Mat(t Jules Mehdi

Frédéric, Tong Emmanuel Pascal

Amandine Simon Arthur

In this thesis, we aim at designing both theoretically and experimentally methods for the automatic detection of potential bugs in software -or the proof of the absence thereof. This detection is done statically by analyzing programs' source code without running them. We rely on the abstract interpretation framework to derive sound, computable semantics. In particular, we focus on analyzing dynamic programming languages. The target of this work is the analysis of Python programs combined with native C libraries.

The abstract interpretation workflow requires a concrete semantics, which will be approximated to create sound computable analyses. Our first step is thus to define the uncomputable, collecting semantics of Python formally. This semantics relies on previous work and retroengineering from the source code of the reference interpreter. We took special care to make the semantics explainable by providing references to the actual implementation's source code for each case of the semantics.

We have implemented all the analyses presented in this thesis within the Mopsa framework. From a static analysis developer's perspective, Mopsa has a double goal. It aims at reducing the cost of lifting an abstract domain from a toy language to a real-world one. It also aspires to define relational analyses composed of loosely coupled abstract domains that can cooperate. We take particular care to define all our abstract domains independently from each other. Mopsa's core is language agnostic, making Mopsa suitable to analyze different programming languages. The analyses rely on some general use domains, such as numerical domains, the recency abstraction of dynamic memory allocation, and the loop iterator.

We present a first analysis aiming at detecting type-related errors in Python programs. It does so by inferring both the nominal and structural types of objects. Python's type annotations can be reused to support libraries. This analysis is refined into a value analysis which is more precise and infers numerical invariants for the manipulated builtin numeric values. These analyses rely on abstractions of dynamic memory allocation and data structures that we have adapted to the case of dynamic programming languages. Both analyses scale to realworld benchmarks a few thousand lines long used by Python developers.

Most Python programs rely on libraries written in C for the sake of performance or code reuse. We define a multilanguage analysis that can detect runtime errors in every part of a multilanguage program: in the Python part, in the C part, and at the boundary between the languages. Before defining this analysis, we provide an overview of the different interoperability mechanisms available between Python and C, and we define a collecting semantics for the interoperability mechanism provided by the reference interpreter. This analysis can tackle tests of popular, real-world libraries a few thousand lines of C and Python long in a few minutes.

Merci Antoine pour toutes les discussions extrêmement enrichissantes et tes conseils avisés. Merci pour tes relectures infatigables, dans les moindres détails, avec des corrections, mais aussi des suggestions d'améliorations, ainsi que des idées de travaux futurs. Rien que pour le manuscrit, les différents brouillons cumulent autour de 800 annotations.

Merci Abdelraouf : sans toi et ni Mopsa, cette thèse aurait pris beaucoup plus de temps, et l'analyse multilangage n'aurait pas été si facile à faire ! Je me rappelle encore des après-midi passés en début de thèse à dessiner des diagrammes de séquence pour comprendre comment l'analyse de Python pourrait marcher. J'ai gardé cette approche pour illustrer l'analyse multilangage dans les figures 11.6, 11.7 et 11.8.

Merci à vous deux pour votre bienveillance constante, pour avoir toujours trouvé du temps pour discuter malgré vos emplois du temps chargés, et pour toutes les discussions captivantes autour de Mopsa.

Merci Alan et Pierre-Évariste pour vos précieux conseils lors des comités de suivi.

Merci à Daniel Hirschkoff, Simon Castellan et Jean-Marie Madiot pour m'avoir fait tomber dans la potion magique des langages de programmation en L3, et fait découvrir -entre autres -les rudiments de l'analyse de programmes.

Résumé

Dans cette thèse, nous avons pour objectif de concevoir, à la fois théoriquement et expérimentalement, des méthodes pour la détection automatique de bogues potentiels dans les logiciels -ou la preuve de leur absence. Ces méthodes sont statiques : elles analysent le code source des programmes sans les exécuter. Nos travaux s'inscrivent dans le cadre de l'interprétation abstraite pour dériver une sémantique sûre et décidable. Le principal objet de ce travail est l'analyse des langages de programmation dynamiques. En particulier, ce travail se concentre sur les programmes écrits en Python, qui peuvent appeler des bibliothèques écrites en C.

En suivant le déroulement usuel de l'interprétation abstraite, nous partons d'une sémantique concrète, qui sera ensuite approximée pour créer des analyses sûres et calculables. Notre première étape consiste donc à définir formellement la sémantique collectrice, et non calculable, de Python. Cette sémantique s'appuie sur des travaux antérieurs et sur une rétroingénierie à partir du code source de l'interprète de référence. Nous avons pris soin de rendre la sémantique explicable en mettant, pour chaque cas, des références vers le code source correspondant dans l'interprète.

Nous avons implémenté toutes les analyses présentées dans cette thèse dans le logiciel intitulé Mopsa. Du point de vue de l'implémentation des analyses statiques, Mopsa a un double objectif. Il vise tout d'abord à réduire le coût du passage d'un domaine abstrait fonctionnant sur un langage jouet à un langage de programmation réel. Il aspire également à définir des analyses relationnelles composées de domaines abstraits faiblement couplés qui peuvent coopérer. Nous prenons un soin particulier à définir tous nos domaines abstraits de manière indépendante les uns des autres. Le noyau de Mopsa n'est pas spécialisé pour l'analyse d'un langage en particulier, ce qui rend Mopsa apte à analyser différents langages de programmation. Les analyses s'appuient sur certains domaines généraux, tels que les domaines numériques et l'itérateur de boucle.

Nous présentons une première analyse visant à détecter les erreurs liées aux types dans les programmes Python. Elle le fait en déduisant les types nominaux et structurels des objets. Les annotations de type de Python peuvent être utilisées pour supporter des librairies. Cette analyse est raffinée en une analyse de valeur qui est plus précise et infère des invariants numériques. Ces deux analyses reposent sur des abstractions du mécanisme d'allocation dynamique de mémoire et des abstractions de structures de données que nous avons adaptées au cas des langages de programmation dynamiques. Nos analyses fonctionnent sur des benchmarks réels de quelques milliers de lignes utilisés par les développeurs Python.

La plupart des programmes Python s'appuient sur des bibliothèques écrites en C, afin d'améliorer leurs performances ou de réutiliser du code existant. Nous définissons une analyse multilangage qui peut détecter les erreurs à l'exécution dans chaque partie d'un programme multilangage : dans la partie Python, dans la partie C, et à la frontière entre les langages. Avant de définir cette analyse multilangage, nous fournissons un aperçu des différents mécanismes d'interopérabilité disponibles entre Python et C, ainsi que la définition d'une sémantique collectrice pour le mécanisme d'interopérabilité fourni par l'interprète de référence. Notre analyse multilangage est capable d'analyser en quelques minutes les tests de bibliothèques populaires, issues du monde réel, faisant quelques milliers de lignes de C et de Python.

Introduction

Software bugs and what can be done about it

Software is ubiquitous and touching every aspect of modern life, from its use in transportation means to personal communication systems. A bug happens in a software when the latter does not behave as it is expected to. For example, it can reach an erroneous state terminating its execution. Depending on the nature of the bug and the criticality of the host system, a bug ranges from being annoying (a random crash in a smartphone app), to having a monetary cost reaching billions of dollars, to losses of life. These bugs happen a lot in everyday software. Wong et al. [START_REF] Wong | Be more familiar with our enemies and pave the way forward: A review of the roles bugs played in software failures[END_REF] survey 59 notable software accidents which happened from 1993 to 2015. In a 2020 report [START_REF] Krasner | The cost of poor software quality in the us: A 2020 report[END_REF], the Consortium for Information & Software Quality estimated that $607 billions were spent in 2020 on finding and fixing software bugs in the US alone, and that those software failures cost $1.56 trillion. At the time of writing, the CVE (Common Vulnerabilities and Exposure) database of the NIST (National Institute of Standards and Technology) [START_REF]NIST's national vulnerability database[END_REF] lists more than 169,371 software vulnerabilities that could be exploited by attackers on publicly available software alone.

A first approach: testing

A first way to avoid bugs is by testing that the software works as intended on specific input cases. There are, however two difficulties to this approach. First, generating test cases is difficult and time-consuming, since developers have to compute the expected result on each input case, and this independently from the software's implementation. Second, testing every input case is impossible in most cases, where the input space is too big to be exhaustively covered.

Let us take the example of developers wanting to check their implementation of a tax computation system, which given taxpayers' information -such as salaries, relationship's status, number of children, ... -yields the income tax owed. Provided an input case describing a fiscal household, developers would have to compute manually (using the law as their guide) the income tax owed before checking that their software returns the same result. In that case, it is straightforward to understand that testing the software on every fiscal household would be a tremendous task. In addition, it would defeat the whole point of automating the tax computation software in the first place.

In some cases, some industrial actors have found testing to be too costly in their industrial processes and introduced alternative approaches to validation by testing. In the domain of critical embedded software, Airbus is an example [START_REF] Delmas | Astrée: From research to industry[END_REF]:

Considering the steady increase of the size and complexity of this kind of software, classical validation and verification processes, based on massive testing campaigns and complementary intellectual analyses, hardly scale up within reasonable costs. Therefore, Airbus has decided to introduce formal proof techniques providing product-based assurance into its own verification processes.

An impossibility theorem

It would thus be nice to have techniques and methods avoiding these shortcomings, that is, having approaches that can automatically and generally prove that programs are correct (i.e., free of bugs). However, we know there is no such general approach since 1953. At that date, Henry Gordon Rice [START_REF] Gordon | Classes of recursively enumerable sets and their decision problems[END_REF] proved that "all non-trivial semantic properties of programs are undecidable". In a simplified way, this means that proving program properties cannot be done by another program that will always return the correct result in finite time. This theorem can be seen as a generalization of Alan Turing's theorem on the undecidability of the halting problem [START_REF] Mathison | On computable numbers, with an application to the entscheidungsproblem[END_REF]. Scientists in the field of formal methods, aiming at studying bugs in programs, have thus had to circumvent this impossibility theorem by picking at most two of the three following properties in their approaches:

Completeness. An approach is complete if it is possible to prove any true property using that approach. In particular, these approaches ensure the absence of false positives: if a bug is detected, it necessarily exists in the analyzed program. Soundness. An approach is sound if any property it proves on a program actually holds on the program. In particular, they do not exhibit false negatives, i.e., if the approach proves that a program is free of bugs, it is. Automation. An approach is automatic if it does not require user interaction to finish its task and can do so in finite time.

We briefly survey the different static approaches that work on programs' source code without running them. Each approach has its benefits and downsides, and some are more suitable for specific cases.

Deductive program verification

The field of deductive verification relies on sound and complete tools that are guided by their users. These tools are useful to prove strong properties, such as the correctness of a program with respect to a specification. They usually require a lot of expertise and guidance from a user to complete proofs, although some parts can be discharged using automatic SAT/SMT solvers. These tools tend to work on a custom input programming language, with options to extract programs into more mainstream languages. Examples of deductive program verification frameworks include the Why3 platform [START_REF] Filliâtre | Why3-where programs meet provers[END_REF] or F * [START_REF] Swamy | Dependent types and multimonadic effects in F[END_REF]. In the case of Why3, the input language is called WhyML; (sub)proofs can be discharged to SMT solvers such as Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF], or a proof assistant. In addition, the Frama-C platform [8] builds upon Why3 to allow deductive verification of original C code.

Symbolic execution

Symbolic execution approaches replace unknown variables' values with symbolic variables and propagate them during the execution. They perform explicit disjunctions in the case of conditionals or loops. The collected constraints can then be solved to determine if an erroneous state has been reached or not. It is then possible to determine a concrete input state leading to the erroneous state. These disjunctions may quickly create a combinatorial explosion.

According to a recent survey by Baldoni et al. [5], symbolic execution engines "often settle for less ambitious goals, e.g., by trading soundness for performance".

Model checking

Model-checking [START_REF] Clarke | Automatic verification of finitestate concurrent systems using temporal logic specifications[END_REF] generally applies to proof on decidable fragments of languages. In these cases, approaches can be sound, complete, and automatic. These approaches require a model of a finite-state machine and a formula in a given logic and decide if the formula holds in the provided model. The decision procedure can be a custom algorithm or rely on a constraint solver. In the case of general program analysis, it is also possible to restrict programs' executions. In that case, the inference of semantic properties is decidable again. For example, Clarke et al. [START_REF] Clarke | A tool for checking ANSI-C programs[END_REF] apply bounded model-checking to analyze C programs by unwinding loops, and functions calls up to a user-provided bound. They are thus unsound (if a specific behavior happens deeper into the execution of the program). Similarly to symbolic execution, these tools have the benefit of providing counterexamples when they find a bug. Multiple model checkers are compared every year in the software verification competition [START_REF] Beyer | Software verification: 10th comparative evaluation (SV-COMP 2021)[END_REF].

Static analysis by abstract interpretation

The focus of this thesis is the case of sound and automatic approaches. These approaches are however incomplete, and can raise false alarms. In particular, the goal of this thesis is to develop static analyses within the framework of abstract interpretation, developed by Radhia and Patrick Cousot [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. They have been particularly successful in the verification of absence of runtime errors in the context of critical embedded software. For example, Astrée [11,[START_REF] Cousot | Combination of abstractions in the Astrée static analyzer[END_REF] has been used to prove the absence of runtime errors in control and commands software of Airbus planes [START_REF] Delmas | Astrée: From research to industry[END_REF]. More recently, Frama-C's static analysis plug-in [START_REF] Cuoq | Frama-C -A software analysis perspective[END_REF]8] has been used to analyze the code of French nuclear power plants [START_REF] Ourghanlian | Evaluation of static analysis tools used to assess software important to nuclear power plant safety[END_REF]. In these cases of critical software, a subset of the C programming language is used, and it precludes complex control flow as well as dynamic memory allocation. The sound, efficient, and precise analysis of more dynamic languages and program traits remains a challenge.

The challenges of analyzing dynamic programming languages

Dynamic programming languages are a relatively new class of programming languages, aiming at making software development quicker by being more implicit. They have been steadily growing in popularity in the last two decades. Examples of such dynamic programming languages include JavaScript, which is extremely popular on the client side of web pages; Python, which is initially a scripting language and the focus of this thesis; and PHP, which is a serverside scripting language. At the time of writing, JavaScript and Python are the two most used languages on GitHub, followed by Java [START_REF] Github | State of the github octoverse[END_REF].

We present some specificities of dynamic programming languages (some already pointed out by Tratt [START_REF] Tratt | Dynamically typed languages[END_REF]), and the consequences for their analysis.

Permissive, high-level syntax. Languages such as PHP and Python provide a permissive, highlevel syntax, where most operators can be overloaded, by hiding an underlying complex semantics. This flexibility also relies on multiple inheritance of objects, and complex resolution of method calls. JavaScript and PHP also perform implicit, dynamic casts instead of raising errors. In the case of JavaScript, the addition of the string "1 hello" and the integer 2 is interpreted as a string concatenation and returns "1 hello2". On the other hand, PHP chooses to perform an integer addition by casting the string into the integer 1, and returning 3. In Python, this operation yields a TypeError exception. In the case of PHP and Python, a prevailing implementation acts as the reference for the semantics, as opposed to a more accessible and readable standardization that is available in JavaScript. In the absence of a standard, establishing the languages' semantics is the first challenge before developing an analysis. 1 Builtin data structures. The high-level syntax is complemented by builtin data structures such as dynamic arrays and associative maps. These data structures may contain heterogeneous elements. These cases are less studied than the case of numeric, static arrays in the context of C programs. Dynamic typing. Variables are neither statically declared nor statically typed. They can thus point to objects having different types at execution time. To handle these cases, introspection operators can inspect the type of an object at runtime and affect the controlflow. It is also possible to alter objects' structures at runtime, e.g. by adding or removing fields to them. This makes the static analyses harder: the types of variables have to be determined too, and introspection operators have to be supported in order to precisely handle the control-flow. In the case of Python, two different type systems are used: a nominal one, corresponding to the class from which an object is instantiated, and a structural one, informally called duck typing, which is based on attributes. Dynamic evaluation. Although the frequency of its usage varies heavily from one language to another, it is possible to construct a string and evaluate it as a piece of code at runtime. If no exact representation of the evaluated string is available, it is next to impossible to analyze those dynamic evaluations. Since these evaluations change the program's state, forgetting their effects yields unsound analyses. Automatic memory management. Object allocation and deallocation are handled automatically by the language. Compared to embedded C software, dynamic memory allocations thus happen frequently. Specific dynamic memory allocation abstractions have to be used and tailored to the case of dynamic programming languages. Deallocations may happen asynchronously, at any time after objects are not referenced anymore. Precisely capturing their effects, which can be arbitrary due to the finalization functions, is thus difficult. Batteries-included library. Dynamic programming languages often ship with vast standard libraries. Programs frequently rely on multiple parts of these libraries, which thus have to be supported. Complex control-flow. High-level iterators and exceptional control-flow create more dynamic control-flow. Another case of complex control-flow concerns Python's generators, and more generally asynchronous functions. The control-flow can be more global and dynamic than in the case of C software.

Contributions & outline

The first part of the thesis provides background on static analysis by abstract interpretation. Chapter 2 explains how these analyses work in the setting of a simple imperative language. In addition to providing the base terminologies, we introduce some key concepts reused in the analyses of Python programs: (i) the use of control-flow tokens to describe non-local controlflow operators on analyses working by induction on the syntax, (ii) the use of auxiliary variables by some domains, delegating work to other domains, (iii) a modular definition of relational concretizations for each domain: concretizations are defined independently for each domain, and can be composed through specific operators. These modular definitions of concretizations are a novel contribution used throughout this thesis. 1 Standardizations are usually written informally and leave ambiguities. The best approach is to rely on fully formal semantics, which requires additional work -such as the work of Bodin et al. [START_REF] Bodin | A trusted mechanised JavaScript specification[END_REF] for JavaScript.

The second part of this thesis defines language-agnostic concepts and abstractions. Chapter 3 describes the Mopsa static analyzer, in which the analyses presented in this thesis are implemented. Mopsa has a deep influence on the design of these analyses. It is a prototype analyzer, which aims at simplifying the definition of analyses, and focuses on making collaborative, relational analyses. This chapter extends a previous publication to VSTTE 2019 [START_REF] Journault | Combinations of reusable abstract domains for a multilingual static analyzer[END_REF] by providing a more in-depth comparison with related work, introducing the notion of hooks, and formalizing the composition operators in Mopsa. Chapter 4 revisits the recency abstraction [4], originally developed to handle dynamic memory allocation in the analysis of binaries or low-level C code, and subsequently used in the analysis of JavaScript [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF], [START_REF] Park | Revisiting recency abstraction for javascript: towards an intuitive, compositional, and efficient heap abstraction[END_REF]. We provide a modular definition of the recency abstraction and its concretization and a notion of variable policies used to tailor the allocation-site sensitivity. Some policies specific to the analysis of Python are defined. Chapter 5 defines abstractions of containers such as arrays and dictionaries. These are very coarse abstractions, well known for the analysis of C or Java. These coarse containers abstractions have been defined in the setting of dynamic programming languages, where data-structures have variable length and can potentially be heterogeneous. They are also defined to work by delegation over scalar domains.

The third part of this thesis focuses on Python programs. Following the usual workflow of abstract interpretation, we start by defining the concrete semantics of a large subset of Python in Chapter 6. A first part of the semantics covers the core language, and another the most commonly used objects. This semantics is assumed to be a correct modeling of Python's semantics, without a formal connection to the actual Python interpreter, but we took special care to make the semantics manually checkable, using references to the actual implementation of the reference interpreter, called CPython. The concrete semantics has been tested by running our analysis on more than 700 conformance tests. Contrary to previous works, this interpreter-like semantics is directly amenable to static analysis by abstract interpretation, improving our confidence in our analysis. Chapter 7 describes a type analysis for Python, focusing on precise detection of type-related exceptions. It is based on a work published at ECOOP in 2020 [START_REF] Monat | Static type analysis by abstract interpretation of python programs[END_REF]. It can interpret Python's type annotations, allowing us to leverage Python annotations written by developers in the typeshed project [152] and easily support libraries. It scales to small real-world benchmarks (less than 2,500 LOC per program) providing analysis times of the order of a few minutes. This analysis is refined into a numeric value analysis in Chapter 8. This value analysis can be relational, and scales using packing heuristics. We keep a particular interest in comparing it with the type analysis on the same benchmarks, based on our SOAP'20 publication [START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF]. We find that the precision gained with the value analysis does not remove any type-related error in the programs we analyze, and that the non-relational value analysis requires around 3 times more memory and time than the type analysis.

The fourth part of this thesis extends the target to Python programs calling C code. This is particularly important to analyze the whole source code of a significant number of Python programs since one-in-five of the 200 most downloaded Python libraries contains C code. This part is an extension of our SAS paper published in 2021 [START_REF] Monat | A multilanguage static analysis of python programs with native c extensions[END_REF]. Since the interoperability mechanisms are quite complex, we start by providing an introductory example of Python program calling a C module using the Python/C API. This chapter ends by surveying other Python/C interoperability mechanisms. Chapter 10 defines a semantics for the Python/C API. This semantics builds upon the semantics of each language. Chapter 11 defines a multilanguage value analysis of Python programs using C extension modules. This analysis relies on our previous value analysis of Python, and the work of Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF] for the C analysis. It reports runtime errors that may happen in Python, in C, and at the interface. Thanks to Mopsa, the abstract state is shared between abstract domains of different languages. We only add a minimal number of transfer functions. Our analyzer can tackle tests of real-world libraries a few thousand lines of C and Python long (5,500 at the most) in a few minutes.

The final part of this thesis concludes and reflects on future work.

Artifact. One of the main goals of this work has been to develop and maintain Mopsa so that it can analyze Python programs. In the conferences proposing it, we have successfully submitted software artifacts alongside our articles in order to make our experimental evaluation reproducible [START_REF] Monat | Static type analysis by abstract interpretation of python programs (artifact)[END_REF][START_REF] Monat | A Multi-Language Static Analysis of Python Programs with Native C Extensions[END_REF]. Both Mopsa and its benchmarks are publicly available [START_REF] Journault | MOPSA: modular open platform for static analysis[END_REF][START_REF] Journault | Benchmarks used by MOPSA[END_REF]. We enrich this document with the release of an artifact of Mopsa in its current state, supporting the analysis of programs described in this thesis [START_REF] Monat | Static Type and Value Analysis by Abstract Interpretation of Python Programs with Native C Libraries (Artifact)[END_REF].

Collaborations. All the research done in this thesis is joint work with Antoine Miné and Abdelraouf Ouadjaout. Mopsa was already a work-in-progress for the C analysis at the beginning of this thesis, started by Antoine Miné, Abdelraouf Ouadjaout, and Matthieu Journault. The definitions of the modular concretizations have been extensively discussed with Matthieu Journault.

Static Analysis by Abstract Interpretation

This chapter introduces the basics of static analysis by abstract interpretation, as well as common notations used in the rest of this thesis. In general, the goal of static analyses is to prove program properties. Here, we focus on proving safety properties (i.e., that program states are included in the set of safe states). In particular, we want to prove that our programs avoid erroneous states. More in-depth introductions to abstract interpretation have been written by Miné [START_REF] Miné | Tutorial on static inference of numeric invariants by abstract interpretation[END_REF], Rival and Yi [START_REF] Rival | Introduction to Static Analysis[END_REF]. We introduce concepts of order theory and abstract interpretation gradually, once they have been encountered in examples. In a classic approach, we start by defining Imp in Section 2.1, the toy language on which this chapter is based. We define the semantics of Imp in Section 2.2, and numerical analyses in Section 2.3. More specific and recurring concepts used in this thesis are presented in Section 2.4. Section 2.5 revisits the concretizations defined in Section 2.4, through the lens of a new framework allowing the definition of modular concretization functions.

A Toy Imperative Language, Imp

This chapter focuses on analyzing Imp programs. Imp is a toy imperative language, where variables are declared and statically typed. At first, the only type available is int, the values of which are mathematical integers. There are no functions. Imp programs may fail if a division by zero occurs or if the division result is not an integer.

An example Imp program is shown in Listing 2.1. It computes the fourth term of the 3n + 1 sequence [START_REF] Jeffrey | The 3x+ 1 problem: An overview[END_REF] starting at three using a while loop. This program does not fail since the division by two is always performed on even numbers.

The grammar of the Imp language is described in Figure 2.1. Statements can be variable declarations (for now, the only variable type is int, for mathematical integers), variable assignments, sequences of statements, conditional if statements and while loops. Variable declarations and assignments can be combined into a single statement. Expressions are either variables (denoted V), integers, an interval designating a random integer in this interval, or a binary operation over two expressions. Unary operators (such as the unary negation) could be added straightforwardly to our presentation. Conditionals are comparisons between two expressions. The interval constant [z 1 ∈ Z∪{ -∞ }; z 2 ∈ Z∪{ +∞ }] is used to model non-determinism. It can be used to model randomness from arbitrary input, as well as imprecisions introduced to approximate the behavior of a function.

Semantics of Imp

We define the semantics of Imp, that is, a formal mathematical definition of the behavior of expressions and statements over the program state.

Definition 2.2 Program state

A state S of an Imp program consists in a map from the program's variables V to mathematical integers, i.e S def = V → Z.

Example 2.3 Program state

In our running example, the initial state is S = ∅ (no variable is defined), and the final state is (i → 4, n → 4, u → 16).

Remark 2.4 Set and function notations

Sets are written { a; b }, where the separator between two elements is a semicolon. Functions can be defined as a mapping (i → v, j → w), where the separator is a comma.

The semantics acts as a function describing the effect of statements on an input state, similarly to the implementation of an interpreter, and to the implementation of an analyzer.

Semantics of expressions

The semantics of an expression e is written E e : S → P(Z). Given an input state, the expression is evaluated in the set of output values (due to non-determinism). The semantics of expressions is shown in Figure 2.2. A variable is evaluated using the input state σ. If the variable is not defined in the state, we consider it is an error and evaluate it into the empty set. A constant integer is evaluated in itself. An interval can be evaluated into any of the integers it contains. The addition of two expressions e 1 and e 2 is evaluated into the set of values v 1 + v 2 , where v 1 (resp. v 2) ranges over the values of e 1 (resp. e 2). The semantics of subtraction and multiplication are the same. The division of two expressions e 1 and e 2 has a similar definition, but we keep only evaluations where the denominator evaluates to a nonzero value, and the division results in an integer. Similarly, the remainder of two expressions drops the cases where the modulus is zero. Let σ be a program state where σ(x) = 2. We evaluate x/[-3, 3] in this state. We have E x σ = { σ(x) } = { 2 }, and E [-3, 3] σ = { -3; -2; -1; 0; 1; 2; 3 }. Thus, E x/[-3, 3] σ = { -1; -2; 2; 1 }: the denominator value 0 is dropped to prevent a division by zero, as well as values -3 and 3 to avoid non-integer values.

E v ∈ V σ def = { σ(v) } E z ∈ Z σ def = { z } E [z 1 , z 2] σ def = { z ∈ Z | z 1 ≤ z ≤ z 2 } E e 1 †

Remark 2.6 Errors

Erroneous evaluations and states are not explicit in the semantics. In the case of a division by zero, for example, we just continue the evaluation with the non-erroneous cases. This simplifies the definition of the semantics. In the implementation of an analyzer, erroneous states will be marked to report them, but they are not evaluated further either.

In the case of languages raising exceptions to signal errors (such as Python), the execu-tion will be continued, and the state flagged as erroneous, since these exceptions can be caught later on.

Semantics of statements

Due to the non-determinism of expressions, an assignment may transform one program state into multiple ones. Given a statement s, its semantics could thus be written S s : S → P(S).

In order to ease the composition of semantics, we define by join-morphism extension S s : P(S) → P(S). The semantics of statements transforms a set of states into another one. The semantics of variable declaration, assignment, and sequence is shown in Figure 2.3. A declared variable is initialized with any value (σ = σ[x → z] denotes the function σ extended so that σ (x) = z). Given an expression e and a set of states Σ, the semantics of the assignment S x = e Σ is the set of states where variable x maps to a value v, where v is a value corresponding to the evaluation of e in a program state σ ∈ Σ. The semantics of a sequence of statements consists in the composition of the semantics of statements.

S int x Σ def = { σ[x → z] | σ ∈ Σ, z ∈ Z } S x = e Σ def = { σ[x → v] | σ ∈ Σ, v ∈ E e σ } S s 1 ; s 2 def = S s 2 • S s 1 Figure 2.

3: Semantics of basic statements

The semantics of conditionals is shown in Figure 2.4. It consists in executing the statements of the if branch for the states where the guard holds and executing the statements of the else branch in the states where the negation of the condition holds. We thus define the conditional filtering operator C c which filters the states to keep only those where the evaluation of the comparison may hold.

S if (c) {s t } else {s f } def = S s t • C c ∪ S s f • C ¬c C e 1 e 2 Σ def = { σ ∈ Σ | ∃v 1 ∈ E e 1 σ, ∃v 2 ∈ E e 2 σ, v 1 v 2 } ∈ { <=, <, >, >=, ==, ! = }

Remark 2.7 Conditional semantics

To model a non-deterministic execution between two statements, we can use a conditional with a non-deterministic guard:

S if ([0, 1] == 0) {s t } else {s f } = S s t ∪ S s f

Example 2.8 Conditional filtering

Let Σ = S x = [0, 2] ∅ = { (x → 0) ; (x → 1) ; (x → 2) }. We have C x < [1, 2] Σ = { (x → 0) ; (x → 1) }. In particular, σ = x → 1 is a kept by the filtering operator, since 2 ∈ E [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF]2] σ and E x σ < 2.

Remark 2.9 Negation of conditions

The conditional filtering operator is defined only on comparisons, but we use the negation of conditions in the definition of the semantics of if. These negations are translated back to a condition, e.g. ¬(e 1 < e 2) = e 1 ≥ e 2 .

The semantics of while loops is shown in Figure 2.5. It consists in iterating the loop body (along with filtering using the guard) any number of times. Then, we keep the states where the negation of the guard holds (i.e., when the loop exits).

S while (c) {s}

Σ def = C ¬c n∈N (S s • C c) n Σ Figure 2.

5: Semantics of while loops

Note that this definition is not computable in general due to the unbounded number of iterations. In particular, let us consider the program in Listing 2.2. It starts from a non-negative number u and computes the 3n + 1 sequence until it reaches 1, so i computes what is called the total stopping time of the 3n + 1 sequence. As of today, proving that i is always finite is still an open problem [START_REF] Jeffrey | The 3x+ 1 problem: An overview[END_REF].

Comparing states

As we have mentioned before, a recurrent goal of static analysis is to prove program properties, such as the absence of bugs. Program properties can be seen as the set of program states verifying that property. In the case of our running example of Listing 2.1, we may want to prove that the division at line 6 is correct, i.e., that u is always even. If Σ t is the set of program states reaching the if body at line 6, the property amounts to proving the following inclusion: Σ t ⊆ Σ e where Σ e = { σ | σ(u) ∈ 2Z }. Of course, we can also prove a stronger property, such as u is 10 or 16 (i.e, Σ b = { σ | σ(u) ∈ { 10, 16 } }). Since Σ t ⊆ Σ b , and Σ b ⊆ Σ e , we have by transitivity Σ t ⊆ Σ e . We notice that the set of program states, along with the inclusion relation, form a partially ordered set, which is useful to reason over the program properties mentioned before.

Definition 2.10 Poset

A partially ordered set (abbreviated poset) is a set X equipped with a relation ∈ X × X which is:

• Reflexive ∀x ∈ X, x x • Anti-symmetric ∀x, y ∈ X, x y ∧ y x =⇒ x = y • Transitive ∀x, y, z ∈ X, x y ∧ y z =⇒ x z

Example 2.11 Poset

Given a set X, (P(X), ⊆) is a poset. In particular, the set of program states P(S) is a poset.

Due to Rice's theorem, the current program states are too expressive to prove program properties on them automatically. As a first simplification towards the obtention of a computable semantics, we track potential values for each variable instead of keeping sets of states -i.e., we move from P(V → Z) to V → P(Z). We can remark that V → P(Z) is still a poset, thanks to the following pointwise lifting property: Property 2. [START_REF] Beyer | Software verification: 10th comparative evaluation (SV-COMP 2021)[END_REF] Pointwise poset lifting Given a poset (X,) and a set M , we define the pointwise relation ˙ such that:

˙ ∈ (M → X) × (M → X) f 1 ˙ f 2 ⇔ ∀m ∈ M, f 1 (m) f 2 (m)
Then, (M → X, ˙) is also a poset.

Remark 2.13 Pointwise lifting notation

As a convention, the pointwise lifting of an operator is written ˙ .

This simplification from P(V → Z) to V → P(Z) can be seen as an abstraction -since we simplify the structure of the state -formally defined as the function α below. Given a set of states Σ, α(Σ) is the function mapping for each variable v its corresponding values in Σ.

α : P(V Z) → V → P(Z) Σ → λv.{ σ(v) | σ ∈ Σ }
It is also possible to define a converse operation, called a concretization, defined as the function γ. γ maps a function f ∈ V → P(Z) to a set of states Σ it represents, where each variable v of each state σ ∈ Σ is a value of f (v).

γ :

V → P(Z) → P (V Z) f → { σ | ∀v ∈ V, σ(v) ∈ f (v) } Example 2.

Abstraction of P(V → Z)

We define Σ = { (u → 10, i → 1) ; (u → 16, i → 3) }

The abstraction of Σ is α(Σ) = (u → { 10, 16 }, i → { 1, 3 })

If we concretize the abstracted set, we get γ(α(Σ)) = { (u → 10, i → 1) ; (u → 16, i → 3) ; (u → 10, i → 3) ; (u → 16, i → 1) }

We can notice that Σ is strictly included in γ(α(Σ)).

Remark 2.15 Non-relational abstraction

The abstraction α defined here breaks the relationality between variables. For example, the property 5i ≤ u holds on the state Σ of Example 2.14, but it is not possible to prove it in the abstract.

Remark 2.16 False alarms

The case where a property holds in the concrete world but cannot be proved in the abstract due to imprecisions is called a false positive or false alarm. Using more precise abstractions may rule out some false alarms.

We can see that the order relation is preserved by the transformations α and γ: given any program state Σ ∈ P(V Z) and a function f ∈ V → P(Z), the following equivalence holds: Σ ⊆ γ(f) ⇔ α(Σ) ˙ f . This property of the α and γ functions can be generalized to define the notion of Galois connection, initially introduced by Cousot and Cousot [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] in the founding paper of abstract interpretation.

Definition 2.17 Galois connection

Let (A,) and (C, ⊆) be two posets. The pair (α :

C → A, γ : A → C) is a Galois connection if: ∀a ∈ A, ∀c ∈ C, c ⊆ γ(a) ⇔ α(c) a
In that case, we write (C, ⊆) --→ ←-α γ (A,). α is called the abstraction function, and γ the concretization function.

Remark 2.18 Notation of abstract elements

Abstract elements and abstract operators are usually suffixed with # to ease distinguishing them from concrete elements.

Property 2.19 Best abstraction

Given a Galois connection (C, ⊆) --→ ←-α γ (A,), α(c) is the best abstraction of c ∈ C (for ⊆).

Proof. Let c ∈ C, and a be a sound abstraction of c. We have c ⊆ γ(a). The definition of Galois connection entails α(c) a. Thus α(c) is the best abstraction of c.

Remark 2.20 Concretization-only framework

In some cases, there is no best abstraction. For example, the polyhedra abstract domain briefly presented in Section 2.4.4 abstracts subsets of the 2-dimensional plane R 2 . In particular, there is no best abstraction of a circle by a polyhedron (given that any polyhedron can be further extended to abstract the circle more precisely). In that case, a concretization γ : C → A is sufficient to reason about soundness (cf., Definition 2.21 below).

Definition 2.21 Sound abstraction

Let A be a set, (C, ⊆) a poset, and γ ∈ A → C. We say that a is a sound abstraction of c when c ⊆ γ(a).

Remark 2.22 Proving safety properties in the abstract

Let Σ e ∈ V → P(Z) and Σ e (u) = 2Z. Let Σ e = γ(Σ e) = { (u → 2k) | k ∈ Z }, where Σ e is defined in Section 2.2.3. Assuming f ⊆Σ e , and f is a sound abstraction of Σ, we get that Σ ⊆ γ(f) ⊆ γ(Σ e) = Σ e . Thus, for program properties that are exactly representable in the abstract (γ(Σ e) = Σ e), if we prove that this property holds in the abstract (f ⊆Σ e), it holds in the concrete too.

The notion of sound and best abstractions can also be defined for operators. These definitions will be helpful to prove that the semantics is sound.

Definition 2.23 Sound operator abstraction

Let A be a set, (C, ⊆) a poset, and Proof. Let f be a sound abstraction of f . Due to the soundness of f , f • γ ⊆γ • f . By definition of the Galois connection, this is equivalent to α • f • γ ⊆f , which proves the property.

γ ∈ A → C. f ∈ A → A is a sound abstraction of f ∈ C → C if ∀a ∈ A, f (γ(a)) ⊆ γ(f (

Inferring ranges of Imp variables

Our program states V → P(Z) are still too expressive to be computable. One idea to further reduce the computational cost of the analysis is to abstract sets of integers by intervals.

The interval domain

We define the interval poset (I, I) in Figure 2.6. The upper (resp. lower) bound of an interval can be plus (resp. minus) infinity, and the upper bound should be greater or equal to the lower bound. Intervals are extended with ⊥ I , representing the empty interval. The order I denotes interval inclusion. A schematic representation of the interval poset is shown in Figure 2.7. • I is antisymmetric: let i 1 , i 2 ∈ I such that i 1 i 2 ∧ i 2 i 1 . We show that i 1 = i 2 .:

I def = { [l, u] | l ∈ Z ∪ { -∞ }, u ∈ Z ∪ { +∞ }, l ≤ u } ∪ { ⊥ } ∀i ∈ I, ⊥ I I i ∀([l 1 , u 1], [l 2 , u 2]) ∈ (I \ { ⊥ I }) 2 , [l 1 , u 1] I [l 2 , u 2] ⇔ l 2 ≤ l 1 ∧ u 1 ≤ u 2 Figure 2.6: The Interval Poset ⊥ I [-1, 1] [0, 0] [1, 1] [-1, 0] [0, 1] [-1, -1] [-∞, 1] [-1, +∞] [-∞, +∞]
-If i 1 = ⊥ I , we have i 2 I ⊥ I . By definition of I , i 2 = ⊥ I .

-Otherwise, without loss of generality, let [l 1 , u 1] = i 1 and [l 2 , u 2] = i 2 . We have l 2 ≤ l 1 ∧ u 1 ≤ u 2 and l 1 ≤ l 2 ∧ u 2 ≤ u 1 . Thus i 1 = i 2 too.

• I is transitive: let i 1 , i 2 , i 3 ∈ I such that i 1 i 2 ∧ i 2 i 3 . We show that i 1 I i 3 .

-If i 1 = ⊥ I , the property is straightforward.

-If i 2 = ⊥ I , we have i 1 = ⊥ I (since i 1 i 2), and the property holds.

-Similarly, i 3 = ⊥ I entails i 2 = ⊥ I entails i 1 = ⊥ I .

-We can thus assume that i

1 = [l 1 , u 1]; i 2 = [l 2 , u 2]; i 3 = [l 3 , u 3]. By definition of I , l 2 ≤ l 1 ∧ u 1 ≤ u 2 and l 3 ≤ l 1 ∧ u 2 ≤ u 3 .
By transitivity of ≤, we have l 3 ≤ l 1 and u 1 ≤ u 3 . Thus, i 1 I i 3

Concretization

Similarly to what we have done previously, we can define how to abstract a set of integers into an interval and concretize an interval into a set of integers.

Property 2.26 Galois connection for intervals

These functions define a Galois connection (P(Z), ⊆) ---→ ←--- • If i = ⊥, then γ I (⊥ I) = ∅ and c ⊆ ∅ ⇔ α(c) I ⊥ I is trivial to prove.

• If i = [l, u]: X ⊆ γ I ([l, u]) ⇔ ∀x ∈ X, x ∈ γ I ([l, u]) ⇔ ∀x ∈ X, l ≤ x ≤ u ⇔ l ≤ min(x) ∧ max(x) ≤ u ⇔ [min(x), max(x)] I [l, u] ⇔ α(X) I [l, u]

Interval transfer functions

Let [l x , u x], [l y , u y] be two non-empty intervals. Thanks to Property 2.24, we can derive the best abstraction for the addition operator on sets, i.e we search for + I such that:

[l x , u x] + I [l y , u y] = α I (γ I ([l x , u x]) + γ I ([l y , u y]))

Given that:

α I (γ I ([l x , u x]) + γ I ([l y , u y])) =α I ({ x + y | l x ≤ x ≤ u x , l y ≤ y ≤ u y }) =[l x + l y , u x + u y]
We define the interval addition such that:

∀i ∈ I, ⊥ I + I i = i + I ⊥ I = i [l x , u x] + I [l y , u y] = [l x + l y , u x + u y]
This is the best abstraction of the set addition on the intervals. We can similarly derive subtraction, multiplication, division and remainder operators on intervals.

Abstract semantics of expressions

For now, we have only abstracted sets of integers into intervals. In order to abstract sets of program states over several variables, our abstract domain is a non-relational, pointwise lifting of intervals. In order to avoid multiple representations of the empty set 1 , we use a coalescent point-wise lifting to intervals, written V →I.

Definition 2.27 Coalescent point-wise lifting

Let (X,) be a poset with minimal element ⊥ X . We define the coalescent point-wise lifting of X, written V →X, as:

V →X def = (V → (X \ ⊥ X)) ∪ ⊥ Let f, g ∈ V →X. We define f ˙ g def = f = ⊥ ∨ (f = ⊥ ∧ g = ⊥ ∧ ∀v ∈ V, f (v) g(v)
).

(V →X, ˙) is also a poset.

Similarly to the pointwise lifting property of posets, we can establish the same property for Galois connections. This property also holds for the coalescent point-wise lifting.

Property 2.28 Pointwise Galois connection lifting

Let (C, ⊆) --→ ←-α γ (A,), and M be a set. ⊆ and ˙ are the lifted partial order operator as defined in Property 2.12, and δ(f) = λm.δ(f (m)) for δ ∈ { α, γ }. Then (M → C, ⊆), --→ ←--

α γ (M → A, ˙).
Instead of deriving the best abstraction of the semantics of expressions using α I , we use a different approach. We first define the abstract semantics of expressions in Figure 2.8 and show it is sound. The evaluation of a variable looks up in the abstract state (except if the state is ⊥). The evaluation of constants returns constants. The evaluation of binary expression consists in recursively evaluating both the left-hand and right-hand sides and combining them using the binary operators defined on intervals. Proof. Let σ, σ such that σ ˙ I γI (σ). The case where σ = ⊥ is straightforward. We prove by structural induction on e that E e σ ⊆ γ I (E # e σ):

E # e ∈ (V →I) → I E # v ∈ V σ def = if σ = ⊥ then ⊥ I else σ (v) E # z ∈ Z σ def = [z, z] E # [z 1 , z 2] σ def = [z 1 , z 2] E # e 1 + e 2 def = E # e 1 +I E # e 2 E # e 1 -e 2 def = E # e 1 -I E # e 2 E # e 1 * e 2 def = E # e 1 * I E # e 2 E # e 1 / e 2 def = E # e 1 /I E # e 2 E # e 1 % e 2 def = E # e 1 %I E # e 2
• Case e = v ∈ V:

E v σ = σ(v) ⊆ γI (σ)(v) = γ I (σ (v)) = γ I (E # v σ). • Case e = [z 1 , z 2]: E [z 1 , z 2] σ = { z ∈ Z | z 1 ≤ z ≤ z 2 } = γ I ([z 1 , z 2]) = γ I (E # [z 1 , z 2] σ).
• Case e = z ∈ Z. Subcase of e = [z, z].

• Case e = e 1 † e 2 , with † ∈ { +, -, * , /, % }. By induction hypothesis (I.H.), we have that E e i σ ⊆ γ I (E # e i σ), given i ∈ { 1, 2 }.

γ I (E # e 1 † e 2 σ) = γ I (E # e 1 σ † I E # e 2 σ) (def. of E # e 1 † e 2) ⊇ γ I (E # e 1 σ) † γ I (E # e 2 σ) (soundness of † I) ⊇ E e 1 σ † E e 2 σ (I.H. & † monotonic) = { v 1 † v 2 | v 1 ∈ E e 1 σ, v 2 ∈ E e 2 σ } (def. of † on P(Z)) = E e 1 † e 2 σ (def. of E e 1 † e 2)
This inclusion still holds for the division and remainder operators, even if an abstract state may contain 0: both the abstract and the concrete operations will prune out these cases.

Remark 2.30 Imprecisions with intervals

Given σ = { (u → 3, i → 2) ; (u → 5, i → 0) }, E u * i σ yields { 6; 0 }. In the abstract, σ = (u → [3, 5], i → [0, 2]), so E # u * i σ yields [0, 10].
The lower bound of the interval is tight, but the upper bound is not. This shows that the interval analysis is imprecise in this case.

Abstract semantics of statements

The abstract semantics of a statement s has signature S # s : (V →I) → (V →I). The case of variable declarations, assignments, and sequence of statements are straightforward.

Basic statements

S # int x σ def = σ [x → [-∞; +∞]] S # x = e σ def = let v = E # e σ in if v = ⊥ I then ⊥ else σ [x → v] S # s 1 ; s 2 def = S # s 2 • S # s 1

Conditionals

The semantics of conditionals is more complex. The concrete operator performed the union of the set of states reached after the execution of each branch. We thus need to define an operator equivalent to the union, called least upper bound or join.

Definition 2.31 Least upper bound

Let (X,) be a poset, and a, b ∈ X. Any c ∈ X such that a c and b c is called an upper bound of a and b.

We say that c is the least upper bound of a and b, if for any c upper bound of a and b, c c . The least upper bound is abbreviated as lub, or denoted as join operator, and is usually written a b.

Remark 2.32 Unicity of the least upper bound

The least upper bound may not exist but is unique if it does.

Remark 2.33 Greatest lower bound

We can define a converse notion of greatest lower bound, or meet, written a b.

We can derive the best abstraction of the union operator, such that:

[a, b] I [c, d] = α I (γ I ([a, b]) ∪ γ I ([c, d])) α I (γ I ([a, b]) ∪ γ I ([c, d])) =α I ({ x ∈ Z | a ≤ x ≤ b } ∪ { x ∈ Z | c ≤ x ≤ d } =α I ({ x ∈ Z | a ≤ x ≤ b ∧ c ≤ x ≤ d }) =[min(a, c), max(b, d)]
Thus, we define Posets structured with join and meet operators are also common in quite a few areas of computer science. They form the basis for the definition of a complete lattice.

Definition 2.34 Complete lattice

A complete lattice, (X, , , , ⊥,) is a poset (X,) where:

• ∀A ⊆ X, A exists, • ∀A ⊆ X, A exists.
In particular, ⊥ = ∅ is the least element and = X is the greatest element.

Property 2.35 Complete lattice -parts of a set

Given a set X, (P(X), , ∪, ∩, ∅, X) is a complete lattice.

Property 2.36

The interval domain is a complete lattice

(I, I , I , I , ⊥ I , I) is a complete lattice, where I = [-∞, +∞].

Remark 2.37 Pointwise lifting of complete lattices

Similarly to the poset and Galois connection pointwise liftings, complete lattices can also be pointwise lifted.

Thus, the semantics of conditional statements is:

S # if (c) {s t } else {s f } def = S # s t • C # c ˙ S # s f • C # ¬c
We do not define the abstract conditional filtering operator C # c . Precise versions rely on bottom-up and top-down traversals of the abstract syntax tree of the condition c, called the HC4 algorithm in the constraint solving community [10]. In the setting of abstract interpretation, these traversals are described by Miné [106,Section 4.6].

Terminating loop analyses

The current definition of the semantics of while loops -reminded below -is not computable due to the unbounded number of iterations.

S while (c) {s} Σ def = C ¬c n∈N (S s • C c) n Σ
We search for an alternative semantics of loops that exhibits the underlying notion of loop invariant. A typical and widely used concept that applies here is searching for a fixpoint of an operator f : C → C, i.e for x ∈ C such that f (x) = x. If f models the effects of the loop body, a fixpoint of f will be a loop invariant. In particular, the least fixpoint of f , written lfp f will be the strongest loop invariant (intuitively, the smallest state has no extra information and is thus the strongest property). We start by introducing concepts necessary to state Kleene's fixpoint theorem. We use Kleene's theorem to establish an equivalent definition of the semantics of while using a least fixpoint. We then define methods to perform computable fixpoint approximations.

Definition 2.38 Chain

Let (X,) be a poset and C ⊆ X. C is a chain if it is totally ordered, i.e: ∀c,

d ∈ C, c d ∨ d c Example 2.39 Chain C = ∪ n∈N { [0, n] } is a chain of intervals, since each one is included in the next one. D = ∪ n∈N { [2n, 2n + 1]
} is not a chain, since all intervals are disjoint (thus not included into one another).

Definition 2.40 Complete partial order

A complete partial order (CPO), is a poset (X,) such that every chain has a least upper bound.

Property 2.41 Lattices and partial orders

Complete lattices are complete partial orders.

Definition 2.42 Continuous operator

Let (A, A , A) and (B, B , B) be two complete partial orders. f :

A → B is continu- ous, if for every chain C ∈ P(A), f (C) = { f (c) | c ∈ C } is also a chain and f (A C) = B { f (c) | c ∈ C } Remark 2.

Join-morphism and continuity

In particular, let f : A → B be a complete join-morphism, i.e ∀X ⊂ A, f

(A X) = B f (X).
Then, f is continuous.

Theorem 2.44 Kleene's fixpoint theorem

Let (X, , , ⊥) be a complete partial order, and f : X → X a continuous operator. lfp f exists and lfp

f = { f i (⊥) | i ∈ N }
Now, we use Kleene's fixpoint theorem to define the semantics of while programs using a least fixpoint.

Property 2.45

Rewriting the semantics of loops into a fixpoint Let Σ ∈ P(S), s a statement and c a condition.

n∈N (S s • C c) n Σ = lfp f , with f (X) def = Σ ∪ S s • C c X Proof.
We can apply Kleene's fixpoint theorem since:

• (P(S), ⊆, ∪, , ⊥) is a complete partial order.

• f is continuous: the concrete semantics is a complete join-morphism.

Thus, we know that lfp f

= n∈N f n (∅)
By induction over the integers, we can prove that ∀n ∈ N, f n (∅) = k≤n (S s •C c) k Σ:

• Case n = 0, f 0 (∅) = Σ ∪ S s • C c ∅ = Σ
• Assuming the property holds for a given n, we have:

f n+1 (∅) =Σ ∪ (S s • C c)(f n (∅)) =Σ ∪ (S s • C c)(k≤n (S s • C c) k Σ) =Σ ∪ k≤n (S s • C c) k+1 Σ = k≤n+1 (S s • C c) k Σ Hence lfp f = n∈N f n (∅) = n∈N k≤n (S s • C c) k Σ = n∈N (S s • C c) n Σ
From our property, we can thus define an alternative characterization of the semantics of while loops.

S while (c) {s} Σ = C ¬c lfp f with f (X) def = Σ ∪ S s • C c X
We now have to approximate the semantics of while loops in the abstract, using widening operators to make it computable.

Definition 2.46 Widening operator

Let (A,) be a poset. ∇ : A × A → A is a widening operator if it:

• Computes an upper bound ∀x, y ∈ A, x x∇y and y x∇y

• Ensures convergence: for any sequence (y i) i∈N of elements of A, and given the sequence (x i) i∈N defined as

x 0 def = y 0 , x n+1 def = x n ∇y n+1 , we have: ∃k ∈ N, x k+1 = x k Theorem 2.

Fixpoint approximation

Let (C, ⊆, ∪, ∩, ⊥,) be a complete lattice, and f : C → C a monotonic function. Let (A,) be a poset with a minimal element ⊥, f : A → A an abstraction of f and ∇ a widening operator. The sequence

x 0 def = ⊥, x i+1 def = x i ∇f (x i):
• converges in finite time, and

• its limit (written x l) is a sound abstraction of lfp f , i.e, lfp f ⊆ γ(x l)
Now we can define a widening operator on intervals. As usual, this operator is then lifted to program states.

Property 2.48 Widening operator on intervals

The ∇ I operator defined below is a widening.

[a, b]∇ I ⊥ I = ⊥ I ∇ I [a, b] = [a, b] [a, b]∇ I [c, d] = a if a ≤ c -∞ otherwise , b if b ≥ d +∞ otherwise
Thanks to Theorem 2.47, we can thus define a sound, computable, abstract semantics of intervals for loops:

S # while (c) {s} σ = C # ¬c (lim δ n (⊥I)) with δ(x) = x ∇(σ S # s • C # c x) Example 2.

Fixpoint computation

We show the iterations computed when analyzing the program of Listing 2.1, starting with u = [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF]3] and n = 100. We start from σ = (u → [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF]3], i → [0, 0]) (the value of n is constant, so we omit it in the states).

δ 1 (⊥I) = ⊥I ∇I (σ ˙ I S # c • C # c ⊥I) = σ ˙ I ⊥I = σ δ 2 (⊥I) = σ ∇I (σ ˙ I (u → [1, 10], i → [1, 1]) = σ ∇I (u → [1, 10], i → [0, 1]) = (u → [1, +∞], i → [0, +∞]) δ n+2 (⊥I) = δ 2 (⊥I), ∀n ∈ N
Thus, lim δ n (⊥I) = δ 2 (⊥I), and the state after the while loop is

C # i < 100 δ 2 (⊥I) = (u → [1, +∞], i → [100, +∞])
Decreasing iteration. The result of the range analysis performed in the previous example is a bit disappointing, as we are not even able to infer that i = 100 at the end of the loop. Thanksfully, there is an easy way to recover some precision. Using the notations of Theorem 2.47, we show that f (x l) is a sound approximation of lfp f which is better than x l .

• We prove that f (x l) is a sound approximation of lfp:

lfp f = f (lfp f) (lfp f is a fixpoint of f) ⊆ f (γ(x l)) (lfp f ⊆ γ(x l)) ⊆ γ(f (x l)) (f sound abstraction of f) • We notice that f (x l)
x l . Since x l is the limit of the sequence (x i) i∈N , we have x l = x l ∇f (x l). The widening ∇ computes an upper bound, hence f (x l) x l .

From an implementation perspective, we usually have to compute f (x l) to check that x l is the limit, so we get the decreasing iteration for free.

Example 2.50 Decreasing iteration on the previous example

Applying a decreasing iteration on δ 2 (⊥I) yields:

σ ˙ I S # s • C # c δ 2 (⊥I) =σ ˙ I S # s ((u → [1, +∞], i → [0, 99])) =σ ˙ I (u → [1, +∞], i → [100, 100]) = (u → [1, +∞], i → [0, 100])
The state obtained after the loop is thus

C # i < 100 (u → [1, +∞], i → [0, 100]) = (u → [1, +∞], i → [100, 100])

Improving the analysis with congruences

If we go back to our running example program, the interval domain cannot prove that the division by two will always result in an integer. In an analyzer, this would cause spurious false alarms: we know the division will be correct, but our tool cannot prove it. We introduce a new abstract domain tracking integer congruences [START_REF] Granger | Static analysis of arithmetical congruences[END_REF] to tackle this issue. Congruences are defined as Using this domain, we are able to prove that starting from σ = u → 1Z + 0, and assuming u % 2 == 0, we have σ = u → 2Z + 0. We can thus infer that the division by two afterward will be correct.

C def = { aZ + b | a ∈ N, 0 ≤ b < a } ∪ { ⊥ }
C :    C → P(Z) ⊥ → ∅ aZ + b → { ak + b | k ∈ Z }

Deriving the semantics

The congruences abstract values can be lifted to a non-relational domain V → C similarly to the lifting performed for intervals. Instead of performing a lifting specific to the congruences, we define a unified framework lifting non-relational domains. This framework applies straightforwardly to the case of congruences. We define a notion of value abstract domain (Definition 2.51), to which intervals and congruences belong. The value abstract domain is lifted into an abstract semantics in Property 2.52.

Definition 2.51 Value abstract domain

A value abstract domain consists in:

• a poset (D ,),

• a smallest element ⊥ and a largest element • sound abstractions of:

constants and intervals (written c , [l, u]) binary operators, written + , -, * , / , % , set union and intersection ,

• a widening operator ∇ • a concretization operator γ : D → P(Z)

Given any value abstract domain, we can derive a non-relational abstract semantics for Imp, similarly to what was presented for intervals.

Property 2.52 Non-relational abstract semantics

Let (D ,) be a value abstract domain. The program state is V →D , and the lattice operators are pointwise liftings of the value abstract domain. We define:

E # v σ def = σ (v) E # c σ def = c E # [z 1 , z 2] σ def = [z 1 , z 2] E # e 1 † e 2 σ def = E # e 1 σ † E # e 2 σ , ∀ † ∈ { +, -, * , /, % } S # int x; σ def = σ [x →] S # x = e σ def = let v = E # e σ in if v = ⊥ then ⊥ else σ [x → E # e σ] S # if (c) {s t } else {s f } def = S # s t • C # c ˙ S # s f • C # ¬c S # while (c) {s} σ def = C # ¬c (lim δ n (⊥)) with i(x) def = x ∇(σ S # s • C # c x)
This semantics is a sound abstraction of the concrete semantics.

Cooperation between congruences and intervals

Let us assume that our analysis inferred that u has abstract values [3,5] and 2Z. In order to deduce that u = 4, we introduce a reduction operator ρ I×C between intervals and congruences in Figure 2.11. The reduction operator computes updated bounds a and b of the interval, that are congruent to d modulo c. In the case mentionned before, the second case is used: ρ I×C ([3,5], 2Z+0) = ([4,4], 0Z + 2). The reduction operator shares information between domains in order to refine each domain's state.

ρ I×C ([a, b], cZ + d) =      ⊥ I , ⊥ C if a' > b' [a , a], 0Z + a if a' = b' [a , b], cZ + d if a' < b' with a = min{ x ≥ a | x = kd + c, k ∈ Z } b = max{ x ≤ b | x = kd + c, k ∈ Z }

Definition 2.53 Reduction operator

Let D 1 and D 2 be two value abstract domains (from Definition 2.51). ρ :

D 1 × D 2 → D 1 × D 2 is a reduction operator if, given (y 1 , y 2) = ρ(x 1 , x 2):
• the reduction is sound:

γ 1×2 (y 1 , y 2) = γ 1×2 (x 1 , x 2) with γ 1×2 (v 1 , v 2) = γ 1 (v 1) ∩ γ 2 (v 2)
• the reduction reduces each element: γ 1 (y 1) 1 γ 1 (x 1), and γ 2 (y 2) 2 γ 2 (x 2)

Remark 2.54 Optimal reduction

If both domains have a Galois connection, the following reduction ρ is optimal:

ρ(v 1 , v 2) = (α 1 (γ 1 (v 1) ∩ γ 2 (v 2)), α 2 (γ 1 (v 1) ∩ γ 2 (v 2)))

Property 2.55 Reduction between intervals and congruences

ρ I×C is a reduction operator.

