
HAL Id: tel-03537118
https://theses.hal.science/tel-03537118

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous and Spontaneous Coordination between
Smart Connected Objects

Pierre Rust

To cite this version:
Pierre Rust. Autonomous and Spontaneous Coordination between Smart Connected Objects. Other
[cs.OH]. Université de Lyon, 2019. English. �NNT : 2019LYSEM023�. �tel-03537118�

https://theses.hal.science/tel-03537118
https://hal.archives-ouvertes.fr

No d’ordre NNT : 2019LYSEM023

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’École des Mines de Saint-Étienne

École Doctorale No 488

Sciences, Ingénierie, Santé

Spécialité de doctorat : informatique

Discipline : intelligence artificielle

Soutenue publiquement le 3 octobre 2019, par :

Pierre Rust

Autonomous and Spontaneous Coordination

between Smart Connected Objects

Coordination spontanée et autonome entre

objets intelligents connectés

Devant le jury composé de :

GLEIZES, Marie-Pierre

MANDIAU, René

JAMONT, Jean-Paul

RODRÍGUEZ-AGUILAR, Juan A.

Professeur, Université de Toulouse

Professeur, Université Polytechnique

Hauts-de-France, Valenciennes

Professeur, Université Grenoble Alpes, Valence

Chercheur, IIIA-CSIC

Rapporteure

Rapporteur

Examin ateur

Examin ateur

PICARD, Gauthier

RAMPARANY, Fano

Professeur, École des Mines de Saint-Étienne

Chercheur, Orange Labs

Directeur de thèse

Co-encadrant de thèse

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche
MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy , Maître de recherche
SCIENCES DE LA TERRE B. Guy , Directeur de recherche
SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant
INFO RM A T I Q U E O. Boissier, Professeur
SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur

GENIE INDUSTRIEL N. Absi, Maitre de recherche
MICR O E L E C T R O N I Q U E Ph. Lalevée, Professeur

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sy lvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

CAMEIRAO Ana MA(MDC) Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA(MDC) Génie industriel Fayol

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL

DRAPIER Sy lvain PR1 Mécanique et ingénierie SMS

FAUCHEU Jenny MA(MDC) Sciences et génie des matériaux SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Sciences de la Terre SPIN

GAVET Yann MA(MDC) Sciences des Images et des Formes SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA(MDC) Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NEUBERT Gilles FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 Génie des Procédés SPIN

O CONNOR Rodney Philip MA(MDC) Microélectronique CMP

OWENS Rosin MA(MDC) Microélectronique CMP

PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Sciences des Images et des Formes SPIN

POURCHEZ Jérémy MR Génie des Procédés CIS

ROUSSY Agnès MA(MDC) Microélectronique CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

SANAUR Sébastien MA(MDC) Microélectronique CMP

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR0 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

M
is

e
 à

 jo
u

r
:

0
3

/0
2

/2
0

17

i

Abstract

Smart Home, Ambient Intelligence and the Internet-of-Things involve a large number of connected

objects, with heterogeneous computing and communication capabilities. The high-level function-

alities offered by these systems are based on the services rendered by several of these objects in a

joint manner; the coordination of their actions is therefore essential. In the current systems, this

coordination is implemented via a centralized entity, the connected objects are then only used as

simple effectors or sensors.

This thesis examines cooperation and coordination mechanisms, in a decentralized and autonomous

way, between these objects. Based on a Multi-Agent System approach called Distributed Con-

straints Optimization (DCOP), these objects coordinate their actions to achieve one or more

objectives corresponding to the user’s requirements. In this context, we underline the importance

of distributing the decisions to be taken by these various agents and we present several methods

for choosing a satisfactory distribution against the characteristics of the targeted systems.

Finally, since these systems are highly dynamic by nature, we present several solutions to manage the

changes that may occur, both in terms of the environment and the agents themselves. In particular,

we are committed to making these systems resilient, so that they can continue to operate even in

the event of the disappearance of several agents. Several autonomous system repair mechanisms,

based on distributed decision replication and decision making, are presented and evaluated.

iii

Acknowledgements

First and foremost, I am deeply grateful to my supervisors, Gauthier Picard and Fano Ramparany.

Gauthier introduced me to the field of Distributed Optimization, which was completely new for

me and has been an exciting adventure. He is a dedicated teacher and I owe him everything I know

on DCOPs. On top of that he also guided me into the fascinating world of academic research,

also new to me, and allowed me to participate to peer reviews, which has been a very enriching

experience. I also want to thank Fano, who wrote the initial subject for my PhD and has supported

me even though I ventured into an academic domain he had not envisioned and was less familiar

with.

I also want to express my sincere gratitude to Orange, my employer, for giving me this incredible

opportunity of pursuing a PhD, even though I had been a professional software developer and had

not been a student for many years. My managers and colleges have been very supportive during

the four years it took me to finalize my thesis, and I am very thankful for that.

I also want to thank my jury : Marie-Pierre Gleizes, René Mandiau, Jean-Paul Jamont and Juan

Rodrígues-Aguilar: their benevolent feedbacks, both on this thesis’s manuscript and during the

final PhD defense, have been very helpful and will most certainly guide me for my future researches.

Finally, I also want to thank my family, my wife and my two daughters, for their love and their

unconditional support, even though what I was doing precisely was probably far from obvious for

them !

v

Contents

1 Introduction 1

1.1 Challenges and Approach . 1

1.1.1 Modeling Goal-Oriented Smart Home Scenarios 2

1.1.2 Installing Decentralized Coordination In the Real World 2

1.1.3 Providing Resilience in Decentralized Decision Making 3

1.1.4 Designing and Developing Decentralized Coordination Mechanisms . . . 3

1.2 Overview . 4

2 Résumé en français 5

2.1 Introduction et Contexte . 5

2.1.1 Une maison intelligente orientée objectif 6

2.1.2 Application de la coordination décentralisée dans le monde réel 6

2.1.3 Résilience dans la prise de decision distribuée 7

2.2 Contenu de la thèse . 7

2.2.1 Sommaire . 7

2.2.2 État de l’art . 8

2.2.3 Modèle de coordination pour l’intelligence ambiante 9

2.2.4 Distribution des décisions . 9

2.2.5 Résilience des décisions en environnement dynamique 9

2.2.6 pyDCOP ...10

2.3 Conclusion et perspectives ...10

3 State of the Art on Ambient Intelligence and Distributed Reasoning 13

3.1 Embedding Technology in Everyday Life ..13

3.1.1 Ambient Intelligence ..13

3.1.2 The Rise of the Internet of Things ...14

3.1.3 Implementing Ambient Intelligence ..14

3.1.3.1 Centralized Ambient Intelligence ...15

3.1.3.2 Partially Centralized Ambient Intelligence16

3.1.3.3 Distributed Ambient Intelligence ...17

3.2 Multi-Agent Systems ...18

3.2.1 A Quick Overview of Multi-Agent Systems ...18

3.2.1.1 MAS Characteristics ...18

3.2.1.2 Challenges Addressed by MAS ..19

3.2.1.3 Some MAS Approaches .. 20

3.2.2 Application of Multi-Agent Systems to Ambient Intelligence........................ 21

3.3 Distributed Constraint Reasoning ... 22

3.3.1 Constraint Reasoning ... 22

3.3.1.1 Graphical Representation .. 24

3.3.2 Distributed Constraint Reasoning ... 25

3.3.2.1 Graphical Representation .. 27

3.3.2.2 Common Assumptions.. 29

3.3.2.3 Extensions to the Canonical DCOP Framework 30

3.4 DCOP Solution Methods ... 31

3.4.1 Taxonomy of DCOP Algorithms ... 32

3.4.1.1 Optimality ... 32

3.4.1.2 Synchronicity ... 33

3.4.1.3 Exploration Mechanism .. 34

3.4.1.4 Distribution.. 35

3.4.1.5 Solution Availability ... 35

3.4.2 Some DCOP Algorithms.. 36

3.4.2.1 DSA .. 36

3.4.2.2 MGM .. 37

3.4.2.3 MaxSum .. 37

3.4.2.4 DPOP .. 38

3.4.3 Evaluating the Performance of DCOP Algorithms 39

3.5 Application of Constraint Reasoning for Ambient Intelligence.................................. 40

3.5.1 Constraint Reasoning in Ambient Intelligence ... 40

3.5.2 Distributed Constraint Reasoning for Ambient Intelligence........................... 41

3.6 Summary.. 42

4 A Model for Coordination in Smart Environments 43

4.1 The Smart Environment Configuration Problem .. 43

4.1.1 Sample Ambient Intelligence Scenario.. 43

4.1.2 Problem Definition.. 45

4.1.3 Notations for SECP ... 46

4.1.3.1 Actuators ... 46

4.1.3.2 Sensors .. 46

4.1.3.3 Environment State .. 46

4.1.3.4 Scenes ... 47

4.1.4 Modeling Physical Constraints ... 47

4.1.5 Formulation as an Optimization Problem .. 49

4.2 Solving the SECP with a DCOP approach ... 50

4.2.1 Mapping the SECP to a DCOP ... 50

4.2.1.1 Agents ... 51

4.2.1.2 Variables and Domains ... 51

4.2.1.3 Constraints ... 52

v

4.2.1.4 Full DCOP Definition ...52

4.2.2 Factor Graph Representation...52

4.3 Experimental Evaluation ..54

4.3.1 Experimental Setup..54

4.3.2 Increasing House Size ..55

4.3.2.1 Solving the Instances...56

4.3.2.2 Hard Constraints Violations ...56

4.3.2.3 Solutions Quality ..58

4.3.2.4 Execution Time ..58

4.3.2.5 Impact on Communication ..60

4.3.3 Increasing House Complexity ...61

4.3.4 Conclusion of Experimental Evaluations ...62

4.4 Summary ..63

5 Distributing Decisions 65

5.1 On the Need of Decision Distribution ...65

5.1.1 Classical Representation and One-to-One Mapping Assumption65

5.1.2 Natural Assignment of Decision Variables ...66

5.1.3 Shared Decision Variables ..66

5.1.4 Auxiliary Variables ..68

5.1.5 Binary-Constraints Assumption and Auxiliary Variables69

5.1.6 Distribution of Factor Graph ...71

5.2 A Generalized Definition of Distribution for Deploying DCOPs72

5.2.1 Distributing Computations ...72

5.2.2 Devising a Distribution ..74

5.3 A Naive Distribution for SECP ...75

5.3.1 Distributing a Constraint Graph for SECP..76

5.3.2 Distributing a Factor Graph for SECP..76

5.4 Optimal Distribution for SECP ...77

5.4.1 Distributing a Constraint Graph for SECP..78

5.4.2 Distributing a Factor Graph for SECP..80

5.4.3 Solving the ILP for SECP Distribution ..83

5.5 A Generalized Definition of Optimal Distribution for IoT Systems84

5.5.1 Computation Graph Models..84

5.5.2 Problem Definition ..85

5.5.3 Linear Program for Optimal Distribution ...86

5.5.4 Greedy Heuristic for Computation Graph Distribution87

5.6 Experimental Evaluations ..88

5.6.1 Evaluation of SECP-specific Distribution Methods.......................................88

5.6.2 Evaluating the Generalized Distribution for IoT Systems on Benchmark

Problems ...89

5.6.3 Evaluating Generalized Distribution on SECP ...93

5.7 Summary ..95

6 Resilient Decision-Making in Dynamic Environments 97

6.1 Decisions in a Dynamic Environment ... 97

6.1.1 SECP is a Dynamic Problem .. 97

6.1.2 Impacts of SECP dynamics at the DCOP level... 98

6.1.3 Dyn-DCOP, a Framework for Handling Dynamics in DCOPs 99

6.1.3.1 Handling Changes in a Dyn-DCOP .. 99

6.1.3.2 Modeling Changes in a Dyn-DCOP ... 100

6.2 Handling Dynamics at the Computation Level... 101

6.2.1 Using the Dyn-DCOP Reactive Approach for SECP................................... 101

6.2.2 Selecting Suitable Dyn-DCOP Algorithms for SECP 102

6.3 Handling Dynamics at the Infrastructure Level.. 103

6.3.1 Dynamics that Impact the Distribution of a DCOP 104

6.3.1.1 Handling Agent Departure... 105

6.3.1.2 Handling Agent Arrival... 105

6.3.2 Prerequisites for Handling Infrastructure Changes...................................... 105

6.3.2.1 Discovery... 105

6.3.2.2 Preserving the Problem Definition ... 106

6.3.2.3 Maintaining the Solving Process State.. 106

6.4 Migrating Computations in the Neighborhood... 107

6.4.1 Definition of Neighborhood ... 108

6.4.2 Restricting the ILP-based Distribution .. 109

6.4.3 Solving ILP-CGDP[ak]
− .. 109

6.4.4 Limitations of ILP-CGDP[ak]−-based Solution ... 110

6.5 Surviving the Simultaneous Departure of Several Agents 111

6.5.1 k-Resilience .. 111

6.5.2 Replication of Computation Definitions .. 112

6.5.3 Distributed Replica Placement Method ... 112

6.5.4 Migrating Computations .. 119

6.5.5 Implementing Repair using DRPM[DMCM] ... 121

6.5.6 Solving DMCM using a DCOP Algorithm .. 122

6.6 Handling Agent Arrival ... 123

6.6.1 In the Neighborhood .. 123

6.6.2 Newcomer Decision Problem for Agent Arrival ... 124

6.6.3 DMCM-based Approach for Agent Arrival.. 129

6.7 Experimental Evaluation.. 129

6.7.1 Handling Agent Arrival and Departure.. 130

6.7.1.1 Simulated Smart Home Scenarios .. 130

6.7.1.2 Randomly Generated SECPs ... 132

6.7.2 Replication ... 134

6.7.2.1 Evaluation of DRPM on Benchmark Problems............................ 134

6.7.2.2 Evaluation of DRPM on SECP instances 136

6.7.3 Evaluation of the DMCM Repair Method.. 138

v

6.7.4 Resilience.. 141

6.7.4.1 Evaluating Resilience on Benchmark Problems 141

6.7.4.2 Evaluating Resilience on SECP.. 145

6.8 Summary .. 147

7 Studying DCOP for IoT Systems Using pyDCOP 149

7.1 Implementing Multi-agent Systems... 149

7.1.1 Frameworks from other MAS Perspectives... 149

7.1.2 DCOP Libraries ... 150

7.2 pyDCOP at a Glance.. 151

7.3 pyDCOP Concepts and Architecture ... 153

7.3.1 Communication ... 155

7.3.2 Inner-agent Architecture ... 156

7.3.3 Runtime Environments ... 157

7.4 Using pyDCOP ... 157

7.4.1 File Formats .. 157

7.4.2 Command-line Interface ... 158

7.4.3 Solving DCOP with pyDCOP ... 159

7.4.4 Programming with pyDCOP ... 160

7.5 Sample Applications and Demonstration ... 161

8 Conclusion 163

8.1 Summary of Contributions ... 163

8.2 Dissemination ... 164

8.3 Paths for Future Research ... 165

Appendices 181

Appendix A Notations 183

Appendix B Glossary 187

Appendix C List of Figures 191

1

Int1roduction

Due to recent advance in technology and the decrease of the cost of embedded computing, both on

the CPU and communication side, the ideas pioneered in academic works like Pervasive Computing

and Ubiquitous Computing are currently materializing into real world solutions, which are generally

referred to as the Internet of Things. In these systems many connected devices, typically equipped

with computation capabilities, are used together and allow building high-level services, which can

be aware of, and act on, the real world.

One specific use case for these systems is Ambient Intelligence, where this technology is used to

facilitate the life of users by embedding computation, sensors and actuators in the environment.

This area has been especially active in the past years, both in the industrial and the enthusiasts

communities, with the emergence of many Smart Home solutions that seek to realize this idea in

the home environment.

However, these systems are still in their infancy and their builders face many issues and challenges

in order to reach the full potential of these new technical capabilities. In this thesis, we tackle some

of these challenges and propose several approaches to overcome these issues.

1.1 Challenges and Approach

We envision an Ambient Intelligence setup as a distributed system where devices, which we con-

sider as agents, have to cooperatively, autonomously and dynamically come up with a collective

behavior that facilitates the life of the user. This solution will typically take the form of a sponta-

neous configuration of the environment, for example by setting, depending of various conditions,

appropriate light, heat, humidity, etc. levels in the home. In any meaningful environment, many

devices act on the same parameter (e.g. several light sources are used in the same area) and some

coordination is required among them. Additionally, we want the users to be able to express their

desired state of the environment, which the devices should reach autonomously.

Based on these desired characteristics for Ambient Intelligence systems, we identify several chal-

lenges, which we address in this thesis and that have been the subject of several contributions.

2

Chapter 1. Introduction

1.1.1 Modeling Goal-Oriented Smart Home Scenarios

The first question we want to answer in this thesis is how to model a Smart Home environment in

a way that really matches the vision of Ambient Intelligence. One key element for that objective is

that the user should not need to care about the inner workings of the system: detailed and manual

configuration must be avoided in favor of the simple specification of goals. The devices should

then autonomously decide how to reach these goals in the best possible way.

Another challenge, less explicit but also of paramount importance for achieving the Ambient

Intelligence vision, is the issue of trust : How could we achieve a good user experience and

a satisfactory quality of service while still preserving the privacy of the user? Many current

approaches are based on remote centralized reasoning, where the data are sent to a cloud-based

reasoning module, which make decisions. Such architectures are problematic from a privacy

perspective, and also introduce points of failure in the system: if the connection is lost or the

gateway fails, the whole system stops operating.

We advocate that the operation of such intelligent environments cannot be traded against user

privacy and that all decisions and data should be kept locally in the home, in a way that ensures

both privacy and robustness.

To answer this challenge, we decide to model coordination in an Ambient Intelligence environ-

ment as an optimization problem and to use the Distributed Constraint Optimization Problem

(DCOP) framework to address this problem in a fully decentralized way. We call the resulting

model the Smart Environment Configuration Problem (SECP). This model has been presented

at IJCAI 1 [128] and JFSMA 2 [122] in 2016.

1.1.2 Installing Decentralized Coordination In the Real World

Following the first challenge, an important question to answer is how to install such distributed

model on the real devices that the smart environment is made of.

Indeed, most current research on the DCOP framework is based on assumptions that do not hold

when applying the model to real world situations like Ambient Intelligence. When solving an

optimization problem distributively, the decision making process is implemented through compu-

tations that perform the optimization process and must physically run on some hardware substrate.

Traditional DCOP approaches consider that each variable in the problem, and the corresponding

decision making process, is bound to exactly one agent. This agent is responsible for selecting

the value for this variable and make its decision based on messages exchanged with other agents

responsible for a variable that shares a binary constraint with it. When a problem contains non-

binary constraints, it is usually binarized (i.e. mapped to an equivalent problem that only have

binary constraints, by adding variables) and agents are added to obtain exactly one agent for each

variable.

However, in real world problems like the SECP, constraints are often non-binary and the set of

agents is given by the problem definition; in our case, the devices in the systems are the physical

artifacts that embody our agents and the system can only run on available devices.

1 . International Joint Conference on Artificial Intelligence (IJCAI)

2 . Journées Francophones sur les Systèmes Multi-Agents (JFSMA)

3

1.1. Challenges and Approach

As a consequence, we argue that in order to apply the DCOP framework to real world problems,

these decision making computations must be distributed on the agents/devices. This distribution

must take into account the characteristics of the target environment, which encompass, for the

SECP, the limited capabilities of the devices and the constrained communication.

We propose a definition of optimality for such distribution, both for SECP and for more generic

IoT system, and develop several approaches for computing these distributions, both optimal and

heuristic. This work has been initially published at OptMAS 3 [126] and JFSMA [123] in 2017.

1.1.3 Providing Resilience in Decentralized Decision Making

The goal of Ambient Intelligence systems is to facilitate the life of its users, who should ideally

almost forget that the system is actually working in background and simply enjoy the services it

provides. Therefore, an important challenge of such systems is ensuring reliability and resilience.

However, a smart environment is also a dynamic and open system: the characteristics of the

problem may change at runtime and devices may join or leave the system at any moment. Thus, the

question is how to ensure that the system keeps providing the services required by the users, with

the equivalent quality of service and quality of experience, whilst the infrastructure is changing.

For this purpose, we define the concept of k-resilience and propose several solution methods to

achieve this, by using distributed replication and repair techniques. These approaches have been

presented at OptMAS [121] in 2018, AAMAS 4 [124] and JFSMA [127] in 2019.

1.1.4 Designing and Developing Decentralized Coordination Mechanisms

While working on the aforementioned topics, we realized that the software tools and libraries used

by the DCOP community were not suitable for our study as they do not target real world usage of

DCOP and do not consider the problem of decisions distribution, as they are generally based the

classical assumptions. Besides, most of these libraries are not maintained and no unified repository

of common DCOP algorithms could be found.

Therefore, we decided to develop our own DCOP library, pyDCOP 5, specifically designed for

studying the use of DCOP in IoT systems. It can also be used for the general study and design

of DCOP algorithms. With its extensive documentation and the inclusion of many algorithms

implementations, we hope it will foster research in these areas.

pyDCOP has been published in open source in 2017 and was presented to the community at

OptMAS [120] in 2019. pyDCOP has also been used for lectures and tutorials at EASSS 6 in

2018, at AAMAS in 2018 and 2019 and at PFIA 7 in 2019. A physical demonstration of a

distributed resilient decision making system, implemented with pyDCOP, has also been presented

at JFSMA in 2019.

3 . Optimization in Multiagent Systems (OptMAS), an AAMAS workshop

4 . International Conference on Autonomous Agents and Multiagent Systems (AAMAS)

5 . https://github.com/Orange-OpenSource/pyDcop
6 . European Agent Systems Summer School (EASSS)

7 . Plate-Forme Intelligence Artificielle (PFIA)

https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop

Chapter 1. Introduction

4

1.2 Overview

Chapter 2 introduces relevant related works, both in Ambient Intelligence and Distributed Con-

straints Reasoning. We present the current state of IoT and Ambient Intelligence, the implemen-

tation model commonly used and its limits. We also briefly introduce the field of Multi-Agent

Systems and focus on the domain our work is based on: Distributed Constraints Optimization. We

expound major solutions methods and variants and tackle academic works that address Ambient

Intelligence challenges using Distributed reasoning.

Chapter 3 presents our model for distributed coordination in smart environment and explains how

we can map it to a DCOP, which solving process yields an environment configuration that matches

users preferences.

Chapter 4 focuses on the distribution of decisions on a physical infrastructure made of the devices

available in the smart environment. We also extend our definition of distribution to encompass

more general systems like IoT. In both case several solution methods for distribution are presented

and evaluated.

Chapter 5 explains how smart environments must be conceived as dynamic and details conse-

quences of these dynamics, by classifying them into two categories: the computation level and the

infrastructure level, which we focus on. Several approaches are introduced to deal with the arrival

and departure of agents in the system.

Chapter 6 presents our software library for DCOP study, pyDCOP. Major related libraries are

introduced, detailing why we feel that a new one is needed. The architecture and usage of pyDCOP

are presented, along with one example use in a demonstration.

Chapter 7 concludes this thesis by summarizing results and contributions and identifying directions

for future research.

https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop

5

Résum2é en français

Cette section constitue une rapide aperçu, en français, du contenu de cette thèse. Après une

présentation du sujet et de ses motivations, nous proposons un court résumé de chacun des

chapitres, puis une conclusion qui inclue une description des travaux que nous jugeons utile de

poursuivre à l’avenir dans ce domaine.

2.1 Introduction et Contexte

Les avancées technologiques récentes ont conduit simultanément à une miniaturisation des

équipements électroniques et à une forte baisse de leur coût de production ; ces deux facteurs

ont permis une multiplication des objets connectés, rendant possible l’implémentation réelle de

concepts étudiées de longue date dans le domaine académique, comme l’Intelligence Ambiante et

l’Informatique Pervasive.

Ces systèmes, aujourd’hui communément regroupés sous l’appellation d’Internet des Objets, im-

pliquent donc un grand nombre d’objets connectés dotés de capacités de calcul et de communication

hétérogènes. Les fonctionnalités proposées par ces objets, pris de manière unitaire, sont générale-

ment très simples et limitées : allumer une lumière, détecter une présence ou une luminosité, etc.

Les services utilisateurs de haut niveau offerts par ces systèmes sont donc bâtis en agrégeant et

combinant ces fonctionnalités unitaires, ce qui impose nécessairement une coordination des actions

de ces objets.

Ce type de systèmes, et en particulier la gestion de cette coordination, sont toutefois à ce jour

encore extrêmement jeunes et relativement immatures et leurs concepteurs doivent faire face à

de nombreux challenges pour exploiter au mieux les opportunités offertes par ces possibilités

techniques nouvelles. Pour répondre à ces challenges, notre approche consiste à concevoir ces

systèmes distribués comme des Systèmes Multi-Agent, où chaque objet est représenté par un agent.

Cet ensemble d’agents doit donc, de manière totalement autonome, dynamique et décentralisée, se

coordonner et trouver un comportement collectif permettant de satisfaire les besoins et souhaits des

utilisateurs du système. Cette thèse se concentre sur l’application de cette approche au domaine

domestique, aussi appelé Smart Home.

Chapter 2. Résumé en français

6

Les sections suivantes détaillent chacun des challenges que nous avons identifiés, et présente les

réponses que nous y avons apportées, ainsi que les travaux publiés relatifs à ces contributions.

2.1.1 Une maison intelligente orientée objectif

Notre premier objectif est de concevoir un modèle permettant de réellement atteindre les objectifs

de l’Intelligence Ambiante, c’est à dire d’obtenir un système qui soit le plus discret et naturel

possible pour l’utilisateur. Ce dernier ne doit en particulier ne pas avoir besoin de se soucier du

fonctionnement interne du système ; la configuration complexe et détaillée des interactions entre les

différents objets, trop souvent nécessaire dans les systèmes actuels, doit être évitée au maximum.

A la place, nous proposons que l’utilisateur puisse fixer des objectifs, sans se préoccuper de la

manière précise dont ces derniers doivent être atteints. Les objets / agents doivent ensuite se

coordonner de manière autonome et spontanée pour satisfaire au mieux ces objectifs.

Un autre aspect important est celui du respect de la vie privée des utilisateurs. La majorité des

solutions actuelles collecte un grand nombre de données sur le domicile et les envoie sur des

serveurs cloud, où le raisonnement nécessaire à la coordination est implémenté. Le résultat de ce

raisonnement est ensuite re-transmis dans l’habitation, sous forme de commandes aux objets. Nous

souhaitons conserver ces données localement, ainsi que les processus de raisonnement basés sur

ces dernières, afin d’assurer à la fois un meilleur respect de la vie privée mais aussi une meilleure

résistance aux pannes, en évitant le recours à des serveurs distants nécessitant une connection

internet.

Pour répondre à ce double objectif, nous avons décidé de modéliser la coordination entre objets au

sein d’une maison connectée sous la forme d’un problème distribué d’optimisation sous contraintes

(DCOP) afin de pouvoir le traiter de manière totalement décentralisée, à l’intérieur du domicile.

Ce modèle, que nous nommons Smart Environment Configuration Problem (SECP), a été

présenté à IJCAI 1 [128] et lors des JFSMA 2 [122] en 2016.

2.1.2 Application de la coordination décentralisée dans le monde réel

Une fois la coordination entre objets modélisée sous la forme d’un problème distribué

d’optimisation sous contraintes, il est nécessaire de traiter la question du déploiement d’un tel

système sur les objets physiques présents dans le domicile.

En effet, les recherches actuelles sur les DCOP utilisent généralement des hypothèses simplifi-

catrices qui ne prennent pas en compte les particularités d’un déploiement physique. Lors de la

résolution d’un problème distribué d’optimisation, les calculs nécessaires à la prises de décisions

doivent être exécutés sur des éléments matériels (cpu, etc.). L’ensemble des éléments matériels

disponibles dépend du logement de l’utilisateur et peut donc être considéré comme une donnée du

problème, sur laquelle nous n’avons pas de moyen d’action et à laquelle nous devons nous adapter.

Par ailleurs, les objets connectés disposent typiquement de capacité de calcul et de communication

limitées, et les choix réalisés lors de la distribution des calculs peuvent avoir des impacts important

sur les caractéristiques non-fonctionnelles de la solution : temps de réponse, charge réseau, etc.

1 . International Joint Conference on Artificial Intelligence

2 . Journées Francophones sur les Systèmes Multi-Agents

2.2. Contenu de la thèse

7

Nous proposons donc une définition d’une distribution des calculs nécessaires à la résolution d’un

DCOP, dans un environment de type IoT / Smart-Home, ainsi que plusieurs méthodes, approchées

et optimales, pour calculer ces distributions. Ces travaux ont été publiés à OptMAS 3 [126] et aux

JFSMA [123] en 2017.

2.1.3 Résilience dans la prise de decision distribuée

L’objectif de l’Intelligence Ambiante étant de faciliter la vie de l’utilisateur au point que ce dernier

oublie jusqu’à la présence du système, il est primordial que ce système soit robuste aux pannes. Un

domicile, comme tous les environnements où l’IoT est déployé, est cependant un environnement

ouvert et hautement dynamique : des objets peut entrer ou sortir du système à tout moment. Dans

ces conditions, il faut être capable de garantir que le système continue à fournir les services attendus

par les utilisateurs.

Nous proposons la notion de k-resilience, qui caractérise un système capable de survivre à la perte

de k noeuds (les objets connectés dans notre cas) et proposons plusieurs méthodes, basées sur la

réplication et la réparation distribuées, permettant d’assurer cette caractéristique dans un système

de prise de décisions distribué. Ces approches ont été présentées à OptMAS [121] en 2018,

AAMAS 4 [124] et aux JFSMA [127] en 2019.

2.2 Contenu de la thèse

2.2.1 Sommaire

1. Introduction

1.1. Challenges et approche

1.2. Aperçu de la thèse

2. Résumé en français

3. État de l’art sur l’intelligence ambiante et le raisonnement distribué

3.1. La Technologie diffuse dans la vie quotidienne

3.2. Les systèmes multi-agents

3.3. Le raisonnement distribué sous contraintes

3.4. Algorithmes d’optimisation distribuée sous contraintes

3.5. Application du raisonnement distribué à l’intelligence ambiante

4. Un modèle de coordination pour les environnements intelligents

4.1. Le problème configuration des environnement intelligents : SECP

4.2. Résolution du SECP à l’aide d’un DCOP

4.3. Évaluation expérimentale

5. Distribution des décisions

3 . Optimization in Multiagent Systems, un workshop d’AAMAS

4 . International Conference on Autonomous Agents and Multiagent Systems

Chapter 2. Résumé en français

8

5.1. Sur la nécessité de distribuer les décisions

5.2. Une définition généralisée de la distribution d’un DCOP

5.3. Distribution naïve pour les SECP

5.4. Distribution optimale pour les SECP

5.5. Une définition généralisée de la distribution optimale pour les systèmes IoT

5.6. Évaluation expérimentale

6. Résilience dans la prise de décisions distribuée

6.1. Décisions en environnement dynamique

6.2. Gestion de la dynamique au niveau du problème

6.3. Gestion de la dynamique au niveau de l’infrastructure

6.4. Migration de calculs dans le voisinage

6.5. Survivre à la disparition de plusieurs agents

6.6. Gestion de l’arrivée de nouvels agents

6.7. Évaluation expérimentale

7. Une Librairie pour l’étude des DCOP dan l’IoT : pyDCOP

7.1. Implémentations pour les systèmes multi-agents

7.2. pyDCOP

7.3. Concepts et architecture

7.4. Utilisation

8. Conclusion

8.1. Résumé des contributions

8.2. Dissémination

8.3. Pistes de recherches futures

Les sections suivantes présentent, pour chacun des chapitres, un court résumé de son contenu.

2.2.2 État de l’art

Le chapitre 3 constitue un rapide état de l’art des domaines académiques sur lesquels cette thèse

s’appuie. Nous y présentons tout d’abord les concepts, issus du domaine académique, d’Intelligence

Ambiante et d’Informatique Ubiquitaire, ainsi que leurs déclinaisons industrielles : l’IoT et la

Smart Home. Nous introduisons ensuite rapidement le domaine des Systèmes Multi-Agents, ainsi

que le raisonnement sous contraintes et sa déclinaison pour les systèmes distribués : les prob-

lèmes distribués d’optimisation sous contraintes (Distributed Constraint Optimization Problem

- DCOP). Les principaux algorithmes du domaines, leurs caractéristiques et variantes, sont aussi

brièvement décrits.

Différents travaux académiques sont finalement présentés, en se concentrant sur l’application des

approches multi-agents à l’Intelligence Ambiante , l’utilisation du raisonnement sous contraintes

à la Smart-Home et finalement l’application des DCOP aux systèmes IoT et Smart-Home.

2.2. Contenu de la thèse

9

2.2.3 Modèle de coordination pour l’intelligence ambiante

Le chapitre 4 présente notre modèle pour mettre en oeuvre une coordination distribuée entre les

objets connectés au sein d’un domicile. Ce modèle, nommé Smart Environment Configuration

Problem SECP, représente la coordination entre ces objets sous la forme d’un DCOP. la résolution

de ce problème d’optimisation permet d’obtenir une configuration des équipements qui réponde au

mieux aux objectifs fixés par l’utilisateur, tout en favorisant les configurations les plus économes

sur le plan énergétique.

Ce modèle est évalué de manière expérimentale sur les habitations simulées générées de manière

aléatoire, avec plusieurs algorithmes DCOP issus de la littérature. Nous observons que l’algorithme

MaxSum et ses dérivés permettent bien de résoudre ces problèmes de manière satisfaisante et

présentent le meilleur compromis entre la qualité des résultats, la vitesse de résolution et la charge

réseau induite par le process d’optimisation.

2.2.4 Distribution des décisions

Après avoir présenté le modèle SECP, nous nous intéressons dans le chapitre 5 à la manière

dont ce type de problèmes peut être distribué sur une infrastructure physique constituée d’objects

connectés aux capacités de calcul et de communication contraintes. Nous proposons une définition

d’une distribution optimale dans ces conditions ainsi qu’une formulation sous la forme d’un

programme linéaire en nombres entiers permettant d’obtenir une distribution optimale à l’aide

d’un solveur sur étagère (cplex, gurobi, glpk, etc.). Cette approche n’étant utilisable, en raison de

la complexité du problème, que pour des systèmes de taille relativement limitée, nous proposons

aussi une heuristique gourmande capable de calculer de manière très rapide une distribution pour

des systèmes beaucoup plus larges. Nous étendons ensuite cette définition de distribution optimale

au cas plus général d’un système IoT, avec le programme linéaire et l’heuristique gourmande

correspondante.

Ce chapitre se conclue par une évaluation expérimentale des méthodes calcul de ces distributions

et montre que les heuristiques proposées permettent d’obtenir des distributions dont la qualité est

quasi-optimale tout en supportant des systèmes composés d’un grand nombre d’objets.

2.2.5 Résilience des décisions en environnement dynamique

Le chapitre 6 se concentre sur l’aspect dynamiques des systèmes d’Intelligence Ambiante et étudie

les conséquences de cette dynamique sur les modèles de prises de décisions distribuées comme le

SECP. Les modifications peuvent survenir à deux niveaux : soit directement dans la définition du

problème à résoudre, soit au niveau de l’infrastructure matérielle supportant les calculs nécessaires

à la résolution du problème.

Nous nous concentrons principalement sur ce deuxième aspect et proposons plusieurs approches

pour traiter le cas de l’arrivée et du départ d’élements de cette infrastructure pendant l’exécution du

process de résolution, de manière complètement décentralisée en distribuée. Nous étudions aussi

la capacité a survivre au départ simultané de plusieurs agents, et appelons cette caractéristique

k-resilience. Nous présentons une solution, basée sur la réplication et la migration de calculs,

pour implémenter la k-resilience sur une processus de prise de décisions distribué modélisé sous

Chapter 2. Résumé en français

1
0

la forme d’un DCOP. Finalement, nous évaluons de manière expérimentale ces approches sur

le modèle SECP amis aussi sur des problèmes représentatifs des systèmes IoT d’une manière

générale.

2.2.6 pyDCOP

Le chapitre 7 présente pyDCOP, un framework développé afin d’implémenter et de valider de

manière expérimentales les différentes contributions proposées dans le cadre de cette thèse. PyD-

COP contient des implémentations d’une bon nombre d’algorithmes DCOP de la littérature et est

publié sous une licence open-source, avec l’objectif d’encourager la recherche dans ce domaine.

2.3 Conclusion et perspectives

Durant cette thèse, nous avons investigué l’utilisation du framework DCOP pour mettre en oeuvre la

coordination distribuée entre objets connectés au sein d’un environment intelligent. Nous sommes

convaincus que les approches centralisées généralement utilisées à l’heure actuelle ne permettront

pas de réaliser pleinement le potentiel de l’Intelligence Ambiante et de l’Internet des Objets. Pour

cette raison, nous avons proposés plusieurs contributions, destinées à faciliter l’utilisation des

DCOP dans les systèmes intelligents réels:

• Un modèle de coordination distribuée, dans une maison intelligente

• Une définition du concept de distribution optimale des décisions sur des objets physiques,

ainsi que plusieurs méthodes de calculs de ces distributions

• Une méthode permettant d’assurer la résilience de ces systèmes en cas de disparition d’un

ou plusieurs objets physiques qui hébergent les calculs nécessaires à la prise de décisions

distribuée.

Bien sur, de nombreux points restent encore à étudier, en particulier nous considérons que les

domaines suivants devraient faire l’objets de recherche approfondies :

• Les algorithmes DCOP Les travaux présentés dans cette thèse sont basés sur les algorithmes

connus de la littérature, nous pensons qu’il serait possible, et bénéfique, de développer des

algorithmes exploitant les caractéristiques des systèmes IoT afin d’améliorer leurs perfor-

mances.

Par ailleurs, il est nécessaire d’améliorer la prise en compte des problèmes qui mêlent à la fois

des contraintes dures et des contraintes souples ; les algorithmes actuels sont généralement

assez mauvais sur ce type de problèmes alors même qu’il est extrêmement courant quand on

modélise des problèmes réels.

• Le SECP Le modèle actuellement développé repose sur l’hypothèse que les modèles

physiques régissant l’influence des différents actionneurs sur leur environnement est connu à

l’avance. Il serait intéressant d’utiliser des approches basées sur l’apprentissage automatique

pour obtenir ces modèles, ce qui permettrait d’éviter une phase de calibration inefficace et

d’adapter continuellement ces modèles aux changements de l’environnement.

Le modèle SECP pourrait aussi être amélioré sur d’autres aspects, en particulier sur la prise

en compte des actions dont l’effet sur l’environnement est différé dans le temps. Lors de

1
1

2.3. Conclusion et perspectives

l’utilisation d’un système de chauffage par exemple, il faut attendre un certain temps avant

que la température atteigne la valeur cible mais le modèle SECP actuel ne prend pas en

compte cet aspect temporel.

• Application à d’autres cas d’usage Les techniques présentées dans cette thèse ont été

conçues pour l’Intelligence Ambiante, elles pourraient toutefois sûrement être appliquées

dans d’autres domaines où la prise de décisions distribuée est nécessaire. Ces approches

pourraient par exemple être mise à profit pour le placement de calculs dans le contexte du

calcul distribué, que ce soit au niveau du cloud ou du edge computing : ces placements

dépendent de nombreux critères et quand ces systèmes atteignent une certaine taille, les

solutions d’optimisation centralisées ne peuvent plus être utilisées. Des approches locales et

décentralisées pourraient apporter la scalabilité et la robustesse requises dans ces conditions.

La virtualisation des fonction réseaux (NFV), qui permet une gestion et un déploiement plus

flexible des réseaux de communications, en particulier chez les opérateurs, pourrait aussi

tirer partie de ces approches. En effet, ces fonctions virtualisées doivent être déployées sur

une infrastructure physique, qui peut potentiellement être modifiée dynamiquement, tout en

respectant des contraintes sur la qualité de service attendue et les ressources utilisées.

Pour conclure, cette thèse s’est concentrée sur l’utilisation des systèmes multi-agents, et plus

spécifiquement des DCOP. Cependant nous tenons à souligner le fait que de nombreux autres

domaines de l’Intelligence Artificielle peuvent, et doivent, être mis à profit pour améliorer le

fonctionnement et l’acceptabilité des systèmes cyber-physiques. Les approches sémantiques, par

exemple, peuvent permettre d’améliorer l’expressivité des représentations des services et objets.

L’apprentissage automatique peut aussi faciliter l’adaptabilité de ces systèmes et l’analyse de

comportements sociaux-techniques complexes. L’acquisition de contexte, et sa prise en compte,

permettent de mieux adapter ces mécanismes à leur environnement et ainsi les rendre plus simple à

utiliser et plus compréhensibles. Les architecture délibératives peuvent enfin fournir aux utilisateurs

des explications sur les décisions prises par ces systèmes, point crucial pour leur acceptabilité. Ces

approches, toutes parties intégrantes de l’Intelligence Artificielle, peuvent concourir à rendre ces

systèmes plus utiles et efficaces .

1
2

Chapter 2. Résumé en français

13

3

State of the Art on Ambient Intelligence

and Distributed Reasoning

In this chapter, we propose a short review of the state of the art on Ambient Intelligence, with its cur-

rent industrial foundation –the Internet of Things–, and a particular branch of Multi-Agent Systems,

Distributed Reasoning. We then concentrate the review on Distributed Constraint Optimization,

as our work makes use of this approach to implement Distributed Ambient Intelligence.

3.1 Embedding Technology in Everyday Life

Embedding technology in everyday life is a long trend that started decades ago when personal

computers became common in houses and is today still very active with more and more con-

nected devices. This trend has been studied, and anticipated, by several research and industrial

communities, among which we focus on Ambient Intelligence and Internet of Things.

3.1.1 Ambient Intelligence

Ambient Intelligence (AmI) [31] refers to physical environments that adapt themselves to best fit

the needs and expectations of their human inhabitants and users; the overarching goal here is to

facilitate the life of users by using technology. To achieve this goal these environments are fitted

with connected devices, sensors and actuators, which enable the system to be aware of the context

and react to changes that may arise both from users and from external elements (e.g. temperature,

light, humidity, time).

The AmI vision focuses on the user experience: the devices, and the technology in general, must

blend into the surrounding up to the point that the users does not feel their presence and the

environment itself, with its automatic adaptation, is the only visible user interface behind which all

technical details are hidden. The system must work pervasively, be non-intrusive and transparently

assist the user in his everyday tasks.

The AmI is a multidisciplinary paradigm which dates from the late 1990s and builds upon Pervasive

Computing [130] and Ubiquitous Computing [146], as it requires the technical infrastructure

envisioned by these paradigms: computing power embedded in most devices and communication

network allowing the seamless coordination of these devices. To achieve its objective, AmI

14

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

traditionally also makes use of many Artificial Intelligence (AI) methods especially when it come

to coordinate several dedicated devices and services so as to provide seamless cross-concern added

value functionalities.

The AmI concepts can be applied in the public space, with smart street lighting for example, in

the work spaces and in the domestic space. For instance, [129] lists the following, non-exhaustive,

applications areas for AmI: home, health care, business, commerce, leisure and tourism. When

applied to the home, AmI can be related to the idea of Smart Home and is also called Smart Home

Environment (SHE). The area of smart homes can also be considered as a specific use case of

ubiquitous computing that integrates AmI and automatic control into living spaces According to [5],

this integration objectives include comfort, entertainment, healthcare, assisted living security, and

energy efficiency.

3.1.2 The Rise of the Internet of Things

The Internet of Things (IoT) vision is a big trend today, both from a marketing, technical and

research point of view. The term IoT, coined by Kevin Asthon in 1999, describes a system where

most physical objects are connected to the Internet and can be queried and controlled remotely. The

basic idea of this vision is that all objects, these so called Things, are provided with communication

capability and have some processing power.

This idea of embedding computational and communication capabilities into everyday objects, and

thus considering our environment as a system made of interconnected devices, is not entirely

new; it was already studied in the 1970s and was then called Pervasive Computing or Ubiquitous

Computing. But while these visions were more academic, the current IoT trend also involves the

industry in many, if not all, sectors.

Analysts forecast that more than 20 billion connected objects [42] will be in use by 2020. One

major drive for this incredible growth is the availability of cheap hardware: progress in CPU

manufacturing and communication technologies allows producing very cheap chipsets, which can

be embedded in almost any object, where is was before technically and economically not feasible.

It is envisioned that this interconnection of devices will allow the development of new functionalities

and services in all domains; manufacturing, healthcare, city management and also in the consumer

market with devices in the personal sphere like connected watches, vocal assistants and smart

home products. Another hope for IoT is that it will allow to break down the silos between different

domains; data and functionalities coming from devices originating from different application

domains can be combined and used together to create new services and insights.

3.1.3 Implementing Ambient Intelligence

This rise of IoT is the technical foundation on which the promises of Pervasive Computing and

AmI can be built; the various communication mechanisms, the cheap price of chipsets and the

small physical size of these technical blocks have lead to huge number of connected “smart”

devices that one can see everyday. Using these devices, and the overall connectivity allowed by

mobile broadband, as a technical infrastructure, one should be able to implement the pervasive and

ambient aspects of computation that was envisioned by early academic works. Notice that, while

15

3.1. Embedding Technology in Everyday Life

AmI has relationships [7] with many areas in computer science, electronics and communication

technologies, in this work we study its intelligence and reasoning dimensions.

Actually, the idea of a consumer-ready Smart Home is far from new, the idea was previously

known as Home Automation and was already pictured in the movie My Oncle from Jacques Tati in

1958! Following the IoT trend, Smart Home systems have been very popular during the last years,

both in the academic domain and the mass consumer market, with the availability of products

from many different companies ranging from Telecommunication Operators (like Homelive 1 and

Maison Connectée 2 from Orange in France, Qivicon 3 from Deutsch Telecom or my-digital-

life 4 from ATT), big Internet companies (like Apple with Homekit 5), equipment manufacturer

(like Smartthings 6 from Samsung) and many startups and open-source projects like jeedom 7,

domoticz 8, openhab 9, to only cite a few.

However the current production-level systems are generally far from being actually smart and are

simply more or less advanced remote-control and automation systems; these products are quite far

from the initial expectations from AmI, and much of the Intelligence envisioned is still in the domain

of academic research. Data from the sensors, like temperature for example, can be read remotely

and actions of the devices can be triggered, typically through a mobile application. Additionally

these systems generally provide a simple condition-action mechanism, where actions are executed

when a predefined (but configurable) set of conditions, based on sensor values, are met. Most of the

time, these automatic behaviors must be manually configured by the end-user(s), which is complex

and error prone. Moreover, these systems are still currently plagued by interoperability issues,

at all levels of the communication stack: physical and data layers (various radio technologies),

transport layer (IP, 6LowPan, etc.) and application layer (CoAP, mqtt). While a standard war is

raging today, many companies choose to use their own proprietary solutions, and no winner can

be identified in the foreseeable future.

When it comes to implementation, as noted in [109], we can distinguish two main architecture

styles for AmI and SHE: centralized and distributed solutions. This distinction could also be

applied to other IoT-based solutions and, while we focus on AmI in this work, we believe that the

following could apply in many other use cases. It can be noted that the separation between the

centralized and distributed approaches is not strict: depending on the desired characteristics of the

system, one can design partially centralized (or partially distributed) systems.

3.1.3.1 Centralized Ambient Intelligence

This first approach is based on a central reasoner; data is collected from all sensors in a single

place, where decisions are made. Based on the outcome, orders are then sent to actuators, which

simply apply what has been decided, without any autonomy nor decision power. This decision

1 . http://homelive.orange.fr

2 . https://boutique.orange.fr/mais on/dom otique/
3 . http://qivicon.com

4 . https://my-digitallife.att.com
5 . https://developer.apple.com/hom eki t

6 . https://www.samsung.com/us/smart-home/smartthings/
7 . https://www.jeedom.com

8 . https://www.domoticz.com

9 . https://www.openhab.org

http://homelive.orange.fr/
https://boutique.orange.fr/maison/domotique/
https://www.qivicon.com/
https://my-digitallife.att.com/
https://my-digitallife.att.com/
https://developer.apple.com/homekit/
https://www.samsung.com/us/smart-home/smartthings/
https://www.jeedom.com/
https://www.domoticz.com/
https://www.openhab.org/
http://homelive.orange.fr/
https://boutique.orange.fr/maison/domotique/
http://qivicon.com/
https://my-digitallife.att.com/
https://developer.apple.com/homekit
https://www.samsung.com/us/smart-home/smartthings/
https://www.jeedom.com/
https://www.domoticz.com/
https://www.openhab.org/

16

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

center is thus omniscient; it has access to all sensor data and all the (possibly conflicting) goals of

the system. It can consider all parameters, which theoretically allows it to make optimal decisions

for the problem.

This centralized approach is generally considered to be easier to implement: the central reasoner

can use many well-known and proven decision-making mechanisms like rule engines, solvers, or

optimizers. However, centralizing the decision-making process also introduces some limitations

and problems of its own. The most obvious drawback of centralization is that it introduce a Single

Point Of Failure (SPOF) in the system: if the central reasoner fails or communication is lost,

the system ceases to operate entirely. Even when the reasoner works correctly, it can become

a bottleneck, especially from a communication point of view, as all other devices, sensors and

actuators, must be able communicate with it at any time. The fact that this central brain reasons

on all parameters can also become a burden when the global systems get larger: when the number

of devices increases the problem to solve becomes exponentially larger and might become very

difficult and even impossible to work on in a centralized manner, at least in a reasonable time.

While this would probably not happen in home-sized systems, this aspect certainly limits the

applicability of the centralized approach for the public space. Finally the centralized approach is

also probably more difficult to apply in dynamic environments: the insertion and deletion of any

devices must be detected by the reasoner.

This centralized approach is currently used by many hobbyist (generally non-commercial) smart

home systems, where a smart home box acts as a central brain and coordinates all actions thanks

to a very delicate configuration by the user.

This idea of a smart home box has been the origin of many academic and industrial works. For

example, the Open Service Gateway Intiative (OSGi) [92], founded in 1999, has designed a

middleware platform initially specifically for residential gateways. It has latter extended its target

use cases to address software modularity in general but still has a strong presence and focus on IoT

and smart home scenarios.

OSGi has been the basis of numerous works in the Pervasive Computing and AmI research

communities, like [71, 110]. It is used today in several commercial products, like Qivicon’s 10

Home Base or or Bosh’s 11 IoT gateway platform (formerly Prosyst 12). In the hobbyist market,

openHAB 13 is an OSGi-based local and centralized home automation solution, with a strong focus

on privacy.

3.1.3.2 Partially Centralized Ambient Intelligence

While the fully centralized, and local, approach is the most common in hobbyist systems, most

commercial offers are based on a hybrid architecture, where the sensor’s data is collected by a local

device, which forward most, if not all, data to a cloud service. This device, which can be seen as an

evolution of the Smart Home box, is often called a Smart Home Gateway. This architecture is for

example used by all commercial products mentioned previously (Orange, Samsung, qivicon, etc.)

