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Résumé

La planification est un probléeme d’intelligence artificielle pouvant étre
appliquée a de nombreux domaines. Dans cette thése nous nous intéressons
a étendre les possibilités de la planification pour représenter des problemes
réalistes. Nous opposons les problémes jouets comme les enfants sales («
muddy children ») aux problemes que ’on peut rencontrer dans le monde réel.
Les probléemes du monde réel vont présenter différentes caractéristiques qu’il
faudra pouvoir prendre en compte dans leur résolution. Ils sont bien souvent
multi-agent et demandent de pouvoir raisonner sur la connaissance des agents,
ce que l'on appelle raisonnement épistémique. Les actions des agents peuvent
nécessiter une certaine durée pour se réaliser et les agents peuvent les réaliser
en parallele. Enfin, les actions peuvent avoir des conséquences imprévisibles
ou des événements indépendants peuvent se produire.

Différents domaines de planification ont été étudiés pour ajouter ces dif-
férents aspects a la planification classique. Bien que I'aspect multi-agent ait
été étudié en combinaison avec les trois autres, les autres combinaisons ne
I'ont pas ou peu été. Le but de cette these est d’apporter des éléments pour
permettre de résoudre des taches de planification multi-agent, temporelles et
épistémiques. Ces trois aspects (multi-agent, temporel et épistémique, abrégé
en MaTEp) nous semblent les plus importants a associer. L’incertain repré-
sente un ajout bien plus conséquent puisqu’il peut étre présent a de multiples
niveaux dans les problémes et il peut étre géré de trés nombreuses maniéres.

Nous commencons par présenter une famille de problemes de planification
MaTEp, les problemes de bavardage temporels et épistémiques. Le probleme
du bavardage épistémique est un probléme ou plusieurs agents ont chacun une
information connue d’eux seuls. Ils peuvent s’appeler pour partager I'intégralité
des connaissances qu’ils ont, sur les informations de chacun mais aussi sur
la connaissance des agents sur ces informations. Le but est alors d’avoir une
connaissance partagée par tous les agents jusqu’a une certaine profondeur.
Avec une profondeur de 1 on voudra que tous les agents connaissent tous les
secrets. Avec une profondeur de 2 on voudra également que tous sachent que
tous connaissent tous les secrets. Nous généralisons ici ce probléme en ajoutant
des contraintes temporelles sur les communications. Les agents ne peuvent
s’appeler ou sont forcés de s’appeler a certains moments. Nous montrons que
cette famille de problemes est NP-compléte, et ce méme si on ajoute des buts
négatifs comme avoir ’agent ¢ qui ignore le secret de ’agent j.



Nous présentons ensuite une logique dynamique que 1’on appelle logique
dynamique d’affectations propositionnelles paralleles (DL-PPA) avec des pro-
grammes paralléles. Nous montrons que les problemes de satisfiabilité et
de model-checking sont tous les deux PSPACE-complets. Cette preuve est
faite via une réduction polynomiale vers la logique dynamique d’affectations
propositionnelles (DL-PA) sur laquelle DL-PPA est basée. Cette logique est
ensuite appliquée a la planification classique. Le probleme de recherche de
I'existence d’une solution a un probléme de planification peut étre traduit
en une formule DL-PPA. Nous présentons des traductions pour des solutions
permettant ’exécution d’actions en paralléle ainsi que pour des solutions
n’autorisant qu’une exécution séquentielle. Ces méme programmes peuvent
étre modifiés pour modéliser la recherche de solution & horizon borné, c’est a
dire des plans de longueur restreinte.

La derniére partie présente une traduction d’un probleme de planification
épistémique vers un probléme de planification classique. Le probleme de
planification épistémique est décrit dans une logique statique, EL-O, avec
une description des transitions d’états via une fonction partielle. Nous mon-
trons que ce probleme peut étre traduit polynomialement de la planification
épistémique avec EL-O vers de la planification classique. Cette traduction
implique que la planification épistémique présentée est dans PSPACE. Dans
le méme esprit, en nous basant sur notre modele de planification épistémique
nous avons créé des domaines et problemes PDDL. Ces problemes ont été
testés avec des planificateurs de la compétition internationale de planification
(IPC) de 2018. Nous avons comparé les temps d’exécution nécessaires aux
planificateurs pour donner une solution. Ces résultats sont similaires pour les
différents planificateurs testés et montrent que ces types de problémes ne sont
pas évidents pour des planificateurs au top de I’état de Dart.

Mots clés : logique épistémique, multi-agent, raisonnement temporel, plani-
fication



Abstract

Planning is a problem of the domain of artificial intelligence that can be
applied to many areas. In this thesis we are interested in extending the
possibilities of planning to model realistic problems. We oppose toy problems
such as muddy children with problems that can be encountered in the real
world. Real world problems have features that need to be taken into account
in their resolution. They are often multi-agent and require the ability to
reason on the knowledge of the agents, we call this epistemic reasoning. The
actions of the agents may require a certain amount of time to be fully executed
and the agents may perform actions in parallel. Finally, actions may have
unpredictable consequences or independent events may occur.

Different areas of planning have been studied to add these aspects to classical
planning. Although the multi-agent aspect has been studied in combination
with the other three, the other combinations have been studied little or not
at all. The aim of this thesis is to provide elements to allow planning of
multi-agent, temporal and epistemic problems. These three aspects (multi-
agent, temporal and epistemic, abbreviated to MaTEp) seem to us the most
important to associate. Uncertainty is a much more significant addition since
it can be present at multiple levels in problems and can be managed in many
different ways.

We begin by presenting a family of MaTEp planning problems, the temporal
and epistemic gossip problems. The epistemic gossip problem is a problem
where there are several agents, each with information known only to them.
They can call each other to share the entirety of the knowledge they have,
about each other’s information but also about the agents’ knowledge about
this information. The goal is then to have a knowledge shared by all the
agents up to a certain depth. With a depth of 1, we want all agents to
know all the secrets. With a depth of 2 we also want everyone to know that
everyone knows all the secrets. Here we generalise this problem by adding
time constraints on communications. Agents can only call each, other or are
forced to call each other, at some given instants. We show that this family of
problems is NP-complete, even if we add negative goals such as having agent
1 ignore the secret of agent j.

We then present a dynamic logic called dynamic logic of parallel propo-
sitional assignments (DL-PPA) with parallel programs. We show that the
problems of satisfiability and model-checking are both PSPACE-complete.



This proof is made through a polynomial reduction to the dynamic logic of
propositional assignments (DL-PA) logic on which DL-PPA is based. This logic
is then applied to classical planning. The problem of finding the existence of
a solution to a planning problem can be translated into a DL-PPA formula.
We present translations for solutions allowing parallel execution of actions as
well as for solutions allowing only sequential execution. These same programs
can be modified to model the search for solutions with a limited horizon, i.e.
plans of limited length.

The last part presents a translation from an epistemic planning problem to
a classical planning problem. The epistemic planning problem is described
in a static logic, EL-O, with a description of state transitions via a partial
function. We show that this problem can be polynomially translated from
epistemic planning with EL-O to classical planning. This translation implies
that the epistemic planning problem presented is in PSPACE. In the same
vein, based on our epistemic planning model we created PDDL domains and
problems. These problems have been tested with planners from the 2018
International Planification Competition (IPC). We compared the execution
times needed by the planners to give a solution. These results are similar for
the different planners tested and show that these types of problems are not
obvious to planners at the top of the state of the art.

Keywords: epistemic logic, multi-agent, temporal reasoning, planning
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1 Introduction

This first chapter describes the definitions used in the thesis. The first section
is about some generic definitions that are not fully spelled out. The following
sections describe some instantiations. These sections are about some variants
of automated planning problems. The first one is classical planning, the
simplest form of planning. The second adds some reasoning over the agents
knowledge. The third is about planning with temporally extended actions.
The last one combines all of this in epistemic temporal planning.
The last section of this chapter explains the contribution of this thesis.
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1 Introduction

Résumé du chapitre en francais

Ce chapitre présente les définitions utilisées dans le reste de la theése. On
suppose donnés un ensemble d’états, un ensemble d’actions et un ensemble de
formules construites sur un ensemble de fluents. Une tache de planification est
composée d’un état initial, une fonction modélisant les actions et une formule
de but. On distingue deux types de plans, les plans séquentiels et les plans
paralléles. Dans un plan séquentiel, une action est appliquée a un état pour
créer I’état suivant tandis que dans un plan parallele il s’agit d’'un ensemble
d’actions qui sont appliquées. Un plan séquentiel est donc un ensemble ordonné
d’actions et un plan parallele est un ensemble ordonné d’ensembles d’actions.

La forme la plus simple de planification est appelée planification classique.
En planification classique les fluents sont des variables propositionnelles. Un
état est un ensemble de fluents, ceux ci sont les fluents vrais dans cet état,
les autres étant faux. Le but est une formule propositionnelle. Les actions
sont composées d’une précondition qui doit étre vraie pour que ’action puisse
étre exécutée et d’un ensemble d’effets. Dans leur forme la plus simple les
effets sont séparés en effets positifs (ensemble de fluents ajoutés a 1’état)
et effets négatifs (ensemble de fluents supprimés de 1’état). Cette définition
étant limitée, différentes extensions ont été proposées, notamment les effets
conditionnels. Un effet conditionnel est composé d’une condition et d’ensembles
d’effets positifs et négatifs. Si une action est exécutée, tous les effets dont la
condition est vraie verront leurs effets appliqués, les autres effets ne seront
pas appliqués. En planification classique, un plan est dit plan solution si son
execution depuis I’état initial améne a un état ou le but est vrai.

La planification épistémique est la forme de planification incluant un raison-
nement sur la connaissance des agents. Selon le langage utilisé, la connaissance
peut étre ajoutée aux fluents ou aux formules en utilisant des opérateurs
de connaissance. La logique dynamique épistémique la plus courante (DEL)
utilise la deuxieme solution. DEL est intéressante par sa grande expressivité
mais cela implique une complexité élevée. La planification DEL a été prouvée
indécidable. Pour pouvoir étudier des problemes de planification épistémiques
solvables en un temps raisonnable, différentes approches ont été étudiées.
Ces approches ajoutent des restrictions soit sur ’aspect épistémique soit sur
I’aspect dynamique. Pour le premier il s’agit généralement de contraindre
I'utilisation de I'opérateur de connaissance sur les fluents. Les contraintes dy-
namiques modifient la connaissance des agents sur les actions, celles ci peuvent



par exemple étre toutes publiques. Dans la suite de cette these nous utilisons
EL-O pour la partie épistémique. Il s’agit d’une logique épistémique allégée
basée sur des opérateurs de visibilité. Le fonctionnement de ces opérateurs —
un agent voit si plutét que de savoir que — permet de contourner certaines
contraintes ajoutées par le choix d’avoir un opérateur appliqué seulement aux
fluents tout en conservant les gains en complexité liés a ce choix.

L’objectif de cette these était de créer des outils d’aide a la planification
pour les problemes de la vie réelle. J'oppose ici les probléemes de la vie
réelle aux problémes jouets qui ont un intérét philosophique mais qui ne se
trouveront jamais dans la vie réelle. Je me suis concentré sur la réunion de
trois aspects différents que ’on trouve couramment dans les problémes de la
vie réelle : multi-agents, les actions étendues dans le temps et le raisonnement
sur la connaissance des agents. Les problémes de planification temporelle
et épistémique multi-agents peuvent étre utiles de nombreuses facons. Nous
pouvons les utiliser pour aider les gens a décider de la maniere d’accomplir
une tache, par exemple pour les lignes de production d’une usine. Ils peuvent
étre utilisés dans les jeux vidéo pour I'TA de personnages non jouables ou
pour générer la dynamique d’une histoire. Ou encore pour des robots plus
intelligents, afin de déterminer les actions qu’ils doivent effectuer et quand
ils doivent les faire. Comme nous voulons aider & planifier des problemes de
la vie réelle, nous voulons disposer d’outils qui peuvent trouver une solution
dans un délai raisonnable. Comme la planification temporelle temporelle et
épistémique est au moins aussi difficile que la planification classique, nous
avons choisi leur complexité PSPACE-compléte comme limite inférieure. Dans
cette classe de complexité les problemes avec un faible nombre d’actions et
d’étapes peuvent étre résolus mais les problémes plus importants peuvent
nécessiter une quantité énorme de temps qui pourrait ne pas étre pratique.
Nous voulions donc que les problemes de planification soient dans PSPACE.
Comme cela représentait déja beaucoup de travail, nous avons choisi de ne
considérer que les probléemes déterministes. Cela implique que ’aspect multi-
agents est présent dans la description et I’exécution du probleme mais pas dans
la recherche de la solution. Nous voyons la résolution comme étant effectuée de
manieére centralisée. Cela implique que cette localisation peut communiquer la
partie pertinente du plan a chaque agent avant son exécution. Cela fonctionne
bien pour les problemes de coopération entre les agents. Pour les problemes
avec compétition entre les agents, le vainqueur de la compétition est choisi
lorsque le probleme est modélisé.
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Dans le chapitre 2, je présente les problemes de bavardage épistémique
temporel (TEGP). Ils sont une généralisation du probléeme du bavardage
épistémique avec des contraintes temporelles sur les appels. Nous avons ajouté
une durée pour toutes les actions d’appel et des contraintes sur les moments
auxquels un appel entre deux agents est autorisé. Ce chapitre montre que
les TEGP sont des problemes NP-complets méme avec des buts négatifs.
Un exemple de but négatif est que ’on ne veut pas que I'agent ¢ connaisse
le secret de ’agent j. Ces problémes montrent I'intérét d’ajouter un aspect
temporel aux problemes épistémiques pour les rendre plus réalistes. Lorsque
nous voulons communiquer avec d’autres personnes, il se peut que nous ne
soyons pas en mesure de les appeler quand nous le voulons et que le plan le plus
court ne soit pas le meilleur lorsque ces contraintes sont prises en compte. Nous
avons alors voulu ajouter plus de flexibilité aux contraintes temporelles. Cela
a conduit aux deux chapitres suivants. Le chapitre 3 présente une extension de
DL-PA pour ajouter du parallélisme dans la logique. Ce chapitre montre que
DL-PPA conserve la complexité PSPACE-complete de DL-PA. Ce résultat
est ensuite utilisé pour une tache de planification classique a horizon borné.
Deux programmes qui sont équivalents au probleme de I'existence d’un plan
de k étapes ou moins sont décrits. Une autre approche de la planification
épistémique parallele est décrite au chapitre 4. Cette fois ci, nous utilisons des
actions EL-O et nous avons donc des actions épistémiques au lieu des actions
classiques du chapitre précédent. Nous montrons que les actions EL-O peuvent
étre traduites en planification classique parallele. Avec cette traduction, nous
pouvons montrer que la planification parallele EL-O est PSPACE-complete.
Nous utilisons également la traduction vers la planification classique pour
traduire certains problémes épistémiques en PDDL. Cette derniere traduction
nous a permis de tester certains de ces problemes avec des planificateurs IPC
et de comparer le temps d’obtention d’un plan.



1.1 Generic definitions

1.1 Generic definitions

We suppose given a set S of states and a set Act of action names, and a set
of formulas F'ml formed on a set F of fluents. I will use both action or action
name with the same meaning. The set of boolean formulas Fml is defined by
the following grammar:

pu=fl L@ |p1Aps

where f ranges over the set of fluents F. We will use the abbreviations T = —.L
and @1 V @2 = (-1 A —gpa).

The precise nature of these sets will depend on the kind of planning under
concern and will be detailed in the sequel. A planning task is a triple
(so, T, Goal) with

e 5o € S is the initial state
o 7:Act xS — S is a partial function modeling the actions in Act!
e Goal € Fml is the goal

We say that an action a can be ezecuted at a given state s if 7(a,s) is
defined. In the following we use 7, as an abbreviation of 7(a,-). Then the
result of the execution is a state s = 75(s).

The solution of a planning task is an ordered set of actions called a plan.
We call plans made of single actions sequential plans and plans made of sets of
actions (steps) parallel plans. The ezecution of a plan consists of the ordered
execution of the actions starting from a given state.

In order to define the execution of parallel plans several notions of interfer-
ence have been proposed (Knoblock 1994; Dimopoulos, Nebel, and Koehler
1997). We choose the V-Step plan semantic of (Rintanen, Heljanko, and
Niemeld 2006) to build the interference rules. In such plans, actions of a
step can be executed in any order with the same outcome. This rather re-
strictive definition is used in most approaches to parallel classical planning.
For this, we extend the function 7 to set of actions, with some restrictions.
The execution of an empty set of actions 7y is always defined and does not

L+ can be generalized to 7 : Act x 2% — 25 to have incomplete knowledge about the initial
state and non deterministic actions.
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change the state: 3(s) = s. We require 74 to be defined at a state s if and
only if, for every action a € A 7y, is defined and in that case we require
that 74(s) = Ta(74\a(5)) = Ta\a(7a(s)). This way, if 74(s) is defined for a set
A ={a1,...,a,}, then 74(s) = 7a, (... (74a,}(5)) . . .) for any ordering of the
set.

Formally, the execution of a sequential plan (ag,...,a,) at a state s¢ is the
sequence of states (so, ..., Sp+1) where:

Sit1 = Ta(8i)

and the execution of a parallel plan (Aq,..., A,) at a state sq is defined as
the sequence of states (so, ..., Sn+1) where:

sit1 = 74;(si)

To illustrate the different kinds of planning described here, I will use different
variations of the gossip problem. The simplest one (Akkoyunlu, Ekanandham,
and Huber 1975; Hurkens 2000) has six agents. Each agent has a secret,
something known by them and only them at the beginning, and the goal is
for all the agents to know all the secrets. In order to achieve this goal, the
agents can call each other to share all their knowledge.

1.2 Classical planning

The simplest form of automated planning (Ghallab, Nau, and Traverso 2004) is
called classical planning. Such planning tasks are modeled with propositional
variables as fluents.

In the generalized gossip problem (Maffre 2016) there are n agents (noted
i, J, etc.) who each have a secret, something known by them (ksec;;) but no
one else (—ksec;; for j # i). The goal of the planning task is for all the agents
to know all the secrets. In order to achieve this goal the agents can call each
other.

During a one-way call (such as a letter or email) information only passes in
one direction, whereas during a two-way call (such as a telephone conversation)
information passes in both directions. In the case of parallel communication,
several calls between distinct pairs of agents may take place simultaneously,
but an agent can only participate in one call (either by or to another agent)



1.2 Classical planning

at the same instant. Parallel communications can model usual multi agent
communication problems. The sequential version, in which only one call can
take place at the same time, is of interest when the aim is to minimise the
total number of calls or when the communication channel is shared by the
agents.

1.2.1 State description

The states of a classical planning task are sets of fluents. All the fluents in
the set are true in this state and the other fluents are false. In the generalized
gossip problem, the initial state is so = {ksec;; : i € {1.n}}.

1.2.2 Action description

In classical planning, an action a is described with a precondition pre(a)
which must be true for the action to be executed, and a set of effects eff(a),
describing the consequences of the action. The effects are fluents that are
added or deleted from the current state. These effects may have conditions of
their own, in that case they are called conditional effects. We require that
the actions descriptions are consistent, that is when executed in a given state
s, for any fluent f, an action cannot delete and add f.

1.2.2.1 Without conditional effects

The simplest form of action description is that of STRIPS (Fikes and Nils-
son 1971) (Stanford Research Institute Problem Solver). In this language,
preconditions are limited to a conjunction of fluents that must be true and
fluents that must be false in order for the action to be executable. The same
limitation applies to the goal formula.

The effects are divided in two sets: eff'(a) is the set of fluents that are
added to the state after the execution of a and eff (a) is the set of fluents
that are deleted from the state. The partial function 7, is as follows:

ra(s) = {(S \ef @) U efi(a) if s (= pre(a)

| undef otherwise

As a’s description is consistent it does not matter in which order we apply
negative and positive effects.
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For the gossip problem it is:

Tcal, ; (8) = s U {ksecip = k€ {l.n}, ksecjy € s}
U {ksecj : k€ {l.n}, ksec;, € s}

In the case of parallel plans, we require that the set of actions A executed
on a given step has no contradictory effects. This means that for any pair of
actions aj,as € 4, eff f(a1) N eff (az) = 0. For example, opening and closing
a door have contradictory effects. We also want to avoid cross-interaction.
Here, this means that for two distinct actions aj,as € A, a; cannot add a
fluent that must be false for pre(as) nor delete a fluent that must be true
for pre(ag). For example, closing a door will interact with crossing it. We
say that a set of actions without contradictory effects and cross-interaction
in a state s is consistent in s. Those constraints are more restrictive than
accepting all V-Step plans but are simpler to test within our logics and give
only V-Step plans. Under these restrictions testing whether a V-step plan
is valid is polytime while it is CoNP-complete for any generic V-step plan
(Rintanen, Heljanko, and Niemeld 2006).

1.2.2.2 With conditional effects

STRIPS being limited, some other languages were proposed to extend the
description of actions. The most widespread one, and the only one I will
write about, is PDDL (McDermott et al. 1998) (Planning Domain Definition
Language).

