3 Summary of the conformance tests . 143

6.5 Comparison with JavaScript . 143
6.6 Related work . 144
6.7 Conclusion . 145

7 Type Analysis 147
7.1 Differences with a type system . 148
7.2 Non-relational type analysis . 149

7.2.1 Abstract addresses . 149
7.2.2 Environment abstraction . 149
7.2.3 Heap Abstraction . 150
7.2.4 Additional abstractions . 152

7.2.4.1 Flow tokens . 152
7.2.4.2 Containers . 153
7.2.4.3 Stateless abstractions close to the concrete semantics 153

7.2.5 Functions . 154
7.2.6 Full abstraction . 154

7.3 A relational reduced product bringing polymorphism 157
7.4 Interaction with Python’s type annotations . 160
7.5 Implementation . 161

7.5.1 Configuration . 161
7.5.2 Optimizations & extensions . 162

7.5.2.1 Exception abstraction . 162
7.5.2.2 Towards a partially modular function analysis. 163

7.6 Experimental evaluation . 163
7.6.1 Benchmarks . 163
7.6.2 Comparison with other tools . 164

7.6.2.1 Competing tools . 164
7.6.2.2 Performance and precision . 166
7.6.2.3 Soundness evaluation . 168
7.6.2.4 Summary of the comparison . 168

7.6.3 Impact of the allocation policy and of the abstract garbage collector . . . 168
7.7 Related work . 169
7.8 Conclusion . 170

8 Value Analysis 173
8.1 Value analysis as a refinement of the type analysis 174
8.2 Experimental evaluation . 181

8.2.1 Value-sensitivity . 181
8.2.2 Allocation-site policy choice . 182
8.2.3 Abstract garbage collector . 184
8.2.4 Selectivity of the analysis . 185

8.3 Scaling relational analyses using packing . 185
8.4 Conclusion . 187

IV Mixing Python and C 189

9 Interoperability Mechanisms between Python and C 191

Contents xi

9.1 A toy example using Python’s API . 191
9.1.1 Counter module, viewed from Python . 191
9.1.2 Counter, viewed from C . 193
9.1.3 Module import . 193
9.1.4 Class initialization . 193
9.1.5 Counter creation . 194
9.1.6 Counter increment . 194
9.1.7 Counter access . 195
9.1.8 Building the module . 195
9.1.9 What can go wrong? . 195
9.1.10 Common bugs at the boundary . 196

9.2 Other Python/C interoperability mechanisms . 196
9.2.1 Ctypes . 196
9.2.2 Cffi . 197
9.2.3 Swig . 198
9.2.4 Cython . 199

9.3 Conclusion . 200

10 Concrete Multilanguage Semantics 203
10.1 Multilanguage state . 205

10.1.1 Python state . 205
10.1.2 C state . 205
10.1.3 Combined state . 207
10.1.4 Handling Python exceptions in C . 208

10.2 Boundary functions . 208
10.2.1 Python to C boundary . 210
10.2.2 C to Python boundary . 210

10.3 C call from Python . 211
10.4 Python call from C . 212
10.5 Builtins of the API . 213

10.5.1 Integer conversions . 213
10.5.2 Operations on containers . 213
10.5.3 Generic converters: PyArg_ParseTuple, Py_BuildValue 214
10.5.4 Class initialization: PyType_Ready . 215

10.6 Threats to validity . 215
10.7 Related work . 215
10.8 Conclusion . 216

11 Multilanguage Value Analysis 217
11.1 Abstract domain . 218
11.2 Transfer functions . 219

11.2.1 Boundaries . 219
11.2.2 C call from Python . 220
11.2.3 Conversion from a C long to a Python integer 222
11.2.4 Tuple conversions . 222

11.3 Examples . 222
11.4 Concretization & soundness . 226
11.5 Implementation . 227

11.5.1 Configuration . 227
11.5.2 Build setup . 228

11.6 Experimental evaluation . 229
11.6.1 Corpus selection . 229

xii Contents

11.6.2 Analysis results . 229
11.7 Related work . 230

11.7.1 Native code analysis . 230
11.7.2 Multilanguage analyses . 231
11.7.3 Library analyses . 231

11.8 Conclusion . 232

V Conclusion & Future Work 233

12 Conclusion & Future Work 235

Bibliography 239

List of Figures 249

List of Listings 254

List of Definitions, Examples, Properties and Remarks 255

Part I

Background

1

Introduction

1.1 Software bugs and what can be done about it

Software is ubiquitous and touching every aspect of modern life, from its use in transportation
means to personal communication systems. A bug happens in a software when the latter does
not behave as it is expected to. For example, it can reach an erroneous state terminating its
execution. Depending on the nature of the bug and the criticality of the host system, a bug
ranges from being annoying (a random crash in a smartphone app), to having a monetary cost
reaching billions of dollars, to losses of life. These bugs happen a lot in everyday software.
Wong et al. [156] survey 59 notable software accidents which happened from 1993 to 2015. In
a 2020 report [86], the Consortium for Information & Software Quality estimated that $607
billions were spent in 2020 on finding and fixing software bugs in the US alone, and that those
software failures cost $1.56 trillion. At the time of writing, the CVE (Common Vulnerabilities
and Exposure) database of the NIST (National Institute of Standards and Technology) [120]
lists more than 169,371 software vulnerabilities that could be exploited by attackers on publicly
available software alone.

1.1.1 A first approach: testing

A first way to avoid bugs is by testing that the software works as intended on specific input
cases. There are, however two difficulties to this approach. First, generating test cases is
difficult and time-consuming, since developers have to compute the expected result on each
input case, and this independently from the software’s implementation. Second, testing every
input case is impossible in most cases, where the input space is too big to be exhaustively
covered.

Let us take the example of developers wanting to check their implementation of a tax com-
putation system, which given taxpayers’ information – such as salaries, relationship’s status,
number of children, ... – yields the income tax owed. Provided an input case describing a
fiscal household, developers would have to compute manually (using the law as their guide)
the income tax owed before checking that their software returns the same result. In that case,
it is straightforward to understand that testing the software on every fiscal household would
be a tremendous task. In addition, it would defeat the whole point of automating the tax
computation software in the first place.

In some cases, some industrial actors have found testing to be too costly in their industrial
processes and introduced alternative approaches to validation by testing. In the domain of
critical embedded software, Airbus is an example [43]:

4 Chapter 1 – Introduction

Considering the steady increase of the size and complexity of this kind of software, classi-
cal validation and verification processes, based on massive testing campaigns and com-
plementary intellectual analyses, hardly scale up within reasonable costs. Therefore, Air-
bus has decided to introduce formal proof techniques providing product-based assurance
into its own verification processes.

1.1.2 An impossibility theorem

It would thus be nice to have techniques and methods avoiding these shortcomings, that is,
having approaches that can automatically and generally prove that programs are correct (i.e.,
free of bugs). However, we know there is no such general approach since 1953. At that date,
Henry Gordon Rice [128] proved that “all non-trivial semantic properties of programs are un-
decidable”. In a simplified way, this means that proving program properties cannot be done by
another program that will always return the correct result in finite time. This theorem can be
seen as a generalization of Alan Turing’s theorem on the undecidability of the halting problem
[151]. Scientists in the field of formal methods, aiming at studying bugs in programs, have thus
had to circumvent this impossibility theorem by picking at most two of the three following
properties in their approaches:

. Completeness. An approach is complete if it is possible to prove any true property using that
approach. In particular, these approaches ensure the absence of false positives: if a bug
is detected, it necessarily exists in the analyzed program.

. Soundness. An approach is sound if any property it proves on a program actually holds on
the program. In particular, they do not exhibit false negatives, i.e., if the approach proves
that a program is free of bugs, it is.

. Automation. An approach is automatic if it does not require user interaction to finish its task
and can do so in finite time.

We briefly survey the different static approaches that work on programs’ source code with-
out running them. Each approach has its benefits and downsides, and some are more suitable
for specific cases.

1.1.3 Deductive program verification

The field of deductive verification relies on sound and complete tools that are guided by their
users. These tools are useful to prove strong properties, such as the correctness of a program
with respect to a specification. They usually require a lot of expertise and guidance from a
user to complete proofs, although some parts can be discharged using automatic SAT/SMT
solvers. These tools tend to work on a custom input programming language, with options to
extract programs into more mainstream languages. Examples of deductive program verifica-
tion frameworks include the Why3 platform [52] or F∗ [144]. In the case of Why3, the input
language is called WhyML; (sub)proofs can be discharged to SMT solvers such as Z3 [41], or a
proof assistant. In addition, the Frama-C platform [8] builds upon Why3 to allow deductive
verification of original C code.

1.1.4 Symbolic execution

Symbolic execution approaches replace unknown variables’ values with symbolic variables and
propagate them during the execution. They perform explicit disjunctions in the case of con-
ditionals or loops. The collected constraints can then be solved to determine if an erroneous
state has been reached or not. It is then possible to determine a concrete input state lead-
ing to the erroneous state. These disjunctions may quickly create a combinatorial explosion.

1.1.5 –Model checking 5

According to a recent survey by Baldoni et al. [5], symbolic execution engines “often settle for
less ambitious goals, e.g., by trading soundness for performance”.

1.1.5 Model checking

Model-checking [30] generally applies to proof on decidable fragments of languages. In these
cases, approaches can be sound, complete, and automatic. These approaches require a model
of a finite-state machine and a formula in a given logic and decide if the formula holds in the
provided model. The decision procedure can be a custom algorithm or rely on a constraint
solver. In the case of general program analysis, it is also possible to restrict programs’ exe-
cutions. In that case, the inference of semantic properties is decidable again. For example,
Clarke et al. [31] apply bounded model-checking to analyze C programs by unwinding loops,
and functions calls up to a user-provided bound. They are thus unsound (if a specific behavior
happens deeper into the execution of the program). Similarly to symbolic execution, these
tools have the benefit of providing counterexamples when they find a bug. Multiple model
checkers are compared every year in the software verification competition [12].

1.1.6 Static analysis by abstract interpretation

The focus of this thesis is the case of sound and automatic approaches. These approaches
are however incomplete, and can raise false alarms. In particular, the goal of this thesis is to
develop static analyses within the framework of abstract interpretation, developed by Radhia
and Patrick Cousot [33]. They have been particularly successful in the verification of absence
of runtime errors in the context of critical embedded software. For example, Astrée [11, 35] has
been used to prove the absence of runtime errors in control and commands software of Airbus
planes [43]. More recently, Frama-C’s static analysis plug-in [40, 8] has been used to analyze
the code of French nuclear power plants [122]. In these cases of critical software, a subset of
the C programming language is used, and it precludes complex control flow as well as dynamic
memory allocation. The sound, efficient, and precise analysis of more dynamic languages and
program traits remains a challenge.

1.2 The challenges of analyzing dynamic programming languages

Dynamic programming languages are a relatively new class of programming languages, aim-
ing at making software development quicker by being more implicit. They have been steadily
growing in popularity in the last two decades. Examples of such dynamic programming lan-
guages include JavaScript, which is extremely popular on the client side of web pages; Python,
which is initially a scripting language and the focus of this thesis; and PHP, which is a server-
side scripting language. At the time of writing, JavaScript and Python are the two most used
languages on GitHub, followed by Java [62].

We present some specificities of dynamic programming languages (some already pointed
out by Tratt [150]), and the consequences for their analysis.

. Permissive, high-level syntax. Languages such as PHP and Python provide a permissive, high-
level syntax, where most operators can be overloaded, by hiding an underlying complex
semantics. This flexibility also relies on multiple inheritance of objects, and complex res-
olution of method calls. JavaScript and PHP also perform implicit, dynamic casts instead
of raising errors. In the case of JavaScript, the addition of the string "1 hello" and the
integer 2 is interpreted as a string concatenation and returns "1 hello2". On the other
hand, PHP chooses to perform an integer addition by casting the string into the integer
1, and returning 3. In Python, this operation yields a TypeError exception. In the case

6 Chapter 1 – Introduction

of PHP and Python, a prevailing implementation acts as the reference for the seman-
tics, as opposed to a more accessible and readable standardization that is available in
JavaScript. In the absence of a standard, establishing the languages’ semantics is the
first challenge before developing an analysis. 1

. Builtin data structures. The high-level syntax is complemented by builtin data structures
such as dynamic arrays and associative maps. These data structures may contain het-
erogeneous elements. These cases are less studied than the case of numeric, static
arrays in the context of C programs.

. Dynamic typing. Variables are neither statically declared nor statically typed. They can thus
point to objects having different types at execution time. To handle these cases, intro-
spection operators can inspect the type of an object at runtime and affect the control-
flow. It is also possible to alter objects’ structures at runtime, e.g. by adding or removing
fields to them. This makes the static analyses harder: the types of variables have to be
determined too, and introspection operators have to be supported in order to precisely
handle the control-flow. In the case of Python, two different type systems are used:
a nominal one, corresponding to the class from which an object is instantiated, and a
structural one, informally called duck typing, which is based on attributes.

. Dynamic evaluation. Although the frequency of its usage varies heavily from one language
to another, it is possible to construct a string and evaluate it as a piece of code at runtime.
If no exact representation of the evaluated string is available, it is next to impossible to
analyze those dynamic evaluations. Since these evaluations change the program’s state,
forgetting their effects yields unsound analyses.

. Automatic memory management. Object allocation and deallocation are handled automat-
ically by the language. Compared to embedded C software, dynamic memory allocations
thus happen frequently. Specific dynamic memory allocation abstractions have to be
used and tailored to the case of dynamic programming languages. Deallocations may
happen asynchronously, at any time after objects are not referenced anymore. Precisely
capturing their effects, which can be arbitrary due to the finalization functions, is thus
difficult.

. Batteries-included library. Dynamic programming languages often ship with vast standard
libraries. Programs frequently rely on multiple parts of these libraries, which thus have
to be supported.

. Complex control-flow. High-level iterators and exceptional control-flow createmore dynamic
control-flow. Another case of complex control-flow concerns Python’s generators, and
more generally asynchronous functions. The control-flow can be more global and dy-
namic than in the case of C software.

1.3 Contributions & outline
The first part of the thesis provides background on static analysis by abstract interpretation.
Chapter 2 explains how these analyses work in the setting of a simple imperative language. In
addition to providing the base terminologies, we introduce some key concepts reused in the
analyses of Python programs: (i) the use of control-flow tokens to describe non-local control-
flow operators on analyses working by induction on the syntax, (ii) the use of auxiliary variables
by some domains, delegating work to other domains, (iii) a modular definition of relational
concretizations for each domain: concretizations are defined independently for each domain,
and can be composed through specific operators. Thesemodular definitions of concretizations
are a novel contribution used throughout this thesis.

1Standardizations are usually written informally and leave ambiguities. The best approach is to rely on fully
formal semantics, which requires additional work – such as the work of Bodin et al. [16] for JavaScript.

1.3 – Contributions & outline 7

The second part of this thesis defines language-agnostic concepts and abstractions. Chap-
ter 3 describes the Mopsa static analyzer, in which the analyses presented in this thesis are
implemented. Mopsa has a deep influence on the design of these analyses. It is a prototype
analyzer, which aims at simplifying the definition of analyses, and focuses on making collabo-
rative, relational analyses. This chapter extends a previous publication to VSTTE 2019 [82] by
providing a more in-depth comparison with related work, introducing the notion of hooks, and
formalizing the composition operators in Mopsa. Chapter 4 revisits the recency abstraction
[4], originally developed to handle dynamic memory allocation in the analysis of binaries or
low-level C code, and subsequently used in the analysis of JavaScript [74], [124]. We provide a
modular definition of the recency abstraction and its concretization and a notion of variable
policies used to tailor the allocation-site sensitivity. Some policies specific to the analysis of
Python are defined. Chapter 5 defines abstractions of containers such as arrays and dictionar-
ies. These are very coarse abstractions, well known for the analysis of C or Java. These coarse
containers abstractions have been defined in the setting of dynamic programming languages,
where data-structures have variable length and can potentially be heterogeneous. They are
also defined to work by delegation over scalar domains.

The third part of this thesis focuses on Python programs. Following the usual workflow
of abstract interpretation, we start by defining the concrete semantics of a large subset of
Python in Chapter 6. A first part of the semantics covers the core language, and another the
most commonly used objects. This semantics is assumed to be a correct modeling of Python’s
semantics, without a formal connection to the actual Python interpreter, but we took special
care to make the semantics manually checkable, using references to the actual implemen-
tation of the reference interpreter, called CPython. The concrete semantics has been tested
by running our analysis on more than 700 conformance tests. Contrary to previous works, this
interpreter-like semantics is directly amenable to static analysis by abstract interpretation, im-
proving our confidence in our analysis. Chapter 7 describes a type analysis for Python, focusing
on precise detection of type-related exceptions. It is based on a work published at ECOOP in
2020 [110]. It can interpret Python’s type annotations, allowing us to leverage Python annota-
tions written by developers in the typeshed project [152] and easily support libraries. It scales
to small real-world benchmarks (less than 2,500 LOC per program) providing analysis times of
the order of a few minutes. This analysis is refined into a numeric value analysis in Chapter 8.
This value analysis can be relational, and scales using packing heuristics. We keep a particular
interest in comparing it with the type analysis on the same benchmarks, based on our SOAP’20
publication [112]. We find that the precision gained with the value analysis does not remove
any type-related error in the programs we analyze, and that the non-relational value analysis
requires around 3 times more memory and time than the type analysis.

The fourth part of this thesis extends the target to Python programs calling C code. This
is particularly important to analyze the whole source code of a significant number of Python
programs since one-in-five of the 200 most downloaded Python libraries contains C code. This
part is an extension of our SAS paper published in 2021 [113]. Since the interoperability mech-
anisms are quite complex, we start by providing an introductory example of Python program
calling a C module using the Python/C API. This chapter ends by surveying other Python/C
interoperability mechanisms. Chapter 10 defines a semantics for the Python/C API. This se-
mantics builds upon the semantics of each language. Chapter 11 defines amultilanguage value
analysis of Python programs using C extension modules. This analysis relies on our previous
value analysis of Python, and the work of Ouadjaout and Miné [121] for the C analysis. It re-
ports runtime errors that may happen in Python, in C, and at the interface. Thanks to Mopsa,
the abstract state is shared between abstract domains of different languages. We only add a
minimal number of transfer functions. Our analyzer can tackle tests of real-world libraries a
few thousand lines of C and Python long (5,500 at the most) in a few minutes.

The final part of this thesis concludes and reflects on future work.

8 Chapter 1 – Introduction

Artifact. One of the main goals of this work has been to develop and maintain Mopsa so that
it can analyze Python programs. In the conferences proposing it, we have successfully sub-
mitted software artifacts alongside our articles in order to make our experimental evaluation
reproducible [111, 115]. Both Mopsa and its benchmarks are publicly available [78, 79]. We en-
rich this document with the release of an artifact of Mopsa in its current state, supporting the
analysis of programs described in this thesis [114].

Collaborations. All the research done in this thesis is joint work with Antoine Miné and Abdel-
raouf Ouadjaout. Mopsa was already a work-in-progress for the C analysis at the beginning of
this thesis, started by Antoine Miné, Abdelraouf Ouadjaout, and Matthieu Journault. The defini-
tions of the modular concretizations have been extensively discussed with Matthieu Journault.

2

Static Analysis by Abstract
Interpretation

This chapter introduces the basics of static analysis by abstract interpretation, as well as com-
mon notations used in the rest of this thesis. In general, the goal of static analyses is to prove
program properties. Here, we focus on proving safety properties (i.e., that program states are
included in the set of safe states). In particular, we want to prove that our programs avoid
erroneous states.

More in-depth introductions to abstract interpretation have been written by Miné [106], Ri-
val and Yi [132]. We introduce concepts of order theory and abstract interpretation gradually,
once they have been encountered in examples. In a classic approach, we start by defining Imp
in Section 2.1, the toy language on which this chapter is based. We define the semantics of
Imp in Section 2.2, and numerical analyses in Section 2.3. More specific and recurring concepts
used in this thesis are presented in Section 2.4. Section 2.5 revisits the concretizations de-
fined in Section 2.4, through the lens of a new framework allowing the definition of modular
concretization functions.

2.1 A Toy Imperative Language, Imp

This chapter focuses on analyzing Imp programs. Imp is a toy imperative language, where
variables are declared and statically typed. At first, the only type available is int, the values of
which are mathematical integers. There are no functions. Imp programs may fail if a division
by zero occurs or if the division result is not an integer.

An example Imp program is shown in Listing 2.1. It computes the fourth term of the 3n+ 1
sequence [89] starting at three using a while loop. This program does not fail since the division
by two is always performed on even numbers.

The grammar of the Imp language is described in Figure 2.1. Statements can be variable
declarations (for now, the only variable type is int, for mathematical integers), variable as-
signments, sequences of statements, conditional if statements and while loops. Variable
declarations and assignments can be combined into a single statement. Expressions are ei-
ther variables (denoted V), integers, an interval designating a random integer in this interval,
or a binary operation over two expressions. Unary operators (such as the unary negation)
could be added straightforwardly to our presentation. Conditionals are comparisons between
two expressions.

10 Chapter 2 – Static Analysis by Abstract Interpretation

Listing 2.1: An Imp program computing the 3n+ 1 sequence
1 int u = 3;
2 int n = 4;
3
4 int i = 0;
5 while (i < n) {
6 if (u % 2 == 0) { u = u / 2; }
7 else { u = 3 * u + 1; }
8 i = i + 1;
9 }
10 // u = 8

〈statement〉 ::= 〈type〉 〈var〉 | 〈var〉 = 〈expr〉 | 〈type〉 〈var〉 = 〈expr〉
| 〈statement〉 ; 〈statement〉
| if 〈conditional〉 { 〈statement〉 } else { 〈statement〉 }
| while 〈conditional〉 { 〈statement〉 }

〈expr〉 ::= 〈var〉 ∈ V | z ∈ Z | [z1 ∈ Z ∪ {−∞}; z2 ∈ Z ∪ {+∞}]
| 〈expr〉 〈binop〉 〈expr〉

〈conditional〉 ::= 〈expr〉 〈compop〉 〈expr〉

〈binop〉 ::= + | - | * | / | %

〈compop〉 ::= <= | < | > | >= | == | !=

〈type〉 ::= int

Figure 2.1: Grammar of Imp programs

Remark 2.1 Non-determinism in the semantics
The interval constant [z1 ∈ Z∪{−∞}; z2 ∈ Z∪{+∞}] is used tomodel non-determinism. It
can be used to model randomness from arbitrary input, as well as imprecisions introduced
to approximate the behavior of a function.

2.2 Semantics of Imp
We define the semantics of Imp, that is, a formal mathematical definition of the behavior of
expressions and statements over the program state.

Definition 2.2 Program state
A state S of an Imp program consists in a map from the program’s variables V to mathe-
matical integers, i.e S def

= V → Z.

Example 2.3 Program state
In our running example, the initial state is S = ∅ (no variable is defined), and the final state
is (i 7→ 4, n 7→ 4, u 7→ 16).

2.2.1 – Semantics of expressions 11

Remark 2.4 Set and function notations
Sets are written { a; b }, where the separator between two elements is a semicolon. Func-
tions can be defined as a mapping (i 7→ v, j 7→ w), where the separator is a comma.

The semantics acts as a function describing the effect of statements on an input state,
similarly to the implementation of an interpreter, and to the implementation of an analyzer.

2.2.1 Semantics of expressions

The semantics of an expression e is written EJ e K : S → P(Z). Given an input state, the
expression is evaluated in the set of output values (due to non-determinism). The semantics
of expressions is shown in Figure 2.2. A variable is evaluated using the input state σ. If the
variable is not defined in the state, we consider it is an error and evaluate it into the empty
set. A constant integer is evaluated in itself. An interval can be evaluated into any of the
integers it contains. The addition of two expressions e1 and e2 is evaluated into the set of
values v1 + v2, where v1 (resp. v2) ranges over the values of e1 (resp. e2). The semantics of
subtraction and multiplication are the same. The division of two expressions e1 and e2 has a
similar definition, but we keep only evaluations where the denominator evaluates to a non-
zero value, and the division results in an integer. Similarly, the remainder of two expressions
drops the cases where the modulus is zero.

EJ v ∈ V Kσ def
= {σ(v) }

EJ z ∈ Z Kσ def
= { z }

EJ [z1, z2] Kσ
def
= { z ∈ Z | z1 ≤ z ≤ z2 }

EJ e1 † e2 Kσ def
= EJ e1 Kσ † EJ e2 Kσ ∀† ∈ {+,−, ∗, /,% }

X † Y def
= {x † y | x ∈ X, y ∈ Y } ∀† ∈ {+,−, ∗ }

X/Y
def
= {x/y | x ∈ X, y ∈ Y, y 6= 0, x%y = 0 }

X%Y def
= {x%y | x ∈ X, y ∈ Y, y 6= 0 }

Figure 2.2: Semantics of expressions

Example 2.5 Semantics & errors
Let σ be a program state where σ(x) = 2. We evaluate x/[−3, 3] in this state. We have
EJx Kσ = {σ(x) } = { 2 }, and EJ [−3, 3] Kσ = {−3;−2;−1; 0; 1; 2; 3 }. Thus, EJx/[−3, 3] Kσ =
{−1;−2; 2; 1 }: the denominator value 0 is dropped to prevent a division by zero, as well as
values −3 and 3 to avoid non-integer values.

Remark 2.6 Errors
Erroneous evaluations and states are not explicit in the semantics. In the case of a division
by zero, for example, we just continue the evaluation with the non-erroneous cases. This
simplifies the definition of the semantics. In the implementation of an analyzer, erroneous
states will be marked to report them, but they are not evaluated further either.

In the case of languages raising exceptions to signal errors (such as Python), the execu-

12 Chapter 2 – Static Analysis by Abstract Interpretation

tion will be continued, and the state flagged as erroneous, since these exceptions can be
caught later on.

2.2.2 Semantics of statements

Due to the non-determinism of expressions, an assignment may transform one program state
into multiple ones. Given a statement s, its semantics could thus be written SJ s K : S → P(S).
In order to ease the composition of semantics, we define by join-morphism extension SJ s K :
P(S)→ P(S). The semantics of statements transforms a set of states into another one.

The semantics of variable declaration, assignment, and sequence is shown in Figure 2.3. A
declared variable is initialized with any value (σ′ = σ[x 7→ z] denotes the function σ extended
so that σ′(x) = z). Given an expression e and a set of states Σ, the semantics of the assign-
ment SJx = e KΣ is the set of states where variable x maps to a value v, where v is a value
corresponding to the evaluation of e in a program state σ ∈ Σ. The semantics of a sequence
of statements consists in the composition of the semantics of statements.

SJ int x KΣ def
= {σ[x 7→ z] | σ ∈ Σ, z ∈ Z }

SJx = e KΣ def
= {σ[x 7→ v] | σ ∈ Σ, v ∈ EJ e Kσ }

SJ s1; s2 K def
= SJ s2 K ◦ SJ s1 K

Figure 2.3: Semantics of basic statements

The semantics of conditionals is shown in Figure 2.4. It consists in executing the statements
of the if branch for the states where the guard holds and executing the statements of the else
branch in the states where the negation of the condition holds. We thus define the conditional
filtering operator CJ c K which filters the states to keep only those where the evaluation of the
comparison may hold.

SJ if (c) {st} else {sf} K def
= SJ st K ◦ CJ c K ∪ SJ sf K ◦ CJ¬c K

CJ e1 E e2 KΣ def
= {σ ∈ Σ | ∃v1 ∈ EJ e1 Kσ,∃v2 ∈ EJ e2 Kσ, v1 E v2 }

E ∈ {<=, <,>,>=,==, ! = }

Figure 2.4: Semantics of conditionals

Remark 2.7 Conditional semantics
To model a non-deterministic execution between two statements, we can use a conditional
with a non-deterministic guard:

SJ if ([0, 1] == 0) {st} else {sf} K = SJ st K ∪ SJ sf K

Example 2.8 Conditional filtering
Let Σ = SJx = [0, 2] K∅ = { (x 7→ 0) ; (x 7→ 1) ; (x 7→ 2) }. We have CJx < [1, 2] KΣ =
{ (x 7→ 0) ; (x 7→ 1) }. In particular, σ = x 7→ 1 is a kept by the filtering operator, since
2 ∈ EJ [1, 2] Kσ and EJx Kσ < 2.

2.2.3 – Comparing states 13

Remark 2.9 Negation of conditions
The conditional filtering operator is defined only on comparisons, but we use the negation
of conditions in the definition of the semantics of if. These negations are translated back
to a condition, e.g. ¬(e1 < e2) = e1 ≥ e2.

The semantics of while loops is shown in Figure 2.5. It consists in iterating the loop body
(along with filtering using the guard) any number of times. Then, we keep the states where the
negation of the guard holds (i.e., when the loop exits).

SJ while (c) {s} KΣ def
= CJ¬c K

(⋃
n∈N

(SJ s K ◦ CJ c K)nΣ

)

Figure 2.5: Semantics of while loops

Note that this definition is not computable in general due to the unbounded number of
iterations. In particular, let us consider the program in Listing 2.2. It starts from a non-negative
number u and computes the 3n + 1 sequence until it reaches 1, so i computes what is called
the total stopping time of the 3n + 1 sequence. As of today, proving that i is always finite is
still an open problem [89].

Listing 2.2: Computing the total stopping time of the 3n+ 1 sequence
1 int u = [0, +∞];
2 int i = 0;
3
4 while (u > 1) {
5 if (u % 2 == 0) { u = u / 2; }
6 else { u = 3 * u + 1; }
7 i = i + 1;
8 }

2.2.3 Comparing states

As we have mentioned before, a recurrent goal of static analysis is to prove program properties,
such as the absence of bugs. Program properties can be seen as the set of program states
verifying that property. In the case of our running example of Listing 2.1, we may want to prove
that the division at line 6 is correct, i.e., that u is always even. If Σt is the set of program states
reaching the if body at line 6, the property amounts to proving the following inclusion: Σt ⊆ Σe

where Σe = {σ | σ(u) ∈ 2Z }. Of course, we can also prove a stronger property, such as u is
10 or 16 (i.e, Σb = {σ | σ(u) ∈ { 10, 16 } }). Since Σt ⊆ Σb, and Σb ⊆ Σe, we have by transitivity
Σt ⊆ Σe. We notice that the set of program states, along with the inclusion relation, form a
partially ordered set, which is useful to reason over the program properties mentioned before.

Definition 2.10 Poset
A partially ordered set (abbreviated poset) is a set X equipped with a relation @∈ X ×X
which is:

• Reflexive ∀x ∈ X,x @ x
• Anti-symmetric ∀x, y ∈ X,x @ y ∧ y @ x =⇒ x = y
• Transitive ∀x, y, z ∈ X,x @ y ∧ y @ z =⇒ x @ z

14 Chapter 2 – Static Analysis by Abstract Interpretation

Example 2.11 Poset
Given a set X , (P(X),⊆) is a poset. In particular, the set of program states P(S) is a poset.

Due to Rice’s theorem, the current program states are too expressive to prove program prop-
erties on them automatically. As a first simplification towards the obtention of a computable
semantics, we track potential values for each variable instead of keeping sets of states – i.e.,
we move from P(V → Z) to V → P(Z). We can remark that V → P(Z) is still a poset, thanks
to the following pointwise lifting property:

Property 2.12 Pointwise poset lifting
Given a poset (X,@) and a setM , we define the pointwise relation @̇ such that:

@̇ ∈ (M → X)× (M → X)

f1 @̇ f2 ⇔ ∀m ∈M,f1(m) @ f2(m)

Then, (M → X, @̇) is also a poset.

Remark 2.13 Pointwise lifting notation
As a convention, the pointwise lifting of an operator v is written v̇.

This simplification from P(V → Z) to V → P(Z) can be seen as an abstraction – since we
simplify the structure of the state – formally defined as the function α below. Given a set of
states Σ, α(Σ) is the function mapping for each variable v its corresponding values in Σ.

α :

{
P(V ⇀ Z) → V → P(Z)

Σ 7→ λv.{σ(v) | σ ∈ Σ }

It is also possible to define a converse operation, called a concretization, defined as the
function γ. γ maps a function f ∈ V → P(Z) to a set of states Σ it represents, where each
variable v of each state σ ∈ Σ is a value of f(v).

γ :

{
V → P(Z) → P (V ⇀ Z)

f 7→ {σ | ∀v ∈ V, σ(v) ∈ f(v) }

Example 2.14 Abstraction of P(V → Z)
We define

Σ = { (u 7→ 10, i 7→ 1) ; (u 7→ 16, i 7→ 3) }

The abstraction of Σ is
α(Σ) = (u 7→ { 10, 16 }, i 7→ { 1, 3 })

If we concretize the abstracted set, we get

γ(α(Σ)) = { (u 7→ 10, i 7→ 1) ; (u 7→ 16, i 7→ 3) ; (u 7→ 10, i 7→ 3) ; (u 7→ 16, i 7→ 1) }

We can notice that Σ is strictly included in γ(α(Σ)).

2.2.3 – Comparing states 15

Remark 2.15 Non-relational abstraction
The abstraction α defined here breaks the relationality between variables. For example, the
property 5i ≤ u holds on the state Σ of Example 2.14, but it is not possible to prove it in the
abstract.

Remark 2.16 False alarms
The case where a property holds in the concrete world but cannot be proved in the abstract
due to imprecisions is called a false positive or false alarm. Using more precise abstractions
may rule out some false alarms.

We can see that the order relation is preserved by the transformations α and γ: given any
program state Σ ∈ P(V ⇀ Z) and a function f ∈ V → P(Z), the following equivalence holds:
Σ ⊆ γ(f) ⇔ α(Σ)v̇f . This property of the α and γ functions can be generalized to define
the notion of Galois connection, initially introduced by Cousot and Cousot [33] in the founding
paper of abstract interpretation.

Definition 2.17 Galois connection
Let (A,v) and (C,⊆) be two posets. The pair (α : C → A, γ : A→ C) is a Galois connection
if:

∀a ∈ A,∀c ∈ C, c ⊆ γ(a)⇔ α(c) v a

In that case, we write (C,⊆) −−→←−−α
γ

(A,v). α is called the abstraction function, and γ the
concretization function.

Remark 2.18 Notation of abstract elements
Abstract elements and abstract operators are usually suffixed with # to ease distinguishing
them from concrete elements.

Property 2.19 Best abstraction
Given a Galois connection (C,⊆) −−→←−−α

γ
(A,v), α(c) is the best abstraction of c ∈ C (for ⊆).

Proof. Let c ∈ C , and a be a sound abstraction of c. We have c ⊆ γ(a). The definition of
Galois connection entails α(c) v a. Thus α(c) is the best abstraction of c. �

Remark 2.20 Concretization-only framework
In some cases, there is no best abstraction. For example, the polyhedra abstract domain
briefly presented in Section 2.4.4 abstracts subsets of the 2-dimensional plane R2. In par-
ticular, there is no best abstraction of a circle by a polyhedron (given that any polyhedron
can be further extended to abstract the circle more precisely). In that case, a concretization
γ : C → A is sufficient to reason about soundness (cf., Definition 2.21 below).

Definition 2.21 Sound abstraction

16 Chapter 2 – Static Analysis by Abstract Interpretation

Let A be a set, (C,⊆) a poset, and γ ∈ A → C . We say that a is a sound abstraction of c
when c ⊆ γ(a).

Remark 2.22 Proving safety properties in the abstract
Let Σ]

e ∈ V → P(Z) and Σ]
e(u) = 2Z. Let Σe = γ(Σ]

e) = { (u 7→ 2k) | k ∈ Z }, where Σe is
defined in Section 2.2.3. Assuming f]⊆̇Σ]

e, and f is a sound abstraction of Σ, we get that
Σ ⊆ γ(f]) ⊆ γ(Σ]

e) = Σe. Thus, for program properties that are exactly representable in the
abstract (γ(Σ]

e) = Σe), if we prove that this property holds in the abstract (f]⊆̇Σ]
e), it holds

in the concrete too.

The notion of sound and best abstractions can also be defined for operators. These defi-
nitions will be helpful to prove that the semantics is sound.

Definition 2.23 Sound operator abstraction
Let A be a set, (C,⊆) a poset, and γ ∈ A → C . f] ∈ A → A is a sound abstraction of
f ∈ C → C if

∀a ∈ A, f(γ(a)) ⊆ γ(f](a))

Property 2.24 Best operator abstraction
Given (C,⊆) −−→←−−α

γ
(A,v), and f ∈ C → C , the best abstraction of f is α ◦ f ◦ γ.

Proof. Let f] be a sound abstraction of f . Due to the soundness of f], f ◦ γ⊆̇γ ◦ f]. By
definition of the Galois connection, this is equivalent to α ◦ f ◦ γ⊆̇f], which proves the
property. �

2.3 Inferring ranges of Imp variables
Our program states V → P(Z) are still too expressive to be computable. One idea to further
reduce the computational cost of the analysis is to abstract sets of integers by intervals.

2.3.1 The interval domain

We define the interval poset (I,vI) in Figure 2.6. The upper (resp. lower) bound of an interval
can be plus (resp. minus) infinity, and the upper bound should be greater or equal to the lower
bound. Intervals are extended with ⊥I , representing the empty interval. The order vI denotes
interval inclusion. A schematic representation of the interval poset is shown in Figure 2.7.

I def
= { [l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, l ≤ u } ∪ {⊥}
∀i ∈ I,⊥I vI i

∀([l1, u1], [l2, u2]) ∈ (I \ {⊥I })2, [l1, u1] vI [l2, u2]⇔ l2 ≤ l1 ∧ u1 ≤ u2

Figure 2.6: The Interval Poset

2.3.2 – Concretization 17

⊥I

[−1, 1] [0, 0] [1, 1]

[−1, 0] [0, 1]

[−1,−1]

[−∞, 1] [−1,+∞]

[−∞,+∞]

Figure 2.7: Hasse’s diagram for the Interval Poset.
Plain arrows represent relationship through vI .

Property 2.25 The interval domain is a poset
(I,vI) is a poset.

Proof.

• vI is reflexive: ⊥I vI ⊥I , and ∀[l, u] ∈ I \ {⊥I }, [l, u] vI [l, u].

• vI is antisymmetric: let i1, i2 ∈ I such that i1 v i2 ∧ i2 v i1. We show that i1 = i2.:

– If i1 = ⊥I , we have i2 vI ⊥I . By definition of vI , i2 = ⊥I .
– Otherwise, without loss of generality, let [l1, u1] = i1 and [l2, u2] = i2. We have
l2 ≤ l1 ∧ u1 ≤ u2 and l1 ≤ l2 ∧ u2 ≤ u1. Thus i1 = i2 too.

• vI is transitive: let i1, i2, i3 ∈ I such that i1 v i2 ∧ i2 v i3. We show that i1 vI i3.

– If i1 = ⊥I , the property is straightforward.
– If i2 = ⊥I , we have i1 = ⊥I (since i1 v i2), and the property holds.
– Similarly, i3 = ⊥I entails i2 = ⊥I entails i1 = ⊥I .
– We can thus assume that i1 = [l1, u1]; i2 = [l2, u2]; i3 = [l3, u3]. By definition of
vI , l2 ≤ l1 ∧ u1 ≤ u2 and l3 ≤ l1 ∧ u2 ≤ u3. By transitivity of ≤, we have l3 ≤ l1
and u1 ≤ u3. Thus, i1 vI i3

�

2.3.2 Concretization

Similarly to what we have done previously, we can define how to abstract a set of integers into
an interval and concretize an interval into a set of integers.

Property 2.26 Galois connection for intervals
These functions define a Galois connection (P(Z),⊆) −−−→←−−−

αI

γI
(I,vI).

18 Chapter 2 – Static Analysis by Abstract Interpretation

αI :

P(Z) → I
∅ 7→ ⊥
S 7→ [minS,maxS]

γI :

I → P(Z)
⊥ 7→ ∅

[l, u] 7→ { z ∈ Z | l ≤ z ≤ u }

Proof. Let i ∈ I , X ∈ P(Z).

• If i = ⊥, then γI(⊥I) = ∅ and c ⊆ ∅ ⇔ α(c) vI ⊥I is trivial to prove.

• If i = [l, u]:

X ⊆ γI([l, u])
⇔ ∀x ∈ X,x ∈ γI([l, u])
⇔ ∀x ∈ X, l ≤ x ≤ u
⇔ l ≤ min(x) ∧max(x) ≤ u
⇔ [min(x),max(x)] vI [l, u]

⇔ α(X) vI [l, u]

�

2.3.3 Interval transfer functions

Let [lx, ux], [ly, uy] be two non-empty intervals. Thanks to Property 2.24, we can derive the best
abstraction for the addition operator on sets, i.e we search for +I such that:

[lx, ux] +I [ly, uy] = αI(γI([lx, ux]) + γI([ly, uy]))

Given that:

αI(γI([lx, ux]) + γI([ly, uy]))

=αI({x+ y | lx ≤ x ≤ ux, ly ≤ y ≤ uy })
=[lx + ly, ux + uy]

We define the interval addition such that:

∀i ∈ I,⊥I +I i = i+I ⊥I = i [lx, ux] +I [ly, uy] = [lx + ly, ux + uy]

This is the best abstraction of the set addition on the intervals. We can similarly derive
subtraction, multiplication, division and remainder operators on intervals.

2.3.4 Abstract semantics of expressions

For now, we have only abstracted sets of integers into intervals. In order to abstract sets of
program states over several variables, our abstract domain is a non-relational, pointwise lifting
of intervals. In order to avoid multiple representations of the empty set1, we use a coalescent
point-wise lifting to intervals, written V→̇I .

1Given f ∈ V → I , if there exists v ∈ V such that f(v) = ⊥I , f represents the empty set in the concrete.

2.3.4 – Abstract semantics of expressions 19

Definition 2.27 Coalescent point-wise lifting
Let (X,v) be a poset with minimal element⊥X . We define the coalescent point-wise lifting
of X , written V→̇X , as:

V→̇X def
= (V → (X \ ⊥X)) ∪ ⊥

Let f, g ∈ V→̇X . We define fv̇g def
= f = ⊥ ∨ (f 6= ⊥ ∧ g 6= ⊥ ∧ ∀v ∈ V, f(v) v g(v)).

(V→̇X, v̇) is also a poset.

Similarly to the pointwise lifting property of posets, we can establish the same property for
Galois connections. This property also holds for the coalescent point-wise lifting.

Property 2.28 Pointwise Galois connection lifting
Let (C,⊆) −−→←−−α

γ
(A,v), and M be a set. ⊆̇ and v̇ are the lifted partial order operator as

defined in Property 2.12, and δ̇(f) = λm.δ(f(m)) for δ ∈ {α, γ }. Then (M → C, ⊆̇),−−→←−−
α̇

γ̇

(M → A, v̇).

Instead of deriving the best abstraction of the semantics of expressions using αI , we use a
different approach. We first define the abstract semantics of expressions in Figure 2.8 and show
it is sound. The evaluation of a variable looks up in the abstract state (except if the state is ⊥).
The evaluation of constants returns constants. The evaluation of binary expression consists in
recursively evaluating both the left-hand and right-hand sides and combining them using the
binary operators defined on intervals.

E#J e K ∈ (V→̇I)→ I

E#J v ∈ V Kσ] def
= if σ] = ⊥ then ⊥I else σ](v)

E#J z ∈ Z Kσ] def
= [z, z]

E#J [z1, z2] Kσ]
def
= [z1, z2]

E#J e1 + e2 K def
= E#J e1 K+̇IE#J e2 K

E#J e1 − e2 K def
= E#J e1 K−̇IE#J e2 K

E#J e1 ∗ e2 K def
= E#J e1 K∗̇IE#J e2 K

E#J e1 / e2 K def
= E#J e1 K /̇I E#J e2 K

E#J e1 % e2 K def
= E#J e1 K %̇I E#J e2 K

Figure 2.8: Abstract semantics of Expressions

Property 2.29 E#J · K is a sound abstraction of EJ · K

∀σ ∈ (V → P(Z)), ∀σ] ∈ (V→̇I), σ v̇I γ̇I(σ
]) =⇒ ∀e,EJ e Kσ vI γI(E#J e Kσ])

Proof. Let σ, σ] such that σv̇I γ̇I(σ
]). The case where σ] = ⊥ is straightforward. We prove

by structural induction on e that EJ e Kσ ⊆ γI(E#J e Kσ]):

20 Chapter 2 – Static Analysis by Abstract Interpretation

• Case e = v ∈ V : EJ v Kσ = σ(v) ⊆ γ̇I(σ])(v) = γI(σ
](v)) = γI(E#J v Kσ]).

• Case e = [z1, z2]: EJ [z1, z2] Kσ = { z ∈ Z | z1 ≤ z ≤ z2 } = γI([z1, z2]) = γI(E#J [z1, z2] Kσ).
• Case e = z ∈ Z. Subcase of e = [z, z].
• Case e = e1 † e2, with † ∈ {+,−, ∗, /,% }. By induction hypothesis (I.H.), we have that
EJ ei Kσ ⊆ γI(E#J ei Kσ]), given i ∈ { 1, 2 }.

γI(E#J e1 † e2 Kσ]) = γI(E#J e1 Kσ] †I E#J e2 Kσ]) (def. of E#J e1 † e2) K

⊇ γI(E#J e1 Kσ]) † γI(E#J e2 Kσ]) (soundness of †I)
⊇ EJ e1 Kσ † EJ e2 Kσ (I.H. & † monotonic)
= { v1 † v2 | v1 ∈ EJ e1 Kσ, v2 ∈ EJ e2 Kσ } (def. of † on P(Z))
= EJ e1 † e2 Kσ (def. of EJ e1 † e2 K)

This inclusion still holds for the division and remainder operators, even if an abstract
state may contain 0: both the abstract and the concrete operations will prune out
these cases.

�

Remark 2.30 Imprecisions with intervals
Given σ = { (u 7→ 3, i 7→ 2) ; (u 7→ 5, i 7→ 0) }, EJu ∗ i Kσ yields { 6; 0 }. In the abstract, σ] =
(u 7→ [3, 5], i 7→ [0, 2]), so E#Ju ∗ i Kσ] yields [0, 10]. The lower bound of the interval is tight,
but the upper bound is not. This shows that the interval analysis is imprecise in this case.

2.3.5 Abstract semantics of statements

The abstract semantics of a statement s has signature S#J s K : (V→̇I) → (V→̇I). The case of
variable declarations, assignments, and sequence of statements are straightforward.

2.3.6 Basic statements

S#J int x Kσ] def
= σ][x 7→ [−∞; +∞]]

S#Jx = e Kσ] def
= let v = E#J e Kσ in if v = ⊥I then ⊥ else σ][x 7→ v]

S#J s1; s2 K def
= S#J s2 K ◦ S#J s1 K

Figure 2.9: Abstract semantics of basic statements

2.3.7 Conditionals

The semantics of conditionals is more complex. The concrete operator performed the union
of the set of states reached after the execution of each branch. We thus need to define an
operator equivalent to the union, called least upper bound or join.

Definition 2.31 Least upper bound
Let (X,v) be a poset, and a, b ∈ X . Any c ∈ X such that a v c and b v c is called an upper
bound of a and b.

We say that c is the least upper bound of a and b, if for any c′ upper bound of a and b,

2.3.7 – Conditionals 21

c v c′.
The least upper bound is abbreviated as lub, or denoted as join operator, and is usually

written a t b.

Remark 2.32 Unicity of the least upper bound
The least upper bound may not exist but is unique if it does.

Remark 2.33 Greatest lower bound
We can define a converse notion of greatest lower bound, or meet, written a u b.

We can derive the best abstraction of the union operator, such that:

[a, b] tI [c, d] = αI(γI([a, b]) ∪ γI([c, d]))

αI(γI([a, b]) ∪ γI([c, d]))
=αI({x ∈ Z | a ≤ x ≤ b } ∪ {x ∈ Z | c ≤ x ≤ d }
=αI({x ∈ Z | a ≤ x ≤ b ∧ c ≤ x ≤ d })
=[min(a, c),max(b, d)]

Thus, we define [a, b]tI [c, d]
def
= [min(a, c),max(b, d)]. Similarly, we define [a, b]uI [c, d]

def
=

[max(a, c),min(b, d)] (or ⊥I if max(a, c) > min(b, d)). Both definitions are trivially extended if
an interval is ⊥I .

Posets structured with join and meet operators are also common in quite a few areas of
computer science. They form the basis for the definition of a complete lattice.

Definition 2.34 Complete lattice
A complete lattice, (X,v,t,u,⊥,>) is a poset (X,v) where:

• ∀A ⊆ X,tA exists,
• ∀A ⊆ X,uA exists.

In particular, ⊥ = t∅ is the least element and > = tX is the greatest element.

Property 2.35 Complete lattice – parts of a set
Given a set X , (P(X),@,∪,∩, ∅, X) is a complete lattice.

Property 2.36 The interval domain is a complete lattice
(I,vI ,tI ,uI ,⊥I ,>I) is a complete lattice, where >I = [−∞,+∞].

Remark 2.37 Pointwise lifting of complete lattices
Similarly to the poset and Galois connection pointwise liftings, complete lattices can also
be pointwise lifted.

22 Chapter 2 – Static Analysis by Abstract Interpretation

Thus, the semantics of conditional statements is:

S#J if (c) {st} else {sf} K def
= S#J st K ◦ C#J c K ṫ S#J sf K ◦ C#J¬c K

We do not define the abstract conditional filtering operator C#J c K. Precise versions rely on
bottom-up and top-down traversals of the abstract syntax tree of the condition c, called the
HC4 algorithm in the constraint solving community [10]. In the setting of abstract interpretation,
these traversals are described by Miné [106, Section 4.6].

2.3.8 Terminating loop analyses

The current definition of the semantics of while loops – reminded below – is not computable
due to the unbounded number of iterations.

SJ while (c) {s} KΣ def
= CJ¬c K

(⋃
n∈N

(SJ s K ◦ CJ c K)nΣ

)
We search for an alternative semantics of loops that exhibits the underlying notion of loop

invariant. A typical and widely used concept that applies here is searching for a fixpoint of an
operator f : C → C , i.e for x ∈ C such that f(x) = x. If f models the effects of the loop body,
a fixpoint of f will be a loop invariant. In particular, the least fixpoint of f , written lfp f will
be the strongest loop invariant (intuitively, the smallest state has no extra information and
is thus the strongest property). We start by introducing concepts necessary to state Kleene’s
fixpoint theorem. We use Kleene’s theorem to establish an equivalent definition of the seman-
tics of while using a least fixpoint. We then define methods to perform computable fixpoint
approximations.

Definition 2.38 Chain
Let (X,v) be a poset and C ⊆ X . C is a chain if it is totally ordered, i.e: ∀c, d ∈ C, c v
d ∨ d v c

Example 2.39 Chain
C = ∪n∈N{ [0, n] } is a chain of intervals, since each one is included in the next one. D =
∪n∈N{ [2n, 2n+1] } is not a chain, since all intervals are disjoint (thus not included into one
another).

Definition 2.40 Complete partial order
A complete partial order (CPO), is a poset (X,v) such that every chain has a least upper
bound.

Property 2.41 Lattices and partial orders
Complete lattices are complete partial orders.

Definition 2.42 Continuous operator
Let (A,vA,tA) and (B,vB,tB) be two complete partial orders. f : A → B is continu-
ous, if for every chain C ∈ P(A), f(C) = { f(c) | c ∈ C } is also a chain and f(tAC) =
tB{ f(c) | c ∈ C }

2.3.8 – Terminating loop analyses 23

Remark 2.43 Join-morphism and continuity
In particular, let f : A→ B be a complete join-morphism, i.e ∀X ⊂ A, f(tAX) = tBf(X).
Then, f is continuous.

Theorem 2.44 Kleene’s fixpoint theorem
Let (X,v,t,⊥) be a complete partial order, and f : X → X a continuous operator. lfp f
exists and lfp f = t{ f i(⊥) | i ∈ N }

Now, we use Kleene’s fixpoint theorem to define the semantics of while programs using a
least fixpoint.

Property 2.45 Rewriting the semantics of loops into a fixpoint
Let Σ ∈ P(S), s a statement and c a condition.⋃

n∈N
(SJ s K ◦ CJ c K)nΣ = lfp f , with f(X)

def
= Σ ∪ SJ s K ◦ CJ c KX

Proof. We can apply Kleene’s fixpoint theorem since:

• (P(S),⊆,∪,>,⊥) is a complete partial order.
• f is continuous: the concrete semantics is a complete join-morphism.

Thus, we know that
lfp f =

⋃
n∈N

fn(∅)

By induction over the integers, we can prove that ∀n ∈ N, fn(∅) =
⋃

k≤n(SJ s K◦CJ c K)kΣ:

• Case n = 0, f0(∅) = Σ ∪ SJ s K ◦ CJ c K∅ = Σ

• Assuming the property holds for a given n, we have:

fn+1(∅) =Σ ∪ (SJ s K ◦ CJ c K)(fn(∅))

=Σ ∪ (SJ s K ◦ CJ c K)(
⋃
k≤n

(SJ s K ◦ CJ c K)kΣ)

=Σ ∪
⋃
k≤n

(SJ s K ◦ CJ c K)k+1Σ

=
⋃

k≤n+1

(SJ s K ◦ CJ c K)kΣ

Hence

lfp f =
⋃
n∈N

fn(∅) =
⋃
n∈N

⋃
k≤n

(SJ s K ◦ CJ c K)kΣ =
⋃
n∈N

(SJ s K ◦ CJ c K)nΣ

�

From our property, we can thus define an alternative characterization of the semantics of

24 Chapter 2 – Static Analysis by Abstract Interpretation

while loops.

SJ while (c) {s} KΣ = CJ¬c K lfp f with f(X)
def
= Σ ∪ SJ s K ◦ CJ c KX

We now have to approximate the semantics of while loops in the abstract, using widening
operators to make it computable.

Definition 2.46 Widening operator
Let (A,v) be a poset. ∇ : A×A→ A is a widening operator if it:

• Computes an upper bound ∀x, y ∈ A, x v x∇y and y v x∇y

• Ensures convergence: for any sequence (yi)i∈N of elements of A, and given the se-
quence (xi)i∈N defined as x0

def
= y0, xn+1

def
= xn∇yn+1, we have: ∃k ∈ N, xk+1 = xk

Theorem 2.47 Fixpoint approximation
Let (C,⊆,∪,∩,⊥,>) be a complete lattice, and f : C → C a monotonic function. Let (A,v)
be a poset with a minimal element ⊥, f] : A → A an abstraction of f and ∇ a widening
operator. The sequence x0

def
= ⊥, xi+1

def
= xi∇f](xi):

• converges in finite time, and

• its limit (written xl) is a sound abstraction of lfp f , i.e, lfp f ⊆ γ(xl)

Now we can define a widening operator on intervals. As usual, this operator is then lifted
to program states.

Property 2.48 Widening operator on intervals
The ∇I operator defined below is a widening.

[a, b]∇I⊥I = ⊥I∇I [a, b] = [a, b]

[a, b]∇I [c, d] =

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]

Thanks to Theorem 2.47, we can thus define a sound, computable, abstract semantics of
intervals for loops:

S#J while (c) {s} Kσ] = C#J¬c K(lim δn(⊥̇I)) with δ(x]) = x]∇(σ] t S#J s K ◦ C#J c Kx])

Example 2.49 Fixpoint computation
We show the iterations computed when analyzing the program of Listing 2.1, starting with
u = [1, 3] and n = 100. We start from σ] = (u 7→ [1, 3], i 7→ [0, 0]) (the value of n is constant,
so we omit it in the states).

2.3.9 – Improving the analysis with congruences 25

δ1(⊥̇I) = ⊥̇I∇̇I(σ
]ṫ]IS

#J c K ◦ C#J c K⊥̇I)

= σ]ṫ]I⊥̇I = σ]

δ2(⊥̇I) = σ]∇̇I(σ
]ṫ]I (u 7→ [1, 10], i 7→ [1, 1])

= σ]∇̇I (u 7→ [1, 10], i 7→ [0, 1])

= (u 7→ [1,+∞], i 7→ [0,+∞])

δn+2(⊥̇I) = δ2(⊥̇I),∀n ∈ N

Thus, lim δn(⊥̇I) = δ2(⊥̇I), and the state after the while loop is

C#J i < 100 Kδ2(⊥̇I) = (u 7→ [1,+∞], i 7→ [100,+∞])

Decreasing iteration. The result of the range analysis performed in the previous example is a
bit disappointing, as we are not even able to infer that i = 100 at the end of the loop. Thanks-
fully, there is an easy way to recover some precision. Using the notations of Theorem 2.47, we
show that f](xl) is a sound approximation of lfp f which is better than xl.

• We prove that f](xl) is a sound approximation of lfp:

lfp f = f(lfp f) (lfp f is a fixpoint of f)
⊆ f(γ(xl)) (lfp f ⊆ γ(xl))
⊆ γ(f](xl)) (f] sound abstraction of f)

• We notice that f](xl) v xl. Since xl is the limit of the sequence (xi)i∈N, we have xl =
xl∇f](xl). The widening ∇ computes an upper bound, hence f](xl) v xl.

From an implementation perspective, we usually have to compute f](xl) to check that xl is
the limit, so we get the decreasing iteration for free.

Example 2.50 Decreasing iteration on the previous example
Applying a decreasing iteration on δ2(⊥̇I) yields:

σ]ṫ]IS
#J s K ◦ C#J c Kδ2(⊥̇I)

=σ]ṫ]IS
#J s K((u 7→ [1,+∞], i 7→ [0, 99]))

=σ]ṫ]I (u 7→ [1,+∞], i 7→ [100, 100])

= (u 7→ [1,+∞], i 7→ [0, 100])

The state obtained after the loop is thus

C#J i < 100 K (u 7→ [1,+∞], i 7→ [0, 100]) = (u 7→ [1,+∞], i 7→ [100, 100])

2.3.9 Improving the analysis with congruences

If we go back to our running example program, the interval domain cannot prove that the
division by two will always result in an integer. In an analyzer, this would cause spurious false
alarms: we know the division will be correct, but our tool cannot prove it. We introduce a
new abstract domain tracking integer congruences [65] to tackle this issue. Congruences are
defined as C def

= { aZ+ b | a ∈ N, 0 ≤ b < a } ∪ {⊥}. The abstract value aZ+ b represents the
set of integers congruent to b modulo a (defined in the concretization Figure 2.10).

26 Chapter 2 – Static Analysis by Abstract Interpretation

γC :

C → P(Z)
⊥ 7→ ∅

aZ+ b 7→ { ak + b | k ∈ Z }

Figure 2.10: Concretization of congruences

We do not delve into the details of the definition of the abstract operators (+],−], ∗], /],%],
t],u]). An abstraction function αC exists and defines a Galois connection with γC .

Using this domain, we are able to prove that starting from σ] = u 7→ 1Z+ 0, and assuming
u % 2 == 0, we have σ] = u 7→ 2Z + 0. We can thus infer that the division by two afterward
will be correct.

2.3.9.1 Deriving the semantics

The congruences abstract values can be lifted to a non-relational domain V → C similarly
to the lifting performed for intervals. Instead of performing a lifting specific to the congru-
ences, we define a unified framework lifting non-relational domains. This framework applies
straightforwardly to the case of congruences. We define a notion of value abstract domain
(Definition 2.51), to which intervals and congruences belong. The value abstract domain is
lifted into an abstract semantics in Property 2.52.

Definition 2.51 Value abstract domain
A value abstract domain consists in:

• a poset (D],v]),
• a smallest element ⊥ and a largest element >
• sound abstractions of:

– constants and intervals (written c], [l, u]])
– binary operators, written +],−], ∗], /],%],
– set union and intersection t],u]

• a widening operator ∇
• a concretization operator γ : D] → P(Z)

Given any value abstract domain, we can derive a non-relational abstract semantics for
Imp, similarly to what was presented for intervals.

Property 2.52 Non-relational abstract semantics
Let (D],v]) be a value abstract domain. The program state is V→̇D], and the lattice oper-
ators are pointwise liftings of the value abstract domain. We define:

E#J v Kσ] def
= σ](v)

E#J c Kσ] def
= c]

E#J [z1, z2] Kσ]
def
= [z1, z2]

]

E#J e1 † e2 Kσ] def
= E#J e1 Kσ] †] E#J e2 Kσ],∀† ∈ {+,−, ∗, /,% }

2.3.9.2 – Cooperation between congruences and intervals 27

S#J int x; Kσ] def
= σ][x 7→ >]

S#Jx = e Kσ] def
= let v = E#J e Kσ] in if v = ⊥ then ⊥ else σ][x 7→ E#J e Kσ]]

S#J if (c) {st} else {sf} K def
= S#J st K ◦ C#J c K ṫ] S#J sf K ◦ C#J¬c K

S#J while (c) {s} Kσ] def
= C#J¬c K(lim δn(⊥)) with i(x]) def

= x]∇(σ] t] S#J s K ◦ C#J c Kx])

This semantics is a sound abstraction of the concrete semantics.

2.3.9.2 Cooperation between congruences and intervals

Let us assume that our analysis inferred that u has abstract values [3, 5] and 2Z. In order to
deduce that u = 4, we introduce a reduction operator ρI×C between intervals and congruences
in Figure 2.11.

ρI×C([a, b], cZ+ d) =

⊥I ,⊥C if a’ > b’
[a′, a′], 0Z+ a′ if a’ = b’
[a′, b′], cZ+ d if a’ < b’

with a′ = min{x ≥ a | x = kd+ c, k ∈ Z }
b′ = max{x ≤ b | x = kd+ c, k ∈ Z }

Figure 2.11: Reduction operator for intervals and congruences

The reduction operator computes updated bounds a′ and b′ of the interval, that are congru-
ent to dmodulo c. In the casementionned before, the second case is used: ρI×C([3, 5], 2Z+0) =
([4, 4], 0Z+ 2). The reduction operator shares information between domains in order to refine
each domain’s state.

Definition 2.53 Reduction operator
Let D]

1 and D
]
2 be two value abstract domains (from Definition 2.51). ρ : D]

1×D
]
2 → D

]
1×D

]
2

is a reduction operator if, given (y1, y2) = ρ(x1, x2):

• the reduction is sound: γ1×2(y1, y2) = γ1×2(x1, x2) with γ1×2(v1, v2) = γ1(v1) ∩ γ2(v2)
• the reduction reduces each element: γ1(y1) v]

1 γ1(x1), and γ2(y2) v
]
2 γ2(x2)

Remark 2.54 Optimal reduction
If both domains have a Galois connection, the following reduction ρ is optimal:

ρ(v1, v2) = (α1(γ1(v1) ∩ γ2(v2)), α2(γ1(v1) ∩ γ2(v2)))

Property 2.55 Reduction between intervals and congruences
ρI×C is a reduction operator.

Definition 2.56 Reduced product of abstract values
Given two value abstract domainsD]

1,D
]
2 and a reduction operator ρ on them, we can define

the reduced product of these abstract values. Intuitively, ρ is applied on every element of

28 Chapter 2 – Static Analysis by Abstract Interpretation

D]
1 ×D

]
2, except on the widening.

• (D]
1 ×D

]
2,v

]
1×2), where (v1, v2) v1×2 (v

′
1, v

′
2)

def
= v1 v1 v

′
1 ∧ v2 v2 v

′
2,

• a smallest element (⊥1,⊥2) and a greatest element (>1,>2)
• sound abstractions of

– intervals: [l, u]]1×2
def
= [l, u]]1, [l, u]

]
2

– binary operators such that for † ∈ {+,−, ∗, /,% },

(v1, v2) †]1×2 (v
′
1, v2)

def
= ρ(v1 †]1 v

′
1, v2 †

]
2 v

′
2)

– set union and intersection such that for � ∈ {t,u}

(v1, v2)�
]
1×2(v

′
1, v

′
2)

def
= ρ(v1�

]
1v

′
1, v2�

]
2v

′
2)

• a widening operator ∇1×2 applying pointwise widening without reduction.
• a concretization operator γ1×2 : D]

1 ×D
]
2 → P(Z), γ1×2(v1, v2)

def
= γ1(v1) ∩ γ2(v2).

Property 2.57 Reduced product of abstract values
The reduced product defined above is a value abstract domain.

Remark 2.58 Reduction operator and widening
The reduction operator is not applied during widening. Applying it would forego the guar-
anteed termination of the widening [35, Section 7.4].

Remark 2.59 Reduced product of abstract domains
As long as two abstract domainsD]

1 andD
]
2 abstract the same concrete stateC , it is possible

to generalize the notion of reduction and reduced product [106, Section 6.2], from the setting
of abstract values used here.

2.4 Extending Imp and its analyses

This section presents more advanced concepts and analyses. We start by extending Imp with
immutable strings. We provide a first abstraction of strings tracking their length. We show how
to perform an analysis of non-local control-flow statements, such as the break operator. We
improve the precision of the analysis by introducing relational abstract domains. We provide
a second abstraction of strings tracking an abstraction of their content, and revisit products of
abstract domains.

2.4.1 Extending Imp with strings

We add strings to our toy Imp language. Similarly to the C language, a string is a sequence of
characters, each represented as integers. The set of characters is A def

= [0, 127], and follows
the ASCII encoding (for example, ’a’ is 97). We write An the set of words of length n, and A∗ =
∪n∈NAn is the set of words. Given characters c, c′ ∈ A, we write c · c′ ∈ A2 the concatenation
of characters. Given a word w, we write w0, · · · , wn−1 its characters, and |w| its length. We
add a type str for strings, the expression expr[expr] to access a character, and the statement
expr[expr] = expr to update a string at a given index.

2.4.2 –Using ghost variables to track string length 29

The values are extended to be integers or strings of any length, Z∪A∗. The semantics has
thus for signature:

Value = Z ∪ A∗

EJ e K : P(V ⇀ Value)→ Value
SJ s K : P(V → Value)→ P(V → Value)

The updated semantics (defined on a single state, and lifted by the usual join-morphism)
is shown in Figure 2.12. Index accesses are evaluated into the integer value (between 0 and 127)
corresponding to the accessed character. A string can also be updated one element at a time
through an integer value. We assume that expressions have been typed before the analysis
and that the type information is available.

EJ s[i] Kσ def
= { si | s ∈ EJ s Kσ ∧ s ∈ A∗ ∧ 0 ≤ i ≤ n− 1 ∧ s = s0 · ... · sn−1 }

SJ str s; Kσ def
= {σ[s 7→ c] | c ∈ A∗ }

SJ s = c0 · · · cn−1 Kσ def
= σ[s 7→ c0 · · · cn−1]

SJ s = t Kσ def
= σ[s 7→ σ(t)]

SJ s[i] = t Kσ def
= σ[s 7→ s̃], s̃ = s0 · · · si−1 · t · si+1 · · · sn−1

Figure 2.12: Updated semantics with strings

The introduction of strings comes with new errors we are interested in detecting: out-of-
bound accesses, and updating a string with a non-ASCII value (i.e., s[i] = t where t evaluates
to a value that is not between 0 and 127).

Example 2.60 Program on strings
An example program is provided in Listing 2.3. After line 3, the program state is (the ASCII
code for ’d’ is 100):

(s 7→ "abcd", t 7→ "abcd", l 7→ 101)

Note that strings are copied during assignments. At the end of the program, s is the string
”abce”, and t is still ”abcd”.

Listing 2.3: Imp program with strings
1 str s = "abcd";
2 str t = s;
3 int l = s[3] + 1;
4 s[3] = l;

2.4.2 Using ghost variables to track string length

One way to abstract the content of strings is to keep only their length. This can be done by
adding numerical variables in the abstract states representing the length of each string. We
will keep the length of a string s into an auxiliary variable len(s). The string operators can
then be rewritten as numerical operations, that can be delegated to the numeric domain. In
the area of deductive verification, the variable len(s) variable would be called a ghost variable,
as it is used to prove a program property but does not appear in the original program. This

30 Chapter 2 – Static Analysis by Abstract Interpretation

naming is also used by Chevalier and Feret [28] in the setting of static analysis. Contrary to the
value abstract domains presented earlier, this abstract domain is stateless2 and will delegate
the operations to the underlying numerical domains. The benefits of this approach will be
discussed in the presentation of relational abstract domains, and is one of the cornerstones
of the design of abstract domains in Mopsa.

We assume we have a numerical abstract domain D]
num, handling numeric expressions and

assignments through the abstract operators E#numJ · K, S#numJ · K,C#numJ · K.
The semantics of this domain extends the numerical one with the transfer functions of

Figure 2.13. The case of index access checks that the index has valid bounds. If that is the case,
we know the return value is an ASCII number, i.e., a number between 0 and 127. Upon a variable
declaration, we initialize the auxiliary length variable to be non-negative. Variable assignments
are rewritten into a matching length assignment. The analysis of a character update checks
that the bound is valid and that the character is a valid ASCII code.

E#lenJ e K : D]
num → I

E#lenJ s[i] K
def
= E#numJ [0, 127] K ◦ C#numJ 0 ≤ i ∧ i < len(s) K

S#lenJ s K : D]
num → D

]
num

S#lenJ str s; K def
= S#numJ len(s) = [0,+∞] K

S#lenJ s ∈ Vstr = c0 · · · cn−1 ∈ A∗ K def
= S#numJ len(s) = n K

S#lenJ s ∈ Vstr = s′ ∈ Vstr K
def
= S#numJ len(s) = len(s′) K

S#lenJ s[i] = e K def
= C#numJ 0 ≤ e ≤ 127 K ◦ C#numJ 0 ≤ i ∧ i < len(s) K

Figure 2.13: String length abstract domain

Example 2.61 Program analysis using the string length domain
Going back to the example of Listing 2.3, we get at the end of line 3:

σ] = (len(s) 7→ [4, 4], len(t) 7→ [4, 4], l 7→ [0, 128])

Thus, our analysis infers that the assignment s[3] = l at line 4 can be incoherent when
l = 128 (128 is not in the range of valid ASCII codes). This is a false alarm, since the program
is correct.

Remark 2.62 Convention: format of auxiliary variables
In the rest of this thesis, auxiliary variables such as len(s) are always underlined.

We assume that our numerical abstract domain D]
num has a concretization function γnum :

D]
num → P(V → Z). We define the concretization of the string length domain below.

Definition 2.63 String length concretization
The string length concretization is defined below. It consists in the set of environments s,
such that there exists a concrete numerical state σ ∈ γnum(σ]), and where:

2We can say its state is unit, and the sole inhabitant of unit is written (). The lattice operators on this domain
are straightforward to define.

2.4.3 – Breaking out of a loop 31

• all non-length variables are kept the same between s and σ,
• for all length variable len(v), v is concretized as any string of length σ(len(v)).

γlength(σ
] ∈ D]

num) = { s | σ ∈ γnum(σ]),
v ∈ domσ \ { len(·) } ⇔ s(v) = σ(v);

len(v) ∈ domσ ⇔ s(v) ∈ Aσ(len(v)) }

Example 2.64 String length concretization
Keeping the abstract state σ] of Example 2.61, its concretization numerical concretization is

γnum(σ
]) = { (len(s) 7→ 4, len(t) 7→ 4, l 7→ vl) | 0 ≤ vl ≤ 128 }

We thus obtain

γlength(σ
]) =

{
(s 7→ c0 · · · c3, t 7→ c4 · · · c7, l 7→ vl)

∣∣ 0 ≤ vl ≤ 128, (c0, . . . , c7) ∈ [0, 127]8
}

In particular (s 7→ "abce", t 7→ "abcd", l 7→ 101) ∈ Σ.

2.4.3 Breaking out of a loop

Our semantics (both concrete and abstract) are currently defined by induction over the syntax.
It was easy to define since the control flow of the program matched the program’s structure.
However, there are cases where the control-flow is not linear: break statements stop the ex-
ecution of loops, return statements exit functions, raised exceptions interrupt the normal
execution until they are caught.

We focus here on adding a break statement to Imp. To that end, the states are now stored
as continuations tagged by a control-flow token, following the approach used by Cousot et al.
[35, footnote 4, page 6] in Astrée. The set of control-flow tokens is F = { cur,brk }. cur denotes
the normal control-flow, and brk is used to tag states that reached a break statement in the
currently analyzed loop body.

We give in Figure 2.14 the updated semantics of Imp with these control-flow tokens. Expres-
sions are not evaluated in a state tagged by brk, and the usual semantics applies for normal
states. The semantics of break transforms normal states reaching it into states tagged by the
brk token and keeps the other states already tagged with a brk token. The semantics of while
loops returns the union of:

• input states tagged brk before the loop. They must correspond to break statements in
the body of the loop immediately surrounding the current one. They are still tagged with
brk in the output so that they can reach the end of the outer loop.

• states of the loop invariant Σlfp that exited the loop through a break statement are
transformed back into normal states using the cur token (since the loop is exited),

• states of the loop invariant Σlfp denoting a normal execution are filtered by the negation
of the loop’s guard.

The semantics of other statements is lifted from the previous semantics: statements are exe-
cuted in the normal control flow, and skipped in states tagged by the brk token.

