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Chapter 1

Panorama of this Thesis

Securing information is crucial in our modern and interconnected world. Informa-
tion security encompasses the security of many aspects of our lives as we rely more
and more on information and communications technology. The security issues re-
lated to the way information is created, stored and shared via such technologies
can be mitigated by using cryptography, a science solely dedicated to ensuring
information security. The correct deployment of cryptography is however chal-
lenging. A particular attention has to be paid when it comes to securing physical
devices that store and process sensitive information.

In what follows, we briefly go back to the electronic roots of all information and
communications technologies, i.e. the inventions of the transistor and the Inte-
grated Circuit (IC). Then we focus on embedded systems, major components of the
modern electronic landscape. We give examples of their applications and explain
why their security is highly required. We introduce cryptography as one of the
possible means to secure embedded systems and exhibit the main physical security
issues behind the deployment of cryptography on such systems. Finally, we give
the main focus of this thesis, that is the security of the so-called cryptographic de-
vices, onto which cryptography is deployed, against devastating attacks exploiting
physical access.

The extensive use we make today of information and communications technol-
ogy has been possible by progresses in microelectronics since the invention of the
transistors. The miniaturization of electronic components played a central role
since the smaller they got, the more they could be combined. Basically, integrated
circuits are electronic chips integrating a very large number of transistors. Exam-
ples of ICs are microprocessors, memory, communication interfaces and electronic
peripherals of all kinds. Furthermore, the combination of various different ICs en-
abled the manufacturing of various information and communications technologies
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CHAPTER 1. PANORAMA OF THIS THESIS

we use today, such as embedded systems.

An embedded system is a small-scale computing system (with a CPU, memory,
communication interfaces and peripherals of all kinds) within a system and that is
designed to perform a few specific tasks (e.g. control, monitor, actionate). Embed-
ded systems are typically much smaller and much cheaper than common personnal
computers which facilitates their physical deployment for many applications.

Today, most of our industries, businesses and safety-critical sectors rely on em-
bedded systems. We find embedded systems in automotive, telecommunications,
health care, banking, military, aerospace, consumer electronics, to name just a few.
Embedded systems in smart cards or biometric passports can also be used to store
and process sensitive or private information. Furthermore, embedded systems are
more and more part of the Internet of Things (IoT), the next generation of the
Internet. They are embedded into the various "things" that are connected to the
Internet, only increasing the amount of information that is created, stored and
shared. We are now building smart homes and smart cities, which is only possi-
ble via all information that is gathered by the IoT devices containing embedded
systems and then analyzed into the Cloud to provide many new functionalities.

The reliance on embedded systems is undeniably increasing, also leading to many
new security challenges. The information handled by embedded systems can be
stored, used or being transmitted. In any case, it has to be secured. Guaranteeing
the security of information handled by a device that is physically accessible is even
more challenging. Cryptography can help in securing embedded information which
security is at great risk.

Cryptography tackles information security issues. It provides secure building
blocks called cryptographic primitives that can be implemented in software or
hardware into physical devices through their embedded systems. A well-known
example of such primitives is a block cipher which can be used to render the
information inintelligible to unauthorized entities and therefore protecting its dis-
closure. However, the security of block ciphers themselves rely on the protection
of cryptographic assets called cryptographic keys which are used during execution
and are typically stored in the physical devices. In this context, the purpose of
an attacker is to gain information in order to determine the cryptographic keys.
With a physical access to a device, an attacker can guess these keys by exploiting
key-dependent information in the measurements of the physical properties of the
targeted device. A common example of a physical property is typically the instan-
taneous power consumption of a device while it is executing the implementation of
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CHAPTER 1. PANORAMA OF THIS THESIS

a block cipher. The problem is that physical properties vary according to the data
being processed and therefore also according to the cryptographic key being used.
Retrieving such a key can then be done by first recording the power measurements,
and then by performing a statistical analysis of the measurements. If the attack is
successful, an attacker breaks the security of the block cipher and consequently also
breaks the cryptographic security measure that has been deployed in the physical
device.

Attacks exploiting a physical access to a device are called physical attacks. Not
only they can exploit the power consumption but also electromagnetic emanations
or running times. Some other physical attacks would try to make the targeted
physical device malfunction and exploit an erratic behaviour to retrieve the cryp-
tographic keys. The scope of physical attacks is large and hard to mitigate. One
countermeasure that widely deployed in the literature to thwart some of them is
called masking. This countermeasure is the main focus of this thesis.

In a few words, masking can be deployed to randomize all data processed during
the execution of a block cipher by a device. The purpose of masking is to render
the physical properties of the running device as independent as possible of the
data being processed. This would make the measurements harder to analyze with
statistical tools and consequently also protect the keys from being extracted via
physical attacks.

In the rest of this introduction, we review the major aspects of the landscape just
described above. We also build progressively the focus of this thesis. Chapter
2 goes back to the inventions of the transistor and the IC. We also give details
about one of the major application of ICs, i.e. embedded systems and their pos-
sible classifications. In chapter 3, we address the information security principle
underlying block ciphers and give details about one of the most common struc-
ture used for their design, the Substitution-Permutation Network (SPN). Chapter
4 then describes typical examples of physical attacks against the implementations
of block ciphers in embedded systems. It also narrows the focus of this thesis on
specific subclasses of physical attacks. Chapter 5 is probably the most important
one as it brings together all necessary material to fully understand the focus of
this thesis. It describes the masking countermeasure and how it can be deployed
to secure any implementation of block ciphers in physical devices against some of
the attacks described in chapter 4. Finally, chapter 6 gives the contributions of
this thesis with respect to our focus.
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Chapter 2

Embedded Systems

Embedded systems are computing systems that are typically small, little demand-
ing in terms of power and are low cost. These features make them perfectly suited
for a wide range of applications. Namely, they can be embedded as part of larger
systems in many fields for achieving a few specific tasks that are usually low de-
manding in terms of computing resources.

Several major breakthroughs in electronics were needed to be able to build the
various small-scale computing systems we use today. The history of embedded
system is inherently tied to the inventions of the transistor and the IC because
transistors are part of any integrated circuit and any embedded system is built
upon some specific ICs.

In this chapter, we go back to the roots of embedded systems. We start by giv-
ing a brief history of the transistor that led to the invention of the IC. We also
briefly address the problem of integrating several transistors and other electronic
components to build an IC, a circuit on a single small piece of semiconductor that
is usually silicon. Then, we give details about typical integrated circuits such
as microprocessors, Digital Signal Processors, memories and in particular about
microcontrollers, commonly used to build embedded systems. Finally we give clas-
sifications of such systems depending on their hardware performances or on their
functional requirements.

Contents
2.1 Invention of the Integrated Circuit. . . . . . . . . . . . 15

2.2 Ubiquity of Embedded Systems. . . . . . . . . . . . . . 17

2.2.1 Basics of Microcontrollers. . . . . . . . . . . . . . . . . . 18

2.2.2 Embedded Systems with Sensors and Actuators. . . . . 19
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CHAPTER 2. EMBEDDED SYSTEMS

2.2.3 A Classification of Embedded Systems. . . . . . . . . . . 20

2.1 Invention of the Integrated Circuit.
An integrated circuit connects together electrically many individual electronic com-
ponents such as resistors, capacitors, transistors to form an electronic circuit on
one small so-called chip of semiconductor material that is usually silicon. The
idea of building an integrated circuit was first pointed out by G. W. A. Dummer.
His idea was the following : "With the advent of the transistor and the work in
semiconductors generally, it seems now possible to envisage electronic equipment
in a solid block with no connecting wires. The block may consist of layers of in-
sulating, conducting, rectifying and amplifying materials, the electrical functions
being connected directly by cutting out areas of the various layers."

Transistors are one of the most important components of integrated circuits, they
are the amplifying materials G. W. A. Dummer mentionned. However, the first
transistors were not necessarily highly reliable, and their manufacturing process
was too complicated to be massively produced. In what follows, we give a brief
history of transistors.

The history we describe starts in 1926 with a patent from Julius Edgar Lilienfeld
titled "Method and Apparatus" for "Controlling Electric Currents". In this patent
was described what we call today the Field-effect transistor (FET). However, there
is no proof that Lilienfeld actually constructed a functionning device. Twenty years
later, some unsuccessful attempts were made to build a FET out of semiconductors
to replace the large and not highly reliable vacuum tubes then used for amplifying
signals.

Altough no one succeeded in building a FET at that time, other directions led to
the invention of the first (germanium) transistor in 1947 : the point-contact tran-
sistor. It was created by John Bardeen and Walter Brattain whose device amplified
the input current up to 100 times. The term transistor was given by electrical en-
gineer John Pierce. It is worth noting that in 1948, six months after Bardeen and
Brattain, the point-contact transistor was independently invented by two German
physicists working in Paris : Herbert Mataré and Heinrich Welker. However, both
independent inventions of point-contact transistors were superseded the same year
by William Shockley’s junction transistor. This new type of transistor was more
reliable than its predecessors which were also noisy.
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CHAPTER 2. EMBEDDED SYSTEMS

At that time, the processes for manufacturing transistors was not developped
enough. Two more years were needed before Bell Labs scientists and engineers
came with solutions. After manufacturing processes were improved, the first ap-
plications of transistors were transistor radios. Music and information suddenly
became portable.

There was however a limit on how small you could make each transistor, since after
it was made it had to be connected to wires and other electronics. The transistors
were already at the limit of what was possible to achieve by hand. So, the idea to
make a whole circuit (i.e. an IC) at once became popular. Building circuits in just
one step would allow to manufacture all the parts much smaller.

It was in 1958 that Jack Kilby created the first integrated germanium chip at Texas
Instruments. He managed to create simple transitor, capacitor, resistor elements
out of semiconductor material. However, the components were still wired by hand
using fine gold "flying wires", protruding out of the chip. No other practical
production technique was available at that time.

Another approach followed by Robert Noyce in 1959 led to the development of a
silicon IC and without "flying wires". He interconnected the electronic components
by depositing aluminium metal lines via photolithography. One could therefore
configure complete electronic circuits on a single silicon chip quite easily.

The same year, a breakthrough in FET came with the work of Mohamed Atalla and
Dawon Kahng who achieved to build the first working FET, more than 30 years
after the pioneer work of Lilienfeld. The main problem for building FETs was
that surface effects blocked electric field from penetrating into the semiconductor
material. Investigating thermally grown silicon-dioxide layers, they found these
states could be markedly reduced at the interface between the silicon and its oxide
in a sandwich comprising layers of metal (M - gate), oxide (O - insulation), and
silicon (S - semiconductor) - thus the name MOSFET, popularly known as MOS.

The IC were soon all based on MOS. Millions of MOS transistors were later com-
bined together onto single chips, following the so-called Complementary MOS pro-
duction technique invented by Chih-Tang Sah and Frank Wanlass. The advantage
of this technique is that logic circuits combining MOS transistors in a comple-
mentary symmetry configuration draw close to zero power in standby mode. In
the 1970s, MOS chips were widely adopted, enabling complex semiconductor and
telecommunication technologies to be developed, such as microprocessors. The
transistor and the integrated circuit revolutionized electronics. Today, they are
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CHAPTER 2. EMBEDDED SYSTEMS

part of every computing devices we all use on a daily basis. Between 1960 and
2018, an estimated total of 13 sextillion MOS transistors have been manufactured,
accounting for at least 99.9% of all transistors1.

Microprocessors, microcontrollers, Field Programmable Gate Arrays (FPGA) and
Application Specific Integrated Circuits (ASIC) are typical examples of ICs that
integrate a very large number of transistors.

2.2 Ubiquity of Embedded Systems.
The term embedded system refers to a (sub)system that is enclosed or embedded in
a larger system. An embedded system combines hardware and software, as well as
other components. In other words, it is an electronic or electro-mechanical system
that can be embedded inside any product.

An embedded system is designed to accomplish a few specific tasks only (as op-
posed to a computer system). It interacts with its surrounding environment, typi-
cally by monitoring and controlling some processes. On the contrary to a computer
system consisting of a general-purpose operating system, an embedded system is
usually a Real-Time Operating System (RTOS).

The history of embedded systems began in space. Following the invention of the
integrated circuits, silicon chips were used to build the first embedded computer in
the 1960’s, as part of the Apollo program. The digital Apollo Guidance (embed-
ded) Computer was also the first computer to use silicon IC chips. It was designed
by Charles Stark Draper at the Massachussetts Institute of Technology. At that
time, NASA’s Apollo Program was the largest single consumer of ICs in the world.

The integration of transistors has greatly increased since the design of the first em-
bedded system. Today, we find embedded systems everywhere. They encompass
almost all domains of our modern world : Automotive industry (airbag control
system, anti-lock braking system), telecommunications (telephone switches, smart
phones), household (washing machine, refrigerators), Home automation and secu-
rity systems (air conditioners, fire alarms), health care (MRI scans, pacemakers),
Banking industry (ATMs), military (surveillance systems, defense and aerospace),
consumer electronics (digital cameras, smart phones). They are also expected to
find more and more applications in the future, especially with the development of
the IoT.

1Source : Computer History Museum
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Microprocessors are an integrated implementation of the central processing unit
(CPU) portion on a single chip. They are usually designed to be used in general-
purpose systems, like personal computers. However, to implement a complete (em-
bedded) computer system, the input/output subsystems and the external memory
system still have to be included. Because the computational capacity of micropro-
cessors is usually high compared to microcontrollers, they tend to consume also
more power and therefore also require external cooling system. There are embed-
ded systems built on microprocessors, but modern embedded systems are largely
based on microcontrollers.

A microcontroller brings together the CPU, some memory, Input/Output (I/0)
Ports, Timers, into a single IC. They are designed to perform a few specific tasks
with regards to some specific control applications. Therefore, a typical micro-
controller have relatively low computational and memory capacity, consume little
power and therefore do not necessarily require a cooling system, which makes it
low cost in comparison to microprocessors.

It is worth mentionning that more and more embedded systems are built upon
Digital Signal Processors (DSPs), particularly of interest for high-data-rate com-
putations. They are usually combined with an Analog-to-Digital and Digital-to-
Analog Converters (ADC and DAC). DSPs also implement algorithms in hardware
and offer high performance in repetitive and numerically intensive tasks (especially
for signal processing applications), including audio, video and communication ap-
plications. They are however expensive.

2.2.1 Basics of Microcontrollers.

CPU. A CPU is where all computations are performed. It is handled by four
main components : the registers, the Arithmetic Logic Unit (ALU), the control
unit and the internal CPU buses. The registers provide operands to the ALU, they
are a type of fast memory. The ALU performs arithmetic and bitwise operations on
integer binary numbers. The control unit manages the entire fetching (instruction,
operands from registers) and execution cycle. The internal CPU buses interconnect
the ALU, registers and the control unit.

Memory. Microcontrollers integrate RAM (Random Access Memory) and ROM
(Read-Only Memory) on the same chip as the CPU. Data can be stored in RAM by
writing to it and stored data can be accessed by reading from it. Most RAMs are
volatile - the content will be lost when the power is switched off. ROM is used for
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storing long term non volatile information. The content of on-chip ROM is usually
only accessible by the system it is used in. Such content is typically the firmware.
The latter provides the low-level control of the device’s specific hardware. If the
firmware is erased, this could cause the embedded system to malfunction.
Cache Memory. It is a type of RAM that is used to store program instructions
that are frequently re-referenced by software during operation. The efficiency of a
processor is greatly dependent on its cache memory.

PROM, EPROM, EEPROM (Flash). PROM is similar to ROM except that it
is programmable. However, once it is programmed, it cannot be modified. EPROM
solves the previous issue. Even programmed, it can be erased by exposing it to
strong ultraviolet light source, and then a new program can be written into it.
Finally EEPROM can be written, erased, rewritten electronically. A typical widely
used EEPROM memory is the Flash memory that can erase electronically all the
data fast.

Interfaces. Embedded processor communicate with the external world through
input and output interfaces. An Input/Output interface is an electronic device
which has one side connecting to the processor and the other side connecting to the
Input/Output devices. Input/Output ports (collections of pins) are components
of interfaces from which the processor reads/sends the information coming/going
to/from the devices.

2.2.2 Embedded Systems with Sensors and Actuators.

Sensors and actuators are essential input and output devices respectively of em-
bedded systems. A sensor (or detector) is an input device of an embedded system.
It captures a physical stimulus (detects events or changes in its environment) such
as heat, light, sound, pressure or other mechanical motion (e.g. acceleration) and
generates a proportional electrical current.

An actuator is an output device of an embedded system. It typically accepts a
control input (mostly an electrical signal) it to a proportional physical stimulus
such as heat, light, sound, pressure or other mechanical motion.

If the embedded system is designed for any controlling purpose, actuators are
connected to the output port of the embedded system. If the embedded system is
designed for any monitoring purpose, actuators are not needed, but sensors may
be.
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2.2.3 A Classification of Embedded Systems.

Embedded systems are usually classified based on two factors depending on their
functional requirements or on the performances of the microcontroller.

Functionnal requirements :

1. Real-time. It is a system in which the resulting performance depends not
only on the correctness of any control action but also on the time at which the
actions are produced. A wide variety of applications for embedded systems
fall into this category. They include industrial plants control, automotive,
flight control systems, industrial automation, space missions, telecommuni-
cations, consumer electronics. The most important property of a real-time
system is not high speed, but predictability : it should be possible to de-
termine in advance whether all computational activities can be completed
within their timing constraints. Automotive airbag control system, flight-
control system are examples of this category.