In PDDL, the preconditions of actions and the goal can be any boolean
formula and the actions can have conditional effects. Here we will only consider
non recursive conditional effects, which is usually called conditional STRIPS.
In this case, a conditional effect ce has a condition cnd(ce) and positive
eff "(ce) and negative eff (ce) effects. As we can express unconditional effects
as conditional effects that have T as a condition, we can reduce the description
of an action to a tuple a = (pre(a), eff (a)). When the action a is executed
in a state s, all the conditional effects ce € eff(a) of a are executed. When
a conditional effect is executed, if its condition is true in the state s, all the
fluents in eff *(ce) are added to the state and all the fluents in eff (ce) are
deleted.
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Formally:
5\ U ef(chU U efff(ce) ifspre(a)
ceceff(a) ceceff(a)
Ta(S) = sk=cend(ce) sk=cnd(ce)
undef otherwise

As in STRIPS planning, for parallel plans we require consistent actions
sets. A set of actions A is said to be free of contradictory effects in a state
s if and only if for any pair of actions aj,as € A and for every ce; € eff(a1)
and cey € eff (a2), if s = cer A ceg then eff T(cer) N eff (cea) = 0.

For the cross-interaction, we generalise the definition used for STRIPS
planning. We say that two states s and s’ agree on a formula ¢ if and only if
either s = g and s’ = p or s £ ¢ and s’ [~ ¢. Then we say that two different
actions a; and as have no cross-interaction at s if the following hold:

1. s and 7,,(s) agree on pre(az) and on the condition cnd(cez) of every
conditional effect ces € eff (az);

2. s and 7,,(s) agree on pre(a;) and on the condition cnd(ce;) of every
conditional effect ce; € eff(ay).

1.2.3 Goal and preconditions description

In classical planning the goal and the preconditions are both boolean formulas
over the set of fluents. However, depending on the language used, there can
be some restrictions on these formulas. They are usually the same for both
the goal and the preconditions.

In STRIPS the formulas can only be conjunctions of fluents and negations
of fluents. In PDDL the formulas can use the full set of boolean formulas
described above.

For the generalised gossip problem, the goal is Goal = A ksec; ;.
i,j€{l..n}

1.2.4 Solution description

For a plan to be a solution of a classical planning task, the goal formula must
be true in the state reached after the execution of the plan on the initial state.
When describing a planning task with the definitions above this cannot be
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verified in classical propositional logic. In the use cases of STRIPS or PDDL
the verification is done in some meta-language. Therefore, the dynamic aspect
of planning is implicit when describing a planning task in these languages.
However, we may want to have an explicit definition of both the planning
task and the validity of a solution for this task in a formal logic. To do this,
one can use two dynamic logics, one for sequential planning only and one for
both sequential and parallel plans.

1.2.4.1 Sequential

For sequential plans, we will use DL-PA (Herzig, Lorini, Troquard, et al. 2011)
(Dynamic Logic of Propositional Assignments). With DL-PA, we can describe
a planning task with any boolean formulas for the goal and preconditions and
conditions of conditional effects. We can also describe 74 but only for single
actions (i.e. A is a singleton).

DL-PA is interesting for classical planning (Herzig, Menezes, et al. 2014), in
particular because of the complexity of satisfiability checking is in PSPACE.
This matches with the complexity of determining plan existence (Bylander
1994) which is PSPACE-complete.

1.2.4.2 Parallel

Many authors have investigated how planning problems and their solutions
can be represented in Propositional Dynamic Logic PDL, including work on
conformant and contingent planning and planning with epistemic actions
(Spalazzi and Traverso 2000; Andersen, Bolander, and Jensen 2012; Li, Yu,
and Wang 2017; Bolander, Engesser, et al. 2018; Cong, Pinchinat, and
Schwarzentruber 2018). However and to the best of our knowledge, it has not
been investigated yet how planning with concurrent actions can be captured
in dynamic logic. Probably the reason for that is that there is no consensus on
the semantics of parallel actions in the PDL community: there are proposals
interpreting parallel composition as interleaving (Mayer and Stockmeyer 1996;
Benevides and Schechter 2014), as intersection (Balbiani and Vakarelov 2003),
and as relations between states and sets of states (Peleg 1987; Goldblatt 1992).
There are also extensions with modalities from resource separation logics
(Balbiani and Boudou 2018; Benevides, Freitas, and Viana 2011; P. A. S.
Veloso, S. R. M. Veloso, and Benevides 2014).

10



1.3 Epistemic planning

1.2.5 Tools to find a solution to a planning task

Theorem provers for logics such as DL-PA allow us to decide whether there
exists a plan and to verify a given plan. However using these may not be
the most efficient way to find a solution plan for a given planning task. To
find a plan for a specific planning task we can use planners. There are many
different kinds of planners that gives different kinds of solutions. Some will
return an optimal plan, a plan with the minimum number of steps to achieve
the goal. Some will return a suboptimal plan but will focus on the time and
memory needed to find this plan. The plans can also be constrained with a
different cost for each action. Such a plan will be optimal if it minimises the
total cost.

The easiest way to find a state-of-the-art planner is to look at the Inter-
national Planning Competition (IPC) results. All of the planners here use
PDDL as input language and represent top state-of-the-art performances. We
can also use SATPLAN (Mali and Kambhampati 1999; Vidal 2001) which is
based on the translation from a planning problem to a SAT problem. Many
SAT solvers give a solution when there exists one. This solution can then be
translated to a solution plan for the planning problem. As SAT solvers are
more widely used than planners, they may have better performances. However,
SAT is a NP-complete problem when classical planning is a PSPACE-complete
problem. To reduce a planning problem to NP, we search for horizon bounded
plans. To find an optimal plan we have to search for a plan for different
lengths then take the shorter one. The search can be done in different ways.
We can search incrementally and stop when the SAT problem has a solution.
We can also search by dichotomy. When the SAT problem has a solution, the
problem is either longer than the optimal solution or it is an optimal solution.
And when the SAT problem has no solution, it is shorter than the optimal
solution.

1.3 Epistemic planning

Epistemic planning is the form of planning that involves reasoning about the
agents’ knowledge. Depending on the logic used, knowledge will be modeled
either via special fluents, using knowledge based variables, or via the formulas
by adding some knowledge operators.

For instance the gossip problem was generalised in (Cooper, Herzig, Maffre,

11
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Maris, and Régnier 2016b; Cooper, Herzig, Maffre, Maris, and Régnier 2016¢)
to the epistemic gossip problem. In the epistemic gossip problem, we are not
only interested in the knowledge of the secrets for each agent but also the
knowledge they have of the other agents’ knowledge. The goal of an epistemic
gossip problem planning task can be shared knowledge of order 3: that all the
agents know that all of them know that all of them know every secret. It can
also be that a specific agent knows that the other agents know all the secrets.

We use two different formats for the propositional variables in the epistemic
gossip problem. We can keep the same variables as in classical planning
(ksec; ;) that means that agent i knows the secret of agent j. Alternatively,
we consider than the secrets are booleans and we keep the knowledge out of
the propositions. To do this, we use sec; instead, which means that the secret
of agent j is true. In such a case, the secret may be, for instance, about the
truth of a gossip that everyone heard about agent j.

1.3.1 DEL

This subsection is based on (Bolander 2017) and (Cooper, Herzig, Maffre,
Maris, Perrotin, et al. 2019).

Epistemic planning is the general setting of planning in Dynamic Epistemic
Logic DEL (Bolander and Andersen 2011; Lowe, Pacuit, and Witzel 2011).
DEL combines standard epistemic logic (the static component) with event
models describing actions and their perception by the agents (the dynamic
component). As DEL-based planning is undecidable (Bolander and Ander-
sen 2011), restrictions of either the static or the dynamic component were
explored. Most approaches focused on the latter. It turned out that undecid-
ability is already the case under severe restrictions: basically, DEL planning
tasks are only decidable when all actions are public (Aucher and Bolander
2013; Bolander, Jensen, and Schwarzentruber 2015; Cong, Pinchinat, and
Schwarzentruber 2018), which is not the case in many real world multiagent
applications.

Given a set of propositions p € P, the set of DEL formulas Fmlpg, is defined
by the following grammar:

pu=p|L|=p]e1Ves | Kip| CKip

12
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1.3.1.1 State description

To represent the states in a DEL planning task we need a Kripke structure.
A Kripke structure is a triple M(W, R, h) where:

e W is a set of possible words

e Ris a set of symmetric binary relations R;, the indistinguishably relation
for agent 7, on W

e h:P— 2" is a function that, for each propositional variable, gives the
set of worlds where that variable is true

This way, we can have a model of all the worlds that are possible for our

agents. If an agent ¢ does not have enough knowledge to distinguish a world

wy from a world ws, then there is a relation in R; between these worlds.
Then, the epistemic state is the tuple (wg, M) where wy € W.

1.3.1.2 Action description

The actions of DEL are described with action models. An action model is a
tuple (E, R, pre, eff ) where:

F is a set of events

(]

R is the set of indistinguishably relations

pre : E — Fmlpg| assigns a precondition to each event

o eff : E — FmlpgL assigns an effect to each event, for all e € E, eff(e)
is a conjunction of literals over P

For instance, the action model corresponding to the truthful public an-
nouncement of p has a single event e, total relations, p as precondition and an
empty effect: (e, Agt, p, skip). Another example may be a truthful semiprivate
announcement whether p to agent ¢. Agent i learns whether p and other
agents only learn that ¢ learns whether p without learning whether p. This is
modeled by an action model with two events, e™ and e~. The preconditions
are pre(e™) = p and pre(e”) = —p and the effects are undefined. The set of
indistinguishably relations is R; = {eT,e"} x {e*,e”} for every j # i and
R; = {(e*,e"),(e,e7)}. The designated event is e™ if we want i to learn
that p or e™ if we want ¢ to learn that —p.

13
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1.3.2 Other decidable approaches

We overview existing work on decidable epistemic planning in the DEL
paradigm. We only present sequential plans: as far as we know parallel plans
have not been investigated yet.

The approach of (Muise et al. 2015) is based on a lightweight epistemic
logic where the scope of the epistemic operator K; is restricted to literals, or
literals that are preceded by a sequence of epistemic operators (Demolombe
and Pozos Parra 2000; Steedman and Petrick 2007; Lakemeyer and Lespérance
2012), and negations (Muise et al. 2015); in other words, no conjunctions or
disjunctions can occur in the scope of K;. Such restrictions however exclude
formulas such as K;(K;pV K;—p) expressing that agent 7 knows that agent j
knows whether the propositional variable p is true. This is a major drawback
because such formulas are fundamental in communication and more generally
in any forms of interaction: a situation where agent ¢ does not know whether
or not p is the case (—K;pA—K;—p) but knows that j knows (K;(K;pVK;—p))
may lead agent ¢ to ask j about p. Such ‘knowing-whether’ information also
conveniently describes the initial situation of the gossip problem:

Ni (Kisee; V Kimsec;) NNz (—Kisec; A —K;msec;))
where sec; is the secret of agent i, as well as the goal A, ; (K;sec; V K;=sec;).
In our EL-O-based approach all these formulas can be expressed.

(Kominis and Geffner 2015) keep the language of standard epistemic logic
(so their language is not restricted to epistemic literals) and restrict the
dynamic component. It requires that the initial state is common knowledge
and that all action occurrences are either public or semi-public. This makes it
impossible to account for many natural everyday situations such as gossiping.

A series of papers by Liu et col. investigates epistemic planning with common
knowledge based on the situation calculus paradigm (Q. Liu and Y. Liu 2018;
Huang et al. 2017). They represent KD45 knowledge in a particular normal
form that generalises Moss’s characteristic formulas. Their actions have very
general effects, such as a disjunction becoming common knowledge, which
requires the integration of belief update and revision operations.

Le et al. study DEL-based planning with common knowledge under compact
representations of the initial epistemic state and of event models (Le et al.
2018). For the former they use what they call S5-theories (although their
epistemic logic is K, not S5); for the latter they use the action language m.A,
which has statements of the kind “agent ¢ observes action a”. This differs from

14
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our modelling where agents observe propositional variables, which makes it
difficult to compare the two approaches. We can however also model their
‘coin in the box’ example which they claim no approach can deal with. A
limitation of m.A4 is that only literals can be announced. Agents therefore
cannot communicate higher-order knowledge, as required in the generalised
gossip problem. We note that they mention the issue of interfering actions
but do not develop this further because it is not clear how to compute effects
under m.A.

We here simplify the static component: we replace standard epistemic logic
by a lightweight version, Epistemic Logic of Observation (EL-O), which is
based on the notion of observability of a propositional variable by an agent.
In EL-O it is supposed that agent i knows that p is true when p is true and
1 observes p. Symmetrically, ¢ knows that p is false when p is false and ¢
observes p. Thus when 7 observes p then ¢ knows either that p is true or that p
is false. The other way round, when ¢ does not observe p then ¢ does not know
whether p: both p and —p are possible for i. This extends to higher-order
observability: ¢ may observe whether j observes p, and so on. (Cooper, Herzig,
Maffre, Maris, and Régnier 2016a) showed that EL-O is suitable for sequential
epistemic planning.

1.3.2.1 State description

We recall Epistemic Logic of Observation, abbreviated EL-O. Its language is
a fragment of that of the dynamic epistemic logic DEL-PAO (Herzig, Lorini,
and Maffre 2015) where models were always infinite: we now simulate them
by finite models, via a modification of the interpretation. This makes the
semantics immediately suitable for model checking, which had required some
more work in the original presentation.

The epistemic aspect is captured by observability operators. The set of
observability operators is:

OBS = {S; : i€ Agt} U{JS},

where S; stands for individual visibility of agent ¢ and JS stands for joint
visibility of all agents. The set of all sequences of visibility operators of
length at most k is noted OBS<F; and the set of all sequences of visibility
operators of length k is noted OBS™F. Then the set of all finite sequences of

15



1 Introduction

visibility operators is OBS™ = J;,>¢ OBS="* and the set of all finite non-empty
sequences is OBS™T = >, OBS=*. Elements of OBS* are noted o, o', etc.
The depth of a sequence of operators o, noted depth(c), is the number of
operators composing it.

Visibility atoms, or atoms for short, are finite sequences of visibility operators
followed by a propositional variable. The set of all atoms is:

ATM ={op : o€ OBS*,p € P}.

For example, S1 p reads “1 sees the value of p”; it means that 1 knows whether
p is true or false. JS Sy g reads “all agents jointly see whether agent 2 sees the
value of ¢”: there is joint attention in the group of all agents concerning 2’s
observation of ¢; agent 2 may or may not see the value of ¢, and in both cases
this is jointly observed. S; So S3p reads “1 sees whether 2 sees whether 3 sees
p”. Atoms with an empty sequence of observability operators are nothing but
propositional variables.

Principles of introspection play an important role in epistemic logic: when
agent ¢ knows that p then 7 also knows that she knows that p; and when agent
¢ does not know that p then ¢ also knows that she does not know that p. In
our visibility-based epistemic logic, introspection can be expressed as S; S; a.
Likewise, joint introspection is expressed as JSJS«a. The latter implies
oJS « for every non-empty o because joint visibility implies any nesting of
individual visibility. We therefore call an atom introspective if it contains
two consecutive S;, or a JS that is preceded by a non-empty sequence of
observability operators. In other words, an atom is introspective if it is of the
form o S; S; a for some o € OBS*, or of the form ¢ JS a for some 0 € OBS™.
The set of all introspective atoms is

I-Atm = {0 S;S;a : 0 € OBS" and a € ATM} U
{0JSa : 0 € OBST and a € ATM}.

The complement of I-Atm is the set of relevant atoms: R-Atm = ATM\ I-Atm.
1.3.2.2 Action description

The actions descriptions of an EL-O planning task is made in the same way
as for classical planning. The fluents are EL-O atoms, without JS operators,
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instead of propositions. One of the contributions of chapter 4 is the ability to
use JS in EL-O planning tasks.

We will usually use actions with conditional effects. The precondition
pre(a) of the action a is an EL-O formula, as are the conditions cnd(ce) of a
conditional effect ce € eff (a). The effects of ce, eff '(ce) and eff (ce) are sets
of EL-O atoms.

The second example of section 1.3.1.2 is modeled in EL-O with an action
with p as a precondition and an unconditional effect with S; p and S; S; p for

every j # i.

1.3.2.3 Goal and precondition description

The language of EL-O is defined by the same grammar as defined above with
visiblity atoms (noted «, o, 3,...) as fluents:

pu=al|L]-e| (1A p)

The set of EL-O formulas is noted Fmlg .g. The set of relevant formulas is
R-FmlgLo ={¢ € FmlgLo : ATM(p) C R-Atm}. The set ATM(yp) is the
set of atoms occurring in ¢. It is defined inductively by:

ATM (o) = {a}
ATM (—p) = ATM(p)
ATM (o AN ') = ATM (p) U ATM ()

For example, ATM (JS gA\S2p) = {JS¢q,Sap} and ATM(S1JSp) = {S1JSp}.
Note that neither p nor JSp are atoms of S; JS p.

As for the formulas, the whole definition of planning tasks and actions are
like in classical planning. We only need to use atoms as fluents instead of
propositional variables.

1.3.2.4 The epistemic gossip problem

In the case of the gossip problem, the set of propositional variables P =
{ksec; j | i,j € Agt} where ksec; j reads “i knows j’s secret”. So Sy ksec; ;
means that agent k sees if ¢ knows j’s secret. The goal is to achieve some
knowledge over those secrets. For any planning task, the goal is a formula
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over the atoms of the problem (Goal), we say that max({depth(a)) : « €
ATM (Goal)}) is the depth d of the problem.

The actions in the gossip problem are calls between two agents leading to
an update of the two agents’ knowledge. In one-way calls, after a call from
agent i to agent j, agent j sees everything that agent ¢ knew before the call
and they jointly see that. As there is no need for atoms of depth over dz, we
can simplify the jointly seeing by saying that they both see that they see that
they see these atoms, and so up to the depth d;

Formally, for the epistemic gossip problem of depth 2, the execution of an
action Call; ; is modeled by the function:

TCaIIi,j(S) =s5U{S;a,S;S;0,8;Sj,... : a€ ATM and S; o € s}

1.3.2.5 Solution description

Like in classical planning to describe both the planning task and the validity
of a solution for this task in a formal logic, we need a dynamic logic. For this
we use DEL-PAO which has the same dynamic aspect as DL-PA and the same
atoms as EL-O. This implies the same restrictions as both logics, mainly that
it cannot represent parallel plans. However, DEL-PAO satisfiability checking
complexity is the same as DL-PA. This way, we have epistemic planning
problems with the same complexity as classical planning problems.

1.3.3 Tools to find a solution

Unlike classical planning, there is no standardised way of writing an epistemic
planning task for a solver. That’s why there are different approaches for
epistemic planners. (Le et al. 2018) describes an epistemic forward search
planner called EFP to search for solutions for problems such as their ‘coin in the
box’ example. They are also approaches to use STRIPS or classical planning,
with external functions to handle the planning task and the epistemic reasoning
separately (Hu, Miller, and Lipovetzky 2019), or simply by translating the
problem into classical planning (Cooper, Herzig, Maffre, Maris, and Régnier
2016Db).

2The calls are actions without preconditions, so the goal is the only formula that has to be
true in these problems.
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As in classical planning, there are SAT-based approaches for epistemic
planning. (Lagniez et al. 2018) presents some experimental results comparing
state of the art solvers for modal logics with the MoSaiC solver using a
RECAR approach.

1.4 Temporal planning

In classical planning actions have no explicit duration. We can usually consider
that the actions have no duration and are instantaneous. This assumption
may not work for all problems. For instance, in the gossip problem all the
calls are instantaneous but we may have to give them a duration. Calls with
a duration allows problems with agents that takes longer to exchange the
informations. Or we could add restrictions on when the agents can call each
other.

Temporal planning is an extension of classical planning with actions with
durations. It allows one to model such problems.

1.4.1 State description

If there is a duration for each action, there has to be a link between the
states and time. There are two different approaches to reason about the time.
Either with a logic of instants (McDermott 1982) or with a logic of intervals
(Allen 1984). Then, the states are bounded either with the instants or with
the end-points of the intervals.

1.4.2 Action description

An extension of PDDL, PDDL 2.1 (Fox and Long 2003) proposes actions
with a duration. With this extension, actions can have effects either at the
beginning or at the end of the action and preconditions are split in three
parts. The preconditions can be needed at the beginning, the end or over the
entire duration of the action. This is shown in Figure 1.1.

This means that during the execution of an action, multiple state transitions
may occur.
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=] | 0 | [e]

| - |

Figure 1.1: PDDL 2.1 action
The top line represents the preconditions, the middle one the
action a and the bottom one the effects. The horizontal axis
represents the time. The letters are s for “at-start”, e for “at-end”
and o for “over-all” (over the entire duration).

1.4.3 Solution description

As in classical planning, a temporal planning task may have a sequential
solution. However, there are some temporal planning tasks which have only
parallel solutions. For instance to hammer a nail, one has to hold the nail on
the wall while hammering it. If both actions are not executed concurrently,
the nail will fall on the ground. Those planning tasks are called temporally
expressive (Cushing et al. 2007).

While asking for a sequential or a parallel solution does not change the
complexity in classical planning, the distinction between temporally expressive
and temporally simple planning tasks involves a difference of complexity. A
temporally simple planning task can be linearly reduced to a classical planning
task. However the problem of the existence of a solution for a temporally
expressive planning is EXPSPACE-complete (Rintanen 2007).