32 Chapter 2 – Static Analysis by Abstract Interpretation

EbrkJ · K : F × (V ⇀ Value)→ P(Value)

EbrkJ e K(cur, σ) def
= EJ e Kσ

SbrkJ · K : P(F × (V ⇀ Value))→ P(F × (V ⇀ Value))

SbrkJ break KΣ def
= { (brk, σ) | (cur, σ) ∈ Σ } ∪ { (brk, σ) ∈ Σ }

SbrkJ while (c) {s} KΣ def
=

let Σin = { (cur, σ) ∈ Σ } and Σlfp = lfp f in
{ (brk, σ) ∈ Σ } ∪ { (cur, σ) | (brk, σ) ∈ Σlfp } ∪ CJ¬c K{ (cur, σ) ∈ Σlfp }

with f(X)
def
= Σin ∪ SJ s K ◦ CJ c KX

SbrkJ s KΣ def
= { (cur, σ′) | σ′ ∈ SJ s Kσ, (cur, σ) ∈ Σ } ∪ { (brk, σ) ∈ Σ }

Figure 2.14: Semantics of Imp with control-flow tokens

Listing 2.4: Imp program with break

1 str s = "abcd";
2 int c = 99; ord('c') = 99
3 int i = 0;
4 while (i < len(s)) {
5 if(s[i] == c) break;
6 i += 1;
7 }

Example 2.65 Concrete semantics of a loop with a break
We illustrate the semantics on the example of Listing 2.4. This program searches for the
first position of the character ’c’ (whose value is stored in c), in the chain s. At the end of
line 3, there is only one state σ = cur, (s 7→ "abcd", c 7→ 99, i 7→ 0). We can compute lfp f
through successive loop unrollings:

(SbrkJ s K ◦ CbrkJ c K){σ } = { cur 7→ (s 7→ "abcd", c 7→ 99, i 7→ 1) }
(SbrkJ s K ◦ CbrkJ c K)2{σ } = { cur 7→ (s 7→ "abcd", c 7→ 99, i 7→ 2) }
(SbrkJ s K ◦ CbrkJ c K)3{σ } = {brk 7→ (s 7→ "abcd", c 7→ 99, i 7→ 2) }
∀n ≥ 3, (SbrkJ s K ◦ CbrkJ c K)n{σ } = (SbrkJ s K ◦ CbrkJ c K)3{σ }

Σlfp = { cur 7→ (s 7→ "abcd", c 7→ 99, i 7→ vi) | 0 ≤ vi ≤ 2 }
∪ {brk 7→ (s 7→ "abcd", c 7→ 99, i 7→ 2) }

The state after the loop is (cur 7→ (s 7→ "abcd", c 7→ 99, i 7→ 2)).

The abstract semantics is lifted similarly to the concrete, we only provide the signatures.

Value] = I

E#brkJ · K : (F ⇀ D]
num)→ Value]

S#brkJ · K : (F ⇀ D]
num)→ (F ⇀ D]

num)

2.4.4 – Relational invariants 33

Example 2.66 Abstract semantics of a loop with a break
We show how the fixpoint is reached in the abstract, assuming that the numerical domain
used is intervals (i.e., D]

num = V ⇀ I). At the end of line 3, the abstract state is σ] = cur 7→
(len(s) 7→ [4, 4], c 7→ [99, 99], i 7→ [0, 0]).

f0(⊥̇I) = ⊥̇I

f1(⊥̇I) = σ]

f2(⊥̇I) = f(σ]) = σ]∇̇I(σ
]ṫ]I(S

#
brkJ s K ◦ C#brkJ c K)σ])

= σ]∇̇I{brk 7→ (i ∈ [0, 0]) , cur 7→ (i 7→ [0, 1]) }
= { cur 7→ (i 7→ [0, 0]) }∇̇I{brk 7→ (i ∈ [0, 0]) , cur 7→ (i 7→ [0, 1]) }
= {brk 7→ (i ∈ [0, 0]) , cur 7→ (i 7→ [0,+∞]) }

f3(⊥̇I) = f(f2(⊥̇I)) = f2(⊥̇I)∇̇I(σ
]ṫ]I(S

#
brkJ s K ◦ C#brkJ c K)f2(⊥̇I))

= f2(⊥̇I)∇̇I(σ
]ṫ]I{brk 7→ (i 7→ [0, 3]) , cur 7→ (i 7→ [0, 4]) })

= {brk 7→ (i ∈ [0,+∞]) , cur 7→ (i 7→ [0,+∞]) }
∀n ≥ 4, fn(⊥̇I) = f3(⊥̇I)

With a decreasing iteration, we can obtain that the following abstract state is a fixpoint:

(brk 7→ (i ∈ [0, 3]) , cur 7→ (i 7→ [0, 4]))

From the transfer function of while, the result after the loop is

C#brkJ¬c K(cur 7→ i 7→ [0, 4])ṫ]I(cur 7→ i 7→ [0, 3]) = cur 7→ i 7→ [0, 4]

Remark 2.67 Widening and flow tokens
In Example 2.66, the widening is applied pointwise to each token. It is also possible to
define the widening only on the normal token cur, and the brk-labeled state will naturally
stabilize afterwards.

Remark 2.68 CFG analysis
A typical approach of static analysis is to propagate abstract states along the control-flow
graph (CFG) edges, using an iteration strategy (such as the one presented by Bourdoncle
[18]). In a naïve implementation, these analyses store one abstract state per CFG node,
which is memory-intensive. The approach we presented uses flow tokens, storing only
abstract states that are necessary for further computations. However, the iteration strategy
follows the program linearly, while CFG-based approaches can employ different iteration
strategies.

2.4.4 Relational invariants

Let us assume that we want to analyze the example of string search (Listing 2.4), but on an
arbitrary string s. This may be due to imprecision of the analysis or needed to infer generic
contracts over functions.

With a non-relational domain such as intervals, we will only be able to prove that len(s) ≥
0 ∧ i ≥ 0. In particular, it is not possible to prove that the index accesses s[i] in the loop are
valid, since a non-relational analysis cannot infer that i < len(s) when len(s) is not constant.
In order to remedy this problem, relational abstract domains have been introduced. Their goal

34 Chapter 2 – Static Analysis by Abstract Interpretation

is to express relationships between variables. The most popular relational abstract domains
are the polyhedra domain and the octagon domain respectively introduced by Cousot and
Halbwachs [34] and Miné [108]. A comparison of the different numerical domains is provided
in Figure 2.15 (the costs are meant with respect to the number of variables).

Domain Constraint Shape Memory Cost Cost per Operation

Intervals Vi ∈ [li, ui] linear linear
Octagons ±Vi ± Vj ≤ cij quadratic cubic
Polyhedra

∑
i αiVi ≤ βi exponential exponential

Figure 2.15: Comparison of the numerical abstract domains

Example 2.69 Graphic representations of numerical abstract domains
We show how the interval, octagon and polyhedra abstract domains represent the con-
straint 0 ≤ 2i ≤ len(s) in Figure 2.16. The interval domain is not relational, it can only
represent (i 7→ [0,+∞], len(s) 7→ [0,+∞]). Octagons cannot represent non-unitary con-
straints between variables, so the corresponding abstract element is overapproximated
0 ≤ i ≤ len(s). On the other hand, polyhedra can exactly represent the constraints.

len(s)

i

Interval

Octagon

Polyhedra

Figure 2.16: Interval, Octagon and Polyhedra Abstract Domains Representing 0 ≤ 2i ≤ len(s)

With either polyhedra or octagons as our underlying numerical domain, we would then be
able to prove that the state reachable after the loop in the string search program is

cur 7→ (i < len(l)) t] cur 7→ (i = len(l))

The first case corresponds to the loop not finding the character, and the second case to an
early break statement.

Remark 2.70 Drawbacks of relational domains
Relational abstract domains are powerful and improve the analysis’s precision, just as we
have seen. However, they also come with additional constraints:

2.4.5 – Summarization of string content 35

• Computational cost: operations on relational abstract domains are more costly in
terms of CPU and memory usage.

• Domain sharing: to have the best precision, all numerical variables should be shared
in the same relational abstract domain. In a non-relational setting, we could have de-
fined the string length domain of Section 2.4.2 with its own interval domain, different
from the one handling integer variables of the program. Since we want to keep the
best precision, we designed the string length domain as a domain delegating to an
underlying numerical domain. This approach is more complex, requiring specific def-
initions of the concretization functions (shown in Section 2.5), and careful handling
of reduced product (presented in the next chapter, in Section 3.3.4). It is, however,
more precise since we can infer relationships between the ghost length variables and
integer variables, such as 0 ≤ i ≤ len(l) in the case of the program of Listing 2.4.

2.4.5 Summarization of string content

The string length domain of Section 2.4.2 is useful to prove correct index accesses, but it is
imprecise to track characters’ values. In the basic program of Listing 2.5, the string length
domain is unable to prove that the assignment s[3] = s[3] - 1 is valid, since the imprecise
analysis inferred that s[3] - 1 can be -1, which is an invalid ASCII code.

Listing 2.5: Imp program with strings
1 str s = "bcde";
2 s[3] = s[3] - 1;

We thus introduce a new abstract domain for strings. For each string variable s, the ghost
variable ord(s) represents the ASCII codes contained by the string. Similarly to the string length
domain presented previously, this domain is stateless and delegates its numerical operations
to an underlying abstract domain D]

num. The only difference is that the expression evaluation
now returns an expression e′ ∈ E to be relational. Instead of an interval (or another abstract
value), we can thus translate a string access into its contents’ variable and infer relations
between the contents and other program variables.

E#strJ e K : D]
num → E

S#strJ s K : D]
num → D

]
num

There is however a further difficulty to handle that appears, as the auxiliary variable ord(s)
represents multiple concrete elements (i.e., the characters at all positions of the string). We
assume we have an unknown string s, whose characters are between two integers (or other
numerical variables) a and b, i.e. a ≤ ord(s) ≤ b. We consider two simple programs:

. x = s[0]; y = s[1]; If we perform a drop-in replacement of s[i] by ord(s), our abstract
state contains the constraint x = y = ord(s), which is unsound, since s[0] and s[1] can be
different in the concrete.

. s[3] = s[3] - 1; The drop-in replacement does not work either: a− 1 ≤ ord(s) ≤ b− 1 is
unsound too, since another character of s may have value b.

Intuitively, we need to perform temporary copies of the variable ord(s) for each access,
to distinguish between the concrete location actually referenced by the access and the other
locations also summarized by ord(s). These copies will not be equal to ord(s) since they may
represent other locations, but they are bound by the same constraints as ord(s). We introduce
two new operators to handle these cases. We provide their concrete definition. We refer to the
work of Gopan et al. [63], Siegel and Simon [135] for computable definitions in the abstract.

36 Chapter 2 – Static Analysis by Abstract Interpretation

Definition 2.71 Expand operator
The expand operator copies variable v into v′, meaning that variables v and v′ have the
same possible values. In the abstract, this means that constraints on v are duplicated to
be constraints on v′ too.

SJ expand(v, v′) KΣ = {σ[v′ 7→ z] | σ ∈ Σ, σ(v) = z }

Example 2.72 Handling x = s[0]; y = s[1];
In the first case, we could have expanded ord(s) into x and y, to get a ≤ v ≤ b,∀v ∈
{x, y,ord(s) }.

Definition 2.73 Fold operator
The fold operator performs the dual operation to expand. It removes v′ from the environ-
ment, and its value is added as a potential value for v.

SJ fold(v, v′) KΣ =
{
σ′
∣∣∣ ∃σ ∈ Σ, σ′(v) ∈ {σ(v), σ(v′) }∧

x ∈ domσ \ { v, v′ } ⇔ σ(x) = σ′(x)
}

Example 2.74 Handling s[3] = s[3] - 1;
In the second case, we could introduce a fresh variable t, such that t = s[3] - 1. Our
domain is then a ≤ ord(s) ≤ b, a − 1 ≤ t ≤ b − 1. We then fold t into ord(s), to get:
a− 1 ≤ ord(s) ≤ b.

Remark 2.75 Weak variables
Variables that may represent multiple concrete elements are called weak variables. As we
have seen, these weak variables have to be handled with special operators to be sound.

We suffix variables with a “weak” subscript to indicate weak variables (for example,
ord(s)weak). We introduce new assignment operators handling these variables to simplify
the upcoming definitions.

In the case of an assignment where the expression e contains weak variables, we ex-
pand all those weak variables using the eponymous function (these temporarily expanded
variables will be removed at the end of the assignment). If the left-hand side is weak too,
we introduce a fresh variable, which is then folded back into x.

S#numJx = e K = S#numJx = expanded(e) K

S#numJxweak = e K = S#numJ fold(x, fresh) K ◦ S#numJ fresh = expanded(e) K

We can now define the semantics of the string summarization domain, in Figure 2.17. Index
accesses are evaluated into their corresponding ghost variable, which is weak. Note that each
access is seen as potentially invalid in this domain since it does not track length.3 A string
declaration initializes its corresponding ghost variable to the range of ASCII codes (in that
case, a strong update is performed, so there is no need to tag the variable as weak). During

3We will combine both string domains in Section 2.4.6.

2.4.5 – Summarization of string content 37

an assignment of a constant string, we perform a strong update for the first character and
weak updates for the others. A string copy is seen as enforcing equality between two ghost
content variables (however, the ghost variable on the right-hand side has to be expanded, so
it is tagged as weak). To update a character, we check that the expression represents an ASCII
code and perform a weak update on the ghost variable.

E#strJ s[i] K
def
= E#numJord(s)weak K

S#strJ str s; K def
= S#numJord(s) = [0, 127] K

S#strJ s ∈ Vstr = c0 · · · cn−1 ∈ A∗ K def
=

S#numJord(s)weak = cn−1 K ◦ . . . ◦ S#numJord(s)weak = c1 K ◦ S#numJord(s) = c0 K

S#strJ s ∈ Vstr = s′ ∈ Vstr K
def
= S#numJord(s) = ord(s′)weak K

S#strJ s[i] = e K def
= S#numJord(s)weak = e K ◦ C#numJ 0 ≤ e ≤ 127 K

Figure 2.17: String summary abstract domain

Example 2.76 Weak update
In the concrete, we know that s = "bcdd" at the end of the program of Listing 2.5. In the
abstract, after the assignment of s, we have 98 ≤ ord(s) ≤ 101. Due to the weak update, we
can only infer that 97 ≤ ord(s) ≤ 101, which represents the set of strings containing only
the letters a, b, c, d.

The concretization of this domain is more involved. We start with an example. Let us
assume that the abstract state is σ] = 97 ≤ ord(s) < i ≤ 100. Its concretization consists of six
different states:

γnum(σ
]) =

(
i

ord(s)

)
∈
{(

98
97

)
,

(
99
97

)
,

(
99
98

)
,

(
100
97

)
,

(
100
98

)(
100
99

)}
Since ord(s) summarizes multiple concrete elements, we intuitively want to draw different

values from different states for each character of the string s. However, these draws should
be consistent, to enforce the relational constraints and be sound. For example, assume we
pick

(
i,ord(s)

)
among

(
99, 97

)
and

(
100, 99

)
. The case i = 99, s = "ac" should not be in the

concrete state since s[1] 6< i.
In other words, the concretization performs an expansion of the auxiliary variable ord(s)

into each concrete character.

Definition 2.77 String summarization concretization
Given Σ ∈ P(V → Z) and v ∈ V , Σ(v) is the set of images of v: Σ(v) = {σ(v) | v ∈ V }. We
write |X| for the cardinal of the set X .

The concretization creates concrete states s from a set of concrete numerical states
Σ ⊆ γnum(σ

]). This set Σ should be consistent on all variables v not handled by the string
summarization domain (i.e., |Σ(v)| = 1, except the auxiliary variables ord(·)). In that case,
the concrete state for these variables is s(v) = Σ(v). For auxiliary variables ord(v), s(v) will
be a string of any length, where all characters are picked in the set Σ(ord(v)).

38 Chapter 2 – Static Analysis by Abstract Interpretation

γstr(σ
]) = { s | Σ ⊆ γnum(σ]),

v ∈ domΣ \ {ord(·) } ⇔ (|Σ(v)| = 1 ∧ s(v) = Σ(v));

ord(v) ∈ domΣ⇔ ∃n ∈ N,∃(c0, . . . , cn−1) ∈ An,

(s(v) = c0 · · · cn−1 ∧ ∀i ∈ [0, n− 1], ci ∈ Σ(ord(v))) }

Example 2.78 String summarization concretization
We go back to the example where σ] = 97 ≤ ord(s) < i ≤ 100.

The coherent states of γnum(σ]) should have the same value for i. We consider only
the three coherent states Σ below (which maximize size), since subsets of Σ would yield
concrete states already covered by concrete states related to Σ. The first line are the values
of i, and the second of ord(s).

Σ ∈
{{(

98
97

)}
,

{(
99
97

)
;

(
99
98

)}
,

{(
100
97

)
;

(
100
98

)
;

(
100
99

)}}
Given each coherent state above, we respectively get the following concrete states

(where we use regular expressions to denote string sets):

• { (i 7→ 98, s 7→ vs) | vs ∈ a∗ },
• { (i 7→ 98, s 7→ vs) | vs ∈ (a|b)∗ },
• { (i 7→ 100, s 7→ vs) | vs ∈ (a|b|c)∗ }

Remark 2.79 Consistency conditions
The consistency conditions are only here to ensure that relations in the abstract are kept
in the concrete states. In a non-relational setting, there are no relations to preserve and
thus no need to ensure consistency.

2.4.6 Combining string length and summarization

Let us assume we run a modified version of the string search program (Listing 2.4), where we
search for a character c > 100 in the string s, consisting in a random string containing only the
characters "a" to "d". We would like the analysis to infer that the search will be unsuccessful
and that i = len(s). This is possible by combining the string length and string summarization
domains in a reduced product on top of a relational abstract domain. We will need to introduce
reduction rules for the evaluation of s[i]. Intuitively, the length domain will be able to prove
that the accesses are valid, and the summarization one will give a more precise result based
on the contents of the string.

There is, however, an issue related to the concretizations. Let us assume that our program
works over a string s. If both abstract domains are used and share the underlying numerical
abstract domain, this latter domain will contain variables len(s) and ord(s). The concretization
of the string length domain will provide a concrete state over s and ord(s) (since it preserves
variables it does not handle). The concretization of the string summarization domain will
provide a concrete state over s and len(s). In their current form, the concretizations cannot
be combined. It would be tempting the drop the auxiliary variables and intersect the resulting
concrete state, but this approach introduces imprecisions, as shown in the example below.

2.5 – Defining modular concretization functions 39

Example 2.80 Imprecise concretization
Let us consider the following numerical abstract state:

σ] = 0 ≤ ord(s)− 97 < len(s) ∧ 1 ≤ len(s) ≤ 2

The numerical concretization is

γnum(σ
]) =

(
len(s)
ord(s)

)
∈
{(

1
97

)
,

(
2
97

)
,

(
2
98

)}
The string length concretization yields

γlen(σ
]) =

(
s

ord(s)

)
∈
{(

c0
97

)
,

(
c0c1
97

)
,

(
c0c1
98

) ∣∣∣∣ (c0, c1) ∈ [0, 127]2
}

The string summarization domain returns

γstr(σ
]) =

(
len(s)
s

)
∈
{(

1
w1

)
,

(
2
w2

)
,

∣∣∣∣ w1 ∈ a∗, w2 ∈ (a|b)∗
}

In particular, we consider the string s = "b". We have ord(s) = 98, len(s) = 1, thus
ord(s)− 97 6< len(s). However, we have:(

"b"
97

)
∈ γlen(σ]) ∧

(
2
"b"

)
∈ γstr(σ])

Thus, the string concretizations cannot be combined.

It would always be possible to define a concretization for the product of the string ab-
stract domains, which would take into account both kind of constraints from the different
auxiliary variables. This definition would however be complicated and not reuse the previous
concretizations of each abstract domain. In the current approach, the concretizations are not
modular, and cannot be easily combined. This does not fit with our approach based on small,
specialized domains, delegating operations to other domains, used to improve precision of
relational analyses (cf. Remark 2.70).

2.5 Defining modular concretization functions
The objective of this section is to present a new approach, allowing to define concretization
functions modularly, while keeping them precise even when relational abstract domains are
used.

2.5.1 Generic approach

Given an abstract domain D], its concretization γD(σ]D ∈ D]) is a relation between a set of
concrete input states and a set of concrete output states.

γD(σ
]
D ∈ D

]) ∈ P (P(Din)× P(Dout))

In the examples of the string length domains, the concrete input state is purely numeric,
Din = V → Z, and the concrete output state also references strings, i.e. Dout = V → (Z ∪ A∗).

Definition 2.81 Relation projection operator

40 Chapter 2 – Static Analysis by Abstract Interpretation

Let R ∈ P(P(Din)× P(Dout)). We define relation projection operator, written ↓, as

↓ R = { o | (i, o) ∈ R }

Definition 2.82 Application of a concretization to another
Let us assume that we have two domains A and B, with DA

in = DB
out.

γA(σ
]
A) ∈ P

(
P(DA

in)× P(D
A
out)
)

γB(σ
]
B) ∈ P

(
P(DB

in)× P(D
B
out)
)

Intuitively, the application of concretization B to A consists in taking the image of A’s
concretization, starting from concrete elements in the output concrete state of B. The
formal definition is defined below.

γA

|
B

(
σ′

|
σ

)
= { (Σ,Σ′) ∈ γA(σ′) | Σ ⊆↓ ◦γB(σ) }

In particular, this application is a subset of the relations defined by γA.
The composition of concretization, which yields a relation between DB

in and D
A
out, will be

covered in the next chapter.

Remark 2.83 Concretizations of leaf domains
Leaf domains, such as numerical domains, have concretizations that do not represent rela-
tions. In order to unify signatures, we can see those concretizations as relations between
the unit value () (or the empty set) and the actual concretized state. We introduce an
artificial lifting operator, ↑unit, creating thse dummy relations.

↑unit:

{
P(D) → P(P(∅)× P(D))
Σ 7→ { (∅, {σ }) | σ ∈ Σ }

2.5.2 String summary domain

Definition 2.84 Modular string summary concretization
The modular string summary concretization is a relation between sets of purely numer-
ical concrete states with a single concrete state over integers and strings. It reuses the
constraints defined in the original concretization (Definition 2.77), that is:

• Σ should be consistent on variables not handled by the domain. On these variables,
the state is the same in the input and output.

• For auxiliary variables ord(v), σ(v) will be a string of any length, where all characters
are picked in the set Σ(ord(v)).

γstr(()) = {Σ, {σ } | Σ ∈ P(V → Z), σ ∈ V → Value,
v ∈ domΣ \ {ord(·) } ⇔ (|Σ(v)| = 1 ∧ σ(v) = Σ(v));

ord(v) ∈ domΣ⇔ ∃n ∈ N,∃(c0, . . . , cn−1) ∈ An,

(σ(v) = c0 · · · cn−1 ∧ ∀i ∈ [0, n− 1], ci ∈ Σ(ord(v))) }

2.5.3 – String length domain 41

Example 2.85 String summarization concretization
We go back to the example where σ] = 97 ≤ ord(s) < i ≤ 100. We search for the con-
cretization of this abstract state using the string summary domain, i.e., we compute the
application as defined in Definition 2.82.

γ str
|

num

(
()
|
σ]

)
= { (Σ, {σ }) ∈ γstr(()) | Σ ⊆ γnum(σ]) }

In particular, the following elements are part of the application:{(
98
97

)}
,

{(
98
c

) ∣∣∣∣ w ∈ a∗ } ;{(
99
97

)
;

(
99
98

)}
,

{(
99
w

) ∣∣∣∣ w ∈ (a|b)∗
}
;{(

100
97

)
;

(
100
98

)
;

(
100
99

)}
,

{(
100
w

) ∣∣∣∣ w ∈ (a|b|c)∗
}

2.5.3 String length domain

Contrary to the string summarization domain, the string length one does not require combin-
ing multiple concrete input states to create output states. We can thus define a simplified
concretization over pairs of concrete states, which will be lifted afterward.

Definition 2.86 Simplified string length concretization
The concretization transforms an input concrete state, which is purely numerical, into an
output concrete state, where integers and strings are used. Bindings of variables that are
not defined by the domain are kept as-is. Given an auxiliary variable len(v), the output
concrete state binds v to any string having length ρ(len(v)).

γlen(()) = { (ρ, ρ′) | ρ ∈ V ⇀ Z, ρ′ ∈ V → Value
v ∈ domρ \ { len(·) } ⇔ ρ′(v) = ρ(v);

len(v) ∈ domρ⇔ ρ′(v) ∈ Aρ(len(v)) }

Definition 2.87 One-to-many lifting operator
↑ transforms a set of pairs into a pair of sets respecting membership of the initial pairs:

↑:
{
P(A×B) → P(P(A)× P(B))

X 7→ {Σa,Σb | ∀σa ∈ Σa, (σa, σb) ∈ X ⇔ σb ∈ Σb }

For example, if X = { (1,′ a′); (2,′ b′) }, we have

↑ X =
{
({ 1 }, { ′a′ }); ({ 2 }, { ′b′ }); ({ 1; 2 }, { ′a′;′ b′ })

}

Definition 2.88 Full, relational string length concretization
The relational string length concretization, written γ ˙len, is the lifting of the simplified con-

42 Chapter 2 – Static Analysis by Abstract Interpretation

cretization defined before.
γ ˙len = ↑ ◦γlen

Example 2.89 String length concretization
Keeping the abstract state σ] of Example 2.61, its concretization is

γnum(σ
]) = { (len(s) 7→ 4, len(t) 7→ 4, l 7→ vl) | 0 ≤ vl ≤ 128 }

The application of this numerical state on the string length concretization yields:

γ ˙len
|

num

(
()
|
σ]

)
=↑
({

(len(s) 7→ 4, len(t) 7→ 4, l 7→ vl),

(s 7→ c0 · · · c3, t 7→ c4 · · · c7, l 7→ vl)
∣∣∣ 0 ≤ vl ≤ 128, (c0, · · · , c7) ∈ [0, 127]8

})
2.5.4 Combining both concretizations

When both string domains are used in a product, we can now easily define the concretization
of the latter as the intersection of the relations defined by the concretization of the string
domains. We show how the abstract state that was not precisely concretized in the usual
framework (in Example 2.80) is concretized in our case.

Example 2.90 Concretization of the product of string domains
Let us illustrate the concretizations, starting from the following abstract state:

σ] = 0 ≤ ord(s)− 97 < len(s) ∧ 1 ≤ len(s) ≤ 2

γnum(σ
]) =

(
len(s)
ord(s)

)
∈
{(

1
97

)
,

(
2
97

)
,

(
2
98

)}
γ ˙len

|
num

(
()
|
σ]

)
=↑
({ (

1
97

)
,

(
c
97

) ∣∣∣∣ c ∈ A} ∪{(2
97

)
,

(
c
97

) ∣∣∣∣ c ∈ A2

}

∪
{(

2
98

)
,

(
c
98

) ∣∣∣∣ c ∈ A2

})
γ str

|
num

(
()
|
σ]

)
=

{{(
1
97

)}
,

{(
1
c

)} ∣∣∣∣ c ∈ a∗ } ∪{{(2
97

)}
,

{(
2
c

)} ∣∣∣∣ c ∈ a∗ }

∪
{{(

2
98

)}
,

{(
2
c

)} ∣∣∣∣ c ∈ b∗ } ∪{{(2
97

)
,

(
2
98

)}
,

{(
2
c

)} ∣∣∣∣ c ∈ (a|b)∗
}

The second coordinate of the states concretized by the string domains have different map-
ping domains: the length one has (s,ord(s)), and the summarization one has (len(s), s).
We define ∩s the intersection keeping only common variables.

We can now intersect the applications of the concretizations:

γ ˙len∧str
|

num

= γ ˙len
|

num

∩s γ str
|

num

2.6 – Conclusion 43

Contrary to Example 2.80, the intersection is now guided by the input concretized state,

which will allow us to be precise. For the input
{(

1
97

)}
, the intersection of the second

coordinates yields:{(
s

ord(s)

)
7→
(
c
97

) ∣∣∣∣ c ∈ A} ∩s {(len(s)s

)
7→
(

1
an

) ∣∣∣∣ n ∈ N
}

= { s 7→ a }

Given
{(

2
97

)
,

(
2
98

)}
as input, the second coordinate is:

{(
s

ord(s)

)
∈
{(

c
97

) ∣∣∣∣ c ∈ A2

}
,

{(
c
97

) ∣∣∣∣ c ∈ A2

}}
∩s
{(

len(s)
s

)
7→
(
2
c

) ∣∣∣∣ c ∈ (a|b)∗
}

= { s 7→ c | c ∈ A2 ∧ c ∈ (a|b)∗ }
= { s 7→ c | c ∈ { aa, ab, ba, bb } }

Hence, we find that the concretized state of σ] is a, aa, ab, ba, bb.

2.6 Conclusion
We have defined a concrete, but uncomputable collecting semantics for the Imp language. In
order to define computable analyses, we have used abstractions, such as the one from the
set of integers to intervals, or the summarization of strings content. We also have defined a
loop approximation method that terminates and relies on a specific widening operator. We
have shown how ghost variables can be used to delegate work to underlying domains, which
is especially helpful to improve the precision of the analysis when using relational numerical
domains. We have developed a new framework to define modular concretizations, in line with
the modular definitions of the abstract domains we used. This delegation-based approach is
one of the core concepts used in Mopsa, the static analyzer used in this thesis and presented
in the next chapter.

Part II

Base Abstractions

3

Mopsa

As we have seen in the previous chapter, combining abstract domains is key to improving
the precision of a relational analyzer. We have also studied domains delegating part of their
operations to an underlying domain (such as the string length domain of Section 2.4.2 relying
on a numerical domain). These design decisions also ease their implementation.

This chapter presents the Mopsa static analyzer, in which the analyses described in this
thesis will be implemented. Mopsa stands for Modular Open Platform for Static Analysis. It
is written in OCaml. One of the goals of Mopsa is to let developers define abstract domains
modularly (i.e., as independently from each other as possible), while allowing them to coop-
erate and communicate. Some of these abstract domains may be relational, and we want to
allow relational communication between them. Thus, expressions are evaluated into other ex-
pressions rather than abstract values. In addition, multiple domains can be composed on top
of an underlying domain, resulting in combinations representable as directed acyclic graphs,
while other static analyzers rely on trees of abstract domains. For example, the string length
and string summarization domain used in Example 2.90 share an underlying relational nu-
meric domain, allowing to express relationships between the lengths and contents of strings.
A schematic representation of this example is provided in Figure 3.2. Another goal of Mopsa
is to support the analysis of multiple languages (it currently targets C and Python). Using this
approach, we can define our analyses in layers, which also eases implementation and main-
tenance. Some of the innermost layers are shared between the languages, thus factoring the
codebase and simplifying support for new languages. Analyses are defined using configuration
files, describing how abstract domains are combined. When invoked, Mopsa parses the config-
uration file, dynamically instanciates the abstract domains and constructs the abstract state
from the configuration. Each analyzed expression (or statement) flows from the top domain of
the configuration to the bottom until one domain handles it.

We start by showing the design choices of some state-of-the-art static analyzers, and com-
pare to our design in Mopsa. We then describe the abstract syntax tree (AST) on which Mopsa
operates, the domains’ signature, the notion of hooks, acting as observers of the analysis. We
finish by defining modular concretizations of abstract domains from a theoretical standpoint.
Sections 3.2 and 3.3 are close to a previously published description of Mopsa [82].

3.1 Related work

We start with a brief overview of related static analyzers. We take a look at Infer, TAJS, Frama-
C’s Eva, and Astrée. Analyzers related to Python or performing multilanguage analyses will be

48 Chapter 3 – Mopsa

described in Sections 7.7 and 11.7 respectively. Except for Infer, the analyzers described here
focus on a single language.

3.1.1 Infer

Infer [48, 45] is a static analyzer developed by Facebook, which aims at helping developers find
bugs in their commits during continuous integration. Thus, its main objective is to be fast and
have a low false-positive rate. Soundness is not often sought in the analyses defined.

Infer can analyze Java and C/C++/Objective-C programs. Programs written in these sup-
ported languages are statically translated into a reduced intermediate representation called
SIL, using four instructions1. Infer performs an on-demand bottom-up analysis using proce-
dure summaries, and relies on a CFG representation to iterate over nodes. Different analyses
can be defined using the provided framework. Some analyses may reuse others’ results, but
they cannot mutually cooperate as a reduced product does.

Each analysis can choose its iteration strategy (forward or backward), initial starting ab-
stract value, as well as the representations of function summaries. It is thus difficult to provide
a big picture representation of what Infer’s analyses generally do. We thus study three differ-
ent analyses below, all of which work by forward iterations. Given an abstract domain and its
transfer function over SIL statements, Infer can lift an intraprocedural analysis into an inter-
procedural one. It is also possible to define interprocedural analyses and custom summaries
directly.

. InferBO is used to detect out-of-bound accesses in arrays2. It relies on a symbolic interval
domain. Function summaries consist in necessary conditions that need to be satisfied to
avoid out-of-bound accesses3.

. RacerD detects data races in programs. It does not rely on numerical domains. Example
summaries are shown [13, page 4].

. Pulse performs an underapproximating analysis aiming at detecting memory errors [126].
Summaries4 consist of a pair of pre/post symbolic memory states combined with a nu-
merical interval domain. The pre state describes a refinment of the entry state that leads
to the current program point being analyzed. The post state describes the state at the
current program point.

Mopsa also targets multiple languages. Infer operates on a small intermediate language.
A benefit of this approach is to reduce the number of constructions that need to be ana-
lyzed. Supporting a new language is only a matter of adding a static translation from the
source language to the intermediate representation. This approach has several downsides:
the translation into the intermediate language may reduce the precision of the analyses, and
the intermediate language may not be appropriate for every programming language. For exam-
ple, Infer does not support any dynamic programming language such as Python or JavaScript
and its intermediate representation may need changes to precisely handle features such as
dynamic typing or asynchronous computations. Mopsa currently supports only fully context-
sensitive approaches, compared to the bottom-up function analysis of Infer. It relies on rela-
tional numerical abstract domains to be precise. Its goal is to combine domains rather than
have specialized independent checkers.

1https://github.com/facebook/infer/blob/v1.1.0/infer/src/IR/Sil.mli#L40
2https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/
3https://github.com/facebook/infer/blob/v1.1.0/infer/src/bufferoverrun/bufferOverrunDomain.

ml#L1910
4https://github.com/facebook/infer/blob/v1.1.0/infer/src/pulse/PulseAbductiveDomain.mli#L58

https://github.com/facebook/infer/blob/v1.1.0/infer/src/IR/Sil.mli#L40
https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/
https://github.com/facebook/infer/blob/v1.1.0/infer/src/bufferoverrun/bufferOverrunDomain.ml#L1910
https://github.com/facebook/infer/blob/v1.1.0/infer/src/bufferoverrun/bufferOverrunDomain.ml#L1910
https://github.com/facebook/infer/blob/v1.1.0/infer/src/pulse/PulseAbductiveDomain.mli#L58

3.1.2 – TAJS 49

3.1.2 TAJS

TAJS [74] is a sound static analyzer for JavaScript programs, aiming at detecting type-related
errors. It performs a context-sensitive, CFG-based analysis. Similarly to Infer, TAJS relies on a
simplified intermediate representation with around 20 instructions [74, page 7]. TAJS relies on
a constants domain for numerical values.

Jensen et al. [75] improve the interprocedural analysis by making opaque the fields of ob-
jects passed to functions. If specific fields are required during the analysis of the function,
they can be recovered. If an object’s field is opaque in a function, but its value is changed
outside of the function, there is no need to analyze the function again, reducing the cost of
the interprocedural analysis.

A prevalent usecase of JavaScript is to interact with HTML pages, possibly to react to user
input. A specific modeling of these interactions has been proposed by Jensen et al. [76].

JavaScript programs often use the eval function to interpret the passed string as a JavaScript
program and evaluate it. Jensen et al. [77] propose an approach to remove calls to eval where
the passed string is semantically constant, through a constant propagation.

Stein et al. [142] added backward evaluation mechanisms in TAJS to improve the precision at
critical points and gain back relational information during unknown property accesses. Another
approach for improving precision is the notion of value partitioning introduced by Nielsen and
Møller [119], where an abstract value domain is locally partitioned given a , such as an imprecise
read of a property.

Kristensen andMøller [87] define a notion of reasonably most-general client for the analysis
of TypeScript libraries. They then leverage TAJS to analyze the libraries using this client and
detect errors in the type annotations of the libraries.

Contrary to TAJS, Mopsa aims at performing relational numerical analyses, and supports the
analysis of multiple languages. It would be interesting to extend the interprocedural optimiza-
tions of Jensen et al. [75] to a language-agnostic approach in Mopsa. Although Mopsa targets
the analysis of Python programs, it does not support the eval statement for now, which seems
less used than in JavaScript. Mopsa does not support the standalone analysis of libraries for
now.

3.1.3 Frama-C

Frama-C provides a platform for C program analysis and verification. It features different plug-
ins, allowing to perform deductive verification, runtime verification, or static analysis. The first
static analysis plug-in of Frama-C was Value, a non-relational monolithic abstract domain. It
has been upgraded by Bühler [22] [15] to Eva, which provides a more modular architecture
adding new abstract domains (including an equality domain). Eva also provides better coop-
eration and communication mechanisms between the different supported abstractions. Eva
performs sound, whole-program, context-sensitive analyses. Recursive functions are not sup-
ported.

Eva performs forward iterations over the CFG of the program, where a modified C interme-
diate representation is used (loops are transformed into infinite while with break statements,
functions have a single return statement, the ternary conditional operator is explicitly rewrit-
ten – cf. [22, Section 4.1.2]).

Given a set of abstract domainsD1, . . . ,Dn defining an analysis, an expression e is evaluated
into value abstractions v1, . . . , vn for all those domains. Value abstractions abstract a set of
values and have a lattice structure. Domains communicate through these abstract values, and
reduce the evaluation of e to v1 u] . . . u] vn.

In its current form, Eva relies on a main abstract domain called Cvalue (the previous mono-
lithic abstract domain of its predecessor plug-in). Additional domains can be activated, such

50 Chapter 3 – Mopsa

as a symbolic equalities domain. Bindings to Apron’s [73] relational abstract domains are avail-
able but only work on program variables declared as integers.

Frama-C is more stable and mature than Mopsa. It has been successfully used in industrial
settings, for example to analyze the code of French nuclear power plants [122]. Mopsa aims
at creating more collaborative, relational analyses than what can be currently expressed in
Frama-C.

3.1.4 Astrée

Astrée is a static analyzer of C programs specialized in the certification of critical embedded
software. It performs a sound, whole-program, context-sensitive analysis. It does not han-
dle recursive functions, but supports dynamic memory allocation. Astrée has been recently
upgraded to provide more modular abstractions through the work of Chevalier [27].

Astrée’s analysis proceeds by induction on the syntax. The structure of Astrée’s domain
is described in [105, page 61], [27, page 168], and the upgraded version [27, page 298]. A top-
most domain handles trace partitioning. An environment domain follows; it handles non-local
control-flow. A struct domain rewrites C variables and dereferences into cell accesses [107].
The base-offset domain handles pointers by delegating its operations to the shared numeri-
cal domain. This approach relying on the cell abstraction and a base-offset domain is reused
in the analysis of C programs in Mopsa [121]. A combination of relational and non-relational
numerical domains is used at the bottom of the analyzer.

A notable improvement of the new version is the use of ghost variables to define program
properties that can be shared in a (relational) numerical domain to improve precision. These
ghost variables are used to represent pointers offsets or slices of variables whose values are
bitwise manipulated. A whole theoretical framework has been developed by Chevalier and
Feret [28] to ensure that analyses using ghost variables are sound and terminate. In all cases,
ghost variables build upon variables, be it program variables or ghost variables themselves.
The key dispenser, translator, and driver domains [27, page 298] act as centralized domains han-
dling these ghost variables. Mopsa also relies on auxiliary variables to define some program
properties in underlying, potentially relational, numerical domains.

Contrary to Astrée, each domain is responsible for its auxiliary variables in Mopsa. In Mopsa,
and in particular in the analysis of Python programs, auxiliary variables are also used on ab-
stract addresses.

Astrée is much more mature than Mopsa. It has been successfully applied for the verifi-
cation of safety-critical software, such as the control command of Airbus planes [43], and has
been commercialized by AbsInt since 2009. In addition, some versions of Astrée support back-
ward analyses [131], allowing to refine an input state from which runtime errors were detected,
and rule out some false alarms. Astrée also supports the analysis of multi-threaded programs
to detect for example data races [109, 105]. The memory model used is compatible with PSO.
Astrée has been recently extended by Chevalier [27] to support the analysis of snippets of
assembly language embedded in C code.

Mopsa explores a different design space, with the goal of being more modular and exten-
sible than Astrée. It is also not specialized to a specific input language, and has a different
architecture.

3.1.5 Framework of Keidel et al.

Keidel et al. [84] defined an approach to perform soundness proofs locally, on each abstract
domain. Their approach make soundness proofs easier and lighter. Keidel and Erdweg [83]
define modular abstract domains that can be combined by transformers, where the sound-
ness proofs of their previous work apply. They however make the assumption that abstract
domains are non-relational maps from variable to abstract values. In constrat, one of the

3.2 – Abstract syntax tree (AST) 51

main goals of Mopsa is to perform relational analyses. We have already seen in the previous
chapter that defining analyses and concretizations in a relational setting is significantly more
complicated. For example, the consistency criterion on concrete input states in the case of
the string summarization concretization (Definition 2.77) was required to handle the case of
relational domains. In the case of non-relational domains, this property is always ensured.

3.2 Abstract syntax tree (AST)

Similarly to Astrée, Mopsa performs an analysis by induction on the syntax, rather than by
iterating over a control-flow graph (the approaches were compared in Remark 2.68). Mopsa
uses a single AST, which is extended when needed to support new languages. This way, it
keeps the high-level structure of parsed programs. A downside of this approach is the high
number of AST nodes an analysis needs to support. This is mitigated by dynamic translations
from language-specific AST nodes to language-agnostic ones (e.g., Python and C loops shown
in Section 3.2.4), which will be analyzed by so-called “universal” abstract domains. For now,
Mopsa supports the following languages :

• a large subset of Python 3, using a dedicated parser originally developed by Fromherz
et al. [54],

• most of C, using Clang’s parser,
• a contract annotation language close to ACSL [7] used to model library functions for C
programs [121],

• universal, a simple language close to the one described in Chapter 2.

We illustrate the inner workings of our approach on the case of loop statements. We start
by defining elementary expressions and statements used in our examples (including support
for basic while loops of Imp). We explain how a domain would compute an approximate fixpoint
for these loops. We extend our approach to the cases of Python and C loops.

3.2.1 Elementary expressions and statements

The syntactic elements of Mopsa include variables, constants, types, binary operators, expres-
sions and statements. All these types are defined as records consisting of multiple fields. The
main field of interest is the kind, which is an extensible variant type, meaning that any OCaml
module can further extend it. Additional fields include the program ranges for expressions and
statements, and the type for variables and expressions.

Definition 3.1 The var type
Variables are defined in Mopsa using the code shown in Listing 3.1. The type of variables,
var, is defined using four different fields:

. vname, which is the unique name of the variable;

. vkind, the kind of the variable, which should be an inhabitant of var_kind;

. vtyp, the type of the variable;

. vmode, the mode of the variable (weak or strong).

We show a base variant of the var_kind type. This variant is used for original variables
present in the analyzed program. V_uniq represents variables identified by a unique integer
identifier, and having a string identifier (coming from the source code and used for printing).

52 Chapter 3 – Mopsa

Listing 3.1: Declaration of base variables
1 type var_kind = ..
2
3 type var = {
4 vname : string;
5 vkind : var_kind;
6 vtyp : typ;
7 vmode : mode;
8 }
9
10 type var_kind +=
11 (** Variables identified by their unique id *)
12 | V_uniq of string (** Original name *) *
13 int (** Unique ID *)

Definition 3.2 The expr type
Expressions are defined in Listing 3.2. They rely on a kind (an extensible variant), a type and
a range of program locations from which the expression comes. The variant type expr_kind
can be initially defined with the following variants :

. E_var, for variables.

. E_constant, denoting constants (which is also an extensible type, not detailed here).

. E_not, for the boolean negation of an expression.

. E_binop, describing a binary operation (operator is also extensible) over two expres-
sions.

Listing 3.2: Declaration of universal expressions
1 type expr_kind = ..
2
3 type expr = {
4 ekind: expr_kind;
5 etyp: typ;
6 erange: Location.range;
7 }
8
9 type expr_kind +=
10 | E_var of var * mode option
11 | E_constant of constant
12 | E_not of expr
13 | E_binop of operator * expr * expr

Definition 3.3 The stmt type
The declaration of the stmt type is shown in Listing 3.3. Statements are defined by a
kind and a range of program locations. The first four variants defined (S_add, S_remove,
S_expand, S_fold) are used to modify the domain (of variables, or addresses), on which
an abstract domain is defined. S_assume is used to filter the abstract state so that the pro-
vided condition is satisfied. The last three variants are more usual. S_assign expresses an
assignment between two expressions. S_block defines a sequence of statements. S_while
defines a while loop.

Listing 3.3: Declaration of universal statements
1 type stmt_kind = ..
2
3 type stmt = {

3.2.2 – A domain handling while loops 53

4 skind : stmt_kind;
5 srange : Location.range;
6 }
7
8 type stmt_kind +=
9 | S_add of expr
10 | S_remove of expr
11 | S_expand of expr * expr list
12 | S_fold of expr * expr list
13
14 | S_assume of expr
15
16 | S_assign of expr * expr
17 | S_block of stmt list
18 | S_while of expr * stmt

Remark 3.4 Availability of newly added variants
When a kind is extended with a new variant, the variant becomes available everywhere.
Particularly, it can be used as subnodes of instructions defined previously.

For example, we can extend expression with E_subscript to denote index accesses in
strings (as defined in the previous chapter).

type expr_kind += E_subscript of expr * expr

Any expression can now use E_subscript.

Remark 3.5 Ghost variables
The variant V_var_attr of var_kind is shown in Listing 3.4. It is used to define ghost
variables on top of other variables. For example, one way to define the ghost variable
len(s) of Section 2.4.2 is through V_var_attr (s, "len").

Listing 3.4: Variant for auxiliary variables built on top of other variables
1 type var_kind +=
2 | V_var_attr of var (** Attach variable *)
3 * string (** Attribute *)

Remark 3.6 Domains handling ghost variables
Contrary to Astrée where ghost variables are handled centrally by one domain, each domain
is responsible for its ghost variables. For example, if the variable s is deleted through the
statement S_remove s, it is up to the string length domain to translate this statement into
the deletion of len(s) (i.e., by executing S_remove (V_var_attr (s, "len"))). We show
the detailed implementation of this case in Remark 3.21. Another difference with Astrée
is that ghost variables can also be built upon abstract addresses, which are introduced
by dynamic memory allocation abstractions, such as the recency abstraction introduced in
Chapter 4.

3.2.2 A domain handling while loops

We show excerpts of the domain computing loop fixpoints in Listing 3.5. The next section
(3.3) will explain in detail the signature of abstract domains. exec defines the local transfer
function over statements for this domain. It takes three arguments: the statement to analyze,
a manager referencing the global transfer functions, and the analysis’ state.

54 Chapter 3 – Mopsa

The transfer function of S_while calls the lfp function. Then, it calls recursively the whole
analysis (using man.exec, described later in Section 3.3.2.2) to filter the reached fixpoint by the
negation of the loop’s condition.

lfp performs an accelerated fixpoint computation. It starts by computing the effects of
the loop’s condition and body on the input state, by calling recursively the whole analysis.
mk_block and mk_assume are helper functions creating statements whose stmt_kind is re-
spectively S_block and S_assume. It the result is stable, we return the previously computed
state5. Otherwise, lfp calls itself recursively, on a widened state.

We can intuitively notice that the analysis progresses: recursive calls are performed on
strict sub-nodes of the S_while statement. This argument would also be used to prove termi-
nation of the analysis.

Listing 3.5: Excerpts of the domain computing fixpoint for the S_while statement
1 let rec lfp man cond body flow_init flow =
2 let flow' = man.exec (mk_block [mk_assume cond; body]) flow in
3 if man.lattice.subset (man.lattice.join flow_init flow') flow then flow'
4 else lfp man cond body flow_init (man.lattice.widen flow flow')
5
6 let exec stmt man flow = match stmt_kind stmt with
7 | S_while (cond, body) ->
8 let lfp_flow = lfp man cond body flow flow in
9 Some (man.exec (mk_assume (mk_not cond)) lfp_flow)
10 | _ -> None

3.2.3 Extending the AST with Python and C loops

Remark 3.7 Convention: color codes of languages
In the rest of this thesis, we use the following color code convention: Universal constructors
are written in blue, Python ones in green, and C ones in orange. The previous variants of
expr_kind and stmt_kind were all part of Universal.

The Python frontend adds two new loop nodes to the statement kind. The additional state-
ment of each loop variant corresponds to the else clause of the loops. The detailed semantics
of Python loops will be shown in Section 6.2.7.

type stmt_kind += S_py_for of expr * expr * stmt * stmt
| S_py_while of expr * stmt * stmt

The C frontend extends statements with:
type stmt_kind += S_c_for of stmt * expr option * expr option * stmt

| S_c_do_while of stmt * expr

Standard while loops of C are identical to Universal, and thus use the variant of the Universal
language. We add the case of for and do-while loops, instead of translating them directly
into while loops.

Remark 3.8 Multiple languages in the AST
All languages are mixed in the AST. We can thus perform partial rewriting mixing different
languages (as shown in Section 3.2.4). It will also be convenient to analyze multilanguage
programs in Chapter 11.

5Since we return flow', we obtain a free decreasing iteration, as we stated at the end of Section 2.3.8.

3.2.4 – Dynamically rewriting Python and C loops 55

3.2.4 Dynamically rewriting Python and C loops

During the analysis, AST nodes can be rewritten into other nodes. This dynamic rewriting is
used to perform translations from language-specific constructs to simpler constructs. The case
of loops is schematically shown in Figure 3.1. The domain C.Loops rewrites C for loops into a
statement containing a Universal while loop. These Universal while loops are handled by the
domain Universal.Loops which computes a fixpoint using widening. Similarly, the domain
Python.Loops rewrites Python for loops into a statement containing a Universal loop, which
is then handled by the Universal loop domain. The Python rewriting shown here is the most
general one (cf. Section 6.2.7) where an iterator is explicitly constructed and used.

for(init; cond; incr) body

C.Loops (Listing 3.6)

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Loops

Rewrite and analyze recursively
Optimize for some semantic cases

it = iter(iterable)
while(1) {

try: target = next(it)
except StopIteration: break
body

}
clean it, target

Universal.Loops (Listing 3.5)

Matches while(...){...}
Computes fixpoint using widening

Figure 3.1: Example of dynamic rewriting

The implementation of the transfer function of the C loop iterator as done in Mopsa is
shown in Listing 3.6. In both cases, the statements are rewritten into a block of statements
containing a universal S_while loop. This loop will be handled by the universal loop domain
shown in Listing 3.5. In these cases, we can argue that the analysis progresses because the
recursive calls will handle a more elementary kind of loop, in a simplified language (S_while).

Listing 3.6: Transfer function of C loop iterator
1 let exec stmt man flow = match stmt_kind stmt with
2 | S_c_for(init, cond, incr, body) ->
3 let new_stmt =
4 mk_block [init;
5 mk_while(cond,
6 mk_block [body; incr]);
7 mk_clean init] in
8 Some (man.exec new_stmt flow)
9 | S_c_do_while(body, cond) ->
10 let new_stmt =
11 mk_block [body;
12 mk_while(cond, body)] in
13 Some (man.exec new_stmt flow)
14 | _ -> None

Remark 3.9 Iterators are stateless domains
In Mopsa, iterators are a simplified case of abstract domains with no local abstract state.
They can be put anywhere in the combination of domains defining an analysis. They have
access to the abstract state, which can be used to perform semantically-guided rewritings.

56 Chapter 3 – Mopsa

Example 3.10 Semantically-optimized rewriting
Let us consider the case of Python for loops. If the iterable is a range object, we would
like to perform a more natural rewriting with explicit increments on target, that can ease
the search for precise loop invariants.

However, Python is dynamically typed, so there is no systematic syntactic information
we can use to optimize the rewriting in the case of range. With a syntactic approach, we
could optimize the case with explicit range such as for x in range(10): ..., but not the
case of the loop for x in f(): ..., where f returns a range object.

In our case, the Python loop iterator starts by evaluating iterable. At the end of the
evaluation, we obtain semantic information on the iterable’s type. The iterator can then
decide which rewriting to perform, and would work on both cases mentioned before.

3.3 Domains

We start by explaining how Mopsa transforms configuration files into analyses. This construc-
tion motivates the need for a unified domain signature, detailed in Section 3.3.2. We study two
specific cases: non-relational domains in Section 3.3.3, and the combination of domains into
a reduced product in Section 3.3.4. We explain how domains can broadcast specific requests
for information to other domains in Section 3.3.5.

3.3.1 Defining analyses by combining domains

Users define analyses in Mopsa through a configuration file describing which domains are used
and how they are combined. A configuration is a directed acyclic graph (DAG), where nodes are
either domains or domain combinators. Each analyzed expression (or statement) flows from
the top domain of the configuration to the bottom until one domain treats it (i.e., it returns a
value that is not None). A configuration for the analysis of Imp programs of Chapter 2 is shown
in Figure 3.2. U.program is the frontend handling the import from the parser. U.intraproc
defines the execution of conditionals and sequence of statements. U.loops computes an ab-
stract fixpoint for loops. Domains U.str_len and U.str_sum represent the domains presented
in Sections 2.4.2 and 2.4.5 respectively. They are put in a reduced product (as described in
Section 2.4.6) and share an underlying numerical domain U.numeric handling assignments of
numeric variables and conditional filtering over numeric expressions. More involved configu-
rations will be shown in Figures 7.10 and 8.6 for the Python analyses and in Figure 11.9 for the
multilanguage analysis.

U.program # U.intraproc # U.loops #

∧

U.str_len U.str_sum

◦

U.numeric

Sequence

∧ Reduced product

◦ Composition

Figure 3.2: Analysis configuration in Mopsa

Domains have a unified signature simplifying their combination. Combinators build new
domains, combining the types and transfer functions of input domains. Specifically, the whole
analysis behaves as a domain.

3.3.2 – Domain signature 57

The sequence combinator tries to execute the transfer functions of the left-hand side do-
main. If this domain does not handle the passed statement or expression, the transfer function
of domain on the right-hand side of the sequence will be called. In the case of a reduced prod-
uct, transfer functions on both sides are called before reductions are performed. The compose
combinator is an extended case of the sequence combinator6.

3.3.2 Domain signature

Mopsa’s abstract domains abide by the domain signature shown in Listing 3.7. We successively
explain each part of the signature in this section.

Listing 3.7: General domain signature
1 (* Section 3.3.2.2 *)
2 type ('a, 't) man = {
3 get : 'a -> 't;
4 set : 't -> 'a -> 'a;
5
6 lattice : 'a lattice;
7
8 exec : stmt -> 'a flow -> 'a post;
9 eval : expr -> 'a flow -> 'a eval;
10
11 ask : ('a,'r) query -> 'a flow -> 'r;
12 print_expr : 'a flow -> (printer -> expr -> unit);
13 get_effects : teffect -> teffect;
14 set_effects : teffect -> teffect -> teffect;
15 }
16
17 (* Section 3.3.2.4 *)
18 type 'a post = ('a, unit) cases
19 type 'a eval = ('a, expr) cases
20
21 module type DOMAIN =
22 sig
23 (* Section 3.3.2.1 *)
24 type t
25 val id : t id
26 val name : string
27 val bottom: t
28 val top: t
29 val is_bottom: t -> bool
30 val subset: t -> t -> bool
31 val join: t -> t -> t
32 val meet: t -> t -> t
33 val widen: 'a ctx -> t -> t -> t
34
35 (* Section 3.3.2.5 *)
36 val init : program -> ('a, t) man -> 'a flow -> 'a flow
37 val exec : stmt -> ('a, t) man -> 'a flow -> 'a post option
38 val eval : expr -> ('a, t) man -> 'a flow -> 'a eval option
39
40 (* Section 3.3.2.6 *)
41 val merge: t -> t * effect -> t * effect -> t
42 val ask : ('a,'r) query -> ('a, t) man -> 'a flow -> 'r option
43 val print_state : printer -> t -> unit
44 val print_expr : ('a,t) man -> 'a flow -> printer -> expr -> unit
45 end

6The lattice operations are not performed pointwise on both domains, but by performing the operation on the
upper domain – potentially modifying the lower domain – and then on the lower domain. This is useful when the
upper domain needs to unify states in the lower one, see Remark 3.34.

58 Chapter 3 – Mopsa

3.3.2.1 Domain type and lattice operations (lines 24-33)

A domain operates on a type t, which is private and opaque to others. Lattice elements and
operators of the domain are defined classically. The widening also takes as parameter a con-
text (polymorphic in the whole abstraction), from which it can extract information such as
thresholds for the widening (cf. Section 3.4). Each domain has its own identifier and a name.

Remark 3.11 Domain type and polymorphism
Since the abstract state is created dynamically by combining domains according to the con-
figuration, the type of the global abstract state is not precisely known during the definition
of each domain. The type of the whole combination of domains is thus generalized with
the type 'a.

3.3.2.2 The need for a manager (lines 2-15)

As we have mentioned previously (Section 3.3.1), a configuration is a directed acyclic graph,
which defines how domains are combined. Thanks to the unified signature, the whole analysis
is also a domain, and internally, a DAG having the same structure as the configuration. During
the analysis, statements and expressions traverse the DAG, starting from the root, until one
domain handles them.

We explain below how the manager is used to interroperate between a local domain and
the overall domain. Since the manager connects the global state with the local domain, its
type is ('a, t) man.

. From the global domain to a local domain (lines 3-4). Since the combination of domains is
defined at runtime, we abstract the type of the whole abstract state into a parametric
type 'a (Remark 3.11). However, we need to know how to decompose a global abstract
state of type 'a to access and update the local state of the local domain, of type t. This
is the first usecase of the manager: man.get and man.set act as getters and setters of
the local state, which is enclosed in the whole abstract state.

. From a local domain to the global domain (lines 6-14). During the execution of a local trans-
fer function, handling a statement (or an expression), the local abstract domainmay need
to recursively call the whole analysis on a new statement or expression, starting from
the root of DAG. This is done by calling the manager with the man.exec and man.eval
functions. During their evaluation, these functions will traverse the DAG in search for a
domain handling the provided statement or expression. For example, the C loop iterator
Listing 3.6 calls the whole analysis over the rewritten loop to continue the analysis.
The manager can also be used to perform global lattice operations. This is used by the
domain performing fixpoint computation for while loops (Listing 3.5, function lfp), to
check if a fixpoint has been reached, or call the widening operator over the whole state
otherwise.

3.3.2.3 Flow, wrapper of the global abstract state

The global abstract state of the analysis is an inhabitant of the type 'a flow, rather than
the expected 'a. The flow type adds additional information. Its main usecase is to lift the
abstract states to a mapping where keys are control-flow tokens. We explained in Section 2.4.3
how these control-flow tokens are used to handle non-local control-flow operators (such as
break) when the analysis proceeds by induction on the syntax. The type of tokens can also be
extended by any domain.

3.3.2.3 – Flow, wrapper of the global abstract state 59

Example 3.12 Use of Flow to handle non-local control-flow operators
Listing 3.8 shows the transfer function of the break statement, as implemented by the
universal iterator of loops. We store in cur the abstract state tagged by token T_cur (written
cur in the concrete). Thus, cur has type 'a. We return the updated global state, where cur
is tagged with the T_break token, and where T_cur token has been removed.

Listing 3.8: Transfer function of S_break (cf. Figure 2.14 in the concrete)
1 type token += T_break
2
3 let rec exec stmt man flow =
4 match stmt_kind stmt with
5 | S_while(cond, body) ->
6 (* Listing 3.5 *)
7
8 | S_break ->
9 let cur = Flow.get T_cur man.lattice flow in
10 let flow' = Flow.add T_break cur man.lattice flow |>
11 Flow.remove T_cur
12 in
13 Some (Post.return flow')
14
15 | _ -> None

Example 3.13 Utility functions to get and set a local state
We show the source code of utility functions used to access and define a local state in
Listing 3.9. These functions combine utilities defined by Flow to access the state corre-
sponding to the provided token, and those provided by the manager to access the local
state of domain (of type t), from the global state (of type 'a).

Listing 3.9: Utility functions to get and set a local state
1 let get_env (tk:token) (man:('a,'t) man) (flow:'a flow) : 't =
2 let tkstate : 'a = Flow.get tk man.lattice flow in
3 man.get tkstate
4
5 let set_env (tk:token) (env:'t) (man:('a,'t) man) (flow:'a flow) : 'a flow =
6 let tkstate : 'a = Flow.get tk man.lattice flow in
7 let tkstate = man.set env tkstate in
8 Flow.set tk tkstate man.lattice flow

The 'a flow type also stores:
• a flow-insensitive context 'a ctx,
• a report of the alarms already raised and the checks performed by the analysis,
• a report of the assumptions made by the analysis. For example, let us assume we analyze
a C program where a function f is called. We assume also that this function is not defined
in the source code, and only its prototype is available. To continue the analysis, Mopsa
assumes that f has no side effects. We collect this assumption in the state to make it
explicit and traceable (we provide an example later, in Listing 3.13).

These reports are then displayed to the user at the end of Mopsa’s execution.

Remark 3.14 Benefits of explicit checks and assumptions
We believe that the reports provided are a step forward from the soundiness approach
proposed by Livshits et al. [98]. We move from a declaration of the theoretical limits of

60 Chapter 3 – Mopsa

an approach, to an analyzer (here, Mopsa) explicitly collecting which properties have been
verified, and which assumptions have been made.

3.3.2.4 Cases, postconditions and evaluations (lines 18-19)

Elements of ('a, 'b) cases represent a disjunctive normal form of elements. These elements
consist in a product of an element of type 'b case in the context of a global abstract state 'a
flow. A 'b case can be a result of type 'b (along with additional optional information), or the
special case empty denoting an error.

The interface of these cases is shown in Listing 3.10. We can create a singleton case using
Cases.return. Cases.empty is the special case denoting an error. It is possible to join two or
an arbitrary number of cases using Cases.join or Cases.join_list. The monadic operator
cases >>= f executes the transfer function f : 'b -> 'a flow -> ('a, 'c) cases for each
case in cases : ('a, 'b) cases. It returns a new case disjunction, of type ('a, 'c) cases.

Listing 3.10: Cases interface
1 type ('a, 'b) cases
2
3 val return : 'b -> 'a flow -> ('a, 'b) cases
4 val empty : 'a flow -> ('a, 'b) cases
5
6 val join : ('a, 'b) cases -> ('a, 'b) cases -> ('a, 'b) cases
7 val join_list : ('a, 'b) cases list -> ('a, 'b) cases
8
9 val (>>=) : ('a, 'b) cases -> ('b -> 'a flow -> ('a, 'c) cases) -> ('a, 'c) cases

The type 'a post is an alias for ('a, unit) cases, representing a disjunction of abstract
states. 'a eval is an alias for ('a, expr) cases. It represents a disjunction of expressions,
each defined in a different abstract state. We show the benefits of these disjunctions in Exam-
ple 3.17.

3.3.2.5 Transfer functions on expressions and statements (lines 36-38)

init is called to initialize the domain. It takes as argument a program, the analysis’ manager,
a global abstract state and returns a global abstract state, where the local domain state has
been properly initialized.

Given a manager and a global abstract state, statements (resp. expressions) are executed
(resp. evaluated) into postconditions (resp. evaluations).

Evaluations. Given an expression, a manager, and a global abstract state, eval returns a 'a
eval option. If the expression is handled by the domain, the returned value consists in a
disjunction of expressions (each in a given state). Otherwise, the domain returns None. This
means that abstract domains below the current one will be called until one supports the ex-
pression. An important feature of Mopsa is that expressions are evaluated into expressions
themselves, in order to infer potentially relational invariants (and additionally, support do-
mains performing rewriting in a unified framework). We illustrate the benefits of this approach
in the examples below.

Postconditions. Given a statement, a manager and a global abstract state, exec returns a 'a
post option. If the statement is not supported by the given abstract domain, it will return
None. For example, the domain Python.Loops does not support universal loop statements
S_while, and will return None. However, the domain Universal.Loops will return a result.
If the statement is supported by the abstract domain, a case disjunction of the final global
abstract state is returned.

3.3.2.5 – Transfer functions on expressions and statements (lines 36-38) 61

Example 3.15 Assignment in a relational domain
We consider the transfer function of an assignment in a relational domain. We show the
implementation of this transfer function in Listing 3.11.

Assuming we have a string s in our toy language from the previous chapter, we consider
the statement x = s[i]. Numerical domains are unable to handle that kind of assign-
ments by themselves, since s is a string. However, we know that the numerical domain
should handle the assignment, since s[i] has a numerical type (following the semantics
chosen in Section 2.4.1). Thus, the numerical domain recursively calls the whole analysis
to evaluate s[i], using the manager (line 3). We will show later the transfer functions of
this expression for both the string summarization and the string length domains, in Exam-
ples 3.17 and 3.19. For now, we just assume that s[i] is evaluated into an expression that
the numerical domain can handle. Then, we can perform the assignment on our numerical
domain. We start by retrieving the local state for the normal execution of the flow using
get_env (whose definition was shown in Listing 3.9). In the case of a relational domain, the
execution of the assignment is delegated to the Apron library [73]. We can then return the
state, updated using set_env.

Listing 3.11: Transfer function of the assignment in a relational domain
1 let exec stmt man flow = match stmt_kind stmt with
2 | S_assign(E_var x, e) when is_numeric e ->
3 man.eval e flow >>= fun ee flow ->
4 let cur = get_env T_cur man flow in
5 let cur = Apron.assign (apron_var x) (apron_expr ee) cur in
6 Some (Cases.return () (set_env T_cur cur man flow))
7 | _ -> None

Remark 3.16 Monadic operator >>=
The cases monadic operator cases >>= f applies the function f on each case in cases. It
is used to define the analysis on a single case at a time (for example, in Listing 3.11), and
hides the case disjunctions from the implementation of the analysis’ code.

Example 3.17 Expression evaluation performing a simple rewriting
The domain of smashed strings will evaluate s[i] into an auxiliary variable ord(s) (List-
ing 3.12). It creates the auxiliary variable by calling mk_ord_string.

The numerical domain will then be able to handle the assignment x = ord(s), since
ord(s) is a purely numerical variable.

Listing 3.12: Transfer function of index access for the string summarization domain
1 let eval exp man flow = match ekind e with
2 | E_subscript(E_var s, i) ->
3 Some (Cases.return (mk_ord_string s) flow)
4
5 | _ -> None

Remark 3.18 Modular definitions of abstract domains
The definitions of abstract domains are modular: they do not make assumptions on the
other domains. For example, the numerical domain is not specified in the transfer function
of string summarization domain in Example 3.17. Changing it into another or a combination

62 Chapter 3 – Mopsa

of numerical domains does not require changes in Mopsa’s code. Conversely, switching
from the smashing abstraction to the string length domain does not affect the numerical
domain, since it handles numerical expressions.

Example 3.19 Expression evaluation with case disjunction
Upon an index access of a string, the string length domain will check that the access is
correct, and raises an alarm otherwise. We showed the concrete semantics in Figure 2.13,
and the implementation is described in Listing 3.12.

assume is a global utility function that filters the global analysis’ state by a condition
(resp. its negation), and applies the function defined by the named argument fthen (resp.
felse) on it. The filtering is done by delegation, calling man.exec.

In the case of the transfer function, the state is filtered according to the condition
0 ≤ i < len(s). The auxiliary variable len(s) is created by mk_len_string s. assume per-
forms global evaluations and executions. In this case, the filtering will be performed by the
numerical domain. If the condition is satisfied, we can keep in the state that this specific
index access has been proved valid, and we return the interval [0, 127] (following the se-
mantics of Figure 2.13). If the condition is not respected, we add a new alarm in the state,
stating the that index access is invalid, and do not return an expression, to interrupt the
evaluation of this path.

Listing 3.13: Transfer function of index access for the string length domain
1 (* Global utility assume *)
2 let assume cond man flow ~fthen ~felse =
3 man.eval cond flow >>$ fun econd flow ->
4 man.exec (mk_assume econd) flow >>$ fun () then_flow ->
5 man.exec (mk_assume (mk_not econd)) flow >>$ fun () else_flow ->
6 Flow.join man.lattice (fthen then_flow) (felse else_flow)
7
8 (* Transfer function of the string length domain *)
9 let eval exp man flow = match ekind exp with
10 | E_subscript(E_var s, i) ->
11 Some (
12 assume (mk_and (mk_le mk_zero i) (mk_lt i (mk_len_string s))) man flow
13 ~fthen:(fun flow ->
14 let flow = safe_subscript_access_check exp flow in
15 Cases.return (mk_interval 0 127) flow)
16 ~felse:(fun flow -> Cases.empty (invalid_subscript_access_alarm exp flow))
17)
18
19 | _ -> None

Remark 3.20 Avoiding combinatorial explosions
Postconditions are joined into a single case after each global statement execution, in order
to avoid a combinatorial explosion.

Remark 3.21 Housekeeping auxiliary variables
As we mentioned before, domains are responsible for their auxiliary variables. This means
that when a variable is removed, auxiliary variables depending on this variable have to be
removed too. We show how this is performed in the case of the string length domain in

3.3.2.6 –Utilities (lines 41-44) 63

Listing 3.14. If a string variable s is removed, this domain will rewrite the statement into a
removal of the variable len(s).

Listing 3.14: String length transfer functions
1 let exec stmt man flow = match stmt_kind stmt with
2 | S_remove {ekind = E_var v} when is_str v.vtyp ->
3 Some (man.exec (mk_remove_var (mk_len_string e)) flow)
4 (* similar cases for S_add, S_expand, S_fold *)

3.3.2.6 Utilities (lines 41-44)

The merge function is used to reconciliate diverging states in a reduced product (cf. Sec-
tion 3.3.4). ask allows broadcasting queries to other domains (described in Section 3.3.5).
print_state displays the abstract state of the domain. print_expr is used to display the
part of the local abstract state representing the provided expression.7 It can delegate calls
to the manager using man.print_expr. For example, let us assume that print_expr is called
to display a string variable s. As mentioned in Remark 3.6, each domain is responsible for
the auxiliary variables it introduces. In this case, this means that the print_expr of the string
length domain will delegate the printing to the numerical domain for the ghost variable len(s).

Remark 3.22 Stateless abstract domains
Stateless abstract domains such as iterators performing dynamic rewriting (Section 3.2.4)
can be defined as modules with a simplified signature, where lattice operations do not have
to be defined. They are then lifted automatically to the domain module type by Mopsa.

3.3.3 The simplified case of non-relational domains

Mopsa provides a simplified interface for non-relational domains, similar to the value abstract
domains defined in Definition 2.51. They can then be lifted to the standard domain signature
using a special combinator, similar to the semantics defined in Property 2.52.

Value abstract domains can be combined through a union combinator, representing a dis-
joint union between those abstract values. The most common usecase is the union of a value
abstraction for integers and a value abstraction for floating-point numbers. These domains
can then be lifted using a non-relational combinator having a definition similar to the one
given in Property 2.52.

3.3.4 Reduced products and their pitfalls

Products are straightforwardly created in Mopsa using the corresponding combinator in the
configuration. They can be extended to the case of reduced products through reduction rules
over the states or the evaluations described below. We then highlight a pitfall of shared un-
derlying domains in the case of a reduced product.

A classical example of reduced product is the reduction between the interval and the con-
gruence abstract domains, defined in Section 2.3.9.2. We show the code used to define the
reduction in Listing 3.15. Both the interval and the congruence abstract domains are defined
through their abstract values, using the simplified case described in the previous section.
reduce is defined only on the abstract values and lifted similarly (Definition 2.53). It is pro-
vided with a different manager that can access the internal states of the subdomains used in
the product. reduce starts by fetching the congruence and the interval representing the value
v through the manager. The reduction between those congruences and intervals is performed

7This is used in Mopsa’s interactive mode, to show only the part of the abstact state related to a variable.

64 Chapter 3 – Mopsa

by meet_cgr_itv function, which implements the reduction operator described in Figure 2.11.
The updated congruence and interval are put back in the abstract state.

Listing 3.15: Reduction between the interval and congruence domains
1 let reduce man v =
2 let c = man.get Congruence.id v
3 and i = man.get Interval.id v in
4
5 let c', i' = meet_cgr_itv c i in
6
7 man.set Congruence.id c' (man.set Interval.id i' v)

It is also possible to define reductions between evaluations of full domains. An example
is the reduction performed after the evaluation of index accesses s[i] with both the string
length and string summarization domains described in Section 2.4.6. The implementation of
this reduction rule is shown in Listing 3.16. It traverses the results of the evaluation by the sub-
domains, and keeps the auxiliary variable ord(s) created by the string summarization domain,
and drops the evaluations of [0, 127], created by the string length domain which is imprecise.

Listing 3.16: Reduction rule for index access between the string domains
1 let reduce exp _ _ _ results flow =
2 let rec aux acc flow = function
3 | [] -> Eval.singleton acc flow
4 | hd::tl ->
5 match ekind acc, ekind hd with
6 | E_var _, E_constant (C_int_interval _) -> aux acc flow tl
7 | E_constant (C_int_interval _), E_var _ -> aux hd flow tl
8 | _ -> aux acc flow tl
9 in
10 match results with
11 | [] -> Some (Eval.empty flow)
12 | hd::tl -> aux hd flow tl

Effects on shared underlying domains. The reductions defined previously combine different
expressions from domains of the product into a single one to improve the precision. A specific
feature of Mopsa is that domains in a reduced product can share an underlying domain. During
the execution of the analysis, domains in a reduced product may have different effects on
this underlying domain, resulting in incoherent abstract states. In particular, if the resulting
abstract states obtained by the product are directly intersected, the result will be unsound. It
is however possible to recover back soundness by applying a generic merge function.

For example, we consider the following program: s = "abc"; s = s + "def", written in
the Imp language of the previous chapter. + denotes the string concatenation operator. We
first store a string in s, and update its value through a concatenation afterward. Let us assume
that we have a product of the length and summarization domains, sharing an underlying in-
terval domain (thus abiding by the configuration shown in Figure 3.2). We show the evaluation
along the different domains and operators in Figure 3.3. The execution of s = s + "def" is
transformed by the length domain into the execution of len(s) = len(s)+3. This is handled by
the numerical domain, which yields state σ]1. Conversely, the execution of the initial statement
is transformed by the string summarization domain into ord(s) weak

= ord(s) + [100, 102]. Once
this is handled by the numerical domain, the resulting abstract state is σ]2. We notice that
the length variable is updated in σ]1, but not in σ

]
2, and conversely for the smashed variable.