Definition 2.56 Reduced product of abstract values

Given two value abstract domains D 1 , D 2 and a reduction operator ρ on them, we can define the reduced product of these abstract values. Intuitively, ρ is applied on every element of

D 1 × D 2 , except on the widening. • (D 1 × D 2 , 1×2), where (v 1 , v 2) 1×2 (v 1 , v 2) def = v 1 1 v 1 ∧ v 2 2 v 2 , • a smallest element (⊥ 1 , ⊥ 2) and a greatest element (1 , 2) • sound abstractions of -intervals: [l, u] 1×2 def = [l, u] 1 , [l, u] 2 -binary operators such that for † ∈ { +, -, * , /, % }, (v 1 , v 2) † 1×2 (v 1 , v 2) def = ρ(v 1 † 1 v 1 , v 2 † 2 v 2)
set union and intersection such that for ∈ { , }

(v 1 , v 2) 1×2 (v 1 , v 2) def = ρ(v 1 1 v 1 , v 2 2 v 2)
• a widening operator ∇ 1×2 applying pointwise widening without reduction.

• a concretization operator γ 1×2 :

D 1 × D 2 → P(Z), γ 1×2 (v 1 , v 2) def = γ 1 (v 1) ∩ γ 2 (v 2).

Property 2.57 Reduced product of abstract values

The reduced product defined above is a value abstract domain.

Remark 2.58 Reduction operator and widening

The reduction operator is not applied during widening. Applying it would forego the guaranteed termination of the widening [START_REF] Cousot | Combination of abstractions in the Astrée static analyzer[END_REF]Section 7.4].

Remark 2.59 Reduced product of abstract domains

As long as two abstract domains D 1 and D 2 abstract the same concrete state C, it is possible to generalize the notion of reduction and reduced product [106, Section 6.2], from the setting of abstract values used here.

Extending Imp and its analyses

This section presents more advanced concepts and analyses. We start by extending Imp with immutable strings. We provide a first abstraction of strings tracking their length. We show how to perform an analysis of non-local control-flow statements, such as the break operator. We improve the precision of the analysis by introducing relational abstract domains. We provide a second abstraction of strings tracking an abstraction of their content, and revisit products of abstract domains.

Extending Imp with strings

We add strings to our toy Imp language. Similarly to the C language, a string is a sequence of characters, each represented as integers. The set of characters is A def = [0, 127], and follows the ASCII encoding (for example, 'a' is 97). We write A n the set of words of length n, and A * = ∪ n∈N A n is the set of words. Given characters c, c ∈ A, we write c • c ∈ A 2 the concatenation of characters. Given a word w, we write w 0 , • • • , w n-1 its characters, and |w| its length. We add a type str for strings, the expression expr[expr] to access a character, and the statement expr[expr] = expr to update a string at a given index.

The values are extended to be integers or strings of any length, Z ∪ A * . The semantics has thus for signature:

Value = Z ∪ A * E e : P(V Value) → Value S s : P(V → Value) → P(V → Value)
The updated semantics (defined on a single state, and lifted by the usual join-morphism) is shown in Figure 2.12. Index accesses are evaluated into the integer value (between 0 and 127) corresponding to the accessed character. A string can also be updated one element at a time through an integer value. We assume that expressions have been typed before the analysis and that the type information is available. The introduction of strings comes with new errors we are interested in detecting: out-ofbound accesses, and updating a string with a non-ASCII value (i.e., s[i] = t where t evaluates to a value that is not between 0 and 127).

E s[i] σ def = { s i | s ∈ E s σ ∧ s ∈ A * ∧ 0 ≤ i ≤ n -1 ∧ s = s 0 • ... • s n-1 } S str s; σ def = { σ[s → c] | c ∈ A * } S s = c 0 • • • c n-1 σ def = σ[s → c 0 • • • c n-1] S s = t σ def = σ[s → σ(t)] S s[i] = t σ def = σ[s → s], s = s 0 • • • s i-1 • t • s i+1 • • • s n-1

Example 2.60 Program on strings

An example program is provided in Listing 2.3. After line 3, the program state is (the ASCII code for 'd' is 100): (s → "abcd", t → "abcd", l → 101)

Note that strings are copied during assignments. At the end of the program, s is the string "abce", and t is still "abcd".

Listing 2.3: Imp program with strings 1 str s = "abcd";

2 str t = s; 3 int l = s[3] + 1; 4 s[3] = l;

Using ghost variables to track string length

One way to abstract the content of strings is to keep only their length. This can be done by adding numerical variables in the abstract states representing the length of each string. We will keep the length of a string s into an auxiliary variable len(s). The string operators can then be rewritten as numerical operations, that can be delegated to the numeric domain. In the area of deductive verification, the variable len(s) variable would be called a ghost variable, as it is used to prove a program property but does not appear in the original program. This naming is also used by Chevalier and Feret [START_REF] Chevalier | Sharing ghost variables in a collection of abstract domains[END_REF] in the setting of static analysis. Contrary to the value abstract domains presented earlier, this abstract domain is stateless2 and will delegate the operations to the underlying numerical domains. The benefits of this approach will be discussed in the presentation of relational abstract domains, and is one of the cornerstones of the design of abstract domains in Mopsa.

We assume we have a numerical abstract domain D num , handling numeric expressions and assignments through the abstract operators

E # num • , S # num • , C # num • .
The semantics of this domain extends the numerical one with the transfer functions of Figure 2.13. The case of index access checks that the index has valid bounds. If that is the case, we know the return value is an ASCII number, i.e., a number between 0 and 127. Upon a variable declaration, we initialize the auxiliary length variable to be non-negative. Variable assignments are rewritten into a matching length assignment. The analysis of a character update checks that the bound is valid and that the character is a valid ASCII code.

E # len e : D num → I E # len s[i] def = E # num [0, 127] • C # num 0 ≤ i ∧ i < len(s) S # len s : D num → D num S # len str s; def = S # num len(s) = [0, +∞] S # len s ∈ V str = c 0 • • • c n-1 ∈ A * def = S # num len(s) = n S # len s ∈ V str = s ∈ V str def = S # num len(s) = len(s) S # len s[i] = e def = C # num 0 ≤ e ≤ 127 • C # num 0 ≤ i ∧ i < len(s)
σ = (len(s) → [4, 4], len(t) → [4, 4], l → [0, 128])
Thus, our analysis infers that the assignment s[3] = l at line 4 can be incoherent when l = 128 (128 is not in the range of valid ASCII codes). This is a false alarm, since the program is correct.

Remark 2.62 Convention: format of auxiliary variables

In the rest of this thesis, auxiliary variables such as len(s) are always underlined.

We assume that our numerical abstract domain D num has a concretization function γ num : D num → P(V → Z). We define the concretization of the string length domain below.

Definition 2.63 String length concretization

The string length concretization is defined below. It consists in the set of environments s, such that there exists a concrete numerical state σ ∈ γ num (σ), and where:

• all non-length variables are kept the same between s and σ,

• for all length variable len(v), v is concretized as any string of length σ(len(v)).

γ length (σ ∈ D num) = { s | σ ∈ γ num (σ), v ∈ domσ \ { len(•) } ⇔ s(v) = σ(v); len(v) ∈ domσ ⇔ s(v) ∈ A σ(len(v)) }

Example 2.64 String length concretization

Keeping the abstract state σ of Example 2.61, its concretization numerical concretization is

γ num (σ) = { (len(s) → 4, len(t) → 4, l → v l) | 0 ≤ v l ≤ 128 }
We thus obtain

γ length (σ) = (s → c 0 • • • c 3 , t → c 4 • • • c 7 , l → v l) 0 ≤ v l ≤ 128, (c 0 , . . . , c 7) ∈ [0, 127] 8
In particular (s → "abce", t → "abcd", l → 101) ∈ Σ.

Breaking out of a loop

Our semantics (both concrete and abstract) are currently defined by induction over the syntax. It was easy to define since the control flow of the program matched the program's structure. However, there are cases where the control-flow is not linear: break statements stop the execution of loops, return statements exit functions, raised exceptions interrupt the normal execution until they are caught.

We focus here on adding a break statement to Imp. To that end, the states are now stored as continuations tagged by a control-flow token, following the approach used by Cousot et al. [35, footnote 4, page 6] in Astrée. The set of control-flow tokens is F = { cur, brk }. cur denotes the normal control-flow, and brk is used to tag states that reached a break statement in the currently analyzed loop body.

We give in Figure 2.14 the updated semantics of Imp with these control-flow tokens. Expressions are not evaluated in a state tagged by brk, and the usual semantics applies for normal states. The semantics of break transforms normal states reaching it into states tagged by the brk token and keeps the other states already tagged with a brk token. The semantics of while loops returns the union of:

• input states tagged brk before the loop. They must correspond to break statements in the body of the loop immediately surrounding the current one. They are still tagged with brk in the output so that they can reach the end of the outer loop. • states of the loop invariant Σ lf p that exited the loop through a break statement are transformed back into normal states using the cur token (since the loop is exited), • states of the loop invariant Σ lf p denoting a normal execution are filtered by the negation of the loop's guard.

The semantics of other statements is lifted from the previous semantics: statements are executed in the normal control flow, and skipped in states tagged by the brk token. We illustrate the semantics on the example of Listing 2.4. This program searches for the first position of the character 'c' (whose value is stored in c), in the chain s. At the end of line 3, there is only one state σ = cur, (s → "abcd", c → 99, i → 0). We can compute lfp f through successive loop unrollings:

E brk • : F × (V Value) → P(Value) E brk e (cur, σ) def = E e σ S brk • : P(F × (V Value)) → P(F × (V Value)) S brk break Σ def = { (brk, σ) | (cur, σ) ∈ Σ } ∪ { (brk, σ) ∈ Σ } S brk while (c) {s} Σ def = let Σ in = { (cur, σ) ∈ Σ } and Σ lfp = lfp f in { (brk, σ) ∈ Σ } ∪ { (cur, σ) | (brk, σ) ∈ Σ lfp } ∪ C ¬c { (cur, σ) ∈ Σ lfp } with f (X) def = Σ in ∪ S s • C c X S brk s Σ def = { (cur, σ) | σ ∈ S s σ, (cur, σ) ∈ Σ } ∪ { (brk, σ) ∈ Σ }
(S brk s • C brk c){ σ } = { cur → (s → "abcd", c → 99, i → 1) } (S brk s • C brk c) 2 { σ } = { cur → (s → "abcd", c → 99, i → 2) } (S brk s • C brk c) 3 { σ } = { brk → (s → "abcd", c → 99, i → 2) } ∀n ≥ 3, (S brk s • C brk c) n { σ } = (S brk s • C brk c) 3 { σ } Σ lfp = { cur → (s → "abcd", c → 99, i → v i) | 0 ≤ v i ≤ 2 } ∪ { brk → (s → "abcd", c → 99, i → 2) }
The state after the loop is (cur → (s → "abcd", c → 99, i → 2)).

The abstract semantics is lifted similarly to the concrete, we only provide the signatures.

Value = I E # brk • : (F D num) → Value S # brk • : (F D num) → (F D num) Example 2.

Abstract semantics of a loop with a break

We show how the fixpoint is reached in the abstract, assuming that the numerical domain used is intervals (i.e., D num = V I). At the end of line 3, the abstract state is σ = cur → (len(s) → [4,4], c → [START_REF] Malcolm | A static analysis tool for cpython extension code[END_REF][START_REF] Malcolm | A static analysis tool for cpython extension code[END_REF], i → [0, 0]).

f 0 (⊥I) = ⊥I f 1 (⊥I) = σ f 2 (⊥I) = f (σ) = σ ∇I (σ ˙ I (S # brk s • C # brk c)σ) = σ ∇I { brk → (i ∈ [0, 0]) , cur → (i → [0, 1]) } = { cur → (i → [0, 0]) } ∇I { brk → (i ∈ [0, 0]) , cur → (i → [0, 1]) } = { brk → (i ∈ [0, 0]) , cur → (i → [0, +∞]) } f 3 (⊥I) = f (f 2 (⊥I)) = f 2 (⊥I) ∇I (σ ˙ I (S # brk s • C # brk c)f 2 (⊥I)) = f 2 (⊥I) ∇I (σ ˙ I { brk → (i → [0, 3]) , cur → (i → [0, 4]) }) = { brk → (i ∈ [0, +∞]) , cur → (i → [0, +∞]) } ∀n ≥ 4, f n (⊥I) = f 3 (⊥I)
With a decreasing iteration, we can obtain that the following abstract state is a fixpoint:

(brk → (i ∈ [0, 3]) , cur → (i → [0, 4]))
From the transfer function of while, the result after the loop is

C # brk ¬c (cur → i → [0, 4]) ˙ I (cur → i → [0, 3]) = cur → i → [0, 4]

Remark 2.67 Widening and flow tokens

In Example 2.66, the widening is applied pointwise to each token. It is also possible to define the widening only on the normal token cur, and the brk-labeled state will naturally stabilize afterwards.

Remark 2.68 CFG analysis

A typical approach of static analysis is to propagate abstract states along the control-flow graph (CFG) edges, using an iteration strategy (such as the one presented by Bourdoncle [START_REF] Bourdoncle | Efficient chaotic iteration strategies with widenings[END_REF]). In a naïve implementation, these analyses store one abstract state per CFG node, which is memory-intensive. The approach we presented uses flow tokens, storing only abstract states that are necessary for further computations. However, the iteration strategy follows the program linearly, while CFG-based approaches can employ different iteration strategies.

Relational invariants

Let us assume that we want to analyze the example of string search (Listing 2.4), but on an arbitrary string s. This may be due to imprecision of the analysis or needed to infer generic contracts over functions. With a non-relational domain such as intervals, we will only be able to prove that len(s) ≥ 0 ∧ i ≥ 0. In particular, it is not possible to prove that the index accesses s[i] in the loop are valid, since a non-relational analysis cannot infer that i < len(s) when len(s) is not constant. In order to remedy this problem, relational abstract domains have been introduced. Their goal is to express relationships between variables. The most popular relational abstract domains are the polyhedra domain and the octagon domain respectively introduced by Cousot and Halbwachs [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF] and Miné [START_REF] Miné | The octagon abstract domain[END_REF]. A comparison of the different numerical domains is provided in Figure 2.15 (the costs are meant with respect to the number of variables).

Domain

Constraint Shape Memory Cost Cost per Operation With either polyhedra or octagons as our underlying numerical domain, we would then be able to prove that the state reachable after the loop in the string search program is

Intervals V i ∈ [l i , u i] linear linear Octagons ±V i ± V j ≤ c ij quadratic cubic Polyhedra i α i V i ≤ β i exponential exponential
cur → (i < len(l)) cur → (i = len(l))
The first case corresponds to the loop not finding the character, and the second case to an early break statement.

Remark 2.70 Drawbacks of relational domains

Relational abstract domains are powerful and improve the analysis's precision, just as we have seen. However, they also come with additional constraints:

• Computational cost: operations on relational abstract domains are more costly in terms of CPU and memory usage. • Domain sharing: to have the best precision, all numerical variables should be shared in the same relational abstract domain. In a non-relational setting, we could have defined the string length domain of Section 2.4.2 with its own interval domain, different from the one handling integer variables of the program. Since we want to keep the best precision, we designed the string length domain as a domain delegating to an underlying numerical domain. This approach is more complex, requiring specific definitions of the concretization functions (shown in Section 2.5), and careful handling of reduced product (presented in the next chapter, in Section 3.3.4). It is, however, more precise since we can infer relationships between the ghost length variables and integer variables, such as 0 ≤ i ≤ len(l) in the case of the program of Listing 2.4.

Summarization of string content

The string length domain of Section 2.4.2 is useful to prove correct index accesses, but it is imprecise to track characters' values. In the basic program of Listing 2.5, the string length domain is unable to prove that the assignment s[3] = s[3] -1 is valid, since the imprecise analysis inferred that s[3] -1 can be -1, which is an invalid ASCII code.

Listing 2.5: Imp program with strings

1 str s = "bcde"; 2 s[3] = s[3] -1;
We thus introduce a new abstract domain for strings. For each string variable s, the ghost variable ord(s) represents the ASCII codes contained by the string. Similarly to the string length domain presented previously, this domain is stateless and delegates its numerical operations to an underlying abstract domain D num . The only difference is that the expression evaluation now returns an expression e ∈ E to be relational. Instead of an interval (or another abstract value), we can thus translate a string access into its contents' variable and infer relations between the contents and other program variables.

E # str e : D num → E S # str s : D num → D num
There is however a further difficulty to handle that appears, as the auxiliary variable ord(s) represents multiple concrete elements (i.e., the characters at all positions of the string). We assume we have an unknown string s, whose characters are between two integers (or other numerical variables) a and b, i.e. a ≤ ord(s) ≤ b. We consider two simple programs: Intuitively, we need to perform temporary copies of the variable ord(s) for each access, to distinguish between the concrete location actually referenced by the access and the other locations also summarized by ord(s). These copies will not be equal to ord(s) since they may represent other locations, but they are bound by the same constraints as ord(s). We introduce two new operators to handle these cases. We provide their concrete definition. We refer to the work of Gopan et al. [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF], Siegel and Simon [START_REF] Siegel | Summarized dimensions revisited[END_REF] for computable definitions in the abstract.

Definition 2.71 Expand operator

The expand operator copies variable v into v , meaning that variables v and v have the same possible values. In the abstract, this means that constraints on v are duplicated to be constraints on v too.

S expand(v, v) Σ = { σ[v → z] | σ ∈ Σ, σ(v) = z } Example 2.72 Handling x = s[0]; y = s[1];
In the first case, we could have expanded ord(s) into x and y, to get a ≤ v ≤ b, ∀v ∈ { x, y, ord(s) }.

Definition 2.73 Fold operator

The fold operator performs the dual operation to expand. It removes v from the environment, and its value is added as a potential value for v.

S fold(v, v) Σ = σ ∃σ ∈ Σ, σ (v) ∈ { σ(v), σ(v) }∧ x ∈ domσ \ { v, v } ⇔ σ(x) = σ (x)

Example 2.74 Handling s[3] = s[3] -1;

In the second case, we could introduce a fresh variable t,

such that t = s[3] -1. Our domain is then a ≤ ord(s) ≤ b, a -1 ≤ t ≤ b -1.
We then fold t into ord(s), to get: a -1 ≤ ord(s) ≤ b.

Remark 2.75 Weak variables

Variables that may represent multiple concrete elements are called weak variables. As we have seen, these weak variables have to be handled with special operators to be sound. We suffix variables with a "weak" subscript to indicate weak variables (for example, ord(s) weak). We introduce new assignment operators handling these variables to simplify the upcoming definitions.

In the case of an assignment where the expression e contains weak variables, we expand all those weak variables using the eponymous function (these temporarily expanded variables will be removed at the end of the assignment). If the left-hand side is weak too, we introduce a fresh variable, which is then folded back into x.

S # num x = e = S # num x = expanded(e) S # num x weak = e = S # num fold(x, fresh) • S # num fresh = expanded(e)
We can now define the semantics of the string summarization domain, in Figure 2.17. Index accesses are evaluated into their corresponding ghost variable, which is weak. Note that each access is seen as potentially invalid in this domain since it does not track length. 3 A string declaration initializes its corresponding ghost variable to the range of ASCII codes (in that case, a strong update is performed, so there is no need to tag the variable as weak). During an assignment of a constant string, we perform a strong update for the first character and weak updates for the others. A string copy is seen as enforcing equality between two ghost content variables (however, the ghost variable on the right-hand side has to be expanded, so it is tagged as weak). To update a character, we check that the expression represents an ASCII code and perform a weak update on the ghost variable. In the concrete, we know that s = "bcdd" at the end of the program of Listing 2.5. In the abstract, after the assignment of s, we have 98 ≤ ord(s) ≤ 101. Due to the weak update, we can only infer that 97 ≤ ord(s) ≤ 101, which represents the set of strings containing only the letters a, b, c, d.

E # str s[i] def = E # num ord(s) weak S # str str s; def = S # num ord(s) = [0, 127] S # str s ∈ V str = c 0 • • • c n-1 ∈ A * def = S # num ord(s) weak = c n-1 • . . . • S # num ord(s) weak = c 1 • S # num ord(s) = c 0 S # str s ∈ V str = s ∈ V str def = S # num ord(s) = ord(s) weak S # str s[i] = e def = S # num ord(s) weak = e • C # num 0 ≤ e ≤ 127
The concretization of this domain is more involved. We start with an example. Let us assume that the abstract state is σ = 97 ≤ ord(s) < i ≤ 100. Its concretization consists of six different states: Since ord(s) summarizes multiple concrete elements, we intuitively want to draw different values from different states for each character of the string s. However, these draws should be consistent, to enforce the relational constraints and be sound. For example, assume we pick i, ord(s) among 99, 97 and 100, 99 . The case i = 99, s = "ac" should not be in the concrete state since s[1] < i.

γ num (σ) = i ord(s) ∈ 98
In other words, the concretization performs an expansion of the auxiliary variable ord(s) into each concrete character.

Definition 2.77

String summarization concretization

Given Σ ∈ P(V → Z) and v ∈ V, Σ(v) is the set of images of v: Σ(v) = { σ(v) | v ∈ V }.
We write |X| for the cardinal of the set X.

The concretization creates concrete states s from a set of concrete numerical states Σ ⊆ γ num (σ). This set Σ should be consistent on all variables v not handled by the string summarization domain (i.e., |Σ(v)| = 1, except the auxiliary variables ord(•)). In that case, the concrete state for these variables is s(v) = Σ(v). For auxiliary variables ord(v), s(v) will be a string of any length, where all characters are picked in the set Σ(ord(v)).

γ str (σ) = { s | Σ ⊆ γ num (σ), v ∈ domΣ \ { ord(•) } ⇔ (|Σ(v)| = 1 ∧ s(v) = Σ(v)); ord(v) ∈ domΣ ⇔ ∃n ∈ N, ∃(c 0 , . . . , c n-1) ∈ A n , (s(v) = c 0 • • • c n-1 ∧ ∀i ∈ [0, n -1], c i ∈ Σ(ord(v))) } Example 2.78

String summarization concretization

We go back to the example where σ = 97 ≤ ord(s) < i ≤ 100.

The coherent states of γ num (σ) should have the same value for i. We consider only the three coherent states Σ below (which maximize size), since subsets of Σ would yield concrete states already covered by concrete states related to Σ. The first line are the values of i, and the second of ord(s). Given each coherent state above, we respectively get the following concrete states (where we use regular expressions to denote string sets):

Σ ∈ 98
• { (i → 98, s → v s) | v s ∈ a * }, • { (i → 98, s → v s) | v s ∈ (a|b) * }, • { (i → 100, s → v s) | v s ∈ (a|b|c) * } Remark 2.79

Consistency conditions

The consistency conditions are only here to ensure that relations in the abstract are kept in the concrete states. In a non-relational setting, there are no relations to preserve and thus no need to ensure consistency.

Combining string length and summarization

Let us assume we run a modified version of the string search program (Listing 2.4), where we search for a character c > 100 in the string s, consisting in a random string containing only the characters "a" to "d". We would like the analysis to infer that the search will be unsuccessful and that i = len(s). This is possible by combining the string length and string summarization domains in a reduced product on top of a relational abstract domain. We will need to introduce reduction rules for the evaluation of s[i]. Intuitively, the length domain will be able to prove that the accesses are valid, and the summarization one will give a more precise result based on the contents of the string. There is, however, an issue related to the concretizations. Let us assume that our program works over a string s. If both abstract domains are used and share the underlying numerical abstract domain, this latter domain will contain variables len(s) and ord(s). The concretization of the string length domain will provide a concrete state over s and ord(s) (since it preserves variables it does not handle). The concretization of the string summarization domain will provide a concrete state over s and len(s). In their current form, the concretizations cannot be combined. It would be tempting the drop the auxiliary variables and intersect the resulting concrete state, but this approach introduces imprecisions, as shown in the example below.

Example 2.80 Imprecise concretization

Let us consider the following numerical abstract state:

σ = 0 ≤ ord(s) -97 < len(s) ∧ 1 ≤ len(s) ≤ 2
The numerical concretization is

γ num (σ) = len(s) ord(s) ∈ 1 97 , 2 97 , 2 98
The string length concretization yields

γ len (σ) = s ord(s) ∈ c 0 97 , c 0 c 1 97 , c 0 c 1 98 (c 0 , c 1) ∈ [0, 127] 2
The string summarization domain returns

γ str (σ) = len(s) s ∈ 1 w 1 , 2 w 2 , w 1 ∈ a * , w 2 ∈ (a|b) *
In particular, we consider the string s = "b". We have ord(s) = 98, len(s) = 1, thus ord(s) -97 < len(s). However, we have:

"b" 97 ∈ γ len (σ) ∧ 2 "b" ∈ γ str (σ)
Thus, the string concretizations cannot be combined.

It would always be possible to define a concretization for the product of the string abstract domains, which would take into account both kind of constraints from the different auxiliary variables. This definition would however be complicated and not reuse the previous concretizations of each abstract domain. In the current approach, the concretizations are not modular, and cannot be easily combined. This does not fit with our approach based on small, specialized domains, delegating operations to other domains, used to improve precision of relational analyses (cf. Remark 2.70).

Defining modular concretization functions

The objective of this section is to present a new approach, allowing to define concretization functions modularly, while keeping them precise even when relational abstract domains are used.

Generic approach

Given an abstract domain D , its concretization γ D (σ D ∈ D) is a relation between a set of concrete input states and a set of concrete output states.

γ D (σ D ∈ D) ∈ P (P(D in) × P(D out))
In the examples of the string length domains, the concrete input state is purely numeric, D in = V → Z, and the concrete output state also references strings, i.e. D out = V → (Z ∪ A *).

Definition 2.81 Relation projection operator

Let R ∈ P(P(D in) × P(D out)). We define relation projection operator, written ↓, as

↓ R = { o | (i, o) ∈ R } Definition 2.

Application of a concretization to another

Let us assume that we have two domains A and B, with

D A in = D B out . γ A (σ A) ∈ P P(D A in) × P(D A out) γ B (σ B) ∈ P P(D B in) × P(D B out)
Intuitively, the application of concretization B to A consists in taking the image of A's concretization, starting from concrete elements in the output concrete state of B. The formal definition is defined below.

γ A | B σ | σ = { (Σ, Σ) ∈ γ A (σ) | Σ ⊆↓ •γ B (σ) }
In particular, this application is a subset of the relations defined by γ A . The composition of concretization, which yields a relation between D B in and D A out , will be covered in the next chapter.

Remark 2.83 Concretizations of leaf domains

Leaf domains, such as numerical domains, have concretizations that do not represent relations. In order to unify signatures, we can see those concretizations as relations between the unit value () (or the empty set) and the actual concretized state. We introduce an artificial lifting operator, ↑ unit , creating thse dummy relations.

↑ unit : P(D) → P(P(∅) × P(D))

Σ → { (∅, { σ }) | σ ∈ Σ }

String summary domain

Definition 2.84 Modular string summary concretization

The modular string summary concretization is a relation between sets of purely numerical concrete states with a single concrete state over integers and strings. It reuses the constraints defined in the original concretization (Definition 2.77), that is:

• Σ should be consistent on variables not handled by the domain. On these variables, the state is the same in the input and output. • For auxiliary variables ord(v), σ(v) will be a string of any length, where all characters are picked in the set Σ(ord(v)).

γ str (()) = { Σ, { σ } | Σ ∈ P(V → Z), σ ∈ V → Value, v ∈ domΣ \ { ord(•) } ⇔ (|Σ(v)| = 1 ∧ σ(v) = Σ(v)); ord(v) ∈ domΣ ⇔ ∃n ∈ N, ∃(c 0 , . . . , c n-1) ∈ A n , (σ(v) = c 0 • • • c n-1 ∧ ∀i ∈ [0, n -1], c i ∈ Σ(ord(v))) } Example 2.

String summarization concretization

We go back to the example where σ = 97 ≤ ord(s) < i ≤ 100. We search for the concretization of this abstract state using the string summary domain, i.e., we compute the application as defined in Definition 2.82.

γ str | num () | σ = { (Σ, { σ }) ∈ γ str (()) | Σ ⊆ γ num (σ) }
In particular, the following elements are part of the application:

String length domain

Contrary to the string summarization domain, the string length one does not require combining multiple concrete input states to create output states. We can thus define a simplified concretization over pairs of concrete states, which will be lifted afterward.

Definition 2.86 Simplified string length concretization

The concretization transforms an input concrete state, which is purely numerical, into an output concrete state, where integers and strings are used. Bindings of variables that are not defined by the domain are kept as-is. Given an auxiliary variable len(v), the output concrete state binds v to any string having length ρ(len(v)).

γ len (()) = { (ρ, ρ) | ρ ∈ V Z, ρ ∈ V → Value v ∈ domρ \ { len(•) } ⇔ ρ (v) = ρ(v); len(v) ∈ domρ ⇔ ρ (v) ∈ A ρ(len(v)) } Definition 2.87
One-to-many lifting operator ↑ transforms a set of pairs into a pair of sets respecting membership of the initial pairs:

↑: P(A × B) → P(P(A) × P(B)) X → { Σ a , Σ b | ∀σ a ∈ Σ a , (σ a , σ b) ∈ X ⇔ σ b ∈ Σ b } For example, if X = { (1, a); (2, b) }, we have ↑ X = ({ 1 }, { a }); ({ 2 }, { b }); ({ 1; 2 }, { a ; b }) Definition 2.

Full, relational string length concretization

The relational string length concretization, written γ len , is the lifting of the simplified con-cretization defined before.

γ len = ↑ •γ len Example 2.

String length concretization

Keeping the abstract state σ of Example 2.61, its concretization is

γ num (σ) = { (len(s) → 4, len(t) → 4, l → v l) | 0 ≤ v l ≤ 128 }
The application of this numerical state on the string length concretization yields:

γ len | num () | σ =↑ (len(s) → 4, len(t) → 4, l → v l), (s → c 0 • • • c 3 , t → c 4 • • • c 7 , l → v l) 0 ≤ v l ≤ 128, (c 0 , • • • , c 7) ∈ [0, 127] 8

Combining both concretizations

When both string domains are used in a product, we can now easily define the concretization of the latter as the intersection of the relations defined by the concretization of the string domains. We show how the abstract state that was not precisely concretized in the usual framework (in Example 2.80) is concretized in our case.

Example 2.90 Concretization of the product of string domains

Let us illustrate the concretizations, starting from the following abstract state:

σ = 0 ≤ ord(s) -97 < len(s) ∧ 1 ≤ len(s) ≤ 2 γ num (σ) = len(s) ord(s) ∈ 1 97 , 2 97 , 2 98
γ len | num () | σ =↑ 1 97 , c 97 c ∈ A ∪ 2 97 , c 97 c ∈ A 2 ∪ 2 98 , c 98 c ∈ A 2 γ str | num () | σ = 1 97 , 1 c c ∈ a * ∪ 2 97 , 2 c c ∈ a * ∪ 2 98 , 2 c c ∈ b * ∪ 2 97 , 2 98 , 2 c c ∈ (a|b) *
The second coordinate of the states concretized by the string domains have different mapping domains: the length one has (s, ord(s)), and the summarization one has (len(s), s). We define ∩ s the intersection keeping only common variables.

We can now intersect the applications of the concretizations:

γ len∧str | num = γ len | num ∩ s γ str | num
Contrary to Example 2.80, the intersection is now guided by the input concretized state, which will allow us to be precise. For the input 1 97 , the intersection of the second coordinates yields:

s ord(s) → c 97 c ∈ A ∩ s len(s) s → 1 a n n ∈ N = { s → a } Given 2 97 , 2 98
as input, the second coordinate is:

s ord(s) ∈ c 97 c ∈ A 2 , c 97 c ∈ A 2 ∩ s len(s) s → 2 c c ∈ (a|b) * = { s → c | c ∈ A 2 ∧ c ∈ (a|b) * } = { s → c | c ∈ { aa, ab, ba, bb } }
Hence, we find that the concretized state of σ is a, aa, ab, ba, bb.

Conclusion

We have defined a concrete, but uncomputable collecting semantics for the Imp language. In order to define computable analyses, we have used abstractions, such as the one from the set of integers to intervals, or the summarization of strings content. We also have defined a loop approximation method that terminates and relies on a specific widening operator. We have shown how ghost variables can be used to delegate work to underlying domains, which is especially helpful to improve the precision of the analysis when using relational numerical domains. We have developed a new framework to define modular concretizations, in line with the modular definitions of the abstract domains we used. This delegation-based approach is one of the core concepts used in Mopsa, the static analyzer used in this thesis and presented in the next chapter.

Part II

Base Abstractions

Mopsa

As we have seen in the previous chapter, combining abstract domains is key to improving the precision of a relational analyzer. We have also studied domains delegating part of their operations to an underlying domain (such as the string length domain of Section 2.4.2 relying on a numerical domain). These design decisions also ease their implementation. This chapter presents the Mopsa static analyzer, in which the analyses described in this thesis will be implemented. Mopsa stands for Modular Open Platform for Static Analysis. It is written in OCaml. One of the goals of Mopsa is to let developers define abstract domains modularly (i.e., as independently from each other as possible), while allowing them to cooperate and communicate. Some of these abstract domains may be relational, and we want to allow relational communication between them. Thus, expressions are evaluated into other expressions rather than abstract values. In addition, multiple domains can be composed on top of an underlying domain, resulting in combinations representable as directed acyclic graphs, while other static analyzers rely on trees of abstract domains. For example, the string length and string summarization domain used in Example 2.90 share an underlying relational numeric domain, allowing to express relationships between the lengths and contents of strings. A schematic representation of this example is provided in Figure 3.2. Another goal of Mopsa is to support the analysis of multiple languages (it currently targets C and Python). Using this approach, we can define our analyses in layers, which also eases implementation and maintenance. Some of the innermost layers are shared between the languages, thus factoring the codebase and simplifying support for new languages. Analyses are defined using configuration files, describing how abstract domains are combined. When invoked, Mopsa parses the configuration file, dynamically instanciates the abstract domains and constructs the abstract state from the configuration. Each analyzed expression (or statement) flows from the top domain of the configuration to the bottom until one domain handles it.

We start by showing the design choices of some state-of-the-art static analyzers, and compare to our design in Mopsa. We then describe the abstract syntax tree (AST) on which Mopsa operates, the domains' signature, the notion of hooks, acting as observers of the analysis. We finish by defining modular concretizations of abstract domains from a theoretical standpoint. Sections 3.2 and 3.3 are close to a previously published description of Mopsa [START_REF] Journault | Combinations of reusable abstract domains for a multilingual static analyzer[END_REF].

Related work

We start with a brief overview of related static analyzers. We take a look at Infer, TAJS, Frama-C's Eva, and Astrée. Analyzers related to Python or performing multilanguage analyses will be described in Sections 7.7 and 11.7 respectively. Except for Infer, the analyzers described here focus on a single language.

Infer

Infer [START_REF] Distefano | Scaling static analyses at facebook[END_REF][START_REF]The Infer development team. Infer, a static analysis tool for java[END_REF] is a static analyzer developed by Facebook, which aims at helping developers find bugs in their commits during continuous integration. Thus, its main objective is to be fast and have a low false-positive rate. Soundness is not often sought in the analyses defined.

Infer can analyze Java and C/C++/Objective-C programs. Programs written in these supported languages are statically translated into a reduced intermediate representation called SIL, using four instructions 1 . Infer performs an on-demand bottom-up analysis using procedure summaries, and relies on a CFG representation to iterate over nodes. Different analyses can be defined using the provided framework. Some analyses may reuse others' results, but they cannot mutually cooperate as a reduced product does.

Each analysis can choose its iteration strategy (forward or backward), initial starting abstract value, as well as the representations of function summaries. It is thus difficult to provide a big picture representation of what Infer's analyses generally do. We thus study three different analyses below, all of which work by forward iterations. Given an abstract domain and its transfer function over SIL statements, Infer can lift an intraprocedural analysis into an interprocedural one. It is also possible to define interprocedural analyses and custom summaries directly.

InferBO is used to detect out-of-bound accesses in arrays 2 . It relies on a symbolic interval domain. Function summaries consist in necessary conditions that need to be satisfied to avoid out-of-bound accesses 3 . RacerD detects data races in programs. It does not rely on numerical domains. Example summaries are shown [13, page 4]. Pulse performs an underapproximating analysis aiming at detecting memory errors [START_REF] Raad | Local reasoning about the presence of bugs: Incorrectness separation logic[END_REF].

Summaries4 consist of a pair of pre/post symbolic memory states combined with a numerical interval domain. The pre state describes a refinment of the entry state that leads to the current program point being analyzed. The post state describes the state at the current program point.

Mopsa also targets multiple languages. Infer operates on a small intermediate language. A benefit of this approach is to reduce the number of constructions that need to be analyzed. Supporting a new language is only a matter of adding a static translation from the source language to the intermediate representation. This approach has several downsides: the translation into the intermediate language may reduce the precision of the analyses, and the intermediate language may not be appropriate for every programming language. For example, Infer does not support any dynamic programming language such as Python or JavaScript and its intermediate representation may need changes to precisely handle features such as dynamic typing or asynchronous computations. Mopsa currently supports only fully contextsensitive approaches, compared to the bottom-up function analysis of Infer. It relies on relational numerical abstract domains to be precise. Its goal is to combine domains rather than have specialized independent checkers.

TAJS

TAJS [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF] is a sound static analyzer for JavaScript programs, aiming at detecting type-related errors. It performs a context-sensitive, CFG-based analysis. Similarly to Infer, TAJS relies on a simplified intermediate representation with around 20 instructions [74, page 7]. TAJS relies on a constants domain for numerical values.

Jensen et al. [START_REF] Holm Jensen | Interprocedural analysis with lazy propagation[END_REF] improve the interprocedural analysis by making opaque the fields of objects passed to functions. If specific fields are required during the analysis of the function, they can be recovered. If an object's field is opaque in a function, but its value is changed outside of the function, there is no need to analyze the function again, reducing the cost of the interprocedural analysis.

A prevalent usecase of JavaScript is to interact with HTML pages, possibly to react to user input. A specific modeling of these interactions has been proposed by Jensen et al. [START_REF] Holm Jensen | Modeling the HTML DOM and browser API in static analysis of javascript web applications[END_REF].

JavaScript programs often use the eval function to interpret the passed string as a JavaScript program and evaluate it. Jensen et al. [START_REF] Holm Jensen | Remedying the eval that men do[END_REF] propose an approach to remove calls to eval where the passed string is semantically constant, through a constant propagation.

Stein et al. [START_REF] Stein | Static analysis with demand-driven value refinement[END_REF] added backward evaluation mechanisms in TAJS to improve the precision at critical points and gain back relational information during unknown property accesses. Another approach for improving precision is the notion of value partitioning introduced by Nielsen and Møller [START_REF] Barslev | Value partitioning: A lightweight approach to relational static analysis for javascript[END_REF], where an abstract value domain is locally partitioned given a , such as an imprecise read of a property.

Kristensen and Møller [START_REF] Krogh | Reasonably-most-general clients for JavaScript library analysis[END_REF] define a notion of reasonably most-general client for the analysis of TypeScript libraries. They then leverage TAJS to analyze the libraries using this client and detect errors in the type annotations of the libraries.

Contrary to TAJS, Mopsa aims at performing relational numerical analyses, and supports the analysis of multiple languages. It would be interesting to extend the interprocedural optimizations of Jensen et al. [START_REF] Holm Jensen | Interprocedural analysis with lazy propagation[END_REF] to a language-agnostic approach in Mopsa. Although Mopsa targets the analysis of Python programs, it does not support the eval statement for now, which seems less used than in JavaScript. Mopsa does not support the standalone analysis of libraries for now.

Frama-C

Frama-C provides a platform for C program analysis and verification. It features different plugins, allowing to perform deductive verification, runtime verification, or static analysis. The first static analysis plug-in of Frama-C was Value, a non-relational monolithic abstract domain. It has been upgraded by Bühler [START_REF] Bühler | Structuring an Abstract Interpreter through Value and State Abstractions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un interpréteur abstrait au moyen d'abstractions de valeurs et d'états :Eva, une analyse de valeur évoluée[END_REF] [START_REF] Blazy | Structuring abstract interpreters through state and value abstractions[END_REF] to Eva, which provides a more modular architecture adding new abstract domains (including an equality domain). Eva also provides better cooperation and communication mechanisms between the different supported abstractions. Eva performs sound, whole-program, context-sensitive analyses. Recursive functions are not supported.

Eva performs forward iterations over the CFG of the program, where a modified C intermediate representation is used (loops are transformed into infinite while with break statements, functions have a single return statement, the ternary conditional operator is explicitly rewritten -cf. [START_REF] Bühler | Structuring an Abstract Interpreter through Value and State Abstractions:EVA, an Evolved Value Analysis for Frama-C. (Structurer un interpréteur abstrait au moyen d'abstractions de valeurs et d'états :Eva, une analyse de valeur évoluée[END_REF]Section 4.1.2]).

Given a set of abstract domains D 1 , . . . , D n defining an analysis, an expression e is evaluated into value abstractions v 1 , . . . , v n for all those domains. Value abstractions abstract a set of values and have a lattice structure. Domains communicate through these abstract values, and reduce the evaluation of e to v 1 . . . v n . In its current form, Eva relies on a main abstract domain called Cvalue (the previous monolithic abstract domain of its predecessor plug-in). Additional domains can be activated, such as a symbolic equalities domain. Bindings to Apron's [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF] relational abstract domains are available but only work on program variables declared as integers.

Frama-C is more stable and mature than Mopsa. It has been successfully used in industrial settings, for example to analyze the code of French nuclear power plants [START_REF] Ourghanlian | Evaluation of static analysis tools used to assess software important to nuclear power plant safety[END_REF]. Mopsa aims at creating more collaborative, relational analyses than what can be currently expressed in Frama-C.

Astrée

Astrée is a static analyzer of C programs specialized in the certification of critical embedded software. It performs a sound, whole-program, context-sensitive analysis. It does not handle recursive functions, but supports dynamic memory allocation. Astrée has been recently upgraded to provide more modular abstractions through the work of Chevalier [START_REF] Chevalier | Proving the security of software-intensive embedded systems by abstract interpretation[END_REF].

Astrée's analysis proceeds by induction on the syntax. The structure of Astrée's domain is described in [105, page 61], [27, page 168], and the upgraded version [27, page 298]. A topmost domain handles trace partitioning. An environment domain follows; it handles non-local control-flow. A struct domain rewrites C variables and dereferences into cell accesses [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF]. The base-offset domain handles pointers by delegating its operations to the shared numerical domain. This approach relying on the cell abstraction and a base-offset domain is reused in the analysis of C programs in Mopsa [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF]. A combination of relational and non-relational numerical domains is used at the bottom of the analyzer.

A notable improvement of the new version is the use of ghost variables to define program properties that can be shared in a (relational) numerical domain to improve precision. These ghost variables are used to represent pointers offsets or slices of variables whose values are bitwise manipulated. A whole theoretical framework has been developed by Chevalier and Feret [START_REF] Chevalier | Sharing ghost variables in a collection of abstract domains[END_REF] to ensure that analyses using ghost variables are sound and terminate. In all cases, ghost variables build upon variables, be it program variables or ghost variables themselves. The key dispenser, translator, and driver domains [27, page 298] act as centralized domains handling these ghost variables. Mopsa also relies on auxiliary variables to define some program properties in underlying, potentially relational, numerical domains.

Contrary to Astrée, each domain is responsible for its auxiliary variables in Mopsa. In Mopsa, and in particular in the analysis of Python programs, auxiliary variables are also used on abstract addresses.

Astrée is much more mature than Mopsa. It has been successfully applied for the verification of safety-critical software, such as the control command of Airbus planes [START_REF] Delmas | Astrée: From research to industry[END_REF], and has been commercialized by AbsInt since 2009. In addition, some versions of Astrée support backward analyses [START_REF] Rival | Understanding the origin of alarms in astrée[END_REF], allowing to refine an input state from which runtime errors were detected, and rule out some false alarms. Astrée also supports the analysis of multi-threaded programs to detect for example data races [START_REF] Miné | Static analysis of run-time errors in embedded real-time parallel C programs[END_REF][START_REF] Miné | Static analysis by abstract interpretation of concurrent programs[END_REF]. The memory model used is compatible with PSO. Astrée has been recently extended by Chevalier [START_REF] Chevalier | Proving the security of software-intensive embedded systems by abstract interpretation[END_REF] to support the analysis of snippets of assembly language embedded in C code.

Mopsa explores a different design space, with the goal of being more modular and extensible than Astrée. It is also not specialized to a specific input language, and has a different architecture.

Framework of Keidel et al.

Keidel et al. [START_REF] Keidel | Compositional soundness proofs of abstract interpreters[END_REF] defined an approach to perform soundness proofs locally, on each abstract domain. Their approach make soundness proofs easier and lighter. Keidel and Erdweg [START_REF] Keidel | Sound and reusable components for abstract interpretation[END_REF] define modular abstract domains that can be combined by transformers, where the soundness proofs of their previous work apply. They however make the assumption that abstract domains are non-relational maps from variable to abstract values. In constrat, one of the main goals of Mopsa is to perform relational analyses. We have already seen in the previous chapter that defining analyses and concretizations in a relational setting is significantly more complicated. For example, the consistency criterion on concrete input states in the case of the string summarization concretization (Definition 2.77) was required to handle the case of relational domains. In the case of non-relational domains, this property is always ensured.

Abstract syntax tree (AST)

Similarly to Astrée, Mopsa performs an analysis by induction on the syntax, rather than by iterating over a control-flow graph (the approaches were compared in Remark 2.68). Mopsa uses a single AST, which is extended when needed to support new languages. This way, it keeps the high-level structure of parsed programs. A downside of this approach is the high number of AST nodes an analysis needs to support. This is mitigated by dynamic translations from language-specific AST nodes to language-agnostic ones (e.g., Python and C loops shown in Section 3.2.4), which will be analyzed by so-called "universal" abstract domains. For now, Mopsa supports the following languages :

• a large subset of Python 3, using a dedicated parser originally developed by Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF], • most of C, using Clang's parser, • a contract annotation language close to ACSL [7] used to model library functions for C programs [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF], • universal, a simple language close to the one described in Chapter 2.

We illustrate the inner workings of our approach on the case of loop statements. We start by defining elementary expressions and statements used in our examples (including support for basic while loops of Imp). We explain how a domain would compute an approximate fixpoint for these loops. We extend our approach to the cases of Python and C loops.

Elementary expressions and statements

The syntactic elements of Mopsa include variables, constants, types, binary operators, expressions and statements. All these types are defined as records consisting of multiple fields. The main field of interest is the kind, which is an extensible variant type, meaning that any OCaml module can further extend it. Additional fields include the program ranges for expressions and statements, and the type for variables and expressions.

Definition 3.1 The var type

Variables are defined in Mopsa using the code shown in Listing 3.1. The type of variables, var, is defined using four different fields:

vname, which is the unique name of the variable; vkind, the kind of the variable, which should be an inhabitant of var_kind; vtyp, the type of the variable; vmode, the mode of the variable (weak or strong).

We show a base variant of the var_kind type. This variant is used for original variables present in the analyzed program. V_uniq represents variables identified by a unique integer identifier, and having a string identifier (coming from the source code and used for printing).

A domain handling while loops

We show excerpts of the domain computing loop fixpoints in Listing 3.5. The next section (3.3) will explain in detail the signature of abstract domains. exec defines the local transfer function over statements for this domain. It takes three arguments: the statement to analyze, a manager referencing the global transfer functions, and the analysis' state.

The transfer function of S_while calls the lfp function. Then, it calls recursively the whole analysis (using man.exec, described later in Section 3.3.2.2) to filter the reached fixpoint by the negation of the loop's condition.

lfp performs an accelerated fixpoint computation. It starts by computing the effects of the loop's condition and body on the input state, by calling recursively the whole analysis. mk_block and mk_assume are helper functions creating statements whose stmt_kind is respectively S_block and S_assume. It the result is stable, we return the previously computed state 5 . Otherwise, lfp calls itself recursively, on a widened state.

We can intuitively notice that the analysis progresses: recursive calls are performed on strict sub-nodes of the S_while statement. This argument would also be used to prove termination of the analysis. In the rest of this thesis, we use the following color code convention: Universal constructors are written in blue, Python ones in green, and C ones in orange. The previous variants of expr_kind and stmt_kind were all part of Universal.

The Python frontend adds two new loop nodes to the statement kind. The additional statement of each loop variant corresponds to the else clause of the loops. The detailed semantics of Python loops will be shown in Section 6.2.7. Standard while loops of C are identical to Universal, and thus use the variant of the Universal language. We add the case of for and do-while loops, instead of translating them directly into while loops.

Remark 3.8 Multiple languages in the AST

All languages are mixed in the AST. We can thus perform partial rewriting mixing different languages (as shown in Section 3.2.4). It will also be convenient to analyze multilanguage programs in Chapter 11.

Dynamically rewriting Python and C loops

During the analysis, AST nodes can be rewritten into other nodes. This dynamic rewriting is used to perform translations from language-specific constructs to simpler constructs. The case of loops is schematically shown in Figure 3 The implementation of the transfer function of the C loop iterator as done in Mopsa is shown in Listing 3.6. In both cases, the statements are rewritten into a block of statements containing a universal S_while loop. This loop will be handled by the universal loop domain shown in Listing 3.5. In these cases, we can argue that the analysis progresses because the recursive calls will handle a more elementary kind of loop, in a simplified language (S_while). In Mopsa, iterators are a simplified case of abstract domains with no local abstract state. They can be put anywhere in the combination of domains defining an analysis. They have access to the abstract state, which can be used to perform semantically-guided rewritings.

Example 3.10 Semantically-optimized rewriting

Let us consider the case of Python for loops. If the iterable is a range object, we would like to perform a more natural rewriting with explicit increments on target, that can ease the search for precise loop invariants. However, Python is dynamically typed, so there is no systematic syntactic information we can use to optimize the rewriting in the case of range. With a syntactic approach, we could optimize the case with explicit range such as for x in range(10): ..., but not the case of the loop for x in f(): ..., where f returns a range object.

In our case, the Python loop iterator starts by evaluating iterable. At the end of the evaluation, we obtain semantic information on the iterable's type. The iterator can then decide which rewriting to perform, and would work on both cases mentioned before.

Domains

We start by explaining how Mopsa transforms configuration files into analyses. This construction motivates the need for a unified domain signature, detailed in Section 3.3.2. We study two specific cases: non-relational domains in Section 3.3.3, and the combination of domains into a reduced product in Section 3.3.4. We explain how domains can broadcast specific requests for information to other domains in Section 3.3.5.

Defining analyses by combining domains

Users define analyses in Mopsa through a configuration file describing which domains are used and how they are combined. A configuration is a directed acyclic graph (DAG), where nodes are either domains or domain combinators. Each analyzed expression (or statement) flows from the top domain of the configuration to the bottom until one domain treats it (i.e., it returns a value that is not None). A configuration for the analysis of Imp programs of Chapter 2 is shown in Figure 3.2. U.program is the frontend handling the import from the parser. U.intraproc defines the execution of conditionals and sequence of statements. U.loops computes an abstract fixpoint for loops. Domains U.str_len and U.str_sum represent the domains presented in Sections 2.4.2 and 2.4.5 respectively. They are put in a reduced product (as described in Section 2.4.6) and share an underlying numerical domain U.numeric handling assignments of numeric variables and conditional filtering over numeric expressions. More involved configurations will be shown in Figures 7.10 and 8.6 for the Python analyses and in Figure 11.9 for the multilanguage analysis. Domains have a unified signature simplifying their combination. Combinators build new domains, combining the types and transfer functions of input domains. Specifically, the whole analysis behaves as a domain.

The sequence combinator tries to execute the transfer functions of the left-hand side domain. If this domain does not handle the passed statement or expression, the transfer function of domain on the right-hand side of the sequence will be called. In the case of a reduced product, transfer functions on both sides are called before reductions are performed. The compose combinator is an extended case of the sequence combinator6 .

Domain signature

Mopsa's abstract domains abide by the domain signature shown in Listing 3.7. We successively explain each part of the signature in this section.

Domain type and lattice operations (lines 24-33)

A domain operates on a type t, which is private and opaque to others. Lattice elements and operators of the domain are defined classically. The widening also takes as parameter a context (polymorphic in the whole abstraction), from which it can extract information such as thresholds for the widening (cf. Section 3.4). Each domain has its own identifier and a name.

Remark 3.11 Domain type and polymorphism

Since the abstract state is created dynamically by combining domains according to the configuration, the type of the global abstract state is not precisely known during the definition of each domain. The type of the whole combination of domains is thus generalized with the type 'a.

3.3.2.2

The need for a manager (lines 2-15)

As we have mentioned previously (Section 3.3.1), a configuration is a directed acyclic graph, which defines how domains are combined. Thanks to the unified signature, the whole analysis is also a domain, and internally, a DAG having the same structure as the configuration. During the analysis, statements and expressions traverse the DAG, starting from the root, until one domain handles them. We explain below how the manager is used to interroperate between a local domain and the overall domain. Since the manager connects the global state with the local domain, its type is ('a, t) man.

From the global domain to a local domain (lines 3-4). Since the combination of domains is defined at runtime, we abstract the type of the whole abstract state into a parametric type 'a (Remark 3.11). However, we need to know how to decompose a global abstract state of type 'a to access and update the local state of the local domain, of type t. This is the first usecase of the manager: man.get and man.set act as getters and setters of the local state, which is enclosed in the whole abstract state. From a local domain to the global domain (lines [6][7][8][9][10][11][START_REF] Beyer | Software verification: 10th comparative evaluation (SV-COMP 2021)[END_REF][START_REF] Blackshear | RacerD: compositional static race detection[END_REF][START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF]. During the execution of a local transfer function, handling a statement (or an expression), the local abstract domain may need to recursively call the whole analysis on a new statement or expression, starting from the root of DAG. This is done by calling the manager with the man.exec and man.eval functions. During their evaluation, these functions will traverse the DAG in search for a domain handling the provided statement or expression. For example, the C loop iterator Listing 3.6 calls the whole analysis over the rewritten loop to continue the analysis.

The manager can also be used to perform global lattice operations. This is used by the domain performing fixpoint computation for while loops (Listing 3.5, function lfp), to check if a fixpoint has been reached, or call the widening operator over the whole state otherwise.

Flow, wrapper of the global abstract state

The global abstract state of the analysis is an inhabitant of the type 'a flow, rather than the expected 'a. The flow type adds additional information. Its main usecase is to lift the abstract states to a mapping where keys are control-flow tokens. We explained in Section 2.4.3 how these control-flow tokens are used to handle non-local control-flow operators (such as break) when the analysis proceeds by induction on the syntax. The type of tokens can also be extended by any domain. The 'a flow type also stores:

• a flow-insensitive context 'a ctx,

• a report of the alarms already raised and the checks performed by the analysis,

• a report of the assumptions made by the analysis. For example, let us assume we analyze a C program where a function f is called. We assume also that this function is not defined in the source code, and only its prototype is available. To continue the analysis, Mopsa assumes that f has no side effects. We collect this assumption in the state to make it explicit and traceable (we provide an example later, in Listing 3.13). These reports are then displayed to the user at the end of Mopsa's execution.

Remark 3.14 Benefits of explicit checks and assumptions

We believe that the reports provided are a step forward from the soundiness approach proposed by Livshits et al. [START_REF] Livshits | In defense of soundiness: a manifesto[END_REF]. We move from a declaration of the theoretical limits of an approach, to an analyzer (here, Mopsa) explicitly collecting which properties have been verified, and which assumptions have been made.

Cases, postconditions and evaluations (lines 18-19)

Elements of ('a, 'b) cases represent a disjunctive normal form of elements. These elements consist in a product of an element of type 'b case in the context of a global abstract state 'a flow. A 'b case can be a result of type 'b (along with additional optional information), or the special case empty denoting an error. The interface of these cases is shown in Listing 3.10. We can create a singleton case using Cases.return. Cases.empty is the special case denoting an error. It is possible to join two or an arbitrary number of cases using Cases.join or Cases.join_list. The monadic operator cases >>= f executes the transfer function f : 'b -> 'a flow -> ('a, 'c) cases for each case in cases : ('a, 'b) cases. It returns a new case disjunction, of type ('a, 'c) cases. The type 'a post is an alias for ('a, unit) cases, representing a disjunction of abstract states. 'a eval is an alias for ('a, expr) cases. It represents a disjunction of expressions, each defined in a different abstract state. We show the benefits of these disjunctions in Example 3.17.

Transfer functions on expressions and statements (lines 36-38)

init is called to initialize the domain. It takes as argument a program, the analysis' manager, a global abstract state and returns a global abstract state, where the local domain state has been properly initialized.

Given a manager and a global abstract state, statements (resp. expressions) are executed (resp. evaluated) into postconditions (resp. evaluations).

Evaluations. Given an expression, a manager, and a global abstract state, eval returns a 'a eval option. If the expression is handled by the domain, the returned value consists in a disjunction of expressions (each in a given state). Otherwise, the domain returns None. This means that abstract domains below the current one will be called until one supports the expression. An important feature of Mopsa is that expressions are evaluated into expressions themselves, in order to infer potentially relational invariants (and additionally, support domains performing rewriting in a unified framework). We illustrate the benefits of this approach in the examples below.

Postconditions. Given a statement, a manager and a global abstract state, exec returns a 'a post option. If the statement is not supported by the given abstract domain, it will return None. For example, the domain Python.Loops does not support universal loop statements S_while, and will return None. However, the domain Universal.Loops will return a result. If the statement is supported by the abstract domain, a case disjunction of the final global abstract state is returned.

Example 3.15 Assignment in a relational domain

We consider the transfer function of an assignment in a relational domain. We show the implementation of this transfer function in Listing 3.11.

