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Spécialité de doctorat : structure et réactions nucléaires
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Academic summary

Titre : Étude des excitations multipolaires dans les noyaux froids et chauds, déformés et superfluides via la
méthode des amplitudes finies

Mots clés : Physique théorique, problème à N corps, modes collectifs, astrophysique nucléaire, transitions de
phase

Résumé : La réponse d’un système à une pertur-
bation extérieure est source d’informations précieuses
quant à ses propriétés de structure ou aux car-
actéristiques de l’interaction entre ses constituants.
Pour les noyaux atomiques, ces différentes propriétés
jouent en particulier un rôle fondamental dans divers
scénarios astrophysiques tels que les processus r, s et
p. L’une des méthodes les plus directes pour accéder
à la réponse d’un système suite à une perturbation
extérieure fait appel à la QRPA (quasiparticle random
phase approximation), extension au cas des systèmes
superfluides de la théorie de la réponse linéaire traitée
dans l’approximation de la phase aléatoire. Une re-

formulation récente des équations lève les limitations
qui imposaient de négliger une partie des contributions
aux champs ou encore restreignaient la description à
des classes spécifiques de corrélations angulaires dans
l’état fondamental. Le travail réalisé en thèse a consisté
à étendre ce nouveau formalisme au cadre d’un état
fondamental s’écrivant comme un mélange statistique
de configurations, ouvrant la possibilité d’appliquer
la méthode aux systèmes à température finie, et à
l’employer avec une interaction entre les nucléons dans
le milieu nucléaire dérivant d’une théorie effective à
basse énergie de la chromodynamique quantique.

Title: Study of the multipolar excitations in cold and hot, deformed and superfluid systems with the method of
finite amplitudes

Keywords: Theoretical physics, many-body problem, collective modes, nuclear astrophysics, phase transitions

Abstract: Studying how a system responds to an
external perturbation reveals many features about its
structure or the underlying interactions between its con-
stituents. In the case of atomic nuclei, such information
plays a prominent role when one aims at understanding
how structure properties impact nuclear reactions, e.g.
in various astrophysical scenarios such as the r, s and p
processes. The quasiparticle random phase approxima-
tion (QRPA), i.e. the generalisation to superfluid sys-
tems of the linear response theory within the random
phase approximation, provides one of the most direct
approaches to apprehend how a nucleus behaves under
a gentle perturbation. A reformulation of the theory

recently lifted some intrinsic limitations that affected
it so far, namely the need to neglect some high-order
contributions to the fields or the restriction to systems
displaying only a specific class of angular correlations
in their ground state. The formal work of this thesis in-
volved extending the method to the case of a reference
state written as a statistical mixture of different config-
urations, opening the way to the description of reso-
nances in systems at finite temperature. The formalism
is employed with an effective interaction between nu-
cleons deriving from a low-energy effective theory of
quantum chromodynamics.



General public summary

Titre : Étude des excitations multipolaires dans les noyaux froids et chauds, déformés et superfluides via la
méthode des amplitudes finies

Mots clés : Physique théorique, problème à N corps, modes collectifs, astrophysique nucléaire, transitions de
phase

Résumé : La plupart des systèmes quantiques
sont composés de plusieurs particules interagissant
entre elles. Décrire leur agencement en termes
d’énergie, de distribution spatiale, etc, est très com-
pliqué puisque faisant appel à des équations intégro-
différentielles couplées. Trouver l’état fondamen-
tal du système, c’est-à-dire la configuration la plus
stable, nécessite fréquemment le recours à une ap-
proximation de “champ moyen”, qui néglige certaines
corrélations entre les particules pour retenir seulement
les plus élémentaires. Lorsque le système interagit avec
un environnement extérieur, l’évolution temporelle de
ses propriétés est naturellement très complexe, et re-
quiert également des approximations. Souvent, on

peut supposer les perturbations induites par le milieu
extérieur comme étant de petites vibrations autour de
la configuration stable. Cela donne accès à la com-
posante linéaire de la réponse du système ; l’approche
est donc valide si cette composante prédomine. Ce
problème a été récemment revu afin d’en simplifier la
résolution pour un système initialement “froid”, c’est-
à-dire à température nulle. Le travail réalisé a notam-
ment consisté à étendre ce formalisme au cas où le
système est initialement froid ou chaud. Cela a per-
mis de premières applications à l’étude des propriétés
de certains phénomènes collectifs dans des conditions
extrêmes, telles que celles régnant au sein d’étoiles à
neutrons.

Title: Study of the multipolar excitations in cold and hot, deformed and superfluid systems with the method of
finite amplitudes

Keywords: Theoretical physics, many-body problem, collective modes, nuclear astrophysics, phase transitions

Abstract: The majority of quantum systems is com-
posed of several particles interacting together. Describ-
ing how they organise in terms of spatial distribution, of
energy, etc, is highly complicated as it involves coupled
integro-differential equations. Finding the ground state
of the system, that is, the most stable configuration, of-
ten already requires neglecting some correlations be-
tween the particles, retaining only the simplest ones.
When this ensemble of particles interacts with an en-
vironment, the time evolution of its properties is thus
very difficult, and calls for similar approximations. In
most cases, we may suppose the motion generated by
the external perturbation to be small oscillations about

the stable configuration. This yields the linear com-
ponent of the response; the approximation is this valid
when this component is the most important one. The
mathematical framework of the problem has recently
been revisited in order to simplify its resolution for ini-
tially “cold” systems, i.e. systems at zero temperature.
The work developed in this thesis extends this new for-
malism to the case of finite temperature, giving access
to the response atop cold and hot systems. In particu-
lar, this has been employed for the description of some
collective phenomena in conditions of extremely high
temperature, as can be met in neutron stars.
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Chapter 1

Introduction

The quantum many-body problem is extremely complex, and many phenomena can only
be understood by properly treating internal correlations between degrees of freedom be-
yond the independent particle picture [RS80]. For nuclear physics, such correlations
spawn peculiar configurations such as deformation and superfluidity. This already rich
phenomenology is spiced up by the occurrence of more exotic configurations such as halo
or bubble structures, giant resonances and clusters. A most famous manifestation of the
complexity of nuclear systems is certainly the Hoyle state [Hoy54], the clustered excited
state of carbon produced during the helium burning phase in stars. Complex phenomena
are frequently met in the nuclear chart (figure 1.1) and cannot be treated on the basis of
independent particles.

Figure 1.1: Zoom on the nuclear chart for N ≤ 16 and Z ≤ 10. Courtesy of W. Korten.

The first step of the theoretical description of strongly correlated many-body systems
is to identify the pertinent degrees of freedom (d.o.f.) with the help of which the model
is constructed.

A possibility is to adopt a macroscopic viewpoint [Rai50; BM53a; BM53b; AI75], in-
terpreting the observed phenomena as collective bosonic excitations of a quantum body.
Early attempts at unveiling the connection between collective and independent particle
motions were based on experimental observations and chose the collective modes accord-
ingly. As such, the type of such bosons is nearly as vast as the phenomenology of quantum

9



10 Chapter 1. Introduction

physics, and proponents of the collective models need to tailor their description to each
specific problem, as a price to pay for the crystalline clarity of the model in terms of
phenomena at play. Recently, this approach has been reframed in the language of effec-
tive field theories (EFTs) [PW14; Coe15; CP15; CP16; PW16], allowing for a systematic
improvement of the description of the excitation spectrum and the possibility to quantify
theoretical uncertainties. Depending on the contribution of a given class of correlations
(pairing, shape, vibrational, etc), an effective theory has to be crafted in terms of adapted
symmetry groups and cosets relating them. The low-energy constants entering the effec-
tive Hamiltonian must then be adjusted to each system with the help of experimental data.

A completely opposite vision goes by trying to describe all the desired physics on the
basis of the interaction between the most microscopic degrees of freedom. In subatomic
physics, this is realised into the Standard Model, which aims at describing three of the four
known fundamental interactions of nature: the strong, the weak and the electromagnetic
interaction. While it can be tempting to delve down this microscopic rabbit hole in the
hope of constructing an all-encompassing theory, one is quickly faced with tremendous
difficulties when dealing with the theory of the strong interaction, quantum chromody-
namics (QCD). Without flaunting a rusty knowledge of QCD, its non-Abelian nature1

and the covariance criterion force self-interactions among the gluon fields, which results
notably in the theory being strongly non-perturbative at low energies. The structure of
nuclei is thus hardly predictable from QCD, although recent lattice calculations [IAH07;
Aok+12; Kol15] are starting to appear, and will certainly flourish in the future.

To circumvent the enormous difficulties brought by the specificities of QCD, an alter-
native path is currently being pursued. It aims at maintaining a formal connection to the
underlying theory, and anchors on the viewpoint of effective field theories (EFTs) [Wei79],
by exploiting a separation of energy scales in the excitation spectrum of quark conden-
sates. The energy cut-off separates which effects are treated explicitly and which ones
appear as perturbative corrections [MS16]. At energy scales relevant for nuclear physics,
typically a few tens of MeV, the substructure of nucleons in terms of quarks and gluons
is not resolved, promoting protons and neutrons to the relevant degrees of freedom of the
theory. Still, the strong short-range repulsion between nucleons makes the problem highly
non-perturbative. The second difficulty stems from the size of nuclear systems, made of
1 to ∼3002 nucleons. One then has to cope with a non-perturbative finite system, where
most often, neither few-body nor statistical techniques can be employed. A challenge of
low-energy nuclear physics theory is therefore to obtain a coherent and accurate descrip-
tion of the aforementioned phenomena observed across the nuclear chart, along with their
mass, radius, shape, spectroscopic factors, multipolar moments... all the while starting
from the interactions between nucleons.

In particular, collective features constitutes an important challenge to a theory based
strictly on microscopic ingredients. For vibrational modes, the motion generated by an

1The gauge group of QCD is SU(Nc), where Nc is the number of colour charges, and must be equal
to three to match the hadron spectrum.

2In extreme environments such as neutron stars, clusters comprising a few thousands of nuclei are also
predicted; this is still too little to render statistical fluctuations entirely negligible.
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Chapter 1. Introduction 11

external source is generally represented as small amplitude oscillations about a reference
state. In that case, the random phase approximation (RPA) and the quasiparticle RPA
-its extension including superfluidity- are theoretical tools of choice, as they tackle both
individual and collective resonances on the same footing. However, in case of effective
interactions rooted in QCD, the complexity of the method hindered its application to
systems displaying simultaneously deformation and superfluidity. While spherical sys-
tems, both superfluid [HPR11] and not [Paa+06], could be addressed, the study of nuclei
exhibiting both superfluidity and deformation remained hitherto out of reach. This the-
sis goes past this limit by expanding on a novel approach to the QRPA solution [NIY07;
AN11], and represents its first application in case the microscopic potential between nucle-
ons derives from a low-energy theory of the strong interaction. In addition, the formalism
is extended to include couplings of the systems of interest to external baths. This is done
by promoting the density matrix into a statistical operator, and permits the treatment of
thermal effects.

The present thesis is organised as follows. Chapter 2 gives the basic formal ingredients
of many-body statistical quantum mechanics and linear response theory. The emphasis is
put on staying as general as possible, for the methods presented in this thesis are trans-
verse to several branches of physics: condensed matter, molecular and quantum chemistry,
and nuclear physics to name a few. General arguments pertaining to thermal phase tran-
sition in many-body quantum systems are presented, and schematically illustrated in case
of the pairing and shape transitions. The last part of this overture chapter deals with the
response of a system to a time-dependent perturbation, where the accent is put on (i) the
co-existence of two different points of view to the response theory, (ii) the several formal
starting points leading to the equations of interest, and (iii) the linear approximation to
the theory, which is only seldom gone beyond in actual calculations.

Chapter 3 details the formalism of the (Quasiparticle) finite amplitude method ((Q)FAM)
for statistical ensembles. This formulation allows opening up the inclusion of thermal ef-
fects, and is therefore coined the finite temperature QFAM, or FTQFAM3. The derivation
of the equations of motion is rather simple, however, several critical points require careful
examination. The linearisation of the Hamiltonian with respect to first-order fluctuations
of the density matrix is studied; it is shown that the fields entering the equations can
always be recast in a one-plus-two-body form. As the symmetries of the FTQFAM den-
sities are slightly different from those of the finite temperature Hartree-Fock-Bogoliubov
(FTHFB) ones, a detailed analysis is given in the two standard conventions for the Bo-
goliubov basis. In addition, the connection between the FTQFAM and the more standard
finite temperature quasi-particle random phase approximation (FTQRPA) is scrutinised.
A few short but nonetheless important points pertaining to the dressing of the one-body
propagators occurring self-consistently during the solution of the equations of motion,
the elimination of spurious modes, a prescription regarding the centre-of-mass operator,
and the identification of instabilities in the response are discussed. The physical effects
leading to the broadening of resonances -which cannot be obtained within a linearised
response theory, and therefore elude the formalism- are discussed; in particular, the ef-
fect of finite temperature is qualitatively pointed out. Finally, selection rules related to

3I will however often write “FAM” instead.

11



12 Chapter 1. Introduction

the utilisation of the method atop an axially deformed harmonic oscillator basis are given.

In chapter 4, the FTHFB theory is applied to the study of the thermal phase transition
in a mid-mass system, namely 56Fe. Although the number of particles is not so large,
this study finds an evolution of the order parameters similar to what is expected in the
thermodynamic limit. The convergence of a few relevant macroscopic observables with
the evolution of the model space and order in the chiral expansion from which the inter-
action results is analysed. Systematic uncertainties due to the interaction are estimated
to about ten percents for all three systems considered.

The core results of this thesis, namely applications of the FTQFAM , are given in
chapter 5. The zero temperature, non-superfluid and spherical part of the implementation
is benchmarked against existing RPA calculations in 16O. While experimental data show
a non-zero limit of the radiative E1+M1 strength functions at energies lower than 5 MeV,
such feature does not appear in our results. The strengths are found to be rather insen-
sitive to the temperature, a result along the lines of those obtained by other studies. We
obtain however significant thermal enhancements of the dipole strength at approximately
10 MeVs, and a weakening of the low-energy quadrupole resonance when the system is
hot. The monopole strengths tend to increase with the temperature, which tentatively
signals an enhancement of the compressibility of finite nuclear matter. Lastly, we mention
possible effects responsible for the low-energy enhancement of the dipole strengths.

This thesis is concluded by pointing several possible directions of further development
of the method.

12



Chapter 2

Generalities

This chapter provides a very general introduction to the quantum statistical
theory of the many-body problem. It contains and discusses the basic formal
ingredients on which the work of this thesis relies.
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14 Chapter 2. Generalities

2.1 Density matrix

The evolution of a quantum state |Ψ⟩ is dictated by the time-dependent Schrödinger
equation [Sch26]

iℏ
d

dt
|Ψ⟩ = (H + F )︸ ︷︷ ︸

≡G

|Ψ⟩ , (2.1)

where H represents the internal Hamiltonian (i.e., of the isolated system), and F an
external perturbation. The time-dependence of the fields is assumed, but not written
explicitly. Provided the Hamiltonian H + F is self-adjoint, this is equivalent to the
Liouville-von Neumann equation1

iℏ
d

dt
D = [H + F,D], (2.2)

where D ≡ |Ψ⟩⟨Ψ| is the density matrix of the system. While H formally encodes all
the interaction among the different degrees of freedom, D encodes all of their correlations.
For A degrees of freedom, the density matrix can be represented as a tensor containing
the one-body, two-body, up to A-body sectors :

D =

D(1,1) D(2,1) . . .
D(1,2) D(2,2) . . .

...
...

. . .

 . (2.3)

Naturally, any A−body tensor can be written in that manner:

H =

H(1,1) H(2,1) . . .
H(1,2) H(2,2) . . .

...
...

. . .

 ; F =

F (1,1) F (2,1) . . .
F (1,2) F (2,2) . . .
...

...
. . .

 , (2.4)

the equation of motion (2.2) can then be recast as a set of coupled equations2

iℏ
d

dt
D(i,j) =

∑
k

G(k,i)D(j,k) −D(k,i)G(j,k). (2.5)

Each D(i,j) sector has size Ci
A × Cj

A, so that the complete density matrix contains

1If the total Hamiltonian were not Hermitian, its left and right eigenfunctions would not be each
other’s dual; we’d have equations of motion for both the left and right eigenvectors. All the formalism
presented here would still apply with this minor change. Alternatively, one can also work in a doubled

space and define new operators that are Hermitian, e.g. H → H̃ =

(
0 H
H† 0

)
.

2I take the convention that the indices (i, j) correspond to matrix elements between j-body bras and
i-body kets, in opposition to the usual row-column matrix notation.
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Chapter 2. Generalities 15

(2A − 1)2 elements. Such an exponential growth of the Hilbert space with the number of
particles quickly renders the exact equations of motion (2.1) and (2.2) intractable beyond
the few-body cases3. In order to tackle a wider range of systems, approximation schemes
have to be designed. The conceptually simplest one is to introduce a transformation over
the many-body space so as to recast as much of the system’s properties as possible onto
the few-body densities and discard the high-order terms. The most severe truncation is
to retain only one-body degrees of freedom, in which case the Liouville-von Neumann
equation reduces to its purely one-body sector:

iℏ
d

dt
D(1,1) =

[
G(1,1), D(1,1)

]
. (2.6)

Nonetheless, such an abrupt restriction is in general not suited for a faithful description:
for instance, a genuine Hamiltonian containing a kinetic term and a two-body interaction
will be degraded into a free Hamiltonian without further ado. In order to grasp as many
correlations as possible within such a reduction, the density matrix is instead optimised
by imposing that the energy of the system be a variational minimum with respect to the
one-body densities respecting a set of constraints on various observables. This leads to
the so-called time-dependent mean-field (TDMF) equations

iℏ
d

dt
R = [G,R], (2.7)

with R and G the mean-field density matrix and total mean-field Hamiltonian, respec-
tively. The general framework of the static mean-field theories, along with the specific
Hartree-Fock-Bogoliubov (HFB), will be briefly summarised in section 2.4.

2.2 Statistical ensemble

The study of many-body systems requires identifying the thermodynamical quantities of
interest. Although all statistical ensembles are equivalent in the thermodynamic limit
(N → ∞, V → ∞, N/V = cst), this is not the case for systems with a finite number of
degrees of freedom, as the relative statistical fluctuations can be of sizeable importance
[LL67b, §2]. The case of finite systems therefore demands a careful choice of the statistical
ensemble. In this work, we impose that the thermodynamic variables T and µ, respec-
tively corresponding to the temperature and chemical potential of the system, have some
fixed value. The second fixes the average particle number. We consider therefore the sys-
tem as a grand canonical ensemble. This choice permits the theory to incorporate states
that do not display the correct number of particles into the description of the system; that
is, this ensemble allows including the particle number fluctuations of statistical nature.
In addition, we may impose any kind of constraint; typically, geometric/shape constraints
may be enforced through the expectation values QLM of the multipole moments of the
density. It is also possible to fix a given value of the total linear or angular momenta P

3As a matter of illustration, the current state-of-the-art no-core shell model calculations can reach
A ∼ 20 in the case of atomic nuclei, see e.g. [FN21; Djä+21].
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16 Chapter 2. Generalities

and J by projecting to target values, the former constraint being crucial for the study of
self-bound systems such as atomic nuclei, since there is no external potential ensuring the
localisation of the total wave function4. Consequently, self-bound systems are invariant by
translation. As such, any densities that are identical up to a Galilean transformation are
equally good reference states. In average, the total wave function is therefore completely
delocalised in space. Imposing a zero momentum condition forbids the system to wander
inside the coordinate space, thus forcing its localisation. Such shape and momentum con-
straints allow targeting not only the (hopefully) global minimum of the potential energy
surface spanned but any kind of state following the desired constraints5. In this work,
only centre-of-mass (and eventually deformations) constraints are imposed, hence J will
never be forced onto a specific value, although this is allowed by the formalism developed
in this thesis. The constraints are imposed by the method of Lagrange multipliers, writ-
ten λLM for the multipolar moments and ωJ for the angular momenta. In that case, the
constrained states are obtained by minimising the grand potential

Ω = E − TS − µN −
∑
LM

λLMQLM − ωJ

√
J(J + 1). (2.8)

The sum encodes the desired shape constraints. Once the (exact) density matrix D̂
of the system is known in some basis {|n⟩} fulfilling the closure relation |n⟩⟨n| = I, the
calculation of any observable amounts to that of a trace:

〈
Ô
〉
= ⟨Ψ|Ô|Ψ⟩ =

∑
n

⟨Ψ|Ô|n⟩ ⟨n|Ψ⟩ =
∑
n

⟨n|D̂Ô|n⟩ = Tr
{
D̂Ô

}
. (2.9)

In particular,

E = Tr
{
D̂Ĥ

}
, (2.10)

N = Tr
{
D̂N̂

}
, (2.11)

S = Tr
{
D̂ log D̂

}
, (2.12)

QLM = Tr
{
D̂Q̂LM

}
. (2.13)

Other thermodynamic quantities can be calculated in the usual manner [LL67a, §14]
[LL67b, §5] [KG06, 1, A]. The ground state formally writes as the global minimum
of (2.8)6 over the potential (hyper-)surface spanned by the possible eigenvectors (or,

4Note however that this full-glory projection is rather costly, as it formally requires integrating over
the set of all translated wave functions. Instead, we use the fact that the centre-of-mass motion is
decoupled from the motion of the nucleus in its intrinsic frame, which allows correcting the Hamiltonian
by a one-plus-two-body term that imposing the zero-momentum condition.

5For simplicity, such constrained vacua will be referred to as ground states without distinction, keeping
in mind that they may very well not be the vacuum corresponding to the global ground state but those
of lowest energy fulfilling some constraints.

6For a time-dependent grand potential, the time-dependent ground state is the dense sequence of its
ground state at each time, if we assume the adiabatic approximation.

16



Chapter 2. Generalities 17

equivalently, density matrices) of the Hilbert space H (or, equivalently, over the Fock
space F )7. According to (2.8), the grand potential is a function of observables only
(along with their associated Lagrange multipliers), which are themselves functionals of
the density matrix per (2.9). As a consequence, the only variational parameters of which
the grand potential is an explicit functional are the elements of the density operator, that
is, Ω = Ω[D̂]. It follows that, around the ground state, the variation

δΩ = Ω[D̂ + δD̂]− Ω[D̂]

= Tr

{(
Ĥ + kBT (log D̂)− µN̂ −

∑
LM

λLMQ̂LM

)
δD̂

}
= 0. (2.14)

Since δD̂ represents a virtual variation, i.e. it is not bound to correspond to a physical
path, we may choose it as we please. This implies that the term in parentheses is equal
to zero8, providing us with the formal solution

D̂ = Z−1e−β(Ĥ−µN̂−
∑

LM λLM Q̂LM ), β ≡ (kBT )
−1, (2.15)

where Z = Tr
{
e−β(Ĥ−µN̂−

∑
LM λLM Q̂LM )

}
is the partition function of the system, which

ensures Tr
{
D̂
}
= 1. Equation (2.15) makes it clear that there exists a bijection between

the statistical operator D̂ and the number Z: the density operator and the partition
functions both encode all the information. Alternatively, in the basis that diagonalises
the Hamilton operator, the partition function is simply the sum of the probabilities to
find the system in a given many-body configuration (or microstate) C:

Z =
∑
C

e−βEC =
∑
C

∏
i

z
nC
i

i , zi ≡ e−β(ϵi−µ), (2.16)

where EC is the energy of the A-body configuration C, ϵi the energy of the individual
state i, and nC

i the occupation number of i within the configuration C. This provides a
convenient way of calculating the moments of the occupation numbers distribution:

〈
nk
i

〉
=

(
zi

∂

∂zi

)k

logZ. (2.17)

There are therefore two equivalent ways of calculating the diagonal entries of the sta-

7This introduces a slight abuse of language in the context of particle-number breaking theories: the
ground state is in that case a mixture of states with different particle numbers, so that “the Hilbert
space” is to be understood as a direct sum of spaces with different particle numbers, i.e. a Fock space.

8As a matter of proof, we may choose the matrix δD̂ such that all its elements but one are zero: for
any given position of the non-zero element, only one element on the diagonal of the product is a priori
non-zero. Equation (2.14) then implies that it does, meaning that the corresponding element of the term
in parentheses is zero. The only task left is to iterate over the location of the non-zero term.
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18 Chapter 2. Generalities

tistical density matrix: using (2.15), or using (2.17) with k = 1. The average occupation
numbers are those of a Fermi-Dirac distribution

⟨ni⟩ =
zi

1 + zi
, (2.18)

whereas the thermal fluctuation of the particle numbers have variance

σ2
i =

〈
n2
i

〉
− ⟨ni⟩2 =

zi − z2i
(1 + zi)2

. (2.19)

Not so surprisingly, the variance (2.19) is maximal for energies close to the temperature,
namely σ2

max = 1/8 for Ei = kBT ln 3. That said, the relative thermal fluctuations, σ/ ⟨n⟩,
as one could also expect, increase with the energy, as the orbitals are exponentially less
occupied.

The solution (2.15) is, as is, not expressed in the basis that diagonalises Ĥ, which
makes it impractical for the determination of D̂. A most convenient procedure is to
explicitly carry on the variations of δΩ, after the independent parameters have been
identified. This machinery is deployed for the mean-field theories, as presented succinctly
in subsection 2.4.2. Whilst the other observables at play in (2.8) are system-independent,
the energy requires a thorough analysis of the Hamiltonian, which is done in the next
subsection.

2.3 Static Hamiltonian and some general properties

In real life, one may be interested in the response of a system initially in a state of
thermodynamic equilibrium (or not) in the absence of external field. Consequently, a
first step is to focus on obtaining the isolated eigenstates9. The Hamiltonian describing
a many-body system writes in the most general form

H = T (1) + V (1, 2) +W (1, 2, 3) + . . . , (2.20)

where T contains all the one-body terms (typically consisting of the kinetic energy and,
for self-bound (resp. externally bound) systems, of a one-body centre-of-mass correc-
tion (resp. external potential)), V corresponds to the two-body interactions, and so on.
Expliciting the indices of the individual degrees of freedom:

H =
∑
i

ti +
1

2!

∑
ij

vij +
1

3!

∑
ijk

wijk + . . . , (2.21)

or, in second-quantised form in an arbitrary basis spanning the whole one-body Hilbert

9Note that the present discussion trivially generalises to time-dependent Hamiltonians, e.g., one could
very well study H(t), E(t), etc within the framework presented in this section.
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Chapter 2. Generalities 19

space,

H =
∑
αβ

tαβb
†
αbβ +

1

(2!)2

∑
αγβδ

vαγβδb
†
αb

†
γbδbβ +

1

(3!)2

∑
αβγδϵζ

wαγϵβδζb
†
αb

†
γb

†
ϵbζbδbβ + . . . ,

(2.22)

where the denominators appearing in (2.21) and (2.22) balance the over-countings due to
the sums running over all indices10.

Although the Hamiltonian describing A particles should in principle involve up to A-
body interaction terms, the present work only considers vertices up to the three-body
ones. There is no system-independent justification why a many-body system can, either
exactly or approximately (but with a good enough accuracy), be described in terms of
few-body interactions.

Yet, a few arguments in favour of such low-rank Hamiltonians are the following:

- if the degrees of freedom are approximately independent (i.e., coupled weakly enough),
we expect a “natural” hierarchy of the contributions. Loosely speaking, the expec-
tation value ⟨O⟩ = ⟨O1−body⟩+ ⟨O2−body⟩+ ⟨O3−body⟩+ . . . of any relevant operator
O should obey ⟨Oi−body⟩ ≫

〈
O(i+1)−body

〉
≫ . . . for some small i.

- the interaction is not an observable. We therefore have the freedom to transform it
the way we fancy11, with the all-important constraint that all observables are unaf-
fected by said transformation12. This is the idea underlying renormalisation group
(RG) approaches [GL54a; GL54b; WK74], that have been shown capable of dras-
tically improving the quality of the results obtained with truncated Hamiltonians
[Her+17; Her+18; Her20].

- more practically, the matrix representation of a k−body operator in a generic basis
is a Nk × Nk object13, which quickly grows out of the reach of the computational
resources a typical physicist has.

In particular, a small coupling constant14 and the Pauli principle15 both favour an ap-
proximately independent particle picture: while the first one implies a strong hierarchy
among the k-body matrix elements, the second tends to disfavour scattering between the
particles by reducing the outgoing available phase space. It should nonetheless be noted
that small coupling constants do not guarantee the validity of the independent degrees
of freedom picture, as combinatorics quickly render the contributions of high rank terms

10That is, one could do the substitutions 1
k!

∑
ij... →

∑
i<j<... and

1
(k!)2

∑
α,β,... →

∑
α<β<....

11That is, in a way that puts as much weight as possible on the lowest-rank terms.
12More precisely, the observables should remain unchanged if the full initial Hamiltonian is kept. How-

ever, observables obtained from a truncated Hamiltonian do depend on the transformation. It is the very
purpose of the latter to render the contribution of high-rank terms as little as possible.

13This is worse than the combinatorial scaling of the previous section, since for practical applications
the wave functions are expanded on a basis which is not the basis spanned by the one-body eigenstates.

14As is the case for, e.g., electronic systems.
15As is the case for fermionic systems. This includes composite bosons (e.g. Cooper pairs, α particles

to name a few) made of fermions, if the bosonic pairs still show substantial interaction.
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20 Chapter 2. Generalities

prevalent16, see appendix B for an illustration.

When the Hamiltonian (2.22) is truncated at the three-body level, the energy of a
(normalised) state |Ψ⟩ writes

E[|Ψ⟩] =
∑
αβ

tαβ
〈
b†αbβ

〉
+

1

(2!)2

∑
αγβδ

vαγβδ
〈
b†αb

†
γbδbβ

〉
+

1

(3!)2

∑
αβγδϵζ

wαγϵβδζ

〈
b†αb

†
γb

†
ϵbζbδbβ

〉
, (2.23)

where the brackets ⟨.⟩ denote the expectation value with respect to |Ψ⟩. As already al-
luded to, handling two- and higher-body densities is an exceedingly demanding task, which
we want to avoid. For our salvation, the Wick theorem lets us recast such many-point
correlations functions into products of two-point ones, i.e. one-body densities [FW71, Ch.
III.8] [BR86, Ch. IV] [Zee10, Ch. I.A.2].

2.3.1 Wick theorem

The expectation value of strings of creation and annihilation operators can be written as
products of one-body densities by applying Wick’s theorem [Wic50; ES96] with respect
to the yet-to-be-determined ground state |Ψ⟩. The theorem states that any product of
ladder operators can be recast as a sum of pairs of such operators. It builds on the use
of the normal-ordering of strings of operators, with the elementary contractions of two
operators (either creation or annihilation) Ai, Aj defined as

AiAj ≡ AiAj− :AiAj:, (2.24)

the dots denoting the normal ordering operation, which places all creation operators
to the left. As Ai and Aj can be creation or annihilation operators, there exist four
such elementary contractions. Owing to the usual commutation relations for bosons and
fermions, three of these contractions vanish, the only remaining one being

AiA
†
j = δij. (2.25)

By induction, arbitrary strings of operators can be recast as a sum of products in-
volving Wick-contracted and normal-ordered terms only. Such combinatorial expansion
beams when employed to calculate expectation values atop a reference state which is a
vacuum with respect to the annihilation operators. In that case, all strings involving
normal-ordered terms vanish, and only the fully contracted term remains. The expecta-
tion value of any strings becomes a product of expectation values of pairs of operators,
which are tremendously more simple to handle. Since this is only true when the reference
state is annihilated by the lowering operators, the measure ⟨.⟩ corresponding to taking

16Typically, for A degrees of freedom, terms of order ∼ A/2 become outrageously dominant.
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Chapter 2. Generalities 21

expectation values must be that of independent operators, i.e. be Gaussian17.

For fermions18, and after discarding non-fully contracted strings of operators (which
amounts to performing a mean-field approximation, as this only retains one-body densi-
ties),

〈
b†αbβ

〉
≡ ρβα = δαβ −

〈
bβb

†
α

〉
, (2.26)〈

b†αb
†
β

〉
≡ κ̄βα, (2.27)〈

bαbβ
〉
≡ καβ, (2.28)〈

b†αb
†
γbδbβ

〉
= ρδγρβα − ρδαρβγ + κ̄γακδβ, (2.29)〈

b†αb
†
γb

†
ϵbζbδbβ

〉
= ρζϵρδγρβα − ρζγρδϵρβα + ρζαρδϵρβγ (2.30)

− ρζϵρδαρβγ + ρζγρδαρβϵ − ρζαρδγρβϵ

+ ρζϵκ̄γακδβ − ρζγκ̄ϵακδβ + ρζακ̄ϵγκδβ

− ρδϵκ̄γακζβ + ρδγκ̄ϵακζβ − ρδακ̄ϵγκζβ

+ ρβϵκ̄γακζδ − ρβγκ̄ϵακζδ + ρβακ̄ϵγκζδ.

More general considerations on the contractions of a string of creation and annihilation
operators can be made here, in order to gauge the recording complexity of generic ex-
pectation values, and appreciate the relief brought by symmetrising the matrix elements.
In the general setting, a string involving 2k operators can be contracted in (2k − 1)!!
different ways. If anomalous contractions are not allowed, only b†b-type strings will result
in non-zero contributions, in which case there are k! different contractions. On the other
hand, Wick’s theorem (along with the use of anti-symmetrised interactions) reduces the
number of interactions stemming from a k-body operator to ⌊k/2⌋+ 1 if anomalous con-
tractions are allowed, and only 1 if not. This procedure thus reduces the doubly factorial
bookkeeping down to a linear one.

2.3.2 Interaction symmetrisation

Depending on the spin of the degrees of freedom, the total many-body wave function is
required to be either completely symmetric or antisymmetric under the exchange of any
two particles. Introducing the operator Pij that swaps the particles i and j, a fermionic
many-body wave function must verify

−H︷ ︸︸ ︷
H Pij |Ψ⟩︸ ︷︷ ︸

−|Ψ⟩

= −E |Ψ⟩ , (2.31)

so that the anti-symmetry can be cast into the Hamiltonian, and therefore into the

17In the language of path integrals, this means that the Lagrangian must only contain bilinears in
the operators (and their derivatives), which strongly suggests the use of mean-field approximations when
dealing with many-body problems.

18As for bosons, all minus signs would become plusses.
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interaction matrix elements. This symmetrisation of the interaction is very useful once
the Wick theorem has been applied to the expectation value of H, as it allows transferring
the symmetry properties from the densities into the two- and three-body matrix elements.
A properly anti-symmetrised interaction matrix elements arises from the following proce-
dure. A generic k-body operator writes, in second-quantised form,

Ôk−body =
1

(k!)2

∑
1,...,k
1′,...,k′

u1,...,k,1′,...,k′b
†
1 . . . b

†
kbk′ . . . b1′ . (2.32)

The k-body interaction vertex u(a), anti-symmetrised to the right (i.e.with respect to
permutations of the k rightmost operators) can be built from an initial u through

u
(a)
1,...,k,1′,...,k′ ≡

∑
{P ′}

(−1)πP′uP ′ (1,...,k,1′,...,k′)

=
(
1−

∑
i,j
all ̸=

P ′

ij +
∑
i,j,k
all ̸=

P ′

ijP
′

jk − . . .
)
u1,...,k,1′,...,k′ , (2.33)

where P ′
denotes a permutation of the primed indices, and {P ′} the set thereof. The

exponent πP ′ is the parity of the permutation19. For instance, the anti-symmetrised
fermionic two- and three-body interaction matrix elements read

v
(a)ρρ
αγβδ ≡ vαγβδ − vαγδβ, (2.34)

w
(a)ρρρ
αγϵβδζ ≡ wαγϵβδζ − wαβϵδγζ + wϵβαδγζ − wγβαδϵζ + wγβϵδαζ − wϵβγδαζ . (2.35)

The anti-symmetrised matrix elements generated by permuting indices to the right
are associated to contractions involving only b†b strings because this amounts to moving
annihilation operators only. As for the remaining contractions, the form of the two- and
three-body matrix elements can be deduced by noting that the orderings to be involved
are, by construction, all the ones that do not contribute in producing the terms (2.34)-
(2.35). For a k-body operator, there are (2k − 1)!! − k! such types of permutations.
Alternatively, one can simply use the Wick-contracted densities (2.29)-(2.30) involving
pairing tensors. This yields:

v
(a)κκ
αγβδ = vαγβδ, (2.36)

w
(a)ρκκ
αγϵδβζ ≡ wαγϵβδζ − wαϵγβδζ + wγϵαβδζ − wαγϵβζδ

+ wαϵγβζδ − wγϵαβζδ + wαγϵδζβ − wαϵγδζβ + wγϵαδζβ. (2.37)

Using anti-symmetrised interactions allows us to recast the 21 different strings into only

19Naturally, this procedure can be applied to bosonic operators, with this time no parity (hence no
minus signs) involved.
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5, transferring the bookkeeping from the densities into the vαγβδ and wαγϵβδζ vertices,
which only take up a sign corresponding to the parity of the permutation sequences
involved in the elements of (2.29)-(2.30). The joint use of the symmetrisation procedure
and Wick’s theorem transform the tedious computation of many-body expectation values
into a problem of combinatorics involving only one-body densities. Put differently, when
the interaction matrix elements have been anti-symmetrised according to (2.34)-(2.37),
the strings of densities can be immediately grouped by corresponding powers of ρ’s and
κ’s. The energy (2.23) can then be obtained by teaming up the anti-symmetrisation (2.33)
with the Wick-ordered expectation values (2.26)-(2.30):

E[ρ, κ, κ̄] =
∑
αβ

tαβρβα

+
1

2

∑
αβγδ

v
(a)ρρ
αγβδρδγρβα +

1

4

∑
αγβδ

v
(a)κκ
αγβδ κ̄γακβδ

+
1

6

∑
αβγδϵζ

w
(a)ρρρ
αγϵβδζρζϵρδγρβα +

1

4

∑
αβγδϵζ

w
(a)ρκκ
αγϵβδζρζϵκ̄γακβδ. (2.38)

2.4 Mean-field approximations

2.4.1 General setting

Approximating the exact density matrix by its one-body sector amounts to assuming
that the eigenstates (not only the ground state) of the A-body system can be written as
product states of creation20 operators on top of the bare vacuum |−⟩, e.g.

|Φ⟩ =
∏
λ

ξ†λ |−⟩ , card({λ}) = A, (2.39)

with the set {ξ†} to be determined by minimising the energy under the set of desired
constraints. Because the mean-field picture lets us write the eigenstates as products of
creation or annihilation operators on top of a vacuum, the ground state is easily identified.
At zero temperature, it is simply the product state with the lowest energy. At finite tem-
perature, however, the degrees of freedom have a non-zero probability to scatter towards
more energetic orbitals than the lowest ones. It follows in that situation that a product
state ansatz is bound to badly fail at providing a faithful description of the structure and
dynamics of the system. The ground state density operator must instead be written as a
linear combination of the permitted states, that is

R(β) =
∑
n

fn(β) |n⟩⟨n| =
∑
s

zs(β)

Z(β)
Rs; β ≡ (kBT )

−1, (2.40)

where the individual states |n⟩ and many-body density matrices Rs associated to pure

20or annihilation, in case of the Bogoliubov formalism.
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states implicitly depend on the inverse temperature β through the self-consistent solution
to the mean-field equation.

