
HAL Id: tel-03534245
https://theses.hal.science/tel-03534245

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Linked Data Platform in Highly
Decentralized Information Ecosystem

Mohammad Noorani Bakerally

To cite this version:
Mohammad Noorani Bakerally. Generation of Linked Data Platform in Highly Decentralized In-
formation Ecosystem. Other [cs.OH]. Université de Lyon, 2018. English. �NNT : 2018LYSEM029�.
�tel-03534245�

https://theses.hal.science/tel-03534245
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2018LYSEM029

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Ecole des Mines de Saint-Etienne

Ecole Doctorale N° 488
Sciences, Ingénierie, Santé

Spécialité de doctorat :

Discipline : Informatique

Soutenue publiquement/à huis clos le 20/12/2018, par :
Mohammad Noorani BAKERALLY

Génération de plateforme de données
liées dans un écosystème

d'informations fortement décentralisé

Devant le jury composé de :

Présidente:LAFOREST Frederique, Professeur, Université Jean
Monnet
Rapporteur: SKAF-MOLLI Hala, Maître de conférences, Université de
Nantes
Rapporteur: CHAMPIN Pierre-Antoine, Maître de conférences, Univ.
Claude Bernard Lyon 1
Examinatrice: VIDAL Maria-Esther, Professeur, Universidad Simón
Bolívar
Invité: NOULARD Eric, Ingénieur de recherche, Antidot
Directeur de thèse: BOISSIER Olivier, Professeur, École des Mines
de Saint-Étienne
Co-directeur de thèse: ZIMMERMANN Antoine, Maître Assistant,
École des Mines de Saint-Étienne

ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent MR Génie industriel CIS

AVRIL Stéphane PR Mécanique et ingénierie CIS

BADEL Pierre PR Mécanique et ingénierie CIS

BALBO Flavien PR Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA Informatique FAYOL

BILAL Blayac DR Sciences et génie de l'environnement SPIN

BLAYAC Sylvain PR Microélectronique CMP

BOISSIER Olivier PR Informatique FAYOL

BONNEFOY Olivier PR Génie des Procédés SPIN

BORBELY Andras DR Sciences et génie des matériaux SMS

BOUCHER Xavier PR Génie Industriel FAYOL

BRUCHON Julien PR Mécanique et ingénierie SMS

CAMEIRAO Ana PR Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA Génie industriel Fayol

DELAFOSSE David PR Sciences et génie des matériaux SMS

DELORME Xavier PR Génie industriel FAYOL

DESRAYAUD Christophe PR Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

BERGER-DOUCE Sandrine PR Sciences de gestion FAYOL

DRAPIER Sylvain PR Mécanique et ingénierie SMS

DUTERTRE Jean-Max PR Microélectronique CMP

EL MRABET Nadia MA Microélectronique CMP

FAUCHEU Jenny MA Sciences et génie des matériaux SMS

FAVERGEON Loïc MR Génie des Procédés SPIN

FEILLET Dominique PR Génie Industriel CMP

FOREST Valérie PR Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GAVET Yann MA Sciences des Images et des Formes SPIN

GERINGER Jean MA Sciences et génie des matériaux CIS

GONDRAN Natacha MA Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR Génie des Procédés SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR Génie des Procédés SPIN

ISMAILOVA Esma MC Microélectronique CMP

KERMOUCHE Guillaume PR Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie DR Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe DR Mécanique et ingénierie FAYOL

LIOTIER Pierre-Jacques MA Mécanique et ingénierie SMS

MOLIMARD Jérôme PR Mécanique et ingénierie CIS

MOULIN Nicolas MA Mécanique et ingénierie SMS

MOUTTE Jacques MR Génie des Procédés SPIN

NAVARRO Laurent MR Mécanique et ingénierie CIS

NEUBERT Gilles PR Génie industriel FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

O CONNOR Rodney Philip PR Microélectronique CMP

PICARD Gauthier PR Informatique FAYOL

PINOLI Jean Charles PR Sciences des Images et des Formes SPIN

POURCHEZ Jérémy DR Génie des Procédés CIS

ROUSSY Agnès MA Microélectronique CMP

SANAUR Sébastien MA Microélectronique CMP

SERRIS Eric IRD Génie des Procédés FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

VALDIVIESO François PR Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR Génie industriel CIS

YUGMA Gallian MR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

INFORMATIQUE O. Boissier, Professeur

SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur

GENIE INDUSTRIEL N. Absi, Maitre de recherche

MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
à

jo
u

r
:

2
4

/1
1

/2
0

2
0

iii

École Nationale Supérieure Des Mines De Saint-Étienne

Abstract

Doctor of Philosophy

Generation of Linked Data Platforms from existing data sources in highly
decentralized information ecosystems

by Mohammad Noorani Bakerally

Information ecosystem with decentralized architectures have known some suc-
cess in terms of data interoperability. However, today, information ecosystems in
which organizations are operating are moving towards highly decentralized archi-
tectures for reasons such as globalization, multinationalism or complex supply chain
collaborations. The problem in highly decentralized information ecosystem is that
while data is heterogeneous, there is li�le to no coordination between its di�erent
units. Consequently, resolving data heterogeneity and enhancing interoperability
between the information systems become more challenging in such a context.

In this work, our hypothesis is that Semantic Web technologies and in particular
the Linked Data Platform 1.0 (LDP) standard can be used to provide a homogeneous
view and access to self-described data. Thus, it decreases the need for contacting
data providers to understand and make use of the data. However, while several
LDP implementations exist, they provide no support for automating the generation
of LDPs. Consequently, deploying LDPs from existing data sources still involves a
lot of manual development. To solve this problem, we propose an approach that
uses a language to describe how existing data sources can be used to generate LDPs
compatible with any implementation of the LDP standard and deployable on any of
them. We formally describe the syntax and semantics of language. We provide an
implementation of the approach that instantiates an automatized generation and
deployment workflow. Finally, we evaluate our language and approach in general
by performing several experiments to show how our approach automatizes the
generation of LDPs, while enhancing design reusability, from existing data sources
that are either heterogeneous or have hosting constraints.

http://www.university.com

v

Acknowledgements
Doing this PhD and writing this thesis would not have been possible without

the help of many people whom I met in di�erent spheres of my life.
I wish to express my deepest gratitude to my supervisors, Antoine Zimmermann

and Olivier Boissier. I thank them for having seen in me the ability to embark on
this journey. Their knowledge and experience have been of great help in the writing
of this thesis. I am also grateful to them for having dedicated their time to guiding
me and providing me with their precious insights and advice. Last but not least, I
admire their passion and humility during these three years which made it a pleasure
to work with them.

I thank the members of the jury for accepting to evaluate this thesis, namely:
Frederique Laforest for presiding the comity of jury, Hala Skaf-Molli and Pierre-
Antoine Champin for reviewing this work, and Maria-Esther Vidal and Eric Noulard
for examining this work. I also thank them for their constructive comments and
questions that have lead to a fruitful discussion on this work.

I thank Maxime Lefrançois who gave me the opportunity to collaborate in
SPARQL Generate. Doing so has allowed me to think about my thesis. Also, I thank
my friend, Khadim Ndiaye, for the numerous times he helped me in di�icult times
during my stay in Saint-Etienne. I shall always cherish the interesting discussions
we had on varying issues and the nice dishes we made together on Friday nights.

Down memory lane, some people believed in me right from the start and moti-
vated me to continue my academic pursuits. I am indeed thankful to them. Anwar
Chutoo, my supervisor and lecturer at undergraduate level, encouraged me to gain
expertise in this field right a�er completing my bachelor degree when I wanted
to stop. Sharing with me his experience of learning computer science in a french
system, Avinash Meetoo, my colleague, inspired me to do a PhD in France. While
working in his company, Knowledge Seven, I also acquired many skills that be�er
equipped me for this PhD. I also thank Assma Benharkat and Pierre-Nicolas Tol-
lite for sharing useful information with me during our study at the University of
Manchester, hence further fuelling the idea of a PhD in France.

Finally, I thank my parents whose upbringing made me reach this point in my
life where I am actually writing this sentence. Special thanks to my sisters for all
their e�orts in facilitating this journey. At last, I thank my wife and best friend,
Lindia, who came into my life in the last year of the PhD. The love and happiness
she brought along made it easier to complete this work.

vii

Contents

Abstract iii

Introduction 1

I State of the Art 7

1 The Data Arena in Highly Decentralized Information Ecosystem 9
1.1 Preliminary Definitions . 10

1.1.1 Information System . 10
1.1.2 Information Ecosystems . 11

1.2 Heterogeneity Problems . 16
1.2.1 Data Access Heterogeneity 17
1.2.2 Syntactic Heterogeneity . 18
1.2.3 Semantic Heterogeneity . 19
1.2.4 Structural Heterogeneity . 20
1.2.5 Synthesis . 21

1.3 Data Interoperability Requirements 21
1.3.1 Data Interoperability . 21
1.3.2 Current Approaches to Data Interoperability 23
1.3.3 Requirements . 25

1.4 Summary . 27

2 Semantic Web Technologies 29
2.1 Data Syntax . 30

2.1.1 RDF . 30
2.1.2 RDF Implementations . 32

2.2 Data Semantics . 33
2.2.1 RDFS . 33
2.2.2 OWL . 35
2.2.3 RDFS/OWL Ontology Management 37

2.3 Data Access . 37
2.3.1 SPARQL . 37
2.3.2 Linked Data-based Platform 41

2.4 Linked Data Platform 1.0 . 43
2.4.1 Overview of LDP Standard 44
2.4.2 Detailed Description . 44
2.4.3 LDP Related Work . 52

2.5 Synthesis . 54

viii

II LDP Generation 55

3 Model-Driven LDP Generation 57
3.1 Foundations . 58

3.1.1 LDP Development . 58
3.1.2 Model-Driven Engineering Principles 61

3.2 LDP Generation Principles . 65
3.2.1 Model-Driven LDP Generation 65
3.2.2 LDP Design Aspects . 66
3.2.3 LDP Deployment Aspects 70

3.3 LDP Generation Workflow . 71
3.3.1 LDPization Process . 72
3.3.2 Deployment Process . 73
3.3.3 Workflow Instantiation Example 74

3.4 Summary . 74

4 LDP Design Language 77
4.1 Overview of LDP-DL . 78

4.1.1 LDP-DL Model . 78
4.1.2 Illustrative Example . 79

4.2 Formal Description . 82
4.2.1 Preliminaries . 82
4.2.2 Abstract Syntax . 83
4.2.3 Model-theoretic Semantics 86

4.3 LDP Dataset . 94
4.3.1 Design Document Evaluation 94
4.3.2 Variability Abstraction . 95

4.4 Operational Semantics . 98
4.4.1 Evaluation Algorithms . 98
4.4.2 Proof of Correctness . 101

4.5 Summary . 110

III Implementation & Validation 111

5 Implementation 113
5.1 Overview of LDP Generation Toolkit 114
5.2 LDP-DL Concrete Syntax . 115
5.3 LDPizer: ShapeLDP . 117

5.3.1 Overview . 117
5.3.2 Design Document Processing 118
5.3.3 Modularizing Design Document 121
5.3.4 LDP Resource IRI Generation 123

5.4 LDP Dataset Deployer: POSTerLDP 124
5.4.1 Overview . 124
5.4.2 Write Mode . 125
5.4.3 Update Mode . 126

5.5 LDP Server: InterLDP . 127

ix

5.5.1 Static Mode . 127
5.5.2 Dynamic Mode . 128

5.6 LDP Browser: HubbleLDP . 128
5.7 Summary . 129

6 Evaluation 131
6.1 Performance of ShapeLDP . 131

6.1.1 RDF Graph Generation . 132
6.1.2 Test Results . 132

6.2 Evaluation with respect to criteria 133
6.2.1 Design Reusability . 133
6.2.2 Hosting Constraints . 139
6.2.3 Data Heterogeneity . 141
6.2.4 Automated LDP Generation 142

6.3 Side Contributions . 144
6.3.1 Flexibility . 144
6.3.2 Lightweight Data Integration 146
6.3.3 InterLDP as an LDP Implementation 148

6.4 Summary . 149

IV Conclusion & Perspectives 151

7 Conclusion 153
7.1 Summary of Contributions . 154
7.2 Limitations . 156
7.3 Perspectives . 157

Appendices 159

A Parking Example 159
A.1 Parking Example XML Listing . 159
A.2 Parking Example JSON Listing . 160

B LDP-DL Concrete Syntax 161
B.1 LDP-DL Vocabulary . 161
B.2 Mapping from Abstract to Concrete Syntax 165
B.3 Mapping from Concrete to Abstract Syntax 166

C Materials for LDP-DL 169
C.1 Example LDP-DL design . 169
C.2 Static/Dynamic LDP Dataset . 171

D Materials for Evaluation 175
D.1 Random DCAT Dataset Generation 175
D.2 Modular Design Reusability . 177
D.3 Dynamic LDP . 179
D.4 Heterogeneous LDP Generation . 181

x

D.5 Flexible Design . 183

xi

List of Figures

1 Overview of Open Data Context . 1

1.1 General overview of an Information System 11
1.2 Example of Information Ecosystems 11
1.3 The Interoperability Stack adapted from [ZD04] and [RCL14] . . . 22
1.4 Data Integration Approches . 24

2.1 RDF Graph Example . 30
2.2 Informal presentation of Parking Ontology in UML 36
2.3 Overview of LDP Domain Model . 44

3.1 Components of an LDP . 58
3.2 Overview of phases in the development of LDPs 59
3.3 Application of model-driven engineering methodology adapted from

[BCW12] . 62
3.4 Overview of Domain-Specific Language in MDE [SVB+06] 63
3.5 Main types of domain-specific language [SVB+06] 63
3.6 Abstract view of a platform [SVB+06] 64
3.7 LDP Design and Deployment using MDE 66
3.8 Example of an RDF Graph, LDP generated from it and content of

some LDP resources . 67
3.9 The LDP Generation Workflow . 71

4.1 Abstract model of LDP-DL in UML notation. 78
4.2 Part of an LDP-DL design . 79
4.3 Example of an RDF Graph, LDP generated from it and content of

some LDP resources . 80
4.4 Example of a ResourceMap . 84
4.5 Example of a NonContainerMap 85
4.6 Example of a NonContainerMap 86
4.7 Example of an interpretation of a data source 89
4.8 Example of a ResourceMap and an RDF Graph as its DataSource 90
4.9 Example of a NonContainerMap 91
4.10 Example of a ContainerMap . 92
4.11 Application of static LDP datasets 97
4.12 Application of dynamic LDP datasets 98
4.13 Abstract View of design document δ containing maps that are finite

and having no cycles . 107

5.1 Overview of LDP Generation Toolkit 114
5.2 Screenshot of HubbleLDP . 129

xii

6.1 Execution time of ShapeLDP . 132
6.2 Overview of Domain Design Reusability experiment 133
6.3 Overview of Generic Design Reusability experiment 135
6.4 Overview of Modular Design Reusability experiment 137
6.5 Overview of Dynamic LDP experiment 140
6.6 Overview of Heterogeneous LDP Generation (Section 6.2.3) 142
6.7 Overview of Compatible LDP Generation 143
6.8 Overview of Flexible Design experiment 145
6.9 Overview of LDP Integration . 147

B.1 UML Class Diagram of LDP-DL’s Concrete Model 161

C.1 Example of an LDP-DL design in the abstract syntax. 169

xiii

List of Tables

2.1 Set of solutions mappings . 38

5.1 ShapeLDP command line options 118
5.2 POSTerLDP command line options 124

6.1 Summary of experiments . 149
6.2 Summary of experiments . 149

1

Introduction

Information ecosystems within organizations started with centralized architectures
where a single information system would support all processes. However, maintain-
ing such information systems was complex and they o�en ended as big systems with
complex structures. Decentralized information ecosystems emerged as a solution
with smaller information systems delineated towards specific processes. These
information systems are managed by units, taking the role of data providers or
consumers, that coordinate among themselves enhance interoperability between
their information systems by resolving the required data heterogeneity [Hug07].

Today, for reasons such as globalization, multinationalism or complex supply
chains, there is a special type of information ecosystem that is emerging from
current decentralized ones that we refer to as highly decentralized information
ecosystem. We call it ‘highly decentralized’ due to the self-governance of its units.
This self-governance gives rise to the information problem that happens when infor-
mation systems “erect barriers between themselves thereby reducing information
flow” [Fox96, Gia04]. Consequently, there is a lack of coordination between these
units making it di�icult to for them to enhance interoperability bwtween their
information systems. A concrete example of a highly decentralized information
ecosystem is the open data context whose abstract view is shown in Figure 1.

Developers

Web ServicesData Providers

Data Sources Data Portals

Data Consumers

Data Publisher

Data Publisher

<<owns>>

<<owns>>

Figure 1: Overview of Open Data Context

In short, in this context, there are open data sources exposed by data providers
that may be exploited by data consumers. The barriers between data providers and
consumers are evident as there is no explicit contract between them, thus making

2 List of Tables

the information problem a fact. Consequently, data consumers may be unaware of
data sources exposed by data providers. For this reason, there are data publishers
that curate data sources from data providers and provide access to them via data
portals. This is why data portals have become the main entry point to access data
sources in the open data context.

While open data portals to some extent resolve the information problem and
facilitate the discovery of data sources, data exploitation remains complex for
di�erent reasons. Firstly, a�er using data portals to discover data sources, it may
be complex for data consumers to exploit them if the systems exposing them are
heterogeneous or if they do not have the required metadata. Secondly, even if they
have the required metadata, it may be heterogeneous as di�erent data providers or
publishers may use di�erent standards and technologies for encoding it. Finally,
data consumers may request the intervention of data providers for enhancing
interoperability between their information systems. However, data providers may
not intervene because as mentioned before, they is no explicit contract between
them.

The open data context is only an instance of a highly decentralized information
ecosystems. Other instances presenting similar problems may be found in inter and
intra organizational information ecosystems.

Aim & Hypotheses
Given the problems in highly decentralized information ecosystems, our aim is
to facilitate data exploitation by providing data consumers with a homogeneous
view and access to the data and its semantics. To achieve this aim, Semantic
Web standards and technologies that were originally conceived as an extension for
the Web can be of great use by enabling the creation of information ecosystems
where data can be exposed with well-defined semantics using standard data access
mechanisms [Wu01, SAD+15]. Also, Semantic Web standards are known to be
compatible for decentralized data management [SS06, Ska17].

To provide a standard access to data and their semantics, Semantic Web uses
several open standards mainly RDF, RDFS/OWL, SPARQL and Linked Data Platform.
RDF is a flexible data model that can integrate data from several sources. RDFS
and OWL are ontology languages that can be used to formalize data semantics.
SPARQL enables the extraction of data from RDF stores and finally the Linked Data
Platform standard enables providing a homogeneous view and access to RDF data.

To achieve our aim using Semantic Web standards, we make the following
hypotheses:

• Semantic Web standards can be used to enhance data interoperability in
highly decentralized information ecosystems;

• Linked data platforms generated from existing data sources and conforming
to the Linked Data Platform standard can be used to provide a homogeneous
view and access to the data.

List of Tables 3

Objective
Based on the above hypotheses, in this thesis, our objective is to generate LDPs
from existing data sources with respect to the following constraints:

Heterogeneity In highly decentralized information ecosystems, data sources
can be can be heterogeneous when they are exposed by independent units having
li�le to no coordination them. More precisely, data from these sources can be in
di�erent syntaxes, use terms having varying semantics, have diverse structures and
be available via di�erent access mechanisms.

Hosting Constraints Besides heterogeneous data sources, in highly decentral-
ized information ecosystem, there data sources whose exploitation may give rise
to hosting constraints. They prevent from hosting a copy of the data in a third-
party environment and can be on the data itself (e.g. license restrictions), or can
be a limitation of the third-party so�ware environment (e.g. bandwidth or storage
limitations to continuously verify and maintain fresh copies of dynamic or real-time
data). Therefore, LDP in highly decentralized information ecosystems has to be able
to cope with hosting constraints.

Design Reusability LDPs are data-driven system and their designs influence
the view of the data they provide. As mentioned above, LDPs can be used to
provide a homogeneous view and access to data. Nevertheless, having LDPs that
use di�erent designs to expose data sources may enhance view heterogeneity. By
making the design of LDPs reusable, di�erent LDPs may share similar designs
and thus expose data without causing view heterogeneity. Therefore, in highly
decentralized information ecosystem, di�erent LDPs should be able to share similar
designs

Evaluation Criteria
The criteria for evaluating our work is related to our objective and the constraints
described in the previous section. We evaluate our approach presented in this thesis
by considering whether it is able to automatize the design and deployment of LDPs
from existing data sources with respect to the following:

• Data Heterogeneity: existing data sources can be heterogeneous;

• Hosting constraints: existing data sources can have hosting constraints;

• Design reusability: it must be possible to generate several LDPs using the
same design.

Contribution
The major contributions of this thesis are:

• LDP generation workflow: This workflow enables the deployment of LDPs
from existing data sources that may be heterogeneous or on which there may
be hosting constraints;

4 List of Tables

• LDP Design language: Using this language, the design of an LDP can be
described independent of its implementation and deployment. Thus, the
design itself can be reused for di�erent LDPs. Also, the instantiation of an
LDP from the design can be implemented and deployed in di�erent ways.

• Implementation agnostic deployment: LDPs can be deployed on LDP servers
without considering their implementation specific details.

• Dynamic LDP: LDP can be deployed without having to host their data as they
can dynamically exploit data sources at runtime. In this way, they can deal
with real-time data sources or data sources having hosting constraints.

Thesis Outline
This thesis consists of four main parts. The first two parts relates to our hypotheses
and the third part describes our implementation and evaluation and the last part
presents our conclusion together with limitation and future perspectives. We detail
these four parts below.

Semantic Web standards for highly decentralized information
ecosystem
In Part I, we answer our first hypothesis by providing a set of requirements for
enhancing data interoperability in highly decentralized information ecosystem and
showing that Semantic Web standards satisfy these requirements. More precisely,
in Chapter 1, we discuss di�erent types of information ecosystems and introduce
highly decentralized information ecosystems. We discuss the barriers to data in-
teroperability in this information ecosystem and identify a set of requirements for
enhancing it.

Then, in Chapter 2, we describe standards from the Semantic Web that satisfy
the la�er requirements and also describe existing tools that facilitate their imple-
mentation and usage. We position LDPs as the final step to provide a homogeneous
view and access to existing data sources in highly decentralized information ecosys-
tem and define requirements for automating them. While describing LDP related
works, we show that none of them satisfy these requirements.

Model-Driven LDP Generation
In Part II, we answer our second hypothesis by presenting a model-driven approach
to automatize the generation of LDPs having as its core element a language, LDP-DL,
to define the LDP designs. We start Chapter 3 with a general description of an
LDP development life cycle with a focus on manual tasks. Then, we describe model-
driven engineering principles and integrate them in the development life cycle to
finally obtain a generalized LDP generation life cycle whose core are languages to
describe LDP design and deployment aspects. Then, we describe a set of design
and deployment aspects, highlight those that we consider. Finally, based on the
generalized LDP generation life cycle and LDP design and deployment aspects that

List of Tables 5

we consider, we present the LDP generation workflow that automatizes the design
and deployment of LDPs.

Core to the LDP generation workflow is LDP-DL, the subject of Chapter 4, that
is our language for defining the design of LDPs. We provide an overview of the
language and proceed with the formal description of its syntax and semantics. The
semantics of an LDP-DL design is an LDP dataset that is an abstract model to store
LDP resources on an LDP. We define the semantics of our language in two di�erent
ways, model-theoretic and operational. The model-theoretic semantics enable us to
abstract from choices le� open by the LDP standard and associate an LDP dataset
to an LDP-DL design. The operational semantics instantiate the model-theoretic
semantics to evaluate a LDP-DL design and generate an LDP dataset containing
the LDP resources. Finally, we describe the variabilities that may invalidate LDP
datasets and provide two intermediary models, static and dynamic data sources, to
abstract them.

Implementation & Evaluation
Part III is focused on the implementation and evaluation of our proposal with
respect to the evaluation criteria defined above. In Chapter 5, we describe the LDP
generation toolkit that is an implementation of the workflow presented in Chapter 3.
We start with a brief description of the concrete syntax of LDP-DL and describe how
a design document in this syntax can be used to generate LDP datasets. Then, we
describe the instantiation of LDPs from LDP datasets on servers while remaining
agnostic of their implementation-specific details. We also describe our compatible
LDP server that can also do so.

Finally, in Chapter 6, we perform several experiments to evaluate our work based
on our evaluation criteria . We show that LDP-DL allows defining reusable LDP
designs that can be either dependent or independent of the ontologies used at the
data sources. Moreover, we generate LDPs from heterogeneous data sources to show
that our approach can deal with data heterogeneity. We instantiate dynamic LDPs
to demonstrate the ability to deal with hosting constraints. As for automated LDP
generation, all LDPs generated in our experiments are automated. But to further
reinforce this aspect, we automate deployment of LDPs on servers while remaining
agnostic of their implementation-specific details. Besides, we also discuss side
contributions of our approach namely flexibility and lightweight data integration.

Conclusion & Perspectives
Finally, in Part IV, we provide a summary of our work and highlights our contribu-
tions. Then, we describe its limitations as well as the avenues for future researches
that it opens.

7

Part I

State of the Art

9

Chapter 1

The Data Arena in Highly
Decentralized Information
Ecosystem

Information ecosystems within organizations started with centralized architectures
where a single information system would support all processes. However, main-
taining this information system was complex and it o�en ended as a big system
with a complex structure. Decentralized information ecosystems emerged as a
solution with smaller information systems delineated towards specific processes
with data providers and consumers collaborating to enhance interoperability be-
tween their information systems. Today, due to conditions such as globalization,
multinationalism, these information ecosystems are moving towards highly de-
centralized architectures. Consequently, there is li�le to no coordination between
data providers and consumers making it di�icult to resolve the heterogeneity and
enhance interoperability between their information systems. The use of solutions
such as data integration or curation to enhance interoperability in these information
ecosystems have bring li�le success due to their high decentralized nature.

To this end, in this chapter, we analyze and demonstrate this assessment in
the context of existing information ecosystems, focusing on what we call highly
decentralized information ecosystems. Our objective is to understand the problem
of heterogeneity and derive the set of requirements to enhance interoperability in
the context of highly decentralized information ecosystems. We begin this chapter
with Section 1.1 in which we lay down the foundation of highly decentralized
information ecosystems. Then, in Section 1.2, we describe the di�erent types of
data heterogeneity in a highly decentralized information ecosystem. Finally, in
Section 1.3, we study current solutions in the domain of data interoperability that
could tackle these problems. From this analysis, we identify the current flaws and
define a set of requirements for enhancing interoperability in highly decentralized
information ecosystems.

Contents
1.1 Preliminary De�nitions . 10

1.1.1 Information System . 10

1.1.2 Information Ecosystems 11

1.2 Heterogeneity Problems . 16

1.2.1 Data Access Heterogeneity 17

10 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

1.2.2 Syntactic Heterogeneity 18

1.2.3 Semantic Heterogeneity 19

1.2.4 Structural Heterogeneity 20

1.2.5 Synthesis . 21

1.3 Data Interoperability Requirements 21

1.3.1 Data Interoperability . 21

1.3.2 Current Approaches to Data Interoperability 23

1.3.3 Requirements . 25

1.4 Summary . 27

1.1 Preliminary Definitions
The concept of information system has been studied for decades but still, a consensus
has not yet been established on their definitions. Referring to this, [BC15] analyzes
thirty-four such definitions while [Pau07] states that “It could be a surprise that
what an IS1 is is not established. On the other hand, since many people are studying
IS from a variety of perspectives, maybe it should be no surprise that there are a
variety of definitions. But then, how would society know what IS is and what it
can do if there is no clear understanding?”. To provide a clear and sound frame
to our work, in this section, we start with a generic definition of an information
system in Section 1.1.1. Then, in Section 1.1.2, we use it as a core notion to define an
information ecosystem and its di�erent types to finally finish on highly decentralized
information ecosystem.

1.1.1 Information System
An information system is a set of interrelated components that processes data collected
or retrieved from its external environment and generates output that can be disseminated
to people, stored for later use in a database, sent to itself as a feedback or as input
to other systems [Gro07]. From this definition, we depict an abstract view of an
information system in Figure 1.1.

Information System in itself is an abstract notion that can be instantiated in
di�erent domains. For example, di�erent types of information systems exist such
as management information systems for supporting managerial decision making
within organizations or expert systems for emulating decision making ability of
human experts. Irrespective of their types, the basic components of an information
system include hardware and so�ware components. Hardware components can
range from small devices like hard drives and processors to big physical systems
dedicated for storage or processing. Similarly, so�ware components can range from
minor so�ware systems like inventory controls or accounting systems to complex
so�wares with di�erent functionalities like ERP (Enterprise Resource Planning)
systems.

1Information System

1.1. Preliminary Definitions 11

Process

Database

FeedbackInputs Outp
uts

Figure 1.1: General overview of an Information System

An information system does not operate in isolation. Instead, it interacts with
other actors within an environment that we refer to as an information ecosystem.
Let us now analyze information ecosystems and their di�erent types.

1.1.2 Information Ecosystems
The concept of information ecosystem has been defined di�erently in some works [Jac04,
CJ06, Bro10] but we provide a unified definition for use in our work. We define it
as a system consisting of actors such as information systems, people (administrators,
developers, end-users, etc.) as well as information ecosystems themselves that pro-
duce and consume data and may collaborate with each others to satisfy some global
objectives.

WeatherPedia Ltd Sense Ltd

Information System

Information Ecosystem

Weather Sensors

Mobile Applications
Data

Aggregator

ETL
System

Weather
API

Figure 1.2: Example of Information Ecosystems

Let us illustrate this definition using the example shown in Figure 1.2 of an in-
formation ecosystem involving two enterprises: Sense Ltd and WeatherPedia Ltd,
each having their own information ecosystem. Sense Ltd consists of an information
system that collects data from weather sensors deployed at di�erent geographical
locations. WeatherPedia Ltd consists of two information systems: ETL System and
Weather API. ETL System processes data from the information system in Sense

Ltd and sends its results to Weather API which in turn is exposed by the la�er as
via an API that is used by di�erent actors. Also, the information ecosystems of the

12 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

two enterprises interact in a higher level information ecosystem which can be due to
a partnership or supply chain.

Obviously, the commonplace applications of information ecosystems are in orga-
nizations. Two main types of organizational information ecosystems namely intra-
organizational and inter-organizational can be identified. An intra-organizational
information ecosystem is a system where di�erent actors from an organization
produce and consume data to support the organization objectives. Compared to the
la�er, an inter-organizational information ecosystem consists of actors from more
than one organization may be collaborating for similar or di�erent objectives.

Information ecosystems may have a centralized and decentralized architec-
ture [LSH03]. Two concepts that are core to these two architectures are integration
and interoperability as discussed in [MPC+07]. While interoperability refers to
autonomy and coexistence, integration goes beyond interoperability and involve a
degree of functional dependence.

Let us use these two concepts with respect to centralized, decentralized and
highly decentralized information ecosystem and their application in the context of
intra and inter organizations.

Centralized Information Ecosystem

A centralized information ecosystem is an information ecosystem consisting of one
or more physical and logical systems between which tight relationships have been
established to form a family of integrated system that gives the illusion of a single
coherent information system built and maintained under the supervision of a central
authority that strives to ensure uniformity throughout the ecosystem [Hug07, PW16].

Normally, in a centralized information ecosystem, the central authority governs
every aspect related to the information system that is build upon the di�erent
physical and logical systems. As a result, at the time of operation, there is complete
integration between the la�er systems and no heterogeneity is present.

Now, let us consider the use of a centralized architecture in intra-organization
and inter-organization information ecosystems.

Intra-organization information ecosystem Such an information ecosystem
with a centralized architecture would mean that a single information system sup-
ports all the business needs of an organization. In this case, the central authority
would be people such as the IT manager and/or developers from the organization.
The information system would consist of several logical parts for managing di�erent
areas of the organization and would run on a physical system made up di�erent
parts (e.g. processors, disks, network). Tight integration between the di�erent
parts enhances standardization and eliminates heterogeneity [WJ06]. However,
disruptions (e.g. database failure) in the family of integrated systems may cause
losses in significant functionalities and a�ect all actors in the information ecosys-
tem [MPC+07].

Inter-organization information ecosystem Such an information ecosystem
with a centralized architecture would mean a single information system used by
all collaborating organizations. In this case, the central authority may consist

1.1. Preliminary Definitions 13

of members from each collaborating parties. It needs to take decisions about the
di�erent aspects of the system considering the collaborating parties. These decisions
may include legal decisions that may be a�ected by the law of countries in which the
parties resides. Moreover, there may be technical aspects such data formats to use
or resource allocation to the di�erent parties. Taking these decisions may be di�icult
due to constraints of the collaborating parties and this may create disagreements
between members of the central authority or the parties themselves [Goe08]. In
short, se�ing up such information systems is complex and there are cases where
organizations have ceased such e�orts due to failure of obtaining a return on their
investment [RM13]

Decentralized Information Ecosystem

A decentralized information ecosystem is an information ecosystem consisting of
distinct information systems that may evolve independently while allowing others
to use their functionalities together with a coordination authority that governs data
interactions between the di�erent information systems [Hug07]. More precisely, in
such an information ecosystem:

• the units managing the information systems can take up two roles vnamely
data provider and data consumer;

• data consumers may request data providers for data;

• data providers must respond to requests from data consumers to establish
data interactions between their information systems;

• the information systems of data providers and data consumers may not be
directly interoperable as they may be heterogeneous;

• data providers and data consumers may negotiate and go through a hand-
shaking process to make their information systems interoperable enough to
exchange data;

• while data providers may change their information systems to adapt to dy-
namic conditions, doing so should not a�ect the interoperability existing
between their information systems and that of their data consumers;

• the coordination authority governs data interactions between the di�erent
information systems.

Compared to the central authority in centralized information ecosystems, the coor-
dination authority only govern the data interactions between information systems.
More precisely, it may help to set up, maintain and preserve these interactions and
resolve conflicts that may occur during these processes. As a result, di�erent units
are free to design and take their own decisions with respect to their information
systems as long as they welcome new data interactions and preserve existing ones.

Now, let us now consider the use of a decentralized architecture in intra and
inter organization information ecosystem.

14 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

Intra-organization information ecosystem Such an information ecosystem
with a decentralized architecture would mean the existence of several distinct
information systems independently built and maintained. Each of these information
systems is delineated to support only one area of responsibility (e.g. human resource
management) of the organization while at the same time interacting with each
other to exchange data when necessary [Hug07]. Using a decentralized architecture
in such a context enhances robustness as failure of an information system a�ect
only one area of responsibility. However, the information systems may be based
on di�erent technology stacks (e.g. operating systems, network infrastructure)
due to being built and maintained independently. Consequently, there may be
much heterogeneity (e.g. network, data) between them hindering their ability to
interoperate. [WJ06]

Inter-organization information ecosystem Such an information ecosystem
with a decentralized architecture would mean that collaborating organizations can
set up direct interactions between their information systems without involving
everyone. Also, the absence of shared system as in centralized architectures means
that there is less concerns about high-level restrictions that may motivate more
interactions [Goe08]. As in the previous case, there may be much heterogeneity
between the information systems. However, in this case, resolving this heterogeneity
may be more complex due to resource constraints (e.g. financial, human) of the
collaborating parties.

Highly Decentralized Information Ecosystem

The concept of highly decentralized architectures has been used [WJ08, GSB16,
HK18] in the context of information systems but to our knowledge, it has not been
explicitly defined and its di�erence with decentralize architectures is not clear. To
this end, we define a highly decentralized information ecosystem as a decentralized
information ecosystem consisting of information systems managed by units that are
self-governed and exist with li�le to no coordination between them.

In decentralized information ecosystem, the coordination between the di�erent
units was helping them to collaborate, set up data interactions between their infor-
mation systems and exchange data. However, in highly decentralized information
ecosystem, a coordination authority may either not exist or if it does, it may not be
able to enhance coordination in the information ecosystem due to di�erent reasons
based on the context that we will see below. The self-governance of individual units
and the lack or absence of coordination create several problems.

Firstly, the di�erent units may work in isolation leading to a problem known
as the information problem [Fox96] that arises when information systems within
an information ecosystem “erect barriers between themselves thereby reducing
information flow” [Fox96, Gia04]. As a result, data providers and consumers may be
unaware of each other. Secondly, data providers can expose their data sources with-
out considering the capabilities or requirements of data consumers. Consequently,
data consumers may face much di�iculty when exploiting these data sources. Fi-
nally, while data consumers may request for data interactions from data providers

1.1. Preliminary Definitions 15

for enhancing interoperability between their information systems, there is no guar-
antee that these interactions will be considered by data providers. Even if they are
considered and implemented, there is no guarantee that they will be preserved if
data providers change their information systems.

Normally, in highly decentralized information ecosystem, one approach to tackle
the la�er problems between data providers and consumers is to introduce data pub-
lishers as a third role. Data publishers acts between data providers and consumers
and facilitate communication between them using some data platforms. While
both data providers and publishers provide data to data consumers, there is a major
di�erence between them as pointed out by Data.gov.uk1. Data providers create and
own the data and supply it to data publishers along with the required metadata
that the la�er publishes to data consumers [Mar12]. Data publishers can have a
great influence as they become the main access point to discover and exploit data
sources. If they do not publish the data properly, data consumers may continue to
face di�iculty when exploiting the data to the extent that it may be le� unexploited.

Intra-Organizational Information Ecosystem In this context, the increasing
number of autonomous information systems may enhance the information problem.
Moreover, it may be di�icult to enhance coordination between them even if a
coordination authority exists. In some cases, the number of autonomous information
system is in the order of hundreds or even thousands [RV16]. To cite some examples,
[FKA+12] mentions that Daimler still has 3000 a�er a consolidation e�orts while
Volkswagen has 5000 and in both cases, the information systems are autonomous
and heterogeneous. In such conditions, even with the presence of a coordination
authority, if a data provider receives request for data interactions from only ten
percent of data consumers in the information ecosystem, the la�er may not be able
to manage due to a resource bo�leneck. Moreover, it may be nearly impossible for
data providers to consider the requirements of each and every data consumer when
exposing their data sources.

Inter-Organizational Information Ecosystem In this context, the lack of coor-
dination between the di�erent organizations may be associated with non-technical
aspects such as organizational or political issues [GS16]. Besides this, strate-
gic and cultural incompatibilities [RM13], lack of resources (e.g. financial, hu-
man) [KMMV07] and lack of commitment and willingness [Wil07] may also be
contributing factors.

Intra/Inter-organizational information ecosystem may initially not be highly de-
centralized. Before this, they may start as being decentralized and then undergo
changes like we saw, increase in autonomous information systems or decreased
coordination, that ultimately make them highly decentralized. One indication
that current intra/inter-organizational information ecosystems are moving towards
highly decentralized architectures is their prevalent use of data curation systems
under the banner of enterprise portals to facilitate communication and data in-
teractions between data providers and consumers [DW05a, DW05b, HTD09]. A

1https://data.gov.uk/, last accessed on 2 May 2018

https://data.gov.uk/

16 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

2006 study in the US by Forrester Research Inc. showed that 46% of large com-
panies are using an enterprise portal while another quarter intended to use it by
2008 [For06, USR10]. As such, we may presume that by now, the use of enterprise
portals may already be a norm in large organizations.

The Web The Web is probably the best example of a highly decentralized informa-
tion ecosystem. Billions of data publishers and consumers seamlessly exchange data
using heterogeneous systems without even knowing the existence of each other.
This is possible mainly because of the Web’s bo�om-up architecture where both
data publishers and consumers actively participate by adopting open standards at
every level. Web standards and technologies enable data publication in a way that
give the illusion of a global repository from which data consumers can browse and
“integrate” data seamlessly.

Open Data Context Open data is data that is publicly published to everyone,
free, and can be consumed by third parties for their own use or republished under
di�erent forms. Adherence to this philosophy creates an information ecosystem,
the open data context, consisting of actors that publish data publicly or consume
openly available data. Such an information ecosystem may be considered as an
extended inter-organizational information ecosystem in which organizations as well
as the general public may also provide and consume data.

The open data context may be the most common and apparent example of a
highly decentralized information ecosystem where collaborating parties are geo-
graphically dispersed and self-governed without any coordination authority. Data
providers and consumers barely know each other and there may be no direct com-
munication between them. Even if there was a possibility of opening a direct
communication, data providers may not participate as no formal contract bindings
between them and data consumers.

In the open data context, data publishers play an important role in solving the
information problem by providing open data portals to curate data sources from
data providers. Normally, these data publishers uses the Web as a platform to
instantiate these data portals that have become the main entry point to access open
data [UNP15]. Some example of data curation systems are CKAN 1, Socrata 2 and
OpenDataSo� 3.

1.2 Heterogeneity Problems
In centralized information ecosystem, at the time of operation, all heterogeneities
would have been solved through standardization and tight integration between the
physical/logical systems [WJ06]. However, in (highly) decentralized information
ecosystem, heterogeneity may still prevail while the information systems are in
operation thus preventing them to interoperate and exchange data. Several types of
heterogeneities (e.g. of networks, operating systems, programming languages, etc.)

1https://ckan.org/, last accessed on 2 April 2018
2https://socrata.com/, last accessed on 2 April 2018
3https://www.opendatasoft.fr/, last accessed on 2 April 2018

https://ckan.org/
https://socrata.com/
https://www.opendatasoft.fr/

1.2. Heterogeneity Problems 17

may exist due to the varying technology stacks on which information system have
been implemented. Normally, they may be abstracted through the use of high-level
data access systems such as web services [MBB+03, SVVB12, QLS+11]. As a result,
data heterogeneity is the only heterogeneity that remains to be handled to enhance
interoperability between the di�erent information systems.

There is no universally accepted definition of data heterogeneity [MBWdlI15].
Instead, some existing definitions are even conflicting. To cite only some exam-
ples, [Kin08] defines data heterogeneity as consisting of syntactic, semantic and
structural heterogeneity while [VSS02, Gag07] make no di�erence between data het-
erogeneity and semantic heterogeneity. To avoid these inconsistencies, we provide
our definition of data heterogeneity that is actually extrapolated from the definition
of data interoperability, that will discussed in Section 1.3.2, as they are closely linked
to each other. For example, data heterogeneity can be seen as a problem to data
interoperability but data interoperability can also be seen as a solution to data
heterogeneity.

To this end, we define data heterogeneity as the di�erences that prevent data to
be universally accessible, reusable and comprehensible by all transaction parties (in
a human-to-machine and machine-to-machine basis) caused by the use of di�erent
representations, di�erent purposes, di�erent contexts, and di�erent syntax-dependent
approaches. Based on this definition, several dimensions of data heterogeneity can
be identified namely at the data access, syntactic, semantic and structural level.

In the remainder of this section, we define the dimension of data heterogene-
ity with respect to data access (Section 1.2.1), syntax (Section 1.2.2), semantics
(Section 1.2.3) and structure (Section 1.2.4) and illustrate them using an example.
Also, we relate the definitions to parts of the data heterogeneity’s definition using
italicized text

.

1.2.1 Data Access Heterogeneity
Data access heterogeneity may occurs as a result of providing di�erent kinds of
access to their data raising heterogeneities that relate to data location [BKLW99]
and data view [Jau99], data organization [RNC+03]. [CKRJ17] extends these het-
erogeneities to include data sources’ varying querying capabilities including their
syntax and semantics.

Based on the above, we define data access heterogeneity as the heterogeneity
raised when accessing data at di�erent data sources. With respect to our definition of
data heterogeneity, data access heterogeneity prevents data from being universally
accessible. Data access heterogeneity includes:

• location heterogeneity : data may be accessed at di�erent data sources with
di�erent locations;

• view heterogeneity : di�erent views of data may be provided at di�erent ab-
straction levels using di�erent data organization schemes;

• data access protocol heterogeneity : di�erent protocols having varying querying
capabilities, syntaxes and semantics may be used to access data.

18 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

Let us now consider an example to illustrate data access heterogeneity. Suppose
that a data consumer is in need of some data. The first step is to identify the data
sources that are available in the information ecosystem and their locations. To facil-
itate this process, platforms such as data curation systems that will be discussed in
Section 1.3.2 may be used. A�er having determined the location of their data access
system, data consumers may need to tackle data access protocol heterogeneity and
view heterogeneity as data curation systems may be using di�erent protocols and
views. For example, as mentioned before, CKAN and OpenDataSo� are two di�erent
data curation systems widely used in the open data context and both have their
own custom web API that provide access to their data [KRT+16]. While both web
APIs are based on HTTP, they have di�erent syntaxes for HTTP requests such as
using di�erent headers or URL parameters. Also, data consumers may need to deal
with data view heterogeneity as di�erent data access systems may provide di�erent
views and organization of their data. Again, considering CKAN and OpenDataSo�,
both provide di�erent views of their data by using di�erent endpoints [CZdS18].

In summary, the problem raised by data access heterogeneity is that data con-
sumers cannot use a single process to consume data from several data access system
as they need to cater for their di�erent technicalities. Also, if metadata about the
data access protocol and view is not provided, data consumers may face much
di�iculty when using the data access system.

1.2.2 Syntactic Heterogeneity
Syntactic heterogeneity has been defined in di�erent ways. In some cases, it has
been a�ributed to structural heterogeneity [MZG14, BWF13] or even hardware and
so�ware heterogeneity [HMTF09]. In our case, as we mentioned before, our focus
is on data. Also, there is a clear distinction between a data structure and a data
syntax as di�erent structures may be encoded in the same syntax. But what we
find common in many definitions of syntactic heterogeneity is the mention of data
formats and data syntaxes [Car07, HTP+09, JSC18] that aligns well to our definition
of data heterogeneity.

Therefore, we define syntactic heterogeneity as the heterogeneity caused by
the use of several data syntaxes or formats. With respect to our definition of data
heterogeneity, it may occur due to syntax-dependent approaches in legacy systems.
For example, the XML syntax was prevalent during the late 90s and therefore
interoperating with information system that use them today may raise the syntactic
heterogeneity if data syntaxes other than XML are used such as JSON.

Let us now consider an example of syntactic heterogeneity. A�er having resolved
the data access heterogeneity discussed in the previous section, data consumers
may finally obtain a copy of the data in their environments. However, it may not be
directly exploitable as the data may be in di�erent syntaxes. Let us illustrate this
problem using an example of data from two di�erent sources shown in Listing 1.1
and Listing 1.2 that shows part of documents containing details of parking facilities
in two di�erent documents.

1.2. Heterogeneity Problems 19

Listing 1.1: Data
in XML

<ParkingFacilities>
<CarParking>
<id>50</id>
<space>5</space>
<lat>48.845</lat>
<long>2.373</long>

</CarParking>
...
</ParkingFacilities>

Listing 1.2: Data
in JSON

{ "ParkingLots": [{
"code": "CP:50",
"type":"CarParking",
"space": 5,
"lat": 48.84524,
"long": 2.37322,
},...]

}
}

As we can see, the two documents are encoded in the XML and JSON syntax
respectively. As such, they cannot be decoded using the same process as they are
in di�erent syntaxes. This problem is usually considered to be the simplest as it
may be resolved by automatically encoding all the data in a single syntax [MPS10].
However, even if similar syntax is used for both documents, they may not be directly
exploitable as they are still structured using di�erent terms and models.

1.2.3 Semantic Heterogeneity
Semantic heterogeneity is considered to be the toughest among the dimensions of
data heterogeneity [MBB+03, LKdL15, FMW+14, Oli17]. While its broad definition
seems to be stable in the literature [HTP+09, NVS+06], there is some disagreements
in its constituents. For example, [Bis98] states that semantic heterogeneity can be
divided into cognitive heterogeneity and naming heterogeneity while [XL02] states
that it may also include formalization heterogeneity, conceptualization heterogene-
ity and context heterogeneity. However, we restrict our definition to a broader level
as di�erentiating between these constituents are not the focus to this work.

Therefore, we define semantic heterogeneity as di�erences in lexicals that yield
di�erent meanings and interpretations. More specifically, di�erent lexicals may
have the same interpretation or similar lexical may have di�erent interpretations.
With respect to our definition of data heterogeneity, it mostly occurs when data
is generated in di�erent contexts by independent parties [Hal05]. Its occurrence
prevents data to be universally comprehensible and reusable.

Let us now consider an example of semantic heterogeneity. Consider the term
space from Listing 1.1 and Listing 1.2 respectively. The documents from which these
terms emerge may have come from di�erent data providers. Intuitively, we may
think that both terms refer to the number of car parking spaces in a parking facility.
However, now suppose that the JSON document comes from a real-time data source.
In the la�er case, �ex�tspace may instead refer to the remaining number of parking
spaces. In short, we cannot be sure of the term’s interpretation as long as we do
not have its explicitly interpretation from the right source (e.g. metadata supplied
by data provider). Without this, we can only rely on our common sense and doing
so is considered to be problematic when resolving semantic heterogeneity [HG01].
Unresolved semantic heterogeneity may generate invalid result that may be le�
unnoticed if users are unaware of the semantics of the terms [HG01].

20 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

1.2.4 Structural Heterogeneity
Structural heterogeneity has been a�ributed to di�erences in data stuctures [AN15,
MO04, NVS+06]. Schematic heterogeneity appearing in structured databases where
schemas have a prime importance is also an aspect of structural heterogeneity [She01].
[NVS+06] defines model/representational heterogeneity separate from structural
heterogeneity but we do not make such di�erence. Structural heterogeneity may be
caused by di�erent views on the same domain by independent parties [PCDT05].
It may also be be linked to syntactic heterogeneity because data syntaxes may
place constraints on the structure of data encoded [NJN, FL11]. For example, XML
dictates a hierarchical structure in the data with a root element.

We define structural heterogeneity as the heterogeneity caused by the use of
several data representations, structures, domain models or schemas. With respect to
our definition of data heterogeneity, structural heterogeneity may occur when data
structures are dependent on context and purpose. Thus, when similar data from
di�erent context or generated for di�erent purposes may not be reused directly
due to their varying structures. Thus, structural heterogeneity may make data less
reusable.

Let us consider an example of structural heterogeneity using the documents in
Listing 1.1 and Listing 1.2. While their domain models have not been explicitly given,
some structural di�erences may be visible in the data itself. By looking at Listing 1.1,
we can intuitively infer that the first object in the element ParkingFacilities

describes a car parking facility because of the CarParking element. However, in
Listing 1.3, the type of the parking may be known by looking at the type. In other
words, di�erent structural primitives, classes and a�ributes, may have been used to
describe the domain objects.

Listing 1.3: Data
in XML

<ParkingLots>
<Parking>
<id>50</id>
<type>car</type>
<space>5</space>
<lat>48.845</lat>
<long>2.373</long>

</Parking>
...
</ParkingLots>

To overcome structural heterogeneity, a pivot model may need to be used. Sup-
pose, the model in Listing 1.1 is used as the pivot model for storing parking facilities’
details. Mappings may be established between terms from the model in Listing 1.1
and Listing 1.2. However, before this, semantic heterogeneity should be resolved
due to di�ering interpretation of terms. For example, mapping ParkingLots to
ParkingFacilities require that their interpretation are known to be the same. The
la�er case is independent of structural heterogeneity. However, semantic hetero-
geneity may be complexified by structural heterogeneity and their combination
is considered to be the toughest form of heterogeneity [RMB+12]. For example,
mapping space from Listing 1.3 to space is possible only if in the former case, the
space element occurs in a CarParking element.

Overall, structural heterogeneity may make information retrieval more complex.

1.3. Data Interoperability Requirements 21

For example, both the structure and terms used in queries may be dependent on
the domain model. Therefore, the same query may not be used on data sources
having di�erent models. More abstractly, a single process cannot be applied to pre-
cisely manipulate or extract data from data sources having semantic and structural
heterogeneity.

1.2.5 Synthesis
As we have seen, the di�erent dimensions of data heterogeneity make data exploita-
tion complex. There is not much di�erence between how data heterogeneity occurs
in decentralized and highly decentralized information ecosystem. Yet, data hetero-
geneity remains a core problem in highly decentralized information ecosystem.

As mentioned in Section 1.1.2, the coordination and collaboration of data providers
and consumers enable them to actively interact to resolve data heterogeneity. How-
ever, as mentioned in Section 1.1.2, in highly decentralized information ecosystem,
data consumers may barely interact with data providers as a result of which they
have to tackle the data heterogeneity completely on their own. To resolve the data
heterogeneity, data consumers depend on metadata exposed by data publishers.
Thus, if data publishers do not use the appropriate standards and technologies to
publish the data and metadata from data providers, it may be di�icult for data
consumers to make sense of the data.

Now that we have seen the problem of data heterogeneity in highly decentralized
information ecosystem, let us analyze the di�erent approaches that may be used to
enhance data interoperability.

1.3 Data Interoperability Requirements
As we have seen in the previous section, data heterogeneity is a barrier towards
achieving interoperability at the data level in (highly) decentralized information
ecosystem. In this section, we discuss the interoperability between information
systems in Section 1.3.1. Then, in Section 1.3.2, we analyze and criticize data
interoperability techniques with the aim of identifying their limitations. Finally, in
Section 1.3.3, considering these limitations, we set requirements for a solution to
achieve data interoperability in (highly) decentralized information ecosystem.

1.3.1 Data Interoperability
Interoperability “is the ability of two or more systems or components to exchange
information and to use the information that has been exchanged” [IEE91]. As shown
in Figure 1.3, interoperability can take place at di�erent levels. The European
Interoperability Framework [Com17] categorizes them in four main levels: legal,
organizational, semantic and technical; three of which are shown in Figure 1.3.

At the highest level is legal interoperability that is the ability for organizations to
collaborate under di�erent legal frameworks. Then, organizational interoperability
enhances mutually benefits through alignment of business processes. Comprehen-
sibility between communicating parties is achieved by semantic interoperability.

22 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

Network connectivity

Operating system

Data management
system

Data access
protocols/standards

Business applications

Business processes

Data Semantics

T
ec

hn
ic

al

In
te

ro
pe

ra
bi

lit
y

Se
m

an
tic

In

te
ro

pe
ra

bi
lit

y
O

rg
an

iz
at

io
na

l
In

te
ro

pe
ra

bi
lit

y

Data Syntaxes

D
at

a
In

te
ro

pe
ra

bi
lit

y

Business objectives

Windows, Linux, Solaris...

PostgreSQL, mongodb,
XBase, File System,...

EDI, HTTP, NFS,
CORBA,...

Desktop, Web, Mobile
Application ...

Internet, Intranet,...

Manufacturing,
Distribution,...

Semantics in business
context

XML, JSON, Tabular,
Flat files,...

Profit making, Non-profit
making, citizens welfare,...

Figure 1.3: The Interoperability Stack adapted from [ZD04] and
[RCL14]

Finally, technical interoperability enhances communication between systems imple-
mented using di�erent technology stacks (e.g. network infrastructures, operating
system).

One way to abstract a subset of layers from the technology stack is to use web
services. For this purpose, web services are defined as loosely coupled and platform
independent systems [MBB+03] that hide platform heterogeneity (e.g. network,
operating system, etc.) to provide seamless data interaction between heterogeneous
information systems [SVVB12, QLS+11]. Web services working at the Data access
protocol/standard may be used to abstract part of the technology stack and enhance
seamless data interaction between heterogeneous systems [SVVB12, QLS+11]. Con-
sequently, the only layers le� to be dealt are those of data interoperability.

As shown in Figure 1.3, data interoperability consists of semantic and partly
of technical interoperability. It can be defined as “the ability of data (including
documents, multimedia content and digital resources) to be universally accessible,
reusable and comprehensible by all transaction parties (in a human-to-machine and
machine-to-machine basis), by addressing the lack of common understanding caused by
the use of di�erent representations, di�erent purposes, di�erent contexts, and di�erent
syntax-dependent approaches” [KLM+11, LKA+12, KML14, GA18].

As mentioned in Section 1.2, data interoperability and data heterogeneity are
closely linked. In fact, we consider data heterogeneity to be the main problem in
enhancing data interoperability between information systems. The dimensions of

1.3. Data Interoperability Requirements 23

data heterogeneity described in Section 1.2 can be aligned to the layers of data inter-
operability shown in Figure 1.3. Data access, syntactic and semantic heterogeneity
can be aligned to Data access protocols/standards, Data Syntax and Data Semantics
layers respectively. As for structural heterogeneity, it may occur both in Data Syntax
and Data Semantics layer because as we mentioned in Section 1.2.4, it is linked to
both data syntaxes and semantics.

Let us now consider approaches that can be used to enhance data interoperability
in the next section.

1.3.2 Current Approaches to Data Interoperability
Data curation and data integration are two main approaches that may be used to
enhance data interoperability. In this section, we discuss them in Section 1.3.2 and
Section 1.3.2 with respect to highly decentralized information ecosystem.

Data Curation

Data curation is the process of organizing data with the aim of enhancing data
interoperability by providing its consumers with data having a high readability,
accessibility and reusability [Yak07]. Data curation system is considered to be a key
solution “where there is an increase in the number of data sources and platforms for
data generation” [FC16]. They are used both in enterprises and open data context
where they have been instantiated as enterprise data portals [Whi00] and open
data portals [HVdB11] respectively.

Data curation system may be used to to facilitate the discovery and access of data
sources together with the required metadata to exploit them [Haz02, Cha13b, Joh17].
Therefore, they may be used by data publishers to expose data from data providers
in highly decentralized information ecosystem.