1 0 . https://www.qivicon.com

1 1 . https://www.bos ch -si.com /io t-pla tform /io t-pla tform /gateway/s oftware.html
1 2 . https://en.wikipedia.org/wiki/ProSyst

1 3 . https://www.openhab.org

https://www.qivicon.com/en/
https://www.bosch-si.com/iot-platform/iot-platform/gateway/software.html
https://en.wikipedia.org/wiki/ProSyst
https://www.openhab.org/
https://www.qivicon.com/
https://www.bosch-si.com/iot-platform/iot-platform/gateway/software.html
https://en.wikipedia.org/wiki/ProSyst
https://www.openhab.org/

17

3.1. Embedding Technology in Everyday Life

and has also been the suject of academic works like [149] where Xiaojing Ye and Junwei Huang

argue that is allows for better extensibility and interconnection capabilities.

Reasoning is then shared, at various degrees, between the cloud service and the local gateway.

In some cases, the gateway simply acts as a relay and all the decisions are made in the cloud,

leaving the system entirely broken if the Internet connection is down. In some other cases, the

box implements basic functions and can act as a fallback when the connection to the cloud is lost.

In the best case, the reasoning and decision is performed locally, and the cloud is only used for

computation-intensive tasks, like for example using machine learning algorithms, the results of

whose is then transferred back in the local box where it can be used for local decisions.

The cloud service is also often used to provide interoperability with services that do not offer

a local interface that could be used in the home. This could be because these services are not

physically available in the home (let’s say for example a car localization service) or because their

designer simply decided to only provide a cloud-based interface (like for instance the Netatmo’s

weather station indoor module 14, which measures the temperature in the home but provide no local

network interface).

This two-tiers approach is the most common today, but one could think of other kind of partially

centralized systems. For example, one could build hierarchical systems, where several “local”

reasoners work each on a subset of the space. However, this also introduces additional complexity,

like the need of coordinating these reasoners. This approach is not used, as far as we know, in any

current Smart Home solution although it has been studied in AmI works for public space, like [2]

which uses a hierarchical holonic agent organization for traffic signals control.

3.1.3.3 Distributed Ambient Intelligence

The second approach is to consider the AmI system as a network of interconnected devices,

which can interact with each other without relying on any central element. In this approach,

devices coordinate directly to reach the goal(s) set to the system. This leads devices to concentrate

on smaller, more focused problems (which, for example, may depend on the functions of the

device) and introduces some notion of neighborhood. Devices communicate and coordinate with

other devices in their neighborhood, working on what can be seen as local goals. As goals

may also depend on each other (one outcome may influence, or even contradict, another) these

neighborhoods are interlaced and the whole system can be seen as a graph where devices are

vertices and communicate along the edges of the graph. Although not specific to AmI, mesh

networks are an example of such approach, in which nodes cooperate and coordinate to route

network data, which enables dynamic self-organization and self-configuration.

One interesting property of this architecture is that the system can keep working, even if in a

degraded mode, in the case of a connection loss or a device failure.

Moreover, as the devices work on smaller subset of the whole problem, and no central point needs

to know all the parameters, the resulting system may be able handle large scale systems better than

the centralized approach.

However, building such distributed AmI requires coordination and distributed decision making

1 4 . https://www.netatm o.com /en-us /weather/weatherstation

https://www.netatmo.com/en-us/weather/weatherstation

18

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

techniques, which are generally considered to be more complex than centralized reasoning methods.

For this reason, many academic works on distributed AmI are based on the multi-agent paradigm,

which will be presented and discussed in the next section.

3.2 Multi-Agent Systems

In this section we briefly introduce the Multi-Agent Systems (MAS) framework and explain the

reason we consider it is a good candidate for implementing AmI. Then we present a few selected

academic works tackling smart environment and AmI issues by using this framework.

3.2.1 A Quick Overview of Multi-Agent Systems

MAS have emerged as one important areas of research in AI and computer science in the 1990s,

and can be seen as the evolution of Distributed Artificial intelligence (DAI). They are considered

to bring significant advantages when it comes to designing systems that are complex, distributed

and dynamic.

As noted by Shoham in [133] several different, and mutually inconsistent, definitions of MAS

coexist. An easy, but loose, way to define them is to say that a multi-agent system is one composed

of several intelligent entities (a.k.a. agents), which interact with one-another. Like in the classical

agent-view of AI, agents in a MAS are autonomous, are situated in an environment, which they

can sense and act on, and are generally reactive and / or goal-oriented (pro-active). The main

addition of the MAS paradigm is that agents have social capabilities. They are collectively capable

of reaching goals that would be difficult to achieve by a single agent or a monolithic system.

For that purpose, in a MAS an agent’s social ability generally includes one or several of the

following characteristics:

• cooperation: working together,

• collaboration: managing the inter-dependencies between activities,

• negotiation: reaching agreement.

Additionally, in many works, MAS are considered to be self-organized [32] autonomous systems,

meaning that agents should not require external intervention to accomplish the task assigned to the

system.

3.2.1.1 MAS Characteristics

Given the lack of an accepted standard definition for MAS, it is difficult to come up with a

comprehensive list of the characteristics that distinguish it from a single-agent system. Thus, we

provide here a list of the characteristics that everyone in the domain should be able to accept and

that we, probably with a one-sided view, consider as essential for a MAS.

MAS Environment

Like single agents, agents of a MAS are situated in an environment. But while most single

agents are designed with a static environment in mind, in a MAS the mere presence of several

agents makes the dynamic nature of the environment more obvious and practically difficult

19

3.2. Multi-Agent Systems

to ignore. In a MAS each agent is supposed to be autonomous and organization among them

may emerge spontaneously (i.e. MAS are self-organized systems). This makes these systems

very modular and should help in handling the dynamic nature of the environment and/or the

problem to be solved.

Interaction

Agents in a MAS coordinate, which generally requires some kinds of communication with

one another with the notable exception of systems based on stigmergy, where communication

is indirect and happens through the environment. In other cases, when agents communicate,

an interaction structure, called interaction protocol is required to define the pattern(s) of

messages exchange used to implement such coordination.

Organization

The social abilities of agents in a MAS lead naturally to consider the whole system as an

agent society and many works focus on the organizational models [52] of these societies

using various coordination patterns: teams, groups, roles, norms, etc.

Robustness

A MAS should be able to tolerate agents failures and keep working toward the shared goal(s).

This quality stems from the fact that control and responsibility is shared among agents.

Scalability

As a MAS already encompasses many agents, which work through coordination, it can more

easily integrate new agents and potentially solve bigger problem. Additionally the overall

goal is general subdivided in several overlapping smaller local, and thus more tractable,

goals, which makes adding new goals and increasing the problem complexity easier.

3.2.1.2 Challenges Addressed by MAS

The MAS framework can be used on many problems, we try here to classify these in four major

domains:

Problem Solving

Problem solving and more specifically distributed problem solving, is a major application

for MAS, which can be used either when the problem is distributed by nature or because

distributing the problem is more efficient for solving it. Additionally, distributed problem

solving can be implemented so that to enhance the robustness and the flexibility of the

system, compared to a centralized approach. This can be applied to many kind of problems,

like for example resources allocation or distributed planning.

Simulation

MAS are widely used in simulation in various domains like social science, biology and

even computer graphics. This approach is particularly relevant when the simulated system is

complex, dynamic and stochastic by nature and it is not possible to build an analytical model

for it. In such cases, one may build simple interaction and behavior models for agents, and

observe how they interact when put in the same environment.

Cyber-physical Systems

These systems are made of many interacting elements and mix both physical and software

20

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

components. This is for example the case in Smart Grids, Autonomous cars, or Collective

Robotics systems. These systems usually require coordination and cooperation to reach the

collective goal(s). The MAS framework provides concepts and solutions to serve as the

foundation of such systems.

Distributed and Decentralized Software Systems

More generally, all distributed systems (like parallel computation, distributed databases,

cluster hosting, communication networks, etc.) require many distributed software compo-

nents to communicate and coordinate. In this kind of systems, the MAS approach is often

used to provide greater flexibility, and facilitate the integration of autonomous software

services, especially when the set of services is dynamic and possibly not fully known a

priori.

3.2.1.3 Some MAS Approaches

Many research topics have emerged in the MAS community, we only cite here the approaches that

focus on the reasoning dimension as this is the domain the work we present in this document is

based on. Reasoning approaches in a MAS can be roughly categorized into four domains.

Decision Theory

Decision theory aims at modeling uncertainty at all levels in the system explicitly, and allows

capturing very complex scenarios, at the cost of a very high complexity [112]. The Markov

Decision Process (MPD) framework, popular modeling single-agent decisions, have been

extended by MAS researchers to the decentralized use-cases with Decentralized Markov

Decision Process (Dec-MDP) and Decentralized Partially Observable Markov Decision

Process (Dec-POMDP) [10]. These extensions offer a rich framework for modeling coop-

erative sequential decision making under uncertainty but exhibit a NEXP-complete worst

case complexity.

Game Theory

This theoretical framework, which is closely related to Decision Theory, is also considered

to be an important branch of MAS, which studies decision making by agents and focus on the

interactions of the agent’s decisions and their influence on the decision making process [12,

133].

BDI Agent Model

This model is inspired by Michael Bratman’s model of human practical reasoning and stands

for Belief-Desire-Intention [18, 113]. The idea is that agents, based on the information

they possess on the environment and other agents (their Beliefs), commit to perform some

concrete actions (expressed as Intentions) in order to ultimately reach their overarching goals

(the Desires).

Distributed Constraint Reasoning

This framework is another MAS approach that uses constraint reasoning [28] (satisfaction

or optimization) to implement coordination among agents in MAS [38, 153, 154]. This

approach will be discussed further in Section 3.3.2.

21

3.2. Multi-Agent Systems

3.2.2 Application of Multi-Agent Systems to Ambient Intelligence

In order to really make the AmI vision a reality, one needs to implements many functions which

are studied as part of AI: context management, semantics, coordination, self-adaptation, planning,

reasoning, learning and natural language processing are some examples of such functions; see [5,

27, 129] for a (non-exhaustive) list of AI approaches and algorithms that have been used on AmI

and SHE use cases. As such, many researchers in AI have studied the AmI use cases.

Being a distributed problem, AmI naturally leads to DAI and the MAS research domain, where

the system is composed of multiple autonomous intelligent agents. These agents interact and are

able to collectively tackle problems that would be difficult or even impossible to address with a

single entity.

As previously noted, MAS are considered to be a suitable paradigm for complex adaptive systems,

especially when they are distributed and dynamic. Parunak in [97], for example, argues that an

agent approach is appropriate for applications that are modular, naturally decentralized, changeable,

ill-structured, and complex.

While, as far as we know, no MAS-based commercial application exists yet for AmI and SHE, it

has been studied in many academic papers from several research communities.

For example, in [148], Wu et al. propose an architecture for SHE, based on Service Oriented

Architecture (SOA) and a MAS that also includes Mobile Agents 15.

In [138], Sun et al. use Belief, Desire and Intention (BDI) agents [113]. The system is composed

of agents of four different types: sensing, action, decision and database. Each agent maintains

a set of beliefs about the environment and, given a user goal, selects a set of suitable desires

and intentions (i.e. action plans) to decide its individual behavior. Multi-agent group behavior is

based on user-defined regulation policy, which are used to generate agents collaboration protocols.

Various policies can be used to give the system specific characteristics: for example, it could favor

either quality of service, response time or low power consumption. In this work, agents are not tied

to specific devices, they are hosted on a distributed agent execution platform, implemented using

Java Agent Development Environment (JADE) 16 [9], running on a group of heterogeneous

hosts, which may include smart devices, sensors and any other devices with computing capability.

Rodríguez et al. also proposed to use a MAS approach for information fusion and management in

a residential environment [116]. Their system takes advantage of the modularity of MAS to allow

the inclusion of organizational concepts, including rules, norms and social structures and ease the

dynamic integration of new information fusion techniques.

In his PhD thesis [46], Guivarch uses an Adaptative Multi-Agent Systems (AMAS) approach

to take into account the the context’s dynamic. In his system, each agent learns its appropriate

behaviour, based on the context and information transmitted by other agents. He argues that this

approach allows providing solutions to problems that are not well specified and for which it is not

possible to identify a solution a priori.

Mazac, Armetta, and Hassas also study [83] the use of MAS for AmI, more specifically for

1 5 . Mobile agents are an extension of the classical AI agent paradigm where agents are mobile; i.e. they can migrate

from one computer to another. When moving, a mobile agent transport both its logic and its state.

1 6 . https://jade.tilab.com

https://jade.tilab.com/

22

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

bootstrapping a constructivist learning process in a continuous environment. They argue that a

self-organising MAS can be used for the construction of initial patterns, required to bootstrap

the learning process, and successfully recognize significative events, even without any a priori

knowledge.

Some work also use a MAS approach to AmI and SHE but run all the agents in a single physical

computing platform. In that case, the solutions is centralized, from a deployment point-of-view.

This is for instance the case in [140] where Valero et al. use a MAS approach to facilitate the

management of the multiple occupancy in smart living spaces and motivate the use of the MAS

framework by the use of the organization, norms and roles concepts provided by the Magentix

MAS platform,

In [95], Palanca et al. design a goal-oriented SHE using a MAS approach. Instead of telling the

system what should be done, users express high level goals which are fulfilled by composing a set

of services offered by agents in the system. Agents are BDI-inspired and posses a set of beliefs,

goals and small-scale plans. While the goal-oriented approach is very interesting, in this work the

overall plan (i.e the cross-agent actions needed to fulfill the user goals) selection is implemented

by the agent framework, mode precisely by a deliberation engine and not collaboratively by the

agents themselves.

In [108], Piette et al. use a MAS approach for the dynamic deployment of the software components

required for a distributed application in an AmI environment. They advocate that the use of MAS

allows to preserve privacy at architecture and organisation levels and also enhance the robustness

of the solution.

Other works, like [142] from Vallée et al., propose to combine SOA and MAS to implement AmI. In

this view, low-level device functionalities are represented as SOA services and service composition

is used to aggregate them into higher-level services. Considering everyday environments as open

and dynamic systems where resources, context and activities change continuously, the authors

argue that a MAS approach is ideal to provide a dynamic service composition infrastructure.

Some other works use a Distributed Constraint Optimization Problem (DCOP)-based approach

to implement coordination among agents in a SHE. These works, and the DCOP framework, are

discussed respectively in Sections 3.5.2 and 3.3.2

3.3 Distributed Constraint Reasoning

In this section, we introduce the Distributed Constraint Reasoning framework, starting with its

classical centralized approach and moving on to its distributed counterpart. We focus particularly

on Distributed Constraint Optimization Problem (DCOP), which is the main solution used in

this work, including the common assumptions used by most researches in the domain and the main

extensions to that framework.

3.3.1 Constraint Reasoning

One popular approach for reasoning and decision making is constraint processing. We only give

here a simple definition of a constraint reasoning problem, for more details on this topic, we redirect

23

3.3. Distributed Constraint Reasoning

j

the reader to the Dechter’s book [28].

Definition 1 (CRP). A Constraint Reasoning Problem (CRP) is a tuple (X , D, F) where

• X = {x1, . . . , xi} is a set of discrete variables,

• D = {Dx1 , . . . , Dxi } is a set of finite domains, with variable xi taking it its value in

Dx i = {v1, . . . , vk},

• F = {f1, . . . , fj} is a set of constraints on the values that the variables might take on

simultaneously.

Each constraint fj is a function. The set of variables involved in this function is called the scope

of a the constraint and denoted Sfj ⊆ X . These constraints be can hard or soft.

A soft constraint indicates preferences: fj is an utility function which assigns a real valued reward

(also called utility) for each possible combination of values of the variables in the scope Sfj of the

constraint. Formally, fj :
n

xp∈Sf
 Dxp 1→ R, where

n
is the Cartesian product. We denote r the

arity of the constraint: r = lSfj l.

On the other hand, a hard constraint only allows some combinations of values, other assignments

being explicitly prohibited. In that case, fj is a relation between the domains of the variables in it

scope Sfj and can be represented extensively as a list of allowed assignments for these variables.

Formally, fj ⊆
n

xp∈Sf

Dxp .

An assignment of values to variables in X is said to be complete if every variable is assigned,

otherwise it’s a partial assignment.

The problem is called a Constraint Satisfaction Problem (CSP) if all the constraints are hard. A

solution to a CSP is a complete assignment that satisfies all the constraints in F . Such assignment

is called a consistent assignment.

If the problem involves soft constraints the problem is called a Constraint Optimization Problem

(COP) and a solution is a complete assignment that optimizes a global function defined as an ag-

gregation of the utility functions of the constraints. This optimization can be either a maximization

or a minimization. A weighted sum is generally used as a simple aggregation method. It should

be noted that a CSP can always be transformed into as a COP by encoding hard constraints as soft

constraints whose functions assign 0 to allowed combinations of values and −∞ (for maximization)

or +∞ (for minimization) for other combination.

Constraint reasoning has been successfully used in many situations, both in operational research and

AI. Current constraint reasoning techniques allow tackling complex problems, and many problems

can be formulated as constraints satisfaction or optimization problems, like resources allocation,

planning and scheduling.

Many extensions of CRP have been studied, like Dynamic Constraint Reasoning, Temporal CSP,

Constraint Logic Programming, etc. One extension we are particularly interested in here, Dis-

tributed Constraint Reasoning, is presented in 3.3.2. It should be noted that some approaches

(e.g. Linear Programming), which we do not discuss here, also consider infinite domains and non

discrete variables.

Map coloring problems are a common example of a CSP, often used for benchmarks. In these

problems, we consider a graph where each vertex is a variable representing a region of a map that

j

24

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

Figure 3.1 – A sample map-coloring problem on Australia

must be colored. Edges represent adjacency of two regions and the set of available colors is the

domain of the variables. The goal is to find an assignment where any two adjacent regions/variables

take different colors. Graph coloring problems will be later used in this document, to benchmark

both our distribution approaches (Section 5.6) and our self-repair methods (Section 6.7).

Example 1. Figure 3.1 represents a very simple map-coloring problem applied on Australia. Each

region of Australia is represented by a variable, whose domain is the color set {red, green, blue}.

The goal is to color the map so that no two adjacent regions are of the same color.

This setting can of course be extended to general graphs, and is then called graph-coloring. When,

instead of using hard constraints, we define a cost for any combination of colors for two adjacent

vertices, the problem is called a weighted graph coloring problem or soft graph coloring problem

and is also often used for benchmarking constraint optimization solution methods.

3.3.1.1 Graphical Representation

CRP are often represented as graphs, like we just did with a simple map coloring problem on

Figure 3.1.

The standard graphical model for representing a CSP or a COP is a constraint graph (a.k.a.

constraint network): an undirected graph G = (X , EG) where each vertex x ∈ X represents

one variable and edges represent the binary constraints between the variables represented by the

vertices at the ends of the edge: EG = {(xi, xj) | ∃fk ∈ F , {xi, xj} ⊂ Sfk }.

This representation, used in Figure 3.2a, is efficient and commonly adopted, as most problems are

usually formulated only with binary constraints (see Section 3.3.2.2 for a discussion on this point),

but is not convenient when the problem contains non-binary constraints. A non-binary constraint

can be seen as a clique among the variables involved in the constraint and some authors represent

them as areas drawn on the graph, as depicted on Figure 3.2b. However the result is not readable

but for the simplest constraint networks.

Constraint networks with non-binary constraints can also be represented as constraints hypergraphs,

with hyperedges corresponding to constraints. Two vertices are in the same hyperedge if they are

T

NT

Q

WA

SA NSW

V

25

3.3. Distributed Constraint Reasoning

(a) Simple constraint graph with only binary con-

straints

(b) Constraint graph representation for n-ary

constraints

Figure 3.2 – Standard constraint graph representations

Figure 3.3 – Factor graph representation

involved in the same constraint. However, while this representation can be used by algorithms,

hypergraphs cannot be easily visualized and must be transformed into classical graphs for that

purpose.

Another solution is to use a Factor Graph (FG) [65, 66], which is an undirected bipartite graph

F = (X , F , EF) where the vertices xi ∈ X represent variables and vertices fi ∈ F represent

constraints (called factors). Variable vertices are usually depicted with a circle and constraints

with a rectangle, as illustrated on Figure 3.3. An undirected edge exists in the factor graph

between a variable and a constraint vertices if the variable is in the scope of that constraint:

EF = {(xi, fk) | xi ∈ Sfk }.

All these graphical representations are not only useful for visualizing the CRP, they also often serve

as the structure on top of which many constraint reasoning algorithms can operate. Traditional

constraint satisfaction algorithms, for example, use arc consistency on a constraint graph, while

other algorithms originating from signal processing and statistical learning use local message

passing over these graphs. This is even more preeminent in the distributed variant of constraint

reasoning and will be discussed in 3.3.2.1.

3.3.2 Distributed Constraint Reasoning

While solution methods for standard CSP and COP are usually centralized, an extension of these

topics has emerged in the MAS research eco-system, where the constraint reasoning process is

distributed among agents. Each agent has control over some of the variables and agents interact to

find a solution to the problem.

Distributed Constraint Satisfaction Problem (DCSP) is the distributed counterpart of CSP and

only considers hard constraints. It was initially proposed by Yokoo, Ishida, Durfee, and Kuwabara

x4

x2

f4,5 f5

x5
x1

x1 x3 x5

x2 x4

x1 x3 x4

x2

x3

f1,2,3,4

26

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

in [154] to formalize distributed problem solving. It was latter extended, and superseded in most

works, by the DCOP framework.

Definition 2 (DCOP). A discrete Distributed Constraint Optimization Problem (DCOP) is for-

mally represented by a tuple (A, X , D, F , µ), where

• A = {a1, . . . , a|A|} is a set of agents,

• X = {x1, . . . , xn} are discrete variables, owned by the agents,

• D = {D1, . . . , Dn} is a set of finite domains, such that variable xi takes values in Di =
{vi , . . . , vi },

1 k

• F = {f1, . . . , fm} is a set of soft constraints, where fi is a function that defines a cost

∈ R ∪ {∞} for each combination of values to the variables in it’s scope,

• µ : X → A is a function that assigns the control of each variables to an agent.

A solution to the DCOP is a complete assignment σ that minimizes a global objective function

F (σ) that aggregates the individual costs function fi.

σ∗ = argmin F (σ)

σ

The sum is generally used as an aggregation function:

σ∗ = argmin F (σ) = argmin
)

fi
o σ

fi∈F

It should be noted that, without loss of generality, the notion of cost can be replaced by the notion

of utility ∈ R ∪ {−∞}. In this case, solving a DCOP is a maximization problem of the overall

sum of utilities.

Based on this definition, the following three key characteristics of a DCOP justify the affiliation

of this framework to MAS:

• Each variable is owned exclusively by an agent and conversely, an agent controls only the

variables it owns. This notably implies that an agent can only select a value for, and observe,

its own variables.

• An agent is only aware (at least initially) of the constraints whose scope includes a variable

it is controlling.

• Agents only know their neighbors, where two agents are considered to be neighbors if there

is at least one constraint fi whose scope contains a variable controlled by each of these

agents. Agents interact exclusively with their neighbors, by sending messages to each other

(synchronously or asynchronously).

Finally, as for CSP and COP, a DCSP can always be mapped to an equivalent DCOP 17 by

encoding hard constraints as soft constraints with infinite cost.

Like with classical constraints optimization, finding a solution for a DCOP is NP-Hard in the

general case, which explains the number of approximate algorithms proposed in the literature.

1 7 . This might however be less efficient, as properties of the hard constraints will not be used

27

3.3. Distributed Constraint Reasoning

x1 x3

x2

a2

x4

a2

a1 a3 a1 a3

(a) Constraint graph with agents represented as

compound nodes

(b) Agents’ communication graph

Figure 3.4 – Constraint graph representations for DCOP

Several solution methods for DCOP, both complete and incomplete, are presented in Section 3.4.

3.3.2.1 Graphical Representation

Like for a Constraint Reasoning Problem (CRP), DCOPs and DCSPs are also often represented

using graphical models. Constraint graphs (see Section 3.3.1.1) are commonly used to represent

DCOP and are defined like for non-distributed problems, with the addition of enclosing nodes

(a.k.a. compound nodes) representing the agents and the variables they are responsible for –see

Figure 3.4a for a example of such a representation. These nodes form a communication graph

among agents, as depicted in Figure 3.4b.

Example 2. In order to apply the graph coloring problem introduced in Example 1 in a distributed

setting, one only has to define agents and a mapping function.

Let A = {a1, . . . , a7} be a set of agents, responsible for selecting the color of the region-variables,

and µ : X → A a mapping that assigns one variable, in alphabetical order to each agent.

This mapping can be visualized on the graphical representation (see Figure 3.5) by placing each

variables into an enclosing node that represents the agent responsible for it, forming a compound

graph.

When solving the problem, each agent will only interact with its direct neighbor in the graph and

no agent has a global view of all the variables and constraints.

Factor graphs are also used for DCOPs. As constraints (a.k.a. factors) are explicitly represented

in these graphs, they must also be attached to agents, as represented on Figure 3.6.

Depth-First Search Trees (DFS Trees), also known as pseudo-tree, are another graphical rep-

resentation used for studying DCOP which is used by many algorithms like ADOPT, DPOP and

NCBB.

A DFS Tree T = (F, ET) of a constraint graph G is a rooted tree that is built using a depth first

search traversal of the graph. Such traversal yields a spanning tree of the constraint graph, where

variables involved in the same constraint must appear in the same branch of the tree. Edges in ET

are called tree edges and link parent nodes to children nodes, while edges of G that are not in ET

28

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

a7
NT a3

Q

WA
a1

SA NSW

a6
a4

V

T

a1

a2

a5

Figure 3.5 – Distributed map-coloring problem on Australia

a2

a3 a3

(a) Simple constraint graph with only binary con-

straints

(b) Agents’ Communication Graph

Figure 3.6 – Factor Graph representation for DCOP

f1,2,3,4
f3,4

a2

a1 x3

x1

x2

x4

f4

29

3.3. Distributed Constraint Reasoning

x1

a3

a2 x2 x3

a4

x4

x1

a2 x2
a4 a3

x4 x3

a1 a1

(a) Constraint graph (b) Depth First Search Tree

Figure 3.7 – The same problem represented with a constraint graph and a DFS Tree (backedges

are depicted with dotted lines)

are called backedges and define as a pseudo-parent relationship (resp. pseudo-children).

The advantage of this representation, compared to factor graphs and constraint graphs, is that

it provides a partial ordering among variables, which is required by many algorithms. Like

constraint graphs, DFS Trees cannot directly represent non binary constraints, although some

algorithms based on this structure have variants to manage such constraints. Many different DFS

Trees can be generated from the same constraint graph and the efficiency of DFS Tree-based

algorithms usually depends on the quality of the DFS Tree, especially its depth (the number of

nodes on the longest path) and its induced width. Many distributed algorithms have been developed

to generate good DFS Trees, for example [22, 24].

3.3.2.2 Common Assumptions

Most works in the literature use the three following assumptions, which simplify the algorithmic

definitions and can be applied without loss of generality.

Binary Constraints. The first assumption, which is also generally applied for non-distributed

constraint reasoning, is that all constraints in the problem are between two variables. As a matter of

fact, any constraint network containing constraints of arbitrary arity can be mapped to an equivalent

binary constraints network that contains only binary constraints. Two general methods are known

(see [29]) for this conversion: the dual graph method and the hidden variable method.

• When applying the dual graph transformation to the problem, each constraint of the original

problem is mapped to a variable whose domain is the set of partial assignments allowed by

the constraint. Binary constraints are introduced between every pair of constraints that share

a variable, in order to enforce the equality of the value of the original variables.

• The hidden variable methods consist in adding, for each non-binary constraint, one auxiliary

(a.k.a hidden) variable whose domain is the Cartesian product of the domains of the variables

in the scope of the constraint. A set of binary constraints are also added to ensure that the

value in the hidden variable does no contradict the value of the original variables.

30

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

Agents-Variable Bijection. The second commonly used assumption is that each agent controls

exactly one variable. It is also easy to reformulate a general DCOP into one where each agents

controls exactly one variable; the two approaches presented for DCSP in [156] also apply to DCOP.

One technique, called compilation, is to create for each agent a new variable whose domain is the

set of solutions to the local problem defined by the original variables owned by the agent. Another

solution, known as decomposition is to simply have agent create local virtual agents, hosted by the

real agents, that correspond to local variables.

Reliable Communication. The last assumption deals with the communication between agents;

message delivery is assumed to be reliable: messages sent by agent ai to aj are delivered in finite

time and messages are received by aj in the order they were sent.

However, it can be argued that these assumptions do not apply very well when modeling real-world

problems. This will be discussed further in Section 5.1.

3.3.2.3 Extensions to the Canonical DCOP Framework

Many extensions have been proposed to the DCOP framework, and we briefly introduce here some

of the most notable ones.

31

3.4. DCOP Solution Methods

Dynamic DCOP (Dyn-DCOP)

In the classical DCOP framework the problem is fixed and the solving process only needs

to run once to obtain a solution. The Dyn-DCOP model focus on situation where the

problem changes over time: variables’ domains and constraints’ cost functions may change,

agents may leave and enter the system at any time, etc. The idea is to better model real-

world problems where the environment is dynamic. A Dyn-DCOP is generally defined as

a sequence of DCOP, with changes between them. Solving the Dyn-DCOP means finding

a solution for each of the DCOP in the sequence, with the goal of solving these problems

at least as fast as the environment changes. This extension will be discussed further in

Section 6.1.3.

Asymmetric DCOP (A-DCOP)

In DCOP, constraints are considered to be symmetric, which means that the cost incurred

by a constraint for a given assignment is the same for all agents controlling one variable in

the scope of the constraint. In an A-DCOP, a constraint may incur a different cost to two

agents for the same join assignment. This asymmetry allow modeling problems where agent

have different preferences, which they want to keep private. Although it is always possible

to transform an A-DCOP to a symmetric one (by introduction extra “mirror” variables),

several specialized algorithms have been designed to solve these problems more efficiently.

Multi-objective DCOP (MO-DCOP)

MO-DCOP is a framework at the crossroads between DCOP and multi-objective optimiza-

tion. This model has been designed for problems where decisions need to accommodate

multiple potentially conflicting objectives. In a MO-DCOP constraint’s functions are re-

placed by sets of objective functions and a solution is a complete assignment minimizing the

cost vector resulting from these objective functions. Typically there is no single solution that

optimize simultaneously all the objectives; the concept of Pareto optimality can be applied

to the set of solutions to define a Pareto front.

Probabilistic DCOP (P-DCOP)

in a P-DCOP agents only have a partial knowledge of the cost function of the constraints.

Agents must at the same time explore their environment, in order to discover these cost

functions, and exploit this knowledge to optimize the global objective.

Quantified DCOP (Q-DCOP)

While the classical DCOP framework assumes all agents are acting cooperatively to reach a

common objective, in the Q-DCOP model, introduced in [82], some agents can be partially

cooperative or competitive. Consequently, a Q-DCOP does not have one optimal cost (or

utility) but defines lower and upper bounds on the cost of a solution, and any solution whose

cost is between these bounds is acceptable.

3.4 DCOP Solution Methods

Classical DCOP are well studied and a large number of algorithms, many of which have several

variants, have been proposed by the research community. In this section we will not be able to

give a detailed description of all algorithms, we redirect the reader to [38] for a very exhaustive

32

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

SyncBB, NCBB DPOP and vari-

ants

AFB, ConFB, ADOPT and

variants

PC-DPOP OptAPO, DALO

Max-Sum and vari-

ants

DSA, MGM, CoCoA D-Bibbs, DUCT A-DSA, DALO A-Max-Sum

Figure 3.8 – DCOP taxonomy

survey of DCOP and to the original papers for each algorithm. We give here a taxonomy of the

main DCOP algorithms, illustrated by Figure 3.8. Then we focus on the very algorithms that have

been used the most during this study, namely DPOP, Max-Sum, DSA and MGM.

3.4.1 Taxonomy of DCOP Algorithms

DCOP algorithms can be classified according to different criteria, as depicted by Figure 3.8

(inspired by [38]). Here we look at several of these criteria, namely optimality, synchronicity,

exploration mechanism and level of distribution.

3.4.1.1 Optimality

The simplest criteria for classifying DCOP algorithms is to look at the quality of the results they

provide.

Incomplete DCOP Algorithms

Decentralized

Synchronous Asynchronous

Inference Search Sampling Search Inference

Complete DCOP Algorithms

Partially Centralized Decentralized

Synchronous Asynchronous Synchronous Asynchronous

Search Inference Search Inference Search

33

3.4. DCOP Solution Methods

Complete algorithms

Some algorithms are complete: they are guaranteed to terminate and return a result that is

a solution to the DCOP, i.e. a complete assignment that optimizes the objective function.

ADOPT [86], DPOP [104], AFB [43], SyncBB [49], NCBB [21], and OptAPO [79] are

some well-known complete algorithms.

Approximate algorithms

Some other algorithms, are incomplete; they return a result that is only a near-optimal

assignment. By trading optimality in exchange of lower computational, memory and com-

munication footprint, they are generally able to find a result faster and with less memory and

communication load. Max-Sum [36], DSA [158] and MGM [77] for example are incomplete

and provide no theoretically proved guarantee bounds, but are very lightweight.

Bounded approximate algorithms

Some approximate algorithms, like Bounded Max-Sum [118], Bounded-ADOPT [86],

DUCT [93] and D-GIBBS [90], are able to provide bounds on the optimality of their

results, meaning that the algorithm can deliver a solution whose quality is within a specified

distance of the optimal.

Region optimal approximate algorithms

Some other algorithms provide what is called region-optimal results (also called k-

optimality [98]): the assignment is not optimal for the whole problem but is optimal for some

user-specified regions of the constraint network. This is the case of DALO [63], DSA-k and

MGM-k [77].

3.4.1.2 Synchronicity

In the general case of distributed message-passing systems (see [75]), a system is said to be

asynchronous if there is no fixed upper bound time limit for message delivery. On the other hand,

in a synchronous model transmission times are bounded and the execution of an algorithm is

partitioned into rounds: each processor (a.k.a. agent in the case of DCOP) can send messages to

its neighbors, and computation happens once all the messages have been delivered.

Asynchronous algorithm

In the context of DCOP algorithms we extend these definitions by stating that in an asyn-

chronous algorithm agents make decisions based on their local view of the problem and do

not need to wait for the decisions of other agents.

Synchronous algorithm

In contrast, in a DCOP synchronous algorithm agents base their decision on the decision of

their neighbors and generally follow a particular order, waiting for specific messages before

moving to the next step of the algorithm.

As discussed by Peri and Meisels in [101], asynchronous operation tend to allow a better concur-

rency of decisions but might lead to performing irrelevant computations, as the local knowledge of

agent may be outdated. Conversely, synchronous algorithms often result in higher idle time, when

agents are waiting for their neighbor’s messages before taking a decision.

34

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

Additionally, several algorithms that have been designed as synchronous also have an asynchronous

variant. This is for example the case with DSA: [40] gives a description of asynchronous-DSA.

3.4.1.3 Exploration Mechanism

The resolution process have been studied in the context of DCOP can be classified in three

categories: search, inference, and sampling.

Search approaches

The first, and most classical, resolution process is to use search techniques to explore the

solution space. The set of (potentially incomplete) assignments is represented as a graph,

where each assignment is a node, and the search process moves from one node to another

while looking for an assignment that minimizes the constraints. To avoid exploring the whole

solution space various techniques have been developed that allow cutting out sub-sets of this

space that are guaranteed not to contain an optimal solution. These traditional techniques,

developed for centralized search and constraint optimization, have been adapted to work

in distributed settings. For example many DCOP search algorithms, like Asynchronous

Forward Bounding (AFB) [43] and Concurrent Forward Bounding (ConcFB) [89], are

based on the Depth-First, Branch-and-Bound principles while Asynchronous Distributed

OPTimization (ADOPT) [86] uses the Best-First search scheme.

Local search approaches

As the complexity of the problems (which depends on constraint graph and domains’ size)

increases, complete search algorithms become prohibitive. A solution to that problem is

to let each agent reason only on its local knowledge of neighbor’s states and constraints,

performing what is called a local search. When performing a local search, an algorithm

starts with a (potentially random) candidate solution and iteratively moves from one solution

to another refining neighbor solution. The selection of this neighbor solution is only based

on local information. Such search processes are generally computationally cheap, but might

get trapped in a local optimum, where no neighbor solution is better that the current one, even

though the current solution is not optimal. Consequently, algorithms based on this principle

are incomplete but scale very well and are able to find near-optimal solutions even for very

large problems. DSA (see Section 3.4.2.1), MGM (see Section 3.4.2.2) and CoCoA [73] are

examples of such local search DCOP algorithms.

Inference approaches

Some algorithms are based on inference: they work by propagating messages that summarize

the influence of the sending agent (and the preceding sub-graph or subtree) on the rest of

the problem. Once enough information on these influence is known, agents can take a

decision on the value of the variable they own. These algorithms fall under the framework

of the Generalized Distributive Law (GDL), also called belief propagation. This category

includes both complete, like DPOP (see Section 3.4.2.4), and approximate algorithms, like

Max-Sum (see Section 3.4.2.3).

Sampling approaches

A few approximate algorithms, like DUCT [93] and D-Gibbs [90], have been designed by

35

3.4. DCOP Solution Methods

adapting centralized sampling algorithms (respectively Upper Confidence bound for Trees

(UCT) and Gibbs) to the distributed setting of DCOP. These algorithms sample the search

space to approximate a probability distribution function for the DCOP solution.

3.4.1.4 Distribution

It might seem strange to consider distribution as a criteria for distributed optimization algorithms.

However, several works have shown that introducing some partial centralization was both an

acceptable and efficient approach, as long as the loss of privacy was not an issue in the target

application domain.

Fully distributed

Most DCOP algorithms fall into this category; has a matter of fact, the DCOP framework

states that agents may only communicate with their neighbors and only know the constraints

they are involved in.

Partially centralized

In partially centralized algorithm, some agents are selected to solve a sub-part of the original

problem and advise other agents on interesting value changes. The idea of these approaches

is to simultaneously exploit the speed of centralized methods and reduce the communication

load, while still preserving some distribution and privacy. Optimal Asynchronous Partial

Overlay (OptAPO) [79] and Partial Centralization DPOP (PC-DPOP) [103] are two

examples of partially distributed DCOP algorithms.

3.4.1.5 Solution Availability

Another way to differentiate DCOP solution methods is to look at the way they make their solution

available, potentially providing intermediate solutions.

Most complete algorithms only provide their solution at the end of the solving process. While their

solution is complete, for complex problems the runtime might be prohibitive. Additionally, this

family of algorithms is usually impractical in dynamic settings, as the problem might have changed

before any solution is available.

Some other solution methods, called iterative algorithms, can provide intermediate results during

their execution. With this mode of operation, intermediate solutions are of course approximate,

even if some algorithms, given enough time, would reach the optimal solution. Some of these

iterative algorithm, like MGM, are anytime (i.e. monotonous and iterative): they guarantee that the

solutions they provide will always be of better or equal quality over time. Some other algorithms,

like DSA, do not provide such guarantee, even though it can be shown experimentally that the

quality of the results increases on average over time.

It should be noted that some algorithms, like for example inference algorithms, do not produce a

usable solution directly but require some decoding.

36

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

3.4.2 Some DCOP Algorithms

As it can been seen from previous sections, far too many DCOP algorithms have been proposed

to describe them all precisely here. Instead, we choose to concentrate on the four algorithms that

have been used the most in this study, namely DSA, MGM, MaxSum and DPOP.

The first three algorithms have been selected because they are lightweight approximate algorithms

that are particularly suited for constrained connected objects. DPOP, on the other hand, is a

complete algorithm with a significant computational cost, but is very useful in our case as its

optimality gives us a reference to evaluate the quality of the results obtained when using other

approximate algorithms.

3.4.2.1 DSA

More than a single algorithm, Distributed Stochastic Algorithm (DSA) is a family of incomplete,

local search, very lightweight algorithms based a rather simple idea: agents start with a random

value from their domain and regularly evaluate if the quality of their own partial assignment, defined

as the total values of those constraints in which it is involved, could be improved by selecting a

new value [157]. This evaluation is based on the knowledge of the values currently selected by

their neighbors. If this quality can be improved, the agent decides randomly, with an activation

probability p, to select the corresponding value and send its updated state to its neighbors.

This search process is local as agents base their decision only on their knowledge of the values

of their direct neighbors. Of course such local search algorithm can become trapped in a local

minima (even if DSA stochasticity sometime helps it escaping such local minima) and does not

guarantee to find the optimal solution. Although not strictly anytime, DSA is an iterative algorithm

and can be used to obtain a complete assignment at any time, in real time, with a solution quality

improving, on average, over time. However, in the general case DSA provides no guarantee of

monotony: as there is no coordination in the decision process and an agent’s local knowledge may

be outdated, two agents may simultaneously take contradictory decisions, resulting in a decrease

in the overall result’s quality.

Five variations –namely DSA-A, DSA-B, DSA-C, DSA-D and DSA-E– of this basic principle have

been studied [157], depending on the strategy used for values change. An agent may select a new

value more or less aggressively, when its state quality can be improved, strictly or not, and when

where are still conflicts even if the quality cannot be improved. These variants exhibit various

degree of parallelism and solution space exploration. DSA-B is considered to be the most efficient

approach in the general case.

The value used for activation probability p has also been shown in [157] to have a huge influence

in DSA’s efficiency and quality and exhibits phase transition property. When the right variant

and activation probability have been selected for a given problem class, DSA provides very good

quality results, with minimal network and computational load, which makes it highly scalable.

It should be noted that DSA is able to work with n-ary constraints without any modification.

Depending on the time at which the agent’s decision process take place, two modes of execution

are possible:

37

3.4. DCOP Solution Methods

Synchronous

When not explicitly mentioned otherwise, DSA refers to the synchronous version of the

algorithm: all agents proceed in synchronized rounds. In each round, each agent send its

current value to its neighbors and, once it has received the value from all its neighbors, takes

a decision about its own value change. The process is repeated continuously until some

termination condition is reached, usually a predetermined number of rounds.

Asynchronous

DSA can also be implemented in a completely asynchronous fashion (see [40]): each agent

sends its value and take its decision, based on its current knowledge, at a random periodicity.

This approach has been shown experimentally to provide good results, as long as the rate

of change is low enough to allow propagation of information in spite of the communication

latency.

A coordinated variation of DSA, SCA-k, has also been proposed in [77].

3.4.2.2 MGM

Maximum Gain Message (MGM) is a modification of Distributed Breakout Algorithm (DBA)

that focuses on gain message passing [77]. Like DSA, MGM algorithm is an incomplete local

search algorithm that can handle n-ary constraints

MGM is a synchronous algorithm: at each round, agents compute the maximum change in quality,

named gain, they could achieve by selecting a new value. and send this gain to their neighbors. An

agent is then allowed to change its value only if its gain is larger than the gain received from all its

neighbors. This mechanism ensure that two variables involved in the same constraint will never

change their value in the same round. This process repeats until a termination condition is met.

While it provides no bounds on the solution quality, MGM is able to guarantee monotony;

eliminating the stochastic aspect of DSA ensures that the solution quality only improves over

time. Monotony is a very interesting quality in many application domains, however, this quality is

guaranteed at the expense of an higher tendency to become trapped in a local minima.

To mitigate this issue, [77] proposes a coordinated version of MGM (usually MGM-2, but it can

be extended to MGM-k), where k agents can coordinate a simultaneous (i.e. in the same round)

change of values. This allows avoiding some local minima while preserving the monotony of the

algorithm.

Although it should be possible to implement an asynchronous version of MGM, to the best of our

knowledge no such variant has been proposed yet.

3.4.2.3 MaxSum

MaxSum is a inference-based incomplete algorithm [36]. It is a derivative of the max-product

message passing algorithm in the logarithmic space. MaxSum is complete on acyclic constraint

graphs, but approximate on cyclic graphs.

It operates on a factor graph (FG) (see Section 3.3.1.1) and messages flow on the edges, from

factors to variables, and vice versa:

38

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

→ →

i

qi

1 k T

• A message from factor fm to variable xn is a vector Rm→n = [rm→n . . . rm→n] , with

k = |Dn| where:
ri i

m n = fm(vi) + max qn m
X\xn

• Similarly, a message from variable xn to factor fm is also a vector Qn→m defined as

follows, where αnm is a scalar used to normalize messages (usually selected such that
),

0<i<|Dk| qn→m = 0) and avoid their values to grow indefinitely, as messages propagate in
loops in a cyclic graph.

n→m = αnm +
)

{ fp|xn∈Sp}\fm

i
m→n

When a factor or a variable computes twice the same message for the same recipient, it stops

propagation and the algorithm converges if all message propagation has stopped. However, while

MaxSum is guaranteed to converge on acyclic constraint graphs, it may not converge at all on

cyclic graphs. Consequently termination is usually implemented by both observing convergence

and by force-stopping propagation after a predetermined number of rounds.

By simply summing its Rm→n messages an agent can assess at any time an approximation of

the marginal function of the variable xn and select the value that maximizes the social welfare in

the system by finding the argmax of this marginal function. This also means that Max-Sum can

be used to get a continuously updated solution, without waiting for termination, even in dynamic

problems.

Empirical evaluations show that it can compute very good quality solutions with acceptable

computation load compared to representative complete algorithms.

Several approaches have been studied to increase the quality of the solution produced by MaxSum,

like introducing noise in cost for easier tie breaking, applying damping [23] on the messages, to

facilitate convergence in the presence of cycles, or decimating variables by assigning values and

removing variables depending on their marginal values, at runtime [20].

Additionally, many derivative of MaxSum have also been proposed, like MaxSum ADVP [160]

and Bounded-MaxSum [118], to handle cycles by processing inference over trees or directed

acyclic graphs, instead of the initial cyclic factor graph.

Finally, while most works describe and classify MaxSum as a synchronous algorithm, it should

be noted that it can also be implemented asynchronously, as stated in [36], with agents emitting

updated messages whenever they receive an update from on of their neighbors. We denote this

variant Asynchronous MaxSum Algorithm (A-MaxSum). However, this requires some measure

to avoid an excess of messages, which are not well studied yet to the best of our knowledge.

MaxSum is also well suited to dynamic settings, as the agents can maintain an up-to-date estimate

of the current state’s utility by continuously emitting update messages.

3.4.2.4 DPOP

The Distributed Pseudo-tree Optimization Procedure (DPOP) is an optimal, inference-based,

DCOP algorithm implementing a dynamic programming procedure in a distributed way [104] and

r

39

3.4. DCOP Solution Methods

can be seen as an extension of the general bucket elimination scheme [28].

DPOP mainly runs three phases:

1. It builds a DFS Tree that overlays the constraint network (see Section 3.3.2.1). This pseudo-

tree, made of parent links and pseudo-parent links (when loops appear in the constraint

graph) is used by agents owning variables to interact during the next phases. This phase can

be implemented using a simple token-passing protocol.

2. Once the DFS Tree is built, cost functions are sent from the leafs up to the root. Agents

assess the cost messages they send to their parent by joining all the messages received

from their children. A cost message sent by an agent is a multi-dimensional hash map

(or hypercube) associating a cost to every possible value of its parent and pseudo-parents.

Computational complexity of each agent in DPOP is exponential on the number of pseudo-

parents, fundamentally due to the assessment of the cost messages, which represents an

obstacle when coping with cyclic graphs.

3. Once the root has received the cost messages from its children, it assesses the aggregated

costs of the whole problem and then it decides the best assignment for its variable. Finally,

it broadcasts this assignment in a value message to its children, who assess their best

assignments and send them down to the leafs.

Notice that when running on a tree-shaped graph DPOP and Max-Sum, which are both based on

belief propagation, are strictly equivalent.

After the execution of the algorithm, each agent knows the optimal values for the variables in its

scope. DPOP returns an optimal assignment, with only a linear number of messages. Many DPOP

extensions and other exact algorithms work in a similar way [144].

Many variants of DPOP have been proposed to trade runtimes for smaller memory require-

ments [102, 103], trade solution optimality for smaller runtimes [105], trade runtime for increased

privacy [45], trade privacy for smaller runtimes [103], propagate hard constraints for smaller

runtimes [68], or enforce branch consistency for smaller runtimes [37].

3.4.3 Evaluating the Performance of DCOP Algorithms

Evaluating the performance of a DCOP algorithm is a complex subject. This evaluation is generally

motivated by the need to estimate the time between the starting time of the process and the time

we get an acceptable solution. However, simply comparing this time across algorithms is not

a good method for comparing their respective performance, as in this case these measures are

mostly representative of the efficiency of the implementations 18 of these algorithms and not of the

algorithm themselves.

To avoid this issue, the constraint reasoning community traditionally compares algorithms by

counting the number of constraints check (CC) needed to reach an acceptable result. This measure

is machine and implementation independent as it counts an operation that would be performed by

any implementation of the same algorithm and is generally representative of the overall complexity

1 8 . This is even more problematic as there is currently no software library that implements most of the DCOP

algorithms, which means that one would compare different implementations made with different languages and probably

developed with different assumptions and objectives.

40

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

of the problem.

However, counting CCs is less meaningful in distributed constraint reasoning; it does not allow to

estimate the resolution time as, depending on the algorithms, various degree of parallelism may be

observed in these constraints checks. Additionally counting CCs also does not take into account

delays caused by messages: agents need to send and receive messages and may need to wait for

messages to perform their own computations.

One proposed metrics is the number of Non Concurrent Constraint Check (NCCC), which repre-

sents the length of the longest computation chain that cannot be executed concurrently [84] but does

not take into account communication delays, which in a real deployment may be many orders of

magnitude higher than the computational effort performed in a single step [26]. Other alternatives

have tried to combine latency with NCCCs [159], however the evaluation of DCOP algorithms

performance is generally still considered to be an open question.

3.5 Application of Constraint Reasoning for Ambient Intelligence

Several researchers have used constraint reasoning approaches, both centralized and distributed,

for tackling Ambient Intelligence (AmI) and SHE problems. Most works concentrate on the

use of constraints for planning and for considering user preferences. We provide in this section a

short review of some related works in this area. Section 3.5.1 focus on those based on traditional

constraint reasoning; works based on distributed constraint reasoning are discussed in 3.5.2.

3.5.1 Constraint Reasoning in Ambient Intelligence

In [30], Degeler et al. use dynamic constraint reasoning for smart environment management, citing

the flexibility and adjustability of constraint reasoning as the reasons for this choice. The desired

behavior of the home is specified using logical rules, which combine the context information about

the environment with the expected actions of connected devices. The problem is then encoded

as a Dynamic Constraints Satisfaction Problem (DynCSP), where actuators are represented

as controllable variables, in order to take into account the changes in the environment context.

Solving this DynCSP continuously yields updated values for these variables, which map to a state

and/or action of the corresponding actuator(s). By building a dynamic dependency graph, it is

possible to identify the sub-problems that are really impacted by a change in the environment

and only invoke re-optimization tasks for the smallest subsets of the variables which are actually

affected, effectively reusing parts of the earlier solutions. This approach allows the system to scale

up, performing real-time even with hundreds of variables.

