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Abstract

Stars are born in swirling discs of gas and dust, and roughly half of all stars exists in
binary systems. The presence of a binary companion in a disc is known to open a large
cavity in the inner region, however the exact nature of how this occurs is not fully known.
Moreover, resolving a binary companion remains a challenging observational problem,
and there exists a number of discs with observed cavities and as yet no resolved binary,

leading to difficulties in inferring the presence of these companions.

To investigate the cavity opening process in a circumbinary disc I perform a suite
of 3D Smoothed Particle Hydrodynamics simulations using the code PHANTOM. I alter the
binary orbital eccentricity, binary mass ratio, disc scale height, and the mutual inclination
between the binary and the disc to understand how each of these affect the cavity over
the course of 1,000 binary orbits. I find that a cavity is quickly opened on a dynamical
timescale while its long-term size is set on a viscous timescale, with the final size depend-

ing on both binary and disc properties.

I then compute synthetic observations using the 3D radiative transfer code MCFOST
in an attempt to find observable signatures of the companion. I find that the radial mo-
tion imparted on the disc by the companion is detectable in the dynamic signatures. I
also develop a metric to quantify the asymmetry in our observations and find that cir-
cumbinary discs are at least 3 times more asymmetric than single-star discs. Thus I have
developed two methods to indirectly infer the presence of a binary companion in the case

when it cannot be directly observed.






Résumé

Les étoiles naissent dans des disques tourbillonnants de gaz et de poussiére, et environ la
moitié de toutes les étoiles existent dans des systémes binaires. La présence d’un com-
pagnon binaire dans un disque est connue pour ouvrir une grande cavité dans la région
interne, mais la nature exacte de la facon dont cela se produit n’est pas entiérement
connue. De plus, la détection d’'un compagnon binaire reste un probléme d’observation
difficile, et il existe un certain nombre de disques avec des cavités observées et encore
aucune binaire détectée, ce qui pose des difficultés pour déduire la présence de ces com-

pagnons.

Pour étudier le processus d’ouverture d’une cavité dans un disque circumbinaire,
j’effectue une suite de simulations 3D utilisant le formalisme Smoothed Particle Hydrody-
namics avec le code PHANTOM. Je modifie ’excentricité orbitale de la binaire, le rapport
de masse des deux étoiles, I’échelle de hauteur du disque et 'inclinaison mutuelle entre la
binaire et le disque pour comprendre comment chacun de ces parameétres affecte la cavité
au cours de 1 000 orbites de la binaire. Je trouve qu'une cavité est rapidement ouverte
sur une échelle de temps dynamique tandis que sa taille a long terme est définie sur une
échelle de temps visqueuse, la taille finale dépendant & la fois des propriétés de la binaire

et du disque.

Je calcule ensuite des observations synthétiques en utilisant le code de transfert radi-
atif 3D MCFOST pour tenter de trouver des signatures observables du compagnon. Je
constate que le mouvement radial imprimé au disque par le compagnon est détectable
dans les signatures dynamiques. Je développe également une métrique pour quantifier
I’asymétrie dans nos observations et trouve que les disques circumbinaires sont au moins
un demi-ordre de grandeur plus asymétriques que les disques autour d’une seule étoile.
Ainsi, j’ai développé deux méthodes pour inférer indirectement la présence d’un com-

pagnon binaire dans le cas ou il ne peut pas étre observé directement.
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Chapter 1

Introduction

1.1 Star Formation

Molecular clouds are the birthplaces of stars. These large regions, up to ~ 100 parsecs
across, are comprised mostly of gas, with a small fraction of dust, typically ~ 1% (Murray,
2011). The evolution of these clouds is driven by the gravitational force, which acts to
collapse the cloud, and restorative forces, most notably thermal pressure. By considering
the timescales at which these forces act [Jeans (1902) was able to find the conditions in

which a star can form. Material acting only under gravity falls on a free-fall time:
tg ~ —— (1.1)

where G is the gravitational constant and p is the density of the molecular cloud. Thermal

pressure acts on a sound crossing time:

R

tsound =~ C_’ (12)

where R is the radius over which the force is acting and ¢ is the sound speed. When
the free-fall time is less than the sound crossing time the cloud undergoes gravitational
collapse. By setting tg < tsouna We can find the Jeans length Aj, the length scale above

which a cloud is unstable to gravity:
(1.3)

and corresponding Jeans mass my, the mass scale above which a cloud is unstable to
gravity:
My > - (1.4)

~y /_G'?’p

The collapsing material leads to an increasing density until thermonuclear fusion begins

and a protostar, also known as a young stellar object (YSO), is formed. Conservation

11



12 CHAPTER 1. INTRODUCTION

of angular momentum implies that the system expands radially to compensate for the
momentum lost by the in-falling material, leading to the formation of a thin accretion

disc surrounding the protostar.

1.2 Classification of Young Stellar Objects

Historically, spatially resolved observations of YSOs was difficult, if not entirely impossi-
ble, so their classification was determined by their spectral energy distribution (SED), a
measure of the flux as a function of wavelength or frequency. While the protostar emits
light mainly in the visible spectrum any of this light that is absorbed by the surrounding
gas and dust will be re-emitted in the infrared (IR). Hot material closest to the protostar
will emit in the near-IR, while the cooler material at larger radii will emit at longer wave-
lengths, in the far-IR. Thus the slope of the SED spectrum in the IR can give information
about the morphology and evolution of these YSOs. We can quantify the slope of the
SED in the IR by the parameter

Alog(AF))

AN
the value of which can be used to classify the YSO as one of four classes (Lada and
Wilking), (1984} [Andre and Montmerle| [1994)) (see Figure [L.1):

(1.5)

IR =

e Class 0: the SED lies fully in the far-IR part of the spectrum, with little to no

emission within the near-IR and ajg = 0.0.
e Class I: the SED in the near- and mid-IR is nearly flat, with —0.3 < aqg < 0.0.

e Class II: the majority of the SED falls within the near- and mid-IR, with a steeper
slope of —1.5 < aqr < —0.3.

e Class III: the stellar photosphere is the only major contributor to the SED, which

now has ajgp < 1.6.

Each of these classes corresponds to a different evolutionary stage of a YSO from a
molecular cloud to a pre-main sequence star (Adams et al., [1987)). Class 0 corresponds to
the earliest stages of star formation, during which a star is deeply embedded in an opti-
cally thick cloud. At this stage neither the star nor the disc are visible at near- and mid-IR
wavelengths, and the only contribution to the SED comes from the far-IR emissions of
the envelope. The earliest detectable discs are class I sources. The disc is still embedded
in a cloud of gas and dust, thus a significant far-IR emission from the envelope is still

1

detectable. At this stage high velocity outflows, on the order of 100 km s™", are ejected
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from close to the protostar as a consequence of the conservation of angular momentum.
During the class II stage the envelope has been largely accreted and the remaining star
and disc are clearly visible in observations. This corresponds to a classical T Tauri star
(Joy, |1945), the archetypal protoplanetary disc, and it is this class which will be the focus
of this thesis. It is during this stage that planet formation begins, so knowledge of the
structures present in these discs is a highly active area of research. A number of theories
of planet formation exist, such as gravitational instability (Toomre, [1964; Goldreich and
Ward, 1973) and core accretion (Mizuno, |1980; [Pollack et al.,|1996]) to name the two most
prominent, however these are not the subject of this thesis. Over time the gas disc is
depleted and all that’s left is a pre-main sequence star and dust disc, also known as a
debris disc. The emission from the dust is faint in these late stages, giving rise to the

typical class III object SED as that of a pre-main sequence stellar photosphere.

1.3 Accretion Discs

1.3.1 Evolution of Surface Density

The evolution of an accretion disc was analysed by [Lynden-Bell and Pringlel (1974) &
Pringle (1981) and can be understood by considering the conservation of mass and angular
momentum. Working in cylindrical co-ordinates, the rate of change of mass within an

annulus between radius R and R+ AR is given by
0
5/ (2TRARS) = 21 RE(R)un(R) — 2n(R + AR)S(R + ARJur(R+ AR),  (1.6)

where ¥ is the surface density and vg is the radial velocity of the gas in the disc. Taking

the limit for small AR and rearranging gives

0¥ 0
— 4+ —(RXwg) = 0. 1.
R(‘?t +8R(R vg) =0 (1.7)
Conservation of angular momentum, again in the small AR limit, gives
J ., 0 100G

where € is the angular velocity of the gas and G is the torque acted on the annulus by

neighbouring annuli. For a viscous fluid this torque is
ds)
G=27R-vXR— R 1.9
"R VSRS R, (19
where v is the kinematic viscosity. Combining Eq and Eq[I.8 and assuming a Kep-
lerian potential (€ oc R~3/2), gives the evolution of the surface density of a geometrically
thin disc as

= ii 1/23 1/2
5% = 537 (R (VSR ) . (1.10)
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Figure 1.1: Classification of young stellar objects from their spectral energy distributions.
(source: Armitage, 2010)

One solution to Equation is the Green’s function solution (Lynden-Bell and
Pringlel 1974; Pringle, |1981). We start by considering a ring of mass m, initially at

Ry, with an initial surface density profile

m

(Rt =0) = 50

§(R — Ry), (1.11)

where (R — Rp) is the Dirac delta function. If we take v = constant this leads to a
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solution in the form

m 1 1+ 22 2x
Z(I‘,T) = W—R%mewp (— - ) 11/4 ( ) s (112)

T

given in terms of the dimensionless radius + = R/ Ry and dimensionless time 7 = 120t R;?,
where I, /4 is the modified Bessel function. This solution is plotted in Figure and de-
scribes the spreading effect of viscosity on the ring over time. Most of the material falls
inwards and since the specific angular momentum, h, for a circular object is given by
h = R*Q o RY? the material loses angular momentum as it falls inwards. To conserve
angular momentum a small tail of material must move outwards. Eventually the majority
of the material collapses to the origin while all the angular momentum is carried to infinite

radius by a vanishingly small mass.