The fn and zs can be determined by a derivation21 entirely similar to that of section 2.2:

fn =
1

eβEn + 1
, zs = e−βEs , Z =

∑
s

zs, (2.41)

with En the energy of the nth one-body eigenstate and Es the energy of the sth product
state. The fact that the fn are different from 0 or 1 (except at zero temperature), causes
that the thermal density R(β) cannot be associated to a pure state, but is rather a
statistical mixture of different density operators. The most general (single-reference)
finite temperature mean-field transformation, the one of Hartree-Fock-Bogoliubov (HFB),
is recapitulated in the next subsection.

2.4.2 Hartree-Fock-Bogoliubov theory

The simplest mean-field theory, the Hartree-Fock approximation, assumes that the opti-
mal creation (resp. annihilation) operators write as linear combinations of the creation
(resp. annihilation) operators spanning a basis of the one-body Hilbert space, with the
symmetry that only operators of identical time-signature can mix. It is thus by con-
struction unable to account for pairing correlations. In the presence of a pairing inter-
action among the degrees of freedom, the single-particle states interact even if they do
not have the same time signature. While the Bardeen-Cooper-Schrieffer (BCS) theory
[Coo56; BCS57a; BCS57b] assumes that only time-reversed partners are explicitly cou-
pled through a pairing field22, the most general way of constructing the new eigenstates is
to express them as a linear combination of all the single particle ones, regardless of their
relative quantum numbers. In the same spirit as the BCS theory defines new independent
degrees of freedom operators as a mixing of forward- and backward-propagating single
particle ones, the HFB transformation [Bog47; Bog58; BTŠ58] defines quasi-particles23

on top of the HFB vacuum as linear combinations of all possible single-particle states,
and is conventionally parametrised as

αµ =
∑
i

U∗
iµci + V ∗

iµc
†
i , (2.42a)

α†
µ =

∑
i

Viµci + Uiµc
†
i . (2.42b)

21One could also invoke the “heuristic” argument that R(β) being a state built with independent degrees
of freedom, the ground state density immediately writes as a linear combination of the independent-
particle densities, weighted by their Fermi-Dirac coefficients.

22Which is generally a reasonable assumption since these are the pairs of states with maximal spatial
overlap.

23One can make the distinction between occupied states (quasi-holes, or qh) and unoccupied states
(quasi-particles, or qp). While it is customary to refer to both as qp, the discrimination will hopefully
be made scrupulously.
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The matrices U and V encode the Bogoliubov transformation, and are to be obtained
by the minimisation of the mean-field grand potential. The product state of lowest energy
is constructed as a vacuum with respect to the newly defined quasi-particle annihilation
operators (2.42a)-(2.42b):

αµ

∣∣ΦHFB
〉
= 0 ⇒

∣∣ΦHFB
〉
=
∏
λ

αλ |−⟩ . (2.43)

Special attention should be paid when defining the transformation, as many conventions
coexist [DFT84]. The prescription (2.42a)-(2.42b) for the transformations corresponds to
the so-called traditional representation of the Bogoliubov transformation. Eventually, the
equations for the Russian convention will also be given in section 3.3. The transformation
can conveniently be represented in matrix form24:

B† ≡
(
U † V †

V T UT

)
;

(
α
α†

)
= B†

(
c
c†

)
, (2.44)

defining the Bogoliubov matrix B. The inverse transformation is

(
c
c†

)
= B

(
α
α†

)
; B =

(
U V ∗

V U∗

)
;

ci =
∑
µ

Uµiαµ + V ∗
µiα

†
µ,

c†i =
∑
µ

Vµiαµ + U∗
µiα

†
µ.

(2.45)

Amounting to a mere linear transformation, the passage from the initial basis {c†, c}
to the Bogoliubov basis {α†, α} must be achieved through a unitary transformation, i.e.,
BB† = I = B†B. This ensures the preservation of the canonical anti-commutation rela-
tions between the Bogoliubov operators:

{αµ, α
†
ν} =

∑
ij

U∗
iµVjν{ci, cj}+ U∗

iµUjν{ci, c†j}+ V ∗
iµVjν{c†i , cj}+ V ∗

iµUjν{c†i , c†j}

=
∑
i

U∗
iµUiν + V ∗

iµViν = δµν , (2.46)

{αµ, αν} =
∑
ij

U∗
iµUjν{ci, cj}+ U∗

iµVjν{ci, c†j}+ V ∗
iµUjν{c†i , cj}+ V ∗

iµVjν{c†i , c†j}

=
∑
i

U∗
iµViν + V ∗

iµUiν = 0. (2.47)

This unitarity requirement can also be written in matrix form, yielding the two sets of
relations

24Single-particle operators are not barred to ease the representation; one should see the c’s and c†’s as
spanning both the time-forward and time-backward states here.
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B†B = I : U †U + V †V = I, (2.48a)

U †V ∗ + V †U∗ = 0, (2.48b)

V TU + UTV = 0, (2.48c)

V TV ∗ + UTU∗ = I, (2.48d)

BB† = I : UU † + V ∗V T = I, (2.49a)

UV † + V ∗UT = 0, (2.49b)

V U † + U∗V T = 0, (2.49c)

V V † + U∗UT = I. (2.49d)

Since the transformation allows the mixing of all the states regardless of their behaviour
under symmetry operations (e.g. time reversal, parity, angular momentum, etc), the re-
sulting wave functions do not possess well-defined quantum numbers, and, most notori-
ously, the product state of lowest energy resulting from the application of the Rayleigh-
Ritz method does not conserve the particle number. As an illustration, one has in general
a non-zero pairing tensor:

κ̄ij ≡
〈
c†ic

†
j

〉
=
∑
µν

VµiVνj ⟨αµαν⟩+ VµiU
∗
νj

〈
αµα

†
ν

〉
+ U∗

µiVνj

〈
α†
µαν

〉
+ U∗

µiU
∗
νj

〈
α†
µα

†
ν

〉
.

(2.50)

Of the four expectation values, only the second and third can survive by virtue of the
product state ansatz (2.43). As the independent degrees of freedom of the problem are
the quasi-particle operators {α, α†}, one has

〈
αµα

†
ν

〉
= fµδµν and

〈
α†
µαν

〉
= (1 − f̄µ)δµν .

The generalised density (or Valatin) operator, that contains all the one-body density
correlations, then writes in its diagonal form

R(β) ≡
(〈

α†α
〉

⟨αα⟩〈
α†α†〉 〈

αα†〉) =

(
f

1− f̄

)
; ⟨.⟩ =

〈
ΦHFB

∣∣.∣∣ΦHFB
〉
, (2.51)

f and f̄ being the Fermi-Dirac occupations for unbound and bound states, respectively.
Naturally, a consequence of the fact that the eigenvalues of the HFB equation come in pair
is that f = f̄ ; the distinction is however maintained for bookkeeping purposes. Just like in
the BCS theory, the fact that particle-particle and hole-hole correlations can be non-zero
forces the doubling of the basis. Equivalently, this necessity can be seen directly from
the form of the Bogoliubov transformation (2.42), which mixes creation and annihilation
together25. Recalling the definitions (2.26)-(2.28) of the elementary contractions with
respect to the sought HFB vacuum, the densities in the c, c† basis write

ρ(β) = UfU † + V ∗(I − f̄)V T , (2.52a)

κ(β) = UfV † + V ∗(I − f̄)UT , (2.52b)

−κ̄(β) = V fU † + U∗(I − f̄)V T , (2.52c)

I − ρ̄(β) = V fV † + U∗(I − f̄)UT . (2.52d)

25One may also take the obverse viewpoint, saying that the HF theory is a very peculiar transformation,
in which c’s and c†’s do not mix so that the density matrix is separable as a direct sum. The often enforced
time-reversal symmetry and zero temperature regime then allow discarding half of the generalised density
matrix.
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The energy writes as in (2.38), with the minimisation of the grand potential to be carried
out within the space of one-body densities (2.52). Due to the canonical relations (2.46),
not all the variational parameters are independent26. This can also be seen straight from
(2.52) with the help of (2.48), (2.49):

(2.52) and f = f̄ : ρ̄(β) = ρ∗(β), (2.53a)

{c, c} = 0 : κ(β) = −κT (β), (2.53b)

{c†, c†} = 0 : κ̄(β) = −κ̄T (β). (2.53c)

In addition, anticipating that the Hamiltonian of the theory is Hermitian27, one knows
that the U and V matrices can be made real, and the eigenvalues come by pairs of opposite
sign (hence Ē = E, implying in turn f̄ = f) due to the doubling of the basis. Equipped
with this, all densities become real, and can reach finer degrees of symmetries:

U, V real : ρT (β) = ρ(β), (2.54a)

ρ̄T (β) = ρ̄(β), (2.54b)

κ̄(β) = κ(β). (2.54c)

These symmetries will be reviewed in greater detail in section 3.3. Rather than taking all
of {ρ, ρ̄, κ, κ̄}, one can thus consider {ρij, κij, ρ̄ij, κ̄ij}i≤j as the complete and irreducible28

set of parameters with respect to which the energy is to be varied. One thus has

δE =
∑
i≤j

δE

δρij
δρij +

δE

δρ̄ij
δρ̄ij +

δE

δκij

δκij +
δE

δκ̄ij

δκ̄ij. (2.55)

Then, on defining the mean and pairing fields according to

hνµ ≡ δE

δρµν
, (2.56a)

h̄νµ ≡ δE

δρ̄µν
, (2.56b)

∆µν ≡ δE

δκ̄µν

, (2.56c)

∆̄µν ≡ δE

δκµν

, (2.56d)

we may define the generalised Hamilton matrix such that δE = Tr{HδR}: after iden-
tifying the diagonal terms of HδR with those of (2.55), one obtains

26While the corresponding relations between the one-body densities are sometimes determined from
the idempotency of the generalised density, at finite temperature the density operator is not longer a
single product state, so that this relation does no hold any more. Eventually, the Rk(β), k ∈ N form a
convex sequence, and have a fixed point only at T = 0. The idempotency can only be met in the product
states (of which the thermal density is a mixture), not in the thermal density itself.

27Which is natural since the system is closed, hence of unitary evolution.
28Irreducibility is to be understood within the doubled basis: owing to the relations between barred

and non-barred densities, this set still contains redundancies.
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H =

(
h ∆

−∆̄ −h̄

)
, (2.57)

with the fields deriving from (2.38) writing29

hαβ = tαβ +
∑
γδ

v
(a)ρρ
αγβδρδγ +

1

2

∑
γδϵζ

w
(a)ρρρ
αγϵβδζρζϵρδγ +

1

4

∑
γδϵζ

w
(a)ρκκ
αγϵβδζ κ̄ϵγκδζ , (2.58a)

∆αγ =
1

2

∑
γδ

v
(a)κκ
αγβδ κβδ +

1

2

∑
γδϵζ

w
(a)ρκκ
αγϵβδζρζϵκβδ, (2.58b)

∆̄αγ =
1

2

∑
γδ

v
(a)κκ
αγβδ κ̄βδ +

1

2

∑
γδϵζ

w
(a)ρκκ
αγϵβδζρζϵκ̄βδ, (2.58c)

h̄αβ = tαβ +
∑
γδ

v
(a)ρρ
αγβδ ρ̄δγ +

1

2

∑
γδϵζ

w
(a)ρρρ
αγϵβδζ ρ̄ζϵρ̄δγ +

1

4

∑
γδϵζ

w
(a)ρκκ
αγϵβδζ κ̄ϵγκδζ . (2.58d)

Due to the hermicity of the HFB Hamiltonian, one has h† = h and ∆† = −∆̄, in consis-
tency with the symmetries of the generalised density matrix. As a consequence of (2.53a),
ones also has h∗ = h̄, while (2.54c) gives ∆̄ = ∆.

Since the energy is to be varied with certain constraints, one should express these in the
doubled basis as well in order to handle a single representation. The expectation values
of generic one-body operators Q =

∑
ij Q

ρ
ijc

†
icj + Qκ

ijcicj can be written in the doubled
basis thanks to the very same procedure, making use of the symmetries (2.53) and (2.54)

Tr{Qρρ}+ Tr{Qκκ} =
1

2
Tr

{(
Qρ Qκ

(Qκ)T (−Qρ)∗

)(
ρ κ
−κ̄ I − ρ̄

)}
+

1

2
Tr{Qρ}. (2.59)

It should be noted that Qρ being real and symmetric, using its complex conjugate is
entirely conventional and due to using the relation (2.53a). It will be shown in section 3.3
that the only choice consistent with complex matrix elements is to use the scalar transpose
of Qρ. In our case, where the constraints are imposed solely for the particle numbers and
multipolar moments (whose operators only have components in the normal sector), these
expressions reduce to the usual block-diagonal ones.

One finds the set of many-body states by minimising the grand potential (2.8), with
the additional constraint that the associated density operators Rp.s. must correspond to
product states. This translates into the fact that one can find a set of idempotent density
matrices {Rp.s.} solving the equation of motion. However, they only correspond to the
possible pure states that can be obtained, and the one of lowest energy identifies with the
ground state only in the T → 0 limit. In the T > 0 case, the ground state is a mixture
of these densities according to (2.15) (or equivalently, in the case of the FTHFB theory,

29Note that the indices β and γ are sometimes permuted in order to write ∆αβ rather than ∆αγ ; this
is a matter of convention.
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using (2.52)). Thus, one only has to solve

δ

(
E − µN − Λ(R2

p.s. −Rp.s.)−
∑
LM

λLM(QLM − qLM)

)
= 0, (2.60)

where the indices LM run over the multipole moments we want to constrain to the
values qLM . Solving this equation gives the product state of lowest energy, along with the
eigenvectors of the constrained Hamiltonian. Recalling the expressions of the expectation
values and using (2.59), one obtains by the very same argument as in section 2.2

H − µN − ΛRp.s. −Rp.s.Λ + Λ− 1

2

∑
LM

λLMQLM = 0. (2.61)

This expression can be multiplied by Rp.s. separately to the left and to the right, the
subtraction of these two copies leading to the static HFB equation

[
H − 1

2

∑
LM

λLMQLM ,Rp.s.

]
= 0. (2.62)

Once this equation has been solved, the thermal state R can be constructed from the
density operatorRp.s. with the lowest energy using the Fermi-Dirac factors, or equivalently
as a weighted sum over the whole set {Rp.s.}.

2.5 Thermal phase transitions

Allowing the system to have non-zero temperatures opens a way to several phenomena.
Naturally, one might expect from their everyday experience that the changes of a system’s
temperature can trigger a plethora of effects, the most notable being the occurrence of
phase transitions30. In the case of interacting quantum systems, thermal scattering of
the particles between the possible shells can lead to highly non-trivial rearrangements of
the energy spectrum. More specifically, the pair condensate being produced by a (rather
weak) interaction between time-reversed partners, the competition between pairing and
thermal effects is easily conceived to cause the breakup of pairs when the temperature is
increased. In the case of deformation, a restoration of the spherical symmetry is also to
be anticipated: a well-pronounced deformation marks that a set of corresponding orbitals
is occupied while states of higher energy are not. When the temperature is increased,
the nucleons initially sitting on the deformed orbital also have significant probability to
occupy all the energetically close states, resulting in an averaging that smoothens the
total deformations [BM75]32. The two following subsections concisely illustrate the two

30The complex problem of understanding how phase transitions can occur in finite systems is entirely
set aside; the reader may refer to [YL52; LY52], [Mai05]31and [CG08].

31Mind that the r.h.s. of his equation (2) should read κ
∏N(V )

r=1

(
1− z

zr

)
, without the log.

32Likewise, one could also expect a spherical to deformed transition in very small systems.
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predicted behaviours.

2.5.1 Collapse of the pairing via thermal excitations

From the expression (2.52b), one sees with the help of (2.49) that the pairing correlations
should fade out at high temperatures:

κij =
∑
k

V ∗
ikU

T
kj(1− fk − f̄k) −→

β→0
0. (2.63)

That said, it leads to a pairing energy that appears smoothly vanishing, whereas it is
known that within mean-field theories like HFB and BCS, pairing does not survive beyond
a critical temperature Tc at which the transition from the superfluid to the normal phase
occurs [BCS57c]. The rapid collapse of the pairing tensor is therefore encoded in the V
and U amplitudes. While the sharp transition cannot be inferred directly from (2.69)
alone, one can be convinced that, the pairing gap depending on the average occupation
of the shells, a much faster collapse than the one predicted by a too quick observation of
(2.63) should be expected. In addition, pairing is mostly a surface phenomenon. Albeit
this is not easy to see from the Bogoliubov transformation, this is clearer by using the
Bloch-Messiah-Zumino (BMZ) decomposition [BM62; Zum62] [RS80, Secs. 7.2, 7.3, App.
E1] (and its generalisation [Dob00]):

(
U † V †

V T UT

)
=

(
C†

CT

)(
Ū † V̄ †

V̄ † Ū †

)
︸ ︷︷ ︸

BCS-like

(
D†

DT

)
︸ ︷︷ ︸

HF-like

. (2.64)

Since this transformation is well-known, its features are only succinctly recapped here.
The first step is a block-diagonal transformation of the single particle operators among
themselves, that puts the normal density matrix and pairing tensor in their diagonal
form33. This defines the so-called canonical basis. In the situation where pairing cor-
relations are not described, this is equivalent to the Hartree-Fock transformation. The
Hamiltonian transformed accordingly can thus be written as a collection of two by two
matrices:

Hcb =
N⊕
k

hcb
k =

N⊕
k

(
ϵk − λ ∆k

−∆k −ϵk + λ

)
= diag(hcb

1 , . . . , hcb
N ), (2.65)

each block being diagonalised by a BCS-like transformation with squared amplitudes
and eigenvalues

33Depending on the ordering of the {c†, c} operators, the pairing tensors can be made either diagonal
or anti-diagonal.
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v2k =
1

2

(
1− ϵk − λ√

(ϵk − λ)2 +∆2
k

)
, (2.66)

u2
k =

1

2

(
1 +

ϵk − λ√
(ϵk − λ)2 +∆2

k

)
, (2.67)

E±
k = ±

√
(ϵk − λ)2 +∆2

k. (2.68)

This second transformation thus takes the canonical basis to the BCS basis. The third
rotation mixes the BCS quasiparticle operators among themselves, leading to the Bogoli-
ubov basis. The BMZ theorem can thus be understood as a decomposition of the full HFB
transformation into a series of HF-like and BCS-like transformations, followed by a third
one diagonalising the resulting Hamiltonian and density operator simultaneously. As the
density matrix is diagonal in the canonical basis, it corresponds to the best independent
particle representation of the problem, hence it is convenient for a physical analysis. For
the present discussion, we assume that the last transformation is trivial (C = I), so that
the HFB transformation reduces to the HF-BCS one. In that case, the total energy writes

EBCS
tot =

∑
k

(ϵk − λ)[v2k(1− fk) + (1− v2k)fk] + ∆kukvk(2fk − 1) ≡ EBCS
normal + EBCS

pair .

(2.69)

Remarking that 2ukvk = ∆k/E
BCS
k and eying (2.68), one sees that the effects of pairing

are localised around the Fermi surface, which is another argument in favour of a rapid
collapse of the pairing with the temperature, since the levels close to the Fermi energy
are the most affected by the statistical distribution (2.41). This statement can be made
more quantitative by showing [BCS57c; Gor96] that the pairing abruptly vanishes above
a critical temperature TC

∆(T ) = ∆(0)

[
1−

(
T

TC

)m]1/2
Θ(TC − T ), (2.70)

where the zero-temperature pairing gap ∆(0) is obtained by assuming the pairing inter-
action to be constant within a small window around the Fermi energy. Typical expected
values for the critical temperature are about 0.5-0.6 times ∆(0).

2.5.2 Spherical symmetry restoration

Like for the pairing transition, the evolution of the deformation with temperature is
strongly affected by the energy spectrum and the shape of the corresponding wave func-
tion. At low temperature, the overall deformation is that of the lowest energy states. As
the temperature increases, several states can be occupied with about similar probabilities,
which results in an essentially spherical thermal state. Figure 2.1 considers 100 shells to
which are associated Woods-Saxon density profiles, with relative diffusenesses az, a⊥ ran-
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domly selected between 0.5 and 1.5. The energies are taken equally spaced between 0 and
2 arbitrary units. At zero temperature, the deformation is that of the state of zero energy.
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Figure 2.1: Total density at T = 0 and T = 0.5 a.u. for 100 states with randomly
generated prolate (az > a⊥) and oblate (az < a⊥) deformations. The white dashed
contours signal the region where the density reaches 20% of its maximum value and serve
as a guide to the eyes. See text for details.

In particular, in large nuclei, the density of states becomes high [Bet36], due to (i) the
numerous particles involved, (ii) a deeper confining potential. Within an energy window,
there can thus be several states that correspond to quite different deformations due to the
abounding possible combinations of quantum numbers. Consequently, even at moderate
temperatures, the averaging of the density can be significant, so that we can expect the
restoration of spherical symmetry to happen at lower temperature than would be the
case for few-body systems. For those, the converse situation is also possible: even if the
zero-temperature ground state is spherical, the small number of bound states might not
be enough to effectively cause the averaging of the shape towards a spherical density.

2.5.3 Thermal configuration mixing

In the most basic mean-field theories, only the ground state of the system is considered.
One should note, however, that the phase transition associated to the passage from a
symmetry to another is, in such a single-reference situation, only a very crude represen-
tation of what would happen realistically. Indeed, in finite systems, fluctuations in the
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order parameters can be of sizeable importance. The corresponding energy surface can
be explored to a substantial extent. As a consequence, a more faithful description would
involve mixing all the configurations of the surface obtained for a given temperature.
Expectation values should therefore be calculated as a doubly averaged quantity: for an
operator Ô, labelling a point of the energy surface as q,

⟨⟨Ô⟩⟩ =

∫
dq e−βF (q)⟨Ô⟩q∫
dq e−βF (q)

, (2.71)

the first averaging being the usual tracing operation, ⟨Ô⟩q = Tr
{
ÔD̂(q)

}
, the second

the averaging over all configurations at a given temperature, and F the Helmholtz free
energy. The results presented in chapters 4-5 only carry out the first averaging. Because
the statistical weights of the configuration are exponentially decreasing functions of the
inverse temperature, this approximation should be valid only at very low temperatures.
In the case of phase transitions, the sharp collapse of the order parameter should not hold
any more: close below (or above) the critical temperature, a fraction of the states with
significant weight may be in a state fulfilling either symmetry, so that the sharp evolution
concerning only the ground state is diluted in the thermal average. In particular, it
has been shown in [MER03b; MER03a] that including the thermal averaging smoothens
the evolution of the average deformation and pairing a great deal, and also that the
discrepancy between the single-reference and fully averaged results indeed increases with
the temperature. An interesting alternative is to include the particle number fluctuation
directly into the FTHFB equations [DA03; Din06], which is shown to also make the phase
transition more gentle in the case of superfluidity.

2.6 Response theory

2.6.1 General aspects and points of view

Collective behaviours are an omnipresent property of strongly correlated systems. In
quantum mechanics, all excitations can be represented as picking one or several particle(s)
in a given set of states, and placing them back on different orbitals. The overall difference
in spin is integer34, and thus corresponds to bosonic excitations. This bosonic charac-
ter can only provide an approximate representation for two reasons. First, for fermions,
the Pauli principle constrains the permitted transitions, whereas a simple boson picture
cannot account for it. Second, the raising and lowering of particles has consequences on
the whole structure of the ensemble, since the degrees of freedom interact. Therefore,
in interacting theories, the promotion of a degree of freedom from one state to another
modifies the levels of all the particles; consequently, a self-consistent theory of collective
modes must break this bosonic approximation. When the reference state is obtained via
an approximation, e.g. within a mean-field theory, this inclusion of additional correlations

34Unless one has the somewhat curious idea of letting bosons transmute into fermions and vice versa,
see e.g. [Pol88; Okn14].
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changes the reference state, so that the ground state of the system with respect to the
excitations is not the mean-field state, but a more correlated one.

The collective features of a quantum system can be studied from two different points of
view:

- One may take an “external” (or extrinsic) look and send an external probe onto
the system in order to excite the collective eigenmodes that are consistent with
the selection rules of the ensemble {probe+system}. This standpoint is commonly
formalised as the response theory. As will be shown in subsection 3.4, this view can
be related to the “internal” one by extending the linear response into the complex
plane and carrying on suitable contour integrations [Som83].

- Conversely, one may adopt an “internal” (or intrinsic) point of view by considering
the system as truly isolated, and determine its collective states by diagonalising its
full-fledged Hamiltonian, or an approximation thereof. The correspondence with
the “external” viewpoint is obtained by calculating the transition probability from
an eigenmode to another under the action of a selected probe [RS80, Ch.8][PN66].

The two emblematic formulations of the external and internal perspectives are, respec-
tively, the TDMF and the RPA.

2.6.2 Linear approximation

The linear response theory goes by the assumption that excitations of more than one
degree of freedom are largely sub-leading and can therefore be neglected. From the ex-
perimental side, this supposes that the probe employed to excite the system is of small
enough intensity, and active for a timescale small enough to prevent non-linear effects
from building up, for instance through a heating up of the system [Som83]. The validity
of the linear regime can thus be experimentally assessed in two different manners:

- by scaling up the intensity I of the probe, e.g. I → λI, with λ some scaling factor,

- by increasing the duration for which the probe is turned on, e.g. T → λT ,

the linear response regime resulting in the expectation values of the fluctuations of
any observable to scale accordingly, i.e. ⟨δO⟩ → λ ⟨δO⟩. In real-life experiments, it is
commonly assumed and verified that such non-linear effects are largely sub-leading with
respect to statistical fluctuations and device-based sources of non-linear behaviours. From
the theory side we can’t do wonders, except going beyond the linear approximation and
choosing the amplitude of F such that linear terms are dominant. To make the connec-
tion with experiment, F can be chosen to match the amplitude of an actual probe. The
inclusion of non-linear type of fluctuations is usually realised within second RPA [Da 65;
Yan87; GGC10; Gam+16; VGG18], a specific kind of extended RPA theories [LCA98;
LCA99; Tse13; Sch+20] where up to two-phonons modes are considered.

While the characteristics of the probe plays a crucial role in the validity of the linear
approximation, the initial state of the system is naturally of considerable importance.
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If the system is not in a local state of equilibrium, then an arbitrarily small probe can
drive it away from its initial state towards a more stable one with an a priori very dif-
ferent structure. Such an instability mathematically translates into a non-semi positive
definite Hessian (often called the stability matrix), and therefore into complex eigenval-
ues. It follows that detecting non-real collective eigenvalues invalidates the linear regime.
Two techniques for determining the presence of such instabilities within the formalism
developed in this work will be given in subsection 3.8.

2.6.3 Formalisms survey

Given an initial state, collective motion on top of it can be addressed by a plethora of
techniques. Non-exhaustively, the equations describing small amplitude fluctuations can
be obtained by the following approaches:

- by the equation of motion method on double commutators [Row68; Yan87; Sch+20]
[RS80, Sec. 8.4],

- by the Dyson equation and similar methods [Dys49; Nam50; LS50; Sch51; SB51;
HM52],

- by diagrammatic techniques [GB57],

- as a linearisation of the time-dependent equations of motion [Noz64, Ch. 2] [RS80,
Sec. 8.5] [Som83] or Liouville-von Neumann equations,

- as the small amplitude limit of the full-fledged generator coordinate method (GCM)
[JS64; BW68].

Note that these techniques can be used to go beyond the linear approximation, a priori
without encountering any critical dead-end, although at the cost of severe complexifica-
tions of the formalisms.

Rowe’s equation of motion approach re-formulates quantal eigenvalue equations in terms
of expectation values identities involving sets of commutators. While they can be derived
in a strictly exact manner, the evaluation of the commutators usually requires that ap-
proximations be done. For the (Q)RPA, one has to assume the correlated ground state
|(Q)RPA⟩ can be replaced by the mean-field one, |HF(B)⟩. This amounts to the quasi-
boson approximation (QBA), where the excitations are assumed to be of purely bosonic
character.

The Dyson equation can be derived from several starting points, e.g. from time-
dependent perturbation theory [Dys49] or from a variational principle [Sch51]. In the
context of time-dependent oscillations, it can be used to determine the response function
of the system, or its linear component, by keeping only the first-order expansion of the
time-ordered propagator, as done in subsection 2.6.4.

Diagrammatically, the RPA resums ring-type density correlations only [SHS08; SHB13].
Ladder diagrams are not included, which corresponds to the fact that the basic RPA does
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not include short-range correlations. Beyond-RPA theories, such as the self-consistent
RPA [Sch+20; DU20a; DU20b] aim at including such polarisation effects by self-consistently
correlating the reference state.

As for TDMF-type equations, the linear approximation is easily seen. Since the density
fluctuations are expected to be small, only terms linear in the oscillating densities are
retained. The generic procedure will be established in chapter 3.

The last point states that the QRPA can be obtained from the GCM. This is perhaps
surprising, because the GCM is in practice established as a large amplitude collective
motion method over a selected set of few collective coordinates. On the other hand, the
QRPA is a small amplitude theory that does not resort to such macroscopic variables.
The key to this apparent paradox lies in that the derivation of [JS64] does not specify the
coordinates employed in the Hill-Wheeler-Griffith equation. One can thus take them to
be a complete set of many-particle many-hole coordinates (mpmh), which reduce in the
small amplitudes limit to a 1p1h (or 2qp when superfluidity is included) expansion. Con-
versely, one can consider a set of collective coordinates -and their canonical conjugates-
sufficiently large and rich to approach the exact motion of the system. The small am-
plitude limit then selects the 1p1h or 2qp components of these fluctuations, leading to
the QRPA. The standard implementations of the QRPA and the GCM thus go along two
different directions: the first belongs to the class of approaches building up correlations in
terms of mpmh excitations on top of a single reference state, whereas the second targets a
resummation of the correlations through an approach where no excitations on top of the
multiple reference states are considered explicitly. In this formulation as well, the QBA
is performed.

A general observation is that in their simplest formulation, all of these approaches per-
form the QBA, be it somewhat implicitly. While this is essentially an ad-hoc approxima-
tion (although the mean-field picture strongly suggests it should be good), its successes,
be it within quantum chemistry, atomic or nuclear physics, can be taken as a justification
to its approximate validity. That said, the formal mapping of the fermions pairs operators
to bosonic ones is a well-studied problem. The map can be expressed as a series in the
boson operators, two common prescriptions being of the Belyaev-Zelevinksii [BZ62] and
of the Marumori [MYT64] types. This procedure is discussed in detail in [RS80, Ch.9],
[AYG81; BC92], and references therein. In passing, it can be remarked that this boson-
isation approach constitutes the foundation of models of interacting bosons [AI75; AI76;
AI78; AI81].

Independently of these considerations, the general formalism of the linear response the-
ory is reviewed in the next subsection, and will serve as a basis to establish the connection
between the FAM amplitudes and the eigenproperties of the system under scrutiny.

2.6.4 Elements of formalism

The solution to the Schrödinger equation (2.1) is formally given by the time-ordered
exponential [FW71, Secs. 3.6, 3.8] [BR86] [Sak85, Sec 5.5] (ℏ will be set equal to one past
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this equation)

U(t, t0) = T exp

{
− i

ℏ

∫ t

t0

dt1F (t1)

}
∼ I − i

ℏ

∫ t

t0

dt1F (t1)−O
(

1

ℏ2

∫ t

t1

dt1

∫ t1

t0

dt2F (t1)F (t2)

)
. (2.72)

In this equation, t0 corresponds to the time at which the external probe F is switched
on, i.e., the evolution is free for t < t0. Keeping only the first order of the expansion
constitutes the linear response approximation. In that setting, the expectation value of
some operator Ô with respect to the perturbed state is

〈
Ô(t)

〉
= ⟨HFB|U †(t, t0)O(t)U(t, t0)|HFB⟩

∼ ⟨HFB|O(t)|HFB⟩+ i ⟨HFB|
∫ t

t0

dτ [FH(τ), OH(t)]|HFB⟩ (2.73)

= Tr{O(t)D0}+ iTr

{∫ t

t0

dτ [OH(t), FH(τ)]D0

}
≡
〈
Ô(t)

〉
0
+
〈
δÔ(t)

〉
, (2.74)

with the correlated part
〈
δÔ(t)

〉
becoming, after inserting two complete sets of unper-

turbed eigenstates {|µ⟩}, {|ν⟩}, using D0 = Z−1
∑

λ e
−βEλ |λ⟩⟨λ| and the cyclic property

of the trace

〈
δÔ(t)

〉
= iZ−1

∑
µν

e−βEν
∫ t

t0

dτ
{
⟨ν|O(t)|µ⟩ ⟨µ|F (τ)|ν⟩ eiΩν

µ(t−τ)

−⟨ν|F (τ)|µ⟩ ⟨µ|O(t)|ν⟩ e−iΩν
µ(t−τ)

}
, (2.75)

with the shorthand definition Ων
µ ≡ Eν − Eµ. If F is chosen as a one-body operator, Ων

µ

becomes a sum or difference of quasiparticles energies Eµ, Eν . Moreover, when considering
a one-body operator, e.g. F (τ) =

∑
cd Fcd(τ)c

†
ccd, and the density oscillations (so that

Ô =
∑

ab Oabc
†
bca has no time dependence35), the density fluctuations are given by the

convolution product

δρab(t) =

∫ t

t0

dτ
∑
γδ

Rρ
abcd(t− τ)Fcd(τ) (2.76)

Rρ
abcd(t− τ) ≡ iZ−1

∑
µν

e−βEν

{
⟨ν|c†bca|µ⟩ ⟨µ|c†ccd|ν⟩ e+iΩν

µ(t−τ)

−⟨ν|c†ccd|µ⟩ ⟨µ|c†bca|ν⟩ e−iΩν
µ(t−τ)

}
θ(t− τ), (2.77)

35In the present case of densities, Oab = 1.
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with the step function θ(t − τ) to ensure a causal response (i.e. R(t − τ) = 0 for
t < τ). The object R is commonly named the response function36. Equation (2.76) can
be handled by inserting an exponential damping prior to taking its Fourier transform.
This amounts to assuming the interaction is switched off adiabatically, so that it vanishes
at large times. The convolution integral is then replaced by the matrix product

δρ(ω) = Rρ(ω)F (ω), (2.78)

where

Rρ
abcd(ω) = Z−1

∑
µν

e−βEν

(
⟨ν|c†bca|µ⟩ ⟨µ|c†ccd|ν⟩

Ων
µ + ω + iγ

− ⟨ν|c†ccd|µ⟩ ⟨µ|c†bca|ν⟩
Ων

µ − ω − iγ

)
, (2.79)

which makes it clear that the introduction of the damping has the same effect as tilting
the excitation frequency into the complex plane, i.e. ω → ω + iγ ≡ ωγ. This result
is essentially the Umezawa-Kamefuchi-Källén-Lehmann spectral representation [UK51;
Käl52; Leh54], and can also typically be obtained from Green’s functions theory (for a
pedagogical introduction see [BC17] and references therein, see also [Som20] for a more
practical overview). It is useful to remark that this result has been obtained in a non-
perturbative way, and thus entirely encodes the linear component of the two-point (i.e.
one-body) response of the system. Additionally, it shows that the response function can
be determined from the knowledge of the static structure only. Finally, within the one-
body sector, the only approximation results from using as a reference the mean-field state.
Had we used the exact ground state instead of the HFB, (2.79) would be the exact linear,
one-body response function of the system. In case superfluidity is included, one can derive
an equation of the form (2.78) for each type of density, and we can write

δR(ω) = R(ω)F (ω), (2.80)

where δR(ω) is to be understood as the vector (δρ, δκ, δκ̄, δρ̄). The extensions of this
derivation to both 2k-point expectation values and N th order in the expansion (2.72) are
given in appendix D.

As can be seen from (2.78) and (2.80), if the operator F representing the probe is real
(meaning that the norm of the probe’s wave function is conserved through time evolution
– more precisely, a unitary evolution translates in the hermicity of the corresponding op-
erator, which imply that it can be made to have real entries only–), then the imaginary
part of the response function determines the dissipative component of the density fluctu-
ations. In that setting, the imaginary part of the oscillating density δR is therefore the
relevant quantity to characterise the resonances of the system.

36Attention should be paid, however, since the response function can also refer to the strength function
S(F, ωγ).
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In particular, the transition rate Γ(ω) for an excitation of frequency ω writes, from
second-order perturbation theory [Dir27][Sak85, Sec. 5.6]

Γ(ω) =
2π

ℏ
Z−1

∑
µν

|⟨ν|F |µ⟩|2e−βEµδ(ω − Ων
µ)︸ ︷︷ ︸

≡S(F,ω)

= −2

ℏ
ImTr

{
F †δR(ω)

}
. (2.81)

In consistency with the introduction of the damping frequency γ, the strength function
S(F, ωγ) becomes

S(F, ωγ) = Z−1
∑
µν

e−βEµ

(
|⟨ν|F |µ⟩|2
Ων

µ − ωγ

+
|⟨µ|F |ν⟩|2
Ων

µ + ωγ

)
, (2.82)

the imaginary part of which exhibits a Lorentzian smearing of full width at half maxi-
mum 2γ. Thus, introducing the complex frequency results in a spreading of the resonances.
The relevance of using a finite value for γ will be addressed in section 3.9. The complex-
valued function S(F, ωγ) thus defined can be recast as the non-smeared function S(F, ω)
by writing the denominators as the sum of their principal values and Dirac distributions,
then using l’Hospital’s rule.

It can be shown without much trouble [PN66, p. 132] that the competition between
Γ(ω) and Γ(−ω) follows the principle of detailed balance

Γ(ω)

Γ(−ω)
= eβω. (2.83)

In particular, this translates the fact that the decay rate Γ(−ω) must vanish when the
temperature goes to zero: de-excitations are not possible since the system is assumed to
be in a ground state.

Due to the probabilistic nature of the transition between states, it is also convenient to
consider the probability distribution for the system to jump from a state |µ⟩ to a state
|ν⟩ under the action of the operator F and be left with an energy ω. This microscopic
probability writes

p(F, ω, µ, ν) ≡ δ(ω − Ων
µ)|⟨ν|F |µ⟩|2 e

−βEµ

Z
. (2.84)

The statistical weight is included in the definition, since the states |µ⟩ implicitly de-
pend on the temperature (and therefore, not including the weight could be confusing as
somewhat concealing this fact). As an aside, it makes the definition of the moments
more natural. The macroscopic probability that a transition occurs is obtained by sum-
ming over all possible initial and final states. One can then obtain the moments of this
distribution as
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mk ≡
∫

dω
∑
µν

ωkp(F, ω, µ, ν) = Z−1
∑
µν

(Ων
µ)

ke−βEµ|⟨ν|F |µ⟩|2. (2.85)

In case of “external” point of view theories like the linear response formalism [Som83]
and the FAM, only the complex strength S(F, ωγ) can be calculated. The exact moments
can be recovered by applying Cauchy’s integral theorem to (2.82) around a contour C
circling all the positive energy eigenmodes:

mk =
1

2iπ

∮
C
dωγω

k
γS(F, ωγ). (2.86)

This complex-energy formulation of the sum rules has been successfully applied within
the context of the FAM [Hin+15] at zero temperature, and (2.86) is valid at T ≥ 0.