Additionally, none of these abstract states are sound after the assignment. σ]1 and σ
]
2 have to

be merged into a sound post-condition. This is done by forgetting the effects of one domain
over the other. In our case, σ]1 modified len(s) and σ

]
2 modified ord(s). Forgetting the effects

3.3.4 – Reduced products and their pitfalls 65

s = s + "def"

String Length

len(s) = len(s) + 3

Numeric Domain

σ]1 = (len(s) = 6, 97 ≤ ord(s) ≤ 99)

String Summarization

ord(s) weak
= ord(s) + [100, 102]

Numeric Domain

σ]2 = (len(s) = 3, 97 ≤ ord(s) ≤ 102)

Merge

forget ord(s)

σ]3 = (len(s) = 6)

forget len(s)

σ]4 = (97 ≤ ord(s) ≤ 102)

u]

σ] = (len(s) = 6, 97 ≤ ord(s) ≤ 102)

Figure 3.3: Example of shared evaluation in a reduced product

of the other domain yields σ]3 and σ
]
4 respectively. A sound postcondition σ] is obtained by

computing the meet of two states.

Remark 3.23 Sequentialization of statements
In this case, it would have been possible to sequentialize the operations to obtain a sound
result without a call to merge. This is however not always possible, especially when rela-
tional domains are used.

Remark 3.24 Effects
Effects are collected automatically for each domain of the reduced product. For each do-
main, effects consist in a list of statements. A generic merge function is provided by the
framework.

66 Chapter 3 – Mopsa

Remark 3.25 Comparison with the approach of Chevalier [27] used in Astrée
Chevalier mentions the same issue [27, page 330]:

If modifying the abstract state of the left-hand side impacts the value of the right-hand
side, strange interference may happen.

The solution he chooses is to add temporary variables to avoid that kind of situation.
We believe that ensuring this condition when auxiliary variables are dynamically created
(which is not the case in Chevalier’s framework) is however difficult. In addition, introducing
temporary variables increases the computational cost of relational numerical domains.

3.3.5 Communication between domains

Domains have a private type that is not available to other domains, and communicate in the
analysis through statements or expressions. In some cases, inter-communication between
domains through a public interface is necessary. We use a mechanism of queries similar to
Astrée’s input channels [35]. Queries are defined through an extensible GADT type, in order
to make public the types of the queries arguments and their results. In essence, the interval
query, asking for an interval representation of a provided expression, is defined as:

type _ query += Q_interval : expr -> (int option * int option) query

This query can be used to display some ranges of variables in alarm messages, or to com-
pute the interval of a pointer offset in the analysis of C programs.

Queries are seldom used. It is usually better to communicate between abstractions through
the evaluation of expressions or execution of statements. This avoids exposing abstract values,
which improves precision when relational domains are used. It also avoids making assump-
tions about the domains used. We could replace the call to assume at line 12 of Listing 3.13
by queries asking for interval representations of the expression i and the variable len(s). This
approach would have two downsides. First, relying on interval representations breaks relation-
ality. If i is a variable, and the relational domain knows that 0 ≤ i < len(s) ≤ 100, the interval
representations would yield [0, 100] for both i and len(s). We would thus raise a false alarm.
The second downside is that the string length domain would have to make explicit manipu-
lations over intervals and handle the disjunctions, which creates lower-level code. Using our
approach, these filterings were delegated to the numerical domain, whose purpose is to work
on numerical abstractions.

A domain defines to which queries it answers through its ask transfer function. Lattice
operators (join, meet) are also defined to handle the combination of replies from different
domains.

Remark 3.26 Comparison with Frama-C
Frama-C domains cooperate through abstract values (currently intervals, to the best of our
knowledge). Provided that Mopsa’s query mechanism defines the same abstract values,
Frama-C’s domain cooperation could be simulated by these specific queries in Mopsa.

3.4 Hooks
Hooks are designed to observe the analysis. Their signature is provided in Listing 3.17. Hooks
can be called at the beginning of the analysis, before and after any evaluation (resp. execution)
of an expression (resp. statement), and at the end of the analysis. In particular, hooks see
all subevaluations and subexecutions that may be created by domains calling the analysis
recursively. Hooks can update the flow-insensitive context of the analysis to store information,

3.5 – Formalization 67

but they cannot modify the rest of the abstract state. They can thus interact with the analysis
(such as the threshold hook presented below), but their execution cannot effect the analysis’
soundness, contrary to abstract domains.

Listing 3.17: Hook signature
1 module type HOOK =
2 sig
3 val name : string
4 val init : 'a ctx -> 'a ctx
5 val on_before_exec : stmt -> ('a,'a) man -> 'a flow -> 'a ctx option
6 val on_after_exec : stmt -> ('a,'a) man -> 'a flow -> 'a post -> 'a ctx option
7 val on_before_eval : expr -> ('a,'a) man -> 'a flow -> 'a ctx option
8 val on_after_eval : expr -> ('a,'a) man -> 'a flow -> 'a eval -> 'a ctx option
9 val on_finish : ('a,'a) man -> 'a flow -> unit
10 end

There are five use-cases for hooks in the current implementation of Mopsa.

. Logs display the execution and evaluation steps, and optionally the abstract state. This is
useful for debugging purposes.

. Coverage hooks are provided for Python and C. They collect which statements have been
analyzed and provide a global metric for the analysis’ results. When a statement is ana-
lyzed, the hooks can also check if the input state is always bottom or not, to know if the
statement is dead code or not. This family of hooks is quite handy to detect soundness
issues (e.g., when a statement should have been analyzed but has not been).

. Soundness sanity checking hooks detect if the output state after an assignment is set to
⊥ without alarms set, while the input state was not ⊥. In that case, we have probably
uncovered a soundness issue.

. Profiling hooks provide a high-level view of which part of the input program took time to
analyze. Traditional profiling tools such as perf or OCaml’s memtrace are too low-level
and global to provide that kind of information. Due to function inlining and nested loops,
the analysis time of programs is not proportional to their size. Our profiling hooks thus
measure how much time is spent analyzing each function and each loop of a program.

. Threshold hook collects constants thresholds to be used by the widening with thresholds.
The idea of widening with thresholds is to try increasing thresholds for unstable bounds
rather than directly going to ±∞. This hook searches for comparisons between variables
and constants happening within the analysis of loops. When a comparison is encoun-
tered, the constant is put as a threshold for the corresponding variable in the global
context. This context is then read by the widening operators of the numerical domains,
which can use the provided thresholds. Performing this search dynamically during the
analysis, rather than a syntactical inspection of the input program has numerous bene-
fits. The hook can find thresholds for ghost variables, and expressions may evaluate into
constants during the analysis although they do not appear syntactically.

3.5 Formalization

In the previous chapter, the definition of domains explictly called other domains (e.g., the string
length transfer function E#lenJ · K explicitly calls the numerical domain E#numJ · K in Figure 2.13).
In Mopsa, the eval and exec transfer functions of an abstract domain may call the global
man.eval and exec transfer functions through the manager. To keep the analysis modular, a
domain cannot explicitly call a specific domain, and we do not make hypotheses about which
domains are present and which domain(s) can handle a (possibly transformed) expression or
statement.

68 Chapter 3 – Mopsa

This section defines the notion of composable abstract domain, and how these domains can
be composed or put in a reduced product. A limitation of our formalization is that soundness
conditions are currently not defined locally, for each composable abstract domain. We write E
the set of expressions and S the set of statements.

Definition 3.27 Composable abstract domain
A composable abstract domain consists in:

• An abstract poset (D],v),
• A smallest element ⊥ and a largest element >,
• Sound abstractions of set union and intersection t],u],
• A widening operator ∇,
• Partial expression and statement transfer functions, operating on the global abstrac-
tion state Σ]. The global abstraction state Σ] corresponds to inhabitants of the type
'a in the domain signature of Listing 3.7. The star is used to denote a list (i.e., a case
disjunction), potentially empty (meaning that this domain does not handle this case).

E#D]J expr ∈ E K : Σ] → (Σ] × E)∗ S#D]J stmt ∈ S K : Σ] → Σ]∗

• Concrete input and output states of the abstract domain, written Din and Dout

• A concretization operator γ ∈ D] → P(P(Din) × P(Dout)). Concretizations are ex-
pressed modularly, as relations between concrete states, in line with what has been
presented in Section 2.4.

Example 3.28 String length as a composable abstract domain
Let us consider the string summarization domain of Section 2.4.5. The poset and lattice op-
erators are trivial since the domain is stateless. The transfer functions have been described
in Figure 2.17. The concrete input state is a numerical state V → Z, and the output state can
also define string values V → (Z ∪ A∗). The concretization was defined in Definition 2.84.

Definition 3.29 Sequence of abstract domains
Let (D]

i ,vi,⊥i,>i,t]i,u
]
i,∇i,E#i J · K, S#i J · K, γi), i ∈ { 1, 2 } be two composable abstract do-

mains.

We define the sequence of these two domains, written
D]

2

|
D]

1

as:

• A poset (D]
1 ×D

]
2,v1×2), with

(v1, v2) v]
1×2 (v

′
1, v

′
2)

def
= v1 v]

1 v
′
1 ∧ v2 v

]
2 v

′
2

• Similar lattice and widening operators lifted to the product.
• The transfer functions first try using domain 2. If domain 2 is unable to handle the
expression or statement, domain 1 is used.

E#1×2J e K = let r = E#2J e K in if r 6= ∅ then r else E#1J e K

S#1×2J s K = let r = S#2J e K in if r 6= ∅ then r else S#1J e K

• A concretization operator (we assume that Dout
1 = Din

2), corresponding to Defini-

3.5 – Formalization 69

tion 2.82.

γ1×2 :

{
D]

1 ×D
]
2 → P(P(Din

1)× P(Dout
2))

(σ1, σ2) 7→ { (Ri
1, R

o
2) | (Ri

1, R
o
1) ∈ γ1(σ1) ∧ (Ri

2, R
o
2) ∈ γ2(σ2) ∧Ri

2 ⊆ Ro
1 }

Property 3.30 A sequence of abstract domains is composable
D]

2

|
D]

1

is also a composable abstract domain.

Definition 3.31 Product of abstract domains
Given two composable abstract domains, (D]

i ,vi,⊥i,>i,t]i ,u
]
i,∇i,E#i J · K,S#i J · K, γi), with

i ∈ { 1, 2 }, and two functions reduce_eval, reduce_exec, defining reductions between
evaluations and executions, we define the product D]

1∧2 as:

• A poset (D]
1 ×D

]
2,v1×2),

• Similar lattice operators lifted to the product,
• The transfer functions run the transfer functions of domain 1 and 2 in parallel. They
are then unified using the merge function applying effects, and reduction rules can
then be applied. We left implicit the process of gathering effects from domains and
passing it to the merge function (in Mopsa, this is done automatically by logging as-
signments in expressions passed as argument).

E#1∧2J e Kσ =

let v1, σ1 = E#1J e K and v2, σ2 = E#2J e K in
let σ1 = merge(σ1) in
let σ2 = merge(σ2) in
reduce_eval((v1, σ1), (v2, σ2))

S#1∧2J s K =

let σ1 = E#1J e K and σ2 = E#2J e K in
let σ1 = merge(σ1) in
let σ2 = merge(σ2) in
reduce_exec(σ1, σ2)

• A concretization operator (we assume that γ1 and γ2 have the same codomain).

γ1∧2 :

{
D]

1 ×D
]
2 → P(P(Din)× P(Dout))

(σ1, σ2) 7→ { (R,R1 ∩R2) | (R,R1) ∈ γ1(σ1) ∧ (R,R2) ∈ γ2(σ2) }

Property 3.32 A product of abstract domains is composable
D]

1∧2 is also a composable abstract domain.

Remark 3.33 Toplevel abstract domain
The toplevel abstract domain consists of a whole combination of domains. It is also a
composable abstract domain, thanks to Properties 3.30 and 3.32. From the toplevel abstract

70 Chapter 3 – Mopsa

domain, we derive global evaluation and execution operators (corresponding to man.eval
and man.exec). Contrary to the partial functions of the abstract domain, these operators
are total: if some expression or statement is not supported, the operators fail and raise an
exception.

E#J · K : Σ] → (Σ] × E)+ S#J · K : Σ] → Σ]+

Given the concretization γ : Σ] → P(P(∅) × P(Σ)) (leaf domains take the empty set
as input, cf. Remark 2.83), the toplevel concretization consists in the image of the whole
concretization: Γ(σ]) =↓ ◦γ(σ]) (using the operator defined in Definition 2.81).

Remark 3.34 Stack variation
In Mopsa, the notion of abstract domain can be further generalized to allow lattice operators
to perform unification on domains below them.

Some domains using auxiliary variables in underlying domains may need to perform
unifications on these domains when performing lattice operations. This kind of domain is
called a stack domain. In that case, these operators have a signature similar to the one
below

val join : ('a,t) man -> ('a,'s) stack_man -> 'a ctx -> t * 's -> t * 's -> t * 's * 's

The join operator takes:

• a global manager as argument,
• a simplified manager working on the underlying abstraction, of type 's,
• the global context of the abstraction
• the two abstract states on which the join is performed, including the underlying ab-
stractions.

It returns the joined abstract state as well as the unified underlying states.
In order to ease definitions, we do not consider this case in the formalization. These

domains are currently not used in the analysis of Python programs.

3.6 Conclusion
We have shown that Mopsa aims at performing precise relational analyses through loose com-
binations of abstract domains that can be easily changed by the user. Moreover, Mopsa sup-
ports multiple languages, and some abstract domains are shared among the languages in
order to reduce implementation costs. We have formalized the notion of composable abstract
domain. In addition to the works related to Python presented in this thesis, Mopsa has been
used by:

• Journault et al. [81] to implement a domain for C strings,
• Ouadjaout and Miné [121] to define a stub language modeling libraries such as the C
standard library.

• Delmas and Miné [42], Delmas et al. [44] to infer other program properties such as se-
mantic equivalence of patched programs or endian portability of programs.

There are still open questions related to Mopsa’s design:

• The implementation of backwards analyses, where abstract domains are defined mod-
ularly and the analysis works by induction on the syntax. Backwards analyses are sup-
ported by TAJS and some versions of Astrée.

3.6 – Conclusion 71

• The design of efficient, yet precise, modular analyses of functions. Mopsa currently im-
plements a context-sensitive, top-down interprocedural analysis. In its non-relational
version, Frama-C relies on a mechanism performing function summarization on-the-fly,
to improve performances [158]. Infer performs efficient interprocedural analyses in a
bottom-up fashion, but without soundness guarantees.

• We do not know yet how to state and prove the soundness properties locally, one com-
posable abstract domain at a time.

4

Abstracting Dynamic Memory
Allocation

This chapter presents the recency abstraction, which we use to handle dynamic memory allo-
cation in our analyses. We present the recency abstraction on an extended version of Imp in
Section 4.1. Following what we have established in the previous chapters, the abstract seman-
tics and the concretization of the recency abstraction are defined modularly, using formula-
tions compatible with relational numerical abstractions. Section 4.2 defines a variation of the
recency abstraction changing the allocation-site sensitivity, where abstract addresses are more
suitable to analyze Python.We briefly talk about abstract garbage collection in Section 4.3. The
last two sections are an extended version of a previous work we published at SOAP [112].

4.1 The recency abstraction

The recency abstraction has originally been developed by Balakrishnan and Reps [4] to handle
dynamic memory allocation in the analysis of binaries or low-level C code. We present the
recency abstraction in a similar setting, where our toy imperative language is extended with
simple records.

4.1.1 Motivation

Imp extension. We consider an extension of Imp with OCaml-like records. The type decla-
ration of records is done using the struct keyword, followed by the name of the type and
the declaration of the record structure. The expression new <struct_type> allocates a new
record, where all fields are initialized with a random value. Fields of a record are accessed
using the . operator; they can be read from and written to. Records are passed by reference,
so no copy is performed by assignments. An example is shown in Listing 4.1. A Box type is
created: it contains an integer named v. Two variables of type Box are declared b and old. A
Box is allocated, and a reference to it stored in b. Its field v is set to -1. Each time the loop is
executed, it copies the reference to the previous Box, stored in b, into old. Then, it allocates a
new Box, and puts the value of the counter i in its field v. In the end, we know that old.v is
99, and b.v is 100.

The need for abstraction. If we do not abstract dynamic memory allocation and create one
address for each allocation the analysis will not be guaranteed to terminate when allocations

74 Chapter 4 – Abstracting Dynamic Memory Allocation

are performed in unbounded loops, such as in our example. We thus need to abstract away
from this behavior.

Listing 4.1: Imp program with dynamic memory allocation
1 struct Box { int v;};
2
3 Box b;
4 Box old;
5
6 int n = [1, +∞];
7 int i = 0;
8
9 b = new Box;
10 b.v = -1;
11 while(i < n) {
12 i = i + 1;
13 old = b;
14 b = new Box;
15 b.v = i;
16 }
17 // old.v = n-1, b.v = n

Allocation-site abstraction. A first approach is to summarize all concrete allocated addresses.
These addresses are still partitioned by allocation sites (i.e., the location, defined by the line
and column numbers, in the source code). A single abstract address thus represents all con-
crete addresses allocated at a given site. For example, all addresses allocated by new Box
in the loop at line 14 would use the same abstract address written @]

14. Since this address
summarizes multiple concrete elements, only weak updates will be performed. This approach
guarantees the termination of the analysis but is not very precise due to weak updates. The
non-deterministic initialization of records means that the value of the field v of @]

14 at line 14
can be any integer. Since @]

14 summarizes multiple concrete addresses, it is not possible to
perform a strong update at line 15. Even if the initialization was deterministic, the weak update
of the assignement b.v = i at line 15 would mean the analysis is only able to infer that -1 <=
b.v <= n.

Recency abstraction. To circumvent the limitations of the allocation-site abstraction, the re-
cency abstraction extends the allocation-site abstraction with another partitioning criterion.
At a given allocation site l, the recency discriminates the most recent allocation, @]

l,r where
strong updates are possible, from the older addresses @]

l,o, which are summarized into a weak
address. The recency criterion was introduced to keep precision during the initialization of a
structure, which usually happens just after its allocation (or at least before the next allocation
at the same site). If we go back to the example of Listing 4.1, during the allocation at line 14,
the recency first renames the recent address into the old one. The field v of the recent address
initially has for value any integer, but we can then represent the constraint from b.v = i in
the abstract since the address is now strong. With a relational domain, we can infer that after
the loop exits, -1 <= old.v <= n-1 and b.v = n.

4.1.2 Concrete semantics

This section builds upon the semantics of Imp presented in Chapter 2 to define the semantics
of record allocation, reading from a field, and writing to a field.

Definition 4.1 Addresses

4.1.3 – The recency abstraction 75

In order to simplify the correspondence with the abstract state, we assume that addresses
have the form Addr = Loc × N. We write @l,n to represent the n-th address allocated at
program location l.

Definition 4.2 Program State
A program state consists of an environment and a heap. The environment E maps variables
to their values (for scalar types) and addresses (for record types). Values can be strings
or integers. The heap maps tuples of addresses and records names (strings) to values or
addresses.

E = V ⇀ Value ∪ Addr H = (Addr× string)⇀ Value ∪ Addr

Example 4.3 Program State
After line 9 of Listing 4.1, the state is one of

{ (e, h) | e(n) ≥ 1, e(i) = 0, e(b) =@9,0, h(@9,0, "v") ∈ Z }

We define the semantics of record allocations, reads, and writes to fields. Since record
allocation changes the heap, EJ · K evaluates a set of states into value or addresses in an
updated state, i.e. EJ · K ∈ P(S) → P(S × (Value ∪ Addr)), with S = E × H. We introduce
an auxiliary expression alloc_addr(l ∈ Loc), asking for the allocation of a new address at a
given program point. To simplify notations, we assume the program has been type-checked
before, and all fields accesses are valid with respect to the records declared. We assume we
have two auxiliary functions: fields(RType) returns the field names of record type RType, and
typ(RType, f) returns the type of field f in record RType.

The semantics are provided in Figure 4.1. alloc_addr(l) returns the next address at program
location l that is not already used in the heap abstraction. The allocation of a new record
RType at program location l first allocates a new address for the record. The heap is extended
so that each field of the newly allocated record has a value of the corresponding type. A field
access x.a searches for the address to which x points by querying the environment, and returns
the value of the heap at this given address and with field a. We can assume e(x) is an address
since the program is well-typed. We have defined the semantics of expressions on a single
state (e, h) ∈ S , but the semantics is join-morphism, so we can easily lift it to sets of states
(the lift is defined in Figure 4.1 too). The semantics of field writes consists in evaluating the
new value v, and updating the heap with the new value.

Example 4.4 Field assignment
From the program states of Example 4.3, the assignment b.v = -1 yields:

{ (e, h) | e(n) ≥ 1, e(i) = 0, e(b) =@9,0, h(@9,0, "v") = −1 }

4.1.3 The recency abstraction

In the recency abstraction, abstract addresses do not keep track of the number of addresses
allocated at a given point, but of a flag describing whether the address is the most recent
allocated or not.

Definition 4.5 Abstract address
An abstract address consists of an allocation site, and a flag: r describes the most recent

76 Chapter 4 – Abstracting Dynamic Memory Allocation

EJalloc_addr(l) K(e, h) = let n = max{@l,i ∈ domh } in@l,n+1

EJ new RTypel K(e, h) =
let@l,n = EJalloc_addr(l) K(e, h) in
{ (e, h′),@l,n | (@, a) ∈ domh⇔ (h′(@, a) = h(@, a)∧

∀f ∈ fields(RType), h′(@l,n, f) ∈ Valuetyp(RType,f)) }
EJx.a K(e, h) = h(e(x), a)

EJ expr KΣ = ∪(e,h)∈ΣEJ expr K(e, h)

SJx.a = v K(e, h) =
let val = EJ v K(e, h) in (e, h[(e(x), a) 7→ val])

Figure 4.1: Concrete semantics of record allocation, read and write

allocated address, while o describes older allocated addresses. For a given program, the
set of abstract address is thus finite.

Addr] = Loc× { r,o }

Abstract addresses are written @]
l,m, with l ∈ Loc,m ∈ { r,o }.

E#memJalloc_addr(l ∈ Loc) Kσ] =

let σ]mem = man.get σ] in

if@]
l,r ∈ σ

]
mem then

if@]
l,o ∈ σ

]
mem then@]

l,r, S
#J fold(@]

l,o,@
]
l,r) Kσ]

else

let σ]mem = σ]mem ∪ {@
]
l,o } in

@]
l,r, S

#J rename(@]
l,r,@

]
l,o) K(man.set σ]mem σ])

else

let σ]mem = σ]mem ∪ {@
]
l,r } in

@]
l,r, man.set σ]mem σ]

Figure 4.2: Semantics of address allocation for the recency abstraction

The domain of the recency abstraction is the set of allocated abstract addresses, P(Addr]);
its lattice operations are straightforward. The semantics of address allocation at a given pro-
gram location l is shown in Figure 4.2. We use the “mem” subscript to denote the abstract
domain of the recency abstraction. Given the whole abstraction σ], we extract the state of
the recency abstraction σ]mem ∈ P(Addr]). If both the recent address and the old address are
already allocated, we return the recent address in a state where it has been folded into the old
address (according to the fold definition of Gopan et al. [63], Siegel and Simon [135], already
encountered in Section 2.4.5). If the old address has not been allocated yet, we add it to the
recency’s state, and we rename the recent address into the old one. If the recent address has
not been allocated yet, we update the local state and return the recent address. The fold and

4.1.4 – Abstract semantics 77

rename operations are executed as statements, so all domains using abstract addresses can
update themselves. The global semantics operators EJ · K (resp. SJ · K) correspond to man.exec
(resp. man.eval) in Mopsa.

4.1.4 Abstract semantics

We introduce auxiliary address variables representing fields at abstract addresses. These aux-
iliary variables simplify our implementation, as the environment will also store information on
records’ fields. The environment abstraction is straightforward and close to the ones shown
in Chapter 2. The heap abstraction rewrites fields accesses into auxiliary variables for the en-
vironment domain. It also handles record allocation by delegating the address allocation and
initializing all fields of the record to any value of the corresponding type.

Definition 4.6 Auxiliary address variables
@]

l,m · v is an auxiliary address variable, representing the field v of the record stored at

address @]
l,m. If the abstract address is old, it represents multiple concrete elements. In

that case, auxiliary address variables have to be tagged as weak (as defined in Remark 2.75):
@]

l,o · vweak
. In the following, this tag is implicit, depending on the mode of the address.

Remark 4.7 Auxiliary address variables in Mopsa
In the implementation of Mopsa, these auxiliary variables are created by extending the
variant type of variables.

type var_kind +=
| V_addr_attr of addr * string

Continuing our modular definitions of abstract domains, the heap abstraction presented in
Figure 4.3 is independent of the recency abstraction: it only asks another domain to perform
address allocations. In particular, abstract addresses are only written @] to emphasize that
the heap abstraction does not need to know the structure of abstract addresses.1 However,
the heap abstraction needs to support the rename and fold operations the recency can trigger
(Figure 4.2), and requires to know if an address is weak or strong (denoted old or recent in the
case of the recency abstraction). The evaluation of field access x.a searches for the abstract
address @] to which x maps, and then delegates the evaluation by rewriting it in the auxiliary
address variable @] · a. This evaluation will then be handled by the environment abstraction.
Writing to a given field performs a similar delegation. The allocation of a new record is similar
to the concrete: we evaluate a new address allocation (handled by the recency abstraction
in our case), and put all the fields a1, · · · , an ∈ fields(RType) of the record to any value
of their corresponding type. If an abstract address has to be renamed into another, the heap
abstraction delegates this operation by renaming all corresponding auxiliary address variables
(as we mentioned in Remark 3.6, each domain is responsible for its ghost variables). The heap
abstraction performs a similar delegation for fold operations.

Example 4.8 New allocation in Listing 4.1
We show in Figure 4.4 the statements and expressions analyzed, starting from the statement
at line 14 of Listing 4.1 and assuming the loop has been unrolled once before. For the sake
of concision, we assume the environment is based on intervals; in the case of constant

1Auxiliary variables building upon summarized address should only perform weak updates, so the fact that an
abstract address is summarized or not should be available to the heap domain.

78 Chapter 4 – Abstracting Dynamic Memory Allocation

E#heapJx.a Kσ] =

let@] = E#Jx Kσ] in E#J@] · a Kσ]

S#heapJx.a = v Kσ] =

let@] = E#Jx Kσ] in S#J@] · a = v Kσ]

E#heapJ new RTypel Kσ] =

let@], σ] = E#Jalloc_addr(l ∈ Loc) Kσ] in

S#J@] · an = >typ(RType,an) K ◦ · · · ◦ S#J@] · a1 = >typ(RType,a1) Kσ]

S#heapJ rename(@
]
1,@

]
2) K =

S#J rename(@]
1 · an,@

]
2 · an) K ◦ · · · ◦ S#J rename(@]

1 · a1,@
]
2 · a1) K

S#heapJ fold(@
]
1,@

]
2) K =

S#J fold(@]
1 · an,@

]
2 · an) K ◦ · · · ◦ S#J fold(@]

1 · a1,@
]
2 · a1) K

Figure 4.3: Rewriting semantics of the heap abstraction

S#envJ b = new Box14 Kσ]

E#heapJ new Box14 Kσ]

E#memJalloc_addr(14) Kσ]

σ]1,mem = σ]mem ∪ {@
]
14,o }

S#heapJ rename(@
]
14,r,@

]
14,o) Kσ]1

S#memJ rename(@]
14,r · v,@

]
14,o · v) Kσ]1

@]
14,r, σ

]
2

S#envJ@
]
14,r · v = >int Kσ

]
2

@]
14,r, σ

]
3

σ]4,env = σ]3,env[b 7→@]
14,r]

σ] =

mem {@]

9,r;@
]
14,r }

heap ()
env i 7→ 2, old 7→@]

14,r, b 7→@]
14,r

@]
9,r · v 7→ −1,@

]
14,r · v 7→ 1

σ]2 = σ]1[env 7→ (i 7→ 2, old 7→@]
14,o, b 7→@]

14,o,

@]
14,o · v 7→ 1,@]

9,r · v 7→ −1)]

σ]3 = σ]2[env 7→ σ]2,env[@
]
14,r · v 7→ [−∞,+∞]]]

σ]4 =

mem {@]

9,r;@
]
14,r;@

]
14,o }

heap ()
env i 7→ 2, old 7→@]

14,o, b 7→@]
14,r,@

]
9,r · v 7→ −1,

@]
14,r · v 7→ [−∞,+∞],@]

14,o · v 7→ 1

Figure 4.4: Analysis of Listing 4.1, at line 14, assuming the loop has been unrolled once

intervals, we write v 7→ c as a shortcut for v 7→ [c, c]. Any evaluation starts with the global
operators S#J · K,E#J · K, but we show in subscript which domain answers. In the initial state,
two addresses are already allocated: @]

9,r was allocated before the loop (with v having
value -1) and @]

14,r during the first unrolling (with v having value 1). We also know that
i = 2 (we are in the second loop iteration). old and b currently point to the same record,

4.1.5 – Concretizations 79

stored at@]
14,r. The analyses starts with the statement b = new Box, at program location 14.

This statement is analyzed by the environment domain, which starts by evaluating new Box
globally. The allocation ofBox is handled by the heap abstraction (Figure 4.3), and starts by
allocating a new address at program location 14. This allocation is handled by the recency
abstraction (Figure 4.2). We are in the case where no previous old address exists at line
14. The address @]

14,o is thus added to the state, and a global renaming is triggered. The
heap abstraction handles address renaming by delegation over the auxiliary field variable
on v. In the resulting abstract state, σ]2, the environment now maps old and b to @

]
14,o, and

@]
14,o · v is 1. The result of the allocation evaluation is thus the recent address @

]
14,r in the

state σ]2. Then, the transfer function of the Box allocation initializes the only field v of Box
with any integer value, using an auxiliary address variable. This statement is handled by
the environment domain, and the resulting domain is σ]3. Only the environment is changed
to introduce the binding @]

14,r · v 7→ [−∞,+∞]. The result of the Box allocation is @]
14,r

in the state σ]3. The environment domain can then update its local state with the binding
b 7→@]

14,r.

4.1.5 Concretizations

4.1.5.1 Recency abstraction

The recency abstraction transforms concrete states (sets of environments and heaps) using ab-
stract addresses into concrete states using concrete addresses. Since the recency abstraction
summarizes addresses, the concretization transforms a set of coherent concrete states into a
single one, similarly to the concretization of the string summarization domain (Section 2.4.5).
In order to ease the definition of the concretization, we define an auxiliary function nρ, giving
the number of the most recently allocated address at location l in the concrete state ρ:

domρ ∩ {@i
l | l ∈ Loc, i ∈ N } = {@i

l | l ∈ Loc, 1 ≤ i ≤ nρ(l) }

The concretization of the recency abstraction enforces the following constraints:

• bindings over objects that are not abstract addresses are kept, provided the input states
are coherent on those objects.

• if an old address allocated at location l is in the state of the recency abstraction, it
abstracts a given number nρ(l)−1 of concrete addresses, to be picked in the input states
of the old address.

• a recent address abstracts only one concrete address, which is moreover the most recent
one allocated at this location. The set of input states must be coherent on this recent
address.

γmem(σ]mem) = { (R, { ρ }) |

v ∈ domR \ {@]
l,m | m ∈ { r,o }, l ∈ Loc } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v);

@o
l ∈ σ]mem ⇔ nρ(l) > 1 ∧ ∀1 ≤ i ≤ nρ(l)− 1, ρ(@i

l) ∈ R(@
]
l,o)

@r
l ∈ σ]mem ⇔ nρ(l) ≥ 1 ∧ |R(@]

l,r)| = 1 ∧ ρ(@nρ(l)
l) = R(@]

l,r) }

4.1.5.2 Heap abstraction

The heap abstract domain is stateless. Its concretization transforms a concrete environment
using auxiliary address variables into a concrete environment that does not include auxiliary
address variables anymore and a concrete heap. All auxiliary address variables are used to

80 Chapter 4 – Abstracting Dynamic Memory Allocation

define the heap, and the rest is kept in the environment. Since the concretization performs a
one-to-one mapping, we lift it similarly to the string length domain in Section 2.5, using the ↑
operator defined in Remark 2.83.

γheap(()) =↑ ◦{ (e, (e′, h′)) |@]
l,m · a ∈ dome⇔ h′(@]

l,m, a) = e(@]
l,m · a);

v ∈ dome \ {@]
l,m · _ } ⇔ e′(v) = e(v) }

4.2 Variable policies for the recency abstraction
The recency abstraction was originally designed for static languages where types are fixed.
In the case of more dynamic programming languages such as Python, the partitioning based
on the allocation site may be too precise or imprecise, depending on the kind of analysis
performed. While the semantics of Python programs is not yet established, we show a few
motivating examples with Python programs, where only basic knowledge of Python is required.

When the allocation-site is not necessary. For example, let us assume that we are performing
a type analysis on the program in Listing 4.2. There is no need to split Task allocation at line 6
by program location since we only want to know that Task instances have an integer weight
attribute.

Listing 4.2: Python program computing the average of tasks
1 class Task:
2 def __init__(self, weight):
3 if weight < 0: raise ValueError
4 self.weight = weight
5
6 l = [Task(2), Task(1), Task(3), Task(5)]
7 m = 0
8 for i in range(len(l)):
9 m = m + l[i].weight
10 m = m (i + 1)

When the allocation-site is imprecise. On the other hand, it is possible in Python to allocate
objects of different types at the same allocation site since classes are first-class objects. For
example, the function logging_alloc in Listing 4.3 logs the operation before creating the ob-
ject. With the usual allocation-site abstraction, the addresses of i and l would be summarized
into the same old block. This would trigger catastrophic imprecision in the analysis.

Listing 4.3: Python program, with logged allocations
1 def logging_alloc(x):
2 print("allocating " + x)
3 return x()
4
5 i = logging_alloc(int)
6 l = logging_alloc(list)
7 d = logging_alloc(dict)

Type-dependent precision. However, the allocation-site criterion still makes sense for con-
tainers such as lists: it would be too imprecise to abstract all lists using the same abstract
address. Consider for example the program in Listing 4.4. The lists allocated at lines 1 and 2
would be summarized in the same abstract address after the allocation at line 3. The variables
summarizing list contents are defined using the abstract address of the list. The list contents

4.2 – Variable policies for the recency abstraction 81

of qty and els would thus be summarized in the same variable, meaning that all list accesses
to qty or els would have to return both integers and strings, which lacks precision. In this case,
it would be beneficial to partition abstract addresses by allocation site. In some cases, we can
even go a step further and partition addresses by (partial) callstacks. A callstack-based parti-
tioning would resolve the imprecision issue in the analysis of Listing 4.3. This shows that the
usual homogeneous partitioning could benefit from different allocation precision depending
on the type of address abstracted. In the case of containers, we do not try to take into account
the type of elements, since Python containers can hold heterogeneous values (cf. Chapter 5).

Listing 4.4: Python program with lists of different types
1 qty = [3, 1, 1]
2 els = ['choc', 'flour', 'egg']
3 exp = []
4 for i in range(len(qty)):
5 for j in range(qty[i]):
6 exp.append(els[i])

Thus, we extend abstract addresses to be typed (T is a finite set of types) and to take
optionally into account location and partial callsite information (written C). Then, the recency
abstraction is parameterized by an allocation policy, describing how addresses are abstracted.

Addr] = T× Loc> × C> × { r,o }

Definition 4.9 Allocation policy
An allocation policy is a function π ∈ T×Loc×C×{ r,o }⇀ Addr] defining how allocation-
site and callstack information are abstracted to create an abstract address.

Two basics policies that can be used are the type-only policy and the location policy, de-
fined below. We build upon these two policies to define those used in the type and value
analyses of Python. The type analysis is described in Chapter 7. It aims at detecting type-
related errors by inferring typed points-to information for variables. The value analysis will
extend the type analysis in Chapter 8 to infer numerical invariants for variables holding builtin
values.

Example 4.10 Type-only policy
The type-only policy πto = λ(t, l, c,m).(t,>,>,m) keeps only the type information. It is
interesting for type analyses since it keeps essential information but it is not too expensive
either.

Example 4.11 Location policy
The location policy πloc = λ(t, l, c,m).(t, l,>,m) discards callstack information and keeps
the rest.

Policy for Python’s type analysis. The policy for the type analysis is defined below. It uses
allocation-site information to handle containers that are generic in their contents in order to
avoid the precision issues mentioned before. For the rest, it uses the type-only policy to be
memory-efficient.

πtypes(t, l, c,m) =

{
πloc(t, l, c,m) if t ∈ { list, tuple, dict }
πto(t, l, c,m) otherwise

82 Chapter 4 – Abstracting Dynamic Memory Allocation

Policy for Python’s value analysis. The standard policy for the value analysis is the location
policy πloc. A coarser alternative, πvaluesto can be defined, where the allocation site is only used
for the range, slice, list, tuple, dict builtins (in order to be sufficiently precise on the
numerical values that range and slice iterators hold).

πvaluesto (t, l, c,m) =

{
πloc(t, l, c,m) if t ∈ { range, slice, list, tuple, dict }
πto(t, l, c,m) otherwise

The transfer function of the recency abstraction is slightly changed with policies: abstract
addresses are created by the chosen policy. We assume the type and callstack are provided to
the alloc_addr expression. The new transfer function is shown in Figure 4.5.

E#memJalloc_addr(t, l, c) Kσ] =

let σ]mem = man.get σ] in

let@]
r = π(t, l, c, r) in

let@]
o = π(t, l, c, o) in

if@]
r ∈ σ]mem then

if@]
o ∈ σ]mem then@]

r, S#J fold(@
]
o,@

]
r) Kσ]

else

let σ]mem = σ]mem ∪ {@
]
o } in

@]
r, S#J rename(@

]
r,@

]
o) K(man.set σ]mem σ])

else

let σ]mem = σ]mem ∪ {@
]
r } in

@]
r, man.set σ]mem σ]

Figure 4.5: Semantics of address allocation with policies

These policies will be compared in Sections 7.5 and 8.2.

4.3 Abstract garbage collection (AGC)

In our first implementation of the recency abstraction, we were only performing address allo-
cations. Even if the addresses were unused after a given program point, they were kept until
the end of the analysis. However, when we instrumented our analysis (using a hook in Mopsa,
cf. Section 3.4), we noticed that up to two-thirds of the allocated addresses were unreachable.
Most objects are stored in local variables and can thus be cleaned after the function returns.
Therefore we decided to implement an abstract garbage collector, detecting and removing un-
reachable abstract addresses.

4.3 – Abstract garbage collection (AGC) 83

Listing 4.5: Motivating example for abstract garbage collection
1 class A:
2 def __init__(self, v):
3 self.v = v
4
5 def f(i):
6 b = A(i)
7 c = A(i+1)
8 return b.v
9
10 r1 = f(0)
11 r2 = f(100)

Example 4.12 Precision loss with old addresses
Let us consider the program of Listing 4.5, where we assume a type-only policy applies
to instances of class A (abstract addresses will thus be written @]

A,r and @
]
A,o). After the

first call to f , both an old and a recent address are allocated for A. After the two alloca-
tions in the second call to f , we know that c.v is 101, thanks to the precision of the last
allocation, ensuring a strong update is performed (in the abstract, this is represented as
@]

A,r · v 7→ [101, 101]). However, we can only infer that @]
A,o · v 7→ [0, 100] due to the previ-

ous allocations in the first call.

In general, performing abstract garbage collection can improve the precision of the analysis
since it may remove old addresses where only weak updates can be performed. We previously
found [112] that the precision gains were not sufficient to remove false alarms in practice. They
were, however, extremely beneficial from a performance standpoint: AGC halved the memory
usage and brought a 38% analysis time improvement (with the AGC taking less than 6% of the
analysis time). These results will be detailed in Sections 7.6.3 and 8.2.3.

Example 4.13 Improving precision
Going back to the example of Listing 4.5, we assume an AGC is performed after the first call
to f. Since both recent and old addresses for @]

A,r,@
]
A,o are not reachable outside f, we

can safely remove them. After the two allocations in the second call, we have: @]
A,o · v 7→

[100, 100], @]
A,r · v 7→ [101, 101], which is more precise.

Implementation. We have implemented the abstract garbage collection within the recency
abstract domain. Due to the distributed structure of abstract domains in Mopsa, the abstract
garbage collector asks domains about the set of live addresses they use through a query,
defined below.

type ('a,_) query +=
| Q_alive_addresses : ('a,addr list) query

The recency then performs set difference between its local state of allocated addresses and
the result of the query. It can then remove the unreachable addresses. By default, the AGC is
called after each assignment where the right-hand side is a (function, method, or object) call.
We have tested running the AGC at only a fraction of those assignments, but the results were
not as satisfying.

84 Chapter 4 – Abstracting Dynamic Memory Allocation

4.4 Related work
Dynamic memory allocation abstractions. Liang et al. [96] find that the recency abstraction
leads to high precision in 75% percent of their cases. They also study precision improvements
when the last n allocated blocks are kept separate. It thus seems natural that most previous
analyses of dynamic programming languages taking soundly into account object mutation and
aliasing used the recency abstraction [74, 54] over the allocation-site abstraction. Specialized
heap abstractions for dynamic programming languages exist, such as the heap with open ob-
jects [39], aiming at precisely analyzing code where object attributes are unknown. In our case,
we analyze Python programs through a top-down, context-sensitive analysis, and we have not
encountered the need to analyze code where object attributes are unknown. Park et al. [124]
observe that a more precision partitioning of abstract addresses does not always ensure a
more precise analysis relying on the recency abstraction. They define a singleton abstraction
resolving this issue. To the best of our knowledge, only Park et al. [124] and our work formally
define a concretization function for the recency abstraction. Heap abstractions specialized to
complex data structures (such as linked lists) are called shape analyses, surveyed by Chang
et al. [25].

Abstract Garbage Collection. Abstract garbage collectors were first used in the analysis of
higher-order languages. They are first used by Jagannathan et al. [71], and then described
by Might and Shivers [104]. More recently, an abstract garbage collector based on reference
counting was presented by Es et al. [51]. In the setting of higher-order languages, using an
abstract garbage collector has been found to reduce the analysis time by an order of magnitude
and sometimes to improve the precision. In TAJS, Jensen et al. [74] find that their abstract
garbage collector reduces their memory consumption but has little impact on the precision or
the analysis time.

4.5 Conclusion
In this chapter, we defined the recency abstraction and its concretizationmodularly. We showed
how it would interact with other domains, by extending our toy language with OCaml-like
records. We motivated the need for different partitionings of the abstract addresses in the
case of the analysis of dynamic programming languages such as Python. We defined the no-
tion of allocation policy, and provided instantiations of these policies, which will be used in
the analyses of Python programs defined later. We showed that the recency abstraction can be
combined with an abstract garbage collection mechanism, improving the precision of the anal-
yses using it. The next chapter focuses on the analysis of containers in the setting of dynamic
programming languages. These analyses rely on a dynamic memory allocation abstraction,
such as the one presented here.

5

Abstracting Containers

This chapter defines containers’ abstractions, that will be used in the Python analyses of Chap-
ters 7 and 8. These abstractions and the concretizations are defined modularly, as we have
done before. They work by delegation to other domains and do not make specific assump-
tions on them. Previous works (presented in Section 5.3) handle a setting typical to static
programming languages: arrays are of fixed size, and these works aim at inferring numerical
properties between numerical arrays and their indexes. The abstractions presented here are
based on usual summarization (also called smashing) techniques and are not really complex.
However, they handle specific features of dynamic languages: containers have a dynamic size
(arrays’ elements can be added and removed) and can hold heterogeneous values (including
non-numeric values). Designing more precise container abstractions is an important part of
our future work. We present abstractions on a simplified language; they can be easily lifted
to a Python-specific setting. We focus on arrays (called lists in Python) in Section 5.1. We de-
fine length and summarization abstractions that are close to the ones defined for strings in
Sections 2.4.2 and 2.4.5. Contrary to strings, they rely on a domain handling dynamic memory
allocation, such as the recency abstraction of Section 4.1. They delegate all operations to un-
derlying domains through rewriting using auxiliary variables. In the case of the summarization
abstraction, this delegation means the domain is generic in the abstracted content. We define
a summarization of dictionaries in Section 5.2.

5.1 Dynamic arrays

5.1.1 Array operations

Arrays are mutable and allocated on the heap. They can hold heterogeneous values (such
as strings and integers). The static typing of Imp is unfit to handle heterogeneous arrays (we
could introduce some gradual types, but it is beside the point of our toy language). Instead,
we show our examples in a Python-like setting. Still, we do not focus on Python specifics,
and we assume that functions are called on arguments having correct types. We consider that
erroneous programs stop their execution rather than raise an exception as Python does.

The arrays presented here support the following operations:

. Creation, written [e1, . . . , en], where ei are expressions. It is possible to create empty lists, [].

. Element addition, a.append(x) adds x to the end of the array a in place. Calls to append are
statements.

. Membership testing, a.contains(x) returns 1 if and only if x is an element of a, and 0 other-
wise.

86 Chapter 5 – Abstracting Containers

. Length, a.len() returns a non-negative integer being the number of elements of the array.

. Index access, a.getitem(i) returns the element of a at position i.

. Element removal, a.delitem(i) removes the i-th element from array a (the elements after
this one are all moved to their predecessor’s position). Calls to delitem are statements.

The corresponding names of methods in Python are prefixed and suffixed by a double
underscore (”contains” is ”__contains__”, etc.), except for “append”.

Definition 5.1 Program State
The program state consists of an environment and heap (in a setting similar to the concrete
state of Section 4.1.2). The environment maps variables to values or addresses. The heap
maps addresses to objects. The only supported kind of object is array, which consists of a
number of values or addresses.

E = V → Value ∪ Addr H = Addr→ Obj

Obj = Array(c ∈ (Value ∪ Addr)∗)

The records of Section 4.1.2 could be added in the state by extendingObjwithRecord(s ∈
string→ Value).

The semantics of arrays is shown in Figure 5.1. To create an array, an address is allocated,
and all the elements are evaluated, before the updated heap is returned. append evaluates
the array into an address, as well as the element to add, before updating the heap. getitem
evaluates the array and the index. If the index is valid, the corresponding element is returned.
To compute the length, we just count the number of elements of the array. contains returns
1 provided any of the array’s elements match the element, and 0 otherwise. The definition of
the equality comparison operator is left implicit in the semantics. In the case of Python, the
semantics of the equality comparison will be shown in Section 6.2.15.2. delitem evaluates the
array and the index, before updating the heap, provided the index is valid.

Remark 5.2 Random value notation
To avoid confusion between arrays and Imp’s intervals, we use the notation rand(l, u) for a
random number within the interval [l, u].

Example 5.3 Running examples
The program of Listing 5.1 creates an array a of size n, with all its elements in between the
picked values of l and u. A program copying array a into b is shown in Listing 5.2. It does
not assume anything on a and copies the arrays by iterating over the indexes of a.

Listing 5.1: Program random initilizating array a
1 n = rand(0, 2021)
2 l = rand(-100, 0)
3 u = rand(0, 100)
4
5 a = []
6 i = 0
7 while i < n:
8 a.append(rand(l, u))
9 i = i + 1

5.1.2 – Length abstraction 87

EJ [x1, . . . , xn] K(e, h) =
let@, (e, h) = EJalloc_addr() K(e, h) in
let v0, (e, h) = EJx1 K(e, h) in
. . .

let vn−1, (e, h) = EJxn K(e, h) in
@, (e, h[@ 7→ Array(v0, . . . , vn−1)])

SJ a.append(x) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Array(v0, · · · , vn−1) = h(@) in
let v = EJx K(e, h) in
(e, h[@ 7→ Array(v0, . . . , vn−1, v)])

EJ a.getitem(i) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Array(v0, · · · , vn−1) = h(@) in
let i, (e, h) = EJ i K(e, h) in
if 0 ≤ i < n then vi, (e, h) else ⊥, (e, h)

EJ a.len() K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Array(v0, . . . , vn−1) = h(@) in
n, (e, h)

EJ a.contains(x) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Array(v0, . . . , vn−1) = h(@) in
EJ 1 K ◦ CJx == v0 or · · · or x == vn−1 K(e, h)∪
EJ 0 K ◦ CJx! = v0 and · · · and x! = vn−1 K(e, h)

SJ a.delitem(i) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Array(v0, . . . , vn−1) = h(@) in
let i, (e, h) = EJ i K(e, h) in
if 0 ≤ i < n then
(e, h[@ 7→ Array(v0, . . . , vi−1, vi+1, . . . , vn−1)])

else ⊥

Figure 5.1: Semantics of arrays

Listing 5.2: Program copying array a into b
1 b = []
2 i = 0
3 while i < a.len():
4 b.append(a.getitem(i))
5 i = i + 1

5.1.2 Length abstraction

The length abstraction uses the auxiliary address variable alen(@]) to denote the length of the
array referenced at address @]. The domain is stateless, and its transfer functions are shown
in Figure 5.2. During an array allocation, the domain asks for the allocation of an abstract
address @], and then delegates the assignment alen(@]) = n. Calling append increases the
length by one (which is a delegated assignment). The length domain does not keep track of
the elements of the array. As such, it is imprecise when contains is called. On the other hand,
it returns its auxiliary length variable when len is called. On calls to getitem, we ensure that
the index is valid and return >. For calls to delitem, the length is decreased by one provided
that i is a valid index.

Remark 5.4 Ghost addressing renaming
Since each domain is responsible for its ghost variables, the array length domain handles
the renaming of its ghost variables.

S#alenJ rename(@]
1,@

]
2) K = S#J rename(alen(@]

1), alen(@
]
2)) K

This renaming by delegation is similar to the heap domain of Section 4.1.4 and men-
tioned in Remark 3.6.

88 Chapter 5 – Abstracting Containers

E#alenJ [e1, . . . , en] Kσ] =

let@], σ] = E#Jalloc_addr() Kσ] in@], S#J alen(@]) = n Kσ]

S#alenJ a.append(x) Kσ] =

let@], σ] = E#J a Kσ] in S#J alen(@]) = alen(@]) + 1 K

E#alenJ a.contains(x) Kσ] = E#J [0, 1] Kσ]

E#alenJ a.len() Kσ] =

let@], σ] = E#J a Kσ] in E#J alen(@]) K

E#alenJ a.getitem(i) Kσ] =

let@], σ] = E#J a Kσ] in E#J> K ◦ C#J 0 ≤ i < alen(@]) Kσ]

E#alenJ a.delitem(i) Kσ] =

let@], σ] = E#J a Kσ] in S#J alen(@]) = alen(@])− 1 K ◦ C#J 0 ≤ i < alen(@]) Kσ]

Figure 5.2: Array length abstraction

Example 5.5 Array initialization
Going back to the example of Listing 5.1, our analysis – using an interval domain – will infer
that n ≥ 0 and that the length of the array a is non-negative too. With a relational numerical
domain such as polyhedra or octagons, the first fixpoint iteration yields:(

alen(@]) = 1, i = 1, 1 ≤ n ≤ 2021
)

The fixpoint is reached at the second iteration, and the state at the end of the loop’s body
is: (

1 ≤ alen(@]) = i ≤ n ≤ 2021
)

Intersected with the negation of the loop guard, we know that 0 ≤ n = i = alen(@]) ≤ 2021
at the end of the program, and thus that our array has length n.

Example 5.6 Array copy
On the example of array copy in Listing 5.2, an analysis using an underlying relational nu-
merical domain can infer that a and b have the same length. Since we have a similar
invariant to the previous example, we can also prove that the index access is correct.

Remark 5.7 Empty lists
We could be a bit more precise for the membership test: if the array is empty (of length 0),
it contains nothing, thus, the function contains returns 0.

Definition 5.8 Concretization
The concretization of the array length domain transforms states with auxiliary array length
variables into concrete states with arrays. The concretization is similar to that of the string
length domain of Section 2.4.2 and of the heap abstraction of Section 4.1.5.2. We lift a one-
to-one mapping using the ↑ operator.

5.1.3 – Summarization abstraction 89

γalen(()) =↑ ◦{ (ρ, ρ′) | v ∈ domρ \ { alen(_) } ⇔ ρ′(v) = ρ(v);

alen(@]) ∈ domρ⇔ ρ′(@]) = Array(v1, · · · , vρ(alen(@])))∧

∀i ∈ [1, n], vi ∈ Value] ∪ Addr] }

5.1.3 Summarization abstraction

This abstraction summarizes the contents of arrays allocated at@] using a single auxiliary vari-
able arr(@]) to denote elements at all indices. The transfer functions are shown in Figure 5.3.
Array allocations are rewritten into successive weak updates of arr(@]) once an address has
been allocated. Adding a new element is delegated as a weak assign (which is ultimately a fold
operation). contains is evaluated as a disjunction depending on the filtering over the auxil-
iary variable. This domain does not keep track of lengths and thus returns any non-negative
integer. Accessing a given index is done by returning the auxiliary variable, tagged weak (so
it will be expanded into a fresh variable during assignments, as explained in Remark 2.75). As
usual, renamings of array addresses are delegated as renamings of the corresponding auxiliary
variable. The summarization domain does not track which values are held at which index, and
thus its transfer function for delitem is the identity.

E#arrJ [e1, . . . , en] Kσ] =
let@], σ] = E#Jalloc_addr() Kσ] in

@],S#J arr(@])weak = en K ◦ · · · ◦ S#J arr(@])weak = e2 K ◦ S#J arr(@]) = e1 Kσ]

S#arrJ a.append(x) Kσ] =

let@], σ] = E#J a Kσ] in S#J arr(@])weak = x Kσ]

E#arrJ a.contains(x) Kσ] =

let@], σ] = E#J a Kσ] in

E#J 1 K ◦ C#J arr(@])weak == x Kσ] t] E#J 0 K ◦ C#J arr(@])weak! = x Kσ]

E#arrJ a.len() K = E#J rand(0,+∞) K

E#arrJ a.getitem(i) Kσ] =

let@], σ] = E#J a Kσ] in

E#J arr(@])weak Kσ]

E#arrJ a.delitem(i) Kσ] = σ]

S#arrJ rename(@
]
1,@

]
2) K = S#J rename(arr(@]

1), arr(@
]
2)) K

Figure 5.3: Array smashing abstraction

Remark 5.9 Empty arrays
The case of empty arrays is not formally defined in the abstraction. One way to handle
precisely this case is to delay the introduction of the arr(@]) auxiliary variable until the
array is not empty. This way, we avoid initializing it with spurious values. When the array
becomes non empty, after a call to append, the variable is introduced and can be initial-
ized with a precise, strong update. This requires extra bookkeeping in the abstract state to

90 Chapter 5 – Abstracting Containers

remember which variables currently exist (i.e., which arrays are empty), and to handle the
case of joining abstract states with different sets of variables. The case of heterogeneous
numerical environments has been extensively studiend by Journault [80, Chapter 6], includ-
ing the complex case of joining relational abstract states over different sets of variables.
Hence, we omit the discussion here and settle for illustrative examples.

Example 5.10 Array initialization
Let us assume we use a relational numerical abstract domain such as polyhedra or oc-
tagons. In that case, the following invariant is trivially reached on the analysis of Listing 5.1:(

−100 ≤ l ≤ arr(@]) ≤ u ≤ 100
)

Example 5.11 Array copy
Let @]

a (resp. @]
b) be the abstract address of array a (resp. b). Sice arr(@

]
a) and arr(@]

b) are
weak variables, we cannot infer that arr(@]

a) = arr(@]
b) at the end of Listing 5.2. However,

if a has been created using the random initialization of Listing 5.1, the analysis may infer:

(−100 ≤ l ≤ arr(@]
a) ≤ u ≤ 100,−100 ≤ l ≤ arr(@]

b) ≤ u ≤ 100)

Remark 5.12 State refinement membership testing
Let us assume we evaluate a.contains(10), assuming the abstract state is a 7→ @], 0 ≤
arr(@]) ≤ 10. Since the summarization only provides an overapproximation of the values
of the array, there is no way to know if 10 is actually in the array: it could also be an
imprecision from the numerical part, or it could be an element that has been added and
removed later on. Thus, contains returns both 1 and 0:

• 1, in the same state (the state cannot be refined to express that 10 is always in the
array);

• 0, in a reduced state where 0 ≤ arr(@]) < 10 (we ensure the array does not contain
10 anymore).

Definition 5.13 Concretization
The concretization of the array length domain transforms environments with auxiliary array
variables into concrete states with arrays. It shares a definition similar to the concretiza-
tions of the string summarization domain of Section 2.4.5 or the recency abstraction of
Section 4.1.5.1.

γarr(()) = { (R, ρ) | v ∈ domR \ { arr(_) } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v);

arr(@]) ∈ domR⇔ ∃n ∈ N, ρ(@]) = Array(v1, · · · , vn) ∧ ∀i ∈ [1, n], vi ∈ R(arr(@])) }

Remark 5.14 Nested arrays
If the abstract address allocation is sensitive to the allocation site, each nested array will
be allocated at a different address, which is precise but sometimes costly. For example,
m = [[0], [1], [2]] allocates four different addresses in our current implementation. In

5.1.4 – Reduced product 91

addition, the evaluation of m[i] will return a disjunction of three elements corresponding
to each list.

Example 5.15 Iteratively nesting arrays
We consider the program of Listing 5.3. Two random numbers l and u are picked, and three
elements in between l and u are stored in array a. The array is then nested in itself ten
times.

Listing 5.3: Iteratively nesting arrays
1 l, u = rand(-100, 0), rand(0, 100)
2 a = [rand(l, u), rand(l, u), rand(l, u)]
3 for i in range(10): a = [a]

At the beginning of the loop, we have a 7→@]
2,r in our environment and l ≤ arr(@

]
2,r) ≤ u

in the numerical domain. After one loop iteration, the numerical domain is unchanged, and
the environment becomes (

a 7→@]
3,r, arr(@

]
3,r) 7→ arr(@]

2,r)
)

The final state is unchanged for the numerical part, and the environment is(
a 7→@]

3,r, arr(@
]
3,r) 7→ arr(@]

3,o), arr(@
]
3,o) 7→

{
arr(@]

2,r), arr(@
]
3,r)
})

Thanks to its old address, the recency abstraction generalizes the nesting. In the end, a is
an array of depth at least 2, and the contents of the scalar array correspond to the elements
allocated at line 3.

Keeping the values l and u symbolic, the concrete states of the previous abstract state
are shown below. Following the abstract state, amaps to the most recent allocated variable
at line 3, written@n

3 in the concrete (n > 1 since both the old and recent abstract addresses
exist). There is only one array allocated at line 2, whose address is written @1

2. It contains
an array of integers between l and u. Since the summarization abstraction does not track
length, the array can have any length. The concretization of the array at @]

3,r is the array at
@n

3 . This array contains only references to arrays previously allocated at the same program
point, i.e., having concrete addresses (@i

3)1≤i<n. In turn, the contents of the previously
allocated arrays point either to most recently allocated array at line 2 or at line 3.

⋃
n>1

{
(e, h)

∣∣∣ e(a) =@n
3 ,

∃s ∈ N,∃(v1, . . . , vs) ∈ Zs, h(@1
2) = Array(v1, . . . , vs),∀j ∈ [1, s], l ≤ vj ≤ u;

∃m ∈ N,∃(a1, . . . , am) ∈ Addrm,
h(@n

3) = Array(a1, . . . , am) ∧ ∀j ∈ [1,m], aj ∈ {@i
3 | i ∈ [1, n− 1] };

∀i ∈ [1, n− 1], ∃mi ∈ N, (ai1, . . . , aimi
) ∈ Addrm,

h(@i
3) = Array(ai1, . . . , a

i
mi

) ∧ ∀j ∈ [1,mi], a
i
j ∈ {@1

2,@n
3 }
}

5.1.4 Reduced product

The reduced product between the array length and summarization domains is close to the one
defined on strings in Section 2.4.6. There are similar cases of diverging states of the underlying
numerical domain, which are merged just as the string domains did. These merges happen
during array allocations, element deletion, index accesses and element addition. Since both

92 Chapter 5 – Abstracting Containers

domains are stateless, there is no need to define specific state reductions. However, we still
need to define reductions between the evaluations of expressions. We describe informally how
these evaluation reductions are performed:

. Array allocation. Both domains return the same allocated address @], and the evaluation
reduction is thus straightforward.

. Membership test. The summarization domain returns either 0 or 1with different states, while
the length domain returns [0, 1] (except if the list is empty; it returns 0 in that case). The
evaluation reduction intersects those results.

. Length. The summarization domain returns [0,+∞] and the length domain an auxiliary ad-
dress variable. The latter is kept by the reduction.

. Index access. The summarization domain returns an auxiliary variable, and the length do-
main returns top. The reduction keeps the result of the summarization domain.

Example 5.16 Reduced product of array abstractions
Let us assume that a is the randomly initialized array of Listing 5.1, and that i is a positive
integer. We study the analysis of a.getitem(i), with the following input state:(

−100 ≤ l ≤ arr(@]) ≤ u ≤ 100, alen(@]) = n, 0 ≤ n ≤ 2021, i ≥ 0
)

The summarization domain returns arr(@])weak. The length domain returns >, in the
state where 0 ≤ i < alen(@]) holds. These results are combined, and the reduced product
returns arr(@])weak, in the state below (the new part is written in bold font).(

−100 ≤ l ≤ arr(@]) ≤ u ≤ 100, alen(@]) = n, 0 ≤ n ≤ 2021, 0 ≤ i < alen(@])
)

Our semantics defined a simplified case where we keep only non-erroneous states (cf.
Remark 2.6). In the actual analysis of Python, we would have created an erroneous case rais-
ing an exception. Its state would be the input state, filtered by the condition i > alen(@]).

Remark 5.17 Current implementation
Currently, the implementation of this domain for Python analyses combines both the length
and smashing abstractions in a single domain. If we split the abstractions into the reduced
product shown here, we could disable the length domain in the case of the type analysis
presented in Chapter 7.

Remark 5.18 Array expansion abstraction
Another simple array abstraction is array expansion, which is much more precise but less
scalable than the array summarization. It consists in considering each element of the array
as a variable. We could for example introduce the auxiliary variable exparr(@] ∈ Addr], i ∈
N) denoting the i-th element of the array allocated at @].

5.1.5 Variation: abstracting sets

Python also has a builtin set data structure, where each element is present at most once. The
same transfer functions apply to the summarization domain. The length domain needs to be
adapted: it cannot know if the element is already in the set, so the definition of append adds
non-deterministically 11.

1If the set is empty, append can add 1.

5.2 – Dictionaries 93

Example 5.19 Set analysis
In the program of Listing 5.4, we can infer that:

• the length of the set is between 1 and 2 (depending on whether i = j or not),
• the elements of s are between 0 and 10.

Listing 5.4: Program using sets
1 i = rand(0, 10)
2 j = rand(0, 10)
3 s = set(i, j)

5.2 Dictionaries
Dictionaries are associative data structures. We consider the case where keys and values can
have heterogeneous values since this is permitted by Python. For the sake of simplicity, we do
not rule out dictionaries having multiple bindings with the same key in our concrete semantics,
since they do not change the summarization abstraction.

5.2.1 Dictionary operations

We consider the following dictionary operations.

. Creation, written { k1 : v1, . . . , kn : vn } where ki and vi are expressions.

. Adding a binding, d.setitem(k, v) adds the binding from key k to value v to dictionary d.

. Testing key membership, d.contains(k) returns 1 if and only if k is a key of d (and 0 other-
wise).

. Searching for a binding, d.getitem(k) returns the value of the dictionary at key k.

. Listing all bindings, d.keys() returns an array containing the dictionary keys.

The corresponding names of functions in Python are prefixed and suffixed by a double under-
score, except for keys.

Definition 5.20 Program State
The program state of Definition 5.1 is extended with a new object Dict consisting of tuples
of keys and values.

Dict(d ∈ ((Value ∪ Addr)2)∗) ∈ Obj

The concrete semantics is shown in Figure 5.4. The creation of a dictionary consists in
allocating an address, evaluating all elements and storing them in the heap. setitem evaluates
the dictionary and the binding before adding it to the heap. contains returns a disjunction,
depending on whether a key is found. getitem searches for the value of the key passed in
argument. keys allocates all the keys into an array.

Example 5.21 Occurence number
An example program counting occurences using dictionaries is shown in Listing 5.5. This
program iterates over s. For each element x of s, if x is already bound in the dictionary, we
add 1 to its value. Otherwise, we add a binding for key x, with value 1.

We have not specified what s is here. If s is a string such as ”analysis”, the resulting dic-
tionary is {'a': 2, 'n': 1, 'l': 1, 'y': 1, 's': 2, 'i': 1}. s can also be an array,
such as [2, 1, 1, 1, 2, 1]. In that case the result is {2 : 2, 1 : 4}.

94 Chapter 5 – Abstracting Containers

EJ { k1 : v1, . . . , kn : vn } K(e, h) =
let@, (e, h) = EJalloc_addr() K(e, h) in
let k1, (e, h) = EJ k1 K(e, h) in
let v1, (e, h) = EJ v1 K(e, h) in
. . .

let kn, (e, h) = EJ kn K(e, h) in
let vn, (e, h) = EJ vn K(e, h) in
@, (e, h[@ 7→ Dict((k1, v1), . . . , (kn, vn))])

SJ d.setitem(k, v) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Dict(kv1, . . . , kvn) = h(@) in
let k, (e, h) = EJ k K(e, h) in
let v, (e, h) = EJ v K(e, h) in
(e, h[@ 7→ Dict(kv1, . . . , kvn, (k, v))]

EJ d.contains(k) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Dict((k1, v1), . . . , (kn, vn)) = h(@) in
EJ 1 K ◦ CJ k1 == k or · · · or kn == k K∪
EJ 0 K ◦ CJ k1! = k and · · · and kn! = k K

EJ d.getitem(k) K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Dict((k1, v1), . . . , (kn, vn)) = h(@) in
∪1≤i≤n EJ vi K ◦ CJ ki == k K(e, h)

EJ d.keys() K(e, h) =
let@, (e, h) = EJ a K(e, h) in
let Dict((k1, v1), . . . , (kn, vn)) = h(@) in
EJ [k1, . . . , kn] K(e, h)

Figure 5.4: Semantics of dictionaries

Listing 5.5: Computing the number of occurences of s in d
1 d = {}
2 for x in s:
3 if d.contains(x): d.setitem(x, d.getitem(x)+1)
4 else: d.setitem(x, 1)

Example 5.22 Heterogeneous dictionaries
Some dictionaries can have heterogeneous values (either in the keys or the values). Key
heterogeneity rarely happens but is still possible. An example is shown in Listing 5.6, where
some image metadata is stored. All keys are strings. The value of key ”extension” is a string,
while others are integers.

Listing 5.6: Example dictionary with heterogeneous values
1 image = {
2 "extension": "jpg",
3 "width": 1920,
4 "height": 1080
5 }

Dictionary keys can be optional (i.e., inserted conditionally) or abstracted imprecisely (due
to previous imprecisions, or an imprecise domain). These cases make the precise abstraction
of dictionaries more difficult. If a domain keeps only an overapproximation of the set of keys,
or is imprecise on some keys, it will be imprecise on the key membership and key access
operations, which will create spurious false alarms.

The particular case where dictionary keys can only be strings is much simpler: the values
of string keys are usually constant, and it is possible to keep an underapproximation of the
set of keys that are defined in all the concrete environments. This case corresponds to the
abstraction of object attributes in Python, used to handle Python’s structural type system. A
specific abstraction will be shown in Section 7.2.3.

5.2.2 –Whole smashing 95

E#dsJ { k1 : v1, . . . , kn : vn } Kσ] =

let@], σ] = E#Jalloc_addr() Kσ] in

@],S#J vals(@])weak = vn K ◦ S#J keys(@])weak = kn K ◦ · · · ◦ S#J vals(@])weak = v2 K

◦ S#J keys(@])weak = k2 K ◦ S#J vals(@]) = v1 K ◦ S#J keys(@]) = k1 Kσ]

S#dsJ d.setitem(k, v) Kσ] =

let@], σ] = E#J d Kσ] in

S#J vals(@])weak = v K ◦ S#J keys(@])weak = k Kσ]

E#dsJ d.contains(k) Kσ] =

let@], σ] = E#J d Kσ] in

E#J 1 K ◦ C#J k == keys(@])weak Kσ] t] E#J 0 K ◦ C#J k! = keys(@])weak Kσ]

E#dsJ d.getitem(k) Kσ]

let@], σ] = E#J d Kσ] in
let tmp = mk_tmp_var() in
E#J vals(@])weak K ◦ C#J keys(@])weak == k Kσ]

E#dsJ d.keys() Kσ] =

let@], σ] = E#J d Kσ] in

E#J [keys(@])weak for x in range(rand(0,+∞))] Kσ]

S#dsJ rename(@
]
1,@

]
2) K = S#J rename(vals(@]

1), vals(@
]
2)) K ◦ S#J rename(keys(@]

1), keys(@
]
2)) K

Figure 5.5: Dictionary smashing domain

5.2.2 Whole smashing

A coarse abstraction of dictionaries is to separate keys and values in different arrays, and ap-
ply the array summarization abstraction on each of those arrays. We summarize all keys in
one auxiliary variable (written keys(@])) and all values in another auxiliary variable (written
vals(@])). This domain is stateless, and its transfer functions are shown in Figure 5.5. The
transfer functions are similar to the array summarization domain shown in Section 5.1.3, ex-
cept that different auxiliary variables are used for keys and values. The transfer function of
keys returns a list of any size, containing the keys of the dictionary (we reuse notation of list
comprehensions of Python).

Example 5.23 Summarizing homogeneous dictionaries
The smashing domain works well in the case of homogeneous dictionaries. Let us assume
we have a type analysis. This analysis aims at detecting type-related errors by inferring
typed points-to information for variables. Going back to the example of occurrences com-
putation in Listing 5.5 and assuming s is a string, this type analysis could infer that the keys
are strings and the values are integers.

Example 5.24 Summarizing heterogeneous dictionaries
In the case of heterogeneous dictionaries, this abstraction is quickly imprecise and may
introduce false types that will trigger many false alarms in the rest of the analysis. In the

96 Chapter 5 – Abstracting Containers

example of Listing 5.6, using an interval domain and a string powerset domain, accessing
image["extension"] would give the string "jpg" or any number in the interval [1080, 1920].

Definition 5.25 Concretization
The concretization is similar to the other summarization-based domains (Sections 2.4.5,
4.1.5.1 and 5.1.3).

γds(()) = { (R, ρ) | v ∈ domR \ { keys(_), vals(_) } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v);

(keys(@]) ∈ domR ∧ vals(@]) ∈ domR)⇔ ∃n ∈ N,

ρ(@]) = Dict((k1, v1) · · · (kn, vn)) ∧ ∀i ∈ [1, n], ki ∈ R(keys(@])) ∧ vi ∈ R(vals(@])) }

Remark 5.26 More precise smashing for heterogeneous dictionaries
An interesting future work is to have a smashing abstraction where each dictionary smash-
ing is partitioned by the types of its values, to avoid such imprecision.

Remark 5.27 Dictionary expansion
Similarly to arrays (Remark 5.18), dictionaries can also be abstracted by expansion, i.e., dif-
ferent auxiliary variables are used to abstract each binding in the dictionary. However, the
choice of auxiliary variables to continue our approach by delegation to underlying domains
is more complex in this case:

• If we keep one auxiliary variable per key and per value, they could be numbered
by insertion order, but this concrete numbering would create issues when analyzing
loops. Moreover, it would be inefficient to perform dictionary operations since even
membership testing would be costly.

• We could keep the set of keys of each dictionary as the state of the domain, and
auxiliary variables for each value would consist in the dictionary’s address and the
corresponding key, which has been evaluated. The evaluation of the key, however is
an issue. Let us assume we have a dictionary d where we perform d.setitem(2x+1,
3), and the address of d is @]. Following Mopsa’s evaluation mechanism, if keys are
only evaluated in expressions, we could use a ghost variable@] ·(2x+1). However, the
expression’s values change depending on the environment. We would have to perform
a unique copy for the variables of the expressions in which the key evaluated, which
would be costly. Otherwise, we could decide to store abstract values (for example,
query the polyhedron domain for an interval approximation of 2x + 1). This would,
however remove relationality.

These solutions are not satisfactory, and dictionary expansion would probably be too ex-
pensive in most analyses, so this is currently not implemented in Mopsa. An important
future work of this thesis is to have better dictionary abstractions.

5.3 Related work

Array abstractions. Blanchet et al. [14] first mention the notion of array smashing and ex-
pansion. Gopan et al. [63] define summarization operators on numerical domains, including
relational domains. Their approach applies in particular to the summarization of arrays using

5.4 – Conclusion 97

one variable, corresponding to the auxiliary variable arr(·) in our case. They introduce the no-
tion of folding and expanding dimensions, which we introduced∈Section 2.4.5. These operators
have then been used to define the transfer function of the recency abstraction in Section 4.1,
and of the summarization domains of this chapter. Siegel and Simon [135] define more precise
expand/fold operations when multiple dimensions are involved. Gopan et al. [64] partition
arrays dynamically into different segments (some being summarized and others not), that can
depend on other numerical variables. A specific usecase is to prove that array bounds are
preserved through a loop performing a copy. Contrary to the array copy example of Listing 5.2
where elements are iteratively added, their usecase focuses on copy from arrays uninitialized
with some values, in a C-like setting. In that case, each array is split into two summaries (of
subarrays strictly before and after the current index) and the single cell at the current index
[64, Figure 2]. Halbwachs and Péron [68] extend the approach to express relational properties
between the partitioned subarrays and the corresponding indexes (by contrast Gopan et al.
[64] use summarized variables). In the case of array copy, they are able to prove that arrays
are equal. Gopan et al. [64] use a heuristic focusing on array writes to define its segments,
while Halbwachs and Péron [68] rely on a pre-analysis. Contrary to these approaches, Cousot
et al. [37] perform a single-pass analysis, inferring semantic array segments and properties on
the segmented arrays at the same time. Liu and Rival [97] define array analyses where con-
tents can be summarized in non-contiguous groups, contrary to previous works which relied on
contiguous segments. All these works assume arrays are of fixed size (although Liu and Rival
[97] suggest how their work can be extended to dynamically allocated arrays). Dillig et al. [46]
encode results of index accesses as constraints over a points-to graph. Constraints consist in
a pair of an under and an overapproximation of the set of concrete elements reachable from a
given array index access. These constraints are called “bracketing constraints” and generalize
the dichotomy of weak and strong updates. In particular, they ensure that if the necessary and
sufficient conditions are the same, the constraints model a strong update, and if nothing is
known, a weak update is performed. The constraints are then solved using an SMT solver.

