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Notations and Abbreviations

We summarize here the notations used throughout the manuscript, listed in thematic order.

Symbol Meaning
N Natural numbers (without 0)
C, i Field of complex numbers and the imaginary number i
R(z), z Real component and complex conjugate of a complex number z ∈ C
R, Z Field of real numbers and ring of rational numbers
Zq Quotient ring of rational integers modulo some q ∈ N
[n] The set {1, . . . , n} for some n ∈ N
bxe Closest integer to x
A Bold capital letters denote matrices
AT , A† Transpose and Hermitian transpose of A
In The identity matrix of size n× n
[A|B] Concatenation of two matrices A and B
A⊗ B Kronecker product of two matrices A and B
a Bold lowercase letters denote column vectors
a ◦ b Component-wise product of two vectors a and b
rev(a) The vector a = (a1, . . . , an)T in reverse order, i.e., rev(a) = (an, . . . , a1)T
diag(a) The diagonal matrix whose diagonal entries are given by the vector a
{ej}j∈[n] The canonical basis of Cn

Z[x] Ring of integer polynomials
Z[x]<n Set of integer polynomials with degree less than n
‖a‖∞, ‖a‖2 Infinity and Euclidean norm of a vector a
‖a‖2,∞ Hybrid norm of a vector over a number field K
s1(A) Largest singular value of a matrix A
‖A‖2 Spectral norm of a matrix A
‖A‖max Maximum norm of a matrix A
‖A‖F Frobenius norm of a matrix A
GS(A) Gram-Schmidt orthogonalization of A from left to right
K , R A number field and its associated ring of integers
R× Set of units (i.e., non-trivial invertible elements) of a ring R
M, I Modules over a number field K and ideals over its ring of integers R
〈p〉 = pR The principal ideal in a ring R generated by p ∈ R
Rp The quotient ring R/〈p〉
τ ,σ,σH The coefficient and the canonical embedding (H as a complex or real vector space)
σ The discrete canonical embedding over the quotient ring Zq
V,V The standard (over C) and discrete (over Zq) Vandermonde matrix
VΩ,VΩc The partial (discrete) Vandermonde matrix and its complement
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viii NOTATIONS AND ABBREVIATIONS

δj,k Kronecker symbol, which equals 1 if j = k and 0 otherwise
ω,O,Θ,Ω Standard Landau asymptotic notations
U (S) Uniform distribution over a set S
|S| The cardinality of a set S
x ← D Sampling an element x ∈ S according to a distribution D over S
∆(P ;Q) Statistical distance between two probability distributions P and Q
RD2(P‖Q) Rényi divergence of order 2 between two probability distributions P and Q
Ds Continuous Gaussian distribution of width s
Ds,Λ Discrete Gaussian distribution of width s over the lattice Λ
XOR Bit-wise xor-operation of two binary vectors

Within this thesis we use the following abbreviations, listed in alphabetical order.

Abbreviation Meaning
BDD Bounded Distance Decoding
GDP Gaussian Decoding Problem
HNF Hermite Normal Form
IND-CPA Indistinguishability Under Chosen Plaintext Attack
LHL Leftover Hash Lemma
LWE Learning With Errors
LWR Learning With Rounding
M-LWE Module Learning With Errors
MP-LWE Middle-Product Learning With Errors
MP-CLWR Middle-Product Computational Learning With Rounding
NTT Number Theoretic Transform
OHCP Oracle Hidden Center Problem
PASS PASS Problem
PKE Public Key Encryption
P-LWE Polynomial Learning With Errors
PPT Probabilistic Polynomial Time
PV-Knap Partial Vandermonde Knapsack
PV-LWE Partial Vandermonde Learning With Errors
PV-SIS Partial Vandermonde Shortest Integer Solution
R-LWE Ring Learning With Errors
ROM Random Oracle Model
SIS Short Integer Solution
SVP Shortest Vector Problem



Résumé long en français

Historiquement, l’objectif de la cryptologie était de proposer des méthodes de chiffrement per-
mettant de garantir la confidentialité des messages échangés entre deux personnes. Depuis le
développement d’internet, d’autres défis sont également devenus important, comme par exemple
garantir l’authenticité d’une information en la signant numériquement, payer avec de l’argent
électronique ou bien voter de manière anonyme lors d’élections électroniques. En utilisant un
schéma cryptographique prouvé sûr, le fait qu’un message reste inintelligible, qu’une signature ne
puisse pas être falsifiée ou qu’une vote reste anonyme est garanti par la difficulté d’un problème
mathématique. Autrement dit, toute information divulguée pourrait être utilisée pour résoudre
un problème mathématique réputé difficile. Cependant, la plupart des protocoles utilisés au-
jourd’hui sont menacés par l’arrivée d’ordinateurs quantiques de plus en plus puissants. Plus
précisément, si nous avions accès à des ordinateurs qui utilisent la mécanique quantique au lieu
de la mécanique classique, certains problèmes mathématiques deviendraient faciles à résoudre et,
avec eux, de nombreux schémas cryptographiques actuels ne seraient plus sûrs [Sho97].

L’identification de protocoles cryptographiques supposés être protégés contre les algorithmes
quantiques est un domaine de recherche actif appelé la cryptographie post-quantique. Dans ce
contexte, l’institut américain National Institute of Standards and Technology (NIST) a lancé
en 2016 un processus de normalisation post-quantique [NIS] pour les schémas de chiffrement à
clé publique et les signatures numériques. Plusieurs pistes qui semblent résister aux attaques
quantiques ont été proposées. Pour n’en citer que quelques-unes, il existe des hypothèses à base
des réseaux euclidiens, des codes aléatoires, des fonctions de hachage ou des systèmes multivariés.
Les schémas qui reposent sur des problèmes sur les réseaux euclidiens constituent une catégorie
très prometteuse. Ce domaine de recherche est appelé cryptographie à base de réseaux et offre de
multiples avantages, tels que l’efficacité, la versatilité et des garanties de sécurité élevées. Pour
illustrer son rôle prépondérant, notons que dans le processus de normalisation en cours géré par
le NIST, parmi les candidats restants au dernier tour, 3 des 4 mécanismes d’encapsulation de clés
(permettant le chiffrement) et 2 signatures numériques sur 3 sont basés sur des réseaux. Toutes
les contributions présentées dans ce manuscrit s’inscrivent dans le domaine de la cryptographie
à base de réseaux.

Au cœur de la plupart des schémas reposant sur les réseaux euclidiens, et en particulier au
centre de cette thèse, se trouve un problème de calcul, celui de l’apprentissage avec erreurs,
souvent abrégé LWE (acronyme de l’anglais Learning With Errors). De manière informelle, le
problème LWE demande de résoudre un système d’équations linéaires bruitées sur les entiers
rationnels. Plus formellement, pour des entiers positifs n,m et q, soit A ∈ Zm×n

q une matrice
tirée selon la distribution uniforme sur Zq. De plus, on considère deux distributions de prob-
abilités. La première, notée ψe, est sur Z et utilisée pour générer un vecteur e ∈ Zm d’une
norme euclidienne petite avec forte probabilité. Souvent, on choisit une distribution gaussienne
pour ψe. La deuxième distribution de probabilités, désignée par ψs, est sur Zn

q et définit un
vecteur s ∈ Zn

q. Nous appelons ces deux vecteurs le bruit/erreur e et le secret s. Une instance
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x RÉSUMÉ LONG EN FRANÇAIS

de LWE est donnée par le couple (A,A · s + e mod q), tandis que le bruit et le secret restent
cachés. La variante calculatoire de LWE demande de trouver le secret s et la version décision-
nelle demande de distinguer cette instance d’une instance (A,b) où le vecteur b a été tiré de
la distribution uniforme sur Zm

q . Notons que sans le bruit e, il s’agirait d’un système standard
d’équations linéaires qui peut être résolu en temps polynomial par élimination gaussienne. Seul le
bruit supplémentaire rend la résolution du système d’équations difficile. Pour un certain facteur
d’approximation qui dépend des paramètres ψs ,ψe ,m, n et q, on peut prouver que LWE est au
moins aussi difficile que de trouver approximativement le vecteur le plus court dans un réseau
euclidien [Reg05, Pei09, BLP+13, PRS17a]. Ceci est un problème supposé difficile pour lequel
aucun algorithme efficace n’est connu lorsque la dimension du réseau est suffisamment grande.

Malheureusement, les protocoles cryptographiques qui s’appuient sur la difficulté de LWE sont
intrinsèquement inefficaces en raison de la taille des clés publiques qui contiennent généralement
la matrice A ∈ Zm×n

q , où n et m sont au moins aussi grands que le paramètre de sécurité. En
outre, les opérations de base sont des produits matrice-vecteur sur Zq qui nécessitent un temps
de calcul quadratique en la dimension n. Pour améliorer l’efficacité des protocoles, des variantes
structurées de LWE ont été proposées, comme par exemple [SSTX09, LPR10, LS15].

L’une d’entre elles est le problème Module Learning With Errors (M-LWE), introduit par
Brakerski et al. [BGV12] et étudié en détails par Langlois et Stehlé [LS15]. Au lieu de considérer
des équations linéaires bruitées sur les entiers Z, les équations linéaires sont maintenant définies
algébriquement sur un anneau de polynômes à coefficients dans Z. Intuitivement, l’amélioration
de l’efficacité vient du fait que chaque polynôme de cet anneau définit une matrice structurée de
multiplication. Ainsi, nous pouvons remplacer la matrice complètement aléatoire de LWE par
une certaine matrice structurée pour M-LWE. De plus, dans ce cas le produit matrice-vecteur
peut être calculé en temps quasi-linéaire. Depuis son introduction en 2012, M-LWE jouit d’une
popularité croissante car il offre un compromis fin entre sécurité concrète et efficacité. Dans
le cadre du processus de normalisation du NIST [NIS], plusieurs candidats au troisième tour
s’appuient sur la difficulté de M-LWE, par exemple, le schéma de signature Dilithium [DKL+18]
et le mécanisme d’encapsulation des clés Kyber [BDK+18].

Contributions
La recherche présentée dans ce manuscrit se concentre sur les variantes structurées du prob-
lème LWE et leur utilisation en cryptographie post-quantique. Dans ce qui suit, nous décrivons
les contributions présentées qui peuvent être divisées en deux catégories différentes. La première
partie contient des contributions liées à une meilleure compréhension des fondations théoriques de
la cryptographie à base de réseaux et la deuxième partie comprend la conception de deux schémas
de chiffrement efficaces, dont la sécurité est basée sur des problèmes de réseaux structurés.

Fondations théoriques
Comme nous l’avons expliqué précédemment, les schémas cryptographiques efficaces sont basés
sur des variantes structurées de LWE, comme par exemple M-LWE. À de nombreux égards,
le problème plus récent M-LWE ressemble à son homologue non structuré et plus étudié LWE.
Néanmoins, certaines propriétés importantes qui ont été prouvées pour LWE, n’ont pas (encore)
été démontrées pour M-LWE. Nous pensons qu’une étude rigoureuse du problème M-LWE est
essentielle pour approfondir notre confiance dans les hypothèses de difficulté qui sont faites dans
dans les schémas cryptographiques actuellement proposés pour la normalisation. Dans ce qui
suit, nous présentons deux résultats qui répondent à deux de ces insuffisances concernant le
problème M-LWE.
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Secret binaire

Comme première contribution, nous prouvons dans le Chapitre 2 que M-LWE reste difficile à
résoudre, même si la distribution du secret ψs donnant le vecteur s sur l’anneau est modifiée. Au
lieu d’utiliser la distribution uniforme qui conduit à des polynômes à grands coefficients (c’est-
à-dire dans Zq), nous pouvons également utiliser une distribution de probabilités qui donne des
polynômes à coefficients binaires (c’est-à-dire dans {0, 1}). Nous désignons ce dernier problème
par bin-M-LWE. Il est particulièrement intéressant car il augmente l’efficacité des calculs, permet
des techniques efficaces de changement du rang et du modulo [BLP+13, AD17a, WW19] et
est nécessaire dans les schémas de chiffrement totalement homomorphes comme dans [DM15,
CGGI16]. Pour le cas non structuré, des réductions de LWE à bin-LWE avec une dimension et une
borne d’erreur légèrement augmentées ont été montrées [GKPV10, BLP+13, Mic18]. Cependant,
tous les résultats existants sont sur les entiers Z et non sur l’anneau des entiers d’un corps
de nombres. Par conséquent, comme l’indique Micciancio dans la conclusion de [Mic18], une
question ouverte importante est de savoir si des résultats similaires s’appliquent aux variantes
structurées, en particulier à M-LWE. Dans cette thèse, nous progressons vers la résolution de ce
problème en prouvant la difficulté de bin-M-LWE, si le rang du module est (super-)logarithmique
dans le degré du corps de nombres sous-jacent. Plus précisément, nous présentons deux preuves
différentes pour obtenir ce résultat, qui diffèrent légèrement dans leurs conditions, les paramètres
obtenus et les variantes concrètes du problème. De plus, nous montrons que les deux réductions
peuvent être généralisées à une distribution du secret plus large.

Réduction classique

Comme deuxième contribution portant sur la difficulté théorique deM-LWE, nous renforçons dans
le Chapitre 3 son lien étroit avec les problèmes sur les réseaux euclidiens structurés en prouvant
une réduction classique. Auparavant, seule une réduction quantique était connue [LS15]. Une
telle réduction nécessite des ordinateurs quantiques, qui sont extrêmement puissants, coûteux à
construire et pas encore disponibles à grande échelle. Pour le cas non structuré, une preuve de
difficulté classique de LWE est donnée par Brakerski et al. [BLP+13]. Sur le plan général, nous
suivons la même structure que dans [BLP+13] en adaptant de façon rigoureuse tous les résultats
nécessaires au contexte des modules. Plus en détail, nous avons besoin de trois ingrédients.
Premièrement, il nous faut une réduction classique d’un problème sur les réseaux modules au
problème M-LWE avec un modulo de taille exponentielle, que nous obtenons en adaptant le
pendant de LWE de Peikert [Pei09] que nous combinons avec un résultat plus récent de Peikert
et al. [PRS17a]. Comme deuxième composant, nous avons besoin de la difficulté de M-LWE
en utilisant un secret binaire, que nous prouvons dans le Chapitre 2. Enfin, une technique
de réduction du paramètre de modulo est nécessaire, où nous pouvons utiliser la technique
de changement du rang et du modulo montrée par Albrecht et Deo [AD17a]. En assemblant
soigneusement ces trois ingrédients, nous obtenons finalement la réduction classique.

Middle-Product Learning With Rounding

Après avoir étudié le problèmeM-LWE qui sert d’hypothèse de difficulté sous-jacente aux schémas
de chiffrement et aux signatures numériques pratiques, nous nous intéressons dans le Chapitre 4
à une toute nouvelle version structurée de LWE. La motivation principale de ce chapitre est
de combiner deux variantes existantes de LWE, la variante Middle-Product Learning With Er-
rors (MP-LWE) [RSSS17] et la variante Learning With Rounding (LWR) [BPR12], afin de définir
un nouveau problème qui bénéficie de leurs avantages respectifs. À cette fin, nous introduisons
une nouvelle hypothèse de difficulté que nous appelons le problème Middle-Product Compu-
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tational Learning With Rounding (MP-CLWR). D’une part, MP-CLWR utilise les arrondis de
manière similaire à LWR et évite ainsi l’échantillonnage de l’erreur gaussienne. D’autre part, la
difficulté de MP-CLWR ne dépend pas d’un anneau spécifique, mais est garantie par la difficulté
d’une variante structurée de LWE (appelée P-LWE) pour un ensemble d’anneaux exponentielle-
ment grand. Ainsi, l’hypothèse MP-CLWR jouit des propriétés souhaitées, à la fois de l’avantage
de sécurité de MP-LWE et de l’avantage de simplicité de LWR. Concernant la difficulté de ce
nouveau problème, nous prouvons que MP-CLWR est au moins aussi difficile que MP-LWE, qui
est lui-même basé sur la difficulté des problèmes sur les réseaux euclidiens structurés.

Problèmes liés à la matrice de Vandermonde partielle

Dans les chapitres précédents, nous avons étudié des variantes de LWE dont la difficulté est
garantie par l’impossibilité présumée de résoudre des problèmes dans les pires cas sur des réseaux
euclidiens structurés. Dans le Chapitre 5, nous étudions une famille différente de problèmes sur
des réseaux structurés qui est liée à la transformée de Vandermonde discrète et qui permet des
protocoles simples et efficaces au détriment de l’absence de connexion connue entre les pires cas
et les cas moyens. L’hypothèse constituant la base de ce chapitre est qu’il n’existe ni d’algorithme
classique ni quantique en temps polynomial qui récupère un polynôme de petits coefficients en
ayant seulement accès à une liste partielle de sa transformée de Vandermonde discrète. Bien
sûr, il est essentiel de préciser à quel point les coefficients du polynôme doivent être petits et de
quelle taille est la liste partielle que nous fournissons. Par analogie avec le problème du sac à dos
standard, nous appelons ce problème le problème de Partial Vandermonde Knapsack (PV-Knap).
Sa version homogène est appelée Partial Vandermonde SIS (PV-SIS), et peut être vue comme une
variante spécifique du problème standard Short Integer Solution.

En 2015, Hoffstein et Silverman [HS15] présentent PASS Encrypt, un schéma de chiffrement à
clé publique dont les briques de construction sont liées au problème PV-Knap. Leur schéma de
chiffrement est très efficace et remplit des propriétés homomorphiques additives et multiplica-
tives, ce qui en fait un point de départ naturel pour la conception de primitives cryptographiques
efficaces. Malheureusement, l’un des principaux inconvénients de PASS Encrypt est qu’aucune
preuve de sécurité n’a été donnée dans [HS15]. Dans ce chapitre, nous progressons dans la
compréhension des hypothèses de difficulté nécessaires pour prouver la sécurité de PASS Encrypt.
D’abord, nous élargissons le paysage des problèmes qui utilisent la transformation partielle de
Vandermonde en définissant une nouvelle variante de LWE, appelée Partial Vandermonde Learn-
ing With Errors (PV-LWE). Par la suite, nous montrons l’équivalence de PV-Knap et de PV-LWE
en exploitant la même connexion de dualité que nous connaissons pour les problèmes Knap-
sack et LWE standards. Comme notre principale motivation est de fournir une preuve de sécu-
rité pour PASS Encrypt, nous définissons une variante du PV-Knap, que nous appelons le prob-
lème PASS. Ce problème sert (avec la version décisionnelle de PV-Knap) d’hypothèse de difficulté
sous-jacente pour (une version légèrement modifiée de) PASS Encrypt. Nous présentons le schéma
ainsi que la preuve de sécurité plus tard dans le Chapitre 7.

Constructions cryptographiques

Dans la première partie du manuscrit, nous introduisons deux nouvelles hypothèses de difficulté
liées aux problèmes sur les réseaux euclidiens structurés. Afin de montrer comment se servir
de ces hypothèses pour la cryptographie, nous construisons deux schémas de chiffrement à clé
publique dans la deuxième partie de ce travail. Nous prouvons que les deux schémas sont corrects
et sûrs en supposant des hypothèses de calcul explicitement énoncées.
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Chiffrement basé sur Middle-Product LWE

Pour montrer l’utilité cryptographique de notre nouvelle hypothèse de difficulté MP-CLWR du
Chapitre 4, nous présentons au Chapitre 6 un schéma de chiffrement dont la sécurité est basée
sur MP-CLWR. Sa conception s’inspire simultanément de deux schémas existants : d’une part,
du schéma de Roşca et al. [RSSS17] dont la sécurité est basée sur MP-LWE, et d’autre part,
du chiffrement de Chen et al. [CZZ18] dont la sécurité est basée sur la variante structurée
de LWR. Comme pour [CZZ18], nous utilisons un mécanisme dit de réconciliation, qui permet
de déchiffrer correctement. Nous prouvons la sécurité de notre schéma en nous basant sur la
difficulté de MP-CLWR. Comme c’est le cas pour les schémas qui utilisent des arrondis, pendant
la génération de la clé publique, nous n’avons besoin que d’arrondir le produit médian de deux
polynômes au lieu d’échantillonner l’erreur gaussienne, ce qui le rend plus facile à mettre en œuvre
que le schéma de [RSSS17]. Simultanément, tout en garantissant un niveau de sécurité égal, nous
obtenons les mêmes tailles asymptotiques de clé et de chiffrements que le schéma de [RSSS17].
Enfin, nous analysons la sécurité concrète de notre schéma en examinant les meilleures attaques
actuellement connues contre lui.

PASS Encrypt

Comme contribution finale, nous présentons dans le Chapitre 7 une version modifiée du schéma
de chiffrement PASS Encrypt [HS15] ainsi qu’une preuve de sécurité basée sur le problème PV-Knap
et une variante particulière de celui-ci, que nous appelons le problème PASS, tous les deux étudiés
dans le Chapitre 5. Ce dernier problème capture le fait qu’un message chiffré de PASS Encrypt
consiste en plusieurs transformées de Vandermonde partielles des éléments liés. Par conséquent,
un∗e attaquant∗e qui réussit contre PV-Knap peut être utilisé∗e pour gagner le jeu de sécurité
de PASS Encrypt, mais le contraire n’est pas vrai. Ce problème n’a pas été abordé auparavant
dans la version originale de PASS Encrypt par Hoffstein et Silverman [HS15].

Nous modifions légèrement le schéma et donnons une preuve que le déchiffrement est correct
pour des paramètres bien choisis et une preuve de sécurité, en supposant la difficulté de PV-Knap
et de PASS. Nous fournissons également une analyse fine de la sécurité du schéma en montrant une
nouvelle attaque que nous appelons Plaintext Recovering Using Hints attack, qui prend en compte
la structure de PASS Encrypt. À cette fin, nous utilisons un travail récent de Dachman-Soled et
al. [DDGR20] pour analyser les instances de LWE, où des indices supplémentaires sur le secret
et/ou l’erreur sont donnés. Nos estimations de complexité pour cette attaque montrent qu’elle
ne réduit pas la complexité en dessous de celle des attaques précédemment connues sur PASS, ce
qui augmente notre confiance dans la sécurité revendiquée de PASS Encrypt. Nous concluons le
chapitre en fournissant des exemples concrets de paramètres et nous comparons notre schéma avec
deux autres schémas efficaces dont la sécurité est basée sur des problèmes de réseaux structurés.
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Introduction

The word cryptography is composed of two ancient Greek words, κρνπτoς (kryptos, secret)
and γραφειν (graphein, to write), capturing the association that most people have when they
hear about cryptography: exchanging messages in such a way that no one other than the recipient
can read them. However, this only covers one of many different aspects of cryptography. From
a general perspective, we can state three basic goals that cryptography aims to attend: confi-
dentiality, authenticity and integrity. Whereas the first one corresponds to keeping the message
secret, the second one guarantees a recipient that the message was indeed sent by the claimed
sender, and the last one makes sure that the content of the message has not been altered. One
can well imagine that it makes a difference to obtain a check of 1.000 Euro or 100 Euro, whereas
the two numbers are only one 0 far away from each other. Modern cryptography does not only
make it possible to exchange digital messages in a secure way, as for instance when sending en-
crypted emails via OpenPGP or using a messenger application with end-to-end encryption such
as Signal. It also provides solutions to generally authenticate content on the internet, to establish
secure connections between our home computer and the world wide web (e.g., the TLS protocol),
to manage online banking, to do online shopping, and even gives us the possibility to securely
vote online. This said, modern cryptography has become indispensable and omnipresent in the
everyday life of a citizen in the 21st century.

But what exactly do we mean by modern cryptography? For a very long time, cryptography
was done in a secret way, without publicly telling the rules. It was mainly used by governments
and the military, who had the political and financial power to actually deploy cryptography. A
now very popular example is the encryption machine Enigma used by the German military and
marines during World War 2, whose breaking by the Allies is estimated to have shortened the war
by several years and was kept secret a long time afterwards.4 The area of modern cryptography
was marked by the publications of Diffie and Hellman [DH76] and of Merkle [Mer78], introducing
the concept of public key cryptography.5 Its underlying principle is to equip everyone with a pair
of cryptographic keys. The first one, referred to as the secret key, should be kept hidden.
The second one is called the public key and can be made generally available. In the context
of encryption, the public key allows anyone to encrypt a message, whereas only the owner of
the corresponding secret key can decrypt the encrypted message. The main advantage of such
a public key encryption is that the two persons who want to safely communicate with each
other don’t have to (physically) meet beforehand. As opposed to public key cryptography, there
also exists a secret key counterpart, where both participants have to share a common secret

4As a first and accessible approach to the topic, we recommend the film The Imitation Game by Morten
Tyldum (2014). Also very interesting is the role many women, called code girls, played during World War 2 (but
already before) to decrypt messages sent by the enemy, here the book Code Girls by Liza Mundy (2017) gives many
interesting insights for the US and the UK.

5Roughly at the same time, employees of the UK Government Communications Headquarters (GCHQ) made
similar discoveries which where, however, only declassified in 1997 and thus not accessible for public research at
that time.
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key in order to execute the cryptographic scheme. A very popular example of a secret key
encryption scheme is the AES block cipher designed by Daemen and Rijmen [DR00]. Such
schemes are usually more efficient than their public key analogues, but require the exchange of
secret credentials to initiate them. In practice, we generally use a public key protocol to safely
exchange key material to enable an efficient secret key protocol afterwards.

Preferably, the public key encryption scheme comes with a security proof, guaranteeing that
a message remains completely unintelligible as long as an explicitly formulated assumption is
true. Typically, such an assumption states that some mathematical problem is difficult to solve.
In other words, any disclosed information on the encrypted message could be used to solve a
mathematical problem deemed unsolvable in a reasonable amount of time. One example of such a
mathematical problem is the task of factoring a large number. A common conjecture is that there
exists no polynomial-time algorithm that factors a number which is the product of two equally
large primes. Another mathematical problem used in cryptography is the discrete logarithm
problem, which asks to find the discrete logarithm with respect to a given basis in a finite group.
Most of the current cryptographic schemes used in practice rely on variants of the factoring or
the discrete logarithm problem, as for instance the Diffie-Hellman key exchange protocol [DH76],
the RSA digital signature and encryption scheme [RSA78] or the ElGamal encryption [Gam84].

Unfortunately, those cryptographic schemes are threatened as the underlying assumptions
may become vacuous once we possess quantum computers which, as opposed to classical com-
puters, operate with quantum mechanics and can execute quantum algorithms. More precisely,
in 1994 Shor [Sho97] designed a quantum algorithm that solves the discrete logarithm problem
and the factorization problem in polynomial-time.6 It is important to emphasize that quantum
computers do not yet exist on a large scale. In 2020, Google’s quantum computer Hummingbird
was able to handle 65 quantum bits (qubits) and the company hopes to build a quantum com-
puter which manages roughly 1000 qubits in 2023 [Gam]. Note that different works hint towards
the need of at least 1 million qubits (in run-time or memory) to factor a 2048 bits RSA inte-
ger [GE21, GS21]. However, it is crucial to start today to think about alternatives for a future,
where quantum computers will be widely available, as safely replacing current cryptographic pro-
tocols will take years. Furthermore, a malicious person could start collecting encrypted messages
today in order to decrypt them later, once they7 possess powerful quantum computers. Identi-
fying and constructing cryptographic schemes that are assumed to be secure against quantum
algorithms is an active research area called post-quantum cryptography. Within this context,
the US National Institute of Standards and Technology (NIST) has initiated in 2016 a stan-
dardization process [NIS] for public-key encryption schemes and digital signatures which can be
used to replace the current standards once large-scale quantum computers are available. There
have been several directions proposed to build public key cryptography based on different math-
ematical hard problems, that seem to withstand quantum attacks. To name a few, there are
assumptions based on lattices, random codes, hash functions, isogenies between elliptic curves
or multivariate systems.

One very promising category of quantum-resistant candidates are schemes that rely on the
hardness of problems on Euclidean lattices. This research area is called lattice-based cryptography
and emerged at the end of the 1990s through the works of two different research lines. On the
one hand, there have been proposals benefiting from strong theoretical connections to presumed
hard worst-case lattice problems by Ajtai and Dwork [Ajt96, AD97] and Regev [Reg05]. On
the other hand, very efficient schemes basing their security on average-case structured lattice

6The impact of quantum computers on secret key cryptography, for instance AES, is so far limited to quadratic
speed-ups using Grover’s algorithm [Gro97]. This effect can easily be mitigated by doubling the key sizes.

7Throughout the thesis, the neutral singular pronouns they/their are used in order to keep the language as
inclusive as possible. See also https://www.acm.org/diversity-inclusion/words-matter

https://www.acm.org/diversity-inclusion/words-matter


xix

b̂1
b̂2

b1 b2

Λ

Figure 1: A lattice Λ in the 2-dimensional space R2 with basis B = (b1,b2) and B̂ = (b̂1, b̂2), where
the volume of the area framed by both bases (colored in light orange and light gray) is the same.
The minimum of the lattice is given by λ1(Λ) = ‖b1‖2 = ‖b2‖2.

problems have been introduced, the most popular among them is the NTRU encryption scheme
by Hoffstein et al. [HPS98]. Since then, the field attracted more and more research interest, now
estimated as one of the most mature candidates to replace standard cryptographic systems in a
quantum world. To illustrate its leading role, note that in the on-going standardization process
run by the NIST, among the remaining candidates in the final round, 3 out of 4 key encapsulation
mechanisms (enabling encryption) and 2 out of 3 digital signatures are based on lattices.8 All
contributions presented in this thesis are placed within the field of lattice-based cryptography.

Lattices are mathematical objects that play an important role in many different areas such
as number theory, geometry and group theory. Informally speaking, a lattice is composed of
points that are arranged in a periodic structure in the n-dimensional space Rn, as illustrated in
Figure 1. More formally, a set of n linear independent vectors B = (b1, . . . ,bn) ∈ Rn×n (called a
basis) defines a lattice Λ given by

Λ =


n∑
j=1

xjbj : xj ∈ Z

 .

A lattice can have many different bases, but they all frame an area of the same volume, called
the fundamental domain. Another invariant of the lattice Λ, which doesn’t depend on the chosen
basis to represent it, is the Euclidean norm of any smallest non-zero vector in Λ, called its first
minimum and denoted by λ1(Λ).

One of the most studied problems related to Euclidean lattices is the Shortest Vector Prob-
lem (SVP), which asks for a given lattice Λ to find a shortest non-zero vector in Λ, i.e., a vector
of norm λ1(Λ). A relaxed version of this problem is to find a shortest non-zero vector up to some
approximation factor γ ≥ 1, i.e., a vector of norm at most γ ·λ1(Λ), denoted by SVPγ . It also pos-
sesses a promise decision variant, where we only ask, for a given parameter δ, to decide whether a
given lattice is a YES instance, where λ1(Λ) ≤ δ, or a NO instance, where λ1(Λ) > γ ·δ. We denote
this problem by GapSVPγ and illustrate it in Figure 2 for the two-dimensional case. Another
lattice problem of interest is the approximate Shortest Independent Vector Problem (SIVPγ).

8https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
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b1 b2

δ1
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Figure 2: Given a lattice Λ with basis B = (b1, b2) and two positive reals δ1 and δ2. It yields λ1(Λ) =
‖b1‖2, λ1(Λ) ≤ δ1 and λ1(Λ) > γ · δ2 for γ = 2. In other words, Λ defines a YES instance for δ1
and a NO instance for δ2 for the problem GapSVP2.

Given an n-dimensional lattice Λ, SIVPγ asks to find n linearly independent vectors of Λ that
are shorter than γ · λn(Λ). Here, λn(Λ) denotes the n-th minimum of Λ, i.e., the smallest number
such that there exist n linearly independent vectors in Λ of norm less than it. In 1982, Lenstra,
Lenstra and Lovász [LLL82] designed the now very popular LLL algorithm, that solves in polyno-
mial time SVPγ for γ exponentially large in the lattice dimension. Later in 1987, Schnorr showed
a trade-off between running time and approximation factor which can be achieved by an algo-
rithm solving SVPγ [Sch87]. In practice, it is implemented by the BKZ algorithm by Schnorr and
Euchner [SE94], which can be seen as a heuristic variant of Schnorr’s algorithm. Following this
trade-off, the best known algorithm to solve SVPγ with γ polynomial in the lattice dimension n
has an exponential running time of 2Õ(n) and, conversely, the best known algorithm to solve SVPγ
with polynomial running-time can only achieve an exponential approximation factor γ of 2Õ(n).
Here, the term Õ(n) designs the big O notation which hides logarithmic factors in n. Compared
to the other two lattice problems, SVPγ is no easier than SIVPγ [SD16] which is itself no easier
than GapSVPγ [Ban93].9 The above leads to the following conjecture which forms the starting
point of lattice-based cryptography. Note that all asymptotic statements are with respect to the
lattice dimension n, unless we state it otherwise.

v Conjecture 1: There is no polynomial-time classical or quantum algorithm that approx-
imates the lattice problems SVPγ , GapSVPγ or SIVPγ to within polynomial factors γ.

Despite their assumed quantum-resistance, those problems seem unlikely to directly serve for
the construction of cryptographic primitives. This is because their definition relies on arbitrary
lattices, what we commonly call worst-case problems, as they are in general not hard to solve for
any lattice, but assumed to be hard to solve in the worst-case. When designing cryptographic
schemes, however, we usually need the hardness of random instances of some problem, what we
call average-case problems. This challenge was solved with the help of intermediate lattice prob-

9Note that the approximation factors are not preserved through the reductions. In the reduction from GapSVPγ
to SIVPγ it is mapped from γ to nγ, where n is the lattice dimension. And in the reduction from SIVPγ to SVPγ it
is mapped from γ to

√
nγ.
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lems, namely the Short Integer Solution (SIS) [Ajt96] and Learning With Errors (LWE) [Reg05]
problems, which are formulated as average-case problems, making them suitable for cryptogra-
phy. Astonishingly, these intermediate lattice problems have been shown to be at least as hard
to solve as some worst-case lattice problems, such as GapSVPγ or SIVPγ , for suitable parameter
choices. Thus, Conjecture 1 which states that SIVPγ and GapSVPγ are classically and quantumly
intractable implies that SIS and LWE are also classically and quantumly intractable.

In the following, we focus our discussion on the Learning With Errors (LWE) problem, which
was introduced by Regev [Reg05] in his pioneering work. It is not only at the heart of most lattice-
based schemes, but also builds the core element of this thesis. Informally speaking, an instance
of LWE is a system of noisy linear modular equations over the rational integers Z and it can be
formulated either as a search or as a decision problem. Its search variant asks to find a solution to
this system, whereas its decision version asks to distinguish such noisy linear modular equations
from uniformly random ones. More formally, for positive integers n,m and q, let A ∈ Zm×n

q
be a matrix sampled uniformly at random over the quotient ring Zq. Further, we consider two
probability distributions. The first one, denoted by ψe, is over Z and provides a vector e ∈ Zm

whose Euclidean norm is small with respect to q with high probability. A common choice for ψe
is a discrete Gaussian distribution. The second one, denoted by ψs, is over Zn

q and serves for
sampling a vector s ∈ Zn

q. In the following, you can think of ψs as the uniform distribution. We
commonly refer to s as the secret and to e as the error or noise. An instance of LWE is given
by (A,As+e mod q) ∈ Zm×n

q ×Zm
q , where both s and e should be kept hidden. The search problem

requires to find s (or equivalently e) as illustrated in Figure 3 and the decision problem asks to
distinguish such an instance from (A,b), where b was sampled uniformly at random over Zm

q .
Note that without the error term e this would be a standard system of modular linear equations
which can be solved in polynomial time by Gaussian elimination. Only the additional noise
makes solving the system of equations very difficult. For some approximation factor γ depending
on the parameters ψs ,ψe ,m, n and q, LWE is shown to be no easier to solve than worst-case lattice
problems such as GapSVPγ or SIVPγ [Reg05, Pei09, BLP+13, PRS17a].

The worst-to-average case reduction from SIVPγ to LWE [Reg05] only works when the error e
is sampled from a Gaussian distribution. This requirement is closely related to the nature of
the reduction which reduces standard lattice problems such as SIVPγ to the problem of sampling
elements from a narrow discrete Gaussian distribution. However, Gaussian sampling procedures
are in general costly, difficult to implement and vulnerable to side-channel attacks, e.g., [DB15,
BHLY16, Pes16, Saa18]. In 2012, Banerjee et al. [BPR12] introduce a deterministic variant
of LWE, namely the Learning With Rounding (LWR) problem. Instead of adding a random
error vector e to the matrix-vector product As over Zq, we deterministically round the product
modulo some smaller integer p. Informally, the noise of LWE helps to hide the low-order bits
of As, whereas the rounding simply cuts them off. It is shown, that LWR is no easier than LWE
for a specific parameter setting [BPR12, AKPW13, BGM+16, AA16].

The decision variant of LWE serves as the hardness assumption for a wide range of provably
secure cryptographic primitives, from the basic ones, such as Public Key Encryption (e.g., [Reg05,
MP12]), to the most advanced ones, such as Fully Homomorphic Encryption (e.g., [BGV12, BV14,
DM15]) or Non-Interactive Zero-Knowledge proof systems (e.g., [PS19]).

Unfortunately, the cryptographic protocols relying on the hardness of LWE are inherently
inefficient due to the size of the public keys which usually contain the matrix A ∈ Zm×n

q , where n
is at least as large as the security parameter and m is the number of samples which is usually
larger than n log(n). Furthermore, the basic operations are matrix-vector products over Zq which
require a computation time quadratic in the dimension n. To improve the efficiency, structured
variants of LWE have been proposed, e.g., [SSTX09, LPR10, LS15].

One of them is the Module Learning With Errors (M-LWE) problem, introduced by Brakerski
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Figure 3: The LWE problem in its search variant. The number of rows m of A can be seen as the
number of LWE samples and the number of columns n of A defines the dimension of the LWE
problem.

et al. [BGV12] and thoroughly studied by Langlois and Stehlé [LS15]. Instead of considering
noisy linear equations over the rational integers Z, the linear equations are now defined alge-
braically over some ring of polynomials with coefficients in Z. Intuitively, the improvement in
efficiency comes from the fact that every polynomial in this ring defines a structured matrix of
multiplication. Thus, we can replace the completely random matrix of LWE by some structured
matrix for M-LWE. Additionally, in this case the matrix-vector product can be computed in
quasi-linear time. More formally, we now work over some number field K with its associated ring
of integers R. For simplicity, we can think of K as the ring of polynomials with coefficients in Q
modulo some irreducible polynomial f (x) of degree n, i.e., K = Q[x]/〈f (x)〉. We call n the degree
of K . Thus, elements of K are polynomials of degree less than n with rational coefficients. Its
ring of integers can be represented (in most cases) as the polynomials of K whose coefficients
are integers, i.e., R = Z[x]/〈f (x)〉. Furthermore, we denote by Rq the quotient ring R/qR, result-
ing in Rq = Zq[x]/〈f (x)〉. For positive integers m, d and q, let A ∈ Rm×dq be a matrix sampled
uniformly at random over the matrices over Rq. We refer to d as the rank of the M-LWE in-
stance. Further, we sample a vector e ∈ Rm from some distribution ψe over R which has with
high probability a small norm (with respect to q) and sample a vector s from some second dis-
tribution ψs over ∈ Rdq .10 Again, we keep both e and s secret. An instance of M-LWE is given
by (A,As + e mod q) ∈ Rm×dq × Rmq . As for the plain LWE problem, it comes in a search variant
(requiring to find s) and a decision variant (asking to distinguish such samples form uniform
random ones), depicted in Figure 4.

Why is this variant more efficient than plain LWE? We can interpret the matrix A over Rq
as a matrix over Z. To do so, we observe that the multiplication of a ring element a ∈ Rq with
another ring element s ∈ Rq (where both are polynomials with degree less than n) corresponds
to the convolution of two polynomials modulo the defining polynomial f (x). The convolution
modulo f (x) can be expressed as the matrix-vector product using the matrix of multiplication
modulo f (x) of a, denoted by Rot(a) ∈ Zn×n

q . In other words a · s over Rq becomes Rot(a) · s
over Zq. Note that the full matrix Rot(a) is determined by its first column. For simplicity, one
can think of the rotation matrix as a nega-cyclic matrix, as illustrated in Figure 4. Hence,

10For simplicity, we keep the introduction in the primal version of M-LWE, where s is a vector over R. Later, we
consider the dual version, where the secret s is a vector over the dual R∨. Furthermore, we present the problem in
its discrete form, where the noise is sampled from a distribution ψe over R. Later, we also study the continuous
version, where ψe is a distribution over (an extension of) K.
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Figure 4: An instance of the M-LWE problem in its search variant. The number of rows m
of A represents the number of given M-LWE samples and the number of columns d of A defines
the rank of the M-LWE instance. Every entry ajk ∈ Rq of the matrix A defines a matrix of
multiplication Rot(ajk) ∈ Zn×n

q , where n is the ring degree of R. For simplicity, we illustrate the
rotation matrix as a nega-cyclic matrix.

the m× d matrix A = (ajk)jk ∈ Rm×dq defines an mn× dn matrix Rot(A) = (Rot(ajk))jk over Zq. This
said, an instance of M-LWE with parameters n and d can be viewed as an instance of LWE of
dimension N = nd, where the public matrix Rot(A) is not fully random, but has some structure.
This is why we often refer to it as a structured variant of LWE.

One interesting special case is M-LWE with rank d = 1, which is commonly referred to as
the Ring Learning With Errors (R-LWE) problem, originally introduced by Lyubashevsky et
al. [LPR10, LPR13]. Recently, Peikert and Pepin [PP19] showed a tight reduction from R-LWE
over a number field of degree n · k to M-LWE over a number field of degree n and with rank k.
The R-LWE problem is itself closely related to yet another structured variant, the so-called
Polynomial Learning With Errors (P-LWE) problem [SSTX09]. For specific choices of number
fields K and defining polynomials f (x) both problems are equivalent, as shown by Roşca et
al. [RSW18]. The special case of M-LWE, where the ring has degree n = 1 and thus R = Z, is
exactly the original LWE problem. This is why M-LWE can be seen as a generalization of the
unstructured LWE and the structured R-LWE (and hence P-LWE) problems.

In many respects, the more recent problem M-LWE resembles its unstructured and more stud-
ied counterpart LWE. For instance, for suitable parameter choices M-LWE also enjoys worst-case
to average-case connections from lattice problems such as SIVPγ or GapSVPγ [LS15]. Whereas
the hardness results for LWE start from the lattice problem in the class of general Euclidean
lattices, the set has to be restricted to module lattices in the case of M-LWE. Such mod-
ule lattices correspond to modules in the ring R and we refer to the related lattice problems
as Mod-SVPγ , Mod-GapSVPγ and Mod-SIVPγ , respectively. Note that we are now considering
lattice problems in a specific class of lattices which have an additional algebraic structure. One
may rise the question if those lattice problems are still hard when we restrict them to module
lattices. In the special case of module lattices of rank 1, i.e., ideal lattices, there are indeed
some weaknesses. First, the decision problem Mod-GapSVPγ becomes easy to solve for ideal
lattices, as their minimum can be bounded above and below [PR07]. Second, for some classes
of number fields the SVPγ problem is shown to be easier on ideal lattices than on general lat-
tice [CDPR16, CDW17, PHS19, BR20]. However, no algorithm is known so far that solves
problems over module lattices of rank strictly larger than 1 faster than on general lattices, lead-
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ing to the following conjecture:

v Conjecture 2: There is no polynomial-time classical or quantum algorithm that approx-
imates the lattice problems Mod-SVPγ , Mod-GapSVPγ or Mod-SIVPγ to within polynomial
factors γ for module lattices of rank at least 2.

Nevertheless, some important properties that have been proven for LWE, have not (yet) been
demonstrated for M-LWE. For instance, LWE possesses a classical reduction from worst-case
lattice problems as shown by Peikert [Pei09] and later improved by Brakerski et al. [BLP+13],
which is not known for M-LWE. Furthermore, LWE doesn’t become significantly easier, even
if the uniform secret distribution ψs is replaced by some narrower distribution, yielding for
instance binary secrets [GKPV10, BLP+13], again, no such result is proven for the module setting.
Since its introduction in 2012, M-LWE has enjoyed more and more popularity as it offers a fine-
grained trade-off between concrete security and efficiency. Within the NIST standardization
process [NIS], several third round candidates rely on the hardness of M-LWE, e.g., the signature
scheme Dilithium [DKL+18] and the key encapsulation mechanism Kyber [BDK+18].

Gaining in efficiency on the positive side comes with a potential decrease in the security level
guarantees on the negative side. There are concrete examples of polynomials f (x) for which P-LWE
becomes computationally easy: for instance when f (x) has a linear factor over Z [CIV16]. Note
that this case is excluded by restricting to irreducible polynomials. A review on the known weak
instances of P-LWE and R-LWE is given by Peikert [Pei16b]. To the best of our knowledge, it is
still not fully understood how to choose a good polynomial for instantiating structured variants
of LWE. Motivated by the question of how to choose a good polynomial, Roşca et al. [RSSS17]
introduce the Middle-Product Learning With Errors (MP-LWE) problem, a variant of LWE,
whose hardness does not depend on a single polynomial, but on a set of exponentially many
polynomials. Informally, the middle-product of two polynomials is determined by the middle
coefficients of their convolution product, and thus it is independent of some defining polynomial.
As for the hardness of MP-LWE, Roşca et al. [RSSS17] establish a reduction from the P-LWE
problem parametrized by a polynomial f (x) to the MP-LWE problem defined independently of
any such f (x). Thus, as long as the P-LWE problem defined over some f (belonging to a huge
family of polynomials) is hard, the MP-LWE problem is also guaranteed to be hard. A more
recent result by Peikert and Pepin [PP19] shows a tighter (and more direct) reduction from R-LWE
to MP-LWE. As a cryptographic application, Roşca et al. [RSSS17] propose an encryption scheme
that is proven secure under the MP-LWE hardness assumption, with keys of size Õ(λ) and running
time Õ(λ), where λ is the security parameter.

Contributions

The research that is presented in this manuscript focuses on structured variants of the LWE prob-
lem and their use for quantumly secure cryptography. In the following, we outline the shown
contributions which can be divided into two different categories. The first part contains contri-
butions to the better understanding of the theoretical foundations of lattice-based cryptography.
The second part includes the design of two efficient encryption schemes, whose security proofs
are based on structured lattice problems. We illustrate the contributions and contextualize them
with respect to existing results in Figure 5.
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Figure 5: Overview of the contributions presented in this thesis and their connection to existing
results. The boxes in green represent worst-case problems over structured lattices, the blue ones
are average-case lattice problems and the red boxes design cryptographic constructions. An
arrow from one to another box denotes the existence of an efficient reduction from the first to
the second problem. In the case of an arrow from a problem to a cryptographic scheme, it says
that the security of the scheme is based on the corresponding problem. To ease readability, we
omit the associated parameters of the problems, which may be affected by the reduction. An
orange arrow means that the reduction is not classical, but quantum.
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Theoretical Foundations
As explained before, there are some important characteristics that have been proven for LWE,
which have not (yet) been demonstrated forM-LWE. We think that a rigorous study of theM-LWE
problem is essential to deepen our confidence in the difficulty assumptions that are made in
currently proposed cryptographic schemes for standardization. In the following, we present how
we fill two of such knowledge gaps concerning M-LWE.

Binary Hardness

As a first contribution, we prove in Chapter 2 that M-LWE remains difficult to solve, even if
the secret distribution ψs yielding the vector s over the ring R is changed. Instead of using
the uniform distribution which leads to polynomials with large coefficients (i.e., in Zq), we can
also use a distribution which yields polynomials with binary coefficients (i.e., in {0, 1}). We
denote the latter problem by bin-M-LWE. It is particularly interesting as it increases efficiency,
enables efficient modulus-rank switching techniques [BLP+13, AD17a, WW19] and is needed in
Fully Homomorphic Encryption schemes as in [DM15, CGGI16]. For the unstructured case,
reductions from LWE to LWE with a binary secret and slightly increased dimension and error
bound have been shown [GKPV10, BLP+13, Mic18]. However, all existing results work over
the integers Z and not over the ring of integers R of some number field K . Hence, as stated by
Micciancio in the conclusion of [Mic18], an important open problem is whether similar results
carry over to the structured variants, in particular to M-LWE. In this thesis we make progress
towards solving this problem by proving the hardness of bin-M-LWE, if the module rank d is
(super-)logarithmic in the degree n of the underlying number field K . More precisely, we present
two different proofs to obtain this result, which slightly differ in their requirements, achieved
parameters and concrete variants of the problem.

Moreover, we show that both reductions can be generalized to a larger secret distribution ψs,
where the secret vector s over the ring R has coefficients in {0, . . . , η–1} for some positive integer η.
Thus, bin-M-LWE corresponds to the special case of η = 2. Using secrets with larger coefficients
increases the resulting error linearly in η, but weakens the rank condition by a logarithmic factor.

The results of this chapter imply the hardness of M-LWE with a small (with respect to its
coefficients) secret and a moderate rank (e.g., Ω(log2 n)), which is guaranteed even in the pres-
ence of arbitrarily many samples. For a flexible choice of parameters, current NIST candidates
as Dilithium [DKL+18] and Kyber [BDK+18] consider M-LWE variants with a small secret and
also a small rank, while restricting the number of samples to be small (e.g., linear in n) to rule
out the BKW type of attacks [KF15].

� Reference: The content of this chapter, besides the generalization to larger secret
distributions, is based on two joint works with Corentin Jeudy, Adeline Roux-Langlois
and Weiqiang Wen. The first is published in the proceedings of the conference Asi-
acrypt 2020 [BJRW20] and the second is published in the proceedings of the conference
CT-RSA 2021 [BJRW21].

Classical Hardness

As a second contribution concerning the theoretical hardness of M-LWE, we strengthen its con-
nection to worst-case problems over structured Euclidean lattices. More precisely, we prove in
Chapter 3 a classical reduction from the worst-case problem Mod-GapSVP over module lattices
to M-LWE. As a result, a classical and efficient algorithm that solves M-LWE could be used to
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solve the decision version of the Shortest Vector Problem over module lattices, which is supposed
to be intractable. Prior to this, only a quantum reduction from the related problem Mod-SIVP
over module lattices was known [LS15].11 Such a reduction requires quantum computers, which
are extremely powerful, expensive to construct and not available on a large-scale yet. In contrast,
the reduction we present in this thesis only needs standard computers. For the unstructured case,
a classical hardness proof from GapSVP to LWE is given by Brakerski et al. [BLP+13].

At a high level, we follow the same structure as in [BLP+13] by rigorously adapting all needed
results to the module setting. In more details, we need three ingredients: First, we lack a classical
reduction from Mod-GapSVP to decision M-LWE with an exponential-sized modulus, which we
obtain by adapting the LWE counterpart by Peikert [Pei09] that we combine with a more recent
result by Peikert et al. [PRS17a]. As a second component, we need the hardness of M-LWE using
a binary secret, which we have proven in Chapter 2. Finally, a modulus reduction technique
is required, where we can use the modulus-rank switching technique shown by Albrecht and
Deo [AD17a]. By carefully putting together all three ingredients we prove a classical reduction
from Mod-GapSVP with module rank at least 2 to M-LWE for any polynomial-sized modulus p
and module rank d at least 3n+ω(log2 n), where n is the degree of the underlying number field K .

� Reference: This chapter can be seen as a continuation of Chapter 2 and is there-
fore based on the same joint work with Corentin Jeudy, Adeline Roux-Langlois and
Weiqiang Wen [BJRW20]. By using the improved results for M-LWE with a binary secret
from [BJRW21], we obtain a simpler and tighter proof compared to the original version in
the proceedings of the conference Asiacrypt 2020.

Middle-Product Learning With Rounding

After having studied variants of the M-LWE problem which serve as the underlying hardness
assumptions of current practical encryption schemes and digital signatures, we turn in Chapter 4
our attention to a completely new structured version of LWE. The main motivation of this
chapter is to combine two flavors of LWE that we have presented before, the middle-product
variant MP-LWE and the rounding variant LWR, in order to define a new problem that benefits
from both of their advantages. To this end, we introduce a new hardness assumption which we
refer to as the Middle-Product Computational Learning With Rounding (MP-CLWR) problem.
On the one hand,MP-CLWR uses rounding in a similar way to LWR and hence avoids the Gaussian
error sampling. On the other hand, the hardness of MP-CLWR does not depend on a specific
defining polynomial f (x), but is guaranteed by the hardness of P-LWE for an exponentially large
set of defining polynomials. Thus, the MP-CLWR assumption enjoys the desired properties from
both, the security advantage of MP-LWE and the simplicity advantage of LWR.

The reason why we introduce the problem in its computational form, instead of the more
standard search or decision variant, is twofold: On the one hand, it is as for today unclear how
to reduce the hardness of decision MP-LWR from worst-case lattice problems, while maintaining
the coefficient-wise rounding and allowing for a polynomially large modulus. On the other
hand, it is unclear how to construct encryption schemes directly on the search variant. The
computational notion solves this issue, as we can derive an efficient reduction still allowing for a
polynomially large modulus and at the same time we can use it to build an encryption scheme
(which we introduce separately in Chapter 6).

Regarding the difficulty of this new problem, we prove that MP-CLWR is at least as hard
11As illustrated in Figure 5, Mod-SIVP is at least as hard as Mod-GapSVP using Banaszczyk’s transference theo-

rem [Ban93].
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as MP-LWE, which is itself based on the hardness of P-LWE for some defining polynomial f (x)
which belongs to an exponentially large set.