The present approach to the linear response theory involves calculating the response
function. Being a four-indices object, this task is often very involved. In order to connect
the derivation of this section to the QRPA form of the theory, we follow [Som83], and put
the linear response equation under the following form:




C̃ ã b̃ D̃

ã† Ã B̃ b̃T

b̃† B̃∗ Ã∗ ãT

D̃∗ b̃∗ ã∗ C̃∗

− ωγ


1

1
−1

−1




W̃

X̃

Ỹ

Z̃

 =


F̃ 11

F̃ 20

F̃ 02

F̃
′11

 , (2.87)

which can be reduced to the FTQRPA when the external operator F is set to zero and
the frequency of the probe ω are replaced by eigenfrequencies Ω of the isolated system.
While we have in mind the prescription of [Som83] for the definition of the QRPA sub-
matrices, the definition of [VM84] can also be employed. The choice of [Som83] leads to
a Hermitian matrix, and thus more straightforwardly to the eigenmodes [Sch19, Ch. 7.4].

Equation (2.87) involving two qp excitations, the matrices A,B,C,D and a, b are repre-
sented by four indices tensors, where one index tags one quasi-particle state. In the linear
response formulation, finding the W,X, Y, Z amplitudes (2.87) amounts to solving a four-
indices equation for each operator F and excitation frequency ω. The QRPA version is
not much more appealing: albeit only one equation has to be solved, it is an eigenvalue
equation over the same very large configuration space. Both methods consider the matrix
elements of the interaction as basic building blocks of the problem. Roughly speaking,
the finite amplitude method replaces the costly handling of these matrix elements by the
fields constructed from them, turning the question of determining the density response
into a set of one-body problems.

As will be shown in the next section, the FAM is very close to the TDMF approach for
the description of collective modes. Very quickly, TDMF techniques proceed as follows:
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- pick an excitation operator F (t);

- apply it to the system as a boost;

- solve the TDMF equations with sufficient accuracy;

- eventually, take the Fourier transform of ⟨F (t)⟩ to obtain the strength function.

One may then wonder what can be the advantages of the FAM. The FAM equations can
be solved for a small (typically, ∼ 100) number of frequencies for a given operator. On
the opposite side, TDMF approaches follow the propagation in the time domain. Basic
signal processing considerations (namely the Nyquist-Shannon theorem, or equivalently
Heisenberg’s uncertainty relation) tell us that the number of time values must be at
least twice the largest frequency of the signal (typical responses can reach ∼ 50 MeV),
while the energy resolution is inversely proportional to the total propagation time. Thus,
describing low-energy modes with good resolution requires substantially more time steps
than higher energy ones, up to the point where typical TDHF calculations require about
a thousand points or more. In the FAM, as the grid spacing in the frequency domain is
at the discretion of the user, one can freely adapt the energy range of interest and the
corresponding resolution. The detailed formalism of the FAM, including several technical
points, is the subject of the next chapter.
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Chapter 3

Finite Amplitude Method
This chapter details the formalism employed and developed during this thesis.
Several formal properties of the equations are derived and discussed.
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3.1 Derivation

The usual derivations of the FAM equation of motion start from either the TDHF equa-
tions [NIY07; INY09a; Sto+11; Lia+13] or from the TDHFB ones [Nik+13; Ney+20].
One can however start from the full-fledged Liouville-von Neumann equation (2.2), which
reduces to TDMF in the case of a mean-field approximation. The derivation presented
follows this route, thus proceeding in a different order than usual: the time-dependent
equation of motion is first obtained, then reduced to the linearised mean-field approx-
imation. Note that these derivations could also be carried out for the (quasi-)particle
operators instead of the density matrix, as done in [AN11]. For convenience, let us split
the matrices into their static and time-dependent components, writing O(t) = O0+ δO(t)
(and recalling that G(0) = H(0)):

0 =
∑
k

G
(k,i)
0 D

(j,k)
0 −D

(k,i)
0 G

(j,k)
0 , (3.1)

iℏ
d

dt
δD(i,j)(t) =

∑
k

{
G

(k,i)
0 δD(j,k) − δD(k,i)G

(j,k)
0 + δG(k,i)D

(j,k)
0 −D

(k,i)
0 δG(j,k)

}
+
∑
k

{
δG(k,i)δD(j,k) − δD(k,i)δG(j,k)

}
. (3.2)

The first equation corresponds to the static solution, whereas the second describes time-
dependent fluctuations. Since we want to study the response of the system as a function
of the probe’s energy, it is more convenient to take the Fourier transform of (3.2),

ℏωδD(i,j)(ω) =
∑
k

{
G

(k,i)
0 δD(j,k)(ω)− δD(k,i)(ω)G

(j,k)
0 + δG(k,i)(ω)D

(j,k)
0 −D

(k,i)
0 δG(j,k)(ω)

}
+
∑
k

{(
δG(k,i) ∗ δD(j,k)

)
(ω)−

(
δD(k,i) ∗ δG(j,k)

)
(ω)
}
, (3.3)

where ∗ denotes the convolution product.

In the present work, we make the small amplitude approximation, that is, the hypothesis
that all the fluctuations are of much smaller amplitude than the corresponding static
quantities. Thus, only terms that are linear in the fluctuations are kept. In addition,
owing to the mean-field approximation, only the (1, 1) sectors of the many-body tensors
are treated. In that case, the response of the system verifies the equation

ℏωδD(1,1)(ω) =
[
G

(1,1)
0 , δD(1,1)(ω)

]
+
[
δG(1,1)(ω), D

(1,1)
0

]
. (3.4)

With the specific notations introduced for the FTHFB approximation, D
(1,1)
0 = R0,

G
(1,1)
0 = H0, δD

(1,1) = δR and δG(1,1) = δH + F , leading to

ℏωδR(ω) = [H0, δR(ω)] + [δH(ω) + F(ω),R0]. (3.5)
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The static matrices write in the quasiparticle basis

R0 =

(
f

1− f̄

)
; H0 =

(
E

−Ē

)
, (3.6)

whereas the oscillating fields are parametrised as

δR(ω) =

(
W X
Y Z

)
; δH(ω) =

(
H11 H20

H02 H
′11

)
; F(ω) =

(
F 11 F 20

F 02 F
′11

)
. (3.7)

Plugging these expressions back into (3.4) leads, after solving for δR, to

Xµν(T ) = − H20
µν + F 20

µν

Eµ + Ēν − ωγ

(1− f̄ν − fµ), (3.8a)

Yµν(T ) = − H02
µν + F 02

µν

Ēµ + Eν + ωγ

(1− f̄µ − fν), (3.8b)

Wµν(T ) = − H11
µν + F 11

µν

Eµ − Eν − ωγ

(fν − fµ), (3.8c)

Zµν(T ) = − H
′11
µν + F

′11
µν

Ēµ − Ēν + ωγ

(f̄ν − f̄µ), (3.8d)

which reduce at T = 0 to only two equations:

Xµν = − H20
µν + F 20

µν

Eµ + Ēν − ωγ

(3.9a)

Yµν = − H02
µν + F 02

µν

Ēµ + Eν + ωγ

. (3.9b)

In this derivation, the coefficients fk have been thought of as Fermi-Dirac factors com-
ing from the finite temperature. However, as their specific expressions are not needed
throughout the calculations, equations (3.8) can also be employed when the fk stem from
a different mechanism than thermal excitations. In particular, it reduces to the zero-
temperature expressions within the QFAM on top of the equal-filling approximation to
the HFB theory for nuclei with odd number of protons and/or neutrons [Ney+20]. Natu-
rally, the equal-filling QFAM could also be extended to finite temperature, with this time
the coefficients fk encoding for both the Fermi-Dirac distribution and the fact that a state
is blocked.

Since the QFAM equations involve first order poles on the real axis, the frequency ω
must be tilted into the complex plane: ω → ωγ = ω + iγ. The corresponding strength
function writes as the expectation value of the response function with respect to the
perturbed ground state:
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S(F, ωγ) =
〈
F †RF

〉
= Tr

{
F †δR

}
= Tr

{
F 11†W + F 02†Y + F 20†X + F

′11†Z
}
, (3.10)

the imaginary part of which gives the smeared transition rate

dB(F, ω)

dω
= − 1

π
Im
{
Tr
{
F †δR

}}
. (3.11)

The continuation of the excitation frequency into the complex plane introduces a Lorentzian
smearing into the strength distribution:

dB(F, ω)

dω
=

γ

π

∑
µν

e−βEµ

(
|⟨ν|F |µ⟩|2

(Ων
µ − ω)2 + γ2

− |⟨µ|F |ν⟩|2
(Ων

µ + ω)2 + γ2

)
. (3.12)

As a consequence, the introduction of the imaginary frequency iγ here serves two pur-
poses: (i) it regularises the otherwise divergent expressions (3.8), and (ii) it artificially
gives a width Γ = 2γ to the resonances of the response function, and as such, can emulate
a part of their physical width that the theory is not able to account for.

Regardless of the physical considerations in terms of symmetries, temperature, parity
of the particle number, etc, the procedure to solve the FAM equation can be summarised
in the diagram of figure 3.1.

Figure 3.1: Algorithm employed for the self-consistent solution of (3.8).

The procedure goes by picking an operator F with complex frequency ωγ, before cal-
culating the transition fields and density self-consistently. The transformations between
computational and static quasiparticle bases are easily carried out. Once convergence has
been reached, the transition densities can be stored, and serve to calculate the strength
function. It will be shown in subsection 3.4 that these densities can be related to the
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QRPA eigenvectors. The most complicated and time-consuming bit is the calculation of
the fields1, which can only be done in the computational basis. The cornerstone of the
FAM lies in the ability to calculate the linearised field δH facilely. Because the struc-
ture of the associated fields is different from that of the static Hamiltonian, an in-depth
presentation is given in the next sections.

3.2 Linearisation of the fields

Formally, the transition fields are the first order derivatives of the mean-field:

δh = lim
η→0

(h[R + ηδR]− h[R])/η, (3.13)

δ∆ = lim
η→0

(∆[R + ηδR]−∆[R])/η, (3.14)

δ∆̄ = lim
η→0

(∆̄[R + ηδR]− ∆̄[R])/η, (3.15)

δh̄ = lim
η→0

(h̄[R + ηδR]− h̄[R])/η. (3.16)

Two different ways of obtaining these are discussed below.

3.2.1 Implicit linearisation

In the original formulation of the FAM [NIY07] the fields are linearised by assuming that
they are at least once-differentiable functions of the density matrices in a small region
about the static solution. Eventually, one can make the stronger assumption that they
can be differentiated more than once, and obtain the usual finite difference formulae:

H[D0 ± ηδD] ≡ H± =
∑
k=0

(±ηδD)k

k!
H

(k)
0 , (3.17)

so that the even and odd derivatives can be zeroed out by adding or subtracting the
forward and backward expansions:

H+ +H− = 2
∑
k=0

(ηδD)2k

(2k)!
H

(2k)
0 , (3.18)

H+ −H− = 2
∑
k=0

(ηδD)2k+1

(2k + 1)!
H

(2k+1)
0 . (3.19)

In particular, the first order derivative writes, using (3.17),

δH = H(1) =
H+ −H0

η
+ O

η→0
(η), (3.20)

1But still, at a cost comparable with that of a HFB calculation
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whilst using both the backward and forward expansions (3.19) gives the more accurate

δH = H(1) =
H+ −H−

2η
+ O

η→0
(η2). (3.21)

In practice however, calculatingH is quite demanding, so that the less accurate but twice
faster first-order expression is employed in [NIY07; INY09a; Sto+11; Nik+13; Lia+13;
AN11]2, while care is taken that η is chosen appropriately. Regarding the use of higher-
order formulae, this not only increases the number of calculations to be realised numeri-
cally, but also rests on the assumption that the potential energy surface does not possess
any discontinuity in the neighbourhood explored by using the small parameter η. The
first point is only a dull matter of computational efficiency. The second, however, is crit-
ical from a physical perspective, where discontinuities may very well happen, e.g. in the
case of phase transitions. All in all, sticking to a first-order, two points forward (3.20) or
centred (3.21) scheme seems to be the soundest choice.

This explicit finite-difference scheme, while relatively simple, suffers from the fact that
the small expansion parameter η cannot be estimated a priori, so that practical calcula-
tions must always resort to an ad-hoc value for it. The finite-difference technique has been
shown to be stable over about three orders of magnitude (typically η ∼ 10−5 to 10−8),
regardless of the fact that η is fixed [Sto+11; AN11; Lia+13] or adjusted with respect to
the entries of the density fluctuations matrix in the quasi-particle basis [NIY07; INY09a].
However, this introduces an additional parameter to be adjusted. This drawback can be
circumvented by the explicit linearisation.

3.2.2 Explicit linearisation

An appealing alternative is to explicitly linearise the fields with respect to first-order
fluctuations of the density [KHN15; OKH16; SL17]. All non-linear terms are then fully
omitted. This procedure is particularly suited for ab initio theories, where we enjoy the
fact that the fields write as polynomials of the normal and anomalous densities3. A field h
(normal or pairing) produced by anti-symmetrised many-body interactions can be written,
with full generality and sloppiness,

h =
∑
k=1

v(k)(ρ . . . ρ︸ ︷︷ ︸
q times

κ . . . κ︸ ︷︷ ︸
q′ times

), q + q′ = k − 1, (3.22)

so that its derivatives with respect to the densities are easy to calculate:

2It is to be noted that this article does not solve the FAM equations, but rather uses the FAM to
construct the QRPA matrix.

3The application of the method to energy density functionals involving non-integer powers of the
densities (and more generally, to any kind of functional) poses no formal problem, although it requires a
more attentive handling of the linearised fields in practical implementations.
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δh ∼
∑
k=1

v(k)δ(ρ . . . ρ︸ ︷︷ ︸
q times

κ . . . κ︸ ︷︷ ︸
q′ times

) =
∑
k=1

v(k)(qρq−1κq′δρ+ q′ρqκq′−1δκ)

≡
∑
k=1

ṽ(k)ρ δρ+ ṽ(k)κ δκ, (3.23)

where the first equality comes from the (anti-)symmetry of the interaction vertices with
respect to swapping the particles.

Therefore, no matter how complicated the interaction, the fluctuation δh can always
be calculated as coming from a collection of two-body effective interactions, after all the
contractions with respect to the static densities have been performed. Absorbing the
constant factor falling when differentiating the fields, one can further group the effective
vertices together, so that any k-body interaction can be represented exactly by either one
or three effective interactions, once the pre-contractions have been carried out.

With these considerations and the symmetries of the static densities (2.53)(2.54), one
can write down the expressions for the linearised fields arising from a three-body Hamil-
tonian:

δhαβ =
∑
γδ

v
(a)ρρ
αγβδδρδγ +

∑
γδϵζ

w
(a)ρρρ
αγϵβδζρζϵδρδγ +

1

4

∑
γδϵζ

w
(a)ρκκ
αγϵβδζ(κ̄ϵγδκδζ + κδζδκ̄ϵγ), (3.24)

δ∆αγ =
1

2

∑
βδ

v
(a)κκ
αγβδ δκβδ̄ +

1

2

∑
βδϵζ

w
(a)ρκκ
αγϵβδζ(ρζϵδκβδ + δρζϵκβδ), (3.25)

δ∆̄αγ =
1

2

∑
βδ

v
(a)κκ
αγβδ δκ̄βδ̄ +

1

2

∑
βδϵζ

w
(a)ρκκ
αγϵβδζ(ρζϵδκ̄βδ + δρζϵκ̄βδ), (3.26)

δh̄αβ =
∑
γδ

v
(a)ρρ
αγβδδρ̄δγ +

∑
γδϵζ

w
(a)ρρρ
αγϵβδζ ρ̄ζϵδρ̄δγ +

1

4

∑
γδϵζ

w
(a)ρκκ
αγϵβδζ(κ̄ϵγδκδζ + κδζδκ̄ϵγ). (3.27)

These expressions can be recast in a way that makes apparent the possibility to carry
out the FAM as a problem involving only two-body effective interactions:

δhαβ =
∑
γδ

(
v
(a)ρρ
αγβδ +

∑
ϵζ

w
(a)ρρρ
αγϵβδζρζϵ

)
δρδγ

+
1

4

∑
δζ

(∑
γϵ

w
(a)ρκκ
αγϵβδζ κ̄ϵγ

)
δκδζ +

1

4

∑
γϵ

(∑
δζ

w
(a)ρκκ
αγϵβδζκδζ

)
δκ̄ϵγ, (3.28)

δ∆αγ =
1

2

∑
βδ

v
(a)κκ
αγβδ δκβδ̄ +

1

2

∑
βδ

(∑
ϵζ

w
(a)ρκκ
αγϵβδζρζϵ

)
δκβδ +

1

2

∑
βδ

(∑
ϵζ

w
(a)ρκκ
αγϵβδζκβδ

)
δρζϵ,

(3.29)
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δ∆̄αγ =
1

2

∑
βδ

v
(a)κκ
αγβδ δκ̄βδ̄ +

1

2

∑
βδ

(∑
ϵζ

w
(a)ρκκ
αγϵβδζρζϵ

)
δκ̄βδ +

1

2

∑
ϵζ

(∑
βδ

w
(a)ρκκ
αγϵβδζ κ̄βδ

)
δρζϵ,

(3.30)

δh̄αβ =
∑
γδ

(
v
(a)ρρ
αγβδ +

∑
ϵζ

w
(a)ρρρ
αγϵβδζ ρ̄ζϵ

)
δρ̄δγ

+
1

4

∑
δζ

(∑
γϵ

w
(a)ρκκ
αγϵβδζ κ̄ϵγ

)
δκδζ +

1

4

∑
γϵ

(∑
δζ

w
(a)ρκκ
αγϵβδζκδζ

)
δκ̄ϵγ. (3.31)

Due to the small amplitude limit, the fields can now be evaluated directly from the
transition densities after carrying out their explicit linearisation, so that we can write
δH = H[δR] as in the static case.

3.3 Symmetries of the QFAM and HFB equations

As mentioned in section 2.4.2, the symmetries of the HFB equations depend on the chosen
parametrisation for the Bogoliubov matrix. Some of them directly stem from the fact
that the Hamiltonian is Hermitian. In the FAM, this symmetry is no longer present
due to the analytic continuation of the transition amplitudes. This section recapitulates
the symmetries of the HFB operators, and present the remaining symmetries of the FAM
objects. For completeness, the equations are given in both the Russian and the traditional
representations. The useful notations and symmetries are given as:

Traditional

B =

(
U V ∗

V U∗

)
, (3.32)

R =

(
ρ +κ
−κ̄ I − ρ̄

)
, (3.33)

H =

(
h +∆

−∆̄ −h̄

)
, (3.34)

Russian

B =

(
U −V
V U

)
, (3.35)

R =

(
ρ ρ̃
¯̃ρ I − ρ̄

)
, (3.36)

H =

(
h h̃
¯̃h −h̄

)
, (3.37)

ρ(β) = UfU † + V ∗(I − f̄)V T ,

κ(β) = UfV † + V ∗(I − f̄)UT ,

−κ̄(β) = V fU † + U∗(I − f̄)V T ,

I − ρ̄(β) = V fV † + U∗(I − f̄)UT ,

(3.38a)

(3.38b)

(3.38c)

(3.38d)

ρ(β) = UfU † + V (I − f̄)V †,

ρ̃(β) = UfV † − V (I − f̄)U †,

¯̃ρ(β) = V fU † − U(I − f̄)V †,

I − ρ̄(β) = V fV † + U(I − f̄)U †.

(3.39a)

(3.39b)

(3.39c)

(3.39d)

The anti-commutation relations imply the skew-symmetry of both pairing tensors in
both representations:
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κ = −κT (3.40a)

κ̄ = −κ̄T (3.40b)

ρ̃ = −ρ̃T (3.41a)

¯̃ρ = − ¯̃ρT , (3.41b)

while the unitarity of the Bogoliubov transformation along with f = f̄ yield

ρ̄ = ρ∗ = ρT (3.42a)

κ̄ = κ (3.42b)

ρ̄ = ρ = ρ† (3.43a)

¯̃ρ = ρ̃† (3.43b)

At the FAM level, one has the following expressions:

δR =

(
δρ δκ
−δκ̄ −δρ̄

)
with


δρ = UWU † + V ∗Y U † + UXV T + V ∗ZV T

δκ = UWV † + V ∗Y V † + UXUT + V ∗ZUT

−δκ̄ = VWU † + U∗Y U † + V XV T + U∗ZV T

−δρ̄ = VWV † + U∗Y V † + V XUT + U∗ZUT

(3.44a)

(3.44b)

(3.44c)

(3.44d)

δH =

(
H11 H20

H02 H
′11

)
with


H11 = +U †δhU − V †δ∆̄U + U †δ∆V − V †δh̄V

H20 = +U †δhV ∗ − V †δ∆̄V ∗ + U †δ∆U∗ − V †δh̄U∗

H02 = +V T δhU − UT δ∆̄U + V T δ∆V − UT δh̄V

H
′11 = +V T δhV ∗ − UT δ∆̄V ∗ + V T δ∆U∗ − UT δh̄U∗

(3.45a)

(3.45b)

(3.45c)

(3.45d)

δR =

(
δρ −δκ
−δκ̄ −δρ̄

)
with


δρ = UWU † − V Y U † − UXV † + V ZV †

δρ̃ = UWV † − V Y V † + UXU † − V ZU †

δ ¯̃ρ = VWU † + UY U † + V XV † − UZV †

−δρ̄ = VWV † + UY V † + V XU † + UZU †

(3.46a)

(3.46b)

(3.46c)

(3.46d)

δH =

(
H11 H20

H02 H
′11

)
with


H11 = +U †δhU + V †δ¯̃hU + U †δh̃V − V †δh̄V

H20 = −U †δhV − V †δ¯̃hV + U †δh̃U − V †δh̄U

H02 = −V †δhU + U †δ¯̃hU − V †δh̃V − U †δh̄V

H
′11 = +V †δhV − U †δ¯̃hV − V †δh̃U − U †δh̄U.

(3.47a)

(3.47b)

(3.47c)

(3.47d)

3.3.1 Density matrices

We’d like to identify under which conditions the QFAM equations are invariant under
time-reversal symmetry: if both the ground state and the external operator are, we expect
that the symmetry is preserved by the QFAM. In particular, the RPA does preserve the
symmetry for even-even nuclei and a perturbation F (t) = F (−t), hence the QFAM should
also under the same conditions.
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Symmetries of δρ

In both the Russian and the traditional convention, the ground state normal density is
real, hence (3.42a)-(3.43a) can be grouped as ρ̄ = ρ = ρ∗ = ρT . As for δρ, the imaginary
part makes it impossible to verify all of these relations simultaneously; the correct one
must be identified with the help of (3.44) and (3.46). In both representations, the HFB
Hamiltonian is Hermitian, thus the eigenvectors {(U, V )} can be made real 4, whereas the
complex frequency ωγ = ω + iγ implies the following:

• X ̸= X†;X ̸= X∗

• Y ̸= Y †;Y ̸= Y ∗.

The only possibilities left are X ∝ XT and Y ∝ Y T , which tell us that the relation

δρ = δρ̄T (3.48)

is the only correct one when complex matrices are involved. From there, we deduce:

X = −XT , (3.49a)

Y = −Y T , (3.49b)

X = XT , (3.50a)

Y = Y T . (3.50b)

As for W and Z, inspecting (3.46a)-(3.46d) and (3.44a)-(3.44d) tells us that W should
be related to Z. With the help of (3.48), we get to the same relation in both conventions:

W = −ZT . (3.51)

Symmetries of δκ and δκ̄

The symmetries of the pairing tensors still holds at the QFAM level: from (3.46b)-(3.46c)
& (3.44b)-(3.44c) and the symmetries of U, V,X, Y,W,Z, one obtains that

δκ = −δκT , (3.52a)

δκ̄ = −δκ̄T , (3.52b)

δκ = +δκT , (3.53a)

δκ̄ = +δκ̄T . (3.53b)

The static pairing tensors being related through (3.40a) or (3.41a), we may expect
similar relations to hold in the dynamic case. Since the U, V matrices can be made
real, the Hermitian conjugation can be replaced by a transpose. Yet, having an explicit
link between δκ and δκ̄ as for the static case would require that X and Y are related,
which is not possible since X has poles on R+ while those of Y lie on R−. Even in the
case X = Y = 0, one can quickly show using (3.44)-(3.46) that no connection can be
established between δκ and δκ̄, for it would be incompatible with the relation (3.51).

4Note that this requirement is not necessary in the traditional representation (transpositions and
conjugations balance each other out nicely), while it is mandatory in the mixed one in order to carry on
the present derivations
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3.3.2 Dynamical fields

In order that the amplitudes verify their symmetry relations, one must have, from their
expressions (3.8):

Traditional

• H11 + F 11 = −(H
′11 + F

′11)T

• H20 + F 20 = −(H20 + F 20)T

• H02 + F 02 = −(H02 + F 02)T

Russian

• H11 + F 11 = −(H
′11 + F

′11)T

• H20 + F 20 = (H20 + F 20)T

• H02 + F 02 = (H02 + F 02)T .

External perturbation

At the very first iteration, δH = 0, so that the structure of the FAM amplitudes is entirely
determined by that of F . The conditions thus translate into a set of symmetries that the
external operator F must fulfil. The symmetries of the response δH will be checked in a
second step. Writing the perturbation in the doubled single-particle basis via F = B†FB
leads to

F 11 = U †f 11U + V †f 02U + U †f 20V + V †f
′11V, (3.54a)

F 20 = U †f 11V ∗ + V †f 02V ∗ + U †f 20U∗ + V †f
′11U∗, (3.54b)

F 02 = V Tf 11U + UTf 02U + V Tf 20V + UTf
′11V, (3.54c)

F
′11 = V Tf 11V ∗ + UTf 02V ∗ + V Tf 20U∗ + UTf

′11U∗, (3.54d)

F 11 = U †f 11U + V †f 02U + U †f 20V + V †f
′11V, (3.55a)

F 20 = −U †f 11V − V †f 02V + U †f 20U + V †f
′11U, (3.55b)

F 02 = −V †f 11U + U †f 02U − V †f 20V + U †f
′11V, (3.55c)

F
′11 = V †f 11V − U †f 02V − V †f 20U + U †f

′11U. (3.55d)

Requiring consistency with the constraints derived from (3.8) results in

f 11 = −(f
′11)T , (3.56)

f 20 = −(f 20)T , (3.57a)

f 02 = −(f 02)T , (3.57b)

f 20 = (f 20)T , (3.58a)

f 02 = (f 02)T . (3.58b)
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Internal fields

By the very same procedure, inspecting (3.45) and (3.47) lead to the following conditions:

Traditional

• δh = δh̄T

• δ∆ = −δ∆T

• δ∆̄ = −δ∆̄T

Russian

• δh = δh̄T

• δh̃ = δh̃T

• δ¯̃h = δ¯̃hT

The fulfilment of these constraints is verified in detail in the following page for the
traditional convention. In case of the Russian convention, these requirements can only
be met at the two-body level, as an undesired consequence of the static pairing tensors
being skew-symmetric ((3.41)) whereas the time-dependent are symmetric ((3.53))5. The
normal and anomalous fields are thus inspected in the traditional representation only.
They rely on the fact that the two- and three-body interactions are invariant under time-
reversal (T ), symmetric under swapping the labels of two particles i& j (S(i, j)), and
antisymmetric under particle exchange. Renaming of the dummy indices will be shown
as well.

Normal fields

The three sums contributing to

δhαβ = δh
(2)
αβ + δh

(3)ρ
αβ + δh

(3)κ
αβ (3.59)

write

δh
(2)
αβ =

∑
γδ

v
(a)ρρ
αγβδδρδγ

T
=
∑
γδ

v
(a)ρρ

δ̄β̄γ̄ᾱ
δρδγ

S(1,2)
=

∑
γδ

v
(a)ρρ

β̄δ̄ᾱγ̄
δρδγ

(3.48)
=
∑
γδ

v
(a)ρρ

β̄δ̄ᾱγ̄
δρ̄γ̄δ̄

γ↔δ
=
∑
γδ

v
(a)ρρ

β̄γ̄ᾱδ̄
δρ̄δ̄γ̄ = δh̄

(2)

β̄ᾱ
, (3.60a)

δh
(3)ρ
αβ =

∑
γδϵζ

w
(a)ρρρ
αγϵβδζρζϵδρδγ

T
=
∑
γδϵζ

w
(a)ρρρ

ζ̄δ̄β̄ϵ̄γ̄ᾱ
ρζϵδρδγ

S(1,3)
=

∑
γδϵζ

w
(a)ρρρ

β̄δ̄ζ̄ᾱγ̄ϵ̄
ρζϵδρδγ

(3.48)
=
∑
γδϵζ

w
(a)ρρρ

β̄δ̄ζ̄ᾱγ̄ϵ̄
ρ̄ϵ̄ζ̄δρ̄γ̄δ̄

γ↔δ
=
ϵ↔ζ

∑
γδϵζ

w
(a)ρρρ

β̄γ̄ϵ̄ᾱδ̄ζ̄
ρ̄ζ̄ ϵ̄δρ̄δ̄γ̄ = δh̄

(3)ρ

β̄ᾱ
, (3.60b)

δh
(3)κ
αβ =

∑
γδϵζ

w
(a)ρκκ
αγϵβδζ(κδζδκ̄ϵγ + δκδζ κ̄ϵγ)

T
=
∑
γδϵζ

w
(a)ρκκ

ζ̄δ̄β̄ϵ̄γ̄ᾱ
(κδζδκ̄ϵγ + δκδζ κ̄ϵγ)

5One can however remark that the components of the pairing tensor being typically much smaller
(say of order 1) than those of the normal density (which are, say, of order 0), these contributions with
incorrect properties should be of order 3 for the normal field (versus 1 for the two-body component and
2 for the δρ-dependent three-body), and of order 2 for the anomalous fields. The symmetry-breaking
contribution thus comes at next to leading order, so to speak.
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S(1,3)
=

∑
γδϵζ

w
(a)ρκκ

β̄δ̄ζ̄ᾱγ̄ϵ̄
(κδζδκ̄ϵγ + δκδζ κ̄ϵγ)

γ↔δ
=
ϵ↔ζ

∑
γδϵζ

w
(a)ρκκ

β̄γ̄ϵ̄ᾱδ̄ζ̄
(κγϵδκ̄ζδ + δκ̄γϵκζδ)

(3.40)
=

(3.52)

∑
γδϵζ

w
(a)ρκκ

β̄γ̄ϵ̄ᾱδ̄ζ̄
(κϵγδκ̄δζ + δκ̄ϵγκδζ) = δh̄

(3)κ

β̄ᾱ
. (3.60c)

This shows the desired symmetry property of the normal fields, namely δh = δh̄T .

Anomalous fields

In the anomalous contractions, the indices associated to ρ matrices can be made to run
only over the time-normal sector, due to the relation ρ̄ = ρT . More generally, the bars can
be dropped if one keeps in mind that their position should be consistent with the indices
of the interaction matrix elements and the definitions (2.27)(2.28) of the elementary con-
tractions. In particular, note that one can only swap particles in the interaction matrix
elements, but non-dummy indices cannot be exchanged if they correspond to particles
propagating in opposite time directions6. With these lightweight notations, one has:

δ∆αγ = δ∆(2)
αγ + δ∆(3)ρ

αγ + δ∆(3)κ
αγ , (3.61)

with

δ∆(2)
αγ =

1

2

∑
βδ

v
(a)κκ
αγβδ δκβδ

S(1,2)
=

1

2

∑
βδ

v
(a)κκ
γαδβ δκβδ

β↔δ
=

1

2

∑
βδ

v
(a)κκ
γαβδ δκδβ

(3.52a)
= −

∑
βδ

v
(a)κκ
γαβδ δκβδ = −δ∆(2)

γα , (3.62a)

δ∆(3)ρ
αγ =

1

2

∑
βδϵζ

w
(a)ρκκ
αγϵβδζδρζϵκβδ

S(1,2)
=

1

2

∑
βδϵζ

w
(a)ρκκ
γαϵδβζδρζϵκβδ

β↔δ
=

1

2

∑
βδϵζ

w
(a)ρκκ
γαϵβδζδρζϵκδβ

(3.40a)
= −1

2

∑
βδϵζ

w
(a)ρκκ
γαϵβδζδρζϵκβδ = −δ∆(3)ρ

γα , (3.62b)

δ∆(3)κ
αγ =

1

2

∑
βδϵζ

w
(a)ρκκ
αγϵβδζρζϵδκβδ

S(1,2)
=

1

2

∑
βδϵζ

w
(a)ρκκ
γαϵδβζρζϵδκβδ

β↔δ
=

1

2

∑
βδϵζ

w
(a)ρκκ
γαϵβδζρζϵδκδβ

(3.52a)
= −1

2

∑
βδϵζ

w
(a)ρκκ
γαϵβδζρζϵδκβδ = −δ∆(3)κ

γα , (3.62c)

and using the very same sequence of operations yields identical relations for δ∆̄. Thus,
one has the claimed properties δ∆ = −δ∆T and δ∆̄ = −δ∆̄T .

6In mathematical terms, vκκαγβδ = vκκγαδβ but vκκαγβδ ̸= −vκκγαβδ, and similar remarks for the three-body
terms.
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3.4 Connection with the QRPA

In the QFAM formulation of the linear response theory, an excitation operator F is needed
in order to calculate the strength function. The QFAM therefore belongs to the “external
point of view” theories. As mentioned in subsection 2.6.1, the “internal” vision (as re-
alised by the QRPA theory), characterised by the knowledge of the collective eigenstates,
can be recovered through integration along aptly chosen contours in the complex plane.
This section generalises the work of [HKN13], showing the link between the QFAM and
the QRPA at finite temperature.

As discussed in section 2.6, the eigenmodes of a quantum system can be studied from
two different points of view. The usual setting of the QRPA involves diagonalising the
Hamiltonian, giving as a result the eigenvectors and eigenvalues. Since it does not call for
an external probe, it can be labelled as an “internal point of view” description. Conversely,
the FAM explicitly demands a probe in the form of the operator F , it is thus an “external”
approach. The extension of the excitation frequency ω into the complex plane and the
occurrence of first order poles both in the FAM equations (3.8) and strength function
(3.10) clearly hints that a contour integration should make the link between the FAM and
the QRPA.

3.4.1 Eigenvectors and transition amplitudes

The zero temperature QRPA equation writes(
A B
B∗ A∗

)(
X
Y

)
= Ω

(
1

−1

)(
X
Y

)
, (3.63)

where Ω is the diagonal matrix containing all the (positive and negative) eigenvalues.
Due to the eigenvalues occurring in pairs, this equation can be doubled7:(

A B
B∗ A∗

)(
X λ
Y µ

)
=

(
1

−1

)(
X λ
Y µ

)(
Ω

−Ω

)
. (3.64)

The matrices λ, µ are the solutions of


AX +BY = ΩX

B∗Y + A∗X = −ΩY

Aλ+Bµ = −Ωλ

B∗λ+ A∗µ = Ωµ,

(3.65)

that is, after identifying the two last equations with the two firsts, λ = Y ∗ and µ = X∗.
The procedure is exactly the same at finite temperature: one starts with the QRPA
equation [Som83]

7The eigenvalues matrix occurring to the right of the eigenvectors one comes from identifying the
“doubled” vectors as the negative Ω solutions.
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S̃X̃ =


C̃ ã b̃ D̃

ã† Ã B̃ b̃T

b̃† B̃∗ Ã∗ ãT

D̃∗ b̃∗ ã∗ C̃∗



W̃

X̃

Ỹ

Z̃

 = Ω


W̃

X̃

Ỹ

Z̃

 , (3.66)

and extends the matrix X̃ to be of size 4N × 4N . Because we want that only the core
remains when taking the T → 0 limit, the “known” vectors must come at the centre:

X̃ → X̃ ′ =


i W̃ q m

j X̃ Ỹ ∗ n

k Ỹ X̃∗ o

l Z̃ r p

 . (3.67)

The missing entries can be found by matching the system S̃X̃ ′ = Ñ X̃ ′Õ, which is
quite pedestrian although not difficult. Much more efficiently, one remarks that the third
column corresponds to the negative eigenvalues, so that q = Z̃∗ and r = W̃ ∗ in analogy
with (3.65). Because the outermost columns must correspond to positive and negative
eigenvalues likewise, they are simply the duplicates of the central ones. When calculating
the response function, one should be careful in dividing by a factor two to compensate
for the doubling of the matrix elements. Hence,

X̃ ′ =


W̃ W̃ Z̃∗ Z̃∗

X̃ X̃ Ỹ ∗ Ỹ ∗

Ỹ Ỹ X̃∗ X̃∗

Z̃ Z̃ W̃ ∗ W̃ ∗

 . (3.68)

In the following, X̃ will denote the linear response vector, while X̃ ′ will be its extension
into a 4× 4 tensor. The linear response equation can be written [Som83]

[S̃ − ωγN ]X̃ =




C̃ ã b̃ D̃

ã† Ã B̃ b̃T

b̃† B̃∗ Ã∗ ãT

D̃∗ b̃∗ ã∗ C̃∗

− ωγ


1

1
−1

−1




W̃

X̃

Ỹ

Z̃

 =


F̃ 11

F̃ 20

F̃ 02

F̃
′11

 = F̃ ,

(3.69)

from which one gets the expression for the linear response vectors (the factor two bal-
ances the double counting):

X̃ (ωγ) = (S̃ − ωγN )−1F̃
≡ 2R(ωγ)F̃ . (3.70)
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The equation defines the response function as the matrix relating the external field to
the induced oscillation of the system. On the other hand, the QRPA equation is easily
seen to generalise as

S̃X̃ ′ = NX̃ ′O, (3.71)

where N = diag(1, 1,−1,−1) is the metric and O = diag(Ω1, . . . ,ΩN ,−Ω1, . . . ,−ΩN)
is the matrix of eigenvalues. The orthonormalisation condition corresponds to8

X̃ ′†NX̃ ′ = N . (3.72)

Eq. (3.71) yields

S̃ = NX̃ ′OX̃ ′−1
, (3.73)

which, inserted in (3.70), produces

X̃ (ωγ) = (NX̃ ′OX̃ ′−1 − ωγN )−1F̃
= (NX̃ ′OX̃ ′−1 − ωγNX̃ ′X̃ ′−1)−1F̃
= X̃ ′(O − ωγI)−1X̃ ′−1NF̃ . (3.74)

Then, (3.72) gives9

NX̃ ′ =
(
X̃ ′†
)−1

N ⇒ X̃ ′−1N = NX̃ ′†, (3.75)

therefore

X̃ (ωγ) = X̃ ′(O − ωγI)−1NX̃ ′†F̃ , (3.76)

showing the link between the linear response amplitudes (on the left-hand side) and the
QRPA ones (on the right-hand side). The thermal response function (3.70) can now be
calculated after remembering the necessary 1/2 factor:

R(ωγ) =
1

2
X̃ ′(O − ωγI)−1NX̃ ′† (3.77a)

8Note: this condition differs from the one of Hinohara [HKN13] but is the same as Sommermann
[Som83]. While both are correct at zero temperature, the former is not valid for the thermal regime, as
it gives, e.g., W †W − Z∗ZT instead of W †W +X†X − Y ∗Y T − Z∗ZT .