Kaldeli et al. argue in [60] that intelligent behavior in a SHE requires complex functionalities that

involve several dynamically selected services provided by independent devices. To achieve this

kind of behavior, they propose to combine a SOA design with automatic and dynamic service

composition. The service composition is implemented using a domain-independent CSP-based

planner. The home domain is represented as a dynamic constraints network, constraints being

added and removed depending on the current state of the environment and the set of available

services and devices. The planner reasons upon this model and generates a sequence of actions

that must be performed. The authors justify the choice of a CSP planner by its performance,

41

3.5. Application of Constraint Reasoning for Ambient Intelligence

its adaptability and its ability to perform complex reasoning about contextual information. They

also advocate that constraint based systems are well suited for user-centric environments as they

allow declarative high-level goal specification, instead of requiring a description of how the request

behavior should be achieved.

In [135], Song et al. design a self-adaptive system that takes user preferences into account and

apply it to a SHE scenario. The set of adaptation policies (i.e. the changes needed to meet the

user’s goals) is modeled as a CSP, which allows detecting conflicting goals and finding the best

configuration that satisfies as many goals as possible. When the user change their preferences,

the weight of the existing constraints are automatically tuned accordingly, and new constraints are

generated when required.

Parra et al. use a CSP to model a dynamic features selection in a software product line and

optimize this configuration process [96]. This work is applied to a SHE scenario where an

adaptive application must self-adapt to the type of devices and connectivity options currently

available in the house.

3.5.2 Distributed Constraint Reasoning for Ambient Intelligence

As discussed previously, a large body of works can be found on the use of MAS for AmI and

SHE. Similarly, some research has been done on applying the DCOP framework to settings that

can be considered to be part of IoT and Ubiquitous computing: sensor networks, radio frequency

allocation, traffic light coordination, etc. However, to the best of our knowledge, few past works

have focused on the use of the DCOP framework for AmI and SHE settings. We discuss here two

of these works.

In [99], Pecora et al. argue that the integration of complex services for AmI is a problem that

requires intelligent reasoning and should be solved with AI problem solving. They advocate

that service coordination can be mapped to Multi-Agent Coordination (MAC), which can be

tackled using the DCOP framework. In their model, each application in the home offers one or

several services and is represented by an agent. These applications are a combination of sensors,

actuators and symbolic reasoning processes. Variables, both input and output, are used to represent

the external interface of these services and constraints are used to model the functional relations

among them. The resulting DCOP is continuously reasoned upon by the agents and yields a solution

where output variables map to the desired behavior of the home. Their implementation is based on

ADOPT-N [100], an extension of the original ADOPT algorithm designed to address problems with

n-ary constraints, whose extension may not be known a priori (this is called constraint posting).

Fioretto et al. propose in [39] to use a DCOP approach for demand-side management in electric

smart grid, based on the Smart Home Device Scheduling (SHDS) problem. They consider multiple

smart homes, each equipped with smart devices and their goal is to find an activation schedule for

all devices that achieve used-defined preferences (light, temperature, etc.) while at the same time

optimizing the aggregated cost of energy consumed. As the cost of energy is a function of time,

this method help avoiding peak in energy consumption, especially at times when the price is high.

This problem is modeled as a distributed scheduling problem, which is mapped to a DCOP that

includes both soft constraints, for user preferences and energy consumption, and hard constraints,

42

Chapter 3. State of the Art on Ambient Intelligence and Distributed Reasoning

for temporal goals. This use of distributed optimization provide coordinated schedules across

several homes, which is necessary for efficient demand-side management, while also preserving

the privacy of the users of the smart homes. Their implementation uses SH-MGM, a custom

MGM-based algorithm.

As a complement to the SHDS problem, Kluegel et al. propose in [64] a set of physical models for

smart home devices and a data set of problem instances that can be used to benchmark solution

methods.

3.6 Summary

In this chapter we have expounded the Ambient Intelligence paradigm as an application of

Internet of Things to smart home settings. We have also introduced Multi-Agent Systems and

more specifically one of its approaches: Distributed Constraint Optimization Problem. A brief

overview of Dynamic Constraint Reasoning has been presented, including majors variants and

solution methods.

We have seen that MAS have been widely recognized has an efficient paradigm for coordinating

the actions of devices and services in SHE and AmI settings. Moreover, DCOP have been used

in many works to implement coordination in distributed systems, including many IoT-like systems

like sensor networks, smart-grid, etc. However, to the best of our knowledge, the use of DCOP

for AmI had received few attention for researchers. In the next chapters, we focus the challenges

that need to be worked on, in order to enable a better use of DCOP-based approaches in in AmI ,

namely the issues of distribution, dynamic and resilience.

43

4

A Model for Coordination in

Smart Environments

As discussed in the previous chapter, we intend to use a DCOP-based approach to install distributed,

autonomous and spontaneous coordination between devices in AmI settings. A first required step

in that direction is to devise a model of such environments that can be mapped to an optimization

problem. This chapter introduces the Smart Environment Configuration Problem (SECP) and

expounds how it can be mapped to a DCOP in order to be solved by the devices available in the

target environment.

4.1 The Smart Environment Configuration Problem

In this section, we start from a sample Smart Home scenario in order to illustrate the coordinated

behaviours our model should implement in AmI systems and introduce notations required to map

these behaviours to an optimization problem.

4.1.1 Sample Ambient Intelligence Scenario

We consider the following AmI scenario. Our system is a Smart Home, made of many connected

devices, most of which are already commonly available today: various light bulbs and lamps, roller

shutters, motorized curtains, TV sets, luminosity sensors (potentially inside and outside the house)

and presence detectors, etc. The overall objective of our system is to maintain a luminosity level

in the rooms of the house that satisfies the inhabitants, which are considered to be the users of the

system.

These users can express their wishes by configuring simple behaviors (commonly known as scenes

in such systems) using an application on a user interface device, like a tablet for example. These

scenes can use the values of sensors or the states of some devices as triggers for setting a specific

luminosity goal in a given area. For example, one could configure the system such that a luminosity

level of 60 1 is requested in the living room whenever somebody is in this room. Such a configuration

can be expressed by a rule as represented in Example 3, although the users would of course not

write it in this form, but more probably use some kind of graphical representation to express it.

1 . We use abstract units for the luminosity level.

44

Chapter 4. A Model for Coordination in Smart Environments

Example 3 (Scene specification). The rule (4.1) defines a scene where the light level of the living

room should be set at 60 whenever someone is present in the room:

IF presence_ living_ room = 1

THEN light_ level_ living_ room ← 60

(4.1)

Rule (4.2) refines rule (4.1) by triggering only when the light level is less than 60:

IF presence_ living_ room = 1

AND light_sensor_ living_room < 60

THEN light_level_ living_room ← 60

(4.2)

Rule (4.3) refines rule (4.1) by triggering only when the light level is less than 60 and closing the

shutter of the living room as an additional action:

(4.3)

One important characteristic of such rules is that they do not need to contain the list of actions

required, but only the objective requested by the user. More specifically, the user does not need

here to specify what lights must be switched on or off, nor if the shutters should be opened. This

means that our AmI system will need to figure out the best actions that would lead to meet the

requested objectives. Of course, if one specific action is required by the user, it can also be used as

an objective, as demonstrated in rule 4.3 above.

As these actions are not fixed in advance, it also means that the system uses whatever devices

available when the scene is triggered: lights bulb might be added or removed, they will be

automatically integrated into the solution if needed. Additionally, if a device like a motorized

curtain or roller shutter becomes faulty the system automatically adapts the actions of other light

emitting devices to take this issue into account; it could even switch the TV on just to get some

emergency lighting, if not other source of light is available.

Finally, we want our system to select the most energy-saving configuration for a given scene.

Note that we concentrate here on devices that can influence on the luminosity of the environment,

but this approach could be used for many other environmental settings and more generally for

almost any behavior in a AmI environment.

Each of the connected smart devices in the AmI environment acts as a sensor or an actuator. Of

course some devices may exhibit both behaviors. Each device is defined by:

• A unique identifier. As our devices are connected, their MAC address could be used for that

purpose.

• Its location in the environment. This would typically be the rooms or areas (some big rooms

might be subdivided into several areas) of the home.

• A list of capabilities, like emitting light, producing heat, playing music or videos, etc.

IF presence_ living_ room = 1

AND light_sensor_living_room < 60

THEN light_level_ living_room ← 60

AND shutter_living_room ← 0

45

4.1. The Smart Environment Configuration Problem

Figure 4.1 – Example of an AmI house system with its devices

• A list of actions, if the device is an actuator. For a light bulb, this is for instance the list of

light emitting levels achievable (set the bulb at 0, 10 . . . 100%).

• A consumption law associating an energy cost to each action.

Figure 4.1 depicts a simplified smart home equipped with such connected devices.

4.1.2 Problem Definition

Given the scenario described in the previous section, we want our AmI system to reach the users’

objectives without being steered from a central point, in order to avoid the centralization pitfalls

described in Section 3.1.3.1. More precisely, we want the devices of this system to self-organize

and cooperate autonomously to reach the user-defined objectives, avoiding any dedicated device

whose purpose would be to gather inputs from sensors and decide the sequence of actions required

to fulfill these objectives.

Devices’ capabilities and locations can be used to match candidate devices with a user-defined

objective. For example when the rule 4.2 requests a given luminosity level in the living room, one

can easily, based on these two elements, identify all devices that can influence the light level in

that room.

In the rest of this document we consider that a discovery mechanism is available and that the system

knows at any given time the list of available devices with their aforementioned characteristics. Such

mechanisms are a common requirement in dynamic open environments and solutions, although far

Connected light bulbs

Luminosity sensors

Users
& Scenes

Presence detector
Rolling Shutter

TV

46

Chapter 4. A Model for Coordination in Smart Environments

from perfect, are already available in current systems. For example, mDNS [58] and DNS-SD [57]

serve as the technical foundation of discovery functions in current IP-based SHE systems.

As a consequence, we concentrate here on the coordination mechanism. We consider each device

in the system as an agent in a MAS and will devise ways of implementing coordination among

these agents in a dynamic open system.

4.1.3 Notations for SECP

Our AmI scenario can be seen as an optimization problem with values to assign to actuators, whilst

maximizing the adequacy to user-defined scenes and minimizing the overall energy consumption.

The notations defined in this section will be used in the remainder of this document. For easier

reading, a full reference table of all notations used in this document is given in Appendix A.

4.1.3.1 Actuators

Let A be the set of available actuators. We note X (A) the set of variables xi stating the values of

actuators i ∈ A. We use xi to refer to a possible state of xi ∈ X (A) (i.e. the value assigned to

the variable xi), that is xi ∈ Dx i where Dxi is the domain of xi and contains values mapping to

the actions available on the actuator i. For a light bulb for example, this is the list of light levels

that can be emitted by the bulb (we consider our light bulb to have a discrete finite list of possible

configurations).

Each actuator i has a cost to be activated, noted ei : Dxi → R . This cost can be directly derived

from the consumption law of each device (e.g. mapping monetary or energy to each action). We

note F (A) = {ei|i ∈ A} the set of costs for all actuators. Among the possible values, every

actuator i has a possible “switched off” state value, noted 0 ∈ Dxi , with an associated cost (most

probably 0).

4.1.3.2 Sensors

Similarly, we note S the set of available sensors, and X (S) the set of variables sl encapsulating

their states. Each variable sl take its value in a domain Dsl . We note sl ∈ Dsl the current state of

sensor f ∈ S. Sensor values reflect the state of the environment and are not directly controllable

by the system: therefore they are read-only values and do not have a cost function.

4.1.3.3 Environment State

In order for the user to set their objectives (e.g. requesting a given light level in a given room), we

also need to model the state of the environment. We note Φ the set of states of the environment,

and X (Φ) the state of variables yj encapsulating these states. Each variable yj takes it value in a

domain Dyj and we note yj ∈ Dyj the current value of yj . Like sensors, the environment’s state

is of course not directly controllable by the system.

+

47

4.1. The Smart Environment Configuration Problem

i

i

j

j

4.1.3.4 Scenes

Let R be the set of user-defined scene rules. Each scene k is specified as a condition-action rule

expressed using the set of available devices A
J

S (actuators and sensors).

The action part of scenes defines objectives by setting target values to scene action variables.

These scene action variables can represent either some actuators or the state of the environment:

(1) When the rule requests some direct action on an actuator, the scene action variable is the

variable representing the state xi ∈ X (A) of that actuator. This is for example the case in

the rule 4.3 of example 3, which explicitly requires to close the shutter of the living room.

We note xk the target value defined by the user for the scene action variable xi in the rule k,

with xk ∈ Dx for all i and k.

(2) When the rule set a target state for the environment the scene action variable is the variable

yj ∈ X (Φ) representing that state of the environment. Of course, there must be some

actuators that can act on this state for the rule to have any effect. For example, the three rules

in example 3, set a target light level in the living room, which can be acted on by the light

bulb actuators located in this room. This approach allows setting goals on more abstract

concepts, without hard-coding any specific action nor actuator on the rules; these kind scene

action variables actually require some kind of cooperation.

We note yk the target value defined by the user for the scene action variable yj in the rule k,

with yk ∈ Dy for all j and k. Note that a scene action variable can be used in several rules,

but that a rule can only specify a unique target value for the scene action variable.

The condition part of a scene is specified as a conjunction of boolean expressions using state of

actuators, xi, i ∈ A, or state of sensors, sl, l ∈ S and binary predicates (e.g. >, <, =). A scene

rule can be either active or inactive depending on the state of devices appearing in the condition

part of the rule.

4.1.4 Modeling Physical Constraints

In order for the system to be able to select the right actions to achieve the goals set by the rules, we

must be able to reason upon the link between the actuators’ actions and the state of the environment,

which means we need a model of the physical interactions happening in the real world. For this

purpose, we define functions that we call physical models, noted φk , where Sφk ⊆ X (A) is

the scope of the model, i.e. the set of actuator variables influencing one particular aspect of the

environment, and Dφk is the domain of the variable representing the corresponding state of the

environment.

φk :
n

ς∈Sφk

Dς → Dφk (4.4)

For example, in the rules of example 3, the scope of the physical model would be the set of light

emitting actuators that are located in, and can influence the light level in, the living room.

Example 4 (Physical model). We can consider that the level of light y1 in a room depends on the

total power of “light-emitting” devices located installed in the room, i.e. bulbs x1 and x2, and a

i

j

48

Chapter 4. A Model for Coordination in Smart Environments

TV set x3:
y1 = φ1(x1, x2, x3) = 30x1 + 30x2 + 10x3

Weights assigned to each xi are related to the luminous efficacy of each device [136].

In a more general form, a physical dependency model links a set of actuators –generally with the

same given capability and in a same given location– to a physical value that can be measured by

some sensor.

Let φj = |Sφj | the arity of φj , and F (Φ) = {φj} be the set of all physical models between

actuators and rule-defined values.

Of course, the co-domain of φk depends on the state of the environment considered by this

physical model (luminosity, temperature, humidity, etc.). As rules express target for the state of the

environment using variables yj ∈ X (Φ), we need one physical model φj for each yj used in the

rules, with Dφk = Dyj and Sφk is the set of actuators influencing yj . Note that a physical model

function output value is considered here to be an estimation (or prediction) of the value of some

yj , based on the state of the actuators. The quality of the resulting system configuration depends

tightly on the quality of this estimation, and thus on how we define these physical model functions.

There are several options to assess the exact functions to be used for these physical models. While

this point is not the focus of this work we list here a few approaches that could be used:

• As these functions depend on real world interactions, the physical laws that govern them is

generally well known and can easily be found in the corresponding literature. This means that

the structure of the function can be fixed in advance, depending on the kind of environment

aspect, and we would only need to fill in some parameters like weights.

• These weights could be discovered during a dedicated calibration phase, where the actuators

scan their respective action space while we monitor the resulting state of the environment

using sensors. With this approach, most sensors are only needed during calibration. At

runtime, only sensor used in the rule’s condition are necessary. However, when the set of

available actuators changes (addition or removal) a new calibration phase might be needed

to devise an optimal model.

• Given enough sensors are available, an online machine learning approach could also be

used, meaning that the definition of these physical models could improve over time. This

solution also has the advantage that the models can dynamically adapt to changes in the

environment. For example, the physical model of the luminosity in a room depends on the

state of light-emitting actuators but may also depend on the season, when exterior light and

sunset times vary.

• More generally, machine learning-based approaches could be used to learn a full model of

a physical model from scratch, or to simply learn appropriate weights for a model whose

structure is already known from physics [44, 76].

• AMAS [132] could also be used to deal with the dynamic and non-linearity exposed by these

models, as demonstrated in [13] where AMAS are used to perform the automatic calibration

of an engine control unit.

In the remainder of this document, we consider that the functions of these physical models are

49

4.1. The Smart Environment Configuration Problem

1

known and can be used directly. For simplicity, we also consider here these functions to be static,

even though we will demonstrate in Section 6.1.3 that using appropriate solution methods dynamic

functions could be dealt with.

4.1.5 Formulation as an Optimization Problem

Now that we have a definition of the impact of the actuators’ action on the environment, we are

able to assess if the objective of a given rule is met. For this purpose, we define for each scene an

utility function, noted rk , with Srk ⊆ X (A) ∪ X (Φ) ∪ X (S) being the scope of the rule, made of

the actuators, sensors and scene action variables used in the rule:

rk :
n

v∈Srk

Dv → R

The more the states of the scene action variables (from X (A) and X (Φ)) are close to the user’s

target values for this scene, the higher the utility. Moreover, if the conditions to activate the rule

(from X (A) and X (S)) are not met, the utility should be neutral, i.e. equals to 0. We can therefore

consider rk ’s to be functions of the distance between the states of the scene action variables xi’s

(resp. yj ’s) and the target values xk (resp. yk). We note F (R) = {rk|k ∈ R} the set of rule
i j

utility functions.

Example 5 (Scene rule utility). Let us consider rule (4.1) from example 3, where s1 is the value

of the presence sensor. Here a possible utility function, which is the negated distance between the

current value of y1 and the target value y1 = 60 defined in rule (4.1):

y1 − 60| if s1 = 1

r1(y1, s1) =
−|

0 otherwise

Here a possible utility function for rule (4.3), where s2 is the sensed light level and x3 is the level

of the shutter:

r1(y1, x3, s1, s2) =
− |

− 60|2 +

|x3

|2 if s1

= 1, s2

> 60

0 otherwise

Using these notations, we can express the SECP as an optimization problem. Our goal is to

maximize the utility of the user-defined rules, while at the same time minimizing the energy

consumption of actuators, which can be written as follow:

minimize
)

ei and maximize)
rk

xi∈X (A)
i∈A

xi∈X (A)

yj∈X (Φ)
k∈R

(4.5)

Of course, this formulation uses the scene action variables yi, whose values cannot be modified

directly (i.e. yi’s are not decision variables in our problem) but can be predicted using our physical

y 1

50

Chapter 4. A Model for Coordination in Smart Environments

model functions, based on the actuators’ variables. This introduces a new set of constraints

φj (v1, . . . , v
φj) = yj ∀yj ∈ X (Φ) (4.6)

j j

As physical models represent the real world physical constraints they are not something we can

actually optimize and we must model them as hard constraints.

Based on this, we can straightforwardly map the SECP to a multi-criteria optimization problem.

minimize
)

ei and maximize)
rk

xi∈X (A) i∈A xi∈X (A)
yj∈X (Φ)

k∈R
(4.7)

subject to φj (v1, . . . , v
φj) = yj ∀yj ∈ X (Φ)

j j

Given all the previous concepts and notations, we define the SECP as follows:

Definition 3 (Smart Environment Configuration Problem (SECP)). Given

• a set of actuators A, and their related costs ei ∈ F (A),

• a set of sensors S,

• a set of scene rules R and their related utility functions in rk ∈ F (R),

• a set of environment states Φ, and a set of physical dependency models F (Φ),

the Smart Environment Configuration Problem (or SECP) is represented by a tuple

(A, F (A), S, R, F (R), Φ, F (Φ)) and amounts to finding the configuration of actuators that max-

imizes the utility of the user-defined rules, whilst minimizing the global energy consumption and

fulfilling the physical dependencies.

4.2 Solving the SECP with a DCOP approach

As we have seen in the previous section, we can model the configuration problem in a smart

environment as an optimization problem. In this section, we show how this optimization problem

can be solved in a distributed setting such as AmI scenarios. As the smart environments can

naturally be represented as a MAS, we map our SECP optimization problem to a DCOP.

4.2.1 Mapping the SECP to a DCOP

In the previous section, we described the problem of the SECP as a multi-objective optimization

problem. We will now introduce how this optimization problem can be mapped to a DCOP.

Our SECP is currently represented as a multi-objective optimization problem 4.7, which is not

convenient when mapping to a DCOP We could use a MO-DCOP (see 3.3.2.3) but solution

methods for this DCOP extension are quite heavy and would not fit our target environment,

composed of constrained devices. Instead, we choose to aggregate the two objectives to formulate

51

4.2. Solving the SECP with a DCOP approach

the problem as a mono-objective optimization problem, using weights ωu, ωc > 0:

maximize ωu

)
rk − ωc

)
ei

xi∈X (A)
yj∈X (Φ)

k∈R i∈A (4.8)

subject to φj (v1, . . . , v
φj) = yj ∀yj ∈ X (Φ)

j j

As described in 3.3.2, a DCOP is represented by a tuple (A, X , D, F , µ), therefore to map the

SECP to a DCOP we need to define the sets of agents A, variables X , domains D and constraints

F and the mapping function µ.

4.2.1.1 Agents

In a DCOP, agents control decision variables and are responsible for selecting an appropriate value

for each of the variable they own. This also means that agents are the entities that perform any

computation required by the DCOP algorithm. In the case of a physical distributed system like the

one described in our AmI scenario, agents must be embodied by real devices, which must possess

some processing and communication capabilities.

The various connected devices, sensors and actuators, available in our system fit these requirements

and thus can be considered as agents. However, these devices are assumed to be resources

constrained and the communication link between them is generally implemented with a low power

network. Devices with only a sensing role are usually powered on battery and run as sleepy nodes,

meaning that they switch off their communication interface most of the time to save energy and

only turn it on when they want to emit a new value. Their processing power is also severely limited

due to these energy saving constraints. On the other hand, actuator devices, for example light

sources, are usually connected to the main power line and always reachable. It should be noted that

while many real-life products embed both sensors and actuators, sensing-only devices are really

powered on battery in most cases. For simplicity, and without loss of generality, we consider our

devices to have a single role, either actuator or sensor. Therefore, our set of agents is made of the

actuator devices and A = A. Agent with actuator i is denoted ai and the set of agents correspond

to A.

4.2.1.2 Variables and Domains

The variables used in our DCOP is simply the set of variables used in the multi-objective opti-

mization problem 4.7 representing the SECP. More precisely, the set X contains all the variables

whose values are selected by an agent:

• Actuator variables xi can clearly be controlled by agents and are part of X

• Scene action variables yi, which represents predicted states of the environment, are also part

of x. These variables do not represent any action or decision in the physical environment,

they are modeling variables. Yet, agents do try to affect them a value that reduces the

distance to rule’s goal (i.e. increase its utility) and X (Φ) ⊂ X .

• On the other hand, the sensor variables sl are not part of X as these variables represent

sensor values that cannot be controlled by an agent.

52

Chapter 4. A Model for Coordination in Smart Environments

1

This gives us the following definitions:

X = X (A) ∪ X (Φ) (4.9)

D = {Dxi |xi ∈ X (A)} ∪ {Dyj |yi ∈ X (Φ)} (4.10)

4.2.1.3 Constraints

Constraints of the DCOP are obviously based on the constraints of the optimization problem 4.7.

However, this problem has a mix of hard and soft constraints, which cannot be dealt with directly

by DCOP algorithm, and DCSP only support hard constraints. Therefore we need to encode the

hard constraints 4.6 as soft constraints with infinite costs, noted yj for each j ∈ Φ:

φj

 0 if φj (x , . . . , x) = yj

ϕj (x1, . . . , x
φj , yj) =

j j

 (4.11) j j

−∞ otherwise

We note the set of translated hard constraints F (Φ) and the set of constraints of the DCOP can be

defined as:

F = F (A) ∪ F (R) ∪ F (Φ) (4.12)

4.2.1.4 Full DCOP Definition

Using these definitions, SECP is then formulated as a DCOP (A, X , D, C , µ) where µ is a function

that maps variables and constraints to agents; with the following objective:

maximize ωu

)
rk − ωc

)
ei +
)

ϕj

xi∈X (A)

yj∈X (Φ)
k∈R i∈A j∈Φ

(4.13)

4.2.2 Factor Graph Representation

The DCOP (4.13) contains many non-binary constraints, for physical models, and thus the tradi-

tional constraint graph representation is not really convenient is this case. Instead we represent the

DCOP modeling our SECP using a factor graph (see 3.3.1.1). This representation allows to clearly

visualize the spatial relationships between physical models, actuators and sensors (see Figure 4.7).

Additionally, it is used as a basis for several DCOP solution methods.

Actuators are represented in the factor graph by pairs made of a factor vertex and a variable vertex,

as displayed by Figure 4.2. The variable node maps to the variable xi representing the state of

the actuator, while the factor node represents the cost function for this actuator and is a unary

constraint.

Physical models are also represented as (factor, variable) pairs, where the variable represents the

expected state of the environment, and is linked to active rules setting a target for this state. The

53

4.2. Solving the SECP with a DCOP approach

x1

x2

Figure 4.2 – Factor graph actuator representation

factor vertex represents the hard constraint ϕi used to ensure that this estimated state maps the

value returned by the physical model function based on the actuator value and is linked to the

variable vertices from actuators influencing this state.

Figure 4.3 – Physical model representation in a factor graph

Sensors are only used to trigger rules in the SECP and are not involved in the DCOP optimization

process, which only occurs when the set of active rules has been determined. Therefore, sensors

do not need to be represented in the graph. moreover they could not be represented in a classical

factor graph, which is a bipartite graph and thus a only two kind of vertices. However, when it

helps comprehension, we will represent them on the graph using diamond-shaped vertices.

Figure 4.4 – Sensor representation in the factor graph

Rules are represented by single factors, which represents utility functions rk of the rules. Such a

factor is linked to the variable(s) the rule set a goal on, (either xi’s or yj ’s) and to the variables

used in the condition part of the rule

Figure 4.5 – Rule representation in the factor graph

Example 6. For example, Figure 4.6 represents a factor graph for the DCOP of a simple DCOP

from Example 3, with 3 actuators (the 3 light bulbs), one physical model and environment state

(the light level in the living room), two sensors (presence and luminosity) and one rule.

Example 7. Using these notation, we can also represent the factor graph for a complete house

level. Figure 4.7 depicts the Factor Graph for the SECP of a real house level (actually it is the

r2

s1

y1

x3 s2

s1

y1
 ϕ1

e1 x1

54

Chapter 4. A Model for Coordination in Smart Environments

e1

e2 r2

e3

x1 s1

x2 y1

x3 s2

ϕ1

Figure 4.6 – Factor graph for the scenario of Example 3

Figure 4.7 – Factor graph for a realistic full house level

author’s house!). Note that, for clarity, rules have been omitted from this figure.

4.3 Experimental Evaluation

In order to validate the SECP model, and the applicability of DCOP solvers, we evaluate it on

simulated environments and use several DCOP algorithms to solve it.

4.3.1 Experimental Setup

We consider a realistic smart home with actuators (light bulbs), physical models and user-defined

rules. Notice that, for simplicity sake, we only consider light control in our experiments, even

though our model could be applied to other parameters in a house.

As presented previously, each actuator is represented by a variable xi associated with an efficiency

factor ei, which defines a cost function as a linear function of the emitted luminosity. Each physical

dependency model is represented by a pair (ϕj, yj), where ϕj is defined as weighted sums (weights

are randomly selected) of the luminosity levels emitted by the light bulbs in its scope and yield the

Kitchen

Entrance

TV

Desk

ltv2 ltv3 lk3

lk1 lk2

le1

ls1
Stairs

llv3
ld2

Living

Room llv2

ld1

ltv1 llv1

55

4.3. Experimental Evaluation

theoretical resulting luminosity in a given place as an indirect scene action variable yj . Finally,

each rules rk assigns target values to one or several scene action variables (actuators and models).

Variables, models and rules are randomly connected and we only consider active rules, which have

an actual influence on the problem. We use ωc = 1 and ωu = 10 as weights when aggregating the

two objectives (respectively for energy cost and rules utility).

Notice that the resulting DCOP is distributed using the GH-SECP-CGDP or GH-SECP-FGDP

algorithms, depending on the graphical model used by the algorithms selected to solve the problem.

These distribution methods are presented in Sections 5.3.1 and 5.3.2 respectively.

Each instance is then solved using a set of suboptimal DCOP algorithms, which are parametrized

as follow:

• DSA [157], a stochastic local search algorithm. We use the DSA-B variant with a probability

of parallelism p = 0.7.

• MGM [77], which has no specific parameter.

• MGM-2 [77], a 2-coordinated variant of MGM. We use q = 0.5 as a threshold for becoming

an offerer.

• A-MaxSum [36], an asynchronous implementation of the MaxSum algorithm. We use a

damping [23] factor of 0.2, applied both at factors and variables nodes and add noise to

energy cost constraints for easier tie breaking. Initial messages are sent at startup both from

leafs in the graph and variables.

We have selected these algorithms because they are very lightweight and fast and exchange generally

small messages, meaning that they should be ideal in our target environments made of constrained

devices with limited communication. Moreover, they are known to generally produce good quality

solutions.

We also solved the very same instances with a complete algorithm, DPOP. This gives us a reference

optimal cost to evaluate the quality of the solutions produced by other algorithms (if and when

DPOP is able to find it in a reasonable time). When using this complete algorithm (DPOP),

each instance is solved once with a 120-second time limit When using a sub-optimal algorithm

(A-MaxSum, MGM MGM-2, DSA), instances are solved 10 times with a 10-second time limit.

pyDCOP implementation (see Section 7) is used for all algorithms.

4.3.2 Increasing House Size

In this first experiment, we progressively increase the number of lights, physical models and rules

in the system, which represents progressively larger houses.

Each physical model is randomly connected to 1 to 4 lights and each rule is randomly connected

to 1 to 3 models or lights.

The smallest instances have 10 lights, 3 models and 2 rules, and the count of each of these elements

is linearly increased, by increments of 10 lights, up to 90 lights, 27 models and 18 rules. For each

problem size, 100 instances are generated and solved (900 in total). Overall, 36900 algorithms

executions are run for this experiment and results are averaged.

56

Chapter 4. A Model for Coordination in Smart Environments

4.3.2.1 Solving the Instances

The first interesting thing to notice is that DPOP does not always succeed in producing a result in

the 120-second time limit, even though we allowed it a much bigger timeout than for suboptimal

algorithms.

Table 4.1 lists the rate of failure when solving our instance with DPOP. We can clearly see that

DPOP struggles with bigger problems, where it fails on more than a third of the instances. This

can be explained by the fact that DPOP complexity is O(dw), where w is the induced width of

the pseudo-tree and d is the size of the largest domain. As we generate our instances randomly,

we don’t have a fixed width for the pseudo-tree and, when generating large instances, the resulting

pseudo-tree width also tends to be larger, which can easily lead to reaching the timeout when

computing the cost hypercube for an agent.

On the other hand, the suboptimal algorithms we are using here can be interrupted at any time and

thus always produce a result. We consider for now the result as produced at the end of a 10-second

timeout.

In the remainder in this section, figures will only report results for instances that were successfully

solved.

lights % of failure

10 0 %

20 0 %

30 2 %

40 2 %

50 1 %

60 16 %

70 17 %

80 34 %

90 43 %

Table 4.1 – Failed SECP instance when using DPOP

4.3.2.2 Hard Constraints Violations

The SECP model contains a mix of soft constraints (for rules utilities and actuators’ energy costs)

and hard constraints (for physical models), which is a difficult situation for many DCOP algorithms.

Therefore, we analyse here the number of hard constraints violated by each algorithm when solving

our instances.

57

4.3. Experimental Evaluation

25

20

15

10

5

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 4.8 – % of constraints violation for increasing size SECP instances with several DCOP

algorithms

Figure 4.8 shows the percentage of executions, across all instances, for which the solution was

found to violate a hard constraint in the DCOP. All our problems are feasible, thus DPOP, when

it succeeds in solving the problem, never violates any hard constraint and is not depicted here.

We can see that MaxSum tends to yield a large number of violations when the problems get

bigger, up to 15% when using 90 lights. We have tuned the algorithm’s parameters to avoid this

phenomena, especially damping and noise level. While this helps reducing it a lot (we got up

to 40% of violations on simple instances before tuning) we could not achieve better results with

A-MaxSum and the SECP problem definition. However, when studying the results produced by

A-MaxSum, we can see that most violations are due to a difference of 1 on the selected value for

one light variable, meaning that it would generally not be perceptible by end users. Moreover,

we believe these results could be further improved by a better handling of infinite costs for hard

constraints or by decimating [20] variables involved in these hard constraints.

MGM also tends to produce a large number of constraints violations, but for different reasons.

As it is monotonous and only allows a single variable to change it’s value, MGM gets very easily

trapped in local optima, especially with problems like the SECP where two variables must be

changed simultaneously to obtain a gain in cost. Unlike MaxSum Algorithm (MaxSum), we

observe that the solutions produced by MGM that contains violations can be arbitrary bad: once

a local optima has been reached it has no way of escaping it.

This can be easily seen by looking at results produced by Maximum Gain Message with 2-

coordination (MGM-2), the 2-coordinated variant of MGM, which never broke any hard con-

straints in our experiment. MGM-2 always considers the hard constraints first, as solving these

constraints yields the maximum gain. And as it is monotonous, once the hard constraints are

satisfied, it will never select a value that would break them when optimizing for the soft constraints.

Finally, DSA exhibits a low number of violations (approximatively 5%), which does depends on

the size of the problem.

amaxsum

dsa

mgm

mgm2

%
 o

f
c
o
n
s
tr

a
in

ts
 v

io
la

ti
o
n
s

58

Chapter 4. A Model for Coordination in Smart Environments

400

350

300

250

200

150

100

50

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 4.9 – Solution costs for increasing size SECP instances with several DCOP algorithms

4.3.2.3 Solutions Quality

Figure 4.9 shows the average cost of the solution found by each of the algorithms, only accounting

for instances that have been actually solved and that did not violate any hard constraint.

As DPOP is complete, it always produces the lowest cost, which we can use to evaluate the quality

of the solutions from other algorithms. We can see that MGM-2 and A-MaxSum produce very

good quality results. Given the fact that DPOP could not solve many of these problems, we argue

that MGM-2 and A-MaxSum are good candidates for solving SECP.

On the other hand, MGM and DSA produce similar results of relatively poor quality.

4.3.2.4 Execution Time

When solving the instances we allocated a 10-second time budget to suboptimal algorithms,

however, most of the time these algorithms actually find their solution and stop changing their

assignment much faster than this. In order to fairly compare the time at which each algorithm

could really deliver an assignment for the environment configuration, we now look at the time at

which each algorithm stopped changing its result.

Figure 4.10 plots these durations for each algorithm and each problem size. As we can see MGM

and DSA are the fastest algorithms on our problems, and exhibit a remarkable stable resolution

time as the problems grow. However, this is due to the fact that they rapidly get trapped in local

minima, as we have seen on Figure 4.9: their speed is actually achieved at the cost of their results’

quality.

A-MaxSum has relatively fast execution times. Given that it also has good solutions quality, this

reinforce our opinion that this algorithms is well suited for configuring AmI environment using

the SECP model.

On the other hand, based on Figure 4.10 MGM-2 seems to be quite slow compared to the three

previous algorithms. This is however not entirely true: Figure 4.11 shows the evolution of the cost

sum amax

dpop

dsa

mgm

mgm2

A
v
e
ra

g
e
 s

o
lu

ti
o
n
 c

o
s
t

59

4.3. Experimental Evaluation

S
o
lu

ti
o
n

 c
o
s
t

S
o
lu

ti
o
n

 c
o
s
t

8

6

4

2

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 4.10 – Execution time for increasing size SECP instances with several DCOP algorithms

of the solution output by MGM-2 on a typical large instance (90 lights) with a zoom, on the right,

on the behavior of the algorithm after 2 seconds. As we can see, MGM-2 produces a very good

results after 4 seconds, but still makes very small improvements up to after 7 seconds, which is

thus the time that is plotted on Figure 4.10. Therefore, we argue that MGM-2 has actually very

good response times.

175000

mgm2

150000

265

125000

100000

260

75000

255

50000

25000

250

0

0 2 4 6 8 10

Time (s)

3 4 5 6 7 8 9 10

Time (s)

Figure 4.11 – Solution cost over time for MGM-2 on a large SECP instance

Finally, DPOP exhibits the slowest performance on large problems, with a large variation across

instances. The situation is actually even worse than what is depicted on Figure 4.10 as instances

that could not be solved within the 120-second time budget are not taken into account on this plot,

which explains the decrease for the three largest instances sizes (a large proportion of the most

difficult instances could not be solved, hence we only plot the easiest once). DPOP’s complexity

induces very large computation on nodes with many pseudo-parents in the tree, which explains

these results.

sum

mgm2

amax

dpop

dsa

mgm

mgm 2

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n

 t
im

e
 (

s
)

60

Chapter 4. A Model for Coordination in Smart Environments

4.3.2.5 Impact on Communication

Finally, as communication protocols typically used AmI environments have limited bandwidth, we

also evaluate the communication load induced by each of these algorithm when solving the SECP

instances. We define the communication load as the sum of all messages exchanged by all agents

when solving the problem. Figure 4.12 plots the average number of messages and the average

communication load for each algorithm and each problem size.

8000

6000

4000

2000

0

10 20 30 40 50 60 70 80 90

Lights count

10 20 30 40 50 60 70 80 90

Lights count

Figure 4.12 – Messages count and communication load for increasing size SECP instances with
several DCOP algorithms

1600

1400

1200

1000

800

600

400

200

10 20 30 40 50 60 70 80 90

Lights count

Figure 4.13 – Messages count for increasing size SECP instances with several DCOP algorithms

When looking at the messages count, all algorithms seem to behave similarly, except MGM-2,

whose coordination mechanism generates a very large number of messages, which could prove to

be a problem on systems where latency might be high. However, this load should be minored, as a

large number of messages are due to very small improvements made during the second half of the

10-second time budget, as it has already been depicted for cost on Figure 4.11.

In order to compare other algorithms, we must look at Figure 4.13, which excludes MGM-2. Of

course DPOP has a very low number of messages, as each node only sends very few messages: one

VALUE and one COST message during the optimization process and at most one to each neighbor

amaxs

dpop

um

dsa

mgm

mgm2

14000

12000

10000

8000

6000

4000

2000

0

sum amax

dpop

dsa

mgm

A
v
e
ra

g
e

 m
e
s
s
a
g
e
s

 c
o
u
n
t

A
v
e
ra

g
e
 m

e
s
s
a
g
e
s

 c
o
u
n
t

A
v
e
ra

g
e

 c
o
m

m
u
n
ic

a
ti
o
n

 lo
a

d

61

4.3. Experimental Evaluation

for building the DFS Tree tree. Notice that, as previously, the figure for large instances does

not represents the reality of all instances, as many could not be solved. The last three remaining

algorithms present a reasonable number of messages, with A-MaxSum being more frugal than

DSA and MGM.

When looking at communication load, things are different: despite generating few messages,

DPOP generally has an high communication load, which seems to be correlated with the large

execution time we observe on Figure 4.10: as a matter of facts nodes with a large number of

pseudo-parents must generate, and send, very large cost hypercubes.

As for execution time, DSA and MGM have approximatively the same, very small, communication

load, which is due to the same reasons: as they get trapped in a local optima they quickly stop

exchanging messages and achieve small communication load and execution time, but poor quality

results.

We can also see that MGM-2 exhibits a relatively large network load, although not as high as the

message numbers could have suggested: indeed MGM-2’s coordination messages are numerous

but very small. Finally, A-MaxSum generates reasonable network load.

4.3.3 Increasing House Complexity

In this second experiment we generate problems with an increasing number of rules, for the same

number of physical models and lights. All our instances have 30 lights and 10 models and the

number of rules ranges from 1 to 9.

As previously, we generated 10 instances for each problem size and solved each of these instances

10 times with each suboptimal algorithms and once with DPOP.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 2 3 4 5 6 7 8 9

Rules count

Figure 4.14 – Average execution time for SECP with a growing number of rules, solved with
several DCOP algorithms

We can see on Figures 4.14, 4.15, and 4.16, that the results are very similar to what we observed

when increasing the number of lights, models and rules.

mgm2

amaxsum

dpop

dsa

mgm

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n

 t
im

e
 (

s
)

62

Chapter 4. A Model for Coordination in Smart Environments

Interestingly, we can observe that increasing rules density does not make the problem excessively

harder to solve, which means that the SECP model is able to cope with complex environments with

a relatively large number of rules. The main differences with the experiments from Section 4.3.2

is that no hard constraint was violated by any algorithms in these settings: it seems that hard

constraints violation depends on the problem size more than on its density.

200

175

150

125

100

75

50

25

0

1 2 3 4 5 6 7 8 9

Rules count

Figure 4.15 – Average solution cost for SECP with a growing number of rules, solved with several

DCOP algorithms

5000

4000

3000

2000

1000

0

1 2 3 4 5 6 7 8 9

Rules count

Figure 4.16 – Communication load for SECP with a growing number of rules, solved with several

DCOP algorithms

4.3.4 Conclusion of Experimental Evaluations

From these experiments on simulated smart home environments, we can see that the SECP

model, when mapped to a DCOP can be used to implement coordination among the devices in

environments.

sum amax

mgm2

mgm

dsa

dpop

sum amax

dpop

dsa

mgm

mgm2

A
v
e
ra

g
e
 c

o
m

m
u
n
ic

a
ti
o
n

 l
o
a
d

A
v
e
ra

g
e
 s

o
lu

ti
o
n
 c

o
s
t

63

4.4. Summary

We tested these problems with several off-the-shelf DCOP solution methods, which allows us to

draw the following conclusions:

• DPOP is not well suited for this use case: while it produces optimal solutions, its execution

time and communication load are prohibitive.

• MGM and DSA’s response time and communication load make them good candidates,

however, their tendency to be trapped in local optima and the resulting low quality of the

solutions they produce is problematic.

• MGM-2 is fast, produces good quality results and never violates any hard constraints.

However the communication load it induces is too high and the number of messages it

generates might be problematic, especially if the network has a high latency.

• A-MaxSum seems ideal, providing good results in reasonable time with a modest network

load. Moreover, its performance are remarkably stable as the problems grow in size and

complexity. However, the number of violations of hard constraints might be problematic.

As a consequence, we argue that suboptimal belief-propagation based algorithms like MaxSum

are best suited for these environments, but that variants of these algorithms should be developed to

better handle a mix of soft and hard constraints, which is a common situation when modeling real

world problems. Besides, we have only been using a standard ‘off-the-shelf’ version of MaxSum,

it would be useful to develop a variant specifically tailored for SECP, for example by using domain

pruning based on the model’s specific structure and characteristics, to mitigate these issues. For

large problems, cutting edges or decimating variables [20] could also help to reduce them to

smaller problem, which suffer less from hard constraints violation, as we have seen in our second

experiment. We keep these research directions as perspectives.

4.4 Summary

In this chapter, we have proposed a model for goal-oriented coordination among connected devices

in a Smart Environment. Devices operate themselves the configuration process, without supervi-

sion. The model makes use of physical relations between objects as to prevent the user to explicitly

specify the role of each object, easing the definition of rules and the introduction of new devices at

runtime.

We have shown that this model could be mapped to a DCOP and propose to use message-

passing methods to implement the coordination protocol. From our experiments on simulated

smart home scenarios, suboptimal belief-propagation algorithms like MaxSum are best suited for

the constrained devices commonly used in smart environment and our SECP model is a viable

approach for autonomous coordination among these devices.

In the next chapter we will tackle another challenge for applying DCOP-based model to real-world

situations by studying how this model can be deployed on physical devices in the house.

64

Chapter 4. A Model for Coordination in Smart Environments

65

Distribu5ting Decisions

In Section 3.3.2 we stated that most works are based on the assumption that there is a one-to-one

mapping between agents and variables in a DCOP. In this section, we discuss the limits of this

assumption when using DCOP on real-world problems and argue that, when abandoning it, we

must solve a distribution problem, as to decide how to map variables, and possibly constraints, to

the agents of the DCOP. We propose a definition for an optimal distribution and develop several

solution methods for computing optimal and approximate distributions.

5.1 On the Need of Decision Distribution

In this section we argue that the commonly used assumption on DCOP distribution does not hold

when working on real world problems and that it is necessary to consider the question of the

distribution of decisions over a set of agents. While few works currently exists in this domain, we

consider it to be an important part of using DCOP approaches in physical distributed environments.

5.1.1 Classical Representation and One-to-One Mapping Assumption

A DCOP is generally represented as a tuple (A, X , D, F , µ) where µ is a function that assigns the

control of each variable to an agent: µ : X → A. The agent hosting variable xi is given by µ(xi)

and we note µ−1(aa) the set of variables assigned to agent aa.

The classical assumption is that µ is a one-to-one mapping (see Section 3.3.2.2), which makes the

problem easier as one only has to reason on the variables and can practically ignore agents when

designing an algorithm.

This assumption is motivated by the fact that it is always possible to reformulate an arbitrary DCOP

D into a new one Dl where there is exactly one agent for each variable, by introducing either new

variables or new agents.

• When using the decomposition approach, one variable in Dl is created for each agent of D.

This variable encapsulates the sub-problem representing the variables initially assigned to

the agent by µ in D.

66

Chapter 5. Distributing Decisions

• When using the compilation approach, virtual agents are created in Dl so that each variable

in D is assigned to exactly one agent. At run-time a virtual agent representing a variable x i

is assigned to the real agent responsible for xi such that ak = µ(xi)

These two transformations indeed yield a new DCOP Dl where the assumption holds and µl is a

one-to-one mapping. However, in order to apply these transformations, the mapping µ must be

completely defined in the original DCOP. This is generally assumed to be true: as a matter of fact

µ is a part of the tuple (A, X , D, F , µ) that represents the DCOP in the classical definition.

From a MAS point of view, this definition of µ makes sense; the variables in the DCOP model

decisions required to reach the overall goal and the actions the agents perform in the environment

are based on these decisions: therefore one must decide which decision each agent is able to make.

This is the reason why µ is supposed to be a part of the problem’s definition, and not something

that one has to figure out when solving the problem.

However, when formulating a real world problem as a DCOP, µ is often not well-defined: several

definitions of µ are generally possible for the same sets of agents, variables, domains and constraints.

We give several reasons for this in the next sections.

5.1.2 Natural Assignment of Decision Variables

When implementing a DCOP in a distributed system, agents are embodied in physical objects

(computers, connected objects, etc.) and the actions/decisions of these agents are modeled as

variables.

For example, in [35], Farinelli et al. model a power-constrained sensor-network using a DCOP

where each variable represents the sleeping schedule of a device. In such a case, the assignment

of these variables is obvious and they are assigned to the agent whose sleeping schedule they are

modeling.

In general, a variable that models the decision of an agent naturally belongs to the agent that is

making, and potentially applying to the environment, that decision.

However it is common, when modeling a problem with a DCOP, to define variables that have no

natural relationship to a single specific agent. As we will see in the next sections, these variables

can either model shared decision or represent some abstract concept needed for decision (but

without being the decision itself). One can think of this kind of variables as modeling artifacts

or auxiliary variables. For these variables, the definition of µ is not directly given by the original

real-world problem definition.

5.1.3 Shared Decision Variables

A common example of such a situation can be found in the Event As Variable (EAV) model for

distributed meeting scheduling presented by Maheswaran et al. in [78]. In this model, agents

represent the resources required for the meetings. Each meeting is represented by one variable in

the DCOP and constraints are introduced to avoid overlap between two meetings that require the

same resources. For example, if meetings E1 and E2, whose start times are modeled with variables

x1 and x2, both require the resource A1, a constraint f1,2 between x1 and x2 ensures that the time

67

5.1. On the Need of Decision Distribution

x1
AB

x2
ACB

x4
ADE

B x3
BC

x5
EF

A A

D

E

F

(a) Mapping on 4 agents, a variable is always as-

signed to an agent required for the corresponding

meeting

(b) Mapping on 3 agents, a variable is always as-

signed to an agent required for the corresponding

meeting

Figure 5.1 – With the EAV model, the same meeting scheduling problem with 6 resources and 5

meetings has multiple reasonable variable mappings

slots assigned to the two meetings do not overlap, in order to avoid conflicts. These variables are

decision variables, but they model a shared decision among the agents/resources that participate in

a meeting and could be reasonably assigned to any agent that takes part to that meeting, as stated

by the authors.

Example 8. Figure 5.1 represents two possible definitions of the µ mapping function for a meeting

scheduling problem with 6 resources {A, . . . , F} and 5 meetings {E1, . . . , E5} whose starting

times are represented by variables {x1, . . . , x5}. Each resource is represented by one agent.

Resources required for each meeting are defined in table 5.1.

Meetings Resources / Agents

A B C D E F

E1 ,/ ,/

E2 ,/ ,/ ,/
E3 ,/ ,/
E4 ,/ ,/ ,/
E5 ,/ ,/ ,/

Table 5.1 – Resources required for each meeting in a sample meeting scheduling problem

In both depicted mappings, the shared decision variables are always assigned to an agent that

takes part in the decision; for example the variable x3 can be assigned to either agent B (see

Figure 5.1a) or C (see Figure 5.1b) as agents B and C represent resources that are both required

for the meeting E3 represented by x3.

Another approach for the meeting scheduling problem, called Private Event As Variable (PEAV) is

x1
AB

x2
ACB

x4
ADE

x3
BC

C

x5
EF

68

Chapter 5. Distributing Decisions

x1
AB

x2
ACB

C x3
AC

x

x

x x

A B

1 1
AB AB

A B

A A

3 2
AC ABC

B

2
ABC

A B

C C

C 3 2
AC ABC

(a) Mapping with the PEAV model (b) One possible mapping with the EAV model

Figure 5.2 – Mappings, with the PEAV and EAV models, of the same meeting scheduling problem

with 3 resources and 3 meetings.

also described in [78], where one variable is used for the decision of each agent and extra constraints

are introduced to ensure that these local decisions are consistent with each other. This model avoids

shared decision variables and exhibits a better respect of privacy. In PEAV, each variable belongs

naturally to an agent (which explains the privacy advantages) and there consequently is only one

logical µ mapping. However, the authors highlight that the EAV model outperforms PEAV by one

order of magnitude, meaning that EAV would be a much better choice if strong privacy is not a

prerequisite.

Example 9. Figure 5.2a represents the mapping of variables to agents using the PEAV model for

a meeting scheduling problem with 3 resources {A, B, C} and 3 meetings {E1, E2, E3} Here a

single meeting is represented by several variables, one for each of the resources taking part to that

meeting.