Assuming we have a string s in our toy language from the previous chapter, we consider the statement x = s[i]. Numerical domains are unable to handle that kind of assignments by themselves, since s is a string. However, we know that the numerical domain should handle the assignment, since s[i] has a numerical type (following the semantics chosen in Section 2.4.1). Thus, the numerical domain recursively calls the whole analysis to evaluate s[i], using the manager (line 3). We will show later the transfer functions of this expression for both the string summarization and the string length domains, in Examples 3.17 and 3.19. For now, we just assume that s[i] is evaluated into an expression that the numerical domain can handle. Then, we can perform the assignment on our numerical domain. We start by retrieving the local state for the normal execution of the flow using get_env (whose definition was shown in Listing 3.9). In the case of a relational domain, the execution of the assignment is delegated to the Apron library [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF]. We can then return the state, updated using set_env. The cases monadic operator cases >>= f applies the function f on each case in cases. It is used to define the analysis on a single case at a time (for example, in Listing 3.11), and hides the case disjunctions from the implementation of the analysis' code.

Example 3.17 Expression evaluation performing a simple rewriting

The domain of smashed strings will evaluate s[i] into an auxiliary variable ord(s) (Listing 3.12). It creates the auxiliary variable by calling mk_ord_string.

The numerical domain will then be able to handle the assignment x = ord(s), since ord(s) is a purely numerical variable.

Remark 3.18 Modular definitions of abstract domains

The definitions of abstract domains are modular: they do not make assumptions on the other domains. For example, the numerical domain is not specified in the transfer function of string summarization domain in Example 3.17. Changing it into another or a combination of numerical domains does not require changes in Mopsa's code. Conversely, switching from the smashing abstraction to the string length domain does not affect the numerical domain, since it handles numerical expressions.

Example 3.19 Expression evaluation with case disjunction

Upon an index access of a string, the string length domain will check that the access is correct, and raises an alarm otherwise. We showed the concrete semantics in Figure 2.13, and the implementation is described in Listing 3.12. assume is a global utility function that filters the global analysis' state by a condition (resp. its negation), and applies the function defined by the named argument fthen (resp. felse) on it. The filtering is done by delegation, calling man.exec.

In the case of the transfer function, the state is filtered according to the condition 0 ≤ i < len(s). The auxiliary variable len(s) is created by mk_len_string s. assume performs global evaluations and executions. In this case, the filtering will be performed by the numerical domain. If the condition is satisfied, we can keep in the state that this specific index access has been proved valid, and we return the interval [0, 127] (following the semantics of Figure 2.13). If the condition is not respected, we add a new alarm in the state, stating the that index access is invalid, and do not return an expression, to interrupt the evaluation of this path.

Remark 3.20 Avoiding combinatorial explosions

Postconditions are joined into a single case after each global statement execution, in order to avoid a combinatorial explosion.

Remark 3.21 Housekeeping auxiliary variables

As we mentioned before, domains are responsible for their auxiliary variables. This means that when a variable is removed, auxiliary variables depending on this variable have to be removed too. We show how this is performed in the case of the string length domain in Listing 3.14. If a string variable s is removed, this domain will rewrite the statement into a removal of the variable len(s). The merge function is used to reconciliate diverging states in a reduced product (cf. Section 3.3.4). ask allows broadcasting queries to other domains (described in Section 3.3.5). print_state displays the abstract state of the domain. print_expr is used to display the part of the local abstract state representing the provided expression. 7 It can delegate calls to the manager using man.print_expr. For example, let us assume that print_expr is called to display a string variable s. As mentioned in Remark 3.6, each domain is responsible for the auxiliary variables it introduces. In this case, this means that the print_expr of the string length domain will delegate the printing to the numerical domain for the ghost variable len(s).

Remark 3.22 Stateless abstract domains

Stateless abstract domains such as iterators performing dynamic rewriting (Section 3.2.4) can be defined as modules with a simplified signature, where lattice operations do not have to be defined. They are then lifted automatically to the domain module type by Mopsa.

The simplified case of non-relational domains

Mopsa provides a simplified interface for non-relational domains, similar to the value abstract domains defined in Definition 2.51. They can then be lifted to the standard domain signature using a special combinator, similar to the semantics defined in Property 2.52.

Value abstract domains can be combined through a union combinator, representing a disjoint union between those abstract values. The most common usecase is the union of a value abstraction for integers and a value abstraction for floating-point numbers. These domains can then be lifted using a non-relational combinator having a definition similar to the one given in Property 2.52.

Reduced products and their pitfalls

Products are straightforwardly created in Mopsa using the corresponding combinator in the configuration. They can be extended to the case of reduced products through reduction rules over the states or the evaluations described below. We then highlight a pitfall of shared underlying domains in the case of a reduced product.

A classical example of reduced product is the reduction between the interval and the congruence abstract domains, defined in Section 2.3.9.2. We show the code used to define the reduction in Listing 3.15. Both the interval and the congruence abstract domains are defined through their abstract values, using the simplified case described in the previous section. reduce is defined only on the abstract values and lifted similarly (Definition 2.53). It is provided with a different manager that can access the internal states of the subdomains used in the product. reduce starts by fetching the congruence and the interval representing the value v through the manager. The reduction between those congruences and intervals is performed by meet_cgr_itv function, which implements the reduction operator described in Figure 2.11. The updated congruence and interval are put back in the abstract state. It is also possible to define reductions between evaluations of full domains. An example is the reduction performed after the evaluation of index accesses s[i] with both the string length and string summarization domains described in Section 2.4.6. The implementation of this reduction rule is shown in Listing 3.16. It traverses the results of the evaluation by the subdomains, and keeps the auxiliary variable ord(s) created by the string summarization domain, and drops the evaluations of [0, 127], created by the string length domain which is imprecise. Effects on shared underlying domains. The reductions defined previously combine different expressions from domains of the product into a single one to improve the precision. A specific feature of Mopsa is that domains in a reduced product can share an underlying domain. During the execution of the analysis, domains in a reduced product may have different effects on this underlying domain, resulting in incoherent abstract states. In particular, if the resulting abstract states obtained by the product are directly intersected, the result will be unsound. It is however possible to recover back soundness by applying a generic merge function.

For example, we consider the following program: s = "abc"; s = s + "def", written in the Imp language of the previous chapter. + denotes the string concatenation operator. We first store a string in s, and update its value through a concatenation afterward. Let us assume that we have a product of the length and summarization domains, sharing an underlying interval domain (thus abiding by the configuration shown in Figure 3.2). We show the evaluation along the different domains and operators in Figure 3.3. The execution of s = s + "def" is transformed by the length domain into the execution of len(s) = len(s) + 3. This is handled by the numerical domain, which yields state σ 1 . Conversely, the execution of the initial statement is transformed by the string summarization domain into ord(s) weak = ord(s) + [START_REF] Mao | RID: finding reference count bugs with inconsistent path pair checking[END_REF][START_REF] Matthews | Operational semantics for multi-language programs[END_REF]. Once this is handled by the numerical domain, the resulting abstract state is σ 2 . We notice that the length variable is updated in σ 1 , but not in σ 2 , and conversely for the smashed variable. Additionally, none of these abstract states are sound after the assignment. σ 1 and σ 2 have to be merged into a sound post-condition. This is done by forgetting the effects of one domain over the other. In our case, σ 1 modified len(s) and σ 2 modified ord(s). Forgetting the effects

Remark 3.23 Sequentialization of statements

In this case, it would have been possible to sequentialize the operations to obtain a sound result without a call to merge. This is however not always possible, especially when relational domains are used.

Remark 3.24 Effects

Effects are collected automatically for each domain of the reduced product. For each domain, effects consist in a list of statements. A generic merge function is provided by the framework.

Remark 3.25 Comparison with the approach of Chevalier [27] used in Astrée

Chevalier mentions the same issue [27, page 330]:

If modifying the abstract state of the left-hand side impacts the value of the right-hand side, strange interference may happen.

The solution he chooses is to add temporary variables to avoid that kind of situation. We believe that ensuring this condition when auxiliary variables are dynamically created (which is not the case in Chevalier's framework) is however difficult. In addition, introducing temporary variables increases the computational cost of relational numerical domains.

Communication between domains

Domains have a private type that is not available to other domains, and communicate in the analysis through statements or expressions. In some cases, inter-communication between domains through a public interface is necessary. We use a mechanism of queries similar to Astrée's input channels [START_REF] Cousot | Combination of abstractions in the Astrée static analyzer[END_REF]. Queries are defined through an extensible GADT type, in order to make public the types of the queries arguments and their results. In essence, the interval query, asking for an interval representation of a provided expression, is defined as: This query can be used to display some ranges of variables in alarm messages, or to compute the interval of a pointer offset in the analysis of C programs.

Queries are seldom used. It is usually better to communicate between abstractions through the evaluation of expressions or execution of statements. This avoids exposing abstract values, which improves precision when relational domains are used. It also avoids making assumptions about the domains used. We could replace the call to assume at line 12 of Listing 3.13 by queries asking for interval representations of the expression i and the variable len(s). This approach would have two downsides. First, relying on interval representations breaks relationality. If i is a variable, and the relational domain knows that 0 ≤ i < len(s) ≤ 100, the interval representations would yield [0, 100] for both i and len(s). We would thus raise a false alarm. The second downside is that the string length domain would have to make explicit manipulations over intervals and handle the disjunctions, which creates lower-level code. Using our approach, these filterings were delegated to the numerical domain, whose purpose is to work on numerical abstractions.

A domain defines to which queries it answers through its ask transfer function. Lattice operators (join, meet) are also defined to handle the combination of replies from different domains.

Remark 3.26 Comparison with Frama-C

Frama-C domains cooperate through abstract values (currently intervals, to the best of our knowledge). Provided that Mopsa's query mechanism defines the same abstract values, Frama-C's domain cooperation could be simulated by these specific queries in Mopsa.

Hooks

Hooks are designed to observe the analysis. Their signature is provided in Listing 3.17. Hooks can be called at the beginning of the analysis, before and after any evaluation (resp. execution) of an expression (resp. statement), and at the end of the analysis. In particular, hooks see all subevaluations and subexecutions that may be created by domains calling the analysis recursively. Hooks can update the flow-insensitive context of the analysis to store information, but they cannot modify the rest of the abstract state. They can thus interact with the analysis (such as the threshold hook presented below), but their execution cannot effect the analysis' soundness, contrary to abstract domains.

Listing 3.17 There are five use-cases for hooks in the current implementation of Mopsa.

Logs display the execution and evaluation steps, and optionally the abstract state. This is useful for debugging purposes. Coverage hooks are provided for Python and C. They collect which statements have been analyzed and provide a global metric for the analysis' results. When a statement is analyzed, the hooks can also check if the input state is always bottom or not, to know if the statement is dead code or not. This family of hooks is quite handy to detect soundness issues (e.g., when a statement should have been analyzed but has not been). Soundness sanity checking hooks detect if the output state after an assignment is set to ⊥ without alarms set, while the input state was not ⊥. In that case, we have probably uncovered a soundness issue. Profiling hooks provide a high-level view of which part of the input program took time to analyze. Traditional profiling tools such as perf or OCaml's memtrace are too low-level and global to provide that kind of information. Due to function inlining and nested loops, the analysis time of programs is not proportional to their size. Our profiling hooks thus measure how much time is spent analyzing each function and each loop of a program. Threshold hook collects constants thresholds to be used by the widening with thresholds.

The idea of widening with thresholds is to try increasing thresholds for unstable bounds rather than directly going to ±∞. This hook searches for comparisons between variables and constants happening within the analysis of loops. When a comparison is encountered, the constant is put as a threshold for the corresponding variable in the global context. This context is then read by the widening operators of the numerical domains, which can use the provided thresholds. Performing this search dynamically during the analysis, rather than a syntactical inspection of the input program has numerous benefits. The hook can find thresholds for ghost variables, and expressions may evaluate into constants during the analysis although they do not appear syntactically.

Formalization

In the previous chapter, the definition of domains explictly called other domains (e.g., the string length transfer function E # len • explicitly calls the numerical domain E # num • in Figure 2.13). In Mopsa, the eval and exec transfer functions of an abstract domain may call the global man.eval and exec transfer functions through the manager. To keep the analysis modular, a domain cannot explicitly call a specific domain, and we do not make hypotheses about which domains are present and which domain(s) can handle a (possibly transformed) expression or statement.

This section defines the notion of composable abstract domain, and how these domains can be composed or put in a reduced product. A limitation of our formalization is that soundness conditions are currently not defined locally, for each composable abstract domain. We write E the set of expressions and S the set of statements.

Definition 3.27 Composable abstract domain

A composable abstract domain consists in:

• An abstract poset (D ,),

• A smallest element ⊥ and a largest element , • Sound abstractions of set union and intersection , ,

• A widening operator ∇,

• Partial expression and statement transfer functions, operating on the global abstraction state Σ . The global abstraction state Σ corresponds to inhabitants of the type 'a in the domain signature of Listing 3.7. The star is used to denote a list (i.e., a case disjunction), potentially empty (meaning that this domain does not handle this case).

E # D expr ∈ E : Σ → (Σ × E) * S # D stmt ∈ S : Σ → Σ *
• Concrete input and output states of the abstract domain, written D in and D out • A concretization operator γ ∈ D → P(P(D in) × P(D out)). Concretizations are expressed modularly, as relations between concrete states, in line with what has been presented in Section 2.4.

Example 3.28 String length as a composable abstract domain

Let us consider the string summarization domain of Section 2.4.5. The poset and lattice operators are trivial since the domain is stateless. The transfer functions have been described in Figure 2.17. The concrete input state is a numerical state V → Z, and the output state can also define string values V → (Z ∪ A *). The concretization was defined in Definition 2.84.

Definition 3.29 Sequence of abstract domains

Let (D i , i , ⊥ i , i , i , i , ∇ i , E # i • , S # i • , γ i), i ∈ { 1, 2 } be two composable abstract do- mains.
We define the sequence of these two domains, written

D 2 | D 1 as: • A poset (D 1 × D 2 , 1×2), with (v 1 , v 2) 1×2 (v 1 , v 2) def = v 1 1 v 1 ∧ v 2 2 v 2
• Similar lattice and widening operators lifted to the product.

• The transfer functions first try using domain 2. If domain 2 is unable to handle the expression or statement, domain 1 is used.

E # 1×2 e = let r = E # 2 e in if r = ∅ then r else E # 1 e S # 1×2 s = let r = S # 2 e in if r = ∅ then r else S # 1 e
• A concretization operator (we assume that

D out 1 = D in 2)
, corresponding to Defini-tion 2.82.

γ 1×2 : D 1 × D 2 → P(P(D in 1) × P(D out 2)) (σ 1 , σ 2) → { (R i 1 , R o 2) | (R i 1 , R o 1) ∈ γ 1 (σ 1) ∧ (R i 2 , R o 2) ∈ γ 2 (σ 2) ∧ R i 2 ⊆ R o 1 } Property 3.30 A sequence of abstract domains is composable D 2 | D 1
is also a composable abstract domain.

Definition 3.31 Product of abstract domains

Given two composable abstract domains,

(D i , i , ⊥ i , i , i , i , ∇ i , E # i • , S # i • , γ i), with i ∈ { 1, 2 },
and two functions reduce_eval, reduce_exec, defining reductions between evaluations and executions, we define the product D 1∧2 as:

• A poset (D 1 × D 2 , 1×2),
• Similar lattice operators lifted to the product, • The transfer functions run the transfer functions of domain 1 and 2 in parallel. They are then unified using the merge function applying effects, and reduction rules can then be applied. We left implicit the process of gathering effects from domains and passing it to the merge function (in Mopsa, this is done automatically by logging assignments in expressions passed as argument).

E # 1∧2 e σ = let v 1 , σ 1 = E # 1 e and v 2 , σ 2 = E # 2 e in let σ 1 = merge(σ 1) in let σ 2 = merge(σ 2) in reduce_eval((v 1 , σ 1), (v 2 , σ 2)) S # 1∧2 s = let σ 1 = E # 1 e and σ 2 = E # 2 e in let σ 1 = merge(σ 1) in let σ 2 = merge(σ 2) in reduce_exec(σ 1 , σ 2)
• A concretization operator (we assume that γ 1 and γ 2 have the same codomain).

γ 1∧2 : D 1 × D 2 → P(P(D in) × P(D out)) (σ 1 , σ 2) → { (R, R 1 ∩ R 2) | (R, R 1) ∈ γ 1 (σ 1) ∧ (R, R 2) ∈ γ 2 (σ 2) }

Property 3.32 A product of abstract domains is composable

D 1∧2 is also a composable abstract domain.

Remark 3.33 Toplevel abstract domain

The toplevel abstract domain consists of a whole combination of domains. It is also a composable abstract domain, thanks to Properties 3.30 and 3.32. From the toplevel abstract domain, we derive global evaluation and execution operators (corresponding to man.eval and man.exec). Contrary to the partial functions of the abstract domain, these operators are total: if some expression or statement is not supported, the operators fail and raise an exception.

E # • : Σ → (Σ × E) + S # • : Σ → Σ +
Given the concretization γ : Σ → P(P(∅) × P(Σ)) (leaf domains take the empty set as input, cf. Remark 2.83), the toplevel concretization consists in the image of the whole concretization: Γ(σ) =↓ •γ(σ) (using the operator defined in Definition 2.81).

Remark 3.34 Stack variation

In Mopsa, the notion of abstract domain can be further generalized to allow lattice operators to perform unification on domains below them. Some domains using auxiliary variables in underlying domains may need to perform unifications on these domains when performing lattice operations. This kind of domain is called a stack domain. In that case, these operators have a signature similar to the one below

val join : ('a,t) man -> ('a,'s) stack_man -> 'a ctx -> t * 's -> t * 's -> t * 's * 's
The join operator takes:

• a global manager as argument, • a simplified manager working on the underlying abstraction, of type 's,

• the global context of the abstraction • the two abstract states on which the join is performed, including the underlying abstractions.

It returns the joined abstract state as well as the unified underlying states.

In order to ease definitions, we do not consider this case in the formalization. These domains are currently not used in the analysis of Python programs.

Conclusion

We have shown that Mopsa aims at performing precise relational analyses through loose combinations of abstract domains that can be easily changed by the user. Moreover, Mopsa supports multiple languages, and some abstract domains are shared among the languages in order to reduce implementation costs. We have formalized the notion of composable abstract domain. In addition to the works related to Python presented in this thesis, Mopsa has been used by:

• Journault et al. [START_REF] Journault | Modular static analysis of string manipulations in C programs[END_REF] to implement a domain for C strings, • Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF] to define a stub language modeling libraries such as the C standard library. • Delmas and Miné [START_REF] Delmas | Analysis of software patches using numerical abstract interpretation[END_REF], Delmas et al. [START_REF] Delmas | Static analysis of endian portability by abstract interpretation[END_REF] to infer other program properties such as semantic equivalence of patched programs or endian portability of programs.

There are still open questions related to Mopsa's design:

• The implementation of backwards analyses, where abstract domains are defined modularly and the analysis works by induction on the syntax. Backwards analyses are supported by TAJS and some versions of Astrée.

• The design of efficient, yet precise, modular analyses of functions. Mopsa currently implements a context-sensitive, top-down interprocedural analysis. In its non-relational version, Frama-C relies on a mechanism performing function summarization on-the-fly, to improve performances [START_REF] Yakobowski | Fast whole-program verification using on-the-fly summarization[END_REF]. Infer performs efficient interprocedural analyses in a bottom-up fashion, but without soundness guarantees. • We do not know yet how to state and prove the soundness properties locally, one composable abstract domain at a time.

This chapter presents the recency abstraction, which we use to handle dynamic memory allocation in our analyses. We present the recency abstraction on an extended version of Imp in Section 4. [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF]. Following what we have established in the previous chapters, the abstract semantics and the concretization of the recency abstraction are defined modularly, using formulations compatible with relational numerical abstractions. Section 4.2 defines a variation of the recency abstraction changing the allocation-site sensitivity, where abstract addresses are more suitable to analyze Python.We briefly talk about abstract garbage collection in Section 4.3. The last two sections are an extended version of a previous work we published at SOAP [START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF].

The recency abstraction

The recency abstraction has originally been developed by Balakrishnan and Reps [4] to handle dynamic memory allocation in the analysis of binaries or low-level C code. We present the recency abstraction in a similar setting, where our toy imperative language is extended with simple records.

Motivation

Imp extension. We consider an extension of Imp with OCaml-like records. The type declaration of records is done using the struct keyword, followed by the name of the type and the declaration of the record structure. The expression new <struct_type> allocates a new record, where all fields are initialized with a random value. Fields of a record are accessed using the . operator; they can be read from and written to. Records are passed by reference, so no copy is performed by assignments. An example is shown in Listing 4.1. A Box type is created: it contains an integer named v. Two variables of type Box are declared b and old. A Box is allocated, and a reference to it stored in b. Its field v is set to -1. Each time the loop is executed, it copies the reference to the previous Box, stored in b, into old. Then, it allocates a new Box, and puts the value of the counter i in its field v. In the end, we know that old.v is 99, and b.v is 100.

The need for abstraction. If we do not abstract dynamic memory allocation and create one address for each allocation the analysis will not be guaranteed to terminate when allocations are performed in unbounded loops, such as in our example. We thus need to abstract away from this behavior.

b.v = i; 16 } 17 // old.v = n-1, b.v = n
Allocation-site abstraction. A first approach is to summarize all concrete allocated addresses. These addresses are still partitioned by allocation sites (i.e., the location, defined by the line and column numbers, in the source code). A single abstract address thus represents all concrete addresses allocated at a given site. For example, all addresses allocated by new Box in the loop at line 14 would use the same abstract address written @ 14 . Since this address summarizes multiple concrete elements, only weak updates will be performed. This approach guarantees the termination of the analysis but is not very precise due to weak updates. The non-deterministic initialization of records means that the value of the field v of @ 14 at line 14 can be any integer. Since @ 14 summarizes multiple concrete addresses, it is not possible to perform a strong update at line 15. Even if the initialization was deterministic, the weak update of the assignement b.v = i at line 15 would mean the analysis is only able to infer that -1 <= b.v <= n.

Recency abstraction. To circumvent the limitations of the allocation-site abstraction, the recency abstraction extends the allocation-site abstraction with another partitioning criterion. At a given allocation site l, the recency discriminates the most recent allocation, @ l,r where strong updates are possible, from the older addresses @ l,o , which are summarized into a weak address. The recency criterion was introduced to keep precision during the initialization of a structure, which usually happens just after its allocation (or at least before the next allocation at the same site). If we go back to the example of Listing 4.1, during the allocation at line 14, the recency first renames the recent address into the old one. The field v of the recent address initially has for value any integer, but we can then represent the constraint from b.v = i in the abstract since the address is now strong. With a relational domain, we can infer that after the loop exits, -1 <= old.v <= n-1 and b.v = n.

Concrete semantics

This section builds upon the semantics of Imp presented in Chapter 2 to define the semantics of record allocation, reading from a field, and writing to a field.

Definition 4.1 Addresses

In order to simplify the correspondence with the abstract state, we assume that addresses have the form Addr = Loc × N. We write @ l,n to represent the n-th address allocated at program location l.

Definition 4.2 Program State

A program state consists of an environment and a heap. The environment E maps variables to their values (for scalar types) and addresses (for record types). Values can be strings or integers. The heap maps tuples of addresses and records names (strings) to values or addresses.

E = V Value ∪ Addr H = (Addr × string) Value ∪ Addr Example 4.3 Program State
After line 9 of Listing 4.1, the state is one of

{ (e, h) | e(n) ≥ 1, e(i) = 0, e(b) = @ 9,0 , h(@ 9,0 , "v") ∈ Z }
We define the semantics of record allocations, reads, and writes to fields. Since record allocation changes the heap, E • evaluates a set of states into value or addresses in an updated state, i.e. E • ∈ P(S) → P(S × (Value ∪ Addr)), with S = E × H. We introduce an auxiliary expression alloc_addr(l ∈ Loc), asking for the allocation of a new address at a given program point. To simplify notations, we assume the program has been type-checked before, and all fields accesses are valid with respect to the records declared. We assume we have two auxiliary functions: fields(RT ype) returns the field names of record type RType, and typ(RT ype, f) returns the type of field f in record RT ype.

The semantics are provided in Figure 4.1. alloc_addr(l) returns the next address at program location l that is not already used in the heap abstraction. The allocation of a new record RT ype at program location l first allocates a new address for the record. The heap is extended so that each field of the newly allocated record has a value of the corresponding type. A field access x.a searches for the address to which x points by querying the environment, and returns the value of the heap at this given address and with field a. We can assume e(x) is an address since the program is well-typed. We have defined the semantics of expressions on a single state (e, h) ∈ S, but the semantics is join-morphism, so we can easily lift it to sets of states (the lift is defined in Figure 4.1 too). The semantics of field writes consists in evaluating the new value v, and updating the heap with the new value.

Example 4.4 Field assignment

From the program states of Example 4.3, the assignment b.v = -1 yields:

{ (e, h) | e(n) ≥ 1, e(i) = 0, e(b) = @ 9,0 , h(@ 9,0 , "v") = -1 }

The recency abstraction

In the recency abstraction, abstract addresses do not keep track of the number of addresses allocated at a given point, but of a flag describing whether the address is the most recent allocated or not.

Definition 4.5 Abstract address

An abstract address consists of an allocation site, and a flag: r describes the most recent The domain of the recency abstraction is the set of allocated abstract addresses, P(Addr); its lattice operations are straightforward. The semantics of address allocation at a given program location l is shown in Figure 4.2. We use the "mem" subscript to denote the abstract domain of the recency abstraction. Given the whole abstraction σ , we extract the state of the recency abstraction σ mem ∈ P(Addr). If both the recent address and the old address are already allocated, we return the recent address in a state where it has been folded into the old address (according to the fold definition of Gopan et al. [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF], Siegel and Simon [START_REF] Siegel | Summarized dimensions revisited[END_REF], already encountered in Section 2.4.5). If the old address has not been allocated yet, we add it to the recency's state, and we rename the recent address into the old one. If the recent address has not been allocated yet, we update the local state and return the recent address. The fold and rename operations are executed as statements, so all domains using abstract addresses can update themselves. The global semantics operators E • (resp. S •) correspond to man.exec (resp. man.eval) in Mopsa.

E alloc_addr(l) (e, h) = let n = max{ @ l,i ∈ domh } in @ l,n+1 E new RT ype l (e, h) = let @ l,n = E alloc_addr(l) (e, h) in { (e, h), @ l,n | (@, a) ∈ domh ⇔ (h (@, a) = h(@, a)∧ ∀f ∈ fields(RT ype), h (@ l,n , f) ∈ Value typ(RT ype,f)) } E x.a (e, h) = h(e(x), a) E expr Σ = ∪ (e,h)∈Σ E expr (e, h) S x.a = v (e, h) = let val = E v (e, h) in (e, h[(e(x), a) → val])
Addr = Loc × { r, o } Abstract addresses are written @ l,m , with l ∈ Loc, m ∈ { r, o }. E # mem alloc_addr(l ∈ Loc) σ = let σ mem = man.get σ in if @ l,r ∈ σ mem then if @ l,o ∈ σ mem then @ l,r , S # fold(@ l,o , @ l,r) σ else let σ mem = σ mem ∪ { @ l,o } in @ l,r , S # rename(@ l,r , @ l,o) (man.set σ mem σ) else let σ mem = σ mem ∪ { @ l,r } in @ l,r , man.set σ mem σ

Abstract semantics

We introduce auxiliary address variables representing fields at abstract addresses. These auxiliary variables simplify our implementation, as the environment will also store information on records' fields. The environment abstraction is straightforward and close to the ones shown in Chapter 2. The heap abstraction rewrites fields accesses into auxiliary variables for the environment domain. It also handles record allocation by delegating the address allocation and initializing all fields of the record to any value of the corresponding type.

Definition 4.6

Auxiliary address variables @ l,m • v is an auxiliary address variable, representing the field v of the record stored at address @ l,m . If the abstract address is old, it represents multiple concrete elements. In that case, auxiliary address variables have to be tagged as weak (as defined in Remark 2.75): @ l,o • v weak . In the following, this tag is implicit, depending on the mode of the address.

Remark 4.7 Auxiliary address variables in Mopsa

In the implementation of Mopsa, these auxiliary variables are created by extending the variant type of variables.

type var_kind += | V_addr_attr of addr * string

Continuing our modular definitions of abstract domains, the heap abstraction presented in Figure 4.3 is independent of the recency abstraction: it only asks another domain to perform address allocations. In particular, abstract addresses are only written @ to emphasize that the heap abstraction does not need to know the structure of abstract addresses. 1 However, the heap abstraction needs to support the rename and fold operations the recency can trigger (Figure 4.2), and requires to know if an address is weak or strong (denoted old or recent in the case of the recency abstraction). The evaluation of field access x.a searches for the abstract address @ to which x maps, and then delegates the evaluation by rewriting it in the auxiliary address variable @ • a. This evaluation will then be handled by the environment abstraction. Writing to a given field performs a similar delegation. The allocation of a new record is similar to the concrete: we evaluate a new address allocation (handled by the recency abstraction in our case), and put all the fields a 1 , • • • , a n ∈ fields(RT ype) of the record to any value of their corresponding type. If an abstract address has to be renamed into another, the heap abstraction delegates this operation by renaming all corresponding auxiliary address variables (as we mentioned in Remark 3.6, each domain is responsible for its ghost variables). The heap abstraction performs a similar delegation for fold operations. We show in Figure 4.4 the statements and expressions analyzed, starting from the statement at line 14 of Listing 4.1 and assuming the loop has been unrolled once before. For the sake of concision, we assume the environment is based on intervals; in the case of constant • , but we show in subscript which domain answers. In the initial state, two addresses are already allocated: @ 9,r was allocated before the loop (with v having value -1) and @ 14,r during the first unrolling (with v having value 1). We also know that i = 2 (we are in the second loop iteration). old and b currently point to the same record, stored at @ 14,r . The analyses starts with the statement b = new Box, at program location 14. This statement is analyzed by the environment domain, which starts by evaluating new Box globally. The allocation of Box is handled by the heap abstraction (Figure 4.3), and starts by allocating a new address at program location 14. This allocation is handled by the recency abstraction (Figure 4.2). We are in the case where no previous old address exists at line 14. The address @ 14,o is thus added to the state, and a global renaming is triggered. The heap abstraction handles address renaming by delegation over the auxiliary field variable on v. In the resulting abstract state, σ 2 , the environment now maps old and b to @ 14,o , and

E # heap x.a σ = let @ = E # x σ in E # @ • a σ S # heap x.a = v σ = let @ = E # x σ in S # @ • a = v σ E # heap new RT ype l σ = let @ , σ = E # alloc_addr(l ∈ Loc) σ in S # @ • a n = typ(RT ype,an) • • • • • S # @ • a 1 = typ(RT ype,a 1) σ S # heap rename(@ 1 , @ 2) = S # rename(@ 1 • a n , @ 2 • a n) • • • • • S # rename(@ 1 • a 1 , @ 2 • a 1) S # heap fold(@ 1 , @ 2) = S # fold(@ 1 • a n , @ 2 • a n) • • • • • S # fold(@ 1 • a 1 , @ 2 • a 1)
S # env b = new Box 14 σ E # heap new Box 14 σ E # mem alloc_addr(14) σ σ 1,mem = σ mem ∪ { @ 14,o } S # heap rename(@ 14,r , @ 14,o) σ 1 S # mem rename(@ 14,r • v, @ 14,o • v) σ 1 @ 14,r , σ 2 S # env @ 14,r • v = int σ 2 @ 14,r , σ 3 σ 4,env = σ 3,env [b → @ 14,r] σ =          mem { @ 9,r ; @ 14,r } heap () env i → 2, old → @ 14,r , b → @ 14,r @ 9,r • v → -1, @ 14,r • v → 1 σ 2 = σ 1 [env → (i → 2, old → @ 14,o , b → @ 14,o , @ 14,o • v → 1, @ 9,r • v → -1)] σ 3 = σ 2 [env → σ 2,env [@ 14,r • v → [-∞, +∞]]] σ 4 =            mem { @ 9,r ; @ 14,r ; @ 14,o } heap () env i → 2, old → @ 14,o , b → @ 14,r , @ 9,r • v → -1, @ 14,r • v → [-∞, +∞], @ 14,o • v → 1
@ 14,o • v is 1.
The result of the allocation evaluation is thus the recent address @ 14,r in the state σ 2 . Then, the transfer function of the Box allocation initializes the only field v of Box with any integer value, using an auxiliary address variable. This statement is handled by the environment domain, and the resulting domain is σ 3 . Only the environment is changed to introduce the binding @ 14,r

• v → [-∞, +∞].
The result of the Box allocation is @ 14,r in the state σ 3 . The environment domain can then update its local state with the binding b → @ 14,r .

Concretizations

Recency abstraction

The recency abstraction transforms concrete states (sets of environments and heaps) using abstract addresses into concrete states using concrete addresses. Since the recency abstraction summarizes addresses, the concretization transforms a set of coherent concrete states into a single one, similarly to the concretization of the string summarization domain (Section 2.4.5).

In order to ease the definition of the concretization, we define an auxiliary function n ρ , giving the number of the most recently allocated address at location l in the concrete state ρ:

domρ ∩ { @ i l | l ∈ Loc, i ∈ N } = { @ i l | l ∈ Loc, 1 ≤ i ≤ n ρ (l) }
The concretization of the recency abstraction enforces the following constraints:

• bindings over objects that are not abstract addresses are kept, provided the input states are coherent on those objects. • if an old address allocated at location l is in the state of the recency abstraction, it abstracts a given number n ρ (l) -1 of concrete addresses, to be picked in the input states of the old address. • a recent address abstracts only one concrete address, which is moreover the most recent one allocated at this location. The set of input states must be coherent on this recent address.

γ mem (σ mem) = { (R, { ρ }) | v ∈ domR \ { @ l,m | m ∈ { r, o }, l ∈ Loc } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v); @ o l ∈ σ mem ⇔ n ρ (l) > 1 ∧ ∀1 ≤ i ≤ n ρ (l) -1, ρ(@ i l) ∈ R(@ l,o) @ r l ∈ σ mem ⇔ n ρ (l) ≥ 1 ∧ |R(@ l,r)| = 1 ∧ ρ(@ nρ(l) l) = R(@ l,r) } 4.1.5.

Heap abstraction

The heap abstract domain is stateless. Its concretization transforms a concrete environment using auxiliary address variables into a concrete environment that does not include auxiliary address variables anymore and a concrete heap. All auxiliary address variables are used to define the heap, and the rest is kept in the environment. Since the concretization performs a one-to-one mapping, we lift it similarly to the string length domain in Section 2.5, using the ↑ operator defined in Remark 2.83.

γ heap (()) =↑ •{ (e, (e , h)) | @ l,m • a ∈ dome ⇔ h (@ l,m , a) = e(@ l,m • a); v ∈ dome \ { @ l,m • _ } ⇔ e (v) = e(v) }

Variable policies for the recency abstraction

The recency abstraction was originally designed for static languages where types are fixed.

In the case of more dynamic programming languages such as Python, the partitioning based on the allocation site may be too precise or imprecise, depending on the kind of analysis performed. When the allocation-site is imprecise. On the other hand, it is possible in Python to allocate objects of different types at the same allocation site since classes are first-class objects. For example, the function logging_alloc in Listing 4.3 logs the operation before creating the object. With the usual allocation-site abstraction, the addresses of i and l would be summarized into the same old block. This would trigger catastrophic imprecision in the analysis.

4 5 i = logging_alloc(int) 6 l = logging_alloc(list) 7 d = logging_alloc(dict)
Type-dependent precision. However, the allocation-site criterion still makes sense for containers such as lists: it would be too imprecise to abstract all lists using the same abstract address. Consider for example the program in Listing 4.4. The lists allocated at lines 1 and 2 would be summarized in the same abstract address after the allocation at line 3. The variables summarizing list contents are defined using the abstract address of the list. The list contents of qty and els would thus be summarized in the same variable, meaning that all list accesses to qty or els would have to return both integers and strings, which lacks precision. In this case, it would be beneficial to partition abstract addresses by allocation site. In some cases, we can even go a step further and partition addresses by (partial) callstacks. A callstack-based partitioning would resolve the imprecision issue in the analysis of Listing 4.3. This shows that the usual homogeneous partitioning could benefit from different allocation precision depending on the type of address abstracted. In the case of containers, we do not try to take into account the type of elements, since Python containers can hold heterogeneous values (cf. Chapter 5). Thus, we extend abstract addresses to be typed (T is a finite set of types) and to take optionally into account location and partial callsite information (written C). Then, the recency abstraction is parameterized by an allocation policy, describing how addresses are abstracted.

Addr = T × Loc × C × { r, o } Definition 4.9
Allocation policy

An allocation policy is a function π ∈ T × Loc × C × { r, o }
Addr defining how allocationsite and callstack information are abstracted to create an abstract address.

Two basics policies that can be used are the type-only policy and the location policy, defined below. We build upon these two policies to define those used in the type and value analyses of Python. The type analysis is described in Chapter 7. It aims at detecting typerelated errors by inferring typed points-to information for variables. The value analysis will extend the type analysis in Chapter 8 to infer numerical invariants for variables holding builtin values.

Example 4.10 Type-only policy

The type-only policy π to = λ(t, l, c, m).(t, , , m) keeps only the type information. It is interesting for type analyses since it keeps essential information but it is not too expensive either.

Example 4.11 Location policy

The location policy π loc = λ(t, l, c, m).(t, l, , m) discards callstack information and keeps the rest.

Policy for Python's type analysis. The policy for the type analysis is defined below. It uses allocation-site information to handle containers that are generic in their contents in order to avoid the precision issues mentioned before. For the rest, it uses the type-only policy to be memory-efficient.

π types (t, l, c, m) = π loc (t, l, c, m) if t ∈ { list, tuple, dict } π to (t, l, c, m) otherwise
Policy for Python's value analysis. The standard policy for the value analysis is the location policy π loc . A coarser alternative, π values to can be defined, where the allocation site is only used for the range, slice, list, tuple, dict builtins (in order to be sufficiently precise on the numerical values that range and slice iterators hold).

π values to (t, l, c, m) = π loc (t, l, c, m) if t ∈ { range, slice, list, tuple, dict } π to (t, l, c, m) otherwise
The transfer function of the recency abstraction is slightly changed with policies: abstract addresses are created by the chosen policy. We assume the type and callstack are provided to the alloc_addr expression. The new transfer function is shown in Figure 4.5.

E # mem alloc_addr(t, l, c) σ = let σ mem = man.get σ in let @ r = π(t, l, c, r) in let @ o = π(t, l, c, o) in if @ r ∈ σ mem then if @ o ∈ σ mem then @ r , S # fold(@ o , @ r) σ else let σ mem = σ mem ∪ { @ o } in @ r , S # rename(@ r , @ o) (man.set σ mem σ) else let σ mem = σ mem ∪ { @ r } in @ r , man.set σ mem σ

Abstract garbage collection (AGC)

In our first implementation of the recency abstraction, we were only performing address allocations. Even if the addresses were unused after a given program point, they were kept until the end of the analysis. However, when we instrumented our analysis (using a hook in Mopsa, cf. Section 3.4), we noticed that up to two-thirds of the allocated addresses were unreachable. Most objects are stored in local variables and can thus be cleaned after the function returns. Therefore we decided to implement an abstract garbage collector, detecting and removing unreachable abstract addresses.

Example 4.12 Precision loss with old addresses

Let us consider the program of Listing 4.5, where we assume a type-only policy applies to instances of class A (abstract addresses will thus be written @ A,r and @ A,o). After the first call to f , both an old and a recent address are allocated for A. After the two allocations in the second call to f , we know that c.v is 101, thanks to the precision of the last allocation, ensuring a strong update is performed (in the abstract, this is represented as @ A,r • v → [START_REF] Marino | A generic type-and-effect system[END_REF][START_REF] Marino | A generic type-and-effect system[END_REF]). However, we can only infer that @ A,o • v → [0, 100] due to the previous allocations in the first call.

In general, performing abstract garbage collection can improve the precision of the analysis since it may remove old addresses where only weak updates can be performed. We previously found [START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF] that the precision gains were not sufficient to remove false alarms in practice. They were, however, extremely beneficial from a performance standpoint: AGC halved the memory usage and brought a 38% analysis time improvement (with the AGC taking less than 6% of the analysis time). These results will be detailed in Sections 7.6.3 and 8.2.3.

Example 4.13 Improving precision

Going back to the example of Listing 4.5, we assume an AGC is performed after the first call to f. Since both recent and old addresses for @ A,r , @ A,o are not reachable outside f, we can safely remove them. After the two allocations in the second call, we have:

@ A,o • v → [100, 100], @ A,r • v → [101, 101],
which is more precise.

Implementation. We have implemented the abstract garbage collection within the recency abstract domain. Due to the distributed structure of abstract domains in Mopsa, the abstract garbage collector asks domains about the set of live addresses they use through a query, defined below.

type ('a,_) query += | Q_alive_addresses : ('a,addr list) query

The recency then performs set difference between its local state of allocated addresses and the result of the query. It can then remove the unreachable addresses. By default, the AGC is called after each assignment where the right-hand side is a (function, method, or object) call. We have tested running the AGC at only a fraction of those assignments, but the results were not as satisfying.

Related work

Dynamic memory allocation abstractions. Liang et al. [START_REF] Liang | A dynamic evaluation of the precision of static heap abstractions[END_REF] find that the recency abstraction leads to high precision in 75% percent of their cases. They also study precision improvements when the last n allocated blocks are kept separate. It thus seems natural that most previous analyses of dynamic programming languages taking soundly into account object mutation and aliasing used the recency abstraction [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF][START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] over the allocation-site abstraction. Specialized heap abstractions for dynamic programming languages exist, such as the heap with open objects [START_REF] Cox | Automatic analysis of open objects in dynamic language programs[END_REF], aiming at precisely analyzing code where object attributes are unknown. In our case, we analyze Python programs through a top-down, context-sensitive analysis, and we have not encountered the need to analyze code where object attributes are unknown. Park et al. [START_REF] Park | Revisiting recency abstraction for javascript: towards an intuitive, compositional, and efficient heap abstraction[END_REF] observe that a more precision partitioning of abstract addresses does not always ensure a more precise analysis relying on the recency abstraction. They define a singleton abstraction resolving this issue. To the best of our knowledge, only Park et al. [START_REF] Park | Revisiting recency abstraction for javascript: towards an intuitive, compositional, and efficient heap abstraction[END_REF] and our work formally define a concretization function for the recency abstraction. Heap abstractions specialized to complex data structures (such as linked lists) are called shape analyses, surveyed by Chang et al. [START_REF] Chang | Shape analysis[END_REF].

Abstract Garbage Collection. Abstract garbage collectors were first used in the analysis of higher-order languages. They are first used by Jagannathan et al. [START_REF] Jagannathan | Single and loving it: Must-alias analysis for higher-order languages[END_REF], and then described by Might and Shivers [START_REF] Might | Improving flow analyses via γcfa: abstract garbage collection and counting[END_REF]. More recently, an abstract garbage collector based on reference counting was presented by Es et al. [START_REF] Van Es | Garbage-free abstract interpretation through abstract reference counting[END_REF]. In the setting of higher-order languages, using an abstract garbage collector has been found to reduce the analysis time by an order of magnitude and sometimes to improve the precision. In TAJS, Jensen et al. [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF] find that their abstract garbage collector reduces their memory consumption but has little impact on the precision or the analysis time.

Conclusion

In this chapter, we defined the recency abstraction and its concretization modularly. We showed how it would interact with other domains, by extending our toy language with OCaml-like records. We motivated the need for different partitionings of the abstract addresses in the case of the analysis of dynamic programming languages such as Python. We defined the notion of allocation policy, and provided instantiations of these policies, which will be used in the analyses of Python programs defined later. We showed that the recency abstraction can be combined with an abstract garbage collection mechanism, improving the precision of the analyses using it. The next chapter focuses on the analysis of containers in the setting of dynamic programming languages. These analyses rely on a dynamic memory allocation abstraction, such as the one presented here.

Abstracting Containers

This chapter defines containers' abstractions, that will be used in the Python analyses of Chapters 7 and 8. These abstractions and the concretizations are defined modularly, as we have done before. They work by delegation to other domains and do not make specific assumptions on them. Previous works (presented in Section 5.3) handle a setting typical to static programming languages: arrays are of fixed size, and these works aim at inferring numerical properties between numerical arrays and their indexes. The abstractions presented here are based on usual summarization (also called smashing) techniques and are not really complex. However, they handle specific features of dynamic languages: containers have a dynamic size (arrays' elements can be added and removed) and can hold heterogeneous values (including non-numeric values). Designing more precise container abstractions is an important part of our future work. We present abstractions on a simplified language; they can be easily lifted to a Python-specific setting. We focus on arrays (called lists in Python) in Section 5.1. We define length and summarization abstractions that are close to the ones defined for strings in Sections 2.4.2 and 2.4.5. Contrary to strings, they rely on a domain handling dynamic memory allocation, such as the recency abstraction of Section 4.1. They delegate all operations to underlying domains through rewriting using auxiliary variables. In the case of the summarization abstraction, this delegation means the domain is generic in the abstracted content. We define a summarization of dictionaries in Section 5.2.

Dynamic arrays

Array operations

Arrays are mutable and allocated on the heap. They can hold heterogeneous values (such as strings and integers). The static typing of Imp is unfit to handle heterogeneous arrays (we could introduce some gradual types, but it is beside the point of our toy language). Instead, we show our examples in a Python-like setting. Still, we do not focus on Python specifics, and we assume that functions are called on arguments having correct types. We consider that erroneous programs stop their execution rather than raise an exception as Python does.

The arrays presented here support the following operations: Length, a.len() returns a non-negative integer being the number of elements of the array. Index access, a.getitem(i) returns the element of a at position i.

Creation,
Element removal, a.delitem(i) removes the i-th element from array a (the elements after this one are all moved to their predecessor's position). Calls to delitem are statements.

The corresponding names of methods in Python are prefixed and suffixed by a double underscore ("contains" is "__contains__", etc.), except for "append".

Definition 5.1 Program State

The program state consists of an environment and heap (in a setting similar to the concrete state of Section 4.1.2). The environment maps variables to values or addresses. The heap maps addresses to objects. The only supported kind of object is array, which consists of a number of values or addresses.

E = V → Value ∪ Addr H = Addr → Obj Obj = Array(c ∈ (Value ∪ Addr) *)
The records of Section 4.1.2 could be added in the state by extending Obj with Record(s ∈ string → Value).

The semantics of arrays is shown in Figure 5.1. To create an array, an address is allocated, and all the elements are evaluated, before the updated heap is returned. append evaluates the array into an address, as well as the element to add, before updating the heap. getitem evaluates the array and the index. If the index is valid, the corresponding element is returned. To compute the length, we just count the number of elements of the array. contains returns 1 provided any of the array's elements match the element, and 0 otherwise. The definition of the equality comparison operator is left implicit in the semantics. In the case of Python, the semantics of the equality comparison will be shown in Section 6.2.15.2. delitem evaluates the array and the index, before updating the heap, provided the index is valid.

Remark 5.2 Random value notation

To avoid confusion between arrays and Imp's intervals, we use the notation rand(l, u) for a random number within the interval [l, u].

Example 5.3 Running examples

The program of Listing 5.1 creates an array a of size n, with all its elements in between the picked values of l and u. A program copying array a into b is shown in Listing 5.2. It does not assume anything on a and copies the arrays by iterating over the indexes of a. a.append(rand(l, u)) b.append(a.getitem(i))

9 i = i + 1 E [x 1 , . . . , x n] (e, h) = let @, (e, h) = E alloc_addr() (e, h) in let v 0 , (e, h) = E x 1 (e, h) in . . . let v n-1 , (e, h) = E x n (e, h) in @, (e, h[@ → Array(v 0 , . . . , v n-1)]) S a.append(x) (e, h) = let @, (e, h) = E a (e, h) in let Array(v 0 , • • • , v n-1) = h(@) in let v = E x (e, h) in (e, h[@ → Array(v 0 , . . . , v n-1 , v)]) E a.getitem(i) (e, h) = let @, (e, h) = E a (e, h) in let Array(v 0 , • • • , v n-1) = h(@) in let i, (e, h) = E i (e, h) in if 0 ≤ i < n then v i , (e, h) else ⊥, (e, h) E a.len() (e, h) = let @, (e, h) = E a (e, h) in let Array(v 0 , . . . , v n-1) = h(@) in n, (e, h) E a.contains(x) (e, h) = let @, (e, h) = E a (e, h) in let Array(v 0 , . . . , v n-1) = h(@) in E 1 • C x == v 0 or • • • or x == v n-1 (e, h)∪ E 0 • C x! = v 0 and • • • and x! = v n-1 (e, h) S a.delitem(i) (e, h) = let @, (e, h) = E a (e, h) in let Array(v 0 , . . . , v n-1) = h(@) in let i, (e, h) = E i (e, h) in if 0 ≤ i < n then (e, h[@ → Array(v 0 , . . . , v i-1 , v i+1 , . . . , v n-1)])
5 i = i + 1

Length abstraction

The length abstraction uses the auxiliary address variable alen(@) to denote the length of the array referenced at address @ . The domain is stateless, and its transfer functions are shown in Figure 5.2. During an array allocation, the domain asks for the allocation of an abstract address @ , and then delegates the assignment alen(@) = n. Calling append increases the length by one (which is a delegated assignment). The length domain does not keep track of the elements of the array. As such, it is imprecise when contains is called. On the other hand, it returns its auxiliary length variable when len is called. On calls to getitem, we ensure that the index is valid and return . For calls to delitem, the length is decreased by one provided that i is a valid index.

Remark 5.4 Ghost addressing renaming

Since each domain is responsible for its ghost variables, the array length domain handles the renaming of its ghost variables.

S # alen rename(@ 1 , @ 2) = S # rename(alen(@ 1), alen(@ 2)) This renaming by delegation is similar to the heap domain of Section 4.1.4 and mentioned in Remark 3.6.

E #

alen [e 1 , . . . , e n] σ = let @ , σ = E # alloc_addr() σ in @ , S # alen(@) = n σ S # alen a.append(x) σ = let @ , σ = E # a σ in S # alen(@) = alen(@) + 1 Going back to the example of Listing 5.1, our analysis -using an interval domain -will infer that n ≥ 0 and that the length of the array a is non-negative too. With a relational numerical domain such as polyhedra or octagons, the first fixpoint iteration yields:

E # alen a.contains(x) σ = E # [0, 1] σ E # alen a.len() σ = let @ , σ = E # a σ in E # alen(@) E # alen a.getitem(i) σ = let @ , σ = E # a σ in E # • C # 0 ≤ i < alen(@) σ E # alen a.delitem(i) σ = let @ , σ = E # a σ in S # alen(@) = alen(@) -1 • C # 0 ≤ i < alen(@) σ
alen(@) = 1, i = 1, 1 ≤ n ≤ 2021
The fixpoint is reached at the second iteration, and the state at the end of the loop's body is:

1 ≤ alen(@) = i ≤ n ≤ 2021
Intersected with the negation of the loop guard, we know that 0 ≤ n = i = alen(@) ≤ 2021 at the end of the program, and thus that our array has length n.

Example 5.6 Array copy

On the example of array copy in Listing 5.2, an analysis using an underlying relational numerical domain can infer that a and b have the same length. Since we have a similar invariant to the previous example, we can also prove that the index access is correct.

Remark 5.7 Empty lists

We could be a bit more precise for the membership test: if the array is empty (of length 0), it contains nothing, thus, the function contains returns 0.

Definition 5.8 Concretization

The concretization of the array length domain transforms states with auxiliary array length variables into concrete states with arrays. The concretization is similar to that of the string length domain of Section 2.4.2 and of the heap abstraction of Section 4.1.5.2. We lift a oneto-one mapping using the ↑ operator.

γ alen (()) =↑ •{ (ρ, ρ) | v ∈ domρ \ { alen(_) } ⇔ ρ (v) = ρ(v); alen(@) ∈ domρ ⇔ ρ (@) = Array(v 1 , • • • , v ρ(alen(@)))∧ ∀i ∈ [1, n], v i ∈ Value ∪ Addr }

Summarization abstraction

This abstraction summarizes the contents of arrays allocated at @ using a single auxiliary variable arr(@) to denote elements at all indices. The transfer functions are shown in Figure 5.3. Array allocations are rewritten into successive weak updates of arr(@) once an address has been allocated. Adding a new element is delegated as a weak assign (which is ultimately a fold operation). contains is evaluated as a disjunction depending on the filtering over the auxiliary variable. This domain does not keep track of lengths and thus returns any non-negative integer. Accessing a given index is done by returning the auxiliary variable, tagged weak (so it will be expanded into a fresh variable during assignments, as explained in Remark 2.75). As usual, renamings of array addresses are delegated as renamings of the corresponding auxiliary variable. The summarization domain does not track which values are held at which index, and thus its transfer function for delitem is the identity.

E # arr [e 1 , . . . , e n] σ = let @ , σ = E # alloc_addr() σ in @ , S # arr(@) weak = e n • • • • • S # arr(@) weak = e 2 • S # arr(@) = e 1 σ S # arr a.append(x) σ = let @ , σ = E # a σ in S # arr(@) weak = x σ E # arr a.contains(x) σ = let @ , σ = E # a σ in E # 1 • C # arr(@) weak == x σ E # 0 • C # arr(@) weak ! = x σ E # arr a.len() = E # rand(0, +∞) E # arr a.getitem(i) σ = let @ , σ = E # a σ in E # arr(@) weak σ E # arr a.delitem(i) σ = σ S #
arr rename(@ 1 , @ 2) = S # rename(arr(@ 1), arr(@ 2)) The case of empty arrays is not formally defined in the abstraction. One way to handle precisely this case is to delay the introduction of the arr(@) auxiliary variable until the array is not empty. This way, we avoid initializing it with spurious values. When the array becomes non empty, after a call to append, the variable is introduced and can be initialized with a precise, strong update. This requires extra bookkeeping in the abstract state to remember which variables currently exist (i.e., which arrays are empty), and to handle the case of joining abstract states with different sets of variables. The case of heterogeneous numerical environments has been extensively studiend by Journault [80, Chapter 6], including the complex case of joining relational abstract states over different sets of variables. Hence, we omit the discussion here and settle for illustrative examples.

Example 5.10 Array initialization

Let us assume we use a relational numerical abstract domain such as polyhedra or octagons. In that case, the following invariant is trivially reached on the analysis of Listing 5.1:

-100 ≤ l ≤ arr(@) ≤ u ≤ 100

Example 5.11 Array copy

Let @ a (resp. @ b) be the abstract address of array a (resp. b). Sice arr(@ a) and arr(@ b) are weak variables, we cannot infer that arr(@ a) = arr(@ b) at the end of Listing 5.2. However, if a has been created using the random initialization of Listing 5.1, the analysis may infer:

(-100 ≤ l ≤ arr(@ a) ≤ u ≤ 100, -100 ≤ l ≤ arr(@ b) ≤ u ≤ 100)

Remark 5.12 State refinement membership testing

Let us assume we evaluate a.contains (10), assuming the abstract state is a → @ , 0 ≤ arr(@) ≤ 10. Since the summarization only provides an overapproximation of the values of the array, there is no way to know if 10 is actually in the array: it could also be an imprecision from the numerical part, or it could be an element that has been added and removed later on. Thus, contains returns both 1 and 0:

• 1, in the same state (the state cannot be refined to express that 10 is always in the array); • 0, in a reduced state where 0 ≤ arr(@) < 10 (we ensure the array does not contain 10 anymore).

Definition 5.13 Concretization

The concretization of the array length domain transforms environments with auxiliary array variables into concrete states with arrays. It shares a definition similar to the concretizations of the string summarization domain of Section 2.4.5 or the recency abstraction of Section 4.1.5.1.

γ arr (()) = { (R, ρ) | v ∈ domR \ { arr(_) } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v); arr(@) ∈ domR ⇔ ∃n ∈ N, ρ(@) = Array(v 1 , • • • , v n) ∧ ∀i ∈ [1, n], v i ∈ R(arr(@)) }

Remark 5.14 Nested arrays

If the abstract address allocation is sensitive to the allocation site, each nested array will be allocated at a different address, which is precise but sometimes costly. For example, m = [[0], [1], [2]] allocates four different addresses in our current implementation. In addition, the evaluation of m[i] will return a disjunction of three elements corresponding to each list.

Example 5.15 Iteratively nesting arrays

We consider the program of Listing 5.3. Two random numbers l and u are picked, and three elements in between l and u are stored in array a. The array is then nested in itself ten times. At the beginning of the loop, we have a → @ 2,r in our environment and l ≤ arr(@ 2,r) ≤ u in the numerical domain. After one loop iteration, the numerical domain is unchanged, and the environment becomes a → @ 3,r , arr(@ 3,r) → arr(@ 2,r)

The final state is unchanged for the numerical part, and the environment is a → @ 3,r , arr(@ 3,r) → arr(@ 3,o), arr(@ 3,o) → arr(@ 2,r), arr(@ 3,r) Thanks to its old address, the recency abstraction generalizes the nesting. In the end, a is an array of depth at least 2, and the contents of the scalar array correspond to the elements allocated at line 3.

Keeping the values l and u symbolic, the concrete states of the previous abstract state are shown below. Following the abstract state, a maps to the most recent allocated variable at line 3, written @ n 3 in the concrete (n > 1 since both the old and recent abstract addresses exist). There is only one array allocated at line 2, whose address is written @ 1 2 . It contains an array of integers between l and u. Since the summarization abstraction does not track length, the array can have any length. The concretization of the array at @ 3,r is the array at @ n 3 . This array contains only references to arrays previously allocated at the same program point, i.e., having concrete addresses (@ i 3) 1≤i<n . In turn, the contents of the previously allocated arrays point either to most recently allocated array at line 2 or at line 3.

n>1 (e, h) e(a) = @ n 3 , ∃s ∈ N, ∃(v 1 , . . . , v s) ∈ Z s , h(@ 1 2) = Array(v 1 , . . . , v s), ∀j ∈ [1, s], l ≤ v j ≤ u; ∃m ∈ N, ∃(a 1 , . . . , a m) ∈ Addr m , h(@ n 3) = Array(a 1 , . . . , a m) ∧ ∀j ∈ [1, m], a j ∈ { @ i 3 | i ∈ [1, n -1] }; ∀i ∈ [1, n -1], ∃m i ∈ N, (a i 1 , . . . , a i m i) ∈ Addr m , h(@ i 3) = Array(a i 1 , . . . , a i m i) ∧ ∀j ∈ [1, m i], a i j ∈ { @ 1 2 , @ n 3 }

Reduced product

The reduced product between the array length and summarization domains is close to the one defined on strings in Section 2.4.6. There are similar cases of diverging states of the underlying numerical domain, which are merged just as the string domains did. These merges happen during array allocations, element deletion, index accesses and element addition. Since both domains are stateless, there is no need to define specific state reductions. However, we still need to define reductions between the evaluations of expressions. We describe informally how these evaluation reductions are performed:

Array allocation. Both domains return the same allocated address @ , and the evaluation reduction is thus straightforward. Membership test. The summarization domain returns either 0 or 1 with different states, while the length domain returns [0, 1] (except if the list is empty; it returns 0 in that case). The evaluation reduction intersects those results. Length. The summarization domain returns [0, +∞] and the length domain an auxiliary address variable. The latter is kept by the reduction. Index access. The summarization domain returns an auxiliary variable, and the length domain returns top. The reduction keeps the result of the summarization domain.