1.4.4 Tools to find a solution

As for classical planners that use the standard language PDDL, temporal
planners have been developed for the language PDDL 2.1 involving temporal
aspects. Most of these temporal planners are usually working separately for
planning and scheduling. While the selection of actions in a solution plan
can be done by a planning module, scheduling such actions can be done in
parallel via a TMM (Time Map Manager) to handle temporal constraints
(Dean and McDermott 1987). These temporal constraints can be modeled
for example as a STP (Simple Temporal Problem) (Dechter, Meiri, and Pearl
1991) or as a DTP (Disjunctive Temporal problem) (Stergiou and Koubarakis
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2000). We do not detail such techniques here as it would add a lot of details
not relevant for this thesis.

In the same way as SAT-based approaches for classical or epistemic planning,
SAT modulo theory (SMT) can be used to find a solution for temporal planning.
This approach was studied in several works (Maris and Régnier 2008; Rintanen
2015; Shin and Davis 2005).

1.5 Aim and contribution of the thesis

The aim of this thesis was to make tools to help planning for real life problems.
I here oppose real life problems to toy problems which have a philosophical
interest but may never be found in real life. I focussed on bringing together
three different aspects commonly found in real life problems: multi-agent,
temporally extended actions and reasoning about the knowledge of the agents.

Multi-agent temporal and epistemic planning problems can be useful in
many ways. We can use them for helping people decide how to accomplish a
task, for instance to optimise the production lines in a factory. They can also
be used in video games for the Al of non playable characters or to dynamically
generate a story. Or for smarter robots, to find which actions they have to do
and when they have to do them.

As we want to help planning for real life problems, we want to have tools
that can find a solution in a reasonable amount of time. As both temporal
and epistemic planning is at least as difficult as classical planning we choose
their PSPACE-complete complexity as a lower bound. Within this complexity
problems with a low number of actions and steps can be solved but bigger
problems may need a huge amount of time that might not be practical.
Therefore we wanted to have all planning problems in PSPACE.

As this was already a lot of work, we choose to consider only deterministic
problems. This implies that the multi-agents aspect is present in the problem
description and execution but not in the search of the solution. We think of the
solving being done centrally. This implies that this location can communicate
the relevant part of the plan to each agent before its execution. This works
well for problems with cooperation between the agents. For problems with
competition between the agents, the winner of the competition is chosen when
the problem is modeled.
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1.5.1 Outline of the thesis

In Chapter 2, I present the temporal epistemic gossip problems (TEGP
for short). They are a generalisation of the epistemic gossip problem with
temporal constraints on the calls. We added a duration for all call actions
and constraints on the times allowed for a call between two agents. This
chapter shows that TEGP are NP-complete problems even with negative
goals. An example of negative goal is that we do not want agent ¢ to know
the secret of agent j. These problems show the interest of adding a temporal
aspect to epistemic problems to make them more realistic. When we want to
communicate with other people, we may not be able to call them whenever
we want and the shortest plan may not be the fastest when those constraints
are taken into account.

We then wanted to add more flexibility to the temporal constraints. This
led to the two following chapters. Chapter 3 shows an extension to DL-PA to
add parallelism in the logic. This chapter shows that DL-PPA maintains the
PSPACE-complete complexity of DL-PA. This result is then used for bounded
horizon classical planning task. Two programs that are equivalent to the
problem of the existence of a plan of k steps or less are described.

Another approach to parallel epistemic planning is described in chapter 4.
This time we use EL-O actions so we have epistemic actions instead of the
classical actions of the previous chapter. We show that EL-O actions can be
translated to parallel classical planning. With this translation we can show
that EL-O parallel planning is PSPACE-complete. We also use the translation
to classical planning to translate some epistemic problems to PDDL. With
this last translation we tested some of these problems with some IPC planners
and compared the time to get a plan.
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2 Temporal Epistemic Gossip Problem

Here, we enrich the epistemic gossip problem by allowing to limit any com-
munication to a set of instants (such as an interval during which the two
agents involved in the call are both available). For an example, one can think
of satellites on different orbits which can only communicate when they ‘see’
each other. In a more down-to-earth example, the interval during which a
mobile communication is available is often limited by the charge capacity of
the battery. Another variant we study is when certain calls must occur at
given instants (for example for maintenance or security reasons).

We show that the temporal epistemic gossip problem is in NP even for a
complex goal given in the form of a CNF and in the presence of constraints
on the instants when calls can or must take place. This positive result, when
compared to classical planning follows from the reasonable assumption that
knowledge is never destroyed. Moreover, we show that in the absence of
temporal constraints and negative goals, temporal epistemic gossiping is in
P. We then show maximality of this tractable subproblem in the sense that
the problem becomes NP-complete in the following cases: in the presence of
temporal constraints (even as weak as a simple upper bound on the execution
time of a plan) and in the presence of negative goals (such as agent i should
not learn the secret of agent j).

The content of this chapter corresponds to an article published at the Eu-
ropean Conference on Multi-Agent Systems (EUMAS 2018) (Cooper, Herzig,
Maris, and Vianey 2018).

Content of the chapter

2.1 Definitions . . . . . . . ... 26
2.2 Membershipin NP . . . ... ... ... ... ......... 29
2.3 A subproblem of the temporal gossip problem in P . . . . . . 29
2.4  NP-completeness when execution time is bounded . . . . . . 30
2.5 NP-completeness of gossiping with negative goals . . . . . . . 36
2.6 Discussion and conclusion . . . . . . . . ... 38
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2 Temporal Epistemic Gossip Problem

Résumé du chapitre en francais

Ici, nous enrichissons le probléme du bavardage épistémique en autorisant
de limiter toute communication & un ensemble d’instants (comme un intervalle
pendant lequel les deux agents impliqués dans la communication sont tous
deux disponibles). Par exemple, on peut penser a des satellites sur des orbites
différentes qui ne peuvent communiquer que lorsqu’ils se "voient” mutuelle-
ment. Dans un exemple plus terre a terre 'intervalle de temps pendant lequel
une communication mobile est disponible est souvent limité par la capacité
de charge de la batterie. Une autre variante que nous étudions est celle ou
certains appels doivent avoir lieu & des instants donnés (par exemple, pour
des raisons de maintenance ou de sécurité).

Nous montrons que les problémes de bavardage épistémique temporel (TEGP)
est en NP méme pour un but complexe donné sous la forme d’une CNF et
avec des contraintes sur les instants ou les communications peuvent ou doivent
avoir lieu. Ce résultat positif, par rapport & la planification classique découle
de ’hypothese raisonnable que la connaissance n’est jamais détruite. De plus,
nous montrons qu’en ’absence de contraintes temporelles et de buts négatifs,
le bavardage épistémique temporel est dans P. Nous montrons ensuite que le
probleme devient NP-complet dans les cas suivants : en présence de contraintes
temporelles (méme aussi faibles qu’une simple borne supérieure sur le temps
d’exécution d’un plan) et en présence de buts négatifs (comme l’agent i ne
doit pas apprendre le secret de ’agent ).

Pour prouver 'appartenance & NP, nous cherchons la longueur d’un plan
sans boucle pour un probleme ayant une solution, dans le pire des cas. Dans
ce cas, pour qu’un agent apprenne la valeur d’un atome il faut que cette
information transite par tous les agents. Si 'on a n agents, il faut donc n — 1
appels. Pour avoir une connaissance de profondeur d d’une proposition, il faut
répéter cette opération d fois. Et si la CNF contient m clauses, pour qu’elles
soient toutes vraies il faut répéter cela m fois. On a donc un plan solution de
longueur polynomiale par rapport a la taille du probléme deés lors qu’il existe
une solution. Ceci est suffisant pour dire que les TEGP appartiennent a NP.

Le sous probleme n’utilisant ni contraintes temporelles ni fluents négatifs
est équivalent au probleme du bavardage épistémique. Ce probleme est prouvé
comme étant dans P. Pour les autres sous probléemes, nous en avons choisis
quelques uns pour chercher une meilleure borne inférieure & la complexité des
TEGP.
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En effet, le simple ajout de contraintes temporelles simples (ici on n’ajoute
qu’une limite aux appels, aprés un certain temps tous les appels sont inter-
dits) suffit pour avoir une borne inférieure NP-difficile. On peut facilement
construire un graphe de communications traduisant un probléme SAT des
lors que le nombre d’appels est limité. Pour le cas ou 'on autoriserait les
appels en parallele, il suffit d’utiliser les contraintes temporelles pour forcer
des appels séquentiels.

Un autre apport des TEGP par rapport au probleme du bavardage épisté-
mique est ajout de buts négatif (qu'un agent ne connaisse pas un secret par
exemple). Méme en I’absence de contraintes temporelles, cet ajout impose une
borne inférieure de complexité NP-difficile. Avec ces résultats, nous prouvons
que les TEGP sont NP-complets.
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2 Temporal Epistemic Gossip Problem

2.1 Definitions

The set of all atoms of depth at most d is noted ATM. Observe that if the
depth of atom o € ATM is strictly less than d then S; v also belongs to ATM.

An instance of the depth-d temporal epistemic gossip problem (TEGP) is
given by a tuple Il = (so, Goal, Agt, I, I,):

5o € ATM such that sy contains every ksec;;, for i € Agt

Goal € Fmlis a conjunction of clauses
I, € Nx (NU{oo})x Agt x Agt
I, C Nx Agtx Agt

where s is the initial state; Goal is the goal we want to achieve in the form
of a CNF formula (that we identify with a set of clauses); I, is the set of
intervals during which two agents can call each other and I, is the set of
instants when two agents must call each other. All the number used in this
chapter are encoded in binary.

The set I, of necessary calls may correspond to calls that have been
programmed in the network for some other purpose. We suppose that I, is
included in I,,, in the sense that for every (¢,4,j) € I, thereis a (t1,%2,4,7) € I
such that ¢t; < t < to. In this thesis we always consider the initial state
so = {kseci; | i € Agt} in which all agents know their own secrets.

A set of calls A between agents induces a partial function between states,
i.e. from 24TM to 24TM For a state s € 247M.

undef if Ja€ A:skpre(a),or Jaj,az € A:
a] = Callil,jl and dg = Ca||i2,j2
Ta(s) = with {i1, j1} N {iz,ja} # 0
sU U eff t(ce) otherwise
acA,
Ceeeﬁ(a)7

and sf=cnd(ce)

A plan is a relation P C N x Agt x Agt. Given a plan P and a natural
number ¢, the set of calls happening at instant ¢ is P(t) = {(4,7) : (¢,7,5) € P}.
We use |P| to denote the number of distinct instants ¢ for which P(t) # 0.
We use Tp(k) to denote the k-th instant (in strictly increasing order of time)
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2.1 Definitions

at which a call happens in P: i.e. Tp(1) < ... < Tp(|P]) and Vt, P(t) # 0 <
Jk e {1,...,|P|}, T(k) = t. Our modelling of time by the natural numbers
implicitly imposes a fixed duration of one time unit for each call.

Given a TEGP II = (so, Goal, Agt, I,,, I,), a plan P satisfies the temporal
constraints of II if and only if all the necessary calls are in P and every
call in P is possible; formally: I,, C P and for every (¢,7,j) € P there is a
(t1,t2,1,7) € I, such that t; <t < ty. Moreover, P solves the TEGP if and
only if it satisfies the temporal constraints and there is a sequence of states
(50, ,s)p|) such that

e 5o = Init
 sip| = Goal
o Spr1 = P(Tp(k+1))(sk) for every k with 0 < k < |P|

where P(T,(k+1)) is the set of actions at instant T},(k+1) and P(T},(k+1))(s)
is the result of executing these actions in state si. By the definition above
of A(s), the set of actions P(T,(k + 1)) at instant T,(k + 1) cannot contain
two calls involving the same agent. In the sequential version of the TEGP, a
solution plan P must also satisfy Vt, card(P(t)) < 1.

A TEGP defines in a natural way a call digraph G in which the vertices are
the agents and the directed edges the possible calls. In the two-way version,
G is a graph.

Example 1. Consider a network of five servers (which we call a, b, ¢, d
and e) where each server can only communicate with a subset of the others.
Note that all calls are assumed to be one-way in this example. As part of the
maintenance program, a, b, ¢ and d send a backup of their data to e every
night and these backups can be sent to any server during the day (between
8:00 and 18:00). The others servers can communicate with each other at any
moment if there is a communication link between them. The communication
graph is depicted in Figure 2.1.

On the same network, another question that we can ask is whether c
can know a’s data without a being aware of this. In this case, the goal is
kseccq N =Sq kseccq. The answer is ‘yes’ since the following plan establishes
the goal: the necessary Call, . at instant 2, followed by Call. . at an instant
t € [8,18] (together with the other necessary calls Cally . at instant 4, Call.
at instant 20 and Callg. at instant 22).
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2 Temporal Epistemic Gossip Problem

({(0,00)},0)

({(8,18)},0)
({(22,22)}, {22})

({(0,50)},0) y
)

Figure 2.1: Call graph for Example 1 involving necessary calls with e. A
double-ended arrow represents two directed edges (i.e., the possi-
bility of one-way calls in both directions). The tuples on the arcs
represents the subsets of I, and I,, for the calls from agent ¢ (at
the beginning of the arc) to j (at the end of the arc). If there is
no arc from ¢ to j, then no call is possible from i to j.
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2.2 Membership in NP

2.2 Membership in NP

Proposition 1. Let m be the number of clauses in the CNF of the goal. Let
d be the the depth of atoms for the problem. If a plan for an instance of a
TEGP exists, then there is a plan with md(n — 1) + |I,,| calls or less

Proof. Let « € ATM be an atom. S; «a can only be true if there is a path
in the graph G between i and some agent who knows «. Without loss of
generality, we can assume that this path is cycle-free. The length of this path
is at most n — 1. Then, for any atom with an epistemic depth d, at most
d(n — 1) calls are needed for this atom to be true, by the concatenation of d
paths of length n — 1.

The number of calls needed for a disjunction of formulas to be true is at
most the maximum of the number of calls needed for each formula. In a CNF,
there are only disjunctions over atoms, so the number of calls needed for a
disjunction is d(n — 1).

The number of calls needed for a conjunction of formulas is the sum of the
number of calls needed for every formula, which here is at most d(n — 1). So,
with m being the number of conjunctions in the CNF of the goal, at most
md(n — 1) calls are needed for a problem with only possible calls. Thus, if a
solution plan P exists, then P contains a subset @) of at most md(n — 1) calls
which are sufficient to establish all positive atoms in the goal.

For a problem with necessary calls, it can happen that the plan ) does not
contain all the necessary calls I,,. However, as P is a solution plan, it must
contain every necessary calls. Thus, there exists a subset of P, )’ that is also
a solution plan with at most md(n — 1) + |I,,| calls. o

2.3 A subproblem of the temporal gossip problem in P

We say that a TEGP instance is positive if its goal is a CNF containing
only positive atoms. A special case of TEGP is the class of positive non
temporally constrained epistemic gossip problems IT = (so, Goal, Agt, I,, I,)
where I, = {(0,00,4,7) : (i,j) € E}, for some E, and Goal is a positive CNF.
In this case, E is the set of edges in the call digraph: if a call is possible (as
specified by E), it is possible at any instant. On the other hand, there is no
restriction on the set of necessary calls I,,.
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2 Temporal Epistemic Gossip Problem

Proposition 2. The class of positive non temporally constrained epistemic
gossip problems can be solved in polynomial time.

Proof. There is a simple polynomial-time algorithm for positive non temporally
constrained epistemic gossip problems: make all possible calls in some fixed
order and repeat this operation md(n — 1) + |I,,| times. Call this sequential
plan ). By the proof of Proposition 1, if a solution plan exists, there is a
sequential solution plan P of length at most md(n — 1) + |I,,|. The actions of
P necessarily appear as a subsequence of (). Since the goal and preconditions
of actions contain only positive atoms, the extra actions of ) cannot destroy
any goals or preconditions. It follows that if a solution plan exists, then @ is
also a solution plan. Thus this simple algorithm solves the class of positive
non temporally constrained epistemic gossip problems in polynomial time. O

Given an arbitrary instance of TEGP, we can construct a positive non
temporally constrained instance by ignoring negative goals and temporal
constraints (specified by I,). This is a polynomial-time solvable relaxation
of the original TEGP instance. This provides a relaxation which is inspired
by the well-known delete-free relaxation of classical planning problems and
is orthogonal to the relaxation of temporal planning problems based on
establisher-uniqueness and monotonic fluents (Cooper, Maris, and Régnier
2014). Consider that this relaxation of an instance of TEGP has no solution,
then the instance of TEGP does not have a solution. This can be used to find
TEGP’s instances without solution in polynomial-time.

2.4 NP-completeness when execution time is bounded

The simplest temporal constraint is just a time limit on the execution of a
plan. In the case of sequential plans this simply corresponds to placing a
bound on plan length (which is equal to the number of calls) whereas in the
parallel case execution time corresponds to the number of steps. We show
in this section that this single constraint (a time limit on plan execution) is
sufficient to render the epistemic gossip problem NP-complete. It is worth
noting that the PSPACE complexity of classical planning is not affected by
the possibility of placing an arbitrary limit on plan length, but the special
case of delete-free planning passes from P to NP-hard when a bound is placed
on plan length (Bylander 1994). We show that this remains true for the
specific case of gossiping problems.

30



2.4 NP-completeness when execution time is bounded

We begin by studying the sequential case of TEGP.

Proposition 3. The epistemic gossip problem with no temporal constraints
but with a bound on the number of calls is NP-complete, even when the goal
is a conjunction of positive atoms.

Proof. We will exhibit a polynomial-time reduction from the well-known NP-
complete problem SAT to the version of the epistemic gossip problem whose
question is whether there is a sequential solution plan of length at most L. To
do so, for a given set of clauses {C1,...,Cp,} we need the following agents:

o an agent S (the source),

o literal agents, i.e., agents for every variable and every negation of a
variable (which we name, respectively, T and x~) for each variable =
of the SAT instance,

o clause agents, i.e., agents for every clause (which we name C; for the
ith clause of the SAT instance).

Before performing this construction, we first add a dummy clause (z V —x)
for each SAT variable x. This clearly does not change the semantics of the
instance but it does force us to specify the truth value of each variable in a
solution of the SAT instance.

The source agent S and clause agents can only communicate with literal
agents. The source agent S can communicate with every literal agent. A
literal agent can only communicate with S and those clauses it is a member
of. The graph G of communications is shown in Figure 2.2 for a particular
SAT instance. In this example, C; = (-mx VyV z), Co = (-y V 2) and the
clauses C3, C4, C5 are the dummy clauses (z V —x), (y V 7y), (2 V 2z).

A variable z is considered to be true (false) if S’s secret passes through =+
(respectively, ™) in the solution plan on its way to the agent representing
the dummy clause (x V —x). The bound on the number of actions will prevent
the possibility of S’s secret passing through both ™ and x~. So the choice
of whether S’s secret passes through z+ or = determines an assignment to
the variable x in the SAT problem.

The goal of this instance of TEGP is that every clause agent knows the
secret of S (Goal = A\g, ksecc,,s). Now set the bound on plan length to be
L = 2n + m, where n is the number of variables in the SAT instance and m
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\
\ C | | C C | C | ( C |
NN N N NG
Figure 2.2: Representation of the formula (- VyV z) A(—yV z) as a temporal

epistemic gossip problem in which the question is whether there
is a plan using no more than 8 calls.

the number of clauses in the original instance. With the new dummy clauses,
the total number of clauses is n + m.

In a solution plan P we require at least n calls, one to either 2 or x~, for
the n SAT variables x, in order for S’s secret to be able to reach the agent
corresponding to the dummy clause z V —x. P must also contain at least
n+m calls to the clause agents C; (including the dummy clauses) to establish
the goals ksecc, 5. A solution plan of length precisely 2n + m corresponds
to a solution of the corresponding SAT instance since such a plan defines a
unique assignment to all variables that satisfies all clauses. For example, the
solution x = false, y = false, z = true to the SAT instance of Figure 2.2
corresponds to the following solution plan of length 8: S calls x7; S calls y~;
S calls zT; 7 calls Cq; 27 calls Oy; z~ calls C3; y~ calls Cy; 21 calls Cs.
This reduction from SAT is clearly polynomial.

Proposition 1 proves the existence of a polynomial-length certificate for
positive instances of the decision version of TEGP. Such certificates (solutions)
can be verified in polynomial time. Thus TEGP € NP. Since the epistemic
gossip problem with no temporal constraints but with a bound on the number
of calls is clearly still in NP, this completes the proof of NP-completeness. O

The proof of Proposition 3 was given for the case of two-way communications.
It is trivial to adapt it to the case of one-way communications (for example,
by only allowing calls from S to literal agents and from literal agents to clause
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2.4 NP-completeness when execution time is bounded

agents). One can note that any two-way temporal epistemic gossip problem
can be polynomially translated to a problem with one-way calls. A two-way
call between agents ¢ and j is translated to two one-way calls, one from ¢ to j
and one from j to 1.

We now consider the parallel version of the TEGP. Recall that in the parallel
version of the TEGP, several calls may take place at each step, provided no
agent is concerned by more than one call at each step.