� Reference: The results of this chapter are based on a joint work with Shi Bai, Dipayan
Das, Adeline Roux-Langlois, Weiqiang Wen and Zhenfei Zhang which is published in the
proceedings of the conference Asiacrypt 2019 [BBD+19].

Partial Vandermonde Problems

In the chapters before, we study flavors of LWE whose hardness is implied by the presumed
intractability of worst-case problems over structured Euclidean lattices. We can see both, the
module variants of LWE that we investigate in Chapter 2 and Chapter 3, and the middle-product
version of LWR from Chapter 4, as descendants of Ajtai’s [Ajt96] and Regev’s [Reg05] works.
As mentioned before, at the end of the 1990s a second line of work was initiated by Hoffstein et
al. [HPS98], better known as the NTRU encryption scheme. NTRU-derived schemes are usually
characterized by their efficiency and simplicity, but lack a connection to worst-case lattice prob-
lems.12 Note that among the three lattice-based finalists of NIST’s standardization process [NIS],
there is also a variant of the original NTRU scheme [CDH+].

In Chapter 5, we study another family of average-case problems on structured lattices which
is related to the discrete Vandermonde transform and that, like the NTRU problem, allows for
simple and efficient protocols at the expense of having no known worst-case to average-case
connection. In more details, we consider a cyclotomic field K of degree n with associated ring of
integers R. A cyclotomic field is a number field whose defining polynomial f (x) is a cyclotomic
polynomial (having primitive roots of unity as its roots). Further, we consider a prime q such
that f (x) completely splits over Zq, thus, we require f (x) to possess exactly n distinct roots in the
field Zq. The discrete Vandermonde transform V · a of a polynomial a ∈ R is the evaluation of
this polynomial at the n roots of f (x) over Zq. The conjecture, building the basis of this chapter,
is that there is no polynomial-time classical or quantum algorithm that recovers an element
of R with small coefficients by having access only to a partial list of its discrete Vandermonde
transform. Of course, it is crucial to define how small the coefficients of the polynomial have to be
and how large the partial list is that we provide. In analogy to the standard Knapsack problem,
we call this the Partial Vandermonde Knapsack problem (PV-Knap). A related problem is Partial
Vandermonde SIS (PV-SIS), where, given a subset of the roots of the defining polynomial f (x),
one asks to find a ring element of small norm whose evaluation at those roots is zero in Zq.
Again, PV-SIS can be seen as specific variant of the standard Short Integer Solution problem,
and hence it can be formulated as a Shortest Vector Problem over a structured lattice.

In 2014, Hoffstein et al. [HPS+14] proposed a digital signature scheme called PASS Sign, whose
provable security is based on the difficulty of solving PV-Knap and PV-SIS [LZA18]. Shortly after-
wards, Hoffstein and Silverman [HS15] introduce PASS Encrypt, a Public Key Encryption (PKE)
scheme whose computational building blocks are closely related to the ones of PASS Sign. Their
encryption scheme is very efficient and fulfills additive and multiplicative homomorphic proper-
ties, which make it a natural starting point for the design of efficient cryptographic primitives.
For example, such properties are recently exploited in the context of PASS Sign to construct
compact aggregate signature schemes [DHSS20], and it is plausible that combining PASS Encrypt
with PASS Sign may form the basis for various compact and efficient privacy-preserving primi-
tives such as group signatures. Unfortunately, a main drawback of PASS Encrypt to date is that

12There are variants of NTRU with security proofs from worst-case problems over structured Euclidean lat-
tices [SS11, SS13, YXW17], but they are rarely used in practice for efficiency reasons.



xxix

no proof of security was given in [HS15] with respect to the hardness of explicit computational
problems. In this chapter, we make progress towards understanding the hardness assumptions
needed to prove the security of PASS Encrypt. First, we emphasize its connection to average-case
ideal lattices, even though we can’t show a worst-case to average-case reduction as we have for
structured variants of LWE. Second, we enlarge the landscape of problems that use the partial
Vandermonde transform by defining a new variant of LWE, called Partial Vandermonde Learning
With Errors (PV-LWE). Later, we show the equivalence of PV-Knap and PV-LWE by exploiting
the same duality connection as we have for standard Knapsack problems and LWE. As our main
motivation is to provide a security proof for PASS Encrypt, we define a variant of PV-Knap, that
we call the PASS problem. This problem serves (together with the decision version of PV-Knap)
as the underlying hardness assumption for (a slightly modified version of) PASS Encrypt. We
present the scheme together with the security proof later in Chapter 7. We conclude the chapter
by showing that for a special choice of the partial Vandermonde transform, one can accelerate
computations when working with PV-Knap and PV-LWE.

� Reference: The contributions presented in this chapter are based on a joint work with
Amin Sakzad and Ron Steinfeld, which was initiated during a research stay at the Monash
University in Melbourne from October to December 2019. The results haven’t been pub-
lished before and are publicly presented for the first time in this thesis.

Cryptographic Constructions
In the first part of the manuscript, we introduce two new hardness assumptions related to
problems over structured Euclidean lattices. In order to provide insights in how to use them
for cryptography, we construct two Public Key Encryption (PKE) schemes in the second part of
this work. Both are proven to be correct and secure assuming explicitly stated computational
assumptions. To this end, we use for both schemes the standard notion of IND-CPA security.
Informally speaking, this security notion captures that no efficient adversary can distinguish
between the ciphertext of two messages, where we allow the adversary to choose the messages
by themselves.

Encryption Based on Middle-Product LWR

To show the cryptographic usefulness of our newly defined hardness assumption MP-CLWR from
Chapter 4, we present in Chapter 6 a PKE scheme whose hardness is implied by MP-CLWR. Its
design is simultaneously inspired by two existing PKE schemes: On the one hand, the PKE scheme
from Roşca et al. [RSSS17] whose security is based on MP-LWE, and on the other hand, the PKE
scheme from Chen et al. [CZZ18] whose security is based on the hardness of the computational
variant of LWR over rings. As for [CZZ18], we make use of a so-called reconciliation mechanism,
which guarantees the correctness of our scheme. We prove our scheme’s correctness and security
based on the hardness of MP-CLWR in the idealized Random Oracle Model. As typical for LWR-
based schemes, during public key generation we only need to round the middle-product of two
polynomials instead of sampling Gaussian error, making it easier to implement than the scheme
in [RSSS17]. Simultaneously, while guaranteeing an equal level of security, we obtain the same
asymptotic key and ciphertext sizes as the PKE scheme of [RSSS17]. Furthermore, we save in
bandwidth, as the second part of the public key is modulo p and not modulo q, where p� q by
some order of magnitude. Finally, we analyze the concrete security of our scheme by looking at
the currently best known attacks against it.
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� Reference: This chapter can be seen as the continuation of Chapter 4 and is therefore
based on the same joint work with Shi Bai, Dipayan Das, Adeline Roux-Langlois, Weiqiang
Wen and Zhenfei Zhang [BBD+19].

PASS Encrypt

As our final contribution, we present in Chapter 7 a modified version of PASS Encrypt together
with a security proof based on the decision PV-Knap problem and a leaky variant of it, that
we call the PASS problem, both studied in Chapter 5. The latter problem captures the fact
that a ciphertext of PASS Encrypt consists of several partial Vandermonde transforms of re-
lated elements. Hence, a successful attacker against PV-Knap can be used to win the IND-CPA
security game of PASS Encrypt, but a successful attacker against the IND-CPA security may
not be powerful enough to solve PV-Knap. This issue was not addressed before in the original
version of PASS Encrypt by Hoffstein and Silverman [HS15]. Furthermore, in the original ver-
sion, the scheme is deterministic and thus cannot be IND-CPA secure. To solve this issue, we
make the scheme probabilistic by adding randomness to the message. We then give a proof of
correctness for well-chosen parameters and a proof of security, assuming the hardness of deci-
sion PV-Knap and PASS. We also provide a refined analysis of the scheme’s security, where we
show a novel attack that we call Plaintext Recovering Using Hints attack, which takes the struc-
ture of PASS Encrypt into account. To this end, we make use of a recent work by Dachman-Soled
et al. [DDGR20] to analyze instances of LWE, where additional hints on the secret and/or error
are given. Our complexity estimates for this attack show that it does not reduce the attack
complexity below that of previously known lattice attacks on PASS, which increases our confi-
dence in the claimed security of PASS Encrypt against best known lattice attacks. We conclude
the chapter by providing concrete sample parameters and compare our scheme with two other
efficient schemes whose security proofs are based on structured lattice problems.

� Reference: This chapter can be seen as the continuation of Chapter 5 and is therefore
based on the same joint work with Amin Sakzad and Ron Steinfeld, which was initiated
during a research stay at the Monash University in Melbourne from October to Decem-
ber 2019.



Chapter 1

Preliminaries

In this chapter, we recall the mathematical and cryptographic notions needed within this thesis.
This encompasses the presentation of the necessary objects of algebraic number theory, lattice
theory and probability theory. We further introduce the Learning With Errors problem in its
various flavors and conclude with the cryptographic definitions used within this work.
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Within this thesis, we use the standard Landau notations (e.g., ω(·), Ω(·), O(·) and Θ(·)) and
we call a function ε negligible in n if ε(n) = n–ω(1), i.e., it decreases faster towards 0 than the
inverse of any polynomial function. Sometimes, we simply write negl (n) to denote a negligible
function in n. The abbreviation PPT stands for probabilistic polynomial-time.

Throughout the manuscript, N denotes the set of natural numbers without 0. For any q ∈ N,
we denote by Zq the integers modulo q. For simplicity, we denote by [n] the set {1, . . . , n}
for any n ∈ N. We denote the Kronecker symbol by δj,k which equals 1 if j = k and 0 other-
wise. Column vectors are written in bold lowercase letters a and matrices in bold uppercase
letters A. The transpose and Hermitian operators over matrices are denoted by AT and A†.
The concatenation of two matrices A and B is denoted by [A|B] and their Kronecker product
by A ⊗ B. The canonical basis of Cn is given by {ej}j∈[n], where ej has 1 as its j-th coeffi-
cient and else only 0’s. For a vector a ∈ Cn, we define the matrix diag(a) to be the diagonal
matrix whose diagonal entries are the entries of a. For any vector a = (a1, . . . , an)T , we denote
by rev(a) = (an, . . . , a1)T the vector in reverse order. The identity matrix of size n× n is denoted
by In. For any a ∈ Cn, we define the Euclidean norm as ‖a‖2 =

√∑
j∈[n]

∣∣aj∣∣2 and the infinity norm
as ‖a‖∞ = maxj∈[n]

∣∣aj∣∣. We also define the spectral norm of any matrix A = (ajk)j∈[n],k∈[m] ∈
Cn×m as ‖A‖2 = maxx∈Cm\{0} ‖Ax‖2 / ‖x‖2, and the max norm as ‖A‖max = maxj∈[n],k∈[m]

∣∣aj,k∣∣.
The Gram-Schmidt orthogonalization of a matrix A from left to right is denoted by GS(A).

For a complex number z, we denote by R(z) its real component and z its complex conjugate.
The singular values of a matrix A are the square roots of the non-negative eigenvalues of A†A
and we denote its largest singular value by s1(A). In particular, the singular values of a diagonal
matrix are given by the absolute values of its diagonal entries. It can be shown that the spectral
norm ‖A‖2 of a matrix corresponds to its largest singular value.

1.1 Algebraic Number Theory
In this section, we give a brief review of the number-theoretic notions that are used in the
context of lattice-based cryptography. For further details, we refer to the works of Lyubashevsky
et al. [LPR10, LPR13] and the short note of Conrad [Con].

An algebraic number ζ ∈ C is a complex root of a polynomial over Q. Its minimal polyno-
mial f (x) ∈ Q[x] is the unique irreducible monic polynomial of minimal degree such that ζ is one
of its roots. Sometimes, we also call it the defining polynomial. An algebraic number is called
an algebraic integer if its minimal polynomial has only integer coefficients, i.e., f (x) ∈ Z[x]. A
number field K = Q(ζ) of degree n is a finite extension of the rational number field Q obtained
by adjoining an algebraic number ζ. The degree n of K is given by the degree of the minimal
polynomial of ζ. We define the tensor field KR = K ⊗Q R which can be seen as the finite field
extension of the reals by adjoining ζ. The set of all algebraic integers of K defines a ring, called
the ring of integers, which we denote by R. It is always true that Z[ζ] ⊆ R, where this inclusion
can be strict.

Some results of this thesis are restricted to the class of number fields, where the equality R =
Z[ζ] holds. This is the case for some quadratic extensions (i.e., when ζ =

√
d with d square-free

and d 6= 1 mod 4), cyclotomic fields (i.e., when ζ is a primitive root of unity) and number fields
with a defining polynomial f (x) of square-free discriminant ∆f . The class of cyclotomic number
fields plays an important role in this manuscript. For ν ∈ N let ζ ∈ C be a ν-th root of unity,
i.e., ζν = 1. Then, the ν-th cyclotomic number field K = Q(ζ) has degree n = ϕ(ν), where ϕ is
Euler’s totient function. In this case, the minimal polynomial is f (x) =

∏
j∈[n](x – αj), where

the αj are the distinct primitive ν-th roots of unity.
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 Example 1.1 (Power-of-2 Cyclotomic Fields)

One particularly interesting subclass of cyclotomic fields, from a theoretical and practical
point of view, is given by cyclotomic fields where ν is a power of 2, i.e., ν = 2`+1 for some ` ∈ N.
In this case, it yields n = ϕ(ν) = 2` and f (x) = xn + 1. In the following, we take this
as our running example to illustrate properties and constructions defined in this section.
Furthermore, several results of this thesis are restricted to this special class of number fields,
as for instance Section 3.4.2, Section 5.3 and Section 5.4.

1.1.1 Space H
Let K = Q(ζ) be a number field of degree n. By t1 we denote the number of real roots of
the minimal polynomial of ζ, and by t2 the number of pairs of complex conjugate roots, such
that n = t1 + 2t2. We introduce the space H ⊆ Rt1 × C2t2 as

H =
{
x = (x1, . . . , xn)T ∈ Rt1 × C2t2 : xt1+t2+j = xt1+j , ∀j ∈ [t2]

}
.

For j ∈ [t1], we set hj = ej , and for j ∈ {t1 + 1, . . . , t1 + t2}, we set hj = 1√
2
(ej + ej+t2 ) and hj+t2 =

i√
2
(ej –ej+t2 ), where i denotes the complex imaginary number i =

√
–1. The set {hj}j∈[n] forms an

orthonormal basis of H as a real vector space, showing that H is isomorphic to Rn. The change
of basis is given by the unitary matrix

H =

It1 0 0
0 1√

2
It2 i√

2
It2

0 1√
2
It2 –i√

2
It2

 ,

where In denotes the n× n identity matrix.

1.1.2 Canonical Embedding, Trace and Norm
Any number field K = Q(ζ) of degree n has exactly n field embeddings (i.e., injective field ho-
momorphisms) σj : K → C fixing each element of Q, where j ∈ [n]. Let σ1, . . . ,σt1 be the real
embeddings (i.e., the embeddings whose image lies in R) and σt1+1, . . . ,σt1+2t2 the complex em-
beddings (i.e., the embeddings whose image lies in C). The complex ones come in conjugate
pairs, thus σj = σj+t2 for j ∈ {t1 + 1, . . . , t1 + t2}. In the case of cyclotomic fields, all n embeddings
are complex, thus t1 = 0 and t2 = n

2 .
The canonical embedding σ is the map σ : K → H , defined by σ(x) = (σj(x))j∈[n]. It de-

scribes a field homomorphism, where multiplication and addition in H are component-wise.
Hence, σ(a + b) = σ(a) +σ(b) and σ(a · b) = σ(a) ◦σ(b) for a, b ∈ K , where ◦ denotes the component-
wise product. By abuse of notation, for d ∈ N and a vector x ∈ Kd , we write σ(x) to denote the
vector (σ(xk))k∈[d] ∈ Hd ⊆ Cnd . We can represent σ(x) ∈ H via the real vector σH (x) ∈ Rn through
the change of basis described above, i.e., σH (x) = H† · σ(x). Note that, as opposed to σ, multi-
plication is not component-wise for σH . More concretely, in the basis {ej}j∈[n], multiplication
by x ∈ K can be described as the left multiplication by the diagonal matrix X = diag(σ(x)). Hence,
changing to the basis {hj}j∈[n] leads to the corresponding matrix of multiplication XH = H† ·X·H,
having the same singular values as X, given by

∣∣σj(x)∣∣ for j ∈ [n].
We use the canonical embedding σ to define two different norms on vectors over K . The first

can be seen as the standard infinity norm, after having applied the canonical embedding. The
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second is a mixture between the Euclidean norm (with respect to the different coefficients of the
vector over K) and the infinity norm (with respect to the canonical embedding). For an ele-
ment x ∈ Kd , we define ‖x‖∞ = maxj∈[n],k∈[d]

∣∣σj(xk)∣∣, and ‖x‖2,∞ = maxj∈[n]
√∑

k∈[d]
∣∣σj(xk)∣∣2.

The trace Tr : K → Q and the norm N : K → Q are defined as the sum and product, respec-
tively, of the embeddings, i.e., for any x ∈ K , we have Tr(x) =

∑
j∈[n] σj(x). and N(x) =

∏
j∈[n] σj(x).

1.1.3 Coefficient Embedding and Rotation Matrix

Every number field K = Q(ζ) of degree n defines an n-dimensional vector space over Q with
basis {1, ζ , . . . , ζn–1}. Thus, every element x ∈ K can be written as x =

∑n–1
j=0 xjζ j , where xj ∈ Q.

The coefficient embedding τ : K → Qn is the isomorphism that sends every element x ∈ K to its
coefficient vector τ (x) = (x0, . . . , xn–1)T . We also extend the coefficient embedding to KR, which
yields an isomorphism between KR and Rn. Multiplication by x in the coefficient embedding can
be represented by a matrix multiplication, where we denote the corresponding matrix by Rot(x) ∈
Rn×n. More concretely, for any x, y, z ∈ K with x = yz, it yields τ (x) = Rot(y) · τ (z). Note that the
matrix Rot(x) is invertible in K for every x 6= 0 and that its concrete form depends on the field K .

As both embeddings play an important role in this thesis, we recall how to go from one to
the other. For any x ∈ K , the embeddings σ(x) and τ (x) are linked through the Vandermonde
matrix V of the roots of the defining polynomial f (x). For j ∈ [n], we let αj = σj(ζ) be the j-th
root of f (x). Then, σ(x) = V · τ (x), where

V =


1 α1 · · · αn–11
1 α2 · · · αn–12
...

...
...

1 αn · · · αn–1n

 ∈ Cn×n.

 Example 1.2 (Power-of-2 Cyclotomic Fields)

Looking at the example where K = Q(ζ) is the ν-th cyclotomic field with ν a power of 2 and
thus K ∼= Q[x]/〈xn + 1〉 with n = ν/2, the matrix of multiplication is nega-circulant. More
precisely,

Rot(x) =


x0 –xn–1 · · · –x1

x1 x0
. . . ...

...
... . . . –xn–1

xn–1 xn–2 · · · x0

 ∈ Rn×n.

Using the above, the product of two elements a, b ∈ K with respect to the coefficient em-
bedding τ fulfills ‖τ (a · b)‖∞ = ‖Rot(a) · τ (b)‖∞ ≤ ‖τ (a)‖1 · ‖τ (b)‖∞. Furthermore, the Van-
dermonde matrix fulfills V†V = n · In, thus the singular values of V all equal

√
n and hence

multiplying by V is an isometry with scaling factor
√
n.

o This is not true for more general power-of-prime cyclotomic fields, where the singular
values of V are well known, but are in general not all the same (see [YXW17, Lem. 14]) and
thus multiplying by V is not a scaled isometry.

This transformation is not necessarily structure preserving, e.g., a vector of small norm in
the coefficient embedding doesn’t need to be of small norm in the canonical embedding as well.
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This is captured by the inequalities

‖V–1‖–12 ‖τ (x)‖2 ≤ ‖σ(x)‖2 ≤ ‖V‖2 ‖τ (x)‖2 . (1.1)

Hence, the spectral norm of V and its inverse V–1 help approximating the distortion between both
embeddings. Roşca et al. [RSW18] give additional insight on this distortion for specific number
fields. Later in Chapter 2, we need for some positive integer η a bound on the parameter B =
maxx∈Rη ‖σ(x)‖∞, where Rη denotes the set of ring elements with a coefficient vector in {0, . . . , η–
1}n. This parameter is inherent to the ring and intervenes in the proof of Lemma 2.2, Lemma 2.3
and Lemma 2.5. Here, we provide an upper-bound on B with respect to the maximum norm
of V, that is further simplified for cyclotomic number fields.

Lemma 1.1 (Upper Bound on B)

For n ∈ N, let K be a number field of degree n with R its ring of integers. For η ∈ N, we
define the set Rη = {x ∈ R : τ (x) ∈ {0, . . . , η – 1}n} and let V be the associated Vandermonde
matrix. Then, B := maxx∈Rη ‖σ(x)‖∞ ≤ n(η – 1) ‖V‖max. In particular, for cyclotomic fields,
it yields B ≤ n(η – 1).

Proof: We can express x ∈ Rη as x =
∑n–1

j=0 bjζ j , with bj ∈ {0, . . . , η – 1} for all 0 ≤ j ≤ n – 1.
Then, for k ∈ [n], we obtain

|σk(x)| ≤
n–1∑
j=0

bj |σk(ζ)|j =
n–1∑
j=0

bj |αk|j ≤ ‖V‖max

n–1∑
j=0

bj ≤ n(η – 1) ‖V‖max .

Taking the maximum over all k ∈ [n] yields B ≤ n(η – 1) ‖V‖max. In the case of cyclo-
tomic fields, the αk are roots of unity and therefore, all the entries of V have magnitude 1.
Hence ‖V‖max = 1 which yields B ≤ n(η – 1) in this case.

1.1.4 Discrete Vandermonde Matrix
In the case of cyclotomic number fields, we can easily control the splitting behavior of the
minimal polynomial over the finite field Zq, for q prime. More precisely, let K = Q[x]/〈f (x)〉 be
the ν-th cyclotomic field with minimal polynomial f (x) of degree ϕ(ν) = n and let q be prime.
If q = 1 mod ν, then f (x) completely splits in Zq[x], i.e., f (x) =

∏
j∈[n](x – ωj) mod q, where

every ωj is a distinct primitive ν-th root of unity in Zq. Simultaneously, the ideal generated
by q over the ring of integers R = Z[x]/〈f (x)〉 has exactly n prime ideal factors defined by the ωj ,
i.e., 〈q〉 =

∏
j∈[n]〈q, x – ωj〉. In this case, the ν-th cyclotomic number field K = Q(ζ) with ζ

a complex primitive ν-th root of unity, possesses exactly n field homomorphisms σj : K → Zq
for j ∈ [n], that map ζ to each of the distinct primitive roots ωj over Zq. The discrete canonical
embedding1 σ is the field homomorphism from K to Zn

q, defined as σ(a) = (σj(a))j∈[n]. As for the
canonical embedding σ over the complex numbers, as introduced in Section 1.1.2, the addition
and multiplication are component-wise with respect to σ. Hence, σ(a+b) = σ(a)+σ(b) and σ(a·b) =
σ(a)◦σ(b) for a, b ∈ K . Furthermore, we can again link the coefficient embedding τ and the discrete

1As the map is not injective, it is not an embedding in its strict sense. We think, however, that its close
resemblance to the canonical embedding justifies the word embedding here. In other works, this is also called the
Number Theoretic Transform (NTT).
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canonical embedding σ via the Vandermonde matrix of the roots of f (x) in Zq. To distinguish
this Vandermonde matrix from the one over C that we defined above, we denote the discrete one
over Zq by V = (ωk–1j )j,k∈[n] ∈ Zn×n

q .

1.1.5 Modules, Ideals and Units

Let K be a number field with R its ring of integers and d ∈ N. A subsetM⊆ Kd is an R-module
of rank d if it is closed under addition by elements ofM and under multiplication by elements
of R. It is a finitely generated module if there exists a finite family {bk}k of vectors in Kd such
that M =

∑
k R · bk. An ideal I ⊆ R is a non-zero additive subgroup of R that is closed under

multiplication by R. In other words, ideals are modules of rank d = 1. An ideal I is principal if
it is generated by a single element u, meaning I = uR = 〈u〉.

An ideal p 6= R of R is prime if for all a, b ∈ R, a · b ∈ p implies that a or b is in p. We define
the norm of an ideal N (I) as the index of I as an additive subgroup of R, which corresponds
to N (I) = |R/I|.

We define the dual of an ideal I by I∨ = {x ∈ K : Tr(xy) ∈ Z ∀y ∈ I} and the dual of a
module M ⊆ Kd by M∨ = {x ∈ Kd : Tr(〈x, y〉) ∈ Z ∀y ∈ M}. Note that R trivially defines an
ideal and thus we can define its dual R∨. In the case of R = Z[ζ], it yields R∨ = 1

f ′(ζ)R, where f (x)
is the defining polynomial of K . To facilitate notations, we set λ = f ′(ζ), such that λ · R∨ = R

 Example 1.3 (Power-of-2 Cyclotomic Fields)

For the ν-th cyclotomic field K , where ν is a power of two and n = ν/2, it holds R∨ = 1
nR. In

other words, R∨ is just a scaling of R.

In the construction of Lemma 2.2 in Chapter 2, we need a condition for elements of Rη for
some η ∈ N, i.e., elements of R with a coefficient vector in {0, . . . , η – 1}n, to be invertible in Rq
for a specific prime q. Recall that non-trivial invertible elements in a ring are called units. To
do so, we rely on the small norm condition for cyclotomic fields proven by Lyubashevsky and
Seiler [LS18].

Lemma 1.2 (Invertibility [LS18, Thm. 1.1])

For ν ∈ N, let K be the ν-th cyclotomic field and let ν =
∏

j p
ej
j be its prime-power fac-

torization, with ej ≥ 1. We denote by R the ring of integers of K . Also, let µ =
∏

j p
fj
j

for some fj ∈ [ej]. Let q be a prime such that q = 1 mod µ, and ordν (q) = ν/µ,
where ordν is the multiplicative order modulo ν. Then, any element y of Rq satisfy-
ing 0 < ‖τ (y)‖∞ < q1/ϕ(µ)/s1(µ) is a unit in Rq, where s1(µ) denotes the largest singular
value of the Vandermonde matrix of the µ-th cyclotomic field.

If ν is a prime power, then so is µ and then [LPR13] states that s1(µ) =
√
µ if µ is odd,

and s1(µ) =
√
µ/2 otherwise. For more general cases, we refer to the discussions of Lyubashevsky

and Seiler [LS18, Conj. 2.6]. We also refer to [LS18, Thm. 2.5] that establishes the density of
such primes q for specific values of ν and µ.
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 Example 1.4 (Power-of-2 Cyclotomic Fields [LS18, Cor. 1.2])

For the ν-th cyclotomic field K , where ν is a power of 2 and n = ν/2, Lemma 1.2 specifies
to the following statement. For any power of two κ ≤ n such that the prime q fulfills q =
2κ + 1 mod 4κ, the invertibility condition for y ∈ Rq becomes 0 < ‖τ (y)‖∞ < q1/κ/

√
κ.

We further recall a result from Wang and Wang [WW19] that we need in the proof of
Lemma 2.1 in Chapter 2 to construct an invertible matrix over Rq. We say that for ` ∈ [k], the
vectors a1, . . . , a` ∈ Rkq are Rq-linearly independent if for all x1, . . . , x` ∈ Rq,

∑
j∈[`] xjaj = 0 mod qR

implies x1 = . . . = x` = 0. Further, a matrix A ∈ Rk×kq is invertible modulo qR if there exists a
matrix A–1 ∈ Rk×kq such that A ·A–1 = A–1 ·A = Ik mod qR.

Lemma 1.3 (Independence and Invertibility [WW19, Lem. 9+18])

Let K be the ν-th cyclotomic field of degree n = ϕ(ν), and R its ring of integers. Let q, k ∈ N
such that q is a prime that verifies q ≥ n and q - ν. Then for any j ∈ [k – 1] and Rq-linearly
independent vectors a1, . . . , aj ∈ Rkq , the probability of sampling a vector b ← U (Rkq ) such
that a1, . . . , aj ,b are Rq-linearly independent is at least 1 – n

q . Let A = [a1, . . . , ak] ∈ Rk×kq .
Then, A is invertible modulo qR if and only if a1, . . . , ak are Rq-linearly independent.

1.2 Lattice Theory
In this section, we briefly present the definition of Euclidean and structured lattices together
with some of their important properties. For a more detailed introduction of lattices for their
use in lattice-based cryptography we refer for instance to [MR09] and [Pei16a].

1.2.1 Euclidean Lattices
An Euclidean lattice Λ is a discrete subgroup of Rn. Since the space H as introduced in Sec-
tion 1.1.1 is isomorphic to Rn, we sometimes consider lattices that are discrete subgroups of H .
Each lattice can be represented by a basis matrix B = (bj)j∈[r] ∈ Rn×r for some r ≤ n ∈ N, as the
set of all integer linear combinations of the basis elements, i.e., Λ =

∑
j∈[r] Z · bj . The dimension

of the lattice is n and the rank is r. In this thesis, we only consider full-rank lattices, namely
lattices for which r = n.

The origin-centered fundamental parallelepiped P(B) of the lattice Λ generated by the ba-
sis B = (bj)j∈[n] is defined by P(B) =

{∑
j∈[n] zjbj : zj ∈

[
– 1
2 ,

1
2
)
,∀j ∈ [n]

}
. For any w ∈ Rn, we

write x = w mod B or x = w + Λ to denote the unique point x ∈ P(B) such that w – x ∈ Λ.
The volume of P(B) is called the determinant of Λ and denoted by det(Λ). The determinant is
independent of the choice of the basis B and thus an invariant of the lattice. For any basis B of
a full-rank lattice Λ it yields det(Λ) = |det(B)|.

We define the dual lattice of a lattice Λ by Λ∗ = {x ∈ Span(Λ) : ∀y ∈ Λ, 〈x ,y〉 ∈ Z}. If B is
a basis of Λ, then B∗ = (BT )–1 is a basis of Λ∗. The first minimum λ1(Λ) of a lattice Λ is the
Euclidean norm of any of its shortest non-zero vectors. The first minimum with respect to the
infinity norm is denoted by λ∞1 (Λ). We further define the second minimum λ2(Λ) as the norm of
any second shortest non-zero vector, which we require to be linearly independent of all shortest
vectors.
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Using Minkowski’s theorem, we can upper bound the norm of a shortest non-zero vector in
arbitrary lattices. More concretely, for a lattice Λ of dimension n and determinant det(Λ), it
yields λ1(Λ) ≤

√
n det(Λ)1/n. Heuristically, one can estimate the expected norm of a shortest non-

zero vector in randomly chosen lattices by using the Gaussian heuristic, which slightly improves
the Minkowski bound. It says that for an n-dimensional lattice Λ with determinant det(Λ), we
expect

λ1(Λ) ≈
√

n
2πe
· det(Λ)1/n. (1.2)

There is a special class of lattices which plays an important role in lattice-based cryptography.
Given a matrix A ∈ Zn×m

q for some integers n,m, q ∈ N, we can define two lattices

Λq(A) = {y ∈ Zm : y = AT s mod q for some s ∈ Zn} and
Λ⊥q (A) = {y ∈ Zm : Ay = 0 mod q}.

Both lattices are of dimension m. The first is generated by the rows of A, whereas the second
contains all vectors that are orthogonal to the rows of A. Furthermore, they are connected via
lattice duality, i.e., Λ⊥q (A) = q · Λq(A)∗ and Λq(A) = q · Λ⊥q (A)∗.

1.2.2 Structured Lattices

We now define two types of structured lattices. Let K be number field with ring of integers R.
To define the first class of structured lattices, we observe that any ideal I over R embeds

into a lattice σ(I) in H , and a lattice σH (I) in Rn, which we call ideal lattices. The ideal lattice
inherits the algebraic structure of the corresponding ideal, i.e., multiplying a lattice vector by
any ring element maps it again to a lattice vector. This is not true for general Euclidean lattice.

Regarding the second class of structured lattices, we remark that for an R-moduleM⊆ Kd ,
the set (σ, . . . ,σ)(M) is a lattice in Hd and (σH , . . . ,σH )(M) is a lattice in Rnd , both of which are
called module lattices. The positive integer d is the module rank and module lattices of rank 1 are
in fact ideal lattices. Again, the module lattice inherits the algebraic structure of the underlying
module, making it closed with respect to scalar multiplication by ring elements.

To ease readability, we simply use I (resp.M) to denote the ideal lattice (resp. the module
lattice). Note that the ideal lattice σ(I∨) corresponding to the ideal I and the module lat-
tice σ(M∨) corresponding to the module M are the same as the respective dual lattices up to
complex conjugation, i.e., σ(I∨) = σ(I)∗ and σ(M∨) = σ(M)∗.

Recall that for arbitrary lattices Minkowski’s theorem provides an upper bound on their
first minimum. For ideal (but not module) lattices, we can use the geometric-arithmetic mean
inequality to additionally give a lower bound for their minimum. Here, we state the result with
respect to the infinity norm, but it can be shown for any `p-norm.

Lemma 1.4 (Lower Bound on Minima [PR07, Lem. 6.2])

For any ideal I over a number field K with ring of integers R of degree n, it yields

λ∞1 (σH (I)) ≥ N (I)1/n.

We also note that for the infinity norm, the first minimum of the module lattice Id = I×. . .×I
is the same as the first minimum of the ideal lattice I, i.e., λ∞1 (Id ) = λ∞1 (I).
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1.2.3 Computational Problems

One of the most studied lattice problems is the Shortest Vector Problem (SVP). It exists in both
search and decision versions, which we define in their approximate variants in the following.

Definition 1.1 (Search Shortest Vector Problem): Let γ = γ(n) ≥ 1 be a function in the
dimension n. An input to the search Shortest Vector Problem SVPγ is a basis B of an n-
dimensional lattice Λ. The goal is to find a vector z 6= 0 such that ‖z‖2 ≤ γ · λ1(Λ).

The SVP restricted to ideal lattice is denoted by Id-SVPγ and to module lattices by Mod-SVPγ .

Definition 1.2 (Decision Shortest Vector Problem): Let γ = γ(n) ≥ 1 be a function in the
dimension n. An input to the decision Shortest Vector Problem GapSVPγ is a pair (B, δ),
where B is a basis of an n-dimensional lattice Λ and δ > 0 is a real number. It is a
YES instance if λ1(Λ) ≤ δ, and it is a NO instance if λ1(Λ) > γ · δ. The problem asks
to distinguish whether a given instance is a YES or a NO instance. If λ1(Λ) falls in the
interval (δ, γ · δ], any answer is correct.

The GapSVPγ restricted to module lattices is denoted by Mod-GapSVPγ . Whereas the prob-
lem GapSVPγ is conjectured to be hard to solve for γ polynomial in the lattice dimension, the
problem Mod-GapSVPγ becomes easy in the special case of modules of rank 1 (i.e., ideals) as the
minimum of ideal lattices can be bounded above and below, see Lemma 1.4. However, it is still
conjectured that Mod-GapSVPγ is hard to solve for γ polynomial in the module lattice dimension
if the module has rank at least 2.

Another lattice problem is the Unique Shortest Vector Problem (u-SVP), where we need to
find a shortest vector, having the additional promise that there is a gap between the first and
second minimum of the lattice.

Definition 1.3 (Unique Shortest Vector Problem): Let δ ≥ 1. An input to the Unique
Shortest Vector Problem u-SVPδ is given by a basis B of an n-dimensional lattice Λ such
that λ2(Λ) ≥ δ · λ1(Λ). The goal is to find a vector x ∈ Λ of norm λ1(Λ).

If δ = 1, this problem becomes the exact SVP problem from above (i.e., Def. 1.1 with γ = 1).
Note that the problem becomes easier for increasing δ.

Within this thesis, we further need two intermediate lattice problems, presented in the fol-
lowing. The first comes in two flavors, one for general Euclidean lattices, and one for module
lattices. For technical reasons, we we state the first one with respect to the infinity norm, whereas
in the second one we use the (2,∞)-norm as defined in Section 1.1.2.

Definition 1.4 (Bounded Distance Decoding): Let B be a basis of an n-dimensional lat-
tice Λ(B) and δ be a positive real. An input to the Bounded Distance Decoding prob-
lem BDDδ is a point y ∈ Rn of the form y = x + e, where x ∈ Λ(B) and ‖e‖∞ ≤ δ. The
problem asks to find x (or equivalently e).

If δ < λ1(Λ(B))/2, then the solution to BDDδ is unique.
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Definition 1.5 (Module Bounded Distance Decoding): Let K be a number field with R its
ring of integers of degree n andM⊆ Kd be a module of R of rank d. Further, let δ be a pos-
itive real number. An input to the Module Bounded Distance Decoding problem BDDM,δ
is a point y ∈ Kd of the form y = x + e, where x ∈ M and ‖e‖2,∞ ≤ δ. The problem asks
to find x (or equivalently e).

By Dg we denote the continuous Gaussian distribution of width g over Kd
R, which we define

properly in Section 1.3.2. As we only need the following problem for module lattices, we directly
define it in this setting.

Definition 1.6 (Gaussian Decoding Problem): Let K be a number field with R its ring of
integers of degree n and M ⊆ Kd be a module of R of rank d. Further, let g > 0 be a
Gaussian parameter. An input to the Gaussian Decoding Problem GDPM,g is a coset e+M,
where e← Dg. The goal is to find e.

Every GDPM,g instance defines a BDDM,δ instance with δ = g ·
√
d ·ω(

√
log2 n). Note that all

computational problems can also be defined with regard to other norms. We finally recall (for
the module setting) the well-known result that the LLL algorithm together with Babai’s round-off
algorithm solves BDD for an exponentially large δ.

Lemma 1.5 (The LLL Algorithm [LLL82, Bab85])

Let K be a number field with R its ring of integers of degree n and M ⊆ Kd be a module
of R of rank d. There exists a polynomial-time algorithm that finds a vector of norm at
most 2

N
2 · λ1(M) and solves BDDM,δ for δ = 2–

N
2 · λ1(M), where N = nd.

1.3 Probability Theory
In this section, we introduce the notions of probability theory needed within this manuscript.
First, we recall the definitions and some properties of Gaussian measures and how to define them
over number fields. Then, we define two measures of distance for probability distributions that
are commonly used in cryptography. We conclude this section by providing two flavors of the
so-called Leftover Hash Lemma.

For a finite set S, we denote its cardinality by |S| and the uniform distribution over S by U (S).
The operation of sampling an element x ∈ S according to a distribution D over S is denoted
by x ← D, where the set S is implicit.

1.3.1 Gaussian Measures
For a positive definite matrix Σ ∈ Rn×n, a vector c ∈ Rn, we define the Gaussian function
by ρc,√Σ(x) = exp(–π(x – c)TΣ–1(x – c)) for all x ∈ Rn. We extend this definition to the degenerate
case, i.e., positive semi-definite, by considering the generalized Moore-Penrose inverse. For conve-
nience, we use the same notation as the standard inverse. We then define the continuous Gaussian
probability distribution by its density Dc,

√
Σ(x) = (det(Σ))–1/2ρc,√Σ(x). By abuse of notation, we

call Σ the covariance matrix, even if in theory the covariance matrix of Dc,
√

Σ is Σ/(2π). If Σ is diag-
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Figure 1.1: Graph of the probability density function of a continuous Gaussian in dimension n = 1
and of the probability mass function of a discrete Gaussian over the lattice Λ = Z.

onal with diagonal vector r2 ∈ (R+)n, we simply write Dc,r, and if c = 0, we omit it. When Σ = s2In
for some positive real s, we simplify further to Dc,s. We then define the discrete Gaussian dis-
tribution over a lattice Λ by conditioning x to be in Λ, i.e., DΛ,c,

√
Σ(x) = Dc,

√
Σ(x)/Dc,

√
Σ(Λ) for

all x ∈ Λ, where Dc,
√

Σ(Λ) =
∑

y∈Λ Dc,
√

Σ(y). For the simple one-dimensional case, we sketch
their corresponding probability and mass functions in Figure 1.1. An important property of
continuous and discrete Gaussians is that they allow for concrete tail bounds. In this thesis, we
only need the tail bound for the discrete case, as stated in the following.

Lemma 1.6 (Discrete Gaussian Tail Bound [Ban93, Lem. 1.5])

For any lattice Λ ⊆ Rn, vector c ∈ Rn and parameter s > 0, it yields

Pr
x←DΛ,c,s

[
‖x – c‖2 ≤ s

√
n
]
≥ 1 – 2–Ω(n).

The smoothing parameter of a lattice Λ, denoted by ηε(Λ) for some ε > 0 and introduced by
Micciancio and Regev [MR07], is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε. It represents
the smallest Gaussian parameter s > 0 such that the discrete Gaussian DΛ,c,s behaves in many
respects like a continuous Gaussian distribution. We recall the following bounds and properties
of the smoothing parameter that we need throughout this thesis.

Lemma 1.7 ([Pei08, Lem. 3.5])

For an n-dimensional lattice Λ and ε > 0, we have

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))/π/λ∞1 (Λ∗).

Whereas the first bound uses the minimum with respect to the infinity norm, the next uses
the minimum with respect to the Euclidean norm.

Lemma 1.8 ([Ban93, Lem. 1.5] and [Reg05, Claim 2.13])

Let Λ be an n-dimensional lattice and ε = exp(–n), it holds
√
n√

πλ1(Λ∗)
≤ ηε(Λ) ≤

√
n

λ1(Λ∗)
.
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Lemma 1.9 ([MR07, Lem. 4.1])

Let Λ be an n-dimensional lattice, ε > 0, and s > ηε(Λ). Then the distribution of the
coset e + Λ, where e← Ds, is within statistical distance ε/2 of the uniform distribution over
the cosets of Λ.

Recall that continuous Gaussian distributions are linear and in particular the sum of two
Gaussians Dc1,

√
Σ1

and Dc2,
√

Σ2
follows the Gaussian distribution Dc1+c2,

√
Σ, where Σ = Σ1 +Σ2. To

obtain similar results for the discrete case, we need the smoothing parameter. In the following, we
consider the special case of the sum of a continuous Gaussian and a discrete one. In particular, the
lemma generalizes known results to elliptical Gaussians, which we use in the proof of Lemma 1.16.

Lemma 1.10 (Adapted from [LS15, Lem. 2.8] & [Reg09, Claim 3.9])

Let Λ be an n-dimensional lattice, a ∈ Rn, R,S two positive semi-definite matrices of Rn×n,
and T = R+S. We also define U =

(
R–1 + S–1

)–1, and we assume that ρ√U–1 (Λ∗ \{0}) ≤ ε for
some ε ∈ (0, 1/2). Consider the distribution Y over Rn obtained by adding a discrete sample
from DΛ+a,

√
R and a continuous sample from D√S. Then we have ∆(Y ,D√T) ≤ 2ε.

Proof: The density function of the distribution Y is given by

Y (x) =
∑

y∈Λ+a
DΛ+a,

√
R(y)D√S(x – y)

=
1

ρ–a,
√
R(Λ)
√

detS

∑
y∈Λ+a

ρ√R(y)ρ√S(x – y)

=
1

ρ–a,
√
R(Λ)
√

detS

∑
y∈Λ+a

ρ√T(x)ρRT–1x,
√
U(y) [Pei10, Fact 2.1].

=
ρ√T(x)√

detT
·

√
detTρRT–1x,

√
U(Λ)√

detTρ–a,√R(Λ)

= D√T(x) ·
(
√

detR
√

detS/
√

detT)–1ρ̂x′,√U(Λ
∗)

(
√

detR)–1ρ̂–a,
√
R(Λ∗)

,

where x′ = RT–1x, and f̂ denotes the Fourier transform of f . First notice that (detR ·
detS)/detT = 1/det(R–1TS–1) = 1/detU–1. Moreover, recalling that ρ̂c,

√
Σ(w) =

√
det Σe–2iπ〈c,w〉ρ√Σ–1 (w), we get∣∣∣1 – (

√
detU)–1ρ̂x′,

√
U(Λ
∗)
∣∣∣ ≤ ρ√U–1 (Λ∗ \ {0}) ≤ ε.

For the denominator, we first notice that for two positive semi-definite matrices A and B,
if A–B is positive semi-definite, then ρ√A(w) ≥ ρ√B(w) for all w ∈ Rn. Since U–1 –R–1 = S–1
is positive semi-definite, it yields ρ√R–1 (Λ∗ \ {0}) ≤ ρ√U–1 (Λ∗ \ {0}) ≤ ε. Therefore, using
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the same method as above, we get∣∣∣1 – (
√

detR)–1ρ̂–a,
√
R(Λ
∗)
∣∣∣ ≤ ρ√R–1 (Λ∗ \ {0}) ≤ ε.

which leads to

(
√

detR
√

detS/
√

detT)–1ρ̂x′,√U(Λ
∗)

(
√

detR)–1ρ̂–a,
√
R(Λ∗)

∈
[
1 – ε
1 + ε

,
1 + ε
1 – ε

]
⊆ [1 – 2ε, 1 + 4ε],

assuming that ε < 1/2. We thus end up with
∣∣∣Y (x) – D√T(x)

∣∣∣ ≤ 4εD√T(x). Integration and
factor 1/2 of the statistical distance yield the lemma.

Lemma 1.11 ([BLP+13, Lem. 2.10] & [Pei10, Thm. 3.1])

Let Λ be an n-dimensional lattice, ε ∈ (0, 1/2], and β, r > 0 such that r ≥ ηε(Λ). Then the
distribution of x+ y, obtained by first sampling x from Dβ , and then sampling y from DΛ,x,r ,
is within statistical distance 8ε of DΛ,

√
β2+r2 .

Note that in Lemma 1.11 the parameter of the discrete Gaussian distribution of y depends
on the vector x, sampled from a continuous Gaussian beforehand. This is not the case in
Lemma 1.10.

Finally, in Chapter 3 we need an exact sampler of discrete Gaussians over lattices. For a
basis B = (bj)j∈[n] of an n-dimensional lattice, we denote by GS(B) = (GS(bj))j∈[n] the Gram-
Schmidt orthogonalization of B from left to right.

Lemma 1.12 (Gaussian Sampler [GPV08, Thm. 4.1] & [BLP+13, Lem. 2.3])

Let n ∈ N. There exists a PPT algorithmD that, given a basis B = (bj)j∈[n] of an n-dimensional
lattice Λ, a parameter r ≥ maxj∈[n]

∥∥GS(bj)∥∥2 · √ln(2n + 4)/π and a center c ∈ Rn, outputs a
sample whose distribution is DΛ,r ,c.

1.3.2 Gaussians over Number Fields
In this section, we introduce Gaussian distributions over Kd

R, where K = Q(ζ) is a number field, R
its ring of integers, and KR = K ⊗Q R.2 We further prove some of their properties needed in the
rest of this thesis. Gaussian distributions over KR have been introduced alongside the R-LWE
problem [LPR10], and then generalized and used in most papers dealing with structured variants
of LWE.3 Let n denote the degree of the number field K and let d ∈ N. Further, recall the defini-
tion of the canonical embedding σH as introduced in Section 1.1.2. We define general Gaussian
distributions over Kd

R through their canonical embedding σH to Rnd , namely sampling y(H ) ∈ Rnd

according to D√Σ for some positive semi-definite matrix Σ in Rnd×nd and then mapping it back
to Kd

R by y = σ–1H (y(H )). To ease readability, we denote the described distribution of y ∈ Kd
R

by D√Σ. As for the Gaussians over R, we write Dr if Σ is a diagonal matrix with diagonal
2We need to consider the real tensor field KR as the canonical embedding is an isomorphism between KR and H

but not between R and H , nor K and H .
3We refer to Section 1.4 for a proper introduction of LWE and its structured variants.
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vector r2 ∈ (R+)nd . For 0 ≤ α < α′, we define Ψ[α,α′] to be the set of Gaussian distributions Dr
with α < ‖r‖∞ ≤ α′. If α = 0, we simply write Ψ≤α′ .

Sometimes, it is more convenient to consider a Gaussian distribution D√Σ over KR and extend
it for d ∈ N to a Gaussian distribution over Kd

R by simply drawing all d coefficients independently
over KR. In this case, we write (D√Σ)

d .

Further, for any positive real α, we define the specific distribution Υα over distributions on H
as done by Peikert et al. [PRS17a]. Let n = t1 + 2t2 be the decomposition in real and complex
embeddings and fix an arbitrary function g(n) = ω(

√
log2 n). A distribution sampled from Υα

is an elliptical Gaussian Dr, where r is sampled as follows: For j ∈ [t1], sample xj ← D1 and
set r2j = α2(x2j + g2(n))/2. For j ∈ {t1 + 1, . . . , t1 + t2}, sample xj , yj ← D1/

√
2 and set r2j = r2j+t2 =

α2(x2j + y2j + g2(n))/2. We need this distribution for the classical reduction in Chapter 3.

In the proof of Lemma 2.3, we need to identify the distribution of y = Ue for an arbitrary
matrix U and a Gaussian vector e ∈ Kd

R for which the components are independent of each other.
To do so, we define for m, d ∈ N the ring homomorphism θ : Km×d

R → Cnm×nd given by

θ(A) =

D1,1 · · · D1,d
... . . . ...

Dm,1 · · · Dm,d

 ,

with A = (ajk)j∈[m],k∈[d] and Dj,k = diag(σ(ajk)) ∈ Cn×n.

Lemma 1.13

Let d, n ∈ N, such that K is a number field of degree n. Let S ∈ Rnd×nd be a positive
semi-definite matrix, and U ∈ Kd×d

R . We define Σ =
(
H†θ(U)H

)
S
(
H†θ(U)H

)†
∈ Rnd×nd ,

where H = diag(H, . . . ,H) ∈ Cnd×nd , with H the matrix form of the basis of the space H ,
defined in Section 1.1.1. Then, the distribution of y = Ue, where e ∈ Kd

R is distributed
according to D√S, is exactly D√Σ.

Proof: Let e = (ej)j∈d ∈ Kd
R be a Gaussian vector distributed according to D√S. Further,

let U = (ujk)j,k∈[d]. Our goal is to characterize the distribution of the vector y = (yj)j∈[d],
which is given as the product of U and e. For all j ∈ [d], we have yj =

∑
k∈[d] ujkek

and thus σ(yj) =
∑

k∈[d] σ(ujk) ◦ σ(ek), where ◦ denotes the component-wise product. The
component-wise product a ◦ b of two vectors a and b can also be expressed as the matrix-
vector product diag(a) · b. It results in

σ(y) =

σ(y1)...
σ(yd )

 = θ(U)σ(e),

where θ(U) is the block matrix
[
diag(σ(ujk))

]
j,k∈[d] ∈ Cnd×nd . As we have seen before, we can

decompose σ in the basis of H and get σ(yj) = Hy(H )
j (respectively σ(ej) = He(H )

j ) for all j ∈ [d].
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By using the block matrix product, we end up with

σ(y) =

H . . .
H



y(H )
1
...

y(H )
d

 = Hy(H ).

Thus Hy(H ) = θ(U)He(H ), which leads to y(H ) = H†θ(U)He(H ). Now notice that the blocks
of H†θ(U)H are the H†diag(σ(ujk))H which correspond to the matrix form of the multiplication
by ujk in the basis of the space H and thus is in Rn×n. Hence H†θ(U)H ∈ Rnd×nd .
By definition, e(H ) is distributed according to D√S. Thus y

(H ) is also distributed along a 0-

centered Gaussian over Rnd , but with covariance matrix Σ =
(
H†θ(U)H

)
S
(
H†θ(U)H

)†
.

In particular, when the matrix S is of the form S = diag(r21 , . . . , r
2
1 , . . . , r

2
d , . . . , r

2
d ) for some

positive reals r1, . . . , rd , then
√
S commutes with H and the covariance simplifies to Σ = H†ŨŨ†H,

with Ũ = (diag(σ(rkujk)))j,k∈[d].

To apply the noise flooding argument in the proof of the hardness of M-LWE using a binary
secret in Section 2.2, we need the following bound on the norm of the product of some discrete
Gaussian matrix (in the canonical embedding σ) and a vector of small norm in the dual ring (in
the coefficient embedding τ). The result is restricted to cyclotomic number fields, i.e., K = Q(ζ),
where ζ is a primitive root of unity. As stated in Section 1.1.5, for every number field K = Q(ζ)
with ring of integers R = Z[ζ], there exists a λ such that λ · R∨ = R. This implies λ · (R∨η )d = (Rη)d
for every η, d ∈ N.

Lemma 1.14 (Noise Flooding Bound)

Let K = Q(ζ) be a cyclotomic field with R = Z[ζ] its ring of integers of degree n and its
dual R∨. Let d,m, q, η ∈ N and α ∈ (0, 1). Sample Z ← (DR∨,αq)m×d and s ← U ((R∨η )d ). We
set s̃ = λs ∈ Rdη. Then, with overwhelming probability ‖Zs̃‖2 ≤ αqn2d(η–1)

√
m. In particular,

the Euclidean norm of each coefficient (Zs̃)j for j ∈ [m] is bounded above by αqn2d(η – 1).