Example 5.16 Reduced product of array abstractions

Let us assume that a is the randomly initialized array of Listing 5.1, and that i is a positive integer. We study the analysis of a.getitem(i), with the following input state:

-100 ≤ l ≤ arr(@) ≤ u ≤ 100, alen(@) = n, 0 ≤ n ≤ 2021, i ≥ 0
The summarization domain returns arr(@) weak . The length domain returns , in the state where 0 ≤ i < alen(@) holds. These results are combined, and the reduced product returns arr(@) weak , in the state below (the new part is written in bold font).

-100 ≤ l ≤ arr(@) ≤ u ≤ 100, alen(@) = n, 0 ≤ n ≤ 2021, 0 ≤ i < alen(@) Our semantics defined a simplified case where we keep only non-erroneous states (cf. Remark 2.6). In the actual analysis of Python, we would have created an erroneous case raising an exception. Its state would be the input state, filtered by the condition i > alen(@).

Remark 5.17 Current implementation

Currently, the implementation of this domain for Python analyses combines both the length and smashing abstractions in a single domain. If we split the abstractions into the reduced product shown here, we could disable the length domain in the case of the type analysis presented in Chapter 7.

Remark 5.18 Array expansion abstraction

Another simple array abstraction is array expansion, which is much more precise but less scalable than the array summarization. It consists in considering each element of the array as a variable. We could for example introduce the auxiliary variable exparr(@ ∈ Addr , i ∈ N) denoting the i-th element of the array allocated at @ .

Variation: abstracting sets

Python also has a builtin set data structure, where each element is present at most once. The same transfer functions apply to the summarization domain. The length domain needs to be adapted: it cannot know if the element is already in the set, so the definition of append adds non-deterministically 11 .

Example 5.19 Set analysis

In the program of Listing 5.4, we can infer that:

• the length of the set is between 1 and 2 (depending on whether i = j or not),

• the elements of s are between 0 and 10.

Listing 5.4: Program using sets 1 i = rand(0, 10) 2 j = rand(0, 10) 3 s = set(i, j)

Dictionaries

Dictionaries are associative data structures. We consider the case where keys and values can have heterogeneous values since this is permitted by Python. For the sake of simplicity, we do not rule out dictionaries having multiple bindings with the same key in our concrete semantics, since they do not change the summarization abstraction.

Dictionary operations

We consider the following dictionary operations.

Creation, written { k 1 : v 1 , . . . , k n : v n }
where k i and v i are expressions. Adding a binding, d.setitem(k, v) adds the binding from key k to value v to dictionary d.

Testing key membership, d.contains(k) returns 1 if and only if k is a key of d (and 0 otherwise). Searching for a binding, d.getitem(k) returns the value of the dictionary at key k. Listing all bindings, d.keys() returns an array containing the dictionary keys.

The corresponding names of functions in Python are prefixed and suffixed by a double underscore, except for keys.

Definition 5.20 Program State

The program state of Definition 5.1 is extended with a new object Dict consisting of tuples of keys and values.

Dict(d ∈ ((Value ∪ Addr) 2) *) ∈ Obj
The concrete semantics is shown in Figure 5.4. The creation of a dictionary consists in allocating an address, evaluating all elements and storing them in the heap. setitem evaluates the dictionary and the binding before adding it to the heap. contains returns a disjunction, depending on whether a key is found. getitem searches for the value of the key passed in argument. keys allocates all the keys into an array.

Example 5.21 Occurence number

An example program counting occurences using dictionaries is shown in Listing 5.5. This program iterates over s. For each element x of s, if x is already bound in the dictionary, we add 1 to its value. Otherwise, we add a binding for key x, with value 1.

We have not specified what s is here. If s is a string such as "analysis", the resulting dictionary is {'a': 2, 'n': 1, 'l': 1, 'y': 1, 's': 2, 'i': 1}. s can also be an array, such as [2, 1, 1, 1, 2, 1]. In that case the result is {2 : 2, 1 : 4}. Dictionary keys can be optional (i.e., inserted conditionally) or abstracted imprecisely (due to previous imprecisions, or an imprecise domain). These cases make the precise abstraction of dictionaries more difficult. If a domain keeps only an overapproximation of the set of keys, or is imprecise on some keys, it will be imprecise on the key membership and key access operations, which will create spurious false alarms.

E { k 1 : v 1 , . . . , k n : v n } (e, h) = let @, (e, h) = E alloc_addr() (e, h) in let k 1 , (e, h) = E k 1 (e, h) in let v 1 , (e, h) = E v 1 (e, h) in . . . let k n , (e, h) = E k n (e, h) in let v n , (e, h) = E v n (e, h) in @, (e, h[@ → Dict((k 1 , v 1), . . . , (k n , v n))]) S d.setitem(k, v) (e, h) = let @, (e, h) = E a (e, h) in let Dict(kv 1 , . . . , kv n) = h(@) in let k, (e, h) = E k (e, h) in let v, (e, h) = E v (e, h) in (e, h[@ → Dict(kv 1 , . . . , kv n , (k, v))] E d.contains(k) (e, h) = let @, (e, h) = E a (e, h) in let Dict((k 1 , v 1), . . . , (k n , v n)) = h(@) in E 1 • C k 1 == k or • • • or k n == k ∪ E 0 • C k 1 ! = k and • • • and k n ! = k E d.getitem(k) (e, h) = let @, (e, h) = E a (e, h) in let Dict((k 1 , v 1), . . . , (k n , v n)) = h(@) in ∪ 1≤i≤n E v i • C k i == k (e, h) E d.keys() (e, h) = let @, (e, h) = E a (e, h) in let Dict((k 1 , v 1), . . . , (k n , v n)) = h(@) in E [k 1 , . . . , k n] (e, h)
The particular case where dictionary keys can only be strings is much simpler: the values of string keys are usually constant, and it is possible to keep an underapproximation of the set of keys that are defined in all the concrete environments. This case corresponds to the abstraction of object attributes in Python, used to handle Python's structural type system. A specific abstraction will be shown in Section 7.2.3.) weak for x in range(rand(0, +∞))] σ S # ds rename(@ 1 , @ 2) = S # rename(vals(@ 1), vals(@ 2)) • S # rename(keys(@ 1), keys(@ 2))

E # ds { k 1 : v 1 , . . . , k n : v n } σ = let @ , σ = E # alloc_addr() σ in @ , S # vals(@) weak = v n • S # keys(@) weak = k n • • • • • S # vals(@) weak = v 2 • S # keys(@) weak = k 2 • S # vals(@) = v 1 • S # keys(@) = k 1 σ S # ds d.setitem(k, v) σ = let @ , σ = E # d σ in S # vals(@) weak = v • S # keys(@) weak = k σ E # ds d.contains(k) σ = let @ , σ = E # d σ in E # 1 • C # k == keys(@) weak σ E # 0 • C # k! = keys(@) weak σ E # ds d.getitem(k) σ let @ , σ = E # d σ in let tmp = mk_tmp_var() in E # vals(@) weak • C # keys(@) weak == k σ E # ds d.keys() σ = let @ , σ = E # d σ in E # [keys(@
Figure 5.5: Dictionary smashing domain

Whole smashing

A coarse abstraction of dictionaries is to separate keys and values in different arrays, and apply the array summarization abstraction on each of those arrays. We summarize all keys in one auxiliary variable (written keys(@)) and all values in another auxiliary variable (written vals(@)). This domain is stateless, and its transfer functions are shown in Figure 5.5. The transfer functions are similar to the array summarization domain shown in Section 5.1.3, except that different auxiliary variables are used for keys and values. The transfer function of keys returns a list of any size, containing the keys of the dictionary (we reuse notation of list comprehensions of Python).

Example 5.23 Summarizing homogeneous dictionaries

The smashing domain works well in the case of homogeneous dictionaries. Let us assume we have a type analysis. This analysis aims at detecting type-related errors by inferring typed points-to information for variables. Going back to the example of occurrences computation in Listing 5.5 and assuming s is a string, this type analysis could infer that the keys are strings and the values are integers.

Example 5.24 Summarizing heterogeneous dictionaries

In the case of heterogeneous dictionaries, this abstraction is quickly imprecise and may introduce false types that will trigger many false alarms in the rest of the analysis. In the example of Listing 5.6, using an interval domain and a string powerset domain, accessing image["extension"] would give the string "jpg" or any number in the interval [1080,1920].

Definition 5.25 Concretization

The concretization is similar to the other summarization-based domains (Sections 2.4.5, 4.1.5.1 and 5.1.3).

γ ds (()) = { (R, ρ) | v ∈ domR \ { keys(_), vals(_) } ⇔ |R(v)| = 1 ∧ ρ(v) = R(v); (keys(@) ∈ domR ∧ vals(@) ∈ domR) ⇔ ∃n ∈ N, ρ(@) = Dict((k 1 , v 1) • • • (k n , v n)) ∧ ∀i ∈ [1, n], k i ∈ R(keys(@)) ∧ v i ∈ R(vals(@)) } Remark 5.

More precise smashing for heterogeneous dictionaries

An interesting future work is to have a smashing abstraction where each dictionary smashing is partitioned by the types of its values, to avoid such imprecision.

Remark 5.27 Dictionary expansion

Similarly to arrays (Remark 5.18), dictionaries can also be abstracted by expansion, i.e., different auxiliary variables are used to abstract each binding in the dictionary. However, the choice of auxiliary variables to continue our approach by delegation to underlying domains is more complex in this case:

• If we keep one auxiliary variable per key and per value, they could be numbered by insertion order, but this concrete numbering would create issues when analyzing loops. Moreover, it would be inefficient to perform dictionary operations since even membership testing would be costly. • We could keep the set of keys of each dictionary as the state of the domain, and auxiliary variables for each value would consist in the dictionary's address and the corresponding key, which has been evaluated. The evaluation of the key, however is an issue. Let us assume we have a dictionary d where we perform d.setitem(2x+1, 3), and the address of d is @ . Following Mopsa's evaluation mechanism, if keys are only evaluated in expressions, we could use a ghost variable @ •(2x+1). However, the expression's values change depending on the environment. We would have to perform a unique copy for the variables of the expressions in which the key evaluated, which would be costly. Otherwise, we could decide to store abstract values (for example, query the polyhedron domain for an interval approximation of 2x + 1). This would, however remove relationality.

These solutions are not satisfactory, and dictionary expansion would probably be too expensive in most analyses, so this is currently not implemented in Mopsa. An important future work of this thesis is to have better dictionary abstractions.

Related work

Array abstractions. Blanchet et al. [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF] first mention the notion of array smashing and expansion. Gopan et al. [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF] define summarization operators on numerical domains, including relational domains. Their approach applies in particular to the summarization of arrays using one variable, corresponding to the auxiliary variable arr(•) in our case. They introduce the notion of folding and expanding dimensions, which we introduced ∈Section 2.4.5. These operators have then been used to define the transfer function of the recency abstraction in Section 4.1, and of the summarization domains of this chapter. Siegel and Simon [START_REF] Siegel | Summarized dimensions revisited[END_REF] define more precise expand/fold operations when multiple dimensions are involved. Gopan et al. [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF] partition arrays dynamically into different segments (some being summarized and others not), that can depend on other numerical variables. A specific usecase is to prove that array bounds are preserved through a loop performing a copy. Contrary to the array copy example of Listing 5.2 where elements are iteratively added, their usecase focuses on copy from arrays uninitialized with some values, in a C-like setting. In that case, each array is split into two summaries (of subarrays strictly before and after the current index) and the single cell at the current index [64, Figure 2]. Halbwachs and Péron [START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF] extend the approach to express relational properties between the partitioned subarrays and the corresponding indexes (by contrast Gopan et al. [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF] use summarized variables). In the case of array copy, they are able to prove that arrays are equal. Gopan et al. [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF] use a heuristic focusing on array writes to define its segments, while Halbwachs and Péron [START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF] rely on a pre-analysis. Contrary to these approaches, Cousot et al. [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] perform a single-pass analysis, inferring semantic array segments and properties on the segmented arrays at the same time. Liu and Rival [START_REF] Liu | An array content static analysis based on non-contiguous partitions[END_REF] define array analyses where contents can be summarized in non-contiguous groups, contrary to previous works which relied on contiguous segments. All these works assume arrays are of fixed size (although Liu and Rival [START_REF] Liu | An array content static analysis based on non-contiguous partitions[END_REF] suggest how their work can be extended to dynamically allocated arrays). Dillig et al. [START_REF] Dillig | Fluid updates: Beyond strong vs. weak updates[END_REF] encode results of index accesses as constraints over a points-to graph. Constraints consist in a pair of an under and an overapproximation of the set of concrete elements reachable from a given array index access. These constraints are called "bracketing constraints" and generalize the dichotomy of weak and strong updates. In particular, they ensure that if the necessary and sufficient conditions are the same, the constraints model a strong update, and if nothing is known, a weak update is performed. The constraints are then solved using an SMT solver.

Other abstractions. Fulara [START_REF] Fulara | Generic abstraction of dictionaries and arrays[END_REF][START_REF] Fulara | Abstract Analysis of Numerical and Container Variables[END_REF] abstracts dictionaries as sets of tuples of key and value abstractions. This set is partitioned according to the key's values. Since this abstraction only performs an overapproximation of the keys, it cannot answer precisely membership tests. The work of Fulara [START_REF] Fulara | Generic abstraction of dictionaries and arrays[END_REF][START_REF] Fulara | Abstract Analysis of Numerical and Container Variables[END_REF] is the only one instantiated with a non-numerical abstract domain (they use a regular expression abstract domain for dictionary keys). Cox et al. [START_REF] Cox | QUIC graphs: Relational invariant generation for containers[END_REF] define a set abstraction able to reason about relations between sets (e.g., set inclusion), as well as the sets' contents. Dillig et al. [START_REF] Dillig | Precise reasoning for programs using containers[END_REF] encode accesses on containers (including arrays, maps, and sets) as constraints which are solved using an SMT solver. In the case of dictionaries, keys are converted to integers in the constraints encoding. Monniaux and Alberti [START_REF] Monniaux | A simple abstraction of arrays and maps by program translation[END_REF] abstract programs using arrays (or maps) to scalar programs, which can then be fed to analyzers. This translation could be performed on the fly in Mopsa.

Shape analyses [START_REF] Chang | Shape analysis[END_REF] focus on precisely analyzing specific data structures such as linked lists or arrays.

Conclusion

This finishes the part defining the base abstractions used in the rest of the analyses. This chapter provided modular definitions of coarse, summarization-based array and dictionary abstractions. They handle the container's dynamic size and potential heterogeneity. In particular, the design of more precise dictionary abstractions in the setting of dynamic programming languages is an interesting future work.

Part III

Pure Python Programs

6

Concrete Semantics of Python

This chapter defines a collecting semantics for Python. The description intends to serve as a reference upon which the abstract semantics will be based.

The essence of Python. Python is appreciated for its powerful and permissive high-level syntax, e.g., it allows programmers to redefine all operators (addition, attribute access, etc.) in custom classes, and comes equipped with a vast standard library. Python is an object-oriented, dynamic programming language. Particular features of interest are:

Object orientation. Everything is object in Python. The type of an object is the class from which it has been instantiated. For example (Figure 6.1), the type of the object 42 is int, and the type of int is the class type. An object is an instance of a class if the former type is a subclass of the latter. All objects are instances of the object class. As such, B() is an instance of B, but also of A and of object. Python classes are first-class objects and can be stored into variables.

Type system. Python's type system is dynamic: variables are neither statically declared nor typed, and no type-checking is performed before running the program. In addition, the type of the value held by a variable may change during the program execution (e.g., if x holds a string at the beginning of the program, nothing prevents it from holding an integer later on). Although dynamic, Python is strongly typed. This means that operations that are not well defined (e.g, 1 + 'a') will raise an exception (such as a TypeError) rather than try an automatic coercion. Python relies on both a nominal and a structural type system. The nominal one, uses classes from which an object is instantiated, and the structural one, informally called duck typing, which is based on attributes.

Introspection. Programs can inspect the type of variables at run-time to alter their execution. Operators exist to support both nominal and structural types. isinstance(o, cls) checks whether o has been instantiated from class cls or a class inheriting from cls. For example, isinstance("a", str) returns True, while isinstance(object(), str) returns False. hasattr(o, attr) checks whether o (or its class, or one of its parent class) has an attribute with name equal to the attr string. Methods defined by classes are attributes mapping to functions. For instance, hasattr(42, "__add__") returns True because int, the class of 42, has an addition method, named "__add__". Establishing the semantics. There is no standard defining the Python language, contrary to JavaScript for example. The reference implementation is called CPython. We focus on CPython version 3.8, which was first released in October 2019. CPython version 3.9 has been released since, without major changes in the semantics. Version 3.10 is expected to be released in October 2021, and includes pattern-matching operators. Python Enhancement Proposals (PEPs) are textual descriptions aiming at improving or changing the Python language. We have thus established the semantics by reading the Python documentation, the CPython source code, and by experimenting with CPython on small, hand-crafted programs. Python relies on an abstract machine to execute its code. We used the dis module to find how CPython compiles programs to the abstract machine's bytecode. We can then find the behavior of each bytecode instruction in Python/ceval.c For more complex cases, we made custom programs emitting SIGTRAP signals 1 and used gdb to understand the backtrace.

Self

A few blogs also cover specific details of Python's semantics [START_REF] Skvortsov | Python behind the scenes[END_REF][START_REF] Ionel | Understanding python metaclasses[END_REF].

A concurrent implementation of CPython is Pypy, which is more performance-oriented. Despite the existence of alternative Python interpreters, CPython's source code acts as the reference defining the semantics of Python. In some specific cases, we compare CPython's results with Pypy's one to decide if some behaviors are part of the semantics or implementation details. For example, we rule that the builtin value caching is CPython-specific and thus not part of our semantics (cf. Remark 6.11).

Remark 6.1 Crossreferences with CPython's source code

In order to improve the traceability of the semantics, we display along with each case of the semantics (starting from Figure 6.6) which bytecode instructions (in uppercase letters) and functions are used (in gray, clickable links to the source on GitHub for Python 3.8). Semantic level. We define our semantics by structural induction on the expressions (and statements) as a function manipulating reachable program states. This semantics allows the definition to be close to the implementation of our abstract interpreter.

We could have defined the semantics at the bytecode level of CPython's abstract machine. The first reason we do not analyze the bytecode is to keep the benefits of the source code: lower-level bytecode may reduce the precision of static analyses. In addition, it is easier to report errors back to the user when the source code is analyzed. The second is that the bytecode of CPython is an implementation detail, according to the documentation. 2Limitations. This semantics does not describe: the import statement (handled by our analyzer but not presented here), asynchronous operators, the eval & exec statements and the garbage collector. In the latter case, this means that we ignore custom finalizers defined through the __del__ method. Those are seldom defined, and the documentation explicitly states that exceptions occurring during the execution of finalizers are ignored 3 . Since our endgoal is to define analyses detecting uncaught exceptions, ignoring finalizers is thus not a major issue, as long as they do not have side effects on global variables. The parser handles specific scope keywords (nonlocal, global), which we do not describe here. Our semantics omits the detailed explanation messages accompanying the raised exceptions.

Outline. We start by defining the state on which the collecting semantics operates in Section 6.1. Then, we define the semantics of Python operators (Section 6.2). This is complemented with the behavior of builtin classes and functions (Section 6.3). Indeed, most operators delegate their work to methods of the involved objects, which for some are rarely overloaded by user classes. We nevertheless support the overloading of these methods through userprovided classes. For example, an attribute access x.attr will start by calling type(x).__getat tribute__(x, attr), which is usually resolved into object.__getattribute__(x, attr). The semantics is not mechanized for now. It is a significant extension on previous work by Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF]. We discuss its correctness in Section 6.4 and related work in Section 6.6.

Concrete state

The concrete state is defined in Figure 6.2. We assume there is an infinite set of heap addresses Addr. Python objects are split into a nominal part (for the type and a potential builtin value) and a structural part (for the attributes). The nominal part ObjN can be:

• an integer (integers are unbounded in Python), • a boolean, • a floating-point number, • a string, • the None or NotImplemented constants, • a list of objects referenced by their addresses, • a tuple of objects referenced by their addresses, • a function, defined through its name, arguments, local variables and body, • a method of a function f bound to an instance (referenced by their addresses),

• a class, defined by its name, parents, metaclass, and declarations. In order to handle multiple inheritance, the parents are linearized to provide a coherent, total order, following the C3 linearization of Barrett et al. [6]. This order is called MRO (for "method resolution order"). In the example of Figure 6.1, the MRO of B is (B, A, object). • an instance (defined by the address of the class from which it is instantiated).

The structural part ObjS is a finite map between attribute names and their contents' addresses. Builtin classes -such as integers -have a read-only structure denoted by LOCKȦttributes of builtin classes are defined in ObjN. A state consists of an environment and a heap. The environment E maps variable identifiers Id to addresses. Global variables that have not been currently defined are not bounded in the environment. However, some variables can be declared locally without an initial value. In that case, we use LocalUndef to represent this undefined value of a local variable. LocalUndef is not a Python object but an artificial construction of our semantics to handle that case. The heap H maps address to objects. Section 2.4.3 introduced flow tokens to handle the break statement of our toy language. We reuse this notion here and tag our state S with a flow token f ∈ F to handle non-local control-flow: cur represents the current flow on which all instructions that do not disrupt the control flow operate (e.g., assignments, but not raise or return). brk and cont represents early loop exits due to the break and continue statement. ret is used to handle returned values in the interprocedural analysis. exn collects the states given by a raised exception. exn is indexed by the address of the exception object, so each exception will be kept separate. to the cur token into output states, and leave unchanged states with other tokens. In these cases, we define the semantics using the S cur • (respectively E cur •) operator, which is lifted to the following definition, ignoring non-local execution flows:

ObjN def = int(i ∈ Z) ∪ bool(b ∈ {True, False}) ∪ float(f ∈ F 64) ∪ str(s ∈ string) ∪ None ∪ NotImpl ∪ List(ls ∈ Addr *) ∪ Tuple(t ∈ Addr *) ∪ Fun(f ∈ Id × Id * × id * × stmt) ∪ Method(a ∈ Addr, f ∈ Addr) ∪ Class(c ∈ Id × Id * × Id × stmt) ∪ Inst(a ∈ Addr) ObjS def = LOCK ∪ (string Addr) E def = Id Addr ∪ LocalUndef H def = Addr ObjN × ObjS F def = { cur, ret, brk, cont, exn a, a ∈ Addr } S def = E × H × F
S stmt Σ = { (f, e, h) | (f, e, h) ∈ Σ ∧ f = cur } ∪ { S cur stmt (cur, e, h) | (cur, e, h) ∈ Σ } E expr Σ = { (f, e, h), ⊥ | (f, e, h) ∈ Σ ∧ f = cur } ∪ { E cur stmt (cur, e, h) | (cur, e, h) ∈ Σ } Definition 6.

Monadic letcases operator

In most cases, our semantics will be defined on a single state at a time, and lifted (Remark 6.2). However, any subevaluation or subexecution may return a set of states. We use the letcases operator to hide the disjunction over the set of states and continue defining the semantics on a single state at a time. In order to easily lift the semantics, we may use the letb operator, which will execute body using the non-failing evaluations (these cases correspond to states tagged with the cur control-flow token 4). In order to ease the definition of the semantics, we define two builtin functions, and introduce five artificial expressions, written in gray.

Definition 6.5 Non-current flow predicate, isNotCur

The predicate isNotCur holds when the flow token of a state σ ∈ S is not cur, i.e., f = cur where σ = (f, e, h).

Definition 6.6 Not implemented predicate isNotImplemented

The predicate isNotImplemented holds when the address passed in argument refers to the NotImplemented object.

Definition 6.7 Address allocation expression alloc_addr

alloc_addr returns a fresh address.

Definition 6.8 Low-level field operators get_field, has_field, set_field, del_field

We distinguish the notions of Python attributes and (low-level) fields. Fields are local to an object. Python attributes are resolved transitively from an instance: if the field is not found in an instance, it will be looked up in its parent class, and so forth. While Python offers attribute resolution operators, these low-level operators working at the field level are not exposed in Python. They are however used in the C implementation of the interpreter. To address this discrepancy, we introduce the get_field, has_field, set_field and del_field operators, defined in Figure 6.4. get_field first searches in the nominal part of the object for builtins (using get_builtin_field) and then in the structural part. has_field returns True if get_field succeeded. set_field searches for the attribute in the heap of the state. If we try to set a field of a builtin (such as the integer class), the structural part is locked and set_field will fail. Otherwise, it updates the structural part. del_field is close to set_field; it removes the given field.

Remark 6.9 Evaluated arguments for low-level field operators

We have assumed in the semantics of the low-level field operators that the arguments were already evaluated, since only our semantics can call these operators (thus ensuring that the arguments were evaluated before). We cannot make this assumption for Python expressions, since these expressions can be an original part of a program.

Definition 6.10 Attribute resolution function mro_search

The mro_search function (defined in Figure 6.4) searches for a field in the MRO of a class. The MRO of a class consists in itself and all the class it inherits from, in a linearized version.

The mro_search function returns the object found at the given field, or ⊥ if nothing is found. E cur has_field(@ obj ∈ Addr, attr ∈ string) (f, e, h) def = letb (f, e, h), @ r = E get_field(@ obj , attr) (cur, e, h) in if @ r = ⊥ then return E True (f, e, h) else return E False (f, e, h) S cur set_field(@ obj ∈ Addr, attr ∈ string, @ val ∈ Addr) (cur, e, h)

def = if snd •h(@ obj) = LOCK then return ⊥ else return (cur, e, h[@ obj → h(@ obj)[attr → @ val]])
S cur del_field(@ obj ∈ Addr, attr ∈ string) (cur, e, h)

def = if snd •h(@ obj) = LOCK then

Literals

The evaluation of singleton constants such as True, False, None, NotImplemented returns the address of the corresponding object (in the current flow, and returns bottom otherwise).

The initial state of the interpreter contains a heap where these builtins are already allocated.

A new object containing the value is allocated for integer and string constants, and its address is returned.

Remark 6.11 Builtin value caching

Some builtins (such as integers and strings) are cached, meaning that a single instance at a specified address will exist for some specific values. For example, all integers between -5 and 256 are cached, and strings containing only ASCII letters are also cached. These are specific implementation details of CPython. In particular, Pypy does not have the same cache mechanism. Thus, we consider that this cache is not part of the semantics.

Variables

The semantics related to variable identifiers is shown in Figure 6.6. The CPython abstract machine has different operation codes depending on the variable's scope, so all bytecode instructions are shown in the traceability part of the semantics (Remark 6.1). If the flow token denotes the current evaluation, the evaluation of a variable identifier searches for this identifier in the environment e. Otherwise, the state is returned unchanged, according to Remark 6.2. Due to Python's scoping rules, a variable may be globally or locally undefined. The first case raises a NameError and the second an UnboundLocalError.

The semantics of assignments consists in evaluating the expression and updating the environment in the normal execution. A variable binding can also be removed at any time. Provided that the variable was correctly defined before, del id removes it from the environment.

E cur type(a) (cur, e, h) def = type_new letb (f, e, h), @ a = E a (cur, e, h) in let @ t = match fst •h(@ a)with • Inst(@ t) ⇒ @ t • Class(name, meta, supers, dict) ⇒ meta • Fun(...) ⇒ @ f unction • Method(...) ⇒ @ method • List(...) ⇒ @ list • Tuple(...) ⇒ @ tuple • NotImpl ⇒ @ N otImplementedT ype • None ⇒ @ N oneT ype • str(_) ⇒ @ str • float(_) ⇒ @ f loat • bool(_) ⇒ @ bool • int(_) ⇒ @ int in return σ, @ t

Nominal types

The semantics of introspection operators related to nominal typing are described in Figures 6.7 to 6.9.

The type builtin returns the class from which an object has been instantiated. If the object is an instance of non-builtin objects, it will be defined as Inst(@ t), where @ t is the address of the class from which it was instantiated. For a class, the metaclass' address is returned. In the case of other builtins, the returned address corresponds to that of the builtin class.

E cur isinstance(obj, cls) (cur, e, h) def = builtin_isinstance_impl PyObject_IsInstance letb (f, e, h), @ obj = E obj (cur, e, h) in letb (f, e, h), @ cls = E cls (cur, e, h) in if h(@ cls) = Tuple(_) then return E isinstance(@ obj , @ cls [0]) or ... or isinstance(@ obj , @ cls [len(cls) -1]) (f, e, h) if h(@ cls) = Class(_) then return S raise TypeError (f, e, h), ⊥ else else return E type(@ cls).__instancecheck__(@ cls , @ obj) (f, e, h) E cur type.__instancecheck__(cls, obj) (cur, e, h) def = type_instancecheck recursive_isinstance letb (f, e, h), @ cls = E cls (cur, e, h) in letb (f, e, h), @ obj = E obj (cur, e, h) in if type(@ obj) @ cls then return E True (cur, e, h) else return E False (cur, e, h)

E cur issubclass(derived, cls) (cur, e, h) def = builtin_issubclass_impl PyObject_IsSubclass letb (f, e, h), @ derived = E derived (cur, e, h) in letb (f, e, h), @ cls = E cls (cur, e, h) in if h(@ cls) = Tuple(_) then return E issubclass(@ derived , @ cls [0]) or ...
or issubclass(@ derived , @ cls [len(cls) -1]) (cur, e, h) if h(@ cls) = Class(_) then return S raise TypeError (cur, e, h), ⊥ else else return E type(@ cls).__subclasscheck__(@ derived , @ cls) (cur, e, h) The semantics evaluates expressions into addresses. Addresses are not part of Python's expressions, but are used as drop-in replacements for evaluated parts. We prefix them with the @ symbol to avoid confusion with Python expressions.

E
The isinstance predicate is distributive over tuples. If the second argument is not a tuple, it should be a class (i.e., an instance of type). In that case, the __instancecheck__ method of cls's class is called (i.e., type(@ cls).__instancecheck__). In general, this call is resolved by the type class itself (i.e., type.__instancecheck__). In that case, type.__instancecheck__ returns True if and only if the type of the object is a subtype of the class (which corresponds to the natural definition of an object being an instance of the class).

Similarly to isinstance, an issubclass builtin is defined. Both isinstance and issubclass rely on the class subtype relation, defined as:

Class(c 1) Class(c 2) def = c 2 ∈ mro(c 1)
mro(c 1) is a tuple consisting of the MRO of c 1 , i.e a linearized version of its parents classes. The MRO computation relies on the monotonic superclass linearization algorithm of Barrett et al. [6]. The corresponding __mro__ attribute of a class returns its MRO. This is a read-only attribute that cannot be redefined at runtime. We also define the strict subtype relation:

Class(c 1) Class(c 2) def = c 1 = c 2 ∧ Class(c 1) Class(c 2)

Structural types (attributes)

The concrete semantics related to attributes is shown in Figure 6.10.

To access a string attribute s (by the grammar of the language) of an expression x, we first start to evaluate x into @ x . We then search for the __getattribute__ method in the MRO of @ x 's class. The search will always succeed as the object class has a __getattribute__ method, and object is the last class in all MROs. In most cases the objects do not overload object.__getattribute__, which is defined in Section 6.3.1 (our semantics as well as our analyses support method overloading). Then, we call the method with @ x and s as parameters. If the attribute is not found, an AttributeError exception has been raised. This exception is signaled using a flow token (the semantics of exceptions is shown in Section 6.2.8), on which we perform a pattern matching to filter the case where the AttributeError exception occurred. In that case, if @ x 's class has a __getattr__ method, the exception is suppressed and the method called.

The hasattr introspection operator returns True if the evaluation of the attribute access is successful, and False otherwise if it failed with an AttributeError (otherwise, the raised exception is propagated).

Setting an attribute's value (resp. deleting an attribute) is done by calling the __setattr__ method of the object's class (resp. __delattr__).

Remark 6.13 Calls to introspection operators in the semantics

Conditional filtering based on the test of a type (structural or nominal) of an object through isinstance and hasattr are frequent in the semantics. Instead of using a cumbersome explicit filtering such as:

(let σ = C isinstance(attr, str) (f, e, h) in tt) ∪(let σ = C ¬isinstance(attr, str) (f, e, h) in ff)
We use the following notation instead: if isinstance(attr, str) then tt else ff . Similarly, calls to the type builtin are not always enclosed into semantic operators.

Remark 6.14 Class vs instance-based attribute access

Accesses to the attributes are done through the type of the object each time, using:

type(a).__setattr__

Accessing the attribute through the instance would be shorter (e.g., a.__setattr__) and yield the same result in most cases. However, the __setattr__ field can be overloaded at the instance level. This will not be taken into account by CPython if we write directly

E cur x.s (cur, e, h) def = LOAD_ATTR PyObject_GetAttr (slot_tp_getattr_hook)
letb (cur, e, h), @ x = E x (cur, e, h) in letb (cur, e, h), @ c = E mro_search(type(@ x), "__getattribute__") (cur, e, h) in letcases (f, e, h), @ x.s = E @ c (@ x , s) (cur, e, h) in match f with • exn @ exc when isinstance(@ exc , AttributeError) ⇒ let (f, e, h), @ d = E mro_search(type(@ x), "__getattr__") (f, e, h) in if d = ⊥ then return E @ d (@ x , s) (cur, e, h)

else return (f, e, h), ⊥ • _ ⇒ return (f, e, h), @ x.s E cur hasattr(obj, attr) (cur, e, h) def = builtin_hasattr_impl _PyObject_LookupAttr letb (cur, e, h), @ obj = E obj (cur, e, h) in letb (cur, e, h), @ attr = E attr (cur, e, h) in if ¬isinstance(@ attr , str) then return S raise TypeError (cur, e, h), ⊥ else letcases (f, e, h), @ r = E @ obj .@ attr (cur, e, h) in if r = ⊥ then match f with

• exn @ exc when isinstance(a, AttributeError) ⇒ return E False (cur, e, h) letb (cur, e, h), @ x = E x (cur, e, h) in if hasattr(type(@ x), "__delattr__") then return S type(@ x).__delattr__(@ x , s) (cur, e, h) return S raise TypeError (cur, e, h) Figure 6.10: Semantics of attribute access, assignment and deletion a.__setattr__ ; hence we will write type(a).__setattr__ explicitly and correctly handle (in our semantics and our analysis) the case where fields are overloaded.

• _ ⇒ return (f,

Subscript

The concrete semantics of subscripts (used mainly to perform index accesses or slices of data structures) is defined in Figure 6.11.

To access e 1 at e 2 , we start by evaluating e 1 and e 2 . Then, we try to call e 1 's __getitem__ method if it exists. Otherwise, we raise a type error exception. A particular case exists for classes (which are instances of the type object): we try to call the __class_getitem__ method.

Subscript assignement and deletion are similar to the corresponding attribute operations: they delegate to the __setitem__ (resp. __delitem__) methods.

E cur e 1 [e 2] (cur, e, h) def = BINARY_SUBSCR PyObject_GetItem slot_mp_subscript letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in letb (cur, e, h), @ 2 = E e 2 (cur, e, h) in if hasattr(type(@ 1), "__getitem__") then return E type(@ 1).__getitem__(@ 1 , @ 2) (cur, e, h) else if isinstance(@ 1 , type) ∧ hasattr(@ 1 , "__class_getitem__") then return E @ 1 .__class_getitem__(@ 2) (cur, e, h) letb (cur, e, h), @ 2 = E e 2 (cur, e, h) in letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in letb (cur, e, h), @ 3 = E e 3 (cur, e, h) in if hasattr(type(@ 1), "__setitem__") then return E type(@ 1).__setitem__(@ 1 , @ 2 , @ 3) (f, e, h) return S raise TypeError (f, e, h)

S cur del e 1 [e 2] (cur, e, h) def = DELETE_SUBSCR PyObject_DelItem slot_mp_ass_subscript
letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in letb (cur, e, h), @ 2 = E e 2 (cur, e, h) in if hasattr(type(@ 1), "__delitem__") then return E type(@ 1).__delitem__(@ 1 , @ 2) (cur, e, h) return S raise TypeError (cur, e, h)

Remark 6.16 Evaluation order

According to Python's documentation, expressions are evaluated from left to right 6 . In the case of the subscript assignment, we follow a different evaluation order, provided in the implementation of the bytecode instruction STORE_SUBSCR.

It is also possible to unpack iterables through assignments. The semantics of such an unpacking is shown in Figure 6.12. We start by evaluating expr, and create an iterator over it. The list comprehension consumes the n first elements of expr. If a StopIteration exception happens, e contained less than n elements: a ValueError is raised (replacing the StopIteration exception). If another exception happens, it is returned. If the list comprehension is successfully evaluated, we check that no more elements can be consumed from the iterator, since our unpacking requires that expr contains exactly n elements. If the expr contains more than n elements, a ValueError is raised. Otherwise, each variable is assigned to its corresponding value.

S cur (x 1 , . . . , x n) = expr (cur, e, h) def = UNPACK_SEQUENCE unpack_iterable letb (cur, e, h), @ expr = E e (cur, e, h) in letb (cur, e, h), @ it = E iter(@ expr) (cur, e, h) in letcases (f, e, h), @ r = E [next(@ it) for x in range(n)] σ in match f with

• exn @ exc ⇒ if isinstance(@ exc , StopIteration) then return S raise ValueError (cur, e, h) else else return (f, e, h)

• _ ⇒ letcases (f, e, h), @ f = E next(@ it) σ in match f with • exn @ exc ⇒ if ¬isinstance(@ exc , StopIteration) then return (f, e, h) else return S x 1 = @ r [0] • . . . • S x n = @ r [n -1] (cur, e, h) • _ ⇒ return S raise ValueError (f, e, h)
Figure 6.12: Semantics of unpacking assignments Remark 6.17

Alternative unpacking

An alternative unpacking, written x 1 , . . . , x n-1 , * x n = e only ensures that e has at least n -1 elements, and stores the remaining elements in x n (or the empty list if no elements remain).

Conditionals

The semantics of conditionals (Figure 6.13) is standard: we first filter according to the condition, and then evaluate each branch. The condition is cast to booleans through an explicit call.

Remark 6.18 Syntax of Python blocks

Python's block statements (such as conditionals and loops) are usually defined over multiple lines due to the indentation-based block definition. For the sake of presentation, we revert to a more classical syntax with braces to define statements' blocks.

Loops

The break and continue statements have their usual semantics. When one of these statements is encountered, the states having a normal flow are interrupted by changing the flow token. This behavior allows injecting their states back in the semantics of the while loop.

S if (e) {s t } else {s f } S def = S s t • C bool(e) Σ ∪ S s f • C not bool(e) Σ
S break Σ def = { (f, e, h) ∈ Σ | f = cur } ∪ { (brk, e, h) | (cur, e, h) ∈ Σ } S continue Σ def = { (f, e, h) ∈ Σ | f = cur } ∪ { (cont, e, h) | (cur, e, h) ∈ Σ } S while (e) {body} else {belse} Σ def = let Σ 0 = { (f, e, h) ∈ Σ | f / ∈ {brk, cont} } in let Σ lf p = lfp F in { (f, e, h) ∈ Σ | f ∈ {brk, cont} } ∪ C not bool(e) { (cur, e, h) | (brk, e, h) ∈ Σ lf p } ∪ S belse • C not bool(e) { (cur, e, h) ∈ Σ lf p } ∪ { (f, e, h) ∈ Σ lf p | f / ∈ {brk, cont, cur} } F (Σ) def = let Σ = S body • C bool(e) Σ in Σ 0 ∪ { (f, e, h) ∈ Σ | f = cont } ∪ { (cur, e, h) | (cont, e, h) ∈ Σ } Figure 6
.14: Semantics of while loops Python loops have an optional else clause, whose body will be executed upon exiting the loop normally (i.e., if no break has been encountered, and no exception has been raised either). In the case of a while loop, we first start by removing states labeled with a brk or cont flow token (which corresponds to the effect of a break or continue statement of an outer loop). These states will be returned at the end. Then, we compute the least fixpoint of f , which models the effect of the loop body. As such, f starts by applying the loop's guard (with a boolean cast) and executing the loop body afterward. If the execution of the body encountered a continue statement, the corresponding flow token is changed back to the normal execution token cur. The state returned by the transfer function of the while loop is the union of (i) the input states labeled with a break or continue statement (i.e., the states coming from outer loops), (ii) the fixpoint states that reached a break statement, filtered by the negation of the loop's guard, (iii) the fixpoint states in a normal control-flow state, filtered by the negation of the loop's guard, to which the body of the else clause is then applied, (iv) exceptional states (i.e., states of the fixpoint not tagged by cur, cont or brk) Listing 6.1: Semantics of for i in it: body For loops can be written into while loops on an explicit iterator (Listing 6.1). The variable fresh_tmp denotes a fresh temporary variable which is deleted in all states after the rewriting (as such, it is not possible to write it del fresh_tmp, since the variable would only be deleted in the normal control-flow state).

Remark 6.19 Else in for loops

For loops can also have an else branch. In that case, the rewriting presented should be amended with a global variable to track if the break statement comes from the StopIteration or the body.

Exceptions

The raise statement (Figure 6.15) starts by evaluating the expression it is passed. If the result is a class deriving from BaseException, the class is instantiated. We then check that the created instance derives from the BaseException class since the class creation method __new__ can return any object. If that is the case, the state is now labeled by an exception token, where a is the address of the exception instance. Otherwise, a type error is raised.

The exception catching mechanism is shown in Figure 6.15. We start by executing the body of the try clause. If no exception has been raised by tbody, telse is executed. Otherwise, let @ raised be the address of the raised exception, and @ exn the address of the exception class provided in the except statement. We check that @ exn is indeed an exception class. If the raised exception is an instance of exn, we bind the variable v to the raised exception object and execute the body of the except statement. The body of the finally clause is always executed, and exceptions that have been uncaught in tbody or raised during texc, telse or tf in are propagated.

S cur raise exc (cur, e, h) = RAISE_VARARGS do_raise letb (cur, e, h), @ exc = E exc (cur, e, h) in letcases (f, e, h), @ = if isinstance(@ exc , type) ∧ issubclass(@ exc , BaseException) then E @ exc () σ else σ, @ exc in if isinstance(@, BaseException) then (if f = cur then exn @ else f, e, h) else S raise TypeError (f, e, h) S cur try {tbody} except (exn as v) {texc}else {telse} finally {tf in} (cur, e, h) = letcases (f, e, h) = S tbody (cur, e, h) in letcases (f, e, h) The translation of try/except statement into the CPython abstract machine is long. For this case, our semantics does not describe the relevant operators and functions in the source code.

= if f = exn _ then S telse (f, e, h) else let exn @ raised = f in letb (f, e, h), @ exn = E exn (cur, e, h) in if ¬issubclass(@ exn , BaseException) then S raise TypeError (cur, e, h) else if isinstance(@ raised , @ exn) then letb (f, e, h) = S texc (cur, e[v → @ raised], h) in (f, e \ { v }, h) else (f, e, h) in letcases (f f in , e, h) = S tf in (cur, e, h) in (if f f in = cur then f f in else f, e, h)

Remark 6.21 Interaction between exception effects and other control-flow effects

The interaction between the exception-handling operators and other non-local control-flow operators such as return are described in the Python documentation7 :

• If the finally clause executes a break, continue or return statement, exceptions are not re-raised. • If the try statement reaches a break, continue or return statement, the finally clause will execute just prior to the break, continue or return statement's execution. • If a finally clause includes a return statement, the returned value will be the one from the finally clause's return statement, not the value from the try clause's return statement.

Remark 6.22 Except clauses variations

There can be multiple except clauses. These are executed in order until a match is found.

Binding the exception to a variable with the as keyword is optional.

An except clause can also match multiple exceptions described in a tuple, similarly to what isinstance and issubclass allow.

Remark 6.23 Raise without arguments

The raise statement can also be called without any arguments. It is used within an except clause to re-raise the caught exception. If the except clause is except exn as v:, raise will be rewritten into raise v. Outside an except clause, it will raise a RuntimeError since there is no exception to re-raise.

With context manager

The with context manager is a Python-specific feature. Given with e as t: body, the statement relies on the usage of two methods of e called __enter__ and __exit__. As shown in Listing 6.2, this statement is a specialized version of exception-catching statements, where the __exit__ method is guaranteed to be executed after body. This construction is handy to manage file operations, for example. The statement starts by evaluating e, and ensuring that its class has both the __enter__ and __exit__ methods. The __enter__ method is then called, and its result is assigned to the variable t. The body of the statement is executed afterward. If an exception has been raised in the body, __exit__ is called, and the last three arguments are exception information: the exception's type, the exception's value, and traceback information. Depending on the return value of fresh_exit, the exception is caught or raised again. If no exception has been raised, fresh_exit is still called. In the end, t is assigned None. We illustrate the use of this statement in Listing 6.3. We define a class of temporary files, similar to the tempfile module of the standard library. A Tempfile is initialized with the name of the temporary file we use. The __enter__ method checks that the file does not exist and creates the file in write-only access. The __exit__ method closes the file descriptor and deletes the file. Exceptions deriving from the class io.UnsupportedOperation will be absorbed.

In the first with statement, the file is opened (provided foo does not exist already). We write "Hello, world" in it. At the end of the statement, the file will be closed and removed.

In the second with statement, the file is opened (it was created before but removed at the end of the previous with statement). We try to read from the file, but this will raise an io.UnsupportedOperation exception. The write operation is thus skipped, and the __exit__ method is called. Since it returns True, the exception is caught, and the execution continues.

In the third with statement, t.write [START_REF] Delmas | Analysis of software patches using numerical abstract interpretation[END_REF] will raise a TypeError as the write method expects strings. The __exit__ method is called to close and delete the file. However it returns False: the TypeError is raised again, interrupting the standard control-flow. with Tempfile("foo") as t: t.write("Hello, world\n") with Tempfile("foo") as t: t.read() t.write("Anyone?") with Tempfile("foo") as t: t.write(42)

Function declaration

When a function is declared, a function object (with the function's name, arguments, local variables extracted using an auxiliary variable and body) is allocated on the heap. The environment is also updated to map the function's name to its allocated address.

Class declaration

A class declaration declares a name (cls), parents of the class (supers), a metaclass (meta, which can only be passed as a keyword argument), and a body. The metaclass is type by default; it ends up calling type.__new__, which is described later, in Figure 6.38. The body of the class is executed in order to define the attributes of the class. We assume we have an auxiliary declarations function, which given a class' body, returns a Python dictionary where each attribute maps to its corresponding object. For example, in the case of the Tempfile class of Listing 6.3, declarations would return a dictionary where __init__ maps to the function object created by its declaration, and similarly for the __enter__ and __exit__ methods. The class is created by calling the metaclass. classmethod decorator usecase A typical example is the use of the classmethod decorator to implement alternative constructors. This decorator creates a method bound to its class rather than its instance (the first argument is thus called cls instead of self). In the example of Listing 6.4, from_str behaves as an alternative constructor used to create Date objects from strings.

Calls

This section describes the general semantics of calls. Calls start by evaluating their caller and arguments. The class of the caller should have the __call__ method, which is then invoked (a type error is raised otherwise). Function calls thus go through function.__call__, defined in Section 6.3.2. Similarly, methods eventually call method.__call__, which is also described in Section 6.3.2. Class instantiations rely on type.__call__, defined in Section 6.3.3.

E cur c(e 1 , . . . , e n) (cur, e, h) def = CALL_FUNCTION _PyObject_Vectorcall _PyObject_MakeTpCall letb (cur, e, h), @ c = E e c (cur, e, h) in letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in . . . letb (cur, e, h), @ n = E e n (cur, e, h) in if hasattr(type(@ c), "__call__") then return E type(@ c).__call__(@ c , @ 1 , . . . , @ n) (cur, e, h) else return S raise TypeError (cur, e, h), ⊥

Unary operators

The semantics of unary operators ∼, + andconsists in delegating to a corresponding method.

E cur ∼ expr (cur, e, h) def = UNARY_INVERT PyNumber_Invert slot_nb_invert letb (cur, e, h), @ e = E expr (f, e, h) in if hasattr(type(@ e), "__invert__") then return E type(@ e).__invert__(@ e) (cur, e, h) else return S raise TypeError (cur, e, h), ⊥ Figure 6.20: Semantics of unary operator (also applies to + (resp. -) with __pos__ (resp. __neg__))

The unary not operator behaves differently. It explicitly casts its argument into a boolean and returns the opposite boolean.

E cur not expr (cur, e, h) def = UNARY_NOT PyObject_IsTrue bool_new letb (cur, e, h), @ b = E bool(expr) (cur, e, h) in if @ b = @ True then return (cur, e, h), @ False else return (cur, e, h), @ True Figure 6.21: Semantics of unary not

Binary operators

Contrary to unary operators, the semantics of binary operators is more involved, as Python will look both into the left-hand side and right-hand side objects for specific methods to perform the operation. We start with the semantics of arithmetic operators and then describe the semantics of comparison operators.

Arithmetic operators

Python has 12 arithmetic operators, described in the first column of Figure 6.22. The other columns describe methods that will be used by the semantics of binary operators.

Given a binary operator †, the semantics of e 1 † e 2 is described in Figure 6.23. The general idea is to follow a compatibility principle, where the binary method is resolved to the most derived class. We start by evaluating e 1 and e 2 into @ 1 and @ 2 . We first look into @ 1 's class to search for the standard operator's method, defined as op(†) in Figure 6.22. If it exists, we also check if @ 2 's class has a reversed operator method rop(†), and if @ 2 's class is a strict children of @ 1 's class. If that is the case, we evaluate the call with the reversed method. If the result of this call is anything but the NotImplemented singleton object, we return the result. In other cases, we try to call the standard operator and similarly return if the result is different from NotImplemented. If none of these cases were successful and @ 2 's reversed operator has not been tried yet, we try to call it, and check the result.

Remark 6.26 Argument reversal in CPython

In CPython's source code, the function binary_op1 appears to be always called with the same argument order, compared to what has been described in the semantics. However, a wrapper in the low-level source code wrap_binaryfunc_l reverses the arguments for reversed calls (in Objects/typeobject.c). These wrappers will be described in more details in Remark 10.10.

Example 6.27 Usecase of __radd__ method in the subclassing case

This example shows the purpose of the __radd__ method, and in particular, the subclassing case. We use the code shown in Listing 6.5. It defines an Int16 class denoting unsigned 16bit integers. These objects can be transformed into integers through the __int__ method, and the addition consists in calling the constructor once the computation over builtin integers is done. A subclass for 32-bit integers is defined; it overloads the constructor, the __add__ method and adds a method __radd__. Given an Int16 and an Int32, we would like their addition to be commutative. If we add a and b, Int32.__add__ is called, and c

E cur e 1 † e 2 (cur, e, h)

def = BINARY_ADD PyNumber_Add binary_op1
letb (cur, e, h), @ 1 = E e 1 (f, e, h) in letb (cur, e, h), @ 2 = E e 2 (f, e, h) in if hasattr(type(@ 1), op(†)) then if hasattr(type(@ 2), rop(†)) ∧ type(@ 2) type(@ 1) then letb (cur, e, h), @ r = E type(@ 2).rop(†)(@ 2 , @ 1) (cur, e, h) in if ¬isNotImplemented(@ r) then return (f, e, h), @ r letb (cur, e, h), @ @r = E type(@ 1).op(†)(@ 1 , @ 2) (cur, e, h) in if ¬isNotImplemented(@ r) then return (f, e, h), @ r if hasattr(type(@ 2), rop(†)) then letb (cur, e, h), @ @r = E type(@ 2).rop(†)(@ 2 , @ 1) (cur, e, h) in if ¬isNotImplemented(@ r) then return (cur, e, h), @ @r return S raise TypeError (cur, e, h), ⊥ The semantics of augmented assignments such as x † = expr is described in Figure 6.24. Python starts by checking if x has a special method for the augmented assignment, iop(†). This special method may be interesting for in-place operations reducing the memory footprint of the operation. For example, augmented additions to lists are performed in-place and avoid performing a new memory allocation. This method is called, and the result is returned if it is 6.2.15.2 -Comparison operators 123 different from NotImplemented. In all other cases, the operation is written as x = x † expr (but with the corresponding evaluated arguments to avoid double evaluations). letb (cur, e, h), @ x = E x (cur, e, h) in letb (cur, e, h), @ e = E expr (cur, e, h) in if hasattr(type(@ x), iop(†)) then letb (cur, e, h), @ r = E type(@ x).iop(†)(@ x , @ e) (cur, e, h) in if ¬isNotImplemented(@ r) then return S @ x = @ r (cur, e, h) return S @ x = @ x † @ e (cur, e, h) Figure 6.24: Semantics of augmented assignments

Comparison operators

The semantics of Python's standard comparison operators (Figure 6.26) is close to the one of arithmetic operators. Its implementation uses a slightly different structure which we reflect in our semantics. The calls to reversed operators still exist but perform the symmetric translation of comparison operators (based on the equivalence of x < y and y > x), described in Figure 6.25 Two last fallback cases are included for the equality and the difference operators: if nothing has been successful, Python will compare the addresses and return a boolean result accordingly.

Other binary operators

There are four other binary operators defined through keywords in Python: in, is, and the lazy or and and boolean operators.

The in operator checks for membership of an element e 1 in an object e 2 (Figure 6.27). It tries to call the __contains__ method of the container e 2 , and returns a boolean. If the method does not exist, it searches for e 1 in the whole structure through an iteration.

The is operator checks that two objects are allocated at the same address (Figure 6.28).

Remark 6.28 Negation of in and is operators

The negation of the in and is operators can respectively be written not in and is not. It makes for more readable expressions such as 1 not in l rather than not 1 in l.

The semantics of the boolean or and and operators are described in Figure 6.29. Both start by evaluating the left-hand side argument e 1 , as well as a boolean cast of it. Depending on the result, either e 1 or e 2 is returned.

E cur e 1 e 2 (cur, e, h) def = COMPARE_OP PyObject_RichCompare do_richcompare letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in letb (cur, e, h), @ 2 = E e 2 (cur, e, h) in if type(@ 2) type(@ 1) ∧ hasattr(type(@ 2), swapop()) then letb (cur, e, h), @ r = E type(@ 2).swapop()(@ 2 , @ 1) in if ¬isNotImplemented(@ r) then (cur, e, h), @ @r if hasattr(type(@ 1), op()) then letb (cur, e, h), @ @r = E type(@ 1).op()(@ 1 , @ 2) in if ¬isNotImplemented(@ r) then (cur, e, h), @ @r if type(@ 2) type(@ 1) ∧ hasattr(type(@ 2), swapop()) then letb (cur, e, h), @ r = E type(@ 2).swapop()(@ 2 , @ 1) in if ¬isNotImplemented(@ r) then (cur, e, h), @ @r if = == then if @ 1 = @ 2 then return E True (cur, e, h) else return E False (cur, e, h) if = != then if @ 1 = @ 2 then return E True (cur, e, h) else return E False (cur, e, h) return S raise TypeError (cur, e, h), ⊥ letb (cur, e, h), @ 1 = E e 1 (cur, e, h) in letb (cur, e, h), @ 2 = E e 2 (cur, e, h) in if hasattr(type(@ 2), "__contains__") then return E bool(type(@ 2).__contains__(@ 2 , @ 1)) (cur, e, h) The semantics of the or and and operators does not always return a boolean. For example 1 and 'a' will return 'a', since bool(1) holds.

E We start by defining the semantics of the object creation and instantiation methods in Figure 6.30. Object creation starts by evaluating the argument, which should be a class to instantiate. If that is the case, an allocation is performed, and the heap is updated to reflect the effect. Otherwise, a type error is raised. Object initialization does not perform anything by default, and returns None. E cur object.__new__(expr) (cur, e, h) def = tp_field object_new letb (cur, e, h), @ e = E expr (cur, e, h) in if isinstance(@ e , type) then letb (cur, e, h), @ c = E alloc_addr (cur, e, h) in return (cur, e, h[@ c → Inst(@ e), ∅]), @ c else return S raise TypeError (f, e, h), ⊥ E cur object.__init__(self) (cur, e, h) As mentioned in the semantics of attributes, the __getattribute__ method is rarely overloaded and usually defaults to object.__getattribute__, whose semantics is described in Figure 6.31. The function starts by evaluating its arguments and checking that name is a string object. Given the string n, we search for it in the parents' classes of the object using mro_search. If a result is found, we call this object descr, and check that it is a data descriptor. That is, we check that descr has a __get__ method, as well as a __set__ or a __delete__ method. If that is the case, the result of the access is the call to the __get__ method of this data descriptor. Otherwise, we search for the field at the instance's level. Two fallback cases exist if the descr object exists but is not a data descriptor and the field does not exist at the instance's level: we first try to call its __get__ method if it exists and return descr otherwise. If everything fails, an attribute error is raised. E cur object.__getattribute__(obj, name) (cur, e, h) def = tp_field _PyObject_GenericGetAttrWithDict letb (cur, e, h), @ o = E obj (cur, e, h) in letb (cur, e, h), @ n = E name (cur, e, h) in if ¬isinstance(@ n , str) then return S raise TypeError (cur, e, h), ⊥ else let str(n) = fst •h(@ s) in letcases (f, e, h), @ descr = E mro_search(type(@ o), n) (f, e, h) in if @ descr = ⊥ then if hasattr(type(@ descr), "__get__")∧ (hasattr(type(@ descr), "__set__") ∨ hasattr(type(@ descr), "__delete__")) then return E type(@ descr).__get__(@ descr , @ o , type(@ o)) (f, e, h)

if has_field(@ o , n) then return E get_field(@ o , n) (f, e, h) else if @ descr = ⊥ then
if hasattr(type(@ descr), "__get__") then return E type(@ descr).__get__(@ descr , @ o , type(@ o)) (f, e, h) else return @ descr , (f, e, h) return S raise AttributeError (f, e, h), ⊥ The purpose of data descriptors is to hide calls to custom getter and setter functions when attributes are accessed or set. It is mainly used by Python classes defined in C, such as the member descriptors described later in this thesis (Remark 10.11 and Example 11.4). The fallback case of the __get__ method is used more often. For example, methods are bound to instances using this approach (cf. Figure 6.35), and the classmethod and staticmethod use it too (cf. Figure 6.36). For now, we show a custom example in Example 6.31.