2. Stand alone. The system is independent on a host system. It can work by
itself, takes the input either in analog or digital form, processes and produces
the output. It may either control or drive the connected devices. Examples
are digital cameras, microwave ovens or temperature measurement systems.

3. Networked. They are connected to a network to access the ressources. The
network can be LAN, WAN, or the internet. The connection can be wired or
wireless. The embedded web server is a type of system wherein all embedded
devices are connected to a web server and accessed and controlled by a web
browser. One example of the LAN networked embedded system is a home
security system.

4. Mobile. They are compact, easy to use and require fewer resources. They
are used in portable embedded devices such as mobile phones or digital
cameras.

Hardware performances :

1. Small scale. Designed with a single 8 or a 16-bit microprocessor/controller.
It may or may not contain an operating system. An electronic toy is an
example for this type of embedded system.

2. Medium scale. Typically designed with a 16 or 32-bit microprocessor/controller,
ASICs or DSPs.
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3. Sophisticated or complex. They have highly complex hardware and soft-
ware, built around 32 or 64-bit processors/controllers, scalable and config-
urable processors. They also contain high-performance real-time operating
system for task scheduling, prioritization and management.
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Chapter 3

Cryptography for Securing
Information

Historically, cryptography was the science addressing secret ways to communicate
and store information. In other words, cryptography delt with confidentiality is-
sues related to information. In its early uses, the science of secrets was mainly
applied for military purposes. Cryptography has grown over the years to encom-
pass more security aspects of information then just confidentiality. Usually, all
modern security concerns about information are regrouped under the terminology
information security.

In its modern applications, cryptography deals with digital information. An in-
creasing volume of digital information is manipulated by embedded systems every
day. Digital information has to be secured whether it is stored, being used or
being shared between digital computing devices. Cryptography provides different
algorithmic ways to ensure one or several security services related to digital in-
formation. Eventually, cryptographic algorithms are implemented into embedded
systems to actually provide in practice the related security services. Typically,
cryptographic encryption algorithms, which can be implemented into embedded
systems, can prevent or mitigate information security risks related to confidential-
ity, still one of the primary concern of information security.

In this chapter, we start by giving a high level description of two complemen-
tary paragdims to perform encryption, symmetrically or asymmetrically. We also
discuss the security paradigm of encryption algorithms following a well-known
cryptographic principle dictated by Auguste Kerchkoff. The focus of this thesis
is on symmetric encryption and in particular on a subclass of primitives called
block ciphers. Therefore, we then give more details about such primitives and in
particular about the structure underlying the design of many block ciphers : the
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so-called Substitution-Permutation networks.
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3.1 Encryption for Confidentiality.
Information can be in different states : at rest, stored for a later use or in mo-
tion - being moved from one location to another. Confidentiality is the property
that ensures a given information is not accessible by unauthorized entities. This
property should hold whether information is at rest or in motion.

In our context, we usually consider that data is stored in an untrusted environment
(e.g. personnal computers) and sent on an untrusted channel (e.g. Wi-Fi). This
brings us to the notion of unauthorized entity/party, which refers to something
(typically an application) or someone (typically a user or an external malicious
person) that should not gain access to some restricted piece of information if not
explicitely authorized.

In what follows, we focus on the cryptographic primitives related to confidentiality,
that is encryption primitives. For the sake of clarity, we start by distinguishing
between symmetric and asymmetric encryption. We also discuss the possibility to
perform hybrid encryption by combining encryption primitives of the two worlds.
However, asymmetric cryptography is out of the scope of this thesis.

3.1.1 Symmetric, Asymmetric and Hybrid Encryption.

Encryption is the historical principal application of cryptography as a mean to pro-
vide confidentiality. It scrambles a given information into incomprehensible data.
A specific encryption process is described by an algorithm (a set of successive in-
structions), that is parameterized by a cryptographic key. The original information
can be retrieved by a decryption process that also makes use of a cryptographic
key. However, symmetric and asymmetric encryption do not proceed similarly for
the application of the cryptographic keys between the encryption an decryption
processes.
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Symmetric encryption make use of a single identical key to perform encryption
and decryption of a given message. Symmetric encryption is also called secret-key
encryption. On the contrary, asymmetric encryption uses a pair of keys that are
mathematically related. One key is public knowledge (for encryption) and the
other is secret information (for decryption). Asymmetric encryption is also called
public-key encryption.

Encryption primitives imply that the secret key is only known by authenticated
parties beforehand the confidential communication itself. Sharing such a sensitive
information on an unsecure channel is not a secure option. For symmetric schemes,
sharing the secret-keys is known as the key distribution problem. It was an open
problem until new directions in cryptography were found in 1976, i.e. the public-
key cryptography.

The aforementionned key distribution problem of symmetric cryptosystems on an
unsecure channel can be solved by using an asymmetric encryption scheme. Asym-
metric schemes can inherently derived their secret keys securely from the knowledge
of the public key (common information shared by the two parties wishing to com-
municate confidentially). It is therefore possible to use asymmetric cryptosystems
to distribute the symmetric keys. The simple idea is to first encrypt the symmet-
ric key with an asymmetric scheme. Then, the encrypted key can be sent on an
unsecure channel to the other entity. Finally, the symmetric key is decrypted with
the asymmetric scheme. The two parties involved will have the same symmetric
key in their possession.

Such a process is usually performed in practice because symmetric encryption is
very fast compared to its asymmetric counterpart. It requires less extensive power
from the device that is executing the algorithm. Therefore, even small embedded
systems can perform fast symmetric encryption. In practice, symmetric encryp-
tion is the preferred choice when it comes to send long messages. Asymmetric
encryption is reserved to send very short messages such as the symmetric keys
beforehand the communication itself. Then, symmetric encryption takes over.

Note that when it comes to encrypt data for guaranteeing the confidentiality during
storage, there is no need for hybrid encryption. This setting only requires one secret
key and not two identical keys as for communications.

Without discussing security aspects in details, it is quite obvious that secret keys
should be kept secret since the cryptographic keys allow decryption. The following
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aims at emphasizing that efforts should always be made to safeguard cryptographic
secret keys.

3.1.2 Safeguarding the Secret Keys.

Whether one relies on symmetric or asymmetric encryption to provide confidential-
ity, the underlying security encryption schemes is not guaranteed (or completely
broken in the worst cases) if any unauthorized entity can somehow retrieve the
cryptographic secret keys. Ways to retrieve cryptographic keys are numerous but
some ways are sometimes much easier than others. As examples, one can try to
break the targeted primitive by exhibiting some predictible behaviours during its
execution and then deduce the keys that have been employed or one can simply
steal the cryptographic keys if they are easily accessible.

The security of any encryption primitive should never rely on its secrecy, but
only on the secrecy of the secret keys. This principle is attributed to Auguste
Kerckhoff, and goes back to the ninetieth century. It transfers the security of any
cryptographic primitive solely on the security of the cryptographic keys. Efforts
should always be made to safeguard cryptographic keys whether they are being
generated, used, transmitted or stored. This can never be enough emphasized.
However, encryption algorithms usually run in untrusted environments such as
personnal computers, thus putting at risk the secrecy of the secret keys. The
generation, use and storage of secret keys should be (if possible) relegated to
trusted environments, usually referred to as secure elements (SE).

An SE is a microprocessor chip which can store sensitive data and also run secure
applications such as payment. It acts as a vault, protecting what is inside the
SE (applications and data) from malware attacks that are typical in the host (i.e.
the device operating system). A secure element is specifically designed to protect
unauthorized access and is only used to run a limited set of applications, as well
as store confidential and cryptographic data.

SEs are hardware security solutions that can take various forms such as UICCs
(universal integrated circuit cards) and microSD hardware cards. Additionally, SE
is available with an embedding option that enables it to be pinned on a device’s
motherboard. This category of secure elements can either be embedded UICCs or
embedded SEs.

In what follows, we focus on one particular type of symmetric encryption primi-
tives, block ciphers.
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3.2 Symmetric Block Ciphers for Encryption
Block ciphers are designed for a fixed-input size called blocks and are iteratively
applied to encrypt arbitrary length messages. The original block of information
is called plaintext or simply message and the resulting block of same size is called
ciphertext. The encryption of a plaintext into a ciphertext is performed under the
action of a secret key. The inverse transformation, decryption, enables to retrieve
the original plaintext from the corresponding ciphertext provided that the same
secret key is used.

More formally, a block cipher can be defined as a bijective function parameterized
by a cryptographic key usually chosen at random. It maps n-bit plaintexts to
n-bit ciphertexts. For a fixed key, this defines a permutation on n-bit vectors
and therefore, each key potentially defines a different permutation. If all (2n)!
bijections on 2n elements can be reached (with one key per permutation), the n-
bit block cipher is said to be a random cipher. However, this would require too
much memory to represent the keys for practical applications.

Block ciphers are typically designed for practical key lengths providing an ac-
ceptable level of computational security. The lower bound for the bit length of
a key is given by the computationnal efforts required to perform an exhaustive
search of this key. The exhaustive search of a n-bit key requires to try in the
worst case all the n-bit possible keys. They are 2n of such keys and therefore it
is commonly accepted that n = 128 provide enough resistance against exhaustive
searches. However, block cipher designs with practical key lengths are not "truly"
random ciphers. It is nonetheless accepted that a permutation corresponding to
a randomly selected key should appear to have been selected at random from the
(2n)! possible bijections on 2n elements.

Block ciphers have an iterated structure. They repeat the same function several
times (with different inputs), therefore referred to as the round function. One
advantage of an iterated structure is that it yields small program codes in software
and compact circuits in hardware.

Block ciphers are usually categorized following two different designs : the Feistel
structure and the substitution-permutation network (SPN) structure. We give a
high level description of the latter in the following, the former being out of the
scope of this thesis.

Logical operations are classified into linear operations and nonlinear operations.
Also, the composition of linear operations is also linear. Nonlinear operations
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break the linearity brought by the application of linear layers. The design of block
ciphers consists in applying alternatively nonlinear and linear layers in the round
function, which is in turn executed several times. When the design approach
mixes a fixed-length input data by iteratively applying nonlinear layers called
substitution layers (S-layers) and linear layers called permutation layers (P-layers),
the resulting structure is said to be an SPN.

When the hardware of the device into which the cipher is implemented has lim-
ited resources as for microcontrollers, the balance of the implementation memory
requirements and the computation efficiency is important. As an example, instead
of computing the small nonlinear operations (typically less than 8 bits) of block
ciphers, a popular approach consists in using a substitution table (or S-box), stored
in the RAM segment. The table stores the results of the pre-specified mapping
in memory. An 8-bit to 8-bit S-box such as the one in the Advanced Encryption
Standard (AES) can be implemented with 256 bytes of memory and therefore ac-
cessing the table (which is quite fast in practice) replaces the computation of the
mapping.
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Chapter 4

Physical Attacks against Block
Ciphers Implementations in
Embedded Systems

There are two ways to implement cryptographic primitives into embedded sys-
tems, in software or in hardware. A software implementation is a program that
is typically handled by a microcontroller. The program is stored in the ROM of
the microcontroller which executes sequentially the instructions described in the
source code of the program (usually in assembly language). On the contrary, a
hardware implementation is a dedicated cicuit that implements an algorithm as
an ASIC or with FPGA. Hardware implementations of block ciphers are out of the
scope of this thesis.

When a block cipher is implemented in a device, its security has to be evaluated.
In cryptography, security often refers to computational security which states that
security is achieved if breaking it with best currently-known methods requires
computing power that exceeds the computationnal abilities of an adversary by a
comfortable margin.

The computational security of block ciphers implemented in a device is much
harder to achieve than its inherent security making abstraction of the physical
device. When abstracted, the device is considered as an opaque module from which
an adversary does not gain information to perform attacks. However, embedded
systems are usually present in small portable physical devices that are physically
accessible by an adversary. From a physical access, an adversary can render the
device less opaque in many ways and gain information about any cryptographic
key being used. These attacks are called physical attacks.
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In this chapter, we are interested in security issues of block ciphers implementations
in embedded systems that arise from an adversary having a physical access to the
device. We emphasize that such a scenario is highly realistic in practice. We start
by giving some standard classes of attacks that abstract the device as an opaque
module. Then we give more realistic classes of attacks that consider an adversary
who has a physical access to the device. Finally, we give details about a subclass
of physical attacks called power analysis.
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4.1 Adversaries with Physical Access
The purpose of a block cipher is to provide confidentiality which prevents the
disclosure of some information that has been encrypted. To quantify the security
of block ciphers, we usually refer to more or less realistic security models. In our
context, the purpose of security models is to reflect some abilities of an hypothetic
adversary that can be used in order to jeopardize the confidentiality provided by
a block cipher implemented in an embedded systems.

Usually, information flows in a unsecured channel which allows an adversary to
access this information. If encrypted, an adversary has therefore only access to
unintelligible information and retrieving the original data would require (compu-
tational) efforts. Depending on how much information material and the nature of
the information the adversary has access to, computational efforts can be more or
less substantial. Security models should encompass realistic scenarios and assert
the feasibility (in terms of computational efforts and memory requirements) of
breaking security. It is said that a block cipher is totally broken if a key can be
found without requiring an extensive computational efforts.

To evaluate the security of block ciphers, attacks on block ciphers have been clas-
sified : ciphertext-only attacks rely on the knowledge of ciphertexts only ; known-
plaintext attacks manipulate pairs of plaintexts/ciphertexts ; chosen-plaintext at-
tacks consider adversaries with access to ciphertexts corresponding to chosen plain-
texts. The latter are stronger, security against such attacks provide security
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against the two former classes. Some other classes of attacks exist (see [52] for
more details).

The previous classes do not fully reflect most modern uses of cryptography. As
already explained in this introduction, a tremendous amount of mobile devices
are active users of cryptography and they are physically accessible. Thefts of
small portable secure elements, such as smart cards, are common and can lead
to desastreous security issues. It is likely that in a second step, the thief, (here
considered as an adversary), will try to break the security of the stolen device
as it typically holds valuable cryptographic assets such as cryptographic keys.
The bottom line is that many more problems arise when devices are physically
accessible. We detail common abilities of an adversary that somehow gain access
to a device.

A simple concrete example of attack via physical access is an adversary that would
establish an electrical contact with the bus lines connected to the hardware mod-
ules of a microcontroller. Using micro-probe needles for estasblishing the contact,
the adversary can monitor the bus signals and therefore has access to internal
computations of a device. These attacks are called probing attacks [3, 40].

On one side, the running time of some hardware or software implementation of a
cryptographic algorithm being executed by a device depends of the device hard-
ware. The better the hardware, the faster the execution. On the other side, the
running time of an implementation also depends on the implementation itself,
namely, on the choices that have been made during the implementation process.
It turns out that implementation choices not only have an impact on running times
but also on other measurable physical characteristics, such as the instantaneous
power consumption or the amount of electromagnetic radiations emitted of a run-
ning device. With an adapted equipment and physical access, an adversary can
measure various implementation-dependent physical characteristics of a device.

Furthermore, other and more abstract characteristics of an implementation depend
on the device. As an example, consider the correctness of an implementation. This
property states that the result of an execution is as expected. It is usually proved
under the assumption the device runs in standard conditions and without errors.
Such errors can however be provoked by tampering with the device and thus break
the correctness of the implementation.

In summary, physical access to an electronic device allows monitoring internal sig-
nals, measuring implementation-dependent physical characteristics and tampering
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with a device. The attacks that exploit such enhanced abilities through physical
access are referred to as physical attacks. Physical implementations are not in-
herently opaque, secure modules as assumed by the standard classes of attacks.
The practical security of block ciphers cannot be asserted by assuming the ad-
versary has no physical access to the device. Physical attacks exploiting physical
accesses should be taken into considerations for asserting the practical security of
block ciphers in embedded systems. This discussion extends Kerchkoff’s principle
from algorithms to implementations since the security of a cryptographic primitive
should also not rely on the secrecy of its implementation.

4.2 Physical Attacks
The purpose of physical attacks is to extract the embedded cryptographic keys of
an electronic device whether they are at rest or being used. Indeed, a portable
device can also act as a secret store for cryptographic keys. If so, an adversary with
physical access to an unprotected device could extract the keys stored from the
memory easily. Cryptographic keys should be themselves encrypted which raises
the problem of securing the one key that was used to secure the others.

Even if we assume the device implements some security measures to protect the
keys at rest, this device can also be used for encryption purposes. Therefore,
during encryption, the device will make use of such keys, leaving them unprotected
during the time they are used. As explained above, various physical characteristics
of a running device depend on the implementations. Therefore, these physical
attributes would also partly depend on the key being used. This dependency can
therefore be exploited by an adversary to extract the key that is being used for
encryption. In what follows, we give a common classification of physical attacks.

4.2.1 A Classification.

Physical attacks are usually classified following two factors whether the adversary
is considered active or not and whether the adversary uses invasive methods or
not.

Passive attacks. The adversary measures physical properties of the device under
control passively, namely without attempting to make it dysfunction.