Problems related to the use of data curation systems As mentioned in Sec-
tion 1.1.2, in highly decentralized information ecosystems, data publishers may
use some data platforms to expose data and metadata from data providers. Data
curation systems are one type of platforms they may used to do so. However, at this
point, there is one main problem that may be raised. As we mentioned before, since
in highly decentralized information ecosystem data providers are self-governed
units with no coordination between them, data from them are very likely to be
heterogeneous. Consequently, if data publishers directly expose data and metadata
from them via data curation systems without using proper standards and technolo-
gies, there may be more data heterogeneity. This may be considered as a limitation
in the practices of the data publisher. However, it may also be a limitation of the
data curation system in use as it may not enforce the use of proper standards and
technologies and may not be equipped with tools to facilitate their use.

Thus, while data curation systems may be used to abstract data heterogeneity,
naively using them may generate more data heterogeneity than there is already
making data integration by data consumers more complex.

24 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

Data Integration

Data integration is the process of providing a unified view of data combined and
reconciled from diverse and heterogeneous sources to users (people or machine) to
facilitate their exploitation [Len02]. It has been the classical solution to abstract
data heterogeneity since long [Wie92]. Generally, two main approaches to integrate
data exist: point-to-point and mediator [Gia04, KA15].

In the point-to-point approach, data consumers have to explicitly tackle every
data source and handle its data heterogeneity. Figure 1.4 (a) shows an abstract view
of this approach. It has several disadvantages [LSH03, NPF+13]. This approach
is not scalable especially where the number of data sources is increasing rapidly
because every data consumer wishing to exploit the data sources has to repeat
the same procedure for doing so [KA15]. Moreover, to exploit data sources, data
consumers have to define wrappers resulting in their information systems being
dependent on low-level details. Consequently, minimal changes in a particular data
source may require data consumers to modify their wrappers.

(a) (b) (c)

Data
Consumers

Data
Providers

Data
Consumers

Data
Providers

Data
Publishers

Data
Consumers

Information System Mediator System Information Ecosystem

Figure 1.4: Data Integration Approches

On the contrary, in the mediator approach [Wie92], as shown in Figure 1.4 (b),
an intermediary layer (the mediator) is introduced between the heterogeneous data
sources and the information system. The mediator abstracts the heterogeneities
provide data consumers with a homogeneous view of data [Gia04]. The data con-
sumers are unaware of the complexity incorporated by the mediator and have the
illusion of interacting with a single system. Mediator approaches can be categorized
based on di�erent dimensions [KP09] (e.g. data model) based on which di�erent
mediator systems have emerged [DD99] with the classical ones being federated
databases, data warehouses, mediated query systems and lately data lakes [SM14].
While mediator systems can provide a homogeneous view to data, their use may
raise some problems in highly decentralized information ecosystem.

1.3. Data Interoperability Requirements 25

Problems related to the use of mediator systems Figure 1.4 (c) shows an
abstract overview of a highly decentralized information ecosystem where data
publishers directly expose data and metadata from data providers via some platforms
(e.g. data curation systems). Two main problems may be raised when using mediator
systems resolve data heterogeneity generated by the platforms..

The first problem is that both the development and maintenance of mediator
systems depends on the availability of metadata whose quality can strongly af-
fect their success [SR96, AF05, CZ06, MRW10]. As mentioned before, in highly
decentralized information ecosystem, there may be no interaction between data
providers and consumers. Thus, data consumers depend entirely on data publishers
for obtaining good quality metadata. In the case where data publishers are exposing
the metadata directly as they are supplied by data providers, the metadata itself
may be heterogeneous, thus a�ecting its quality and eventually that of the mediator
systems.

The second problem is e�ort duplication. As we mentioned before, in highly
decentralized information ecosystem, data consumers are self-governed without
any coordination between them and may thus be unaware of each other. Conse-
quently, they may duplicate their e�orts to build and maintain mediator systems
for exploiting some data sources that may sometimes be even the same. From an
abstract perspective, when there are several data publishers as in Figure 1.4 (c),
doing so emulates a point-to-point depends on the e�orts data publishers. The more
e�ort data publishers do to expose data and metadata using the proper standards,
the less e�ort is required by data consumers during data integration .

In summary, as we can see, the success of data integration heavily depends on
how data has been exposed by data publishers. Let us now see in the next section
requirements that may be followed by data publishers to facilitate exploitation of
data in highly decentralized information ecosystem.

1.3.3 Requirements
As we have seen in the previous section, the success of data curation and integra-
tion systems depends on how data is exposed by data publishers. Therefore, it is
important to identify the requirements that data publishers need follow to expose
data in a way can enhance data interoperability in highly decentralized information
ecosystem.

In Section 1.1.2, we described that the Web is the perfect example of a highly
decentralized information ecosystem where in spite of the high heterogeneity, di�er-
ent types of systems can still interoperate and exchange data. Thus, requirements
to enhance data interoperability in highly decentralized information ecosystems
may be derived by considering the Web, its design principles and technologies used
on it. However, currently the Web is geared for humans and therefore additional
requirements may be needed to enable seamless communication and data inte-
gration by information systems. Moreover, since highly decentralized information
ecosystem is a superset of decentralized information ecosystem, a solution for the
former would be applicable for the la�er also.

In the remaining of this section, we identify requirements that a solution
for achieving data interoperability in highly decentralized information ecosystem

26 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

should satisfy. We group the requirements in data syntax (Section 1.3.3), data se-
mantics (Section 1.3.3) and data access (Section 1.3.3) and in each of these sections,
the title of paragraphs correspond to the names of requirements.

Data Syntax

In this section, we discuss requirements that have to be respected in highly decen-
tralized information ecosystems with respect to data syntax.

Standardized Data Syntax HTML is used as the pivot data syntax to encode data
in Web pages, thus preventing syntactic heterogeneity. It has a syntax and semantics
with respect to data presentation. Since it is an open standard, everyone can
implement tools that processes document in this syntax. Similarly, in information
ecosystems, automatic data exchanges take place between information systems and
therefore, to enhance universal reusability, there is a need for an open standard that
defines a language that may be used as a pivot data syntax to encode description of
resources.

Resource Identification On HTML pages, it is possible to exactly refer to a
resource on the web as HTML enforces the use of a syntactic element, the anchor,
to use hyperlinks to refer to Web resources using their IRIs. Hyperlinks constitute a
core element of the Web and allows IRIs to be used as foreign keys when referring to
Web resources. Similarly, in an information ecosystem, the pivot data syntax should
enforce the use of IRIs for referring to resources.

Flexible Data Syntax Information systems may need to directly merge descrip-
tion of resources when integrating data. The resources may be from di�erent data
providers and thus may have varying structures. There are data syntaxes where
documents in the same data syntax may not be directly merged. For example, XML
documents cannot be directly merged as XML is constrained by XML schemas that
sets implicit links between entities. Therefore, the pivot data syntax should be flexible
enough to enable the integration of resources having varying structures.

Data Semantics

In this section, we discuss requirements that have to be respected in highly decen-
tralized with respect to data semantics.

Globally-scoped Identifier The use of URLs as global identifiers enables unam-
biguous referencing of Web resources throughout the Web. In highly decentralized
information ecosystem, local identifiers for resources may be used by data providers
within their information systems. Directly exposing the resources externally may
create ambiguities. For example, two resources with similar local identifiers may
identify di�erent things. Therefore, resources should be named using identifiers that
are globally-scoped at least within the boundary of the information ecosystem.

1.4. Summary 27

Ontology Language On the Web, when humans read some description in natural
languages, they may encounter unknown terms and use external sources such as
dictionaries to find their semantics. Similarly, when data consumers integrate data
that originate from di�erent data providers, they may have to deal with unknown
terms. To achieve universal comprehensibility, there is a need for a formal language
to define ontologies that provide explicit semantic of terms.

Semantics In Syntax When autonomous information systems exchange data,
the semantics of terms need to be encoded with the data to make it self-descriptive.
Therefore, irrespective of the formalism used to encode terms’ semantics, it should
be possible to encode the semantics of terms in the data syntax.

Data Access

In this section, we discuss requirements that have to be respected in highly decen-
tralized with respect to data access.

Standardized High-level Data Access Web hyperlinks refer to resources and
on following them, web browsers communicate with web servers to download the
resources. The implementation-specific details of web browsers and servers do not
a�ect the la�er communication as the use of high-level data access systems based on
di�erent standards (e.g. HTTP, FTP) abstracts the required heterogeneities. Similarly,
between information systems in highly decentralized information ecosystems, there
is a need for a high-level data access standard to enable seamless data interactions.

High-level Data Access Description On the Web, di�erent types of high-level
data access systems (e.g. websites, web services) exist. Descriptions of the la�er
systems are primordial to enable their exploitation. For example, ProgrammableWeb
curates thousands of web services and provides links to their documentation wher-
ever possible. In the case of websites, descriptions in natural language allow users
to find their way. Similarly, in highly decentralized information ecosystems, de-
scriptions of high-level data access systems should be provided to facilitate their
exploitation.

1.4 Summary
In this chapter, our objective was to come with a set of requirements of achieving
interoperability between heterogeneous information systems in highly decentralized
architectures. So, we have started by laying down the core foundations, namely
information systems, the environment in which they operate that we refer to as
an information ecosystem and their di�erent types. We have seen that in (highly)
decentralized information ecosystem, there heterogeneous information system that
may need to interoperate for collaborate to achieve some objectives. To enable their
interoperation, data heterogeneity is the main obstacle. While in decentralized
information ecosystem, it can resolved using data integration, in highly decentral-
ized information ecosystem, this is not possible due to a lack of metadata caused
by the information problem. While trying to address the lack of metadata, data

28 Chapter 1. The Data Arena in Highly Decentralized Information Ecosystem

curation may introduce more heterogeneity in the information ecosystem and there-
fore may not be the right solution. Finally, making analogy to the Web wherever
possible, we have set requirements that a solution to achieve interoperability in
highly decentralized information ecosystem must fulfill.

29

Chapter 2

Semantic Web Technologies

In the previous chapter, we have identified requirements with respect to data
syntax, data semantics and data access for enhancing data interoperability in
highly decentralized information ecosystem. Standards and technologies that were
originally conceived for the Semantic Web can be of great use to address these
requirements by enabling the creation of information ecosystems where data can be
shared using a flexible data model with well-defined semantics using standard data
access mechanisms [Wu01, SAD+15]. Consequently, data can be shared and reused
unambiguously across applications, enterprises and enterprise boundaries [Lie16].

In this chapter, our objective is to analyze how Semantic Web standards and
technologies can satisfy the requirements for data interoperability in highly decen-
tralized information ecosystem. To this end, we describe Semantic Web standards
and technologies and explain how they satisfy requirements for data interoper-
ability with respect to data syntax, data semantics and data access in Section 2.1,
Section 2.2, Section 2.3 respectively. Finally, in Section 2.4, we describe how Linked
Data Platform, one among the Semantic Web technologies, can be used to provide
a standard access to data and show the limitations of tools in automatizing the
generation of such platforms.

Contents
2.1 Data Syntax . 30

2.1.1 RDF . 30

2.1.2 RDF Implementations . 32

2.2 Data Semantics . 33

2.2.1 RDFS . 33

2.2.2 OWL . 35

2.2.3 RDFS/OWL Ontology Management 37

2.3 Data Access . 37

2.3.1 SPARQL . 37

2.3.2 Linked Data-based Platform 41

2.4 Linked Data Platform 1.0 . 43

2.4.1 Overview of LDP Standard 44

2.4.2 Detailed Description . 44

2.4.3 LDP Related Work . 52

2.5 Synthesis . 54

30 Chapter 2. Semantic Web Technologies

2.1 Data Syntax
In this section, we explain how the Resource Description Framework(RDF) [CWL14],
the underlying data model of Semantic Web, and its implementations can be used
to enhance data interoperability at the syntactic level in highly decentralized infor-
mation ecosystem. To this end, in Section 2.1.1, we describe the basics of RDF and
explains how it satisfies the requirements with respect to data syntax described in
Chapter 1 (Section 1.3.3). Then, in Section 2.1.2, we describe some implementations
of RDF.

2.1.1 RDF
RDF enables asserting statements about resources, known as RDF statements, in
expressions known as RDF triples. An RDF triple consists of a subject, a predicate
and an object. The predicate expresses a binary relationship between the subject

and object. An RDF triple can be seen as an edge subject
predicate−−−−→ object and joined

with other triples to create a graph-like data model. A set of RDF triples makes up
an RDF graph. A graphical illustration of an RDF graph is also shown in Figure 2.1.

on:ParkingFacility

ex:EmergencyCP

Anvers

48.835 geo:lat 2.373

dc:title

100

50

ex:Anvers4

on:carParkingSpaces

on:motocycleParkingSpaces

schema:contactPoint

Emergency

lang:enlang:fr

schema:availableLanguage schema:streetAddress

21 Rue Abel Gance

schema:addressLocality

Paris, France

ex:AnversPM1

on:parkingManager

on:ParkingManager

rdf:type

0754234448

schema:email

Anvers Parking

rdf:type

parking@anvers.com

schema:telephone

0754234448

dbpedia:French_Language

owl:sameAs

gr:legalName

geo:long

on:ParkingFacility

schema:address

schema:contactTypeschema:telephone schema:postalCode rdf:type

75013

Figure 2.1: RDF Graph Example

2.1. Data Syntax 31

In Figure 2.1, rounded rectangles with prefixed IRIs represent resources iden-
tified using these IRIs, rectanges represent literals and empty rounded rectangles
represents blank nodes that are discussed below. In this graph, labeled arrows
represented predicates and their origins and destinations represented subjects and
objects of RDF triples.

Listing 2.1 shows the serialization of this RDF graph in the Turtle syntax [BBL08].
There are several syntaxes (e.g. XML, JSON) in which RDF graphs can be serialized
but we only use the Turtle syntax. We use both the RDF graph and its prefix
declarations throughout this chapter.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3 @prefix dc: <http://purl.org/dc/terms/>.
4 @prefix ex: <http://example.org/data/>.
5 @prefix on: <http://example.org/ontology/>.
6 @prefix geo: <http://www.opengis.net/ont/geosparql#>.
7 @prefix schema: <http://schema.org/>.
8 @prefix lang: <http://id.loc.gov/vocabulary/iso639-1/> .
9 @prefix gr: <http://purl.org/goodrelations/v1#>.

10 @prefix dbpedia:<http://dbpedia.org/resource/> .
11 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
12 @prefix mobivoc: <http://schema.mobivoc.org/>.
13 ex:Anvers4 rdf:type on:ParkingFacility;
14 dc:title "Anvers";
15 geo:lat 48.83523833495664;
16 geo:long 2.37322158810141;
17 on:carParkingSpaces 100;
18 on:motocycleParkingSpaces 50;
19 on:parkingManager ex:AnversPM1;
20 schema:contactPoint ex:EmergencyCP;
21 schema:address [
22 a schema:PostalAddress;
23 schema:streetAddress "21 Rue Abel Gance";
24 schema:postalCode "75013";
25 schema:addressLocality "Paris, France";] .
26
27 ex:EmergencyCP schema:contactType "Emergency";
28 schema:availableLanguage lang:fr,lang:en;
29 schema:telephone "0754234448" .
30 lang:fr owl:sameAs dbpedia:French_language .
31
32 ex:AnversPM1 a on:ParkingManager;
33 gr:legalName "Anvers Parking";
34 schema:telephone "0754234448";
35 schema:email "parking@anvers.com" .

Listing 2.1: RDF Graph Example in Turtle

Now, let’s further describe RDF with respect to the requirements of data syntax
defined in Chapter 1 (Section 1.3.3).

Standardized Data Syntax RDF contributes to this requirement by being an
open standard describing a data model that can be used as a data syntax. Also,
there are accompanying standard specifications such as [GS14] and [SKL14] that
describe ways of serializing RDF graphs in commonly used data formats XML and
JSON respectively. Consider the RDF graph in Listing 2.1, its serialization in XML
and JSON are available in Appendix A.

32 Chapter 2. Semantic Web Technologies

Resource Identification RDF contributes to this requirements by enforcing In-
ternationalized Resource Identifiers (IRI) [DS05] as names for resources. Using IRIs,
resources can be referenced irrespective of their location. They may be described in
the RDF graph where the reference is made or in external data stores. For example,
the referenced resource lang:fr on Line 28 (Listing 2.1) is actually described and
hosted in a di�erent data store.1 In cases where IRIs may be used, blank nodes, con-
sidered as an existential variable, may indicate the presence of a resource without
specifically identifying it. In Turtle syntax [PC14, §2.6], blank nodes may be denoted
using []. For example, we use a blank node (Listing 2.1, Line 22 - 25) because we do
not want to specifically identify addresses of parkings.

Flexible Data Syntax XML or relational data model require predefined explicit
schemas. Also, data in these models may not be automatically merged without
considering their semantics and naive merging mechanisms may not yield valuable
results. On the contrary, RDF requires no predefined schema but instead RDF
data itself contains an implicit schema that is automatically extended by adding
new predicates or when merging RDF graphs having di�erent implicit schemas.
Consequently, this contributes to the flexibility of RDF and allow RDF-based systems
to cope with data having varying schemas.

As we have seen, RDF contributes to all the requirements for enhancing data
interoperability at the syntactic level. Let us now discuss some of its implementations
that facilitates its use.

2.1.2 RDF Implementations
Di�erent categories of RDF implementations exists. Frameworks for facilitating the
use of RDF exist in di�erent programming languages. For example, RDFLib2 and
Apache Jena3 are RDF frameworks in Python and Java respectively. Also, there are
editors for facilitating the editing of RDF documents. For example, OpenLink RDF
Editor4 is an RDF editor that eases writing RDF graphs by exploiting ontologies
(discussed in Section 2.2) and IsaViz5 is graphical editor for authoring RDF graphs.

In order to deal with data heterogeneity that is part of our evaluation criteria
as mentioned in the Introduction of this thesis, RDF conversion is an important
concern to consider in this work. RDF implementations that may be used for doing
so are called RDF converters. Some of RDF converters are targeted to data in specific
formats while others are more open.

GRDDL [Con07] and XSPARQL [AKKP08b] were originally conceived for ex-
tracting RDF data from XML data. GRDDL [Con07] is an approach of assigning
transformations (normally in XSLT) to XML documents that may then be used to
generate RDF. XSPARQL [AKKP08b] extends X�ery and allows defining trans-
formations from XML to RDF and vice versa. Extensions have been made in it

1http://id.loc.gov/vocabulary/iso639-1/fr.html, last accessed on 26 July 2018
2https://rdflib.readthedocs.io/en/stable/, last accessed on 14 September 2018
3https://jena.apache.org/, last accessed on 14 September 2018
4http://osde.openlinksw.com/,last accessed on 14 September 2018
5https://www.w3.org/2001/11/IsaViz/,last accessed on 14 September 2018

http://id.loc.gov/vocabulary/iso639-1/fr.html
https://rdflib.readthedocs.io/en/stable/
https://jena.apache.org/
http://osde.openlinksw.com/
https://www.w3.org/2001/11/IsaViz/

2.2. Data Semantics 33

for querying relational databases [LBDP11] and data encoded in the JSON for-
mat [DPLB14].

Direct Mapping [ABPS12] and R2RML [DSC] are W3C recommendations for
transforming relational databases to RDF or mapping queries in SPARQL against
virtual RDF views into SQL queries. Direct Mapping defines specific mappings
to RDF Graphs using di�erent primitives such as tables, primary keys or joint
relationship from the relational data. Consequently, the output RDF graph reflects
the structure and vocabulary of the original data’s schema. R2RML employs a more
generic approach by providing a language to define customized mappings in which
the structure and target vocabulary are chosen by the mapping author.

RML [DVSC+14] and SPARQL Generate [LZB17b] are languages that can con-
sider data sources in di�erent formats and languages. RML extends R2RML with
language constructs for considering considering new types of data sources (e.g. CSV,
XML). Thus, its model requires modification for coping with newer the types of
data sources. SPARQL Generate is an extension of SPARQL and uses the extension
mechanism of SPARQL to deal with new types of data sources. Thus, in an imple-
mentation of SPARQL Generation, dealing with new data formats merely consist of
developing new functions conforming to the existing SPARQL specifications.

As seen in this section, RDF with the accompanying tools for converting di�erent
data formats to it provides a viable approach for tackling with data heterogeneity at
the syntactic level. However, usage of RDF, either natively or when converting from
heterogeneous data sources, require ontologies to describe data semantics that we
consider in the next section.

2.2 Data Semantics
Besides a data model, RDF also comes with a built-in vocabulary, the RDF vocabulary,
that can be used to describe simple cross-domain aspects but lacks the required
expressivity to represent complex knowledge. Therefore, in this section, we describe
Semantic Web standards RDF Schema (RDFS) [BG14] and Web Ontology Language
(OWL) [W3C12] that are su�iciently expressive to represent complex knowledge.
Also, we explain how they can enhance data interoperability at the semantic level
in highly decentralized information ecosystem. In the remainder of this section, we
describe RDFS and OWL in Section 2.2.1 and Section 2.2.2 respectively. Then, in
Section 2.2.3, we describe the management of RDFS/OWL ontologies

2.2.1 RDFS
RDFS provides a data-modeling vocabulary to enable the definition of ontolo-
gies. RDFS extends the RDF vocabulary and is therefore directly wri�en in RDF.
From terms in the RDFS vocabulary, five properties are key ones namely rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range [Hog14]. rdf:type
is used for specifying resources as instances of some classes. rdfs:subClassOf

and rdfs:subPropertyOf allows defining hierarchies of classes and properties.
rdfs:domain of a property specifies the class of the subject in triples where the
property is used as a predicate. Similarly, rdfs:range of a property specifies the
class or datatype of the object in triples where the property is used as a predicate.

34 Chapter 2. Semantic Web Technologies

Listing 2.2 shows an RDFS ontology. It uses rdfs:subClassOf to indicate a sub-
class relationship between on:ParkingManager and gr:BusinessEntity (Listing 2.2,
Line 9) and rdfs:subPropertyOf to indicate a sub-property relationship between
mobivoc:entrance and dc:hasPart (Listing 2.2, Line 15). Also, it uses rdfs:domain
and rdfs:range to indicate that the domain and range of on:parkingManager is
on:ParkingFacility and on:ParkingManager respectively.

1 <http://example.com/ontology> rdfs:label "An ontology for describing
parking facilities"@en .

2
3 on:ParkingFacility a rdfs:Class;
4 rdfs:comment "A parking facility containing parking spaces for vehicles

(e.g car, motocycle)"@en .
5
6 on:ParkingManager a rdfs:Class;
7 rdfs:subClassOf gr:BusinessEntity.
8
9 mobivoc:entrance a rdf:Property;

10 rdfs:domain on:ParkingFacility;
11 rdfs:range mobivoc:CivicStructure;
12 rdfs:subPropertyOf dc:hasPart .

Listing 2.2: RDFS ontology example

Globally-scoped Identifier As mentioned above, RDFS only extends the RDF
vocabulary and thus RDFS ontologies are directly wri�en in RDF. Thus, RDFS
contribute to this requirement as RDF already enforces the use of IRIs that are
globally scoped. However, RDFS does not solve all ambiguities that may raised with
regards to identifiers. When independent parties describe resources, they may use
di�erent IRIs that may refer to the same resource or di�erent resources. Thus, even if
IRIs are used in RDFS vocabularies, RDFS does not provide constructs for specifying
whether two resources identified by di�erent IRIs are the same or di�erent.

Ontology Language RDFS contribute to this requirement by allowing the de-
velopment of ontologies to fix the meaning of terms in two main ways. Firstly,
a concise natural language definition can be specified for terms. For example,
on:ParkingFacility is explicitly defined in natural language on Line 4 (Listing 2.2).
Secondly, RDFS allows defining a structure among terms by se�ing inter-relationships
between them. For example, the RDFS term rdfs:subClassOf (Listing 2.2, Line 9) is
used to indicate a subclass relationship between on:ParkingManager and gr:BusinessEntity.
However, RDFS is a basic ontology language and may not be enough expres-
sive for domains where complex knowledge need to be represented. Our ontol-
ogy in Listing 2.2 is simple but there are facts such as a disjointment between
on:ParkingFacility and on:ParkingManager that cannot be expressed.

Semantics in Syntax As mentioned before, RDFS ontologies are wri�en in RDF.
Due to the flexibility of RDF described in Section 2.1.1, RDFS ontologies and the
RDF data they describe can be merged to obtain a final RDF graph containing data
together with its semantics. For example, the RDF graph in Listing 2.1 partly uses the
ontology in Listing 2.2 that is also an RDF graph and both can be merged together
to obtain a final graph. Thus, RDFS contributes to this requirement by allowing

2.2. Data Semantics 35

data semantics to be shipped together with the data making it both self-described
and portable.

While RDFS does contribute to the above requirements, its expressivity may not
be enough for complex domains requiring more expressive ontology languages such
as OWL that is discussed in the next section.

2.2.2 OWL
OWL extends RDFS to allow more expressive formalizations between classes and
properties such as intersection of classes, cardinality restrictions on properties, etc.
Thus, it reuses terms from RDFS but also introduces several new ones to represent
the la�er formalizations. OWL ontologies can be modularized that brings in the
benefits of modularization such as separation of concerns, reusability, etc. Also,
[CGHP+12] specifies a mapping between concepts of OWL and RDF meaning that
OWL ontologies can be wri�en as RDF graphs and serialized in RDF syntaxes.

The ontology in Listing 2.3 is an OWL ontology serialized in the Turtle syn-
tax that is, as mentioned before, one of RDF syntaxes. Only part of the ontology
is given and its remaining part is in a di�erent module that is imported using
the owl:imports predicate. Its informal presentation in UML is shown in Fig-
ure 2.2. It extends the RDFS ontology given in Listing 2.2 and therefore uses several
terms from RDFS but also uses terms from OWL. It uses owl:disjointWith to
state that on:ParkingManager and on:ParkingFacility are disjoint (Listing 2.3,
Line 10). It also uses the object property mobivoc:entrance to link instances of
on:ParkingFacility and mobivoc:CivicStructure (Listing 2.3, Line 12).

1 <http://example.com/ontology> a owl:Ontology;
2 owl:imports <http://example.com/ontology_part>
3 rdfs:label "An ontology for describing parking facilities"@en .
4
5 on:ParkingFacility a rdfs:Class, owl:Class;
6 rdfs:comment "A parking facility containing parking spaces for vehicles

(e.g car, motocycle)"@en .
7
8 on:ParkingManager a rdfs:Class, owl:Class;
9 rdfs:subClassOf gr:BusinessEntity;

10 owl:disjointWith on:ParkingFacility .
11
12 mobivoc:entrance a rdf:Property, owl:ObjectProperty;
13 rdfs:domain on:ParkingFacility;
14 rdfs:range mobivoc:CivicStructure;
15 rdfs:subPropertyOf dc:hasPart .

Listing 2.3: OWL Ontology Example

Let us now further describe RDFS with respect requirements of data semantics
described in Chapter 1 (Section 1.3.3).

Globally-scoped Identifier Like RDF, OWL also enforce the use of IRIs to name
entities. OWL further contribute to this requirement by providing constructs to
resolve the ambiguities related to IRIs that may be raised in RDFS. More pre-
cisely, it provides owl:sameAs to indicate that two IRIs refer to the same thing and
owl:differentFrom to indicate that two IRIs refer to di�erent things. For example,

36 Chapter 2. Semantic Web Technologies

on:ParkingFacility
dc:title rdfs:Literal

on:carParkingSpaces xsd:nonNegativeInteger

on:motocycleParkingSpaces xsd:nonNegativeInteger

schema:image foaf:Image

mobivoc:numberOfLevels xsd:integer

geo:lat xsd:double

geo:long xsd:double

on:ParkingManager
gr:legalName rdfs:Literal

schema:telephone xsd:string

schema:faxNumber xsd:string

schema:email xsd:string

schema:ContactPoint
schema:contactType xsd:string

schema:telephone xsd:string

schema:availableLanguage schema:Language

mobivoc:CivicStructure
mobivoc:vehicleHeightLimit xsd:decimal

mobivoc:vehicleHeightLimit xsd:decimal

mobivoc:vehicleHeightLimit xsd:decimal

schema:PostalAddress
schema:streetAddress xsd:string

schema:postalCode xsd:string

Schema:address Locality xsd:string

schema:contactPoint

on:parkingManager

on:address

on:entrance | on:exit

gr:BusinessEntity

Figure 2.2: Informal presentation of Parking Ontology in UML

in Listing 2.1, we use owl:sameAs on Line 30 to explicitly state that lang:fr and
dbpedia:French_language refer to the french language.

Ontology Language Unlike RDFS that is an extension of the RDF vocabulary,
OWL is a language specifically designed to encode rich and complex domain knowl-
edge. While OWL reuses terms from RDFS, it contributes further to this requirement
by providing more constructs for defining relationships between terms that is im-
portant for di�erent domains. In Section 2.2.1, we mentioned that RDFS cannot be
used to describe disjointment. As we see in Listing 2.3 on Line 10, this is possible in
OWL using owl:disjointWith.

Semantics in Syntax OWL is based on description logic and can be serialized in
several syntaxes [MPSP12a, MPSP12b]. [CGHP+12] is a standard specification from
the W3C that describes the serialization of OWL ontologies in RDF. For example,
the RDF graph in Listing 2.1 uses the OWL ontology in Listing 2.3 that has been
serialized as an RDF graph using the la�er standard. Both RDF graphs can be merged
to integrate the semantics with the data. Thus, like RDFS , OWL contributes to this
requirement by making it possible for data semantics to be merged with the data
making it both self-described and portable.

Both RDFS and OWL contributes to the requirements for data semantics. Let
us consider tools to help in managing ontologies wri�en using them.

2.3. Data Access 37

2.2.3 RDFS/OWL Ontology Management
The generally accepted best practice before creating ontologies is to reuse existing
ones wherever possible as doing so enhances semantic interoperability in an infor-
mation ecosystem [KTM17]. To enhance the ontology reuse, search engines such as
Swoogle [DFJ+04] or Watson [dM11] help users to find ontologies.

In case reusable ontologies are not found, they may be developed. The develop-
ment process may be facilitated by ontology editors such as Web-Protégé [TVN08]
or TopBraid Ontology Editor1. Also, the ontology development process may include
a number of activities. Ontology engineering methodologies such as Methontol-
ogy [FJ97] or DILIGENT [PST04] define the di�erent activities to be carried out in
the development process. Also, there are generators (e.g. FRED [GPR+17]) that may
be used to generate ontologies from structured data or natural language description.

With RDF, we can encode data in the form triples and using RDFS and OWL,
we have a way to add semantics to data. Let us describe in the next section how to
provide access to this data.

2.3 Data Access
In this section, we describe the query language SPARQL [Gro13] and linked data
platforms and explain how they can be used to enhance data interoperability at the
data access level in highly decentralized information ecosystem. In the remainder
of this section, we describe SPARQL and linked data platforms in Section 2.3.1 and
Section 2.3.2.

2.3.1 SPARQL
SPARQL provides a set of standards that include languages and protocols to query
and manipulate data in RDF. In this section, we provide an overview of the SPARQL
query language in Section 2.3.1 and further describe it with respect to data access
requirements identified in Chapter 1 (Section 1.3.3). Finally, in Section 2.3.1, we
briefly describe some tools related to it.

Overview of SPARQL

The SPARQL query language is the standard language for querying RDF data. It is
the SQL for the RDF data model. The core of a SPARQL query is the WHERE clause
containing a query pa�ern that we formally describe in Chapter 4 (Section 4.2.1).
An example of a SPARQL query is given in Listing 2.4 with the query pa�ern being
{...} (Line 2 - 8).

In short, a query pa�ern defines variables and constraints they should satisfy
with respect to an RDF graph. Triple pa�erns are the simplest way to define these
constraints. A triple pa�ern is like an RDF triple except that subject, predicate and
object can be a variable. In the query pa�ern given in Listing 2.4, ?parkingFacility
a on:ParkingFacility (Line 3) is a triple pa�ern and ?catalog a variable. Variables

1https://www.topquadrant.com/2013/06/10/the-topbraid-evn-ontology-editor/, last ac-
cessed 16 September 2018

https://www.topquadrant.com/2013/06/10/the-topbraid-evn-ontology-editor/

38 Chapter 2. Semantic Web Technologies

may be further constrained using filter expression. The filter expression (?p !=

on:parkingManager) (Line 7) states that the solutions for ?p should not include
on:parkingManager.
1 SELECT ?parkingFacility WHERE
2 {
3 ?parkingFacility a on:ParkingFacility;
4 ?p ?o;
5 schema:contactPoint ?contactPoint .
6 ?contactPoint ?p1 ?o1 .
7 FILTER (?p != on:parkingManager)
8 }

Listing 2.4: SPARQL SELECT query example

Evaluating a query pa�ern with respect to an RDF graph returns a set of solution
mappings where in every solution, terms from the RDF graph are mapped to a
variable. For example, executing the above query pa�ern with respect to the RDF
graph in Listing 2.1 may return the set of solution mappings in Table 2.1 with every
row being a solution.

?pFacility ?p ?o ?p1 ?o1 ?contactPoint
ex:Anvers4 rdf:type on:ParkingFacility schema:telephone "0754234448" ex:EmergencyCP
ex:Anvers4 dc:title "Anvers Parking" schema:availableLanguage lang:fr ex:EmergencyCP
ex:Anvers4 dc:title "Anvers Parking" schema:contactType "Emergency" ex:EmergencyCP

Table 2.1: Set of solutions mappings

The SPARQL query may also contain solution modifiers that further process
results obtained from the evaluation of a query pa�ern. LIMIT is an example of a
solution modifier and is parameterized by a non-negative n denoting the maximum
number of results to return. Applying LIMIT with n = 1 on the set of the solution
mappings in Table 2.1 may return only the first row.

Finally, a SPARQL query has a query form that generates the final result from
a set of solution mappings obtained from the evaluation of the query pa�ern and
solution modifiers (if any). There are four query forms namely SELECT, CONSTRUCT,
ASK and DESCRIBE. In the paragraphs below, we describe these query forms using
examples of SPARQL queries having same query pa�ern in their WHERE clause like
the query in Listing 2.4. Also, we directly use the set of solution mappings in Table 2.1
as the result of this query pa�ern.

A SPARQL SELECT query takes a set of variables and returns their bindings for
each solution mapping. The query in Listing 2.4 is in fact a SPARQL SELECT query.
With respect to the set of solution mappings in Table 2.1, this query return only the
first column as its set of variables contains only ?pFacility.

A SPARQL CONSTRUCT query has a set of triple pa�erns using which RDF graphs
are created from a set of solution mappings. For example, using the CONSTRUCT
query in Listing 2.5 with respect to to the set of solution mappings in Table 2.1
returns the new RDF graph in Listing 2.6. This RDF graph is obtained by using every
triple pa�ern to generate triples by replacing its variables with their bindings from
every solution mapping. Consider the example of the first triple pa�ern ?pFacility

?p ?o from Listing 2.5. Using their bindings from the first solution mapping in
Table 2.1, the first triple in the RDF graph in Listing 2.6 is generated. Using the same
triple pa�ern and the second solution mapping in Table 2.1, the fourth triple from

2.3. Data Access 39

the same RDF graph is generated. A solution mapping is ignored if it does not have
bindings for all the variables in the triple pa�ern.

1 CONSTRUCT {
2 ?pFacility ?p ?o .
3 ?contactPoint ?p1 ?o1 .
4 } WHERE {
5 ?pFacility a on:ParkingFacility;
6 ?p ?o;
7 schema:contactPoint ?contactPoint .
8 ?contactPoint ?p1 ?o1 .
9 FILTER (?p != on:parkingManager)

10 }

Listing 2.5: CONSTRUCT query example

1 ex:Anvers4 a on:ParkingFacility ;
2 on:carParkingSpaces 100 ;
3 on:motocycleParkingSpaces 50 ;
4 dc:title "Anvers" ;
5 schema:contactPoint ex:EmergencyCP ;
6 geo:lat 48.83523833495664 ;
7 geo:long 2.37322158810141 .
8
9 ex:EmergencyCP schema:

availableLanguage lang:en ,
10 lang:fr;
11 schema:contactType "Emergency

Contact Point" ;
12 schema:telephone "0754234448" .

Listing 2.6: Result of CONSTRUCT
query

SPARQL ASK queries returns boolean answers to demonstrate existence or in-
existence of solutions. For example, the ASK query in Listing 2.7 return true with
respect to the set of solution mappings in Table 2.1 .
1 ASK WHERE {
2 ?parkingFacility a on:ParkingFacility;
3 ?p ?o;
4 schema:contactPoint ?contactPoint .
5 ?contactPoint ?p1 ?o1 .
6 FILTER (?p != on:parkingManager)
7 }

Listing 2.7: SPARQL SELECT query example

Finally, SPARQL DESCRIBE queries returns descriptions of resources but its se-
mantics is determined by the implementation of SPARQL engines [HS13b, §16.4.3].
For example, the DESCRIBE query in Listing 2.8 may return only the portion of the
RDF graph in Listing 2.6 where ex:Anvers4 is the subject.
1 DESCRIBE ex:Anvers4 WHERE {
2 ?pFacility a on:ParkingFacility;
3 ?p ?o;
4 schema:contactPoint ?contactPoint .
5 ?contactPoint ?p1 ?o1 .
6 FILTER (?p != on:parkingManager)
7 }

Listing 2.8: SPARQL SELECT query example

Let us now further describe SPARQL with respect to data access requirements
identified in Chapter 1 (Section 1.3.3).

Standardized High-Level Data Access As mentioned before, the SPARQL query
language is itself standardized. In addition to this, the Graph Store HTTP Proto-
col [Ogb13] is another standard from W3C that allows communicating with SPARQL
engines via HTTP. Using these two standards, high-level data access systems com-
monly known as SPARQL endpoints can be setup enabling data access without
having to bother about implementation-specific details of servers and clients. These
two standards contribute to this requirement by enabling the setup of high-level data
access systems commonly known as SPARQL endpoints to allow data exchanges
between servers and clients without having to bother about implementation-specific
details.

40 Chapter 2. Semantic Web Technologies

High-Level Data Access Description The SPARQL query language has a for-
mal syntax and semantics that describe the validity of queries and their excepted
evaluation results. Similarly, the Graph Store HTTP Protocol describes the HTTP
requests and responses by specifying details such as HTTP headers, payload, status
codes, etc. In short, these two standards contributes to this requirement by provid-
ing su�icient information for formulating information requests as SPARQL queries,
for sending them in HTTP requests to SPARQL endpoints and for interpreting the
responses.

As we have seen, SPARQL contributes to both requirements and can be used
for high-level data access. Let us now consider tools related to SPARQL in the next
section.

Tools Related to SPARQL

Systems that uses RDF natively store their data in repositories commonly known
as triple stores. The triple stores is normally made up of several so�ware that
implement SPARQL standards for manipulating the RDF data. There exist a number
of triplestores [NS14, PZLN18] such as Apache Jena TDB1, Virtuoso2, etc.

The most common so�ware bundled together with triple stores are SPARQL
engines and SPARQL servers. A SPARQL engine process SPARQL queries and returns
results based on the SPARQL query results standards [Sea13b, Haw13, Sea13a].
Some free and open source SPARQL engines are Apache Jena ARQ 3 and RDF4J 4.
SPARQL servers provides access to SPARQL engines via HTTP. An example is Apache
Fuseki5 that uses Apache Jena ARQ as its SPARQL engine and Apache Jena TDB
and its triple store.

Under high loads, SPARQL servers may be unavailable. There are number of
tools to handle this issue. Linked Data Fragments is a technology that address
this issue by redistributing the load between delegating part of the processing to
clients [VHM+14]. Triple pa�ern fragments is a specific type of Linked Data Frag-
ments that provides an interface to triples which client-side applications may access
exploit to evaluate SPARQL queries thus decreasing load on the server [VSH+16].
ULYSSES [MSMV18] is such a client-side application that further take advantage
of replications to decrease the load on triple pa�ern fragments servers.

Besides, there are other tools such as query editors (e.g. NITELIGHT [RS08] and
YASGUI [RH13]) that facilitate query writing or query generators (e.g. hsparql6,
spanqit7) to programmatically create and generate queries.

SPARQL for High-Level Data Access

As we have seen in Section 2.3.1, SPARQL satisfies the requirements for enhancing
interoperability at data access level. However, using SPARQL as a high-level data
access systems poses two problems.

1https://jena.apache.org/documentation/tdb/, last accessed 27 July 2018
2https://virtuoso.openlinksw.com/, last accessed 27 July 2018
3https://jena.apache.org/documentation/query/, last accessed on 16 April 2018
4http://rdf4j.org/, last accessed on 16 April 2018
5https://jena.apache.org/documentation/fuseki2/,last accessed on 16 April 2018
6http://hackage.haskell.org/package/hsparql, last accessed 30 July 2018
7https://github.com/anqit/spanqit, last accessed 30 July 2018

https://jena.apache.org/documentation/tdb/
https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/query/
http://rdf4j.org/
https://jena.apache.org/documentation/fuseki2/
http://hackage.haskell.org/package/hsparql
https://github.com/anqit/spanqit

2.3. Data Access 41

The first problem is that data consumers need to have knowledge of the data.
More precisely, to formulate information requests, they need to know the di�erent
ontologies per which the data is structured as well as naming of resources in the
data. Moreover, to formally express these information requests as SPARQL queries,
they need to know the syntax and semantics of the SPARQL query language.

The second problem is that data publishers may require much resources in their
environment to host a high-level data access system based on SPARQL as SPARQL
queries may have a high computational complexity [PAG09]. While optimizations
are possible, doing so may be complex as it requires making assumptions about the
data consumers such as types of queries they may ask or their ability to participate
in query evaluation using technologies such as Linked Data Fragments that we have
discussed in Section 2.3.1.

Besides these two problems, let us make an analogy using X�ery and SQL
that are query languages for XML and relational databases. On the Web, there
are a number of SPARQL endpoints. [AHUV13] makes a survey of 427 SPARQL
endpoints. However, to our knowledge, there is hardly any system providing access
to their data direct using X�ery or SQL. We believe the reason for this to be that
these technologies are best for a system’s internal use and in a system architectured
using the model-view-controller pa�ern, we would expect these technologies to be
at the controller level hidden to data consumers by the view. Normally, Web APIs
are usually used at the view level to provide a high-level data access to end-users.
For example, ProgrammableWeb1 documents over nineteen thousands APIs that
provide access to di�erent types of data on the Web.

Thus, we believe that while SPARQL can be used at the controller level, there is
a need for a technology at the view layer to hide the use of SPARQL. Let us now
analyze in the next section whether platforms based on linked data can be used at
the view layer.

2.3.2 Linked Data-based Platform
Linked Data-based platforms provide RESTful access to RDF description of resources.
In this section, in Section 2.3.2, we provide an overview of such platforms and in
Section 2.3.2, we describe tools that facilitate their instantiation.

Overview of Linked Data-Based Platform

Linked Data-based platforms are based on the four Linked Data principles [BL06]:

• Use IRIs to name (identify) things;

• Use HTTP IRIs so that these things can be looked up (dereferenced);

• Provide useful information when dereferencing things using open standards
(e.g. RDF, SPARQL)

• Include links to other things using HTTP IRIs to enhance knowledge discovery.

1https://www.programmableweb.com/apis, last accessed 18 September 2018

https://www.programmableweb.com/apis

42 Chapter 2. Semantic Web Technologies

Let us consider a platform based on the above principles. Suppose we want to
expose the resource ex:Anvers4 described in Listing 2.1 via a Linked Data-based
platform at its IRI itself. Dereferencing ex:Anvers4 returns its description in List-
ing 2.6 that satisfies the four Linked Data principles. The first and second principles
are satisfied by using HTTP IRIs. The third principles is satisfied because deref-
erencing ex:Anvers4 returns its description in RDF. Finally, the fourth principle
is satisfied since the ex:Anvers4’s description include the externally described re-
source lang:fr (Listing 2.6, Line 10) which as per its publisher’s guidelines1 can be
dereferenced with the MIME type application/rdf+xml to obtain its RDF descrip-
tion in RDF/XML [CS14a] syntax. As we can see, by following the above principles,
Linked Data-based platforms behave like Web APIs and provide access to resource
description without data consumers having to know about any technicalities.

Let us now further describe Linked Data-based platforms with respect to data
access requirements identified in Chapter 1 (Section 1.3.3).

Standardized High-Level Data Access Linked Data principles brings together
concepts from HTTP, RDF and several other standards. However, it leaves many
open choices such as default RDF syntax to use, headers in HTTP requests when
creating Linked Data resources or HTTP methods to use for di�erent operations on
Linked Data resources. Thus, while Linked Data principles does contribute to this
requirement by using existing standards, platforms implemented based on it with
the open choices being characterized by independent parties may generate data
access heterogeneity.

High-Level Data Access Description In the case of SPARQL, as described in
Section 2.3.1, both its query language and the Graph Store Protocol describe the
validity of HTTP requests to SPARQL endpoints and also interpretation of responses.
However, Linked data principles does not specify any such description and thus
leaves room for much interpretation. While documentations may be provided by
data publishers to describe Linked Data-based platforms, a documentation for every
platform enhances tight coupling making both data exploitation and development
of generic tools more complex. Thus, Linked Data-based platform may provide
documentation to help data consumers to exploit it, the Linked Data principles in
itself does not satisfy this requirement.

Let us consider tools that facilitate the implementations of Linked Data princi-
ples.

Linked Data-based Platforms Implementation

There are tools that automate the generation of linked data-based platforms by
implementing Linked Data principles [BHB09] and they can be categorized based
on the type of data source from which they generate the platforms.

Firstly, Pubby2 consider only RDF data sources. Using a mapping, it can generate
IRIs for linked data resources from resources in the RDF data source that can be
SPARQL endpoints or static RDF files. When requests are made on linked data

1https://id.loc.gov/techcenter/serializations.html, last accessed on 30 July 2018
2http://wifo5-03.informatik.uni-mannheim.de/pubby/, last accessed on 18 September 2018

https://id.loc.gov/techcenter/serializations.html
http://wifo5-03.informatik.uni-mannheim.de/pubby/

2.4. Linked Data Platform 1.0 43

resources, their corresponding RDF resources are obtained and finally SPARQL
DESCRIBE queries are used to return their descriptions.

Then, D2R Server [BC06] and Triplify [ADL+09] can consider relational databases.
D2R Server [BC06] can provide linked data using RDF graphs generated from re-
lational data through mappings wri�en in the D2RQ mapping language [BS04].
Triplify [ADL+09] maps HTTP-URI requests to SQL queries whose results are then
transformed into RDF from linked data resources are generated. To facilitate its
usage, it provides a library of mappings for popular web applications such as Word-
Press1 and Drupal2.

Finally, there is Virtuoso Universal Server3, SparqPlug [CHM08] and RDF-
REST [Cha13a]. Virtuoso Universal Server can consider both RDF sources and
relational databases and for the la�er, it uses their mappings to RDF graphs. Sparq-
Plug can consider HTML documents as data sources. It does so by serializing the
HTML DOM as RDF on which it evaluates user-defined SPARQL queries to generate
RDF for linked data resources. RDF-REST is a framework that implement REST and
Linked Data principles. Its aim is to facilitate the development of RESTful web ser-
vices that can produce linked data from other linked data sources or heterogeneous
web APIs.

In spite of the above tools, as mentioned in Section 2.3.2, Linked Data-based
platforms can generate data access heterogeneity due to the open choices that need
to be characterized during their set up. Therefore, to limit this heterogeneity, there
is a need for a standard that characterize the core aspects of Linked Data-based
platforms. This was the main motivation of the Linked Data Platform Working
Group4 [ABH15] that resulted into the Linked Data Platform 1.0 W3C Recommenda-
tion that we describe in the next section.

2.4 Linked Data Platform 1.0
Linked Data Platform 1.0 is a W3C recommendation aims to standardize techniques
for working with Linked Data over HTTP. It extends the Linked Data principles
to provide an architecture for read-write Linked Data. We refer to Linked Data
Platforms (LDP) as platforms implementing the la�er standard and LDP standard as
the standard itself. We reserve a complete section complete for LDPs and describe
it in more detail as it is the core of this thesis.

In the remainder of this section, we provide an overview of the standard in
Section 2.4.1. Then, in Section 2.4.2, we describe an illustrating example that reuses
the examples from the previous sections. We describe existing LDP implementations
in Section 2.4.3. Finally, in Section 3.1.1, we describe the development of LDPs for
exposing data from existing data sources and the problems that may occur while
doing so.

1https://wordpress.com/, last accessed on 9 April 2018
2https://www.drupal.org/, last accessed on 9 April 2018
3https://virtuoso.openlinksw.com/, last accessed 30 July 2018
4https://www.w3.org/2012/ldp/wiki/Main_Page, last accessed 4 August 2018

https://wordpress.com/
https://www.drupal.org/
https://virtuoso.openlinksw.com/
https://www.w3.org/2012/ldp/wiki/Main_Page

44 Chapter 2. Semantic Web Technologies

2.4.1 Overview of LDP Standard
The LDP standard consists of two parts, the domain model and the interaction model.
The domain model describes the organization of LDP resources that consist of
di�erent types of resources as shown in Figure 2.3. The interaction model describes
interactions for to perform read-write operations on these resources via HTTP
methods. For example, it describes requests and replies details (e.g. headers, payload)
of several HTTP methods out of which GET and OPTIONS must be supported while
the remaining ones are optional.

LDP
Resource

LDP
RDF

Source

LDP
Non-RDF

Source

LDP
Basic

Container

LDP
Container

LDP
Indirect

Container

LDP
Direct

Container

Figure 2.3: Overview of LDP Domain Model

The domain model categorizes LDP resources into LDP RDF Sources (LDP-RS)
and LDP Non-RDF Sources (LDP-NR). The state of an LDP-RS is represented in
RDF contrary to that of an LDP-NR whose state is not in RDF. LDP containers are
specializations of LDP-RSs that organizes resources, also known as their members,
and manage requests from clients for their creation, modification, deletion or enu-
meration based on their interaction model. There are three types of types LDP
containers namely LDP Basic Container (LDP-BC), LDP Direct Container (LDP-DC)
and LDP Indirect Container (LDP-IC) that mostly vary on the expressivity they
provide to describe their members. We provide a detailed description of them in the
next section using a concrete example.

2.4.2 Detailed Description
In this section, we provide a detailed description of the LDP standard with a focus
on LDP containers. In the remainder of this section, we reuse code snippets that we

2.4. Linked Data Platform 1.0 45

have been using since the beginning of this chapter to describe basic, direct and
indirect containers in Section 2.4.2, Section 2.4.2 and Section 2.4.2 respectively.

Basic Containers

Basic containers defines a simple containment relationship with its resources using
the predicate ldp:contains from the LDP vocabulary1. The set of triples in its
representation that uses this property is called containment triples and in every
of them, the IRI of the subject and object is that of the basic container and the
corresponding LDP resource respectively.

Let us illustrate the use of basic containers using an example. We want to
create a basic container to describe the parking facility in Listing 2.6 and then as we
proceed the example, we are going add other resources in it. Assuming the existence
of a basic container dex:ParkingFacilities storing parking facilities, to create a
container in it, the POST request in Listing 2.9 is sent to it. Some aspects from the
POST requests that are characterized by the LDP interaction model are:

• the null relative IRI (<>) in message body of the POST request is used as a
placeholder for the IRI of the LDP resource to be created [SAM15c, §5.2.3.7];

• the Link header informs the server about the type of LDP resource to be
created and in our case, it is a basic container [SAM15c, §5.2.3.4];

• the Slug header, originally defined in [Gdh07, §9.7], is used by the LDP stan-
dard to provide suggest a string that may used be in the server’s final choice
of resource IRI [SAM15c, §5.2.3.10], and in our case this string is Anvers4;

1 Request URL: http://data.example.com/ParkingFacilities
2 Method: POST
3 Content-Type: text/turtle
4 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type"
5 Slug: Anvers4
6 Message Body:
7 <> a ldp:BasicContainer .
8 <#it> a on:ParkingFacility ;
9 on:carParkingSpaces 100 ;

10 on:motocycleParkingSpaces 50 ;
11 dc:title "Anvers" ;
12 geo:lat 48.835 ;
13 geo:long 2.3732;
14 foaf:primaryTopic ex:Anvers4 .

Listing 2.9: POST Request for creating basic container

In the message body of the POST request, we use the resource <#> instead of
using ex:Anvers4 directly. We explain the reason for doing so in the next section.
Suppose that the above POST request is successfully processed, the server may return
the response in Listing 2.10.
1 Status Code: 201 Created
2 Location: http://data.example.com/Anvers4
3 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
4 <http://www.w3.org/ns/ldp#Resource>; rel="type"

Listing 2.10: POST response from creating the basic container

1https://www.w3.org/ns/ldp, last accessed 1 August 2018

https://www.w3.org/ns/ldp

46 Chapter 2. Semantic Web Technologies

The response provides the client with the following pieces of information required
by the LDP interaction model:

• the status code 201 informs that the POST request resulted in the successful
creation of the resource [SAM15c, §5.2.3.1];

• the Location header provides the final IRI of the created resource [SAM15c,
§5.2.3.1], and in our case it is dex:Anvers4;

• the Link header in POST responses informs about LDP interactions can be
performed on the new resource, and in our it is LDP interactions that relates
to LDP resources and basic containers.

Now, a simple GET request on the resource dex:ParkingFacilities returns the
response in Listing 2.11 with its representation in the message body. As we can
see, in the representation, a containment triple (Line 10) is added to the container
dex:ParkingFacilities to specify its new member dex:Anvers4. Besides this, the
LDP standard uses several headers such as ETag, Allow or Accept-Post to convey
other information that is not of particular use in our example.
1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "87e52ce291112"
4 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 dex:ParkingFacilities a ldp:BasicContainer;

10 ldp:contains dex:Anvers4 . # containment triple

Listing 2.11: GET Response on dex:ParkingFacilities a�er addition of dex:Anvers4

With the above example, we provided a brief idea about basic containers. As
we have seen, basic containers use containment triples to state their members and
in our examples, the fact that these triples cannot be changed does not create a
problem. However, suppose that we want to add images for the new parking facility
and we want to continue using the predicate schema:image, per our ontology in
Figure 2.2, to link the parking facility defined in dex:Anvers4 to the image. Doing
so is not possible because as we mentioned, containment triples cannot be altered to
contain client-specific resources. Let us now see how direct containers can be used
in this situation. Let us now see how direct containers can be used in this situation.

Direct Container

Direct containers extends basic containers by introducing membership triples that
provides more flexibility than containment triples. They enable the use of predicates
from domain vocabularies and allow either the subject or object of membership
triples to refer to resources that may not be LDP resources (e.g. real-world entities).

To show the flexibility of direct containers, we continue the example of adding im-
ages for the parking facility in dex:Anvers4. Two design choices may be considered
when doing so:

• new images can be created directly in dex:Anvers4;

2.4. Linked Data Platform 1.0 47

• a specific container can be created in dex:Anvers4 to store images.

The advantage of the second design choice is that it allows referring to a set
of images directly. Assuming that the second design choice is used, we create the
direct container for storing images by sending the POST request in Listing 2.12
to the basic container dex:Anvers4. Notice the ldp:membershipResource and
ldp:hasMemberRelation predicates in the message body of the POST request that
are used to specify the subject and predicate of membership triples respectively. We
will see their usage when adding images below.

1 Request URL: http://data.example.com/Anvers4
2 Method: POST
3 Content-Type: text/turtle
4 Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type"
5 Slug: Anvers4Images
6 Message Body:
7 <> a ldp:DirectContainer;
8 ldp:membershipResource http://data.example.com/Anvers4#it;
9 ldp:hasMemberRelation schema:image .

Listing 2.12: POST request for creating a direct container in dex:Anvers4

Suppose that the POST request in Listing 2.12 is successfully processed with
the new direct container created with the IRI dex:Anvers4Images. A�er this, a
simple GET request on dex:Anvers4 returns the response in Listing 2.13 with its
representation in the message body. As we see, a containment triple (Line 10) is
added to the container dex:Anvers4 for the new container dex:Anvers4Images.
1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "90e52ce291112"
4 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 dex:Anvers4 a ldp:BasicContainer;

10 ldp:contains dex:Anvers4Images . #Containment triple
11
12 <#it> a on:ParkingFacility ;
13 on:carParkingSpaces 100 ;
14 on:motocycleParkingSpaces 50 ;
15 dc:title "Anvers" ;
16 geo:lat 48.835 ;
17 geo:long 2.3732;
18 foaf:primaryTopic ex:Anvers4 .

Listing 2.13: GET response on ex:Anvers4 a�er adding dex:Anvers4Images

Also, a GET request on the new container dex:Anvers4Images returns the re-
sponse in Listing 2.14. As we can see, in the message body of the response, container
does not contain any members so far.
1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "91e52ce291112"
4 Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 dex:Anvers4Images a ldp:DirectContainer;

10 ldp:membershipResource http://data.example.com/Anvers4#it;
11 ldp:hasMemberRelation schema:image .