Other abstractions. Fulara [56, 55] abstracts dictionaries as sets of tuples of key and value
abstractions. This set is partitioned according to the key’s values. Since this abstraction only
performs an overapproximation of the keys, it cannot answer precisely membership tests. The
work of Fulara [56, 55] is the only one instantiated with a non-numerical abstract domain (they
use a regular expression abstract domain for dictionary keys). Cox et al. [38] define a set
abstraction able to reason about relations between sets (e.g., set inclusion), as well as the
sets’ contents.

Dillig et al. [47] encode accesses on containers (including arrays, maps, and sets) as con-
straints which are solved using an SMT solver. In the case of dictionaries, keys are converted
to integers in the constraints encoding. Monniaux and Alberti [116] abstract programs using
arrays (or maps) to scalar programs, which can then be fed to analyzers. This translation could
be performed on the fly in Mopsa.

Shape analyses [25] focus on precisely analyzing specific data structures such as linked lists
or arrays.

5.4 Conclusion
This finishes the part defining the base abstractions used in the rest of the analyses. This
chapter provided modular definitions of coarse, summarization-based array and dictionary
abstractions. They handle the container’s dynamic size and potential heterogeneity. In partic-
ular, the design of more precise dictionary abstractions in the setting of dynamic programming
languages is an interesting future work.

Part III

Pure Python Programs

6

Concrete Semantics of Python

This chapter defines a collecting semantics for Python. The description intends to serve as a
reference upon which the abstract semantics will be based.

The essence of Python. Python is appreciated for its powerful and permissive high-level syn-
tax, e.g., it allows programmers to redefine all operators (addition, attribute access, etc.) in
custom classes, and comes equipped with a vast standard library. Python is an object-oriented,
dynamic programming language. Particular features of interest are:

. Object orientation. Everything is object in Python. The type of an object is the class from
which it has been instantiated. For example (Figure 6.1), the type of the object 42 is int,
and the type of int is the class type. An object is an instance of a class if the former type
is a subclass of the latter. All objects are instances of the object class. As such, B() is
an instance of B, but also of A and of object. Python classes are first-class objects and
can be stored into variables.

. Type system. Python’s type system is dynamic: variables are neither statically declared nor
typed, and no type-checking is performed before running the program. In addition, the
type of the value held by a variable may change during the program execution (e.g., if x
holds a string at the beginning of the program, nothing prevents it from holding an integer
later on). Although dynamic, Python is strongly typed. This means that operations that
are not well defined (e.g, 1 + 'a') will raise an exception (such as a TypeError) rather
than try an automatic coercion. Python relies on both a nominal and a structural type
system. The nominal one, uses classes from which an object is instantiated, and the
structural one, informally called duck typing, which is based on attributes.

. Introspection. Programs can inspect the type of variables at run-time to alter their execu-
tion. Operators exist to support both nominal and structural types. isinstance(o, cls)
checks whether o has been instantiated from class cls or a class inheriting from cls. For
example, isinstance("a", str) returns True, while isinstance(object(), str) re-
turns False. hasattr(o, attr) checks whether o (or its class, or one of its parent class)
has an attribute with name equal to the attr string. Methods defined by classes are
attributes mapping to functions. For instance, hasattr(42, "__add__") returns True
because int, the class of 42, has an addition method, named "__add__".

. Self-modification. Programs can dynamically alter the structure of Python objects. It is pos-
sible to add attributes to any object (including classes) at run-time or remove them.
Dynamic class creation is also possible.

102 Chapter 6 – Concrete Semantics of Python

. Code evaluation. It is possible to evaluate arbitrary string expressions as Python code at
run-time with the eval statement.

type object

int

42

A

B

B()

classes

objects

→ type relation
99K subclass relation

Figure 6.1: Python type and subclass relations
Assuming A is a class and B inherits from A.

Establishing the semantics. There is no standard defining the Python language, contrary to
JavaScript for example. The reference implementation is called CPython. We focus on CPython
version 3.8, which was first released in October 2019. CPython version 3.9 has been released
since, without major changes in the semantics. Version 3.10 is expected to be released in
October 2021, and includes pattern-matching operators. Python Enhancement Proposals (PEPs)
are textual descriptions aiming at improving or changing the Python language. We have thus
established the semantics by reading the Python documentation, the CPython source code,
and by experimenting with CPython on small, hand-crafted programs.

Python relies on an abstract machine to execute its code. We used the dis module to find
how CPython compiles programs to the abstract machine’s bytecode. We can then find the
behavior of each bytecode instruction in Python/ceval.c For more complex cases, we made
custom programs emitting SIGTRAP signals1 and used gdb to understand the backtrace.

A few blogs also cover specific details of Python’s semantics [140, 118].
A concurrent implementation of CPython is Pypy, which is more performance-oriented. De-

spite the existence of alternative Python interpreters, CPython’s source code acts as the refer-
ence defining the semantics of Python. In some specific cases, we compare CPython’s results
with Pypy’s one to decide if some behaviors are part of the semantics or implementation de-
tails. For example, we rule that the builtin value caching is CPython-specific and thus not part
of our semantics (cf. Remark 6.11).

Remark 6.1 Crossreferences with CPython’s source code
In order to improve the traceability of the semantics, we display along with each case of
the semantics (starting from Figure 6.6) which bytecode instructions (in uppercase letters)
and functions are used (in gray, clickable links to the source on GitHub for Python 3.8).

1once the os and signal modules are imported, this can be done using
os.kill(os.getpid(), signal.SIGTRAP)

https://github.com/python/cpython/tree/3.8/Python/ceval.c

6.1 – Concrete state 103

Semantic level. We define our semantics by structural induction on the expressions (and
statements) as a function manipulating reachable program states. This semantics allows the
definition to be close to the implementation of our abstract interpreter.

We could have defined the semantics at the bytecode level of CPython’s abstract machine.
The first reason we do not analyze the bytecode is to keep the benefits of the source code:
lower-level bytecode may reduce the precision of static analyses. In addition, it is easier to re-
port errors back to the user when the source code is analyzed. The second is that the bytecode
of CPython is an implementation detail, according to the documentation.2

Limitations. This semantics does not describe: the import statement (handled by our ana-
lyzer but not presented here), asynchronous operators, the eval & exec statements and the
garbage collector. In the latter case, this means that we ignore custom finalizers defined
through the __del__ method. Those are seldom defined, and the documentation explicitly
states that exceptions occurring during the execution of finalizers are ignored3. Since our end-
goal is to define analyses detecting uncaught exceptions, ignoring finalizers is thus not a major
issue, as long as they do not have side effects on global variables. The parser handles specific
scope keywords (nonlocal, global), which we do not describe here. Our semantics omits the
detailed explanation messages accompanying the raised exceptions.

Outline. We start by defining the state on which the collecting semantics operates in Sec-
tion 6.1. Then, we define the semantics of Python operators (Section 6.2). This is complemented
with the behavior of builtin classes and functions (Section 6.3). Indeed, most operators del-
egate their work to methods of the involved objects, which for some are rarely overloaded
by user classes. We nevertheless support the overloading of these methods through user-
provided classes. For example, an attribute access x.attr will start by calling type(x).__getat
tribute__(x, attr), which is usually resolved into object.__getattribute__(x, attr). The se-
mantics is not mechanized for now. It is a significant extension on previous work by Fromherz
et al. [54]. We discuss its correctness in Section 6.4 and related work in Section 6.6.

6.1 Concrete state
The concrete state is defined in Figure 6.2. We assume there is an infinite set of heap addresses
Addr. Python objects are split into a nominal part (for the type and a potential builtin value)
and a structural part (for the attributes). The nominal part ObjN can be:

• an integer (integers are unbounded in Python),
• a boolean,
• a floating-point number,
• a string,
• the None or NotImplemented constants,
• a list of objects referenced by their addresses,
• a tuple of objects referenced by their addresses,
• a function, defined through its name, arguments, local variables and body,
• a method of a function f bound to an instance (referenced by their addresses),
• a class, defined by its name, parents, metaclass, and declarations. In order to handle
multiple inheritance, the parents are linearized to provide a coherent, total order, fol-
lowing the C3 linearization of Barrett et al. [6]. This order is called MRO (for “method
resolution order”). In the example of Figure 6.1, the MRO of B is (B, A, object).

• an instance (defined by the address of the class from which it is instantiated).

2https://docs.python.org/3.8/library/dis.html
3https://docs.python.org/3.8/reference/datamodel.html#object.__del__

https://docs.python.org/3.8/library/dis.html#:~:text=CPython%20implementation%20detail
https://docs.python.org/3.8/reference/datamodel.html#object.__del__

104 Chapter 6 – Concrete Semantics of Python

The structural part ObjS is a finite map between attribute names and their contents’ addresses.
Builtin classes – such as integers – have a read-only structure denoted byLOCKȦttributes of builtin
classes are defined in ObjN. A state consists of an environment and a heap. The environment E
maps variable identifiers Id to addresses. Global variables that have not been currently defined
are not bounded in the environment. However, some variables can be declared locally without
an initial value. In that case, we use LocalUndef to represent this undefined value of a local
variable. LocalUndef is not a Python object but an artificial construction of our semantics to
handle that case. The heapHmaps address to objects. Section 2.4.3 introduced flow tokens to
handle the break statement of our toy language. We reuse this notion here and tag our state
S with a flow token f ∈ F to handle non-local control-flow: cur represents the current flow
on which all instructions that do not disrupt the control flow operate (e.g., assignments, but
not raise or return). brk and cont represents early loop exits due to the break and continue
statement. ret is used to handle returned values in the interprocedural analysis. exn collects
the states given by a raised exception. exn is indexed by the address of the exception object,
so each exception will be kept separate.

ObjN def
= int(i ∈ Z) ∪ bool(b ∈ {True, False}) ∪ float(f ∈ F64) ∪ str(s ∈ string) ∪ None

∪ NotImpl ∪ List(ls ∈ Addr∗) ∪ Tuple(t ∈ Addr∗) ∪ Fun(f ∈ Id× Id∗ × id∗ × stmt)
∪Method(a ∈ Addr, f ∈ Addr) ∪ Class(c ∈ Id× Id∗ × Id× stmt) ∪ Inst(a ∈ Addr)

ObjS def
= LOCK ∪ (string⇀ Addr)

E def
= Id⇀ Addr ∪ LocalUndef

H def
= Addr⇀ ObjN× ObjS

F def
= { cur, ret,brk, cont, exn a, a ∈ Addr }

S def
= E ×H × F

Figure 6.2: Domain of the semantics

Semantic operators. The semantic operators are defined in Figure 6.3. Executing a statement
s through SJ s K transforms a set of states into another set of states. Evaluating an expression
e in a set of states Σ with EJ e KΣ yields Python values in a new state, as expressions may have
side effects. These values may be bottom if the evaluation fails. We also define the conditional
operator of an expression CJ e K as a filter keeping only the states where e evaluates to True.

SJ stmt K : P(S)→ P(S)
EJ expr K : P(S)→ P(S × Addr⊥)
CJ expr K : P(S)→ P(S)
CJ e KΣ = { (f, e, h) | (f, e, h, a) ∈ EJ e KΣ ∧ h(a) = (bool(True),LOCK) }

Figure 6.3: Operators of the semantics

Remark 6.2 Simplified definition of SJ · K using ScurJ · K
When a statement handle exceptional control-flow, it will change input states associated

6.1 – Concrete state 105

to the cur token into output states, and leave unchanged states with other tokens. In these
cases, we define the semantics using the ScurJ · K (respectively EcurJ · K) operator, which is
lifted to the following definition, ignoring non-local execution flows:

SJ stmt KΣ = { (f, e, h) | (f, e, h) ∈ Σ ∧ f 6= cur } ∪ { ScurJ stmt K(cur, e, h) | (cur, e, h) ∈ Σ }
EJ expr KΣ = { (f, e, h),⊥ | (f, e, h) ∈ Σ ∧ f 6= cur } ∪ {EcurJ stmt K(cur, e, h) | (cur, e, h) ∈ Σ }

Definition 6.3 Monadic letcases operator
In most cases, our semantics will be defined on a single state at a time, and lifted (Re-
mark 6.2). However, any subevaluation or subexecution may return a set of states. We use
the letcases operator to hide the disjunction over the set of states and continue defining
the semantics on a single state at a time.

letcases (f, e, h), a = EJ e KS in body def
=

⋃
(f,e,h,a)∈EJ e KS

body

Definition 6.4 Monadic letb operator
In order to easily lift the semantics, we may use the letb operator, which will execute body
using the non-failing evaluations (these cases correspond to states tagged with the cur
control-flow token4).

letb (f, e, h), a = EJ e KS in body def
=

⋃
(f,e,h,a)∈EJ e KS

a6=⊥

body ∪ {(f, e, h,⊥) ∈ EJ e KS}

Auxiliary functions. In order to ease the definition of the semantics, we define two builtin
functions, and introduce five artificial expressions, written in gray.

Definition 6.5 Non-current flow predicate, isNotCur
The predicate isNotCur holds when the flow token of a state σ ∈ S is not cur, i.e., f 6= cur
where σ = (f, e, h).

Definition 6.6 Not implemented predicate isNotImplemented
The predicate isNotImplemented holds when the address passed in argument refers to the
NotImplemented object.

Definition 6.7 Address allocation expression alloc_addr
alloc_addr returns a fresh address.

Definition 6.8 Low-level field operators get_field,has_field, set_field,del_field
We distinguish the notions of Python attributes and (low-level) fields. Fields are local to an
object. Python attributes are resolved transitively from an instance: if the field is not found

4Except for the specific case of generators.

106 Chapter 6 – Concrete Semantics of Python

in an instance, it will be looked up in its parent class, and so forth.
While Python offers attribute resolution operators, these low-level operators working at

the field level are not exposed in Python. They are however used in the C implementation of
the interpreter. To address this discrepancy, we introduce the get_field, has_field, set_field
and del_field operators, defined in Figure 6.4. get_field first searches in the nominal part
of the object for builtins (using get_builtin_field) and then in the structural part. has_field
returns True if get_field succeeded. set_field searches for the attribute in the heap of the
state. If we try to set a field of a builtin (such as the integer class), the structural part is
locked and set_field will fail. Otherwise, it updates the structural part. del_field is close to
set_field; it removes the given field.

Remark 6.9 Evaluated arguments for low-level field operators
We have assumed in the semantics of the low-level field operators that the arguments
were already evaluated, since only our semantics can call these operators (thus ensuring
that the arguments were evaluated before). We cannot make this assumption for Python
expressions, since these expressions can be an original part of a program.

Definition 6.10 Attribute resolution function mro_search
The mro_search function (defined in Figure 6.4) searches for a field in the MRO of a class.
The MRO of a class consists in itself and all the class it inherits from, in a linearized version.
Themro_search function returns the object found at the given field, or⊥ if nothing is found.

EcurJget_field(@obj ∈ Addr, attr ∈ string) K(cur, e, h) def
=

let b = get_builtin_field(@obj , attr) in
if b 6= ⊥ then return (f, e, h), b else
return (f, e, h), (snd ◦h(@obj))(attr)

EcurJhas_field(@obj ∈ Addr, attr ∈ string) K(f, e, h) def
=

letb (f, e, h),@r = EJget_field(@obj , attr) K(cur, e, h) in
if@r 6= ⊥ then return EJ True K(f, e, h) else return EJ False K(f, e, h)

ScurJ set_field(@obj ∈ Addr, attr ∈ string,@val ∈ Addr) K(cur, e, h) def
=

if snd ◦h(@obj) = LOCK then return ⊥ else
return (cur, e, h[@obj 7→ h(@obj)[attr 7→@val]])

ScurJdel_field(@obj ∈ Addr, attr ∈ string) K(cur, e, h) def
=

if snd ◦h(@obj) = LOCK then return ⊥ else
return (cur, e, h[@obj 7→ h(@obj) \ attr])

EcurJmro_search(cls ∈ Class, attr ∈ string) K(cur, e, h) def
=

for c in cls.__mro__
if has_field(c, attr) then return get_field(c, attr)

return (f, e, h),⊥

Figure 6.4: Semantics of field operators

6.2 – Core language 107

6.2 Core language

6.2.1 Literals

The evaluation of singleton constants such as True, False, None, NotImplemented returns
the address of the corresponding object (in the current flow, and returns bottom otherwise).
The initial state of the interpreter contains a heap where these builtins are already allocated.
A new object containing the value is allocated for integer and string constants, and its address
is returned.

Remark 6.11 Builtin value caching
Some builtins (such as integers and strings) are cached, meaning that a single instance at
a specified address will exist for some specific values. For example, all integers between
-5 and 256 are cached, and strings containing only ASCII letters are also cached. These
are specific implementation details of CPython. In particular, Pypy does not have the same
cache mechanism. Thus, we consider that this cache is not part of the semantics.

EcurJ True K(cur, e, h) def
= return (cur, e, h),@True

EcurJ False K(cur, e, h) def
= return (cur, e, h),@False

EcurJ None K(cur, e, h) def
= return (cur, e, h),@None

EcurJ NotImplemented K(cur, e, h) def
= return (cur, e, h),@NotImplemented

EcurJ i ∈ Z K(cur, e, h) def
=

letb (f, e, h),@a = EJalloc_addr K(cur, e, h) in
return (f, e, h[a 7→ int(i), ∅]),@a

EcurJ s ∈ string K(cur, e, h) def
=

letb (f, e, h),@a = EJalloc_addr K(cur, e, h) in
return (f, e, h[a 7→ str(z), ∅]),@a

Figure 6.5: Semantics of literals

6.2.2 Variables

The semantics related to variable identifiers is shown in Figure 6.6. The CPython abstract ma-
chine has different operation codes depending on the variable’s scope, so all bytecode instruc-
tions are shown in the traceability part of the semantics (Remark 6.1). If the flow token denotes
the current evaluation, the evaluation of a variable identifier searches for this identifier in the
environment e. Otherwise, the state is returned unchanged, according to Remark 6.2. Due to
Python’s scoping rules, a variable may be globally or locally undefined. The first case raises a
NameError and the second an UnboundLocalError.

The semantics of assignments consists in evaluating the expression and updating the envi-
ronment in the normal execution. A variable binding can also be removed at any time. Provided
that the variable was correctly defined before, del id removes it from the environment.

108 Chapter 6 – Concrete Semantics of Python

EcurJ id K(cur, e, h) def
= LOAD_NAME LOAD_GLOBAL LOAD_FAST

if id 6∈ dom e then return SJ raise NameError K(f, e, h),⊥ else
if e(id) = LocalUndef then return SJ raise UnboundLocalError K(f, e, h),⊥ else
return (f, e, h), e(id)

ScurJ id = expr K(cur, e, h) def
= STORE_NAME STORE_GLOBAL STORE_FAST

letb (cur, e, h),@ = EJ expr K(cur, e, h) in
return (cur, e[id 7→@], h)

ScurJ del id K(cur, e, h) def
= DELETE_NAME DELETE_GLOBAL DELETE_FAST

if id 6∈ dom e then return SJ raise NameError K(cur, e, h),⊥ else
if e(id) = LocalUndef then return SJ raise UnboundLocalError K(cur, e, h),⊥ else
return (cur, e \ {id}, h)

Figure 6.6: Semantics of variable evaluation, assignment and deletion

EcurJ type(a) K(cur, e, h) def
= type_new

letb (f, e, h),@a = EJ a K(cur, e, h) in
let@t = match fst ◦h(@a)with
• Inst(@t)⇒@t

• Class(name,meta, supers, dict)⇒ meta

• Fun(...)⇒@function

• Method(...)⇒@method

• List(...)⇒@list

• Tuple(...)⇒@tuple

• NotImpl⇒@NotImplementedType

• None⇒@NoneType

• str(_)⇒@str

• float(_)⇒@float

• bool(_)⇒@bool

• int(_)⇒@int in
return σ,@t

Figure 6.7: Semantics of nominal type operators

6.2.3 Nominal types

The semantics of introspection operators related to nominal typing are described in Figures 6.7
to 6.9.

The type builtin returns the class from which an object has been instantiated. If the object
is an instance of non-builtin objects, it will be defined as Inst(@t), where @t is the address of
the class from which it was instantiated. For a class, the metaclass’ address is returned. In the
case of other builtins, the returned address corresponds to that of the builtin class.

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2416
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2480
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1333
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2280
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2391
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1354
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2301
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2402
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2566
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L2322

6.2.3 –Nominal types 109

EcurJ isinstance(obj, cls) K(cur, e, h) def
= builtin_isinstance_impl PyObject_IsInstance

letb (f, e, h),@obj = EJ obj K(cur, e, h) in
letb (f, e, h),@cls = EJ cls K(cur, e, h) in
if h(@cls) = Tuple(_) then
return EJ isinstance(@obj ,@cls[0]) or ... or isinstance(@obj ,@cls[len(cls)− 1]) K(f, e, h)

if h(@cls) 6= Class(_) then return SJ raise TypeError K(f, e, h),⊥ else
else return EJ type(@cls).__instancecheck__(@cls,@obj) K(f, e, h)

EcurJ type.__instancecheck__(cls, obj) K(cur, e, h) def
=

type_instancecheck recursive_isinstance

letb (f, e, h),@cls = EJ cls K(cur, e, h) in
letb (f, e, h),@obj = EJ obj K(cur, e, h) in
if type(@obj) v@cls then return EJ True K(cur, e, h) else return EJ False K(cur, e, h)

Figure 6.8: Semantics of nominal type operators

EcurJ issubclass(derived, cls) K(cur, e, h) def
= builtin_issubclass_impl PyObject_IsSubclass

letb (f, e, h),@derived = EJ derived K(cur, e, h) in
letb (f, e, h),@cls = EJ cls K(cur, e, h) in
if h(@cls) = Tuple(_) then
return EJ issubclass(@derived,@cls[0]) or ...

or issubclass(@derived,@cls[len(cls)− 1]) K(cur, e, h)
if h(@cls) 6= Class(_) then return SJ raise TypeError K(cur, e, h),⊥ else
else return EJ type(@cls).__subclasscheck__(@derived,@cls) K(cur, e, h)

EcurJ type.__subclasscheck__(derived, cls) K(cur, e, h) def
=

type_subclasscheck recursive_issubclass

letb (f, e, h),@derived = EJ derived K(cur, e, h) in
letb (f, e, h),@cls = EJ cls K(cur, e, h) in
if derived v cls then return EJ True K(cur, e, h) else return EJ False K(cur, e, h)

Figure 6.9: Semantics of nominal type operators

Remark 6.12 Address notation
The semantics evaluates expressions into addresses. Addresses are not part of Python’s
expressions, but are used as drop-in replacements for evaluated parts. We prefix them
with the @ symbol to avoid confusion with Python expressions.

The isinstance predicate is distributive over tuples. If the second argument is not a tuple,
it should be a class (i.e., an instance of type). In that case, the __instancecheck__ method of
cls’s class is called (i.e., type(@cls).__instancecheck__). In general, this call is resolved by the
type class itself (i.e., type.__instancecheck__). In that case, type.__instancecheck__ returns
True if and only if the type of the object is a subtype of the class (which corresponds to the
natural definition of an object being an instance of the class).

https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L2476
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2424
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L888
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2386
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L2504
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2499
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L888
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2386

110 Chapter 6 – Concrete Semantics of Python

Similarly to isinstance, an issubclass builtin is defined. Both isinstance and issubclass
rely on the class subtype relation, defined as:

Class(c1) v Class(c2)
def
= c2 ∈ mro(c1)

mro(c1) is a tuple consisting of the MRO of c1, i.e a linearized version of its parents classes.
The MRO computation relies on the monotonic superclass linearization algorithm of Barrett
et al. [6]. The corresponding __mro__ attribute of a class returns its MRO. This is a read-only
attribute that cannot be redefined at runtime. We also define the strict subtype relation:

Class(c1) @ Class(c2)
def
= c1 6= c2 ∧ Class(c1) v Class(c2)

6.2.4 Structural types (attributes)

The concrete semantics related to attributes is shown in Figure 6.10.
To access a string attribute s (by the grammar of the language) of an expression x, we first

start to evaluate x into @x. We then search for the __getattribute__ method in the MRO
of @x’s class. The search will always succeed as the object class has a __getattribute__
method, and object is the last class in all MROs. In most cases the objects do not overload
object.__getattribute__, which is defined in Section 6.3.1 (our semantics as well as our anal-
yses support method overloading). Then, we call the method with @x and s as parameters.
If the attribute is not found, an AttributeError exception has been raised. This exception is
signaled using a flow token (the semantics of exceptions is shown in Section 6.2.8), on which we
perform a pattern matching to filter the case where the AttributeError exception occurred.
In that case, if @x’s class has a __getattr__ method, the exception is suppressed and the
method called.

The hasattr introspection operator returns True if the evaluation of the attribute access
is successful, and False otherwise if it failed with an AttributeError (otherwise, the raised
exception is propagated).

Setting an attribute’s value (resp. deleting an attribute) is done by calling the __setattr__
method of the object’s class (resp. __delattr__).

Remark 6.13 Calls to introspection operators in the semantics
Conditional filtering based on the test of a type (structural or nominal) of an object through
isinstance and hasattr are frequent in the semantics. Instead of using a cumbersome ex-
plicit filtering such as:

(let σ = CJ isinstance(attr, str) K(f, e, h) in tt)
∪(let σ = CJ¬isinstance(attr, str) K(f, e, h) in ff)

We use the following notation instead: if isinstance(attr, str) then tt else ff . Similarly, calls
to the type builtin are not always enclosed into semantic operators.

Remark 6.14 Class vs instance-based attribute access
Accesses to the attributes are done through the type of the object each time, using:

type(a).__setattr__

Accessing the attribute through the instance would be shorter (e.g., a.__setattr__) and
yield the same result in most cases. However, the __setattr__ field can be overloaded
at the instance level. This will not be taken into account by CPython if we write directly

6.2.5 – Subscript 111

EcurJx.s K(cur, e, h) def
= LOAD_ATTR PyObject_GetAttr (slot_tp_getattr_hook)

letb (cur, e, h),@x = EJx K(cur, e, h) in
letb (cur, e, h),@c = EJmro_search(type(@x), "__getattribute__") K(cur, e, h) in
letcases (f, e, h),@x.s = EJ@c(@x, s) K(cur, e, h) in
match f with
• exn@exc when isinstance(@exc, AttributeError)⇒
let (f, e, h),@d = EJmro_search(type(@x), "__getattr__") K(f, e, h) in
if d 6= ⊥ then return EJ@d(@x, s) K(cur, e, h)
else return (f, e, h),⊥
• _⇒ return (f, e, h),@x.s

EcurJhasattr(obj, attr) K(cur, e, h) def
= builtin_hasattr_impl _PyObject_LookupAttr

letb (cur, e, h),@obj = EJ obj K(cur, e, h) in
letb (cur, e, h),@attr = EJ attr K(cur, e, h) in
if ¬isinstance(@attr, str) then return SJ raise TypeError K(cur, e, h),⊥ else
letcases (f, e, h),@r = EJ@obj .@attr K(cur, e, h) in
if r = ⊥ then
match f with
• exn@exc when isinstance(a, AttributeError)⇒ return EJ False K(cur, e, h)
• _⇒ return (f, e, h),⊥

else return EJ True K(f, e, h)

ScurJx.s = expr K(cur, e, h) def
= STORE_ATTR PyObject_SetAttr

letb (cur, e, h),@x = EJx K(cur, e, h) in
if hasattr(type(@x), "__setattr__") then
return SJ type(@x).__setattr__(@x, s, expr) K(cur, e, h)

return SJ raise TypeError K(cur, e, h)

ScurJ del x.s K(cur, e, h) def
= DELETE_ATTR PyObject_SetAttr

letb (cur, e, h),@x = EJx K(cur, e, h) in
if hasattr(type(@x), "__delattr__") then
return SJ type(@x).__delattr__(@x, s) K(cur, e, h)

return SJ raise TypeError K(cur, e, h)

Figure 6.10: Semantics of attribute access, assignment and deletion

a.__setattr__ ; hence we will write type(a).__setattr__ explicitly and correctly handle
(in our semantics and our analysis) the case where fields are overloaded.

6.2.5 Subscript

The concrete semantics of subscripts (used mainly to perform index accesses or slices of data
structures) is defined in Figure 6.11.

To access e1 at e2, we start by evaluating e1 and e2. Then, we try to call e1’s __getitem__
method if it exists. Otherwise, we raise a type error exception. A particular case exists for

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2963
https://github.com/python/cpython/tree/3.8/Objects/object.c#L930
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6603
https://github.com/python/cpython/tree/3.8/bltinmodule.c#L1130
https://github.com/python/cpython/tree/3.8/Objects/object.c#L955
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2366
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1030
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2380
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1030

112 Chapter 6 – Concrete Semantics of Python

classes (which are instances of the type object): we try to call the __class_getitem__method.
Subscript assignement and deletion are similar to the corresponding attribute operations:

they delegate to the __setitem__ (resp. __delitem__) methods.

EcurJ e1[e2] K(cur, e, h)
def
= BINARY_SUBSCR PyObject_GetItem slot_mp_subscript

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
if hasattr(type(@1), "__getitem__") then
return EJ type(@1).__getitem__(@1,@2) K(cur, e, h)

else if isinstance(@1, type) ∧ hasattr(@1, "__class_getitem__") then
return EJ@1.__class_getitem__(@2) K(cur, e, h)

else return SJ raise TypeError K(cur, e, h),⊥

ScurJ e1[e2] = e3 K(cur, e, h) def
= STORE_SUBSCR PyObject_SetItem slot_mp_ass_subscript

letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@3 = EJ e3 K(cur, e, h) in
if hasattr(type(@1), "__setitem__") then
return EJ type(@1).__setitem__(@1,@2,@3) K(f, e, h)

return SJ raise TypeError K(f, e, h)

ScurJ del e1[e2] K(cur, e, h)
def
= DELETE_SUBSCR PyObject_DelItem slot_mp_ass_subscript

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
if hasattr(type(@1), "__delitem__") then
return EJ type(@1).__delitem__(@1,@2) K(cur, e, h)

return SJ raise TypeError K(cur, e, h)

Figure 6.11: Semantics of subscript access, assignment and deletion

Remark 6.15 Purpose of __class_getitem__
Since Python 3.9, __class_getitem__ is used to handle type hints on generic classes5. For
example, this allows us to write and evaluate list[int], where list is the builtin list class.
Previously, the list class needed a different type annotation List[int].

Remark 6.16 Evaluation order
According to Python’s documentation, expressions are evaluated from left to right6. In the
case of the subscript assignment, we follow a different evaluation order, provided in the
implementation of the bytecode instruction STORE_SUBSCR.

It is also possible to unpack iterables through assignments. The semantics of such an un-
packing is shown in Figure 6.12. We start by evaluating expr, and create an iterator over it. The

5https://www.python.org/dev/peps/pep-0585/
6https://docs.python.org/3.8/reference/expressions.html#evaluation-order

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1581
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L143
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6324
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1840
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L191
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6327
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1856
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L223
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6327
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1840
https://www.python.org/dev/peps/pep-0585/
https://docs.python.org/3.8/reference/expressions.html#evaluation-order

6.2.6 – Conditionals 113

list comprehension consumes the n first elements of expr. If a StopIteration exception hap-
pens, e contained less than n elements: a ValueError is raised (replacing the StopIteration
exception). If another exception happens, it is returned. If the list comprehension is success-
fully evaluated, we check that no more elements can be consumed from the iterator, since our
unpacking requires that expr contains exactly n elements. If the expr contains more than n
elements, a ValueError is raised. Otherwise, each variable is assigned to its corresponding
value.

ScurJ (x1, . . . , xn) = expr K(cur, e, h) def
= UNPACK_SEQUENCE unpack_iterable

letb (cur, e, h),@expr = EJ e K(cur, e, h) in
letb (cur, e, h),@it = EJ iter(@expr) K(cur, e, h) in
letcases (f, e, h),@r = EJ [next(@it) for x in range(n)] Kσ in
match f with
• exn@exc ⇒
if isinstance(@exc, StopIteration) then return SJ raise ValueError K(cur, e, h) else
else return (f, e, h)

• _⇒
letcases (f, e, h),@f = EJ next(@it) Kσ in
match f with
• exn@exc ⇒
if ¬isinstance(@exc, StopIteration) then return (f, e, h)

else return SJx1 =@r[0] K ◦ . . . ◦ SJxn =@r[n− 1] K(cur, e, h)
• _⇒ return SJ raise ValueError K(f, e, h)

Figure 6.12: Semantics of unpacking assignments

Remark 6.17 Alternative unpacking
An alternative unpacking, written x1, . . . , xn−1, ∗xn = e only ensures that e has at least
n− 1 elements, and stores the remaining elements in xn (or the empty list if no elements
remain).

6.2.6 Conditionals

The semantics of conditionals (Figure 6.13) is standard: we first filter according to the condition,
and then evaluate each branch. The condition is cast to booleans through an explicit call.

Remark 6.18 Syntax of Python blocks
Python’s block statements (such as conditionals and loops) are usually defined over mul-
tiple lines due to the indentation-based block definition. For the sake of presentation, we
revert to a more classical syntax with braces to define statements’ blocks.

6.2.7 Loops

The break and continue statements have their usual semantics. When one of these statements
is encountered, the states having a normal flow are interrupted by changing the flow token.
This behavior allows injecting their states back in the semantics of the while loop.

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2320
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L4455

114 Chapter 6 – Concrete Semantics of Python

SJ if (e) {st} else {sf} KS def
= SJ st K ◦ CJ bool(e) KΣ ∪ SJ sf K ◦ CJ not bool(e) KΣ

Figure 6.13: Semantics of conditionals

SJ break KΣ def
= { (f, e, h) ∈ Σ | f 6= cur } ∪ { (brk, e, h) | (cur, e, h) ∈ Σ }

SJ continue KΣ def
= { (f, e, h) ∈ Σ | f 6= cur } ∪ { (cont, e, h) | (cur, e, h) ∈ Σ }

SJ while (e) {body} else {belse} KΣ def
=

let Σ0 = { (f, e, h) ∈ Σ | f /∈ {brk, cont} } in
let Σlfp = lfp F in
{ (f, e, h) ∈ Σ | f ∈ {brk, cont} } ∪
CJ not bool(e) K{ (cur, e, h) | (brk, e, h) ∈ Σlfp } ∪
SJ belse K ◦ CJ not bool(e) K{ (cur, e, h) ∈ Σlfp } ∪
{ (f, e, h) ∈ Σlfp | f /∈ {brk, cont, cur} }

F (Σ)
def
=

let Σ = SJ body K ◦ CJ bool(e) KΣ in
Σ0 ∪ { (f, e, h) ∈ Σ | f 6= cont } ∪ { (cur, e, h) | (cont, e, h) ∈ Σ }

Figure 6.14: Semantics of while loops

Python loops have an optional else clause, whose body will be executed upon exiting the
loop normally (i.e., if no break has been encountered, and no exception has been raised either).
In the case of a while loop, we first start by removing states labeled with a brk or cont flow token
(which corresponds to the effect of a break or continue statement of an outer loop). These
states will be returned at the end. Then, we compute the least fixpoint of f , which models the
effect of the loop body. As such, f starts by applying the loop’s guard (with a boolean cast)
and executing the loop body afterward. If the execution of the body encountered a continue
statement, the corresponding flow token is changed back to the normal execution token cur.
The state returned by the transfer function of the while loop is the union of (i) the input states
labeled with a break or continue statement (i.e., the states coming from outer loops), (ii) the
fixpoint states that reached a break statement, filtered by the negation of the loop’s guard,
(iii) the fixpoint states in a normal control-flow state, filtered by the negation of the loop’s
guard, to which the body of the else clause is then applied, (iv) exceptional states (i.e., states
of the fixpoint not tagged by cur, cont or brk)

Listing 6.1: Semantics of for i in it: body

1 fresh_tmp = iter(it)
2 while True:
3 try: i = next(fresh_tmp)
4 except StopIteration: break
5 body

For loops can be written into while loops on an explicit iterator (Listing 6.1). The variable
fresh_tmp denotes a fresh temporary variable which is deleted in all states after the rewriting
(as such, it is not possible to write it del fresh_tmp, since the variable would only be deleted
in the normal control-flow state).

6.2.8 – Exceptions 115

Remark 6.19 Else in for loops
For loops can also have an else branch. In that case, the rewriting presented should be
amendedwith a global variable to track if the break statement comes from the StopIteration
or the body.

6.2.8 Exceptions

The raise statement (Figure 6.15) starts by evaluating the expression it is passed. If the result is
a class deriving from BaseException, the class is instantiated. We then check that the created
instance derives from the BaseException class since the class creation method __new__ can
return any object. If that is the case, the state is now labeled by an exception token, where a
is the address of the exception instance. Otherwise, a type error is raised.

The exception catching mechanism is shown in Figure 6.15. We start by executing the body
of the try clause. If no exception has been raised by tbody, telse is executed. Otherwise,
let @raised be the address of the raised exception, and @exn the address of the exception
class provided in the except statement. We check that @exn is indeed an exception class.
If the raised exception is an instance of exn, we bind the variable v to the raised exception
object and execute the body of the except statement. The body of the finally clause is always
executed, and exceptions that have been uncaught in tbody or raised during texc, telse or tfin
are propagated.

ScurJ raise exc K(cur, e, h) = RAISE_VARARGS do_raise

letb (cur, e, h),@exc = EJ exc K(cur, e, h) in
letcases (f, e, h),@ =

if isinstance(@exc, type) ∧ issubclass(@exc, BaseException) then EJ@exc() Kσ
else σ,@exc in

if isinstance(@, BaseException) then (if f = cur then exn@ else f, e, h)
else SJ raise TypeError K(f, e, h)

ScurJ try {tbody} except (exn as v) {texc}else {telse} finally {tfin} K(cur, e, h) =
letcases (f, e, h) = SJ tbody K(cur, e, h) in
letcases (f, e, h) =
if f 6= exn _ then SJ telse K(f, e, h) else
let exn@raised = f in
letb (f, e, h),@exn = EJ exn K(cur, e, h) in
if ¬issubclass(@exn, BaseException) then
SJ raise TypeError K(cur, e, h)

else if isinstance(@raised,@exn) then
letb (f, e, h) = SJ texc K(cur, e[v 7→@raised], h) in (f, e \ { v }, h)

else (f, e, h) in
letcases (ffin, e, h) = SJ tfin K(cur, e, h) in (if ffin 6= cur then ffin else f, e, h)

Figure 6.15: Semantics of exceptions

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1889
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L4352

116 Chapter 6 – Concrete Semantics of Python

Remark 6.20 Source code for try/except statement
The translation of try/except statement into the CPython abstract machine is long. For this
case, our semantics does not describe the relevant operators and functions in the source
code.

Remark 6.21 Interaction between exception effects and other control-flow effects
The interaction between the exception-handling operators and other non-local control-flow
operators such as return are described in the Python documentation7:

• If the finally clause executes a break, continue or return statement, exceptions are
not re-raised.
• If the try statement reaches a break, continue or return statement, the finally clause
will execute just prior to the break, continue or return statement’s execution.
• If a finally clause includes a return statement, the returned value will be the one
from the finally clause’s return statement, not the value from the try clause’s return
statement.

Remark 6.22 Except clauses variations
There can be multiple except clauses. These are executed in order until a match is found.
Binding the exception to a variable with the as keyword is optional.

An except clause can also match multiple exceptions described in a tuple, similarly to
what isinstance and issubclass allow.

Remark 6.23 Raise without arguments
The raise statement can also be called without any arguments. It is used within an except
clause to re-raise the caught exception. If the except clause is except exn as v:, raise
will be rewritten into raise v. Outside an except clause, it will raise a RuntimeError since
there is no exception to re-raise.

6.2.9 With context manager

The with context manager is a Python-specific feature. Given with e as t: body, the state-
ment relies on the usage of two methods of e called __enter__ and __exit__. As shown in
Listing 6.2, this statement is a specialized version of exception-catching statements, where the
__exit__ method is guaranteed to be executed after body. This construction is handy to man-
age file operations, for example. The statement starts by evaluating e, and ensuring that its
class has both the __enter__ and __exit__ methods. The __enter__ method is then called,
and its result is assigned to the variable t. The body of the statement is executed afterward. If
an exception has been raised in the body, __exit__ is called, and the last three arguments are
exception information: the exception’s type, the exception’s value, and traceback information.
Depending on the return value of fresh_exit, the exception is caught or raised again. If no
exception has been raised, fresh_exit is still called. In the end, t is assigned None.

7https://docs.python.org/3.9/tutorial/errors.html#defining-clean-up-actions

https://docs.python.org/3.9/tutorial/errors.html#defining-clean-up-actions

6.2.9 –With context manager 117

Listing 6.2: Semantics of with e as t: body

1 fresh_mgr = e
2 fresh_enter = type(fresh_mgr).__enter__
3 fresh_exit = type(fresh_mgr).__exit__
4
5 t = fresh_enter(fresh_mgr)
6 try: body
7 except:
8 if not fresh_exit(fresh_mgr, *sys.exc_info()): raise
9 else: fresh_exit(fresh_mgr, None, None, None)
10 finally: t = None

Example 6.24 Usecase of the with statement
We illustrate the use of this statement in Listing 6.3. We define a class of temporary files,
similar to the tempfile module of the standard library. A Tempfile is initialized with the
name of the temporary file we use. The __enter__method checks that the file does not exist
and creates the file in write-only access. The __exit__ method closes the file descriptor
and deletes the file. Exceptions deriving from the class io.UnsupportedOperation will be
absorbed.

In the first with statement, the file is opened (provided foo does not exist already). We
write “Hello, world” in it. At the end of the statement, the file will be closed and removed.

In the second with statement, the file is opened (it was created before but removed
at the end of the previous with statement). We try to read from the file, but this will
raise an io.UnsupportedOperation exception. The write operation is thus skipped, and
the __exit__ method is called. Since it returns True, the exception is caught, and the
execution continues.

In the third with statement, t.write(42) will raise a TypeError as the write method
expects strings. The __exit__ method is called to close and delete the file. However it
returns False: the TypeError is raised again, interrupting the standard control-flow.

Listing 6.3: A simplified version of Python’s tempfile library
1 import os, io
2
3 class Tempfile:
4 def __init__(self, f):
5 self.name = f
6
7 def __enter__(self):
8 if os.path.isfile(self.name):
9 raise ValueError(f"file {self.name} exists already")
10 self.file = open(self.name, 'w')
11 return self.file
12
13 def __exit__(self, exc, value, tb):
14 self.file.close()
15 os.remove(self.name)
16 return exc is None or issubclass(exc, io.UnsupportedOperation)
17
18 with Tempfile("foo") as t:
19 t.write("Hello, world\n")
20
21 with Tempfile("foo") as t:
22 t.read()
23 t.write("Anyone?")
24
25 with Tempfile("foo") as t:

118 Chapter 6 – Concrete Semantics of Python

26 t.write(42)

6.2.10 Function declaration

When a function is declared, a function object (with the function’s name, arguments, local vari-
ables extracted using an auxiliary variable and body) is allocated on the heap. The environment
is also updated to map the function’s name to its allocated address.

ScurJ def fname(args): body K(cur, e, h) def
=

letb (cur, e, h),@ = EJalloc_addr() K(cur, e, h) in
let f = (fname, args, locals(body), body) in
return (cur, e[fname 7→@], h[@ 7→ Fun(f)])

Figure 6.16: Semantics of function declaration

We describe the different ways function arguments can be defined below. This part is only
formalized for the base case and is accompanied by illustrating examples for the other cases.

Function arguments. The arguments of the function are defined through parameter names
separated by commas. Arguments can have default values specified using the equal sign. For
example, def f(x, y, z=1): ... indicates that z has default value 1. f can thus be called
with two to three parameters.

During call, the parameters’ values can be passed in order (positional style) f(3, 2)mean-
ing x=3, y=2, or in any order if the arguments are named f(y=2, x=3) (keyword style). It is
also possible to mix calling styles: f(1, z=2, y=3) means that the arguments (x, y, z) are
the tuple (1, 3, 2). In both argument definitions and calls, positional arguments should be
used before keyword arguments.

Since Python 3.8, it is possible to define operators that can be passed in positional-only or
keyword-only styles using the / and * separators. Here is the specification proposed by PEP
570:

def name(positional_only_parameters, /,
positional_or_keyword_parameters, *,
keyword_only_parameters): ...

Variable-length arguments. One function argument can also be variable-length. It is then
prefixed with the star operator *. For example with def f(x, *y): ..., f(1,2,3,4) means
that x=1 and y=(2,3,4). Similarly, the notation ** can be used to handle variable-length
keyword arguments. With def f(*args, **kwargs) and f(1,2,k=3,z=5) means that args is
a tuple for the first two arguments args = (1, 2) and kwargs a dictionary with the last two
arguments kwargs = {'k': 3, z: '5'}.

Container destructuration. Lists, tuples, and dictionaries can be passed and destructured us-
ing the operators * and ** during function calls. For example, given def f(x, y, **kwargs),
the dictionary d = {'y': 1, 'x': 3, 'z':4}, we can call f(**d) to get:

y = 1, x = 3, kwargs = {'z': 4}

https://www.python.org/dev/peps/pep-0570/
https://www.python.org/dev/peps/pep-0570/

6.2.11 – Class declaration 119

6.2.11 Class declaration

A class declaration declares a name (cls), parents of the class (supers), a metaclass (meta,
which can only be passed as a keyword argument), and a body. The metaclass is type by
default; it ends up calling type.__new__, which is described later, in Figure 6.38. The body of
the class is executed in order to define the attributes of the class. We assume we have an
auxiliary declarations function, which given a class’ body, returns a Python dictionary where
each attribute maps to its corresponding object. For example, in the case of the Tempfile class
of Listing 6.3, declarations would return a dictionary where __init__ maps to the function
object created by its declaration, and similarly for the __enter__ and __exit__ methods. The
class is created by calling the metaclass.

ScurJ class cls(supers, metaclass=meta): body K(cur, e, h) def
=

letb σ = SJ body K(cur, e, h) in
let dict = declarations(body) in
SJ cls = meta("cls", supers, dict) Kσ

Figure 6.17: Semantics of class declaration

6.2.12 Decorators

Functions and classes can be decorated. The decorator acts as a wrapper around the class or
function object, as shown in Figure 6.18.

@decor
def f(args):
body

def f(args):
body

f = decor(f)

Figure 6.18: Transformation of decorators

Example 6.25 classmethod decorator usecase
A typical example is the use of the classmethod decorator to implement alternative con-
structors. This decorator creates a method bound to its class rather than its instance (the
first argument is thus called cls instead of self). In the example of Listing 6.4, from_str
behaves as an alternative constructor used to create Date objects from strings.

Listing 6.4: Example of classmethod decorator
1 class Date:
2 def __init__(self, d, m, y):
3 self.day = d
4 self.month = m
5 self.year = y
6
7 @classmethod
8 def from_str(cls, s):
9 d, m, y = s.split("/")
10 return cls(int(d), int(m), int(y))
11
12 d = Date.from_str("03/06/2021")

120 Chapter 6 – Concrete Semantics of Python

6.2.13 Calls

This section describes the general semantics of calls. Calls start by evaluating their caller and
arguments. The class of the caller should have the __call__ method, which is then invoked
(a type error is raised otherwise). Function calls thus go through function.__call__, defined
in Section 6.3.2. Similarly, methods eventually call method.__call__, which is also described
in Section 6.3.2. Class instantiations rely on type.__call__, defined in Section 6.3.3.

EcurJ c(e1, . . . , en) K(cur, e, h) def
= CALL_FUNCTION _PyObject_Vectorcall _PyObject_MakeTpCall

letb (cur, e, h),@c = EJ ec K(cur, e, h) in
letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
. . .

letb (cur, e, h),@n = EJ en K(cur, e, h) in
if hasattr(type(@c), "__call__") then
return EJ type(@c).__call__(@c,@1, . . . ,@n) K(cur, e, h)

else return SJ raise TypeError K(cur, e, h),⊥

Figure 6.19: Semantics of calls

6.2.14 Unary operators

The semantics of unary operators∼,+ and− consists in delegating to a correspondingmethod.

EcurJ∼ expr K(cur, e, h) def
= UNARY_INVERT PyNumber_Invert slot_nb_invert

letb (cur, e, h),@e = EJ expr K(f, e, h) in
if hasattr(type(@e), "__invert__") then return EJ type(@e).__invert__(@e) K(cur, e, h)
else return SJ raise TypeError K(cur, e, h),⊥

Figure 6.20: Semantics of unary operator
(also applies to + (resp. -) with __pos__ (resp. __neg__))

The unary not operator behaves differently. It explicitly casts its argument into a boolean
and returns the opposite boolean.

EcurJ not expr K(cur, e, h) def
= UNARY_NOT PyObject_IsTrue bool_new

letb (cur, e, h),@b = EJ bool(expr) K(cur, e, h) in
if@b =@True then return (cur, e, h),@False else return (cur, e, h),@True

Figure 6.21: Semantics of unary not

6.2.15 Binary operators

Contrary to unary operators, the semantics of binary operators is more involved, as Python will
look both into the left-hand side and right-hand side objects for specific methods to perform

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L3496
https://github.com/python/cpython/tree/3.8/Include/cpython/abstract.h#L115
https://github.com/python/cpython/tree/3.8/Objects/call.c#L119
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1453
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L1220
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6443
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1435
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1448
https://github.com/python/cpython/tree/3.8/Objects/boolobject.c#L43

6.2.15.1 – Arithmetic operators 121

the operation. We start with the semantics of arithmetic operators and then describe the
semantics of comparison operators.

6.2.15.1 Arithmetic operators

Python has 12 arithmetic operators, described in the first column of Figure 6.22. The other
columns describe methods that will be used by the semantics of binary operators.

Given a binary operator †, the semantics of e1 † e2 is described in Figure 6.23. The general
idea is to follow a compatibility principle, where the binary method is resolved to the most
derived class. We start by evaluating e1 and e2 into @1 and @2. We first look into @1’s class to
search for the standard operator’s method, defined as op(†) in Figure 6.22. If it exists, we also
check if @2’s class has a reversed operator method rop(†), and if @2’s class is a strict children
of @1’s class. If that is the case, we evaluate the call with the reversed method. If the result
of this call is anything but the NotImplemented singleton object, we return the result. In other
cases, we try to call the standard operator and similarly return if the result is different from
NotImplemented. If none of these cases were successful and @2’s reversed operator has not
been tried yet, we try to call it, and check the result. If nothing works, a type error is raised.

† op(†) rop(†) iop(†)

+ __add__ __radd__ __iadd__
- __sub__ __rsub__ __isub__
* __mul__ __rmul__ __imul__
@ __matmul__ __rmatmul__ __imatmul__
/ __truediv__ __rtruediv__ __itruediv__
// __floordiv__ __rfloordiv__ __ifloordiv__
** __pow__ __rpow__ __ipow__
<< __lshift__ __rlshift__ __ilshift__
>> __rshift__ __rrshift__ __irshift__
& __and__ __rand__ __iand__
| __or__ __ror__ __ior__
^ __xor__ __rxor__ __ixor__

Figure 6.22: Correspondance between binary operators and their methods

Remark 6.26 Argument reversal in CPython
In CPython’s source code, the function binary_op1 appears to be always called with the
same argument order, compared to what has been described in the semantics. However, a
wrapper in the low-level source code wrap_binaryfunc_l reverses the arguments for re-
versed calls (in Objects/typeobject.c). These wrappers will be described in more details
in Remark 10.10.

Example 6.27 Usecase of __radd__ method in the subclassing case
This example shows the purpose of the __radd__method, and in particular, the subclassing
case. We use the code shown in Listing 6.5. It defines an Int16 class denoting unsigned 16-
bit integers. These objects can be transformed into integers through the __int__ method,
and the addition consists in calling the constructor once the computation over builtin in-
tegers is done. A subclass for 32-bit integers is defined; it overloads the constructor, the
__add__ method and adds a method __radd__. Given an Int16 and an Int32, we would
like their addition to be commutative. If we add a and b, Int32.__add__ is called, and c

122 Chapter 6 – Concrete Semantics of Python

EcurJ e1 † e2 K(cur, e, h) def
= BINARY_ADD PyNumber_Add binary_op1

letb (cur, e, h),@1 = EJ e1 K(f, e, h) in
letb (cur, e, h),@2 = EJ e2 K(f, e, h) in
if hasattr(type(@1), op(†)) then
if hasattr(type(@2), rop(†)) ∧ type(@2) @ type(@1) then
letb (cur, e, h),@r = EJ type(@2).rop(†)(@2,@1) K(cur, e, h) in
if ¬isNotImplemented(@r) then return (f, e, h),@r

letb (cur, e, h),@@r = EJ type(@1).op(†)(@1,@2) K(cur, e, h) in
if ¬isNotImplemented(@r) then return (f, e, h),@r

if hasattr(type(@2), rop(†)) then
letb (cur, e, h),@@r = EJ type(@2).rop(†)(@2,@1) K(cur, e, h) in
if ¬isNotImplemented(@r) then return (cur, e, h),@@r

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.23: Semantics of binary arithmetic operators

is thus an Int32. Without the Int32.__radd__ method, the addition b + a would yield an
Int16.

Listing 6.5: Example usecase of both addition methods
1 class Int16:
2 def __init__(self, value):
3 self.value = value % 2**16
4
5 def __int__(self):
6 return self.value
7
8 def __add__(self, other):
9 return Int16(self.value + int(other))
10
11
12 class Int32(Int16):
13 def __init__(self, value):
14 self.value = value % 2**32
15
16 def __add__(self, other):
17 return Int32(self.value + int(other))
18
19 __radd__ = __add__
20
21 a = Int32(2**16)
22 b = Int16(1)
23 c = a + b
24 d = b + a
25 assert isinstance(c, Int32)
26 assert isinstance(d, Int32)

The semantics of augmented assignments such as x †= expr is described in Figure 6.24.
Python starts by checking if x has a special method for the augmented assignment, iop(†). This
special method may be interesting for in-place operations reducing the memory footprint of
the operation. For example, augmented additions to lists are performed in-place and avoid
performing a new memory allocation. This method is called, and the result is returned if it is

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1543
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L956
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L786

6.2.15.2 – Comparison operators 123

different from NotImplemented. In all other cases, the operation is written as x = x † expr (but
with the corresponding evaluated arguments to avoid double evaluations).

ScurJx †= expr K(cur, e, h) def
= INPLACE_ADD PyNumber_InPlaceAdd binary_iop1

letb (cur, e, h),@x = EJx K(cur, e, h) in
letb (cur, e, h),@e = EJ expr K(cur, e, h) in
if hasattr(type(@x), iop(†)) then
letb (cur, e, h),@r = EJ type(@x).iop(†)(@x,@e) K(cur, e, h) in
if ¬isNotImplemented(@r) then return SJ@x =@r K(cur, e, h)

return SJ@x =@x †@e K(cur, e, h)

Figure 6.24: Semantics of augmented assignments

6.2.15.2 Comparison operators

The semantics of Python’s standard comparison operators (Figure 6.26) is close to the one of
arithmetic operators. Its implementation uses a slightly different structure which we reflect in
our semantics. The calls to reversed operators still exist but perform the symmetric translation
of comparison operators (based on the equivalence of x < y and y > x), described in Figure 6.25
Two last fallback cases are included for the equality and the difference operators: if nothing has
been successful, Python will compare the addresses and return a boolean result accordingly.

� op(�) swapop(�)

< __lt__ __gt__
<= __le__ __ge__
== __eq__ __eq__
!= __ne__ __ne__
> __gt__ __lt__
>= __ge__ __le__

Figure 6.25: Correspondance between binary operators and their methods

6.2.16 Other binary operators

There are four other binary operators defined through keywords in Python: in, is, and the lazy
or and and boolean operators.

The in operator checks for membership of an element e1 in an object e2 (Figure 6.27). It tries
to call the __contains__ method of the container e2, and returns a boolean. If the method
does not exist, it searches for e1 in the whole structure through an iteration.

The is operator checks that two objects are allocated at the same address (Figure 6.28).

Remark 6.28 Negation of in and is operators
The negation of the in and is operators can respectively be written not in and is not. It
makes for more readable expressions such as 1 not in l rather than not 1 in l.

The semantics of the boolean or and and operators are described in Figure 6.29. Both start
by evaluating the left-hand side argument e1, as well as a boolean cast of it. Depending on the
result, either e1 or e2 is returned.

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L1749
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L1109
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L1052

124 Chapter 6 – Concrete Semantics of Python

EcurJ e1 � e2 K(cur, e, h) def
= COMPARE_OP PyObject_RichCompare do_richcompare

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
if type(@2) @ type(@1) ∧ hasattr(type(@2), swapop(�)) then
letb (cur, e, h),@r = EJ type(@2).swapop(�)(@2,@1) K in
if ¬isNotImplemented(@r) then (cur, e, h),@@r

if hasattr(type(@1), op(�)) then
letb (cur, e, h),@@r = EJ type(@1).op(�)(@1,@2) K in
if ¬isNotImplemented(@r) then (cur, e, h),@@r

if type(@2) 6@ type(@1) ∧ hasattr(type(@2), swapop(�)) then
letb (cur, e, h),@r = EJ type(@2).swapop(�)(@2,@1) K in
if ¬isNotImplemented(@r) then (cur, e, h),@@r

if � = == then
if@1 =@2 then return EJ True K(cur, e, h) else return EJ False K(cur, e, h)

if � = != then
if@1 6=@2 then return EJ True K(cur, e, h) else return EJ False K(cur, e, h)

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.26: Semantics of binary comparison operators

EcurJ e1 in e2 K(cur, e, h) def
= COMPARE_OP PySequence_Contains slot_sq_contains

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
if hasattr(type(@2), "__contains__") then
return EJ bool(type(@2).__contains__(@2,@1)) K(cur, e, h)

else
letb (cur, e, h) = SJ fresh_found = False

for x in@2:
if x ==@1:
fresh_found = True
break Kσ in

return EJ fresh_found K(cur, e, h)

Figure 6.27: Semantics of the in operator

Remark 6.29 Return type of or and and operators
The semantics of the or and and operators does not always return a boolean. For example
1 and 'a' will return 'a', since bool(1) holds.

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2974
https://github.com/python/cpython/tree/3.8/Objects/object.c#L762
https://github.com/python/cpython/tree/3.8/Objects/object.c#L710
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2974
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2083
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6291

6.3 – Builtin objects 125

EcurJ e1 is e2 K(cur, e, h) def
= COMPARE_OP cmp_outcome

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
letb (cur, e, h),@2 = EJ e2 K(cur, e, h) in
if@1 =@2 then return EJ True K(cur, e, h)
else return EJ False K(cur, e, h)

Figure 6.28: Semantics of the is operator

EcurJ e1 or e2 K(cur, e, h) def
= JUMP_IF_TRUE_OR_POP

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
if bool(@1) then (cur, e, h),@1 else EJ@2 K(f, e, h)

EcurJ e1 and e2 K(cur, e, h) def
= JUMP_IF_FALSE_OR_POP

letb (cur, e, h),@1 = EJ e1 K(cur, e, h) in
if bool(@1) then EJ e2 K(cur, e, h) else (cur, e, h),@1

Figure 6.29: Semantics of the or and and operators

6.3 Builtin objects

6.3.1 Object

Every class is a subclass of object. As such, most method calls are resolved by default into
this class.

We start by defining the semantics of the object creation and instantiation methods in
Figure 6.30. Object creation starts by evaluating the argument, which should be a class to
instantiate. If that is the case, an allocation is performed, and the heap is updated to reflect
the effect. Otherwise, a type error is raised. Object initialization does not perform anything by
default, and returns None.

EcurJ object.__new__(expr) K(cur, e, h) def
= tp_field object_new

letb (cur, e, h),@e = EJ expr K(cur, e, h) in
if isinstance(@e, type) then
letb (cur, e, h),@c = EJalloc_addr K(cur, e, h) in
return (cur, e, h[@c 7→ Inst(@e), ∅]),@c

else return SJ raise TypeError K(f, e, h),⊥

EcurJ object.__init__(self) K(cur, e, h) def
= tp_field object_init

return EJ None K(cur, e, h)

Figure 6.30: Semantics of object creation and instantiation

As mentioned in the semantics of attributes, the __getattribute__method is rarely over-
loaded and usually defaults to object.__getattribute__, whose semantics is described in

https://github.com/python/cpython/tree/3.8/Python/ceval.c#L2974
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L5066
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L3114
https://github.com/python/cpython/tree/3.8/Python/ceval.c#L3114
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L4828
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3738
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L4826
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3712

126 Chapter 6 – Concrete Semantics of Python

Figure 6.31. The function starts by evaluating its arguments and checking that name is a
string object. Given the string n, we search for it in the parents’ classes of the object using
mro_search. If a result is found, we call this object descr, and check that it is a data descrip-
tor. That is, we check that descr has a __get__ method, as well as a __set__ or a __delete__
method. If that is the case, the result of the access is the call to the __get__ method of this
data descriptor. Otherwise, we search for the field at the instance’s level. Two fallback cases
exist if the descr object exists but is not a data descriptor and the field does not exist at the
instance’s level: we first try to call its __get__ method if it exists and return descr otherwise.
If everything fails, an attribute error is raised.

EcurJ object.__getattribute__(obj, name) K(cur, e, h) def
=

tp_field _PyObject_GenericGetAttrWithDict

letb (cur, e, h),@o = EJ obj K(cur, e, h) in
letb (cur, e, h),@n = EJname K(cur, e, h) in
if ¬isinstance(@n, str) then return SJ raise TypeError K(cur, e, h),⊥ else
let str(n) = fst ◦h(@s) in
letcases (f, e, h),@descr = EJmro_search(type(@o), n) K(f, e, h) in
if@descr 6= ⊥ then
if hasattr(type(@descr), "__get__")∧

(hasattr(type(@descr), "__set__") ∨ hasattr(type(@descr), "__delete__")) then
return EJ type(@descr).__get__(@descr,@o, type(@o)) K(f, e, h)

if has_field(@o, n) then return EJget_field(@o, n) K(f, e, h) else
if@descr 6= ⊥ then
if hasattr(type(@descr), "__get__") then
return EJ type(@descr).__get__(@descr,@o, type(@o)) K(f, e, h)

else return@descr, (f, e, h)

return SJ raise AttributeError K(f, e, h),⊥

Figure 6.31: Semantics of attribute access through object

Remark 6.30 Purpose of data descriptors
The purpose of data descriptors is to hide calls to custom getter and setter functions when
attributes are accessed or set. It is mainly used by Python classes defined in C, such as
the member descriptors described later in this thesis (Remark 10.11 and Example 11.4). The
fallback case of the __get__ method is used more often. For example, methods are bound
to instances using this approach (cf. Figure 6.35), and the classmethod and staticmethod
use it too (cf. Figure 6.36). For now, we show a custom example in Example 6.31.

Example 6.31 A data descriptor usecase
An example use case of a data descriptor is shown in Listing 6.6. We are interested in de-
scribing a subset of the Unix file permissions. The meaning of each number is provided in
the perms dictionary. The PermissionDescriptor class will store the permission as num-
bers and display the corresponding string when the attribute is accessed. The File class
has a class-level attribute rights. We create a File instance line 14, and define its rights

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L4807
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1218

6.3.2 – Functions and methods 127

to be “execute only” with the number 1. We also set the value of the instance field rights to
3 in a line 16. At the first attribute access line 18, the result is “execute only”, corresponding
to the data descriptor case in the semantics. By removing the __set__ method from the
PermissionDescriptor, the class is not considered as a data descriptor anymore. Since a
has a field rights set to 3, the second call to print displays 3. By removing the instance-
level field, the next attribute access will fall back to calling the __get__ method of the
PermissionDescriptor. If we override the class-level rights attribute, the last fallback
case is executed, and we get 42.

Listing 6.6: Data descriptor example
1 perms = {0: "no permission", 1: "execute only", 2: "write only", 4: "read only"}
2
3 class PermissionDescriptor:
4 def __get__(self, obj, objtype):
5 return perms[obj._rights]
6
7 def __set__(self, obj, value):
8 assert value in perms
9 obj._rights = value
10
11 class File:
12 rights = PermissionDescriptor()
13
14 a = File()
15 a.rights = 1
16 a.__dict__['rights'] = 3
17
18 print(a.rights)
19 # prints "execute only", data descriptor access
20 del PermissionDescriptor.__set__
21 print(a.rights)
22 # prints 3, instance access
23 del a.__dict__['rights']
24 print(a.rights)
25 # prints "execute only", __get__ fallback access
26 File.rights = 42
27 print(a.rights)
28 # prints 42, descr fallback access

Setting an attribute (Figure 6.32) is less complex: once the arguments have been evaluated
and type-checked, we look for a descriptor in the parent classes. We do not check that this
descriptor is a data descriptor. If it exists, we call its __set__ method. Otherwise, the field is
defined at the instance’s level. The semantics of attribute deletion (Figure 6.33) is similar to
this case.

6.3.2 Functions and methods

The semantics of function calls and the return statement is shown in Figure 6.34. The return
statements stores the returned expression into an auxiliary variable and interrupts the normal
execution flow with the ret flow token. We present the simplified case of function call where
no arguments are optional, or keyword-only. A function call starts by assigning the arguments
their given value, and setting local variables to the locally undefined value, which is an artifact
of our semantics. Once the body has been executed, the state is inspected. If the usual control
flow has been interrupted by a return statement, we keep the address of the returned object.
Otherwise, the returned value is None. We then clean the state from the arguments and the
local variables of the function.

128 Chapter 6 – Concrete Semantics of Python

EcurJ object.__setattr__(obj, n, v) K(cur, e, h) def
= tp_field _PyObject_GenericSetAttrWithDict

letb (cur, e, h),@o = EJ obj K(cur, e, h) in
letb (cur, e, h),@n = EJn K(cur, e, h) in
if ¬isinstance(@n, str) then return SJ raise TypeError K(f, e, h),⊥ else
let str(n) = fst ◦h(@n) in
letb (cur, e, h),@v = EJ v K(cur, e, h) in
letcases (f, e, h),@descr = EJmro_search(type(@o), n) K(f, e, h) in
letcases σ =

if descr 6= ⊥ ∧ hasattr(type(@descr), "__set__") then
SJ type(@descr).__set__(@descr,@o,@v) K(f, e, h)

else SJ set_field(@o, n,@v) K(f, e, h)
if σ = ⊥ then SJ raise AttributeError K(f, e, h) else EJ None Kσ

Figure 6.32: Semantics of attribute definition through object

EcurJ object.__delattr__(obj, name) K(cur, e, h) def
=

tp_field _PyObject_GenericSetAttrWithDict

letb (cur, e, h),@o = EJ obj K(cur, e, h) in
letb (cur, e, h),@n = EJname K(cur, e, h) in
if ¬isinstance(@n, str) then return SJ raise TypeError K(f, e, h),⊥ else
let str(n) = fst ◦h(@n) in
letcases (f, e, h),@descr = EJmro_search(type(@o), n) K(f, e, h) in
letcases σ =

if descr 6= ⊥ ∧ hasattr(type(@descr), "__delete__") then
SJ type(@descr).__delete__(@escr,@o) K(f, e, h)

else SJdel_field(@o, n) K(f, e, h)
if σ = ⊥ then SJ raise AttributeError K(f, e, h) else EJ None Kσ

Figure 6.33: Semantics of attribute deletion through object

Remark 6.32 Supporting recursive calls
In its current state, the semantics does not handle recursive calls. One way to support them
would be to partition the environment by the callstack.

Recursion is not used a lot in Python. In particular, there is no tail-call optimization,
and the default recursion stack has depth 1000.

We now explain how methods are allocated and called. We start with the example provided
in Listing 6.7. The class A defines a function id. If we access the function through the instance,
as done in line 5, the result will be a method corresponding to a partial application of the
function where self is the instance. As such the call line 7 is valid and will return a tuple
consisting in the instance defined at line 4 and the integer 3.

The construction of the method at line 5 relies on the semantics of the __getattribute__
method of object, which calls function.__get__, defined in Figure 6.35 (this is not a data

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L4808
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1339
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L4808
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1339

6.3.2 – Functions and methods 129

EcurJ return expr KΣ def
=

letb Σ1 = SJ return_var = expr KΣ in
{ (f, e, h) ∈ Σ1 | f 6= cur } ∪ { (ret, e, h) | (cur, e, h) ∈ Σ1 }

EcurJ function.__call__(func, e1, · · · , en) K(cur, e, h) def
= tp_field function_call

letb (cur, e, h),@f = EJ func K(cur, e, h) in
if ¬isinstance(@f , function) then return SJ raise TypeError K(cur, e, h) else
let Fun(fname, (arg1, . . . , argm), (local1, . . . , locali), body) = fst ◦h(@f) in
ifm 6= n then return SJ raise TypeError K(f, e, h)
letb σ = SJ locali = LocalUndef K ◦ . . . ◦ SJ local1 = LocalUndef K

◦ SJ argn = en K ◦ . . . ◦ SJ arg1 = e1 Kσ in
letcases (f, e, h) = SJ body Kσ in
let r =
if f = ret then e[return_var] else
if f = cur then@None else
else ⊥ in

letb (_, e, h) = SJ del return_var K ◦ SJ del locali K ◦ . . . ◦ SJ del local1 K
◦ SJ del argn K ◦ . . . ◦ SJ del arg1 K(cur, e, h) in

return (f, e, h), r

Figure 6.34: Semantics of function calls

descriptor case as defined in Section 6.3.1, but the fallback case of object.__getattribute__).
function.__get__ calls the method constructor, and its arguments are the function and the
instance. The method is created by method.__new__, which allocates the method object and
keeps the instance and the function inside its structure. A method call is transformed into a
function call, where the instance to which the method is bound is added as the first argument.

Listing 6.7: Example of method creation
1 class A:
2 def id(self, x): return (self, x)
3
4 a = A()
5 m = a.id
6 # <bound method A.id of <__main__.A object at 0x...>>
7 t = m(3)
8 # (<__main__.A object at 0x...>, 3)

Although the get descriptor of function createsmethods for function accesses from classes,
it is sometimes interesting to not have the first argument reserved for the instance. Two alter-
natives are to have the class being the first argument, or having no reserved argument at all.
The decorators classmethod and staticmethod provide these behaviors.

The semantics of these decorators is shown in Figure 6.36. Their initialization stores the
underlying function object into a __func__ attribute. The staticmethod decorator removes the
first instance argument in the functions. When accessed through an attribute, the underlying
function will be directly returned, instead of the method usually created by function.__get__.
The classmethod decorator transforms the first argument as the class rather than the instance.

https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L662
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L626

130 Chapter 6 – Concrete Semantics of Python

EcurJ function.__get__(func, i, _) K(cur, e, h) def
= tp_field func_descr_get

letb (cur, e, h),@f = EJ func K(cur, e, h) in
letb (cur, e, h),@i = EJ i K(cur, e, h) in
if ¬isinstance(@f , function) then return SJ raise TypeError K(cur, e, h) else
return EJ method(@f ,@i) K(f, e, h)

EcurJ method.__new__(method, func, i) K(cur, e, h) def
= tp_field PyMethod_New

letb (cur, e, h),@m = EJm K(cur, e, h) in
letb (cur, e, h),@f = EJ func K(cur, e, h) in
letb (cur, e, h),@i = EJ i K(cur, e, h) in
if ¬isinstance(@f , function) then return SJ raise TypeError K(cur, e, h) else
letb (cur, e, h),@a = EJalloc_addr K(cur, e, h) in
return (f, e, h[@a 7→ Method(@i,@f)]), a

EcurJ method.__call__(m, e1, . . . , en) K(cur, e, h) def
= tp_field method_call

letb (cur, e, h),@m = EJm K(cur, e, h) in
if ¬isinstance(@m, method) then return SJ raise TypeError K(cur, e, h) else
let Method(@self ,@func) = fst ◦h(@m) in
return EJ function.__call__(@func,@self , e1, · · · , en) K(cur, e, h)

Figure 6.35: Semantics of methods

EcurJ staticmethod.__init__(inst, f) K(cur, e, h) def
= tp_field sm_init

return EJ None K ◦ SJ inst.__func__ = f K(cur, e, h)

EcurJ staticmethod.__get__(self, obj, type) K(cur, e, h) def
= tp_field sm_descr_get

return EJ self.__func__ K(cur, e, h)

EcurJ classmethod.__init__(inst, f) K(cur, e, h) def
= tp_field sm_init

return EJ None K ◦ SJ inst.__func__ = f K(cur, e, h)

EcurJ classmethod.__get__(self, obj, type) K(cur, e, h) def
= tp_field cm_descr_get

return EJ method(self.__func__, type) K(cur, e, h)

Figure 6.36: Semantics of the classmethod and staticmethod decorators

6.3.3 Type

Class instantiation is performed through calls such as A(args). Since A is a class, this call
usually ends up being rewritten into type.__call__(A, args) (the only exception is when A
has a metaclass which is different from type). The semantics of this function is shown in
Figure 6.37. It starts by calling the __new__ method of the class. If the returned type is not
a subtype of the class, or if the class has no initialization method, the instance is returned.
Otherwise, the initialization method is called; it should return None.