Proof: Using the same reasoning as in the proof of Lemma 1.13, we obtain σ(Zs̃) = θ(Z)σ(̃s)
and thus ‖σ(Zs̃)‖2 ≤ ‖θ(Z)‖2 ·‖σ(̃s)‖2. Using Equation 1.1, i.e., the Vandermonde matrix V to
switch from the coefficient embedding τ to the canonical embedding σ, we obtain ‖σ(̃s)‖2 ≤
‖V‖2 ·‖τ (̃s)‖2 ≤ n · (η–1)

√
nd, where we use that for cyclotomic number fields it yields ‖V‖2 ≤

‖V‖F =
(∑

j,k∈[n] |αk–1j |2
)1/2
≤ n (as all αj are units) and that τ (̃s) is a vector of dimension nd

with coefficients in {0, . . . , η – 1}. Further, for each j ∈ [m] and k ∈ [d] it holds ‖σ(zjk)‖2 ≤
αq
√
n with probability 1 – 2–Ω(n), using the Gaussian tali bound Lemma 1.6. Hence,

‖θ(Z)‖2 ≤ ‖θ(Z)‖F =
√∑

j∈[m]

∑
k∈[d]

∑
`∈[n]

|σ`(zjk)|2 =
√∑

j∈[m]

∑
k∈[d]

‖σ(zjk)‖22 ≤ αq
√
nd
√
m.

Combining both bounds proves the claim.
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We also need two other lemmata related to the inner product over Kd
R between a Gaussian

vector and an arbitrary one. In particular, we use Lemma 1.16 in the proof of Lemma 2.5
(reducing extended M-LWE to binary secret M-LWE) in order to decompose a Gaussian noise
into an inner product.

Lemma 1.15 ([LS15, Lem. 2.13])

Let r ∈ (R+)n ∩ H , z ∈ Kd fixed and e ∈ Kd
R sampled from D√Σ, where

√
Σ =

[δj,kdiag(r)]j,k∈[d] ∈ Rnd×nd . Then 〈z , e〉 =
∑

j∈[d] zjej is distributed according to Dr′

with r ′j = rj
√∑

k∈[d]
∣∣σj(zk)∣∣2 for j ∈ [n].

Lemma 1.16 (Adapted from [Reg09, Cor. 3.10])

Let M ⊂ Kd be an R-module (yielding a module lattice), let u, z ∈ Kd be fixed, and
let β, γ > 0. Assume that (1/β2 + ‖z‖22,∞ /γ2)–1/2 ≥ ηε(M) for some ε ∈ (0, 1/2). Then
the distribution of 〈z , v〉 + e where v is sampled from DM+u,β and e ∈ KR is sampled
from Dγ , is within statistical distance at most 2ε from the elliptical Gaussian Dr over KR,
where rj =

√
β2
∑

k∈[d]
∣∣σj(zk)∣∣2 + γ2 for j ∈ [n].

Proof: Consider h ∈ (KR)d distributed according to Dr′,...,r′ , where r′ is given by r ′j =

γ/
√∑

k∈[d]
∣∣σj(zk)∣∣2 for j ∈ [n]. Then by Lemma 1.15, 〈z ,h〉 is distributed as Dγ and there-

fore ∆(〈z,v〉 + e,Dr) = ∆(〈z,v + h〉,Dr). Now, we denote t such that tj =
√
β2 + (r ′j )2 for j ∈ [n].

Note that by assumption

min
j∈[n]

βr ′j /tj = (1/β2 + max
j∈[n]

∑
k∈[d]

∣∣σj(zk)∣∣2 /γ2)–1/2
= (1/β2 + ‖z‖22,∞ /γ2)–1/2 ≥ ηε(M).

Lemma 1.10 therefore applies and yields that v + h is distributed as Dt,...,t, within statistical
distance at most 2ε. By applying once more Lemma 1.15 and noticing that the statistical
distance does not increase when applying a function (here the scalar product with z), then
we get that 〈z ,v + h〉 is distributed as Dr within statistical distance at most 2ε, where rj =

tj
√∑

k∈[d]
∣∣σj(zk)∣∣2 =√β2∑k∈[d]

∣∣σj(zk)∣∣2 + γ2 for j ∈ [n].

1.3.3 Statistical Distance

The statistical distance is an important measure of distance used in cryptography. We now recall
its definition and some useful properties. Let P and Q be two discrete probability distributions
over a discrete domain E. Their statistical distance is defined as

∆(P ;Q) =
1
2

∑
x∈E
|P(x) – Q(X )|.
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The statistical distance fulfills the probability preservation property.

Lemma 1.17 (Probability Preservation of the Statistical Distance)

Let P ,Q be two probability distributions with Supp(P ) ⊆ Supp(Q ) and E ⊆ Supp(Q ) be an
arbitrary event. Then, P(E) ≤ ∆(P ;Q) + Q(E).

Within the thesis, we need the following two results about the statistical distance of two
Gaussian distributions.

Lemma 1.18 ([DMR18, Thm. 1.2])

Let Dg denote the continuous Gaussian distribution over KR and let z ∈ K . The statistical
distance between Dg and Dg,z is bounded above by

√
2π‖z‖2
g .

Lemma 1.19 ([Reg05, Claim 2.2])

Let α and β be positive reals such that α < β. The statistical distance between Dα and Dβ
is bounded above by 10 ·

(
β
α – 1

)
.

1.3.4 Rényi Divergence

The Rényi divergence [R6́1, vEH14] defines another measure of distribution closeness and was
first used in cryptography as a powerful alternative for the statistical distance measure by Bai
et al. [BLL+15, BLR+18]. In this thesis, it suffices to use the Rényi divergence of order 2. As
in [BLR+18], we use the exponential of the standard definition. Let P and Q be two discrete
probability distributions such that Supp (P ) ⊂ Supp (Q ). The Rényi divergence of order 2 is
defined as

RD2(P‖Q) =
∑

x∈Supp(P )

P(x)2

Q(x)
= Ex←P

Pr[P = x]
Pr[Q = x]

.

From its definition, it directly follows for Q the uniform distribution over Supp(P ) that RD2(P‖Q) =
|Supp(P )| ·

∑
x∈Supp(P ) P(x)

2, where
∑

x∈Supp(P ) P(x)
2 is the collision probability of P. The Rényi

divergence admits the following properties, proved in [vEH14].

Lemma 1.20 (Properties of the Rényi Divergence)

Let P ,Q be two discrete probability distributions with Supp (P ) ⊆ Supp (Q ). Fur-
ther, let (Pj)j , (Qj)j be two families of independent discrete probability distributions
with Supp

(
Pj
)
⊂ Supp

(
Qj
)
for all j. Then, the following properties are fulfilled:

Data Processing Inequality: RD2(Pg‖Qg) ≤ RD2(P‖Q) for any function g, where Pg (resp. Qg)
denotes the distribution of g(y) induced by sampling y ← P (resp. y ← Q),

Multiplicativity: RD2
(∏

j Pj‖
∏

j Qj

)
=
∏

j RD2(Pj‖Qj),
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Probability Preservation: Let E ⊂ Supp(Q ) be an arbitrary event, then

Q(E) · RD2(P‖Q) ≥ P(E)2.

In Chapter 2, we need the Rényi divergence of two shifted discrete Gaussians. By comparing
the conditions of the lemma below for the Rényi divergence with the ones of Lemma 1.18 for the
statistical distance, we can see that the first is a stronger measurement than the second. More
precisely, a small Rényi divergence of two shifted Gaussians implies a small statistical distance.

Lemma 1.21 (Adapted from [LSS14, Lem. 4.2])

Let s and ε be positive real numbers with ε ∈ (0, 1), c be a vector of Rn and Λ be a full-rank
lattice in Rn. We assume that s ≥ ηε(Λ). Then,

RD2(DΛ,s,c‖DΛ,s) ≤
(
1 + ε
1 – ε

)2
· exp

(
2π‖c‖22

s2

)
.

1.3.5 Leftover Hash Lemma

The Leftover Hash Lemma (LHL) [HILL99] is a standard tool in cryptography used for security
proofs. Within this thesis, we use two different flavors of it. The first one is a generalized version
of the LHL in terms of universal hash functions, which we need when proving the security of
our PKE scheme from Chapter 6. First, we recall the definition of a universal family of hash
functions.

Definition 1.7 (Universal Family of Hash Functions): A (finite) family H of hash func-
tions h : X → Y is called universal if

Pr
h←U (H )

[h(x1) = h(x2)] =
1
|Y |

,

for all x1 6= x2 ∈ X .

We now recall the variant of the Leftover Hash Lemma as stated in [RSSS17].

Lemma 1.22 (Generalized Leftover Hash Lemma [RSSS17, Lem. 2.1])

Let X , Y and Z be finite sets, H be a universal family of hash functions h : X → Y and g : X →
Z be an arbitrary function. Then, for any random variable T taking values in X we have

∆ ((h, h(T ), g(T )); (h,U (Y ), g(T ))) ≤ 1
2
·
√
γ(T ) · |Y | · |Z |,

where γ(T ) = maxt∈X Pr [T = t].

The second variant of the LHL that we use within this work is an adaptation of the one
by Micciancio [Mic07], which, instead of working with vectors over the finite field Zq, operates
over principal ideal domains. Given a number field K = Q(ζ), where the corresponding ring of
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integers has the form R = Z[ζ], and a prime q, then Rq = R/qR is a principal ideal domain,
allowing for a unique prime-ideal factorization. The result can easily be generalized to any
number field K = Q(ζ) with ring of integers R with Z[ζ] ⊂ R, as long as q is coprime with the
index [R : Z[ζ]]. In this case, as demonstrated in [PP19, Lem. 2.14], there exists a bijection
between Z[ζ] and R.4 The only difference between the original statement and the one below is
that the original proof uses the special number field K ∼= Q[x]/〈xn –1〉. Further, we state the LHL
for a matrix-vector product instead of a vector-vector product and provide not only a bound on
the statistical distance, but also on the Rényi divergence.

Lemma 1.23 (LHL over Rings adapted from [Mic07, Thm. 4.2])

Let n, k, d, q, η ∈ N such that q is prime. Further, let K = Q(ζ) be a number field with
associated ring of integers R such that q is coprime with the index [R : Z[ζ]]. We set Rq = R/qR
and Rη = R/ηR. Then,

∆ ((C,Cz); (C, s)) ≤ 1
2

√(
1 + qk

ηd

)n
– 1, and

RD2((C,Cz)‖(C, s)) ≤
(
1 + qk

ηd

)n
,

where C← U ((Rq)k×d ), z← U ((Rη)d ) and s← U ((Rq)k).

1.4 Learning With Errors
At the heart of most lattice-based schemes, and in particular at the core of this thesis, lies one
computational problem, the Learning With Errors (LWE) problem. In this section, we introduce
the problem, together with different structured variants of it, which are used in efficient schemes
nowadays. We start with varying the underlying mathematical structure: First, we introduce
the LWE problem over rational integers as it was originally presented by Regev [Reg05]. Then,
we define LWE over rings of polynomials and finally over modules. Later in this section, we
present two other versions of LWE, a first variant using the middle-product and a second one
using deterministic rounding.

1.4.1 Learning With Errors (LWE)
The LWE problem, introduced by Regev [Reg05] in his pioneering work, serves as a fundamen-
tal computational problem in lattice-based cryptography. Informally speaking, an instance of
the LWE problem is a system of noisy linear modular equations over the rational integers. Its
search variant asks to find a solution to this system, whereas its decision version asks to distin-
guish such noisy linear modular equations from uniformly random ones. We now present the
formal definitions of the LWE distribution and the LWE problem, in both its search and decision
versions. Let T = R/Z denote the segment [0, 1) with addition modulo 1.

Definition 1.8 (LWE Distribution): Let q, n ∈ N such that q ≥ 2. Further, let ψ denote a
distribution over T and fix a vector s ∈ Zn

q. We set As,ψ as the distribution over Zn
q × T

4As we only became aware of this bijection recently, the original results [BJRW20, BJRW21] restrict the LHL
to number fields K, where Rq is a principal ideal domain. Furthermore, we state a more general version allowing
the secret to have larger coefficients.
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obtained by choosing a vector a ← U (Zn
q), an element e ← ψ and returning (a, 1q 〈a, s〉 +

e mod Z).

Definition 1.9 (LWE): The search version SLWEn,q,ψ of the Learning With Errors problem
is as follows: let s ∈ Zn

q be secret; given arbitrarily many samples from As,ψ, the goal is
to find s. Its decision version LWEn,q,ψ is as follows: choose s ← U (Zn

q); the goal is to
distinguish between arbitrarily many independent samples from As,ψ and the same number
of independent samples from U (Zn

q × T).

Sometimes, it is convenient to interpret LWE in terms of matrices. Let m ∈ N be the number
of requested samples of the LWE distribution As,ψ, i.e., we are given (aj , 1q 〈aj , s〉+ej mod Z) for j ∈
[m]. Then, we consider the matrix A ∈ Zm×n

q whose rows are the aj ’s and we set e = (e1, . . . , em)T .
We obtain the matrix representation (A, 1qA · s + e), where s ∈ Zn

q. Note that LWE with respect
to the matrix A defines an instance of the computational problem BDD over the lattice Λq(AT ),
as defined in Section 1.2.1. The promise bound needed for BDD is characterized by the error
distribution ψ.

As an attractive property for cryptography, LWE enjoys quantum [Reg05, Reg09, PRS17a] and
classical [Pei09, BLP+13] worst-case to average-case reductions for suitable parameter choices,
from well-studied problems such as finding a set of short independent vectors (SIVP) or the
decision variant of finding short vectors (GapSVP, Def 1.2) in Euclidean lattices. The term
average-case is used to stress that LWE is defined over the randomness of A, s and e. In other
words, an algorithm that efficiently solves LWE can be used to classically (or quantumly) solve the
problems SIVP or GapSVP in any Euclidean lattice. By classical algorithm we denote algorithms
that use classical mechanics, whereas quantum algorithms operate with quantum mechanics. In
order to perform a quantum algorithm, a so-called quantum computer is needed. A standard
conjecture is to assume that there is no polynomial-time algorithm that solves these lattice
problems and their approximated versions, even on quantum computers (see Conjecture 1 from
the introduction). Thus, any solver of the average-case problem LWE can be transformed into a
solver for any instance of the corresponding worst-case problem, which is presumed to be difficult.

For efficiency reasons, we are interested in variants of LWE, where the underlying secret
has small norm. A relatively simple, but quite elegant reduction allows the secret to follow the
same distribution as the noise [ACPS09]. This variant is commonly called the Hermite Normal
Form (HNF) of LWE. By re-randomizing the secret we also obtain the reduction in the opposite
direction, making both problems equally hard. Due to its widespread use in cryptographic
constructions, and the equivalence of LWE and LWE in HNF, they are sometimes presented as
the same problem.

1.4.2 Polynomial Learning With Errors (P-LWE)
The cryptographic protocols relying on the hardness of LWE are inherently inefficient due to the
size of the public keys which usually contain the matrix A ∈ Zm×n

q , where n is at least as large as
the security parameter and m is the number of samples which is usually larger than n log(n). To
improve the efficiency, structured variants of LWE have been proposed [SSTX09, LPR10, LS15].
One prominent variant is the Polynomial Learning With Errors (P-LWE) problem, introduced
by Stehlé et al. [SSTX09]. Instead of considering noisy linear equations over the rational inte-
gers Z, the linear equations are now defined algebraically over some ring over polynomials with
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coefficients in Z. As we only need the decision version throughout this work, we focus on it in
the following, omitting the search variant.

Definition 1.10 (Decision P-LWE): Let q,m ∈ N such that q ≥ 2. Let f (x) be a monic and
irreducible polynomial in Z[x] of degree m and ψ be a distribution over R[x]/〈f (x)〉. The
decision P-LWEfq,ψ problem asks to distinguish arbitrarily many samples of the form (aj , bj =
aj · s + ej mod q), where ej ← ψ and aj ← U (Zq[x]/〈f (x)〉), from the same number of samples
chosen uniformly over Zq[x]/〈f (x)〉 × Rq[x]/〈f (x)〉 with non-negligible success probability
over the choices of s ← U (Zq[x]/〈f (x)〉).

As for LWE, the P-LWE problem also admits worst-case to average-case quantum reductions
from well-studied lattice problems [SSTX09]. Whereas the hardness reductions for LWE start
from lattice problems in the class of general Euclidean lattices, the class has to be restricted to
ideal lattices in the case of P-LWE. As explained in Section 1.2.2, these ideal lattices correspond
to the ideals in the polynomial ring Z[x]/〈f (x)〉.

1.4.3 Module Learning With Errors (M-LWE)

The module variant of LWE was first defined by Brakerski et al. [BGV12] and thoroughly studied
by Langlois and Stehlé [LS15]. Instead of working over a ring of polynomials as for P-LWE, the
module variant is defined over the ring of integers of some number field K . Since its introduction,
the M-LWE problem has enjoyed more and more popularity as it offers a fine-grained trade-off
between concrete security and efficiency. Within the NIST standardization process, several third
round candidates rely on the hardness ofM-LWE, e.g., the signature scheme Dilithium [DKL+18]
and the key encapsulation mechanism Kyber [BDK+18]. We now present the formal definitions
of the M-LWE distribution and the M-LWE problem, in both its search and decision versions.
By TR∨ we denote the torus KR/R∨, where KR = K ⊗Q R.

Definition 1.11 (M-LWE Distribution): Let K be a number field of degree n and R its ring of
integers with dual R∨. Further, let d ∈ N denote the rank, let ψ be a distribution over KR
and let s ∈ (R∨q )d be a vector. We let AMs,ψ denote the distribution over (Rq)d×TR∨ obtained
by choosing a vector a← U ((Rq)d ), an element e ← ψ and returning (a, 1q 〈a, s〉 + e mod R∨).

The inner product of the vectors s = (s1, . . . , sd )T and a = (a1, . . . , ad )T is defined in the natural
way, i.e., 〈a, s〉 =

∑
j∈[d] aj · sj , using the addition and multiplication of the field K .

Definition 1.12 (M-LWE): Let q, d ∈ N such that q ≥ 2. Let Ψ be a family of distributions
over KR. The search version M-SLWEn,d,q,Ψ of the Module Learning With Errors problem
is as follows: let s ∈ (R∨q )d be secret and ψ ∈ Ψ; given arbitrarily many samples from AMs,ψ,
the goal is to find s. Let Υ be a distribution on a family of distributions over KR. Its
decision version M-LWEn,d,q,Υ is as follows: choose s← U ((R∨q )d ) and ψ ← Υ; the goal is to
distinguish between arbitrarily many independent samples from AMs,ψ and the same number
of independent samples from U ((Rq)d × TR∨ ).
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Module LWE as a Generalization

Historically, the M-LWE problem was introduced after another important variant of LWE, namely
the Ring Learning With Errors (R-LWE) problem, as defined by Lyubashevsky et al. [LPR10].
The latter one can be seen as a special case of the first by specifying d = 1. The R-LWE problem
coincides with the P-LWE problem from Section 1.4.2 for the class of cyclotomic fields (where ζ is
a primitive root of the unity). Roşca et al. [RSW18] show that P-LWE and R-LWE are equivalent
(with some parameter losses) for a larger class of polynomials. In a more recent work, the
hardness connection between M-LWE and R-LWE is further investigated. More precisely, Peikert
and Pepin [PP19] show a tight reduction from R-LWE over a number field of degree n·k to M-LWE
over a number field of degree n and with rank k. Furthermore, the special case of M-LWE, where
the ring has degree n = 1 and thus R = Z, is exactly the original LWE problem from Section 1.4.1.
Thus, M-LWE can be seen as a generalization, encompassing both the unstructured LWE and the
fully structured R-LWE (and hence P-LWE) problems.

Primal versus Dual

Note that we use the definition of M-LWE in its so-called dual form as the secret vector is taken
over the dual R∨. There exists also a flavor of M-LWE where the secret vector is chosen over the
ring R directly, referred to as M-LWE in its primal version. Roşca et al. [RSW18] show for R-LWE
that both variants are equivalent up to some polynomial losses in the error and their results can
easily be adapted to the module setting. The reason to work with the dual is that it naturally
arises in the worst-to-average case reduction and thus leads to tighter security proofs [LPR10,
Sec. 3.3]. Furthermore, it allows for optimal lattice decoding algorithms as explained in [LPR13].

Worst-Case Reductions

Similar to its unstructured counterpart, M-LWE also enjoys worst-case to average-case connec-
tions for suitable parameter choices from lattice problems such as SIVPγ [LS15]. Whereas the
hardness results for LWE start from lattice problems in the class of general Euclidean lattices, the
set has to be restricted to module lattices in the case of M-LWE. As introduced in Section 1.2.2,
these module lattices correspond to modules in the ring R and we refer to the related lattice
problem as Mod-SIVPγ and Mod-GapSVPγ (Def. 1.2), respectively. As an additional feature,
a converse reduction from M-LWE to Mod-SIVPγ is proven for the special case of power-of-2
cyclotomics [LS15] and improved by Wang and Wang [WW19] for all cyclotomic fields.

Matrix Representation

As for LWE, we can interpret the M-LWE distribution in terms of matrices. Let m ∈ N be the
number of requested samples of the M-LWE distribution AMs,ψ, given by (aj , 1q 〈aj , s〉+ej) for j ∈ [m].
Then, we consider the matrix A ∈ Rm×dq whose rows are the aj ’s and we set e = (e1, . . . , em)T .
We obtain the representation (A, 1qA · s + e), where s ∈ (R∨q )d . By adding the parameter m as a
superscript suffix, we denote this problem by M-LWEmn,d,q,Υ. Furthermore, we can interpret the
matrix A ∈ Rm×dq as an nm × nd matrix over Z, where n is the ring degree of R. As explained
in Section 1.1.3, the multiplication of a ring element a ∈ Rq with another ring element s ∈ Rq
(with respect to their coefficient embeddings) can be expressed as the matrix-vector product
using the matrix Rot(a) ∈ Zn×n

q . Thus, the m × d matrix A = (ajk)jk over Rq defines an nm × nd
matrix Rot(A) = (Rot(ajk))jk over Zq. In other words, an instance of the M-LWE distribution can
be viewed as an instance of the LWE distribution, where the public matrix Rot(A) is not fully
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random, but has some structure. This is why we often refer to it as a structured variant of LWE,
see Figure 4 from the introduction for an illustration.

Multiple Secrets

Another variant of M-LWE is the multiple secrets M-LWE problem. Let k,m ∈ N, where m
denotes the number of requested samples of AMs,ψ and k stands for the number of independent
secrets. In the multiple secrets version, the secret vector s ∈ (R∨q )d is replaced by a secret
matrix S ∈ (R∨q )d×k and the error vector e ← ψm by an error matrix E ← ψm×k. There is a
simple polynomial-time reduction from M-LWE using a secret vector to M-LWE using a secret
matrix for any k polynomially large in the module rank d via a hybrid argument, as given for
instance in [Mic18, Lem. 2.9]. By adding the parameter k as a superscript suffix, we denote the
corresponding problem by M-LWEm,k

n,d,q,Υ.

Small Secrets

Another possibility is to choose a small secret. As for LWE, we can define the Hermite Normal
Form (HNF) of M-LWE, where the secret follows the same distribution as the noise, and show that
both problems are equally hard by adapting the proof for LWE [ACPS09]. The HNF of M-LWE
is often used in cryptographic constructions to improve efficiency, as for instance in signature
schemes like Dilithium [DKL+18]. Alternatively, we can define a variant of M-LWE, where
the coefficients of the secret vector are within a ball of small radius. More precisely, for some
positive integer η we select uniformly at random the coefficients of the secret vector over the
set R∨η , where Rη = {x ∈ R : τ (x) ∈ {0, . . . , η – 1}n}. We denote the corresponding problem
by η-M-LWE. In Chapter 2, we are interested in the special case of η-M-LWE, where the secret
vector s is a binary vector, thus chosen over the set R∨2 (i.e., η = 2). As this variant plays an
important role within this thesis, we separately denote it by bin-M-LWE. As we argue later in
Section 2.5, the set R∨η is defined with respect to the coefficient embedding τ .

Discrete Variant

As pointed out by Lyubashevsky et al. [LPR10], sometimes it can be convenient to work with
a discrete variant, where the second component b of each sample (a, b) is taken from a finite
set, and not from the continuous domain TR∨ . Indeed, for the case of M-LWE, if the rounding
function b·e : KR → R∨ is chosen in a suitable way, see Lyubashevsky et al. [LPR13, Sec. 2.6] for
more details, then every sample (a, b = 1

q 〈a, s〉 + e) ∈ (Rq)d × TR∨ of the distribution AMs,ψ can be
transformed to (a, bq · be) = (a, 〈a, s〉+ bq · ee mod qR∨) ∈ (Rq)d ×R∨q . For technical reasons, we use
the latter representation in Section 2.2.

1.4.4 Middle-Product Learning With Errors (MP-LWE)
We now present another variant of LWE which can be seen as a modification of P-LWE, where
the standard product of two polynomials is replaced by their so-called middle-product. The use
of the middle-product in lattice-based cryptography was introduced by Roşca et al. [RSSS17]
in the form of Middle-Product Learning With Errors (MP-LWE). We first recall the definition
of the middle-product of two polynomials of bounded degree. We denote by Z<n

q [x] the set of
polynomials in Zq[x] with degree less than n.
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Definition 1.13 (Middle-Product): Let da, db, d, k ∈ N such that da + db – 1 = d + 2k. The
middle-product of a ∈ Z<da[x] and b ∈ Z<db [x] of length d is defined as

a�d b =

⌊
a · b mod xk+d

xk

⌋
,

where the floor rounding in this case means removing all terms with negative exponents
on x.

The middle-product fulfills additivity if one of its inputs is fixed. Associativity is generally
not achieved, instead only the following weaker associativity property is guaranteed.

Lemma 1.24 (Weak Associativity Property [RSSS17, Lem. 3.3])

Let d, k, n ∈ N. For all r ∈ Z<k+1[x], a ∈ Z<n[x] and s ∈ Z<n+d+k–1[x], we have

r �d (a�d+k s) = (r · a)�d s.

The middle-product can be represented in form of a special matrix-vector product. We first
define those product matrices and show that they also arise in the context of standard products
of two polynomials.

Definition 1.14 (Product Matrix T): Let d, n ∈ N and a ∈ Z<n[x]. We denote by Td,n(a)
the matrix in Zd×n+d–1 whose j-th row is given by the coefficients of the polynomial xj–1a
for j ∈ [d]. More precisely,

Td,n(a) =


a0 a1 a2 . . . an–1

a0 a1 a2 . . . an–1
. . . . . . . . . . . .

a0 a1 a2 . . . an–1

 ,

where all empty entries of the matrix are filled with a 0.

By the definition of Td,n, it can be used to represent the product of two polynomials. More
precisely, let d, n ∈ N such that r ∈ Z<d[x] and a ∈ Z<n[x]. Their product b = r · a ∈ Z<n+d–1[x]
is given by bT = rT · Td,n(a), where b and r are the coefficient vectors of b and r, respectively. If
the product matrix Td,n is applied from the left, and not from the right, it defines the middle-
product of two polynomials. Later in Section 4.2, we study another type of matrices, so-called
Hankel matrices, which allow an alternative representation of the middle-product.

Lemma 1.25 ([RSSS17, Lem. 3.2])

Let d, n ∈ N such that d ≤ n. Let a ∈ Z<n
q [x] and s ∈ Z<n+d–1

q [x], defining the middle-
product b = a�d s. It yields

rev(b) = Td,n(a) · rev(s),
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where rev(b) and rev(s) denote the coefficient vectors of b and s in reverse order.

We now formally define the Middle-Product Learning With Errors (MP-LWE) problem. As
we only need the decision version throughout this work, we focus on it in the following.

Definition 1.15 (Decision MP-LWE): Let q, d, n ∈ N such that q ≥ 2 and 0 < d ≤ n. Further,
let ψ be a distribution over R<d[x]. The decisionMP-LWEq,n,d,ψ problem asks to distinguish
arbitrary many samples of the form (aj , bj = aj �d s + ej mod q), where ej ← ψ and aj ←
U (Z<n

q [x]), from the same number of samples chosen uniformly over Z<n
q [x]×R<d

q [x] with
non-negligible success probability over the choices of s ← U (Z<n+d–1

q [x]).

Roşca et al. [RSSS17] show that MP-LWE is at least as hard as P-LWE (Def. 1.10) for many
polynomials f (x) ∈ Zq[x]. The noise parameter of the MP-LWE problem can be set to handle an
exponentially large class of polynomials f (x). A more recent result by Peikert and Pepin [PP19]
shows a tighter (and more direct) reduction from R-LWE to MP-LWE. In both settings, the
definition of MP-LWE is independent of some particular defining polynomial f (x) and at the
same time its hardness is for suitable parameters still implied by worst-case problems over ideal
lattices.

1.4.5 Learning With Rounding (LWR)
In 2012, Banerjee et al. [BPR12] introduce a deterministic variant of LWE, namely the Learn-
ing With Rounding (LWR) problem. Originally, it is used to construct efficient pseudorandom
functions [BPR12], lossy trapdoor functions and deterministic encryption schemes [AKPW13].
Structured variants of LWR also serve as the underlying hardness assumption for efficient pub-
lic key encryption schemes [DKRV18, BBF+19], currently considered for standardization, and
efficient pseudorandom functions [CS19].

Before we formally present this deterministic variant of LWE, we need to define a method to
round elements from Zq to Zp, where p ≤ q.

Definition 1.16 (Rounding): Let p, q ∈ N such that 2 ≤ p ≤ q. The modular rounding
function b·ep : Zq → Zp is defined as bxep =

⌊(
p
q

)
· x
⌉

mod p, where b·e is the standard
rounding function, mapping every y ∈ R to its closest integer bye ∈ Z.

The modular rounding function extends component-wise to vectors over Zq and coefficient-
wise to polynomials in Zq[x]. Note that we use the same notation as Banerjee et al. [BPR12] for
the purpose of coherence. It is also possible to use the floor rounding function b·c, where each
element is rounded down to the next smaller integer, as for instance done by Chen et al. [CZZ18].

In order to lift rounded elements from Zp back to Zq, we define a probabilistic lifting func-
tion li�(·) : Zp → Zq that takes x ∈ Zp as input and chooses uniformly at random an element u
from the set {v ∈ Zq : bvep = x}. Again, li�(·) can be extended coefficient-wise to vectors over Zq
and polynomials in Zq[x]. This lifting function becomes important in the encryption scheme
in Chapter 6. There, we use li�(·) to lift rounded polynomials in Zp[x] back to Zq[x] such
that

⌊
li�(baep)

⌉
p
= baep. Note that li�(baep) = a + e with ‖e‖∞ ≤ q

p . Alternatively, one can
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deterministically lift any element from Zp to Zq by mapping y ∈ Zp to bq/p · ye ∈ Zq. This
induces a rounding error whose norm is bounded above by q/p, as before with the probabilistic
lifting function li�(·).

We now define the Learning With Rounding problem. Again, we focus on its decision version
throughout the thesis.

Definition 1.17 (Decision LWR): Let q, p, n ∈ N such that 2 ≤ p ≤ q. The decision Learn-
ing With Rounding (LWR) problem ask to distinguish arbitrary many samples of the
form (aj , bj =

⌊
〈aj , s〉

⌉
p), where aj ← U (Zn

q), from the same number of samples chosen uni-
formly over Zn

q × Zq with non-negligible success probability over the choices of s← U (Zn
q).

Hardness of LWR

When first introducing the problem LWR, Banerjee et al. [BPR12] show a reduction from LWE
to LWR with arbitrarily many samples. Unfortunately, the reduction requires q/p to be larger
than the error size B (where B bounds the magnitude of the LWE error with high probability)
by a super-polynomial factor, thus leading to a large modulus paired with a small error bound.
This in turn implies that the underlying worst-case lattice problems are assumed to be hard with
super-polynomial approximation factors, which stands for a stronger assumption. In practice,
this also leads to inefficient protocols. Subsequent studies propose new reductions that work for
a larger range of parameters. Alwen et al. [AKPW13] give a reduction that allows a polynomial
modulus and modulus-to-error ratio. However, the modulus q in the reduction depends on
the number of LWR samples, thus the number of samples needs to be fixed a priori. Further,
the reduction imposes certain number theoretical restrictions on the modulus q. For example,
power-of-2 moduli are not covered. In a more recent work, Bogdanov et al. [BGM+16] use the
Rényi divergence (see Section 1.3.4) to show a sample preserving reduction for the search variant.
Moreover, they provide a reduction for the decision variant using Fourier learning techniques,
which is dimension preserving for the special case that the modulus is prime. It is sightly
improved to composite moduli by Bai et al. [BLL+15]. In a concurrent work, Alperin-Sheriff and
Apon [AA16] further improve the parameter sets for the reduction. In particular, the reduction
is dimension-preserving for any polynomial-sized modulus.

Structured Variants of LWR

As for LWE, the definition of LWR can be adapted to the ring setting, defining the module
variant M-LWR and the ring variant R-LWR. When defining M-LWR and R-LWR, one has to
decide how to round vectors over Rq. One possibility is to consider an element of Rq via its
coefficient embedding as a vector over Zq and simply round each coefficient to Zp. This is the
way chosen by most works considering structured variants of LWR, as for instance [BPR12,
BGM+16, AA16, CZZ18]. In contrast, a more recent work by Liu and Wang [LW20] studies a
variant of R-LWR where the rounding is done with respect to so-called normal integral bases.

Concerning the hardness of R-LWR, in the full version of their paper, published on the IACR
eprint server, Banerjee et al. [BPR11] show that their reduction with arbitrarily many samples
also works for the ring counterpart. However, as for LWR, this reduction similarly imposes a
super-polynomial modulus. The improved reduction of Bogdanov et al. [BGM+16] also applies to
the search variant of R-LWR, but not to the decision variant (as they use the Rényi divergence).
In the same manner, some parts of the reduction of Alperin-Sheriff and Apon [AA16] also apply
to R-LWR. All those works above leave it as an open problem to prove the hardness of R-LWR
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(or M-LWE) in its decision variant, which is usually needed to construct provably secure en-
cryption schemes. To overcome this issue, Chen et al. [CZZ18] propose a new (non-standard)
assumption, called the Computational Learning With Rounding Over Rings (R-CLWR) problem.
They show an efficient reduction from decision R-LWE to R-CLWR, and construct an practical
encryption scheme based on the hardness of R-CLWR. Recently, Liu and Wan [LW20] address
the remaining open problem by providing a search-to-decision reduction for R-LWR. In order to
do so, they need to define a new way of rounding with respect to normal integral bases.

1.4.6 Practical Hardness of Learning With Errors
In this thesis, we are mainly studying the theoretical hardness of LWE (and its variants) by
providing efficient reductions from a well studied problem and thus preserving the worst-case
to average-case connections that make LWE so interesting to use in cryptography. However, if
one constructs a cryptographic scheme whose security is based on LWE (or some of its variants),
deriving concrete parameters from those reductions would lead to rather inefficient schemes. This
is why in practice, it is common to derive the concrete parameters for LWE-based schemes by
looking at the cost of the best known algorithms solving LWE. We call this the practical hardness
of LWE.

Fortunately, there are handy tools that allow to estimate the practical hardness of LWE,
depending on its different parameters. Using for instance the LWE Estimator by Albrecht et
al. [APS15] publicly available at https://bitbucket.org/malb/lwe-estimator/src, one can
measure the practical hardness of LWE. The more recent Leaky Estimator by Dachman-Soled et
al. [DDGR20] publicly available at https://github.com/lducas/leaky-LWE-Estimator also
allows to integrate different types of hints on the LWE secret and/or noise. The latter is of
important use to refine the security analysis of the encryption scheme presented in Chapter 7.

1.5 Cryptographic Notions
In this section, we introduce the notion of Public Key Encryption schemes. For a gentle intro-
duction to modern cryptography we refer to the standard book of Katz and Lindell [KL14].

1.5.1 Public Key Encryption
A Public-Key Encryption (PKE) scheme permits two parties to confidentially exchange messages
without sharing a common secret key beforehand. In the following, we provide formal definitions
of PKE schemes, their correctness and IND-CPA security properties.

Definition 1.18 (Public Key Encryption): A Public Key Encryption (PKE) scheme Π =
(KGen, Enc,Dec) for a message space M and a ciphertext space C is composed of three PPT
algorithms, specified as follows:

KGen: The key generation algorithm KGen takes as input a security parameter λ and
returns a key pair (sk, pk), called the secret key sk and the public key pk.

Enc: The encryption algorithm Enc takes as input the public key pk and a message m ∈ M
and returns the ciphertext c ← Enc(pk,m) ∈ C.

Dec: The decryption algorithm Dec takes as input the secret key sk and a ciphertext c ∈ C
and returns Dec(sk, c) ∈ M ∪ {⊥}, where ⊥ denotes the failure symbol.

https://bitbucket.org/malb/lwe-estimator/src
https://github.com/lducas/leaky-LWE-Estimator
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Definition 1.19 (Correctness): We call the PKE scheme Π = (KGen, Enc,Dec) correct with
correctness error δ ∈ [0, 1) if for any message m ∈ M it yields

Pr[Dec(sk, Enc(pk,m)) = m] ≥ 1 – δ,

where the probability is taken over the key pair (sk, pk) ← KGen(1λ) and the randomness
used by the encryption and decryption algorithms. If δ = 0, we say that Π is perfectly
correct.

Informally speaking, the security notion IND-CPA captures that no efficient adversary can
distinguish between the ciphertext of two messages, where the adversary has even the right to
choose the messages by themselves. The acronym stands for indistinguishable against chosen-
plaintext attacks.

Definition 1.20 (IND-CPA Security): We say that the PKE scheme Π = (KGen, Enc,Dec) is
IND-CPA secure, if for all PPT adversaries A, there is a negligible function negl(·) such that

Pr[IND-CPAAΠ = 1] <
1
2
+ negl(λ) ,

where IND-CPAAΠ is the security game from Protocol 1.1.

Protocol 1.1: The IND-CPA security game.

IND-CPAAΠ
1 : b← U ({0, 1})

2 : (pk, sk)← KGen(1λ)

3 : (m0,m1)← A(1λ, pk)
4 : c ← Enc(pk,mb)

5 : b′ ← A(1λ, pk, c)

6 : return b = b′

1.5.2 Random Oracle Model
Within this thesis, we make use of the Random Oracle Model (ROM). This is an idealized
framework, where we assume the existance of perfectly random functions, realized by oracles.
More precisely, for n, k ∈ N, a random oracle H : {0, 1}k → {0, 1}n, queried on some input bit
string x of length k outputs a truly random bit string H (x) of length n. Everyone can interact
with the random oracle, but how it internally works stays unknown to everybody. We require
the random oracle to be consistent, i.e., if it already has been queried on some input x, its
answer is consistent with the previous one. It can be useful to imagine that the random oracle
maintains a list, which is initially empty and where input-output pairs are added on-the-fly. A
useful property for security proofs is that we can only guess the answer of H on a given input x
as long as we don’t query it.

We say that a security proof is in the ROM if it makes use of random oracles. The main
advantage of such proofs is that they offer provably secure cryptographic schemes that are in
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most cases more efficient than their analogues proven in the standard model. As we don’t know
any realization of random oracles in the real work, when implementing such schemes, the random
oracles are instantiated by concrete cryptographic hash functions. Even as there is no theoretical
evidence that a security proof in the ROM implies the security of a scheme when the random
oracle is replaced by a specific cryptographic hash function, it still increases our confidence in the
scheme’s security and can be seen as a compromise between efficient schemes without security
proof and impractical schemes with security proof. For a more detailed discussion we refer to
the introduction of Katz and Lindell [KL14].
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Chapter 2

Binary Hardness of Module LWE

The content of this chapter is based on two joint works with Corentin Jeudy, Adeline Roux-
Langlois and Weiqiang Wen. The first is published in the proceedings of the conference Asi-
acrypt 2020 [BJRW20] and the second is published in the proceedings of the conference CT-
RSA 2021 [BJRW21]. For the latter, a presentation of 20 minutes given by one of the co-authors
has been recorded for the conference, illustrating the high level techniques of the paper.1
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2.1 Introduction
The Learning With Errors (LWE) problem, as introduced in Section 1.4, is one of the fundamental
problems used in lattice-based cryptography. Since its introduction in 2005 by Regev [Reg05],
several variants of it have been studied. One line of research investigates the hardness of LWE
when the underlying secret is of small norm. A relatively simple, but elegant reduction allows the
secret to follow the same distribution as the noise [ACPS09]. This variant is commonly called the
Hermite Normal Form of LWE. Another, more extreme case is to choose the secret as a binary
vector, resulting in an LWE sample, where s ∈ {0, 1}n instead of s ∈ Zn

q. We call this the binary
secret LWE problem, denoted by bin-LWE. It is particularly interesting as it increases efficiency.

1https://www.youtube.com/watch?v=AfDskDKEzwg starting from 23 min 35 sec.
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Furthermore, modulus-rank switching techniques [BLP+13, AD17a, WW19] rely on using small
secrets as they keep the noise blowup to a minimum. The binary secret variant also happens to
be essential for some Fully Homomorphic Encryption (FHE) schemes as in [DM15, CGGI16], as
it helps to control the noise growth during computations on encrypted data.

A first study of bin-LWE is provided by Goldwasser et al. [GKPV10] in the context of leakage-
resilient cryptography. Whereas their proof structure has the advantage of being easy to follow,
their result suffers from a huge error increase. Informally, they show a reduction from LWEk,q,Dα
to bin-LWEn,q,Dβ , where

α
β = negl(n) and n ≥ k log2 q + ω(log2 n). Recall, that Dα denotes the

continuous Gaussian distribution of width α. Later, Brakerski et al. [BLP+13] improve the state
of the art in order to show the classical hardness of LWE with a polynomial-sized modulus.
Micciancio [Mic18] provides another reduction from LWE to its binary version. Whereas the two
reduction techniques differ, both paper achieve similar results. The dimension is still increased
roughly by a factor log2 q, but the error only by a factor of

√
n, where n is the resulting LWE

dimension. More concretely, in [BLP+13] a reduction from LWEk,q,Dα to bin-LWEn,q,Dβ is shown,
where α

β ≤
1√
10n

and n ≥ (k + 1) log2 q + ω(log2 n). And Micciancio [Mic18] proves a reduction
from LWEk,q,Dα to bin-LWEn,q,Dβ , where

α
β ≤

1
2
√
n+1

and n ≥ (k +1) log2 q+ω(log2 n). The increase
in dimension from k to roughly k log2 q is reasonable, as it essentially preserves the number of
possible secrets. However, all of the proofs mentioned above work over the integers Z and not
over the ring of integers R of some number field. Hence, as stated by Micciancio in the conclusion
of [Mic18], an important open problem is whether similar results carry over to the structured
variants, in particular to M-LWE, as practical schemes are based rather on M-LWE than on LWE
for efficiency reasons.

2.1.1 Our Contributions
In this chapter, we prove the hardness of the binary secret version of M-LWE, if the module
rank d is (super-)logarithmic in the degree n of the underlying number field. To the best of our
knowledge, this is the first result on the hardness of structured LWE with binary secrets.

More precisely, we present two different proofs to obtain this result. The first proof, presented
in Section 2.2, can be seen as a warm-up for the second one, subsequently presented in Section 2.3.
Whereas the latter obtains better noise parameters than the first, it is also more complex and
requires the introduction of several intermediate problems, such as extended M-LWE and first-is-
errorlessM-LWE. From a high level perspective, the first more simple proof follows the techniques
of [GKPV10], while improving the noise rate significantly by using the Rényi divergence (RD)
instead of the statistical distance. The second more involved proof can be seen as a module version
of [BLP+13], where moving to the module setting of LWE imposes some technical difficulties that
we need to address carefully. We summarize the different characteristics of both reductions in
Table 2.1. The most remarkable difference between them is that the simple reduction, represented
in the left column, allows for a rank d that is logarithmic in the ring degree n (i.e., Ω(log2 n)),
whereas the improved reduction, stated in the right column, only allows for a rank d that is
super-logarithmic in n (i.e., ω(log2 n)). In contrast, the latter improves the noise ratio of the first
one by roughly a factor of

√
md, where m denotes the number of given samples.

A general issue for both reductions that arises when moving from the unstructured to the
module setting is that we have two different possibilities to define what a binary secret exactly
means. Recall that a secret underlying an M-LWE instance is a vector over the dual R∨. Thus,
when interpreting it as a vector over the integers Z to define a binary notion, we can either use
the coefficient embedding τ or the canonical embedding σ, both introduced in Section 1.1. We
argue in Section 2.5 for the case of power-of-2 cyclotomics, that using the canonical embedding
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for binary secrets requires the rank d to be larger by a factor n than when using the coefficient
embedding. This makes the definition via the canonical embedding impractical and we thus use
the coefficient embedding to define a binary secret. Additionally, the coefficient embedding is
also the favorite choice once a bin-M-LWE-based scheme is used in practice and thus needs to
be implemented. When manipulating Gaussians for theoretical results, however, the canonical
embedding is much more suitable. This requires to switch between both embeddings, which in
turn has an impact on the parameters overall.

Table 2.1: Comparison between both reductions, where n denotes the ring degree, q the
modulus, m the number of samples and d the module rank

Property Simple (Section 2.2) Improved (Section 2.3)
LWE analogue [GKPV10] using RD [BLP+13]
minimal rank d log2 q + Ω(log2 n) 2 log2 q + ω(log2 n)
noise ratio O(

√
mn2d) O(n2

√
d)

class of number fields cyclotomics cyclotomics
sample dependency dependent independent
modulus preserving yes yes
ring degree preserving yes yes
conditions on modulus q prime number-theoretic restrictions
decision/search variant search decision
complexity of proof simple involved

The main challenge of the improved reduction from Section 2.3 is the use of matrices over
the ring of integers R, as opposed to matrices over Z for LWE. The proof in [BLP+13, Lem. 4.7]
requires the construction of unimodular matrices, which is not straightforward to adapt in the
module setting because units of the quotient ring Rq = R/qR are much harder to describe than
the units of Zq = Z/qZ. This is the reason why we need to control the splitting structure of the
cyclotomic polynomial modulo q. Lemma 1.2 [LS18, Thm. 1.1] solves this issue but requires q
to satisfy certain number-theoretic properties and to be sufficiently large so that all the non-zero
binary ring elements are units of Rq.

Both reductions are modulus and ring degree preserving, but so far limited to cyclotomic
fields. This restriction stems from the difficulty to capture the invertibility of elements and
matrices in more general number fields (needed in Lemma 2.1 and Lemma 2.2) and to bound the
norm of the Vandermonde matrix when switching from the coefficient to the canonical embedding
(used in Theorem 2.1). Another weaker restriction comes from the LHL (Lemma 1.23) which is
used in both reductions and only shown for number fields K = Q(ζ) such that the modulus q is
coprime with the index [R : Z[ζ]], where R is the associated ring of integers of K . This class
contains all cyclotomic number fields as in this case R = Z[ζ]. All other results are proven for
general number fields.

The simple reduction from Section 2.2 uses the Rényi divergence (RD) as a measure of distance
of two probability distributions, which requires to fix the number of samples beforehand and
restricts the results to the corresponding search versions. As the improved reduction only uses
the statistical distance, and not the Rényi divergence, both constraints are not needed there.

As an additional contribution, which did not appear in the two original publications [BJRW20,
BJRW21], we show that both reductions generalize to larger secret distributions. More precisely,
we show in Section 2.4 that the problem η-M-LWE, a variant of M-LWE where the secret’s
coefficients are sampled uniformly at random over R∨η with Rη = {x ∈ R : τ (x) ∈ {0, . . . , η – 1}n},
is at least as hard as standard M-LWE. The problem bin-M-LWE is the special case of η-M-LWE
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with η = 2. In both reductions, a larger η leads to a weaker requirement on the module rank d,
allowing smaller ranks by a factor of roughly 1/ log2 η. However, a larger η increases the noise ratio
by a factor (η–1)/ log2 η in the warm-up reduction from Section 2.2 and by a factor (η–1)2/(

√
log2 η)

in the improved reduction from Section 2.3.

2.1.2 Related Work
Extended M-LWE

In Section 2.3, we introduce an intermediate problem, which we call extended M-LWE. In this
variant, for an instance of M-LWE given by (A,A · s + e), additional information on the noise
vector e in form of an inner-product 〈e, z〉 with some known hint vector z is given. In the work
of Alperin-Sheriff and Apon [AA16] for their reduction from M-LWE to the deterministic variant
Module Learning With Rounding, a variant of M-LWE that is also called extended M-LWE is
introduced. In contrast to the full inner product as in our definition, the extended version
in [AA16] gives the trace of the inner product Tr(〈e,z〉) to the attacker. This variant is not suited
for our reduction as the field trace does not provide enough information for our lossy argument
in Lemma 2.5. We discuss further differences in Section 2.3.1 and Section 2.3.2. A very recent
work by Lyubashevksy et al. [LNS21] defines yet another variant of M-LWE in the context of
lattice-based zero-knowledge proofs that is called extended M-LWE. Instead of the full inner
product as in our definition, they provide only the sign of the inner product as an additional
hint for the attacker. Again, this is not sufficient for our lossy argument in Lemma 2.5.

Entropic Secrets

Another line of research which studies secret distributions that are not uniform over Zn
q, is the

one on LWE using so-called entropic secrets [GKPV10, AKPW13, BD20a]. This variant encom-
passes not only secrets within a ball of small radius, but also more general secret distributions
other than the uniform distribution, studying it from an entropic point of view. This allows to
take into account possible leakage on the secret, even though it may come from a distribution
yielding vectors of large norms. Recently, the entropic secret setting has also been investigated
for R-LWE [BD20b] and M-LWE [LWW20]. As an independent contribution, Lin et al. [LWW20]
provide an alternative LHL over rings. The LHL we use in our proof (Lemma 1.23) with respect
to the statistical distance is an adaptation of [Mic07, Thm. 4.2] to the ring setting and requires
the rank to be increased by a super-logarithmic factor log2 q + ω(log2 n). In the LHL by Lin et
al. [LWW20, Thm. 1], the rank only needs to be larger by a logarithmic factor 2 log2 q. However,
they require the defining polynomial of the underlying number field to be irreducible modulo q,
which adds strong restrictions on the modulus q. For example, for the ν-th cyclotomic number
field, where ν is a power of 2, the defining polynomial is reducible for every positive integer q
and thus there is no such q that fulfills the restrictions.

Binary Noise

Instead of choosing a binary secret for LWE, one can also look at the variant of LWE, where
the noise is sampled over the set of binary vectors. For instance, this problem is studied in
the context of efficient encryption schemes for constrained devices. It was introduced by Mic-
ciancio and Peikert [MP13] together with a reduction from worst-case lattice problems as long
as the number of samples is only slightly larger than the LWE dimension n. Further work is
needed to investigate if this reduction can be adapted to structured variants. There is a se-
quence of works showing that binary error LWE (and more generally LWE with small errors)
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becomes easy to solve via lattice algorithms or algebraic algorithms if sufficiently many samples
are available [AG11, MP13, ACF+15, KF15, BGPW16, STA20]. More concretely, there is a
polynomial-time algorithm solving LWE with a binary noise if the number of provided samples
is quadratic in the dimension n [AG11]. In this thesis, we are not studying this variant.

Practical Hardness

In this chapter, we are studying the theoretical hardness of M-LWE with binary secrets by provid-
ing a reduction from M-LWE with uniform secrets, which thus connects it via [LS15] to worst-case
problems over module lattices. As often the case for lattice-based cryptography, there is a gap
between the theoretical hardness (supported by reductions as in this chapter) and the practical
hardness of the problem. By practical hardness we mean the concrete difficulty to solve the
problem using the best known algorithms.

As the concrete difficulty also serves to select sample parameters for schemes that rely on the
hardness of LWE, there are handy tools that allow to estimate the practical hardness of LWE,
depending on its different parameters. Using for instance the LWE Estimator by Albrecht et
al. [APS15] publicly available at https://bitbucket.org/malb/lwe-estimator/src, one can
measure the practical hardness of LWE with a binary secret. As there are no algorithms that
exploit the structure of M-LWE, the following reasoning holds for bin-M-LWE as well.

More concretely, using the computation model of Alkim et al. [ADPS16] with respect to
the core SVP model, we see in Figure 2.1 that in order to keep the same estimated security
level for bin-LWE as for LWE, it suffices to increase the LWE dimension n and the Gaussian
width α by a multiplicative factor even less than 2. Here, we use the parameters recommended
by Regev’s reduction [Reg09] for n = 1024, i.e., the modulus q = n2 and the Gaussian width α =
1/(
√
n log2(n)2). In the first estimates we set secret_distribution = uniform and in the second

estimates we set secret_distribution = (0, 1), which sets it to randomly chosen binary secrets. We
see that in the first run, the best algorithm is the one that solves the associated u-SVP problem,
guaranteeing 379 bits of security. In the second run, the best algorithm is again the one that
solves the associated u-SVP problem, guaranteeing even 492 bits of security. The only difference
to both executions of the estimator is that we increased n by a factor b1.8e and α by a factor 1.8.
This is much smaller than the (super-)logarithmic factor for the dimension and the

√
n factor for

the Gaussian width that Brakerski et al. [BLP+13] obtain for LWE and that we obtain for M-LWE.

Figure 2.1: Screenshot of running the LWE Estimator [APS15] with SageMath on my laptop.