48 Chapter 2. Semantic Web Technologies

Listing 2.14: Representation of Direct container ex:Anvers4Images

Now that the container dex:Anvers4Images for holding images has been created,
let us add an image to it by sending the POST request in Listing 2.15 with the encoded
image file.
1 Request URL: http://data.example.com/Anvers4Images
2 Method: POST
3 Content-Type: image/png
4 Link: <http://www.w3.org/ns/ldp#Resource>; rel="type"
5 Slug: Anvers4Image1
6 Message Body:
7 ### binary data for image ####

Listing 2.15: POST request for creating image in dex:Anvers4Images

Assuming the POST request in Listing 2.15 is successfully processed with the IRI
dex:Anvers4Image1 assigned to the newly non-RDF resource (i.e. the image), at
least the following two new triples will be created:

• the containment triple (Line 12), as we can see in the GET response in List-
ing 2.16, is added to dex:Anvers4Images for the new member, the image
dex:Anvers4Image1;

• the membership triple (Line 19), as we can see in the GET response in List-
ing 2.17, is added to dex:Anvers4 with its subject and object generated con-
sidering the ldp:membershipResource and ldp:hasMemberRelation defined
in direct container (Listing 2.12).

1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "91f52ce291112"
4 Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 dex:Anvers4Images a ldp:DirectContainer;

10 ldp:membershipResource http://data.example.com/Anvers4#it;
11 ldp:hasMemberRelation schema:image;
12 ldp:contains dex:Anvers4Image1 . # containment triple

Listing 2.16: GET response on dex:Anvers4Images a�er adding image

1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "91g52ce291112"
4 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 <> a ldp:BasicContainer;

10 ldp:contains dex:Anvers4Images .
11
12 <#it> a on:ParkingFacility .
13 on:carParkingSpaces 100 ;
14 on:motocycleParkingSpaces 50 ;
15 dc:title "Anvers" ;

2.4. Linked Data Platform 1.0 49

16 geo:lat 48.835 ;
17 geo:long 2.3732;
18 schema:image dex:Anvers4Image1; #membership triple
19 foaf:primaryTopic ex:Anvers4 .

Listing 2.17: GET response on dex:Anvers4 a�er adding image

In the above example, we were able to materialize the membership triples in
dex:Anvers4 because we used the resource <#it>1 as the membership resource
in the direct container dex:Anvers4Images instead of ex:Anvers4. We intuitively
did so following the examples in the LDP standard, though non-normative, that
materialize membership triples in the membership resource. However, the LDP
standard is not clear on this issue. In fact, we believe that the LDP standard has
some ambiguities regarding membership resources and membership triples. First,
it does not explicitly specify whether the membership resource should be an LDP
resource on the current server where the direct container is. Moreover, as we
mentioned, it does not explicitly specify the location where membership triples
should be materialized.

In short, compared to basic containers, direct containers introduce the notion
of membership triples whose membership resource and predicate can be specified
by the user. However, the member resource must be an LDP resource and conse-
quently its IRI is determined by the server [SAM15c, §5.4.1.5]. For example, in the
membership tripe in dex:Anvers4, the object is dex:Anvers4Image1 and cannot be
changed. This is where the limitation of direct container lies. In our example, this
was not a problem. However, suppose that we want to add parking managers to the
parking facility in dex:Anvers4 using their original IRIs, this is not possible using
direct containers. Let us illustrate in the next section how using indirect containers
allow us to do so.

Indirect Containers

To store parking managers for the parking facility in dex:Anvers4, we create an
indirect container by sending the POST request in Listing 2.18 to dex:Anvers4.
1 Request URL: http://data.example.com/Anvers4
2 Method: POST
3 Content-Type: text/turtle
4 Link: <http://www.w3.org/ns/ldp#IndirectContainer>; rel="type"
5 Slug: Anvers4PMs
6 Message Body:
7 <> a ldp:IndirectContainer;
8 ldp:membershipResource http://data.example.com/Anvers4#it;
9 ldp:hasMemberRelation on:parkingManager;

10 ldp:insertedContentRelation foaf:primaryTopic .

Listing 2.18: POST request for creating container in dex:Anvers4

Compared to the representation of direct container in Listing 2.12, notice the in-
direct container’s property ldp:insertedContentRelation on Line 10 (Listing 2.18).
Briefly, it allows retrieving a resource from the newly created LDP RDF source to be
used in the membership triple. We will see its use when creating parking managers
below.

1This resource is in dex:Anvers4 and its absolute IRI is h�p://data.example.com/Anvers4#it

50 Chapter 2. Semantic Web Technologies

Suppose that the indirect container is successfully created with IRI dex:Anvers4.
A�er this, a GET request on dex:Anvers4PMs returns the response in Listing 2.19.
As we can see in the message body, a containment triple (Line 11) is added to
dex:Anvers4.
1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "91h52ce291112"
4 Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 dex:Anvers4 a ldp:RDFSource, ldp:BasicContainer;

10 ldp:contains dex:Anvers4Images;
11 ldp:contains dex:Anvers4PMs . #Membership Triple
12
13 <#it> a on:ParkingFacility;
14 on:carParkingSpaces 100 ;
15 on:motocycleParkingSpaces 50 ;
16 dc:title "Anvers" ;
17 geo:lat 48.835 ;
18 geo:long 2.3732;
19 schema:image dex:Anvers4Image1; #membership triple
20 foaf:primaryTopic ex:Anvers4 .

Listing 2.19: Indirect container for parking managers

Now that the container dex:Anvers4PMs for storing parking managers has been
created, let us create a parking manager by sending the POST request in Listing 2.20
to it.
1 Request URL: http://data.example.com/Anvers4PMs
2 Method: POST
3 Content-Type: text/turtle
4 Slug: Anvers4PM1
5 Message Body:
6 <> a ldp:RDFSource;
7 foaf:primaryTopic ex:Anvers4PM1 .
8 ex:AnversPM1 a on:ParkingManager;
9 gr:legalName "Anvers Parking Manager";

10 schema:telephone "0754234448";
11 schema:email "parking@anvers.com" .

Listing 2.20: POST request for creating new parking manager

Assuming the request is successfully processed with the IRI dex:Anvers4PM1
assigned to the newly created resource, at least two new triples will be added. Firstly,
as we can see in the GET response (Listing 2.21) on dex:Anvers4PMs, a containment
triple (Line 13) is added for the new resource dex:Anvers4PM1.
1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "95h52ce291112"
4 Link: <http://www.w3.org/ns/ldp#IndirectContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 <> a ldp:IndirectContainer;

10 ldp:membershipResource http://data.example.com/Anvers4#it;
11 ldp:hasMemberRelation on:parkingManager;
12 ldp:insertedContentRelation foaf:primaryTopic;
13 ldp:contains dex:Anvers4PM1 . #Containment triple

Listing 2.21: GET response a�er adding dex:Anvers4PM1

2.4. Linked Data Platform 1.0 51

Secondly, as we can see in the GET response (Listing 2.22) on dex:Anvers4, a
membership triple (Line 20) is added to dex:Anvers4 to link the parking facility
with the new parking manager.

1 Status Code: 200 OK
2 Content-Type: text/turtle
3 ETag: "91i52ce291112"
4 Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type",
5 <http://www.w3.org/ns/ldp#Resource>; rel="type"
6 Accept-Post: text/turtle, application/ld+json
7 Allow: POST,GET,OPTIONS,HEAD
8 Message Body:
9 <> a ldp:BasicContainer;

10 ldp:contains dex:Anvers4Images;
11 ldp:contains dex:Anvers4PMs .
12
13 <#it> a on:ParkingFacility;
14 on:carParkingSpaces 100 ;
15 on:motocycleParkingSpaces 50 ;
16 dc:title "Anvers" ;
17 geo:lat 48.835 ;
18 geo:long 2.3732;
19 schema:image dex:Anvers4Image1;
20 on:parkingManager ex:Anvers4PM1; #membership triple
21 foaf:primaryTopic ex:Anvers4 .

Listing 2.22: GET response a�er adding dex:Anvers4PM1

Notice that the object of the membership triple is now a di�erent resource from
the newly generated LDP RDF source, i.e. dex:Anvers4PM1 and is generated using
the property ldp:insertedContentRelation and its value foaf:primaryTopic of
the indirect container. More precisely, it tells the LDP server that the resource to be
used in the object position of the membership triple should is indicated by the prop-
erty foaf:primaryTopic of the newly created LDP RDF source dex:Anvers4PM1.

To resume, direct containers only allow customizing the membership resource
and predicate in membership triples. Indirect contains extends on this and the
provide the flexibility to even specify members that may be both LDP resources and
external resources.

Synthesis

As we have seen in the previous section, the LDP standard provides di�erent types
of LDP resources for di�erent use cases and defines forms of HTTP requests and
responses to interact with these resources. Let us now describe the LDP standard
with respect to data access requirements identified in Chapter 1 (Section 1.3.3).

Standardized High-Level Data Access The LDP standard contribute to this
requirement by providing a standard way to expose and access Linked Data resouces.
It extends the Linked Data principles and enable both read and write operations
on resources. Also, it describes part of the standard that must be implemented by
all LDP servers. Consequently, this enhances interoperability between LDP servers
and clients and enable development of generic LDP server and client applications.

High-Level Data Access Description The LDP standard contribute to this re-
quirement by defining and describing the interaction model and domain model.
The interaction model provide a detailed description of what constitute valid LDP

52 Chapter 2. Semantic Web Technologies

requests and responses and specify the use of HTTP primitives (e.g. headers, sta-
tus codes) for di�erent types of read and write operations. Also, the data model
specify terms, together with their semantics,that may appear in the payload of LDP
responses. The interpretation of these terms are described in an OWL ontology, the
LDP Vocabulary1.

2.4.3 LDP Related Work
As we have seen, the LDP standard satisfies the requirements for enhancing data
access interoperability meaning that in highly decentralized information ecosystems,
data publishers may expose data from data providers using LDPs. In this section,
we describe to what extent current works related to LDP can help when generating
LDPs from existing data sources. They can be categorized into the peer reviewed
scientific work and LDP implementations.

[HNS12] is the core work that has given rise to the LDP standard. The remaining
scientific literature having a focus on LDP is limited to only four works [MGG13,
MPC+14, MGG14, LIG+16] to our knowledge. [MGG13] highlights the benefits of
LDPs for enterprise application integration. [MPC+14] demonstrates the generation
of LDPs from simple R2RML mappings (no SQL view, no multiple mappings to
a class/property) using hardcoded transformations without any customizing the
design of output LDP resources. [MGG14] demonstrates the use of a hardcoded
LDP adapter targeted only to the domain model of Bugzilla bug tracker2. Finally,
[LIG+16] defines a mapping from LDP standard to Constrained Application Protocol3

for the publication of Linked Data on the Web of Things. The current scientific
works are in their infancy and targeted to specific situations and models. Therefore,
we do not consider them again in this thesis.

LDP implementations can be categorized mainly in LDP resource management
systems and LDP frameworks and we further describe them in Section 2.4.3 and
Section 2.4.3 respectively.

LDP Resource Management System

LDP resource management systems are repositories that can host LDP resources
on top which CRUD operations adhering to the LDP standard are allowed through
HTTP interactions. To our knowledge, all LDP resources management systems
are referenced in the LDP conformance report4 with the exception of Cavendish5

that also forms part of this category. In their descriptions below, we omit Gold6,
rww-play7 and LDP.js8 and Cavendish because they provide li�le to no information
about their capabilities and features and to our knowledge, no other sources describe
these works.

1https://www.w3.org/ns/ldp, last accessed 4 August 2018
2https://www.bugzilla.org/, last accessed 6 August 2018
3http://coap.technology/, last accessed on 7 August 2018
4https://www.w3.org/2012/ldp/hg/tests/reports/ldp.html on 19 July 2017
5https://github.com/cavendish-ldp/cavendish, last accessed on 10 April 2018
6https://github.com/linkeddata/gold, last accessed on 10 April 2018
7https://github.com/read-write-web/rww-play, last accessed on 10 April 2018
8https://github.com/spadgett/LDPjs, last accessed on 10 April 2018

https://www.w3.org/ns/ldp
https://www.bugzilla.org/
http://coap.technology/
https://www.w3.org/2012/ldp/hg/tests/reports/ldp.html
https://github.com/cavendish-ldp/cavendish
https://github.com/linkeddata/gold
https://github.com/read-write-web/rww-play
https://github.com/spadgett/LDPjs

2.4. Linked Data Platform 1.0 53

The LDP resource management systems vary mainly on their supports for the
di�erent types of LDP resources and the side tools they provide to facilitate their
usage. The OpenLink Virtuoso server1 supports only LDP RDF sources and basic
containers. It supports LDP interactions to these two types of resources by using
WebDAV as a proxy mechanism.

Compared to Virtuoso, Apache Marmo�a additionally support LDP Non-RDF
sources and is open source. It has a modular architecture consisting of a number of
modules that o�ers additional support for managing LDP resources. It comes with
a triplestore (KiwiTriplestore2) and support querying through SPARQL. It allows
traversing RDF graph using the language LDPath [SBK+12] that is also called the
XPath of Linked Data. Also, it supports versioning and reasoning.

Callimachus3 is also open source and like Apache Marmo�a, it supports LDP RDF
and Non-RDF sources with the exception of basic containers. Instead, it support indi-
rect containers. Also, it is shipped with an RDFa templating language [BWLR12] that
aims at generating web pages from RDF resources with embedded RDFa [AHSB12].

Fedora Commons is an open source repository system for managing and dis-
seminating digital content while CarbonLDP is an LDP application server. Both
Fedora Commons and CarbonLDP support all types of LDP resources. In addition
to this, CarbonLDP also provides a higher level API on top of LDP that is used to
authenticate and manipulate resources.

None of the above LDP resource management systems provide automated sup-
port for generating LDPs even if the data is already in RDF. To generate LDP
resources from existing data sources and deploy them on LDP resource manage-
ment systems, manual development of LDP resource generators is required. Naively
developing these generators by hardcoding design decisions in them may make
the design tightly coupled with the implementation. Consequently, it may be both
di�icult to maintain and reuse the design. Also, further manual development may
be required in LDP resource generators to generate LDP resources from data that is
heterogeneous or has hosting constraints.

LDP Frameworks

LDP frameworks include APIs and code libraries for that development of components
to facilitate the development of LDP applications either on the client or server side.
Below, we describe two such so�ware applications both of which are referenced by
the LDP conformance report.

LDP4j [EGMGC14] is an open source Java-based framework for the development
of read-write LDP specification that supports all types of LDP resources. Its aim is
to abstract the complexity of the LDP protocol by providing components that can be
used by clients and server applications to handle and implement LDP interactions.

Compared to LDP4j, Eclipse Lyo4 has two main di�erences. Firstly, it supports
only LDP basic and direct containers and non-RDF Sources. Secondly, it implements
Open Services for Lifecycle Collaboration5 specifications whose aim is to facilitate

1http://virtuoso.openlinksw.com/
2http://marmotta.apache.org/kiwi/, last accessed 6 August 2018
3http://callimachusproject.org, last accessed on 10 April 2018
4https://wiki.eclipse.org/Lyo/LDPImpl, last accessed on 11 April 2018
5https://open-services.net/, last accessed on 11 April 2018

http://virtuoso.openlinksw.com/
http://marmotta.apache.org/kiwi/
http://callimachusproject.org
https://wiki.eclipse.org/Lyo/LDPImpl
https://open-services.net/

54 Chapter 2. Semantic Web Technologies

data interoperability and reduce incompatibilities between so�wares and is aimed
to be independent of domains, so�ware vendors or specific product.

The aim of LDP frameworks is only to facilitate the manual development of
LDPs and thus provide no automated support for generating LDPs. Naively doing
so by hardcoding design decisions in them may make the design tightly coupled
with the implementation of the LDP and consequently make it both di�icult to
maintain and reuse the design. Moreover, LDP frameworks provide no support for
handing heterogeneous data or those having hosting constraints and consequently,
these have to tackled programmatically.

2.5 Synthesis
In this chapter, we have shown that Semantic Web standards can be a good alter-
native for enhancing data interoperability. More precisely, we have describe how
RDF, RDFS/OWL and the LDP standard can enhance interoperability at syntactic,
semantic and data access in highly decentralized information ecosystem. For every
of these standards, we have briefly described some existing technologies and tools
that facilitate their implementation and/or usage. In particular, we have stressed
on the LDP standard as it is the core of our thesis and we use it as the final step
when Semantic Web standards and technologies are used for publishing data.When
presenting LDP related work, we showed that the current scientific literature on
LDP is limited and also its referenced implementations are basic. We have cate-
gorized these implementations into LDP resource management systems and LDP
frameworks.

As we have seen, with both categories of LDP implementations, se�ing up an
LDP is still complex even if the data source is in RDF. Moreover, it requires manual
development that if naively undertaken can make the design tightly coupled with
the implementation. Also, if the data source is heterogeneous or have hosting
constraints, further manual development would be required. The di�iculty posed
by existing LDP implementations can demotivate the adoption of the LDP standard.
Therefore, to motivate its usage in highly decentralized information ecosystems, we
require that an approach or tool for generating LDPs should satisfy the requirements
(in boldface):

• Automated LDP generation: provide support for automating the generation
of LDPs ;

• Design Reusability: ensure that LDP design are reusable;

• Hosting constraints: provide support for handling data having hosting con-
straints;

• Data Heterogeneity: provide support for handling heterogeneous data
sources.

Considering the above requirements, we proceed with the next chapter where we
provide a model-driven engineering approach that satisfies the la�er requirements.

55

Part II

LDP Generation

57

Chapter 3

Model-Driven LDP Generation

In the previous part, we have seen that Semantic Web technologies satisfy the
requirements for enhancing interoperability in highly decentralized information
ecosystem. Yet, instantiating LDPs to expose existing data sources may involve
di�erent problems and we have identified requirements that a solution must satisfy
to solve these problems. Therefore, in this part, we present a solution that satisfy
these requirements in the form of a workflow whose core is a language to describe
the design of LDPs.

In this chapter, we focus on the workflow and describe the principles and deci-
sions on which it is based on. To this end, in Section 3.1, we illustrate the problems
with current LDP implementations identified in the previous chapter when de-
veloping LDPs to expose existing data sources. Also, we describe principles from
model-driven engineering that may be used to tackle these problems. Then, in
Section 3.2, we provide a generalized model-driven LDP generation life cycle that is
obtained by applying the la�er principles in the LDP development life cycle. More-
over, we identify core LDP design and deployment aspects that may be considered
in the model-driven LDP generation life cycle. Finally, in Section 3.3, we describe an
LDP generation workflow that is based on the model-driven LDP generation life
cycle and the identified LDP design and deployment aspects that we consider.

Contents
3.1 Foundations . 58

3.1.1 LDP Development . 58

3.1.2 Model-Driven Engineering Principles 61

3.2 LDP Generation Principles 65

3.2.1 Model-Driven LDP Generation 65

3.2.2 LDP Design Aspects . 66

3.2.3 LDP Deployment Aspects 70

3.3 LDP Generation Work�ow 71

3.3.1 LDPization Process . 72

3.3.2 Deployment Process . 73

3.3.3 Work�ow Instantiation Example 74

3.4 Summary . 74

58 Chapter 3. Model-Driven LDP Generation

3.1 Foundations
In this section, we describe the foundations for automatizing the generation of
LDPs from existing data sources. More precisely, in Section 3.1.1, we describe the
development of LDPs for exposing data sources in the form of a life cycle in which
we also illustrate the problems with current LDP implementations described in
Chapter 2 (in Section 2.4.3 and 2.4.3). Then in Section 3.1.2, we describe principles
from model-driven engineering that may be applied in the LDP development life
cycle to solve the la�er problems.

3.1.1 LDP Development
Any development process consists of three main phases namely design, implemen-
tation and deployment. In this section, we describe the development with respect
to these phases required for exposing existing data sources via LDPs using existing
LDP implementations wherever possible. To this end, in Section 3.1.1, we describe
the parts from the architecture of an LDP. Then, we describe the phases namely
design, implementation and deployment of these parts in Section 3.1.1, Section 3.1.1
and Section 3.1.1. When describing the phases, we illustrate the problems identified
in Chapter 2 (Section 2.5) and use italicized text to refer to them.

LDP Architecture

Figure 3.1 shows a high-level view of an LDP from the perspective of the model-
view-controller architectural pa�ern consisting of three components: model, view
and controller. The view acts as an interface between the LDP and its clients.
It routes input request from clients to the controller and returns data from the
controller to clients. On obtaining a request, the view delegates it to the controller
that processes it. Request processing may involve applying some control on the
input (e.g. validation) and/or requesting data from the data store. The result of the
processing is embedded in an LDP response and sent as output.

Model
(Data)View

(Interface)

Controller

Input

Output

Figure 3.1: Components of an LDP

In the next three section, we describe the di�erent phases in the development of
LDPs based on the model-view-controller architecture. This description is based on
our experience of developing the smart city artifacts web portal [BBZ16] that is also
a linked data-based platform architectured per the model-view-controller pa�ern.

3.1. Foundations 59

Design Phase

We use Figure 3.2 to describe the di�erent phases of development. In the design
phase, during Design Decision Making, design aspects about the data, view and
controller are characterized and decisions about them are taken.

Design Decision
Making

Design Phase Implementation Phase Deployment Phase

Design
Decisions

LDP Resource
Generator

Implementation

Controller
Implementation

<<deploy>>

LDP
Frameworks

Existing Data sources

LDP Resource Deployer
Implementation

Controller
Deployment

LDP Resource Generation

LDP Resource
Deployer

LDP Resource
Deployment

LDP Resources
LDP Resource
Management System

Deployment Decision
MakingLDP Resource

Generator

LDP Resources

View
Implementation

<<uses>>

<<uses>>

View
Deployment

Deployment DecisionsDesign aspects

Deployment
aspects

Figure 3.2: Overview of phases in the development of LDPs

The final output of data design is to have an LDP domain model per which data
is organized on the LDP and a data structure to store the data. However, the data
may be heterogeneous. Since we use RDF as a pivot data syntax, as mentioned in
Chapter 2 (Section 2.1), RDF view are created for heterogeneous data by writing
transformation documents that may be in languages or technologies described in
Chapter 2 (Section 2.1.2). Before doing so, there may be several other sub-phases,
such as design of IRIs for resources from the heterogeneous data or design of
ontologies for structuring the data. While these sub-phases are fundamental to
Linked Data publication, in this thesis, we reuse existing work and assume that RDF
views may be created for heterogeneous and therefore consider LDP design only
from RDF data.

Based on the la�er assumption, data design would then involve se�ing up the
LDP model that would normally be an instance of the LDP domain model shown in
Figure 2.3. In short, this requires taking decisions about IRI and content of containers
and their members. Finally, the data structure to store data need to be identified
a�er which the di�erent aspects from the LDP domain model would be mapped to
the data structure.

60 Chapter 3. Model-Driven LDP Generation

Designing the view consists of two parts. Firstly, the di�erent endpoints to expose
and their structure, as they may be nested, must be defined. Secondly, the users’
interactions with the endpoints need to be specified. Since LDP interaction is based
on HTTP, doing so requires qualifying the design of HTTP requests and responses.
Although much of this has already been specified by the interaction model of the
LDP standard, there are still aspects that are open such as authentication, access
rights, etc.

Finally, controller design is concerned with the design of algorithms that pro-
cesses the inputs and generates the outputs. The main design aspects of these
algorithms would include controls to be applied on inputs (e.g. validation, security)
from the view, and the type of data required from the LDP data store, and finally
the transformation to be applied on them to generate the output.

Implementation Phase

In the implementation phase, the LDP is built by encoding the design decisions in it.
More precisely, with respect to the model, the LDP model is physically implemented
in a data structure considering only decisions and mapping between them that
were specified in the design phase. Then, an LDP Resource Generator is manually
implemented by encoding data design decisions in it to generate LDP resources
from existing data sources per the LDP model and store them in the data structure.
As mentioned before, data may be heterogeneous and before they can be consumed
by the LDP Resource Generator, further manual implementation may be required
to convert them into RDF. To deploy the LDP resources, we use an LDP Resource
Deployer whose implementation requires encoding the deployments decision taken
in Deployment Decision Making. These deployment decision may be taken at anytime
before the deployment phase.

With respect to the controller and the view, there are two ways of obtaining
them. O�-the-shelf LDP controllers may be obtained by instantiating LDP Resource
Management systems that may be thought of as consisting of a generic controller
and view. In some specific situations, LDP resource management system may be too
generic. In these situations, in View Implementation and Controller Implementation,
custom views or controllers may be manually implemented from scratch by encoding
their design decisions in their implementation. To facilitate their implementation,
LDP Frameworks may be used.

As we have seen, developing the view, controller and LDP resource generator
may require much Manual Implementation. Also, their development may raise the
Tight Coupling problem as while encoding the design decisions in them, if they are
tightly coupled with their implementation, it may be di�icult both to maintain and
reuse the design. These two problems also applies when implementing the LDP
resource deployer and encoding the deployment decision in it. Moreover, as we
have seen, heterogeneity of existing data sources may raise the Data Heterogeneity
problem that may in turn again raise the Manual Implementation problem.

Deployment Phase

Finally, in the deployment phase, the view, controller and the data are deployed.
Deploying the view and controller may be rather straightforward and done by

3.1. Foundations 61

uploading and configuring implementations in the production environment.
To deploy the data, the LDP resources may be deployed using the LDP Resource

Deployer. However, the data sources from which the LDP resources have been gener-
ated may have hosting constraints, such as storage limitations or license restrictions
requiring. Thus, further manual implementation may have to be undertaken when
exploiting these data sources. For example, in the la�er case, LDP resource syn-
chronizer may be developed to ensure that the LDP resources exposed by the LDP
system is up-to-date. As we can see, in the deployment phase, the Hosting Constraint
problem related to data sources may in turn again raise the Manual Implementation
problem.

As we can see, the development of LDPs to expose existing data sources may
raise problems especially in the implementation and deployment phase. Let us
consider model-driven engineering principles that may be used to tackle these
problems.

3.1.2 Model-Driven Engineering Principles
In this section, our objective is to describe model-driven engineering principles
that may be used to automatize the generation of LDPs from existing data sources.
To this end, in Section 3.1.2, we provide an overview of model-driven engineering
methodology. Then, in Section 3.1.2 and Section 3.1.2, we describe components of
model-driven engineering at the application domain and application level respec-
tively.

Overview

Figure 3.3 shows a general overview of the core concepts in model-driven engineering
and their inter-relationships. In our description, italicized words refer to concepts
from this figure. In short, model-driven engineering involves using models (i.e. Source
Models and Object Models) as first-class entities and transforming models to models
or models to platforms using generators or by dynamically interpreting the models
at run-time [FR07]. Doing so enables separation of concerns thus guaranteeing
higher reusability of systems’ models [SVB+06].

Two levels are identified: Application Domain level where Domain Modeling
Languages and Transformation Definition are setup and Application level where
models are defined using these languages and transformations. At the Application
level, source models are created or wri�en using domain modeling languages and
automatically transformed into object models, through Model Transformation. They
may then be deployed on platforms.

For this to be possible, at Application Domain level, the domain modeling lan-
guages, transformations and platforms for writing, processing models and hosting
models need to be defined respectively. There exist other meta levels for defining
formalisms in which domain modeling and transformation languages may be de-
fined. However, we do not consider them as general-purpose languages (e.g. UML,
OWL, Java, Python, etc.) that may be used for defining domain modeling languages
and transformation already exist.

62 Chapter 3. Model-Driven LDP Generation

Model
Generation|Transformation

Source Model

Object Model

Platform

Transformation
Definition

Domain Modeling
Language

Domain Modeling
Language

Application Application Domain

M
od

el
-to

-M
od

el
 T

ra
ns

fo
rm

at
io

n

M
od

el
-to

-P
la

tfo
rm

 T
ra

ns
fo

rm
at

io
n

uses

defined using

Model Deployment

Figure 3.3: Application of model-driven engineering methodology adapted from [BCW12]

In this chapter, we are focus on the application level while the next chapter is
focused on the application domain level. We now describe Application Domain and
Application levels in more detail in Section 3.1.2 and Section 3.1.2 respectively.

Application Domain Level

In this level, the problem and solution space of the application domain are studied to
identify the features participating in the Domain Modeling Language, Transformation
Definition and Platform. We detail Domain Modeling Language, Transformation
Definition and Platform below.

Domain Modeling Language Figure 3.4 shows a general overview of concepts
in a modeling language whose aim is to formally express the relevant concepts of a
domain as formal models. As such, the domain modeling language is itself based on
a meta-model that defines valid inter-relationships between aspects of a domain
that encompasses its abstract syntax and static semantics. For writing formal model,
there may be several concrete syntaxes in textual or graphical representations. The
formal models are expressed in the concrete syntax and are conceptually instances of
the domain modeling language’s meta-model. The formal models gets their meanings
from the domain-specific language’s semantics.

As shown in Figure 3.5, there are two main types of domain modeling lan-
guages: configuration parameters and graph-like languages. Configuration param-
eters are used when domain objects have simple structures and can be described
using atomic parameters while graph-like languages are used for domain objects
with graph-like structures. Along the continuum between these two extremes may

3.1. Foundations 63

Figure 3.4: Overview of Domain-Specific Language in MDE [SVB+06]

lie other types of domain-specific languages such as tabular or feature-model based
configuration [SVB+06].

Figure 3.5: Main types of domain-specific language [SVB+06]

As we seen in Chapter 2 (Figure 3.2), during LDP design, design aspects may
be characterized and decisions may be taken for them. In this context, a domain
modeling language may be set up with constructs for characterizing these design
aspects in the form of models. To transform these models into other models or exe-
cutable artifacts, transformation needs to be defined. We describe Transformation
Definition in the next section.

Transformation Definition As defined in [KWB03], a Transformation Definition
“is a set of transformation rules that together describe how a model in the source language
can be transformed into a model in the target language”. Also, a transformation rule “is
a description of how one or more constructs in the source language can be transformed
into one or more constructs in the target language”. The source and target languages
refer to the domain modeling languages in which the source and target models have
been wri�en respectively.

In the context of LDPs, transformation may be defined to generate an LDP
controller in the form of executable code from the design model mentioned in
the previous section. To do so, transformation rules need to defined between
the constructs of the model’s language and the constructs of executable code’s
programming language.

64 Chapter 3. Model-Driven LDP Generation

Platform Platform represent the ultimate solution space where models are ex-
ecuted or interpreted at runtime. They provide an environment in which models
can be used to instantiate a running system or part of a system. Figure 3.6 shows
an abstract view of a platform. As we can see, a platform supports the realization
of a domain [SVB+06]. It can have several building blocks that may be built using
libraries, frameworks, etc. In our context, a platform can be seen as any environment
on which an LDP can be instantiated such as an LDP resource management system
that was described in Chapter 2 (Section 2.4.3) or simply an LDP server.

Figure 3.6: Abstract view of a platform [SVB+06]

Application Level

At the application level, target models for instantiating platforms partly or wholly
are created from source models through model transformations. Source models may
be manually wri�en or generated from other models transformations. Thus, the
focus in this level is the usage of Model Generation|Transformation. In model-driven
engineering, a transformation “is the automatic generation of a target model from
a source model, according to a transformation definition” [KWB03]. There are two
main types of model transformations [SVB+06]: model-to-model and model-to-
platform. Both model-to-model and model-to-platform transformation are based
on Transformation Definition that as we mentioned in the previous section is a set
of transformation rules between constructs of Domain Modeling Languages.

A Model-to-Model Transformation generate a target model from a source model.
The source and target model are normally based on di�erent meta-model and the
la�er transformation uses the mapping between the constructs of the source and
target meta-model to produce the target model.

A Model-to-Platform Transformation is a specific type of model-to-model trans-
formation where the target model is compatible with the target platform and can
be deployed directly on it. The target model from this transformation is usually
referred as generated artifacts as they can include source code or text. Also Model
Deployment simply involve uploading the target model on the platform. This process
may be part of the model-to-platform transformation itself.

For example, a model-to-model may generate LDP resources in a pivot model
taking as input an LDP design model and existing data sources. However, a particular

3.2. LDP Generation Principles 65

LDP resource management system (described in Section 2.4.3) such as Apache
Marmo�a may use a di�erent model for storing LDP resources. To deploy the
LDP resources to Apache Marmo�a, a model-to-platform transformation may be
used to generate LDP resources from the pivot model to the model used by Apache
Marmo�a.

3.2 LDP Generation Principles
In Chapter 2 (Section 3.1.1), we have described the development required for exposing
existing data sources via LDPs and highlighted the manual tasks involved. In this
section, in Section 3.2.1, we describe how model-driven engineering principles,
presented in Section 3.1.2, can automatize this development process. Then, in
Section 3.2.2 and Section 3.2.3, we describe the design and deployments aspects of
LDPs that should be considered when automatizing their generation.

3.2.1 Model-Driven LDP Generation
Figure 3.7 shows the application of model-driven engineering principles in the LDP
development life cycle in Figure 3.2 at the application level (Section 3.1.2). This
is why in the figure, we assume the existence of the domain modeling languages
are in boldface text, and generators are in white squares, that are elements of the
application domain level (Section 3.1.2) discussed in the next chapter.

In the design phase, the LDP Design Language is used to formalize the LDP design
(described in Section 3.2.2) and their decisions in LDP Design Models. As mentioned
before, the LDP design consist of design aspects related to view, controller and
model and therefore the LDP design language provide constructs to characterize
these aspects.

Also, we have a Generation Phase instead of an Implementation Phase as in
Chapter 2 (Figure 3.2). In the Generation Phase, there three generators used. The LDP
View Generator and Controller Generator exploit the LDP design model and generate
the view and controller. Both processes are model-to-platform transformations as
their output (i.e. view and controller) are components of the LDP.

The LDP Resource Generator generates LDP resources and stores them in a
structure that we refer to as the LDP Dataset by processing the LDP Design Model
with respect to existing data sources. The LDP Dataset’s meta-model is the LDP’s
domain model presented in Chapter 2 (Figure 2.3). Thus, this is a model-to-model
transformation. However, it can also be a model-to-platform transformation if ever
there is an LDP server that can directly consume the LDP Dataset.

Finally, during the Deployment Phase, the view, controller and data are deployed.
While the deployment of the view and controller may be straightforward, that
of the data may involve considering several deployments aspects (described in
Section 3.2.3). The LDP Deployment Language is used to capture these decisions in
LDP Deployment Model. This model together with the LDP Dataset is then used
by the LDP Dataset Deployer to deploy the LDP resources on an LDP. This is an
example of Model Deployment presented in Figure 3.3 and described in Section 3.1.2.

66 Chapter 3. Model-Driven LDP Generation

Design Phase Deployment Phase

<<deploy>>

Existing Data sources

Controller
Deployment

LDP Resource Deployer

LDP Resource Deployment

LDP Resources
LDP Resource
Management System

View
Deployment

LDP Deployment
Model

LDP Design
Model

Formalization

LDP Design
Language

LDP Deployment Model
Formalization

LDP Resource
Generator

LDP Resource Generation LDP Dataset
containing LDP
Resources

LDP
Design
Model

<<deploy>>

<<deploy>>

LDP View
Generator

LDP View Generation

LDP Controller
Generator

LDP Controller Generation

Generation Phase

<<uses>>

LDP Deployment
Language

<<uses>>

Figure 3.7: LDP Design and Deployment using MDE

As we can see, both the LDP design language and deployment language are
central to the automatic LDP generation. All the generators from Figure 3.7 imple-
ment the semantics of either of these languages to process models wri�en in them.
Languages and generators are elements from the application domain level and as
we mention before, their formalization are described in the next chapter.

Before that an LDP design or deployment language may be formalized, the
aspects that they characterized needs to be identified. We identify LDP design and
deployment aspects that may be characterized by an LDP design or deployment
language in Section 3.2.2 and Section 3.2.3 respectively.

3.2.2 LDP Design Aspects
As we have seen, an LDP design include the design of its model, view and controller.
For each of these components, several design aspects have to be considered. It may
not be possible to consider all the design aspects as several of them may arise from
specific use cases.

LDPs are data-driven systems and their controllers and views may entirely
driven by the model (or data). Thus, it is possible to limit the LDP design only to
model design and implement both the controller and view only by considering the
model design. Nevertheless, the model itself may have several design aspects but we
believe the fundamentals ones to be the three main a�ributes of an LDP resource,
which is its IRI, content and type. These a�ributes can be naturally derived from
the LDP standard.

3.2. LDP Generation Principles 67

For example, consider a GET request on an LDP Resource. To perform such a
request, the resource’ IRI should be known. Now, if the request is successful, the
response obtained should contain at least the content of the resource that must
obligatory be either in RDF or Non-RDF. Furthermore, if the content is in RDF, as
per the LDP standard [SAM15c, §5.2.1.4], the result should contain an HTTP Link
header indicating the type of container.

Now that we have identified the core design aspects, we describe an example in
Section 3.2.2 and use it to illustrate the core design aspects type, content and IRI of
LDP resources in Section 3.2.2, Section 3.2.2 and Section 3.2.2 respectively.

Illustrative Example

Figure 3.8 (a) shows part of an RDF graph that uses the DCAT vocabulary [ME14a]
and which describes some catalogues and their datasets, distributions and themes.
We use an RDF graph because as mentioned in Chapter 2 (Section 2.1), RDF satisfies
the requirements for syntactic interoperability.

ex:paris-catalog

ex:parking

ex:pJSON
ex:pCSV

dcat:Catalog

dcat:Dataset

dcat:Distribution

ex:transport
ex:mobility

dcat:Theme

dcat:distribution dca
t:th

em
e

ex:busStation

dcat:dataset

Instance of

ex:bsJSON
ex:bsXML

dcat:distribution

ex:toulouse-catalog

dex:parking a ldp:BasicContainer;
 foaf:primaryTopic ex:parking;
 ex:parking a dcat:Dataset;
 dcat:keyword "parking","cars";
 ldp:contains dex:pDistributions,
 dex:pThemes.

dex:pJSON a ldp:RDFSource;
 foaf:primaryTopic ex:pJSON .
 ex:pJSON a dcat:Distribution ;
 dct:format "JSON" ;
 dcat:accessURL
<http://example.com/data/pjson> .

(a)

(c)

(d)

dex:paris-catalog

dex:parking

dex:pCSV
dex:pJSON

dex:pDistributions

http://www.w3.org/ns/ldp#contains

dex:transport
dex:mobility

dex:pThemes

dex:busStation

dex:bsXML
dex:bsJSON

dex:bDistributions

dex

d1:toulouse-catalog

(b)

Figure 3.8: Example of an RDF Graph, LDP generated from it and content of some LDP
resources

Figure 3.8 (b) shows the structure of an LDP generated from the RDF graph.
The LDP resources describes resources from the RDF graph. Resources from the
RDF graph cannot be directly used as LDP resources as the LDP standard states
that “a contained LDPR1 cannot be created (. . .) before its containing LDPC2 ex-
ists” [SAM15a, §2]. Thus, for each resource from an RDF graph that needs to be
exposed via an LDP, a distinct LDP resource needs to be created to describe it.
The RDF resource for which an LDP resource is generated is referred to the LDP
resource’s related resource. For example, the related resource of dex:paris-catalog
and dex:parking is ex:paris-catalog and ex:parking respectively.

1LDP Resource
2LDP Container

68 Chapter 3. Model-Driven LDP Generation

Figure 3.8 (c) and Figure 3.8 (d) shows the content of resources dex:parking

and dex:pJSON respectively. Every resource from the LDP structure in Figure 3.8 (b)
having an outgoing arrow is an LDP container and the resource to which the
arrow points is its member. For example, the container dex:parking has members
dex:pDistributions and dex:pThemes. Also, Figure 3.8 (c) shows the content of
dex:parking and we can see the enumeration of these members in boldface text.

Now that we have described the example in Figure 3.8, let us use it to illus-
trate how the core design aspects (Type, content and IRI of LDP resource) can be
characterized in the next three sections.

Type of LDP Resource

As mentioned in Chapter 2 (Section 2.4), there may be di�erent types of LDP re-
sources. In this work, we consider only RDF sources and basic containers. Therefore,
for each resource that needs to exposed via an LDP, it must be decided whether to
create an RDF source or basic container to describe it. This decision depends entirely
on specific use cases. Indeed, opting for a basic container may be more flexible as it
opens the possibility for other resources to be added into it. This is why some LDP
resource management systems like Fedora Commons uses only containers rather
than RDF sources. However, in some cases, such flexibility may not be desired.

For example, the decision has been made to create a container dex:pDistributions
and RDF source dex:pJSON to describe resource ex:pDistributions and ex:pJSON

from the RDF graph in Figure 3.8 (a) respectively. Such a design decision may be
taken simply because the designer may intend to add more resources in dex:pDistributions

in the future while ex:pJSON would not contain resources. Also, as we mentioned
before, the data design may a�ect the view design also. Therefore such a decision
may have been taken from a view perspective to provide a view design that may be
more natural to the particular domain, in this case, DCAT datasets. Thus, the LDP
resources type may have a considerable impact on the resulting LDP design as it
may both a�ect the way LDP resources are organized in the data store as well as
the design of the view.

Content of LDP Resource

The content of a non-container include its description in RDF. For example, dex:pJSON
content in Figure 3.8 (d). On the other hand, the content a container may be seen as
consisting of its description as well as its member resources. For example, consider
the content of dex:parking in Figure 3.8 (c). The content of an LDP RDF resource
may consist of two parts: the resource’s description and the resource’s members (in
bold) if it is a container.

The description of a container or non-container may be obtained by considering
the description of its related resource. However, RDF graphs are simply set of triples
and per the RDF standard, a resource in an RDF graph does not explicitly has a subset
of these triples reserved for its description. For example, consider dex:parking from
Figure 3.8 (b) whose related resource is ex:parking from Figure 3.8 (a). ex:parking
is simply a resource used in some triples of the RDF graph. There is no explicit set
of triples that is reserved for its description. Therefore, when creating LDP RDF

3.2. LDP Generation Principles 69

sources for resources from an RDF graph, the set of triples to use as the description
of the RDF resources needs to be explicitly specified.

With respect to member resources, organizing them in containers relates to a
typical problem of resource organization in RESTful Web services for which there are
no standard way. The organization of members in containers is an important aspect
of the content of LDP resources as it directly a�ects the design of LDPs’ view as the
containers and members ultimately becomes endpoints on the views. [All10, §2.3]
proposes a solution to group similar resources in containers based on application
specific designs. Following this proposal, the LDP design language should provide
enough freedom to allow specifying application specific designs.

For example, consider the container dex:paris-catalog. Its member resource in-
cludes dex:parking and dex:busStation because their related resources are linked
to the related of dex:paris-catalog via the dcat:dataset as shown in Figure 3.8 (a).
A di�erent design decision could have been taken to have other resources as the
member resources of dex:paris-catalog. For instance, resources linked via the
dcat:distribution could have also been considered.

IRI of LDP Resource

When creating LDP resources, their IRIs have to be characterized. Even if IRIs are
opaque resource identifiers, [DD11, §2] considers the design of IRIs as the most
important step when in Linked Data publication.

To this end, they provide a collection of design pa�erns. Below, we describe the
use of two of these design pa�erns, pa�erned IRIs and natural keys, that may be
used when characterizing the IRIs of LDP resources.

Pa�erned IRIs are used to create predictable and human-readable IRIs that are
both easy to remember and to create new ones. It can be applicable for sets of
resources that form natural hierarchies. In our case, this pa�ern may be used
to reflect the hierarchical relationship between LDP containers and its members.
For example, let us consider creating an LDP resource having as its related re-
source ex:parking in the container dex:paris-catalog. When generating the
IRI of the LDP resource, part of ex:parking’s IRI may be used together with
the IRI of dex:paris-catalog to indicate a container-member relationship. As-
suming that the expanded form of ex is http://example.com/ and that of dex

is http://data.example.com/, the final IRI generated for the new LDP resource
may be http://data.example.com/paris-catalog/parking. Following this pat-
tern may help to indicate that the resource with the la�er IRI is a member of
dex:paris-catalog.

Natural Keys are used when resources already have unique identifiers. Us-
ing this design pa�ern, IRIs of LDP resources can be generated by concatenat-
ing their identifier with a base. For example, let us again consider creating an
LDP resource having the related resource ex:parking. Assume that its IRI ex-
panded form is http://parkings.anvers.com. Suppose the namespace of the LDP
is http://data.example.com/, http://data.example.com/parkings.anvers.com

70 Chapter 3. Model-Driven LDP Generation

is the new LDP resource’s IRI obtained by concatenating its fully qualified domain
name with the namespace.

3.2.3 LDP Deployment Aspects
In this section, we discuss the aspects to be considered when deploying LDP re-
sources on an LDP server. In Section 3.2.3, We discuss the deployment of LDP
resources on physical servers and in Section 3.2.3, we describe access rights on
LDPs. In this thesis, we mostly focus on LDP design aspects when automatizing
the generation of LDPs from existing data sources. Therefore, we only describe the
deployment aspects below briefly.

Physical LDP Servers

When deploying LDP resources, logically they may pertain to a single LDP. However,
physically, they may be stored on di�erent LDP servers due to reasons such as
storage constraints, resources partitioning or replication schemes. For an LDP
resource deployer to be able to deploy the LDP resources on the appropriate physical
servers, a description should be supplied to it containing the location of servers on
which LDP resources are to be deployed.

Such a description may be at di�erent level of granularity. For example, it may
be as simple as an associative array where key represent the IRI of an LDP resource
and the value represent the IRI of LDP server where the LDP resource is to be
deployed. It may also be more complex, such as for each physical LDP server, a
set of constraints may be defined and LDP resources may be stored on it only if it
satisfies the la�er constraints. The la�er description may also be used by an LDP
controller to determine the physical location of LDP resources when applying a read
or write operation on them.

If we consider the structure in Figure 3.8 (b), it may be seen as a logical view of
an LDP. The resources from it may be partitioned on di�erent servers. Suppose an
LDP controller receives a GET request on the resource dex:paris-catalog from the
structure, it may use a deployment description of resources to know the location of
the resource to retrieve it and generate the response.

Access Rights

As mentioned in Chapter 2 (Section 2.4.1), the LDP standard defines several read-
write operations that may be performed in LDP resources. In di�erent use cases,
such as where there is sensitive data, there is a need to restrict these operations
only to authorized users. Access rights may be assigned to users or group of users
to describe whether or not they are allowed to perform some operations. Such a
description may also be used by the controller to apply access control on LDP request
from users such as verifying if the operations on the requested LDP resources are
allowed or not.

Considering the LDP structure in Figure 3.8 (b), di�erent type of access rights
may be defined for the resources. For example, restrictions may be placed on
containers (e.g. dex:paris-catalog,dex:parking) to allow some users to add or

3.3. LDP Generation Workflow 71

delete members. Similarly, restrictions may be placed on all resources, whether
containers or not, to allow certain users to update their RDF description.

3.3 LDP Generation Workflow
In the previous section, we have presented the model-driven LDP generation and
taken the decision to restricted LDP design to the three core design aspects (type,
IRI and content) and LDP deployment to a single LDP server. In this section, we
present our final proposal that satisfies the requirements specified in Chapter 2
(Section 2.5) for facilitating the generation of LDPs from existing data sources. We
refer to this workflow, shown in Figure 3.9, as the LDP Generation Workflow and it
is based on the model-driven LDP generation together the decision taken regarding
the LDP design and deployment.

LDPizer LDP Server

design
document

 LDP Dataset

LDP Dataset
Deployer

Deployment Parameters

LDP Dataset Server

Data sources

LDP Design
Language

<<uses>>

Figure 3.9: The LDP Generation Workflow

The LDP generation workflow consists of two main processes: LDPization and
Deployment. During the LDPization process, an LDP design language is used to
describe the design of the LDP in what we refer to as the design document. Then,
the design document is used with respect to the existing data sources to generate
LDP resources in a structure that we refer to the LDP dataset.

In the deployment process, the LDP dataset is deployed by instantiating an
LDP from it. The LDPization process precedes the deployment process but may not
necessarily be consecutive. The output from the LDPization process can be kept as
input to the deployment process at a di�erent time and on a di�erent machine.

We further describe the LDPization and Deployment process in Section 3.3.1 and
Section 3.3.2. In our description below, we make reference to the four requirements
identified in Chapter 2 (Section 2.5) using their names1 in italic and explain how
they are satisfied.

1Automatic LDP Generation, Design Reusability, Heterogeneity and Hosting Constraint

72 Chapter 3. Model-Driven LDP Generation

3.3.1 LDPization Process
The LDPization process is performed by an LDPizer, that is basically a generic LDP
resource generator as described in Section 3.2.1. The LDPizer takes as input some
existing data sources and a design document and output an LDP dataset containing
the LDP resources. We detail the LDPizer and its inputs and output below. As we
will explain in the next chapter, it can deal with static and dynamic data sources.

Existing Data Sources

The existing data sources are from where the content for the LDP resources will
be extracted. It can be in any data syntax but as mentioned before, we use RDF
as a pivot data syntax. Therefore, all non-RDF data sources are converted to RDF
using their transformation documents using techniques described in Chapter 2
(Section 2.1.2). As we will describe in the next chapter, LDP-DL provide a construct
to specify transformation documents for non-RDF sources.

Design Document

As mentioned before, the design document contains the definition of an LDP design
expressed in the LDP design language. As mentioned before, for now, we consider
only the core design aspects and therefore the LDP design language provides con-
structs for characterizing only these aspects. With respect to the di�erent types of
languages described in Section 3.1.2, it has a graph-like structure as it abstractly
describes the LDP resources and their inter-relationship that forms a graph as we
can see in Figure 3.8 (b).

As we mentioned in Section 3.2.1, it is possible to automatically generate the
design from existing data sources. However, doing so requires identifying design
pa�erns for the core design aspects that is beyond the scope of our work. However,
as we will describe later, we provide a way to partially automatize the design phase
through generic designs/pa�erns.

The LDP design language satisfies the Design Reusability requirement by en-
abling the formalization of LDP designs in design documents. The design documents
are separate and independent from any implementations may be reused by di�erent
actors. As we will describe in the next chapter, it also satisfies the Data Heterogeneity
and Hosting Constraint requirements by allowing the definition of LDP design on
heterogeneous data sources.

LDPizer

The LDPizer participates in the Automatic LDP Generation requirement by automat-
ing the generation of LDP resources in an LDP dataset from a design document
with respect to to some existing data sources. As mentioned before, this generation
is based on a model-to-model transformation (described in Section 3.1.2).

Moreover, as we will explain in the next chapter, the LDPizer also participate
in satisfying the Hosting Constraint requirement by generating a variant of LDP
dataset that may be interpreted at query time to exploit constrained data sources
without having to host content from them.

3.3. LDP Generation Workflow 73

LDP Dataset

As mentioned before, an LDP dataset is an implementation-agnostic data structure
to store LDP resources. An instance of the LDP dataset is the semantics of a design
document in the LDP design language. Di�erent LDP implementations may have
their own physical data structures of store LDP resources all of which can be seen
as instances of an LDP dataset. In an LDP dataset, each LDP resource is assigned a
URL and has an associated RDF graph, and a set of members if it is a container.

As we will explain in the next chapter, there are di�erent variants of LDP dataset,
one of which we refer to as dynamic LDP dataset. This variant of LDP dataset stores
LDP resources and instructions to generate their content at query time and thus
participates in satisfying the Hosting Constraint requirement.

3.3.2 Deployment Process
The deployment process involves instantiating an LDP from an LDP dataset. It can
be done in two di�erent ways based on the nature of an LDP server using some
deployment parameters. Firstly, an LDP dataset deployer can be used to deploy the
LDP dataset on an existing LDP server. Secondly, the LDP dataset can be directly
consumed by an LDP dataset server. The deployment parameters required, LDP
dataset deployer and LDP dataset server is described in Section 3.3.2, Section 3.3.2
and Section 3.3.2.

Deployment Parameters

In this work, we focus mostly on LDP design and therefore we perform simple
deployment. More precisely, we deploy LDPs only on a single physical server that
may require basic authentication. For characterizing these deployment aspects, we
use simple deployment parameters that, in the context of model-driven engineering,
would be considered as a simple configuration-based language which is a type of
domain modeling language as described in Section 3.1.2. The deployment parameter
that we consider are IRI for the location of the physical server and username and
password for basic authentication.

LDP Dataset Deployer

The LDP dataset deployer contribute to the Automatic LDP Generation requirement
by automating the deployment of LDP datasets in two di�erent ways. Firstly, it can
use a model-to-platform transformation described in Section 3.1.2 to generate from
the LDP dataset an implementation-specific artifact per the LDP server’s model
containing the LDP resources and then upload it into the data store of the server.

Secondly, as mentioned in Chapter 2 (Section 2.4.1), LDP resources may be
created on servers via LDP POST requests. Thus, the LDP dataset deployer may
generate LDP POST requests for each LDP resources from the LDP dataset to deploy
them on the corresponding LDP server. By doing so, the LDP server itself handles
the materialization of LDP resources in its implementation-specific model.

These two techniques have some pros and cons with respect to each other. The
first one may be more optimal when the LDP dataset is of considerable size as

74 Chapter 3. Model-Driven LDP Generation

creating POST requests for LDP resources and sending all of them at once may create
a bo�leneck both at the sender’s site when creating them, on the network when
sending them and at the destination LDP server when processing them.

The second one may be used when model used the LDP server to store LDP
resources in not known such as when the LDP server is closed source. This is because
to convert the LDP dataset to an implementation-specific artifact containing the
LDP resources, the mapping between the LDP dataset and the model used by the
LDP server must be know.

LDP Dataset Server

The LDP dataset server is a compatible LDP server that can directly consume an
LDP dataset to expose resources from it. In Section 3.2.2, we explained that the
controller and view of an LDP can be instantiated using only the data design aspects
as LDPs are data-driven systems. Actually, the LDP Dataset Server is based on this
concept. More precisely, it is a platform (described in Section 3.1.2) and consists of
a generic controller and view that are developed based on the core design aspects
and are instantiated the LDP dataset (the model). Thus, it participates in satisfying
the Automatic LDP Generation requirement.

The LDP dataset server also participate in the Hosting Constraint requirement
as it can interpret the dynamic LDP dataset mentioned in Section 3.3.1 and expose
LDP resources without having to host their content.

3.3.3 Workflow Instantiation Example
Let us now instantiate the LDP generation workflow in using the example in Sec-
tion 3.2.2. In the example, the LDP design language may be used to define a design
model to generate the LDP in Figure 3.8 (b) from the RDF graph in Figure 3.8 (a).
The model may then be expressed in the concrete syntax of the language in a design
document. In this case, the data source is already in RDF. But as we mentioned, we
use RDF as a pivot data syntax. Heterogeneous data sources may be considered by
considering their RDF transformation that may be specified in the design document
using a construct provided by the LDP design language. The LDPizer may use the
design document and existing data sources to generate an LDP dataset containing
the LDP resources in Figure 3.8 (b). Such an LDP dataset may then be deployed
on an LDP server using either of the two ways described in Section 3.3.2. Also, an
LDP can be directly instantiated by using the LDP dataset server to expose LDP
resources from the LDP dataset.

3.4 Summary
At the beginning of this chapter, we have described an LDP development life cy-
cle and highlighted problems that may be raised in it and describe model-driven
engineering principles that may be used to tackle these problems. By integrating
the principles in the LDP development life cycle, we have provided a generalized
model-driven LDP generation life cycle whose core are languages to describe design
and deployment aspects. Then, we have explained our decision to restrict the LDP

3.4. Summary 75

design and deployment to only some aspects. Based on the model-driven LDP
generation life cycle and decisions taken regarding LDP design and deployment,
we have provided an LDP generation workflow that satisfies the requirements for
facilitating the generation of LDPs identified at the end of the previous chapter.

77

Chapter 4

LDP Design Language

In the previous chapter, we have shown that the development of LDPs can be
automated using a model-driven engineering approach. More precisely, we have
provided the LDP generation workflow (in Section 3.3) to automatize the generation
of LDPs from existing data sources. As we have seen, a core element of the LDP
generation workflow is the design document wri�en in LDP-DL that describe the
design of an LDP and using an LDP dataset containing the LDP resources are
generated. To be able to write design documents and implement interpreters or
transformers that can process them, the syntax and semantics of LDP-DL need to
specified clearly.

Therefore, in this chapter, our objective is to formally describe the syntax and
semantics of LDP-DL. To this end, in Section 4.1.1, we start with an overview of our
language. Then, we formally describe its syntax and semantics in Section 4.2. In
Section 4.3, we describe LDP datasets, variabilities that can a�ect its validity and
provide ways to abstract these variabilities. Finally, in Section 4.4, we provide the
operation semantics of LDP-DL in the form of algorithms and demonstrate their
correcteness.

Contents
4.1 Overview of LDP-DL . 78

4.1.1 LDP-DL Model . 78

4.1.2 Illustrative Example . 79

4.2 Formal Description . 82

4.2.1 Preliminaries . 82

4.2.2 Abstract Syntax . 83

4.2.3 Model-theoretic Semantics 86

4.3 LDP Dataset . 94

4.3.1 Design Document Evaluation 94

4.3.2 Variability Abstraction . 95

4.4 Operational Semantics . 98

4.4.1 Evaluation Algorithms . 98

4.4.2 Proof of Correctness . 101

4.5 Summary . 110

78 Chapter 4. LDP Design Language

4.1 Overview of LDP-DL
In this section, we provide an overview of LDP-DL together with its syntax and
semantics in Section 4.1.1 and then in Section 4.1.2, we illustrate its use in the
generating an LDP using example.