The creation of a new class through type.__new__ is shown in Figure 6.38. It computes a
linear ordering of the parents’ classes (this operation may fail and raise an exception). Then,
the class is allocated and its address returned.

https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L682
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L638
https://github.com/python/cpython/tree/3.8/Objects/classobject.c#L401
https://github.com/python/cpython/tree/3.8/Objects/classobject.c#L104
https://github.com/python/cpython/tree/3.8/Objects/classobject.c#L377
https://github.com/python/cpython/tree/3.8/Objects/classobject.c#L345
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L1038
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L941
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L1035
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L927
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L858
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L759
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L855
https://github.com/python/cpython/tree/3.8/Objects/funcobject.c#L744

6.3.3 – Type 131

EcurJ type.__call__(self, arg1, . . . , argn) K(cur, e, h) def
= tp_field type_call

letb (cur, e, h),@self = EJ self K(cur, e, h) in
letb (cur, e, h),@1 = EJ arg1 K(cur, e, h) in
. . .

letb (cur, e, h),@n = EJ argn K(cur, e, h) in
if ¬hasattr(@self , "__new__") then return SJ raise TypeError K(cur, e, h),⊥
letb (f, e, h),@new = EJ@self .__new__(@1, . . . ,@n) K(f, e, h) in
if type(@new) 6v@self ∨ ¬hasattr(type(@new), "__init__") then return (cur, e, h),@new

letb (f, e, h),@init = EJ@self .__init__(@new,@1, . . . ,@n) K(f, e, h) in
if isNone@init then return (cur, e, h),@init

else return raise TypeError,⊥

Figure 6.37: Semantics of class call

EcurJ type.__new__(meta, cls, supers, attrs) K(cur, e, h) def
= tp field type_new

letb (f, e, h),mro = compute_mro(supers) in
letb (cur, e, h),@ = EJalloc_addr K(f, e, h) in
return (f, e, h[@ 7→ Class(cls,meta,mro, attrs)]),@

Figure 6.38: Semantics of class creation

Remark 6.33 Different definitions of type.__new__
Actually, both the class creation type.__new__ (Figure 6.38) and the typeof operator type
(Figure 6.7) call type.__new__, but we decided to split their semantics for the sake of clarity.

The semantics of attribute accesses for classes (Figure 6.39) is different from the one of ob-
jects described previously. The first reason is to handle attribute inheritance at the class level.
For example, if class A has an attribute a, and B inherits from A, object.__getattribute__(B,
'a') raises an attribute error (since it searches in the type of B, i.e. the type object). By com-
parison, type.__getattribute__ performs a search at the class level too, allowing to resolve
the attribute for B. This different semantics also makes for more coherent use of the standard
staticmethod and classmethod decorators. For example, with the classmethod decorator, the
access to A.f in Listing 6.8 should give a bound method rather than expose the classmethod
object. This works with type.__getattribute__(A, 'f'), but would expose the classmethod
object with object.__getattribute__.

Listing 6.8: Classmethod example
1 class A:
2 @classmethod
3 def f(c): print(c)
4
5 # >>> type.__getattribute__(A, 'f') # same as A.f
6 # <bound method A.f of <class '__main__.A'>>
7 # >>> object.__getattribute__(A, 'f')
8 # <classmethod object at 0x7eff1fdbc130>

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3634
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L956
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3652
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L2322

132 Chapter 6 – Concrete Semantics of Python

EcurJ type.__getattribute__(typ, name) K(cur, e, h) def
= tp_field type_getattro

letb (cur, e, h),@typ = EJ typ K(cur, e, h) in
letb (cur, e, h),@name = EJname K(cur, e, h) in
letb (cur, e, h),@meta = EJmro_search(type(@typ),@name) K(cur, e, h) in
if@meta 6= ⊥ then
if hasattr(type(@meta), "__get__")∧

(hasattr(type(@meta), "__set__") ∨ hasattr(type(@meta), "__delete__")) then
return EJ type(@meta).__get__(@meta,@typ, type(@typ)) K(cur, e, h)

letb (cur, e, h),@attr = EJmro_search(@typ,@name) K(cur, e, h) in
if@attr 6= ⊥ then
if hasattr(type(@attr), "__get__") then
return EJ type(@attr).__get__(@attr, None,@typ) K(cur, e, h)

else return (cur, e, h),@attr

if@meta 6= ⊥ then
if hasattr(type(@meta), "__get__") then
return EJ type(@meta).__get__(@meta,@typ, type(@typ)) K(cur, e, h)

else return (cur, e, h),@meta

return SJ raise AttributeError K(cur, e, h),⊥

Figure 6.39: Semantics of attribute accesses for classes

6.3.4 Booleans

The boolean conversion function is described in Figure 6.40. It starts by evaluating its argument.
If the evaluation returns a boolean, the conversion is finished. Otherwise, we try calling the
__bool__ method and check that it returns a boolean. If the object has no __bool__ method
but it has a __len__method, we call it through the len builtin function8, and return True when
the object’s length is positive. If everything fails, the result is True (the boolean conversion
never raises an exception).

6.3.5 Integers

The integer creation function is described in Figure 6.41. If the argument is an integer, it is just
returned. If the argument’s class has either of the __int__, __index__ or __trunc__methods,
the methods are called, and the result is type-checked. If the argument is a string-like object,
a conversion from string to integer is performed. If nothing succeeds, a type error is raised.

6.3.6 Range objects

Range objects are defined by a starting point, a stopping point, and a step. All three arguments
should be integers. When iterated upon, these range(start, stop, step) objects returns ele-
ments of the sequence start+k∗step, where k is an non-negative integer, until stop is reached.
We do not detail their semantics, but range objects are supported by our analyses.

8Which checks that the returned object is a non-negative integer.

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3636
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L3196

6.3.7 – Containers 133

EcurJ bool.__new__(expr) K(cur, e, h) def
= tp_field bool_new PyObject_IsTrue

letb (cur, e, h),@e = EJ expr K(f, e, h) in
if isinstance(@e, bool) then return (f, e, h),@e

if isinstance(@e, NoneType) then return (f, e, h),@False
else if hasattr(type(@e), "__bool__") then
letb (cur, e, h),@r = EJ type(@e).__bool__(e) K(f, e, h) in
if isinstance(@r, bool) then return (cur, e, h),@r

else return SJ raise TypeError K(cur, e, h),⊥
else if hasattr(type(@e), "__len__") then
letb (f, e, h),@int = EJ len(e) K(f, e, h) in
let int(i),⊥ = h(@int) in
if i > 0 then return True else return False

else return True

Figure 6.40: Semantics of boolean cast

EcurJ int.__new__(int, x) K(cur, e, h) def
= tp_field long_new_impl PyNumber_Long

letb (cur, e, h),@x = EJx K(cur, e, h) in
if type(@x) = int then return (cur, e, h),@x

if hasattr(type(@x), "__int__") then
letb (cur, e, h),@r = EJ type(@x).__int__(@x) K(cur, e, h) in
if isinstance(@r, int) then return (cur, e, h),@r

else return SJ raise TypeError K(cur, e, h),⊥
if hasattr(type(@x), "__index__") then
letb (cur, e, h),@r = EJ type(@a).__index__(@a) K(f, e, h) in
if isinstance(@r, int) then return (cur, e, h),@r

else return SJ raise TypeError K(cur, e, h),⊥
if hasattr(type(@x), "__trunc__") then
letb (cur, e, h),@r = EJ type(@x).__trunc__(@x) K(cur, e, h) in
return EJ int(@r) K(cur, e, h)

if isinstance(@x, (str, bytes, bytearray)) then
let str(s) = h(@x) in
letb (cur, e, h), i = int_of_string s in
return EJ int(i) K(cur, e, h)

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.41: Semantics of integer creation

6.3.7 Containers

There are four standard containers in Python:

https://github.com/python/cpython/tree/3.8/Objects/boolobject.c#L172
https://github.com/python/cpython/tree/3.8/Objects/boolobject.c#L43
https://github.com/python/cpython/tree/3.8/Objects/object.c#L1448
https://github.com/python/cpython/tree/3.8/Objects/longobject.c#L5754
https://github.com/python/cpython/tree/3.8/Objects/longobject.c#L5103
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L1352

134 Chapter 6 – Concrete Semantics of Python

. Lists are mutable. They can be considered as arrays given the constant time index access.

. Sets are mutable structures with no duplicate (a variant called frozenset is immutable).

. Tuples are immutable structures.

. Dictionaries are mutable associative maps.

Python requires that set elements and dictionaries’ keys should be immutable elements.
Since Python cannot check this property at runtime, the requirement is actually that these el-
ements should have a __hash__method. The documentation asks for the following constraint
to be satisfied:9

The only required property is that objects which compare equal have the same hash value.

Due to Python’s dynamic type system, all containers can contain heterogeneous values.
They can also be arbitrarily nested.

Python contains lists, sets, and dictionaries comprehensions. They provide an elegant way
to define lists and perform map/filter-like operations on them. Our semantics desugars these
comprehensions into actual loops. An example transformation is provided in Listing 6.9

Listing 6.9: Example rewriting of the list comprehension [f(x) for x in y if b(x)]

1 fresh_l = []
2 for x in y:
3 if b(x):
4 fresh_l.append(x)

We do not detail the semantics of container’s methods, since they do not hide subtleties
and only perform the container update specified by the method.

Slice objects are used to define subsequences of containers. They are defined by a starting
point, a stopping point, and a step, similarly to range objects. We do not detail the semantics
of slice objects here. These objects are supported by our analyses.

6.3.8 Iterators

Two builtins related to iterators are used in Python: iter creates an iterator object from com-
patible objects, while next gives the next element of an iterator.

The semantics of iter is shown in Figure 6.42. We try calling the __iter__ method of the
object. If this is successful, we check that the result is an iterator, i.e., that it has a __next__
method. Otherwise, if the object’s class provides index-based access through the __getitem__
method, we create a builtin iterator over this structure. This iterator will access the structure
through increasing indexes until an IndexError or StopIteration exception is raised.

The semantics of next (Figure 6.43) consists in calling the __next__ method of the object.
The StopIteration exception is used to signal when there are no elements left in the iterator.

The semantics of len is shown in Figure 6.44. We start by calling the __len__ method and
pass its result to the __index__ method. The result is returned if it is a non-negative integer.
Otherwise, various exceptions may be raised.

6.3.9 super

The super class can be seen as a drop-in replacement designating a parent class of the class
being defined. It is mainly called to access a method (i.e., super().m(...)). It dynamically
searches for the method m in the parents of the class. We start by showing a classic use case
of super when a class inherits from multiple other classes.

9https://docs.python.org/3.8/reference/datamodel.html#object.__hash__

https://docs.python.org/3.8/reference/datamodel.html#object.__hash__

6.3.9 – super 135

EcurJ iter(expr) K(cur, e, h) def
= declaration builtin_iter PyObject_GetIter

letb (cur, e, h),@e = EJ expr K(f, e, h) in
if hasattr(type(@e), "__iter__") then
letb (cur, e, h),@it = EJ type(@e).__iter__(@e) K(cur, e, h) in
if hasattr(type(@it), "__next__") then return@it

if hasattr(type(@e), "__getitem__") then
return EJ iterator(@e, 0) K(cur, e, h)

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.42: Semantics of iter

EcurJ next(expr) K(cur, e, h) def
= declaration builtin_next

letb (cur, e, h),@e = EJ expr K(cur, e, h) in
if hasattr(type(@e), "__next__") then
return EJ type(@e).__next__(@e) K

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.43: Semantics of next

EcurJ len(expr) K(cur, e, h) def
= declaration builtin_len slot_sq_length

letb (cur, e, h),@e = EJ expr K(cur, e, h) in
if hasattr(type(@e), "__len__") then
letb (cur, e, h),@r = EJ type(@e).__len__(@e) K(f, e, h) in
if hasattr(type(@r), "__index__") then
letb (cur, e, h),@i = EJ type(@r).__index__(@r) K(f, e, h) in
if ¬isinstance(@i, int) then return SJ raise TypeError K(cur, e, h)
let int(vi) = fst ◦h(@i) in
if vi < 0 then return SJ raise ValueError K(cur, e, h)
else return (cur, e, h),@i

return SJ raise TypeError K(cur, e, h),⊥

Figure 6.44: Semantics of len builtin

Example 6.34 super and multiple inheritance
Let us assume we have a Pen class, itself parent of two classes BluePen and WipeablePen,
as described in lines 1-13 of Listing 6.10. We would like to create a class WhiteboardPen, in-
heriting from BluePen and WipeablePen. If we try to explicitly call the initialization method
of BluePen and WipeablePen, these methods will both call Pen.__init__, doubling the side
effects. If we use the super class, we have the double benefit of not having to make explicit
initialization calls, and avoiding the double call to Pen.__init__.

https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L2731
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L1509
https://github.com/python/cpython/tree/3.8/Objects/abstract.c#L2568
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L2736
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L1374
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L2732
https://github.com/python/cpython/tree/3.8/Python/bltinmodule.c#L1547
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6220

136 Chapter 6 – Concrete Semantics of Python

In our example, the instantiation of WhiteboardPen will call in order:

• BluePen.__init__(self),
• WipeablePen.__init__(self),
• Pen.__init__(self).

The printing is done after the calls to super, so it appears in the reverse order (in the trace
shown lines 21-24).

Listing 6.10: Example usecase of super with multiple inheritance
1 class Pen:
2 def __init__(self):
3 print("- it's a pen")
4
5 class BluePen(Pen):
6 def __init__(self):
7 super().__init__()
8 print("- it's blue")
9
10 class WipeablePen(Pen):
11 def __init__(self):
12 super().__init__()
13 print("- it's wipeable")
14
15 class WhiteboardPen(BluePen, WipeablePen):
16 def __init__(self):
17 print("WhiteboardPen creation:")
18 super().__init__()
19
20 WhiteboardPen()
21 # WhiteboardPen creation:
22 # - it's a pen
23 # - it's wipeable
24 # - it's blue

Remark 6.35 Conversion from implicit super to explicit form
In our example, super was called without any argument at line 18. It was however able to
perform the calls to BluePen.__init__(self), WipeablePen.__init__(self), and Pen.__ini
t__(self). It turns out this is made possible thanks to a hack in the definition the initiliza-
tion function super_init, where arguments are filled with the method’s class and the first
local variable of the current stack frame (i.e., the self parameter).

To transform these implicit calls to super, we perform a rewriting into super(cls,
self), where cls is the class being defined and self the first argument of the method
being defined. In our example, this mean the call at line 18 would have been rewritten into:

super(WhiteboardPen, self).__init__(self)

Remark 6.36 Variations of super calls
As we have said previously, the first argument of super is, by default, the class being defined.
It can be overridden by a parent of the class. In that case, the methods being called will
only be the one defined after the provided class in the MRO of the class being defined. For
example, the MRO of WhiteboardPen is:

(WhiteboardPen, BluePen, WipeablePen, Pen, object)

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L7827

6.3.10 –Generators 137

If we replace the call at line 18 with super(BluePen, self).__init__(), only two initial-
izers are called: WipeablePen.__init__ and Pen.__init__.

Once this rewriting is performed, we can rely on the pure-Python implementation of super
shown in Listing 6.11. This implementation has been adapted from the Python documentation10.
__getattr__ is the method used to resolve the attribute accesses after calls to super (such
as the accesses to __init__ in our example). It traverses the MRO for the class from which
the start for the attribute will start. Then, it searches for the provided attribute in the MRO
(after the starting class). cls.__dict__[name] corresponds to a low-level field access. Once
the search is successful, the method tries to call the __get__ method of the result, or returns
it raw if this method does not exist.

Listing 6.11: Pure-Python implementation of super
1 class super:
2 def __init__(self, typ, obj):
3 if not isinstance(typ, type): raise TypeError
4
5 if isinstance(obj, type) and issubclass(obj, typ):
6 self.__self_class__ = obj
7 elif issubclass(type(obj), typ):
8 self.__self_class__ = type(obj)
9 else: raise TypeError
10
11 self.__thisclass__ = typ
12 self.__self__ = obj
13
14 def __getattr__(self, name):
15 starttype = self.__self_class__
16 mro = starttype.__mro__
17 for i in range(len(mro)):
18 if mro[i] is self.__thisclass__: break
19 i += 1
20 if i < len(mro):
21 for cls in mro[i:]:
22 if name in cls.__dict__:
23 res = cls.__dict__[name]
24 if hasattr(type(res), '__get__'):
25 res = type(res).__get__(res, None if self.__self__ is starttype
26 else self.__self__, starttype)
27 return res
28 return object.__getattribute__(self, name)
29
30 def __get__(self, obj, typ):
31 if obj is None or self.__self__ is not None: return self
32 if type(self) is not super: return type(self)(self.__thisclass__, obj, None)
33 else: return super(typ, obj)

6.3.10 Generators

Generators are a kind of coroutines that can be defined in Python. When a generator is called,
it will execute itself until a yield statement is encountered. The control flow is then passed
back to the caller until the generator is queried again.

Generators can be used as an alternative to lists. Instead of using offline algorithms, which
require the whole data to be stored in memory, generators allow an online, elementwise pro-
cessing, reducing memory usage. A typical example is for the processing of large files, where
a first function will load the file as a list of strings, each representing a line, and pass this list

10https://www.python.org/download/releases/2.2/descrintro/#superexample

https://www.python.org/download/releases/2.2/descrintro/#superexample

138 Chapter 6 – Concrete Semantics of Python

to other processing functions. This might consume a lot of memory depending on the file’s
length, since the whole file needs to be loaded. With generators, it is possible to define the
file opening and file processing functions such that each line will be fully processed one after
the other.

Example 6.37 Counting occurrences of ’a’ in a file line by line using generators
A program using generators is shown in Listing 6.12. It reads the file called in.txt line
by line, using the function process_file. For each line, the function count displays its
content, and counts the number of occurrences of the character ’a’.

We dive a bit more into the execution details of this program. Let us assume the file
in.txt contains two lines, the first with the string ”abstract” and the second with the string
”interpretation”. process_file is called at line 17. Since its body contains the generator-
specific yield statement, the function is directly interrupted. Similarly, count is called and
stopped immediately, as it is a generator. The for loop will now resume the execution of
the functions (during the calls to next, following the rewriting shown in Listing 6.1).

At the first turn of the loop, we resume the execution of count. count itself uses a
loop to resume the execution of process_file, which opens the file and reads the first
line. The generator-specific statement yield l.strip() stops the current execution of
process_file at the end of line 6 and returns the string ”abstract”. This returned value is
stored in s (line 10), the string is displayed and the number of occurrences counted. We
then reach the yield count statement at line 15, which interrupts the execution of count,
and returns the integer 2. This value is stored in cnt (line 18), and the count is displayed.

The second turn of the loop is similar. We restart the execution of count, itself restarting
process_file. This function was stopped at the end of the yield at line 6. We increment i
from 0 to 1, and start again the execution of the loop lines 4-7. The second line is read and
the execution is stopped again by yield at line 6. The returned value is ”interpretation”,
which is stored in the variable s of count. count displays the string, counts the occurrences
of ”a” in s, and yields the integer 1 to the loop at lines 18 and 19. This loop displays the last
count.

At the third turn of the loop, the execution of process_file raises a StopIteration
exception, since the traversal of the file is finished. This stops the execution of the program.

Even if the print calls (at lines 5, 12 and 19) are at three different program locations,
they will be executed successively, thanks to the yield statements stopping the execution
of each function. Using lists, the same approach would have required to either define the
whole processing as a single, bulky function, or to keep the function’s results in different
lists to perform the display in a single pass at the end.

Listing 6.12: Counting occurrences of ’a’ in a file line by line using generators
1 def process_file(fi):
2 with open(fi, 'r') as f:
3 i = 0
4 for l in f:
5 print(f"Reading line {i}", end=", ")
6 yield l.strip()
7 i += 1
8
9 def count(gen, c):
10 for s in gen:
11 count = 0
12 print(f"s is {s}", end=", ")
13 for ch in s:
14 if ch == c: count += 1
15 yield count

6.3.10 –Generators 139

16
17 g = count(process_file("in.txt"), 'a')
18 for cnt in g:
19 print(f"got {cnt} 'a'")
20
21 # Provided in.txt is:
22 # abstract
23 # interpretation
24 # The result of this program is:
25 # Reading line 0, s is abstract, got 2 'a'
26 # Reading line 1, s is interpretation, got 1 'a'

This first example showed that generators can interrupt a function’s execution and com-
municate some data back to the caller. It is also possible to introduce communication from
the caller to the generator using the send method of generators.

Example 6.38 Bidirectional communication with generators
The bidirectional communication of generators can be used to change which character’s
occurrences are counted at each line. We use the sendmethod over generators to send the
character on which to count the occurrences in the count function. Bidirectional generators
need to be initialized by sending None.

Let us assume that at the first turn of the while loop lines 22-28, the picked character
is ”c”. This value is sent to the generator, which starts its execution at line 12. The result of
the function is 1, which is passed back through the yield at line 18.

Then, let us assume that the second turn of the loop picks the character ”a”. This value
is sent to the generator, which resumes its execution at the assignment line 18 (i.e., c = "a"
is performed). The result of the function is 1 again, and passed back through the yield at
line 18.

At the next turn, the StopIteration exception raised by process_file will stop the
while loop.

Listing 6.13: Generator example with bidirectional communication
1 import random
2
3 def process_file(fi):
4 with open(fi, 'r') as f:
5 i = 0
6 for l in f:
7 print(f"Reading line {i}", end=", ")
8 yield l.strip()
9 i += 1
10
11 def count(gen):
12 c = yield None
13 for s in gen:
14 count = 0
15 print(f"s is {s}", end=", ")
16 for ch in s:
17 if ch == c: count += 1
18 c = yield count
19
20 g = count(process_file("in.txt"))
21 g.send(None)
22 while True:
23 try:
24 c = random.choice(['a', 'b', 'c'])
25 cnt = g.send(c)

140 Chapter 6 – Concrete Semantics of Python

26 print(f"got {cnt} '{c}'")
27 except StopIteration:
28 break
29
30 # Example result:
31 # Reading line 0, s is abstract, got 1 'c'
32 # Reading line 1, s is interpretation, got 1 'a'

We now define the semantics of generators. We extend nominal objects ObjN to handle
generator objects. These objects are written Gen(name, locals, body), and are defined by their
name, the local variables used in its body, and the body of the generator. We extend flow
tokens with two new kinds:

• yield(@gen ∈ Addr,@e ∈ Addr⊥, l ∈ Loc ∪ { end }), representing generators allocated
at address @gen, whose execution is currently stopped at program location l (or is now
stopped), potentially yielding the object allocated at @e.

• next(@gen ∈ Addr,@s ∈ Addr⊥, l ∈ Loc ∪ { start }) representing a call to a generator at
@gen, which should resume its execution at program location l (and ignore everything
before). It is optionally passed an object that can be sent.

When a function f containing yield statements in its body is called, a new generator object
is created. A specific flow token to start this generator is created. The semantics is shown in
Figure 6.45.

EcurJ generator.__call__(f, e1, . . . , en) K(cur, e, h) def
=

letb (cur, e, h),@f = EJ f K(cur, e, h) in
let Fun(fname, (arg1, . . . , argm), (local1, . . . , locali), body) = fst ◦h(@f) in
ifm 6= n then return SJ raise TypeError K(f, e, h)
letb σ = SJ locali = LocalUndef K ◦ . . . ◦ SJ local1 = LocalUndef K

◦ SJ argn = en K ◦ . . . ◦ SJ arg1 = e1 Kσ in
letb (f, e, h),@g = EJalloc_addr Kσ in
let h = h[@g 7→ Gen(fname, (local1, . . . , locali), body), ∅] in
{ ((cur, e, h),@g); ((next(@g,⊥, { start }), e, h),@g) }

Figure 6.45: Semantics of generator creation,
assuming f is a function containing a yield statement

The yield expression is used to interrupt the execution of the generator and get back to
the execution of the caller. The semantics is shown in Figure 6.46, and is defined in two cases:

1. If the execution is normal, tagged by the cur flow token, yield evaluates its argument
and stops the normal execution. Instead, it returns two states. The first state is tagged
by yield(), which will be caught by generator.send to extract e’s value. The second state
is tagged by next. It will be used to resume the generator at the correct location (through
the second definition of yield described in our second point). In both cases, we use the
generator’s address in the flow tokens. We assume this address has been stored globally.

2. The second case is used to resume a generator’s execution. When a generator is re-
sumed, we start at the beginning of the generator’s body, but in a state tagged by next,
meaning that the semantics will not execute anything until the correct yield statement
is reached. After that, the execution is resumed by shifting the flow token from next to
cur. If something was sent, it is the result of this evaluation.

6.4 – Correctness 141

EJ yieldl expr K(cur, e, h) def
=

letb (cur, e, h),@e = EJ expr K(cur, e, h) in
return { (yield(@g,@e, l), e, h),⊥; (next@g,⊥, l, e, h),⊥}

EJ yieldl expr K(next(@g, l,@s), e, h)
def
=

(cur, e, h),@s

Figure 6.46: Semantics of the yield expression

Generators support the iterator protocol. That is, the execution of generators is resumed
by calling the next builtin. This builtin calls the next method of generators, which is a sim-
plified value of the send method. We show both of their semantics in Figure 6.47. We start
by evaluating the arguments in the current flow token. Then, we partition the input state Σ
to keep states tagged by the next flow token. Other states are kept in Σother . We execute the
body of the generator on the states tagged by next flow token (although if the generator was
just created, we replace the token with cur to start at the beginning of the body), and call Σout

the result. The result of the method consists in: (i) the other states in Σother that are passed
on, (ii) the states of Σout which are not tagged by a yield() token (this includes states tagged
by an exn of next), (iii) the states of Σout tagged by a yield() token (when the generator is not
finished): we return the result of the yield in the token, and return a state tagged by cur, (iv) er-
roneous states where a StopIteration exception has been raised if the generator’s end has
been reached.

EJ generator.send(gen, send) KΣ def
=

let Σcur = { (f, e, h) ∈ Σ | f = cur } in
letb (f, e, h),@g = EJ gen KΣcur in
let Gen(name, locals, body) = h(@g) in
letb (f, e, h),@s = EJ send K(f, e, h) in
let Σnext,start = { (cur, e, h) | (f, e, h) ∈ Σ, f = next(@g, _, start) } in
let Σnext,other = { (next(@g,@s, l), e, h) ∈ Σ | f = next(@g, _, l), l 6= start } in
let Σother = Σ \ (Σcur ∪ Σnext) in
let Σout = SJ body K(Σnext,start ∪ Σnext,other) in
{ (σo,⊥) | σo ∈ Σother }
∪ { (f, e, h),⊥ | (f, e, h) ∈ Σout, f 6= yield(_, _, _) }
∪ { (cur, e, h),@ | (f, e, h) ∈ Σout, f = yield(@g,@, l), l 6= end }
∪ { SJ raise StopIteration(@) K(cur, e, h),⊥ | (f, e, h) ∈ Σout, f = yield(@g,@, end) }

EJ generator.__next__(gen) K def
= EJ generator.send(gen, None) K

Figure 6.47: Semantics of calls to generators

6.4 Correctness
The semantics has been established by reading the Python documentation, CPython’s source
code, and through various experimentations. We strived tomake it themost complete possible,

142 Chapter 6 – Concrete Semantics of Python

but this is a difficult and time-consuming task.

6.4.1 Tests from previous works

Some previous works on the semantics of Python [141, 125, 66] (detailed in Section 6.6) included
the manual creation of semantics tests. Guth [66] collected (and updated) the tests of previous
works, which are published alongside their semantics on Github11. The tests of Guth [66] rely
on assertions. The tests of Smeding [141] and Politz et al. [125] relied on custom drivers12,13
used to dynamically execute test files using a specific namespace. We modified those files to
inline the functions, making them less dynamic and more explicit.

We show the results of our static analyzer on those tests in Figure 6.48. Mopsa is an abstract
interpreter. This approach tests the abstract semantics, which is close to but not exactly the
concrete semantics defined in this chapter. In particular, Mopsa can be imprecise in some
cases, whichmay be why some tests fail. Tomatch closely the concrete, loops are fully unrolled.
An example source of imprecision in the abstract interpreter is the list abstraction. Lists are
abstracted into a single, weak variable through a summarization for example. We can notice
that Mopsa supports a majority of the tests, although the number of false alarms is still high.

We were unable to run by ourselves the semantics of Guth [66] but they claim to pass 83%
of Politz et al.’s tests, and almost all of Smeding [141]’ tests. Köhl [88] was not able to run the
semantics of Guth [66] either14. We were able to run the artifact of Politz et al. [125]: it passes
69.8% tests for Smeding’s test suite, 44.2% of Guth’s tests, and 96.2% of their own tests. Köhl [88]
is able to pass 65.7% of Guth’s tests, and 59.6% of the tests of Politz et al. Smeding [141] defined
a semantics of Python 2, while we focus on Python 3, which contains major, non-compatible
changes. Thus, we did not try comparing it. The test suite has been updated by Guth so that
their testcases focus on Python 3. The other prototype analyzer by abstract interpretation of
Python programs by Fromherz et al. [54] has comparable running times. However, it supports
fewer tests, as shown in Figure 6.49.

Due to its abstractions, Mopsa may raise false alarms and thus supports fewer tests for
now. These tests have helped us choose which features should be implemented. Supporting
more of these tests in Mopsa is ongoing work. One of the main limitations to address to pass
more tests is the support of the argument unpacking operators * and ** (cf. Section 6.2.10).

Test suite Number of tests LOC Time Passing False alarm Unsupported

Smeding [141] 129 1247 2.8s 66.67% 26.36% 6.98%
Politz et al. [125] 215 3602 5.5s 36.74% 29.3% 33.95%
Guth [66] 242 2524 5.6s 42.56% 35.12% 22.31%

Figure 6.48: Mopsa’s analysis of semantic tests

Test suite Number of tests Passing False alarm Unsupported

Smeding [141] 129 40.31% 23.14% 36.55%
Politz et al. [125] 215 23.72% 33.49% 56.21%
Guth [66] 242 19.83% 23.14% 41.97%

Figure 6.49: Running the semantic tests using the analyzer of Fromherz et al. [54]

11https://github.com/kframework/python-semantics/tree/master/programs
12https://github.com/kframework/python-semantics/blob/master/programs/smeding/driver/driver.py
13https://github.com/kframework/python-semantics/blob/master/programs/politz/driver/driver.py
14https://github.com/kframework/python-semantics/issues/1

https://github.com/kframework/python-semantics/tree/master/programs
https://github.com/kframework/python-semantics/blob/master/programs/smeding/driver/driver.py
https://github.com/kframework/python-semantics/blob/master/programs/politz/driver/driver.py
https://github.com/kframework/python-semantics/issues/1

6.4.2 – CPython’s tests 143

6.4.2 CPython’s tests

Since the previous tests were handcrafted by non-Python developers, we do not know if they
test all core Python features. Thus, we also test Mopsa on a subset of the official tests of the
reference interpreter. These tests use the unittest library of Python to run, which is supported
by Mopsa. We chose the tests that focused on the language and the builtins. The results are
shown in Figure 6.50. For each test file (clickable link to source), we show its length (measured
using cloc), the number of supported tests over the total number of tests, the time taken to
analyze those tests, and the number of assertions that Mopsa is able to prove over the total
number of assertions (defined in the supported tests). The artifact of Politz et al. [125] does not
appear to support this unittest framework correctly. The analyzer of Fromherz et al. [54] does
not support unittest either. The implementation of Köhl [88] does not support the import
statement for now, which is used to import the unittest library. We can notice that a majority
of the tests in this subset are supported by Mopsa. However, the abstractions of lists and
dictionaries are not precise to prove many assertions.

Name LOC # tests Time # assertions

augassign 230 6/7 0.22s 9/16
baseexception 83 9/10 68ms 1/1
contains 77 4/4 76ms 3/5
decorators 95 6/13 61ms 3/4
dict 684 48/76 1.3s 16/78
exception_variations 140 11/11 69ms 25/25
index 199 18/20 0.51s 14/21
int 349 10/17 0.27s 15/35
int_literal 91 6/6 0.15s 81/81
isinstance 98 9/18 0.13s 11/12
iter 482 47/55 1.1s 12/38
list 686 48/61 3.5s 34/158
operator 303 36/42 0.85s 118/130
raise 364 33/35 0.16s 2/4
range 450 19/24 0.58s 23/55
richcmp 205 9/11 7.1s 4/19
typechecks 49 6/6 65ms 18/20

Figure 6.50: Mopsa’s analysis of CPython’s tests

6.4.3 Summary of the conformance tests

Mopsa supports a reasonable number of tests, coming from different sources. Supporting
more of these tests is ongoing work. However, this is not our top priority: our goal is to analyze
Python programs rather than replicate the concrete Python interpreter. An interesting future
work would be the automatic generation of test cases for each case of the semantics, and the
comparison of these test cases with CPython.

6.5 Comparison with JavaScript
According to GitHub [62], JavaScript is more popular than Python and also a dynamic program-
ming language. This section highlights a few differences between the languages.

The first significant difference is that JavaScript is a standardized language through what
is called ECMAScript. The semantics are thus defined through text that aims to be as precise

https://github.com/python/cpython/blob/3.8/Lib/test/test_augassign.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_baseexception.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_contains.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_decorators.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_dict.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_exception_variations.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_index.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_int.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_int_literal.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_isinstance.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_iter.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_list.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_operator.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_raise.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_range.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_richcmp.py
https://github.com/python/cpython/blob/3.8/Lib/test/test_typechecks.py

144 Chapter 6 – Concrete Semantics of Python

as possible. We can for example compare the semantics of the addition in JavaScript15, with
the documentation provided in Python16. A considerable part of the work on Python is first
to grasp the semantics. ECMAScript also comes with a conformance test suite, which has no
Python equivalent.

JavaScript has two special values: undefined, used for uninitialized variables, and null.
The only numerical datatype available was floating-point numbers until the introduction of
arbitrary-precision integers in ECMAScript 2020. The last three primitive values used by JavaScript
are booleans, strings, and symbols (introduced in ECMAScript 2015, symbols are used to gener-
ate unique objects). The only two other types are function and object, encompassing all other
objects.

From a typing perspective, Python favors raising exceptions during unsupported opera-
tions ("1 hello" + 2 raises a TypeError), while JavaScript favors silent coercions (it evaluates
"1 hello" + 2 into "1 hello2").

JavaScript historically uses a structural type system, where objects are only maps from
strings to other objects.17 A prototype mechanism defines which fields will be accessible to
all objects having the same prototype. The inheritance mechanism also relies on it to inherit
all attributes of the parent. The syntactic declaration of classes was introduced in 2015. It
is syntactic sugar for prototype declarations. We can compare Python’s type and inheritance
mechanism, reminded in Figure 6.52 with the one of JavaScript in Figure 6.51. Python attributes
are usually called fields in JavaScript.

A significant difference with Python is that JavaScript does not allow overloading most op-
erators (such as binary operators or calls). The only exception is for fields, which can have
custom getters and setters. Since ECMAScript 6, proxies can also be used to override field ac-
cesses over an object globally, similarly to a redefinition of the __getattribute__ method in
Python.

Similar to Python, generators and asynchronous operators are available. As a general rule,
eval seems to be more used in JavaScript. To the best of our knowledge, ECMAScript does not
describe how garbage collection should be performed.

6.6 Related work
Ranson et al. [127] define a mechanized semantics for a restricted subset of Python, consisting
of basic values (integers, booleans) and control structures (loops, conditionals). A significant
shortcoming of this work is the absence of formalization of objects. Smeding [141] proposes
a semantics of Python 2.5 under the form of a Haskell interpreter. Politz et al. [125] define a
small-step semantics for a core Python language, λπ , as well as a compiler from Python to λπ ,
and a λπ interpreter written in Racket. Bodin et al. [16] define a mechanized semantics for
ECMAScript 5. The K framework [133] allows defining semantics, on top of which interpreters
and model-checkers can be automatically derived. It has notably been used to formalize the
semantics of ECMAScript 5.1 [123], and Python 3.2 [66]. Köhl [88] recently published a Master’s
thesis, defining a new framework for the definition of structural operational semantics, and
applying it to define the semantics of Python.

Fromherz et al. [54] define an interpreter-like semantics on which the concrete semantics
of this chapter is based. Our version is significantly different: it is more complete (as shows
Figure 6.50, compared to Table 1 of [54]), we have added references to the source code in the
semantics, and we have separated the semantics of the language from its builtins (e.g., we
have separated the semantics of x.s from object.__getattribute__). Both Fromherz et al.
[54]’s work and ours aim at defining abstract interpreters, which can compute an approximation

15https://262.ecma-international.org/10.0/#sec-addition-operator-plus
16https://docs.python.org/3/reference/datamodel.html#object.__add__
17Special symbol objects can also be used as keys.

https://262.ecma-international.org/10.0/#sec-addition-operator-plus
https://docs.python.org/3/reference/datamodel.html#object.__add__

6.7 – Conclusion 145

Function

Number

42

A B Object

new B()
→ type relation (typeof)
99K subclass relation (getPrototypeOf)

Figure 6.51: JavaScript type and subclass relations
Assuming A is a class and B inherits from A.

type object

int

42

A

B

B()

classes

objects

→ type relation
99K subclass relation

Figure 6.52: Python type and subclass relations
Assuming A is a class and B inherits from A.

Reminder of Figure 6.1

of the concrete semantics of Python. Contrary to [133, 66, 141, 125, 88], defining the concrete
semantics in itself is not our endgoal, it is only defined to be used as a basis to define the
abstract semantics. The shape of our concrete semantics is also influenced by the use we
make of it in the abstract analysis, because the abstract semantics will have a similar shape
and stay close to it structurally.

6.7 Conclusion

This chapter presented the semantics of Python. We defined the semantics by induction over
the syntax of Python as a function manipulating reachable program states. This way, the ab-
stract semantics will have a shape similar to the concrete one.

The semantics is complex, with lots of cases and multiple stages (operator level, builtin
level, and user level). It relies on introspection operators of both type systems (isinstance
and type for the nominal type system, hasattr for the structural type system). For now, it does

146 Chapter 6 – Concrete Semantics of Python

not handle asynchronous operator, the eval& exec statements, and the calls to finalizersmade
by the garbage collector.

We ran our abstract interpreter against various tests distributions to evaluate how complete
our semantics is. Mopsa supports a reasonable amount of tests, coming from different sources.
Improving the number of tests passed is ongoing work. However, our endgoal is to analyzemore
Python programs. In general, we decide to support new cases of Python’s semantics when we
encounter a concrete need during the analysis of real-world programs.

7

Type Analysis

As we mentioned in Chapter 6, Python is an object-oriented language, using dynamic typing,
and supporting introspection operators, self-modification of objects, and arbitrary code eval-
uation. These characteristics make the analysis of Python different from the analysis of static
programming languages such as C or Java. Due to dynamic typing, type errors are detected
at runtime and cause TypeError exceptions, whereas such errors would be caught at compile
time in a statically typed language. We propose a static analysis to infer type information and
use this information to detect automatically all exceptions that can be raised and not caught.
Our type analysis is flow-sensitive, to take into account the fact that variable types evolve dur-
ing program execution and, conversely, runtime type information is used to alter the control
flow of the program, either through introspection or method and operator overloading. More-
over, it is context-sensitive as, without any type information on method entry, it is not possible
to infer its control flow at all. However, handling eval is left as future work (possibly leveraging
ideas proposed by Jensen et al. [77], Arceri and Mastroeni [3] on JavaScript). In some sense, we
combine an exception analysis and a points-to analysis, following the work of Bravenboer and
Smaragdakis [19].

We compare our approach with traditional type systems in Section 7.1. Our analysis is de-
scribed in Section 7.2. We show a motivating example in the next paragraph. Our analysis has
special domains to support containers (such as lists) and infer type equalities (allowing it to
express parametric polymorphism, Section 7.3). The analysis is soundly derived by abstract
interpretation from a concrete semantics of Python. It has been implemented into Mopsa
(Section 7.5), and leverages external type annotations from the Typeshed project to support
the vast standard library (Section 7.4). We show in Section 7.6 that it scales to benchmarks a
few thousand lines long, and preliminary results show it is able to analyze a small real-life
command-line utility called PathPicker. Compared to previous work (Section 7.7), it is sound,
while it keeps similar efficiency and precision.

Listing 7.1: Python programs relying on both typing mechanisms
1 def fspath(p):
2 sb = (str, bytes)
3 if isinstance(p, sb):
4 return p
5 if hasattr(p, "fspath"):
6 r = p.fspath()
7 if isinstance(r, sb):
8 return r
9 else: raise TypeError
10 else: raise TypeError

148 Chapter 7 – Type Analysis

11
12 class Path:
13 def fspath(self):
14 return 42
15
16 if rand(0, 1): p = "/dev"
17 else: p = Path()
18 r = fspath(p)

Example 7.1 Motivating Example
Consider the code from Listing 7.1. It defines a function fspath, taken from the standard
library, with a parameter p as input. If p is an object instantiated from a class inheriting
from str or bytes, it is returned. Otherwise, the function searches for an attribute called
fspath and calls it as a method. If the return type is not an instance of str or bytes, an
exception is raised. Thus, when fspath does not raise an error, it takes as input an instance
of str or bytes, or an object having a method fspath returning either a string or a bytes-
based string. In all cases, the return type of fspath is either str or bytes. This function
uses both of Python’s type systems: it uses the nominal one when calling the isinstance
operator, and the structural one with hasattr.

We model correct and erroneous calls to fspath in lines 12 to 18. In particular, we define
a Path class, having a method fspath returning an integer, hence, a call to function fspath
on an instance of Path would raise a TypeError. Our analysis is able to infer that, at the
end of line 16, p is a string, and that at line 17, p is an instance of the Path class, which has
a field fspath that can be called. It finds that, either r is a string, or a TypeError is raised.

As it is part of the standard library, the fspath function is particularly well-behaved:
it does not make many implicit assumptions on the argument type (only that p.fspath is
callable) but instead uses type information to handle different cases in different program
branches. Nevertheless, the context is important to infer whether a specific call to fspath
can raise a TypeError or not. A more typical Python programmer might replace lines 5 to
10 with a call to return p.fspath(), leaving implicit the fact that p should have a method
fspath returning str or bytes strings. This is summarized in one of Python motos: “easier
to ask for forgiveness than permission”. Our analysis would correctly infer that invalid calls
to that modified function would raise an AttributeError exception.

7.1 Differences with a type system
It is worth comparing our approach with classic typing (the case of gradual typing is covered
in Section 7.7). Statically typed languages ensure the absence of type-related errors through
static type checking, possibly augmented with automatic type inference. However, while static
typing rejects untypable programs, our analysis gives semantics to such programs by propa-
gating type errors as exceptions. This is important in order to support programs that perform
runtime type errors and catch them afterward, which is common-place in Python. Indeed,
our goal is not to enforce a stricter, easier to check, way to program in Python,1 but rather to
check as-is programs with no uncaught exceptions. Secondly, static type checking is gener-
ally flow-insensitive and context-insensitive, trying to associate a unique type to each variable
throughout program executions while we use a flow- and context-sensitive analysis. Our ap-
proach makes the analysis precise enough to handle introspection operators and dynamic
addition of attributes – the latter changing the structural type of objects at runtime. Following
classic abstract interpreters [11], our analysis is performed by structural induction on the syn-
tax, starting from the program’s entry point. This approach by structural induction has already

1In practice, we are nevertheless limited to programs that do not use eval.

7.2 –Non-relational type analysis 149

been used in our introduction to abstract interpretation in Chapter 2. Our analysis is thus
unable to analyze functions in isolation. While this kind of modularity is a highlight of typing
algorithms, we believe that it is not well suited to Python. Consider, for instance, that a call to
a function can alter the value, and so the type, of a global variable, which is difficult to express
in a type system. Moreover, even a simple function, such as def f(a, b): return a + b,
has an unpredictable effect as the + operator can be overloaded to an arbitrary method by
the programmer (the semantics of + has been shown in the previous chapter, Figure 6.23). We
view type analysis as an instance of abstract interpretation, one which is slightly more abstract
than classic value analyses. This view is not novel, as Cousot [32] reconstructed Hindley-Milner
typing rules as an abstract interpretation of the concrete semantics of the lambda calculus.
One benefit of this unified view is the possibility to incorporate some amount of value analy-
sis (presented in Chapter 8). For instance, our type analysis currently considers, to be sound,
that any division can raise a ZeroDivisionError, which could be ruled out by a simple integer
analysis. Finally, the correctness proof of our analysis is derived through a soundness theorem
linking the concrete and the abstract semantics, in classic abstract interpretation form and not
by subject reduction. Both our analysis and type systems are conservative, but we replace the
motto “well-typed programs cannot go wrong” with a guaranteed overapproximation of the
possible (correct and incorrect) behaviors of the program.

7.2 Non-relational type analysis
This section presents the type analysis. We present abstractions incrementally, starting from
addresses to the environment and the heap, as well as additional stateless abstractions. A
summary of the full abstract state and an example are provided to close this section.

7.2.1 Abstract addresses

As usual in our endeavor for modular definitions, we do not require addresses to have a specific
structure. We only require that other domains can access the type of the object stored at a
given address using type (we highlighted the need for abstract addresses to depend on types
in Section 4.2 for Python analyses), and the mode of the address using mode (an address is
weak if it summarizes multiple addresses in the concrete, and strong otherwise). The type is
defined in ObjN]. It only differs from ObjN by forgetting builtin values (int(i ∈ Z) ∈ ObjN is
abstracted by int] ∈ ObjN]) except for booleans, and replacing addresses by their abstract
counterparts.

ObjN] def
= int] ∪ bool](b ∈ {True, False,>}) ∪ float] ∪ str] ∪ NoneType] ∪ NotImplType]

∪ List] ∪ Tuple] ∪ meth(a, f) ∪ cls(c) ∪ fun(f) ∪ inst(a), a ∈ Addr]

type ∈ Addr] → ObjN]

mode ∈ Addr] → {weak, strong }

We define a concretization from abstract nominal objectsObjN] to concrete nominal objects
relying on abstract addresses ObjNAddr] in Figure 7.1.

7.2.2 Environment abstraction

Domain. The domain of abstract environments E] maintains a non-relational map binding
variables to a set of abstract addresses. In the concrete, variables are program identifiers (Id).
In the abstract, these variables are complemented with auxiliary variables created by other
abstractions, such as the attribute abstraction presented in Section 7.2.3. Thus, Id ⊆ V . To

150 Chapter 7 – Type Analysis

γObjN :

ObjN] → P(ObjN]
Addr)

int] 7→ { int(i) | i ∈ Z }
bool](b ∈ {True, False}) 7→ { bool(b) }
bool](>) 7→ { bool(b) | b ∈ True, False }
float] 7→ { float(f) | f ∈ F64 }
str] 7→ { str(s) | s ∈ string }
NoneType] 7→ { None }
NotImplType] 7→ { NotImpl }
List] 7→

⋃
n∈N{ List(@

]
1, . . . ,@

]
n) |@]

i ∈ Addr
] }

Tuple] 7→
⋃

n∈N{ Tuple(@
]
1, . . . ,@

]
n) |@]

i ∈ Addr
] }

meth(a, f) 7→ {Method(a, f) }
cls(c) 7→ {Class(c) }
fun(f) 7→ { Fun(f) }
inst(a) 7→ { Inst(a) }

Figure 7.1: Concretization of abstract nominal objects

support Python scoping, variables can also point to LocalUndef to represent variables that
can be locally undefined.

E] def
= V ⇀ P(Addr] ∪ { LocalUndef })

Transfer functions (Figure 7.2). Following themodular definitions of Mopsa presented in Chap-
ters 3 and 4, the transfer functions are defined as a manipulation of the global abstract state
σ]. Getting and setting the state of the local abstraction are respectively done using man.getσ]
and man.set s σ]. To perform an assignment x = e, we evaluate e in the abstract, and update
the local abstract state ε for x accordingly. The deletion of a binding updates the local ab-
stract state of the environment in a similar fashion. The evaluation of x is disjunctive: if the
variable points to multiple abstract addresses, each address is returned in a state where the
environment has been refined.

Concretization (Figure 7.3). In the case of the type analysis, the environment abstraction is a
leaf domain. We thus define it as a regular concretization, which is lifted to a relation from the
unit type using the ↑() operator (defined in Remark 2.83). We will show an updated version of
the environment and this concretization for the case of the value analysis in Chapter 8. The
concretization of this domain creates an environment and a heap. The environment picks for
each variable v of the abstract state ε an abstract address of the set in ε(v). For each address
@] used in the abstract environment ε, the first coordinate of the heap at the same address is
one of the nominal objects abstracted by type(@]) (the second coordinate will be constrained
later, by concretizing the heap).

7.2.3 Heap Abstraction

The domain of abstract heaps H] defines which fields are defined for each Python objects.
We defined in the concrete semantics (Chapter 6) the concept of fields, local to an object.
Attributes are fields resolved transitively from an object through its parents’ classes. We first
describe the lattice of string powerset with underapproximation, which is used to abstract the
fields of an object.

7.2.3 –Heap Abstraction 151

S#envJx = e Kσ] def
=

letb σ],@] = E#J e Kσ] in
let ε = man.getσ] in

let ε = ε[x 7→ {@] }] in
man.set ε σ]

S#envJ del x Kσ] def
=

let ε = man.getσ] in

if x 6∈ dom ε then return S#J raise NameError Kσ] else

if ε(x) = LocalUndef then return S#J raise UnboundLocalError Kσ] else

return man.set (ε \ {x })σ]

E#envJx ∈ V Kσ] def
=

let ε = man.getσ] in

if x 6∈ dom ε then return SJ raise NameError Kσ],⊥ else

if ε(x) = LocalUndef then return SJ raise UnboundLocalError Kσ],⊥ else

return
⋃

a∈ε(id)

(man.set ε[x 7→ { a }]σ], a)

Figure 7.2: Transfer functions of the environment abstraction

γenv(ε ∈ V → P(Addr])) =↑() ◦ { (e, h) ∈ (V ⇀ Addr])× (Addr] ⇀ ObjN× ObjS) |
v ∈ domε⇔ e(v) ∈ ε(v);
@] ∈ codomε⇔ fst ◦h(@]) ∈ γObjN(type(@])) }

Figure 7.3: Concretization of the environment abstraction

Powerset with underapproximation. The structural partObjS], defined in Figure 7.4, keeps two
sets of fields (i.e., strings). Fields may be added in some execution traces and not in others.
Hence, we keep both an underapproximation and an overapproximation of the set of fields
that must (respectively may) exist at a given program point for all possible executions. This
information is important to avoid raising spurious AttributeError exceptions for fields that
are definitely present. These properties are formally defined by the concretization γObjS, in
Figure 7.4. The structural type abstraction may also be approximated as > by the widening, in
order to avoid having an infinite number of fields being added to an instance, which would
break the analysis’ termination. The special case ofLOCK designates object having a builtin read-
only structure, similarly to the concrete. Two powersets with underapproximations (l1, u1) and
(l2, u2) can easily be joined: (l1, u1) t] (l2, u2) = (l1 ∩ l2, u1 ∪ u2).

Abstract domain. The abstraction is then a mapping from abstract addresses to the powerset
we presented:

H] def
= Addr] ⇀ ObjS]

152 Chapter 7 – Type Analysis

ObjS] def
=
{
LOCK
}
∪ { (l, u) | l ∈ P(), u ∈ P(string) ∪ {>}, l ⊆ u ∨ u = > }

γObjS((l, u)) = {x ∈ P(string) | l ⊆ x ⊆ u }
γObjS(LOCK) = {LOCK }

Figure 7.4: Concretization of ObjS]

Transfer functions (Figure 7.5). The transfer functions handle the auxiliary field operators we
introduced in the concrete semantics, and work by delegation through the use of auxiliary
address variables. The transfer function of get_field first handles a special case for builtins,
just as in the concrete (Figure 6.4). It searches for the local state η of the heap abstraction,
and queries it at address @] to get the fields defined through string sets (l, u). If the field is
present in the lower, underapproximating part, we can just evaluate the auxiliary address vari-
able @] · attr corresponding to the field. This evaluation will be handled by the environment
domain presented previously. Otherwise, if the field is only present in the overapproximating
part, we return a case disjunction, where we assume that either the field must exist or that it
does not exist at all. In the latter case, we return ⊥ to signal an erroneous state, but no ex-
ception is raised by this low-level operator. This will be performed by the methods performing
the attribute access, such as object.__getattribute__ (described in Figure 6.31 in the con-
crete). The first case evaluates the same auxiliary variable and updates the local state so that
the field is now in the underapproximation. The second case returns an erroneous evaluation
where the field has been removed from the local state. has_field enjoys a definition extremely
close to its concrete counterpart, where the work is delegated to get_field. set_field fetches
the local state η, and the current approximation of fields at @] is defined as (l, u). The local
state is updated to take into account the new field. The assignment is then delegated using
the auxiliary address variable @] · attr representing the field attr of @].

Concretization (Figure 7.6). The concretization of the heap abstraction transforms concrete
environments with auxiliary address variables and a concrete heap with only nominal object
information into a concrete environment without auxiliary variables and a concrete heap with
nominal and structural objects. It keeps the same environment for variables that are not
auxiliary address variables. Auxiliary address variables are transformed into binding in the
concrete heap. For each abstract address @], the domain of structural objects of the concrete
heap ranges in between the bounds provided by the local abstract state η(@]).

7.2.4 Additional abstractions

The environment and heap domains are themain abstractions of the type analysis. This section
briefly describes the other abstract domains on which the analysis rely on.

7.2.4.1 Flow tokens

Flow tokens are used to handle non-local control-flow operators. They are similar to the con-
crete ones (Section 6.1, Figure 6.2), except that addresses are now abstract. The whole state is
lifted to a finite mapping over flow tokens.

F] def
= { cur, ret,brk, cont } ∪ { exn@] |@] ∈ Addr] }

7.2.4.2 – Containers 153

E#heapJget_field(@] ∈ Addr], attr ∈ string) Kσ] def
=

let b = get_builtin_field(@], attr) in

if b 6= ⊥ then return σ], b else

let η = man.getσ] in

if η(@]) = LOCK then return σ],⊥
let l, u = η(@]) in

if attr ∈ l then return E#J@] · attr Kσ]

else if attr ∈ u then
return E#J@] · attr K(man.set η[@] 7→ (l ∪ { attr }, u)]σ)∪

(man.set η[@] 7→ (l, u \ { attr })]σ,⊥)
else return σ],⊥

E#heapJhas_field(@] ∈ Addr], attr ∈ string) Kσ] def
=

letb σ], r = E#Jget_field(@], attr) Kσ] in
if r 6= ⊥ then return E#J True Kσ] else return E#J False Kσ]

S#heapJ set_field(@] ∈ Addr], attr ∈ string, val ∈ Addr) Kσ] def
=

let η = man.getσ] in

if η(@]) = LOCK then return ⊥
let l, u = η(@]) in

let σ] = man.set η[@] 7→ (l ∪ { attr }, u ∪ { attr })]σ] in
return S#J@] · attr = val Kσ]

Figure 7.5: Abstract semantics of field operators

γheap(η) ={ ((e, h), (e′, h′)) | v ∈ dome \ {@] · _ } ⇔ e(v) = e′(v);

@] ∈ domh⇔ (fst ◦h′ = fst ◦h ∧ dom (snd ◦h′(@])) ∈ γObjS(η(@])));

@] · a ∈ dome⇔ (snd ◦ h′)(@])(a) = e(@] · a); }

Figure 7.6: Concretization of the heap abstract domain

7.2.4.2 Containers

Containers such as lists and dictionaries are abstracted according to what we presented in
Chapter 5.

7.2.4.3 Stateless abstractions close to the concrete semantics

Most of the concrete semantics of Python is abstracted by stateless domains. We show the
example of the attribute operators. Their concrete semantics was defined in Figure 6.10, the
abstract version is shown in Figure 7.7. We comment on the definition of attribute access e.s
to highlight the differences. The first three lines are similar to the concrete: we evaluate e,
search for the __getattribute__ method in the class of e, to call it on e and the attribute s.

154 Chapter 7 – Type Analysis

The transfer function differs afterward since the global abstract state is a map from control-
flow tokens to substates F] → (E] ×H]) (while in the concrete, we used a set of states, each
tagged by a control-flow token, P(F × E ×H), which is isomorphic to F ×P(E ×H)). We thus
inspect each substate st tagged by its flow token τ , and return the corresponding evaluation.
If we encounter an erroneous state that was not present in the initial state, and where an
AttributeError has been raised, we try to use the fallback call to the __getattr__ method.
If we encounter the normal state, we return the computed value. For all other cases, we stop
the evaluation by returning ⊥.

7.2.5 Functions

The analysis of functions is performed in a context-sensitive fashion by inlining: when a func-
tion call is reached, we substitute the call by the body of the function and analyze it. This
scheme supports easily dynamic dispatch as well as calling anonymous functions defined using
lambda. The analysis of recursive functions is not currently supported in the implementation.

7.2.6 Full abstraction

In the case of the type analysis defined here, the whole abstract state maps flow tokens to the
state of the recency abstraction, the abstract environment and the abstract heap. The abstract
state is thus:

D] = F] ⇀
(
P(Addr])×

(
V ⇀ P(Addr] ∪ { LocalUndef })

)
× (Addr] ⇀ ObjS)

)
We write γD the concretization of the whole abstract state. It is a simple lift of γ, which

concretizes substates without flow tokens.

γ((σ]mem, σ
]
heap, σ

]
env)) =↓ ◦γmem(σ]mem) ◦ γheap(σ]heap) ◦ γenv(σ

]
env)

The ↓ operator corresponds to taking the image of the relation; the composition operator
between relations is the one induced by the composition of concretizations shown in Defini-
tion 2.82.

Listing 7.2: Python program with mutation and optional attribute addition
1 class A:
2 def __init__(self):
3 self.update(0)
4 def update(self, x):
5 self.val = x * 2
6 x = A()
7 y = x.val
8 z = x
9 if rand(0, 1): z.update('a')
10 if rand(0, 1): x.attr= 'b'

Example 7.2 Analysis of Listing 7.2
We focus on the analysis of Listing 7.2. We show the evolution of the abstract state for the
current flow cur in Figure 7.8. For the sake of concision, elements (l, u) of the powerset
approximation are displayed without repetition, i.e., we display (l, u \ l). We also assume
that builtin values are allocated to a single weak address for each type (this reduces the
number of allocations, and the precision is unchanged as the fields of builtin values are
immutable). The declaration of class A lines 1-5 creates three bindings in the environment
and in the heap. In the environment, the identifier A now maps to the corresponding class

7.2.6 – Full abstraction 155

E#attrsJ e.s Kσ] def
=

letb σ],@]
e = E#J e Kσ] in

let σ], c = E#Jmro_search(type(@]
e), "__getattribute__") Kσ] in

let σ]1,@
]
e.s = E#J c(@]

e, s) Kσ] in
return λ(τ ∈ F).

let st = σ]1(τ) in

if τ = exn@] ∧ τ 6∈ domσ] ∧ isinstance(@], AttributeError) then

let σ],@]
d = E#Jmro_search(type(@]

e), "__getattr__") K(cur, st) in

if@]
d 6= ⊥ then return E#J d(@]

e, s) Kσ]

else return σ],⊥
else if τ = cur then return σ],@]

e.s

else return σ],⊥

E#Jhasattr(obj, attr) Kσ] def
=

letb σ],@]
obj = E#J obj Kσ] in

letb σ],@]
attr = E#J attr Kσ] in

if ¬isinstance(@]
attr, str) then return S#J raise TypeError Kσ],⊥ else

let σ]1,@
]
r = E#J@]

obj .@
]
attr Kσ] in

if@]
r = ⊥ then

return λ(τ ∈ F).

let st = σ]1(τ) in

if τ = exn@]
a ∧ τ 6∈ domσ] ∧ isinstance(@]

a, AttributeError) then E#J False K(cur, st)
else σ],⊥

else return E#J True Kσ]

S#Jx.s = e Kσ] def
=

letb σ],@] = E#Jx Kσ] in
if hasattr(type(@]), "__setattr__") then
return S#J type(@]).__setattr__(x, s, e) Kσ]

return S#J raise TypeError Kσ]

S#J del x.s Kσ] def
=

letb σ],@] = E#Jx Kσ] in
if hasattr(type(@]), "__delattr__") then
return S#J type(@]).__delattr__(x, s) Kσ]

return S#J raise TypeError Kσ]

Figure 7.7: Abstract semantics of attribute access, assignment and deletion

address. This class address has two attributes corresponding to the __init__ and update

156 Chapter 7 – Type Analysis

methods. Auxiliary variables for these attributes point to the methods’ addresses in the
environment. These methods are builtins: they cannot have additional attributes. At line 6,
an instance of A is created at address @]

instA. This instance has one field val, pointing
to an integer (this address cannot have additional attributes either). After the binding
x = A(), we thus have x 7→ @]

instA. The assignments at lines 7 and 8 add new bindings
in the environment. During the non-deterministic call to update at line 9, the val field of
the instance can be changed into a string. At line 10, a field attr bound to another string
is added nondeterministically. Thus, this field is only present in the overapproximation of
the fields of @]

instA in the heap.

Line ε ∈ E] η ∈ H]

5 A 7→@]
clsA @]

clsA 7→ { __init__, update }, ∅
@]

clsA · __init__ 7→@]
fun init @]

fun init 7→ LOCK

@]
clsA · update 7→@]

fun update @]
fun update 7→ LOCK

6 @]
instA · val 7→@]

int] @]
instA 7→ { val }, ∅

x 7→@]
instA @]

int] 7→ LOCK

7 y 7→@]
int]

8 z 7→@]
instA

9 @]
instA · val 7→ {@]

int]
,@]

str]
} @]

str] 7→ LOCK

10 @]
instA · attr 7→@]

str] @]
instA 7→ { val },{attr }

Figure 7.8: Evolution of the abstract states of the example from Listing 7.2

Example 7.3 Concretization of the states
We consider the state reached at the end of the analysis of Listing 7.2, shown in Figure 7.8.
We simplify it to remove the description of class A (Line 5 of Figure 7.8). The environment
ε, the heap η and the recency abstraction σ]mem have the following states:

ε =
(
x 7→@]

instA,@
]
instA · val 7→ {@

]
int] ,@

]
str] },@

]
instA · attr 7→@]

str]

)
η =

(
@]

instA 7→ ({ val }, { attr }),@]
int] 7→ LOCK,@]

str] 7→ LOCK
)

σ]mem = {@]
instA,@

]
int] ,@

]
str] }

We start by concretizing the environment into two cases, depending on the type of the val
field of the instance.

↓ ◦γenv(ε) =
{ (

x 7→@]
instA,@

]
instA · val 7→@]

int] ,@
]
instA · attr 7→@]

str]

)
,(

@]
instA 7→ (Inst(A),>),@]

int] 7→ (int(z),>)
) ∣∣∣ z ∈ Z

}
∪
{ (

x 7→@]
instA,@

]
instA · val 7→@]

str] ,@
]
instA · attr 7→@]

str]

)
,(

@]
instA 7→ (Inst(A),>),@]

str] 7→ (str(s),>)
) ∣∣∣ s ∈ string}

These two cases are transformed into four different ones by the heap environment, de-

7.3 – A relational reduced product bringing polymorphism 157

pending on whether the attr field exists or not in the instance.

↓ ◦γenv(η) ◦ γenv(ε) =
{ (

x 7→@]
instA

)
,
(
@]

instA 7→ (Inst(A), (val 7→@]
int])),

@]
int] 7→ (int(z),LOCK)

) ∣∣∣ z ∈ Z
}

∪
{ (

x 7→@]
instA

)
,
(
@]

instA 7→ (Inst(A), (val 7→@]
str])),

@]
str] 7→ (str(s),LOCK)

) ∣∣∣ s ∈ string}
∪
{ (

x 7→@]
instA

)
,
(
@]

instA 7→ (Inst(A), (val 7→@]
str] , attr 7→@]

str])),

@]
str] 7→ (str(s),LOCK)

) ∣∣∣ s ∈ string}
∪
{ (

x 7→@]
instA

)
,
(
@]

instA 7→ (Inst(A), (val 7→@]
int] , attr 7→@]

str])),

@]
int] 7→ (int(z),LOCK),@]

str] 7→ (str(s),LOCK)
) ∣∣∣ z ∈ Z, s ∈ string

}
We show how the third case is concretized by the recency abstraction. As wementioned ear-
lier, the abstract addresses of builtin values are summarized into a single one. The recency
then concretizes them into multiple concrete addresses. Even if a single value is picked by
γObjN] (e.g., the value of the string allocated at γstr]), the recency’s concretization will then
merge coherent states into a single one (Section 4.1.5.1; γstr] may be concretized into two
addresses having different string values) constructed from multiple concrete states.

γ((σ]mem, η, ε)) ⊇
{

(x 7→@1) ,
(
@1 7→ (Inst(A), (val 7→@2, attr 7→@2)),

@2 7→ (str(s),LOCK)
) ∣∣∣ s ∈ string}

∪
{

(x 7→@1) ,
(
@1 7→ (Inst(A), (val 7→@2, attr 7→@3)),

@2 7→ (str(s),LOCK),@3 7→ (str(s′),LOCK)
) ∣∣∣ (s, s′) ∈ string2 }

We have strived to build a sound analysis, meaning that the abstract states computed by
our abstract transfer functions over-approximate the concrete states reachable during any
program execution. More formally, for any Python statement s, the following inclusion should
hold: ∀δ ∈ D],SJ s K ◦ γD(δ) ⊆ γD ◦ S#J s K(δ). We have not proved the soundness theorem due
to the number of cases of the concrete semantics. However, the proof should be simple in
most cases since the abstract transfer functions of statements and expressions are close to
the concrete ones (as shown in Section 7.2.4.3).

7.3 A relational reduced product bringing polymorphism
The analysis presented previously is polymorphic, as a variable may be abstracted as a set of
addresses of different types. However, bounded parametric polymorphism à la ML2 is impos-
sible to express in this abstraction as we cannot infer that two variables pointing to multiple
addresses have the same type. From an abstract interpretation point of view, we lack a rela-
tional domain.

2To express for example that x and y have the same type t ∈ { int, str }.

158 Chapter 7 – Type Analysis

Listing 7.3: Python program motivating polymorphism
1 if *: x, y = 1, 2
2 else: x, y = 'a', 'b'
3 z = x + y

Example 7.4 Motivating polymorphism
Consider the program in Listing 7.3. Our non-relational analysis can infer that, at the begin-
ning of line 3, both x and y have type int or str. However, it cannot show that x and y are
either both int or both str, and thus it raises a false TypeError alarm when evaluating x
+ y.

Definition 7.5 Type equality domain
We introduce an abstract domainQ] def

= V ⇀ N to track type equalities between variables. It
is defined as a partitioning of variables into equivalence classes of equally typed variables.
Given κ ∈ Q], we ensure that two variables x and y verifying κ(x) = κ(y) will have the same
nominal type. More precisely, we define an abstract equivalence relation≡]⊆ ObjN]×ObjN]

between nominal types:

≡] def
= { (int], int]) } ∪ { (str], str]) } ∪ { (fun f, fun f) } ∪ { (cls c, cls c) }

∪ { (meth(@]
1,−), meth(@

]
2,−)) | typ(@

]
1) ≡

] typ(@]
2) }

∪ { (inst(@]
1), inst(@

]
2)) | typ(@

]
1) ≡

] typ(@]
2) }

Definition 7.6 Concretization
The concretization function γQ ∈ Q] → P((V ⇀ Addr]) × (Addr] ⇀ (ObjN × ObjS))) gives
the set of concrete states verifying the equality constraints of an abstract element in Q]:

γQ(κ)
def
= ↑() { (e, h) | ∀x, y ∈ dom κ : κ(x) = κ(y) =⇒ type(e(x)) ≡] type(e(y)) }

In order to perform a type analysis with bounded parametric polymorphism, we construct
a reduced product of the equality domain Q] and the non-relational environment domain E].

Two reduction operators ψ↑, ψ↓ ∈ (E] × Q]) → (E] × Q]) are proposed to refine product
states by propagating information between domains.

1. The reduction ψ↑ enriches κ with new type equalities. It searches for variables x and y
such that both of them point to singleton objects with equivalent nominal types:

ε(x) = {@]
x }

ε(y) = {@]
y }

∧ type(@]
x) ≡] type(@]

y)

In such case, we add the type equality κ(x) = κ(y).
2. The reduction operator ψ↓ refines the non-relational environment ε whenever two vari-
ables x and y are equally typed in κ and the type of x is more precise. We do so by pruning
away the addresses referenced by y that are not equivalent to any object pointed by x.

Example 7.7 Back to the motivating example
Let us consider again the motivating example in Listing 7.3. After the assignment x, y =
1, 2, both x and y point to singleton integer objects, which allows us to apply ψ↑ in order

7.3 – A relational reduced product bringing polymorphism 159

Before reduction After reduction

ε = x 7→@]
int ∧ y 7→@]

int ε
κ = ⊥ κ = x 7→ 0, y 7→ 0

Figure 7.9: Example of ψ↑ reduction

to infer the type equality of x and y (the state is shown in Figure 7.9). The same reasoning is
applied after the assignment x, y = 'a', 'b' in the else branch. Consequently, equality
is preserved after joining the two abstract states at line 3. When evaluating x in the addition
expression, a disjunction with two cases is created, one for each referenced abstract object.
In each case, the reduction operator ψ↓ is applied to refine the type of y according to the
type of x. Therefore, at the end of the program, we infer that no TypeError is raised.
Moreover, the reduction ψ↑ will find that x, y, and z have the same type.

Remark 7.8 Bounded parametric polymorphism
In themotivating example, our analysis intuitively infers that x, y, z have typeα ∈ { int, str }.
We believe this is close to bounded parametric polymorphism. In future work, we want to
combine relationality with partial function summaries to deduce that f has type α → α,
α ∈ { int, str } in the program below.

def f(x, y): return x + y
f(1, 2)
f('a', 'b')

Remark 7.9 Relational domain not supported anymore
In the evaluation of our ECOOP paper [110], we have not noticed any improvement (in terms
of alarms) using the relational domain in the benchmarks (cf. Section 7.6.2) This domain
also required further adaptations to get the best results on containers. Let us consider the
code below, where we perform an access to a list of integers or strings.

if *: l = [1, 2, 3]
else: l = ['a', 'b', 'c']
x = l[0]

After the join of the states of the conditional, our abstract state is (arr(·) denotes auxiliary
variable used by the summarization abstraction of lists, as defined in Chapter 5):(

l 7→ {@]
List],1,@

]
List],2 }, arr(@

]
List],1) 7→@]

int] , arr(@
]
List],2) 7→@]

str]

)
The relational domain of this section will be unable to infer that x is an integer only when l
is a list of integers. One way to alleviate this problem, is to unify the list addresses, so that
the abstract state after the join of the abstract states is:(

l 7→ {@]
List],(1∨2) }, arr(@

]
List],(1∨2)) 7→ {@

]
int] ,@

]
str] }

)
In that case, the relational domain would be able to infer a type equality between x and
the auxiliary arr(·) variable. However, these unifications made the implementation much
more complex, with little benefits in terms of precision in the benchmarks. In the end, we

160 Chapter 7 – Type Analysis

did not update the implementation of this domain through the API changes of Mopsa, and
the domain is not supported anymore.

7.4 Interaction with Python’s type annotations
As the Python standard library is huge and partly written in C, we needed a way to support it
quickly. We decided to leverage the work from the Typeshed project [152], which offers type
annotations for a substantial part of the standard library. This project uses the standard type
annotations recently introduced by the PEP 484 into Python [154]. These type annotations
are quite powerful (they feature bounded polymorphism using TypeVar, structural subtyping
support with Protocol, disjunctive function signatures with the @overload decorator, ...). These
annotations can also be handy to avoid analyzing big, pure Python libraries when we want to
focus our analysis on client code.

Example 7.10 Example type annotation
An example annotation of the function fspath, introduced in Listing 7.1, is shown in List-
ing 7.4. We define a type variable T, representing either string or bytes. Lines 2-3 define a
class PathL, having a generic parent Protocol[T], and a method fspath returning objects
of type T. This class is used to define a structural type through the Protocol parent: objects
having type PathL are objects having any nominal type, with a function fspath returning
strings or bytes. The type of the fspath function is then defined disjunctively using the
@overload decorator. It can take an object of structural type PathL[T], and return an ob-
ject of nominal type T. It can also take a string and return another string, and similarly for
bytes.

Listing 7.4: Type annotations for fspath function
1 T = TypeVar('T', str, bytes)
2 class PathL(Protocol[T]):
3 def fspath(self) -> T: ...
4 @overload
5 def fspath(path: PathL[T]) -> T: ...
6 @overload
7 def fspath(path: str) -> str: ...
8 @overload
9 def fspath(path: bytes) -> bytes: ...

When a stubbed module is imported, our analyzer parses the corresponding annotated file
and stores its functions (similarly for classes and variables). Then, when a stubbed function
is called, we check that the arguments match the function signature. In that case, we assume
that the function has no side effects and returns an object of the annotated return type, which
we convert into an abstract object. We introduced two new expressions in the AST node: one
to check that an expression has a given type (used for example to check the arguments in a
function signature), and one to assume that an expression has a given type (for the return
type of an annotated function). The type checking expression performs rewriting that ends
up calling isinstance, while the type introduction expression ends up allocating objects of
corresponding types (we also assume that returned objects are fresh objects, and not objects
passed as arguments).

The example of Listing 7.4 provides multiple different signatures. In that case, our analyzer
keeps only the signatures compatible with the passed arguments.

Remark 7.11 Expressivity of annotations

7.5 – Implementation 161

These annotations remain in general less expressive than our analysis, as side-effects (such
as raised exceptions, aliasing) cannot be expressed. However, a type-and-effect system [101]
could be used to alleviate this limitation.

The function annotation, written Callable[arg_1, ..., arg_n, ret]more difficult to
handle. Our analysis is able to check that an object abides by this annotation. However,
we cannot precisely represent functions of this type in our analysis: the transfer function
of the type introduction is imprecise in this case.

Remark 7.12 Soundness assumption
The use of these annotations changes the soundness of our analyzer: exceptions raised by
concrete functions where we used their annotated counterpart will not be reported. Our
analyzer supports the declaration of raised exceptions in type annotation stub files, but
this feature is specific to Mopsa and not supported by Typeshed3 or PEP 484.

Remark 7.13 Detecting wrong annotations
Our implementation of the type analysis primarily targets uncaught exceptions. However,
it can also display as alarms which type annotations of the program do not match with the
abstract state we inferred.

