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Abstract

Stars are born in swirling discs of gas and dust, and roughly half of all stars exists in

binary systems. The presence of a binary companion in a disc is known to open a large

cavity in the inner region, however the exact nature of how this occurs is not fully known.

Moreover, resolving a binary companion remains a challenging observational problem,

and there exists a number of discs with observed cavities and as yet no resolved binary,

leading to difficulties in inferring the presence of these companions.

To investigate the cavity opening process in a circumbinary disc I perform a suite

of 3D Smoothed Particle Hydrodynamics simulations using the code PHANTOM. I alter the

binary orbital eccentricity, binary mass ratio, disc scale height, and the mutual inclination

between the binary and the disc to understand how each of these affect the cavity over

the course of 1,000 binary orbits. I őnd that a cavity is quickly opened on a dynamical

timescale while its long-term size is set on a viscous timescale, with the őnal size depend-

ing on both binary and disc properties.

I then compute synthetic observations using the 3D radiative transfer code MCFOST

in an attempt to őnd observable signatures of the companion. I őnd that the radial mo-

tion imparted on the disc by the companion is detectable in the dynamic signatures. I

also develop a metric to quantify the asymmetry in our observations and őnd that cir-

cumbinary discs are at least 3 times more asymmetric than single-star discs. Thus I have

developed two methods to indirectly infer the presence of a binary companion in the case

when it cannot be directly observed.
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Résumé

Les étoiles naissent dans des disques tourbillonnants de gaz et de poussière, et environ la

moitié de toutes les étoiles existent dans des systèmes binaires. La présence d’un com-

pagnon binaire dans un disque est connue pour ouvrir une grande cavité dans la région

interne, mais la nature exacte de la façon dont cela se produit n’est pas entièrement

connue. De plus, la détection d’un compagnon binaire reste un problème d’observation

difficile, et il existe un certain nombre de disques avec des cavités observées et encore

aucune binaire détectée, ce qui pose des difficultés pour déduire la présence de ces com-

pagnons.

Pour étudier le processus d’ouverture d’une cavité dans un disque circumbinaire,

j’effectue une suite de simulations 3D utilisant le formalisme Smoothed Particle Hydrody-

namics avec le code PHANTOM. Je modiőe l’excentricité orbitale de la binaire, le rapport

de masse des deux étoiles, l’échelle de hauteur du disque et l’inclinaison mutuelle entre la

binaire et le disque pour comprendre comment chacun de ces paramètres affecte la cavité

au cours de 1 000 orbites de la binaire. Je trouve qu’une cavité est rapidement ouverte

sur une échelle de temps dynamique tandis que sa taille à long terme est déőnie sur une

échelle de temps visqueuse, la taille őnale dépendant à la fois des propriétés de la binaire

et du disque.

Je calcule ensuite des observations synthétiques en utilisant le code de transfert radi-

atif 3D MCFOST pour tenter de trouver des signatures observables du compagnon. Je

constate que le mouvement radial imprimé au disque par le compagnon est détectable

dans les signatures dynamiques. Je développe également une métrique pour quantiőer

l’asymétrie dans nos observations et trouve que les disques circumbinaires sont au moins

un demi-ordre de grandeur plus asymétriques que les disques autour d’une seule étoile.

Ainsi, j’ai développé deux méthodes pour inférer indirectement la présence d’un com-

pagnon binaire dans le cas où il ne peut pas être observé directement.
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Chapter 1

Introduction

1.1 Star Formation

Molecular clouds are the birthplaces of stars. These large regions, up to ∼ 100 parsecs

across, are comprised mostly of gas, with a small fraction of dust, typically ∼ 1% (Murray,

2011). The evolution of these clouds is driven by the gravitational force, which acts to

collapse the cloud, and restorative forces, most notably thermal pressure. By considering

the timescales at which these forces act Jeans (1902) was able to őnd the conditions in

which a star can form. Material acting only under gravity falls on a free-fall time:

tff ≃ 1√
Gρ

, (1.1)

where G is the gravitational constant and ρ is the density of the molecular cloud. Thermal

pressure acts on a sound crossing time:

tsound ≃ R

cs
, (1.2)

where R is the radius over which the force is acting and cs is the sound speed. When

the free-fall time is less than the sound crossing time the cloud undergoes gravitational

collapse. By setting tff < tsound we can őnd the Jeans length λJ, the length scale above

which a cloud is unstable to gravity:

λJ ≳
cs√
Gρ

, (1.3)

and corresponding Jeans mass mJ, the mass scale above which a cloud is unstable to

gravity:

MJ ≳
c3s

√

G3ρ
. (1.4)

The collapsing material leads to an increasing density until thermonuclear fusion begins

and a protostar, also known as a young stellar object (YSO), is formed. Conservation

11



12 CHAPTER 1. INTRODUCTION

of angular momentum implies that the system expands radially to compensate for the

momentum lost by the in-falling material, leading to the formation of a thin accretion

disc surrounding the protostar.

1.2 Classiőcation of Young Stellar Objects

Historically, spatially resolved observations of YSOs was difficult, if not entirely impossi-

ble, so their classiőcation was determined by their spectral energy distribution (SED), a

measure of the ŕux as a function of wavelength or frequency. While the protostar emits

light mainly in the visible spectrum any of this light that is absorbed by the surrounding

gas and dust will be re-emitted in the infrared (IR). Hot material closest to the protostar

will emit in the near-IR, while the cooler material at larger radii will emit at longer wave-

lengths, in the far-IR. Thus the slope of the SED spectrum in the IR can give information

about the morphology and evolution of these YSOs. We can quantify the slope of the

SED in the IR by the parameter

αIR ≡ ∆ log(λFλ)

∆λ
, (1.5)

the value of which can be used to classify the YSO as one of four classes (Lada and

Wilking, 1984; Andre and Montmerle, 1994) (see Figure 1.1):

• Class 0: the SED lies fully in the far-IR part of the spectrum, with little to no

emission within the near-IR and αIR = 0.0.

• Class I: the SED in the near- and mid-IR is nearly ŕat, with −0.3 ≤ αIR ≤ 0.0.

• Class II: the majority of the SED falls within the near- and mid-IR, with a steeper

slope of −1.5 ≤ αIR ≤ −0.3.

• Class III: the stellar photosphere is the only major contributor to the SED, which

now has αIR < 1.6.

Each of these classes corresponds to a different evolutionary stage of a YSO from a

molecular cloud to a pre-main sequence star (Adams et al., 1987). Class 0 corresponds to

the earliest stages of star formation, during which a star is deeply embedded in an opti-

cally thick cloud. At this stage neither the star nor the disc are visible at near- and mid-IR

wavelengths, and the only contribution to the SED comes from the far-IR emissions of

the envelope. The earliest detectable discs are class I sources. The disc is still embedded

in a cloud of gas and dust, thus a signiőcant far-IR emission from the envelope is still

detectable. At this stage high velocity outŕows, on the order of 100 km s−1, are ejected
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from close to the protostar as a consequence of the conservation of angular momentum.

During the class II stage the envelope has been largely accreted and the remaining star

and disc are clearly visible in observations. This corresponds to a classical T Tauri star

(Joy, 1945), the archetypal protoplanetary disc, and it is this class which will be the focus

of this thesis. It is during this stage that planet formation begins, so knowledge of the

structures present in these discs is a highly active area of research. A number of theories

of planet formation exist, such as gravitational instability (Toomre, 1964; Goldreich and

Ward, 1973) and core accretion (Mizuno, 1980; Pollack et al., 1996) to name the two most

prominent, however these are not the subject of this thesis. Over time the gas disc is

depleted and all that’s left is a pre-main sequence star and dust disc, also known as a

debris disc. The emission from the dust is faint in these late stages, giving rise to the

typical class III object SED as that of a pre-main sequence stellar photosphere.

1.3 Accretion Discs

1.3.1 Evolution of Surface Density

The evolution of an accretion disc was analysed by Lynden-Bell and Pringle (1974) &

Pringle (1981) and can be understood by considering the conservation of mass and angular

momentum. Working in cylindrical co-ordinates, the rate of change of mass within an

annulus between radius R and R +∆R is given by

∂

∂t
(2πR∆RΣ) = 2πRΣ(R)vR(R)− 2π(R +∆R)Σ(R +∆R)vR(R +∆R), (1.6)

where Σ is the surface density and vR is the radial velocity of the gas in the disc. Taking

the limit for small ∆R and rearranging gives

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0. (1.7)

Conservation of angular momentum, again in the small ∆R limit, gives

R
∂

∂t
(R2ΩΣ) +

∂

∂R
(R2Ω ·RΣvR) =

1

2π

∂G

∂R
, (1.8)

where Ω is the angular velocity of the gas and G is the torque acted on the annulus by

neighbouring annuli. For a viscous ŕuid this torque is

G = 2πR · νΣRdΩ
dR

·R, (1.9)

where ν is the kinematic viscosity. Combining Eq 1.6 and Eq 1.8, and assuming a Kep-

lerian potential (Ω ∝ R−3/2), gives the evolution of the surface density of a geometrically

thin disc as
∂Σ

∂t
=

3

R

∂

∂R

(

R1/2 ∂

∂R
(νΣR1/2)

)

. (1.10)
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Figure 1.1: Classiőcation of young stellar objects from their spectral energy distributions.

(source: Armitage, 2010)

One solution to Equation 1.10 is the Green’s function solution (Lynden-Bell and

Pringle, 1974; Pringle, 1981). We start by considering a ring of mass m, initially at

R0, with an initial surface density proőle

Σ(R, t = 0) =
m

2πR0

δ(R−R0), (1.11)

where δ(R − R0) is the Dirac delta function. If we take ν = constant this leads to a
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solution in the form

Σ(x, τ) =
m

πR2
0

1

x1/4τ
exp

(

−1 + x2

τ

)

I1/4

(

2x

τ

)

, (1.12)

given in terms of the dimensionless radius x ≡ R/R0 and dimensionless time τ ≡ 12νtR−2
0 ,

where I1/4 is the modiőed Bessel function. This solution is plotted in Figure 1.2 and de-

scribes the spreading effect of viscosity on the ring over time. Most of the material falls

inwards and since the speciőc angular momentum, h, for a circular object is given by

h = R2Ω ∝ R1/2 the material loses angular momentum as it falls inwards. To conserve

angular momentum a small tail of material must move outwards. Eventually the majority

of the material collapses to the origin while all the angular momentum is carried to inőnite

radius by a vanishingly small mass.

The Green’s function solution allows us to see the general behaviour of the material in

the disc under the effects of viscosity, though it is of limited use since discs do not initially

contain all their mass in a single ring. More illuminating is the self-similar solution, also

developed by Lynden-Bell and Pringle (1974). This time we take ν = rγ and consider a

disc with an initial surface density proőle

Σ(t = 0) =
C

3πν1x̃γ
exp

(

−x̃(2−γ)
)

. (1.13)

corresponding to a steady-state solution for this viscosity law out to some radius, R1, with

an exponential cut-off at larger radii, where C is a normalisation constant, x̃ ≡ R/R1 and

ν1 ≡ ν(R1). The self-similar solution is then given by:

Σ(x̃, τ̃) =
C

3πν1x̃γ
τ̃ (γ−5/2)/(2−γ) exp

(

− x̃
(2−γ)

τ̃

)

, (1.14)

where

τ̃ ≡ t

ts
+ 1 (1.15)

and

ts ≡
1

3(2− γ)2
R2

1

ν1
. (1.16)

This solution is plotted for the case where γ = 1 in Figure 1.3 and shows the disc losing

mass over time as material is accreted due to viscosity. The outer edge of the disc also

expands outwards to compensate for the loss of angular momentum from the in-falling

material. This is reminiscent of the Green’s function solution, with the majority of the

material falling inwards while a small tail travels outwards.

1.3.2 Scale Height

The height H of the disc is set by the balance of gravitational forces and the pressure

gradient in the vertical direction. If we assume that the disc mass is negligible compared
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Figure 1.2: Green’s function solution showing the evolution of a ring of mass m initially

at r = r0 under the effects of viscosity. From top to bottom the curves show the ring at

different dimensionless time τ = 12νt/r20 for τ = 0.004, 0.008, 0.016, 0.032, 0.064, 0.128

and 0.256.

Figure 1.3: Self-similar solution showing the evolution of a disc with viscosity ν ∝ r

and a surface density proőle corresponding to that of a steady-state disc at small radii

with an exponential cut-off at large radii. From top to bottom the curves show the disc

dimensionless times τ̃ = 1, 2, 4, 8, 16 and 32.

to the stellar mass, Mdisc ≪ M∗, then the vertical acceleration due to gravity in the
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vertical direction becomes

gz =
GM∗

R2 + z2
z√

R2 + z2
. (1.17)

For a vertically isothermal disc, P = ρc2s , where P is the pressure, the balance between

the vertical pressure gradient (1/ρ)(dP/dz) and the vertical acceleration due to gravity

gives

c2s
dρ

dz
= − GM∗z

(R2 + z2)3/2
ρ. (1.18)

This leads to a vertical density structure of the form

ρ = C exp

(

GM∗

cs(R2 + z2)1/2

)

, (1.19)

where C is a constant set by the density in the mid-plane. If we assume the disc thickness

is a small fraction of the orbital radius we can write gz ≃ Ω2z, where Ω =
√

GM∗/R3 is

the Keplerian frequency. This assumption holds since the disc has a high surface area,

allowing for efficient cooling which leads to low temperature which implies a thermal

pressure low enough to only be able to support a thin disc. In this limit we obtain a

vertical structure of the form

ρ = ρ0 exp

(

− z2

2H

)

, (1.20)

where ρ0 is the mid plane density and H is the disc scale height, deőned as

H ≡ cs
Ω
. (1.21)

1.3.3 Viscous Evolution

Estimates of the accretion rates in protoplanetary discs give a lifetime of 107 yrs for all the

material to be accreted onto the central star. Indeed, this estimate matches observational

surveys suggesting that almost all stars have lost their discs by this age (see Figure 1.4).

There must therefore be some efficient viscosity driving this momentum transport, the

most common form of this is molecular viscosity which comes from collisions on a mi-

croscopic scale. Armitage (2007) found, however, that in the medium of protoplanetary

discs this viscosity is on the order of ∼ 105 cm2 s−1, giving a disc lifetime of 1013 yrs, 6

orders of magnitude longer than the lifetime of a disc and indeed longer than the age of

the universe itself, thus the viscosity must come from another physical source.

One commonly suggested source is the magneto-rotational instability (MRI) (Balbus

and Hawley, 1998), which occurs in ionised discs. A weakly magnetised ŕow is unsta-

ble whenever the angular velocity decreases with radius, that is instability occurs when

dΩ2/dr < 0 (Balbus and Hawley, 1991). This condition is always met for Keplerian discs,

making the MRI an easy instabiliy to invoke. The coupling of the gas and the magnetic
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Figure 1.4: Disc fraction as a function of stellar age. After 10 Myr less that 2% of stars

still have discs. (source: Mamajek, 2009)

őeld, however, requires a relatively high ionisation fraction and an optically thick disc can

block stellar radiation, creating "dead zones" of unionised gas in the midplane, reducing

the efficiency the MRI in these regions (Gammie, 1996).

A competing instability which requires no ionised material is the gravitational insta-

bility (GI) (Toomre, 1964). As the name suggest this occurs when a disc becomes unstable

to its own self-gravity, inducing a disc-scale turbulence. The stability criterion is given by

Q ≡ csΩ

πGΣ
< 1. (1.22)

If we take the disc mass as Mdisc ≃ πR2Σ then we can rewrite this as

Q ≡ M∗

Mdisc

H

R
< 1.

H

R
<
Mdisc

M∗

. (1.23)
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This tells us that the GI is active when the ratio of the disc mass to the stellar mass is

greater than the aspect ratio of the disc, typically on the order of 10−2. However, a survey

of the Taurus star forming region performed by Andrews et al. (2013) found that only

about 20% of discs meet this criterion (see Figure 1.5), suggesting that the GI is not the

source of momentum transport in the majority of discs.

Figure 1.5: Cumulative distribution of disc-to-star mass ratios of discs in the Taurus star

forming region. Only about 20% of T Tauri stars have a disc-to-star mass ratio greater

than 10−2. The red, green, and blue lines use data from D’Antona and Mazzitelli (1997),

Baraffe et al. (1998), and Siess et al. (2000), respectively. (source: Andrews et al., 2013)

Since the physical source of the viscosity is an open question the common approach

when modelling discs is to assume a turbulent viscosity while remaining agnostic to the

source and approximating the effects on the ŕuid. This approximation was performed by

Shakura and Sunyaev (1973) who considered the maximum scales on which this turbulent

viscosity could act. The length scale of the turbulent motions can be no larger than the

smallest scale in the disc, which is the disc scale height H. The velocities of these motions

are limited to less than the sound speed cs, since supersonic motions cause shocks which

quickly dissipate velocities. Therefore the turbulent viscosity has the form

ν = αSScsH, (1.24)
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and is characterised by only one dimensionless parameter, αSS, known as the Shakura-

Sunyaez α parameter, which must be smaller than unity. The timescale on which viscosity

acts is given by

tν ≃ R2

ν

=
R2

αSScsH

=
1

Ω

1

αSS

(

R

H

)2

. (1.25)

1.3.4 Transitional Discs

One subset of accretion discs is the transitional disc. These are a late stage class II YSO

that represent, as the name suggests, a disc transitioning from class II to class III as it

loses its material. Transitional discs are classiőed by their SED, showing a near-IR deőcit

and a far-IR excess when compared to a classical T Tauri star, as shown in Figure 1.6.

Since near-IR emission originates from hot material close to the star and far-IR orginates

from cold material in the outer disc this near-IR deőcit is interpreted as a large cavity in

the inner region of the disc.

One theory for the formation of the cavities in transitional discs is the photoevapora-

tion model, őrst described by Begelman et al. (1983) in the context of black hole discs and

adapted to protoplanetary discs by Hollenbach et al. (1994). In this scenario the surface

layers of a disc are heated to temperatures high enough to drive a pressure supported

wind which overcomes gravity. Considering the photoevaporative wind acting alone to

clear the disc gives a timescale far longer than the lifetime of a disc, however combined

with viscous evolution (described in Section 1.3.3) it acts on a far shorter timescale and

can visibly affect the disc (Clarke et al., 2001).

In the early disc life the accretion rate due to viscous evolution is much larger than

the mass loss due to the photoevaporative wind. Over time, however, the accretion

rate drops and eventually a time is reached when the accretion rate is overtaken by the

photoevaporation rate at the "gravitational radius" (Hollenbach et al., 1994):

Rg =
GM∗

c2s
, (1.26)

where M∗ is the mass of the star. Once this occurs any ŕuid parcel in the outer disc will

be removed by the photoevaporative wind when it viscously drifts to this radius, thus

opening a gap and cutting off the resupply of material to the inner disc. The inner disc is

then quickly accreted from the inside-out on a viscous timescale of order R2
g/ν ≪ R2

out/ν,
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Figure 1.6: SED of the transitional disc GM Aur (Calvet et al., 2005). Fluxes have been

corrected for redenning and scaled to the stellar photosphere (dot-dashed line). Typically

for a transitional disc the SED shows a deőcit in the near-IR and an excess in the far-IR

when compared to a classical T Tauri star (dashed line). (source: Espaillat et al., 2014)

where Rout is the outer radius of the disc, leaving a large cavity out to Rg that resembles a

transitional disc. The cavity wall is now directly heated by the central star, increasing the

photoevaporative rate while the accretion rate continues to decrease, leading to a cavity

that grows larger with time. A schematic of this process is given in Figure 1.7.