9The orthonormalisation of [HKN13] gives the same equation.
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=
1

2
X̃ ′


1

Ω−ωγ
1

Ω−ωγ
1

Ω+ωγ
1

Ω+ωγ



W̃ † X̃† Ỹ † Z̃†

W̃ † X̃† Ỹ † Z̃†

Z̃T Ỹ T X̃T W̃ T

Z̃T Ỹ T X̃T W̃ T



=
1

2


W̃ W̃ Z̃∗ Z̃∗

X̃ X̃ Ỹ ∗ Ỹ ∗

Ỹ Ỹ X̃∗ X̃∗

Z̃ Z̃ W̃ ∗ W̃ ∗




W̃ †

Ω−ωγ

X̃†

Ω−ωγ

Ỹ †

Ω−ωγ

Z̃†

Ω−ωγ

W̃ †

Ω−ωγ

X̃†

Ω−ωγ

Ỹ †

Ω−ωγ

Z̃†

Ω−ωγ

Z̃T

Ω+ωγ

Ỹ T

Ω+ωγ

X̃T

Ω+ωγ

W̃T

Ω+ωγ

Z̃T

Ω+ωγ

Ỹ T

Ω+ωγ

X̃T

Ω+ωγ

W̃T

Ω+ωγ



≡


R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

 . (3.77b)

The collection of blocks involved in (3.77b) are the matrices

R11 =
∑
i

W̃ iW̃ i,†

Ωi − ωγ

+
Z̃i,∗Z̃i,T

Ωi + ωγ

, (3.78a)

R12 =
∑
i

W̃ iX̃ i,†

Ωi − ωγ

+
Z̃i,∗Ỹ i,T

Ωi + ωγ

, (3.78b)

R13 =
∑
i

W̃ iỸ i,†

Ωi − ωγ

+
Z̃i,∗X̃ i,T

Ωi + ωγ

, (3.78c)

R14 =
∑
i

W̃ iZ̃i,†

Ωi − ωγ

+
Z̃i,∗W̃ i,T

Ωi + ωγ

, (3.78d)

R21 =
∑
i

X̃ iW̃ i,†

Ωi − ωγ

+
Ỹ i,∗Z̃i,T

Ωi + ωγ

, (3.78e)

R22 =
∑
i

X̃ iX̃ i,†

Ωi − ωγ

+
Ỹ i,∗Ỹ i,T

Ωi + ωγ

, (3.78f)

R23 =
∑
i

X̃ iỸ i,†

Ωi − ωγ

+
Ỹ i,∗X̃ i,T

Ωi + ωγ

, (3.78g)

R24 =
∑
i

X̃ iZ̃i,†

Ωi − ωγ

+
Ỹ i,∗W̃ i,T

Ωi + ωγ

, (3.78h)

R31 =
∑
i

Ỹ iW̃ i,†

Ωi − ωγ

+
X̃ i,∗Z̃i,T

Ωi + ωγ

, (3.78i)

R32 =
∑
i

Ỹ iX̃ i,†

Ωi − ωγ

+
X̃ i,∗Ỹ i,T

Ωi + ωγ

, (3.78j)

R33 =
∑
i

Ỹ iỸ i,†

Ωi − ωγ

+
X̃ i,∗X̃ i,T

Ωi + ωγ

, (3.78k)
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R34 =
∑
i

Ỹ iZ̃i,†

Ωi − ωγ

+
X̃ i,∗W̃ i,T

Ωi + ωγ

, (3.78l)

R41 =
∑
i

Z̃iW̃ i,†

Ωi − ωγ

+
W̃ i,∗Z̃i,T

Ωi + ωγ

, (3.78m)

R42 =
∑
i

Z̃iX̃ i,†

Ωi − ωγ

+
W̃ i,∗Ỹ i,T

Ωi + ωγ

, (3.78n)

R43 =
∑
i

Z̃iỸ i,†

Ωi − ωγ

+
W̃ i,∗X̃ i,T

Ωi + ωγ

, (3.78o)

R44 =
∑
i

Z̃iZ̃i,†

Ωi − ωγ

+
W̃ i,∗W̃ i,T

Ωi + ωγ

. (3.78p)

One can recover the elements indexed by the four indices (µ, ν, µ′, ν ′) of each block by
substitutions of the form W̃ iW̃ i,T → W̃ i

µνW̃
i,†
µ′ν′ .

All of that mess can be conveniently written by defining the forward and backward
responses:

R(ωγ) = R+(ωγ) +R−(ωγ), (3.79)

R+(ωγ) =
∑
i

1

Ωi − ωγ


W̃ iW̃ i,T W̃ iX̃ i,T W̃ iỸ i,T W̃ iZ̃i,T

X̃ iW̃ i,T X̃ iX̃ i,T X̃ iỸ i,T X̃ iZ̃i,T

Ỹ iW̃ i,T Ỹ iX̃ i,T Ỹ iỸ i,T Ỹ iZ̃i,T

Z̃iW̃ i,T Z̃iX̃ i,T Z̃iỸ i,T Z̃iZ̃i,T

 , (3.80)

R−(ωγ) =
∑
i

1

Ωi + ωγ


Z̃i,∗Z̃i,T Z̃i,∗Ỹ i,T Z̃i,∗X̃ i,T Z̃i,∗W̃ i,T

Ỹ i,∗Z̃i,T Ỹ i,∗Ỹ i,T Ỹ i,∗X̃ i,T Ỹ i,∗W̃ i,T

X̃ i,∗Z̃i,T X̃ i,∗Ỹ i,T X̃ i,∗X̃ i,T X̃ i,∗W̃ i,T

W̃ i,∗Z̃i,T W̃ i,∗Ỹ i,T W̃ i,∗X̃ i,T W̃ i,∗W̃ i,T

 . (3.81)

Thus,

X̃ (ωγ) =R(ωγ)F (3.82)

=
∑
i

1

Ωi − ωγ


W̃ i,∗

(
W̃ i,†F 11 + X̃ i,†F 20 + Ỹ i,†F 02 + Z̃i,†F

′11
)

X̃ i,∗
(
W̃ i,†F 11 + X̃ i,†F 20 + Ỹ i,†F 02 + Z̃i,†F

′11
)

Ỹ i,∗
(
W̃ i,†F 11 + X̃ i,†F 20 + Ỹ i,†F 02 + Z̃i,†F

′11
)

Z̃i,∗
(
W̃ i,†F 11 + X̃ i,†F 20 + Ỹ i,†F 02 + Z̃i,†F

′11
)
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+
∑
i

1

Ωi + ωγ


Z̃∗
(
Z̃i,TF 11 + Ỹ i,TF 20 + X̃ i,TF 02 + W̃ i,TF

′11
)

Ỹ ∗
(
Z̃i,TF 11 + Ỹ i,TF 20 + X̃ i,TF 02 + W̃ i,TF

′11
)

X̃∗
(
Z̃i,TF 11 + Ỹ i,TF 20 + X̃ i,TF 02 + W̃ i,TF

′11
)

W̃ ∗
(
Z̃i,TF 11 + Ỹ i,TF 20 + X̃ i,TF 02 + W̃ i,TF

′11
)

 .

The forward component R+(ωγ) involves the QRPA amplitudes ⟨i|F|0⟩ as is:

⟨i|F|0⟩ = ⟨ΦHFB|[Qi,F ]|ΦHFB⟩ = ⟨ΦHFB|QiF|ΦHFB⟩
= Tr{FQi} = Tr

{
W̃ i,†F 11 + Ỹ i,†F 02 + X̃ i,†F 20 + Z̃i,†F

′11
}
, (3.83)

where the excitation operator Q̂†
i =

1
2

∑
µν X

i
µνα

†
µα

†
ν + Y i

µναµαν +W i
µναµα

†
ν + Zi

µνα
†
µαν .

Strangely, R−(ωγ) does not involve any amplitude: the three remaining ones are10

⟨0|F|i⟩ = ⟨ΦHFB|
[
F ,Q†

i

]
|ΦHFB⟩ = ⟨ΦHFB|FQ†

i |ΦHFB⟩

= Tr
{
FQ†

i

}
= Tr

{
F 11W̃ i + F 20Ỹ i + F 02X̃ i + F

′11Z̃i
}
, (3.84)

⟨0|F †|i⟩ = ⟨ΦHFB|
[
F †,Q†

i

]
|ΦHFB⟩ = ⟨ΦHFB|F †Q†

i |ΦHFB⟩

= Tr
{
F †Q†

i

}
= Tr

{
(F 11)†W̃ i + (F 02)†Ỹ i + (F 20)†X̃ i + (F

′11)†Z̃i
}
, (3.85)

⟨i|F †|0⟩ = ⟨ΦHFB|
[
Qi,F †]|ΦHFB⟩ = ⟨ΦHFB|QiF †|ΦHFB⟩

= Tr
{
QiF †} = Tr

{
W̃ i,†(F 11)† + X̃ i,†(F 20)† + Ỹ i,†(F 02)† + Z̃i,†(F

′11)†
}
. (3.86)

Lacking a better notation, let’s define the “anti-diagonal swap” of FT as FS:

FS ≡
(
(F

′11)T (F 20)T

(F 02)T (F 11)T

)
=

(
0 1
1 0

)
FT

(
0 1
1 0

)
. (3.87)

One has

⟨0|FS|i⟩ = ⟨ΦHFB|
[
FS,Q†

i

]
|ΦHFB⟩ = ⟨ΦHFB|FSQ†

i |ΦHFB⟩ (3.88)

= Tr
{
FSQ†

i

}
= Tr

{
(F

′11)T W̃ i + (F 20)T Ỹ i + (F 02)T X̃ i + (F 11)T Z̃i
}

(3.89)

= Tr
{
(W̃ i)T (F

′11) + X̃†(F 02) + Ỹ †(F 20) + Z̃†(F 11)
}
, (3.90)

the last line being a consequence of the identity Tr
{
ATBT

}
= Tr{BA}. In the T = 0

limit and for F Hermitian, one recovers ⟨0|FS|i⟩ = ⟨0|F|i⟩∗ = ⟨0|F|i⟩ as in [HKN13].
With this newly defined operator,

10These four amplitudes evidently reduce to two when F = F†.
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W̃µν(ωγ) = −
∑
i

{
W̃ i

µν ⟨i|F|0⟩
Ωi − ωγ

+
Z̃i∗

µν ⟨0|FS|i⟩
Ωi + ωγ

}
, (3.91a)

X̃µν(ωγ) = −
∑
i

{
X̃ i

µν ⟨i|F|0⟩
Ωi − ωγ

+
Ỹ i∗
µν ⟨0|FS|i⟩
Ωi + ωγ

}
, (3.91b)

Ỹµν(ωγ) = −
∑
i

{
Ỹ i
µν ⟨i|F|0⟩
Ωi − ωγ

+
X̃ i∗

µν ⟨0|FS|i⟩
Ωi + ωγ

}
, (3.91c)

Z̃µν(ωγ) = −
∑
i

{
Z̃i

µν ⟨i|F|0⟩
Ωi − ωγ

+
W̃ i∗

µν ⟨0|FS|i⟩
Ωi + ωγ

}
. (3.91d)

From Cauchy’s integral theorem, one sees that integrating those equations around a
contour C enclosing any number of poles yields

1

2iπ

∮
C
W̃µν(ωγ)dωγ =

∑
i

W̃ i
µν ⟨i|F|0⟩ , (3.92a)

1

2iπ

∮
C
X̃µν(ωγ)dωγ =

∑
i

X̃ i
µν ⟨i|F|0⟩ , (3.92b)

1

2iπ

∮
C
Ỹµν(ωγ)dωγ =

∑
i

Ỹ i
µν ⟨i|F|0⟩ , (3.92c)

1

2iπ

∮
C
Z̃µν(ωγ)dωγ =

∑
i

Z̃i
µν ⟨i|F|0⟩ , (3.92d)

In the fortunate event where the contour circles exactly one pole, these reduce to the
expression of the eigenmatrices in terms of the FAM ones:

1

2iπ

∮
Ci

W̃µν(ωγ)dωγ = W̃ i
µν ⟨i|F|0⟩ , (3.93a)

1

2iπ

∮
Ci

X̃µν(ωγ)dωγ = X̃ i
µν ⟨i|F|0⟩ , (3.93b)

1

2iπ

∮
Ci

Ỹµν(ωγ)dωγ = Ỹ i
µν ⟨i|F|0⟩ , (3.93c)

1

2iπ

∮
Ci

Z̃µν(ωγ)dωγ = Z̃i
µν ⟨i|F|0⟩ , (3.93d)

The QRPA amplitudes can then be found once the associated matrix elements ⟨i|F|0⟩
are obtained. The requirement (3.72) that the eigenstates be orthonormal with respect
to the metric N = diag(1, 1,−1,−1) translates as
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δii′ = ⟨i′|N |i⟩ = ⟨0|Qi′NQ†
i |0⟩ ; Q†

i =


W̃ i

X̃ i

Ỹ i

Z̃i

 . (3.94)

To make the indices match with the rest of the derivations (and most of the literature),
it’s more convenient to explicitly stack the vectors, i.e. go back to the matrix notation:

δii′ = ⟨i′|N |i⟩ = Tr
{
Qi′NQ†

i

}
; Q†

i =

(
W̃ i X̃ i

Ỹ i Z̃i

)
, N =

(
1

−1

)
(3.95)

= Tr
{
W̃ i′,†W̃ i + X̃ i′,†X̃ i − Ỹ i′,†Ỹ i − Z̃i′,†Z̃i

}
(3.96)

=
∑
µν

W̃ i′∗
µν W̃

i
µν + X̃ i′∗

µν X̃
i
µν − Ỹ i′∗

µν Ỹ
i
µν − Z̃i′∗

µν Z̃
i
µν . (3.97)

It follows that the transition probability from the ground state to the ith excited state
writes

|⟨i|F|0⟩|2 = 1

4π2

∑
µν

{∣∣∣∣∮
Ci

W̃µν(ωγ)dωγ

∣∣∣∣2 + ∣∣∣∣∮
Ci

X̃µν(ωγ)dωγ

∣∣∣∣2
−
∣∣∣∣∮

Ci

Ỹµν(ωγ)dωγ

∣∣∣∣2 − ∣∣∣∣∮
Ci

Z̃µν(ωγ)dωγ

∣∣∣∣2
}
. (3.98)

(Remark that the contribution of the W and Z amplitudes should cancel each other
exactly, by (3.51)). Eq. (3.98) can be paired up with (3.93) to give forth the QRPA
amplitudes:

W̃ i′

µν =
e−iθ

|⟨i′|F|0⟩|
1

2iπ

∮
Ci′

W̃µν(ωγ)dωγ (3.99a)

X̃ i′

µν =
e−iθ

|⟨i′|F|0⟩|
1

2iπ

∮
Ci′

X̃µν(ωγ)dωγ (3.99b)

Ỹ i′

µν =
e−iθ

|⟨i′|F|0⟩|
1

2iπ

∮
Ci′

Ỹµν(ωγ)dωγ (3.99c)

Z̃i′

µν =
e−iθ

|⟨i′|F|0⟩|
1

2iπ

∮
Ci′

Z̃µν(ωγ)dωγ, (3.99d)

where the phase e+iθ = ⟨i|F|0⟩ /|⟨i|F|0⟩| cannot be determined, but can be chosen
arbitrarily since it is common to all the eigenvectors11. Because the thermal factor of the

11Note that in practical calculations, one may choose it so that all the discrete amplitudes are real,
since the eigenvectors of a positive definite matrix can be made real simultaneously.
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QRPA and QFAM amplitudes are the same, all these equations (and most importantly,
(3.93), (3.98) and (3.99)) also hold when removing the tildes.

3.4.2 Eigenvalues

Line by line, and after multiplying either by σµν ≡
√

fν − fµ or by ηµν ≡
√

1− fµ − fν ,
(3.69) leads to

σµν

∑
µ′<ν′

(C̃µνµ′ν′ − ωγδµµ′δνν′)W̃µ′ν′ + ãµνµ′ν′X̃µ′ν′ + b̃µνµ′ν′Ỹµ′ν′ + D̃µνµ′ν′Z̃µ′ν′ = −σ2
µνF

11
µν

(3.100)

ηµν
∑
µ′<ν′

ã†µνµ′ν′W̃µ′ν′ + (Ãµνµ′ν′ − ωγδµµ′δνν′)X̃µ′ν′ + B̃µνµ′ν′Ỹµ′ν′ + b̃Tµνµ′ν′Z̃µ′ν′ = −η2µνF
20
µν

(3.101)

ηµν
∑
µ′<ν′

b̃†µνµ′ν′W̃µ′ν′ + B̃∗
µνµ′ν′X̃µ′ν′ + (Ã∗

µνµ′ν′ + ωγδµµ′δνν′)Ỹµ′ν′ + ãTµνµ′ν′Z̃µ′ν′ = −η2µνF
02
µν

(3.102)

σµν

∑
µ′<ν′

D̃∗
µνµ′ν′W̃µ′ν′ + b̃∗µνµ′ν′X̃µ′ν′ + ã∗µνµ′ν′Ỹµ′ν′ + (C̃∗

µνµ′ν′ + ωγδµµ′δνν′)Z̃µ′ν′ = −σ2
µνF

′11
µν .

(3.103)

On the other hand, the QFAM equations read12

(Eµ − Eν − ωγ)Wµν(ωγ) +H11
µν(fν − fµ) = −F 11

µν(fν − fµ) = −σ2
µνF

11
µν (3.104)

(Eµ + Ēν − ωγ)Xµν(ωγ) +H20
µν(1− fµ − f̄ν) = −F 20

µν(1− fµ − f̄ν) = −η2µν̄F
20
µν (3.105)

(Ēµ + Eν + ωγ)Yµν(ωγ) +H02
µν(1− f̄µ − fν) = −F 02

µν(1− f̄µ − fν) = −η2µ̄νF
02
µν (3.106)

(Ēµ − Ēν + ωγ)Zµν(ωγ) +H
′11
µν (f̄ν − f̄µ) = −F

′11
µν (f̄ν − f̄µ) = −σ2

µ̄ν̄F
′11
µν , (3.107)

so that (the dependence of the fields and amplitudes on ωγ has been omitted for legi-
bility)

H11
µν = σ−1

µν

∑
µ′<ν′

[(
C̃µνµ′ν′ −

(
ωγ +

Eµ − Eν − ωγ

σ2
µν

)
δµµ′δνν′

)
W̃µ′ν′ + ãµνµ′ν′X̃µ′ν′

+ b̃µνµ′ν′Ỹµ′ν′ + D̃µνµ′ν′Z̃µ′ν′

]
(3.108a)

H20
µν = η−1

µν̄

∑
µ′<ν′

[
ã†µνµ′ν′W̃µ′ν′ +

(
Ãµνµ′ν′ −

(
ωγ +

Eµ + Ēν − ωγ

η2µν̄

)
δµµ′δνν′

)
X̃µ′ν′

12The bars correspond to matrix elements in the ⟨HFB|αα†|HFB⟩ sector; they are equal to their α†α
partners owing to the eigenvalues of the HFB equation coming by pairs of opposite sign. We have Ē = E
and f̄ = f , but conserve the bars for bookkeeping.
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+ B̃µνµ′ν′Ỹµ′ν′ + b̃Tµνµ′ν′Z̃µ′ν′

]
(3.108b)

H02
µν = η−1

µ̄ν

∑
µ′<ν′

[
b̃†µνµ′ν′W̃µ′ν′ + B̃∗

µνµ′ν′X̃µ′ν′

+

(
Ã∗

µνµ′ν′ +

(
ωγ −

Ēµ + Eν + ωγ

η2µ̄ν

)
δµµ′δνν′

)
Ỹµ′ν′ + ãTµνµ′ν′Z̃µ′ν′

]
(3.108c)

H
′11
µν = σ−1

µ̄ν̄

∑
µ′<ν′

[
D̃∗

µνµ′ν′W̃µ′ν′ + b̃∗µνµ′ν′X̃µ′ν′

+ ã∗µνµ′ν′Ỹµ′ν′ +

(
C̃∗

µνµ′ν′ +

(
ωγ −

Ēµ − Ēν + ωγ

σ2
µ̄ν̄

)
δµµ′δνν′

)
Z̃µ′ν′

]
. (3.108d)

These equations show that the FAM one-body fields can be directly linked to the QRPA
two-body tensors and one-body eigenvectors. What’s more, as these expressions explicitly
involve the frequency of the perturbation, they provide a closed set of expression for the
eigenfrequencies. Indeed, integrating (anti-clockwise) each of them around a contour C
circling one or more poles, we obtain with the help of (3.93) and the QRPA equation
(3.66)

∮
C
H11

µν(ωγ)dωγ =
∑
i′

∮
Ci′

H11
µν(ωγ)dωγ = 2iπσµν

∑
i′

⟨i′|F|0⟩ W̃ i′

µν(Ωi′ − (Eµ − Eν))

(3.109a)∮
C
H20

µν(ωγ)dωγ =
∑
i′

∮
Ci′

H20
µν(ωγ)dωγ = 2iπηµν̄

∑
i′

⟨i′|F|0⟩ X̃ i′

µν(Ωi′ − (Eµ + Ēν))

(3.109b)∮
C
H02

µν(ωγ)dωγ =
∑
i′

∮
Ci′

H02
µν(ωγ)dωγ = 2iπηµ̄ν

∑
i′

⟨i′|F|0⟩ Ỹ i′

µν(−Ωi′ − (Ēµ + Eν))

(3.109c)∮
C
H

′11
µν (ωγ)dωγ =

∑
i′

∮
Ci′

H
′11
µν (ωγ)dωγ = 2iπσµ̄ν̄

∑
i′

⟨i′|F|0⟩ Z̃i′

µν(−Ωi′ − (Ēµ − Ēν)).

(3.109d)

When the contour C goes around only one pole (collective or not), these expressions
reduce in the zero temperature limit to eqs. (25a)-(25b) of [HKN13]. Each pair (µ, ν) of
indices gives four different expressions for the frequency. However, these involve dividing
by the matrix elements and amplitudes, yet both may be small. It would be great if the
sum of the eigenvalues could be calculated without needing to identify all the poles. This
is sadly not possible, due to the presence of the transition matrix elements. Our last
resort is to manage to locate the poles individually: in that case, the sum over i′ contains
only one term, and each frequency can be calculated by inverting (3.109). Due to the
aforementioned potentially small denominators, it is safer to recast these equations as
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2iπ ⟨i′|F|0⟩σµνW̃
i′

µνΩi′ = (Eµ − Eν)2iπ ⟨i′|F|0⟩σµνW̃
i′

µν +

∮
Ci

H11
µν(ωγ)dωγ (3.110a)

2iπ ⟨i′|F|0⟩ ηµν̄X̃ i′

µνΩi′ = (Eµ + Ēν)2iπ ⟨i′|F|0⟩ ηµν̄X̃ i′

µν +

∮
Ci

H20
µν(ωγ)dωγ (3.110b)

−2iπ ⟨i′|F|0⟩ ηµ̄ν Ỹ i′

µνΩi′ = (Ēµ + Eν)2iπ ⟨i′|F|0⟩ ηµ̄νỸ i′

µν +

∮
Ci

H02
µν(ωγ)dωγ (3.110c)

−2iπ ⟨i′|F|0⟩σµ̄ν̄Z̃
i′

µνΩi′ = (Ēµ − Ēν)2iπ ⟨i′|F|0⟩σµ̄ν̄Z̃
i′

µν +

∮
Ci

H
′11
µν (ωγ)dωγ (3.110d)

and use (3.93) to obtain

W̃ i′

µνΩi′ =
1

⟨i′|F|0⟩

∮
Ci

[
(Eµ − Eν)W̃µν(ωγ) + σ−1

µν H
11
µν(ωγ)

]
dωγ (3.111a)

X̃ i′

µνΩi′ =
1

⟨i′|F|0⟩

∮
Ci

[
(Eµ + Ēν)X̃µν(ωγ) + η−1

µν̄H
20
µν(ωγ)

]
dωγ (3.111b)

−Ỹ i′

µνΩi′ =
1

⟨i′|F|0⟩

∮
Ci

[
(Ēµ + Eν)Ỹµν(ωγ) + η−1

µ̄ν H
02
µν(ωγ)

]
dωγ (3.111c)

−Z̃i′

µνΩi′ =
1

⟨i′|F|0⟩

∮
Ci

[
(Ēµ − Ēν)Z̃µν(ωγ) + σ−1

µ̄ν̄ H
′11
µν (ωγ)

]
dωγ. (3.111d)

With the help of the normalisation condition, we then have

Ω2
i =

∑
µ<ν

Ω2
i (|W̃ i

µν |2 + |X̃ i
µν |2 − |Ỹ i

µν |2 − |Z̃i
µν |2)

=
1

4π2|⟨i|F|0⟩|2
∑
µ<ν

{∣∣∣∣∮
Ci

[
(Eµ − Eν)W̃µν(ωγ) + σ−1

µ̄νH
11
µν(ωγ)

]
dωγ

∣∣∣∣2
+

∣∣∣∣∮
Ci

[
(Ēµ + Eν)X̃µν(ωγ) + η−1

µν H
20
µν(ωγ)

]
dωγ

∣∣∣∣2
−
∣∣∣∣∮

Ci

[
(Eµ + Ēν)Ỹµν(ωγ) + η−1

µν̄H
02
µν(ωγ)

]
dωγ

∣∣∣∣2
−
∣∣∣∣∮

Ci

[
(Ēµ − Ēν)Z̃µν(ωγ) + σ−1

µ̄ν̄H
′11
µν (ωγ)

]
dωγ

∣∣∣∣2
}
, (3.112)

which allows us to calculate the energy Ωi once we have found a contour selecting this
frequency only.

3.4.3 Eigenvalues and transition amplitudes from the moments

As shown in 2.6.4, integrating the smeared strength in the whole positive ω complex half-
plane gives the moments of the strength distribution. More precisely, if a contour C goes
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around some poles {Ωµν} of the strength function, one can obtain from (2.82), (2.85) and
(2.86) that

mk(C) =
1

2iπ

∮
C
dωγω

k
γS(F, ωγ) = Z−1

∑
Ωµν∈C

Ωk
µνe

−βEµ |⟨ν|F |µ⟩|2. (3.113)

In a situation where only one pole is enclosed by C (noted Ci for the occasion),

m0(Ci) = Z−1e−βEµ|⟨ν|F |µ⟩|2, (3.114a)

mk+k′(Ci)

mk(Ci)
= Ωk′

µν , ∀ k, k′ ∈ Z. (3.114b)

Thus, if one is only interested in the thermal matrix elements (3.114a) and/or eigenval-
ues (3.114b), only two partial moments of the strength need to be calculated.

3.4.4 Summary

Finally, the equations allowing the calculation of different interesting quantities are given
here:

- eigenvectors: (3.99),

- eigenvalues: (3.112), (3.114b).

As of obtaining the transition matrix elements, there are two possibilities13 [HKN13]:

- by a contour integral of the FAM amplitudes (3.98),

- the thermally weighted squared matrix element can be found by (3.114a).

Note that only the latter is physically meaningful at T > 0, since it properly encodes
the statistical distribution of the initial state. Following [HKN13] again, we remark that
in case the chosen contour contains more than one pole, (3.112) and (3.114b) must give
different results: the first contains interferences between the enclosed modes due to squar-
ing the matrix elements, whereas the second equation does not. This can in practice be
employed to determine whether the contour loops around a single pole or more than one.

Similarly, the integral (3.98) contains interferences. On the other hand, (3.114a) does
not. The two techniques can thus be tested against each other, to discriminate the
occurrence of more than one pole. One could also think of using (3.99) to calculate
(3.83), but the value of matrix element depends on the choice of the technique, hence
it does contain contaminations or does not, depending on the technique. It should be
remarked that this cross-validation is only possible at T = 0, unless the partition function
and energies {Eµ} of the many-body microstates are calculated as well.

13Calculating the trace (3.83) is not possible since the matrix element is needed to obtain the FAM
amplitudes from (3.99).
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3.5 Self-consistent dressing

At first glance, the propagators seem to always be the HFB ones. This turns out not
to be the case when the dynamical fields are included, as they will implicitly dress the
propagators by self-consistently including RPA correlations. This can be illustrated by
inspecting a simple two-level system (representing for instance a two-level system with
two particles, in the presence of an oscillating electromagnetic field):

H0 =

(
ϵ

−ϵ

)
; R0 =

(
1

1

)
; F =

(
f

f

)
; δH =

(
vx

vy

)
; δR =

(
x

y

)
.

(3.115)

Here, H0 and R0 are the unperturbed Hamiltonian and density matrix, F is the external
field, δH and δR are the residual interaction and density fluctuations. The FAM equations
read

x = −f + vx

2ϵ− ω
(3.116)

y = −f + vy

2ϵ+ ω
. (3.117)

Solving for the amplitudes x and y yields first-order poles at ω = ±(2ϵ+v), which shows
that the poles are shifted due to the residual interaction. Note that the 2ϵ + v residual
is reminiscent of the entries of the QRPA matrix Aµνµ′ν′ = (Eµ + Eν)δµµ′δνν′ + Vµνµ′ν′ : if
the two-body interaction is diagonal in the two-body basis, the energy shifts are trivially
obtained due to their δµµ′δνν′ character.

3.6 Nambu-Goldstone modes

3.6.1 Equations of motion for the NG modes

Nambu-Goldstone (NG) modes correspond to zero-energy excitations restoring sponta-
neously broken symmetries [Nam60; Gol61; GSW62]. For a system described by the
Hamiltonian H, the density matrix solves the Liouville-von Neumann equation

iḊ = [H,D]. (3.118)

Likewise, we have for mean-field theories

iṘ = [H,R] HFB, (3.119)

iρ̇ = [h, ρ] HF. (3.120)

Since these have the same form as (3.118), the results of this subsection transpose
to the mean-field theories with no problem. For some arbitrary Hermitian operator P
corresponding to a transformation of magnitude α, the symmetry transformation of an
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operator A is written as

A → Ã = eiαPAe−iα∗P †
= eiαPAe−iαP . (3.121)

Spontaneous symmetry breaking occurs when H is invariant under the symmetry trans-
formation S (that is, [H,S] = 0, or equivalently, H̃ = H), but the density matrix is not.
The Liouville equation remains unchanged by the transformation:

i ˜̇D = [̃H,D] = eiαP [H,D]e−iαP = eiαPHe−iαP eiαPDe−iαP −H ↔ D

=
[
H̃, D̃

]
. (3.122)

The derivative of the transformed density matrix is

˙̃D =
d

dt

(
eiαPDe−iαP

)
= i(α̇P + αṖ )eiαPDe−iαP + eiαP Ḋe−iαP − ieiαPD(α̇P + αṖ )e−iαP

= ˜̇D + i
(
(α̇P + αṖ )eiαPDe−iαP − eiαPD(α̇P + αṖ )e−iαP

)
= ˜̇D + iα̇

[
P, D̃

]
+ iα

[
Ṗ , eiαPD

]
e−iαP . (3.123)

If α and P are both independent of time, one finds that14

˙̃D = ˜̇D, (3.124)

yielding

i ˙̃D =
[
H, D̃

]
(3.125)

after recalling that P and H commute, hence H̃ = H. Therefore, any solution of the
Liouville-von Neumann equation transformed according to a continuous symmetry of the
system is also a solution of the equation of motion.

3.6.2 NG modes removal

Since the transformed density matrices verify the transformed Liouville-von Neumann
equation for the same Hamiltonian, they describe an equivalent state. The eigenvalues are
therefore identical to those of the original state. The resulting Nambu-Goldstone modes
relate elements of this manifold of states differing by zero-energy excitations through the
application of the exponential map associated to the algebra describing the symmetry

14Which could have been seen by the following argument: if the generator of the transformation does
not depend on time, the order between the transformation and the derivation does not matter, i.e.
∀A,

[
d
dt , P

]
A = ṖA+ PȦ− PȦ = 0.
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operator.

One can measure the difference between two equivalent operators (in that case, density
matrices) through the definition

∆DP ≡ (D̃P −D) = eiαPDe−iαP −D

∼ iα[P,D] (3.126)

from which, regardless of the magnitude α of the transformation, one defines

δDP ≡ α−1∆DP ∼ i[P,D]. (3.127)

It is no big deal to show that δDP is Hermitian if so does D (and being the ground
state density matrix, it does) and P 15:

δD†
P = α−1∆D†

P = α−1
(
eiαPD†e−iαP −D†) = δDP . (3.128)

This forbids one to use the normalisation condition for the density fluctuations (3.72),
since it requires these to be non-Hermitian (the hermicity of Q̃i ≡ QiN 1/2 follows from
that of Qi and N ):

δii′ = ⟨i′|N |i⟩ = ⟨0|Qi′NQ†
i |0⟩ = ⟨0|Q̃i′Q̃

†
i |0⟩ = ⟨0|

[
Q̃i′ , Q̃

†
i

]
|0⟩ = Tr

{[
Q̃i′ , Q̃

†
i

]
R0

}
.

(3.129)

Therefore, these modes cannot be separated from the physical ones using this orthogo-
nality relation. Instead, we assume that the spurious densities contribute linearly to the
calculated density:

δDcalc = δDphys + δDspurious = δDphys +
∑
P

λP δDP +
∑
R

λRδDR, (3.130)

which is reasonable since the density fluctuations are expected to be small, hence cou-
plings between NG modes and non-spurious ones should be second order terms. The or-
thogonality of the spurious densities with the non-contaminated one, ⟨δDphysδDP,R⟩ = 0,
can be recast under a commutator form:

⟨[δDphys, δDP ]⟩ = 0 =

〈[
δDcalc −

∑
R

λRδDR, δDP

]〉
= ⟨[δDcalc, δDP ]⟩ −

∑
R

λR ⟨[δDR, δDP ]⟩ , (3.131)

15This is also immediate from the first order expression in (3.127).
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⟨[δDphys, δDR]⟩ = 0 =

〈[
δDcalc −

∑
P

λP δDP , δDR

]〉
= ⟨[δDcalc, δDR]⟩ −

∑
P

λP ⟨[δDP , δDR]⟩ . (3.132)

All the quantities in that last equation can be calculated from static operators and the
computed transition density. One finds

λR =
⟨[δDcalc, δDP ]⟩
⟨[δDR, δDP ]⟩

, (3.133)

λP =
⟨[δDcalc, δDR]⟩
⟨[δDP , δDR]⟩

, (3.134)

which yield the final expression

δDphys = δDcalc −
⟨[δDcalc, δDR]⟩
⟨[δDP , δDR]⟩

i[P,D]− ⟨[δDcalc, δDP ]⟩
⟨[δDR, δDP ]⟩

i[R,D]

= δDcalc −
⟨[δDcalc, [R,D]]⟩
⟨[[P,D], [R,D]]⟩ [P,D]− ⟨[δDcalc, [P,D]]⟩

⟨[[R,D], [P,D]]⟩ [R,D]. (3.135)

If there is more than one pair of operators that generate spurious modes, this subtrac-
tion can be applied iteratively, provided the generators of the transformations commute.

In practise, the direction of symmetry breaking is entirely determined by the external
operator Q̂: if it does not break a symmetry S, there will be no induced spurious density
in the direction in which S is broken. Therefore, the number of broken generators depends
on the choice of Q̂. For instance, an operator of which the projection K along the r⊥ axis
is zero cannot reach spurious states generated by rotation in the ⊥ direction (in other
words, it does not break S⊥), so that one only has to subtract {δDrz , δDpz} from the
calculated density. Conversely, an operator depending only on the radial distance r⊥ does
not break Sz but only S⊥.

3.7 Centre of mass

As mentioned in section 2.2, the centre of mass of a system that is not bound by an exter-
nal field must be fixed by imposing explicitly that the total linear momentum vanishes:

P =
A∑
i

pi = 0, (3.136)

which is equivalent to
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0 =
P2

2M
=

A∑
i

p2
i

2M
+

A∑
i ̸=j

pi.pj

2M
, (3.137)

M being the total mass. In the following, we assume that all masses are identical16.
At the one-body level, one can simply subtract from each particle’s kinetic energy the
average kinetic energy of the translation-invariant system:

T =
p2

2m
→
(
1− 1

A

)
p2

2m
, (3.138)

while an additional two-body interaction appears:

vc.o.m = −pi.pj

2Am
. (3.139)

This understanding of the centre of mass contribution is only valid when the particle
number A can take a single value. Indeed, mathematical correctness commands to write
the intrinsic momentum at the operator level. Is has been shown in detail [HR09] that
two identical (at the operator level) representations of the kinetic operator may lead to
different normal and anomalous fields. This possible discrepancy has been tracked down
to idempotency of the generalised density matrix, owing to which the ρ and κ densities
are related. The rest of this section summarises the findings of [HR09], and shows that
the same conclusion hold for the linearised fields entering the FAM.