The Green’s function solution allows us to see the general behaviour of the material in
the disc under the effects of viscosity, though it is of limited use since discs do not initially
contain all their mass in a single ring. More illuminating is the self-similar solution, also
developed by |Lynden-Bell and Pringle| (1974). This time we take v = 7 and consider a
disc with an initial surface density profile

C

S(t=0) = S D (=) (1.13)
TN

corresponding to a steady-state solution for this viscosity law out to some radius, R;, with
an exponential cut-off at larger radii, where C' is a normalisation constant, z = R/R; and

v1 = v(Ry). The self-similar solution is then given by:

C 5(2—)
E(f,%) — Bﬂyliﬁ%(’)/—u’)/?)/@—w exp (_Q? — ) , (114)
where ,
T = - +1 (1.15)
and 2
te = ;& (1.16)
32—79)2 1

This solution is plotted for the case where v = 1 in Figure [1.3| and shows the disc losing
mass over time as material is accreted due to viscosity. The outer edge of the disc also
expands outwards to compensate for the loss of angular momentum from the in-falling
material. This is reminiscent of the Green’s function solution, with the majority of the

material falling inwards while a small tail travels outwards.

1.3.2 Scale Height

The height H of the disc is set by the balance of gravitational forces and the pressure

gradient in the vertical direction. If we assume that the disc mass is negligible compared
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Figure 1.2: Green’s function solution showing the evolution of a ring of mass m initially
at r = ro under the effects of viscosity. From top to bottom the curves show the ring at
different dimensionless time 7 = 12vt/r3 for 7 = 0.004, 0.008, 0.016, 0.032, 0.064, 0.128
and 0.256.

10!

10°

107!

1072

¥ (arbitrary units)

1074

1073

102 ld’l 160 161 102

X=rin
Figure 1.3: Self-similar solution showing the evolution of a disc with viscosity v o r
and a surface density profile corresponding to that of a steady-state disc at small radii
with an exponential cut-off at large radii. From top to bottom the curves show the disc

dimensionless times 7 = 1, 2, 4, 8, 16 and 32.

to the stellar mass, Mg < M,, then the vertical acceleration due to gravity in the
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vertical direction becomes

_ GM, z
FT Ry 2R 2

For a vertically isothermal disc, P = pc?, where P is the pressure, the balance between

(1.17)

the vertical pressure gradient (1/p)(dP/dz) and the vertical acceleration due to gravity

gives

odp GM,z
C— = ————— .
*dz (R2 + 22)3/2
This leads to a vertical density structure of the form

GM,

(1.18)

where C' is a constant set by the density in the mid-plane. If we assume the disc thickness
is a small fraction of the orbital radius we can write g, ~ 02z, where 2 = \/W is
the Keplerian frequency. This assumption holds since the disc has a high surface area,
allowing for efficient cooling which leads to low temperature which implies a thermal
pressure low enough to only be able to support a thin disc. In this limit we obtain a

vertical structure of the form )

z
P = Po €Xp (_ﬁ> ) (1.20)

where pg is the mid plane density and H is the disc scale height, defined as

Cs
= —. 1.21
’ (121)

1.3.3 Viscous Evolution

Estimates of the accretion rates in protoplanetary discs give a lifetime of 107 yrs for all the
material to be accreted onto the central star. Indeed, this estimate matches observational
surveys suggesting that almost all stars have lost their discs by this age (see Figure .
There must therefore be some efficient viscosity driving this momentum transport, the
most common form of this is molecular viscosity which comes from collisions on a mi-
croscopic scale. [Armitage| (2007)) found, however, that in the medium of protoplanetary

! giving a disc lifetime of 10'3 yrs, 6

discs this viscosity is on the order of ~ 10° cm? s~
orders of magnitude longer than the lifetime of a disc and indeed longer than the age of

the universe itself, thus the viscosity must come from another physical source.

One commonly suggested source is the magneto-rotational instability (MRI) (Balbus
and Hawley| 1998), which occurs in ionised discs. A weakly magnetised flow is unsta-
ble whenever the angular velocity decreases with radius, that is instability occurs when
dQ?/dr < 0 (Balbus and Hawley} [1991). This condition is always met for Keplerian discs,
making the MRI an easy instabiliy to invoke. The coupling of the gas and the magnetic
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Figure 1.4: Disc fraction as a function of stellar age. After 10 Myr less that 2% of stars
still have discs. (source: Mamajek, 2009)

field, however, requires a relatively high ionisation fraction and an optically thick disc can
block stellar radiation, creating "dead zones" of unionised gas in the midplane, reducing
the efficiency the MRI in these regions (Gammie, 1996).

A competing instability which requires no ionised material is the gravitational insta-
bility (GI) (Toomre, |1964)). As the name suggest this occurs when a disc becomes unstable

to its own self-gravity, inducing a disc-scale turbulence. The stability criterion is given by

<1 (1.22)

If we take the disc mass as Mg =~ mR?Y then we can rewrite this as

M, H
Q=-—2
Mdisc R
H < Mdisc

R M,

< 1.

. (1.23)
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This tells us that the GI is active when the ratio of the disc mass to the stellar mass is
greater than the aspect ratio of the disc, typically on the order of 1072. However, a survey
of the Taurus star forming region performed by Andrews et al. (2013)) found that only
about 20% of discs meet this criterion (see Figure , suggesting that the GI is not the

source of momentum transport in the majority of discs.

LoT T T T T T
I]TL: DM97 ]
[ BCAH98 |
08k SDFOO0 _|
g 0.6}
} -
E L
\/-\/ -
%0.4-_
0.2
0.0 sl 1 M T M 1 "
0.001 0.01 0.1
My /M,

Figure 1.5: Cumulative distribution of disc-to-star mass ratios of discs in the Taurus star
forming region. Only about 20% of T Tauri stars have a disc-to-star mass ratio greater
than 1072, The red, green, and blue lines use data from [D’Antona and Mazzitelli (1997),
Baraffe et al. (1998)), and [Siess et al.| (2000)), respectively. (source: |Andrews et al., 2013)

Since the physical source of the viscosity is an open question the common approach
when modelling discs is to assume a turbulent viscosity while remaining agnostic to the
source and approximating the effects on the fluid. This approximation was performed by
Shakura and Sunyaev| (1973)) who considered the maximum scales on which this turbulent
viscosity could act. The length scale of the turbulent motions can be no larger than the
smallest scale in the disc, which is the disc scale height H. The velocities of these motions
are limited to less than the sound speed c,, since supersonic motions cause shocks which

quickly dissipate velocities. Therefore the turbulent viscosity has the form

v = agscsH, (1.24)
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and is characterised by only one dimensionless parameter, asg, known as the Shakura-
Sunyaez « parameter, which must be smaller than unity. The timescale on which viscosity
acts is given by

R2

t, ~ —

14
RQ
OéssCsH

11 /R\?
= —— | = . 1.25
QCYSS (H> ( )

1.3.4 Transitional Discs

One subset of accretion discs is the transitional disc. These are a late stage class 11 YSO
that represent, as the name suggests, a disc transitioning from class II to class III as it
loses its material. Transitional discs are classified by their SED, showing a near-IR deficit
and a far-IR excess when compared to a classical T Tauri star, as shown in Figure [L.6]
Since near-IR emission originates from hot material close to the star and far-IR orginates
from cold material in the outer disc this near-IR deficit is interpreted as a large cavity in

the inner region of the disc.

One theory for the formation of the cavities in transitional discs is the photoevapora-
tion model, first described by Begelman et al.|(1983) in the context of black hole discs and
adapted to protoplanetary discs by Hollenbach et al.| (1994). In this scenario the surface
layers of a disc are heated to temperatures high enough to drive a pressure supported
wind which overcomes gravity. Considering the photoevaporative wind acting alone to
clear the disc gives a timescale far longer than the lifetime of a disc, however combined
with viscous evolution (described in Section it acts on a far shorter timescale and
can visibly affect the disc (Clarke et al., 2001)).