Work by Andrews et al. (2011) and Owen and Clarke (2012) found two classes of

transitional discs, mm-faint and mm-bright, based on the emission strength at 1.3 mm

compared to the median of ∼ 30 mJy. The photoevaporative model predicts that a

decreasing transitional disc fraction with increasing mm-ŕux. This is because mm-ŕux

is used as a good proxy for disc mass, which decreases over time due to accretion, and

transitional discs are assumed to be at a late evolutionary stage by the photoevaporative

model. While Andrews et al. (2011) and Owen and Clarke (2012) did őnd this to be the
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Figure 1.7: Schematic diagram of the photoevaporation process. At early stages the

accretion dominates and the disc resembles a class II YSO. Eventually the accretion rate

drops and photoevaporation dominates, opening a gap in the disc, allowing for material

to quickly be cleared from the inside-out, leaving behind a transitional disc. (source:

Alexander et al., 2014)

case for mm-faint discs, they also found that the transitional disc fraction increased for

mm-bright discs (see Figure 1.8). Furthermore, in a transitional disc survey performed by

Manara et al. (2014) the mass accretion rate was not found to be a decreasing function

of cavity size (see Figure 1.9). These results imply that mm-bright transitional discs

are much younger than predicted by the photoevaporation model and a model for cavity

opening that works on a shorter timescale is needed to accurately describe them. One such

model, which is the focus of this thesis, is to open a cavity via binary star interactions.

1.4 Circumbinary Discs

A circumbinary disc is simply any accretion disc that surrounds a binary star. The

presence of a second star act to open a large cavity in the inner region of the disc. The

process by which a cavity is opened in an accretion disc is a competition between the

Lindblad resonances from a stellar companion, which act to open a cavity, and the disc

viscosity, which acts to close it. Investigations into this process were originally performed
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Figure 1.8: Normalised transitional disc fraction in each quartile of the primordial discs’

mm-ŕux distribution. The median 1.3mm ŕux for primordial discs is ∼ 30 mJy. Discs

brighter than this are classiőed as mm-bright, while discs that are fainter are classiőed as

mm-faint. (source: Owen, 2016)

by Goldreich and Tremaine (1979) and Lin and Papaloizou (1986). They didn’t consider

binary companions, however, instead focusing on planets orbiting within the disc, which

act to open a gap at their orbital radius. As we are not considering planets we will instead

detail the works done by Artymowicz and Lubow (1994), hereafter AL94, and Miranda

and Lai (2015), hereafter ML15, who applied the works of Goldreich and Tremaine (1979)

and Lin and Papaloizou (1986) to stellar companions opening a cavity. They did this by

working in a reference frame centred on the centre of mass of the binary, rather than on

a single star, and carefully rearranged the disturbing potential due to the presence of the

companion, expressing it as a sum of Fourier components

Φ =
∑

m,l

Φm,l(R)cos(mϕ− lΩBt), (1.27)

where (R, ϕ) speciőes the position within the disc in polar co-ordinates, m is the az-

imuthal number in the disc plane (formally, m > 0), l is a time harmonic number,

ΩB = (GMtot/a
3)1/2 is the binary orbital frequency, Mtot = M1 +M2 is the total mass

of the binary, and a is the binary semi-major axis. Here Φ is given per unit mass. Each

potential harmonic Φm,l rotates with pattern frequency

ωP =
l

m
ΩB (1.28)
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Figure 1.9: Logarithm of mass accretion rate plotted against cavity size for a sample of

transitional discs. (source: Manara et al., 2014)

and excites density waves at three resonances (AL94): a corotational resonance (CR)

at the radius where the disc rotation rate is equal to the potential harmonics pattern

frequency, Ω(R) = ωP, and two (one outer and one inner) Lindblad resonances (LRs)

where the forcing of a particle orbiting within the disc occurs at the epicyclic frequency,

m(ωP − Ω(R)) = ±κR, where κ is the epicyclic frequency, the frequency of radial

motions of ŕuid parcels due to a small perturbation in their orbit. For a circumbinary

disc which is exactly Keplerian, κ(R) = Ω(R), the LRs are located at

RLR

a
=

(

m± 1

l

)2/3

, (1.29)

where the upper sign corresponds to the outer Lindblad resonances (OLRs) and the lower

sign corresponds to the inner Lindblad resonances (ILRs). Torques are also applied at

the corotational resonances
RCR

a
=
(m

l

)2/3

, (1.30)

but these do not act to open a gap in an accretion disc (AL94), so we only need to consider

the LRs. The torque acted on the disc at a LR is given by (Goldreich and Tremaine, 1978,

1979)

Tm,l = −mπ2

(

Σ

(

dD

dlnR

)−1

|ψm,l|2
)

, (1.31)
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where Σ is the surface density of the disc, D = κ2 − m2(Ω ωP)
2 and

ψm,l =
dϕm,l

dlnR
+

2Ω

Ω− ωP

Φm,l. (1.32)

The torque at ILRs is negative, so ŕuid elements lose angular momentum and drift in-

wards, while the torque at OLRs is positive, so ŕuid elements gain angular momentum

and are forced to larger radii. Since ROLR > RILR these ŕuid motions act to open a cavity.

Counteracting the clearing effects of Lindblad torques is the viscous torque, which acts

to close the gap. The strength of the viscous torque is given by (Pringle, 1981)

Tν = 3παν

(

H

R

)2

ΣΩ2R4. (1.33)

A gap can be opened at the (m, l) LR if |Tm,l| ≥ |Tν |. Comparing (1.31) and (1.33) gives

a gap opening criterion (Lin and Papaloizou, 1986)

αν

(

H

R

)2

≤ Tm,l

3πΣΩ2R4
. (1.34)

A gap will not be successfully opened, however, if the opening timescale is long com-

pared to the other timescales in the disc. This leads to a second criterion for gap opening

based a comparison of the opening time to the viscous closing time (AL94)

topen
P

≃ 1

2παν (H/R)
2

(

∆r

R

)

, (1.35)

where P is the orbital period. This allowed AL94 to őnd the inner radius of a cavity

by őnding the largest LR at which a gap can be cleared. They predicted a cavity size

between 2ś4 times the binary semi-major axis, becoming larger both with increasing

binary eccentricity and decreasing disc viscosity.

Numerous computational studies have conőrmed this basic picture (AL94; Günther

and Kley, 2002; Thun et al., 2017), with some discrepancies over the exact cavity size.

Artymowicz and Lubow (1994) checked their own theoretical predictions of the depen-

dence of cavity size on mass ratio and eccentricity against Smoothed Particle Hydrody-

namics (SPH) simulations (see Sec 2.2). All of these simulations were performed in 2

dimensions and simulated circumbinary discs coplanar with the binary orbit and with an

initial inner cavity radius of twice the semi-major axis. The results of the simulations

are given in Table 1.1 and snapshots of the simulation with mass fraction q = 0.3, where

q = M1/(M1 +M2) and eccentricity e = 0.1 are given in Fig 1.10. They conőrmed that

the cavity radius increases with both mass fraction and eccentricity. Fig 1.10 shows the

timescale with which a cavity is opened. In the őrst (top left) panel (0.5 binary orbits) we
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Mass fraction, q Eccentricity e Cavity radius R/a

0.3 0.00 1.80± 0.10

0.3 0.02 1.92± 0.10

0.3 0.05 2.15± 0.10

0.3 0.10 2.40± 0.10

0.3 0.30 2.72± 0.10

0.3 0.50 2.88± 0.10

0.3 0.70 3.10± 0.10

0.1 0.00 1.80± 0.10

0.1 0.10 2.10± 0.10

0.1 0.50 2.73± 0.10

Table 1.1: Model setup and disc inner edge location for SPH simulations run by Arty-

mowicz and Lubow (1994)

see a rapid excavation of gas near the L4 and L5 Lagrange points. The cavity is almost

fully opened after only 3 binary orbits (top right), and after 10 binary orbits (bottom

left) the disc in in quasi-equilibrium.

Thun et al. (2017) performed two-dimensional hydrodynamical simulations of cir-

cumbinary discs using the codes Pluto and Rh2d, running simulations for 16,000 binary

orbits, nearly 3 orders of magnitude longer than the original SPH simulation performed

by AL94. As shown in Fig 1.11, they found that after tens of thousands of orbits the

cavity size can be as large as 7 times the semi-major axis, nearly twice what was found by

both Artymowicz and Lubow (1994) & Miranda and Lai (2015). Also contrary to earlier

őndings, Thun et al. (2017) saw that at low eccentricity the cavity size decreases with

eccentricity, with a minimum at e ≃ 0.2.

Miranda and Lai (2015) generalised the study by AL94 to discs inclined with respect

to the binary orbital plane. Their őndings are displayed in Fig 1.12, which shows the de-

pendence of cavity inner radius on eccentricity e, mass ratio q, and disc inclination i. In

agreement with AL94, they őnd that cavity size increases with eccentricity for a coplanar

disc, and this behavior holds for i ≤ 45◦ at any mass ratio. At high inclination i ≳ 90◦

the behavior changes and the disc inner radius can have many local maxima as a function

of eccentricity. For retrograde discs at low mas ratio the cavity size is independent of

eccentricity. This is because |Tν | > |Tm,l| for all (m,n) ̸= (1, 1), regardless of eccentricity,

so the cavity will always be truncated at the (1, 1) resonances.
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Figure 1.10: Circumbinary disc evolution for a binary with mass ratio q = 0.3 and eccen-

tricity e = 0.1. Initially the disc had a surface density proőle Σ ∝ R−1 extending between

2a and 4.5a where a is the semi-major axis. Axis are given in units of a and the numbers

in each panel correspond to the number of binary orbits completed. (source: Artymowicz

and Lubow, 1994)

Using 3-dimensional SPH simulations Aly et al. (2015) showed that any circumbinary

disc on an initially inclined orbit will tend towards either a coplanar or a polar conőgura-

tion. The critical angle above which a disc will tend towards a polar orbit is (Aly et al.,

2018)

icrit = tan−1

√

1− e2

5e2
. (1.36)

That is to say that polar conőgurations are more likely for discs around highly eccentric

binaries, or those that start with a large initial inclination. The analysis from ML15
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Figure 1.11: Cavity inner edge radius plotted against eccentricity from simulations runs

by Thun et al. (2017). Each line corresponds to a different metric for calculating the cavity

size. The red line corresponds to using the radius of the maximum surface density, the

blue line 50% of the maximum surface density, and the green line 10% of the maximum.

The blue line is the closest analogy to the deőnition from Artymowicz and Lubow (1994)

(source: Thun et al., 2017)

implicitly assumes the disc stays at a őxed inclination, and so does not capture the long-

term behaviour of a disc that realigns. Thus the behaviour of such discs is an open

question, one that lends itself well to 3-dimensional numerical simulations as a means of

answering it.

1.5 Observations of Disc Cavities

Perhaps the most well studied circumbinary disc is HD 142527. Located at a distance of

156+7
−6 pc (Gaia Collaboration et al., 2016) in the Sco-Cen association this disc contains

many observational features commonly associated with circumbinary discs. A gas cavity

is found out to a radius of 90 ± 5 AU (Perez et al., 2015) and a gas cavity out to ∼ 140

AU is visible in IR imaging (Fukagawa et al., 2006), sub-millimeter continuum (Ohashi,

2008), and CO line emission (Casassus et al., 2013). Spiral structure originating from the

cavity edge is seen in the IR (Fukagawa et al., 2006; Casassus et al., 2012). Cycle 0 ALMA

observations reveal a horseshoe shaped structure at the inner edge in the dust continuum
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Figure 1.12: Cavity inner edge radius plotted against eccentricity as predicted analytically

by Miranda and Lai (2015). Mass ratios of each row are given in the top left corner of the

left panels, disc inclination is given by different colours and location of commensurabilities

are labeled on the right. (source: Miranda and Lai, 2015)

emission (Casassus et al., 2013). Multiple scattered light observations recover shadows on

the cavity wall (Fukagawa et al., 2006; Avenhaus et al., 2014, 2017), likely cast by some

inclined inner disc (Marino et al., 2015). The high accretion rate of ≃ 2 × 10−7 M⊙/yr

onto the central stars (Garcia Lopez et al., 2006) implies the inner disc must be getting

reőlled by material from the outer disc, likely via the őlaments of CO gas seen crossing the

cavity in HCO+ emission (Casassus et al., 2013). These features are shown in Figure 1.13.

Price et al. (2018a) modelled HD 142527 using the 3-dimensional SPH code PHANTOM

(see Section 2.2) of a circumbinary disc, taking the estimates of the binary orbit from
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Filaments?

Figure 1.13: Observations of HD 142527. Left: Scattered light image from Avenhaus et al.

(2017). Two stars are observed inside a large cavity, with shadows being cast on the cavity

wall and a faint spiral structure originating at the cavity edge. Right: ALMA Cycle 0

image from Casassus et al. (2015a). A large cavity is once again visible, with őlaments of

material falling onto the central stars and a horseshoe overdensity near the cavity edge.

Lacour et al. (2016). Using radiative transfer, they then created synthetic observations to

compare with the above works. They were able to recover the correct cavity size, as well

as the spiral structure in the IR, the horseshoes structure presented by Casassus et al.

(2013), and an inner disc that casts shadows on the cavity wall, all while maintaining

a high accretion rate from őlaments connecting the inner and outer discs. The ability

to recover all of these features from simulations of a circumbinary disc suggests that the

presence of a binary companion is indeed their source.

Once thought to be a circumbinary disc, GG Tau has been the subject of many works.

Early mm-observations from Guilloteau et al. (1999) dubbed it "the ring world" due to

large cavity and subsequent ring shaped disc. Further observations, however, conőrmed

that GG Tau A and GG Tau B are they themselves binaries with their own circumbinary

discs (White et al., 1999; Andrews et al., 2014). Observations from Di Folco et al. (2014)

suggest that GG Tau A may be even more complex again, potentially being a hierarchical

triple. Due to the complex nature of the GG Tau system we caution that the results

presented in this work are not appropriate for a comparison with observations of the GG
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Tau circumbinary discs without careful consideration of the effects from all other bodies

within the system.

A number of transitional discs exhibit large cavities and some of the features described

above, but as yet no detected binary companion. Spirals are visible in the disc of DZ Cha

in both J-band polarimetry (Canovas et al., 2018) (see Figure 1.14) and NIR scattered

light observations (Yu et al., 2019). SR 21 also shows spiral structure in H-band scat-

tered light images from SPHERE (Muro-Arena et al., 2020). DoAr 44 shows asymmetric

dust regions at the cavity edge, reminiscent of the horseshoe in HD 142527, in band 7

ALMA cycle 1 observations (van der Marel et al., 2016a) and H-band SPHERE observati-

nos (Casassus et al., 2018). Similar structure can be seen in Band 6 ALMA observations

of CQ Tau (Ubeira Gabellini et al., 2019), as shown in Figure 1.15. Muro-Arena et al.

(2019) presented J- and H-band observations in polarized scattered light with SPHERE

of HD 139614 showing shadows on the outer disc, as shown in Figure 1.16. The cavities

in these transitional discs have also been found to not be completely devoid of gas, but

rather depleted in surface density by up to 5 orders of magnitude compared to the outer

disc (van der Marel et al., 2015, 2016b, 2018).

These features have been shown to be the consequence of a disc-binary interactions.

Spiral arms occur in any disc with a companion, be it stellar or planetary (Ogilvie and

Lubow, 2002; Dong et al., 2015; Benisty et al., 2017). Shadows on the cavity edge or

on the disc itself require some misalignment in the inner disc which can be caused by a

companion on an inclined orbit (Marino et al., 2015; Min et al., 2017). Recently Ragusa

et al. (2017) suggested that horseshoes, and other asymmetries at the cavity edge, can

be caused by binary companions on eccentric orbits, an idea őrst put forward by Ataiee

et al. (2013). This suggests that the transitional discs mentioned above potentially host

unseen stellar companions, we need only the methods to detect them.

Similar to the work by Price et al. (2018a), Calcino et al. (2019) modelled IRS 48, a

transitional disc with no known stellar binary, using PHANTOM and compared observations

with synthetic images from radiative transfer calculations. They recovered spiral struc-

tures, a dusty horseshoe overdensity, and their velocity map showed a twisted feature

similar to that of van der Marel et al. (2016a). They suggest that these features, and the

close match to observational data, indicate that IRS 48 is host to a stellar companion.

While this is not a detection of a companion, it does lend weight to the idea that many

transitional discs may as yet be hiding unresolved binaries.
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Figure 1.14: Unsharped QΦ image of DZ Cha from Canovas et al. (2018). A strong spiral

is seen originating from the cavity edge.

1.6 Goals of this Thesis

As seen in this introduction, the cavity opening process in inclined circumbinary discs is

an unsolved problem. Furthermore, the direct detection of a binary companion remains a

difficult problem, so we must turn to indirect methods to infer the presence the companion

in most binary systems. As such the main questions this thesis seeks to answer are:

• What is the őnal cavity size of a circumbinary disc with arbitrary inclination?

• What can the observed cavity tell us about the binary companion and disc proper-

ties?

• What are the detectable signatures of an unseen binary companion on the circumbi-

nary disc?

In order to answer these questions we perform 3-dimensional simulations of circumbi-

nary discs to investigate their dynamical behavior. Then we create synthetic observations
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Figure 1.15: ALMA continuum observations at 1.3 mm of CQ Tau from Ubeira Gabellini

et al. (2019). Two overdensities, reminiscent of the horseshoe-shaped features in HD

142527, ar visible at the inner edge of the disc.

of these discs in order to determine the detectable signatures of the binary. Finally, we

develop a metric to quantify the effect of the binary on the disc.
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Figure 1.16: SPHERE scattered light observations of HD 139614 from Muro-Arena et al.

(2019). Heavy shadowing is seen in the outer disc, implying some misalignment in the

inner disc.



Chapter 2

Methods

2.1 Disc Model

In this work we model the discs as a single ŕuid using the Euler equations in 3 dimensions,

assuming no self gravity in the disc,

dρ
dt

= −ρ∇ · v, (2.1)

dv
dt

=
−∇P
ρ

−∇Φ, (2.2)

Φ =
−GM1

|r − r1|
− GM2

|r − r2|
, (2.3)

P = c2s (R)ρ, (2.4)

where ρ, v, P and cs are the density, velocity, pressure and sound speed of ŕuid elements

in the disc, M1 and M2 are the masses of the primary and secondary stars, and r1 and

r2 are the positions of the primary and secondary stars. Equation (2.4) approximates

the temperature within the disc as being a speciőed function of cylindrical radius, i.e.

T ≡ T (R).

Evolving these discs requires choosing a numerical method to use. Due to the complex

geometry of the discs, as well as the high density contrast and the presence of free bound-

aries we simulate the discs using the Smoothed Particle Hydrodynamics (SPH) method,

speciőcally the code PHANTOM (Price et al., 2018a), described in Section 2.2. Then, we

create synthetic observations of these discs using the radiative transfer code MCFOST (Pinte

et al., 2006, 2009), described in Section 2.3

35
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(a) Grid

R

(b) Local sample
(c) Weighted local sam-

ple

Figure 2.1: Three different approaches to computing a continuous density őeld from an

arbitrary distriution of point masses. a) Constructing a mesh on top of the point masses,

as adopted in particle-mesh methods. b) Sampling the local volume based on number of

neighbours. c) Weighted local sampling, as adopted in SPH. (Source: Price, 2012)

2.2 Smoothed Particle Hydrodynamics (SPH)

The SPH formalism was őrst developed by Lucy (1977) and Gingold and Monaghan

(1977) in an attempt to model the highly asymmetric phenomena commonly found in

astrophysics. It is a Lagrangian particle method for solving the equations of hydrody-

namics on a set of discrete particles, each representing a ŕuid element. A PHANTOM output

consists of a dump őle containing the relevant properties of these particles (e.g. position,

density, temperature, etc.) so that the properties of the entire domain can be found by

interpolating between these particles. While we describe the SPH method in this section;

many reviews exist which provide further detail (see: Benz, 1990; Monaghan, 1992, 2005;

Rosswog, 2009; Price, 2012).