4.1.1 LDP-DL Model
The core constructs of LDP-DL are ContainerMap, NonContainerMap, ResourceMap
and DataSource and they are shown in its abstract model in Figure 4.1. They enable
defining the core LDP design aspects identified in Chapter 3 (Section 3.2.2) with
the exception of IRIs. We exclude IRIs and consider it only in our concrete model,
described in the next chapter, because according to the LDP standard, the IRI of an
LDP resource is entirely determined by the LDP server [SAM15c, §5.2.3.10].

Uds : IRI
DataSource

...NRDFSource

ContainerMap
Ucm: IRI

0..*

1..*

0..*

1..*

NonContainerMap
Unm: IRI

Urm: IRI
qp: Query Pattern
cq: Construct Query

ResourceMap

CM: set <ContainerMap>
NM: set <NonContainerMap>

LDP-DL Design

1..*
0..*

0..*

RDFSource
Uloc: IRI Uloc: IRI

Ulr : IRI
…
…

...

Figure 4.1: Abstract model of LDP-DL in UML notation.

As we can see, the constructs have an IRI that is their names. LDP-DL designs
are instances of the model shown in Figure 4.1. In short, they provide an ab-
stract description of the containers and non-containers on an LDP. ContainerMaps
and NonContainerMaps are used to describe these containers and non-containers
respectively. ContainerMaps and NonContainerMaps use ResourceMaps to spec-
ify the graph of these (non-)containers and the resources they describe. As we
mentioned before, we refer to related resource as the RDF resource that an LDP
resource describes and this is an important term that we use in our syntax and
semantics. ResourceMaps use query pa�erns and CONSTRUCT queries with re-
spect to some DataSources to specify related resources of LDP resources and their

4.1. Overview of LDP-DL 79

graph respectively. ContainerMaps can be nested with other ContainerMaps and
NonContainerMaps to allow for nested hierarchies of LDP resources as containers
can have members that may be themselves containers and non-containers. Con-
sequently, containers and non-containers can have ancestors and their related
resources and graphs can depend on these ancestors.

Let us now illustrate the above concepts using an example in the next section.

4.1.2 Illustrative Example
Figure C.1 shows part of a design in LDP-DL. Though not shown in the figure, the
DataSource of the ResourceMaps is the RDF graph in Figure 4.3 (a). Figure 4.3 is
the same as Figure 3.8 in Chapter 3. We replicate the figure here for the sake of
readability. Also, in Figure 4.2, an arrow with the label cm, nm or rm indicates that
the language construct has a ContainerMap, NonContainerMap or ResourceMap.
Also, arrows originating from ResourceMaps with the label qp and cq indicate their
query pa�erns and CONSTRUCT queries respectively. Here, we do not provide these
queries but only their description in natural language as they contain a number of
concepts that we explain when providing the abstract syntax. The same LDP-DL
design with the queries is provided in Appendix C.1.

Select DCAT catalogs

LDP resource graph that describe a DCAT catalog

LDP resource graph that describe DCAT dataset

LDP resource graph that describe DCAT distribution

:catalog

:dataset

:distrib

:rm1

:rm2

:rm4

ContainerMap NonContainerMap ResourceMap Query pattern Construct Query

:distribs :rm3

:themes

cm

rm

cm

nm

cm

rm

rm

rm

qp

qp

qp

qp

cq

cq

cq

LDP resource graph to provide general info
cq

Select DCAT datasets with respect to a DCAT catalog

No resource are selected

Select DCAT distributions with respect to a DCAT dataset

 qp1

 cq1

 cq2

 cq4

 cq3

 qp2

 qp3

 qp4

Figure 4.2: Part of an LDP-DL design

80 Chapter 4. LDP Design Language

The RDF graph in Figure 4.3 (a) uses the DCAT vocabulary that describes data
catalogs having datasets that in turn may have distributions. The design document
in Figure 4.2 is used for generating an LDP1 having a similar structure. In the design
document, :catalog is used for creating containers for describing DCAT catalogs
and in which :dataset in turn creates containers as members that describes the
DCAT dataset of these catalogs. DCAT datasets can have themes and distributions.
Rather than directly creating LDP resources for themes and distributions directly in
their corresponding dataset containers, we use :distribs and :themes to create
distinct containers for grouping these LDP resources. In this way, we can directly
refer to the LDP resources that describes distributions or themes of a particular
dataset. In this example, we consider only :distribs and from the containers that
it generates, :distrib create non-containers as their members for describing the
corresponding distributions.

Let us now describe the evaluation of the design document in Figure 4.2 with
respect to the RDF graph in Figure 4.3 (a) as the DataSource to generate the LDP
whose structure is shown in Figure 4.3 (b). In the description below, resources with
prefixes ex, dex or : are from Figure 4.3 (a), Figure 4.3 (b) or Figure 4.2 respectively.

ex:paris-catalog

ex:parking

ex:pJSON
ex:pCSV

dcat:Catalog

dcat:Dataset

dcat:Distribution

ex:transport
ex:mobility

dcat:Theme

dcat:distribution dca
t:th

em
e

ex:busStation

dcat:dataset

Instance of

ex:bsJSON
ex:bsXML

dcat:distribution

ex:toulouse-catalog

dex:parking a ldp:BasicContainer;
 foaf:primaryTopic ex:parking;
 ex:parking a dcat:Dataset;
 dcat:keyword "parking","cars";
 ldp:contains dex:pDistributions,
 dex:pThemes.

dex:pJSON a ldp:RDFSource;
 foaf:primaryTopic ex:pJSON .
 ex:pJSON a dcat:Distribution ;
 dct:format "JSON" ;
 dcat:accessURL
<http://example.com/data/pjson> .

(a)

(c)

(d)

dex:paris-catalog

dex:parking

dex:pCSV
dex:pJSON

dex:pDistributions

http://www.w3.org/ns/ldp#contains

dex:transport
dex:mobility

dex:pThemes

dex:busStation

dex:bsXML
dex:bsJSON

dex:bDistributions

dex

d1:toulouse-catalog

(b)

Figure 4.3: Example of an RDF Graph, LDP generated from it and content of some LDP
resources

:catalog

The ContainerMap :catalog uses the ResourceMap :rm1 to generate the top-level
containers that describe the DCAT catalogs from the RDF graph in Figure 4.3 (a). The
evaluation of the query pa�ern of :rm1 returns related resources ex:paris-catalog
and ex:toulouse-catalog that are the DCAT catalogs.

For each of these related resources, the LDP resources are generated dex:paris-catalog

and dex:toulouse-catalog respectively. For both LDP resources, their RDF graphs

1http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp,

http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp

4.1. Overview of LDP-DL 81

are obtained by evaluating the CONSTRUCT query of :rm1 on the RDF graph.
This evaluation can be parameterized by the related resource and ancestors’ re-
lated resources. For example, the evaluation of cq1 to generate the graph of
dex:paris-catalog is parameterized by its related resource ex:paris-catalog.

A�er the LDP resources and their graph have been generated using :rm1, they are
typed as containers by :catalog. Finally, new containers generated from :catalog

must define their members as well, and is thus satisfied only if their members
correspond to the resources generated by their underlying ContainerMaps and
NonContainerMaps which in this case, is :dataset only.

:dataset

:dataset is used to generate containers that are eventually added as members to
containers generated from :catalog. Its evaluation takes place in the context of
every container generated from :catalog. Let us consider its evaluation in the
context of dex:paris-catalog.

As mentioned before, dex:paris-catalog describes the DCAT catalog ex:paris-catalog.
At this point, the aim of using :dataset is to generate containers that describe the
DCAT datasets of of ex:paris-catalog, that is the related resource of dex:paris-catalog.
Consequently, the extraction of related resources using qp2 is parameterized by
ex:paris-catalog, to obtain the DCAT datasets ex:parking and ex:busStation.
For both DCAT datasets, LDP resources and their graphs are generated using cq2.
Here, we have illustrated the use of the related resource ex:paris-catalog of the
ancestor dex:paris-catalog.

Finally the the evaluation of :dataset generates two containers dex:parking
and dex:busStation that are added to the members of dex:paris-catalog. The
evaluation of :dataset continues with its underlying ContainerMaps and NonContainerMaps.
In this case, we consider only :distribs and continue our explanation using its
evaluation.

:distribs

:distribs is used to generate containers as members for containers generated
by :dataset. Let us consider its evaluation in the context of dex:parking whose
related resource is ex:parking.

As we have mentioned before, :distribs does not explicitly describe any re-
source from the data source and therefore, containers generated from it do not have
any related resource. These containers are used only for grouping LDP resources.
This is why qp3 only returns one empty solution mappings and consequently a single
container dex:pDistributions is generated having no related resource. The graph
of the container is generated by evaluating cq3. Since there is no related resource,
the graph of the container may contain some general descriptions in the CON-
STRUCT query. The evaluation of :distribs continues with the NonContainerMap
:distrib.

82 Chapter 4. LDP Design Language

:distrib

:distrib is used to generate non-containers as members of containers generated
from :distribs for describing their corresponding DCAT distributions. Let us
consider its evaluation in the context of dex:pDistributions that, as mentioned
before, does not have a related resource.

In this context, :distrib is used for generating non-containers that describe
the DCAT distributions of ex:parking. Notice that at this level, dex:parking is the
grand-parent of all non-containers that will be generated by :distrib. Therefore,
to obtain these DCAT distributions, the evaluation of qp4 is parameterized by
the related resource of grand-parent, that is ex:parking and the results of this
evaluated are ex:pJSON and ex:pCSV. For both DCAT distributions, non-containers
dex:pJSON and dex:pCSV are created and their graph generated using cp4. Finally,
these non-containers are added as members to dex:pDistributions.

Now that we have an overview of the syntax and semantics of LDP-DL, let us
formally describe it in the next section.

4.2 Formal Description
In this section, we formally describe the syntax and semantics of LDP-DL. We
start by giving the formal preliminaries in Section 4.2.1. Then, in Section 4.2.2 and
Section 4.2.3, we describe the syntax and semantics respectively.

4.2.1 Preliminaries
In this section, we give the formal preliminaries related to RDF and SPARQL that
we use throughout this chapter.

RDF Let IRI, B, L and V be the disjoint sets of IRIs, blank nodes, literals and
variables respectively. The set of RDF terms is T = IRI ∪B ∪ L. A RDF triple is an
element of IRI ∪B× IRI×T and the set of all RDF triples is T . An RDF graph
g ∈ 2T is a finite set of RDF triples, and the set of all RDF graphs is G. If G is a set
of RDF graphs, we denote the merge of all the RDF graphs in G as Merge(G).

SPARQL We provide an overview of part of the syntax and semantics. Common
to the four query forms discussed in Chapter 2 (Section 2.3.1) is a query pa�ern qp
(WHERE clause) that is defined recursively as follows:

1. a triple pa�ern tp ∈ T ∪V × IRI ∪V ×T ∪V is a query pa�ern;

2. a graph pa�ern (or graph template) gp ∈ 2tp is a query pa�ern;

3. if p1 and p2 are query pa�erns, then (p1 AND p2), (p1 UNION p2) and (p1
OPT p2) are query pa�ern;

4. a filter expression consisting of query pa�erns and SPARQL built-in conditions
is a query pa�ern (see [HS13a, §17.2] for more details about filter expressions).

4.2. Formal Description 83

The evaluation of a query pa�ern qp over an RDF graph G is denoted by [[qp]]G.
Such an evaluation returns a list of solution mappings Ω. A solution mapping µ is a
partial function µ : V→ T and its domain is denoted by dom(µ).

A SPARQL CONSTRUCT query is a pair (gt, cq) where gt is a graph template
and cq a query pa�ern. Given a graph template gt and a set of solution mappings Ω,
we write gt(Ω) to denote the RDF graph formed by taking each solution mapping
in Ω, substituting for the variables in the graph template, and combining the triples
into a single RDF graph by set union.

4.2.2 Abstract Syntax
In this section, we describe the abstract syntax of LDP-DL in a way that is used
by its semantics described in the next section. As mentioned before, the LDP-DL
design in Figure 4.2 with details of the query pa�ern and CONSTRUCT query is
provided in Appendix C.1. When formally describing the LDP-DL constructs below,
we illustrate them using di�erent parts from the la�er LDP-DL design. Also, in
Appendix C.1, we extend the description given in Section 4.1.2 with concepts from
the abstract syntax that we provide below.

Let us now describe the abstract syntax using a bo�om-up approach starting with
the definition of DataSource, ResourceMap, NonContainerMap, ContainerMap to
finally end with a design document.

DataSource

A DataSource describes an RDF graph. There are several ways of doing so that our
concrete syntax (Appendix B) covers. In the abstract syntax, we consider only RDF
sources and Non-RDF Sources.

Definition 1 (DataSource). 〈uds, uloc〉 describes an RDF data source uds whose RDF
graph is located at uloc. 〈uds, uloc, ulr〉 describes a non-RDF data source uds located at
uloc from which an RDF graph can be generated using an RDF transformation document
that we refer as the li�ing rule located at ulr. uds, uloc and ulr are IRIs.

As we mentioned before, the design document in Figure C.1 does not have
DataSources. But suppose that its ResourceMaps have the Paris DCAT catalog1 as
their data source. Such a data source can be described as ds1 = 〈ex:ds1, paris:ttl〉2
with ex:ds1 being the name of ds1 and paris:ttl the location of the RDF graph.

Suppose that the data source at paris:ttl was not in RDF, a li�ing rule provided
by the data publisher at paris:liftingRule could have been used to generate RDF
from it. Such a data source can be described as ds2 = 〈ex:ds1, paris:ttl, paris:liftingRule〉2

ResourceMap

A ResourceMap has a SPARQL query pa�ern qp and a CONSTRUCT query cq to
extract a set of related resource and generate the RDF graph of LDP resources

1https://opendata.paris.fr/api/v2/catalog/exports/ttl, last accessed 5 September 2018
2 Prefix paris expands to https://opendata.paris.fr/api/v2/catalog/exports

https://opendata.paris.fr/api/v2/catalog/exports/ttl

84 Chapter 4. LDP Design Language

respectively. Also, it has a set of DataSources and its both queries are evaluated on
the union of the RDF graphs obtained from these DataSources.

Definition 2 (ResourceMap). A ResourceMap is a tuple 〈urm, qp, cq,DS〉 where
urm is an IRI, qp is a SPARQL query pa�ern, cq is a SPARQL CONSTRUCT query, and
DS is a set of DataSources.

Consider the ResourceMap :rm1 in Figure 4.4. Suppose that query pa�ern and
CONSTRUCT query of :rm4 are qp4 and cq4 respectively and that its DataSource
is ds1 = 〈ex:ds1, paris:ttl〉. In the abstract syntax, rm4 =〈:rm1, qp1, cq1, {ds1}〉
describe the ResourceMap :rm4.

:rm4

{ π2 dcat:distribution 𝞺 .}

CONSTRUCT { 𝜈 foaf:primaryTopic 𝞺.
𝞺 ?p ?o . π2 dcat:distribution 𝞺 . }
WHERE { 𝞺 ?p ?o . }

ResourceMap Query pattern Construct Query

Figure 4.4: Example of a ResourceMap

As we can see in Figure 4.4, in the query pa�ern and CONSTRUCT query
of :rm4, there are some characters in boldface text. These are special variables
in our language. In fact, we assume the existence of an infinite set of variables
Vr = {ρ, ν, π1, . . . , πi, . . . } ⊆ V called the reserved variables, such that V \ Vr is
infinite. ρ is used to refer to related resources (related resource variable). ν is used
to refer to an LDP resource (new resource variable). It is normally used in the graph
template of a CONSTRUCT query to refer to the LDP resource in the RDF graph
to be generated. π1, . . . , πi, . . . is the infinite set of ancestor variables to refer to
related resources of ancestors. ResourceMaps may use the reserved variables but
these have a special semantics as explained in the next section. However, due to
undesirable consequences, we forbid the use of variable ν in the WHERE clause of
the CONSTRUCT query cq. Let us describe more about the usage of these variables
in the following paragraphs.

Ancestors Variables A ResourceMap is evaluated in the context of an LDP re-
source that may itself be within a container, its parent, or it may be a top-level
resource having no ancestors. The ancestors of an LDP resource’s related resource
are the related resources of the LDP resource’s ancestors and thus, the ancestor
variables (π1...πn) are bounded to these related resources. For example, with respect
to an LDP resource, π1 is bounded to its parent’s related resource and π2 is bounded
to its grandparent related resource. In case, an ancestor container exist without a
related resource, then the corresponding ancestor variable is unbounded. For a LDP
resource that is a top-level resource, all its ancestor variables are unbounded.

qp & cq of ResourceMaps In qp, ρ is unbounded and the ancestor variables
(π1...πn) may be used to further constraint the extraction of related resources. The
evaluation results of qp are projected on ρ and is a set of related resources. For

4.2. Formal Description 85

each of them, an LDP resource is created, and cq is evaluated with ρ bounded to
the related resource and ancestor variables bounded to the ancestors of the LDP
resource. cq has an additional variable nu that is bounded to the LDP resource
itself.

NonContainerMap

A NonContainerMap has a set of ResourceMaps that is used for generating its
non-containers.

Definition 3 (NonContainerMap). A NonContainerMap is a pair 〈unm,RM〉 where
unm is an IRI and RM is a set of ResourceMaps.

:distrib :rm4
rm

qp

cq

{ π2 dcat:distribution �ힺ .}

CONSTRUCT { �휈 foaf:primaryTopic �ힺ.
�ힺ ?p ?o . π2 dcat:distribution �ힺ . }
WHERE { �ힺ ?p ?o . }

NonContainerMap ResourceMap Query pattern Construct Query

Figure 4.5: Example of a NonContainerMap

Consider the NonContainerMap :distrib in Figure 4.5. Its ResourceMap is the
same as in the previous example. In the abstract syntax, distrib =〈:distrib, {rm4}〉
describe the NonContainerMap :distrib. Normally, :rm4 will generate a set of
LDP resources and their RDF graphs that will then be types as non-containers by
:distrib.

ContainerMap

A ContainerMap has a set of ResourceMaps for generating its containers. To further
generate containers and non-containers in them, its set of child ContainerMaps
and NonContainerMaps are used.

Definition 4 (ContainerMap). A ContainerMap is a tuple 〈ucm,RM,CM,NM〉
where ucm is an IRI, RM is a set of ResourceMaps, CM is a set of ContainerMaps,
and NM is a set of NonContainerMaps.

Consider the ContainerMap :dataset in Figure 4.6. Supposing that its ResourceMap
:rm2 is described by rm2, its NonContainerMap :publisher is described by publisher
and its ContainerMaps :distribs and :themes are described by distribs and
themes respectively. Then, in the abstract syntax, the ContainerMap :dataset

is described by dataset = 〈:distribs, rm2, {distribs, themes}, {publisher}〉.

Design Document

A design document contains a set of ContainerMaps and NonContainerMaps. Its
evaluation starts from those ContainerMaps and NonContainerMaps are not con-
tained in any ContainerMap.

86 Chapter 4. LDP Design Language

:dataset :rm2

:distribs

:themes

cm

cm

rm qp

cq

{ π1 dcat:dataset �ힺ .}

CONSTRUCT { �휈 foaf:primaryTopic �ힺ.
�ힺ ?p ?o . } WHERE { �ힺ ?p ?o .
FILTER (?p not in (dcat:distribution)) }

ContainerMap NonContainerMap ResourceMap Query pattern Construct Query

:publisher

nm

Figure 4.6: Example of a NonContainerMap

Definition 5 (Design Document). A design document in LDP-DL is a pair 〈CM,NM〉,
where CM is a set of ContainerMaps and NM is a set of NonContainerMaps. Only
ContainerMaps and NonContainerMaps that do not have a parent ContainerMap
are in CM and NM respectively.

For example, the design document in Figure 4.2 can be described by 〈{catalog}, {}〉
in the abstract syntax. As we can see, only catalog in the set of ContainerMaps of
the design document as it does not have any parent ContainerMap. The evaluation
of this design document starts with catalog and then recursively evaluates the child
ContainerMaps and NonContainerMaps.

Let us now proceed with the semantics of LDP-DL in the next section.

4.2.3 Model-theoretic Semantics
In this section, we provide the semantics of LDP-DL in a model-theoretic way using a
notion of interpretation and a notion of satisfaction. To this end, in Section 4.2.3 and
Section 4.2.3, we describe the notion of interpretation and satisfaction respectively.

Notation Before proceeding, we provide some notations that we use in our for-
malization below.

IRI of LDP-DL Construct Given a ContainerMap, NonContainerMap, ResourceMap
or DataSource x, we refer to the IRI of x as iri(x).

Ancestor List A list of ancestors is a finite sequence of elements that can be
IRIs or a special value ε 6∈ IRI that indicates an absence of a resource. Formally, an
ancestor list is an element of IRI∗ =

⋃
n>=0

(IRI ∪ {ε})n and ∅ being the empty list

(IRI ∪ {ε})0. We use the notation #»p to denote an ancestor list and use len(#»p) to
denote the length of the list. Also #»p :: r denotes appending element r to #»p .

LDP-DL interpretation

An LDP-DL interpretation determines which IRIs denote ContainerMaps, NonContainerMaps,
ResourceMaps, DataSources, or something else. Then, each ContainerMap and
NonContainerMap is interpreted as a set of triples (url, graph,M), representing

4.2. Formal Description 87

containers, and a set of pairs (url, graph), representing non-containers, respectively
with respect to a list of ancestors.

Definition 6 (LDP-DL Interpretation). An LDP-DL interpretation I is a tuple
〈∆I , C,N ,R,S, ·I , IC, IN , IR, IS〉 such that:

• ∆I is a non empty set (the domain of interpretation);

• C, N ,R, S are subsets of ∆I ;

• ·I : IRI→ ∆I is the interpretation function;

• IC : C × IRI∗ → 2IRI×G×2IRI
;

• IN : N × IRI∗ → 2IRI×G ;

• IR : R×IRI∗ → 2IRI×IRI∪{ε}×G such that (n, r1, g1) ∈ IR(u1,
#»p1)∧(n, r2, g2) ∈

IR(u2,
#»p2) =⇒ r1 = r2 ∧ g1 = g2 (unicity constraint);

• IS : S → G.

We describe the di�erent parts of an LDP-DL interpretation below.

∆I& Interpretation function: ∆I is a non-empty set that is the domain of inter-
pretation. Elements of ∆Iare accessed using their IRIs through the interpretation
function ·I .

C, N , R, S: C, N ,R and S represent the container maps, non-container maps,
resource maps and data sources according to the interpretation. That is, if the
interpretation function I maps an IRI to an element of C, it means that this inter-
pretation considers that the IRI is the name of a container map. The same follows
for elements of N ,R and S .

IC : C×IRI∗ → 2IRI×G×2IRI : For a given ContainerMap cm ∈ C and an ancestor
list #»p , 〈n, g,M〉 ∈ IC(cm, #»p) means that, in the context of #»p , cm must map to
containers where n is the IRI of a container, g is the RDF graph obtained from
dereferencing n, and M is the set of IRIs referring to the members of the container.

IN : N × IRI∗ → 2IRI×G : For a given NonContainerMap nm ∈ N , 〈n, g〉 ∈
IN (nm, #»p) means that, in the context of #»p , nm must map to non-containers where
n is the IRI of a non-container and g is the RDF graph obtained from dereferencing
n.

IR : R× IRI∗ → 2IRI×IRI∪{ε}×G : For a given ResourceMap rm ∈ R, (n, r, g) ∈
IR(rm, #»p) means that rm must map to a triple where n is the IRI of a new LDP
resource, r is the related resource of the new LDP resource and g is the RDF graph
obtained from dereferencing n. The unicity constraint guarantees that LDP
resources from the interpretation of a ResourceMap are unique.

88 Chapter 4. LDP Design Language

IS : S → G For a given DataSource ds ∈ S , IS(ds) is an RDF graph obtained
from the data source. Here, we abstract from the di�erent forms that ds can take
and defines its interpretation at a higher level.

Satisfaction

This section formally explains the semantics of LDP-DL by describing the satisfac-
tion |= of its constructs with respect to an LDP-DL interpretation. In the rest of
this section, we do so in a bo�om-up approach starting with the satisfaction of a
DataSource.

Satisfaction of a DataSource In principle, a DataSource can take several forms
to provide information for retrieving an RDF graph. As mentioned before, we define
only two forms of DataSources, ds = 〈uds, uloc〉 that provides the URL uloc of RDF
document directly, and ds = 〈uds, uloc, ulr〉 that provides the URL uloc of an arbitrary
document and the URL ulr of a transformation script to generate an RDF graph.
A DataSource ds is satisfied if, by using the parameters of ds , we obtain the RDF
graph of the interpretation of iri(ds).

Formally, the satisfaction of DataSources is parameterized by the dereference
function deref and the li�ing rule map lr. Assume the existence of an infinite set D
whose elements are documents. The dereference function deref : IRI→ D assigns
a document to an IRI. A li�ing rule lif : D → G is a function that assigns an RDF
graph to a document. Finally, the li�ing rule Map lr : IRI 7→ (D → G) is a partial
function assigning a li�ing rule to some IRIs.

With respect to deref and lr, the satisfaction of a DataSource is defined below.

Definition 7. Let I be a LDP-DL interpretation. We say that I satisfies ds =
〈uds, uloc, ulr〉with respect to a function deref and a li�ing rule map lr, wri�en I |=deref,lr ds
i� IS(uIds) = lr(deref(ulr))(deref(uloc)). Similarly, if ds = 〈uds, uloc〉, then I satisfies
ds with respect to deref i� IS(uIds) = deref(uloc). If DS is a set of DataSources, then
we write I |= DS when for all ds ∈ DS, I |= ds .

As we can see, our semantics consider only two forms of DataSources but can
extended to more complex such as for access rights, content negotiation etc. When
there is no ambiguity or no need to specify deref and lr, we simply write I |= ds .

Let us consider an example of a DataSource ds1 = 〈ex:source1, ex:graph.ttl〉
that describes a particular RDF data source. The interpretation of the data source
IS(ex:source1I) may be the RDF graph in Figure 4.7.

Satisfaction of a ResourceMap The satisfaction of a ResourceMap 〈urm, qp, cq,DS〉
is defined with respect to an ancestor list, and depends on the results of the query
evaluation of qp and cq over the RDF graph obtained by doing an RDF merge on all
the RDF graphs obtained from DS. To define this properly, we need to introduce
additional notations.

For a given ancestor list #»p , let µ #»p be the mapping s.t. dom(µ #»p) ⊆ {πi | 1 ≤ i ≤
len(#»p)} and for 1 ≤ i ≤ len(#»p), µ #»p (πi) = #»p [i] if #»p [i] 6= ε and µ #»p (πi) undefined
otherwise. This mapping can be used to constraints the selection of related resources
and the construction of the associated graphs. We call µ #»p the ancestor mapping and
the variables πi the ancestor variables.

4.2. Formal Description 89

ex:paris-catalog

ex:parking

ex:pJSON
ex:pCSV

dcat:Catalog

dcat:Dataset

dcat:Distribution

ex:transport
ex:mobility

dcat:Theme

dcat:distribution dca
t:th

em
e

ex:busStation

dcat:dataset

Instance of

ex:bsJSON
ex:bsXML

dcat:distribution

ex:toulouse-catalog

Figure 4.7: Example of an interpretation of a data source

Definition 8. Let I be an LDP-DL interpretation, #»p an ancestor list, rm = 〈urm, qp, cq,DS〉
be a ResourceMap, with cq = 〈gtcq, qpcq〉. Let gs = Merge({IS(iri(ds)I) | ds ∈ DS}).
We say that I satisfies rm with respect to #»p , wri�en I, #»p |= rm , i�:

• I |= DS;

• if r ∈ Πρ([[qp]]gs on {µ #»p }) then there exists 〈n, r, g〉 ∈ IR(uIrm,
#»p);

• if 〈n, r, g〉 ∈ IR(uIrm,
#»p) then:

– r ∈ Πρ([[qp]]gs on {µ #»p }),

– g ⊇ gtcq([[qpcq]]gs) on {µν} on {µρ} on {µ #»p };

where:

– let µν be the mapping where dom(µν) = {ν} and µν(ν) = n,

– let µρ be the mapping where dom(µρ) = {ρ} and µρ(ρ) = r if r 6= ε and
µρ(ρ) undefined otherwise.

If RM is a set of ResourceMaps, then we write I, #»p |= RM when for all rm ∈ RM,
I, #»p |= rm .

Let us now describe the conditions in the definition using the ResourceMap

:rm2 in Figure 4.8 (a).
Suppose that the interpretation of :rm2with respect to the ancestor list (ex:paris-catalog),

shown in Figure 4.8 (b), returns the triples 〈dex:parking, ex:parking, g1〉 and
〈dex:busStation, ex:busStation, g2〉.

First Condition This condition ensures that DataSources of a ResourceMap
are well interpreted. In our example, we assume this condition is satisfied with the
RDF graph in Figure 4.7 being the interpretation of the DataSource of :rm2.

90 Chapter 4. LDP Design Language

:rm2
qp

cq

{ π1 dcat:dataset 𝞺 .}

CONSTRUCT { 𝜈 foaf:primaryTopic 𝞺.
𝞺 ?p ?o . } WHERE { 𝞺 ?p ?o .
FILTER (?p not in (dcat:distribution)) }

ResourceMap Query pattern Construct Query

(a) ResourceMap (b) Interpretation of
:rm2

IR (:rm2I,(ex:paris-catalog)) = {
(dex:parking,ex:parking,g1),

 (dex:busStation,ex:busStation,g2) }

g1 = { (dex:parking,foaf:primaryTopic,ex:parking), ...}

Figure 4.8: Example of a ResourceMap and an RDF Graph as its DataSource

Second Condition This condition ensures that for all related resources ex-
tracted, a triple 〈n, r, g〉 is generated that as we describe in the definitions below,
is used to generate containers and non-containers. The evaluation of the query
pa�ern of :rm2 with π1 bounded to ex:paris-catalog returns the related resource
ex:parking and ex:busStation. This condition is satisfied since for both of them,
a triple exist in the interpretation of :rm2.

Third Condition This condition places constraints on the triples in the inter-
pretation of a ResourceMap. In the case of :rm2, the related resources ex:parking
and ex:busStation in the triples in its interpretation are obtained from the evalua-
tion of its query pa�ern. As we can see, we require the graph of the LDP resource
be a superset of the evaluation of cq to deal with the openness of the LDP standard
related to the content of RDF sources. For example, [SAM15a, §5.2.1.1] states that
their content may not obligatorily include a triple to type them as an ldp:RDFSource.
Thus, assuming that both a subset of g1 and g2 were obtained from the evaluation of
the CONSTRUCT query of :rm2, the interpretation of :rm2 satisfies this condition.

Satisfaction of a NonContainerMap An interpretation satisfies a NonContainerMap
〈unm,RM〉 with respect to an ancestor list when it satisfies all rm ∈ RM, and
the set of named graphs associated with unm tallies with the interpretations of the
ResourceMaps.

Definition 9. Let I be a LDP-DL interpretation, #»p an ancestor list, nm = 〈unm,RM〉
be a NonContainerMap.

We say that I satisfies nm with respect to #»p , wri�en I, #»p |= nm , i�:

• I, #»p |= RM;

• if 〈n, g〉 ∈ IN (uInm,
#»p) then there exists rm ∈ RM, 〈n, r, g′〉 ∈ IR(iri(rm)I , #»p)

such that g′ ⊆ g;

• if there exists rm ∈ RM, 〈n, r, g′〉 ∈ IR(iri(rm)I , #»p), then there exists a
unique 〈n, g〉 ∈ IN (uInm,

#»p) such that g′ ⊆ g.

If NM is a set of NonContainerMap, then we write I, #»p |= NM when for all nm ∈
NM, I, #»p |= nm .

4.2. Formal Description 91

Let us now describe the three conditions in the above definition using the
NonContainerMap :distrib in Figure 4.9 (a). Let’s assume that 〈dex:pJSON, g1〉
and 〈dex:pCSV, g2〉 are in the interpretation of :distrib with the ancestor list
(ex:paris-catalog,ex:parking,ε) shown in Figure 4.9 (b)

(a) NonContainerMap

:distrib

:rm4

NonContainerMap ResourceMap Query pattern Construct
Query

rm

cq

{ π2 dcat:distribution 𝞺 .}

CONSTRUCT { 𝜈 foaf:primaryTopic 𝞺.
𝞺 ?p ?o . π2 dcat:distribution 𝞺 . }
WHERE { 𝞺 ?p ?o . }

qp

p1 = (ex:paris-catalog,ex:parking,ɛ)

IR (:rm4I, p1) = {
(dex:pJSON, ex:pJSON, g1),

 (dex:pCSV, ex:pCSV, g2) }

IN (:distribI, p1) = {
(dex:pJSON, g1),

 (dex:pCSV, g2) }

(b) Interpretation of
:distrib

Figure 4.9: Example of a NonContainerMap

First Condition This condition ensures all ResourceMaps of a NonContainerMap
are well satisfied. In our example, let us assume that this condition is satisfied with
the triple 〈dex:pJSON, ex:pJSON, g1〉 and 〈dex:pCSV, ex:pCSV, g2〉 being in the inter-
pretation of :rm4 with the ancestor list (ex:paris-catalog,ex:parking,ε).

Second Condition This conditions ensures that a non-container 〈n, g〉 in the
interpretation of a NonContainerMap nm exist with respect to a triple 〈n, r, g′〉 in
the interpretation ofnm’s ResourceMapwith g′ ⊆ g. In our example, 〈dex:pJSON, g1〉
and 〈dex:pCSV, g2〉 in the interpretation of :distrib exist with respect to 〈dex:pJSON, ex:pJSON, g1〉
and 〈dex:pCSV, ex:pCSV, g2〉 in the interpretation of :rm4. The graph of non-containers
(i.e. g1, g2) are the same graph from those in the interpretation of :rm4 and therefore
this condition is satisfied in our example.

Third Condition This condition ensures that for every triple 〈n, r, g′〉 in the
interpretation of a ResourceMap rm, there is a unique non-container 〈n, g〉 in the in-
terpretation of rm’s NonContainerMap. In our example, 〈dex:pJSON, ex:pJSON, g1〉
and 〈dex:pCSV, ex:pCSV, g2〉 are in the interpretation of :rm4 and 〈dex:pJSON, g1〉
and 〈dex:pCSV, g2〉 are in the interpretation of :distrib. Also, The graph of non-
containers (i.e. g1, g2) are the same graph from those in the interpretation of :rm4
and therefore this condition is satisfied in our example.

Satisfaction of a ContainerMap As mentioned previously, the satisfaction of a
ContainerMap 〈ucm,RM,CM,NM〉 is defined with respect to an ancestor list.
Constraints similar to those of NonContainerMaps apply. In addition, the maps
in CM and NM must be satisfied with respect to a new ancestor list that is the
previous list appended with the related resources of the ContainerMap.

92 Chapter 4. LDP Design Language

Additionally, to satisfy a ContainerMap, the set of members M in a triple
〈n, g,M〉 must contain the resources that must be generated by the maps of CM
and NM with respect to the new ancestor list.

Definition 10. Let I be a LDP-DL interpretation, #»p an ancestor list, cm = 〈ucm,RM,CM,NM〉
be a ContainerMap.

We say that I satisfies cm with respect to #»p , wri�en I, #»p |= nm , i�:

• I, #»p |= RM;

• if 〈n, g,M〉 ∈ IC(uIcm, #»p) then there exists rm ∈ RM, 〈n, r, g′〉 ∈ IR(iri(rm)I , #»p)
such that g′ ⊆ g;

• if there exists rm ∈ RM, 〈n, r, g′〉 ∈ IR(iri(rm)I , #»p), then there exists a
unique 〈n, g,M〉 ∈ IC(uIcm) such that g′ ⊆ g;

• for all rm ∈ RM and for all 〈n, r, g〉 ∈ IR(iri(rm)I , #»p) and for all 〈n, gn,Mn〉 ∈
IC(uIcm, #»p)

– I, #»p :: r |= NM andMn ⊇ {n | ∃nm ∈ NM∧∃〈n, g〉 ∈ IN (iri(nm)I , #»p ::
r)};

– I, #»p :: r |= CM and Mn ⊇ {n | ∃cm ∈ CM ∧ ∃〈n, g,M ′〉 ∈
IC(iri(cm)I , #»p :: r)}.

– n′ ∈ Mn ⇒ (∃nm ∈ NM,∃g′, 〈n′, g′〉 ∈ IN (iri(nm)I , #»p :: r)) ∨
(∃cm ′ ∈ CM,∃g′,∃M ′, 〈n′, g′,M ′〉 ∈ IC(iri(cm ′)I , #»p :: r)

If CM is a set of ContainerMap, then we write I, #»p |= CM when for all cm ∈ CM,
I, #»p |= cm .

Let us now describe the four main conditions in the above definition using the
ContainerMap :distribs in Figure 4.10 (a). Let’s assume that 〈dex:pDistributions, g1,M1〉
with M1 ={dex:pJSON,dex:pCSV} is in the interpretation of :distribs, shown in
Figure 4.10 (b), with the ancestor list (ex:paris-catalog,ex:parking).

(a) ContainerMap

NonContainerMap ResourceMap Query
pattern

Construct
Query

CONSTRUCT { 𝜈
foaf:primaryTopic 𝞺.
𝞺 ?p ?o .
π2 dcat:distribution 𝞺 . }
 WHERE { 𝞺 ?p ?o . }

:distrib :rm4

:distribs :rm3

nm

rm

rm

qp

qp

cq

CONSTRUCT { 𝜈
dct:description ?title } WHERE
{ π1 dct:title ?title .
BIND(CONCAT("Describes
distribution of ",?title)) }

{ VALUES 𝞺 { UNDEF } .}

cq

{ π2 dcat:distribution 𝞺 .}

ContainerMap

p1 = (ex:paris-catalog,ex:parking)

IR (:rm3I, p1) = {
(dex:pDistribution,ɛ, g1) }

IC (:distribsI, p1) = {
(dex:pDistribution,g1,M1) }

M1= { dex:pJSON,dex:pCSV }

(a) Interpretation of
:distrib

Figure 4.10: Example of a ContainerMap

4.2. Formal Description 93

First Condition The first condition ensures that ResourceMaps are well satis-
fied. In our example, we assume that this condition is satisfied with the RDF graph in
Figure 4.7 being the interpretation of the DataSource of :rm3 and, 〈dex:pDistributions, ε, g1〉
is the interpretation of :rm3.

Second Condition This conditions ensures that a container 〈n, g,M〉 in the
interpretation of a NonContainerMap cm exist with respect to a triple 〈n, r, g′〉 in the
interpretation of cm’s ResourceMapwith g′ ⊆ g. In our example, 〈dex:pDistributions, g1,M1〉
is in the interpretation of :distribs with respect to 〈dex:pDistributions, ε, g1〉
being in the interpretation of :rm3. The graph g1 of dex:pDistributions is the
same graph as in the interpretation of :rm3 and therefore this condition is satisfied
in our example.

Third Condition This condition ensures that for every triple 〈n, r, g′〉 in the
interpretation of a ResourceMap rm, there is a unique container 〈n, g,M〉 in the
interpretation of rm’s ContainerMap. In our example, 〈dex:pDistributions, ε, g1〉
are in the interpretation of :rm3 and 〈dex:pDistributions, g1,M1〉 is in the inter-
pretation of :distribs. Also, The graph g1 of dex:pDistributions is the same
graph as in the interpretation of :rm3 and therefore this condition is satisfied in our
example.

Fourth Condition In short, this condition only ensures that a container
〈n, g,M〉 in the interpretation of a ContainerMap cm contains the proper members.
By proper members, we refer to containers and non-containers in the interpretation
of the ContainerMap and NonContainerMap of cm respectively. In the example of
Definition 9, we explained the satisfaction of the NonContainerMap :distrib. We
also mentioned that its interpretation with the ancestor list (ex:paris-catalog,ex:parking,ε)
contains the non-containers dex:pJSON dex:pCSV. :distribs contains only the
NonContainerMap :distrib and no other ContainerMaps. This is why dex:pDistributions
contains only dex:pJSON dex:pCSV as members.

Satisfaction of an LDP-DL document An LDP-DL document is satisfied if all
its top level ContainerMaps and NonContainerMaps are satisfied with respect to
an empty ancestor list.

Definition 11. Let I be an LDP-DL interpretation, δ = 〈CM,NM〉 be an LDP-DL
document.

We say that I satisfies δ , wri�en I |= δ, i�

• I, ∅ |= CM and

• I, ∅ |= NM.

The interpretation of a design document starts with the interpretation of its
CM and NM with respect to an empty ancestor list. The CM and NM contains
ContainerMaps and NonContainerMaps from the design document that have no
parent ContainerMap. Consider the LDP-DL design in Figure C.1. In its design
document, CM would contain only :catalog and NM would be empty.

94 Chapter 4. LDP Design Language

Now that we have defined the satisfaction of an LDP-DL document with re-
spect to an interpretation, let us proceed with defining the evaluation of a design
document.

4.3 LDP Dataset
An LDP dataset is a model to store resources in an LDP. In this section, in Sec-
tion 4.3.1, we describe the evaluation of a design document to generate an LDP
dataset. Then, in Section 4.3.2, we describe variabilities that can a�ect the validity
of an LDP dataset and provide ways to abstract them.

4.3.1 Design Document Evaluation
With an interpretation, we have a way of assigning an LDP dataset to a design doc-
ument, using the interpretations of the ContainerMaps and NonContainerMaps
that appear in the document. We call this an evaluation of the document. For-
mally, it takes the form of a function that builds an LDP dataset given an LDP-DL
interpretation and a document δ. We formalize the notion of LDP dataset as follows:

Definition 12 (LDP dataset). An LDP dataset is a pair 〈NG,NC〉 where NG is
a set of named graphs and NC is a set of named container, that is a set of triples
〈n, g,M〉 such that n ∈ IRI (called the container name), g ∈ G and M ∈ 2IRI. In
addition to this, there are some constraints on an LDP dataset. In an LDP dataset Σ:

• no IRI appears more than once as a (graph or container) name;

• for all 〈n, g,M〉 ∈ NC, and for all u ∈ M , there exists a named graph or
container having the name u in Σ.

Having the notion of LDP dataset, the maps of the design document is evaluated
with respect to a ancestor list as follows:

Definition 13 (Evaluation of a map). The evaluation of a ContainerMap or NonContainerMap
m with respect to an interpretation I and an ancestor list #»p s.t. I, #»p |= m is:

[[m]]
#»p
I =



IN (iri(m)I , #»p), if m is a NonContainerMap

IC(iri(m)I , #»p) ∪
⋃

rm∈RM
〈n,r,g〉∈IR(iri(rm)I , #»p)

m′∈NM∪CM

[[m′]]
#»p ::r
I , if m = 〈ucm,RM,CM,NM〉 is a ContainerMap

The evaluation of a map yields an LDP dataset. Indeed, the first condition of
Definition 12 is satisfied because of the unicity constraint from Definition 6, and the
second condition is satisfied because I, #»p |= m. Now we can define the evaluation
of a design document with respect to an interpretation:

4.3. LDP Dataset 95

Definition 14 (Evaluation of an design document). Let I be an interpretation and
δ = 〈CM,NM〉 a design document. The evaluation of δ with respect to I is

[[δ]]I =
⋃

m∈CM∪NM

[[m]]∅I

In practice, an LDP-DL processor will not define an explicit interpretation, but
will build an LDP dataset from a design document. Hence, we want to define a
notion of conformity of an algorithm with respect to the language specification
given above. To this aim, we first provide a definition of a valid LDP dataset for a
design document.

Definition 15 (Valid). An LDP dataset D is valid with respect to a design document
δ if there exists an interpretation I that satisfies δ, such that [[δ]]I = D.

Finally, we can define the correctness of an algorithm that implements LDP-DL.

Definition 16 (Correct). An algorithm that takes an LDP-DL document as input and
returns an LDP dataset is correct if for all document δ, the output of the algorithm on δ
is valid with respect to δ.

4.3.2 Variability Abstraction
A�er that a design document has been evaluated to obtain an LDP dataset, due to
some variabilities, the LDP dataset can be invalidated. In this section, we describe
these variabilities in Section 4.3.2. Then, we propose two models namely static
and dynamic LDP in Section 4.3.2 and Section 4.3.2 respectively to abstract these
variabilities.

Variabilities of LDP Dataset

Two aspects whose variability can invalidate an LDP dataset is the LDP server
location and dynamicity of data sources. Below, we discuss them in more details.

LDP Server Location A�er that an LDP dataset has been generated, a change
in the LDP server location and/or data sources may invalidate the LDP dataset. In
the current definition of LDP datasets (Definition 12), LDP resources are identified
using their IRIs. The problem with hardcoding IRIs in the LDP dataset is that the
server where the LDP will be deployed has to be decided prior to generating the
LDP dataset. To some extent, this make the deployment dependent on the design.
In Section 4.3.2, we explain how we abstract this change using static LDP datasets.

Dynamicity of Data Sources To explain the dynamicity of data sources, let us
suppose that tx and ty are two time instants such that ty > tx. With respect to a
design document δ, the LDP dataset generated at tx may not be valid at ty due to
changes that may have occurred at data sources referred in δ between tx and ty.
Below, we identify two types of changes at these data sources whose occurrence
may invalidate the LDP dataset generated at tx.

96 Chapter 4. LDP Design Language

Change of Resources The first change, that we refer to change of resources,
occurs when the related resources obtained from the evaluation of the query pa�erns
of any ResourceMaps in δ at ty is di�erent from those at tx. Consequently, this
invalidates the LDP dataset as it may contain LDP resources describing related
resources already deleted at a data source or it may not contain LDP resources for
describing related resource newly added at a data source.

Consider the LDP-DL design in Figure 4.2. Suppose that the query pa�ern of
:rm1 returns a new resource that was not returned at time tx. For that resource, a
new LDP resource need to be created. In addition to this, with respect to that new
resource, a number of new LDP resources may need be created from the remaining
ContainerMaps and NonContainerMaps such as :dataset, :distribs, etc.

Dealing with this change may be both complex and resource intensive. An
optimal approach would be to identify the specific part of the design document
that need to be re-evaluated when a change occurs. In this thesis, we do not deal
specifically address this change but it is possible to naively address it by evaluating
the complete design document every time a change occurs at the data source or
whenever a request for an LDP resource received.

Change in Resources’ Descriptions The second change, that we refer to
as change in resources’ descriptions, occurs when only the evaluation results of
the CONSTRUCT query of any ResourceMaps in δ at ty are di�erent from their
evaluation results at tx. Consequently, this invalidates the LDP dataset as the
content of LDP resources is valid with respect to the design document and data
source.

To illustrate this change in the LDP-DL design in Figure 4.2, if the evaluation
results of the CONSTRUCT of :rm1 for a particular LDP resource is di�erent at ty,
then only the content of that LDP resource in invalid. Compared to the previous
change, this change is isolated only to specific LDP resources making it easier to
deal with. In Section 4.3.2, we explain the use of dynamic LDP datasets to abstract
this change.

Static LDP Dataset

To handle the variability of the location of LDP servers, we use static LDP datasets
to abstract from the location of servers where LDPs will be deployed. A static
LDP dataset is a data structure similar to an LDP dataset except that rather than
using IRIs as names for LDP resources, temporary identifiers are used. Thus, as
shown in Figure 4.11, a particular static LDP dataset may be generated and used in
several deployment scenarios. More precisely, during deployment, an LDP dataset
is generated from the static LDP dataset by by replacing the temporary identifiers
with final IRIs for LDP resources based on the location of the server.

Before formally defining static LDP dataset, we define ID as the set of unique
identifiers that may include le�ers, digits, words,numbers, etc. We define this here
because we exclusively use it for static and dynamic LDP datasets (described in the
next section).

Definition 17 (Static LDP dataset). An Static LDP dataset is a pair 〈NSG,NSC〉.
NSG is a set of static named graphs 〈id, g〉 where id ∈ ID and g ∈ G. NSC is a set

4.3. LDP Dataset 97

Static LDP
Dataset

Generation

LDP Server 1

design
document

 Static LDP
Dataset

Data sources
LDP Server n

<<refer>>

 LDP
Dataset

LDP
Dataset

Generation

Id to IRI mapping
Deployment 1

 LDP
Dataset

LDP
Dataset

Generation

Id to IRI mapping

Deployment n

Figure 4.11: Application of static LDP datasets

of static named container 〈id, g,M〉 such that id ∈ ID (called the static container
name), g ∈ G and M ∈ 2ID. In addition to this, there are some constraints on a static
LDP dataset. In an LDP dataset Σ:

• no id appears more than once as a static named graph or container name;

• for all 〈id, g,M〉 ∈ NSC, and for all u ∈M , there exists a static named graph
or container having the name u in Σ.

To generate an LDP dataset from a static LDP dataset, a bijective mapping
m : ID→ IRI is required to replace the temporary identifiers to the final IRIs of
LDP resources.

Dynamic LDP Dataset

Figure 4.12 shows an overview of how we deal we this change by generating dynamic
LDP datasets from a design document that store LDP resources and instructions to
generate their graphs rather than their graphs themselves. Then, at deployment,
the dynamic LDP dataset may either be used to generate the final LDP dataset
or only the graph of the requested LDP resource by dynamically interpreting it at
query time. In this way, if a change in resources’ description occurs in a data source,
the LDP resources a�ected would contain a valid RDF graph.

Dynamic LDP datasets extend on static LDP datasets and rather than material-
izing RDF graphs of containers and non-containers, instructions to generate these
graphs are stored in the form of CONSTRUCT queries. The formal definition of a
dynamic LDP dataset is given below.

Definition 18 (Dynamic LDP dataset). A dynamic LDP dataset is a pair 〈dNC,dC〉
where dNC is a set of dynamic non-container structures and dC is a set of dynamic
container structures. A dynamic non-container structure dnc ∈ dNC is interpreted
as non-container and is a pair 〈id, gdes〉 such that id ∈ ID (called the non-container
name) and gdes is a GraphDescription (described below). A dynamic container

98 Chapter 4. LDP Design Language

Dynamic LDP
Dataset

Generation

LDP Server 1
design

document

 Dynamic LDP
Dataset

Data sources

LDP Server n

<<refer>>

Dynamic
Interpretation

LDP Request

LDP Response

 LDP
Dataset

LDP
Dataset

Generation

Id to IRI mapping
Deployment 1

 LDP
Dataset

LDP
Dataset

Generation

Id to IRI mapping

Deployment n
LDP Server

Figure 4.12: Application of dynamic LDP datasets

structure is a triple (id, gdes,M) and is interpreted as a container such that id ∈ ID
(called the container name) and gdes is a GraphDescription and M ∈ 2ID. A
GraphDescription is a pair (cq,DS) such that cq is a SPARQL CONSTRUCT query
and DS is a set of DataSources.

In a dynamic LDP dataset φ:

• no id appears more than once as a (dynamic non-container or container) name;

• for all 〈id, gdes,M〉 ∈ dC, and for all u ∈M , there exists a dynamic container
or non-container having the name u in φ.

To generate an LDP dataset from a dynamic LDP dataset, in addition to a
bijective mapping m : ID → IRI for replacing temporary identifiers of LDP
resources to their final IRIs, the CONSTRUCT queries in the GraphDescription of
LDP resources need to be evaluated to obtain their RDF graphs.

4.4 Operational Semantics
In the previous section, we presented the formal semantics of LDP-DL in a model-
theoretic manner and described the LDP dataset model to store LDP resources. In
this section, in Section 4.4.1, we give the operational semantics of LDP-DL by pro-
viding a family of the evaluation algorithms for LDP-DL constructs that implements
the formal semantics to generate an LDP dataset from a design document. Then, in
Section 4.4.2, we describe the correctness of these algorithms using the satisfaction
of LDP-DL constructs presented in Section 4.2.3.

4.4.1 Evaluation Algorithms
In this section, we describe the evaluation of a design document to generate an LDP
dataset using a family of algorithms for LDP-DL constructs in a bo�om-up fashion

4.4. Operational Semantics 99

starting with DataSources and continuing with ResourceMaps, ContainerMaps
and finally NonContainerMaps. We assume the existence of a global state Σ, repre-
senting the LDP dataset, that the algorithm have access to and which they construct.

Evaluation of DataSource

The evaluation of a DataSource ds is given by the function [[.]]source s.t.

[[ds]]source =

{
deref(uloc), if ds=(uds,uloc)
deref(ulr)(deref(uloc)), if ds=(uds,uloc,ulr)

As mentioned before, we restrict the definition of a DataSource only to two forms
and therefore, we define the evaluation only for these forms. Abusive notation, we
define the evaluation of a set of DataSources DS as

[[DS]]source = Merge({[[ds]]source | ds ∈ DS})

Evaluation of ResourceMap

Evalrm (Algorithm 1) performs the evaluation of a ResourceMap rm = 〈urm, qp, cq,DS〉
with respect to an ancestor list #»p . When evaluating the ResourceMaps of ContainerMaps
found at the top of the design document, both #»p and Σ is empty.

Algorithm 1 Evaluation of a ResourceMap rm

1: procedure Evalrm(rm, #»p)
2: result← ∅
3: gs ← [[DS]]source //perform merge of all RDF graph obtain from every data source
4: for all i ∈ (1..len(#»p)) do //bind ancestor variables
5: µ #»p (πi) = #»p [i]
6: end for
7: Ω← Πρ([[qp]]gs on {µ #»p }) //get related resources
8: result← ∅ //structure to hold new resources generated from rm
9: for all µ ∈ Ω do //Iterate over all mappings

10: if µ(ρ) 6= ε then //when there exist a related resource
11: µρ(ρ) = µ(ρ)
12: end if
13: n← geniri(µ(ρ), . . .) //generate IRI of new resource
14: g ← gtcq([[qpcq]]gs on {ν ← n} on {µρ} on {µ #»p }) /*generate graph of new resource

using cq = 〈gtcq, qpcq〉 from rm*/
15: result← result ∪ {(n, µ(ρ), g)}
16: end for
17: return result
18: end procedure

Initially, the DataSources of rm are evaluated as described in the previous
section(Line 3). Then, the set of related resources is extracted (Line 7) by evaluating
the query pa�ern of rm over the RDF source gs. Since the query pa�ern may use
ancestor variables, binding for the la�er variables are created (Line 4 - 6) and supplied
to the evaluation of the query pa�ern through µ #»p (Line 7). On obtaining the related
resources in Ω, for each of them, a new LDP RDF source is created together with its
IRI and graph. The IRI is generated using the function geniri (Line 13). We do not

100 Chapter 4. LDP Design Language

explicitly define this function and its parameters are only for illustration. What is
important is that it respect the unicity constraint defined in Section 4.2.3.

To generate the graph of the new resource, the CONSTRUCT query cq of rm
is evaluated on gs. With respect to a newly created LDP resource, cq may contain
references to its ancestors, to the resource itself or its related resource. This is
why, evaluating cq, ν, ρ and µ #»p are supplied as part of the evaluation process of
cq (Line 14). Finally for all new resources generated, their IRI, related resource and
graph are returned.

Evaluation of NonContainerMap

Evalnm (Algorithm 2) evaluates a NonContainerMap nm = 〈unm,RM〉 with re-
spect to an ancestor list #»p .

When evaluating a NonContainerMap nm, initially, all its ResourceMaps are
evaluated usingEvalrm, defined in the previous section, to generated a set of triples
(n, r, g) where n is the IRI of new LDP resource, r its related resource and g its RDF
graph (Line 3 - 7).

Using this set, all new LDP resources are typed as non-containers. They are
finally added to the LDP dataset (Line 3). As we mentioned before, here, the LDP
dataset (Σ) can be accessed directly as it is a global state.

Algorithm 2 Evaluation of Non-ContainerMap NM

1: procedure Evalnm(nm, #»p)
2: result← ∅
3: for all rm ∈ RM do
4: for all (n, r, g) ∈ Evalrm(rm, #»p) do //evaluate nm’s ResourceMaps
5: result← result ∪ {(n, g)} //generate the non-container
6: end for
7: end for
8: Σ← Σ ∪ result //add non-containers generated from nm to the global LDP dataset
9: return result

10: end procedure

Evaluation of a ContainerMap

Evalcm (Algorithm 3) evaluates a ContainerMap cm = 〈ucm,RM,CM,NM〉with
respect to ancestor list #»p .

When evaluating a ContainerMap cm, initially, all its ResourceMaps are evalu-
ated to generated a set of triples (n, r, g) where n is the IRI of new LDP resource, r
its related resource and g its graph (Line 3 - 7). For every (n, r, g), a container will
be eventually generated. Therefore, we generate the members for every of these
containers by evaluating the NonContainerMaps (Line 6 - 10) and ContainerMaps
(Line 11 - 15) of cm in their context with their related resources appended (i.e. #»p :: r)
to the ancestor list. A�er all the containers and their members have been generated,
they are added to the LDP dataset (Line 19).