Proposition 4. The parallel version of the epistemic gossip problem with no
temporal constraints except for a bound on the number of steps is NP-complete
even when the goal is a conjunction of positive atoms.

Proof. By the same argument as in the proof of Proposition 1, the problem
is in NP. We complete the proof by exhibiting a polynomial reduction from
3SAT which is well known to be NP-complete. Given an instance Iggar of
3SAT, by introducing sufficiently many new variables 2’ which are copies of
old variables x (together with the clauses x V -z, =z V 2’ to impose equality
of x and z') we can transform I3s47 into an equivalent instance in which
each literal does not occur in more than three clauses. This is a polynomial
reduction since we need to introduce at most one copy of each variable z per
clause in which it occurs in I3ga7. Therefore, from now on, we suppose that
each literal occurs in at most two clauses in I3ga7.

We construct an instance I of the epistemic gossip problem which has a
parallel solution plan of length 2p if and only if I3ga7 is satisfiable. We choose
the value of p to be strictly greater than n + 3, where n is the number of
variables in Isg47. To be concrete, we can choose p = n+4. We add to Isgar
p —n new dummy variables x,1,...,x, none of which occur in the clauses
of Isgar. In I there is an agent S (the source), literal agents ;,;;r, x; for each
variable z; (i = 1,...,p), and a clause agent C; for each of the clauses C}
(j =1,...,m) of Isgap. For each variable z; (i = 1,...,p), we also add a
dummy-clause agent D; which we can consider as representing the dummy
clause x; V —x;. Instead of linking these basic agents directly, we place paths
of new agents between these basic agents. Between agent S and agent xf
we add a path of length p + 1 — ¢. Similarly, we add a new path of the same
length between S and agent ;. For i =1,...,p, we add two new paths both
of length p between the literal agents x:r and z; and the dummy-clause agent
D;. For each clause Cj of I3ga7, we also add three new paths of length ¢
from the agents corresponding to the literals of C; to the agent C;, where
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Figure 2.3: Representation of the formula (—zVyVz)A(—-yV z) as a temporal
epistemic gossip problem in which the question is whether there
is a parallel plan using no more than 14 steps.
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2.4 NP-completeness when execution time is bounded

g = p—3 = n+ 1. The resulting network is shown in Figure 2.3 for an
example instance. The numbers on edges in this figure represent the length
of the corresponding path. For example, there are 6 intermediate agents (not
shown so as not to clutter up the figure) between the agents S and z;". The
goal of I is

p m
(/\ k:secDi,g> A /\ ksecc;,s

=1 Jj=1

In order to establish the goal ksecp, s, the secret of S has to follow a path
from S to D;. The shortest paths from S to D; are of length 2p and pass
through either 7" or 7. Recall that our aim is to find a plan whose execution
requires at most 2p steps. Thus, to establish ksecp, g in 2p steps, during the
first step, S must call the first agent on the path to xf or the first agent on
the path to 7. The shortest path from S to Dy is of length 2p — 1, so during
the second step, S must call the first agent either on the path to l‘; or the
first agent on the path to x5 . By a simple inductive argument, we can see that
during step i (i = 1,...,p), S must call the first agent on the path to ;" or
x; . We can consider that the choice of whether S’s secret passes through xj
or x; determines an assignment to the variables x;. Due to the diminishing
lengths of these paths as i increases, S’s secret arrives simultaneously at the
literal agents, either :El+ or x;, for i = 1,...,p. Another p steps are then
required to send in parallel this secret to the dummy-clause agents D;, for a
total number of steps of 2p. Almost simultaneously (within two time units),
S’ secret arrives at the clause agents C;, provided it has passed through one
of the agents corresponding to the literals of C;. The length of paths from
literal agents (a:;" or z; ) to clause agents C; is ¢ = p — 3 which is slightly less
than p to allow for the fact that a literal agent, say a:f, may have to send S’s
secret along at most four paths: first towards D;, then towards the (at most)
three clauses in which x; occurs.

It is important to note that S is necessarily occupied during the first p
steps, as described above, so if S were to try to send its secret both to xf
and x; for some i < n the secret could not arrive via the second of these
paths at a clause agent C; in less than 2p +1 —n + ¢ = 3p —n — 2 steps
which is greater than the upper bound of 2p steps (since p = n + 4). By our
construction, the goal ksecc; s is established only if the assignment to the
variables x; determined by the solution plan satisfies the clause C;. Hence,
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parallel solution plans of length 2p steps correspond precisely to solutions of
Issar. We have therefore demonstrated a polynomial reduction from 3SAT
to the parallel version of the epistemic gossip problem with a bound on the
number of steps. O

The following corollary follows from the fact that we can place an upper
bound L on the number of steps in a plan by simply imposing via I, an
interval of possible instants [1, L] for all calls.

Corollary 5. TEGP is NP-complete.

2.5 NP-completeness of gossiping with negative goals

We show in this section that even without temporal constraints or a bound
on plan length, when we allow negative goals the problem of deciding the
existence of a solution plan is NP-complete.

Proposition 6. The epistemic gossip problem with possibly negative goals
is NP-complete even in the absence of any temporal constraints or bound on
plan length.

Proof. The same argument as in the proof of Proposition 1 shows that the
problem belongs to NP since it is a subproblem of TEGP.

To complete the proof, it suffices to give a polynomial reduction from SAT.
Let Isar be an instance of SAT. We will construct a call graph G and a set
of goals such that the corresponding instance Iggssip of the epistemic gossip
problem is equivalent to Igar. Recall that the nodes of the call graph G are
the agents and the edges of G the communication links between agents.

For each propositional variable = in Isar, we add four nodes ™+, 7, by, d,
to G joined by the edges shown in Figure 2.4(b). There is a source node S in
G and edges (S,z1), (S,z7) for each variable z in Isap. For each clause C}
in Isar, we add a node C; joined to the nodes corresponding to the literals
of Cj. This is illustrated in Figure 2.4(a) for the clause Cj; = —a vV y V z. The
solution plan to Igessip Will make S’s secret transit through =™ (on its way
from S to some clause node C;) if and only if = true in the corresponding
solution to Igar.

For each clause Cj in Iss7, G contains a clause gadget as illustrated in
Figure 2.4(a) for the clause =z V y V z. We also add ksecc;,s to the set of
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@ (o)

NI

Figure 2.4: (a) gadget imposing the clause C; = -z VyV z; (b) gadget
imposing the choice between x and —z.

goals. Clearly, S’s secret must transit through one of the nodes corresponding
to the literals of C; (z~, y™ or z* in the example of Figure 2.4) to achieve
the goal ksecc; s. T

To complete the reduction, it only remains to impose the constraint that
a’s secret transits through at most one of the nodes x™, ™, for each variable
x of Isar. This is achieved by the negation gadget shown in Figure 2.4(b) for
each variable z. We add the goals ksecy, p, and —ksecy, g for each variable z,
and the goal =ksecc; p, for each variable z and each clause C; (containing the
literal  or —x). The goal ksecq, p, ensures that b,’s secret transits through «
or ~x. Now, recall that we assume that during a call, agents communicate
all their knowledge. Suppose that b,’s secret transits through z: then S’s
secret cannot transit through z™ before b,’s secret (because of the negative
goal —ksecq, 5) and cannot transit through z* after b,’s secret (because of
the negative goal ﬂkseccj,bz). By a similar argument, if b,’s secret transits
through z~, then S’s secret cannot transit through xz+. Thus, this gadget
imposes that S’s secret transits through exactly one of the nodes z+, 2.

We have shown that Isa7 has a solution if and only if IGessip has a solution.
Since the reduction is clearly polynomial, this completes the proof. O

The NP-completeness shown in the proof of Proposition 6 holds for both
the sequential and parallel versions of the gossip problem.

37



2 Temporal Epistemic Gossip Problem

2.6 Discussion and conclusion

We have defined temporal epistemic gossip problems and have investigated
their complexity. Our results are in line with previous results concerning
epistemic planning: it is possible to add an epistemic dimension to planning,
thus increasing expressibility, without increasing complexity (Cooper, Herzig,
Maffre, Maris, and Régnier 2016a).

In our approach agents are not introspective: ksec; j does not imply S; ksec; ;,
and Sy, ksec; ; does not imply S Sy, ksec; ;. This only concerns positive in-
trospection: negative introspection cannot be expressed. Positive introspec-
tion can however be enforced by adding axioms ksec;; — S; ksec; ;, and
Sy ksecij — Si Sy ksec; j. We however did not do so in order to simplify
presentation.

We have assumed a centralized approach in which a centralized planner
decides the actions of all agents. Several other researchers have recently studied
distributed versions of the classical gossip problem where the agents have
to decide themselves whom to call, based on the knowledge (and ignorance)
they have (Apt, Grossi, and Hoek 2015; Apt, Grossi, and Hoek 2018; Apt,
Kopczynski, and Wojtczak 2017; Apt and Wojtczak 2017b; Apt and Wojtczak
2017a; van Ditmarsch, Eijck, et al. 2017; van Ditmarsch, Grossi, et al. 2016).
An interesting avenue of future research would be to consider the epistemic
gossip problem in this framework.

Several other variants of our centralized model could also be investigated,
including the precondition that i has to know the telephone number of j in
order to call j and telephone numbers are communicated in the same way as
secrets. In another variant, the secrets can be passwords which are no longer
constants since each agent i can change their own password (Cooper, Herzig,
Malffre, Maris, and Régnier 2016c).
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3 Dynamic Logic of Parallel Propositional Assignments

In chapter 1 we presented some semantics of parallel actions in PDL. We
here take a different route and build on a simple version of dynamic logic
where atomic programs are assignments of formulas to propositional variables.
Dynamic Logic of Propositional Assignments DL-PA has numerous applications
in knowledge representation (Herzig 2014) in particular classical planning
(Herzig, Menezes, et al. 2014), and is considerably simpler than PDL. In
particular, complexity is much lower: satisfiability checking is in PSPACE.
We add an operator of parallel composition to DL-PA, as well as an operator
of inclusive nondeterministic composition (as opposed to PDL’s exclusive
nondeterministic composition).

The chapter is organised as follows. We extend DL-PA to DL-PPA in Section
3.1 and show in Section 3.2 that complexity stays in PSPACE. In Section
3.3 we show how sequential and parallel planning as well as their bounded
versions can be polynomially translated to DL-PPA. Section 3.4 concludes.

The content of this chapter corresponds to an article published at the
International Joint Conference on Artificial Intelligence (IJCAI 2019) (Herzig,
Maris, and Vianey 2019).
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Résumé du chapitre en francais

Dans le chapitre 1, nous avons présenté une sémantique des actions paralleles
en PDL. Nous prenons ici un chemin différent et nous nous basons sur une
version simple de la logique dynamique ou les programmes atomiques sont
des affectations de formules & des variables propositionnelles. La logique
dynamique d’affectations propositionnelles DL-PA a de nombreuses applications
dans la représentation des connaissances (HERzIG 2014) en particulier la
planification classique (HERZ1G, MENEZES et al. 2014), et est considérablement
plus simple que PDL. En particulier, la complexité est beaucoup plus faible : la
vérification de la satisfiabilité est dans PSPACE. Nous ajoutons un opérateur
de composition parallele a DL-PA, ainsi qu’un opérateur de composition
nondéterministe inclusive (par opposition a la composition nondéterministe
exclusive de PDL).

Ce chapitre est organisé comme suit. Nous étendons DL-PA en DL-PPA
(logique dynamique d’affectations propositionnelles paralléles) dans la section
3.1 et montrons dans la section 3.2 que la complexité reste dans PSPACE.
Dans la section 3.3, nous montrons comment la planification séquentielle et
parallele ainsi que leurs versions bornées peuvent étre traduites de maniere
polynomiale en DL-PPA. La section 3.4 conclut.

Nous étendons le langage de DL-PA avec deux nouveaux opérateurs w1 My
et m U me. Le premier permet d’indiquer que les deux programmes 7 et
Ty sont exécutés en simultané, et le second est 1'opérateur de composition
nondéterministe inclusive. De la méme maniere que 'opérateur de composition
nondéterministe exclusive, il permet ’exécution d’un des deux programmes,
mais il permet également ’exécution des deux en parallele. Le résultat de
71 Lo sera alors soit I’exécution de 7y, soit I’exécution de ms, soit I’exécution
de w1 Mme. Nous avons ensuite créé des programmes en DL-PA permettant
de traduire ces deux opérateurs en un temps polynomial, ce qui montre que
DL-PPA est dans PSPACE, comme DL-PA.
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L’appartenance a cette classe de complexité rend DL-PPA intéressante pour
traduire des problémes de planification classique. Ceci ayant déja été réalisé
pour la recherche de ’existence de plan séquentiel en utilisant DL-PA, nous
avons complété ces résultats en ajoutant la recherche de plans paralleles. Pour
cela nous avons choisi d’utiliser la sémantique V-Step qui est généralement
utilisée en planification. Pour respecter cette sémantique, nous avons fixé deux
regles. La premiere est que deux actions effectuées en paralléle ne doivent pas
avoir d’effets contradictoires. Une action qui ajoute un fluent ne peut pas étre
exécutée en parallele d’une action qui le détruit. Par exemple 'action « porter
I’objet » ne peut pas s’exécuter en méme temps que ’action « poser ’objet ».
L’une rend faux que I'objet est au sol alors que 'autre le rend vrai. La seconde
est que les conditions ne peuvent pas étre altérées par une autre action, ce que
I’on appelle interaction croisée. La précondition d’une action ne peut pas étre
rendue fausse par une autre action. Par exemple, 'action de porter un objet
pour 'agent i et ’action de porter le méme objet pour ’agent j ne peuvent
pas se produire en paralléle. Les deux ont pour précondition la présence de
I'objet au sol et comme effet ’absence de cet objet au sol. De méme pour
les conditions des effets conditionnels qui ne peuvent pas devenir fausses (ou
vraies si elles étaient fausses) suite aux effets d’une autre action exécutée en
parallele. Nous avons également utilisé I'opérateur de k ou moins répétitions
d’un programme pour modéliser la recherche d’un plan en k étapes ou moins.
En effet, bien qu’il soit prouvé qu’en planification classique a horizon non
borné 'existence d’un plan séquentiel implique I'existence d’un plan parallele
et vice versa ce n’est pas forcément le cas pour la recherche a horizon borné,
un plan parallele en k étapes ou moins peut exister sans qu’un plan séquentiel
soit possible avec le méme horizon.
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3 Dynamic Logic of Parallel Propositional Assignments

3.1 DL-PA and DL-PPA

Our Dynamic Logic of Parallel Propositional Assignments DL-PPA extends
Dynamic Logic of Propositional Assignments DL-PA by two program operators:
an operator of parallel composition N and a new operator of nondeterministic
composition L. The distinction between LI and the standard operator of
nondeterministic composition U is similar to that between inclusive and
exclusive disjunction: the interpretation of w1 U mo is “do either 7 or my”,
while that of w1 L 7o is “do either 71, or mo, or both”. We call the former
exclusive nondeterministic choice and the latter inclusive nondeterministic
choice. The interpretation of parallel composition 71 Mo is that both programs
are executed on local copies of the variables, and then the resulting state is
obtained by merging these local states: 7 Mo fails if two assigned variables
get assigned different truth values by 7 and ms; otherwise new truth values
override old ones.

3.1.1 Language

The language of DL-PPA is built from a given countably infinite set of propo-
sitional variables P. Programs 7 and formulas ¢ are defined by the grammar

plLll=plonel|(me
p—o|?|mr|nUr |nUT | 07w | o*

¥
T

where p ranges over P. The formula (7)¢ reads “there is a possible execution
of 7 such that ¢ is true afterwards”. The program p<—¢ assigns the truth
value of ¢ to p and is called atomic program. For example, p<——p swaps the
truth value of p: when p is true then it becomes false and vice versa. ¢?
tests that ¢ is true (which fails when ¢ is false). mq; m executes 71 and 7o in
sequence. w1 U o nondeterministically chooses between executing either m;
or mo; and w1 Ll 7o nondeterministically chooses between executing either 7,
or Ty, or both. 7 My is the parallel composition of 71 or mo. The set of all
formulas is Fml. In the following, we will use the standard abbreviations for
V, = and +.

The language of DL-PA is the fragment of DL-PPA without LI and M.

The set of propositional variables occurring in a formula ¢ is noted Py;
similarly, the set of variables occurring in a program 7 is noted P,. For

example, Pp(—q\/r = {pu q, T}'
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3.1 DL-PA and DL-PPA

The length of DL-PPA formulas and of DL-PPA programs is the number of
symbols required to write them down, excluding parentheses and considering
that the length of propositional variables is 1. We note them ¢(¢) and ¢(7).

We use standard formula connectives such as T and ¢ — ¥. We use the
program connectives of n-times iteration of programs, recursively defined by

70 = T7?
St = T2U(m; ST
Furthermore, spiepPi<pi s a shorthand for pi<—p1;- - pné—pn, for P =
{p1,.-.,pn}. When P = () we identify the sequence with T?. We have to be
careful here because sequential composition ‘;” is not commutative; e.g., the

interpretation of p<—gq; g<—p will differ from that of ¢g<p; p<—q. Each time we
use the abbreviation we will make sure that the order does not matter.

3.1.2 Semantics of DL-PPA

Semantics is in terms of valuations, alias states, which are subsets of P. So
the set of all valuations is 2. We use V, V/, U, W, ... to denote valuations.

[ploLpa ={V : pe V}

V,U) € i
||<7T>§0||D|__pA = { V . thereis U such that ( ) H7THDL PA }

and U € H‘PHDL—PA

[p<=ellopa = {(V, VU{p}) : V € [¢loLpat
U{(V, V\{p}) : V€ l¢lborral
[¢? lor-pa = {(V, V) = V € lolloLpa}
|71; m2|pL-pa = [|71][DL-PA © ||72]|DL-PA
|1 U m2lpL-pa = [[71]loL-pa U [[72llDL-PA

7 llo-pa = ([|I7llo-pa)* = | (I7lloL-pa)”
keNg

Table 3.1: Interpretation of DL-PA formulas and programs

Formulas and programs are interpreted by mutual recursion. In DL-PA,
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3 Dynamic Logic of Parallel Propositional Assignments

the interpretation of a formula ¢ was a set of valuations |¢|pLpa € 2°
and the interpretation of a program =7 is a binary relation on valuations
|7[loL-pa € 27 x 27; the main clauses are recalled in Table 3.1. In contrast,
in DL-PPA the interpretation of a program 7 is a ternary relation on the set
of valuations ||| C 2F x 28 x 28, When (V, U, W) € ||| then there is an
execution of 7 from state V to state U assigning the variables in W. The
definition is again by mutual recursion and the main clauses are given in
Table 3.2; the others are standard.

Let us comment on the clauses that are new w.r.t. DL-PA.

The semantics of the assignment p<—¢ is: p is made true if ¢ is true and is
made false if ¢ is false, and in both cases the set of assigned variables is the
singleton {p}.

The semantics of parallel composition is that each subprogram m, is executed
locally; then it is checked whether the modifications (in terms of assigned
variables) are compatible: this is the case when all variables that are assigned
by both subprograms (namely the variables in W; N Ws) get assigned the
same truth value. If this is not the case then the parallel composition fails;
otherwise the resulting valuation U is computed by putting together (1) the
unchanged part of V' (i.e., V'\ W), (2) the updates of m; (i.e., Uy N W),
(3) the updates of 7 (i.e., UaN Wa). Moreover, the set of variables W assigned
by the parallel composition is the union of those assigned by the subprograms.

The semantics of inclusive nondeterministic composition 7 Ll w9 is, as
announced, the exclusive nondeterministic composition of the three programs
w1, T and 7 M 7mo.

Here are some examples of interpretations of programs:

[p—LI ={(V, V\{p}.{p}) : VCP}
[T?Mps—L| = [[pL]|
lpT Mp—L|| =0

[pT Mg L[ ={(V,(V\{q}) U{p},{p,q}) : VCP}
[pepNpe—L|={(V,V,{p}) : VCPandp¢ V}

Proposition 7. Let m be a DL-PPA program and let (V, U, W) € ||||. Then:
e WCPH

e VNUC Wand U\ V C W;
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3.1 DL-PA and DL-PPA

lpll={V : pe V}
{m)o|| = {V : there are U, W such that (V, U, W) € ||x|| and U € |||}
[p=ell = {(V, VU{p},{p}) + Ve llel}u{(V, V\{p}.{p}) : V & o}
[e? |l ={(V,V.0) : V€lel}

(V7 U17 Wl) S ||7Tl||’
||m1;ma]| = < (V, U, W) : there are Uy, Wy, Wy s.th. (U, U, Wa) € ||m2]| and

W= Wi U Wy

|1 Umall =[] U [|a]]
([ Ua|l = [lma ]| U [l l| U (|71 M 2]

there are Uy, Wy, Uz, W5 such that

(V, U, Wh) € [|mi|, (V, Ua, W2) € [|m2,
||7T1|_|7T'2H: (V,U,W) . WlmW20U1:W10W20U2,

U= (V\W)U (U;nWy)U (UaNWs), and

W= W; U W,

7= {J lI=ll*

k€eNy

Table 3.2: Interpretation of DL-PPA programs

o If P, C P then V C P implies U C P.