The kinetic operator can take the form either of a one-plus-two-body operator:

T̂
(a)
int = T̂lab − T̂c.o.m =

(
I − Â−1

)∑
i

p2
i

2m
− Â−1

2m

∑
i ̸=j

pi.pj, (3.140)

or a purely two-body term, corresponding to the relative kinetic energy of each pair:

T̂
(b)
int = Â−1

∑
i<j

(pi − pj)
2

2m
. (3.141)

While these two expressions are formally equivalent, the second leads to an ambiguity
regarding whether the variation of the kinetic energy contributions in the normal or pairing
channel. It can be shown [HR09] that a specific prescription has to be taken to enforce the
equality of the normal and pairing fields derived from either (3.140) or (3.141). In such
case, since h(a) = h(b) and ∆(a) = ∆(b), the explicitly linearised terms entering the FAM
equation are identical as well with either choice (a) or (b). Conversely, the conclusion of

16If one has different types of degrees of freedom (e.g. two for protons and neutrons), as many copies
of (3.137) -and the forthcoming equations- should be considered, since having one species with non-zero
linear momentum would signify it can drift away from the total origin of the coordinate frame. The fact
identical particles are grouped together stems from their indistinguishability.
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[HR09] is expected to hold at the FAM level as well: when no prescription is taken, (a)
and (b) should lead to identical fields if and only if the total wave function is an eigenstate
of the particle number operator. The rest of this section proves this statement. For the
expressions of the static mean-field, we refer the reader to [HR09] (Eqs. 23 and 31, 25
and 32) once more. In the FAM, the first iteration can be initialised with δh = δ∆ = 017,
hence the very first trial δρ and δκ are the same with both ways of calculating the fields.
It is thus sufficient to examine whether the different fields given by (a) and (b) lead to
identical expressions once linearised. One finds

δh
(a)
kk′ =

∑
qq′

{(
vkqk′q′ −

1

⟨Â⟩m
⟨kq|p1.p2|k′q′⟩

)
δρq′q

}
, (3.142)

and

δh
(b)
kk′ =

∑
qq′

{(
vkqk′q′ +

2

⟨Â⟩m
⟨kq|q212|k′q′⟩

)
δρq′q

}

+
1

⟨Â⟩
∑
q

(tkqδρqk′ + tqk′δρkq) . (3.143)

The difference dhkk′ ≡ δh
(b)
kk′ − δh

(a)
kk′ is

dhkk′ =
1

⟨Â⟩m
∑
qq′

⟨kq|(2q212 + p1.p2)|k′q′⟩ δρq′q

+
1

⟨Â⟩
∑
q

(tkqδρqk′ + tqk′δρkq) . (3.144)

Using the identity

2

m
⟨kq|q212|k′q′⟩ = tkk′δqq′ − tkq′δqk′ + tqq′δkk′ − tqk′δkq′ −

1

m
⟨kq|p1.p2|k′q′⟩ , (3.145)

we get

dhkk′ =
1

⟨Â⟩
∑
qq′

[
(tkk′δqq′ − tkq′δqk′ + tqq′δkk′ − tqk′δkq′

− 1

m
⟨kq|p1.p2|k′q′⟩) + 1

m
⟨kq|p1.p2|k′q′⟩

]
δρq′q

+
1

⟨Â⟩
∑
q

(tkqδρqk′ + tqk′δρkq)

17And the same for the barred fields.
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=
1

⟨Â⟩

[
tkk′
∑
q

δρqq −
∑
q′

tkq′δρq′k′ +
∑
qq′

tqq′δkk′δρq′q −
∑
q

tqk′δρkq

]

+
1

⟨Â⟩
∑
q

(tkqδρqk′ + tqk′δρkq)

=
1

⟨Â⟩

[
tkk′
∑
q

δρqq + δkk′
∑
qq′

tqq′δρq′q

]

=
1

⟨Â⟩
[tkk′ Tr{δρ}+ δkk′ Tr{Tδρ}.] (3.146)

In the cases where the excitation couples elements having different angular momenta
projections (AMP), both traces vanish18. There can thus be no difference in the results
obtained with these two prescription as far as these excitation modes are concerned.
As for AMP non-conserving transitions, the first trace vanishes only for particle-number
dispersion-less theories19. Indeed,

Tr{δρ} (3.44a)
= Tr

{
UWU † + V ∗Y U † + UXV T + V ∗ZV T

}
(2.48a)
=

(2.48b)
Tr
{
V TU(X − Y ) +W − 2V †VW

}
; (3.147)

the second and third terms vanish at zero temperature, since W = 0 in this limit. The
first term involves V TU , which quite resembles the pairing tensor. Yet, the presence of
X does not allow applying the cyclic property. Instead, one can invert block-wise the
Bogoliubov matrix to show that U ∝ U † and V ∝ V †. The transformation being encoded
in a real matrix, one immediately deduces Tr{δρ} = 0 at zero temperature and for a
vanishin
The second part, however, is apparently not zero. It results in the normal fields being

“shifted”:

δh(b) = δh(a) + αI, α = ⟨Â⟩−1Tr{Tδρ}. (3.148)

It follows that the generalised Hamiltonian becomes

δH(b) = δH(a) + α

(
I

−I

)
. (3.149)

The shift transforms into the Bogoliubov basis as

(
dH(11) dH(20)

dH(02) dH(′11)

)
ρ

= dHρ = α

(
U † V †

−V † U †

)(
I

−I

)(
U −V
V U

)
18Provided the matrix representation of the operators is consistently ordered, i.e. the basis states come

in the same order column-wise (from left to right) and row-wise (from top to bottom).
19The cyclic property of the trace and the tracelessness of W -see (3.8c)- are employed)
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= α

(
U †U − V †V −U †V − V †U
−V †U − U †V V †V − U †U

)
= α

(
ρ+ ρ̄− I κ+ κ̄
κ+ κ̄ I − ρ− ρ̄

)
. (3.150)

Unfortunately, the shift results in non-zero changes in the perturbed fields. One may
note, however, that at the Hartree-Fock approximation, the (20) and (02) blocks remain
unchanged. At T = 0, the diagonal blocks (11) and (′11) do not contribute to any ob-
servable, as can be seen from (3.9) and (3.10). Altogether, we find that versions (a) and
(b) of the centre of mass correction yield identical observables within the FAM. This is
consistent with the result obtained in [HR09] for the static fields. It has been numerically
checked that the two prescriptions yield the same strengths functions (up to machine
precision) for the double magic nucleus 16O at T = 0 for IS monopole, IV dipole and IS
quadrupole excitations.

If the system is either thermally excited and/or superfluid, the above derivations show
that the two representations (3.140)-(3.141) do not lead to identical fields if one is not
careful. In that case, the simplest choice is to adopt the kinetic operator (3.140), which
does not require a specific prescription.

Finally, the pairing fields need not be examined, since the consistency is valid only for
non-superfluid systems. For completeness, the difference between the two pairing fields
writes, in the very same manner,

d∆kk′ ≡ δ∆
(b)
kk′ − δ∆

(a)
kk′

=
1

⟨Â⟩
∑
q

[
tkqδκqk′ + t∗qk′δκkq

]
+

1

⟨Â⟩
∑
qq′

[tkqδk′q′ − tkq′δqk′ + tk′q′δkq − tk′k′δkq′ ] δκqq′

=
1

⟨Â⟩
∑
q

[
tkqδκqk′ + t∗qk′δκkq

]
+

1

⟨Â⟩
∑
q

[tkqδκqk′ − tkqδκk′q + tk′qδκkq − tk′k′δκqk]

=
2

⟨Â⟩
∑
q

[
tkqδκqk′ + t∗qk′δκkq

]
− 1

⟨Â⟩
∑
q

[tkqδκk′q + tk′k′δκqk] . (3.151)

Bonus: Coordinate space centre of mass correction

The zero-momentum condition writes

0 = K =
A∑
i

k ⇔ K2

2Am
=

1

2Am

(∑
i

k2
i +

∑
i ̸=j

ki.kj

)
, (3.152)
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viz., the correction has the same form as in a basis. This is evident, as (3.137) makes no
reference to a particular basis whatsoever: the coordinate basis is simply a special one,
where the basis “functions” are Dirac and form a mesh. The one-body contribution can
simply be subtracted, while the two-body is most easily calculated by Fourier transforming
the wave functions:

−⟨a|ka.kb

2Am
|b⟩ = −

∫
dk1dk2Φ̃

∗
a(k1)

ka.kb

2Am
Φ̃b(k2), (3.153)

which seems rather involved for such a simple field. Among the infinitely many choices
for the grid, it is smart to choose one such that multidimensional integrals like (3.153)
can be carried out analytically. The obvious and standard choice is to employ a Cartesian
mesh, for which the eigenfunctions are those of a particle in a box, that is, plane waves.
Behold! The integrals in (3.153) suddenly become easy.

3.8 Unstable modes

Although the FAM formalism can always (why not?) be applied to obtain the linear re-
sponse of a system to some given perturbation, the linear regime is expected only when the
system undergoes small oscillations around the reference state. This means for instance
that the approach must fail when applied on top of a reference state which is unstable
with respect to the perturbation. As is known20, instabilities in the RPA response lead
to imaginary eigenvalues. Complex QRPA eigenvalues thus constitute clear indicators of
the breakdown of the linear approximation21. This section examines how and when it is
possible, from FAM calculations, to detect such poles that characterise the collapse of the
method’s validity.

Method 1: sum rules

The sum rules can be obtained [Hin+15] (see also (2.6.4)) by contour integration around
the Re(ω) > 0 half-plane. When performed around a contour C that does not circle all
the poles of the strength function, one may define the partial sum rules as

mk(C) =
1

2iπ

∮
C
dωγω

k
γS(F, ωγ) = Z−1

∑
Ων

µ∈C

(Ων
µ)

ke−βEµ |⟨ν|F |µ⟩|2. (3.154)

In particular,

20This can be checked in the simple case of a 2×2 RPA matrix

(
a b

−b∗ −a∗

)
, which bears minus signs

as opposed to (2.87) to account for the metric, and thus deal with an eigenvalue equation instead of a
generalised one. It is a bit more involved to show that the stability of the ground state is related to the
positive-definiteness of the RPA matrix (2.87), this time with plus signs only.

21But the converse is not true: having real eigenvalues only by no means imply that the linear response
is a “good” approximation.
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m1(C) = Z−1
∑
Ων

µ∈C

Ων
µe

−βEµ |⟨ν|F |µ⟩|2. (3.155)

Thus, the partial sum rules can be employed to check if any unstable mode is present
within a given contour C. Provided unstable eigenvalues do not come in conjugate pairs,
the existence of such values can be characterised by a non-zero imaginary part of the
m1 sum rule. If they do come in pair (and with transition matrix elements of identical
norm for the pair), as is the case with the RPA theory, a contour C going around all
the poles in the positive ω half-plane will always result in real moments mk. As such,
an all-encompassing contour cannot be employed to detect complex-energy modes. This
downside is sidestepped by a simple ruse: rather than calculating the total sum rules, one
restricts the contour to one looping around the Γ ≥ 0 axis.

Method 2: sign of S

Another means of identifying the presence of complex energy eigenvalues comes from the
strength function: writing Ων

µ = Ωq + iΓq, e
−βEµ|⟨ν|F |µ⟩|2 = M2

q and e−βEµ |⟨µ|F |ν⟩|2 =
M2

−q,

Im{S(F, ωγ)} = −γ
∑
q>0

(
M 2

q − M 2
−q

)
+
∑
q>0

Γq

(
M 2

q + M 2
−q

)
(3.156)

M 2
q ≡ M2

q

(Ωq − ω)2 + (Γq − γ)2
; M 2

−q ≡
M2

−q

(Ωq + ω)2 + (Γq + γ)2
. (3.157)

When no complex-energy eigenmodes is present, the imaginary part of the strength
is always negative. Conversely, if the frequencies Γq are large enough, (3.156) becomes
positive. Hence, a positive imaginary part of S always implies the instability of the system
with respect to the perturbation. Equation (3.156) can be used to give the following
bounds:

Γmin < γ

∑
q>0 M 2

q − M 2
−q∑

q>0 M 2
q + M 2

−q

Im{S(F, ωγ)} < 0, (3.158)

Γmax > γ

∑
q>0 M 2

q − M 2
−q∑

q>0 M 2
q + M 2

−q

Im{S(F, ωγ)} > 0. (3.159)

More drastically, the strength is non-zero on the imaginary axes only when instabilities
are present.

Im{S(F, ωγ = iγ)} = 0 ⇔ γ
∑
q>0

(
M 2

q − M 2
−q

)
=
∑
q>0

Γq

(
M 2

q + M 2
−q

)
. (3.160)

This is shown in two steps. First, because the eigenvalues come in pair, Eq. (3.156)
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becomes

Im{S(F, ωγ = iγ)} = −γ
∑
q>0

M2
q −M2

−q

Ω2
q + γ2

, if Γq = 0 for all q. (3.161)

For a Hermitian probe, F = F †, implying the matrix elements M2
q and M2

−q are equal.
Having no complex eigenvalues thus causes (3.161) to be equal to zero for imaginary
excitation frequencies. Second, assuming there is at least one Γq ̸= 0 (and F = F † for
consistency with the previous equation), there exist frequencies such that γ ≪ Ω2

q + Γ2
q.

Expanding the denominators to second order and keeping terms up to γ3, one obtains by
imposing Im{S} = 0 on the imaginary axis

−γ
∑
q>0
Γq ̸=0

M2
q

(Ω2
q + Γ2

q)
2
(γ2 − 2γΓq) =

∑
q>0
Γq ̸=0

M2
q

Ω2
q + Γ2

q

(
1 + γ2

1 + 4Γ2
q

(Ω2
q + Γ2

q)
3

)
. (3.162)

Being a polynomial in γ, in only has a finite number of roots. Finding Im{S} = 0 along
the imaginary axis thus gives a proof of the stability of the ground state with respect to
the perturbation.

3.9 Resonance broadening

The linear approximation at the heart of the theory implies that the excited states, re-
gardless of their collective or individual character, do not couple to each other. As such,
the theory is not able to give a width to the strength obtained from the eigenmodes.
However, experimental measurements show that the resonances do possess a generally
sizeable width. Besides those introduced by the measurement apparatus, the phenomena
responsible for the broadening of the response spectra can be separated in two categories:

• On the one hand, several effects are due to the many-body character of the systems
we look at. Namely, we typically distinguish three phenomena [HW01, Ch. 1]:

– The coupling to excitations of richer nature, i.e. 2p2h/4qp, and higher. To
these is associated a spreading width Γs;

– The coupling between collective and individual states, causing the fragmen-
tation of the resonance through the opening of several decay channels. It is
characterised by the so-called Landau damping, of width ΓL;

– The coupling to continuum states, to which can be associated an escape width
Γe. It is generally assumed to be much weaker than the two others for stable
systems. However, in systems containing few nucleons and/or close to insta-
bility, coupling to continuum can be of sizeable importance.

• A Doppler broadening due to the thermal motion of the particles. While this effect
is often overlooked, it gives a significant contribution to the spectral width at tem-
peratures relevant for astrophysical processes. Figure 3.2 gives the relative thermal

78



Chapter 3. Finite Amplitude Method 79

broadening for a non-relativistic macroscopic gas at thermal equilibrium. For tem-
peratures of a few MeV, the broadening can be of about 1 − 5% of a resonance’s
energy. This effect is more pronounced for light nuclei.

The non-thermal effects result in a Lorentzian smearing, which is accidentally modelled
by the parameter γ. On the other hand, thermal effects not only enhance the Lorentzian
smearing (because the strength becomes more fragmented), but also produce a Gaussian
broadening. Even by staying at the linear response approximation, offering the possibility
for the system to have a non-zero temperature adds a macroscopic degree of freedom. For
atomic nuclei, the relative Doppler broadening starts to be of a few per cents for kBT ∼ 1
MeV, as can be seen in figure 3.2. Using macroscopic estimations, the thermal width of a
giant resonance in a system of A nucleons evolves as A−1/2, and is thus a relatively moder-
ate function of the mass. Temperatures relevant for neutron stars physics are of the order
of ∼ 1 − 2 MeV [Pot10; Lat15], for which the thermal broadening of a giant resonance
in 56Fe is of a few hundreds of keV to about half a MeV. Since at finite temperature,
the response function is in general quite fragmented due to several excitation channels
opening, such Doppler broadening might contribute in sizable extents to the total width
of the strengths, which at zero temperature are generally of about 5 MeV.
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Figure 3.2: Evolution of the relative thermal width of spectral lines as a function of the
temperature and atomic mass.
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In the case of neutron stars, the interaction of the nuclei with their environment could
play a considerable role [Peñ+11; KMC00; KMC01], so that this model of isolated nuclei
is by no means expected to be valid in presence of extremely high magnetic fields. Addi-
tionally, it assumes all nuclei are perfectly thermalised, which may very well not be the
case in realistic situations, e.g. in the case of newly formed neutron stars, whose temper-
ature drops by five to six orders of magnitude within a few years [Pot10; Lat15], although
pairing correlations [For+10], electronic collisions and interaction with photons can sig-
nificantly accelerate the cooling. Finally, since the structure of the nuclei is strongly
affected by their temperature, thermal effects cannot be faithfully represented by the
overly simplistic form of a Gaussian spreading of the zero-temperature spectral function:
strictly speaking, the effect of the temperature on nuclei in a macroscopic body should
be accounted for by drawing T from their temperature distribution, then summing their
responses altogether to obtain the properly weighted average:

S(F, ωγ, Tbath) =

∫
dTp(Tnucl = T | Tbath)S(F, ωγ, T ), (3.163)

p(Tnucl = T | Tbath) being the probability of finding a nucleus with temperature T within
a bath at temperature Tbath

22.

For crude estimations of the thermal broadening of a particular resonance mode and
nucleus, one can use the macroscopic formulae of [Cho97]. In particular, these tell us that
the thermal broadening should be the most important in case of iso-vector quadrupole
oscillations. As for low-lying resonances, which in general are of single-particle character,
the effect of temperature is expected to be much stronger, since the participant orbitals
are those with energy close to the Fermi energy.

3.10 QFAM in harmonic oscillator basis: selection

rules

3.10.1 From the external probe

A convenient approach to the treatment of collective excitations is to study the response
of the system to a probe of well-defined multipolarity. Indeed, a given multipolarity
comes along with its associated selection rules, so that one can, owing to the linear
approximation, decompose the total response of the system to any kind of perturbation
as a sum over the different projections of the angular momentum:

F (ω) =
∑
J,K

K all ̸=

cJK(ω)QJK ⇝ S(F, ω) =
∑
J,K

K all ̸=

cJK(ω)S(QJK , ω). (3.164)

This translates into the fact that for a given J , the different K = −J,−J +1, . . . , J can

22If the ensemble {nuclei+bath} is in statistical equilibrium and the nuclei form a gaseous state, one
has p(Tnucl = T | Tbath) equal to the Maxwell-Boltzmann distribution.
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be studied separately.

A typical means of exciting a system is through an electromagnetic (EM) probe. The
structure of the corresponding EM operators QJK must follow that of the basis employed
for the expansion of the wave functions, in order to assure the decoupling (3.164) of
the excitations. In this work, the computational basis is that of an axially symmetric
harmonic oscillator, of which the states can be assigned well-defined quantum numbers23.
A multipolar excitation can thus be characterised in this basis by three numbers:

- its quantum number J , characterising the transfer of total angular momentum;

- its quantum number K, characterising the change in the projection of J⃗ along the
symmetry axis;

- its quantum number S, characterising the change of spin, and therefore the electric
(S = 0) or magnetic (S = ±1) character of the excitation.

In practice, the axial basis can be arranged such that its vectors are grouped by their
value of the quantum number Ω = m + σ, corresponding to the projection of the total
angular momentum (orbital m + spin σ) on the symmetry axis. The structure of the QJK

operator then becomes block-diagonal in K:

QJ,|K|=0 =


 ; QJ,|K|=1 =


 ;

QJ,|K|=2 =


 ; QJ,|K|=3 =


 .

3.10.2 From the interaction

The interaction is taken to be a scalar in the both two-body and three-body Ω, τ, π spaces;
that is, it does not change the overall angular momentum projection, isospin and parity.
The conservation of angular momentum and parity result from the isotropy of space.
In parallel, since the gauge bosons carrying the strong interaction, the gluons, have no
electric charge, the residual interaction cannot change the total isospin of the particles it
acts on. This implies that the following selection rules are always verified by the matrix
elements vαγβδ and wαγϵβδζ of the interaction24

23The axial harmonic oscillator basis is presented in a bit more details in appendix E.
24Note that the rules in the anomalous sectors are given with the convention vαβγδ and wαβϵγδζ . For the

convention (used throughout this document) of keeping the same ordering for both sectors, the selection
rules are those of the normal case.

81



82 Chapter 3. Finite Amplitude Method

Normal sectors

Ωα + Ωγ = Ωβ + Ωδ (3.165)

τα + τγ = τβ + τδ (3.166)

πα + πγ = πβ + πδ. (3.167)

Anomalous sectors

Ωα + Ωβ = Ωγ + Ωδ (3.168)

τα + τβ = τγ + τδ (3.169)

πα + πβ = πγ + πδ. (3.170)

Normal sectors

Ωα + Ωγ + Ωϵ = Ωβ + Ωδ + Ωζ (3.171)

τα + τγ + τϵ = τβ + τδ + τζ (3.172)

πα + πγ + πϵ = πβ + πδ + πζ . (3.173)

Anomalous sectors

Ωα + Ωβ + Ωϵ = Ωγ + Ωδ + Ωζ (3.174)

τα + τβ + τϵ = τγ + τδ + τζ (3.175)

πα + πβ + πϵ = πγ + πδ + πζ . (3.176)

This leads to some relationships between the structure of the density matrix and the
fields. If we define K such that Ωδ = Ωγ +K (resp. Ωδ = Ωβ +K) in the normal (resp.
anomalous) sector, (3.165) (resp. (3.168)) implies Ωα = Ωβ + K (resp. Ωα = Ωγ + K).
Therefore, if the density matrix contains coupling between elements differing by K, so
do the h and ∆ fields. The isospin and parity being both invariant under time-reversal,
the selections rules (3.166)-(3.167) & (3.169)-(3.170) are also valid in the time-reversed
sectors with no sign to be introduced. In addition, the invariance of quantum mechanics
under time-reversal implies that the inter-nucleons interactions are invariant under this
symmetry. Finally, the interaction must be the same if all the initial and final states are
swapped consistently, as the indices labelling the states are evidently dummy. These two
last properties come in handy when calculating the fields, and are for instance put to
work in the derivations of (3.60) and (3.62).

3.10.3 Quantum numbers of the oscillations

In usual mean-field calculations, the matrices representing the many-body interactions
can be brought to a form that is block-diagonal in the conserved quantum numbers25.
The densities are mandated to have the same structure, and thus, so do the fields. The
situation is slightly richer when a probe is included, since it is allowed to excurse outside
the symmetry imposed to the unperturbed Hamiltonian, for which K = 0. It is easily
verified26 that the fields constructed by contracting the two- and three-body interactions
with the off-diagonal densities have the same quantum number K. Then, the FAM ampli-
tudes (3.8) always display the same structure as the operator F(ω). Finally, transforming
back to single-particle basis leads to transition densities non-zero only when they con-
nect states with difference of the angular momentum projection of K. Altogether, the
structure of the external operator propagates to all of the FAM densities and fields.

25This can be achieved simply by arranging the basis vectors appropriately.
26Sketching the operation as a block-wise product of two matrices does the trick.
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Chapter 4

Application to thermal phase
transitions

This chapter presents a succinct study of phase transitions triggered by tem-
perature. Although these phenomena are usually studied in heavy nuclei,
which exhibit properties closer to the thermodynamic limit, the work of this
chapter is centered around the mid-mass system 56Fe. The characteristic fea-
tures of the phase transition can be well reproduced. The results are in good
qualitative agreement with those observed in heavy systems.
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84 Chapter 4. Application to thermal phase transitions

4.1 Signatures of phase transitions

Colloquially, a phase transition is defined by the sudden and drastic change in the struc-
ture of the system. This is often realised by the different phases possessing different
symmetries [Lan37][LL67b, Ch. 14]. Formally, the phase transition is identified with a
discontinuity in a derivative of the free energy F . The modern classification labels phase
transitions as discontinuous or continuous, depending on whether the entropy

S = −
(
∂F

∂T

)
N,V

(4.1)

shows a discontinuity or not. The derivatives of the free energy are to be taken with
respect to the parameter that is varied, namely the temperature in the present case. As
the transition corresponds to an abrupt modification of the system’s properties across
the different phases, at least one macroscopic observable must undergo identical changes.
There exists therefore a quantity characterising, loosely speaking, the extent to which the
high-symmetry phase is broken down to the low-symmetry one. These are the so-called
order parameters. An intuitive example is the shape phase transition in finite systems.
An axially deformed phase breaks SO(3) down to SU(2), and is identified by a non-zero
quadrupole moment β20. The transition from a spherical to a deformed phase therefore
occurs as soon as β20 departs from zero. The high-energy phase typically has higher sym-
metry than the low-energy one. This can be understood by arguing that at large energy,
the degrees of freedom can explore a wider part of the parameter space, washing out the
effects of the small region corresponding to a particular subgroup of the overall symmetry
group of the high-energy phase. The situation is similar for the pairing transition, which
breaks the particle number symmetry at low energy; the pairs break up as the tempera-
ture is increased, effectively restoring the U(1) symmetry.

A somewhat more rigorous definition is that different phase of the system are char-
acterised by different symmetries or topologies, that are identified with the expectation
values of symmetry operators, which commute with the Hamiltonian in one phase but not
in another. This translates in an order parameter acquiring a non-zero expectation value,
that can be used as a gauge of the extent to which the symmetry is broken. For instance,
a superconducting phase involves a non-zero pair creation gap, whereas a normal phase
corresponds to disfavoured pair condensation. The corresponding order parameter is the
pairing gap, or equivalently the pairing energy. Likewise, a deformed ground state is not
invariant under rotations, and thus exhibits one or more non-zero expectation values of
multipolar moments.

In this chapter, we study the shape phase transition of the deformed nucleus 56Fe. The
lighter 46Ti and 44Ti display a step-like collapse of the deformation, and are therefore
discarded for this thermodynamically inclined analysis. Iron is found to exhibit an oblate
shape. The evolution of the appropriate order parameter, namely the quadrupole defor-
mation β20, is studied as a function of the temperature. This allows to identify the critical
temperature TC and observe the behaviour of thermodynamical parameters deriving from
the free energy. The convergence with respect to numerical parameters of the axial har-

84



Chapter 4. Application to thermal phase transitions 85

monic oscillator basis is studied, as well as the convergence as different orders in the chiral
interaction are included.

4.2 Motivation for studying 56Fe

A fine understanding of nuclear structure and reactions is required if one desires to accu-
rately describe the giant resonances, and by such the origin and abundances of chemical
elements [Bur+57]. The whole nucleosynthesis can schematically be split into two parts,
corresponding to the formation of light to mid-mass nuclei, and the generation of heavier
ones. From the appearance of light nuclei through the cooling down of the early universe,
a gravitational collapse of protostellar clouds (composed of hydrogen in atomic or molecu-
lar form, helium and, to a lesser extent, of nuclei up to carbon) may trigger thermonuclear
fusion, and hence the genesis of stars. High pressure and temperature cause nuclear re-
actions to abound. Illustratively, the combustion of hydrogen towards heavier nuclei is a
series of energetically favoured processes, up to iron and nickel. During the late stages of
stellar nucleosynthesis, the earlier-formed silicon nuclei capture alpha particles towards
56Ni [Cla68, Ch. 7]. This nucleus undergoes beta-decay towards 56Co, which also converts
one of its protons to form 56Fe. Having one of the highest fractional binding energies of
the whole nuclide chart [Few95], the chain stops here. This explains the abundance of iron
in the universe [Cla68; LPG09; AG20] and its role as a starting point for the formation of
heavier nuclei through the s-process [Hil78; MC90; CT04] that occurs during the late life
of stars with about one to eight solar masses [Boo06]. Knowing of the rates at which these
reactions occur is key to faithful prediction of nucleosynthetic processes. The status of
this iron isotope as both an accumulation point of the silicon burning stage and a starting
point for the nucleosynthesis of heavier elements calls for an in-depth understanding of
the structure of its ground and excited states. The present chapter analyses and discusses
the effects of coupling to a thermal bath on the bulk properties of 56Fe.

4.3 Results

4.3.1 Foreword: mean-field and expectations from ab initio in-
teractions

In case of a microscopic theory, the exact, many-body Schrödinger must in principle be
solved. However, its exponentially increasing dimension with the number of degrees of
freedom often makes such an approach a daunting task. As an alternative, we resort to a
Hartree-Fock-Bogoliubov mean field theory, including superfluidity (see subsection 2.4.2).
Furthermore, we allow the breaking of the rotational SO(3) symmetry down to an axial
(SU(2)) one, as a means of grasping additional correlations at a mild cost by letting the
system explore a landscape of lesser symmetry. While breaking symmetries may seem
curious for finite systems, this approach can be phenomenologically justified. For defor-
mation, several types of quantum systems (atoms, molecules and nuclei alike) do exhibit
rotational bands, that can only exist in non-spherical bodies. In case of pairing inter-
actions, the odd-even staggering effect signals an increase of binding energy for systems
possessing even numbers of nucleons. This suggested the possibility of pairing in atomic
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nuclei early on [BMP58]. It is important to note that on average, symmetries are preserved
in finite systems: while frameworks allowing for their breaking are allowed and motivated
by empirical facts, the story must be complemented by a symmetry-restoration step in or-
der to obtain eigenstates exhibiting the same symmetries as the Hamiltonian. Additional
correlations beyond the single-reference mean-field can be obtained by including mpmh
correlations in a perturbative manner [Tic+16; Tic+18; TRD20] or not [DS15; Qiu+19;
BD21], and carrying a projection onto the desired symmetries.

On the other side, interactions derived from an effective theory become less reliable as
the size of the system increases. Indeed, in order to maintain the connection to QCD,
the low-energy constants must be adjusted on few-body data, and as such, the quality of
the predictions degrades with increasing masses by lack of four-body (and higher) terms.
The derivation and production of high-rank interactions is a highly involved endeavour
[Her+13; Hup+13; Rot+14]. Extending the reach of ab initio methods to higher masses
is a task currently being undertaken [Som+14; Her20]. It should be pointed out that
the ab-initio interactions are known for providing differential quantities (e.g. nucleonic
separation energies) in better agreement with experiment than the integrated values such
as the total binding energies. Still, neither can rival the results obtained with phenomeno-
logical interactions, that are adjusted over the whole nuclear chart, and thus yield more
accurate results on average.

The results presented in this thesis thus rest on the arguable balance of tackling mid-
mass systems. On the one hand, mean field approximations are not well-suited for light
systems, where the contribution from individual particles with respect to the bulk can
be non-negligible. Alternatively, the use of ab initio interactions, adjusted on few-body
data, becomes questionable for large numbers of particles, at least when using a simple
HFB framework. Despite this apparent flaw, we can stress two points. First, the relevant
quantities for the study of temperature on FTHFB results are calculated as differences
or differentials, we can thus expect a correct quantitative behaviour even if the ground
state energy is shifted from the experimental values. In case of the FTFAM, simple
particle-hole type excitations over a ground state are considered. The energy differences
between single-particle states being in general overestimated, we can expect the strengths
function obtained in the next chapter to overestimate the excitation energies, although the
qualitative behaviour should be correct. On the other hand, the self-consistent solution of
the FAM equation incorporates collective correlations, and as such contribute in correcting
the quasiparticle self-energies. Second, the improvement of “raw” FTHFB results is still
possible by any of the previously mentioned techniques (provided they are formalised for
non-zero temperatures). Although our results on binding energies, radii, or deformations
are no match for those given by phenomenological interactions, they remain relevant as
first steps towards the extension of usual mean-field-and-beyond techniques to the finite
temperature regime within an ab initio setting.
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4.3.2 Convergence with model space parameters and chiral or-
der

The calculations performed here depend on several parameters: the frequency ℏΩ of
the harmonic oscillator employed to construct the basis functions, the number of single-
particle basis functions (characterised by the integer emax), the relative length of the
oscillator in the radial and axial directions1, and the order in the chiral expansion, to
name the most important. The axial and radial oscillator frequencies could be optimised
simultaneously, but are always taken to be equal. The three first are essentially numerical
parameters to be optimised in order to obtain the lowest energy, whereas the latter has a
clear physical meaning and will be discussed in a following section.

The oscillator frequency controls the stiffness of the basis functions: a large (resp. small)
frequency corresponds to narrow (resp. spread out) wave functions. In the ℏΩ → 0 limit,
the wave functions become those of plane waves, for which achieving localisation can sen-
sibly be conceived to be more difficult than when using a non-zero frequency. On the
other hand, the ℏΩ → ∞ translates into basis function sharply localised around the cen-
tre of the coordinate frame, so that the system can only be much more localised than its
ground state shape within an otherwise identical model space. These two extreme cases
should thus lead to ground state energies far above the minimum of E(ℏΩ). A reasonable
choice for ℏΩ can be to have resulting eigenfunctions with a spatial extent close to the
expected (e.g. estimated from a hard-sphere formula) radius of the nucleus, although the
dependence of the radius on the shell structure makes this guess usually land off the op-
timal value. Taking ℏΩ according to a liquid drop formula, ℏΩ ∝ A−1/3, can nonetheless
provide a starting point for scanning a range of oscillator frequencies.

On the opposite side, increasing the size of the model space must unambiguously lead to
lower ground state energies, all other parameters being equal. The emax → ∞ is obviously
unreachable, as it would require infinitely many basis functions. Since the energy is
expected to converge smoothly with the size of the model space, one can instead study
the convergence by carrying calculations with a set of different values of emax. It should
be noted that the energy is the only quantity for which this monotonous convergence
is guaranteed, by the variational principle underlying the resolution of the equations of
motion.

Interpolations in oscillator frequency

Assuming the shell structure of the nucleus under study is relatively independent of ℏΩ,
one can presume that the energy does not vary too abruptly with the oscillator frequency
about the optimal value. It is thus reasonable to suppose the energy to be a quadratic
function of ℏΩ when close to the best frequency. This can be used to interpolate numeri-
cally the optimal oscillator frequency, and obtain the corresponding energy, or an estimate
thereof, straight from the polynomial regression.

1Because Ω is the geometric mean of the oscillator frequencies in the two directions, one can either
take their ratio and Ω as the parameters of the basis, or the two oscillator lengths, both choices being
strictly equivalent.
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Figure 4.1: Ground state energies as a function of the oscillator frequencies at emax =
6, 8, 10 with e3max = 14.

Figure 4.1 summarises the ground states obtained for three different values of ℏΩ, for
all three nuclei considered. Different values emax of the single-particle model space are
employed, and we use the N3LO interaction. The calculated energies are interpolated with
a quadratic polynomial in order to identify the supposedly optimal oscillator frequencies,
along with the corresponding energies. The results are given in table 4.1. While a more in-
depth study of the convergence with the oscillator frequency would require more values of
ℏΩ, in order to employ supplement the extrapolated values with statistical uncertainties2.
Interactions matrix elements with different frequencies than the ones presented here were
not available at the time these calculations were carried; we therefore restrict to the three
given values. Owing to the energies being very close to their interpolated optimal value
and the fact the corresponding frequencies lie within the studied ones, we can be confident
that the interpolated energies are very close to the true minimal ones.

Nucleus ℏΩ (best) [MeV] E [MeV] ℏΩ (interp.) [MeV] E (interp.) [MeV] diff (%) Eexp. [MeV]
56Fe 12 -278.62 14.0 -279.60 0.35 -492.26
46Ti 12 -237.30 13.4 -237.70 0.17 -398.19
44Ti 12 -223.72 13.8 -224.01 0.15 -375.47

Table 4.1: Lowest ground state energies obtained within the set ℏΩ = (12, 16, 20) for
(emax, e3max) = (10, 14). The interpolated optimal values are also given; the last column is
the relative difference between E and E(interp.), calculated as (E(interp.)−E)/E(interp.).
The last column gives the experimental binding energies from the NuDat database [Bro08].

One observes that the energy is less sensitive to the frequency as the number of basis
states increases, as a larger number of basis functions is more flexible in accommodating
a less suitable choice of ℏΩ. In the limit of an infinite-dimensional model space, the fre-
quency should be irrelevant; the energy should be identical for all frequencies. Although
the model spaces are not so large, a very good convergence of the energies is achieved, es-
pecially when the oscillator frequency is close to its optimal value. As already mentioned
in the foreword, ab initio interaction are unable to reproduce the experimental binding

2These are of course determined by the used fitting function, which is itself conditioned by the depen-
dence of the energy on the oscillator frequency (and dimension of the model space). To the best of my
knowledge, no such formula has been derived for schematic models.
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Chapter 4. Application to thermal phase transitions 89

energies when only a single mean field is employed, as can be seen from the rightmost
column.

Although for all nuclei, the energy varies in less than 5% among the three frequencies
employed at emax = 10, this does not guarantee the convergence of all observables. The
ground state quadrupole deformations and radii are displayed in figures 4.2-4.3 in order
to verify whether these quantities vary in similar magnitude. While all three observable
depend on the nucleonic densities, it can be anticipated that they do not vary to similar
extents with the spatial extension of the basis functions. The energy is a spatial integral
involving the local parts of the densities and mean-fields. Since these typically resemble
each other (the density is higher in the regions where the potential is higher in absolute
value), an overall quite reasonable variation of the energy with the basis frequency can
be expected. Conversely, the quadrupole moment is more directly sensitive to the den-
sity distribution, as the corresponding operator, Q20, is not a functional of the densities.
Changing the stiffness of the basis functions should have large consequences on the over-
all shape of the system, resulting in deformations more strongly dependent on ℏΩ that
the energy is. Finally, since the spatial matter density does not take particularly exotic
shapes, but is instead rather constant (at around the saturation density ρ0 = 0.16 fm−3),
we can presume the point-particle radii to vary fairly less than the deformations.
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Figure 4.2: Same as figure 4.1 for the quadrupole moments.

The quadrupole moments are found to exhibit a strong dependence on the frequency
of the basis. At emax = 8, their values at ℏΩ = 20 MeV are 20-40% off the ℏΩ = 12
results, while the larger basis emax = 10 diminishes the discrepancies roughly by a factor
of two. Although the energy also displays non-negligible dependence on the oscillator
frequency, the β20 observable varies in much greater amounts. This hints that the study
of deformation-dependent observables (e.g. inertial masses, rotational and vibrational
spectra) requires a careful verification that the numerical parameters of the model space
are optimised, even in cases where the energy does not vary too much. On the other hand,
at emax = 10, the radii of all three nuclei are observed to vary within a few percents only,
showing relative variations of the same order as the energies. Note that the trend in the
evolution of β20 and R with ℏΩ can be understood on the basis that larger oscillator fre-
quencies correspond to more squeezed basis functions, which yields smaller deformations
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Figure 4.3: Same as figure 4.1 for the point-particle radii.

and radii.

It appears that for all three nuclei, the optimal oscillator frequency among the available
ones is ℏΩ = 12. The seemingly good agreement between the results obtained with the
different values of emax suggests that the convergence with the dimension of the model
space is well-reached; this point is discussed in the next subsection.

Extrapolations in basis size

Owing to the variational principle, the energy is guaranteed to always decrease when the
size of the basis employed for expanding the solution of the equations of motion is in-
creased. This is not true for other observables3. In addition, within a given set of basis
functions (harmonic oscillator, plane waves, etc), one typically selects the ones that cor-
respond to the lowest eigenvalues of the Hamiltonian defining the basis. Thus, increasing
the size of the model space adds functions of increasing eigenvalues, hence the corrections
to the energy should get smaller when the model space becomes larger. In practise, the
energy difference between finite and infinite basis size is found to be well-approximated
by a decreasing exponential [MVS09; VBG09; Tic+19; Sán+20], see also [Lüs86; FMP14;
Dum+18] for a complete and rigorously derived formula.

Tables 4.2, 4.3 and 4.4 gather the energies, quadrupole moments and radii for the
three nuclei, at emax = 8, 10. The three-body space is truncated at e3max = 14. The
relative differences between the two values of emax are also given. Prior to analysing the
discrepancy between our emax = 8 and emax = 10 results, it is worth mentioning that:

i) The ground state energies strongly differ from the experimental measurements, due
to ab initio interactions not being able to incorporate strongly collective correlations
in the single mean-field reference approximation, as a result of being adjusted on
few-body data4,

3For instance, the convergence of other quantities sometimes resembles exponentially damped oscilla-
tions; extrapolating on these bears little meaning in general and is quite dubious.