In the early disc life the accretion rate due to viscous evolution is much larger than
the mass loss due to the photoevaporative wind. Over time, however, the accretion
rate drops and eventually a time is reached when the accretion rate is overtaken by the
photoevaporation rate at the "gravitational radius" (Hollenbach et al., 1994):

_GM,

2
Cs

R, : (1.26)

where M, is the mass of the star. Once this occurs any fluid parcel in the outer disc will
be removed by the photoevaporative wind when it viscously drifts to this radius, thus
opening a gap and cutting off the resupply of material to the inner disc. The inner disc is

then quickly accreted from the inside-out on a viscous timescale of order RZ /v < R2,; /v,
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Figure 1.6: SED of the transitional disc GM Aur (Calvet et al., 2005). Fluxes have been
corrected for redenning and scaled to the stellar photosphere (dot-dashed line). Typically
for a transitional disc the SED shows a deficit in the near-IR and an excess in the far-IR

when compared to a classical T Tauri star (dashed line). (source: Espaillat et al., 2014)

where R,y is the outer radius of the disc, leaving a large cavity out to R, that resembles a
transitional disc. The cavity wall is now directly heated by the central star, increasing the
photoevaporative rate while the accretion rate continues to decrease, leading to a cavity

that grows larger with time. A schematic of this process is given in Figure [1.7]

Work by Andrews et al| (2011) and Owen and Clarke| (2012) found two classes of
transitional discs, mm-faint and mm-bright, based on the emission strength at 1.3 mm
compared to the median of ~ 30 mJy. The photoevaporative model predicts that a
decreasing transitional disc fraction with increasing mm-flux. This is because mm-flux
is used as a good proxy for disc mass, which decreases over time due to accretion, and

transitional discs are assumed to be at a late evolutionary stage by the photoevaporative
model. While |Andrews et al.| (2011)) and (Owen and Clarke (2012) did find this to be the
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Figure 1.7: Schematic diagram of the photoevaporation process. At early stages the
accretion dominates and the disc resembles a class IT YSO. Eventually the accretion rate
drops and photoevaporation dominates, opening a gap in the disc, allowing for material
to quickly be cleared from the inside-out, leaving behind a transitional disc. (source:
|A1exander et al.|7 |2014|)

case for mm-faint discs, they also found that the transitional disc fraction increased for

mm-bright discs (see Figure|L.8). Furthermore, in a transitional disc survey performed by

Manara et al.| (2014) the mass accretion rate was not found to be a decreasing function

of cavity size (see Figure [1.9). These results imply that mm-bright transitional discs
are much younger than predicted by the photoevaporation model and a model for cavity
opening that works on a shorter timescale is needed to accurately describe them. One such

model, which is the focus of this thesis, is to open a cavity via binary star interactions.

1.4 Circumbinary Discs

A circumbinary disc is simply any accretion disc that surrounds a binary star. The
presence of a second star act to open a large cavity in the inner region of the disc. The
process by which a cavity is opened in an accretion disc is a competition between the
Lindblad resonances from a stellar companion, which act to open a cavity, and the disc

viscosity, which acts to close it. Investigations into this process were originally performed
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Figure 1.8: Normalised transitional disc fraction in each quartile of the primordial discs’
mm-flux distribution. The median 1.3mm flux for primordial discs is ~ 30 mJy. Discs

brighter than this are classified as mm-bright, while discs that are fainter are classified as

mm-faint. (source: ,

by Goldreich and Tremaine| (1979) and |Lin and Papaloizou (1986). They didn’t consider

binary companions, however, instead focusing on planets orbiting within the disc, which

act to open a gap at their orbital radius. As we are not considering planets we will instead

detail the works done by |[Artymowicz and Lubow| (1994), hereafter [AL94, and
(2015)), hereafter ML15, who applied the works of |Goldreich and Tremaine| (1979)

and Lin and Papaloizou| (1986) to stellar companions opening a cavity. They did this by

working in a reference frame centred on the centre of mass of the binary, rather than on
a single star, and carefully rearranged the disturbing potential due to the presence of the

companion, expressing it as a sum of Fourier components

® =) " @, (R)cos(me — 1Qpt), (1.27)
m,l

where (R, ¢) specifies the position within the disc in polar co-ordinates, m is the az-
imuthal number in the disc plane (formally, m > 0), [ is a time harmonic number,
Op = (GM,y/a®)"/? is the binary orbital frequency, M, = M; + M, is the total mass
of the binary, and a is the binary semi-major axis. Here ® is given per unit mass. Each

potential harmonic ®,,; rotates with pattern frequency

l
wp = —Op (1.28)
m
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Figure 1.9: Logarithm of mass accretion rate plotted against cavity size for a sample of

transitional discs. (source: Manara et al., |2014]))

and excites density waves at three resonances (AL94)): a corotational resonance (CR)
at the radius where the disc rotation rate is equal to the potential harmonics pattern
frequency, Q(R) = wp, and two (one outer and one inner) Lindblad resonances (LRs)
where the forcing of a particle orbiting within the disc occurs at the epicyclic frequency,
m(wp — Q(R)) = =£kR, where « is the epicyclic frequency, the frequency of radial
motions of fluid parcels due to a small perturbation in their orbit. For a circumbinary
disc which is exactly Keplerian, x(R) = Q(R), the LRs are located at

R m=+1\%3
% = (T) , (1.29)

where the upper sign corresponds to the outer Lindblad resonances (OLRs) and the lower

sign corresponds to the inner Lindblad resonances (ILRs). Torques are also applied at

% _ (%)2/3, (1.30)

but these do not act to open a gap in an accretion disc (AL94)), so we only need to consider

the LRs. The torque acted on the disc at a LR is given by (Goldreich and Tremaine, 1978,

1979)
ap \
Tm,l = —m7r2 (E (leR) ‘wm,lP) ) (131>

the corotational resonances
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where ¥ is the surface density of the disc, D = k? — m?(Q wp)? and
dgbm 1 2€)
Uni = R T @ o (1.32)

The torque at ILRs is negative, so fluid elements lose angular momentum and drift in-
wards, while the torque at OLRs is positive, so fluid elements gain angular momentum

and are forced to larger radii. Since Ropr > Ry r these fluid motions act to open a cavity.

Counteracting the clearing effects of Lindblad torques is the viscous torque, which acts

to close the gap. The strength of the viscous torque is given by (Pringle, 1981)
H\2
T, = 3nay, (E) YOPRY (1.33)

A gap can be opened at the (m, ) LR if |T,,,;| > |T,|. Comparing (1.31)) and (1.33)) gives
a gap opening criterion (Lin and Papaloizou|, [1986))

H\? T
Z) < ooml 1.34
O‘”(R) = 3rZQ2RA (1.34)

A gap will not be successfully opened, however, if the opening timescale is long com-
pared to the other timescales in the disc. This leads to a second criterion for gap opening

based a comparison of the opening time to the viscous closing time (AL94))

topen 1 Ar)
~ =), 1.35
P 2ra, (H/R)’ ( R (1.35)

where P is the orbital period. This allowed |AL94 to find the inner radius of a cavity
by finding the largest LR at which a gap can be cleared. They predicted a cavity size
between 2-4 times the binary semi-major axis, becoming larger both with increasing

binary eccentricity and decreasing disc viscosity.

Numerous computational studies have confirmed this basic picture (AL94; Giinther
and Kley| [2002; Thun et al., 2017), with some discrepancies over the exact cavity size.
Artymowicz and Lubow| (1994) checked their own theoretical predictions of the depen-
dence of cavity size on mass ratio and eccentricity against Smoothed Particle Hydrody-
namics (SPH) simulations (see Sec 2.2). All of these simulations were performed in 2
dimensions and simulated circumbinary discs coplanar with the binary orbit and with an
initial inner cavity radius of twice the semi-major axis. The results of the simulations
are given in Table and snapshots of the simulation with mass fraction ¢ = 0.3, where
q = M;/(M; + M,) and eccentricity e = 0.1 are given in Fig They confirmed that
the cavity radius increases with both mass fraction and eccentricity. Fig[1.10]shows the

timescale with which a cavity is opened. In the first (top left) panel (0.5 binary orbits) we
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Mass fraction, ¢ | Eccentricity e | Cavity radius R/a
0.3 0.00 1.80 +0.10
0.3 0.02 1.924+0.10
0.3 0.05 2.15£0.10
0.3 0.10 2.40 £+ 0.10
0.3 0.30 2.72 £0.10
0.3 0.50 2.88 +0.10
0.3 0.70 3.10 £0.10
0.1 0.00 1.80 £0.10
0.1 0.10 2.10£0.10
0.1 0.50 2.73+0.10

Table 1.1: Model setup and disc inner edge location for SPH simulations run by |Arty-
mowicz and Lubow] (1994)

see a rapid excavation of gas near the L4 and L5 Lagrange points. The cavity is almost
fully opened after only 3 binary orbits (top right), and after 10 binary orbits (bottom

left) the disc in in quasi-equilibrium.

Thun et al| (2017) performed two-dimensional hydrodynamical simulations of cir-
cumbinary discs using the codes PLUTO and RH2D, running simulations for 16,000 binary
orbits, nearly 3 orders of magnitude longer than the original SPH simulation performed
by |[AL94l As shown in Fig they found that after tens of thousands of orbits the
cavity size can be as large as 7 times the semi-major axis, nearly twice what was found by
both |Artymowicz and Lubow| (1994) & Miranda and Lai| (2015). Also contrary to earlier
findings, Thun et al. (2017) saw that at low eccentricity the cavity size decreases with

eccentricity, with a minimum at e ~ 0.2.