Example 6.31 A data descriptor usecase

An example use case of a data descriptor is shown in Listing 6.6. We are interested in describing a subset of the Unix file permissions. The meaning of each number is provided in the perms dictionary. The PermissionDescriptor class will store the permission as numbers and display the corresponding string when the attribute is accessed. The File class has a class-level attribute rights. We create a File instance line 14, and define its rights to be "execute only" with the number 1. We also set the value of the instance field rights to 3 in a line 16. At the first attribute access line 18, the result is "execute only", corresponding to the data descriptor case in the semantics. By removing the __set__ method from the PermissionDescriptor, the class is not considered as a data descriptor anymore. Since a has a field rights set to 3, the second call to print displays 3. By removing the instancelevel field, the next attribute access will fall back to calling the __get__ method of the PermissionDescriptor. If we override the class-level rights attribute, the last fallback case is executed, and we get 42.

Listing 6.6: Data descriptor example 1 perms = {0: "no permission", 1: "execute only", 2: "write only", 4: "read only"} Setting an attribute (Figure 6.32) is less complex: once the arguments have been evaluated and type-checked, we look for a descriptor in the parent classes. We do not check that this descriptor is a data descriptor. If it exists, we call its __set__ method. Otherwise, the field is defined at the instance's level. The semantics of attribute deletion (Figure 6.33) is similar to this case.

Functions and methods

The semantics of function calls and the return statement is shown in Figure 6.34. The return statements stores the returned expression into an auxiliary variable and interrupts the normal execution flow with the ret flow token. We present the simplified case of function call where no arguments are optional, or keyword-only. A function call starts by assigning the arguments their given value, and setting local variables to the locally undefined value, which is an artifact of our semantics. Once the body has been executed, the state is inspected. If the usual control flow has been interrupted by a return statement, we keep the address of the returned object. Otherwise, the returned value is None. We then clean the state from the arguments and the local variables of the function. E cur object.__setattr__(obj, n, v) (cur, e, h) def = tp_field _PyObject_GenericSetAttrWithDict letb (cur, e, h), @ o = E obj (cur, e, h) in letb (cur, e, h), @ n = E n (cur, e, h) in if ¬isinstance(@ n , str) then return S raise TypeError (f, e, h), ⊥ else let str(n) = fst •h(@ n) in letb (cur, e, h), @ v = E v (cur, e, h) in letcases (f, e, h), @ descr = E mro_search(type(@ o), n) (f, e, h) in letcases σ = if descr = ⊥ ∧ hasattr(type(@ descr), "__set__") then S type(@ descr).__set__(@ descr , @ o , @ v) (f, e, h) else S set_field(@ o , n, @ v) (f, e, h) letb (cur, e, h), @ o = E obj (cur, e, h) in letb (cur, e, h), @ n = E name (cur, e, h) in if ¬isinstance(@ n , str) then return S raise TypeError (f, e, h), ⊥ else let str(n) = fst •h(@ n) in letcases (f, e, h), @ descr = E mro_search(type(@ o), n) (f, e, h) in letcases σ = if descr = ⊥ ∧ hasattr(type(@ descr), "__delete__") then S type(@ descr).__delete__(@ escr , @ o) (f, e, h) else S del_field(@ o , n) (f, e, h) if σ = ⊥ then S raise AttributeError (f, e, h) else E None σ

if σ = ⊥ then S raise AttributeError (f, e, h) else E None σ

Supporting recursive calls

In its current state, the semantics does not handle recursive calls. One way to support them would be to partition the environment by the callstack. Recursion is not used a lot in Python. In particular, there is no tail-call optimization, and the default recursion stack has depth 1000.

We now explain how methods are allocated and called. We start with the example provided in Listing 6.7. The class A defines a function id. If we access the function through the instance, as done in line 5, the result will be a method corresponding to a partial application of the function where self is the instance. As such the call line 7 is valid and will return a tuple consisting in the instance defined at line 4 and the integer 3.

The construction of the method at line 5 relies on the semantics of the __getattribute__ method of object, which calls function.__get__, defined in Figure 6.35 (this is not a data

E cur return expr Σ def = letb Σ 1 = S return_var = expr Σ in { (f, e, h) ∈ Σ 1 | f = cur } ∪ { (ret, e, h) | (cur, e, h) ∈ Σ 1 } E cur function.__call__(f unc, e 1 , • • • , e n) (cur, e, h) def = tp_field function_call
letb (cur, e, h), @ f = E f unc (cur, e, h) in if ¬isinstance(@ f , function) then return S raise TypeError (cur, e, h) else let Fun(f name, (arg 1 , . . . , arg m), (local 1 , . . . , local i), body) = fst •h(@ f) in if m = n then return S raise TypeError (f, e, h) Although the get descriptor of function creates methods for function accesses from classes, it is sometimes interesting to not have the first argument reserved for the instance. Two alternatives are to have the class being the first argument, or having no reserved argument at all. The decorators classmethod and staticmethod provide these behaviors.

letb σ = S local i = LocalUndef • . . . • S local 1 = LocalUndef • S arg n = e n • . . . • S arg 1 = e 1 σ
The semantics of these decorators is shown in Figure 6.36. Their initialization stores the underlying function object into a __func__ attribute. The staticmethod decorator removes the first instance argument in the functions. When accessed through an attribute, the underlying function will be directly returned, instead of the method usually created by function.__get__. The classmethod decorator transforms the first argument as the class rather than the instance. E cur function.__get__(f unc, i, _) (cur, e, h) def = tp_field func_descr_get letb (cur, e, h), @ f = E f unc (cur, e, h) in letb (cur, e, h), @ i = E i (cur, e, h) in if ¬isinstance(@ f , function) then return S raise TypeError (cur, e, h) else return E method(@ f , @ i) (f, e, h) E cur method.__new__(method, f unc, i) (cur, e, h) def = tp_field PyMethod_New letb (cur, e, h), @ m = E m (cur, e, h) in letb (cur, e, h), @ f = E f unc (cur, e, h) in letb (cur, e, h), @ i = E i (cur, e, h) in if ¬isinstance(@ f , function) then return S raise TypeError (cur, e, h) else letb (cur, e, h), @ a = E alloc_addr (cur, e, h) in return (f, e, h[@ a → Method(@ i , @ f)]), a E cur method.__call__(m, e 1 , . . . , e n) (cur, e, h) def = tp_field method_call letb (cur, e, h), @ m = E m (cur, e, h) in if ¬isinstance(@ m , method) then return S raise TypeError (cur, e, h)

else let Method(@ self , @ f unc) = fst •h(@ m) in return E function.__call__(@ f unc , @ self , e 1 , • • • , e n) (cur, e, h)

Type

Class instantiation is performed through calls such as A(args). Since A is a class, this call usually ends up being rewritten into type.__call__(A, args) (the only exception is when A has a metaclass which is different from type). The semantics of this function is shown in Figure 6.37. It starts by calling the __new__ method of the class. If the returned type is not a subtype of the class, or if the class has no initialization method, the instance is returned. Otherwise, the initialization method is called; it should return None.

The creation of a new class through type.__new__ is shown in Figure 6.38. It computes a linear ordering of the parents' classes (this operation may fail and raise an exception). Then, the class is allocated and its address returned. E cur type.__call__(self, arg 1 , . . . , arg n) (cur, e, h) def = tp_field type_call letb (cur, e, h), @ self = E self (cur, e, h) in letb (cur, e, h), @ 1 = E arg 1 (cur, e, h) in . . . letb (cur, e, h), @ n = E arg n (cur, e, h) in if ¬hasattr(@ self , "__new__") then return S raise TypeError (cur, e, h), ⊥ letb (f, e, h), @ new = E @ self .__new__(@ 1 , . . . , @ n) (f, e, h) in if type(@ new) @ self ∨ ¬hasattr(type(@ new), "__init__") then return (cur, e, h), @ new letb (f, e, h), @ init = E @ self .__init__(@ new , @ 1 , . . . , @ n) (f, e, h) in if isNone @ init then return (cur, e, h), @ init else return raise TypeError, ⊥ The semantics of attribute accesses for classes (Figure 6.39) is different from the one of objects described previously. The first reason is to handle attribute inheritance at the class level. For example, if class A has an attribute a, and B inherits from A, object.__getattribute__(B, 'a') raises an attribute error (since it searches in the type of B, i.e. the type object). By comparison, type.__getattribute__ performs a search at the class level too, allowing to resolve the attribute for B. This different semantics also makes for more coherent use of the standard staticmethod and classmethod decorators. For example, with the classmethod decorator, the access to A.f in Listing 6.8 should give a bound method rather than expose the classmethod object. This works with type.__getattribute__(A, 'f'), but would expose the classmethod object with object.__getattribute__.

>>> type.__getattribute__(A, 'f') # same as A.f 6 # <bound method A.f of <class '__main__.A'>> 7 # >>> object.__getattribute__(A, 'f')

8 # <classmethod object at 0x7eff1fdbc130> E cur type.__getattribute__(typ, name) (cur, e, h) def = tp_field type_getattro letb (cur, e, h), @ typ = E typ (cur, e, h) in letb (cur, e, h), @ name = E name (cur, e, h) in letb (cur, e, h), @ meta = E mro_search(type(@ typ), @ name) (cur, e, h) in if @ meta = ⊥ then if hasattr(type(@ meta), "__get__")∧ (hasattr(type(@ meta), "__set__") ∨ hasattr(type(@ meta), "__delete__")) then return E type(@ meta).__get__(@ meta , @ typ , type(@ typ)) (cur, e, h) letb (cur, e, h), @ attr = E mro_search(@ typ , @ name) (cur, e, h) in if @ attr = ⊥ then if hasattr(type(@ attr), "__get__") then return E type(@ attr).__get__(@ attr , None, @ typ) (cur, e, h) else return (cur, e, h), @ attr if @ meta = ⊥ then if hasattr(type(@ meta), "__get__") then return E type(@ meta).__get__(@ meta , @ typ , type(@ typ)) (cur, e, h) else return (cur, e, h), @ meta return S raise AttributeError (cur, e, h), ⊥ Figure 6.39: Semantics of attribute accesses for classes

Booleans

The boolean conversion function is described in Figure 6.40. It starts by evaluating its argument.

If the evaluation returns a boolean, the conversion is finished. Otherwise, we try calling the __bool__ method and check that it returns a boolean. If the object has no __bool__ method but it has a __len__ method, we call it through the len builtin function 8 , and return True when the object's length is positive. If everything fails, the result is True (the boolean conversion never raises an exception).

Integers

The integer creation function is described in Figure 6.41. If the argument is an integer, it is just returned. If the argument's class has either of the __int__, __index__ or __trunc__ methods, the methods are called, and the result is type-checked. If the argument is a string-like object, a conversion from string to integer is performed. If nothing succeeds, a type error is raised.

Range objects

Range objects are defined by a starting point, a stopping point, and a step. All three arguments should be integers. When iterated upon, these range(start, stop, step) objects returns elements of the sequence start+k * step, where k is an non-negative integer, until stop is reached.

We do not detail their semantics, but range objects are supported by our analyses.

E cur bool.__new__(expr) (cur, e, h) def = tp_field bool_new PyObject_IsTrue letb (cur, e, h), @ e = E expr (f, e, h) in if isinstance(@ e , bool) then return (f, e, h), @ e if isinstance(@ e , NoneType) then return (f, e, h), @ False else if hasattr(type(@ e), "__bool__") then letb (cur, e, h), @ r = E type(@ e).__bool__(e) (f, e, h) in if isinstance(@ r , bool) then return (cur, e, h), @ r else return S raise TypeError (cur, e, h), ⊥ else if hasattr(type(@ e), "__len__") then letb (f, e, h), @ int = E len(e) (f, e, h) letb (cur, e, h), @ x = E x (cur, e, h) in if type(@ x) = int then return (cur, e, h), @ x if hasattr(type(@ x), "__int__") then letb (cur, e, h), @ r = E type(@ x).__int__(@ x) (cur, e, h) in if isinstance(@ r , int) then return (cur, e, h), @ r else return S raise TypeError (cur, e, h), ⊥ if hasattr(type(@ x), "__index__") then letb (cur, e, h), @ r = E type(@ a).__index__(@ a) (f, e, h) in if isinstance(@ r , int) then return (cur, e, h), @ r else return S raise TypeError (cur, e, h), ⊥ if hasattr(type(@ x), "__trunc__") then letb (cur, e, h), @ r = E type(@ x).__trunc__(@ x) (cur, e, h) in return E int(@ r) (cur, e, h)

in let int(i), ⊥ = h(@ int) in if i > 0 then
if isinstance(@ x , (str, bytes, bytearray)) then let str(s) = h(@ x) in letb (cur, e, h), i = int_of_string s in return E int(i) (cur, e, h) return S raise TypeError (cur, e, h), ⊥

Containers

There are four standard containers in Python:

Lists are mutable. They can be considered as arrays given the constant time index access.

Sets are mutable structures with no duplicate (a variant called frozenset is immutable).

Tuples are immutable structures.

Dictionaries are mutable associative maps.

Python requires that set elements and dictionaries' keys should be immutable elements. Since Python cannot check this property at runtime, the requirement is actually that these elements should have a __hash__ method. The documentation asks for the following constraint to be satisfied: 9The only required property is that objects which compare equal have the same hash value.

Due to Python's dynamic type system, all containers can contain heterogeneous values. They can also be arbitrarily nested.

Python contains lists, sets, and dictionaries comprehensions. They provide an elegant way to define lists and perform map/filter-like operations on them. Our semantics desugars these comprehensions into actual loops. An example transformation is provided in Listing 6.9 Listing 6.9: Example rewriting of the list comprehension [f(x) for x in y if b(x)]

1 fresh_l = [] 2 for x in y: 3 if b(x): 4 fresh_l.append(x)
We do not detail the semantics of container's methods, since they do not hide subtleties and only perform the container update specified by the method.

Slice objects are used to define subsequences of containers. They are defined by a starting point, a stopping point, and a step, similarly to range objects. We do not detail the semantics of slice objects here. These objects are supported by our analyses.

Iterators

Two builtins related to iterators are used in Python: iter creates an iterator object from compatible objects, while next gives the next element of an iterator.

The semantics of iter is shown in Figure 6.42. We try calling the __iter__ method of the object. If this is successful, we check that the result is an iterator, i.e., that it has a __next__ method. Otherwise, if the object's class provides index-based access through the __getitem__ method, we create a builtin iterator over this structure. This iterator will access the structure through increasing indexes until an IndexError or StopIteration exception is raised.

The semantics of next (Figure 6.43) consists in calling the __next__ method of the object. The StopIteration exception is used to signal when there are no elements left in the iterator.

The semantics of len is shown in Figure 6.44. We start by calling the __len__ method and pass its result to the __index__ method. The result is returned if it is a non-negative integer. Otherwise, various exceptions may be raised.

super

The super class can be seen as a drop-in replacement designating a parent class of the class being defined. It is mainly called to access a method (i.e., super().m(...)). It dynamically searches for the method m in the parents of the class. We start by showing a classic use case of super when a class inherits from multiple other classes.

E cur iter(expr) (cur, e, h) def = declaration builtin_iter PyObject_GetIter letb (cur, e, h), @ e = E expr (f, e, h) in if hasattr(type(@ e), "__iter__") then letb (cur, e, h), @ it = E type(@ e).__iter__(@ e) (cur, e, h) in if hasattr(type(@ it), "__next__") then return @ it if hasattr(type(@ e), "__getitem__") then return E iterator(@ e , 0) (cur, e, h) return S raise TypeError (cur, e, h), ⊥ letb (cur, e, h), @ e = E expr (cur, e, h) in if hasattr(type(@ e), "__next__") then return E type(@ e).__next__(@ e) return S raise TypeError (cur, e, h), ⊥ letb (cur, e, h), @ e = E expr (cur, e, h) in if hasattr(type(@ e), "__len__") then letb (cur, e, h), @ r = E type(@ e).__len__(@ e) (f, e, h) in if hasattr(type(@ r), "__index__") then letb (cur, e, h), @ i = E type(@ r).__index__(@ r) (f, e, h) in if ¬isinstance(@ i , int) then return S raise TypeError (cur, e, h)

let int(v i) = fst •h(@ i) in if v i < 0 then return S raise ValueError (cur, e, h)
else return (cur, e, h), @ i return S raise TypeError (cur, e, h), ⊥ super and multiple inheritance Let us assume we have a Pen class, itself parent of two classes BluePen and WipeablePen, as described in lines 1-13 of Listing 6.10. We would like to create a class WhiteboardPen, inheriting from BluePen and WipeablePen. If we try to explicitly call the initialization method of BluePen and WipeablePen, these methods will both call Pen.__init__, doubling the side effects. If we use the super class, we have the double benefit of not having to make explicit initialization calls, and avoiding the double call to Pen.__init__.

In our example, the instantiation of WhiteboardPen will call in order:

• BluePen.__init__(self), • WipeablePen.__init__(self), • Pen.__init__(self).
The printing is done after the calls to super, so it appears in the reverse order (in the trace shown lines 21-24).

WhiteboardPen() # WhiteboardPen creation: # -it's a pen # -it's wipeable # -it's blue

Remark 6.35

Conversion from implicit super to explicit form

In our example, super was called without any argument at line 18. It was however able to perform the calls to BluePen.__init__(self), WipeablePen.__init__(self), and Pen.__ini t__(self). It turns out this is made possible thanks to a hack in the definition the initilization function super_init, where arguments are filled with the method's class and the first local variable of the current stack frame (i.e., the self parameter).

To transform these implicit calls to super, we perform a rewriting into super(cls, self), where cls is the class being defined and self the first argument of the method being defined. In our example, this mean the call at line 18 would have been rewritten into: super(WhiteboardPen, self).__init__(self)

Remark 6.36 Variations of super calls

As we have said previously, the first argument of super is, by default, the class being defined. It can be overridden by a parent of the class. In that case, the methods being called will only be the one defined after the provided class in the MRO of the class being defined. For example, the MRO of WhiteboardPen is:

(WhiteboardPen, BluePen, WipeablePen, Pen, object)

If we replace the call at line 18 with super(BluePen, self).__init__(), only two initializers are called: WipeablePen.__init__ and Pen.__init__.

Once this rewriting is performed, we can rely on the pure-Python implementation of super shown in Listing 6.11. This implementation has been adapted from the Python documentation 10 . __getattr__ is the method used to resolve the attribute accesses after calls to super (such as the accesses to __init__ in our example). It traverses the MRO for the class from which the start for the attribute will start. Then, it searches for the provided attribute in the MRO (after the starting class). cls.__dict__[name] corresponds to a low-level field access. Once the search is successful, the method tries to call the __get__ method of the result, or returns it raw if this method does not exist.

Generators

Generators are a kind of coroutines that can be defined in Python. When a generator is called, it will execute itself until a yield statement is encountered. The control flow is then passed back to the caller until the generator is queried again.

Generators can be used as an alternative to lists. Instead of using offline algorithms, which require the whole data to be stored in memory, generators allow an online, elementwise processing, reducing memory usage. A typical example is for the processing of large files, where a first function will load the file as a list of strings, each representing a line, and pass this list to other processing functions. This might consume a lot of memory depending on the file's length, since the whole file needs to be loaded. With generators, it is possible to define the file opening and file processing functions such that each line will be fully processed one after the other.

Example 6.37 Counting occurrences of 'a' in a file line by line using generators

A program using generators is shown in Listing 6.12. It reads the file called in.txt line by line, using the function process_file. For each line, the function count displays its content, and counts the number of occurrences of the character 'a'. We dive a bit more into the execution details of this program. Let us assume the file in.txt contains two lines, the first with the string "abstract" and the second with the string "interpretation". process_file is called at line 17. Since its body contains the generatorspecific yield statement, the function is directly interrupted. Similarly, count is called and stopped immediately, as it is a generator. The for loop will now resume the execution of the functions (during the calls to next, following the rewriting shown in Listing 6.1).

At the first turn of the loop, we resume the execution of count. count itself uses a loop to resume the execution of process_file, which opens the file and reads the first line. The generator-specific statement yield l.strip() stops the current execution of process_file at the end of line 6 and returns the string "abstract". This returned value is stored in s (line 10), the string is displayed and the number of occurrences counted. We then reach the yield count statement at line 15, which interrupts the execution of count, and returns the integer 2. This value is stored in cnt (line 18), and the count is displayed.

The second turn of the loop is similar. We restart the execution of count, itself restarting process_file. This function was stopped at the end of the yield at line 6. We increment i from 0 to 1, and start again the execution of the loop lines 4-7. The second line is read and the execution is stopped again by yield at line 6. The returned value is "interpretation", which is stored in the variable s of count. count displays the string, counts the occurrences of "a" in s, and yields the integer 1 to the loop at lines 18 and 19. This loop displays the last count.

At the third turn of the loop, the execution of process_file raises a StopIteration exception, since the traversal of the file is finished. This stops the execution of the program.

Even if the print calls (at lines 5, 12 and 19) are at three different program locations, they will be executed successively, thanks to the yield statements stopping the execution of each function. Using lists, the same approach would have required to either define the whole processing as a single, bulky function, or to keep the function's results in different lists to perform the display in a single pass at the end. Listing 6.12: Counting occurrences of 'a' in a file line by line using generators This first example showed that generators can interrupt a function's execution and communicate some data back to the caller. It is also possible to introduce communication from the caller to the generator using the send method of generators.

Example 6.38 Bidirectional communication with generators

The bidirectional communication of generators can be used to change which character's occurrences are counted at each line. We use the send method over generators to send the character on which to count the occurrences in the count function. Bidirectional generators need to be initialized by sending None.

Let us assume that at the first turn of the while loop lines 22-28, the picked character is "c". This value is sent to the generator, which starts its execution at line 12. The result of the function is 1, which is passed back through the yield at line 18.

Then, let us assume that the second turn of the loop picks the character "a". This value is sent to the generator, which resumes its execution at the assignment line 18 (i.e., c = "a" is performed). The result of the function is 1 again, and passed back through the yield at line 18.

At the next turn, the StopIteration exception raised by process_file will stop the while loop. Listing 6.13: Generator example with bidirectional communication 1 import random We now define the semantics of generators. We extend nominal objects ObjN to handle generator objects. These objects are written Gen(name, locals, body), and are defined by their name, the local variables used in its body, and the body of the generator. We extend flow tokens with two new kinds:

• yield(@ gen ∈ Addr, @ e ∈ Addr ⊥ , l ∈ Loc ∪ { end }), representing generators allocated at address @ gen , whose execution is currently stopped at program location l (or is now stopped), potentially yielding the object allocated at @ e . • next(@ gen ∈ Addr, @ s ∈ Addr ⊥ , l ∈ Loc ∪ { start }) representing a call to a generator at @ gen , which should resume its execution at program location l (and ignore everything before). It is optionally passed an object that can be sent.

When a function f containing yield statements in its body is called, a new generator object is created. A specific flow token to start this generator is created. The semantics is shown in Figure 6.45.

E cur generator.__call__(f, e 1 , . . . , e n) (cur, e, h) def = letb (cur, e, h), @ f = E f (cur, e, h) in let Fun(f name, (arg 1 , . . . , arg m), (local 1 , . . . , local i), body) = fst •h(@ f) in if m = n then return S raise TypeError (f, e, h) letb σ = S local i = LocalUndef • . . . • S local 1 = LocalUndef • S arg n = e n • . . . • S arg 1 = e 1 σ in letb (f, e, h), @ g = E alloc_addr σ in let h = h[@ g → Gen(f name, (local 1 , . . . , local i), body), ∅] in { ((cur, e, h
), @ g); ((next(@ g , ⊥, { start }), e, h), @ g) } The yield expression is used to interrupt the execution of the generator and get back to the execution of the caller. The semantics is shown in Figure 6.46, and is defined in two cases:

1. If the execution is normal, tagged by the cur flow token, yield evaluates its argument and stops the normal execution. Instead, it returns two states. The first state is tagged by yield(), which will be caught by generator.send to extract e's value. The second state is tagged by next. It will be used to resume the generator at the correct location (through the second definition of yield described in our second point). In both cases, we use the generator's address in the flow tokens. We assume this address has been stored globally. 2. The second case is used to resume a generator's execution. When a generator is resumed, we start at the beginning of the generator's body, but in a state tagged by next, meaning that the semantics will not execute anything until the correct yield statement is reached. After that, the execution is resumed by shifting the flow token from next to cur. If something was sent, it is the result of this evaluation.

E yield l expr (cur, e, h) def = letb (cur, e, h), @ e = E expr (cur, e, h) in return { (yield(@ g , @ e , l), e, h), ⊥; (next@ g , ⊥, l, e, h), ⊥ } E yield l expr (next(@ g , l, @ s), e, h) Generators support the iterator protocol. That is, the execution of generators is resumed by calling the next builtin. This builtin calls the next method of generators, which is a simplified value of the send method. We show both of their semantics in Figure 6.47. We start by evaluating the arguments in the current flow token. Then, we partition the input state Σ to keep states tagged by the next flow token. Other states are kept in Σ other . We execute the body of the generator on the states tagged by next flow token (although if the generator was just created, we replace the token with cur to start at the beginning of the body), and call Σ out the result. The result of the method consists in: (i) the other states in Σ other that are passed on, (ii) the states of Σ out which are not tagged by a yield() token (this includes states tagged by an exn of next), (iii) the states of Σ out tagged by a yield() token (when the generator is not finished): we return the result of the yield in the token, and return a state tagged by cur, (iv) erroneous states where a StopIteration exception has been raised if the generator's end has been reached. E generator.send(gen, send)

Σ def = let Σ cur = { (f, e, h) ∈ Σ | f = cur } in letb (f, e, h), @ g = E gen Σ cur in let Gen(name, locals, body) = h(@ g) in letb (f, e, h), @ s = E send (f, e, h) in let Σ next,start = { (cur, e, h) | (f, e, h) ∈ Σ, f = next(@ g , _, start) } in let Σ next,other = { (next(@ g , @ s , l), e, h) ∈ Σ | f = next(@ g , _, l), l = start } in let Σ other = Σ \ (Σ cur ∪ Σ next) in let Σ out = S body (Σ next,start ∪ Σ next,other) in { (σ o , ⊥) | σ o ∈ Σ other } ∪ { (f, e, h), ⊥ | (f, e, h) ∈ Σ out , f = yield(_, _, _) } ∪ { (cur, e, h), @ | (f, e, h) ∈ Σ out , f = yield(@ g , @, l), l = end } ∪ { S raise StopIteration(@) (cur, e, h), ⊥ | (f, e, h) ∈ Σ out , f = yield(@ g , @, end) }

Correctness

The semantics has been established by reading the Python documentation, CPython's source code, and through various experimentations. We strived to make it the most complete possible, but this is a difficult and time-consuming task.

Tests from previous works

Some previous works on the semantics of Python [START_REF] Joachim | An executable operational semantics for Python[END_REF][START_REF] Gibbs Politz | Python: The full monty[END_REF][START_REF] Guth | A formal semantics of Python 3.3[END_REF] (detailed in Section 6.6) included the manual creation of semantics tests. Guth [START_REF] Guth | A formal semantics of Python 3.3[END_REF] collected (and updated) the tests of previous works, which are published alongside their semantics on Github 11 . The tests of Guth [START_REF] Guth | A formal semantics of Python 3.3[END_REF] rely on assertions. The tests of Smeding [START_REF] Joachim | An executable operational semantics for Python[END_REF] and Politz et al. [START_REF] Gibbs Politz | Python: The full monty[END_REF] relied on custom drivers 12,13 used to dynamically execute test files using a specific namespace. We modified those files to inline the functions, making them less dynamic and more explicit.

We show the results of our static analyzer on those tests in Figure 6.48. Mopsa is an abstract interpreter. This approach tests the abstract semantics, which is close to but not exactly the concrete semantics defined in this chapter. In particular, Mopsa can be imprecise in some cases, which may be why some tests fail. To match closely the concrete, loops are fully unrolled. An example source of imprecision in the abstract interpreter is the list abstraction. Lists are abstracted into a single, weak variable through a summarization for example. We can notice that Mopsa supports a majority of the tests, although the number of false alarms is still high.

We were unable to run by ourselves the semantics of Guth [START_REF] Guth | A formal semantics of Python 3.3[END_REF] but they claim to pass 83% of Politz et al.'s tests, and almost all of Smeding [START_REF] Joachim | An executable operational semantics for Python[END_REF]' tests. Köhl [START_REF] Köhl | An executable structural operational formal semantics for python[END_REF] was not able to run the semantics of Guth [START_REF] Guth | A formal semantics of Python 3.3[END_REF] either 14 . We were able to run the artifact of Politz et al. [START_REF] Gibbs Politz | Python: The full monty[END_REF]: it passes 69.8% tests for Smeding's test suite, 44.2% of Guth's tests, and 96.2% of their own tests. Köhl [START_REF] Köhl | An executable structural operational formal semantics for python[END_REF] is able to pass 65.7% of Guth's tests, and 59.6% of the tests of Politz et al. Smeding [START_REF] Joachim | An executable operational semantics for Python[END_REF] defined a semantics of Python 2, while we focus on Python 3, which contains major, non-compatible changes. Thus, we did not try comparing it. The test suite has been updated by Guth so that their testcases focus on Python 3. The other prototype analyzer by abstract interpretation of Python programs by Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] has comparable running times. However, it supports fewer tests, as shown in Figure 6.49.

Due to its abstractions, Mopsa may raise false alarms and thus supports fewer tests for now. These tests have helped us choose which features should be implemented. Supporting more of these tests in Mopsa is ongoing work. One of the main limitations to address to pass more tests is the support of the argument unpacking operators * and ** (cf. Section 6.2.10).

CPython's tests

Since the previous tests were handcrafted by non-Python developers, we do not know if they test all core Python features. Thus, we also test Mopsa on a subset of the official tests of the reference interpreter. These tests use the unittest library of Python to run, which is supported by Mopsa. We chose the tests that focused on the language and the builtins. The results are shown in Figure 6.50. For each test file (clickable link to source), we show its length (measured using cloc), the number of supported tests over the total number of tests, the time taken to analyze those tests, and the number of assertions that Mopsa is able to prove over the total number of assertions (defined in the supported tests). The artifact of Politz et al. [START_REF] Gibbs Politz | Python: The full monty[END_REF] does not appear to support this unittest framework correctly. The analyzer of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] does not support unittest either. The implementation of Köhl [START_REF] Köhl | An executable structural operational formal semantics for python[END_REF] does not support the import statement for now, which is used to import the unittest library. We can notice that a majority of the tests in this subset are supported by Mopsa. However, the abstractions of lists and dictionaries are not precise to prove many assertions.

Comparison with JavaScript

According to GitHub [START_REF] Github | State of the github octoverse[END_REF], JavaScript is more popular than Python and also a dynamic programming language. This section highlights a few differences between the languages. The first significant difference is that JavaScript is a standardized language through what is called ECMAScript. The semantics are thus defined through text that aims to be as precise as possible. We can for example compare the semantics of the addition in JavaScript 15 , with the documentation provided in Python 16 . A considerable part of the work on Python is first to grasp the semantics. ECMAScript also comes with a conformance test suite, which has no Python equivalent.

JavaScript has two special values: undefined, used for uninitialized variables, and null. The only numerical datatype available was floating-point numbers until the introduction of arbitrary-precision integers in ECMAScript 2020. The last three primitive values used by JavaScript are booleans, strings, and symbols (introduced in ECMAScript 2015, symbols are used to generate unique objects). The only two other types are function and object, encompassing all other objects.

From a typing perspective, Python favors raising exceptions during unsupported operations ("1 hello" + 2 raises a TypeError), while JavaScript favors silent coercions (it evaluates "1 hello" + 2 into "1 hello2").

JavaScript historically uses a structural type system, where objects are only maps from strings to other objects. 17 A prototype mechanism defines which fields will be accessible to all objects having the same prototype. The inheritance mechanism also relies on it to inherit all attributes of the parent. The syntactic declaration of classes was introduced in 2015. It is syntactic sugar for prototype declarations. We can compare Python's type and inheritance mechanism, reminded in Figure 6.52 with the one of JavaScript in Figure 6.51. Python attributes are usually called fields in JavaScript.

A significant difference with Python is that JavaScript does not allow overloading most operators (such as binary operators or calls). The only exception is for fields, which can have custom getters and setters. Since ECMAScript 6, proxies can also be used to override field accesses over an object globally, similarly to a redefinition of the __getattribute__ method in Python.

Similar to Python, generators and asynchronous operators are available. As a general rule, eval seems to be more used in JavaScript. To the best of our knowledge, ECMAScript does not describe how garbage collection should be performed.

Related work

Ranson et al. [START_REF] Ranson | A semantics of Python in Isabelle/HOL[END_REF] define a mechanized semantics for a restricted subset of Python, consisting of basic values (integers, booleans) and control structures (loops, conditionals). A significant shortcoming of this work is the absence of formalization of objects. Smeding [START_REF] Joachim | An executable operational semantics for Python[END_REF] proposes a semantics of Python 2.5 under the form of a Haskell interpreter. Politz et al. [START_REF] Gibbs Politz | Python: The full monty[END_REF] define a small-step semantics for a core Python language, λ π , as well as a compiler from Python to λ π , and a λ π interpreter written in Racket. Bodin et al. [START_REF] Bodin | A trusted mechanised JavaScript specification[END_REF] define a mechanized semantics for ECMAScript 5. The K framework [START_REF] Rosu | An overview of the K semantic framework[END_REF] allows defining semantics, on top of which interpreters and model-checkers can be automatically derived. It has notably been used to formalize the semantics of ECMAScript 5.1 [START_REF] Park | KJS: A complete formal semantics of JavaScript[END_REF], and Python 3.2 [START_REF] Guth | A formal semantics of Python 3.3[END_REF]. Köhl [START_REF] Köhl | An executable structural operational formal semantics for python[END_REF] recently published a Master's thesis, defining a new framework for the definition of structural operational semantics, and applying it to define the semantics of Python.

Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] define an interpreter-like semantics on which the concrete semantics of this chapter is based. Our version is significantly different: it is more complete (as shows Figure 6.50, compared to Table 1 of [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF]), we have added references to the source code in the semantics, and we have separated the semantics of the language from its builtins (e.g., we have separated the semantics of x.s from object.__getattribute__). Both Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF]'s work and ours aim at defining abstract interpreters, which can compute an approximation 15 https://262.ecma-international.org/10.0/#sec-addition-operator-plus 16 https://docs.python.org/3/reference/datamodel.html#object.__add__ 17 Special symbol objects can also be used as keys. of the concrete semantics of Python. Contrary to [START_REF] Rosu | An overview of the K semantic framework[END_REF][START_REF] Guth | A formal semantics of Python 3.3[END_REF][START_REF] Joachim | An executable operational semantics for Python[END_REF][START_REF] Gibbs Politz | Python: The full monty[END_REF][START_REF] Köhl | An executable structural operational formal semantics for python[END_REF], defining the concrete semantics in itself is not our endgoal, it is only defined to be used as a basis to define the abstract semantics. The shape of our concrete semantics is also influenced by the use we make of it in the abstract analysis, because the abstract semantics will have a similar shape and stay close to it structurally.

Conclusion

This chapter presented the semantics of Python. We defined the semantics by induction over the syntax of Python as a function manipulating reachable program states. This way, the abstract semantics will have a shape similar to the concrete one. The semantics is complex, with lots of cases and multiple stages (operator level, builtin level, and user level). It relies on introspection operators of both type systems (isinstance and type for the nominal type system, hasattr for the structural type system). For now, it does not handle asynchronous operator, the eval & exec statements, and the calls to finalizers made by the garbage collector.

We ran our abstract interpreter against various tests distributions to evaluate how complete our semantics is. Mopsa supports a reasonable amount of tests, coming from different sources. Improving the number of tests passed is ongoing work. However, our endgoal is to analyze more Python programs. In general, we decide to support new cases of Python's semantics when we encounter a concrete need during the analysis of real-world programs.

Type Analysis

As we mentioned in Chapter 6, Python is an object-oriented language, using dynamic typing, and supporting introspection operators, self-modification of objects, and arbitrary code evaluation. These characteristics make the analysis of Python different from the analysis of static programming languages such as C or Java. Due to dynamic typing, type errors are detected at runtime and cause TypeError exceptions, whereas such errors would be caught at compile time in a statically typed language. We propose a static analysis to infer type information and use this information to detect automatically all exceptions that can be raised and not caught. Our type analysis is flow-sensitive, to take into account the fact that variable types evolve during program execution and, conversely, runtime type information is used to alter the control flow of the program, either through introspection or method and operator overloading. Moreover, it is context-sensitive as, without any type information on method entry, it is not possible to infer its control flow at all. However, handling eval is left as future work (possibly leveraging ideas proposed by Jensen et al. [START_REF] Holm Jensen | Remedying the eval that men do[END_REF], Arceri and Mastroeni [3] on JavaScript). In some sense, we combine an exception analysis and a points-to analysis, following the work of Bravenboer and Smaragdakis [START_REF] Bravenboer | Exception analysis and points-to analysis: Better together[END_REF].

We compare our approach with traditional type systems in Section 7.1. Our analysis is described in Section 7.2. We show a motivating example in the next paragraph. Our analysis has special domains to support containers (such as lists) and infer type equalities (allowing it to express parametric polymorphism, Section 7.3). The analysis is soundly derived by abstract interpretation from a concrete semantics of Python. It has been implemented into Mopsa (Section 7.5), and leverages external type annotations from the Typeshed project to support the vast standard library (Section 7.4). We show in Section 7.6 that it scales to benchmarks a few thousand lines long, and preliminary results show it is able to analyze a small real-life command-line utility called PathPicker. Compared to previous work (Section 7.7), it is sound, while it keeps similar efficiency and precision. Consider the code from Listing 7.1. It defines a function fspath, taken from the standard library, with a parameter p as input. If p is an object instantiated from a class inheriting from str or bytes, it is returned. Otherwise, the function searches for an attribute called fspath and calls it as a method. If the return type is not an instance of str or bytes, an exception is raised. Thus, when fspath does not raise an error, it takes as input an instance of str or bytes, or an object having a method fspath returning either a string or a bytesbased string. In all cases, the return type of fspath is either str or bytes. This function uses both of Python's type systems: it uses the nominal one when calling the isinstance operator, and the structural one with hasattr.

We model correct and erroneous calls to fspath in lines 12 to 18. In particular, we define a Path class, having a method fspath returning an integer, hence, a call to function fspath on an instance of Path would raise a TypeError. Our analysis is able to infer that, at the end of line 16, p is a string, and that at line 17, p is an instance of the Path class, which has a field fspath that can be called. It finds that, either r is a string, or a TypeError is raised.

As it is part of the standard library, the fspath function is particularly well-behaved: it does not make many implicit assumptions on the argument type (only that p.fspath is callable) but instead uses type information to handle different cases in different program branches. Nevertheless, the context is important to infer whether a specific call to fspath can raise a TypeError or not. A more typical Python programmer might replace lines 5 to 10 with a call to return p.fspath(), leaving implicit the fact that p should have a method fspath returning str or bytes strings. This is summarized in one of Python motos: "easier to ask for forgiveness than permission". Our analysis would correctly infer that invalid calls to that modified function would raise an AttributeError exception.

Differences with a type system

It is worth comparing our approach with classic typing (the case of gradual typing is covered in Section 7.7). Statically typed languages ensure the absence of type-related errors through static type checking, possibly augmented with automatic type inference. However, while static typing rejects untypable programs, our analysis gives semantics to such programs by propagating type errors as exceptions. This is important in order to support programs that perform runtime type errors and catch them afterward, which is common-place in Python. Indeed, our goal is not to enforce a stricter, easier to check, way to program in Python,1 but rather to check as-is programs with no uncaught exceptions. Secondly, static type checking is generally flow-insensitive and context-insensitive, trying to associate a unique type to each variable throughout program executions while we use a flow-and context-sensitive analysis. Our approach makes the analysis precise enough to handle introspection operators and dynamic addition of attributes -the latter changing the structural type of objects at runtime. Following classic abstract interpreters [11], our analysis is performed by structural induction on the syntax, starting from the program's entry point. This approach by structural induction has already been used in our introduction to abstract interpretation in Chapter 2. Our analysis is thus unable to analyze functions in isolation. While this kind of modularity is a highlight of typing algorithms, we believe that it is not well suited to Python. Consider, for instance, that a call to a function can alter the value, and so the type, of a global variable, which is difficult to express in a type system. Moreover, even a simple function, such as def f(a, b): return a + b, has an unpredictable effect as the + operator can be overloaded to an arbitrary method by the programmer (the semantics of + has been shown in the previous chapter, Figure 6.23). We view type analysis as an instance of abstract interpretation, one which is slightly more abstract than classic value analyses. This view is not novel, as Cousot [START_REF] Cousot | Types as abstract interpretations[END_REF] reconstructed Hindley-Milner typing rules as an abstract interpretation of the concrete semantics of the lambda calculus. One benefit of this unified view is the possibility to incorporate some amount of value analysis (presented in Chapter 8). For instance, our type analysis currently considers, to be sound, that any division can raise a ZeroDivisionError, which could be ruled out by a simple integer analysis. Finally, the correctness proof of our analysis is derived through a soundness theorem linking the concrete and the abstract semantics, in classic abstract interpretation form and not by subject reduction. Both our analysis and type systems are conservative, but we replace the motto "well-typed programs cannot go wrong" with a guaranteed overapproximation of the possible (correct and incorrect) behaviors of the program.

Non-relational type analysis

This section presents the type analysis. We present abstractions incrementally, starting from addresses to the environment and the heap, as well as additional stateless abstractions. A summary of the full abstract state and an example are provided to close this section.

Abstract addresses

As usual in our endeavor for modular definitions, we do not require addresses to have a specific structure. We only require that other domains can access the type of the object stored at a given address using type (we highlighted the need for abstract addresses to depend on types in Section 4.2 for Python analyses), and the mode of the address using mode (an address is weak if it summarizes multiple addresses in the concrete, and strong otherwise). The type is defined in ObjN . It only differs from ObjN by forgetting builtin values (int(i ∈ Z) ∈ ObjN is abstracted by int ∈ ObjN) except for booleans, and replacing addresses by their abstract counterparts.

ObjN def = int ∪ bool (b ∈ {True, False, }) ∪ float ∪ str ∪ NoneType ∪ NotImplType ∪ List ∪ Tuple ∪ meth(a, f) ∪ cls(c) ∪ fun(f) ∪ inst(a), a ∈ Addr type ∈ Addr → ObjN mode ∈ Addr → { weak, strong }
We define a concretization from abstract nominal objects ObjN to concrete nominal objects relying on abstract addresses ObjN Addr in Figure 7.1.

Environment abstraction

Domain. The domain of abstract environments E maintains a non-relational map binding variables to a set of abstract addresses. In the concrete, variables are program identifiers (Id). In the abstract, these variables are complemented with auxiliary variables created by other abstractions, such as the attribute abstraction presented in Section 7.2.3. Thus, Id ⊆ V. To

γ ObjN :      ObjN → P(ObjN Addr) int → { int(i) | i ∈ Z } bool (b ∈ {True, False}) → { bool(b) } bool () → { bool(b) | b ∈ True, False } float → { float(f) | f ∈ F 64 } str → { str(s) | s ∈ string } NoneType → { None } NotImplType → { NotImpl } List → n∈N { List(@ 1 , . . . , @ n) | @ i ∈ Addr } Tuple → n∈N { Tuple(@ 1 , . . . , @ n) | @ i ∈ Addr } meth(a, f) → { Method(a, f) } cls(c) → { Class(c) } fun(f) → { Fun(f) } inst(a)
→ { Inst(a) }

E def = V P(Addr ∪ { LocalUndef })
Transfer functions (Figure 7.2). Following the modular definitions of Mopsa presented in Chapters 3 and 4, the transfer functions are defined as a manipulation of the global abstract state σ . Getting and setting the state of the local abstraction are respectively done using man.get σ and man.set s σ . To perform an assignment x = e, we evaluate e in the abstract, and update the local abstract state for x accordingly. The deletion of a binding updates the local abstract state of the environment in a similar fashion. The evaluation of x is disjunctive: if the variable points to multiple abstract addresses, each address is returned in a state where the environment has been refined.

Concretization (Figure 7.3). In the case of the type analysis, the environment abstraction is a leaf domain. We thus define it as a regular concretization, which is lifted to a relation from the unit type using the ↑ () operator (defined in Remark 2.83). We will show an updated version of the environment and this concretization for the case of the value analysis in Chapter 8. The concretization of this domain creates an environment and a heap. The environment picks for each variable v of the abstract state an abstract address of the set in (v). For each address @ used in the abstract environment , the first coordinate of the heap at the same address is one of the nominal objects abstracted by type(@) (the second coordinate will be constrained later, by concretizing the heap).

Heap Abstraction

The domain of abstract heaps H defines which fields are defined for each Python objects. We defined in the concrete semantics (Chapter 6) the concept of fields, local to an object. Attributes are fields resolved transitively from an object through its parents' classes. We first describe the lattice of string powerset with underapproximation, which is used to abstract the fields of an object.

S # env x = e σ def = letb σ , @ = E # e σ in let = man.get σ in let = [x → { @ }] in man.set σ S # env del x σ def = let = man.get σ in if x ∈ dom then return S # raise NameError σ else if (x) = LocalUndef then return S # raise UnboundLocalError σ else return man.set (\ { x }) σ E # env x ∈ V σ def = let = man.get σ in if x ∈ dom then return S raise NameError σ , ⊥ else if (x) = LocalUndef then return S raise UnboundLocalError σ , ⊥ else return a∈ (id) (man.set [x → { a }] σ , a)
γ env (∈ V → P(Addr)) =↑ () • { (e, h) ∈ (V Addr) × (Addr ObjN × ObjS) | v ∈ dom ⇔ e(v) ∈ (v); @ ∈ codom ⇔ fst •h(@) ∈ γ ObjN (type(@)) } Figure 7

.3: Concretization of the environment abstraction

Powerset with underapproximation. The structural part ObjS , defined in Figure 7.4, keeps two sets of fields (i.e., strings). Fields may be added in some execution traces and not in others. Hence, we keep both an underapproximation and an overapproximation of the set of fields that must (respectively may) exist at a given program point for all possible executions. This information is important to avoid raising spurious AttributeError exceptions for fields that are definitely present. These properties are formally defined by the concretization γ ObjS , in Figure 7.4. The structural type abstraction may also be approximated as by the widening, in order to avoid having an infinite number of fields being added to an instance, which would break the analysis' termination. The special case of LOCK designates object having a builtin readonly structure, similarly to the concrete. Two powersets with underapproximations (l 1 , u 1) and (l 2 , u 2) can easily be joined:

(l 1 , u 1) (l 2 , u 2) = (l 1 ∩ l 2 , u 1 ∪ u 2).
Abstract domain. The abstraction is then a mapping from abstract addresses to the powerset we presented: and queries it at address @ to get the fields defined through string sets (l, u). If the field is present in the lower, underapproximating part, we can just evaluate the auxiliary address variable @ • attr corresponding to the field. This evaluation will be handled by the environment domain presented previously. Otherwise, if the field is only present in the overapproximating part, we return a case disjunction, where we assume that either the field must exist or that it does not exist at all. In the latter case, we return ⊥ to signal an erroneous state, but no exception is raised by this low-level operator. This will be performed by the methods performing the attribute access, such as object.__getattribute__ (described in Figure 6.31 in the concrete). The first case evaluates the same auxiliary variable and updates the local state so that the field is now in the underapproximation. The second case returns an erroneous evaluation where the field has been removed from the local state. has_field enjoys a definition extremely close to its concrete counterpart, where the work is delegated to get_field. set_field fetches the local state η, and the current approximation of fields at @ is defined as (l, u). The local state is updated to take into account the new field. The assignment is then delegated using the auxiliary address variable @ • attr representing the field attr of @ .

H def = Addr ObjS ObjS def = LOCK ∪ { (l, u) | l ∈ P(), u ∈ P(string) ∪ { }, l ⊆ u ∨ u = } γ ObjS ((l, u)) = { x ∈ P(string) | l ⊆ x ⊆ u } γ ObjS (LOCK) = { LOCK }
Concretization (Figure 7.6). The concretization of the heap abstraction transforms concrete environments with auxiliary address variables and a concrete heap with only nominal object information into a concrete environment without auxiliary variables and a concrete heap with nominal and structural objects. It keeps the same environment for variables that are not auxiliary address variables. Auxiliary address variables are transformed into binding in the concrete heap. For each abstract address @ , the domain of structural objects of the concrete heap ranges in between the bounds provided by the local abstract state η(@).

Additional abstractions

The environment and heap domains are the main abstractions of the type analysis. This section briefly describes the other abstract domains on which the analysis rely on.

Flow tokens

Flow tokens are used to handle non-local control-flow operators. They are similar to the concrete ones (Section 6.1, Figure 6.2), except that addresses are now abstract. The whole state is lifted to a finite mapping over flow tokens.

F def = { cur, ret, brk, cont } ∪ { exn @ | @ ∈ Addr } E # heap get_field(@ ∈ Addr , attr ∈ string) σ def = let b = get_builtin_field(@ , attr) in if b = ⊥ then return σ , b else let η = man.get σ in if η(@) = LOCK then return σ , ⊥ let l, u = η(@) in if attr ∈ l then return E # @ • attr σ else if attr ∈ u then return E # @ • attr (man.set η[@ → (l ∪ { attr }, u)] σ)∪ (man.set η[@ → (l, u \ { attr })] σ, ⊥) else return σ , ⊥ E # heap has_field(@ ∈ Addr , attr ∈ string) σ def = letb σ , r = E # get_field(@ , attr) σ in if r = ⊥ then return E # True σ else return E # False σ S # heap set_field(@ ∈ Addr , attr ∈ string, val ∈ Addr) σ def = let η = man.get σ in if η(@) = LOCK then return ⊥ let l, u = η(@) in let σ = man.set η[@ → (l ∪ { attr }, u ∪ { attr })] σ in return S # @ • attr = val σ
γ heap (η) ={ ((e, h), (e , h)) | v ∈ dome \ { @ • _ } ⇔ e(v) = e (v); @ ∈ domh ⇔ (fst •h = fst •h ∧ dom (snd •h (@)) ∈ γ ObjS (η(@))); @ • a ∈ dome ⇔ (snd • h)(@)(a) = e(@ • a); }

Stateless abstractions close to the concrete semantics

Most of the concrete semantics of Python is abstracted by stateless domains. We show the example of the attribute operators. Their concrete semantics was defined in Figure 6.10, the abstract version is shown in Figure 7.7. We comment on the definition of attribute access e.s to highlight the differences. The first three lines are similar to the concrete: we evaluate e, search for the __getattribute__ method in the class of e, to call it on e and the attribute s.

The transfer function differs afterward since the global abstract state is a map from controlflow tokens to substates F → (E × H) (while in the concrete, we used a set of states, each tagged by a control-flow token, P(F × E × H), which is isomorphic to F × P(E × H)). We thus inspect each substate st tagged by its flow token τ , and return the corresponding evaluation.

If we encounter an erroneous state that was not present in the initial state, and where an AttributeError has been raised, we try to use the fallback call to the __getattr__ method.

If we encounter the normal state, we return the computed value. For all other cases, we stop the evaluation by returning ⊥.

Functions

The analysis of functions is performed in a context-sensitive fashion by inlining: when a function call is reached, we substitute the call by the body of the function and analyze it. This scheme supports easily dynamic dispatch as well as calling anonymous functions defined using lambda. The analysis of recursive functions is not currently supported in the implementation.

Full abstraction

In the case of the type analysis defined here, the whole abstract state maps flow tokens to the state of the recency abstraction, the abstract environment and the abstract heap. The abstract state is thus:

D = F P(Addr) × V P(Addr ∪ { LocalUndef }) × (Addr ObjS)
We write γ D the concretization of the whole abstract state. It is a simple lift of γ, which concretizes substates without flow tokens.

γ((σ mem , σ heap , σ env)) =↓ •γ mem (σ mem) • γ heap (σ heap) • γ env (σ env)
The ↓ operator corresponds to taking the image of the relation; the composition operator between relations is the one induced by the composition of concretizations shown in Definition 2.82. We focus on the analysis of Listing 7.2. We show the evolution of the abstract state for the current flow cur in Figure 7.8. For the sake of concision, elements (l, u) of the powerset approximation are displayed without repetition, i.e., we display (l, u \ l). We also assume that builtin values are allocated to a single weak address for each type (this reduces the number of allocations, and the precision is unchanged as the fields of builtin values are immutable). The declaration of class A lines 1-5 creates three bindings in the environment and in the heap. In the environment, the identifier A now maps to the corresponding class E # attrs e.s σ def = letb σ , @ e = E # e σ in let σ , c = E # mro_search(type(@ e), "__getattribute__") σ in let σ 1 , @ e.s = E # c(@ e , s) σ in return λ(τ ∈ F).

let st = σ 1 (τ) in if τ = exn @ ∧ τ ∈ domσ ∧ isinstance(@ , AttributeError) then let σ , @ d = E # mro_search(type(@ e), "__getattr__") (cur, st) in if @ d = ⊥ then return E # d(@ e , s) σ else return σ , ⊥ else if τ = cur then return σ , @ e.s
else return σ , ⊥

E # hasattr(obj, attr) σ def = letb σ , @ obj = E # obj σ in letb σ , @ attr = E # attr σ in if ¬isinstance(@ attr , str) then return S # raise TypeError σ , ⊥ else let σ 1 , @ r = E # @ obj .@ attr σ in if @ r = ⊥ then return λ(τ ∈ F). let st = σ 1 (τ) in if τ = exn @ a ∧ τ ∈ domσ ∧ isinstance(@ a , AttributeError) then E # False (cur, st) else σ , ⊥ else return E # True σ S # x.s = e σ def = letb σ , @ = E # x σ in
if hasattr(type(@), "__setattr__") then return S # type(@).__setattr__(x, s, e) σ return S # raise TypeError σ

S # del x.s σ def = letb σ , @ = E # x σ in
if hasattr(type(@), "__delattr__") then return S # type(@).__delattr__(x, s) σ return S # raise TypeError σ methods. Auxiliary variables for these attributes point to the methods' addresses in the environment. These methods are builtins: they cannot have additional attributes. At line 6, an instance of A is created at address @ instA . This instance has one field val, pointing to an integer (this address cannot have additional attributes either). After the binding x = A(), we thus have x → @ instA . The assignments at lines 7 and 8 add new bindings in the environment. During the non-deterministic call to update at line 9, the val field of the instance can be changed into a string. At line 10, a field attr bound to another string is added nondeterministically. Thus, this field is only present in the overapproximation of the fields of @ instA in the heap.

Line We simplify it to remove the description of class A (Line 5 of Figure 7.8). The environment , the heap η and the recency abstraction σ mem have the following states:

∈ E η ∈ H 5 A → @ clsA @ clsA → { __init__, update }, ∅ @ clsA • __init__ → @ fun init @ fun init → LOCK @ clsA • update → @ fun update @ fun update → LOCK 6 @ instA • val → @ int @ instA → { val }, ∅ x → @ instA @ int → LOCK 7 y → @ int 8 z → @ instA 9 @ instA • val → { @ int , @ str } @ str → LOCK 10 @ instA • attr → @ str @ instA → { val }, { attr }
= x → @ instA , @ instA • val → { @ int , @ str }, @ instA • attr → @ str η = @ instA → ({ val }, { attr }), @ int → LOCK, @ str → LOCK σ mem = { @ instA , @ int , @ str }
We start by concretizing the environment into two cases, depending on the type of the val field of the instance.

↓ •γ env () = x → @ instA , @ instA • val → @ int , @ instA • attr → @ str , @ instA → (Inst(A),), @ int → (int(z),) z ∈ Z ∪ x → @ instA , @ instA • val → @ str , @ instA • attr → @ str ,
@ instA → (Inst(A),), @ str → (str(s),) s ∈ string These two cases are transformed into four different ones by the heap environment, de-pending on whether the attr field exists or not in the instance.

↓ •γ env (η) • γ env () = x → @ instA , @ instA → (Inst(A), (val → @ int)), @ int → (int(z), LOCK) z ∈ Z ∪ x → @ instA , @ instA → (Inst(A), (val → @ str)),
@ str → (str(s), LOCK) s ∈ string ∪ x → @ instA , @ instA → (Inst(A), (val → @ str , attr → @ str)),

@ str → (str(s), LOCK) s ∈ string ∪ x → @ instA , @ instA → (Inst(A), (val → @ int , attr → @ str)), @ int → (int(z), LOCK), @ str → (str(s), LOCK) z ∈ Z, s ∈ string
We show how the third case is concretized by the recency abstraction. As we mentioned earlier, the abstract addresses of builtin values are summarized into a single one. The recency then concretizes them into multiple concrete addresses. Even if a single value is picked by γ ObjN (e.g., the value of the string allocated at γ str), the recency's concretization will then merge coherent states into a single one (Section 4.1.5.1; γ str may be concretized into two addresses having different string values) constructed from multiple concrete states.

γ((σ mem , η,)) ⊇ (x → @ 1) , @ 1 → (Inst(A), (val → @ 2 , attr → @ 2)), @ 2 → (str(s), LOCK) s ∈ string ∪ (x → @ 1) , @ 1 → (Inst(A), (val → @ 2 , attr → @ 3)), @ 2 → (str(s), LOCK), @ 3 → (str(s), LOCK) (s, s) ∈ string 2We have strived to build a sound analysis, meaning that the abstract states computed by our abstract transfer functions over-approximate the concrete states reachable during any program execution. More formally, for any Python statement s, the following inclusion should hold: ∀δ ∈ D , S s • γ D (δ) ⊆ γ D • S # s (δ). We have not proved the soundness theorem due to the number of cases of the concrete semantics. However, the proof should be simple in most cases since the abstract transfer functions of statements and expressions are close to the concrete ones (as shown in Section 7.2.4.3).

A relational reduced product bringing polymorphism

The analysis presented previously is polymorphic, as a variable may be abstracted as a set of addresses of different types. However, bounded parametric polymorphism à la ML 2 is impossible to express in this abstraction as we cannot infer that two variables pointing to multiple addresses have the same type. From an abstract interpretation point of view, we lack a relational domain. Consider the program in Listing 7.3. Our non-relational analysis can infer that, at the beginning of line 3, both x and y have type int or str. However, it cannot show that x and y are either both int or both str, and thus it raises a false TypeError alarm when evaluating x + y.

Definition 7.5 Type equality domain

We introduce an abstract domain

Q def = V
N to track type equalities between variables. It is defined as a partitioning of variables into equivalence classes of equally typed variables. Given κ ∈ Q , we ensure that two variables x and y verifying κ(x) = κ(y) will have the same nominal type. More precisely, we define an abstract equivalence relation ≡ ⊆ ObjN ×ObjN between nominal types:

≡ def = { (int , int) } ∪ { (str , str) } ∪ { (fun f, fun f) } ∪ { (cls c, cls c) } ∪ { (meth(@ 1 , -), meth(@ 2 , -)) | typ(@ 1) ≡ typ(@ 2) } ∪ { (inst(@ 1), inst(@ 2)) | typ(@ 1) ≡ typ(@ 2) } Definition 7.