Remark 7.14 Recording typing assumptions
In the implementation, it is possible to record which annotations have been used and dis-
play them as assumptions at the end of the analysis

7.5 Implementation
We have implemented our analysis into Mopsa, presented in Chapter 3. The type analysis
consists of 2,100 lines of OCaml code (measured using cloc), the container abstraction consists
of 1,300 lines of OCaml, and there are 6,300 lines of OCaml code defining the iterators and data
model of Python.

7.5.1 Configuration

We show the configuration used by Mopsa in Figure 7.10. The top three lines consist of stateless
domains. “Py.program” handles the beginning and the end of a program’s analysis: it initializes
global and module variables at the beginning and transforms uncaught exceptions reaching
the end of the execution into alarms to be displayed. “Py.desugar” rewrites some Python AST
nodes into Universal ones. It handles rewriting of for loops (Listing 6.1 in the concrete), with
statements (Listing 6.2), list comprehensions (Listing 6.9). “Py.flow” handles control-flow spe-
cific to Python, i.e., exceptions and generators (described in Section 6.2.8 and in Section 6.3.10 in
the concrete). “U.intraproc”, “U.loops”, “U.interproc” are universal domains shared by the C and
the Python analyses; they handle intraprocedural constructs, abstract fixpoint computation
and interprocedural function inlining. “Py.libraries” implements some library stubs in OCaml,
as well as the handling of type annotations shown in Section 7.4. “Py.data_model” implements
domains such as the attributes domain shown in Section 7.2.4.3. It corresponds to the core
language shown in Section 6.2. “Py.objects” handles builtin objects, described in the concrete
in Section 6.3. “Py.environment” and “Py.heap” respectively implement the eponym abstrac-
tions shown in Section 7.2.2 and Section 7.2.3. “Py.lists”, “Py.tuples”, “Py.dicts” handle containers

3https://github.com/python/typing/issues/71

https://github.com/python/typing/issues/71

162 Chapter 7 – Type Analysis

abstractions as described in Chapter 5. Tuples are immutable, and we abstract them by ex-
pansion. “U.recency” is the recency abstraction, handling dynamic memory abstraction, and
presented in Chapter 4.

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

×

Py.environment Py.heap

◦

×

Py.lists Py.dictsPy.tuples

◦

U.recency

Universal

Python specific

Sequence

× Cartesian product

◦ Composition

Figure 7.10: Configuration for Python’s type analysis

7.5.2 Optimizations & extensions

During our initial testing of this type analysis, we noticed that it was slowed down by two
factors:

1. The number of exceptions that were raised. Each new exception creates a new entry in
the flow map, which created large abstract states.

2. The analysis of function calls (where the same functions were analyzed many times, with
arguments having the same types in most calls).

These observations lead us to two optimizations described below.

7.5.2.1 Exception abstraction

When an exception is raised, we store the current abstract state with the exception flow token
for the rest of the analysis, in order to reuse it if this exception is caught later on. However,
imprecise analyses may raise exceptions frequently. For example, the smashing abstraction
handling the list analysis needs (in order to be sound) to raise a potential IndexError at each
list access, as the analysis does not keep precisely abstract list sizes. This created many differ-
ent exceptions stored in the analysis state, but most were never used. To solve the problem,
we abstracted sets of such exceptions for which the analysis is deemed a priori imprecise into
a single abstract exception, joining the corresponding abstract states into one. The set of im-
precise exceptions can be parameterized by the user. By default, the exceptions abstracted
are IndexError, KeyError and ValueError, corresponding to imprecisions on list accesses,
dictionary accesses, and list unpacking.

7.5.2.2 – Towards a partially modular function analysis. 163

7.5.2.2 Towards a partially modular function analysis.

We have implemented a partially modular function analysis, which keeps the abstract input
state, the abstract output state and the returned expression of function calls in a cache. When
analyzing a function call, the cache is checked: if this function has already been analyzed with
the same abstract input state, the analysis result is taken directly from the cache. Otherwise,
the function is inlined, and the analysis result is cached afterward. In particular, using this
cache does not reduce the precision of the analysis but greatly improves its running times.
The experiments displayed in Figure 7.11 show that this cache, combined with the exception
abstraction can provide a 32x speedup over the inlining-based analysis (regex_v8.py), while
the memory usage increased by only 15%. In some cases, the inlining-based analysis and the
cache-based analysis have the same running times: this may be due to a program having less
user-defined functions to analyze, or the cache not being hit because the calling contexts are
too different. We believe this cache is particularly efficient because we compute types rather
than values: while the abstract state would change a lot during a value analysis (e.g., as loop
indexes increase), the abstract state in the case of a type analysis is more stable.

We can also reuse the cache when the current input state is included in the input state
kept in the cache. This is actually used in our implementation. In the benchmarks below,
choosing this relaxed version improves the running times by 40% in one case (choose.py), but
introduces imprecision in another case (22 out of the 25 alarms detected in hexiom.py).

Note that we keep analyzing functions on demand at each call-site knowing their calling
context. We believe that performing a sound, context-free function call analysis, as done in
most type systems, would not be practical for Python programs, as functions rely on implicit
assumptions and may have side effects on their arguments or other variables not defined in
the function scope. The cache-based analysis could still be improved to keep only the relevant
parts of the whole abstract input and output states, such as the parts that may be read or
changed by the function. This extension, which would help reuse more of the analysis results
kept in the cache, is left as future work.

7.6 Experimental evaluation
In this part, we report previous evaluations of our implementation on several benchmarks:

1. We compare our analysis with five tools aiming at detecting incorrect programs poten-
tially reaching runtime errors in Section 7.6.2. This part is based on the benchmarks of
our ECOOP paper [110].

2. We evaluate the choice of allocation policy and the effect of performing garbage collec-
tion on abstract addresses in Section 7.6.3. The notion of allocation policy and abstract
garbage collection were presented in Chapter 4. This part is based on the measurements
of our SOAP paper [112].

Since the implementation evolved in between the publication of the articles, the measured
analysis times are not exactly the same.

7.6.1 Benchmarks

We chose 5 of the biggest benchmarks from Typpete’s unit tests (prefixed with Typpete’s icon,
, in Figure 7.11). Typpete [69] performs a type inference for Python programs. It will be

presented in Section 7.6.2. We also took 12 benchmarks from Python’s reference interpreter
[143] (prefixed with in the table). These benchmarks are used by Python and Pypy de-
velopers to detect performance variations of their interpreters during development. Out of
the 44 benchmarks currently available, we chose 12 with no external dependencies and few
standard library module dependencies so that most tools can analyze them. We argue that

164 Chapter 7 – Type Analysis

while the benchmarks are not very long, these Python programs are realistic and may call
a lot of functions. For example, calling Python profiler cProfile on chaos.py shows more
than 469,000 function calls. We also add three small tests focusing on characteristics we be-
lieve are paramount to performing a sound analysis of Python programs: taking into account
object mutation and aliasing, as shown in Listing 7.2 (mutation.py); being able to precisely
analyze introspection operators such as isinstance and hasattr, in order to analyze pre-
cisely a program calling the function fspath from Listing 7.1 for example (file isinstance.py,
Listing 7.5); and analyzing precisely exception-related control-flow operators in order to have
a precise analysis and avoid raising type errors later caught by an except TypeError state-
ment for example (file exception.py, Listing 7.6). Finally, we analyze the two entry points
(processInput.py, choose.py) of a real-world command-line utility from Facebook, called
PathPicker (prefixed with ; the LOC for these files consists in the size of the file and all
the PathPicker files imported by this one). These two parts are multifile projects depend-
ing on other modules from PathPicker (which are inlined and analyzed by our tool), as well
as some standard library modules, including re, subprocess, json, curses, posixpath,
argparse, configparser, os, stat, locale, bz2, lzma respectively handling regular ex-
pressions, external process calls, json files, curses command-line interfaces, file-related func-
tions, argument parsing, configuration file parsing, operating-system and file status, interna-
tionalization of output and compression algorithms. As all these modules are at least partially
written in C, we used the annotations from Typeshed [152] to support them. All program con-
structs used in the benchmarks are supported by our tool, meaning our analysis is sound on
them.

We describe and quantify some of Python’s features used the benchmarks in Table 7.1. “max.
loops nested” is the maximum nesting level of loops when analyzing them. Due to function
inlining, this number is higher than the maximum nesting level at the syntactic level of the
program.

Listing 7.5: Python program
isinstance.py

1 if isinstance(x, int): y = 4
2 else: y = 'a'
3 z = 2 + y

Listing 7.6: Python program
exception.py

1 try: z = 2 + 'a'
2 except: z = 3.14
3 a = z+1

7.6.2 Comparison with other tools

7.6.2.1 Competing tools

We compare our tool with the abstract-interpretation-based value analysis of Python of Fromherz
et al. [54], and three other tools having close goals: a tool by Fritz and Hage [53], Typpete [69]
and Pytype [26]. We also include the static analysis part of RPython [2] in our comparison,
whose goal is to compile a restricted subset of Python into more efficient programs. [53, 69, 26]
try to infer a static typing of programs ensuring the absence of dynamic typing errors, while
we go further and check whether dynamic typing errors can occur and result in exceptions
that stop the program (hence, we can successfully analyze correct programs that are not ty-
pable but are nevertheless correct as they recover from dynamic type errors). We consider that
dynamic type errors correspond to both the AttributeError and the TypeError exceptions.
Both [54] and our analyzer generate as output the set of exceptions that may escape to the
top-level, with detailed exception messages close to those given by Python. While this natu-
rally includes type-related exceptions, we also take into account that even type errors can be
caught and handled by the program, in which case they are not reported as errors. Contrary to
[53, 69, 26], we also detect other errors (such as out-of-bound list accesses) in order to have a
sound analysis (though we are imprecise in most cases).

7.6.2.1 – Competing tools 165

Ex
pl
ic
it
Ex
ce
pt
io
ns

In
tr
os
pe
ct
io
n

Dy
na
m
ic
At
tr.
Ad
di
tio
n

O
pe
ra
to
rO

ve
rlo
ad
in
g

O
bj
ec
tI
nh
er
ita
nc
e

Li
st
s

Di
ct
io
na
rie
s

Tu
pl
es

M
ax
.L
oo
ps
Ne
st
ed

Nu
m
be
ro
fL
oo
ps

Nu
m
be
ro
fF
un
ct
io
ns

Nu
m
be
ro
fC
la
ss
es

isinstance.py (Listing 7.5) ○ 0 0 0 0
exception.py (Listing 7.6) ○ 0 0 0 0
mutation.py (Listing 7.2) ○ 0 0 2 1
disjoint_sets.py ○ 1 2 4 1
functions.py ○ 0 0 7 0
fannkuch.py ○ 2 4 1 0
bellman_ford.py ○ 4 6 3 1
float.py ○ ○ 1 4 6 1
coop_concat.py ○ ○ 1 1 10 9
spectral_norm.py ○ 2 6 6 0
crafting.py ○ ○ 3 9 0 0
nbody.py ○ ○ ○ 3 10 6 0
chaos.py ○ ○ ○ ○ 4 19 24 4
raytrace.py ○ ○ ○ ○ ○ ○ 4 11 60 9
scimark.py ○ ○ ○ ○ ○ ○ 4 37 34 3
richards.py ○ ○ ○ ○ 3 4 39 14
unpack_seq.py ○ ○ 1 2 3 0
go.py ○ ○ ○ 5 34 39 5
hexiom.py ○ ○ ○ ○ 5 57 38 5
regex_v8.py ○ ○ 2 67 13 0
processInput.py ○ ○ ○ ○ ○ 2 40 77 9
choose.py ○ ○ ○ ○ ○ 4 81 176 14

Table 7.1: Features used by some benchmarks

The tool developed by Fritz and Hage performs a data-flow analysis, computing the type
of each variable. While the original paper [53] experiments various tradeoffs between per-
formance and precision (using different widenings, flow-sensitivity, context-sensitivity, …), we
used the default arguments of the provided artifact. As mentioned in their paper, this tool does
not handle exceptions nor generators. Its output is a dump of the data-flow map, associating
to each program point the type of each variable. A program is untypable for this tool when the
analyzer puts reachable variables to the bottom type.

Typpete encodes type inference of Python programs into a MaxSMT problem and passes
it to Z3 [41] to solve it. If Z3 yields unsat, the program is untypable. Otherwise, the output
of Typpete is a type annotation of the input program. It comes with around 40 examples on
which we were able to test our analyzer. Typpete restricts its input to Python programs where
variables have a single type in a program (but it handles subtyping: a variable having both
types int and str will have type object) and dynamic attribute addition is not supported.
When there is a type error, Z3 finds the inference problem to be unsatisfiable and Typpete
shows a line in relationship with the type error. As the structure of the program is lost during
the MaxSMT encoding, the line shown by Typpete is not always the line where the error will
occur at runtime. Typpete supports the basics of the PEP 484 type annotations, and uses them
for its stubs, or to guide the analysis on an input program.

https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/disjoint_sets.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/functions.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/bellman_ford.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/coop_concatenate.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/crafting_challenge.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

166 Chapter 7 – Type Analysis

Pytype is a tool developed by Google and actively used to maintain their codebase. Hence,
it is more mature than the other tools. It performs an analysis that is not described formally,
but it has a wide language and library support (it also uses Typeshed), allowing it to scale to
large codebases. It outputs the last type of each variable when the typing is successful and
can produce a type annotation of the input program. It also produces clear error messages
looking like the exceptions raised by Python when it detects an erroneous program.

We obtained the analyzer developed by Fromherz et al. [54]. It performs a value analysis
by abstract interpretation. Its output is a set of potentially uncaught exceptions.

RPython performs a data-flow analysis to check that a program is part of the subset it can
efficiently compile. It outputs the control-flow graph with the inferred types.

We compare the analysis of these five tools to two different configurations of our analyzer:

. Configuration 1 using inlining and no exception smashing of the alarms;

. Configuration 2 using partially modular analysis and exception smashing in alarms (see Sec-
tion 7.5.2).

These configurations use the type allocation policy πtypes defined in Section 4.2, and no abstract
garbage collection.

7.6.2.2 Performance and precision

We test the language support, the performance, and the precision of each tool. An analyzer
may crash due to an unsupported construction (Bug) or may timeout after one hour of analysis
(CLOCK). We measured the analysis time five times for each benchmark and tool, and the mean
is displayed. The memory usage of our analysis is deduced from the statistics of OCaml’s
garbage collector. All tools are deterministic. In the evaluation of our tool in its most efficient
configuration (Conf. 2), the columnExclamation-Triangle displays the number of false alarms raised (the precision
is identical in Conf. 1), with the smashed exceptions (corresponding to the imprecise exceptions
raised by the list and dictionary abstractions) separated. The results are displayed in Figure 7.11.

We notice that our analysis is able to scale to benchmarks a few thousand lines long within
a reasonable analysis time. Some benchmarks take longer to analyze: for example hexiom.py
has a lot of nested loops, and functions are called multiple times, so the analyzer has a lot
of fixpoint computations and inlining to perform (it performs 1770 analyses of 5-levels nested
loops). It seems that the other type analyzers [53, 69, 26] do not perform fixpoint computations
over loops (which, at least for the case of Typpete, seems sound as it infersmore abstract types).
Similarly, Typpete is able to perform an efficient analysis, although it lacks library support
to analyze some Python benchmarks, and is unable to analyze programs where a variable is
initialized in a (potentially unexecuted) loop. The tool from Fritz and Hage is quite fast (the
running times are measured by running a docker container due to the software dating from
2011), but we will in Section 7.6.2.3 that it is unsound in most cases. It fails on hexiom.py due to
a parsing error. Pytype is a moremature analyzer, and it does not fail on any of the benchmarks,
but times out in the regex_v8.py benchmark (after reaching out to the development team, it
appears to be a performance bug from Pytype in its analysis of big dictionaries4). The value
analysis of Fromherz et al. [54] is unable to support the standard library functions needed
for most benchmarks (supporting new library functions in the value analysis is more time-
consuming, as it requires to include the effect of this function on the abstract values). On the
benchmarks it is able to pass, our analysis is in average 8.5× faster than the value analysis; it
also scales to benchmarks 5× longer. RPython is able to type 6 out of 22 benchmarks. In the
16 other cases, 5 seem to be due to internal bugs, while the 11 last cases are due to constructs
unsupported by RPython. Compared to RPython, our analysis is able to fully analyze statically
untypable programs (it will not stop at the first type exception, which can be caught later on).

4cf. https://github.com/google/pytype/issues/484

https://github.com/google/pytype/issues/484

7.6.2.2 – Performance and precision 167

Name LOC Conf. 1 Conf. 2 Exclamation-Triangle [53] Pytype Typpete [54] RPython

isinstance.py 3 42ms 40ms 0 1.2s 0.78s 0.67s 10ms 4.9s
exception.py 3 37ms 34ms 0 1.3s 0.70s 0.57s 9ms Bug
mutation.py 12 34ms 34ms 0 1.3s 0.75s 0.68s 11ms Bug
disjoint_sets.py 45 70ms 59ms 0† 0.92s 0.91s 1.2s Bug 8.8s
functions.py 58 41ms 39ms 0†Key 1.2s 0.84s 1.1s Bug 8.0s
fannkuch.py 59 76ms 69ms 0† 1.2s 0.80s Bug 0.31s Bug
bellman_ford.py 61 0.17s 0.24s 0† 1.4s 0.99s 1.4s 2.4m 7.1s
float.py 63 0.13s 82ms 0† 1.7s 0.92s 1.3s 0.84s 5.6s
coop_concat.py 64 45ms 43ms 0† 1.8s 0.81s 1.3s 20ms Bug
spectral_norm.py 74 0.32s 0.19s 1 1.6s 0.98s Bug Bug Bug

crafting.py 132 0.48s 0.41s 0†Key 1.6s 0.97 1.7s Bug Bug

nbody.py 157 1.4s 0.80s 1†Key� 1.7s 1.3s Bug Bug Bug
chaos.py 324 8.9s 2.3s 0†� 13s 11s Bug Bug Bug
raytrace.py 411 3.5s 1.5s 7� 36s 2.8s Bug Bug Bug
scimark.py 416 0.85s 0.55s 2† 8.5s 4.4s Bug Bug Bug
richards.py 426 11s 5.0s 2†� 38s 2.4s Bug Bug 7.8s
unpack_seq.py 458 13s 4.2s 0� 1.1s 7.4s 2.7s 14s Bug
go.py 461 4.0m 15s 32†� 8.5s 3.4s Bug Bug Bug

hexiom.py 674 6.9m 22s 25†Key� Bug 4.2s Bug Bug Bug
regex_v8.py 1792 8.2m 15s 0† 4.9s CLOCK 1.7m Bug Bug

processInput.py 1417 6.1s 4.8s 7†Key� 2.4s 11s Bug Bug Bug

choose.py 2562 8.6m 46s 17Key†� 1.7s 15s Bug Bug Bug

Bug unsupported by the analyzer (crash)CLOCK timeout (after 1h)
Smashed Exceptions: KeyError Key, IndexError †, ValueError �

Figure 7.11: Analysis of Python benchmarks

Our analysis raises a few alarms. As the programs did not mix types implicitly, our analysis
was sufficiently precise to avoid raising false alarms over type and attribute errors. How-
ever, the smashing abstraction of the lists and the dictionaries creates some false alarms:
dictionary values having different types (and heterogeneously-typed lists) are smashed into
content variables, triggering imprecision over the types in the rest of the analysis (cf. Exam-
ple 5.24). In addition, the smashing abstraction currently does not keep track of the (potential)
emptiness of lists: this creates a few false alarms, corresponding to the UnboundlocalError in
spectral_norm.py, nbody.py, bm_raytrace.py, bm_scimark.py and 22 of those in hexiom.py.
More generally, the absence of information on the length of the list means that each list access
should raise a potential IndexError (this precision issue is addressed by the value analysis
presented in Chapter 8). Similarly, KeyError exceptions are raised upon each dictionary ac-
cess, and ValueError may be raised during list unpacking. The spurious IndexError are not
raised by the value analysis of Fromherz et al. [54], which is able to track the length of lists. The
alarms are not raised by the three other analyzers, as they focus on type errors only, and not on
finding which exceptions may be raised. As each analyzer has its own output (and type system),
we were unable to compare their precision in all cases, and only study the precision on the
first three small examples. In the isinstance.py example, both our tool, the value analysis of
Fromherz et al. [54] and Pytype are precise, but the others are imprecise (Fritz and Hage [53]’s
tool yields an unsound result, Typpete declares the program incorrect). For exception.py, the
tool of Fritz and Hage [53] does not support exceptions; while the value analysis of Fromherz
et al. [54], Pytype and Typpete declare the program incorrect; our tool does not raise any alarm.
Concerning mutation.py, both Pytype, the value analysis of Fromherz et al. [54] and our tool

https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/disjoint_sets.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/functions.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/bellman_ford.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/coop_concatenate.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/crafting_challenge.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

168 Chapter 7 – Type Analysis

are precise. Typpete is imprecise (it declares some integers and strings to be of object type),
and the tool of Fritz and Hage [53] infers a variable holding a string as an integer.

7.6.2.3 Soundness evaluation

We experimentally check the soundness of the analyzers. We believe soundness is important
in order to detect all potential errors. As each benchmark file was a correct Python program, we
created erroneous variants having one type error (by introducing a string into an integer vari-
able), in order to check the soundness of each analyzer (similarly to the evaluation of Typpete
[69, pages 5-6]). We then ran each analyzer on those files (the correct and the erroneous one
each time), and checked whether the inferred types and alarms were matching the behavior of
the program: either the analysis seemed sound as the types and alarms were correctly raised,
or the analysis was unsound (no error was detected in the erroneous variant). The injection
of type errors to evaluate the soundness is simplistic, as our goal was to test the soundness
of the other tools quickly. Our analyzer is sound by construction but may include implemen-
tation bugs, and it would be interesting to automate error injection to check the soundness
more thoroughly experimentally.

We find that our analysis catches the errors in all erroneous variants and is thus sound
– as expected – in these cases. Typpete is sound over the programs it can analyze. The
tool from Fromherz et al. should be sound by construction, but an implementation error
yields an unsound case in unpack_seq.py. The artifact from [53] is unable to detect errors
in all cases except fannkuch.py. Pytype is not sound in a few cases (bellman_ford.py,
crafting_challenge.py, float.py, richards.py, spectral_norm.py, unpack_seq.py).

7.6.2.4 Summary of the comparison

Our analysis is sound and reports a few false alarms. Preliminary results indicate that our
analyzer is able to scale, at least on programs a few thousand lines long. The soundness
evaluation showed that even simple errors such as replacing an integer with a string may go
unnoticed for unsound analyzers, while our analysis was able to systematically detect these
errors.

Comparatively, Pytype is the most advanced tool: it is able to scale and seems to support
most of the standard library. However, it is unsound in some cases. Both Typpete and [54]
perform a sound analysis, but they lack some language or library support in the bigger bench-
marks. The tool from Fritz and Hage is able to analyze programs very quickly, and supports
most benchmarks, but it is unsound in most cases. RPython has a different goal: it focuses on
compiling a more static subset of Python efficiently. Most of the benchmarks use constructs
that are too dynamic to be inside of RPython’s scope.

7.6.3 Impact of the allocation policy and of the abstract garbage collector

In this section, we use the more complex benchmarks from Python’s performance repository
[143] and the PathPicker files.

We compare the analysis time, the memory used, and the number of alarms raised depend-
ing on the allocation policy used in Figure 7.12, and the best results with noticeable performance
improvements in bold font. The policies used were defined in Section 4.2. The first policy πtypes
does not split abstract addresses by their allocation site (except for containers such as lists).
The second policy πloc splits all abstract addresses by their allocation site. In the case of a
type analysis, changing sensitivities does not make much of a difference. There are some spe-
cific cases (chaos.py, richards.py, regex_v8.py) where having no location sensitivity vastly
improves analysis time and memory usage. In these cases, the location-sensitive analysis is
more costly because accesses to containers holding objects of the same type with different

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py

7.7 – Related work 169

Name No loc. sensitivity: ptypes Loc. sensitivity: ploc
Time Mem. Exclamation-Triangle Time Mem. Exclamation-Triangle

fannkuch.py 0.34s 3MB 1 0.33s 3MB 1
float.py 0.19s 3MB 2 0.24s 3MB 2
spectral_norm.py 0.70s 6MB 2 0.77s 6MB 2
nbody.py 1.6s 3MB 5 1.4s 4MB 5
chaos.py 7.4s 42MB 3 56s 300MB 3
raytrace.py 14s 74MB 8 2.2s 32MB 8
scimark.py 1.4s 12MB 3 1.3s 13MB 3
richards.py 13s 112MB 4 9.4m 2444MB 4
unpack_seq.py 8.3s 7MB 1 7.9s 9MB 1
go.py 27s 345MB 35 27s 345MB 35
hexiom.py 1.1m 525MB 6 1.0m 525MB 6
regex_v8.py 23s 18MB 1 1.3m 36MB 1
processInput.py 10s 64MB 13 9.5s 64MB 11
choose.py 1.1m 1.6GB 23 1.2m 1.6GB 20

Total 240s 2.8GB 107 883s 5.4GB 102

Figure 7.12: Comparing allocation sensitivities (type analysis, with AGC)

allocation sites create disjunctions. In the case of raytrace.py, the location-sensitive anal-
ysis is quicker: the analysis without location sensitivity performs more weak updates (when
allocating an address that already exists through the recency abstraction), which are costlier
than having multiple recent addresses in this case. Lastly, the location-sensitive analysis of
processInput.py and choose.py is a bit more precise, allowing to rule out five alarms in
total.

We show the effects of the abstract garbage collector (AGC) in Figure 7.13. The AGC does
not change the number of exceptions detected in the benchmarks. We believe the precision
improvements, as illustrated in Example 4.13, do not happen enough to affect the number of
exceptions detected. We show the time spent and the memory used during each analysis. The
last column gives the relative change in time spent and memory used when the AGC is enabled.
The activation of the AGC is extremely beneficial: it almost halves the global memory usage
and brings a 38% analysis time improvement. In addition, the most significant speedups are
observed on the largest files, showing the scalability of the approach. We measured that the
AGC represents less than 6% of the analysis time for all benchmarks except the last, where it
takes 30% of the analysis time. In the results, the AGC is called after each assignment, where
the right-hand side is a (function, method, or object) call. We have tested running the AGC at
only a fraction of those assignments, but the results were not as satisfying.

7.7 Related work
A middle-end between dynamic and static type analysis is gradual typing [136, 61]. In that
case, the programmer annotates parts of the program, which can then be typechecked. The
unannotated parts of the program have an unknown type called top, from which any static
type can be cast to and from. The soundness theorem of gradual typing then guarantees
that if a program gradually typechecks, the only type errors that may occur at runtime are
casts concerning variables having type top. Gradual typecheckers for Python include Mypy
[91] and Pyre [147]. Neither tool support dynamic attribute addition in programs. By contrast,
our type analysis is more expressive (for example, it handles dynamic attribute addition), and
completely automatic (it does not require any annotation to run).

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

170 Chapter 7 – Type Analysis

Name Without AGC With AGC Rel. Impr.
Time Mem. Time Mem. Time Mem.

fannkuch.py 0.32s 3MB 0.34s 3MB 0% 0%
float.py 0.22s 3MB 0.19s 3MB 16% 0%
spectral_norm.py 0.72s 6MB 0.70s 6MB 3% 0%
nbody.py 1.7s 4MB 1.6s 3MB 10% 25%
chaos.py 10s 64MB 7.4s 42MB 28% 34%
raytrace.py 17s 74MB 14s 74MB 16% 0%
scimark.py 1.5s 13MB 1.4s 12MB 5% 8%
richards.py 16s 227MB 13s 112MB 21% 51%
unpack_seq.py 10s 9MB 8.3s 7MB 19% 22%
go.py 38s 604MB 27s 345MB 31% 43%
hexiom.py 2.2m 1.1GB 1.1m 525MB 49% 50%
regex_v8.py 30s 24MB 23s 18MB 23% 25%
processInput.py 14s 85MB 10s 64MB 28% 25%
choose.py 2.0m 3.2GB 1.1m 1.6GB 43% 50%

Total 6.5m 5.4GB 4.0m 2.8GB 38% 47%

Figure 7.13: Measurement of the AGC’s effect

The closest approaches to our work [53, 26, 69, 2] have been described in the experimental
evaluation (Section 7.6.2). It should be noted that Fritz & Hage [53] test many different pa-
rameter instantiations of their data-flow analysis. We believe that in the context of formal
verification, a precise, context-sensitive, sound type analysis is useful. The flow-sensitivity is
needed to precisely analyze exception catching statements, but neither have we tested this
hypothesis on a larger scale nor have we tried selective flow-sensitivity, contrary to [53]. [157]
presents a predictive analysis based on symbolic execution for Python. It consistently finds
bugs and scales to projects of thousands of lines of codes, but it does not cover all execu-
tions, and is thus not sound. Fromherz et al. [54] performs a static value analysis by abstract
interpretation. They use a separation of values similar to the ones presented in TAJS [74]. Their
analysis focuses on values, which is more expressive than our type analysis, if we exclude the
type equality domain of Section 7.3. Our type analysis is more scalable in its implementation, as
supporting new constructs consists in providing a type signature (and knowing the side effects
of this function, including the potentially raised exceptions). To scale more quickly, we can
also reuse Typeshed and its type annotations to support most of the standard library (though
we will lose any side effect of the annotated function in that case). The type analysis also uses
less memory and is quicker: we store type information rather than abstract values, and the
fixpoint computations during the analysis of loops converge more quickly (types vary less than
values, for example during loop iterations). The experiments of this value analysis consisted
in some of Python’s unit tests and some of Python’s benchmarks. As the unit tests consist
mostly in equality assertions over values, our type analyzer is unable to verify these. However,
the running times for the type analysis on those tests are similar to the ones described in [54].
The benchmarks were shown in Figure 7.11.

7.8 Conclusion

We have defined a type analysis, which is able to detect uncaught type-related exceptions that
may be raised during a program execution. This analysis is sound, and its modular implemen-
tation scales to benchmarks a few thousand lines long. In addition, we found that compared

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

7.8 – Conclusion 171

to other type analyses, we uniquely take into account dynamic Python features such as object
mutability, introspection operators, and exception-based control-flow statements. We show in
the next chapter how the type analysis can be refined into a value analysis similar to the one
of Fromherz et al. [54], and compare both our type and value analyses.

8

Value Analysis

The type analysis was only precise on type and attribute errors. In order to be sound, it raised
exceptions for other categories of exceptions, but it was imprecise in these cases. We consider
the example of Listing 8.1 (already shown in Section 4.2), computing the average weight of four
tasks defined in a list, to compare informally the type and the value analyses.

Listing 8.1: Python program computing average of tasks
1 class Task:
2 def __init__(self, weight):
3 if weight < 0: raise ValueError
4 self.weight = weight
5
6 l = [Task(2), Task(1), Task(3), Task(5)]
7 m = 0
8 for i in range(len(l)):
9 m = m + l[i].weight
10 m = m (i + 1)

Example 8.1 Type analysis of Listing 8.1
The type analysis of the previous chapter infers that l is a list of instances of the Task
class. It infers that weight is an integer, but without a numerical domain, it has to assume
it can take any possible non-positive integer values. It will thus raise false ValueError
alarms during each instantiation of Task. It then infers that m is an integer at line 7. The
type analysis does not maintain numerical length information for lists, and thus creates
an out-of-bound access alarm (an IndexError exception in Python) at each list access to
ensure that all reachable exceptions handled are included in the analysis. As l is a list
of Task instances and provided that l[i] is a valid list access, the attribute weight exists
for l[i] and is an integer. Knowing that both m and l[i].weight are integers, the type
analysis infers that the + operator is resolved as a call to the __add__ method of m, which
returns an integer. The type analysis is unable to know for sure that loop body is executed,
and in particular that variable i is defined at line 10. It will thus create a NameError false
alarm, and the division also raises a ZeroDivisionError. In the end, the analysis inferred
precise type information for l and m. It infers that if i exists, then it is an integer, and that
seven false alarms can be raised: four ValueErrors, one IndexError, one NameError and
one ZeroDivisionError.

174 Chapter 8 – Value Analysis

Example 8.2 Value analysis of Listing 8.1
During the analysis of line 3, the type analysis inferred that weight is an integer, so that the
comparison calls int.__lt__(weight, 0). The type analysis inferred that this call returns
a boolean, and the value analysis refines the result: the return will be True, as the weight
is positive. The value analysis infers that l is a list of size four and that the weight of each
Task is between one and five. It finds that the for loop is executed and that all list accesses
are valid, avoiding all seven false alarms generated by the type analysis.

We explain in Section 8.1 how the value analysis is defined, compared to the domains used
in the type analysis. An experimental evaluation of this analysis, comparing it with the type
analysis and evaluating the impact of allocation policies and abstract garbage collection is
performed in Section 8.2

8.1 Value analysis as a refinement of the type analysis
In the type analysis, the abstract environment maps variable to abstract addresses, which have
a type. The domains’ evaluations used addresses as a means to communicate with each other.

Example 8.3 Type analysis, communication through addresses
We show communication through abstract address on a simple example in Figure 8.1. The
execution of x = 1, handled by the type environment first delegates the evaluation of the
constant 1. This evaluation is handled by the domain in charge of Python’s int object and
returns a weak integer address. The state of the environment domain is then updated so
that x maps to this address.

In order to obtain a value analysis, the main modification consists in upgrading the en-
vironment domain and adding a numerical abstract domain. The environment domain will
delegate operations on builtin values to the corresponding numerical domains. Since builtin
value objects were summarized into a single abstract address, we abstract numerical objects
through variables rather than addresses. In particular, we use int(x) (resp. float(x), str(x)) to
denote the integer (resp. floating-point, string) value of the builtin stored by variable x. In the
case of the example assignment, this means that the environment of the type analysis is com-
plemented with int(x) 7→ [1, 1] in our example. The domains’ evaluations now use an address,
along with an optional expression denoting the builtin value. In the rest of this thesis, these
evaluations are written 〈@], e〉, where @] is an abstract address, and e is either a universal
expression or ⊥.

Example 8.4 Value analysis
We show how the value analysis handles the assignment x = 1 in Figure 8.2. The evaluation
of the constant 1 is delegated similarly to the domain in charge of Python’s int object. In
addition to the int address already returned by the type analysis, the int domain also
returns the constant expression 1. While evaluated 1 (in black) represented the Python
constant, this 1 represents the mathematical integer (natively handled by the numerical
domain). The local state of the environment domain is updated just as in the type analysis.
The environment then delegates the value assignment to the numerical abstract domain.
In the end, we know that x is an integer whose builtin value is int(x), which is 1 in the final
state σ]3.

We show the updated transfer functions of the environment domain in Figure 8.3. These
transfer functions start just like the ones from the type environment do (Figure 7.2). The added
operations correspond to the delegation to numerical domains. In the case of the assignment x

8.1 – Value analysis as a refinement of the type analysis 175

S#envJx = 1 Kσ]

S#intJ 1 Kσ]

@]
int]

ε = man.getσ]

σ]2 = man.set ε[x 7→ {@]
int] }]σ

]

σ]2 =

{
env x 7→@]

int]

heap @]
int] 7→ LOCK

Figure 8.1: Type analysis example

S#envJx = 1 Kσ]

S#intJ 1 Kσ]

〈@]
int] , 1〉

ε = man.getσ]

σ]2 = man.set ε[x 7→ {@]
int] }]σ

]

S#numJ int(x) = 1 Kσ]2

σ]3 =

env x 7→@]

int]

heap @]
int] 7→ LOCK

num int(x) 7→ [1, 1]

Figure 8.2: Value analysis example

= e, we start by evaluating e into an abstract address, and an optional expression denoting the
builtin value of e. If this evaluation returns a disjunction of expressions, the monadic operator
handles the disjunction (cf. Definition 6.4). We can thus define the rest of the transfer function
on a single expression. We then update the environment in the global abstraction. Then, if
the type of the abstract address corresponds to a builtin value (i.e., integers, floating-points,
or strings), a numerical assignment is delegated. The suppression of a variable x consists in
suppressing it in the local state, as well as in the underlying numerical domains if needed. The
evaluation of a variable is the same disjunction where the environment’s state is refined. In the
case of builtin values, the returned address is accompanied by the corresponding numerical
auxiliary variable, where auxiliary variables for other numerical types have been removed.

Listing 8.2: Python program with type disjunction
1 if *: x = 3
2 else: x = 'a'
3 y = x * 2

Remark 8.5 Removing auxiliary variables of other types
During the evaluation of a variable x by the environment domain, the case disjunction
removes auxiliary variables of other types (e.g., the case where x is an integer removes
float(x) and str(x) from the value domains). We show why these removals are necessary
to ensure a consistent state. We consider the program in Listing 8.2. At the beginning of
line 3, x is either the integer 3, or the string ”a” (the heap abstraction has been omitted):

σ] =

 env x 7→ {@]
int] ,@

]
str] }

num int(x) 7→ [3, 3]
str str(x) 7→ { "a" }

If we evaluate y = x * 2 and do not perform the removals, we obtain two different states
(depending on whether x has been evaluated into an int or a str)

σ]int =

 env x 7→ {@]
int] }

num int(x) 7→ [6, 6]
str str(x) 7→ { "a" }

σ]str =

 env x 7→ {@]
str] }

num int(x) 7→ [3, 3]
str str(x) 7→ { "aa" }

176 Chapter 8 – Value Analysis

S#envJx = e Kσ] def
=

letb σ], 〈@], ev〉 = E#J e Kσ] in
let ε = man.getσ] in

let ε = ε[x 7→ {@] }] in
let σ] = man.set ε σ] in

if type(@]) = int] then S#J int(x) = ev Kσ]

else if type(@]) = float] then S#Jfloat(x) = ev Kσ]

else if type(@]) = str] then S#J str(x) = ev Kσ]

else σ]

S#envJ del x Kσ] def
=

let ε = man.getσ] in

if x 6∈ dom ε then return S#J raise NameError Kσ] else

if ε(x) = LocalUndef then return S#J raise UnboundLocalError Kσ] else

letb σ], 〈@], ev〉 = E#J e Kσ] in
let σ] = man.set (ε \ {x })σ] in
if type(@]) = int] then S#J del int(x) Kσ]

else if type(@]) = float] then S#J del float(x) Kσ]

else if type(@]) = str] then S#J del str(x) Kσ]

else σ]

E#envJx ∈ V Kσ] def
=

let ε = man.getσ] in

if x 6∈ dom ε then return SJ raise NameError Kσ],⊥ else

if ε(x) = LocalUndef then return SJ raise UnboundLocalError Kσ],⊥ else return

∪@]∈ε(id)

(
let σ] = man.set ε[x 7→ { a }]σ] in

if type(@])) = int] then S#J del float(x) K ◦ S#J del str(x) Kσ], 〈@], int(x)〉

else if type(@]) = float] then S#J del int(x) K ◦ S#J del str(x) Kσ], 〈@],float(x)〉

else if type(@]) = str] then S#J del int(x) K ◦ S#J del float(x) Kσ], 〈@], str(x)〉

else σ], 〈@],⊥〉
)

Figure 8.3: Transfer functions of the environment abstraction

Both states are confusing: σ]int still has a binding for str(x), although x cannot point to
a string anymore, according to the environment domain. Using the stacked domains (cf.
Remark 3.34), it would be possible to let the environment domain unify those two states
(by removing str(x) in σ]int, and int(x) in σ

]
str) before joining them. Instead, we ensure the

states are consistent through the removals performed during the case disjunction over the

8.1 – Value analysis as a refinement of the type analysis 177

evaluation of x. With the removals, we get:

{
env x 7→ {@]

int] }
num int(x) 7→ [6, 6]

t]
{
env x 7→ {@]

str] }
str str(x) 7→ { "aa" }

=

 env x 7→ {@]
str] ,@

]
str] }

num int(x) 7→ [6, 6]
str str(x) 7→ { aa" }

Remark 8.6 Auxiliary variables in the implementation
In Mopsa, variables are records containing a field defining the type (Definition 3.1). Given a
Python variable v (having a type py), we use {v with vtyp=int} to represent the auxiliary
variable int(v).

Example 8.7 Execution of a statement in the value analysis
We consider the motivating example of this chapter, Listing 8.1. To avoid case disjunctions,
we assume that the list l has been instantiated with Task(2) only. We analyze the state-
ment m = m + l[i].weight, corresponding to the loop’s body, in a state σ] reached at the
loop’s entry. We show a simplified analysis of this statement in Figure 8.4.

· The transfer function of the assignment in the environment domain (presented in Fig-
ure 8.3) starts by evaluating m + l[i].weight.
· The domain describing the semantics of binary operators handles this evaluation. Its
concrete semantics was described in Figure 6.23. It start by evaluating both sides of
the addition.
· The evaluation of variable m is handled by the environment domain (Figure 8.3).
The local state of the environment is accessed to return thatm points to an integer
object, whose value is described by an auxiliary variable: 〈@]

int] , int(m)〉.
· The evaluation of l[i].weight is handled by the attribute domain (presented in
the concrete in Figure 6.10, and in the abstract in Figure 7.7). It starts by evaluating
l[i].
· The expression l[i] is handled by the index domain, implementing the seman-
tics shown in Figure 6.11. It starts by evaluating both sides of the index access.
Both sides are handled by the environment domain.
· The evaluation of l returns a list address @]

list,r, with no associated value
expression.
· The evaluation of i returns an integer address@]

int] , with an auxiliary variable
int(i) as the associated value expression.
· The index domain ultimately calls the method list.__getitem__. The argu-
ments of this method should actually be the evaluated versions of l and i (i.e.,
〈@]

list,r,⊥〉 and 〈@
]
int] , int(i)〉), but we stick to the initial expressions in this

description for the sake of readability. We first check that i is a valid index.
The list summarization domain returns the auxiliary array content variable
arr(@]

list,r) (Figure 5.3). This variable is evaluated by the environment domain
into @]

Task,r, with no value expression.
· The evaluation of mro_search for the __getattribute__ method is omitted, its
result is the function object.__getattribute__.
· The semantics of object.__getattribute__ is shown in Figure 6.31. We omit its
checks and calls, apart from the last one, which evaluates get_field(l[i], "weight").
This evaluation is handled by the heap abstraction (Figure 7.5), creating an auxil-

178 Chapter 8 – Value Analysis

S#envJm = m+ l[i].weight Kσ]

E#binopJm+ l[i].weight Kσ]

E#envJm Kσ]

〈@]
int] , int(m)〉, σ]

E#attrsJ l[i].weight Kσ]

E#indexJ l[i] Kσ]

E#envJ l Kσ]

〈@]
list,r,⊥〉, σ

]

E#envJ i Kσ]

〈@]
int] , int(i)〉, σ

]

E#listJ list.__getitem__(l, i) Kσ]

S#numJ assume 0 ≤ int(i) < alen(@]
list,r) Kσ]

E#envJ arr(@
]
list,r) Kσ]

〈@]
Task,r,⊥〉, σ

]

E#objectJ object.__getattribute__(l[i], "weight") Kσ]

E#heapJget_field(l[i], "weight") Kσ]

E#envJ l[i] · weight Kσ]

〈@]
int] , int(@

]
Task,r · weight)〉, σ

]

E#intJ int.__add__(m, l[i].weight) Kσ]

〈@]
int] , int(m) + int(@]

Task,r · weight)〉), σ
]

ε = man.getσ]

σ]2 = man.set ε[m 7→ {@]
int] }]σ

]

S#numJ int(m) = int(m) + int(@]
Task,r · weight) Kσ]2

σ]3

σ] =

mem {@]
Task,r;@

]
list,r;@

]
int] }

env i 7→@]
int] ,m 7→@]

int] , l 7→@]
list,r,

arr(@]
list,r) 7→ {@

]
Task,r }

@]
Task,r · weight 7→@]

int]

heap @]
Task,r 7→ {weight }, ∅

num int(i) 7→ [0, 0], int(m) 7→ [0, 0]

int(@]
Task,r · weight) 7→ [2, 2],

alen(@]
list,r) 7→ [1, 1]

σ]3 = σ]2

[
num 7→

(
int(i) 7→ [0, 0], int(m) 7→[2, 2], int(@]

Task,r · weight) 7→ [2, 2]
)]

Figure 8.4: Analysis of first unrolling at line 8 of Listing 8.1, assuming – to simplify – that the
list l has been instantiated with Task(2) only

iary address variable@]
Task,r · weight. The evaluation of this variable is then del-

egated to the environment abstraction. The environment abstraction returns an
object, having an integer address @]

int] , and for value the expression int(@
]
Task,r

·weight).
· The domain of binary operators ends up calling int.__add__. This call is handled by

8.1 – Value analysis as a refinement of the type analysis 179

the domain of int objects. It returns the integer address, and the value expression
is the addition of the auxiliary integer variables of m and @]

Task,r · weight. The +

operator corresponds to the addition of mathematical integers and not Python’s
addition operator.

· The environment domain updates its local binding to map variable m to the integer ad-
dress.
· It then delegates the assignment int(m) = int(m) + int(@]

Task,r · weight) over values to
the numerical domain. The result of this statement updates the binding of int(m) to the
interval [2, 2].

We encounter an issue to define the concretization of the environment. We have assumed
that builtin values are allocated to a single weak address for each type in the previous chapter.
In the value analysis, builtin values are tracked through variables to be precise. However, these
two approaches conflict in the concretization: we illustrate this issue in the example below.

Example 8.8 Concretization difficulty with builtin values
Let us consider the abstract state at the end of the program x = 1; y = 2:

σ] =

{
env x 7→@]

int] , y 7→@]
int]

num int(x) 7→ [1, 1], int(y) 7→ [2, 2]

If the concretization of the environment puts builtin values in the the heap, all integer
values will be merged into the same state, since there is only one weak address for builtin
integers. The same applies to floating-point and string values. In that case, we would get:⋃

v∈{ 1,2 }

{
(e, h)

∣∣∣ e(x) =@]
int] , e(y) =@]

int] , h(@
]
int]) = (int(v),LOCK)

}
Clearly, this approach does not work. The recency abstraction will concretize @]

int] into
multiple addresses and provide a sound set of concrete states. This set of states would
however be really imprecise (we would get that xmay be 2 for example). Our solution con-
sists in forgetting the object structure of builtins for now, and let the environment domain
perform the following concretization in this case:

{ (e, ∅) | e(x) = 1, e(y) = 2 }

Once the concretization of the recency abstraction has been applied, we can always
concretize these builtin values into builtin objects to get:

{
(e, h)

∣∣ ∃(a, b) ∈ N2, e(x) =@a, e(y) =@b, h(@a) = (int(1),LOCK), h(@b) = (int(2),LOCK)
}

We show the updated concretization of the environment abstraction in Figure 8.5. This
concretization is a relation between a concretized environment over auxiliary value variables
(i.e., Value def

= Z∪F64∪ string) and a concrete environment and a heap. For non-builtin values,
the concretization is the same as the one of the type analysis shown in Figure 7.3. Builtin values
are picked from the input environment ρ, using the corresponding auxiliary variables.

180 Chapter 8 – Value Analysis

γenv(ε) = { (ρ ∈ V → Value), (e ∈ (V ⇀ Addr] ∪ Value), h ∈ (Addr] ⇀ ObjN× ObjS)) |

v ∈ domε⇔
(
e(v) ∈ ε(v) \ {@]

int] ,@
]
float] ,@

]
str] }∨(

int(v) ∈ domρ =⇒ e(v) ∈ ρ(int(v))
)
∨(

float(v) ∈ domρ =⇒ e(v) ∈ ρ(float(v))
)
∨(

str(v) ∈ domρ =⇒ e(v) ∈ ρ(str(v)
))

;

@] ∈ codomε⇔ (fst ◦h(@]) ∈ γObjN(type(@])) ∧ snd ◦h(@]) = >) }

Figure 8.5: Concretization of the environment abstraction

Example 8.9 Full concretization of the value analysis
We consider the abstract state σ]. It corresponds to the tasks allocated at line 6 of Listing 8.1,
along with a variable x pointing to one of the task instances.

σ] =

mem {@]
Task,r;@

]
Task,o }

env x 7→ {@]
Task,r;@

]
Task,o },

@]
Task,r · weight 7→@]

int] , @]
Task,o · weight 7→@]

int]

heap @]
Task,r 7→ ({weight }, ∅), @]

Task,o 7→ ({weight }, ∅)
num int(@]

Task,r · weight) 7→ [5, 5], int(@]
Task,o · weight) 7→ [1, 3]

The concretization of the numerical domain yields three different states:⋃
v∈{ 1,2,3 }

{
int(@]

Task,o · weight) 7→ v, int(@]
Task,r · weight) 7→ 5

}
The concretization of the environment chooses what x points to. It defines the nominal

object structure of the objects allocated at @]
Task,m. For each auxiliary integer variable∫

(v), a binding of e(v) is created with the corresponding numerical value (now considered
as a builtin value of Python).

⋃
v∈{ 1,2,3 },
m∈{ r,o }

{
(e, h)

∣∣∣ e(x) =@]
Task,m h(@]

Task,r) = (Task,>) h(@]
Task,o) = (Task,>)

e(@]
Task,o · weight) = v e(@]

Task,r · weight) = 5
}

The concretization of the heap transforms the auxiliary attribute addresses on weight,
that are always defined, into structural information on the objects in the heap.

⋃
v∈{ 1,2,3 },
m∈{ r,o }

{
(e, h)

∣∣∣ e(x) =@]
Task,m h(@]

Task,r) = (Task, {weight 7→ 5 })

h(@]
Task,o) = (Task, {weight 7→ v })

}
The recency abstraction concretizes the old address in a finite number of addresses and

the recent address into a single address allocated after the old addresses.

8.2 – Experimental evaluation 181

⋃
n≥1

{
(e, h)

∣∣∣ ∃j ∈ [1, n], e(x) =@j ; h(@n) = (Task, {weight 7→ 5 });

∀i ∈ [1, n− 1], ∃vi ∈ { 1, 2, 3 },h(@i) = (Task, {weight 7→ vi })
}

As we have mentioned, the concrete state above does not exactly match the definition
of concrete states of Chapter 6. The builtin values (5 and the vi in the state above) have to
be transformed into Python objects, giving:

⋃
n≥1

{
(e, h)

∣∣∣ ∃j ∈ [1, n], e(x) =@j ;

h(@n) = (Task, {weight 7→@a
int });∃a ∈ N, h(@a

int) = (int(5),LOCK);

∀i ∈ [1, n− 1],∃vi ∈,∃bi ∈ N, { 1, 2, 3 }, h(@i) = (Task, {weight 7→@bi
int })∧

h(@bi
int) 7→ (int(vi),LOCK)

}

Remark 8.10 List analysis
In the current implementation, the list domain handles both summarized content and list
length at once. It thus does not change whether a type or a value analysis is used. This dif-
fers from the presentation we made in Chapter 5, where summarization and length domains
are combined in a reduced product (see also Remark 5.17 in that chapter). The approach
based on a reduced product would, in theory, be better: the length domain would not be
needed in the case of a type analysis. In addition, the implementation would be smaller
and more modular. We leave this modular implementation as future work.

8.2 Experimental evaluation
This section mainly presents the results obtained in the publication of our SOAP article [112].
We compare the type analysis and the value analysis in Section 8.2.1, the choice of allocation
policy in Section 8.2.2, and the impact of the abstract garbage collection (AGC) in Section 8.2.3.
We finish by showing new results about the selectivity of the value analysis.

The configuration of the value analysis we used relies on an interval domain for integers and
floating-point number abstractions, and on a string powerset domain for the string abstraction.
It is shown in Figure 8.6. All the analyses shown in section use the function cache defined in
Section 7.5.2.2.

8.2.1 Value-sensitivity

The results of the type and value analyses are displayed in Figure 8.7. Both analyses were
performed with no allocation sensitivity, and the AGC active. The memory is measured through
OCaml’s garbage collector statistics, using the maximum size reached by the major heap. We
print the reductions in the number of detected exceptions in bold. The exceptions detected
are split into different categories:

• Type errors: TypeError, AttributeError exceptions.
• Index errors: out-of-bound list accesses.
• Key errors: key not found during dictionary access.
• Math errors: overflows, divisions by zero.
• Value errors: when an iterable is unpacked in too many values.

182 Chapter 8 – Value Analysis

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

×

Py.environment Py.heap

◦

×

Py.lists Py.dictsPy.tuples

◦

U.recency

×

U.intervals U.strings

Universal

Python specific

Sequence

× Cartesian product

◦ Composition

Figure 8.6: Configuration of the value analysis (to be compared with Figure 7.10)

• All other errors, including user-defined exceptions.

Some exceptions are systematically raised by the type analysis in order to be sound (such as
index errors during list accesses). We included these as alarms in the table to show how many
potential errors are eliminated by the value analysis. We notice that the precision gained with
the value analysis does not remove any type-related error in the programs we analyze. We find
that the value analysis is in average 3.25 times slower than the type analysis and similarly, it
needs 3 times more memory. In some rare cases, the value analysis is able to detect dead code
that the type analysis considers reachable. The value sensitivity does not reduce the key errors
(the smashing abstraction of dictionaries is too coarse). For all other exception categories, an
improvement in precision is witnessed. In the case of the index errors, the number of raised
alarms is divided by 10.

8.2.2 Allocation-site policy choice

We perform an allocation-site sensitivity comparison in Figure 8.8. We compare having no
allocation-site sensitivity for all objects (excepting containers) with having allocation-site sen-
sitivity for all objects. The abstract garbage collector is activated in both cases. For each al-
location policy, the time spent, the memory used, and the number of exceptions detected are
indicated. The best results for each policy are printed in bold. We find that not performing
an allocation-site partitioning is more efficient, although it may raise a few more alarms –
less than 9% more in total. Cases such as chaos.py and regex_v8.py illustrate this obser-
vation. The analysis of richards.py reveals that the addition of the location sensitivity may
cost an order of magnitude more in resources. This cost increase is a consequence of objects
of the same type being allocated at different program locations, resulting in more cases to be
analyzed. In some cases (go.py, hexiom.py), the location sensitivity yields quicker analyses,
because the analysis without location sensitivity performs more weak updates (when allocat-

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py

Nam
e

LO
C

Type
Analysis

Value
Analysis

Tim
e

M
em

.
Exceptions

detected
Tim

e
M
em

.
Exceptions

detected
Type

Index
Key

M
ath

Value
O
ther

Type
Index

Key
M
ath

Value
O
ther

fannkuch.py
59

0.32s
3M
B

0
9

0
3

0
0

0.63s
3M
B

0
4

0
0

0
0

float.py
63

0.19s
3M
B

0
2

0
8

0
0

0.32s
3M
B

0
0

0
3

0
0

spectral_norm.py
74

0.70s
6M
B

0
0

0
9

0
1

1.7s
15M

B
0

0
0

3
0

0
nbody.py

157
1.5s

3M
B

0
22

1
11

5
1

5.7s
9M
B

0
1

1
1

0
0

chaos.py
324

7.4s
42M

B
0

28
0

54
10

0
30s

197M
B

0
18

0
4

8
0

raytrace.py
411

14s
74M

B
5

0
0

43
1

1
27s

171M
B

5
0

0
22

1
0

scimark.py
416

1.4s
12M

B
1

1
0

23
0

0
3.4s

27M
B

1
0

0
3

0
0

richards.py
426

13s
112M

B
1

4
0

2
1

1
17s

149M
B

1
2

0
0

1
1

unpack_seq.py
458

8.3s
7M
B

0
0

0
0

400
0

9.4s
6M
B

0
0

0
0

0
0

go.py
461

27s
345M

B
33

20
0

11
0

0
2.0m

1.4GB
33

20
0

4
0

0
hexiom.py

674
1.1m

525M
B

0
46

3
0

2
3

4.7m
3.2GB

0
21

3
0

1
2

regex_v8.py
1792

23s
18M

B
0

2053
0

0
0

0
1.3m

56M
B

0
145

0
0

0
0

processInput.py
1417

10s
64M

B
7

7
1

2
1

2
12s

85M
B

7
4

1
0

1
2

choose.py
2562

1.1m
1.6GB

12
22

7
19

18
7

2.9m
3.7GB

12
13

7
11

18
7

Total
9294

4.0m
2.8GB

59
2214

12
185

438
16

13m
9.1GB

59
228

12
51

30
12

Figure
8.7:Value-sensitivity

Com
parison

(no
allocation

sensitivity,w
ith

AGC)

183

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

184 Chapter 8 – Value Analysis

Name No loc. sensitivity Loc. sensitivity
Time Mem. Exclamation-Triangle Time Mem. Exclamation-Triangle

fannkuch.py 0.63s 3MB 4 0.63s 3MB 4
float.py 0.32s 3MB 3 0.39s 3MB 3
spectral_norm.py 1.7s 15MB 3 1.7s 15MB 3
nbody.py 5.7s 9MB 3 5.0s 9MB 3
chaos.py 30s 197MB 30 2.4m 1.2GB 15
raytrace.py 27s 171MB 28 4.5s 74MB 7
scimark.py 3.4s 27MB 4 3.0s 27MB 3
richards.py 17s 149MB 5 69m 15GB 5
unpack_seq.py 9.4s 6MB 0 9.6s 6MB 0
go.py 2.0m 1.4GB 57 1.7m 1.2GB 57
hexiom.py 4.7m 3.2GB 27 4.2m 3.2GB 27
regex_v8.py 1.3m 56MB 145 3.6m 85MB 145
processInput.py 12s 85MB 15 11s 74MB 13
choose.py 2.9m 3.7GB 68 3.1m 4.3GB 63

Total 13m 9.1GB 392 87m 25GB 359

Figure 8.8: Allocation-site Comparison (value analysis & AGC)

Name Without AGC With AGC Rel. Impr.
Time Mem. Time Mem. Time Mem.

fannkuch.py 0.65s 3MB 0.63s 3MB 4% 0%
float.py 0.37s 3MB 0.39s 3MB -4% 0%
spectral_norm.py 1.7s 18MB 1.7s 15MB 0% 17%
nbody.py 5.5s 10MB 5.0s 9MB 9% 10%
chaos.py 2.7m 1.4GB 2.4m 1.2GB 9% 13%
raytrace.py 6.5s 112MB 4.5s 74MB 31% 34%
scimark.py 3.1s 32MB 3.0s 27MB 5% 16%
richards.py 75m 20GB 69m 15GB 8% 24%
unpack_seq.py 13s 7MB 9.6s 6MB 24% 14%
go.py 2.3m 1.8GB 1.7m 1.2GB 25% 34%
hexiom.py 6.5m 7.5GB 4.2m 3.2GB 36% 57%
regex_v8.py 8.4m 345MB 3.6m 85MB 58% 75%
processInput.py 12s 74MB 11s 74MB 7% 0%
choose.py 4.0m 6.5GB 3.1m 4.3GB 24% 34%

Total 99m 38GB 85m 25GB 15% 34%

Figure 8.9: AGC Comparison (value analysis, with location sensitivity)

ing an address that already exists through the recency abstraction), which are costlier than
having multiple recent addresses in these cases. We tested adding the callstack-sensitivity
to the location-sensitivity. In our benchmarks, it achieved the same results in precision and
similar analysis times.

8.2.3 Abstract garbage collector

We show the impact of the abstract garbage collector in Figure 8.9. We only show time and
memory usage, as the precision is unchanged in those cases. If we remove the pathological
case of richards.py, whose analysis time is significantly higher than the others, the AGC yields

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py

8.2.4 – Selectivity of the analysis 185

a 33% relative improvement for the analysis time and 44% for the memory usage. These results
are similar to the ones obtained with the type analysis in Section 7.6.3.

8.2.4 Selectivity of the analysis

We show the selectivity of the non-relational value analysis, with no location sensitivity and
the abstract garbage collector, on our benchmarks in Figure 8.10. Given a check (in our case,
a class of Python exception), the selectivity is the number of operations proved safe by our
analysis on this check, divided by the total number checks performed by the analysis. Mopsa
provides utilities to tag expressions as safe or unsafe with respect to a check, and stores the
results in the abstract state (Remark 3.14). This addition is rather recent, so the selectivity was
not presented in our SOAP or in our ECOOP papers [110, 112]. We consider the selectivity with
respect to the following Python exceptions:

• AttributeError (invalid attribute accesses),
• TypeError (invalid type operations),
• IndexError (out-of-bound list accesses),
• KeyError (invalid dictionary accesses),
• ValueError (invalid tuple unpacking),
• OverflowError (during casts from integers to float for example), and
• DivisionByZeroError.

We highlight in bold font cases where the selectivity is not 100%. Empty cells correspond
to a program where a kind of exception cannot happen: for example, fannkuch.py does not
manipulate dictionaries, so its cell for key errors is left empty. We can see that the selectivity
of the analysis is really high for attributes and types. They are also a high number of checks
in this category, since Python is a dynamic language, and we have to infer and check the types
during the analysis. The smashing abstraction of lists and dictionaries are not really precise
and have a low selectivity. The selectivity is good for the last three categories, except for some
cases. For example, raytrace.py has a reduced selectivity with respect to overflow exceptions.
It performs computations on a class of vectors. In that case, the absence of location-sensitivity
means that different vectors will be summarized in the same old address, creating imprecise
values in their coordinates and triggering the false alarms.

8.3 Scaling relational analyses using packing
The experimental evaluation of Section 8.2 relies on the non-relational interval numerical do-
main. A relational analysis using vanilla abstract domains of Apron [73] does not scale well
however: even a small program of around 150 lines of code such as nbody.py takes 53 minutes
to be analyzed using the octagons abstract domain (and did not terminate in 8 hours with the
polyehdra domain). This is due to the high number of variables – both program variables and
the auxiliary variables introduced: at the end of the execution, the octagon has 75 dimensions.
As we mentioned in Figure 2.15, the computational cost of operations is cubic in the number
of variables for octagons and exponential for polyhedra. One way to alleviate this problem
is to use packing techniques [11]. The idea of packing is to split a relational domain over a
high number of variables – having a high computational cost – into a set of relational domains
working on small groups of related variables. The domain will infer relationships between
variables inside the same group, but not between variables in different groups. This approach
thus reduces the computational complexity of the numerical operations.

We have implemented a packing heuristic for the value analysis. This packing is static, i.e.,
it is only defined by syntactic information on the program. It keeps all global variables in a
same pack. One pack is created for each function defined in the analyzed program. These func-
tion packs keep the corresponding parameters, local variables, and return variable. Auxiliary

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py

186 Chapter 8 – Value Analysis

address variables related to lists are packed within the function allocating the list. The same
applies to auxiliary variables of range objects, used a lot to iterate in loops. Other auxiliary
variables are not kept in the packs for now.

The relational analysis with packing is more scalable. In the case of nbody.py, we go from
an analysis taking 53 minutes with octagons (having 75 dimensions at the end of the program),
to an analysis completing in 37 seconds. In that case, there are five different packs at the end
of the program, corresponding to octagons having 14, 3, 8, 3 and 8 dimensions. The packing
also improves the precision a lot in the case of regex_v8.py: it is able to rule out all 145
index errors found by the value analysis (Figure 8.7). The analysis is 2.5 times slower that the
non-relational one. In our preliminary experiments, we did not notice significant precision
improvements compared to the non-relational value analysis for the other benchmarks.

Remark 8.11 The balancing act of static packing
The static packing provides a first heuristic, which comes with a few downsides. On the one
hand, it can be imprecise: it is not possible to expression relationships between variables
in different packs1. This may reduce the precision of the analysis. On the other hand, some
packs may be unnecessarily big, and thus computationally costly. They could be split into
smaller packs, preferably by using a dependency analysis as a guide to create the packs.

Remark 8.12 Static packing and Mopsa’s loosely-coupled domains
The current approach of our static packing does not respect Mopsa’s approach of designing
loosely-coupled domains: it needs to know which auxiliary variables are created by each
abstract domain used in the analysis to perform the packing. Creating more adaptative
approaches to variable packing is left as future work.

Name Attributes Types Indexes Keys Values Overflows Divisions

fannkuch.py 57/57 90/90 7/11 3/3 3/3
float.py 88/88 104/104 3/3 1/1 9/9 4/7
spectral_norm.py 63/63 84/84 3/3 7/8 2/2
nbody.py 184/184 285/285 22/23 0/1 3/3 6/6 5/6
chaos.py 622/622 674/674 22/40 10/14 40/41 15/26
raytrace.py 573/573 638/643 2/2 5/6 24/44 7/9
scimark.py 746/746 844/844 2/5 29/30 21/43 20/21
richards.py 352/353 389/389 2/4 2/3 2/2
unpack_seq.py 807/807 1210/1210 1/1
go.py 664/697 728/728 2/20 7/7 6/12 4/6
hexiom.py 598/598 672/672 10/32 0/3 23/24
regex_v8.py 7357/7357 8349/8349 1913/2057 63/63
processInput.py 617/619 790/792 12/12 0/1 0/1 2/2
choose.py 2519/2521 2997/2999 28/39 4/8 9/24 7/17

Figure 8.10: Selectivity of the analysis on some classes of exceptions
Selectivity = Number of proved safe operations / Total number of checks

An empty cell denotes a program where the kind of exception cannot happen

1In practice, some variables can be added in different packs, and their values reduced by communicating their
intervals. For example, the parameters of functions can be added in the packs of the caller and the callee, to keep
relations between the two.

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

8.4 – Conclusion 187

8.4 Conclusion
This concludes the part on the analysis of pure-Python programs. This chapter defined a value
analysis, acting as a refinement of the type analysis. We have shown in our experimental
evaluation that this analysis is more costly than the type analysis, but it is also more precise,
and raises less false alarms. The analysis can use an underlying relational numerical abstract
domain, which needs to be packed into smaller parts to allow scaling. We have proposed a
simple static packing, and shown it can reduce further the number of alarms in one of our
benchmarks. To improve the precision of our analysis, we believe the most important point
is the development of more precise abstractions for the analysis of dictionaries. Having a
better packing heuristic, or leveraging recent work on efficient relational abstract domains
[137, 138, 139, 60], is left as future work. The two most pressing points to improve the scalability
of the analysis are:

• to reduce the cost of analyzing functions called in multiple different contexts, through
the use of function summaries,

• to support the vast standard library of Python, and other popular third-party libraries.

The last point is the object of the next part: a significant number of third-party libraries are
written in C, and we define an analysis that is able to multilanguage programs consisting of
Python and C code.

Part IV

Mixing Python and C

9

Interoperability Mechanisms between
Python and C

Modern programs are increasingly multilanguage. This allows developers to combine the
strengths of different languages and reuse libraries written in other languages. A host lan-
guage may call a guest language through an interface; this interface is also called a boundary.
The guest language is frequently C and is usually referred to as native code or native C. In
this thesis, the host language is Python, and the guest language is C. This work supports the
Python/C API [153] as the interoperability mechanism between Python and C. Using native C
modules in Python is frequent as it allows writing high-level Python code, itself calling efficient
C code. As a matter of fact, one in five of the 200 most downloaded Python libraries available
on GitHub contains C code.

We start by showing a self-contained motivating example in Section 9.1, giving insights on
how native C modules are defined and how they work with Python. We compare the Python/C
API with other available interoperability mechanisms in Section 9.2.

9.1 A toy example using Python’s API
This section provides an in-depth motivating example. We show how to define a native C
extension module and how it can be used by a Python client code. We end the section by
discussing which errors may happen.

When developers want to run native C code in Python, they can define native C extension
modules using the Python API. These modules may contain attributes, methods, and classes,
just as any other Python module. However, these methods and classes are now written in C. API
functions are denoted by the Py prefix (and written in magenta in the listings). The semantics
of some of these functions are described formally in Chapter 10.

9.1.1 Counter module, viewed from Python

Our example is a C module defining a Counter class, alongside some client code in Python.
This example is self-contained and shown in Listings 9.1 and 9.2. From a high-level point of view,
the counter module defines a Counter class. Instances of Counter can be created (count.py,
line 4); their internal counter can be incremented using the incr method, which takes an
optional integer argument being the increment (lines 6-7); they also have a read-only attribute
counter returning their current value (line 8).

192 Chapter 9 – Interoperability Mechanisms between Python and C

Listing 9.1: Contents of file count.py
1 import counter
2 import random
3
4 c = counter.Counter()
5 p = random.randrange(128)
6 c.incr(2**p-1)
7 c.incr()
8 r = c.counter

Listing 9.2: Contents of file counter.c
9 #include <Python.h>
10 #include "structmember.h"
11
12 typedef struct {
13 PyObject ob_base;
14 int count;
15 } CounterO;
16
17 static PyObject*
18 CounterIncr(CounterO *self, PyObject *args)
19 {
20 int i = 1;
21 if(!PyArg_ParseTuple(args, "|i", &i))
22 return NULL;
23 self->count += i;
24 Py_RETURN_NONE;
25 }
26
27 static int
28 CounterInit(CounterO *self, PyObject *args,
29 PyObject *kwds)
30 {
31 self->count = 0;
32 return 0;
33 }
34
35 static PyMethodDef CounterMethods[] = {
36 {"incr", (PyCFunction) CounterIncr,
37 METH_VARARGS, ""}, {NULL}

38 };
39 static PyMemberDef CounterMembers[] = {
40 {"counter", T_INT, offsetof(CounterO,
41 count), READONLY, ""}, {NULL}
42 };
43
44 static PyType_Slot CounterTSlots[] = {
45 {Py_tp_new, PyType_GenericNew},
46 {Py_tp_init, CounterInit},
47 {Py_tp_methods, CounterMethods},
48 {Py_tp_members, CounterMembers}, {0, 0}
49 };
50
51 static PyType_Spec CounterTSpec = {
52 .name = "counter.Counter",
53 .basicsize = sizeof(CounterO),
54 .itemsize = 0,
55 .flags = Py_TPFLAGS_DEFAULT
56 | Py_TPFLAGS_BASETYPE,
57 .slots = CounterTSlots
58 };
59
60 static struct PyModuleDef countermod = {
61 PyModuleDef_HEAD_INIT, .m_name = "counter",
62 .m_methods = NULL, .m_size = -1
63 };
64
65 PyMODINIT_FUNC
66 PyInit_counter(void)
67 {
68 PyObject *m =PyModule_Create(&countermod);
69 if(m == NULL) return NULL;
70 PyObject* CounterT =
71 PyType_FromSpec(&CounterTSpec);
72 if(CounterT == NULL || PyModule_AddObject(
73 m, "Counter", CounterT) < 0) {
74 Py_DECREF(m);
75 return NULL;
76 }
77 return m;
78 }

Listing 9.3: Some Python’s API headers

1 typedef struct PyObject {
2 Py_ssize_t ob_refcnt;
3 struct PyTypeObject *ob_type;
4 } PyObject;
5
6 typedef PyObject *(*PyCFunction)
7 (PyObject *, PyObject *);
8 typedef int (*initproc)
9 (PyObject *, PyObject *, PyObject *);
10
11 typedef struct PyMethodDef {
12 const char *ml_name; PyCFunction ml_meth;
13 int ml_flags; const char *ml_doc;
14 } PyMethodDef;
15
16 typedef struct PyMemberDef {

17 const char *name; int type;
18 Py_ssize_t offset; int flags;
19 const char *doc;
20 } PyMemberDef;
21
22 typedef struct PyTypeObject {
23 PyObject ob_base;
24 const char *tp_name;
25 Py_ssize_t tp_basicsize;
26 Py_ssize_t tp_itemsize;
27 unsigned long tp_flags;
28 struct PyMethodDef *tp_methods;
29 struct PyMemberDef *tp_members;
30 struct PyTypeObject *tp_base;
31 PyObject *tp_dict;
32 initproc tp_init;
33 newfunc tp_new;
34 } PyTypeObject;

9.1.2 – Counter, viewed from C 193

9.1.2 Counter, viewed from C

In C, instances of Counter will be stored using the CounterO struct. This struct starts with
a PyObject ob_base field. All Python objects are represented as PyObjects in C. Putting the
PyObject as the first field in the Counter structure allows casting to and from Python objects.1
The PyObject definition is part of the API and shown in Listing 9.3. Its fields are a reference
counter for the garbage collector and a pointer to the class to which it belongs. PyTypeObject
is Python’s type object, from which all classes derive. The second field of CounterO is the
instance’s data: an integer count, not directly exposed to Python.

The Counter class’ specification is defined lines 51-58. It has three methods stored in the
Py_tp_new, Py_tp_init, and Py_tp_methods fields. It also defines a special attribute mem-
ber counter lines 40-41. The PyTypeObject structure is synthesized from the specification
by PyType_FromSpec (line 71). These methods and members are lifted to become Python at-
tributes and methods when the class is initialized (in PyType_FromSpec, cf. Section 9.1.4). Other
fields are defined in the PyTypeObject structure. tp_basicsize, tp_itemsize define the size
(in bytes) of instances. tp_flags is used to perform fast instance checks for builtin classes.
tp_base points to the parent of the class. tp_dict is the class’ dictionary used by Python to
resolve attribute accesses (created during class initialization).

9.1.3 Module import

When executing the import counter statement, the C function PyInit_counter is called. This
function starts by creating amodule whose name (line 61) is counterwith nomethods attached
to it (line 62). Then, the CounterT class is created (lines 71-72, cf. Section 9.1.4), and the class is
bound to the module (lines 72-73). Python uses a reference-counting-based garbage collector,
which has to be manually handled using the Py_INCREF and Py_DECREFmacros in C. If no errors
have been encountered, the module object is returned at the end of the function, and counter
will now point to this module in Python.

9.1.4 Class initialization

The call to PyType_FromSpec creates the Counter class from its specification. The function
PyType_FromSpec starts by creating the PyTypeObject and fills its fields according to the spec-
ification. This structure is then passed to PyType_Ready which populates the tp_dict field of
the class. This field is the class’ dictionary used by Python to resolve attribute accesses. Before
this call, the attribute counter and the methods __new__, __init__, and incr do not exist on
the Python side.

We explain how these C functions are encapsulated into Python objects by PyType_Ready.