4.4. Operational Semantics 101

Algorithm 3 Evaluation of ContainerMap CM

1: procedure Evalcm(cm, #»p)
2: result← ∅
3: for all rm ∈ RM do
4: for all (n, r, g) ∈ Evalrm(rm, #»p) do /*Iterate over all results from evaluation

of all ResourceMaps */
5: M ← ∅ //Initialize set of member for current container n
6: for all nm ∈ NM do
7: for all (n′, g′) ∈ Evalnm(nm, #»p :: r) do //Evaluate nm in the context of n
8: M ←M ∪ {n′} /*add non-containers generated as members*/
9: end for

10: end for
11: for all cm′ ∈ CM do //Evaluate cm′ in the context of n
12: for all (n′, g′,M ′) ∈ Evalcm(cm′, #»p :: r) do
13: M ←M ∪ {n′} /*add containers generated as members*/
14: end for
15: end for
16: result = result ∪ {(n, g,M)}
17: end for
18: end for
19: Σ← Σ ∪ result//add containers generated from nm to the global LDP dataset
20: return result
21: end procedure

Evaluation of a Design Document

The evaluation of a design document δ = (CM,NM) consists of evaluating its
ContainerMap in CM and NonContainerMaps in NM. At the beginning, the LDP
dataset is initialized to ∅ and an empty ancestor list is created. The LDP dataset Σ is
the global state that is modified when the ContainerMaps and NonContainerMaps
of the design document are evaluated. The evaluation of the design document starts
by evaluating its top-level ContainerMaps and NonContainerMaps with respect to
an empty ancestor list (Line 3 - 8).

Algorithm 4 Evaluation of design document

1: procedure Eval(δ)
2: Global Σ← ∅ //Initialize LDP Dataset
3: for all cm ∈ CM do//Evaluate ContainerMaps
4: Evalcm(cm, ∅)
5: end for
6: for all nm ∈ NM do//Evaluate NonContainerMaps
7: Evalnm(nm, ∅)
8: end for
9: end procedure

4.4.2 Proof of Correctness
In the previous section, we provided an algorithm for evaluating a design document.
In this section, we demonstrate the correctness of this algorithm. Based on the
definition of correctness (Definition 16), an algorithm is correct if it generates an

102 Chapter 4. LDP Design Language

LDP dataset that is valid from a design document δ. For this LDP dataset to be
valid, there must exist an interpretation I that satisfy δ (Definition 15). Therefore,
to demonstrate the correctness of our algorithms, we do the following:

• define an interpretation Iδ

• show that Iδ satisfies δ using conditions from the satisfaction of LDP-DL
constructs given in Section 4.2.3

• show that the evaluation of δ using Iδ indeed produces a valid LDP dataset.

Definition of Iδ

Using the definition of an LDP-DL interpretation given in Section 4.2.3, we instanti-
ate Iδ = 〈∆Iδ , Cδ,Nδ,Rδ,Sδ, ·I

δ
, IδC, IδN , IδR, IδS〉 such that:

• ∆Iδ = IRI

• Cδ = {ucm ∈ IRI|∃cm = (ucm,RM,CM,CM), cm ∈ δ}

• Nδ = {unm ∈ IRI|∃nm = (unm,RM), nm ∈ δ}

• Rδ = {urm ∈ IRI|∃rm = (urm, qp, cq,DS), rm ∈ δ}

• Sδ = {uds ∈ IRI|∃ds = (uds, uloc), ds ∈ δ ∨ ∃ds = (uds, uloc, ulr), ds ∈ δ}

• ·Iδ is the identity function;

• ∀ucm ∈ Cδ,∃cm = (ucm,RM,CM,NM) ∈ δ,

– IδC((ucm)Iδ, #»p) = Evalcm(cm, #»p)

• ∀unm ∈ Nδ,∃nm = (unm,RM) ∈ δ

– IδN ((unm)Iδ, #»p) = Evalnm(nm, #»p)

• ∀urm ∈ Rδ,∃rm = (urm, cq, qp,DS) ∈ δ

– IδR((urm)Iδ, #»p) = Evalrm(rm, #»p)

• ∀uds ∈ Sδ,∃ds = (uds, uloc, ulr) ∈ δ

– IδS((uds)
Iδ) = [[ds]]source

Now that we have defined the di�erent parts of Iδ , let us show that Iδ |= δ in the
next section.

Satisfaction of Design Document δ Using Iδ

We show that Iδ satisfies δ by demonstrating that it satisfies the conditions with
respect to ContainerMaps, NonContainerMaps, ResourceMaps and DataSources
given in Section 4.2.3. We do so in a bo�om-up approach starting from DataSources.

4.4. Operational Semantics 103

Satisfaction of DataSources by Iδ: Per Definition 7, the satisfaction of a DataSource
ds by Iδ depends on its two possible form. First, if ds = 〈uds, uloc〉 then Iδ satisfies
ds i� IδS(uI

δ

ds) = deref(uloc). Otherwise, if ds = 〈uds, uloc, ulr〉 then Iδ satisfies ds i�
IδS(uI

δ

ds) = deref(ulr)(deref(uloc)). IδS is given by [[ds]]source that implements the lat-
ter two conditions depending on the form of ds as shown in Section 4.4.1, therefore
Iδ |= ds.

Satisfaction of ResourceMaps by Iδ: In Iδ, ResourceMaps are interpreted by
IδR. Iδ satisfies a ResourceMap rm = (urm, qp, cq,DS) with respect to an ancestor
list #»p if the following three condition.

Condition 1: We want to show that Iδ |= DS. As shown above, Iδ satisfies
this condition.

Condition 2: We want to show that We want to show that if r ∈ Πρ([[qp]]gs on
{µ #»p }) then there exists 〈n, r, g〉 ∈ IδR(uI

δ

rm,
#»p).

Let rm1 =(urm1,qp1,cq1,DS1) be a ResourceMap and #»p1 be an ancestor list.By
definition of Iδ in Section 4.4.2, IδR(iri(rm)I

δ
, #»p) = Evalrm(rm, #»p). When evalu-

ating rm1 in Evalrm, gs1 is produced using DS1 on Line 3 (Algorithm 1) and µ #»p1

containing ancestor variable mappings is created using #»p1 on Line 4 (Algorithm 1).
On Line 7 (Algorithm 1), Πρ([[qp1]]gs1 on {µ #»p1}) is evaluated to generate a list of
related resource. Let r1 be one such related resource. Then, for r1, an n1 and g1 is
generated in the loop (Algorithm 1, Line 9 - 16). Finally, (n1, r1, g1) is generated
from Evalrm(rm1,

#»p1) that implies that (n1, r1, g1) ∈ IδR(iri(rm1)
Iδ , #»p1).

Therefore, this condition is satisfied as indeed for every r ∈ Πρ([[qp]]gs on {µ #»p }),
there is a 〈n, r, g〉 ∈ IδR(uI

δ

rm,
#»p)

Condition 3: We want to show that if 〈n, r, g〉 ∈ IδR(uI
δ

rm,
#»p) then r ∈

Πρ([[qp]]gs on {µ #»p }) and g ⊇ gtcq([[qpcq]]gs on {µν} on {µρ} on {µ #»p }).
Let rm1 =(urm1,qp1,cq1,DS1) is a ResourceMap and #»p1 be an ancestor list. gs1 is

produced using DS1 on Line 3 (Algorithm 1) and µ #»p1 containing ancestor variable
mappings is created using #»p1 on Line 4 (Algorithm 1). By definition of Iδ in Sec-
tion 4.4.2, IδR(iri(rm)I

δ
, #»p) = Evalrm(rm, #»p). Let (n1, r1, g1) be a triple generated

by Evalrm (rm1, #»p1). (n1, r1, g1) is generated in the loop (Algorithm 1, Line 15).
When it is being generated in that loop, µ = r1 (Algorithm 1, Line 9) is always an
element of Ω that is indeed obtained only from the expression Πρ([[qp1]]gs1 on {µ #»p1})
(Algorithm 1, Line 7). Also, the graph g is directly generated on Line 14 (Algorithm 1)
using the expression gtcq1([[qpcq1]]gs1 on {ν ← n} on {µρ} on {µ #»p1}). No other
triples is added to g. Thus, if (n1, r1, g1) ∈ IδR(rmI

δ

1 ,
#»p1), both r1 and g1 satisfies

the constraints in the condition.
Therefore, this condition is satisfied as indeed for every 〈n, r, g〉 ∈ IδR(uI

δ

rm,
#»p),

there is a r ∈ Πρ([[qp]]gs on {µ #»p }) with g ⊇ gtcq([[qpcq]]gs on {µν} on {µρ} on {µ #»p })

Since the above conditions are satisfied, Iδ satisfies a ResourceMap with
respect to a ancestor list #»p (i.e. Iδ, #»p |= rm).

104 Chapter 4. LDP Design Language

Satisfaction of NonContainerMaps by IδN : In Iδ, NonContainerMaps are inter-
preted by IδN . Iδ satisfies a NonContainerMap nm = (unm,RM) with respect
to an ancestor list #»p if the following three condition are satisfied. When demon-
strating the satisfactions of the conditions below, we use the definition of Iδ in
Section 4.4.2 where IδN (iri(nm)I

δ
, #»p) = Evalnm(nm, #»p) and for any ResourceMap

rm, IδR(iri(rm)I
δ
, #»p) = Evalrm(rm, #»p).

Condition 1: We want to show that I, #»p |= RM. As shown above, Iδ satisfies
this condition.

Condition 2: We want to show that if 〈n, g〉 ∈ IδN (uI
δ

nm,
#»p) then there exists

rm ∈ RM, 〈n, r, g′〉 ∈ IδR(iri(rm)I
δ
, #»p) such that g′ ⊆ g.

Letnm1 =(unm1,rm1) be a NonContainerMap and #»p1 an ancestor list. Evalnm (nm1, #»p1)
returns a set of non-containers 〈n, g〉. Let 〈n1, g1〉 be such a non-container. For
〈n1, g1〉 to be generated on Line 5 (Algorithm 2), there must necessarily be a
〈n1, r1, g1〉 generated in Evalrm (rm1, #»p1) on Line 4 (Algorithm 2) where r1 is the re-
lated resource that LDP resource n1 describes. Also, the graph in 〈n1, g1〉 is the same
as the one in 〈n1, r1, g1〉 as we use the la�er triple directly without adding any triples
to g1. Thus, if 〈n1, g1〉 ∈ IδN (iri(nm1)

Iδ , #»p1), then 〈n1, r1, g1〉 ∈ IδR(iri(rm1)
Iδ , #»p1)

Therefore, this condition is satisfied as indeed for every 〈n, g〉 in IδN (uI
δ

nm,
#»p),

there is a 〈n, r, g〉 in IδR(iri(rm)I
δ
, #»p) where rm ∈ RM

Condition 3: We want to show that if there exists rm ∈ RM, 〈n, r, g′〉 ∈
IδR(iri(rm)I

δ
, #»p), then there exists a unique 〈n, g〉 ∈ IδN (uI

δ

nm) such that g′ ⊆ g.
Let nm1 =(unm1,rm1) be a NonContainerMap and #»p1 an ancestor list. When eval-

uating ResourceMaps in Evalnm on Line 3 (Algorithm 2), for a particular (n1, r1, g1)
in Evalrm (nm1, #»p1), only one (n1, g1) is created on Line 5 (Algorithm 2). Also, the
same graph g1 is used without adding any further triples to it. Thus, if 〈n1, r1, g1〉 ∈
IδR(iri(rm1)I

δ
, #»p1), then indeed there exists a unique 〈n1, g1〉 ∈ IδN (iri(nm1)I

δ
).

Therefore, this condition is satisfied as indeed for every 〈n, r, g〉 in IδR(iri(rm)I
δ
, #»p)

where rm ∈ RM, there is a 〈n, g〉 in IδN (uI
δ

nm,
#»p).

Since the above conditions are satisfied, Iδ satisfies a NonContainerMap nm
with respect to an ancestor list #»p (i.e. Iδ, #»p |= nm).

Satisfaction of ContainerMaps by IδC : In Iδ , ContainerMaps are interpreted by
IδC . Iδ satisfies a ContainerMap cm = (ucm,RM,CM,NM) with respect to an
ancestor list #»p if the following three condition are satisfied. When demonstrating
the satisfaction of the conditions below, we use the definition of Iδ in Section 4.4.2
where IδC(iri(cm)I

δ
, #»p) = Evalcm(cm, #»p) and for any NonContainerMap nm,

IδN (iri(nm)I
δ
, #»p) = Evalnm(nm, #»p) and for any ResourceMap rm, IδR(iri(rm)I

δ
, #»p) =

Evalrm(rm, #»p) and for any

Condition 1: We want to show that Iδ, #»p |= RM. As shown above, Iδ
satisfies this condition.

4.4. Operational Semantics 105

Condition 2: We want to show that if 〈n, g,M〉 ∈ IδC(uIcm) then there exists
rm ∈ RM, 〈n, r, g′〉 ∈ IδR(iri(rm)I

δ
, #»p) such that g′ ⊆ g.

Let cm1 =(ucm1,rm1 ,∅,∅) be a ContainerMap and #»p1 be an ancestor list. Evalcm (cm1, #»p1)
returns a set of containers 〈n, g,M〉. Suppose 〈n1, g1,M1〉 is one such container. For
container 〈n1, g1,M1〉 to be generated on Line 16 (Algorithm 3), there must necessar-
ily be a 〈n1, r1, g1〉 generated in Evalrm (rm1, #»p1) on Line 4 (Algorithm 3) where r1 is
the related resource that container n describes. Also, the graph g1 of container n1 is
the same as the one in 〈n1, r1, g1〉 as we use the la�er triple directly without adding
any triples in g1. The set of members M1 of container n1 will be empty since it does
not have any child ContainerMaps or NonContainerMaps. Thus, if 〈n1, g1,M1〉 is
generated from IδC(uIcm), then there must be an 〈n1, r1, g1〉 ∈ IδR(iri(rm)I

δ
, #»p)

Therefore, this condition is satisfied as indeed for every 〈n, g,M〉 in IδC(uI
δ

cm,
#»p),

there is a 〈n, r, g〉 in IδR(iri(rm)I
δ
, #»p) where rm ∈ RM

Condition 3: We want to show that if there exists rm ∈ RM, 〈n, r, g′〉 ∈
IδR(iri(rm)I

δ
, #»p), then there exists a unique 〈n, g,M〉 ∈ IC(uIcm) such that g′ ⊆ g.

Let cm1 =(ucm1,rm1 ,∅,∅) be a ContainerMap and #»p1 an ancestor list. When eval-
uating ResourceMaps in Evalcm on Line 3 (Algorithm 3), for a particular (n1, r1, g1)
in Evalrm (rm1, #»p1), only one (n1, g1,M1) is created on Line 16 (Algorithm 3). Also,
the same graph g1 is used without adding any further triples to it.

Therefore, this condition is satisfied as indeed for every 〈n, r, g〉 in IδR(iri(rm)I
δ
, #»p)

where rm ∈ RM, there is a 〈n, g,M〉 in IδC(uI
δ

cm,
#»p).

Condition 4: We want to show that for all rm ∈ RM and for all 〈n, r, g〉 ∈
IδR(iri(rm)I

δ
) and for all 〈n, g,M〉 ∈ IδC(uI

δ

cm,
#»p), we have Iδ, #»p :: r |= NM and

M ⊇ {n | ∃nm ∈ NM ∧ ∃〈n, g〉 ∈ IδN (iri(nm)I
δ
, #»p :: r)}.

Let cm1 =(ucm1,{rm1 },{nm1 },{}) be a ContainerMap and #»p1 an ancestor list. Sup-
pose that (n1, r1, g1) is obtained from the evaluation of rm1 on Line 3 (Algorithm 3).
For this triple, only one container (n1, g1,M1) is generated using it on Line 16
(Algorithm 3). With respect to the la�er container, the NonContainerMap nm1 is
evaluated on Line 7 (Algorithm 3) in its context by appending the ancestor list #»p1
with its related resource r1. The IRI of non-containers in Evalnm (nm1, #»p1 :: r1) are
then added to M1 on Line 8 (Algorithm 3).

Therefore, this condition is satisfied as indeed for every container (n, g,M) in
IδC(cm, #»p),M will the IRIs of all non-containers generated from the NonContainerMaps
of cm.

Condition 5: We want to show that for all rm ∈ RM and for all 〈n, r, g〉 ∈
IδR(iri(rm)I

δ
), and for all 〈n, g,M〉 ∈ IδC(uI

δ

cm,
#»p),we have Iδ, #»p :: r |= CM and

M ⊇ {n | ∃cm ∈ CM ∧ ∃〈n, g,M ′〉 ∈ IδC(iri(rm)I
δ
, #»p :: r)}.

Let cm1 =(ucm1,{rm1 },∅,{cm11 }) be a ContainerMap and #»p1 an ancestor list. Sup-
pose that (n1, r1, g1) is obtained from the evaluation of rm1 on Line 3 (Algorithm 3).
For this triple, only one container (n1, g1,M1) is generated using it on Line 16 (Algo-
rithm 3). With respect to the la�er container, the ContainerMap cm11 is evaluated
on Line 12 (Algorithm 3) in its context by appending the ancestor list #»p1 with its
related resource r1. Evalcm (cm11, #»p1 :: r1) may return a number of containers. The
IRI of all these containers are added to M1 on Line 13 (Algorithm 3).

106 Chapter 4. LDP Design Language

Therefore, this condition is satisfied as indeed for every container (n, g,M) in
IδC(cm, #»p), M will contain containers generated from the ContainerMaps of cm.

Condition 6: We want to show that for all rm ∈ RM and for all 〈n, r, g〉 ∈
IδR(iri(rm)I

δ
), and for all 〈n, g,M〉 ∈ IδC(uI

δ

cm,
#»p), n′ ∈Mn ⇒ (∃nm ∈ NM,∃g′, 〈n′, g′〉 ∈

IδN (iri(nm)I
δ
, #»p :: r)) ∨ (∃cm ′ ∈ CM,∃g′,∃M ′, 〈n′, g′,M ′〉 ∈ IδC(iri(cm ′)I

δ
, #»p ::

r).
Let cm1 =(ucm1,{rm1 },{nm1 },{cm11 }) be a ContainerMap and #»p1 an ancestor list.

Suppose that (n1, r1, g1) is obtained from the evaluation of rm1 on Line 3 (Algo-
rithm 3) and the container (n1, g1,M1) is generated using it on Line 16 (Algorithm 3).
M1 can contain only IRIs of containers and non-containers generated from cm1 and
nm1. Because, as we can see in Algorithm 3, there are only two places where IRIs
can be added to M1. The first one is when evaluating the ContainerMaps of cm (Al-
gorithm 3, Line 11 - 15). The second one is when evaluating the NonContainerMaps
of cm (Algorithm 3, Line 6 - 10). Thus, members of containers generated from cm1

will only contain containers and non-containers generated from cm11 and nm1 with
the proper ancestor list.

Therefore, this condition is satisfied as for all containers (n, g,M) in IδC(uI
δ

cm,
#»p),

the elements of M can only be IRIs of containers or non-containers in the interpre-
tation of the ContainerMaps or NonContainerMaps of cm respectively.

Since the above conditions are satisfied, Iδ satisfies a ContainerMapm with
respect to an ancestor list #»p (i.e. Iδ, #»p |= cm).

Satisfaction of a design document by Iδ: Iδ satisfies a design document δ =
(CM,NM) with respect to an ancestor list #»p if the following condition are satisfied.

Condition 1: We want to show that Iδ, ∅ |= CM.
Iδ satisfies this condition as ∀cm ∈ CM, Iδ, ∅ |= cm as shown above.

Condition 2: We want to show that Iδ, ∅ |= NM.
Iδ satisfies this condition as ∀nm ∈ NM, Iδ, ∅ |= nm as shown above.

Evaluation of design documents using Iδ

In the previous section, we have showed that Iδ satisfy design documents. In this
section, we show that the interpretation of a design document using Iδ produces a
valid LDP dataset. Given a design document δ = (CM,NM), we want to prove
that [[δ]]I = Eval(δ). To be able to make this proof, we make the hypothesis that
the ContainerMaps in δ have no cycles and are finite. With these constraints, δ
forms a tree as shown in Figure 4.13 where δ itself is the root with its immediate
children be its top-level *maps that are found directly in CM and NM.

Since design documents like δ form a tree, we use some concepts related to tree
structures that we define below. For the remainder of this section, we use one finite
design document δ = (CM,NM) having no cycles in its ContainerMaps.

4.4. Operational Semantics 107

δ = (CM,NM)

ContainerMap

NonContainerMap

Figure 4.13: Abstract View of design document δ containing maps that are finite and
having no cycles

In a design document, all NonContainerMaps are leaves. A ContainerMap is a
leaf i� it has no child ContainerMaps.

Definition 19 (Leaf). A NonContainerMap is a leaf. A ContainerMap cm=(ucm,RM,CM,NM)
is a Leaf i� CM=∅

In a design document, the leaves have a height of zero. The height of a ContainerMap
is the length of the longest path downward to a leaf.

Definition 20 (Height). Let cm=(ucm,RM,CM,NM) be a ContainerMap. If cm is
a leaf, height(cm)=0. If cm ′ ∈ CM, max(height(cm ′))=n, then height(cm)=n+1

Both ContainerMaps and NonContainerMaps are interpreted with respect to
di�erent ancestor lists that vary depending on the related resource generated by
their own ResourceMaps or that of their ancestors.

Definition 21 (Ancestors List). If m ∈ CM ∪ NM, ancestors(m, δ) = {∅}. If
there exist a ContainerMap cm′ = (ucm,RM′,CM′,NM′) appearing in δ such that
m′ ∈ CM′ ∪NM′, then ancestors(m′, δ) = { #»p :: r | #»p ∈ ancestors(cm ′, δ), rm ′ ∈
RM′,∃(n, r, g) ∈ Evalnm(rm, #»p)}

We want to show that [[δ]]I = Eval(δ) by proving each inclusion separately. We
start by that evaluation of the ContainerMaps are included in the generated LDP
dataset.

Theorem 1. For all cm in δ, for all #»p ∈ ancestors(cm, δ), [[cm]]
#»p
Iδ ⊆ Eval(δ)

Proof. Let us prove the above theorem by induction on the height of a ContainerMap
cm = (ucm,RM,CM,NM) appearing in δ.

108 Chapter 4. LDP Design Language

Base Case occurs when height(cm) = 0
Let e ∈ [[cm]]

#»p
Iδ . Based on Definition 13, if e ∈ [[cm]]

#»p
Iδ , then either:

(1.1) e ∈ IδC(iri(cm)I
δ
, #»p), or

(1.2) e ∈
⋃

rm∈RM

〈n,r,g〉∈IδR(iri(rm)I
δ
, #»p)

m′∈NM∪CM

[[m′]]
#»p ::r
Iδ

Since height(cm) = 0, #»p = ∅ and CM = ∅. Let us now consider (1.1) and (1.2)
individually below.

(1.1) If e ∈ IδC(iri(cm)I
δ
, ∅), then by the definition of IδC in Section 4.4.2, e ∈

Evalcm(cm, ∅). If we consider the definition of Evalcm (Algorithm 3) on Line 16,
we can see the only triples (n, g,M) are added to the set result that is returned
by Evalcm. Therefore, e ∈ Evalcm(cm, ∅) implies that e = (n, g,M). Also, we can
notice that result is always added to the LDP dataset (Σ) on Line 19. Therefore,
e = (n, g,M) ∈ Eval(δ)

(1.2) if e ∈
⋃

rm∈RM

〈n,r,g〉∈IδR(iri(rm)I
δ
, #»p)

m′∈NM

[[m′]]
#»p ::r
Iδ , then there exist a ResourceMap rm′ ∈ RM

and a NonContainerMap nm′ ∈ NM such that e ∈ IδN (iri(nm′)I
δ
, #»p :: r) based on

Definition 13. Thus, by the definition of IδN in Section 4.4.2, e ∈ Evalnm(nm, #»p :: r).
If we consider the definition of Evalnm (Algorithm 2) on Line 5, we can see the
only pairs (n, g) are added to the set result that is returned by Evalnm. Therefore,
e ∈ Evalnm(nm, #»p :: r) implies that e = (n, g). Also, we can notice that result
is always added to the LDP dataset (Σ) on Line 8 in the definition of Evalnm
(Algorithm 2). Therefore, e = (n, g) ∈ Eval(δ).

Now that we have proved that the base case is true, let us proceed with the
definition of the inductive hypothesis.

Inductive Hypothesis Let n ∈ N such that for all ContainerMaps cm appearing
in δ such that height(cm) ≤ n, and for all #»p ∈ ancestors(cm, δ), [[cm]]

#»p
Iδ ⊆ Eval(δ).

Let cm′ be a ContainerMap appearing in δ such that cm′ = (ucm,RM,CM,NM)
and height(cm′) = n+ 1 and let #»p ∈ ancestors(cm′, δ).

Let e ∈ [[cm]]
#»p
Iδ . Based on Definition 13, if e ∈ [[cm]]

#»p
Iδ , then either:

(2.1) e ∈ IδC(iri(cm)I
δ
, #»p) (shown above in (1.2)), or

(2.2) e ∈
⋃

rm∈RM

〈n,r,g〉∈IδR(iri(rm)I
δ
, #»p)

m′∈NM∪CM

[[m′]]
#»p ::r
Iδ

Since we have already shown (2.1), let us proceed with showing (2.2).

4.4. Operational Semantics 109

(2.2) If e ∈
⋃

rm∈RM

〈n,r,g〉∈IδR(iri(rm)I
δ
, #»p)

m′∈NM

[[m′]]
#»p ::r
Iδ , then there exist a rm ∈ RM, (n, r, g) ∈

IδR(rm, #»p) and m ∈ CM∪NM such that e ∈ [[m]]
#»p ::r. If m ∈ NM, then the case

is similar to the one shown in (1.2). Else, if m ∈ NM, we can notice that:

• height(m) ≤ n

• #»p :: r ∈ ancestors(m, δ)

Thus, from the induction hypothesis, [[m]]
#»p ::r
Iδ ⊆ Eval(δ).

We now proceed to the reverse inclusion.

Theorem 2. Eval(δ) ⊆ [[δ]]Iδ

Proof. Let us now prove the above theorem. Let e ∈ Eval(δ). There are 2 cases,
either:

(3.1) e = (n, g) is a non-container, or;

(3.2) e = (n, g,M) is a container

Let us consider the case (3.1),

(3.1) If e = (n, g), then it has been generated by Algorithm 2 on Line 5. So, there
exist two parameters, a NonContainerMap nm and an ancestor list #»p , such that e ∈
Evalnm(nm, #»p). Based on the definition of Iδ in Section 4.4.2, IδN (iri(nm)I

δ
, #»p) =

Evalnm(nm, #»p) and by the definition of [[nm]]
#»p
Iδ (Definition 13), IδN (iri(nm)I

δ
, #»p) =

[[nm]]
#»p
Iδ . We can prove that [[nm]]

#»p
Iδ ⊆ [[δ]]Iδ . While this may seem obvious by look-

ing at the definition of [[δ]]Iδ , it depends on whether the ancestor list #»p used by
Eval(δ) is the correct list of nm in δ. Let us specify this as a lemma and prove it.

Lemma 1. For all m ∈ CM ∪NM appearing in δ, calls to Eval∗m(m, #»p) in the
execution of Eval(δ) occur if and only if #»p ∈ ancestors(m, δ)

We now prove the above lemma.

Proof. Clearly it is the case at the first call to Evalnm and Evalcm on the empty
ancestor list in Eval(δ)(Algorithm 4). Then, the only lines where there is a recursive
call to Eval∗m are Line 7 and Line 12 in Algorithm 3.

Let the ContainerMap cm and the ancestor list #»p be parameters of a call to
Evalcm such that #»p ∈ ancestors(cm, δ). Then, the call of Evalnm is made with
parameters nm and #»p :: r (Algorithm 3, Line 7) where r is defined from a call to
Evalrm on Line 4 (Algorithm 3) and nm is a NonContainerMap in cm. By definition
of Iδ, IδR(rm, #»p) = Evalrm(rm, #»p) and so #»p :: r ∈ ancestors(nm, δ). Similarly,
the call to Evalcm is made with the right ancestor list.

Let us now consider the case (3.2),

110 Chapter 4. LDP Design Language

(3.2) if e = (n, g,M), then it has been generated by Algorithm 3 with parameters
cm and #»p such that e ∈ Evalcm(cm, #»p). By definition, IδC(cm, #»p)=Evalcm (cm, #»p)
and by definition of [[cm]]

#»p
Iδ , I

δ
C(cm,

#»p) ⊆ [[cm]]
#»p
Iδ . By Lemma 1, #»p is the ancestor

list of cm, so [[cm]]
#»p
Iδ appear as a term in the union in the definition of [[δ]]Iδ . So

IδC(cm, #»p) ⊆ [[δ]]Iδ . Therefore, e ∈ [[δ]]Iδ

Theorem 3. For all finite δ with no cycles, Eval(δ)is valid with respect to δ

Proof. For all nm in δ, for all #»p ∈ ancestors(nm, δ), [[nm]]
#»p
Iδ = IδN (iri(nm)I

δ
, #»p)

by definition of IδN (iri(nm)I
δ
, #»p) and IδN (iri(nm)I

δ
, #»p) = Evalnm(nm, #»p) by def-

inition of Iδ. Moreover, Evalnm(nm, #»p) ⊆ Eval(δ) according to Lemma 1 and
Algorithm 2. In addition of Theorem 1, this ensures that [[δ]]Iδ ⊆ Eval(δ). Finally,
Theorem 2 states that Eval(δ) ⊆ [[δ]]Iδ . So Eval(δ) = [[δ]]Iδ .

Therefore, Eval(δ) is correct.

4.5 Summary
In this chapter, we have described the syntax and semantics of LDP-DL both in a
informal and formal way. We started by first providing an overview of LDP-DL using
a concrete example. Then, we have formally described the syntax of LDP-DL as well
as its semantics.We have defined the semantics of our language in two di�erent
ways, model-theoretic and operational. The model-theoretic semantics have enabled
us to abstract from choices le� open by the LDP standard and associate an LDP
dataset to an LDP-DL design. The operational semantics is an instantiation of
the model-theoretic semantics to evaluate a LDP-DL design and generate an LDP
dataset containing the LDP resources. Also, we have described the correctness of our
evaluation algorithms using the satisfaction of LDP-DL constructs defined per the
model-theoric semantics of LDP-DL. Finally, we describe the variabilities that may
invalidate LDP datasets and provide two intermediary models, static and dynamic
data sources, to abstract them.

111

Part III

Implementation & Validation

113

Chapter 5

Implementation

In the previous part, we have proposed the LDP generation workflow to automatize
the generation of LDPs whose core is a language, LDP-DL, to define the design of
LDPs. Also, we have described formally the syntax and semantics of the language. In
this chapter, we describe the workflow’s implementation that we refer to as the LDP
generation toolkit. To this end, in Section 5.1, we provide an overview of the toolkit.
We describe the concrete syntax for writing LDP-DL design documents in Section 5.2.
Then, we present the tools from the LDP generation toolkit: ShapeLDP (Section 5.3)
is an implementation of the LDPizer, POSTerLDP (Section 5.4) is an implementation
of the LDP dataset deployer, InterLDP (Section 5.5) is an implementation of an LDP
server, and, finally, HubbleLDP, an LDP browser (Section 5.6) for navigating through
LDPs.

Contents
5.1 Overview of LDP Generation Toolkit 114

5.2 LDP-DL Concrete Syntax . 115

5.3 LDPizer: ShapeLDP . 117

5.3.1 Overview . 117

5.3.2 Design Document Processing 118

5.3.3 Modularizing Design Document 121

5.3.4 LDP Resource IRI Generation 123

5.4 LDP Dataset Deployer: POSTerLDP 124

5.4.1 Overview . 124

5.4.2 Write Mode . 125

5.4.3 Update Mode . 126

5.5 LDP Server: InterLDP . 127

5.5.1 Static Mode . 127

5.5.2 Dynamic Mode . 128

5.6 LDP Browser: HubbleLDP . 128

5.7 Summary . 129

114 Chapter 5. Implementation

5.1 Overview of LDP Generation Toolkit
The LDP generation toolkit, whose abstract view is shown in Figure 5.1, is an
implementation of the LDP generation workflow presented in Chapter 3 (Figure 3.9).
ShapeLDP is an LDPizer that consumes a design document wri�en in the concrete
syntax of LDP-DL. With respect to some data sources, it generates one of the two
LDP dataset variants, static or dynamic LDP datasets presented in the previous
chapter, to deal with static or dynamic data sources. The LDP dataset can then be
deployed on a server either by using POSTerLDP or InterLDP. POSTerLDP is an
LDP dataset deployer that deploys LDP resources from the (dynamic) LDP dataset
to any conforming LDP server. InterLDP is an LDP server that can directly consume
a (dynamic) LDP dataset. Finally, HubbleLDP is an LDP browser that can be used
to navigate through LDP resources hosted by on server.

LDP POST
 Requests

ShapeLDP

LDP Servers
(LDP impl)design

document

 Static LDP Dataset

POSTerLDP

Deployment Parameters

LDP Design
Language

SPARQL
Generate Dynamic LDP Dataset

HubbleLDP

InterLDP
Non-RDF Data

sources

RDF Data
sources

Figure 5.1: Overview of LDP Generation Toolkit

The LDP generation workflow can distributed as geographically dispersed actors
may implement di�erent part of it using di�erent tools from the toolkit. As we
explain in Section 5.3.3, design documents can be modularized. Consequently,
di�erent actors (e.g data providers or publishers) may contribute to di�erent part
of an LDP design in di�erent documents all of which may be unioned together to
form a single design document. For instance, actors standardizing ontologies may
provide design in LDP-DL for publishing data structured using these ontologies.
Eventually, data publishers may use several of these designs based on the ontologies
per which their data is structured, merge them to form a single design document
and use it to publish their data using LDPs.

Moreover, as we will see, static/dynamic LDP dataset use relative IRIs making
them independent of deployment. Exploiting this feature, di�erent teams at the data
publisher’s site may be involved in the publication. For example, LDP-DL designers
define a design, encode it in LDP-DL and generate the LDP dataset without being
aware of deployment aspects (e.g. LDP server address). At deployment time, LDP
system administrators may characterize the deployment aspects and deploy the
LDP dataset.

Finally, data consumers may use di�erent tools that are completely agnostic
of LDP-DL. Moreover, they may ignore the implementation-specific details of the
LDPs generated and develop tools considering only the LDP standard. The LDP

5.2. LDP-DL Concrete Syntax 115

browser HubbleLDP is an example of such a tool that may be used for navigating
ontologies.

Now, that we have provided an overview of the LDP generation toolkit9 instance,
let us proceed with a brief description of the LDP-DL concrete syntax.

5.2 LDP-DL Concrete Syntax
LDP designs document describing the design of LDP in LDP-DL are encoded in RDF
graphs that are serialized in documents. The serialization can take place in various
RDF syntaxes such as Turtle, RDF/XML, JSON-LD, etc. LDP-DL enables di�erent
types of processor’s implementations. For example, processors can o�er a virtual
access to LDP resources over the design documents or generate materialized LDP
datasets.

Listing 5.1 shows an example of a design document in the concrete syntax. This
design document is in fact the serialization of the LDP-DL design model shown in
Chapter 4 (Figure C.1) in the abstract syntax. In the remaining of this section, we
describe constructs from the concrete syntax used to write this design document.
Our description follows the structure of the document and we make correspondence
to constructs from the abstract syntax described in Chapter 4 (Section 4.2.2) wherever
possible.

1 @prefix : <http://example.com/data/> .
2 @prefix ldl: <https://w3id.org/ldpdl/#> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#> .
4 @prefix dct: <http://purl.org/dc/terms/>.
5
6 # definition of design document and links to its top-level maps
7 <> a ldl:DesignDocument;
8 ldl:topLevelMap :catalog .
9

10 # :catalog describe containers for DCAT catalogs
11 :catalog a ldl:ContainerMap;
12 ldl:resourceMap :rm1;
13 ldl:containerMap :dataset .
14
15 :rm1 a ldl:ResourceMap;
16 # query pattern of ContainerMap :rm1
17 ldl:resourceQuery "{ ?{res} a dcat:Catalog .}";
18
19 # CONSTRUCT query of :rm1
20 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res}

?p ?o . } WHERE { ?{res} ?p ?o . FILTER (?p not in (dcat:dataset))
}";

21
22 # DataSource query of :rm1
23 ldl:dataSource :dSourceParis . .
24
25 # :dataset describe containers for DCAT datasets
26 :dataset a ldl:ContainerMap;
27 ldl:slugQueryTemplate "{ BIND (replace(str(?{res}),’http://’,’’) as ?

oldtemplate) BIND (replace(?oldtemplate,’/’,’.’) as ?{slug}) }";
28 ldl:containerMap :distribs;
29 ldl:resourceMap :rm2 .
30
31 :rm2 a ldl:ResourceMap;
32 ldl:resourceQuery "{ ?{parent} dcat:dataset ?{res} .}";

116 Chapter 5. Implementation

33 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res}
?p ?o . } WHERE { ?{res} ?p ?o . FILTER (?p not in (dcat:
distribution)) }";

34 ldl:dataSource :dSourceParis .
35
36 # :distribs describe containers for grouping DCAT distributions
37 :distribs a ldl:NullContainerMap;
38 ldl:slugTemplate "distributions";
39 ldl:nonContainerMap :distrib;
40 ldl:resourceMap :rm3 .
41
42 :rm3 a ldl:ResourceMap;
43 ldl:graphQuery "CONSTRUCT { ?{nres} dct:description ?title .} WHERE {

?{parent} dct:title ?title . BIND(CONCAT(’Describes distribution
of ’,?title)) }";

44 ldl:dataSource :dSourceParis .
45
46
47 # :distrib describe non-containers for DCAT distributions
48 :distrib a ldl:NonContainerMap;
49 ldl:resourceMap :rm4 .
50
51
52 :rm4 a ldl:ResourceMap;
53 ldl:resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
54 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res}

?p ?o . } WHERE { ?{res} ?p ?o . }";
55 ldl:dataSource :dSourceParis .
56
57
58 :dSourceParis a ldl:RDFFileDataSource;
59 ldl:location "https://opendata.paris.fr/api/v2/catalog/exports/ttl" .

Listing 5.1: Example of a Design Document in the concrete syntax

At the beginning of the document, we define some prefixes among which ldl

is the namespace of LDP-DL vocabulary and : is an example namespace that
instantiate constructs from the vocabulary. Then, there is the definition of the
design document and its top-level container maps and non-container maps are
specified using ldl:topLevelMap. While specifying the top level instances is not
obligatory, doing so prevents the processor from having to search for them. Normally,
a container map or non-container map is at the top-level if it is not referred by any
other container map.

:catalog is a instance of ldl:ContainerMap that represents a ContainerMap

and it is at the top-level. Its ResourceMap :rm1 is specified by ldl:resourceMap.
The query pa�ern and CONSTRUCT query of the :rm1 is specified by ldl:resourceQuery
and ldl:graphQuery and all prefixes used in either of them should be defined at
the beginning of the document. For example, dcat:Catalog is used in the :rm1’s
query pa�ern and defined together at the beginning of the document. In the queries,
reserved variables are can be identified within ?{...}. More precisely, ?{res} is
used for the reserved variable ρ and ?{nres} is used for the reserved variable ν. Also,
:rm1 has a DataSource :dataSource1 specified by ldl:dataSource. :dataSource1
is an instance of ldl:RDFFileDataSource which means that it an RDF source whose
location is specified by ldl:location.

5.3. LDPizer: ShapeLDP 117

:catalog has a ContainerMap :dataset specified by ldl:containerMap. :dataset
has an additional property slugQueryTemplate that is optional for all instances of
ldl:ContainerMap and ldl:NonContainerMap. It is used to obtain the value of the
header slug, that as we mentioned in Chapter 2 (Section 2.4.2), provide a suggestion
to the LDP server for the IRIs of resources. To obtain the value, an LDP-DL processor
may evaluate the query pa�ern on the data source and project the first solution
mapping to the reserved variable ?{slug}.

:dataset has a ContainerMap :distribs. As we can see, :distribs is a :NullContainerMap
that is a syntax sugar introduced in the concrete syntax. Its aim is to facilitate
the definition of ContainerMaps that either do not have ResourceMaps, or have
ResourceMaps whose query pa�ern may not be specified. Containers generated
from such ContainerMaps are used for grouping LDP resourcs. For example, the
ResourceMap :rm3 of :distribs has no ldl:resourceQuery property. But a generic
one will be created for it when processing the design document which is why in
the abstract model in Chapter 4 (Figure C.1), :rm3 has a query pa�ern. Eventually,
all ContainerMaps defined using :NullContainerMap are converted to standard
instances of ldl:ContainerMap

Also, as we can see, :distribs has a property ldl:slugTemplate. Compared to
slugQueryTemplate, slugTemplate directly specifies a value that may be used for
the LDP header slug. Finally, :distribs has a NonContainerMap :distrib that is
specified by the property ldl:nonContainerMap.

The above description is restricted to the design document in Listing 5.1. For
a detailed description of the concrete syntax together with a mapping from the
abstract syntax to the concrete one and vice versa, refer to Appendix B.

5.3 LDPizer: ShapeLDP
In this section, we describe ShapeLDP1, our implementation of the LDPizer (de-
scribed in Chapter 3, Section 3.3.1). First, we provide an overview of ShapeLDP in
Section 5.3.1. Then, we explains how ShapeLDP facilitates the modularization of de-
sign document in Section 5.3.3. Finally, in Section 5.3.4, we describe how ShapeLDP
generates IRIs for LDP resources.

5.3.1 Overview
ShapeLDP is an open source implementation of an LDPizer programmed in Java
on top of the Apache Jena ARQ SPARQL 1.1 engine2. It provides a command line
interface whose options are shown in Table 5.1.

ShapeLDP consumes a design document, through the designDocument parame-
ter, and evaluate it in either the static and dynamic based on the mode parameter.
We describe static and dynamic evaluation modes in more details in Section 5.3.2
below. The data sources exploited during the evaluation can be in RDF or het-
erogeneous formats. To exploit heterogeneous data sources, ShapeLDP uses their
RDF transformation document (or li�ing rules) specified for DataSources in the

1https://github.com/noorbakerally/ShapeLDP
2https://jena.apache.org/documentation/query/index.html, last accessed 17 July 2018

https://github.com/noorbakerally/ShapeLDP
https://jena.apache.org/documentation/query/index.html

118 Chapter 5. Implementation

Short
Option

Long
Option Description

d designDocument Path of design document
m mode Mode of operation that may be static or dynamic
ids inputDataSource URL for the main input source
se sparqlEndpoint URL for a SPARQL endpoint as main input source
lf li�ingRule Li�ing rule for the main input source
sd sourceDocument Source documents containing partial design definitions
o ouputFile Path to output LDP dataset
l logging Disable logging by se�ing value to true or false
h help Show Help

Table 5.1: ShapeLDP command line options

design model. For now, ShapeLDP can only consume li�ing rules wri�en in SPARQL-
Generate [LZB17a] are supported. Future versions may consider other languages
such as RML [DVSC+14], XSPARQL [AKKP08a] or others.

During the design document evaluation, if a single data source is used, its URL
can be passed to ShapeLDP via the inputDataSource or sparqlEndpoint parameter
in case the source is an (Non-)RDF source or SPARQL endpoint respectively. These
parameters are mutually-exclusive and if they are used on a design document
containing already a definition of data sources, such as the one in Listing 5.1, these
definition are overrides and only the one specified by either of these parameters is
considered. Also, if the data source specified by inputDataSource is not in RDF, its
transformation document may be passed through the liftingRule parameter.

Moreover, as we explain in Section 5.3.3 below, it is possible to modularize an LDP-
DL design in several documents that may then be input using the sourceDocument.
Finally, the path of the output LDP dataset can be specified using the outputFile

parameter.

5.3.2 Design Document Processing
ShapeLDP can process design documents in either the static or dynamic mode that
are described in Section 5.3.2 and Section 5.3.2 respectively.

Static Mode

In the static mode, ShapeLDP generates a static LDP dataset. As mentioned in
Chapter 4 (Section 4.3.2), static LDP dataset uses temporary identifiers. In our
implementation, we use relative IRIs as these temporary identifiers. An example of
a static LDP dataset is shown in Listing 5.2.

1 @prefix ldl: <https://w3id.org/ldpdl/ns#> .
2 @prefix bcat: <https://bistrotdepays.opendatasoft.com/api/v2/catalog/

exports/> .
3 @prefix bdataset: <https://bistrotdepays.opendatasoft.com/api/v2/catalog/

datasets/> .
4 @prefix ldp: <http://www.w3.org/ns/ldp#> .
5 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
6 @prefix dcat: <http://www.w3.org/ns/dcat#>.

5.3. LDPizer: ShapeLDP 119

7 @prefix dc: <http://purl.org/dc/terms/>.
8
9 # definition of static LDP dataset & metadata in the default graph

10 <> a ldl:StaticLDPDataset;
11 # metadata include top-level resources, all (non-)containers
12 ldl:topLevelResource <catalog>;
13 ldl:container <catalog>;
14 ldl:nonContainer <catalog/animations> .
15
16 # metadata can also include members of all containers
17 <catalog> ldp:contains <catalog/animations> .
18
19 # description of LDP resources
20 <catalog> {
21 <catalog> a ldp:BasicContainer;
22 ldp:contains <animations> ;
23 foaf:primaryTopic bcat:ttl .
24
25 bcat:ttl a dcat:Catalog;
26 dc:description "Bistrotdepays Catalog" .
27 }
28
29 <catalog/animations> {
30 <catalog/animations> a ldp:RDFSource;
31 foaf:primaryTopic bdataset:animations_bistrots_de_pays .
32 bdataset:animations_bistrots_de_pays a dcat:Dataset;
33 dc:description "Liste des animations dans les etablissements du label

Bistrot de Pays" ;
34 dc:title "Animations Bistrots de Pays" .
35 }

Listing 5.2: Example of a static LDP dataset

Let us now describe the above static LDP dataset that was generated by ShapeLDP.
As we can see, ShapeLDP serializes static LDP datasets as RDF datasets in the TriG
format [CS14b]. To facilitate the processing of static LDP dataset, it adds some
metadata in its default graph using the vocabulary that is described in Appendix B.1.
For example, the document is typed an ldl:StaticLDPDataset (Listing 5.2, Line 10)
because as mentioned before, there are also dynamic LDP datasets. Moreover,
top-level resources, whether containers or non-containers, are specified using the
ldl:topLevelResource such as <catalog> (Line 12). Also, all containers and non-
containers are specified using ldl:container and ldl:nonContainer respectively
such as <catalog> (Line 13) and <catalog/animations> (Line 14). Finally, all the
members of containers are always specified. In this case, only the members of
<catalog> (Line 17) are specified because it is the only container. In Section 5.4, we
explain how the metadata may be used when deploying LDP datasets.

In Chapter 4 (Section 4.3.2), we have describe the formalization of static LDP
datasets. Using the description, when serializing a non-container (n, g), a named
graph is created with the relative IRI n and graph g. With containers (n, g,M),
the procedure is di�erent due to the existence of members. For every container,
we create a named graph with the relative IRI n and its serialized graph being
the union of g and triples for every member from M with subject, predicate and
object of a triple being n, ldp:contains and m ∈ M respectively. For example,
both <catalog> (Line 20) and <catalog/animations> (Line 34) are container and

120 Chapter 5. Implementation

non-container respectively and have their corresponding graph. Also, the graph of
<catalog> uses triples with predicates ldp:contains to specify its members.

Dynamic Mode

In the dynamic mode, ShapeLDP generates dynamic LDP datasets. As in the case of
static mode, relative IRIs are generated as temporary identifiers for LDP resources.
An example of a dynamic LDP dataset is shown in Listing 5.2.

1 @prefix ldl: <https://w3id.org/ldpdl/ns#> .
2 @prefix bcat: <https://bistrotdepays.opendatasoft.com/api/v2/catalog/

exports/> .
3 @prefix bdataset: <https://bistrotdepays.opendatasoft.com/api/v2/catalog/

datasets/> .
4 @prefix ldp: <http://www.w3.org/ns/ldp#> .
5 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
6 @prefix dcat: <http://www.w3.org/ns/dcat#>.
7 @prefix dc: <http://purl.org/dc/terms/>.
8
9 # definition of dynamic LDP dataset & metadata in the default graph

10 <> a ldl:DynamicLDPDataset;
11 ldl:topLevelResource <catalog>;
12 ldl:container <catalog>;
13 ldl:nonContainer <catalog/animations> .
14 <catalog> ldp:contains <catalog/animations> .
15
16 # description of LDP resources
17 <catalog> {
18 <catalog> a ldp:BasicContainer;
19 ldp:contains <animations> .
20
21 # graph description provides compiled CONSTRUCT query
22 # and data source on which query must be executed
23 <catalog> ldl:graphDescription [
24 ldl:graphQuery "CONSTRUCT { <https://bistrotdepays.opendatasoft.com/

api/v2/catalog/exports/ttl> ?p ?o . } WHERE { <https://
bistrotdepays.opendatasoft.com/api/v2/catalog/exports/ttl> ?p ?o
FILTER (?p NOT IN (<http://www.w3.org/ns/dcat#dataset>)) } " ;

25 ldl:dataSource <DataSource1>
26] .
27
28
29
30 <DataSource1> a ldl:DataSource>;
31 ldl:location "http://bistrotdepays.opendatasoft.com/api/v2/catalog/

exports/ttl" .
32
33 }
34 <catalog/animations> {
35 <catalog/animations> a ldp:RDFSource .
36
37 <catalog/animations> ldl:graphDescription [
38 ldl:graphQuery "CONSTRUCT { <https://bistrotdepays.opendatasoft.com/

api/v2/catalog/datasets/animations_bistrots_de_pays> ?p ?o . }
WHERE { <https://bistrotdepays.opendatasoft.com/api/v2/catalog/
datasets/animations_bistrots_de_pays> ?p ?o FILTER (?p NOT IN (<
http://www.w3.org/ns/dcat#distribution>)) } " ;

39 ldl:dataSource <DataSource1>
40] .
41
42 <DataSource1> a ldl:DataSource>;

5.3. LDPizer: ShapeLDP 121

43 ldl:location "http://bistrotdepays.opendatasoft.com/api/v2/catalog/
exports/ttl" .

44
45 }

Listing 5.3: Example of a dynamic LDP dataset

This dynamic LDP dataset was generated from the source and using the same
design document as the static LDP dataset in Listing 5.2 which explains why it has
the same metadata with the exception that it is typed as an ldl:DynamicLDPDataset

(Line 10).
In Chapter 4 (Definition 18), we have describe the formalization of static LDP

datasets. Using the description, when serializing dynamic containers or non-
containers, a named graph is created for them with their relative IRIs, GraphDescription
are serialized in the named graph. Additionally, if they are containers, their named
graph would include triples where the subjects are the containers’ relative IRIs, the
predicate are ldp:contains and the objects are the members’ relative IRI. For exam-
ple, in both the container <catalog> and non-container <catalog/animations>,their
GraphDescription is specified by ldl:graphDescription. Moreover, for <catalog>,
it only member is specified using ldp:contains in its named graph.

5.3.3 Modularizing Design Document
As mentioned before, the concrete syntax of LDP-DL is in RDF and the defini-
tion of an LDP-DL design involves the definition of several constructs namely
ContainerMaps, NonContainerMaps, ResourceMaps and DataSources. ShapeLDP
takes advantage of the RDF data model and enhances modularization by allowing
design documents to be split into di�erent files that can contain partial definition of
an LDP-DL design. To process these files, ShapeLDP consumes their URLs and com-
bine them into a single LDP-DL design model before interpreting it. Modularizing a
design design enhances the reusability of the partial designs.

For example, the design document given in Listing 5.1 include the definition of a
DataSource (Listing 5.1, Line 23 - 59). The design document can be be modularized
into two di�erent documents, one containing the main LDP-DL design, shown in
Listing 5.4, and one containing the definition of the data source, shown in Listing 5.5.

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix : <http://example.com/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#> .
4 @prefix dct: <http://purl.org/dc/terms/>.
5
6 # definition of design document & metadata
7 <> a ldl:DesignDocument;
8 ldl:topLevelMap :catalog .
9

10 # :catalog describe containers for DCAT catalogs
11 :catalog a ldl:ContainerMap;
12 ldl:resourceMap :rm1;
13 ldl:containerMap :dataset .
14
15 # :dataset describe containers for DCAT datasets
16 :dataset a ldl:ContainerMap;

122 Chapter 5. Implementation

17 ldl:slugQueryTemplate "{ BIND (replace(str(?{res}),’http://’,’’) as ?
oldtemplate) BIND (replace(?oldtemplate,’/’,’.’) as ?{slug}) }";

18 ldl:containerMap :distribs;
19 ldl:resourceMap :rm2 .
20
21 # :distribs describe containers for grouping DCAT distributions
22 :distribs a ldl:NullContainerMap;
23 ldl:slugTemplate "distributions";
24 ldl:nonContainerMap :distrib;
25 ldl:resourceMap :rm3 .
26
27 # :distrib describe containers for DCAT distributions
28 :distrib a ldl:NonContainerMap;
29 ldl:resourceMap :rm4 .
30
31 # Definition of ResourceMaps without their data sources
32 :rm1 a ldl:ResourceMap;
33 ldl:resourceQuery "{ ?{res} a dcat:Catalog .}";
34 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res} ?p

?o . } WHERE { ?{res} ?p ?o . FILTER (?p not in (dcat:dataset)) }" .

35
36 :rm2 a ldl:ResourceMap;
37 ldl:resourceQuery "{ ?{parent} dcat:dataset ?{res} .}";
38 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res} ?p

?o . } WHERE { ?{res} ?p ?o . FILTER (?p not in (dcat:distribution)
) }" .

39
40 :rm3 a ldl:ResourceMap;
41 ldl:graphQuery "CONSTRUCT { ?{nres} dct:description ?title .} WHERE { ?{

parent} dct:title ?title . BIND(CONCAT(’Describes distribution of
’,?title)) }" .

42
43 :rm4 a ldl:ResourceMap;
44 ldl:resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
45 ldl:graphQuery "CONSTRUCT { ?{nres} foaf:primaryTopic ?{res} . ?{res} ?p

?o . } WHERE { ?{res} ?p ?o . }" .

Listing 5.4: Document containing partial LDP-DL design without data source definitions

1 @prefix on: <https://w3id.org/ldpdl/#> .
2 @prefix : <http://example.com/data/> .
3
4 # linking resource maps to Paris DCAT catalog data source
5 :rm1 a on:dataSource :dataSource1 .
6 :rm2 a on:dataSource :dataSource1 .
7 :rm3 a on:dataSource :dataSource1 .
8 :rm4 a on:dataSource :dataSource1 .
9

10 # definition of Paris DCAT catalog data source
11 :dataSource1 a on:RDFFileDataSource;
12 on:location "https://opendata.paris.fr/api/v2/catalog/exports/ttl" .

Listing 5.5: Document containing data source definitions for Paris DCAT catalog

Modularizing the design documents enhances their reusability. For example,
the partial LDP-DL design in Listing 5.4 may be used to generate LDPs from any
other data sources by using it in combination with their definitions such as the one
shown in Listing 5.6 or the one in Listing 5.6 Listing 5.6.

5.3. LDPizer: ShapeLDP 123

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix : <http://example.com/data/> .
3
4 # linking resource maps to toulouse data source
5 :rm1 a ldl:dataSource :dSourceToulouse .
6 :rm2 a ldl:dataSource :dSourceToulouse .
7 :rm3 a ldl:dataSource :dSourceToulouse .
8 :rm4 a ldl:dataSource :dSourceToulouse .
9

10 # definition of toulouse data source
11 :dSourceToulouse a ldl:RDFFileDataSource;
12 ldl:location "https://data.toulouse-metropole.fr/api/v2/catalog/exports/

ttl" .
13
14 # linking resource maps to nantes data source
15 :rm1 a ldl:dataSource :dSourceNantes .
16 :rm2 a ldl:dataSource :dSourceNantes .
17 :rm3 a ldl:dataSource :dSourceNantes .
18 :rm4 a ldl:dataSource :dSourceNantes .
19
20 # definition of nantes data source
21 :dataSource3 a ldl:RDFFileDataSource;
22 ldl:location "https://data.nantesmetropole.fr/api/v2/catalog/exports/ttl

" .

Listing 5.6: Document containing data source definitions for Toulouse DCAT catalog

When design documents are modularized, ShapeLDP merges RDF graphs from
the documents to obtain to obtain a single design model. For example, merging
the RDF graphs from the documents in Listing 5.5 and Listing 5.6 would result in a
single design model that is then processed by ShapeLDP.

The la�er example used is a concrete case where the modularizing design
documents may enhance their reusability. By separating the definition of the
DataSources in a di�erent file, the reusability of the design in Listing 5.1 in-
creases as anyone may have their own definition of data sources in a di�erent
document and use it together with the la�er document as it is. There may be other
reusability pa�erns. For example, the queries specified by ldl:resourceQuery and
ldl:graphQuery could be modularized in a di�erent documents to abstract the
main LDP-DL design from the varying vocabularies used in data sources. Then,
document containing queries specific to a particular data source may be used in
combination with the document containing the main LDP-DL design.

5.3.4 LDP Resource IRI Generation
As mentioned before, both static and dynamic LDP datasets use relative IRIs. In their
families of algorithms, we have assumed the existence of a function genIRI that
generates these relative IRIs but have not explicitly described it. In ShapeLDP, the
implementation of this function exploits the slugQueryTemplate or slugTemplate,
described in Section 5.2, to obtain a text that it uses to create the relative IRI.