Kirchner and Fouque [KF15] improve the so-called BKW algorithm to solve the LWE problem
and, in particular, run some experiments on the binary secret variant, assuming that enough
samples are provided. Chen et al. [CCLS20] systematically run experiments on binary secret LWE
with dimensions at most 200 to better understand the concrete behavior of lattice algorithms
such as BKZ for this special variant. However, their range of parameters does not cover the ones
used by cryptographic constructions (where the LWE dimension is usually starting from 500).

https://bitbucket.org/malb/lwe-estimator/src
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2.1.3 Roadmap
The chapter is structured as follows. In Section 2.2, we prove the first reduction for the hardness
of M-LWE with a binary secret, which we call the warm-up reduction. In Section 2.3, we provide
an improved reduction to show the hardness of M-LWE with a binary secret, which needs two
new intermediate problems, called �rst-is-errorless M-LWE and ext-M-LWE. Furthermore, we
generalize both reductions in Section 2.4 to secrets of bounded norm, not necessarily binary
secrets. We conclude the chapter by arguing in Section 2.5 that the coefficient embedding is the
suited choice in the setting of binary secrets.

2.2 Warm-up: A Simple Reduction
In the following, we show a first reduction for the hardness of M-LWE with a binary secret. Our
proof follows the original proof structure of Goldwasser et al. [GKPV10] in the case of LWE, while
achieving much better noise parameters by using the Rényi divergence instead of the statistical
distance. The improvement on the noise rate compared to [GKPV10] stems from the fact that
the Rényi divergence only needs to be constant for the reduction to work and not necessarily
negligibly close to 1 (compared to negligibly close to 0 for the statistical distance). A similar effect
arises with respect to the rank condition in comparison with the second proof for bin-M-LWE
that we prove in the next section. More precisely, as we use the LHL with respect to the Rényi
divergence, and not the statistical distance, we can have a rank that is logarithmic in the ring
degree n, instead of super-logarithmic. Note that we only recently found out that using the LHL
with respect to the Rényi divergence decreases the rank condition from super-logarithmic down
to logarithmic.2 This is why this didn’t appear in the original publication [BJRW20, Thm. 1]
and can be seen as an improvement achieved afterwards. However, using the Rényi divergence
as a tool for distance measurement requires to move to the search variants of M-LWE (denoted
by M-SLWE) and its binary version, respectively. Additionally, it asks to fix the number of
samples a priori.

, + M-SLWE with binary secretA A s e

+ , + +

1 multiple-secrets M-LWE
o not for R-LWE

B
C

Z B
C s Z s e

, , , +

3leftover hash lemma

B
C

Z B s′
e′

2 noise flooding

M-SLWE with uniform secret

Figure 2.2: Overview of the proof of Theorem 2.1.

2We would like to thank Thomas Prest for pointing out to us the connection between the collision probability
and the Rényi divergence.
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To facilitate the understanding of this section, we start by illustrating the high level idea
of the proof in Figure 2.2 (where the Latex/tikz credits go to my co-author Corentin Jeudy).
Given an instance of bin-M-LWE by (A,A · s + e), our goal is to transform it to a related instance
of M-LWE defined by (B,B · s′ + e′). Note that the secret s is modulo 2 and the secret s′ is modulo
q. At the core of the hardness proof of bin-M-LWE lies a lossy argument, where the public
matrix A is replaced by a lossy matrix B · C + Z, which corresponds to the second part of some
multiple-secrets M-LWE sample. Note that the rank of the matrix B is smaller than the one of
the matrix A, motivating the description lossy. Here, we can see that this argument does not
work for R-LWE (which corresponds to M-LWE of rank 1) as there is no possibility to replace the
public matrix consisting of one column by a matrix of smaller rank. To argue that an adversary
cannot distinguish between the two cases, we need the hardness of the decision M-LWE problem
as well. In a second step, the term Z · s + e is replaced by the new noise e′, where the Rényi
divergence of both expressions can be bounded by a constant using the properties of the Rényi
divergences of Gaussian distributions. This step is commonly called noise flooding. Finally in the
third step, the product C · s is replaced by the uniform secret s′, where the Rényi divergence of
both elements can be bounded by a constant using a variant of the Leftover Hash Lemma (LHL).
The use of the LHL is also the reason why our reduction only works for module ranks larger
than log2(q) + Ω(log2 n). Informally speaking, it requires the ratio between the number of rows
of C and its number of columns to be logarithmic in order to bound the Rényi divergence. As
providing the full information of B,C and Z only makes the problem easier, we end up with some
standard M-LWE instance.

We now formally prove the hardness of M-SLWE with a binary secret. Overall, our results are
restricted to cyclotomic number fields. As in Section 1.1.5, we denote by λ the scaling factor to
map elements from R∨ to R. We study the M-LWE problem in its discrete version, as presented in
Section 1.4.3. The theorem uses the discrete Gaussian distribution ψ = DR∨,αq for some positive
real α and the smoothing parameter ηε, as defined in Section 1.3.1.

Theorem 2.1 (Binary Hardness of M-LWE - Warm-up)

Let K be a cyclotomic number field of degree n with R its ring of integers. Let k, d,m, q ∈ N
such that q is prime and m polynomial in n. Further, let α and β be positive real numbers
such that β ≥

√
m · n2d · α. Let ε ∈ R ∩ [0, 1/2) such that βq ≥ ηε(R∨) and ε = O( 1m ).

Then, for any d ≥ k · log2 q + Ω(log2 n), there is a probabilistic polynomial-time reduction
from M-SLWEmn,k,q,DR∨ ,βq

and M-LWEm,d
n,k,q,DR∨ ,αq

to bin-M-SLWEmn,d,q,DR∨ ,βq
.

The degree n of the number field K , the modulus q and the number of samples m are preserved.
The reduction increases the rank of the module from k to k · log2 q + Ω(log2 n) and the Gaussian
width from αq to αq·

√
m·n2d. Further, M-LWEmn,k,q,DR∨ ,αq

trivially reduces to M-SLWEmn,k,q,DR∨ ,βq
,

as β ≥ α.

Proof: Given a bin-M-SLWEmn,d,q,DR∨ ,βq
sample (A,A · s + e) ∈ (Rq)m×d × (R∨q )m, with s ∈ (R∨2 )d

and e← (DR∨,βq)m, the search problem asks to find s and e. In order to prove the statement,
we define different hybrid distributions:

• H0 : (A,A · s + e), as in bin-M-SLWEmn,d,q,DR∨ ,βq
,

• H1 : (A′ = λ(BC + Z),A′ · s + e), where B ← U ((Rq)m×k), C ← U ((R∨q )k×d ), and Z ←
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(DR∨,αq)m×d and s, e as in H0,

• H2 : (B,C,Z,B(λCs) + Z(λs) + e), where B,C,Z, s, e as in H1,

• H3 : (B,C,Z,B(λCs) + e′), where e′ ← (DR∨,βq)m and B,C,Z, s as in H2,

• H4 : (B,C,Z,Bs′ + e′), where s′ ← U ((R∨q )k) and B,C,Z, e′ as in H3.

For j ∈ {0, . . . , 4}, we denote by Pj the problem of finding the secret s (resp. s′ in H4), given
a sample of the distribution Hj . We say that problem Pj is hard if for any probabilistic
polynomial-time attacker A the advantage of solving Pj is negligible, thus AdvPj [A(Hj) = s] ≤
n–ω(1), where n is the degree of K . The overall idea is to show that if P4 is hard, then P0 is
hard as well.
Problem P4 is hard. By the hardness assumption of M-SLWEmn,k,q,DR∨ ,βq

, it yields

AdvP4[A(H4) = s′] ≤ n–ω(1).

From P4 to P3. By the probability preservation property of the Rényi divergence
(Lemma 1.20), we have

AdvP3[A(H3) = s]2 ≤ AdvP4[A(H4) = s′] · RD2(H3‖H4).

The only difference between the distributions H3 and H4 is that the element λCs in H3 is
replaced by a uniform s′ ∈ (R∨q )k in H4. Our aim is to show that their Rényi divergence can
be bounded above by a constant. We set C̃ = λC ∈ (Rq)k×d and s̃ = λs ∈ (R2)d . By the Ring
Leftover Hash Lemma stated in Lemma 1.23 with η = 2, the Rényi divergence between the
distribution (C̃, C̃s̃) and the distribution (C̃, s̃′) is bounded above by (1 + qk/2d )n. Note that
for cyclotomic fields, it yields R = Z[ζ] and thus the index [R : Z[ζ]] = 1 is always coprime
to q. Dividing the first and the second part of both distributions by λ preserves the Rényi
divergence. As we require d ≥ k log2 q+Ω(log2 n), we obtain RD2(H3‖H4) ≤ (1+O(1/n))n, which
can be asymptotically bounded by a constant.
From P3 to P2. Again, by the probability preservation property of the Rényi divergence

(Lemma 1.20), we obtain

AdvP2[A(H2) = s]2 ≤ AdvP3[A(H3) = s] · RD2(H2‖H3).

In order to compute the Rényi divergence of H2 and H3, we need to compute the Rényi diver-
gence of Z(λs) + e and e′. Using the noise flooding bound of Lemma 1.14 with η = 2, we know
that each of the m coefficients of Z(λs) is bounded above by αqdn2 with probability 1–2–Ω(n).
Thus, it suffices to compute the Rényi divergence of (DR∨,βq,c)m and (DR∨,βq)m, where c ∈ R∨

with norm bounded above by αqdn2. Using that βq ≥ ηε(R∨), the multiplicativity of the
Rényi divergence (Lemma 1.20) and the result of Lemma 1.21 about the Rényi divergence of
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shifted discrete Gaussians, we deduce

RD2
(
(DR∨,βq,c)m‖(DR∨,βq)m

)
= RD2

(
DR∨,βq,c‖DR∨,βq

)m
≤
(
1 + ε
1 – ε

)2m
· exp

(
2π‖c‖2

(βq)2

)m

≤
(
1 + ε
1 – ε

)2m
· exp(2π).

The last inequality comes from the restriction α
β ≤

1√
m·n2d which leads to 2π‖c‖2

(βq)2 ≤
2π
m . Here,

we simply use that the function exp is increasing for increasing input.
For the Rényi divergence to be bounded by a constant, we also need ε = O( 1m ). Indeed,

we have
( 1+ε
1–ε
)2 =

(
1 + 4ε/1–ε

2

)2
< exp

( 4ε
1–ε
)
as
(
1 + x

y

)y
< exp(x) for any x, y > 0. As we

require ε < 1
2 , it yields

1
1–ε < 2 and thus, we get

( 1+ε
1–ε
)2m

< exp(8mε) and therefore ε = O( 1m )
suffices.
From P2 to P1. Since more information is given in distribution H2 than in distribution H1,

the problem P1 is harder than P2 and hence

AdvP1[A(H1) = s] ≤ AdvP2[A(H2) = s].

From P1 to P0. By the hardness assumption of M-LWEm,d
n,k,q,DR∨ ,αq

, the distributions H0

and H1 are computationally indistinguishable. More concretely,

AdvP0[A(H0) = s] ≤ AdvP1[A(H1) = s] + d ·AdvM-LWE

≤ AdvP1[A(H1) = s] + d · n–ω(1),

where d is the number of secret vectors, represented as the columns of the matrix C. Putting
all equations from above together, we obtain

AdvP0[A(H0) = s] ≤ AdvP1[A(H1) = s] + d ·AdvM-LWE

≤ AdvP2[A(H2) = s] + d ·AdvM-LWE

≤
√

AdvP3[A(H3) = s] · RD2(H2‖H3) + d ·AdvM-LWE

≤
√√

AdvP4[A(H4) = s′] · RD2(H3‖H4) · RD2(H2‖H3)

+ d ·AdvM-LWE

≤ n–ω(1).

As the problem P0 is exactly bin-M-SLWEmn,d,q,DR∨ ,βq
, this concludes the proof.

2.3 An Improved Reduction
In this section, we improve the hardness result of the section above for M-LWE with binary
secrets for cyclotomic fields. Our proof follows the same idea as in [BLP+13] that we adapt
over modules. More precisely, we show a reduction from M-LWE with rank k to bin-M-LWE
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with rank d satisfying d ≥ (k + 1) log2 q + ω(log2 n). The reduction preserves the modulus q, that
needs to be prime satisfying number-theoretic restrictions (as detailed in Theorem 2.2), the ring
degree n and the number of samples m, but the noise is increased by a factor of n

√
2d
√
4n2 + 1.

The noise ratio is polynomial in n, but smaller than the ratio n2d
√
m that we obtained with the

first proof from Section 2.2. Thus, we improve the noise parameters by a factor of
√
dm, which

is advantageous as the typical choice for m in theoretical reductions is m = Θ(n log2 n). For the
reduction, m also needs to be larger than the target module rank d, and at most polynomial
in n because of the hybrid argument used in Lemma 2.4. As the reduction does not need the
Rényi divergence as a measure for distance, the results hold for the decision versions of M-LWE
and bin-M-LWE, as opposed to the reduction from the section above. On the other hand, the
improved noise parameters come at the cost of a larger rank condition (super-logarithmic instead
of logarithmic) and a more complex proof, involving several intermediate problems. Theorem 2.2
holds for all cyclotomic fields, whereas most results even apply for all number fields K = Q(ζ)
such that the ring of integers is R = Z[ζ], the bottleneck being the construction in Lemma 2.2.

We now state our main result of this section, first for general cyclotomic number fields and
then specialized to power-of-2 cyclotomics. We illustrate the sequence of reductions needed to
prove Theorem 2.2 and Corollary 2.1 in Figure 2.3. The formal definitions of the extended and
first-is-errorless variants of M-LWE are given in Section 2.3.1 and Section 2.3.2 below. We refer
to Section 1.3.2 for the formal definitions of the different Gaussian distributions over a number
field K that arise in this section, as for instance Dα, DR,α or Ψ≤α.

Theorem 2.2 (Binary Hardness of M-LWE)

Let ν ∈ N with prime-power factorization ν =
∏

j p
ej
j . Further, let K be the ν-th cyclo-

tomic field of degree n = ϕ(ν), and R its ring of integers. Set µ =
∏

j pj and let q be a
prime number such that q = 1 mod µ, ordν (q) = ν/µ and q > max(2n, s1(µ)ϕ(µ)), where s1(µ)
denotes the largest singular value of the Vandermonde matrix of the µ-th cyclotomic field.
Further, let k, d,m ∈ N such that d ≥ (k + 1) log2 q + ω(log2 n), and d ≤ m ≤ poly (n).
Let α ≥ q–1

√
ln(2nd(1 + 1/ε))/π and β ≥ α · n

√
2d
√
4n2 + 1. Then there is a reduction

from M-LWEmn,k,q,Dα to bin-M-LWEmn,d,q,Ψ≤β , such that if A solves the latter with advan-
tage Adv[A], then there exists an algorithm B that solves the former with advantage

Adv[B] ≥ 1
3m

Adv[A] – 1
2

√(
1 +

qk+1

2d

)n

– 1

 –
37ε
2

.

As mentioned before, the noise ratio β/α is given by the term n
√
2d
√
4n2 + 1, which is com-

posed of three different parts. The factor n encapsulates the norm distortion between the coef-
ficient embedding τ and the canonical embedding σ, as well as the actual length of the binary
vectors. The second term

√
2d stems from the masking of z when introduced in the first hy-

brid in the proof of Lemma 2.5. The last factor
√
4n2 + 1 solely represents the impact of giving

information on the error in the ext-M-LWE problem.

Corollary 2.1 (Binary Hardness of M-LWE for Power-of-2 Cyclotomics)

Let ν ∈ N be a power of 2 and K be the ν-th cyclotomic field of degree n = ν/2, and R
its ring of integers. Let q ∈ N be prime such that q = 5 mod 8. Further, let k, d,m N such
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M-LWEmn,k,q,Dα

M-LWEdn,k,q,Dα

�rst-is-errorless M-LWEdn,k+1,q,Dα

ext-M-LWEdn,k+1,q,ψ,(R∨2 )d
ψ = Dq–1(R∨)m,α

√
4B2+1

ext-M-LWEd,mn,k+1,q,ψ,(R∨2 )d
ψ = Dq–1(R∨)m,α

√
4B2+1

M-LWEmn,k+1,q,D
αB
√
d
√

4B2+1

bin-M-LWEmn,d,q,Ψ
≤αB
√
2d
√

4B2+1

m ≥ d

Lemma 2.1, q ≥ 2n, prime

Lemma 2.3, q prime
and fulfilling number-
theoretic requirements

Lemma 2.4, m ≤ poly(n)

α ≤ αB
√
d
√
4B2 + 1

Lemma 2.5, q prime
d ≥ (k + 1) log2 q + ω(log2 n)

Figure 2.3: Overview of the proof of Theorem 2.2, starting from M-LWE with uniform secrets
via �rst-is-errorless M-LWE and ext-M-LWE to M-LWE with binary secrets. The bound B is
defined as B = maxx∈R2 ‖σ(x)‖∞, where σ is the canonical embedding. In cyclotomic fields, we
have B ≤ n. Note that Lemma 2.5 uses d samples from ext-M-LWE, where d is the module rank
in bin-M-LWE. The number-theoretic assumptions on q concern the splitting behavior of the
cyclotomic polynomial in Zq[x], and are discussed in Section 2.3.2.
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that d ≥ (k+1) log2 q+ω(log2 n), and d ≤ m ≤ poly(n). Let α ≥ q–1
√

ln(2nd(1 + 1/ε))/π and β ≥
α ·n
√
2d
√
4n2 + 1. Then there is a reduction from M-LWEmn,k,q,Dα to bin-M-LWEmn,d,q,Ψ≤β , such

that if A solves the latter with advantage Adv[A], then there exists an algorithm B that
solves the former with advantage

Adv[B] ≥ 1
3m

Adv[A] – 1
2

√(
1 +

qk+1

2d

)n

– 1

 –
37ε
2

.

2.3.1 First-is-errorless M-LWE
We follow the same idea as Brakerski et al. [BLP+13] by gradually giving more information to
the adversary while proving that this additional information does not increase the advantage
too much. We define the module version of first-is-errorless LWE, from [BLP+13], where the
first equation is given without error. A similar definition and reduction from M-LWE are given
in [AA16]. The only difference between the two reductions comes from the pre-processing step,
which is simplified in our case due to the further restrictions on q of our overall reduction.

For a number field K of degree n and with ring of integers R, we set Rq = R/qR, KR = K ⊗Q R,
and TR∨ = KR/R∨ as usual. Further, recall the definition of the M-LWE distribution AMs,ψ from
Section 1.4.3.

Definition 2.1 (First-is-errorlessM-LWE): Let n, k, q ∈ N and K be a number field of degree n
and R its ring of integers. Let Υ be a distribution over a family of distributions over KR.
The �rst-is-errorless M-LWEn,k,q,Υ problem is to distinguish between the following cases. On
the one hand, the first sample is uniform over (Rq)k × q–1R∨/R∨ and the rest are uniform
over (Rq)k × TR∨ . On the other hand, there is some unknown s ← U ((R∨q )k) and ψ ← Υ
such that the first sample is from AMs,{0} and the rest are distributed as AMs,ψ, where {0} is
the distribution that is deterministically 0.

If the number m ∈ N of samples is fixed, we write �rst-is-errorless M-LWEmn,k,q,Υ. The following
lemma shows for cyclotomic fields that �rst-is-errorless M-LWE with rank k is at least as hard as
the standard M-LWE problem with rank k – 1.

Lemma 2.1 (M-LWE to �rst-is-errorless M-LWE, adapted from [BLP+13, Lem. 4.3])

Let K be the ν-th cyclotomic field of degree n = ϕ(ν), and R its ring of integers.
Let q ≥ 2n be a prime integer such that q - ν, k a positive integer, and Υ a distribu-
tion over a family of distributions over KR. There is PPT reduction from M-LWEn,k–1,q,Υ
to �rst-is-errorless M-LWEn,k,q,Υ.

Proof: Pre-processing: The reduction first chooses a′ ← U ((Rq)k) and then b2, . . . , bk in-
dependently from U ((Rq)k) such that a′,b2, . . . ,bk are Rq-linearly independent. Each time
we draw a uniformly random column, the probability that the new column is Rq-linearly
independent with the previous ones is at least 1 – n/q for q ≥ n by Lemma 1.3. Since we
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require q ≥ 2n, this probability is at least 1/2. Therefore, we only need a polynomial number
of uniformly sampled columns in Rkq to construct a matrix of Rk×kq invertible modulo qR.
The preprocessing step results in a matrix U = [a′,b2, . . . ,bk] ∈ (Rq)k×k that is invertible
modulo qR according to Lemma 1.3.
Reduction: Then, sample s0 uniformly in R∨q . The reduction is as follows. For the first

sample, it outputs (a′, q–1 ·s0 mod R∨) ∈ (Rq)k×q–1R∨/R∨. The other samples are produced by
taking (a, b) ∈ (Rq)k–1×TR∨ from theM-LWE challenger, picking a fresh randomly chosen a′′ ∈
Rq, and outputting (U(a′′|a), b+q–1(s0·a′′) mod R∨) ∈ (Rq)k×TR∨ , with the vertical bar denoting
concatenation. We now analyze correctness.
First note that the first component is uniform over (Rq)k. Indeed, a′ is uniform over (Rq)k

for the first sample, and since a is uniform over (Rq)k–1, a′′ is uniform over Rq, and U is
invertible in (Rq)k×k, then U(a′′|a) is uniform over (Rq)k as well.
If b is uniform, the first sample yields q–1s0 mod R∨ uniform over q–1R∨/R∨. For the other

samples, b + q–1(s0 · a′′) mod R∨ is uniform over TR∨ and independent of U(a′′|a) but also
independent from the first sample because b masks q–1(s0 · a′′).
If b = q–1〈a , s〉 + e mod R∨ for some uniform s ∈ (R∨q )k–1 and e ← ψ for some ψ ← Υ,

then q–1s0 = q–1〈e1 , (s0|s)〉 = q–1〈Ue1 ,U–T (s0|s)〉 = q–1〈a′ ,U–T (s0|s)〉, where e1 = [1, 0, . . . , 0]T .
For the other samples, we have

b + q–1(s0 · a′′) mod R∨ = q–1〈a,s〉 + q–1(s0 · a′′) + e mod R∨

= q–1〈(a′′|a),(s0|s)〉 + e mod R∨

= q–1〈U(a′′|a),U–T (s0|s)〉 + e mod R∨.

Note that (s0|s) is uniform over (R∨q )k so U–T (s0|s) is also uniform over (R∨q )k be-
cause U–T is invertible in Rq. Therefore the reduction outputs samples according
to �rst-is-errorless M-LWE with secret s′ = U–T (s0|s).

2.3.2 Extended M-LWE
We now define the module version of the extended variant of LWE introduced in [BLP+13],
where the adversary is allowed a hint on the errors. As opposed to [AA16], who also define such
a module version, we allow for multiple secrets and one single hint vector z, as required by our
final reduction of Lemma 2.5.

Definition 2.2 (Extended M-LWE): Let m, q, k, t, n ∈ N and K be a number field of degree n
with R its ring of integers. Let Z ⊆ (R∨)m and ψ be a discrete distribution over q–1(R∨)m.
The ext-M-LWEm,t

n,k,q,ψ,Z problem is as follows: A PPT adversary first chooses z ∈ Z and
then receives a tuple

(A, (bj)j∈[t], (〈ej ,z〉)j∈[t]) ∈ (Rq)k×m ×
(
(q–1R∨/R∨)m

)t × (q–1R∨)t .

Their goal is to distinguish between the following cases. On one side, A is sampled
uniformly over (Rq)k×m, and for all j ∈ [t], ej ∈ q–1(R∨)m are independent and identi-
cally distributed from ψ, and define bj = q–1AT sj + ej mod R∨ for some uniformly cho-
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sen sj ∈ (R∨q )k. On the other side, everything is identical except that the bj are sampled
uniformly over (q–1R∨/R∨)m, independently from A and the error vectors.

The parameter n defines the ring degree, q the modulus, k the module rank (i.e., the number
of columns of the matrix A), m the number of samples (i.e., the number of rows of the matrix A)
and t defines the number of given hints on independent noise vectors.

The set Z represents the set of hints that can be given on the noise vector. The t hints
are given in form of the inner-product of such a fixed hint vector z ∈ Z and the corresponding
noise vector ej for j ∈ [t]. Later, we are interested in the special set of vectors with coefficients
in {0, . . . , η – 1} for some η ∈ N, thus in the case Z = (R∨η )m. Especially the case of binary vectors
(i.e., η = 2) is of interest in the improved reduction for bin-M-LWE.

For simplicity in what follows, for a matrix A ∈ Rm×m, we denote by A⊥ ∈ Rm×(m–1) the
submatrix of A obtained by removing the leftmost column. Our reduction from the prob-
lem �rst-is-errorless M-LWE to ext-M-LWE in Lemma 2.3 requires the construction of a ma-
trix Uz ∈ Rm×m, for all hint vectors z ∈ Z = (R∨η )m, satisfying several properties. This matrix
allows us to transform samples from a �rst-is-errorless M-LWE challenger into samples that we
can give to an oracle for ext-M-LWE. The largest singular value of its submatrix U⊥z (when
embedded with θ as defined in Section 1.3.2), controls the increase in the Gaussian parameter.
We propose a construction for which we bound the largest singular value above by a quantity
independent on z, as needed in the reduction.

Lemma 2.2 (Construction of Matrix Uz for Hint Vector z)

Let ν ∈ N with prime-power factorization ν =
∏

j p
ej
j . Further, let K be the ν-th cyclotomic

field of degree n = ϕ(ν), and R its ring of integers. Let η ∈ N and let µ =
∏

j pj and q be a prime
number such that q = 1 mod µ, ordν (q) = ν/µ and q > ((η–1)s1(µ))ϕ(µ), where s1(µ) denotes the
largest singular value of the Vandermonde matrix of the µ-th cyclotomic field. Finally, let m
be a positive integer, and Z = (R∨η )m, and we recall the ring parameter B = maxx∈Rη ‖σ(x)‖∞.
For all z ∈ Z, there is an efficiently computable matrix Uz ∈ Rm×m that is invertible
modulo qR and that verifies the following: z is orthogonal to the columns of U⊥z , and the
largest singular value of θ(U⊥z ) ∈ Cmn×(m–1)n is at most 2B.

Proof: Recall from Section 1.1.5 that for any cyclotomic number field, there exists an
element λ such that λR∨η = Rη. Let z ∈ Z and denote (z̃j)j∈[m] = z̃ = λz ∈ Rmη . First, we
construct Uz in the case where all the z̃j are non-zero. To do so, we define Uz = A + B via
the intermediate matrices A and B of Rm×m, all unspecified entries being zeros:


1

z̃1
-̃z2

-̃zm
z̃m-1

U⊥z

Uz = =




1

z̃1

z̃m-1

A⊥

+




0 -̃z2

-̃zm
0

B⊥
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The matrix Uz is invertible modulo qR only if all the z̃j (except z̃m) are in R×q . Yet, since
they are all non-zero elements of Rη, we have that for all j ∈ [m],

∥∥τ (z̃j)∥∥∞ ≤ η – 1, where τ
is the coefficient embedding. By Lemma 1.2, since q verifies the algebraic conditions taking
all fj = 1 and q1/ϕ(µ)/s1(µ) > (η – 1), all the z̃j are in R×q .
By construction, the last m–1 columns of Uz are orthogonal to z̃. Let U⊥z be the submatrix

of Uz obtained by removing the leftmost column as shown above. Since θ is a ring homomor-
phism, we have θ(U⊥z ) = θ(A⊥) + θ(B⊥). We now need to bound the spectral norms (which
equal their largest singular values) of these two matrices, and use the triangle inequality to
conclude. For any vector x ∈ C(m–1)n, we have that∥∥∥θ(A⊥)x∥∥∥

2
=
√ ∑

j∈[m–1]

∑
k∈[n]

∣∣σk(z̃j)∣∣2 ∣∣xk+n(j–1)∣∣2 ≤ B ‖x‖2 ,

because each z̃k is in Rη. This yields
∥∥∥θ(A⊥)∥∥∥

2
≤ B. A similar calculation on B⊥ leads

to
∥∥∥θ(B⊥)∥∥∥

2
≤ B, thus resulting in

∥∥∥θ(U⊥z )∥∥∥2 ≤ 2B.
Now assume that z̃j0 , . . . , z̃m are zeros for some j0 in [m]. If the zeros do not appear last in

the vector z̃, we can replace z̃ with Sz̃, where S ∈ Rm×m swaps the coordinates of z̃ so that the
zeros appear last. Since S is unitary, it preserves the singular values as well as invertibility.
Then, the construction remains the same except that the z̃j0 , . . . , z̃m on the diagonal are
replaced by 1. The orthogonality is preserved, and

∥∥∥θ(U⊥z )∥∥∥2 can still be bounded above
by 2B.

Notice that when the ring is of degree 1 and η = 2 (binary hint vectors), the constructions
in the different cases match the ones from [BLP+13, Claim 4.6]. So do the singular values
as B ≤ (η – 1)n = 1 by Lemma 1.1. Also, the construction differs from the notion of quality
in [AA16] due to the discrepancies between the two definitions of ext-M-LWE. The following
lemma shows that the extended variant of M-LWE with one hint (t = 1) is at least as hard as the
first-is-errorless variant of M-LWE, for appropriate parameters.

Lemma 2.3 (�rst-is-errorless M-LWE to ext-M-LWE, adapted from [BLP+13, Lem. 4.7])

Given η ∈ N and let ν ∈ N with prime-power-factorization ν =
∏

j p
ej
j . Further, let K be

the ν-th cyclotomic field of degree n = ϕ(ν), and R its ring of integers. Let µ =
∏

j pj and q
be a prime such that q = 1 mod µ, ordν (q) = ν/µ and q > ((η – 1)s1(µ))ϕ(µ), where s1(µ)
denotes the largest singular value of the Vandermonde matrix of the µ-th cyclotomic field.
Let m, k positive integers, Z = (R∨η )m, ε ∈ (0, 1/2) and α ≥ q–1

√
ln(2mn(1 + 1/ε))/π. Then, there

is a PPT reduction from �rst-is-errorless M-LWEmn,k,q,ψ to ext-M-LWEmn,k,q,ψ′,Z , where ψ = Dα
and ψ′ = Dq–1(R∨)m,α

√
4B2+1, where B = maxx∈Rη ‖σ(x)‖∞ The reduction reduces the advantage

by at most 33ε/2.

Proof: We begin with showing that the Gaussian width α is at least as large as the smoothing
parameter of q–1(R∨)m. Using Lemma 1.4, we have λ∞1 (R) ≥ N (R)1/n = 1. So, using the fact
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that (qΛ)∗ = q–1Λ∗, we have

λ∞1 ((q–1(R∨)m)∗) = λ∞1 (q((R∨)m)∗) = qλ∞1 (((R∨)m)∗) = qλ∞1 (R) ≥ q,

which together with Lemma 1.7 yields α ≥ q–1
√

ln(2mn(1 + 1/ε))/π ≥ ηε(q–1(R∨)m).
Now, we show the reduction. Assume we have access to an oracle O for ext-M-LWEmn,k,q,ψ′,Z ,

where ψ′ = Dq–1(R∨)m,α
√
4B2+1. We request m samples from the first-is-errorless challenger,

resulting in
(A,b) ∈ (Rq)k×m × ((q–1R∨/R∨)× Tm–1

R∨ ).

Assume we need to provide samples to O for some z ∈ Z. By Lemma 2.2 we can efficiently
compute a matrix Uz ∈ Rm×m that is invertible modulo qR, such that its submatrix U⊥z is
orthogonal to z, and that θ(U⊥z ) has largest singular value less than 2B. The reduction first
samples f ∈ Km

R from the continuous Gaussian distribution of covariance matrix α2(4B2Imn –
H†θ(U⊥z )θ(U⊥z )†H) ∈ Rmn×mn, where H is defined as in Section 1.3.2. Note that H is unitary
and therefore preserves the largest singular value. The reduction then computes b′ = Uzb + f
and samples c from Dq–1(R∨)m–b′,α, and finally gives the following to O

(A′ = AUT
z ,b′ + c mod R∨, 〈z,f + c〉).

Note that this tuple is in (Rq)k×m × (q–1R∨/R∨)m × q–1R∨, as required.
We now prove correctness. First, consider the case where A is uniformly random over Rk×mq

and b = q–1AT s + e mod R∨ for some uniform s ∈ (R∨q )k, and e sampled from {0} × Dm–1
α

where {0} denotes the distribution that is deterministically 0. Since Uz is invertible mod-
ulo qR, A′ = AUT

z is also uniform over (Rq)k×m as required. From now on we condition on an
arbitrary A′ and analyze the distribution of the remaining components. We have

b′ = q–1UzAT s +Uze + f
= q–1(A′)T s +Uze + f.

Since the first coefficient of e is deterministically 0 the first column is ignored in the
covariance matrix, and then Uze is distributed as the Gaussian over Km

R of covariance ma-
trix α2H†θ(U⊥z )θ(U⊥z )†H by Lemma 1.13. Hence the vector Uze + f is distributed as the
Gaussian over Km

R of covariance matrix α2H†θ(U⊥z )θ(U⊥z )†H+α2((2B)2Imn –H†θ(U⊥z )θ(U⊥z )†H)
which is identical to Dm

α2B. Since q–1(A′)T s ∈ q–1(R∨)m, the coset q–1(R∨)m – b′ is the same
as q–1(R∨)m–(Uze+f), which yields that c can be seen as being sampled from Dq–1(R∨)m–(Uze+f),α.
By the remark made at the beginning of the proof, we have α ≥ ηε(q–1(R∨)m), so by
Lemma 1.11, the distribution of Uze+f+c is within statistical distance 8ε of Dq–1(R∨)m,α

√
4B2+1,

which shows that the second component is correctly distributed up to 8ε. Note that Uze =∑
i∈[m] ei · ui is in the space spanned by the columns of U⊥z because e1 = 0. This

yields 〈z ,Uze〉 = 0 as z is orthogonal to the columns of U⊥z . This proves that the third
component equals 〈z,Uze + f + c〉 and is thus correctly distributed.
Now consider the case where both A and b are uniform. First, observe that α ≥

ηε(q–1(R∨)m) and therefore by Lemma 1.9, the distribution of (A, b) is within statistical
distance ε/2 of the distribution of (A, e′ + e) where e′ ∈ (q–1R∨/R∨)m is uniform and e is
distributed from {0} × Dm–1

α . So we can assume our input is (A, e′ + e). A′ is uniform as be-
fore, and clearly independent of the other two components. Moreover, since b′ = Uze′+Uze+ f
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and Uze′ ∈ q–1(R∨)m, then the coset q–1(R∨)m – b′ is identical to q–1(R∨)m – (Uze + f). For
the same reasons as above, Uze + f + c is distributed as Dq–1(R∨)m,α

√
4B2+1 within statistical

distance of at most 8ε, and in particular independent of e′. So the third component is cor-
rectly distributed because once again 〈z ,Uze〉 = 0. Finally, since e′ is independent of the
first and third components, and that Uze′ is uniform over (q–1R∨/R∨)m as Uz is invertible
modulo qR, it yields that the second component is uniform and independent of the other ones
as required.

 Example 2.1 (Instantiation in Power-of-2 Cyclotomics)

The condition on the modulus q in Lemma 2.2 and Lemma 2.3 stems from the invertibility
result from Lyubashevsky and Seiler [LS18], as stated in Lemma 1.2. It can be simplified
in the power-of-2 case , see Example 1.4, where it is conditioned on the number κ > 1 of
splitting factors of the defining polynomial xn +1 in Zq[x]. Choosing κ as a power of two less
than n = 2k, implies that q has to be a prime congruent to 2κ+1 modulo 4κ. The invertibility
condition then becomes 0 < ‖τ (y)‖∞ < q1/κ/

√
κ for any y in Rq. The upper bound is

decreasing with κ so the smaller κ, the more invertible elements. The smallest choice for κ
is κ = 2, which leads to choosing a prime q = 5 mod 8. In our context, having q1/2/

√
2 > (η–1)

is sufficient as our elements have coefficients at most η – 1. For the special case of η = 2, this
leads to q > 2 which is subsumed by q = 5 mod 8.

Finally, we use a standard hybrid argument to show that ext-M-LWE with t hints is at least
as hard as ext-M-LWE with 1 hint, at the expense of reducing the advantage by a multiplicative
factor of t.

Lemma 2.4 (Adapted from [BLP+13, Lem. 4.8])

Let n, k,m, q, t ∈ N such that t ≤ poly (n) and K be a number field of degree n with R its
ring of integers. Let ψ be a discrete distribution over q–1(R∨)m, and Z ⊆ (R∨)m. There is
a reduction from ext-M-LWEmn,k,q,ψ,Z to ext-M-LWEm,t

n,k,q,ψ,Z that reduces the advantage by a
multiplicative factor of t.

Proof: Let O be an oracle for ext-M-LWEm,t
n,k,q,ψ,Z . For each k ∈ {0, . . . , t}, we denote by Hi

the hybrid distribution defined as

(A, (b1, . . . ,bk ,uk+1, . . . , ut ), (〈ej ,z〉)j∈[t]),

where A ← U (Rk×mq ), the uj ← U ((q–1R∨/R∨)m), the ej ← ψ, and bj = q–1AT sj + ej mod R∨

for sj ← U ((R∨q )k) for every j ∈ [t]. By definition, we have Adv[O] = |Pr(O(Ht )) – Pr(O(H0))|.
The reduction A works as follows.

1. Sample z uniformly from Z and get (A,b, y = 〈e,z〉) as input
of ext-M-LWEmn,k,q,ψ,Z .

2. Sample k∗ uniformly from [t]. This defines where to embed the challenge.
3. Sample s1, . . . , sk∗–1 uniformly from (R∨q )k, e1, . . . , ek∗–1, ek∗+1, . . . , et from ψ and fi-
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nally uk∗+1, . . . ,ut uniformly from (q–1R∨/R∨)m.
4. Compute bj = q–1AT sj +ej mod R∨ for all j ∈ [k∗ –1], and yj = 〈ej,z〉 for all j ∈ [t]\{k∗}.
5. Define (b′j)j∈[t] as (b1, . . . ,bk∗–1,b, uk∗+1, . . . , ut ). Then call the oracle O on in-

put
(
A, (b′j)j∈[t], (y1, . . . , yk∗–1, y, yk∗+1, . . . , yt )

)
, and return the same output as O.

If b is uniform, then the distribution in 5. is exactly Hk∗–1 whereas if b is M-LWE, then the
distribution is Hk∗ . By a standard hybrid argument, the oracle can distinguish between the
two for some k∗ if it can distinguish between H0 and Ht . So the output is correct over the
randomness of k∗. Since k∗ is uniformly chosen we have

Adv[A] = |Pr(A(b M-LWE)) – Pr(A(b uniform))|

=

∣∣∣∣∣∣
∑

k∗∈[t]

1
t

Pr(A(Hk∗ )) –
∑

k∗∈[t]

1
t

Pr(A(Hk∗–1))

∣∣∣∣∣∣
=
1
t
Adv[O]

2.3.3 Reduction to Binary M-LWE
We now provide the final step of the overall reduction, by reducing to the binary secret version
of M-LWE using a sequence of hybrids. The idea is to use the set Z of the ext-M-LWE problem
as our set of secrets.
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, + +
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Figure 2.4: Overview of the proof of Lemma 2.5.

To facilitate understanding, we start by illustrating the high level idea of the proof of
Lemma 2.5 in Figure 2.4 (where the Latex/tikz credits go to my co-author Corentin Jeudy).
Given an instance of bin-M-LWE by (A,A · z + e), our goal is to show that it is computationally
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indistinguishable from (A,b), where b is a uniform random vector. To do so, we first decompose
the error vector e into –N ·z+ ê, by using properties of Gaussian distributions. We then make use
of a similar lossy argument as for the simple reduction of Section 2.2 by replacing the random
matrix A by the lossy matrix Â = B ·C +N. As opposed to the proof from Section 2.2, we can’t
simply argue with the hardness of multiple-secrets M-LWE as the second part of the sample de-
pends on the noise matrix N. This is the motivation of the introduction of the extended variant
of M-LWE, where we allow for additional information with respect to the noise. We then use the
same Leftover Hash Lemma as before to replace the product C · z by a uniform random vector s.
Assuming the hardness of M-LWE, the product B · s+ ê is computationally indistinguishable from
a uniform vector b. We conclude the proof by re-replacing the lossy matrix Â by the original
uniform matrix A.

Lemma 2.5 (ext-M-LWE to bin-M-LWE, adapted from [BLP+13, Lem. 4.9])

Let K = Q(ζ) be a number field of degree n with R = Z[ζ] its ring of integers. Let q be a prime
modulus and let k,m, d be positive integers such that d ≥ k log2 q+ω(log2 n). Further, let ε ∈
(0, 1/2) and α, γ,β, δ be positive reals such that α ≥ q–1

√
2 ln(2nd(1 + 1/ε))/π, γ = αB

√
d, β =

αB
√
2d, where B = maxx∈R2 ‖σ(x)‖∞, and δ = 1

2
√
(1 + qk/2d )n – 1. Then there is a reduction

from ext-M-LWEd,mn,k,q,ψ,(R∨2 )d
, M-LWEmn,k,q,Dγ and ext-M-LWEd,mn,k,q,ψ,{0}d with ψ = Dq–1(R∨)m,α

to bin-M-LWEmn,d,q,Ψ≤β , such that if B1, B2 and B3 are the algorithms obtained by applying
these hybrids to an algorithm A, then

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 2mε + δ.

The problem ext-M-LWEd,mn,k,q,ψ,{0}d with ψ = Dq–1(R∨)m,α mentioned in the lemma statement is
trivially harder than ext-M-LWEd,mn,k,q,ψ,(R∨2 )d

, that is also why it is not specified in Figure 2.3.

Proof: For x ∈ R∨, we denote x̃ = λx ∈ R as before, where λ induces a mapping from R∨

to R as described in Section 1.1.5. We extend this notation to vectors and matrices in the
obvious way. Given a bin-M-LWEmn,d,q,Ψ≤β sample (A,b = q–1AT z + e mod R∨), with A ←
U ((Rq)d×m), z ← U ((R∨2 )d ) and e ∈ Km

R sampled from the continuous Gaussian Dm
r with

parameter vector r with r2j = γ2+α2
∑

i
∣∣σj(z̃i)∣∣2. Yet, we have ‖r‖∞ =

√
γ2 + α2 ‖z̃‖22,∞, as well

as ‖z̃‖22,∞ ≤
∑

i∈[d] ‖σ(z̃i)‖
2
∞. Recalling for the parameter B = maxx∈R2 ‖σ(x)‖∞, that can be

bounded above by n for cyclotomics by Lemma 1.1 (for η = 2), we get ‖r‖∞ ≤
√
γ2 + B2dα2 =

B
√
2dα = β. Our goal is to show that (A,b) is computationally indistinguishable from uniform.

To do so, we define different hybrid distributions:

• H0: (A,b) as in bin-M-LWEmn,d,q,Ψ≤β ,

• H1: (A, q–1AT z – λNT z + ê mod R∨), where N← Dd×m
q–1R∨,α and ê← Dm

γ ,

• H2: (Â, q–1ÂT z – λNT z + ê mod R∨) = (Â, q–1(λB)TCz + ê mod R∨) where B is uniformly
sampled over (R∨q )k×m, C uniformly sampled over Rk×dq and Â = λq(q–1CTB + N mod
R∨),
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• H3: (Â, q–1B̃T s+ ê mod R∨), with Â, ê and B as above and where B̃ = λB ∈ Rk×mq , and s
is uniform over (R∨q )k,

• H4: (Â,u), with Â as above and u← U (Tm
R∨ ),

• H5: (A,b)← U ((Rq)d×m × Tm
R∨ ).

From H0 to H1. By looking at each component of the vectors we claim that ∆([–NT z̃ +
ê]i , ei) ≤ 2ε. Indeed, (1/α2 + ‖z̃‖22,∞ /γ2)–1/2 ≥ α/

√
2 and α/

√
2 ≥ ηε(q–1(R∨)d ) as explained

for Lemma 2.3. If ni ∈ q–1(R∨)d denotes the i-th column of N, Lemma 1.16 yields the claim
as [–NT z̃ + ê]i = 〈ni ,–z̃〉 + êi, thus giving ∆(–NT z̃ + ê, e) ≤ 2mε. We can thus deduce

|Pr(A(H0)) – Pr(A(H1))| ≤ 2mε. (2.1)

From H1 to H2. We argue that a distinguisher between H1 and H2 can be used to derive an
adversary B1 for ext-M-LWEd,mn,k,q,ψ,(R∨2 )d

, where ψ = Dq–1(R∨)m,α, with the same advantage. To
do so, B1 transforms the samples from the challenger of the ext-M-LWE problem to samples
defined in H1 or the ones in H2 depending on whether or not the received samples are
uniform. In the uniform case, (C, (λq)–1A,NT z) can be efficiently transformed into a sample
from H1. Note that (λq)–1A indeed corresponds to the uniform case of ext-M-LWE, because A
is uniform over Rq and (λq)–1Rq can be seen as q–1R∨/R∨. In the other case, if we apply the
same transformation to the ext-M-LWE sample (C, q–1CTB + N mod R∨,NT z), it leads to a
sample from H2. Hence, B1 is a distinguisher for ext-M-LWEd,mn,k,q,ψ,(R∨2 )d

, and

|Pr(A(H1)) – Pr(A(H2))| = Adv[B1]. (2.2)

From H2 to H3. By the Ring Leftover Hash Lemma stated in Lemma 1.23 (for η = 2), we
have that (C,Cz̃) is within statistical distance at most δ from (C, s̃). Note that for cyclotomic
fields, it yields R = Z[ζ] and thus the index [R : Z[ζ]] = 1 is always coprime to q. By
multiplying by λ–1 and using the fact that a function does not increase the statistical distance,
we have that ∆((C,Cz), (C, s)) ≤ δ. Note that the condition d ≥ k log2 q+ω(log2 n) implies δ ≤
n–ω(1). This yields

|Pr(A(H2)) – Pr(A(H3))| ≤ δ. (2.3)

From H3 to H4. A distinguisher between H3 and H4 can be used to derive an adver-
sary B2 for M-LWEmn,k,q,Dγ . For that, B2 applies the the efficient transformation to the samples
from the M-LWE challenger, which turns (B̃,u) into a sample from H4 in the uniform case,
and (B̃, q–1B̃T s + ê mod R∨) into a sample from H3 in the M-LWE case. Therefore, B2 is a
distinguisher for M-LWEmn,k,m,q,Dγ such that

|Pr(A(H3)) – Pr(A(H4))| = Adv[B2]. (2.4)

From H4 to H5. In the last hybrid, we change Â back to uniform. With the same argument
as for the second hybrid, we can construct an adversary B3 for ext-M-LWEd,mn,k,q,ψ,{0}d with ψ =
Dq–1(R∨)m,α (which corresponds to multiple-secret M-LWE without additional information on
the error) based on a distinguisher between H4 and H5. It transforms (C, (λq)–1Â,NT0) into
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a sample from H4 (M-LWE case) and (C, (λq)–1A,NT0) into a sample from H5 (uniform case).
We then get

|Pr(A(H4)) – Pr(A(H5))| = Adv[B3]. (2.5)

Putting Equations 2.1, 2.2, 2.3, 2.4 and 2.5 altogether yields the result.

2.4 Generalization to Larger Secrets
An interesting question to ask is if the results of this chapter generalize to other secret dis-
tributions, in particular distributions where the secret’s coefficients are not necessarily chosen
uniformly at random over {0, 1} but over a slightly larger set {0, . . . , η – 1} for some positive
integer η � q. We denote the corresponding problem by η-M-LWE. Surprisingly, both reduc-
tions that we have seen in this chapter can be easily adapted to this case, as we explain in the
following.

Generalization for Warm-up Reduction

For the warm-up reduction from Section 2.2, recall that the distribution of the binary secret s
intervenes twice in the proof of Theorem 2.1. First, when we apply the LHL over rings to replace
the term Cs by some uniform secret s′ and second, when we use the noise flooding technique to
replace the term Zs + e with a fresh error vector e′.

Fortunately, the LHL (Lemma 1.23) is already general enough to apply in the case where the
secret s is sampled uniformly at random over Rη = R/ηR. To ease readability, we keep the following
discussion over the ring R, assuming that we already applied the scalar λ to go from R∨ to R.
As we are considering the search variants of M-LWE and η-M-LWE, we can apply the LHL with
respect to the Rényi divergence. In this case, the Rényi divergence between (C,Cs) and (C, s′),
where C← U ((Rq)k×d ), s← U ((Rη)d ) and s′ ← U ((Rq)k), is bounded above by (1 + qk/ηd )n. Thus,
in order to obtain a constant Rényi divergence between the hybrid distributions H3 and H4 in
the proof of Theorem 2.1, we have to require

d ≥ k · log2 q
log2 η

+ O
(

log2 n
log2 η

)
.

Concerning the noise flooding technique, used to bound the Rényi divergence between the
hybrid distributions H2 and H3 in the proof of Theorem 2.1, it suffices to apply Lemma 1.14,
which is already proven for general secret distributions. It implies a resulting error of β ≥
αn2 · d(η – 1)

√
m. This leads to the following generalization of Theorem 2.1.

Theorem 2.3 (Hardness of M-LWE With Small Secret)

Let K be a cyclotomic number field of degree n with R its ring of integers. Let k, d,m, q, η ∈ N
such that q is prime and m polynomial in n. Further, let α and β be positive real numbers
such that β ≥ (η – 1)

√
m · n2d · α. Let ε ∈ R ∩ [0, 1/2) such that βq ≥ ηε(R∨) and ε = O( 1m ).

Then, for any d ≥ k · (log2 q/ log2 η)+Ω(log2 n/ log2 η), there is a probabilistic polynomial-time
reduction from M-SLWEmn,k,q,DR∨ ,βq

and M-LWEm,d
n,k,q,DR∨ ,αq

to η-M-SLWEmn,d,q,DR∨ ,βq
.

To summarize, we can see a direct link between the required rank, secret distribution and
error growth with respect to the parameter η. If η gets close to 2, the error growth (determined
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by β) gets smaller, but the requirement on rank d must be slightly larger. On the other hand,
when η grows, the error ratio grows with it, but allows for a slightly smaller rank d. Note that
since d also appears in the noise growth, the increase factor of considering η instead of 2 is
roughly (η – 1)/ log2 η.

Generalization for Improved Reduction

For the improved reduction from Section 2.3, we recall that the binary secret z intervenes twice
in the proof of Lemma 2.5. As before, it appears when we apply the LHL over rings to replace
the term Cz by some uniform secret s. Additionally, the binary secret determines the hints that
we give as an additional information in the extended version of M-LWE.

As explained above, the LHL (Lemma 1.23) is already general enough to apply for more
general secrets z, which are sampled uniformly at random over Rη = R/ηR. In contrast to the
discussion above, we are now considering the decision variants of M-LWE and η-M-LWE, and thus
we have to apply the LHL with respect to the statistical distance. More concretely, the statistical
distance between (C,Cz) and (C, s), where C ← U ((Rq)k×d ), z ← U ((Rη)d ) and s ← U ((Rq)k), is
bounded above by 1

2
√
(1 + qk/ηd )n – 1. Thus, in order to obtain a negligibly small statistical

distance between the hybrid distributions H2 and H3 in the proof of Lemma 2.5, we require

d ≥ k · log2 q
log2 η

+ ω
(

log2 n
log2 η

)
.

Concerning the impact of z on the extended variant ofM-LWE, we need to consider ext-M-LWE
with a set of hints given by Z = (R∨η )m (instead of Z = (R∨2 )m). Fortunately, Lemma 2.2 and
Lemma 2.3 are already proven for this set of hints. The impact of allowing for a larger hint is
reflected in the bound B from Lemma 1.1, which is given by (η–1)n for cyclotomic fields, and in the
invertibility condition from Lemma 1.2, which now requires a q larger by some factor (η – 1)ϕ(µ).
Overall, we obtain a resulting error of β ≥ α · n(η – 1)

√
2d
√
4n2(η – 1)2 + 1. This leads to the

following generalization of Theorem 2.2.

Theorem 2.4 (Improved Hardness of M-LWE With Small Secret)

Let ν ∈ N with prime-power factorization ν =
∏

j p
ej
j . Further, let K be the ν-th cyclotomic

field of degree n = ϕ(ν), and R its ring of integers. Set µ =
∏

j pj , let η ∈ N and let q be a prime
number such that q = 1 mod µ, ordν (q) = ν/µ and q > max(2n, ((η – 1)s1(µ))ϕ(µ)), where s1(µ)
denotes the largest singular value of the Vandermonde matrix of the µ-th cyclotomic field.
Further, let k, d,m N such that d ≥ (k+1)(log2 q/ log2 η)+ω(log2 n/ log2 η), and d ≤ m ≤ poly(n).
Let α ≥ q–1

√
ln(2nd(1 + 1/ε))/π and β ≥ α · n(η – 1)

√
2d
√

4n2(η – 1)2 + 1. Then there is a
reduction from M-LWEmn,k,q,Dα to η-M-LWEmn,d,q,Ψ≤β , such that if A solves the latter with
advantage Adv[A], then there exists an algorithm B that solves the former with advantage

Adv[B] ≥ 1
3m

Adv[A] – 1
2

√(
1 +

qk+1

2d

)n

– 1

 –
37ε
2

.

As before, we can see a direct link between the required rank, secret distribution and error
growth with respect to the parameter η. For increasing η, we can allow for a slightly smaller
rank d, but obtain a larger noise ratio. Note that since d also appears in the noise growth, the
increase factor of considering η instead of 2 is roughly (η – 1)2/

√
log2 η.
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2.5 Choice of Embedding for Binary Secrets

As mentioned in the introduction, the variant of M-LWE using a binary secret requires the choice
of an embedding in which the secret is binary. As praised in [LPR10, LPR13], the canonical
embedding has nice algebraic and geometric properties that make it a good choice of embedding.
However, in this section, we justify our choice of the coefficient embedding, by analyzing the set
of secrets that are binary in the canonical embedding in the case of power-of-2 cyclotomics.