Active attacks. On the contrary to passive attacks, active ones consider an
adversary that intentionally tamper with the device under control in order to
make it function abnormally.
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Invasive attacks. Also called hardware attacks, they would typically try to access
different hardware components of the device. This is done by physically deteriorat-
ing the package of the chip to reveal the hardware modules. Once access is gained,
an adversary can monitor data signals flowing in various parts of the IC with a
probing station. An adversary can also tamper with any accessible hardware com-
ponent with various equipment such as laser cutters or focused ion beams. These
attacks can be quite expensive to mount depending on the equipment.

Non-invasive attacks. On the contrary to invasive attacks, non-invasive are less
expensive to mount. They would typically only require a measuring equipment
(e.g. an oscilloscope) and only use the device interfaces that are directly accessible
to perform the measurements. Such attacks are very hard to detect as well since
the chip is not physically altered. They are therefore a big threat against embedded
systems in general.

It is worth mentionning that we can further divide these attacks with respect to the
standard classes of attack previously presented. In this thesis, we are interested
into passive attacks that can be invasive such as the probing attacks previously
mentionned or non-invasive such as Side-Channel Analysis (SCA) initiated by [42].

Side-Channel Analysis would typically be performed in two steps. At first, these
attacks would typically consist in measuring some physical property of the device
under control that is performing several encryptions with a fixed key. In a second
step, some statistical analysis would typically be used to exploit the dependency
between the secret key that has been used during encryptions and the measure-
ments collected in order to reveal the key. Sometimes, only a single encryption is
needed and no statistical analysis is required because the dependency is directly
visible on the measurements. In what follows we focus on power analysis attacks
that would exploit the instantaneous power consumption of a device. The other
attacks are out of the scope of this thesis.

4.2.2 Power Analysis Attacks.

Power analysis is a subclass of physical attacks and can be divided into two different
categories : Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
[43]. The following explains the main differences between the two.

The goal of SPA is to reveil the key without statistical analysis on a small number
of measurements collected. Sometimes, a single measurement can reveil the entire
key. These attacks exploit key-dependent patterns that are visually observable on
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the measurements. Namely, it is sometimes possible to distinguish the sequence of
instructions that have been performed within the measurement. If the sequence
of instructions depend on the values of the key bits, one can retrieve these key
bits by combining the power sample with the knowledge of the algorithm, which
is assumed to be known.

DPA typically require a large number of measurements and always perform a post
execution statistical analysis step on the power samples that have been acquired.
Statistical analysis aims at creating two different statistical distributions on power
samples corresponding to known plaintext/ciphertext and guesses of a few key bits
manipulated at the chosen point. If these distributions can be distinguished, then
the attacker can verify the key guesses. When several points in the circuits are
considered, the attacks are referred to as higher-order DPA.

Note that DPA can be performed against software and hardware implementations.
Hardware implementations are usually CMOS circuits where the overall execution
break down to combining logic gates (e.g. AND, OR, NOT, etc) in a specific
way, which map the input(s) logic value(s) to their corresponding output(s) logic
value(s). During an execution, the logic gates switch values depending on the data
that is being processed, yielding to variations of the instantaneous power con-
sumption of the device. DPA would therefore exploit the dependency between the
instantenous power consumption of the device under control and key-dependent
data at a fixed point in the MOS circuit. In software, implementations break
down to a sequence of instructions that are performed sequentially by the mi-
crocontroller of the device. These attacks exploit the dependency between the
instantenous power consumption of the device under control and a chosen instruc-
tion executed at a fixed moment in time, processing some key-dependent data for
a known plaintext/ciphertext pair.

The objective of power analysis is to measure the instantaneous power consumption
of a device performing encryption. The measurement setup of the instantaneous
power consumption of the device consists of a serial circuit involving a power
supply, the device itself and a resistor ; A digital sampling oscilloscope connected
to a computer is typically used for measuring and recording the voltage difference
across the resistor and this voltage difference is proportionnal to the current by
Ohm’s law. The computer is also connected to the IC.
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Chapter 5

Protecting Implementations Against
Power Analysis and Probing Attacks

In this chapter, we address the main focus of this thesis. Namely, we describe how
it is possible to protect efficiently software implementations of any block cipher
against DPA and probing attacks with the well-known masking countermeasure
introduced in [16, 33].

The problem tackled by masking can be described as follows : all data, whether
they are provided to an algorithm as inputs, manipulated or created during execu-
tion by the different layers of computations have to be protected until the expected
output is computed. Informally, masking is a randomizing countermeasure which
protects input data by splitting them into sharings, tuples of several randomized
pieces called shares, and performs all computations on sharings only, via masked
transformations. All masked data and masked designs are parameterized by a
masking order, i.e. the number of random shares present in sharings. When the
masking order is considered to be arbitrarily large, the masking is said to be of
higher-order. In this thesis we are interested in proving the security of higher-order
masked designs following some security model.

The soundness of the masking countermeasure depends on the masking order that
acts as a security parameter against both DPA and probing attacks. This was
formalized in two security models, i.e. the noisy leakage and the probing models
respectively. Each of the two were originally built to model one attack without
considering the other, but the probing model has been proved to be also relevant
for proving the resistance against DPA adversaries thanks to a security reduction
that can be found in [23]. Throughout the rest of this thesis, we are interested
in the higher-order security of masked designs in the probing model, i.e. that are
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proved to ensure security for arbitrary masking orders.

In the probing model, global security, i.e. the overall security of an implementation,
is achieved by proving that any set of shares whose cardinality is upper bounded
by the masking order is independent of any sensitive, i.e. key-dependent, variables.
Directly tackling this problem on all computations is not trivial. This is why a
masked block cipher is usually viewed as a sequence of masked elementary field
operations or transformations for which one can prove more or less strong security
properties, allowing compositionnal reasonings, very useful for proving global se-
curity. The strongest security property in the probing model has been introduced
in [6] and is referred to as SNI, standing for Strong Non-Interference. In this thesis,
we aim at proving the SNI property of the masked designs we provide.

Masking schemes are intended to provide the secure masked designs of all oper-
ations and transformations of a block cipher, that have been proven to satisfy
some security property in the probing model. In masking, the most of the ef-
fort is usually spent for proving the higher-order SNI property of the nonlinear
masked designs. This usually requires to use additionnal randomness, either di-
rectly on some specific shares at a time or via an SNI refreshing procedure, which
re-randomize at once all the shares of a given sharing during execution. Because
randomness generation is usually costly and since the secure computation of non-
linear transformations typically involve the most randomness, the execution of SNI
nonlinear masked transformations greatly contributes to the overall performances
in practice, especially at high orders. Therefore, a particular attention has to be
paid to optimize the secure designs of the refreshing procedure and of the nonlinear
masked transformations.

In the following, we start by giving a more precise description of the masking coun-
termeasure. We also describe a method called the polynomial evaluation method
for building higher-order masking schemes that are generic, i.e. that can be ap-
plied to protect the implementations of any block ciphers. Then, we address the
soundness of the masking countermeasure by giving details about the noisy leak-
age model and in particular about the probing model, on which we focus in this
thesis for proving the security of our constructions. We also describe the security
properties in the probing model that secure masked designs can achieve and that
are important for proving formally the global security provided by the application
of masking schemes.
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5.1 Masking
The randomization of the masking countermeasure is done by applying different
layers of security on top of the algorithm that has to be protected, with respect to a
pre-defined and fixed masking order. A masking scheme can be divided into three
layers. First, an encoding or splitting layer randomizes data beforehand actual
computations according to the chosen masking order. Secondly, a secure computa-
tion layer allows to process the encoded data securely by maintaining the previous
established level of randomization. Finally, a decoding layer allows to retrieve the
underlying genuine output of the execution from its encoded counterpart.

There exist different types of masking in the literature. The type of masking is
first defined at the encoding layer. It usually consists in applying a refreshing
procedure on the unprotected input data. Hovewer, there also exist conversions
for switching from one type of masking to another during execution. This can be
helpful to process the different operations of an algorithm with a type a masking
that is the most adapted. Hereafter, we start by describing two common types of
masking called the Boolean masking and the multiplicative masking. We therefore
also introduce the respective refreshings that can be used to achieve the splittings.
Then, we address the masking of the computation layer. We illustrate the pro-
cessing of encoded data through linear and nonlinear functions and also describe
the polynomial evaluation method previously mentionned for masking the nonlin-
ear layers of block ciphers. We also discuss the importance of refreshing at the
computation layer for guaranteeing security throughout executions.

5.1.1 The Encoding and Decoding Layers

We start by giving some notations that are gonna be useful for the understanding
of the rest of the section.

Notations. Operations of block ciphers are usually performed over finite fields

36



CHAPTER 5. PROTECTING IMPLEMENTATIONS AGAINST POWER ANALYSIS AND PROBING ATTACKS

of characteristic 2. Let F2k denote Galois fields with 2k elements. The masking
order will be denoted by n and considered to be greater or equal to 1. Also,
unprotected data are field elements and will be denoted by lowercase letters while
their corresponding sharings will distinguished by using the same lowercase letters
but underlined. In our context, sharings are usually considered as vectors of length
n + 1 whose coordinates are elements of F2k . For any field element a ∈ F2k , its
corresponding sharing with respect to the masking order a ∈ (F2k)

n+1 is therefore
defined as a = (a0, . . . , an) where the a′is are the different shares belonging in F2k .

Let us now start by introducing the concept of refreshing in masking, from which
any unprotected data can be mapped to a sharing of size n. Note that in the con-
text of masking, all sharings are usually defined with respect to a binary operation
and such that the combination of all shares by the same binary operation would
compute the inverse mapping, i.e. map a sharing to its genuine data. This has
to hold throughout all computations and therefore operations processing sharings
have to provide in result sharings whose shares can also be combined together to
the retrieve the correct genuine data. Moreover, all masked operations and by
extension masked transformations have to be computed in such a way that they
satisfy some security property in the probing model. This is detailed later but one
should keep in mind that additional constraints exist for providing masked designs
when it comes to proving their security in the probing model. In the following, we
are more interested in illustrating the correctness of the computations rather than
addressing the specifics about the possible security properties.

Refreshing. A refreshing procedure produces a uniform sharing of the identity el-
ement e of some finite Abelian group. This is typically done computing a function
on elements generated uniformly at random with the group operation. Therefore
if the group (F2k ,⊕) is considered, a uniform sharing z = (z1, . . . , zn) produced by
a refreshing procedure would satisfy

⊕
i zi = 0. On the contrary, if the binary op-

eration is ×, then it would hold that
∏

i zi = 1 and therefore all random elements
that are generated during the refreshing have to be non-zero elements. Clearly,
following this definition, the actual mapping of an unprotected field element is
still not achieved. We merely produced an encoding of an identity element with-
out taking into consideration the unprotected data that has to be splitted. The
Boolean and the multiplicative mappings are addressed in the following. Sharings
generated by a refreshing procedure will still be denoted by z = (z1, . . . , zn) and
are assumed to satisfy z1 ∗ · · · ∗ zn = e where e = 0 if ∗ = ⊕ and e = 1 if ∗ = ×.

Boolean masking. In this case, we consider to have a refreshing procedure that
generates uniform sharings of 0. We also consider an unprotected field element a
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viewed as the sharing (a, 0, . . . , 0) of size n. The secure sharing a of a is defined
by

a = (a⊕ z1, 0⊕ z2, . . . , 0⊕ zn) = (a1, . . . , an) .

The first coordinate a1 is usually called the masked value as it involves the original
unprotected value. Also, since

⊕
i zi = 0, a satisfies

⊕
i ai = a⊕⊕i zi = a, which

enables to retrieve the original data a.

Multiplicative masking. It is similar to the Boolean masking but in this case
we consider to have a refreshing procedure that produces uniform sharings of 1.
The unprotected field element a is now initially viewed as the sharing (a, 1, . . . , 1)
of size n. Then, the secure sharing a of a is defined as

a = (a× z1, 1× z2, . . . , 1× zn) = (a1, . . . , an) .

Since
∏

i zi = 1, a satisfies
∏

i ai = a ×∏i zi = a, which enables to retrieve the
original data a.

As previously mentionned, there also exist special transformations called conver-
sions that allow to convert a Boolean masking into a multiplicative masking and
conversely, at any masking order.

Switching between types of masking : the conversions. The conversions
can be found in [29]. The complexities of these two conversions are quadratic in
terms of the masking order. Note that the switching from a Boolean masking to a
multiplicative masking has to deal with the special case where the masked value
is zero, for if a = 0,

∏
i ai = 0 in any case, which leads to security issues. This

problem is referred to as the zero value problem (see Chapters 6 and 10 of [49]).
In [29], the zero value problem was avoided by only masking non-zero values. For
a masked value a that is possibly zero, the idea was to compute securely the Dirac
function δ of a. It is defined as δ(a) = 1 if a = 0 and δ(a) = 0 otherwise. By doing
so, we have a+ δ(a) 6= 0, even if a = 0.

In what follows, we address the masking of computations on splitted variables. We
illustrate this on the Boolean masking.

5.1.2 The Computation Layer (Boolean Masking)

In our context, the computation layer ensures that the computations on sharings
are performed securely with respect to the probing model. Also, the different shares
have to keep track of the computations so that the final result can be retrieved and
be as expected. Namely, if a function f is computed on a sharing a, the resulting
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sharing of f(a) should satisfy
⊕n

i=1 f(ai) = f(a). We illustrate this hereafter for
the processing of linear and nonlinear functions on sharings.

Computing linear and nonlinear functions. Consider first a function f that
is a linear and a Boolean sharing of a, i.e. satisying

⊕
i ai = a. Computing f(a)

with f being linear has the property that

f(a) = f(a1 ⊕ · · · ⊕ an) = f(a1)⊕ · · · ⊕ f(an) .

Therefore, defining the encoding of f(a) as (f(a1), . . . , f(an)) has the property
that

⊕
i f(ai) = f(a) and is therefore a correct Boolean encoding of f(a).

On the contrary, when considering f being nonlinear, the above equation does not
hold anymore, i.e. f(a) 6= f(a1) ⊕ · · · ⊕ f(an). Therefore, computing the sharing
of f(a) is less straightfoward in this case and usually requires to mixing several
shares together during computations which can result in reducing the masking
order. Consequently, additional randomness is usually required when designing
secure designs of nonlinear operations and transformations.

S-boxes are typical examples of nonlinear transformations that have to be com-
puted in block ciphers. In what follows, we describe the polynomial evaluation
method, widely used in the literature and which provides a generic way to mask
such transformations.

The Polynomial Evaluation Method. For simplicity, we only consider any
S-box that are functions from F2k to F2k . In [14], the authors represent any of
such S-boxes by a polynomial S(x) =

∑2k−1
i=0 αix

i over F2k , following a well-known
interpolation result. The polynomial is defined such that for any unprotected
field element a ∈ F2k , it holds that S(a) = S-box(a). Therefore, the unprotected
computation of S-box(a) for any finite field element a reduces to evaluating its
corresponding polynomial at a, i.e. computing S(a). This can be done naively by
relying on the following field operations : squares and multiplications for evaluating
the monomials ai, scalar multiplications for computing the scalar products αiai and
finally additions for computing the sum

∑
i αia

i.

In the context of Boolean masking, the polynomial evaluation is performed on
a Boolean sharing of a. Therefore all field operations involved in the evaluation
should be replaced by operations manipulating Boolean sharings only. The pro-
cessing of secure nonlinear multiplications is the most expensive both in terms of
randomness and of field operations. The first secure design for processing nonlinear
multiplications over F2 with Boolean masking in the probing model was proposed
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by [40] and is referred to as the ISW multiplication in the rest of the manuscript.
It was later extended to F2k by [56] and it was further shown to satisfy the SNI
property in [7]. Its complexity in terms of the masking order is O(n2).

There exist different versions of the original polynomial evaluation method, opti-
mizing the number of secure nonlinear multiplications that have to be performed
during the evaluation. One of the best known-method was introduced in [21] and
is commonly referred to as the CRV method.

It is worth mentionning again that only replacing unprotected operations by their
secure counterparts is not enough for ensuring global security. During the pro-
cessing of complex sequences of operations such as for polynomial evaluations, the
randomization level applied at the splitting step must be maintained. Composing
elementary secure operations can sometimes lead to security issues which can be
prevented by using the refreshing transformation in between some operations to
provide another fresh splitting of the data.

Since the efficiency of polynomial evaluation methods mostly relies on the process-
ing of nonlinear multiplications, we give now more details about their processing.

The nonlinear multiplications. In Boolean masking, the multiplication of a, b ∈
F2k can be computed as

a× b =

(
n⊕

i=0

ai

)
×
(

n⊕

i=0

bi

)
=

⊕

0≤i,j≤n
(ai × bj) .

It is important to note that a field multiplication between sharings would mix up
together multiple shares with different indexes and also that the (n + 1)2 cross-
products ai×bj have to be recombined into n+1 shares. A solution to this problem
was given by the ISW multiplication previously mentionned, which prevents the
mixing of the shares during computations of nonlinear multiplications to introduce
security issues in Boolean masking.

Note that nonlinear multiplications between two sharings can be done more straight-
forwardly if the sharings are multiplicatively masked. To illustrate this, consider
now that a =

∏
i ai and b =

∏
i bi. In this case, it holds that

a× b =
∏

i

ai ×
∏

i

bi =
∏

i

(ai × bi) .