4and therefore, not resuming implicitly these correlations like EDFs do.
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ii) No experimental data for the ground state deformations being available, we resort to
comparing with the available EDF predictions of [BN20] and [HG07], and observe a
mismatch of the β20 values between EDF and ab initio results for 56Fe, and between
all three calculations for 44Ti. Besides the fact that such masses touch on the verge
of the current ab initio interaction’s reach (at least within a single-reference HFB
approach), we note that 56Fe posses both oblate and prolate minima, the oblate
being lower in our calculations. On the other hand, the softness of 44Ti, especially
towards the prolate deformations, explains why we find such different quadrupole
moment.

E [MeV] β20 R [fm]
emax = 8 -277.51 -0.2192 3.6313
emax = 10 -278.62 -0.2187 3.6427
diff. (%) 0.40 0.20 0.31

E [MeV] β20 R [fm]
DD-PC1 -489.63 0.24 3.6931
D1S -488.84 0.20 x

Table 4.2: Selected ground state observables for 56Fe at emax = 8 and 10 (left), and fully
converged EDF results for a relativistic (DD-PC1) and a non-relativistic (D1S) functional
(right). The three-body space is truncated at e3max = 14. The relative difference on an
observableX is calculated as |X(emax = 10)−X(emax = 8)/X(emax = 10)|, and is rounded
up to two decimal places. The experimental charge radius is Rexp

ch = 3.7377 ± 0.0016 fm
[AM13].

E [MeV] β20 R [fm]
emax = 8 -236.92 0.2625 3.4591
emax = 10 -237.30 0.2650 3.4742
diff. (%) 0.16 0.94 0.43

E [MeV] β20 R [fm]
DD-PC1 -397.11 0.24 3.5040
D1S -396.04 0.20 x

Table 4.3: Same as table 4.2 for 46Ti. The experimental charge radius is Rexp
ch = 3.6070±

0.0022 fm [AM13].

E [MeV] β20 R [fm]
emax = 8 -223.49 0.2329 3.4234
emax = 10 -223.72 0.2304 3.4411
diff. (%) 0.11 1.10 0.51

E [MeV] β20 R [fm]
DD-PC1 -373.60 0.15 3.4478
D1S -372.97 0.00 x

Table 4.4: Same as table 4.2 for 44Ti. The experimental charge radius is Rexp
ch = 3.6115±

0.0051 fm [AM13].

For all three systems, the macroscopic observables are quite well converged with respect
to the basis sizes we use. This however holds only close to the optimal frequencies; see
figures 4.1, 4.2, 4.3 where the discrepancy between emax = 8 and emax = 10 reaches much
higher levels for ℏΩ = 20. The fact all three observables are converged within roughly one
percent or less is a first hint that the model space (emax, e3max) = (10, 14) with ℏΩ = 14
is large enough to describe the structure of the system. One can go a small step further,
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92 Chapter 4. Application to thermal phase transitions

by applying the aforementioned extrapolation to apprehend the emax → ∞ limit. The
energies are fitted with

E(emax, ℏΩ) = E∞(ℏΩ) + A(ℏΩ) exp−b(ℏΩ)emax , (4.2)

and, for a given nucleus, we call the best extrapolated value the energy min
ℏΩ=12,16,20

E∞(ℏΩ).
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Figure 4.4: Evolution of the ground state energies with emax. The dashed lines represent
the fitted curves, and the grey lines denote the best extrapolated values. The model space
used has e3max = 14.

56Fe 46Ti 44Ti
E(emax = 10) -278.62 -237.30 -223.72

E∞ -279.73 -238.95 -223.78
diff. (%) 0.40 0.69 0.03

Table 4.5: Values and relative differences between the energies obtained at emax = 10 and
their extrapolation. The results are given for ℏΩ = 12 MeV. The differences are calculated
as (E∞ − E(emax = 10))/E∞.

The corresponding values are given in figure 4.4, and the relative differences are listed
in table 4.5. In all nuclei, the extrapolated values are astonishingly close to the finite-basis
results, which testifies once more that the convergence is well-attained. This conclusion is
consistent with the results of [Tic+19; Hop+21], that use the same potentials, regulator
and SRG evolution, with a slightly different adjustment of the coupling constants. How-
ever, the obtention of different extrapolated values when using different frequencies signals
that the extrapolation (4.2) does not exactly hold; it is rather a convenient and simple
tool to gauge the convergence with emax, and can only be given a meaningful meaning
when associated with covariances.

Convergence in the chiral expansion

The two previous parameters, while bearing a more or less pronounced physical meaning,
can be classified as principally numerical. On the completely opposite side, how many
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orders are included in the chiral expansion is entirely physical, and the convergence of the
expansion with the order of the expansion and classes of diagrams included can be used
as a tool to gauge the quality of the interaction [MS16]. The present work uses a novel
family of pionful [EKM15; Bin+18; Hüt+20] interactions containing all two- and three-
body nucleon-nucleon interactions up to next-to-next-to-next-to-leading order (N3LO). A
similarity renormalisation group (SRG) procedure is applied to the interaction, in order
to recast four-body and higher terms into the two- and three-body matrix elements. The
comparison of the N3LO results with the ones obtained by restricting the expansion to
lower orders allows for a systematic assessment of the systematical errors associated to
the truncation of the chiral expansion. The error on an observable at a given order is
calculated as in [EKM15; Bin+18; Hüt+20]. The leading-order (LO) interaction being of
poor quality, it is not included in the calculations; all LO observables are attributed the
value zero. As we were not provided with the NLO interactions at ℏΩ = 12 MeV, the
convergence with the chiral order in both this chapter and chapter 5 is studied at ℏΩ = 16
MeV, for which the ground state energies are at worst 0.2% higher.
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Figure 4.5: Ground state energies, quadrupole moments and radii at NLO, N2LO and
N3LO for 56Fe, 46Ti and 44Ti at zero temperature. The model space is (emax, e3max) =
(10, 14) and ℏΩ = 16 MeV.

Figure 4.5 shows the ground state energies, deformation order parameter and radii ob-
tained for all three orders of the chiral interaction. For all observables, the N2LO and
N3LO values lie almost always within each other’s uncertainties range. More quantita-
tively, we find the systematic uncertainty at N3LO to be of about 8% for the energy, and
2% for the quadrupole moments and radii; this for all three nuclei. This indicates that the
interaction is starting to yield converged results with respect to the chiral order, at least
at zero temperature. This observation will be put to the test when non-zero temperatures
are enforced.
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4.3.3 Shape transition in 56Fe

At zero temperature, the vast majority of atomic nuclei are found by experiment [Nis+17;
Gaf+13; Yan+04; Yan+03; Iwa+01; Mot+95; Orr+91; Dét+83; Dét+79] and theory
[Möl+16; Möl+95; BBH06; HG07; RB11] to have a deformed ground state shape, quadrupole
deformations being particularly frequent. When the temperature is increased, the nucle-
ons distribute over all the possible shells, which results in the individual properties of
each one being washed out. In particular, the shape of the system is thus expected to
be driven back to sphericity when the temperature is high enough. As the order pa-
rameters associated to deformations are the expectation values of the multipole moments
βLM , their return to zero signals the restoration of spherical symmetry. The shape tran-
sitions in atomic nuclei have been studied theoretically already forty years ago [Mor73;
Goo86; Goo90], albeit initially with simplified models. More recent calculations [MER03b;
MER03a; Hil+12; RA15; ZN17; KN20] were able to used more advanced Hamiltonians
or phenomenological (both covariant and non-relativistic) interactions and larger model
spaces. In all studies, deformation is found to exhibit the same trend of a quick collapse
when temperature increases. The findings of this chapter are essentially along the same
lines, namely a second-order continuous shape transition, with a critical temperature of
roughly 2 MeV. It can also be remarked that shape and pairing are principally driven by
the occupations of open shells, and therefore are mainly surface phenomena with an im-
portant sensitivity to temperature. It is thus natural to expect a large degree of similarity
in the evolution of pairing and deformation with temperature.

If the mean-field theory is able to satisfactorily describe the ground state of the system,
then an independent particle picture should provide a qualitatively faithful representa-
tion of it. Under such circumstances, the thermodynamic properties should depend on
temperature in a manner qualitatively similar to the case of a free fermion gas (FFG).
These dependencies can be recovered quickly by remembering that the energy of a free
gas is proportional to the temperature, and a first-order development of the Fermi-Dirac
distribution around the chemical potential5 shows that the energy window where thermal
excitations are active has a width proportional to the temperature too. The thermal ex-
citation energy E∗(T ) ≡ E(T )−E(0), defined as the difference between the energy of the
ground state at temperature T and at zero temperature, is then expected to be propor-
tional to T 2. The entropy and specific heat, respectively related to the first and second
derivatives of the free energy F ≡ E − TS, are then both linear in T , except possibly at
the phase transition temperature where the specific heat is found to be discontinuous6.
More quantitative results can be found following the derivations of [LL67b, §57]: taking
into account that we here have two different species -Z protons and N neutrons-, the
excitation energy, entropy and heat capacity of the gas write

E∗
FFG(T ) =

1

2

(π
3

)2/3 m
ℏ2

T 2
(
Nρ−2/3

n + Zρ−2/3
p

)
, (4.3)

SFFG(T ) =
(π
3

)2/3 m
ℏ2

T
(
Nρ−2/3

n + Zρ−2/3
p

)
, (4.4)

5Because this is the region where the effect of temperature is the most important.
6Making this shape transition of second order in the Ehrenfest classification.
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CFFG(T ) = SFFG(T ). (4.5)

In all numerical calculations, we take for the FFG ρn = ρp = ρ0/2, with the saturation
density ρ0 = 0.16 fm−3; the same mass m = 939 MeV/c2 is used for protons and neu-
trons. Finally, the evolution of the deformation in thermal mid-mass and heavy nuclei
can be understood on the basis of Landau’s theory of continuous phase transitions [Lan37].

A shape phase transition is observed in finite temperature calculations of the ground
state of the mid-mass nuclei 56Fe. The coordinate-space density of the ground state at
different temperatures is given in figure 4.6, to help visualising the restoration of spherical
symmetry. The T = 0 and T = 1 MeV densities are almost identical, while the defor-
mation is much less pronounced at T = 2 MeV already. The spherical symmetry is fully
restored at T = 3 MeV. As mentioned in section 2.5, no thermal averaging is carried out,
so that the symmetry restoration occurs sharply at a critical temperature Tc.

Figure 4.7 shows the excitation energy as a function of temperature, obtained with the
NLO, N2LO and N3LO orders of the chiral interaction. Calculations are performed at
ℏΩ = 16 MeV, (emax, e3max) = (8, 14). The excitation energies exhibit the quadratic de-
pendence estimated from the schematic model of independent fermions, and the nucleus
is found to be bound up to T = 8.6 MeV with the N3LO interaction. The very good
agreement between the two last orders seems to indicate that the convergence of the zero-
temperature observables, usually reached with the third and fourth orders in the chiral
expansion, also holds at finite temperature. This can be taken as a strong indication
that the quality of these interactions is about the same for both occupied and unoccu-
pied orbitals of the zero-temperature nucleus. The same conclusion can be drawn from
figure 4.8, where the total entropy is represented. The excellent agreement among the
two last orders clearly signals the onset of convergence.

The entropy is found to globally display the expected linear dependence, except at very
small temperatures where thermal excitations occur with negligible probabilities. This
deviation from the Fermi gas-like behaviour occurs predominantly at low temperature be-
cause this is the region where the structure effects, in particular the shell gaps, are most
sensitive to the individual properties of each orbital. At low temperatures, the entropy
(and thus, the free energy, and all thermodynamical variables) is for the largest part de-
termined by the states close to the Fermi energy7. The low-temperature regime should
thus be the region where the deviations from a Fermi liquid model are the most important.
As a side remark, the fact the free energy is, for finite systems, mostly a surface quantity
at low temperature, and grows to become a bulk quantity at high temperature, could be
used as a means of determining the degree of agreement between different interactions
while using only macroscopic observables.

The static quadrupole moment β20(T) is shown on figure 4.9. The discrepancy be-
tween N2LO and N3LO is slightly more pronounced away from the phase transition,
albeit remaining of less than 5%. Including the systematic errors according to the for-

7To be more precise, by those with energy E such that βE < 1, owing to the rapid fall-off of the Fermi
distribution away from E = 0.
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Figure 4.6: Total (protons+neutrons) ground state densities of 56Fe for four tempera-
tures. The calculations are made at (emax, e3max) = (8, 14), ℏΩ = 12 MeV, with the N3LO
interaction. The black, blue and yellow contours signal the iso-density surfaces, where
ρ = 0.08, 0.12 and 0.16 fm−3, respectively.

mulae of [EKM15; Bin+18; Hüt+20], the critical temperature at N3LO is found to be
Tc = 2.46± 0.23 MeV. The large uncertainty is due to the NLO prediction at around 4.5
MeV; the N2LO and N3LO values differ in only 80 keV. The deformation showing signifi-
cant variations over the span of a few MeV, it can be concluded that realistic predictions
of astrophysical processes involving iron in high-temperature environments should signifi-
cantly cannot be made using information about the zero-temperature structure only. This
statement is even to be given more credit by the fact we do not mix different configura-
tions according to their statistical weight (see (2.71)). Remarking that the modification of
the observables once the thermal averaging is carried out can be qualitatively understood
with statistical arguments only, we can expect to observe similar changes in β20(T ) as the
ones found in [MER03b; MER03a], namely a steeper decrease of the deformation below
the critical temperature than found with a single-thermal state calculation, and a more
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Figure 4.7: Ground state energy (left) and excitation energy (right) as a function of
temperature in 56Fe. The excitation energy of a two-components free fermion gas of
protons and neutrons at saturation density is also represented as circles placed every 0.2
MeV.
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Figure 4.8: Same as figure 4.7 for the total entropy.

gentle return to sphericity beyond.

The energy and entropy being continuous functions of the temperature across the phase
transition, so is the free energy. However, the specific heat, related to the second derivative
of F and defined as
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Figure 4.9: Static quadrupole moment as a function of the temperature.

Cv ≡ T
∂S

∂T
, (4.6)

steeply decreases at the critical temperature. Although not as sharp as to unambigu-
ously signal a discontinuity, a sudden drop of Cv has been observed for heavier systems in
the work of [MER03b; MER03a; RA15; ZN17; KN20]. The same discontinuity has also
been observed in superfluid systems at the superfluid to normal phases critical temper-
ature [Egi+85; GLS13; Li+15]. The fact that the heat capacity decreases at the phase
transition temperature can be understood informally as follows. Below Tc, the system is
deformed. The spectrum thus comprises eigenstates that can be mapped to the eigen-
function of harmonic oscillators with different deformations. In a given energy interval,
one can thus find states associated to deformation in either an axial or a radial direction8.
A slight amount of energy added to the system by increasing T can then be dissipated
easily by letting the nucleons rearrange themselves over the nearby states. These hav-
ing different deformation causes the βLM moments to decrease. However, when spherical
symmetry is restored (βLM = 0 for all L > 0,M), axial and radial states become identical,
hence the density of states suddenly drops by a factor of roughly two. Energy dissipation
is therefore less efficient, so that the heat capacity reduces9. Finally, the heat capacity
Cv (figure 4.10) starts increasing again past Tc, since, as for the T < Tc regime, heating
up the system causes the nucleons to occupy more states in significant amounts, which in
turn eases dissipative processes.

8Or any direction in the three-dimensional coordinate space, if considering triaxial deformations.
9In a less visual manner, this argument can also be made by arguing that a state with lesser symmetry

requires more quantum numbers, which is easily understood to cause a higher level density provided the
energy gap between states is of the same order of magnitude among the corresponding quantum numbers.
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Figure 4.10: Same as figure 4.7 for the heat capacity. The derivatives are calculated using
finite differences, for temperatures equally spaced of 0.01 MeV.

As a final remark, the energy, deformations and radii being bulk observables, they are
not so much sensitive to the details of the spectrum. At zero temperature, the good agree-
ment between the last two orders can only be taken as an indicator that the interaction
yields converged values for thermodynamic observables that are not driven by a specific
region of the spectrum. The maintaining of a good agreement between these different
orders at finite temperatures and for all the studied quantities allows more ambitious
statements. The fact that the N2LO and N3LO results (not looking at the error bars, to
discard the poorly-converged NLO results from the discussion) remain almost identical
over the whole T = 0 − 6 MeV range brings the conclusion that these two interactions
not only give converged bulk quantities at T = 0, but also at finite temperature, and thus
remain of identical quality for the study of hot nuclei.
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Chapter 5

Application to giant resonances

In this chapter, the finite amplitude method is put into operation to study
giant resonances in the mid-mass nuclei 56Fe, 46Ti and 44Ti. A strong de-
pendence of the isovector dipole strength on the temperature is observed,
characterised by a downwards shift of the resonance centroid when the sys-
tems are heated up. The chapter starts by comparing the FAM results to the
standard RPA in the case of 16O, which, being spherical and non-superfluid,
is currently within the reach of ab-initio RPA. As should be, the dependence
of the results on the parameters studied for the ground states calculations is
also scrutinised.
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102 Chapter 5. Application to giant resonances

The richness of collective features arising in quantum systems reveals the complex in-
terplay between their microscopic constituents. In strongly correlated systems, excited
states can be highly different from the ones built from simple particle-hole excitations
on top of the ground state, owing to the self-consistent rearrangement occurring when
one (or several) particle(s) is (are) moved from an orbital to another. From a physical
perspective, the apparition of such collective resonances under the action of an external
field can be understood from a self-consistent field picture. For simplicity, assume the
system of interest to be at equilibrium, that is, static in its ground state. Then, apply a
polarising field. This triggers the motion of each particle, so that the overall field oscillates
along. Since the degrees of freedom interact, the motion of each one (or, equivalently,
of the total field) affects the others’. These interferences can be one either side of the
two extreme situations, i.e., destructive or constructive. The first case corresponds to an
overall cancellation of the oscillations, while the second results in a coherent oscillation
of the surface at a single frequency. Thus, the emergence of collective modes in complex
systems can be seen as a consequence of non-linear interferences. In nuclear physics, the
eigenstates of a system under a time-dependent field range from rather “simple” indi-
vidual oscillations to excitations of the whole nuclear surface, passing through somehow
more exotic oscillations of nuclear clusters (typically by groups of α-particles) [ITH68;
SHI72; Ito+14]. From the dynamical viewpoint, nuclear collisions can give rise to several
outcomes, depending on the kinetic energies and impact parameter of the participant
nuclei. A fine understanding of the structure of such resonances, in terms of degree of
collectivity, evolution of correlations with temperature, etc, is of paramount importance
to accurately describe capture and decay processes, and as such, predict nucleosynthetic
reactions in astrophysical sites. Indeed, the formation of heavy elements in astrophysical
environments typically happens through the capture of neutrons, followed by β− decays
to attain stable nuclei. Such environments also comprise extreme electromagnetic fields,
that can strongly influence the structural properties of the nuclei. Knowing a nucleus’
behaviour under the action of electromagnetic fields, or of adding or removing particles,
thus gives keys to understanding the chemical elements’ abundances.

Among others, the so-called giant resonances correspond to coherent excitations of the
system as a whole, and find their name in the large associated cross-sections. Experi-
mentally, their occurrence in atomic nuclei at excitation energies typically twice or thrice
greater than the typical nucleon separation energy signals the collective nature of these
modes.

As a test-bench system for the applications of the FTQFAM machinery, we focus on the
mid-mass 56Fe nucleus. Being a starting point for the stellar nucleosynthesis of heavier
elements, understanding its structure properties, among which the energies of its collec-
tive resonances, is thus highly important for the study of such astrophysical processes.
In particular, experiments have found an up-bend [Voi+04; Voi+06] in the low-energy
part of the de-excitations strength functions for this nucleus, a feature also present in
46Ti and 44Ti. Although the FAM describes the reverse process of excitation from the
ground state, emission and absorption can be related within the Brink-Axel (BA) hy-
pothesis [Bri55; Axe62]. This assumption states that these two processes are oblivious
to the detailed structure (in terms of absolute energies, spin, parity) of the initial and
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final states, but only depend on the energy of the emitted or absorbed photons. The BA
hypothesis has been demonstrated to be consistent within experimental uncertainties for
56Fe [Voi+06; Lar+17; Jon+18], 46Ti [Gut+11] and 44Ti [Lar+12].

While these peaks are attributed to dipole excitations, their electric or magnetic na-
ture is yet unclear [Gor+19]. Although the FTQFAM and FTQRPA are capable of
producing strength functions for these modes [Paa+09; Yük+14; Yük+17; LW18; WL19;
Yük+19; LW19; LRW20; Yük+20; Rav+20; LR21], phenomenological corrections are
usually applied to improve the agreement with experimental data whenever the strength
functions serve as input ingredients for reaction models. This is due to the non-linear
effects mentioned in section 3.9. An approximate account may be supplied by a Fermi
liquid correction, which gives the smearing width a quadratic temperature dependence
[Bru+08; Yan+19]. Additionally, accounting for the Doppler broadening might be im-
portant for macroscopic nuclear matter, e.g. in stellar bodies. All such corrections could
be applied in the calculations of this chapter, but are not, so as to render the comparison
between the strength functions obtained at different temperatures more transparent.

In this chapter, we therefore study basic electric multipole excitations, and centre our
attention on the astrophysically relevant 56Fe, 46Ti, 44Ti nuclei. A first part is however
dedicated to the benchmark results of the FAM against a spherical HF-RPA solution.

5.1 Benchmark against standard RPA

As discussed in chapter 3, the FAM and RPA should yield identical strength functions. In
this first section, the implementation of the FAM is validated against RPA calculations for
the doubly-magic nucleus 16O. This serves as a benchmark of the FAM for non-superfluid
nuclei only; ab initio matrix QRPA calculations including the three-body terms are not
yet feasible. The implementation of the FAM is agnostic to the employed basis, in the
sense that one can incorporate a FAM module on top of a static code without ever using
any explicit property of the computational basis; such task is left to the static code up
to adequate (and tricky) modifications. Figure 5.1 displays the FAM strength function,
along with the one obtained from RPA matrix elements with a Lorentzian smearing, as
in (2.82). In these figures and the rest of the document, we use the compact notation
SJK ≡ −π−1 Im{S(QJK , ωγ)}.

For all three multipolarities, the RPA and FAM results agree up to four decimal places
at worst, which corresponds to the number of digits of the RPA matrix elements in the
data files. This set of calculations confirms the correctness of the FAM implementation.
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Figure 5.1: RPA and FAM strength functions (top) and photoemission cross-sections
(bottom). The calculations are performed with a smearing width γ = 1.5 MeV and
(emax, e3max) = (6, 14), at an oscillator frequency ℏΩ = 20 MeV.

5.2 Convergence aspects

Although comparing the strength functions altogether gives an appreciable idea of the
convergence of the results, it can also be relevant to employ integrated quantities in order
to obtain a general estimation of the degree of agreement among the sets of parameters.
Clearly, the moments mk (2.85) play the fine role here. These can possibly be employed
to compute the mean excitation energy and resonance width, respectively defined as1

⟨E⟩ ≡ m1

m0

, (5.1a)

Γ ≡
√

⟨E2⟩ − ⟨E⟩2 =
√

m2

m0

−
(
m1

m0

)2

. (5.1b)

The definitions of these quantities always involve the normalisation by m0, i.e. the
integral of the strength, which in passing compensates for possibly different pre-factors
to the multipole operators among different conventions.

The same convergence-checking routine as for the ground state observables can be ap-
plied for the strengths. For simplicity, the study is conducted for 56Fe only; the results
are qualitatively identical for the titanium isotopes. Because the strengths are built on

1From the physical side, these quantities really make sense only when the spectrum shows a single
dominant resonance.

104



Chapter 5. Application to giant resonances 105

the ground states, we expect the differences in the results obtained with different param-
eters and chiral orders to be magnified with respect to those observed in chapter 4. It is
important to realise that the discrepancies can be evaluated in two manners, depending
on whether we want to focus on integrated quantities or on the difference at a given fre-
quency. I thus define the errors on an integrated quantity X calculated at a parameter q
as

∆(1)X [q] ≡ max
q′∈{q}

(∫ ∞

0

dωQ(q, q′)
∣∣∣X [q](ω)−X [q′](ω)

∣∣∣) , (5.2)

∆(2)X [q] ≡
∫ ∞

0

dωmax
q′∈{q}

(
Q(q, q′)

∣∣∣X [q](ω)−X [q′](ω)
∣∣∣) . (5.3)

In these definitions, the integrand ω is typically the energy, and for the specific purpose
of the section, it corresponds to the frequency of the probe F . The set {q} represents the
set of parameters we can vary: in our case, it is either the set of oscillator frequencies,
of the size of single-particle basis, or of the chiral orders. The quantity X [q′](ω) is the
strength function calculated with the parameter q′ and at excitation frequency ω, and
the particular value q is the parameter with respect to which the error is calculated.
The factor Q(q′) gives a weight to each difference, and should be motivated by physical
sense. Equation (5.2) corresponds to comparing the integrated quantities, whereas (5.3)
integrates the function defined by the largest error at each ω, and thus we have ∆(2) > ∆(1).
This is easier to see with loose notations:

∆(1)X ∼ max

(∣∣∣∣∫ dωx1(ω)

∣∣∣∣, ∣∣∣∣∫ dωx2(ω)

∣∣∣∣, . . .) (5.4)

∆(2)X ∼
∫

dωmax (|x1(ω)|, |x2(ω)|, . . . ) . (5.5)

To illustrate, we may take X as the set of eigenvalues of the HFB equation, weighted
by the density function. In that case (omitting the q, q′ exponents for clarity),

ω → E, (5.6)

X → Ei
1

eβEi + 1
δ(Ei − E), (5.7)

Q → 1, (5.8)

and the definition (5.2) corresponds to adding the absolute value of the differences for
each single particle eigenvalue (weighted by its occupation number),

∆(1)E[q] = max
q′∈{q}

∑
i

∣∣∣∣∣ E
[q]
i

eE
[q]
i + 1

− E
[q′]
i

eE
[q]
i + 1

∣∣∣∣∣. (5.9)

Errors thus pile up, and the values obtained with different parameters q′ are compared
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afterwards. Conversely, (5.3) always takes the worst of all:

∆(2)E[q] =
∑
i

max
q′∈{q}

∣∣∣∣∣ E
[q]
i

eE
[q]
i + 1

− E
[q′]
i

eE
[q]
i + 1

∣∣∣∣∣. (5.10)

The studies of [EKM15; Bin+18; Hüt+20] use a formula derived from (5.2), where q
is the N3LO, q′ are the lower orders, and Q is a power of 1/3. To obtain meaningful
comparisons, we must adopt a formula compatible with (5.2). The simplest way being to
calculate the mk moments (and if need be, derive the values of (5.1) accordingly), errors
are defined as

∆m
[q]
k (F ) ≡ max

q′∈{q}

(
Q(q, q′)

∣∣∣m[q]
k (F )−m

[q′]
k (F )

∣∣∣) , (5.11)

and we take the Q(q, q′) identically to the prescription of [EKM15; Bin+18; Hüt+20] in
case q, q′ are chiral orders, and equal to one otherwise. Note that comparing the strengths
at a given frequency can also provide quality information, and is in particular much more
connected to what is measured experimentally, namely a number of counts as a function
of an energy. Whenever it is relevant for the discussion, the strength functions will be
presented with their error bars.

5.2.1 With the oscillator frequency

We saw in subsection 4.3.2 that all macroscopic observables bore a non-negligible depen-
dence on the frequency ℏΩ of the harmonic oscillator basis. Larger variations, but on the
same order of magnitude, should be expected for the strength functions and derived quan-
tities. Such affirmations are verified on figure 5.2, where the isoscalar monopole (ISM),
isovector dipole (IVD) and isoscalar quadrupole (ISQ) electric responses of iron at three
temperatures are given.

On the qualitative aspects, the results obtained at all three values of the oscillator stiff-
ness are altogether consistent. The monopole operator visibly has the most pronounced
ℏΩ-dependence. A more quantitative view is given in figures 5.3-5.4-5.5, which review
the variations of the moments with the oscillator frequencies, for all three types of per-
turbation. In most cases, the moments undergo variations of a few percents in case of
the IVD and ISQ excitations, but eventually reach 20-30% for the monopole mode. The
mean excitation energies, being calculated as the ratio of m1 and m0, exhibit a depen-
dence roughly equal to the sum of the variations of these two moments. This translates in
25% relative difference between the ℏΩ = 20 and ℏΩ = 12 MeV in case of the monopole
operator, and about 9% (resp. 3%) for the dipole (resp. quadrupole). Except for the
strongly frequency-dependent S00 response, the variations are of the same order as those
observed for the energy and radii in the static HFB calculations. Overall, the quality
of the results obtained with suboptimal frequencies is deteriorated as compared with the
static case. In the particular case of the monopole mode, the large error calls for a precise
adjustment of ℏΩ at the HFB level. In all cases, the variations do not suffer great changes
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Figure 5.2: Electric multipole responses of 56Fe at different oscillator frequencies. The
calculations are done at (emax, e3max) = (10, 14), with γ = 1.5 MeV. We show the IS
monopole (top), IV dipole (middle) and IS quadrupole (bottom) responses, for three
different temperatures: T = 0 (left), T = 1.5 (middle) and T = 3 MeV (right).
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when the system is hot.
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Figure 5.3: Normalised moments of the Q00 strength function for 56Fe. The normalisation
is applied with respect to the kBT = 0 MeV, ℏΩ = 12 MeV values. The bottom-right
subplot represents the mean excitation energy calculated as in (5.1a). The calculations
are performed with the model space (emax, e3max) = (10, 14) and use a smearing γ = 1.5
MeV.

As for the mean energy of the resonances, we find it to be almost independent of the
temperature for the monopole operator, and to change in approximately one MeV for the
quadrupole excitation. For the former, this can be interpreted by the compressibility of
nuclear matter undergoing only small changes with the temperature. In the Q20 case,
⟨E⟩ is lowest at kBT = 1.5 MeV, because deformation is still present, and excitations are
facilitated by the finite temperature. Beyond Tc, ⟨E⟩ increases past its zero-temperature
value, as a consequence of the restoration of spherical symmetry. Conversely, the giant
dipole resonance shows a strong T− dependence, dropping from several MeVs within the
temperature range scanned. This is mainly due to the low-ω part of the strengths, which
is more sensitive to temperature. In case of the S10 strength, which visibly undergoes
the largest variations via the onset of low-energy resonances at around 10 MeV (and to a
lesser extent, smaller resonances beyond 30 MeV), the differences between the observables
calculated using ℏΩ = 12 MeV and ℏΩ = 20 MeV grow to ten percents. Finally, at a
given frequency and in all cases, the ratios between the strengths can grow several or-
ders of magnitudes. This stems from the fact that the single-particle energies are slightly
different between the set of parameters, which result in the energy of the peaks being
shifted. The sharp increase of the strength around the resonances aggravates this differ-
ence. This observation shows the importance of comparing more meaningful quantities,
namely integrated ones.
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Figure 5.4: Same as figure 5.3 for the Q10 mode.
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Figure 5.5: Same as figure 5.3 for the Q20 mode.

Globally, the errors resulting from non-optimal choices of ℏΩ are several times larger
than for the ground state properties. On average, we obtain 2-10% difference in either the
mk or the quantities (5.1) calculated from these, while in extremal cases the discrepancies
reach 20 to 30%. This illustrates the importance of employing a well-chosen frequency.

109



110 Chapter 5. Application to giant resonances

Unless great caution has been taken in determining the one giving the lowest ground
state energy, the predicted moments vary strongly. This harsh conclusion can however
be balanced by the observation that the overall shape of the strengths remains similar
across the choices of ℏΩ, and we still obtain very close moments whenever the frequency
is sufficiently close to its optimal value.

5.2.2 With the basis size
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Figure 5.6: Multipole responses of 56Fe at emax = 6 (dashed), emax = 8 (dash-dotted) and
emax = 10 (full). All calculations use a model space of e3max = 14 and ℏΩ = 12 MeV; the
smearing width γ = 1.5 MeV.

In subsection 4.3.2, a good convergence of the bulk quantities with the size of the single-
particle space was found. The corrections brought by increasing the parameter emax from
8 to 10 were of about one percent. In figure 5.6, we show the strength functions obtained
at the three values of emax used throughout this chapter. We place the model space in its
optimal frequency, ℏΩ = 12 MeV, and fold the strength function with γ = 1.5 MeV.

In all cases, the difference between emax = 8 and emax = 10 is faint. For the dipole
and quadrupole modes, it rarely goes beyond 3% for all mk with k ranging from -3
to 3, and remains less than 6%. The disagreement is on average slightly higher for
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Figure 5.7: Ratios between the moments calculated at emax = 8 and emax = 10. The
definition ηk ≡ mk(emax = 8)/mk(emax = 10) serves as a shorthand. The calculations are
carried out with ℏΩ = 12 MeV, e3max = 14, and the smoothing γ = 1.5 MeV.

the monopole mode, albeit remaining under 6% as well. The good convergence of the
strengths, concluded by visual inspection of figure 5.6, can be given a more numerical
flavour by representing the ratios between the moments calculated within different model
spaces. These are traced in figure 5.7 in the case of 56Fe. The moments are calculated by
direct integration along the R+ axis. As always, the results for 46−44Ti follow the same
trends and are in the same ranges. The increase of the errors with larger k originates
from the different strengths being marginally different at high energy (cf. (3.113))). As
for k < 0 moments, which are more sensitive to the low-ω strength, the ratios ηk are
always close to one. This is due to the low-energy part of the strength converging faster
with the size of the model space than the high-energy region, since the latter requires
more energetic quasiparticles, and therefore larger basis sizes. The dust settles down in
the same path as for subsection 5.2.1: the error due to finite values of emax is substantially
higher than it was for the HFB calculations, but can be considered kept under reasonable
ranges.

5.2.3 With the chiral expansion

We saw in subsection 4.3.2 that using the second to fourth chiral orders lets us establish
error bars on the observables, yielding around 10% uncertainty on the three analysed
ground state quantities. Moreover, the preservation of such uncertainties when the tem-
perature is increased let use anticipate that the convergence in the chiral order remains
valid at non-zero temperatures.

As the interactions are pre-processed through a normal-ordering, we verify that the
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Figure 5.8: Zero-temperature multipolar responses of 56Fe, 46Ti, 44Ti, obtained with the
three available orders in the chiral interaction. The error bars are represented as shaded
areas. The calculations are carried out at (emax, e3max) = (10, 14), ℏΩ = 16 MeV and
employ a smearing γ = 1.5 MeV.

similitude of the N3LO and N2LO strengths is present for all three studied nuclei on
figure 5.8. Because the moments vary across several orders of magnitude for different val-
ues of k, they are normalised with respect to the N3LO ones on figure 5.9. The systematic
uncertainties are calculated according to (5.3). Repeating the drills of this section, we
find that uncertainty bars associated to the N3LO are within 5-10% relative difference.
The NLO moments are systematically far away from the better-quality results, due to the
large differences in the strength functions. The NLO peaks always lie at larger energies, a
consequence of the single-particle spectrum being more gapped. The corresponding inte-
grated strengths are however always smaller, and both observations explain the accidental
result mLO

k /mN3LO
k ∼ 1 for k around two. For all, the N2LO and N3LO moments differ in

at most 10%, and are thus in acceptable (although not excellent) agreement. They only
become significant either at small or at large k, owing to small differences in the low- or
high-energy strengths.

As mentioned in the beginning of this section, it is also useful and instructing to com-
pare the N3LO strengths and their uncertainty bars for a single frequency. We find that
the uncertainty always represent less than 10% of the strength when close to the reso-
nances. The only dramatic increases are found when ω is close to a NLO peak. This
good agreement in the results obtained with the two last orders was already observed in
the FTHFB calculations. However, the propagators are dressed by the RPA self-energy
during the solution of the FTQFAM equation, which can be expected to further magnify
differences in the qp spectra between different orders in the chiral expansion. The strong
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Figure 5.9: Some zero-temperature moments of the strength functions calculated with the
NLO (blue triangles), N2LO (orange diamonds) and N3LO (green pentagons), normalised
with respect to the N3LO values. The calculations use (emax, e3max) = (10, 14), ℏΩ = 16
MeV and γ = 1.5 MeV. The left, centre and right columns correspond to 56Fe, 46Ti and
44Ti, respectively.

resemblance between the N2LO and N3LO strengths functions seems to consolidate that
the interaction is well-converged.

5.2.4 Conclusion

All parameters analysed for the convergence of the FTHFB calculations of chapter 4 are
found to produce amplified errors at the FTQFAM level. In particular, the choice of the
optimal oscillator frequency plays a crucial role within the model spaces studied. The
influence of ℏΩ on the energy of the GMR shows that tuning this parameter is of great
importance for the study of GMR-related quantities, such as the compressibility of nuclear
matter.

Regarding the size of the model space, we find already well-converged strength func-
tions (and corresponding moments) at emax = 6. The difference with the much larger
emax = 10 case is of less than 10% at worst for the monopole excitations. We can there-
fore conclude that these basis sizes are appropriate for a description of giant resonances
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with this interaction and for stable nuclei of such masses. The convergence with the
size of the three-body space, characterised by e3max, could not be studied in detail. The
possibility that sizeable corrections are brought by increasing e3max towards higher values
cannot be dismissed. Nonetheless, calculations of ground state properties in sd−shell
nuclei using the same or close by interactions have been shown to be well converged at
e3max = 14 [Dik+15; Jan+16; Her20] for shell-model approaches, and the bulk properties
of the ground states of stable heavier nuclei (A ≳ 100) were shown to change in about
five percents when increasing e3max from 14 to values yielding convergence [Miy+21]. Al-
though the three present nuclei lie in between in protons and neutrons numbers, we can
expect the modifications engendered by lifting e3max to higher values do not change too
much the predicted observables.

Lastly, we observe a reasonable convergence of the RPA moments with the number of
chiral orders, with roughly 10% relative uncertainty. This stays consistent with the un-
certainties obtained for the ground state calculations. While these errors are not large
enough to prevent us from extracting meaningful physical information, higher-orders or
more evolved interactions would in the future be very relevant, as a back-of-the-enveloppe
calculation based on the excellent agreement between N2LO and N3LO lets us foresee
that each additional chiral order would reduce the uncertainties by a factor Q = 1/3.

5.3 Moments of the strength

If one is specifically interested in quantities related to the moments of the strength func-
tion S(F, ω), such as the average excitation energy, the width of the strength, etc, it is
possible to use (3.113) around a contour circling all the QRPA poles.

Whenever the cross-section is strongly peaked around one collective frequency, the in-
tegrated quantities (5.1a) and (5.1b) can constitute good substitutes to the full strength
function. From the theoretical side, it is interesting to study whether the contour integra-
tion method can serve as shortcut to obtain the moments mk with good accuracy. From
[Hin+15], we expect a fast convergence of the moments with the number of integration
points, so that a couple dozens of nodes should already yield results converged within a
few percents.