The conjugation symmetry of the canonical embedding first restricts the choice of secrets
to (σ–1({0, 1}n ∩H ))d , where n denotes the ring degree, d the module rank and H the range of σ,
see Section 1.1.1. In addition, the tightest worst-case to average-case reductions for M-LWE
require s to be taken from the dual (R∨q )d . However, σ–1 maps H to KR but not necessarily to R
or to R∨. We thus have to further restrict the set of secrets to

Z = (R∨q ∩ σ–1({0,λ–1}n ∩ H ))d ,

where λ is such that R∨ = λ–1R, see Section 1.1.5. In the case of power-of-2 cyclotomics, it
yields λ = n and therefore λZ = (Rq ∩ σ–1({0, 1}n ∩ H ))d .

2.5.1 Lagrange Basis

As opposed to R2 which corresponds to binary vectors in the coefficient embedding, the power
basis is not adapted to describe the set λZ. We thus introduce the Lagrange basis. Let n = t1+2t2.
For j ∈ [n], we denote by αj = σj(ζ) the j-th root of the defining polynomial f . Recall that we
assume that αj is real for j ∈ [t1], and that we have αt1+j = αt1+t2+j ∈ C for j ∈ [t2]. Applying σj
to an element r =

∑n–1
k=0 rkζ

k ∈ KR comes down to evaluating the polynomial pr =
∑n–1

k=0 rkx
k at αj .

We use this polynomial interpretation to define elements of KR that form a basis of σ–1({0, 1}n∩H ).
Lagrange interpolation defines polynomials that map a set of distinct elements to 0 and 1. Since
the αj are distinct as f is irreducible, we can apply a similar method and define

Lk =
∏

j∈[n]\{k}

x – αj
αk – αj

,

for k ∈ [t1], which is real due to the conjugation symmetry of the roots. For k ∈ {t1+1, . . . , t1+t2},
we define

Lk =
∏

j∈[n]\{k}

x – αj
αk – αj

+
∏

j∈[n]\{k+t2}

x – αj
αk+t2 – αj

= 2R

 ∏
j∈[n]\{k}

x – αj
αk – αj

 ,

where R(z) denotes the real component of a complex number z.
Hence the polynomials lie in R[x] and we have Lk(αj) = δk,j for (k, j) ∈ [t1]× [n], and Lk(αj) =

δk,j + δk+t2,j for (k, j) ∈ {t1 + 1, . . . , t1 + t2} × [n]. Therefore, by defining the Lagrange basis ~l
with the corresponding lk ∼= Lk(ζ) ∈ KR, we have linear independence and σ–1({0, 1}n ∩ H ) =∑

k∈[t1+t2]{0, 1} · lk, because σ(lk) = ek if k ∈ [t1] and σ(lk) = ek + ek+t2 if k ∈ {t1 + 1, . . . , t1 + t2}.
As far as we are aware, this is the first time that the Lagrange basis is used in the setting of
structured lattice-based cryptography. We now need to determine which of these combinations
lie in Rq in order to properly define the set of secrets.
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2.5.2 Lagrange Basis for Power-of-2 Cyclotomics
We now look at the Lagrange basis in the specific case where n is a power of 2.

Lemma 2.6 (Set of Binary Secrets for Power-of-2 Cyclotomics)

Let R be the cyclotomic ring of integers of degree n = 2` for ` ∈ N. Then, for any q ∈ N, the
set Rq ∩ σ–1({0, 1}n ∩ H ) contains only 0 and 1.

Proof: Recall that in cyclotomic fields, we have t1 = 0 and t2 = n/2, see Section 1.1.2. We
know that for power-of-2 cyclotomics the defining polynomial is given by xn +1 and therefore
we can re-index the roots as αj = exp(i(2j + 1)π/n), j now ranging from 0 to n – 1. We can
therefore study the complex product. We look at the constant coefficient of Lk, i.e., Ak =
Lk(0) = 2R

(∏
0≤j<n,j 6=k

–αj
αk–αj

)
. To ease notation, we write j 6= k instead of j ∈ {0, . . . , n–1}\{k}

for the product indexes. We first look at the product for a fixed k ∈ {0, . . . , n/2 – 1}.∏
j 6=k

(αk – αj) = αn–1k

∏
j 6=k

(1 – αj/αk) = –α–1k
∏
j 6=k

(1 – ei2π(j–k)/n)

= –α–1k
n–1∏
l=1

(1 – ei2πl/n),

using the fact that αnk + 1 = 0 and the circularity of the complex exponential. Yet, we also
have

∏n–1
l=0 (x – ei2πl/n) = xn – 1 = (x – 1)

∑n–1
l=0 xl . By simplifying both sides by x – 1 and then

evaluating at 1, we have
∏n–1

l=1 (1 – ei2πl/n) =
∑n–1

l=0 1l = n. The product of the numerators in
the definition of Ak is (–1)n–1αk because we can pair all of the roots αj with their conjugates,
which gives αjαj =

∣∣αj∣∣2 = 1, except for αk. Hence, Ak = 2R(–αk/(–n/αk)) because n is even,
which yields Ak = 2

n . Now we take a subset S ⊆ {0, . . . , n/2 – 1} and we study
∑

k∈S Lk. Note
that the case of S = {0, . . . , n/2 – 1} corresponds to adding all the Lagrange basis elements
which results in 1, and the case S = ∅ results in 0 by convention. So we now assume
that 0 < |S| < n/2. The constant coefficient of

∑
k∈S Lk is 2 |S| /n ∈ (0, 1) and is therefore not

an integer. Hence,
∑

k∈S Lk /∈ Z[x] which means that the element
∑

k∈S lk is not in R nor Rq
for any q ≥ 1. It proves that the only binary combination of the Lagrange basis that are in R
are 0 and 1, and the same conclusion is valid for Rq for any q ≥ 1.

Hence to preserve the complexity of a brute force attack when comparing the two embeddings,
the module rank would have to be increased by a factor n in the case where we take the canonical
embedding to represent binary secrets. In this case, the (dual of the) secrets are from {0, 1}d
and therefore discard most of the available ring structure as opposed to Rd2 . We remark that this
issue hasn’t been addressed by [LWW20]. It seems that for too narrow bounds on the entropic
secret distribution, the number of available secrets is much smaller in the canonical embedding
compared to the number with regard to the coefficient embedding.



Chapter 3

Classical Hardness of Module LWE

This chapter can be seen as a continuation of Chapter 2 and is therefore based on the same
joint work with Corentin Jeudy, Adeline Roux-Langlois and Weiqiang Wen which is published
in the proceedings of the conference Asiacrypt 2020 [BJRW20]. A presentation of 20 minutes has
been recorded for the conference, illustrating the contributions and high level techniques of the
paper.1
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3.1 Introduction
In the following, we continue to study the module variant of LWE, denoted by M-LWE. The
major advantage of LWE over other cryptographic hardness assumptions is its worst-case to
average-case connection to well-studied problems over Euclidean lattices, for suitable parameter
choices. In the seminal work of Regev [Reg05, Reg09], it is shown that any efficient solver for
the average-case problem LWE can be transformed into an efficient solver for any instance of
some worst-case lattice problem, such as finding a set of short independent vectors (SIVP) or the
decision variant of finding short vectors (GapSVP). A standard relaxation of those two problems
consists in solving them only up to an approximation factor γ, denoted by SIVPγ and GapSVPγ ,
respectively. One drawback of Regev’s reduction is that it is quantum, and thus an efficient
solver for LWE only leads to an efficient quantum solver for SIVPγ or GapSVPγ , which needs to

1https://www.youtube.com/watch?v=zDdvV52FBMo
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operate on a quantum computer. A classical hardness proof for LWE starting from GapSVPγ
is shown by Peikert [Pei09], at the expense of requiring an exponentially large modulus q for
the resulting LWE instance. However, such a modulus makes LWE rather impractical. Later,
Brakerski et al. [BLP+13] use Peikert’s result and a modulus reduction for LWE to show a classical
hardness proof for LWE while now allowing for a polynomially large modulus.

When Langlois and Stehlé [LS15] originally introduce and study the module variant of LWE,
they prove an analogue of Regev’s reduction for M-LWE. In other words, they show for suitable
parameters a worst-case to average-case quantum reduction from the SIVPγ problem over module
lattices to M-LWE. As for [Reg05], this reduction is quantum. In their introduction, Langlois
and Stehlé [LS15] claim that Peikert’s dequantization [Pei09] carries over to the module case,
making it plausible that a classical hardness proof should also be feasible for M-LWE. However,
a formal proof for the classical hardness of M-LWE was left as an open problem.

3.1.1 Our Contributions
In this chapter, we make progress towards proving the classical hardness of M-LWE. Our main
contribution is a classical reduction from the module variant of GapSVPγ , which we denote
by Mod-GapSVPγ , with module rank at least 2 to M-LWE for any polynomial-sized modulus p
and module rank d at least 3n + ω(log2 n), where n is the degree of the underlying number field.

At a high level, we follow the structure of the classical hardness proof of LWE from Brakerski
et al. [BLP+13]. To do so, we need three ingredients: First, a classical reduction for M-LWE with
an exponential-sized modulus. As a second component, we need the hardness of M-LWE using a
binary secret, and finally, a modulus reduction technique.

Classical Reduction: Regarding the first ingredient, we prove in Section 3.2 with Theorem 3.2
that Peikert’s dequantization [Pei09] carries over to the module case. The proof idea is the
same as the one from Peikert, but with two novelties. First, we look at the structured variants
of the corresponding problems, Mod-GapSVPγ and M-LWE, where the underlying ring R is the
ring of integers of a number field K . Recall that the problem Mod-GapSVPγ becomes easy in
the special case of modules of rank 1 (i.e., ideals) as the minimum of ideal lattices can be
bounded above and below, see Lemma 1.4. This is why we restrict our results to modules of
rank at least 2. Second, we replace the main component, a reduction from the Bounded Distance
Decoding (BDD) problem to the search version of LWE, by the reduction from the Gaussian
Decoding Problem (GDP) over modules to the decision version of M-LWE (Lemma 3.3, adapted
from [PRS17a]). As a side contribution, we thus generalize the hardness of the decision variant
of M-LWE to all number fields K , not only cyclotomic fields as in [LS15]. This is interesting,
as we mainly use decision problems (and not their search variants) as the underlying hardness
assumptions for cryptographic constructions.

Binary Secret: For the second ingredient, we can use our results from the previous chapter
on the hardness of bin-M-LWE. More precisely, we make use of the improved reduction proven
in Theorem 2.2. Recall that Corollary 2.1 is the instantiation of this theorem for power-of-2
cyclotomics. Note that in the original paper published at Asiacrypt 2020 [BJRW20], the improved
reduction didn’t yet exist and we thus used the simple reduction of Theorem 2.1. However,
this makes the overall classical hardness proof more involved, as we have to handle different
transitions from the search to the decision variants and from discrete to continuous Gaussian
error distributions. Hence, the reduction as shown in this thesis is not only better in parameters,
but also requires less intermediate steps, as compared to the original paper [BJRW20].

Modulus Reduction: Finally, we provide a modulus reduction technique, the last required in-
gredient, where the rank of the underlying module is preserved. This corresponds to the modulus
reduction for LWE shown by Brakerski et al. [BLP+13, Cor. 3.2]. Prior to this paper, Albrecht
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and Deo [AD17a] adapted the more general result from [BLP+13, Thm. 3.1], from which the nec-
essary Corollary 3.2 is deduced. Thus, in Section 3.4, we first recall their general result [AD17a,
Thm. 1] and then derive Corollary 3.2, that we need for our purposes, from it. The quality of the
latter depends on the underlying ring structure and how the binary secret distribution behaves.
For the case of power-of-2 cyclotomics, we provide a concrete instantiation in Corollary 3.3. This
involves the computation of upper bounds of the singular values of the rotation matrix. Note
that Langlois and Stehlé [LS15] prove a modulus switching result for M-LWE from modulus q to
modulus p, but the error increases at least by a multiplicative factor q

p , which is exponential if q is
exponentially and p only polynomially large. Further, the reason why we need to go through the
binary variant of M-LWE is because we want to keep the noise amplification during the modulus
switching part as small as possible.

We now explain how to complete the proof of the classical hardness of decision M-LWE for any
polynomial-sized modulus p and module rank d at least 3n + ω(log2 n), as stated in Theorem 3.1.
We further instantiate it for power-of-2 cyclotomics in Corollary 3.1. We refer to Figure 3.1 for
an overview of the full proof.

In a first step, we classically reduce Mod-GapSVPγ to M-LWE in Theorem 3.2, requiring the
resulting modulus q to be exponentially large in the ring degree n, i.e., q ≥ 2n (as k ≥ 2). Further,
the error distribution of M-LWE is given by Υα for some parameter α. This is a distribution
over a particular set of elliptical Gaussian distributions in the canonical embedding, which we
formally defined in Section 1.3.2. Then, we show in Lemma 3.4 how to move from Υα to the set
of spherical Gaussians Ψ≤α′ , where α′ = α · ω(log2 n). In a next step, we use the binary secret
result Theorem 2.2 of Chapter 2 to reduce M-LWE to bin-M-LWE, where the resulting rank d has
to be at least 3 · log2(q) + ω(log2 n). As q is exponentially large in n, this leads to a rank d that
is linear in n. Note that the prime number q has to fulfill some number-theoretic constraints
which simplify to q = 5 mod 8 in the case of power-of-2 cyclotomics (Corollary 2.1). Then, using
Corollary 3.2, we show a reduction from bin-M-LWE with modulus q and Gaussian parameter
bound β to bin-M-LWE with modulus p and Gaussian parameter bound β′, where q ≥ p ≥ 1
and (β′)2 ≥ (

√
2β)2 + ∆. The parameter ∆ is determined by the underlying ring R and is poly(n)

for the case of power-of-2 cyclotomics, as shown in Corollary 3.3. To conclude the classical hard-
ness result of decision M-LWE with polynomial-sized modulus p, we trivially reduce bin-M-LWE
to M-LWE by re-randomizing the secret.

The main contribution of this chapter is summarized in the following theorem.

Theorem 3.1 (Classical Hardness of M-LWE for Cyclotomic Fields)

Let ν ∈ N with prime-power factorization ν =
∏

j p
ej
j . Further, let K be the ν-th cyclotomic

field of degree n = ϕ(ν), and R its ring of integers. Set µ =
∏

j pj and let q be a prime number
such that q = 1 mod µ, ordν (q) = ν/µ and q > max(2n, s1(µ)ϕ(µ)), where s1(µ) denotes the
largest singular value of the Vandermonde matrix of the µ-th cyclotomic field. Let d, p ∈ N
and β′, γ ∈ R+. There is a classical PPT reduction from Mod-GapSVPγ to M-LWEn,d,p,Ψ≤β′ ,
where d ≥ 3n + ω(log2 n), p = poly(n) and

β′ = Θ̃
(
n

5
2

γ

)
.

In the special case of power-of-2 cyclotomic fields, the theorem implies the following corollary.
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√
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√
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√
4n2 + 1

d ≥ 3n + ω(log2 n)
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Needed Ingredient

1) Classical Reduction
Section 3.2

2) Binary Hardness
Section 2.3

3) Modulus Reduction
Section 3.4

Figure 3.1: Overview of the complete classical hardness proof of decision M-LWE for linear rank d
and polynomially large modulus p, as stated in Theorem 3.1 for K the ν-th cyclotomic number
field of degree n. The right side shows the concrete instantiation for power-of-2 cyclotomics, as
stated in Corollary 3.1. The parameter ∆ is determined by the underlying ring R and is poly(n)
for the case of power-of-2 cyclotomics. For the reduction from M-LWE to its binary variant, we
use the improved reduction from Chapter 2.
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Corollary 3.1 (Classical Hardness of M-LWE for Power-of-2 Cyclotomics)

Let ν ∈ N be a power of two, K be the ν-th cyclotomic field of degree n = ν/2, and R
its ring of integers. Let q ∈ N be prime such that q = 5 mod 8. Further, let d, p ∈ N
and β′, γ ∈ R+. There is a classical PPT reduction from Mod-GapSVPγ to M-LWEn,d,p,Ψ≤β′ ,
where d ≥ 3n + ω(log2 n) and

β′ = Θ̃
(
n

5
2

γ

)
.

Using the advanced binary hardness proof from Section 2.3 instead of the simple reduction
from Section 2.2 improves the β′ from our original result [BJRW20, Thm. 2] by a factor of

√
m·n

11
4 ,

where m denotes the number of given samples. On the other hand, it increases the rank condition
by an additive term of n.

3.1.2 Related Work
Classical Hardness of Ring LWE

As our overall classical reduction with polynomially large modulus is restricted to modules of
rank linear in the ring degree, it doesn’t apply to R-LWE, which is the special case of M-LWE
where the rank d equals 1. Furthermore, the classical reduction with exponentially large modulus
of Section 3.2 is meaningless for rank 1 modules, as Mod-GapSVPγ is easy to solve in this case.
However, as we discuss in the following, there are two different ways to obtain the classical
hardness of R-LWE with an exponentially sized modulus.

The first is informally mentioned in [BLP+13] and can be achieved in two steps. First, by
a dimension-modulus switching as in [BLP+13], we can reduce LWE in dimension d and with
modulus q to LWE in dimension 1 and with modulus qd with a slightly increased error rate.
Then, by a ring switching technique as in [GHPS12], n samples of the latter one can be reduced
to one sample of R-LWE over a ring of degree n and modulus qd , while keeping the same error
rate. For more details on the second step, we refer to [AD17a, App. B].

On the other hand, as a direct application of our classical hardness result of M-LWE, we
can provide an alternative classical hardness result for R-LWE with exponential-sized modulus.
The idea is that, using a rank-modulus switching as in [AD17a, WW19], we can instead reduce
from M-LWE over d-rank modules of n-degree ring and modulus q, to R-LWE with n-degree ring
and modulus qd (and rank equals 1), with a slightly increased error rate. However, we remark that
the underlying worst-case lattice problems are different for these two results. Suppose that we
consider the classical hardness of R-LWE over n-degree ring and qd modulus where d = O(n). Then,
the underlying problem is the standard GapSVP over all Euclidean lattices of dimension O(

√
n)

for the first result, while it is Mod-GapSVP over rank-2 module lattices of some O(n)-degree ring
for the second one.

Algebraically Structured LWE

A recent result from Peikert and Pepin [PP19] tightly proves the hardness of M-LWE over a
number field K of degree n and with rank d assuming the hardness of R-LWE over any one of a
class of number field extensions K ′/K with extension degree d = [K ′ : K]. Instead of showing a
modulus-rank trade-off as in [AD17a], they provide a degree-rank trade-off, where the underlying
ring structure is changed, while preserving the modulus q. As pointed out by the authors
themselves, this result is from a different nature than the original hardness result of M-LWE,
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Mod-GapSVPγ

Cyclotomic Fields
Theorem 3.1

Power-of-2 Cyclotomics
Corollary

M-LWEn,k,q,Υα

Theorem 3.2
k ≥ 2, q ≥ 2

nk
2 , γα ≥ nk

√
k

Needed Ingredient

1) Classical Reduction
Section 3.2

Figure 3.2: The first ingredient required for the complete classical hardness proof of deci-
sion M-LWE, as stated in Theorem 3.1 for K the ν-th cyclotomic number field of degree n.

given by Langlois and Stehlé [LS15]. The latter one established a reduction from worst-case
problems over module lattices, whereas the reduction in [PP19] starts from an average-case
problem over rings. The main intention of their paper is to unify the landscape of different
algebraically structured variants of LWE.

3.1.3 Roadmap
The rest of the chapter is structured as follows. In Section 3.2, we prove a classical reduction
for M-LWE with an exponentially large modulus. To this end, we first prove a reduction from
the Gaussian Decoding Problem to M-LWE, which is afterwards used as a main building block
for the classical proof. In Section 3.3, we explain how to use the binary hardness result from
the previous chapter and how to adapt the error distribution. Finally, in Section 3.4 we provide
a modulus-reduction first for the case of general number fields with general secret distributions
and then for the special case of power-of-2 cyclotomics with secrets of small norm.

3.2 Classical Reduction for Exponentially Large Moduli
The goal of this section is to provide Theorem 3.2, which is the first ingredient needed to prove
the classical hardness of M-LWE, as illustrated in Figure 3.2. To do so, we adapt the classical
hardness reduction of LWE for exponentially large moduli from Peikert [Pei09, Thm. 3.1] to the
module setting. In their introduction, Langlois and Stehlé [LS15] claim that Peikert’s dequanti-
zation [Pei09] carries over to the module case and we prove this claim in the following. By using
the more recent results of Peikert et al. [PRS17a], our reduction directly reduces Mod-GapSVP to
the decision variant M-LWE and holds for any number field K .

3.2.1 Step 1: From Gaussian Decoding Problem to M-LWE
As a first step, we prove a reduction from the Gaussian Decoding Problem (GDP) over module
lattices (Definition 1.6) to M-LWE, which we then use later in Step 2 for the classical hardness
proof. Informally speaking, GDP is a computational problem over lattices that, given a point y
in the Euclidean space with the promise that it is close to a given lattice, asks to recover the
closest lattice point x, or equivalently their difference e = y – x. The particularity of GDP is
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that the difference e follows a Gaussian distribution. To obtain the required result, we prove
the following Lemma 3.3, which is an adaptation of [PRS17a, Lem. 6.6] from ideals to modules.
To do so, we essentially need to adapt two components from the original proof. The first is a
transformation from an instance of the Bounded Distance Decoding (BDD) problem over some
ideal lattice to samples of R-LWE. Fortunately, there is already in [LS15] an adaptation of it to
the module setting which transforms an instance of BDD over some module lattice (Definition 1.4)
to a sample of M-LWE using some Gaussians over the module lattice. Recall, that BDD is closely
related to GDP, with the only difference that the vector e doesn’t have to follow a Gaussian
distribution, but only needs to be of bounded norm. The second component which is important
in the proof of [PRS17a, Lem. 6.6] is the Oracle Hidden Center Problem (OHCP, Definition 3.1)
together with an efficient solver for it. This tool is independent of the underlying lattice and
thus can still be used in the case of module lattices. As our proof is a direct adaptation of the
original one, we strongly recommend to read the original paper with a more detailed introduction
to the OHCP problem. We now recall the results for both tools.

Throughout this section, let K be a number field of degree n with R its ring of integers.
As explained in Section 1.2.2, any R-module M ⊆ Kk of rank k ≥ 2 can be identified with
a module lattice of dimension N = nk. By M∨ we denote its dual lattice as defined in Sec-
tion 1.1.5. Recall from Section 1.1.2 that any vector e ∈ Kk is equipped with the (2,∞)-norm
defined by ‖e‖2,∞ = maxj∈[n](

∑
`∈[k] |σj(e`)|2)1/2. We further refer to Section 1.3.2 for the for-

mal definitions of the different Gaussian distributions that arise in this section (as for instance
the continuous Gaussian Dr′ , the discrete Gaussian distribution DM,r and the distribution over
elliptical Gaussians Υα). Further, recall the definition of the M-LWE distribution AMs,ψ from
Section 1.4.3.

Lemma 3.1 (Adapted from [LS15, Lem. 4.14])

Let K be a number field of degree n with ring of integers R and k ∈ N. There exists a PPT
algorithm that takes as input an integer q ≥ 2 with known factorization, a moduleM⊆ Kk,
a coset e +M∨ and bound δ ≥ ‖e‖2,∞, a parameter r ≥

√
2q · ηε(M), and Gaussian samples

from DM,r for some r ≥ r. It outputs samples that are within negligible statistical distance
of the M-LWE distribution AMs,ψ, for a uniformly random s ∈ (R∨q )k and ψ = Dr′ , where the
coefficients of r′ are given for every j ∈ [n] by

(r ′j )
2 =
(
rδ
q

)2
+
r2j
∑
`∈[k] |σj(e`)|2

q2
.

We now formally define the Oracle Hidden Center Problem. Note that we use the wording
of the problem as in the updated version from June 2020 of [PRS17a], accessible via the IACR
eprint server [PRS17b]. The modifications from this updated version have, however, no impact
on our proof of Lemma 3.3.

Definition 3.1 (Oracle Hidden Center Problem): Let k ∈ N, d ∈ R+, β ≥ 1 and ε, δ ∈
[0, 1) ∩ R, the (ε, δ,β)-OHCP is an approximate search problem defined as follows. Given
access to an oracle O : Rk × R+ → {0, 1}, such that its acceptance probability p(z, t) for
any input (z, t) with ‖z – z∗‖2 ≤ βd depends only on exp(t) · ‖z – z∗‖2 for some hidden
center z∗ ∈ Rk with δd ≤ ‖z∗‖2 ≤ d, the goal is to output z ∈ Rk such that ‖z – z∗‖2 ≤ ε ·d.
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Lemma 3.2 (Solver for OHCP [PRS17a, Prop. 4.4])

There is a PPT algorithm that takes as input a confidence parameter κ ≥ 20 log2(k + 1), the
scale parameter d, and solves (exp(–κ), exp(–κ), 1 + 1/κ)-OHCP in dimension k except with
probability exp(–κ), provided that exists a p(∞) ∈ [0, 1] such that

1. p(0, t∗) – p(∞) ≥ 1/κ for some t∗ ∈ R+;

2. |p(0, t) – p(∞)| ≤ 2 exp(–t/κ) for any t ∈ R+; and

3. p(z, t) is κ-Lipschitz in t for any z ∈ Rk.

Let n = t1 + 2t2 the decomposition of the degree n into the number of real and complex
embeddings. As in [PRS17a], for any r > 0, ζ > 0, and T ≥ 1, we define the set of non-spherical
parameter vectors Wr ,ζ ,T as the set of cardinality (t1 + t2) · (T + 1), containing for each ` ∈ [t1 + t2]
and j ∈ {0, . . . , T} the vector r`j which is equal to r in all coordinates except in the `-th (and
the (` + t2)-th if ` > t1), where it is equal to r · (1 + ζ)j . We are now ready to state and prove the
reduction from GDP to M-LWE.

Lemma 3.3 (Adapted from [PRS17a, Lem. 6.6])

Let K be a number field of degree n with ring of integers R and k ∈ N. There exists
a PPT algorithm that, given an oracle that solves M-LWEq,Υα , for a real α ∈ (0, 1) and
an integer q ≥ 2 together with its factorization, a rank k module M ⊆ Kk, a parame-
ter r ≥

√
2q · ηε(M) for ε = exp(–kn), and polynomially many samples from the discrete

Gaussian distribution DM,r for each r ∈ Wr ,ζ ,T (for some ζ = 1/poly (n) and T = poly (n)),
solves GDPM∨,g, for g = αq/(

√
2kr).

Note that if we sample a coset e +M∨ as in GDPM∨,g with g = αq/
√
2kr its (2,∞)-norm

is bounded above by δ =
√
k · g · G(n) = αqG(n)/

√
2r, for some fixed G(n) = ω(

√
log2 n). If we

then apply the lemma above with δ and rj = r, the distribution of the resulting error rate r′ is
exactly Υα.

Overall, it suffices to carefully adapt the definition of the BDD instances to get M-LWE
instances. Then we can use the oracle for M-LWE to simulate some oracles Oj such that Oj has
hidden center σj(e) for every j ∈ [n]. An approximation of σj(e) can then be used with Babai’s
algorithm to reconstruct e. Still, the proof maintains to be quite technical.

Proof: Assumption on α: Fix q,α, k, r , g as in the statement of the lemma. By G(n) we
denote a function in ω(

√
log2 n). Recall that any R-module M ⊆ Kk of rank k corresponds

to a module lattice of dimension N = nk. Assume α ≤ exp(–N ). Using Lemma 1.8 with ε =
exp(–N ), it yields with high probability

‖σ(e)‖2 ≤
√
Ng ≤ αq

√
N√

2kr
≤ α

2
√
k
·
√
N

ηε(M)
≤ α
√
π

2
√
k
· λ1(M∨) ≤ 2–Nλ1(M∨).

Thus, the LLL algorithm (Lemma 1.5) would solve the GDP instance efficiently and without
loss of generality we may assume in the following that α > exp(–N ).
The high level idea of the reduction: Define κ = poly(N ) with κ ≥ 100N 2m, such that the
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advantage of the oracle for M-LWEq,Υα is at least 2/κ, when it receives m input samples.
Let e +M∨ denote the input to the GDPM∨,g problem, where e = (e1, . . . , ek) with e` ← Dg
for every ` ∈ [k]. The goal is to recover e.
The reduction uses the M-LWE oracle to simulate t1 + t2 different oracles Oj , such that

the acceptance probability of Oj on input (z, t) only depends on exp(t) · ‖z – σj(e)‖2, where σ
denotes the canonical embedding. In other words, Oj has a hidden center σj(e), defining
an instance of the OHCP as in Definition 3.1. More concretely, we define for the t1 real
embeddings the oracles Oj : Rk×R+ → {0, 1} (for j ∈ [t1]) and for the t2 complex embeddings
the oracles Oj : Ck × R+ → {0, 1} (for t1 + 1 ≤ j ≤ t1 + t2). The reduction can thus use the
efficient solver of Lemma 3.2 to find a good approximation of σj(e) for every j ∈ [t1 + t2].
Note that σt1+t2+j(e) is the complex conjugate of σt1+j(e), so it suffices to have t2 oracles for
the complex embeddings.
The oracles: In order to define the oracle Oj we define the following functions. For the

real embeddings with j ∈ [t1], we set kj : Rk → (KR)k with kj(z) = σ–1(z1 · ej , . . . , zk · ej)T .
For the complex embeddings with t1 + 1 ≤ j ≤ t1 + t2, we set kj : Ck → (KR)k with kj(z) =
σ–1(z1 · ej + z1 · ej+t2 , . . . , zk · ej + zk · ej+t2 )T . Recall that z denotes the complex conjugate of the
complex number z ∈ C and that ej denotes the j-th unit vector. On input (z, t), the oracle Oj
chooses samples from DM,ri,j , where the index i is defined by t as (1 + ζ)i = exp(t). It then
runs the transformation from Lemma 3.1 on these Gaussian samples, the coset e–kj(z)+M∨,
parameter r and distribution bound δ = αqG(n)√

2r
=
√
k · g · G(n). Note that ‖e – kj(z)‖2,∞ ≤

‖e‖2,∞ + ‖z‖2 ≤ δ + ‖z‖2 and that we mostly only care about the behavior of the oracle
when z = 0. Let AMj,z,t be the resulting M-LWE samples. The oracle Oj then calls the oracle
for M-LWE on these samples and finally outputs 1 if the latter one accepts. In a next step, the
reduction uses the efficient solver for the OHCP (Lemma 3.2) with confidence parameter κ,
distance bound δ and receives some approximation zj to the oracle’s hidden center σj(e).
Finally, it runs the LLL algorithm on the coset e –σ–1(z1, . . . , zn)T +M∨, receives as output ê
and returns ê + σ–1(z1, . . . , zn)T as solution to the GDP instance.
Proof of the claims: We now prove that this reduction works as claimed. First, we assume

that the zj are valid solutions to the (exp(–κ), exp(–κ), 1 + 1/κ)-OHCP with hidden center σj(e)
for every j ∈ [t1 + t2] and show that the reduction outputs the correct answer. Since zj is a
valid solution, by definition and Lemma 1.8 we have

‖σj(e) – zj‖2 ≤ exp(–κ)δ = exp(–κ)αqG(n)√
2r
≤ exp(–κ) G(n)

ηε(M)
≤ 2–N

λ1(M∨)√
N

.

Having σj(e) for all j ∈ [t1 + t2], we construct the full vector σ(e) and compute ‖σ(e) –
(z1, . . . , zn)T‖2 ≤ (

∑
j∈[n] ‖σj(e) – zj‖22)1/2 ≤ 2–Nλ1(M∨), and finally ‖e – σ–1(z1, . . . , zn)T‖2 ≤

2–Nλ1(M∨). Thus, the LLL algorithm (Lemma 1.5) succeeds and outputs the correct ele-
ment ê = e – σ–1(z1, . . . , zn)T and thus ê + σ–1(z1, . . . , zn)T is a correct solution to the GDP
instance.
Second, we show that for every j ∈ [t1 + t2] the oracle Oj represents a valid instance

of (exp(–κ), exp(–κ), 1 + 1/κ)-OHCP with hidden center σj(e). Lemma 3.1 with rj = r exp(t)
implies that the distribution of AMj,z,t only depends on exp(t) · ‖z – σ(e)‖2. As κ = poly(N ) and
every coefficient e` of e is sampled from Dg, it yields for δ =

√
k · g · G(n) that exp(–κ)δ ≤

‖σj(e)‖2 ≤ δ, for every j ∈ [t1 + t2] except with negligible probability. Thus, Oj ,κ and δ
correspond indeed to a valid instance of OHCP.
Efficient solver for OHCP: To conclude the proof, we show that for every j ∈ [t1 + t2] the
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oracle Oj satisfies the requirements to apply Lemma 3.2, which provides an efficient solver
for OHCP. Let pj(z, t) denote the probability that Oj outputs 1 on input (z, t) and p(∞)
the probability that the M-LWE oracle outputs 1 on uniformly random input. Further, it
yields pj(0, 0) = p`(0, 0) for all j, ` ∈ [t1 + t2]. Also note that pj(0, 0) – p(∞) corresponds to the
advantage of the M-LWE oracle, where the error rate that we obtain from Lemma 3.1 on
input e +M∨ is exactly Υα (as kj(z) = 0 and exp(t) = 1). As we assume that this advantage
is bounded below by 2/κ, it yields Ee←Dg [pj(0, 0) – p(∞)] ≥ 2/κ.
For the first item of Lemma 3.2, we have to show that pj(0, t∗)–p(∞) ≥ 1/κ for some t∗ ∈ R+.

Setting t∗ = 0 and using a Markov argument, we get that Pre←Dg [pj(0, 0) – p(∞) ≥ 1/κ] ≥
1/(κ – 1), which is non-negligible. For the second item of Lemma 3.2, we have to show
that |pj(0, t) – p(∞)| ≤ 2 exp(–t/κ) for any t ∈ R+. It suffices to show that the distribution
of AMj,0,t is within statistical distance 2 exp(–t/κ) of the uniform distribution for any t ∈ R+.
Let t ≥ ln(2)κ. Using [PRS17a, Lem. 6.9], the statistical distance for m samples is bounded
above by

m · ε = m · exp(–c2n) = m · exp(–n
∏
`∈[n]

(r ′`)
2/n)

≤ m · exp

–n/q2
∏
`∈[n]

(r`)2/n
∏
`∈[n]

(‖σ`(e)‖2)2/n


= m · exp

–n/q2 exp(2t/n)r2
∏
`∈[n]

(‖σ`(e)‖2)2/n
 .

Here, we use that (r ′`)
2 ≥ ((r`)2‖σ`(e)‖22)/q2 for all ` ∈ [n] and r` = r for all ` 6= j and rj = r exp(t).

We deduce for every ` ∈ [n] that

‖σ`(e)‖2 ≥ exp(–N ) · δ = exp(–N ) · αqG(n)√
2r

> exp(–2N – 1)q/r .

We plug this equation into the one above to obtain

m · ε ≤ m · exp

–n/q2 exp(2t/n)r2
∏
`∈[n]

(‖σ`(e)‖2)2/n


≤ m · exp (–n exp(2t/n – 4N – 2))
< m · exp((–n(t/κn + log2(m/2)/n)) = 2 exp(–t/κ),

where we used in the third step the loose equation exp(2t/n – 4N – 2) > exp(t/n) > t/κn +
log2(m/2)/n, as we required t ≥ ln(2)κ ≥ κ/10 ≥ 10N 2m.
And finally, for the last item of Lemma 3.2, we have to show the Lipschitz property, i.e.,

that |pj(z, t1) – pj(z, t2)| ≤ κ|t1 – t2| for any t1, t2 ∈ R+. As mentioned before, the distribution
of AMj,z,t only depends on exp(t)‖z – σj(e)‖2. Thus, by Lemma 1.19, the distributions of AMj,z,t1
and AMj,z,t2 are within statistical distance min{1, 10m(exp(|t1 – t2|) – 1)} ≤ κ|t1 – t2|, Here,
we use that if |t1 – t2| > 1/κ, then the bound κ|t1 – t2| is trivial. On the other hand,
if |t1 – t2| ≤ 1/κ� 1/100, then exp(|t1 – t2|) – 1� 10|t1 – t2|, so 10m(exp(|t1 – t2|) – 1) ≤ κ|t1 – t2|,
which completes the proof.
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3.2.2 Step 2: Classical Hardness for Exponentially Large Modulus

Using the results from above, we are able to adapt the classical hardness result of LWE from
Peikert [Pei09, Thm. 3.1] to modules, yielding for suitable parameters a reduction from GapSVP
over module lattices in the worst-case to the M-LWE problem.

Theorem 3.2 (Classical Hardness of M-LWE)

Let α, γ ∈ R+ such that α ∈ (0, 1) and let n, k, q ∈ N, defining N = nk. We consider a
number field K of degree n with R its ring of integers. Further, assume that k ≥ 2, q ≥ 2

N
2

and γ ≥ N
√
k

α . Let M ⊆ Kk be a rank-k module. There exists a PPT reduction from
solving Mod-GapSVPγ in the worst-case to solving the problem M-LWEn,k,q,Υα , using poly(N )
samples.

The proof idea is the same as the one from Peikert, but with two modifications. First,
we look at the module variants of the corresponding problems, i.e., Mod-GapSVP over module
lattices and M-LWE, where the underlying ring R is the ring of integers of a number field K .
Second, we replace the main component, a reduction from the BDD problem to the search version
of LWE ([Pei09, Prop. 3.4], originally from [Reg05, Lem. 3.4]), by the reduction proven above from
the GDP problem over modules to the decision version of M-LWE (Lemma 3.3). As Lemma 3.3
requires access to polynomially many samples from some discrete Gaussian distribution over a
lattice, we make use of the Gaussian sampler from Lemma 1.12.

Proof: LetM⊆ Kk be a rank-k module over R, such that the corresponding module lattice
of dimension N has basis B = (bj)j∈[N ]. Further, let δ be a positive real. The Mod-GapSVPγ
problem as stated in Definition 1.2 asks to decide whether λ1(M) ≤ δ (YES instance)
or λ1(M) > γδ (NO instance). Without loss of generality, we assume that the basis B
is LLL-reduced (Lemma 1.5) and appropriately scaled, thus the following three conditions
hold:

C1) λ1(M) ≤ 2
N
2 ,

C2) minj∈[N ] ‖GS(bj)‖2 ≥ 1,

C3) 1 ≤ δ ≤ 2
N
2 /γ.

Recall that we denote by GS(B) = (GS(bj))j∈[N ] the Gram-Schmidt orthogonalization of B
from left to right. Note for C3, that Mod-GapSVPγ becomes trivial if δ lies outside this
range: If δ < 1, using C2, we know that λ1(M) ≥ 1 and thus it is definitely not a YES
instance. If δ > 2

N
2 /γ, using C1, we know that δγ > 2

N
2 ≥ λ1(M) and thus it is definitely not

a NO instance.
The reduction: The reduction executes the following procedure poly(N ) many times:

• Choose w← Dg′ with g′ = δ
2 ·
√
N ,

• Compute w +M,

• Run the GDPg oracle from Lemma 3.3 with w +M, r = q
√
2N
γδ , g = αq√

2kr
, and using the

Gaussian sampler from Lemma 1.12,



68 CHAPTER 3. CLASSICAL HARDNESS OF MODULE LWE

• Compare the output of the oracle with w.

If the oracle’s answer is always correct, output NO, otherwise YES.
Gaussian sampler: First, we show that the Gaussian sampler from Lemma 1.12 always suc-

ceeds to provide polynomially many samples from the discrete Gaussian distribution DM∨,r
for each r ∈ Wr ,ζ ,T (for some ζ = 1/poly (n) and T = poly (n)), needed in Lemma 3.3. Note
that for every r = (rj)j∈[n] ∈ Wr ,ζ ,T it yields rj ≥ r for every j ∈ [n]. As the task of sam-
pling Gaussians becomes easier with increasing parameter, it suffices to show that the Gaus-
sian sampler succeeds for r. By Section 1.2.1, D = (B–1)T defines a basis of the dual M∨,
where we denote by dj its column vectors for j ∈ [N ]. It yields for the Euclidean norm
that ‖GS(D)‖2 = ‖GS(B)‖–12 . As we require in condition C2 that minj∈[N ] ‖GS(bj)‖2 ≥ 1, it
follows maxj∈[N ] ‖GS(dj)‖2 ≤ 1. Using the condition C3 and that q ≥ 2

N
2 , it yields

r =
q
√
2N
γδ

≥
√
2N ≥ 1 ·

√
ln(2N + 4)/π ≥ max

j∈[N ]

∥∥GS(dj)∥∥2 ·√ln(2N + 4)/π,

and thus the Gaussian sampler from Lemma 1.12 always succeeds.
Case 1 (NO instance): Now, we assume that the reduction is given a NO instance,

i.e., λ1(M) > γδ. We claim that in this case, all requirements from Lemma 3.3 are fulfilled
and thus the oracle always successfully decodes the GDP instance and hence always outputs
the correct answer. Using Lemma 1.8 it yields ηε(M∨) ≤

√
N /λ1(M) for ε = exp(–N ). Thus,

r =
q
√
2N
γδ

>
q
√
2N

λ1(M)
≥
√
2q · ηε(M∨).

Further, w is sampled from Dg′ with

g′ =
δ

2
·
√
N ≤ αγδ

2
√
nk

=
αq√
2kr

= g,

where we use the definitions of g and r and the condition on αγ from the theorem state-
ment, i.e., αγ ≥ N

√
k. Additionally, w is the unique solution to this problem as with high

probability
2 · ‖w‖2 ≤ 2 · g′

√
nk = 2 · δ

2
·
√
N ·
√
nk ≤ αγδ√

k
< γδ < λ1(M).

Thus, the difference w – w′ of two different solutions w 6= w′ to the problem would lead to a
non-zero lattice point inM of norm smaller than the minimum, which is a contradiction of
the definition of the minimum λ1(M).
Case 2 (YES instance): If, on the other hand, the reduction is given a YES instance,

i.e., λ1(M) ≤ δ, we can consider the following alternate experiment. Let z be a shortest
vector inM with ‖z‖2 = λ1(M) ≤ δ. Now, we replace w by w′ = w + z in the second step of
the reduction and thus hand in w′ +M to the GDP oracle. Using the probability preservation
property of the statistical distance (Lemma 1.17) of w and w′, it yields

Pr[R(w +M) = w] ≤ ∆(w;w′) + Pr[R(w′ +M) = w′]
≤ ∆(w;w′) + 1 – Pr[R(w′ +M) = w],

where R denotes the GDP oracle. Note that w′ +M = w +M, so in the real experiment we
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Figure 3.3: The second ingredient required for the complete classical hardness proof of deci-
sion M-LWE, as stated in Theorem 3.1 for K the ν-th cyclotomic number field of degree n. The
right side shows the concrete instantiation for power-of-2 cyclotomics, as stated in Corollary 3.1.
For the reduction from M-LWE to its binary variant, we use the improved reduction from Chap-
ter 2.

have Pr[R(w′ +M) = w] = Pr[R(w +M) = w] and thus

Pr[R(w +M) = w] ≤ 1 + ∆(w;w′)
2

.

Using the statistical distance of two Gaussian distributions with the same width but different
means, Lemma 1.18, we obtain

∆(w;w′) ≤
√
2π‖z‖2
g′

≤
√
2πδ
g′
≤ 2
√
2π√
N

,

where we use that g′ = δ
√
N /2 and thus Pr[R(w +M) = w] ≤ 1

2 +
√
2π√
N
. For sufficiently

many iterations, the oracle gives a wrong answer in at least one iteration and the reduction
outputs YES.

3.3 Binary Hardness and Adapted Error Distribution
As the second ingredient for our classical hardness result for M-LWE, as depicted in Figure 3.3,
we need the binary hardness of M-LWE. Fortunately, Chapter 2 provides a detailed study of this
problem. Concretely, we use Theorem 2.2 from Section 2.3 as it directly proves the hardness of
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the decision version of bin-M-LWE. The instantiation for power-of-2 cyclotomics is provided in
Corollary 2.1. To complete the proof of Theorem 3.1, we need to connect the first and second
ingredient by adapting the error distribution after the classical reduction and before the binary
secret proof. More precisely, we have to move from the distribution Υα over elliptical Gaussian
distributions, as used within Section 3.2 and defined in Section 1.3.2, to the set of continuous
Gaussian distributions Ψ≤α′ , as used in Section 2.3. To achieve this, we use similar techniques
as in [LS15, Sec. 4.4]. Note that their definition of Υ is slightly different than ours, positively
influencing the bound we obtain.

Lemma 3.4

Let n, k, q be positive integers and α be a positive real. There exists a PPT reduction
from M-LWEn,k,q,Υα to M-LWEn,k,q,Ψ≤α′ , where α

′ = α · ω(log2 n).

Proof: Our goal is to reduce M-LWEn,k,q,Υα to M-LWEn,k,q,Ψ≤α′ , where α
′ is given by α ·

ω(log2 n). Let K be a number field of degree n and let n = t1 + 2t2 be the decomposition of n
in real and complex embeddings. Recall, that Υα is a distribution over elliptical Gaussian
distributions Dr, where r2j is distributed as a shifted chi-squared distribution for the real
embeddings (i.e., j ∈ [t1]) and as a shifted chi-squared distribution with two degrees of
freedom for complex embeddings (i.e., j ∈ {t1 + 1, . . . , t1 + t2}). Using properties about chi-
squared distributions (see for instance [LM00, Lem. 1]), it yields that rj ≤ α√

2
· ω(log2 n) ≤

α · ω(log2 n) = α′ with probability negligible close to 1. Thus, M-LWEn,k,q,Ψ≤α′ is not easier
than M-LWEn,k,q,Υα .

3.4 Modulus Reduction

Recall from Figure 3.1 that we need three ingredients to prove the classical hardness of M-LWE.
In Section 3.2, we provided the first ingredient. For the second ingredient, the hardness ofM-LWE
with binary secrets, we can use our contributions from Chapter 2. The goal of this section is to
present the last ingredient required to complete the classical hardness proof. To this end, we show
a modulus reduction for bin-M-LWE, where the rank of the underlying module is preserved, as
illustrated in Figure 3.4. This corresponds to the modulus reduction for LWE shown by Brakerski
et al. [BLP+13, Cor. 3.2]. Note that Langlois and Stehlé [LS15] prove a modulus switching result
from M-LWEn,d,q,Υβ to M-LWEn,d,p,Υβ′ , where the error increases at least by a multiplicative
factor q

p . If q is exponential-sized and p only polynomial-sized, this factor is exponentially large
and thus not suitable for our intentions.

Prior to this thesis, Albrecht and Deo [AD17a] adapt the more general result from Brakerski
et al. [BLP+13, Thm. 3.1], from which Corollary 3.2 is deduced. Thus, we first recall their general
result [AD17a, Thm. 1] and then derive the corollary we need from it. We use their more recent
and simplified version as updated on the IACR eprint server [AD17b, Thm. 1]. The theorem
provides a transformation that maps M-LWE samples for the modulus q and rank d with a
Gaussian noise distribution of parameter β to M-LWE samples for a different modulus p, rank d′

and Gaussian noise distribution of parameter β′. The secret s of the first sample is related to the
secret of the second sample via some matrix G. Simultaneously, it maps the uniform distribution
to the uniform distribution over the corresponding sets.
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Figure 3.4: The third (and last) ingredient required for the complete classical hardness proof of
decisionM-LWE, as stated in Theorem 3.1 for K the ν-th cyclotomic number field of degree n. The
right side shows the concrete instantiation for power-of-2 cyclotomics, as stated in Corollary 3.1.
The parameter ∆ is determined by the underlying ring R and is poly(n) for the case of power-of-2
cyclotomics.

Theorem 3.3 (Modulus Switching [AD17b, Thm. 1])

Let K be a number field of degree n with R its ring of integers. Let d, d′, q, p ∈ N, ε ∈ (0, 12 )
and G ∈ Rd

′×d . Fix a vector s = (s1, . . . , sd )T ∈ (R∨q )d . Further, let Λ be the lattice given
by Λ = 1

pG
T
HR

d′ +Rd with known basis BΛ in the canonical embedding, let BR be some known
basis of R in H and let r be a real number such that

r ≥ max
(
‖GS(BΛ)‖2 ,

1
q
‖GS(BR)‖2

)
·
√

2 ln(2nd(1 + 1/ε))/π,

where GS(·) denotes the Gram-Schmidt orthogonalization from left to right. There exists an
efficient mapping F : (Rq)d × TR∨ → (Rp)d

′ × TR∨ such that:
1. The output distribution F (U ((Rq)d × TR∨ )) given uniform input is within statistical

distance 4ε of the uniform distribution over (Rp)d
′ × TR∨ .

2. The output distribution F (AMs,Dβ ) is within statistical distance (2d+6)ε of AMGs,Dβ′
, where

(β′k)
2 = β2 + r2(γ2 +

∑
j∈[d]

∣∣σk(sj)∣∣2),
for k ∈ [n] and γ satisfying γ2 ≥ B2d with B = ‖s‖∞.

3.4.1 The General Case
Whereas Albrecht and Deo [AD17a] derive from the theorem above a rank-modulus trade-off,
defining a map from M-LWE with module rank d and modulus q to M-LWE with rank d/k and
modulus qk for any divisor k of d, we are interested in another particular instance of Theorem 3.3
where the rank of the module is preserved. The following corollary specializes the general result
to the case of G = Id ∈ Rd×d and its proof is very similar to the one of [AD17a]. Overall, we
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obtain a modulus reduction, where the rank d is preserved.

Corollary 3.2 (Modulus Reduction for General Number Fields)

Let d, q, p ∈ N with q ≥ p and ε,β ∈ R+ with ε ∈ (0, 12 ) and G = Id ∈ Rd×d . Let ψ be a
distribution over R∨q satisfying

Pr
s←ψ

[
max
k∈[n]

|σk(s)| > B
]
≤ δ

for some non-negative real numbers B and δ. By ψd we denote the distribution over (R∨q )d ,
where every coefficient is sampled from ψ independently. Let BR be some known basis of R
in H and r be a real number such that

r ≥ 1
p
‖GS(BR)‖2 ·

√
2 ln(2nd(1 + 1/ε))/π.

Then, there is a polynomial-time reduction from M-LWEmn,d,q,Ψ≤β with secret distribution ψd

to the problem M-LWEmn,d,p,Ψ≤β′ with secret distribution ψd for (β′)2 ≥ β2 + 2r2B2d. This
reduction reduces the advantage by at most 1 – (1 – δ)d + (2d + 6)εm.

Proof: We use the transformation from Theorem 3.3 by taking γ2 = B2d and replac-
ing

∑
j∈[d]

∣∣σk(sj)∣∣2 for every k ∈ [n] by B2d. We can write G in the coefficient embedding
as Ĝ = Id ⊗ In = Idn, where ⊗ denotes the Kronecker product of two matrices. This de-
fines the corresponding lattice Λ̂ = 1

p Ĝ
TZdn + Zdn with basis BΛ̂ = 1

p Idn. To move from the
coefficient embedding to the canonical embedding, we can simply multiply the basis by the
matrix BRd = Id ⊗ BR. The basis for Λ = 1

pG
T
HR

d + Rd given in the canonical embedding is
thus given by

BΛ = (
1
p
Id ⊗ In) · (Id ⊗ BR) =

1
p
Id ⊗ BR,

using the mixed product property of the Kronecker product. Orthogonalizing from left to
right gives ‖GS(BΛ)‖2 = 1

p ‖GS(BR)‖2. As q ≥ p, we have 1
q ‖GS(BR)‖2 ≤

1
p ‖GS(BR)‖2 =

‖GS(BΛ)‖2 and thus r satisfies the condition of Theorem 3.3. The loss in advantage is the
result of a simple probability calculus. The event that maxk∈[n] |σk(s)| ≤ B happens with
probability greater than 1 – δ. As the secret vector s = (s1, . . . , sd )T ∈ (R∨q )d is chosen by
drawing d times independently from ψ, we have to add the advantage loss of 1 – (1 – δ)d to
the one coming from Theorem 3.3.

3.4.2 The Case of Power-of-2 Cyclotomics
The quality of Corollary 3.2 depends on the term ∆ = 2r2B2d, that we have to add to the error
width β2 in order to obtain the resulting error parameter (β′)2. This factor is determined by the
rank d, the first bound B on the secret distribution ψ and the number r, which itself is quantified
by the field degree n, the starting modulus q, the reduced modulus p and the norm ‖GS(BR)‖2.

In the following, we give a concrete calculation example for those parameters in the case
of power-of-2 cyclotomic rings for the secret distribution ψ given by the uniform distribution
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over R∨2 . Let ν be a power of two, defining the ring of integers of the ν-th cyclotomic field, given
by R = Z[ζ] ∼= Z[x]/〈f (x)〉, where f (x) = xn + 1 and n = ν/2.

Corollary 3.3 (Modulus Reduction for Power-of-2 Cyclotomics and Binary Secrets)

Let R be a cyclotomic ring of degree n, where n is a power of 2. Let d, q, p ∈ N with q ≥ p
and ε,β ∈ R+ with ε ∈ (0, 12 ) and G = Id ∈ Rd×d . Let further be r a real number such that

r ≥ 1
p
√
n ·
√
2 ln(2nd(1 + 1/ε))/π.