Therefore, the encoded result of c = a×b can be defined as c = (a1×b1, . . . , an×bn)
for which it holds that

∏
i ai × bi = a× b.
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Theoretically, the correct implementation of masking schemes should render the
power consumption of a masked algorithm not directly dependent of the genuine
data but rather dependent of all the randomized shares. The power consumption
should therefore appear random on the power samples. Also, since input data are
masked beforehand actual computations and their processing is protected through-
out execution via secure masked operations, a probing adversary should not obtain
observations of any genuine sensitive values if not able to observe all corresponding
shares to retrieve them.

In what comes next, we address the soundness of masking, namely the difficulty of
extracting the sensitive, i.e. key-dependent, variables being used by the protected
implementations of block ciphers.

5.2 The Soundness of Masking

The methodology for proving global probing security has been extensively analyzed
in the literature. We now have various security properties in this model, that have
been proven to be very useful for deriving complete and sound security proofs,
which makes the probing model very convenient for proving the soundness of the
masking countermeasure. Moreover, the relationship between the probing and the
noisy leakage models has been made explicit in the literature, as already explained.
In particular, it has been showed that probing security implies security in the
noisy model. Therefore, deriving proofs in the probing model is very convenient to
formally prove the soundness of the masking countermeasure against both probing
and DPA attacks.

After introducing the two models, we address the issue of proving global security
in the probing model. We describe the common approach followed in the litera-
ture that first divides the overall computation into several smaller transformations,
called gadgets, for which it is easier to first prove strong security properties. Then,
global security can be achieved without much more effort by applying composi-
tionnal reasonings between these small highly secure transformations.

5.2.1 The Noisy Leakage Model

Protecting implementations against DPA requires to accurately understand the
amount of leakage present in the power samples. The leakage is the exploitable
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information contained in the samples that reveals sensitive information through
statistical analysis.

The power consumption of a device can be modeled more or less accurately to
reflect the global electrical activity generated from various of its components. The
difficulty for an adversary to retrieve the sensitive information can be determined
from the power model created for the device. Namely, given the power model
hypothesized for a device under attack, it is possible to determine a lower bound on
the number of power samples that is required to retrieve the secrets via statistical
analysis.

The noisy leakage model was first introduced to formally prove the soundness of
the masking countermeasure where each original bits were splitted following the
Boolean masking at any abritrary order n. In the original leakage model, the
adversary was assumed to obtain noisy observations of all shares of the targeted
bit. Any noisy observation of any bit share was modeled according to a Gaussian
distribution centered around the actual value of the bit. Under this model, it
was shown that the number of power samples required to retrieve the secret bit
grows exponentially with the masking order. The noisy leakage model was further
extended to more general leakage distributions in [54]. They also considered the
leakage of sensitive values of any bit size.

5.2.2 The Probing Model

The probing model was introduced in 2003 by Ishai, Sahai and Wagner [40]. Con-
trary to the noisy leakage model, the probing model considers that an adversary
can have access to a limited number of exact values during the computations. This
model was first introduced to characterize an adversary who is able to position a
limited number of metal needles called probes on a circuit implementing some
cryptographic algorithm. It was therefore originally modeling passive invasive ad-
versaries targetting hardware implementations.

Consider a masked hardware implementation at some order n, that is all variables
are splitted into n shares during execution. Since the noise free observations of
complete sharings would allow an adversary to retrieve the underlying original
value, a probing attack with n needles positioned on n relevant wires would the-
oretically always succeed. However, successfully mounting attacks with a large
number of probes can become the bottleneck of the so called higher-order prob-
ing attacks. The masking order therefore also acts as a security parameter in the
probing model as it forces the adversary to mount more complex attacks.
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At first, this model was not considered to be realistic for modeling DPA adversaries
as practical DPA observations would typically always be noisy. Nonetheless, the
relevance of the probing model for modelling DPA adversaries was made clear
and therefore the soundness of the masking countermeasure in the probing model
ensures security in the leakage model as well which is very convenient for deriving
formal security proofs in the leakage model against DPA adversaries. In what
follows, we give more details about the actual strategy for proving probing security
that is usually followed in the literature.

Proving global probing security. Probing security consider implementations
(hardware and software) represented as a circuit which can in turn be divided
into a sequence of gadgets. The latter are probabilistic functions that return all
variables manipulated or created during the computations and therefore provide
all material that an adversary can have access to.

In the probing model, the purpose is to prove that the complete execution of
the sequence of gadgets satisfies the so-called global probing security property.
Probing security with respect to the masking order n states that any set of t < n
intermediate variables do not reveal any information on the secrets. In other words,
any view of an adversary probing up to n wires can be perfectly simulated without
knowing the secret variables from the original circuit. The proofs in the probing
model therefore aim at showing that any set of t intermediate variables can be
simulated from stricly less input shares than the masking order n. It is possible to
prove that any subset of at most n−1 input shares is uniformly and independently
distributed, this means that the adversary learns no sensitive information from the
probes.

For proving global probing security of a complete circuit/implementation, stronger
properties than probing security can be first proved locally for small gadgets as it
is more convenient to reason on a small number of variables. Then, the different
gadgets that were proven to be secure under stronger notions can be composed
securely to achieve probing security on complete sequences of gadgets. In particu-
lar, safe composition can be achieved via the SNI property. There also exist other
useful properties such as Non-Interference (NI) and affine properties introduced in
[6].

The SNI property implies the affine property and the NI property, which in turn
implies probing security. Therefore, the SNI property is the strongest notion in
the standard probing model.
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5.2.3 Security Definitions in the Probing Model

In the probing model, proofs are based on simulation. Namely, if any adversary
observation set (i.e. set of probed wires) can be simulated without the knowledge
of any input variable then the probes are of no use to an attacker. We remind
several security definitions introduced in [6] that are useful to prove the security
of a construction in the probing model under the stronger SNI security definition.

An adversary can probe input wires, internal wires or output wires. In what
follows, we denote an adversary observation set by Ω and we divide it into two
sets I and O such that I is the set of input or internal probed wires while O is
the set of output probed wires. For any set Ω = (I,O) of at most n − 1 probed
wires, it is obvious that |I|+ |O| ≤ n− 1.

The following security definitions rely on whether or not it is possible to simulate
Ω. Namely, if Ω can be perfectly simulated without knowledge of any input variable
then the t < n probes used by the attacker to build Ω are not dependent on any
secret. Indeed, an input variable is a sharing of size n generated such that the
knowledge of n− 1 of its shares does not reveal the original data. Thus, as long as
the simulation of Ω only requires strictly less than n shares of each input variable,
then Ω can be simulated without knowing any secret. Consequently the t < n
probes reveal nothing to the attacker.

The set of input shares that are required for simulating an adversary set of probed
wires is denoted by S in what follows. The latter also indicates which specific
shares (i.e. which wires) are considered for each input. The upper bounds on the
cardinality of S lead to more or less strong security definitions of [6] which are
reminded hereafter. For simplicity we consider a gadget taking as input a single
sharing x of size n and that outputs a single sharing y of size n as well.

NI security. Let G be a gadget which takes as input a sharing (x1, . . . , xn) of x
and outputs a sharing (y1, . . . , yn) of y. The gadget G is said to be NI secure if
for every adversary set of t probed wires Ω = (I,O) with t < n, there exists a set
S of input shares such that |S| ≤ t and S is sufficient to simulate the adversary
observation set Ω on G.

affine-NI security. Let G be a gadget which takes as input a sharing (x1, . . . , xn)
of x and outputs a sharing (y1, . . . , yn) of y. The gadget G is said to be affine-NI
secure if for every adversary set of t probed wires Ω = (I,O) with t < n, there
exists a set S of input shares such that |S| ≤ |I| + |O| and S is sufficient to
simulate the adversary observation set Ω on G.
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SNI security. Let G be a gadget which takes as input a sharing (x1, . . . , xn) of
x and outputs a sharing (y1, . . . , yn) of y. The gadget G is SNI secure if for every
adversary set of t probed wires Ω = (I,O) with t < n, there exists a set S of input
shares such that |S| ≤ |I| and S is sufficient to simulate the adversary observation
set Ω on G.

SNI security (binary gadgets). Let G be a gadget which takes as inputs a shar-
ing (x1, . . . , xn) of x, a sharing (y1, . . . , yn) of y, and outputs a sharing (z1, . . . , zn)
of z. The gadget G is said to be SNI secure if for every adversary set of t probed
wires Ω = (I,O) with t < n, there exist sets S1 of input shares of x and S2 of input
shares of y such that |S1| ≤ |I|, |S2| ≤ |I| and S1 ∪S2 is sufficient to simulate the
adversary observation set Ω on G.

The probing model is commonly used to address the security of serial implemen-
tations. Regarding the security of parallel implementations, the probing model
no longer reflects accurately practical observations. In particular, several shares
can be manipulated at once during the computations and therefore a single ob-
servation leaks more information of these shares. The probing model has been
re-interpretated to capture parallel settings which has led to the bounded moment
leakage model [8]. A convenient theorem in the latter article (see Theorem 1) states
that serial security implies parallel security at the same masking order, i.e. that
the parallel counterpart of some SNI secure serial algorithm is in fact secure in the
bounded moment leakage model.
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Chapter 6

Contributions of this Thesis

In the following, we give a high-level description of the contributions of this thesis.
All the results presented in this thesis were found and submitted or already pub-
lished with Michaël Quisquater. The specifics regarding practical performances
and the comparisons of the complexities with the state of the art are addressed at
the beginning of the different parts of the rest of the manuscript.

Our research mainly focuses on improving the masking countermeasure in the
probing model for serial software implementations of block ciphers against DPA
and probing attacks. In the previous chapter, we exhibited the main most common
components of some existing masking schemes, i.e. the refreshing procedure, the
polynomial evaluation method and a secure optimized design for nonlinear multi-
plications. In this thesis, we will detail our results for two out of these three main
components of masking schemes.

The first part provides a class of recursive refreshing schemes in O(n · log2 n)
for serial implementations that are secure at any masking order n - the security
parameter of the masking countermeasure - in the probing model under Strong-
Non-Interference (SNI) property. Moreover, our new scheme improves the time
and randomness complexities of the state of the art by a factor of about 2. The
class of algorithm we provide in this setting are defined for any finite Abelian
group while the state of the art is usually more restrictive. We present a method
that allows to convert recursive algorithms such as our SNI recursive schemes into
computationally-wise equivalent iterative execution and provide the resulting SNI
iterative refreshing algorithm. Implementing the latter is particularly relevant for
an architecture which has a fast instruction for computing the number of leading
zeros of its words, e.g. the CLZ instruction of 32-bit ARM architectures. Finally,
our serial SNI refreshing schemes are converted into a bounded moment secure par-
allel construction, particularized for vector spaces over F2. Our parallel algorithm
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requires a number of iterations and random vectors which is logarithmic in the
masking order while their number was linear in this parameter for the best known
method so far.

The second part deals with the polynomial evaluation method of the masking
countermeasure. We have extended the masking scheme called GPQ [27, 28, 29]
that mixes Boolean and multiplicative maskings. The latter was originally only
proven to satisfy the NI security property and was only dedicated to the masking
of the well-known AES block cipher. We first prove that the original GPQ actu-
ally satisfies the stronger SNI security property and we then extend it by using
the conversions provided by GPQ to perform some well-chosen parts of polyno-
mial evaluations using multiplicative masking instead of only the Boolean one.
Following our approach, the ISW multiplications are not required for executing
securely the nonlinear multiplications of well-chosen sections of polynomial evalu-
ations that manipulate multiplicatively masked sharings. This leads to an efficient
way to evaluate securely large polynomials over finite fields in the probing model
at any masking order. This was enough to provide an extended masking scheme
of GPQ for the masking of any block cipher at any masking order, and not only
the AES as it was the case originally. However, by itself, our extended version of
GPQ is not the most efficient in practice. The CRV polynomial evaluation method,
known as the best polynomial evaluation method at the time, required to evalu-
ate several polynomials over binary finite fields. We also use appropriately our
extended version of GPQ inside the CRV polynomial evaluation method to evalu-
ate some of its polynomials efficiently, therefore improving its performances. We
also derive new sets of parameters for the CRV method that were originally not
considered a relevant. Consequently, by extending GPQ to evaluate polynomials
over binary finite fields and by combining the extended GPQ masking scheme with
the best known polynomial evaluation method, CRV, we provide the most efficient
way to mask any block cipher based on polynomial evaluation methods. We also
analyze the security of our different constructions for proving they all satisfy the
strongest security property in the probing model, i.e. the SNI property. Our results
are implemented in assembly language for an 8051 based 8-bit architecture with
bit-adressable memory. These results are published in the journal Transactions on
Cryptographic Hardware and Embedded Systems (TCHES) and were presented at
Conference on Cryptographic Hardware and Embedded Systems (CHES) in 2018
[50].

The third and last part of the manuscript presents a fast transform over finite fields
of characteristic p. More precisely, it tackles the problem of evaluating/interpolating
polynomials written in a particular basis, referred to as the LCH-basis in the fol-
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lowing. While the original transform for evaluating the polynomials was presented
over Fpk , the problem of interpolation was left unsolved for finite fields of charac-
teristic p [45, 47]. It was only presented for the characteristic 2. We solved the
interpolation problem for polynomials written in the LCH-basis for the character-
istic p. We also improved the transform for the evaluation problem over Fpk . Our
improvement consists in using a matrix representation for the evaluation and inter-
polation problems using the LCH-basis from which we derive factorized expressions
that can be evaluated very efficiently with well-known algorithms for standard mul-
tipoint evaluations/interpolations of polynomials in the standard basis [26]. Our
approach led to an article presented at the online version of the International
Symposium on Symbolic and Algebraic Computation (ISSAC) in 2020 [51]. We
also provide the source code, written in C using the FLINT library [38], for the
multipoint evaluation/interpolation of polynomials in the LCH-basis over Fpk , on
GitHub, at https://github.com/axelmma/Eval_Interpol_LCH_poly.
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Chapter 1

Introduction

In the context of masking, a so-called masked algorithm is usually viewed as a
sequence of masked elementary operations called gadgets that process sharings and
which replace the unprotected counterparts of the original algorithm at execution.
The security of masking schemes for serial implementations is usually analyzed
in the probing model [40]. This model assumes that an adversary is only able to
observe stricly less variables than the masking order from the complete execution
of the sequence of gagdets. In this context, a gadget is a probabilistic function that
return all variables manipulated or created during the computations and therefore
provide all material that an adversary can have access to.

The goal in the probing model is to prove the global probing security, which refers
to the security of the complete masked algorithm for serial implementations. Prov-
ing global security is however tricky to tackle at once. A common approach for
proving global security relies on the thorough analysis of elementary but important
gagdets, for which we can prove strong security properties. The strongest secu-
rity property in the probing model is the Strong Non-Interference (SNI for short)
that has been introduced in [6]. It is very useful since only SNI gagdets can be
composed securely without having resort to other security mecanisms for proving
global security at any masking order. This essentially transfers the difficulty of
proving global security in the probing model to proving the SNI property of some
well-chosen gadgets at any masking order, which however comes at a cost. Com-
pared to less secure gadgets, the existing SNI gadgets typically make use of more
randomness, which generation usually greatly contributes to the overhead of the
masking countermeasure in practice [34, 41].

Also, when it comes to mask the nonlinear transformations of block ciphers, the
sharings are manipulated in complex ways which may also induce flaws. The
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security of masking schemes usually relies on a refreshing procedure providing new
uniform sharings of sensitive variables and which is typically applied in between
various elementary operations at several points during execution. However, a
refreshing scheme which is not SNI does not necessarily compose securely with
other SNI operations [20] and therefore fails to achieve its purpose. This is why
the SNI property is particularly relevant for refreshing schemes. In this paper,
we tackle the problem of designing serial refreshing procedures with low time
and randomness complexities over any finite Abelian group and that is SNI for
any masking order. More precisely, we start with the design of a class recursive
refreshing schemes for which we aim to prove their security and then tackle the
problem of converting such schemes into iterative ones with the same security.

In the next chapter, we also tackle the problem of designing a parallel refreshing
algorithm. The security in this context is however no longer reflected accurately
by the probing model. This is due to the fact that several shares, possibly an
entire sharing, can be contained into a single register and therefore a single obser-
vation leaks information on all these shares. Hence, the probing model has been
re-interpreted to capture parallel settings which has led to the bounded moment
leakage model [8]. A convenient theorem in the latter article (see Theorem 1) states
that serial security implies parallel security at the same masking order, i.e. that
the parallel counterpart of some SNI secure serial algorithm is in fact secure in the
bounded moment leakage model.

1.1 Related Works.
The following complexities are given in terms of the masking order n. Regarding
SNI refreshing algorithms for serial implementations, [23] presents an algorithm
based on the so-called ISW secure multiplication [40] and has complexity O(n2).
Its SNI security proof can be found in [6]. Also, [11] provides an algorithm with
time and randomness complexities O(n · log2 n). To the best of our knowledge, this
was so far the best known generic SNI refreshing procedure in the serial setting1.