Miranda and Lai (2015]) generalised the study by |AL94| to discs inclined with respect
to the binary orbital plane. Their findings are displayed in Fig[1.12] which shows the de-
pendence of cavity inner radius on eccentricity e, mass ratio ¢, and disc inclination . In
agreement with [AL94], they find that cavity size increases with eccentricity for a coplanar
disc, and this behavior holds for i < 45° at any mass ratio. At high inclination i = 90°
the behavior changes and the disc inner radius can have many local maxima as a function
of eccentricity. For retrograde discs at low mas ratio the cavity size is independent of
eccentricity. This is because |T,,| > |T,,,| for all (m,n) # (1,1), regardless of eccentricity,

so the cavity will always be truncated at the (1,1) resonances.
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Figure 1.10: Circumbinary disc evolution for a binary with mass ratio ¢ = 0.3 and eccen-
tricity e = 0.1. Initially the disc had a surface density profile ¥ oc R~ extending between
2a and 4.5a where a is the semi-major axis. Axis are given in units of a and the numbers
in each panel correspond to the number of binary orbits completed. (source: |Artymowicz
and Lubow, |1994)

Using 3-dimensional SPH simulations Aly et al.| (2015) showed that any circumbinary
disc on an initially inclined orbit will tend towards either a coplanar or a polar configura-

tion. The critical angle above which a disc will tend towards a polar orbit is (Aly et al.,

2018)
1 —e2
et = tan~ ! . 1.36
ferit = tan™" 4/ o (1.36)

That is to say that polar configurations are more likely for discs around highly eccentric

binaries, or those that start with a large initial inclination. The analysis from ML15
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Figure 1.11: Cavity inner edge radius plotted against eccentricity from simulations runs

by Thun et al.| (2017). Each line corresponds to a different metric for calculating the cavity

size. The red line corresponds to using the radius of the maximum surface density, the

blue line 50% of the maximum surface density, and the green line 10% of the maximum.

The blue line is the closest analogy to the definition from |Artymowicz and Lubow (1994)
(source: Thun et al., 2017)

implicitly assumes the disc stays at a fixed inclination, and so does not capture the long-
term behaviour of a disc that realigns. Thus the behaviour of such discs is an open
question, one that lends itself well to 3-dimensional numerical simulations as a means of

answering it.

1.5 Observations of Disc Cavities

Perhaps the most well studied circumbinary disc is HD 142527. Located at a distance of

156™¢ pe (Gaia Collaboration et al, 2016) in the Sco-Cen association this disc contains

many observational features commonly associated with circumbinary discs. A gas cavity
is found out to a radius of 90 £ 5 AU (Perez et al 2015) and a gas cavity out to ~ 140
AU is visible in IR imaging (Fukagawa et al., |2006), sub-millimeter continuum (Ohashi,
2008)), and CO line emission (Casassus et all, 2013). Spiral structure originating from the
cavity edge is seen in the IR (Fukagawa et al.| 2006; Casassus et al.;[2012). Cycle 0 ALMA

observations reveal a horseshoe shaped structure at the inner edge in the dust continuum
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Figure 1.12: Cavity inner edge radius plotted against eccentricity as predicted analytically
by [Miranda and Lai (2015). Mass ratios of each row are given in the top left corner of the
left panels, disc inclination is given by different colours and location of commensurabilities
are labeled on the right. (source: Miranda and Lai|, 2015)

emission (Casassus et al., 2013)). Multiple scattered light observations recover shadows on
the cavity wall (Fukagawa et al., 2006, |Avenhaus et al.| 2014, [2017)), likely cast by some
inclined inner disc (Marino et al. 2015). The high accretion rate of ~ 2 x 1077 Mg, /yr
onto the central stars (Garcia Lopez et al., 2006) implies the inner disc must be getting
refilled by material from the outer disc, likely via the filaments of CO gas seen crossing the
cavity in HCO+- emission (Casassus et al., [2013). These features are shown in Figure [1.13]

Price et al.| (2018a) modelled HD 142527 using the 3-dimensional SPH code PHANTOM
(see Section of a circumbinary disc, taking the estimates of the binary orbit from
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Figure 1.13: Observations of HD 142527. Left: Scattered light image from |Avenhaus et al.
(2017). Two stars are observed inside a large cavity, with shadows being cast on the cavity
wall and a faint spiral structure originating at the cavity edge. Right: ALMA Cycle 0

image from |Casassus et al|(2015a). A large cavity is once again visible, with filaments of

material falling onto the central stars and a horseshoe overdensity near the cavity edge.

Lacour et al.| (2016). Using radiative transfer, they then created synthetic observations to

compare with the above works. They were able to recover the correct cavity size, as well

as the spiral structure in the IR, the horseshoes structure presented by Casassus et al.
(2013), and an inner disc that casts shadows on the cavity wall, all while maintaining

a high accretion rate from filaments connecting the inner and outer discs. The ability

to recover all of these features from simulations of a circumbinary disc suggests that the

presence of a binary companion is indeed their source.

Once thought to be a circumbinary disc, GG Tau has been the subject of many works.

Early mm-observations from Guilloteau et al. (1999) dubbed it "the ring world" due to

large cavity and subsequent ring shaped disc. Further observations, however, confirmed
that GG Tau A and GG Tau B are they themselves binaries with their own circumbinary
discs (White et al.,|1999; Andrews et al., [2014). Observations from Di Folco et al.| (2014)

suggest that GG Tau A may be even more complex again, potentially being a hierarchical

triple. Due to the complex nature of the GG Tau system we caution that the results

presented in this work are not appropriate for a comparison with observations of the GG
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Tau circumbinary discs without careful consideration of the effects from all other bodies

within the system.

A number of transitional discs exhibit large cavities and some of the features described
above, but as yet no detected binary companion. Spirals are visible in the disc of DZ Cha
in both J-band polarimetry (Canovas et al., [2018)) (see Figure and NIR scattered
light observations (Yu et al. [2019). SR 21 also shows spiral structure in H-band scat-
tered light images from SPHERE (Muro-Arena et al., 2020). DoAr 44 shows asymmetric
dust regions at the cavity edge, reminiscent of the horseshoe in HD 142527, in band 7
ALMA cycle 1 observations (van der Marel et al., 2016a) and H-band SPHERE observati-
nos (Casassus et al., [2018)). Similar structure can be seen in Band 6 ALMA observations
of CQ Tau (Ubeira Gabellini et al.l [2019), as shown in Figure Muro-Arena et al.
(2019) presented J- and H-band observations in polarized scattered light with SPHERE
of HD 139614 showing shadows on the outer disc, as shown in Figure [I.16| The cavities
in these transitional discs have also been found to not be completely devoid of gas, but
rather depleted in surface density by up to 5 orders of magnitude compared to the outer
disc (van der Marel et al.| 2015, |2016b], 2018|).

These features have been shown to be the consequence of a disc-binary interactions.
Spiral arms occur in any disc with a companion, be it stellar or planetary (Ogilvie and
Lubow, 2002; Dong et al., 2015, Benisty et al., |2017). Shadows on the cavity edge or
on the disc itself require some misalignment in the inner disc which can be caused by a
companion on an inclined orbit (Marino et al., 2015; Min et al., [2017). Recently Ragusa
et al.| (2017) suggested that horseshoes, and other asymmetries at the cavity edge, can
be caused by binary companions on eccentric orbits, an idea first put forward by [Ataiee
et al|(2013). This suggests that the transitional discs mentioned above potentially host

unseen stellar companions, we need only the methods to detect them.

Similar to the work by Price et al.| (2018a)), Calcino et al.| (2019) modelled IRS 48, a
transitional disc with no known stellar binary, using PHANTOM and compared observations
with synthetic images from radiative transfer calculations. They recovered spiral struc-
tures, a dusty horseshoe overdensity, and their velocity map showed a twisted feature
similar to that of [van der Marel et al.| (2016a)). They suggest that these features, and the
close match to observational data, indicate that IRS 48 is host to a stellar companion.
While this is not a detection of a companion, it does lend weight to the idea that many

transitional discs may as yet be hiding unresolved binaries.
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Figure 1.14: Unsharped Qg image of DZ Cha from |Canovas et al. (2018). A strong spiral

is seen originating from the cavity edge.

1.6 Goals of this Thesis

As seen in this introduction, the cavity opening process in inclined circumbinary discs is
an unsolved problem. Furthermore, the direct detection of a binary companion remains a
difficult problem, so we must turn to indirect methods to infer the presence the companion

in most binary systems. As such the main questions this thesis seeks to answer are:
e What is the final cavity size of a circumbinary disc with arbitrary inclination?

e What can the observed cavity tell us about the binary companion and disc proper-

ties?

e What are the detectable signatures of an unseen binary companion on the circumbi-

nary disc?

In order to answer these questions we perform 3-dimensional simulations of circumbi-

nary discs to investigate their dynamical behavior. Then we create synthetic observations
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Figure 1.15: ALMA continuum observations at 1.3 mm of CQ Tau from |Ubeira Gabellini

et al| (2019). Two overdensities, reminiscent of the horseshoe-shaped features in HD

142527, ar visible at the inner edge of the disc.

of these discs in order to determine the detectable signatures of the binary. Finally, we

develop a metric to quantify the effect of the binary on the disc.
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Figure 1.16: SPHERE scattered light observations of HD 139614 from Muro-Arena et al.
(2019). Heavy shadowing is seen in the outer disc, implying some misalignment in the

inner disc.



Chapter 2

Methods

2.1 Disc Model

In this work we model the discs as a single fluid using the Euler equations in 3 dimensions,

assuming no self gravity in the disc,

dp
- _ . 2.1
a- VY (2.1)
dv. —-VP
— =— -V 2.2
& — —G M, G M, (2.3)
r —ry| |r—ry
P= (R, (2.4

where p, v, P and ¢, are the density, velocity, pressure and sound speed of fluid elements
in the disc, M; and M, are the masses of the primary and secondary stars, and r; and
ro are the positions of the primary and secondary stars. Equation approximates
the temperature within the disc as being a specified function of cylindrical radius, i.e.
T =T(R).