In contrast, the EAV model depicted in Figure 5.2b, requires only 3 variables, while 7 variables

are needed when using PEAV.

In general, we argue that even if a problem can be modeled such that each variable belongs logically

to a single agent, it is not necessarily a good option: depending on the requirements it might be

better to use a simpler model with fewer variables, in which case the µ mapping might not be fully

defined, as exemplified in the EAV model for meeting scheduling.

5.1.4 Auxiliary Variables

When modeling a complex problem, it is also common to introduce auxiliary variables in the

model, which only serve as modeling artifacts but do not map directly to anything in the original

problem.

As stated by Smith in [134], “auxiliary variables are variables introduced into a model, either

because it is difficult to express the constraints at all in terms of the existing variables, or to allow

the constraints to be expressed in a form that would propagate better, i.e. lead to more domain

x

x x

69

5.1. On the Need of Decision Distribution

reductions.“

For example, when modeling a graph partitioning problem, one approach presented in [34] is

to use binary variables xik ∈ {0, 1} to indicate if xi belongs to partition k. Then, variables

yijk = xik ∗ xjk are introduced and represent the fact that xi and xj belong to the same set k.

While xik s can be seen as decision variables, yijk s are clearly auxiliary variables: they do not map

directly to a decision and are only introduced to make the problem easier to model and/or solve (by

linearizing the otherwise quadratic problem, in this case).

When mapping the SECP model, introduced in Section 4.2, to a DCOP, scene action variables yj

are also auxiliary variables and do not represent any agent’s decision.

While common in general constraint reasoning, this kind of techniques is generally not used when

modeling a problem as a DCOP. Most works use an approach that we could call an agent-decision

based model: each variable only represents one single agent decision and the goal of the system

is represented as the sum of individual agent’s utilities (i.e. the social welfare), where each agent’s

utility is a function of the agent and its neighbors’ decisions. Of course, in such a model, mapping

variables to agents is straightforward.

Designing such a model is not always easy and generally leads to an high number of variables, as

it requires avoiding any shared decision variable (as discussed in Section 5.1.3) and any modeling

artifact variable. However, even when such a decision-based model is designed, it does not

guarantee that the mapping of agents to variable will be fully defined, when applying the model to

the real world, and implementing it on real devices.

5.1.5 Binary-Constraints Assumption and Auxiliary Variables

Besides the one-to-one mapping, another generally used assumptions in DCOP works is that the

problem only makes use of binary constraints (see Section 3.3.2.2). This means that for many

DCOP algorithms, which only support binary constraints, the ideal decision-based model must

be transformed into a DCOP with only binary constraints. Two classic methods are used for this

transformation: the dual graph method and the hidden variable method. These transformations

introduce new variables or constraints, whose mapping to agents is not obvious as we demonstrate

in the following example.

Example 10. Figure 5.3 represents the constraint graph and factor graph representations of a

very simple DCOP D = (A, X , D, F , µ) with 5 variables, 2 binary constraints and one 3-ary

constraint. In this DCOP the mapping µ is fully defined: each variable is assigned to exactly one

agent.

Binarization with the Hidden Variable Method. When applying the hidden variable method, D

is transformed into a new DCOP Dl = (A, X l, Dl, F l, µl) represented on Figure 5.4. A new

variable xf3 is introduced by the binarization process, to represent the constraint f3, along with 3

new binary constraints. As the constraints are not mapped to agents by µ, xf3 , which replaces f3,

is also not mapped to any agent by the mapping µl.

Binarization with the Dual Graph Method. Figure 5.5 represents the constraint graph of the

DCOP Dll = (A, X ll, Dll, Fll, µll), obtained by applying the dual graph method to D. One

70

Chapter 5. Distributing Decisions

x
f1

1 x2 x3

f3

a4
x4

f
2

x5

f1

f3

f2

x1 x2 x3

a4
x4

x5

x
f1

1 x
f
2 2 x4 x5

xf3

a3

x3

a1 a3 a1 a3

(a) Constraint graph representation (b) Factor graph representation

Figure 5.3 – A simple DCOP with a non-binary constraint

a1 a4

Figure 5.4 – Binarization with the hidden variable method

71

5.1. On the Need of Decision Distribution

xf1 xf3 xf2

F12 F23

x1 x2 x3

U1 U2 U3

x1 x2 x3

a1 a4

Figure 5.5 – Binarization with the dual graph method

variable has been introduced in Dll for each constraint in D. As constraints f1 and f2 were only

involving variables belonging to the same agent, we can reasonably assume that their mapping can

be applied to the variables xf1 and xf2 in Dll. However, the mapping of the variable xf3 , which

represents the constraint f3 in D, is not defined.

As we can see from this simple example, when applying binarization to a DCOP the mapping of

variables to agents introduces auxiliary variables whose assignment to agents is often not known,

even though the original DCOP was decision-based, had not auxiliary variable and had a fully

defined µ mapping.

5.1.6 Distribution of Factor Graph

In the classical DCOP definition, the mapping function µ assigns each variable to exactly one

agent. However, algorithms based on a factor graph representation of the DCOP usually also

require to assign constraints (a.k.a. factors) to agents. Indeed, as in these algorithms factor nodes

also sends messages, these nodes must be allocated to agents, which are responsible for performing

the computations required to generate such messages.

In [35], Farinelli et al. present two factor graph models for a sensor network coordination problem.

a1 a2 a3 a1 a2 a3

(a) Interaction-based factor graph (b) Utility-based factor graph

Figure 5.6 – Two possible factor graph models for a sensor network coordination problem

In the first model, called Interaction-based factor graph and depicted on Figure 5.6a, the factors

represent interactions between neighboring agents. To draw a parallel with the shared decision

variables (see Section 5.1.3), one can think of these factors as shared utility functions (in the

case of a maximization problem). In that model, the factor graph is a direct translation of the

constraint graph, and the factors that represent the interaction have no obvious allocation to agents.

On Figure 5.6a factor F12, which represents the interaction between agent a1 and a2, could be

assigned to any of these two agents.

The second model, called Utility-based Factor Graph, is depicted on Figure 5.6b. In this model,

each agent has a function that represents its utility. This function is linked to all variables that

72

Chapter 5. Distributing Decisions

influence that utility. With this model there is a clear allocation of variables and constraints to

agents: the µ mapping for variable is fully defined and each factor is also clearly assigned to

exactly one agent. However, designing such a model is far from obvious and has consequences

that might not be always acceptable. First, a utility-base factor graph requires to decompose the

overall objective function into a set of agent utility functions. This decomposition is domain-

specific, and generally harder to obtain than the interaction-based model. It’s not even sure that

it is always possible for an arbitrary problem. Furthermore, a utility-based model is generally not

computationally efficient: it leads to a higher number of factors, which have a higher number of

arguments, and creates loops in the factor graph. Factor graph-based algorithms usually struggle

when dealing with loopy graphs. For instance, MaxSum is complete and optimal on acyclic graphs

and approximate on loopy graphs, where it is not even guaranteed to converge. Given these issues,

it might be beneficial to avoid graph with many cycles, even if that involves using a factor graph

where some factors are not clearly allocated to a single agent.

As stated by the authors in [35], the choice of the factor graph representation is design choice

that depends on the application requirements. Depending on these, it is common to end up with

a DCOP definition where the mapping µ is not fully defined or/and where some factors are not

clearly allocated to a single agent.

5.2 A Generalized Definition of Distribution for Deploying DCOPs

In this section we give a definition for the distribution problem for a DCOP. This problem amounts

to finding a mapping of computations to agents, for a computation graph derived from a DCOP,

when using a given DCOP algorithm.

As exposed in the previous section, for numerous reasons the mapping of variables to agents might

not be obvious when using a DCOP approach on a real world problem. Furthermore, even when

this mapping is available, it might not be enough for algorithms which also require allocating

constraints to agents, and not only variables. In this section, we propose a generalized definition

of this mapping, which we call a distribution.

5.2.1 Distributing Computations

As DCOP algorithms are distributed message passing algorithms, they are defined as a set of

building blocks, where each block’s behavior consists in sending and receiving messages. We call

these building blocks computations, noted ci:

Definition 4 (Computation). In a DCOP algorithm, a computation ci is a piece of code that runs

on an agent and only interacts with other computations through message sending.

We note C the set of computations required to solve a DCOP with a given DCOP algorithm. These

computations communicate with each other through message sending and a computation can only

send messages to computations that it knows and depends on, forming a graph whose edges can

the defined as a set EC . We note N(ci) = {cj|(i, j) ∈ EC} the set of neighbors of ci in this graph.

Definition 5 (Computation Graph). A computation graph GC is a tuple (C, EC) where C is a set of

73

5.2. A Generalized Definition of Distribution for Deploying DCOPs

Figure 5.7 – Distribution of computations for an instantiated DCOP

computations and EC is a set of edges (i, j) representing the dependencies between computations.

Of course, the exact set of computations, and their dependencies, needed for a given system depends

on the DCOP used to model the problem (number of variables, constraints, etc.) and the DCOP

algorithm used to solve that problem. Some c ∈ C are associated with a variable, whose value they

are responsible for, while some other may serve other purposes. A DCOP algorithm defines what a

computation does: what type of messages it reacts to, the structure and the content of the messages

it sends, the conditions on which it selects a value for a variable (if applicable), etc. We can see

a DCOP algorithm as a set of computation definitions and it’s only when an algorithm is applied

to a problem modeled as a DCOP that we have a set of computations, as depicted on Figure 5.7.

As a matter of fact, the same DCOP can be instantiated as different sets of computations if solved

with different algorithms.

Once these computations are defined, based on the DCOP and the algorithm, one must assign

them to agents that will run them. We call this assignment a distribution.

Definition 6 (Distribution). Given a set of agents A and a computation graph GC = (C, EC), a

distribution is a mapping function ν : C 1→ A that assigns each computation to exactly one

agent. We note aa = ν(ci) the agent hosting the computation ci and ν−1(aa) the set of

computations

hosted on agent aa. Notice that this distribution ν is not necessarily the same function as the µ

mapping function; while µ maps variables to agents, ν maps computations to agents.

• Many DCOP algorithms define exactly one computation for each variable, in which case the

computation graph is equivalent to the constraint graph and µ = ν.

• However some algorithms define computations for each variables and constraints in the

DCOP, and the distribution ν must account for the constraint computations, which are not

considered by the mapping µ. When distributing computations for such algorithms, the

computations form a factor graph GF = (CX , CF , EF) (see Section 3.3.1.1) where CX are

the variable-bound computations, CF are the constraint-bound computations and EF are the

edges between these two types of vertices.

• Finally other algorithms, like for example partially centralized algorithms, may define a

single computation representing several variables and/or constraints.

As we can see, the distribution is a more general concept than the mapping of variables to agents and

better takes into account distributed implementation constraints. However, when such a mapping

is given –even partially– by the problem we want to solve, it must obviously be respected. When

defining a distribution, we should only distribute computations that are representing an element

DCOP

Problem
model

variables,

constraints, etc.
instantiate

Computation

graph distribute

Computations

on agents

Algorithm

computations’

definitions

74

Chapter 5. Distributing Decisions

Figure 5.8 – A sample computation distribution problem

(variable or factor) that is not already mapped to an agent by µ.

For example, in the problem depicted in Figure 5.6a for the sensor network coordination problem,

each variable is already mapped to an agent and the computations responsible for these variables

must obviously respect this mapping. We only need to define a distribution for the factors F12 and

F23.

Formally, we have seen that on some real life problems, µ is often not defined for all x ∈ X . We

denote Xp the subset of X for which we have a mapping:

µ : Xp 1→ A, Xp ⊆ X (5.1)

As a computation represents one or several variables or constraints, the set of computations can be

defined as follows, where +P denotes the power set excluding the empty set:

C ⊂ P+(X) ∪ P+(F) (5.2)

And in order to honor the mapping given by µ, ν : C 1→ A must respect the following:

(

µ(c) if c ∈ Xp

∀c ∈ C , ν(c) =
a, a ∈ A

(5.3)
otherwise

Now that we have defined the concept of distribution in a DCOP, we can explain why this approach

is better suited to real world problems than the classical mapping of agents to variables.

5.2.2 Devising a Distribution

As seen previously, devising a distribution amounts to allocating any computation that is not

already assigned by the mapping µ to an agent.

When devising this allocation, there are many elements that we can take into considerations. As a

matter of fact, the placement of the computations on agents can have an important impact on the

performance characteristics of the global system. Some distribution may improve response time,

some other may favor communication load between agents and some others may be better for other

criteria like QoS or running cost.

a1
a2

c3
c1 c1

c2
c2 c3

c4 a3 c4

75

5.3. A Naive Distribution for SECP

While distribution is seldom studied in the DCOP community, some recent works have started

tackling it. For example, in [62] Khan et al. analyze the placement of constraint graph nodes on

agents from a performance point of view; their objective is to find a placement that minimizes

the completion time of the DCOP. Like us, they argue that in many problems there are multiple

possible mappings of nodes to agents. However, they only consider variable nodes and do not

define a more general concept of distribution, which takes into account other types of nodes (factors,

several variables, etc.).

In in our work, we focus on applying DCOP for AmI scenarios. As stated in Section 4.2.1.1, the

constrained resources in this kind of environment are the processing power of the connected devices,

which act as agents, and the communication mechanism used among them, which is typically

wireless, low power and has limited throughput. Consequently, our distribution mechanisms focus

on these criteria and not specifically on the performance impact of the distribution, although we

also experimentally assess that the run-time performance is acceptable.

The distribution problem can be seen as an instance of the graph partitioning problem, which

typically falls under the category of NP-Hard problems [11, 34]. In graph partitioning, the vertices

of a graph are assigned to mutually exclusive groups. Vertices and edges of the graph are commonly

weighted, and the goal is to find a partition that minimize or maximize an objective function based

on these weights. The most common objective is to minimize the edge cut, defined as the sum

of the weights of the edges that cross between the groups. Devising a distribution also requires

partitioning the set of computations into mutually exclusive groups, which maps the agents that run

these computations, and the property expected from a distribution can be expressed using weights

on elements of the computation graph.

As we can see, many different criteria can be used when devising a distribution for a DCOP and

the definition of an optimal distribution is problem-dependent. Formally, once the criteria for

optimality have been defined, finding an optimal distribution is an optimization problem in itself

In the following sections, we present several approaches for solving this problem and distributing

DCOP computations in AmI environments.

5.3 A Naive Distribution for SECP

The Smart Environment Configuration Problem (SECP), introduced in Section 4.2, is a DCOP-

based model for coordination in AmI and SHE. In this model,

• the variables are either actuator variables xi ∈ X (A) or scene action variables yj ∈ X (Φ),

• the constraints are the energy cost functions of actuators ei ∈ F (A), the physical constraints

yj ∈ X (Φ) and rule utility constraints rk ∈ F (R).

In the SECP model, we assume that each actuator node has a computation capability. We consider

variables xi ∈ X (A) related to each actuator to be owned by their actuator’s node, meaning they

will always be deployed on this specific node. Therefore, a conventional µ mapping would associate

actuator variables to their corresponding agent/device.

Our first distribution mechanism, introduced in [128], is a very simple heuristic which aims at

reducing the communication load between agents by placing as much as possible computations

76

Chapter 5. Distributing Decisions

that communicate with one another one the same agent.

5.3.1 Distributing a Constraint Graph for SECP

When using an algorithm based on a constraint graph that only defines computations for variables,

the computation graph is equivalent to the constraint graph. A conventional µ mapping would

associate actuator variables to their corresponding agent/device and we only need to distribute the

computations for the scene action variables yj ’s.

In order to minimize communication load, we assign the computations for each yj to one of the

agents already hosting a variable that shares a constraint with yj . This of course only holds if the

algorithm supports n-ary constraints and we do not need to apply any binarization methods, which

would introduce additional auxiliary variables that must be distributed on agents.

Given this assumption, our heuristic distribution for a constraint graph-based SECP can be defined

as follows:

(5.4)

Definition 7 (GH-SECP-CGDP). We term Greedy Heuristic for SECP Constraint Graph Distri-

bution (GH-SECP-CGDP) the method for distributing a constraint graph representing a SECP

using that greedy heuristic.

5.3.2 Distributing a Factor Graph for SECP

Here, we represent the SECP model using a factor graph as exposed in Section 4.2.2, in order

to solve it using an algorithm like Max-Sum, which defines computations both for variables and

constraints. We can safely argue that energy-cost functions, which are unary constraints, must

be assigned to the same agent than the variables they are linked to. Consequently, we need to

distribute the scene action variables, the physical constraints, which we consider as a pair (yj, ϕj)

and the rule utility constraints rk .

To minimize the communication load, we place each pair (yj, ϕj) on an agent ai with i chosen

such that xi ∈ Sϕj , meaning that xi is one of the variables influencing yj . Similarly, a factor rk

is hosted on an agent ai such that xi ∈ Srk . Intuitively this means that the factor representing a

rule is always hosted on a agent affected by this rule. As to ensure a balanced computation load,

yj ’s, ϕj ’s and rk ’s are fairly distributed among the candidate agents. This gives us the following

definition for the distribution:

(5.5)

µ : X (A) ∪ X (Φ) → A

xi 1
→

ai ∀xi ∈ X (A)

yj 1
→

ai, xi ∈ Sϕj
∀yj ∈ X (Φ)

ν : X (A) ∪ F (A) ∪ X (Φ) ∪ F (Φ) ∪ F (R) → A

xi 1
→

ai ∀xi ∈ X (A)

ei 1
→

ai ∀ei ∈ F (A)

yj 1
→

ai, xi ∈ Sϕj
∀yj ∈ X (Φ)

ϕj 1
→

ai, xi ∈ Sϕj
∀ϕj ∈ F (Φ)

rk 1
→

ai, xi ∈ Srk ∀rk ∈ F (R)

77

5.4. Optimal Distribution for SECP

i j ∈ G

(a) Factor graph (b) Sample distribution

Figure 5.9 – Factor graph and a possible distribution on 3 agents for a sample SECP

Figure 5.9 shows a sample distribution obtained using this heuristic.

Definition 8 (GH-SECP-FGDP). We term Greedy Heuristic for SECP Factor Graph Distribution

(GH-SECP-FGDP) the method for distributing a factor graph representing a SECP using that

greedy heuristic.

Notice that these two definitions, for constraint graph and factor graph, still do not give us a fully

defined distribution. Several agent assignments are typically valid for the variables yj or the pairs

(yj, ϕj) and the factors rk . When implementing this heuristic, we use a greedy approach to select

one agent among the set of valid agents for a given computation: we select the agent, with enough

capacity, that is already hosting the highest number of computations that share a dependency with

the computation we are placing. In case of tie, we chose the agent with the highest remaining

capacity. By grouping interdependent computations, this approach favors distributions with a low

communication cost.

Of course, GH-SECP-CGDP and GH-SECP-FGDP are sub-optimal and offers no guarantee on

the quality of the resulting distribution. We will see in Section 5.6.1 how they perform.

5.4 Optimal Distribution for SECP

As discussed previously, computing a distribution is equivalent to graph partitioning (see Sec-

tion 5.2.2). While the approach discussed in the previous section is a naive heuristic that offers

no guarantee on the quality of the distribution, we now model this problem as a mathematical

optimization problem, which can be solved optimally. To scale up, we propose here an Integer

Linear Program (ILP), inspired by graph partitioning techniques from [16, 34].

In order to optimize the distribution for communication load, we need to formally define a measure

of this load. We note com(ci, cj) the communication load induced by the interaction between ci

and cj , which can be seen as the size of a message between these two computations and depends

on the algorithm used. With a computation graph GC = (C, EG), we define the communication

load as follows:

∀ci, cj ∈ C com(ci, cj) =

(
message size, if (c , c) E

(5.6)
0, otherwise

As the target environment for SECP is made of constrained devices, we also define wm ax(ak) the

memory capacity in bytes of agent ak ∈ A. Let mem(ci), ci ∈ C be the memory footprint for the

ϕ1 u2

a1

e1

a2 a3

x2 e2 e3

x1 y1 x3

e1

e2 ϕ1

e3

x1 s1

x2 y1 r2

x3 s2

78

Chapter 5. Distributing Decisions

i

i

i

k

computation ci. This can be, when using Max-Sum for instance, the size in bytes of the accumulated

messages costs messages from neighbor variables, in a factor computation. representing the costs

in a factor computation. When distributing computations on agents, we want to guarantee that the

agents’ capacities are not exceeded.

5.4.1 Distributing a Constraint Graph for SECP

We now devise an ILP for distributing a constraint graph-based computation graph GC = (C, EC).

First, let’s introduce a set of binary variables that map computations to agents: ck denotes whether

variable ci is distributed on agent ak :

∀ci ∈ C , ck =

(

1, if ν(ci) = ak

0, otherwise

Additionally we assume that the communication load between computations run by the same

agent is negligible, as it will use some kind of local communication mechanism (shared memory,

anonymous pipe, etc.) which is typically orders of magnitude faster that network communication.

We introduce another set of variables αijk which indicates if two computations are distributed on

the same agent:
∀ci, cj ∈ C , ak ∈ A, αijk = ck · ck

i j

Using these definitions, we can express the total communication load as follows,

)

(ci,cj)∈EC

)

ak∈A

com(ci, cj) · (1 − αijk)

This definition of αijk leads to a quadratic formulation but can be linearized as proposed in [3, 16]:

αijk ≤ ck, αijk ≥ ck + ck − 1

i i j

With a slight abuse of notation, we use X (A) ⊂ C to denote the set of computations representing

actuator variables. These computations are naturally mapped to their corresponding agent:

∀ci ∈ X (A), ∃ak ∈ A, ci ∈ µ−1(ak)

This can be expressed by the following constraint:

∀ak ∈ A, ∀ci ∈ µ−1(ak), ck = 1

Finally, to account for devices with limited memory, we add a constraint to avoid memory capacity

overflow:

∀ak ∈ A,
),

ci∈C mem(ci) · ci ≤ wm ax(ak)

Now, we are ready to model the distribution of the computation graph used to solve our SECP as

79

5.4. Optimal Distribution for SECP

i

i

i

k

k

a linear program:

Definition 9. (ILP for constraint graph SECP)

minimize
))

com(ci, cj) · (1 − αijk) (5.7)
ck k

i ,cj

subject to

(ci,cj)∈EC ak∈A

∀ci ∈ C ,
)

ck = 1 (5.8)
ak∈A

∀ak ∈ A,
)

c i∈C

ck ≥ 1 (5.9)

∀ak ∈ A, ∀ci ∈ µ−1(ak), ck = 1 (5.10)

∀ak ∈ A,
),

ci∈C mem(ci) · ci ≤ wm ax(ak) (5.11)

∀(ci, cj) ∈ EC, αijk ≤ ci (5.12)
k k

∀(ci, cj) ∈ EC, αijk ≥ ci + cj − 1 (5.13)

Objective (5.7) minimizes communications between computations which are not distributed on the

same agent. Constraint (5.8) forces each computation from the computation graph to be deployed

on exactly one agent. Constraint (5.9) enforces the use of all the available agents. Constraint (5.10)

enforces the placement of actuator variables on the agents representing these devices. Finally

constraints (5.12) and (5.13) link ck ’s and ck ’s to αijk in a linear way.
i j

Definition 10 (ILP-SECP-CGDP). We term Integer Linear Program for SECP Constraint Graph

Distribution (ILP-SECP-CGDP) the 0/1 integer linear program consisting of objective (5.7) and

constraints (5.8) to (5.13) which encodes the problem of distributing a constraint graph representing

a SECP.

Example 11. We consider a SECP, presented by Figure 5.10a, with 3 actuators {x1, x2, x3}, two

physical model {φ1, φ2} and one rule r1.

When using DSA, or any other constraint graph based algorithm, the DCOP for this SECP results

in a computation graph with 5 computations, depicted on Figure 5.10b.

As actuator variables are already mapped to devices, we only need to distribute the computations

cy1 andcy2 corresponding to physical model variables.

When using DSA, messages contain a single value:

∀ci, cj, comDSA(ci, cj) = 1

The footprint of a computation is proportional to the number of neighbors in the computation

graph:

∀ci, memDSA(ci) = |N(ci)|

If all agents have a capacity wmax(ci) = 5, when applying the ILP (Definition 9), computations

cy1 and cy2 are distributed on agents a1 and a3, as depicted on Figure 5.10c to respect capacity

80

Chapter 5. Distributing Decisions

cx1

cy1

cx2

cy2

cx3

(a) Factor graph representation (b) Computation graph

a1

a1

a2 a2

a3

a3

(c) When all capacities are equal to 5 (d) When a2 capacity is equal to 10

Figure 5.10 – ILP based distributions for a simple SECP with 3 actuators

constraints.

On the other hand, if agent a2 has a capacity of 10, these computations are distributed on agent

a2, as represented on Figure 5.10d which reduces communication load overall.

We will see in 5.4.3 how and when this ILP can be used to distribute a DCOP representing a

SECP.

5.4.2 Distributing a Factor Graph for SECP

When our SECP is modeled as a factor graph GF = (CX , CF , EF), an interaction can only occur

between a variable computation and a factor computation.

In that case, com is the size of the messages exchanged between the computation ci ∈ CX

representing the variable xi and the computation cj ∈ CF representing the factor fj . For easier

reading, and with a slight abuse of notation, we denote xi ∈ CX the computation ci representing

variable xi and fj ∈ CF the computation cj representing factor fj :

(
message size, if (xi, fj) ∈ EF

∀xi ∈ CX , fj ∈ CF , com(xi, fj) =
0, otherwise

Similarly to the constraint graph version, we introduce a set of binary variables that map factor

graph elements to agents: xk (respectively fk) denotes whether variable xi (respectively factor fj) i j

cx1

cy1

cx2

cy2

cx3

r1

e1

ϕ1
e2

ϕ2
e3

x1

y1
x2

y2
x3

cx1

cy1

cx2

cy2

cx3

81

5.4. Optimal Distribution for SECP

k

i

k

k

k

x j

i

k

i

j

i

X

is distributed on agent ak and αijk :

k

(
1, if ν(xi) = ak

∀xi ∈ CX , xi =

∀fj ∈ CF , fj =

0, otherwise

(
1, if ν(fj) = ak

0, otherwise

k k

∀xi ∈ CX , fj ∈ CF , ak ∈ A, αijk = xi · fj

As previously, we also add constraints ensuring that computations for actuator variable and energy-

cost factors are placed on the agent they are bound to by the µ mapping:

∀ak ∈ A, ∀ci ∈ µ−1(ak), ck = 1

Finally, as SECP deals with devices with limited memory, we add a constraint to avoid memory

capacity overflow:

∀ak ∈ A,
),

ci∈C

∪CF

mem(ci) · ci + ≤ wm a x(ak)

Using these notations, we model the distribution of the factor graph representing our SECP as a

linear program:

Definition 11. (ILP for factor graph distribution)

minimize
))

com(xi, fj) · (1 − αijk) (5.14)
xk k

i ,fj

subject to

(xi,fj)∈EF ak∈A

∀xi ∈ CX ,
)

xi = 1 (5.15)
ak∈A

∀fj ∈ CF ,
)

fj = 1 (5.16)
ak∈A

∀ak ∈ A,
)

k

xi∈CX

+
)

fj∈CF

fk ≥ 1 (5.17)

∀ak ∈ A, ∀ci ∈ µ−1(ak), ck = 1 (5.18)

∀ak ∈ A,
),

c i∈C

∪CF

mem(ci) · ci + ≤ wm a x(ak) (5.19)

∀(xi, fj) ∈ Ef , αijk ≤ xk

∀(xi, fj) ∈ Ef , αijk ≤ fk

(5.20)

(5.21)

∀(xi, fj) ∈ Ef , αijk ≥ xk + fk − 1 (5.22)
i j

Definition 12 (ILP-SECP-FGDP). We term Integer Linear Program for SECP Factor Graph

Distribution (ILP-SECP-FGDP) the 0/1 integer linear program consisting of objective (5.14) and

constraints (5.15) to (5.22) which encodes the problem of distributing a factor graph representing

a SECP.

X

82

Chapter 5. Distributing Decisions

e1

e2 r1

e3

x1 y1

x2

x3 y2

a1 a1

a2 a2

a3 a3

(a) When agents have limited capacity (b) When capacity is not an issue

Figure 5.11 – ILP based distributions for the SECP from Figure 5.10

As previously, objective (5.14) minimizes communications between computations which are not

distributed on the same agent. Other constraints ensure that each computation is distributed on

exactly one agent (5.16, 5.15), that every agent is hosting at least one computation (5.17) while

respecting agents’ capacities (5.19) and respecting the µ mapping (5.18). Finally (5.20), (5.21)

and (5.22) linearize the program.

Example 12. When using a factor graph based algorithm, like Max-Sum, to solve the SECP from

Example 11, the computation graph maps the factor graph (depicted on Figure 5.10a).

We now need to distribute computations for the factor nodes (actuators’ energy costs, physical

models and rule): {e1, e2, e3, ϕ1, ϕ2, r1} and the physical model variable nodes: {y1, y2}.

When using Max-Sum, the message size is a function of the size of domain of the variable:

comMaxSum(xi, fj) = comMaxSum(fj, xi) = |Dx i |

A variable computation stores, for each of it’s neighbors, the best known cost and the associated

value; thus it’s footprint is proportional to the size of the variable’s domain and the number of

neighbors. Factor computations need to store the last message from each of their neighbors, and

thus their footprint is a function of the sum of their neighbors’ domain size.

∀xi, memMaxSum(xi) = |N(xi)| · Dx i

∀fj, memMaxSum(fj) =
)

xi∈N(fj)

Dxi

When agents have limited capacity (for example 40, which the minimum needed in that case to

make distribution possible), applying ILP (Definition 11) results in the distribution represented on

Figure 5.11a.

On the other hand, if capacity is not an issue (for example when assigning a capacity of 100

to each agent) the ILP distributes all ‘distributable’ computations (i.e. distribution that do not

have a mapping) on a single agent in order to minimize communication load, as represented on

Figure 5.11b.

r1

e1

ϕ1
e2

ϕ2

e3

x1

y1
x2

y2

x3

 ϕ1

 ϕ2

83

5.4. Optimal Distribution for SECP

5.4.3 Solving the ILP for SECP Distribution

We have devised two models for distributing a computation graph representing a SECP. Our

distribution problem has been modeled as an ILP, and of course is NP-hard. To solve this ILP,

we can use efficient off-the-shelf solvers, commercial or open source, like Gurobi 1, CPLEX 2 or

GLPK 3.

When the instance is not too large it can be solved in reasonable time in a centralized manner with

branch-and-cut algorithm [85]. This algorithm is particularly efficient when the coefficient matrix

is sparse. which is generally the case with a SECP, because the constraint graph of such problems

is generally sparse and have some dense subgraphs corresponding to rooms and rules. Even though

these solvers are very efficient, they solve the problem in a centralized manner, which is far from

ideal in our target AmI and IoT environments. When boostrapping our system, this might not be

an issue: we can easily assume that the first time the system is installed in the home environment,

some kind of central computing device is available that can be used to compute an optimal initial

distribution for all the computations of our DCOP-modeled SECP.

However, when modeling the distribution problem for our SECP as an ILP, the resulting ILP is a

model of the full problem, including all devices and all the user defined rules, which are dynamic by

nature. This means that whenever a user add or remove a rule to the system, or when the definition

of an existing rule is modified, we should recompute the distribution. We could consider that at

these moments, as the user is modifying the set of rules, there might be some device available

where we could run the solver. For example the user interface may be running on a tablet or another

kind of mobile device that is powerful enough for this task. This, however, unfortunately rules

out any lightweight user-interface approach, which should be the target in the AmI philosophy,

where the user interface should be non-intrusive and even blends into the environment itself (see

Section 3.1.1).

Even if we can recompute the distribution using a centralized solver when the set of rules is

modified, the situation is different when devices enter or leave the system. In such events, the

distribution should also the re-computed, yet we do not have the possibility to solve the ILP on a

off-the-shelf solver, as the only available devices are the actuators and sensors, which are typically

low power devices. For these reasons, it would be ideal to be able to compute a distribution, or at

least fix an existing one, in a distributed manner.

There are some works that tackle the problem of solving ILP in a distributed way; for example

in [19] Burger et al. introduce a distributed simple algorithm designed specifically for multi-agent

tasks assignment, which is very close to our own problem. However, even in this distributed

version, computing the solution of the ILP on a computationally limited device is not realistic. We

will see in Section 6 how we can deal with such dynamics in our AmI, and in general IoT settings.

It should be noted that even when the ILP representation of the distribution problem cannot be

solved, either because it is too big or because there is no device available to run the solver, it is

still useful as its objective function provides us with a quality metrics that can be used to evaluate

1 . http://www.gurobi.com/

2 . https://www.ibm.com/analytics/cplex-optimizer

3 . https://www.gnu.org/software/glpk

http://www.gurobi.com/
http://www.ibm.com/analytics/cplex-optimizer
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk

84

Chapter 5. Distributing Decisions

comparatively several non-optimal distributions that have been obtained through heuristics or

approximate algorithms. We use this measure of quality for our experimental evaluations.

5.5 A Generalized Definition of Optimal Distribution for IoT Systems

In previous sections, we devised models for distributing a computation graph representing a DCOP

used to solve the SECP introduced in Section 4.1. Here, we extend this model to a more generic

definition of optimal distribution of computations in IoT systems.

5.5.1 Computation Graph Models

The concept of organizing many computations as a graph, with edges representing the dependencies

and communication between computations, is not specific to SECP nor DCOPs ; many other

computation models use this kind of organisation.

Computation graphs were initially introduced by Karp and Miller in [61] for modelling parallel

computing systems. In distributed computing, they are also generally known as Dataflow models

and have many variants like Kahn Process Network [59], or Synchronous Dataflow Model [72], to

name just a few.

The Bulk Synchronous parallel (BSP) model, introduced by Valiant in [141], and frameworks

implementing it like Pregel [80] or Apache Hama 4 for instance, leverage distributed computing to

process big data. In this model, the goal is to parallelize computations as much as possible, in order

to speed up the overall completion time by running then simultaneously on several computers.

Another example where computation graph are used in practice is Network Function Virtual-

ization (NFV), currently studied to simplify network management. Virtual Network Function

(VNF), which are essentially computations operating on network packets, are organized as graphs

called VNF Forwarding Graph (VNF-FG) and must be allocated to a physical infrastructure, in a

way that minimizes the utilisation of physical infrastructure while meeting the QoS requirements,

as discussed by Moens et al. in [87].

Recently, computation graphs have also been used to describe the computations required for deep

learning models and several works study the efficient distribution of the nodes of these graphs to

speed up computation [1, 150]. In all these models, the nodes of the graph represent tasks, or

computations, that must be placed on a physically infrastructure to run, and thus they are all, at

least to some extend, concerned with the distribution problem.

The placement of these computations has an important impact on the performance characteristics

of the global system: for example some distributions may improve response time by allowing

parallelism, some other may favor the communication load between the nodes and some other may

be better for other criteria like QoS, running and hosting cost, etc.

As discussed in 5.2.2, the distribution problem is equivalent to graph partitioning and the definition

of the objective depends on the problem domain. In our case, as we target AmI and more

generally IoT systems, our model takes two objectives into account for the definition of an optimal

distribution: communication efficiency and agents’ cost to host computations. Additionally, the

4 . http://ham a.apache.org/

http://hama.apache.org/

85

5.5. A Generalized Definition of Optimal Distribution for IoT Systems

distribution must satisfies physical constraints on the agent’s capacity.

5.5.2 Problem Definition

While the models previously proposed in Sections 5.4.1 and 5.4.2 for the SECP were designed

to compute an optimal distribution for a computation graph representing a DCOP, the model we

introduce here targets generic computation graphs and add several features that we consider to be

necessary in IoT systems.

Let GC = (C, EC) be a computations graph, and let A be the set of agents which can host the

computations ci ∈ C .

Communications. In IoT settings, communications are heterogeneous both in performance char-

acteristics and costs; they can range from hight speed fiber connection to cloud servers to low-power,

short-range, slow wireless connection between constrained devices in the Local Area Network. As

a consequence, for a distribution to be communication-efficient it should both generate as little

communication load as possible and favor the cheapest communication links.

We assume that all agents can potentially communicate with each other and model the communi-

cation cost with a cost matrix: route : A× A 1→ R+ where route(am, an) is the

communication cost between agents am and an.

We note msg(ci, cj) the size of the messages between the computations ci and cj . Using these

functions, we can define the communication cost between the computation ci hosted on agent am

and cj hosted on an as follows:

∀ci, cj ∈ C , ∀am, an ∈ A, coma(ci, cj, am, an) = msg(ci, cj) · route(am, an) (5.23)

Notice that this model for communication cost is quite flexible. We can, as previously, decide that

there is no communication cost when the two computations are hosted on the same agent by simply

setting:

∀am ∈ A, route(am, am) = 0

We could also assign a (typically small) non-null cost for intra-agent communication and even

specify different intra-agent communication costs depending on the type of agents.

This approach also allows modeling systems where some agents cannot communicate with some

other agents, by simply assigning infinite costs in this cost matrix.

Hosting Computations. When hosting a computation in an IoT environment, it is often desirable

to favor some agents for other reasons than communication only. For example some computation

might be very CPU intensive and we want to ensure it will be hosted on a server with a powerful

CPU. When using cloud resources, there might also be different cost for hosting a computation on

a given server, compared to another. Additionally some parts of the infrastructure might be less

prone to disconnection and some computations may be less tolerant to sporadic connection. Finally,

86

Chapter 5. Distributing Decisions

i

ij

i

ij

i

especially in IoT, some computation might be tightly linked to one specific physical element, as it

is for example the case in our SECP model, and can only be reasonably hosted on that element.

We model this affinity, or repulsiveness, between an agent and a computation with a function

cost : A × C 1→ R+ that assign a cost for each pair (am, cj).

Notice that one can easily force a computation cj to be hosted on a specific agent an by assigning

an infinite hosting cost for all other agents:

∀ci ∈ C , ∀am ∈ A, cost(ci, am) =

(
0 if i = j and m = n

∞ otherwise

Capacity. As in previous models, we also consider that an agent can only host a limited number of

computations and model this with agents’ capacity and computations’ footprint noted respectively

wm ax(am) and mem(ci)

Using these definitions, we define an IoT optimal distribution of a computation graph as follows:

Definition 13 (IoT optimal distribution). An IoT optimal distribution is a distribution ν that

minimizes the cost of communication between agents and minimize the cost of hosting computations

while respecting the agents’ capacity constraints.

Definition 14 (CGDP). Given a computation graph and a set of agents, the Computation Graph

Distribution Problem (CGDP) amounts to assign each computation of the computation graph to

an agent to obtain an IoT optimal distribution.

5.5.3 Linear Program for Optimal Distribution

We can now encode our IoT optimal distribution problem as ILP, as we did for the SECP.

Let cm be a binary variable denoting whether the computation ci is hosted on agent am. The binary

variable and αmn denotes if both computation ci is hosted on agent am and cj is hosted on an.

∀c i ∈ C , cm =

(
1, if ν(ci) = am

0, otherwise

∀ ci, cj ∈ C , αmn = cm · cn

ij i j

Our communication efficiency objective amounts to minimize the communication cost for all edges

of the computations graph and can be written as follow:

minimize
m
i

)

(i,j)∈EC

)

(m,n)∈A2

coma(ci, cj, am, an) · αmn

Additionally, the hosting cost objective can be written as follow:

minimize
m
i

)

(c i,am)∈X×A

cm · cost(am, ci)

c

c

87

5.5. A Generalized Definition of Optimal Distribution for IoT Systems

ij

i

i

i

By aggregating these two objectives with penalizing factors ωcom and ωchost , we can define our

distribution problem as a mono-objective optimization problem, modeled through the ILP:

minimize
m
i

ωcom ·
)

(i,j)∈EC

)

(m,n)∈A2

coma(ci, cj, am, an) · αmn

+ ωchost
·

subject to

)

(ci,am)∈C×A

cm · cost(am, ci) (5.24)

∀am ∈ A,
)

mem(ci) · cm ≤ wm a x(am) (5.25)
c i∈C

∀ci ∈ C ,
)

am∈A

cm = 1 (5.26)

∀ci ∈ C , αmn ≤ cm
 (5.27)

ij i

∀cj ∈ C , αmn ≤ cm
 (5.28)

ij j

∀ci, cj ∈ C , am ∈ A, αmn ≥ cm + cn − 1 (5.29)
ij i j

This ILP is flexible enough to accommodate a large panel of IoT scenarios; by using appropriate

communication and hosting cost matrices one can for example easily use it to reproduce the ILPs

designed specifically for a DCOP representing a SECP, both for constraint graph or a factor graph

based algorithms.

Definition 15 (ILP-CGDP). We term Integer Linear Program for CGDP (ILP-CGDP) the 0/1

integer linear program consisting of objective (5.24) and constraints (5.25) to (5.29) which encodes

the CGDP problem (Definition 14).

This program gives us a definition of an optimal distribution, and can be solved by classical

centralized solvers. However, the complexity is still very hard and it is only possible for relatively

small systems. AmI systems, and more generally IoT systems can be very large, meaning that this

approach would most probably not scale. Even though, the objective function can still be used to

evaluate the quality of approximate distribution method, as we do when evaluating our approaches

experimentally in Section 5.6.

5.5.4 Greedy Heuristic for Computation Graph Distribution

As ILP-CGDP might be too difficult to solve for large system, we also developed a heuristic

that computes an approximate distribution. This approach is a greedy heuristic similar to those

introduced in Sections 5.3.1 and 5.3.2, except communication costs now takes into account the

route, as we do for ILP-CGDP. Moreover, this heuristic is designed for generic computation graph

and thus works for both constraint graph and factor graph based algorithms.

We start by placing the computation with the highest footprint, and select the agent with enough

remaining capacity that incurs the lowest aggregate communication and hosting costs. In case of

ties, we chose the agent with the highest remaining capacity.

Of course, this greedy heuristic is suboptimal, but allows computing a distribution easily even for

c

88

Chapter 5. Distributing Decisions

500

400

300

200

100

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 5.12 – Distribution costs for increasing size SECP instances with several SECP-specific
distribution methods

large systems. Notice however that if the system is severely constrained capacity-wise, it may fail

to find a distribution even though one exists and would be found by ILP-CGDP (provided the ILP

can be solved in a reasonable time).

Definition 16 (GH-CGDP). We term Greedy Heuristic for CGDP (GH-CGDP) the method for

distributing a computation graph using that greedy heuristic.

5.6 Experimental Evaluations

In this section, we evaluate our distribution methods on several problems types, both on randomly

generated SECP instances and on classical benchmark problems.

5.6.1 Evaluation of SECP-specific Distribution Methods

First, we evaluate our distribution methods for SECP: GH-SECP-CGDP and ILP-SECP-CGDP

for constraint graph based algorithms and GH-SECP-FGDP and ILP-SECP-FGDP for factor

graph based algorithms.

We generate random SECP instances with the same methods used in Section 4.3, with a growing

number of lights, physical models and rules.

Then, we distribute each instance using our four solutions methods. We used DSA for the constraint

graph algorithm and MaxSum for the factor graph algorithm.

Figure 5.12 shows the costs of the distribution obtained using these four methods. Notice that

the distribution costs, for the same original problem, for a constraint graph and a factor graph

algorithm should not be compared: the costs represents the communication load between nodes in

the graph that are not placed on the same device, and a factor graph representation induces many

more computations than a constraint graph.

We can see from this figure that our two heuristics, GH-SECP-CGDP and GH-SECP-FGDP

ECP-CGDP

ECP-CGDP

ECP-FGDP

ECP-FGDP

GH-S

ILP-S

GH-S

ILP-S
A

v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

89

5.6. Experimental Evaluations

produce distribution whose cost is very similar to the optimal distribution from the ILP based

methods ILP-SECP-CGDP and ILP-SECP-FGDP. The optimal distribution’s costs are only 3%

better that the approximate distribution produced by our heuristics.

Notice however that, while it never happened in our experiments, it is possible to have a SECP

that the heuristics fail to distribute even though a distribution exists, and is of course found when

using the ILP approach.

Figure 5.13 represents the average time, in seconds with a logarithmic scale, required to compute

each of these distributions; we can clearly see that the heuristics are much faster than the optimal

methods, especially when the problems grow larger. Our heuristics never need more than 0.1

seconds while the time grows exponentially when using an ILP.

101

100

10−1

10−2

10−3

10 20 30 40 50 60 70 80 90

Lights count

Figure 5.13 – Times for computing a distribution for increasing size SECP instances with several

SECP-specific distribution methods

5.6.2 Evaluating the Generalized Distribution for IoT Systems on Benchmark Prob-

lems

In this first experiment we use our optimal and heuristic distribution methods on two different types

of DCOPs traditionally used for benchmarks: random graph soft coloring problems and scale free

graph coloring problems.

Random soft coloring problems are generated by creating a random graph with density p = 0.2.

Each edge is then mapped to a binary constraint (whose cost function has no influence on the

distribution) and each vertex is mapped to a variable with a domain made of 5 colors. Scale

free problems are derived, using the same approach, from scale free graphs generated using

the Barabàsi-Albert model [8] (starting from a 2-node connected graph), which are known to

adequately model IoT systems [151]. In both cases, we generate instances with an increasing

number of variables: |X | ∈ {12, 24, . . . , 84}. For each variables count, we generate 10 instances.

Then, for each problem instance, we generate three different infrastructures made of a set of agents,

such that the number of variables is 2, 3 or 4 bigger than the number of agents (denoted ‘da’ for

density agent in the figures’ legends). This allows us to evaluate the effect of the density of the

ECP-CGDP

ECP-CGDP

ECP-FGDP

ECP-FGDP

GH-S

ILP-S

GH-S

ILP-S

A
v
e
ra

g
e
 E

x
e
c
ut

io
n

 ti
m

e
 (
s
)

90

Chapter 5. Distributing Decisions

of p = 0.2 has
82×(82−1)×0.2

system, when each agent must host on average more computations.

These problems are then mapped to two different computation graphs, for DCOP algorithms based

on constraint graph and factor graphs. Finally, we use our two methods, ILP-CGDP and GH-

CGDP to compute a distribution based on our concept of a generalized definition of computations

distribution for IoT systems.

We use pyDCOP (see Section 7) for generating the problem instances, the computation graph and

the agents, and for computing the distributions. For solving the linear program ILP-CGDP is

based on, pyDCOP relies on the GLPK 5 solver and a time budget of 30 seconds is used.

Figure 5.14 represents the time, in seconds with a logarithmic scale, required to compute the dis-

tribution of random graph coloring problems when using an algorithm based on a constraint graph

representation, with several agent densities, using the two methods. As we can see ILP-CGDP is

very quickly blocked by the 30-seconds time limit, even though the constraint graph representation

requires few computation compared to a factor graph representation. When removing that limit,

it requires an unreasonable amount of time, up to more than 45 minutes, for a problem with 72

variables. Distribution becomes harder as the problems grow in size, and when the average number

of computation per agent gets lower: we manage to compute a distribution for up to 48 variables

when da = 4 but all distributions with more than 36 agents fail when da < 4. On the other hand

the distribution time when using GH-CGDP stays very small and, while it also increases with the

problem size, the number of computations for each agent has little effect.

When using a factor graph representation, the situation is similar but the problem is even harder and

we can only distribute optimally problems with 24 variables using the ILP with a 30 seconds time

limit, as depicted on Figure 5.15. The GH-CGDP heuristic manages to compute a distribution

for all instances, but the time required increases very quickly. The difference with the results

when using a constraint graph representation can be explained by the fact that a factor graph

representation of the same problem requires many more computations, as we have computations

for variables and constraints. For example, an instance with |X | = 82 variables and a graph density

2 ≈ 664 edges, each of which represents one constraint. Thus, we have

to distribute 664 + 82 = 746 computations, while the constraint graph only requires to distribute

82 computations, one for each variable in the problem.

5 . https://www.gnu.org/software/g lpk/

https://www.gnu.org/software/glpk/

91

5.6. Experimental Evaluations

102

101

100

10−1

10−2

10−3

12 24 36 48 60 72 86

Variables count

Figure 5.14 – Time for distributing random graph coloring problems with optimal and heuristic

methods, when using a constraint graph representation

102

101

100

10−1

10−2

10−3

12 24 36 48 60 72 86

Variables count

Figure 5.15 – Time for distributing random graph coloring problems with optimal and heuristic
methods, when using a factor graph representation

Figure 5.16 and 5.17 represent the costs of the distributions produced by ILP-CGDP and GH-

CGDP on random graph coloring problems, when using respectively a constraint graph and factor

graph representation. As optimal distributions for large problems could not be computed using

ILP-CGDP, only smaller instances are plotted. We can see that the suboptimal distribution

methods produces very good quality results, while requiring several orders of magnitude less time.

 GH-CGDP - da 2

GH-CGDP - da 3

GH-CGDP - da 4

ILP-CGDP - da 4

ILP-CGDP - da 3

ILP-CGDP - da 2

GH-CGDP - da 2

GH-CGDP - da 3

 GH-CGDP - da 4

ILP-CGDP - da 4

ILP-CGDP - da 3

ILP-CGDP - da 2

D
is

tr
ib

u
ti
o
n

 ti
m

e
 (
s
)

D
is

tr
ib

u
ti
o
n

 ti
m

e
 (
s
)

92

Chapter 5. Distributing Decisions

1600

1400

1200

1000

800

600

400

200

12 24 36 48 60 72 86

Variables count

Figure 5.16 – Distribution cost for random graph coloring problems with optimal and heuristic

methods, when using a constraint graph representation

17500

15000

12500

10000

7500

5000

2500

0

12 24 36 48 60 72 86

Variables count

Figure 5.17 – Distribution cost for random graph coloring problems with optimal and heuristic

methods, when using a factor graph representation

Figures 5.18 and 5.19 show the same metrics on scale free graph coloring instances, limited to 36

variables and with a constraint graph representation. We can see that both distribution methods

behave exactly as they did on random graph coloring problems: the ILP based optimal distribution

method can only be used on small instances, but the heuristic approach is very fast and can handle

large problems, while still producing near-optimal distributions. Results are also similar when

using a factor graph representation, which is why we do not include extra figures for it.

DP - da 2

DP - da 4

DP - da 4

DP - da 3

DP - da 2

GH_CG

GH_CGDP - da 3

GH_CG

ILP_CG

ILP_CG

ILP_CG

P - da 2

P - da 3

P - da 4

P - da 4

P - da 3

P - da 2

GH-CGD

GH-CGD

GH-CGD

ILP-CGD

ILP-CGD

ILP-CGD

A
v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

A
v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

93

5.6. Experimental Evaluations

102

101

100

10−1

10−2

10−3

12 24 36

Variables count

Figure 5.18 – Distribution time for scale free graph coloring problems with optimal and heuristic
methods, when using a constraint graph representation

500

400

300

200

12 24 36

Variables count

Figure 5.19 – Distribution costs for scale free graph coloring problems with optimal and heuristic

methods, using a constraint graph representation

5.6.3 Evaluating Generalized Distribution on SECP

In this second experiment, we use our optimal and heuristic distribution methods on DCOPs

representing SECP instances. We generate instances with increasing numbers of lights, physical

models and rules, using the same protocol than described in Section 4.3.2: 20 instances are

generated for each problem size and distributed using GH-CGDP and ILP-CGDP (with a 30

seconds time limit as previously), when using a constraint graph representation and a factor graph

representation.