For (β′)2 ≥ β2 + 2dr2, there is a polynomial-time reduction from the problem M-LWEmn,d,q,Ψ≤β
with secret distribution U ((R∨2 )d ) to M-LWEmn,d,p,Ψ≤β′ with the same secret distribu-
tion U ((R∨2 )d ). This reduction reduces the advantage by at most (2d + 6)εm.

In order to guarantee a negligible loss in advantage, we require m and d to be polynomial
in the security parameter and ε negligibly small. For p polynomial in n and fulfilling p ≥√

2dn·
√

2 ln(2nd(1+1/ε))/π
β , we can make sure that r = β√

2d
is a valid choice, implying that β′ ≥

√
2β.

Hence, the noise is only increased by a constant multiplicative factor.

Proof: To prove the claim it suffices to show a first condition on the norm of BR, i.e.,
that ‖GS(BR)‖2 =

√
n and as a second condition that the uniform distribution over R∨2 satisfies

the requirement of Corollary 3.2 for the parameters δ = 0 and B = 1.
First Condition: Let R be a cyclotomic ring of degree n, where n is a power of 2. As

explained in Example 1.3, its dual R∨ is just a scaling of the ring R itself, given by R∨ =
1
nR. Further, following Example 1.2, the Vandermonde matrix that maps the vector of an
element in R defined by its canonical embedding to the vector corresponding to the coefficient
embedding is a scaled isometry with scaling factor 1√

n . A basis BR for R in H is given by
√
n·U,

where U is unitary and thus, ‖GS(BR)‖2 =
√
n.

Second Condition: For any element s ∈ R, let SH be the matrix of multiplication by s
in the canonical embedding written in the basis {hj}j∈[n] of H . Let Rot(s) be the matrix
of multiplication by s in the coefficient embedding. As mentioned above, going from the
coefficient embedding to the canonical embedding is a scaled isometry of scaling factor

√
n.

Thus,
SH = (BR)–1 · Rot(s) · BR =

1√
n
·U† · Rot(s) ·

√
n ·U = U† · Rot(s) ·U,

where U is unitary. As explained in Section 1.1.2, the singular values of SH are given by
∣∣σj(s)∣∣

for j ∈ [n]. It yields

(SH )†SH = (U† · Rot(s) ·U)†(U† · Rot(s) ·U)

= U–1 · Rot(s)T · Rot(s) ·U.

As a conclusion, the singular values of Rot(s) are exactly the same as the one of SH , given
by
∣∣σj(s)∣∣ for j ∈ [n]. The largest singular value of Rot(s) thus determines the maximum of

the set {
∣∣σj(s)∣∣}j∈[n]. We use this observation to compute the bound B of Corollary 3.2 for

the case where ψ equals U ((R∨2 )d ). Note that we provide new bounds, as the ones calculated
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by Albrecht and Deo [AD17a] hold for a Gaussian, and not a binary secret distribution.
Using the identity R∨2 = 1

nR2, we can write Rot(s) = 1
nRot(̃s), where s̃ ∈ R2 and Rot(̃s) only

has entries from the set {0, 1}. Here we use the special form of the rotation matrix for power-
of-2 cyclotomics as explained in Example 1.2. Let Rot(̃s) = U · Σ · V† be the singular value
decomposition of Rot(̃s), where U and V are unitary matrices over R and Σ is a diagonal
matrix with the singular values of Rot(̃s) on its diagonal. The singular value decomposition
of Rot(s) is thus given by Rot(s) = U · 1nΣ · V† and we can deduce that the singular values
of Rot(s) are just the singular values of Rot(̃s), shrank by a factor of 1

n .
The largest singular value s1(Rot(̃s)) of Rot(̃s) is bounded above by its Frobenius

norm ‖Rot(̃s)‖F and hence

s1(Rot(̃s)) ≤ ‖Rot(̃s)‖F =

 ∑
i,j∈[n]

∣∣Rot(̃s)ij∣∣2
1/2

≤ n.

It follows s1(Rot(s)) ≤ 1. We can thus set B = 1 with δ = 0.

Generalization to Larger Secrets

One may wonder if it is possible to generalize this modulus reduction to larger secret distributions,
as we did for both binary hardness proofs of Chapter 2, see Section 2.4. More concretely, we
consider the case where the secret’s coefficients are not necessarily chosen uniformly at random
over {0, 1}, but over a slightly larger set {0, . . . , η – 1} for some positive integer η � q. As the
only thing to adapt in the proof of Corollary 3.3 is the second condition, defining the bounds B
and δ, we can positively answer this question, on the expense of a larger noise increase.

In the case where ψ equals the uniform distribution over (R∨η )d (instead of (R∨2 )d as before) the
same reasoning holds with respect to the largest singular value of the rotation matrix, leading
to B = η – 1 and δ = 0 and implying the following corollary.

Corollary 3.4 (Modulus Reduction for Power-of-2 Cyclotomics and Small Secrets)

Let R be a cyclotomic ring of degree n, where n is a power of 2. Let d, q, p, η ∈ N with q ≥ p
and ε,β ∈ R+ with ε ∈ (0, 12 ) and G = Id ∈ Rd×d . Let further be r a real number such that

r ≥ 1
p
√
n ·
√
2 ln(2nd(1 + 1/ε))/π.

For (β′)2 ≥ β2 + 2dr2(η – 1)2, there is a polynomial-time reduction from the prob-
lemM-LWEmn,d,q,Ψ≤β with secret distribution U ((R∨η )d ) toM-LWEmn,d,p,Ψ≤β′ with the same secret
distribution U ((R∨η )d ). This reduction reduces the advantage by at most (2d + 6)εm.

For p polynomial in n and fulfilling p ≥
√
2dn · (η – 1) ·

√
2 ln(2nd(1 + 1ε))/π/β, we can make

sure that r = β/(
√
2d(η – 1)) is a valid choice, implying that β′ ≥

√
2β.



Chapter 4

Middle-Product Learning With
Rounding

The content of this chapter is based on a joint work with Shi Bai, Dipayan Das, Adeline Roux-
Langlois, Weiqiang Wen and Zhenfei Zhang which is published in the proceedings of the confer-
ence Asiacrypt 2019 [BBD+19].
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4.1 Introduction
In Section 1.4, we defined the Middle-Product Learning With Errors (MP-LWE, Def. 1.15) prob-
lem, as introduced by Roşca et al. [RSSS17]. Recall that the hardness of MP-LWE is guaranteed
as long as the Polynomial Learning With Errors (P-LWE, Def. 1.10) problem defined over some
polynomial f (x), belonging to an exponentially large family of polynomials, is hard. This makes
the hardness of MP-LWE independent of a concrete choice of such a defining polynomial.

Additionally, we defined a deterministic variant of LWE, the Learning With Rounding (LWR,
Def. 1.17) problem, as introduced by Banerjee et al. [BPR12]. It only requires sampling elements
uniformly at random over finite sets, and doesn’t need to sample from discrete Gaussian distri-
butions. Gaussian distributions play a crucial role in the worst-case to average-case reduction
of LWE [Reg05] and P-LWE [SSTX09] and are in general costly, difficult to implement and vulner-
able to side-channel attacks, e.g., [DB15, BHLY16, Pes16, Saa18]. As for LWE, the LWR variant
possesses a structured analogue over rings, called Ring Learning With Rounding (R-LWR).

In 2016, Bogdanov et al. [BGM+16] use the Rényi divergence to show a sample preserv-
ing reduction from the search variant of R-LWE to the search variant of R-LWR. In another
work, Alperin-Sheriff and Apon [AA16] further improve the parameter sets for the reduction. In

75
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particular, the reduction is dimension-preserving with a polynomial-sized modulus. However, a
reduction from decision R-LWE to decision R-LWR with a polynomial-sized modulus was longtime
an open problem, see Section 4.1.2 on related work for more details.

Nevertheless, due to the simplicity and efficiency of R-LWR, several encryption schemes
as SABER [DKRV18] (third round) and Round5 [BBF+19] (second round) participating in the NIST
standardization process are basing their hardness on (decision) R-LWR. To overcome the lack of
provable hardness for decision R-LWR with practical parameters, Chen et al. [CZZ18] propose
a new assumption, called the Computational Learning With Rounding Over Rings (R-CLWR)
problem. They show a reduction from decision R-LWE to R-CLWR, where the secret in the R-LWE
sample is drawn uniformly at random from the set of all invertible ring elements whose coeffi-
cients are small. They also show that one can construct an efficient PKE scheme based on the
hardness of R-CLWR in the random oracle model.

4.1.1 Our Contributions
The main motivation of this work is to combine both variants MP-LWE and R-LWR in order to
define a new problem that benefits from both of their advantages. To this end, we introduce
a new hardness assumption which we refer to as the Middle Product Computational Learning
With Rounding (MP-CLWR) problem. On the one hand, MP-CLWR uses rounding in a similar
way to R-LWR and hence avoids the Gaussian error sampling. On the other hand, the hardness
of MP-CLWR does not depend on a specific defining polynomial. Thus, the MP-CLWR assumption
enjoys the security advantage of MP-LWE and the simplicity advantage of LWR.

The reason why we introduce the problem in its computational form, instead of the more
standard search or decision variant, is twofold. On the one hand, it is as for today unclear how to
reduce the hardness of decision MP-LWR from worst-case lattice problems, while maintaining the
coefficient-wise rounding and allowing for a polynomially large modulus. On the other hand, it is
unclear how to construct encryption schemes directly on the search variant. The computational
variant gives a solution to this dilemma, as we can derive an efficient reduction still allowing for
a polynomially large modulus and at the same time we can use it to build an encryption scheme
(which we introduce separately in Chapter 6).

In the following, we give a brief overview of the MP-CLWR problem and our proof for its
hardness. AnMP-CLWR sample is given by (a, b = ba�d sep), where a is sampled from the uniform
distribution over Z<n

q [x] and s is a fixed element in Z<n+d–1
q [x]. Recall that Z<n

q [x] denotes the
set of polynomials in Zq[x] with degree less than n and that a�d s denotes the middle-product of
length d of the polynomials a and b, as introduced in Section 1.4.4. Further, note that b·ep denotes
the modular rounding function from Section 1.4.5. We define the MP-CLWR problem as the
following game, where we embed MP-CLWR samples into two experiments. In both experiments,
three different parties appear: a challenger C, an adversary A and a source S. The source S1 of
the first experiment provides t different MP-CLWR samples (aj ,

⌊
aj �d s

⌉
p)j∈[t] and the source S2

of the second experiment provides t rounded uniform samples (aj ,
⌊
bj
⌉
p)j∈[t], where all aj and bj

are independently sampled from the corresponding uniform distribution. The challenger C now
uses these samples to compute an Input and a Target. They send the Input to the adversary A
who themselves compute an Output. The adversary wins the experiment if Target = Output.
The important point in this setting is that the challenger C and the adversary A are in both
experiments the same. The MP-CLWR assumption captures that an adversary has no more
advantage to compute the correct output if they receive an input derived from rounded middle-
product samples (Experiment 1) than if they get an input derived from rounded uniform samples
(Experiment 2). We informally illustrate the experiment setting in Figure 4.1.
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Figure 4.1: The experiment setting of the computational assumption (informal)

In order to show in Theorem 4.1 that the hardness of MP-CLWR is guaranteed by the hardness
of MP-LWE, we take an instance (a, b) of the latter and round the second component b. This leads
us to an instance of the so-called rounded MP-LWE problem (see Section 4.3) We can then use the
Rényi divergence to measure the distance between instances of this rounded MP-LWE problem
and instances from MP-LWR. It is easy to go from the decision version to the computational
one, as the distinguishing game can be seen as a special case of the computational game (when
setting the target as the bit to decide which distribution is used). The Hankel matrix plays an
important role in the sequence of reductions as it can be used to represent the middle-product
of two polynomials and thus it helps to analyze when the middle-product of a uniform random
element is again uniform random.

4.1.2 Related Work
As stated before, a reduction from decision R-LWE to decision R-LWR with polynomial-sized
modulus was longtime an open problem, motivating the introduction of intermediate problems
such as the computational variant of R-LWR and similarly our newly defined MP-CLWR problem.
After our results have been published, Liu and Wang [LW20] addressed this open problem by
providing a search-to-decision reduction for R-LWR. In order to do so, they need to define a new
way of rounding. Whereas in our work (and in all other works before) we round an element of
the ring Zq[x]/〈f (x)〉 coefficient-wise, they now round elements with respect to so-called normal
integral bases. They further provide a reduction from R-LWR to MP-LWR for the search and
decision variants. Putting both results together, we obtain the hardness of decision MP-LWR.
However, the authors didn’t provide an analysis how the different rounding notions are related
to each other. This is why we think that it would be interesting to further study the relation of
the different ways of rounding in future works.

4.1.3 Roadmap
The rest of the chapter is structured as follows. In Section 4.2, we first prove some new results on
random Hankel matrices which we need in the hardness reduction and might be of independent
interest. We give a formal definition of the MP-CLWR problem in Section 4.3 and show that it is
at least as hard as decision MP-LWE in Section 4.4.
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4.2 Random Hankel Matrices

In this section, we show new results on the distribution of random Hankel matrices. First, we
recall the definition of Hankel and Toeplitz matrices for a given polynomial, which we interpret
as usual as a vector. We prove a lower bound for the probability that the Hankel matrix of a
polynomial which is chosen uniformly at random has full rank. Finally, this result leads to a
uniformity property of the middle-product which plays a crucial part in the hardness reduction
of the new middle-product learning with rounding assumption in Section 4.4.

Hankel and Toeplitz matrices are not only used in the context of the middle-product of two
polynomials. More generally, as pointed out by Kaltofen and Lobo [KL96], Toeplitz matrices are
used as pre-conditioners in the process of solving linear systems of equations having unstructured
coefficient matrices. The attractiveness of these structured matrices is twofold: First, it suffices
to store the first column and first row, in order to rebuild the whole matrix. Second, the product
of a Toeplitz matrix and a vector is in fact a convolution and can be computed in quasi-linear
time using the Fast Fourier Transformation.

Other than that, large-dimensional random matrices with additional algebraic structure, as
Hankel and Toeplitz matrices, play an important role in statistics, in particular in multivariate
analysis. More concretely, Hankel matrices arise in polynomial regressions and Toeplitz matrices
appear as covariance of stationary processes. In particular, the spectral distribution for their
eigenvalues is important and was studied by Bryc et al. [BDJ06].

We start by recalling the definitions of Hankel and Toeplitz matrices.

Definition 4.1 (Hankel Matrix): Let q, n, d ∈ N such that d ≤ n and a ∈ Z<n+d–1
q [x] with

coefficient vector a = (a0, . . . , an+d–2)T . We define the Hankel matrix of a of order d + n – 1
as

Hank(a) =


a0 a1 . . . ad–1 . . . an–1
a1 a2 . . . ad . . . an
...

... ... ...
...

ad–1 ad . . . a2d–2 . . . an+d–2

 ∈ Zd×n
q .

The Hankel matrix is fully determined by its first row and its last column. Its rank is at
most d. If it has full rank d we write rank(Hank(a)) = d.

Definition 4.2 (Toeplitz Matrix): Let q, n, d ∈ N such that d ≤ n and a ∈ Z<n+d–1
q [x] with

coefficient vector a = (a0, . . . , an+d–2)T . The Toeplitz matrix of a of order d + n – 1 is given
by

Toep(a) =


a0 a1 . . . ad–1 . . . an–1
an a0 . . . ad–2 . . . an–2
...

... . . . ...
...

an+d–2 an+d–3 . . . a0 . . . an–d

 ∈ Zd×n
q .

The Toeplitz matrix is fully determined by its first row and its first column. There exists
a special relation between Toeplitz matrices and the Hankel matrices. Let Jn be the reflection
matrix of order n defined as
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Jn =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... ... ...

...
...

1 · · · 0 0 0

 ∈ Zn×n
q .

Then, for any polynomial a ∈ Z<n+d–1
q [x] with coefficient vector a = (a′, a′′) in Zn

q ×Zd–1
q it yields

Toep(a) · Jn = Hank(ã), where ã is the polynomial given by the coefficient vector ã = (rev(a′), a′′)
with rev(a′) denoting the vector a′ in reverse order. Thus, we can use the result of Kaltofen and
Lobo [KL96] about random Toeplitz matrices to calculate the probability of a random Hankel
matrix to have full rank.

Lemma 4.1 (Rank of Random Hankel Matrices)

Let q ∈ N with unique prime power factorization given by q =
∏

j∈[`] p
αj
j , where pj are primes

and αj > 0 for some ` ∈ N. Let d, n ∈ N such that d ≤ n and sample b ← U (Z<n+d–1
q [x]).

Then,
Pr [rank(Hank(b)) = d] ≥

∏
j∈[`]

(
1 –

1
pj

)
.

Proof: Case 1. Assume that q is prime. Any Hankel matrix of order d + n – 1 can be
represented as the matrix product of the corresponding Toeplitz matrix of order d + n – 1
times the non-singular reflection matrix Jn of order n whose anti-diagonal elements are 1’s
and all other entries are 0’s. Thus, the rank of a given Hankel matrix is the same as the one
of the corresponding Toeplitz matrix. For the case d = n, it follows from [KL96, Thm. 4] that
the total number of Hankel matrices of full rank d is exactly (q – 1)q2d–2. If we choose b ←
U (Z<n+d–1

q [x]), then

Pr [rank(Hank(b)) = d] =
(q – 1)q2d–2

q2d–1
= 1 –

1
q
.

For d < n, the d × n Hankel matrix has full rank d if at least the left d × d submatrix, which
is naturally a d × d Hankel matrix as well, has rank d. This happens with probability at
least 1 – 1

q .
Case 2. Assume that q = pα for some p prime and α > 0. Initially, consider the case d = n.

Any Hankel matrix A can be represented as A = pQ + R, where both R and Q are Hankel
matrices with coefficients in Zp and Zpα–1 , respectively. This formula follows from integer
division by p with remainder, i.e., Euclidean division. Any element from Zpα , when divided
by p, has a reminder in Zp and quotient in Zpα–1 . This representation is unique, thus preserves
the structure of the matrix A. Since A is a Hankel matrix, so are Q and R. The matrix A
has full rank in Zpα if and only if R has full rank in Zp. Hence, we can deduce from the
previous case that the number of Hankel matrices of full rank equals (p – 1)p(α–1)(2d–1)+(2d–2).
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If we sample b← U (Z<n+d–1
q [x]), then

Pr [rank(Hank(b)) = d] =
(p – 1)p(α–1)(2d–1)+(2d–2)

pα(2d–1)
= 1 –

1
p
.

For d < n, using the same argument as before, the probability is at least 1 – 1
p .

Case 3. Let q ∈ N with unique prime power factorization given by q =
∏

j∈[`] p
αj
j , where pj

are primes and αj > 0 for some ` ∈ N. For the case d = n, it follows from the Chinese
Remainder Theorem that the number of Hankel matrices of full rank d modulo q equals the
product of the number of Hankel matrices of full rank d modulo pαj

j which is given by∏
j∈[`]

(pj – 1)p(αj–1)(2d–1)+(2d–2)
j .

Thus, if we sample b ← U (Z<n+d–1
q [x]), then Pr [rank(Hank(b)) = d] =

∏
j∈[`]

(
1 – 1

pj

)
. Simi-

larly as before, for d < n and b← U (Z<n+d–1
q [x]), then

Pr [rank(Hank(b)) = d] ≥
∏
j∈[`]

(
1 –

1
pj

)
.

We denote by (Z<n+d–1
q [x])× the set of polynomials of Z<n+d–1

q [x] with full rank Hankel matrix.
As said earlier, Hankel matrices play an important role in the middle-product setting, as they
can be used to represent the middle-product of two polynomials. More precisely, for a ∈ Z<n

q [x]
and b ∈ Z<n+d–1

q [x], their middle-product can be written as a matrix-vector product

a�d b = Hank(b) · rev(a),

where rev(a) denotes the coefficient vector of a in reverse order. We write MP-LWE× to denote
the problem MP-LWE restricted to secrets from the set (Z<n+d–1

q [x])×.

Lemma 4.2 (Uniformity of the Middle-Product)

Let d, n ∈ N such that d ≤ n and let b be a fixed element of
(
Z<n+d–1
q [x]

)×
. If we sample a←

U (Z<n
q [x]), then a�d b is uniformly random in Z<d

q [x].

Proof: We can write a�d b = Hank(b) · rev(a). For any d ≤ n and full rank matrix A ∈ Zd×n
q ,

the mapping from Zn
q to Zd

q given by multiplication with A is surjective. As a is chosen
uniformly at random and the Hankel matrix of b has full rank d, their middle-product is also
uniformly distributed.
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4.3 Middle-Product Learning With Rounding (MP-LWR)
In the following, we define a new hardness assumption that we call Middle-Product Computa-
tional Learning With Rounding (MP-CLWR) and which is an adaption of the Ring Computational
Learning With Rounding (R-CLWR) assumption by Chen et al. [CZZ18] to the middle-product
setting. As explained before, the motivation to introduce the problem in its computational form
stems from the fact that it possesses an efficient reduction from decision MP-LWE with a polyno-
mially large modulus and at the same time we can use it to build a provably secure encryption
scheme (see Chapter 6). For a detailed introduction and motivation of the computational notion,
see [CZZ18, Section 3].

In order to define this computational assumption, we need to introduce our experiment set-
ting, illustrated in Protocol 4.1. Within the experiment, three different parties in form of algo-
rithms appear: A challenger C interacting with an adversaryA who is receiving their samples from
a source S. All three algorithms are restricted to be probabilistic and polynomial-time (PPT).
As a first step, the source S generates a sample (X , aux) using two sets called var and con. They
then send this sample to the challenger C, who computes, with the help of this sample, a tu-
ple (Input, Target). The adversary only receives the Input part of the tuple to compute the Output.
The adversary wins the experiment if Output equals Target.

Protocol 4.1: The general experiment setting

Exp(C,A,S)

1 : (X , aux)← S(var, con)
2 : (Input, Target)← C(X , aux)
3 : (Output)← A(Input)
4 : return Output = Target

The idea of the computational assumption is to consider two different experiments with the
same challenger C and adversary A but with different sources S1 and S2, which differ in the
distribution var but have the same distribution con, motivating the notation var for variable
and con for constant. The new notion guarantees that if A cannot compute Target from X1
generated by S1, then they are not able to compute Target from X2 generated by S2 either.

We illustrate the new notion in Protocol 4.2 below. Recall that we already illustrated it in
a more informal way in Figure 4.1. Let C be an arbitrary challenger. If the success probabil-
ity of any adversary A outputting the correct answer in Exp1(C,A,S1) is negligible, then it is
in Exp2(C,A,S2) as well.

Protocol 4.2: The experiment setting of the computational assumption

Exp1(C,A,S1)

1 : (X1, aux)← S1(var1, con)
2 : (Input1, Target1)← C(X1, aux)
3 : Output1 ← A(Input1)
4 : return Output1 = Target1

Exp2(C,A,S2)

1 : (X2, aux)← S2(var2, con)
2 : (Input2, Target2)← C(X2, aux)
3 : Output2 ← A(Input2)
4 : return Output2 = Target2

Now, we define our new MP-CLWR assumption which is an adaption of the R-CLWR assump-
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tion from [CZZ18] to the middle-product setting. As an analog of the notion of units in the
original paper, we define (Z<n+d–1

q [x])× as the set of all polynomials over Zq having degree less
than n + d – 1 and a Hankel matrix of order d × n of full rank d. Such unit elements are needed
to map a uniform random element again to a uniform random element. Lemma 4.2 shows that
the same property holds for elements with a full rank Hankel matrix.

The integers d and n define the parameters of the middle-product, q defines the general and p
the rounding modulus. The number of samples has to be fixed beforehand and is given by t. For
any distribution X , we denote by X t the distribution that is defined by t copies of it. Thus, an
instance of the latter is composed of t independent instances of X .

Definition 4.3 (MP-CLWR Assumption): Let d, n, p, q, t ∈ N such that d ≤ n and q ≥ p ≥ 2.
Sample s ← U ((Z<n+d–1

q [x])×). Denote by Xs the distribution of (a, ba�d sep), where a ←
U (Z<n

q [x]), and denote by U the distribution of (a, bbep), where a ← U (Z<n
q [x]) and b ←

U (Z<d
q [x]). For j ∈ {1, 2} define the input for the source Sj as (varj , con), where var1 denotes

the distribution X t
s , and var2 the distribution U t , and con is an arbitrary distribution

over {0, 1}∗ which is independent from var1 and var2. For a fixed challenger C let PC,A
be the probability for an adversary A to win Exp1(C,A,S1), while QC,A be that for A to
win Exp2(C,A,S2).
The MP-CLWRp,q,n,d,t assumption states that for any challenger C if QC,A is negligible for
any adversary A, so is PC,A. We call the difference

∣∣PC,A –QC,A
∣∣ the advantage of the

adversary A.

Correspondingly, we also define the Middle-Product Computational Rounded Learning With
Errors (MP-CRLWE) assumption which is important in the hardness reduction in Section 4.4.

Definition 4.4 (MP-CRLWE Assumption): Let d, n, p, q, t ∈ N such that d ≤ n and q ≥ p ≥ 2.
Sample s ← U ((Z<n+d–1

q [x])×). Let ψ be an error distribution over R<d[x]. Denote by Ys,ψ
the distribution of (a, ba�d s + eep), where a ← U (Z<n

q [x]) and e ← ψ and denote by U
the distribution of (a, bbep), where a ← U (Z<n

q [x]) and b ← U (Z<d
q [x]). For j ∈ {1, 2}

define the input for Sj as (varj , con), where var1 denotes the distribution Y t
s,ψ, and var2

the distribution U t , and con is an arbitrary distribution over {0, 1}∗ which is independent
from var1 and var2. For a fixed challenger C let P ′C,A(ψ) be the probability for an adversaryA
to win Exp1(C,A,S1), while QC,A be that for A to win Exp2(C,A,S2).
The MP-CRLWEp,q,n,d,t,ψ assumption related to the error distribution ψ states that for
any challenger C if QC,A is negligible for any adversary A, so is P ′C,A(ψ). We call the
difference

∣∣∣P ′C,A(ψ) –QC,A∣∣∣ the advantage of the adversary A.

4.4 Hardness of Computational MP-LWR
We now prove the hardness of MP-CLWR with the help of a reduction from the decision MP-LWE
problem to the MP-CLWR problem. The decision version of MP-LWE itself can be reduced from
decision P-LWE for an exponentially large class of defining polynomials [RSSS17]. As P-LWE
benefits from worst-case to average-case reductions from lattice problems, our new MP-CLWR
assumption also enjoys worst-case hardness.

In the following we need the notion of B-bounded and balanced distributions. More precisely,
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a distribution ψ is B-bounded with probability at least δ ∈ [0, 1] for a real number B ≥ 0,
if Prx←ψ[|x| ≤ B] ≥ δ. We further call a B-bounded distribution ψ balanced if Prx←ψ[|x| ≤ 0] ≥
1/2 and at the same time Prx←ψ[|x| ≥ 0] ≥ 1/2.

Theorem 4.1 (Hardness of MP-CLWR)

Let d, n, p, q, t ∈ N such that d ≤ n and q ≥ p ≥ 2. Further, let q =
∏

j∈[`] p
αj
j be the prime

power factorization of q with some ` ∈ N, where pj is prime and αj > 0 for all j ∈ [`]. Let ψ
be an error distribution over R<d[x] which is balanced and B-bounded with probability at
least δ, fulfilling q > 2pBdt and δ ≥ 1 – 1

td . There is a reduction from decision MP-LWEq,n,d,ψ
to MP-CLWRp,q,n,d,t , with t the number of samples fixed beforehand.

Assume that the advantage of an MP-CLWR solver is ε. Then, there exists a solver
for MP-LWE with advantage at least(

1
e2
(
ε +QC,A

)2) · ∏
j∈[`]

(
1 –

1
pj

)
,

where e denotes the Euler’s number and QC,A is as in Definition 4.3.

Our reduction from MP-LWE to MP-CLWR preserves the dimension and the modulus, working
for any polynomial-sized modulus q. To prove Theorem 4.1, we need the following sequence of
reductions, as illustrated in Figure 4.2.

MP-LWEq,n,d,ψ MP-LWE×q,n,d,ψ

MP-CLWRp,q,n,d,t MP-CRLWEp,q,n,d,t,ψ

Lemma 4.3

Lemma 4.4

Lemma 4.5

Theorem 4.1

Figure 4.2: Overview of the proof of Theorem 4.1.

The first part of this sequence, Lemma 4.3, is a standard reduction from decision MP-LWE
to decision MP-LWE×, where the latter one denotes the MP-LWE problem with secrets sampled
uniformly at random from the set of elements having a full rank Hankel matrix. Lemma 4.4 maps
instances of MP-LWE× to instances of MP-CRLWE by simply rounding the second part of any
instance. Our results on random Hankel matrices from Section 4.2 are used in Lemma 4.5, where
we show a reduction from the rounded middle-product LWE problem to the middle-product LWR
problem, for their computational versions. Note that this reduction uses the Rényi divergence and
thus asks for fixing the requested number of samples t a priori. This is a necessary requirement
which is also imposed in previous works [BGM+16, CZZ18].
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Lemma 4.3 (MP-LWE to MP-LWE×)

Let d, n, q ∈ N such that d ≤ n. Let ψ be an error distribution over R<d[x]. Further,
let q =

∏
j∈[`] p

αj
j be the prime power factorization of q with some ` ∈ N, where pj is

prime and αj > 0 for all j ∈ [`]. If there is a PPT algorithm solving MP-LWE×q,n,d,ψ with
non-negligible advantage ε, then there is a PPT algorithm solving MP-LWEq,n,d,ψ with non-
negligible advantage at least

ε ·
∏
j∈[`]

(
1 –

1
pj

)
.

Proof: Let (ak , bk)k be arbitrarily many input samples of MP-LWEq,n,d,ψ, where the instances
either come from the uniform distribution over Z<n

q [x] × R<d
q [x] or from the MP-LWE dis-

tribution, i.e., bk = ak �d s + ek, where s ← U (Zn+d–1
q [x]) and ek ← ψ for all k. A solver can

take the samples (aj , bj)j and query an oracle of MP-LWE×q,n,d,ψ on it. If the instances come
from the uniform distribution, the oracle succeeds as usual. If the instances come from the
real MP-LWE distribution, the oracle surely succeeds only if the Hankel matrix of s has full
rank d. As shown in Lemma 4.1, the probability that the Hankel matrix of s has full rank d is
at least

∏
j∈[`]

(
1 – 1

pj

)
. Assuming that the oracle succeeds with non-negligible probability ε

in general, it now succeeds with probability at least ε ·
∏

j∈[`]

(
1 – 1

pj

)
, which completes the

proof.

The second lemma is an adaption of [CZZ18, Lem. 12] to our context.

Lemma 4.4 (MP-LWE× to MP-CRLWE)

Let d, n, q, p, t ∈ N such that d ≤ n and q ≥ p ≥ 2. Let ψ be an error distribution over R<d[x].
Assume that the advantage of any PPT algorithm to solve the decisionMP-LWE×q,n,d,ψ problem
is less than ε, then we have ∣∣P ′C,A(ψ) –QC,A∣∣ < ε,

for any PPT adversary A and PPT challenger C. Thus, there is a reduction fromMP-LWE×q,n,d,ψ
to MP-CRLWEp,q,n,d,t,ψ, with t the number of samples fixed beforehand.

Proof: In order to show this reduction, we construct an adversary B to solve the de-
cision MP-LWE×q,n,d,ψ problem. This adversary B plays at the same time the role of the
challenger C in the MP-CRLWE experiment. At the beginning, B receives a tuple of sam-
ples (xj , yj)j∈[t]. They set aj = xj and bj =

⌊
yj
⌉
p for all j ∈ [t] and X = (aj , bj)j∈[t]. As a

challenger of the experiment, B can compute the corresponding Input and Target. They send
the input to some adversary A and verify if the Output of A equals the Target. If this is the
case, B outputs 1, otherwise 0.
If (xj , yj)j∈[t] are MP-LWE samples, then are (aj , bj)j∈[t] samples from Ys,ψ, used in

the MP-CRLWE assumption. Thus, Pr[B((xj , yj)j) = 1] = P ′C,A(ψ). On the other hand, if (xj , yj)j
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are uniform samples, then are (aj , bj)j also uniformly distributed. Hence, Pr[B((xj , yj)j) = 1] =
QC,A.
Note that the (Input, Target) pair can be seen as a function in the input X . The max-

imal information on X it can contain, is if B sets Input = X (and as a target the re-
quire to distinguish the used distribution). Assuming the hardness of decision MP-LWE,
we have

∣∣∣P ′C,A(ψ) –QC,A∣∣∣ < ε, for negligible ε and for any PPT adversary A. In particular,
the MP-CRLWE assumption holds: If QC,A is negligible, so is P ′C,A for the same challenger C
and adversary A using the equation above.

The third and last reduction is an adaption of Lemma 8 and Lemma 9 in [CZZ18], based on
the results of [BGM+16], together with our results about random Hankel matrices of Section 4.2.

Lemma 4.5 (MP-CRLWE to MP-CLWR)

Let d, n, q, p, t ∈ N such that d ≤ n and q ≥ p ≥ 2. Further, sample s ← U ((Z<n+d–1
q [x])×),

and let Xs and Ys denote the random variables of a single MP-CLWR sample (a, ba�d sep)
and a single MP-CRLWE sample (a, ba�d s + eep), respectively. Further, let ψ be an er-
ror distribution over R<d[x] which is balanced and B-bounded with probability at least δ,
where q > 2pBdt and δ ≥ 1 – 1

td . Then we have

(PC,A)2 ≤ P ′C,A(ψ) · e
2,

where e is the Euler’s number. Hence, there is a reduction from MP-CRLWEp,q,n,d,t,ψ
to MP-CLWRp,q,n,d,t .

Proof: Let s ← U ((Z<n+d–1
q [x])×) be fixed throughout the proof. Using the multiplicativity

and probability preservation properties of the Rényi divergence, see Lemma 1.20, we have
(PC,A)2 ≤ P ′C,A(ψ) · RD2(Xs‖Ys)t . In the following we show that the Rényi divergence of Xs
and Ys can be bounded above by

RD2(Xs‖Ys) ≤
(1 + 2pB/q)d

δd
.

Following the definition of the Rényi divergence it yields

RD2(Xs‖Ys) = Ea←U (Z<n
q [x])

Pr
[
Xs = (a, ba�d sep)

]
Pr
[
Ys = (a, ba�d sep)

]
= Ea←U (Z<n

q [x])
1

Pre←ψ
[
ba�d s + eep = ba�d sep

] ,
where we use that the expected value over x ← Xs is equivalently defined by the expected
value over a← U (Z<n

q [x]). First, we define the border elements in Zq with respect to B and p



86 CHAPTER 4. MIDDLE-PRODUCT LEARNING WITH ROUNDING

by
Borp,q(B) =

{
x ∈ Zq : bx + Bep 6= bxep

}
.

These are the elements in Zq which are close to the rounding boundary. It yields |Borp,q(B)| ≤
2Bp. For 0 ≤ t ≤ d we define

Bads,t =
{
a ∈ Z<n

q [x] :
∣∣{j ∈ [d] : (a�d s)j ∈ Borp,q(B)}

∣∣ = t
}
,

where (a�d s)j denotes the j-th coefficient of a�d s.a In other words, Bads,t defines for a given
polynomial s and number of coefficients t, the set of polynomials a in Z<n

q [x] such that the
middle-product a�d s has exactly t coefficients close to the rounding boundary. Now we fix t
and assume a ∈ Bads,t . For any j ∈ [d] with (a�d s)j /∈ Borp,q(B), it yields

Pr
(ek)k=e←ψ

[⌊
(a�d s)j + ej

⌉
p =
⌊
(a�d s)j

⌉
p

]
≥ δ,

as ej is the j-th coefficient of e, where e is sampled from the distribution ψ which is B-bounded
with probability at least δ. If (a�d s)j ∈ Borp,q(B), then

Pr
(ek)k=e←ψ

[⌊
(a�d s)j + ej

⌉
p =
⌊
(a�d s)j

⌉
p

]
≥ 1

2
,

because ej is the j-th coefficient of e, where e is sampled from a balanced distribution. Thus,
the probabilities of ej ∈ [–B, 0] or in [0,B] are each greater or equal to 1

2 and
⌊
(a�d s)j + ej

⌉
p 6=⌊

(a�d s)j
⌉
p happens in exactly one of the two cases. Since each coefficient of e is indepen-

dently distributed and a�d s has exactly t coefficients in Borp,q(B), it yields

Pr
e←ψ

[
ba�d s + eep = ba�d sep

]
≥ 1

2t
· δd–t ≥ 1

2t
· δd .

By Lemma 4.2, we know that if a is uniform in Z<n
q [x], so is a �d s ∈ Z<d

q [x] (for s ∈
(Z<n+d–1

q [x])×). Thus, it yields

Pr
[
a ∈ Bads,t

]
≤
(
d
t

)(
1 –
|Borp,q(B)|

q

)d–t ( |Borp,q(B)|
q

)t
.

Hence,

RD2(Xs‖Ys) ≤ δ–d
∑
t∈[d]

2t · Pr
[
a ∈ Bads,t

]
= δ–d

∑
t∈[d]

(
d
t

)(
1 –
|Borp,q(B)|

q

)d–t (
2 ·
|Borp,q(B)|

q

)t

= δ–d
(
1 +
|Borp,q(B)|

q

)d

≤ δ–d
(
1 +

2pB
q

)d
,
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where we used in the third equation the standard binomial theorem. From the results above,
we can derive

RD2(Xs‖Ys)t ≤
(1 + 2pB/q)td

δtd
≤ (1 + 1/td)td

(1 – 1/td)td
≈ e2,

where δ ≥ 1 – 1
td and q > 2pBdt.

aBy abuse of notation we write j ∈ [d], even though strictly speaking the coefficients run from 0 to d – 1,
and not from 1 to d.

Putting Lemma 4.3, Lemma 4.4 and Lemma 4.5 together completes the proof of Theorem 4.1.





Chapter 5

Partial Vandermonde Problems

The content of this chapter is based on a joint work with Amin Sakzad and Ron Steinfeld, which
was initiated during a research stay at the Monash University in Melbourne from October to
December 2019. The results haven’t been published before and are publicly presented for the
first time in this thesis.
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5.1 Introduction
As elaborated in the introduction of this manuscript, lattice-based cryptography is a relatively
young research field of public key cryptography that was initiated at the end of the 1990s by two
different branches. On the one had, there have been proposals benefiting from strong theoretical
connections to presumed hard worst-case lattice problems [Ajt96, AD97], leading to the devel-
opment of public key cryptography based on the SIS and LWE problems, see for instance the
survey by Peikert [Pei16a]. Both, the module variant of LWE that we study in Chapter 2 and
Chapter 3, and the middle-product variant of LWR from Chapter 4, can be seen as descendants of
Ajtai’s work, still benefiting from worst-case to average-case reductions to well-studied problems
on (structured) lattices. On the other hand, however, very efficient schemes basing their security
on average-case structured lattice problems have been introduced, the most popular among them
is the NTRU encryption scheme by Hoffstein et al. [HPS98]. In this chapter, we study a problem
which can be seen as the offspring of the second line of works.

Following the latter approach, Hoffstein et al. [HPS+14] propose a digital signature scheme
called PASS Sign, whose security is based on the difficulty of recovering a polynomial of small

89
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norm having access only to a partial list of its discrete Fourier transform. Later, Lu et al. [LZA18]
complement the proposal by moving from the partial Fourier transform (evaluation at all roots
of unity) to the partial Vandermonde transform (evaluation only at the primitive roots of unity)
and by giving a rigorous proof of security.

The problem that underlies PASS Sign, as given in [LZA18], can be presented as follows.
Let q be a prime, R = Z[x]/〈f (x)〉 denote the ring of integers of the ν-th cyclotomic number field
of degree deg(f (x)) = n, such that f (x) splits into linear factors mod q. More precisely, f (x) =∏

j∈[n](x – ωj) mod q, where {ωj}j∈[n] are the ν-th primitive roots of unity in Zq. Let V =
(ωk–1j )j,k∈[n] ∈ Zn×n

q denote the discrete Vandermonde matrix for {ωj}j∈[n], as introduced in
Section 1.1.4. We denote by VΩ ∈ Zt×n

q the partial Vandermonde matrix consisting of t ≤ n
subrows of V specified by a random subset of t roots Ω ⊆ {ωj}j∈[n]. Let f be a ring element
of small norm, sampled from some distribution ψ. Given VΩ · f mod q, the problem asks to
find f. We call this the Partial Vandermonde Knapsack problem (PV-Knap).1 A related problem
is Partial Vandermonde SIS (PV-SIS), where given VΩ one asks to find a ring element f of small
norm such that VΩ · f = 0 mod q. This can be formulated as a Shortest Vector Problem (SVP)
over a structured lattice.

Shortly afterwards, Hoffstein and Silverman [HS15] introduce PASS Encrypt, a Public Key
Encryption (PKE) scheme whose computational building blocks are closely related to the ones
of PASS Sign. It is very efficient and fulfills additive and multiplicative homomorphic proper-
ties. The algebraic structure and homomorphic properties of PASS Encrypt and the underlying
partial Vandermonde problems, make them a natural starting point for the design of efficient
cryptographic primitives. For example, such properties are recently exploited in the context of
PASS Sign to construct compact aggregate signature schemes [DHSS20], and it is plausible that
combining PASS Encrypt with PASS Sign may form the basis for various compact and efficient
privacy-preserving primitives such as group signatures. Unfortunately, a main problem with
PASS Encrypt to date is that its security is not well understood, no proof of security was given
in [HS15] with respect to the hardness of explicit computational problems, and the scheme is
deterministic and hence does not satisfy the standard notion of IND-CPA security.

5.1.1 Our Contributions
In this chapter, we make progress towards understanding the hardness assumptions needed to
prove the security of PASS Encrypt. We first present the Partial Vandermonde Knapsack prob-
lem (PV-Knap) in its search and decision variant, as studied by Lu et al. [LZA18] in the context
of PASS Sign.2 It makes use of the partial discrete Vandermonde matrix over Zq, where q is a
prime. We emphasize its connection to (average-case) ideal lattices, even though we can’t show
a worst-case to average-case reduction as for structured variants of LWE. We enlarge the land-
scape of problems that use the partial Vandermonde matrix by defining a new variant of LWE,
called Partial Vandermonde Learning With Errors (PV-LWE). Later, we show the equivalence
of PV-Knap and PV-LWE by exploiting the same duality connection as we have for standard Knap-
sack problems and LWE. As explained in the introduction of this chapter, our main motivation
is to provide a security proof for PASS Encrypt. To this end, we define a variant of PV-Knap, that
we call the PASS problem. This problem serves (together with the decision version of PV-Knap) as

1We remark that VΩ · f mod q is the vector of evaluations (f(ωj ))ωj∈Ω mod q of the polynomial f at the roots
in Ω; the full vector of evaluations (f(ωj ))j∈[n] is also known as the Number Theoretic Transform (NTT) of f and f(ωj )
is sometimes referred to as the j-th NTT slot or NTT coefficient of f.

2Note that the name of the problem varies in the former literature between Partial Fourier Recovery problem,
Vandermonde (I)SIS and Fourier (I)SIS. We think, that it’s most related to the Knapsack problem and thus call it
that way.
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the underlying hardness assumption for (a slightly modified version of) PASS Encrypt. We present
the scheme together with the security proof in Chapter 7. We conclude the chapter by showing
that for a special choice of the partial Vandermonde matrix, one can accelerate computations
when working with PV-Knap and PV-LWE.

5.2 Definition of Partial Vandermonde Problems
We now define the problems Partial Vandermonde Knapsack, Partial Vandermonde SIS, Partial
Vandermonde LWE and a leaky variant of Partial Vandermonde Knapsack, called PASS.

5.2.1 Partial Vandermonde Knapsack Problem (PV-Knap)
The Partial Vandermonde Knapsack problem (PV-Knap) was first introduced by Hoffstein et
al. [HPS+14].3 We start this section by defining the notion of a partial Vandermonde matrix,
where we consider the discrete Vandermonde matrix V as presented in Section 1.1.4. Informally
speaking, the partial Vandermonde matrix is composed of a subset of rows of the full matrix V.

We now state the formal definition. For ν ∈ N, let K = Q[x]/〈f (x)〉 be the ν-th cyclotomic
number field of degree deg(f (x)) = ϕ(ν) = n and let R = Z[x]/〈f (x)〉 be its ring of integers.
Further, let q ∈ N be a prime such that q = 1 mod ν. In this case, f (x) completely splits
in Zq[x], i.e., f (x) =

∏
j∈[n](x – ωj), where every ωj is a distinctive primitive ν-th root of unity

in Zq. Furthermore, the ideal generated by q in R can be written as 〈q〉 =
∏

j∈[n]〈q, x – ωj〉.
To ease readability, we represent in this chapter a ring element a ∈ R directly by its coefficient
vector a ∈ Zn and implicitly assume that this coefficient vector is obtained by applying the
coefficient embedding τ as introduced in Section 1.1.3.

Definition 5.1 (The partial Vandermonde transform): For ν, n, q as above, let {ωj}j∈[n] be
the set of primitive ν-th roots of unity in Zq. We divide the set {ωj}j∈[n] into two disjoint
subsets Ω and Ωc of size |Ω| = t and |Ωc| = n – t. The partial Vandermonde transformation
matrix VΩ ∈ Zt×n

q and its complement VΩc ∈ Z(n–t)×n
q are given by

VΩ =

1 ωi1 · · · ωn–1i1...
...

...
1 ωit · · · ωn–1it

 , and VΩc =

1 ωit+1 · · · ωn–1it+1
...

...
...

1 ωin · · · ωn–1in

 ,

where ωij ∈ Ω for j ∈ [t] and ωit+k ∈ Ωc for k ∈ [n – t].

By rearranging and merging the rows of the two matrices VΩ and VΩc , we obtain the full
discrete Vandermonde matrix V. In order to get more familiar with the concept of the partial
Vandermonde transform, we now provide a concrete example in small dimension.

 Example 5.1 (Partial Vandermonde Matrix in Small Dimension)

Let ν = 16, defining the 16-th cyclotomic field K = Q[x]/〈xn + 1〉 of degree n = 8. Further,
let q = 17 be a prime fulfilling the condition q = 1 mod ν. The set of all primitive ν-th roots
of unity is given by {3, 5, 6, 7, 10, 11, 12, 14}. We can set Ω = {3, 5, 14, 12} and Ωc = {10, 11, 7, 6},

3Even though they originally called it the Partial Fourier Recovery problem.
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defining

VΩ =


1 3 9 10 13 5 15 11
1 5 8 6 13 14 2 10
1 14 9 7 13 12 15 6
1 12 8 11 13 3 2 7

 , VΩc =


1 10 15 14 4 6 9 5
1 11 2 5 4 10 8 3
1 7 15 3 4 11 9 12
1 6 2 12 4 7 8 14

 .

As all primitive roots are distinct, the matrices VΩ and VΩc have maximal row rank t and n–t,
respectively. Multiplying the coefficient vector of an element a ∈ R by VΩ (resp. VΩc ) corresponds
to the evaluation of a at the points ωij for j ∈ [t] (resp. at the points ωit+k for k ∈ [n– t]). To ease
notations, we omit the product syntax · and simply write VΩa for the matrix-vector product.

Furthermore, VΩa is a partial discrete canonical embedding vector of a, as introduced in
Section 1.1.4. Knowing VΩa and VΩca gives the complete discrete canonical embedding vec-
tor σ(a) = Va ∈ Zn

q and thus uniquely identifies it modulo q. The matrix VΩ defines a ring homo-
morphism from R to Zt

q, where the latter is equipped with component-wise addition and multipli-
cation, denoted by + and ◦. Thus, VΩ(a1 +a2) = (VΩa1)+ (VΩa2) and VΩ(a1 ·a2) = (VΩa1)◦ (VΩa2).
In Section 5.4, we show how VΩa can be efficiently computed using the Number Theoretic Trans-
form (NTT) in dimension t for the case of power-of-2 cyclotomics and special choices of Ω.

We now present the Partial Vandermonde Knapsack problem in its search and its decision
version. We define the set Pt = {Ω ⊆ {ωj}j∈[n] : |Ω| = t} of all subsets of primitive ν-th roots of
unity in Zq of size t. The corresponding set Ω for an instance of Partial Vandermonde Knapsack
is chosen uniformly at random over Pt .

Definition 5.2 (Partial Vandermonde Knapsack): Let ψ be a distribution over Zn.
The Search Partial Vandermonde Knapsack problem PV-Knapψ is the following: let a← ψ

and Ω← U (Pt ); given b = VΩa mod q, find the solution a.
The Decision Partial Vandermonde Knapsack problem dec-PV-Knapψ asks to distinguish
for a given tuple (VΩ,b) ∈ Zt×n

q × Zt
q, where Ω← U (Pt ), if the vector b was sampled from

the uniform distribution over Zt
q, or if the tuple is given as an PV-Knapψ instance.

The problem is assumed to be hard to solve if the distribution ψ provides elements of Zn

with small norms, where smallness is with respect to q. The choice of ψ regarding the other
parameters also defines whether the solution to this problem is unique or not. We further define
a homogeneous variant of PV-Knap with respect to the Euclidean norm.

Definition 5.3 (Partial Vandermonde SIS): Let β ∈ N. The Partial Vandermonde SIS prob-
lem PV-SISβ consists in finding a ∈ R for a given Ω ← U (Pt ) such that VΩa = 0 mod q
and ‖a‖2 ≤ β.

Similar to previous works [HPS+14, LZA18, DHSS20], we call this problem Partial Vander-
monde SIS in analogy to the standard Short Integer Solution (SIS) problem, as introduced by
Ajtai [Ajt96]. Here, the fully random matrix over Zq is replaced by a random structured one, the
partial Vandermonde transform VΩ. Note that an instance of PV-SIS corresponds to an instance
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of Id-SVP (Def. 1.1) in the special class of ideal lattices

IΩ,q := Λ⊥q (VΩ) = {a ∈ R : VΩa = 0 mod q},

as presented in Section 1.2.1. Using the definition of VΩ, the ideal lattice IΩ,q can also be
presented as the product of half of the factors of the ideal 〈q〉, i.e., IΩ,q =

∏
ωj∈Ω〈q, x – ωj〉. The

determinant of the ideal lattice equals the norm of the ideal IΩ,q, given by qt . Thus, for a given
ring element a of small norm, the partial Vandermonde transform VΩa mod q is a way to specify
the coset a+IΩ,q. Further, the complement partial Vandermonde transform VΩca mod q specifies
the coset a + I ′Ω,q, where I

′
Ω,q := 〈q〉I–1Ω,q. Given a + IΩ,q and a + I ′Ω,q uniquely defines a + 〈q〉.

We remark that this class of Id-SVP instances is considered for attacks by Pan et al. [PXWC21].
However, we are in the fully splitting case (q = 1 mod ν) and thus their algorithm essentially
needs an oracle of SVP of dimension 2n, which makes the attack vacuous.

In the following, we show that knowing b = VΩa mod q (but not explicitly a) suffices to
compute B = VΩRot(a) mod q, where Rot(a) is the matrix of multiplication as presented in Sec-
tion 1.1.3. In other words, knowing B does not reveal more information than knowing b. The
other direction is trivial, as the first column of B equals b.

Lemma 5.1

Given n, t, q,Ω as above, defining VΩ = (ωk–1ij )j∈[t],k∈[n]. Let b = VΩa mod q ∈ Zt
q for some

ring element a ∈ R. Then, for k ∈ [n], the k-th column of the matrix B = VΩRot(a) is given
by b ◦ (ωk–1i1 , . . . ,ωk–1it )T .

Proof: Let a(x) denote the polynomial that corresponds to a ∈ R = Z[x]/〈f (x)〉, i.e., τ (a) = a.
For k ∈ [n], the k-th column of Rot(a) is given by the coefficient vector of a(x) · xk–1 mod f (x).
For ` ∈ [t], the `-th coefficient of b corresponds to the evaluation of a(x) at ωi` ∈ Ω. We know
that B = (b`k)`∈[t],k∈[n] is given by b`k = (a(x) · xk–1)(ωi` ) = a(ωi` ) · ωk–1i` . The homomorphic
properties of VΩ complete the proof.

5.2.2 Partial Vandermonde Learning With Errors (PV-LWE)
Similar to the standard Knapsack problem, we can define a dual problem, called Partial Vander-
monde Learning With Errors (PV-LWE). Whereas the Partial Vandermonde Knapsack problem is
defined with respect to the matrix VΩ, its transpose V

T
Ω is used for Partial Vandermonde Learning

With Errors. We note that this problem is not needed in the security proof of PASS Encrypt (see
Chapter 7) but we think that the duality between PV-Knap and PV-LWE (as we show in the next
section) deepens our understanding of PV-Knap (which is used for the security of PASS Encrypt).
Furthermore, we think that PV-LWE is an interesting problem in its own, as it may be the start-
ing point of other cryptographic schemes and thus we hope to stimulate further research in this
direction. In the following, we use the same notation as in Section 5.2.1.