Evolving these discs requires choosing a numerical method to use. Due to the complex
geometry of the discs, as well as the high density contrast and the presence of free bound-
aries we simulate the discs using the Smoothed Particle Hydrodynamics (SPH) method,
specifically the code PHANTOM (Price et al.) 2018a)), described in Section . Then, we
create synthetic observations of these discs using the radiative transfer code MCFOST (Pinte
et al, 2006], 2009)), described in Section

35
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Figure 2.1: Three different approaches to computing a continuous density field from an
arbitrary distriution of point masses. a) Constructing a mesh on top of the point masses,
as adopted in particle-mesh methods. b) Sampling the local volume based on number of

neighbours. ¢) Weighted local sampling, as adopted in SPH. (Source: Pricel |2012)

2.2 Smoothed Particle Hydrodynamics (SPH)

The SPH formalism was first developed by Lucy| (1977) and Gingold and Monaghan
(1977) in an attempt to model the highly asymmetric phenomena commonly found in
astrophysics. It is a Lagrangian particle method for solving the equations of hydrody-
namics on a set of discrete particles, each representing a fluid element. A PHANTOM output
consists of a dump file containing the relevant properties of these particles (e.g. position,
density, temperature, etc.) so that the properties of the entire domain can be found by
interpolating between these particles. While we describe the SPH method in this section;
many reviews exist which provide further detail (see: Benz, 1990; Monaghan 1992, |2005;
Rosswog, [2009; |Price, [2012).

2.2.1 Density Estimates, Smoothing Kernels & Smoothing Lengths

The basis of SPH is the answer to a simple question: how does one compute a density

field from a set of discrete particles?

There are three main methods to solving this problem, shown in Fig. 2.1} Perhaps the
most intuitive method is to construct a grid and calculate the density in each cell as the
mass divided by the volume (Fig. [2.1a). This method suffers from being unable to resolve
regions of high or low density when the density distribution is highly non-uniform and
spans many orders of magnitude. Furthermore, it is slow due to the need to interpolate
to and from each particle (e.g. when calculating forces). One solution to these issues is to

instead sample the local volume around each particle using, for example, a fixed number
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of neighbours (Fig. . This method, however, is noisy to whether a particle at the
edge of the sample volume is in or out, with fluctuations on the order of the inverse of
the number of neighbours. Smoothing the boundary of the sample volume leads to the
SPH formalism (Fig. , where density is calculated as a weighted sum of neighbouring

particles, given by
Nneigh

p(r) = Y myW(r —ry,h), (2.5)

b=1
where m; and r, are the mass and position, respectively, of particle b, Nyiqn is the
number of neighbours, W is the weighting function, known as the smoothing kernel,
and h, the smoothing length, defines the drop-off rate of W. Conservation of mass,

[ pdV = ng{gh my,, gives us the normalisation condition for W:

/ W (' —ry, h)dV' = 1. (2.6)

The accuracy of the SPH density estimate is strongly influenced by the choice of W,
so care must be taken when constructing a smoothing kernel. A well constructed W will
have positive weighting, smooth derivatives and is monotonically decreasing. Further-
more, to ensure that the density estimate is independent of orientation the kernel must
be symmetrical in (r — r,). Lastly, having a flat central portion ensures that the density

estimate is not noisy to a small change in location of nearby neighbours.

A natural function that satisfies all these criteria is the Gaussian, however since it re-
quires interactions between every pair of particles it has a computational cost of O(N?).
Since distant particles only have a minor contribution on the density estimate it is possible
to ignore these without introducing significant inaccuracies. Thus, by choosing a kernel
with compact support, that is a kernel that reaches zero at some finite radius, it is possible

to reduce the computational cost to O(Nyeign/N) while maintaining a high accuracy.

The most commonly used kernels are derived from the [Schoenbergl (1946 B-spline
functions (Monaghan and Lattanzio, 1985). The simplest of these functions is the My
cubic spline truncated at 2h, plotted in Figure

2-qP—-(1-9qP 0<g<l;
w(q) =04 1(2—q)?, 1<qg<2; (2.7)
0, q=2.

Smoothing kernels are constructed from splines by defining W (r —ry, h) = 77w(q), where
q = |’ —r|/h, d is the number of dimensions, and o is a normalisation constant. For

the cubic spline kernel o = [2/3,10/(77),1/x] in [1,2, 3] dimensions. Higher order spline
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Figure 2.2: My cubic spline and Gaussian kernels, and their first two derivatives.

functions exist, giving higher accuracy at the expense of computational cost.

There exist other families of kernels, such as those based on the Wendland (1995)
functions (Dehnen and Aly, [2012), and the ’double-hump’ shaped kernel functions (Fulk
and Quinn| 1996; |Laibe and Price, [2012). Each of these kernels come with their own sets
of strengths and weaknesses, and their applicability is context dependant. Which kernel
to use in which context is still an open question and we refer the reader to Section 2.1.6
of [Price et al.| (2018b) for a small discussion on the issue. In this work we exclusively use

the B-spline kernels.

One advantage of SPH is that the resolution naturally increases with density, but in
order to accurately model both the dense and sparse regions requires a variable smoothing
length that is a function of density. Since density itself is a function of the smoothing

length, this leads to a pair of simultaneous equations (Monaghan, [2002)):

m 1/d
h(ra) - hfac (p_a> ; p(ra) = Zmbw(ra — Iy, ha>’ (28>

a b
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where hg,. relates the smoothing length to the mean particle spacing and is of order
unity. In practice this means that the density and smoothing length must be found using
an iterative root-finding method, the choice of which is free but PHANTOM uses Newton-

Raphson.

2.2.2 Equations of Motion in SPH

The discretisation of Equation [2.2| can be achieved by considering the Fuler-Lagrange

equations (e.g.|Gingold and Monaghan) [1982; Price, 2012)

d [OL oL

where . = T'—V is the Lagrangian, the difference between kinetic energy, 7" and potential

energy, V. The discrete Lagrangian, for a system of point masses, is given by
1
L= Zb:mb [ivg — up(po, sb)} ) (2.10)

with derivatives

= MgVl = My ——
ov, ’ or, ; Oy

Opy
Lory’

(2.11)

where the thermal energy, u, is a function of both density, p, and entropy, s, and we

assume that the entropy is constant when taking the spatial derivative of the Lagrangian.

At constant entropy, the change in internal energy is given by

aub P

— = —. 2.12
oo ly P (2.12)
The density gradient is given by
aﬂb 1 aWbc(hb)
_ c\%) — 2.1
.o Z Mg = (Gap = dac) (2.13)
where
Ohy Wap(ha)
Q.= |1- , 2.14
(9pa ) my oh, ( )

is a term that takes into account the variable smoothing length and W, (h,) = W(r, —
Iy, ha).

Substituting Equations [2.12] and [2.13] back in to Equation [2.11] allows us to solve
Equation [2.9] giving the standard form of the equation of motion:

dVa . Pa 8Wab(ha) Pb 8Wab(hb)
o™ [Q 2 or. g o

ala

(2.15)
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Conservation of momentum in this formalisation can be shown by considering the time

derivatives of linear (Equation [2.16) and angular (Equation [2.17) momentum:

dt Zmava = Zma ZZmamb ( 5+ ijp ) VaWab, (2.16)

5 Zra X MgV = Zma (ra dva> szamb ( Qup? + Qf; ) r, X V,We.

(2.17)
Both these quantities can be shown to be equal to zero by swapping the indices a and b
in the double sum, adding half the original term to half the new term, and noting that
VW is antisymmetric. Thus, SPH exactly conserves momentum, up to the accuracy of

the timestepping algorithm.

2.2.3 Timestepping

A popular integration scheme for SPH applications is the leapfrog method. A major
strength of this scheme is its symplectic nature and time-reversibility, which means that

it exactly conserves energy (Monaghan) 2005).

PHANTOM uses the leapfrog method in "velocity Verlet” form (Verlet], 1967)) with an extra
predictor step in the velocity. The position, velocity and acceleration of the particles are

updated as follows:

vitE = vy %Atan, (2.18)
=" AtV (2.19)

Vi =vTTe 4 %Atan, (2.20)
a"tt = a(r"tt v"), (2.21)
vl = v 4 %At[a’”rl —a"l, (2.22)

where r, v and a are the particle’s position, velocity and acceleration, respectively, and
n is the timestep number. The error in the predictor step is then checked to be below a

tolerance, e, typically set to 1072

’UTH_I _ U*’

<e, 2.23
o] € (2.23)

where v™?8 is the mean velocity of all particles. If the error is too large Equations [2.21

and 2.22 are recalculated and the error re-checked.
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The maximum timestep for stability is given by the Courant condition (Courant et al.,
1928):

h
At? < C——, (2.24)

Uma:p

where v,,4, is the maximum velocity over the particle’s neighbours and C' is the Courant
number, a dimensionless constant less than unity which ensures stability. This condition
implies that in one timestep a particle can’t move more than a fraction of its smoothing
length as set by the Courant number, and C' = 0.3 by default (Lattanzio et al., 1986)). For
computational efficiency PHANTOM allows for particles to have individual timesteps, which
breaks the time-reversibility of the leapfrog scheme, meaning that energy is no longer

exactly conserved.