2.2.1 Density Estimates, Smoothing Kernels & Smoothing Lengths

The basis of SPH is the answer to a simple question: how does one compute a density

őeld from a set of discrete particles?

There are three main methods to solving this problem, shown in Fig. 2.1. Perhaps the

most intuitive method is to construct a grid and calculate the density in each cell as the

mass divided by the volume (Fig. 2.1a). This method suffers from being unable to resolve

regions of high or low density when the density distribution is highly non-uniform and

spans many orders of magnitude. Furthermore, it is slow due to the need to interpolate

to and from each particle (e.g. when calculating forces). One solution to these issues is to

instead sample the local volume around each particle using, for example, a őxed number
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of neighbours (Fig. 2.1b). This method, however, is noisy to whether a particle at the

edge of the sample volume is in or out, with ŕuctuations on the order of the inverse of

the number of neighbours. Smoothing the boundary of the sample volume leads to the

SPH formalism (Fig. 2.1c), where density is calculated as a weighted sum of neighbouring

particles, given by

ρ(r) =

Nneigh
∑

b=1

mbW (r− rb, h), (2.5)

where mb and rb are the mass and position, respectively, of particle b, Nneigh is the

number of neighbours, W is the weighting function, known as the smoothing kernel,

and h, the smoothing length, deőnes the drop-off rate of W . Conservation of mass,
∫

ρdV =
∑Nneigh

b=1 mb, gives us the normalisation condition for W :

∫

V

W (r′ − rb, h)dV
′ = 1. (2.6)

The accuracy of the SPH density estimate is strongly inŕuenced by the choice of W ,

so care must be taken when constructing a smoothing kernel. A well constructed W will

have positive weighting, smooth derivatives and is monotonically decreasing. Further-

more, to ensure that the density estimate is independent of orientation the kernel must

be symmetrical in (r− rb). Lastly, having a ŕat central portion ensures that the density

estimate is not noisy to a small change in location of nearby neighbours.

A natural function that satisőes all these criteria is the Gaussian, however since it re-

quires interactions between every pair of particles it has a computational cost of O(N2).

Since distant particles only have a minor contribution on the density estimate it is possible

to ignore these without introducing signiőcant inaccuracies. Thus, by choosing a kernel

with compact support, that is a kernel that reaches zero at some őnite radius, it is possible

to reduce the computational cost to O(NneighN) while maintaining a high accuracy.

The most commonly used kernels are derived from the Schoenberg (1946) B-spline

functions (Monaghan and Lattanzio, 1985). The simplest of these functions is the M4

cubic spline truncated at 2h, plotted in Figure 2.2:

w(q) = σ











1
4
(2− q)3 − (1− q)3, 0 ≤ q < 1;

1
4
(2− q)3, 1 ≤ q < 2;

0, q ≥ 2.

(2.7)

Smoothing kernels are constructed from splines by deőning W (r− rb, h) ≡ 1
hdw(q), where

q = |r′ − r|/h, d is the number of dimensions, and σ is a normalisation constant. For

the cubic spline kernel σ = [2/3, 10/(7π), 1/π] in [1, 2, 3] dimensions. Higher order spline
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q = r/h

f(
q

)

0 0.5 1 1.5 2

-2

-1

0

1

M4 cubic
1st derivative
2nd derivative
Gaussian
1st derivative
2nd derivative

Figure 2.2: M4 cubic spline and Gaussian kernels, and their őrst two derivatives.

functions exist, giving higher accuracy at the expense of computational cost.

There exist other families of kernels, such as those based on the Wendland (1995)

functions (Dehnen and Aly, 2012), and the ’double-hump’ shaped kernel functions (Fulk

and Quinn, 1996; Laibe and Price, 2012). Each of these kernels come with their own sets

of strengths and weaknesses, and their applicability is context dependant. Which kernel

to use in which context is still an open question and we refer the reader to Section 2.1.6

of Price et al. (2018b) for a small discussion on the issue. In this work we exclusively use

the B-spline kernels.

One advantage of SPH is that the resolution naturally increases with density, but in

order to accurately model both the dense and sparse regions requires a variable smoothing

length that is a function of density. Since density itself is a function of the smoothing

length, this leads to a pair of simultaneous equations (Monaghan, 2002):

h(ra) = hfac

(

ma

ρa

)1/d

; ρ(ra) =
∑

b

mbW (ra − rb, ha), (2.8)
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where hfac relates the smoothing length to the mean particle spacing and is of order

unity. In practice this means that the density and smoothing length must be found using

an iterative root-őnding method, the choice of which is free but PHANTOM uses Newton-

Raphson.

2.2.2 Equations of Motion in SPH

The discretisation of Equation 2.2 can be achieved by considering the Euler-Lagrange

equations (e.g. Gingold and Monaghan, 1982; Price, 2012)

d
dt

(

∂L

∂v

)

− ∂L

∂r
= 0, (2.9)

where L = T−V is the Lagrangian, the difference between kinetic energy, T and potential

energy, V . The discrete Lagrangian, for a system of point masses, is given by

L =
∑

b

mb

[

1

2
v2b − ub(ρb, sb)

]

, (2.10)

with derivatives
∂L

∂va

= mava;
∂L

∂ra
=
∑

b

mb
∂ub
∂ρb

∣

∣

∣

∣

s

∂ρb
∂ra

, (2.11)

where the thermal energy, u, is a function of both density, ρ, and entropy, s, and we

assume that the entropy is constant when taking the spatial derivative of the Lagrangian.

At constant entropy, the change in internal energy is given by

∂ub
∂ρb

∣

∣

∣

∣

s

=
P

ρ2
. (2.12)

The density gradient is given by

∂ρb
∂ra

=
1

Ωa

∑

c

mc
∂Wbc(hb)

∂ra
(δab − δac), (2.13)

where

Ωa ≡
[

1− ∂ha
∂ρa

∑

b

mb
Wab(ha)

∂ha

]

, (2.14)

is a term that takes into account the variable smoothing length and Wab(ha) ≡ W (ra −
rb, ha).

Substituting Equations 2.12 and 2.13 back in to Equation 2.11 allows us to solve

Equation 2.9, giving the standard form of the equation of motion:

dva

dt
= −

∑

b

mb

[

Pa

Ωaρ2a

∂Wab(ha)

∂ra
+

Pb

Ωbρ2b

∂Wab(hb)

∂rb

]

. (2.15)
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Conservation of momentum in this formalisation can be shown by considering the time

derivatives of linear (Equation 2.16) and angular (Equation 2.17) momentum:

d
dt

∑

a

mava =
∑

a

ma
dva

dt
= −

∑

a

∑

b

mamb

(

Pa

Ωaρ2a
+

Pb

Ωbρ2b

)

∇aWab, (2.16)

d
dt

∑

a

ra ×mava =
∑

a

ma

(

ra ×
dva

dt

)

= −
∑

a

∑

b

mamb

(

Pa

Ωaρ2a
+

Pb

Ωbρ2b

)

ra ×∇aWab.

(2.17)

Both these quantities can be shown to be equal to zero by swapping the indices a and b

in the double sum, adding half the original term to half the new term, and noting that

∇aWab is antisymmetric. Thus, SPH exactly conserves momentum, up to the accuracy of

the timestepping algorithm.

2.2.3 Timestepping

A popular integration scheme for SPH applications is the leapfrog method. A major

strength of this scheme is its symplectic nature and time-reversibility, which means that

it exactly conserves energy (Monaghan, 2005).

PHANTOM uses the leapfrog method in ’velocity Verlet’ form (Verlet, 1967) with an extra

predictor step in the velocity. The position, velocity and acceleration of the particles are

updated as follows:

v
n+ 1

2 = v
n +

1

2
∆tan, (2.18)

r
n+1 = r

n +∆tvn+ 1
2 , (2.19)

v
∗ = v

n+ 1
2 +

1

2
∆tan, (2.20)

a
n+1 = a(rn+1,v∗), (2.21)

v
n+1 = v

∗ +
1

2
∆t[an+1 − a

n], (2.22)

where r, v and a are the particle’s position, velocity and acceleration, respectively, and

n is the timestep number. The error in the predictor step is then checked to be below a

tolerance, ϵ, typically set to 10−2

|vn+1 − v∗|
|vmag| < ϵ, (2.23)

where vmag is the mean velocity of all particles. If the error is too large Equations 2.21

and 2.22 are recalculated and the error re-checked.
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The maximum timestep for stability is given by the Courant condition (Courant et al.,

1928):

∆ta < C
h

vmax

, (2.24)

where vmax is the maximum velocity over the particle’s neighbours and C is the Courant

number, a dimensionless constant less than unity which ensures stability. This condition

implies that in one timestep a particle can’t move more than a fraction of its smoothing

length as set by the Courant number, and C = 0.3 by default (Lattanzio et al., 1986). For

computational efficiency PHANTOM allows for particles to have individual timesteps, which

breaks the time-reversibility of the leapfrog scheme, meaning that energy is no longer

exactly conserved.

2.2.4 Viscosity

In Section 2.2.2 the derivation of Equation 2.15 has built into it the assumption that the

Lagrangian is differentiable, that is to say we do not allow discontinuous solutions and

our equations of motion break down at shocks. This can be solved with the introduction

of an artiőcial viscosity (Von Neumann and Richtmyer, 1950). This artiőcial viscosity

acts to spread the shock over smallest resolution scale, in this case the smoothing length,

removing the discontinuity. In practise this is done using an artiőcial viscosity term, qAV,

as in Monaghan (1997), giving a modiőed equation of motion:

dva

dt
= −

∑

b

mb

[

Pa + qaAV
Ωaρ2a

∂Wab(ha)

∂ra
+
Pb + qbAV
Ωbρ2b

∂Wab(hb)

∂rb

]

, (2.25)

with the artiőcial viscosity term

qaAV =

{

−1
2
ρavsig,avab · r̂a, vab · r̂a < 0;

0, otherwise,
(2.26)

where vab ≡ va − vb, rab ≡ (ra − rb)/|ra − rb|, a vsig is the maximum signal speed, given

by

vsig,a = αAV
a cs,a + βAV|vab · r̂a|. (2.27)

βAV mimics a Von Neumann and Richtmyer (1950) term and is set to 2 by default to

prevent particle penetration (Lattanzio et al., 1986) and αAV
a ∈ [0, 1] is controlled by the

Morris and Monaghan (1997) switch to reduce dissipation away from shocks.

In our application we wish to have an artiőcial viscosity that represents Equation 1.24,

the Shakura and Sunyaev (1973) α-disc viscosity, requiring a few changes to be made. The

viscosity term must be applied for both approaching and receding pairs of particles; βAV is

set to zero for receding particles, though is still used for approaching particles to prevent
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particle penetration; αAV is set to be constant, removing the shock detection switch; and

the artiőcial viscosity term is multiplied by a factor of h/|rab|. This leads to an artiőcial

viscosity term in the form

qaAV = − ρaha
2|rab|

{

(αAV
a cs,a + βAV|vab · r̂a|)vab · r̂a, vab · r̂a < 0;

αAV
a cs,avab · r̂a, otherwise,

(2.28)

This new formalisation gives shear and bulk coefficients as (e.g. Monaghan, 2005;

Lodato and Price, 2010)

ν ≈ 1

10
αAVcsh, (2.29)

ζ =
5

3
ν ≈ 1

6
αAVcsh. (2.30)

Combining Equations 1.24 and 2.29 allows αSS to be determined from αAV via

αSS =
αAV

10

⟨h⟩
H
, (2.31)

where ⟨h⟩ is the azimuthally averaged smoothing length.

2.2.5 Sink Particles

To model the central binary, we use a pair of sink particles (Bate et al., 1995). The only

interactions sinks experience is via gravity, both from the other sink and from the SPH

particles in the disc. This leads to an equation of motion for sink i:

dvi
dt

= −
Nsink
∑

j=1

GMj

|ri − rj|2
r̂ij −

Ngas
∑

a=1

Gma

|ra − ri|2
r̂ia. (2.32)

Consequently, an interaction term needs to be added to the acceleration of the SPH

particles, given by:

aasink-gas = −
Nsink
∑

j=1

GMj

|ra − rj|2
r̂aj. (2.33)

SPH particles are accreted onto the sinks if they pass within 0.5racc of the sink, where

racc is the effective size of the sink. If a particle passes between 0.5racc and racc it will

only be accreted if it is both bound to that sink (and no other) and its speciőc angular

momentum is less than that of a Keplerian orbit at racc. When particle a is accreted

onto sink i the mass, position, velocity, acceleration and spin angular momentum of the

sink are updated in the following way that conserves mass, linear momentum and angular
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momentum, but not energy:

Mi =Mi +ma, (2.34)

ri =
riMi + rama

Mi +ma

, (2.35)

vi =
viMi + vama

Mi +ma

, (2.36)

ai =
aiMi + aama

Mi +ma

, (2.37)

Si = Si +
Mima

Mi +ma

[(ra − ri)× (va − vi)]. (2.38)

2.2.6 Kernel Interpolation

Converting data from a set of discrete SPH particles to a continuous őeld requires inter-

polating between the particles. To do this we must őrst start with the identity

A(r) =

∫

A(r′)δ(r′)dr′, (2.39)

where A is any scalar őeld and δ is the Dirac-delta function. This can be approximated

by replacing δ with the smoothing function, giving:

A(r) =

∫

A(r′)W (r − r′, h)dr′ +O(h2). (2.40)

We can discretise this by replacing the integral with a summation, replacing the density

element with the particle mass, and ignoring second order terms as follows:

⟨A(r)⟩ =
∫

A(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′

≃
Nneigh
∑

b=0

mb
Ab

ρb
W (r − r′, h), (2.41)

giving us a way to interpolate any scalar property A(r) at any point in space using only

the mass, density, and A of the neighbouring particles. Note that if we chose A to be the

density here we recover Equation 2.5, the SPH density estimate.

The gradient of any scalar quantity can be found by taking the derivative of Equa-

tion 2.41 as follows:

⟨∇A(r)⟩ = ∂

∂r

∫

A(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′

≃
Nneigh
∑

b=0

mb
Ab

ρb
∇W (r − r′, h). (2.42)
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Vector quantities can be interpolated in the same way simply by replacing A with A

in Equation 2.41, giving:

⟨A(r)⟩ ≃
Nneigh
∑

b=0

mb
Ab

ρb
W(r − r′, h). (2.43)

Similarly, the divergence and curl can be found using the same method as in Equation 2.42,

giving:

⟨∇ · A(r)⟩ ≃
Nneigh
∑

b=0

mb
Ab

ρb
∇ ·W (r − r′, h), (2.44)

⟨∇ × A(r)⟩ ≃
Nneigh
∑

b=0

mb
Ab

ρb
∇×W (r − r′, h). (2.45)

2.3 Radiative Transfer

2.3.1 The Radiative Transfer Equation

Radiative transfer describes the transfer of energy by means of electromagnetic radiation

travelling through a medium. As such, understanding of radiative transfer is crucial in

order to calculate synthetic observations of circumbinary discs.

We start by deőning a radiation őeld with speciőc intensity I(x,n, λ), where x is

position, n is a unit vector in the direction of the radiation, and λ is the wavelength.

The speciőc intensity represents the amount of energy carried by the radiation per unit

wavelength interval across a unit area perpendicular to n per unit solid angle per unit time.

The general form of the radiative transfer equation (RTE) is given by (see: Chandrasekhar,

1960; Rybicki and Lightman, 1979):

n · ∇I(x,n, λ) = −κ(x, λ)ρ(x)I(x,n, λ) + j(x,n, λ). (2.46)

The term on the left hand side represents the spatial change in intensity. The őrst term

on the right hand side represents extinction, that is the loss of energy as radiation is

absorbed when it passes through matter, where κ(x, λ) is the extinction coefficient, also

known as opacity, and ρ(x) is the mass density. This is a sink term, that is it removes

energy from the system. The őnal term is a source term that represents, as the name

suggests, new sources that inject photons into the system.

If we introduce a distance s deőned along the path x in propagation direction n

Equation 2.46 can be rewritten as:

dI(s, λ)

ds
= −κ(s, λ)ρ(s)I(s, λ) + j(s, λ), (2.47)
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which has the solution

I(s, λ) =

∫

∞

−∞

j(s′, λ) exp (−τ(s′, s, λ)) ds′, (2.48)

where the optical thickness between two points is deőned as

τ(s1, s2, λ) =

∫ s2

s1

κ(s, λ)ρ(s)ds. (2.49)

This solution shows that the intensity at any point along the path s is simply the emission

from all previous points s′ reduced by a factor of exp (−τ(s′, s, λ)) due to extinction. This

solution, however, relies on the assumption that j does not depend on I, an assumption

that does not hold in general. Furthermore, Equation 2.46 is the simplest form of the

RTE, and can be made more rigorous by considering the physical processes that go into it.

The simplest processes to consider are primary emission and absorption. Primary

emission for our sake is stellar emission and emission line radiation from ionised gas. It

is captured in the source term in Equation 2.46, and is written as j∗ when considering

stellar emission. Absorption is the process by which gas molecules and dust grains convert

incident radiation into internal energy and is included in the extinction term as κabs, the

absorption coefficient. κabs depends on the size, shape, and composition of the dust grains

and in principle can be found at any wavelength. In practise, however, modelling absorp-

tion from dust grains is an ongoing area of research (e.g. Purcell and Pennypacker, 1973;

Draine, 1988; Min et al., 2005). Adding these terms to Equation 2.46 does not increase

its mathematical complexity and it still has a solution of the form given in Equation 2.48.

One possible outcome of an interaction between a gas or dust particle is scattering.

Rather than removing or adding radiation, scattering is the process by which a photon

changes direction. This adds both an additional sink and source term to the RTE; a

sink term for a photon travelling in direction n
′ and a source term for the photon now

traveling in the new direction n. The efficiency of scattering is quantiőed by the scattering

coefficient κsca. The scattering phase function Φ(n,n′,x, λ) describes the probability that

a photon travelling in direction n
′ will be travelling in direction n after scattering at

position x and has the normalisation condition
∫

4π

Φ(n,n′,x, λ)dΩ′ =

∫

4π

Φ(n,n′,x, λ)dΩ = 1, (2.50)

that is, the probability over all solid angles is 1. Adding scattering to the RTE gives:

n · ∇I(x,n, λ) =− κext(x, λ)ρ(x)I(x,n, λ) + j∗(x,n, λ)

+ κsca(x, λ)ρ(x)

∫

4π

Φ(n,n′,x, λ)I(x,n′, λ)dΩ′, (2.51)
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where κext = κabs + κsca. Dust scattering is a highly anisotropic process, so correct

modelling of this anisotropy via the scattering phase function is important in order to

produce accurate calculations. Perhaps the most popular parameterisation is the Henyey

and Greenstein (1941) phase function, which introduces anisotropy factor g to give a

phase function in 2-dimensions of:

Φ(θ) =
1

4π

1− g2

(1 + g2 − 2G cos θ)3/2
. (2.52)

More complex phase functions exist, giving higher accuracy at the cost of computational

efficiency (e.g: Kattawar, 1975; Hong, 1985; Draine, 2003).