Concretization

The concretization function γ Q ∈ Q → P((V Addr) × (Addr (ObjN × ObjS))) gives the set of concrete states verifying the equality constraints of an abstract element in Q :

γ Q (κ) def = ↑ () { (e, h) | ∀x, y ∈ dom κ : κ(x) = κ(y) =⇒ type(e(x)) ≡ type(e(y)) }
In order to perform a type analysis with bounded parametric polymorphism, we construct a reduced product of the equality domain Q and the non-relational environment domain E .

Two reduction operators ψ ↑ , ψ ↓ ∈ (E × Q) → (E × Q) are proposed to refine product states by propagating information between domains.

1. The reduction ψ ↑ enriches κ with new type equalities. It searches for variables x and y such that both of them point to singleton objects with equivalent nominal types:

(x) = { @ x } (y) = { @ y } ∧ type(@ x) ≡ type(@ y)
In such case, we add the type equality κ(x) = κ(y). 2. The reduction operator ψ ↓ refines the non-relational environment whenever two variables x and y are equally typed in κ and the type of x is more precise. We do so by pruning away the addresses referenced by y that are not equivalent to any object pointed by x.

Example 7.7 Back to the motivating example

Let us consider again the motivating example in Listing 7.3. After the assignment x, y = 1, 2, both x and y point to singleton integer objects, which allows us to apply ψ ↑ in order Before reduction After reduction

= x → @ int ∧ y → @ int κ = ⊥ κ = x → 0, y → 0 Figure 7.9: Example of ψ ↑ reduction
to infer the type equality of x and y (the state is shown in Figure 7.9). The same reasoning is applied after the assignment x, y = 'a', 'b' in the else branch. Consequently, equality is preserved after joining the two abstract states at line 3. When evaluating x in the addition expression, a disjunction with two cases is created, one for each referenced abstract object.

In each case, the reduction operator ψ ↓ is applied to refine the type of y according to the type of x. Therefore, at the end of the program, we infer that no TypeError is raised. Moreover, the reduction ψ ↑ will find that x, y, and z have the same type.

Remark 7.8 Bounded parametric polymorphism

In the motivating example, our analysis intuitively infers that x, y, z have type α ∈ { int, str }.

We believe this is close to bounded parametric polymorphism. In future work, we want to combine relationality with partial function summaries to deduce that f has type α → α, α ∈ { int, str } in the program below.

def f(x, y): return x + y f (1, 2) f('a', 'b')
Remark 7.9 Relational domain not supported anymore

In the evaluation of our ECOOP paper [START_REF] Monat | Static type analysis by abstract interpretation of python programs[END_REF], we have not noticed any improvement (in terms of alarms) using the relational domain in the benchmarks (cf. Section 7.6.2) This domain also required further adaptations to get the best results on containers. Let us consider the code below, where we perform an access to a list of integers or strings.

if *: l = [1, 2, 3] else: l = ['a', 'b', 'c'] x = l[0]
After the join of the states of the conditional, our abstract state is (arr(•) denotes auxiliary variable used by the summarization abstraction of lists, as defined in Chapter 5):

l → { @ List ,1 , @ List ,2 }, arr(@ List ,1) → @ int , arr(@ List ,2) → @ str
The relational domain of this section will be unable to infer that x is an integer only when l is a list of integers. One way to alleviate this problem, is to unify the list addresses, so that the abstract state after the join of the abstract states is:

l → { @ List ,(1∨2) }, arr(@ List ,(1∨2)) → { @ int , @ str }
In that case, the relational domain would be able to infer a type equality between x and the auxiliary arr(•) variable. However, these unifications made the implementation much more complex, with little benefits in terms of precision in the benchmarks. In the end, we did not update the implementation of this domain through the API changes of Mopsa, and the domain is not supported anymore.

Interaction with Python's type annotations

As the Python standard library is huge and partly written in C, we needed a way to support it quickly. We decided to leverage the work from the Typeshed project [152], which offers type annotations for a substantial part of the standard library. This project uses the standard type annotations recently introduced by the PEP 484 into Python [START_REF] Guido Van Rossum | Python Enhancement Proposal 484[END_REF]. These type annotations are quite powerful (they feature bounded polymorphism using TypeVar, structural subtyping support with Protocol, disjunctive function signatures with the @overload decorator, ...). These annotations can also be handy to avoid analyzing big, pure Python libraries when we want to focus our analysis on client code. 3 def fspath(self) -> T: ... 4 @overload 5 def fspath(path: PathL[T]) -> T: ... 6 @overload 7 def fspath(path: str) -> str: ... 8 @overload 9 def fspath(path: bytes) -> bytes: ... When a stubbed module is imported, our analyzer parses the corresponding annotated file and stores its functions (similarly for classes and variables). Then, when a stubbed function is called, we check that the arguments match the function signature. In that case, we assume that the function has no side effects and returns an object of the annotated return type, which we convert into an abstract object. We introduced two new expressions in the AST node: one to check that an expression has a given type (used for example to check the arguments in a function signature), and one to assume that an expression has a given type (for the return type of an annotated function). The type checking expression performs rewriting that ends up calling isinstance, while the type introduction expression ends up allocating objects of corresponding types (we also assume that returned objects are fresh objects, and not objects passed as arguments).

The example of Listing 7.4 provides multiple different signatures. In that case, our analyzer keeps only the signatures compatible with the passed arguments.

Remark 7.11 Expressivity of annotations

These annotations remain in general less expressive than our analysis, as side-effects (such as raised exceptions, aliasing) cannot be expressed. However, a type-and-effect system [START_REF] Marino | A generic type-and-effect system[END_REF] could be used to alleviate this limitation. The function annotation, written Callable[arg_1, ..., arg_n, ret] more difficult to handle. Our analysis is able to check that an object abides by this annotation. However, we cannot precisely represent functions of this type in our analysis: the transfer function of the type introduction is imprecise in this case.

Remark 7.12

Soundness assumption

The use of these annotations changes the soundness of our analyzer: exceptions raised by concrete functions where we used their annotated counterpart will not be reported. Our analyzer supports the declaration of raised exceptions in type annotation stub files, but this feature is specific to Mopsa and not supported by Typeshed3 or PEP 484.

Remark 7.13 Detecting wrong annotations

Our implementation of the type analysis primarily targets uncaught exceptions. However, it can also display as alarms which type annotations of the program do not match with the abstract state we inferred.

Remark 7.14 Recording typing assumptions

In the implementation, it is possible to record which annotations have been used and display them as assumptions at the end of the analysis

Implementation

We have implemented our analysis into Mopsa, presented in Chapter 3. The type analysis consists of 2,100 lines of OCaml code (measured using cloc), the container abstraction consists of 1,300 lines of OCaml, and there are 6,300 lines of OCaml code defining the iterators and data model of Python.

Configuration

We show the configuration used by Mopsa in Figure 7.10. The top three lines consist of stateless domains. "Py.program" handles the beginning and the end of a program's analysis: it initializes global and module variables at the beginning and transforms uncaught exceptions reaching the end of the execution into alarms to be displayed. "Py.desugar" rewrites some Python AST nodes into Universal ones. It handles rewriting of for loops (Listing 6.1 in the concrete), with statements (Listing 6.2), list comprehensions (Listing 6.9). "Py.flow" handles control-flow specific to Python, i.e., exceptions and generators (described in Section 6.2.8 and in Section 6.3.10 in the concrete). "U.intraproc", "U.loops", "U.interproc" are universal domains shared by the C and the Python analyses; they handle intraprocedural constructs, abstract fixpoint computation and interprocedural function inlining. "Py.libraries" implements some library stubs in OCaml, as well as the handling of type annotations shown in Section 7.

Optimizations & extensions

During our initial testing of this type analysis, we noticed that it was slowed down by two factors:

1. The number of exceptions that were raised. Each new exception creates a new entry in the flow map, which created large abstract states. 2. The analysis of function calls (where the same functions were analyzed many times, with arguments having the same types in most calls).

These observations lead us to two optimizations described below.

Exception abstraction

When an exception is raised, we store the current abstract state with the exception flow token for the rest of the analysis, in order to reuse it if this exception is caught later on. However, imprecise analyses may raise exceptions frequently. For example, the smashing abstraction handling the list analysis needs (in order to be sound) to raise a potential IndexError at each list access, as the analysis does not keep precisely abstract list sizes. This created many different exceptions stored in the analysis state, but most were never used. To solve the problem, we abstracted sets of such exceptions for which the analysis is deemed a priori imprecise into a single abstract exception, joining the corresponding abstract states into one. The set of imprecise exceptions can be parameterized by the user. By default, the exceptions abstracted are IndexError, KeyError and ValueError, corresponding to imprecisions on list accesses, dictionary accesses, and list unpacking.

Towards a partially modular function analysis.

We have implemented a partially modular function analysis, which keeps the abstract input state, the abstract output state and the returned expression of function calls in a cache. When analyzing a function call, the cache is checked: if this function has already been analyzed with the same abstract input state, the analysis result is taken directly from the cache. Otherwise, the function is inlined, and the analysis result is cached afterward. In particular, using this cache does not reduce the precision of the analysis but greatly improves its running times. The experiments displayed in Figure 7.11 show that this cache, combined with the exception abstraction can provide a 32x speedup over the inlining-based analysis (regex_v8.py), while the memory usage increased by only 15%. In some cases, the inlining-based analysis and the cache-based analysis have the same running times: this may be due to a program having less user-defined functions to analyze, or the cache not being hit because the calling contexts are too different. We believe this cache is particularly efficient because we compute types rather than values: while the abstract state would change a lot during a value analysis (e.g., as loop indexes increase), the abstract state in the case of a type analysis is more stable. We can also reuse the cache when the current input state is included in the input state kept in the cache. This is actually used in our implementation. In the benchmarks below, choosing this relaxed version improves the running times by 40% in one case (choose.py), but introduces imprecision in another case (22 out of the 25 alarms detected in hexiom.py).

Note that we keep analyzing functions on demand at each call-site knowing their calling context. We believe that performing a sound, context-free function call analysis, as done in most type systems, would not be practical for Python programs, as functions rely on implicit assumptions and may have side effects on their arguments or other variables not defined in the function scope. The cache-based analysis could still be improved to keep only the relevant parts of the whole abstract input and output states, such as the parts that may be read or changed by the function. This extension, which would help reuse more of the analysis results kept in the cache, is left as future work.

Experimental evaluation

In this part, we report previous evaluations of our implementation on several benchmarks: 1. We compare our analysis with five tools aiming at detecting incorrect programs potentially reaching runtime errors in Section 7.6.2. This part is based on the benchmarks of our ECOOP paper [START_REF] Monat | Static type analysis by abstract interpretation of python programs[END_REF]. 2. We evaluate the choice of allocation policy and the effect of performing garbage collection on abstract addresses in Section 7.6.3. The notion of allocation policy and abstract garbage collection were presented in Chapter 4. This part is based on the measurements of our SOAP paper [START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF].

Since the implementation evolved in between the publication of the articles, the measured analysis times are not exactly the same.

Benchmarks

We chose 5 of the biggest benchmarks from Typpete's unit tests (prefixed with Typpete's icon, , in Figure 7.11). Typpete [START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF] performs a type inference for Python programs. It will be presented in Section 7.6.2. We also took 12 benchmarks from Python's reference interpreter [START_REF]Performance benchmarks from Python's reference interpreter[END_REF] (prefixed with in the table). These benchmarks are used by Python and Pypy developers to detect performance variations of their interpreters during development. Out of the 44 benchmarks currently available, we chose 12 with no external dependencies and few standard library module dependencies so that most tools can analyze them. We argue that while the benchmarks are not very long, these Python programs are realistic and may call a lot of functions. For example, calling Python profiler cProfile on chaos.py shows more than 469,000 function calls. We also add three small tests focusing on characteristics we believe are paramount to performing a sound analysis of Python programs: taking into account object mutation and aliasing, as shown in Listing 7.2 (mutation.py); being able to precisely analyze introspection operators such as isinstance and hasattr, in order to analyze precisely a program calling the function fspath from Listing 7.1 for example (file isinstance.py, Listing 7.5); and analyzing precisely exception-related control-flow operators in order to have a precise analysis and avoid raising type errors later caught by an except TypeError statement for example (file exception.py, Listing 7.6). Finally, we analyze the two entry points (processInput.py, choose.py) of a real-world command-line utility from Facebook, called PathPicker (prefixed with ; the LOC for these files consists in the size of the file and all the PathPicker files imported by this one). These two parts are multifile projects depending on other modules from PathPicker (which are inlined and analyzed by our tool), as well as some standard library modules, including re, subprocess, json, curses, posixpath, argparse, configparser, os, stat, locale, bz2, lzma respectively handling regular expressions, external process calls, json files, curses command-line interfaces, file-related functions, argument parsing, configuration file parsing, operating-system and file status, internationalization of output and compression algorithms. As all these modules are at least partially written in C, we used the annotations from Typeshed [152] to support them. All program constructs used in the benchmarks are supported by our tool, meaning our analysis is sound on them.

We describe and quantify some of Python's features used the benchmarks in Table 7.1. "max. loops nested" is the maximum nesting level of loops when analyzing them. Due to function inlining, this number is higher than the maximum nesting level at the syntactic level of the program. We compare our tool with the abstract-interpretation-based value analysis of Python of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF], and three other tools having close goals: a tool by Fritz and Hage [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF], Typpete [START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF] and Pytype [START_REF] Chen | the Pytype development team[END_REF]. We also include the static analysis part of RPython [2] in our comparison, whose goal is to compile a restricted subset of Python into more efficient programs. [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF][START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF][START_REF] Chen | the Pytype development team[END_REF] try to infer a static typing of programs ensuring the absence of dynamic typing errors, while we go further and check whether dynamic typing errors can occur and result in exceptions that stop the program (hence, we can successfully analyze correct programs that are not typable but are nevertheless correct as they recover from dynamic type errors). We consider that dynamic type errors correspond to both the AttributeError and the TypeError exceptions.

Both [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] and our analyzer generate as output the set of exceptions that may escape to the top-level, with detailed exception messages close to those given by Python. While this naturally includes type-related exceptions, we also take into account that even type errors can be caught and handled by the program, in which case they are not reported as errors. Contrary to [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF][START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF][START_REF] Chen | the Pytype development team[END_REF], we also detect other errors (such as out-of-bound list accesses) in order to have a sound analysis (though we are imprecise in most cases). Table 7.1: Features used by some benchmarks

Explicit Exceptions Introspection

The tool developed by Fritz and Hage performs a data-flow analysis, computing the type of each variable. While the original paper [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF] experiments various tradeoffs between performance and precision (using different widenings, flow-sensitivity, context-sensitivity, …), we used the default arguments of the provided artifact. As mentioned in their paper, this tool does not handle exceptions nor generators. Its output is a dump of the data-flow map, associating to each program point the type of each variable. A program is untypable for this tool when the analyzer puts reachable variables to the bottom type.

Typpete encodes type inference of Python programs into a MaxSMT problem and passes it to Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF] to solve it. If Z3 yields unsat, the program is untypable. Otherwise, the output of Typpete is a type annotation of the input program. It comes with around 40 examples on which we were able to test our analyzer. Typpete restricts its input to Python programs where variables have a single type in a program (but it handles subtyping: a variable having both types int and str will have type object) and dynamic attribute addition is not supported. When there is a type error, Z3 finds the inference problem to be unsatisfiable and Typpete shows a line in relationship with the type error. As the structure of the program is lost during the MaxSMT encoding, the line shown by Typpete is not always the line where the error will occur at runtime. Typpete supports the basics of the PEP 484 type annotations, and uses them for its stubs, or to guide the analysis on an input program.

Pytype is a tool developed by Google and actively used to maintain their codebase. Hence, it is more mature than the other tools. It performs an analysis that is not described formally, but it has a wide language and library support (it also uses Typeshed), allowing it to scale to large codebases. It outputs the last type of each variable when the typing is successful and can produce a type annotation of the input program. It also produces clear error messages looking like the exceptions raised by Python when it detects an erroneous program.

We obtained the analyzer developed by Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF]. It performs a value analysis by abstract interpretation. Its output is a set of potentially uncaught exceptions.

RPython performs a data-flow analysis to check that a program is part of the subset it can efficiently compile. It outputs the control-flow graph with the inferred types.

We compare the analysis of these five tools to two different configurations of our analyzer:

Configuration 1 using inlining and no exception smashing of the alarms; Configuration 2 using partially modular analysis and exception smashing in alarms (see Section 7.5.2).

These configurations use the type allocation policy π types defined in Section 4.2, and no abstract garbage collection.

Performance and precision

We test the language support, the performance, and the precision of each tool. An analyzer may crash due to an unsupported construction (Bug) or may timeout after one hour of analysis (CLOCK). We measured the analysis time five times for each benchmark and tool, and the mean is displayed. The memory usage of our analysis is deduced from the statistics of OCaml's garbage collector. All tools are deterministic. In the evaluation of our tool in its most efficient configuration (Conf. 2), the column Exclamat displays the number of false alarms raised (the precision is identical in Conf. 1), with the smashed exceptions (corresponding to the imprecise exceptions raised by the list and dictionary abstractions) separated. The results are displayed in Figure 7.11. We notice that our analysis is able to scale to benchmarks a few thousand lines long within a reasonable analysis time. Some benchmarks take longer to analyze: for example hexiom.py has a lot of nested loops, and functions are called multiple times, so the analyzer has a lot of fixpoint computations and inlining to perform (it performs 1770 analyses of 5-levels nested loops). It seems that the other type analyzers [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF][START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF][START_REF] Chen | the Pytype development team[END_REF] do not perform fixpoint computations over loops (which, at least for the case of Typpete, seems sound as it infers more abstract types). Similarly, Typpete is able to perform an efficient analysis, although it lacks library support to analyze some Python benchmarks, and is unable to analyze programs where a variable is initialized in a (potentially unexecuted) loop. The tool from Fritz and Hage is quite fast (the running times are measured by running a docker container due to the software dating from 2011), but we will in Section 7.6.2.3 that it is unsound in most cases. It fails on hexiom.py due to a parsing error. Pytype is a more mature analyzer, and it does not fail on any of the benchmarks, but times out in the regex_v8.py benchmark (after reaching out to the development team, it appears to be a performance bug from Pytype in its analysis of big dictionaries 4). The value analysis of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] is unable to support the standard library functions needed for most benchmarks (supporting new library functions in the value analysis is more timeconsuming, as it requires to include the effect of this function on the abstract values). On the benchmarks it is able to pass, our analysis is in average 8.5× faster than the value analysis; it also scales to benchmarks 5× longer. RPython is able to type 6 out of 22 benchmarks. In the 16 other cases, 5 seem to be due to internal bugs, while the 11 last cases are due to constructs unsupported by RPython. Compared to RPython, our analysis is able to fully analyze statically untypable programs (it will not stop at the first type exception, which can be caught later on). Our analysis raises a few alarms. As the programs did not mix types implicitly, our analysis was sufficiently precise to avoid raising false alarms over type and attribute errors. However, the smashing abstraction of the lists and the dictionaries creates some false alarms: dictionary values having different types (and heterogeneously-typed lists) are smashed into content variables, triggering imprecision over the types in the rest of the analysis (cf. Example 5.24). In addition, the smashing abstraction currently does not keep track of the (potential) emptiness of lists: this creates a few false alarms, corresponding to the UnboundlocalError in spectral_norm.py, nbody.py, bm_raytrace.py, bm_scimark.py and 22 of those in hexiom.py. More generally, the absence of information on the length of the list means that each list access should raise a potential IndexError (this precision issue is addressed by the value analysis presented in Chapter 8). Similarly, KeyError exceptions are raised upon each dictionary access, and ValueError may be raised during list unpacking. The spurious IndexError are not raised by the value analysis of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF], which is able to track the length of lists. The alarms are not raised by the three other analyzers, as they focus on type errors only, and not on finding which exceptions may be raised. As each analyzer has its own output (and type system), we were unable to compare their precision in all cases, and only study the precision on the first three small examples. In the isinstance.py example, both our tool, the value analysis of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] and Pytype are precise, but the others are imprecise (Fritz and Hage [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF]'s tool yields an unsound result, Typpete declares the program incorrect). For exception.py, the tool of Fritz and Hage [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF] does not support exceptions; while the value analysis of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF], Pytype and Typpete declare the program incorrect; our tool does not raise any alarm. Concerning mutation.py, both Pytype, the value analysis of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] and our tool are precise. Typpete is imprecise (it declares some integers and strings to be of object type), and the tool of Fritz and Hage [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF] infers a variable holding a string as an integer.

Soundness evaluation

We experimentally check the soundness of the analyzers. We believe soundness is important in order to detect all potential errors. As each benchmark file was a correct Python program, we created erroneous variants having one type error (by introducing a string into an integer variable), in order to check the soundness of each analyzer (similarly to the evaluation of Typpete [69, pages 5-6]). We then ran each analyzer on those files (the correct and the erroneous one each time), and checked whether the inferred types and alarms were matching the behavior of the program: either the analysis seemed sound as the types and alarms were correctly raised, or the analysis was unsound (no error was detected in the erroneous variant). The injection of type errors to evaluate the soundness is simplistic, as our goal was to test the soundness of the other tools quickly. Our analyzer is sound by construction but may include implementation bugs, and it would be interesting to automate error injection to check the soundness more thoroughly experimentally.

We find that our analysis catches the errors in all erroneous variants and is thus sound -as expected -in these cases. Typpete is sound over the programs it can analyze. The tool from Fromherz et al. should be sound by construction, but an implementation error yields an unsound case in unpack_seq.py. The artifact from [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF] is unable to detect errors in all cases except fannkuch.py. Pytype is not sound in a few cases (bellman_ford.py, crafting_challenge.py, float.py, richards.py, spectral_norm.py, unpack_seq.py).

Summary of the comparison

Our analysis is sound and reports a few false alarms. Preliminary results indicate that our analyzer is able to scale, at least on programs a few thousand lines long. The soundness evaluation showed that even simple errors such as replacing an integer with a string may go unnoticed for unsound analyzers, while our analysis was able to systematically detect these errors.

Comparatively, Pytype is the most advanced tool: it is able to scale and seems to support most of the standard library. However, it is unsound in some cases. Both Typpete and [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] perform a sound analysis, but they lack some language or library support in the bigger benchmarks. The tool from Fritz and Hage is able to analyze programs very quickly, and supports most benchmarks, but it is unsound in most cases. RPython has a different goal: it focuses on compiling a more static subset of Python efficiently. Most of the benchmarks use constructs that are too dynamic to be inside of RPython's scope.

Impact of the allocation policy and of the abstract garbage collector

In this section, we use the more complex benchmarks from Python's performance repository [START_REF]Performance benchmarks from Python's reference interpreter[END_REF] and the PathPicker files.

We compare the analysis time, the memory used, and the number of alarms raised depending on the allocation policy used in Figure 7.12, and the best results with noticeable performance improvements in bold font. The policies used were defined in Section 4.2. The first policy π types does not split abstract addresses by their allocation site (except for containers such as lists). The second policy π loc splits all abstract addresses by their allocation site. In the case of a type analysis, changing sensitivities does not make much of a difference. There are some specific cases (chaos.py, richards.py, regex_v8.py) where having no location sensitivity vastly improves analysis time and memory usage. In these cases, the location-sensitive analysis is more costly because accesses to containers holding objects of the same type with different allocation sites create disjunctions. In the case of raytrace.py, the location-sensitive analysis is quicker: the analysis without location sensitivity performs more weak updates (when allocating an address that already exists through the recency abstraction), which are costlier than having multiple recent addresses in this case. Lastly, the location-sensitive analysis of processInput.py and choose.py is a bit more precise, allowing to rule out five alarms in total.

We show the effects of the abstract garbage collector (AGC) in Figure 7.13. The AGC does not change the number of exceptions detected in the benchmarks. We believe the precision improvements, as illustrated in Example 4.13, do not happen enough to affect the number of exceptions detected. We show the time spent and the memory used during each analysis. The last column gives the relative change in time spent and memory used when the AGC is enabled. The activation of the AGC is extremely beneficial: it almost halves the global memory usage and brings a 38% analysis time improvement. In addition, the most significant speedups are observed on the largest files, showing the scalability of the approach. We measured that the AGC represents less than 6% of the analysis time for all benchmarks except the last, where it takes 30% of the analysis time. In the results, the AGC is called after each assignment, where the right-hand side is a (function, method, or object) call. We have tested running the AGC at only a fraction of those assignments, but the results were not as satisfying.

Related work

A middle-end between dynamic and static type analysis is gradual typing [START_REF] Siek | Gradual typing for objects[END_REF][START_REF] Garcia | Abstracting gradual typing[END_REF]. In that case, the programmer annotates parts of the program, which can then be typechecked. The unannotated parts of the program have an unknown type called top, from which any static type can be cast to and from. The soundness theorem of gradual typing then guarantees that if a program gradually typechecks, the only type errors that may occur at runtime are casts concerning variables having type top. Gradual typecheckers for Python include Mypy [START_REF] Lehtosalo | the Mypy development team[END_REF] and Pyre [147]. Neither tool support dynamic attribute addition in programs. By contrast, our type analysis is more expressive (for example, it handles dynamic attribute addition), and completely automatic (it does not require any annotation to run).

Name

Without AGC With AGC Rel. Impr. The closest approaches to our work [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF][START_REF] Chen | the Pytype development team[END_REF][START_REF] Hassan | MaxSMT-based type inference for Python 3[END_REF]2] have been described in the experimental evaluation (Section 7.6.2). It should be noted that Fritz & Hage [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF] test many different parameter instantiations of their data-flow analysis. We believe that in the context of formal verification, a precise, context-sensitive, sound type analysis is useful. The flow-sensitivity is needed to precisely analyze exception catching statements, but neither have we tested this hypothesis on a larger scale nor have we tried selective flow-sensitivity, contrary to [START_REF] Fritz | Cost versus precision for approximate typing for Python[END_REF]. [START_REF] Xu | Python predictive analysis for bug detection[END_REF] presents a predictive analysis based on symbolic execution for Python. It consistently finds bugs and scales to projects of thousands of lines of codes, but it does not cover all executions, and is thus not sound. Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF] performs a static value analysis by abstract interpretation. They use a separation of values similar to the ones presented in TAJS [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF]. Their analysis focuses on values, which is more expressive than our type analysis, if we exclude the type equality domain of Section 7.3. Our type analysis is more scalable in its implementation, as supporting new constructs consists in providing a type signature (and knowing the side effects of this function, including the potentially raised exceptions). To scale more quickly, we can also reuse Typeshed and its type annotations to support most of the standard library (though we will lose any side effect of the annotated function in that case). The type analysis also uses less memory and is quicker: we store type information rather than abstract values, and the fixpoint computations during the analysis of loops converge more quickly (types vary less than values, for example during loop iterations). The experiments of this value analysis consisted in some of Python's unit tests and some of Python's benchmarks. As the unit tests consist mostly in equality assertions over values, our type analyzer is unable to verify these. However, the running times for the type analysis on those tests are similar to the ones described in [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF]. The benchmarks were shown in Figure 7.11.

Conclusion

We have defined a type analysis, which is able to detect uncaught type-related exceptions that may be raised during a program execution. This analysis is sound, and its modular implementation scales to benchmarks a few thousand lines long. In addition, we found that compared to other type analyses, we uniquely take into account dynamic Python features such as object mutability, introspection operators, and exception-based control-flow statements. We show in the next chapter how the type analysis can be refined into a value analysis similar to the one of Fromherz et al. [START_REF] Fromherz | Static value analysis of python programs by abstract interpretation[END_REF], and compare both our type and value analyses.

Value Analysis

The type analysis was only precise on type and attribute errors. In order to be sound, it raised exceptions for other categories of exceptions, but it was imprecise in these cases. We consider the example of Listing 8.1 (already shown in Section 4.2), computing the average weight of four tasks defined in a list, to compare informally the type and the value analyses. The type analysis of the previous chapter infers that l is a list of instances of the Task class. It infers that weight is an integer, but without a numerical domain, it has to assume it can take any possible non-positive integer values. It will thus raise false ValueError alarms during each instantiation of Task. It then infers that m is an integer at line 7. The type analysis does not maintain numerical length information for lists, and thus creates an out-of-bound access alarm (an IndexError exception in Python) at each list access to ensure that all reachable exceptions handled are included in the analysis. As l is a list of Task instances and provided that l[i] is a valid list access, the attribute weight exists for l[i] and is an integer. Knowing that both m and l[i].weight are integers, the type analysis infers that the + operator is resolved as a call to the __add__ method of m, which returns an integer. The type analysis is unable to know for sure that loop body is executed, and in particular that variable i is defined at line 10. It will thus create a NameError false alarm, and the division also raises a ZeroDivisionError. In the end, the analysis inferred precise type information for l and m. It infers that if i exists, then it is an integer, and that seven false alarms can be raised: four ValueErrors, one IndexError, one NameError and one ZeroDivisionError.

Example 8.2 Value analysis of Listing 8.1

During the analysis of line 3, the type analysis inferred that weight is an integer, so that the comparison calls int.__lt__(weight, 0). The type analysis inferred that this call returns a boolean, and the value analysis refines the result: the return will be True, as the weight is positive. The value analysis infers that l is a list of size four and that the weight of each Task is between one and five. It finds that the for loop is executed and that all list accesses are valid, avoiding all seven false alarms generated by the type analysis.

We explain in Section 8.1 how the value analysis is defined, compared to the domains used in the type analysis. An experimental evaluation of this analysis, comparing it with the type analysis and evaluating the impact of allocation policies and abstract garbage collection is performed in Section 8.2

Value analysis as a refinement of the type analysis

In the type analysis, the abstract environment maps variable to abstract addresses, which have a type. The domains' evaluations used addresses as a means to communicate with each other.

Example 8.3 Type analysis, communication through addresses

We show communication through abstract address on a simple example in Figure 8.1. The execution of x = 1, handled by the type environment first delegates the evaluation of the constant 1. This evaluation is handled by the domain in charge of Python's int object and returns a weak integer address. The state of the environment domain is then updated so that x maps to this address.

In order to obtain a value analysis, the main modification consists in upgrading the environment domain and adding a numerical abstract domain. The environment domain will delegate operations on builtin values to the corresponding numerical domains. Since builtin value objects were summarized into a single abstract address, we abstract numerical objects through variables rather than addresses. In particular, we use int(x) (resp. float(x), str(x)) to denote the integer (resp. floating-point, string) value of the builtin stored by variable x. In the case of the example assignment, this means that the environment of the type analysis is complemented with int(x) → [1, 1] in our example. The domains' evaluations now use an address, along with an optional expression denoting the builtin value. In the rest of this thesis, these evaluations are written @ , e , where @ is an abstract address, and e is either a universal expression or ⊥.

Example 8.4 Value analysis

We show how the value analysis handles the assignment x = 1 in Figure 8.2. The evaluation of the constant 1 is delegated similarly to the domain in charge of Python's int object. In addition to the int address already returned by the type analysis, the int domain also returns the constant expression 1. While evaluated 1 (in black) represented the Python constant, this 1 represents the mathematical integer (natively handled by the numerical domain). The local state of the environment domain is updated just as in the type analysis.

The environment then delegates the value assignment to the numerical abstract domain.

In the end, we know that x is an integer whose builtin value is int(x), which is 1 in the final state σ 3 .

We show the updated transfer functions of the environment domain in Figure 8.3. These transfer functions start just like the ones from the type environment do (Figure 7.2). The added operations correspond to the delegation to numerical domains. In the case of the assignment x = e, we start by evaluating e into an abstract address, and an optional expression denoting the builtin value of e. If this evaluation returns a disjunction of expressions, the monadic operator handles the disjunction (cf. Definition 6.4). We can thus define the rest of the transfer function on a single expression. We then update the environment in the global abstraction. Then, if the type of the abstract address corresponds to a builtin value (i.e., integers, floating-points, or strings), a numerical assignment is delegated. The suppression of a variable x consists in suppressing it in the local state, as well as in the underlying numerical domains if needed. The evaluation of a variable is the same disjunction where the environment's state is refined. In the case of builtin values, the returned address is accompanied by the corresponding numerical auxiliary variable, where auxiliary variables for other numerical types have been removed.

S # env x = 1 σ S # int 1 σ @ int = man.get σ σ 2 = man.set [x → { @ int }] σ σ 2 = env x → @ int heap @ int → LOCK
S # env x = 1 σ S # int 1 σ @ int , 1 = man.get σ σ 2 = man.set [x → { @ int }] σ S # num int(x) = 1 σ 2 σ 3 =      env x → @ int heap @ int → LOCK num int(x) → [1, 1]

Removing auxiliary variables of other types

During the evaluation of a variable x by the environment domain, the case disjunction removes auxiliary variables of other types (e.g., the case where x is an integer removes float(x) and str(x) from the value domains). We show why these removals are necessary to ensure a consistent state. We consider the program in Listing 8.2. At the beginning of line 3, x is either the integer 3, or the string "a" (the heap abstraction has been omitted):

σ =    env x → { @ int , @ str } num int(x) → [3, 3] str str(x) → { "a" }
If we evaluate y = x * 2 and do not perform the removals, we obtain two different states (depending on whether x has been evaluated into an int or a str) • The domain describing the semantics of binary operators handles this evaluation. Its concrete semantics was described in Figure 6.23. It start by evaluating both sides of the addition.

σ int =    env x → { @ int } num int(x) → [6, 6] str str(x) → { "a" } σ str =    env x → { @ str } num int(x) → [3,
• The evaluation of variable m is handled by the environment domain (Figure 8.3). The local state of the environment is accessed to return that m points to an integer object, whose value is described by an auxiliary variable: @ int , int(m) . Both sides are handled by the environment domain.

• The evaluation of l returns a list address @ list,r , with no associated value expression.

• The evaluation of i returns an integer address @ int , with an auxiliary variable int(i) as the associated value expression. • The index domain ultimately calls the method list.__getitem__. The arguments of this method should actually be the evaluated versions of l and i (i.e., @ list,r , ⊥ and @ int , int(i)), but we stick to the initial expressions in this description for the sake of readability. We first check that i is a valid index. The list summarization domain returns the auxiliary array content variable arr(@ list,r) (Figure 5.3). This variable is evaluated by the environment domain into @ T ask,r , with no value expression. • The evaluation of mro_search for the __getattribute__ method is omitted, its result is the function object.__getattribute__. • The semantics of object.__getattribute__ is shown in Figure 6.31. We omit its checks and calls, apart from the last one, which evaluates get_field(l[i], "weight"). This evaluation is handled by the heap abstraction (Figure 7.5), creating an auxil-

S # env m = m + l[i].weight σ E # binop m + l[i].weight σ E # env m σ @ int , int(m) , σ E # attrs l[i].weight σ E # index l[i] σ E # env l σ @ list,r , ⊥ , σ E # env i σ @ int , int(i) , σ E # list list.__getitem__(l, i) σ S # num assume 0 ≤ int(i) < alen(@ list,r) σ E # env arr(@ list,r) σ @ T ask,r , ⊥ , σ E # object object.__getattribute__(l[i], "weight") σ E # heap get_field(l[i], "weight") σ E # env l[i] • weight σ @ int , int(@ T ask,r • weight) , σ E # int int.__add__(m, l[i].weight) σ @ int , int(m) + int(@ T ask,r • weight)), σ = man.get σ σ 2 = man.set [m → { @ int }] σ S # num int(m) = int(m) + int(@ T ask,r • weight) σ 2 σ 3 σ =                             
mem { @ T ask,r ; @ list,r ; @ int } env i → @ int , m → @ int , l → @ list,r , arr(@ list,r) → { @ T ask,r } @ T ask,r • weight → @ int heap @ T ask,r → { weight }, ∅ num int(i)

→ [0, 0], int(m) → [0, 0] int(@ T ask,r • weight) → [2, 2],
alen(@ list,r) → [1, 1] iary address variable @ T ask,r • weight. The evaluation of this variable is then delegated to the environment abstraction. The environment abstraction returns an object, having an integer address @ int , and for value the expression int(@ T ask,r

σ 3 = σ 2 num → int(i) → [0, 0], int(m) →[2, 2], int(@ T ask,r • weight) → [2, 2]
•weight). • The domain of binary operators ends up calling int.__add__. This call is handled by the domain of int objects. It returns the integer address, and the value expression is the addition of the auxiliary integer variables of m and @ T ask,r • weight. The + operator corresponds to the addition of mathematical integers and not Python's addition operator.

• The environment domain updates its local binding to map variable m to the integer address. • It then delegates the assignment int(m) = int(m) + int(@ T ask,r • weight) over values to the numerical domain. The result of this statement updates the binding of int(m) to the interval [2,2].

We encounter an issue to define the concretization of the environment. We have assumed that builtin values are allocated to a single weak address for each type in the previous chapter. In the value analysis, builtin values are tracked through variables to be precise. However, these two approaches conflict in the concretization: we illustrate this issue in the example below.

Example 8.8 Concretization difficulty with builtin values

Let us consider the abstract state at the end of the program x = 1; y = 2:

σ = env x → @ int , y → @ int num int(x) → [1, 1], int(y) → [2, 2]
If the concretization of the environment puts builtin values in the the heap, all integer values will be merged into the same state, since there is only one weak address for builtin integers. The same applies to floating-point and string values. In that case, we would get:

v∈{ 1,2 }
(e, h) e(x) = @ int , e(y) = @ int , h(@ int) = (int(v), LOCK)

Clearly, this approach does not work. The recency abstraction will concretize @ int into multiple addresses and provide a sound set of concrete states. This set of states would however be really imprecise (we would get that x may be 2 for example). Our solution consists in forgetting the object structure of builtins for now, and let the environment domain perform the following concretization in this case:

{ (e, ∅) | e(x) = 1, e(y) = 2 }
Once the concretization of the recency abstraction has been applied, we can always concretize these builtin values into builtin objects to get:

(e, h) ∃(a, b) ∈ N 2 , e(x) = @ a , e(y) = @ b , h(@ a) = (int(1), LOCK), h(@ b) = (int(2), LOCK)
We show the updated concretization of the environment abstraction in Figure 8.5. This concretization is a relation between a concretized environment over auxiliary value variables (i.e., Value def = Z ∪ F 64 ∪ string) and a concrete environment and a heap. For non-builtin values, the concretization is the same as the one of the type analysis shown in Figure 7.3. Builtin values are picked from the input environment ρ, using the corresponding auxiliary variables. We consider the abstract state σ . It corresponds to the tasks allocated at line 6 of Listing 8.1, along with a variable x pointing to one of the task instances.

γ env () = { (ρ ∈ V → Value), (e ∈ (V Addr ∪ Value), h ∈ (Addr ObjN × ObjS)) | v ∈ dom ⇔ e(v) ∈ (v) \ { @ int , @ float , @ str }∨ int(v) ∈ domρ =⇒ e(v) ∈ ρ(int(v)) ∨ float(v) ∈ domρ =⇒ e(v) ∈ ρ(float(v)) ∨ str(v) ∈ domρ =⇒ e(v) ∈ ρ(str(v) ; @ ∈ codom ⇔ (fst •h(@) ∈ γ ObjN (type(@)) ∧ snd •h(@) =) }
σ =                 
mem { @ T ask,r ; @ T ask,o } env x → { @ T ask,r ; @ T ask,o }, @ T ask,r • weight → @ int , @ T ask,o • weight → @ int heap @ T ask,r → ({ weight }, ∅), @ T ask,o → ({ weight }, ∅) num int(@ T ask,r • weight) → [5,5], int(@ T ask,o • weight) → [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF]3] The concretization of the numerical domain yields three different states:

v∈{ 1,2,3 } int(@ T ask,o • weight) → v, int(@ T ask,r • weight) → 5
The concretization of the environment chooses what x points to. It defines the nominal object structure of the objects allocated at @ T ask,m . For each auxiliary integer variable (v), a binding of e(v) is created with the corresponding numerical value (now considered as a builtin value of Python). (e, h) e(x) = @ T ask,m h(@ T ask,r) = (T ask,) h(@ T ask,o) = (T ask,) e(@ T ask,o • weight) = v e(@ T ask,r • weight) = 5

The concretization of the heap transforms the auxiliary attribute addresses on weight, that are always defined, into structural information on the objects in the heap. (e, h) e(x) = @ T ask,m h(@ T ask,r) = (T ask, { weight → 5 })

h(@ T ask,o) = (T ask, { weight → v })
The recency abstraction concretizes the old address in a finite number of addresses and the recent address into a single address allocated after the old addresses.

n≥1 (e, h) ∃j ∈ [1, n], e(x) = @ j ; h(@ n) = (T ask, { weight → 5 }); ∀i ∈ [1, n -1], ∃v i ∈ { 1, 2, 3 },h(@ i) = (T ask, { weight → v i })
As we have mentioned, the concrete state above does not exactly match the definition of concrete states of Chapter 6. The builtin values (5 and the v i in the state above) have to be transformed into Python objects, giving:

n≥1 (e, h) ∃j ∈ [1, n], e(x) = @ j ; h(@ n) = (T ask, { weight → @ a int }); ∃a ∈ N, h(@ a int) = (int(5), LOCK); ∀i ∈ [1, n -1], ∃v i ∈, ∃b i ∈ N, { 1, 2, 3 }, h(@ i) = (T ask, { weight → @ b i int })∧ h(@ b i int) → (int(v i), LOCK)

Remark 8.10 List analysis

In the current implementation, the list domain handles both summarized content and list length at once. It thus does not change whether a type or a value analysis is used. This differs from the presentation we made in Chapter 5, where summarization and length domains are combined in a reduced product (see also Remark 5.17 in that chapter). The approach based on a reduced product would, in theory, be better: the length domain would not be needed in the case of a type analysis. In addition, the implementation would be smaller and more modular. We leave this modular implementation as future work.

Experimental evaluation

This section mainly presents the results obtained in the publication of our SOAP article [START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF].

We compare the type analysis and the value analysis in Section 8.2.1, the choice of allocation policy in Section 8.2.2, and the impact of the abstract garbage collection (AGC) in Section 8.2.3. We finish by showing new results about the selectivity of the value analysis. The configuration of the value analysis we used relies on an interval domain for integers and floating-point number abstractions, and on a string powerset domain for the string abstraction. It is shown in Figure 8.6. All the analyses shown in section use the function cache defined in Section 7.5.2.2.

Value-sensitivity

The results of the type and value analyses are displayed in Figure 8.7. Both analyses were performed with no allocation sensitivity, and the AGC active. The memory is measured through OCaml's garbage collector statistics, using the maximum size reached by the major heap. We print the reductions in the number of detected exceptions in bold. The exceptions detected are split into different categories:

• Type errors: TypeError, AttributeError exceptions.

• Index errors: out-of-bound list accesses.

• Key errors: key not found during dictionary access. • All other errors, including user-defined exceptions.

Some exceptions are systematically raised by the type analysis in order to be sound (such as index errors during list accesses). We included these as alarms in the table to show how many potential errors are eliminated by the value analysis. We notice that the precision gained with the value analysis does not remove any type-related error in the programs we analyze. We find that the value analysis is in average 3.25 times slower than the type analysis and similarly, it needs 3 times more memory. In some rare cases, the value analysis is able to detect dead code that the type analysis considers reachable. The value sensitivity does not reduce the key errors (the smashing abstraction of dictionaries is too coarse). For all other exception categories, an improvement in precision is witnessed. In the case of the index errors, the number of raised alarms is divided by 10.

Allocation-site policy choice

We perform an allocation-site sensitivity comparison in Figure 8.8. We compare having no allocation-site sensitivity for all objects (excepting containers) with having allocation-site sensitivity for all objects. The abstract garbage collector is activated in both cases. For each allocation policy, the time spent, the memory used, and the number of exceptions detected are indicated. The best results for each policy are printed in bold. We find that not performing an allocation-site partitioning is more efficient, although it may raise a few more alarmsless than 9% more in total. Cases such as chaos.py and regex_v8.py illustrate this observation. The analysis of richards.py reveals that the addition of the location sensitivity may cost an order of magnitude more in resources. This cost increase is a consequence of objects of the same type being allocated at different program locations, resulting in more cases to be analyzed. In some cases (go.py, hexiom.py), the location sensitivity yields quicker analyses, because the analysis without location sensitivity performs more weak updates (when allocat- ing an address that already exists through the recency abstraction), which are costlier than having multiple recent addresses in these cases. We tested adding the callstack-sensitivity to the location-sensitivity. In our benchmarks, it achieved the same results in precision and similar analysis times.

Abstract garbage collector

We show the impact of the abstract garbage collector in Figure 8.9. We only show time and memory usage, as the precision is unchanged in those cases. If we remove the pathological case of richards.py, whose analysis time is significantly higher than the others, the AGC yields a 33% relative improvement for the analysis time and 44% for the memory usage. These results are similar to the ones obtained with the type analysis in Section 7.6.3.

Selectivity of the analysis

We show the selectivity of the non-relational value analysis, with no location sensitivity and the abstract garbage collector, on our benchmarks in Figure 8.10. Given a check (in our case, a class of Python exception), the selectivity is the number of operations proved safe by our analysis on this check, divided by the total number checks performed by the analysis. Mopsa provides utilities to tag expressions as safe or unsafe with respect to a check, and stores the results in the abstract state (Remark 3.14). This addition is rather recent, so the selectivity was not presented in our SOAP or in our ECOOP papers [START_REF] Monat | Static type analysis by abstract interpretation of python programs[END_REF][START_REF] Monat | Value and allocation sensitivity in static Python analyses[END_REF]. We consider the selectivity with respect to the following Python exceptions:

• AttributeError (invalid attribute accesses),

• TypeError (invalid type operations),

• IndexError (out-of-bound list accesses),

• KeyError (invalid dictionary accesses),

• ValueError (invalid tuple unpacking),

• OverflowError (during casts from integers to float for example), and • DivisionByZeroError.

We highlight in bold font cases where the selectivity is not 100%. Empty cells correspond to a program where a kind of exception cannot happen: for example, fannkuch.py does not manipulate dictionaries, so its cell for key errors is left empty. We can see that the selectivity of the analysis is really high for attributes and types. They are also a high number of checks in this category, since Python is a dynamic language, and we have to infer and check the types during the analysis. The smashing abstraction of lists and dictionaries are not really precise and have a low selectivity. The selectivity is good for the last three categories, except for some cases. For example, raytrace.py has a reduced selectivity with respect to overflow exceptions. It performs computations on a class of vectors. In that case, the absence of location-sensitivity means that different vectors will be summarized in the same old address, creating imprecise values in their coordinates and triggering the false alarms.

Scaling relational analyses using packing

The experimental evaluation of Section 8.2 relies on the non-relational interval numerical domain. A relational analysis using vanilla abstract domains of Apron [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF] does not scale well however: even a small program of around 150 lines of code such as nbody.py takes 53 minutes to be analyzed using the octagons abstract domain (and did not terminate in 8 hours with the polyehdra domain). This is due to the high number of variables -both program variables and the auxiliary variables introduced: at the end of the execution, the octagon has 75 dimensions. As we mentioned in Figure 2.15, the computational cost of operations is cubic in the number of variables for octagons and exponential for polyhedra. One way to alleviate this problem is to use packing techniques [11]. The idea of packing is to split a relational domain over a high number of variables -having a high computational cost -into a set of relational domains working on small groups of related variables. The domain will infer relationships between variables inside the same group, but not between variables in different groups. This approach thus reduces the computational complexity of the numerical operations.

We have implemented a packing heuristic for the value analysis. This packing is static, i.e., it is only defined by syntactic information on the program. It keeps all global variables in a same pack. One pack is created for each function defined in the analyzed program. These function packs keep the corresponding parameters, local variables, and return variable. Auxiliary address variables related to lists are packed within the function allocating the list. The same applies to auxiliary variables of range objects, used a lot to iterate in loops. Other auxiliary variables are not kept in the packs for now.

The relational analysis with packing is more scalable. In the case of nbody.py, we go from an analysis taking 53 minutes with octagons (having 75 dimensions at the end of the program), to an analysis completing in 37 seconds. In that case, there are five different packs at the end of the program, corresponding to octagons having 14, 3, 8, 3 and 8 dimensions. The packing also improves the precision a lot in the case of regex_v8.py: it is able to rule out all 145 index errors found by the value analysis (Figure 8.7). The analysis is 2.5 times slower that the non-relational one. In our preliminary experiments, we did not notice significant precision improvements compared to the non-relational value analysis for the other benchmarks.

Remark 8.11

The balancing act of static packing

The static packing provides a first heuristic, which comes with a few downsides. On the one hand, it can be imprecise: it is not possible to expression relationships between variables in different packs 1 . This may reduce the precision of the analysis. On the other hand, some packs may be unnecessarily big, and thus computationally costly. They could be split into smaller packs, preferably by using a dependency analysis as a guide to create the packs.

Remark 8.12 Static packing and Mopsa's loosely-coupled domains

The current approach of our static packing does not respect Mopsa's approach of designing loosely-coupled domains: it needs to know which auxiliary variables are created by each abstract domain used in the analysis to perform the packing. Creating more adaptative approaches to variable packing is left as future work.

Conclusion

This concludes the part on the analysis of pure-Python programs. This chapter defined a value analysis, acting as a refinement of the type analysis. We have shown in our experimental evaluation that this analysis is more costly than the type analysis, but it is also more precise, and raises less false alarms. The analysis can use an underlying relational numerical abstract domain, which needs to be packed into smaller parts to allow scaling. We have proposed a simple static packing, and shown it can reduce further the number of alarms in one of our benchmarks. To improve the precision of our analysis, we believe the most important point is the development of more precise abstractions for the analysis of dictionaries. Having a better packing heuristic, or leveraging recent work on efficient relational abstract domains [START_REF] Singh | Making numerical program analysis fast[END_REF][START_REF] Singh | Fast polyhedra abstract domain[END_REF][START_REF] Singh | A practical construction for decomposing numerical abstract domains[END_REF][START_REF] Gange | A fresh look at zones and octagons[END_REF], is left as future work. The two most pressing points to improve the scalability of the analysis are:

• to reduce the cost of analyzing functions called in multiple different contexts, through the use of function summaries, • to support the vast standard library of Python, and other popular third-party libraries.

The last point is the object of the next part: a significant number of third-party libraries are written in C, and we define an analysis that is able to multilanguage programs consisting of Python and C code.

Part IV

Mixing Python and C

Interoperability Mechanisms between Python and C

Modern programs are increasingly multilanguage. This allows developers to combine the strengths of different languages and reuse libraries written in other languages. A host language may call a guest language through an interface; this interface is also called a boundary. The guest language is frequently C and is usually referred to as native code or native C. In this thesis, the host language is Python, and the guest language is C. This work supports the Python/C API [START_REF] Van Rossum | the Python development team[END_REF] as the interoperability mechanism between Python and C. Using native C modules in Python is frequent as it allows writing high-level Python code, itself calling efficient C code. As a matter of fact, one in five of the 200 most downloaded Python libraries available on GitHub contains C code. We start by showing a self-contained motivating example in Section 9.1, giving insights on how native C modules are defined and how they work with Python. We compare the Python/C API with other available interoperability mechanisms in Section 9.2.

A toy example using Python's API

This section provides an in-depth motivating example. We show how to define a native C extension module and how it can be used by a Python client code. We end the section by discussing which errors may happen.

When developers want to run native C code in Python, they can define native C extension modules using the Python API. These modules may contain attributes, methods, and classes, just as any other Python module. However, these methods and classes are now written in C. API functions are denoted by the Py prefix (and written in magenta in the listings). The semantics of some of these functions are described formally in Chapter 10.

Counter module, viewed from Python

Our example is a C module defining a Counter class, alongside some client code in Python. This example is self-contained and shown in Listings 9.1 and 9.2. From a high-level point of view, the counter module defines a Counter class. Instances of Counter can be created (count.py, line 4); their internal counter can be incremented using the incr method, which takes an optional integer argument being the increment (lines 6-7); they also have a read-only attribute counter returning their current value (line 8). In C, instances of Counter will be stored using the CounterO struct. This struct starts with a PyObject ob_base field. All Python objects are represented as PyObjects in C. Putting the PyObject as the first field in the Counter structure allows casting to and from Python objects. 1The PyObject definition is part of the API and shown in Listing 9.3. Its fields are a reference counter for the garbage collector and a pointer to the class to which it belongs. PyTypeObject is Python's type object, from which all classes derive. The second field of CounterO is the instance's data: an integer count, not directly exposed to Python.

The Counter class' specification is defined lines 51-58. It has three methods stored in the Py_tp_new, Py_tp_init, and Py_tp_methods fields. It also defines a special attribute member counter lines 40-41. The PyTypeObject structure is synthesized from the specification by PyType_FromSpec (line 71). These methods and members are lifted to become Python attributes and methods when the class is initialized (in PyType_FromSpec, cf. Section 9.1.4). Other fields are defined in the PyTypeObject structure. tp_basicsize, tp_itemsize define the size (in bytes) of instances. tp_flags is used to perform fast instance checks for builtin classes. tp_base points to the parent of the class. tp_dict is the class' dictionary used by Python to resolve attribute accesses (created during class initialization).

Module import

When executing the import counter statement, the C function PyInit_counter is called. This function starts by creating a module whose name (line 61) is counter with no methods attached to it (line 62). Then, the CounterT class is created (lines 71-72, cf. Section 9.1.4), and the class is bound to the module (lines [START_REF] Jakubek | Linked lists for CPython[END_REF][START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF]. Python uses a reference-counting-based garbage collector, which has to be manually handled using the Py_INCREF and Py_DECREF macros in C. If no errors have been encountered, the module object is returned at the end of the function, and counter will now point to this module in Python.

Class initialization

The call to PyType_FromSpec creates the Counter class from its specification. The function PyType_FromSpec starts by creating the PyTypeObject and fills its fields according to the specification. This structure is then passed to PyType_Ready which populates the tp_dict field of the class. This field is the class' dictionary used by Python to resolve attribute accesses. Before this call, the attribute counter and the methods __new__, __init__, and incr do not exist on the Python side.

We explain how these C functions are encapsulated into Python objects by PyType_Ready.

__new__ method. The __new__ field points to a builtin_function object. When this object is called, it calls tp_new_wrapper, which is a C function defined by CPython. This function in turn will call PyType_GenericNew to allocate the instance. __init__ method. The prototype of C functions for Python is PyCFunction (Listing 9.3, line 6).

Some signature adaptations may be needed for specific kinds of functions. For example, initialization methods (such as CounterInit) return a C int by convention. Thus, CounterInit will be wrapped into a function called wrap_init, which behaves as a PyCFunction. It is then encapsulated into a builtin Python descriptor object. Upon a call to this object, this descriptor performs pre-and post-call checks (described in Chapter 10). Continuing our example, wrap_init will be stored into an instance of the builtin wrapper_descriptor object. This descriptor is then added to the class' dictionary. incr method. The C function CounterIncr has a signature abiding by the PyCFunction type.

There is no need for a specific wrapper similar to what CounterInit required. However, incr is a method, and its assumes that its first argument is a Counter instance. This behavior is obtained by wrapping the C function CounterIncr into a method_descriptor object, performing the instance check on the first argument when it is called. counter attribute. The member declaration at lines 40-41 of the running example (Listing 9.2) is used to create a member_descriptor object, which is added to the class' dictionary at the counter field. This object will behave to make counter appear to be an attribute. However, access to the attribute will call the __get__ method of this member descriptor, and setting the attribute's value will call the __set__ method (cf. Figure 6.31 and Example 6.31). __get__ is method of the member_descriptor object which synthesizes the Python integer from the C integer at offsetof(CounterO, count) (Listing 9.2, lines [START_REF] Cuoq | Frama-C -A software analysis perspective[END_REF][START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF]. __set__ raises an exception when it called, since the member declaration specifies that counter is READONLY.

Counter increment

When the incr function is called, it is resolved through Python's attribute accesses into Counter Incr. CounterIncr uses the standard Python function prototype, corresponding to PyCFunction (Listing 9.3). Its first argument is the object instance (here, the instance stored in variable c), and the second argument is a tuple of the arguments passed to the function (for the call at line 6 it is a tuple of length one containing 2**p-1, and an empty one for the second call at line 7). PyArg_ParseTuple is a helper C function from the Python API converting the Python arguments wrapped in the tuple into C values. 2 It uses a format string to describe the conversion. The | character separates mandatory arguments from the optional ones, while i signals a conversion from a Python integer to a C int. Internally, the conversion is done from a Python integer to a long (which may fail with an exception since Python integers are unbounded), which is then cast to an int if size permits (otherwise, another exception is set). In the first call to CounterIncr (line 6), i will be assigned 2**p-1 if the conversion is successful. In the second call, i will keep its default value, 1. The internal value of the counter is then incremented by i, and then Python's None value is returned.

Counter access

Thanks to the complex semantics of Python, attribute accesses can actually hide calls to custom getter and setter functions through data descriptors (cf. Figure 6.31 and Example 6.31).

In our case, PyType_Ready takes the member declaration lines 39-42, and creates those custom getters and setters through a member_descriptor builtin object. The access to attribute counter at line 8 calls the getter (i.e., the __get__ method) of this member_descriptor object. This getter accesses the count field of the CounterO struct and converts the C integer into a Python integer. The READONLY flag in the declaration ensures that any call to the setter function raises an exception. These member descriptors are supported by our multilanguage semantics (cf. Remark 10.11) and our multilanguage analysis (cf. Example 11.4).

Building the module

In order for a native extension module to be accessible in Python, it has to be compiled into a dynamically linked shared object library. The easiest approach is to use the setuptools library to perform the build, using a setup.py file shown in Listing 9.4. This script will call GCC to create a shared library for the counter module. 9.1.9 What can go wrong?

Depending on the chosen value of p the result r will range from (i) the expected value (r = 2 p when 0 ≤ p ≤ 30), (ii) conversion errors from a Python integer to a C integer, raised as OverflowError exceptions. The error message depends on whether p ≥ 64. As we have mentioned in Section 9.1.6, the integer conversion is done in two steps: the Python integer is first converted to a C long. This conversion fails when p ≥ 64, and the error message is then "Python int too large to convert to C long" Otherwise, the conversion to a C long works, but the interpreter then checks that the cast is also possible. When 31 < p < 64, the cast is not possible and the error message is "signed integer is greater than maximum". (iii) a silent integer overflow on the C side, causing a wrap-around which is an unexpected behavior for Python developers (r = -2 31 for p = 31).