The first item can be restricted a bit further: W is a subset of the variables
occurring on the left-hand side of assignments of .

The next result says that the variables not occurring in a formula or a
program do not matter in their interpretation.

Proposition 8. Let ¢ be a DL-PPA formula and m a DL-PPA program. Let
P be a set of variables none of which occurs in ¢ or 7, i.e., P is such that
PNP,=PNP;=0. Then

o VUP € [lo] iff VAP € [lol];
« (VUP,UUP, W) € ||| iff (V\P, U\P, W) € |||

A formula ¢ is satisfiable if and only if ||| # (. Thanks to Propositions
7 and 8, when checking validity or satisfiability of a formula ¢ it suffices to
check triples (V, U, W) whose elements are all subsets of P,,.
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3 Dynamic Logic of Parallel Propositional Assignments

When the variables of 71 and 7o are disjoint then they can be sequentialised:

Proposition 9. Let m; and m2 be two programs such that Pr, NPr, = 0.
Then ||y M mo|| = ||lmy; maf| = [|m2; ml.

Observe that Proposition 9 cannot be strengthened by only requiring that
the variables that are assigned by m; and me are disjoint. For example, the
sets of valuations ||p<—T M g<p|| and ||p+T;g«p|| are different.

Just as in DL-PA (Balbiani, Herzig, Schwarzentruber, et al. 2014), the
Kleene star can be eliminated in DL-PPA: intuitively, when there exists a
run of 7* going from z to y then it is possible to go from z to y in no more
than 2/F=| iterations of . (Indeed, if there is a longer run, it necessarily goes
through the same valuation twice and can be shortened.)
Proposition 10. For all DL-PPA programs 7, ||7*|| = ||7T§2“Pﬂ Il

The above result can be strengthened: one might replace |P.| with the
number of atomic programs appearing in 7; even better, one might replace
it with the number of distinct variables appearing on the left-hand side of
assignments of 7. For instance, p«—qVr* can then be reduced to p<—qVr=?
instead of p«qVr=8.

3.1.3 Counters

In DL-PA one can implement k-bit counters (see e.g. (Balbiani, Herzig, and
Troquard 2013, Section II1.C)), and this transfers to DL-PPA. The encoding of
a binary number of length k requires a vector of [log k] propositional variables.
We represent the state of the counter by a formula ct, which stands for the
conjunction of these [log k| variables or negations thereof. Furthermore we
use the following abbreviations:

e ct<«0 is a program that resets ct: all variables of the counter are set to
false;

o For every integer i, ct=i is a formula that is true if and only if the value
encoded by ct is i;

e ct++ increments the value of ct.

46



3.2 Reduction from DL-PPA to DL-PA

We suppose that variables used in a counter do not occur elsewhere, so that
they do not interfere with other programs.

Counters allow us to formulate in a more compact way our abbreviation
7=k whose expansion has length exponential in k: using a [log k]-bit counter
we can identify 7=F with the program

ct«0; (met=k ?;m; ct++)*

whose length is linear in ¢(7) 4+ log k. Indeed, although these two programs do
not have the same interpretation, they behave the same as far as the variables
of m are concerned.

Proposition 11. For valuations V, U, W C Py, we have (V, U, W) € ||==F||
if and only if

(V,UuU', WUW') € ||ct<0; (mct=k ? ; 7r; ct++) ||

for some subsets U’ and W’ of the set of counter variables.

3.2 Reduction from DL-PPA to DL-PA

We are now going to give a polynomial-time reduction of formulas and pro-
grams of DL-PPA to DL-PA. Our translation eliminates M and U thanks to
the introduction of (several kinds of) copies of propositional variables.

3.2.1 Auxiliary variables

First, the variable d, stores that p has been assigned; it will allow us to
simulate the third component W of the interpretation of programs that keeps
trace of assigned variables.

Second, when translating parallel composition we sequentialise the parallel
execution of two programs 7, and 72, and in order to safely do so we let each
of them work on local copies of variables p, respectively noted (p)! and (p).

The translation of inclusive nondeterministic composition 71 LI w9 also
requires some care: the naive f(m; Ume) = w3 Umg U (1 M) would come
with an exponential growth. Our translation re-uses the above copying
technique.
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3 Dynamic Logic of Parallel Propositional Assignments

We extend copying from variables to sets of variables and to programs. We
associate to each set of variables P C P the copies (P)! = {(p)! : p € P}
and (P)? = {(p)? : p € P}; and we map programs 7 to programs (m)! by
replacing all variables p of 7 by (p)!; similarly, we map 7 to (7)2. For example,
(pe—q Ar)? = (p)*(a)* A (7).

Proposition 12. Let V, U, W C P, and let k be either 1 or 2. Then:
o (V,U, W) e |lnll iff (V)¥, (D), (W)F) € ||(m)*l;
o« Vel iff (V)" € [l(o)"].

The proof is by simultaneous induction on the structure of 7 and ¢.

3.2.2 Programs and formulas used in the translation

The translation uses some programs and formulas that are defined in this
subsection.

The first program creates two copies of the variables in a finite set P C P
and stores that these copies have not been assigned yet:

copy(P) = 3, p (1) 13 (9)* 3 (1 4= L3 26— L)

Proposition 13. For every finite P C P, (V, U) € |copy(P)|pL-pa if and
only if

U= ((V\((P)'U(P)))U((V)'N(P)) U ((VPN(PY))\ (§cpyy U d((py2))-

The next program copies back the values of the i-copies of the elements of
P and records whether they were modified, for i € {1,2}:

get(P,i) = ipeP (pk(p)i; Op¢=0p V 5(p)i>

Proposition 14. For every finite P C P, (V,U) € ||get(P,4)||pL-pa if and
only if

U=((V\P)U{p : (p)' € VIU{dp : §py € VN 3(pyi}.
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3.2 Reduction from DL-PPA to DL-PA

The last program merges two parallel subprograms: it copies back the
values of the variables in P, depending on where it got modified:

merge(P) = ;e p (D (B A =0 A =0(502) V ()T A d(py) V ()2 A Sy

5p<—5p V 5@)1 V 5@)2)

Proposition 15. For every finite P C P, (V, U) € ||merge(P)|pL-pa if and
only if

U= (V\(PUbp) U
(p€ Vand dp)1,002 ¢ V)
peEP : or (), (p)teV) U
or (32, (p)* € V)
{0p€dp 1 dp€ Vordp € Vordgeze V)}

Finally, the following formula conditions the merging of two parallel sub-
programs:

Mergeable(P) = A\ (3 A dgy2) = ()" < (0)?))

peEP

3.2.3 The translation

We are going to show that M and U can be polynomially eliminated from
DL-PPA formulas. The resulting formula is in the language of DL-PA, which
will allow us to transfer complexity results. The recursive definition of the
translation of formulas and programs is given in Table 3.3. It is homomorphic
for all the program operators and logical operators of PDL, so we only
comment the non-trivial cases: assignments, parallel composition and inclusive
nondeterministic composition.

o Fach assignment p<—¢ is translated by additionally storing that p has
been assigned (via a fresh variable dy).

e The translation of parallel composition 71 M9 relies on the introduction
of two fresh copies (p)! and (p)? of each propositional variable p occurring
in 71 M. Then for each program =, the program (7)! is obtained
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3 Dynamic Logic of Parallel Propositional Assignments
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by substituting each p in 7 by its copy (p)' ; similarly for (7)2. The
translation of w1 My starts by making local copies for each subprogram,
then executes m and w9 on these copies. Then the translation checks
whether the two results can be merged. If so then the values of the
relevant copies are copied back to each p (doing nothing when none of
the copies has been assigned). Finally the auxiliary variables (p)! and
(p)? are set to false.

In the translation of inclusive nondeterministic composition 71 L 7o,
the check of compatibility followed by copying back is replaced by an
exhaustive nondeterministic composition of either checking compatibility
and copying back the values computed by m; M7, or copying back the
values computed by 71, or copying back the values computed by 5.

fp)=p f(ps=p) =pf(p); 0ps=T
fL)=1 fe?)=f(p)?
f(=p) ==f(p) f(misme) = f(m); f(m2)
fle1Vp2) = fle1) V fe2) f(mUmg) = f(m) U f(m2)
fUmyp) = {f(m)) f(e) f(@*)=(f(m))"

f(mima) = copy(Pr, UBw)s (1) ): £((m)?);
Mergeable(Pr, UPr,)?; merge(Pr, UP.,);

f(milima) = copy(Pr, UPw); (1) ): £((m1)?);
((Mergeable(Py, UPx,)?; merge(Pr, UPx,))
U get(Pr,, 1) U get(Pr,, 2));

Table 3.3: Translation from DL-PPA to DL-PA



3.2 Reduction from DL-PPA to DL-PA

For example, f(p<T Mp+L1) is

(p)'4=p; (p)*4—p; Sy L d(pyz L

(P) =T (1T (D)% L3 82T (81 Ady2) = () (0)*)7;

P=(p A =0y A =02) V (0)' A Sy ) V ((9)* A 8ip2);

Op=0p V O(p)1 V I(py2-
Just as the original program, the translated program has an empty interpre-
tation because after setting 6,2 and §(, to true and (p)' to true and (p)?
to false, the test (5(p)1 A 5(p)2) — ((p)! + (p)?)? is going to fail.

3.2.4 Correctness of the translation

We define the copied variables for the translation of programs and formulas
as:

CP(p)
CP(m)

Pr(e) \ (P U dp,)
P(x) \ (Px U dp,)

For example, the copied variables of the above program are CP(p<T
p—1) ={(p)', (p)?, O(p)1sO(py2 }- Observe that Py is a subset of Pr U dp, U
CP(r) and that Py, dp,, and CP(r) are disjoint. We call P, U dp, the surface
variables of f(y); similarly, P, U dp, are the surface variables of f(m).

We say that two valuations V and V' agree on a set of propositional
variables X CPif VNX = V'NX. It follows from Proposition 8 that if V'
and V' agree on P, then V € ||¢|| if and only if V' € ||¢||. This means that
only the variables of ¢ matter when interpreting .

Lemma 16. Let 6, ¢ P; and (V, U) € || f(7)|pL-pa. If 6, € V thend, € U.

Proof. The only modification of the change-recording variables occurs in the
translation of parallel compositions and inclusive nondeterministic compo-
sitions, via assignments of the form 9,40, V d(,y1 V d(,y2. Therefore the 4,
variables are never made false. ]

The next lemma relies on the fact that when translating my Mo and 71 Ums,
the variables §,y: are set to false before the programs (m;)* are executed:
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3 Dynamic Logic of Parallel Propositional Assignments

this guarantees that their truth was caused by an assignment of (p)¢ that
was performed during the execution of (m;)’. Without such an initialisation
for example the translation of f({p«T M T?)T) would be sensitive to the
original truth value of §(,)2: it would be true in the empty valuation and false
in the valuation {d(,)2}.

Lemma 17. Let (V, U) S ||f(7T)HD|__pA and (V/, U,) € ||f(71')||D|__pA. Let U
and U’ agree on P Udp_. If V and V' agree on P C P and PN CP(xw) =
then U and U’ agree on P.

Proof. The only variables that f(m) can modify are in P,Udp, UCP(7). Sup-
pose both (V,U) and (V', U’) are in ||f(7)|pL.pa and P and CP(w) are
disjoint. Then f(7) cannot modify the variables in P\ (P Udp, ), and U
and V must agree on P\ (P Udp, ). For the same reason, U’ and V' must
agree on P\ (P,Udp_). As V and V' agree on P, they trivially also agree on
P\ (P;Udp, ), and we get by transitivity of equality that U and U’ agree on
P\ (P;Udp_). As by hypothesis U and U’ agree on P,Udp_, they agree on the
entire set P. 0

The next lemma says that only the surface variables matter when interpret-
ing translated formulas and programs.

Lemma 18. For all formulas ¢ and programs 7:
1. If V and V' agree on P,Udp, and V' € || f(¢)|/pL-pa then V' € || f()||DL-PA;

2. If V and V' agree on P Udp_ and (V, U) € || f(7)|lpL-pa then there is a
U’ agreeing with U on P,Udp,_ such that (V', U’) € || f(7)|lpL-pa-

Proof. The proof is by simultaneous induction on the form of ¢ and © and
uses Lemma 17. Instead of the second item we use as induction hypothesis
that if V and V' agree on PrUdp, and (V, U) € || f(7)|pLpa then (V' U’) €
£ (m)llbL-pa for U = (UNPf(xy) U (V' \ Py(r)). We abbreviate that induction
hypothesis by IH2, while IH1 denotes the first item in the statement of the
lemma.

o For the case of formulas of the form ()¢, to prove IH1 suppose V and V'
agree on Py Udp - and V € | f({m)®)[loL-pa. By the truth condition
there is a U such that (V, U) € || f(7)||pL-pa and U € || f(¢)|/pL-Pa. By
IH2 we obtain that (V’, U’) € || f(7)|lpL-pa for U" = (UNP ) U (V"
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Prix )) By construction U’ agrees with U on P(x) and therefore also
on P,Udp, . Lemma 17 applies for P =P, U dp, because the auxiliary
variables in CP(r) are fresh: U’ and U agree on P = P,Udp, . .- This
allows us to apply IH1, giving us U’ € | f(¥)|lpLpa- By the truth
condition for the dynamic operator it follows that V' € || f((w)®)|/pL-PA-

The other cases of formulas are straightforward.

For the case of assignments, to prove IH2 suppose V and V' agree
on Py ,Udp,,_, = P,Udp, U{p,dp} and (V, U) € || f(p<—¢)|pL-ra. We
distinguish two subcases. If V € ||f(¢)|pLpa then by IH1 V' €
lf(¢)lloL-pa. Then U = V U {p,d,}, and setting U = V' U {p,d,}
we clearly have (V', U’) € || f(p<¢)|lpL-pa. The subcase where V ¢
||f((,0)||D|__pA is similar.

For the case of sequential composition, suppose V and V' agree on
Pryimy U0, ., and (V, U) € || f(m1;m2)|lpL-pa. Then there is a Uy such
that (V, U1) € [[f(m)llor-pa and (U1, U) € | f(m2)|lpL-Pa- Applying
TH2 we get (V/, U{) S Hf(7T1)HDL—PA7 for U{ = (UlﬁPf(m)) U (V/\
Pf(m))- Clearly, Uy and Uy agree on Pr,Udp,, . By Lemma 17 (which
applies because the auxiliary variables in CP () are fresh) they also
agree on Pr,Udp, . This allows us to apply IH1, giving us (U{, U’) €
|| f(72)[[oL-pa, for

UNPy(ry)) U (U7 \ Py(ny))
UNP ¢(ry)) U ((U1NPf(ry) U (VN Pr(ry)) \ Pry))
U (

(
(
(Uﬂpf (m2) ) (Ulﬁpf (m1) ) \Pf(ﬂ'z)) ((V/ \ Pf(rrl)) \Pf(ﬂ'z))
(
(

U N (Prrg) IPrm) U (VN (Prir) UPf ()
un (Pf(ﬂ'z 7r1))) (V,\ (Pf(Tl'l;ﬂ'Q)))

It follows that (V', U’) € | f(m1;m2)llpLpa for U' = (UNPf(r iry)) U
(V/\Pf(ﬂl;WQ))’

The cases of exclusive nondeterministic composition and of finite itera-
tion are straightforward.

The cases of parallel composition and of inclusive nondeterministic
composition are similar to that of sequential composition but a bit
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more fastidious. Basically, their proof uses that in the translation of
parallel composition the initial values of all the copy variables (p)! and
(p)? in CP(P,) are irrelevant because they get assigned the value of p.
Similarly, the initial values of change-recording variables that are not
surface variables (such as §(,y1 and §,)2) are irrelevant because they get
assigned to false.

This ends the proof. O

The second item of the above lemma implies that when V and V' agree on
PrUdp, and (V, U) € || f(7)| then there is a U’ agreeing with U on P, U dp,_
such that (V', U’) € || f(m)]].

The next lemma says that the change-recording variables can be added to
the interpretation of translated formulas and programs.

Lemma 19. For all formulas ¢, programs 7 and finite sets of variables X
such that dx NP, = dx NP, = 0:

L IfV € [[f(¢)|lbL-pa then VUIx € || f(¢)[lpL-pa and V\éx € [[f(¢)bL-PA;
2. If (V, U) S Hf("T)HDL—PA then
(V Udx,U U 5)() € Hf(ﬂ')HDL-PA and (V \ 5)(,(U \ ((5)( N V))) €
[1f () loL-pa-

Proof. We prove by simultaneous induction on the form of ¢ and 7 that for
every p € P

IV e ||[f(9)llpLpa then VU {6y} € [|f(¥)|lbL-pa (IHL);
IV e |l f(o)llpL-pa then V\ {d,} € [[f()lloL-pa (TH2);
(V. U) €| f(m)lloL-pa then (VU{dp}, UU{dp}) € [|f(m)llpLpa (IH3);

4. If (V, U) € ||f(7T)HD|__pA and 6p € V then (V \ {5p}, U \ {5p}) €
1f(m)loL-pa (IH4).

For formulas we only give the case of the dynamic operator. Suppose
V e ||f({m)¢)|pL-pa, which means that there is a U such that (V,U) €
| f(m)|lo-pa and U € [|f(¢)|lp-pa. In order to prove that V U {d,} €
[ f({m)¢)lloL-pa we use IH3 and IHI, which give us that (V U {6y}, U U
{0p}) € If(7)|lpL-pa and U U {6,} € ||f(¢)||pL-pa. In order to prove that
VA\A{6p} € |lf({(m)¢)|lpL-pa We distinguish two cases.

w N =

o4



3.2 Reduction from DL-PPA to DL-PA

o If 6, € V then by TH4 and TH2 we obtain (V' \ {d,}, U\ {d,}) €
1/ (m)lloLpa and U\ {65} € || F()lloL-pa;
therefore V'\ {dp} € [[(f (7)) f(¢)l[DL-PA-

o If §, ¢ V then V \{6,} € [|[f((m)¢)|lpL-pa is trivially the case (by
hypothesis V€ | f({m)#)]loL-pa)-

For programs, the cases of parallel compositions and inclusive nondeter-
ministic compositions rely on Lemma 16: in their translation, the only mod-
ifications of change-recording variables ¢, are by assignments of the form
Op¢=0p V O(p)1 V ()2 which never make any 4, variable false. O

The last two lemmas entail that only the variables in P, are relevant for
the interpretation of f(¢).

Lemma 20. For every formula ¢, V € || f(¢)|or-pa iff VNP, € ||f(¢)|bL-PA-

Proof. We prove that if V and V' agree on P, and V € ||f(¢)||pL-pa then
V' €| f(¢)|loL-pa. Suppose V and V' agree on P, and V € || f(¢)||pL-pa. We
split V up into three disjoint sets and get:

(VAR U (Ve U (V' \ (Ut ) € [1F(@lloLe
As V and V' agree on P, we have VNP, = V'NP,, hence:

(V'AB,) U (Vs U (V\ (B,UB,)) € [Lf(9)llpL-pa-
Then Lemma 19 (first item) tells us that the change-recording variables don’t
matter when interpreting formulas, therefore:

(VINPy) U (V'NGg,) U (V' \ (PoUdR,)) € || f(¢)lloL-pa-
Finally, as this valuation agrees with V' on the surface variables P, U op,,, by
Lemma 18 (first item) we get that V' € || f(¢)| bL-Pa. i

The above lemmas are used in the grande finale:
Theorem 21. For every formula ¢, ||¢|| = ||f(¢)|lpL-Pa.

Proof. We prove by simultaneous induction on the form of formulas and
programs:

L Veleliff Vel[f(e)llora (IHL);

2. If (V, U, W) € ||x|| then (VOP,, (UNP;)Udw UX) € ||f(7)|bLpa for
some X C CP(w) (IH2);
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3. f (V,U) € ||f(r)|pL-pa then (VNP,, UNP,, W) € ||x|| for some W C P
(IH3).

We analyse the different cases of formulas and programs.

o6

o For formulas of the form (m)¢ we prove the two directions of TH1

separately.