Definition 5.4 (Partial Vandermonde Learning With Errors): Given n, t, q as above defining
the set Pt . Let ψ be a distribution over Zn and fix s ∈ Zt

q. Let Bs,ψ denote the Partial
Vandermonde Learning With Errors distribution over Zt×n

q ×Zn
q, obtained by sampling Ω←
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U (Pt ), e← ψ and returning (VΩ,b = VT
Ω ·s+e mod q). Partial Vandermonde Learning With

Errors comes in two variants:

PV-SLWEVΩ,ψ: Sample s← U (Zt
q). Given a sample of Bs,ψ, find s.

PV-LWEVΩ,ψ: Sample s← U (Zt
q). Distinguish between a sample from Bs,ψ and a sample of

the form (VΩ, b), where b← U (Zn
q).

An instance of PV-SLWE defines an instance of BDD (Def. 1.4) in the ideal lattice

Λq(VΩ) = {a ∈ R : a = VT
Ω · s mod q for some s ∈ Zt

q},

i.e., the lattice generated by the rows of VΩ (see Section 1.2.1). Lemma 5.2 below shows that it
is not only closed with regard to addition, but also closed with regard to multiplication by any
ring element, making it indeed an ideal lattice in R.

Lemma 5.2

Let a ∈ Λq(VΩ) and r ∈ R. Then, r · a ∈ Λq(VΩ).

Proof: Let a ∈ Λq(VΩ), i.e., a = VT
Ω · s mod q for some vector s ∈ Zt

q. Note that the
multiplication r · a is done in R = Z[x]/〈f (x)〉. Let Rot(r) = (r`k)`,k∈[n] ∈ Zn×n denote the
matrix of multiplication of r in R with respect to the coefficient embedding, as defined in
Section 1.1.3. Then, it yields for ` ∈ [n] that (r · a)` = (Rot(r) · a)` =

∑
k∈[n] r`k · ak. Using

that a = VT
Ω · s = (

∑
j∈[t] sj · ωk–1ij )k∈[n] gives for ` ∈ [n] that

(r · a)` =
∑
k∈[n]

r`k

∑
j∈[t]

sj · ωk–1ij

 =
∑
j∈[t]

∑
k∈[n]

sjr`kω
k–`
ij

ω`–1ij =
∑
j∈[t]

s′jω
`–1
ij ,

where s′j =
∑

k∈[n] sjr`kω
k–`
ij ∈ Zq. Thus, r · a = VT

Ω · s′, where s′ = (s′j )j∈[t] and finally r · a ∈
Λq(VΩ).

In contrast to the standard LWE problem, we do not define a variant of the PV-LWE problem
in the so-called Hermite Normal Form, where the secret follows the same distribution as the
error, since this variant is easy to solve. More precisely, let b = VT

Ω · s + e. As the first column
of VΩ is the vector that only contains 1’s, the first coefficient of b is simply the sum of the
coefficients of s plus the first coefficient of e. If s and e are small, so is the first coefficient of b,
making it trivially distinguishable from uniform.

5.2.3 PASS Problem
We now present a leaky variant of dec-PV-Knap that we call the PASS problem, as it is used as
the underlying hard problem of PASS Encrypt (from Chapter 7). As opposed to the problems
before, it does not only make use of the partial Vandermonde transform VΩ, but simultaneously
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also uses its complement VΩc .

Definition 5.5 (PASS Problem): Given n, t, q as above defining the set Pt . Let ψf ,ψr and ψs
be distributions over Zn. The problem PASSψf ,ψr ,ψs asks to distinguish the following two
cases, when given

(VΩf,b,VΩcr,VΩc s) ∈
(
Zt
q

)2
×
(
Zn–t
q

)2
.

In the first case Ω ← U (Pt ), f ← ψf , r ← ψr , s ← ψs and b = VΩ(f · r + s). In the second
case, the only difference is that b← U (Zt

q).

Let ψ denote the distribution of a = f · r + s. Intuitively, the vector a can be seen as the secret
of an instance (VΩ,b) of dec-PV-Knapψ, where we are given additional information in the form
of VΩf,VΩcr and VΩc s, which we interpret as some leakage on the secret a. It is clear that this
problem is easier than the standard dec-PV-Knap. In Chapter 7 in Section 7.3.3 we provide some
refined analysis on the concrete hardness of PASS.

5.3 Equivalence of PV-Knap and PV-LWE
We now show the equivalence of the problems PV-Knap and PV-LWE for the special case of power-
of-2 cyclotomics. Let ν be a power of two, n = ν/2 and t = n/2. As before, q is set to be a prime
such that q = 1 mod ν. Further, let ω be a primitive ν-th root of unity modulo q and γ = ω2
be a primitive n-th root of unity modulo q. We sample Ω ← U (Pt ), and as ν is a power of two,
the set Ω only contains odd powers of ω. We denote by Ωc := {ωj : j ∈ Z×ν } \ Ω the complement
set, which also only contains odd powers of ω. Additionally, we define inv(VΩ) ∈ Zt×n

q as the
matrix whose (j, `)-th element is the inverse in Zq of the (j, `)-th element of VΩ for j ∈ [t]
and ` ∈ [n]. Since inv(VΩ) is just Vinv(Ω), where inv(Ω) is the set of inverses of the elements of Ω,
we write Vinv(Ω) instead of inv(VΩ) in the following.

Lemma 5.3 (Duality of Partial Vandermonde Matrices)

Given n, q,Ω as above, defining VΩ and VΩc . It yields

VΩ ·V
T
inv(Ωc) = VΩc ·VT

inv(Ω) = 0 ∈ Zt×t
q .

Proof: We show the first part, the second follows in an analogue manner. For j, ` ∈ [t], the
entry of the j-th row and the `-th column of the matrix product VΩ ·V

T
inv(Ωc) is given by∑

k∈[n]

(
ωj · ω`–1

)k–1 = ∑
k∈[n]

(
ωij · ω–i`

)k–1 = ∑
k∈[n]

(
ωu
)k–1 = ∑

k∈[n]
(γv)k–1,

where ωj = ωij ∈ Ω and ω` = ωi` ∈ Ωc and thus 0 6= ij – i` = u, with u = 0 mod 2. We can
thus write u = 2v for some non-zero integer v and deduce that ωu = γv . The last geometric
sum T :=

∑
k∈[n](γ

v)k–1 satisfies (1 – γv) · T = 1 – (γv)n. As γ is a primitive n-th root of unity
and 0 < v < n, we have that γv is an n-th root of unity and γv 6= 1, so the last sum T = 0.
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The proof of Lemma 5.3 uses the special shape of Ω in the case of power-of-2 cyclotomic
fields. It is, however, not true for general cyclotomic fields, as illustrated in the following counter
example.

 Example 5.2 (Counter Example for Prime Cyclotomics)

We consider the case, where ν and q are prime integers with q = 1 mod ν. In this case, the
minimal polynomial is given by f (x) = xν–1 + · · · + x + 1 (i.e. of degree ϕ(ν) = ν – 1). For
concreteness, we choose ν = 5. Thus, the 5-th cyclotomic ring is given by R = Zq[x]/〈f (x)〉,
with f (x) = x4 +x3 +x2 +x +1. Let ω denote a primitive 5-th root of unity in Zq, fulfilling ω5 =
1 mod q and ω4 + ω3 + ω2 + ω + 1 = 0 mod q. A possible choice could be ω = 3 for q = 11.
Let Ω = {ω,ω2} ⊂ {ωj : 1 ≤ j ≤ 4} and thus Ωc = {ω3,ω4}. Then, the partial Vandermonde
matrix VΩ ∈ Z2×4

q and its complement VΩc ∈ Z2×4
q are given by

VΩ =
[
1 ω ω2 ω3

1 ω2 ω4 ω

]
and VΩc =

[
1 ω3 ω ω4

1 ω4 ω3 ω2

]
.

However, it yields
VΩ ·V

T
inv(Ωc) =

[
–ω2 –ω3
–ω –ω2

]
6= 0 ∈ Z2×2

q .

We now show the equivalence of dec-PV-Knap and PV-LWE, both in their decision variant.
The equivalence of their search versions follows in an analogue manner. The proof is essentially
the same as for standard Knapsack and LWE, see for instance [MM11, Sec. 4.2], combined with
the duality Lemma 5.3. In Chapter 7 in Section 7.3.5, we show how to interpret their equivalence
in terms of error-correcting codes.

Lemma 5.4 (From PV-Knap to PV-LWE)

Let n be a power of two and t = n/2. Further, let ψ denote a distribution over Zn. There is
a PPT reduction from the problem dec-PV-Knapψ to PV-LWEψ.

Proof: Given an efficient algorithm A for PV-LWEψ, we build an efficient algorithm B
for dec-PV-Knapψ that is given an instance (VΩ, b) with b = VΩa mod q or b ← U (Zt

q),
where a← ψ and Ω← U (Pt ). Set VΩ′ = Vinv(Ωc) and note that if Ω← U (Pt ), then inv(Ωc) also
follows the uniform distribution over Pt , where inv(Ωc) = {ω–j = ων–j : ωj ∈ Ωc} ⊆ {ωk : k ∈
Z×ν }. Thus, VΩ′ defines a valid matrix for PV-LWE. The algorithm B for dec-PV-Knap
samples s← U (Zt

q) and picks an arbitrary preimage v ∈ R of b under VΩ, i.e., VΩv = b mod q
(such preimage exists since VΩ is of full rank t over Zq). The algorithm B then sets b′ =
VT

Ω′ · s + v and runs A on input (VΩ′ ,b′), returning whatever A returns. We now argue that
in the real case b = VΩ · a mod q, then (VΩ′ ,b′) is a valid real case instance of PV-LWEψ.
Indeed, we know that v = v′ +a for some v′ ∈ R with VΩ ·v′ = 0 mod q. Using Lemma 5.3, we
have VΩ · V

T
Ω′ = 0 mod q and thus, v′ has to be in the image of VT

Ω′ and hence v′ = VT
Ω′ · s′,

for some s′ ∈ Zt
q and finally b′ = VT

Ω′ · (s + s′) + a, so b′ has the correct real case PV-LWE
distribution with secret s′′ := s + s′ uniformly random in Zt

q (thanks to the uniformly random
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choice of s) and error a sampled from ψ, as required. In the random case b ← U (Zt
q), b′ is

uniformly random in Zn
q since v is in the uniformly random coset of Λ⊥q (VΩ) defined by b,

and b′ is also uniformly random in this coset thanks to the uniformly random s′. Therefore,
the advantage of B is the same as that of A.

Lemma 5.5 (From PV-LWE to PV-Knap)

Let n be a power of two and t = n/2. Further, let ψ denote a distribution over Zn. There is
a PPT reduction from the problem PV-LWEψ to dec-PV-Knapψ.

Proof: Given an efficient algorithm A for dec-PV-Knapψ, we build an efficient algorithm B

for PV-LWEψ, that is given an instance (VΩ,b) with either b = VT
Ω · s+ e mod q or b← U (Zn

q),
where Ω ← U (Pt ), s ← U (Zt

q) and e ← ψ. With the same argumentation as above, we
define VΩ′ = Vinv(Ωc) fulfilling VΩ′ · V

T
Ω = 0 mod q and following the uniform distribution

over Pt . The algorithm B then computes b′ = VΩ′ ·b and runs A on input (VΩ′ ,b′), returning
whatever A returns. We now argue that in the real case b = VT

Ω · s + e mod q, then (VΩ′ ,b′)
is a valid real case instance of dec-PV-Knapψ. Indeed, using Lemma 5.3, we have b′ =
VΩ′ (V

T
Ω · s + e) = VΩ′ · e, with e← ψ. In the random case b← U (Zn

q), b′ is uniformly random
in Zt

q, as the matrix VΩ′ has full rank t. Hence, B has the same advantage as A.

5.4 Efficient Computation of Partial Vandermonde Transform
In Chapter 7, we introduce an encryption scheme whose security is based on the hardness
of dec-PV-Knap and PASS. This is why it works with polynomials in the finite ring Rq =
Zq[x]/〈xn + 1〉, where n is a power of 2. In order to implement this scheme efficiently, it is crucial
to select a well-suited encoding for those mathematical objects. As former works on structured
variants of SIS and LWE (e.g. [ADPS16]), we choose the Number Theoretic Transformation
(NTT) to encode those in quasi-logarithmic time.

In this section, we argue that the NTT can also be used for the partial Vandermonde transform.
More precisely, we show that the multiplication of the partial Vandermonde transformation
matrix VΩ ∈ Zt×n

q by an element f ∈ R can be done efficiently by using a t-point NTT in the
special case where K = Q(ζ) is a power-of-2 cyclotomic field and where VΩ and VΩc are set as
the odd and even rows of V, respectively. Thus, t becomes the important asymptotic parameter.
This corresponds to our observations about the concrete security presented later in Section 7.3.

We remark that in this case, we fix the matrix VΩ instead of choosing it at random. A
designer of a public key encryption scheme may prefer to increase the entropy of their scheme
via the randomness over the choice of VΩ by selecting at random a subset Ω of size t. By
doing so, they have to accept the higher costs of computing a (partial) n-point NTT instead of
a t-point NTT.

In the following, we briefly recall the basic definition of the NTT. For more details on
the NTT and the description of fast software implementations in quasi-logarithmic time we refer
to [GOPS13]. Let f be a polynomial in Rq = Zq[x]/〈xn + 1〉 and let γ be a n-th primitive root
of unity modulo q. For k ∈ {0, . . . , n – 1}, the k-th coefficient of the n-point NTT of f is defined
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as NTT(f)k =
∑n–1

j=0 fjγkj .4 In an analogue manner, for t = n/2 and ξ = γ2 a t-th primitive root
of unity modulo q, and g ∈ Zq[x]/〈xt + 1〉, the k-th coefficient of the t-point NTT of g is defined
as NTT(g)k =

∑t–1
j=0 gjξ

kj , where k ∈ {0, . . . , t – 1}.

5.4.1 Computation of the Partial Vandermonde Transformation
Let ν be a power of 2, n = ϕ(ν) = ν/2 and t = n/2. Further, let q ∈ Z be a prime such
that q = 1 mod ν, thus the ν-th cyclotomic polynomial xn + 1 totally splits over Zq. Let ζ =
exp(–2πi/ν) be a complex primitive ν-th root of unity defining the ν-th cyclotomic number
field K = Q(ζ) ∼= Q[x]/〈xn + 1〉 with its ring of integers given by R = Z[ζ] ∼= Z[x]/〈xn + 1〉.
We further pick a primitive ν-th root of unity modulo q and denote it by ω. We also set γ = ω2
as a primitive n-th root of unity modulo q and ξ = γ2 = ω4 as a primitive t-th root of unity
modulo q.

We define Ω = {ωj : j = 4k + 1, k ∈ {0, . . . , t – 1}} and Ωc = {ωj : j = 4k + 3, k ∈ {0, . . . , t – 1}},
both sets of size t and disjoint. The union Ω∪Ωc is the set of size n of all primitive ν-th roots of
unities modulo q. Thus, VΩ and VΩc are composed by the odd and even rows of V, respectively.
For every k ∈ {0, . . . , t – 1} it yields

(
VΩ · f

)
k =

n–1∑
j=0

ω(4k+1)jfj =
t–1∑
j=0

ωjfjω4kj +
t–1∑
j=0

ωj+t fj+tω4k(j+t) =
t–1∑
j=0

(
ωjfj + ωj+t fj+t

)
ξkj ,

where we use that ω4kt = (ξt )k = 1 for all k ∈ {0, . . . , t – 1}, as ξ is a primitive t-th root of unity
modulo q. This corresponds to the k-th coefficient of the t-point NTT of g with gj = ωjfj +ωj+t fj+t ,
where we coefficient-wise multiply fj with powers of ω in a pre-processing step. The pre-processing
step requires 2t = n multiplications and t additions. In an analogue manner, we can see that for
every k ∈ {0, . . . , t – 1}

(
VΩc · f

)
k =

n–1∑
j=0

ω(4k+3)jfj =
t–1∑
j=0

ω3jfjω4kj +
t–1∑
j=0

ω3j+t fj+tω4k(j+t) =
t–1∑
j=0

(
ω3jfj + ωj+t fj+t

)
ξkj .

5.4.2 Computation of the Transposed Partial Vandermonde Transformation
In this section we show that the multiplication of the transposed partial Vandermonde trans-
formation matrix VT

Ω ∈ Zn×t
q with an element s ∈ Zt

q can also be done efficiently by using
the NTT of s. Again, we assume that VΩ and VΩc are composed of the odd and even rows of V,
respectively. More precisely for every k ∈ {0, . . . , n}

(
VT

Ω · s
)
k
=

t–1∑
j=0

sjωk(4j+1) = ωk
t–1∑
j=0

sjξkj .

For k ∈ {0, . . . , t – 1}, this obviously corresponds to a t-point NTT, were we do an additional
multiplication by ωk for every coefficient. For k ∈ {t, . . . , n – 1}, we use again that ξt = 1 to see
that (VT

Ω ·s)k = ωt · (VT
Ω ·s)k–t . Thus, with the help of t further multiplications, we obtain the last t

4The difference of the NTT transform (NTT(f)k)k∈{0,...,n–1} ∈ Zn
q and the discrete Vandermonde transform V · f ∈

Zn
q is quite subtle. In the first case we sum over the powers γ0, . . . , γn–1, where γ is a n-th primitive root of unity,

and in the second case we sum over the powers ω0, . . . ,ωn–1, where ω is a 2n-th primitive root of unity.
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coefficients of VT
Ω · s. Again, this also holds for the complement transposed partial Vandermonde

transformation matrix VT
Ωc , as for every k ∈ {0, . . . , n – 1} it yields

(
VT

Ωc · s
)
k
=

t–1∑
j=0

sjωk(4j+3) = ω3k
t–1∑
j=0

sjξkj .
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Chapter 6

Encryption Based on Middle-Product
LWR

This chapter can be seen as the continuation of Chapter 4 and is therefore based on the same
joint work with Shi Bai, Dipayan Das, Adeline Roux-Langlois, Weiqiang Wen and Zhenfei Zhang
which is published in the proceedings of the conference Asiacrypt 2019 [BBD+19].
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6.1 Introduction
In Chapter 4, we introduce a new hardness assumption, the problem Middle-Product Compu-
tational Learning With Rounding (MP-CLWR, Def. 4.3). It simultaneously benefits from the
simplicity of Learning With Rounding (LWR, Def. 1.17) and the security guarantees of Middle-
Product Learning With Errors (MP-LWE, Def. 1.15). The computational notion, as opposed
to the more standard search and decision notions, was introduced by Chen et al. [CZZ18], to-
gether with an efficient construction of a PKE scheme with security proof in the Random Oracle
Model (ROM). We recall the definition of the ROM in Section 1.5.2. The random oracle is needed
to transform the decision problem defined by the IND-CPA security game (Def. 1.20) into a com-
putational problem. To this end, they make use of a reconciliation mechanism, that helps to
correctly decrypt a ciphertext.
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6.1.1 Our Contributions
In order to show the usefulness of our newly defined hardness assumption MP-CLWR for cryp-
tography, we present in the following a Public Key Encryption (PKE) scheme whose hardness is
implied by MP-CLWR. Its design is simultaneously inspired by two existing PKE schemes: on
the one hand, the PKE scheme from Roşca et al. [RSSS17] whose security is based on MP-LWE;
and on the other hand, the PKE scheme from Chen et al. [CZZ18] whose security is based on the
hardness of Computational Learning With Rounding Over Rings.

The attractiveness of our encryption scheme stems from the fact that we only have to round
the middle-product of two polynomials instead of sampling Gaussian error during public key gen-
eration while guaranteeing the same security and having the same asymptotic key and ciphertext
sizes as the PKE scheme of [RSSS17]. Furthermore, we save in bandwidth, as the second part
of the public key is modulo p and not modulo q, where p ≤ q by some order of magnitude. In
Section 6.4.1, we provide a more detailed comparison between both PKE schemes. Furthermore,
we provide in Section 6.4.2 a study of the concrete security of our scheme by looking at the
currently best known attacks against it.

6.1.2 Related Work
Since its introduction in 2017, MP-LWE served as the underlying hardness assumption for sev-
eral cryptographic primitives: from basic encryption [RSSS17] and signature schemes [BDH+20]
to lattice trapdoors and identity-based encryption [LVV19] and more advanced hierarchical
identity-based encryption [LDSP20] and ring signatures [DAZ19]. The public key encryption
scheme Titanium [SSZ17], which was submitted to the NIST standardization process, is basing
its hardness onMP-LWE. Sakzad et al. [SSZ19] further improved practical aspects of PKE schemes
based on the MP-LWE problem by providing a tighter security reduction and a more accurate
cryptanalysis. It can be seen as an optimization of the originally proposed scheme by Roşca
et al. [RSSS17]. To the best of our knowledge, we are the first and only ones who constructed
an encryption scheme whose security is based on the Middle-Product Learning With Rounding
variant. Regarding the standard Learning With Rounding problem, due to its simplicity and effi-
ciency, several encryption schemes such as SABER [DKRV18] (third round) and Round5 [BBF+19]
(second round) participating in the NIST standardization process are basing their hardness on
(structured variants of) decision LWR.

6.1.3 Roadmap
The rest of the chapter is structured as follows. We start with recalling a reconciliation mecha-
nism in Section 6.2, which serves to obtain correctness of our encryption scheme. In Section 6.3,
we define the scheme, then prove its correctness in Section 6.3.1 and prove its security based
on the hardness of MP-CLWR in the ROM in Section 6.3.2. Finally, in Section 6.4 we provide
asymptotic parameters and explain how to analyze the best known attacks against our scheme,
which can be used to derive concrete parameters.

6.2 Reconciliation
Reconciliation is a method used by two parties to agree on a secret bit, when they only share a
common value up to an approximation factor. As for the PKE scheme of Chen et al. [CZZ18], we
need a reconciliation mechanism in order to guarantee the correctness of our scheme.
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A first reconciliation mechanism is given by Ding et al. [DXL12] followed by other proposals
(e.g., [Pei14, ADPS16]). We use the notation of Peikert and exert the nearest integer round-
ing. For this purpose, we need the modular rounding function b·e2 : Zq → Z2 for q ∈ N (see
Definition 1.16 for p = 2) and define the reconciliation cross-rounding function 〈·〉2 : Zq → Z2 as

〈x〉2 =
⌊(

4
q

)
· x
⌉

mod 2.

For q even, the reconciliation algorithm REC takes as input two values y ∈ Zq and b ∈ {0, 1} and
outputs bxe2, where x is the closest element to y such that 〈x〉2 = b. A concrete definition of REC
is given as follows. Define two disjoint intervals I0 =

{
0, . . . ,

⌊ q
4
⌉
– 1
}
and I1 =

{
–
⌊ q
4
⌋
, . . . , –1

}
.

Let E be the set given by
[
– q
8 ,

q
8
)
∩ Z. Further, let y be an element of Zq and b be a bit. Then,

REC(y, b) =

{
0 , y ∈ Ib + E mod q,
1 , else.

We recall the following results about the cross-rounding function and the reconciliation mecha-
nism from Peikert [Pei14].

Lemma 6.1 (Claim 3.1 and 3.2 [Pei14])

Let q ∈ N be even. If x ∈ Zq follows the uniform distribution over Zq, then does bxe2
follow the uniform distribution over Z2, given 〈x〉2. If x, y ∈ Zq such that |x – y| < q

8 , then
REC(y, 〈x〉2) = bxe2 .

However, if q is odd, then the output bit of the reconciliation method is biased. In order to
mitigate the bias, Peikert [Pei14] introduces a randomized doubling function.

Definition 6.1: Let q ∈ N be odd. The doubling function DBL : Zq → Z2q is defined
as DBL(x) = 2x – e, where e ← {–1, 0, 1} with probabilities Pr[e = –1] = Pr[e = 1] = 1

4
and Pr[e = 0] = 1

2 .

Now, analogue results also hold for an odd modulus q.

Lemma 6.2 (Claim 3.3 [Pei14])

Let q ∈ N be odd. If x ∈ Zq follows the uniform distribution over Zq, then does bxe2
with x ← DBL(x) follow the uniform distribution over Z2, given 〈x〉2. If x, y ∈ Zq such
that |x – y| < q

8 , let x ← DBL(x), then REC(2y, 〈x〉2) = bxe2 .

We extend all functions 〈·〉2, b·e2 and DBL(·) component-wise to vectors over Zq and coefficient-
wise to polynomials in Zq[x], as well as the mechanism REC to vectors over Zq × {0, 1} and to
polynomials in Zq[x]× {0, 1}[x].
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6.3 Public Key Encryption Based on MP-LWR

In the following, we define the PKE scheme. We use the rounding functions 〈·〉2, b·e2 and the
reconciliation method REC(·, ·) from Section 6.2. Without loss of generality, we assume that the
modulus q is even. For q odd, we simply need to use the randomized doubling function DBL(·)
as in Section 6.2 to mitigate the bias in the reconciliation mechanism. Further recall from
Section 1.4.5 the probabilistic lifting function li�(·) from Zp[x] to Zq[x] for two integers p and q

with 2 ≤ p ≤ q. It lifts rounded polynomials in Zp[x] to Zq[x] such that
⌊
li�(baep)

⌉
p
= baep.

Note that li�(baep) = a + e with ‖e‖∞ ≤ q/p, and we say that lifting introduces a rounding error.
Let k, d, n, p, q and t be positive integers with d +k ≤ n and q ≥ p ≥ 2. Further, let H denote a

random oracle H : {0, 1}d → {0, 1}k. The message space is M = {0, 1}k and the security parameter
is λ. By ⊕ we denote the bit-wise XOR operation of bit strings.

Protocol 6.1: The Public Key Encryption Scheme

KGen(1λ). Sample s ← U ((Z<n+d+k–1
q [x])×),

for j ∈ [t] choose aj ← U (Z<n
q [x]) and compute bj =

⌊
aj �d+k s

⌉
p,

return pk = (aj , bj)j∈[t] and sk = s.
Enc(pk,m). For j ∈ [t], sample rj ← U ({0, 1}<k+1[x])

and set c1 =
∑

j∈[t] rjaj mod q,
compute v =

∑
j∈[t] rj �d li�(bj) mod q

and set c2 = 〈v〉2 and c3 = H (bve2)⊕m,
return c = (c1, c2, c3).

Dec(sk, c). Compute w = c1 �d s and return m′ = c3 ⊕ H (REC(w, c2)).

The encryption scheme, illustrated in Protocol 6.1, works as follows. During key generation,
we sample s uniformly at random over (Z<n+d+k–1

q [x])× such that Hank(s) has full rank, defining
the secret key sk = s. This can be done by sampling s uniformly at random and rejecting it if its
Hankel matrix is not full rank. Lemma 4.1 quantifies the proportion of random s that fulfill this
condition. For j ∈ [t], we sample polynomials aj ∈ Z<n

q [x] uniformly at random and compute
the rounded middle-product bj =

⌊
aj �d+k s

⌉
p, defining the public key pk = (aj , bj)j∈[t]. In order

to encrypt a message m ∈ {0, 1}k = M, we sample for j ∈ [t] a polynomial rj ∈ {0, 1}<k+1[x]
uniformly at random and set c1 =

∑
j∈[t] rjaj mod q, defining the first part of the ciphertext.

Here we use within the sum the standard convolution product of two polynomials. Then, we
compute an intermediate value v =

∑
j∈[t] rj�d li�(bj) mod q, which is used to compute the second

and third ciphertext part as follows: set c2 = 〈v〉2 and c3 = H (bve2)⊕m. Note, that this time we
use within the sum the middle-product of two polynomials. Finally, output the ciphertext c =
(c1, c2, c3) ∈ Z<n+k

q [x]× {0, 1}d × {0, 1}k. In order to decrypt a ciphertext c for a secret key s we
first compute the intermediate value w = c1 �d s and then return m′ = c3 ⊕ H (REC(w, c2)).

6.3.1 Correctness

We now show that the PKE scheme defined above is perfectly correct under a proper choice of
parameters. See Definition 1.19 for the formal statement of the correctness property of a PKE
scheme.
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Lemma 6.3 (Correctness)

Let t, k, p ∈ N be part of the public parameters of the encryption scheme from above. Assume
that p > 8t(k + 1). For every plaintext m ∈ M and key pair (pk, sk)← KGen(1λ), we have

Pr[Dec(sk, Enc(pk,m)) = m] = 1.

Proof: In order to prove the correctness of the scheme, we need to guarantee that the recon-
ciliation mechanism succeeds. Actually, this step is independent of the message. Following
Lemma 6.1 (and for q odd Lemma 6.2) it suffices to show that ‖w – v‖∞ < q/8. It yields

v =
∑
j∈[t]

rj �d li�(bj) =
∑
j∈[t]

rj �d (aj �d+k s + ej) =
∑
j∈[t]

(rjaj)�d s +
∑
j∈[t]

rj �d ej

= c1 �d s +
∑
j∈[t]

rj �d ej = w +
∑
j∈[t]

rj �d ej ,

where for j ∈ [t] the error term ej with
∥∥ej∥∥∞ < q/p is determined by the lifting function li�(·).

In the third equation we used the associativity law of the middle-product Lemma 1.24. Thus
it suffices to have ∥∥∥∥∥∥

∑
j∈[t]

rj �d ej

∥∥∥∥∥∥
∞

< q/8.

For j ∈ [t] each coefficient of rj �d ej can be seen as the inner product 〈u, v〉 of a binary
vector u of dimension k + 1 and a vector v also of dimension k + 1, where each coefficient has
magnitude ≤ q/p. Notice that we have

|〈u, v〉| ≤ ‖u‖2 · ‖v‖2 ≤
√
k + 1 ·

√
(k + 1) · q2/p2 = (k + 1)q/p.

Hence, it yields ∥∥∥∥∥∥
∑
j∈[t]

rj �d ej

∥∥∥∥∥∥
∞

≤
∑
j∈[t]

∥∥rj �d ej
∥∥
∞ ≤ t(k + 1)q/p.

As p > 8t(k+1), we have t(k+1)q/p < q/8 which guarantees that the reconciliation mechanism
succeeds.

6.3.2 Security
In this section, we prove the security of the PKE scheme defined above based on the hardness
of MP-CLWR in the ROM. We use the standard notion of IND-CPA security whose proper defini-
tion we recall in Definition 1.20.

The high level idea of the security proof is the following. We first define a game, which we
call REC-COMP, where the adversary has to compute the output of the reconciliation mechanism
by only having access to some related information. We then embed the IND-CPA security game
into the REC-COMP game. In other words, the adversary of the latter is at the same time the
challenger of the first. To this end, we use that a message is encrypted by evaluating a random
oracle H on exactly this value and bit-wise XOR-ing it with the message. An adversary who can
distinguish the two encrypted messages from the IND-CPA game has to query the random oracle H
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on the corresponding input at some point. And thus, the challenger of the IND-CPA game, who
also simulates the random oracle, can use this query to solve the REC-COMP challenge. That is
to say, the random oracle helps to transform a distinguishing game (the IND-CPA security game)
into a computational game (the REC-COMP game).

Before stating and proving the security of our scheme, we prove that the following hash
function family using the middle-product is universal. Recall the Definition 1.7 of universal
families of hash functions in Section 1.3.5. Further recall that li�(·) denotes the probabilistic
lifting function from Zp[x] to Zq[x] for two integers p and q with 2 ≤ p ≤ q (see Section 1.4.5).

Lemma 6.4 (Universal Family of Hash Functions)

Let q, k, d, p, t ∈ N such that k, d ≥ 2 and 2 ≤ p ≤ q. For (bj)j∈[t] ∈ (Z<d+k
p [x])t , we define

h(bj )j :
(
{0, 1}<k+1[x]

)t
→ Z<d

q [x], where (rj)j 7→
∑
j∈[t]

li�(bj)�d rj .

The hash function family (h(bj )j )(bj )j is universal.

Proof: The proof is very similar to the one of [RSSS17, Lemma 4.2]. We simply replace bj
by li�(bj), using the same argument to show that

Pr
(bj )j←U

(
(Z<d+k

p [x])t
)
∑
j∈[t]

li�(bj)�d rj =
∑
j∈[t]

li�(bj)�d r
′
j

 =
1
qd

,

with (rj)j 6= (r ′j )j .

We can now prove the security of our scheme.

Lemma 6.5 (Security)

Let λ be the security parameter and k, d, n, p, q, t ∈ N such that d + k ≤ n and q ≥ p ≥ 2.
Assume that t ≥ (2 · λ + (k + d + n) · log2 q)/(k + 1). The PKE scheme above is IND-CPA secure
in the ROM under the MP-CLWRp,q,n,d+k,t hardness assumption.

Proof: Setup. Recall that the IND-CPA security game (Protocol 1.1) is the following: A
challenger C generates a key pair (pk, sk), samples a random bit b and sends the public key pk
to the adversary A. The adversary chooses two messages m0,m1 and sends them to the
challenger C, which in turn encrypts mb and sends the corresponding ciphertext c back to A.
The adversary outputs a bit b′ as a guess of b and wins the game if b = b′.
Let c = (c1, c2, c3) be the ciphertext of the message mb ∈ M. The only part that depends

on the message mb is the last one, where c3 = H (bve2)⊕mb. If the random oracle H was not
queried on the value of bve2 ∈ {0, 1}d during the game, the adversary A can only guess the
randomly chosen bit b with success probability 1/2. Thus, we can assume that a successful
adversary (with success probability non-negligibly larger than 1/2) has queried H on this spe-



6.3. PUBLIC KEY ENCRYPTION BASED ON MP-LWR 109

cific value. Subsequently, we can use a successful adversary A of the IND-CPA security game
to construct a successful adversary A′ which outputs bve2, given the first two parts (c1, c2) of
any ciphertext c = (c1, c2, c3). These first two parts are independent of the message to encrypt.
We call this the REC-COMP game, as it yields c2 = 〈v〉2 and thus c1 and c2 are connected via
the reconciliation mechanism REC. In Protocol 6.2 we illustrate how the IND-CPA security
game is nested into the REC-COMP game. The adversary A′ in the latter plays simulta-
neously the role of the challenger in the former. Note that the REC-COMP game asks the
adversary to compute something, whereas the IND-CPA game asks the adversary to distin-
guish something. By using the random oracle H (simulated by A′) to encrypt a message, we
can use a successful distinguisher in order to obtain a successful computer.
During the IND-CPA game, A′ answers the random oracle queries of A by maintaining an

input-output table for H . For each query, A′ first checks if H was already programmed on
the queried input. If yes, they output the corresponding hash value, otherwise they choose
a fresh random value and set H accordingly. Assuming A has non-negligible advantage to
win the IND-CPA security game, it must have queried H on bve2, hence A′ can look up the
pair (bve2 , r) with r = H (bve2) in the random oracle table.
Game-based proof. As a next step, we show that the probability of A′ to win is

negligible under the MP-CLWR assumption, which in turns implies the IND-CPA security
of our encryption scheme. We consider the following sequence of games, where in all
games aj ← U (Z<n

q [x]) for j ∈ [t] and the secret s is chosen via s ← U
(
(Z<n+d+k–1

q [x])×
)
.

Further, we sample rj ← U ({0, 1}<k+1[x]) for j ∈ [t] and set the first part of the ciphertext
as c1 =

∑
j∈[t] rjaj mod q.

The adversary A′ receives in each game the tuple (1λ, pk, c1, c2) and its target is to com-
pute bve2, where v is specified by each game separately.

Game 1: Set bj =
⌊
aj �d+k s

⌉
p, pk = (aj , bj)j , v =

∑
j li�(bj)�d rj mod q, and c2 = 〈v〉2,

Game 2: Set bj ←
⌊
U (Z<d+k

q [x])
⌉
p
, pk = (aj , bj)j , v =

∑
j li�(bj)�d rj mod q, and c2 = 〈v〉2,

Game 3: Set bj ←
⌊
U (Z<d+k

q [x])
⌉
p
, pk = (aj , bj)j , v ← U (Z<d

q [x]), and c2 = 〈v〉2.

Third game. Note that in the last game, c1 and c2 are independent and hence the proba-
bility that A′ outputs bve2 ∈ {0, 1}d is exactly 1/2d , using Lemma 6.1 (and Lemma 6.2 for q
odd).
From third to second game. Furthermore, the second and third game are within expo-

nentially small statistical distance, using the Generalized Leftover Hash Lemma from Sec-
tion 1.3.5. In more details, the statistical distance of the two distributions of ((aj , bj)j , c1, v)
in Game 2 and Game 3 is given by

∆

(aj , bj)j ,
∑
j∈[t]

rjaj ,
∑
j∈[t]

rj �d li�(bj)

 ,

(aj , bj)j ,
∑
j∈[t]

rjaj , v

 ≤ 2–λ,

where for all j ∈ [t] the polynomials aj , bj , rj and v are chosen uniformly at random
in Z<n

q [x],
⌊
Z<d+k
q [x]

⌉
p
, {0, 1}<k+1[x] and Z<d

q [x], respectively. Note that the randomness of
the family of hash functions (h(bj )j )(bj )j comes from the randomness of (bj)j and since Lemma 6.4
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shows that (h(bj )j )(bj )j is universal we can use Lemma 1.22. Thus, using the assumptions made
on the parameters, the statistical distance is bounded above by

1
2
·
√

2–(k+1)t · qk+n+d ≤ 2–λ.

From second to first game. The first and second game differ only in the way how the bj are
computed. In the first game, bj is a rounded middle-product sample and in the latter one, it
is a rounded uniform sample. We can interpret this situation as two different experiments,
see Protocol 6.3.
Recall from Definition 4.3 that X t

s denotes the distribution of (aj ,
⌊
aj �d s

⌉
p)j∈[t], where

we choose the aj ← U (Z<n
q [x]) independently and sample a fixed secret element s ←

U
(
(Z<n+d+k–1

q [x])×
)
. Further, we denote by U t the distribution of (aj ,

⌊
bj
⌉
p)j∈[t], where

we choose the aj ← U (Z<n
q [x]) and the bj ← U (Z<d+k

q [x]) independently. In addition, con
is an arbitrary distribution over {0, 1}∗ which is independent from X t

s and U t . The Input1
of the first experiment Exp1(C,A,S1) is given by (1λ, pk, c1, 〈v〉2), where v =

∑
j li�(bj) �d rj

with bj =
⌊
aj �d+k s

⌉
p. On the other hand, the Input2 of the second experiment Exp2(C,A,S2)

is defined by (1λ, pk, c1, 〈v〉2), where we still have v =
∑

j li�(bj)�d rj but this time with bj ←⌊
U (Z<d+k

q [x])
⌉
p
. The Target is in both cases the same, namely bve2.

According to the MP-CLWR assumption, if the success probability for any A to output
the requested bve2 is negligible when bj ←

⌊
U (Z<d+k

q [x])
⌉
p
, it is also negligible when bj is

an MP-LWR instance.
First game. Note that Game 1 corresponds to the REC-COMP game above. Combining the

arguments above shows that the success probability of A′ is negligible under the MP-CLWR
assumption, completing the security proof of our PKE scheme.

Protocol 6.2: Nesting the IND-CPA security game into the REC-COMP game

C′REC-COMP A′REC-COMP/CIND-CPA AIND-CPA

(pk, sk)← KGen(1λ)
(c1, c2, ∗)← Enc(pk, ∗)

1λ ,pk,c1 ,c2–––––––––––→ 1λ ,pk
––––––→ m0,m1 ← {0, 1}k

b← {0, 1} m0 ,m1←–––––––

r ← {0, 1}k

c=(c1 ,c2 ,r⊕mb)–––––––––––––––→

look up bve2 in H b′
←––

bve2←––––– such that H (bve2) = r
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Protocol 6.3: Experiment setting of the security proof

Exp1(C,A,S1)

1 : ((aj , baj �d sep)j , aux)← (X t
s , con)

2 : (Input1, bve2)← C((aj , bj )j , aux)
3 : Output1 ← A(Input1)
4 : return Output1 = bve2

Exp2(C,A,S2)

1 : ((aj , bj)j , aux)← (U t , con)
2 : (Input2, bve2)← C((aj , bj )j , aux)
3 : Output2 ← A(Input2)
4 : return Output2 = bve2

6.4 Parameters and Security
In this section, we first provide some asymptotic parameters and compare them with the ones of
the PKE scheme from Roşca et al. [RSSS17]. Then, we explain how to analyze the best known
attacks against our scheme, which can be used to derive concrete parameters.

6.4.1 Asymptotic Parameters
In the following, we present asymptotic parameters for our PKE scheme from Section 6.3 for
a given security parameter λ. Reasonable values for λ are for instance 128 or 256. Our PKE
scheme is defined by the parameters k, d, n, p, q and t. We set the dimension n ≥ λ, the middle-
product parameters as k = d = n/2, the number of samples as t = Θ(log2(n)), the general modulus
as q = Θ(n4+c log2(n)2) and the rounding modulus as p = Θ(n log2(n)), where c ∈ R is an arbitrary
positive constant. Here, the symbols O,Ω and Θ denote the standard asymptotic notions of
bounded above, below and from both directions, respectively.

Using these parameters, the scheme is perfectly correct (Lemma 6.3) and secure under
the MP-CLWRp,q,n,d+k,t assumption (Lemma 6.5). Using Theorem 4.1, this allows us to rely
on the MP-LWEq,n,d+k,ψ problem, where the error distribution ψ is B-bounded with B = O(n2+c).
The distribution ψ is set to be a discrete Gaussian distribution Dαq with α = Θ(1/(n

√
log2(n))).

Using the P-LWEfq,Dβq to MP-LWEq,n,d+k,Dαq reduction from [RSSS17], this in turn prevents attack
as [AG11], where β = Ω(

√
n/q) for any f (x) ∈ Z[x] monic of degree n with constant coefficient

coprime with q and expansion factor at least nc.
We now compare the asymptotic parameters of our encryption scheme with the ones given

in [RSSS17]. Table 6.1 shows the asymptotic parameters, key sizes and ciphertext sizes for
both schemes. The most important parameter is the value log2(q) as it dominates the key and
ciphertext sizes of both schemes. Asymptotically, in both cases this value is Θ(log2(n)), even
though the q is asymptotically larger in our scheme.

In general, the sampling cost is one of the intense operations of an encryption scheme. In the
encryption scheme of [RSSS17], we need 2 · t +1 sampling subroutines, including t from a rounded
Gaussian distribution, during key generation and t sampling subroutines during encryption.
In contrast, in our case we only need t + 1 sampling subroutine during key generation and t
sampling subroutines during encryption. Additionally, in our case all sampling is performed over
some uniform distribution which is simpler than Gaussian type sampling.

Further, in our encryption scheme we don’t need to restrict the modulus q to be prime.
Unlike [RSSS17], it works for all integer moduli which are sufficiently large. This gives an
advantage on the choice of parameters.
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Table 6.1: Comparison of asymptotic parameters, key sizes and ciphertext sizes

Parameter [RSSS17] Our work [BBD+19]
n ≥ λ ≥ λ
c > 0 > 0
k n/2 n/2
d n/2 n/2
t Θ(log2(n)) Θ(log2(n))
q Θ(n2.5+c

√
log2(n)) Θ(n4+c log2(n)2)

log2(q) Θ(log2(n)) Θ(log2(n))

α Θ
(

1
n
√

log2(n)

)
-

p - Θ(n log2(n))
B - O(n2+c)
Key size
sk (n + d + k – 1) · log2(q) (n + d + k – 1) · log2(q)
pk t · ((n + d + k) log2(q)) t · (n log2(q) + (d + k) log2(p))
Ciphertext size
c1 (n + k) log2(q) (n + k) log2(q)
c2 d log2(q) d
c3 - k

However, the PKE scheme of [RSSS17] is provably secure in the standard model, whereas our
proof is in the ROM.

6.4.2 Concrete Security
Unfortunately, neither the security proof in Lemma 6.5 nor the asymptotic parameters from above
give guidance on the choice of concrete parameters and on the concrete security they provide
for the encryption scheme. Parameter derivation is indeed an active research topic for lattice-
based cryptography, for both the construction of cryptographic protocols and cryptanalysis,
e.g., [APS15, ADPS16, ACD+18]. As explained in Section 1.4.6, in practice it is common to derive
the concrete parameters for LWE-based schemes by looking at the cost of the best known attacks,
such as BKZ with quantum sieving, in the so-called core SVP model, see for instance [ADPS16].
Note that those derived parameters don’t necessarily fulfill the conditions of the security proof
of Lemma 6.5.

In the following, we highlight two approaches for our PKE scheme. The first one interprets
the public key as an instance of LWE by proceeding as follows: The public key of our scheme
provides an instance of MP-LWR, which is in a first step interpreted as an instance of MP-LWE
and in a second step analyzed as an instance of LWE. The second approach is a dual lattice
attack on the public key, that uses the weak associativity law of the middle-product.

Public Key as LWE Instance

Step 1: From MP-LWR to MP-LWE. In our scheme from Section 6.3, the public key is given
as pk = (aj , bj)j∈[t], where bj =

⌊
aj �d+k s

⌉
p for aj ← U (Z<n

q [x]) and s ← U ((Z<n+d+k–1
q [x])×)

for j ∈ [t]. In order to interpret this MP-LWR instance as an MP-LWE instance, it suffices to lift
the second part from Z<d+k

p [x] to R<d+k
q [x] by multiplying it with q/p. This introduces a so-

called rounding noise, as explained in Section 1.4.5. Hence, the public key defines the following
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equation

q/p · bj = aj �d+k s + ej , (6.1)

where ej is an element of R<d+k
q [x] with

∥∥ej∥∥∞ ≤ q/p.
Step 2: From MP-LWE to LWE. We analyze the hardness of solving an MP-LWE instance by
interpreting it as an LWE instance, as for today, the best known attacks don’t make use of the
underlying structure. This is also true for other structured variants such as P-LWE, R-LWE
or M-LWE.

In Section 1.4.4, we saw that the middle-product of two polynomials can be expressed in terms
of a matrix-vector product using special product matrices T, see Definition 1.14 and Lemma 1.25.
Thus, given Equation 6.1 from above, it yields

q/p · rev(bj) = Td+k,n(aj) · rev(s) + ej , (6.2)

where rev(bj) and rev(s) are the coefficient vectors of bj and s in reverse order. By ignoring the
structure of Td+k,n and interpreting it as random matrix Aj ∈ Z(d+k)×(n+d+k–1)

q this gives the
final LWE equation

b̃j = Aj · s̃ + ej , (6.3)

where b̃j = q/p · rev(bj) and s̃ = rev(s). Globally speaking, to analyze an instance of LWE, there are
two type of attacks: The primal and the dual attack. The high level idea of the primal attack
is to recover the LWE secret, exploiting that it is part of an unusually short vector in a given
lattice specified by the LWE instance. In contrast, the attacker can use the dual attack to first
find a short vector in the dual lattice and then use this short vector to decide whether a given
instance is an LWE instance or drawn from the uniform distribution.

To conclude on the concrete security estimations, one can use the LWE Estimator [APS15]
or the more recent Leaky LWE Estimator [DDGR20] by plugging in some concrete values
for q, n, d, k, p and t and gradually adapt them to obtain the aimed security level. Note that
the requirements of Lemma 6.3 should be met in order to guarantee the correctness of the
scheme.

Dual Attack against Public Key

As opposed to the previous approach, where the attacker tries to recover the secret key from the
public key via interpreting it as an instance of LWE, the attacker can directly use the dual attack
to first find a short vector in the dual lattice and then use this short vector to decide whether
a given instance is an MP-LWR instance or drawn from the uniform distribution. Note that this
technique attacks the decision problem, which is not directly used in our scheme. However, in
order to deepen our understanding of the scheme’s security, it is interesting to study this attack
as well.

Recall that the public key
(
aj , bj

)
j∈[t] defines the Equation 6.1. Now, we consider the following

lattice

Λq (a1, . . . , at ) =

(x1, x2, . . . , xt )T ∈
(
Z<k+1[x]

)t
:
∑
j∈[t]

xj · aj = 0 mod q

 .

If the adversary is able to find a short lattice vector x = (x1, . . . , xt )T in Λq (a1, . . . , at ), they can
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use it to distinguish uniform samples from MP-LWR samples by computing the sum∑
j∈[t]

xj �d (q/p · bj) =
∑
j∈[t]

xj �d
(
aj �d+k s + ej

)
=
∑
j∈[t]

(
xj · aj

)
�d s +

∑
j∈[t]

xj �d ej

=
∑
j∈[t]

xj �d ej .

In the second equation we use the weak associativity of the middle-product from Lemma 1.24. As
the xj and the ej are all polynomials with small coefficients, the sum of their product

∑
j xj �d ej

has (relatively) small coefficients as well. On the other hand, if bj are uniform elements, the
sum

∑
j xj�d ej is a polynomial with uniform coefficients, and thus the adversary can distinguish

the public key from uniform samples. We refer to [MR09] for the details of the concrete parameter
setting for which this attack works.

Concrete Parameters

In the original paper published in the proceedings of Asiacrypt 2019 [BBD+19], we also provide
concrete sample parameters for our scheme (and for the scheme of Roşca et al. [RSSS17]). As
this part of the research was mainly done by the co-author Zhenfei Zhang, we refer to the given
parameters there. We would like to notice that those parameters may have become outdated as
the work by Sakzad et al. [SSZ19] provides tighter cryptanalysis for schemes based on MP-LWE
which most certainly carries over to the rounding setting. As already stated in the original
article, we leave a more efficient instantiation and dedicated cryptanalysis to future work.



Chapter 7

PASS Encrypt

This chapter can be seen as the continuation of Chapter 5 and is therefore based on the same
joint work with Amin Sakzad and Ron Steinfeld, which was initiated during a research stay at
the Monash University in Melbourne from October to December 2019.
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7.1 Introduction
In Chapter 5, we study several problems related to the discrete Vandermonde matrix V. In par-
ticular, we define search and decision Partial Vandermonde Knapsack (PV-Knap, Def. 5.2) and
the PASS problem (Def. 5.5), where the latter one can be seen as a leaky variant of the first. The
motivation of studying those problems is that they serve as the underlying hardness assumptions
for the security proof of a Public Key Encryption (PKE) scheme, as we elaborate in the following.
Recall from the introduction to Chapter 5 that Hoffstein and Silverman [HS15] use those com-
putational building blocks to construct PASS Encrypt, an efficient lattice-based PKE scheme. On
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the positive side, the algebraic structure of the Vandermonde matrix equips PASS Encrypt with
additive and multiplicative homomorphic properties. On the negative side, the scheme comes
without a security proof with respect to the hardness of explicit computational problems, and
the scheme is deterministic and thus cannot satisfy the standard notion of IND-CPA security.1

7.1.1 Our Contributions
In this chapter, we present a modification of PASS Encrypt together with a security proof based
on the decision PV-Knap problem and a leaky variant of it, that we call the PASS problem, both
studied in Chapter 5. The latter problem captures the fact that a ciphertext of PASS Encrypt con-
sists of several partial Vandermonde transforms of related elements. In other words, a successful
attacker against PV-Knap can be used to win the IND-CPA security game, but a successful attacker
against the IND-CPA security of PASS Encrypt may not be powerful enough to solve PV-Knap.
This issue was not addressed before in the original version of PASS Encrypt [HS15]. Furthermore,
the original scheme is deterministic and thus cannot be IND-CPA secure. Additionally, it uses
the Fourier transform similar to older versions of PASS Sign.2

In our slightly modified version of PASS Encrypt, we first move from the Fourier to the Vander-
monde transform, as done for PASS Sign by Lu et al. [LZA18]. The Fourier transform is defined
by the powers of all roots of unity, whereas the Vandermonde transform only by the powers
of all primitive roots of unity. This change is motivated by the fact that the discrete Fourier
transform always maps the all-1 vector to zero and thus partial Fourier SIS3 is trivially easy. In
contrast, our setting does not allow the same trivial solution to partial Vandermonde SIS. For
completeness, we explain how to solve partial Fourier SIS in Section 7.3.4. Second, we make the
scheme probabilistic by adding randomness to the message. We then give a proof of correctness
(Lemma 7.1) for well-chosen parameters and a proof of security (Lemma 7.2), assuming the hard-
ness of dec-PV-Knap and PASS. A refined analysis of the security of PASS Encrypt is provided in
Section 7.3. In particular, we show a novel attack that we call Plaintext Recovering Using Hints
attack, which takes the structure of PASS Encrypt into account. It is inspired by the recent work
of Dachman-Soled et al. [DDGR20] on exploiting hints that are given on a LWE secret or noise.
Our complexity estimates for this attack show that it does not reduce the attack complexity be-
low that of previously known lattice algorithms on PASS Encrypt, which increases our confidence
in its claimed security against best known lattice attacks. We conclude the chapter by providing
concrete sample parameters and compare our version of PASS Encrypt with two other efficient
schemes whose security proofs are based on structured lattice problems.

7.1.2 Related Work
To the best of our knowledge, PASS Encrypt is the only encryption scheme that uses the partial
Vandermonde transformation matrix VΩ and its complement VΩc . As we mention in Chap-
ter 5, PASS Encrypt is inspired by a signature scheme, called PASS Sign, which also uses the partial
Vandermonde matrix VΩ. It was originally introduced by Hoffstein et al. [HPS+14] and equipped
with a rigorous security proof by Lu et al. [LZA18]. From a high level perspective, PASS Sign
is an adaptation of Lyubashevsky’s Fiat-Shamir with aborts signature [Lyu09, Lyu12] to the
partial Vandermonde setting. In contrast to PASS Encrypt, the signature scheme does not make
use of the complement partial Vandermonde matrix VΩc and hence the novel attack that we

1A deterministic PKE scheme cannot be IND-CPA secure as an adversary can simply encrypt both messages
using the public key and decide which one is used in the challenge ciphertext.