All these errors are due to different representations between the builtin values of the language. The C integer overflow does not interrupt the execution. This motivates the creation of an analysis targeting all kinds of runtime errors in both host and guest languages as well as at the boundary. The analysis presented in Chapter 11 infers all reachable C and Python values, as well as raised exceptions in order to detect these runtime errors. In this example, our analyzer is able to detect all these cases. Our analyzer is also able to prove that the program is safe when p ranges between 0 and 30.

Common bugs at the boundary

We refer the reader to the work of Hu and Zhang [START_REF] Hu | The Python/C API: evolution, usage statistics, and bug patterns[END_REF] for an empirical evaluation of bugs at the boundary between Python and C. The most frequent bugs happening at the boundary between the languages are:

• mismatches between a returned NULL and the exception being set in C (NULL should be returned by Python C functions if and only if an exception has been set -cf. The multilanguage analysis of Chapter 11 supports all classes of bugs, apart from the referencecounting errors.

Other Python/C interoperability mechanisms

This section describes other interoperability mechanisms that can be used in Python. They are higher-level than the Python API, and all are based on it one way or another. Thus, a static analysis handling the Python/C API interoperability should be able to handle programs using the mechanisms described in this section with little modifications.

For the sake of simplicity, we consider the case where we want to call a C function from Python. It is also possible to handle structures, as we have done in Section 9.1. We assume we have a file syracuse.c (Listing 9.5), defining a function syrac_nth. Given an initial element u 0 , syrac_nth(u 0 , n) computes the n-th term of the 3n + 1 sequence (similar to the code shown in Listing 2.1).

Ctypes

ctypes [START_REF]Ctypes, a foreign function library for Python[END_REF] is a module from Python's standard library. It allows to call functions from libraries and manipulate C datatypes within Python. For example, let us assume that our file syracuse.c has been compiled into the library libsyracuse.so. The functions of the library can be dynamically loaded and called, as shown in Listing 9.6. The ctypes module is loaded, and the CDLL class is used to load the library. We can then call the function syrac_nth. By default, ctypes assumes that functions return a C integer, and converts it as a Python integer. In our case, r is thus a Python integer having value 827370449. As the computation is performed in C, overflows can silently occur. For example, calling _syracuse.syrac_nth (113383,[START_REF]NIST's national vulnerability database[END_REF] in Python returns -1812855948 instead of 827370449 * 3 + 1 = 2482111348.

By default, ctypes does not have any information on the types of the functions called. It is thus possible to call _syracuse.syrac_nth("abc", 120) for example. The user can declare the types of functions exposed by the library, and ctypes will then check that types are correct. For example, if we declare that both arguments of syrac_nth have a C integer type through: _syracuse.syrac_nth.argtypes = [ctypes.c_int, ctypes.c_int] The previous call with the chain "abc" would raise a ctypes.ArgumentError exception.

Programs using ctypes are very dynamic compared to the other interoperability mechanisms: ctypes uses a library that is already compiled and loads it directly during the execution. ctypes is implemented using Python's API, and relies on libffi. This would be the most difficult framework to support for this reason.

Cffi

The cffi [START_REF] Rigo | Cffi, C Foreign Function Interface for Python[END_REF] library was created by Pypy developers. Compared to ctypes, cffi is able to read function declarations and automatically generate wrappers around these functions, ensuring safe type conversions. Similarly to swig and cython, it requires a build pass invoking a C compiler to work. The code needed to use our syrac_nth function is shown in Listing 9.7. The execution of this script will create a C file _syracuse_cffi.c, containing the definition of the Python C function syrac_nth (shown in Listing 9.8), which wraps around the call to the initial function. This script will then combine this C file with syracuse.c using gcc, to create a shared library that Python can open as a module. It is then possible to import the module using: from _syracuse_cffi import lib Calls such as lib.syrac_nth(113383, 120) can then be performed. In that particular case, we have seen that the C computation overflows and returns -1812855948. cffi is well-behaved concerning types. It checks that the arguments have the correct type. In our example, the function _cffi_to_c_int called at line 14 of Listing 9.8 will raise a TypeError when lib.syrac_nth ('a', 0) is called. The wrappers also check that those argument conversions will fit in their equivalent C type. As such, if we call lib.syrac_nth(2**32, 0), an OverflowError will be raised by _cffi_to_c_int, as 2 32 does not fit into a 32-bit C int.

Then, running swig -python syracuse.i creates two files: syracuse.py and syracuse_ wrap.c. We can define a setup.py using setuptools, defining how to compile syracuse_wrap.c into a Python module, similarly to what we have shown in Section 9.1.8. It is then possible to call syracuse.syrac_nth once the module syracuse has been imported. Similarly to the cffi, swig checks that objects passed have correct types and can be represented in C. We show an excerpt of the wrapper function in Listing 9.10. Similarly to cffi, we believe that analyzing multilanguage code using swig should be easy using the analysis of Chapter 11. SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "syrac_nth" "', argument " "1"" of type '" "int""'"); SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "syrac_nth" "', argument " "2"" of type '" "int""'");

Cython

cython [START_REF] Erwing | Cython: C-extensions for python[END_REF] has a different goal: it aims at generating high-performance Python code by letting developers annotate their Python programs with C datatypes. cython then compiles these annotated Python programs to C programs. These C programs may use the Python/C API (to handle the Python objects provided to or returned by the functions, as well as calls back to Python when the simplification to C datatypes was not possible). Our running example is shown in its Cython version in Listing 9.11. The first two lines are the only ones different from generic Python code: both the arguments and variables u and i are declared as C integers, with the int and cdef int keywords respectively.

The code generated by cython is shown in Listing 9.12. __PyInt_From_int (at line 29) eventually calls a Python/C API function, such as PyInt_FromLong. cython also performs type and value checks to ensure conversions to C datatypes will be correct. Since cython generates code using the Python/C API, our analysis of Chapter 11 should be easily adapted.

The next two chapters respectively define a multilanguage semantics for programs using the Python/C API, and an analysis based on this semantics. Since the code generated by the cffi, swig and cython rely on the Python/C API, we believe these interoperability mechanisms would not require much effort to be supported by our analyzer.

Concrete Multilanguage Semantics

This chapter defines the semantics of the interface between Python and C, corresponding to the API presented in the previous chapter. We start by explaining informally the choices made to model the semantics.

A low-level, pure-C semantics. A simple approach to define the multilanguage semantics is to notice that the reference Python interpreter, CPython, is written in C. Thus, we could define the semantics of a multilanguage program as the C semantics of CPython's source code, itself called with the program as input. This approach relies on the fact that the Python interpreter is implemented in C, so we can confuse the interoperability mechanism with CPython's execution. This view would however be too low-level to analyze programs, as the analysis would have to analyze CPython's implementation details in addition to the input program. In addition, we have already developed Python analyses based on a higher-level Python semantics, that we would like to reuse.

Building upon the Python and C semantics. We opt instead for a semantics that builds upon the semantics of each language. These concrete semantics will be used in a black-box fashion. Our goal is to delegate most of the work to the semantics of each language (in particular, the semantics of pure-Python or pure-C parts will be delegated to these semantics). This highlevel, delegation-based approach will also simplify our analysis (in Chapter 11) as we will reuse the analyses of Python and C in a similar black-box fashion.

We first need to figure out how to make the semantics of each language interoperate. We can notice that only dynamically allocated Python objects can be passed from one language to another. In our running example, a tuple containing the integer object 2**p-1 is passed (Listing 9.1, line 6) from Python to the CounterIncr method (Listing 9.2, lines 17-25). In the other way, the counter member specified lines 39-42 creates a Python integer object during the attribute access at line 8. Thus, semantics can communicate through the addresses of objects passed from one language to the other.

Following our black-box approach, we keep the state of each language's semantics. This means in particular that the machine's heap will be represented using two views, since each language's state has its heap. We have previously stated that the addresses are used to communicate between the semantics. Thus, addresses will be shared between the heap's domains. In addition, objects allocated in C can be referenced in the Python heap and vice-versa. In most cases, an object is only described in one view of the heap: C or Python. For example, the Counter instance created at line 4 is allocated on the C side during the call to PyType_GenericNew. The count value is stored in the C heap. The address of this instance is still referenced in Python's environment (since c references this instance). In some cases, though, a single object is present in both views of the heap. For example, the Counter class is a PyTypeObject in C, having all fields described in Listing 9.3. In Python, the Counter class has three methods __new__, __init__, incr and one attribute, counter. The detailed state is illustrated in Figure 10.5 and will be commented in the next section.

Of course, having two different representations of the heap creates two issues relating to them being coherent.

1. When one side dynamically allocates a new Python object, the heap description of the other side has to be updated. For example, when the Counter instance is allocated by PyType_GenericNew in C, the Python heap has to define the nominal and structural object's structure. This issue could be fixed by instrumenting the Python and C allocators in the semantics to update the state of the other language. However, this solution would break our black-box approach. 2. If one language can have side effects on the other's state, their states need to be synchronized afterward. For example, we could assume that a string defined in Python is passed to a C function. This C function could access the internal structure of the string structure and could alter its content. This modification would be done in pure C, without any call to the Python/C API. Without any synchronization into the Python state, the state in the Python semantics would not know that the string has changed.

We could remediate both issue by using a reduced product over the two semantics, and performing a reduction after any statement to keep the heap descriptions coherent. Applying a state reduction after each statement would however be costly. It turns out we can avoid reductions altogether, using a different, lighter way to handle each issue:

1. We do not automatically update the other heap at each dynamic allocation. Instead, we use boundary functions, ensuring that when an object switches from one language to the other, it is correctly represented in the incoming language's heap. These functions are purely here to ensure correct representations of each object in both heaps. They do not perform new allocations, nor conversions from a Python object to a C datatype. These conversions will be handled by API functions, which create new objects. 2. Through careful choices, we are able to make the heap representations complementary and disjoint, thus avoiding the second issue. Each language is responsible for disjoint parts of Python objects. In the case of the Counter instance, the C integer value is directly available through C only (detailed in Example 10.1). Our semantics assumes that builtin Python objects are opaque in C1 . Thus, it is not possible to directly modify them using dereferences. They can only be accessed through the API in C. This assumption will be discussed in more details in Section 10.6. It is reasonable for our target use case, which is the analysis of code using the Python API. After all, the implementation details are not supposed to be exposed to third-party modules. In addition, our analysis checks that this assumption is satisfied (it is so far the case in the programs we analyzed). These API accesses to builtins will work by calling back the Python semantics. Although CPython ultimately implements these builtins in C, we abstract away from this behavior and rely on our Python semantics. We illustrate this approach on a tuple access in Example 10. Conversely, accessing a tuple at a given index is not directly possible in C. Of course, C variables may point to a Python object such as a tuple. However, tuple objects are opaque in C, as our semantics does not capture their internal representation. Accessing them through the C language using the API will ultimately be evaluated as a Python tuple access (described later in Section 10.5.2) in our semantics. This kind of access is used at line 21 of our running example, during the call to PyArg_ParseTuple(args, "|i", &i). This call iterates through the elements of the tuple pointed by args. To perform the iteration, it uses PyTuple_Size to determine the length of the tuple, and PyTuple_GetItem to access elements. In our semantics, these builtins will in turn call the Python methods tuple.__len__ and tuple.__getitem__.

Outline. We start by defining the multilanguage state in Section 10.1. The boundary functions are then defined in Section 10.2. We define how Python may call C functions (Section 10.3), and how C may perform callbacks to Python objects (Section 10.4). We also define conversions provided by the API in Section 10.5, such as conversions between Python integers and C longs, and tuples. API functions working on other builtin datatypes (such as floats, strings, lists, ...) exist and are supported by our analysis. They are similar to the cases presented here but not described.

Multilanguage state

We define the state on which each semantics operates. In the following, Python-related states and expressions will be written in green. C-related states and expressions will be in orange.

We reuse the concrete state defined in Chapter 6 (Figure 6.2) for Python, and the one defined by Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF] for C. A set of heap addresses Addr (potentially infinite) is common to the states.

E c def = Cells Value c H c def = Addr ident × N Σ c def = E c × H c E c expr : P(Σ c) → P(Value c ⊥ × Σ c) S c stmt : P(Σ c) → P(Σ c)
Figure 10.2: Concrete C state floating-point numbers alongside its length. We assume we have a 64-bits architecture. We allocate an array of size 2, initialize its first cell to 0 and the second to 2. The concrete state is shown in Figure 10.3.

Environment Heap

f, 0, ptr → (@ 7 , 0) @ 7 , 0, int → 2 @ 7 → Malloc, 16 @ 7 , 8, ptr → 2 @ 9 , 0, float → 0 @ 9 → Malloc, 8 @ 9 , 4, float → 2

Remark 10.4 Addresses are shared

Each state may reference addresses originally allocated by the other language. In the running example (Listings 9.1 and 9.2), the Python variable c points to an instance of the Counter class. This instance has been allocated on the C side by PyType_GenericNew (cf. Section 9.1.5).

The multilanguage semantics E p×c • is defined over Python and C expressions. It operates over the whole state Σ and its return value matches the language of the input expression. We define the semantics of some builtins working at the boundary between Python and C in Sections 10.3 to 10.5. These builtins operate on the whole state. For expressions not working

E p×c expr p Σ = ∪ σp,σc∈Σ { v p , σ p , σ c | (σ p , v p) ∈ E p expr p (σ p) } E p×c expr c Σ = ∪ σp,σc∈Σ { v c , σ p , σ c | (σ c , v c) ∈ E c expr c (σ c) } Example 10.

Diagram of the multilanguage state on the running example

We show in Figure 10.5 a schematic representation of the program state after the execution of the first four lines of count.py (Listing 9.1). The six nodes with a header text starting in green are Python objects, and the nominal object is described in the header. The three remaining nodes with a header text in orange are resources allocated by malloc, and we give their type. The instance node in the top right corner represents the Counter instance created at line 4 of count.py. The header in the node represents the nominal object, which is a Python instance here. This instance points to its parent class, CClass (Counter). Two fields are defined in the corresponding C structure CounterO. The mandatory Python object header ob_base has a field ob_type pointing to the class as well. The field count of the struct CounterO has been initialized to 0. The Python side of this object contains nothing and is thus not represented.

The class' node is the most interesting, as its state is shared among the two languages. The field __new__ of the class points to a Python function which will call the builtin tp_new_ wrapper function. This function will in turn call the C function stored in the tp_new field of the class (on the C side, the class is a PyTypeObject, cf. Listing 9.3). In our case, this is PyType_GenericNew. The other cases are similar. The Python fields are automatically synthesized from the PyTypeObject structure during the call to PyType_Ready. All descriptors are Python classes defined in C; hence they have a C state. Descriptors are used to wrap checks and adaptations around C functions. They will be described in more detail in Remarks 10.9 to 10.11. We have already mentioned this duality of field definitions in the previous chapter and provided a summary in Figure 9.1.

Handling Python exceptions in C

Python exceptions may be raised from the C code using the PyErr_SetNone builtin. In the Python interpreter, this sets a flag in a structure describing the interpreter's state. We model this by setting a global variable exc with the Python object passed as an argument. Additional functions such as PyErr_Occurred checking if an exception has been raised and PyErr_Clear removing raised exceptions are modeled by accessing and setting this same global variable.

Boundary functions

Boundary functions ensure that Python objects are correctly represented in the heap of each language. Given a Python object allocated at an address, these boundaries only update the heap of the target language at this address. They do not perform new dynamic allocations. The C to Python boundary also ensures that only Python objects are passed back to Python. Contrary to the other boundary, it may fail (if something that is not a Python object is passed and return ⊥). We define two boundary functions converting a Python value (in the semantical term, Value p of Figure 10.1) into a C value (Value c , Figure 10.2) and conversely (written p → c and c → p). We define the boundary functions as operating on a single value and state at a time, but they are trivially lifted to the powerset.

p → c : Value p × Σ → Value c × Σ c → p : Value c × Σ → Value p ⊥ × Σ Example 10.6
Boundary effect Going back to the example mentioned in Remark 10.4, the variable c of our running example points to an address @ of a Counter instance which has been allocated on the C side. When this variable becomes reachable in the Python state, the boundary ensures that Python's heap knows that @ points to a Counter instance and has no fields currently defined.

Remark 10.7 Value conversion

These functions do not convert values from one language to another. This kind of conversion is handled by builtin conversion functions such as PyLong_AsLong, PyLong_FromLong for Python integer to C long conversion. These conversions are formalized in Section 10.5.1.

These boundary functions are shallow and lazy:

(i) only objects switching languages are passed through those boundaries, (ii) an object that has already been converted does not need to be converted again (i.e., when its address is already in the other language's heap). This is because the conversion only propagates immutable data, such as the type of an object.

Python to C boundary

The boundary from Python to C is described in Figure 10.6. As we have mentioned, the boundary is lazy: if the object is already defined in the C heap, there is nothing to do. If the object is not represented in the C heap, the boundary is first applied recursively to the class of the object (using the type operator of Python). Then, we update the heap: the object has been allocated by Python, and has the size of PyObject. If the object is a class, it has the size of PyTypeObject, and we call the class initializer PyType_Ready afterward. The last step performed is to initialize the ob_type field of the object to point to its class.

p → c (v p , σ p , σ c) = if v p ∈ σ.η c then (v p , 0), σ p , σ c else letb ty p , σ p = E p type(v p) σ p in letb (ty c , 0), σ p , σ c = p → c (ty p , σ p , σ c) in let σ p , σ c = if σ p (v p) = Class(c) then let σ c = σ. c , σ.η c [v p → PyAlloc, sizeof(PyTypeObject)] in E p×c PyType_Ready(v p) (σ p , σ c) else σ p , (σ. c , σ.η c [v p → PyAlloc, sizeof(PyObject)]) in let σ c = S c v p ->ob_type = ty c σ c in (v p , 0), σ p , σ c

C to Python boundary

The converse boundary (Figure 10.7) starts by checking that the value is a heap allocated Python object, allocated with resource type PyAlloc. It calls itself recursively on the class of the object (using the ob_type field in C). The Python heap is updated with the converted object.

c → p (v c , σ p , σ c) = if v c ∈ Addr × { 0 } || σ.η c (fst v c) = (PyAlloc, _) then ⊥, σ p , σ c else let v = fst v c in if v ∈ σ.η p then v, σ p , σ c else letb ty c , σ c = E c ((PyObject*)v)->ob_type σ c in letb ty p , σ p , σ c = c → p (ty c , σ p , σ c) in let σ p = σ. p , σ.η p [v → Inst(ty p), ∅] in v, σ p , σ c

C call from Python

The semantics of C function calls from Python is shown in Figure 10.8. It corresponds to the function PyCFunction_Call in the interpreter's implementation. 3 C functions callable from Python can only have two arguments (cf. the type of PyCFunction, Listing 9.3, line 6). Thus, the Python arguments are split into the first one e 1 and the other ones, bundled in a tuple. The boundary from Python to C is applied to e 1 , and to the tuple containing the other arguments. Then, the C function is evaluated using the standard C semantics. Afterward, out_check ensures that the function returned NULL if and only if an exception has been set in the interpreter state. Otherwise, a SystemError exception is raised. Finally, the C value is passed through the boundary function. Output check in CPython

E p×c (CFun f)(e 1 , e 2 , . . . , e n) (σ p , σ c) = tp_field PyCFunction_Call letb c 1 , σ p , σ c = p → c (e 1 , σ p , σ c) in letb p 2 , σ p = E p tuple(e 2 , . . . , e n) σ p in letb c 2 , σ p , σ c = p → c (p 2 , σ p , σ c) in letb c f , σ c = E c f (c 1 , c 2) σ c in letb c f , σ c = out_check(c f , σ c) in c → p (c f , σ p , σ c)
The function out_check models the effect of function _Py_CheckFunctionResult, defined by the Python interpreter. This function is called at the end of the execution of PyCFunction_Call.

We have shown the simple case of C calls from Python in Figure 10.8. There are three variations, acting as descriptor objects, shown in the following remarks.

Remark 10.9 Method descriptors

Method descriptors act as wrappers around C functions, checking that the first argument of the call is an instance of the targeted class (otherwise, a TypeError exception is raised). The function to call is stored in the d_method field of the descriptor, and the type in the d_type field (example in Figure 10.5). In the semantics, this adds an input check. It corresponds to the function method_check_args in Python's source code.

Remark 10.10 Wrapper descriptors

Wrapper descriptors are used to call C functions that do not respect the signature of PyCFun ction (Listing 9.3, lines 6-7). For example, initialization functions such as CounterInit (having type initproc, cf. Listing 9.3) also take a dictionary of arguments as third argument and return an integer as a result. Upon a call to the wrapper descriptor instance, wrapperdescr_raw_call will call the wrapper at d_base->wrapper. Calls back to Python from the C code are possible using the PyObject_CallObject function, formalized in Figure 10.9. The first argument is the object being called. The second argument is a tuple containing all the parameters. These two arguments are first passed through the C to Python boundary. Then, we use the Python semantics to evaluate the call (the * operator in Python unpacks the tuple into the arguments of the variadic function). If the call is successful (i.e., the execution is normal, shown by flow token cur), the converse boundary function is applied. If an exception has been raised during the evaluation of the Python call, we revert to the cur flow token and pass the exception object e through the boundary. The result of the call will be NULL, and the exception will be set on the C side by calling PyErr_SetNone.

Remark 10.12

No references to the source code

We do not provide references to the source code of CPython for the Python call from C, as well as the integer and tuple conversions of the next section. Indeed, the corresponding CPython code accesses the internal structures of these builtins. We model these accesses instead with the Python semantics.

Builtins of the API

We show how integers are converted in Section 10.5.1. The case of Python container accesses from the C side is shown in Section 10.5.2. We explain how generic converters using format strings work in Section 10.5.3, and how the fields of a C class are lifted from C to Python in Section 10.5.4.

Integer conversions

We show conversion functions from C long to Python integers and back in Figure 10.10. Converting a C long of value v c to a Python integer is done by calling the integer constructor in the Python semantics, where the C value is cast as a literal, mathematical integer (written in blue), and applying the boundary afterward. To perform the conversion back, we apply the boundary function to the C value. Then, we check if the corresponding Python value v p is an integer by looking into the Python heap. If that is the case, we check that this integer fits in a C long (Python integers are unbounded). Otherwise we raise an OverflowError and the function returns -1. A TypeError exception is raised and the function returns -1 if the object is not an integer.

E p×c PyLong_FromLong(v c) (σ p , σ c) = p → c (E p int(v c) (σ p), σ c) E p×c PyLong_AsLong(v c) (σ p , σ c) = let v p , σ p , σ c = c → p (v c , σ p , σ c) in if σ.η p = int(i) then if i ∈ [-2 63 , 2 63 -1] then i, σ p , σ c else -1, σ p , S c PyErr_SetNone(PyExc_OverflowError) σ c else -1, σ p , S c PyErr_SetNone(PyExc_TypeError) σ c

Operations on containers

We show how container operations are handled, using the case of tuples as an example in Figure 10.11. The same approach is used for other operations and other containers. In each case, the goal is to rewrite it as a Python evaluation, and handle conversions and errors before and after. PyTuple_GetItem(o, i) returns the object located at index i of the tuple o. The index is provided as a C integer of type Py_ssize_t, which corresponds to the C type ssize_t. o is passed as a pointer to a PyObject, and the same applies for the result. The function starts by passing o through the boundary. i is converted into a Python integer, and passed through the boundary too. Then, the Python versions of these objects are passed to the tuple.__getitem__ function. If the call is successful, the result is passed through the converse boundary and returned. Otherwise, we use the error conversion function defined in Figure 10.9 to translate the exceptional Python flow into an exception in the C state (cf. Section 10.1.4).

PyTuple_Size(o) returns the size of the tuple o as a C integer of type Py_ssize_t. It passes o through the boundary, so it can then be used in the Python call to tuple.__len__. If the call is successful, the result is passed through a boundary, and converted into a C integer. Otherwise, we convert the exceptional Python flow into an exception in the C state. PyArg_ParseTuple matches a tuple into different C values using a format string. These format strings are similar to the ones used by C's printf. They are described in CPython's documentation [START_REF]Parsing arguments and building values[END_REF].! The concrete semantics of this function is its implementation in CPython. It iterates on the format string and the tuple elements to perform the conversions, which end up calling builtin conversion functions such as the ones shown in Section 10.5.

E p×c PyTuple_GetItem(o, i) (σ p , σ c) = letb o p , σ p , σ c = c → p (o, σ p , σ c) in letb i p , σ p , σ c = c → p • E p×c PyLong_FromSsize_t(i) (σ p , σ c) in letb r p , σ p , σ c = E p tuple.__getitem__(o p , i p) (σ p , σ c) in if σ p = (cur, _, _) then p → c (r p , σ p , σ c) else convert_err(σ p , σ c) E p×c PyTuple_Size(o) (σ p , σ c) = letb o p , σ p , σ c = c → p (o, σ p , σ c) in letb l p , σ p , σ c = E p tuple.__len__(o p) (σ p , σ c) in if σ p = (cur, _, _) then letb l c , σ p , σ c = p → c (l p , σ p , σ c) in E p×c PyLong_AsSsize_t(l c) (σ p , σ c) else convert_err(σ p , σ c)

Class initialization: PyType_Ready

We have shown in Listing 9.3 (at lines 22-34) a simplified definition of the PyTypeObject structure used to define Python classes in C. PyType_Ready takes this structure, having different fields (such as tp_new, tp_init, but also the methods of tp_methods and members of tp_members) and binds the corresponding attributes to objects in Python (i.e., it creates the left hand-side of the class in Figure 10.5). We do not show the formal semantics of this function. It just performs the lifting from C fields to Python ones we mentioned.

Threats to validity

This concrete semantics is already high-level. Our goal is to analyze Python programs with native C modules and detect all runtime errors that may happen. Assuming that those C modules use Python's API rather than directly modify the internal representation of builtins seems reasonable when analyzing third-party modules. This is the recommended approach for developers, as it eases maintenance of the codebase since API changes are not frequent and documented. On the contrary, internal representations may be changed in incompatible ways without notice. Our analysis, presented in the next chapter, is able to detect if a program does not use the Python API and tries to modify a builtin Python object directly. In addition, a lower-level semantics where implementation details of builtins are exposed would be much more complex and not benefit our analysis. Such a lower-level semantics may need to perform whole Python (resp. C) state conversion at the boundary when switching languages.

We have established this semantics by reading the code of the reference Python interpreter. Proving that our semantics is a sound abstraction of such lower-level semantics is left as future work.

The garbage collection based on reference counting is not supported by our semantics. Thus, we cannot detect deallocations that are performed too soon or that are not performed at all.

Related work

The seminal work of Matthews and Findler [START_REF] Matthews | Operational semantics for multi-language programs[END_REF] defines the first semantics of multilanguage systems, using the notion of boundaries to model conversion between languages. They start from a statically typed call-by-value lambda-calculus (with natural numbers) and an untyped version of the lambda-calculus, with natural numbers and a notion of exceptions. They introduce the notion of boundary to convert the value of one language into the other. They study different embeddings: the lump embedding, where values from one language are opaque to the other, a natural embedding with type-directed conversion of values, values can be converted using type information. They then prove different results on these combined languages, such as type-safety. Buro and Mastroeni [23] provide a general framework of language interoperability that is independent of the combined languages.

We study a real-world case where the interoperability mechanism was defined by the Python developers. Thus we do not search for the development of better interoperability mechanisms that could automatically perform conversions and prevent type errors by construction. Contrary to the cases studied in these works, the interoperability between Python and C does not mix languages or values at the syntactic level. Our notion of boundary only ensures the coherence of states. Conversions are performed by builtins from the API, with dynamic type checks.

Conclusion

This chapter defined a concrete semantics for multilanguage programs using the Python/C API as interoperability mechanism. It relied on the concrete semantics of the Python and C programming languages, to which the semantics of pure-Python and pure-C parts are delegated. We defined a careful separation of the Python and C views of the same heap, that does not require systematic reductions between the two states. We used instead lazy boundary functions to ensure objects are well-represented when they cross from one language to another. We assumed that the Python builtins were opaque structure to the C side. This ensures a disjoint separation between the views of the heap. API functions operating on those builtins in C are defined by calling back the Python semantics. The current limitation of this semantics is the absence of support of the garbage collector, which is based on reference counting.

Multilanguage Value Analysis

Although useful, multilanguage programs generate additional sources of bugs. Indeed, developers need to take into account different safety mechanisms and memory representations. Python is safe to the extent that runtime errors in pure Python programs are encapsulated into exceptions, which can be caught later on. This safety property breaks when C modules are used since a runtime error in C may irremediably terminate the program or create an inconsistent state. Python and C also have different representations. For example, Python integer objects use at least 24 bytes of memory and have unlimited precision, while C integers have fixed lengths (generally ranging from 8 to 64 bits) and can suffer from overflows.

Static analyzers tend to focus on analyzing one language at a time. They may use stubs to model the behavior of calls to other languages. These stubs may be time-consuming to implement if written by hand. They can undermine the soundness of the analyses since the actual code is not analyzed, and the stubs may be imprecise or wrong. For example, we have seen in Section 7.4 that our Python analyses can leverage official Python type annotations (defined by PEP 484 [START_REF] Guido Van Rossum | Python Enhancement Proposal 484[END_REF]) as stubs. While these analyses track uncaught Python exceptions, these type annotations do not declare which exceptions may be raised, thus adding an unchecked assumption to the soundness property (Remark 7.12).

We aim at analyzing both the native C code and the Python code (including callbacks to Python code from the native side) within the same analyzer. This analysis is based upon existing Python analysis (Chapter 8) and C analysis Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF], implemented in Mopsa. Our analysis detects runtime errors in the native C code (invalid pointer operations, invalid memory accesses, integer overflows), in the Python code (raised exceptions), and at the boundary between the languages. The underlying address allocation and numerical abstractions are shared.

We believe the approach described in this paper is general enough to be extended to other multilanguage settings, such as the analysis of Java and C through the JNI.

Outline. We define the abstract domain in Section 11.1, its transfer functions in Section 11.2. We show detailed examples of the analysis in Section 11.3. Section 11.4 defines the concretization of the domain and states the soundness theorem of the analysis. We discuss implementation details in Section 11.5 and evaluate our analysis in Section 11.6. This chapter finishes with a survey of related work (Section 11.7) and a conclusion (Section 11.8).

Abstract domain

We show a generic construction of the abstract multilanguage state. The multilanguage domain combining the underlying C and Python analyses is stateless. We describe in this section how the existing abstract state for C and Python analyses, developed independently, can be combined without further information to provide a multilanguage abstraction. We assume the abstract semantics of Python and C are provided through E # p • , E # c • . These are instantiated in practice using previous works: the value analysis of Python presented in Chapter 8, and the C analysis developed by Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF]. We assume that each language's abstract state relies on an address allocation abstraction (such as the callsite abstraction or the recency abstraction [4]) and a numerical abstraction (such as intervals, octagons, …). We write Σ u the cartesian product of these two abstractions. The abstract Python (resp. C) state can then be decomposed as a product Σ p = Σ p × Σ u (resp. Σ c = Σ c × Σ u). 1As we have mentioned before, the mutlilanguage domain is stateless. The state of the multilanguage analysis consists of the cartesian product of the Python and C abstract states, where the address allocation and numerical states are shared: We show how the C analysis abstracts a state. We reuse the example C program of the previous chapter, whose code is recalled in Listing 11.1. We assume the analysis targets a 64-bits architecture. It defines a structure ftab containing a dynamically allocated array of floating-point numbers alongside its length. We showed the concrete state in Example 10.3. The recency abstraction σ mem contains two addresses (both are recent), corresponding to the allocations performed at lines 7 and 9. Addresses are written in red to show that they have been allocated in C by malloc.

Σ p×c = Σ p × Σ c × Σ u .
σ mem = @ 7 ; @ 9
The cells domain [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF] contains the set σ cells of cells showed below. These cells are auxiliary variables, tracking the actual access patterns of variables and addresses. Each cell is defined by a base (a variable or an address), an offset, and the type accessed. σ cells = f, 0, ptr ; @ 7 , 0, s32 ; @ 7 , 8, ptr ; @ 9 , 0, float ; @ 9 , 4, float

The pointer domain σ ptr has two bindings: σ ptr = f → @ 7 , @ 7 , 8, ptr → @ 9

The numerical domain (here, a constant or an interval domain is sufficient) has the state σ num . The first three lines are auxiliary variables representing the mathematical numbers corresponding to each cell with numerical type. The abstract state introduces auxiliary variables to track the size of dynamically-allocated memory blocks, and the pointer's offsets, shown in the last two lines. σ num = int(@ 7 , 0, s32) = 2, float(@ 9 , 0, float) = 0, float(@ 9 , 4, float) = 2, bytes(@ 7) = 8, bytes(@ 7) = 16, offset(@ 7 , 8, ptr) = 0, offset(f, 0, ptr) = 0

Remark 11.2 Unique numerical domain

Concrete states use numerical values in different places (e.g., the C state has machine numbers, pointer offsets and memory blocks' sizes). All these values will be centralized in a common numerical domain in the abstract state. This centralization allows expressing relations between all those numerical variables, possibly improving the precision.

Transfer functions

Just as the concrete semantics builds upon the underlying C and Python semantics, so does our abstract semantics. We need to implement a few transfer functions, specific to the Python/C API. We define the abstract semantics of boundary operators. It is slightly different from the concrete, since the C heap relies on auxiliary variables in the abstract. The other transfer functions are obtained by a straightforward replacement of concrete operators with abstract ones. Thus, we only show the abstract semantics of the cases used in the examples of the next section. This includes the abstract semantics of C calls from Python, the creation of a Python object from a C long and tuple conversions.

Boundaries

The abstract boundaries are defined in Figures 11.1 In the case of the Python to C boundary, the concrete C heap σ.η c was updated updated to know that v p is a resource of type PyAlloc, and size sizeof(PyObject). This varies slightly in the abstract. First, abstract addresses integrate a notion of type, so the PyAlloc resource type is not necessary. Second, the size of allocated memory is encoded in an auxiliary variable bytes(•). This approach is used to handle variable allocation sizes (e.g., in the case of a dynamic array). Relying on the numerical domain to express constraints on the actual size may improve precision, since a relational domain could infer relations with program variables. In the end, the abstract C heap update is performed by executing the statement bytes(v p) = sizeof(PyObject) (or with sizeof(PyTypeObject) in the case of classes). We introduce a kind function, which given an address returns Py if it is a Python object (corresponding to the PyAlloc resource type), and C if it has been allocated by malloc (corresponding to the Malloc resource type). This function is used in the case of the C to Python boundary to make sure that the address represents a Python object. The concrete heap update σ.η p [v → Inst(ty p), ∅] is replaced by the execution of the statement add(v) in Python's heap abstract domain. This statement signals to the heap abstract domain of Python (defined in Section 7.2.3) that it needs to track the fields of a new address v. This domain then adds this address to its internal state, and assumes that no fields are currently defined.

C call from Python

C calls from Python are handled similarly in the concrete (Figure 10.8) and in the abstract (Figure 11.3). The first argument of the function is passed through the boundary, and the other arguments are first gathered into a tuple, which is then passed through the boundary. Then, the C function is called. The output checks verify that f returns NULL if and only if an exception has been set. The returned value of this function is passed through the C to Python boundary.

Conversion from a C long to a Python integer

The conversion from a C long to a Python integer, shown in Figure 11.4, is close to the concrete definition Figure 10.10. We explicitly ask for the numerical domain to evaluate the C expression v c into a mathematical expression v u . This expression is then passed to the constructor of Python integers, and the boundary is applied afterward.

Tuple conversions

The tuple conversions were defined in the concrete in Figure 10.11. We show the definition in the abstract in Figure 11.5. These functions have exactly the same structure.

Examples

This section provides detailed examples of the analyses of the Counter instantiation (i.e., the call to Counter(), at line 4 of Listing 9.1), the counter access (c.counter, at line 8 of Listing 9.1). We end by briefly discussing the use of an underlying relational numerical domain.

Example 11.3 Counter instantiation

We show an example of Counter instantiation in Figures 11.6 and 11.7 (corresponding to line 4 of Listing 9.1). We focus solely on the expressions and statements analyzed, and do not display how the state evolves for the sake of concision. The domain handling Python calls (Figure 6.19 in the concrete) evaluates the caller, and then the __call__ method of the caller's class (here, type, since the caller is a class). The domain handling calls to methods of the type class catches the evaluation of type.__call__ (Figure 6.37 in the concrete). It starts by calling the class creation method, which is a Python function implemented in C, called tp_new_wrapper (as shown in Figure 10.5). We reuse the notation @ , e of Chapter 8 to denote a Python object having for abstract address @ and having an optional builtin value described by expression e. This call is handled by the multilanguage domain, and its transfer function was shown in Figure 11.3. We omit the output checks. This domain starts by applying the boundary function to the first argument, and to the second argument bundled into a tuple object (whose resulting address is named @ tuple). In the C semantics, a returned address having no offset will be shown without it. We omit the evaluations created by these boundaries for the sake of concision. In the end, the domain handling calls of C functions is called, to analyze the C implementation of tp_new_wrapper. This function extracts the first element of the tuple to call its tp_new field (lines 6058 and 6089 of the link). In the Counter class, this field is resolved (Figure 10.5) into the builtin function PyType_GenericNew, itself calling PyType_GenericAlloc. In the abstract, the size computation is done as in the source code (line 1011), but the allocation (lines 1014-1017) is handled by a builtin: we can thus ask the recency abstraction to allocate an address with the correct nominal type. We call this address @ Inst(Counter) . We apply the Python to C boundary to this address in order to ensure that it is well-formed on the C side. The boundary has been formally defined in Figure 11.1. The effects of this boundary are to set the ob_type field of the structure to the parent type, and the size of the struct. At the end of the call to tp_new_wrapper, the C to Python boundary is applied.

Once the instance has been created using __new__, we call the initialization method __init__ (now in Figure 11.7). In the case of the Counter class, this method points to an instance of a wrapper_descriptor (abbreviated wd), as shown in Figure 10.5. These objects are used to wrap checking code around C functions (Remark 10.10). In this case, the descriptor calls the function wrap_init, whose source code is directly handled by the C analysis. In turn, this function calls CounterInit (Listing 9.2), which sets the counter to E # attrs @ CClass Counter , ⊥ .__init__(@ Inst(Counter)) σ E # type type.__getattribute__(@ CClass Counter , ⊥ , "__init__") σ E # heap get_field(@ CClass Counter , ⊥ , "__init__") σ @ Inst(wd) , ⊥ E p×c wd.__call__(@ Inst(wd) , ⊥ , tuple(@ Inst(Counter) , ⊥))

E # call wrap_init(@ Inst(Counter) , @ tuple , &CounterInit, NULL) σ E # call CounterInit(@ Inst(Counter) , @ tuple , NULL) σ 0 E p×c Py_None @ Inst(N oneT ype) c → p (@ Inst(N oneT ype) , σ) @ Inst(N oneT ype) , ⊥ @ Inst(Counter) , ⊥ We show how the counter value is fetched from the C side and converted to a Python integer in Figure 11.8 (corresponding to line 8 of Listing 9.1). The attribute domain (presented in the concrete in Figure 6.10, and in the abstract in Figure 7.7) handles the first evaluation. It starts by evaluating the left-hand side, yielding the counter instance in our case. Then, the __getattribute__ method of the object class is used to search for the attribute. Its semantics is described in the concrete in Figure 6.31. The attribute exists in the class, it returns an instance of the member_descriptor class (abbreviated md). Since the member_descriptor class has __get__ and __set__ attributes, it is a data descriptor. Thus, we call the __get__ function of the descriptor. This call is handled by the multilanguage domain. It performs the necessary calls to the boundary functions for the parameters (omitted in the diagram), and calls the builtin member_get function. In turn, this function will call the builtin PyMember_GetOne. We show the statements performed during the execution of PyMember_GetOne. We start with the parameters' assignments. Then, the addr pointer has its offset changed by what was provided in the member_descriptor definition (Figure 10.5).

In that case, the type of data descriptor is T_INT, and PyLong_FromLong is called to transform the C integer into a Python integer. The abstract transfer function was defined in Figure 11.4. Then, the Python integer object is passed through the boundary and returned.

E # attrs c.counter σ E # env c σ @ Inst(Counter) , ⊥ E # object object.__getattribute__(aicount, ⊥ , "counter") σ E # type type(@ Inst(Counter) , ⊥) σ @ CClass Counter , ⊥ E # heap mro_search(@ CClass Counter , ⊥ , "counter") σ @ Inst(md) , ⊥ E # attrs hasattr(type(@ Inst(md) , ⊥), "__get__") σ bool (True), 1 E # attrs hasattr(type(@ Inst(md) , ⊥), "__set__") σ bool (True), 1 E p×c md.__get__(@ Inst(md) , ⊥ , @ Inst(Counter) , ⊥ , @ CClass Counter , ⊥) σ p → c (@ Inst(md) , ⊥ , σ) E # cells @ Inst(md) ->ob_type = @ Class(md) σ E # resources bytes(@ Inst(md)) = sizeof(PyObject) σ @ Inst(md)

p → c (@ Inst(Counter) , ⊥ , σ) @ Inst(Counter)

p → c (@ CClass Counter , ⊥ , σ) @ CClass Counter E # call member_get(@ Inst(md) , @ Inst(Counter) , @ CClass Counter) σ E # call PyMember_GetOne(@ Inst(Counter) , @ Inst(md) ->d_member) σ S # cells addr =@ Inst(Counter) ; l =@ Inst(md) ->d_member; σ S # cells addr += l->offset; σ E p×c PyLong_FromLong(* addr) σ @ int c → p (@ int , σ) @ int , int(@ int) Proof. The cases delegating to either the Python or the C language are straightforward, since we assume that the underlying analyses are sound. The only cases left in the soundness proof are those of the operators working at the boundary. Since the abstract semantics of those operators is in point-to-point correspondence with the concrete semantics, the soundness proof is straightforward.

Implementation

We have implemented our multilanguage analysis within Mopsa. We were able to reuse off-theshelf value analyses of C programs [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF] and Python programs (the value analysis of Chapter 8) already implemented into Mopsa. The only modification needed was to add a multilanguage domain, implementing the semantics of the operators at the boundary shown in Chapter 10.

Configuration

The configuration for the multilanguage analysis is shown in Figure 11.9. The multilanguage domain is at the top. It dispatches statements not operating at the boundary to the underlying Python or C analysis. The Python and C analyses are in a cartesian product, ensuring that when a statement goes through them, it will be handled by only one of the two sub-configurations. Both Python and C analyses share the underlying "universal" domains, to which they can delegate some statements. Sharing the recency abstraction allows to share the domain of both heap abstractions. The numerical abstraction displayed here only uses intervals, but it can be changed to a reduced product between a relational domain and intervals, as we used in Remark 11.5.

C configuration. The first two lines of the C configuration are iterators handling parts of the C syntax. Each variable or abstract heap block is then decomposed into a set of auxiliary variables called cells, by domain "C.cells". This domain uses the cell abstraction of Miné [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF]. It handles transparently union types and type-punning. The decomposition in cells is adapted dynamically according to the actual access patterns during the execution (since the static type can be deceiving in C). The cell domain can be put in a reduced product with a string abstraction, "C.strings", such as the one presented by Journault et al. [START_REF] Journault | Modular static analysis of string manipulations in C programs[END_REF], tracking the position of 0 in character arrays. Both domains rewrite expressions into dereference-free expressions on scalar variables. These are handled by a Cartesian product:

• "C.machineNum" translates machine integer arithmetic with overflows and wrap-arounds, into mathematical arithmetic; • "C.pointers" translates pointer arithmetic into byte-offset arithmetic while maintaining in its internal abstract state the bases (i.e. pointed-to variables) of each pointer.

Both these domains collaborate to rewrite scalar expressions into expressions on mathematical integers, which are then handled natively by classic numerical abstract domains.

Implementation's length. This multilanguage domain consists in 2,500 lines of OCaml code (measured using the cloc tool), implementing 64 builtin functions such as the ones presented in the concrete semantics. This is small compared to the 11,700 lines of OCaml for the C analysis and 12,600 lines of OCaml for the Python analysis. These domains rely on "universal" domains representing 5,600 lines of OCaml and a common framework of 13,200 lines of OCaml.

Experimental evaluation 11.6.1 Corpus selection

In order to perform our experimental evaluation, we selected six popular Python libraries from GitHub (having in average 412 stars). These libraries are written in C and Python and do not have external dependencies. The noise library [START_REF] Duncan | Native-code and shader implementations of perlin noise for Python[END_REF] aims at generating Perlin noise. Libraries levenshtein, ahocorasick, cdistance [START_REF] Haapala | Levenshtein Python C extension module[END_REF][START_REF] Muła | Pyahocorasick library[END_REF][START_REF] Meyer | Distance library[END_REF] implement various string-related algorithms. llist [START_REF] Jakubek | Linked lists for CPython[END_REF] defines linked-list objects (both single and double ones). bitarray [START_REF] Schnell | Bitarray library[END_REF] provides an implementation for efficient arrays of bits. Our analysis is context-sensitive in order to perform a precise value analysis. Thus, we needed some client code to analyze those libraries. We decided to analyze the tests defined by those libraries: they should cover most use-cases of the library, and ensure that the transition between Python and C are frequent, which is ideal to stress-test our analysis. Some libraries (noise, bitarray, and llist) come with example programs with less than 50 lines of code that we analyze within 15 seconds. We have not been able to find applications with a well-defined entry point using those libraries (or they had big dependencies such as numpy). Our experimental evaluation thus focuses on the analysis of the libraries' tests.

Library

Analysis results

We show the results of our analysis in Figure 11.10. The column |C| (resp. |Py|) shows the lines of code in C (resp. Python), measured using the cloc tool. The Python code corresponds mainly to the tests. It may also include Python library code creating custom classes, built upon C classes. For example, frozenbitarray is defined in Python, on top of the bitarray class. The "tests" column shows the number of tests we are able to analyze, compared to the total number of tests defined by the library. The CLOCK column shows the time taken to analyze all the tests. Columns Check-Ci c (resp. Check-Ci p) show the selectivity of our analysis -the number of safe operations compared to the total number of runtime error checks, the latter being also displayed in parentheses -performed by the analyzer for C (resp. Python). The selectivity is computed by Mopsa during the analysis, as we explained in Remark 3.14. The C analysis checks for runtime errors including integer overflows, divisions by zero, invalid memory accesses and invalid pointer operations. The Python analysis checks also for runtime errors, which include uncaught AttributeError, TypeError, ValueError exceptions. Runtime errors happening at the boundary are considered as Python errors since they will be raised as Python SystemError exceptions. The second to last column shows the number of functional properties (expressed as assertions) defined by the tests that our analyzer is able to prove correct automatically. The last column shows the number of transitions between the analyzed Python code and the C code, averaged per test. We observe that Mopsa is able to analyze these libraries in a few minutes with high selectivity for the detection of Python and C runtime errors. Our analysis is able to detect some bugs that were previously known. For example, the ahocorasick module forgets to initialize some of its iterator classes, and some functions of the bitarray module do not set an exception when they return an erroneous flag, raising a SystemError exception. We have not manually checked if unknown bugs were detected by our analysis, and we do not know either how many alarms are false alarms. We have instrumented Mopsa to display the number of crossings (from Python to C, or C to Python). The average number of crossings per test is shown in the last column of Figure 11.10. The minimal number of crossings is one per test. Thus these tests seem correct to benchmark our approach since they all alternate calls to native C code and Python code.

The multilanguage analysis is limited by the current precision level of the underlying C and Python analyses but would naturally benefit immediately from any improvements in these. However, we focused on the multilanguage domains only in this study. We leave as future work the improvements required independently on the C and Python analyses for our benchmarks. We now describe a few areas where the analysis could benefit from improvements. Mopsa is unable to support some tests for now, either because they use unsupported Python libraries or because the C analysis is too imprecise to resolve some pointers. The unsupported tests of the ahocorasick analysis are due to imprecisions in the C analysis, which is not able to handle a complex trie data structure being stored in a dynamic array and reallocated over and over again. In llist, some tests use the getrefcount method of the sys module, which is unsupported (and related to CPython's reference-based garbage collector, which we do not support). In addition, some tests make pure-Python classes inherit from C classes: this is currently not supported in our implementation, but it is an implementation detail that will be fixed. For the bitarray tests, tests are unsupported because they use the unsupported pickle module performing object serialization, or they use the unsupported sys.getsizeof method, or they perform some unsupported input-output operations in Python. In addition, the C analysis is too imprecise to resolve some pointers in 18 tests.

The selectivity is lower in the C analysis of levenshtein, where dynamic arrays of structures are accessed in loops: the first access at tab[i].x may raise an alarm and continue the analysis assuming that i is now a valid index access. However, subsequent accesses to tab[i].y, tab[i].z will also raise alarms as the non-relational numerical domain is unable to express that i is a valid index access. Proving the functional properties is more challenging and not the main goal of our analysis, which aims at detecting runtime errors. For example, the assertions of the noise library check that the result of complex, iterative non-linear arithmetic lies in the interval [-1, 1]. Some assertions in the llist or bitarray library aim at checking that converting their custom container class to a list preserves the elements. Due to the smashing abstraction [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF] of the Python lists, we cannot prove these assertions.

Related work 11.7.1 Native code analysis

Some works focus on analyzing native C code in the context of language interoperability without analyzing the host language. Tan and Croft [START_REF] Tan | An empirical security study of the native code in the JDK[END_REF] perform an empirical study of native code use in Java and provide a classification by bug patterns; a similar study has been performed by Hu and Zhang [START_REF] Hu | The Python/C API: evolution, usage statistics, and bug patterns[END_REF] for the Python/C API. Kondoh and Onodera [START_REF] Kondoh | Finding bugs in Java native interface programs[END_REF] check that native calls to Java methods should handle raised exceptions using a typestate analysis. Li and Tan [START_REF] Li | Finding bugs in exceptional situations of JNI programs[END_REF] ensure that the native control-flow is correctly interrupted when a Java exception is raised. The work of Li and Tan [START_REF] Li | JET: exception checking in the Java native interface[END_REF][START_REF] Li | Exception analysis in the Java Native Interface[END_REF] infers which Java exceptions may be raised by JNI code, allowing the exception type-safety property of Java programs to be extended to the JNI. CpyChecker [START_REF] Malcolm | A static analysis tool for cpython extension code[END_REF] is a GCC plugin searching for common erroneous patterns in C code using the CPython API. Two works [START_REF] Li | Finding reference-counting errors in Python/C programs with affine analysis[END_REF][START_REF] Mao | RID: finding reference count bugs with inconsistent path pair checking[END_REF] aim at detecting reference counting errors in C code using the CPython API. Brown et al. [START_REF] Brown | Finding and preventing bugs in JavaScript bindings[END_REF] define specialized analyses for specific patterns of C++ interoperability that may jeopardize type or memory safety of JavaScript. Contrary to these works, we analyze both host and guest languages.

Multilanguage analyses

Buro et al. [START_REF] Buro | On multi-language abstractiontowards a static analysis of multi-language programs[END_REF] define a theory based on abstract interpretation to combine analyses of different languages, and show how to lift the soundness property to the multilanguage setting. They provide an example of multilanguage setting where they combine a toy imperative language with a bit-level arithmetic language. The notion of boundary functions used in their work performs a full translation from the state of one language to the other. Our semantics works on the product of the states, although it can be seen as an abstraction of the semantics of C and Python, where the boundary performs a full state conversion (but the boundary from Python to C would be a concretization). From an implementation standpoint, our approach avoids costly state conversions at the boundary and allows sharing some abstract domains.

Chipounov et al. [START_REF] Chipounov | S2E: a platform for in-vivo multi-path analysis of software systems[END_REF] perform symbolic execution of binaries, thus avoiding language considerations. Their approach is extended by the work of Bucur et al. [START_REF] Bucur | Prototyping symbolic execution engines for interpreted languages[END_REF], which supports any interpreted language by performing symbolic execution over the interpreter. Our approach is more costly to implement since we do not automatically lift the interpreter's code to obtain our analyzer. Thanks to its higher-level, we think our approach should be more precise and efficient.

The next works compute summaries of the effects of native code on the chosen abstract property in a bottom-up fashion. Those effects are then translated into the host language, where a standard analyzer for the host language can then be used, since the native code has been removed. The use of summaries to convey the abstract meaning of functions makes it easier to rely on independent analyzers for each langage. However, the language and properties we target require precise context-sensitive value analyses that are difficult to perform bottom-up. Since Python is a dynamic programming language with a flexible semantics, it is not possible to analyze programs precisely in a context-insensitive fashion. Additionally, a precise description of the Python heap at a native call is mandatory to analyze the called C code, check for pointer errors, and infer effects. Tan and Morrisett [START_REF] Tan | Ilea: inter-language analysis across Java and C[END_REF] compile C code into an extended JVML syntax form, allowing the use of the bug-finding tool Jlint afterwards. Furr and Foster [START_REF] Furr | Checking type safety of foreign function calls[END_REF][START_REF] Furr | Polymorphic type inference for the JNI[END_REF][START_REF] Furr | Checking type safety of foreign function calls[END_REF]] perform inference of OCaml and Java types in C FFI code, which they crosscheck with the types used in the client OCaml/Java code. They assume there are no out-of-bounds accesses and no type casting in the C code. An inter-language, bottom-up taint analysis for Java and native binary code in the setting of Android applications is proposed by Wei et al. [START_REF] Wei | JN-SAF: precise and efficient NDK/JNI-aware inter-language static analysis framework for security vetting of Android applications with native code[END_REF]. Lee et al. [START_REF] Lee | Broadening horizons of multilingual static analysis: Semantic summary extraction from C code for JNI program analysis[END_REF] aim at detecting wrong foreign function calls and mishandling of Java exceptions in Java/JNI code. They extract summaries of the Java callbacks and field accesses from the JNI code using Infer, transform these summaries into Java code, and call the FlowDroid analyzer on the whole. Contrary to these works, our analyzer supports both languages, and it switches between languages just as the real execution does. The properties we target require precise context-sensitive value analyses that are difficult to perform bottom-up.

Library analyses

Previous work aims at analyzing libraries with no access to their client code [START_REF] Allen | Combining type-analysis with points-to analysis for analyzing Java library source-code[END_REF][START_REF] Rinetzky | Modular shape analysis for dynamically encapsulated programs[END_REF] using a "most-general client". The work of Kristensen and Møller [START_REF] Krogh | Reasonably-most-general clients for JavaScript library analysis[END_REF] refines the notion of most-general client in the setting of dynamic programming languages. However, it focuses on libraries where functions are typed. Python libraries are not explicitly typed. Extending their work to our untyped, multilanguage setting is left as future work.

Conclusion

We have defined and implemented a multilanguage analysis for Python programs with native C extensions using the Python/C API. Our analyzer is able to reuse value analyses of Python and C off-the-shelf. It shares the address allocation and numerical abstractions between the Python and C abstract domains. We are able to analyze within a few minutes real-world Python libraries written in C and having up to 5,500 lines of code. Future work includes analyzing programs using the other interoperability mechanisms mentioned in Chapter 9, as well as having a relational analysis that scales. An interesting application of this work would be to verify (or even infer) type annotations of the standard library modules, currently created manually and distributed within the typeshed [152] project.

This thesis aims at developing and implementing techniques for the static analysis of Python programs.

We have defined the concrete semantics of a large subset of Python, and focused on making it explainable by providing references to the actual implementation's source code, for each case of the semantics. We built upon this semantics to define a concrete multilanguage semantics of Python programs with native C modules relying on the Python/C API as the interoperability mechanism.

The recency abstraction, handles dynamic memory allocations. It was originally tailored for the analysis of low-level code, and subsequently extended to other languages such as JavaScript [START_REF] Holm Jensen | Type analysis for JavaScript[END_REF], [START_REF] Park | Revisiting recency abstraction for javascript: towards an intuitive, compositional, and efficient heap abstraction[END_REF]. We have implemented different allocation-site sensitivities adapted to the analysis of Python programs and its dual type system. We have focused on defining coarse containers abstractions, that work by delegation over scalars domains, and handle dynamic length and heterogeneous types. We have built upon these abstractions to define both a type analysis and a relational value analysis of Python programs. We have compared the type analysis and the value analysis, and noticed that the value analysis does not remove any typerelated errors in our benchmarks. In addition, we have built upon Python's value analysis and a C analysis of Ouadjaout and Miné [START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF] to define a multilanguage analysis of Python and C programs. To the best of our effort, we have strived to build a sound analyzer: except for some features for the Python language that are explicitly not supported (in which case, their use is reported by the analysis), we did not deliberately omit any aspect of the concrete semantics and we performed sound-by-design abstractions without compromise. We took care to link our semantic to the CPython source code and checked the analysis with over 700 conformance tests from various sources (including a fragment of CPython's tests). A more formal and complete proof of soundness of the abstract semantics with respect to the concrete one, and more extensive tests with respect to CPython would however provide more confidence, and are left for future work.

All the abstractions we used have been defined modularly, in order to ensure loose-coupling and cooperation between abstract domains, which we believe is crucial to define precise, relational analyses. We have also taken care to define relational concretization functions modularly.

These abstractions have been implemented into Mopsa. The implementation of our type and value analyses scale to real-world benchmarks used by Python developers to test the performance of their interpreter. This thesis culminated with the multilanguage analysis, which is able to analyze tests of popular, real-world libraries relying on the Python/C API.

There are plenty of future directions left to be explored:

Modular domains and soundness proofs. Starting from Chapter 2, we have focused on the development of relational and modular abstract domains. We have also defined concretization operators modularly, in order to make them more compact and loosely coupled. It would be interesting to define other classical abstractions in this framework (disjunctive analyses, shape analyses, …) prior to their implementation into Mopsa. Another future work is to prove the soundness of each domain modularly, independently of the other abstract domains used in the configuration.

Executable concrete semantics of Python. The concrete semantics shown in Chapter 6 is not executable in itself. We currently test it through Python's value analysis, which is a close implementation that may perform overapproximations. It would thus be interesting to have a concrete interpreter mode in Mopsa, or to develop a reference semantics that is executable. In the case of the latter option, several formalisms exist, such as the K framework [START_REF] Rosu | An overview of the K semantic framework[END_REF], or skeletal semantics [START_REF] Bodin | Skeletal semantics and their interpretations[END_REF]. Another point is that we have only tested our semantics against handcrafted test cases from previous researchers working on the semantics of Python, and from Python's developers. In the case of a reference implementation, it would be interesting to have automatic test case generation that would provide more complete coverage of the defined semantics, and compare it with CPython.

Unsupported features of Python. Our analyses ignore finalizers defined in __del__ methods, and does not support dynamic code evaluation through eval and exec. We have not encountered these cases in our analysis. Any attempt to support those features would start by studying precisely the context in which those features are used. It would also be interesting to support the asynchronous functions of Python. Mopsa does not support the analysis of recursive functions for now; its framework has to be modified to address this limitation.