Figure 5.20 shows the time required to compute the distribution when using constraint graph (5.20a)

and factor graph (5.20b) representations of the DCOP. We only plot optimal distribution times for

problem sizes for which all instances could be distributed. As for standard benchmark, distribution

GH-CGDP - da 2

GH-CGDP - da 3

GH-CGDP - da 4

ILP-CGDP - da 4

ILP-CGDP - da 3

ILP-CGDP - da 2

GH-CGDP - da 2

GH-CGDP - da 3

GH-CGDP - da 4

ILP-CGDP - da 4

ILP-CGDP - da 3

ILP-CGDP - da 2

A
v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

D
is

tr
ib

u
ti
o
n

 ti
m

e
 (
s
)

94

Chapter 5. Distributing Decisions

is harder to compute when using a computation graph based on a factor graph representation and

the optimal distribution is restricted to relatively small instances while the heuristic distribution can

be used on very large instances: it can easily deal with SECP with 90 lights and could distribute

much larger instances.

102
 102

101

101

100

100

10−1

10−1

10−2

10−3

10−2

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Lights count

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 90

Lights count

(a) Constraint graph representation (b) Factor graph representation

Figure 5.20 – Time for distributing SECP instances with optimal and heuristic methods

Figure 5.21 and 5.22 depict the distribution costs for our SECP instances when using the heuristic

and optimal methods, respectively with a constraint graph and factor graph representation. As the

distribution cost is made of communication and hosting costs (see Definition 15), we also plot the

communication and hosting components. Notice that we include in this figure the optimal cost

of distribution for all problems size for which at least some instances could be distributed. As

previously, we can see that GH-CGDP produces very good quality distributions while requiring

several orders of magnitude less time.

5000

4000

3000

2000

1000

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 5.21 – Cost of distributions for SECP instances with a constraint graph representation

P-CGDP

H-CGD

IL

G P

GDP aggre gated cost

munication (I

ng (ILP-CGD

LP-CGDP)

P)

GDP aggre

munication (

gated cost

H-CGDP)

hostin g (GH-CGD P)

ILP-C

com

hosti

GH-C

com G

A
v

e
ra

g
e
 t

im
e
 (

s
)

A
v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

A
v

e
ra

g
e
 t

im
e
 (

s
)

95

5.7. Summary

14000

12000

10000

8000

6000

4000

2000

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 5.22 – Cost of distributions for SECP instances with a factor graph representation

5.7 Summary

In this chapter, we argued that distribution is a major concern when applying DCOP approaches

on real-world problems, especially when dealing with AmI and IoT systems.

Then, we proposed several techniques for computing such distributions. Our first three techniques,

GH-SECP-CGDP (Definition 7), GH-SECP-CGDP (Definition 8) and ILP-SECP-CGDP (Def-

inition 10) are designed specifically for the SECP model introduced in Section 4.1 and are differ-

entiated according to the graph model used by the different DCOP algorithms.

We also introduced the idea of a Computation Graph to model the more generic case of arbitrary

graph models and to account for the various types of DCOP algorithms. Based on this model,

be proposed two methods, ILP-CGDP (Definition 15) and GH-CGDP (Definition 16) for the

distribution of these computations over a set of agents, focusing on characteristics of IoT systems:

communication and devices capacities.

Based on our experimental evaluations of these distribution methods, both on SECP instances

and classical benchmarks, we conclude that computing an optimal distribution is unrealistic in all

but the smallest problems. However, the definition of an optimal definition is a very useful tool,

as it gives us a metric to evaluate the quality of suboptimal distributions. Indeed, the heuristic

distribution methods we devised produce very good quality results while requiring several orders

of magnitude less time to compute. These methods are thus realistic even on large systems.

CGDP aggre

munication (I

gated cost

LP-CGDP)

ng (ILP-CG

CGDP aggre

P)

gated cost

munication (H-CGDP)

hostin g (GH-CG P)

ILP-

com

hosti

GH-

com

D

G

D

A
v
e
ra

g
e
 d

is
tr

ib
u
tio

n
 c

o
s
t

96

Chapter 5. Distributing Decisions

97

6

Resilient Decision-Making in

Dynamic Environments

In the previous chapters, we designed the SECP, a model for autonomous coordination among

devices in a AmI environment, and used DCOPs to implement it on real settings. Then, we

discussed the need of distributing the computations required for these DCOPs on the devices,

which we consider as agents. However, up to now our SECP have been defined as a static problem,

which does not change during runtime. Yet, we identified in Section 5.4.3 that there are cases

where the problem might change and we would need to recompute an updated distribution. In this

chapter, we take things further and study the dynamic aspect of the SECP and devise techniques

to ensure that our system adapts to these changes.

6.1 Decisions in a Dynamic Environment

The SECP has not been defined as a dynamic problem. However, when deploying such distributed

systems in open environments like the one envisioned by AmI and IoT, it is difficult to consider

that the problem, including the devices that runs it, will never change during its active lifetime. We

will now see the types of changes that may happen at the SECP level and how they translate at the

DCOP level.

6.1.1 SECP is a Dynamic Problem

The SECP is designed to model an AmI system where devices cooperate autonomously, without any

centralized decision point, to reach user-defined objectives in a home environment. In Section 4.1.2

we defined the main components of this model: Devices (sensors and actuators), Scenes (a.k.a.

Rules) and Physical Models for the environment states. Let’s review for each of these elements the

potential changes that could happen during the lifetime of the system.

Devices. As a home is a living environment, the set of devices available within it is also not

fixed and may change relatively frequently. The most obvious reason is that users buy new devices

and expect them to work seamlessly with the existing system and its configuration. Additionally,

devices fail and might be replaced by new devices with different, although generally similar,

98

Chapter 6. Resilient Decision-Making in Dynamic Environments

characteristics: for example when replacing a broken light bulb, a user will generally buy a new

one from a more recent generation, with a better energy efficiency and thus a different ei energy-

cost function. Finally, some devices are mobile by design: for instance, a smartphone is carried

by the user, meaning that it will be available in the system when the user is at home and absent

otherwise.

Scenes. Another obvious reason for change in a SECP are the scenes, whose rules define the user

objectives. During the nominal use of the system, users will generally add, remove or modify rules

to better fit the system to their preferences and adapt them to potentially changing life routines.

For example, An user who is coming home everyday at 5PM will have some rules that depend on

that time and that will need modifications in the case this schedule is altered.

Physical Models. Changes on physical models, which represent the relation between actuators

and the environment, might be less obvious but they are inevitable, nonetheless. First, when

a device is added or removed, one or several physical models may need to be modified to take

into account their effects. Additionally, we stated in Section 4.1.4 that online machine learning

approaches could be used to improve the definition of these models over time, meaning that the

definition of the model’s function ϕj might evolve even without any change in the set of devices in

its scope. Notice that some changes of these models can be avoided by integrating sensors variable

in their scope. For example, the light level in a room clearly depends on the time of day, but we can

avoid continuously changing the model by defining a clock sensor that represents time and defining

a model function that depends on this sensor value.

Environment. Although we do not model it explicitly in SECP, all the aforementioned elements

are connected to an environment that may also change over time. We assume here that all changes

in the environment that are significant for our problem would be captured through sensor devices,

which the physical models rules depends on: time, temperature, luminosity, etc. Of course, some

changes may not be visible for our sensors. For example, a wall might be removed or a new window

created, but for such major modifications, we argue that the system would need to be reconfigured

or re-installed manually anyway.

6.1.2 Impacts of SECP dynamics at the DCOP level

As we have seen, all elements of the SECP might undergo changes during the nominal execution

of the system. We want these changes to be taken into account automatically, without any user

intervention, by the system, which should keep working normally and work toward the possibly

changing user goals. We will now review how these changes at the SECP level translate on the

DCOP that is used to implement it.

Devices. When a device is added or removed from a SECP, so is the corresponding actuator (or

sensor) variable xi and energy cost function ei in the DCOP. Additionally, the agent embodied in

that device is also added or removed.

99

6.1. Decisions in a Dynamic Environment

Scenes. When a rule is added or removed, a corresponding constraint, represented by a utility

function rk , is added or removed as well. When a rule definition is modified, the corresponding

constraint (utility function) in the DCOP is also modified. This modification may only involve the

definition of the function but it can also include modification of its scope.

Physical Models. A physical model can undergo several kinds of changes, which translate into

a change in the definition of the corresponding constraint ϕj , potentially including its scope.

Additionally, when a physical model is added or removed, so are the corresponding constraint and

variable used to represent that model.

6.1.3 Dyn-DCOP, a Framework for Handling Dynamics in DCOPs

One extension of the DCOP framework, namely Dyn-DCOP (see Section 3.3.2.3), deals with

problems whose definition changes during execution, as is it the case in the SECP model. Building

on Dynamic Constraint Reasoning (DCP) [115], a Dyn-DCOP is generally represented as a

sequence {P1, P2, . . . Pn}, where each Pi is a static DCOP resulting from some changes in the

definition of the previous one Pi−1.

6.1.3.1 Handling Changes in a Dyn-DCOP

The objective, when working on a Dyn-DCOP, is thus not to produce a single assignment that

optimizes the constraints of the problem, but to maintain an up-to-date valid assignment and to

update it to adapt to the changing definition of the problem. Of course, after some change, the

current assignment may become invalid or incur unacceptable costs, and the system must react as

quickly as possible to restore the quality of the solution. It is a continuous process, with no defined

end, which runs as long as the system is used.

Two major approaches can be found in the literature to handle Dyn-DCOPs:

Reactive Approach. The classical approach, described as reactive [69, 106, 107, 152], is directly

based on the model of a sequence of static DCOPs, where future DCOPs are entirely unknown.

Each static DCOP is simply solved sequentially; any time the problem changes, the new DCOP is

solved and the previous solution replaced. The advantage of this approach is that it can theoretically

be used with any DCOP algorithm. One drawback of this approach is that this is only applicable

if the rate of change is slow enough, compared to the time required to solve one of the DCOPs

in the sequence, to terminate solving the problem before a new change occurs. Otherwise, the

system would keep solving outdated problems and might even never produce a solution, as it

restarts solving a new problem even though no solution as yet been found for the previous one.

To avoid this issue, researchers have proposed algorithms that reuse information from previous

DCOP to speed-up the search of the current one. A variant of this approach, also reactive, is to

use DCOP algorithms that can dynamically adapt to the changes and keep working on the updated

problem without restarting from scratch. Some works also consider the costs of switching from

one solution to another and take this cost into account when selecting a solution for the next DCOP

in the sequence. The target here is solution stability, which considers the change of solution in

these dynamic systems and tries to minimize its effects.

Chapter 6. Resilient Decision-Making in Dynamic Environments

100

Proactive Approach. Another approach, called proactive [50, 51, 88], is to consider that future

DCOPs in the sequence are known in advance or that future potential changes may be at least

partially anticipated. In that case, the objective is to look for solutions that are robust to these

changes, that is to say solutions that require little or no changes despite the modification of the

problem. Unfortunately, current solution methods for this model are either offline or too expensive

to be used with anything but a very limited number of agents.

6.1.3.2 Modeling Changes in a Dyn-DCOP

In a Dyn-DCOP, changes can happen on any element of the tuple that defines a simple DCOP:

(A, X , D, F , µ). These changes can thus affect the variables (addition or removal), domains

(adding or removing values), constraints (addition, removal and change in the scope or definition)

and agents (addition or removal). One approach to model the changes between the DCOPs Pi and

Pi+1 is to consider that all changes are modeled trough addition and removal of constraints [143]:

domains can be seen unary constraints on variables, one can consider that a variable is automatically

removed (respectively added) from the problem when it does not appears in any constraint’s scope

(respectively appears in a new scope) and any constraint’s modification can be represented by a

simultaneous removal of the old constraint and addition of the modified one.

By modelling all changes as constraint additions and removals this approach is extremely generic

and abstract, which is often a good property, but may also abstract away too many domain-level

information in our case. Furthermore, although generally used for Dyn-DCOP, this model does

generally not account for the changes affecting agents. This can be explained by the assumptions

(especially the agents-variable bijection, see Section 3.3.2.2) commonly used in DCOP research.

However, as we stated in Section 5.1.1, these assumptions do not hold for our use-cases and, as a

consequence, we must consider changes affecting agents. Finally, as we stress the importance of

distribution when solving real-life problems with DCOPs, we also need to take into account the

effect of these changes on the distribution.

For these reasons, in the following sections we elect to classify the changes on the DCOP into two

categories:

• modifications at the computation level, that have not effect on the distribution of the compu-

tations over the agents,

• changes at the infrastructure level that require to recompute the distribution.

Notice that one given modification on an problem can be classified in the first or second category

depending on the DCOP algorithm used to solve the problem. For example when using constraint

graph-based algorithms, where computations represents variables, adding or removing rules in a

SECP do not modify the set of computations and consequently does impact their distribution. On

the other hand, if a factor graph-based algorithm is used, adding a rule would require adding a

computation, which must be distributed on an agent.

101

6.2. Handling Dynamics at the Computation Level

6.2 Handling Dynamics at the Computation Level

In this section, we consider how we can deal with changes that do not impact the distribution of

the computation graph. Modifications that impact the distribution of computations are studied in

Section 6.3.

Several modifications of a SECP fall into this category and can be dealt with without revising the

distribution:

• The removal of a device, as long as the computations hosted on the corresponding agent are

removed at the same time. This would be often the case when removing a simple device

such as a light bulb, that only host the variable representing this device.

• Changes that affects scenes and physical models without modifying their scope. This kind

of change can be the result of a continuous machine learning mechanism that adapts the

physical model function based on the value of the sensors.

• Adding or removing a rule, when using a DCOP algorithm that only defines computations

for variable. When using a factor graph-based algorithm, the situation is different as this

kind of change requires adding or removing computations, which must be distributed on an

agent.

More generally, when looking at generic problems modeled as a DCOP, the following modifications

do not require to revise the distribution:

• adding and agent,

• removing an agent, when all computations hosted on it are removed at the same time,

• modifying the domain of a variable or the scope of a constraint,

• adding a constraint, when using an algorithm and a graph model that does not define

computations for constraints (e.g. algorithms based on a constraint graph like DSA),

• removing a constraint or a variable.

Notice that after some of these changes, it could very well be beneficial, depending of the use-case,

to revise the distribution. It could for example allow exploiting the extra capacity offered by a

new agent or improving communication costs and/or distribution costs by moving computations

from one agent to another. It is, however, not mandatory as the previous distribution is still valid,

although potentially not optimal.

6.2.1 Using the Dyn-DCOP Reactive Approach for SECP

As we only consider here modifications that do not impact the distribution, we can leverage the

existing works on Dyn-DCOP.

In our case, we argue that we cannot predict future changes in the system and we consider that

we do not really need the robustness of the solution that the self-stabilizing approach is aiming

for. This characteristic is interesting when switching from one solution to another one induces a

large cost to the system, as it can be the case for vehicle routing or meeting scheduling. In these

cases, the solution stability is indeed primordial, and it is of paramount importance to take into

Chapter 6. Resilient Decision-Making in Dynamic Environments

102

account the cost of transitioning to a new solution versus the benefit provided by this new solution.

Therefore, it is potentially more interesting to trade some optimality on the solution for a smaller

amount of adaptation when changes occur.

However, in an AmI, changing the solution is generally costless and we want our system to adapt

to the environment as it is right now, and do not mind some changes. Of course, this holds

as long as these changes are subtle and not too frequent –nobody wants to see the light bulbs

flickering continuously! But as the changes in our environment are either relatively modest (e.g.

the modification of the physical model for a room), and requires small adaptations, or abrupt and

in this case require fast and major changes (e.g. when a device fails and we want to get back to the

user’s target state as fast as possible), we argue that reactive DCOP approaches are better suited to

our use case.

6.2.2 Selecting Suitable Dyn-DCOP Algorithms for SECP

With such a reactive approach, there are still several considerations to take into account when

selecting the right algorithm to use to solve the consecutive DCOPs in the Dyn-DCOP.

In an ideal setting, we could theoretically use any DCOP algorithm. However, as with AmI and

SECP we consider real-world settings, we must ensure that the characteristics of this environment

matches the assumptions that need to be satisfied for the algorithm to function properly.

• Many algorithms require perfect message delivery, meaning that messages must never be

lost, which is not possible to guarantee in our target environments, with low-quality commu-

nication network that are generally used in AmI and IoT settings. For example, this is the

case for synchronous algorithms, like DPOP or DSA, where loosing messages would freeze

all nodes waiting indefinitely to move to the next synchronous round. Some other algorithms

tolerate messages loss. A-MaxSum and Anytime DPOP (AnyPop) for example, do not

require wait for all their neighbors’ messages and keep producing approximate solution.

• Some algorithms assume that the changes from one DCOP to the next one in the sequence

are known to all agents, which is also generally not realistic in real world settings.

• Additionally, the agents in AmI are generally embodied in constrained devices and cannot

run algorithms that require expensive computations (memory and CPU wise), therefore we

must target lightweight algorithms.

• Finally, we can afford approximate solutions as, when deciding the light level to apply to a

light bulb, a user would generally not notice the difference between two solutions that are

relatively close.

We now consider some algorithms developed by the DCOP community to address Dyn-DCOPs:

Self-stabilizing DPOP (S-DPOP) is a self-stabilizing [33] synchronous inference-based algo-

rithm [107] specifically designed for Dyn-DCOP. S-DPOP is a DPOP variant where the

three phases (DFS, UTIL and VALUE) are implemented using self-stabilizing protocols.

Reviewed Super-stabilizing DPOP (RS-DPOP) is an improved version [106] of S-DPOP, de-

signed for optimal solution stability, which takes into account commitment deadlines during

103

6.3. Handling Dynamics at the Infrastructure Level

the UTIL and VALUE phases. This allows RS-DPOP to work on systems that are not fully

synchronized as it only requires agents to have synchronized clocks.

AnyPop is a variant [105] of Approximative DPOP (A-DPOP), which is itself a variant of

DPOP. In order to avoid large messages A-DPOP drops dimensions in DPOP’s join/project

operations, resulting in a known approximation ratio. AnyPop builds upon this approach

and allows agents to select a value without waiting messages from its neighbors, if the error

bound is low enough. This provides AnyPop with some built-in fault tolerance; if messages

are lost, the system keeps running and there is a graceful degradation of solution’s quality.

MaxSum is an inference-based algorithm [36] based on belief propagation (see Section 3.4.2.3

for a full description), operating on factor graphs by performing a marginalization process

of the cost functions, and optimizing the costs for each given variable. MaxSum can

be implemented both as a synchronous and as an asynchronous algorithm, in which case

we term it A-MaxSum. Although not specifically designed for Dyn-DCOP, the authors

highlight that it can handle them well and produce continuously updated results, especially

when implemented asynchronously.

Asynchronous Distributed Stochastic Algorithm (A-DSA) is an asynchronous version of the

local search algorithm DSA [158] (see Section 3.4.2.1 for a full description). While in

DSA agents proceed in synchronized rounds, A-DSA [40] is asynchronous, each agent

evaluating periodically if it could improve its partial assignment. Like A-MaxSum, A-DSA

has not been designed for Dyn-DCOP but can still be applied in these settings thanks to its

asynchronous and stateless nature (see Section 6.3.2.1).

Table 6.1 summarizes the characteristics and assumptions made by these Dyn-DCOP algorithms.

As we can see, the constraints of our target environment severely restrict our choices. In the

reminder of our study, we will concentrate on approximate lightweight algorithms like A-MaxSum

and A-DSA.

Table 6.1 – Some Dyn-DCOP algorithms assumptions and characteristics

Algorithm

Messaging

Knowledge of
changes

Computa tion
weight

Optimality

SDPOP Perfect Perfect Expensive Optimal

RSDPOP Imperfect Perfect Expensive Optimal

AnyPOP Imperfect Perfect Expensive Optimal

A-MaxSum Imperfect Local Lightweight Approximate

A-DSA Imperfect Local Lightweight Approximate

6.3 Handling Dynamics at the Infrastructure Level

Up to now, we only considered changes of the SECP that modify the DCOP without impacting

the distribution of the computations that are used to actually solve that DCOP. In this section, we

study the modification of the infrastructure, that is to say, changes that impact the distribution.

Such modifications require to fix the distribution to ensure that all needed computations still run.

We will overview several solutions that can be used to achieve this goal.

104

Chapter 6. Resilient Decision-Making in Dynamic Environments

6.3.1 Dynamics that Impact the Distribution of a DCOP

As we listed in Section 6.2 the modifications that the problem can undergo while keeping the same

distribution, we now list modifications that impact the distribution:

1. Any modification that requires adding a new variable to the DCOP will also require adding

a new computation, meaning the distribution must be revised to place this computation on

an agent.

2. When using an algorithm that defines computations for constraints, adding a new constraint

also require revising the distribution.

3. Removing an agent, when some of the computations hosted on it must be preserved, always

makes the distribution invalid. This is generally the case when hosting some shared com-

putations (see Section 5.1.3). These computations represent a part of the definition of our

problem and thus must be moved to another agent.

4. When adding an agent, revising the distribution is generally not mandatory: we can simply

ignore it and the system will keep running with the previous set of agents. It can however

be beneficial to review the distribution to benefit from the extra capacities and potentially

reduce communication and hosting costs.

In the case of SECP, modifications (1) and (2), namely the introduction of a new constraint or

of a new variable without a corresponding device (i.e. not an actuator variable), can only be

the consequences of the addition of new models and/or rules in the system. Although these

modifications impact the distribution, they do not really qualify as infrastructure changes and can

be dealt relatively easily, therefore we do not elaborate on these cases and will concentrate on

changes at the infrastructure level.

• Adding a rule requires an user interaction, which is typically done through a generally

powerful dedicated device, for instance a home computer or a tablet. In that case, we can

rely on this device to compute a revised distribution using any of the optimal or heuristic

centralized methods discussed in Section 5.

• Adding a new physical model only makes sense when the user specifies a new rule (otherwise

the model is useless) with a new physical model (related to a new sensor) he has obtained.

For instance, a user installs a sound level sensor and adds a new rule which exploits the sound

level somehow. Such a situation, once again, only occurs when the user interacts through

his dedicated device with the system. Thus, distribution can be done in a centralized way, as

in Section 5.

Although these modifications impact the distribution, they do not really qualify as infrastructure

changes and can be dealt relatively easily, therefore we do not elaborate on these cases and will

concentrate on changes at the infrastructure level.

On the other hand, modifications (3) and (4) (i.e. arrival and departure of agents) modify the set

of available agents and therefore really impact the infrastructure used to run the computations

that solve the DCOP. As these modifications may happen at any time, and generally not during

user interaction, we cannot rely on a powerful device to run our centralized distribution solution

105

6.3. Handling Dynamics at the Infrastructure Level

methods. When such appearance and disappearance occur, the devices have to self-adapt without

help of a central computer. As a consequence, we will concentrate on these cases.

6.3.1.1 Handling Agent Departure

As discussed previously, in an open system agents may leave at any time. Such agent may host

shared computations that must be preserved and moved to another agent for the system to function

properly. We term orphaned computations, the computations that were hosted on a departed agent

and must be migrated to a remaining agent. When considering agent departure, we can identify

two cases:

• Safe removal, which happens when the device leaves the system voluntarily. On such event,

the agent can actively migrate computations before leaving and we can assume that the

definition and run-time state of these computation will not be lost.

• Unsafe (or unexpected) removal, which happens when an device fails (or is simply dis-

connected unexpectedly). In that case, the device obviously cannot migrate its shared

computation, resulting in orphaned computation.

Unsafe removal is more critical, we propose two methods for dealing with such change. In

Section 6.4 we present a technique that build upon ILP-CGDP, the centralized mechanism for

optimal distribution introduced in Section 5.5, and adapt it for local repair. In Section 6.5 we study

how we can make the system resilient to simultaneous disappearance of several agents.

6.3.1.2 Handling Agent Arrival

When an agent enters the system, there are two situations to consider:

(a) The Participating Agent, when the agent already hosts some computation(s) linked to other

computation(s) in the system. In the case of SECP this can for instance be a new light bulb,

which hosts the variable-computation representing its emitted light level. Such computation

will eventually be connected to the physical model(s) representing the area where the new

device is located, and to a rule, if the user set some specific target for this light bulb.

(b) The Blank Agent, when the agent does not host any computation and may only be used to

offload existing computations already hosted on other agents.

In Sections 6.6.1, 6.6.2 and 6.6.3 we will present several techniques to deal with these two cases.

6.3.2 Prerequisites for Handling Infrastructure Changes

Before diving into solution methods, we first need to expound the prerequisites that must be satisfied

to be able to deal with infrastructure changes.

6.3.2.1 Discovery

Revising a distribution implies moving computations from one agent to another. As computations

on agents communicate with one another, agents have to know to which other agent they send

messages. Such requirement depends upon a discovery mechanism which ensures that an agent

106

Chapter 6. Resilient Decision-Making in Dynamic Environments

can publish what computation it hosts and that one can discover which other agent is hosting a

computation it must communicate with.

This discovery mechanism must also provide information on new device arrival and devices

departure or failure. As departure detection is commonly implemented using keepalive messages,

one can generally not assume that each agent will be informed of any device failure in the system;

as the system might be quite large, only neighbor devices are commonly monitored.

Distributed discovery protocols providing these features already exist. For example, mDNS [58]

and DNS-SD [57] are generally used in current IP-based SHE systems while Constrained Ap-

plication Protocol (CoAP) Discovery [55] and Constrained RESTful Environments (CoRE)

Resource Directory [56] have been designed for constrained nodes and networks like for instance

6LowPan (IPv6 over Low-Power Wireless Personal Area Networks).

In the remainder of this document we will not elaborate further on this topic and assume that such

discovery mechanism is available in the system. We also assume that this mechanism allows an

agent to monitor the presence of agents in its neighborhood and be informed of their departure.

However, agents are not aware of the disappearance of agents that they don’t share any link with.

6.3.2.2 Preserving the Problem Definition

When representing a problem as a DCOP, which is implemented using a computation graph,

the computations collectively encode the definition of the problem itself. As we are aiming for

fully distributed and decentralized systems, where no central authority is available to restore these

definitions after a change in the system or the failure of a device, we must ensure that these

definitions are not lost in such events.

Additionally, when a computation is moved from one agent to another, the target agent needs to

know the definition of that computation in order to be able to instantiate it. This is particularly

important when handling agent failure; by definition these are not planned and the failed agent is

not available any more to communicate the definition to the new host.

These definitions can be given during the initial deployment and revision phases. We will present

several approaches in the next sections.

6.3.2.3 Maintaining the Solving Process State

In addition to the problem definition, another type of information might be lost when agents

leave the system: the state of the solving process. As a matter of fact, when solving a DCOP,

computations exchange messages but also generally keep an internal state that represents their

current knowledge and is built from the messages they received from their neighbors. When an

agent fails, such state is lost, which hinder the solving process. For instance an algorithm that

relies on information acquired and stored by agents (like nogoods in Asynchronous Backtracking

(ABT) or costs in ADOPT) might even not be able to restart after a reparation.

We can identify two approaches to address this issue:

(a) keep one or several copies of that state, in order to be able to restore it when restarting the

computation on another agent;

107

6.4. Migrating Computations in the Neighborhood

(b) use stateless or almost-stateless algorithms, where this state can easily be discarded.

Option (a) is similar to what is required for computation definitions. However, these internal states

may be relatively large. In DPOP for example, the internal state of a computation is made of a

n-ary relation whose size depends on the width of the sub-tree rooted at that point, and the size of

the domain of the variables, which might lead to relatively big n-dimensional hypercubes. Another

issue is that the copies of these states must be updated regularly. Indeed, every time a computation

receives a message, it might update its internal state and when restarting a computation after

migration, we want it to be restored with a state that matches the one expected by its neighbors.

This update process can be complex and requires a lot of communication, which is not suitable for

the constrained networks available in our target environments.

Option (b) is thus much better suited in our case, but severely restricts the DCOP algorithms

we might use in our system. Very few DCOP algorithms are stateless; DSA and MGM can be

considered as stateless as they receive at each cycle the current value (respectively cost) from

their neighbors. A computation does not even need to store this information, as it only takes its

decision based on the messages received in the current cycle. However, this only stands as long

as these algorithms are implemented synchronously. On the other hand, we consider A-DSA to

be almost-stateless. As there is no cycle in an asynchronous algorithm, the computation cannot

assume it will receive updated value messages from all its neighbors and most store the value

received in the last messages. However, in case that information is lost it will be reconstituted as

soon as a message has been received from each of its neighbors. At that time, the computation can

restore its nominal behavior and is not affected by the information loss anymore. This is also the

case for A-MaxSum, where the accumulated costs received from neighbors can be rebuild.

6.4 Migrating Computations in the Neighborhood

Now that we have seen the two different types of dynamics and presented the prerequisites for

handling infrastructure change, we introduce in this section a solution method to deal with agent’s

disappearance by considering it as a local problem.

This approach re-uses ILP-CGDP, the linear program for computation graph distribution, pre-

sented in Section 5.5. However ILP-CGDP is a centralized approach, and when repairing no

single agent is identified to solve the problem. Moreover, even if we somehow selected one agent

to be responsible for solving this ILP, that task would be too computationally intensive to be

solved on our constrained devices. In order to make the problem easier, we elect to restrict it to the

neighborhood of the departed agent.

Practically, we consider adapting the deployment of the computation graph locally, by only con-

sidering a reduced set of agents (termed neighborhood) and a portion of the computation graph

(set of computations hosted by the neighbors). It is a local and heuristic approach: the resulting

distribution might not be optimal, but potentially requires far less computation and still allow to

repair the system and avoid loosing any shared computation.

108

Chapter 6. Resilient Decision-Making in Dynamic Environments

a1

a2

a3

a4

Figure 6.1 – Representation of the neighborhood of agent a2 in a computation graph

6.4.1 Definition of Neighborhood

Let’s define formally the notion of neighborhood as follows:

Definition 17 (Neighborhood). Given the current distribution ν, the neighborhood A[ak] of an

agent ak is defined as follows:

A[ak] = {af | ∃(ci, cj) ∈ E, ν(ci) = ak, ν(cj) = af} ∪ {ak}

if the agent ak hosts at least one computation, and A[ak] = A otherwise.

Similarly we define E[ak], the set of edges connected to the neighborhood:

E[ak] = {(ci, cj) | ν(ci) ∈ A[ak], ν(cj) ∈ A[ak]}

And C [ak], the set of neighborhood computations:

C[ak] = {ci | (ci, cj) ∈ E[ak]}

Example 13. Figure 6.1 pictures this notion of neighborhood for agent a2 in a computation graph

representing a SECP distributed on 4 agents, with the three sets A[a2], E[a2] and C[a2].

The sets of neighborhood computations and edges in the neighborhood, respectively C[a2] and

E[a2], are depicted in red. The set of neighbor agents of a2, depicted in blue, is composed of

agents {a1, a2, a4}.

c1 c5 c13

c2 c6 c9 c11

c3 c7 c10

c4 c8 c12 c14

109

6.4. Migrating Computations in the Neighborhood

ij

i

i

6.4.2 Restricting the ILP-based Distribution

Based on these definitions, we can define a cut version of ILP-CGDP (Definition 15), restricted to

the sub-graph of the computation graph defined by the neighborhood of the departed agent. When

an agent ak fails, the distribution problem is then to decide, for each orphaned computation, which

agent in A[ak] should host that computation.

Thus, we rewrite a cut version of ILP-CGDP, restricted to the set defined by the neighborhood

A[ak], C[ak] and E[ak] as follows:

minimize
m
i

ωcom ·
)

(i,j)∈E[ak]

)

)

(m,n)∈A[ak]2

m

coma(ci, cj, am, an) · αmn

+ ωchost
·

subject to

(ci,am)∈C[ak]×A[ak]

ci · cost(am, ci) (6.1)

∀am ∈ A[ak],
)

mem(ci) · cm ≤ wm ax(am) (6.2)
c i∈C

∀ci ∈ C [ak],
)

am∈A[ak]

cm = 1 (6.3)

∀ci ∈ C [ak], αmn ≤ cm

ij i
(6.4)

(6.5)

∀cj ∈ C [ak], αmn ≤ cm

ij j
(6.6)

(6.7)

∀ci, cj ∈ C[ak], am ∈ A[ak], αmn ≥ cm + cn − 1 (6.8)
ij i j

(6.9)

Definition 18 (ILP-CGDP[ak]−). Integer Linear program for CGDP restricted to the neigh-

borhood (ILP-CGDP[ak]−) consists in ILP-CGDP (Definition 15) restricted to the set of agents

A[ak]\ak and to the computation graph (C[ak], E[ak]).

Note that ILP-CGDP optimizes the distribution for hosting and communication costs. When

applying it to a SECP, we force actuators’ variable and cost to be hosted on their device by

assigning an infinite cost for all other agents.

Example 14. On the SECP depicted on Figure 6.1, when agent a2 fails, the shared orphaned

computations c9 and c11 must be migrated to one of the agents in the neighborhood, namely a1 or

a4. Thus, in this case, ILP-CGDP[ak]− only involves two agents and communication costs with

the three computations that communicates with the two orphaned computation, namely c5, c13 and

c14.

6.4.3 Solving ILP-CGDP[ak]

−

This problem can be solved either by one agent (if the size of the problem is not too large) or by the

agents composing the neighborhood. In both cases it only requires local and limited knowledge on

c

110

Chapter 6. Resilient Decision-Making in Dynamic Environments

the global DCOP, which makes it ideal for large and complex systems.

In the distributed solving case, several distributed optimization techniques could meet the require-

ments like the distributed simplex method designed for multi-agent assignments [19], keeping

exactly the same encoding as ILP-CGDP, or dual decomposition methods like the efficient AD3

method [81], that requires ILP-CGDP to be encoded using tractable high order potentials [139],

which is possible for of all constraints in ILP-CGDP, and then implement a distributed decoding

of the LP relaxation to assign integer values to decision variables. However, while providing

good optimality, both distributed simplex and AD3 may require several rounds (thus message

exchanges) to reach good quality solutions. For instance, from a conjecture in [19], the average

time complexity of this technique is linear in the diameter of the graph (O(diam(FG))), with

polynomial communication load. In SECP case, the diameter of the FG is not bounded but mainly

depends on the number of rules and models, and their interdependencies. In the case of real

smart home settings, models and rules will mostly influence local areas (rooms, floor, etc.) and

interdependencies, thus diameters, will be limited.

6.4.4 Limitations of ILP-CGDP[ak]
−-based Solution

While this approach provides a working solution to repair the system when one of the agents fails,

it has some limits, which we will now discuss:

Computation Definitions. As mentioned in 6.3.2.2, in order for the selected agents to be able

to instantiate and run the migrated orphaned computations, they need to known their definitions.

For that purpose we assume in this approach that during the initial distribution, each agent is

provided with a copy of the definition of all computations in its neighborhood. This means that

each agent may need to know, and store, a large number of computation definitions and may even

keep definitions for computations they cannot host anyway, because they have already reached their

capacity limit.

Neighborhood. In this approach, the orphaned computations must always be migrated to an agent

of the neighborhood, which could prove impossible if the neighboring agents of a disappearing

one don’t have enough capacity all together. In this case, the neighborhood could be extended

by neighbors of neighbors until memory is sufficient, but that would require communicating the

orphaned computations as well.

Complexity. While there are solutions methods, both centralized or distributed, available to

solve the cut version of ILP-CGDP, these solutions are still relatively computationally intensive.

Moreover it is not guaranteed they could always be applied on systems composed of constrained

devices. Besides, the communication load, polynomial for the distributed simplex [19], would

probably prove to be problematic on constrained networks.

Single Agent Repair. This approach is limited to a single agent leaving the system. If several

agents fail simultaneously, we have no guarantee that the system can be restored. As a matter of

fact, by only placing computation definitions on neighbor agent(s), we might very well loose all

111

6.5. Surviving the Simultaneous Departure of Several Agents

definition for a computation if all the agents that possess the definition of a computation fail at the

same time.

In the next session, we will devise a distributed repair method that address these limitations.

6.5 Surviving the Simultaneous Departure of Several Agents

As we have seen, the previous approach has some shortcomings –one of the most important is that

is does not allow the system to survive the simultaneous failure of several agents, which may very

well happen in real-world settings.

For these reasons, we introduce here the concept of k-resilience and design another approach to

cope with these limitations.

6.5.1 k-Resilience

We define the notion of k-resilience as the capacity for a system to repair itself and operate correctly

even when up to k agents disappear. This means that after a recovery period, all computations must

be active on exactly one agent and communicate one with another as specified by the computation

graph GC .

Definition 19. Given a set of agents A, a set of computations C , and a distribution µ, the system is

k-resilient if for any F ⊂ A, |F | ≤ k, a new distribution µl : X → A\F exists.

One pre-requisite to k-resilience is to still have access to the definition of every computation after

a failure. One approach is to keep k replicas (copies of definitions) of each active computation on

different agents. Provided that the k replicas are placed on different agents, no matter the subset of

up to k agents that fails there will always be at least one replica left after the failure, as classically

found in distributed database systems [94]. Here, we apply these ideas except we keep replicas of

computation definitions instead of data records, which implies that computations must be stateless

or that their state must be restorable (almost stateless).

We note ρ(ci) the set of agents that possess a replica for computation ci. In a k-resilient system,

each computation has k replicas, which are placed on agents that do not host the active version of

the computation:

∀ci ∈ C, |ρ(ci)| = k

ν(ci) ∈/ ρ(ci)

Let’s note that given the capacity constraints on the agents, keeping k replicas is not enough

to warrant k-resilience and there might be no possible distribution. The maximum k value for

which k-resilience can be achieved depends on the system and especially on agent’s capacities.

Additionally, after departure of some agent(s), the k-resilience characteristic of the repaired system

should be restored, as long as there are enough nodes available.

112

Chapter 6. Resilient Decision-Making in Dynamic Environments

n

k

6.5.2 Replication of Computation Definitions

The problem of assigning replicas to hosts could be considered as an optimization problem, close

to Definition 13. Ideally, we should optimize replica placement for communication and hosting

costs. This would ensure that when agents fail, replicas are available on good candidate agents.

However, the search space for this optimization is prohibitively large:

• In a k-resilient system with n agents, there is
),

0<i≤k

(
i

)
potential failure scenarios as we

consider case where up to k agents out of n can fail simultaneously.

• With m computations, the number of possible replica configurations is m ·
(n)

, as we must

select k agents to host the replicas for each of the m computations.

• Then, for each of these replica configurations, there are mk activation configurations, as

exactly one of the k replicas must be activated for each orphaned computation.

More practically, the problem of optimally distributing the k replicas of each computation on a

given set of agents having different costs and capacities can be cast into a Quadratic Multiple

Knapsack Problem (QMKP) (see [131]), which is NP-hard.

Assuming we could compute the cost of all these activation configurations, it would still not be

obvious which replica placement would be better: one could consider the one allowing the best

activation-configuration, or the one allowing, on average, good quality activation configurations or

even the one giving the best activation configurations over the set of possible failure scenarios.

Obviously, defining the optimality for replica placement is very problem dependent. Thus, given

that complexity, we opt for a distributed heuristic approach, described in the next section.

6.5.3 Distributed Replica Placement Method

We propose here a distributed method, namely Distributed Replica Placement Method (DRPM),

to determine the hosts of the k replicas of a given computation xi. DRPM is a distributed

version of iterative lengthening (uniform cost search based on path costs) with minimum path

bookkeeping to find the k best paths. The idea is to host replicas on closest neighbors with respect

to communication and hosting costs and capacity constraints, by searching in a graph induced by

computations dependencies.

It outputs a distribution of k replicas (and the path costs to their hosts) with minimum costs over a

set of interconnected agents. If it is impossible to place the k replicas, due to capacity constraints,

DRPM places as much computations as possible and outputs the best resilience level it could

achieve.

One hosting agent, called initiator, iteratively asks each of its lowest-cost neighbors, in increasing

cost order, until all replicas are placed. Candidate hosts are considered iteratively in increasing

order of cost, which is composed of both communication cost (all along the path between the

original computation and its replica) and the hosting cost of the agent hosting the replica.

This approach is based on the assumption that the initial distribution, computed using one of the

methods introduced in Section 5, is optimal or at least of good quality. As a matter of fact, if the

initiator agents fails, its orphaned computation will necessarily be migrated to one of the agents that

113

6.5. Surviving the Simultaneous Departure of Several Agents

possess its definition (i.e. that hosts one of its replicas). Therefore, by placing replicas on agents

that have minimal communication and hosting cost compared to the initiator agent, we ensure that

the computation will only be migrated to agents that favor a good quality distribution.

Let’s first define the graph specifying the communication costs which will be developed during the

search process:

Definition 20 (route–graph). Given a computation graph (C, EC) and a set of agent A, the

route–graph is the edge-weighted graph (A, E, w) where

• A is the set of vertices

• E is the set of edges with E = {(am, an)| ∃(ci, cj) ∈ EC, and ν(ci) = am, ν(cj) = an}

• w : EC → R is the weight function w(am, an) = route(m, n).

Example 15. Figure 6.2 depicts a route–graph for a computation graph distributed over 4 agents.

Figure 6.2 – A sample route–graph with 4 agents (in gray)

As to take into account both communication and hosting costs in the path costs, the route–graph

is extended into a route+host–graph with extra leaf vertices attached to each agent in the

neighboring graph, except the original host of the computation, with an edge weighted using the

hosting cost of the agent, as in Figure 6.3.

Definition 21 (route+host–graph). Given a route–graph (A, E, w) and a computation ci, the

route+host–graph is the edge-weighted graph (Al, El, cost) where

• Al = A ∪ A� is the set of vertices where A� = {ãm|am ∈ A, am /= ν (ci)} is a set of extra

vertices (one for each element in A except the host of ci),

• E l = E ∪ {(am, ãm)|ãm ∈ A} is the set of edges

• cost : El → R is the weight function s.t. ∀am, an ∈ A, cost(am, an) = w(am, an),

∀ãm ∈ A�, cost(am, ãm) = ch ost (am, ci).

Example 16. Figure 6.3 depicts a route+host–graph for a computation graph distributed over

4 agents.

Notice that agent a1 has not extra vertex ã1, representing its hosting cost, as the route+host–

graph on this figure is designed to place the replicas of the computations ci hosted on a1 (which

a2 a3

a
a2

route(a2 , a3) = 3

1
route(a1 , a2) = 1 a3

a1 route(a2 , a4) = 1

route(a1 , a4) = 1 a4

a4

114

Chapter 6. Resilient Decision-Making in Dynamic Environments

must obviously be placed on other agents).

As a matter of fact, when placing replicas, the route+host–graph is specific to an initiator agent

and a computation. A different route+host–graph is expanded by each agent ak and for each of

the computation ci hosted on ak, to place the replica for computation ci.

Figure 6.3 – A sample route+host–graph with 4 agents (in gray)

This route+host–graph is a search graph, expanded at runtime and explored for a particular

computation ci. Each agent operates as many instances of DRPM as computations to replicate

over several route+host–graphs.

For a given route+host–graph , each agent may encapsulate two vertices (one in A and its image

in A�) and may receive messages concerning their two vertices, and even self-send messages.

Additionally, when assessing if an agent can host a replica for ci, we ensure that it only accepts

if it has enough capacity to activate any subset of size k of its replicas, using a predicate named

can_host?. Of course this constraint is stronger than what might be actually needed, so, this

distribution is not optimal with respect to hosting cost, since one agent might reject hosting a

computation whilst it may finally have enough memory to host it. Even communication-wise, the

algorithm may result on a suboptimal distribution. However, if can_host? is provided by an

oracle or if memory is not a real constraint, and replica placement only concerns one computation,

the distribution would be optimal with respect to communication and hosting costs, since our

algorithm implements an iterative lengthening search [119, p.90].

DRPM makes use of two message types, REQUEST and ANSWER, with the same fields

(current, budget, spent, known, visited, k, ci) :

1. current: path of the request, as a list containing all vertices messages that have been passed

through from the initiator vertices to the one receiving the current message.

2. budget, spent: remaining budget for graph exploration and budget already spent on the

current path,

3. known: map assigning cost to already discovered paths to unvisited vertices which bookkeeps

the cheapest paths so far,

4. visited: list of already visited vertices,

5. k: the remaining number of replicas to host.

ã2 ã3

host(a2, x i) = 1 host(a3, x i) = 1

route(a1 , a2) = 1 a2
route(a2, a3) = 3

a3

a1 route(a2 , a4) = 1

route(a1 , a4) = 1 a4

host(a4, x i) = 5

ã4

115

6.5. Surviving the Simultaneous Departure of Several Agents

6. ci: computation that must be replicated,

At the beginning, the agent requiring a computation replication initializes known with the paths to

its direct neighbors in the route+host–graph and sends itself a REQUEST message with a budget

equals to the cheapest known path. Then, agents handle messages according to Algorithms 1 and 2.

The protocol ends when all possible replicas have been placed (at most k).

When receiving a REQUEST message (Algorithm 1), either the agent can host a replica (lines 2-10),

and thus decreases the number of replicas to place, or forwards the request to other agents (lines 11-

22). In the first case, if all replicas have been placed, the agent answers back to its predecessor

(line 9). When looking for other agents to host replicas, if there exists a minimum cost known

path starting with the currently explored path which is reachable with the current budget, the agent

forwards the request to its successor in this path (with an updated cost and budget, line 16). If there

is no such path, the agent fills out the map of known paths with new paths leading to its neighbors

in the route+host–graph, when they improve the existing known paths, and sends this back to

its predecessor so that it will explore new possibilities (line 22).

When receiving an ANSWER message (Algorithm 2), the message can either notify that all replicas

have been placed (lines 1-6) or that there exists at least one replica left to place. In the former

case, if the agent is the initiator, it terminates the algorithm, whilst having all the requested replicas

placed (line 3), otherwise it forwards the answer back to its predecessor, until it reaches the initiator

(line 6). In the later case, if the agent is the initiator it increases the budget and send a request to the

closest neighbor (line 14) if any; if there is no such neighbor left, that means that there is no more

path to explore and that all replicas cannot be placed, therefore the agent terminates (line 16). If

the agent is not the initiator, but there exists some reachable path within current budget, it requests

replication to its successor in the best known path, as when handling REQUEST messages (line 22).

Finally, if there is no such path, it simply forwards the answer to its predecessor in the current path

(line 24).

Example 17. Figure 6.4 represents the execution of DRPM when agent a1 places 2 replicas for

computation ci. The different colors in the edges depicts the path explored when increasing the

budget.

Figure 6.4 – Sample execution of DRPM for placing two replicas for a computation xi

ã2 ã3

host(a2, x i) = 1 host(a3, x i) = 1

route(a1 , a2) = 1 a2
route(a2, a3) = 3

a3

a1 route(a2 , a4) = 1

route(a1 , a4) = 1 a4

host(a4, x i) = 5

ã4

116

Chapter 6. Resilient Decision-Making in Dynamic Environments

Algorithm 1: Handler for REQUEST messages

Data: current, budget, spent, known, visited, k, ci

1 known ← known \ current

2 if me ∈/ visited then

3 visited ← visited ∪{me}
4 if can_host?(computationi) then
5 k ← k − 1

6 add xi to memory

7 if k = 0 then
8 ap ← predecessor of me in current
9 send ANSWER(current, budget+cost(me, ap), spent-cost(me, ap),

known, visited, k, ci) to ap

10 return

11 p ← argmine∈{paths in known starting with current} known[e]
12 if p /= ∅ then

13 an ← successor of me in p
14 if cost(me, an) ≤ budget then

15 current ← current + an

16 send REQUEST(current, budget-cost(me, an), spent+cost(me, an), known,
visited, k, ci) to an

17 return

18 foreach an ∈ {am | (am, me) ∈ E l, am ∈/ visited} do

19 if spent + cost(me, an) < mine∈{paths in known leading to an} known[e] then
20 known[current + an] ← spent + cost(me, an)

21 ap ← predecessor of me in current

22 send ANSWER(current, budget+cost(me, ap), spent-cost(me, ap), known,
visited, k, ci) to ap

117

6.5. Surviving the Simultaneous Departure of Several Agents

Algorithm 2: Handler for ANSWER messages

Data: current, budget, spent, known, visited, k, ci

1 if k = 0 then

2 if me is root of current path then

3 terminate with target number of replicas placed

4 else
5 ap ← predecessor of me in current
6 send ANSWER(current, budget+cost(me, ap), spent-cost(me, ap), known,

visited, k, ci) to ap

7 else

8 p ← argmine∈{paths in known starting with current} known[e]
9 if me is root of current path then

10 if p /= ∅ then

11 budget ← budget + known[p]

12 an ← successor of me in p
13 current ← current + an

14 send REQUEST(current, budget-cost(me, an), spent+cost(me, an),
known, visited, k, ci) to an

15 else
16 terminate with fewer replicas than requested

17 else
18 if p /= ∅ then

19 an ← successor of me in p
20 if cost(me, an) ≤ budget then
21 current ← current + an

22 send REQUEST(current, budget-cost(me, an), spent+cost(me, an),
known, visited, k, ci) to an

23 ap ← predecessor of me in current

24 send ANSWER(current, budget+cost(me, ap), spent-cost(me, ap), known,
visited, k, ci) to ap

118

Chapter 6. Resilient Decision-Making in Dynamic Environments

At starts, a1 initializes the known map with the paths to a2 and a3:

known = { a1 → a2 : 1 , a1 → a4 : 1 }

The first exploration of the graph (depicted in red) starts

• a1 starts by sending itself a REQUEST message with a budget of 1.

• When handling this message, a1 forwards the request to a2, with a budget of 0.

• Then a2 fills out known and sends back an ANSWER to a1, as the budget does not allow

forwarding the request further.

• As it did with a2, a1 now sends a REQUEST to a4, which fills out known and sends ANSWER

back.

• At this point, a1 as no other neighbor to forward the REQUEST and must increase the budget

to 2, the cheapest path in known.

The same process, depicted in green, is repeated with a budget of 2:

• This updated budget allows expanding the path up to ã2, where a first replica is placed.

• A new path to a4 is discovered but not kept in known, as it already contains a cheaper path

to that node.

• Once all paths that can be reached with this budget have been explored, a1 increases the

budget again.

Once again, a1 explores the graph by REQUESTS messages, this time with a budget of 5 (depicted

in blue).

• This budget allows reaching ã3, and thus hosting the second replica.

• ANSWER messages are then sent back up to a1, with k=0 (all required replicas have been

placed) and DRPM terminates.

At the end of the process, replicas of ci have been placed on a2 and a3, with path costs of respectively

2 and 5. No replica has been placed on a4, as it would incur a higher path cost of 6.

Globally, each agent is responsible for placing k replicas for each of the active computations it

currently hosts, and thus executes DRPM once for each of its active computations. These multiple

DRPM runs can be either sequentially or concurrently executed, but their result depend on message

reception order. Note however that even when running multiple DRPM concurrently, an agent has

only one message queue and handle incoming messages sequentially, which prevents him from

accepting replicas that would exceed its capacity.