Let us consider an example to describe how ShapeLDP generates relative IRIs.
Suppose when creating the IRI of an LDP resource, it obtains the text “paris”. If the
LDP resource is not contained in any container, i.e. a top-level resource, then that

124 Chapter 5. Implementation

text is its final relative IRI. However, if the LDP resource is a member of a container
having the relative IRI “france/city”, then its relative IRI will be “france/city/paris”
that is obtained by concatenating the text obtained for LDP resource with the
relative IRI of its container. If duplicate relative IRIs are generated, then random
numbers are concatenated until they are unique.

5.4 LDP Dataset Deployer: POSTerLDP
In this section, we describe POSTerLDP, our implementation of the LDP dataset
deployer (described in Chapter 3, Section 3.3.2). First, we provide an overview of
POSTerLDP in Section 5.4.1. Then in Section 5.4.2 and Section 5.4.3, we describe the
write and update modes respectively in which POSTerLDP can operate.

5.4.1 Overview
POSTerLDP1 is open source and implemented in Python on top of the RDF library
RDFLib2. It is completely agnostic of the LDP server’s implementation. It generates
standard LDP requests and is thus compatible with any server implementing LDP
interactions. Currently, POSTerLDP can deploy LDP resources on only one server
but future versions may consider replication or partitioning schemes described in a
particular deployment language.

Option Description
baseURL Base URL of the LDP server
username Username for basic authentication
password Password for basic authentication
LDPdataset URL of LDP dataset
staticLDPdataset URL of static LDP dataset
dynamicLDPdataset URL of dynamic LDP dataset
empty Generate empty RDF graph for LDP resources
mode POSTerLDP mode, either write or update
help Show help message

Table 5.2: POSTerLDP command line options

Table 5.2 shows a list of options provided by the command line interface of
POSTerLDP. Basically, baseURL corresponds to the base URL on the LDP where
resources are deployed and username and password are parameters used for basic au-
thentication. Also, POSTerLDP can directly consume LDP datasets as well as static/-
dynamic LDP datasets and LDPdataset, staticLDPdataset and dynamicLDPdataset

are mutually exclusive parameters for passing the required document.
In case a static LDP dataset is consumed, the LDP dataset is instantiated from

it by resolving all relative IRIs for containers and non-containers to absolute IRIs
using the base URL of the LDP server. When consuming a dynamic LDP dataset,

1https://github.com/noorbakerally/POSTerLDP, last accessed on 10 July 2018
2http://rdflib.readthedocs.io/en/stable/, last accessed on 17 July 2018

https://github.com/noorbakerally/POSTerLDP
http://rdflib.readthedocs.io/en/stable/

5.4. LDP Dataset Deployer: POSTerLDP 125

POSTerLDP generates an LDP dataset using Algorithm 11 where the RDF graphs of
LDP resources are fixed. POSTerLDP may then deploy the la�er LDP dataset.

When deploying using POSTerLDP, due to the dynamicity of data sources, the
la�er LDP dataset may become invalid. To cater for this issue, we provide an
additional option empty via the command interface that allows generating LDP
dataset where the RDF graphs of LDP resources are empty. In this way, the la�er
LDP dataset may be deployed on the LDP server and extensions may be made to
the server by the party hosting the LDP so that it uses the dynamic LDP datasets
to generate the RDF graphs of the LDP resources.

Finally, the parameter mode can either be write or update. These two modes are
further described in the next two sections.

5.4.2 Write Mode
In the write mode, POSTerLDP deploys all resources described in the LDP dataset
using LDP POST requests with the assumption that the LDP server does not already
contain any resources described in the LDP dataset. The deployment of one resource
is realized by WriteResource (cf. Algorithm 5) that takes as parameters the LDP
resource to deploy (res), the location of the pre-existing LDP container where res
is to be deployed (location), and credentials (username and password), if any, for
basic authentication on the server.

WriteResource only performs the deployment of one resource and an LDP
dataset may contain a number of resources. It is not possible to simply iterate on
all resources from the LDP dataset and deploy them using WriteResource. This is
because, there may be resources that are actually members of a particular container
and when deploying resources using POST, the containers have to be deployed
first before their members. Therefore, to deploy an LDP dataset, first its top-level
resources are deployed then their members are recursively deployed if they are
containers.

Algorithm 5 Deployment of an LDP resource in Write mode

1: procedure WriteResource(res, location, username, password)
2: //create POST request
3: postReq ← GeneratePostReq(res, location, username, password)
4: postResp← SendPostReq(postReq)
5: if StatusCode(postResp) = 201 then //check the status code
6: //resource was created
7: if res is a Container then
8: contLoc← Header(postResp, “Location”) //retrieve Location header
9: for all memRes ∈ members(res) do //create members in container

10: WriteResource(memRes, contLoc, username, password)
11: end for
12: end if
13: else
14: generateError(postReq, postResp)
15: end if
16: end procedure

Let us now briefly describe WriteResource. To deploy the resource res, first a
conformant LDP POST request is generated using the four parameters (Algorithm 5,

126 Chapter 5. Implementation

Line 3). This involves se�ing the request body and the proper header per the LDP
standard. Once created, the POST request is sent and the reply postResp is obtained.
The status of the response is checked (Algorithm 5, Line 5) and a status code of
201 signifies that the resource has successfully been created [SAM15c, §5.2.3.2]. If
it is the case and if res is a container, then all its members are retrieved and are
deployed where it has been deployed on the server (Algorithm 5, Line 7 - 12). Per
the LDP standard, when creating a resource through POST, its deployment location
is returned in the Location header of the response [SAM15c, §5.2.3.2]. Therefore,
the deployment location header of resource is retrieved and stored in contLoc
(Algorithm 5, Line 8) and used when sending POST request for its members.

In POSTerLDP, WriteResource exploits the fact that ShapeLDP places direct
references to top-level resources in the default graph of the serialized LDP dataset
as described in Section 5.3.2. Thus, when deploying an LDP dataset, POSTerLDP
looks for these references and starts its deployment from there. However, if the
default graph is empty, then it assumes that the static/dynamic LDP dataset has
not been generated by ShapeLDP. Consequently, it naively identifies the top-level
resources by iterating through all containers and non-containers in the LDP dataset
and checking whether they are members of any container. Finally, it deploys the
top-level resources and recursively deploy their members if they are containers.

5.4.3 Update Mode
In the update mode, POSTerLDP assumes that the server on which the LDP dataset
is to be deployed may contain LDP resources from the LDP dataset. updateRes
(Algorithm 6) shows the deployment of a particular LDP resource in this mode. It
takes exactly the same parameters as WriteResource.

When deploying a resource res, first, POSTerLDP checks whether it already
exist on the server by sending a HEAD request using its IRI (Algorithm 6, Line 3). If
a response with a status code of 200 is received, meaning that the resource exists,
it is updated through a PUT request using its new content from the LDP dataset
(Algorithm 6, Line 4). Otherwise, if the status code is 404, meaning that it does not
exist on the server, it is created using a POST request (Algorithm 6, Line 11 - 13).
Finally, if res is a container, its members are recursively updated (Algorithm 6,
Line 17).

Like WriteResource (Algorithm 5), UpdateResource also describes the deploy-
ment on one LDP resource and therefore requires identification of top-level resources
and the recursive deployment of their members if they are containers.

In summary, POSTerLDP deploys an LDP dataset by creating and/or modifying
resources on LDP server using the LDP write interaction model. Another way is to
use an LDP server, described in the next section, that can directly instantiate an
LDP using an LDP dataset.

5.5. LDP Server: InterLDP 127

Algorithm 6 Deployment of an LDP resource in update Mode

1: procedure UpdateResource(res, location, username, password)
2: headReq ← GenerateHeadReq(res)//create head request
3: headResp← SendHeadReq(res, dep)
4: if StatusCode(headResp) = 200 then //check if resource exists
5: //Update the resource
6: putReq ← GeneratePutReq(res)
7: putResp← SendPutReq(res, dep)
8: resIRI ← iri(res)
9: else if StatusCode(headResp) = 404 then //check if the resource does not exists

10: //create the resource
11: postReq ← GeneratePostReq(res, location, username, password)
12: postResp← SendPostReq(postReq)
13: resIRI ← Header(postResp, “Location”)
14: end if
15: if res is a Container then
16: for all memRes ∈ members(res) do//update members of container res
17: UpdateRes(memRes, resIRI, username, password)
18: end for
19: end if
20: end procedure

5.5 LDP Server: InterLDP
InterLDP1 is an LDP server that can directly consume an LDP dataset (static or
dynamic) and exposes LDP resources from it. As of now, it only supports HTTP GET,
HEAD and OPTIONS requests LDP-RSs.

InterLDP can functions in either the static and dynamic modes that are described
in Section 5.5.1 and Section 5.5.2 respectively.

5.5.1 Static Mode
In this mode, InterLDP takes as input a static LDP dataset or directly an LDP dataset
and the base URL at which the LDP server is going to be exposed. If it consumes
a static LDP dataset, then it instantiate the LDP dataset from it by resolving all
relative IRIs for containers and non-containers to absolute IRIs using the base URL.
EvalGet (Algorithm 7) describes how InterLDP evaluates GET requests on LDP
resources in the static mode on the LDP dataset Σ.

Algorithm 7 Evaluation of GET request by InterLDP in Static Mode

1: procedure EvalGet(req,Σ)
2: res← getResource(Σ, iri(req)) //get the requested resource
3: if res = ∅ then
4: response← generateError(req)
5: else
6: response← generateReply(res) //create response with required headers & body
7: end if
8: return response
9: end procedure

1https://github.com/noorbakerally/InterLDP

https://github.com/noorbakerally/InterLDP

128 Chapter 5. Implementation

On obtaining a request for a resource, first the resource is retrieved from Σ. For
this, we assume the existence of a function getResource(Σ, resIRI) that retrieves
a resource with IRI resIRI from the LDP dataset Σ (Algorithm 7, Line 2). If Σ does
not contain such a resource, an error is generated with the appropriate content per
the LDP standard (Algorithm 7, Line 4). Otherwise, using the resource retrieved, a
response is generated by se�ing the appropriate response body and headers per the
LDP standard. Finally, the response is returned (Algorithm 7, Line 6).

5.5.2 Dynamic Mode
In this mode, InterLDP takes as input a dynamic LDP dataset and the base URL
at which the LDP server is going to be exposed. EvalGet (Algorithm 8) describes
how InterLDP evaluates GET requests on LDP resources in the dynamic mode the
dynamic LDP dataset ∆.

Algorithm 8 Evaluation of GET request by InterLDP in Dynamic Mode

1: procedure EvalGet(req,∆)
2: res← getDynamicRes(∆, iri(req)) //get the dynamic container or non-container
3: if res = ∅ then
4: response← genErrorReply(req)
5: else
6: gdes← GDES(res) //retrieve its graph description
7: g ← Evalgdes(gdes) //generate the graph using its graph description
8: response← generateReply(iri(res), g)
9: end if

10: end procedure

On obtaining a request for a resource, it is retrieved from ∆ using the function
getResource(∆, resIRI) (Algorithm 8, Line 2) whose existence we assume. If ∆
does not contain the resource, an error is generated (Algorithm 8, Line 4). Otherwise,
using the resource res from ∆, its GraphDescription is retrieved (Algorithm 8,
Line 7) and evaluated using Evalgdes(Algorithm 8, Line 6) to generate the graph
of the resource. Evalgdes, as mentioned before, performs the RDF merge of all the
individual DataSources in DS to generate an RDF graph on which cq is evaluated
to generate the graph of the resource. Finally, a response is generated by se�ing the
appropriate response body and headers per the LDP standard (Algorithm 8, Line 8).

5.6 LDP Browser: HubbleLDP
HubbleLDP1 is an LDP browser that can be used to browse resources on an LDP
and view their content. Figure 5.2 shows a screenshot which is actually an instance2

of it running loaded with an LDP3 about DCAT catalogues4 and organization of its
datasets in di�erent languages.

1https://github.com/noorbakerally/HubbleLDP
2http://opensensingcity.emse.fr/ldp-browser/, last accessed on 30 August 2018
3http://opensensingcity.emse.fr/ldpdfend/tourism62/d3/catalog
4https://tourisme62.opendatasoft.com/api/v2/catalog/exports/ttl

https://github.com/noorbakerally/HubbleLDP
http://opensensingcity.emse.fr/ldp-browser/
http://opensensingcity.emse.fr/ldpdfend/tourism62/d3/catalog
https://tourisme62.opendatasoft.com/api/v2/catalog/exports/ttl

5.7. Summary 129

Figure 5.2: Screenshot of HubbleLDP

The interface has three main parts, the top part where details of the LDP server
are entered, the LDP Resources Hierarchy part that display the hierarchy of LDP
resources in a directory tree structure and the Selected LDPR Details part where
details of the selected resource from the LDP Resources Hierarchy is shown.

5.7 Summary
In this chapter, we describe the LDP generation toolkit that is an implementation of
the tools in the LDP generation workflow. We provide an overview of the concrete
syntax of LDP-DL that is the core of the workflow. Then, we describe ShapeLDP, our
implementation of an LDPizer, and more specifically, we describe how it evaluates
design documents and generate IRIs for containers and non-containers. We describe
POSTerLDP, our implementation of an LDP dataset deployer, and describes the
di�erent modes in which it can deploy an LDP dataset on a server. Also, we describe
InterLDP, our implementation of an LDP server, that can directly consume static and
dynamic LDP dataset and expose them via HTTP. Finally, we provide HubbleLDP,
our implementation of an LDP browser, and briefly explain how it can be used to
navigate through LDP resources on a particular server.

131

Chapter 6

Evaluation

In the previous chapter, we described our implementation of the LDP generation
workflow consisting of di�erent tools to automatize the generation of LDPs. In this
chapter, our aim is to evaluate these tools with respect to the criteria defined in the
Introduction of this thesis by doing several experiments with di�erent objectives
and constraints.

To this end, first we describe an experiment to analyze the performance of
ShapeLDP in Section 6.1. Then, in Section 6.2, we describe several experiments
done with respect to our evaluation criteria outlined in the introduction of this
thesis. Finally, in Section 6.3, we describe several experiments and show some side
contributions of our approach in general.

Contents
6.1 Performance of ShapeLDP 131

6.1.1 RDF Graph Generation . 132

6.1.2 Test Results . 132

6.2 Evaluation with respect to criteria 133

6.2.1 Design Reusability . 133

6.2.2 Hosting Constraints . 139

6.2.3 Data Heterogeneity . 141

6.2.4 Automated LDP Generation 142

6.3 Side Contributions . 144

6.3.1 Flexibility . 144

6.3.2 Lightweight Data Integration 146

6.3.3 InterLDP as an LDP Implementation 148

6.4 Summary . 149

6.1 Performance of ShapeLDP
In this section, we describe a performance test on ShapeLDP whose aim is to analyze
the time taken by ShapeLDP to execute a design document with respect to RDF
graphs fo di�erent sizes. We chose to do this on ShapeLDP only because it is a core
of our approach. The processing done by the remaining tools (POSTerLDP, InterLDP,
HubbleLDP) are rather straightforward and also a performance test for them may

132 Chapter 6. Evaluation

not be very indicative as their real use may be highly influenced by network aspects
(bandwidth, congestion, etc.).

We use ShapeLDP and the design document in Listing 6.1 with respect to RDF
graphs of di�erent sizes. In the remaining of this section, first, we briefly describe the
generation of the RDF graphs we used in the performance test. Then, in Section 6.1.2,
we describe and comment on the results of the performance test.

6.1.1 RDF Graph Generation
We generate RDF graphs of increasing sizes structured per the DCAT vocabulary.
We generate RDF graphs structured per the DCAT vocabulary. To do so, an RDF
graph having a DCAT catalog is created. Then, incrementally add random DCAT
datasets and distributions are added to the DCAT catalog until the number of triples
exceeds one million. Random DCAT datasets and distributions are generated by
creating random unique IRIs for them. Also, during the generation of the la�er RDF
graph, at regular intervals, the RDF graph generated so far is serialized. In this
way, we obtain several RDF graphs with the biggest one having around one million
triple. A more detailed description of the RDF graphs generation together with the
program that does it is provided in Appendix D.1.

6.1.2 Test Results
We automate the execution of the first design document from Domain Design
Reusability (Section 6.2.1) with respect to the 541 RDF graphs generated. We find
that the execution time is approximately linear.

Number of triples

Ti
m

e
(m

ill
is

ec
on

ds
)

Figure 6.1: Execution time of ShapeLDP

In the performance test, we have used an existing design document without
much consideration on the aspects of LDP-DL that it uses. The aim was only to have
an indication of the performance of ShapeLDP on processing a particular design
document on data sources of varying sizes. To perform a full-fledged performance
test, though not the aim of this work ,LDP-DL aspects that a�ect performance need
to be identified. For example, since SPARQL is a core element of LDP-DL, SPARQL
queries of varying complexity may a�ect the performance di�erently. Once these
aspects are identified, di�erent types of design documents that uses them may be
produced to perform insightful performance tests.

6.2. Evaluation with respect to criteria 133

6.2 Evaluation with respect to criteria
In this section, we describe families of experiments. The aim of these experiments is
to demonstrate a feature of either LDP-DL, our implementation or our approach
of generating LDPs in general with respect to the evaluation criteria outlined in
the Introduction of this thesis. For each experiment, we describe the data sources,
design documents, generation and deployment of the LDP dataset. These families of
experiments concern thus hosting constraints, data heterogeneity, design reusability
and automated LDP generation. In each of the experiment belonging to a family
and related to an evaluation criteria, we first describe se�ing parameters and then
dicuss the results. Figures use boldface fonts or do�ed line shapes to emphasis on
particular aspects.

6.2.1 Design Reusability
Design reusability with respect to LDP-DL means that the same design document
or part of it is reused independently of the data source or the LDP generated from
them. We evaluate this aspect through three experiments. First, we perform an
experiment in Section 6.2.1 where we reuse the same design document on di�erent
data sources in a particular domain. Then, in Section 6.2.1, we use a generic design
document that is independent of any domain and may be reused on data sources
that uses the RDFS/OWL vocabulary. Finally, in Section 6.2.1, we demonstrate how
part of design documents may be reused through the modularization feature of
ShapeLDP.

Domain Design Reusability

In this experiment, we reuse the same design documents on di�erent data sources
to generate LDPs. A general overview of the la�er experiment is shown in Figure 6.2.

ShapeLDP Static LDP Dataset 1

Deployment Parameters Static LDP Dataset 21

InterLDP

21 DCAT RDF
Graph

- Designs documents are manually written
- The same design document is used on all data
sources

- RDF graphs are obtained from open data portal

Design
Document

Figure 6.2: Overview of Domain Design Reusability experiment

We use 21 RDF graphs as input data sources that are structured per the DCAT
vocabulary [ME14b]. These RDF graphs are obtained from the list of open data

134 Chapter 6. Evaluation

portals curated by OpenDataSo�1 that provide a description of their catalogs using
the DCAT vocabulary.

The design document we use is shown in Listing 6.1. :datasetCM define con-
tainers for describing DCAT catalogues that in turn contains the ContainerMap

:datasetCM containers for describing DCAT datasts. Finally, :datasetCM contains
the NonContainerMap :distributionCM for describing DCAT distributions. As
we see, the design document does not have any explicit data source definition as
they are passed to ShapeLDP through the command line option inputDataSource

described in Chapter 5 (Section 5.3.1) .

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix :<http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4
5 # :catalogCM describes containers for DCAT catalogs
6 :catalogCM a ldl:ContainerMap;
7 ldl:resourceMap :catalogRM;
8 ldl:containerMap :datasetCM .
9

10 :catalogRM a ldl:ResourceMap;
11 ldl:resourceQuery "{ ?{res} a dcat:Catalog .}";
12 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:dataset)) }" .
13
14 # :datasetCM describes containers for DCAT datasets
15 :datasetCM a ldl:ContainerMap;
16 ldl:nonContainerMap :distributionNM;
17 ldl:resourceMap :datasetRM .
18
19 :datasetRM a ldl:ResourceMap;
20 ldl:resourceQuery "{ ?{parent.parent} dcat:dataset ?{res} .}";
21 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:distribution)) }" .
22
23 # :distributionNM describes non-containers for DCAT distributions
24 :distributionNM a ldl:NonContainerMap;
25 ldl:resourceMap :distributionRM .
26
27 :distributionRM a ldl:ResourceMap;
28 ldl:resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
29 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }"

.

Listing 6.1: First design document in Domain Design Reusability

In all, we obtain 21 RDF graphs that we use as data sources to generate 21
static LDP datasets that are used by InterLDP to instantiate di�erent LDPs. In
Appendix D.5.2, we provide a the URLs of the RDF graphs.

In this experiment, we have shown the design reusability by generating LDPs
from di�erent data sources using the same design document. This was possible
because the data sources considered were all structured per the same ontology on
which the design document was based on.

1https://www.opendatasoft.com/a-comprehensive-list-of-all-open-data-portals-around-the-world/,
last accessed on 5 January 2018

https://www.opendatasoft.com/a-comprehensive-list-of-all-open-data-portals-around-the-world/

6.2. Evaluation with respect to criteria 135

Generic Design Reusability

In this experiment, we use a generic design document on two di�erent data sources
to generate two di�erent LDPs. A general overview of the la�er experiment is shown
in Figure 6.3.

ShapeLDP

Generic design
document

 Static LDP Dataset

Deployment
Parameters

BBC Wildlife
Dataset

InterLDP

ShapeLDP

 Static LDP Dataset
Paris DCAT
Catalogue

Figure 6.3: Overview of Generic Design Reusability experiment

Both data sources that we consider are in RDF. The first one is the Wildlife
Dataset1 from the BBC that provides details about biological species in RDF. The
second one is the Paris DCAT Catalogue2 and is used by Paris data portal to structure
their data catalogue.

The design document used in this experiment is shown in Listing 6.2. It is a
generic design as it can be applied on any RDF graph that uses the RDFS/OWL vocab-
ulary which is general purpose. In brief, it contains a ContainerMap :classCM that
defines containers for describing classes from the data source. :classCM in turn con-
tains one NonContainerMaps :instanceNM and one ContainerMap :subclassCM.
:instanceNM defines non-containers that describe class instances while :subclassCM
defined containers that describe classes’ subclasses. Subclasses may recursively
have other subclasses. Consequently, :subclassCM has a ContainerMap that refer
to itself (Listing 6.2, Line 34) so as recursively define LDP resources for describing
the subclasses of all subclasses. Moreover, as we can see, all query pa�erns for
extracting related resources uses only RDF and RDFS terms.

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix : <http://example.com/data/> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 # :resourcesCM describes a single container for grouping all containers
7 # generated from :classCM
8 :resourcesCM a ldl:NullContainerMap;
9 ldl:slugTemplate "resources";

10 ldl:containerMap :classCM .
11
12 # :classCM describes containers for classes

1https://github.com/rdmpage/bbc-wildlife, last accessed on 23 June 2018
2https://opendata.paris.fr/api/v2/catalog/exports/ttl

https://github.com/rdmpage/bbc-wildlife
https://opendata.paris.fr/api/v2/catalog/exports/ttl

136 Chapter 6. Evaluation

13 :classCM a ldl:ContainerMap;
14 ldl:resourceMap :classRM;
15 ldl:nonContainerMap :subclassCM;
16 ldl:nonContainerMap :instanceCM .
17
18 :classRM a ldl:ResourceMap;
19 ldl:resourceQuery "{ ?x rdf:type ?{res} .}";
20 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }" .
21
22 # :classCM describes non-containers for instances of classes
23 :instanceCM a ldl:NonContainerMap;
24 ldl:resourceMap :instanceRM .
25
26 :instanceRM a ldl:ResourceMap;
27 ldl:resourceQuery "{ ?{res} rdf:type ?{parent} . }";
28 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }" .
29
30 # :subclassCM describes recursively containers for every suclass of a

class
31 :subclassCM a ldl:ContainerMap;
32 ldl:resourceMap :subClassRM;
33 ldl:nonContainerMap :instancesCM;
34 ldl:containerMap :subclassCM .
35
36 :subClassRM a ldl:ResourceMap;
37 ldl:resourceQuery "{ ?{res} rdfs:subClassOf ?{parent} .}";
38 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }" .

Listing 6.2: Generic Design for RDFS/OWL Dataset

The design document is evaluated with respect to to the data sources using
ShapeLDP to generate static LDP datasets from which LDPs are instantiated using
InterLDP. The first LDP1 expose resources from the BBC wildlife dataset while the
second expose resources from Paris DCAT catalogue2.

In this experiment, we have shown LDP-DL design reusability by using the same
design document on two data sources that are structured using completely two
di�erent ontologies. This was possible because the design document was generic
in the sense that it was based on concepts from RDFS and OWL that are standard
ontology languages for RDF data.

Modular Design Reusability

In this experiment, we generate an LDP from a design document that reuses several
modular design documents that may be used independently of each other. A general
overview of the la�er experiment is shown in Figure 6.4.

We consider a data source from the LodPaddle3 project that provides RDF data
generated from open data related to the city of Nantes in France. The data source
consists of data about the di�erent aspects of the city such as parkings, restaurants,
cinemas. To define an LDP for that data source, we modularize the LDP-DL design

1http://opensensingcity.emse.fr/ldpdfend/d6/bbc/life/classes, last accessed on 29 June
2018

2http://opensensingcity.emse.fr/ldpdfend/paris/d6/classes, last accessed on 29 June
2018

3http://lodpaddle.univ-nantes.fr/lodpaddle/, last accessed 26 June 2018

http://opensensingcity.emse.fr/ldpdfend/d6/bbc/life/classes
http://opensensingcity.emse.fr/ldpdfend/paris/d6/classes
http://lodpaddle.univ-nantes.fr/lodpaddle/

6.2. Evaluation with respect to criteria 137

ShapeLDP

design
document

 Static LDP Dataset

Deployment Parameters

Lodpaddle
SPARQL Endpoint

InterLDP

<<refer>>

Modular design
documents

Each design document describes
one aspect of data from the data
source

Figure 6.4: Overview of Modular Design Reusability experiment

into several design document each corresponding to a particular aspect of the
data. Then, we have a main design document that refer to each modular design
document. Part of the main design document is shown in Listing 6.3. The full main
design document and the di�erent modular parts are provided in Appendix D.2.

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix :<http://example.com/data/> .
3
4 # definition of design document and links to its top-level maps
5 <> a ldl:DesignDocument;
6 ldl:topLevelMap :transportCM,
7 :cultureCM,
8 :pointOfInterestCM .
9

10 # :transportCM describes a single container that groups containers
related to the transport theme

11 # :mobilitesCM and :parkingsCM are described in a different document
12 :transportCM a ldl:NullContainerMap;
13 ldl:slugTemplate "Transport";
14 ldl:containerMap :mobilitesCM;
15 ldl:containerMap :parkingsCM .
16
17 # :cultureCM describes a single container that groups containers related

to the culture theme
18 # :cinemasCM and :bibliotheque_mediathequesCM are described in a

different document
19 :cultureCM a ldl:NullContainerMap;
20 ldl:slugTemplate "Culture";
21 ldl:containerMap :cinemasCM;
22 ldl:containerMap :bibliotheque_mediathequesCM .
23
24 # :pointOfInterestCM describes a single container that groups containers

related to point of interests
25 # :chateau_monumentsCM and :parc_animalier_themesCM are described in a

different document
26 :pointOfInterestCM a ldl:NullContainerMap;
27 ldl:slugTemplate "PointOfInterest";
28 ldl:containerMap :chateau_monumentsCM;
29 ldl:containerMap :parc_animalier_themesCM .

Listing 6.3: Main document containing partial LDP-DL design that links to external *maps

138 Chapter 6. Evaluation

We organize the data using the organization that Lodpaddle uses in its appli-
cation. In other words, we group data about some aspects of the city of Nantes
in a particular container. For example, as shown in Listing 6.3, data:transport
defines a container that groups all data related to transport. It then contains two
other ContainerMaps data:parkingsCM (Listing 6.5) and data:mobilitesCM (List-
ing 6.4), that define LDP resources related to parkings and mobility respectively.
The la�er ContainerMaps are modularized in two di�erent design documents that
are shown in Listing 6.5 and Listing 6.4 respectively. Likewise, data:cultureCM and
data:pointOfInterestCM groups data related to culture and point of interest in the
city of Nantes and refer to other modularized design documents.

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix : <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 # :mobilitesCM describes a single container for grouping non-containers

described by :mobiliteCM
7 :mobilitesCM a ldl:NullContainerMap;
8 ldl:nonContainerMap :mobiliteCM .
9

10 :mobiliteCM a ldl:NonContainerMap;
11 ldl:resourceMap :mobiliteRM .
12
13 :mobiliteRM a ldl:ResourceMap;
14 ldl:resourceQuery "{ ?{res} rdf:type s:mobilite .}";
15 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{

res} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing 6.4: Document containing partial design describing :mobiliteCM

1 @prefix ldl: <https://w3id.org/ldpdl/#> .
2 @prefix :<http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 # :parkingsCM describes a single container for grouping non-containers

described by :parkingCM
7 data:parkingsCM a :NullContainerMap;
8 :slugTemplate "parkings";
9 :nonContainerMap data:parkingCM .

10
11 data:parkingCM a :NonContainerMap;
12 :resourceMap data:parkingRM .
13
14 data:parkingRM a :ResourceMap;
15 :resourceQuery "{ ?{res} rdf:type s:parking .}";
16 :graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{res

} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing 6.5: Document containing partial design describing :parkingsCM

We use ShapeLDP and provide it with all the main design document as well as
all the modularized design documents in one go. As mentioned before, in such a
case, ShapeLDP consumes all the design document and combines it into a single

6.2. Evaluation with respect to criteria 139

model use which it generates the static LDP dataset that is finally deployed as an
LDP1 using InterLDP.

Discussion

LDP designs in LDP-DL are reusable both at the document level and construct level.
By document level, we mean that it is possible to reuse the same design document
on di�erent data sources while construct level means that it possible to reuse the
definition of LDP-DL constructs (ContainerMaps, ResourceMaps, etc.) in di�erent
design documents.

Domain Design Reusability (Section 6.2.1) and Generic Design Reusability (Sec-
tion 6.2.1) shows the reusability of design document at document level. In Domain
Design Reusability , we show the reusability of design documents by using the same
design document on di�erent data sources. Moreover, in Generic Design Reusabil-
ity (Section 6.2.1), we provide a generic design that is completely agnostic of the
underlying domain vocabulary and which is reusable on RDFS/OWL vocabular-
ies. Compared to Domain Design Reusability , Generic Design Reusability shows the
reusability of design documents at a more higher level.

However, there is a limitation with the generic design document used in Generic
Design Reusability . If an RDF graph has a cycle in class-subclass hierarchy, using
the generic design document, formally, an infinite LDP dataset will be generated.
In our implementation, ShapeLDP proceeds to generate an infinite LDP dataset
in the la�er case. Normally, this would lead to a memory dump. This could be
prevented by for example, se�ing a maximum depth on the recursive definition
in the data:subclassCM. Theoretically, this would prune the inifite LDP dataset
and return only a subset of it. However, for now, we do not tackle this issue in our
implementation.

Modular Design Reusability (Section 6.2.1) shows the reusability at the construct
level. In the la�er experiment, *maps are defined in di�erent design documents
and are then referenced in the main design document without explicitly redefining
them using their IRI. For now, ShapeLDP requires all documents containing the
referenced instances of the LDP-DL constructs supplied to it during the evaluation.

It is possible to build the design model directly from the main design document
without having to supply the URLs of the modular document. This may be done by
publishing resources form the modular documents via LDPs. Then, when processing
the main design document, an LDPizer may dereference instances of LDP-DL con-
structs from these LDPs and build the complete design document before evaluating
it. However, for now, ShapeLDP do not implement the la�er optimization which is
why it explicitly requires the URLs of modular design documents.

6.2.2 Hosting Constraints
As mentioned before, there are data sources whose exploitation may give rise to
hosting constraints preventing users from deploying the data from these sources in
a di�erent so�ware environment. In this section, in Section 6.2.2, we generate an

1http://opensensingcity.emse.fr/ldpdfend/nantes/custom/data/, last accessed on 30 June
2018

http://opensensingcity.emse.fr/ldpdfend/nantes/custom/data/

140 Chapter 6. Evaluation

LDP from a real-time data source to show the ability of our approach to deal with
hosting constraints. We choose a real-time data source as it is a common example
where such constraints may occur due to resources limitation (e.g bandwidth) to
host and maintain fresh copies of the data. Finally, in Section 6.2.2, we evaluate our
approach with respect to hosting constraints.

Dynamic LDP

The aim of this experiment is to show the ability of our approach to exploit a data
source from its original location without actually hosting it in a di�erent so�ware
environment. A general overview of this experiment is shown in Figure 6.5.

ShapeLDP

design
document

 Dynamic
LDP Dataset

Deployment Parameters

CSV file

InterLDP
(In Dynamic Mode)

JSON file

lifting rule

lifting rule
Static data

Real-time data

Parking
data

(In Dynamic Mode)

Figure 6.5: Overview of Dynamic LDP experiment

We consider a data source from Grenoble data portal1 that provides details
about availability of parking spaces in park and ride facilities. The data source
itself consists of two parts, a static and a dynamic part. The static part2 (in CSV)
describes the di�erent parking facilities together with their geographic coordinates.
The dynamic part3(in JSON) provides the number of free parking spaces in the
parking facilities.

In this experiment, our constraint is that we do not want to host data from the
real-time data source in our environment due to problems such as synchronization or
updates. Therefore, using a design document (Appendix D.3) that specifies the li�ing
rules for the two data sources, we operate ShapeLDP in dynamic mode and generate
a dynamic LDP dataset. Finally, we instantiate an LDP4 from the dynamic LDP
dataset using InterLDP in dynamic mode. The content of every resource exposed
from the LDP is generated using data fetched from the data source at query time.

1http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r, last accessed 30
June 2018

2http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/

92d894c5-f076-4973-9878-9215e8628e37, last accessed 30 June 2018
3http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/

457aa891-b53e-4a5d-aa9b-1be62201c088, last accessed 30 June 2018
4http://opensensingcity.emse.fr/ldpdfend/grenoble/parkings

http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r
http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/92d894c5-f076-4973-9878-9215e8628e37
http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/92d894c5-f076-4973-9878-9215e8628e37
http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/457aa891-b53e-4a5d-aa9b-1be62201c088
http://data.metropolegrenoble.fr/ckan/dataset/parkings-relais-p-r/resource/457aa891-b53e-4a5d-aa9b-1be62201c088
http://opensensingcity.emse.fr/ldpdfend/grenoble/parkings

6.2. Evaluation with respect to criteria 141

Discussion

To deal with hosting constraints, we use the dynamic LDP datasets. In this way, we
avoid storing the content of the constrained data source in a di�erent environment
and at query time, we dynamically exploit the la�er data source.

The data source for which an dynamic LDP dataset is generated may not neces-
sary be a real-time one, it may be also static. Both the language and our implemen-
tation are completely agnostic of the update frequency of the source which allow
us to consider any type of constraints (license, storage, update frequency, etc.).

However, as mentioned in Section 4.3.2, dynamic LDP dataset can only handle
graph pa�ern changes. Thus, if a data source have hosting constraints and with
respect to a design document, there are query pa�ern changes, dynamic LDP dataset
may not be the solution. Using our approach, the only way to deal with graph
pa�ern changes for now is to re-generate the entire LDP dataset for every request.

6.2.3 Data Heterogeneity
In this section, our aim is to show that our approach can generate LDPs from
heterogeneous data sources while being able to use the data from these sources
either altogether or separately in content of LDP resources. While the experiment
in Section 6.2.2 was focused on hosting constrains, it also showed the generation of
an LDP from two heterogeneous data sources where the content of all resources
contained data from both sources. In complement to that experiment, in this section,
we perform an experiment (Section 6.2.3) focused on date heterogeneity in which
an LDP is generated from two heterogeneous data sources and the content of all
LDP resources contain data only from one of the source. Finally, in Section 6.2.3, we
discuss the results both experiments in to evaluate the ability of our approach to
deal with heterogeneous data sources.

Heterogeneous LDP Generation

The aim of this experiment is to deploy an LDP from two data sources that are in
two di�erent formats namely CSV and JSON. A general overview of this experiment
is shown in Figure 6.6. The CSV data source1 provides details about service stations
for shared vehicles while the JSON data source2 provides station for bicycle sharing.

In the design document, we specify RDF li�ing rules of the CSV and JSON data
source in SPARQL-Generate [LZB17b]. We provide the design document and li�ing
rules in Appendix D.4. ShapeLDP evaluates the design document with respect to the
data sources and use the embedded SPARQL-Generate engine to generate the RDF
data that it uses to generate the static LDP dataset. Finally, InterLDP instantiate an
LDP from the static LDP dataset and some deployment parameters.

In the LDPs generated, resources are exclusively generated from either the CSV
or JSON data source.

1https://opendata.paris.fr/explore/dataset/liste-des-stations-de-services-de-vehicules/,
last accessed 30 June 2018

2https://opendata.paris.fr/explore/dataset/velib-emplacement-des-stations, last ac-
cessed 30 June 2018

https://opendata.paris.fr/explore/dataset/liste-des-stations-de-services-de-vehicules/
https://opendata.paris.fr/explore/dataset/velib-emplacement-des-stations

142 Chapter 6. Evaluation

ShapeLDP

design
document

 Static LDP Dataset

Deployment Parameters

CSV file
InterLDP

JSON file

lifting rules

Figure 6.6: Overview of Heterogeneous LDP Generation (Section 6.2.3)

Discussion

We have done two experiments in which we have generated LDPs from hetero-
geneous data sources. In the first experiment (Section 6.2.2), though focused on
hosting constraints, an LDP was generated where all its resources use data from
all sources. In the second experiment (Section 6.2.3), the content of LDP resources
originated from only one source. With these two experiments, we showed that we
are able to exploit heterogeneous data sources with the complete freedom to use
their content in any way when generating RDF resources. This is possible because
when data from heterogeneous data sources are converted and merged into a single
RDF graph, the data can be used independently of its source due to the flexibility
of the RDF data model.

Also, in the la�er experiments, the RDF li�ing rules were expressed in SPARQL-
Generate because, as mentioned in Chapter 5 (Section 5.3.1), for now, ShapeLDP can
only consume li�ing rules in this language. However, this does not limit our ability
to deal with data heterogeneity because as mentioned in Chapter 2 (Section 2.1.2),
SPARQL-Generate can be extended to any heterogeneous data source.

Moreover, the model of LDP-DL is itself open to heterogeneous data sources
irrespective of any implementation. Per the syntax of LDP-DL, a ResourceMap

can exploit any data source, whether in RDF or not, as long as RDF li�ing rule is
specified for a data source.

6.2.4 Automated LDP Generation
As mentioned before, LDP generation include both the design and deployment
phase. However, in previous experiments, both processed in both the design and
deployment phase were automated using our tools (ShapeLDP and InterLDP). In
the design phase, we use ShapeLDP only as it is the only LDPizer that exist so far. In
the deployment phase, so far we have deploy LDPs only using InterLDP. However,
besides InterLDP, there are other existing LDP servers on which the deployment of
LDPs can be automatized.

To this end, in this section, we describe an experiment (Section 6.2.4) in comple-
ment to the previous ones where we automate the deployment of an LDP on Apache

6.2. Evaluation with respect to criteria 143

Marmo�a which is a referenced LDP implementation. Since Apache Marmo�a
also allow write operations, we take the opportunity to show that our approach
also allow updating LDPs. Finally, in Section 6.2.4, we evaluate the ability of our
approach to automate the generation of LDPs using the results of all experiments
done so far.

Compatible LDP Generation

In this experiment, we use ShapeLDP to generate a dynamic LDP dataset from a
design document with respect to a data source. Then, we use POSTerLDP to deploy
the dynamic LDP dataset on an LDP server that is an instance of Apache Marmo�a.
Then, using the same dynamic LDP dataset, we update the LDP using POSTerLDP.
An overview of this experiment is shown in Figure 6.7.

ShapeLDP

 Dynamic
LDP Dataset

PosterLDP
LDP POST

 Requests

PosterLDP
LDP DELETE, PUT,

POST

 Requests
Deployment
Parameters

Apache Marmotta

<<instanceOf>>

 Paris DCAT
Dataset

(Write mode)

(Update mode)

design
document

Figure 6.7: Overview of Compatible LDP Generation

We use the data source and the design document from Domain Design Reusability
(Section 6.2.1).

When using POSTerLDP to deploy the dynamic LDP dataset, we use the empty

option that, as described in Section 5.4.1, enable the creation of LDP resources with
empty RDF graphs. Then, when using POSTerLDP to update the LDP, we use the
same dynamic LDP dataset but without using the empty option that consequently
updates the content of all resources on the server.

Using the same dynamic LDP dataset is possible both for writing and updating
LDP resources because as mentioned in Chapter 5 (Section 4.3.2), in this structure,
rather the RDF graphs, CONSTRUCT queries for generating the RDF these graphs
are materialized. Consequently, when using the dynamic LDP dataset, POSTerLDP
generates a new LDP dataset that may contain new RDF graphs for LDP resources
if the data source has changed. In our case, since the data source is static, using a
dynamic LDP dataset will not change the content of LDP resources which is why
we use the empty option to clearly see the results of updating their content.

The aim of this experiment is to show the compatibility of our approach with
existing LDP implementation. We have shown this aspect by deploying the an LDP
using Apache Marmo�a. Any LDP server could have been used instead of Apache
Marmo�a as POSTerLDP is completely agnostic of the server or its environment
and can interact with server implementing LDP interactions.

144 Chapter 6. Evaluation

Discussion

As mentioned before, the development of LDPs consists of two main phases namely
the design and deployment phase. To automate the generation of LDPs, both these
phases need to be automatized. In all our experiment described in Section 6.2.3,
Section 6.2.2 and Section 6.2.1, we have shown the ability of our approach to autom-
atize the deployment of LDPs from data sources that are in RDF, are heterogeneous
or have hosting constraints. In all the la�er experiments, the deployment was au-
tomatized using InterLDP. However, in Compatible LDP Generation (Section 6.2.4),
POSTerLDP was used to automatized the deployment on the instance of Apache
Marmo�a both in write and update mode. As mentioned before, POSTerLDP is
completely agnostic of the implementation of the server and can therefore be used
to automate deployment on any LDP conformant server.

In our approach, we have not explicitly automatized the design phase as doing
so requires automatizing the design decision making process that involves making
decisions with respect to standards and best practices. However, for most of the
design decisions that have to be taken when writing LDP design in LDP-DL such
as resource organization in containers or content of containers or non-containers,
there are no standards. To be able to justify automated design decisions, there is a
need to identify design pa�erns that is beyond the scope of our work.

Nevertheless, as shown in Generic Design Reusability (Section 6.2.1), we indirectly
automatize the design phase through the use a generic design containing design
decisions taken based on our intuition and experience. For now, the generic design
can be used on RDFS/OWL vocabularies. But we can think of having generic design
any vocabularies such as SKOS [MB09] or even for cross-domain vocabularies such
as Time ontology [CL17], PROV-O ontology [LSM12].

In summary, with respect to design phase, our approach can automatize it
partially. The deployment phase on a single server is fully automatized both in write
and update mode as long as the sever is LDP conformant.

6.3 Side Contributions
Besides satisfying our evaluation criteria as described in the previous section, our
approach has several other side contributions that we discuss in this section. In
Section 6.3.2, we discuss the ability of our approach to perform lightweight data
integration. Then, in Section 6.3.1, we describe the flexibility of LDP-DL by defining
several LDP designs for the same data source. Finally, we describe our LDP server
InterLDP in Section 6.3.3 as an additional compatible LDP implementation. This
section follows the same layout as the previous one with section title referring to
name of experiments and figures providing overview of experiments.

6.3.1 Flexibility
The flexibility of our approach is its ability to adapt to changes. In this section,
we perform an experiment (Section 6.3.1) to demonstrate the flexibility of LDP-DL
to cope with the need to change an LDP design by showing that LDP-DL allows
defining several designs for the same data source. Finally, in Section 6.3.1, we discuss

6.3. Side Contributions 145

the flexibility of LDP-DL and our approach in general using results of experiments
done so far.

Flexible Design

In this experiment, we use the 21 DCAT catalogues used in Domain Design Reusability
(Section 6.2.1) as data sources. We define five LDP-DL designs based on the DCAT
ontology and use each of them with respect to the data sources. For each of the
data source, we generate five LDPs with di�erent designs. A general overview of
the la�er experiment is shown in Figure 6.2.

ShapeLDP

5 design documents

 Static LDP Dataset 1

Deployment Parameters Static LDP Dataset 105

InterLDP
21 DCAT RDF

Graph

- Designs documents are manually written
- The same design documents are used on all data
sources

- RDF graphs are obtained from open data portal

Figure 6.8: Overview of Flexible Design experiment

The input data sources are RDF graphs that are structured per the DCAT vocab-
ulary [ME14b]. We obtain these RDF graphs by considering the list of open data
portals curated by OpenDataSo�1 that provide a description of their catalogues
using the DCAT vocabulary. In all, we obtain 21 RDF graphs. Then, we consider five
LDP designs and encode them using the concrete syntax of LDP-DL in five design
documents. Each design describes a way to publish resources from an RDF graph
structured per the DCAT vocabulary via an LDP.

The first design document is the same as the one used in Domain Design Reusabil-
ity (Section 6.2.1). All remaining four designs builds on the la�er design. The second
design defines explicit containers to group containers that describes DCAT datasets
and distributions. The third design is mostly similar to the second one except that
in the containers that describe DCAT catalogs, it defines containers for grouping
datasets based on their languages. The di�erence between the third and fourth
design is that the la�er defines containers for grouping datasets based on their
themes rather than languages. Finally, the fi�h design is a combination of the third
and fourth design in that it defines containers for grouping DCAT datasets both
based on their languages and themes. In Appendix D.5, we provide all the remaining
four design documents and describe how to access all the LDPs (105 in all) generated
from the five design documents.

1https://www.opendatasoft.com/a-comprehensive-list-of-all-open-data-portals-around-the-world/,
last accessed on 5 January 2018

https://www.opendatasoft.com/a-comprehensive-list-of-all-open-data-portals-around-the-world/

146 Chapter 6. Evaluation

In this experiment, the aim was to show the flexibility of LDP-DL by defining
di�erent designs for the same data source. We achieved this by defining five di�erent
designs from the same data source and by generating di�erent LDPs using them.

Discussion

In the previous experiment, we have showed that LDP-DL is flexible enough to
allow di�erent LDP designs to be defined for the same data source. This flexibility
can be useful in di�erent use cases. For example, currently several ontologies are
being standardized such as Time ontology, PROV-O ontology, etc. Users may write
di�erent LDP designs to publish their data structured per a particular ontology. As
a result, for that particular ontology, several LDP-DL designs may be wri�en and
out of them, those designs that follow the proper standards, design pa�erns and
best practices may emerge.

Besides the flexibility of LDP-DL, there are properties of our models and tools
that enhances the flexibility of our approach. If we consider the experiment in
Dynamic LDP (Section 6.2.2) where we expose LDP resources from a real-time
data source, a change in the data source is directly reflected in the content of the
LDP resource due to the use of a dynamic LDP dataset exposed using InterLDP in
dynamic mode. Moreover, as we saw in Compatible LDP Generation, our approach
may still be able to adapt even if an LDP server other than InterLDP is used by
using POSTerLDP to update the content of existing LDP resources. This is possible
because POSTerLDP is agnostic of the implementation of any servers and interact
with them using LDP interactions. In summary, the flexibility of our approach
enables adapting to changes in the LDP design, data source and LDP server.

6.3.2 Lightweight Data Integration
In Chapter 1 (Section 1.3.2), we explained di�iculties that may be raised in highly
decentralized information ecosystem during data integration. In this section, in
Section 6.3.2, we perform an experiment to show the ability of our approach to
facilitate data integration. Finally, in Section 6.3.2, we discuss the use of our approach
to perform lightweight data integration in general.

LDP Integration

In this experiment, we use a design document whose data source describes the
105 LDPs generated in Flexible Design (Section 6.3.1) to generate another LDP that
integrates all of them. Figure 6.9 shows a general overview of this experiment.

As mentioned in Chapter 5 (Section 5.3.2), LDP datasets contain metadata in
their default graph which is also exposed by a specific RDF source on the LDP. In
fact, the data source contains the union of this metadata for all the LDPs generated
in Flexible Design (Section 6.3.1). Thus, the data source1 provide information about
the top level resources, containers and non-containers of all LDPs.

The design document is shown in Listing 6.6. The ContainerMap :LDPInstanceCM
defines containers for every LDPs. It has a NonContainerMap :LDPTopResNM that

1https://github.com/noorbakerally/LDPDatasetExamples/blob/master/LDPsInfo.rdf,
last accessed 7 October 2018

https://github.com/noorbakerally/LDPDatasetExamples/blob/master/LDPsInfo.rdf

6.3. Side Contributions 147

 LDP 1

 LDP 2

 LDP 105

LDPs generated from
Flexible Design Experiment

ShapeLDP

design
document

 Static LDP Dataset

Deployment
Parameters

InterLDP

<<datasource>>

Figure 6.9: Overview of LDP Integration

defines an LDP RDF source for every top level resource for a corresponding LDP.
Notice the graph query of the ResourceMap :LDPTopResRM (Line 21). ldl:refer
is a special predicate we use to indicate that the resource in the object position
is an external LDP resource. ldp:contains cannot be used because per the LDP
standard it can only be used when the LDP resource is hosted within the current
LDP. The LDP browser HubbleLDP uses this predicate to recognize these external
LDP resources.

1 @prefix ldl: <https://w3id.org/ldpdl/ns#> .
2 @prefix : <http://example.com/data/>
3
4 # :LDPInstanceCM describes a container for every LDP dataset
5 :LDPInstanceCM a ldl:ContainerMap;
6 ldl:resourceMap :LDPInstanceRM;
7 ldl:nonContainerMap :LDPTopResNM .
8
9 :LDPInstanceRM a ldl:ResourceMap;

10 ldl:dataSource :LDPsInfoDS;
11 ldl:resourceQuery "{ ?{res} a ldl:LDPDataset . }";
12 ldl:graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?o ?{res} . } WHERE {?{

res} ?p ?o . ?s ?o ?{res} .}" .
13
14 # :LDPTopResNM describes a container for every top-level resource in an

LDP dataset
15 :LDPTopResNM a ldl:NonContainerMap;
16 ldl:resourceMap :LDPTopResRM .
17
18 :LDPTopResRM a ldl:ResourceMap;
19 ldl:dataSource :LDPsInfoDS;
20 ldl:resourceQuery "{ ?{parent} ldl:topLevelResource ?{res} . }";
21 ldl:graphQuery "CONSTRUCT { ?{nres} ldl:refer ?{res} } WHERE {}" .
22
23

148 Chapter 6. Evaluation

24 :LDPsInfoDS a ldl:RDFFileSource;ldl:location "https://raw.
githubusercontent.com/noorbakerally/LDPDatasetExamples/master/
LDPsInfo.rdf" .

Listing 6.6: Design document for lightweight integration

The aim of this experiment was to show that LDPs deployed on di�erent servers
can be all integrated in a single LDP. This is achieved as in the resulting LDP, at the
top level, there are containers for every LDPs that in turn contains a reference to
their top level resources. All the remaining containers and non-containers on the
105 LDPs can be accessed using these references.

Discussion

In Chapter 1 (Section 1.3.2), we explained the e�ort and resource duplication raised
when integrating data from heterogeneous data sources. As shown in this exper-
iment, it is possible to overcome these problems using LDPs whose generation is
facilitated by providing direct access to the required metadata.

In the la�er experiment, we have shown that using an LDP dataset of some
kilobytes, we are able to generate an LDP that integrates resources from hundreds
of LDPs. Navigating through the platform gives the impression as if all its resources
are hosted on a single server which is not the case.

The linked data platform can integrate LDP resources from the LDPs without
having to bother about the amount of hardware resources required to store or
process them. Any request for an LDP resource hosted on a di�erent LDP server
automatically goes to that server instead of the linked data platform. Thus, the
server hosting the linked data platform can itself be a lightweight server that
requires the bare minimum resources to instantiate InterLDP and process request
only for resources that it hosts. In this way, the servers share hardware and so�ware
resources among themselves and integrate data from each other.

The lightweight data integration is in fact a feature that is possible only when
data is published following Linked Data principles. Following the LDP standard
facilitate the process by making di�erent autonomous servers understand and
communicate with each other and may thus be beneficial to both decentralized
and highly decentralized information ecosystem. In this regard, our approach
facilitates the pu�ing in place of such servers, thus an information ecosystem where
lightweight data integration is possible.

6.3.3 InterLDP as an LDP Implementation
InterLDP is a fully compatible LDP server and therefore it adds to the existing
implementations of LDP. From the LDP domain model, it implements RDF sources
and basic containers. Also, from the LDP interaction model, it implements only read
operations on RDF sources and basic containers. To validate LDP implementations
for the LDP standard, the W3C provides a test suite1 with a number of test cases for
verifying whether LDP interaction model are properly implemented on the di�erent
types of resources from the LDP domain model. InterLDP validate part of the

1https://w3c.github.io/ldp-testsuite/ accessed on 25 November 2017

https://w3c.github.io/ldp-testsuite/

6.4. Summary 149

test cases corresponding to the LDP interactions it implements as detailed in its
execution report1 generated by the test suite.

6.4 Summary
In this chapter, we have described the evaluation of LDP-DL, its implementation and
the approach of automatizing the generation of LDPs in general. In our evaluation,
we have described several experiments carried out with the aim of demonstrating
one or more features of our language, implementation and/or approach. We have
discussed the observations and results made in these experiments with respect to
to the evaluation criteria and we have detailed side contributions made as well.
Table 6.2 summarizes these experiments with respect to our evaluation criteria.

Evaluation Criteria
DH HC DR A

Domain Design Reusability X X
Generic Design Reusability X X
Modular Design Reusability X X
Heterogeneous LDP Generation X X
Dynamic LDP X X X
LDP Integration X
Flexible Design X
DH:Data Heterogeneity HC:Hosting Constraints
DR:Design Reusability A:Automatization

Table 6.1: Summary of experiments

Evaluation Criteria
DH HC DR A

Homogeneous LDP Access X X
Dynamic LDP X X X
Domain Design Reusability X X
Generic Design Reusability X X
Modular Design Reusability X X
DH:Data Heterogeneity HC:Hosting Constraints
DR:Design Reusability A:Automatization

Table 6.2: Summary of experiments

With respect to Design Reusability, we made three experiments that validate
our approach with respect to design reusability. The first two and the last one show
design reusability at the document and construct level respectively. In the first one,
we showed the reusability of an LDP-DL design on di�erent data sources structured
per the DCAT vocabulary. The second one shows the reusability of the same generic
design on di�erent data sources that uses RDFS/OWL ontologies. The third one

1https://w3id.org/ldpdl/InterLDP/execution-report.html

https://w3id.org/ldpdl/InterLDP/execution-report.html

150 Chapter 6. Evaluation

shows the reusability of LDP-DL constructs from several LDP-DL designs to build a
di�erent LDP-DL design.

To satisfy Data Heterogeneity, we generated an LDP from heterogeneous data
sources. For now, the ability of our approach to consider heterogeneous data
sources entirely depends on the use of RDF li�ing rules that provide an RDF view
of these sources. With respect to Hosting Constraints, we validate this criteria by
instantiating LDPs from dynamic LDP datasets for exploiting data sources having
hosting constraints at runtime without having to host them. As we mentioned
before, there are changes that may occur at these data sources that dynamic LDP
datasets cannot handle. For now, our approach can only naively handle them by
re-generating the dynamic LDP datasets every time an LDP request is made. Also, as
we can see, all experiments satisfy the Automatization criteria as the LDPs generated
in them were automatized.

Besides our evaluation criteria, our approach provides some side contributions.
In LDP Integration, we show the ability of our approach to generate LDPs that
integrates resources from several other LDPs by directly referring to them. Though
not shown in our experiment, this gives the possibility of performing cascading
LDP integrations. Also, with respect to Flexible Design, our language can express
di�erent designs for a particular data source. Finally, InterLDP that we have used in
di�erent experiments in an LDP server that adds to existing LDP implementations.

151

Part IV

Conclusion & Perspectives

153

Chapter 7

Conclusion

Contents
7.1 Summary of Contributions 154

7.2 Limitations . 156

7.3 Perspectives . 157

154 Chapter 7. Conclusion

7.1 Summary of Contributions
The use of information systems in organizations started with centralized architec-
tures. The problems with such architectures were quickly realized by its users as
they were di�icult to maintain and o�en ended as big systems with complex struc-
tures. Decentralized information ecosystems emerged as a solution with smaller
information systems delineated towards specific areas of responsibilities. The reason
for their success was that the information systems could exchange data as data
providers were collaborating with data consumers to help them making sense of the
data whenever required. Today, information ecosystems in which organizations are
operating are moving towards highly decentralized architectures for various reasons
such as globalization, multinationalism or complex supply chain collaborations. In
order to study and characterize information ecosystems with these architectures,
we introduced the new expression “highly decentralized information ecosystem”.