Tables 5.1-5.2-5.3 give the benchmark results for 16O. The results of the contour in-
tegration are compared with the exact results obtained from matrix RPA calculations,
and with the appropriate integrals of the FAM strengths on the real ω axis. The contour
is composed of four portions (figure 5.10), and is automatically adjusted to enclose all
the poles, by imposing a large radius equal to three times the maximum qp energy2; the
radius of the small semicircle is chosen as the minimum between 500 keV3 and half the

2Without the RPA self-energy, the highest-energy pole lies at two times max (Eqp), hence taking a
50% larger radius should certainly enclose all the RPA poles.

3If no spurious modes are present, one can let the contour get arbitrarily close to ωγ = 0. A small
but finite radius is kept as a middle-ground, to avoid bad surprises in case the removal of the NG suffers
from numerical noise.
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Figure 5.10: Contour in the (ω, γ) plane employed for numerically integrating the mk

moments. The contour is composed of two semicircles A1 and A2, and two segments I1
and I2. It is oriented counter-clockwise to match the signs of all contour integral formulae
given in this thesis. Figure taken from [Hin+15].

smallest qp energy4.

The spacing between the different integration nodes is adjusted such that each portion
contains a number of points proportional to its arc length. The line integrals are calculated
by the trapezoid rule. Note that applying Richardson’s extrapolation [RG11; RG27]
(interestingly, see [Huy54b; Huy54c; Huy54a; Huy54d], and also [Bre09] and references
therein) to a series of points whose number grow as 2k in an attempt to further improve the
convergence produces slight but unpredictable instabilities, so that it is safer in practice
to keep an eye on the results obtained at each order when carrying it out. Additionally,
it can be verified from (2.82) that S(F, ωγ) possesses the two symmetries

Im{S(F, ω + iγ)} = − Im{S(F, ω − iγ)}, (5.12)

Re{S(F, ω + iγ)} = +Re{S(F, ω − iγ)}; (5.13)

these two can be employed to avoid calculating the strength along either of I1 or I2,
which provides a ∼ 25% speed-up.

A rather fast convergence is observed for all considered moments and multipolarities,
except for the k = 2 moment. From the imaginary part of the calculated values, which
should be zero in the exact limit, the error due to the integration method and the nu-
merical noise can be estimated to be less than 10−5 relative to the values given in tables
5.1, 5.2, 5.3. The source of the important error on m2 could not be tracked down; it

4Again, without the self-consistent rearrangement, the pole is located at twice the smallest qp energy.
If the RPA self-energy is large compared with min (Eqp), this contour may miss some poles.
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may signal the need for more points as |k| grows. The increase in the error for larger
value of |k| is certainly due to the contour extending over a large semicircle, so that the
error due to the integration scheme is more important for large |ωγ| and |k|. The same
argument can be applied for the negative moments: the frequencies with small |ωγ| con-
tribute more to the integral, so that more points are required close to the origin of the
(ω, γ) plane. Eventually, the convergence should be slightly improved by using a rectan-
gular contour extending up to rather small values of the complex component (figure 5.11).

On the other hand, the moments obtained by integrating a strength function calculated
on the real axis yields numerical values roughly 10% off from the exact (QRPA) results.
This is due to using a finite number of points, and a non-zero value for γ. Keeping a small
but finite smearing width does not improve the results significantly, as a larger number
of points is then needed to reach the peaks of S(F, ωγ). Therefore, the complex plane
integration of the strength and the integration along the real axis typically yield results
of similar quality when the objective is to determine the moments mk. This conclusion

k = −1 k = 0 k = 1 k = 2 k = 3
QRPA 11.37802 303.8041 8198.973 226279.4 6551223.0

FAM (10) 7.24321 907.9113 20882.09 798860.0 4173025.0
FAM (100) 11.35725 301.4375 8184.050 368160.0 6539275.0
FAM (1000) 11.37783 301.3575 8198.825 368115.0 6551100.0
FAM∗ (100) 11.23504 286.7247 7679.300 212588.3 6085894.2

Table 5.1: Moments of the strength calculated for 16O for an isoscalar monopole excitation.
The integration contour is discretised with 10 (top), 100 (middle) and 1000 (bottom)
points. The very last line reports the integration of the strength along the real axis for
100 points equally spaced in the [0; 50] MeV interval, with γ = 1.5 MeV. All calculations
are performed at (emax, e3max) = (6, 14) with ℏΩ = 20 MeV.

k = −1 k = 0 k = 1 k = 2 k = 3
QRPA 0.134670 3.627249 101.9405 3071.606 103121.1

FAM (10) 0.088924 11.15050 67.32517 10330.84 68150.04
FAM (100) 0.139408 3.731564 105.5267 5009.105 106745.6
FAM (1000) 0.139661 3.730491 105.7181 5008.888 106942.3
FAM∗ (100) 0.129732 3.259581 86.86047 2418.481 70549.96

Table 5.2: Same as table 5.1 for the isovector dipole excitation.

k = −1 k = 0 k = 1 k = 2 k = 3
QRPA 12.31209 319.7424 8319.949 217261.9 5716636

FAM (10) 7.529073 942.9192 5087.849 777409.5 3497214
FAM (100) 11.80407 304.7991 7976.651 347203.7 5480799
FAM (1000) 11.82546 304.6995 7991.106 347137.6 5490692
FAM∗ (100) 12.18821 303.5510 7922.190 213172.7 5912807

Table 5.3: Same as table 5.1 for the isoscalar quadrupole excitation.
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Figure 5.11: Alternative contour for the complex-plane integrations.

is more pessimistic than that of [Hin+15] regarding the efficiency of the complex-plane
integration. A thorough study of the different integration schemes and their stability
when supplemented by an extrapolation method, along with the potential improvement
brought by using a rectangular contour that stays close to the real axis, could be useful
to sort this difference of appreciation out.

5.4 Multipolar strengths of selected mid-mass nuclei

at finite temperature

In this section, finite temperature strength functions are calculated for 56Fe, 46Ti and
44Ti, as all three show the low-energy E1 + M1 enhancement. All calculations are car-
ried out with the parameters ℏΩ = 12 MeV, (emax, e3max) = (10, 14) and use the SRG-
evolved N3LO interaction, with a three-body part approximated by its normal-ordered
form [Rot+14]. Although the present study does not consider all relevant excitation oper-
ators, using a panel of three multipole operators applied on top of three deformed systems
allows us to grasp the overall effects of temperature on nuclear resonances. The study
of astrophysically relevant operators, such as magnetic multipoles and charge-changing
excitations, would be highly relevant for further studies. For now, the applications of the
FTQFAM are restricted to the subset of electric multipoles with K = 0, although the
K ̸= 0 modes, as well as the M1 multipole, are also available at zero temperature.

For the sake of setting the stage properly, let us mention that the collective motion
in strongly coupled finite systems goes beyond the picture of uncoupled modes: as a
consequence of the system being put under motion, its multipole moments may all vary,
resulting in an overall coupling of the different multipoles altogether5. The pictorial view
of this phenomenon suffices in understanding the interplay of the possible excitations6:

- The monopole mode corresponds to a spherically symmetric operator, Q00 ∝
∑A

i r̂2i .
It can therefore generate only SO(3)-conserving excitations. The only spherical

5Naturally, up to the fulfilment of a set of selection rules, detailed for each multipole in what follows.
6For clarity, the hats on top of the position operators r̂ and ẑ are restored for a moment.
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harmonic exhibiting this symmetry being Q00 itself, monopole excitations do not
contain any other modes.

- The isovector dipole corresponds to protons and neutrons vibrating against each
other, i.e. QIV

10 ∝ N
A

∑Z
i ẑi − Z

A

∑N
i ẑi. This mode a priori modifies the radius of

the system, as well as its deformation. It can therefore trigger both monopole and
quadrupole motion. Because it breaks both spherical and parity symmetries, it can
couple to any other QJK as well.

- The quadrupole operator Q20 ∝
∑A

i 3ẑ2i − r̂2⊥,i, as well as modes of higher multipo-
larity, induce non-spherical oscillations. The even-J ones do not break the parity
symmetry, and therefore they do not contain odd-J oscillations. Conversely, the
parity-breaking, odd-J modes may also contain parity-conserving vibrations.

For the modes we restrict this study on, we thus expect to observe an intrusion of
monopole modes in dipole and quadrupole oscillations, and a presence of quadrupole
modes in the dipole strengths.

Like observed in other studies [Paa+09; Niu+09; Yük+14; Yük+17; LW18; WL19;
Yük+19; LW19; LRW20; Yük+20; Rav+20; LR21], the strengths appreciably depend on
the temperature in general. These evolutions are explained by two mechanisms. First,
the positive energy qp states become occupied, so less energy is required to take the
ground state to an excited one. This shifts towards low-ω the large peaks that already
exist at T = 0. Second, the (positive and negative) low-energy qp states have occupations
significantly differing from zero or one, resulting in the W and Z amplitudes becoming
of increasing importance. Transitions among qps that do not cross the Fermi energy are
now permitted, which causes resonances mainly at low excitation frequencies, without
discarding the possibility of important contributions at higher energies.

While these effects do not appear to be very pronounced for the monopole modes, traced
in figure 5.12, we note however the disappearing of the low-energy strength in the Ti nu-
clei. A feeble resonance is visible on the low-energy monopole in Fe as well, but its very
weak magnitude with respect to the GMR, and the dependence on ℏΩ that is not yet
completely washed out within a model space of (emax, e3max) = (10, 14), do not allow for
unambiguous conclusions. In all cases, the GMR becomes slightly narrower and higher as
the temperature increases; this is visibly a consequence of two neighbouring resonances
merging. The average excitation energy is globally found to increase with temperature
(figure 5.13), due to (i) the collapse of the small resonances below 10 MeV, already com-
plete at T = 1.5 MeV, and (ii) the drift of the main peak, and (iii) the enhancement of a
secondary peak past the location of the GMR.

A rather similar conclusion is drawn for the isoscalar quadrupole (figure 5.14), in which
the energy of the GQR is not so much affected by the temperature. We note however that
the strength of the giant resonance in 56Fe becomes quickly doubles, due to different peaks
stacking at approximately 20 MeV. For all three nuclei, the effects are more important
at low energies (ω < 10 MeV), as usual. In this region, the strengths are quenched by a
factor of two. This is tentatively attributed to the diminution of the occupation numbers
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Figure 5.12: Evolution of the S00 strength with temperature for 56Fe, 46Ti and 44Ti. All
calculations are carried at (emax, e3max) = (10, 14). We use a complex frequency γ = 1.5
MeV.

of the participant orbitals and the opening of new channels through the W and Z ampli-
tudes as temperature is increased. Such argument is in agreement with the findings of the
authors of [Yük+17], who observed an important decrease in the low-energy quadrupole
strength. On the opposite, we find in the three systems that the mean excitation energy,
represented on figure 5.15, increases in about 2 MeV between T = 0 and T = 6 MeV. This
is due to the sharp diminution of the contribution of the low-energy region. Splitting the
strength in two regions located on either side of ω = 10 MeV (figure 5.16), we indeed find
that the energy of the GQR is only weakly dependent on T past the critical temperature,
showing variations of 400 keV at most in the T = [1.5, 6] MeV range. The low-energy
resonances share the same evolution: a sudden diminution of the mean excitation energy
is found when heating the systems from T = 0 to T = 1.5 MeV, followed by a relative
stagnation. Operating the separation of the strength into these two regions highlights
that for each, the centroid changes in little proportions beyond T = 1.5 MeV, while the
most sizeable changes occur before the restoration of the spherical symmetry.
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Figure 5.13: Evolution of the mean excitation energy with the temperature, for a isoscalar
monopole probe.

Finally, the evolution of the GDR, plotted in figure 5.17 is clearer. Between T = 0
and T = 1.5 MeV, the maxima of the dipole strengths are shifted of several MeVs. This
can be understood from the schematic models of Goldhaber and Teller (GT) [GT48] and
Steinwedel, Jensen and Jensen (SJJ) [SJJ50]. The GT model assimilates the GDR as a
motion of protons and neutrons fluids against each other, as two spheres attached by a
spring whose stiffness is related to the GDR frequency. The model of SJJ implements the
GDR as a volume-conserving motion, in which protons and neutrons oscillate between
two hemispheres. Both predict a centroid energy decreasing with the radius R, like R− 1

2

(GT) or R−1 (SJJ). The two models were initially derived assuming spherical nuclear
shapes; they can however be readily generalised to vibrations of deformed systems along
one of their symmetry axis. For axial shapes, we can consider ellipsoids defined by the
radial and axial lengths R⊥ and Rz. In the Q10 vibrations, motion takes place along
the z direction. With respect to the GDR centroids given by the spherical formulae, we
can therefore expect the values to be lowered for prolate systems, and raised for oblate
ones. These considerations are consistent with the observed evolution of the strength in
figure 5.17, where the oblate Fe nucleus sees its mean excitation energy shifted down-
wards when heated to T = 1.5 MeV, where the static deformation is reduced down to
approximately 80% of its zero-temperature value. As the shift is essentially absent at
higher temperatures -in particular, between T = 1.5 and T = 3 MeV, where the spherical
symmetry is being fully restored-, the decline of β2 does not seem to entirely explain
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Figure 5.14: Same as figure 5.12 for the S20 strength.

the origin of the shift. It can be presumed to be already well-established at ∼ 1 MeV
below the critical temperature due to the interplay of thermal excitations with the FAM
amplitudes, the former allowing the latter to explore configurations that differ from the
ground state to a larger extent than what would be permitted at zero temperature. Past
T = 1.5 MeV, the mean excitation energies always decrease, owing to the amplification of
the GDR strength around 15 MeV and the systematic shift of the energy of the maximum.
Both terms contribute to comparable extents.
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Figure 5.15: Same as figure 5.13 for an isoscalar quadrupole probe.
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Figure 5.16: Temperature dependence of the high-energy (top) and low-energy (bottom)
resonances centroids for the isoscalar quadrupole perturbation. See text for details.
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Figure 5.17: Same as figure 5.12 for the S10 strength.
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Figure 5.18: Same as figure 5.13 for an isovector dipole probe.
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5.5 Conclusion

The thermal evolution of the most frequently studied multipolarities have been analysed
for a restricted set of oblate and prolate nuclei, and the qualitative features are in con-
cordance with the ones predicted by schematic models. Although we do not observe
the low-energy enhancement of the dipole strength functions, a strong evolution of the
IVGDR with temperature is found. This section is concluded by pointing out possible
mechanisms that could generate the low-energy up-bend in the studied nuclei. First, the
∝ T 2 contribution to the width γ could contribute to some extent to producing a wide
peak at low energy if the number of RPA eigenstates is very large and located in a small
energy window: these several small peaks would overlap, resulting in an amplified strength
within a narrow energy interval. The resulting broad resonance however appears rather
flat; this mechanism thus cannot by itself explain the increase of the strength function.

Second, although the story is not complete already at the level of the 2qp excitations –
the FAM is applied on top of a single-reference, symmetry-unrestored ground state, which
may very well possess a spectrum too distant from reality–, we can speculate that higher-
order thermal effect play a role. Indeed, four quasi-particle effects should enter the stage
by contributing to the 4qp amplitudes as (see appendix D)

X 4qp
ijkl (ωγ) ∼

1

Ei + Ej + Ek + El − ωγ

, (5.14)

and should thus result in eigenstates at energies more or less close to Ei+Ej+Ek+El
7.

In opposition, thermal excitations mix positive- and negative-energy qps (see the W and
Z amplitudes in (3.8)), so that contributions of the form of

W4qp
ijkl(ωγ) ∼

1

Ei + Ej − Ek − El − ωγ

(5.15)

and the likes are also possible. Now, some of these terms do contribute at low energy,
contrarily to amplitudes like (5.14) which should reasonably be located beyond four times
the smallest qp energy. A low-energy enhancement of the strength function can therefore
be speculated for higher-order RPA and FAM, at non-zero temperature only. Finally,
as the present work uses an ab initio interaction and a single HFB vacuum that does
break the SO(3) and U(1) symmetries, a significant amount of correlations is not yet
included. The extension of the method towards the inclusion of higher-order excitations
is an obvious direction. In parallel, the restoration of symmetries, either before or during
the FAM step, should improve the quality of the description.

7It should be clear that this is only an estimation, as the effects of the self-consistent rearrangement
cannot be gauged in this order-of-magnitude calculation.
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Chapter 6

Conclusion and perspectives

Incidently, this work presents the first finite temperature calculations for deformed and
superfluid nuclei when the interaction derives from an effective theory of quantum chro-
modynamics at low energy. Prior to this work, ab initio calculations of strength functions
had to be restricted to zero-temperature systems and spherical nuclei, while only the su-
perfluid regime could be addressed1. Rather than a feat of exceptional intelligence and
skill from the author of this thesis, such a fact is entirely a merit of the method’s original
proponents [NIY07].

In the present work, we have extended the formalism of the FAM to systems writing as
statistical mixtures, opening in particular the door to studies of systems in thermal baths.
Different aspects of the formalism have been studied in detail, and the connection of the
newly developed FTQFAM with the standard FTQRPA has been shown. A first study
presented in the thesis concerns the evolution of the HFB ground states with tempera-
ture; general features of phase transitions have been observed and analysed. In particular,
the critical temperature is within the range of those found in heavier systems with phe-
nomenological interactions. A second study focused on applications of the FTQFAM to
axially-symmetric electric transitions. The results coincide with the trends in the evolu-
tion of the strength functions that can be expected from schematic models. Both chapters
contain a careful analysis of the convergence of the calculation with respect to numerical
and physical parameters; and the FAM has been benchmarked scrupulously against exist-
ing RPA calculations. Owing to the efficiency and transversality of the method, it should
provide a useful tool and a fruitful avenue for previously out-of-reach ab initio studies of
multipolar response in strongly coupled quantum systems.

Possible future extensions of the work done in this thesis abound. On a “short”
timescale, spectroscopic information on the structure of the resonances could be got by
projecting the transition densities on well-defined quantum numbers. Another important
perspective would be to open up the study to odd-mass and odd-odd systems, e.g. through
the blocking technique mentioned in section 3.12 or by treating the last single nucleon(s)

1This is only true in the context of an ab initio interaction; full glory calculations using phenomeno-
logical interactions have been around for quite a few years.

2The explicit treatment of the last nucleon requires the explicit breaking of time-reversal symmetry in
the HFB reference state, which is quite some work to implement. Using the equal-filling approximation
[PR08] allows one to simplify the problem.
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128 Chapter 6. Conclusion and perspectives

exactly. At the FAM level, the inclusion of more exotic operators can be realised, in order
to study charge-changing transitions such as single [Mus+14] or double beta-decay. Al-
though available, the magnetic transitions have not been studied in detailed in this thesis
either. On longer terms, the formalism can certainly be adapted to projection techniques,
many-particle-many-hole expansions and perhaps a mixing of both. The ground state
on top of which the FAM is applied could be further correlated: one could adapt the
self-consistent RPA to the FAM (e.g. by recovering the RPA eigenvectors), recasting the
correlation obtained through the “vertical” expansion on top of a single reference state.
It should also be possible to mix the vertical and horizontal techniques by using a ground
state obtained via a multi-reference approach such as the GCM.

Another appealing direction is the possibility to carry out FAM calculations with re-
stored symmetries. It is tempting to say that projecting the reference state before solving
the FAM equation identifies with a variation after projection (VAP), while projecting a
set of FAM solutions obtained on top of symmetry-breaking ground states constitutes a
projection after variation (PAV). The VAP approach requires no formal extension of the
FAM formalism, whereas the PAV calls for a procedure of symmetry restoration for the
FAM solutions, tentatively entirely analogous to the ones of static HFB solution [SR00;
Sim10; SY14; SH17].

Along the line of [Hin15; WHN21], the systematic evolution of inertial masses when
calculated over potential energy surfaces according to HFB, cranked RPA (i.e., non-self-
consistent QFAM) and self-consistent QFAM3 could constitute a useful study of the im-
portance of the residual interaction, e.g., along dynamical paths with or without including
rotational correlations, which can be addressed in an extension of the FAM to a collective
Hamiltonian.

Finally, a more in-depth study of the giant resonances in astrophysically pertinent nuclei
could be carried out by adding the Hamiltonian with terms corresponding to electromag-
netic fields of magnitude similar to what is speculated to occur in neutron stars and
supernovae.

3Those last two steps can respectively be understood as including the residual static, then dynamic
correlations.
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Appendix A

Producing ab initio nuclear
interactions

A.1 Quantum chromodynamics and chiral effective

field theory

In principle, the description of any nuclear system can be done solely by solving the
many-body problem starting from the Lagrangian density of quantum chromodynamics
(QCD)1. QCD is a non-Abelian gauge theory of interacting fermions (quarks) and bosons
(gluons), with a Lagrangian density that writes [MS16]

LQCD = L = q̄(iγµDµ −M)q − 1

4
Ga

µνG
µν
a . (A.1)

The gauge group of QCD being SU(Nc), there are Nc quarks and N2
c − 1 gluons.

Experimental data on the hadron spectrum indicate that Nc = 3, resulting in three quark
fields and eight gluons fields. In (A.1):

- q represents the vector of quark fields and q̄ its Hermitian conjugate,

- γµ the Dirac matrices,

- Dµ the covariant derivative, written in terms of the usual derivative ∂µ, the gluon
fields Aa

µ and the associated generators ta:

Dµ = ∂µ − igAa
µta, (A.2)

with g the coupling constant of the theory,

- M is the mass matrix of the quarks:

Mqq′ = mqδqq′ , (A.3)

1Quantum electrodynamics (QED) must be included as well. Being perturbative, it constitutes the
“easy” part of the problem, and is therefore omitted from the present appendix.
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130 Chapter A. Producing ab initio nuclear interactions

- Ga
µν is the gluon field tensor, and contains an Abelian term, plus one that depends

on the structure constants fabc
2:

Ga
µν = ∂µG

a
µ − ∂νG

a
µ + gfabcG

b
µG

c
ν . (A.4)

The last term is, when at play in (A.1), responsible for the three and four gluons
vertices.

Owing to the large value of the QCD coupling constant g in the low-energy regime, the
spectrum of the theory cannot be determined by perturbative means. This renders any at-
tempt to calculate analytically the properties of nuclear systems extraordinarily difficult,
be it in an approximate (but systematically improvable) manner. The alternative path
of effective theories exploits chiral perturbation theory, which core ideas are condensed in
the following lines.

Following [NJ61; MS16], one can define the left- and right-handed quark fields as

qL ≡ 1− γ5
2

q, (A.5)

qR ≡ 1 + γ5
2

q, (A.6)

and obtain that the Lagrangian (A.1) mixes left and right quarks only through the mass
term. The massless part of the QCD Lagrangian, L0

QCD, is on the other hand invariant
under rotations of the quark fields (they are identical, up to their colour charge), resulting
in the so-called chiral symmetry. This symmetry is however spontaneously broken3, giving
rise to Nc = 3 massless Nambu-Goldstone (NG) bosons. In reality, quarks have masses,
and the symmetry breaking of SU(Nc)L × SU(Nc)R becomes explicit. The NG modes
thus acquire a mass too. Due to these masses vanishing in the chiral limit, the effective
Lagrangian of QCD at energies Q < mNG is essentially driven by L0

QCD, which can be

understood as an interaction occurring at momenta
√
Q being, at first order, not energetic

enough to produce massive NG bosons, and thereby break the chiral symmetry in an
explicit manner. Virtual NG modes creation should however be included. The masses
of the lightest NG bosons, the pions (mπ ∼ 135 MeV), are small with respect to that
of the nucleons (mN ∼ 939 MeV). This scale separation mπ/mN ∼ 0.14 < 1, lets us
define an expansion parameter, resulting in the possibility to account for the finite mass
of quarks through a perturbative expansion. This yields the possibility to map, at low
energy, the full QCD Lagrangian into one containing pion and nucleons only. In other
words, starting from L0

QCD, a hierarchy of interactions in terms of number of participants
naturally emerges:

LQCD → LEFT = Lππ + LπN + LNN + . . . (A.7)

The most intuitive picture of this chiral expansion is to regard above-threshold inter-

2Determined such that [ta, tb] = ifabctc.
3That is, the vacuum expectation value of the quark condensate ⟨q̄q⟩ is non-zero.
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Chapter A. Producing ab initio nuclear interactions 131

actions as multistep mechanisms. Since higher energy phenomena correspond to smaller
reaction times, one can see the perturbative expansion as a delving towards faster in-
teractions timescales. Alternatively, it can be interpreted as many one-pion exchanges
as needed in order to reach the correct energy. All processes are therefore treated with
respect to a timescale 1/Λ, allowing one to classify the interactions. If the time between
successive collisions is small, the full process can be treated as a single many-particle
collision. Above a certain energy threshold, different processes cannot be distinguished
and are treated as a whole. Figure A.1 sketches the emergence of many-body interactions
from binary processes, where a series of two-body interactions occurring within a time
window τ < Λ−1 are not resolved independently, but grouped together and classified as a
three-body interaction.

1
1’

1”

2

2’

3

3’

1 1”

2

2’3

3’τ < Λ−1

τ

t

x

Figure A.1: Schematic interpretation of an effective many-body interaction stemming
from two-body interactions.

Nuclear systems being characterised by their number of protons and neutrons, the pions
entering (A.7) can in a second step be integrated out, leaving only interactions between
nucleons:

LEFT = LNN + LNNN + . . . (A.8)

The two-, three-, four-nucleons interaction terms appear sequentially through the inclu-
sion of higher orders in the chiral expansion. Figure A.2 illustrates the four first orders
and corresponding diagrams, along with the predicted phase shifts at different orders. As
the EFT is a low-energy expansion, the agreement is very good at low incident energies,
and progressively degrades as the kinetic energy increases.

While it could be expected that the thusly derived and adjusted many-nucleon potentials
can be readily employed for any calculation of nuclear structure, it is not so in practice.
This is due to these interactions still involving strong couplings between low and high
momenta, making the calculated observable strongly sensitive to the size of the model
space employed for practical calculations. In addition and loosely speaking, a k−body
interaction contributes to the energy of a A−body system in a combinatorial manner (see
appendix B). Both these problems can be circumvented to a large extent by evolving
the potentials through a flow equation. A particular flavour of such evolution, the one
employed by the Darmstadt group for computing the interaction matrix elements used
throughout this thesis, is presented in the next section.
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132 Chapter A. Producing ab initio nuclear interactions

Figure A.2: Left: Diagrammatic representation of the first orders of the expansion. Right:
Calculated versus experimental phase-shift in a nucleon-nucleon scattering (from [Epe06]).
The convergence of the effective model is clearly visible.

A.2 Similarity renormalisation group treatment of

chiral EFT

Although a perturbative series can be defined through the power-counting expansion,
it is found to not be straightforwardly suited for the description of systems containing
a substantial number of nucleons. Beyond the few-body cases, a direct application of
the chiral interactions does not permit calculating observables in a controlled manner,
primarily due to strong coupling persisting between low and high momenta. A further
refinement of the bare interactions can be realised by taking advantage of the fact that the
Hamiltonian is not an observable: it can be transformed at will, provided the expectation
values are not affected. This constraint translates into the possibility to carry out unitary
(U †(s)U(s) = I) transformations only, that depend on one parameter s:

H(s) = U(s)H(0)U †(s), (A.9)

with H(0) the bare Hamiltonian. Taking the derivative with respect to s yields the flow
equation

d

ds
H(s) =

[
dU(s)

ds
U †, H(s)

]
≡ [η(s), H(s)], (A.10)

defining in passing the (anti-Hermitian) generator of the flow, η(s). This procedure of
transforming an operator by the help of a differential equation is referred to as a similarity
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renormalisation group (SRG) approach4. The operator U can be any unitary transfor-
mation, and it is visible from (A.10) that the flow terminates as soon as H(s) commutes
with η(s). These two points can be used to pick the generator in a manner that drives
the Hamiltonian into a desired structure. For instance, states with different momenta can
progressively be decoupled, in order to make the interaction operators diagonal in the mo-
mentum representation, see [BFP07; Bog+07], as represented in figure A.3. A common
prescription is to take the generator as the commutator of H(s) with its diagonal part,
which in momentum basis exponentially suppresses off-diagonal elements.

Figure A.3: Matrix elements of a N3LO potential Vs(k, k
′), through different steps of the

SRG flow for the 3S1 (top) and the 3S1−3D1 (middle) partial waves. The bottom rows
represent the radial wave functions of the deuteron ground state in the L = 0 (solid blue)
and L = 2 (dashed red) channels at the corresponding SRG steps. The parameter ᾱ is a
different notation for s. Figure taken from [HR07], see this paper for details.

Although the SRG procedure resembles a simple rotation in a high-dimensional space,
the fact it involves operators (and not simple matrices) generates additional terms through
the evolution. This can be shown directly with the ladder operators: doing the substitu-
tion η(s) → a(s) and H(s) → b(s) for this illustrative purpose,

d

ds
b(s) = [a(s), b(s)] = a(s)b(s)− b(s)a(s). (A.11)

4One should mention that it is also possible to reduce correlations by an alternative use of unitary
transformation, that resorts to a cluster expansion rather than a differential equation [Rot+07]. This
defines the Unitary Correlation Operator Method (UCOM); the similarity and differences between SRG
and UCOM are discussed in detail in [HR07].
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As the flow equation is usually integrated by time-slicing, (A.11) shows that the SRG
evolution induces many-body terms regardless of the content of the initial Hamiltonian.
Such terms greatly quickly render intractable the numerical integration of (A.10); four-
body terms and higher are generally dismissed.

Ab initio nuclear interactions can thus be generated according to the following workflow:

- derive all Feynman diagrams of chiral EFT at a given order,

- adjust the associated low-energy constants to reproduce few-body experimental
data,

- calculate the matrix elements of the chiral potentials in a given model space,

- evolve the resulting Hamiltonian through the flow equations (A.10).

The resulting interaction can in a second step used as input ingredients for the solution
of the many-body problem, e.g. through in-medium SRG, shell model calculations, or, as
done within this document, mean-field calculations. In all numerical calculations of this
thesis, we use unless specified otherwise the two- and three-body N3LO interactions of
[EKM15], SRG-evolved up to the final value of the flow parameter λSRG = s−1/4 = 1.88
fm−1 [Hüt+20].
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Appendix B

Effective theories ideas applied to an
exactly solvable model

The production of the interactions for each order of an effective theory, and the determi-
nation of the associated coupling constants, is a greatly arduous task. If the interactions
are organised in a sequence of many-body terms, the adjustment of the couplings can
however be made in successive steps1. The effective approach is nonetheless expected
to break down when applied to increasing numbers of particles. This is illustrated in
figures B.1-B.4, where a naive effective theory has been designed for a schematic system
of two N -fold degenerate shells, known as the Lipkin-Meshkov-Glick [LMG65]2 model. Its
simplest version is described by the Hamiltonian

H =
ϵ

2

∑
pσ

σa†pσapσ +
V

2

∑
pp′σ

a†pσa
†
p′σap′−σap−σ; p = shell index, σ = spin. (B.1)

The effective theory allows one to constructively obtain many-body interactions strengths
Uk, by matching the sought coupling constants with the exact energies:

E(N) =
N∑
k=1

Ck
NUk ⇒ UN = E(N)−

N−1∑
k=1

Ck
NUk. (B.2)

1Still, this is no easy game.
2To be picky, it should be mentioned that equations (3.4)-(3.5) are half incorrect: one should instead

find

N = 6 :
E

ϵ
= ±

5 + 33

(
V

ϵ

)2

± 4

[
1 + 6

(
V

ϵ

)2

+ 54

(
V

ϵ

)4
]1/2

1/2

, (LGM-3.4 top)

N = 8 :
E

ϵ
= 0,±

10 + 118

(
V

ϵ

)2

± 6

[
1− 2

(
V

ϵ

)2

+ 225

(
V

ϵ

)4
]1/2

1/2

. (LGM-3.5 bottom)
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Figure B.1: Multi-body coupling con-
stants as a function of the bare two-body
strength V . The vertical line denotes the
value of V for which χ = 1.

Figure B.2: Same as figure B.1 for a
wider range of interaction strengths. aa
aa

Figure B.3: Contribution of the n-body
energies En

GS(N) = Cn
NUn to the total

ground state energy.

Figure B.4: Same as figure B.3 for a
wider range of interaction strengths. a

The results shown in figures B.1-B.4 clearly illustrate the breakdown of constructively-
designed effective theories. The order parameter χ = V (N − 1)/ϵ, deduced from a mean-
field approximation, characterises the perturbative regime χ < 1 in which one has |Uk| <
|Uk−1|. In figure B.1, the breakdown of this regime starts to appear. It is clearly estab-
lished in figure B.2, especially at very large couplings where UN dominates. The informa-
tion on the total energy is represented in figure B.3 for couplings χ within the perturbative
regime or close to its limiting value χ = 1. In that case, the different contributions add up
rather smoothly towards the exact ground state energy. On figure B.4 however, where the
same information is represented for larger strengths, one clearly sees the collapse of the
perturbative hypothesis, as the effective couplings Uk do not decrease fast enough to com-
pensate for the combinatorial factors. This very schematic model shows that in practical
applications, great care has to be taken not to fall outside the perturbative regime. In
the case of many-body systems, this can be translated into a naive way of estimating the
number of particles for which the effective theory is no longer valid: the effective theory
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is only legitimate for N such that

|Uk+q|Ck+q
N < |Uk|Ck

N ∀k, q > 1. (B.3)
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Appendix C

Sum rules from the static state

While the sum rules correspond to the different moments of the strength function (2.82),
it is possible to obtain some of these from static quantities only. Looking at the quantities
we have at hand before starting the RPA calculation, we find that only the Hamiltonian
H, the external operator F , the density matrix D and the set of single-particle operators
can be used to obtain sum rules expressions. Additionally, we may introduce a parameter
λ corresponding to the system constrained as H + λF , for which the ground state will be
written |0λ⟩. Since we may want to have a general formula, the simplest way is to build
the kth commutator on a nested scheme:

B(k) = [Xk . . . [X3[X1, X2]]. (C.1)

Within this constraint, it is clear that X1 ̸= X2 (otherwise B(k) = 0). Additionally, the
last term of the k + 1th commutator must be H in order to obtain the last power of the
energy difference. Finally, as we need a second F operator in order to obtain squared
matrix elements, we are led to the recurrence relation between the B(k):

B(0) ≡ F

B(1) ≡
[
H,B(0)

]
B(k) ≡

[
H,B(k−1)

]
for k ≥ 1. (C.2)

Then,

⟨m|B(k)|n⟩ = ⟨m|HB(k−1)|n⟩ − ⟨m|B(k−1)H|n⟩
= (Em − En) ⟨m|B(k−1)|n⟩
= (Em − En)

k ⟨m|G|n⟩ , (C.3)

hence

⟨m|
[
F,B(k)

]
|n⟩ =

∑
l

⟨m|F |l⟩ ⟨l|B(k)|n⟩ − ⟨m|B(k)|l⟩ ⟨l|F |n⟩
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taking m = n⇝
∑
l

(1− (−1)k)(El − En)
k ⟨n|F |l⟩ ⟨l|F |n⟩ . (C.4)

For F Hermitian, taking the sum over the n states weighted by their statistical factor
leads to the odd-k sum rules:

1

2
Tr
{[

G,B(k)
]}

=


0 k even

Z−1
∑
ln

e−βEn(El − En)
k| ⟨n|F |l⟩|2 = mk(F ) k odd. (C.5)

A similar derivation can be made for the inverse energy-weighted sum rule (IEWSR):
we write a perturbative expansion (the notations are hopefully self-evident)

⟨F ⟩λ = Tr

{
F

(
D + λδD +

1

2!
λ2δ2D

)
+O(λ3)

}
. (C.6)

Recalling that δD = RF ((2.80)), we can take the derivative and obtain

1

2

d

dλ
⟨0λ|F |0λ⟩

∣∣∣∣
λ=0

= Tr{FδD} = Tr{FRF}. (C.7)

From the expression (2.79) of the response function, one identifies the right-hand side
term with the IEWSR. This approach unfortunately cannot yield other moments: it would
require getting powers of the response function R by taking higher derivative with respect
to λ, which’d also make the operator F fall identically many times. Recollecting the
different pieces, one sees that the moments are related to expressions involving two times
the operator F , whereas each response function must be matched with two of these. Only
m−1, involving a first derivative, can be obtained this way.
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Appendix D

Higher-order responses

D.1 Linear responses

In this appendix, the linear response of k-body densities is derived. Starting from (2.74),
the time-dependent part of the expectation value of an operator O is given as

⟨δO(t)⟩ = iTr

{∫ t

t0

dτ [OH(t), FH(τ)]D0

}
. (D.1)

If both O and F are two-body operators, one ought to introduce closure relations over
the two-body Hilbert space in order to replace the propagators by their eigenvalues, that
is,

OH(t)FH(τ) =
∑
µνλσ

|µν⟩⟨µν| eiHtOS(t)e
−iHt |λσ⟩⟨λσ| eiHτFS(τ)e

−iHτ

=
∑
µνλσ

eiΩ
µν
λσt |µν⟩⟨µν|OS(t) |λσ⟩⟨λσ| eiΩ

λστFS(τ)e
−iHτ , (D.2)

with the notation Ωab
a′b′ ≡ Ea + Eb − Ea′ − Eb′ . Multiplying by the static density and

taking the trace in the two-body Hilbert space yields

⟨OH(t)FH(τ)⟩ =
∑
κι

fκfι
∑
µνλσ

⟨κι|µν⟩ ⟨µν| eiHtOS(t)e
−iHt |λσ⟩⟨λσ| eiHτFS(τ)e

−iHτ |κι⟩

=
∑
µνλσ

fµfνe
iΩµν

λσ(t−τ) ⟨µν|OS(t)|λσ⟩ ⟨λσ|FS(τ)|µν⟩ . (D.3)

In this expression, the {fk} are the Fermi-Dirac (or Bose-Einstein in case of bosons)
factors. Using individual states rather than many-body eigenstates as done before greatly
simplifies the tracing, and is permitted since the trace can be taken in the eigenbasis of
the density operator. If O has no explicit time-dependence in the Schrödinger picture
(OS(t) = OS), (D.1) can be written as the sum of two convolutions, as done in (2.76).
One obtains the two-body response function
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Rρ
αβγδ
ϵζηθ

[O] =
∑
µνλσ

fµfνOαβγδ×
[
⟨µν|a†αa†βaγaδ|λσ⟩ ⟨λσ|a†ϵa†ζaηaθ|µν⟩

Ωµν
λσ − ω − iΓ

−
⟨µν|a†ϵa†ζaηaθ|λσ⟩ ⟨λσ|a†αa†βaγaδ|µν⟩

Ωµν
λσ + ω + iΓ

]
. (D.4)

Note that the separability of the matrix elements has not been assumed. This procedure
generalises clearly to k-body operators (I write Aαβ...

γδ... for a†αa
†
β . . . aγaδ . . . to shorten the

expression):

Rρ
α1...αk,β1...βk
ζ1...ζk,ξ1...ξk

[O] =
∑

µ1...µk
λ1...λk

(
k∏

j=1

fµj

)
⟨α1 . . . αk|O|β1 . . . βk⟩×

[
⟨µ1 . . . µk|Aα1...αk

βk...βk
|λ1 . . . λk⟩ ⟨λ1 . . . λk|Aζ1...ζk

ξ1...ξk
|µ1 . . . µk⟩

Ωµ1...µk

λ1...λk
− ω − iΓ

−
⟨µ1 . . . µk|Aζ1...ζk

ξ1...ξk
|λ1 . . . λk⟩ ⟨λ1 . . . λk|Aα1...αk

βk...βk
|µ1 . . . µk⟩

Ωµ1...µk

λ1...λk
+ ω + iΓ

]
.