Theorem 1. DRPM terminates.

Proof. For k = 1, since DRPM costs are additive and monotonic, and it bookkeeps paths to

unvisited vertices, it terminates like classical iterative lengthening, with the minimum cost path or

empty path if not enough memory in agents to host the computation xi.

For k > 1, DRPM attempts to place each replica sequentially, it first searches for the best path (as

for k = 1), then operates the same process for a second best path, and so on until either

1. the k replicas are placed (line 3 in Algorithm 2) or

119

6.5. Surviving the Simultaneous Departure of Several Agents

c

i

m

c

cm

c

i

c

i

2. there is not enough memory to host the nth replica (line 16 in Algorithm 2).

Bookkeeping ensures the same path will not be considered twice, and thus consecutive search

iterations output different paths with increasing path costs. So, in case (1), DRPM terminates

when k replicas have been placed on the k best hosts; and in case (2), it terminates when kl < k

replicas have been placed, where kl is the maximum number of replicas that can be placed.

6.5.4 Migrating Computations

Now that we have introduced DRPM to replicate computations, we can use these replicas to repair

our system when an agent fails. We model the repair problem itself as a DCOP, to be implemented

by agents to move some computations to restore the correct function of the system or to increase

the quality of the distribution of the computations over agents.

Let’s first introduce some notations.

We note Cc the set of candidate computations ci that could or must be moved when the set of agents

changes.

For each of these computations, we note Ai the set of candidate agents that could host ci.

The set of all candidate agents, regardless of computations, is noted Ac:

Ac = ∪ci∈Cc Ac

Cc denotes the set of candidate computations that agent am could host.

Deciding which agent am ∈ Ac hosts each computation ci ∈ Cc can be mapped to an optimization

problem similar to ILP-CGDP presented in Section 5.5.3, restricted to Ac and Cc: communication

and hosting costs should be minimized while honoring the capacity constraints of agents.

To ensure that each candidate computation is hosted on exactly one agent, we rewrite constraints

(5.26) for each ci ∈ Cc:
)

am∈Ai

i = 1 (6.10)

Similarly, capacity constraints (5.25) can be reformulated as:

)

ci∈Cm

w(ci) · cm

+
)

cj∈ν−1(am)\Xc

w(cj) ≤ wm a x(am) (6.11)

The hosting cost objective in (5.24) can be similarly formulated using one soft constraint for each

candidate agent am:
)

ci∈Cm

ch ost(am, ci) · cm
 (6.12)

Finally, the communication costs in (5.24) are represented with a set of soft constraints.

For an agent am, the communication cost incurred by hosting a computation ci can be formulated

as the sum of the cost of the cut edges (ci, cj) from the computation graph (C, D), (i.e. where

ν−1(cj) /= am).

Let’s note Ni the neighbors of ci in the computation graph. When a neighbor cn is not a

120

Chapter 6. Resilient Decision-Making in Dynamic Environments

c

cm

i

j

i

i

candidate computation (i.e. it might not be moved and cm ∈ Ni\Cc), the communication cost of

the corresponding edge is simply given by coma(ci, cj, am, ν−1(cn)).

For neighbors that might be moved, the communication cost depends on the candidate agent that
is chosen to host it and can be written as

),
 j cn · com(i, j, m, n). With this we can write the
an∈Ac j

communication cost soft constraint for agent am:

)

(ci,cj)∈Cm×Ni\Cc

i · coma(ci, cj, am, ν −1(cj))

+
)

(ci,cj)∈Cm×Ni∩Cc

cm ·
)

c

cn · coma(ci, cj, am, an) (6.13)

c an∈A
j

We can now formulate the repair problem as a DCOP (A, X , D, C, µ) where

• A is the set of candidate agents Ac.

• X and D are respectively the set of decision variables cm and their domain {0, 1}.

• C is composed of constraints (6.10), (6.11), (6.12), and (6.13) applied for each agent am ∈ Ac.

(6.10) and (6.11) result in infinite costs when violated, while (6.12) and (6.13) directly define

costs to be minimized.

• The mapping function µ assigns each variable xm to agent am.

Definition 22 (DMCM). Given a set of candidate computations Cc and a set of candidate agents

Ac, we term DCOP Model for Computation Migration (DMCM) the DCOP model for selecting a

suitable agent for each of the computations.

Example 18. Figure 6.5 represents a factor graph for the DCOP modeling the migration decision

for a computation ci, which could be placed on two agents a1 and a2.

Hard constraints are depicted in red.

• capa1 and capa2 represent constraints 6.11 for a1 and a2 and ensure that the capacity of

these agents is not exceeded.

• hostedi represents constraint 6.10 and ensures that exactly one agent hosts ci.

Soft constraints are represented in green.

• hosting1 and hosting2 represent constraints 6.12 for a1 and a2 and minimize the hosting

costs.

• commi represents constraint 6.13 and minimizes the communication costs.

Notice that this model for computations migration is not specifically designed for fixing the system

after agents failure; it simply implements the decision process for selecting a suitable agent to host

some computation(s). As a consequence, it can be used both to implement repair, which we will

present in the next section (6.5.5), and to re-distribute computations after some agent(s) arrival,

which will be discussed in Section 6.6.3.

121

6.5. Surviving the Simultaneous Departure of Several Agents

Figure 6.5 – Factor graph representation of a the DCOP model for migrating computation ci

6.5.5 Implementing Repair using DRPM[DMCM]

Using the DCOP-based model for selecting an agent when migrating a computation, we can now

implement the repair phase of k-resilience. Indeed, when up to k agents fail, repairing the system

amounts to migrate each of the orphaned computations to one of the agents that possess its replica.

Definition 23 (DRPM[DMCM]). We term DRPM[DMCM] the full solution method for k-

resilience composed of DRPM for replication and the DMCM model for computation migration.

End

Figure 6.6 – DRPM[DMCM] life cycle in a glance.

Figure 6.6 represents the life cycle of this approach. Assuming initial deployment (using one of

the methods discussed in Section 5) and replicas placement (using DRPM) have been performed

at system bootstrap, the system will execute the following repair cycle all along its lifetime:

(a) Detect departure/arrival,

(b) Activate replicas of missing computations, by solving the DCOP for computation migration,

(c) Place new replicas for missing computations using DRPM, and continue nominal operation.

As discussed in Section 6.3.2.1, step (a) assumes some discovery and keep alive mechanisms that

automatically inform some agents of any events in the infrastructure. So when an agent am fails

or is removed, we consider that all neighbor agents of am in the route–graph are aware of the

departure.

Step (b) relocates computations that were hosted on the set of departed agents Ad to other agents.

The candidate computations Cc are the orphaned computations hosted on these agents:

Cc = ∪am∈Ad ν(am)

Infrastructure

Initial

Computat ion

distribution

Replica

placem ent

(DRPM)

Replica

Operat ion
agents

activation

(dis)a ppe ar
(DMCM)

Computat ions
terminatio n

capa2 hosting2 c2 i

commi hostedi

capa1 hosting1 c1 i

122

Chapter 6. Resilient Decision-Making in Dynamic Environments

i

c

To avoid extra delay and communication during the repair phase these orphaned computations

should be assigned to agents that already have the necessary information to run an active version

of the computation. This means that the set of candidate agents Ac for an orphaned computation

ci maps the set of still available agents hosting a replica for this computation:

Ac = ρ(ci)\Ad

In a k-resilient system, as long as |Ad| ≤ k, we are sure that there will always be at least one agent

in Ai . Thus, step (b) yields an assignment of each of the orphaned computations to one of the

remaining agents hosting its replica.

Step (c) maintains a good resilience level in the system by repairing the replica distribution using

DRPM on a smaller problem, since many replicas are already placed.

6.5.6 Solving DMCM using a DCOP Algorithm

Now that the repair problem has been expressed as a DCOP, we discuss its resolution using a DCOP

solution method. Many solution methods for DCOPs exist, several of which have be presented in

Section 3.4. In brief, using these message passing protocols, agents coordinate to assign values to

their variables. Each of these solution methods has specific characteristics (they might be complete

or not, synchronous or asynchronous, etc.) and makes some assumptions on the environment and

the problem (perfect message delivery, hard and/or soft constraints, etc.). Therefore, when solving

a DCOP, it is very important to select a DCOP algorithm that matches the characteristics of the

problem and its environment.

In the case of DMCM, we can identify the following key characteristics to guide our choice of

suitable solution methods:

(a) The problem must be solved by constrained devices.

(b) A solution must be found as quickly as possible, as the system will only get back to nominal

operation once all orphaned computations have been successfully migrated.

(c) Our model contains both hard constraints, to ensure all orphaned computation are migrated

and that agent’s capacity is honored, and soft constraints, optimizing for hosting and com-

munication costs.

(d) A suboptimal solution is acceptable, as long as all hard constraints are satisfied. Indeed, we

can reasonably sacrifice some optimality on hosting and communication cost, if orphaned

computations are migrated to agents that have enough capacity to host them. Additionally,

violating a hard constraint could also mean loosing an orphaned computation, or activating

several replicas for the same computation. In both cases, the system will be in an inconsistent

state.

(e) As DMCM is designed to repair a distribution, the solution method used to solve it must

not bring about a distribution problem itself, otherwise we would have a chicken and egg

situation . . .

Characteristics (a), (b) and (c) compel us to select a lightweight suboptimal algorithm. Local

123

6.6. Handling Agent Arrival

i

cm

c
p

search algorithms for instance, are fast and require very little computation on each agent.

Characteristic (e) implies that we must use an algorithm for which the assignment of computations

to agents is fully defined for the DMCM problem. As this model contains only binary variables

i , where m maps to agent am, we can easily map each variable to an agent. As a consequence, by

using constraint graph-based algorithms, which only define computations for variables, me make

sure we do not have a distribution problem when deploying the DCOP used to solve DMCM.

Characteristic (c) is more difficult to satisfy. As a matter of fact, few DCOP algorithms have been

designed specifically to take into account a mix of hard and soft constraints and many iterative

algorithms tend to break hard constraints when optimizing for soft constraints. A monotonic

algorithm, like MGM [77] (see Section 3.4.2.2 for a full description) is particularly well suited

for this situation; as the cost of the solution monotonically decreases, once the hard constraints

(modeled with infinite costs) have been satisfied they will not be broken while optimizing the soft

constraints. In our case, decisions require coordination between two agents: to move a computation

from agent am to agent ap, the binary variable cm must take 0 as a value, while simultaneously,

i must switch from 0 to 1. This need for simultaneous changes justifies the use of MGM-2 [77]

(Maximum Gain Message with 2-coordination).

By applying MGM-2 to DRPM[DMCM]we obtain a repair method that we term DRPM[MGM-

2]. Of course, we could use any other DCOP algorithm that matches the characteris-

tics (a), (b), (c), (d) and (e) identified previously.

6.6 Handling Agent Arrival

Now that we have seen several approaches for dealing with agent’s departure, we will see how they

could be extended to also handle the arrival of a new agent.

6.6.1 In the Neighborhood

In Section 6.4 we introduced an approach for dealing with an agent departure by solving ILP-

CGDP in a sub-graph defined by the neighborhood of the agent. We will now see that the same

approach could also be used when a new agent enters the system. As a matter of fact, this approach

only requires us to define a neighborhood of an agent.

As stated in Section 6.3.1.2, when a new agent enters the system, it can either be a participating

agent, which already host some computation(s), or be blank , in which case it only provides compu-

tation and memory, without hosting any computation. In order to benefit from these capabilities,

existing computations may be relocated to the newcomer. In this case, the re-deployment process

amounts to selecting the elements to migrate as to optimize communication costs.

In the case of a participating agent, no change to our initial approach is needed: we can straightfor-

wardly apply the neighborhood Definition (Definition 17) and solve Integer Linear program for

CGDP restricted to the neighborhood (ILP-CGDP[ak]+), the cut version of ILP-CGDP (Defi-

nition 15) restricted to the sub-graph defined by this neighborhood.

Definition 24 (ILP-CGDP[ak]+). ILP-CGDP[ak]+ consists in ILP-CGDP (Definition 15) re-

stricted to the set of agents A[ak] and to the computation graph (C[ak], E[ak]).

124

Chapter 6. Resilient Decision-Making in Dynamic Environments

The case of a blank agent is more complicated according to Definition 17, its neighborhood is

the entire agent system. That means that we would need to solve ILP-CGDP over the whole

computation graph, which is not feasible on our constrained devices. As a consequence, in order

to apply this approach, we would need to devise a method to select a subset of agents as a

neighborhood to solve ILP-CGDP on. One could select agents that have the lowest remaining

capacity, for example, or agents that are more prone to failure or disconnection in order to improve

the resilience of the system by hosting as much computation as possible on stable agents.

ILP-CGDP[ak]+ can be in both cases solved using the techniques listed in Section 6.4.3. Of

course, this approach suffers form the same limitations as identified in 6.4.4.

On top of these limitations, we consider that the main challenge when handling device arrival with

ILP-CGDP lies in the definition of the neighborhood for the blank agents.

6.6.2 Newcomer Decision Problem for Agent Arrival

As we have seen, re-using the previously defined ILP-CGDP to handle device arrival is possible

but requires to define a neighborhood for the newcomer agent, which may be difficult, and suffers

from the high computation and communication loads incurred by distributed approaches for solving

it.

Here, as to avoid these high loads induced by the previous technique, we consider a more newcomer-

centric approach: the newcomer agent calls for proposals to move some computations; then, based

on the costs of the proposed computations and its own memory capacity, the newcomer has to

choose a set of computations to host.

Another benefit of this approach is that it delegates the definition of the subset of the computation

graph (which is equivalent to the definition of the neighborhood in the previous technique) to the

agents that are already active in the system, and should thus have a better knowledge to make the

right decision.

Let’s formulate this newcomer decision problem.

Definition 25 (CGDP-NDP). Given a newcoming agent and a set of proposed computations to

migrate coming from its neighborhood, the Newcomer Decision Problem for the Computation

Graph Distribution Problem (CGDP-NDP) amounts to choose computations amongst proposed

computations, so that communication load and hosting costs are minimized and memory constraints

are fulfilled.

Practically, when a new agent ak enters the system, the distributed discovery mechanism

(see 6.3.2.1) informs other agents of that arrival, which would typically be implemented by some

kinds of broadcast communication. This type of communication is unreliable, meaning that the

set of agents receiving this information is at most the whole set of agents A but more generally a

subset of A defined by network proximity and the discovery mechanism used in the system.

In the following, we note A[ak]D the subset of agents informed of the arrival of the newcomer by

the discovery mechanism. If the newcomer is a participating agent, this subset includes at least the

agents that host a computation connected to a computation hosted on ak –that is to say, it is a least

the neighborhood A[ak], as defined in (Definition 17).

125

6.6. Handling Agent Arrival

For the communication costs, we reuse com(ci, cj), as defined in Section 5.4. Indeed, as we will

see shortly, the problem cannot be efficiently solved when using the more general definition of

communication costs, coma(ci, cj, am, an) defined in Section 5.5.2.

Each agent af ∈ A[ak]
D

sends its proposal to ak in a message made of a tuple

(Cf→k , E f→k , com, host), where:

• Cf→k ⊂ c is the set of computations hosted on af and proposed to be migrated to the

newcomer ak ,

• Ef→k = {(ci, cj) | (ci, cj) ∈ E, ci ∈ Cf→k or ej ∈ Cf→k} is the set of edges connected to

computations in C f→k ,

• com is the communication cost function (potentially restricted to elements in Ef→k),

• host is the hosting cost of each proposed computation on its current agent.

We note Ck the set of computations proposed to the newcomer agent:

Ck =
1

aR∈A[ak]
D

Cf→k

and Ek the set of edges derived from these proposals:

Ek =
1

aR∈A[ak]
D

E f→k

Notice that Ek may contain edges involving computations that are not in Ck , and thus cannot be

migrated, as we must also account in our decision for communication costs with these computations.

We denote Ck+ the set of computations connected to at least one edge in Ek , even the ones that are

not movable (thus, not necessarily proposed for migration):

ck+ = {ci | (ci, cj) ∈ Ek or (cj, ci) ∈ Ek}

We assume the communication cost com(ci, cj) can be assessed only using information sent by

proposers.

Example 19. Figure 6.7 represents the proposals from agents a1 and a2 to newcoming agent ak.

Agent a1’s proposal, depicted in yellow, includes c1 and thus:

C 1→k = {c1} and E 1→k = {(c1, c2), (c1, c3), (c1, c5)}

Similarly for a2’s proposal, depicted in blue includes c3:

C 2→k = {c3} and E 2→k = {(c3, c5), (c1, c3)}

The set of computations proposed to ak is Ck = {c1, c3} and the set of associated edges is:

Ek = {(c1, c2), (c1, c3), (c1, c5), (c3, c5)}

126

Chapter 6. Resilient Decision-Making in Dynamic Environments

c1 c2 a1

c5 c6

c3 c4 a2

i

i j

Notice that some edges in Ek involve a computation that is not proposed, like for instance here c5

and c2.

Ck+ = {c1, c2, c3, c5}

Each proposal also includes the communication cost for each of the edges in Ef→k. and the hosting

cost of each proposed computation on its current agent.

ak a3

Figure 6.7 – Sample proposals from agents a1 and a2 to newcoming agent ak

Let ek be a binary variable stating whether the newcomer ak chooses to host computation ci.

The cost of selecting a set of computations can be formulated as the sum of:

(a) the communication cost of edges that are cut (i.e. the ends or the edge are hosted on different

agents) by moving the selected computation to ak ,

(b) the negative communication costs of edges whose ends are now both hosted ak ,

(c) the difference of hosting costs, for each selected computation, between the hosting cost on

their current agent and ak .

Case (a) maps to edges (ci, cj) ∈ Ek for which ek XOR ek holds true (i.e. exactly one of the

computations is selected by ak). We can reformulate the XOR operator with binary variables as

follow: ek + ek − 2 · ek · ek .
i j i j

Case (b) maps to edges that were cut before the selection and would whose both ends are now
hosted on ak , i.e. those for which ek AND ek holds true, which can be rewritten as ek · ek .

i j i j

Case (c), for each selected computation ci, is simply the difference in hosting costs:

host(ν(ci), ci) − host(ak, ci).

By summing these two components, we can write the impact of on communication cost of selecting

a set of computations as follows:
)

com(ci, cj)(ek + ek − 2 · ek · ek)

(ci,cj)∈Ek

)

i j i j

— com(ci, cj) · ek · ek
 (6.14)

i j

(ci,cj)∈Ek

127

6.6. Handling Agent Arrival

c2 a1

c1

c5 c6

c3

c4 a2

)
ek

i

And the impact on hosting cost can be expressed as:

i · (host(ν(ci), ci) − host(ak, ci)) (6.15)

ci∈Ck

Example 20. When accepting c1 and c3 (Figure 6.8):

• Edge (c1, c2), depicted in red, was previously entirely contained in a1 and was thus not

incurring any communication cost. This edge is now cut and we must account for the cost

com(c1, c2).

• Edge (c1, c3), depicted in green, was previously cut between agents a1 and a2. This edge

is now entirely contained in ak and thus we do not have the corresponding cost any more:

com(c1, c3).

• We now have to account for the costs for hosting c1 and c3 on ak

Thus, the overall cost of selecting c1 and c1 is equal to:

com(c1, c2) − com(c1, c3)

+ host(a1, c1) − host(ak, c1) + host(a2, c3) − host(ak, c3)

Notice that communication costs do not change for edges (c1, c5) and (c3, c5) as the definition of

communication used here does not take agents into account.

ak a3

Figure 6.8 – Communication costs when accepting proposals from a1 and a2

We can sum these two components (with some simplification) and use the result as the optimization

objective for the newcomer ak , as follows:

minimize
)

 com(ci, cj)(ek + ek − 3 · ek · ek) +
)

ek · (host(ν(ci), ci) − host(ak, ci))
ek k i j i j i

i ,ej (c ,c)∈Ek c ∈Ck
i j

subject to
)

ei∈V k

i

(6.16)

mem(ei) · ek ≤ wm ax(ak) (6.17)

128

Chapter 6. Resilient Decision-Making in Dynamic Environments

Definition 26 (IQP-CGDP-NDP). We term Integer Quadratic Problem for CGDP-NDP (IQP-

CGDP-NDP) the 0/1 integer quadratic program consisting of quadratic objective (6.16) and

linear constraints (6.17) which encodes CGDP-NDP (Definition 25).

We will now show that this problem falls into the Quadratic Knapsack Problem (QKP) frame-

work.

The communication part of Equation (6.14) can be reformulated as follows:
)

com(ci, cj)(ek + ek − 3 · ek · ek)

(ci,cj)∈Ek

i j i j

=
)

com(ci, cj)(ek + ek) +
)

 −3 · com(ci, cj)ek · ek

(ci,cj)∈Ek

i j i j

(ci,cj)∈Ek

=
)

ek ·
)

 com(ci, cj) +
)

 −3 · com(ci, cj)ek · ek

i

c i∈Ck cj∈Ck+

i j

(ci,cj)∈Ek

=
)

ek · p(ci) +
)

)

ek · ek · P(ci, cj)
i

ei∈Ck c i∈C k

i j

cj∈Ck,i/=j

with

p(ci) =
)

cj∈V k+

com(ci, cj), ∀ei ∈ V k

(

P(ci, cj) =
−3 · com(ci, cj), if (ci, cj) ∈ Ek

0, otherwise

We can now add the hosting costs (from Equation 6.15) and rewrite the objective as follows:

)
ek

))
i j

)
i

ei∈Ck

i · p(ci)
c i∈Ck

cj∈Ck,i/=
j

ek · ek · P(ci, cj) +
c i∈Ck

ek · (host(ν(ci), ci) − host(ak, ci))

=
)

ek · pl(ci)
)

)

ek · ek · P(ci, cj) (6.18)
i

ei∈Ck

i j

ci∈Ck cj∈Ck,i/=j

with

pl(ci) = host(ν(ci), ci) − host(ak, ci) + p(ci)

With our objective rewritten as Equation 6.18, which is the canonical form of QKP, we can see

that the IQP-CGDP-NDP falls into the QKP framework. Notice that this assumes that wm ax(ak)

are w(ci) are positive and integral, which is reasonable in our case, as they represent respectively

the capacity of an agent and the footprint of a computation (see Section 5.4).

QKP can be linearized [3] and then we could solve it using a centralized branch-and-cut method

or a distributed optimization method, as discussed in Section 6.4.3.

More interestingly in our case, QKP is solvable using a dynamic programming heuristic [41], but

without optimality guarantees. Only requiring O(wmax(ak).|ck|) space, and O(wmax(ak).|ck|2)

time, such a lightweight heuristic approach seems realistic in our case.

129

6.7. Experimental Evaluation

Besides, instead of using its whole memory capacity wm ax(ak), device ak may also set a limit

capacity below its maximum one (e.g. the average memory used by its neighbors) as not to host

more computation than others, in general.

In case the number of proposals is too high, ak may also choose to only consider a randomly chosen

set of proposers.

Using the heuristic and these two approaches (reducing available capacity and limiting the number

of proposed computation), the problem can be made very easy, and can be solved in the newcoming

agent, even though it is a constrained device.

From the already active agents side, the decision of making a proposition, and of choosing which

computations to propose, is also an issue. The easiest solution is to propose all “movable”

computations, i.e. computations like shared decision, that are not tied to an agent by the specific

problem’s domain characteristics. In the case of SECP, that would be for instance computation

representing physical models and rules, while actuator computations would never be proposed.

Of course, one could also use more elaborate strategies, where agents would make a proposal only

when they actually need it, for instance when they are already hosting many computations and have

limited remaining capacity. This would allow exploiting the knowledge of the system that these

active agents have, something that was not possible in the previous approach.

As a conclusion, this approach is lightweight and has very interesting characteristics compared

to the previously introduced ILP-CGDP[ak]+. However, it is restricted to a simplified definition

of the communication costs and cannot be used with the more general definition coma (see

Section 5.5.2), as, when using the route costs between agents, the problem cannot to be cast into

a QKP and thus we cannot use the efficient heuristic from [41].

6.6.3 DMCM-based Approach for Agent Arrival

In Section 6.6.1, we stated that ILP-CGDP[ak]−, the approach we introduced in Section 6.4 to

deal with agent departure, could also be re-used when a new agent enters the system. The only

issue is to select a subset of agents to be considered when restricting ILP-CGDP.

As a matter of fact, this is also true for the DMCM repair method introduced in Section 6.5.4. All

we need to use the DMCM model is to define a set of candidate agents and candidate computations;

once these sets are defined, DMCM can be applied to agent arrival, and solved in a distributed

manner using a DCOP. As discussed in Section 6.6.1, the appropriate definitions for these sets

depend on the problem and system’s characteristics.

Notice that when dealing with agent’s arrival, we do not need DRPM, the replication component

of our k-resilience framework DRPM[DMCM]. As computations are migrated from active agents

to the newcoming agent, their definition is still available and can simply be transmitted once the

migration has been agreed on.

6.7 Experimental Evaluation

In the next sections, we experimentally analyze the performances and behaviors of our different

contributed algorithms to handle single-agent arrival and departure (Section 6.7.1), to replicate

130

Chapter 6. Resilient Decision-Making in Dynamic Environments

computation definitions (Section 6.7.2), to repair systems where agents disappeared (Section 6.7.3)

and to install resilience (Section 6.7.4).

6.7.1 Handling Agent Arrival and Departure

In this first set of experiments, we evaluate the performances of ILP-CGDP[ak]−, ILP-CGDP[ak]+

and CGDP-NDP, our solution methods for migrating computations when a single agent joins or

leaves the system.

These experiments are performed on SECP problems, solved using MaxSum, as we stated in

Section 4.3 that this family of algorithms was well suited for the characteristics of these problems.

In our simulations, two types of events may occur: device arrival (in) and unsafe device removal

(out).

• In case of device arrival, we use either ILP-CGDP[ak]
+ (Section 6.6.1), which is solved

using a classical ILP solver within one node (using GLPK in our simulator), or CGDP-

NDP (Section 6.6.2), which is solved using a dedicated dynamic program (embedded in our

simulator, in Python). Each new device arriving in the system represents a participating

agent (Section 6.3.1.2): it is already connected to models and rules in the SECP and its

neighborhood is thus well defined.

• In case of device removal ILP-CGDP[ak]− is solved using GLPK. Notice that we do not

consider in this experiment the issue the availability of computations’ definition, discussed

in Section 6.4.4. We simply assume here that, when repairing, any agent in the neighborhood

can access the computations’ definition.

Notice that our distribution here is based on the SECP-specific definition from Section 5.4, which

allows use to compute an optimal distribution for relatively large problems. Besides, CGDP-NDP

is only defined for distribution methods based on the communication costs, like ILP-SECP-CGDP.

Whatever the type of event, the best ILP-SECP-FGDP solution (computed with GLPK), and the

solution provided by the GH-SECP-FGDP heuristic are computed to benchmark aforementioned

methods.

Notice also the discrepancies in terms of solution method implementation (GLPK vs python code):

for this reason, we do not plot the repair times (which always take at most a few seconds). Instead,

we concentrate on the evaluation of the quality of the distribution after repair.

6.7.1.1 Simulated Smart Home Scenarios

In a first series of experiments, we simulate the first floor of a real smart home, as represented in

Figure 4.7 (presented in Section 4.2.2 on page 54), which is initially composed of 13 actuators

(light bulbs and their respective costs), 6 physical models (one for each space), and 5 user rules

(not represented in the figure, for clarity). The default agent memory capacity (wm ax) is set to

200 memory units (one unit represents the space to store one value, e.g. 32 bits). Figure 6.9 traces

performances of repair solutions on a scripted scenario where devices are added and removed at

runtime. Each of these 40 events is followed by a repair phase using the proposed methods.

131

6.7. Experimental Evaluation

1

0.9

0.8

0.7

0.6

0.5

0.4

5 10 15 20 25 30 35 40

(a)

Event

200

150

100

50

0

5 10 15 20 25 30 35 40

(b)

Event

Figure 6.9 – Optimality (6.9a), and memory usage (6.9b) of the deployment during the simulation

(standard deviation, min and max)

Figure 6.9a shows the quality of the distribution after handling an in or out event, computed as the

ratio between the repaired distribution cost and the best cost (real ILP-SECP-FGDP optimum).

The centralized GH-SECP-FGDP heuristic is also plotted for comparison. Clearly, with both

approaches, out events tends to degrade the optimality of the deployment, while still maintaining it

at a very competitive level, compared to a full deployment of the whole factor graph. Interestingly,

in events improve optimality, meaning that in real systems where on average out are approximately

balanced by in, the deployment should keep a very good quality level.

As we also add devices in the system, it’s interesting to see if we benefit from the newly added

capacities and if the computations are evenly spread across the devices. Figure 6.9b presents the

standard deviation (and min and max) of memory usage over all the devices, after each event.

For comparison, it also includes the values obtained with and optimal distribution (with ILP-

SECP-FGDP) and the GH-SECP-FGDP. While our approaches are not specifically designed

to ensure a fair memory load share among devices, both distributed methods do not lead to an

excessive accumulation of computations on a single device and perform at least as well as the two

centralized approaches. Solving ILP-CGDP[ak]+ is a better choice in this regard, which can be

explained by the fact that it allows relocation of computations on the full neighborhood, while

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = GH-SECP-FGDP out = GH-SECP-FGDP

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = ILP-SECP-FGDP out = ILP-SECP-FGDP

in = GH-SECP-FGDP out = GH-SECP-FGDP

M
e
m

o
ry

u
s
a
g
e

O
p
ti
m

a
lit

y

(c
o
m

m
u
n
ic

a
ti

o
n
)

in

in

in

in

in

in

in

in

o
u
t

o
u
t

in

o
u
t

in

in

o
u
t

in

in

o
u
t

in

o
u
t

o
u
t

o
u
t

in

o
u
t

in

in

in

in

in

o
u
t

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

o
u
t

o
u
t

in

in

in

in

in

in

in

in

o
u
t

o
u
t

in

o
u
t

in

in

o
u
t

in

in

o
u
t

in

o
u
t

o
u
t

o
u
t

in

o
u
t

in

in

in

in

in

o
u
t

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

o
u
t

o
u
t

in

132

Chapter 6. Resilient Decision-Making in Dynamic Environments

solving CGDP-NDP only allows migration of computations to the newcomer.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.7

0.65

0.6

0.55

0.5

pin

0.45

0.4

0.35

0.3

Figure 6.10 – Influence of the pin probability on the distribution quality

In a second series of experiments, we simulate the whole house with 23 actuators, 9 physical

models and 9 rules. Here we evaluate the robustness of each repair techniques with more and more

device removal. Figure 6.10 shows the average performances over 10 simulations after 20 events,

in terms of distribution quality (computed as previously) with a varying event type probability.

At each event generation, its type is determined using pin, i.e. the probability for an event to be

in. The higher pin, the easier the adaptation is, since more devices are probably added. ILP-

CGDP[ak]+ combined with ILP-CGDP[ak]− presents very good resilience, since it offers more

than 80% optimality with pin ≥ 0.35 (approximatively 2 removals for 1 arrival). CGDP-NDP

combined with ILP-CGDP[ak]− is always 5 to 15% lower. It is remarkable that these local repair

techniques yield better distributions, from a communication point of view, than GH-SECP-FGDP,

even though it is a centralized approach and has access to information about the whole factor graph.

Finally, ILP-CGDP[ak]+ presents better optimality, but requires much more information to be

computed, whilst CGDP-NDP is in average 10% worse in communication cost.

6.7.1.2 Randomly Generated SECPs

In a third series of experiments, we evaluate the influence of the number of rules in the SECP

on the performance of the repair techniques. Here we generate 10 pairs of SECP and scenarios

(containing 20 events) for each combination of pin and nr where 0.3 ≤ pin ≤ 0.7 and 10 ≤ nr ≤ 50

is the number of rules (with a step of 10). All SECP are generated randomly with 30 lights and 7

models and map to connected factor graphs, meaning that an increase on the number of rules also

results in an increase on the factor graph density.

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = GH-SECP-FGDP out = GH-SECP-FGDP
A

v
e
ra

g
e

O
p
ti
m

a
lit

y

133

6.7. Experimental Evaluation

1

0.9

0.8

0.7

0.7

0.65

0.6

0.55

0.5

pin

0.45

0.4

0.35

0.3

(a) SECP with 10 rules

1

0.9

0.8

0.7

0.7

0.65

0.6

0.55

0.5

pin

0.45

0.4

0.35

0.3

(b) SECP with 30 rules

1

0.9

0.8

0.7

0.7

0.65

0.6

0.55

0.5

pin

0.45

0.4

0.35

0.3

(c) SECP with 50 rules

Figure 6.11 – Influence of the pin probability on the optimality for SECP with an increasing number

of rules

Figure 6.11 shows the average performance in term of distribution quality (i.e. communication

optimality). We can see that the good resilience of the local distribution repair approaches is

not really impacted by the number of rules in the system ; results are very similar to those of

the second experiment for both ILP-CGDP[ak]+ combined with ILP-CGDP[ak]+ and CGDP-

NDP combined with ILP-CGDP[ak]−. However, we notice that the GH-SECP-FGDP heuristic

performs much better than on the second experiment and consistently returns better distribution

than CGDP-NDP combined with ILP-CGDP[ak]−. This can be explained by the fact that the

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = GH-SECP-FGDP out = GH-SECP-FGDP

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = GH-SECP-FGDP out = GH-SECP-FGDP

in = ILP-CGDP[ak]
+ out = ILP-CGDP[ak]

-

in = CGDP-NDP out = ILP-CGDP[ak]
-

in = GH-SECP-FGDP out = GH-SECP-FGDP

O
p
ti
m

a
lit

y

(c
o
m

m
u
n
ic

a
ti

o
n
)

O
p
ti
m

a
lit

y

(c
o
m

m
u
n
ic

a
ti

o
n
)

O
p
ti
m

a
lit

y

(c
o
m

m
u
n
ic

a
ti

o
n
)

134

Chapter 6. Resilient Decision-Making in Dynamic Environments

m n | m |

SECP used here are generated randomly while the SECP used for previous experiments were

modeling actual real smart homes. Real SECP tends to have some locally semi-independent

subgraphs, which roughly maps the various rooms and zones of a house. This structure is not

present is random SECP, which tends to be much more uniform. This exhibits the high impact

of the topology of the factor graph on the efficiency of the distribution approach. It is remarkable

that the two local approaches are not much impacted by this change in topology.

6.7.2 Replication

In this section, we evaluate DRPM, our replicas placement algorithm, on several problem types

and several multi-agent infrastructures.

6.7.2.1 Evaluation of DRPM on Benchmark Problems

First, we evaluate DRPM on standard DCOP benchmark problems: graph coloring problems on

random and scale free graph.

Random soft coloring problems are generated by creating a random graph with density p = 0.3.

Each edge is mapped to a binary constraint and each vertex is mapped to a variable with a domain

made of 5 colors. Scale free problems are derived, using the same approach, from scale free graphs

generated using the Barabàsi-Albert model [8] (starting from a 2-node connected graph), which

are known to adequately model IoT systems [151]. In both cases, we generate instances with an

increasing number of variables: |X | ∈ {10, 20, . . . , 90}. For each variables count, we generate

10 instances and derive a computation graph for each of these instances, for algorithms based on a

constraint graph representation.

As the distribution of replicas does not only depends on the problems definition, but also on the

characteristics of the multi-agent infrastructure (agents and communication among them) used to

solve it, we also generate two different infrastructures for each graph coloring problem: an uniform

infrastructure and a problem-dependent infrastructure. An infrastructure is made of |A| agents,

each holding one decision variable (|A| = |X |), and is defined by cost, route, and wm a x (see

Section 5.5 on distribution for the definitions) as follows.

The uniform infrastructure considers systems where communication costs between agents are

uniform: ∀am, an, route(am, an) = 1.

In the problem-dependent infrastructure , route costs route(am, an) are defined in a way that

respects the structure of the computation graph: agents with many neighbors have a low commu-

nication cost while agents few neighbors have an higher communication cost. The idea is to model

the structure found in many physical infrastructures like IoT, where powerful servers are connected

to many other servers through high-performance networks, while small connected devices are using

constrained connections.

More precisely, route(a , a) = 1+||N (am)|−|N (an)|| where N (a) is the number of neighbors
|N (am)|+|N (an)|

of am in the computation graph.

Additionally, we define hosting costs, agents’ capacities and computations footprints and commu-

nication loads for both infrastructure and all problems instances as follows:

135

6.7. Experimental Evaluation

(i) hosting costs cost(am, xj) = 0 if the computation cj is responsible for the variable initially

assigned to agent am, cost(am, cj) = 10 otherwise;

(i) the capacity of each agent depends on the weight of its decision variable and is set to a large

value, to ensure that all replicas can be hosted and k-resiliency is possible, even after several

repairs: wm ax(ai) = 100 ∗ mem(ci);

(i) finally, w and msg depends on the DCOP solution method used to solve the problem. In this

experiment, we assume DSA is used and set msg(ci, cj) = 1 and mem(ci) = |N (am)|.

Notice that given our definition of the set of agents and their hosting costs, the initial distribution

of computations always assigns exactly one computation to each agent.

Finally, we use DRPM on each problem / infrastructure combination, in order to achieve a 3-

resilient system. This means that each agent will run one instance of DRPM for its computation

in order to place three replicas.

Figure 6.12 represents the time required to place all replicas and achieve 3-resilience in the system.

We can observe that replication is more difficult on our IoT-like infrastructure. This can be

explained by the fact that, as communication costs are not uniform, DRPM generally needs to

explore a larger part of the graph to find an low-cost place for the replicas. Scale free problems

are marginally easier on average than random graph coloring problems, but also exhibit a larger

variation between instances. In all cases, all instances are solved in very reasonable time, even for

large problems, especially when considering that the replication of all computations only happens

at startup and that the system does not need to wait for it for starting nominal operation.

10

8

6

4

2

0

10 20 30 40 50 60 70 80 90

Variables count

Figure 6.12 – Time for replicating computations for graph coloring problems

Figures 6.13 and 6.14 represent the number of messages and the total communication load induced

by DRPM. The communication load is defined as the sum of the size of all messages exchanged

during replication, and we count one symbol (cost, agent’s name, etc.) for one unit. Scale free

graph coloring problems on IoT infrastructure are clearly more communication-intensive, due to

Rando m - IoT infra structure

om - Uniform

ree - IoT Inf

Infrastruct

rastructure

re

ree - Unifor m Infrastru ture

Rand

Scale f

Scale f

u

c

T
im

e
 (
s
)

136

Chapter 6. Resilient Decision-Making in Dynamic Environments

the graph exploration as mentioned earlier, and also because messages grow larger when exploring

the graph further from the agent, as they contain the longer paths.

40000

30000

20000

10000

0

10 20 30 40 50 60 70 80 90

Variables count

Figure 6.13 – Messages count when replicating computations for graph coloring problems

2000000

1500000

1000000

500000

0

10 20 30 40 50 60 70 80 90

Variables count

Figure 6.14 – Communication load when replicating computations for graph coloring problems

6.7.2.2 Evaluation of DRPM on SECP instances

We also evaluate DRPM on a set of SECP instances with increasing numbers of lights, physical

models and rules, generated using the same protocol than described in Section 4.3.2: 10 instances

are generated for each problem size.

We derive two computation graphs for each of these instances, for DSA and one for MaxSum,

which are respectively a constraint graph and a factor graph based algorithm.

The multi-agent infrastructure used for these SECP problems is made of one agent for each light,

and computations representing a light is assigned to the corresponding agent. Communication

cost is uniform between agents and hosting costs are identical for all computation, except light

om - IoT like

om - Unifor

infrastruct

m Infrastruc

ure

ture

free - Iot In

free - Unifo

frastructure

rm Infrastr

cture

Rand

Rand

Scale

Scale u

om - IoT like

om - Unifor

infrastruc

m Infrastru

ture

cture

free - Iot I

free - Unifo

frastructur

rm Infrast

e

ructure

Rand

Rand

Scale

Scale

n

M
e
s
s
a
g
e
s
 c

o
u
n
t

C
o
m

m
u
n
ic

a
ti
o
n

 lo
a
d

137

6.7. Experimental Evaluation

computation. The initial distribution is computed using GH-CGDP.

Figure 6.15 represents the time required to achieve 3-resilience on our SECP instances. As

expected, replication is harder for MaxSum, as it requires more computations for the same problem.

In any case, we argue that these replication times are perfectly reasonable for real-like system as

this operation only needs to be run once when starting the system: during the nominal execution

of the system, full replication is never needed and we can simply repair an existing replication if

some agent fails or leave the system.

Figures 6.16 and 6.17 represent the total messages count and communication loads induced by

DRPM.

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

10 20 30 40 50 60 70 80 90

Lights count

Figure 6.15 – Time for replicating computations for SECP instances

80000

60000

40000

20000

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 6.16 – Messages count when replicating computations for SECP instances

Constr aint graph b ased algor ithm (DSA)

graph base d algorith m (MaxSum) Factor

aint graph based algo rithm (DSA)

graph bas ed algorith m (MaxSu)

Constr

Factor m

T
im

e
 (
s
)

M
e
s
s
a
g
e
s

 c
o
u
n
t

138

Chapter 6. Resilient Decision-Making in Dynamic Environments

4000000

3000000

2000000

1000000

0

10 20 30 40 50 60 70 80 90

Lights count

Figure 6.17 – Communication load when replicating computations for SECP instances

6.7.3 Evaluation of the DMCM Repair Method

In these experiments, we evaluate DMCM, our DCOP-based repair method. As DMCM models

the repair process as a DCOP, we implement it using two different DCOP algorithms and compare

their efficiency on this task.

We generate 20 random graph coloring problems and 20 scale free graph coloring problems, each

with 25 variables. The problem generation is identical to the experiments on replication and is

described in Section 6.7.2. A perturbation scenario is generated for each problem, made of 5

events where 2 random agents are removed from the system. We then derive for each problem two

computation graphs, one for constraint graph and one for factor graph based DCOP algorithms.

As previously, we also generate two different agent infrastructures for each computation graph,

an uniform infrastructure and an infrastructure designed to model the structure found in IoT

systems (see Section 6.7.2). These infrastructures have one agent for each variable in the problem.

The initial distribution of the computation graphs on these infrastructures is computed using the

GH-CGDP heuristic (Section 5.5.4).

Finally, we distribute 2 replicas for each computation with DRPM.

During the experiments, perturbation events are injected in the system (i.e. agents are removed)

and we run DMCM to repair the distribution. After the repair, the replica distribution is restored

using DRPM, to ensure that no computation definition is lost. At the end of the scenario, 10

agents have been removed, from systems that were initially composed of 25 agents (40% of agents

disappeared). Each scenario is executed 5 times and the results are averaged. Notice that during

this experiment, the DCOP representing the graph coloring problem is not running, here we

only analyse the repair of the computation graph representing it. Repair on a running system is

investigated in Section 6.7.4.

We evaluate two different DCOP algorithms to implement DMCM: DSA and MGM-2. We use

a synchronous implementation of these algorithms and allow them to run for 20 cycles. This

allows us to compare the efficiency of our repair method, when using it on various problems,

raint graph based alg orithm (DS A)

Factor graph bas ed algorith m (MaxSu m)

Const

C
o
m

m
u
n
ic

a
ti
o
n

 lo
a
d

139

6.7. Experimental Evaluation

representations and infrastructures, and to evaluate the time and communication load required for

repairing systems.

DSA MGM-2

Uniform infrastructure
Constraint Graph 11% 8%

Factor Graph 46% 13%

IoT infrastructure
Constraint Graph 36% 11%

Factor Graph 35% 7%

Table 6.2 – Failure rates when using DSA and MGM-2 for implementing DMCM

Table 6.2 shows the failure rates when using the two DCOP algorithms. Indeed, while repair is

always successful for the first three perturbation events, it fails sometimes at the fourth or the fifth

event. As a matter of fact, as we migrate the computations from removed agents to remaining

agents, the average number of computation per agent rises, making the repair problem progressively

harder as more computations must be migrated for a single perturbation event.

We can see that MGM-2 is clearly better suited for implementing repair with DMCM, as it has

a lower failure rate on all configurations. This can be explained by the fact that MGM-2 is

monotonic: as discussed in Section 6.5.5 it will handle hard constraints first, which ensures that

all orphaned computations are hosted. When the repair fails, it is due to the limit on the number

of cycles MGM-2 is allowed to run. When raising that limit, the failure rates decreases. However,

it is not possible to determine the number of cycles required for a repair operation, as in MGM-2,

the 2-coordination mechanism is implemented by selecting a partner at random. We argue that

it would be possible to design a variant of MGM-2 better suited to our problem, by using agents

characteristics when selecting a partner for coordination.

On the other hand, DSA generally has a high failure rate, as its stochastic behavior easily breaks

these hard constraints. Raising the number of cycles as virtually no effect on its failure rate.

We cannot see any obvious relation between the failure rate and the infrastructure (IoT or uniform)

or the computation graph representation (constraint graph or factor graph).

Figures 6.18 and 6.19 show the time and communication load of repair operations when using DSA

on random and scale free graph coloring problems. As already explained, we can clearly see that

repair is more difficult after several events, it takes more time and induces more communication

load, as more computations must be migrated on average. We can also see that repairing scale free

problems takes less time than for random graph coloring problems, and induces a slightly lower

communication load.

Problems represented as constraint graphs are also clearly easier to repair that when using factor

graphs, which makes sense as the factor graph representation requires more computations.

140

Chapter 6. Resilient Decision-Making in Dynamic Environments

C
o

m
m

u
n

ic
a

ti
o

n

C
o

m
m

u
n

ic
a

ti
o

n

C
o

m
m

u
n

ic
a

ti
o

n

1.50

Constraint Graph - Uniform Constraint Graph - IoT Factor Graph - Uniform Factor Graph - IoT

1.25

1.00

0.75

0.50

0.25

0.00

5000

4000

3000

2000

1000

0

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

Figure 6.18 – DMCM repair using DSA on random free graph coloring problem

Constraint Graph - Uniform Constraint Graph - IoT Factor Graph - Uniform Factor Graph - IoT

1.0

0.8

0.6

0.4

0.2

0.0

4000

3000

2000

1000

0

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

Figure 6.19 – DMCM repair using DSA on scale free graph coloring problem

Figures 6.20 and 6.21 show the time and communication load of repair operations when using

MGM-2 on random and scale free graph coloring problems. The overall behavior is similar to

what we observed with DSA.

2.5

Constraint Graph - Uniform Constraint Graph - IoT Factor Graph - Uniform Factor Graph - IoT

2.0

1.5

1.0

0.5

0.0

17500

15000

12500

10000

7500

5000

2500

0

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

Figure 6.20 – DMCM repair using MGM-2 on random graph coloring problem

T
im

e
 (

s)

T
im

e
 (

s)

T
im

e
 (

s)

141

6.7. Experimental Evaluation

Constraint Graph - Uniform Constraint Graph - IoT Factor Graph - Uniform Factor Graph - IoT

1.0

0.8

0.6

0.4

0.2

0.0

10000

8000

6000

4000

2000

0

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

0 1 2 3 4

Events

Figure 6.21 – DMCM repair using MGM-2 on scale free graph coloring problem

When comparing DSA and MGM-2, we can see that MGM-2 requires more time and commu-

nication load to complete a repair operation. However, MGM extra cost is still very acceptable,

especially when looking at the lower failure rates it achieves, as discussed previously. Therefore,

we argue that MGM-2 is better suited for implementing DMCM.

6.7.4 Resilience

In this section we evaluate the efficiency of DRPM[DMCM], our solution method for k-resilience,

on running systems. Given the results of our experimental evaluation of DMCM, we elect to use

MGM-2 as our repair DCOP algorithm. Thus, all experiments in this section are performed using

DRPM[MGM-2].

6.7.4.1 Evaluating Resilience on Benchmark Problems

First, we evaluate our approach for kresilence, DRPM[MGM-2], on benchmark graph coloring

problems. As previously, these problems are composed each of three components: a graph

coloring problem definition (scale free or random), a multi-agent infrastructure (uniform or IoT),

and a disturbance scenario. Problems generation is performed using the same method than we

used in previous experiments and is described in Section 6.7.2.

The graph coloring problems are solved with A-DSA and A-MaxSum, and agents are removed

at runtime, during the resolution process. We selected these DCOP algorithms because they are

both asynchronous and support message loss. Furthemore they can be considered as staleless (for

A-DSA) or almost stateless (for A-MaxSum), which is necessary for applying DRPM[DMCM],

as stated in Section 6.5.1.

After each removal, the system is repaired using DRPM[MGM-2]. Practically speaking, we use a

DCOP (solved with MGM-2) to repair and restore nominal operation on another DCOP (solved

with A-DSA or A-MaxSum), which represents the initial dynamic problem we want to solve (in

this case, a graph coloring problem). Additionally, after each repair we re-run DRPM, for migrated

computations and computation whose replica were hosted on removed agents. This ensures that

each computation in the system still has k replica.

C
o

m
m

u
n

ic
a

ti
o

n

T
im

e
 (

s)

142

Chapter 6. Resilient Decision-Making in Dynamic Environments

Additionally, we also solve the same problems without any disturbance, in order to assess the

impact of our repair method on the quality of the solution returned by A-DSA and A-MaxSum.

Single instance cost with pertubation Av g cost with pertubation Av g cost without pertubation

1000

Unif orm

1000

IoT

900

900

800

800

700

700

600

600

500

500

400

400

7000

7000

6500

6500

6000

6000

5500

5500

5000

0 20 40 60 80 100 120 140 160 180

Time (s)

5000

0 20 40 60 80 100 120 140 160 180

Time (s)

Figure 6.22 – Cost of A-DSA solution at runtime, with (blue) and without perturbation (red), on
uniform (left) and IoT-like (right) infrastructure, and when solving scale free graph coloring (top)

and random graph coloring (bottom), using DRPM[MGM-2] to repair

Single instance cost with pertubation Av g cost with pertubation Av g cost without pertubation

Unif orm IoT

180

160

160

140

120

140

120

100

100

80
80

450

425

400

400

375

350

300

350

325

300

275

250

250

225

0 20 40 60 80 100 120 140 160 180

Time (s)

0 20 40 60 80 100 120 140 160 180

Time (s)

Figure 6.23 – Cost of A-MaxSum solution at runtime, with (blue) and without perturbation (red),
on uniform (left) and problem-dependent (right) infrastructure, and when solving scale free graph

coloring (top) and random graph coloring (bottom), using DRPM[MGM-2] to repair

C
o

lo
ri
n

g

ra

n
d

o
m

C

o
lo

ri
n
g

s
c
a
le

fr
e
e

C

o
lo

ri
n
g

ra

n
d

o
m

C

o
lo

ri
n
g

s
c
a
le

fr
e
e

143

6.7. Experimental Evaluation

2

When using A-DSA to solve the graph coloring problems, we generate problems with 100 variables

and place 3 replicas for each computation, in order to achieve 3-resilience, Disturbance scenarios

are made of 5 events, where 3 agents are removed. Figure 6.22 shows the cost of the solution found

by A-DSA over time. The cost of each of the 100 runs is displayed in transparent grey, the overall

shapes illustrates the fact that the system’s behavior is consistent across the various instances. The

average solutions costs with (in blue) and without (in red) perturbation are also plotted.