. __new__ method. The __new__ field points to a builtin_function object. When this object
is called, it calls tp_new_wrapper, which is a C function defined by CPython. This function
in turn will call PyType_GenericNew to allocate the instance.

. __init__ method. The prototype of C functions for Python is PyCFunction (Listing 9.3, line 6).
Some signature adaptations may be needed for specific kinds of functions. For exam-
ple, initialization methods (such as CounterInit) return a C int by convention. Thus,
CounterInit will be wrapped into a function called wrap_init, which behaves as a
PyCFunction. It is then encapsulated into a builtin Python descriptor object. Upon a
call to this object, this descriptor performs pre- and post-call checks (described in Chap-
ter 10). Continuing our example, wrap_init will be stored into an instance of the builtin
wrapper_descriptor object. This descriptor is then added to the class’ dictionary.

1According to the ISO C reference, “a pointer to a structure object, suitably converted, points to its initial
member, and vice versa”.

194 Chapter 9 – Interoperability Mechanisms between Python and C

. incr method. The C function CounterIncr has a signature abiding by the PyCFunction type.
There is no need for a specific wrapper similar to what CounterInit required. However,
incr is a method, and its assumes that its first argument is a Counter instance. This
behavior is obtained by wrapping the C function CounterIncr into a method_descriptor
object, performing the instance check on the first argument when it is called.

. counter attribute. Themember declaration at lines 40-41 of the running example (Listing 9.2)
is used to create a member_descriptor object, which is added to the class’ dictionary at
the counter field. This object will behave to make counter appear to be an attribute.
However, access to the attribute will call the __get__ method of this member descriptor,
and setting the attribute’s value will call the __set__ method (cf. Figure 6.31 and Exam-
ple 6.31). __get__ is method of the member_descriptor object which synthesizes the
Python integer from the C integer at offsetof(CounterO, count) (Listing 9.2, lines 40-
41). __set__ raises an exception when it called, since the member declaration specifies
that counter is READONLY.

Figure 9.1 shows a summary of these encapsulation. The next chapter includes a schematic
representation of the state in Figure 10.5 and Remarks 10.9 to 10.11 discuss in details the different
kind of descriptors.

Attribute Encapsulating Object Underlying Wrapper Underlying C definition

__new__ builtin_function tp_new_wrapper PyType_GenericNew
__init__ wrapper_descriptor wrap_init CounterInit
incr method_descriptor ∅ CounterIncr
counter member_descriptor ∅ CounterMembers[0]

Figure 9.1: Python Counter structure summary

9.1.5 Counter creation

When a new instance of Counter is created (line 4), Python starts by allocating it by calling
Counter.__new__. This call will eventually be resolved into PyType_GenericNew (from tp_new),
allocating the object and initializing the necessary fields (such as ob_refcnt and ob_type of
PyObject). Then, Counter.__init__ is called and the C function CounterInit (lines 27-33)
ends up being called. It initializes the count field of the CounterO struct to 0. We show how
this counter creation is evaluated in the abstract in Example 11.3.

9.1.6 Counter increment

When the incr function is called, it is resolved through Python’s attribute accesses into Counter
Incr. CounterIncr uses the standard Python function prototype, corresponding to PyCFunction
(Listing 9.3). Its first argument is the object instance (here, the instance stored in variable c),
and the second argument is a tuple of the arguments passed to the function (for the call at
line 6 it is a tuple of length one containing 2**p-1, and an empty one for the second call at
line 7). PyArg_ParseTuple is a helper C function from the Python API converting the Python
arguments wrapped in the tuple into C values.2 It uses a format string to describe the conver-
sion. The | character separates mandatory arguments from the optional ones, while i signals
a conversion from a Python integer to a C int. Internally, the conversion is done from a Python
integer to a long (which may fail with an exception since Python integers are unbounded),
which is then cast to an int if size permits (otherwise, another exception is set). In the first
call to CounterIncr (line 6), i will be assigned 2**p-1 if the conversion is successful. In the

2Py_BuildValue is the converse function translating C values to Python ones.

9.1.7 – Counter access 195

second call, i will keep its default value, 1. The internal value of the counter is then incre-
mented by i, and then Python’s None value is returned.

9.1.7 Counter access

Thanks to the complex semantics of Python, attribute accesses can actually hide calls to cus-
tom getter and setter functions through data descriptors (cf. Figure 6.31 and Example 6.31).
In our case, PyType_Ready takes the member declaration lines 39-42, and creates those cus-
tom getters and setters through a member_descriptor builtin object. The access to attribute
counter at line 8 calls the getter (i.e., the __get__ method) of this member_descriptor object.
This getter accesses the count field of the CounterO struct and converts the C integer into a
Python integer. The READONLY flag in the declaration ensures that any call to the setter function
raises an exception. These member descriptors are supported by our multilanguage semantics
(cf. Remark 10.11) and our multilanguage analysis (cf. Example 11.4).

9.1.8 Building the module

In order for a native extension module to be accessible in Python, it has to be compiled into
a dynamically linked shared object library. The easiest approach is to use the setuptools
library to perform the build, using a setup.py file shown in Listing 9.4. This script will call GCC
to create a shared library for the counter module.

Listing 9.4: Example setup.py build file
1 from setuptools import setup, Extension
2
3 module = Extension('counter', sources=['counter.c'])
4
5 setup(name="counter", ext_modules=[module])

9.1.9 What can go wrong?

Depending on the chosen value of p the result r will range from

(i) the expected value (r = 2p when 0 ≤ p ≤ 30),
(ii) conversion errors from a Python integer to a C integer, raised as OverflowError excep-

tions. The error message depends on whether p ≥ 64. As we have mentioned in Sec-
tion 9.1.6, the integer conversion is done in two steps: the Python integer is first converted
to a C long. This conversion fails when p ≥ 64, and the error message is then “Python
int too large to convert to C long” Otherwise, the conversion to a C long works, but the
interpreter then checks that the cast is also possible. When 31 < p < 64, the cast is not
possible and the error message is “signed integer is greater than maximum”.

(iii) a silent integer overflow on the C side, causing a wrap-around which is an unexpected
behavior for Python developers (r = −231 for p = 31).

All these errors are due to different representations between the builtin values of the language.
The C integer overflow does not interrupt the execution. This motivates the creation of an
analysis targeting all kinds of runtime errors in both host and guest languages as well as at
the boundary. The analysis presented in Chapter 11 infers all reachable C and Python values, as
well as raised exceptions in order to detect these runtime errors. In this example, our analyzer
is able to detect all these cases. Our analyzer is also able to prove that the program is safe
when p ranges between 0 and 30.

196 Chapter 9 – Interoperability Mechanisms between Python and C

9.1.10 Common bugs at the boundary

We refer the reader to the work of Hu and Zhang [70] for an empirical evaluation of bugs at the
boundary between Python and C. The most frequent bugs happening at the boundary between
the languages are:

• mismatches between a returned NULL and the exception being set in C (NULL should be
returned by Python C functions if and only if an exception has been set – cf. Figure 10.8),

• mismatches between the C and Python datatypes during conversion (in calls to PyArg_
ParseTuple, PyLong_FromLong),

• integer overflows during conversions from arbitrary-precision Python integers to C,
• reference-counting errors.

The multilanguage analysis of Chapter 11 supports all classes of bugs, apart from the reference-
counting errors.

9.2 Other Python/C interoperability mechanisms

This section describes other interoperability mechanisms that can be used in Python. They are
higher-level than the Python API, and all are based on it one way or another. Thus, a static
analysis handling the Python/C API interoperability should be able to handle programs using
the mechanisms described in this section with little modifications.

For the sake of simplicity, we consider the case where we want to call a C function from
Python. It is also possible to handle structures, as we have done in Section 9.1. We assume we
have a file syracuse.c (Listing 9.5), defining a function syrac_nth. Given an initial element u0,
syrac_nth(u0, n) computes the n-th term of the 3n+1 sequence (similar to the code shown
in Listing 2.1).

Listing 9.5: Contents of syracuse.c file
1 int syrac_nth(int u0, int n)
2 {
3 int u = u0;
4 int i = 0;
5 while(i < n) {
6 if(u % 2 == 0) { u = u / 2; }
7 else { u = 3 * u + 1; }
8 i = i + 1;
9 }
10 return u;
11 }

9.2.1 Ctypes

ctypes [149] is a module from Python’s standard library. It allows to call functions from li-
braries and manipulate C datatypes within Python. For example, let us assume that our file
syracuse.c has been compiled into the library libsyracuse.so. The functions of the library
can be dynamically loaded and called, as shown in Listing 9.6. The ctypes module is loaded,
and the CDLL class is used to load the library. We can then call the function syrac_nth. By de-
fault, ctypes assumes that functions return a C integer, and converts it as a Python integer. In
our case, r is thus a Python integer having value 827370449. As the computation is performed
in C, overflows can silently occur. For example, calling _syracuse.syrac_nth(113383, 120)
in Python returns −1812855948 instead of 827370449 ∗ 3 + 1 = 2482111348.

9.2.2 – Cffi 197

Listing 9.6: Ctypes example
1 import ctypes
2
3 _syracuse = ctypes.CDLL("libsyracuse.so")
4
5 r = _syracuse.syrac_nth(113383, 119)

By default, ctypes does not have any information on the types of the functions called. It
is thus possible to call _syracuse.syrac_nth("abc", 120) for example. The user can declare
the types of functions exposed by the library, and ctypes will then check that types are correct.
For example, if we declare that both arguments of syrac_nth have a C integer type through:

_syracuse.syrac_nth.argtypes = [ctypes.c_int, ctypes.c_int]

The previous call with the chain ”abc” would raise a ctypes.ArgumentError exception.
Programs using ctypes are very dynamic compared to the other interoperability mecha-

nisms: ctypes uses a library that is already compiled and loads it directly during the execu-
tion. ctypes is implemented using Python’s API, and relies on libffi. This would be the most
difficult framework to support for this reason.

9.2.2 Cffi

The cffi [129] library was created by Pypy developers. Compared to ctypes, cffi is able
to read function declarations and automatically generate wrappers around these functions,
ensuring safe type conversions. Similarly to swig and cython, it requires a build pass invoking
a C compiler to work. The code needed to use our syrac_nth function is shown in Listing 9.7.
The execution of this script will create a C file _syracuse_cffi.c, containing the definition of
the Python C function syrac_nth (shown in Listing 9.8), which wraps around the call to the
initial function. This script will then combine this C file with syracuse.c using gcc, to create a
shared library that Python can open as a module.

Listing 9.7: Cffi example
1 from cffi import FFI
2
3 ffi = FFI()
4
5 ffi.set_source("_syracuse_cffi",
6 """
7 #include "syracuse.h"
8 """, sources=["syracuse.c"])
9
10 ffi.cdef("int syrac_nth(int, int);")
11
12 if __name__ == "__main__":
13 ffi.compile(verbose=True)

It is then possible to import the module using:

from _syracuse_cffi import lib

Calls such as lib.syrac_nth(113383, 120) can then be performed. In that particular case, we
have seen that the C computation overflows and returns −1812855948. cffi is well-behaved
concerning types. It checks that the arguments have the correct type. In our example, the func-
tion _cffi_to_c_int called at line 14 of Listing 9.8 will raise a TypeError when lib.syrac_nth
('a', 0) is called. The wrappers also check that those argument conversions will fit in their
equivalent C type. As such, if we call lib.syrac_nth(2**32, 0), an OverflowError will be
raised by _cffi_to_c_int, as 232 does not fit into a 32-bit C int.

198 Chapter 9 – Interoperability Mechanisms between Python and C

Listing 9.8: Cffi generated code for syracuse example
1 static PyObject *
2 _cffi_f_syrac_nth(PyObject *self, PyObject *args)
3 {
4 int x0;
5 int x1;
6 int result;
7 PyObject *pyresult;
8 PyObject *arg0;
9 PyObject *arg1;
10
11 if (!PyArg_UnpackTuple(args, "syrac_nth", 2, 2, &arg0, &arg1))
12 return NULL;
13
14 x0 = _cffi_to_c_int(arg0, int);
15 if (x0 == (int)-1 && PyErr_Occurred())
16 return NULL;
17
18 x1 = _cffi_to_c_int(arg1, int);
19 if (x1 == (int)-1 && PyErr_Occurred())
20 return NULL;
21
22 Py_BEGIN_ALLOW_THREADS
23 _cffi_restore_errno();
24 { result = syrac_nth(x0, x1); }
25 _cffi_save_errno();
26 Py_END_ALLOW_THREADS
27
28 (void)self; /* unused */
29 pyresult = _cffi_from_c_int(result, int);
30 return pyresult;
31 }

The analysis of Python code calling the cffi generated code should essentially come for
free using the Python/C API analysis of Chapter 11, as it generates static C code similar to
what we presented in section 9.1, that we already handle. We would have to support the cffi
functions, but since their C source code is available, we could analyze it.

Remark 9.1 cffi works on shared libraries
cffi can also work with compiled shared libraries (such as libsyracuse.so). Since func-
tions are declared using cffi.cdef (Listing 9.7, line 10), it is still able to generate wrapper
code in this case.

9.2.3 Swig

swig [9] is able to generate interfaces between C code and multiple languages, such as Python,
JavaScript or OCaml. Swig requires the definition of an interface file (Listing 9.9), defining the
module’s name, which headers files should be included in the module’s generated code, and
which C functions should be made available.

Listing 9.9: Contents of file syracuse.i
1 %module syracuse
2
3 %{
4 #define SWIG_FILE_WITH_INIT
5 #include "syracuse.h"
6 %}
7
8 int syrac_nth(int, int);

9.2.4 – Cython 199

Then, running swig -python syracuse.i creates two files: syracuse.py and syracuse_
wrap.c. We can define a setup.py using setuptools, defining how to compile syracuse_wrap.c
into a Python module, similarly to what we have shown in Section 9.1.8. It is then possible to
call syracuse.syrac_nth once the module syracuse has been imported. Similarly to the cffi,
swig checks that objects passed have correct types and can be represented in C. We show an
excerpt of the wrapper function in Listing 9.10. Similarly to cffi, we believe that analyzing
multilanguage code using swig should be easy using the analysis of Chapter 11.

Listing 9.10: Generated swig wrapper
1 SWIGINTERN PyObject *_wrap_syrac_nth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
2 PyObject *resultobj = 0;
3 int arg1 ;
4 int arg2 ;
5 int val1 ;
6 int ecode1 = 0 ;
7 int val2 ;
8 int ecode2 = 0 ;
9 PyObject *swig_obj[2] ;
10 int result;
11
12 if (!SWIG_Python_UnpackTuple(args, "syrac_nth", 2, 2, swig_obj)) SWIG_fail;
13 ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
14 if (!SWIG_IsOK(ecode1)) {
15 SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "syrac_nth" "', argument "

"1"" of type '" "int""'");↪→
16 }
17 arg1 = (int)(val1);
18 ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
19 if (!SWIG_IsOK(ecode2)) {
20 SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "syrac_nth" "', argument "

"2"" of type '" "int""'");↪→
21 }
22 arg2 = (int)(val2);
23 result = (int)syrac_nth(arg1,arg2);
24 resultobj = SWIG_From_int((int)(result));
25 return resultobj;
26 fail:
27 return NULL;
28 }

9.2.4 Cython

cython [50] has a different goal: it aims at generating high-performance Python code by letting
developers annotate their Python programs with C datatypes. cython then compiles these
annotated Python programs to C programs. These C programs may use the Python/C API (to
handle the Python objects provided to or returned by the functions, as well as calls back to
Python when the simplification to C datatypes was not possible). Our running example is shown
in its Cython version in Listing 9.11. The first two lines are the only ones different from generic
Python code: both the arguments and variables u and i are declared as C integers, with the
int and cdef int keywords respectively.

The code generated by cython is shown in Listing 9.12. __PyInt_From_int (at line 29) even-
tually calls a Python/C API function, such as PyInt_FromLong. cython also performs type and
value checks to ensure conversions to C datatypes will be correct. Since cython generates code
using the Python/C API, our analysis of Chapter 11 should be easily adapted.

200 Chapter 9 – Interoperability Mechanisms between Python and C

Listing 9.11: Cython code for 3n+ 1 sequence computation
1 def syrac_nth(int u0, int n):
2 cdef int u, i
3
4 u = u0
5 i = 0
6 while(i < n):
7 if(u % 2 == 0): u = u / 2
8 else: u = 3 * u + 1
9 i = i + 1
10 return u

Listing 9.12: Abbreviated code generated by cython for Listing 9.11
1 static PyObject *__pyx_pf_8syracuse_syrac_nth(CYTHON_UNUSED PyObject *__pyx_self, int

__pyx_v_u0, int __pyx_v_n) {↪→
2 int __pyx_v_u;
3 int __pyx_v_i;
4 PyObject *__pyx_r = NULL;
5 int __pyx_t_1;
6 PyObject *__pyx_t_2 = NULL;
7
8 __pyx_v_u = __pyx_v_u0;
9
10 __pyx_v_i = 0;
11
12 while (1) {
13 __pyx_t_1 = ((__pyx_v_i < __pyx_v_n) != 0);
14 if (!__pyx_t_1) break;
15
16 if (__pyx_t_1) {
17 __pyx_v_u = __Pyx_div_long(__pyx_v_u, 2);
18 goto __pyx_L5;
19 }
20
21 /*else*/ {
22 __pyx_v_u = ((3 * __pyx_v_u) + 1);
23 }
24
25 __pyx_L5:;
26 __pyx_v_i = (__pyx_v_i + 1);
27 }
28
29 __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_u); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 10,

__pyx_L1_error)↪→
30 __pyx_r = __pyx_t_2;
31 __pyx_t_2 = 0;
32
33 return __pyx_r;
34 }

9.3 Conclusion

This chapter defined an example of native module defining a simple Counter class. We have
seen that discrepancies between the C and Python values created behaviors (integer wrap-
arounds) or conversion errors that a Python developer may not be used to. This example will
be reused in the next chapters.

We surveyed other interoperability mechanisms available between Python and C. All rely
on the Python/C API in which our running example is written.

9.3 – Conclusion 201

The next two chapters respectively define a multilanguage semantics for programs using
the Python/C API, and an analysis based on this semantics. Since the code generated by the
cffi, swig and cython rely on the Python/C API, we believe these interoperability mechanisms
would not require much effort to be supported by our analyzer.

10

Concrete Multilanguage Semantics

This chapter defines the semantics of the interface between Python and C, corresponding to
the API presented in the previous chapter. We start by explaining informally the choices made
to model the semantics.

A low-level, pure-C semantics. A simple approach to define the multilanguage semantics is
to notice that the reference Python interpreter, CPython, is written in C. Thus, we could define
the semantics of a multilanguage program as the C semantics of CPython’s source code, itself
called with the program as input. This approach relies on the fact that the Python interpreter is
implemented in C, so we can confuse the interoperability mechanism with CPython’s execution.
This view would however be too low-level to analyze programs, as the analysis would have to
analyze CPython’s implementation details in addition to the input program. In addition, we
have already developed Python analyses based on a higher-level Python semantics, that we
would like to reuse.

Building upon the Python and C semantics. We opt instead for a semantics that builds upon
the semantics of each language. These concrete semantics will be used in a black-box fashion.
Our goal is to delegate most of the work to the semantics of each language (in particular, the
semantics of pure-Python or pure-C parts will be delegated to these semantics). This high-
level, delegation-based approach will also simplify our analysis (in Chapter 11) as we will reuse
the analyses of Python and C in a similar black-box fashion.

We first need to figure out how to make the semantics of each language interoperate. We
can notice that only dynamically allocated Python objects can be passed from one language
to another. In our running example, a tuple containing the integer object 2**p-1 is passed
(Listing 9.1, line 6) from Python to the CounterIncr method (Listing 9.2, lines 17-25). In the
other way, the counter member specified lines 39-42 creates a Python integer object during
the attribute access at line 8. Thus, semantics can communicate through the addresses of
objects passed from one language to the other.

Following our black-box approach, we keep the state of each language’s semantics. This
means in particular that the machine’s heap will be represented using two views, since each
language’s state has its heap. We have previously stated that the addresses are used to com-
municate between the semantics. Thus, addresses will be shared between the heap’s do-
mains. In addition, objects allocated in C can be referenced in the Python heap and vice-versa.
In most cases, an object is only described in one view of the heap: C or Python. For ex-
ample, the Counter instance created at line 4 is allocated on the C side during the call to
PyType_GenericNew. The count value is stored in the C heap. The address of this instance

204 Chapter 10 – Concrete Multilanguage Semantics

is still referenced in Python’s environment (since c references this instance). In some cases,
though, a single object is present in both views of the heap. For example, the Counter class
is a PyTypeObject in C, having all fields described in Listing 9.3. In Python, the Counter class
has three methods __new__, __init__, incr and one attribute, counter. The detailed state is
illustrated in Figure 10.5 and will be commented in the next section.

Of course, having two different representations of the heap creates two issues relating to
them being coherent.

1. When one side dynamically allocates a new Python object, the heap description of the
other side has to be updated. For example, when the Counter instance is allocated
by PyType_GenericNew in C, the Python heap has to define the nominal and structural
object’s structure. This issue could be fixed by instrumenting the Python and C allocators
in the semantics to update the state of the other language. However, this solution would
break our black-box approach.

2. If one language can have side effects on the other’s state, their states need to be syn-
chronized afterward. For example, we could assume that a string defined in Python is
passed to a C function. This C function could access the internal structure of the string
structure and could alter its content. This modification would be done in pure C, without
any call to the Python/C API. Without any synchronization into the Python state, the state
in the Python semantics would not know that the string has changed.

We could remediate both issue by using a reduced product over the two semantics, and per-
forming a reduction after any statement to keep the heap descriptions coherent. Applying
a state reduction after each statement would however be costly. It turns out we can avoid
reductions altogether, using a different, lighter way to handle each issue:

1. We do not automatically update the other heap at each dynamic allocation. Instead, we
use boundary functions, ensuring that when an object switches from one language to the
other, it is correctly represented in the incoming language’s heap. These functions are
purely here to ensure correct representations of each object in both heaps. They do not
perform new allocations, nor conversions from a Python object to a C datatype. These
conversions will be handled by API functions, which create new objects.

2. Through careful choices, we are able to make the heap representations complementary
and disjoint, thus avoiding the second issue. Each language is responsible for disjoint
parts of Python objects. In the case of the Counter instance, the C integer value is directly
available through C only (detailed in Example 10.1). Our semantics assumes that builtin
Python objects are opaque in C1. Thus, it is not possible to directly modify them using
dereferences. They can only be accessed through the API in C. This assumption will be
discussed in more details in Section 10.6. It is reasonable for our target use case, which
is the analysis of code using the Python API. After all, the implementation details are not
supposed to be exposed to third-party modules. In addition, our analysis checks that
this assumption is satisfied (it is so far the case in the programs we analyzed). These API
accesses to builtins will work by calling back the Python semantics. Although CPython
ultimately implements these builtins in C, we abstract away from this behavior and rely
on our Python semantics. We illustrate this approach on a tuple access in Example 10.2.

Example 10.1 Accessing C data from Python
In our running example (Listings 9.1 and 9.2), the int count field from a Counter instance
is only exposed from the C. It is possible to read the counter’s value from Python. This

1This approach is similar to the opaque representations of objects such as file descriptors in the work of
Ouadjaout and Miné [121].

10.1 –Multilanguage state 205

attribute access will call a C function performing the conversion of the C integer into a
Python integer (the detailed execution will be shown in the abstract in Example 11.4). It
allocates a new Python integer which is independent from the C integer. Hence, only C
code directly dereferences the field value from the object’s memory.

Example 10.2 Accessing Python data from C
Conversely, accessing a tuple at a given index is not directly possible in C. Of course, C vari-
ables may point to a Python object such as a tuple. However, tuple objects are opaque in C,
as our semantics does not capture their internal representation. Accessing them through
the C language using the API will ultimately be evaluated as a Python tuple access (de-
scribed later in Section 10.5.2) in our semantics. This kind of access is used at line 21 of
our running example, during the call to PyArg_ParseTuple(args, "|i", &i). This call it-
erates through the elements of the tuple pointed by args. To perform the iteration, it uses
PyTuple_Size to determine the length of the tuple, and PyTuple_GetItem to access ele-
ments. In our semantics, these builtins will in turn call the Python methods tuple.__len__
and tuple.__getitem__.

Outline. We start by defining the multilanguage state in Section 10.1. The boundary functions
are then defined in Section 10.2. We define how Python may call C functions (Section 10.3),
and how C may perform callbacks to Python objects (Section 10.4). We also define conversions
provided by the API in Section 10.5, such as conversions between Python integers and C longs,
and tuples. API functions working on other builtin datatypes (such as floats, strings, lists, ...)
exist and are supported by our analysis. They are similar to the cases presented here but not
described.

10.1 Multilanguage state
We define the state on which each semantics operates. In the following, Python-related states
and expressions will be written in green. C-related states and expressions will be in orange.
We reuse the concrete state defined in Chapter 6 (Figure 6.2) for Python, and the one defined by
Ouadjaout and Miné [121] for C. A set of heap addresses Addr (potentially infinite) is common
to the states.

10.1.1 Python state

Figure 10.1 defines the concrete Python state used in this chapter. This definition was already
provided during the definition of the concrete semantics, in Figure 6.2. Python objects are split
into a nominal part (for the type and a potential builtin value) and a structural part (for the
attributes). The nominal part ObjN can be some builtin, or an instance, defined by the address
of the class from which it is instantiated. The structural part ObjS maps attribute names to
their contents’ addresses. The environment Ep maps variable identifiers Idp to addresses (or
LocalUndef for local variables with an undefined value – LocalUndef is not a Python object but
an artefact of our semantics to handle that case). The heap Hp maps address to objects. The
state is tagged by a flow token f ∈ Fp to handle non-local control-flow (created by exceptions
for example). Given a state σp ∈ Σp, we write as σ.εp its environment and σ.ηp its heap.

10.1.2 C state

The concrete C state is shown in Figure 10.2. The memory is decomposed into blocks Base,
which are either variables Idc or heap addresses Addr. Each block is decomposed into scalar

206 Chapter 10 – Concrete Multilanguage Semantics

ObjN def
= int(i ∈ Z) ∪ bool(b ∈ {True, False}) ∪ float(f ∈ F64)

∪ str(s ∈ string) ∪ None ∪ NotImpl ∪ List(ls ∈ Addr∗) ∪ Tuple(t ∈ Addr∗)
∪Method(a ∈ Addr, f) ∪ Fun(f) ∪ Class(c) ∪ Inst(a ∈ Addr)

ObjS def
= LOCK ∪ (string⇀ Addr)

Valuep
def
= Addr

Fp
def
= { cur, ret,brk, cont, exn a ∈ Addr }

Ep
def
= Idp ⇀ Addr ∪ LocalUndef

Hp
def
= Addr⇀ ObjN× ObjS

Σp
def
= Fp × Ep ×Hp

EpJ expr K : P(Σp)→ P(Valuep⊥ × Σp)

SpJ stmt K : P(Σp)→ P(Σp)

Figure 10.1: Concrete Python State

elements (machine integers, floats, pointers). Hb, o, τI denotes the memory region in block b,
starting at offset o and having type τ , abstracted as cells [107] in our next chapter. C values
Valuec are either machine numbers MNum (including integer and float datatypes, see Exam-
ple 10.3 for example), or pointers Ptr defined by their block and offset. Additionally, pointers
can be NULL or invalid. The state Σc consists of an environment and a heap. The environ-
ment Ec maps scalar elements to values. The heap Hc maps address to the type of allocated
resource and their size. The type of allocated resources is Malloc when the standard C library
malloc is used2. The Python allocator (called by PyType_GenericNew) will create resources of
type PyAlloc, ensuring that:

(i) Python objects are well constructed by the correct allocator
(ii) the C code cannot access directly, using pointer dereferences, these “opaque” objects

and needs to use the API,
(iii) the C code cannot free a block allocated by Python.

Listing 10.1: Example C program to illustrate the concrete C state
1 #include <stdlib.h>
2
3 typedef struct {int length; float *data;} ftab;
4
5 int main()
6 {
7 ftab* f = malloc(sizeof(ftab));
8 f->length = 2;
9 f->data = malloc(f->length*sizeof(float));
10 f->data[0] = 0;
11 f->data[1] = 2;
12 }

Example 10.3 Concrete C state of Listing 10.1
We consider the program in Listing 10.1, defining a structure ftab containing an array of

2Other resources (such as file descriptors) can also be defined [121].

10.1.3 – Combined state 207

Cells def
= { Hb, o, tI | b ∈ Base, t: scalartype, 0 ≤ o ≤ sizeof(b)− sizeof(t) }

Ptr
def
= (Base× Z) ∪ { NULL, invalid }

Base def
= Idc ∪ Addr

Valuec
def
= MNum ∪ Ptr

Ec
def
= Cells ⇀ Valuec

Hc
def
= Addr⇀ ident× N

Σc
def
= Ec ×Hc

EcJ expr K : P(Σc)→ P(Valuec⊥ × Σc)

ScJ stmt K : P(Σc)→ P(Σc)

Figure 10.2: Concrete C state

floating-point numbers alongside its length. We assume we have a 64-bits architecture. We
allocate an array of size 2, initialize its first cell to 0 and the second to 2.

The concrete state is shown in Figure 10.3.

Environment Heap

Hf, 0, ptrI 7→ (@7, 0)
H@7, 0, intI 7→ 2 @7 7→ Malloc, 16
H@7, 8, ptrI 7→ 2
H@9, 0, floatI 7→ 0 @9 7→ Malloc, 8
H@9, 4, floatI 7→ 2

Figure 10.3: Concrete state obtained at the end of Listing 10.1

10.1.3 Combined state

Two new kinds of nominal objects are added to Python: CFun f for Python functions defined in
C, CClass c for Python classes defined in C (where f and c denote the name of the underlying
C function or class declaration). The combined state used for the multilanguage semantics is
the product of the Python and C states, written Σ, and shown in Figure 10.4.

Remark 10.4 Addresses are shared
Each state may reference addresses originally allocated by the other language. In the
running example (Listings 9.1 and 9.2), the Python variable c points to an instance of the
Counter class. This instance has been allocated on the C side by PyType_GenericNew (cf.
Section 9.1.5).

The multilanguage semantics Ep×cJ · K is defined over Python and C expressions. It operates
over the whole state Σ and its return value matches the language of the input expression.
We define the semantics of some builtins working at the boundary between Python and C in
Sections 10.3 to 10.5. These builtins operate on the whole state. For expressions not working

208 Chapter 10 – Concrete Multilanguage Semantics

Σ = Σp × Σc

Ep×cJ exprp K : P(Σ)→ P(Valuep⊥ × Σ)

Ep×cJ exprc K : P(Σ)→ P(Valuec⊥ × Σ)

Figure 10.4: Combined State

at the boundary, the multilanguage semantics defaults to the usual Python or C semantics:

Ep×cJ exprp KΣ = ∪σp,σc∈Σ{ vp, σ′p, σc | (σ′p, vp) ∈ EpJ exprp K(σp) }
Ep×cJ exprc KΣ = ∪σp,σc∈Σ{ vc, σp, σ′c | (σ′c, vc) ∈ EcJ exprc K(σc) }

Example 10.5 Diagram of the multilanguage state on the running example
We show in Figure 10.5 a schematic representation of the program state after the execution
of the first four lines of count.py (Listing 9.1). The six nodes with a header text starting
in green are Python objects, and the nominal object is described in the header. The three
remaining nodes with a header text in orange are resources allocated by malloc, and we
give their type.

The instance node in the top right corner represents the Counter instance created at
line 4 of count.py. The header in the node represents the nominal object, which is a Python
instance here. This instance points to its parent class, CClass (Counter). Two fields are
defined in the corresponding C structure CounterO. The mandatory Python object header
ob_base has a field ob_type pointing to the class as well. The field count of the struct
CounterO has been initialized to 0. The Python side of this object contains nothing and is
thus not represented.

The class’ node is the most interesting, as its state is shared among the two languages.
The field __new__ of the class points to a Python function which will call the builtin tp_new_
wrapper function. This function will in turn call the C function stored in the tp_new field
of the class (on the C side, the class is a PyTypeObject, cf. Listing 9.3). In our case, this
is PyType_GenericNew. The other cases are similar. The Python fields are automatically
synthesized from the PyTypeObject structure during the call to PyType_Ready. All descrip-
tors are Python classes defined in C; hence they have a C state. Descriptors are used to
wrap checks and adaptations around C functions. They will be described in more detail
in Remarks 10.9 to 10.11. We have already mentioned this duality of field definitions in the
previous chapter and provided a summary in Figure 9.1.

10.1.4 Handling Python exceptions in C

Python exceptions may be raised from the C code using the PyErr_SetNone builtin. In the
Python interpreter, this sets a flag in a structure describing the interpreter’s state. We model
this by setting a global variable exc with the Python object passed as an argument. Additional
functions such as PyErr_Occurred checking if an exception has been raised and PyErr_Clear
removing raised exceptions are modeled by accessing and setting this same global variable.

10.2 Boundary functions
Boundary functions ensure that Python objects are correctly represented in the heap of each
language. Given a Python object allocated at an address, these boundaries only update the

10.2 – Boundary functions 209

__new__
__init__
incr
counter

tp_new 7→ PyType_GenericNew
tp_init 7→ CounterInit
tp_methods
tp_members

CClass (Counter)

CFun (tp_new_wrapper)

d_base
d_wrapped 7→ CounterInit

Inst(wrapper_descriptor)

d_method
d_type

Inst(method_descriptor)

d_member

Inst(member_descriptor)

ob_base->ob_type
count = 0

Inst()

name = "__init__"
offfset = offsetof(PyTypeObject, tp_init)
function = slot_tp_init
wrapper = wrap_init

wrapperbase

ml_name = "incr"
ml_meth = CounterIncr
ml_flags = METH_VARARGS

PyMethodDef

name = "counter"
type = T_INT
offset = offsetof(CounterObject, count)
flags = O_READONLY

PyMemberDef

Figure 10.5: Schematic representation of the concrete state reached at line 5 in Listing 9.1

heap of the target language at this address. They do not perform new dynamic allocations.
The C to Python boundary also ensures that only Python objects are passed back to Python.
Contrary to the other boundary, it may fail (if something that is not a Python object is passed
and return ⊥). We define two boundary functions converting a Python value (in the semantical
term, Valuep of Figure 10.1) into a C value (Valuec, Figure 10.2) and conversely (written p↪→c and
c↪→p). We define the boundary functions as operating on a single value and state at a time,
but they are trivially lifted to the powerset.

p↪→c : Valuep × Σ→ Valuec × Σ
c↪→p : Valuec × Σ→ Valuep⊥ × Σ

Example 10.6 Boundary effect
Going back to the example mentioned in Remark 10.4, the variable c of our running example
points to an address@ of a Counter instance which has been allocated on the C side. When
this variable becomes reachable in the Python state, the boundary ensures that Python’s
heap knows that @ points to a Counter instance and has no fields currently defined.

Remark 10.7 Value conversion
These functions do not convert values from one language to another. This kind of conver-
sion is handled by builtin conversion functions such as PyLong_AsLong, PyLong_FromLong
for Python integer to C long conversion. These conversions are formalized in Section 10.5.1.

These boundary functions are shallow and lazy:

(i) only objects switching languages are passed through those boundaries,
(ii) an object that has already been converted does not need to be converted again (i.e.,

when its address is already in the other language’s heap). This is because the conversion
only propagates immutable data, such as the type of an object.

210 Chapter 10 – Concrete Multilanguage Semantics

10.2.1 Python to C boundary

The boundary from Python to C is described in Figure 10.6. As we havementioned, the boundary
is lazy: if the object is already defined in the C heap, there is nothing to do. If the object is not
represented in the C heap, the boundary is first applied recursively to the class of the object
(using the type operator of Python). Then, we update the heap: the object has been allocated
by Python, and has the size of PyObject. If the object is a class, it has the size of PyTypeObject,
and we call the class initializer PyType_Ready afterward. The last step performed is to initialize
the ob_type field of the object to point to its class.

p↪→c(vp, σp, σc) =

if vp ∈ σ.ηc then (vp, 0), σp, σc else
letb typ, σp = EpJ type(vp) Kσp in
letb (tyc, 0), σp, σc =

p↪→c(typ, σp, σc) in
let σp, σc =
if σp(vp) = Class(c) then
let σc = σ.εc, σ.ηc[vp 7→ PyAlloc, sizeof(PyTypeObject)] in
Ep×cJPyType_Ready(vp) K(σp, σc)

else σp, (σ.εc, σ.ηc[vp 7→ PyAlloc, sizeof(PyObject)])
in
let σc = ScJ vp->ob_type = tyc Kσc in
(vp, 0), σp, σc

Figure 10.6: Python to C value boundary

10.2.2 C to Python boundary

The converse boundary (Figure 10.7) starts by checking that the value is a heap allocated Python
object, allocated with resource type PyAlloc. It calls itself recursively on the class of the object
(using the ob_type field in C). The Python heap is updated with the converted object.

c↪→p(vc, σp, σc) =

if vc 6∈ Addr× { 0 } || σ.ηc(fst vc) 6= (PyAlloc, _) then ⊥, σp, σc else
let v = fst vc in
if v ∈ σ.ηp then v, σp, σc else
letb tyc, σc = EcJ ((PyObject*)v)->ob_type Kσc in
letb typ, σp, σc = c↪→p(tyc, σp, σc) in
let σp = σ.εp, σ.ηp[v 7→ Inst(typ), ∅] in v, σp, σc

Figure 10.7: C to Python value boundary

10.3 – C call from Python 211

10.3 C call from Python
The semantics of C function calls from Python is shown in Figure 10.8. It corresponds to the
function PyCFunction_Call in the interpreter’s implementation.3 C functions callable from Python
can only have two arguments (cf. the type of PyCFunction, Listing 9.3, line 6). Thus, the Python
arguments are split into the first one e1 and the other ones, bundled in a tuple. The boundary
from Python to C is applied to e1, and to the tuple containing the other arguments. Then,
the C function is evaluated using the standard C semantics. Afterward, out_check ensures
that the function returned NULL if and only if an exception has been set in the interpreter
state. Otherwise, a SystemError exception is raised. Finally, the C value is passed through the
boundary function.

Ep×cJ (CFun f)(e1, e2, . . . , en) K(σp, σc) = tp_field PyCFunction_Call

letb c1, σp, σc = p↪→c(e1, σp, σc) in
letb p2, σp = EpJ tuple(e2, . . . , en) Kσp in
letb c2, σp, σc = p↪→c(p2, σp, σc) in
letb cf , σc = EcJ f(c1, c2) Kσc in
letb cf , σc = out_check(cf , σc) in
c↪→p(cf , σp, σc)

Figure 10.8: C call from Python

Remark 10.8 Output check in CPython
The function out_checkmodels the effect of function _Py_CheckFunctionResult, defined by the
Python interpreter. This function is called at the end of the execution of PyCFunction_Call.

We have shown the simple case of C calls from Python in Figure 10.8. There are three
variations, acting as descriptor objects, shown in the following remarks.

Remark 10.9 Method descriptors
Method descriptors act as wrappers around C functions, checking that the first argument of
the call is an instance of the targeted class (otherwise, a TypeError exception is raised). The
function to call is stored in the d_method field of the descriptor, and the type in the d_type
field (example in Figure 10.5). In the semantics, this adds an input check. It corresponds to
the function method_check_args in Python’s source code.

Remark 10.10 Wrapper descriptors
Wrapper descriptors are used to call C functions that do not respect the signature of PyCFun
ction (Listing 9.3, lines 6-7). For example, initialization functions such as CounterInit
(having type initproc, cf. Listing 9.3) also take a dictionary of arguments as third argu-
ment and return an integer as a result. Upon a call to the wrapper descriptor instance,
wrapperdescr_raw_call will call the wrapper at d_base->wrapper. In our case, this field (Fig-
ure 10.5) will call wrap_init. In the semantics and our analysis, we can directly use the
source code of wrap_init (shown in Listing 10.2). This function signals an error by return-

3We reuse the convention of Chapter 6: Python functions written in gray and typewriter font are clickable
links to their source code on Github.

https://github.com/python/cpython/tree/3.8/Objects/call.c#L767
https://github.com/python/cpython/tree/3.8/Objects/methodobject.c#L316
https://github.com/python/cpython/tree/3.8/Objects/call.c#L767
https://github.com/python/cpython/tree/3.8/Objects/call.c#L23
https://github.com/python/cpython/tree/3.8/Objects/descrobject.c#L243
https://github.com/python/cpython/tree/3.8/Objects/descrobject.c#L481

212 Chapter 10 – Concrete Multilanguage Semantics

ing NULL if the initialization function returns a negative integer, and returns the None value
otherwise.

Listing 10.2: Code of wrap_init
1 static PyObject *
2 wrap_init(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds)
3 {
4 initproc func = (initproc)wrapped;
5
6 if (func(self, args, kwds) < 0)
7 return NULL;
8 Py_RETURN_NONE;
9 }

Remark 10.11 Member descriptors
An example ofmember descriptor has been already presented in Section 9.1.7. The member_de
scriptor class defines __get__ and __set__methods that are automatically called should
an attribute be accessed or set (semantics shown in Figures 6.31 and 6.32). These methods
respectively call member_get and member_set. These functions in turn rely on the specifica-
tion provided in a d_member field (Figure 10.5) to perform the corresponding getter or setter
action (with conversions from Python to C datatypes or conversely, and checks that the
member is not read-only).

10.4 Python call from C

Ep×cJPyObject_CallObject(f, a) K(σp, σc) =
letb fp, σp, σc = c↪→p(f, σp, σc) in
letb ap, σp, σc = c↪→p(a, σp, σc) in
let rp, σp = EpJ fp(∗ap) Kσp in
if σp = (cur, _, _) then p↪→c(rp, σp, σc)

else convert_err(σp, σc)

convert_err(σp, σc) =
let exn e, εp, ηp = σp in
letb ec, σp, σc = p↪→c(e, (cur, εp, ηp), σc) in
NULL, σp, ScJPyErr_SetNone(ec) Kσc

Figure 10.9: Python call from C

Calls back to Python from the C code are possible using the PyObject_CallObject function,
formalized in Figure 10.9. The first argument is the object being called. The second argument
is a tuple containing all the parameters. These two arguments are first passed through the C
to Python boundary. Then, we use the Python semantics to evaluate the call (the * operator in
Python unpacks the tuple into the arguments of the variadic function). If the call is successful
(i.e., the execution is normal, shown by flow token cur), the converse boundary function is
applied. If an exception has been raised during the evaluation of the Python call, we revert to

https://github.com/python/cpython/tree/3.8/Objects/descrobject.c#L141
https://github.com/python/cpython/tree/3.8/Objects/descrobject.c#L203

10.5 – Builtins of the API 213

the cur flow token and pass the exception object e through the boundary. The result of the
call will be NULL, and the exception will be set on the C side by calling PyErr_SetNone.

Remark 10.12 No references to the source code
We do not provide references to the source code of CPython for the Python call from C, as
well as the integer and tuple conversions of the next section. Indeed, the corresponding
CPython code accesses the internal structures of these builtins. We model these accesses
instead with the Python semantics.

10.5 Builtins of the API
We show how integers are converted in Section 10.5.1. The case of Python container accesses
from the C side is shown in Section 10.5.2. We explain how generic converters using format
strings work in Section 10.5.3, and how the fields of a C class are lifted from C to Python in
Section 10.5.4.

10.5.1 Integer conversions

We show conversion functions from C long to Python integers and back in Figure 10.10. Con-
verting a C long of value vc to a Python integer is done by calling the integer constructor in
the Python semantics, where the C value is cast as a literal, mathematical integer (written in
blue), and applying the boundary afterward. To perform the conversion back, we apply the
boundary function to the C value. Then, we check if the corresponding Python value vp is an
integer by looking into the Python heap. If that is the case, we check that this integer fits in a C
long (Python integers are unbounded). Otherwise we raise an OverflowError and the function
returns -1. A TypeError exception is raised and the function returns -1 if the object is not an
integer.

Ep×cJPyLong_FromLong(vc) K(σp, σc) = p↪→c (EpJ int(vc) K(σp), σc)
Ep×cJPyLong_AsLong(vc) K(σp, σc) =

let vp, σp, σc = c↪→p
](vc, σp, σc) in

if σ.ηp = int(i) then

if i ∈ [−263, 263 − 1] then i, σp, σc
else − 1, σp,ScJPyErr_SetNone(PyExc_OverflowError) Kσc

else − 1, σp,ScJPyErr_SetNone(PyExc_TypeError) Kσc

Figure 10.10: Conversion from Python builtin integers to C long

10.5.2 Operations on containers

We show how container operations are handled, using the case of tuples as an example in
Figure 10.11. The same approach is used for other operations and other containers. In each
case, the goal is to rewrite it as a Python evaluation, and handle conversions and errors before
and after.

PyTuple_GetItem(o, i) returns the object located at index i of the tuple o. The index is
provided as a C integer of type Py_ssize_t, which corresponds to the C type ssize_t. o is
passed as a pointer to a PyObject, and the same applies for the result. The function starts by
passing o through the boundary. i is converted into a Python integer, and passed through the

214 Chapter 10 – Concrete Multilanguage Semantics

boundary too. Then, the Python versions of these objects are passed to the tuple.__getitem__
function. If the call is successful, the result is passed through the converse boundary and
returned. Otherwise, we use the error conversion function defined in Figure 10.9 to translate
the exceptional Python flow into an exception in the C state (cf. Section 10.1.4).

PyTuple_Size(o) returns the size of the tuple o as a C integer of type Py_ssize_t. It passes o
through the boundary, so it can then be used in the Python call to tuple.__len__. If the call is
successful, the result is passed through a boundary, and converted into a C integer. Otherwise,
we convert the exceptional Python flow into an exception in the C state.

Ep×cJPyTuple_GetItem(o, i) K(σp, σc) =
letb op, σp, σc = c↪→p(o, σp, σc) in
letb ip, σp, σc = c↪→p ◦ Ep×cJPyLong_FromSsize_t(i) K(σp, σc) in
letb rp, σp, σc = EpJ tuple.__getitem__(op, ip) K(σp, σc) in
if σp = (cur, _, _) then p↪→c(rp, σp, σc)

else convert_err(σp, σc)

Ep×cJPyTuple_Size(o) K(σp, σc) =
letb op, σp, σc = c↪→p(o, σp, σc) in
letb lp, σp, σc = EpJ tuple.__len__(op) K(σp, σc) in
if σp = (cur, _, _) then
letb lc, σp, σc = p↪→c(lp, σp, σc) in Ep×cJPyLong_AsSsize_t(lc) K(σp, σc)

else convert_err(σp, σc)

Figure 10.11: Tuple access and length semantics, from C

10.5.3 Generic converters: PyArg_ParseTuple, Py_BuildValue

PyArg_ParseTuple matches a tuple into different C values using a format string. These format
strings are similar to the ones used by C’s printf. They are described in CPython’s docu-
mentation [148].! The concrete semantics of this function is its implementation in CPython. It
iterates on the format string and the tuple elements to perform the conversions, which end up
calling builtin conversion functions such as the ones shown in Section 10.5.1. For example, when
PyArg_ParseTuple encounters an 'i' char in its conversion string, it executes the code shown
in Listing 10.3.4 As explained in our example from Section 9.1.6, it first calls PyLong_AsLong and
converts the long to int checking for additional overflows. Our analyzer is able to analyze the
code of Listing 10.3 directly, without having to rely on a builtin stub.

Py_BuildValue performs the inverse operation: it creates Python objects from C values and
a format string. The same approach is used in this case.

Listing 10.3: Python to C int conversion done by convertsimple, called by
PyArg_ParseTuple

1 long ival = PyLong_AsLong(obj);
2 if(ival == -1 && PyErr_Occurred()) {
3 return 0;

4In the abstract, we use a stub, since the CPython implementation is a bit too complex to be precisely analyzed:
it uses loops, and recursive functions manipulating variable arguments. PyArg_ParseTuple is defined as a stub
(just as PyLong_AsLong is), but the case of integers is delegated to the interpreter’s implementation shown in
Listing 10.3.

https://github.com/python/cpython/tree/3.8/Python/getargs.c#L123
https://github.com/python/cpython/tree/3.8/Python/modsupport.c#L513
https://github.com/python/cpython/tree/3.8/Objects/getargs.c#L780

10.5.4 – Class initialization: PyType_Ready 215

4 }
5 else if (ival > INT_MAX) {
6 PyErr_SetString(PyExc_OverflowError,
7 "signed integer is greater than maximum");
8 return 0;
9 }
10 else if (ival < INT_MIN) {
11 PyErr_SetString(PyExc_OverflowError,
12 "signed integer is less than minimum");
13 return 0;
14 } else {
15 *result = ival;
16 return 1;
17 }

10.5.4 Class initialization: PyType_Ready

We have shown in Listing 9.3 (at lines 22-34) a simplified definition of the PyTypeObject struc-
ture used to define Python classes in C. PyType_Ready takes this structure, having different fields
(such as tp_new, tp_init, but also the methods of tp_methods and members of tp_members)
and binds the corresponding attributes to objects in Python (i.e., it creates the left hand-side of
the class in Figure 10.5). We do not show the formal semantics of this function. It just performs
the lifting from C fields to Python ones we mentioned.

10.6 Threats to validity
This concrete semantics is already high-level. Our goal is to analyze Python programs with
native C modules and detect all runtime errors that may happen. Assuming that those C mod-
ules use Python’s API rather than directly modify the internal representation of builtins seems
reasonable when analyzing third-party modules. This is the recommended approach for de-
velopers, as it eases maintenance of the codebase since API changes are not frequent and
documented. On the contrary, internal representations may be changed in incompatible ways
without notice. Our analysis, presented in the next chapter, is able to detect if a program
does not use the Python API and tries to modify a builtin Python object directly. In addition,
a lower-level semantics where implementation details of builtins are exposed would be much
more complex and not benefit our analysis. Such a lower-level semantics may need to perform
whole Python (resp. C) state conversion at the boundary when switching languages.

We have established this semantics by reading the code of the reference Python interpreter.
Proving that our semantics is a sound abstraction of such lower-level semantics is left as future
work.

The garbage collection based on reference counting is not supported by our semantics.
Thus, we cannot detect deallocations that are performed too soon or that are not performed
at all.

10.7 Related work
The seminal work of Matthews and Findler [102] defines the first semantics of multilanguage
systems, using the notion of boundaries to model conversion between languages. They start
from a statically typed call-by-value lambda-calculus (with natural numbers) and an untyped
version of the lambda-calculus, with natural numbers and a notion of exceptions. They intro-
duce the notion of boundary to convert the value of one language into the other. They study
different embeddings: the lump embedding, where values fromone language are opaque to the
other, a natural embedding with type-directed conversion of values, values can be converted

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L5230

216 Chapter 10 – Concrete Multilanguage Semantics

using type information. They then prove different results on these combined languages, such
as type-safety. Buro and Mastroeni [23] provide a general framework of language interoper-
ability that is independent of the combined languages.

We study a real-world case where the interoperability mechanism was defined by the
Python developers. Thus we do not search for the development of better interoperability
mechanisms that could automatically perform conversions and prevent type errors by con-
struction. Contrary to the cases studied in these works, the interoperability between Python
and C does not mix languages or values at the syntactic level. Our notion of boundary only
ensures the coherence of states. Conversions are performed by builtins from the API, with
dynamic type checks.

10.8 Conclusion
This chapter defined a concrete semantics for multilanguage programs using the Python/C API
as interoperability mechanism. It relied on the concrete semantics of the Python and C pro-
gramming languages, to which the semantics of pure-Python and pure-C parts are delegated.
We defined a careful separation of the Python and C views of the same heap, that does not re-
quire systematic reductions between the two states. We used instead lazy boundary functions
to ensure objects are well-represented when they cross from one language to another. We
assumed that the Python builtins were opaque structure to the C side. This ensures a disjoint
separation between the views of the heap. API functions operating on those builtins in C are
defined by calling back the Python semantics. The current limitation of this semantics is the
absence of support of the garbage collector, which is based on reference counting.

11

Multilanguage Value Analysis

Although useful, multilanguage programs generate additional sources of bugs. Indeed, de-
velopers need to take into account different safety mechanisms and memory representations.
Python is safe to the extent that runtime errors in pure Python programs are encapsulated
into exceptions, which can be caught later on. This safety property breaks when C modules are
used since a runtime error in C may irremediably terminate the program or create an incon-
sistent state. Python and C also have different representations. For example, Python integer
objects use at least 24 bytes of memory and have unlimited precision, while C integers have
fixed lengths (generally ranging from 8 to 64 bits) and can suffer from overflows.

Static analyzers tend to focus on analyzing one language at a time. They may use stubs
to model the behavior of calls to other languages. These stubs may be time-consuming to
implement if written by hand. They can undermine the soundness of the analyses since the
actual code is not analyzed, and the stubs may be imprecise or wrong. For example, we have
seen in Section 7.4 that our Python analyses can leverage official Python type annotations (de-
fined by PEP 484 [154]) as stubs. While these analyses track uncaught Python exceptions, these
type annotations do not declare which exceptions may be raised, thus adding an unchecked
assumption to the soundness property (Remark 7.12).

We aim at analyzing both the native C code and the Python code (including callbacks to
Python code from the native side) within the same analyzer. This analysis is based upon ex-
isting Python analysis (Chapter 8) and C analysis Ouadjaout and Miné [121], implemented in
Mopsa. Our analysis detects runtime errors in the native C code (invalid pointer operations,
invalid memory accesses, integer overflows), in the Python code (raised exceptions), and at the
boundary between the languages. The underlying address allocation and numerical abstrac-
tions are shared.

We believe the approach described in this paper is general enough to be extended to other
multilanguage settings, such as the analysis of Java and C through the JNI.

Outline. We define the abstract domain in Section 11.1, its transfer functions in Section 11.2. We
show detailed examples of the analysis in Section 11.3. Section 11.4 defines the concretization
of the domain and states the soundness theorem of the analysis. We discuss implementation
details in Section 11.5 and evaluate our analysis in Section 11.6. This chapter finishes with a
survey of related work (Section 11.7) and a conclusion (Section 11.8).

218 Chapter 11 – Multilanguage Value Analysis

11.1 Abstract domain
We show a generic construction of the abstract multilanguage state. Themultilanguage domain
combining the underlying C and Python analyses is stateless. We describe in this section
how the existing abstract state for C and Python analyses, developed independently, can be
combined without further information to provide a multilanguage abstraction. We assume the
abstract semantics of Python and C are provided through E#pJ · K,E#cJ · K.

These are instantiated in practice using previous works: the value analysis of Python pre-
sented in Chapter 8, and the C analysis developed by Ouadjaout andMiné [121]. We assume that
each language’s abstract state relies on an address allocation abstraction (such as the callsite
abstraction or the recency abstraction [4]) and a numerical abstraction (such as intervals, oc-
tagons, …). We write Σ]

u the cartesian product of these two abstractions. The abstract Python
(resp. C) state can then be decomposed as a product Σ]

p = Σ̃]
p × Σ]

u (resp. Σ]
c = Σ̃]

c × Σ]
u).1

As we have mentioned before, the mutlilanguage domain is stateless. The state of the multi-
language analysis consists of the cartesian product of the Python and C abstract states, where
the address allocation and numerical states are shared: Σ]

p×c = Σ̃]
p × Σ̃]

c × Σ]
u.

Listing 11.1: Reminder from Listing 10.1 – example C program
1 #include <stdlib.h>
2
3 typedef struct {int length; float *data;} ftab;
4
5 int main()
6 {
7 ftab* f = malloc(sizeof(ftab));
8 f->length = 2;
9 f->data = malloc(f->length*sizeof(float));
10 f->data[0] = 0;
11 f->data[1] = 2;
12 }

Example 11.1 Abstract C state of Listing 11.1
We show how the C analysis abstracts a state. We reuse the example C program of the
previous chapter, whose code is recalled in Listing 11.1. We assume the analysis targets a
64-bits architecture. It defines a structure ftab containing a dynamically allocated array of
floating-point numbers alongside its length. We showed the concrete state in Example 10.3.

The recency abstraction σ]mem contains two addresses (both are recent), corresponding
to the allocations performed at lines 7 and 9. Addresses are written in red to show that they
have been allocated in C by malloc.

σ]mem =
{
@]

7;@
]
9

}
The cells domain [107] contains the set σ]cells of cells showed below. These cells are

auxiliary variables, tracking the actual access patterns of variables and addresses. Each
cell is defined by a base (a variable or an address), an offset, and the type accessed.

σ]cells =
{

Hf, 0, ptrI; H@]
7, 0, s32I; H@

]
7, 8, ptrI; H@

]
9, 0, floatI; H@

]
9, 4, floatI

}

1The construction could be adapted if the state is partitioned.

11.2 – Transfer functions 219

The pointer domain σ]ptr has two bindings:

σ]ptr =
(
f 7→@]

7, H@
]
7, 8, ptrI 7→@]

9

)
The numerical domain (here, a constant or an interval domain is sufficient) has the state

σ]num. The first three lines are auxiliary variables representing the mathematical numbers
corresponding to each cell with numerical type. The abstract state introduces auxiliary
variables to track the size of dynamically-allocatedmemory blocks, and the pointer’s offsets,
shown in the last two lines.

σ]num =
(
int(H@]

7, 0, s32I) = 2,

float(H@]
9, 0, floatI) = 0,

float(H@]
9, 4, floatI) = 2,

bytes(@]
7) = 8,bytes(@]

7) = 16,

offset(H@]
7, 8, ptrI) = 0,offset(Hf, 0, ptrI) = 0

)

Remark 11.2 Unique numerical domain
Concrete states use numerical values in different places (e.g., the C state has machine num-
bers, pointer offsets and memory blocks’ sizes). All these values will be centralized in a
common numerical domain in the abstract state. This centralization allows expressing re-
lations between all those numerical variables, possibly improving the precision.

11.2 Transfer functions
Just as the concrete semantics builds upon the underlying C and Python semantics, so does our
abstract semantics. We need to implement a few transfer functions, specific to the Python/C
API. We define the abstract semantics of boundary operators. It is slightly different from the
concrete, since the C heap relies on auxiliary variables in the abstract.

The other transfer functions are obtained by a straightforward replacement of concrete
operators with abstract ones. Thus, we only show the abstract semantics of the cases used in
the examples of the next section. This includes the abstract semantics of C calls from Python,
the creation of a Python object from a C long and tuple conversions.

11.2.1 Boundaries

The abstract boundaries are defined in Figures 11.1 and 11.2. The only difference from the con-
crete definitions shown in Figures 10.6 and 10.7 lies in the update of the heap views.

In the case of the Python to C boundary, the concrete C heap σ.ηc was updated updated to
know that vp is a resource of type PyAlloc, and size sizeof(PyObject). This varies slightly in the
abstract. First, abstract addresses integrate a notion of type, so the PyAlloc resource type is not
necessary. Second, the size of allocated memory is encoded in an auxiliary variable bytes(·).
This approach is used to handle variable allocation sizes (e.g., in the case of a dynamic array).
Relying on the numerical domain to express constraints on the actual size may improve pre-
cision, since a relational domain could infer relations with program variables. In the end, the
abstract C heap update is performed by executing the statement bytes(vp) = sizeof(PyObject)
(or with sizeof(PyTypeObject) in the case of classes).

220 Chapter 11 – Multilanguage Value Analysis

p↪→c
](vp, σp, σc) =

if vp ∈ σ.ηc then (vp, 0), σp, σc else

letb typ, σp = E#pJ type(vp) Kσp in
letb (tyc, 0), σp, σc =

p↪→c
](typ, σp, σc) in

let σp, σc =
if σp(vp) = Class(c) then
let σc = S#cJbytes(vp) = sizeof(PyTypeObject) Kσc in

E#
p×c

JPyType_Ready(vp) K(σp, σc)

else σp, S#cJbytes(vp) = sizeof(PyObject) Kσc
in

let σc = S#cJ vp->ob_type = tyc Kσc in
(vp, 0), σp, σc

Figure 11.1: Python to C value boundary

c↪→p
](vc, σp, σc) =

if vc 6∈ Addr× { 0 } || kind(fst vc) 6= Py then ⊥, σp, σc else
let v = fst vc in
if v ∈ σ.ηp then v, σp, σc else
letb tyc, σc = E#cJ ((PyObject*)v)->ob_type Kσc in
letb typ, σp, σc = c↪→p

](tyc, σp, σc) in
v, S#py.heapJ add(v) Kσp, σc

Figure 11.2: C to Python value boundary

We introduce a kind function, which given an address returns Py if it is a Python object
(corresponding to the PyAlloc resource type), and C if it has been allocated by malloc (cor-
responding to the Malloc resource type). This function is used in the case of the C to Python
boundary to make sure that the address represents a Python object. The concrete heap up-
date σ.ηp[v 7→ Inst(typ), ∅] is replaced by the execution of the statement add(v) in Python’s
heap abstract domain. This statement signals to the heap abstract domain of Python (defined
in Section 7.2.3) that it needs to track the fields of a new address v. This domain then adds this
address to its internal state, and assumes that no fields are currently defined.

11.2.2 C call from Python

C calls from Python are handled similarly in the concrete (Figure 10.8) and in the abstract
(Figure 11.3). The first argument of the function is passed through the boundary, and the other
arguments are first gathered into a tuple, which is then passed through the boundary. Then,
the C function is called. The output checks verify that f returns NULL if and only if an exception
has been set. The returned value of this function is passed through the C to Python boundary.

11.2.2 – C call from Python 221

E#
p×c

J (CFun f)(e1, e2, . . . , en) K(σp, σc) =

letb c1, σp, σc = p↪→c
](e1, σp, σc) in

letb p2, σp = E#pJ tuple(e2, . . . , en) Kσp in
letb c2, σp, σc = p↪→c

](p2, σp, σc) in
letb cf , σc = E#cJ f(c1, c2) Kσc in
letb cf , σc = out_check#(cf , σc) in
c↪→p

](cf , σp, σc)

Figure 11.3: C call from Python

E#
p×c

JPyLong_FromLong(vc) K(σp, σc) =

letb vu, σp, σc = E#numJ vc K(σp, σc) in
p↪→c

]
(
E#pJ int(vc) K(σp), σc

)
Figure 11.4: Conversion from C long to Python integer

E#
p×c

JPyTuple_GetItem(o, i) K(σp, σc) =

letb op, σp, σc = c↪→p
](o, σp, σc) in

letb ip, σp, σc = c↪→p
] ◦ E#

p×c
JPyLong_FromSsize_t(i) K(σp, σc) in

letb rp, σp, σc = E#pJ tuple.__getitem__(op, ip) K(σp, σc) in
if σp = (cur, _, _) then p↪→c

](rp, σp, σc)

else convert_err#(σp, σc)

E#
p×c

JPyTuple_Size(o) K(σp, σc) =

letb op, σp, σc = c↪→p
](o, σp, σc) in

letb lp, σp, σc = E#pJ tuple.__len__(op) K(σp, σc) in
if σp = (cur, _, _) then
letb lc, σp, σc = p↪→c

](lp, σp, σc) in E#
p×c

JPyLong_AsSsize_t(lc) K(σp, σc)

else convert_err#(σp, σc)

convert_err#(σp, σc) =
let exn e, εp, ηp = σp in
letb ec, σp, σc = p↪→c(e, (cur, εp, ηp), σc) in
NULL, σp,S#cJPyErr_SetNone(ec) Kσc

Figure 11.5: Tuple access and length semantics, from C

222 Chapter 11 – Multilanguage Value Analysis

11.2.3 Conversion from a C long to a Python integer

The conversion from a C long to a Python integer, shown in Figure 11.4, is close to the concrete
definition Figure 10.10. We explicitly ask for the numerical domain to evaluate the C expression
vc into a mathematical expression vu. This expression is then passed to the constructor of
Python integers, and the boundary is applied afterward.

11.2.4 Tuple conversions

The tuple conversions were defined in the concrete in Figure 10.11. We show the definition in
the abstract in Figure 11.5. These functions have exactly the same structure.

11.3 Examples
This section provides detailed examples of the analyses of the Counter instantiation (i.e., the
call to Counter(), at line 4 of Listing 9.1), the counter access (c.counter, at line 8 of Listing 9.1).
We end by briefly discussing the use of an underlying relational numerical domain.

Example 11.3 Counter instantiation
We show an example of Counter instantiation in Figures 11.6 and 11.7 (corresponding to
line 4 of Listing 9.1). We focus solely on the expressions and statements analyzed, and do
not display how the state evolves for the sake of concision. The domain handling Python
calls (Figure 6.19 in the concrete) evaluates the caller, and then the __call__method of the
caller’s class (here, type, since the caller is a class). The domain handling calls to methods
of the type class catches the evaluation of type.__call__ (Figure 6.37 in the concrete).

It starts by calling the class creation method, which is a Python function implemented
in C, called tp_new_wrapper (as shown in Figure 10.5). We reuse the notation 〈@], e〉 of
Chapter 8 to denote a Python object having for abstract address @] and having an optional
builtin value described by expression e. This call is handled by the multilanguage domain,
and its transfer function was shown in Figure 11.3. We omit the output checks. This domain
starts by applying the boundary function to the first argument, and to the second argument
bundled into a tuple object (whose resulting address is named@]

tuple). In the C semantics, a
returned address having no offset will be shown without it. We omit the evaluations created
by these boundaries for the sake of concision. In the end, the domain handling calls of C
functions is called, to analyze the C implementation of tp_new_wrapper. This function extracts
the first element of the tuple to call its tp_new field (lines 6058 and 6089 of the link). In the
Counter class, this field is resolved (Figure 10.5) into the builtin function PyType_GenericNew,
itself calling PyType_GenericAlloc. In the abstract, the size computation is done as in the
source code (line 1011), but the allocation (lines 1014-1017) is handled by a builtin: we can
thus ask the recency abstraction to allocate an address with the correct nominal type. We
call this address @]

Inst(Counter). We apply the Python to C boundary to this address in order
to ensure that it is well-formed on the C side. The boundary has been formally defined in
Figure 11.1. The effects of this boundary are to set the ob_type field of the structure to the
parent type, and the size of the struct. At the end of the call to tp_new_wrapper, the C to
Python boundary is applied.

Once the instance has been created using __new__, we call the initialization method
__init__ (now in Figure 11.7). In the case of the Counter class, this method points to
an instance of a wrapper_descriptor (abbreviated wd), as shown in Figure 10.5. These
objects are used to wrap checking code around C functions (Remark 10.10). In this case,
the descriptor calls the function wrap_init, whose source code is directly handled by the
C analysis. In turn, this function calls CounterInit (Listing 9.2), which sets the counter to

https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6036
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L1035
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L1008
https://github.com/python/cpython/tree/3.8/Objects/typeobject.c#L6026

11.3 – Examples 223

E#callJ Counter() Kσ]

E#envJ Counter Kσ]

〈@]
CClass Counter,⊥〉

E#typeJ type.__call__(〈@
]
CClass Counter,⊥〉) Kσ]

E#attrsJ 〈@
]
CClass Counter,⊥〉.__new__(〈@

]
CClass Counter,⊥〉) Kσ]

E#typeJ type.__getattribute__(〈@
]
CClass Counter,⊥〉, "__new__") Kσ]

E#heapJget_field(〈@
]
CClass Counter,⊥〉, "__new__") Kσ]

〈@]
CFun tp_new_wrapper,⊥〉

Ep×cJ 〈@
]
CFun tp_new_wrapper,⊥〉(〈@

]
Class type,⊥〉, 〈@

]
CClass Counter,⊥〉) Kσ]

p↪→c
](〈@]

Class type,⊥〉, σ
])

@]
Class type

p↪→c
] ◦ E#tupleJ tuple(〈@

]
CClass Counter,⊥〉) Kσ]

@]
tuple

E#callJ tp_new_wrapper(@
]
Class type,@

]
tuple, NULL) Kσ]

Ep×cJ PyTuple_GetItem(@
]
tuple, 0) Kσ]

p↪→c
] ◦ E#tupleJ tuple.__getitem__(〈@

]
tuple,⊥〉, 0) Kσ]

@]
CClass Counter

E#cellsJ@
]
CClass Counter->tp_new Kσ]

PyType_GenericNew
E#callJ PyType_GenericNew(@

]
CClass Counter, NULL, NULL) Kσ]

E#callJ PyType_GenericAlloc(@
]
CClass Counter, 0) Kσ]

E#memJalloc_addr(Inst(@]
CClass Counter)) Kσ]

@]
Inst(Counter)

E#cellsJ@
]
Inst(Counter)->ob_type = type Kσ]

E#resourcesJbytes(@
]
Inst(Counter)) = sizeof(PyObject) Kσ]

p↪→c
]

@]
Inst(Counter)

c↪→p
](@]

Inst(Counter), σ
])

〈@]
Inst(Counter),⊥〉

E#attrsJ 〈@
]
CClass Counter,⊥〉.__init__(@

]
Inst(Counter)) Kσ]

〈@]
Inst(NoneType),⊥〉 (Detailed evaluation shown in Figure 11.7)

〈@]
Inst(Counter),⊥〉

Figure 11.6: Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) – part 1

224 Chapter 11 – Multilanguage Value Analysis

0 (omitted in the diagram here), and returns 0. Since the return code was non-negative,
wrap_init considers the execution has been successful and returns None. The conversion
of None is then handled by the boundary at the end of the C function call from Python.

E#callJ Counter() Kσ]

E#envJ Counter Kσ]

〈@]
CClass Counter,⊥〉

E#typeJ type.__call__(〈@
]
CClass Counter,⊥〉) Kσ]

E#attrsJ 〈@
]
CClass Counter,⊥〉.__new__(〈@

]
CClass Counter,⊥〉) Kσ]

〈@]
Inst(Counter),⊥〉 (Detailed evaluation shown in Figure 11.6)

E#attrsJ 〈@
]
CClass Counter,⊥〉.__init__(@

]
Inst(Counter)) Kσ]

E#typeJ type.__getattribute__(〈@
]
CClass Counter,⊥〉, "__init__") Kσ]

E#heapJget_field(〈@
]
CClass Counter,⊥〉, "__init__") Kσ]

〈@]
Inst(wd),⊥〉

Ep×cJ wd.__call__(〈@
]
Inst(wd),⊥〉, tuple(〈@

]
Inst(Counter),⊥〉)) K

E#callJ wrap_init(@
]
Inst(Counter),@

]
tuple,&CounterInit, NULL) Kσ]

E#callJ CounterInit(@
]
Inst(Counter),@

]
tuple, NULL) Kσ]

0
Ep×cJ Py_None K

@]
Inst(NoneType)

c↪→p
](@]

Inst(NoneType), σ
])

〈@]
Inst(NoneType),⊥〉

〈@]
Inst(Counter),⊥〉

Figure 11.7: Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) – part 2

Example 11.4 Counter access
We show how the counter value is fetched from the C side and converted to a Python
integer in Figure 11.8 (corresponding to line 8 of Listing 9.1). The attribute domain (pre-
sented in the concrete in Figure 6.10, and in the abstract in Figure 7.7) handles the first
evaluation. It starts by evaluating the left-hand side, yielding the counter instance in our
case. Then, the __getattribute__ method of the object class is used to search for the
attribute. Its semantics is described in the concrete in Figure 6.31. The attribute exists in
the class, it returns an instance of the member_descriptor class (abbreviated md). Since
the member_descriptor class has __get__ and __set__ attributes, it is a data descriptor.
Thus, we call the __get__ function of the descriptor. This call is handled by the multilan-
guage domain. It performs the necessary calls to the boundary functions for the parameters
(omitted in the diagram), and calls the builtin member_get function. In turn, this function will
call the builtin PyMember_GetOne. We show the statements performed during the execution of
PyMember_GetOne. We start with the parameters’ assignments. Then, the addr pointer has

https://github.com/python/cpython/tree/3.8/Objects/descrobject.c#L141
https://github.com/python/cpython/tree/3.8/Python/structmember.c#L9

11.3 – Examples 225

its offset changed by what was provided in the member_descriptor definition (Figure 10.5).
In that case, the type of data descriptor is T_INT, and PyLong_FromLong is called to trans-
form the C integer into a Python integer. The abstract transfer function was defined in
Figure 11.4. Then, the Python integer object is passed through the boundary and returned.

E#attrsJ c.counter Kσ]

E#envJ c Kσ]

〈@]
Inst(Counter),⊥〉

E#objectJ object.__getattribute__(〈aicount,⊥〉, "counter") Kσ]

E#typeJ type(〈@
]
Inst(Counter),⊥〉) Kσ]

〈@]
CClass Counter,⊥〉

E#heapJmro_search(〈@
]
CClass Counter,⊥〉, "counter") Kσ]

〈@]
Inst(md),⊥〉

E#attrsJhasattr(type(〈@
]
Inst(md),⊥〉), "__get__") Kσ]

〈bool](True), 1〉
E#attrsJhasattr(type(〈@

]
Inst(md),⊥〉), "__set__") Kσ]

〈bool](True), 1〉
Ep×cJ md.__get__(〈@

]
Inst(md),⊥〉, 〈@

]
Inst(Counter),⊥〉, 〈@

]
CClass Counter,⊥〉) Kσ]

p↪→c
](〈@]

Inst(md),⊥〉, σ
])

E#cellsJ@
]
Inst(md)->ob_type =@]

Class(md) Kσ]

E#resourcesJbytes(@
]
Inst(md)) = sizeof(PyObject) Kσ]

@]
Inst(md)

p↪→c
](〈@]

Inst(Counter),⊥〉, σ
])

@]
Inst(Counter)

p↪→c
](〈@]

CClass Counter,⊥〉, σ
])

@]
CClass Counter

E#callJ member_get(@
]
Inst(md),@

]
Inst(Counter),@

]
CClass Counter) Kσ]

E#callJ PyMember_GetOne(@
]
Inst(Counter),@

]
Inst(md)->d_member) Kσ]

S#cellsJ addr =@]
Inst(Counter); l =@]

Inst(md)->d_member; Kσ
]

S#cellsJ addr += l->offset; Kσ]

Ep×cJ PyLong_FromLong(∗addr) Kσ]

@]
int]

c↪→p
](@]

int] , σ
])

〈@]
int] , int(@

]
int])〉

Figure 11.8: Sequence diagram of the analysis of Counter access (Listing 9.1, line 8)

226 Chapter 11 – Multilanguage Value Analysis

Remark 11.5 Relational analysis
Sharing the address allocation and numerical abstractions allows expressing relational
invariants between the languages. In the example in Listing 11.2, a non-relational anal-
ysis would be able to infer that 0 ≤ i ≤ 99, but it cannot infer that the number of
calls to incr is finite. It would thus infer that −231 ≤ r < 231, report an overflow er-
ror and be unable to prove the assertion at the end. The value of r originates from the
C value of the count field in the instance defined in c. With a relational analysis where
C and Python variables are shared in the numerical domains, it is possible to infer that
int(@]

int]) + 1 = int(H@Counter, 16, intI). int(@]
int]) is the numeric value of the integer

bound to i. int(H@Counter, 16, intI) is the numerical value of the Counter instance (i.e., the
value of count in the Counter struct, here represented as the cell [107] referenced by the
Counter instance, at offset 16 being a 32-bit integer). Our analyzer is able to prove that the
assertion holds using the octagon abstract domain [108].