2.2.4 Viscosity

In Section the derivation of Equation has built into it the assumption that the
Lagrangian is differentiable, that is to say we do not allow discontinuous solutions and
our equations of motion break down at shocks. This can be solved with the introduction
of an artificial viscosity (Von Neumann and Richtmyer, [1950). This artificial viscosity
acts to spread the shock over smallest resolution scale, in this case the smoothing length,
removing the discontinuity. In practise this is done using an artificial viscosity term, qav,

as in [Monaghan| (1997)), giving a modified equation of motion:

dVa P, + qjiv GWab(ha) B+ qfw 8Wab(hb)
= — 2.25
o™ [ Q2 ore 2 om, (2.25)

with the artificial viscosity term
1 o oy
a —35PaUsig.aVab " Ta, Vab ' Iq < Oa

= 2.26
dav { 0, otherwise, ( )

where vy, = Vg — Vi, Ty = (q — 1) /|Tq — Ty, @ Vg s the maximum signal speed, given
by

Usig,a = Oésvcs,a + BAV|Vab . f'a|. (227)

fav mimics a [Von Neumann and Richtmyer| (1950) term and is set to 2 by default to
prevent particle penetration (Lattanzio et al), [1986) and a2V € [0,1] is controlled by the

Morris and Monaghan| (1997)) switch to reduce dissipation away from shocks.

In our application we wish to have an artificial viscosity that represents Equation [1.24]
the Shakura and Sunyaev| (1973)) a-disc viscosity, requiring a few changes to be made. The
viscosity term must be applied for both approaching and receding pairs of particles; 34V is

set to zero for receding particles, though is still used for approaching particles to prevent



42 CHAPTER 2. METHODS

AV ig set to be constant, removing the shock detection switch; and

particle penetration; «
the artificial viscosity term is multiplied by a factor of h/|r,|. This leads to an artificial

viscosity term in the form

dav = 2|I‘ b|

aha O-/Avcsa AV Vg 'f‘a Vg 'faa Va 'f‘a <O,
a P { ( + B [ Vab )Vay b (2.28)

AV aVab - T, otherwise,

This new formalisation gives shear and bulk coefficients as (e.g. Monaghan, 2005}
Lodato and Price, 2010)

L av
~— 2.2
T csh, (2.29)
1
(= —V ~ éo/wc h. (2.30)

Combining Equations and allows agg to be determined from oV via

oY <h>
agg = WF (231)

where (h) is the azimuthally averaged smoothing length.

2.2.5 Sink Particles

To model the central binary, we use a pair of sink particles (Bate et al., [1995). The only
interactions sinks experience is via gravity, both from the other sink and from the SPH

particles in the disc. This leads to an equation of motion for sink ::

Ngink

Gm,
Zm_”ﬁ] ZV 2 . (2.32)

Consequently, an interaction term needs to be added to the acceleration of the SPH

particles, given by:
Ngink

u GM;
Qsink-gas — — Z |Ta __TjPTaj. (233)

SPH particles are accreted onto the sinks if they pass within 0.57,.. of the sink, where
Taee 18 the effective size of the sink. If a particle passes between 0.57,.. and 7. it will
only be accreted if it is both bound to that sink (and no other) and its specific angular
momentum is less than that of a Keplerian orbit at ... When particle a is accreted
onto sink ¢ the mass, position, velocity, acceleration and spin angular momentum of the

sink are updated in the following way that conserves mass, linear momentum and angular
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momentum, but not energy:

M, = M, +m,, (2:34)
riM; + romg

r, = T (2.35)
viM; + vym,

v; = M (2.36)
a; M; + agm,

a; = M (2.37)

S;=8; + %[(m — 1) X (Vg — )] (2.38)

2.2.6 Kernel Interpolation

Converting data from a set of discrete SPH particles to a continuous field requires inter-

polating between the particles. To do this we must first start with the identity

Ar) = / A@)5(x)dr, (2.39)

where A is any scalar field and ¢ is the Dirac-delta function. This can be approximated

by replacing § with the smoothing function, giving:
Ar) = /A(r’)W(r — 1’ h)dr’ + O(h?). (2.40)

We can discretise this by replacing the integral with a summation, replacing the density

element with the particle mass, and ignoring second order terms as follows:

(A(r)) = / @W(r — 1’ h)p(r")dr’

p(r’)
Nnei h
|
~ Y m =W (r =1 h), (2.41)
b—0 Po

giving us a way to interpolate any scalar property A(r) at any point in space using only
the mass, density, and A of the neighbouring particles. Note that if we chose A to be the
density here we recover Equation [2.5], the SPH density estimate.

The gradient of any scalar quantity can be found by taking the derivative of Equa-
tion [2.41] as follows:

(VA(r)) 0 /MW(I‘ — 1’ h)p(x")dr’

“or ) o)
Nneigh A
~ Y my = VW (r -, h). (2.42)

b—0 Po
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Vector quantities can be interpolated in the same way simply by replacing A with A
in Equation [2.41] giving:

Nneigh
A
(A(r)) ~ > my—W(r —1',h). (2.43)
b—0 Pb
Similarly, the divergence and curl can be found using the same method as in Equation[2.42]
giving:
Nneigh A
(V-A@) ~ > my=—V -W(-rh), (2.44)
b—0 Pb
Nncigh A_
(VxAr)~ > mbp—bv x W(r—1'h). (2.45)
b
b=0

2.3 Radiative Transfer

2.3.1 The Radiative Transfer Equation

Radiative transfer describes the transfer of energy by means of electromagnetic radiation
travelling through a medium. As such, understanding of radiative transfer is crucial in

order to calculate synthetic observations of circumbinary discs.

We start by defining a radiation field with specific intensity I(x,n,\), where x is
position, n is a unit vector in the direction of the radiation, and A is the wavelength.
The specific intensity represents the amount of energy carried by the radiation per unit
wavelength interval across a unit area perpendicular to n per unit solid angle per unit time.
The general form of the radiative transfer equation (RTE) is given by (see: Chandrasekhar,
1960; Rybicki and Lightman), (1979):

n-VI(x,n\) =—r(x,A\)px)I(x,n,\) + j(x,n,\). (2.46)

The term on the left hand side represents the spatial change in intensity. The first term
on the right hand side represents extinction, that is the loss of energy as radiation is
absorbed when it passes through matter, where x(x, \) is the extinction coefficient, also
known as opacity, and p(x) is the mass density. This is a sink term, that is it removes
energy from the system. The final term is a source term that represents, as the name

suggests, new sources that inject photons into the system.

If we introduce a distance s defined along the path x in propagation direction n
Equation [2.46] can be rewritten as:
dI(s, )

AP —k(8, N)p(s)I (s, A) + j(s, A), (2.47)
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which has the solution

I(s,\) = /OO j(s' s N) exp (—7(s',s,N)) ds, (2.48)

o0

where the optical thickness between two points is defined as

T(81, 82, \) = /52 K(s, A\)p(s)ds. (2.49)

81
This solution shows that the intensity at any point along the path s is simply the emission
from all previous points s’ reduced by a factor of exp (—7(s’, s, A)) due to extinction. This
solution, however, relies on the assumption that 7 does not depend on I, an assumption
that does not hold in general. Furthermore, Equation is the simplest form of the

RTE, and can be made more rigorous by considering the physical processes that go into it.

The simplest processes to consider are primary emission and absorption. Primary
emission for our sake is stellar emission and emission line radiation from ionised gas. It
is captured in the source term in Equation [2.46] and is written as j,. when considering
stellar emission. Absorption is the process by which gas molecules and dust grains convert
incident radiation into internal energy and is included in the extinction term as k., the
absorption coefficient. k., depends on the size, shape, and composition of the dust grains
and in principle can be found at any wavelength. In practise, however, modelling absorp-
tion from dust grains is an ongoing area of research (e.g. Purcell and Pennypacker, [1973;
Draine, |1988; Min et al., [2005). Adding these terms to Equation does not increase
its mathematical complexity and it still has a solution of the form given in Equation [2.48]

One possible outcome of an interaction between a gas or dust particle is scattering.
Rather than removing or adding radiation, scattering is the process by which a photon
changes direction. This adds both an additional sink and source term to the RTE; a
sink term for a photon travelling in direction n’ and a source term for the photon now
traveling in the new direction n. The efficiency of scattering is quantified by the scattering
coefficient kg.,. The scattering phase function ®(n, n’, x, \) describes the probability that
a photon travelling in direction n’ will be travelling in direction n after scattering at
position x and has the normalisation condition

/ ®(n,n’, x, )\)dQ’:/ ®(n,n’,x,\)dQ =1, (2.50)
4 4

that is, the probability over all solid angles is 1. Adding scattering to the RTE gives:
n-VI(x,n,\) =— Rext(X, A)p(x) (X, 0, \) + ju(x, 0, \)

+ "isca<x7 )\)ﬂ(X) CD(H, l’l/, X, )‘>[<X7 n/a )\)dQ/J (251)

4
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where Kext = Kabs + Ksea. Dust scattering is a highly anisotropic process, so correct
modelling of this anisotropy via the scattering phase function is important in order to
produce accurate calculations. Perhaps the most popular parameterisation is the [Henyey
and Greenstein (1941) phase function, which introduces anisotropy factor g to give a

phase function in 2-dimensions of:

1 1—g¢°
47 (14 g2 — 2G cos 0)3/2°

o(6) (2.52)

More complex phase functions exist, giving higher accuracy at the cost of computational
efficiency (e.g: Kattawar, [1975; [Hong), |1985; Draine, 2003]).

Since dust is also able to emit radiation we must add another source term to the RTE.
Large dust grains are assumed to be in local thermal equilibrium with the radiation field

and emit as a blackbody, giving rise to a source term:
Ja(%,1, A) = Kaps(A)p(x) B(T, A), (2.53)

where B(T, ) is the Planck function and T is the local equilibrium temperature. The
assumption that the dust is in thermal equilibrium doesn’t hold for small grains due to
their low heat capacities which lead to large temperature fluctuations. For small grains

the source term becomes
e N) = ks (Np(x) [ PTXBTN) (2.54)
0

where P(T,x) is the temperature distribution of the small grains.