(D.5)

D.2 Non-linear responses

The time-dependent component of the expectation value of an operator O can be written,
from (2.72), as a sum of commutators involving nested integrals. Focusing on terms
containing N such integrals, one has

⟨δO(τN)⟩ ∼ iN Tr

{∫ τN

τN−1

dτN−1

∫ τN−1

τN−2

dτN−2· · ·
∫ τ1

τ0

dτ0 e
∑N−1

q=0 αq(τq+1−τq)F (τq)O(τN)

}
.

(D.6)

One can identify τN = t and τ0 = t0 to match the notations employed up to now.
Likewise, the αq identify with the Ωµ1...µk

λ1...λk
terms. Eventually, the notation can be made

more compact by writing either of

∫ τN

τN−1

dτN−1

∫ τN−1

τN−2

dτN−2· · ·
∫ τ1

τ0

dτ0 ≡
N−1∏
q=0

∫ τq+1

τq

dτq ≡
∫ τN

τ0

Dτ. (D.7)

The integrals in (D.6) can be written as a chain of convolutions, after inserting the
appropriate step functions to account for the boundaries {τq}. One can then take the
Fourier transform of (D.6), which is now the product of the individual transforms. Prior

to this, exponential damping functions of the form e−
∑N−1

q=0 Γqτq are introduced, in order

141



142 Chapter D. Higher-order responses

to translate the fact that the probe is switched off and must vanish at infinite times.
This has the effect of removing terms that depend on the intermediate times τq ̸=0,N ,
which would otherwise make the result a rather messy sum of 2N terms1. The product
of Fourier transforms then becomes a product of two-point functions, with the matrix
elements correctly inserted in-between (the factor iN gets cancelled by the is coming from
the integrals, as usual):

R
ρ,[N ]
αβ
γδ

(ω) ∼ Z−1
∑

µ1...µN
ν1...νN

e−βEν

[(
N∏
q=1

⟨νq|a†βaα|µq⟩ ⟨µq|a†γaδ|νq⟩
Ω

νq
µq − ω − iΓ

)

−
(

N∏
q=1

⟨νq|a†γaδ|µq⟩ ⟨µq|a†βaα|νq⟩
Ω

νq
µq + ω + iΓ

)]
. (D.8)

Altogether, this yields

δR[N ](ωγ) = R[N ](ωγ)F
[N ](ωγ). (D.9)

If one so desires, the 2k-point non-linear response functions can be derived by combining
the procedures of section D.1 and section D.2.

1To convince oneself of how unpleasant the situation becomes, the computation can be done for N = 2.
Taking both τ2 and τ1 to infinity, as they should, lead to a second term that is an indefinite function of
τ2 and τ1. The infinite time limit is well-defined only if the integral converges, which is achieved by the
damping factor that makes the integrand decay exponentially toward zero.
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Appendix E

Overview of the axial harmonic
oscillator basis

In practical calculations, one has to choose a specific basis on which to expand the un-
known wave functions. Two types of bases are commonly encountered. In the coordinate
⊗ spin ⊗ isospin basis, the spatial component of the wave functions are calculated on a
(usually Cartesian) mesh. While this method is fairly intuitive, it is often computation-
ally expansive due to the large number of required grid points1, especially for non-local
interactions2.

On the other hand, the problem may be expanded on a basis with ’nice’ properties;
most importantly, it is crucial to employ basis functions that allow us to avoid computing
high-dimensional integrals. The choice of the basis is thus largely constrained by the form
of the potential: for instance, a Gaussian measure makes Hermite polynomials orthogo-
nal, so that they allow for an efficient evaluation of spatial integrals when the integrand
involves a Gaussian potential. The second approach therefore uses eigenfunctions that
display useful properties. The most commonly ones are those of harmonic oscillators3.

Because the eigenfunctions of all three types of oscillators span R3, any of them can
be used as the computational basis. However, wave functions possessing either spherical,
axial or triaxial symmetry can naturally be well-approximated by basis functions display-
ing the same symmetries, so that the choice of basis is essentially determined by the kind
of expected wave functions. For nuclear systems, experimental data [Nis+17; Gaf+13;
Yan+04; Yan+03; Iwa+01; Mot+95; Orr+91; Dét+83; Dét+79] show that the majority
of the ground states display features (e.g. rotational bands) that can only be interpreted
by assuming the systems are deformed in their intrinsic frame. Most deformation being
essentially quadrupolar, an axial basis seems an appropriate choice. Note that this choice
is in general not guided by the shape of excited states -which themselves show a wide
variety of geometries [ITH68; SHI72; Ito+14]-.

1Note however that it is possible to reduce the number of points by using non-Cartesian grids with a
distribution of points adjusted to the problem considered [NY05; INY09b].

2In three dimensions for instance, it leads to 6-dimensional integrals for the two-body terms, versus 3
for local interactions.

3The eigenfunctions of a Woods-Saxon potential are also sometimes used [ZMR03], although they
don’t allow for analytical evaluation of the integrals.
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A particle of mass m inside a three-dimensional harmonic oscillator is described by the
Hamiltonian

H =
p2

2m
+

m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (E.1)

where ωx,y,z are the oscillator frequencies, and correspond to the stiffness of the os-
cillator along the corresponding direction. The eigenfunctions of (E.1) are products of
Gauss-Hermite polynomials, the angular part being described by the functions eimφ, where
m is the orbital quantum number.

An axial oscillator corresponds to the particular case ωx = ωy, so that

H =
p2

2m
+

m

2
(ω2

⊥r
2
⊥ + ω2

zz
2). (E.2)

The deformation can be characterised by the ratio q = ω⊥/ωz, while the geometric mean
of the frequencies ω0 = (ω2

⊥ωz)
1/3. Thus,

ω⊥ = ω0q
1/3, (E.3)

ωz = ω0q
−2/3, (E.4)

which is probably quite unimportant here. The eigenfunctions of (E.2) are products
of Gauss-Hermite polynomials (along the z direction) and generalised Gauss-Laguerre
polynomials (along the r⊥ direction). Lastly, when ωx = ωy = ωz, the harmonic oscillator
becomes spherically symmetric:

H =
p2

2m
+

m

2
ω2r2, (E.5)

the corresponding eigenfunctions being the Gauss-Laguerre polynomials in the radial di-
rection, and spherical harmonics in the angular directions.

While the cylindrical oscillator seems a good compromise, it must be remarked that
only the spherical oscillator possesses the correct asymptotic behaviour with respect to a
potential going to zero at infinity. This can be critical when the surface properties play
an important role, e.g. for halo and/or drip-line nuclei, as well as when coupling to the
continuum effects become prominent, as can be the case for at high temperature and for
decaying systems.

The numerical code employed in this work is based on an axial basis, some properties
of which are quickly reviewed here. In a cylindrical basis, the relevant quantum numbers
labelling an eigenstate of an axial harmonic oscillator with different spin-isospin species
are:
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- m, the orbital quantum number;

- nz, the principal quantum number along the z axis, corresponding to the number of
nodes of the wave function in the z direction;

- n⊥, the principal quantum number perpendicular to the symmetry axis z, corre-
sponding to the number of nodes of the wave function in the r⊥ direction;

- σ, the spin;

- τ , the isospin.

A state of the axial oscillator basis will therefore be written

|α⟩ ≡ |mαnzαn⊥ασατα⟩ ≡ |mανασατα⟩ ≡ |µασατα⟩ , (E.6)

introducing shorthand notations splitting the coordinate and internal spaces quantum
numbers |α⟩ = |µα⟩ ⊗ |σατα⟩. It can also be convenient to work with Ω = m + σ,
projection of the total orbital momentum on the z-axis. The coordinate representation
for the ket |α⟩ form the basis of functions

Φα(r, σ, τ) ≡ ⟨rστ |α⟩ ,
Φα(r) = (πb2⊥bz)

− 1
2ϕmα

n⊥α
(η)ϕnzα

(ξ)eimαφ,

where variables have been switched to dimensionless ones through η ≡ r2⊥/b
2
⊥ and

ξ ≡ z/bz. Regarding the eigenfunctions of the harmonic oscillator, a few useful properties
are recalled: first, their explicit expressions are

ϕn(ξ) ≡ N (⊥)
n e−ξ2/2Hn(ξ) = eξ

2/2(−1)n
dn

dξn
e−ξ2 Gauss-Hermite, (E.7a)

ϕm
n (η) ≡ N (z)ηm/2e−η/2Lm

n (η) =
1

n!

dn

dηn
(
e−ηηm+n

)
Gauss-Laguerre, (E.7b)

with the normalisation constants N (⊥)
n = (2nn!

√
π)−1/2 and N (z) =

√
n!

(n+m)!
.

Second, they possess the following orthogonality and recurrence properties:
Gauss-Hermite polynomials:

⋆

∫
dξϕn(ξ)ϕm(ξ) = δm,n, (E.8a)

⋆ ϕn =

√
2

n
ξϕn−1 −

√
n− 1

n
ϕn−2, (E.8b)

⋆ ξϕn =

√
n+ 1

2
ϕn+1 +

√
n

2
ϕn−1, (E.8c)

⋆ ∂ξϕn =

√
n

2
ϕn−1 −

√
n+ 1

2
ϕn+1, (E.8d)
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Generalised Gauss-Laguerre polynomials:

⋆

∫
dηϕm

n (ξ)ϕ
m
n′(ξ) = δn,n′ , (E.9a)

⋆
√
ηϕm

n =

{√
n+m+ 1ϕm+1

n −√
nϕm+1

n−1√
n+mϕm−1

n −
√
n+ 1ϕm−1

n+1

, (E.9b)

⋆
m√
η
ϕm
n =

{√
n+m+ 1ϕm+1

n +
√
n+ 1ϕm−1

n+1√
n+mϕm−1

n −√
nϕm+1

n−1

, (E.9c)

⋆ 2
√
η∂ηϕ

m
n =

{√
n+ 1ϕm−1

n+1 −√
nϕm+1

n−1√
n+mϕm−1

n −
√
n+m+ 1ϕm+1

n

. (E.9d)

The matrix elements for contact or Gaussian interactions in axial symmetry are not
given here for the sake of conciseness, but can be found in [You09].
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Appendix F

Résumé substantiel en français

Introduction

Le problème quantique à N corps est extrêmement complexe et nombre de phénomènes
ne peuvent être compris finement que lorsque les corrélations entre les degrés de liberté
sont traitées de manière satisfaisante. Ces corrélations, résultant d’interactions au travers
de différents canaux (de spin et d’isospin notamment), génèrent pléthore de configura-
tions, telles que des états déformés et des phases superfluides. Cette phénoménologie
est agrémentée par la réalisation de configurations plus exotiques : états dits à halos ou
bulles, résonances géantes, agrégats et bien d’autres. À titre d’illustration, on peut citer
l’état de Hoyle, un état excité du carbone dans lequel les douze nucléons s’agencent en
trois agrégats de particules alpha.

Notamment, les propriétés des états excités des noyaux atomiques jouent un rôle de
premier plan dans la compréhension des processus de nucléosynthèse ; le travail ici
présenté peut être vu comme un pas dans cette direction. Deux difficultés principales
doivent cependant être adressées. Premièrement, la nature des états excités est très
diverse, allant d’excitations élémentaires d’une seule ou de quelques particules à des
phénomènes de vibration très collectifs, pour lesquels les corrélations entre degrés de
liberté sont une composante primordiale. En second lieu, ces résonances couvrent une
gamme d’énergie s’étalant sur un à deux ordres de grandeur. À ce jour, le principal
cadre théorique permettant de tenir compte de ces deux contraintes est l’approximation
des phases aléatoires ((Q)RPA), dans lequel les états excités sont construits comme des
superpositions cohérentes de modes pour lesquels seules les corrélations les plus simples
(dites “une particule-un trou” ou “deux quasi-particules” dans le cas superfluide). Malgré
cette approximation, la QRPA reste une approche en pratique très coûteuse ; la plupart
des applications restent donc relativement limitées quant aux classes de corrélations (an-
gulaires, superfluides...) traitées. Le travail présenté dans ce document repose sur une re-
formulation récente -la méthode des amplitudes finies (FAM)- de la QRPA, qui permet en
pratique de lever ces verrous. On utilise également une interaction effective entre nucléons
dérivant de la théorie de l’interaction forte, la chromodynamique quantique (QCD). En sus
de ces nouveaux résultats, dans les milieux astrophysiques où s’effectuent les différentes
étapes de la nucléosynthèse règnent des températures très élevées (T ≳ 109K), de sorte
que le couplage d’un système à son environnement thermique peut générer d’importantes

147
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modifications de la structure des états fondamentaux et excités. Le travail de thèse tient
compte de ces couplages, en généralisant pour la première fois la FAM au cas où le système
doit être décrit comme un ensemble statistique. On présente de premières applications
à la transition de phase déformée vers sphérique sous l’effet de la température, ainsi
que de premières applications à la description de résonances géantes dans des conditions
pertinentes pour l’astrophysique.

Généralités

Ce chapitre introductif présente le cadre théorique de la description du problème quan-
tique à N corps. On s’attache à rester le plus général possible, de sorte que toutes les
idées et techniques résumées dans ce chapitre sont applicables aussi bien à la physique
des atomes froids qu’à la matière condensée, la chimie quantique ou la physique nucléaire.
Les concepts principaux de la description quantique d’un système à N corps en termes de
mélange statistique de matrices de densité sont exposés. On récapitule ensuite les deux
techniques principales employées pour simplifier la représentation formelle du problème, à
savoir le théorème de Wick et la procédure d’anti-symétrisation des châınes d’opérateurs
fermioniques. On présente ensuite l’approximation du champ moyen incluant la superflu-
idité et le couplage à un bain thermique. Ce second aspect ouvre la possibilité de décrire
les transitions de phase induites par les effets de température ; deux de celles-cis sont
discutées schématiquement. Enfin, ce chapitre présente la théorie de la réponse et met
l’accent sur son approximation linéaire, laquelle est rarement dépassée en pratique.

Matrice de densité

On résume comment il est possible, à partir de l’équation de Schrödinger décrivant une
fonction d’onde, d’arriver à l’équation de Liouville-von Neumann dépendante du temps
(TDLvN), qui porte sur l’évolution de la matrice de densité associée. Il est mentionné que
le formalisme peut aisément être vu comme décrivant une dynamique non hermitienne et
donc non unitaire, c’est-à-dire ne conservant pas la norme de la fonction d’onde, comme
c’est le cas dans les systèmes ouverts. L’équation du mouvement de TDLvN est ensuite
séparée en différents secteurs, selon le nombre d’opérateurs d’échelle présents dans les
fonctions d’onde “gauche” et “droite”.

Ensemble statistique

Schématiquement, dès lors qu’un système quantique est en contact avec un milieu extérieur
dont la température n’est pas très inférieure à la différence d’énergie entre la dernière
orbitale occupée et la première orbitale vide de ce premier, les excitations thermiques
ne sont pas négligeables et doivent donc être incluses de manière satisfaisante dans le
formalisme. Cela est effectué en écrivant l’état thermique comme un mélange de différents
états produits. On rappelle également l’expression de quelques observables en termes de
trace, ainsi la dérivation des moments des nombres d’occupation moyens à partir de la
fonction de partition.
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Chapter F. Résumé substantiel en français 149

Hamiltonien statique et quelques propriétés générales

Dans cette partie, on considère un hamiltonien multicorps arbitraire, et montre que
l’écriture en seconde quantification amène très rapidement à de sévères limitations dues
au nombre exponentiel de fonctions de corrélations. On évoque que des transformations
de groupe de renormalisation par similarité permettent de transformer un hamiltonien à
N corps quelconque en hamiltonien dans lequel les éléments de matrice à un, deux, voire
trois corps sont largement prédominants. Cela permet de rendre le problème de recherche
des valeurs et vecteurs propres à la fois moins complexe et plus perturbatif. On donne
enfin l’expression générale de l’énergie totale lorsque l’hamiltonien est tronqué de sorte
que les termes à quatre corps et plus ne sont pas inclus. Une seconde étape de réduction
d’information passe par la combinaison du théorème de Wick avec la procédure d’anti-
symétrisation des éléments de matrice, ce qui permet de ne conserver que les densités à un
corps et non plus des déterminants de Slater, la structure anti-symétrique de la fonction
d’onde à N corps étant absorbée dans les interactions à deux et trois corps.

Approximations de champ moyen

On présente la théorie dite de Hartree-Fock-Bogoliubov, qui par construction est l’approche
de champ moyen la plus générale possible. On dérive les expressions des densités normales
et anomales, ainsi que des champs associés, à température finie. Le principe variation-
nel de minimisation de l’énergie mène ensuite à l’équation non-linéaire permettant la
détermination de l’état fondamental.

Transitions de phase thermiques

L’évolution des deux types de brisures de symétrie considérés dans cette thèse, à savoir
de nombre de particules et de géométrie, est discutée avec la température. L’accent est
mis sur les arguments physiques plutôt que sur les détails de dérivation. On montre que
l’appariement comme la déformation diminuent avec la température, et doivent chacun
donner lieu à une transition de phase de second ordre. En dernier lieu, on montre que
même à basses températures, il est nécessaire de considérer non plus un seul état fonda-
mental (sous la forme d’un mélange statistique) mais bien l’ensemble des états générés
par le paramètre d’ordre considéré (couplage d’appariement ou bien déformation), tous
étant occupés suivant une probabilité en exponentielle de leur énergie libre. Bien que cette
seconde étape est trop chronophage pour être effectuée, on pointe l’évolution attendue des
paramètres d’ordre.

Théorie de la réponse

Après avoir discuté des deux points de vue conceptuels à la théorie de la réponse, est dis-
cuté brièvement des principaux points de départ formels menant aux équations associées,
on dérive l’équation de la réponse linéaire ainsi que des moments correspondants aux prob-
abilités de transition. Ce chapitre s’achève sur la remarque que la formulation habituelle,
sous forme d’équation aux valeurs propres, étant un problème dont la résolution se fait
en une durée croissant comme le cube du nombre d’états à une particule considéré, cette
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approche est en pratique limitée aux systèmes pour lesquels le nombre d’états nécessaire
est assez faible.

Méthode des amplitudes finies

La méthode des amplitudes finies est une formulation équivalente à l’approche QRPA
habituelle. Elles diffèrent cependant en ce que la QRPA se résout comme une équation aux
valeurs propres généralisée, tandis que la FAM contourne ce problème de haute dimension
en y substituant un ensemble de problèmes plus simples, équivalents à ceux rencontrés
dans la détermination de l’état fondamental. Après avoir présenté une dérivation des
équations de la FAM, ce chapitre détaille plusieurs points techniques ayant trait à la
méthode. On y discute notamment de la connexion de la FAM à la QRPA par le biais
d’intégrales dans le plan complexe ; cela démontre que les deux méthodes peuvent être
rendues strictement équivalentes. Il est également prouvé quelques points importants pour
la mise en branle de la méthode, tels que la linéarisation des champs moyens, ainsi que des
contraintes de symétries des équations, plus délicates que celles rencontrées usuellement
en raison de l’emploi de matrices de densité complexes. Différents points critiques pour
le succès de la méthode, tels que l’élimination des modes de Nambu-Goldstone ou la
nécessité de fixer le centre de masse au travers d’une prescription à un-plus-deux corps
sont présentés. Quelques critères de détermination d’instabilités du système vis-à-vis de la
perturbation appliquée sont dérivés. On mentionne également les mécanismes physiques
à l’origine de l’élargissement des résonances, lequel n’est pas accessible dans la présente
théorie et est rajouté à la main. Enfin, on montre rapidement la manière dont la structure
de l’opérateur générant les oscillations influe sur les nombres quantiques des fluctuations
de champs et densités.

Dérivation

On présente ici une dérivation des équations de la FAM à température finie, dans le cas
d’une théorie incluant l’appariement. Le choix est porté sur la dérivation partant des
équations de TDLvN, plus générales que l’équation HFB dépendante du temps puisque
n’étant pas restreinte au secteur à un corps. Quoiqu’elles s’écrivent a priori dans des
bases différentes, il est possible de transformer l’ensemble d’équations TDLvN dans la
base HFB, de sorte que la dérivation montrée dans cette partie peut également fournir
un point de départ à des théories au-delà de la FAM. Une méthode de résolution des
équations du mouvement est donnée.

Linéarisation des champs

En général, les hamiltoniens de champ moyen dépendent non-linéairement des densités.
Cela est dû à la présence de termes à trois corps, voire plus, ou alors, pour la plupart des
interactions phénoménologiques, à une dépendance explicite des termes d’interaction à
deux corps en la densité. Puisque la FAM s’attache à décrire des fluctuations au-delà du
champ moyen, les champs mélangent densités statiques et dynamiques, de sorte que leur
calcul est plus complexe que celui des champs moyens statiques. Toutefois, il est possible
de calculer les champs oscillants induits d’une manière analogue aux champs statiques, de

150
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sorte que seules les composantes linéaires de la réponse sont retenues. On parle alors de
linéarisation des champs induits. Cette sous-section discute des deux différentes manières
dont les champs dépendants du temps peuvent être linéarisés. Une première approche
est entièrement numérique et repose sur une méthode de différences finies ; on discute
les avantages et inconvénients de cette approche. La seconde méthode, utilisée dans
cette thèse, consiste à séparer le calcul des champs induits de la FAM en deux étapes
: une étape de pré-contraction, qui permet de définir des interactions effectives pour
les fluctuations, suivie d’une étape de calcul analogue à celle mise en place au niveau
du champ moyen statique. On donne les expressions des interactions effectives lorsque
l’hamiltonien contient des termes à un, deux et trois corps.

Symétries des équations FAM et HFB

Ayant été mentionné que les symétries présentes dans la FAM sont moindres que celles
rencontrées dans la théorie HFB, on s’attèle à leur étude précise. On donne également
les expressions des densités et champs statiques et induits, dans les deux conventions les
plus communément employées pour paramétrer la transformation de Bogoliubov.

Connexion avec la QRPA

On montre comment la FAM peut être réliée à la QRPA, c’est-à-dire comment les am-
plitudes et fonction de force linéaires exactes peuvent être calculées à partir de celles
obtenues via la FAM.

Habillage auto-cohérent

Si les énergies présentes au dénominateur des équations FAM sont les énergies statiques
des états propres, les pôles de la fonction de réponse diffèrent des pôles de la fonction
de réponse “nue”, en raison de l’habillage des propagateurs à un corps par le biais des
oscillations de champ moyen. On montre ceci à l’aide d’un modèle exactement soluble,
clarifiant ainsi cet aspect d’apparence contre-intuitif.

Modes de Nambu-Goldstone

Les modes dits de Nambu-Goldstone sont des modes parasites liés à la brisure de symétrie
autorisée pour l’état de référence. Cette brisure génère un ensemble d’états équivalents
à une (ou un ensemble de) phase(s) près. Les différents états de cette variété peuvent
être atteints accidentellement lorsque l’on excite le système avec une sonde contenant
les opérateurs reliant ces différents états. Il est alors nécessaire de mettre en place une
procédure de soustraction afin d’éliminer ces contributions non désirée. C’est ce qui est
fait dans cette partie, en suivant la dérivation de l’article [NIY07].

Centre de masse

Il a été montré dans [HR09] que les deux manières différentes de tenir compte de la
fixation du centre de masse pour les systèmes auto-liés, quoiqu’équivalentes au niveau
des opérateurs, ne le sont plus lorsque l’on calcule des valeurs moyennes dès lors que
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les densités d’appariement sont non-nulles. Cette dérivation ayant été effectuée pour les
états statiques uniquement, il est de rigueur de vérifier si le calcul du centre de masse
reste correct lorsque l’on tient compte des oscillations de densité. Il est montré que les
résultats obtenus pour les états indépendants du temps se généralisent pour les états
fluctuants considérés ici.

Modes instables

Lorsque le système est stable, c’est-à-dire lorsqu’il ne dévie de son état d’équilibre que par
des fluctuations du même ordre de grandeur que l’intensité de la sonde, les énergies de
tous les états collectifs sont réelles. Dans le cas inverse, elles deviennent imaginaires. On
donne ici quelques techniques permettant d’estimer si de tels modes sont présents sans
avoir à les identifier précisément.

Élargissement des résonances

On discute ici des phénomènes à l’origine des largeurs finies des résonances collectives.
Outre les habituels couplages d’étalement (couplage aux modes impliquant plus d’états
participants), de Landau (couplage entre états collectifs et individuels) et couplage aux
états non liés, on mentionne les effets cinétiques dus au couplage du système à un bain
thermique.

QFAM en base d’oscillateur harmonique : règles de sélection

Cette sous-section montre comment (i) les nombres quantiques de la sonde contraignent le
type d’excitations pouvant avoir lieu, (ii) comment les contraintes imposées aux interac-
tions à deux et trois corps se traduisent en règles de sélection pour les champs et densités
dynamiques.

Applications aux transitions de phase thermiques

Ce premier chapitre de résultats s’attache à la description de l’état fondamental du 56Fe
sur une gamme de températures similaire à celle rencontrée dans les étoiles à neutrons. On
y observe une restauration abrupte de la phase sphérique pour une température critique
Tc = 2.46 ± 0.23 MeV. L’évolution du paramètre d’ordre encodant la déformation, en
l’occurrence quadripolaire, peut être comprise schématiquement dans le cas de la théorie
de Landau des transitions de phase. L’étude plus détaillée des grandeurs thermody-
namiques pertinentes ici (entropie et capacité calorifique) permet d’identifier une transi-
tion de phase d’ordre deux, conformément à ce qui est observé dans d’autres approches
et des noyaux plus lourds. Il est à noter que cette étude physique est précédée d’une
analyse de la convergence des résultats en fonction des paramètres de la base (nombre
d’états et raideur de l’oscillateur) sur laquelle les fonctions d’onde sont écrites, ainsi que
l’évolution desdits résultats lorsque différents ordres du développement chiral à l’origine de
l’interaction effective sont inclus. On observe globalement une convergence bien établie (de
l’ordre du pourcent) pour les paramètres numériques, tandis que la comparaison des ordres
deux à quatre de l’interaction chirale permet d’estimer produit une erreur systématique
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d’environ 10% sur les observables différentielles, cet écart étant systématiquement dû à la
différence entre les ordres deux et quatre ; l’accord entre les ordres trois et quatre étant
toujours bien meilleur. Les erreurs dues à l’interaction peuvent être réduites de manière
bien définie (via l’inclusion d’ordres supérieurs) quoiqu’au prix d’efforts de travail formel
et numérique hors de portée de ce travail de thèse.

Applications aux résonances géantes

Ce chapitre démarre par la validation de la méthode face à des calculs RPA dans l’16O,
sphérique et non superfluide. La méthode des amplitudes finies thermique est ensuite
appliquée à l’étude des modes collectifs électriques dans trois noyaux intéressants pour le
processus s, partiellement à l’origine des éléments lourds dans la nature. Comme dans le
chapitre précédent, on s’applique à vérifier la convergence des calculs FAM. Ici encore,
on trouve une convergence en voie d’établissement, avec des erreurs de l’ordre de 10%
pour chacun des trois paramètres étudiés : la fréquence de l’oscillateur harmonique, le
nombre de quanta de la base, ainsi que l’ordre chiral de l’interaction. Ensuite, on étudie
la possibilité de calculer les moments de la fonction de réponse par intégration de celle-ci
dans le plan complexe ; les résultats sont de qualité similaire à ceux obtenus par intégration
sur l’axe réel positif de la fonction de réponse convoluée avec une distribution de Cauchy.
Enfin, les résultats principaux de ce chapitre sont l’étude de l’évolution des fonctions de
réponse à mesure que la température crôıt. On trouve des variations plutôt modérées, dont
la tendance peut être comprise par des modèles schématiques. Toutefois, l’augmentation
de la fonction de réponse dipolaire à basse énergie est assez remarquable, et pourrait
laisser présager d’une contribution de nature électrique à l’augmentation mesurée dans
les trois systèmes étudiés. Il est cependant pointé que seules les perturbations le long de
l’axe de symétrie de la distribution de densité statique sont considérées ; il est tout à fait
envisageable que l’augmentation soit plus conséquente dans des directions non axiales, ou
alors ne puisse s’observer qu’au-dessus d’états de référence de symétrie moindre (c.-à-d.
ne possédant aucun axe de symétrie). De même, une étude des modes magnétiques M1 est
nécessaire afin d’apporter des éléments de réponse. Enfin, est mentionnée la possibilité
que ces résonances ne puissent être décrites dans le cadre de l’approximation linéaire
effectuée, et on montre de manière simplifiée comment des excitations plus complexes
peuvent devenir prépondérantes à basse énergie dans des systèmes chauds.

Conclusions et perspectives

Ce travail est conclu par le constat qu’il ouvre la voie à des études jusqu’alors hors de
portée de l’approche usuelle à la description des résonances dans le cas d’une interaction
dérivant de la QCD. On note toutefois que l’étude complète des possibilités ouvertes par
la FAM n’a pas été réalisée dans ce travail. La démonstration formelle que la méthode
des amplitudes finies à température finie est équivalente à l’approche QRPA thermique
étend la preuve à température nulle de [HKN13].

Différents modes d’excitation (échange de charge, d’isospin, opérateurs de Gamow-Teller
et de Fermi) ont été omis, quoique le mode magnétique M1 soit déjà à portée d’étude.
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L’inclusion de ces modes ouvrira l’accès à d’autres mécanismes, telles que la décroissance
β, simple ou double, avec ou sans neutrinos.

Il est également remarqué qu’un système fini devant respecter les symétries de l’hamiltonien
le décrivant, une étape supplémentaire de développement serait de restaurer les symétries
brisées par l’état fondamental au niveau des solutions FAM, l’approche la plus directe
étant a priori de se baser sur la formulation développée dans [Sim10; SY14; SH17].
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in the Theory of Superconductivity”. In: Fortschritte der Physik 6.11-12
(1958), pp. 605–682. doi: https://doi.org/10.1002/prop.19580061102.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/prop.
19580061102 (cit. on p. 24).

[BMP58] A. Bohr, B. R. Mottelson, and D. Pines. “Possible Analogy between the Ex-
citation Spectra of Nuclei and Those of the Superconducting Metallic State”.
In: Phys. Rev. 110 (4 May 1958), pp. 936–938. doi: 10.1103/PhysRev.110.
936 (cit. on p. 86).

[BM53a] Aage Bohr and Ben R. Mottelson. “Interpretation of Isomeric Transitions of
Electric Quadrupole Type”. In: Phys. Rev. 89 (1 Jan. 1953), pp. 316–317.
doi: 10.1103/PhysRev.89.316 (cit. on p. 9).

[BM53b] Aage Bohr and Ben R. Mottelson. “Rotational States in Even-Even Nuclei”.
In: Phys. Rev. 90 (4 May 1953), pp. 717–719. doi: 10.1103/PhysRev.90.
717.2 (cit. on p. 9).

[BM75] Aage Bohr and Ben R. Mottelson. Nuclear structure, volume II: Nuclear
deformations. eng. New York Amsterdam: W.A. Benjamin, 1975. isbn: 0-
8053-1016-9 (cit. on p. 29).

[Boo06] Arnold I. Boothroyd. “Heavy Elements in Stars”. In: Science 314.5806 (Dec.
2006), pp. 1690–1691. doi: 10 . 1126 / science . 1136842. eprint: https :
//www.science.org/doi/pdf/10.1126/science.1136842 (cit. on p. 85).

[Bre09] Claude Brezinski. “Some pioneers of extrapolation methods”. In: The Birth
of Numerical Analysis. 2009, pp. 1–22. doi: 10 . 1142 / 9789812836267 _

0001. eprint: https://www.worldscientific.com/doi/pdf/10.1142/
9789812836267_0001 (cit. on p. 115).

163

https://doi.org/https://doi.org/10.1016/0029-5582(62)90377-2
https://doi.org/https://doi.org/10.1016/0029-5582(62)90377-2
https://doi.org/10.1103/physrevc.75.061001
https://doi.org/10.1016/j.physletb.2007.04.048
https://doi.org/https://doi.org/10.1007/BF02745585
https://doi.org/https://doi.org/10.1007/BF02745585
https://doi.org/https://doi.org/10.1002/prop.19580061102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prop.19580061102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/prop.19580061102
https://doi.org/10.1103/PhysRev.110.936
https://doi.org/10.1103/PhysRev.110.936
https://doi.org/10.1103/PhysRev.89.316
https://doi.org/10.1103/PhysRev.90.717.2
https://doi.org/10.1103/PhysRev.90.717.2
https://doi.org/10.1126/science.1136842
https://www.science.org/doi/pdf/10.1126/science.1136842
https://www.science.org/doi/pdf/10.1126/science.1136842
https://doi.org/10.1142/9789812836267_0001
https://doi.org/10.1142/9789812836267_0001
https://www.worldscientific.com/doi/pdf/10.1142/9789812836267_0001
https://www.worldscientific.com/doi/pdf/10.1142/9789812836267_0001


164 BIBLIOGRAPHY

[Bri55] D. M. Brink. “Some aspects of the interaction of light with matter”. PhD
thesis. University of Oxford, 1955 (cit. on p. 102).

[BW68] D.M. Brink and A. Weiguny. “The generator coordinate theory of collective
motion”. In: Nuclear Physics A 120.1 (1968), pp. 59–93. issn: 0375-9474.
doi: https://doi.org/10.1016/0375-9474(68)90059-6 (cit. on p. 35).

[Bro08] National Nuclear Data Center Brookhaven National Laboratory. NuDat (Nu-
clear Structure and Decay Data). Mar. 2008 (cit. on p. 88).

[Bru+08] G. M. Bruun et al. “Collisional Properties of a Polarized Fermi Gas with
Resonant Interactions”. In: Phys. Rev. Lett. 100 (24 June 2008), p. 240406.
doi: 10.1103/PhysRevLett.100.240406 (cit. on p. 103).

[Bur+57] E. Margaret Burbidge et al. “Synthesis of the Elements in Stars”. In: Rev.
Mod. Phys. 29 (4 Oct. 1957), pp. 547–650. doi: 10.1103/RevModPhys.29.547
(cit. on p. 85).

[Cho97] P. Chomaz. “Collectives excitations in nuclei”. École thématique. Lecture.
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[Möl+16] P. Möller et al. “Nuclear ground-state masses and deformations: FRDM(2012)”.
In: Atomic Data and Nuclear Data Tables 109-110 (2016), pp. 1–204. issn:
0092-640X. doi: https://doi.org/10.1016/j.adt.2015.10.002 (cit. on
p. 94).

[Mor73] L.G. Moretto. “Finite temperature calculation of angular velocities and mo-
ments of inertia in rotating nuclei”. In: Physics Letters B 44.6 (1973), pp. 494–
496. issn: 0370-2693. doi: https://doi.org/10.1016/0370-2693(73)
90006-3 (cit. on p. 94).

[Mot+95] T. Motobayashi et al. “Large deformation of the very neutron-rich nucleus
32Mg from intermediate-energy Coulomb excitation”. In: Physics Letters B
346.1 (1995), pp. 9–14. issn: 0370-2693. doi: https://doi.org/10.1016/
0370-2693(95)00012-A (cit. on pp. 94, 143).

[Mus+14] M. T. Mustonen et al. “Finite-amplitude method for charge-changing tran-
sitions in axially deformed nuclei”. In: Phys. Rev. C 90 (2 Aug. 2014),
p. 024308. doi: 10.1103/PhysRevC.90.024308 (cit. on p. 128).

[NY05] T. Nakatsukasa and K. Yabana. “Unrestricted TDHF studies of nuclear re-
sponse in the continuum”. In: The European Physical Journal A - Hadrons
and Nuclei 25.1 (Sept. 2005), pp. 527–529. issn: 1434-601X. doi: 10.1140/
epjad/i2005-06-052-x (cit. on p. 143).

173

https://doi.org/10.1103/PhysRevC.68.059902
https://doi.org/10.1103/PhysRevC.68.059902
https://doi.org/10.1103/PhysRevC.68.034327
https://doi.org/10.1143/PTP.31.1009
https://academic.oup.com/ptp/article-pdf/31/6/1009/5270097/31-6-1009.pdf
https://academic.oup.com/ptp/article-pdf/31/6/1009/5270097/31-6-1009.pdf
https://doi.org/10.1038/345491a0
https://arxiv.org/abs/2104.04688
https://doi.org/https://doi.org/10.1006/adnd.1995.1002
https://doi.org/https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/https://doi.org/10.1016/0370-2693(73)90006-3
https://doi.org/https://doi.org/10.1016/0370-2693(73)90006-3
https://doi.org/https://doi.org/10.1016/0370-2693(95)00012-A
https://doi.org/https://doi.org/10.1016/0370-2693(95)00012-A
https://doi.org/10.1103/PhysRevC.90.024308
https://doi.org/10.1140/epjad/i2005-06-052-x
https://doi.org/10.1140/epjad/i2005-06-052-x


174 BIBLIOGRAPHY

[NIY07] Takashi Nakatsukasa, Tsunenori Inakura, and Kazuhiro Yabana. “Finite am-
plitude method for the solution of the random-phase approximation”. In:
Phys. Rev. C 76 (2 Aug. 2007), p. 024318. doi: 10.1103/PhysRevC.76.
024318 (cit. on pp. 11, 44, 47, 48, 127, 151).

[NJ61] Y. Nambu and G. Jona-Lasinio. “Dynamical Model of Elementary Particles
Based on an Analogy with Superconductivity. II”. In: Phys. Rev. 124 (1 Oct.
1961), pp. 246–254. doi: 10.1103/PhysRev.124.246 (cit. on p. 130).

[Nam50] Yoichiro Nambu. “Force Potentials in Quantum Field Theory”. In: Progress
of Theoretical Physics 5.4 (July 1950), pp. 614–633. issn: 0033-068X. doi:
10.1143/ptp/5.4.614. eprint: https://academic.oup.com/ptp/article-
pdf/5/4/614/5430503/5-4-614.pdf (cit. on p. 35).

[Nam60] Yoichiro Nambu. “Quasi-Particles and Gauge Invariance in the Theory of
Superconductivity”. In: Phys. Rev. 117 (3 Feb. 1960), pp. 648–663. doi: 10.
1103/PhysRev.117.648 (cit. on p. 68).

[Ney+20] E. M. Ney et al. “Global description of β− decay with the axially deformed
Skyrme finite-amplitude method: Extension to odd-mass and odd-odd nu-
clei”. In: Phys. Rev. C 102 (3 Sept. 2020), p. 034326. doi: 10.1103/PhysRevC.
102.034326 (cit. on pp. 44, 45).
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[Som+14] V. Somà et al. “Chiral two- and three-nucleon forces along medium-mass
isotope chains”. In: Physical Review C 89.6 (June 2014). issn: 1089-490X.
doi: 10.1103/physrevc.89.061301 (cit. on p. 86).
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