2We briefly introduce the digital signature scheme PASS Sign in the introduction to Chapter 5. It uses mathe-
matical concepts which are very similar to the ones of PASS Encrypt.

3In Fourier SIS, the partial Fourier matrix, instead of the partial Vandermonde matrix, is used.
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present in this chapter does not apply to it. Nevertheless, it still benefits from the homomorphic
properties of VΩ which are used in a more recent work by Doröz et al. [DHSS20] to build a
compact lattice-based aggregate signature scheme.

7.1.3 Roadmap
The rest of the chapter is structured as follows. We start in Section 7.2 with presenting the
slightly modified version of PASS Encrypt, then prove its correctness and its security based on
the hardness of decision PV-Knap and PASS. Furthermore, we demonstrate its additive and
multiplicative homomorphic properties. Later, in Section 7.3 we provide an analysis of its security
against known attacks before giving concrete sample parameters in Section 7.4 and a comparison
with two other lattice-based encryption schemes.

7.2 PASS Encrypt
In the following, we use the same notation as in Chapter 5, that we quickly recall here. For
simplicity, we focus on power-of-2 cyclotomics. Let ν be a power of 2 and q be a prime such
that q = 1 mod ν. Further, we set n = ν/2 and t = n/2. There are exactly n primitive ν-th roots
of unity over Zq and for the key generation of our scheme we need to choose at random t (i.e.,
half) of them. To this end, we denote by Pt the set of all subsets Ω of size t of all primitive ν-th
roots of unity over Zq. Every Ω defines the corresponding partial Vandermonde matrix VΩ and
its complement VΩc . Let ψf ,ψr ,ψs be distributions over Zn. Recall that we denote by + and ◦
component-wise addition and multiplication of vectors over Zq. The message space M is given
by {0, 1}n, and we select a message m ∈ M. Finally, let p be a small prime which is coprime to q
and let λ denote the security parameter.

Protocol 7.1: Our slightly modified version of PASS Encrypt.

KGen(1λ). Sample f← ψf and Ω← U (Pt ),
return sk = f ∈ Zn, pk = (Ω,VΩf) ∈ Zt

q × Zt
q.

Enc(pk,m). Sample r← ψr , s← ψs,
set r′ = pr and m′ = ps +m,
set e = (VΩr′ ◦ pk) +VΩm′
set e′ = VΩcr′,
set e′′ = VΩcm′,
return c = (e, e′, e′′) ∈ Zt

q × Zn–t
q × Zn–t

q .
Dec(sk, c). Compute c′ =

(
e′ ◦VΩc sk

)
+ e′′ ∈ Zn–t

q ,
using knowledge of Ω and Ωc

combine e and c′ to obtain c′′ as a vector over Zn
q,

return V–1c′′ mod p.

We now describe our slightly modified version of PASS Encrypt, as summarized in Protocol 7.1.
During key generation, we sample f from the distribution ψf , defining the secret key sk = f ∈ Zn.
Then, we sample Ω ∈ Zt

q uniformly at random over the set Pt , which determines the public
key pk = (Ω,VΩf) ∈ Zt

q × Zt
q, where the second part is the partial Vandermonde transform

of f evaluated at the roots given by Ω. In order to encrypt a message m ∈ M, we sample two
random vectors r ← ψr and s ← ψs, which define r′ = pr and m′ = ps +m. This randomizes the
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message vector and thus converts PASS Encrypt from a deterministic in a randomized scheme.
The ciphertext c is then given by three elements. The first is e = (VΩr′ ◦ pk) + VΩm′ ∈ Zt

q,
using the partial Vandermonde matrix VΩ. And the other two are given by e′ = VΩcr′ ∈ Zn–t

q
and e′′ = VΩcm′ ∈ Zn–t

q , using the complementary partial Vandermonde matrix VΩc . In order to
decrypt a ciphertext c, we use the secret key sk to first compute c′ = (e′ ◦ VΩc sk) + e′′ ∈ Zn–t

q .
Now, using the knowledge of Ω and Ωc, we can combine e and c′ to obtain a full vector c′′
over Zn

q. The decryption algorithm then returns V–1c′′ mod p. We give some sample parameters
for PASS Encrypt in Section 7.4 in Table 7.1.

Our version of PASS Encrypt differs in two aspects from the original version as presented
in [HS15, Sec. 4]. First, they use the partial Fourier transform (that they denote by FS) instead
of the partial Vandermonde transform VΩ, and second, in their case it always yields s = 0 and
thus m′ = m. This makes the third part e′′ of their ciphertext only dependent on m and hence
the scheme deterministic. Additionally, the modifications also apply to the second version of the
original proposed scheme, see [HS15, Sec. 6].

7.2.1 Correctness

We now show that the PKE scheme defined above is perfectly correct under a proper choice of
parameters. See Definition 1.19 for the formal statement of the correctness property of a PKE
scheme.

Lemma 7.1 (Correctness)

Let Pt , p and ψf ,ψr ,ψs be the public parameters of PASS Encrypt. Assume that there ex-
ist α,β > 0 such that for f ← ψf , r ← ψr and s ← ψs it yields with probability 1
that ‖f‖∞ ≤ 1, ‖r‖1 ≤ α and ‖s‖∞ ≤ β. Further, we require p(α + β) + 1 < q/2. For
every key pair (sk, pk)← KGen(1λ) and message m ∈ M, it holds

Pr [Dec(sk, Enc(pk,m)) = m] = 1.

Proof: The decryption oracle first computes c′ = (e′ ◦VΩc sk) + e′′ ∈ Zn–t
q and then combines

it with e ∈ Zt
q in order to obtain a full vector c′′ ∈ Zn

q. To guarantee correctness, we need to
make sure that V–1c′′ = m mod p. Using the definition of sk, e′ and e′′ it yields

c′ =
(
VΩcr′ ◦VΩc f

)
+VΩcm′ = VΩc (r′ · f +m′).

Simultaneously, using the definition of pk and e it yields

e = (VΩr′ ◦VΩf) +VΩm′ = VΩ(r′ · f +m′).

In both cases we use the multiplicative and homomorphic properties of VΩ and VΩc as
presented in Section 5.2.1. Thus, combining both c′ and e provides c′′ = V(r′ · f + m′)
and thus V–1c′′ = r′ · f + m′ = pr · f + ps + m mod q. Hence, V–1c′′ mod p = m mod p
if ‖pr · f + ps +m‖∞ < q/2. Using the properties of power-of-2 cyclotomics to bound the infin-
ity norm of the product of two elements as presented in Example 1.2 and thatm ∈ M = {0, 1}n,
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it yields

‖pr · f + ps +m‖∞ ≤ p‖r · f‖∞ + p‖s‖∞ + ‖m‖∞
≤ p · ‖f‖∞ · ‖r‖1 + p‖s‖∞ + ‖m‖∞
≤ pα + pβ + 1.

As we require p(α+β)+1 < q/2, the decryption algorithm decrypts correctly with probability 1.

7.2.2 Security
In this section, we prove the security of PASS Encrypt as defined above based on the hardness
of PASS and dec-PV-Knap, both problems are defined in Section 5.2. We use the standard notion
of IND-CPA security whose proper definition we recall in Definition 1.20.

In order to show the IND-CPA security of PASS Encrypt, we use a common game-hopping
argument, as summarized in Protocol 7.2. Game 1 corresponds to the proposed PASS Encrypt.
In Game 2 we change the definition of e, in Game 3 the one of e′ and last in Game 4 the one
of e′′. Note that in Game 2, 3 and 4 the decryption algorithm does in general not succeed as the
ciphertext parts e, e′ or/and e′′, when chosen uniformly at random, do in general not possess a
small preimage under VΩ or VΩc , respectively. For the proof of IND-CPA security, however, this
does not pose any problem.

Protocol 7.2: Game hopping for IND-CPA security of PASS Encrypt.

Game 1 Game 2
KGen: sk = f← ψf , Ω← U (Pt ) sk = f← ψf , Ω← U (Pt )

pk = (Ω,VΩf mod q) pk = (Ω,VΩf mod q)
Enc: r← ψr , s← ψs r← ψr , s← ψs

r′ = pr, m′ = ps +m r′ = pr, m′ = ps +m
e = (VΩr′ ◦ pk) +VΩm′ e← U (Zt

q)
e′ = VΩcr′ e′ = VΩcr′
e′′ = VΩcm′ e′′ = VΩcm′
Game 3 Game 4

KGen: sk = f← ψf , Ω← U (Pt ) sk = f← ψf , Ω← U (Pt )
pk = (Ω,VΩf mod q) pk = (Ω,VΩf mod q)

Enc: r← ψr , s← ψs r← ψr , s← ψs
r′ = pr, m′ = ps +m r′ = pr, m′ = ps +m
e← U (Zt

q) e← U (Zt
q)

e′ ← U (Zn–t
q ) e′ ← U (Zn–t

q )
e′′ = VΩcm′ e′′ ← U (Zn–t

q )

Lemma 7.2 (Security)

Let Pt , p and ψf ,ψr ,ψs be the public parameters of PASS Encrypt and the message m ∈ M.
Assuming the hardness dec-PV-Knapψ1 , dec-PV-Knapψ2 and PASSψf ,ψ1,ψ2 , where ψ1 = p · ψr
and ψ2 = p ·ψs +m, the encryption scheme as summarized in Protocol 7.1 is IND-CPA secure.
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Proof: Note that Game 1 corresponds to the proposed PASS Encrypt. The only difference
between Game 1 and Game 2 is the way how e is defined. In the first game, it is a partial
Vandermonde transform, given by (VΩr′ ◦pk)+VΩm′ = VΩ(r′ · f+m′), and in the second game
it is sampled uniformly at random over Zt

q. Notice that pk, e′ and e′′ are not independent
from e, but assuming the hardness of PASSψf ,ψ1,ψ2 , with ψ1 = p · ψr and ψ2 = p · ψs +m, an
adversary cannot distinguish between the two games.
Now, we are studying the difference between Game 2 and Game 3. Here, the second

ciphertext part e′ is replaced by a uniform element over Zn–t
q . We remark, that e′ is inde-

pendent from the other two ciphertext parts e and e′′ and also independent from the secret
key. Thus, assuming the hardness of dec-PV-Knapψ1 , an adversary cannot distinguish Game 2
from Game 3.
The only difference between Game 3 and Game 4 is the definition of e′′. With the

same argument, they cannot distinguish Game 3 from Game 4, assuming the hardness
of dec-PV-Knapψ2 .
In the last Game 4, the ciphertext c = (e, e′, e′′) is independent of the message m and

the key pair (sk, pk). Thus, the adversary has no chance to distinguish two ciphertexts in
the IND-CPA security game better than to guess.

We would like to emphasize the following connection of PASS Encrypt to ideal lattices. As
elaborated in Section 5.2.1, the public key of PASS Encrypt given by the partial Vandermonde
transform pk = VΩf can be seen as a way to specify the coset f+I, where I =

∏
ωj∈Ω〈q, x–ωj〉 is an

ideal lattice. Simultaneously, the complement partial Vandermonde transforms VΩcr′ and VΩcm′
(i.e., the second and third part of the ciphertext of PASS Encrypt) can be seen as a way to specify
the cosets r′+I ′ and m′+I ′, where I ·I ′ = 〈q〉. In other words, PASS Encrypt allows a formulation
directly in the language of ideal lattices.

7.2.3 Homomorphic Properties
In the following, we show that our slight modifications on PASS Encrypt preserve its additive
and multiplicative homomorphic properties, as originally demonstrated by Hoffstein and Silver-
man [HS15, Sec. 5].

Additive Homomorphic

For addition, we can simply sum the different parts of two given ciphertexts to obtain the
encryption of the sum of the original messages. To decrypt the sum, we can use the same
decryption algorithm as for a single ciphertext.

More precisely, given for a fixed key pair (sk, pk) two ciphertexts c1 = (e1, e′1, e′′1 ) and c2 =
(e2, e′2, e′′2 ) on two messages m1 and m2, where during encryption the random ring elements r1, s1
and r2, s2 were used. Then, the element c = (e1 + e2, e′1 + e′2, e′′1 + e′′2 ) defines the ciphertext of the
message m = m1 +m2 with encryption randomness r = r1 + r2 and s = s1 + s2. Here, we only use
the linearity of matrix-vector products.

Multiplicative Homomorphic

The situation is slightly more complex for multiplication, where an additional cross term has to
be provided in the ciphertext in order to enable the decryption of the product of two ciphertexts.

In more details, assume that we are given for a fixed key pair (sk, pk) two ciphertexts c1 =
(e1, e′1, e′′1 ) and c2 = (e2, e′2, e′′2 ) on two messages m1 and m2, where during encryption the random
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elements r1, s1 and r2, s2 were used. In order to provide enough information to recover the
product message m1 ·m2 mod p, we need to transmit in the ciphertext the respective products e =
e1 ◦ e2, e′ = e′1 ◦ e′2 and e′′ = e′′1 ◦ e′′2 , and additionally a cross term E = e′1 ◦ e′′2 + e′2 ◦ e′′1 . To decrypt,
we use e, e′, e′′,E and the secret key sk to compute

c′ =
(
e′ ◦ (VΩc sk)2

)
+
(
E ◦VΩc sk

)
+ e′′

=
(
VΩcr′1 ◦VΩcr′2 ◦ (VΩc f)2

)
+
(
VΩcr′1 ◦VΩcm′2 ◦VΩc f

)
+
(
VΩcr′2 ◦VΩcm′1 ◦VΩc f

)
+
(
VΩcm′1 ◦VΩcm′2

)
= VΩc

(
(r′1r′2f2) + (r′1m′2f) + (r′2m′1f) + (m′1m′2)

)
.

On the other hand, it yields

e = e1 ◦ e2
=
(
(VΩr′1 ◦ pk) +VΩm′1

)
◦
(
(VΩr′2 ◦ pk) +VΩm′2

)
=
(
VΩ(r′1f +m′1)

)
◦
(
VΩ(r′2f +m′2)

)
= VΩ

(
(r′1r′2f2) + (r′1m′2f) + (r′2m′1f) + (m′1m′2)

)
.

Combining c′ and e gives the full Vandermonde transform and by applying V–1, we obtain c′′ =
(r′1r′2f2)+(r′1m′2f)+(r′2m′1f)+(m′1m′2) mod q. If

∥∥c′′∥∥∞ < q/2, we can compute c′′ mod p = m′1m′2 mod
p = m1m2 mod p. Here, we use that r′j = prj and m′j = psj +mj for j ∈ {1, 2}.

7.3 Security Analysis

We start this section by investigating the concrete security of PASS Encrypt against best known
attacks. We present three attacks that we call the Key Recovery (Section 7.3.1), the Randomness
Recovery (Section 7.3.2) and the Plaintext Recovery Using Hints Attacks (Section 7.3.3). The
first two attacks are already considered in the original PASS Encrypt proposal by Hoffstein and
Silverman [HS15]. We restate them for completeness and rephrase them in the primal attack
framework of LWE as done by Alkim et al. [ADPS16]. Further, [HS15] use the less common
notion of MIPS-years, where one MIPS-year equals the number of instructions executed during
one year of computing at one million instructions per second. Note that in the parallel line of work
concerning PASS Sign, the same type of attacks is studied as well ([HPS+14, LZA18, DHSS20]).

Essentially, recovering the secret key sk (resp. the randomness r′) used in the encryption
algorithm (see Protocol 7.1) corresponds to solve an instance of PV-Knap with regard to the
partial Vandermonde matrix VΩ (resp. the complement partial Vandermonde matrix VΩc ).
However, no attack that aims at recovering the secret vector of the PASS instance given by a
ciphertext has been studied so far. This leads us to the third attack, that we call the Plaintext
Recovery Using Hints Attack in the following. This novel attack takes the design of PASS Encrypt
into account and thus improves our understanding of its security. We then argue why we move
from the Fourier to the Vandermonde transform in Section 7.3.4. Furthermore, we show how to
interpret the partial Vandermonde LWE and SIS problems in terms of error-correcting codes in
Section 7.3.5.

Finally, we give concrete sample parameters and security estimates in Section 7.4 and com-
pare PASS Encrypt with two other efficient lattice-based PKE schemes in Section 7.4.2.
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7.3.1 Key Recovery Attack
We now describe the first attack against PASS Encrypt, as already considered in the original
proposal [HS15, Sec. 7]. We restate it for completeness and rephrase it in the attack framework
of LWE as done by Alkim et al. [ADPS16], using the BKZ algorithm with quantum sieving to solve
the associated Unique Shortest Vector Problem (u-SVP, Def. 1.3). The second component of the
public key pk of PASS Encrypt is a vector g ∈ Zt

q defined as g = VΩf mod q, where f← ψf . We can
write VΩ = [A|B] ∈ Zt×n

q with A ∈ Zt×(n–t)
q and B ∈ Zt×t

q , where B has full rank t and thus by
multiplying VΩ by the inverse of B, it takes the form [Ã|It] ∈ Zt×n

q , for some matrix Ã ∈ Zt×(n–t)
q

and It the identity matrix of order t. Hence, we can transform the equation above to

g̃ = Ã · f1 + f2 mod q, (7.1)

where g̃ = B–1g and f = (f1, f2)T with f1 ∈ Zn–t and f2 ∈ Zt . Equation 7.1 can be seen as an
instance of LWE in its Hermite Normal Form (HNF), as defined in Section 1.4.1, with public
matrix Ã of LWE dimension n – t and with t denoting the number of given samples. In doing so,
we ignore the known structure of the matrix Ã and treat it as a uniform random matrix. This is
a common approach used in structured lattice-based cryptography as no cryptanalytic technique
making use of the algebraic structure is known, for a more elaborated discussion see [ACD+18].
We proceed as we usually do for LWE (see [ADPS16] for more details) and rewrite the equation
above as Ã · f1 + f2 – g̃ = 0 mod q. This defines an instance of u-SVP in the lattice Λ = Λ(Ã, g̃) given
by

Λ = {(x, y,w)T ∈ Zt × Zn–t × Z : x + Ã · y – wg̃ = 0 mod q}.

A basis of this lattice is given by the column vectors of

C =

 qIt –Ã g̃
0(n–t)×t In–t 0(n–t)×1
01×t 01×(n–t) 1

 ∈ Z(n+1)×(n+1),

where for n,m ∈ N, we denote by 0n×m the n ×m matrix composed of zeros. The lattice Λ has
full rank n+1 as it is has an upper triangular form. Further, its determinant is qt , corresponding
to the determinant of C. It is easy to see that the vector (f2, f1, 1)T ∈ Zn+1 lies in Λ, where its
norm depends on the distribution ψf . Assuming that ψf = U ({–1, 0, 1}), we expect its Euclidean
norm to be ≈

√
2n
3 .

When estimating the expected length of a shortest vector, one can use the Gaussian heuristic,
as explained in Section 1.2. More precisely, the Gaussian heuristic for the given lattice Λ with
determinant qt and of dimension n+ 1 (see Equation 1.2) states that the shortest vector in Λ has
Euclidean norm approximately

√
n+1
2πe · q

t
(n+1) ≈ √q · n, for t = n/2. This is much larger than the

norm of (f2, f1, 1)T . In other words, we assume that (f2, f1, 1)T is the unique shortest vector and
the second shortest vector has the norm following the Gaussian heuristic. This is an instance
of u-SVP, as presented in Definition 1.3. If we assume that q is linear in n, then the ratio of the
shortest and the second shortest vector (also called the SVP gap) is approximately 1√

n .
The u-SVP instance can be solved by the BKZ algorithm and its running time depends on the

used blocksize within BKZ. We use the publicly accessible4 Leaky LWE Estimator [DDGR20] to
estimate the necessary blocksize for the BKZ algorithm, denoted as bikz. The algorithm BKZ itself
uses an SVP oracle in dimension bikz. As in [ADPS16], we evaluate the running time of BKZ using

4https://github.com/lducas/leaky-LWE-Estimator

https://github.com/lducas/leaky-LWE-Estimator


7.3. SECURITY ANALYSIS 123

the core SVP hardness, thus considering only the cost of one call to an SVP oracle in dimension
bikz.

As the best known heuristic quantum algorithm to solve SVP in dimension bikz [Laa15] runs
in time 20.265·bikz, we give the number of quantum security bits by 0.265 · bikz. We give concrete
sample parameters and values for this attack against PASS Encrypt in Section 7.4 in Table 7.1.

7.3.2 Randomness Recovery Attack
We now describe the second attack against PASS Encrypt, which aims at recovering the underlying
randomness r used during encryption. The second component of the ciphertext c of PASS Encrypt
is given by a vector e′ ∈ Zn–t

q satisfying e′ = VΩcr′ mod q, with r′ = pr for r← ψr . As p is publicly
known and coprime to q, we can divide the above by p to obtain g := e′/p = VΩcr mod q. As
for the Key Recovery Attack from above, we can interpret this as an instance of LWE. More
precisely, we write VΩc = [C|D] ∈ Z(n–t)×n

q with C ∈ Z(n–t)×t
q and D ∈ Z(n–t)×(n–t)

q , where D has
full rank n – t. We multiply the equation above by the inverse of D to obtain

g̃ = C̃ · r1 + r2 mod q, (7.2)

where [C̃|In–t] = [C|D]·D–1, g̃ = D–1g and r = (r1, r2)T with r1 ∈ Zt and r2 ∈ Zn–t . In other words,
Equation 7.2 describes an instance of LWE in Hermite Normal Form with public matrix C̃ of
dimension t, where n– t samples are given. Note that the roles of the dimension and the number
of samples are exactly the reversed roles as in the Key Recovery Attack. However, for t = n/2, the
dimension and number of samples of the LWE instances are in both attacks the same. Further,
for ψr = ψf , as we do in the sample parameters in Table 7.1, both attacks are equally hard.

In order to recover the plaintext m from the ciphertext c = (e, e′, e′′), an attacker can use the
same approach as in the Key Recovery Attack to solve the associated LWE instance (obtaining r)
and to compute r′ = pr. They can then use r′ to compute VΩm′ = e – (VΩr′ ◦ pk). By combin-
ing VΩm′ and e′′ = VΩcm′ to the full discrete Vandermonde transform Vm′, one can multiply it
by V–1 to obtain m′ = ps +m mod q. Finally, the plaintext message m mod p can be recovered
by computing m′ mod p.

7.3.3 Plaintext Recovery Using Hints Attack
In the following we present a new attack against PASS Encrypt, which is inspired by the recent
work of Dachman-Soled et al. [DDGR20] on exploiting hints that are given on the LWE secret
or noise. The first part of the ciphertext c of PASS Encrypt is given by e = (VΩr′ ◦ pk) + VΩm′,
where r′ = pr, pk = VΩf and m′ = ps+m with f← ψf , r← ψr and s← ψs. Using the homomorphic
properties of VΩ as presented in Section 5.2.1, we can rewrite e as e = VΩ · (f · r′ +m′). Recall
that Rot(f) denotes the matrix describing the multiplication by f in the coefficient embedding, see
Section 1.1.3. In matrix form this gives

e = VΩ · (Rot(f) · r′ + In ·m′) = [A|VΩ] ·
(
r′
m′
)

mod q,

where A = VΩ · Rot(f) ∈ Zt×n
q . Note that we can compute A by knowing the roots ωi` ∈ Ω

for ` ∈ [t] and the public key pk, and not necessarily the secret key sk = f, as explained in
Lemma 5.1. As VΩ has full rank t, we can use Gauss elimination to transform this equation into

ẽ = [B|It] ·
(
r′
m′
)

= B · r̃′ + m̃′ mod q,
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with B ∈ Zt×(2n–t)
q , r̃′ containing r′ and the first n – t coefficients of m′ and m̃′ containing the

last t coefficients of m′. This corresponds to an instance of LWE of dimension 2n – t and t the
number of given samples, with B the public matrix.

At first sight, one can see that the LWE instance is of much larger dimension than in the
two previous attacks, and thus one may wonder why this attack should provide tighter security
estimates. As we will see now, this is because of the additional information provided by the rest
of the ciphertext. The second and third part of the ciphertext e′ and e′′ can be viewed as hints
on r′ and m′. To be more precise, e′ = VΩc · r′ and e′′ = VΩc ·m′. This can be rewritten as

e′ = [VΩc |0(n–t)×n] ·
(
r′
m′
)

mod q, e′′ = [0(n–t)×n|VΩc ] ·
(
r′
m′
)

mod q.

Note that the vector (r̃′, m̃′)T is simply a re-labeling of the vector (r′,m′)T . In the language of
Dachman-Soled et al. [DDGR20] this corresponds to 2(n – t) modular hints.

For simplicity, we assume that m = 0 and thus m′ = ps. As p is a public parameter we can
assume that the secret r′ and the noise m′ of the corresponding LWE sample are drawn from the
distributions ψr and ψs, respectively.

As in the Key Recovery Attack, the number of security bits claims that a quantum algorithm
would need at least a running time of 20.265·bikz, where bikz is the blocksize resulting from the
Leaky LWE Estimator [DDGR20].

7.3.4 Choice of Ring
In the original description of PASS Encrypt [HS15], the partial Fourier transform is used, and not
as we propose the partial Vandermonde transform. The main difference between the original
and our version is that the latter works over the ring of integers of some cyclotomic number
field, whereas the first one works over the cyclic ring Z[x]/〈xn –1〉, for some prime n. The setting
in [HS15] is the following. Let n and q be primes satisfying q = 1 mod n and let ω be a primitive n-
th root of unity in Zq. Further, let S be a subset of [n] of size t and let Ω = {ωk–1 : k ∈ S}
and Ωc = {ωk–1 : k ∈ [n] \ S}. The (discrete) partial Fourier transformation matrix FΩ is defined
as FΩ := (ωk–1j )j∈[t],k∈[n], where ωj ∈ Ω for j ∈ [t]. In an analogue manner to Section 5.2.1,
where we define Partial Vandermonde SIS (Definition 5.3), we can define Partial Fourier SIS,
denoted by PF-SIS. More concretely, for a given parameter β > 0, PF-SISβ asks to find an
element a ∈ Z[x]/〈xn – 1〉 of norm ‖a‖2 ≤ β satisfying FΩ · a = 0 mod q.

Lemma 7.3 (Solution to Partial Fourier SIS)

The problem PF-SISβ is easy to solve for any β ≥
√
n.

Proof: Let 1 denote the element in Z[x]/〈xn – 1〉 whose coefficient vector is given
by (1, . . . , 1)T ∈ Zn. The polynomial xn – 1 can be factorized in the product xn – 1 =
(x–1)(xn–1+· · ·+x+1). As for any j ∈ [t] the element ωj is a solution to the equation xn–1 mod q,
we also know that

∑
k∈[n] ω

k–1
j = 0 mod q and thus FΩ1 = 0 mod q with ‖1‖2 =

√
n ≤ β.

This generic solution only holds for the homogeneous problem PF-SIS, and not for the inho-
mogeneous Knapsack counterpart. However, we prefer to move to the ring R = Z[x]/〈xn + 1〉,
where n is a power of two. For this ring, the so-called evaluation-at-1 attack does not work. Note
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that the evaluating-at-1 approach already led to successful attacks against NTRU.

7.3.5 Code-Based Attack

We now explain how the partial Vandermonde transform can be interpreted in terms of error-
correcting codes. For a gentle introduction to coding theory, we refer to the book of Roth [Rot06].

More formally, the partial Vandermonde transformation matrix VΩ ∈ Zt×n
q , as defined in

Section 5.2.1, describes the check matrix of an [n, t, d] Reed-Solomon code, with d = n – t + 1 its
minimum distance. Using the duality connection between PV-Knap and PV-LWE from Section 5.3,
the PV-LWE matrix VT

inv(Ωc) ∈ Zn×(n–t)
q corresponds to the generating matrix of the same code.

More concretely, it is a punctured Reed-Solomon code fulfilling the optimal singleton-bound.
Thus, it is a maximum distance separable code with correction capability b(d – 1)/2c = b(n – t)/2c.
Our typical choice of t is t = bn/2c, and thus the correction capability is bounded above by bn/4c.
It is further a unit-derived code and the theory of error-decoding pairs provides efficient decoder,
see for instance the work by Hurley and Hurley [HH18].

In order to prevent coding-based attacks, we need to choose distributions for the secret
in PV-Knap and for the noise in PV-LWE such that the expected Hamming weight is not near the
correction capability bound. For example, setting the distribution ψ as the uniform distribution
over {–1, 0, 1}n and sampling e ← ψ, we expect the Hamming weight of e to be 2n/3, which is
much larger than the error-correcting capacity, which is at most bn/4c. So this would be a choice
that does not allow for code-based attacks. If, however, we set the distribution ψ as a sparse
distribution over {–1, 0, 1}n, where an element e← ψ has only very few non-zero coefficients, let’s
say about n/4 non-zero coefficients, then the efficient decoder from [HH18] would apply.

7.4 Concrete Parameters

We propose the following sample parameters for PASS Encrypt, under which the scheme as pre-
sented in Protocol 7.1 is correct (Lemma 7.1). We consider the case where K is the ν-th cyclotomic
number field with ν a power of 2. By n = ν/2 we denote its degree and the number of rows of the
partial Vandermonde matrix t is given by n/2. In Section 7.4.1 below we argue why this is the
optimal choice for t. The parameter q denotes the modulus over which the partial Vandermonde
transformation matrix VΩ is taken. We require q = 1 mod ν such that the defining polynomial
of K , given by xn + 1, fully splits modulo q. Concretely, we provide two parameter sets, as sum-
marized in Table 7.1. In the first, we choose ν = 2048 and q = 12289, and in the second, we keep
the same q and set ν = 4096. Note that the relevant parameter for security is t.

We set the distributions ψf ,ψr and ψs as U (Tn(d)), the uniform distribution over ternary
polynomials with exactly d coefficients that equal 1, and d coefficients that equal –1, and n – 2d
coefficients that equal 0, where d = bn/3c. Thus, for every element f ← ψf (resp. r ← ψr
and s← ψs) it yields ‖f‖∞ ≤ 1 (resp. ‖r‖1 ≤ 2n/3 and ‖s‖∞ ≤ 1) with probability 1. Hence, we
can set the parameter α to 2n/3 and β to 1. Fixing the number of coefficients that equal –1 and 1
makes it possible to set α = 2n/3 (in order to keep perfect correctness for the given q), but adds a
structural hint, as exploited by Dachman-Soled et al. [DDGR20, Sec. 6.3]. This structural hint
roughly decreases the estimated bikz by 1. Further, we set p as 2.

We then provide the needed block sizes of the BKZ algorithm in order to perform the three
attacks on PASS Encrypt for both parameter sets, as presented in Section 7.3. All estimations
are computed with SageMath using the Leaky LWE Estimator [DDGR20].
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Table 7.1: Sample parameters and security estimations for PASS Encrypt. The number of
quantum security bits is computed as

⌊
0.265 ·minj∈[3](bikzj)

⌉
.

Parameter Set 1 Set 2
ν 2048 4096
n 1024 2048
t 512 1024
q 12289 12289
p 2 2
α b2n/3c b2n/3c
β 1 1
ψf = ψr = ψs U (Tn(bn/3c)) U (Tn(bn/3c))
key recovery (bikz1) 298.87 710.11
randomness recovery (bikz2) 298.87 710.11
plaintext recovery using hints (bikz3) 298.14 712.95
quantum security (bits) 79 188

With the first sample set, we achieve a quantum bit security of 79 and with the second one, we
achieve a quantum bit security of 188. We made the SageMath code of our experiments publicly
available.5

7.4.1 Choice of the Number of Rows

We now discuss the influence of the parameters t, i.e., the number of rows of the Vandermonde
matrix chosen to construct VΩ, on the security of our scheme. This observation also applies to
the the original proposal in [HS15].

Increasing t leads to an easier Key Recovery Attack against PASS Encrypt, as the underly-
ing LWE dimension n–t decreases. On the other hand, decreasing t leads to an easier Randomness
Recovery Attack against PASS Encrypt, as the underlying LWE dimension t decreases. Hence,
choosing t = bn/2c is the optimal choice, as it balances the hardness of both attacks. Our experi-
ments with t = bn/3c (Set A), t = bn/2c (Set B) and t = b2n/3c (Set C) validate those observations
and are summarized in Table 7.2. In both variations (Set A and Set C) the quantum security
of PASS Encrypt decreases from 79 to 45.

We emphasize that the observations made above do not apply to the sequence of works
on PASS Sign. In the recent publication on the aggregate variant of PASS Sign by Doröz et
al. [DHSS20], the parameter t is set to bn/3c. Note that there is only the partial Fourier SIS
problem with the matrix FΩ ∈ Zt×n

q arising in the design of the signature scheme, and not the
complement matrix FΩc . Hence, decreasing t only makes the corresponding dimension of the LWE
instance, that is defined by an instance of partial Fourier SIS, larger and thus the problem harder.

5https://github.com/KatinkaBou/SecurityAnalysisPASSEncrypt

https://github.com/KatinkaBou/SecurityAnalysisPASSEncrypt
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Table 7.2: Security estimations with different number of rows t for PASS Encrypt. The number
of quantum security bits is computed as

⌊
0.265 ·minj∈[3](bikzj)

⌉
.

Parameter Set A Set B Set C
ν 2048 2048 2048
n 1024 1024 1024
t 341 512 682
q 12289 12289 12289
key recovery (bikz1) 474.89 298.87 171.82
randomness recovery (bikz2) 171.09 298.87 473.45
plaintext recovery using hints (bikz3) 202.87 298.14 430.49
quantum security (bits) 45 79 45

7.4.2 Comparison

Finally, we provide a comparison between the asymptotic parameters of PASS Encrypt with two
other efficient lattice-based PKE schemes. We therefore compute the asymptotic parameters in
bits for the secret key sk, the public key pk and the ciphertext c.

Recall from Section 7.3 that t is the important parameter defining the asymptotic security
of PASS Encrypt, motivating our choice to state all parameters with regard to t. In PASS Encrypt
the secret key is a ring element sampled from the uniform distribution over Tn(bn/3c). Further,
we assume that n = 2t, which is the optimal choice as argued in Section 7.4.1. Thus, the bit size
of the secret key is 2t · log2 3. The public key is given by pk = (Ω,VΩsk) and lies in Zt

q × Zt
q,

requiring 2t · log2 q bits to transmit it.6 Finally, the ciphertext is an element of Zt
q×Zn–t

q ×Zn–t
q ,

with n – t = t, requiring 3t · log2 q bits to send it.
We now compare our scheme with two other efficient lattice-based PKE schemes, as illustrated

in Table 7.3. The first is the Regev-like PKE scheme based on P-LWE, as presented in [LP11],
and the second is the NTRU scheme, as presented in [HPS98]. In [LP11], the secret key and the
public key are both ring elements of the ring R = Z[x]/〈xt + 1〉, where t is a power of two and the
parameter that is determining the asymptotic security. For a better comparison, we assume that
the secret is, as in PASS Encrypt, sampled uniformly over Tt (bn/3c). The ciphertext is composed
of two ring elements, allowing to encrypt a t-bit message. In [HPS98], the ring R = Z[x]/〈xt – 1〉
is used. The secret key is a ring element of small norm. Again, for better comparison, we use
the same distribution as in PASS Encrypt. The public key and the ciphertext are elements of R
and the schemes allows to encrypt a t-bit message. We note that for simplicity we consider
non-optimized versions of the three schemes.

An important characteristic of an PKE scheme is the ratio between the sum of the bit size of
its public key and ciphertext and the bit size of the encrypted message. Table 7.3 shows that this
ratio is 2.5 log2 q for PASS Encrypt and thus placing it in between the one of NTRU [HPS98] and the
one of the P-LWE-based Regev scheme [LP11]. However, we believe that the algebraic structure
of the partial Vandermonde transform VΩ used within PASS Encrypt may lead to interesting
constructions such as homomorphic commitments or zero-knowledge proofs.

6We could further save in storage and bandwidth by only transmitting an index vector in {0, 1}n (instead of
the full vector Ω) indicating which row of V is used for the public key.
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Table 7.3: Asymptotic parameters in bits for PASS Encrypt, the Regev-like PKE over P-LWE
and the NTRU encrpytion scheme.

Parameter PASS Encrypt Regev-like [LP11] NTRU [HPS98]
|sk| 2t · log2 3 t · log2 3 t · log2 3
|pk| 2t · log2 q t · log2 q t · log2 q
|c| 3t · log2 q 2t · log2 q t · log2 q
|m| 2t t t
(|pk| + |c|)/ |m| 2.5 · log2 q 3 · log2 q 2 · log2 q



Conclusion and Perspectives

It is now time to conclude the presented contributions of this manuscript and to highlight some
short-term and long-term perspectives for future works.

Hardness of Module LWE

In Chapter 2 and Chapter 3, we studied the hardness of Module Learning With Errors (M-LWE).
First, we proved in two different ways that its binary secret variant (bin-M-LWE) doesn’t become
significantly easier as long as we increase the module rank and the noise width accordingly. We
were able to generalize this result to any secret whose coefficients lie in a ball of small radius.
Those results were then used, among other technical tools, to give a classical worst-case to
average-case reduction for M-LWE in Chapter 3. The main drawback of the classical proof is
that the rank has to be increased by a factor of at least log2 q (inherited from the binary secret
reduction before), where the starting modulus q is exponentially large in the ring degree n. This
results in a rank that has to be linear in n. In practical schemes, however, small constant ranks
are used. The log2 q factor essentially comes from the used Leftover Hash Lemma (LHL), which
is a direct generalization of Micciancio’s LHL [Mic07] from the ring to the module setting.

One short-term perspective to prove the hardness of bin-M-LWE for smaller ranks (and thus
to obtain a classical reduction for ranks below n) is to improve the LHL. For instance, Lin et
al. [LWW20] introduced a LHL over rings that doesn’t work with a concrete secret distribution,
but only depends on its min-entropy. However, it adds a strong condition on the modulus q
as it requires it to be inert in the underlying number field. In the popular case of power-of-2
cyclotomics, no such integer q exists. Another LHL over rings is proven by Liu and Wang [LW20],
also working with the min-entropy of the secret distribution. They observed that a modulus q
which is splitting only in few prime ideals over the number field is more suitable for randomness
extraction. As the LHL is an important and widely used tool in cryptography, we think that
it is worth investigating all known results to see if we can obtain a general version of it that
encompasses all existing algebraic LHL. This would possibly lead to a trade-off between the
choice of the modulus q, the secret distribution and the underlying number field, which may
finally lead to an improvement of our results as well.

An alternative approach is to avoid the exponentially large modulus q all together, which in
turn requires to improve Peikert’s classical reduction [Pei09], a seemingly difficult task. Further-
more, the current modulus switching of Section 3.4 heavily depends on the size of the secret.
To reduce M-LWE with an exponentially large modulus q to M-LWE with a polynomially large
modulus p, we made use of the results of Albrecht and Deo [AD17a]. To be more concrete, we
were able to guarantee a polynomial increase in the noise width while restricting the secrets to be
binary. In contrast, when using a discrete Gaussian distribution (which depends on q) it is not
possible to maintain a polynomial error increase, but only an exponential one. A very interesting
question is whether it is possible to improve the results of [AD17a] by making use of the general
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algebraic frame-work and the related tight reductions of Peikert and Pepin [PP19]. If we could
get, for instance, interesting results already for Gaussian secret distributions, this would leverage
the rank condition for the classical reduction.

From a more general perspective, recent works such as [BD20b, LWW20], including our binary
reductions from Chapter 2, have made progress towards understanding the impact that changing
the secret distribution has on structured variants of LWE. However, very few research focused
on changing the noise distribution of structured variants of LWE. For instance, it is unclear if
the reduction from LWE to LWE with binary noise by Micciancio and Peikert [MP13] generalizes
to structured variants. Furthermore, it would be interesting to introduce a notion of entropic
noise LWE and to study its hardness with respect to the min-entropy provided by the noise
distribution, for structured and unstructured flavors of LWE. Such investigation would deepen
our understanding of the behavior of structured variants of LWE, such as M-LWE. As those
variants are used as hardness assumptions in current lattice-based schemes, we think that this is
of utmost importance.

Regarding remaining gaps between properties that have been shown for the unstructured LWE
case, but not (yet) for the structured M-LWE case, it may be interesting to look at the sample-
preserving search-to-decision reduction by Micciancio and Mol [MM11]. This, however, requires
to find a suitable way of using the Fourier transform over number fields, which seems to be a
challenging research question.

And finally, as for instance observed in the introduction of Chapter 2, there is a large gap
between the parameters resulting from theoretic reductions and the ones obtained by looking
at the best known attacks to solve the problem. In practice, one selects the parameters for
an (M)LWE-based cryptographic scheme using the latter approach. It is very important to further
improve the existing reductions (or the existing attacks) in order to obtain tighter results and
hence close (or at least narrow) the gap between theoretical and practical hardness of variants
of (M)LWE.

Middle-Product Learning With Rounding

In Chapter 4, we introduced a new hardness assumption, that we named the Middle Product
Computational Learning With Rounding (MP-CLWR) problem. It is a combination of two known
variants of LWE, the Middle-Product Learning With Errors (MP-LWE) and the Learning With
Rounding (LWR) problem, inheriting the security advantage of the first and the simplicity ad-
vantage of the latter. We proved that this new assumption is under suitable parameter choices at
least as hard as MP-LWE, whose hardness is itself guaranteed by worst-case problems over ideal
lattices. We defined the problem in its computational variant as for today we don’t know how
to reduce the hardness of decision MP-LWR from worst-case lattice problems, while maintaining
the coefficient-wise rounding and allowing for a polynomially large modulus. As mentioned in
the related work section of Chapter 4, Liu and Wang [LW20] addressed this problem for the ring
variant of LWR by providing a search-to-decision reduction. However, in order to do so, they
defined a new way of rounding. For a short-term perspective, we think that it is important to
better understand the relation between their way of rounding and the more standard and widely
used coefficient-wise rounding (also used in this thesis). To this end, one has to understand the
impact that going from the power basis (defining the coefficient-wise rounding) to some normal
integral basis (defining the rounding in [LW20]) has on the reduction parameters. Alternatively,
it could be interesting to study if the search-to-decision reduction shown for Ring Learning With
Errors (R-LWE) by Roşca et al. [RSW18] can be adapted to the setting of deterministic rounding.

More generally speaking, there are still some interesting open questions with respect to the
middle-product variant of LWE. As pointed out by Roşca [Roş20] in the conclusion of her Ph.D
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thesis, it would be very intriguing to prove a reduction fromMP-LWE back to P-LWE or toM-LWE
and hence essentially show their equivalence. As no such equivalence is shown by today, we may
assume that MP-LWE is indeed harder than M-LWE.

Furthermore, it would be interesting to see more cryptographic applications for our newly
introduced problem. For now, we showed in Chapter 6 how to build a basic encryption scheme
whose security is based on MP-CLWR. Intuitively, it seems reasonable to assume that ex-
isting cryptographic constructions based on (structured) LWR, such as pseudorandom func-
tions [BPR12, CS19], can be adapted to the middle-product setting. Hence, those schemes
would gain with respect to the underlying security assumption (on the expense of a certain loss
in efficiency). On the other hand, one could consider existing constructions for MP-LWE such as
the identity-based encryption scheme by Lombardi et al. [LVV19] and try to adapt them to the
deterministic rounding setting. However, as it is up to today unclear how to construct lattice
trapdoors for the LWR setting, this seems to be a difficult task.

Partial Vandermonde Problems and PASS Encrypt

In Chapter 5, we studied several problems related to the partial Vandermonde matrix. More pre-
cisely, we looked at the Partial Vandermonde Knapsack problem (PV-Knap) and introduced its
dual variant, called Partial Vandermonde Learning With Errors (PV-LWE). We showed that both
problems are equivalent to each other. Furthermore, we introduced a leaky variant of PV-Knap
that we termed the PASS problem. Its name is motivated by the fact that it serves, together
with the decision variant of PV-Knap, as the underlying hardness assumption for an encryption
scheme, called PASS Encrypt. This scheme was originally introduced by Hoffstein and Silver-
man [HS15], but without a security proof. In Chapter 7, we slightly modified PASS Encrypt in
order to provide a thorough proof of security assuming the intractability of explicitly stated
computational problems. Moreover, we proposed a refined analysis of its practical security and
concrete sample parameters. By providing additional information on the underlying secret of
a PV-Knap instance, the PASS problem seems to be easier than the original PV-Knap. As a short-
term perspective, it would be interesting to see if we can build an encryption scheme whose
security is based only on PV-Knap (or equivalently PV-LWE). In this direction, in an ongoing
work with Amin Sakzad and Ron Steinfeld, we define an encryption scheme using PV-LWE in the
spirit of Regev’s encryption scheme for LWE [Reg05]. The homomorphic structure of PV-Knap,
that comes naturally with the partial Vandermonde matrix, may allow for more efficient and/or
more functional constructions. Furthermore, it may be useful to design more advanced schemes,
like zero-knowledge proofs for valid commitment openings or for group signatures.

More generally, it is important to continue investigating the hardness of partial Vandermonde
problems. As it is a very recent source of hardness assumptions, it is crucial to deepen our
understanding how difficult it is to solve those problems. The amount of resources spent to
attack a cryptographic system and to solve the underlying hardness assumption is an important
characteristic to gain confidence in the proposed scheme.

One possibility is to connect the problems PV-Knap or PV-LWE with worst-case lattice prob-
lems, as this is the case for standard Knapsack and LWE [Ajt96, Reg05]. However, the fact
that decision PV-LWE becomes easy to solve if the underlying secret is small, could be seen as a
warning.

Alternatively, one could try to connect the NTRU problem with the partial Vandermonde
problems. Even though, the standard search variant of NTRU does up to today not possess a
connection to worst-case (structured) lattice problems, it has been studied for more than 20 years
now and seems to be a reasonable hardness assumption in practice.

To tackle the question from another starting point, one could try to design attacks that
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take into account the algebraic structure of the Vandermonde matrix to show that the partial
Vandermonde problems are possibly easier than standard LWE or SIS problems. A hint towards
this reasoning is that the homogeneous variant of PV-Knap, that we called PV-SIS, essentially
defines average-case instances of the Ideal Shortest Vector Problem (Id-SVP), which has shown
to be an easier problem than the more general Module Shortest Vector Problem (Mod-SVP)
for modules of rank at least 2 [CDW17, PHS19, BR20]. Additionally, the attacks by Pan et
al. [PXWC21] apply to the specific setting of PV-SIS and thus add restrictions on the modulus q,
as it has to be fully splitting in the underlying number field.

General Perspectives for Structured Variants of LWE

In the last 10 years, plenty of different structured variants of LWE have been introduced. The
overall goal of this Ph.D thesis was to investigate different choices of structured variants of LWE
in order to obtain scientific criteria which concrete flavor to choose for cryptographic schemes.
In this work we covered the variants over rings of polynomials (P-LWE), over rings of inte-
gers (R-LWE), over modules (M-LWE), using the middle-product (MP-LWE) or deterministic
rounding (R-LWR, MP-LWR). Every problem possesses a formulation as a search or a decision
problem, but not in every case they are connected via a search-to-decision reduction. Further-
more, we can vary the space of the secret, leading to the problem in the dual or the primal version,
or modify the secret and noise distribution, independently. All this has an impact on the hard-
ness of the problem. So, which problem to choose for designing a lattice-based cryptographic
scheme? The honest but maybe frustrating answer is that it depends on the concrete scheme,
the required security guarantees and the available resources. Regarding the different variants,
Peikert and Pepin [PP19] were able to generalize all existing structured variants and show tight
reductions starting from R-LWE. In particular, they tightly reduce the problem R-LWE over a
number field of degree nd to the problem M-LWE over a number field of degree n and rank d.
The authors commented their results as follows [PP19, Abstract]:

A main message of our work is that it is straightforward to use the hardness of the
original R-LWE problem as a foundation for the hardness of all other algebraic LWE
problems defined over number fields, via simple and rather tight reductions.

Another way to interpret their work is to see M-LWE as the more reliable hardness assumption
as it generalizes R-LWE but is at the same time tightly connected to it. In the status report of
the NIST’s standardization process, they phrased it in the following way [AASA+20, Sec. 3.2]:

Recent theoretical work has placed M-LWE on stronger footing by providing a very
tight reduction from R-LWE to M-LWE [PP19].

As there are (non-tight) reductions in the opposite direction, showing that M-LWE reduces
to R-LWE [AD17a], both problems are essentially equivalent. Using the (non-tight) equivalence
between M-LWE and SIVP over module lattices [LS15], we can deduce that all three problems
are more or less equally hard. For R-LWE, we only know a worst-case to average-case reduction
from SIVP over ideal lattices [LPR10], but not in the other direction. At the same time, there are
algorithms that can solve SVP over ideal lattices in sub-exponential time [CDW17, PHS19, BR20],
which is up to date not known for SVP over modules (of rank larger than 1). So it seems
that there is a difficulty gap between the set of problems {Id-SVP, Id-SIVP} and the set of
problems {Mod-SIVP, M-LWE, R-LWE}. Better understanding this potential difficulty gap is one
of the major open tasks for the theoretical foundations of lattice-based cryptography for the near
future.
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More generally, it is possible that Conjecture 2 from the introduction is much stronger than
Conjecture 1 in the sense that lattice problems over module lattices may be easier than over
general Euclidean lattices. Here again, we still need to invest more research resources to better
understand their relation. One very interesting open problem is to tightly connect both sets of
problems, which may be even impossible.

From a global perspective, we have no doubt that structured lattice problems will play an
important role in public key cryptography after the advent of quantum computers and agree
with NIST’s statement [AASA+20, Sec. 2.3]:

In NIST’s current view, these structured lattice schemes appear to be the most promis-
ing general-purpose algorithms for public-key encryption/KEM and digital signature
schemes.

Nonetheless, it will be interesting to see which structured variants will make the race in the
future. Probably, it will mostly depend on their suitability for building concrete and advanced
cryptographic schemes.
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Titre : Difficulté théorique des variantes algébriques du problème Learning With Errors

Mots-clés : cryptographie à base de réseaux, apprentissage avec erreurs, variantes structurées, secret

binaire, difficulté classique, produit intermédiaire, matrice de Vandermonde

Résumé : Cette thèse de doctorat porte principale-
ment sur le problème d’apprentissage avec erreurs,
appelé Learning With Errors (LWE). Il s’agit d’une
composante essentielle de la cryptographie à base
de réseaux, qui fait partie des candidats les plus pro-
metteurs pour remplacer les protocoles cryptogra-
phiques actuels lorsque des ordinateurs quantiques
à grande échelle seront disponibles.

Dans cette thèse, nous étudions la difficulté
théoriques des variantes algébriquement structu-
rées de LWE qui sont utilisées dans des protocoles
efficaces. D’abord, nous prouvons que le problème
Module Learning With Errors (M-LWE) ne devient
pas significativement plus facile à résoudre, même
si le secret sous-jacent est remplacé par un vec-
teur binaire. Ensuite, nous présentons une réduc-
tion classique au problème M-LWE, ce qui renforce
notre confiance dans sa valeur pour la cryptogra-
phie. De plus, nous définissons une nouvelle hypo-

thèse de difficulté, le problème MP-CLWR (Middle-
Product Computational Learning With Rounding),
qui hérite des avantages de deux variantes exis-
tantes de LWE. Enfin, nous étudions des problèmes
liés à la matrice partielle de Vandermonde. Il s’agit
d’une source récente d’hypothèses de difficulté pour
la cryptographie à base de réseaux et son étude ri-
goureuse est primordiale pour gagner en fiabilité. Fi-
nalement, nous montrons que les nouvelles hypo-
thèses de difficulté introduites auparavant servent
à la construction de schémas de chiffrement à clé
publique efficaces. D’une part, nous concevons un
nouveau schéma de chiffrement, dont la sécurité
est assurée par la difficulté du problème MP-CLWR.
D’autre part, nous modifions un schéma de chiffre-
ment existant pour lui fournir une preuve de sécurité
basée sur deux problèmes de Vandermonde partiels
explicitement énoncés.

Title: Theoretical Hardness of Algebraically Structured Learning With Errors

Keywords: lattice-based cryptography, learning with errors, structured variants, binary secrets, classical

hardness, middle-product, Vandermonde matrix

Abstract: The main focus of this Ph.D thesis lies
on the computational problem Learning With Er-
rors (LWE). It is a core building block of lattice-based
cryptography, which itself is among the most promis-
ing candidates to replace current cryptographic pro-
tocols once large-scale quantum computers may be
available.

The contributions of the present work are sep-
arated into two different parts. First, we study the
hardness of structured variants of LWE. To this
end, we show that under suitable parameter choices
the Module Learning With Errors (M-LWE) problem
doesn’t become significantly easier to solve even if
the underlying secret is replaced by a binary vec-
tor. Furthermore, we provide a classical hardness
reduction for M-LWE, which further strengthens our
confidence in its suitability for cryptography. Ad-

ditionally, we define a new hardness assumption,
the Middle-Product Computational Learning With
Rounding (MP-CLWR) problem, which inherits the
advantages of two existing LWE variants. Finally, we
study problems related to the partial Vandermonde
matrix. This is a recent source of hardness assump-
tions for lattice-based cryptography and its rigorous
study is important to gain trust in it. In the second
part of this manuscript, we show that the new hard-
ness assumptions we introduced before serve for the
construction of efficient public-key encryption. On
the one hand, we design a new encryption scheme,
whose security is provably based on the MP-CLWR
problem. On the other hand, we modify an existing
encryption scheme, called PASS Encrypt, to provide
it with a security proof based on two explicitly stated
partial Vandermonde problems.
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