Dictionary abstractions. We have defined coarse dictionary abstractions in Chapter 5, that lead to imprecisions, as shown in Chapters 7 and 8. These abstractions are currently one of the limiting factors of the analyses' precision. More precise dictionary abstractions are thus an important future work. It would first require a deeper understanding of dictionaries' uses in Python programs. It might be interesting to adapt previous tree abstractions, such as the segmented tree abstraction of Cousot et al. [START_REF] Cousot | A scalable segmented decision tree abstract domain[END_REF].

Packing strategies. Value analyses require packing strategies to reduce the computational cost of relational abstract domains such as octagons or polyhedra. We have presented a simple static packing in Chapter 8. It would however be nice to have more dynamic packing strategies. In addition, the static packing presented had to assume what kind of auxiliary variables were defined by other domains, which goes against Mopsa's loose coupling of domains, where a minimal number of assumptions have to be made over domains. A language-agnostic approach to packing could also be applied in the case of multilanguage analyses.

Function summaries. Functions are analyzed by inlining them, which is costly and repetitive for those that are called a high number times in a program. We have developed a simple caching solution in Chapter 7. Analyzing a function in isolation is already difficult in the setting of a static programming language such as C, and has been previously studied by Journault [START_REF] Journault | Precise and modular static analysis by abstract interpretation for the automatic proof of program soundness and contracts inference[END_REF] for example. In particular, these analyses have to make assumptions on the target of each pointer. In the case of a dynamic programming language such as Python, the complex semantics would require much stronger assumptions. It would however be interesting to have partial function summaries, paving the way for performance improvement, and less global analyses -as we have currently only explored whole program analyses, requiring the full calling context to work. We would also gain support for the analysis of recursive functions, which are not supported in Mopsa for now. Together with library analyses, we believe these two points are the most important objectives in order to improve scalability.

Library analyses. Our current approach focuses on whole-program analyses. Most Python applications rely on libraries. We have relied on a way to handle Python's type annotations in Chapter 7. This allowed us to easily support libraries by leveraging public annotations available from the typeshed [152] project. However, using type annotations added additional assumptions to the soundness of our analysis. In addition, these annotations are not always available. It would thus be interesting to develop alternative techniques to handle libraries and to analyze them. In the case of the multilanguage analysis, it would be interesting to instrument our implementation to verify (or infer) type annotations of the standard library, thus giving back to the typeshed [152] project.

Other analysis settings. Our work has focused on the analysis of Python programs, enhanced with C code in the case of Part IV. It would be interesting to check how the techniques we developed would have to be adapted in the analysis of other programming languages, and other multilanguage settings.

Listing 2 . 1 : 8 i

 218 An Imp program computing the 3n + 1 sequence 1 int u = 3; = i + 1; 9 } 10 // u = 8 statement ::= type var | var = expr | type var = expr| statement ; statement | if conditional { statement } else { statement } | while conditional { statement } expr ::= var ∈ V | z ∈ Z | [z 1 ∈ Z ∪ { -∞ }; z 2 ∈ Z ∪ { +∞ }] | exprbinop expr conditional ::= expr compop expr binop ::= + | -| * | / | % compop ::= <= | < | > | >= | == | != type ::= int

Figure 2 . 1 :

 21 Figure 2.1: Grammar of Imp programs

Figure 2

 2 Figure 2.2: Semantics of expressions

Figure 2 . 4 :

 24 Figure 2.4: Semantics of conditionals

Listing 2 . 2 :

 22 Computing the total stopping time of the 3n + 1 sequence1 int u = [0, +∞]; 2 int i = 0;

), andf ∈ C → C, the best abstraction of f is α • f • γ.

Figure 2 . 7 :

 27 Figure 2.7: Hasse's diagram for the Interval Poset. Plain arrows represent relationship through I .

 u] → { z ∈ Z | l ≤ z ≤ u } Proof. Let i ∈ I, X ∈ P(Z).

Figure 2 . 8 :

 28 Figure 2.8: Abstract semantics of Expressions

Figure 2 . 9 :

 29 Figure 2.9: Abstract semantics of basic statements

 [a, b] I [c, d] def = [min(a, c), max(b, d)]. Similarly, we define [a, b] I [c, d] def = [max(a, c), min(b, d)] (or ⊥ I if max(a, c) > min(b, d)). Both definitions are trivially extended if an interval is ⊥ I .

.

 The abstract value aZ + b represents the set of integers congruent to b modulo a (defined in the concretization Figure 2.10).

 γ

Figure 2 . 10 :

 210 Figure 2.10: Concretization of congruences

Figure 2 . 11 :

 211 Figure 2.11: Reduction operator for intervals and congruences

Figure 2 . 12 :

 212 Figure 2.12: Updated semantics with strings

Figure 2 . 13 :

 213 Figure 2.13: String length abstract domain

Figure 2 . 14 : 5 if

 2145 Figure 2.14: Semantics of Imp with control-flow tokens

Figure 2 . 15 :Figure 2 . 16 :

 215216 Figure 2.15: Comparison of the numerical abstract domains

xs[3] = s[3] - 1 ;

 331 = s[0]; y = s[1]; If we perform a drop-in replacement of s[i] by ord(s), our abstract state contains the constraint x = y = ord(s), which is unsound, since s[0] and s[1] can be different in the concrete. The drop-in replacement does not work either: a -1 ≤ ord(s) ≤ b -1 is unsound too, since another character of s may have value b.

Figure 2 . 17 :

 217 Figure 2.17: String summary abstract domain

Listing 3 . 1 :

 31 Declaration of base variables1 type var_kind = ..

2 3 type var = { 4 vname : string; 5 vkind : var_kind; 6 vtyp

 2456 : typ;

7 vmode : mode; 8 } 9 type var_kind += 11 (|

 78911 ** Variables identified by their unique id *) V_uniq of string (** Original name *) * int (** Unique ID *)

Listing 3 . 5 : 4 else 5 6 7 | 10 |

 3545710 Excerpts of the domain computing fixpoint for the S_while statement 1 let rec lfp man cond body flow_init flow = 2 let flow' = man.exec (mk_block [mk_assume cond; body]) flow in 3 if man.lattice.subset (man.lattice.join flow_init flow') flow then flow' lfp man cond body flow_init (man.lattice.widen flow flow') let exec stmt man flow = match stmt_kind stmt with S_while (cond, body) -> 8 let lfp_flow = lfp man cond body flow flow in 9 Some (man.exec (mk_assume (mk_not cond)) lfp_flow)

 type stmt_kind += S_py_for of expr * expr * stmt * stmt | S_py_while of expr * stmt * stmt The C frontend extends statements with: type stmt_kind += S_c_for of stmt * expr option * expr option * stmt | S_c_do_while of stmt * expr

Figure 3 . 1 :

 31 Figure 3.1: Example of dynamic rewriting

Listing 3 . 6 : 2 | 8 Some (man.exec new_stmt flow) 9 |

 36289 Transfer function of C loop iterator 1 let exec stmt man flow = match stmt_kind stmt with S_c_for(init, cond, incr, body) S_c_do_while(body, cond)

Figure 3 . 2 :

 32 Figure 3.2: Analysis configuration in Mopsa

Listing 3 . 7 :

 37 General domain signature (* Section 3.3.2.2 *) type ('a, 't) man = { get : 'a -> 't; set : 't -> 'a -> 'a; lattice : 'a lattice; exec : stmt -> 'a flow -> 'a post; eval : expr -> 'a flow -> 'a eval; ask : ('a,'r) query -> 'a flow -> 'r; print_expr : 'a flow -> (printer -> expr -> unit); get_effects : teffect -> teffect; set_effects : teffect -> teffect -> teffect; } (* Section 3.3.2.4 *) type 'a post = ('a, unit) cases type 'a eval = ('a, expr) cases module type DOMAIN = sig (* Section 3.3.2.1 *) type t val id : t id val name : string val bottom: t val top: t val is_bottom: t -> bool val subset: t -> t -> bool val join: t -> t -> t val meet: t -> t -> t val widen: 'a ctx -> t -> t -> t (* Section 3.3.2.5 *) val init : program -> ('a, t) man -> 'a flow -> 'a flow val exec : stmt -> ('a, t) man -> 'a flow -> 'a post option val eval : expr -> ('a, t) man -> 'a flow -> 'a eval option (* Section 3.3.2.6 *) val merge: t -> t * effect -> t * effect -> t val ask : ('a,'r) query -> ('a, t) man -> 'a flow -> 'r option val print_state : printer -> t -> unit val print_expr : ('a,t) man -> 'a flow -> printer -> expr -> unit end

Listing 3 . 2 3 5 6 8 9

 3258 10: Cases interface 1 type ('a, 'b) cases val return : 'b -> 'a flow -> ('a, 'b) cases 4 val empty : 'a flow -> ('a, 'b) cases val join : ('a, 'b) cases -> ('a, 'b) cases -> ('a, 'b) cases 7 val join_list : ('a, 'b) cases list -> ('a, 'b) cases val (>>=) : ('a, 'b) cases -> ('b -> 'a flow -> ('a, 'c) cases) -> ('a, 'c) cases

Listing 3 . 11 : 2 | 7 |

 31127 Transfer function of the assignment in a relational domain 1 let exec stmt man flow = match stmt_kind stmt with S_assign(E_var x, e) when is_numeric e -> 3 man.eval e flow >>= fun ee flow -> 4 let cur = get_env T_cur man flow in 5 let cur = Apron.assign (apron_var x) (apron_expr ee) cur in 6 Some (Cases.return () (set_env T_cur cur man flow))

Listing 3 . 12 : 2 | 3 Some

 31223 Transfer function of index access for the string summarization domain 1 let eval exp man flow = match ekind e with E_subscript(E_var s, i) -> (Cases.return (mk_ord_string s) flow)

Listing 3 . 13 : 6 Flow 7 8

 31367 Transfer function of index access for the string length domain 1 (* Global utility assume *) 2 let assume cond man flow ~fthen ~felse = 3 man.eval cond flow >>$ fun econd flow -> 4 man.exec (mk_assume econd) flow >>$ fun () then_flow -> 5 man.exec (mk_assume (mk_not econd)) flow >>$ fun () else_flow -> .join man.lattice (fthen then_flow) (felse else_flow) (* Transfer function of the string length domain *) 9 let eval exp man flow = match ekind exp with | E_subscript(E_var s, i) -> 11 Some (assume (mk_and (mk_le mk_zero i) (mk_lt i (mk_len_string s))) man flow ~fthen:(fun flow -> let flow = safe_subscript_access_check exp flow in Cases.return (mk_interval 0 127) flow) ~felse:(fun flow -> Cases.empty (invalid_subscript_access_alarm exp flow))

Listing 3 . 14 : 2 | 3 Some 4 (

 314234 String length transfer functions 1 let exec stmt man flow = match stmt_kind stmt with S_remove {ekind = E_var v} when is_str v.vtyp -> (man.exec (mk_remove_var (mk_len_string e)) flow) * similar cases for S_add, S_expand, S_fold *) 3.3.2.6 Utilities (lines 41-44)

Listing 3 . 15 : 4 5 6 7

 31546 Reduction between the interval and congruence domains 1 let reduce man v = 2 let c = man.get Congruence.id v 3 and i = man.get Interval.id v in let c', i' = meet_cgr_itv c i in man.set Congruence.id c' (man.set Interval.id i' v)

Listing 3 . 16 : 3 | 4 | 5 match ekind acc, ekind hd with 6 | 7 | 8 | _ -> aux acc flow tl 9 in 10 match results with 11 | 12 |

 3163456789101112 Reduction rule for index access between the string domains 1 let reduce exp _ _ _ results flow = 2 let rec aux acc flow = function [] -> Eval.singleton acc flow hd::tl -> E_var _, E_constant (C_int_interval _) -> aux acc flow tl E_constant (C_int_interval _), E_var _ -> aux hd flow tl [] -> Some (Eval.empty flow) hd::tl -> aux hd flow tl

Figure 3 . 3 :

 33 Figure 3.3: Example of shared evaluation in a reduced product

 type _ query += Q_interval : expr -> (int option * int option) query

: Hook signature 1 module type HOOK = 2 sig 3 val name : string 4 val init : 'a ctx -> 'a ctx 5 val

 345 on_before_exec : stmt -> ('a,'a) man -> 'a flow -> 'a ctx option 6 val on_after_exec : stmt -> ('a,'a) man -> 'a flow -> 'a post -> 'a ctx option 7 val on_before_eval : expr -> ('a,'a) man -> 'a flow -> 'a ctx option 8 val on_after_eval : expr -> ('a,'a) man -> 'a flow -> 'a eval -> 'a ctx option 9 val on_finish : ('a,'a) man -> 'a flow -> unit 10 end

Listing 4 . 1 : 2 3 12 i = i + 1 ; 13 old = b; 14 b

 4121211314 Imp program with dynamic memory allocation 1 struct Box { int v;}; Box = new Box; 15

Figure 4 . 1 :

 41 Figure 4.1: Concrete semantics of record allocation, read and write

Figure 4 . 2 :

 42 Figure 4.2: Semantics of address allocation for the recency abstraction

Figure 4 . 3 :

 43 Figure 4.3: Rewriting semantics of the heap abstraction

Figure 4 . 4 :

 44 Figure 4.4: Analysis of Listing 4.1, at line 14, assuming the loop has been unrolled once

2 def 3 if weight < 0: raise ValueError 4 self.weight = weight 5 6 9 m

 23459 __init__(self, weight): l = [Task(2), Task(1), Task(3), Task(5)] 7 m = 0 8 for i in range(len(l)): = m + l[i].weight 10 m = m (i + 1)

Listing 4 . 3 :

 43 Python program, with logged allocations 1 def logging_alloc(x): 2 print("allocating " + x) 3 return x()

Listing 4 . 4 :

 44 Python program with lists of different types 1 qty = [3, 1, 1] 2 els = ['choc', 'flour', 'egg'] 3 exp = [] 4 for i in range(len(qty)): 5 for j in range(qty[i]): 6 exp.append(els[i])

Figure 4 . 5 :

 45 Figure 4.5: Semantics of address allocation with policies

Listing 4 . 5 : 3 self.v = v 4 5 6 b = A(i) 7 c = A(i+1) 8 return b.v 9 10

 45346789 Motivating example for abstract garbage collection 1 class A: 2 def __init__(self, v): def f(i): r1 = f(0) 11 r2 = f(100)

Listing 5 . 1 :

 51 Program random initilizating array a 1 n = rand(0, 2021) 2 l = rand(-100, 0) 3 u = rand(0, 100) 4 5 a = [] 6 i = 0 7 while i < n:

8

 8

Figure 5 . 1 :

 51 Figure 5.1: Semantics of arrays

4

 4

Figure 5 . 2 :

 52 Figure 5.2: Array length abstraction

Figure 5 . 3 :

 53 Figure 5.3: Array smashing abstraction

Listing 5 . 3 :

 53 Iteratively nesting arrays 1 l, u = rand(-100, 0), rand(0, 100) 2 a = [rand(l, u), rand(l, u), rand(l, u)] 3 for i in range(10): a = [a]

Figure 5 . 4 : 1) 2 " 3 "width": 1920, 4 "

 541234 Figure 5.4: Semantics of dictionaries

Figure 6 . 1 :

 61 Figure 6.1: Python type and subclass relations Assuming A is a class and B inherits from A.

Figure 6 . 2 :Figure 6 . 3 :

 6263 Figure 6.2: Domain of the semantics

 letcases (f, e, h), a = E e S in body def = (f,e,h,a)∈E e S body Definition 6.4 Monadic letb operator

 letb (f, e, h), a = E e S in body def = (f,e,h,a)∈E e S a =⊥ body ∪ {(f, e, h, ⊥) ∈ E e S} Auxiliary functions.

E

 cur get_field(@ obj ∈ Addr, attr ∈ string) (cur, e, h) def = let b = get_builtin_field(@ obj , attr) in if b = ⊥ then return (f, e, h), b else return (f, e, h), (snd •h(@ obj))(attr)

Figure 6 . 4 :

 64 Figure 6.4: Semantics of field operators

EFigure 6 . 5 :

 65 Figure 6.5: Semantics of literals

EFigure 6 . 6 :

 66 Figure 6.6: Semantics of variable evaluation, assignment and deletion

Figure 6 . 7 :

 67 Figure 6.7: Semantics of nominal type operators

Figure 6 . 8 :

 68 Figure 6.8: Semantics of nominal type operators

Figure 6 . 9 :

 69 Figure 6.9: Semantics of nominal type operators

 else return S raise TypeError (cur, e, h), ⊥ S cur e 1 [e 2] = e 3 (cur, e, h) def = STORE_SUBSCR PyObject_SetItem slot_mp_ass_subscript

Figure 6 . 11 :

 611 Figure 6.11: Semantics of subscript access, assignment and deletion

Figure 6 . 13 :

 613 Figure 6.13: Semantics of conditionals

Figure 6 . 15 :

 615 Figure 6.15: Semantics of exceptions

Listing 6 . 3 : 2 3 5 self.name = f 6 7 9 raise

 632569 A simplified version of Python's tempfile library 1 import os, io class Tempfile: 4 def __init__(self, f): def __enter__(self): 8 if os.path.isfile(self.name): ValueError(f"file {self.name} exists already") self.file = open(self.name, 'w') 11 return self.file def __exit__(self, exc, value, tb): self.file.close() os.remove(self.name) return exc is None or issubclass(exc, io.UnsupportedOperation)

SFigure 6 . 16 :

 616 Figure 6.16: Semantics of function declaration

SFigure 6 . 17 :Figure 6 . 18 :

 617618 Figure 6.17: Semantics of class declaration

Listing 6 . 4 : 3 self.day = d 4 self.month = m 5 self.year = y 6 7 @classmethod 8 def

 6434578 Example of classmethod decorator 1 class Date: 2 def __init__(self, d, m, y): from_str(cls, s): 9 d, m, y = s.split("/") 10 return cls(int(d), int(m), int(y))

Figure 6 . 19 :

 619 Figure 6.19: Semantics of calls

Figure 6 . 23 :Listing 6 . 5 :class Int16: 2 def 3 self.value = value % 2 9 return 11 class

 62365232911 Figure 6.23: Semantics of binary arithmetic operators

S

 cur x †= expr (cur, e, h)

Figure 6 . 25 :

 625 Figure 6.25: Correspondance between binary operators and their methods

Figure 6 . 26 :

 626 Figure 6.26: Semantics of binary comparison operators

Figure 6 . 27 :

 627 Figure 6.27: Semantics of the in operator

Figure 6 . 30 :

 630 Figure 6.30: Semantics of object creation and instantiation

Figure 6 . 31 :

 631 Figure 6.31: Semantics of attribute access through object

Figure 6 . 32 :

 632 Figure 6.32: Semantics of attribute definition through object

Figure 6 . 33 :

 633 Figure 6.33: Semantics of attribute deletion through object

Figure 6 . 35 :Figure 6 . 36 :

 635636 Figure 6.35: Semantics of methods

Figure 6 . 37 :Figure 6 . 38 :

 637638 Figure 6.37: Semantics of class call

Figure 6 . 40 :

 640 Figure 6.40: Semantics of boolean cast

Figure 6 . 41 :

 641 Figure 6.41: Semantics of integer creation

Figure 6 . 42 :

 642 Figure 6.42: Semantics of iter

Figure 6 . 43 :

 643 Figure 6.43: Semantics of next

Figure 6 . 44 :

 644 Figure 6.44: Semantics of len builtin

Listing 6 . 10 : 9 class

 6109 Example usecase of super with multiple inheritance 1 class Pen: -it's blue") WipeablePen(Pen): 11 def __init__(self): super().__init__() print("-it's wipeable") class WhiteboardPen(BluePen, WipeablePen): def __init__(self): print("WhiteboardPen creation:") super().__init__()

Listing 6 . 11 : 4 5 17 for

 611417 Pure-Python implementation of super 1 class super: 2 def __init__(self, typ, obj): 3 if not isinstance(typ, type): raise TypeError if isinstance(obj, type) and issubclass(obj, typ): 6 self.__self_class__ = obj 7 elif issubclass(type(obj), typ): 8 self.__self_class__ = type(obj) i in range(len(mro)):

1 8 9

 8 def process_file(fi): 2 with open(fi, 'r') as f: def count(gen, c): 10 for s in gen: 11 count = 0 12 print(f"s is {s}", end=", ") 13 for ch in s: 14 if ch == c: count += 1 yield count g = count(process_file("in.txt"), 'a') for cnt in g: print(f"got {cnt} 'a'") # Provided in.txt is: # abstract # interpretation # The result of this program is: # Reading line 0, s is abstract, got 2 'a' # Reading line 1, s is interpretation, got 1 'a'

2 3 30 #

 230 def process_file(fi): 4 with open(fi, 'r') as f: "s is {s}", end=", ") for ch in s: if ch == c: count += 1 c = yield count g = count(process_file("in.txt")) g.send(None) while True: try: c = random.choice(['a', 'b', 'c']) cnt = g.send(c) print(f"got {cnt} '{c}'") Example result: 31 # Reading line 0, s is abstract, got 1 'c' 32 # Reading line 1, s is interpretation, got 1 'a'

Figure 6 . 45 :

 645 Figure 6.45: Semantics of generator creation, assuming f is a function containing a yield statement

Figure 6 . 46 :

 646 Figure 6.46: Semantics of the yield expression

EFigure 6 . 47 :

 647 Figure 6.47: Semantics of calls to generators

Figure 6 . 51 :Figure 6 . 52 :

 651652 Figure 6.51: JavaScript type and subclass relations Assuming A is a class and B inherits from A.

Listing 7 . 1 : 5 if 6 r 15 16

 715615 Python programs relying on both typing mechanisms 1 def fspath(p): hasattr(p, "fspath"): = p.fspath() 7 if isinstance(r, sb): if rand(0, 1): p = "/dev" 17 else: p = Path() 18 r = fspath(p)

Figure 7 . 1 :

 71 Figure 7.1: Concretization of abstract nominal objects

Figure 7 . 2 :

 72 Figure 7.2: Transfer functions of the environment abstraction

Figure 7 . 4 :

 74 Figure 7.4: Concretization of ObjS

Figure 7 . 5 :

 75 Figure 7.5: Abstract semantics of field operators

Figure 7 . 6 :

 76 Figure 7.6: Concretization of the heap abstract domain

Listing 7 . 2 :

 72 Python program with mutation and optional attribute addition 1 class A: 2 def __init__(self): 3 self.update(0) 4 def update(self, x): 5 self.val = x * 2 6 x = A() 7 y = x.val 8 z = x 9 if rand(0, 1): z.update('a') 10 if rand(0, 1): x.attr= 'b'

Figure 7 . 7 :

 77 Figure 7.7: Abstract semantics of attribute access, assignment and deletion

Figure 7 . 8 : 2 Example 7 . 3

 78273 Figure 7.8: Evolution of the abstract states of the example from Listing 7.2

Listing 7 . 3 :

 73 Python program motivating polymorphism 1 if *: x, y = 1, 2 2 else: x, y = 'a', 'b' 3 z = x + y

Listing 7 . 4 :

 74 An example annotation of the function fspath, introduced in Listing 7.1, is shown in Listing 7.4. We define a type variable T, representing either string or bytes. Lines 2-3 define a class PathL, having a generic parent Protocol[T], and a method fspath returning objects of type T. This class is used to define a structural type through the Protocol parent: objects having type PathL are objects having any nominal type, with a function fspath returning strings or bytes. The type of the fspath function is then defined disjunctively using the @overload decorator. It can take an object of structural type PathL[T], and return an object of nominal type T. It can also take a string and return another string, and similarly for bytes. Type annotations for fspath function 1 T = TypeVar('T', str, bytes) 2 class PathL(Protocol[T]):

Figure 7 . 10 :

 710 Figure 7.10: Configuration for Python's type analysis

Listing 7 . 5 :

 75 Python program isinstance.py 1 if isinstance(x, int): y = 4 2 else: y = 'a'

Figure 7 . 11 :

 711 Figure 7.11: Analysis of Python benchmarks

Listing 8 . 1 : 3 if weight < 0: raise ValueError 4 self.weight = weight 5 6 9 m 1)

 8134591 Python program computing average of tasks 1 class Task: 2 def __init__(self, weight): l = [Task(2), Task(1), Task(3), Task(5)] 7 m = 0 8 for i in range(len(l)): = m + l[i].weight 10 m = m (i +

Figure 8 . 1 :

 81 Figure 8.1: Type analysis example

Figure 8 . 2 :

 82 Figure 8.2: Value analysis example

Listing 8 . 2 : 2 Remark 8 . 5

 82285 Python program with type disjunction 1 if *: x = 3 2 else: x = 'a' 3 y = x *

•

 The evaluation of l[i].weight is handled by the attribute domain (presented in the concrete in Figure 6.10, and in the abstract in Figure 7.7). It starts by evaluating l[i].• The expression l[i] is handled by the index domain, implementing the semantics shown in Figure6.11. It starts by evaluating both sides of the index access.

Figure 8 . 4 :

 84 Figure 8.4: Analysis of first unrolling at line 8 of Listing 8.1, assuming -to simplify -that the list l has been instantiated with Task(2) only

Figure 8 . 5 :

 85 Figure 8.5: Concretization of the environment abstraction

v∈{ 1 , 2 , 3

 123 }, m∈{ r,o }

v∈{ 1 , 2 , 3

 123 }, m∈{ r,o }

Figure 8 . 6 :

 86 Figure 8.6: Configuration of the value analysis (to be compared with Figure 7.10)

Figure 8 . 10 :

 810 Figure 8.10: Selectivity of the analysis on some classes of exceptions Selectivity = Number of proved safe operations / Total number of checks An empty cell denotes a program where the kind of exception cannot happen

Figure 9 .Figure 9 . 1 :

 991 Figure 9.1 shows a summary of these encapsulation. The next chapter includes a schematic representation of the state in Figure 10.5 and Remarks 10.9 to 10.11 discuss in details the different kind of descriptors.

Listing 9 . 4 : 2 3 4 5

 9424 Example setup.py build file 1 from setuptools import setup, Extension module = Extension('counter', sources=['counter.c']) setup(name="counter", ext_modules=[module])

Figure 10 .

 10 8),• mismatches between the C and Python datatypes during conversion (in calls to PyArg_ ParseTuple, PyLong_FromLong), • integer overflows during conversions from arbitrary-precision Python integers to C, • reference-counting errors.

Listing 9 . 5 :

 95 Contents of syracuse.c file 1 int syrac_nth(int u0, int n)

7 #

 7 include "syracuse.h" 8 """, sources=["syracuse.c"]) 9 10 ffi.cdef("int syrac_nth(int, int);") 11 12 if __name__ == "__main__": 13 ffi.compile(verbose=True)

Listing 9 . 10 : 2 PyObject

 9102 Generated swig wrapper 1 SWIGINTERN PyObject *_wrap_syrac_nth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) { SWIG_Python_UnpackTuple(args, "syrac_nth", 2, 2, swig_obj)) SWIG_fail; 13 ecode1 = SWIG_AsVal_int(swig_obj[0], &val1); 14 if (!SWIG_IsOK(ecode1)) { 15

9 f 1 =

 91 ->data = malloc(f->length*sizeof(float)); We consider the program in Listing 10.1, defining a structure ftab containing an array of Cells def = { b, o, t | b ∈ Base, t: scalartype, 0 ≤ o ≤ sizeof(b) -sizeof(t) } P tr def = (Base × Z) ∪ { NULL, invalid } Base def Id c ∪ Addr Value c def = MNum ∪ P tr

Figure 10 . 3 :

 103 Figure 10.3: Concrete state obtained at the end of Listing 10.1

ΣFigure 10 . 4 :

 104 Figure 10.4: Combined State

Figure 10 . 5 :

 105 Figure 10.5: Schematic representation of the concrete state reached at line 5 in Listing 9.1

Figure 10 . 6 :

 106 Figure 10.6: Python to C value boundary

Figure 10 . 7 :

 107 Figure 10.7: C to Python value boundary

Figure 10 . 8 :

 108 Figure 10.8: C call from Python

10. 4 Figure 10 . 9 :

 4109 Figure 10.9: Python call from C

Figure 10 . 10 :

 1010 Figure 10.10: Conversion from Python builtin integers to C long

Figure 10 . 11 :

 1011 Figure 10.11: Tuple access and length semantics, from C

Listing 11 . 1 : 2 3

 1112 Reminder from Listing 10.1 -example C program 1 #include <stdlib.h> typedef struct {int length; float *data;} ftab;

9 f

 9 ->data = malloc(f->length*sizeof(float));

 and 11.2. The only difference from the concrete definitions shown in Figures 10.6 and 10.7 lies in the update of the heap views.

pFigure 11 . 1 :Figure 11 . 2 :

 111112 Figure 11.1: Python to C value boundary

Figure 11 . 3 :Figure 11 . 4 :Figure 11 . 5 :

 113114115 Figure 11.3: C call from Python

Figure 11 . 6 :

 116 Figure 11.6: Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) -part 1

Figure 11 . 7 : 2 Example

 1172 Figure 11.7: Sequence diagram of the analysis of Counter creation (Listing 9.1, line 4) -part 2

Figure 11 . 8 :

 118 Figure 11.8: Sequence diagram of the analysis of Counter access (Listing 9.1, line 8)

Figure 11 . 10 :

 1110 Figure 11.10: Analysis results of libraries using their unit tests

Definition 3.2 The expr type

	Expressions are defined in Listing 3.2. They rely on a kind (an extensible variant), a type and
	a range of program locations from which the expression comes. The variant type expr_kind
	can be initially defined with the following variants :
		E_var, for variables.
		E_constant, denoting constants (which is also an extensible type, not detailed here).
		E_not, for the boolean negation of an expression.
		E_binop, describing a binary operation (operator is also extensible) over two expres-
		sions.
		Listing 3.2: Declaration of universal expressions
	1 type expr_kind = ..
	2	
	3 type expr = {
	4	ekind: expr_kind;
	5	etyp: typ;
	6	erange: Location.range;
	7	

} 8 9 type expr_kind += | E_var of var * mode option 11 | E_constant of constant | E_not of expr | E_binop of operator * expr * expr Definition 3.3 The stmt type

	4	skind : stmt_kind;
	5	srange : Location.range;
	6 }	
	7	
	8	
	The declaration of the stmt type is shown in Listing 3.3. Statements are defined by a
	kind and a range of program locations. The first four variants defined (S_add, S_remove,
	S_expand, S_fold) are used to modify the domain (of variables, or addresses), on which
	an abstract domain is defined. S_assume is used to filter the abstract state so that the pro-
	vided condition is satisfied. The last three variants are more usual. S_assign expresses an
	assignment between two expressions. S_block defines a sequence of statements. S_while
	defines a while loop.
		Listing 3.3: Declaration of universal statements
	1 type stmt_kind = ..
	2	

type stmt_kind += 9 | S_add of expr 10 | S_remove of expr 11 | S_expand of expr * expr list 12 | S_fold of expr * expr list 13 14 | S_assume of expr 15 16 | S_assign of expr * expr 17 | S_block of stmt list 18 | S_while of expr * stmt Remark 3.4 Availability of newly added variants

	When a kind is extended with a new variant, the variant becomes available everywhere.
	Particularly, it can be used as subnodes of instructions defined previously.
	For example, we can extend expression with E_subscript to denote index accesses in
	strings (as defined in the previous chapter).

type expr_kind += E_subscript of expr * expr Any expression can now use E_subscript. Remark 3.5 Ghost variables

	The variant V_var_attr of var_kind is shown in Listing 3.4. It is used to define ghost
	variables on top of other variables. For example, one way to define the ghost variable
	len(s) of Section 2.4.2 is through V_var_attr (s, "len").
	Listing 3.4: Variant for auxiliary variables built on top of other variables

1 type var_kind += 2 | V_var_attr of var (** Attach variable *) 3 * string (** Attribute *) Remark 3.6 Domains handling ghost variables

	Contrary to Astrée where ghost variables are handled centrally by one domain, each domain
	is responsible for its ghost variables. For example, if the variable s is deleted through the
	statement S_remove s, it is up to the string length domain to translate this statement into
	the deletion of len(s) (i.e., by executing S_remove (V_var_attr (s, "len"))). We show
	the detailed implementation of this case in Remark 3.21. Another difference with Astrée
	is that ghost variables can also be built upon abstract addresses, which are introduced
	by dynamic memory allocation abstractions, such as the recency abstraction introduced in
	Chapter 4.

 .1. The domain C.Loops rewrites C for loops into a statement containing a Universal while loop. These Universal while loops are handled by the domain Universal.Loops which computes a fixpoint using widening. Similarly, the domain

	Python.Loops rewrites Python for loops into a statement containing a Universal loop, which
	is then handled by the Universal loop domain. The Python rewriting shown here is the most
	general one (cf. Section 6.2.7) where an iterator is explicitly constructed and used.
	for(init; cond; incr) body	for target in iterable: body
	C.Loops (Listing 3.6)	Python.Loops
	Rewrite and analyze recursively	Rewrite and analyze recursively
		Optimize for some semantic cases
	init;	it = iter(iterable)
	while(cond) {	while(1) {
	body;	try: target = next(it)
	incr;	except StopIteration: break
	}	body
	clean init	}
		clean it, target
	Universal.Loops (Listing 3.5)
	Matches while(...){...}	
	Computes fixpoint using widening

Example 3.12 Use of Flow to handle non-local control-flow operators Listing

 3.8 shows the transfer function of the break statement, as implemented by the universal iterator of loops. We store in cur the abstract state tagged by token T_cur (written cur in the concrete). Thus, cur has type 'a. We return the updated global state, where cur is tagged with the T_break token, and where T_cur token has been removed.

		Listing 3.8: Transfer function of S_break (cf. Figure 2.14 in the concrete)
	1 type token += T_break
	2	
	3 let rec exec stmt man flow =
	4	match stmt_kind stmt with
	5	| S_while(cond, body) ->
	6	(* Listing 3.5 *)
	7	
	8	| S_break ->
	9	let cur = Flow.get T_cur man.lattice flow in
	10	let flow' = Flow.add T_break cur man.lattice flow |>
	11	Flow.remove T_cur

12 in 13 Some (Post.return flow') 14 15 | _ -> None Example 3.13 Utility functions to get and set a local state

 We show the source code of utility functions used to access and define a local state in Listing 3.9. These functions combine utilities defined by Flow to access the state corresponding to the provided token, and those provided by the manager to access the local state of domain (of type t), from the global state (of type 'a).

	Listing 3.9: Utility functions to get and set a local state
	1

let get_env (tk:token) (man:('a,'t) man) (flow:'a flow) : 't = 2 let tkstate : 'a = Flow.get tk man.lattice flow in 3 man.get tkstate 4 5 let set_env (tk:token) (env:'t) (man:('a,'t) man) (flow:'a flow) : 'a flow = 6 let tkstate : 'a = Flow.get tk man.lattice flow in 7 let tkstate = man.set env tkstate in

	8	Flow.set tk tkstate man.lattice flow

 While the semantics of Python programs is not yet established, we show a few motivating examples with Python programs, where only basic knowledge of Python is required.

When the allocation-site is not necessary. For example, let us assume that we are performing a type analysis on the program in Listing 4.2. There is no need to split Task allocation at line 6 by program location since we only want to know that Task instances have an integer weight attribute. Listing 4.2: Python program computing the average of tasks 1 class Task:

None Example 6.24 Usecase of the with statement

 Listing 6.2: Semantics of with e as t: body 1 fresh_mgr = e 2 fresh_enter = type(fresh_mgr).__enter__ 3 fresh_exit = type(fresh_mgr).__exit__

	4	
	5 t = fresh_enter(fresh_mgr)
	6 try: body
	7 except:
	8	if not fresh_exit(fresh_mgr, *sys.exc_info()): raise
	9 else: fresh_exit(fresh_mgr, None, None, None)
		finally: t =

 If nothing works, a type error is raised. †

		op(†)	rop(†)	iop(†)
	+ __add__	__radd__	__iadd__
	-__sub__	__rsub__	__isub__
	* __mul__	__rmul__	__imul__
	@ __matmul__	__rmatmul__	__imatmul__
	/ __truediv__	__rtruediv__	__itruediv__
	// __floordiv__ __rfloordiv__ __ifloordiv__
	** __pow__	__rpow__	__ipow__
	<< __lshift__	__rlshift__	__ilshift__
	>> __rshift__	__rrshift__	__irshift__
	&	__and__	__rand__	__iand__
	| __or__	__ror__	__ior__
	^__xor__	__rxor__	__ixor__
	Figure 6.22: Correspondance between binary operators and their methods

not None: return self

	27	return res
	28	return object.__getattribute__(self, name)
	29	
	30	def __get__(self, obj, typ):

18 if mro[i] is self.__thisclass__: break 19 i += 1 20 if i < len(mro): 21 for cls in mro[i:]: 22 if name in cls.__dict__: 23 res = cls.__dict__[name] 24 if hasattr(type(res), '__get__'): 25 res = type(res).__get__(res, None if self.__self__ is starttype 26 else self.__self__, starttype) 31 if obj is None or self.__self__ is 32 if type(self) is not super: return type(self)(self.__thisclass__, obj, None) 33 else: return super(typ, obj)

 Mopsa supports a reasonable number of tests, coming from different sources. Supporting more of these tests is ongoing work. However, this is not our top priority: our goal is to analyze Python programs rather than replicate the concrete Python interpreter. An interesting future work would be the automatic generation of test cases for each case of the semantics, and the comparison of these test cases with CPython.

	Name	LOC # tests Time # assertions
	augassign	230	6/7 0.22s	9/16
	baseexception	83	9/10 68ms	1/1
	contains	77	4/4 76ms	3/5
	decorators	95	6/13 61ms	3/4
	dict	684 48/76	1.3s	16/78
	exception_variations 140	11/11 69ms	25/25
	index	199	18/20 0.51s	14/21
	int	349	10/17 0.27s	15/35
	int_literal	91	6/6 0.15s	81/81
	isinstance	98	9/18 0.13s	11/12
	iter	482	47/55	1.1s	12/38
	list	686	48/61	3.5s	34/158
	operator	303	36/42 0.85s	118/130
	raise	364	33/35 0.16s	2/4
	range	450	19/24 0.58s	23/55
	richcmp	205	9/11	7.1s	4/19
	typechecks	49	6/6 65ms	18/20
	Figure 6.50: Mopsa's analysis of CPython's tests
	6.4.3 Summary of the conformance tests			

 described in Chapter 5. Tuples are immutable, and we abstract them by expansion. "U.recency" is the recency abstraction, handling dynamic memory abstraction, and presented in Chapter 4.

	Py.program		Py.desugar	Py.flow
	U.intraproc		U.loops	U.interproc
	Py.libraries	Py.data_model	Py.objects
			×	
	Py.environment	Py.heap
	Sequence		•	
				Universal
	× Cartesian product		×	Python specific
	• Composition	Py.lists	Py.tuples	Py.dicts
			•	
			U.recency	

4. "Py.data_model" implements domains such as the attributes domain shown in Section 7.2.4.3. It corresponds to the core language shown in Section 6.2. "Py.objects" handles builtin objects, described in the concrete in Section 6.3. "Py.environment" and "Py.heap" respectively implement the eponym abstractions shown in Section 7.2.2 and Section 7.2.3. "Py.lists", "Py.tuples", "Py.dicts" handle containers abstractions as

 Name LOC Conf. 1 Conf. 2 Exclamat [53] Pytype Typpete [54] RPython

	isinstance.py	3 42ms 40ms 0	1.2s	0.78s	0.67s 10ms	4.9s
	exception.py	3 37ms 34ms 0	1.3s 0.70s	0.57s 9ms	Bug
	mutation.py	12 34ms 34ms 0	1.3s	0.75s	0.68s 11ms	Bug
	disjoint_sets.py	45 70ms 59ms 0 †	0.92s	0.91s	1.2s	Bug	8.8s
	functions.py	58 41ms 39ms 0 †Key	1.2s 0.84s	1.1s	Bug	8.0s
	fannkuch.py	59 76ms 69ms 0 †	1.2s 0.80s	Bug 0.31s	Bug
	bellman_ford.py	61	0.17s 0.24s 0 †	1.4s 0.99s	1.4s 2.4m	7.1s
	float.py	63	0.13s 82ms 0 †	1.7s	0.92s	1.3s 0.84s	5.6s
	coop_concat.py	64 45ms 43ms 0 †	1.8s	0.81s	1.3s 20ms	Bug
	spectral_norm.py	74 0.32s 0.19s 1	1.6s 0.98s	Bug	Bug	Bug
	crafting.py	132 0.48s 0.41s 0 †Key	1.6s	0.97	1.7s	Bug	Bug
	nbody.py	157	1.4s 0.80s 1 †Key	1.7s	1.3s	Bug	Bug	Bug
	chaos.py	324	8.9s 2.3s 0 †	13s	11s	Bug	Bug	Bug
	raytrace.py	411	3.5s	1.5s 7	36s	2.8s	Bug	Bug	Bug
	scimark.py	416 0.85s 0.55s 2 †	8.5s	4.4s	Bug	Bug	Bug
	richards.py	426	11s 5.0s 2 †	38s	2.4s	Bug	Bug	7.8s
	unpack_seq.py	458	13s 4.2s 0	1.1s	7.4s	2.7s	14s	Bug
	go.py	461 4.0m	15s 32 †	8.5s	3.4s	Bug	Bug	Bug
	hexiom.py	674	6.9m	22s 25 †Key	Bug	4.2s	Bug	Bug	Bug
	regex_v8.py	1792	8.2m	15s 0 †	4.9s	CLOCK	1.7m	Bug	Bug
	processInput.py 1417	6.1s 4.8s 7 †Key	2.4s	11s	Bug	Bug	Bug
	choose.py	2562 8.6m	46s 17 Key †	1.7s	15s	Bug	Bug	Bug

Bug unsupported by the analyzer (crash) CLOCK timeout (after 1h) Smashed Exceptions: KeyError Key , IndexError † , ValueError

 NameNo loc. sensitivity: p types Loc. sensitivity: p loc Time Mem.

				Exclamat Time	Mem.	Exclamat
	fannkuch.py	0.34s	3MB	1 0.33s	3MB	1
	float.py	0.19s	3MB	2 0.24s	3MB	2
	spectral_norm.py 0.70s	6MB	2 0.77s	6MB	2
	nbody.py	1.6s	3MB	5	1.4s	4MB	5
	chaos.py	7.4s	42MB	3	56s	300MB	3
	raytrace.py	14s	74MB	8	2.2s	32MB	8
	scimark.py	1.4s	12MB	3	1.3s	13MB	3
	richards.py	13s 112MB	4 9.4m 2444MB	4
	unpack_seq.py	8.3s	7MB	1	7.9s	9MB	1
	go.py	27s 345MB	35	27s	345MB	35
	hexiom.py	1.1m 525MB	6 1.0m	525MB	6
	regex_v8.py	23s	18MB	1 1.3m	36MB	1
	processInput.py	10s	64MB	13	9.5s	64MB	11
	choose.py	1.1m	1.6GB	23 1.2m	1.6GB 20
	Total	240s 2.8GB	107 883s	5.4GB 102

Figure 7.12: Comparing allocation sensitivities (type analysis, with AGC)

 We consider the motivating example of this chapter, Listing 8.1. To avoid case disjunctions, we assume that the list l has been instantiated with Task(2) only. We analyze the statement m = m + l[i].weight, corresponding to the loop's body, in a state σ reached at the loop's entry. We show a simplified analysis of this statement in Figure8.4. • The transfer function of the assignment in the environment domain (presented in Figure 8.3) starts by evaluating m + l[i].weight.

	evaluation of x. With the removals, we get:			
	env x → { @ int } num int(x) → [6, 6]	env x → { @ str } str str(x) → { "aa" }	=	  	env x → { @ str , @ str } num int(x) → [6, 6] str str(x) → { aa" }
	Remark 8.6	Auxiliary variables in the implementation
	In Mopsa, variables are records containing a field defining the type (Definition 3.1). Given a
	Python variable v (having a type py), we use {v with vtyp=int} to represent the auxiliary
	variable int(v).				
	Example 8.7	Execution of a statement in the value analysis
					3]
			str		str(x) → { "aa" }

 • Math errors: overflows, divisions by zero. • Value errors: when an iterable is unpacked in too many values.

	Py.program	Py.desugar	Py.flow	
	U.intraproc	U.loops	U.interproc	
	Py.libraries	Py.data_model	Py.objects	
			×		
	Py.environment	Py.heap	
			•		
	Sequence		×		
	× Cartesian product	Py.lists	Py.tuples	Py.dicts	Universal
					Python specific
	• Composition		•		
			U.recency		
			×		
		U.intervals		U.strings	

 2. Counter instance is only exposed from the C. It is possible to read the counter's value from Python. This attribute access will call a C function performing the conversion of the C integer into a Python integer (the detailed execution will be shown in the abstract inExample 11.4). It allocates a new Python integer which is independent from the C integer. Hence, only C code directly dereferences the field value from the object's memory.

	Example 10.2	Accessing Python data from C
	Example 10.1	Accessing C data from Python

In our running example (Listings 9.1 and 9.2), the int count field from a

 Figure 10.1 defines the concrete Python state used in this chapter. This definition was already provided during the definition of the concrete semantics, in Figure6.2. Python objects are split into a nominal part (for the type and a potential builtin value) and a structural part (for the attributes). The nominal part ObjN can be some builtin, or an instance, defined by the address of the class from which it is instantiated. The structural part ObjS maps attribute names to their contents' addresses. The environment E p maps variable identifiers Id p to addresses (or LocalUndef for local variables with an undefined value -LocalUndef is not a Python object but an artefact of our semantics to handle that case). The heap H p maps address to objects. The state is tagged by a flow token f ∈ F p to handle non-local control-flow (created by exceptions for example). Given a state σ p ∈ Σ p , we write as σ. p its environment and σ.η p its heap. The state Σ c consists of an environment and a heap. The environment E c maps scalar elements to values. The heap H c maps address to the type of allocated resource and their size. The type of allocated resources is Malloc when the standard C library malloc is used 2 . The Python allocator (called by PyType_GenericNew) will create resources of type PyAlloc, ensuring that:

	ObjS	def = LOCK ∪ (string	Addr)
	Value p	def = Addr
	F p	def = { cur, ret, brk, cont, exn a ∈ Addr }
	E p	def = Id p	Addr ∪ LocalUndef
	H p	def = Addr	ObjN × ObjS
	Σ p	def = F p × E p × H p
	E p expr : P(Σ p) → P(Value p	⊥ × Σ p)
	S (i) Python objects are well constructed by the correct allocator
	(ii) the C code cannot access directly, using pointer dereferences, these "opaque" objects
	and needs to use the API,
	(iii) the C code cannot free a block allocated by Python.
		Listing 10.1: Example C program to illustrate the concrete C state
	1 #include <stdlib.h>
	2		
	3 typedef struct {int length; float *data;} ftab;

10.1.1 Python state 10.1.2 C state The concrete C state is shown in Figure 10.2. The memory is decomposed into blocks Base, which are either variables Id c or heap addresses Addr. Each block is decomposed into scalar ObjN

def = int(i ∈ Z) ∪ bool(b ∈ {True, False}) ∪ float(f ∈ F 64) ∪ str(s ∈ string) ∪ None ∪ NotImpl ∪ List(ls ∈ Addr *) ∪ Tuple(t ∈ Addr *) ∪ Method(a ∈ Addr, f) ∪ Fun(f) ∪ Class(c) ∪ Inst(a ∈ Addr) p stmt : P(Σ p) → P(Σ p)

Figure 10.1: Concrete Python State elements (machine integers, floats, pointers). b, o, τ denotes the memory region in block b, starting at offset o and having type τ , abstracted as cells [107] in our next chapter. C values Value c are either machine numbers MNum (including integer and float datatypes, see Example 10.3 for example), or pointers P tr defined by their block and offset. Additionally, pointers can be NULL or invalid.

 In our case, this field (Figure10.5) will call wrap_init. In the semantics and our analysis, we can directly use the source code of wrap_init (shown in Listing 10.2). This function signals an error by return-ing NULL if the initialization function returns a negative integer, and returns the None value otherwise.An example of member descriptor has been already presented in Section 9.1.7. The member_de scriptor class defines __get__ and __set__ methods that are automatically called should an attribute be accessed or set (semantics shown in Figures 6.31 and 6.32). These methods respectively call member_get and member_set. These functions in turn rely on the specification provided in a d_member field (Figure10.5) to perform the corresponding getter or setter action (with conversions from Python to C datatypes or conversely, and checks that the member is not read-only).

		Listing 10.2: Code of wrap_init
	1 static PyObject *
	2 wrap_init(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds)
	3 {	
	4	initproc func = (initproc)wrapped;
	5	
	6	if (func(self, args, kwds) < 0)
	7	return NULL;
	8	Py_RETURN_NONE;
	9 }	
	Remark 10.11	Member descriptors

 1. For example, whenPyArg_ParseTuple encounters an 'i' char in its conversion string, it executes the code shown in Listing 10.3.4 As explained in our example from Section 9.1.6, it first calls PyLong_AsLong and converts the long to int checking for additional overflows. Our analyzer is able to analyze the code of Listing 10.3 directly, without having to rely on a builtin stub.Py_BuildValue performs the inverse operation: it creates Python objects from C values and a format string. The same approach is used in this case. Listing 10.3: Python to C int conversion done by convertsimple, called by

	4 }	
	5 else if (ival > INT_MAX) {
	6	PyErr_SetString(PyExc_OverflowError,
	7	"signed integer is greater than maximum");
	8	return 0;
	9 }	
	10 else if (ival < INT_MIN) {
	11	PyErr_SetString(PyExc_OverflowError,
	12	"signed integer is less than minimum");
	13	return 0;
	14 } else {
	15	*result = ival;
	16	return 1;
	17 }	
		PyArg_ParseTuple
	1 long ival = PyLong_AsLong(obj);
	2 if(ival == -1 && PyErr_Occurred()) {
	3	return 0;

 E # call Counter() σ E # env Counter σ @ CClass Counter , ⊥ E # type type.__call__(@ CClass Counter , ⊥) σ E # attrs @ CClass Counter , ⊥ .__new__(@ CClass Counter , ⊥) σ E # type type.__getattribute__(@ CClass Counter , ⊥ , "__new__") σ E # heap get_field(@ CClass Counter , ⊥ , "__new__") σ @ CFun tp_new_wrapper , ⊥ E p×c @ CFun tp_new_wrapper , ⊥ (@ Class type , ⊥ , @ CClass Counter , ⊥) σ p → c (@ Class type , ⊥ , σ) @ Class type p → c • E # tuple tuple(@ CClass Counter , ⊥) σ @ tuple E # call tp_new_wrapper(@ Class type , @ tuple , NULL) σ E p×c PyTuple_GetItem(@ tuple , 0) σ p → c • E # tuple tuple.__getitem__(@ tuple , ⊥ , 0) σ @ CClass Counter

E # cells @ CClass Counter ->tp_new σ PyType_GenericNew E # call PyType_GenericNew(@ CClass Counter , NULL, NULL) σ E # call PyType_GenericAlloc(@ CClass Counter , 0) σ E # mem alloc_addr(Inst(@ CClass Counter)) σ @ Inst(Counter)

Given f ∈ V → I, if there exists v ∈ V such that f (v) = ⊥I, f represents the empty set in the concrete.

We can say its state is unit, and the sole inhabitant of unit is written (). The lattice operators on this domain are straightforward to define.

We will combine both string domains in Section 2.4.6.

https://github.com/facebook/infer/blob/v1.1.0/infer/src/IR/Sil.mli#L40

https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer/

https://github.com/facebook/infer/blob/v1.1.0/infer/src/bufferoverrun/bufferOverrunDomain. ml#L1910

https://github.com/facebook/infer/blob/v1.1.0/infer/src/pulse/PulseAbductiveDomain.mli#L58

Since we return flow', we obtain a free decreasing iteration, as we stated at the end of Section 2.3.8.

The lattice operations are not performed pointwise on both domains, but by performing the operation on the upper domain -potentially modifying the lower domain -and then on the lower domain. This is useful when the upper domain needs to unify states in the lower one, see Remark 3.34.

This is used in Mopsa's interactive mode, to show only the part of the abstact state related to a variable.

Auxiliary variables building upon summarized address should only perform weak updates, so the fact that an abstract address is summarized or not should be available to the heap domain.

If the set is empty, append can add 1.

https://docs.python.org/3.8/library/dis.html

https://docs.python.org/3.8/reference/datamodel.html#object.__del__

Except for the specific case of generators.

https://www.python.org/dev/peps/pep-0585/

https://docs.python.org/3.8/reference/expressions.html#evaluation-order

https://docs.python.org/3.9/tutorial/errors.html#defining-clean-up-actions

d = Date.from_str("03/06/2021")

Which checks that the returned object is a non-negative integer.

https://docs.python.org/3.8/reference/datamodel.html#object.__hash__

https://www.python.org/download/releases/2.2/descrintro/#superexample

In practice, we are nevertheless limited to programs that do not use eval.

To express for example that x and y have the same type t ∈ { int, str }.

https://github.com/python/typing/issues/71

cf. https://github.com/google/pytype/issues/484

In practice, some variables can be added in different packs, and their values reduced by communicating their intervals. For example, the parameters of functions can be added in the packs of the caller and the callee, to keep relations between the two.

According to the ISO C reference, "a pointer to a structure object, suitably converted, points to its initial member, and vice versa".

Py_BuildValue is the converse function translating C values to Python ones.

This approach is similar to the opaque representations of objects such as file descriptors in the work of Ouadjaout and Miné[START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF].

Other resources (such as file descriptors) can also be defined[START_REF] Ouadjaout | A library modeling language for the static analysis of C programs[END_REF].

We reuse the convention of Chapter 6: Python functions written in gray and typewriter font are clickable links to their source code on Github.

In the abstract, we use a stub, since the CPython implementation is a bit too complex to be precisely analyzed: it uses loops, and recursive functions manipulating variable arguments. PyArg_ParseTuple is defined as a stub (just as PyLong_AsLong is), but the case of integers is delegated to the interpreter's implementation shown in Listing 10.3.

The construction could be adapted if the state is partitioned.

List of Definitions, Examples, Properties and Remarks 11.7 Theorem -Soundness of the multilanguage analysis 226

Acknowledgments & Remerciements

I am deeply grateful to Isabella Mastroeni and Anders Møller for having agreed to review this dissertation in the busy months of September and October.

I would like to thank Emmanuel Chailloux, Francesco Logozzo, Peter Müller and Alan Schmitt for agreeing to participate to the defense committee.

. Merci à Mathilde pour l'enseignement des groupes débutants à deux en 2019, et la reprise du flambeau cette année. Merci aussi à Maria (Mihaescu)

∪ @ ∈ (id) let σ = man.set [x → { a }] σ in if type(@)) = int then S # del float(x) • S # del str(x) σ , @ , int(x) else if type(@) = float then S # del int(x) • S # del str(x) σ , @ , float(x) The analysis of Python code calling the cffi generated code should essentially come for free using the Python/C API analysis of Chapter 11, as it generates static C code similar to what we presented in section 9.1, that we already handle. We would have to support the cffi functions, but since their C source code is available, we could analyze it.

Remark 9.1 cffi works on shared libraries

cffi can also work with compiled shared libraries (such as libsyracuse.so). Since functions are declared using cffi.cdef (Listing 9.7, line 10), it is still able to generate wrapper code in this case.

Swig

swig [9] is able to generate interfaces between C code and multiple languages, such as Python, JavaScript or OCaml. Swig requires the definition of an interface file (Listing 9.9), defining the module's name, which headers files should be included in the module's generated code, and which C functions should be made available. Listing 9.9: Contents of file syracuse.i

Conclusion

This chapter defined an example of native module defining a simple Counter class. We have seen that discrepancies between the C and Python values created behaviors (integer wraparounds) or conversion errors that a Python developer may not be used to. This example will be reused in the next chapters.

We surveyed other interoperability mechanisms available between Python and C. All rely on the Python/C API in which our running example is written.

Remark 11.5 Relational analysis

Sharing the address allocation and numerical abstractions allows expressing relational invariants between the languages. In the example in Listing 11.2, a non-relational analysis would be able to infer that 0 ≤ i ≤ 99, but it cannot infer that the number of calls to incr is finite. It would thus infer that -2 31 ≤ r < 2 31 , report an overflow error and be unable to prove the assertion at the end. The value of r originates from the C value of the count field in the instance defined in c. With a relational analysis where C and Python variables are shared in the numerical domains, it is possible to infer that int(@ int) + 1 = int(@ Counter , 16, int). int(@ int) is the numeric value of the integer bound to i. int(@ Counter , 16, int) is the numerical value of the Counter instance (i.e., the value of count in the Counter struct, here represented as the cell [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF] referenced by the Counter instance, at offset 16 being a 32-bit integer). Our analyzer is able to prove that the assertion holds using the octagon abstract domain [START_REF] Miné | The octagon abstract domain[END_REF].

Listing 11.2: Program where relationality between languages improves precision 1 import counter 2 from random import randint We assume we have relational concretization functions for the Universal, Python and C domains:

The overall multilanguage concretization ensures that the concretizations of Python and C rely on the same concretized universal state S u .

Soundness of the multilanguage analysis

Assuming the underlying abstract semantics of Python and C are sound, the multilanguage analysis is sound. CPython builtins. In addition to the 64 builtins handled by the multilanguage domain, we reuse the C implementation of 60 CPython functions as-is. Potential runtime errors in the API implementation modeled by our concrete semantics as builtins cannot be detected. Assuming that the CPython implementation is correct is a reasonable assumption, as we want to verify client C and Python code. We ensure in our implementation that these builtins are called with valid arguments. However, for the part of the API where our implementation uses the original C implementation, runtime errors would be detected. Currently, half of the API supported reuses the original code of the interpreter.

Build setup

We described how native C modules can be compiled for Python, through a setup.py file relying on the setuptools library in Section 9.1.8. This build system may be complex and impact the analyzed source code. Both the developer and the setuptools library may define compilation flags affecting the source code (e.g., by defining macros), include system (or Python) headers and link with different libraries. We rely on an internal tool call mopsa-build to record the C source files and the related compilation flags. Using this tools, we just have to call mopsabuild python3 setup.py instead of python3 setup.py, before running our analysis. mopsabuild intercepts calls to the compiler and to the linker, in order to record these pieces of information. The C frontend of Mopsa, based on clang, is then able to process the recorded pieces of information. mopsa-build was originally designed to ease the analysis of C programs using a build system.

List of Figures

List of Definitions, Examples, Properties and Remarks