Kabs(A), as well as kga(A), can be computed for dust grains with the Mie theory if one
assumes they are spherical and homogenous. For a given size and composition distribution

f(x,a) the local opacities are given by;

"iabs/sca(xa )\> - / 71vgc)a.bs/sca<>\7 CL)f(X, a)da, (255>

Qmin

where Qaps(A, @) and Qgea(A, a) are the absorption and scattering cross-sections of a grain
with size a at wavelength A\, respectively.

Thus far we have only considered the specific intensity /(x,n,\) of the radiation
field, however this is an incomplete picture since it does not take into account polarised
light. Even for unpolarised light, scattering events can lead to polarisation, especially
when scattered off aligned dust grains (e.g. |Schmidt, |1973; [Fischer et all 1994} [1996).
Polarisation is described using the Stokes vector S = (1, Q, U, V'), where [ still represents

the specific intensity, ) and U represent linearly polarised intensity in axes rotated 45°
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from each other, and V' represents circularly polarised intensity. The introduction of the
Stokes vector turns the RTE from a single equation to a set of four coupled equations

given by:
n-VS(x,n,\) = — Kext (X, M) p(X)S(x, 1, A) + ju(x, 1, A) + ja(x, 0, \)

+ Ksea (X, A)p(x) [ M(n,n’,x, \)S(x,n’, \)dQ, (2.56)

47
where M(n,n’,x, \), known as the Mueller matrix or scattering matrix, is the coupling

term that describes the changes to the Stokes vector due to scattering.

2.3.2 Monte Carlo Method

The anisotropic scattering from dust grains makes finding an analytical solution to the
RTE impossible, thus numerical methods must be employed. The most popular method
is the Monte Carlo (MC) method. This is the method we will focus on in this sec-
tion, focusing specifically on the implementation in MCFOST. Other methods exist, such
as ray tracing and finite difference, which will not be covered here (see Pinte et al., 2009;

Steinacker et al. 2013, for an overview).

MC works by modelling the radiation flow as photon packets which propagate through
the disc. Their propagation is governed by appropriately chosen probability density func-
tions (PDFs) that describe the material in the disc. Upon leaving the boundary of the
computational domain these photon packets are then used to create intensity and channel

maps or SEDs.

Before considering the propagation of the photon packets, however, the computational
domain must first be specified. When using MCFOST to create an image from a PHANTOM
output, the computational domain is constructed from the Vorenoi tessellation (Voronoi,
1908) of the distribution of SPH particles, i.e. each cell corresponds to the position of
an SPH particle and the grid boundaries are the planes that are equidistant to the two
closest SPH particles. This allows particle properties to be mapped onto the grid without
interpolation. Once this grid is constructed we can now consider the behaviour of the

photon packets.

A photon packet’s journey begins when it is injected into the computational domain.
In this work this physically represents emission from the central stars. The initial position
and propagation direction are sampled from the PDF given by:
~Jx(x,mN)

p(x,n) = T’ (2-57)
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where p(x,n) is the PDF and Ly is the total luminosity of the source.

Once the photon packet has been launched the next step is to determine the distance
it will travel before an interaction, or indeed whether it will escape the computational
domain, given a large enough propagation distance. The optical depth is sampled from
the PDF given by p(7) = exp (—7). This is then converted to a physical distance, [, by
integrating Equation [2.49) until the following equality is satisfied:

I
T()\):/O Kext (X, A) p(x)ds. (2.58)

Once the position, x, of interaction is found the probability of a scattering is found via

the local albedo:

S 202 Quea( N, @) f (%, a)da .
Jor ma?Qex (A, @) f (x, a)da’ (2.59)

where A(x, A) is the local albedo, pg., is the probability of scattering, and it follows that

Psca = A(Xa )‘) =

the probability of absorption is p.ps = 1 — Psca-

Once a scattering interaction has occurred the photon packet’s new propagation di-
rection must be found. The scattering direction is defined by two angles, the scattering
angle f and the azimuth angle ¢. Rewriting the elements of the scattering matrix as a
function of scattering angle, position, and wavelength allows the scattering angle to be
sourced from the cumulative distribution function:

Sy M (0, x, M) sin(6')de’

o= Jo Mun (07, x, ) sin(60)do"

(2.60)

If the incoming photon packet is linearly unpolarised the azimuth distribution is isotropic.

For a photon packet with non-zero linear polarisation, S = \/Q? + U?/I, the azimuth is

defined relative to the direction of polarisation and sourced from the cumulative distribu-
tion function:

1 Mi1(0,x,X) — Mi2(0,x,A) _sin(¢)

F = — — P , 2.61

(9) 2, ((b Mi1(0,%,A) + Mq2(0,x, N) 2 (2.61)

where 6 is taken from Equation [2.60] (Sold, [1989).

Naturally, if an interaction is not a scattering event it must be an absorption event,
which acts to heat the material in the disc. MCFOST works on two extreme assumptions;
either the gas-dust mixture is perfectly coupled and in local thermal equilibrium, or there
is no thermal coupling at all. In the case of perfect coupling the temperature of each cell

is given by the radiative equilibrium equation:

. / rabss(A) B(Th, A)AA = T, (2.62)
0



2.3. RADIATIVE TRANSFER 49

where 7 refers to the cell index and I',ps ; is the energy absorption rate. By considering only
passive heating we can rewrite the energy absorption rate in terms of the mean intensity,
J(N): N N
47r/ Kabs,i(A)B(T;, \)d\ = 47r/ Kabs,i(A)J(A)dA, (2.63)
0 0

and any extra sources of heating can be taken into account by adding the corresponding
term to the right hand side of this equation. Each time a photon packet v of wavelength
A passes through a cell the distance Al, that packet travels within the cell is computed.
The mean intensity can then be derived following Lucy| (1999), replacing the right hand
side of Equation [2.63}

o L* Rabs Z()\)Al,y
4 i N B(T, N\ = ==y e 2.64
W/Onbx)( ) V; N (2.64)

where Lx is the stellar luminosity, V; is the volume of cell ¢, and N, is the number of

photon packets with wavelength . This gives rise to a source term in the form of Equa-

tion 2.53]

In the case where the gas and dust, or dust grains of different sizes, are not thermally
coupled the radiative equilibrium equation must be rewritten for each different species. As
this is computationally expensive |Bjorkman and Wood| (2001) came up with the concepts
of immediate re-emission and temperature correction to greatly speed up calculations. In
effect this means that any photon packet that gets absorbed is immediately re-emitted

with a wavelength chosen by taking into account a corrected temperature given by the

PDF:
dB(T, \)

p(7y) Kabs’i(/\)T. (2.65)

2.3.3 Intensity and Channel Maps

When computing synthetic maps there are two main methods for sampling the radiation
field; photon packets with the same energy, regardless of wavelength, or photon packets
with the same number of photons, and thus different energy at each wavelength. The for-
mer leads to a better convergence of the temperature distribution while the latter allows
for more efficient computation of the maps. MCFOST strikes a balance between the two by

using a two step process.

In the first step the temperature distribution is calculated. Here photon packets are
generated at the stellar surface and propagated until they exit the computational domain
and each photon packet has the same energy € = L, N, gcp1- This reduces the noise in the

temperature distribution, especially at low optical depth, but is inefficient for calculating
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synthetic maps.

In the second step the map is calculated from the temperature distribution found in
step 1. Here the number of photon packets, N, gep2, is held constant at all wavelengths,
leading to a comparable noise level in all wavelength bins. In this step photon packets are
always scattered and never absorbed but at each interaction the Stokes vector is weighted
by the probability of scattering, ps.., to take into account the energy loss from absorption.
This allows all photons to exit the disc and contribute to the map with a reduced weight.
Unlike in step 1, packets are now emitted from the disc as well as the stellar surface.
These packets are generated with a luminosity that is determined by the total energy

emitting by the star and disc at their given wavelength:

L)+ SouLO)

2.66
N'y,step2 ( )
These packets are randomly emitted from the stellar surface with probability:
L.(\)
. = ) 2.67
p L(N)+ >, wi(N)Li(N) (2:67)
and from the disc, in cell 7, with probability:
i(A) Ly (A
p; = w ( ) ( ) ’ (2.68)
La(A) + 22 wiA) Li(A)
where the luminosities are given by:
L.(\) = 47 R2B(T,, \), (2.69)
for the star and:
Li(N) = 4mm;Kans i (A\) B(T;, N), (2.70)

for the disc, m; is the mass of cell ¢ and w;()\) is its weighting. To prevent any photon
packets being generated so deep in an optically thick region of the disc that they wouldn’t
reach the surface with an appreciable energy a "dark zone" is defined for each wavelength.
This dark zone is the region where the optical depth 7(\) > 30 to get out of the compu-
tational domain in any direction. w;(\) = 0 inside this zone, ensuring no photon packets
are generated there, and w;(\) = 1 outside it. Furthermore, any photon generated outside

the dark zone that enter it during their random walk are killed.

Intensity maps are calculated from the continuum at a given wavelength. Channel
maps, on the other hand, consider only a single spectral line. Spectral lines are subject
to a number of broadening effects resulting in a profile of finite thickness in wavelength
space. The Doppler effect shifts the wavelength due to the line of sight velocity of the
emitting material. Each wavelength contributing to the spectral profile can be converted
to a velocity, giving rise to channel maps which image the disc in slices of line of sight

velocity.