Listing 11.2: Program where relationality between languages improves precision
1 import counter
2 from random import randint
3
4 c = counter.Counter()
5 for i in range(randint(1, 100)):
6 c.incr()
7 r = c.counter
8 assert(r == i+1)

11.4 Concretization & soundness

Definition 11.6 Multilanguage concretization
We assume we have relational concretization functions for the Universal, Python and C
domains:

γU (σ
]
u) ∈ P(Σu))

γP (σ
]
p) ∈ P(P(Σu)× P(Σp))

γC(σ
]
c) ∈ P(P(Σu)× P(Σc))

The overall multilanguage concretization ensures that the concretizations of Python and
C rely on the same concretized universal state Su.

γ(σ]u, σ
]
p, σ

]
c) = { (σp, σc) | ∃Su, Su ⊆ γU (σu)

(Su, σp) ∈ γP (σ]p)
(Su, σc) ∈ γC(σ]c) }

Theorem 11.7 Soundness of the multilanguage analysis
Assuming the underlying abstract semantics of Python and C are sound, the multilanguage
analysis is sound.

11.5 – Implementation 227

Proof. The cases delegating to either the Python or the C language are straightforward,
since we assume that the underlying analyses are sound. The only cases left in the sound-
ness proof are those of the operators working at the boundary. Since the abstract seman-
tics of those operators is in point-to-point correspondence with the concrete semantics,
the soundness proof is straightforward. �

11.5 Implementation

We have implemented our multilanguage analysis within Mopsa. We were able to reuse off-the-
shelf value analyses of C programs [121] and Python programs (the value analysis of Chapter 8)
already implemented into Mopsa. The only modification needed was to add a multilanguage
domain, implementing the semantics of the operators at the boundary shown in Chapter 10.

11.5.1 Configuration

The configuration for the multilanguage analysis is shown in Figure 11.9. The multilanguage
domain is at the top. It dispatches statements not operating at the boundary to the underlying
Python or C analysis. The Python and C analyses are in a cartesian product, ensuring that when
a statement goes through them, it will be handled by only one of the two sub-configurations.
Both Python and C analyses share the underlying “universal” domains, to which they can del-
egate some statements. Sharing the recency abstraction allows to share the domain of both
heap abstractions. The numerical abstraction displayed here only uses intervals, but it can
be changed to a reduced product between a relational domain and intervals, as we used in
Remark 11.5.

C configuration. The first two lines of the C configuration are iterators handling parts of the
C syntax. Each variable or abstract heap block is then decomposed into a set of auxiliary vari-
ables called cells, by domain “C.cells”. This domain uses the cell abstraction of Miné [107]. It
handles transparently union types and type-punning. The decomposition in cells is adapted
dynamically according to the actual access patterns during the execution (since the static type
can be deceiving in C). The cell domain can be put in a reduced product with a string abstrac-
tion, “C.strings”, such as the one presented by Journault et al. [81], tracking the position of 0
in character arrays. Both domains rewrite expressions into dereference-free expressions on
scalar variables. These are handled by a Cartesian product:

• “C.machineNum” translatesmachine integer arithmetic with overflows andwrap-arounds,
into mathematical arithmetic;

• “C.pointers” translates pointer arithmetic into byte-offset arithmetic while maintaining in
its internal abstract state the bases (i.e. pointed-to variables) of each pointer.

Both these domains collaborate to rewrite scalar expressions into expressions on mathemati-
cal integers, which are then handled natively by classic numerical abstract domains.

Implementation’s length. This multilanguage domain consists in 2,500 lines of OCaml code
(measured using the cloc tool), implementing 64 builtin functions such as the ones presented
in the concrete semantics. This is small compared to the 11,700 lines of OCaml for the C analysis
and 12,600 lines of OCaml for the Python analysis. These domains rely on “universal” domains
representing 5,600 lines of OCaml and a common framework of 13,200 lines of OCaml.

228 Chapter 11 – Multilanguage Value Analysis

CPython

×

Py.program # Py.desugar # Py.flow #

Py.libraries # Py.data_model # Py.objects #

×

Py.environment Py.heap

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Figure 11.9: Multilanguage configuration in Mopsa

CPython builtins. In addition to the 64 builtins handled by the multilanguage domain, we
reuse the C implementation of 60 CPython functions as-is. Potential runtime errors in the API
implementation modeled by our concrete semantics as builtins cannot be detected. Assuming
that the CPython implementation is correct is a reasonable assumption, as we want to verify
client C and Python code. We ensure in our implementation that these builtins are called with
valid arguments. However, for the part of the API where our implementation uses the original C
implementation, runtime errors would be detected. Currently, half of the API supported reuses
the original code of the interpreter.

11.5.2 Build setup

We described how native Cmodules can be compiled for Python, through a setup.py file relying
on the setuptools library in Section 9.1.8. This build system may be complex and impact the
analyzed source code. Both the developer and the setuptools library may define compilation
flags affecting the source code (e.g., by defining macros), include system (or Python) headers
and link with different libraries. We rely on an internal tool call mopsa-build to record the
C source files and the related compilation flags. Using this tools, we just have to call mopsa-
build python3 setup.py instead of python3 setup.py, before running our analysis. mopsa-
build intercepts calls to the compiler and to the linker, in order to record these pieces of
information. The C frontend of Mopsa, based on clang, is then able to process the recorded
pieces of information. mopsa-build was originally designed to ease the analysis of C programs
using a build system.

11.6 – Experimental evaluation 229

11.6 Experimental evaluation

11.6.1 Corpus selection

In order to perform our experimental evaluation, we selected six popular Python libraries from
GitHub (having in average 412 stars). These libraries are written in C and Python and do not
have external dependencies. The noise library [49] aims at generating Perlin noise. Libraries
levenshtein, ahocorasick, cdistance [67, 117, 103] implement various string-related algo-
rithms. llist [72] defines linked-list objects (both single and double ones). bitarray [134]
provides an implementation for efficient arrays of bits. Our analysis is context-sensitive in or-
der to perform a precise value analysis. Thus, we needed some client code to analyze those
libraries. We decided to analyze the tests defined by those libraries: they should cover most
use-cases of the library, and ensure that the transition between Python and C are frequent,
which is ideal to stress-test our analysis. Some libraries (noise, bitarray, and llist) come
with example programs with less than 50 lines of code that we analyze within 15 seconds. We
have not been able to find applications with a well-defined entry point using those libraries
(or they had big dependencies such as numpy). Our experimental evaluation thus focuses on
the analysis of the libraries’ tests.

Library |C| |Py| Tests CLOCK Check-Circlec Check-Circlep Assert. Py!C

noise 722 675 15/15 19s 99.6% (4952) 100.0% (1738) 0/21 6.6
ahocorasick 3541 1336 46/92 59s 93.1% (1785) 98.0% (4937) 30/88 5.4
levenshtein 5441 357 17/17 1.6m 79.9% (3106) 93.2% (1719) 0/38 2.7
cdistance 1433 912 28/28 1.9m 95.3% (1832) 98.3% (11884) 88/207 8.6
llist 2829 1686 167/194 4.3m 99.0% (5311) 98.8% (30944) 235/691 51.7
bitarray 3244 2597 159/216 4.6m 96.3% (4496) 94.6% (21070) 97/374 14.9

Figure 11.10: Analysis results of libraries using their unit tests

11.6.2 Analysis results

We show the results of our analysis in Figure 11.10. The column |C| (resp. |Py|) shows the lines of
code in C (resp. Python), measured using the cloc tool. The Python code corresponds mainly
to the tests. It may also include Python library code creating custom classes, built upon C
classes. For example, frozenbitarray is defined in Python, on top of the bitarray class. The
“tests” column shows the number of tests we are able to analyze, compared to the total num-
ber of tests defined by the library. The CLOCK column shows the time taken to analyze all the
tests. ColumnsCheck-Circlec (resp. Check-Circlep) show the selectivity of our analysis – the number of safe oper-
ations compared to the total number of runtime error checks, the latter being also displayed
in parentheses – performed by the analyzer for C (resp. Python). The selectivity is computed
by Mopsa during the analysis, as we explained in Remark 3.14. The C analysis checks for run-
time errors including integer overflows, divisions by zero, invalid memory accesses and invalid
pointer operations. The Python analysis checks also for runtime errors, which include un-
caught AttributeError, TypeError, ValueError exceptions. Runtime errors happening at
the boundary are considered as Python errors since they will be raised as Python SystemError
exceptions. The second to last column shows the number of functional properties (expressed
as assertions) defined by the tests that our analyzer is able to prove correct automatically. The
last column shows the number of transitions between the analyzed Python code and the C
code, averaged per test.

We observe that Mopsa is able to analyze these libraries in a few minutes with high selec-
tivity for the detection of Python and C runtime errors. Our analysis is able to detect some bugs

https://github.com/caseman/noise
https://github.com/ztane/python-Levenshtein/
https://github.com/WojciechMula/pyahocorasick
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/caseman/noise
https://github.com/ilanschnell/bitarray
https://github.com/ajakubek/python-llist
https://github.com/caseman/noise
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray

230 Chapter 11 – Multilanguage Value Analysis

that were previously known. For example, the ahocorasick module forgets to initialize some
of its iterator classes, and some functions of the bitarray module do not set an exception
when they return an erroneous flag, raising a SystemError exception. We have not manually
checked if unknown bugs were detected by our analysis, and we do not know either how many
alarms are false alarms. We have instrumented Mopsa to display the number of crossings
(from Python to C, or C to Python). The average number of crossings per test is shown in the
last column of Figure 11.10. The minimal number of crossings is one per test. Thus these tests
seem correct to benchmark our approach since they all alternate calls to native C code and
Python code.

The multilanguage analysis is limited by the current precision level of the underlying C and
Python analyses but would naturally benefit immediately from any improvements in these.
However, we focused on the multilanguage domains only in this study. We leave as future work
the improvements required independently on the C and Python analyses for our benchmarks.
We now describe a few areas where the analysis could benefit from improvements. Mopsa is
unable to support some tests for now, either because they use unsupported Python libraries
or because the C analysis is too imprecise to resolve some pointers. The unsupported tests
of the ahocorasick analysis are due to imprecisions in the C analysis, which is not able to
handle a complex trie data structure being stored in a dynamic array and reallocated over and
over again. In llist, some tests use the getrefcount method of the sys module, which is
unsupported (and related to CPython’s reference-based garbage collector, which we do not
support). In addition, some tests make pure-Python classes inherit from C classes: this is
currently not supported in our implementation, but it is an implementation detail that will
be fixed. For the bitarray tests, tests are unsupported because they use the unsupported
pickle module performing object serialization, or they use the unsupported sys.getsizeof
method, or they perform some unsupported input-output operations in Python. In addition,
the C analysis is too imprecise to resolve some pointers in 18 tests.

The selectivity is lower in the C analysis of levenshtein, where dynamic arrays of structures
are accessed in loops: the first access at tab[i].x may raise an alarm and continue the anal-
ysis assuming that i is now a valid index access. However, subsequent accesses to tab[i].y,
tab[i].z will also raise alarms as the non-relational numerical domain is unable to express
that i is a valid index access. Proving the functional properties is more challenging and not the
main goal of our analysis, which aims at detecting runtime errors. For example, the assertions
of the noise library check that the result of complex, iterative non-linear arithmetic lies in
the interval [−1, 1]. Some assertions in the llist or bitarray library aim at checking that
converting their custom container class to a list preserves the elements. Due to the smashing
abstraction [14] of the Python lists, we cannot prove these assertions.

11.7 Related work

11.7.1 Native code analysis

Someworks focus on analyzing native C code in the context of language interoperability without
analyzing the host language. Tan and Croft [145] perform an empirical study of native code use
in Java and provide a classification by bug patterns; a similar study has been performed by Hu
and Zhang [70] for the Python/C API. Kondoh and Onodera [85] check that native calls to Java
methods should handle raised exceptions using a typestate analysis. Li and Tan [92] ensure
that the native control-flow is correctly interrupted when a Java exception is raised. The work
of Li and Tan [93, 95] infers which Java exceptions may be raised by JNI code, allowing the
exception type-safety property of Java programs to be extended to the JNI. CpyChecker [99] is
a GCC plugin searching for common erroneous patterns in C code using the CPython API. Two
works [94, 100] aim at detecting reference counting errors in C code using the CPython API.
Brown et al. [20] define specialized analyses for specific patterns of C++ interoperability that

https://github.com/WojciechMula/pyahocorasick
https://github.com/ilanschnell/bitarray
https://github.com/WojciechMula/pyahocorasick
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/ztane/python-Levenshtein/
https://github.com/caseman/noise
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray

11.7.2 –Multilanguage analyses 231

may jeopardize type or memory safety of JavaScript. Contrary to these works, we analyze both
host and guest languages.

11.7.2 Multilanguage analyses

Buro et al. [24] define a theory based on abstract interpretation to combine analyses of different
languages, and show how to lift the soundness property to the multilanguage setting. They
provide an example of multilanguage setting where they combine a toy imperative language
with a bit-level arithmetic language. The notion of boundary functions used in their work
performs a full translation from the state of one language to the other. Our semantics works
on the product of the states, although it can be seen as an abstraction of the semantics of
C and Python, where the boundary performs a full state conversion (but the boundary from
Python to C would be a concretization). From an implementation standpoint, our approach
avoids costly state conversions at the boundary and allows sharing some abstract domains.

Chipounov et al. [29] perform symbolic execution of binaries, thus avoiding language con-
siderations. Their approach is extended by the work of Bucur et al. [21], which supports any
interpreted language by performing symbolic execution over the interpreter. Our approach is
more costly to implement since we do not automatically lift the interpreter’s code to obtain
our analyzer. Thanks to its higher-level, we think our approach should be more precise and
efficient.

The next works compute summaries of the effects of native code on the chosen abstract
property in a bottom-up fashion. Those effects are then translated into the host language,
where a standard analyzer for the host language can then be used, since the native code has
been removed. The use of summaries to convey the abstract meaning of functions makes it
easier to rely on independent analyzers for each langage. However, the language and prop-
erties we target require precise context-sensitive value analyses that are difficult to perform
bottom-up. Since Python is a dynamic programming language with a flexible semantics, it is not
possible to analyze programs precisely in a context-insensitive fashion. Additionally, a precise
description of the Python heap at a native call is mandatory to analyze the called C code, check
for pointer errors, and infer effects. Tan and Morrisett [146] compile C code into an extended
JVML syntax form, allowing the use of the bug-finding tool Jlint afterwards. Furr and Foster
[57, 58, 59] perform inference of OCaml and Java types in C FFI code, which they crosscheck
with the types used in the client OCaml/Java code. They assume there are no out-of-bounds
accesses and no type casting in the C code. An inter-language, bottom-up taint analysis for Java
and native binary code in the setting of Android applications is proposed by Wei et al. [155].
Lee et al. [90] aim at detecting wrong foreign function calls and mishandling of Java exceptions
in Java/JNI code. They extract summaries of the Java callbacks and field accesses from the JNI
code using Infer, transform these summaries into Java code, and call the FlowDroid analyzer
on the whole. Contrary to these works, our analyzer supports both languages, and it switches
between languages just as the real execution does. The properties we target require precise
context-sensitive value analyses that are difficult to perform bottom-up.

11.7.3 Library analyses

Previous work aims at analyzing libraries with no access to their client code [1, 130] using a
“most-general client”. The work of Kristensen andMøller [87] refines the notion of most-general
client in the setting of dynamic programming languages. However, it focuses on libraries where
functions are typed. Python libraries are not explicitly typed. Extending their work to our
untyped, multilanguage setting is left as future work.

232 Chapter 11 – Multilanguage Value Analysis

11.8 Conclusion
We have defined and implemented a multilanguage analysis for Python programs with native C
extensions using the Python/C API. Our analyzer is able to reuse value analyses of Python and C
off-the-shelf. It shares the address allocation and numerical abstractions between the Python
and C abstract domains. We are able to analyze within a fewminutes real-world Python libraries
written in C and having up to 5,500 lines of code. Future work includes analyzing programs using
the other interoperability mechanisms mentioned in Chapter 9, as well as having a relational
analysis that scales. An interesting application of this work would be to verify (or even infer)
type annotations of the standard library modules, currently created manually and distributed
within the typeshed [152] project.

Part V

Conclusion & Future Work

12

Conclusion & Future Work

This thesis aims at developing and implementing techniques for the static analysis of Python
programs.

We have defined the concrete semantics of a large subset of Python, and focused on mak-
ing it explainable by providing references to the actual implementation’s source code, for each
case of the semantics. We built upon this semantics to define a concrete multilanguage se-
mantics of Python programs with native C modules relying on the Python/C API as the inter-
operability mechanism.

The recency abstraction, handles dynamic memory allocations. It was originally tailored
for the analysis of low-level code, and subsequently extended to other languages such as
JavaScript [74], [124]. We have implemented different allocation-site sensitivities adapted to
the analysis of Python programs and its dual type system. We have focused on defining coarse
containers abstractions, that work by delegation over scalars domains, and handle dynamic
length and heterogeneous types. We have built upon these abstractions to define both a
type analysis and a relational value analysis of Python programs. We have compared the type
analysis and the value analysis, and noticed that the value analysis does not remove any type-
related errors in our benchmarks. In addition, we have built upon Python’s value analysis and
a C analysis of Ouadjaout and Miné [121] to define a multilanguage analysis of Python and C
programs. To the best of our effort, we have strived to build a sound analyzer: except for some
features for the Python language that are explicitly not supported (in which case, their use is
reported by the analysis), we did not deliberately omit any aspect of the concrete semantics
and we performed sound-by-design abstractions without compromise. We took care to link our
semantic to the CPython source code and checked the analysis with over 700 conformance tests
from various sources (including a fragment of CPython’s tests). A more formal and complete
proof of soundness of the abstract semantics with respect to the concrete one, and more
extensive tests with respect to CPython would however provide more confidence, and are left
for future work.

All the abstractions we used have been definedmodularly, in order to ensure loose-coupling
and cooperation between abstract domains, which we believe is crucial to define precise, re-
lational analyses. We have also taken care to define relational concretization functions mod-
ularly.

These abstractions have been implemented into Mopsa. The implementation of our type
and value analyses scale to real-world benchmarks used by Python developers to test the
performance of their interpreter. This thesis culminated with the multilanguage analysis, which
is able to analyze tests of popular, real-world libraries relying on the Python/C API.

There are plenty of future directions left to be explored:

236 Chapter 12 – Conclusion & Future Work

. Modular domains and soundness proofs. Starting from Chapter 2, we have focused on the
development of relational and modular abstract domains. We have also defined con-
cretization operators modularly, in order to make them more compact and loosely cou-
pled. It would be interesting to define other classical abstractions in this framework
(disjunctive analyses, shape analyses, …) prior to their implementation into Mopsa. An-
other future work is to prove the soundness of each domain modularly, independently
of the other abstract domains used in the configuration.

. Executable concrete semantics of Python. The concrete semantics shown in Chapter 6 is not
executable in itself. We currently test it through Python’s value analysis, which is a close
implementation that may perform overapproximations. It would thus be interesting to
have a concrete interpreter mode in Mopsa, or to develop a reference semantics that
is executable. In the case of the latter option, several formalisms exist, such as the K
framework [133], or skeletal semantics [17]. Another point is that we have only tested
our semantics against handcrafted test cases from previous researchers working on the
semantics of Python, and from Python’s developers. In the case of a reference implemen-
tation, it would be interesting to have automatic test case generation that would provide
more complete coverage of the defined semantics, and compare it with CPython.

. Unsupported features of Python. Our analyses ignore finalizers defined in __del__ meth-
ods, and does not support dynamic code evaluation through eval and exec. We have
not encountered these cases in our analysis. Any attempt to support those features
would start by studying precisely the context in which those features are used. It would
also be interesting to support the asynchronous functions of Python. Mopsa does not
support the analysis of recursive functions for now; its framework has to be modified to
address this limitation.

. Dictionary abstractions. We have defined coarse dictionary abstractions in Chapter 5, that
lead to imprecisions, as shown in Chapters 7 and 8. These abstractions are currently one
of the limiting factors of the analyses’ precision. More precise dictionary abstractions
are thus an important future work. It would first require a deeper understanding of
dictionaries’ uses in Python programs. It might be interesting to adapt previous tree
abstractions, such as the segmented tree abstraction of Cousot et al. [36].

. Packing strategies. Value analyses require packing strategies to reduce the computational
cost of relational abstract domains such as octagons or polyhedra. We have presented
a simple static packing in Chapter 8. It would however be nice to have more dynamic
packing strategies. In addition, the static packing presented had to assume what kind
of auxiliary variables were defined by other domains, which goes against Mopsa’s loose
coupling of domains, where a minimal number of assumptions have to be made over
domains. A language-agnostic approach to packing could also be applied in the case of
multilanguage analyses.

. Function summaries. Functions are analyzed by inlining them, which is costly and repetitive
for those that are called a high number times in a program. We have developed a sim-
ple caching solution in Chapter 7. Analyzing a function in isolation is already difficult in
the setting of a static programming language such as C, and has been previously studied
by Journault [80] for example. In particular, these analyses have to make assumptions
on the target of each pointer. In the case of a dynamic programming language such as
Python, the complex semantics would require much stronger assumptions. It would how-
ever be interesting to have partial function summaries, paving the way for performance
improvement, and less global analyses – as we have currently only explored whole pro-
gram analyses, requiring the full calling context to work. We would also gain support for

Chapter 12 – Conclusion & Future Work 237

the analysis of recursive functions, which are not supported in Mopsa for now. Together
with library analyses, we believe these two points are the most important objectives in
order to improve scalability.

. Library analyses. Our current approach focuses on whole-program analyses. Most Python
applications rely on libraries. We have relied on a way to handle Python’s type annota-
tions in Chapter 7. This allowed us to easily support libraries by leveraging public anno-
tations available from the typeshed [152] project. However, using type annotations added
additional assumptions to the soundness of our analysis. In addition, these annotations
are not always available. It would thus be interesting to develop alternative techniques to
handle libraries and to analyze them. In the case of the multilanguage analysis, it would
be interesting to instrument our implementation to verify (or infer) type annotations of
the standard library, thus giving back to the typeshed [152] project.

. Other analysis settings. Our work has focused on the analysis of Python programs, enhanced
with C code in the case of Part IV. It would be interesting to check how the techniques we
developed would have to be adapted in the analysis of other programming languages,
and other multilanguage settings.

Bibliography

[1] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. Combining type-analysis
with points-to analysis for analyzing Java library source-code. In SOAP@Programming
Languages Design and Implementation (PLDI), 2015.

[2] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a
step towards reconciling dynamically and statically typed OO languages. In Dynamic
Languages Symposium (DLS), 2007.

[3] Vincenzo Arceri and Isabella Mastroeni. Analyzing dynamic code: A sound abstract inter-
preter for Evil eval. ACM Trans. Priv. Secur., 2021.

[4] Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated stor-
age. In Static Analysis Symposium (SAS), 2006.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finoc-
chi. A survey of symbolic execution techniques. ACM Comput. Surv., 2018.

[6] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker With-
ington. A monotonic superclass linearization for Dylan. In OOPSLA, 1996.

[7] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy,
and Virgile Prevosto. ACSL: ANSI/ISO C specification. URL https://frama-c.com/html/
acsl.html.

[8] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai
Kosmatov, André Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky
Williams. The dogged pursuit of bug-free C programs: the Frama-C software analysis
platform. Commun. ACM, 2021.

[9] David M. Beazley and the SWIG developers. Swig, simplified wrapper and interface gen-
erator. http://www.swig.org/, 2021. Accessed: 2021-08.

[10] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois Puget. Re-
vising hull and box consistency. In International Conference on Logic Programming (ICLP),
1999.

[11] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Static analysis and verification of aerospace software by abstract
interpretation. Foundations and Trends in Programming Languages, 2015.

[12] Dirk Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), 2021.

[13] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. RacerD: composi-
tional static race detection. Proc. ACM Program. Lang., 2018.

https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html
http://www.swig.org/

240 Bibliography

[14] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software. In The Essence
of Computation, 2002.

[15] Sandrine Blazy, David Bühler, and Boris Yakobowski. Structuring abstract interpreters
through state and value abstractions. In Verification, Model Checking, and Abstract In-
terpretation (VMCAI), 2017.

[16] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A trusted mechanised JavaScript
specification. In Principles of Programming Languages (POPL), 2014.

[17] Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. Skeletal semantics
and their interpretations. Proc. ACM Program. Lang., 2019.

[18] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In Formal Meth-
ods in Programming and Their Applications, 1993.

[19] Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis:
Better together. In International Symposium on Software Testing and Analysis (ISSTA),
2009.

[20] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson R. Engler, Ranjit Jhala, and Deian
Stefan. Finding and preventing bugs in JavaScript bindings. In IEEE Symposium on Security
and Privacy (SP), 2017.

[21] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping symbolic execution en-
gines for interpreted languages. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2014.

[22] David Bühler. Structuring an Abstract Interpreter through Value and State Abstrac-
tions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un interpréteur abstrait
au moyen d’abstractions de valeurs et d’états :Eva, une analyse de valeur évoluée pour
Frama-C). PhD thesis, University of Rennes 1, France, 2017.

[23] Samuele Buro and Isabella Mastroeni. On the multi-language construction. In European
Symposium on Programming (ESOP), 2019.

[24] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. On multi-language abstraction -
towards a static analysis of multi-language programs. In Static Analysis Symposium (SAS),
2020.

[25] Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinetzky, and Xavier Rival.
Shape analysis. Foundations and Trends in Programming Languages, 2020.

[26] Rebecca Chen and the Pytype development team. Pytype. https://github.com/google/
pytype, 2021. Accessed: 2021-08.

[27] Marc Chevalier. Proving the security of software-intensive embedded systems by abstract
interpretation. PhD thesis, Ecole Normale Supérieure, Paris Science et Lettres, France,
2020.

[28] Marc Chevalier and Jérôme Feret. Sharing ghost variables in a collection of abstract
domains. In Verification, Model Checking, and Abstract Interpretation (VMCAI), 2020.

https://github.com/google/pytype
https://github.com/google/pytype

Bibliography 241

[29] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a platform for in-vivo
multi-path analysis of software systems. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2011.

[30] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 1986.

[31] EdmundM. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2004.

[32] Patrick Cousot. Types as abstract interpretations. In Principles of Programming Lan-
guages (POPL), 1997.

[33] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages (POPL), 1977.

[34] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Principles of Programming Languages (POPL), 1978.

[35] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. Combination of abstractions in the Astrée static analyzer. In
ASIAN, 2006.

[36] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. A scalable segmented decision
tree abstract domain. In Essays in Memory of Amir Pnueli, 2010.

[37] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation func-
tor for fully automatic and scalable array content analysis. In Principles of Programming
Languages (POPL), 2011.

[38] Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan. QUIC graphs: Relational
invariant generation for containers. In ECOOP, 2013.

[39] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open objects in
dynamic language programs. In Static Analysis Symposium (SAS), 2014.

[40] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C - A software analysis perspective. In Software Engineering
and Formal Methods (SEFM), 2012.

[41] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), 2008.

[42] David Delmas and Antoine Miné. Analysis of software patches using numerical abstract
interpretation. In Static Analysis Symposium (SAS), 2019.

[43] David Delmas and Jean Souyris. Astrée: From research to industry. In Static Analysis
Symposium (SAS), 2007.

[44] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. Static analysis of endian porta-
bility by abstract interpretation. In Static Analysis Symposium (SAS), 2021.

[45] The Infer development team. Infer, a static analysis tool for java, c++, objective-c, and c.,
2021. URL https://github.com/facebook/infer.

https://github.com/facebook/infer

242 Bibliography

[46] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak updates.
In European Symposium on Programming (ESOP), 2010.

[47] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using containers.
In Principles of Programming Languages (POPL), 2011.

[48] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling
static analyses at facebook. Commun. ACM, 2019.

[49] Casey Duncan. Native-code and shader implementations of perlin noise for Python.
https://github.com/caseman/noise, 2021. Accessed: 2021-04.

[50] Greg Erwing and the Cython development team. Cython: C-extensions for python. https:
//cython.org/, 2021. Accessed: 2021-08.

[51] N. Van Es, Q. Stiévenart, and C. De Roover. Garbage-free abstract interpretation through
abstract reference counting. In ECOOP, 2019.

[52] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet provers. In
European Symposium on Programming (ESOP). Springer, 2013.

[53] Levin Fritz and Jurriaan Hage. Cost versus precision for approximate typing for Python. In
Partial Evaluation and Program Manipulation (PEPM), 2017.

[54] Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. Static value analysis of
python programs by abstract interpretation. In Nasa Formal Methods (NFM), 2018.

[55] Jedrzej Fulara. Abstract Analysis of Numerical and Container Variables. PhD thesis, Uni-
wersytet Warszawski.

[56] Jedrzej Fulara. Generic abstraction of dictionaries and arrays. Electron. Notes Theor.
Comput. Sci., 2012.

[57] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls. In Pro-
gramming Languages Design and Implementation (PLDI), 2005.

[58] Michael Furr and Jeffrey S. Foster. Polymorphic type inference for the JNI. In European
Symposium on Programming (ESOP), 2006.

[59] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls. ACM
Trans. Program. Lang. Syst., 2008.

[60] Graeme Gange, ZequnMa, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey. A fresh look at zones and octagons. ACM Trans. Program. Lang. Syst., 2021.

[61] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In Principles
of Programming Languages (POPL), 2016.

[62] GitHub. State of the github octoverse. https://octoverse.github.com, 2021. Accessed:
2021-09.

[63] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel Sagiv. Numeric do-
mains with summarized dimensions. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2004.

[64] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric analysis of
array operations. In Principles of Programming Languages (POPL), 2005.

https://github.com/caseman/noise
https://cython.org/
https://cython.org/
https://octoverse.github.com

Bibliography 243

[65] Philippe Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 1989.

[66] Dwight Guth. A formal semantics of Python 3.3. Master’s thesis, University of Illi-
nois, 2013. URL https://www.ideals.illinois.edu/bitstream/handle/2142/45275/
Dwight_Guth.pdf?sequence=1&isAllowed=y.

[67] Antti Haapala, Esa Määttä, Jonatas CD, Mikko Ohtamaa, and David Necas. Levenshtein
Python C extension module. https://github.com/ztane/python-Levenshtein/, 2021.
Accessed: 2021-04.

[68] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple
programs. In Programming Languages Design and Implementation (PLDI), 2008.

[69] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. MaxSMT-based type
inference for Python 3. In Computer Aided Verification (CAV), 2018.

[70] Mingzhe Hu and Yu Zhang. The Python/C API: evolution, usage statistics, and bug patterns.
In International Conference on Software Analysis, Evolution, and Reengineering (SANER),
2020.

[71] S. Jagannathan, P. Thiemann, S. Weeks, and A. K. Wright. Single and loving it: Must-alias
analysis for higher-order languages. In Principles of Programming Languages (POPL),
1998.

[72] Adam Jakubek and Rafał Gałczyński. Linked lists for CPython. https://github.com/
ajakubek/python-llist, 2021. Accessed: 2021-04.

[73] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for
static analysis. In Computer Aided Verification (CAV), 2009.

[74] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Static Analysis Symposium (SAS), 2009.

[75] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with
lazy propagation. In Static Analysis Symposium (SAS), 2010.

[76] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML DOM and
browser API in static analysis of javascript web applications. In SIGSOFT Foundations of
Software Engineering FSE, 2011.

[77] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval that men
do. In International Symposium on Software Testing and Analysis (ISSTA), 2012.

[78] M. Journault, A. Miné, R. Monat, and A. Ouadjaout. MOPSA: modular open platform for
static analysis. https://gitlab.com/mopsa/mopsa-analyzer, 2021. Accessed: 2021-04.

[79] M. Journault, A. Miné, R. Monat, and A. Ouadjaout. Benchmarks used by MOPSA. https:
//gitlab.com/mopsa/benchmarks, 2021. Accessed: 2021-09.

[80] Matthieu Journault. Precise and modular static analysis by abstract interpretation for the
automatic proof of program soundness and contracts inference. PhD thesis, Sorbonne
Université, France, 2019.

[81] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. Modular static analysis of
string manipulations in C programs. In Static Analysis Symposium (SAS), 2018.

https://www.ideals.illinois.edu/bitstream/handle/2142/45275/Dwight_Guth.pdf?sequence=1&isAllowed=y
https://www.ideals.illinois.edu/bitstream/handle/2142/45275/Dwight_Guth.pdf?sequence=1&isAllowed=y
https://github.com/ztane/python-Levenshtein/
https://github.com/ajakubek/python-llist
https://github.com/ajakubek/python-llist
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/mopsa/benchmarks
https://gitlab.com/mopsa/benchmarks

244 Bibliography

[82] Matthieu Journault, Antoine Miné, Raphaël Monat, and Abdelraouf Ouadjaout. Combina-
tions of reusable abstract domains for a multilingual static analyzer. In Verified Software:
Theories, Tools, Experiments (VSTTE), 2019.

[83] Sven Keidel and Sebastian Erdweg. Sound and reusable components for abstract inter-
pretation. Proc. ACM Program. Lang., 2019.

[84] Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. Compositional soundness
proofs of abstract interpreters. Proc. ACM Program. Lang., 2018.

[85] Goh Kondoh and Tamiya Onodera. Finding bugs in Java native interface programs. In
International Symposium on Software Testing and Analysis (ISSTA), 2008.

[86] Herb Krasner. The cost of poor software quality in the us: A 2020 report. https://www.
it-cisq.org/pdf/CPSQ-2020-report.pdf, 2021. Accessed: 2021-08.

[87] Erik Krogh Kristensen and Anders Møller. Reasonably-most-general clients for JavaScript
library analysis. In International Conference of Software Engineering (ICSE), 2019.

[88] Maximilian A. Köhl. An executable structural operational formal semantics for python.
Master’s thesis, Saarland University – Department of Computer Science, 2021. URL https:
//arxiv.org/abs/2109.03139.

[89] Jeffrey C Lagarias. The 3x+ 1 problem: An overview. American Mathematical Society, 2010.

[90] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. Broadening horizons of multilingual static
analysis: Semantic summary extraction from C code for JNI program analysis. In Auto-
mated Software Engineering (ASE), 2020.

[91] Jukka Lehtosalo and the Mypy development team. Mypy. http://mypy-lang.org/, 2021.
Accessed: 2021-08.

[92] Siliang Li and Gang Tan. Finding bugs in exceptional situations of JNI programs. In Com-
puter and Communications Security (CCS), 2009.

[93] Siliang Li and Gang Tan. JET: exception checking in the Java native interface. In SPLASH,
2011.

[94] Siliang Li and Gang Tan. Finding reference-counting errors in Python/C programs with
affine analysis. In ECOOP, 2014.

[95] Siliang Li and Gang Tan. Exception analysis in the Java Native Interface. Sci. Comput.
Program., 2014.

[96] P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of the precision of static
heap abstractions. In OOPSLA, 2010.

[97] Jiangchao Liu and Xavier Rival. An array content static analysis based on non-contiguous
partitions. Comput. Lang. Syst. Struct., 2017.

[98] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Ama-
ral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. In defense of soundiness: a manifesto. Commun. ACM, 2015.

[99] David Malcolm. A static analysis tool for cpython extension code. https://
gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html, 2018. Accessed:
2021-04.

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://arxiv.org/abs/2109.03139
https://arxiv.org/abs/2109.03139
http://mypy-lang.org/
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html

Bibliography 245

[100] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. RID: finding reference count bugs with
inconsistent path pair checking. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

[101] Daniel Marino and Todd D. Millstein. A generic type-and-effect system. In Types in Lan-
guage Design and Implementation (TLDI), 2009.

[102] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language
programs. ACM Trans. Program. Lang. Syst., 2009.

[103] Michaël Meyer. Distance library. https://github.com/doukremt/distance, 2021. Ac-
cessed: 2021-04.

[104] M. Might and O. Shivers. Improving flow analyses via γcfa: abstract garbage collection
and counting. In International Conference on Functional Programming (ICFP), 2006.

[105] A. Miné. Static analysis by abstract interpretation of concurrent programs. Techni-
cal report, École normale supérieure, May 2013. http://www-apr.lip6.fr/~mine/hdr/
hdr-compact-col.pdf.

[106] A. Miné. Tutorial on static inference of numeric invariants by abstract interpretation.
Foundations and Trends in Programming Languages (FnTPL), 2017.

[107] Antoine Miné. Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In Languages, Compilers, Tools and Theory of Embedded Systems
(LCTES), 2006.

[108] Antoine Miné. The octagon abstract domain. High. Order Symb. Comput., 2006.

[109] Antoine Miné. Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science, 2012.

[110] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static type analysis by abstract
interpretation of python programs. In ECOOP, 2020.

[111] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static type analysis by abstract
interpretation of python programs (artifact). Dagstuhl Artifacts Ser., 2020.

[112] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Value and allocation sensitivity
in static Python analyses. In SOAP@Programming Languages Design and Implementa-
tion (PLDI), 2020.

[113] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. A multilanguage static analysis
of python programs with native c extensions. In Static Analysis Symposium (SAS), 2021.

[114] Raphaël Monat. Static Type and Value Analysis by Abstract Interpretation of Python Pro-
grams with Native C Libraries (Artifact), 2021. URL https://doi.org/10.5281/zenodo.
5510486.

[115] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. A Multi-Language Static Anal-
ysis of Python Programs with Native C Extensions, July 2021. URL https://doi.org/10.
5281/zenodo.5141314.

[116] David Monniaux and Francesco Alberti. A simple abstraction of arrays and maps by pro-
gram translation. In Static Analysis Symposium (SAS), 2015.

[117] Wojciech Muła and Philippe Ombredanne. Pyahocorasick library. https://github.com/
WojciechMula/pyahocorasick, 2021. Accessed: 2021-04.

https://github.com/doukremt/distance
http://www-apr.lip6.fr/~mine/hdr/hdr-compact-col.pdf
http://www-apr.lip6.fr/~mine/hdr/hdr-compact-col.pdf
https://doi.org/10.5281/zenodo.5510486
https://doi.org/10.5281/zenodo.5510486
https://doi.org/10.5281/zenodo.5141314
https://doi.org/10.5281/zenodo.5141314
https://github.com/WojciechMula/pyahocorasick
https://github.com/WojciechMula/pyahocorasick

246 Bibliography

[118] Ionel Cristian Mărieș. Understanding python metaclasses, 2015. URL https://blog.
ionelmc.ro/2015/02/09/understanding-python-metaclasses/.

[119] Benjamin Barslev Nielsen and Anders Møller. Value partitioning: A lightweight approach
to relational static analysis for javascript. In ECOOP, 2020.

[120] National Institude of Standards and Technology. NIST’s national vulnerability database.
https://nvd.nist.gov/vuln/search, 2021. Accessed: 2021-08.

[121] Abdelraouf Ouadjaout and Antoine Miné. A library modeling language for the static anal-
ysis of C programs. In Static Analysis Symposium (SAS), 2020.

[122] Alain OURGHANLIAN. Evaluation of static analysis tools used to assess software
important to nuclear power plant safety. Nuclear Engineering and Technology,
2015. doi:10.1016/j.net.2014.12.009. URL https://hal-edf.archives-ouvertes.fr/
hal-01857446.

[123] Daejun Park, Andrei Stefanescu, and Grigore Rosu. KJS: A complete formal semantics of
JavaScript. In Programming Languages Design and Implementation (PLDI), 2015.

[124] Jihyeok Park, Xavier Rival, and Sukyoung Ryu. Revisiting recency abstraction for javascript:
towards an intuitive, compositional, and efficient heap abstraction. In SOAP@Program-
ming Languages Design and Implementation (PLDI), 2017.

[125] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: The full monty. In
OOPSLA, 2013.

[126] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules
Villard. Local reasoning about the presence of bugs: Incorrectness separation logic. In
Computer Aided Verification (CAV), 2020.

[127] Ranson, Hamilton, and Fong. A semantics of Python in Isabelle/HOL. Technical report,
University of Regina, 2008. URL http://www.cs.uregina.ca/Research/Techreports/
2008-04.pdf.

[128] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 1953.

[129] Armin Rigo and Maciej Fijalkowski. Cffi, C Foreign Function Interface for Python. https:
//cffi.readthedocs.io/en/latest/, 2021. Accessed: 2021-08.

[130] Noam Rinetzky, Arnd Poetzsch-Heffter, Ganesan Ramalingam, Mooly Sagiv, and Eran Ya-
hav. Modular shape analysis for dynamically encapsulated programs. In European Sym-
posium on Programming (ESOP), 2007.

[131] Xavier Rival. Understanding the origin of alarms in astrée. In Static Analysis Symposium
(SAS), 2005.

[132] Xavier Rival and Kwangkeun Yi. Introduction to Static Analysis. MIT Press, 2020.

[133] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J.
Log. Algebr. Program., 2010.

[134] Ilan Schnell. Bitarray library. https://github.com/ilanschnell/bitarray, 2021. Ac-
cessed: 2021-04.

https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/
https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/
https://nvd.nist.gov/vuln/search
https://doi.org/10.1016/j.net.2014.12.009
https://hal-edf.archives-ouvertes.fr/hal-01857446
https://hal-edf.archives-ouvertes.fr/hal-01857446
http://www.cs.uregina.ca/Research/Techreports/2008-04.pdf
http://www.cs.uregina.ca/Research/Techreports/2008-04.pdf
https://cffi.readthedocs.io/en/latest/
https://cffi.readthedocs.io/en/latest/
https://github.com/ilanschnell/bitarray

Bibliography 247

[135] Holger Siegel and Axel Simon. Summarized dimensions revisited. Electron. Notes Theor.
Comput. Sci., 2012.

[136] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In ECOOP, 2007.

[137] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Making numerical program
analysis fast. In Programming Languages Design and Implementation (PLDI), 2015.

[138] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Fast polyhedra abstract domain.
In Principles of Programming Languages (POPL), 2017.

[139] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. A practical construction for
decomposing numerical abstract domains. Proc. ACM Program. Lang., 2018.

[140] Victor Skvortsov. Python behind the scenes, 2020. URL https://tenthousandmeters.
com/tag/python-behind-the-scenes/.

[141] Gideon Joachim Smeding. An executable operational semantics for Python. Universiteit
Utrecht, 2009. URL http://gideon.smdng.nl/wp-content/uploads/thesis.pdf.

[142] Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Møller. Static
analysis with demand-driven value refinement. Proc. ACM Program. Lang., 2019.

[143] Victor Stinner and the Python Benchmark Suite team. Performance benchmarks from
Python’s reference interpreter. https://github.com/python/pyperformance/, 2021. Ac-
cessed: 2021-08.

[144] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Si-
mon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. Dependent types and multi-
monadic effects in F. In Principles of Programming Languages (POPL), 2016.

[145] Gang Tan and Jason Croft. An empirical security study of the native code in the JDK. In
USENIX, 2008.

[146] Gang Tan and Greg Morrisett. Ilea: inter-language analysis across Java and C. In OOPSLA,
2007.

[147] The Pyre development team. Pyre-check. https://github.com/facebook/pyre-check,
2021. Accessed: 2021-08.

[148] The Python Development Team. Parsing arguments and building values. https://docs.
python.org/3.8/c-api/arg.html, 2021. Accessed: 2021-12.

[149] The Python Development Team. Ctypes, a foreign function library for Python. https:
//docs.python.org/3.8/library/ctypes.html, 2021. Accessed: 2021-08.

[150] Laurence Tratt. Dynamically typed languages. Advances in Computers, July 2009.

[151] Alan Mathison Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society, 1937.

[152] Typeshed contributors. Typeshed. https://github.com/python/typeshed/, 2021. Ac-
cessed: 2021-04.

[153] Guido van Rossum and the Python development team. Python/C API Reference Manual.
https://docs.python.org/3.8/c-api/index.html, 2021. Accessed: 2021-04.

https://tenthousandmeters.com/tag/python-behind-the-scenes/
https://tenthousandmeters.com/tag/python-behind-the-scenes/
http://gideon.smdng.nl/wp-content/uploads/thesis.pdf
https://github.com/python/pyperformance/
https://github.com/facebook/pyre-check
https://docs.python.org/3.8/c-api/arg.html
https://docs.python.org/3.8/c-api/arg.html
https://docs.python.org/3.8/library/ctypes.html
https://docs.python.org/3.8/library/ctypes.html
https://github.com/python/typeshed/
https://docs.python.org/3.8/c-api/index.html

248 Bibliography

[154] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. Python Enhancement Proposal
484. https://www.python.org/dev/peps/pep-0484/, 2021. Accessed: 2021-08.

[155] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. JN-SAF: precise
and efficient NDK/JNI-aware inter-language static analysis framework for security vetting
of Android applications with native code. In Computer and Communications Security
(CCS), 2018.

[156] W. Eric Wong, Xue-Lin Li, and Phillip A. Laplante. Be more familiar with our enemies and
pave the way forward: A review of the roles bugs played in software failures. J. Syst. Softw.,
2017.

[157] Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu. Python predictive analysis for bug
detection. In SIGSOFT Foundations of Software Engineering FSE, 2016.

[158] Boris Yakobowski. Fast whole-program verification using on-the-fly summarization. In
Workshop on Tools for Automatic Program Analysis, 2015.

https://www.python.org/dev/peps/pep-0484/

List of Figures

2.1 Grammar of Imp programs . 10
2.2 Semantics of expressions . 11
2.3 Semantics of basic statements . 12
2.4 Semantics of conditionals . 12
2.5 Semantics of while loops . 13
2.6 The Interval Poset . 16
2.7 Hasse’s diagram for the Interval Poset . 17
2.8 Abstract semantics of Expressions . 19
2.9 Abstract semantics of basic statements . 20
2.10 Concretization of congruences . 26
2.11 Reduction operator for intervals and congruences . 27
2.12 Updated semantics with strings . 29
2.13 String length abstract domain . 30
2.14 Semantics of Imp with control-flow tokens . 32
2.15 Comparison of the numerical abstract domains . 34
2.16 Interval, Octagon and Polyhedra Abstract Domains Representing 0 ≤ 2i ≤ len(s) . . 34
2.17 String summary abstract domain . 37
3.1 Example of dynamic rewriting . 55
3.2 Analysis configuration in Mopsa . 56
3.3 Example of shared evaluation in a reduced product . 65
4.1 Concrete semantics of record allocation, read and write 76
4.2 Semantics of address allocation for the recency abstraction 76
4.3 Rewriting semantics of the heap abstraction . 78
4.4 Analysis of Listing 4.1, at line 14, assuming the loop has been unrolled once 78
4.5 Semantics of address allocation with policies . 82
5.1 Semantics of arrays . 87
5.2 Array length abstraction . 88
5.3 Array smashing abstraction . 89
5.4 Semantics of dictionaries . 94
5.5 Dictionary smashing domain . 95
6.1 Python type and subclass relations . 102
6.2 Domain of the semantics . 104
6.3 Operators of the semantics . 104
6.4 Semantics of field operators . 106
6.5 Semantics of literals . 107
6.6 Semantics of variable evaluation, assignment and deletion 108
6.7 Semantics of nominal type operators . 108
6.8 Semantics of nominal type operators . 109
6.9 Semantics of nominal type operators . 109
6.10 Semantics of attribute access, assignment and deletion 111
6.11 Semantics of subscript access, assignment and deletion 112
6.12 Semantics of unpacking assignments . 113

250 List of Figures

6.13 Semantics of conditionals . 114
6.14 Semantics of while loops . 114
6.15 Semantics of exceptions . 115
6.16 Semantics of function declaration . 118
6.17 Semantics of class declaration . 119
6.18 Transformation of decorators . 119
6.19 Semantics of calls . 120
6.21 Semantics of unary not . 120
6.22 Correspondance between binary operators and their methods 121
6.23 Semantics of binary arithmetic operators . 122
6.24 Semantics of augmented assignments . 123
6.25 Correspondance between binary operators and their methods 123
6.26 Semantics of binary comparison operators . 124
6.27 Semantics of the in operator . 124
6.28 Semantics of the is operator . 125
6.29 Semantics of the or and and operators . 125
6.30 Semantics of object creation and instantiation . 125
6.31 Semantics of attribute access through object . 126
6.32 Semantics of attribute definition through object . 128
6.33 Semantics of attribute deletion through object . 128
6.34 Semantics of function calls . 129
6.35 Semantics of methods . 130
6.36 Semantics of the classmethod and staticmethod decorators 130
6.37 Semantics of class call . 131
6.38 Semantics of class creation . 131
6.39 Semantics of attribute accesses for classes . 132
6.40 Semantics of boolean cast . 133
6.41 Semantics of integer creation . 133
6.42 Semantics of iter . 135
6.43 Semantics of next . 135
6.44 Semantics of len builtin . 135
6.46 Semantics of the yield expression . 141
6.47 Semantics of calls to generators . 141
6.48 Mopsa’s analysis of semantic tests . 142
6.49 Running the semantic tests using the analyzer of Fromherz et al. [54] 142
6.50 Mopsa’s analysis of CPython’s tests . 143
6.51 JavaScript type and subclass relations . 145
6.52 Reminder – Python type and subclass relations . 145
7.1 Concretization of abstract nominal objects . 150
7.2 Transfer functions of the environment abstraction . 151
7.3 Concretization of the environment abstraction . 151
7.4 Concretization of ObjS] . 152
7.5 Abstract semantics of field operators . 153
7.6 Concretization of the heap abstract domain . 153
7.7 Abstract semantics of attribute access, assignment and deletion 155
7.8 Evolution of the abstract states of the example from Listing 7.2 156
7.9 Example of ψ↑ reduction . 159
7.10 Configuration for Python’s type analysis . 162
7.11 Analysis of Python benchmarks . 167
7.12 Comparing allocation sensitivities (type analysis, with AGC) 169
7.13 Measurement of the AGC’s effect . 170
8.1 Type analysis example . 175

List of Figures 251

8.2 Value analysis example . 175
8.3 Transfer functions of the environment abstraction . 176
8.4 Analysis of first unrolling at line 8 of Listing 8.1 . 178
8.5 Concretization of the environment abstraction . 180
8.6 Configuration of the value analysis (to be compared with Figure 7.10) 182
8.7 Value-sensitivity Comparison (no allocation sensitivity, with AGC) 183
8.8 Allocation-site Comparison (value analysis & AGC) . 184
8.9 AGC Comparison (value analysis, with location sensitivity) 184
8.10 Selectivity of the value analysis . 186
9.1 Python Counter structure summary . 194
10.1 Concrete Python State . 206
10.2 Concrete C state . 207
10.3 Concrete state obtained at the end of Listing 10.1 . 207
10.4 Combined State . 208
10.5 Schematic representation of the concrete state reached at line 5 in Listing 9.1 209
10.6 Python to C value boundary . 210
10.7 C to Python value boundary . 210
10.8 C call from Python . 211
10.9 Python call from C . 212
10.10 Conversion from Python builtin integers to C long . 213
10.11 Tuple access and length semantics, from C . 214
11.1 Python to C value boundary . 220
11.2 C to Python value boundary . 220
11.3 C call from Python . 221
11.4 Conversion from C long to Python integer . 221
11.5 Tuple access and length semantics, from C . 221
11.6 Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) – part 1 . . 223
11.7 Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) – part 2 . . 224
11.8 Sequence diagram of the analysis of Counter access (Listing 9.1, line 8) 225
11.9 Multilanguage configuration in Mopsa . 228
11.10 Analysis results of libraries using their unit tests . 229

List of Listings

2.1 An Imp program computing the 3n+ 1 sequence . 10
2.2 Computing the total stopping time of the 3n+ 1 sequence 13
2.3 Imp program with strings . 29
2.4 Imp program with break . 32
2.5 Imp program with strings . 35
3.1 Declaration of base variables . 52
3.2 Declaration of universal expressions . 52
3.3 Declaration of universal statements . 52
3.4 Variant for auxiliary variables built on top of other variables 53
3.5 Excerpts of the domain computing fixpoint for the S_while statement 54
3.6 Transfer function of C loop iterator . 55
3.7 General domain signature . 57
3.8 Transfer function of S_break (cf. Figure 2.14 in the concrete) 59
3.9 Utility functions to get and set a local state . 59
3.10 Cases interface . 60
3.11 Transfer function of the assignment in a relational domain 61
3.12 Transfer function of index access for the string summarization domain 61
3.13 Transfer function of index access for the string length domain 62
3.14 String length transfer functions . 63
3.15 Reduction between the interval and congruence domains 64
3.16 Reduction rule for index access between the string domains 64
3.17 Hook signature . 67
4.1 Imp program with dynamic memory allocation . 74
4.2 Python program computing the average of tasks . 80
4.3 Python program, with logged allocations . 80
4.4 Python program with lists of different types . 81
4.5 Motivating example for abstract garbage collection 83
5.1 Program random initilizating array a . 86
5.2 Program copying array a into b . 87
5.3 Iteratively nesting arrays . 91
5.4 Program using sets . 93
5.5 Computing the number of occurences of s in d . 94
5.6 Example dictionary with heterogeneous values . 94
6.1 Semantics of for i in it: body . 114
6.2 Semantics of with e as t: body . 117
6.3 A simplified version of Python’s tempfile library . 117
6.4 Example of classmethod decorator . 119
6.5 Example usecase of both addition methods . 122
6.6 Data descriptor example . 127
6.7 Example of method creation . 129
6.8 Classmethod example . 131
6.9 Example rewriting of the list comprehension [f(x) for x in y if b(x)] . . . 134

254 List of Listings

6.10 Example usecase of super with multiple inheritance 136
6.11 Pure-Python implementation of super . 137
6.12 Counting occurrences of ’a’ in a file line by line using generators 138
6.13 Generator example with bidirectional communication 139
7.1 Python programs relying on both typing mechanisms 147
7.2 Python program with mutation and optional attribute addition 154
7.3 Python program motivating polymorphism . 158
7.4 Type annotations for fspath function . 160
7.5 Python program isinstance.py . 164
7.6 Python program exception.py . 164
8.1 Python program computing average of tasks . 173
8.2 Python program with type disjunction . 175
9.1 Contents of file count.py . 192
9.2 Contents of file counter.c . 192
9.3 Some Python’s API headers . 192
9.4 Example setup.py build file . 195
9.5 Contents of syracuse.c file . 196
9.6 Ctypes example . 197
9.7 Cffi example . 197
9.8 Cffi generated code for syracuse example . 198
9.9 Contents of file syracuse.i . 198
9.10 Generated swig wrapper . 199
9.11 Cython code for 3n+ 1 sequence computation . 200
9.12 Abbreviated code generated by cython for Listing 9.11 200
10.1 Example C program to illustrate the concrete C state 206
10.2 Code of wrap_init . 212
10.3 Python to C int conversion done by convertsimple, called by PyArg_ParseTuple . . 214
11.1 Reminder from Listing 10.1 – example C program . 218
11.2 Program where relationality between languages improves precision 226

https://github.com/python/cpython/tree/3.8/Objects/getargs.c#L780

List of Definitions, Examples,
Properties and Remarks

2.1 Remark – Non-determinism in the semantics . 10
2.2 Definition – Program state . 10
2.3 Example – Program state . 10
2.4 Remark – Set and function notations . 11
2.5 Example – Semantics & errors . 11
2.6 Remark – Errors . 11
2.7 Remark – Conditional semantics . 12
2.8 Example – Conditional filtering . 12
2.9 Remark – Negation of conditions . 13
2.10 Definition – Poset . 13
2.11 Example – Poset . 14
2.12 Property – Pointwise poset lifting . 14
2.13 Remark – Pointwise lifting notation . 14
2.14 Example – Abstraction of P(V → Z) . 14
2.15 Remark – Non-relational abstraction . 15
2.16 Remark – False alarms . 15
2.17 Definition – Galois connection . 15
2.18 Remark – Notation of abstract elements . 15
2.19 Property – Best abstraction . 15
2.20 Remark – Concretization-only framework . 15
2.21 Definition – Sound abstraction . 15
2.22 Remark – Proving safety properties in the abstract 16
2.23 Definition – Sound operator abstraction . 16
2.24 Property – Best operator abstraction . 16
2.25 Property – The interval domain is a poset . 17
2.26 Property – Galois connection for intervals . 17
2.27 Definition – Coalescent point-wise lifting . 19
2.28 Property – Pointwise Galois connection lifting . 19
2.29 Property – E#J · K is a sound abstraction of EJ · K 19
2.30 Remark – Imprecisions with intervals . 20
2.31 Definition – Least upper bound . 20
2.32 Remark – Unicity of the least upper bound . 21
2.33 Remark – Greatest lower bound . 21
2.34 Definition – Complete lattice . 21
2.35 Property – Complete lattice – parts of a set . 21
2.36 Property – The interval domain is a complete lattice 21
2.37 Remark – Pointwise lifting of complete lattices . 21
2.38 Definition – Chain . 22
2.39 Example – Chain . 22

256 List of Definitions, Examples, Properties and Remarks

2.40 Definition – Complete partial order . 22
2.41 Property – Lattices and partial orders . 22
2.42 Definition – Continuous operator . 22
2.43 Remark – Join-morphism and continuity . 23
2.44 Theorem – Kleene’s fixpoint theorem . 23
2.45 Property – Rewriting the semantics of loops into a fixpoint 23
2.46 Definition – Widening operator . 24
2.47 Theorem – Fixpoint approximation . 24
2.48 Property – Widening operator on intervals . 24
2.49 Example – Fixpoint computation . 24
2.50 Example – Decreasing iteration on the previous example 25
2.51 Definition – Value abstract domain . 26
2.52 Property – Non-relational abstract semantics . 26
2.53 Definition – Reduction operator . 27
2.54 Remark – Optimal reduction . 27
2.55 Property – Reduction between intervals and congruences 27
2.56 Definition – Reduced product of abstract values . 27
2.57 Property – Reduced product of abstract values . 28
2.58 Remark – Reduction operator and widening . 28
2.59 Remark – Reduced product of abstract domains . 28
2.60 Example – Program on strings . 29
2.61 Example – Program analysis using the string length domain 30
2.62 Remark – Convention: format of auxiliary variables 30
2.63 Definition – String length concretization . 30
2.64 Example – String length concretization . 31
2.65 Example – Concrete semantics of a loop with a break 32
2.66 Example – Abstract semantics of a loop with a break 33
2.67 Remark – Widening and flow tokens . 33
2.68 Remark – CFG analysis . 33
2.69 Example – Graphic representations of numerical abstract domains 34
2.70 Remark – Drawbacks of relational domains . 34
2.71 Definition – Expand operator . 36
2.72 Example – Handling x = s[0]; y = s[1]; . 36
2.73 Definition – Fold operator . 36
2.74 Example – Handling s[3] = s[3] - 1; . 36
2.75 Remark – Weak variables . 36
2.76 Example – Weak update . 37
2.77 Definition – String summarization concretization . 37
2.78 Example – String summarization concretization . 38
2.79 Remark – Consistency conditions . 38
2.80 Example – Imprecise concretization . 39
2.81 Definition – Relation projection operator . 39
2.82 Definition – Application of a concretization to another 40
2.83 Remark – Concretizations of leaf domains . 40
2.84 Definition – Modular string summary concretization 40
2.85 Example – String summarization concretization . 41
2.86 Definition – Simplified string length concretization 41
2.87 Definition – One-to-many lifting operator . 41
2.88 Definition – Full, relational string length concretization 41
2.89 Example – String length concretization . 42
2.90 Example – Concretization of the product of string domains 42
3.1 Definition – The var type . 51

List of Definitions, Examples, Properties and Remarks 257

3.2 Definition – The expr type . 52
3.3 Definition – The stmt type . 52
3.4 Remark – Availability of newly added variants . 53
3.5 Remark – Ghost variables . 53
3.6 Remark – Domains handling ghost variables . 53
3.7 Remark – Convention: color codes of languages . 54
3.8 Remark – Multiple languages in the AST . 54
3.9 Remark – Iterators are stateless domains . 55
3.10 Example – Semantically-optimized rewriting . 56
3.11 Remark – Domain type and polymorphism . 58
3.12 Example – Use of Flow to handle non-local control-flow operators 59
3.13 Example – Utility functions to get and set a local state 59
3.14 Remark – Benefits of explicit checks and assumptions 59
3.15 Example – Assignment in a relational domain . 61
3.16 Remark – Monadic operator >>= . 61
3.17 Example – Expression evaluation performing a simple rewriting 61
3.18 Remark – Modular definitions of abstract domains 61
3.19 Example – Expression evaluation with case disjunction 62
3.20 Remark – Avoiding combinatorial explosions . 62
3.21 Remark – Housekeeping auxiliary variables . 62
3.22 Remark – Stateless abstract domains . 63
3.23 Remark – Sequentialization of statements . 65
3.24 Remark – Effects . 65
3.25 Remark – Comparison with the approach of Chevalier [27] used in Astrée 66
3.26 Remark – Comparison with Frama-C . 66
3.27 Definition – Composable abstract domain . 68
3.28 Example – String length as a composable abstract domain 68
3.29 Definition – Sequence of abstract domains . 68
3.30 Property – A sequence of abstract domains is composable 69
3.31 Definition – Product of abstract domains . 69
3.32 Property – A product of abstract domains is composable 69
3.33 Remark – Toplevel abstract domain . 69
3.34 Remark – Stack variation . 70
4.1 Definition – Addresses . 74
4.2 Definition – Program State . 75
4.3 Example – Program State . 75
4.4 Example – Field assignment . 75
4.5 Definition – Abstract address . 75
4.6 Definition – Auxiliary address variables . 77
4.7 Remark – Auxiliary address variables in Mopsa . 77
4.8 Example – New allocation in Listing 4.1 . 77
4.9 Definition – Allocation policy . 81
4.10 Example – Type-only policy . 81
4.11 Example – Location policy . 81
4.12 Example – Precision loss with old addresses . 83
4.13 Example – Improving precision . 83
5.1 Definition – Program State . 86
5.2 Remark – Random value notation . 86
5.3 Example – Running examples . 86
5.4 Remark – Ghost addressing renaming . 87
5.5 Example – Array initialization . 88
5.6 Example – Array copy . 88

258 List of Definitions, Examples, Properties and Remarks

5.7 Remark – Empty lists . 88
5.8 Definition – Concretization . 88
5.9 Remark – Empty arrays . 89
5.10 Example – Array initialization . 90
5.11 Example – Array copy . 90
5.12 Remark – State refinement membership testing . 90
5.13 Definition – Concretization . 90
5.14 Remark – Nested arrays . 90
5.15 Example – Iteratively nesting arrays . 91
5.16 Example – Reduced product of array abstractions 92
5.17 Remark – Current implementation . 92
5.18 Remark – Array expansion abstraction . 92
5.19 Example – Set analysis . 93
5.20 Definition – Program State . 93
5.21 Example – Occurence number . 93
5.22 Example – Heterogeneous dictionaries . 94
5.23 Example – Summarizing homogeneous dictionaries 95
5.24 Example – Summarizing heterogeneous dictionaries 95
5.25 Definition – Concretization . 96
5.26 Remark – More precise smashing for heterogeneous dictionaries 96
5.27 Remark – Dictionary expansion . 96
6.1 Remark – Crossreferences with CPython’s source code 102
6.2 Remark – Simplified definition of SJ · K using ScurJ · K 104
6.3 Definition – Monadic letcases operator . 105
6.4 Definition – Monadic letb operator . 105
6.5 Definition – Non-current flow predicate, isNotCur 105
6.6 Definition – Not implemented predicate isNotImplemented 105
6.7 Definition – Address allocation expression alloc_addr 105
6.8 Definition – Low-level field operators get_field,has_field, set_field,del_field . . 105
6.9 Remark – Evaluated arguments for low-level field operators 106
6.10 Definition – Attribute resolution function mro_search 106
6.11 Remark – Builtin value caching . 107
6.12 Remark – Address notation . 109
6.13 Remark – Calls to introspection operators in the semantics 110
6.14 Remark – Class vs instance-based attribute access 110
6.15 Remark – Purpose of __class_getitem__ . 112
6.16 Remark – Evaluation order . 112
6.17 Remark – Alternative unpacking . 113
6.18 Remark – Syntax of Python blocks . 113
6.19 Remark – Else in for loops . 115
6.20 Remark – Source code for try/except statement . 116
6.21 Remark – Interaction between exception effects and other control-flow effects . 116
6.22 Remark – Except clauses variations . 116
6.23 Remark – Raise without arguments . 116
6.24 Example – Usecase of the with statement . 117
6.25 Example – classmethod decorator usecase . 119
6.26 Remark – Argument reversal in CPython . 121
6.27 Example – Usecase of __radd__ method in the subclassing case 121
6.28 Remark – Negation of in and is operators . 123
6.29 Remark – Return type of or and and operators . 124
6.30 Remark – Purpose of data descriptors . 126
6.31 Example – A data descriptor usecase . 126

List of Definitions, Examples, Properties and Remarks 259

6.32 Remark – Supporting recursive calls . 128
6.33 Remark – Different definitions of type.__new__ . 131
6.34 Example – super and multiple inheritance . 135
6.35 Remark – Conversion from implicit super to explicit form 136
6.36 Remark – Variations of super calls . 136
6.37 Example – Counting occurrences of ’a’ in a file line by line using generators . . . 138
6.38 Example – Bidirectional communication with generators 139
7.1 Example – Motivating Example . 148
7.2 Example – Analysis of Listing 7.2 . 154
7.3 Example – Concretization of the states . 156
7.4 Example – Motivating polymorphism . 158
7.5 Definition – Type equality domain . 158
7.6 Definition – Concretization . 158
7.7 Example – Back to the motivating example . 158
7.8 Remark – Bounded parametric polymorphism . 159
7.9 Remark – Relational domain not supported anymore 159
7.10 Example – Example type annotation . 160
7.11 Remark – Expressivity of annotations . 160
7.12 Remark – Soundness assumption . 161
7.13 Remark – Detecting wrong annotations . 161
7.14 Remark – Recording typing assumptions . 161
8.1 Example – Type analysis of Listing 8.1 . 173
8.2 Example – Value analysis of Listing 8.1 . 174
8.3 Example – Type analysis, communication through addresses 174
8.4 Example – Value analysis . 174
8.5 Remark – Removing auxiliary variables of other types 175
8.6 Remark – Auxiliary variables in the implementation 177
8.7 Example – Execution of a statement in the value analysis 177
8.8 Example – Concretization difficulty with builtin values 179
8.9 Example – Full concretization of the value analysis 180
8.10 Remark – List analysis . 181
8.11 Remark – The balancing act of static packing . 186
8.12 Remark – Static packing and Mopsa’s loosely-coupled domains 186
9.1 Remark – cffi works on shared libraries . 198
10.1 Example – Accessing C data from Python . 204
10.2 Example – Accessing Python data from C . 205
10.3 Example – Concrete C state of Listing 10.1 . 206
10.4 Remark – Addresses are shared . 207
10.5 Example – Diagram of the multilanguage state on the running example 208
10.6 Example – Boundary effect . 209
10.7 Remark – Value conversion . 209
10.8 Remark – Output check in CPython . 211
10.9 Remark – Method descriptors . 211
10.10 Remark – Wrapper descriptors . 211
10.11 Remark – Member descriptors . 212
10.12 Remark – No references to the source code . 213
11.1 Example – Abstract C state of Listing 11.1 . 218
11.2 Remark – Unique numerical domain . 219
11.3 Example – Counter instantiation . 222
11.4 Example – Counter access . 224
11.5 Remark – Relational analysis . 226
11.6 Definition – Multilanguage concretization . 226

260 List of Definitions, Examples, Properties and Remarks

11.7 Theorem – Soundness of the multilanguage analysis 226

	Abstract
	Résumé
	Acknowledgments & Remerciements
	Background
	Introduction
	Software bugs and what can be done about it
	A first approach: testing
	An impossibility theorem
	Deductive program verification
	Symbolic execution
	Model checking
	Static analysis by abstract interpretation

	The challenges of analyzing dynamic programming languages
	Contributions & outline

	Static Analysis by Abstract Interpretation
	A Toy Imperative Language, Imp
	Semantics of Imp
	Semantics of expressions
	Semantics of statements
	Comparing states

	Inferring ranges of Imp variables
	The interval domain
	Concretization
	Interval transfer functions
	Abstract semantics of expressions
	Abstract semantics of statements
	Basic statements
	Conditionals
	Terminating loop analyses
	Improving the analysis with congruences
	Deriving the semantics
	Cooperation between congruences and intervals

	Extending Imp and its analyses
	Extending Imp with strings
	Using ghost variables to track string length
	Breaking out of a loop
	Relational invariants
	Summarization of string content
	Combining string length and summarization

	Defining modular concretization functions
	Generic approach
	String summary domain
	String length domain
	Combining both concretizations

	Conclusion

	Base Abstractions
	Mopsa
	Related work
	Infer
	TAJS
	Frama-C
	Astrée
	Framework of KeidelPE18

	Abstract syntax tree (AST)
	Elementary expressions and statements
	A domain handling while loops
	Extending the AST with Python and C loops
	Dynamically rewriting Python and C loops

	Domains
	Defining analyses by combining domains
	Domain signature
	Domain type and lattice operations (lines 24-33)
	The need for a manager (lines 2-15)
	Flow, wrapper of the global abstract state
	Cases, postconditions and evaluations (lines 18-19)
	Transfer functions on expressions and statements (lines 36-38)
	Utilities (lines 41-44)

	The simplified case of non-relational domains
	Reduced products and their pitfalls
	Communication between domains

	Hooks
	Formalization
	Conclusion

	Abstracting Dynamic Memory Allocation
	The recency abstraction
	Motivation
	Concrete semantics
	The recency abstraction
	Abstract semantics
	Concretizations
	Recency abstraction
	Heap abstraction

	Variable policies for the recency abstraction
	Abstract garbage collection (AGC)
	Related work
	Conclusion

	Abstracting Containers
	Dynamic arrays
	Array operations
	Length abstraction
	Summarization abstraction
	Reduced product
	Variation: abstracting sets

	Dictionaries
	Dictionary operations
	Whole smashing

	Related work
	Conclusion

	 Pure Python Programs
	Concrete Semantics of Python
	Concrete state
	Core language
	Literals
	Variables
	Nominal types
	Structural types (attributes)
	Subscript
	Conditionals
	Loops
	Exceptions
	With context manager
	Function declaration
	Class declaration
	Decorators
	Calls
	Unary operators
	Binary operators
	Arithmetic operators
	Comparison operators

	Other binary operators

	Builtin objects
	Object
	Functions and methods
	Type
	Booleans
	Integers
	Range objects
	Containers
	Iterators
	super
	Generators

	Correctness
	Tests from previous works
	CPython's tests
	Summary of the conformance tests

	Comparison with JavaScript
	Related work
	Conclusion

	Type Analysis
	Differences with a type system
	Non-relational type analysis
	Abstract addresses
	Environment abstraction
	Heap Abstraction
	Additional abstractions
	Flow tokens
	Containers
	Stateless abstractions close to the concrete semantics

	Functions
	Full abstraction

	A relational reduced product bringing polymorphism
	Interaction with Python's type annotations
	Implementation
	Configuration
	Optimizations & extensions
	Exception abstraction
	Towards a partially modular function analysis.

	Experimental evaluation
	Benchmarks
	Comparison with other tools
	Competing tools
	Performance and precision
	Soundness evaluation
	Summary of the comparison

	Impact of the allocation policy and of the abstract garbage collector

	Related work
	Conclusion

	Value Analysis
	Value analysis as a refinement of the type analysis
	Experimental evaluation
	Value-sensitivity
	Allocation-site policy choice
	Abstract garbage collector
	Selectivity of the analysis

	Scaling relational analyses using packing
	Conclusion

	 Mixing Python and C
	Interoperability Mechanisms between Python and C
	A toy example using Python's API
	Counter module, viewed from Python
	Counter, viewed from C
	Module import
	Class initialization
	Counter creation
	Counter increment
	Counter access
	Building the module
	What can go wrong?
	Common bugs at the boundary

	Other Python/C interoperability mechanisms
	Ctypes
	Cffi
	Swig
	Cython

	Conclusion

	Concrete Multilanguage Semantics
	Multilanguage state
	Python state
	C state
	Combined state
	Handling Python exceptions in C

	Boundary functions
	Python to C boundary
	C to Python boundary

	C call from Python
	Python call from C
	Builtins of the API
	Integer conversions
	Operations on containers
	Generic converters: PyArg_ParseTuple, Py_BuildValue
	Class initialization: PyType_Ready

	Threats to validity
	Related work
	Conclusion

	Multilanguage Value Analysis
	Abstract domain
	Transfer functions
	Boundaries
	C call from Python
	Conversion from a C long to a Python integer
	Tuple conversions

	Examples
	Concretization & soundness
	Implementation
	Configuration
	Build setup

	Experimental evaluation
	Corpus selection
	Analysis results

	Related work
	Native code analysis
	Multilanguage analyses
	Library analyses

	Conclusion

	Conclusion & Future Work
	Conclusion & Future Work
	Bibliography
	List of Figures
	List of Listings