To the best of our knowledge, there exist only two parallel refreshing algorithms in
the bounded moment model that are based on rotations : one that is presented in
[8] and its improved parameterized version that can be found in [9]. The generic
security of the first algorithm is adressed in [9]. The improved algorithm is not

1Note that there exists a O(n) refreshing construction in the serial setting based on expander
graphs [4]. However, this refreshing scheme is not proved to be SNI and therefore cannot be used
for composability purposes. So far, no practical construction of this scheme has been exhibited
and proved to be efficient in practice.
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generic but proved secure for masking orders up to 20 in the same article. They
both have linear time and randomness complexities considering that any complete
sharing fits inside a register of the underlying architecture. Finally, the improved
algorithm also offers an enhanced security against multivariate attacks, i.e. hori-
zontal side-channel attacks [10] due to the reduced usage of the sensitive variable
during its refreshing.

1.2 Contributions.
This next chapter first presents a new generic, i.e. secure at any masking order,
SNI recursive refreshing transformation in O(n · log2 n) that improves the time
and randomness complexities of the recursive refreshing algorithm RefreshMasks
presented in [11] by a factor of about 2. The latter algorithm requires two layers
of randomness for each level of the recursion but thanks to a thorough analysis,
we prove that only a well-chosen single layer is sufficient, provided also that a
modification concerning the insertion of the random values is made. We show that
our algorithm benefits of some degree of freedom concerning the insertion of the
random values, which is valuable for deriving an efficient parallel algorithm. We
prove that our method is SNI secure at any masking order, over any finite Abelian
group, while the RefreshMasks algorithm of [11] (algorithm 7) is only SNI secure
over F2k . We also develop a computational method for converting recursive designs
such as our recursive refreshing schemes into iterative ones. Our method allows to
determine the recursive call parameters "on-the-fly" during an iterative execution,
without any additional memory.

Based on our results for the serial case, we then convert our generic SNI recursive
algorithm into its parallel counterpart over Fβn2 , which by theorem 1 of [8] benefits
generic parallel security for any masking order under the bounded moment leakage
model. One particular step of the resulting parallel algorithm can be performed
more efficiently thanks to the degree of freedom that is provided by our SNI re-
cursive algorithm. Since the sensitive variable is used in a similar fashion as [9]
during its refreshing, our parallel algorithm also benefits of an enhanced resistance
against horizontal side-channel attacks. Our parallel algorithm is presented in the
same context as the two other existing parallel refreshing schemes. Our proposal
requires blog2 nc iterations and ddlog2 ne/2e random vectors while these values for
the previous generic scheme [8] were both dn− 1e/3 .

In summary, we provide the most efficient refreshing schemes, central basic blocks
of any masking scheme, in the contexts of serial and parallel implementations. The
security of our serial and parallel schemes are proven under the relevant security
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models, for any masking order. The serial case is analyzed under the probing
model for which we prove the SNI property, strongest security notion in this con-
text, which allows safe compositions with other masked operations, very important
feature for proving the global probing security of any masking scheme. The parallel
case is secure under the bounded moment leakage model.
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Chapter 2

Serial and Parallel Higher-Order
Refreshing Schemes with Low
Complexity.

This chapter is organized as follows. Section 1 starts by introducing useful nota-
tions and some basics around refreshing. In particular, we give a definition of the
SNI property for a refreshing gadget, on which we base one of the main result of
this article. It also presents the original scheme of [11] and describes our scheme
that improves the time and randomness complexities of [11] by a factor of about 2.
In section 2 we conduct the actual analysis of our scheme in order to prove its SNI
property. Then, section 3 describes the conversion of our recursive scheme into an
SNI iterative refreshing. The secure parallel counterpart in the Bounded Moment
Leakage model of our serial refreshing scheme is given in section 4. Eventually,
section 5 concludes the chapter.
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2.1 New Serial Recursive Refreshing Scheme with
Improved Complexity.

In this section, the preliminaries start by introducing useful notations that we
use throughout the article. We also included some basics around the concept of
refreshing in the masking context, a description of the SNI property for a refreshing
gadget, along with a formal definition.

After the preliminaries, we recall the SNI recursive refreshing scheme with complex-
ity O(n · log2 n) described in [11] (algorithm 7) and present our recursive refreshing
algorithm. The section is concluded on a description of the differences between
our approach and the original work of [11].

2.1.1 Preliminaries.

Notations. Let (G,+) be any finite Abelian group. Let n with n ≥ 2 denote the
order of the masking. Vectors will be denoted by underlined letters. For a given
vector x ∈ Gn, we also represent it by its coordinates as the tuple (x1, . . . , xn). To
specify one of the coordinates, we indifferently write xi (the coordinate indexed
by i) or xi (the ith coordinate of the vector x). A sharing of a sensitive value x
is a vector x = (x1, . . . , xn) for which it holds that

∑n
i=1 xi = x. Also, r $← G

means the element r is drawn uniformly at random over G. Random variables
are denoted by capital letters while the use of lowercase letters denote particular
values. The probability of the particular event {X = x} shall be written P[X = x].
Moreover, when the random variable X follows a uniform distribution over a set
S - if for any x ∈ S,P[X = x] = 1/#S - we write X ∼ U(S).

55



CHAPTER 2. SERIAL AND PARALLEL HIGHER-ORDER REFRESHING SCHEMES WITH LOW COMPLEXITY.

Additive splitting of sensitive data via a refreshing procedure. A common
approach for splitting the sensitive data is to make use of the so-called additive
encoding which indicates that data are encoded over (G,+). More precisely, for a
masking order that is equal to n, the additive encoding of some sensitive variable
x ∈ G is a sharing x = (x1, . . . , xn) ∈ Gn satisfying

∑n
i=1 xi = x. The splitting

can be done thanks to a refreshing procedure, this is detailed hereafter.

Consider an unprotected sensitive variable x ∈ G viewed as the sharing x =
(x, 0, . . . , 0) of size n. The secure splitting of x can be done by relying on a
refreshing procedure, applied on x as defined just above. A natural and common
way to perform a refreshing of the sharing x of size n is to add a "fresh" random
sharing of 0, i.e. y = (y1, . . . , yn), produced by the refreshing procedure and which
satifies

∑n
i=1 yi = 0, on top of x. Once the encoding y of 0 is generated by the

refreshing procedure, the splitting is achieved by simply computing the sharing

z = (x+ y1, 0 + y2, . . . , 0 + yn) ,

which securely encodes x with random elements. Also, because
∑n

i=1 yi = 0, it
holds that x +

∑n
i=1 +yi = x, and therefore the sharing (x + y1, y2, . . . , yn) is an

additive sharing of x.

Re-encoding of data via a refreshing procedure. Once encoded, data are
then securely processed throughout a masked algorithm via such sharings. The
sharings may however still leak information about the original sensitive data they
encode when they are being processed through the masked operations. It is there-
fore sometimes required for security reasons to securely re-encode some sharing
with a refreshing scheme in between masked operations, at different points during
execution.

As already explained in the introduction, it is important for refreshing procedures
to satisfy the SNI property in the probing model. The main results of this article,
i.e. the SNI property of our refreshing scheme with optimized complexity for serial
implementations and its parallel counterpart are based on the following definition.

The SNI property of a refreshing gadget. Consider a gagdet G with a single
sharing as input and which produces a single sharing as output as it is the case for
a refreshing gadget. In the probing model, an adversary who targets a gadget is
allowed to build vectors of input, intermediate and output shares during a given
execution. The number of observations is however limited by the pre-determined
masking order n. The goal of a probing adversary for breaking the security of
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a gadget is to build some sharing with at most n − 1 shares and show that its
distribution can be simulated with more input shares than a specified bound.
Such a bound varies depending on the level of security one wishes to achieve for a
gadget.

The SNI property gives the tightest bound on the number of input shares from
which the distribution of any sharing an adversary can build must be simulated.
More precisely, for any possible adversary sharing v that can be constructed dur-
ing an execution of the gadget G, consider its distribution. Simulating such a
distribution must be done with least input shares of G than the number of input
and intermediate shares that have been observed by an adversary to build v. In
particular, for any simulation of any v, the bound on the number of input shares
of G does not depend on the number of output shares of v. This is expressed more
formally hereafter.

Let x (resp. z) be the input (resp. output) sharing of size n of some refreshing
procedure. Also, let y denote the vector composed of any other shares that are
produced during the refreshing and that are not part of the input or the output
sharings. Consider the subsets I, J,K of indexes of coordinates of input, inter-
mediate and output vectors respectively, such that #I + #J + #K < n. These
subsets are used to indicate which shares are observed by an adversary. The trans-
formation z = refreshing (x) is SNI if for any such I, J,K, the distribution of the
associated adversary sharing (xI , yJ , zK) only depends on at most #I+#J shares
of x.

In what follows, we recall the original refreshing scheme of [11] with complexity
O(n · log2 n) and we then describe our algorithm.

2.1.2 Original Refreshing Scheme and Our Approach.

We start by describing the RefreshMasks algorithm of [11]. This recursive algo-
rithm is SNI. It takes as input a sharing of size n, i.e. x = (x1, . . . , xn), and recur-
sively splits its input sharing into the two sharings (x1, . . . , xbn/2c) and (xbn/2c+1, . . . , xn).
Also, before and after each recursive call, a freshly generated random encoding of
0 is added to the input sharing (x1, . . . , xn). For the sake of clarity, the algorithm
is hereafter presented over (F2k ,+) as in the original paper.

It can be seen that the input x is successively modified throughout computations,
mixed at each recursive call with elements generated uniformly at random over
F2k . Also, it can be noted that for each recursive call there correspond two so-
called linear layers of randomness, a pre-processing layer and a post-processing
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Algorithm 1 RefreshMasks [11] (alg. 7)
Require: x = (x1, . . . , xn)
Ensure: y = (y1, . . . , yn) such that

∑n
i=1 yi =

∑n
i=1 xi

1: if n = 1 then
2: return (x1)
3: end if
4: if n = 2 then
5: r

$← F2k

6: return (x1 + r, x2 + r)
7: end if

*** Pre-processing layer ***
8: for i = 1 to bn/2c do
9: ri

$← F2k

10: xi ← xi + ri
11: xbn/2c+i ← xbn/2c+i + ri
12: end for
13: (x1, . . . , xbn/2c) ← RefreshMasks(x1, . . . , xbn/2c)
14: (xbn/2c+1, . . . , xn)← RefreshMasks(xbn/2c+1, . . . , xn)

*** Post-processing layer ***
15: for i = 1 to bn/2c do
16: ri

$← F2k

17: yi ← xi + ri
18: ybn/2c+i ← xbn/2c+i + ri
19: end for
20: return (y1, . . . yn)

layer, respectively computed in steps 8 to 12 and 15 to 19 of the algorithm.

From double-layers to single-layers designs. In the original work [11], the
authors claimed (see Remark 3) that neither any of the pre-processing layers or
any of the post-processing layers could be removed. Removing even a single layer
would break the SNI assumptions of their scheme.

In this article, we show otherwise by presenting a design with single layers of
randomness. More precisely, we are able to construct a SNI refreshing scheme
without any pre-processing layer of randomness provided that some well-chosen
modifications of [11] are made (see below).

58



CHAPTER 2. SERIAL AND PARALLEL HIGHER-ORDER REFRESHING SCHEMES WITH LOW COMPLEXITY.

The double-layers approach of [11] using two identical single layers at every recur-
sive step allows to make global arguments for proving the security of the scheme.
This is due to the fact that half of the layers protects the other half. On the
contrary, proving the security of our scheme with single layers only, is less straight-
forward. In our case, every computations have to be analyzed precisely due to the
use of only half of the randomness compared to [11].

This is why, while the security proof of [11] is relatively short, a very thorough
analysis is required in our case which leads to a technical proof.
Note that our schemes with single layers reduces the randomness complexity of
the original scheme with double layers by a factor of about 2.

Let us now give an algorithmic description of our scheme. Also, remember that
our scheme is described for any Abelian group (G,+) while the original approach
only deals with computations over (F2k ,+).

A two-step approach. Let us consider any finite Abelian group (G,+). Consider
a sharing x of some sensitive variable x ∈ G with respect to the masking order
n. It therefore holds

∑n
i=1 xi = x. Also consider a sharing y of zero for which it

holds
∑n

i=1 yi = 0 by definition and that has been generated uniformly at random.
Our SNI refreshing procedure first consists in generating such an encoding of zero
recursively by the algorithm 2 below and then simply in adding it to the input
sharing x by algorithm 3 below. Note that the resulting vector still encodes the
sensitive value x since

∑n
i=1 xi + y

i
= x .
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Algorithm 2 Rn

Require: A sharing y of size n.
Ensure: A random sharing y of 0.

*** Linear layers for n = 2 and n = 3 ***
1: if n = 2 then
2: r

$← G
3: return (y1 + r, y2 − r)
4: end if
5: if n = 3 then
6: (r1, r2)

$← G×G
7: y1 ← y1 + r1
8: y2 ← y2 − r1
9: return (y1, y2 + r2, y3 − r2)
10: end if
11: (y1, . . . , ybn/2c) ← Rbn/2c

(
y1, . . . , ybn/2c

)

12: (ybn/2c+1, . . . , yn)← Rdn/2e
(
ybn/2c+1, . . . , yn

)

*** Linear layers for n ≥ 4 ***
13: select1 = 0 or 1
14: for i = 1 to bn/2c do
15: ri

$← G
16: yi ← yi + ri

17: if select = 0 then
18: ybn/2c+i ← ybn/2c+i − ri
19: else
20: ydn/2e+i ← ydn/2e+i − ri
21: end if
22: end for
23: return y

The Rn algorithm described above produces an additive encoding of 0. The fol-
lowing algorithm simply consists in doing the actual refreshing, i.e. , in adding the
freshly generated encoding of 0 onto the sharing of the sensitive data.

0At each call, select can be indifferently set to 0 or 1 which is the degree of freedom that will
allow us to derive an efficient parallel algorithm in section 2.4.
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Algorithm 3 Refreshing
Require: A sharing x of size n.
Ensure: A sharing z of size n such that

∑n
i=1 zi =

∑n
i=1 xi

y ← 0
y ← Rn(y)

1: for i = 1 to n do
zi ← xi + yi

2: end for
return z

Modifications. The original recursive refreshing procedure (algorithm 7 of [10])
combines the two above algorithms with different terminal conditions. Its final
linear layers are given for n = 2 and n = 1 which breaks down the recursion
a bit further than us. Also, for any of its linear layers, each random element
is directly added on a sensitive share while we proceed in two steps. While the
original method makes use of two identical linear layers of randomness for any
n ≥ 3, before and after each recursive call, our algorithm Rn only makes use of a
post-processing linear layer of randomness which allows us to reduce the time and
randomness complexities by a factor of about 2. Also, our linear layer computed
at steps 14 to 22 of the Rn algorithm provides a degree of freedom (see steps 18
and 20). This degree of freedom is important for the parallel case as it allows us
to derive an efficient parallel algorithm. This is detailed in section 4.

2.2 Theoretical Analysis and SNI Property of Our
Scheme.

In this section, we conduct the actual analysis of our refreshing scheme in the
serial setting. Following the two-step approach of our refreshing scheme previously
described, our analysis is also divided into two main steps. The first part deals
with the analysis of algorithm 2 (Rn) and the second part deals with algorithm 3
(Refreshing).

The analysis of Rn is conducted by induction. It follows the recursive definition of
algorithm 2. We first analyze the recursive step which corresponds to the merging
of two smaller schemes via a single linear layer of randomness (steps 14 to 21 of
the algorithm). For the sake of clarity, consider R9((y1, . . . , y9)). Also consider
the outputs of the two smaller recursive calls, i.e. (y1, . . . , y4) ← R4((y1, . . . , y4))
and (y5, . . . , y9)← R5((y5, . . . , y9)). One merging that can occur during execution
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in this example is the computation of (y1 + r1, . . . , y4 + r4, y5− r1, . . . , y8− r4, y9),
where the ri’s are variables generated uniformly at random. The latter computa-
tion consists in applying the layer of randomness (for the variable select set to 0).

During such mergings, we analyze the shapes of distributions of vectors of all possi-
ble adversary observations. Note that the linear layers of theRn algorithm provide
a degree of freedom regarding the insertion of random elements (for select = 0 or
select = 1). We therefore derived two results,i.e. Lemma 2.2.1 and Lemma 2.2.2
which respectively deals with the first type of insertion and the second one during
the merging. The general result for Rn is given in theorem 2.2.3. It proves by
induction an inequality related to Rn.

Based on this first part of our analysis on the Rn algorithm, the second part
consists in proving the SNI property of our refreshing scheme given by our Re-
freshing algorithm. This is the purpose of theorem 2.2.4. Remembering that Rn is
a subroutine of algorithm 3, the latter theorem makes use of the inequality related
to Rn we proved in the first part.

In what follows, we start by the preliminaries in which we define all the symbols
and some results that are used throughout our analysis. After the preliminaries,
we conduct the actual two-step analysis as described above. The first step of the
analysis deals withRn and is divided into two parts, i.e. its recursive step and then
its complete execution. The second step of the analysis proves the SNI property of
the Refreshing algorithm, thanks to the results we proved for its subroutine Rn.
Note that this section is written for any finite abelian group (G,+).

2.2.1 Preliminaries

Our analysis is conducted on random variables and by extension on vectors of
random variables that represent all possible sharings that can be obtained over
any finite Abelian group with additive law. The definitions and propositions we
provide hereafter are useful to formalize the effect of the different operations on
the distribution of vectors performed during the execution of our scheme. These
operations basically correspond to adding or substracting random elements onto
some specific coordinates. Also, in order to analyze such effects on distributions
over the relevant spaces, we also describe the spaces that correspond to the sets of
secrets that can be obtained by summing up some specified coordinates of some
vectors.