For the left-to-right direction, suppose V € |[(m)¢]|. Then there are U,
W such that
(V, U, W)€ ||l and U € [l

. By TH2 and TH1:
(VOPx, (UNP;) Udw UX) € ||f(7)|loLpa and U € || f(¥)|IpL-PA

for some X C CP(m). As to the interpretation of the program f (), by
Proposition 8 we can add the irrelevant variables VN(P, \ Pr) to both
elements of the tuple:

((VNPr) U (VN(Py \ Prr)),
(Uﬂpﬂ—) U (Vﬂ(P¢ \Pﬂ-)) Udw U X) € ||f(7T)HD|__pA

. (The proposition applies because the sets VN(P, \ Pr) and Py, are
disjoint.) Again by Proposition 8 we have VN(P, \ Pr) = UN(P, \ Pr),
and therefore get:

((VN(PLUPL)), (UN(PLUPR)) Udw U X) € || f(7)oL-pa,
that is

(VAP (UNP 1)) Ubw UX) € [ f(m)loLpar (1)
As to the interpretation of the formula f(¢), we modify U as follows:

— intersect U with Py(,,) and then add the irrelevant variables UN(Px\
P,) thanks to Proposition 8 (similarly to what we did for programs);

— subtract all change-recording variables of U and then add the
change-recording variables dy thanks to Lemma 19.
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By these set-theoretic operations we obtain that

(UNP(y,) Udw U (UNCP(p)) € [[f(¢)llpLpa- (3-2)

Observe that the second element of the tuple in (3.1) and the valuation
in (3.2) agree on the surface variables of (7)¢, and a fortiori on those of
¢, i.e., on P,Udp,. We can therefore apply the first item of Lemma 18:
we have

(UNP(ryp) Udw UX € [[f(¢)lloL-Pa- (3.3)

Then 3.1 and 3.3 together tell us that
VAR, € 1(7(m)) 7 () loLpa.
Applying again Lemma 19 we then get
(VOPmyp) U (VDde,,) € [I{f (7)) f(#)lloL-pa-

As this valuation agrees with V' on the surface variables of (m)p, we
can apply Lemma 18 again and conclude that

Ve [f({m)e)lloL-pa-

For the right-to-left direction of TH1, suppose V € ||f({m)p)|. Then
there is a U such that

(V,U) € [lf(m)lloL-pa and U € || f(¢)|[pL-PA
. Applying IH1 and TH3 we get that there is a W such that
(VOPs, UNBy, W) € |l and U € [g]

. As above we can add the irrelevant variables VN(P, \ Pr) thanks to
Proposition 8:

(VﬂP(W>gpv UQP<7T>¢, W) e H’ZTH and UﬂP<ﬂ>¢ € ||g0H

, from which it directly follows that VNP, € [[(m)¢||. The latter is
equivalent to V € ||(m)¢|| by Proposition 8.
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o8

e The other cases of formulas are straightforward.

 For the case of assignments, to prove IH2 suppose (V, U, W) € ||p+¢]|.

We distinguish two subcases. If V € ||¢||pL.pa then U = VU {p}, W =
{p}. By Proposition 8 we have VNP, € |¢|pL-pa. By IH1, VNP, €

1/ (@)llo-pa. Hence (VOR,, (VOP,) U{p,dy}) € [|f(p=¥)llpL-pa and
we have X = (). The subcase where V ¢ ||¢||pL.pa is similar.

To prove IH3 suppose (V, U) € || f(p<¢)|pL-pa. We again distinguish
two subcases. If V € | f(¢)|lpL-pa then U = V U {p,d,} and therefore
UNPyp, = (VNP,)U{p}. By Lemma 20 we have VNP, € || f(¢)|bL-PA-
Then by IH1 we get VNP, € ||¢|pL-pa. Hence VNPp—y, € ||¢]DL-PA;
too, as well as (VNPpy, UNPpy, W) € |p¢l|lpL-pa for W = {p}.
The subcase where V ¢ || f(¢)||pL-pa is similar.

For the case of tests, to prove IH2 suppose (V, U, W) € [|¢?]|. Then
Velgl, U=V,and W = (. By Proposition 8 we have VNP, € ||¢||,
and by TH1 we have VNP, € ||f(¢)|lpLpa. Hence (VOP,, UNP,,0) €
11 ()7 [[oL-Pa-

To prove TH3 suppose (V, U) € ||f(¢?)|loL-pa- Then V € | f(¢)llpL-Pa,
U = V. By Lemma 20 we have VNP, € ||f(o)|pL-pa, from which
VNP, € ||¢|| by IH1. Hence (VNP,, UNP,, 0) € [|¢? ||.

For the case of sequential compositions, to prove IH2 suppose (V, U, W) €
|15 m2]]. Then there are Uy, Wy, Wo such that W = W; U Wy and

(V, Ui, W1) € ||mi|| and (U1, U, W2) € [|ma
Applying TH2 twice we get

(VOPr,, (U1NPr,) Udw, U X1) € || f(71)llpL-pa,
(U1MPry, (UNPr,) U dw, U X2) € || f(m2)|bL-pPa,

for some X; C CP(m) and Xy C CP(m2). Adding irrelevant variables
as we did for the previous cases we get

(VOParyimys (U1MPayimy ) U dwy, U X1) € [ f(m1)|lpLpa,
(U1MPay iy, (UNPayimy ) U dw, U Xa) € || f(72)|lDL-PA-



3.2 Reduction from DL-PPA to DL-PA

By Lemma 19 we can add the change-recording variables dy, to the
interpretation of f(my) and get

((Ulmpﬂ'l;ﬂ'Q) U 5W17 (UﬂPﬂ'uﬂ‘Q) U 5W1 U 5W2 U X2) € ||f(7T2)”DL—PA-

As the valuations (U1NPr,.r,) Udw, U X1 and (U1NPxr, ., ) U dw, agree
on the surface variables of f(m2) we can apply Lemma 18 and get

((Ulmpm;ﬂz) U 6W1 U Xy, U/) € Hf(ﬂ-Q)HDL-PA

for some U’ agreeing with (UNPx,.x,) Udw, Udw, U Xs on the surface
variables of f(ms). It follows that

((U1NPrysmy) U dwy U X1, (UNPrymy) Udw U X) € || f(m2)|DL-PA

for some X C P; more precisely, X C X; U Xs. Finally, together with
the above

(VﬂPﬂ'l;ﬂ'zv (UlﬂPﬂ'l;ﬂ'z) U 5W1 U Xl) S ||f(771)||DL—PA

we obtain

(VOPry iy (UNPryimy) Udw U X, ) € | f(m1);5 f(m2) [IDL-PA

for some X C X; U Xs.

To prove IH3 suppose (V, U) € ||f(m1;72)||pL-pa. Then there is a U;

such that (V, Ul) € Hf(Trl)HDL—PA and (Ul, U) S ”f(ﬂ'z)”DL_pA. Apply-
ing TH3 twice we get

(Vum, UlﬂPm, Wl) € Hﬂ—luv
(UlﬁPWQ, UI’WPM, Wg) € H7T2H

for some W; and W,. Adding irrelevant variables as we did for the
previous cases we get

(Vnpﬂ’l;ﬂ'm Ulmpm;ﬂ'zv Wl) € Hﬂ-le
(UlmPﬂ'l;ﬂ'Qv UﬁPﬂuﬂ'zv WZ) € ||772H
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Putting this together we obtain

(VﬁPm;ﬂw UﬂPmﬂrQ, Wi U Wg) € ”71'1;7‘('2”.

e The case of exclusive nondeterministic composition is straightforward.

e The case of finite iteration derives from the cases of exclusive nondeter-
ministic composition and of sequential composition.

e The case of parallel composition relies on sequential composition and
uses Proposition 12.

This ends the proof. |

3.2.5 Complexity results

We use the translation in order to establish complexity upper bounds. Lower
bounds are imported from the fragment DL-PA.
The translation from DL-PPA to DL-PA is a polynomial transformation:

Proposition 22. The length ¢(f(y)) of the translation of a DL-PPA formula
¢ is polynomial in the length ¢(¢) of ¢.

Theorem 23. The DL-PPA model checking problem of deciding, given V'
and ¢, whether V € [|¢|| is PSPACE-complete.

Proof. The lower bound is due to PSPACE hardness of DL-PA model checking
(Herzig, Lorini, Troquard, et al. 2011). The upper bound is obtained by
Theorem 21 and Proposition 22 thanks to PSPACE membership of DL-PA
(Balbiani, Herzig, Schwarzentruber, et al. 2014). |

To establish the complexity of satisfiability checking we reduce it polynomi-
ally to model checking.

Proposition 24. A DL-PPA formula ¢ is satisfiable iff 0 € [|(;,cp_ (pT U
peL))ell-

Theorem 25. The DL-PPA satisfiability checking problem is PSPACE-
complete.
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3.3 DL-PPA applied to automated planning

Proof. The lower bound is due to PSPACE hardness of DL-PA satisfiability
checking (Herzig, Lorini, Troquard, et al. 2011). The upper bound follows
from PSPACE membership of DL-PPA model checking via the preceding
Proposition 24. m|

3.3 DL-PPA applied to automated planning

Lets recall the conditions for a set of actions to be consistent. A consistent
set of actions has no contradictory effects and no cross-interaction between its
actions. A set of actions A is say to be free of contradictory effects in a state
V if and only if for any pair of actions aj,as € A and for every ce; € eff(a1)
and ceg € eff (az) if V € |[cer A cez|| then eff T(cer) N eff (cex) = 0.

We say that two states V and V'’ agree on a formula ¢ if and only if either
Ve |lell and V' € ||¢|l or V & ||| and V' & ||¢]]. Then we say that two
different actions a; and as have no cross-interaction at V if the following hold:

1. s and 75, (s) agree on pre(az) and on the condition cnd(cez) of every
conditional effect ces € eff (az);

2. s and T7,,(s) agree on pre(a;) and on the condition cnd(ce;) of every
conditional effect ce; € eff(ay).

In this section, we formally define actions and sequential and parallel planning
tasks within our framework DL-PPA. Then we show that a DL-PPA model
checking can be used to test the solvability of such tasks.

3.3.1 Sequential planning with conditional effects

We suppose given a set of action names Act. A planning task is a triple
(Vo, 7, Goal) where:

e Vo C Pis a valuation (the initial state)
e 7: Act x P — P is a partial function modeling the actions in Act
e Goal € Fml is the goal

Each action a € Act is described with a tuple (pre(a), eff(a)) where:

o pre(a) € Fml is the precondition of a;
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e eff(a) € Fml x 2% x 27 is a set of triples ce of the form

(cnd(ce), eff T(ce), eff (ce)),

the conditional effects of a, where cnd(ce) is a DL-PPA formula (the
condition) and eff (ce) and eff (ce) are sets of variables that are re-
spectively added and deleted by a if condition ce is true.

The function 7 can be defined from such action descriptions : : 7,(V) is
defined (a is executable in state V) if and only if V' € ||pre(a)|| and for all
ce1, ceg € eff (a) such that V € ||cnd(cer)Aend(ces)||: eff T(cer)Neff (cez) = 0.
When 7, is defined in V then:

Ta( V) - <V \ U ceceff(a) eﬁ_(ce)> U U ceceff(a) eﬁ+(ce)
Vellend(ce)|| Vellend(ce) ||
We associate to action a the DL-PPA program exeAct(a):

cnd(ce)?
exeAct(a) = pre(a)? |_| —end(ce)?U [ M peegt(ce) P T
ceceff(a) A quﬁﬁi(ce) gL

The program exeAct(a) behaves like a:
Lemma 26. For every action a € Act:
1. 7, is defined in V iff there are U, W such that (V, U, W) € |lexeAct(a)]l;

2. If 7, is defined in V then 7,(V) = U iff (V, U, W) € ||exeAct(a)|| for
some W.

Proof. Let us take an arbitrary state V. 7,(V) is not defined iff: (1) V ¢
|lpre(a)||, or (2) there are ceq, cea € eff(a) and p € Psuch that V € ||cnd(cer)A
end(cez)|| and eff H(ce1) N eff (cez) contains some p. In case (1), the program
fails because ||pre(a)? || = 0, in case (2), the program fails because ||p<_L 1
pT| =0.

When 7,(V) is defined then V € |pre(a)|, so (V,V,0) € |pre(a)?].
Moreover, for each ce € eff(a) such that V € |cnd(ce)| the programs
(|_|p€eﬁ+(ce) p<T) and (l_lqeeﬁ_(ce) g+ 1) are executed in parallel and all the
assignments are consistent (no p<_L and p<T is executed in parallel). Then
the parallel composition of all these programs leads, by definition, to the state
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T2(V) = U, with (V, U, W) € |lexeAct(a)||, where W is the set of all assigned
variables in the program exeAct(a). o

We say that a state V is reachable by a sequential plan from a state Vy via
a set of conditional actions Act if there is a sequential plan, that is, a sequence
of actions (ay,...,a,) from Act, and a sequence of states (Vy, ..., V,,) with
m > 0such that V = V,,, and 75, (V—1) = Vi for every k such that 1 < k < m.
A planning task is solvable by a sequential plan if there is at least one state
V € ||Goal|| such that V is reachable by a sequential plan from V{ via Act;
otherwise it is unsolvable by a sequential plan.

3.3.2 Parallel planning with conditional effects

A set of actions A = {a1,...,a,,} determines a partial function 74 from 2% to
2F: 74(V) is defined (ay,...,a, are executable in parallel in state V) if and
only if:

1. for all a; € A, 75, is defined in V, and

2. the set of actions A is consistent in V.

When 74 is defined in V then:

TA(V)= | V\ U eff (ce) | U U eff f(ce)
acA,ceceff(a), acA,ceceff(a),
Vel lend(ce)l| Vellend(ce)l|

To every set of conditional actions we can associate a DL-PPA program
that behaves exactly like the parallel execution of its elements. Given A =
{a1,...,am}, let exeAct(A4) be the DL-PPA program

exeAct(a)
exeAct(4) = |_| a7 (exeAct(a’))pre(a)?
acA 25:} MM eecef(a) (cnd(ce) > (exeAct(a’))cnd(ce)) ?
Lemma 27. For every finite set of actions 4 = {a1,...,an},

1. 74 is defined in V iff there are U, W such that (V, U, W) € |lexeAct(A)]l;
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2. If 74 is defined in V then 74(V) = U iff (V, U, W) € |lexeAct(4)|| for
some W.

Proof. Let us take an arbitrary state V and two actions a,a’ € A. By
Lemma 26, for all i € {1,...,m} we know that exeAct(a;) behaves like a;, and
then is executable if 7,, (V') is defined.

T74(V) is not defined if and only if; (1) 72(V') is not defined; (2) There are
ce € eff(a) and ce’ € eff(a’) and p € P such that V € |[end(ce) A cnd(ce')|]
and p € eff T(ce) Neff (ce'); (3) T (V) & |Ipre(a)|); (4) there is a conditional
effect ce = cnd(a) such that V and 7,/(V) do not agree on ce.

Case (2) happens if and only if exeAct(a) M exeAct(a’) fails because of the
execution of the parallel composition of p<—_L and p<T; case (3) happens if
and only if then the execution of (exeAct(a’))pre(a)? fails; case (4) happens if
and only if the execution of (cnd(ce) +» (exeAct(a’))cnd(ce))? fails.

When 74 is defined,

A (exeAct(a’))pre(a)?
aI]A a HC@Geﬁ‘ (ay(cnd(ce) <> (exeAct(a’)) cnd(ce))?
a#a’

is defined. Then, the parallel composition of exeAct(a)( V) for every action
a € A leads, by definition, to the state 74(V) = U, with (V,U, W) =

|lexeAct(A)||, where W is the set of all assigned variables in the program
exeAct(A). m]

We say that a state V is reachable by a parallel plan from a state Vj via a
set of actions Act if there is a parallel plan, that is, a sequence (41,..., An)
of sets of actions A; C Act and a sequence of states (Vp, ..., Vi) with m >0
such that V =V, and 74, (Vi—1) = Vj for every k such that 1 <k <m. A
planning task (Act, Vo, Goal) is solvable by a parallel plan if there is at least
one state V € ||Goal|| such that V is reachable by a parallel plan from Vj
via Act; otherwise it is unsolvable by a parallel plan.

3.3.3 Solvability of bounded horizon planning tasks

Now that we have defined a parallel encoding of actions and the solvability of
a planning task, we can capture the solvability of a planning task in DL-PPA
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with a bounded horizon k. This problem is known to be PSPACE-complete
(Bylander 1994).

Theorem 28. A planning task (Act, Vy, Goal) is solvable by a sequential
plan with no more than k actions if and only if:

<k
Vo € < U exeAct(a) >G0al
acAct

Proof. Our formula reads "there exists an execution of (U,c ¢ exeAct(a))=" af-
ter which Goal is true.” We know by Lemma 26 that exeAct(a) behaves correctly
and produces the same effects as action a. The program (U,c 4. exeAct(a))="
non-deterministically chooses an action a from Act and executes the corre-
sponding program exeAct(a), then repeats this a number of times less or equal
than k. This produces a sequence of at most k actions, i.e., a sequential plan
bounded by k. Therefore the formula is satisfied in the initial state if and only
if there exists a sequential plan of length bounded by k after which the goal
is satisfied, i.e., if and only if the planning task is solvable with a sequence of
at most k actions. m]

Theorem 29. A planning task (Act, Vp, Goal) is solvable by a parallel plan
with no more than k steps if and only if:

<k
Vo € <( ’_| eres<—L; |_| emea<——|—;7rexe> >G0al

acAct acAct

where ere, & Peyepct(a) for all a € Act, and

Teze = [ lacAct

—exey? U
exe,? MexeAct(a)
—exey?
M arc Act U exey ? M{exeAct(a’))pre(a)?
aFa’ M eecef(a) (cnd(ce) < (exeAct(a’))end(ce)) ?

Proof. The program [,c 4.; ezea<—L initialises a special fresh variable eze, ¢

65



3 Dynamic Logic of Parallel Propositional Assignments

PeeAct(a) to L, for each action a € Act. Then the inclusive nondeterministic
composition | |,c 4. erea<—T chooses some non empty subset of actions A C
Act and executes the program [],c4 ere,<—T. At this point, ere, = T iff
a € A, and the program 7. is executed. It is easily seen that, for a given
choosen set of actions A, me; behaves like the program exeAct(A4). We
know by Lemma 27 that this latter program behaves correctly and produces
the same effect as the parallel execution of all actions in A. The sequence
[Tacact €ZeasL; | ac act €Z€a4T; Tege is then repeated a number of times less
or equal than k. This produces a sequence of at most k parallel executions
of action sets, i.e., a parallel plan bounded by k. Therefore the formula is
satisfied in the initial state if and only if there exists a parallel plan of length
bounded by k after which the goal is satisfied, i.e., if and only if the planning
task is solvable with a sequence of at most k parallel steps. O

The nondeterministic choice of a subset of the set of actions to be executed
at a step could be expressed by the program J 4 4., exeAct(A). However, this
would have length exponential in the number of actions.

Both in Theorem 28 and in Theorem 29, the size of the model checking
problems is polynomial in the size of the planning task plus log k. This relies
on our compact representation of bounded programs 7=F, cf. Proposition 11.

3.4 Conclusion

We have shown how to capture parallel classical planning in an extension of
DL-PA by parallel and inclusive nondeterministic composition whose model
checking and satisfiability checking problems are still in PSPACE. This allows
in particular to decide, within the complexity boundaries, the existence of a
plan given a finite horizon.

A straightforward continuation of our work is towards parallel epistemic
planning: We can take over the epistemic extension of DL-PA in terms of
observational variables that was applied to sequential epistemic planning in
(Cooper, Herzig, Maffre, Maris, and Régnier 2016a).
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Epistemic planning is important in multiagent systems. None of these ap-
proaches investigated up to now studied the construction of parallel epistemic
plans. Such plans are however particularly interesting when there is more
than one agent. In this chapter we investigate how multiple agents can act in
parallel in order to achieve a common goal.

In the previous chapter we used this framework in order to solve classical
planning tasks with parallel plans. In that work we supposed that agents
always have perfect knowledge of the current state and of the occurrence
of actions. We here relax this hypothesis: an agent may fail to observe the
truth value of a given propositional variable and may fail to observe some
actions. Moreover, they may not know other agents’ observational capabilities.
The object of these capabilities can be a propositional variables, but also the
other agents’ visibility; in other words, we consider higher-order visibility
information.

We here apply EL-O to parallel epistemic planning: we provide a reduction
of EL-O-based parallel planning to classical planning, which allows us to
translate planning tasks into PDDL and use classical planners. We illustrate
our approach with a parallel version of the epistemic gossip problem (Cooper,
Herzig, Maffre, Maris, and Régnier 2019) where n agents initially each know
their secret but not the others’; agents can exchange all secrets they know
during a phone call to another agent; and the goal is to achieve shared
knowledge of all secrets, i.e., everybody knows every secret. A parallel
solution to the epistemic gossip problem is a sequence of sets of calls.

The content of this chapter corresponds to an article published at the
International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020) (Cooper, Herzig, Maris, Perrotin, et al. 2020).

Content of the chapter
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Résumé du chapitre en francais

La planification épistémique est importante dans les systemes multi-agents.
Aucune de ces approches étudiées jusqu’a présent n’a étudié la construction
de plans épistémiques paralleles. De tels plans sont pourtant particuliérement
intéressants lorsqu’il y a plus d’un agent. Dans ce chapitre, nous étudions
comment plusieurs agents peuvent agir en parallele afin d’atteindre un objectif
commun.

Dans le chapitre précédent, nous avons utilisé ce cadre pour résoudre des
taches de planification classiques avec des plans paralleles. Dans ce travail, nous
avons supposé que les agents ont toujours une connaissance parfaite de 1’état
actuel et de 'occurrence des actions. Nous relaxons ici cette hypothese : un
agent peut ne pas observer la valeur de vérité d’une variable propositionnelle
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donnée et peut ne pas observer certaines actions. De plus, il peut ne pas
connaitre les capacités d’observation des autres agents. L’objet de ces capacités
peut étre une variable propositionnelle, mais aussi la visibilité des autres
agents; en d’autres termes, nous considérons une information de visibilité
d’ordre supérieur.