Since dust is also able to emit radiation we must add another source term to the RTE.

Large dust grains are assumed to be in local thermal equilibrium with the radiation őeld

and emit as a blackbody, giving rise to a source term:

jd(x,n, λ) = κabs(λ)ρ(x)B(T, λ), (2.53)

where B(T, λ) is the Planck function and T is the local equilibrium temperature. The

assumption that the dust is in thermal equilibrium doesn’t hold for small grains due to

their low heat capacities which lead to large temperature ŕuctuations. For small grains

the source term becomes

jd(x,n, λ) = κabs(λ)ρ(x)

∫

∞

0

P (T,x)B(T, λ), (2.54)

where P (T,x) is the temperature distribution of the small grains.

κabs(λ), as well as κsca(λ), can be computed for dust grains with the Mie theory if one

assumes they are spherical and homogenous. For a given size and composition distribution

f(x, a) the local opacities are given by;

κabs/sca(x, λ) =

∫ amax

amin

πa2Qabs/sca(λ, a)f(x, a)da, (2.55)

where Qabs(λ, a) and Qsca(λ, a) are the absorption and scattering cross-sections of a grain

with size a at wavelength λ, respectively.

Thus far we have only considered the speciőc intensity I(x,n, λ) of the radiation

őeld, however this is an incomplete picture since it does not take into account polarised

light. Even for unpolarised light, scattering events can lead to polarisation, especially

when scattered off aligned dust grains (e.g. Schmidt, 1973; Fischer et al., 1994, 1996).

Polarisation is described using the Stokes vector S = (I,Q, U, V ), where I still represents

the speciőc intensity, Q and U represent linearly polarised intensity in axes rotated 45◦
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from each other, and V represents circularly polarised intensity. The introduction of the

Stokes vector turns the RTE from a single equation to a set of four coupled equations

given by:

n · ∇S(x,n, λ) =− κext(x, λ)ρ(x)S(x,n, λ) + j∗(x,n, λ) + jd(x,n, λ)

+ κsca(x, λ)ρ(x)

∫

4π

M(n,n′,x, λ)S(x,n′, λ)dΩ′, (2.56)

where M(n,n′,x, λ), known as the Mueller matrix or scattering matrix, is the coupling

term that describes the changes to the Stokes vector due to scattering.

2.3.2 Monte Carlo Method

The anisotropic scattering from dust grains makes őnding an analytical solution to the

RTE impossible, thus numerical methods must be employed. The most popular method

is the Monte Carlo (MC) method. This is the method we will focus on in this sec-

tion, focusing speciőcally on the implementation in MCFOST. Other methods exist, such

as ray tracing and őnite difference, which will not be covered here (see Pinte et al., 2009;

Steinacker et al., 2013, for an overview).

MC works by modelling the radiation ŕow as photon packets which propagate through

the disc. Their propagation is governed by appropriately chosen probability density func-

tions (PDFs) that describe the material in the disc. Upon leaving the boundary of the

computational domain these photon packets are then used to create intensity and channel

maps or SEDs.

Before considering the propagation of the photon packets, however, the computational

domain must őrst be speciőed. When using MCFOST to create an image from a PHANTOM

output, the computational domain is constructed from the Vorenoi tessellation (Voronoï,

1908) of the distribution of SPH particles, i.e. each cell corresponds to the position of

an SPH particle and the grid boundaries are the planes that are equidistant to the two

closest SPH particles. This allows particle properties to be mapped onto the grid without

interpolation. Once this grid is constructed we can now consider the behaviour of the

photon packets.

A photon packet’s journey begins when it is injected into the computational domain.

In this work this physically represents emission from the central stars. The initial position

and propagation direction are sampled from the PDF given by:

p(x,n) =
j∗(x,n, λ)

Ltot

, (2.57)
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where p(x,n) is the PDF and Ltot is the total luminosity of the source.

Once the photon packet has been launched the next step is to determine the distance

it will travel before an interaction, or indeed whether it will escape the computational

domain, given a large enough propagation distance. The optical depth is sampled from

the PDF given by p(τ) = exp (−τ). This is then converted to a physical distance, l, by

integrating Equation 2.49 until the following equality is satisőed:

τ(λ) =

∫ l

0

κext(x, λ)ρ(x)ds. (2.58)

Once the position, x, of interaction is found the probability of a scattering is found via

the local albedo:

psca = A(x, λ) =

∫ amax

amin
πa2Qsca(λ, a)f(x, a)da

∫ amax

amin
πa2Qext(λ, a)f(x, a)da

, (2.59)

where A(x, λ) is the local albedo, psca is the probability of scattering, and it follows that

the probability of absorption is pabs = 1− psca.

Once a scattering interaction has occurred the photon packet’s new propagation di-

rection must be found. The scattering direction is deőned by two angles, the scattering

angle θ and the azimuth angle ϕ. Rewriting the elements of the scattering matrix as a

function of scattering angle, position, and wavelength allows the scattering angle to be

sourced from the cumulative distribution function:

F (θ) =

∫ θ

0
M11(θ

′,x, λ) sin(θ′)dθ′
∫ π

0
M11(θ′,x, λ) sin(θ′)dθ′

. (2.60)

If the incoming photon packet is linearly unpolarised the azimuth distribution is isotropic.

For a photon packet with non-zero linear polarisation, S =
√

Q2 + U2/I, the azimuth is

deőned relative to the direction of polarisation and sourced from the cumulative distribu-

tion function:

Fθ(ϕ) =
1

2π

(

ϕ− M11(θ,x, λ)−M12(θ,x, λ)

M11(θ,x, λ) +M12(θ,x, λ)
P
sin(ϕ)

2

)

, (2.61)

where θ is taken from Equation 2.60 (Solc, 1989).

Naturally, if an interaction is not a scattering event it must be an absorption event,

which acts to heat the material in the disc. MCFOST works on two extreme assumptions;

either the gas-dust mixture is perfectly coupled and in local thermal equilibrium, or there

is no thermal coupling at all. In the case of perfect coupling the temperature of each cell

is given by the radiative equilibrium equation:

4π

∫

∞

0

κabs,i(λ)B(Ti, λ)dλ = Γabs,i, (2.62)
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where i refers to the cell index and Γabs,i is the energy absorption rate. By considering only

passive heating we can rewrite the energy absorption rate in terms of the mean intensity,

J(λ):

4π

∫

∞

0

κabs,i(λ)B(Ti, λ)dλ = 4π

∫

∞

0

κabs,i(λ)J(λ)dλ, (2.63)

and any extra sources of heating can be taken into account by adding the corresponding

term to the right hand side of this equation. Each time a photon packet γ of wavelength

λ passes through a cell the distance ∆lγ that packet travels within the cell is computed.

The mean intensity can then be derived following Lucy (1999), replacing the right hand

side of Equation 2.63:

4π

∫

∞

0

κabs,i(λ)B(Ti, λ)dλ =
L∗

Vi

∑

λ,γ

κabs,i(λ)∆lγ
Nγ

, (2.64)

where L∗ is the stellar luminosity, Vi is the volume of cell i, and Nγ is the number of

photon packets with wavelength γ. This gives rise to a source term in the form of Equa-

tion 2.53.

In the case where the gas and dust, or dust grains of different sizes, are not thermally

coupled the radiative equilibrium equation must be rewritten for each different species. As

this is computationally expensive Bjorkman and Wood (2001) came up with the concepts

of immediate re-emission and temperature correction to greatly speed up calculations. In

effect this means that any photon packet that gets absorbed is immediately re-emitted

with a wavelength chosen by taking into account a corrected temperature given by the

PDF:

ρ(γ) ∝ κabs,i(λ)
dB(Ti, λ)

dT
. (2.65)

2.3.3 Intensity and Channel Maps

When computing synthetic maps there are two main methods for sampling the radiation

őeld; photon packets with the same energy, regardless of wavelength, or photon packets

with the same number of photons, and thus different energy at each wavelength. The for-

mer leads to a better convergence of the temperature distribution while the latter allows

for more efficient computation of the maps. MCFOST strikes a balance between the two by

using a two step process.

In the őrst step the temperature distribution is calculated. Here photon packets are

generated at the stellar surface and propagated until they exit the computational domain

and each photon packet has the same energy ϵ = L∗Nγ,step1. This reduces the noise in the

temperature distribution, especially at low optical depth, but is inefficient for calculating



50 CHAPTER 2. METHODS

synthetic maps.

In the second step the map is calculated from the temperature distribution found in

step 1. Here the number of photon packets, Nγ,step2, is held constant at all wavelengths,

leading to a comparable noise level in all wavelength bins. In this step photon packets are

always scattered and never absorbed but at each interaction the Stokes vector is weighted

by the probability of scattering, psca, to take into account the energy loss from absorption.

This allows all photons to exit the disc and contribute to the map with a reduced weight.

Unlike in step 1, packets are now emitted from the disc as well as the stellar surface.

These packets are generated with a luminosity that is determined by the total energy

emitting by the star and disc at their given wavelength:

ϵ =
L∗(λ) +

∑

iwi(λ)Li(λ)

Nγ,step2

. (2.66)

These packets are randomly emitted from the stellar surface with probability:

p∗ =
L∗(λ)

L∗(λ) +
∑

iwi(λ)Li(λ)
, (2.67)

and from the disc, in cell i, with probability:

pi =
wi(λ)Li(λ)

L∗(λ) +
∑

iwi(λ)Li(λ)
, (2.68)

where the luminosities are given by:

L∗(λ) = 4πR2
∗
B(T∗, λ), (2.69)

for the star and:

Li(λ) = 4πmiκabs,i(λ)B(Ti, λ), (2.70)

for the disc, mi is the mass of cell i and wi(λ) is its weighting. To prevent any photon

packets being generated so deep in an optically thick region of the disc that they wouldn’t

reach the surface with an appreciable energy a "dark zone" is deőned for each wavelength.

This dark zone is the region where the optical depth τ(λ) ≥ 30 to get out of the compu-

tational domain in any direction. wi(λ) = 0 inside this zone, ensuring no photon packets

are generated there, and wi(λ) = 1 outside it. Furthermore, any photon generated outside

the dark zone that enter it during their random walk are killed.

Intensity maps are calculated from the continuum at a given wavelength. Channel

maps, on the other hand, consider only a single spectral line. Spectral lines are subject

to a number of broadening effects resulting in a proőle of őnite thickness in wavelength

space. The Doppler effect shifts the wavelength due to the line of sight velocity of the

emitting material. Each wavelength contributing to the spectral proőle can be converted

to a velocity, giving rise to channel maps which image the disc in slices of line of sight

velocity.
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2.3.4 Moment Maps

From the channel maps it is possible to calculate moment maps, each of which gives

different imformation about the material in the disc. The moment 0 map is calculated

as
∫

I(x,n, v)dv for each pixel, the sum of intensity of all channels, and traces the ŕux

density. While dense regions tend to be more luminous, luminosity doesn’t only depend

on density. Of particular importance is the dependence of luminosity on temperature,

which means that a less dense but hotter material closer to the binary can in theory be

more luminous than a more dense but colder region further out. In practise, however, the

densest regions of the disc are those closest to the binary, so the moment 0 map roughly

traces column density. It is also important to note that for optically thick material this

probes the surface layers of the disc, while for optically thin material this probes the disc

midplane.

The moment 1 map is calculated as
∫

I(x,n, v)vdv/
∫

I(x,n, v)dv. This is a map of

the average velocity along the observer’s line of sight weighted by intensity, thus the signal

is strongest for discs which are edge-on to the observer. Finally, the moment 2 map is

calculated as
∫

I(x,n, v)v2dv/
∫

I(x,n, v)dv. This is a measure of the velocity dispersion.
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Chapter 3

On the Cavity Size in Circumbinary

Discs

3.1 Introduction

As discussed in Section 1.4 the long-term evolution of an inclined circumbinary disc is not

well understood. To investigate this we perform a series of 3-dimensional SPH simulations

of inclined circumbinary discs. Before considering inclined discs, however, we őrst model

coplanar discs, varying the disc viscosity, as well as the binary eccentricity and mass ratio

to investigate what the őnal cavity size can tell us about unseen binary companions and

about the disc properties. The work in this chapter has been published in Hirsh et al.

(2020).

3.2 Methods

3.2.1 Initial Conditions

Using the SPH code PHANTOM (Price et al., 2018b) we model a gas disc consisting of one

million particles initially placed in a circumbinary disc extending from 1.4 to 14.5 times the

binary semi-major axis, with the binary modelled as a pair of sink particles as described

in Section 2.2.5. We simulate binaries with mass ratios of q = 0.01, 0.1, 0.3 and 0.5 with

q = M2/(M1 + M2), where M1 and M2 are the mass of the primary and secondary,

respectively. We use a disc mass of Mdisc = 0.0001M1, in order to reduce the effects of

the disc gravity on the binary orbit. This low mass leads to a negligible disc self-gravity,

so we do not include it in our simulations. We assume a surface density proőle Σ ∝ R−p,

with p = 1.0. We prescribe a locally isothermal equation of state, that is P = c2s(R)ρ,

with sound speed varying as cs ∝ R−w, with w = 0.25. This leads to a temperature proőle

T ∝ R−2w and a disc aspect ratio varying as H/R ∝ R1/2−w. This allows us to set the

53
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Table 3.1: Simulation parameters. We vary the binary mass ratio, disc inclination, and

disc scale height. Varying the scale height corresponds to the value of artiőcial viscosity

given beneath it.

Parameter Fiducial value Other explored values

q 0.1 0.01, 0.3, 0.5

Mdisc/M1 0.0001

Rin/a 1.4

Rout/a 14.5

p 1.0

w 0.25

α 0.005

inclination 0◦ 22.5◦, 45◦, 90◦

Viscosity-dependent parameters

(H/R)in 0.05 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12

αAV 0.20 0.07, 0.11, 0.17, 0.22, 0.27, 0.31, 0.35

sound speed, temperature and aspect ratio by specifying the aspect ratio at the disc inner

edge. We simulate discs with (H/R)in = 0.01, 0.02, 0.04, 0.05, 0.06, 0.08, 0.10 and 0.12.

The setup for our őducial simulation, as well as the full parameter space investigated, is

outlined in Table 3.1.

3.2.2 Disc Viscosity

We prescribe an α disc (see Sections 1.3.3 and 2.2.4), setting αAV such that the average

α = 0.005. This allows us to vary the viscosity by varying the scale height of the disc.

The corresponding viscous time tvisc = R2/ν, at R = Rin, is given in terms of the orbital

time (2π/Ω) according to

tvisc ≈ 12, 800 orbits
( α

0.005

)−1
(

H/R

0.05

)−2

. (3.1)

For the discs we investigate this gives a tvisc that varies from roughly 2, 200 orbits for

(H/R)in = 0.12, to roughly 320, 000 orbits for (H/R)in = 0.01. Physically it is more

sensible to consider tvisc at the cavity edge (Rcav), but since this varies throughout and

between simulations we consider tvisc at Rin and note a discrepancy of a factor of Rcav/Rin.

3.2.3 Cavity Size

We azimuthally average the surface density and deőne the half-maximum radius to be

the radius at which the surface density őrst reaches half its maximum, with a similar
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deőnition for the quarter-maximum density. Following the prescription in AL94, we then

take the cavity size to be the radius at half-maximum, with a symmetric error taken as

the difference between the radii at half-maximum and quarter-maximum.

3.3 Results

3.3.1 Time Evolution

Figure 3.1 shows surface density rendered face-on views of the cavity opening process for

a coplanar disc with (H/R)in = 0.05 and q = 0.1 and eccentricities ranging from e = 0 to

e = 0.8. The cavity size increases with time (top to bottom) until reaching an equilibrium

after several thousand orbits. After 10,000 binary orbits the background surface density

is smaller due to viscous disc spreading.

Figure 3.2 quantiőes the cavity size as a function of time and initial binary eccentricity.

The top panel shows the evolution on tens of dynamical timescales (a dynamical timescale

being ≲ 10 binary orbits at Rcav). The cavity is opened on this timescale and the size

appears to stabilise between 2−3 times the semi-major axis depending on the eccentricity

of the binary. Evolving the system on the viscous timescale (∼ 10, 000 binary orbits) shows

the cavity continue to grow to 2.5−3.5 times a for eccentric binaries (bottom panel). The

circular case is unique in that it reaches a maximum cavity size of the order of hundreds

of binary orbits, while eccentric binaries continue to grow their cavities for thousands of

binary orbits.

3.3.2 Binary Orbital Eccentricity

Figure 3.1 shows the effect of binary eccentricity on the cavity size. Cavity size increases

with increasing eccentricity. This is shown quantitatively in Fig. 3.3. At early (100 binary

orbits; green line) and late (10,000 binary orbits; black line) stages the cavity size increases

with binary orbital eccentricity, consistent with both AL94 and ML15. After 1000 binary

orbits (red line), however, we see a turnover in the cavity size due to the circular binaries

reaching a maximum cavity size before eccentric ones. This turnover is only temporary

though, and disappears once the eccentric binaries reach a maximum cavity size. Thun

et al. (2017) also őnd a turnover in the cavity size, however theirs persists up to 16,000

binary orbits, and the minimum is seen at e ≈ 0.18 while ours is at e ≈ 0.1.

The exact values for the cavity size also show some discrepancies. Thun et al. (2017)

found cavity sizes between 4 and 7 times the binary semi-major axis, nearly double the
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Figure 3.1: Surface density rendered face-on views of the evolution of coplanar discs with

(H/R)in = 0.05 surrounding a binary with q = 0.1. Eccentricity increases from left to

right and time increases from top to bottom.

values found by our work, as well as that of AL94 and ML15 (dashed lines in Fig. 3.3).

We discuss this difference in Section 3.4.

3.3.3 Disc Scale Height

Figure 3.4 shows the surface density rendered face-on views of discs evolved for 1000

binary orbits with various eccentricities (increasing left to right) and disc scale heights

(increasing top to bottom). We see the cavity size increase with binary eccentricity, as

described in Section 3.3.2, and decrease with increasing scale height. We also see the most

eccentric cavities around the discs with smallest scale height.



3.3. RESULTS 57

Binary Orbits

R
ca

v
 /

a

0 20 40 60 80

2

3

4

5 e = 0.00
e = 0.10
e = 0.20
e = 0.40
e = 0.60
e 0 80

Binary Orbits

R
ca

v
 /

a

0 200 400 600 800

2

3

4

5
e = 0.00
e = 0.10
e = 0.20
e = 0.40
e = 0.60
e 0 80

Binary Orbits

R
ca

v
 /

a

0 2000 4000 6000 8000

2

3

4

5
e = 0.00
e = 0.10
e = 0.20
e = 0.40

Figure 3.2: Evolution of cavity size over time for a coplanar disc with (H/R)in = 0.05

surrounding a binary with q = 0.1 over 100 binary orbits (top left panel), 1000 binary

orbits (top right panel) and 10,000 binary orbits (bottom panel). The shaded region

represents the error bars, as is the case for all subsequent plots in this paper.

Care must be taken, however, to evolve the discs for a signiőcant fraction of the viscous

time. The top panel of Fig. 3.5 shows the cavity size as a function of disc aspect ratio

after only 100 binary orbits. From Equation 3.1, this corresponds to ∼ 3 × 10−4tvisc for

(H/R)in = 0.01 and ∼ 4.5× 10−2tvisc for (H/R)in = 0.12. At this early stage there is no

dependence of cavity size on disc aspect ratio. The bottom panel of Fig. 3.5 is the same

as the top panel, but after 1000 binary orbits.