The last result of the preliminaries, i.e. Proposition 7, is an abstract result allowing
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to prove Lemma 2.2.1.

Operators on vectors. The following definitions are useful to shape some vec-
tors over Gn appropriately either by fixing some coordinates to zero or setting a
component of a null vector to a particular value, by selecting a subset of coordi-
nates only or by setting a component of a null vector to a particular value. We
start by defining an application for fixing some coordinates of a vector to zero.

Definition 1 (Projection). For any finite Abelian group G and any subset V ⊆
{1, . . . , n}, the application πV : Gn 7→ Gn is defined for any x = (x1, . . . , xn) ∈ Gn

by (
πV (x)

)
i

= xi if i ∈ V and
(
πV (x)

)
i

= 0 otherwise.

We now introduce a notation for the selection of some coordinates of a vector.

Definition 2 (Shrinking). Consider the subset V ⊆ {1, . . . , n} such that #V = k.
If x = (x1, . . . , xn) ∈ Gn then we define

xV , (xi1 , . . . , xik) with ij ∈ V and is < it if and only if s < t.

Finally, let us define a notation to set a component of a null vector to a particular
value.

Definition 3 (Translation of an element). For any s ∈ {1, . . . , n}, the application
τns : G 7→ Gn is defined for any r ∈ G by

(
τns (r)

)
i

= r if i = s and
(
τns (r)

)
i

= 0 otherwise.

Vector spaces and random vectors. We start by defining some spaces and in
particular the spaces over which the different vectors we analyze are distributed.
Let S, T ⊆ Gn. In what follows, the set {T (s) | s ∈ S} is denoted by Im T or
indifferently by T (S) when the domain has to be specified.

Definition 4. Consider the subset V ⊆ {1, . . . , n}. For any finite Abelian group
G, we define

πV (Gn) , {πV (x) | x ∈ Gn} =
{

(x1, . . . , xn) ∈ Gn | xs = 0 ∀s ∈ V c
}

The sets defined below are going to be used to thoroughly conduct the probabilistic
analysis of our scheme. In particular, they describe the different ways a secret a
can be shared into #V shares.
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Definition 5. For any finite Abelian group G and any subset V ⊆ {1, . . . , n}, we
define for any a ∈ G,

Sn
V

(a) ,

{{
(x1, . . . , xn) ∈ πV (Gn)

∣∣ ∑n
i=1 xi = a

}
if V 6= ∅ ,

∅ otherwise.

Basic operations on vectors and associated distributions. Adding and sub-
stracting a uniform random variable to components of a random vector uniformly
distributed over Sn

V
(a) leaves its distribution unchanged.

Proposition 1 (Invariance). Consider a finite Abelian group G, a subset V ⊆
{1, . . . , n} and a ∈ G. If X ∼ U

(
S
n

V
(a)
)
and R ∼ U (G) are stochastically inde-

pendent, then for any s, t ∈ V ,

X + τns (R)− τnt (R) ∼ U
(
Sn
V

(a)
)
.

Proof. Let x ∈ Sn
V

(a) and s, t ∈ V . We have

P
[
X+τns (R)−τnt (R) = x

]
=
∑

r∈G
P
[
X+τns (R)−τnt (R) = x | R = r

]
·P
[
R = r

]
.

Also, by replacing the random variable R by its value into the right-hand side and
noting that R and X are stochastically independent random variables, it gives

∑

r∈G
P
[
X + τns (r)− τnt (r) = x

]
· P
[
R = r

]
,

and therefore we have

P
[
X + τns (R)− τnt (R) = x

]
=
∑

r∈G
P
[
X = x− τns (r) + τnt (r)

]
· P
[
R = r

]
.

Noting that x ∈ S
n

V
(a) if and only if x − τns (r) + τnt (r) ∈ S

n

V
(a) and that by

hypothesis X is uniform on Sn
V

(a), we have

P
[
X + τns (R)− τnt (R) = x

]
=
∑

r∈G
P
[
X = x

]
· P
[
R = r

]

= P
[
X = x

]
·
∑

r∈G
P
[
R = r

]
,

which finally gives

P
[
X + τns (R)− τnt (R) = x

]
= P

[
X = x

]
.

The result follows.
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The following proposition evaluates the effect of the addition of a constant to a
component of a random vector on its distribution.

Proposition 2 (Translation). Consider a finite Abelian group G, a subset V ⊆
{1, . . . , n} and a ∈ G. If X ∼ U

(
S
n

V
(a)
)
, then for any r ∈ G and any s ∈ V

X + τns (r) ∼ U
(
Sn
V

(a+ r)
)
.

Proof. By hypothesis,

P
[
X = x

]
=

{
1/#G#V−1 if x ∈ Sn

V
(a) ,

0 otherwise.

For any x ∈ Gn, any s ∈ V and any r ∈ G, we have

P
[
X + τns (r) = x

]
= P

[
X = x− τns (r)

]

and therefore

P
[
X + τns (r) = x

]
=

{
1/#G#V−1 if x− τns (r) ∈ Sn

V
(a) ,

0 otherwise.

Finally, note that x − τns (r) ∈ S
n

V
(a) if and only if x ∈ S

n

V
(a + r). The result

follows.

Evaluating the effect of adding and substracting a random variable to compo-
nents of two random vectors on its common distribution is done by the following
proposition.

Proposition 3 (Merging). Consider the subsets V1, V2 ⊆ {1, . . . , n} such that
V1 ∩ V2 = ∅ and consider a1, a2 ∈ G. If X ∼ U

(
SnV1(a1)

)
, Y ∼ U

(
SnV2(a2)

)
and

R ∼ U (G) are stochastically independent, then for any s ∈ V1 and any t ∈ V2,

X + Y + τns (R)− τnt (R) ∼ U
(
Sn
V1∪V2(a1 + a2)

)
.

Proof. Consider z = (z1, . . . , zn) ∈ SnV1∪V2(a1 + a2). Let us compute

P
[
X + Y + τns (R)− τnt (R) = z

]
. (2.1)

By the law of total probability, it gives
∑

r∈G
P
[
X + Y + τns (R)− τnt (R) = z | R = r

]
· P
[
R = r

]
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or equivalently
∑

r∈G
P
[
X + Y + τns (r)− τnt (r) = z | R = r

]
· P
[
R = r

]
. (2.2)

By hypothesis, R is stochastically independent of (X, Y ). Therefore

P
[
X + Y + τns (r)− τnt (r) = z | R = r

]
= P

[
X + Y + τns (r)− τnt (r) = z

]
(2.3)

Also, V1 ∩ V2 = ∅ by hypothesis. Therefore z = πV1(z) + πV2(z) . Also, s ∈ V1 and
t ∈ V2. It follows that
P
[
X + Y + τns (r)− τnt (r) = z

]
= P

[
X + Y = πV1(z)− τns (r) + πV2(z) + τnt (r)

]

= P
[
X = πV1(z)− τns (r) ; Y = πV2(z) + τnt (r)

]
.

The random vectors X and Y being stochastically independent, we have

P
[
X+Y +τns (r)−τnt (r) = z

]
= P

[
X = πV1(z)−τns (r)

]
·P
[
Y = πV2(z)+τnt (r)

]
.

(2.4)
By hypothesis,

P
[
X = πV1(z)− τns (r)

]
=

{
1/#G#V1−1 if

∑
i∈V1 zi − r = a1 ,

0 otherwise.

and

P
[
Y = πV2(z) + τnt (r)

]
=

{
1/#G#V2−1 if

∑
i∈V2 zi + r = a2 ,

0 otherwise.

Remember that by hypothesis, z ∈ SnV1∪V2(a1 + a2) and V1 ∩ V2 = ∅. Therefore∑
i∈V1 zi +

∑
i∈V2 zi = a1 + a2. It follows that

∑
i∈V1 zi − r = a1 if and only if∑

i∈V2 zi + r = a2. Relationships (2.2), (2.3), (2.4) and the above discussion gives
that (2.1) is equal to

P
[
X = πV1(z)− τns (r0)

]
· P
[
Y = πV2(z) + τnt (r0)

]
· P
[
R = r0

]

where r0 =
∑

i∈V1 zi − a1. It turns out that

P
[
X + Y + τns (R)− τnt (R) = z

]
=

1

#G#V1−1 ·
1

#G#V2−1 ·
1

#G

=
1

#G#V1+#V2−1 .

Also, V1∩V2 = ∅ by hypothesis. Therefore #(V1∪V2) = #V1 +#V2. Consequently
we have

P
[
X + Y + τns (R)− τnt (R) = z

]
=

1

#G#(V1∪V2)−1 .

The result follows.
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Direct sum and conditioning. Our probabilistic analysis requires to analyze
in details the distributions over sums of spaces and also conditionnal distributions
over sums of spaces. This is formalized in the next three propositions. We start
by studying the interaction between the direct sum of sets and the operator of
definition 1.

Proposition 4 (Direct sum). Consider V1, V2 ⊆ {1, . . . , n} such that V1 ∩ V2 = ∅.
Consider the subsets S ⊆ πV1(G

n) and T ⊆ πV2(G
n). Define

S + T =
{
x+ y | x ∈ S, y ∈ T

}
.

Then,

1. z = πV1(z) + πV2(z) for any z ∈ S + T.

2. πV1(S + T ) = S and πV2(S + T ) = T.

3. If Z ∼ U (S + T ), then πV1(Z) ∼ U
(
S
)
and πV2(Z) ∼ U

(
T
)
and πV1(Z) and

πV2(Z) are stochastically independent.

4. If X ∼ U (S) , Y ∼ U (T ) and X, Y are stochastically independent, then
Z = X + Y ∼ U (S + T ) .

Remark 1. In our context S and T will be sums of the spaces Sn
Vi

(ai).

Proof. By hypothesis, V1 ∩ V2 = ∅. It follows from definition 1 that z = πV1(z) +
πV2(z) for any z ∈ S + T .

Also, Im π = S × T and Ker π = {0} where

π : S + T 7→ Gn ×Gn : x 7→ (πV1(x), πV2(x)) .

Therefore, there exists a bijection between S + T and S × T and it follows that
# (S + T ) = #S ·#T .

Suppose that Z ∼ U (S + T ) . We have

P
[
Z = z

]
=

1

# (S + T )
=

1

#S ·#T .
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Also, for any x ∈ S,

P
[
π
V1

(Z) = x
]

= P
[
π
V1

(Z) = x ; π
V2

(Z) ∈ T
]
.

=
∑

y∈T
P
[
π
V1

(Z) = x ; π
V2

(Z) = y
]

=
∑

y∈T
P
[
π
V1

(Z) + π
V2

(Z) = x+ y
]

=
∑

y∈T
P
[
Z = x+ y

]

=
∑

z∈x+T
P
[
Z = z

]

=
#T

#S ·#T =
1

#S
.

Similarly, for any y ∈ T , P
[
π
V2

(Z) = y
]

= 1/#T.

Finally, for any x ∈ S, and any y ∈ T

P
[
π
V1

(Z) = x
]
· P
[
π
V2

(Z) = y
]

=
1

#S
· 1

#T

=
1

# (S + T )

= P
[
Z = x+ y

]

= P
[
π
V1

(Z) + π
V2

(Z) = x+ y
]

= P
[
π
V1

(Z) = x ; π
V2

(Z) = y
]
.

It turns out that π
V1

(Z) and π
V2

(Z) are stochastically independent.

Now, assume that X ∼ U (S) and Y ∼ U (T ) are stochastically independent.
Define Z = X+Y . Remember that for any z ∈ S+T , there exist x ∈ S and y ∈ T
such that z = x+ y. We have

P
[
Z = z

]
= P

[
X + Y = x+ y

]
.

Remembering that S ⊆ πV1(G
n) and T ⊆ πV2(G

n) and V1 ∩ V2 = ∅, we have

P
[
X + Y = x+ y

]
= P

[
X = x ; Y = y

]
.

Also,

P
[
X = x ; Y = y

]
= P

[
X = x

]
· P
[
Y = y

]
=

1

#S
· 1

#T
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by hypothesis. It follows that

P
[
Z = z

]
=

1

#(S + T )
.

The result follows.

Next proposition is a result related to stochastic independence and conditioning.

Proposition 5. Consider two stochastically independent random vectors (X, Y )

and (X ′, Y ′ ). Denote by S =
{
x
∣∣ P
[
X = x

]
6= 0

}
and by S ′ =

{
x
∣∣ P
[
X ′ =

x
]
6= 0
}
. Then, for any (x, x′) ∈ S × S ′,

Y | X = x ∼ Y | (X = x ; X ′ = x′)

and (2.5)
Y ′ | X ′ = x′ ∼ Y ′ | (X = x ; X ′ = x′) .

Also, Y | (X = x ; X ′ = x′) and Y ′ | (X = x ; X ′ = x′) are stochastically
independent.

Proof. For any x ∈ S, x′ ∈ S ′ and y ∈ Im (Y ),

P
[
Y = y | X = x

]
=

P
[
Y = y ; X = x

]

P
[
X = x

] .

Also, the right-hand side is equal to

P
[
Y = y ; X = x

]
· P
[
X ′ = x′

]

P
[
X = x

]
· P
[
X ′ = x′

] .

By hypothesis, (X, Y ) and (X ′, Y ′ ) are stochastically independent, the latter
formula can therefore be written

P
[
Y = y ; X = x ; X ′ = x′

]

P
[
X = x ; X ′ = x′

]

which is P
[
Y = y | (X = x ; X ′ = x′)

]
by definition. The result follows. Also, the

second assertion of (2.5) is proved similarly. Let us now prove the final statement.
We have

P
[
Y = y ; Y ′ = y′ | (X = x ; X ′ = x′)

]
=

P
[
Y = y ; Y ′ = y′ ; X = x ; X ′ = x′

]

P
[
X = x ; X ′ = x′

] .
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Since by hypothesis we have that (X, Y ) and (X ′, Y ′ ) are stochastically indepen-
dent, then the right-hand side is equal to

P
[
Y = y ; X = x

]
· P
[
Y ′ = y′ ; X ′ = x′

]

P
[
X = x

]
· P
[
X ′ = x′

]

which, by definition, is also

P
[
Y = y | X = x

]
· P
[
Y ′ = y′ | X ′ = x′

]

or equivalently

P
[
Y = y | (X = x ; X ′ = x′)

]
· P
[
Y ′ = y′ | (X = x ; X ′ = x′)

]
.

The result follows.

Hereafter, we study the impact of conditioning on vectors of random variables
uniformly defined on the sum of sets defined in definition 5.

Proposition 6 (Conditioning). Consider a finite Abelian group G and a partition
V1, . . . , Vk of {1, . . . , n}. Let a1, . . . , ak be elements of G and I be a subset of
{1, . . . , n}. If X ∼ U

(∑k
i=1 S

n
Vi

(ai)
)
, then for any x ∈∑k

i=1 S
n
Vi

(ai),

X | X
I

= x
I
∼ U

(
k∑

i=1

SnVi\I

(
ai −

∑

j∈Vi∩I
x
j

)
+ π

I
(x)

)
.

Proof. Let i be an element of {1, . . . , k}. Consider x, y ∈ SnVi(ai) and I ⊆ Vi. Let
us compute

P
[
πVi(X) = y | X

I
= x

I

]
=

P
[
πVi(X) = y ; XI = xI

]

P
[
XI = xI

] =





P
[
πVi(X) = y

]

P
[
XI = xI

] if xI = y
I
,

0 otherwise.

According to the third assertion of proposition 4, πVi(X) ∼ U
(
SnVi(ai)

)
. Also, if

I 6= Vi then Y I ∼ U
(
G#I

)
. Therefore,

P
[
πVi(X) = y | X

I
= x

I

]
=





1/(#G#Vi−1)

1/(#G#I)
=

1

#G#Vi−#I−1 if x
I

= y
I
,

0 otherwise.

If I = Vi then Y I ∼ U
(
S#Vi
{1, ...,#Vi}(ai)

)
. Hence,

P
[
πVi(X) = y | X

I
= x

I

]
=





1/(#G#Vi−1)

1/(#G#Vi−1)
= 1 if x

I
= y

I
,

0 otherwise.
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It follows that

πVi(X) | X
I

= x
I
∼ U

(
SnVi\I

(
ai −

∑

j∈I
x
j

)
+ π

I
(x)

)
.

According to the first and the third statement of proposition 4, X =
∑k

i=1 πVi(X)
and the random variables πVi(X) are stochastically independent. It follows from
proposition 5 that for any I ⊆ {1, . . . , n},

πVi(X) | X
I

= x
I
∼ πVi(X) | X

I∩Vi = x
I∩Vi

and that πVi(X) | XI = xI are stochastically independent. Given the above
discussion

πVi(X) | X
I∩Vi = x

I∩Vi ∼ U
(
SnVi\I

(
ai −

∑

j∈I∩Vi
x
j

)
+ πI∩Vi(x)

)
.

Therefore,

πVi(X) | X
I

= x
I
∼ U

(
SnVi\I

(
ai −

∑

j∈I∩Vi
x
j

)
+ πI∩Vi(x)

)
.