Highly Decentralized Information Ecosystem We defined such an informa-
tion ecosystem as a decentralized information ecosystem consisting of information
systems managed by units that are self-governed, independent and exist with li�le
to no coordination between them. The self-governance of individual units and
lack of coordination create several problems. Firstly, the information systems may
become isolated with no interaction between them. Consequently, data providers
and consumers may be unaware of each other. In cases where data consumers are
aware of data sources exposed by data providers, they may lack the required meta-
data to exploit them and handle their heterogeneity. Finally, unlike decentralized
information ecosystem, data providers may not participate with data consumers to
facilitate exploitation of their data sources.

Requirements for Interoperability In highly decentralized information ecosys-
tem, enhancing interoperability is the core challenging issue. To tackle it, rather than
providing tools for facilitating data consumption, we decided to abstract the data
heterogeneity with a standard layer. Doing so both facilitates data consumption
and provides a homogeneous platform upon which generic tools can be developed
for di�erent purposes such as discovery of data sources or data integration. There-
fore, we identified the core requirements that this standard layer should satisfy to
enhance data interoperability at syntactic, semantic and data access level. In short,
at the syntactic level, there is a need for a standardized and flexible data syntax that
enforces the use of IRIs for naming resources. At the semantic level, globally-scoped
identifiers should be used to name resources and data semantics should be made
explicit using ontology languages. Also, these ontology languages should allow
encoding these semantics in the data itself to make it self-described and portable.
Finally, at the data access level, there is a need for a high-level standardized data
access together with the description to access it.

Semantic Web for Highly Decentralized Information Ecosystem Using the
la�er requirements as a basis, we showed that standards from the Semantic Web
actually satisfy them and can therefore be used to implement this standard layer.
We positioned the LDP standard as the final step to publish data at this layer.

7.1. Summary of Contributions 155

We surveyed LDP related works and found out that they are limited and basic
and requires much manual work to set LDPs. Therefore, we identified a set of
requirements that some tools or approach should satisfy to automate the generation
of LDPs from existing data sources that may be heterogeneous or have hosting
constraints while ensuring that the design of these LDPs are reusable.

LDP Generation Workflow With these requirements in mind, we presented a
generalized LDP generation life cycle based on model-driven engineering principles
to facilitate the design and deployment of LDPs. Based on some core LDP design
and deployment aspects and the generalized LDP generation life cycle, we proposed
the LDP generation workflow that satisfies the requirements we identified for
automatizing the generation of LDPs from existing data sources. The workflow
automatizes both the design and deployment phase of LDPs and can be distributed
as geographically dispersed actors may implement di�erent parts of it. Core of the
LDP generation workflow is a domain-specific language, LDP-DL, to describe the
design of LDPs separate and independent of any implementation.

LDP Design Language We defined the syntax and the semantics of LDP-DL.
The semantics was defined in a model-theoretic fashion with the aim of abstracting
from choices le� open by the LDP standard and by doing so, we defined the validity
of an LDP-DL design interpretation. Then, we presented an example of a family
of algorithms that implements a valid LDP-DL interpretation and characterizes
the open choices. We also demonstrates the correctness of these algorithms using
the validity of the LDP-DL design interpretation that we have defined. We also
defined the LDP dataset model that is in fact the semantics of our language. It
can be seen as a snapshot of an LDP at given time and while being a simple model,
it enables abstracting from all implementation-specific details of LDPs. An LDP
dataset can vary depending on the location of the server where it is deployed as
well as the dynamicity of the data sources using which it was generated. To abstract
this variability, we provide the static and dynamic LDP datasets. Static LDP dataset
allows instantiating LDP datasets at deployment time by se�ing the location of
servers while dynamic LDP datasets ensure that LDP datasets remain valid with
respect to some changes in data sources used to generate them.

LDP Generation Toolkit We provided the LDP generation toolkit that is an
implementation of the tools from the workflow and allows us to automate the
generation of LDPs from existing data sources while remaining agnostic of the
technicalities of LDP servers. The existing data sources include RDF and hetero-
geneous sources as well as those having hosting constraints. The ability to deal
with data heterogeneity is a feature intrinsic to LDP-DL that is inherited by the
implementation. Hosting constraints are dealt by using generating dynamic LDPs
that interpret dynamic LDP datasets to generate LDP resources at query time. While
designs in LDP-DL are mostly reusable by excluding the data source, the implemen-
tation further enhances its reusability by enabling the modularization of the design.
Besides, flexibility and lightweight data integration are side contributions of the
approach.

156 Chapter 7. Conclusion

7.2 Limitations
Below, we describe some limitations of our approach.

Partial Coverage of LDP standard With respect to the LDP standard, we have
considered only RDF sources and basic containers and are able to design and deploy
LDPs. However, there are number of other important aspects to be addressed.
While in one of our work [BZ17], we did consider Non-RDF sources, we did not
integrate them in our model as we wanted to set up a good foundation for RDF
sources first. Moreover, we did not consider direct and indirect containers that
o�er more flexibility than RDF sources and basic containers. Also, for now, our
approach supports only read operations. Therefore, much work remains to be done
to automatize the generation of read-write LDPs that covers all aspects from the
standard. However, we believe that before these aspects can be considered, some
ambiguities and confusions need to be resolved within the LDP standard itself. For
example, regarding membership triples in direct containers and indirect containers,
the LDP standard is not clear about the location to materialize them especially
when membership resources are external resources. Moreover, while resources from
other LDPs can be referred as RDF resources, there is no explicit way to refer to
them as proper LDP resources that to some extent isolate LDPs from each other.
Likewise, there are other aspects that need to be clarified and made explicit.

Generation of Design Documents is still manual While the design phase in
the LDP generation workflow is automatized by LDPizers, design document still
needs to be wri�en. While generic LDP-DL designs can be used as shown in one
of our experiments, the process of writing them is still manual and the designs
decisions they encode are based on mere intuitions that may be erroneous. In short,
we can say that the design phase can only be partially automatized using generic
LDP-DL designs. Fully automatizing this process requires automatically taking
decisions considering design pa�erns. While these pa�erns can be identified in
existing Linked Data, doing so is a complex process and requires much resources.
For example, much RDF data is available in RDF dumps whose size can be in the
order of tenths to hundreds of gigabytes and processing them to look for pa�erns
requires much resources in terms of processing power, disk storage and time given
the size of Linked Data on the Web. We started this process but had to stop it
midway due to time constraints. In short, to automatize the generation of design
documents at least from RDF data, the identification of design pa�erns is a core
step that remains to be done.

Complexity behind Li�ing Rules In our approach, we abstract heterogeneous
data sources using their li�ing rules in RDF. By doing so, in some way, we make it
appear that dealing with heterogeneous data sources is easy. Indeed, LDP-DL is
open to any type of data sources and it defines li�ing rules at a rather abstract level
by remaining agnostic of the language in which they are wri�en or systems that
process them. However, before this li�ing rule can be obtained, a number of tasks
has to be undertaken and doing so may raise di�erent problems. For example, to
describe heterogeneous data, there is a need for ontologies that may be obtained

7.3. Perspectives 157

from repositories. However, they may have to be developed if they are not available
and doing so can be a complex and lengthy process. Thus, generating LDPs may
still be complex if the li�ing rules for heterogeneous data are not available. In this
work, while our focus on using LDP as a final step to publish data, there are still
much e�orts needed for facilitating the use RDF and RDFS/OWL at the data syntax
and semantics level.

Invalidation of LDP datasets in Dynamic LDPs Currently, to deal with data
having hosting constraints, we instantiate dynamic LDPs from dynamic LDP datasets
and consequently, generate content of LDP resources from these sources at query
time. However, in dynamic LDP datasets, the LDP resources that describe resources
from these sources remain fixed. Consequently, if the sources change, there may be
resources deleted at the sources while still being hosted by the LDP due to their
existence in the dynamic LDP dataset. Similarly, there may be resources added at
the sources but inexistent on the LDP as there are no resources describing them in
the dynamic LDP dataset. We have described this problem in detail in Chapter 4
(Section 4.3.2) as we mentioned, for now, we only deal with changes at the sources
that a�ect the content of LDP resources and not existence or inexistence of LDP
resource themselves. From an abstract level, not handling such changes may invali-
date the LDP dataset with respect to the design document. As we mentioned, for
now, to ensure validity of LDP datasets, we can only regenerate them from dynamic
LDP datasets every time an LDP request is obtained.

7.3 Perspectives
As we mentioned before, current scientific works on LDPs is very limited and to
our knowledge, our work is the first a�empt to automatize their generation. While
having a number of limitations, it opens up avenues for future researches that we
describe below.

Enriching design aspects in LDP-DL Model In this thesis, we considered only
three design aspects namely the IRI, content and organization of LDP resources and
have performed deployment of LDPs on one server. With these aspects, while we
are able to design and deploy LDPs, our models can be extended with several other
aspects from the LDP standard itself such as direct and indirect containers. Besides
the LDP standard, there are other specifications such as LDP Paging 1.0 [SAM15b]
or Linked Data Notifications [CG17] describing design or deployment aspects that
could be used to further enhance our current model. Also, the LDP dataset model
we introduced to abstract LDPs can be used as a basis for write operations. For
example, we can define an algebra and theorize HTTP methods for performing both
read and write operations as algebraic operators that use or manipulate the LDP
dataset model. In short, while the models that we provide in this thesis are simple,
they can server as a strong foundation for further extension depending on use cases.
A security model could be a good start.

158 Chapter 7. Conclusion

Linked Data Publication based on Best Practices Using our approach, exist-
ing data sources can be published via LDPs having di�erent designs. However, for
now, our approach provides no help in publishing Linked Data that follows best
practices. Data on the Web Best Practices [LBC17] is a standard from the W3C that
publishes best practices to enhance data interoperability between data publishers
and consumers. These best practices relate to a number of aspects that data licens-
ing, provenance, quality or versioning and for each of them, the standard describes
possible approaches for implementing them. Therefore, it would be interesting to
find a way to integrate this standard in our approach to enable the generation of
Linked Data that implement these best practices.

LDP Generation Methodology As we mentioned before, design documents can
be modularized and di�erent actors may collaborate and work on their di�erent
modules in parallel. Consequently, there may be a lack of management when the
workflow is instantiated in a highly decentralized information ecosystem with actors
from di�erent organization collaborating on a single design document to set up an
LDP. Consider a situation where a government body responsible for a city wants to
facilitate access to city data using an LDP. In this case, the government body may be
the data publisher and the organizations in the city may be the data provider. The
organizations may provide di�erent parts of the design documents that may then
be used to instantiate the LDP. From this point, there are di�erent ways for se�ing
up the LDP. While it is possible to wait for all organizations to provide their design
modules and then proceed with the deployment, proceeding in an agile way where
the LDP is set up as soon as an organization provide its design module may enable
quicker deployment. In short, having an LDP generation methodology where the
di�erent sequential or parallel activities and the parties responsible for completing
them have been identified may help in be�er managing projects.

159

Appendix A

Parking Example

In Chapter 2, we uses a parking ontology and provides it in Turtle. Here, we give its
serialization in XML and JSON-LD below.

A.1 Parking Example XML Listing

1 <?xml version="1.0" encoding="utf-8" ?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:dc="http://purl.org/dc/terms/"
4 xmlns:ns0="http://www.opengis.net/ont/geosparql#"
5 xmlns:ns1="http://example.org/ontology/"
6 xmlns:gr="http://purl.org/goodrelations/v1#"
7 xmlns:schema="http://schema.org/">
8
9 <rdf:Description rdf:about="http://example.org/data/Anvers4">

10 <rdf:type rdf:resource="http://example.org/ontology/ParkingFacility"/>
11 <dc:title>Anvers</dc:title>
12 <ns0:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal

">48.83523833495664</ns0:lat>
13 <ns0:long rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal

">2.37322158810141</ns0:long>
14 <ns1:carParkingSpaces rdf:datatype="http://www.w3.org/2001/XMLSchema#

integer">100</ns1:carParkingSpaces>
15 <ns1:motocycleParkingSpaces rdf:datatype="http://www.w3.org/2001/

XMLSchema#integer">50</ns1:motocycleParkingSpaces>
16 <ns1:parkingManager>
17 <ns1:ParkingManager rdf:about="http://example.org/data/Anvers">
18 <gr:legalName>Anvers Parking</gr:legalName>
19 <schema:telephone>0754234448</schema:telephone>
20 <schema:email>parking@anvers.com</schema:email>
21 </ns1:ParkingManager>
22 </ns1:parkingManager>
23
24 <schema:contactPoint>
25 <rdf:Description>
26 <schema:contactType>Emergency Contact Point</schema:contactType>
27 <schema:availableLanguage rdf:resource="http://id.loc.gov/

vocabulary/iso639-1/fr"/>
28 <schema:availableLanguage rdf:resource="http://id.loc.gov/

vocabulary/iso639-1/en"/>
29 <schema:telephone>0754234448</schema:telephone>
30 </rdf:Description>
31 </schema:contactPoint>
32
33 <schema:address>
34 <schema:PostalAddress>

160 Appendix A. Parking Example

35 <schema:streetAddress>41 Boulevard de Rochechouart</schema:
streetAddress>

36 <schema:postalCode>75009</schema:postalCode>
37 <schema:addressLocality>Paris, France</schema:addressLocality>
38 </schema:PostalAddress>
39 </schema:address>
40
41 </rdf:Description>
42
43 </rdf:RDF>

Listing A.1: Parking Dataset using DCAT Vocabulary

A.2 Parking Example JSON Listing

1 [{"@id":"_:b0","http://schema.org/contactType":[{"@value":"Emergency
Contact Point"}],"http://schema.org/availableLanguage":[{"@id":"http
://id.loc.gov/vocabulary/iso639-1/fr"},{"@id":"http://id.loc.gov/
vocabulary/iso639-1/en"}],"http://schema.org/telephone":[{"@value
":"0754234448"}]},{"@id":"_:b1","@type":["http://schema.org/
PostalAddress"],"http://schema.org/streetAddress":[{"@value":"41
Boulevard de Rochechouart"}],"http://schema.org/postalCode":[{"@value
":"75009"}],"http://schema.org/addressLocality":[{"@value":"Paris,
France"}]},{"@id":"http://example.org/data/Anvers","@type":["http://
example.org/ontology/ParkingManager"],"http://purl.org/goodrelations/
v1#legalName":[{"@value":"Anvers Parking"}],"http://schema.org/
telephone":[{"@value":"0754234448"}],"http://schema.org/email":[{"
@value":"parking@anvers.com"}]},{"@id":"http://example.org/data/
Anvers4","@type":["http://example.org/ontology/ParkingFacility"],"
http://purl.org/dc/terms/title":[{"@value":"Anvers"}],"http://www.
opengis.net/ont/geosparql#lat":[{"@value":"48.83523833495664","@type
":"http://www.w3.org/2001/XMLSchema#decimal"}],"http://www.opengis.
net/ont/geosparql#long":[{"@value":"2.37322158810141","@type":"http://
www.w3.org/2001/XMLSchema#decimal"}],"http://example.org/ontology/
carParkingSpaces":[{"@value":100}],"http://example.org/ontology/
motocycleParkingSpaces":[{"@value":50}],"http://example.org/ontology/
parkingManager":[{"@id":"http://example.org/data/Anvers"}],"http://
schema.org/contactPoint":[{"@id":"_:b0"}],"http://schema.org/address
":[{"@id":"_:b1"}]},{"@id":"http://example.org/ontology/
ParkingFacility"},{"@id":"http://example.org/ontology/ParkingManager
"},{"@id":"http://id.loc.gov/vocabulary/iso639-1/en"},{"@id":"http://
id.loc.gov/vocabulary/iso639-1/fr"},{"@id":"http://schema.org/
PostalAddress"}]

Listing A.2: Parking Dataset using DCAT Vocabulary

161

Appendix B

LDP-DL Concrete Syntax

B.1 LDP-DL Vocabulary
In this section, we describe the LDP-DL vocabulary and its di�erent components that
are shown in Figure B.1. The namespace for this vocabulary is https://w3id.org/ldpdl/ns#
and the prefix used for it is “ldl”.

ldl:ContainerMap

dct:description xsd:string
ldl:slugTemplate xsd:string
ldl:slugQueryTemplate xsd:string

ldl:ResourceMap

dct:description xsd:string
ldl:resourceQuery xsd:string
ldl:graphQuery xsd:string

ldl:NonContainerMap

dct:description xsd:string
ldl:slugTemplate xsd:string
ldl:slugQueryTemplate xsd:string

dct:description xsd:string

ldl:DataSource

ldl:location xsd:string

ldl:RDFSource

ldl:location xsd:string
ldl:liftingRule xsd:string

ldl:NonRDFSource

ldl:location xsd:string
ldl:constructQuery xsd:string

ldl:SPARQLSource

1..* 1..*

1..*

0..*0..*

Figure B.1: UML Class Diagram of LDP-DL’s Concrete Model

We describe classes and properties from th above model in Appendix B.1.1 and
Appendix B.1.2 below.

162 Appendix B. LDP-DL Concrete Syntax

B.1.1 Classes
ldl:ContainerMap describes basic containers, their RDF graph and members.
Constraints on instances of ldl:ContainerMap:

• MAY have exactly one value specified by the property ldl:slugTemplate or

ldl:NonContainerMap describes non-containers, LDP RDF sources that are not
containers, and their RDF graph. Constraints on instances of ldl:ContainerMap:

ldl:ResourceMap specifies a rule for generating a set of related resources and
their RDF graphs. Constraints on instances of ldl:ResourceMap:

ldl:DataSource the data source from where RDF resources and their description
can be obtained. ldl:DataSource is an abstract class. It has three subclasses:

• ldl:RDFSource: describes an RDF data source

• ldl:NonRDFSource: describes a Non-RDF data source

• ldl:SPARQLSource: describes an RDF Graph with respect to a SPARQL end-
point

B.1.2 Properties
ldl:slugTemplate provides a string that MAY be used when generating the IRI of
a LDP-RS

• domain: ldl:ContainerMap or ldl:NonContainerMap

• range: xsd:string

ldl:slug�eryTemplate specifies a query pa�ern to generate a string which acts
a slug.

• domain: ldl:ContainerMap or ldl:NonContainerMap

• range: xsd:string having the following constraints:

– It MUST encode a SPARQL query pa�ern as defined in SPARQL 1.1
�ery Language

– The related resource variable is already binded with the IRI of a related
resource

– Some parent variables are with already binded with the parents of a
related resource.

– The results of evaluating the SPARQL query pa�ern on an RDF graph
MUST be projected to the slug variable

B.1. LDP-DL Vocabulary 163

ldl:location specifies the location of an ldl:DataSource

• domain: ldl:RDFSource or ldl:NonRDFSource or ldl:SPARQLSource

– If the domain is ldl:RDFSource, then the value specified by ldl:location
is the URL of the RDFSource

– if its domain is ldl:SPARQLSource, then the value specified by ldl:location
is the URL of the SPARQL endpoint

• range: xsd:string

ldl:li�ingRule specifies the URL of a li�ing rule

• domain: ldl:RDFSource

• range: rdfs:Literal where the literal value is a URL in conformance with RFC
1738

ldl:resource�ery specifies a query pa�ern for selecting a set of related re-
sources from a data source

• domain: ldl:ResourceMap

• range: rdfs:Literal having the following constraints:

– It MUST encode a SPARQL query pa�ern as defined in SPARQL 1.1
�ery Language

– Some parent variables are with already binded with the parents of a
related resource.

– The results of evaluating the SPARQL query pa�ern on an RDF graph
MUST be projected to the related resource variable

– The evaluation of the SPARQL query pa�ern on an RDF graph is based
on set semantics

ldl:graph�ery

• domain: ldl:ResourceMap

• range: rdfs:Literal having the following constraints:

– It MUST encode a (SPARQL CONSTRUCT query)

– Some variables used in the SPARQL CONSTRUCT query have the fol-
lowing constraints:

∗ The related resource variable is already binded with the IRI of a
related resource

∗ Some parent variables are with already binded with the parents of
a related resource.

164 Appendix B. LDP-DL Concrete Syntax

ldl:dataSource specifies the ldl:DataSource of a ldl:ResourceMap

• domain: ldl:ResourceMap

• range: ldl:DataSource

ldl:resourceMap specifies the ldl:ResourceMap of either a ldl:ContainerMap or
ldl:NonContainerMap

• domain: ldl:ContainerMap or ldl:NonContainerMap

• range: ldl:ResourceMap

ldl:containerMap specifies a child ldl:ContainerMap of a ldl:ContainerMap

• domain: ldl:ContainerMap

• range: ldl:ContainerMap

ldl:nonContainerMap

• domain: ldl:ContainerMap

• range: ldl:NonContainerMap

B.1.3 Reserved Variable
Some LDP-DL components require using some properties to specificy SPARQL
CONSTRUCT queries or query pa�erns that contain reserved variables. Like all
variables in SPARQL 1.1, they have a name and are prefixed with ? or $ to mark them
as variables. LDP-DL reserved variables have a name but to distinguish them from
other normal variables, they MUST be marked using ?{} where the variable name
appears in between the opening and closing braces like ?{res}, ?{slug} or ?{parent}.
These variables are further described in the sections below.

Related Resource Variable The related resource variable represent a related
resource. Its name is res and MUST always be used as ?{res}

Ancestor Variables The parent variables set is an infinite set of variables hav-
ing names defined by the regular expression ?parent(.parent)* (e.g. ?{parent} or
?{parent.parent}). The bindings of parent variables MUST be relative to the parents
of a particular related resource. The parents of a related resource is the list of all
related resources of ancestor LDPRs starting from and including the direct parent
LDPR of a related resource’s LDPR. There is a partial one-to-one mapping between
parent variables and parents of a particular related resource. Given a particular
list of parents for a related resource, the binding of a parent variable is the ith
element in the list where i is an integer obtained by counting the number of times
the string parent appears in the variable. So ?parent refers to the first element and
?parent.parent refers to the second element and so forth.

B.2. Mapping from Abstract to Concrete Syntax 165

Slug Variable The slug variable has name slug and MUST appear only in the
value specified by the property ldl:slug�eryTemplate as ?{slug}.

B.2 Mapping from Abstract to Concrete Syntax
We use the the definitions of design documents, ContainerMaps, NonContainerMaps,
ResourceMaps and DataSources as given in Chapter 4 (Section 4.2.2).

Let:

• DD be a design document

• CM be the set of ContainerMaps

• NM be the set of NonContainerMaps

• RM be the set of ResourceMaps

• DS be the set of DataSources

• G be the set of RDF graphs

We use flk : IRI×IRI×IRI→ IRI×IRI×IRI to link di�erent LDP-DL con-
structs such as DataSources to ResourceMaps, NonContainerMaps to ContainerMaps,
etc.

flk(i1, i2, i3) =

{
(i1, i2, i3), if i1 6= ∅
∅, if i1 = ∅

Mapping of a Design Document δ to RDF Graphs fδ : DD → G defines the
mapping between design documents and RDF graph describing them. Given a
design document δ = (CM,NM), the RDF graph describing it is given by:

fδ(δ) =
⋃

cm∈CM

fcm(∅, cm) ∪
⋃

nm∈NM

fnm(∅, nm)

Mapping of NonContainerMaps to RDF Graphs fnm : IRI × NM → G
defines the mapping between NonContainerMaps and RDF graph describing them.
The RDF graph describing a NonContainerMap nm = 〈unm, RM〉 is given by:

fnm(ucm, nm) = {(unm, rdf:type, ldl:NonContainerMap)} ∪
⋃

rm∈RM

frm(unm, rm)

∪flk(ucm, ldl:nonContainerMap, unm)

Mapping of ContainerMaps to RDF Graphs fcm : IRI × CM → G defines
the mapping between ContainerMaps and RDF graph describing them. The RDF

166 Appendix B. LDP-DL Concrete Syntax

graph describing a ContainerMap cm = 〈ucm, RM,CM,NM〉 is given by:

fcm(ucm′ , cm) = {(ucm, rdf:type, ldl:ContainerMap)} ∪
⋃

rm∈RM

frm(ucm, rm)∪⋃
nm∈NM

fnm(ucm, nm) ∪
⋃

cm′∈CM

fcm(ucm, cm
′)

∪flk(ucm′ , ldl:containerMap, ucm)

Mapping of ResourceMaps to RDF Graphs frm : IRI×RM → G defines the
mapping between ResourceMaps and RDF graph describing them. The RDF graph
describing a ResourceMap rm = 〈urm, qp, cq, DS〉 is given by:

frm(incm, rm) = {(urm, rdf:type, ldl:ResourceMap), (urm, ldl:resourceQuery, qp),

(urm, ldl:graphQuery, cq), (incm, ldl:resourceMap, urm)} ∪
⋃

ds∈DS

fds(urm, ds)

Mapping of DataSources to RDF Graphs fds : IRI × DS → G defines
the mapping between DataSources and RDF graphs describing them. As men-
tioned in Chapter 4 (Section 4.2.2), we describe only two forms of a DataSource

namely 〈uds, uloc〉 and 〈uds, uloc, ulr〉 having the RDF graphs fds(〈uds, uloc〉) and
fds(〈uds, uloc, ulr〉) that we further define below.

fds(urm, 〈uds, uloc〉) = {(uds, rdf:type, ldl:RDFSource),

(uds, ldl:location, uloc), (urm, ldl:dataSource, uds)}

fds(urm, 〈uds, uloc, ulr〉) = {(uds, rdf:type, ldl:NonRDFSource), (uds, ldl:location, uloc),

(uds, ldl:liftingRule, ulr), (urm, ldl:dataSource, uds)}

B.3 Mapping from Concrete to Abstract Syntax
We use the the definitions of design documents, ContainerMaps, NonContainerMaps,
ResourceMaps and DataSources as given in Chapter 4 (Section 4.2.2).

Let:

• DD be a design document

• CM be the set of ContainerMaps

• NM be the set of NonContainerMaps

• RM be the set of ResourceMaps

• DS be the set of DataSources

• G be the set of RDF graphs

B.3. Mapping from Concrete to Abstract Syntax 167

Mapping of RDF Graphs to Design Documents fgδ : IRI×G→ DD defines
the mapping between RDF graphs and design documents. Given an RDF Graph gδ
its mapping to a design document (CM,NM) is given by:

fgδ(gδ) = (CM,NM) s.t. CM = {fgcm(ucm, gδ) | (ucm, rdf:type, ldl:ContainerMap) ∈ gδ ∧
@ucm′ , (ucm′ , ldl:containerMap, ucm) ∈ gδ},

NM = {fgnm(unm, gδ) | (unm, rdf:type, ldl:NonContainerMap) ∈ gδ ∧
@ucm′ , (ucm′ , ldl:nonContainerMap, unm) ∈ gδ}

Mapping of RDF Graphs to NonContainerMaps fgnm : IRI × G → NM
defines the mapping between RDF graphs and NonContainerMaps. Given an RDF
Graph gδ its mapping to a NonContainerMap nm = (ucm, RM) is given by:

fgnm(unm, gδ) = (unm, RM) s.t. RM = {fgrm(urm, gδ) | (unm, ldl:resourceMap, urm) ∈ gδ}

Mapping of RDF Graphs to ContainerMaps fgcm : IRI × G → CM defines
the mapping between RDF graphs and ContainerMaps. Given an RDF Graph gδ its
mapping to a NonContainerMap nm = (ucm, RM,CM,NM) is given by:

fgcm(ucm, gδ) = (ucm, RM,CM,NM) s.t

RM = {fgrm(urm, gδ) | (ucm, ldl:resourceMap, urm) ∈ gδ},
CM = {fgcm(ucm′ , gδ) | (ucm, ldl:containerMap, ucm′) ∈ gδ},
NM = {fgnm(unm, gδ) | (ucm, ldl:nonContainerMap, unm) ∈ gδ}

Mapping of RDF Graphs to ResourceMap fgrm : IRI × G → RM defines
the mapping between RDF graphs and ResourceMaps. Given an RDF Graph gδ its
mapping to a ResourceMap rm = (urm, DS) is given by:

fgrm(urm, gδ) = (urm, DS) s.t. DS = {fgds(uds, gδ) | (urm, ldl:dataSource, uds) ∈ gδ}

Mapping of RDF Graphs to DataSources fgds : IRI × G → DS defines the
mapping between RDF graphs and DataSources. Given an RDF Graph gδ its map-
ping to a DataSource is given by:

fgds(uds, gδ) =

{
(uds, uloc), if (uds, ldl:location, uloc) ∈ gδ ∧ (uds, ldl:liftingRule, ulr) /∈ gδ
(uds, uloc, ulr) if {(uds, ldl:location, uloc), (uds, ldl:location, uloc)} ⊆ gδ

169

Appendix C

Materials for LDP-DL

In this appendix, we provide supplementary materials for the description of LDP-DL
given in Chapter 4

C.1 Example LDP-DL design
In Chapter 4 (Figure 4.2), we provided an LDP-DL design without the query pa�erns
and CONSTRUCT queries. The LDP-DL design with these details are shown in
Figure C.1.

:catalog

:dataset

:distrib

:rm1

:rm2

:rm4

ContainerMap NonContainerMap ResourceMap Query pattern Construct Query

:distribs :rm3

:themes

cm

rm

cm

nm

cm

rm

rm

rm

qp

qp

qp

qp

cq

cq

cq

CONSTRUCT { ḓ dct:description ?o } WHERE
{ π1 dct:title ?title . BIND(CONCAT("Describes
distribution of ",?title)) }

CONSTRUCT { ḓ foaf:primaryTopic ṑ.
ṑ ?p ?o . } WHERE { ṑ ?p ?o .
FILTER (?p not in (dcat:dataset)) }

{ ṑ a dcat:Catalog .}

{ π1 dcat:dataset ṑ .}

CONSTRUCT { ḓ foaf:primaryTopic ṑ.
ṑ ?p ?o . } WHERE { ṑ ?p ?o .
FILTER (?p not in (dcat:distribution)) }

{ VALUES ṑ { UNDEF } .}

cq

{ π2 dcat:distribution ṑ .}

CONSTRUCT { ḓ foaf:primaryTopic ṑ.
ṑ ?p ?o . π2 dcat:distribution ṑ . }
WHERE { ṑ ?p ?o . }

Figure C.1: Example of an LDP-DL design in the abstract syntax.

170 Appendix C. Materials for LDP-DL

C.1.1 Illustrating Example Using Abstract Syntax Concepts
In this section, we describe the evaluation of the LDP-DL design in Figure C.1 using
concepts from the abstract syntax given in Chapter 4 (Section 4.2.2). We informally
explains the semantics of LDP-DL by describing the satisfaction of its constructs
using a concrete example of the design document in Figure C.1. The la�er design
document is used for building the LDP1 having the structure shown in Figure 3.8 (b)
using the data source in Figure 3.8 (a). Also, whenever we refer to a resource having
the prefix ex, dex or :, then it should be assumed that reference is being made to a
resource either from Figure 3.8 (a), Figure 3.8 (b) or Figure C.1 respectively.

As mentioned before, all the ResourceMaps in the design document have a
DataSource :dataSource. Therefore, we start the informal description by describ-
ing the satisfaction of :dataSource.

:dataSource

As mentioned before, we consider only two forms of a DataSource. Therefore,
abstractly, :dataSource can be seen as being either 〈uds1 , uloc1〉 or 〈uds1 , uloc1 , ulr1〉.
In the former case, :dataSource is satisfied if its interpretation, that is IS(uIds1),
is the RDF graph located at uloc1 . In the la�er case, :dataSource is satisfied if
IS(uIds1) is the RDF graph obtained by executing the li�ing rule found at ulr1 on
the document found at uloc1 .

In either case, in the rest of the informal description, we consider the RDF graph
obtained to be the one in Figure 3.8 (a). Now that we have described the satisfaction
of :dataSource, we proceed with that of :catalog.

:catalog

At the top level of the design document, the ContainerMap :catalog uses the
ResourceMap :rm1 to generate the top level containers. At this level, :rm1 is evalu-
ated with an empty ancestor list. Using its query pa�ern, related resources extracted
from the source are DCAT catalogs ex:paris-catalog and ex:toulouse-catalog.
For each of them, an IRI is generated, namely dex:paris-catalog and dex:toulouse-catalog.
Also, to satisfy the map :rm1, the RDF graph associated with the container IRI is
obtained using its CONSTRUCT query, where the variable ρ is bound to the related re-
source IRI, and ν to the IRI of the new LDP resource. For example, when doing so for
dex:paris-catalog, ρ is bound to ex:paris-catalog, and ν to dex:paris-catalog.
Finally, new containers generated from :catalog must define their members as well,
and is thus satisfied only if their members correspond to the resources generated
by their underlying ContainerMaps and NonContainerMaps which in this case, is
:dataset only.

:dataset

The ContainerMap :dataset is used to generate members for containers generated
from :catalog. Let us consider the case for dex:paris-catalog. Its related resource
is ex:paris-catalog and its members must only have related resources that are

1http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp

http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp

C.2. Static/Dynamic LDP Dataset 171

DCAT datasets from this catalog. This is why the extraction of these resources is pa-
rameterized by the parent variable π1 in the query pa�ern :rm2. π1 is binded to the
first element of the ancestor list which at this stage is ex:paris-catalog. The eval-
uation of :dataset generates two containers, dex:parking and dex:busStation,
that are added to the members of dex:paris-catalog. The satisfaction of :dataset
also depends on its underlying ContainerMaps and NonContainerMaps. In this
case, we consider only :distribs and continue our explanation using its evaluation.

:distribs

The map :distribs is used to generate members for containers generated by
:dataset. Consider the case of doing so for dex:parking whose related resource is
ex:parking. In this context, the aim of using :distribs is to generate a container
to describe the set of distributions of ex:parking. Note that in the data source,
there is no explicit resource to describe this set. This is why, in the ResourceMap

:rm3, the query pa�ern returns a single result where ρ is unbound. Although the
query pa�ern does not use any ancestor variable, it is evaluated using the ances-
tor list (ex:paris-catalog,ex:parking) and thus ancestor variables π1 and π2 are
bound. The evaluation of :distribs in the context of dex:parking generates a sin-
gle container dex:pDistributions. :distribs is satisfied when a single container
is generated without a related resource and when its underlying ContainerMaps
and NonContainerMaps, which in this case is :distrib, is satisfied.

:distrib

Finally, the NonContainerMap :distrib is used to generate non-containers for each
distribution of a DCAT dataset. Consider the case of doing so for dex:pDistributions
with ancestor list (ex:paris-catalog,ex:parking,∅). In this context, the proper re-
lated resource that must be used to extract the relevant distributions is associated
with the grand parent container. This is why the query pa�ern of :rm4 uses π2, bound
to ex:parking, rather than π1. Using the result (ex:pJSON and ex:pCSV) of this query
pa�ern, two non-containers dex:pJSON and dex:pCSV in dex:pDistributions are
generated using :distrib. In general, any ancestor’s related resources can be
referenced through the ancestor variables πi simultaneously, even when they are
unbound.

C.2 Static/Dynamic LDP Dataset
In this section, we describe the generation of static/dynamic LDP datasets from
a design document and the generation of LDP dataset from static/dynamic LDP
datasets. First, we do so for static LDP dataset, then for dynamic LDP dataset.

C.2.1 Static LDP Dataset
In Section 4.4.1, we provided a family of algorithms for generating an LDP dataset
from a design document. The generation of static/dynamic LDP dataset is very
similar to the generation of LDP datasets. To generate static LDP datasets, the same

172 Appendix C. Materials for LDP-DL

algorithms can be used with the exception that the function geniri in Algorithm 1
must generate temporary identifiers for LDP resources.

Then, to generate an LDP dataset from a static LDP dataset, all temporary iden-
tifiers in the static LDP dataset should be replaced by the final IRIs of LDP resources.
Algorithm 9 shows an example of an algorithm that generates an LDP dataset (Σ)
from a static LDP dataset (φ). IdToIRI is mappings of temporary identifiers of LDP
resources, occurring in φ, to their final IRI. Assume that IdToIRI(id) is the IRI for a
particular temporary identifier id.

Algorithm 9 Generation of LDP dataset from Static LDP dataset

1: procedure GenLDPDatasetS(φ,IdToIRI)
2: Σ← ∅ //Initialize the LDP dataset
3: for all (id, g) ∈ φ) do
4: Σ← Σ∪(IdToIRI(id),g) //Replace temporary identifiers for non-containers
5: end for
6: for all (id, g,M) ∈ φ) do
7: Σ← Σ∪ (IdToIRI(id),g,M)//Replace temporary identifiers for containers
8: end for
9: return Σ

10: end procedure

C.2.2 Dynamic LDP dataset
Overall, when generating a dynamic LDP dataset, instead of evaluating the CON-
STRUCT query of a ResourceMap to obtain the graph of LDP resources, the CON-
STRUCT with its variables replaces by the proper mappings is saved and later use to
generate the graph of the LDP resource. Therefore, all the algorithms for generating
LDP datasets can be used with the exception of that for processing ResourceMaps
(Algorithm 1). We provide the algorithm for processing ResourceMaps when gener-
ating dynamic LDP dataset in Algorithm 10.

In Algorithm 10, we assume the existence of a function replace(cq,mappings)
that takes a CONSTRUCT query cq and a set of variable mappings mappings and
replaces a variable in cq by its mapping if there is a mapping for that variable in
mappings.

When generating a dynamic LDP dataset, the function replace (Algorithm 10,
Line 14) is used to replace the reserved variables in the CONSTRUCT query of a
ResourceMap by their mappings. Then, on Line 15, the CONSTRUCT query is then
used to create a GraphDescription (Definition 18).

An LDP dataset is generated from a dynamic LDP dataset at a particular time
instant by evaluating its dynamic container and non-container structures. The
algorithm for doing so in provided in Algorithm 11 and we assume the existence of
the following functions in it:

• members(x): returns the set of members from the dynamic container x;

• gDes(x): return a GraphDescription from the structure x.

Algorithm 11 involve the evaluation of dynamic container structures (Algo-
rithm 11, Line 3 - 7) and dynamic non-container structures that involve the evalua-
tion of GraphDescriptions. As mentioned before, a GraphDescription (cq,DS)

C.2. Static/Dynamic LDP Dataset 173

Algorithm 10 Evaluation of a ResourceMap rm

1: procedure Evalrm(rm = (urm, qp, cq,DS), #»p)
2: result← ∅
3: gs ← [[DS]]source//perform merge of all RDF graph obtain from every data source
4: for all i ∈ (1..len(#»p)) do//bind ancestor variables
5: µ #»p (πi) = #»p [i]
6: end for
7: Ω← Πρ([[qp]]gs on {µ #»p }) //get related resources
8: result← ∅ //structure to hold new resources generated from rm
9: for all µ ∈ Ω do//Iterate over all mappings

10: if µ(ρ) 6= ε then //when there exist a related resource
11: µρ(ρ) = r
12: end if
13: n← geniri(µ(ρ), . . .) //generate IRI of new resource
14: graphQuery ← replace(cq, {{ν ← n}, {µρ}, {µ #»p }})/*replace reserved variables in

CONSTRUCT query*/
15: graphDescription← (graphQuery,DS)//create graph description
16: result← result ∪ {(n, µ(ρ), graphDescription)}
17: end for
18: return result
19: end procedure

consist of a CONSTRUCT query cq and a set of DataSources DS. To evaluate the
la�er structure, the RDF merge of all the individual data sources inDS is performed
to generate an RDF graph on which cq is evaluated to generate either the graph of
the container or non-container. Finally, all containers (Algorithm 11, Line 11) and
non-containers (Algorithm 11, Line 6) are added to the LDP dataset Σ.

Algorithm 11 Generation of an LDP dataset from a dynamic LDP dataset

1: procedure Evalφ(φ)
2: Σ← ∅ Initialize LDP Dataset
3: for all dnc ∈ dNC doEvaluate dynamic non-containers
4: crm← gDes(dnc) dnc has the form (n, crm)
5: g ← Evalgdes(gdes)
6: AddNonContainer(Σ, (iri(dnc), g))
7: end for
8: for all dc ∈ dC doEvaluate dynamic containers
9: gdes← gDes(dc) dc has the form (n, crm,M)

10: g ← Evalgdes(gdes)
11: AddContainer(Σ, (iri(dnc), g,members(dc)))
12: end for
13: return Σ return the LDP dataset
14: end procedure

175

Appendix D

Materials for Evaluation

Below, we provide the files that we used in our evaluation and provide links to the
generated LDPs in it.

D.1 Random DCAT Dataset Generation
In Chapter 6 (Section 6.1.1), we briefly describe how we generated the RDF graphs
for the performance test. Here, we go more in details about the Python program,
shown in Listing D.1, used generating these RDF graphs. In it, there two variables
top (Listing D.1, Line 5) and placeHolder (Listing D.1, Line 21). The top variable
contains the definition of a DCAT catalog that is made of 6 triples. The placeHolder
definition of a DCAT dataset together with its distributions that is made up of 37
triples.

The DCAT dataset and its distributions from the placeholder have a string
<theRandomCode> in their IRIs. To generate a random DCAT dataset and its distri-
butions, the string <theRandomCode> is replaced by a 8-bit word generated using
a random number generator. Then, an RDF graph is obtained by concatenating a
DCAT catalog with several DCAT dataset.

To generate the RDF graph of one million triple, at least 27027 DCAT datasets
and distributions need to be added. Therefore, we make the program iterates for
27050 times and on every 50 iterations, an RDF graph is serialized containing the
original DCAT catalog and incrementally all the DCAT datasets generated so far. For
example, on the 50th run, the RDF graph is serialized containing the DCAT catalog
and 50 DCAT datasets and their distributions. Then, on the 100th run, another
RDF graph is serialized with the DCAT catalog and 100 DCAT datasets and their
distributions, 50 of which comes from the first 50 iterations.

In total, we generate 541 RDF graphs with the smallest containing 1856 triples
that is made up of one DCAT catalog and 50 DCAT dataset and the biggest one
contains 1000856 triples and is made up of one DCAT catalog and 27050 DCAT
datasets.

1 # coding=utf-8
2 from rdflib import Graph
3 import random
4
5 top = """@prefix dcat: <http://www.w3.org/ns/dcat#> .
6 @prefix dct: <http://purl.org/dc/terms/> .
7 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
8 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
9 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

176 Appendix D. Materials for Evaluation

10 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
11 @prefix xml: <http://www.w3.org/XML/1998/namespace> .
12 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
13
14 <https://example.com/api/v2/catalog/exports/ttl> a dcat:Catalog ;
15 dct:Language <http://id.loc.gov/vocabulary/iso639-1/en>,
16 <http://id.loc.gov/vocabulary/iso639-1/fr> ;
17 dct:description "Bistrotdepays Catalog" ;
18 dct:publisher <http://www.opendatasoft.com> ;
19 dct:title "Bistrotdepays’s catalog" . """
20
21 placeHolder = """<https://example.com/api/v2/catalog/exports/ttl> dcat:

dataset <https://example.com/api/v2/catalog/datasets/<theRandomCode>/
animations_bistrots_de_pays> .

22
23 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays> a dcat:Dataset ;
24 dct:description "Liste des animations dans les Ãl’tablissements du label

Bistrot de Pays." ;
25 dct:identifier "animations_bistrots_de_pays" ;
26 dct:language <http://id.loc.gov/vocabulary/iso639-1/fr> ;
27 dct:publisher [a foaf:Agent ;
28 rdfs:label "Example datasets"] ;
29 dct:title "example datasets" ;
30 dcat:distribution <https://example.com/api/v2/catalog/datasets/<

theRandomCode>/animations_bistrots_de_pays-csv>,
31 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-geojson>,
32 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-json>,
33 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-shp> .
34
35 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-csv> a dcat:Distribution ;
36 dct:description "csv export of https://example.com/api/v2/catalog/

datasets/animations_bistrots_de_pays" ;
37 dct:format "csv" ;
38 dct:license "http://opendatacommons.org/licenses/odbl/1.0/" ;
39 dcat:accessURL <https://example.com/api/v2/catalog/datasets/

animations_bistrots_de_pays/exports/csv> ;
40 dcat:mediaType "text/csv" .
41
42 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-geojson> a dcat:Distribution ;
43 dct:description "geojson export of https://example.com/api/v2/catalog/

datasets/animations_bistrots_de_pays" ;
44 dct:format "geojson" ;
45 dct:license "http://opendatacommons.org/licenses/odbl/1.0/" ;
46 dcat:accessURL <https://example.com/api/v2/catalog/datasets/

animations_bistrots_de_pays/exports/geojson> ;
47 dcat:mediaType "application/json" .
48
49 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-json> a dcat:Distribution ;
50 dct:description "json export of https://example.com/api/v2/catalog/

datasets/animations_bistrots_de_pays" ;
51 dct:format "json" ;
52 dct:license "http://opendatacommons.org/licenses/odbl/1.0/" ;
53 dcat:accessURL <https://example.com/api/v2/catalog/datasets/

animations_bistrots_de_pays/exports/json> ;
54 dcat:mediaType "application/json" .

D.2. Modular Design Reusability 177

55
56 <https://example.com/api/v2/catalog/datasets/<theRandomCode>/

animations_bistrots_de_pays-shp> a dcat:Distribution ;
57 dct:description "shp export of https://example.com/api/v2/catalog/

datasets/animations_bistrots_de_pays" ;
58 dct:format "shp" ;
59 dct:license "http://opendatacommons.org/licenses/odbl/1.0/" ;
60 dcat:accessURL <https://example.com/api/v2/catalog/datasets/

animations_bistrots_de_pays/exports/shp> ;
61 dcat:mediaType "application/zip" ."""
62
63 ac = ""
64 num = 27050
65 for i in range(1,num+1):
66 print i
67 ran = str(random.getrandbits(30))
68 ac = ac + placeHolder.replace("<theRandomCode>",ran)
69 if (i % 50 == 0):
70 final = top + ac
71 f = open("datasets/"+str(i),"w")
72 f.write(top+ac)
73 f.close()

Listing D.1: Python Program for generating Random RDF graphs based on the DCAT
vocabulary

D.2 Modular Design Reusability
In Modular Design Reusability (Section 6.2.1), we provided a document (Listing 6.3)
containing a partial LDP-DL design that refers to instances of LDP-DL constructs
defined externally. In this section, we provide these external documents contain-
ing the definition of :cinemasCM (Listing D.2), :bibliotheque_mediathequesCM
(Listing D.3), :chateau_monumentsCM (Listing D.4) and :parc_animalier_themesCM

(Listing D.5).

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 data:cinemasCM a :NullContainerMap;
7 :slugTemplate "cinemas";
8 :nonContainerMap data:cinemaCM;
9 .

10
11 data:cinemaCM a :NonContainerMap;
12 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’)
) as ?template)}";

13 :resourceMap data:cinemaRM;
14 .
15
16 data:cinemaRM a :ResourceMap;

178 Appendix D. Materials for Evaluation

17 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,
’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’))
as ?template)}";

18 :resourceQuery "{ ?{res} rdf:type s:cinema .}";
19 :graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{res

} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing D.2: Document containing partial LDP-DL design describing :cinemaCM

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 data:bibliotheque_mediathequesCM a :NullContainerMap;
7 :slugTemplate "bibliotheque_mediatheques";
8 :nonContainerMap data:bibliotheque_mediathequeCM;
9 .

10
11 data:bibliotheque_mediathequeCM a :NonContainerMap;
12 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’)
) as ?template)}";

13 :resourceMap data:bibliotheque_mediathequeRM;
14 .
15
16 data:bibliotheque_mediathequeRM a :ResourceMap;
17 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’))
as ?template)}";

18 :resourceQuery "{ ?{res} rdf:type s:bibliotheque_mediatheque .}";
19 :graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{res

} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing D.3: Document containing partial LDP-DL design describing
:bibliotheque_mediathequesCM

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 data:chateau_monumentsCM a :NullContainerMap;
7 :slugTemplate "Chateaux";
8 :nonContainerMap data:chateau_monumentCM;
9 .

10
11 data:chateau_monumentCM a :NonContainerMap;
12 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’)
) as ?template)}";

D.3. Dynamic LDP 179

13 :resourceMap data:chateau_monumentRM;
14 .
15
16 data:chateau_monumentRM a :ResourceMap;
17 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’))
as ?template)}";

18 :resourceQuery "{ ?{res} rdf:type s:chateau_monument .}";
19 :graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{res

} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing D.4: Document containing partial LDP-DL design describing
:chateau_monumentsCM

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix s:<http://lodpaddle.univ-nantes.fr/> .
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5
6 data:parc_animalier_themesCM a :NullContainerMap;
7 :slugTemplate "parc_animalier_themes";
8 :nonContainerMap data:parc_animalier_themeCM;
9 .

10
11 data:parc_animalier_themeCM a :NonContainerMap;
12 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’)
) as ?template)}";

13 :resourceMap data:parc_animalier_themeRM;
14 .
15
16 data:parc_animalier_themeRM a :ResourceMap;
17 :slugQueryTemplate "{BIND(str(?{res}) as ?nres) BIND(if(contains(?nres,

’#’),true,false) as ?hash) BIND(SUBSTR(?nres,STRLEN(?nres),1) as ?
lstr) BIND(if(?lstr=’/’,SUBSTR(?nres,0,STRLEN(?nres)),?nres) as ?
fres) BIND(if(?hash,REPLACE(?fres,’.*#’,’’),REPLACE(?fres,’.*/’,’’))
as ?template)}";

18 :resourceQuery "{ ?{res} rdf:type s:parc_animalier_theme .}";
19 :graphQuery "CONSTRUCT { ?{res} ?p ?o . ?s ?p ?{res} . } WHERE { { ?{res

} ?p ?o . } UNION { ?s ?p ?{res} . } }" .

Listing D.5: Document containing partial LDP-DL design describing
:parc_animalier_themesCM

D.3 Dynamic LDP
In Dynamic LDP (Section 6.2.2), we used a design document that refers to a static
and dynamic non-RDF data source. The design document is shown in Listing D.6.
The li�ing rule for the static and dynamic data source is shown in Listing D.7 and
Listing D.8 respectively.

1 @prefix : <http://opensensingcity.emse.fr/LDPDesignVocabulary/> .

180 Appendix D. Materials for Evaluation

2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4 @prefix pk: <http://opensensingcity.emse.fr/ontologies/parking/> .
5 @prefix time: <http://www.w3.org/2006/time#> .
6 @prefix sosa: <http://www.w3.org/ns/sosa/> .
7
8 data:parkingsCM a :NullContainerMap;
9 :iriTemplate "parkings";

10 :nonContainerMap data:parkingCM;
11 .
12
13 data:parkingCM a :NonContainerMap;
14 :iriTemplate "$path(res,2)$";
15 :resourceMap data:parkingRM;
16 .
17
18 data:parkingRM a :ResourceMap;
19 :resourceQuery "{ ?res a pk:ParkingFacility .}";
20 :graphQuery "CONSTRUCT { ?res ?p ?o . ?res pk:nbAvailableParkingSpaces

?av } WHERE { {SELECT ?p ?o WHERE { ?res ?p ?o . FILTER (?p not
in (sosa:observation)) } } UNION { SELECT ?av WHERE { ?res sosa:
observation/pk:nbAvailableParkingSpaces ?av; sosa:observation/time:
inTimePosition/time:numericPosition ?time } ORDER BY DESC(?time)
LIMIT 1 } }";

21 :dataSource data:DataSource1;
22 :dataSource data:DataSource2;
23 .
24
25
26 data:DataSource1 a :NonRDFSource;
27 :location "http://data.metromobilite.fr/api/bbox/json?types=PAR";
28 :liftingRule "https://raw.githubusercontent.com/OpenSensingCity/

DatasetsLiftingRules/master/grenoble/parking/
grenoble_parking_dynamic.rqg";

29 .
30
31 data:DataSource2 a :NonRDFSource;
32 :location "http://data.metromobilite.fr/api/dyn/PAR/json";
33 :liftingRule "https://raw.githubusercontent.com/OpenSensingCity/

DatasetsLiftingRules/master/grenoble/parking/
grenoble_parking_static.rqg";

34 .

Listing D.6: Design document used in Dynamic LDP (Section 6.2.2)

1 BASE <http://example.com/>
2 PREFIX iter: <http://w3id.org/sparql-generate/iter/>
3 PREFIX fn: <http://w3id.org/sparql-generate/fn/>
4 PREFIX pk: <http://opensensingcity.emse.fr/ontologies/parking/>
5 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 PREFIX sosa: <http://www.w3.org/ns/sosa/>
7 PREFIX time: <http://www.w3.org/2006/time#>
8 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
9 GENERATE {

10 ?parkingIRI a pk:ParkingFacility;
11 rdfs:label ?name;
12 pk:nbParkingSpaces ?nbParkingSpaces;
13 geo:lat ?lat;
14 geo:long ?long;
15 }
16 SOURCE <http://data.metromobilite.fr/api/bbox/json?types=PAR> AS ?source

D.4. Heterogeneous LDP Generation 181

17 ITERATOR iter:JSONPath(?source,"$.features.*") AS ?parkings
18 WHERE {
19 BIND(IRI(CONCAT("http://opensensingcity.emse.fr/grenoble/parkings/",

fn:JSONPath(?parkings,"$.properties.CODE"))) AS ?parkingIRI)
20 BIND(fn:JSONPath(?parkings,"$.properties.LIBELLE") AS ?name)
21 BIND(fn:JSONPath(?parkings,"$.properties.TOTAL") AS ?nbParkingSpaces

)
22 BIND(fn:JSONPath(?parkings,"$.geometry.coordinates[0]") AS ?long)
23 BIND(fn:JSONPath(?parkings,"$.geometry.coordinates[1]") AS ?lat)
24 }

Listing D.7: Li�ing rule for static data source

1 PREFIX iter: <http://w3id.org/sparql-generate/iter/>
2 PREFIX fn: <http://w3id.org/sparql-generate/fn/>
3 PREFIX pk: <http://opensensingcity.emse.fr/ontologies/parking/>
4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5 PREFIX sosa: <http://www.w3.org/ns/sosa/>
6 PREFIX time: <http://www.w3.org/2006/time#>
7 GENERATE {
8 ?parkingIRI a pk:ParkingFacility;
9 sosa:observation [a sosa:Observation;

10 time:inTimePosition [
11 time:numericPosition ?time;
12];
13 pk:nbAvailableParkingSpaces ?avParkingSpaces;
14];
15 }
16 SOURCE <http://data.metromobilite.fr/api/dyn/PAR/json> AS ?source
17 ITERATOR iter:JSONListKeys(?source) AS ?key
18 ITERATOR iter:JSONPath(?source,CONCAT("$.",?key)) as ?elements
19 ITERATOR iter:JSONPath(?elements,"$.*") as ?element
20 WHERE {
21 BIND(IRI(CONCAT("http://opensensingcity.emse.fr/grenoble/parkings/",?

key)) AS ?parkingIRI)
22 BIND(fn:JSONPath(?element,’$.time’) AS ?time)
23 BIND(fn:JSONPath(?element,’$.dispo’) AS ?parkingSpaces)
24 BIND(if(?parkingSpaces = -1,0,?parkingSpaces) as ?avParkingSpaces)
25 }

Listing D.8: Li�ing rule for dynamic data source

D.4 Heterogeneous LDP Generation
In Heterogeneous LDP Generation (Section 6.2.3), we used a design document that
refers to a CSV and JSON data source. The design document is shown in Listing D.9.
The li�ing rule for the CSV and JSON data source is shown in Listing D.10 and
Listing D.11 respectively.

1 @prefix : <http://opensensingcity.emse.fr/LDPDesignVocabulary/> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4 @prefix osc:<http://opensensingcity.emse.fr/ontology/>
5
6 data:parisData a :NullContainerMap;
7 :iriTemplate "paris";

182 Appendix D. Materials for Evaluation

8 :containerMap data:bicycleStationsCM;
9 :containerMap data:carSharingStationsCM;

10 .
11
12 data:bicycleStationsCM a :NullContainerMap;
13 :iriTemplate "BicycleStations";
14 :nonContainerMap data:bicycleStationNM;
15 .
16
17 data:carSharingStationsCM a :NullContainerMap;
18 :iriTemplate "CarSharingStations";
19 :nonContainerMap data:carSharingStationNM;
20 .
21
22 data:bicycleStationNM a :NonContainerMap;
23 :iriTemplate "$path(res,3)$";
24 :resourceMap data:bicycleStationRM;
25 .
26
27 data:carSharingStationNM a :NonContainerMap;
28 :iriTemplate "$path(res,3)$";
29 :resourceMap data:carSharingStationRM;
30 .
31
32 data:bicycleStationRM a :ResourceMap;
33 :resourceQuery "{ ?res a osc:BicycleStation .}";
34 :graphQuery "CONSTRUCT { ?res ?p ?o . } WHERE { ?res ?p ?o . }";
35 :dataSource data:DataSource1 .
36
37 data:carSharingStationRM a :ResourceMap;
38 :resourceQuery "{ ?res a osc:CarSharingFacility .}";
39 :graphQuery "CONSTRUCT { ?res ?p ?o . } WHERE { ?res ?p ?o . }";
40 :dataSource data:DataSource2 .
41
42 data:DataSource1 a :RDFSource;
43 :location "https://opendata.paris.fr/explore/dataset/velib-emplacement-

des-stations/download/?format=geojson&timezone=Europe/Berlin";
44 :liftingRule "https://raw.githubusercontent.com/noorbakerally/

ParisDataPlatform/master/velib-emplacement-des-stations.json.rqg";
45 .
46
47 data:DataSource2 a :RDFSource;
48 :location "https://opendata.paris.fr/explore/dataset/liste-des-

stations-de-services-de-vehicules/download/?format=csv&timezone=
Europe/Berlin&use_labels_for_header=true";

49 :liftingRule "https://raw.githubusercontent.com/noorbakerally/
ParisDataPlatform/master/liste-des-stations-de-services-de-
vehicules.csv.rqg";

50 .