Although 1000 binary orbits does not fully resolve the viscous time, it is already possi-

ble to see trends appearing. When (H/R)in ≲ 0.06 the cavity size decreases for increasing

scale height, then remains largely unchanged above this value. Furthermore, while the

most viscous discs with (H/R)in ≳ 0.06 continue to evolve after 100 orbits the change in

cavity size is minor, remaining within error bars. This suggests that taking the cavity

size after 1000 orbits (≳ 0.1tvisc for these highly viscous cases) provides a reasonable es-

timation of the long-term cavity size.
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Figure 3.3: Cavity size as a function of binary orbital eccentricity for a coplanar disc with

(H/R)in = 0.05 surrounding a binary with q = 0.1. Snapshots are taken after 100 (green

line), 1000 (red line) and 10,000 (black line) binary orbits. Dashed line shows prediction

from Miranda and Lai (2015).

While longer simulations would allow us to fully resolve the viscous time, these sim-

ulations become prohibitively expensive at low viscosity, requiring more than 105 binary

orbits for (H/R)in = 0.01. It is also important to note that such long simulations would

reach, or even exceed, the expected lifetime of protoplanetary discs, reducing their appli-

cability to planet-forming discs at these late times.

3.3.4 Disc Inclination

Figure 3.6 shows circumbinary discs with q = 0.1, (H/R)in = 0.05 and e = 0.8 in both

face-on and side-on views, rendered in surface density, with various initial inclinations

and at various times. The critical inclination above which a disc of test particles tends

towards a polar alignment is given by Equation 1.36. For e = 0.8 this corresponds to

a critical inclination of 18.5◦. Discs with an initial inclination lower than icrit will tend

towards a coplanar orbit. If the alignment time is shorter than the lifetime of the disc,
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Figure 3.4: Surface density rendered face-on views of coplanar circumbinary discs sur-

rounding a binary with q = 0.1 after 1000 binary orbits. Disc aspect ratio increases top

to bottom, binary orbital eccentricity increases left to right. As seen in Figs. 3.3 and 3.5

cavity size increases with binary orbital eccentricity and decreases with disc aspect ratio.
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Figure 3.5: Cavity size as a function of disc aspect ratio for a coplanar disc surrounding a

binary with mass ratio q = 0.1 after 100 binary orbits (top panel) and 1000 binary orbits

(bottom panel).
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this result implies that the őnal conőgurations will always be either polar or coplanar. In

the case where the cavity is opened faster than the őnal alignment is reached, the disc will

pass through a sequence of quasi-stationary conőgurations where the cavity size decreases

(increases) as the disc progressively moves towards the polar (coplanar) conőguration. In

the case where the őnal alignment is reached before the cavity is opened, the cavity will be

the same size as that of a disc initially in the őnal conőguration. In Figure 3.6 we see that,

consistent with Equation 1.36, both the i = 22.5◦ and the i = 45◦ discs tend towards a po-

lar alignment, but their evolution looks very different due to the different alignment times.

For the i = 45◦ disc the binary torque is strong enough to break the disc (c.f. Nixon

et al., 2013; Facchini et al., 2013) and the inner disc quickly goes polar within hundreds of

binary orbits; that is to say that the inner disc reaches a polar conőguration on the same

timescale as the cavity is opened. The outer disc aligns more slowly due to the weakened

interaction with the binary.

For the i = 22.5◦ disc the binary torque is not strong enough to break the disc and

instead a warp forms in the inner regions of the disc which moves outwards over time. In

this case the disc tends towards a polar alignment on the order of thousands of binary

orbits while rigidly precessing. From the third row of Figure 3.6 we see that after 100

binary orbits the inner disc remains at a low inclination. Comparing the őrst two rows of

Figure 3.6 we see the cavity opening process is similar to an initially coplanar disc due to

the low inclination during the opening timescale.

Not shown in Figure 3.6 are discs with an initial inclination less than icrit (e ≤ 0.4 for

i = 22.5◦ and e ≤ 0.7 for i = 45◦). These discs tend towards a coplanar alignment and

for q = 0.1 do so by warping.

The effect that the differing evolution has on the cavity size can be seen in Figure 3.7,

which shows the cavity size of inclined discs after 1000 binary orbits. The two major

factors in determining the cavity size at this time are whether the disc tends towards a

coplanar or a polar alignment, and how quickly this alignment is reached.

Discs that tend towards a coplanar alignment open a cavity that is slightly smaller

than that of an initially coplanar disc, due to the weaker binary torques in an inclined disc

(c.f. ML15). The cavity then grows in time as the inclination is damped and the long term

cavity size is expected to be that of an initially coplanar disc, though the realignment

time is longer than the 1000 binary orbits we simulated.
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As discussed earlier, discs that break and go polar reach a polar conőguration within

100 binary orbits. This means that the cavity is opened when the disc is already polar,

so the cavity size is equal to that of an initially polar disc.

Discs that warp and go polar do so slowly enough to open a cavity at an intermediate

inclination before their inclination starts to increase. The binary torques get weaker as

the disc gets more inclined, allowing the cavity to shrink as it is őlled in due to viscous

spreading. This process requires the disc to be evolved for a viscous time at its őnal

polar conőguration before the long-term cavity size can be recovered. After 1000 binary

orbits, however, we recover an intermediate cavity size as the disc is still in the process of

shrinking its cavity.

Simulations with q = 0.5 (not shown) produce similar results, with the exception that

the binary torques are strong enough to break the disc, regardless of the binary eccentricity

and disc inclination, leading to a faster alignment to either a coplanar or polar orbit. This

leads to a cavity size that is equal to that of an initially polar disc for any disc that goes

polar, while discs that tend towards a coplanar alignment again have a cavity size slightly

smaller than that of an initially coplanar disc. For the coplanar discs breaking instead of

warping allows for faster realignment for the coplanar discs, especially at low eccentricity.

This leads to a cavity size that is closer to that of an initially coplanar disc.

3.3.5 Binary Mass Ratio

Figure 3.8 shows surface density rendered face-on views of circumbinary discs with (H/R)in =

0.05 after 1000 binary orbits for various eccentricities and binary mass ratios. Around

circular binaries, strong horseshoe shaped over-densities are seen at the cavity edge, be-

coming weaker as the companion decreases in mass and disappearing at q = 0.001. Faint

horseshoes can also be seen around highly eccentric binaries, again becoming weaker with

smaller companions.

Figure 3.9 shows the cavity size as a function of eccentricity for coplanar discs with

(H/R)in = 0.05 around binaries with four different mass ratios (q = 0.01, 0.1, 0.3 and 0.5)

after 1000 binary orbits. When q ≥ 0.1 we see the turnover discussed in ğ3.3.2. Consistent

with Ragusa et al. (2017), we őnd that the more massive companions carve the largest

cavities. There is an exception to this at low eccentricity (e ≤ 0.2) where the maximum

cavity size is seen around binaries with q = 0.3, though we caution here that our resolution

in mass ratio is coarse.
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Figure 3.6: Surface density rendered views of the evolution of inclined circumbinary discs

with (H/R)in = 0.05 surrounding a binary with q = 0.1 and e = 0.8. Time increases from

left to right and inclination increases from top to bottom. Coplanar and polar discs are

shown only in face-on views, while i = 22.5◦ and i = 45◦ are shown in both face-on and

side-on views.
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Figure 3.7: Cavity size as a function of binary orbital eccentricity for a disc with (H/R)in =

0.05 surrounding a binary with q = 0.1 after 1000 binary orbits. Different line colours

depict discs with different initial inclinations to the binary orbital plane. The solid lines

(top panel) represent the results from our SPH simulations while the dashed lines (bottom

panel) represent the analytical estimates from ML15.
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Figure 3.8: Surface density rendered face-on views of coplanar circumbinary discs with

(H/R)in = 0.05 surrounding a binary with varying mass ratio and eccentricity after 1000

binary orbits. Binary mass ratio increases top to bottom, binary orbital eccentricity

increases left to right.

3.3.6 Gas Depletion

Figure 3.10 shows the azimuthally averaged surface density as a function of radius for

coplanar discs around circular binaries with q = 0.1 and various disc aspect ratios, allowing

us to see how depleted the cavity is. One common method to characterise the depletion is

to model the surface density of the disc as a power law with an exponential taper (Lynden-

Bell and Pringle, 1974) and model the cavity by scaling down the surface density by a

constant depletion factor, giving (Andrews et al., 2011; Perez et al., 2015)

Σ(r) = δgapΣ0

(

r

R0

)−p

exp

[

(

− r

R0

)2−p
]

, (3.2)

where Σ0 is the surface density at the characteristic radius R0 and δgap is the depletion fac-

tor, with δgap = 1 outside the cavity and δgap < 1 inside the cavity. This characterisation

is impossible for us since the surface density inside the cavity is below what we are able

to resolve, so instead we take the depletion as δgap = Σmax/Σmin, where Σmax and Σmin
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Figure 3.9: Cavity size as a function of binary orbital eccentricity for a coplanar disc with

(H/R)in = 0.05 after 1000 binary orbits. Different lines depict binaries with different

mass ratios.

and the maximum and minimum values of surface density that we recover, respectively.

We őnd that in all cases the depletion is 2ś3 orders of magnitude, decreasing as the

disc becomes more viscous. However, in every case our Σmin is at our resolution limit, so

these values can only be treated as a minimum depletion in the cavity. Furthermore, the

more viscous discs have a smaller δgap due to a smaller Σmax, which does not necessarily

imply a less depleted cavity.

3.3.7 Resolution Study

We performed a resolution study by comparing the discs in Section 3.3.2 with discs of

300 thousand and 3 million particles, keeping all physical properties the same. For the

resolution study we only considered binary eccentricities from e = 0.1 to e = 0.9 with

a step size of 0.2. Figure 3.11 shows the cavity size as a function of binary eccentricity

for these simulations. The results only converge for simulations with at least 1 million
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Figure 3.10: Azimuthally averaged surface density as a function of radius in the disc, in

units of binary semi-major axis, on a log-log scale. All discs are coplanar with a circular

binary of q = 0.1, with each line representing a different disc aspect ratio. The dashed

line is the lowest possible Σ we can resolve.

particles, while with only 300 thousand particles the cavity size is underestimated. This

underestimated cavity size is due to the scale height not being resolved, leading to in-

creased numerical viscosity. At 1 million particles the scale height is resolved, so any

further increase in resolution gives no improvement in the cavity size estimate.

3.4 Discussion

When comparing to previous works we found results consistent with the main conclusions

from AL94 and ML15, namely that cavity size increases with increasing binary eccentric-

ity and decreasing disc viscosity.

ML15 also found that for discs with i ≤ 45◦ cavity size decreases with disc inclina-

tion (bottom panel of Fig. 3.7). However theirs was an analytical study, comparing the

strengths of the viscous and binary torques for static discs and not taking into account
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Figure 3.11: Cavity size as a function of binary orbital eccentricity for a coplanar disc

with (H/R)in = 0.05 and q = 0.01. Different lines represent different number of SPH

particles.

changes in inclination over time. For discs which tend towards a coplanar orbit we also

őnd that cavity size decreases with initial inclination, however for discs which tend to-

wards a polar orbit this is no longer the case (see Section 3.3.4).

We őnd that the angle above which a disc will go polar matches previous predictions

and simulations (Aly et al., 2015, 2018; Martin and Lubow, 2018; Cuello and Giuppone,

2019). We also see disc breaking at high binary mass ratio and high binary eccentricity.

This is consistent with the results from Nixon et al. (2013) and was also recently seen by

Facchini et al. (2018).

Thun et al. (2017) found cavities that extend to upwards of seven times the binary

semi-major axis for coplanar discs with (H/R)in = 0.05 around highly eccentric binaries.

They also found a turnover in cavity size as a function of binary eccentricity that persists

to 16,000 binary orbits, with the smallest cavities being opened by binaries with e = 0.18.

We also found a turnover (see Fig. 3.3), however ours was at e = 0.1 and only appears at
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intermediate stages of the disc evolution, disappearing after several thousands of binary

orbits. These differences are likely due to the different codes used in our analyses. The use

of 2D grid-based codes requires careful consideration of the inner boundary when working

with a polar grid (see Section 4.1 of Thun et al., 2017). Indeed, recent works have found

that choosing an open boundary with Rin > a, as in Thun et al. (2017), can lead to an

artiőcially large cavity (Mutter et al., 2017; Pierens et al., 2020).

Ragusa et al. (2017) őnd that larger companions carve larger cavities, though they

only consider binaries with q ≤ 0.2. As discussed in Section 3.3.5 we found this to be

the case for binaries with q ≤ 0.3. Equal mass binaries continue this trend when highly

eccentric, but when e ⪅ 0.2 equal mass binaries carve smaller cavities than those with

q = 0.3. The reason for this is unclear.

In Section 3.3.3 we compare discs with different scale heights at the same number of

orbits, corresponding to a different fraction of the viscous time for each disc. It is nat-

ural to consider whether comparing the discs at the same viscous time shows the same

behaviour. To this end Fig. 3.12 shows the evolution of the cavity size as a fraction of

the viscous time. After ∼ 10% of a viscous time the cavity size is seen to increase with

decreasing viscosity. This is the same behaviour as seen in the bottom panel of Fig. 3.5.

That is, our conclusions are independent of whether we use time in orbits or time in vis-

cous times so long as the system has been evolved for a signiőcant fraction of the viscous

time. Figure 3.12 suggests that even low eccentricity (e = 0.1) binaries in discs with

(H/R)in ≲ 0.02 may eventually produce cavities with radii ≳ 3ś4 times the semi-major

axis. However, evolving such low viscosity discs for a signiőcant fraction of the viscous

time is prohibitively expensive. The results are also irrelevant for protoplanetary discs,

since in these cases the viscous time starts to exceed the disc lifetime.

When comparing this work to observations, one should keep in mind the following:

We only modelled the gas. ALMA continuum observations probe the mm-sized dust

in the disc midplane. While comparisons to ALMA observation of gas lines can be made

with gas-only simulations, comparisons to the continuum observations would require full

gas and dust simulations. We would expect to see a larger cavity in the dust than in the

gas (c.f. van der Marel et al., 2018).

We prescribed a őxed temperature proőle. Since we did not account for radiation from

the central stars we have an axisymmetric temperature proőle, rather than one which os-

cillates during the orbit of the stars (Nagel et al., 2010; Bodman and Quillen, 2015). This
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Figure 3.12: Cavity size as a function of fraction of viscous time for coplanar discs sur-

rounding a binary with e = 0.1.

azimuthal temperature variation would lead to local ŕuctuations in viscosity. Any effects

from these local ŕuctuations would be minor, since they oscillate on the orbital time, while

the cavity size is set on the viscous time. The temperature difference caused by shadows

from a circumstellar disc (e.g. HD 142527, Casassus et al., 2015b; Avenhaus et al., 2017)

would be persistent and could drive an eccentric cavity due to local regions of low viscosity.

Furthermore, once a cavity becomes eccentric it would have a non-axisymmetric temper-

ature proőle, with the material at periastron being warmer than that at apoastron. This

could drive larger eccentricity in the cavity, though a simulation that combines dynamics

and radiative transfer would be needed to investigate this effect (see Nealon et al., 2020).

Recently, Miranda and Raőkov (2019) showed that using a locally isothermal equation

of state Ð instead of solving the energy equation Ð may overestimate the contrast of

gaps in discs. Whether or not this would change our conclusions regarding the cavity size

would be worthy of investigation.

We model viscosity using an α-disc with α = 5 × 10−3, though the true value of α

in protoplanetary discs remains uncertain. Flaherty et al. (2020) argue that most obser-
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vational evidence points towards α ∼ 10−4 − 10−3 (see also Mulders and Dominik, 2012;

Boneberg et al., 2016). They do, however, provide examples of a small number of systems

with α ∼ 10−2, suggesting that higher values of α, while uncommon, are possible. Con-

trasting this, Papaloizou (2005) found that the resonant coupling between inertial-gravity

waves and a free m = 1 global mode causes an instability which leads to a turbulence with

an effective α ∼ 10−3. Pierens et al. (2020) found that the presence of a binary strength-

ens this instability, leading to an effective α ∼ 5× 10−3. It is also important to note that

setting a low αAV in SPH leads to a higher than expected dissipation (Meru and Bate,

2012). This effect is reduced with higher resolution simulations, however simulating an

α of 10−4 would require an unfeasibly large number of particles. Since a higher viscosity

leads to a smaller cavity, our results would underestimate the cavity size in discs with

low α and an investigation into discs with low α would be required for comparisons with

observations of discs with such low viscosity.
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In section 3.3.4 we claim that all discs will tend towards either a coplanar or a polar

orbit in the long term. While this is valid for low mass discs, Martin and Lubow (2019)

found that discs with a signiőcantly high mass can reach an equilibrium at an intermedi-

ate inclination. As such, a study investigating the effects of disc mass would be required

to understand how the cavity evolves in these high mass discs.

Viscous disc spreading reduces the surface density of the disc over time as material is

accreted onto the central stars. This also reduces the number density of SPH particles

in the disc, lowering the resolution and increasing the smoothing length over time, as

shown in Fig. 3.13. Due to our prescription of disc viscosity (Section 3.2.2), this leads to

an increase in the viscosity over time. The effect is more pronounced in the inner disc,

where the smoothing length increases by up to a factor of 4 after 10,000 binary orbits. An

increased viscosity near the cavity edge may lead to an underestimated cavity size in our

simulations, though since this effect is present in all discs we expect the trends to remain

unaffected.

In our simulations we found that cavities can be up to őve times the semi-major axis

of the binary orbit, meaning that binary companions can be close to the primary while

still carving a large cavity, making the companion difficult to resolve. Indeed, many discs

previously classiőed as transitional, such as CoKu Tau/4 (Ireland and Kraus, 2008) and

HD 142527 (Biller et al., 2012), have only been reclassiőed as circumbinary in the last

15 years, despite hosting stellar or sub-stellar mass companions. This problem is further

exacerbated for highly eccentric discs, since they tend towards a polar inclination (Aly

et al., 2015, 2018; Martin and Lubow, 2018), Discs on a retrograde orbit are also more

likely to become polar (Cuello and Giuppone, 2019) For any polar disc (or indeed, any

highly-inclined disc) in a nearly face-on conőguration, the small projected separation of

the binary would make it extremely difficult to resolve. Since highly-inclined discs are

not uncommon for binaries with long periods (Czekala et al., 2019), many discs currently

classiőed as transitional may yet turn out to be hiding binary companions.

3.5 Conclusions

We have performed a numerical examination of cavity opening by a binary embedded in

an accretion disc, revisiting and expanding the original numerical and analytic study by

AL94 and the recent analytic extension to inclined discs by ML15. We considered the

effects of binary eccentricity, inclination, mass ratio, disc vertical scale height and binary

mass ratio. Our conclusions are:
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1. There exists two timescales for the cavity opening process. The cavity is quickly

opened on a dynamical time, within a few tens of orbits, while the long term size of

the cavity is set on the viscous time, after tens of thousands of orbits.

2. Binaries carve cavities in circumbinary discs at a radius 2ś5 times the semi-major

axis, with a cavity size that depends most strongly on binary eccentricity and disc

viscosity, as predicted by AL94 and ML15.

3. When considering inclined discs there exists three regimes. Discs which evolve

towards a coplanar orbit have a cavity size slightly smaller than an initially coplanar

disc, decreasing in size as initial inclination increases. Discs which evolve towards

a polar orbit have a cavity size which depends on their evolution, i.e. whether they

break or warp. Discs which break have a small cavity equal in size to those of an

initially polar disc, while discs that warp quickly open a large cavity which is then

őlled in on the viscous timescale, resulting in an intermediate sized cavity which

shrinks on a viscous timescale to the size of a cavity in an initially polar disc.