Since πVi(X) | XI = xI are stochastically independent, therefore, according to the
last statement of proposition 4

k∑

i=1

πVi(X) | X
I

= x
I
∼ U

(
k∑

i=1

SnVi\I

(
ai −

∑

j∈I∩Vi
x
j

)
+ π

I
(x)

)
.

The result follows.

Let us now state and prove a proposition that will be useful in the proof of lemma
1. An example is given below the statement for the sake of clarity.

Proposition 7. Let b ∈ {0, 1}. Consider the subset J ⊆ {1, . . . , n}, the partition
V1, . . . , Vk of {1, . . . , n} and the partition Vk+1, . . . , Vk+l of {1, . . . , n+b}+n. Define
for any x, y ∈ {1, . . . , 2n+ b}

x ∼ y ⇐⇒∃i ∈ {1, . . . , k + l} such that x, y ∈ Vi
or ∃i, j ∈ {1, . . . , k + l} such that Vi ∩ (Vj − n) ∩ J 6= ∅

and (x ∈ Vi, y ∈ Vj or y ∈ Vi, x ∈ Vj) .

Denote by ∼ the transitive closure of ∼ . Then,
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1. ∼ is an equivalence relation on {1, . . . , 2n+ b}.

2. There exists a partition S1, . . . , Sm of {1, . . . , l+k} such that the equivalence
classes of {1, . . . , 2n+ b} for ∼ are :

Xi =
⋃

j∈Si
Vj, i = 1, . . . ,m .

Moreover, for any i = 1 . . .m, if ki , #Si, then ∃i1, . . . , iki ∈ Si and r2, . . . , rki ∈ J
such that for any t with 1 < t ≤ ki we have

rt ∈ Vit and rt + n ∈
t−1⋃

j=1

Vij if it ∈ {1, . . . , l}

and (2.6)

rt ∈
t−1⋃

j=1

Vij and rt + n ∈ Vit if it ∈ {1, . . . , l}+ k .

Also, for any i ∈ {1, . . . ,m}, for any x ∈ J ∩Xi we have x+ n ∈ Xi and for any
x ∈ (J + n) ∩Xi we have x− n ∈ Xi.

Proof. The reflexivity of ∼ is a direct consequence of its definition and the fact
that (Vi)i=1...l+k is a partition of {1, . . . , 2n + b}. The symetry of ∼ follows im-
mediately from its definition. The relation ∼ being the transitive closure of ∼, it
follows that ∼ is an equivalence relation.

Let us compute the equivalence classes (Xi)i=1,...,m of {1, . . . , 2n + b} for ∼. Con-
sider an equivalence class Xi with i ∈ {1, . . . ,m}.

Define
Si =

{
j | Xi ∩ Vj 6= ∅ and j ∈ {1, . . . , l + k}

}
.

We have Xi ⊆
⋃
j∈Si Vj by definition of Si. Also, Xi 6= ∅ because Xi is an equiv-

alence class. Noting that if x ∈ Vj for a fixed j ∈ {1, . . . , l + k}, then Vj ⊆ Xi

according to the definition of ∼ (resp. ∼). It follows that
⋃
j∈Si Vj ⊆ Xi. We con-

clude that Xi =
⋃
j∈Si Vj.

Remembering that (Xi)i=1,...,m and (Vi)i=1,...,l+k are a partition of {1, . . . , 2n + b}
it follows that (Si)i=1,...,m is a partition of {1, . . . , l + k}.

If ki = 1, condition (2.6) is empty and nothing has to be proved. Suppose that
ki ≥ 2.
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Define
Ti = Si ∩ {1, . . . , k} and Qi = Si ∩ ({1, . . . , l}+ k) .

Given the definition of the relation ∼,#Ti ≥ 1 and #Qi ≥ 1. Therefore, Ti 6= ∅
and ∃i1 ∈ Ti. The set Xi being an equivalence class and since ki ≥ 2, it implies
that there exists t ∈ Si \ {i1} such that there exist x ∈ Vi1 and y ∈ Vt satisfying
x ∼ y. If x ∼ y then Vt ⊆ Qi because Vi1 ⊆ Ti. Define i2 = t. We have
Vi1 ∩ (Vi2 − n) ∩ J 6= ∅. There exists r2 ∈ J such that r2 ∈ Vi1 and r2 + n ∈ Vi2 . If
x ∼ y and x 6∼ y, the transitive closure of the relation ∼ implies that there exist
element (we may suppose distinct without loss of generality) j1, . . . , jr ∈ Si \ {i1}
such that

x ∼ xj1 with xj1 ∈ Vj1
xj1 ∼ xj2 with xj2 ∈ Vj2

...
xjr−1 ∼ xjr with xjr ∈ Vjr
xjr ∼ y .

It follows that Vi1∩(Vj1−n)∩J 6= ∅. Define i2 = j1. We have that Vi1∩(Vi2−n)∩J 6=
∅. There exists r2 ∈ I such that r2 ∈ Vi1 and r2 + n ∈ Vi2 . The other elements
is and rs are built successively. Suppose distinct elements i1, i2, . . . , ir ∈ Si with
r < ki and elements r2, . . . , rr such that for any s ≤ r

rs ∈ Vis and rs + n ∈
s−1⋃

j=1

Vij if is ∈ Ti

and

rs ∈
s−1⋃

j=1

Vij and rs + n ∈ Vis if is ∈ Qi .

Define V =
⋃r
j=1 Vij and consider x ∈ Vi1 . By hypothesis, r < ki. Therefore

there exists y ∈ Xi \ V. The set Xi being an equivalence class, we have x ∼ y. If
x ∼ y, there exists an index we will denote ir+1 such that y ∈ Vir+1 . This index
ir+1 6∈ {i1, . . . , ir} because y ∈ Xi \V . According to the definition of ∼, ∃rr+1 ∈ J
such that

rr+1 ∈ Vir+1 and rr+1 + n ∈ V if ir+1 ∈ Ti
and

rr+1 ∈ V and rr+1 + n ∈ Vir+1 if ir+1 ∈ Qi .
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If x 6∼ y, according to the transitive closure of ∼, there exist elements (that we
may suppose distincts without loss of generality) j1, . . . , jr ∈ Si \ {i1} such that

x ∼ xj1 with xj1 ∈ Vj1
xj1 ∼ xj2 with xj2 ∈ Vj2

...
xjr−1 ∼ y with y ∈ Vjr

If j1 6∈ {i1, . . . , ir}, define ir+1 = j1 and by definition of ∼ there exists rr+1 ∈ Vir+1

and rr+1 + n ∈ V if ir+1 ∈ Ti and rr+1 ∈ V and rr+1 + n ∈ Vir+1 if ir+1 ∈
Qi. Otherwise, let t be the greatest element such that j1, j2, . . . , jt ∈ {i1, . . . , ir}.
Necessarily, t < v because Vjv ∩ V = ∅. Define ir+1 = jt+1. By construction
xjt ∼ xjt+1 and therefore ∃rr+1 ∈ J such that

rr+1 ∈ Vir+1 and rr+1 + n ∈ V if ir+1 ∈ Ti

and
rr+1 ∈ V and rr+1 + n ∈ Vir+1 if ir+1 ∈ Qi .

Consider x ∈ J ∩ Xi. By definition, there exists j ∈ Si ∩ {1, . . . k} such that
x ∈ Vj. Also, there exists t ∈ {1, . . . , l} + k such that x + n ∈ Vt. Therefore,
x ∈ J ∩ Vj ∩ (Vt − n). It follows that J ∩ Vj ∩ (Vt − n) 6= ∅ which implies that
x ∼ x+ n. By definition Xi is a class of equivalence, therefore x+ n ∈ Xi.

Finally, consider x ∈ (J+n)∩Xi. By definition, there exists j ∈ Si∩({1, . . . , l}+k)
such that x ∈ Vj. Also, there exists t ∈ {1, . . . , l} such that x−n ∈ Vt. Therefore,
x−n ∈ J ∩Vt∩ (Vj−n). This implies that J ∩Vt∩ (Vj−n) 6= ∅ which implies that
x ∼ x− n. By definition Xi is a class of equivalence, therefore x− n ∈ Xi.

For the sake of clarity, let us now illustrate the application of proposition 7 on
a simple example. Consider n = 5 and b = 1. Consider J = {1, 2, 5} and the
partitions V1, V2, V3 of {1, . . . 5} and V4, V5, V6 of {6, . . . , 11}. Also, consider the Vi’s
to be defined as in the left side of the following figure. The purpose of proposition
7 is to determine the effect of an equivalence relation defined from a set J over the
partition V1, V2, V3, V4, V5, V6 of {1, . . . , 11}. The right side of the figure illustrates
such an effect. Note that in this example we have S1 = {1, 2, 4}, S2 = {3, 5} and
S3 = {6}.

The last part of the above proposition states that we can order the Vj’s of a set
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X3 = V6

X2 = V3 ∪ V5

X1 = V1 ∪ V2 ∪ V4 = V1 ∪ V4 ∪ V2

1110987654321
bbbbbbbbbbbb b b b b b b b b b b
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V3

V1

V4

V5

V6

Xi in such a way that there exist rt and rt+n such that one of the two belongs to
∪t−1j=1Vij and the other one belongs to Vit and this, for any t. This result will be
very important to apply recursively proposition 3 (merging) in the proof of lemma
2.2.1. In what follows, we analyze the recursive step of the Rn algorithm.

2.2.2 Analysis of Rn.

In the following, we aim to prove by induction the general results related to Rn

given in theorem 2.2.3. In order to do this, we start by analyzing the recursive
step of Rn. Remember that this step correspond to the merging of two smaller
schemes via a linear layer of randomness, as explained at the beginning of this
section. After this, we analyze the complete execution of Rn.

Analysis of the recursive step of the Rn algorithm.

Consider the merging of the recursive calls Rn and Rn+b via the linear layer of
randomness of size 2n + b and with respect to the insertion of random elements
given at step 18 of the algorithm. The effect of such a merging is analyzed in
lemma 2.2.1. The second type of merging, which corresponds to the insertion of
random elements as described by step 20 will be treated in lemma 2.2.2. In any
case, the merging results in a scheme of size 2n + b which follows the recursive
definition of the Rn algorithm.

The context. In order to conduct our theoretical analysis, the resulting merged
scheme R2n+b is viewed as a block composed of the two schemes Rn, Rn+b and the
linear layer of randomness considered as a random vector R. The computation of
the linear layer of randomness is performed after the execution of Rn and Rn+b,
on the outputs of the two schemes (Rn and Rn+b), and produces a random vector
as result with additionnal randomness.

The overall computation of the merging is decomposed into several random vectors
which hold the different random variables that are considered during the merging.
We distinguish the different random vectors as follows. Consider the different
blocks involved in the merging, i.e. R2n+b, Rn, Rn+b. We denote by A(Rn) (resp.
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A(Rn+b)) the vector that is composed of all input random variables, intermediate
random variables and output random variables involved in the computation of Rn

(resp. Rn+b). The vector of output variables of Rn (resp. Rn+b) is denoted by
C(Rn) (resp. C(Rn+b)). This can be done similarly for R2n+b that performs the
merging with the random vector R. Namely, A(R2n+b) is composed of A(Rn),
A(Rn+b), R, and the output variables of the merging. This last vector will be
referred to as the adversary view in the following. Finally, the vector of output
variables of the merging will be denoted by C(R2n+b).

For the sake of clarity, the next figure illusrates the merging performed in R2n+b

and displays all vectors previously defined that are involved in the computations.
The inputs are at the bottom of the figure, while the merging is illustated at the
top of the figure where is displayed the resulting output vector.

C(R2n+b)

R ∈ Gn

C(Rn) C(Rn+b)

A(Rn)

︸
︷︷

︸︸
︷︷

︸

A(Rn+b)

︸
︷︷

︸

A(R2n+b)

Rn Rn+b

n n+ b

2n+ b
Merging

The result of the merging, i.e. the output C(R2n+b) of R2n+b is given by

C(R2n+b) = (C(Rn) +R , C(Rn+b)− φb(R))

where b ∈ {0, 1}, φb(R) = R, if b = 0 and φb(R) = (R, 0), if b = 1. Also,
R ∼ U (Gn) and R is stochastically independent from any other random variable.

In what follows we consider possible adversary observations on the vectors dis-
played in the above figure during the merging, i.e. only some coordinates of these
vectors are considered. The shrinked vectors of adversary observations we consider
in the following are A(Rn)IL , A(Rn+b)IR , RJc and C(R2n+b)K with J ⊆ {1, . . . , n}
and K ⊆ {1, . . . , 2n+b}. From this, we can build the adversary global view during
the merging, i.e. ,

A(R2n+b)I =
(
A(Rn)

IL
,A(Rn+b)IR

, R
Jc
,C(R2n+b)K

)
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where I = IL ∪ IR ∪ Jc ∪K.

One of the main purpose of the following lemma is to analyze how the shapes
of conditional distributions of vectors of adversary observations on Rn and Rn+b

propagate to R2n+b during the merging. Namely, considering the distributions of
C(Rn) | A(Rn)IL andC(Rn) | A(Rn)IR before the merging, we analyze what is the
shape of the distribution C(R2n+b) | A(R2n+b)I after the merging. The last part
of the lemma gives some conditions between the parameters of the distributions.

Lemma 2.2.1. Consider the merging in R2n+b of the left and right stochasti-
cally independent schemes respectively given by Rn and Rn+b as described above.
Also, consider that the merging is performed following the insertion of random
elements as given by step 18 of algorithm 2. Suppose that there exist applica-
tions ρ1,i : Im

(
A(Rn)IL

)
7→ G and ρ2,i : Im

(
A(Rn+b)IR

)
7→ G, respectively for

i = 1, . . . , s and i = s + 1, . . . , s + l such that for any a1 ∈ Im
(
A(Rn)IL

)
and any

a2 ∈ Im
(
A(Rn+b)IR

)
,

C(Rn) | A(Rn)
IL

= a1 ∼ U
(∑s

i=1S
n

Vi

(
ρ1,i( a1 )

))

and
C(Rn+b) | A(Rn+b)IR

= a2 ∼ U
(∑s+l

i=s+1S
n+b

Vi

(
ρ2,i( a2 )

))
,

where V1, . . . , Vs is a partition of {1, . . . , n} and Vs+1, . . . , Vs+l is a partition of
{1, . . . , n+ b}. Then,

• There exist applications ρi : Im
(
A(R2n+b)I

)
7→ G and a partition X ′1, . . . , X ′m′

of {1, . . . , 2n+ b} such that for any a ∈ Im
(
A(R2n+b)I

)

C(R2n+b) | A(R2n+b)I = a ∼ U
(∑m′

i=1S
2n+b

X′i

(
ρi(a)

))
.

• Assuming that #I < (2n + b)/2. Also, assuming that if #IL < n/2 (resp.
#IR < (n + b)/2), there exists i ∈ {1, . . . , s} (resp. j ∈ {1, . . . , l} + s)
such that #Vi ≥ n − #IL (resp. #Vj ≥ n + b − #IR). Then, there exists
i ∈ {1, . . . ,m′} such that #X ′i ≥ 2n+ b−#I.

Proof. The first part of the proof consists in proving that the shape of conditional
distributions of Rn and Rn+b propagate to R2n+b.

Consider V1, . . . , Vs a partition of {1, . . . , n} and Vs+1, . . . , Vs+l a partition of {1, . . . , n+
b}. According to the hypothesis and to the third statement of proposition 4
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πVi(C(Rn)) |A(Rn)
IL

= a1 ∼ U
(
S
n

Vi

(
ρ1,i( a1 )

))
,

for all i ∈ {1, . . . , s}. We also have

πVi(C(Rn+b)) |A(Rn+b)IR
= a2 ∼ U

(
S
n+b

Vi
(ρ2,i( a2 ))

)
,

for any i ∈ {s+ 1, . . . , s+ l}. Also, the random variables πVi(C(Rn)) | A(Rn)
IL

=

a1 are stochastically independent as well as the random variables πVi(C(Rn+b)) |
A(Rn+b)IR

= a2.

Also, the vectors (
πV1(C(Rn)), . . . , πVs(C(Rn)), A(Rn)

IL

)

and
(
πVs+1

(C(Rn+b)), . . . , πVs+l(C(Rn+b)), A(Rn+b)IR

)

are stochastically independent because
(
C(Rn),A(Rn)

IL

)
is stochastically inde-

pendent of (C(Rn+b),A(Rn+b)IR
). In order to cast the left and right schemes into

a single scheme, let us now define

Ci ,





(
πVi(C(Rn) ) , 0, . . . , 0︸ ︷︷ ︸

n+b

)
if i ∈ {1, . . . , s} ,

(
0, . . . , 0︸ ︷︷ ︸

n

, πVi(C(Rn+b) )
)

if i ∈ {s+ 1, . . . , s+ l} .

We have

Ci | A(Rn)
IL

= a1 ∼ U
(
S2n+b
Vi

(
ρ1,i( a1 )

))
, for any i ∈ {1, . . . , s}

and

Ci | A(Rn+b)IR
= a2 ∼ U

(
S2n+b
Vi+n

(
ρ2,i( a2 )

))
, for any i ∈ {s+ 1, . . . , s+ l} .