We can see that the solutions on the disturbed system degrade when agents are removed, but quickly

improve again when the system recovers. Here, the replicas that are activated by the repair process,

as opposed to the computation that were hosted on removed agents, do not need accumulated

knowledge to recover a consistent state, thanks to message passing with neighbors. In A-DSA ,

computations gather new information about costs from their neighbors at each message exchange;

as a consequence migrated compuation are able to very quickly select an appropiate value, based

on the value of their neighbors.

Interestingly, we can see that the pertubations even allow A-DSA to reach a better average solution

quality for scale free problems on a uniform infrastructure. Indeed, A-DSA is a local seach

algorithm that can get trapped in local optimal and the perturbation can help mitigating this issue

by resetting several values simultaneously.

When using A-MaxSum to solve our graph coloring problems, we generate problems with 25

variables and place 2 replicas for each computation, in order to achieve 2-resilience. Disturbance

scenarios are made of 5 events where 2 agents are removed. Notice that we consider here smaller

problems than for A-DSA, since A-MaxSum operates on factor graph, which requires more

computations (one more per edge in the graph) than the constraint graphs used by A-DSA. Still,

on random graph with density of 0.3, such problems require on average 25 + 0.325×24
 = 125

computations to manage, which is roughly similar to the number of computations induced by

A-DSA when solving problems with 100 variables.

In Figure 6.23, we can see that the solutions on the disturbed system degrade when agents are

removed, but improve again when the system recovers, as for A-DSA. However, A-MaxSum

operation on very cyclic problems like random coloring is known to be very noisy, even using

a high damping factor (here we use 0.8), as proposed in [23]. Moreover, belief propagation

algorithms like A-MaxSum, computations are not really stateless: they accumulate information

about constraints and preferences from their neighbors. When activating a replica, the new active

computation starts afresh and an indeterminate number of message rounds are needed to restore

that information. All in all, A-MaxSum operation is more impacted by the perturbations and repair

procedure than A-DSA.

In order to evaluate the quality of the repaired distributions of computations, we also measure the

degradation of the distribution all along the system lifetime. At each event, we assess the cost of

the current distribution of the computation graphs (for A-DSA) against the initial distribution cost

(which is optimal, but cannot be computed at runtime). Figures 6.24 and 6.25 show the distribution

costs for the 100 runs. As the global distribution cost is made of communication and hosting costs,

we also plot these two costs independently.

In every case, the hosting cost logically increases by 10 · k at each perturbation event, as k

144

Chapter 6. Resilient Decision-Making in Dynamic Environments

computation are moved from their initial agent to another (where the hosting cost is 10). On scale

free models, hosting costs and communication costs have the same order of magnitude. But, for

random graphs, higher density implies that there are more edges in the graph and as a consequence

the overall communication cost is higher. In general, the communication costs decrease at each

repair, as computations can move to a less expensive agent.

200

Unif orm

200

IoT

150

150

100

100

50 50

0 0

1500

1500

1250

1250

1000

1000

750

750

500

500

250

250

0

0 1 2 3 4 5

Ev ents

0

0 1 2 3 4 5

Ev ents

Figure 6.24 – Cost of the distribution of computation graphs on which A-DSA operates, after each

event, on uniform (left) and problem-dependent (right) infrastructure, and when solving scale free

graph coloring (top) and random graph coloring (bottom) problems, using DRPM[MGM-2] to

repair

Unif orm IoT

500

500

400

400

300

300

200

200

1000

1000

800

800

600

600

400

400

0 1 2 3 4 5

Ev ents

0 1 2 3 4 5

Ev ents

Figure 6.25 – Cost of the distribution of computation graphs on which A-MaxSum operates, after
each event, on uniform (left) and problem-dependent (right) infrastructure, and when solving scale

free graph coloring (top) and random graph coloring (bottom) problems, using DRPM[MGM-2]

to repair

Global distribution cost Communication cost Hosting cost

Global distribution cost Communication cost Hosting cost

C
o

lo
ri
n

g

ra
n

d
o
m

C

o
lo

ri
n
g

ra

n
d

o
m

C

o
lo

ri
n
g

s
c
a
le

fr
e
e

C

o
lo

ri
n
g

s
c
a
le

fr
e
e

145

6.7. Experimental Evaluation

6.7.4.2 Evaluating Resilience on SECP

We now evaluate the efficiency of DRPM[MGM-2] on running SECP. The problem generation

method is identical to what we used when evaluating static SECP (Section 4.3): we generate 100

SECP instances with 30 lights, 9 physical models and 6 rules. One scenario of 5 events is generated

for each instance, at each event 2 random agents (i.e. light device) is removed.

The intial distribution of the computation graphs derived from these problems is computed with

GH-CGDP.

The 100 SECP instances are solved with A-MaxSum and A-DSA, as in our previous experiments on

graph coloring problems, since these algorithms support message loss. However, the A-MaxSum

implementation we use here is customized to improve its behavior after a repair operation: once

orphaned computations have been migrated and restarted on an active agent, the accumulated cost

table of their neighbors is flushed. Additionally, the standard mechanism used to avoid sending

duplicate messages (classicaly used to detect termination when messages converge [36]) is inhibited

and belief propagation is restarted. Notice that this can be implemented in a distributed manner

with a simple token passing approach.

During the solving process, we inject the scenario’s events in the system every 30 seconds, each

time removing 2 agents, and repair the system using DRPM[MGM-2]. After each repair we re-

run DRPM, for migrated computations and computations whose replica were hosted on removed

agents. This ensures that each computation in the system still has k replica.

As previously, our mechanism amounts to using a DCOP (solved with MGM-2) to repair and restore

nominal operation on another DCOP (solved with A-DSA or A-MaxSum), which represents the

initial dynamic problem we want to solve (in this case, SECP).

Additionally, we also solve the same problems without any disturbance, in order to assess the

impact of our repair method on the quality of the solution returned by A-DSA and A-MaxSum.

Figures 6.26 and 6.27 show the cost of the solutions found by A-DSA and A-MaxSum over time.

As the SECP model contains both soft and hard constraints, we plot separately the number of

violated hard constraints (bottom) and the sum of costs of the soft constraints (top) The results for

each of the 100 instances are displayed in transparent grey and the average cost across all instances

is plotted in blue. The average cost of the same instances solved without disturbance is plotted in

red, but is barely visible as the average repaired cost is extremely similar.

We can see that both A-DSA and A-MaxSum behave remarkably after a repair: during a short

period after the repair the solution cost and the number of violated hard constraints increase, but

quickly get back to the quality level achieved before the agents were removed. Overall, we can

say that DRPM[MGM-2] is well suited for repairing running SECP and that the quality of the

solution produced over time is barely affected by the repair operations.

However, when comparing results produced by A-DSA and A-MaxSum, we can observe that

A-DSA yields higher costs, which coincides with what we obtained when experimenting on static

SECP in Section 4.3.

After a repair, A-MaxSum generally breaks more hard constraints than A-DSA but we argue

that it is not really problematic as it always manage to get back to the level it had before the

146

Chapter 6. Resilient Decision-Making in Dynamic Environments

S
o
ft

c
o
n
s
tr

a
in

t
c
o
s
ts

S

o
ft

c
o
n
s
tr

a
in

t
c
o
s
ts

H

a
rd

c
o
n
s
tr

a
in

t
v
io

la
ti
o
n
s

H
a
rd

c
o
n
s
tr

a
in

t
v
io

la
ti
o
n
s

disturbance. Notice however that the average number of hard constraints violations is not equal to

zero. Indeed, there are some instances where A-MaxSum struggles with hard constraints, as we

already experience with static SECP (see Section 4.3).

350

300

250

200

150

100

50

8

6

4

2

0

0 30 60 90 120 150

Time (s)

Figure 6.26 – Cost and hard constraints violations of operating A-DSA to solve SECP, repaired
with DRPM[MGM-2] (blue: with perturbations, red: without perturbation)

250

200

150

100

50

0

8

6

4

2

0

0 30 60 90 120 150

Time (s)

Figure 6.27 – Cost and hard constraints violations of operating A-MaxSum to solve SECP, repaired

with DRPM[MGM-2] (blue: with perturbations, red: without perturbation)

147

6.8. Summary

6.8 Summary

In this chapter, we demonstrated that SECP, like most problems in AmI and IoT (and probably in

other domains as well), is in fact a dynamic problem. After expounding a synthetic state-of-the-art

on Dyn-DCOP, we explained that dynamics in these systems could be classified in two categories:

computation dynamics and infrastructure dynamics.

We argued that computation dynamics could be handled at the DCOP-algorithm level and a reactive

approach was appropriate for our use cases. On the other hand, infrastructure dynamics generally

require to revise the distribution of the computation graph. Thus, we introduced several approaches

to revise the distribution in the case of agent(s) arrival and departure. Most notably, we introduced

the idea of k-resilience, which characterises a system able to survive the failure of up to k agents,

and proposed DRPM[DMCM], a technique to implement it.

We also evaluated experimentally our repair methods, both for single agent arrival and departure

and k-resilience. Based on this results, we are confident that DRPM[MGM-2] can be realistically

applied on SECP and that A-MaxSum and its derivatives are viable candidates for solving these

problems in dynamic settings.

DRPM[DMCM], and more generally k-resilience, have mostly been defined for computation

graphs used to solve AmI and IoT problems modeled as DCOPs. However, these mechanisms

could be applied, and potentially adapted, to many other distributed approaches where computation

graphs are used, like Dataflow Models or BSP, as briefly presented in Section 5.5.

148

Chapter 6. Resilient Decision-Making in Dynamic Environments

149

7

Studying DCOP for IoT Systems

Using pyDCOP

In order to design and evaluate experimentally the solution methods presented in previous chapters,

we required a software library. After considering the various options available in the MAS

ecosystem, we decided to develop our own software library for that purpose. In this chapter, we

explain the reasons for this choice, including a brief presentation of the major existing frameworks,

and introduce pyDCOP, our open source library designed to foster the study and research on DCOP.

7.1 Implementing Multi-agent Systems

Many software libraries, most of which originate from academic research, are available in the

MAS ecosystem. Given the numerous different approaches and application domains of MAS, these

solutions cover very various needs and target different uses cases and communities. Some solutions

propose full-stack integrated environments, and can be used to implement all the components in a

MAS while other target one specific aspect (agent behaviour, communication, organization, etc.)

and must be used in collaboration with other solutions when developing a full system.

7.1.1 Frameworks from other MAS Perspectives

When investigating the solutions developed in other MAS communities, we quickly realized that

they were not ideal for implementing our approaches. These solutions can be categorized, not

exhaustively, into the following families:

Simulation Frameworks. A family of solutions focus on the use of MAS for simulation purposes.

This family is very active and mature, with several commercial offerings, and includes tools like

Gama [6], Cormas [17], NetLogo [147], IODA[67] and many others. However, they are also not

suited to our needs, as we also intend to implement real physical distributed systems.

Agent Programming Libraries. Several MAS communities advocate that programming lan-

guages designed specifically for agents are required; this approach is usually denoted as Agent

Oriented Programming. Libraries from this family include Jason [15], SARL [117] and Jadex [25].

150

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

We argue that Distributed Constraints Reasoning algorithms are better developed with traditional

programing language and that such agent-specific languages are not required in our case.

Interaction Oriented Libraries. Some other libraries like SACI [54], MadKit [47], IODA [67],

CArtAgO [114] or Jade [9] focus on the interactions among agents (and their environment) in a

MAS, which includes communications but also organisational aspects. These libraries generally

do not impose any internal agent’s structure, leaving their users decide on the model they want to

use. While these libraries could be used to implement communication in our systems, that would

still leave much work to be done and we feel that the gain would be to small to justify the efforts

required to integrate them with our solution methods.

Multi-agent Programing Frameworks Finally, some solutions like JACK [4] and JaCaMo [14]

provide full environments for the engineering of a MAS, including all related concepts like

organizations, environment representation, etc. These frameworks are often based on several more

specialized libraries; it is for instance the case of JaCaMo, which combines Jason, CArtAgO and

Moise [53]. However the high level of integration of such platforms makes it difficult to reuse

them for implementing approaches they were not designed for. For example, BDI model [113]

based frameworks like JACK and JaCaMo cannot be easily adapted to the agent’s model of the

DCOP framework, which is algorithmic and not plan-based like BDI. Besides, they include many

concepts that we would not use and cannot produce the metrics needed to evaluate our solution

methods.

7.1.2 DCOP Libraries

Faced with the available libraries we mentioned in the previous section, the Distributed Constraint

Reasoning community has developed over the years several libraries specifically tailored to its

needs. We now list the existing solutions in this area, along with their respective strengths and

limits (in our opinion and to the best of our knowledge).

AgentZero is a Java-based library developed at the Ben-Gurion University which supports a

large set of functionalities for the study of Distributed Constraints Reasoning algorithms [74].

Unfortunately documentation is scarce and the source code repository 1 has not been updated since

2016. Besides, this repository does not contain the implementation of any DCOP algorithm, but

only the code of the infrastructure provided by AgentZero.

Frodo2 [70] is actively developed 2 by the Artificial Intelligence Laboratory (LIA) of École

Polytechnique Fédérale de Lausanne (EPFL) and is probably the most commonly used library for

evaluating DCOP algorithms. While being very well engineered and providing numerous DCOP

algorithmic implementations, it does not provide the required features to study and prototype

DCOP in a dynamic system like IoT.

1 . https://gi thub.com /bennylut/agent-zero
2 . https://frodo-ai.tech/

https://github.com/bennylut/agent-zero
https://frodo-ai.tech/

151

7.2. pyDCOP at a Glance

DisChoco [145] is also Java-based and exhibits an interesting modular design. It supports real

distributed settings through the use of SACI [54] for the communication layer. However, the

project 3 seems to be discontinued and has not been updated since 2014.

DCOPolis [137] is a very rich java-based library that contains many implementations of standard

DCOP algorithms. It supports for the concepts of virtual agents, which can be seen as a first

step toward the idea of distribution we explored in our work. Unfortunately, the project has not

been updated since 2009 and seems to be discontinued. The currently available source code is

nonetheless, in our opinion, one of the best references available for many algorithms.

A few repositories of DCOP implementations are also available, like USC Distributed Constraint

Optimization Problem (DCOP) Repository 4 or JSAM 5 However, while still useful, these reposito-

ries simply list implementations, potentially developed in different programming languages, and do

not provide integrated frameworks that could be used to produce metrics and compare algorithms.

7.2 pyDCOP at a Glance

Following the review of the existing libraries and frameworks for MAS, we draw the following

conclusions:

• Tools from other MAS communities are not well suited for DCP, dedicated tools are required.

All of existing DCOP libraries only provide implementations for a small subset of the

algorithms proposed other the years by the community.

• Most research in this domain is done on closed code bases, without publishing any imple-

mentation of algorithms, which hinders research.

• No existing libraries can be used to study some of the concepts we are focusing on, namely

distribution, dynamics and resilience. These concepts are of paramount importance when

applying DCOP in IoT settings.

• No library focused on DCP and DCOP currently exist in python, even though this programing

language benefits from a huge ecosystem of libraries for science and research.

Based on these conclusions we decided to develop our own library for Distributed Constrained

Reasoning, pyDCOP, in order to design, implement and evaluate our solution methods.

pyDCOP has been open-sourced in 2017 and is in continuous development. It is available at

https://github.com/Orange-OpenSource/pyDcop and provided with a comprehensive doc-

umentation 6 including a reference manual and tutorials, which have already been used for lectures

and conference tutorials.

pyDCOP provides implementation for many classical DCOP algorithms, including DSA [158],

A-DSA [40], DBA [155], GDBA [91], MGM, MGM-2 [77], DPOP [104], ADOPT [86],

1 . http://dischoco.sourceforge.net/
2 . http://team core.usc.edu/dcop/

3 . https://gi thub.com /coenvl/jSAM
4 . https://pydcop.readthedocs.io/en/latest/

https://github.com/Orange-OpenSource/pyDcop
https://pydcop.readthedocs.io/en/latest/
https://pydcop.readthedocs.io/en/latest/
http://dischoco.sourceforge.net/
http://teamcore.usc.edu/dcop/
https://github.com/coenvl/jSAM
https://pydcop.readthedocs.io/en/latest/

152

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

Figure 7.1 – pyDCOP extensive documentation

SyncBB [49], NCBB [21], A-MaxSum and MaxSum [36], but it also allows the rapid devel-

opment of new algorithms. Notice that while pyDCOP focuses on optimization problems, it can

also be used for Distributed Constraint Satisfaction.

When studying an existing algorithm or developing a new one, pyDCOP provides all the needed

infrastructure: thanks to the numerous base classes and ‘plumbing’ utilities one can simply focus

on its algorithm design. The modular architecture of pyDCOP –which decouples communication,

agent managements, and algorithmic utilities– ensures that algorithms will be able to run in the

several runtime environments and settings supported by pyDCOP.

When running an algorithm, various metrics can be produced and used to benchmark algorithms

or the effect of meta-parameters in a specific problem topology. These metrics notably include

runtime, number of cycles, number and size of messages, and cost and quality of the solution.

153

7.3. pyDCOP Concepts and Architecture

In addition to state-of-the-art DCOP algorithms, pyDCOP also includes the approaches presented

in this thesis to apply the DCOP framework to dynamic systems like the IoT. The distribution

of DCOP computations (see Section 5.1) is San issue that received little attention so far but is

paramount when working on real-world problems. pyDCOP provides implementations for all

distribution methods presented in Chapter 5: GH-SECP-CGDP, GH-SECP-FGDP, ILP-SECP-

CGDP, ILP-SECP-FGDP , CGDP and ILP-CGDP. In IoT systems, the devices are typically

very constrained (both CPU and memory wise), and the network is generally also considered to be

a costly and limited resource. As a consequence, pyDCOP’s distribution mechanisms take these

elements into account and produce distributions that optimize for network communication while

ensuring the agents capacities are respected.

Resilience is also a key issue when building a MAS. In dynamic environments the problem may

evolve at runtime and agents could join and leave the system unexpectedly at any time. In order to

ensure resiliency, pyDCOP implements DRPM[DMCM], the self-repair mechanism introduced

in Section 6.5, and is able migrate the computations needed to solve the DCOP from on agent

to another. For that purpose, pyDCOP implements DRPM, a distributed replication mechanism

inspired by distributed databases and presented in Section 6.5.3, which makes sure that the definition

of the problem is not lost when some agents leave the system. Based on these two mechanisms,

in case of an agent failure, remaining agents can self-repair the system by migrating orphaned

computations to the remaining agents. This self-repair function is also modeled as a DCOP, where

agents cooperatively agree on the best place to host the repaired computations required to solve the

initial problem.

pyDCOP can be used through a powerful command line interface, which allows running systems

with many agents and comes handy when scripting complex benchmarks. pyDCOP also provides

a graphical interface, for demonstration and prototyping purposes, which can display in real-time

the current state of an agent or the whole system. This user interface is implemented as a web

application, which can be displayed either in the device running the pyDCOP agent, or on any other

computer in case the device does not have a screen.

The agents solving the problem can run on the same machine and even in the same process,

using in-memory communication, which is convenient during development but also allows large-

scale systems. They can also run on different computers, communicating over the network, for

prototyping real distributed systems. pyDCOP is multi-platform and can run on Windows, Mac

and Linux. Scripts are also provided to ease the deployment of agents on many computer, typically

virtual machines or single-board computers like Raspberry Pis.

7.3 pyDCOP Concepts and Architecture

As presented in Section 3.3.2, Definition 2, a DCOP is traditionally represented with a tuple

(A, X , D, F , µ) where A represents a set of agents. pyDCOP’s architecture is based on this

formal representation and extends it using the concept of computations introduced in Section 5.5.1.

pyDCOP manages a set of software agent objects, which coordinate cooperatively, using message-

passing algorithms. This coordination is implemented in computations, which are the algorithm’s

building blocks, hosted on agents.

154

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

Figure 7.2 – pyDCOP Web UI to access agents’ inner state

Figure 7.3 depicts this architecture: each agent run independently, using a runtime environment

(see Section 7.3.3) and can only communicate with agents whose address it knowns.

Agent 2

Agent 1

● Thread
● Message queue
● Computations

● Thread
● Message queue
● Computations

Agent 3

● Thread
● Message queue
● Computations

Orchestrator

● Distribution
● Bootstrap
● Metrics
● Results

Agent 4

● Thread
● Message queue
● Computations

Figure 7.3 – Sample pyDCOP Architecture Instantiation

One specific agent, called the Orchestrator, is responsible for administrative tasks in the system

like collecting metrics or bootstrapping the system. For instance, it informs at startup each agent

of the variables it is responsible for and the constraints they are involved in.

155

7.3. pyDCOP Concepts and Architecture

Additionally, the Orchestrator agent provides a directory service, which agents can use to find the

address of other agents. This is particularly useful when dealing with dynamic systems where new

agents, whose address cannot be known at startup, can join at any time. Such discovery mechanism

could also be implemented in a distributed manner but we decided to focus on distributed decisions

making and avoid the unnecessary (for our studies) implementation complexities it would have

induced. Reliable, robust and distributed discovery and directory services would however be a

very interesting and useful area for future research.

Notice that this Orchestrator agent is the only centralized element in the system but never participate

in any collective decision-making and is only an implementation artifact; it could actually be

removed at runtime without impacting the nominal execution of the system, but the system would

then not be monitored, which is generally required when running experimental evaluations.

7.3.1 Communication

All communication between agents is based on a message-passing mechanism. Each agent has

its own message queue and handles messages sequentially, ensuring that agents only process one

message at a time. Messages in the queue are prioritized, which allows handling urgent operations

first. For example, messages used in the sel-repair mechanism use an higher priority to restore

nominal operations as fast as possible, while metrics are collected with low-priority messages to

avoid interfering with de decision making process.

Figure 7.4 represents this inter-agent communication scheme.

Figure 7.4 – pyDCOP Inter-agent Communication Scheme

Depending on the runtime used (see Section 7.3.3), communication is implemented with in-memory

message passing or HTTP requests (with payload encoded in JSON). In-memory messages allow

simulating systems with many agents, with a reasonable overhead, on a single computer while

http messaging supports distributing agents on several computers or connected devices. Other

communication mechanism could easily be implemented as the communication layer is completely

In-Memory
HTTP + JSON

Communication layer

Agent 1 Agent 2

C2
C1 C3

5

1
4

Communication layer
3

2

Directory

156

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

decoupled from the agents, who totally ignore the concrete implementation currently used. One

could for example develop a communication layer targeting low-power networks such as 6LowPan,

using CoAP and BSON 7 encoding.

7.3.2 Inner-agent Architecture

Figure 7.5 depicts the inner-architecture of agents. All the agent’s behaviors are implemented

through computation. Of course, this includes computations that implement DCOP algorithms,

but also administrative tasks and utilities like replication (for resilence implementaion), metrics

collection, graphical interface serving, remote management, etc.

Figure 7.5 – pyDCOP Agent Architecture

As agents can only interact through messages and each agent run independently, processing mes-

sages one at a time, we avoid synchronization issues and are guaranteed that no race condition can

happen.

When an agent receives a message, it simply dispatches it to the target computation, which can

update its internal state, send new messages to other computation when necessary and even create

new computation on this agent (that is for example how self-repair and computation migration is

implemented).

Notice that this approach is very similar to the actor model [48] for concurrent computation from

distributed computing. Indeed, we believe that an actor model implementation could be a very

good low level implementation for a MAS library, especially when studying DCOP. The only

reason we did not base pyDCOP on such implementation is that no suitable library for the actor

model is available in python.

1 . http://bsonspec.org/

● Add / remove

computations
● Repair
● Metrics
● Discovery

Agent 1

Expose agent’s
Internals through

Websocket server

C1 C2

UI
DCOP’s algorithm

computations

C3

Replicate computations
on neighbors

(resilience)

Rep.

Mgt

Communication layer

http://bsonspec.org/

157

7.4. Using pyDCOP

7.3.3 Runtime Environments

When working on a problem, pyDCOP runs as many agents than specified by the problem. Each

of this agents execution is controled by a runtime environment.

pyDCOP provides three runtime environments:

• The process environment uses one separate process for each agent. Agents can live on

different computers and communicate using the HTTP communication layer. This mode is

ideal for prototyping real systems, for example using low-power computer like the Raspberry

Pi, but is more complex to implement. Besides, the communication layer induces an overhead

which, while realistic, can prove problematic when running large scale simulations.

• The thread environment, where each agent is associated to one thread, which is used to run

message handling procedures defined by the computations. When using this environment,

pyDCOP runs as a single process (and thus on single computer), and uses in-memory message

passing. This allows running large systems (several dozen of agents) with reasonable

overhead and is the mode commonly used when running simulations. However, due to

notoriously bad handling of thread concurrency by the python interpreter 8, performances

can be severely reduced when scaling to larger systems.

• The executor environment (still in development) mitigates the performance issues of the

thread environment by sharing a thread between several agents. It is inspired by the imple-

mentation of actor model found in the akka 9 framework.

7.4 Using pyDCOP

In this section, we present several usage patterns for pyDCOP, both from a simple user and a

developer point view, and illustrate these usages with several examples.

7.4.1 File Formats

pyDCOP uses its own YAML-based 10 file format for defining DCOP. This format supports

defining domains, variables, constraints (both extensive and intentional) and agents, with their

corresponding route and hosting costs.

Listing 7.1 shows the YAML definition of an extremely simple graph coloring problems with two

variables and two agents.

1 . Threads must compete for acquiring the Global Interpreter Lock, see https://wiki.python.org/moin/
GlobalInterpreterLock

2 . https://akka.io/
3 . http://yaml.org

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://akka.io/
http://yaml.org/

158

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

Listing 7.1 – Simple graph coloring in YAML

Additionally, pyDCOP also uses custom file formats for distribution, replication and scenario (for

dynamic DCOP).

7.4.2 Command-line Interface

The main interface for pyDCOP is a command-line application, which can be used to solve a

DCOP, distribute a computation graph, run replication or run a full dynamic DCOP (in which

case a scenario thats defines events must be provided), etc.

pyDCOP can also be used through its API –although we will not cover this here– which should

allow integrating it into other frameworks and experimentation libraries.

The full documentation for the command-line interface is available online 11 and is based on a

verb/action paradigm. The main actions it supports are listed below:

• pydcop solve solves a DCOP using the thread runtime environment.

• pydcop distribute computes a distribution for a computation graph derived from a

DCOP.

• pydcop generate generates benchmark problems: several types of graph coloring prob-

lems, distributed meetings scheduling and SECP are supported.

1 . https://pydcop.readthedocs.io/en/latest/usage/cli_ref.html

name: graph coloring

objec t ive : min

domains:

colors :

values: [’R’, ’G’]

variables:

v1:

domain : colors

v2:

domain : colors

constra ints:

pref_1:

type: ex tens ion a l

varia b les : v1

values :

-0.1: R

0.1: G

d iff_1_2:

type: in tention

func tio n : 10 if v1 == v2 else 0

agents: [a1 , a2]

https://pydcop.readthedocs.io/en/latest/usage/cli_ref.html
https://pydcop.readthedocs.io/en/latest/usage/cli_ref.html

159

7.4. Using pyDCOP

• pydcop run continuously runs a dynamic DCOP, injecting events according to a predefined

scenario.

• pydcop agent runs a single agent with the process runtime environment, which is used for

example when deploying the systems on physically distributed computers.

7.4.3 Solving DCOP with pyDCOP

The pydcop solve command is the simplest way of solving a DCOP using pyDCOP, as it hides

all complexities and defines defaults values for all settings. Using this command, solving a DCOP

can be as simple as running:

With this simple command, pyDCOP performs the following operations:

• starting threaded agents,

• computing a distribution,

• deploying the computations on the agents, according to the distribution,

• monitoring agents,

• collecting metrics and results and outputing them at the end of the solving process.

Of course, the solve command supports many options. For example, the following command

solves a DCOP defined in graph_coloring_50.yaml using the synchronous DSA algorithm, for

30 cycles. Computations are distributed using the GH-CGDP heuristic and runtime metrics are

collected at every cycle.

The metrics collected in results.csv allow analyzing the evolution of the solution quality during

the solving process. Figure 7.6 is generated from such a metric file.

When needed, all the operations executed automatically by the solve command can also be run

individually using their own specific command, please refer to the online documentation for these.

$ pydcop solve -- d istribution gh_c gdp -- algo dsa \

-- algo_pa ram s -- algo_pa ram stop_cyc le :30 \

-- algo_ pa ram variant:C -- algo_p a ram probability :0.5 \

-- collec t_on cyc le_c han ge -- run_m e tr ic ./ metr ics . csv \

graph_coloring_50 . yaml

$ pydcop solve -- algo dpop graph_c olo r ing. yaml

160

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

Figure 7.6 – Evolution of costs plotted from metrics output by the pydcop solve command

7.4.4 Programming with pyDCOP

pyDCOP provides many extension points to allow users to implement their own solution methods.

New DCOP algorithm can of course be implemented, and distributed methods, replication, self-

repair mechanisms as well.

Beside these extension points, many components of pyDCOP can also be replaced by new imple-

mentations that respect the same interface, like for example the communication or the directory

service.

We are not going to cover all these possibilities in this document, instead we will simply demonstrate

how to develop a simple DCOP algorithm using a simplified version of DSA.

Developing a new algorithm in pyDCOP simply amounts to creating a python module (i.e. a file)

named after the algorithm. This module must define:

• the graphical model used by this algorithm: constraint graph, factor graph or DFS tree,

• the message(s) used by the algorithm,

• a class that derives from one of the Computation base classes, which represents the imple-

mentation of the computation for this algorithm.

Listing 7.2 shows a basic skeleton for such a module. As we are implementing a syn-

chronous algorithm that defines computations for variables, the computation class is derived

from SynchronousComputationMixin and VariableComputation. At each cycle, the

on_new_cycle() method will be called with all the messages sent by neighbors in the previous

cycle. Then, one simply has to implement this method using some of the many utility functions

provided by pyDCOP to obtain a working implementation of DSA. Listing 7.3 provides an example

of such implementation. Notice that the use of the utility functions provided by pyDCOP, like

assignment_cost() and find_optimal(), helps keeping this implementation short and clear.

161

7.5. Sample Applications and Demonstration

Listing 7.2 – Skeleton for a DCOP algorithm implementaion

Listing 7.3 – Cycle handler for a simple DSA implementation

7.5 Sample Applications and Demonstration

All experimental evaluations presented in this thesis have been implemented using pyDCOP. pyD-

COP can also be used to build physical distributed systems prototyping the application of DCOP

in distributed and dynamic systems like AmI, IoT, edge computing and many other application

domains.

def on_new_cyc le (self , messages , cyc le_id) - > Optional [Lis t] :

ass ignment = { self . variable . name : self . current_va lue }

for sender , (message , t) in messages . items () :

ass ignment [sender] = message . value

current_c os t = ass ignm e nt_c o st (ass ignment , self . constra ints)

arg_min , min_cost = find_optim al (

self . variable , ass ignm en t , self . constrain ts , self . mode

)

if curren t_c ost - min_cost > 0 and 0 . 5 > rando m . rando m () :

self . value_s e lec tion (arg_m in [0])

self . post_to_all_neighbors (DsaMessage (self . current_va lue))

GRAPH_TYPE = ’ constraints_hy pergraph ’

DsaMessage = message_type (" dsa_value" , [" value"])

c lass DsaTutoComputat ion (SynchronousComputationMix in ,

Variable Computa tion) :

def __init__ (self , com puta tio n_de fin itio n) :

. . .

def on_sta rt (self) :

. . .

@ regis te r (" dsa_va lue")

def on_value_ msg (self , variable_na m e , recv_msg , t) :

pass

def on_new_cyc le (self , messages , cyc le_id) - > Optional [Lis t] :

. . .

162

Chapter 7. Studying DCOP for IoT Systems Using pyDCOP

pyDCOP has also been used to build a demonstration, showcased [125] at JFSMA in 2018. This

demonstration illustrates a k-resilient distributed decision making process in an IoT system. Our

scenario is based on a classical distributed weighted graph coloring problem, to which many real

problems can be mapped. Each variable in the system maps to a vertex in the graph and can take

one color as a value. Edges of the graph maps to binary constraints, assigning a cost for each

combination of colors taken by its associated variables/vertices. The goal is to find a assignment

of colors that minimize the sum of these costs.

Figure 7.7 – pyDCOP physical demonstrator

The demonstrator (see Figure 7.7) is made of a 3 × 3 grid of small single-board computers

(Raspberry Pis), each fitted with a small touch-screen. Each of these computers runs one pyDCOP

agent and displays a graphical interface presenting the current state of this agent. A central

screen (an internet browser on a TV or computer screen) gives an overall view of the system and

the current runtime metrics. During the demonstration, we dynamically remove random agents

from the system. Remaining agents coordinate autonomously the repair process, which can be

observed on their graphical interface. The self-repair, which implements DRPM[DMCM] (see

Section 6.5) is also totally decentralized and is based on a distributed replication protocol followed

by a host-selection mechanism modeled using a DCOP.

A video presenting this demonstration is available online 12.

1 . urlhttps://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4

https://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4?dl=0
http://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4
http://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4
http://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4

163

Co8nclusion

In this concluding chapter, we first summarize the contributions presented in this dissertation. Then

we give an overview of the dissemination activities concerning these contributions and present

some paths for future research.

8.1 Summary of Contributions

In this dissertation, we investigated the usage of Distributed Constraint Optimization Problem

to implement coordination among connected devices in Ambient Intelligence environments. We

firmly believe that the centralized approaches used by currently deployed state-of the art solutions

do not allow to reach the full potential of AmI and IoT applications in general. Therefore, we

propose several contributions to field of DCOP, specifically designed to ease the use of this

framework in real-life distributed AmI systems.

• First, we proposed in Chapter 3 a model for coordination among connected objects in a smart

home. This model is goal-oriented: users do not need to care about complicated low-level

details of home automation and can instead simply set goals to the smart environment.

Then, based on the physical relations between the objects and the environment encoded

in the model, devices autonomously and spontaneously find the way to reach these goals.

We mapped this model to a DCOP, allowing us to leverage the large number of DCOP

solution methods to implement cooperative coordination among the connected devices in

the home. Through experimental evaluation, we showed that our model is viable approach

for implementing coordination in such environments and identified DCOP solution methods

best suited for these settings.

• Then, we investigated in Chapter 4 the distribution of decisions in these environments. We

demonstrated that this subject is of paramount importance for applying DCOP approaches in

real-world settings, even though it is seldom studied in the DCOP community. We proposed

several distribution methods, both for the SECP model and for generic computation graphs

in IoT systems. In both cases, we provided a definition of optimal distribution and presented

an ILP to compute it. Experimentally, such optimal distributions proved to be too expensive

164

Chapter 8. Conclusion

to obtain for all but the smallest systems. However, the greedy heuristics we proposed

produce near-optimal results and are several orders of magnitude faster, which allows using

them on realistic large systems.

• In Chapter 5 we studied the effects of dynamics in these systems. Smart homes, IoT and

open multi-agent systems in general are open systems where agents can join and leave at any

time and the definition of the problem itself can change over time, while devices are actively

working on it. As a consequence, our model for coordination must be able to account for

such changes if we want to apply it in real life. We discussed the most appropriate DCOP

solution methods for dealing with changes at the problem level in AmI settings and proposed

several approaches for handling agents’ arrival and removal at run-time. We focused on agent

failure, as this is the most problematic case, and devised methods for restoring a complete

distribution of decision in such situations. Most notably, we introduced the concept of

k-resilience, which characterizes a system able to survive the failure of up to k agents. To

implement this concept in our AmI systems, we proposed DRPM[DMCM], a technique

based on replication and distributed self-repair. Experimental evaluation of this method

shows that it succeeds in repairing systems even when a large proportion of agents fails.

• While studying the aforementioned topics, we realized that no software library was available

for studying the use of the DCOP framework in such distributed settings, especially for

issues like distribution and resilience. Therefore we developed and open-sourced pyDCOP,

introduced in Chapter 6, a software library designed for studying DCOP algorithms with

a focus on challenges arising from their use in real-life systems, like distribution and fault-

tolerance. pyDCOP makes it easier to develop new solution methods in this area and to

prototype and test them on real devices. As its name suggest, pyDCOP is developed in

python, which should make it accessible to a large population of researchers and students

and allows its users to tap on the vast ecosystem of scientific libraries available in python.

We hope that pyDCOP, will foster research on these topics.

8.2 Dissemination

The contributions presented in this dissertation have been published in articles presented at several

scientific venues with peer reviewing, as listed here:

• The SECP model and its mapping to a DCOP have been presented at IJCAI and JFSMA:

[128] P. Rust, G. Picard, and F. Ramparany. « Using Message-Passing DCOP Algorithms

to Solve Energy-Efficient Smart Environment Configuration Problems ». In: Interna-

tional Joint Conference on Artificial Intelligence. IJCAI. IJCAI. 2016, p. 7

[122] P. Rust, G. Picard, and F. Ramparany. « Approche DCOP pour résoudre des problèmes

de configuration économe d’environnements intelligents ». In: Journées Francophones

sur les Systèmes Multi-Agents. JFSMA. JFSMA. 2016

• The optimal and heuristic distribution methods for SECP presented in this dissertation are

an extension of the works initially presented at OptMAS (best paper) and JFSMA:

https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop
https://github.com/Orange-OpenSource/pyDcop

165

8.3. Paths for Future Research

[126] P. Rust, G. Picard, and F. Ramparany. « On the Deployment of Factor Graph Elements to

Operate Max-Sum in Dynamic Ambient Environments ». In: International Conference

on Autonomous Agents and Multiagent Systems. OptMAS. vol. 10642. OPTMAS.

2017, pp. 116–137

[123] P. Rust, G. Picard, and F. Ramparany. « Déploiement de graphes de facteurs pour

l’exécution d’algorithmes DCOP sur des infrastructures ouvertes ». In: Journées

Francophones sur les Systèmes Multi-Agents. JFSMA. JFSMA. 2017

• Solution methods for the generalized distribution for IoT systems and repair techniques have

been presented at AAMAS, OptMAS and JFSMA

[121] P. Rust, G. Picard, and F. Ramparany. « Self-Organized and Resilient Distribution

of Decisions over Dynamic Multi-Agent Systems ». In: International Conference on

Autonomous Agents and Multiagent Systems. OptMAS. OPTMAS. 2018, p. 15

[124] P. Rust, G. Picard, and F. Ramparany. « Installing Resilience in Distributed Constraint

Optimization Operated by Physical Multi-Agent Systems ». In: International Con-

ference on Autonomous Agents and Multiagent Systems. AAMAS. AAMAS. 2019,

p. 3

[127] P. Rust, G. Picard, and F. Ramparany. « Résilience et auto-réparation de processus de

décisions multi-agents ». In: Journées Francophones sur les Systèmes Multi-Agents.

JFSMA. JFSMA. 2019

• The pyDCOP software library has been presented to the community at OptMAS and has

been used for a physical demonstration at JFSMA:

[120] P. Rust, G. Picard, and F. Ramparany. « pyDCOP: A DCOP Library for Dynamic

IoT Systems ». In: International Conference on Autonomous Agents and Multiagent

Systems. OptMAS. OPTMAS. 2019, p. 5

[125] P. Rust, G. Picard, and F. Ramparany. « Mise En Place d’une Décision Collective

Résiliente Sur Une Infrastructure IoT à l’aide Du Framework PyDCOP (Démonstra-

tion) ». In: Journées Francophones Sur Les Systèmes Multi-Agents. JFSMA. JFSMA.

2018, pp. 223–224

Additionally, parts of these works and the pyDCOP library have been presented during tutorials at

several occasions:

• EASSS in 2018

• AAMAS in 2018 and 2019

• PFIA in 2019

Several presentations of these works have also been made at Orange, including a presentation to

the scientific board in 2017.

8.3 Paths for Future Research

Most of the topics covered by this thesis are open to further research, as follows.

166

Chapter 8. Conclusion

DCOP Algorithms. We have only been using ‘off the shelf’ DCOP algorithms in our works, and

simply tried to tune their parameters to optimize their behavior on our problems. However,

we believe that better algorithms should be designed to handle the specificities of AmI and

IoT systems. In many cases, it is probably possible to exploit the domain characteristics and

the problem structure to improve the performance of current solution methods; for example,

using domain pruning, decimation, edges cutting or many other techniques.

One specific aspect on which DCOP algorithms must progress is the handling of problems

that have both soft and hard constraints. Current solution methods struggle on such prob-

lems, but we argue that most models for real-world problems, like SECP or distributed

meeting scheduling, require it. For example, we believe that a variant of MGM-2 could be

developed for that purpose, as mentioned in Section 6.7.3, and would be an ideal candidate

for implementing the repair phase in DRPM[DMCM]. Similarly, variants of A-MaxSum

could also be tailored to the mix of hard and soft found in SECP.

Another aspect that requires further research is the development of asynchronous algorithms

that support messages loss: very few current algorithms support this, even tough it is required

for robust distributed systems.

SECP. Regarding the SECP model presented in this thesis, we assumed (as stated in Section 4.1.4)

that physical models are known. In order to use the model in a real environment, it would be

required to devise a technique to learn these models and adapt them at run-time, to represent

the changes in the environment. Given the constrained devices these environments are made

of, lightweight learning mechanisms should be used ; gaussian processes for example might

be well suited for that task, as they are able to model accurately the behaviour of local

phenomena.

The SECP model could also be improved on other aspects, for example it does not currently

take into accounts the delay between and action and its effect on the environment: when

switching a heater on for instance, one has to wait before the temperature increases in the

room. In order to take into account such delay, some planning component should probably

be embedded in the model.

Application to other domains. The techniques for distribution and resilience presented here have

been designed for Ambient Intelligence. However, we believe that they could be re-used and

adapted to other domains were a cooperative distributed decision making process is required.

For example, these solution methods could be applied to the placement of workloads in dis-

tributed and cloud computing, especially when using edge-computing. Such placements

depend on many criteria and, when scaling, these systems become to large to allow for a

centralized solution; distributed localized solution methods could provide both the scalabil-

ity and the robustness required in these environments. Network Function Virtualizations

(NFV), which allow more flexible management and deployment of networks by telecom-

munication operators, must be placed on a physical infrastructure according to constraints

and requirements on the resources and the network use, which may changer over time. This

placement is another area where these methods could be used, as [111] already investigated,

especially given that scalability and robustness are paramount in these applications

Implementations. Regarding the experimental evaluation and prototyping of distributed systems

167

8.3. Paths for Future Research

based on the ideas presented in this thesis, and on Distributed Constraint Reasoning in

general, further work is due on the implementations of framework, tools and libraries. The

DCOP community has no repository with implementations of the many algorithms proposed

over the years in this domain, not even for the algorithms that are considered to be standard.

This state of affairs hinders research considerably and make comparisons and evaluation

both difficult and error prone. We believe that such repository is required, along with better

metrics and tools, to evaluate solution methods and better analyse their fitness to various

application domains. pyDCOP is a first step in that direction, which should be pursued.

As a final conclusion, we want to highlight the fact that, while we only focused in this thesis

on the use of DCOP for AmI and IoT systems, we believe that many other Artificial Intelli-

gence approaches, besides the multi-agent area, should be studied to improve functionality and

acceptability of these cyberphysical systems. Semantic approaches to improve expressivity of ser-

vices and thing capabilities, Machine Learning techniques to adapt services and analyze complex

socio-technical behaviors, Context-acquisition and awareness to install adapted and user-friendly

behaviors, and Deliberative multi-agent architectures to install sustainable and explainable inter-

actions with users, are just a few examples of topics that are currently studied and which could

bring interesting advances for these applications domains.

168

Chapter 8. Conclusion

169

Bibliography

[1] M. Abadi et al. « TensorFlow: A System for Large-Scale Machine Learning ». In: Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and Implementation.

OSDI. OSDI’16. May 27, 2016, pp. 265–283. arXiv: 1605.08695.

[2] M. Abdoos, N. Mozayani, and A. L. Bazzan. « Holonic Multi-Agent System for Traffic

Signals Control ». In: Engineering Applications of Artificial Intelligence 26.5-6 (May

2013), pp. 1575–1587. issn: 09521976.

[3] W. P. Adams, R. J. Forrester, and F. W. Glover. « Comparisons and Enhancement Strategies

for Linearizing Mixed 0-1 Quadratic Programs ». In: Discrete Optimization 1.2 (Nov. 2004),

pp. 99–120. issn: 15725286.

[4] agent-software. JACK. 2019.

[5] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali. « A Review of Smart Homes—Past,

Present, and Future ». In: IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews) 42.6 (Nov. 2012), pp. 1190–1203. issn: 1094-6977, 1558-2442.

[6] E. Amouroux, T.-Q. Chu, A. Boucher, and A. Drogoul. « GAMA: An Environment for

Implementing and Running Spatially Explicit Multi-Agent Simulations ». In: Agent Com-

puting and Multi-Agent Systems (Berlin, Heidelberg). Ed. by A. Ghose, G. Governatori,

and R. Sadananda. 2009, pp. 359–371.

[7] J. C. Augusto. « Ambient Intelligence: The Confluence of Ubiquitous/Pervasive Computing

and Artificial Intelligence ». In: Intelligent Computing Everywhere. 2007, pp. 213–234.

[8] A. Barabasi and R. Albert. « Emergence of Scaling in Random Networks ». In: Science

286.5439 (Oct. 15, 1999), pp. 509–512. issn: 00368075, 10959203.

[9] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with

JADE. 2007. 286 pp.

[10] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. « The Complexity of Decen-

tralized Control of Markov Decision Processes ». In: Mathematics of Operations Research

27.4 (Nov. 2002), pp. 819–840. issn: 0364-765X, 1526-5471.

[11] C.-E. Bichot and P. Siarry, eds. Graph Partitioning. OCLC: 765366069. 2011. 368 pp.

[12] K. Binmore. Fun and Games: A Text on Game Theory. 2. pr. OCLC: 845425112. 1992.

602 pp.

[13] J. Boes, F. Migeon, P. Glize, and E. Salvy. « Model-Free Optimization of an Engine Control

Unit Thanks to Self-Adaptive Multi-Agent Systems ». In: International Conference on

Embedded Real Time Software and Systems. ERTS. 2014, p. 12.

https://arxiv.org/abs/1605.08695

170

Bibliography

[14] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi. « Multi-Agent Oriented

Programming with JaCaMo ». In: Science of Computer Programming 78.6 (June 2013),

pp. 747–761. issn: 01676423.

[15] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge. Programming Multi-Agent Systems in

AgentSpeak Using Jason. Wiley Series in Agent Technology. OCLC: 255545467. 2007.

273 pp.

[16] M. Boulle. « Compact Mathematical Formulation for Graph Partitioning ». In: Optimization

and Engineering 5.3 (Sept. 2004), pp. 315–333. issn: 1389-4420.

[17] F. Bousquet, I. Bakam, H. Proton, and C. Le Page. « Cormas: Common-Pool Resources and

Multi-Agent Systems ». In: Tasks and Methods in Applied Artificial Intelligence (Berlin,

Heidelberg). Ed. by A. Pasqual del Pobil, J. Mira, and M. Ali. 1998, pp. 826–837.

[18] M. Bratman. Intention, Plans, and Practical Reason. David Hume Series. 1999. 200 pp.

[19] M. Burger, G. Notarstefano, F. Allgower, and F. Bullo. « A Distributed Simplex Algorithm

and the Multi-Agent Assignment Problem ». In: Proceedings of the 2011 American Control

Conference. 2011 American Control Conference. June 2011, pp. 2639–2644.

[20] J. Cerquides, R. Emonet, G. Picard, and J. A. Rodriguez-Aguilar. « Decimaxsum: Using

Decimation to Improve Max-Sum on Cyclic Dcops ». In: 21st International Conference of

the Catalan Association for Artificial Intelligence (CCIA 2018) (Roses, Spain). Vol. 308.

Artificial Intelligence Research and Development - Current Challenges, New Trends and

Applications. Oct. 2018, pp. 27–36.

[21] A. Chechetka and K. Sycara. « No-Commitment Branch and Bound Search for Distributed

Constraint Optimization ». In: Proceedings of the Fifth International Joint Conference on

Autonomous Agents and Multiagent Systems - AAMAS ’06. AAMAS. 2006, p. 1427.

[22] T.-Y. Cheung. « Graph Traversal Techniques and the Maximum Flow Problem in Dis-

tributed Computation ». In: IEEE Transactions on Software Engineering SE-9.4 (July

1983), pp. 504–512. issn: 0098-5589.

[23] L. Cohen and R. Zivan. « Max-Sum Revisited: The Real Power of Damping ». In: Au-

tonomous Agents and Multiagent Systems. Ed. by G. Sukthankar and J. A. Rodriguez-

Aguilar. Vol. 10643. 2017, pp. 111–124.

[24] Z. Collin and S. Dolev. « Self-Stabilizing Depth-First Search ». In: Information Processing

Letters 49.6 (Mar. 22, 1994), pp. 297–301. issn: 0020-0190.

[25] A. Components. Jadex - Active Components. 2019.

[26] F. Cruz, P. Gutierrez, and P. Meseguer. « Simulation vs Real Execution in DCOP Solving ».

In: OPTAMAS. AAMAS. 2014, p. 12.

[27] L. C. De Silva, C. Morikawa, and I. M. Petra. « State of the Art of Smart Homes ». In:

Engineering Applications of Artificial Intelligence 25.7 (Oct. 2012), pp. 1313–1321. issn:

09521976.

[28] R. Dechter. Constraint Processing. 2003. 481 pp.

[29] R. Dechter and J. Pearl. « Tree Clustering for Constraint Networks ». In: Artificial Intelli-

gence 38.3 (Apr. 1989), pp. 353–366. issn: 00043702.

[30] V. Degeler and A. Lazovik. « Dynamic Constraint Reasoning in Smart Environments ». In:

2013 IEEE 25th International Conference on Tools with Artificial Intelligence. 2013 IEEE

171

25th International Conference on Tools with Artificial Intelligence (ICTAI). Nov. 2013,

pp. 167–174.

[31] P. J. Denning, ed. The Invisible Future: The Seamless Integration of Technology into

Everyday Life. 2002.

[32] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. « Self-Organization in Multi-

Agent Systems ». In: The Knowledge Engineering Review 20.2 (June 2005), pp. 165–189.

issn: 0269-8889, 1469-8005.

[33] S. Dolev. Self-Stabilization. OCLC: 957241720. 2000.

[34] N. Fan and P. M. Pardalos. « Linear and Quadratic Programming Approaches for the

General Graph Partitioning Problem ». In: Journal of Global Optimization 48.1 (Sept.

2010), pp. 57–71. issn: 0925-5001, 1573-2916.