Nous appliquons ici EL-O a la planification épistémique parallele : nous
fournissons une réduction de la planification parallele basée sur EL-O a la
planification classique, ce qui nous permet de traduire les tadches de plani-
fication en PDDL et d’utiliser des planificateurs classiques. Nous illustrons
notre approche avec une version paralléle du probléme de bavardage épisté-
mique (COOPER, HERZIG, MAFFRE, MARIS et REGNIER 2019) ol n agents
connaissent initialement chacun leur secret mais pas celui des autres; les
agents peuvent échanger tous les secrets qu’ils connaissent lors d’un appel
téléphonique a un autre agent ; et 'objectif est de parvenir a une connaissance
partagée de tous les secrets, c’est-a-dire que tout le monde connait tous les
secrets. Une solution parallele au probléeme du bavardage épistémique est une
séquence d’ensembles d’appels.

De la méme maniere que pour la planification classique paralleéle du cha-
pitre précédent il nous faut respecter ’absence d’effets contradictoires et
d’interaction croisée. L’ajout de raisonnement sur les connaissances, et plus
particulierement de ’opérateur de visibilité jointe JS, impose de revoir ces
regles. Nous faisons cela avec une expansion des descriptions d’actions et
des taches de planification. Cette expansion se fait en ajoutant les causes
et les conséquences des fluents de la tache de planification. La relation de
conséquence est définie comme suit. « intérétest la cause de 8 — et 8 la consé-
quence de o —si @ = B ousi « = JS o' et que B est une suite d’opérateurs de
visiblité se terminant par /. En incluant aux ensembles (effets et état initial)
les conséquences de leurs atomes et aux formules (préconditions, conditions et
but) les causes de leurs atomes, nous pouvons appliquer les mémes regles qu’en
planification classique pour les contraintes liées a ’exécution en parallele des
actions. En restreignant I’expansion des conséquences aux fluents pertinents
pour la tache de planification que 'on souhaite résoudre — ceux présents dans
la description de la tache avant I’expansion — la complexité du probléeme
d’existence d’un plan parallele a un probléme de planification épistémique est
PSPACE-compleéte.

Ce résultat nous permet de considérer I'utilisation de planificateurs pour la
planification classique pour résoudre des problémes épistémiques. Nous avons
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réalisé un test de performance (benchmark) pour évaluer 'intérét pratique
d’une telle approche. Les résultats obtenus sont difficilement exploitables, la
plupart des problemes testés deviennent rapidement trop complexes lorsque
I’on augmente leur taille. Cependant nous pensons que de futurs travaux
utilisant cette approche pourraient permettre une résolution de problemes de
planification épistémique avec une efficacité proche de celle de la planification
classique.
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4.1 EL-O: Epistemic Logic of Observation

4.1 EL-O: Epistemic Logic of Observation

We recall the Epistemic Logic of Observation, abbreviated EL-O.

4.1.1 Atoms and Introspective Atoms

Let P be a countable set of propositional variables and let Agt be a finite set
of agents. The set of observability operators is

OBS ={8S; : i€ Agt} U{JS},

where S; stands for individual visibility of agent 7 and JS stands for joint
visibility of all agents. The set of all sequences of visibility operators of
length at most k is noted OBS<F. Then OBS* = J;>q OBS=<F and OBS* =
Uk>1 OBS=F. Atoms are finite sequences of visibility operators followed by a
propositional variable. The set of all atoms is

ATM ={op : 0 € OBS*,p € P}.

We use a, o/, 3,..to denote atoms.
The set of all introspective atoms is

I-Atm = {0S;S;a : 0 € OBS* and a € ATM} U
{0JSa : 0 € OBST and a € ATM}.

The complement of /- Atm is the set of relevant atoms: R-Atm = ATM\ I-Atm.

4.1.2 Atomic Consequence

We define a relation of atomic consequence between visibility atoms as follows:
a= [ if eithera=p,ora=JSa and = o’ for some 0 € OBS™.
For example, JSp = S;p and JSp = JSS; p. The relation = is reflexive
and transitive. When o = 3, we say that « is a cause of 5 and that
is a consequence of a. We will ensure that atomic consequences are valid
implications. We note o< the set of causes of a, and a™ the set of its
consequences. Clearly, (p)™ = (p)< = {p} for p € P. Moreover, (S;p)~™ =
{Sip}, (Sip)< ={Sip,ISp}, (JSp)” ={op : 0 € OBST}, and (JSp)< =
{JSp}. Observe that a is always finite while o™ is either infinite (namely
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when « starts by JS) or the singleton {a} (namely when « is a propositional

variable or starts by some S;). Our formulation uses a generalisation of atomic

consequence to sets of atoms s C ATM: s7 = J,e, 0

Proposition 30. The following hold for every A, B C ATM:
1. (AU I-Atm)™ = A= U I-Atm;

2. A7 NBS =0 iff A AnB=0 if AnB< =1).

4.1.3 Language of EL-O

The language of EL-O is defined by the following grammar:

pu=alLl|-p] (@A)

where a ranges over ATM.
The length of a formula is defined recursively by:

where (o) is the length of the finite sequence o. For example, £(S; Sop) = 3
and £(Sep A —pAJSq) = 8. If 5 = « then the length of § is less than or
equal to the length of a. Moreover, the set of causes of o has at most ¢(«)
elements: || < ¢(a). It follows that the sum of the lengths of all causes of
« is at most quadratic in the length of «:

Proposition 31. For every a, 375 . 3., ¢(8) < ((a))?.

Example 2. In the generalised gossip problem, for Agt = {1,...,n} the set
of secrets is P = {sec; : i € Agt}. The goal is to obtain shared knowledge of
depth k:

Goal®r = /\ /\ o sec;.

i€Agt 5 cOBST £(0)<k
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sEa if ae€s”UI-Atm
sE-e 0 sk
sEeNY if skEpandskEy

Table 4.1: Interpretation of formulas

Hence Goal™ = Nicagt Njeag Sjseci.

4.1.4 Semantics of EL-O

A state is a subset of the set of atoms ATM. We denote states by s, s', etc.
The set of all states is STATES = 24TM

The set of relevant states is R-STATES = 2f-Atm.

A way of guaranteeing introspection was proposed in (Herzig, Lorini, and
Maffre 2015) where formulas are interpreted exclusively in introspectively
closed states: states that contain all introspective atoms and are closed under
=, i.e., sets of atoms that equal s U I-Atm™ for some state s C ATM. Such
introspective states being always infinite, it is not clear how to define model
checking, which requires finite states. Here we work with finite models and
interpret formulas in such a way that introspection is simulated.

The truth conditions for EL-O formulas are in Table 4.1. The condition for
atoms is the only non-standard one: « is true in state s if « is introspective
or 8 = « for some § € s.

Example 3. In the initial gossiping state (in which secrets may or may not be
true) every agent only knows her own secret. Therefore SOG1 ={S;sec; : i€
Agt} U Ay where A is some subset of {sec; : i € Agt}. Then Sgl = S; sec;
and soGl = N\jzi —Si secj for every i € Agt. Although sgl does not contain
S; S; sec; we have sgl = Si S; sec;.

Given a set of states St C STATES, we say that a formula ¢ is valid in St
if s |= ¢ for every s € St; when s |= ¢ for some s € St then we say that ¢ is
satisfiable in St. Clearly, an atom « is valid in the set of all states STATES

if and only if it is introspective. Moreover, atomic consequences are valid in
STATES: if a = (8 then o — 3 is valid in STATES.

Remark 1. When Agt is a singleton then S; p A —=JS p is satisfiable. While this
anomaly could be taken care of by a modification of the semantics, we do not
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do so for the sake of readability and content ourselves with the observation
that the JS operator is superfluous when there is only one agent.

Proposition 32. For every ¢ € Fmlg o there is a ¢’ € R-Fmlg o such that
¢ < ¢ is valid in STATES. Moreover, for every s € STATES, there is a
s' € R-STATES such that s | ¢ iff s’ = ¢ for every ¢ € Fmlg 0.

Classical semantics for Fimlg .o is recovered by changing the truth condition
) CPC _ .
for atoms: s =~ aif a € s.

Proposition 33. For ¢ € R-Fmlg o and s € R-STATES, s = ¢ iff s7 N
ATM (@) = ¢ iff s N ATM () =PC .

4.2 Action Descriptions and Simple Epistemic Planning tasks

We assume that actions are deterministic and have conditional effects that
are described by add- and delete-lists. Such effects are crucial in epistemic
planning: when an agent performs an action then the effects on another agent’s
epistemic state typically depend on whether that agent sees the variables that
are modified by the action.

4.2.1 Action Descriptions

An action description is a pair a = (pre(a), eff (a)) where pre(a) is a relevant
formula from R-Fmlg o (the precondition of a) and

eff(a) C R-Fmlg o x 27Atm  gf-Atm

is the set of conditional effects of a, describing which atoms the action may
add or remove from the current state under additional conditions. For a triple

ce = (cnd(ce), ceff T(ce), ceff (ce))

in eff(a), end(ce) is the condition of ce, ceff (ce) are the added atoms, and
ceff (ce) are the deleted atoms. We require effects to be consistent: we
suppose that for every cey, cea € eff(a), if ceff T(ce1) N (ceff (ce2))< # O then
pre(a) A cnd(cer) A cnd(ces) is unsatisfiable in EL-O. That is, we exclude
actions with conditional effects cei, ces € eff(a) and ag € cefff(ce;) and
ag € ceff (cez) such that oy = ag. In other words, when pre(a) and their
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triggering conditions cnd(ce1) and cnd(ceq) are jointly satisfiable then two
conditional effects of a cannot conflict. This in particular forbids conditional
effects ce € eff (a) with ceff T(ce)Neeff (ce) # () and pre(a) Acnd(ce) satisfiable.

We disregard introspective atoms in the definition of actions because they
are true at every state: adding or deleting them from a state does not change
what is true in that state.

Example 4. In the original gossip problem Gp where the goal is to 0b-
tain shared knowledge of depth 1, Call;; = (pre(Call;;), eff (Call; ;)) with
pre(Call; j) = T and

eff (Call; ;) = {(S; sec1,{S; sec1},0), (S; sec1, {S; sec1 },0),

(S; secp, {S; secn}, D), (S; secn, {Si secy},0)}.

That is, a call has two conditional effects per secret: if i sees a secret then
that secret becomes visible to j, and vice versa.

Example 5. In the generalised gossip problem Gj, the precondition is pre(Call; ;) =
T as before, and for every 0 < m < k, o, € OBSS™ and r € Agt there is a
conditional effect ce € eff (Call; ;) of the form:

cnd(ce) = S;omsec, V Sj o secy,
ceff T(ce) = {0 S;omsec, : o €{S;,S;}sF ™11 U
{0Sjomsec, : o€ {S;,S;}=Fm"1}
= {oomsec, = o€ {S;,S;}5F"},

ceff (ce) = 0,

where {S;, Sj}gk_m denotes the set all sequences of observability operators
S; and S; of length at most k—m. Hence a call achieves common knowledge
of i and j up to level k of all secrets one of them knows. The set of all
actions is Act® = {Call;; : 4,5 € Agt,i # j}. All Call;; satisfy our
consistency condition because they have no megative effects, which makes
conflicts impossible.
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The length of an action description is
L(end(ce))

Z(a) = E(pre(a)) + Z + Zaéceﬁ*(ce) E(O‘)
cecell (@) \ + Zaeceﬁ_(ce) (a)

4.2.2 Simple Epistemic Planning Tasks

A simple epistemic planning task is a triple
P = (so, T, Goal)

where
o 50 € R-STATES = 254t ig a finite state (the initial state) and

o 7:Act Xx R-STATES — R-STATES is a partial function modeling the
actions in Act which is a finite set of consistent actions, and

e Goal € R-Fmlg o is an EL-O formula without introspective atoms.

(We again disregard introspective atoms as they have no effect on the truth
of a formula.)

Example 6. The planning task that corresponds to the original gossip problem
is Gp = (sgl, Act® | Goal®) with

e Act® ={Call;; : i,j € Agt andi # j} (cf. Evample 4),
. SoGl = {S;sec; : i€ Agt} U Ay for some A} C {sec; : i€ Agt},

G1 _
o Goal™ = Nicag N\jeage Sj seci-

The set of atoms of a simple epistemic planning task is

ATM (P) = ( U ATM(a)) U so U ATM (Goal)

acAct

and its length is £(P) = £(so) + £(Goal) + > ,c a0 £(a).
Solutions to simple epistemic planning tasks can be either sequential plans
or parallel plans. We focus on the latter in the rest of the chapter.
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4.3 Parallel Epistemic Planning with EL-O

A parallel plan is a sequence of steps each of which is a set of actions that are
executed simultaneously. Actions in a step should not conflict: we start by
determining the conditions of parallel executability of a set of actions in a
state, following the V-step semantics and the notion of interference in a state
of (Rintanen, Heljanko, and Niemeld 2006).

4.3.1 Semantics of a Single Action

We define the semantics of an action a in terms of a partial function 7, on
relevant states. The function 7, is defined at s if s = pre(a). In that case we
say that a is executable at s and stipulate:

Ta(s) = | s\ U (ceff (ce))™ | U U (ceff T(ce))™ .
ce€eff(a), ce€eff(a),
skeend(ce) skeend(ce)

That is, if the precondition of a is satisfied then a removes negative effects
of all those conditional effects ce that ‘fire’; i.e., whose triggering conditions
are satisfied, plus their causes; and it adds the positive effects of ce plus their
consequences.

4.3.2 Semantics of a Consistent Set of Actions

We use the same definition of a consistent set of action as before. A set of
actions A is say to be consistent in a state s if there is no pair of actions in A
with contradictory effects or cross-interaction.

Example 7. Some set of gossiping calls Call; ; can be consistent in any state.
Therefore conference calls {Call; j, Call; .} where i calls j and r at the same
time can be consistent, making the parallel gossiping task solvable in fewer
steps.

One way to exclude conference calls is to replace Call; ; by Startcallz- plus a
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single Endcalls action as follows:

pre(StartcaII’) free; N free;,

eff (Startcall}) = eff (Call; ;) U {(T,0,{free;, free;})},
pre(Endcalls) = T,
eff (Endcalls) = {(T, {free; : i € Agt},0)},

and to add all free; to the initial state. Then there is no state where a set of
actions with conference calls is consistent: Startcallé» and Startcall’. have cross
interaction at any state satisfying free; N\ free; N free,.

While this solution is natural (agents cannot call two agents at a time
because they are no longer available once they have bequn a call), splitting calls
into two separate actions artificially doubles the number of steps in an optimal
solution. Another possibility that avoids the Endcalls action is to replace all
Call; ; by Tcallé %, with:

pre(TcaII’) =T,
jj‘(TcaII;) = eff(Call; ;) U
(1,0, {tg: 1)} U {(~tg,, {tg,},0)} U
{(tg;,0,{tg;})} U {(—tg;, {tg;},0)}.

Here any two calls involving i each toggles the value of tg;, which makes that
these calls have cross interaction at any state satisfying their preconditions.

A set of actions A = {a1,...,an} determines a partial function 74 from
R-STATES™ to R-STATES™, Where R-STATES™ = {s~ : s € R-STATES}.

The function 74 is defined at s if every a; € A is executable at s and A is
consistent in s. When 7,4 is defined at s then:

Ta(s) = (s\ ( U (ceﬁ“(ce))‘:))
acA,ceceff(a),sl=cnd(ce)

U U (ceff(ce))™ | .
acA,ceceff(a),sk=cnd(ce)
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When a; and ag are consistent in s then they can be interleaved arbitrarily:
we have ¢, 2,1 (5) = Tay (72, (8)) = Tay (Tay(5)). More generally:

Proposition 34. If a € A is consistent in s with any other action in A then
74(8) = Ta(Ta\a(8)) = Tava(7a(s))-

4.3.3 Solvability by Parallel Plans

A state s is reachable by a parallel plan from a state sg € R-STATES™ via a
set of actions Act if there is a sequence (Aq,..., Ay,) of steps and a sequence
of states (s, ..., sp,) with m > 0 such that s = s, and 74, (s—1) = sj, for
every k such that 1 <k <m.

A simple epistemic planning task (Act, s, Goal) is solvable by a parallel
plan if there is at least one state s that is reachable by a parallel plan from
sy~ via Act such that s = Goal; otherwise it is unsolvable by a parallel plan.
Solvability by a sequential plan is the special case where the parallel plan is
required to be a sequence of singletons.

Example 8. Let G| be modification of Gy that is obtained by replacing the
actions Call; ; by Tcallé- of Example 7. Then G} can be solved in [logyn]
steps of parallel calls if the number of agents n is even, and in [logan| + 1
steps if n is odd (Bavelas 1950; Landau 1954; Knédel 1975; Cooper, Herzig,
Maffre, Maris, and Régnier 2019). For instance, for n = 4 the parallel plan
({Tcall}, Tcall3}, {Tcall}, Tcall3}) is a solution of G with 2 steps.

4.4 Translation into Classical Planning and Complexity

We now translate simple epistemic planning into classical planning. There,
solvability by a parallel plan and by a sequential plan are equivalent under
V-Step semantics, and both are PSPACE-complete (Bylander 1994). Our
translation is polynomial, so the solvability of simple epistemic planning tasks
is in PSPACE. It also gives us an encoding into PDDL, which allows us to
use classical planners in sections 4.5 and 4.6. For a bounded horizon planning
task we can translate into DL-PPA model checking and use the PSPACE
membership result of chapter 3.
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4.4.1 Two Versions of Classical Planning

There are two possibilities to define classical planning in our context. Version
1 amounts to epistemic planning restricted to the fragment of the language
of EL-O without S; and JS: none of them can occur in classical action
descriptions and planning tasks. It immediately follows that EL-O-based
planning is PSPACE hard because classical planning is so.

Version 2 of classical planning keeps the language of EL-O but changes the
semantics by weakening the consistency condition for action descriptions: a
version 2 classical planning task is a triple P = (Act, sg, Goal) such that for
every cey, ces € eff(a), if ceff T(ce1) N ceff (cea) # 0 then pre(a) A cnd(cer) A
cnd(cez) is unsatisfiable in Classical Propositional Calculus CPC. We then
define the partial functions 7<PC as follows. First, 7<PC is defined if s ):CPC
pre(a); second, the resulting state is obtained without closing under atomic
causes and consequences:

s = [ s\ U ceff ~(ce)

ceceff(a),s=FCcnd(ce)

U U ceff T(ce)

ceceff(a),sk="Ccnd(ce)

From there we modify the definitions of consistency of a set of actions and of
TAS:PC in a similar manner, removing all atomic causes and consequences of
sets and requiring conditions to be satisfied classically. A classical planning
task is classically solvable if a goal state is reachable from the initial state via
a set of actions Act, with the difference that reachability is now defined in

terms of the function TEPC.

4.4.2 Expansion of Planning Tasks

Let P = (Act, s, Goal) be a simple epistemic planning task. Its expansion
is obtained by closing the initial state and the action descriptions under the
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4.4 Translation into Classical Planning and Complexity

atomic causes and consequences that are relevant for P:

Exp(P) = ({(pre(a), Expp(eff(a))) : (pre(a), eff (a)) € Act},
sg. NATM(P),
Goal),

where the expansion of a conditional effect is defined as:

Expp(eff(a)) = {(cnd(ce),
(ceff T(ce))™ N ATM(P),
(ceff (ce))™ N ATM(P)) : ce € eff(a)}.

Proposition 35. Let P = (Act, sp, Goal) be a simple epistemic planning
task. Then P is solvable if and only if its expansion Exp(P) is classically
solvable.

Proof. Let
R-STATES|p={sN ATM(P) : s € R-STATES™ }.

We define a semantics of actions relative to P in the following manner: if
s € R-STATES|p and A = {a1,...,an} C Act is a consistent set of actions

then 77 (s) is defined iff for all a € A we have s |= pre(a), and in that case

h(s)= |s\ U ((ceff (ce))™ N ATM(P))
i iAes

U U ((ceﬁ”""(ce)):> N ATM(P))
acA,ceceff(a),
sE=cend(ce)

It is easily shown that if s € R-STATES|p and A is consistent in s then
74 (s) € R-STATES|p.

By Proposition 33, for any state s € R-STATES™ and set of actions
A C Act, T4(s) is defined iff 77 (sNATM(P)) is defined, and in that case
7} (SNATM(P)) = 7a(s) N ATM(P). We can then extend this result to any
sequence of steps, i.e., to every parallel plan: for any state s € R-STATES™,
there exists a state s’ reachable from s via (Aj,..., Ay,) iff there exists a
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4 Making Parallel Classical Planning Epistemic

state s” that is P-reachable from s N ATM (P) via this same sequence of sets
of actions, where P-reachability is defined in the natural way following the
semantics of actions relative to P, and in that case s” = s’ N ATM(P). In
particular s’ and s” agree on Goal, and therefore P is solvable iff the planning
task (Act,sy” N ATM(P), Goal) is P-solvable on R-STATES|p, where P-
solvability is once again defined in the natural manner following the semantics
of actions relative to P.

The expansion of P then ‘spells out’ the definition of the functions 7'1747 for
A C Act. Moreover, Proposition 33 tells us that for any ¢ € ATM(P), if
s € R-STATES|p then s = ¢ iff s =7 . This gives us equivalence with
classical planning. O

4.4.3 Complexity

By Proposition 31, the length of the expansion of epistemic planning tasks
P is polynomial in the length of P: ¢(Exp(P)) < (¢(P))?. Then PSPACE
membership follows from Proposition 35. Hardness is the case because classical
planning (version 1) is a particular case of simple epistemic planning, as we
have observed in Section 4.4.1.