2.3. RADIATIVE TRANSFER 51

2.3.4 Moment Maps

From the channel maps it is possible to calculate moment maps, each of which gives
different imformation about the material in the disc. The moment 0 map is calculated
as [ I(x,n,v)dv for each pixel, the sum of intensity of all channels, and traces the flux
density. While dense regions tend to be more luminous, luminosity doesn’t only depend
on density. Of particular importance is the dependence of luminosity on temperature,
which means that a less dense but hotter material closer to the binary can in theory be
more luminous than a more dense but colder region further out. In practise, however, the
densest regions of the disc are those closest to the binary, so the moment 0 map roughly
traces column density. It is also important to note that for optically thick material this
probes the surface layers of the disc, while for optically thin material this probes the disc

midplane.

The moment 1 map is calculated as [ I(x,n,v)vdv/ [ I(x,n,v)dv. This is a map of
the average velocity along the observer’s line of sight weighted by intensity, thus the signal
is strongest for discs which are edge-on to the observer. Finally, the moment 2 map is

calculated as [ I(x,n,v)v*dv/ [ I(x,n,v)dv. This is a measure of the velocity dispersion.
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Chapter 3

On the Cayvity Size in Circumbinary

Discs

3.1 Introduction

As discussed in Section [I.4] the long-term evolution of an inclined circumbinary disc is not
well understood. To investigate this we perform a series of 3-dimensional SPH simulations
of inclined circumbinary discs. Before considering inclined discs, however, we first model
coplanar discs, varying the disc viscosity, as well as the binary eccentricity and mass ratio
to investigate what the final cavity size can tell us about unseen binary companions and
about the disc properties. The work in this chapter has been published in [Hirsh et al.
(2020)).

3.2 Methods

3.2.1 Initial Conditions

Using the SPH code PHANTOM (Price et al., 2018b) we model a gas disc consisting of one
million particles initially placed in a circumbinary disc extending from 1.4 to 14.5 times the
binary semi-major axis, with the binary modelled as a pair of sink particles as described
in Section We simulate binaries with mass ratios of ¢ = 0.01,0.1,0.3 and 0.5 with
q = My/(M; + M,), where M; and M, are the mass of the primary and secondary,
respectively. We use a disc mass of Mg = 0.0001M7, in order to reduce the effects of
the disc gravity on the binary orbit. This low mass leads to a negligible disc self-gravity,
so we do not include it in our simulations. We assume a surface density profile ¥ oc R77,
with p = 1.0. We prescribe a locally isothermal equation of state, that is P = ¢2(R)p,
with sound speed varying as ¢, o« R~ with w = 0.25. This leads to a temperature profile

T < R™* and a disc aspect ratio varying as H/R oc R/?>~*. This allows us to set the

93
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Table 3.1: Simulation parameters. We vary the binary mass ratio, disc inclination, and
disc scale height. Varying the scale height corresponds to the value of artificial viscosity

given beneath it.

Parameter Fiducial value Other explored values

q 0.1 0.01, 0.3, 0.5

Magise /My 0.0001

Rin/a 1.4

Roui/a 14.5

P 1.0

w 0.25

« 0.005

inclination 0° 22.5°, 45°, 90°
Viscosity-dependent parameters

(H/R)in 0.05 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12
AV 0.20 0.07, 0.11, 0.17, 0.22, 0.27, 0.31, 0.35

sound speed, temperature and aspect ratio by specifying the aspect ratio at the disc inner
edge. We simulate discs with (H/R);, = 0.01,0.02,0.04,0.05,0.06,0.08,0.10 and 0.12.
The setup for our fiducial simulation, as well as the full parameter space investigated, is
outlined in Table B.1]

3.2.2 Disc Viscosity

We prescribe an « disc (see Sections and , setting aay such that the average
a = 0.005. This allows us to vary the viscosity by varying the scale height of the disc.
The corresponding viscous time t.sc = R?/v, at R = Ry, is given in terms of the orbital

time (27 /Q) according to

RN
boee & 12,800 orbits( « ) ( /R> . (3.1)

0.005 0.05

For the discs we investigate this gives a t s that varies from roughly 2,200 orbits for
(H/R)in = 0.12, to roughly 320,000 orbits for (H/R);, = 0.01. Physically it is more
sensible to consider t.i. at the cavity edge (Rcay), but since this varies throughout and

between simulations we consider ¢ at R;, and note a discrepancy of a factor of Reay/ Riy.

3.2.3 Cayvity Size

We azimuthally average the surface density and define the half-maximum radius to be

the radius at which the surface density first reaches half its maximum, with a similar
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definition for the quarter-maximum density. Following the prescription in |AL94] we then
take the cavity size to be the radius at half-maximum, with a symmetric error taken as

the difference between the radii at half-maximum and quarter-maximum.

3.3 Results

3.3.1 Time Evolution

Figure [3.1] shows surface density rendered face-on views of the cavity opening process for
a coplanar disc with (H/R);, = 0.05 and ¢ = 0.1 and eccentricities ranging from e = 0 to
e = 0.8. The cavity size increases with time (top to bottom) until reaching an equilibrium
after several thousand orbits. After 10,000 binary orbits the background surface density

is smaller due to viscous disc spreading.

Figure[3.2| quantifies the cavity size as a function of time and initial binary eccentricity.
The top panel shows the evolution on tens of dynamical timescales (a dynamical timescale
being < 10 binary orbits at Re.,). The cavity is opened on this timescale and the size
appears to stabilise between 2 — 3 times the semi-major axis depending on the eccentricity
of the binary. Evolving the system on the viscous timescale (~ 10, 000 binary orbits) shows
the cavity continue to grow to 2.5 —3.5 times a for eccentric binaries (bottom panel). The
circular case is unique in that it reaches a maximum cavity size of the order of hundreds
of binary orbits, while eccentric binaries continue to grow their cavities for thousands of

binary orbits.

3.3.2 Binary Orbital Eccentricity

Figure [3.1] shows the effect of binary eccentricity on the cavity size. Cavity size increases
with increasing eccentricity. This is shown quantitatively in Fig. . At early (100 binary
orbits; green line) and late (10,000 binary orbits; black line) stages the cavity size increases
with binary orbital eccentricity, consistent with both |[AL94/ and [ML15. After 1000 binary
orbits (red line), however, we see a turnover in the cavity size due to the circular binaries
reaching a maximum cavity size before eccentric ones. This turnover is only temporary
though, and disappears once the eccentric binaries reach a maximum cavity size. 'Thun
et al.| (2017)) also find a turnover in the cavity size, however theirs persists up to 16,000

binary orbits, and the minimum is seen at e ~ 0.18 while ours is at e ~ 0.1.

The exact values for the cavity size also show some discrepancies. [Thun et al.| (2017)

found cavity sizes between 4 and 7 times the binary semi-major axis, nearly double the
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Figure 3.1: Surface density rendered face-on views of the evolution of coplanar discs with
(H/R);, = 0.05 surrounding a binary with ¢ = 0.1. Eccentricity increases from left to

right and time increases from top to bottom.

values found by our work, as well as that of [AL94 and [ML15 (dashed lines in Fig. [3.3).
We discuss this difference in Section B.4l

3.3.3 Disc Scale Height

Figure shows the surface density rendered face-on views of discs evolved for 1000
binary orbits with various eccentricities (increasing left to right) and disc scale heights
(increasing top to bottom). We see the cavity size increase with binary eccentricity, as
described in Section [3.3.2] and decrease with increasing scale height. We also see the most

eccentric cavities around the discs with smallest scale height.
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Figure 3.2: Evolution of cavity size over time for a coplanar disc with (H/R);, = 0.05
surrounding a binary with ¢ = 0.1 over 100 binary orbits (top left panel), 1000 binary
orbits (top right panel) and 10,000 binary orbits (bottom panel). The shaded region

represents the error bars, as is the case for all subsequent plots in this paper.

Care must be taken, however, to evolve the discs for a significant fraction of the viscous
time. The top panel of Fig. shows the cavity size as a function of disc aspect ratio
after only 100 binary orbits. From Equation this corresponds to ~ 3 x 10 %t for
(H/R)in = 0.01 and ~ 4.5 x 1072t for (H/R);, = 0.12. At this early stage there is no
dependence of cavity size on disc aspect ratio. The bottom panel of Fig. [3.5]is the same

as the top panel, but after 1000 binary orbits.

Although 1000 binary orbits does not fully resolve the viscous time, it is already possi-
ble to see trends appearing. When (H/R);, < 0.06 the cavity size decreases for increasing
scale height, then remains largely unchanged above this value. Furthermore, while the
most viscous discs with (H/R)i, 2 0.06 continue to evolve after 100 orbits the change in
cavity size is minor, remaining within error bars. This suggests that taking the cavity
size after 1000 orbits (= 0.1t for these highly viscous cases) provides a reasonable es-

timation of the long-term cavity size.
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Figure 3.3: Cavity size as a function of binary orbital eccentricity for a coplanar disc with
(H/R)in = 0.05 surrounding a binary with ¢ = 0.1. Snapshots are taken after 100 (green
line), 1000 (red line) and 10,000 (black line) binary orbits. Dashed line shows prediction
from Miranda and Lai (2015)).

While longer simulations would allow us to fully resolve the viscous time, these sim-
ulations become prohibitively expensive at low viscosity, requiring more than 10° binary
orbits for (H/R);, = 0.01. It i