Listing D.9: Design document used in Heterogeneous LDP Generation (Section 6.2.3)

1 PREFIX iter: <http://w3id.org/sparql-generate/iter/>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX fn: <http://w3id.org/sparql-generate/fn/>
4 PREFIX dc: <http://purl.org/dc/elements/1.1/>
5 PREFIX osc:<http://opensensingcity.emse.fr/city/paris/car_sharing_station

/>
6 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
7 PREFIX mbv:<http://schema.mobivoc.org/#>
8 PREFIX geo: <http://www.opengis.net/ont/geosparql#>

D.5. Flexible Design 183

9 GENERATE {
10 ?stationURI geo:lat ?lat;
11 geo:long ?long; .
12 }
13 SOURCE <http://example.org/document#0> as ?message
14 ITERATOR iter:CSV(?message) AS ?station
15 WHERE {
16 BIND(fn:CSV(?station, "CODE_POST") AS ?id)
17 BIND (URI(CONCAT("http://opensensingcity.emse.fr/city/paris/

car_sharing_station/",?id)) AS ?stationURI)
18 BIND(xsd:double(fn:CSV(?station, "lat")) AS ?lat)
19 BIND(xsd:double(replace(fn:CSV(?station, "long")," ","")) AS ?long)
20 }

Listing D.10: Li�ing Rule in SPARQL-Generate for CSV data source

1 PREFIX iter: <http://w3id.org/sparql-generate/iter/>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX fn: <http://w3id.org/sparql-generate/fn/>
4 PREFIX dc: <http://purl.org/dc/elements/1.1/>
5 PREFIX osc:<http://opensensingcity.emse.fr/city/paris/station/>
6 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
7 PREFIX mbv:<http://schema.mobivoc.org/#>
8 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
9 GENERATE {

10 ?stationURI rdfs:label ?name;
11 mbv:totalCapacity ?capacity;
12 geo:lat ?lat;
13 geo:long ?long;
14
15 .
16 }
17 SOURCE <http://example.org/document#0> as ?message
18 ITERATOR iter:JSONPath(?message,"$.features.*") AS ?station
19 WHERE {
20 BIND(fn:JSONPath(?station, "$.properties.station_id") AS ?id)
21 BIND(fn:JSONPath(?station, "$.properties.name") AS ?name)
22 BIND (URI(CONCAT("http://opensensingcity.emse.fr/city/paris/station/",

str(?id))) AS ?stationURI)
23 BIND(xsd:integer(fn:JSONPath(?station, "$.properties.capacity")) AS

?capacity)
24 BIND(xsd:double(fn:JSONPath(?station, "$.properties.lat")) AS ?lat)
25 BIND(xsd:double(fn:JSONPath(?station, "$.properties.lon")) AS ?long

)
26 }

Listing D.11: Li�ing Rule in SPARQL-Generate for JSON data source

D.5 Flexible Design
In Flexible Design, we demonstrate the flexibility of LDP-DL by using several design
documents. Here we provide these design documents in Appendix D.5.1 and then in
Appendix D.5.2, we describe how to access the LDPs generated using these design
documents.

184 Appendix D. Materials for Evaluation

D.5.1 Design Documents
In Chapter 6 (Section 6.2.1), we already provided the first design document. Here,
we provide the remaining four below.

Second Design Document

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4
5 data:catalogCM a :ContainerMap;
6 :slugTemplate "$path(?{res},2)$";
7 :resourceMap data:catalogRM;
8 :containerMap data:datasetsCM .
9

10 data:datasetsCM a :NullContainerMap;
11 :containerMap data:datasetCM;
12 :slugTemplate "datasets" .
13
14 data:datasetCM a :ContainerMap;
15 :slugTemplate "$path(?{res},4)$";
16 :containerMap data:distributionsCM;
17 :resourceMap data:datasetRM .
18
19 data:distributionsCM a :NullContainerMap;
20 :nonContainerMap data:distributionNM;
21 :slugTemplate "distributions" .
22
23 data:distributionNM a :NonContainerMap;
24 :slugTemplate "$path(?{res},4)$";
25 :resourceMap data:distributionRM .
26
27 data:distributionRM a :ResourceMap;
28 :resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
29 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }";
30 :dataSource data:DataSource1 .
31
32 data:catalogRM a :ResourceMap;
33 :resourceQuery "{ ?{res} a dcat:Catalog .}";
34 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:dataset)) }";
35 :dataSource data:DataSource1 .
36
37 data:datasetRM a :ResourceMap;
38 :resourceQuery "{ ?{parent.parent} dcat:dataset ?{res} .}";
39 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:distribution)) }";
40 :dataSource data:DataSource1 .

Listing D.12: Second design document used in Experiment 1

Third Design Document

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .

D.5. Flexible Design 185

3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4
5 data:catalogCM a :ContainerMap;
6 :slugTemplate "$path(?{res},2)$";
7 :resourceMap data:catalogRM;
8 :containerMap data:datasetsCM .
9

10 data:datasetsCM a :NullContainerMap;
11 :containerMap data:datasetCM;
12 :slugTemplate "datasets" .
13
14 data:datasetCM a :ContainerMap;
15 :slugTemplate "$path(?{res},4)$";
16 :containerMap data:distributionsCM;
17 :resourceMap data:datasetRM .
18
19 data:distributionsCM a :NullContainerMap;
20 :nonContainerMap data:distributionNM;
21 :slugTemplate "distributions" .
22
23 data:distributionNM a :NonContainerMap;
24 :slugTemplate "$path(?{res},4)$";
25 :resourceMap data:distributionRM .
26
27 data:distributionRM a :ResourceMap;
28 :resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
29 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }";
30 :dataSource data:DataSource1 .
31
32 data:catalogRM a :ResourceMap;
33 :resourceQuery "{ ?{res} a dcat:Catalog .}";
34 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:dataset)) }";
35 :dataSource data:DataSource1 .
36
37 data:datasetRM a :ResourceMap;
38 :resourceQuery "{ ?{parent.parent} dcat:dataset ?{res} .}";
39 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:distribution)) }";
40 :dataSource data:DataSource1 .

Listing D.13: Third design document used in Experiment 1

Fourth Design Document

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4
5 data:catalogCM a :ContainerMap;
6 :slugTemplate "$path(?{res},2)$";
7 :resourceMap data:catalogRM;
8 :containerMap data:datasetsCM .
9

10 data:datasetsCM a :NullContainerMap;
11 :containerMap data:datasetCM;
12 :slugTemplate "datasets" .
13

186 Appendix D. Materials for Evaluation

14 data:datasetCM a :ContainerMap;
15 :slugTemplate "$path(?{res},4)$";
16 :containerMap data:distributionsCM;
17 :resourceMap data:datasetRM .
18
19 data:distributionsCM a :NullContainerMap;
20 :nonContainerMap data:distributionNM;
21 :slugTemplate "distributions" .
22
23 data:distributionNM a :NonContainerMap;
24 :slugTemplate "$path(?{res},4)$";
25 :resourceMap data:distributionRM .
26
27 data:distributionRM a :ResourceMap;
28 :resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
29 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }";
30 :dataSource data:DataSource1 .
31
32 data:catalogRM a :ResourceMap;
33 :resourceQuery "{ ?{res} a dcat:Catalog .}";
34 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:dataset)) }";
35 :dataSource data:DataSource1 .
36
37 data:datasetRM a :ResourceMap;
38 :resourceQuery "{ ?{parent.parent} dcat:dataset ?{res} .}";
39 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:distribution)) }";
40 :dataSource data:DataSource1 .

Listing D.14: Fourth design document used in Experiment 1

Fi�h Design Document

1 @prefix : <https://w3id.org/ldpdl/#> .
2 @prefix data: <http://opensensingcity.emse.fr/LDPDesign/data/> .
3 @prefix dcat: <http://www.w3.org/ns/dcat#>
4
5 data:catalogCM a :ContainerMap;
6 :slugTemplate "$path(?{res},2)$";
7 :resourceMap data:catalogRM;
8 :containerMap data:datasetsCM .
9

10 data:datasetsCM a :NullContainerMap;
11 :containerMap data:datasetCM;
12 :slugTemplate "datasets" .
13
14 data:datasetCM a :ContainerMap;
15 :slugTemplate "$path(?{res},4)$";
16 :containerMap data:distributionsCM;
17 :resourceMap data:datasetRM .
18
19 data:distributionsCM a :NullContainerMap;
20 :nonContainerMap data:distributionNM;
21 :slugTemplate "distributions" .
22
23 data:distributionNM a :NonContainerMap;
24 :slugTemplate "$path(?{res},4)$";

D.5. Flexible Design 187

25 :resourceMap data:distributionRM .
26
27 data:distributionRM a :ResourceMap;
28 :resourceQuery "{ ?{parent.parent} dcat:distribution ?{res} .}";
29 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o . }";
30 :dataSource data:DataSource1 .
31
32 data:catalogRM a :ResourceMap;
33 :resourceQuery "{ ?{res} a dcat:Catalog .}";
34 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:dataset)) }";
35 :dataSource data:DataSource1 .
36
37 data:datasetRM a :ResourceMap;
38 :resourceQuery "{ ?{parent.parent} dcat:dataset ?{res} .}";
39 :graphQuery "CONSTRUCT { ?{res} ?p ?o . } WHERE { ?{res} ?p ?o .

FILTER (?p not in (dcat:distribution)) }";
40 :dataSource data:DataSource1 .

Listing D.15: Fi�h design document used in Experiment 1

D.5.2 Generated LDPs
We use the above five design documents with respect to 21 data sources obtained
from di�erent data portals. Below, we provide the URL of these data portals and the
LDPs generated to expose their DCAT catalog based on the first design document.
The LDPs generated for the remaining four design documents can be obtained by
changing the text in the URL of the LDP. For example, the LDP per the second design
document for open data angers is http://opensensingcity.emse.fr/ldpdfend/angers/d2/catalog.
The only di�erence with the URL of the LDP based on first design as shown below
is the ‘d2’ that refers to the second design document. Likewise, we can change it
‘d3’, ‘d4’ and ‘d5’ for the third, fourth and fi�h design document.

Open Data Angers

• URL of Data Portal: h�ps://data.angers.fr/explore/?sort=modified

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/angers/d1/catalog

DataTourism62

• URL of Data Portal: h�ps://tourisme62.opendataso�.com

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/tourism62/d1/catalog

Bistrotdepays

• URL of Data Portal: h�ps://bistrotdepays.opendataso�.com

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/bistrotdepays/d1/catalog

188 Appendix D. Materials for Evaluation

dataNova

• URL of Data Portal: h�ps://datanova.legroupe.laposte.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/datanova/d1/catalog

Data Sarthe

• URL of Data Portal: h�ps://data.sarthe.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/sarthe/d1/catalog

Data Enedis

• URL of Data Portal: h�ps://data.enedis.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/enedis/d1/catalog

Open data hauts-de-seine

• URL of Data Portal: h�ps://opendata.hauts-de-seine.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/hauts-de-seine/d1/catalog

Grand Poitiers Open Data

• URL of Data Portal: h�ps://data.grandpoitiers.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/grandpoitiers/d1/catalog

Data Ile de France

• URL of Data Portal: h�ps://data.iledefrance.fr/

• URL of LDP:h�p://opensensingcity.emse.fr/ldpdfend/iledefrance/d1/catalog

Data Info Locale

• URL of Data Portal: h�ps://datainfolocale.opendataso�.com/

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/datainfolocale/d1/catalog

Open Data La Haute-garonne

• URL of Data Portal: h�ps://data.haute-garonne.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/haute-garonne/d1/catalog

Navitia

• URL of Data Portal: h�ps://navitia.opendataso�.com

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/navitia/d1/catalog

D.5. Flexible Design 189

Open Data Corsia

• URL of Data Portal: h�ps://www.data.corsica

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/corsica/d1/catalog

Paris Data

• URL of Data Portal: h�ps://opendata.paris.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/paris/d1/catalog

Data Ratp

• URL of Data Portal: h�ps://data.ratp.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/ratp/d1/catalog

Rennes Metropole

• URL of Data Portal: h�ps://data.iledefrance.fr/

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/rennesmetropole/d1/catalog

SNCF Open Data

• URL of Data Portal: h�ps://data.iledefrance.fr/

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/sncf/d1/catalog

Ile de France Mobilite

• URL of Data Portal: h�ps://opendata.stif.info

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/stif/d1/catalog

Data Toulouse Metropole

• URL of Data Portal: h�ps://data.toulouse-metropole.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/toulouse/d1/catalog

Ville D’Agen Open Data

• URL of Data Portal: h�ps://data.agen.fr

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/agen/d1/catalog

DATA ISSY.com

• URL of Data Portal: h�ps://data.issy.com

• URL of LDP: h�p://opensensingcity.emse.fr/ldpdfend/issy/d1/catalog

191

Bibliography

[ABH15] Sandro Hawke Alexandre Bertails and Ivan Herman. Linked Data
Platform (LDP) Working Group Charter. Technical report, World Wide
Web Consortium (W3C), July 31 2015.

[ABPS12] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan
Sequeda. A Direct Mapping of Relational Data to RDF, W3C Recom-
mendation 27 September 2012. W3C Recommendation, World Wide
Web Consortium (W3C), September 27 2012.

[ADL+09] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann,
and David Aumueller. Triplify: light-weight linked data publication
from relational databases. In Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, Madrid, Spain, April
20-24, 2009, pages 621–630, 2009.

[AF05] Antonio Amorin and Gary Figgins. Method of conducting data quality
analysis, May 19 2005. US Patent App. 10/953,728.

[AHSB12] Ben Adida, Ivan Herman, Manu Sporny, and Mark Birbeck. RDFa
1.1 Primer - Rich Structured Data Markup for Web Documents, W3C
Working Group Note 07 June 2012. W3C Note, World Wide Web
Consortium (W3C), June 7 2012.

[AHUV13] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves
Vandenbussche. SPARQL web-querying infrastructure: Ready for
action? In The Semantic Web - ISWC 2013 - 12th International Se-
mantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,
Proceedings, Part II, pages 277–293, 2013.

[AKKP08a] W. Akhtar, J. Kopeckỳ, T. Krennwallner, and A. Polleres. XSPARQL:
Traveling between the XML and RDF worlds–and avoiding the XSLT
pilgrimage. In ESWC, 2008.

[AKKP08b] Waseem Akhtar, Jacek Kopecký, Thomas Krennwallner, and Axel
Polleres. XSPARQL: traveling between the XML and RDF worlds -
and avoiding the XSLT pilgrimage. In The Semantic Web: Research
and Applications, 5th European Semantic Web Conference, ESWC 2008,
Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, pages 432–
447, 2008.

[All10] Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.

192 BIBLIOGRAPHY

[AN15] S. Abdellaoui and F. Nader. Semantic data warehouse at the heart of
competitive intelligence systems: Design approach. In 2015 6th Inter-
national Conference on Information Systems and Economic Intelligence
(SIIE), pages 141–145, Feb 2015.

[BBL08] David Becke� and Tim Berners-Lee. Turtle - Terse RDF Triple Lan-
guage, W3C Team Submission 14 January 2008. W3C team submission,
World Wide Web Consortium (W3C), January 14 2008.

[BBZ16] Noorani Bakerally, Olivier Boissier, and Antoine Zimmermann. Smart
city artifacts web portal. In The Semantic Web - ESWC 2016 Satellite
Events, Heraklion, Crete, Greece, May 29 - June 2, 2016, Revised Selected
Papers, pages 172–177, 2016.

[BC06] Christian Bizer and Richard Cyganiak. D2R server-publishing re-
lational databases on the semantic web. In Poster at the 5th ISWC,
volume 175, 2006.

[BC15] Sebastian K. Boell and Dubravka Cecez-Kecmanovic. What is an
information system? In 48th Hawaii International Conference on
System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5-8, 2015,
pages 4959–4968, 2015.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
so�ware engineering in practice. Synthesis Lectures on So�ware Engi-
neering, 1(1):1–182, 2012.

[BG14] Dan Brickley and Ramanathan V. Guha. RDF Schema 1.1. W3C
Recommendation, World Wide Web Consortium (W3C), February 25
2014.

[BHB09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[Bis98] Yaser A. Bishr. Overcoming the semantic and other barriers to GIS
interoperability. International Journal of Geographical Information
Science, 12(4):299–314, 1998.

[BKLW99] Susanne Busse, Ralf-Detlef Kutsche, Ulf Leser, and Herbert Weber.
Federated information systems: Concepts, terminology and architec-
tures. 1999.

[BL06] Tim Berners-Lee. Linked Data-Design Issues, 2006.

[Bro10] Michael L. Brodie. Data integration at scale: From relational data
integration to information ecosystems. In 24th IEEE International Con-
ference on Advanced Information Networking and Applications, AINA
2010, Perth, Australia, 20-13 April 2010, pages 2–3, 2010.

[BS04] Christian Bizer and Andy Seaborne. D2rq-treating non-rdf databases
as virtual rdf graphs. In Proceedings of the 3rd international semantic

BIBLIOGRAPHY 193

web conference (ISWC2004), volume 2004. Proceedings of ISWC2004,
2004.

[BWF13] Susanne Becker, Volker Walter, and Dieter Fritsch. Modeling concepts
for consistency analysis of multiple representations and heteroge-
neous 3d geodata. In Information Fusion and Geographic Information
Systems, IF&GIS 2013 - Environmental and Urban Challenges, May 12-15,
2013, St. Petersburg, Russia, pages 91–106, 2013.

[BWLR12] Steve Ba�le, David Wood, James Leigh, and Luke Ruth. The calli-
machus project: Rdfa as a web template language. In Proceedings of
the Third International Workshop on Consuming Linked Data, COLD
2012, Boston, MA, USA, November 12, 2012, 2012.

[BZ17] Mohammad Noorani Bakerally and Antoine Zimmermann. Towards
the automatic deployment of data in linked data platforms. In Proceed-
ings of the ISWC 2017 Posters & Demonstrations and Industry Tracks
co-located with 16th International Semantic Web Conference (ISWC
2017), Vienna, Austria, October 23rd - to - 25th, 2017., 2017.

[Car07] Jorge S. Cardoso. Developing course management systems using the
semantic web. In The Semantic Web: Real-World Applications from
Industry, pages 169–188. 2007.

[CG17] Sarven Capadisli and Amy Guy. Linked Data Notifications. Technical
report, World Wide Web Consortium (W3C), May 2 2017.

[CGHP+12] Bernardo Cuenca-Grau, Ian Horrocks, Bijan Parsia, Alan Ru�henberg,
and Michael Schneider. OWL 2 Web Ontology Language Mapping
to RDF Graphs, W3C Recommendation 11 December 2012. W3C
Recommendation, World Wide Web Consortium (W3C), December 10
2012.

[Cha13a] Pierre-Antoine Champin. RDF-REST: A unifying framework for web
apis and linked data. In Proceedings of the First Workshop on Services
and Applications over Linked APIs and Data co-located with the 10th
Extended Semantic Web Conference (ESWC 2013), Montpellier, France,
May 26, 2013., pages 10–19, 2013.

[Cha13b] Calvin M. L. Chan. From open data to open innovation strategies:
Creating e-services using open government data. In 46th Hawaii
International Conference on System Sciences, HICSS 2013, Wailea, HI,
USA, January 7-10, 2013, pages 1890–1899, 2013.

[CHM08] Peter Coetzee, Tom Heath, and Enrico Mo�a. Sparqplug: Generating
linked data from legacy html, SPARQL and the DOM. In Proceedings
of the WWW2008 Workshop on Linked Data on the Web, LDOW 2008,
Beijing, China, April 22, 2008., 2008.

194 BIBLIOGRAPHY

[CJ06] Bengt Carlsson and Andreas Jacobsson. Security consistency in infor-
mation ecosystems: structuring the risk environment on the internet.
Journal of Information System Security, 2(1):3–26, 2006.

[CKRJ17] Javad Chamanara, Birgi�a König-Ries, and H. V. Jagadish. �is:
In-situ heterogeneous data source querying. Proc. VLDB Endow.,
10(12):1877–1880, August 2017.

[CL17] Simon Cox and Chris Li�le. Time Ontology in OWL W3C Recommen-
dation 19 October 2017. W3C Candidate Recommendation, World
Wide Web Consortium (W3C), October 11 2017.

[Com17] European Commission. New european interoperability framework,
2017.

[Con07] Dan Connolly. Gleaning Resource Descriptions from Dialects of Lan-
guages (GRDDL), W3C Recommendation 11 September 2007. W3C
Recommendation, World Wide Web Consortium (W3C), September 11
2007.

[CS14a] Gavin Carothers and Andy Seaborne. RDF 1.1 N-Triples - A line-based
syntax for RDF graph, W3C Recommendation 25 February 2014. W3C
Recommendation, World Wide Web Consortium (W3C), February 25
2014.

[CS14b] Gavin Carothers and Andy Seaborne. RDF 1.1 TriG - RDF Dataset
Language, W3C Recommendation 25 February 2014. W3C Recom-
mendation, World Wide Web Consortium (W3C), February 25 2014.

[CWL14] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and
Abstract Syntax, W3C Recommendation 25 February 2014. Technical
report, W3C, 2014.

[CZ06] Lois Mai Chan and Marcia Lei Zeng. Metadata interoperability and
standardization - A study of methodology, part I: achieving interoper-
ability at the schema level. D-Lib Magazine, 12(6), 2006.

[CZdS18] Andreiwid She�er Corrêa, Pär-Ola Zander, and Flávio Soares Corrêa
da Silva. Investigating open data portals automatically: a methodology
and some illustrations. In Proceedings of the 19th Annual International
Conference on Digital Government Research: Governance in the Data
Age, DG.O 2018, Del�, The Netherlands, May 30 - June 01, 2018, pages
82:1–82:10, 2018.

[DD99] Ruxandra Domenig and Klaus R. Di�rich. An overview and classi-
fication of mediated query systems. SIGMOD Record, 28(3):63–72,
1999.

[DD11] Leigh Dodds and Ian Davis. Linked data pa�erns. Online:
h�p://pa�erns. dataincubator. org/book, 2011.

BIBLIOGRAPHY 195

[DFJ+04] Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Sco� Cost,
Yun Peng, Pavan Reddivari, Vishal Doshi, and Joel Sachs. Swoogle:
a search and metadata engine for the semantic web. In Proceedings
of the 2004 ACM CIKM International Conference on Information and
Knowledge Management, Washington, DC, USA, November 8-13, 2004,
pages 652–659, 2004.

[dM11] Mathieu d’Aquin and Enrico Mo�a. Watson, more than a semantic
web search engine. Semantic Web, 2(1):55–63, 2011.

[DPLB14] Daniele Dell’Aglio, Axel Polleres, Nuno Lopes, and Stefan Bischof.
�erying the web of data with XSPARQL 1.1. In Proceedings of the
2014 International Conference on Developers-Volume 1268, pages 113–
118. CEUR-WS. org, 2014.

[DS05] Martin J. Dürst and Michel Suignard. Internationalized Resource
Identifiers (IRIs). Technical report, Internet Engineering Task Force,
January 2005.

[DSC] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB
to RDF Mapping Language, W3C Recommendation 27 September
2012. Technical report.

[DVSC+14] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens,
and R. Van de Walle. RML: A generic language for integrated RDF
mappings of heterogeneous data. In LDOW, 2014.

[DW05a] Elizabeth Daniel and John Ward. Enterprise portals: Addressing the
organizational and individual perspectives of information systems.
ECIS 2005 Proceedings, page 3, 2005.

[DW05b] Elizabeth M. Daniel and Andrew D. White. The future of inter-
organisational system linkages: findings of an international delphi
study. EJIS, 14(2):188–203, 2005.

[EGMGC14] M. Esteban-Gutiérrez, N. Mihindukulasooriya, and R. García-Castro.
LDP4j: A framework for the development of interoperable read-write
Linked Data applications. In ISWC Developers Workshop, 2014.

[FC16] André Freitas and Edward Curry. Big data curation. In New Horizons
for a Data-Driven Economy - A Roadmap for Usage and Exploitation of
Big Data in Europe, pages 87–118. 2016.

[FJ97] Mariano Ferndndez and Natalia Juristo. METHONTOLOGY: From
Ontological Art Towards Ontological Engineering. pages 33–40, 1997.

[FKA+12] Philipp Frischmuth, Jakub Klímek, Sören Auer, Sebastian Tramp, and
Jörg Unbehauen. Linked data in enterprise information integration.
2012.

196 BIBLIOGRAPHY

[FL11] Rainer Larin Fonseca and Eduardo Garea Llano. Automatic represen-
tation of geographical data from a semantic point of view through a
new ontology and classification techniques. Trans. GIS, 15(1):61–85,
2011.

[FMW+14] Simon Foster, Alvaro Miyazawa, Jim Woodcock, Ana Cavalcanti,
John S. Fitzgerald, and Peter Gorm Larsen. An approach for managing
semantic heterogeneity in systems of systems engineering. In 9th
International Conference on System of Systems Engineering, SoSE 2014,
Glenelg, Australia, June 9-13, 2014, pages 113–118, 2014.

[For06] Forrester. Companies Adopt Employee Portals, Not Portal Best Prac-
tices, 2006.

[Fox96] SM Fox. Research in enterprise integration. In Proceedings Artificial
Intelligence and Manufacturing Research Planning Workshop, pages
40–52, 1996.

[FR07] R. B. France and B. Rumpe. Model-driven development of complex
so�ware: A research roadmap. In FOSE, 2007.

[GA18] Didem GÃĳrdÃĳr and Fredrik Asplund. A systematic review to merge
discourses: Interoperability, integration and cyber-physical systems.
Journal of Industrial Information Integration, 9:14 – 23, 2018.

[Gag07] Michel Gagnon. Ontology-based integration of data sources. In 10th
International Conference on Information Fusion, FUSION 2007, �ébec,
Canada, July 9-12, 2007, pages 1–8, 2007.

[Gdh07] J. Gregorio and B. de hOra. The Atom Publishing Protocol. Technical
report, IETF, 2007.

[Gia04] Ronald E Giache�i. A framework to review the information integra-
tion of the enterprise. International Journal of Production Research,
42(6):1147–1166, 2004.

[Goe08] Frank G. Goethals. Important issues for evaluating inter-
organizational data integration configurations. 2008.

[GPR+17] Aldo Gangemi, Valentina Presu�i, Diego Reforgiato Recupero, An-
drea Giovanni Nuzzolese, Francesco Draicchio, and Misael Mongiovì.
Semantic web machine reading with FRED. Semantic Web, 8(6):873–
893, 2017.

[Gro07] Kshitij Grover. Kenneth c. laudon and jane p. laudon, management
information system - managing the digital firm (ninth ed.), prentice-
hall, new jersey (2005) ISBN: 0-131-53841-1. Inf. Process. Manage.,
43(6):1833–1834, 2007.

[Gro13] W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recom-
mendation, World Wide Web Consortium (W3C), March 21 2013.

BIBLIOGRAPHY 197

[GS14] Fabien Gandon and Guus Schreiber. RDF 1.1 XML Syntax. W3C
Recommendation, World Wide Web Consortium (W3C), February 25
2014.

[GS16] José Ramón Gil-García and Djoko Sigit Sayogo. Government inter-
organizational information sharing initiatives: Understanding the
main determinants of success. Government Information �arterly,
33(3):572–582, 2016.

[GSB16] Seymour Goodman, Detmar W Straub, and Richard Baskerville. In-
formation Security: Policy, Processes, and Practices. Routledge, 2016.

[Hal05] Alon Y. Halevy. Why your data won’t mix. ACM �eue, 3(8):50–58,
2005.

[Haw13] Sandro Hawke. Sparql query results xml format. W3C Recommenda-
tion, World Wide Web Consortium (W3C), March 21 2013.

[Haz02] Tushar K. Hazra. Building enterprise portals: principles to practice. In
Proceedings of the 24th International Conference on So�ware Engineer-
ing, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, pages 623–633,
2002.

[HG01] Farshad Hakimpour and Andreas Geppert. Resolving semantic het-
erogeneity in schema integration. In FOIS, pages 297–308, 2001.

[HK18] Hafiz Mahfooz Ul Haque and Sajid Ullah Khan. A context-aware
reasoning framework for heterogeneous systems. In Advancements
in Computational Sciences (ICACS), 2018 International Conference on,
pages 1–9. IEEE, 2018.

[HMTF09] N Heydari, A Mansourian, M Taleai, and GR Fallahi. Ontology-based
gis web service for increasing semantic interoperability among or-
ganizations involving drilling in city of tehran. In 11th GSDI World
Conference (GSDI 11), Spatial Data Infrastructure Convergence: Building
SDI Bridges to Address Global Challenges, POSTER FORUM, Ro�erdam,
The Netherlands, 2009.

[HNS12] Arnaud Le Hors, Martin Nally, and Steve Speicher. Using read/write
linked data for application integration - towards a linked data basic
profile. In WWW2012 Workshop on Linked Data on the Web, Lyon,
France, 16 April, 2012, 2012.

[Hog14] Aidan Hogan. Linked data & the semantic web standards. In Linked
Data Management., pages 3–48. 2014.

[HS13a] S. Harris and A. Seaborne. SPARQL 1.1 �ery Language, W3C Rec-
ommendation 21 March 2013. Technical report, W3C, 2013.

[HS13b] Steve Harris and Andy Seaborne. SPARQL 1.1 �ery Language, W3C
Recommendation 21 March 2013. W3C Recommendation, World
Wide Web Consortium (W3C), March 21 2013.

198 BIBLIOGRAPHY

[HTD09] Sally Rao Hill, Indrit Troshani, and Robyn Davidson. Developing an
e-collaboration framework for knowledge sharing in the australian
wine-making industry: Research in progress. 2009.

[HTP+09] Je�ery S. Horsburgh, David G. Tarboton, Michael Piasecki, David R.
Maidment, Ilya Zaslavsky, David Valentine, and Thomas Whitenack.
An integrated system for publishing environmental observations data.
Environmental Modelling and So�ware, 24(8):879–888, 2009.

[Hug07] Mats-Åke Hugoson. Centralized versus decentralized information
systems - A historical flashback. In History of Nordic Computing 2 -
Second IFIP WG 9.7 Conference, HiNC2, Turku, Finland, August 21-23,
2007, Revised Selected Papers, pages 106–115, 2007.

[HVdB11] Noor Huijboom and Tijs Van den Broek. Open data: an international
comparison of strategies. European journal of ePractice, 12(1):4–16,
2011.

[IEE91] Ieee standard computer dictionary: A compilation of ieee standard
computer glossaries. IEEE Std 610, pages 1–217, Jan 1991.

[Jac04] Andreas Jacobsson. Exploring Privacy Risks in Information Networks.
Citeseer, 2004.

[Jau99] Olivier Jautzy. Interoperable databases: A programming language
approach. In 1999 International Database Engineering and Applica-
tions Symposium, IDEAS 1999, Montreal, Canada, August 2-4, 1999,
Proceedings, pages 63–71, 1999.

[Joh17] Lisa R Johnston. Summary of the" data curation handbook steps" from
curating research data volume two: A handbook of current practice.
Association of College & Research Libraries, 2017.

[JSC18] Mohammadreza Jelokhani-Niaraki, Abolghasem Sadeghi-Niaraki, and
Soo-Mi Choi. Semantic interoperability of GIS and MCDA tools
for environmental assessment and decision making. Environmental
Modelling and So�ware, 100:104–122, 2018.

[KA15] K. Kurniawan and A. Ashari. Service orchestration using enterprise
service bus for real-time government executive dashboard system.
In 2015 International Conference on Data and So�ware Engineering
(ICoDSE), pages 207–212, Nov 2015.

[Kin08] R. L. King. Information services for smart grids. In 2008 IEEE Power and
Energy Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, pages 1–5, July 2008.

[KLM+11] Sotirios Koussouris, Fenareti Lampathaki, Spiros Mouzakitis, Yannis
Charalabidis, and John Psarras. Digging into the real-life enterprise
interoperability areas definition and overview of the main research
areas. Proceedings of CENT, pages 19–22, 2011.

BIBLIOGRAPHY 199

[KML14] Sotirios Koussouris, Spiros Mouzakitis, and Fenareti Lampathaki. A
taxonomy of scientific areas driving assessment of organisations readi-
ness. In Revolutionizing Enterprise Interoperability through Scientific
Foundations, pages 24–40. IGI Global, 2014.

[KMMV07] Spyros Kitsiou, Aristides Matopoulos, Vicky Manthou, and Maro
Vlachopoulou. Evaluation of integration technology approaches in
the healthcare supply chain. International Journal of Value Chain
Management, 1(4):325–343, 2007.

[KP09] Yannis Katsis and Yannis Papakonstantinou. View-based data inte-
gration. In Encyclopedia of Database Systems, pages 3332–3339. 2009.

[KRT+16] Sylvain Kubler, Jérémy Robert, Yves Le Traon, Jürgen Umbrich, and
Sebastian Neumaier. Open data portal quality comparison using AHP.
In Proceedings of the 17th International Digital Government Research
Conference on Digital Government Research, DG.O 2016, Shanghai,
China, June 08 - 10, 2016, pages 397–407, 2016.

[KTM17] Maulik R. Kamdar, Tania Tudorache, and Mark A. Musen. A systematic
analysis of term reuse and term overlap across biomedical ontologies.
Semantic Web, 8(6):853–871, 2017.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA explained - the
Model Driven Architecture: practice and promise. Addison Wesley
object technology series. Addison-Wesley, 2003.

[LBC17] Bernade�e Farias Lóscio, Caroline Burle, and Newton Calegari. Data
on the web best practices. W3c recommendation, World Wide Web
Consortium (W3C), January 31 2017.

[LBDP11] Nuno Lopes, Stefan Bischof, Stefan Decker, and Axel Polleres. On
the semantics of heterogeneous querying of relational, XML and RDF
data with XSPARQL. In Proceedings of the 15th Portuguese Conference
on Artificial Intelligence (EPIA 2011), Lisbon, Portugal, 2011.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 3-5, Madison, Wisconsin,
USA, pages 233–246, 2002.

[Lie16] Jay Liebowitz. Successes and Failures of Knowledge Management. Mor-
gan Kaufmann, 2016.

[LIG+16] G. Loseto, S. Ieva, F. Gramegna, M. Ruta, F. Scioscia, and E. Scias-
cio. Linking the Web of Things: LDP-CoAP Mapping. In ANT/SEIT
Workshops, 2016.

[LKA+12] Fenareti Lampathaki, Sotirios Koussouris, Carlos Agostinho, Ricardo
Jardim-Gonçalves, Yannis Charalabidis, and John E. Psarras. Infusing
scientific foundations into enterprise interoperability. Computers in
Industry, 63(8):858–866, 2012.

200 BIBLIOGRAPHY

[LKdL15] Harshana Liyanage, Paul Krause, and Simon de Lusignan. Using
ontologies to improve semantic interoperability in health data. Journal
of innovation in health informatics, 22(2):309–315, 2015.

[LSH03] Jinyoul Lee, Keng Siau, and Soongoo Hong. Enterprise integration
with ERP and EAI. Commun. ACM, 46(2):54–60, 2003.

[LSM12] Timothy Lebo, Satya Sahoo, and Deborah L. McGuinness. PROV-O:
The PROV Ontology, W3C Candidate Recommendation 11 December
2012. W3C Candidate Recommendation, World Wide Web Consor-
tium (W3C), December 11 2012.

[LZB17a] M. Lefrançois, A. Zimmermann, and N. Bakerally. A SPARQL extension
for generating RDF from heterogeneous formats. In ESWC, 2017.

[LZB17b] Maxime Lefrançois, Antoine Zimmermann, and Noorani Bakerally. A
SPARQL extension for generating RDF from heterogeneous formats. In
The Semantic Web - 14th International Conference, ESWC 2017, Portorož,
Slovenia, May 28 - June 1, 2017, Proceedings, Part I, pages 35–50, 2017.

[Mar12] Tim Martin. Uk location programme view service operational guide.
Technical report, Data.gov.uk, 2012. https://data.gov.uk/sites/

default/files/View-Service-Operational-Guide-v2_2_10.pdf.

[MB09] Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organiza-
tion System, Reference, W3C Recommendation 18 August 2009. W3C
Recommendation, World Wide Web Consortium (W3C), August 18
2009.

[MBB+03] Brahim Medjahed, Boualem Benatallah, Athman Bougue�aya, Anne
H. H. Ngu, and Ahmed K. Elmagarmid. Business-to-business interac-
tions: issues and enabling technologies. VLDB J., 12(1):59–85, 2003.

[MBWdlI15] Aalaa Mojahed, Joao H. Be�encourt-Silva, Wenjia Wang, and Beatriz
de la Iglesia. Applying clustering analysis to heterogeneous data using
similarity matrix fusion (SMF). In Machine Learning and Data Mining
in Pa�ern Recognition - 11th International Conference, MLDM 2015,
Hamburg, Germany, July 20-21, 2015, Proceedings, pages 251–265, 2015.

[ME14a] F. Maali and J. Erickson. Data Catalog Vocabulary (DCAT), W3C
Recommendation 16 January 2014. Technical report, W3C, 2014.

[ME14b] Fadi Maali and John Erickson. Data Catalog Vocabulary (DCAT), W3C
Recommendation 16 January 2014. W3C Recommendation, World
Wide Web Consortium (W3C), January 16 2014.

[MGG13] N. Mihindukulasooriya, R. Garcia-Castro, and M. E. Gutiérrez. Linked
data platform as a novel approach for enterprise application integra-
tion. In COLD, 2013.

https://data.gov.uk/sites/default/files/View-Service-Operational-Guide-v2_2_10.pdf
https://data.gov.uk/sites/default/files/View-Service-Operational-Guide-v2_2_10.pdf

BIBLIOGRAPHY 201

[MGG14] N. Mihindukulasooriya, M. E. Gutiérrez, and R. García-Castro. A
linked data platform adapter for the bugzilla issue tracker. In ISWC
Posters & Demo, pages 89–92, 2014.

[MO04] Andreia Malucelli and Eugénio Oliveira. Ontology-services agent
to help in the structural and semantic heterogeneity. In Working
Conference on Virtual Enterprises, pages 175–182. Springer, 2004.

[MPC+07] Arturo Molina, Hervé Pane�o, David Chen, Larry Whitman, Vincent
Chapurlat, and Francois B. Vernadat. Enterprise Integration and
Networking: challenges and trends. Studies in Informatics and Control,
16(4):353–368, December 2007.

[MPC+14] N. Mihindukulasooriya, F. Priyatna, Ó. Corcho, R. García-Castro, and
M. E. Gutiérrez. morph-LDP: An R2RML-Based Linked Data Platform
Implementation. In ESWC Poster & Demo, 2014.

[MPS10] Ming Mao, Yefei Peng, and Michael Spring. An adaptive ontology
mapping approach with neural network based constraint satisfaction.
J. Web Sem., 8(1):14–25, 2010.

[MPSP12a] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web
Ontology Language Structural Specification and Functional-Style
Syntax (Second Edition). W3C Recommendation, World Wide Web
Consortium (W3C), December 11 2012.

[MPSP12b] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web
Ontology Language XML Serialization (Second Edition). W3C Rec-
ommendation, World Wide Web Consortium (W3C), December 11
2012.

[MRW10] Hossein Mohammadi, Abbas Rajabifard, and Ian P. Williamson. Devel-
opment of an interoperable tool to facilitate spatial data integration
in the context of sdi. International Journal of Geographical Information
Science, 24(4):487–505, 2010.

[MSMV18] Thomas Minier, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal.
Ulysses: An intelligent client for replicated triple pa�ern fragments.
In The Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satellite
Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers,
pages 182–186, 2018.

[MZG14] Ahmad Mehrbod, Aneesh Zutshi, and António Grilo. Semantic and
syntactic matching of e-catalogues - using vector space model. In ICE-
B 2014 - Proceedings of the 11th International Conference on e-Business,
Vienna, Austria, 28-30 August, 2014, pages 224–229, 2014.

[NJN] Turkka Näppilä, Kalervo Järvelin, and Timo Niemi. A tool for data
cube construction from structurally heterogeneous xml documents.
Journal of the American Society for Information Science and Technology,
59(3):435–449.

202 BIBLIOGRAPHY

[NPF+13] Trinh Hoang Nguyen, Andreas Prinz, Trond FriisÃÿ, Rolf Nossum, and
Ilya Tyapin. A framework for data integration of o�shore wind farms.
Renewable Energy, 60:150 – 161, 2013.

[NS14] Kiyoshi Ni�a and Iztok Savnik. Survey of rdf storage managers. In
Proceedings of the 6th international conference on advances in databases,
knowledge, and data applications (DBKDAâĂŹ14), Chamonix, France,
pages 148–153, 2014.

[NVS+06] Meenakshi Nagarajan, Kunal Verma, Amit P. Sheth, John A. Miller,
and Jon Lathem. Semantic interoperability of web services - challenges
and experiences. In 2006 IEEE International Conference on Web Services
(ICWS 2006), 18-22 September 2006, Chicago, Illinois, USA, pages 373–
382, 2006.

[Ogb13] Chimezie Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol. W3C
Recommendation, World Wide Web Consortium (W3C), March 21
2013.

[Oli17] Antoni Olivé. The universal ontology: A vision for conceptual modeling
and the semantic web (invited paper). In Conceptual Modeling - 36th
International Conference, ER 2017, Valencia, Spain, November 6-9, 2017,
Proceedings, pages 1–17, 2017.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45,
2009.

[Pau07] Ray J. Paul. Challenges to information systems: time to change. EJIS,
16(3):193–195, 2007.

[PC14] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle - Terse
RDF Triple Language, W3C Recommendation 25 February 2014. W3C
Recommendation, World Wide Web Consortium (W3C), February 25
2014.

[PCDT05] Peter Plessers, Sven Casteleyn, and Olga De Troyer. Semantic web
development with wsdm. In Proceedings 5th International Workshop on
Knowledge Markup and Semantic Annotation (SemAnnot 2005), pages
1–12, 2005.

[PST04] H Sofia Pinto, Ste�en Staab, and Christoph Tempich. Diligent: To-
wards a fine-grained methodology for distributed, loosely-controlled
and evolving. In Proceedings of the 16th European Conference on Artifi-
cial Intelligence (ECAI 2004), volume 110, page 393, 2004.

[PW16] Hervé Pane�o and Lawrence E. Whitman. Knowledge engineering
for enterprise integration, interoperability and networking: Theory
and applications. Data Knowl. Eng., 105:1–4, 2016.

BIBLIOGRAPHY 203

[PZLN18] Zhengyu Pan, Tao Zhu, Hong Liu, and Huansheng Ning. A survey
of rdf management technologies and benchmark datasets. Journal of
Ambient Intelligence and Humanized Computing, pages 1–12, 2018.

[QLS+11] Weijun Qin, Qiang Li, Limin Sun, Hongsong Zhu, and Yan Liu. Rest-
thing: A restful web service infrastructure for mash-up physical and
web resources. In IEEE/IFIP 9th International Conference on Embedded
and Ubiquitous Computing, EUC 2011, Melbourne, Australia, October
24-26, 2011, pages 197–204, 2011.

[RCL14] Reza Rezaei, Thiam Kian Chiew, and Sai Peck Lee. A review on e-
business interoperability frameworks. Journal of Systems and So�ware,
93:199–216, 2014.

[RH13] Laurens Rietveld and Rinke Hoekstra. YASGUI: not just another
SPARQL client. In The Semantic Web: ESWC 2013 Satellite Events
- ESWC 2013 Satellite Events, Montpellier, France, May 26-30, 2013,
Revised Selected Papers, pages 78–86, 2013.

[RM13] Rajesh Rajaguru and Margaret Jekanyika Matanda. E�ects of inter-
organizational compatibility on supply chain capabilities: Exploring
the mediating role of inter-organizational information systems (iois)
integration. Industrial Marketing Management, 42(4):620 – 632, 2013.
Special Issue on Applied Intelligent Systems in Business-to-Business
Marketing.

[RMB+12] Rudolf Reinhard, Tobias Meisen, Thomas Beer, Daniel Schilberg, and
Sabina Jeschke. A framework enabling data integration for virtual
production. In Enabling Manufacturing Competitiveness and Economic
Sustainability, pages 275–280. Springer, 2012.

[RNC+03] Vijayshankar Raman, Inderpal Narang, Chris Crone, Laura Haas,
Susan Malaika, Tina Mukai, Dan Wolfson, and Chaitan Baru. Services
for data access and data processing on grids. Global Grid Formum
Document GFD-I, 14, 2003.

[RS08] Alistair Russell and Paul R. Smart. NITELIGHT: A graphical editor
for SPARQL queries. In Proceedings of the Poster and Demonstration
Session at the 7th International Semantic Web Conference (ISWC2008),
Karlsruhe, Germany, October 28, 2008, 2008.

[RV16] David Romero and François B. Vernadat. Enterprise information
systems state of the art: Past, present and future trends. Computers
in Industry, 79:3–13, 2016.

[SAD+15] Mohamed-Foued Sriti, Ibrahim Assouroko, Guillaume Ducellier,
Philippe Boutinaud, and Benoît Eynard. Ontology–based approach
for product information exchange. International Journal of Product
Lifecycle Management, 8(1):1–23, 2015.

204 BIBLIOGRAPHY

[SAM15a] S. Speicher, J. Arwe, and A. Malhotra. Linked Data Platform 1.0.
Technical report, W3C, February 26 2015.

[SAM15b] S. Speicher, J. Arwe, and A. Malhotra. Linked Data Platform Paging
1.0 W3C Working Group Note 30 June 2015. Technical report, W3C,
2015.

[SAM15c] Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform
1.0. Technical report, World Wide Web Consortium (W3C), February 26
2015.

[SBK+12] Sebastian Scha�ert, Christoph Bauer, Thomas Kurz, Fabian Dorschel,
Dietmar Glachs, and Manuel Fernandez. The linked media framework:
integrating and interlinking enterprise media content and data. In
I-SEMANTICS 2012 - 8th International Conference on Semantic Systems,
I-SEMANTICS ’12, Graz, Austria, September 5-7, 2012, pages 25–32,
2012.

[Sea13a] Andy Seaborne. Sparql 1.1 query results csv and tsv formats. W3C
Recommendation, World Wide Web Consortium (W3C), March 21
2013.

[Sea13b] Andy Seaborne. Sparql 1.1 query results json format. W3C Recom-
mendation, World Wide Web Consortium (W3C), March 21 2013.

[She01] Amit P. Sheth. Changing focus on interoperability in information
systems: from system, syntax, structure to semantics. 2001.

[Ska17] Hala Skaf-Molli. Decentralized Data Management for the Semantic Web
. (Gestion décentralisée de données du web sémantique). 2017.

[SKL14] Manu Sporny, Greg Kellogg, and Markus Lanthaler. JSON-LD 1.0 - A
JSON-based Serialization for Linked Data, W3C Recommendation 16
January 2014. W3C Recommendation, World Wide Web Consortium
(W3C), February 25 2014.

[SM14] Brian Stein and Alan Morrison. The enterprise data lake: Be�er
integration and deeper analytics. PwC Technology Forecast: Rethinking
integration, 1:1–9, 2014.

[SR96] Len Seligman and Arnon Rosenthal. A metadata resource to promote
data integration. In IN PROC. OF IEEE METADATA CONFERENCE,
SILVER SPRING, MD, 1996.

[SS06] Ste�en Staab and Heiner Stuckenschmidt, editors. Semantic Web and
Peer-to-Peer - Decentralized Management and Exchange of Knowledge
and Information. Springer, 2006.

[SVB+06] T. Stahl, M. Volter, J. Be�in, A. Haase, and S. Helsen. Model-driven
so�ware development: technology, engineering, management. Pitman,
2006.

BIBLIOGRAPHY 205

[SVVB12] Thanos G. Stavropoulos, Dimitris Vrakas, Danai Vlachava, and Nick
Bassiliades. Bonsai: a smart building ontology for ambient intelli-
gence. In 2nd International Conference on Web Intelligence, Mining
and Semantics, WIMS ’12, Craiova, Romania, June 6-8, 2012, pages
30:1–30:12, 2012.

[TVN08] Tania Tudorache, Jennifer Vende�i, and Natalya Fridman Noy. Web-
protege: A lightweight OWL ontology editor for the web. In Proceed-
ings of the Fi�h OWLED Workshop on OWL: Experiences and Directions,
collocated with the 7th International Semantic Web Conference (ISWC-
2008), Karlsruhe, Germany, October 26-27, 2008, 2008.

[UNP15] Jürgen Umbrich, Sebastian Neumaier, and Axel Polleres. Towards
assessing the quality evolution of open data portals. In Proceedings
of ODQ2015: Open Data �ality: from Theory to Practice Workshop,
Munich, Germany, 2015.

[USR10] Nils Urbach, Stefan Smolnik, and Gerold Riempp. An empirical inves-
tigation of employee portal success. J. Strategic Inf. Sys., 19(3):184–206,
2010.

[VHM+14] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck,
Laurens De Vocht, Miel Vander Sande, Richard Cyganiak, Pieter Col-
paert, Erik Mannens, and Rik Van de Walle. �erying datasets on the
web with high availability. In The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October
19-23, 2014. Proceedings, Part I, pages 180–196, 2014.

[VSH+16] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Her-
wegen, Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and
Pieter Colpaert. Triple pa�ern fragments: A low-cost knowledge graph
interface for the web. J. Web Sem., 37-38:184–206, 2016.

[VSS02] Ubbo Visser, Heiner Stuckenschmidt, and Christoph Schlieder. In-
teroperability in gis-enabling technologies. In Proceedings of the 5th
AGILE Conference on Geographic Information Science, page 291. Cite-
seer, 2002.

[W3C12] W3C OWL Working Group. OWL 2 Web Ontology Language Docu-
ment Overview (Second Edition), W3C Recommendation 11 December
2012. W3C Recommendation, World Wide Web Consortium (W3C),
December 11 2012.

[Whi00] Martin White. Enterprise information portals. The Electronic Library,
18(5):354–362, 2000.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer, 25(3):38–49, 1992.

[Wil07] Elizabeth A Williamson. An evaluation of inter-organisational in-
formation systems development on business partnership relations.

206 BIBLIOGRAPHY

International Journal of Business Science and Applied Management,
2(3):36–50, 2007.

[WJ06] Merrill Warkentin and Allen C Johnston. It security governance and
centralized security controls. Enterprise Information Assurance and
System Security: Managerial and Technical Issues, pages 16–24, 2006.

[WJ08] Merrill Warkentin and Allen C Johnston. It governance and organiza-
tional design for security management. Information security: Policies,
processes, and practices, pages 46–68, 2008.

[Wu01] Dong-Jun Wu. So�ware agents for knowledge management: coordi-
nation in multi-agent supply chains and auctions. Expert Syst. Appl.,
20(1):51–64, 2001.

[XL02] Zhu Xu and YC Lee. Semantic heterogeneity of geodata. International
archives of photogrammetry remote sensing and spatial information
sciences, 34(4):216–224, 2002.

[Yak07] Elizabeth Yakel. Digital curation. OCLC Systems & Services, 23(4):335–
340, 2007.

[ZD04] Patrick Ziegler and Klaus R. Di�rich. Three decades of data integration
- all problems solved? In Building the Information Society, IFIP 18th
World Computer Congress, Topical Sessions, 22-27 August 2004, Toulouse,
France, pages 3–12, 2004.

BIBLIOGRAPHY 207

École Nationale Supérieure des Mines
de Saint-Étienne

NNT:2018LYSEM029
Mohammad Noorani BAKERALLY
Generation of Linked Data Platforms in Highly Decentralized Information Ecosys-
tem
Speciality: Computer Science
Keywords: Écosystème d’information, Système d’Information, Web sémantique,
Linked Data Platform 1.0

Abstract:
Information ecosystem with decentralized architectures have known some success
in terms of data interoperability. However, today, information ecosystems in which
organizations are operating are moving towards highly decentralized architectures
for reasons such as globalization, multinationalism or complex supply chain collab-
orations. The problem in highly decentralized information ecosystem is that while
data is heterogeneous, there is li�le to no coordination between its di�erent units.
Consequently, resolving data heterogeneity and enhancing interoperability between
the information systems become more challenging in such a context.

In this work, our hypothesis is that Semantic Web technologies and in particular
the Linked Data Platform 1.0 (LDP) standard can be used to provide a homogeneous
view and access to self-described data. Thus, it decreases the need for contacting
data providers to understand and make use of the data. However, while several
LDP implementations exist, they provide no support for automating the generation
of LDPs. Consequently, deploying LDPs from existing data sources still involves a
lot of manual development. To solve this problem, we propose an approach that
uses a language to describe how existing data sources can be used to generate LDPs
compatible with any implementation of the LDP standard and deployable on any of
them. We formally describe the syntax and semantics of language. We provide an
implementation of the approach that instantiates an automatized generation and
deployment workflow. Finally, we evaluate our language and approach in general
by performing several experiments to show how our approach automatizes the
generation of LDPs, while enhancing design reusability, from existing data sources
that are either heterogeneous or have hosting constraints.

208 BIBLIOGRAPHY

École Nationale Supérieure des Mines
de Saint-Étienne

NNT:2018LYSEM029
Mohammad Noorani BAKERALLY
Generation of Linked Data Platforms in Highly Decentralized Information Ecosys-
tem
Spécialité: Computer Science
Mots clefs: Information Ecosystem, Information System, Semantic Web, Linked
Data Platform 1.0

Résumé:
Les écosystèmes d’information avec une architecture décentralisée ont connu des
succès dans leur capacité à traiter l’interopérabilité. Cependant aujourd’hui, la
gouvernance de ces écosystèmes d’information se transforme et donne lieu à des
systèmes fortement décentralisés du fait de leur globalisation et mondialisation, de
leur inscription dans des collaborations complexes avec d’autres organisations.

Le problème dans ces nouveaux écosystèmes est que tandis que les données
sont hétérogénéité, il y peu ou pas de coordination entre leurs di�érentes unités.
Ainsi, traiter l’hétérogénéité de ces données et assurer l’interopérabilité au sein de
ces écosystèmes est un réel défi à relever dans le contexte actuel. Dans ce travail,
notre hypothèse est que les technologies du Web Sémantique et en particulier
celles des plateformes de données liées avec le standard Linked Data Platform 1.0
(LDP), peuvent être utilisées pour construire une vue homogène et un accès possible
à des données auto-décrites. Ainsi, il devient moins nécessaire de contacter les
fournisseurs de données pour les comprendre et les utiliser. Cependant, les outils
actuels, conformes à ce standard, n’aident pas à la mise en place automatique
d’écosystèmes conformes à LDP. Par conséquent, déployer de tels écosystèmes
selon le standard LDP nécessite un travail important. Nous proposons ainsi une
approche visant à résoudre ce problème en définissant un langage perme�ant de
décrire l’organisations des données ainsi que leur contenus compatibles avec le
standard LDP à partir de di�érentes sources de données et qui soient déployables
sur les plateformes existantes. Nous présentons la syntaxe et la sémantique formelle
de ce langage, ainsi qu’une mise en œuvre de notre approche qui se traduit part
une chaine de génération et de déploiement automatique à partir d’un document
de conception écrit dans ce language. Nous évaluons ce langage et notre approche
au travers de plusieurs expérimentations perme�ant de démontrer l’automatisation
de la génération de plateforme LDP à partir de sources de données existantes et
hétérogènes, de la possibilité de les déployer en tenant compte de contraintes et de
la possibilité de réutiliser des conceptions d’une plateforme à l’autre.

BIBLIOGRAPHY 209

	Abstract
	Introduction
	I State of the Art
	The Data Arena in Highly Decentralized Information Ecosystem
	Preliminary Definitions
	Heterogeneity Problems
	Data Interoperability Requirements
	Summary

	Semantic Web Technologies
	Data Syntax
	Data Semantics
	Data Access
	Linked Data Platform 1.0
	Synthesis

	II LDP Generation
	Model-Driven LDP Generation
	Foundations
	LDP Generation Principles
	LDP Generation Workflow
	Summary

	LDP Design Language
	Overview of LDP-DL
	Formal Description
	LDP Dataset
	Operational Semantics
	Summary

	III Implementation & Validation
	Implementation
	Overview of LDP Generation Toolkit
	LDP-DL Concrete Syntax
	LDPizer: ShapeLDP
	LDP Dataset Deployer: POSTerLDP
	LDP Server: InterLDP
	LDP Browser: HubbleLDP
	Summary

	Evaluation
	Performance of ShapeLDP
	Evaluation with respect to criteria
	Side Contributions
	Summary

	IV Conclusion & Perspectives
	Conclusion
	Summary of Contributions
	Limitations
	Perspectives

	Appendices
	Parking Example
	Parking Example XML Listing
	Parking Example JSON Listing

	LDP-DL Concrete Syntax
	LDP-DL Vocabulary
	Mapping from Abstract to Concrete Syntax
	Mapping from Concrete to Abstract Syntax

	Materials for LDP-DL
	Example LDP-DL design
	Static/Dynamic LDP Dataset

	Materials for Evaluation
	Random DCAT Dataset Generation
	Modular Design Reusability
	Dynamic LDP
	Heterogeneous LDP Generation
	Flexible Design