4. Cavity size is an increasing function of binary mass ratio for all but the largest

companions on low eccentricity orbits.

5. All of our binaries (with q ≥ 0.01) produced a gas depletion inside the cavity of at

least 2 orders of magnitude in surface density.

There are a number of ways this work could be expanded upon. Simulating discs

with both gas and dust would allow for an investigation into cavity size of the dust phase

of the disc. Simulating discs with a lower α would allow for a deeper understanding of

the effects of viscosity on the cavity size and could help to constrain the α in observed

discs. Simulating discs with a more complex temperature prescription could allow for

investigations into the effects of a non-axisymmetric temperature proőle on the cavity

size and eccentricity. Creating synthesised images of the discs simulated here would

allow for an investigation into the observational signatures of a binary companion. This

investigation is presented in Chapter 4.
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Chapter 4

Observational Appearance of

Circumbinary Discs

4.1 Introduction

As discussed in Section 1.5 there exists many discs showing properties typically associated

with that of a circumbinary disc but with no known stellar companion. Thus, if we wish

to infer the presence of a second star in these systems it is crucial to understand the

observable signatures it imprints on the disc. In this chapter we use the radiative transfer

code MCFOST (see Section 2.3) to compute synthetic moment 0, 1, and 2 maps, as well as

synthetic channel maps, of the simulated discs in Chapter 3. To irradiate the disc we take

the central stars as isotropic sources, adopting the 3Myr isochrones from Siess et al. (2000)

to determine the stellar parameters. The primary has Teff = 4250 K and a luminosity

L = 0.87 L⊙, with the secondary having the same properties in the q = 0.5 simulations.

The secondary has Teff = 3650 K and L = 0.25 L⊙ when q = 0.3, Teff = 2980 K and

L = 0.07 L⊙ when q = 0.1, and Teff = 2100 K and L = 7.8× 10−4 L⊙ when q = 0.01. We

then examine synthetic images to better understand how the presence a binary companion

can be inferred from observations and we develop a metric to quantify the effect the binary

has on the disc. The work presented in this chapter will be published in a paper currently

in preparation.

4.2 Deőnition of Asymmetry Metric

We deőne two metrics to measure the asymmetry in the disc. The őrst metric, which

for now we will call the double channel metric, measures the asymmetry in two opposite

velocity CO channels. The second metric, which for now we will call the single channel

metric, measures the asymmetry in a single CO channel. For the double channel metric the

75
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positive branch is ŕipped across the y-axis and subtracted from the negative branch (note

that the choice of which branch to ŕip is arbitrary) while for the single channel metric a

single channel is ŕipped across the x-axis and subtracted from itself. The resulting images

are show in Figure 4.1). We then deőne the asymmetry in the channel, for both cases, as

the L2 norm of the ŕux in the subtracted image, normalised to the integrated ŕux in the

channel (taking only the positive branch for the double channel metric). This is given by:

ℵc =

√

∑

i,j ∆F
2
ij

F
, (4.1)

where ℵc is the asymmetry in channel c, ∆Fij is the ŕux on pixel (i, j) in the subtracted

image and F is the integrated ŕux. Normalising to the integrated ŕux gives a non-

dimensional ℵc that is insensitive to őeld of view and signal strength.

Figure 4.2 compares the value of ℵc for the double channel and single channel metrics.

The discs shown are the őducial set from Chapter 3; that is, binary mass ratio q = 0.1,

aspect ratio H/Rin = 0.05, coplanar disc (i = 0◦), and a number of binary eccentricities

are shown. Both metrics appear to have a local maximum ℵc near the 0 velocity channel

and have an increasing ℵc at high velocity channels. While Figure 4.2 only compares

discs with differing binary eccentricity this similar behaviour between the two metrics is

true in general, implying that we need only consider one metric going forward. In future

sections we will consider only the double channel metric due to it being less noisy to

channel selection. Since ℵc has only small variations in each channel we are free to take

the average over all visible channels to get ℵ, the total disc asymmetry. This allows us to

quantify the disc as a whole and has the advantage of allowing us to compare two discs

even if part of one disc is obscured by removing the obscured channels from the average.

In Figure 4.3 we compare ℵc at different binary orbital phase for a the őducial disc

from Chapter 3 after 1000 binary orbits. We see that the asymmetry in the disc is inde-

pendent of the binary orbital phase, thus when comparing discs we are free to consider

them at any point during their orbit.

4.3 Moment Maps

Figure 4.4 shows moment 0, moment 1, and moment 2 maps of our őducial disc at three

different angles on the sky. As mentioned in Section 2.3.4 the moment 0 maps largely

trace the gas density, with an important caveat. The resolution in the moment 0 map

is the beam size, which is much larger than the resolution in the SPH simulations, the
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Figure 4.1: Top row: 2 channel maps with opposite velocities. Bottom left: Double

channel metric, the positive branch has been ŕipped horizontally and subtracted from

the negative branch. Bottom right: Single channel metric, the negative branch has been

ŕipped vertically and subtracted from itself. Note that in the bottom row the absolute

value of the difference has been plotted to give Fmin = 0.

smoothing length. This means that őne details will not be recovered in these synthetic

observations. We do not analyse the moment 0 maps in this work, however they are

always computed as they are a necessary step in calculating further moment maps.

The signal in the moment 1 map is dominated by noise when the disc is face-on to the

observer (middle left panel). This is due to the fact that the gas orbits in the plane of the

disc with little vertical motion. However, when the disc is titled on the plane of the sky

(22.5◦ in the centre panel and 45◦ in the middle right panel), we recover a signal. Exam-

ining the v = 0 iso-velocity line, that is the line of the material which has no line of sight

velocity, we see a twist inside the cavity. To investigate this peculiar shape we consider

the effects of the radial and azimuthal components of the gas velocity in the plane of disc.

We remove the radial component of the velocity by setting the vr = 0 in the őnal output

of the őducial PHANTOM simulation before recomputing the moment 1 map with MCFOST.
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Figure 4.2: Asymmetry metric ℵc as a function of channel velocity using the double

channel metric (top) and single channel metric (bottom).

We then repeat this procedure, but keep the original vr and instead set vϕ = vk, that is the

azimuthal velocity is that of a Keplerian orbit. Finally, we force the velocity to be fully

Keplerian, that is vr = 0 and vϕ = vk. Figure 4.5 shows the effect of changing the radial

and azimuthal velocity of the gas on the moment 1 map. The top-left panel is simply the
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Figure 4.3: Asymmetry metric ℵc as a function of channel velocity over one binary orbit

for a coplanar disc with (H/R)in = 0.05 surrounding a circular binary with q = 0.1.

Snapshots are taken every őfth of a binary orbit.

centre panel from Figure 4.4. When we remove the radial component of the velocity of

the gas (top-right panel) this asymmetry largely vanishes, with the v = 0 line becoming

much straighter. When we set the material to orbit with a Keplerian vϕ (bottom-left

panel) the asymmetry remains. Finally, if we set the material on a purely Keplerian orbit

(bottom-right panel) the shape resembles that of the observation with the radial velocity

removed. This shows that the asymmetric shape of the moment 1 map is caused by the

radial velocity of the material in the disc, while the deviations from Keplerian motion

in the azimuthal direction have only a minor effect on the shape of the moment 1 map.

The two most obvious sources of radial motion are binary-disc interactions and viscous

accretion. Figure 4.6 compares the moment 1 maps of the őducial disc with that of a disc

with the same properties, but surrounding a single star. In the single star case the only

source of radial motion is viscous accretion, and this is not strong enough to produce a

twist in the moment 1 map. Therefore the source of the twist in the moment 1 maps of

our discs is the companion.
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The moment 2 map, being a map of velocity dispersion, has the strongest signal closest

to the stars where velocities are highly perturbed by their strong gravitational inŕuence.

This allows us to probe inside the cavity despite the low densities that make the moment

0 signal vanish. When the disc is face-on to the observer (bottom left panel of Figure 4.4)

two stars are clearly resolved. At the origin a strong signal is recovered, corresponding to

the primary star, while a weaker signal from the secondary is seen slightly to the left. The

signal becomes distorted, however, as the disc becomes inclined on the plane of the sky

(middle-bottom and bottom-right panels). As the signal from the secondary is weaker, it

is easily drowned out by the primary so we do not expect this to be a robust detection

method and do not investigate it further.

4.4 Analysis of Asymmetry Metric

Figure 4.7 shows a selection of CO channel maps for our őducial disc. Figure 4.8 shows

the same selection of channel maps for a disc with the same properties surrounding a

single star. Large asymmetries are visible in opposite channels of the őducial disc which

are not seen in the single star disc. We calculate ℵ for the őducial disc, as well as a

suite of discs with increasing eccentricity up to e = 0.9, and for the single star disc. The

variation of ℵ with eccentricity is shown in Figure 4.9, plotted with the single star disc

for comparison (note that the single-star disc is plotted as a horizontal line for ease of

viewing, though binary orbital eccentricity has no physical meaning in this case). From

this we can see that, with the exception of a circular binary, disc around binaries with

e > 0.4 are more asymmetric than those around binaries with e < 0.4. Furthermore,

even the least asymmetric circumbinary discs are roughly 3 times more asymmetric than

a single star disc.

4.4.1 CO Isotopologues

Figure 4.10 shows channels maps for three different isotopologues of CO. When computing

the channel maps we take an abundance relative to H2 of 10−4 for CO, 1.4 × 10−6 for
13CO, and 2 × 10−7 for C18O. Naturally this leads to CO having the strongest signal

due to the highest abundance. This high abundance, however, comes with a high optical

thickness so CO traces the surface layers of the disc, while 13CO and C18O are closer to

the disc midplane. All three isotopologues show similar asymmetric features, with the

cavity extending further out in the positive branch than the negative. Figure 4.11 shows

the variation of ℵ with eccentricity for each isotopologue, and we see that the fainter
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Figure 4.4: Moment maps of a coplanar disc with (H/R)in = 0.05 surrounding a binary

with q = 0.1. Top row: moment 0 maps. Middle row: moment 1 maps. Bottom row:

moment 2 maps. Left column is observed face on, middle column is inclined by 22.5◦ with

respect to the plane of the sky, and right column is 45◦.

signals are more asymmetric. This is due to the fact that binary-disc interactions are

strongest in the disc midplane, thus the disruptive effects of these interactions will be

most prominent in observations which probe the midplane. This behaviour is also seen

in lowly inclined discs, in which a warp is present, but not in highly inclined discs which

break (see Sections 4.4.3 and 4.5). The shape of the curves is largely the same for all

three isotopologues, however, so the choice of which isotopologue to examine is largely

arbitrary. As such we continue in this work to consider only the CO due to its higher

signal strength.
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Figure 4.5: Top left panel: Moment 1 map of a coplanar disc with (H/R)in = 0.05

surrounding a binary with q = 0.1, oriented with an inclination of 22.5◦ on the plane of

the sky (centre panel from Fig 4.4). Top right panel: Same, but with forcing vr = 0.

Bottom left panel: Same as top left, but with forcing vϕ = vk. Bottom right: Same as

top left, but with forcing a fully Keplerian velocity.

4.4.2 Disc Scale Height

Figure 4.12 shows CO channel maps for discs with different scale heights. As the disc

becomes thicker and therefore more viscous the cavity shrinks in the negative branch and

becomes more rounded in the positive branch. Looking at Figure 4.13 we see that less

viscous discs are more asymmetric. This is to be expected as viscosity acts to shrink and

circularise the cavity, as seen in Section 3.3.3. This counteracts the dynamical effects from

the binary which act to open a large, eccentric cavity, which leads to an increased ℵ.
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Figure 4.6: Left panel: Moment 1 map of a coplanar disc with (H/R)in = 0.05 surrounding

a binary with q = 0.1, oriented with an inclination of 22.5◦ on the plane of the sky (centre

panel from Fig 4.4). Right panel: Moment 1 map of a disc with the same properties, but

surrounding a single star.

Figure 4.7: A selection of CO channel maps of a coplanar disc with (H/R)in = 0.05,

surrounding a binary with q = 0.1, with an angle of 22.5◦ on the plane of the sky, after

1000 binary orbits. The top row shows only the negative branch and the bottom row

shows the corresponding channels in the positive branch, highlighting the asymmetry in

the disc.
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Figure 4.8: Same as Figure 4.7 but for a single star disc.

4.4.3 Disc Inclination

Figure 4.14 shows CO channel maps for discs with different initial inclinations between

the binary and the disc. Of particular note is the structure in the i = 45◦ case, which

appears to not show a visible cavity. In this case the disc is strongly warping as it realigns

with the binary (see Section 3.3.4, Figure 3.6). It is likely that this warp is obscuring the

cavity and that at a later time the warp will have a different phase, allowing the cavity to

be seen again. It is important to note, though, that the inner regions of the i = 22.5◦ and

i = 45◦ discs are in a highly transient evolutionary stage as they settle into a coplanar or

polar orbit. These discs are far from a steady state and their inclinations, cavity size, and

asymmetry are constantly evolving. Indeed, őgure 4.15 shows that there is no clear trend

with ℵ due to the mutual inclination between the binary and the disc during this volatile

phase. In the long term, when the discs have reached a steady state we expect ℵ of the

initially inclined discs to follow that of an initially coplanar or polar disc, depending on

their őnal conőguration.

4.4.4 Binary Mass Ratio

Figure 4.16 shows CO channel maps for discs with different binary mass ratios. We

can clearly see the smaller cavity in the q = 0.01 disc than in the other discs. Indeed,

őgure 4.17 reŕects this dichotomy. Ignoring the equal mass binary for a moment we see

that the q = 0.1 and q = 0.3 discs have a similar ℵ while the q = 0.01 disc is roughly 0.5
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Figure 4.9: Black line: Asymmetry as a function of binary orbital eccentricity for a

coplanar disc with (H/R)in = 0.05 surrounding a binary with q = 0.1 after 1000 binary

orbits. Red line: Asymmetry of a single star disc with the same properties. Note that

binary orbital eccentricity has no meaning for a single star disc, and this disc is only

plotted as a horizontal line for ease of comparison with the suite of circumbinary discs.

dex lower. This implies that there is some mass ratio above which the asymmetry stops

increasing, though a őner resolution in q would be needed to őnd that value. We note

here that in the q = 0.01 simulations the secondary falls into the massive planet regime,

due to the primary mass M1 = 1 M⊙ that we take, though this would not be the case for

a larger primary with the same mass ratio. The asymmetry of the equal mass binary discs

varies greatly with binary eccentricity, showing no clear trend. One possible explanation

for this is that the extra symmetry present in the system due to the stellar masses being

equal makes ℵ more sensitive to the orbital phase. Simulations with a higher temporal

resolution would be needed in order to test this.

4.5 Discussion

In deőning ℵ, and while discussing the physical features present in the discs, we frequently

refer to the positive and negative branches of the channel maps. It is important to stress

that discussing these branches are unique to each individual disc. This is because which

half of the disc appears in which branch is dependant on both the phase of the orbit and
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Figure 4.10: Channel maps for three different CO isotopologues in a coplanar disc with

(H/R)in = 0.05, surrounding a binary with q = 0.1, with an angle of 22.5◦ on the plane of

the sky, after 1000 binary orbits. Left column: CO. Middle column 13CO. Right column

C18O. Note that the colour bar is in log scale, unlike all other channel maps in this work,

which are in linear scale.

the position of the observer. For example, if the observer was positioned on the other side

of the disc the positive and negative branches would be swapped. Therefore we caution

the reader that a feature we see in, e.g., the positive branch is not constrained to only

ever appear in the positive branch for all discs.

In Section 4.2 we mention that ℵc is deőned in a way that makes it insensitive to

őeld of view, though this is not the case for a broken disc where the inner and outer

discs are misaligned. Figure 4.18 shows some channel maps of one such disc. In the right

hand column the outer disc is clearly visible and we can see that it has a different axis

of symmetry to the inner disc. In the left hand column the outer disc is only slightly in

frame, so ℵc is only measuring the asymmetry of the inner disc. Increasing the őeld of view

would make the outer disc visible. Since the outer disc has a different axis of symmetry

this would necessarily introduce asymmetries in the image even in the case that the outer

regions of the inner disc are highly symmetrical. Thus care must be taken when calculating

ℵ for broken discs to only consider the inner disc. In these cases, however, ℵ as a method

to infer the presence of an unseen companion may be unnecessary since the broken disc

is visible in the channel maps and a broken disc is already a strong signature of a binary.

An obvious area for future work would be to perform similar analyses on real observa-
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Figure 4.11: Asymmetry as a function of binary orbital eccentricity for a coplanar disc

with (H/R)in = 0.05 surrounding a binary with q = 0.1 after 1000 binary orbits. Different

lines depict discs with different CO isotopologues.

Figure 4.12: CO channel maps for coplanar discs surrounding a binary with q = 0.1, with

an angle of 22.5◦ on the plane of the sky, after 1000 binary orbits. Each column has a

different aspect ratio: H/R = 0.04, 0.0, 0.08, 0.10 from left to right.

tion, rather than the synthetic observations presented here. Calculating ℵ for a number

of known circumbinary discs, such as HD 142527, would be an interesting way to test its

validity in inferring the presence of a binary companion. A crucial question here is the
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Figure 4.13: Asymmetry as a function of disc aspect ratio for coplanar discs surrounding

a binary with q = 0.1 after 1000 binary orbits. Different lines depict discs with different

binary orbital eccentricities.

Figure 4.14: CO channel maps for discs with (H/R)in = 0.05 surrounding a binary with

q = 0.1, with an angle of 22.5◦ on the plane of the sky, after 1000 binary orbits. Each

column has a different binary-disc inclination: i = 0.0◦, 22.5◦, 45.0◦, 90.0◦ from left to

right.

smallest distinguishable difference in ℵ between two discs. While discs hosting large com-

panions on highly eccentric orbits are over an order of magnitude more asymmetric than
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Figure 4.15: Asymmetry as a function of binary orbital eccentricity for discs with

(H/R)in = 0.05 surrounding a binary with q = 0.1 after 1000 binary orbits. Different

lines depict binaries with different inclinations.

Figure 4.16: CO channel maps for coplanar discs with (H/R)in = 0.05 and an angle of

22.5◦ on the plane of the sky, after 1000 binary orbits. Each column has a different binary

mass ratio: q = 0.01, 0.1, 0.3, 0.5 from left to right.

single star discs, planetary companions on near-circular orbits can be have a difference as

low as 0.3 dex, the detectability of which needs to be tested. Once conőrmed this could

be applied to transitional discs without a known companion, such as IRS 48 or CQ Tau,

to infer whether or not one is there.
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Figure 4.17: Asymmetry as a function of binary orbital eccentricity for a coplanar disc

with (H/R)in = 0.05 after 1000 binary orbits. Different lines depict binaries with different

mass ratios.

Similarly, investigating the moment 1 maps of known circumbinaries for the twist dis-

cussed in Section 2.3.4 could conőrm its legitimacy, after which it too can be applied to

other discs which may be hiding a second star. Moment 1 maps of HD 142527 were pre-

sented by Boehler et al. (2017) (Figure 5) and of IRS 48 by van der Marel et al. (2016a)

(Figure 2). IRS 48 shows a clear twist, while HD 142527 shows almost none, implying

that testing more parameters would be useful in determining when the twist is and isn’t

expected to be present. This is already an active area of interest as Calcino et al. (2019)

modelled IRS 48 as a circumbinary using PHANTOM and found a twist in their moment 1

maps comparable to van der Marel et al. (2016a).