[35] A. Farinelli, A. Rogers, and N. R. Jennings. « Agent-Based Decentralised Coordination

for Sensor Networks Using the Max-Sum Algorithm ». In: Autonomous Agents and Multi-

Agent Systems 28.3 (May 2014), pp. 337–380. issn: 1387-2532, 1573-7454.

[36] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. « Decentralised Coordination of

Low-Power Embedded Devices Using the Max-Sum Algorithm ». In: Proceedings of the

International Conference on Autonomous Agents and Multiagent Systems. AAMAS 2008.

2008, pp. 639–646.

[37] F. Fioretto, T. Le, W. Yeoh, E. Pontelli, and T. C. Son. « Improving DPOP with Branch

Consistency for Solving Distributed Constraint Optimization Problems ». In: Principles

and Practice of Constraint Programming (Cham). Ed. by B. O’Sullivan. 2014, pp. 307–

323.

[38] F. Fioretto, E. Pontelli, and W. Yeoh. « Distributed Constraint Optimization Problems and

Applications: A Survey ». In: Journal of Artificial Intelligence Research 61 (Mar. 29, 2018),

pp. 623–698. issn: 1076-9757. arXiv: 1602.06347.

[39] F. Fioretto and W. Y. E. Pontelli. « A Multiagent System Approach to Scheduling Devices

in Smart Homes ». In: Proceedings of the International Workshop on Artificial Intelligence

for Smart Grids and Smart Buildings. Workshop on Artificial Intelligence for Smart Grids

and Smart Buildings. 2017, p. 7.

[40] S. Fitzpatrick and L. Meertens. « Distributed Coordination through Anarchic Optimiza-

tion ». In: Distributed Sensor Networks. Ed. by V. Lesser, C. L. Ortiz, and M. Tambe.

Red. by G. Weiss. Vol. 9. 2003, pp. 257–295.

[41] F. D. Fomeni and A. N. Letchford. « A Dynamic Programming Heuristic for the Quadratic

Knapsack Problem ». In: INFORMS Journal on Computing 26.1 (Feb. 2014), pp. 173–182.

issn: 1091-9856, 1526-5528.

[42] gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent

From 2016. 2017.

[43] A. Gershman, A. Meisels, and R. Zivan. « Asynchronous Forward Bounding for Distributed

COPs ». In: Journal of Artificial Intelligence Research 34 (Feb. 10, 2009), pp. 61–88. issn:

1076-9757.

[44] A. K. Gopalakrishna, T. Ozcelebi, A. Liotta, and J. J. Lukkien. « Exploiting Machine Learn-

ing for Intelligent Room Lighting Applications ». In: 2012 6th IEEE INTERNATIONAL

https://arxiv.org/abs/1602.06347

172

Bibliography

CONFERENCE INTELLIGENT SYSTEMS. 2012 6th IEEE International Conference In-

telligent Systems (IS). Sept. 2012, pp. 406–411.

[45] R. Greenstadt, B. Grosz, and M. D. Smith. « SSDPOP: Improving the Privacy of DCOP with

Secret Sharing ». In: Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems - AAMAS ’07. The 6th International Joint Conference. 2007,

p. 1.

[46] V. Guivarch. « Prise en compte de la dynamique du contexte pour les systèmes ambiantspar

systèmes multi-agents adaptatifs ». Université Toulouse III -Paul Sabatier, 2014.

[47] O. Gutknecht and J. Ferber. « The MadKit Agent Platform Architecture ». In: Infrastructure

for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems. Ed. by T. Wagner and

O. F. Rana. Red. by G. Goos, J. Hartmanis, and J. van Leeuwen. Vol. 1887. 2001, pp. 48–55.

[48] C. Hewitt, P. Bishop, and R. Steiger. « A Universal Modular ACTOR Formalism for

Artificial Intelligence ». In: Proceedings of the 3rd International Joint Conference on

Artificial Intelligence (Stanford, USA). IJCAI’73. 1973, pp. 235–245.

[49] K. Hirayama and M. Yokoo. « Distributed Partial Constraint Satisfaction Problem ». In:

Proceedings of the International Conference on Principles and Practice of Constraint

Programming. CP. Vol. 1330. 1997, pp. 222–236.

[50] K. D. Hoang, F. Fioretto, P. Hou, M. Yokoo, W. Yeoh, and R. Zivan. « Proactive Dy-

namic Distributed Constraint Optimization ». In: Proceedings of the 2016 International

Conference on Autonomous Agents & Multiagent Systems. 2016, pp. 597–605.

[51] K. D. Hoang, P. Hou, F. Fioretto, W. Yeoh, R. Zivan, and M. Yokoo. « Infinite-Horizon

Proactive Dynamic DCOPs ». In: (2017), p. 9.

[52] B. Horling and V. Lesser. « A Survey of Multi-Agent Organizational Paradigms ». In: The

Knowledge Engineering Review 19.04 (2004), pp. 281–316.

[53] J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci. « Instrumenting Multi-Agent Organisations

with Organisational Artifacts and Agents: “Giving the Organisational Power Back to the

Agents” ». In: Autonomous Agents and Multi-Agent Systems 20.3 (May 2010), pp. 369–400.

issn: 1387-2532, 1573-7454.

[54] J. F. Hubner and J. S. Sichman. « SACI: Uma Ferramenta para Implementação e Moni-

toração da Comunicação entre Agentes ». In: (2000), p. 12.

[55] IETF. CoAP: Constrained Application Protocol. ISBN 2070-1721. 2014.

[56] IETF. CoRE Resource Directory. 2019.

[57] IETF. DNS-SD. 2013.

[58] IETF. mDNS. 2013.

[59] G. Kahn. « The Semantics of a Simple Language for Parallel Programming ». In: (), p. 6.

[60] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello. « Coordinating the Web of Services

for a Smart Home ». In: ACM Transactions on the Web 7.2 (May 1, 2013), pp. 1–40. issn:

15591131.

[61] R. M. Karp and R. E. Miller. « Properties of a Model for Parallel Computations: Deter-

minacy, Termination, Queueing ». In: SIAM Journal on Applied Mathematics 14.6 (Nov.

1966), pp. 1390–1411. issn: 0036-1399, 1095-712X.

173

[62] M. Khan, L. Tran-Thanh, W. Yeoh, and N. R. Jennings. « A Near-Optimal Node-to-

Agent Mapping Heuristic for GDL-Based DCOP Algorithms in Multi-Agent Systems ».

In: Roceedings of the International Conference on Autonomous Agents and Multiagent

Systems. AAMAS. 2018, pp. 1613–1621.

[63] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe. « Asynchronous Algorithms for Ap-

proximate Distributed Constraint Optimization with Quality Bounds ». In: Proceedings of

the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume

1-Volume 1. 2010, pp. 133–140.

[64] W. Kluegel, M. A. Iqbal, F. Fioretto, W. Yeoh, and E. Pontelli. « A Realistic Dataset for

the Smart Home Device Scheduling Problem for DCOPs ». In: Autonomous Agents and

Multiagent Systems. OPTMAS. Vol. 10643. 2017, pp. 125–142.

[65] F. R. Kschischang and B. J. Frey. « Iterative Decoding of Compound Codes by Probability

Propagation in Graphical Models ». In: IEEE Journal on Selected Areas in Communications

16.2 (Feb. 1998), pp. 219–230. issn: 0733-8716.

[66] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. « Factor Graphs and the Sum-Product

Algorithm ». In: (2001), p. 76.

[67] Y. Kubera, P. Mathieu, and S. Picault. « IODA: An Interaction-Oriented Approach for

Multi-Agent Based Simulations ». In: Autonomous Agents and Multi-Agent Systems 23.3

(Nov. 2011), pp. 303–343. issn: 1387-2532, 1573-7454.

[68] A. Kumar, A. Petcu, and B. Faltings. « H-DPOP: Using Hard Constraints for Search Space

Pruning in DCOP ». In: Proceedings of the Twenty-Third {AAAI} Conference on Artificial

Intelligence, {AAAI} 2008, Chicago, Illinois, USA, July 13-17, 2008. AAAI. 2008, pp. 325–

330.

[69] R. N. Lass, E. Sultanik, and W. C. Regli. « Dynamic Distributed Constraint Reasoning. »

In: AAAI. 2008, pp. 1466–1469.

[70] T. Léauté, B. Ottens, R. Szymanek, and É. P. F. De. « FRODO 2.0: An Open-Source

Framework for Distributed Constraint Optimization ». In: In Proceedings of the IJCAI’09

Distributed Constraint Reasoning Workshop (DCR’09. IJCAI-DCR. 2009, pp. 160–164.

[71] C. Lee, D. Nordstedt, and S. Helal. « Enabling Smart Spaces with OSGi ». In: IEEE

Pervasive Computing 2.3 (July 2003), pp. 89–94. issn: 1536-1268.

[72] E. Lee and D. Messerschmitt. « Synchronous Data Flow ». In: Proceedings of the IEEE

75.9 (1987), pp. 1235–1245. issn: 0018-9219.

[73] C. J. van Leeuwen and P. Pawelczak. « CoCoA: A Non-Iterative Approach to a Local

Search (A)DCOP Solver ». In: AAAI Conference on Artficial Intelligence. Feb. 2017.

[74] B. Lutati, I. Gontmakher, M. Lando, A. Netzer, A. Meisels, and A. Grubshtein. « AgentZero:

A Framework for Simulating and Evaluating Multi-Agent Algorithms ». In: Agent-Oriented

Software Engineering. 2014, pp. 309–327.

[75] N. A. Lynch. Distributed Algorithms. OCLC: 1047802139. 1997.

[76] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth.

« Machine Learning for Internet of Things Data Analysis: A Survey ». In: Digital Commu-

nications and Networks 4.3 (Aug. 2018), pp. 161–175. issn: 23528648.

174

Bibliography

[77] R. T. Maheswaran, J. P. Pearce, and M. Tambe. « Distributed Algorithms for DCOP: A

Graphical-Game-Based Approach. » In: ISCA PDCS. 2004, pp. 432–439.

[78] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. « Tak-

ing DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event

Scheduling ». In: AAMAS ’04 Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 1. AAMAS. 2004, p. 8.

[79] R. Mailler and V. Lesser. « Solving Distributed Constraint Optimization Problems Using

Cooperative Mediation ». In: Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 1. AAMAS ’04. 2004, pp. 438–445.

[80] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.

Czajkowski. « Pregel: A System for Large-Scale Graph Processing ». In: Proceedings of

the 28th ACM Symposium on Principles of Distributed Computing. 2009, p. 1.

[81] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. « AD3:

Alternating Directions Dual Decomposition for MAP Inference in Graphical Models ». In:

The Journal of Machine Learning Research (2015), p. 51.

[82] T. Matsui, H. Matsuo, and M. Ca. « A Quantified Distributed Constraint Optimization

Problem ». In: Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems: AAMAS. Vol. 1. 2010, p. 9.

[83] S. Mazac, F. Armetta, and S. Hassas. « On Bootstrapping Sensori-Motor Patterns for

a Constructivist Learning System in Continuous Environments ». In: Artificial Life 14:

Proceedings of the Fourteenth International Conference on the Synthesis and Simulation

of Living Systems. ALIFE 14. July 30, 2014, pp. 160–167.

[84] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. « Comparing Performance of Dis-

tributed Constraints Processing Algorithms ». In: Proc. AAMAS-2002 Workshop on Dis-

tributed Constraint Reasoning DCR. 2002, pp. 86–93.

[85] J. E. Mitchell. « Branch-and-Cut Algorithms for Combinatorial Optimization Problems ».

In: Handbook of Applied Optimization. 2000, p. 19.

[86] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. « Adopt: Asynchronous Distributed

Constraint Optimization with Quality Guarantees ». In: Artificial Intelligence 161.1-2 (Jan.

2005), pp. 149–180. issn: 00043702.

[87] H. Moens and F. D. Turck. « VNF-P: A Model for Efficient Placement of Virtualized

Network Functions ». In: 10th International Conference on Network and Service Manage-

ment (CNSM) and Workshop. 2014 10th International Conference on Network and Service

Management (CNSM). Nov. 2014, pp. 418–423.

[88] Y. Naveh, R. Zivan, and W. Yeoh. « Resilient Distributed Constraint Optimization Prob-

lems ». In: OPTMAS. 2017, p. 14.

[89] A. Netzer, A. Grubshtein, and A. Meisels. « Concurrent Forward Bounding for Distributed

Constraint Optimization Problems ». In: Artificial Intelligence 193 (Dec. 2012), pp. 186–

216. issn: 00043702.

[90] D. T. Nguyen, W. Yeoh, and H. C. Lau. « Distributed Gibbs: A Memory-Bounded Sampling-

Based DCOP Algorithm ». In: Proceedings of the International Conference on Autonomous

Agents and Multi-Agent Systems. AAMAS. 2013, pp. 167–174.

175

[91] S. Okamoto, R. Zivan, and A. Nahon. « Distributed Breakout: Beyond Satisfaction ». In:

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.

IJCAI. 2016, pp. 447–453.

[92] osgi. OSGi™ Alliance – The Dynamic Module System for Java.

[93] B. Ottens, C. Dimitrakakis, and B. Faltings. « DUCT: An Upper Confidence Bound Ap-

proach to Distributed Constraint Optimization Problems ». In: Proceedings of AAAI. AAAI.

Vol. 8. 2012, pp. 528–534.

[94] M. T. Özsu and P. Valduriez. « Data Replication ». In: Principles of Distributed Database

Systems, Third Edition. 2011, pp. 459–495.

[95] J. Palanca, E. del Val, A. Garcia-Fornes, H. Billhardt, J. M. Corchado, and V. Julián. « De-

signing a Goal-Oriented Smart-Home Environment ». In: Information Systems Frontiers

20.1 (Feb. 2018), pp. 125–142. issn: 1387-3326, 1572-9419.

[96] C. Parra, D. Romero, S. Mosser, R. Rouvoy, L. Duchien, and L. Seinturier. « Using

Constraint-Based Optimization and Variability to Support Continuous Self-Adaptation ».

In: Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC ’12.

The 27th Annual ACM Symposium. 2012, p. 486.

[97] H. V. D. Parunak. « Industrial and Practical Applications of DAI ». In: Multiagent Systems:

A Modern Approach to Distributed Artificial Intelligence. Ed. by G. Weiss. 1999, pp. 377–

421.

[98] J. P. Pearce and M. Tambe. « Quality Guarantees on K-Optimal Solutions for Distributed

Constraint Optimization Problems ». In: Proceedings of the International Joint Conference

on Artificial Intelligence. IJCAI. 2007, p. 1446–1451.

[99] F. Pecora and A. Cesta. « DCOP for Smart Homes: A Case Study ». In: Computational

Intelligence 23.4 (Dec. 12, 2007), pp. 395–419. issn: 08247935.

[100] F. Pecora, P. Modi, and P. Scerri. « Reasoning about and Dynamically Posting N-Ary Con-

straints in ADOPT ». In: 7th International Workshop on Distributed Constraint Reasoning,

at AAMAS. Vol. 2006. 2006, p. 15.

[101] O. Peri and A. Meisels. « Synchronizing for Performance DCOP Algorithms ». In: Pro-

ceedings of the 5th International Conference on Agents and Artificial Intelligence. Icaart13.

Vol. 1. 2013.

[102] A. Petcu. « ODPOP: An Algorithm for Open/Distributed Constraint Optimization ». In:

Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eigh-

teenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,

Boston, Massachusetts, {USA}. AAAI. 2006, pp. 703–708.

[103] A. Petcu. « PC-DPOP: A New Partial Centralization Algorithm for Distributed Optimiza-

tion ». In: Proceedings of the 20th International Joint Conference on Artifical Intelligence.

IJCAI. IJCAI’07. 2007, pp. 167–172.

[104] A. Petcu and B. Faltings. « A Distributed, Complete Method for Multi-Agent Constraint

Optimization ». In: CP 2004 - Fifth International Workshop on Distributed Constraint

Reasoning (DCR2004). CP. 2004, p. 15.

[105] A. Petcu and B. Faltings. « Approximations in Distributed Optimization ». In: Principles

and Practice of Constraint Programming - CP 2005. Vol. 3709. 2005, pp. 802–806.

176

Bibliography

[106] A. Petcu and B. Faltings. « Optimal Solution Stability in Dynamic, Distributed Constraint

Optimization ». In: 2007 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT’07). 2007 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT’07). Nov. 2007, pp. 321–327.

[107] A. Petcu and B. Faltings. « Superstabilizing, Fault-Containing Distributed Combinatorial

Optimization. » In: Proceedings of the National Conference on Artificial Intelligence.

Vol. 20. 2005, p. 449.

[108] F. Piette, C. Caval, C. Dinont, A. E. F. Seghrouchni, and P. Tailliert. « A Multi-Agent

Solution for the Deployment of Distributed Applications in Ambient Systems ». In: En-

gineering Multi-Agent Systems (Cham). Ed. by M. Baldoni, J. P. Müller, I. Nunes, and R.

Zalila-Wenkstern. 2016, pp. 156–175.

[109] V. Plantevin, A. Bouzouane, B. Bouchard, and S. Gaboury. « Towards a More Reliable and

Scalable Architecture for Smart Home Environments ». In: Journal of Ambient Intelligence

and Humanized Computing (Aug. 9, 2018). issn: 1868-5137, 1868-5145.

[110] H. K. Pung, T. Gu, and D. Q. Zhang. « Toward an OSGi-Based Infrastructure for Context-

Aware Applications ». In: IEEE Pervasive Computing 3.4 (Oct. 2004), pp. 66–74. issn:

1536-1268.

[111] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio. « Single and Multi-

Domain Adaptive Allocation Algorithms for VNF Forwarding Graph Embedding ». In:

IEEE Transactions on Network and Service Management 16.1 (Mar. 2019), pp. 98–112.

issn: 1932-4537, 2373-7379.

[112] H. Raiffa. Decision Analysis; Introductory Lectures on Choices under Uncertainty. OCLC:

449943. 1968.

[113] A. S. Rao and M. P. Georgeff. « BDI Agents: From Theory to Practice ». In: (1995), p. 8.

[114] A. Ricci, M. Piunti, and M. Viroli. « Environment Programming in Multi-Agent Systems:

An Artifact-Based Perspective ». In: Autonomous Agents and Multi-Agent Systems 23.2

(Sept. 2011), pp. 158–192. issn: 1387-2532, 1573-7454.

[115] Rina Dechter and Avi Dechter. « Belief Maintenance in Dynamic Constraint Networks ».

In: Proceedings of the 7th National Conference on Artificial Intelligence. 1988.

[116] S. Rodríguez, J. F. De Paz, G. Villarrubia, C. Zato, J. Bajo, and J. M. Corchado. « Multi-

Agent Information Fusion System to Manage Data from a WSN in a Residential Home ».

In: Information Fusion 23 (May 1, 2015), pp. 43–57. issn: 1566-2535.

[117] S. Rodriguez, N. Gaud, and S. Galland. « SARL: A General-Purpose Agent-Oriented Pro-

gramming Language ». In: 2014 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT). 2014 IEEE/WIC/ACM Inter-

national Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies

(IAT). Aug. 2014, pp. 103–110.

[118] A. Rogers, A. Farinelli, R. Stranders, and N. Jennings. « Bounded Approximate Decen-

tralised Coordination via the Max-Sum Algorithm ». In: Artificial Intelligence 175.2 (Feb.

2011), pp. 730–759. issn: 00043702.

177

[119] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. In collab. with

E. Davis and D. Edwards. Third edition, Global edition. Prentice Hall Series in Artificial

Intelligence. OCLC: 945899984. 2016. 1132 pp.

[120] P. Rust, G. Picard, and F. Ramparany. « pyDCOP: A DCOP Library for Dynamic IoT

Systems ». In: International Conference on Autonomous Agents and Multiagent Systems.

OptMAS. OPTMAS. 2019, p. 5.

[121] P. Rust, G. Picard, and F. Ramparany. « Self-Organized and Resilient Distribution of Deci-

sions over Dynamic Multi-Agent Systems ». In: International Conference on Autonomous

Agents and Multiagent Systems. OptMAS. OPTMAS. 2018, p. 15.

[122] P. Rust, G. Picard, and F. Ramparany. « Approche DCOP pour résoudre des problèmes

de configuration économe d’environnements intelligents ». In: Journées Francophones sur

les Systèmes Multi-Agents. JFSMA. JFSMA. 2016.

[123] P. Rust, G. Picard, and F. Ramparany. « Déploiement de graphes de facteurs pour l’exécution

d’algorithmes DCOP sur des infrastructures ouvertes ». In: Journées Francophones sur les

Systèmes Multi-Agents. JFSMA. JFSMA. 2017.

[124] P. Rust, G. Picard, and F. Ramparany. « Installing Resilience in Distributed Constraint

Optimization Operated by Physical Multi-Agent Systems ». In: International Conference

on Autonomous Agents and Multiagent Systems. AAMAS. AAMAS. 2019, p. 3.

[125] P. Rust, G. Picard, and F. Ramparany. « Mise En Place d’une Décision Collective Résiliente

Sur Une Infrastructure IoT à l’aide Du Framework PyDCOP (Démonstration) ». In:

Journées Francophones Sur Les Systèmes Multi-Agents. JFSMA. JFSMA. 2018, pp. 223–

224.

[126] P. Rust, G. Picard, and F. Ramparany. « On the Deployment of Factor Graph Elements

to Operate Max-Sum in Dynamic Ambient Environments ». In: International Conference

on Autonomous Agents and Multiagent Systems. OptMAS. Vol. 10642. OPTMAS. 2017,

pp. 116–137.

[127] P. Rust, G. Picard, and F. Ramparany. « Résilience et auto-réparation de processus de déci-

sions multi-agents ». In: Journées Francophones sur les Systèmes Multi-Agents. JFSMA.

JFSMA. 2019.

[128] P. Rust, G. Picard, and F. Ramparany. « Using Message-Passing DCOP Algorithms to

Solve Energy-Efficient Smart Environment Configuration Problems ». In: International

Joint Conference on Artificial Intelligence. IJCAI. IJCAI. 2016, p. 7.

[129] F. Sadri. « Ambient Intelligence: A Survey ». In: ACM Computing Surveys 43.4 (Oct. 1,

2011), pp. 1–66. issn: 03600300.

[130] D. Saha and A. Mukherjee. « Pervasive Computing: A Paradigm for the 21st Century ».

In: Computer 36.3 (Mar. 2003), pp. 25–31. issn: 0018-9162.

[131] T. Saraç and A. Sipahioglu. « Generalized Quadratic Multiple Knapsack Problem and Two

Solution Approaches ». In: Computers & Operations Research 43 (Mar. 2014), pp. 78–89.

issn: 03050548.

[132] « Self-Organising Systems ». In: Self-Organising Software: From Natural to Artificial

Adaptation. Ed. by G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos. Natural

Computing Series. 2011, pp. 7–32.

178

Bibliography

[133] Y. Shoham. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations.

2009.

[134] B. M. Smith. « Chapter 11 - Modelling ». In: Foundations of Artificial Intelligence. Ed. by

F. Rossi, P. van Beek, and T. Walsh. Vol. 2. Handbook of Constraint Programming. Jan. 1,

2006, pp. 377–406.

[135] H. Song, S. Barrett, A. Clarke, and S. Clarke. « Self-Adaptation with End-User Prefer-

ences: Using Run-Time Models and Constraint Solving ». In: Model-Driven Engineering

Languages and Systems. Vol. 8107. 2013, pp. 555–571.

[136] A. Stimson. Photometry and Radiometry for Engineers. OCLC: 833226111. 1974. 446 pp.

[137] E. A. Sultanik, R. N. Lass, and W. C. Regli. « DCOPolis: A Framework for Simulating and

Deploying Distributed Constraint Reasoning Algorithms (Demo Paper) ». In: 2008, p. 2.

[138] Q. Sun, W. Yu, N. Kochurov, Q. Hao, and F. Hu. « A Multi-Agent-Based Intelligent Sensor

and Actuator Network Design for Smart House and Home Automation ». In: Journal of

Sensor and Actuator Networks 2.3 (Aug. 19, 2013), pp. 557–588. issn: 2224-2708.

[139] D. Tarlow, I. E. Givoni, and R. S. Zemel. « HOP-MAP: Efficient Message Passing with

High Order Potentials ». In: AISTATS. AISTATS. 2010, p. 8.

[140] S. Valero, E. del Val, J. Alemany, and V. Botti. « Using Magentix2 in Smart-Home En-

vironments ». In: 10th International Conference on Soft Computing Models in Industrial

and Environmental Applications. Ed. by Á. Herrero, J. Sedano, B. Baruque, H. Quintián,

and E. Corchado. Vol. 368. 2015, pp. 27–37.

[141] L. G. Valiant. « A Bridging Model for Parallel Computation ». In: Commun. ACM 33.8

(Aug. 1990), pp. 103–111. issn: 0001-0782.

[142] M. Vallée, F. Ramparany, and L. Vercouter. « A Multi-Agent System for Dynamic Service

Composition in Ambient Intelligence Environments ». In: Advances in Pervasive Comput-

ing, Adjunct Proceedings of the Third International Conference on Pervasive Computing.

Pervasive. 2005, p. 8.

[143] G. Verfaillie and N. Jussien. « Constraint Solving in Uncertain and Dynamic Environments:

A Survey ». In: Constraints 10.3 (July 2005), pp. 253–281. issn: 1383-7133, 1572-9354.

[144] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides. « Constructing a Unifying Theory

of Dynamic Programming DCOP Algorithms via the Generalized Distributive Law ».

In: Autonomous Agents and Multi-Agent Systems 22.3 (May 2011), pp. 439–464. issn:

1387-2532, 1573-7454.

[145] M. Wahbi, R. Ezzahir, C. Bessiere, and E. H. Bouyakhf. « DisChoco 2: A Platform for Dis-

tributed Constraint Reasoning ». In: Proceedings of the IJCAI’11 Workshop on Distributed

Constraint Reasoning (Barcelona, Catalonia, Spain). DCR’11. 2011, pp. 112–121.

[146] M. Weiser. « The Computer for the 21th Century ». In: Scientific American 265.3 (1991),

pp. 94–104.

[147] U. Wilensky. NetLogo. 1999.

[148] C.-L. Wu, C.-F. Liao, and L.-C. Fu. « Service-Oriented Smart-Home Architecture Based

on OSGi and Mobile-Agent Technology ». In: IEEE Transactions on Systems, Man and

Cybernetics, Part C (Applications and Reviews) 37.2 (Mar. 2007), pp. 193–205. issn:

1094-6977.

179

[149] Xiaojing Ye and Junwei Huang. « A Framework for Cloud-Based Smart Home ». In: Pro-

ceedings of 2011 International Conference on Computer Science and Network Technology.

2011 International Conference on Computer Science and Network Technology (ICCSNT).

Dec. 2011, pp. 894–897.

[150] E. P. Xing et al. « Petuum: A New Platform for Distributed Machine Learning on Big

Data ». In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’15. The 21th ACM SIGKDD International Conference.

2015, pp. 1335–1344.

[151] B. Yao, X. Liu, W.-J. Zhang, X.-E. Chen, X.-M. Zhang, M. Yao, and Z.-X. Zhao. « Apply-

ing Graph Theory to the Internet of Things ». In: 2013 IEEE 10th International Conference

on High Performance Computing and Communications & 2013 IEEE International Con-

ference on Embedded and Ubiquitous Computing. 2013 IEEE International Conference on

High Performance Computing and Communications (HPCC) & 2013 IEEE International

Conference on Embedded and Ubiquitous Computing (EUC). Nov. 2013, pp. 2354–2361.

[152] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig. « Incremental DCOP Search Algorithms

for Solving Dynamic DCOP Problems ». In: 2015 IEEE/WIC/ACM International Confer-

ence on Web Intelligence and Intelligent Agent Technology (WI-IAT). 2015 IEEE / WIC

/ ACM International Conference on Web Intelligence and Intelligent Agent Technology

(WI-IAT). Dec. 2015, pp. 257–264.

[153] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. « The Distributed Constraint Satisfaction

Problem: Formalization and Algorithms ». In: IEEE Transactions on Knowledge and Data

Engineering 10.5 (Sept.-Oct./1998), pp. 673–685. issn: 10414347.

[154] M. Yokoo, T. Ishida, E. Durfee, and K. Kuwabara. « Distributed Constraint Satisfaction for

Formalizing Distributed Problem Solving ». In: [1992] Proceedings of the 12th Interna-

tional Conference on Distributed Computing Systems. [1992] 12th International Conference

on Distributed Computing Systems. 1992, pp. 614–621.

[155] M. Yokoo and K. Hirayama. « Distributed Breakout Algorithm for Solving Distributed Con-

straints Satisfaction Problems ». In: Proceedings of the Second International Conference

on Multiagent Systems. International Conference on Multiagent Systems. 1996.

[156] M. Yokoo and K. Hirayama. « Algorithms for Distributed Constraint Satisfaction: A Re-

view ». In: Autonomous Agents and Multi-Agent Systems (2000), p. 23.

[157] W. Zhang, G. Wang, and L. Wittenburg. « Distributed Stochastic Search for Constraint

Satisfaction and Optimization: Parallelism, Phase Transitions and Performance ». In: Pro-

ceedings of AAAI Workshop on Probabilistic Approaches in Search. 2002.

[158] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. « Distributed Stochastic Search and

Distributed Breakout: Properties, Comparison and Applications to Constraint Optimization

Problems in Sensor Networks ». In: Artificial Intelligence 161.1-2 (Jan. 2005), pp. 55–87.

issn: 00043702.

[159] R. Zivan and A. Meisels. « Message Delay and DisCSP Search Algorithms ». In: Annals of

Mathematics and Artificial Intelligence 46.4 (Oct. 27, 2006), pp. 415–439. issn: 1012-2443,

1573-7470.

180

Bibliography

[160] R. Zivan and H. Peled. « Max/Min-Sum Distributed Constraint Optimization through Value

Propagation on an Alternating Dag ». In: Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems-Volume 1. 2012, pp. 265–272.

181

Appendices

183

ANotations

Constraint Reasoning

Symbol Description Definition

(X , D, F , A, µ) DCOP 3.3.2

X Set of variables 3.3.2

xi One variable, xi ∈ X 3.3.2

D Set of domains for the variables 3.3.2

Dxi Domain of variable xi, Dxi ∈ D 3.3.2
xk k

i A possible state of variable xi, xi ∈ Dxi 3.3.2

F Set of constraints 3.3.2

fj A constraint fj ∈ F 3.3.2

Sfj Scope of constraint fj 3.3.2

A Set of agents 3.3.2

aa Agent aa ∈ A 3.3.2

o An assignment of value to variables 3.3.2

µ Mapping of variables to agents µ : X 1→ A 5.1.1

µ(x) Agent hosting a variable: µ(x) = aa 5.1.1

µ−1(x) Set of variables hosted by an agent: µ−1(x) ⊆ X 5.1.1

SECP

Symbol Description Definition

A Set of actuators 4.1.3.1

X (A) Set of actuators variables, also used to denote the

computations representing these variables

4.1.3.1

184

Appendix A. Notations

Symbol Description Definition

xi actuator’s variable 4.1.3.1

x value for actuator variable 4.1.3.1

Dxi domain of actuator 4.1.3.1

F (A) Set of actuators’ energy costs 4.1.3.1

ei Energy cost of actuator xi, ei ∈ F (A) 4.1.3.1

S Set of sensors 4.1.3.2

X (S) Set of sensor variables 4.1.3.2

sl Sensor variable 4.1.3.2

sp
l

Value for sensor variable 4.1.3.2

R Set of rules 4.1.5

F (R) Set of rule utility functions 4.1.5

rr Rule utility function 4.1.5

Φ Set of environment state 4.1.3.3

X (Φ) Set of environment state variables 4.1.3.3

yj Environment state variable yj ∈ X (Φ) 4.1.3.3

F (Φ) Set of physical models functions 4.1.3.4

φ Physical model function φ ∈ F (Φ) 4.1.4

φj Arity of physical model function φj : φj = |Sφj | 4.1.4

F (Φ) Set of soft constraints for physical models 4.1.5

ϕ Soft constraint for a physical model: ϕ ∈ F (Φ) 4.1.5

Distribution

Symbol Description Definition

ci Computation 5.2.1

C Set of computations 5.2.1

GC Computation graph, GC = (C, EC) 5.2.1

ν Distribution 5.2.1

ν(ci) Agent hosting computation ci : aa = 5.2.1

ν−1(am) Set of computation hosted on agent am 5.2.1

com(ci, cj) Communication load between computations ci and

cj

5.4

CX Computations bound to a variable in a factor graph 5.4.2

CF Computations bound to a factor in a factor graph 5.4.2

mem(c i) Memory footprint of computation ci 5.4

wm ax(am) Memory capacity of agent am 5.4

N(ci) Set of neighbors of ci in the computation graph. 5.23

route(m, n) Communication cost between agents am and an 5.23

185

i

Symbol Description Definition

coma(ci, cj, am, an) Communication cost between the computation ci

hosted on agent am and cj on an

cost(am, ci) Hosting cost when placing computation ci on agent

am

5.23

5.5.2

Replication & Repair

Symbol Description Definition

ρ(ci) Agents hosting a replica of ci 6.5.1

Cc Set of candidate computations that could be migrated 6.5.4
m

Cc Set of candidate computations that could be migrated

to agent am

Ac Set of all candidate agents, that could host a compu-

tation in Cc

6.5.4

6.5.4

Ac Set of candidate agents, that could host ci 6.5.4

A[ak] Neighborhood for ak 6.4.1

E[ak] Neighborhood edges for ak 6.4.1

C[ak] Neighborhood computations for ak 6.4.1

Appendix A. Notations

186

187

BGlossary

6LowPan IPv6 over Low-Power Wireless Personal Area Networks. 106, 156

A-DCOP Asymmetric DCOP. 31

A-DPOP Approximative DPOP. 103

A-DSA Asynchronous Distributed Stochastic Algorithm. 103, 107, 141–146, 151, 193

A-MaxSum Asynchronous MaxSum Algorithm. 38, 55, 57, 58, 61, 63, 102, 103, 107, 141–147,

152, 166, 193

AAMAS International Conference on Autonomous Agents and Multiagent Systems. 3, 7, 165

ABT Asynchronous Backtracking. 106

ADOPT Asynchronous Distributed OPTimization. 34, 106, 151

AFB Asynchronous Forward Bounding. 34

AI Artificial Intelligence. 14, 18, 21

AMAS Adaptative Multi-Agent Systems. 21, 48

AmI Ambient Intelligence. 13–18, 21, 22, 40–46, 50, 51, 58, 60, 75, 83, 84, 87, 95, 97, 102, 147,

161, 163, 164, 166, 167, 191

AnyPop Anytime DPOP. 102, 103

BDI Belief, Desire and Intention. 21, 22, 150

BSP Bulk Synchronous parallel. 84

CGDP Computation Graph Distribution Problem. 86, 87, 153

CGDP-NDP Newcomer Decision Problem for the Computation Graph Distribution Problem. 124,

128, 130, 132, 133

CoAP Constrained Application Protocol. 106, 156

ConcFB Concurrent Forward Bounding. 34

COP Constraint Optimization Problem. 23–26

Appendix B. Glossary

188

CoRE Constrained RESTful Environments. 106

CRP Constraint Reasoning Problem. 23–25, 27

CSP Constraint Satisfaction Problem. 23–26, 40, 41

DAI Distributed Artificial intelligence. 18, 21

DBA Distributed Breakout Algorithm. 37, 151

DCOP Distributed Constraint Optimization Problem. 2, 3, 6–11, 22, 26–28, 30–36, 38–43, 50–

52, 54–63, 65, 66, 69, 71–75, 79, 80, 83–85, 87, 89, 90, 93, 95, 97–104, 106, 107, 110,

119–123, 129, 134, 135, 138, 139, 141, 145, 147, 149–151, 153, 156–161, 163, 164, 166,

167, 191, 192

DCP Dynamic Constraint Reasoning. 42, 99, 151

DCSP Distributed Constraint Satisfaction Problem. 25–27, 30, 52

Dec-MDP Decentralized Markov Decision Process. 20

Dec-POMDP Decentralized Partially Observable Markov Decision Process. 20

DFS Tree Depth-First Search Tree. 27, 29, 39, 61, 191

DMCM DCOP Model for Computation Migration. 120–123, 129, 138, 139, 141, 147, 153, 162,

164, 166, 193

DPOP Distributed Pseudo-tree Optimization Procedure. 36, 38, 55–61, 63, 102, 103, 107, 151

DRPM Distributed Replica Placement Method. 112, 114, 115, 118, 119, 121–123, 129, 134–138,

141, 142, 144–147, 153, 162, 164, 166, 192, 193

DSA Distributed Stochastic Algorithm. 36, 37, 55, 57, 58, 61, 63, 88, 102, 103, 107, 135, 136,

138–141, 151, 159, 160, 193

Dyn-DCOP Dynamic DCOP. 31, 99–103, 147

DynCSP Dynamic Constraints Satisfaction Problem. 40

EASSS European Agent Systems Summer School. 3, 165

FG Factor Graph. 25

GDBA Generalized DBA. 151

GDL Generalized Distributive Law. 34

GH-CGDP Greedy Heuristic for CGDP. 88, 90, 91, 93–95, 137, 138, 145, 159

GH-SECP-CGDP Greedy Heuristic for SECP Constraint Graph Distribution. 55, 76, 77, 88, 95,

153

GH-SECP-FGDP Greedy Heuristic for SECP Factor Graph Distribution. 55, 77, 88, 130–133,

153

IJCAI International Joint Conference on Artificial Intelligence. 2, 6, 164

ILP Integer Linear Program. 77–83, 86–90, 92, 107, 163, 192

189

ILP-CGDP Integer Linear Program for CGDP. 87, 88, 90, 91, 93, 95, 105, 107, 109, 110, 119,

123, 124, 129, 153

ILP-CGDP[ak]+ Integer Linear program for CGDP restricted to the neighborhood. 123, 124,

129–133

ILP-CGDP[ak]
− Integer Linear program for CGDP restricted to the neighborhood. 109, 129,

130, 132, 133

ILP-SECP-CGDP Integer Linear Program for SECP Constraint Graph Distribution. 79, 88, 89,

95, 130, 153

ILP-SECP-FGDP Integer Linear Program for SECP Factor Graph Distribution. 81, 88, 89, 130,

131, 153

IoT Internet of Things. 3, 14–16, 41, 42, 83–87, 89, 90, 95, 97, 102, 134, 135, 138, 147, 151,

161, 163–167

IQP-CGDP-NDP Integer Quadratic Problem for CGDP-NDP. 128

JADE Java Agent Development Environment. 21

JFSMA Journées Francophones sur les Systèmes Multi-Agents. 2, 3, 6, 7, 162, 164, 165

MAC Multi-Agent Coordination. 41

MAS Multi-Agent Systems. 18–22, 25, 26, 41, 42, 46, 50, 66, 149–151, 153, 156

MaxSum MaxSum Algorithm. 9, 36–38, 55, 57, 63, 72, 88, 103, 130, 136, 137, 152

MGM Maximum Gain Message. 36, 37, 55, 57, 58, 61, 63, 107, 123, 141, 151

MGM-2 Maximum Gain Message with 2-coordination. 55, 57–61, 63, 123, 138–142, 144–147,

151, 166, 191, 193

MO-DCOP Multi-objective DCOP. 31, 50

MPD Markov Decision Process. 20

NCBB No Commitment Branch and Bound. 152

NEXP Non-Deterministic Exponential. 20

NFV Network Function Virtualization. 84, 166

OptAPO Optimal Asynchronous Partial Overlay. 35

OptMAS Optimization in Multiagent Systems. 3, 7, 164, 165

OSGi Open Service Gateway Intiative. 16

P-DCOP Probabilistic DCOP. 31

PC-DPOP Partial Centralization DPOP. 35

PFIA Plate-Forme Intelligence Artificielle. 3, 165

Q-DCOP Quantified DCOP. 31

QKP Quadratic Knapsack Problem. 128, 129

Appendix B. Glossary

190

QMKP Quadratic Multiple Knapsack Problem. 112

RS-DPOP Reviewed Super-stabilizing DPOP. 102, 103

S-DPOP Self-stabilizing DPOP. 102

SECP Smart Environment Configuration Problem. 2, 6, 9–11, 43, 49–54, 56–63, 69, 75–89,

93–95, 97–105, 108–110, 129, 130, 132–134, 136–138, 145–147, 158, 163, 164, 166,

191–193

SHE Smart Home Environment. 14, 15, 21, 22, 40–42, 46, 75, 106

SOA Service Oriented Architecture. 21, 22, 40

SPOF Single Point Of Failure. 16

SyncBB ynchronous Branch and Bound. 152

UCT Upper Confidence bound for Trees. 35

VNF Virtual Network Function. 84

VNF-FG VNF Forwarding Graph. 84

191

LisCt of Figures

3.1 A sample map-coloring problem on Australia ... 24

3.2 Standard constraint graph representations... 25

3.3 Factor graph representation ... 25

3.4 Constraint graph representations for DCOP ... 27

3.5 Distributed map-coloring problem on Australia .. 28

3.6 Factor Graph representation for DCOP .. 28

3.7 The same problem represented with a constraint graph and a DFS Tree (backedges

are depicted with dotted lines) ... 29

3.8 DCOP taxonomy .. 32

4.1 Example of an AmI house system with its devices .. 45

4.2 Factor graph actuator representation .. 53

4.3 Physical model representation in a factor graph .. 53

4.4 Sensor representation in the factor graph .. 53

4.5 Rule representation in the factor graph ... 53

4.6 Factor graph for the scenario of Example 3... 54

4.7 Factor graph for a realistic full house level.. 54

4.8 % of constraints violation for increasing size SECP instances with several DCOP

algorithms ... 57

4.9 Solution costs for increasing size SECP instances with several DCOP algorithms 58

4.10 Execution time for increasing size SECP instances with several DCOP algorithms 59

4.11 Solution cost over time for MGM-2 on a large SECP instance................................. 59

4.12 Messages count and communication load for increasing size SECP instances with

several DCOP algorithms ... 60

4.13 Messages count for increasing size SECP instances with several DCOP algorithms 60

4.14 Average execution time for SECP with a growing number of rules, solved with

several DCOP algorithms ... 61

Appendix C. List of Figures

192

4.15 Average solution cost for SECP with a growing number of rules, solved with

several DCOP algorithms .. 62

4.16 Communication load for SECP with a growing number of rules, solved with several

DCOP algorithms ... 62

5.1 With the EAV model, the same meeting scheduling problem with 6 resources and

5 meetings has multiple reasonable variable mappings... 67

5.2 Mappings, with the PEAV and EAV models, of the same meeting scheduling

problem with 3 resources and 3 meetings. ... 68

5.3 A simple DCOP with a non-binary constraint .. 70

5.4 Binarization with the hidden variable method.. 70

5.5 Binarization with the dual graph method... 71

5.6 Two possible factor graph models for a sensor network coordination problem . . 71

5.7 Distribution of computations for an instantiated DCOP .. 73

5.8 A sample computation distribution problem .. 74

5.9 Factor graph and a possible distribution on 3 agents for a sample SECP 77

5.10 ILP based distributions for a simple SECP with 3 actuators..................................... 80

5.11 ILP based distributions for the SECP from Figure 5.10 ... 82

5.12 Distribution costs for increasing size SECP instances with several SECP-specific

distribution methods.. 88

5.13 Times for computing a distribution for increasing size SECP instances with several

SECP-specific distribution methods ... 89

5.14 Time for distributing random graph coloring problems with optimal and heuristic

methods, when using a constraint graph representation .. 91

5.15 Time for distributing random graph coloring problems with optimal and heuristic

methods, when using a factor graph representation .. 91

5.16 Distribution cost for random graph coloring problems with optimal and heuristic

methods, when using a constraint graph representation .. 92

5.17 Distribution cost for random graph coloring problems with optimal and heuristic

methods, when using a factor graph representation .. 92

5.18 Distribution time for scale free graph coloring problems with optimal and heuristic

methods, when using a constraint graph representation .. 93

5.19 Distribution costs for scale free graph coloring problems with optimal and heuristic

methods, using a constraint graph representation ... 93

5.20 Time for distributing SECP instances with optimal and heuristic methods................. 94

5.21 Cost of distributions for SECP instances with a constraint graph representation . 94

5.22 Cost of distributions for SECP instances with a factor graph representation . . . 95

6.1 Representation of the neighborhood of agent a2 in a computation graph 108

6.2 A sample route–graph with 4 agents (in gray) ... 113

6.3 A sample route+host–graph with 4 agents (in gray)... 114

6.4 Sample execution of DRPM for placing two replicas for a computation xi 115

6.5 Factor graph representation of a the DCOP model for migrating computation ci . 121

193

6.6 DRPM[DMCM] life cycle in a glance.. 121

6.7 Sample proposals from agents a1 and a2 to newcoming agent ak 126

6.8 Communication costs when accepting proposals from a1 and a2............................. 127

6.9 Optimality (6.9a), and memory usage (6.9b) of the deployment during the simula-

tion (standard deviation, min and max).. 131

6.10 Influence of the pin probability on the distribution quality 132

6.11 Influence of the pin probability on the optimality for SECP with an increasing

number of rules ... 133

6.12 Time for replicating computations for graph coloring problems 135

6.13 Messages count when replicating computations for graph coloring problems . . . 136

6.14 Communication load when replicating computations for graph coloring problems 136

6.15 Time for replicating computations for SECP instances ... 137

6.16 Messages count when replicating computations for SECP instances........................ 137

6.17 Communication load when replicating computations for SECP instances 138

6.18 DMCM repair using DSA on random free graph coloring problem.......................... 140

6.19 DMCM repair using DSA on scale free graph coloring problem 140

6.20 DMCM repair using MGM-2 on random graph coloring problem 140

6.21 DMCM repair using MGM-2 on scale free graph coloring problem 141

6.22 Cost of A-DSA solution at runtime, with (blue) and without perturbation (red), on

uniform (left) and IoT-like (right) infrastructure, and when solving scale free graph

coloring (top) and random graph coloring (bottom), using DRPM[MGM-2] to repair142

6.23 Cost of A-MaxSum solution at runtime, with (blue) and without perturbation

(red), on uniform (left) and problem-dependent (right) infrastructure, and when

solving scale free graph coloring (top) and random graph coloring (bottom), using

DRPM[MGM-2] to repair... 142

6.24 Cost of the distribution of computation graphs on which A-DSA operates, after

each event, on uniform (left) and problem-dependent (right) infrastructure, and

when solving scale free graph coloring (top) and random graph coloring (bottom)

problems, using DRPM[MGM-2] to repair .. 144

6.25 Cost of the distribution of computation graphs on which A-MaxSum operates,

after each event, on uniform (left) and problem-dependent (right) infrastructure,

and when solving scale free graph coloring (top) and random graph coloring

(bottom) problems, using DRPM[MGM-2] to repair... 144

6.26 Cost and hard constraints violations of operating A-DSA to solve SECP, repaired

with DRPM[MGM-2] (blue: with perturbations, red: without perturbation) . . . 146

6.27 Cost and hard constraints violations of operating A-MaxSum to solve SECP,

repaired with DRPM[MGM-2] (blue: with perturbations, red: without perturbation)146

7.1 pyDCOP extensive documentation.. 152

7.2 pyDCOP Web UI to access agents’ inner state.. 154

7.3 Sample pyDCOP Architecture Instantiation ... 154

7.4 pyDCOP Inter-agent Communication Scheme ... 155

7.5 pyDCOP Agent Architecture .. 156

Appendix C. List of Figures

194

7.6 Evolution of costs plotted from metrics output by the pydcop solve command . 160

7.7 pyDCOP physical demonstrator 162

École Nationale Supérieure des Mines

de Saint-Étienne

NNT: 2019LYSEM023

Pierre RUST

Autonomous and Spontaneous Coordination between Smart

Connected Objects

Speciality: Computer Science

Domain: Artificial Intelligence

Keywords: Multi-Agent Systems, DCOP, autonomy, coordination, distribution, optimiza-

tion, self-repair, self-adaptation, resilience,

Abstract:

Smart Home, Ambient Intelligence and the Internet-of-Things involve a large number of

connected objects, with heterogeneous computing and communication capabilities. The

high-level functionalities offered by these systems are based on the services rendered by

several of these objects in a joint manner; the coordination of their actions is therefore

essential. In the current systems, this coordination is implemented via a centralized entity,

the connected objects are then only used as simple effectors or sensors.

This thesis examines cooperation and coordination mechanisms, in a decentralized and

autonomous way, between these objects. Based on a Multi-Agent System approach called

Distributed Constraints Optimization (DCOP), these objects coordinate their actions to

achieve one or more objectives corresponding to the user’s requirements. In this context,

we underline the importance of distributing the decisions to be taken by these various

agents and we present several methods for choosing a satisfactory distribution against the

characteristics of the targeted systems.

Finally, since these systems are highly dynamic by nature, we present several solutions

to manage the changes that may occur, both in terms of the environment and the agents

themselves. In particular, we are committed to making these systems resilient, so that

they can continue to operate even in the event of the disappearance of several agents.

Several autonomous system repair mechanisms, based on distributed decision replication

and decision making, are presented and evaluated.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2019LYSEM023

Pierre RUST

Coordination spontanée et autonome entre objets intelligents

connectés

Spécialité de doctorat : Informatique

Discipline : Intelligence Artificielle

Mots clefs : Systèmes Multi-agents, DCOP, autonomie, coordination, distribution, opti-

misation, auto-réparation, résilience

Résumé :

La Smart Home, l’Intelligence Ambiante et l’Internet des Objets impliquent un grand

nombre d’objets connectés, dotés de capacités hétérogènes de calcul et de communication.

Les fonctionnalités de haut niveau offertes par ces systèmes s’appuient sur les services

rendus par plusieurs de ces objets de manières conjointe ; la coordination de leurs actions

est donc indispensable. Dans les systèmes actuels, cette coordination est mise en œuvre

via une entité centralisée, les objets connectés n’étant alors utilisés que comme de simples

effecteurs ou capteurs.

Cette thèse étudie les mécanismes de coopération et de coordination, de manière décen-

tralisée et autonome, entre ces objets. En s’appuyant sur une approche issue des Systèmes

Multi-Agents, l’optimisation distribuée sous contraintes (DCOP), ces objets coordonnent

leurs actions pour atteindre un ou plusieurs objectifs correspondant aux souhaits de l’uti-

lisateur. Dans ce contexte, nous soulignons l’importance de la distribution des décisions à

effectuer par ces différents agents et présentons plusieurs méthodes permettant de choisir

une distribution satisfaisante en regard des caractéristiques des systèmes ciblés.

Finalement, ces systèmes étant par nature hautement dynamiques, nous présentons plu-

sieurs solutions pour gérer les changements pouvant survenir, tant au niveau de l’envi-

ronnement que des agents eux-mêmes. En particulier, nous nous attachons à rendre ces

systèmes résilients, afin qu’ils puissent continuer à opérer même dans le cas de la dispari-

tion de plusieurs agents. Plusieurs mécanismes de réparation autonome du système, basés

sur la réplication des décisions et la prise de décision distribuée, sont présentés et évalués.