Proposition 36. The problem of deciding solvability of a simple epistemic
planning task and its bounded horizon version are both PSPACE-complete.

4.5 Encoding into PDDL

In order to be able to use classical planners we encode simple epistemic plan-
ning tasks into the Planning Domain Definition Language PDDL McDermott
et al. 1998. Fortunately, almost all planners from the 2018 International
Planning Competition (IPC 2018)! handle conditional effects and negative
preconditions, and most of them handle disjunctive preconditions.

4.5.1 Encoding of Formulas

When encoding a planning task into PDDL, some PDDL requirement flags
have to be set depending on the form of conditions cnd(ce) of conditional
effects ce of actions as well as on the form of the formula Goal:

https://ipc2018-classical.bitbucket.io/
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4.5 Encoding into PDDL

e the default flag :strips for conjunctions;
o the flag :negative-preconditions for negations;

o the flag :disjunctive-preconditions for disjunctions (if used to sim-
plify writing) and negations of conjunctions.

For a formula ¢ without introspective atoms, we define a recursive function
f(®) which returns the encoding of ¢ into PDDL:

p) ifm=0
(8-m il .. im p) otherwise

f(si1'~'simp):{

Js p ifm=0
(JS-m il .. im p) otherwise

f(=p) = (not f(p))
flo1 Apa) = (and f(p1) flp2))

with p € P, m > 0, and 41,...,4,, € Agt. In words, a visibility atom
a = S;...S;, pis encoded by a special fluent with m+1 parameters. If
m = 0, then the propositional variable p is encoded as a fluent without
parameters. A visibility atom o = JSS;,...S;,, p is encoded by a special
fluent with m+1 parameters. If m = 0 then a special fluent is encoded with
the propositional variable p as unique parameter.

The formula Goal and the preconditions of every action are EL-O formulas
and are encoded as f(Goal) etc. The initial state sg is encoded as a set of
fluents, encoding each « € s5” as f(a).

4.5.2 Encoding of Actions

For every action a and every conditional effect ce € eff(a) with (ceff (ce))™ N
ATM(P) = {a1,...,am} and (ceff (ce)) ™ NATM(P) = {B1,. .., Be} we add
the conditional effect:

(when f(cnd(ce))

(and f(a1) ... flam)
(not f(£1)) ... (ot f(Be))))

Example 9 (Example 4, ctd.). The action Cally 2 is encoded as:
(:action call-1-2
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4 Making Parallel Classical Planning Epistemic

:effect (and
(when (or (S-1 1 s1) (S-1 2 s1))
(and (8-1 1 s1) (S8-1 2 s1)))

(when (or (S-1 1 sn) (S-1 2 sn))
(and (S-1 1 sn) (S-1 2 sn)))))
This is the direct encoding of a call into PDDL. It can be generalised to any 1
and j by:
(:action call
:parameters (71 7j)
:effect (and (forall (7s)
(and
(when (or (S-1 7i 7s) (S-1 7j 7s))
(and (S-1 7i ?7s) (S-1 7j ?s)))))))

4.6 Experimental Results

To experiment with simple epistemic planning tasks we considered some bench-
mark tasks using planners from the international planning competition IPC
2018. The experiments were done using three classical planners of the optimal
track of IPC 2018: Planning-PDBs, Complementaryl and Complementary?2.

We are in a multi-agent setting where agents execute actions simultaneously
in steps. We designed our problems so that it is beneficial (in terms of
minimising the number of steps) that agents cooperate and perform tasks in
parallel. We want to find the shortest plan in which the agents cooperate in
this way. For this, we used cost-optimal planners from the classical tracks of
the competition. Given a cost function defined for all actions of the planning
task, these planners return sequential plans minimizing total cost. To simulate
parallel steps and ensure independence of actions in one step, we use in each
experiment an EndStep action. That is, we adapt the action descriptions
such as to ensure that all actions executed between two EndStep actions are
applicable in parallel, and an EndStep action must occur in order to simulate
the following parallel step. Moreover, we give zero cost to all actions but
EndStep, therefore effectively counting the number of steps and guaranteeing
that our experiments return optimal parallel plans.

The experiments all gave similar results for the problems described below, so
we choose to show the results for Planning-PDBs. The results were obtained
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4.6 Experimental Results

on a GNU/Linux machine running on a 3.6 to 4.4 GHz CPU with 32 GB of
RAM and a 30 minutes time limit (wall clock time). All the execution times
given below are CPU times.

4.6.1 Parallel Gossip Task

We use the gossip modelling of Example 7 with the actions Startcallé and
Endcalls, which here becomes our EndStep.

Figure 4.1 shows the difference between parallel and sequential gossiping.
We can see that with only two agents (blue and longest curve) the execution
times are very similar but when, for a fixed depth, the number of agents
increases then the execution time increases, too. Thus, we have fewer results
for parallel gossiping than for sequential gossiping.

The largest parallel gossiping task solved under 1800s was for 5 agents
and an epistemic depth of 2. This task has 125 atoms, 26 actions and 1920
conditional effects. For sequential gossiping the largest solved planning task
was for 8 agents and an epistemic depth of 1. This task has 56 atoms, 64
actions and 1512 conditional effects.

4.6.2 Management Task

For the next benchmark planning task, we consider that a set of tasks has to
be performed by the set of agents and that the execution of any task by an
agent requires the agent to have a corresponding skill. In the beginning, the
skills are split between the agents so that a particular agent may lack some of
the skills required to perform particular tasks. This can limit the ability of
the agents to perform tasks in parallel. However, there are also actions which
allow agents to teach some of their skills to other agents.

Initially all agents are free and the state is sg = {free; : i € Agt}US for some
subset S of {S; skilly, : i € Agt, k € Skills}U{needs; ), : t € Tasks, k € Skills}.
The goal is to perform all tasks: Goal = A;c 71, doney.

The action descriptions are listed in the upper half of Table 4.2. For each
pair of agents 4,7 and skill skillj, the action Teach; ;; can be executed when 4
knows the skill she is teaching and is either free or is teaching the same skill
to another agent. Its effects are that j knows the skill, that ¢ and j are both
no longer free, and that ¢ is still available to teach skilli to other agents. The
action DoTask; ; x requires that ¢ is free and knows skill skilly, and that skilly,
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Figure 4.1: Parallel gossip: time to find an optimal parallel plan vs. epis-
temic depth (top) and time to find an optimal sequential plan vs.
epistemic depth (bottom)
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is a necessary and sufficient condition to accomplish ¢. Its effect is that the
agent is not free and that the task is done. Finally, the EndStep action frees
all agents (regardless of whether they were teaching, learning or performing a
task).

Suppose there are n agents, n tasks and one skill skill; that is only known
by agent 7. Then an optimal parallel plan has two steps: first ¢ teaches skill,
to the other agents and then each agent j executes task t; in parallel. In
contrast, the optimal sequential plan is that ¢ executes all the tasks herself,
which is an n-step plan that cannot be parallelized.

Figure 4.2 shows the time needed by Planning-PDBs to find a plan, in
seconds. It compares the effect of the number of tasks, the number of agents
and the number of skills. The first plot shows the effect of the number of tasks
with different fixed values of the number of agents and skills. We can see that
this variable has almost no effect on the difficulty to find a plan. The second
plot does the same with the number of agents with different fixed values for
the number of tasks and skills, while in the third plot the number of skills is
the only variable which varies. These latter two plots show that the number
of agents and the number of skills have an effect on the complexity. However,
we do not have enough values to say more about this relationship.

The number of results were limited by the increasing complexity of the
planning task. The most complex planning task for which we found an optimal
parallel plan involved 7 tasks, 7 agents and 6 skills: this instance has 92 atoms
and 638 actions. The most complex planning task tested and which timed
out, had 7 tasks, 7 agents and 7 skills: this instance has 105 atoms and 736
actions.

Remark 2. One may replace Teach; ;x by the action ReqSkill;; . of j asking i
to teach her skill skill;. Then we have to add to the precondition that j does
not have the skill but knows that ¢ does:

pre(ReqSkill; ; ) = pre(Teach; j ;) A =S; skilly, A'S; S; skilly,.

We note that such a precondition cannot be expressed with epistemic literals
of the approach of (Muise et al. 2015).
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Figure 4.2: Management: time to find an optimal parallel plan vs. number of
tasks, agents or skills (for different fixed values of the two other
parameters)
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DoTask; ¢
free; N'S; skilly, A needsy i, — {(T,{done;}, {free;})}
Teach; j
Si skilly. N\ (free; V teaching, ;) — {(T, {S; skilly, teaching; ; },{free;, free;})}
EndStep
T = {(T,{free; : i€ Agt},{teaching,;, : i€ Agt,skillk € Skills})}
DoTask; ¢ ¢
free; A mdoneg A'S; mdoney A ~mdonegy1 — {(T, {tdone}, {free;})}
DoMeeting,
Nic agi free; = {(T,{mdone,, IS mdone,}, {free; : i € Agt}})}
EndStep

T — {(T,{free; : i€ Agt},0)}

Table 4.2: Action descriptions for the management task (top) and the meeting
task (bottom)

4.6.3 Meetings Task

As an example of the use of common knowledge, consider a planning task
which involves cooperation between different agents and which can be divided
into m different stages with tasks to be performed at each step by each agent.
Agents are only authorized to start stage ¢+1 if all tasks of stage ¢ have been
completed and all agents have common knowledge of this. The only way
this can be achieved is by having a plenary meeting at the end of each stage
during which each agent announces that their stage-£ task has been completed
(action DoMeeting,).

Initially all agents are free and no meeting or task has been completed:
so = {free; : i € Agt}. The goal is for all tasks and meetings to be completed:
Goal = /\te Tasks tdone; N\ /\EEMeetings mdoney.

The action descriptions are listed in the lower half of Table 4.2. Each
stage-f task requires that the agent executing it knows that meeting ¢ has
taken place. To avoid having stage-f tasks done at stage-f' for ¢ > ¢, the
task also requires the meeting /+1 not to have taken place yet. The action
DoMeeting, of holding a meeting is executable if all the agents are free. Its
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Figure 4.3: Meetings: time to find an optimal parallel plan vs. number of
meetings (for different fixed numbers of tasks and agents)

effect is that all agents jointly see that the meeting has been held and that
the agents are no longer free. Finally, the action EndStep frees the agents and
ends the step.

For example, with 2 agents and 3 meetings (2 stages), the following is a
solution plan:

({DoMeeting; }, {EndStep},
{DoTasky 1,1, DoTasks 2 1}, {EndStep},
{DoMeeting,}, {EndStep},
{DoTaskj 32, DoTasks 42}, {EndStep},
{DoMeetings}).

Figure 4.3 shows the time needed by Planning-PDBs to find a plan, in seconds,
relative to the number of meetings, where each plotted curve is for a fixed
number of tasks and agents. We can see that the other two parameters
(number of tasks and number of agents) have little to no effect on the difficulty
of finding an optimal plan. In contrast, the number of meetings seems to have
an exponential effect when it is greater than 10.

The largest planning task which was solved within the time limit of 1800s
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involved 18 tasks, 17 meetings and two agents: this instance has 46 atoms
and 16400 actions. The most complex planning tasks that we tested and that
timed out had 18 tasks, 18 meetings and one agent: the planners were not
able to ground this problem.

4.7 Conclusion

We have defined simple epistemic planning tasks and their solvability by a
parallel plan and characterised its complexity via a polynomial translation
into classical planning. This allows us to solve epistemic bounded horizon
planning tasks by translating them to classical bounded horizon planning,
which is known to be PSPACE-complete.

Our ‘knowing whether’-based language can express more than the ‘knowing-
that’-based language of (Muise et al. 2015) (see Remark 2). Contrarily to
(Kominis and Geffner 2015), we are not restricted to common knowledge
of the initial state and public or semi-public actions, as illustrated by the
gossiping task where actions are private. Moreover, none of the latter two
approaches deals with common knowledge or concurrent actions. Experiments
demonstrated the possibility of solving some interesting practical problems.

In future work we plan to use SAT-based planners such as Rintanen et
al’s (Rintanen, Heljanko, and Niemeld 2006), which output parallel plans and
therefore do not require the EndStep action.
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5 Conclusion

This thesis showed, via a running example with several variations, the gossip
problem, the interest of adding both temporal and epistemic aspects to a
planning problem. These temporal epistemic gossip problems can still be
extended. They are one of the simplest temporal epistemic planning problems
so they can be used in many different ways. We can have different durations
for different calls or make calls non-deterministic: the person we want to call
may not be fully available even in allowed time frames; or there might be
noise in the transmission altering the communication.

The first step to temporal planning is planning with parallel plans. With
that in mind, we added parallelism to a dynamic logic without increasing its
complexity. DL-PPA is an interesting basis for a parallel dynamic epistemic
logic in PSPACE. The logic it is based on was already extended to an epistemic
logic (DEL-PAQO) and such work can be used to extend DL-PPA too. There is
also some work done with DL-PPA for contingent planning in (Scheck, Niveau,
and Zanuttini 2020).

We also showed how to translate epistemic planning problems from EL-O to
PDDL to search for a parallel plan. The work done in Chapter 4 transforms a
simple form of epistemic planning to classical planning. This can be combined
with approaches such as SATPLAN to translate epistemic planning problems
into SAT. The benchmarks in this chapter show that more work can be done
to improve the planners for epistemic planning. This approach can also be
extended to temporal epistemic planning using existing temporal planners
and PDDL 2.1.

All those results can be used to make tools for temporal and epistemic
planning. One interesting future work could be to extend EL-O with some
temporal aspects to be able to reason about the knowledge of the agents and
its variation over time. This could allow one to model loss of knowledge some
time after the execution of an action that added it.

An application of planning that I find interesting is about generating stories,
for instance, video game scenarios. The actions of the planning tasks could be
atomic plot elements. The initial state represents the world at the beginning
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of the game. And the goal of the planning task is chosen so the player has
fun playing the game and that some key elements of the scenario happens.
However, a player does not act deterministically and could act differently
from what the planner expected. On the other and, by modeling wisely the
planning task and using replanning whenever the player diverges from the
chosen path we may be able to have a scenario that adapts to the actions
of the player. With the combination of temporal and epistemic planning,
we could generate meaningful and complex stories. The knowledge of the
characters can be taken into account as well as the time needed for the player
to act and the world to change.

Conclusion en francais

Cette these a montré, a travers la déclinaison d’'un example, le probleme du
bavardage, 'intérét d’ajouter des aspects temporels et épistémiques a un pro-
bléme de planification. Ces problémes de bavardage temporels et épistémiques
peuvent encore étre étendus. Puisque ils constituent I’'un des problemes de
planification épistémique temporelle les plus simples, ils peuvent étre utilisés
de différentes manieres. Nous pouvons avoir différentes durées pour diffé-
rents appels ou rendre les appels non déterministes : la personne que nous
voulons appeler peut ne pas étre totalement disponible, méme dans les inter-
vales de temps spécifiés, ou bien il peut y avoir du bruit dans le systéme de
communication.

La premiere étape vers la planification temporelle est la planification avec
des plans paralleles. Dans cette optique, nous avons ajouté le parallélisme a
une logique dynamique sans en augmenter la complexité. DL-PPA est une
base intéressante pour une logique épistémique dynamique paralléle dans
PSPACE. La logique sur laquelle elle est basée a déja été étendue vers une
logique épistémique (DEL-PAO) et un tel travail peut étre utilisé pour étendre
DL-PPA également. Il existe également des travaux réalisés avec DL-PPA
pour la planification contingente dans (SCHECK, NIVEAU et ZANUTTINI 2020).

Nous avons aussi montré comment traduire les problémes de planification
épistémique de EL-O vers PDDL pour rechercher un plan solution parallele.
Le travail effectué dans le chapitre 4 transforme une forme simple de planifi-
cation épistémique en planification classique. Ceci peut étre combiné avec des
approches telles que SATPLAN pour traduire les problemes de planification
épistémique en SAT. Les tests de performance de ce chapitre montrent qu’il
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est possible d’améliorer les planificateurs pour la planification épistémique.
Cette approche peut également étre étendue a la planification épistémique
temporelle en utilisant les planificateurs temporels existants et PDDL 2.1.

Tous ces résultats peuvent étre utilisés pour créer des outils de planification
temporelle et épistémique. Un travail futur intéressant pourrait étre d’étendre
EL-O avec certains aspects temporels pour pouvoir raisonner sur la connais-
sance des agents et sa variation dans le temps. Cela pourrait permettre de
modéliser la perte de connaissances un certain temps apres 'exécution d’une
action qui I'a ajoutée.

Une application de la planification que je trouve intéressante concerne la
génération d’histoires, par exemple, des scénarios de jeux vidéo. Les actions
des taches de planification pourraient étre des éléments atomiques de I'intrigue.
L’état initial représente le monde au début du jeu. Et I'objectif de la tache
de planification est choisi pour que le joueur s’amuse en jouant le jeu et que
certains éléments clés du scénario se produisent. Cependant, le joueur n’agit
pas de fagon déterministe et peut agir différemment de ce que le planificateur
a prévu. D’un autre c6té, en modélisant judicieusement la planification et
en utilisant la replanification chaque fois que le joueur s’écarte du chemin
chemin choisi, nous pouvons avoir un scénario qui s’adapte aux actions du
joueur. Avec la combinaison de la planification temporelle et épistémique, nous
pourrions générer des histoires intéressantes et complexes. Les connaissances
des personnages peuvent étre prises en compte, ainsi que le temps nécessaire
pour que le joueur agisse et le monde change.
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Les problémes de planification multi-agents avec un raisonnement sur la connaissance des agents, appelé
raisonnement épistémique, on déja été bien étudiés. Il en est de méme pour les problemes avec des actions
temporellement étendues. Cependant, les problemes incluant a la fois raisonnement épistémique et temporel
n’ont pas bénéficié d’autant d’attention. Nous considérons que la combinaison de ces aspects est nécessaire
pour pouvoir pleinement représenter des problémes que 1’on rencontre dans le monde réel. C’est pourquoi
nous avons cherché a les associer pour étendre les possibilités de planification.

Cette these présente plusieurs contributions & la planification multi-agent, temporelle et épistémique.
Pour en montrer 'intérét, nous avons créé et étudié une variante du probléeme du bavardage incluant
des contraintes temporelles. Nous avons appelé cette famille de probléemes « temporal epistemic gossip
problems » (problémes de bavardage temporels et épistémiques). Nous montrons que le probléme de
I'existence d’un plan pour cette famille est NP-complet.

Etendre une logique épistémique pour lui permettre de représenter également des problémes temporels
pourrait vite mener a une complexité importante. Nous avons choisi de commencer en ajoutant du
parallélisme & la logique dynamique d’assignations propositionnelles (dynamic logic of propositional
assigments, DL-PA) pour créer la logique dynamique d’assignations propositionnelles paralleles (dynamic
logic of parallel propositional assignments, DL-PPA), tout en conservant la complexité PSPACE-complete
des problemes de satisfiabilité et de vérification de modele.

Nous avons ensuite tenté une autre approche, traduire un probleme de planification épistémique en
probléme de planification classique. Le probleme de planification est décrit dans une logique statique, EL-O,
en définissant le probleme d’existence de plan dans le méta-langage. Nous montrons que ces problemes
sont dans PSPACE via une traduction polynomiale de la planification épistémique avec EL-O vers de la
planification classique. Dans le méme esprit, en se basant sur notre modeéle de planification épistémique
nous avons créé des domaines et problemes PDDL. Nous avons testé ces problemes avec des planificateurs
de la compétition internationale de planification (IPC) de 2018 afin de connaitre le temps nécessaire pour
obtenir une solution. La comparaison des problemes de chaque domaine nous a montré que les planificateurs
actuels ne sont pas assez performants pour traiter des problémes épistémiques avec cette approche.

Multi-agent planning problems involving reasoning over the agents’ knowledge are well studied. The
same is the case for problems with temporally extended actions. However, problems with both epistemic
and temporal reasoning drew less attention. We consider that the combination of these two aspects is
essential to fully model real world problems. That is why we wanted to combine them to extend the
possibilities of planning.

This thesis contains several contributions to multi-agent, temporal and epistemic planning. To motivate
such an enterprise, we designed and studied a variation of the gossip problem with temporal constraints.
We called this family of problems “temporal epistemic gossip problems”. We show that the solvability
problem for this family is NP-complete.

Extending an epistemic logic in order to enable the modeling of temporal problems into classical planning
problems may lead to a high complexity. We choose to start by adding parallelism to dynamic logic
of propositional assignments (DL-PA), resulting in dynamic logic of parallel propositional assignments
(DL-PPA), while keeping the PSPACE-complexity of the satisfiability and model-checking problems.

We then tried another approach, namely to translate epistemic planning problems into classical planning
problems. The planning problem is first modeled in a static logic, EL-O, defining solvability in the meta-
langage. We show that these problem are in PSPACE via a polynomial translation from EL-O epistemic
planning to classical planning. By means of this translation we created some domains and problems in
PDDL. These problems were tested with planners from the international planning competition (IPC 2018)
to retrieve the amount of time for a solution. The comparison between the problems of each domain
showed that more research on epistemic planning is needed.