While we do not analyse the moment 2 maps we do note that under the right con-

ditions a binary companion can be resolved. Computing a moment 2 map is no more

computationally expensive than computing a moment 1 map. As such we recommend

calculating moment 2 maps as a relatively cheap, though highly unlikely, way of detecting

a binary companion.
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Figure 4.18: CO channel maps for a broken disc with a large misalignment between the

inner and outer discs. At low ∆v the outer disc is visible, and obscures parts of the inner

disc.

4.6 Conclusion

We have generated a suite of synthetic observations of circumbinary discs, examining

them to őnd signatures of the binary in these observations. We have also developed a

metric to quantify the asymmetry, ℵ, in the channel maps and applied it to our synthetic

CO channel maps. Our conclusions are:

1. The radial motion of the gas caused by binary-disc interactions leads to a twist in

the moment 1 maps.

2. Single star discs have an asymmetry of log(ℵ) ∼ −3.8. The most symmetric cir-

cumbinary discs have a large scale height and low binary eccentricity. In these cases

we őnd log(ℵ) ∼ −3.5. Conversely, thin discs around highly eccentric binaries can

have asymmetries of log(ℵ) ∼ −2.

3. In discs that are face on to the observer moment 2 maps show a clearly resolved

binary, though even small inclinations leaves the binary unresolved.

While a twisted moment 1 map, or an asymmetry of log(ℵ) ≳ −3.5, do not consti-

tute detections of a stellar companion, they do strongly hint towards their presence. As

such, they can be used to identify systems that would make a good candidate for deeper

observations with the intent of detecting a stellar companion.
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Chapter 5

Conclusions

In this thesis we investigate the effects of a binary on the evolution and appearance of the

surrounding disc. To this end we perform 3-dimensional Smoothed Particle Hydrodynam-

ics simulations of circumbinary discs using the code PHANTOM in an attempt to understand

their dynamical properties. We then compute synthetic observations of these discs using

the radiative transfer code MCFOST.

We őnd two important timescales in the opening of a cavity in circumbinary discs. A

cavity is quickly opened on a dynamical time, tens of binary orbits, while the long term

cavity size is set on the viscous time, which varies from thousands to tens of thousands

of binary orbits depending on the scale height of the disc.

We recover a cavity size that is 2 ś 5 times the binary semi-major axis. This is con-

sistent with the analytical predictions of Artymowicz and Lubow (1994) and Miranda

and Lai (2015). The cavity size is an increasing function of binary eccentricity and a

decreasing function of disc scale height, that is to say that less viscous discs host larger

cavities. The cavity size is an increasing function of binary mass ratio, with the exception

of binaries with low eccentricity, e ≲ 0.2, where a local maximum exists at q ≃ 0.3. These

constraints on the cavity size can help to inform the potential orbits of an unresolved

binary companion in a suspected circumbinary disc.

When simulating inclined circumbinary discs we őnd that the inner disc will always

tend towards a polar of coplanar conőguration and that this őnal conőguration determines

the cavity size. An initially polar disc has a cavity size that is nearly 50% smaller than

that of an initially coplanar disc. An intermediately inclined disc that tend towards a

coplanar alignment has a cavity slightly smaller than that of an initially coplanar disc,

with cavity size decreasing as initial inclination increases. A disc that tends towards a

polar alignment can either break or warp, greatly affecting the cavity size. A disc that
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breaks aligns on the dynamical time, and has a cavity as big as an initially polar disc.

A disc that warps stays inclined for longer, so opens a larger cavity which then closes

due to viscous evolution as the inclination increases with time. A large number of our

simulated discs remained in an inclined state even after 1,000 binary orbits, suggesting

that inclined discs are not uncommon. Indeed, simulations of circumbinary discs need to

take binary-disc inclination into account.

In our synthetic observations we őnd a twist in the moment 1 maps in the zero line of

sight iso-velocity line. This twist is due to the radial motion of the material in the disc,

induced by the presence of a binary in our simulations.

We developed a metric, ℵ, to measure the asymmetry in the channel maps. From

this metric we found that circumbinary discs have log(ℵ) ≳ −3.5. For the thinnest disc

around an eccentric binary ℵ can be over an order of magnitude more asymmetric than

an equivalent single star disc. This metric, as well as a visible twist in the moment 1

map, can be used to őnd discs with may be hiding a stellar companion and would be good

candidates for further observations.

Finally, we őnd that the moment 2 map can reveal a resolved stellar companion in a

close to face-on disc. While we do not expect this to be a robust detection method we

note that computing a moment 2 map is no more computationally expensive than com-

puting a moment 1 map, and thus can serendipitously be an easy method of detecting a

companion in speciőc circumstances.

This work opens avenues for further exploration. We have considered gas only discs,

not taking dust into account. Recently a number of works have simulated dusty discs in

binary systems in order to compare with observations (e.g: Price et al., 2018a; Calcino

et al., 2019; Gonzalez et al., 2020; Ragusa et al., 2021), however simulations of dusty cir-

cumbinary discs mimicking those in Chapter 3 would be useful in determining the cavity

size in the dust phase.

In Chapter 4 we only consider synthetic observations. Searching for twists in the mo-

ment 1 maps of known circumbinary discs, as well as the lack thereof in known single star

discs, would test its validity as a method of inferring the presence of a binary. Calculating

ℵ from real observations would have similar beneőts. Once conőrmed, these methods

could be used to infer the presence of currently unknown stellar companions and őnd

candidate discs for deeper observations with the intent of detecting the companion.



Bibliography

Adams, F. C., Lada, C. J., and Shu, F. H. (1987). Spectral Evolution of Young Stellar

Objects. ApJ, 312:788.

Alexander, R., Pascucci, I., Andrews, S., Armitage, P., and Cieza, L. (2014). The Dispersal

of Protoplanetary Disks. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning,

T., editors, Protostars and Planets VI, page 475.

Aly, H., Dehnen, W., Nixon, C., and King, A. (2015). Misaligned gas discs around

eccentric black hole binaries and implications for the őnal-parsec problem. MNRAS,

449:65ś76.

Aly, H., Lodato, G., and Cazzoletti, P. (2018). On the secular evolution of GG Tau A

circumbinary disc: a misaligned disc scenario. MNRAS, 480(4):4738ś4745.

Andre, P. and Montmerle, T. (1994). From T Tauri Stars to Protostars: Circumstellar

Material and Young Stellar Objects in the rho Ophiuchi Cloud. ApJ, 420:837.

Andrews, S. M., Chandler, C. J., Isella, A., Birnstiel, T., Rosenfeld, K. A., Wilner, D. J.,

Pérez, L. M., Ricci, L., Carpenter, J. M., Calvet, N., Corder, S. A., Deller, A. T.,

Dullemond, C. P., Greaves, J. S., Harris, R. J., Henning, T., Kwon, W., Lazio, J.,

Linz, H., Mundy, L. G., Sargent, A. I., Storm, S., and Testi, L. (2014). Resolved

Multifrequency Radio Observations of GG Tau. ApJ, 787:148.

Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., and Wilner, D. J. (2013). The Mass

Dependence between Protoplanetary Disks and their Stellar Hosts. ApJ, 771:129.

Andrews, S. M., Wilner, D. J., Espaillat, C., Hughes, A. M., Dullemond, C. P., Mc-

Clure, M. K., Qi, C., and Brown, J. M. (2011). Resolved Images of Large Cavities in

Protoplanetary Transition Disks. ApJ, 732:42.

Armitage, P. J. (2007). Massive Planet Migration: Theoretical Predictions and Compar-

ison with Observations. ApJ, 665(2):1381ś1390.

Armitage, P. J. (2010). Astrophysics of Planet Formation.

95



96 BIBLIOGRAPHY

Artymowicz, P. and Lubow, S. H. (1994). Dynamics of binary-disk interaction. 1: Reso-

nances and disk gap sizes. ApJ, 421:651ś667.

Ataiee, S., Pinilla, P., Zsom, A., Dullemond, C. P., Dominik, C., and Ghanbari, J. (2013).

Asymmetric transition disks: Vorticity or eccentricity? A&A, 553:L3.

Avenhaus, H., Quanz, S. P., Schmid, H. M., Dominik, C., Stolker, T., Ginski, C., de Boer,

J., Szulágyi, J., Garuő, A., Zurlo, A., Hagelberg, J., Benisty, M., Henning, T., Ménard,

F., Meyer, M. R., Baruffolo, A., Bazzon, A., Beuzit, J. L., Costille, A., Dohlen, K.,

Girard, J. H., Gisler, D., Kasper, M., Mouillet, D., Pragt, J., Roelfsema, R., Salasnich,

B., and Sauvage, J.-F. (2017). Exploring Dust around HD 142527 down to 0.025 (4 au)

Using SPHERE/ZIMPOL. AJ, 154:33.

Avenhaus, H., Quanz, S. P., Schmid, H. M., Meyer, M. R., Garuő, A., Wolf, S., and Do-

minik, C. (2014). Structures in the Protoplanetary Disk of HD142527 Seen in Polarized

Scattered Light. ApJ, 781(2):87.

Balbus, S. A. and Hawley, J. F. (1991). A Powerful Local Shear Instability in Weakly

Magnetized Disks. I. Linear Analysis. ApJ, 376:214.

Balbus, S. A. and Hawley, J. F. (1998). Instability, turbulence, and enhanced transport

in accretion disks. Reviews of Modern Physics, 70:1ś53.

Baraffe, I., Chabrier, G., Allard, F., and Hauschildt, P. H. (1998). Evolutionary models

for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude

diagrams. A&A, 337:403ś412.

Bate, M. R., Bonnell, I. A., and Price, N. M. (1995). Modelling accretion in protobinary

systems. MNRAS, 277:362ś376.

Begelman, M. C., McKee, C. F., and Shields, G. A. (1983). Compton heated winds and

coronae above accretion disks. I. Dynamics. ApJ, 271:70ś88.

Benisty, M., Stolker, T., Pohl, A., de Boer, J., Lesur, G., Dominik, C., Dullemond, C. P.,

Langlois, M., Min, M., Wagner, K., Henning, T., Juhasz, A., Pinilla, P., Facchini, S.,

Apai, D., van Boekel, R., Garuő, A., Ginski, C., Ménard, F., Pinte, C., Quanz, S. P.,

Zurlo, A., Boccaletti, A., Bonnefoy, M., Beuzit, J. L., Chauvin, G., Cudel, M., Desidera,

S., Feldt, M., Fontanive, C., Gratton, R., Kasper, M., Lagrange, A.-M., LeCoroller, H.,

Mouillet, D., Mesa, D., Sissa, E., Vigan, A., Antichi, J., Buey, T., Fusco, T., Gisler,

D., Llored, M., Magnard, Y., Moeller-Nilsson, O., Pragt, J., Roelfsema, R., Sauvage,

J.-F., and Wildi, F. (2017). Shadows and spirals in the protoplanetary disk HD 100453.

A&A, 597:A42.



BIBLIOGRAPHY 97

Benz, W. (1990). Smooth Particle Hydrodynamics - a Review. In Buchler, J. R., editor,

Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, page 269.

Biller, B., Lacour, S., Juhász, A., Benisty, M., Chauvin, G., Olofsson, J., Pott, J.-U.,

Müller, A., Sicilia-Aguilar, A., Bonnefoy, M., Tuthill, P., Thebault, P., Henning, T.,

and Crida, A. (2012). A Likely Close-in Low-mass Stellar Companion to the Transitional

Disk Star HD 142527. ApJ, 753(2):L38.

Bjorkman, J. E. and Wood, K. (2001). Radiative Equilibrium and Temperature Correction

in Monte Carlo Radiation Transfer. ApJ, 554(1):615ś623.

Bodman, E. H. L. and Quillen, A. (2015). Infrared variability from circumbinary disc

temperature modulations. MNRAS, 453(3):2387ś2398.

Boehler, Y., Weaver, E., Isella, A., Ricci, L., Grady, C., Carpenter, J., and Perez, L.

(2017). A Close-up View of the Young Circumbinary Disk HD 142527. ApJ, 840(1):60.

Boneberg, D. M., Panić, O., Haworth, T. J., Clarke, C. J., and Min, M. (2016). Deter-

mining the mid-plane conditions of circumstellar discs using gas and dust modelling: a

study of HD 163296. MNRAS, 461(1):385ś401.

Calcino, J., Price, D. J., Pinte, C., van der Marel, N., Ragusa, E., Dipierro, G., Cuello,

N., and Christiaens, V. (2019). Signatures of an eccentric disc cavity: Dust and gas in

IRS 48. MNRAS, 490(2):2579ś2587.

Calvet, N., D’Alessio, P., Watson, D. M., Franco-Hernández, R., Furlan, E., Green, J.,

Sutter, P. M., Forrest, W. J., Hartmann, L., Uchida, K. I., Keller, L. D., Sargent,

B., Najita, J., Herter, T. L., Barry, D. J., and Hall, P. (2005). Disks in Transition

in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri. ApJ,

630:L185śL188.

Canovas, H., Montesinos, B., Schreiber, M. R., Cieza, L. A., Eiroa, C., Meeus, G., de

Boer, J., Ménard, F., Wahhaj, Z., Riviere-Marichalar, P., Olofsson, J., Garuő, A.,

Rebollido, I., van Holstein, R. G., Caceres, C., Hardy, A., and Villaver, E. (2018). DZ

Chamaeleontis: a bona őde photoevaporating disc. A&A, 610:A13.

Casassus, S., Avenhaus, H., Pérez, S., Navarro, V., Cárcamo, M., Marino, S., Cieza, L.,

Quanz, S. P., Alarcón, F., Zurlo, A., Osses, A., Rannou, F. R., Román, P. E., and

Barraza, M. (2018). An inner warp in the DoAr 44 T Tauri transition disc. MNRAS,

477:5104ś5114.

Casassus, S., Marino, S., Pérez, S., Roman, P., Dunhill, A., Armitage, P. J., Cuadra, J.,

Wootten, A., van der Plas, G., Cieza, L., Moral, V., Christiaens, V., and Montesinos,



98 BIBLIOGRAPHY

M. (2015a). Accretion Kinematics through the Warped Transition Disk in HD142527

from Resolved CO(6-5) Observations. ApJ, 811:92.

Casassus, S., Perez M., S., Jordán, A., Ménard, F., Cuadra, J., Schreiber, M. R., Hales,

A. S., and Ercolano, B. (2012). The Dynamically Disrupted Gap in HD 142527. ApJ,

754(2):L31.

Casassus, S., van der Plas, G., M, S. P., Dent, W. R. F., Fomalont, E., Hagelberg, J.,

Hales, A., Jordán, A., Mawet, D., Ménard, F., Wootten, A., Wilner, D., Hughes, A. M.,

Schreiber, M. R., Girard, J. H., Ercolano, B., Canovas, H., Román, P. E., and Salinas,

V. (2013). Flows of gas through a protoplanetary gap. Nature, 493:191ś194.

Casassus, S., Wright, C. M., Marino, S., Maddison, S. T., Wootten, A., Roman, P., Pérez,

S., Pinilla, P., Wyatt, M., Moral, V., Ménard, F., Christiaens, V., Cieza, L., and van

der Plas, G. (2015b). A Compact Concentration of Large Grains in the HD 142527

Protoplanetary Dust Trap. ApJ, 812:126.

Chandrasekhar, S. (1960). Radiative transfer.

Clarke, C. J., Gendrin, A., and Sotomayor, M. (2001). The dispersal of circumstellar

discs: the role of the ultraviolet switch. MNRAS, 328(2):485ś491.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengleichun-

gen der mathematischen Physik. Mathematische Annalen, 100:32ś74.

Cuello, N. and Giuppone, C. A. (2019). Planet formation and stability in polar circumbi-

nary discs. A&A, 628:A119.

Czekala, I., Chiang, E., Andrews, S. M., Jensen, E. L. N., Torres, G., Wilner, D. J., Stas-

sun, K. G., and Macintosh, B. (2019). The Degree of Alignment between Circumbinary

Disks and Their Binary Hosts. ApJ, 883(1):22.

D’Antona, F. and Mazzitelli, I. (1997). Evolution of low mass stars.

Mem. Soc. Astron. Italiana, 68:807ś822.

Dehnen, W. and Aly, H. (2012). Improving convergence in smoothed particle hydrody-

namics simulations without pairing instability. MNRAS, 425(2):1068ś1082.

Di Folco, E., Dutrey, A., Le Bouquin, J. B., Lacour, S., Berger, J. P., Köhler, R., Guil-

loteau, S., Piétu, V., Bary, J., Beck, T., Beust, H., and Pantin, E. (2014). GG Tauri:

the őfth element. A&A, 565:L2.



BIBLIOGRAPHY 99

Dong, R., Zhu, Z., Raőkov, R. R., and Stone, J. M. (2015). Observational Signatures

of Planets in Protoplanetary Disks: Spiral Arms Observed in Scattered Light Imaging

Can be Induced by Planets. ApJ, 809(1):L5.

Draine, B. T. (1988). The Discrete-Dipole Approximation and Its Application to Inter-

stellar Graphite Grains. ApJ, 333:848.

Draine, B. T. (2003). Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet.

ApJ, 598(2):1017ś1025.

Espaillat, C., Muzerolle, J., Najita, J., Andrews, S., Zhu, Z., Calvet, N., Kraus, S.,

Hashimoto, J., Kraus, A., and D’Alessio, P. (2014). An Observational Perspective of

Transitional Disks. Protostars and Planets VI, pages 497ś520.

Facchini, S., Juhász, A., and Lodato, G. (2018). Signatures of broken protoplanetary discs

in scattered light and in sub-millimetre observations. MNRAS, 473(4):4459ś4475.

Facchini, S., Lodato, G., and Price, D. J. (2013). Wave-like warp propagation in circumbi-

nary discs - I. Analytic theory and numerical simulations. MNRAS, 433:2142ś2156.

Fischer, O., Henning, T., and Yorke, H. W. (1994). Simulation of polarization maps. I.

Protostellar envelopes. A&A, 284:187ś209.

Fischer, O., Henning, T., and Yorke, H. W. (1996). Simulation of polarization maps. II.

The circumstellar environment of pre-main sequence objects. A&A, 308:863ś885.

Flaherty, K., Hughes, A. M., Simon, J. B., Qi, C., Bai, X.-N., Bulatek, A., Andrews,

S. M., Wilner, D. J., and Kóspál, Á. (2020). Measuring Turbulent Motion in Planet-

forming Disks with ALMA: A Detection around DM Tau and Nondetections around

MWC 480 and V4046 Sgr. ApJ, 895(2):109.

Fukagawa, M., Tamura, M., Itoh, Y., Kudo, T., Imaeda, Y., Oasa, Y., Hayashi, S. S.,

and Hayashi, M. (2006). Near-Infrared Images of Protoplanetary Disk Surrounding HD

142527. ApJ, 636(2):L153śL156.

Fulk, D. A. and Quinn, D. W. (1996). An Analysis of 1-D Smoothed Particle Hydrody-

namics Kernels. Journal of Computational Physics, 126(1):165ś180.

Gaia Collaboration, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J.,

Mignard, F., Drimmel, R., Babusiaux, C., Bailer-Jones, C. A. L., Bastian, U., and

et al. (2016). Gaia Data Release 1. Summary of the astrometric, photometric, and

survey properties. A&A, 595:A2.

Gammie, C. F. (1996). Layered Accretion in T Tauri Disks. ApJ, 457:355.



100 BIBLIOGRAPHY

Garcia Lopez, R., Natta, A., Testi, L., and Habart, E. (2006). Accretion rates in Herbig

Ae stars. A&A, 459(3):837ś842.

Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics - Theory

and application to non-spherical stars. MNRAS, 181:375ś389.

Gingold, R. A. and Monaghan, J. J. (1982). Kernel estimates as a basis for general particle

methods in hydrodynamics. Journal of Computational Physics, 46:429ś453.

Goldreich, P. and Tremaine, S. (1978). The excitation and evolution of density waves.

ApJ, 222:850ś858.

Goldreich, P. and Tremaine, S. (1979). The excitation of density waves at the Lindblad

and corotation resonances by an external potential. ApJ, 233:857ś871.

Goldreich, P. and Ward, W. R. (1973). The Formation of Planetesimals. ApJ, 183:1051ś

1062.

Gonzalez, J.-F., van der Plas, G., Pinte, C., Cuello, N., Nealon, R., Ménard, F., Revol,

A., Rodet, L., Langlois, M., and Maire, A.-L. (2020). Spirals, shadows, and precession

in HD 100453 - I. The orbit of the binary. MNRAS, 499(3):3837ś3856.

Guilloteau, S., Dutrey, A., and Simon, M. (1999). GG Tauri: the ring world. A&A,

348:570ś578.

Günther, R. and Kley, W. (2002). Circumbinary disk evolution. A&A, 387:550ś559.

Henyey, L. G. and Greenstein, J. L. (1941). Diffuse radiation in the Galaxy. ApJ, 93:70ś

83.

Hirsh, K., Price, D. J., Gonzalez, J.-F., Ubeira-Gabellini, M. G., and Ragusa, E. (2020).

On the cavity size in circumbinary discs. MNRAS, 498(2):2936ś2947.

Hollenbach, D., Johnstone, D., Lizano, S., and Shu, F. (1994). Photoevaporation of Disks

around Massive Stars and Application to Ultracompact H II Regions. ApJ, 428:654.

Hong, S. S. (1985). Henyey-Greenstein representation of the mean volume scattering

phase function for zodiacal dust. A&A, 146(1):67ś75.

Ireland, M. J. and Kraus, A. L. (2008). The Disk Around CoKu Tauri/4: Circumbinary,

Not Transitional. ApJ, 678(1):L59.

Jeans, J. H. (1902). The Stability of a Spherical Nebula. Philosophical Transactions of

the Royal Society of London Series A, 199:1ś53.



BIBLIOGRAPHY 101

Joy, A. H. (1945). T Tauri Variable Stars. ApJ, 102:168.

Kattawar, G. W. (1975). A three-parameter analytic phase function for multiple scattering

calculations. J. Quant. Spectrosc. Radiative Transfer, 15:839ś849.

Lacour, S., Biller, B., Cheetham, A., Greenbaum, A., Pearce, T., Marino, S., Tuthill, P.,

Pueyo, L., Mamajek, E. E., Girard, J. H., Sivaramakrishnan, A., Bonnefoy, M., Baraffe,

I., Chauvin, G., Olofsson, J., Juhasz, A., Benisty, M., Pott, J. U., Sicilia-Aguilar, A.,

Henning, T., Cardwell, A., Goodsell, S., Graham, J. R., Hibon, P., Ingraham, P.,

Konopacky, Q., Macintosh, B., Oppenheimer, R., Perrin, M., Rantakyrö, F., Sadakuni,

N., and Thomas, S. (2016). An M-dwarf star in the transition disk of Herbig HD 142527.

Physical parameters and orbital elements. A&A, 590:A90.

Lada, C. J. and Wilking, B. A. (1984). The nature of the embedded population in the

rho Ophiuchi dark cloud : mid-infrared observations. ApJ, 287:610ś621.

Laibe, G. and Price, D. J. (2012). Dusty gas with smoothed particle hydrodynamics - I.

Algorithm and test suite. MNRAS, 420:2345ś2364.

Lattanzio, J. C. J., J., M., H., P., and M., S. (1986). Controlling penetration. SIAM

Journal on Scientiőc and Statistical Computing, 7(2):591ś598.

Lin, D. N. C. and Papaloizou, J. (1986). On the tidal interaction between protoplanets and

the primordial solar nebula. II - Self-consistent nonlinear interaction. ApJ, 307:395ś409.

Lodato, G. and Price, D. J. (2010). On the diffusive propagation of warps in thin accretion

discs. MNRAS, 405:1212ś1226.

Lucy, L. B. (1977). A numerical approach to the testing of the őssion hypothesis. AJ,

82:1013ś1024.

Lucy, L. B. (1999). Improved Monte Carlo techniques for the spectral synthesis of super-

novae. A&A, 345:211ś220.

Lynden-Bell, D. and Pringle, J. E. (1974). The evolution of viscous discs and the origin

of the nebular variables. MNRAS, 168:603ś637.

Mamajek, E. E. (2009). Initial Conditions of Planet Formation: Lifetimes of Primordial

Disks. In Usuda, T., Tamura, M., and Ishii, M., editors, American Institute of Physics

Conference Series, volume 1158 of American Institute of Physics Conference Series,

pages 3ś10.



102 BIBLIOGRAPHY

Manara, C. F., Testi, L., Natta, A., Rosotti, G., Benisty, M., Ercolano, B., and Ricci,

L. (2014). Gas content of transitional disks: a VLT/X-Shooter study of accretion and

winds. A&A, 568:A18.

Marino, S., Perez, S., and Casassus, S. (2015). Shadows Cast by a Warp in the HD 142527

Protoplanetary Disk. ApJ, 798(2):L44.

Martin, R. G. and Lubow, S. H. (2018). Polar alignment of a protoplanetary disc around

an eccentric binary - II. Effect of binary and disc parameters. MNRAS, 479(1):1297ś

1308.

Martin, R. G. and Lubow, S. H. (2019). Polar alignment of a protoplanetary disc around

an eccentric binary - III. Effect of disc mass. MNRAS, 490(1):1332ś1349.

Meru, F. and Bate, M. R. (2012). On the convergence of the critical cooling time-scale

for the fragmentation of self-gravitating discs. MNRAS, 427(3):2022ś2046.

Min, M., Hovenier, J. W., and de Koter, A. (2005). Modeling optical properties of cosmic

dust grains using a distribution of hollow spheres. A&A, 432(3):909ś920.

Min, M., Stolker, T., Dominik, C., and Benisty, M. (2017). Connecting the shadows:

probing inner disk geometries using shadows in transitional disks. A&A, 604:L10.

Miranda, R. and Lai, D. (2015). Tidal truncation of inclined circumstellar and circumbi-

nary discs in young stellar binaries. MNRAS, 452:2396ś2409.

Miranda, R. and Raőkov, R. R. (2019). On the Planetary Interpretation of Multiple Gaps

and Rings in Protoplanetary Disks Seen By ALMA. ApJ, 878(1):L9.

Mizuno, H. (1980). Formation of the Giant Planets. Progress of Theoretical Physics,

64(2):544ś557.

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. ARA&A, 30:543ś574.

Monaghan, J. J. (1997). SPH and Riemann Solvers. Journal of Computational Physics,

136:298ś307.

Monaghan, J. J. (2002). SPH compressible turbulence. MNRAS, 335:843ś852.

Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in

Physics, 68:1703ś1759.

Monaghan, J. J. and Lattanzio, J. C. (1985). A reőned particle method for astrophysical

problems. A&A, 149:135ś143.



BIBLIOGRAPHY 103

Morris, J. P. and Monaghan, J. J. (1997). A Switch to Reduce SPH Viscosity. Journal of

Computational Physics, 136(1):41ś50.

Mulders, G. D. and Dominik, C. (2012). Probing the turbulent mixing strength in proto-

planetary disks across the stellar mass range: no signiőcant variations. A&A, 539:A9.

Muro-Arena, G. A., Benisty, M., Ginski, C., Dominik, C., Facchini, S., Villenave, M., van

Boekel, R., Chauvin, G., Garuő, A., Henning, T., Janson, M., Keppler, M., Matter,

A., Ménard, F., Stolker, T., Zurlo, A., Blanchard, P., Maurel, D., Moeller-Nilsson, O.,

Petit, C., Roux, A., Sevin, A., and Wildi, F. (2019). Shadowing and multiple rings in

the protoplanetary disk of HD 139614. arXiv e-prints, page arXiv:1911.09612.

Muro-Arena, G. A., Ginski, C., Dominik, C., Benisty, M., Pinilla, P., Bohn, A. J., Mold-

enhauer, T., Kley, W., Harsono, D., Henning, T., van Holstein, R. G., Janson, M.,

Keppler, M., Ménard, F., Pérez, L. M., Stolker, T., Tazzari, M., Villenave, M., Zurlo,

A., Petit, C., Rigal, F., Möller-Nilsson, O., Llored, M., Moulin, T., and Rabou, P.

(2020). Spirals inside the millimeter cavity of transition disk SR 21. A&A, 636:L4.

Murray, N. (2011). Star Formation Efficiencies and Lifetimes of Giant Molecular Clouds

in the Milky Way. ApJ, 729(2):133.

Mutter, M. M., Pierens, A., and Nelson, R. P. (2017). The role of disc self-gravity in

circumbinary planet systems - I. Disc structure and evolution. MNRAS, 465(4):4735ś

4752.

Nagel, E., D’Alessio, P., Calvet, N., Espaillat, C., Sargent, B., Hernández, J., and Forrest,

W. J. (2010). Wall Emission in Circumbinary Disks: the Case of Coku Tau/4. ApJ,

708(1):38ś50.

Nealon, R., Cuello, N., Gonzalez, J.-F., van der Plas, G., Pinte, C., Alexander, R.,

Ménard, F., and Price, D. J. (2020). Spirals, shadows & precession in HD 100453 -

II. The hidden companion. MNRAS, 499(3):3857ś3867.

Nixon, C., King, A., and Price, D. (2013). Tearing up the disc: misaligned accretion on

to a binary. MNRAS, 434(3):1946ś1954.

Ogilvie, G. I. and Lubow, S. H. (2002). On the wake generated by a planet in a disc.

MNRAS, 330(4):950ś954.

Ohashi, N. (2008). Observational signature of planet formation: The ALMA view. Ap&SS,

313(1-3):101ś107.

Owen, J. E. (2016). The Origin and Evolution of Transition Discs: Successes, Problems,

and Open Questions. Publ. Astron. Soc. Australia, 33:e005.



104 BIBLIOGRAPHY

Owen, J. E. and Clarke, C. J. (2012). Two populations of transition discs? MNRAS,

426:L96śL100.

Papaloizou, J. C. B. (2005). Global numerical simulations of differentially rotating disks

with free eccentricity. A&A, 432(3):757ś769.

Perez, S., Casassus, S., Ménard, F., Roman, P., van der Plas, G., Cieza, L., Pinte, C.,

Christiaens, V., and Hales, A. S. (2015). CO Gas Inside the Protoplanetary Disk Cavity

in HD 142527: Disk Structure from ALMA. ApJ, 798(2):85.

Pierens, A., McNally, C. P., and Nelson, R. P. (2020). Hydrodynamical turbulence in

eccentric circumbinary discs and its impact on the in situ formation of circumbinary

planets. MNRAS, 496(3):2849ś2867.

Pinte, C., Harries, T. J., Min, M., Watson, A. M., Dullemond, C. P., Woitke, P., Ménard,

F., and Durán-Rojas, M. C. (2009). Benchmark problems for continuum radiative trans-

fer. High optical depths, anisotropic scattering, and polarisation. A&A, 498(3):967ś980.

Pinte, C., Ménard, F., Duchêne, G., and Bastien, P. (2006). Monte Carlo radiative transfer

in protoplanetary disks. A&A, 459(3):797ś804.

Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., and Green-

zweig, Y. (1996). Formation of the Giant Planets by Concurrent Accretion of Solids

and Gas. Icarus, 124(1):62ś85.

Price, D. J. (2012). Smoothed particle hydrodynamics and magnetohydrodynamics.

Journal of Computational Physics, 231:759ś794.

Price, D. J., Cuello, N., Pinte, C., Mentiplay, D., Casassus, S., Christiaens, V., Kennedy,

G. M., Cuadra, J., Sebastian Perez, M., Marino, S., Armitage, P. J., Zurlo, A., Juhasz,

A., Ragusa, E., Laibe, G., and Lodato, G. (2018a). Circumbinary, not transitional: on

the spiral arms, cavity, shadows, fast radial ŕows, streamers, and horseshoe in the HD

142527 disc. MNRAS, 477:1270ś1284.

Price, D. J., Wurster, J., Tricco, T. S., Nixon, C., Toupin, S., Pettitt, A., Chan, C.,

Mentiplay, D., Laibe, G., Glover, S., Dobbs, C., Nealon, R., Liptai, D., Worpel, H.,

Bonnerot, C., Dipierro, G., Ballabio, G., Ragusa, E., Federrath, C., Iaconi, R., Re-

ichardt, T., Forgan, D., Hutchison, M., Constantino, T., Ayliffe, B., Hirsh, K., and

Lodato, G. (2018b). Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics. Publ. Astron. Soc. Australia, 35:e031.

Pringle, J. E. (1981). Accretion discs in astrophysics. ARA&A, 19:137ś162.



BIBLIOGRAPHY 105

Purcell, E. M. and Pennypacker, C. R. (1973). Scattering and Absorption of Light by

Nonspherical Dielectric Grains. ApJ, 186:705ś714.

Ragusa, E., Dipierro, G., Lodato, G., Laibe, G., and Price, D. J. (2017). On the origin of

horseshoes in transitional discs. MNRAS, 464:1449ś1455.

Ragusa, E., Fasano, D., Toci, C., Duchêne, G., Cuello, N., Villenave, M., van der Plas, G.,

Lodato, G., Ménard, F., Price, D. J., Pinte, C., Stapelfeldt, K., and Wolff, S. (2021).

Circumbinary and circumstellar discs around the eccentric binary IRAS 04158+2805 -

a testbed for binary-disc interaction. MNRAS, 507(1):1157ś1174.

Rosswog, S. (2009). Astrophysical smooth particle hydrodynamics. New Astron. Rev.,

53(4-6):78ś104.

Rybicki, G. B. and Lightman, A. P. (1979). Radiative processes in astrophysics.

Schmidt, T. (1973). Elliptical Polarization by Light Scattering by Submicron Spheroids.

In Greenberg, J. M. and van de Hulst, H. C., editors, Interstellar Dust and Related

Topics, volume 52, page 131.

Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidistant

data by analytic functions. a. on the problem of smoothing or graduation ś a 1st class

of analytic approximation formulae. Quarterly of Applied Mathematics, 4(1):45ś99.

Shakura, N. I. and Sunyaev, R. A. (1973). Black holes in binary systems. Observational

appearance. A&A, 24:337ś355.

Siess, L., Dufour, E., and Forestini, M. (2000). An internet server for pre-main sequence

tracks of low- and intermediate-mass stars. A&A, 358:593ś599.

Solc, M. (1989). Polarized light from circumstellar dust - Observations and models.

Astronomische Nachrichten, 310(4):329ś332.

Steinacker, J., Baes, M., and Gordon, K. D. (2013). Three-Dimensional Dust Radiative

Transfer*. ARA&A, 51(1):63ś104.

Thun, D., Kley, W., and Picogna, G. (2017). Circumbinary discs: Numerical and physical

behaviour. A&A, 604:A102.

Toomre, A. (1964). On the gravitational stability of a disk of stars. ApJ, 139:1217ś1238.

Ubeira Gabellini, M. G., Miotello, A., Facchini, S., Ragusa, E., Lodato, G., Testi, L.,

Benisty, M., Bruderer, S., T. Kurtovic, N., Andrews, S., Carpenter, J., Corder, S. A.,

Dipierro, G., Ercolano, B., Fedele, D., Guidi, G., Henning, T., Isella, A., Kwon, W.,



106 BIBLIOGRAPHY

Linz, H., McClure, M., Perez, L., Ricci, L., Rosotti, G., Tazzari, M., and Wilner, D.

(2019). A dust and gas cavity in the disc around CQ Tau revealed by ALMA. MNRAS,

486(4):4638ś4654.

van der Marel, N., van Dishoeck, E. F., Bruderer, S., Andrews, S. M., Pontoppidan,

K. M., Herczeg, G. J., van Kempen, T., and Miotello, A. (2016a). Resolved gas cavities

in transitional disks inferred from CO isotopologs with ALMA. A&A, 585:A58.

van der Marel, N., van Dishoeck, E. F., Bruderer, S., Pérez, L., and Isella, A. (2015).

Gas density drops inside dust cavities of transitional disks around young stars observed

with ALMA. A&A, 579:A106.

van der Marel, N., Verhaar, B. W., van Terwisga, S., Merín, B., Herczeg, G., Ligterink,

N. F. W., and van Dishoeck, E. F. (2016b). The (w)hole survey: An unbiased sample

study of transition disk candidates based on Spitzer catalogs. A&A, 592:A126.

van der Marel, N., Williams, J. P., Ansdell, M., Manara, C. F., Miotello, A., Tazzari, M.,

Testi, L., Hogerheijde, M., Bruderer, S., van Terwisga, S. E., and van Dishoeck, E. F.

(2018). New Insights into the Nature of Transition Disks from a Complete Disk Survey

of the Lupus Star-forming Region. ApJ, 854(2):177.

Verlet, L. (1967). Computer "Experimentsž on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules. Physical Review, 159:98ś103.

Von Neumann, J. and Richtmyer, R. D. (1950). A Method for the Numerical Calculation

of Hydrodynamic Shocks. Journal of Applied Physics, 21(3):232ś237.

Voronoï, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal

für die Reine und Angewandte Mathematik, 134:198ś287.

Wendland, H. (1995). Piecewise polynomial, positive deőnite and compactly supported

radial functions of minimal degree. Advances in Computational Mathematics, 4(1):389ś

396.

White, R. J., Ghez, A. M., Reid, I. N., and Schultz, G. (1999). A Test of Pre-Main-

Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra

of the Young Quadruple GG Tauri. ApJ, 520(2):811ś821.

Yu, S.-Y., Ho, L. C., and Zhu, Z. (2019). A Tight Relation between Spiral Arm Pitch

Angle and Protoplanetary Disk Mass. ApJ, 877(2):100.


	Abstract
	Résumé
	Acknowledgements
	Introduction
	Star Formation
	Classification of Young Stellar Objects
	Accretion Discs
	Evolution of Surface Density
	Scale Height
	Viscous Evolution
	Transitional Discs

	Circumbinary Discs
	Observations of Disc Cavities
	Goals of this Thesis

	Methods
	Disc Model
	Smoothed Particle Hydrodynamics (SPH)
	Density Estimates, Smoothing Kernels & Smoothing Lengths
	Equations of Motion in SPH
	Timestepping
	Viscosity
	Sink Particles
	Kernel Interpolation

	Radiative Transfer
	The Radiative Transfer Equation
	Monte Carlo Method
	Intensity and Channel Maps
	Moment Maps


	On the Cavity Size in Circumbinary Discs
	Introduction
	Methods
	Initial Conditions
	Disc Viscosity
	Cavity Size

	Results
	Time Evolution
	Binary Orbital Eccentricity
	Disc Scale Height
	Disc Inclination
	Binary Mass Ratio
	Gas Depletion
	Resolution Study

	Discussion
	Conclusions

	Observational Appearance of Circumbinary Discs
	Introduction
	Definition of Asymmetry Metric
	Moment Maps
	Analysis of Asymmetry Metric
	CO Isotopologues
	Disc Scale Height
	Disc Inclination
	Binary Mass Ratio

	Discussion
	Conclusion

	Conclusions