According to proposition 5, for any i = {1, . . . , s}

Ci | A(Rn)
IL

= a1 ∼ Ci | (A(Rn)
IL

= a1 ; A(Rn+b)IR
= a2)

and for any {s+ 1, . . . , s+ l},

Ci | A(Rn+b)IR
= a2 ∼ Ci | (A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2) .
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Also, the random variables Ci | (A(Rn)IL ; A(Rn+b)IR ) are stochastically inde-
pendent. Define

gi( a1, a2 ) =

{
ρ1,i( a1 ) if i ∈ {1, . . . , s} ,
ρ2,i( a2 ) if i ∈ {s+ 1, . . . , s+ l}

and

V ′i =

{
Vi if i ∈ {1, . . . , s} ,
n+ Vi if i ∈ {s+ 1, . . . , s+ l} . (2.7)

We have

Ci | (A(Rn)
IL

= a1 ; A(Rn+b)IR
= a2 ) ∼ U

(
S2n+b
V ′i

(
gi( a1, a2 )

))

and V ′1 , . . . , V
′
s is a partition of {1, . . . , n} and V ′s+1, . . . , V

′
s+l is a partition of

{1, . . . , n+ b}+ n.

Denote by J the set of indices belonging to {1, . . . , n} such that RJ is not in
A(R2n+b)I . Since R and

(
A(Rn)IL , C(Rn) , A(Rn+b)IR , C(Rn+b)

)
are stochas-

tically independent, then according to proposition 5

Ci | (A(Rn)
IL

= a1 ; A(Rn+b)IR
= a2 )

is distributed as

Ci |
(
A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2 ; R
Jc = r

Jc

)
(2.8)

and the random variables Ci |
(
A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2 ; R
Jc = r

Jc

)
are

stochastically independent. Remember that we aim at evaluating the distribution
of

C(R2n+b) | A(R2n+b)I = a (2.9)

where a ∈ Im (A(R2n+b)I) and

A(R2n+b)I =
(
A(Rn)

IL
, A(Rn+b)IR

, R
Jc
, C(R2n+b)K

)
.

Let us now evaluate the distribution of

C(R2n+b)
∣∣
(
A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2 ; R
Jc = r

Jc

)
(2.10)

or equivalently the distribution of

s+l∑

i=1

Ci+
n∑

i=1

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

) ∣∣∣∣
(
A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2 ; R
Jc = r

Jc

)

︸ ︷︷ ︸
E(a1,a2,rJc )
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and where the application τ2n+bi∈{1,...,n} is as in definition 3. In what follows, the
parameters of E will be omitted for the sake of clarity. This equivalently gives

s+l∑

i=1

Ci +
∑

i∈J

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+
∑

i∈Jc

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

) ∣∣∣∣E .

By replacing some random variables by their values, we get
s+l∑

i=1

Ci +
∑

i∈J

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+
∑

i∈Jc

(
τ2n+bi (ri)− τ2n+bi+n (ri)

) ∣∣∣∣E .

Applying proposition 7, there exists a partitionX1, . . . , Xm of {1, . . . , 2n+b} which
is

Xi =
⋃

j∈Si
V ′j for any i ∈ {1, . . . ,m}

and S1, . . . , Sm is a partition of {1, . . . , s + l}. Hence (2.10) follows the same
distribution as

m∑
j=1

(∑
i∈Sj

Ci

)
+

m∑
j=1

(∑
i∈J∩Xj

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+
∑
i∈Jc

(
τ2n+bi (ri)− τ2n+bi+n (ri)

)) ∣∣∣∣E .

Also, ∑

i∈Jc

τ2n+bi (ri)− τ2n+bi+n (ri) =
∑

i∈Jc

τ2n+bi (ri)−
∑

i∈Jc+n

τ2n+bi

(
ri− n

)

which is also
m∑

j=1

( ∑

i∈Jc∩Xj
τ2n+bi (ri)−

∑

i∈(Jc+n)∩Xj

τ2n+bi (ri− n)

)
.

Therefore, (2.10) follows the same distribution as

m∑

j=1

(∑

i∈Sj
Ci+

∑

i∈J∩Xj
τ2n+bi (Ri)−τ2n+bi+n (Ri)+

∑

i∈Jc∩Xj
τ2n+bi (ri)−

∑

i∈(Jc+n)∩Xj

τ2n+bi (ri− n)

)∣∣∣∣E .

Applying proposition 7, we know that there exist {r2, . . . , rkj} ⊆ J ∩Xj satisfying
some properties and we may say that (2.10) follows the same distribution as

m∑

j=1

(∑

i∈Sj
Ci +

∑

i∈{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+
∑

i∈(J∩Xj)\{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)

+
∑

i∈Jc∩Xj
τ2n+bi (ri)−

∑

i∈(Jc+n)∩Xj

τ2n+bi (ri− n)

)∣∣∣∣E .

80



CHAPTER 2. SERIAL AND PARALLEL HIGHER-ORDER REFRESHING SCHEMES WITH LOW COMPLEXITY.

Remembering that (2.8) is uniformly distributed over S2n+b
V ′i

(
gi( a1, a2 )

)
and ap-

plying recursively proposition 3 (merging), we have

∑

i∈Sj
Ci +

∑

i∈{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

) ∣∣∣∣E ∼ U
(
S2n+b⋃

V ′i
i∈Sj

(∑
i∈Sj

gi( a1, a2 )
))

or equivalently

∑

i∈Sj
Ci +

∑

i∈{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

) ∣∣∣∣E ∼ U
(
S2n+b
Xj

(∑
i∈Sj

gi( a1, a2 )
))

.

According to proposition 7 if i ∈ J ∩Xj then i+ n ∈ Xj. Therefore, according to
proposition 1

∑

i∈Sj
Ci +

∑

i∈{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+

∑

i∈(J∩Xj)\{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

) ∣∣∣∣E

is uniformly distributed over S2n+b
Xj

(∑
i∈Sj gi( a1, a2 )

)
. Also, according to propo-

sition 2
∑

i∈Sj
Ci +

∑

i∈{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)

+
∑

i∈(J∩Xj)\{r2,...,rkj }

(
τ2n+bi (Ri)− τ2n+bi+n (Ri)

)
+
∑
i∈Jc∩Xj

τ2n+bi (ri)−
∑
i∈(Jc+n)∩Xj

τ2n+bi (ri− n)

∣∣∣∣E

is uniformly distributed over

S2n+b
Xj

(∑

i∈Sj
gi( a1, a2 ) +

∑

i∈Jc∩Xj
ri −

∑

i∈(Jc+n)∩Xj

ri− n

)
.

Finally, summing the different (independent) random vectors and remembering
that the condition E is (A(Rn)

IL
= a1;A(Rn+b)IR

= a2;R
Jc

= r
Jc

), we have that
(2.10) is uniformly distributed over

m∑

j=1

S2n+b
Xj

(
qj(a1, a2, r

Jc
)
)

where
qj(a1, a2, r

Jc
) =

∑

i∈Sj

gi( a1, a2 ) +
∑

i∈Jc∩Xj

ri −
∑

i∈(Jc+n)∩Xj

ri− n.
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Applying proposition 6, we have that

C(R2n+b) |
(
A(Rn)

IL
= a1 ; A(Rn+b)IR

= a2 ; R
Jc

= r
Jc

; C(R2n+b)K = a
K

)

is uniform over
m∑

j=1

S2n+b
Xj\K

(
qj(a1, a2, r

Jc
)−

∑

i∈Xj∩K
ai

)
+ πK( a )

where S2n+b
∅ = ∅. Considering (2.9) and remembering that a ∈ Im

(
A(R2n+b)I

)
, we

therefore have

C(R2n+b) | A(R2n+b)I = a ∼ U




m∑

j=1

S2n+b
Xj\K

(
ρj(a)

)
+
∑

i∈K
S2n+b
i (ai)




where the ρj’s are defined in the statement. This concludes the first part of the
result.

The second part of the proof consists in dealing with the parameters of the above
distributions.

Assume that #I < (2n + b)/2. Also, assume that if #IL < n/2 (resp. #IR <
(n + b)/2), there exists i ∈ {1, . . . , s} (resp. j ∈ {1, . . . , l} + s) such that
#Vi ≥ n − #IL (resp. #Vj ≥ n + b − #IR). Let us prove that there exists
i ∈ {1, . . . ,m′} such that #(Xi \K) ≥ 2n+ b−#I.

First, consider the case b = 0. Suppose that #I < n, i.e. #IL+#IR+#Jc+#K <
n . Also, consider the case #IL < n/2 and #IR < n/2.

By hypothesis, it exists i0 ∈ {1, . . . , s} and it exists j0 ∈ {1, . . . , l} + s such
that #V ′i0 ≥ n−#IL and #V ′j0 ≥ n−#IR where V ′i0 and V

′
j0
are defined as in (2.7).

If V ′i0 , V
′
j0
⊆ Xi for a fixed i ∈ {1, . . . ,m}, then #Xi ≥ #V ′i0 + #V ′j0 . Further-

more, #V ′i0 + #V ′j0 ≥ 2n− (#IL + #IR) and therefore

#Xi ≥ 2n− (#IL + #IR + #Jc) .

Remembering that #(Xi \K) ≥ #Xi −#K, we have

#(Xi \K) ≥ 2n− (#IL + #IR + #Jc + #K)

≥ 2n−#I.

If V ′i0 and V ′j0 belong to different Xi’s, then it exist k, r ∈ {1, . . . ,m} such that
k 6= r and V ′i0 ⊆ Xk and V ′j0 ⊆ Xr. SinceX1, . . . , Xm is a partition of {1, . . . , 2n+b}
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and since k 6= r, we have Xr ∩Xk 6= ∅. According to the definition of the relation
of equivalence, V ′i0 ∩ (V ′j0 − n) ⊆ Jc. Also,

n = #
(
V ′i0 ∪ (V ′j0 − n)

)c
+ #V ′i0 + #

(
V ′j0 − n

)
−#

(
V ′i0 ∩ (V ′j0 − n)

)

which implies that

#
(
V ′i0 ∩ (V ′j0 − n)

)
≥ #V ′i0 + #

(
V ′j0 − n

)
− n.

Therefore

#Jc ≥ #
(
V ′i0 ∩ (V ′j0 − n)

)
≥ #V ′i0 + #

(
V ′j0 − n

)
− n.

Also, #V ′i0 ≥ n−#IL and #V ′j0 ≥ n−#IR. It follows that #Jc ≥ n−(#IL +#IR).
Finally, we have #Jc < n − (#IL + #IR) − #K by hypothesis. This leads to a
contradiction and therefore this case is not possible.

Let us now address the case where #IL ≥ n/2 and #IR < n/2. By hypothesis,
there exists j0 ∈ {1, . . . , l}+ s such that #V ′j0 ≥ n−#IR. Let k ∈ {1, . . . , k} such
that V ′j0 ⊆ Xk. Let us begin by deriving a lower bound on #Xk.

Observe that for any x ∈ V ′j0 ∩ J , x ∈ Xk because V ′j0 ⊆ Xk. By proposition 7 we
have that x+n ∈ Xk and that x+n 6∈ V ′j0 . Therefore, noting that V ′j0∩J = V ′j0 \Jc

#Xk ≥ #V ′j0 + #(V ′j0 \ Jc)

with #(V ′j0 \ Jc) ≥ #V ′j0 −#Jc and therefore

#Xk ≥ 2#V ′j0 −#Jc .

Also, by hypothesis, #V ′j0 ≥ n−#IR and #IR < #IL which gives us

#Xk ≥ 2(n−#IR)−#Jc

≥ 2n− (#IR + #IL + #Jc) .

Therefore,
#(Xk \K) ≥ 2n− (#IR + #IL + #Jc + #K) .

Finally, it follows that #(Xk \K) ≥ 2n−#I which concludes this case. Note that
the case #IL < n/2 and #IR ≥ n/2 is similar because of the symetry.

Let us now consider the case b = 1. Suppose that #I < (2n+1)/2, i.e. #IL+#IR+
#Jc + #K < (2n+ 1)/2 or equivalently #I ≤ n, i.e. #IL + #IR + #Jc + #K ≤ n.
Also, consider the case #IL < n/2 and #IR < (n+ 1)/2.
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By hypothesis, there exists i0 ∈ {1, . . . , s} and there exists j0 ∈ {1, . . . , l} + s
such that #V ′i0 ≥ n −#IL and #V ′j0 ≥ (n + 1) −#IR. Also, if V ′i0 , V

′
j0
⊆ Xi for a

fixed i ∈ {1, . . . ,m}, then
#Xi ≥ #V ′i0 + #V ′j0

which gives us that

#Xi ≥ (2n+ 1)− (#IL + #IR + #Jc) .

Remembering that #(Xi \K) ≥ #Xi −#K we have

#(Xi \K) ≥ (2n+ 1)− (#IL + #IR + #Jc + #K︸ ︷︷ ︸
#I

) .

If V ′i0 and V ′j0 belong to different Xi’s, then there is k, r ∈ {1, . . . ,m} such that
k 6= r and V ′i0 ⊆ Xk and V ′j0 ⊆ Xr. According to the definition of the relation of
equivalence, V ′i0 ∩ (V ′j0 − n) ⊆ Jc. Also,

n+ 1 = #
(
V ′j0 ∪ (V ′j0 − n)

)c
+ #V ′i0 + #

(
V ′j0 − n

)
−#

(
V ′i0 ∩ (V ′j0 − n)

)
.

This implies that

#
(
V ′i0 ∩ (V ′j0 − n)

)
≥ #V ′i0 + #

(
V ′j0 − n

)
− (n+ 1)

≥ #V ′i0 + #V ′j0 − (n+ 1) .

Therefore,
#Jc ≥ #V ′i0 + #V ′j0 − (n+ 1) .

By hypothesis, this means that #Jc ≥ n − (#IL + #IR). However, we also have
by hypothesis that

#Jc ≤ n− (#IL + #IR)−#K .

The only possible case is when #K = 0 and #Jc = n−(#IL+#IR) or equivalently
when #J = #IL + #IR because #Jc = n − #J . Also, according to the last
statement of proposition 7,

#Xk ≥ #V ′i0 + #
(
V ′i0 ∩ J

)

and
#Xr ≥ #V ′j0 + #

(
V ′j0 ∩ (J + n)

)
.

It follows on the one hand that

#Xk + #Jc ≥ #V ′i0 + #
(
V ′i0 ∩ J

)
+ #

(
V ′i0 ∩ Jc

)
≥ 2#V ′i0
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since J ∪ Jc = {1, . . . n}.

On the other hand, we have

#Xr + #Jc ≥ #V ′j0 + #
(
V ′j0 ∩ (J + n)

)
+ #

(
V ′j0 ∩ (Jc + n)

)

≥ #V ′j0 + #
(
(V ′j0 − n) ∩ (J ∪ Jc)

)

≥ #V ′j0 + #
(
(V ′j0 − n) ∩ {1, . . . , n}

)

≥ #V ′j0 + #V ′j0 − 1

≥ 2#V ′j0 − 1 . (2.11)

It turns out that max(#Xk,#Xr) ≥ (#Xk + #Xr)/2 and therefore

max(#Xk,#Xr) ≥ #V ′i0 + #V ′j0 −#Jc − 1/2 .

The hypothesis states that #V ′i0 ≥ n−#IL and #V ′j0 ≥ n+ 1−#IR, giving

max(#Xk,#Xr) ≥ 2n+ 1− (#IL + #IR + #Jc)− 1/2 .

Finally, because #K = 0 we have K = ∅ and therefore Xk \K = Xk and Xr \K =
Xr. Therefore,

max(# (Xk \K) ,# (Xr \K)) ≥ 2n+ 1/2− (#IL + #IR + #Jc + #K)

≥ 2n+ 1− (#IL + #IR + #Jc + #K)

because # (Xk \K) and # (Xr \K) are integers.

Let us address the case where #IL < n/2 and #IR ≥ (n+ 1)/2. By hypothesis,
#V ′i0 ≥ n−#IL. Also,

#Xk ≥ #V ′i0 + #
(
V ′i0 ∩ J

)
.

Therefore,

#Xk + #Jc ≥ #V ′i0 + #
(
V ′i0 ∩ J

)
+ #

(
V ′i0 ∩ Jc

)
≥ 2#V ′i0 .

It follows that,
#Xk ≥ 2(n−#IL)−#Jc . (2.12)

Also, #IL < n/2. Therefore, #IL ≤ (n− 1)/2. Moreover, #IR ≥ (n+ 1)/2 implies
that #IR − 1 ≥ (n− 1)/2. We conclude that #IL ≤ #IR − 1. Relation (2.12) may
therefore be written as

#Xk ≥ 2n− (#IL + #IL + #Jc)
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which gives
#Xk ≥ 2n+ 1− (#IR + #IL + #Jc) .

Remembering that # (Xk \K) ≥ #Xk −#K, we have

#(Xk \K) ≥ 2n+ 1− (#IR + #IL + #Jc + #K) .

Let us finish the proof by addressing the last case, i.e. #IL ≥ n/2 and #IR <
(n + 1)/2. We have #IR ≤ #IL. By hypothesis, #V ′j0 ≥ (n + 1) − #IR . Again,
#Xk ≥ #V ′j0 + #

(
V ′j0 ∩ J

)
and therefore as in (2.11), we have

#Xk + #Jc ≥ 2#V ′j0 − 1 ≥ 2 · (n+ 1−#IR)− 1

This gives

#Xk ≥ 2n+ 1− (#IR + #IR + #Jc)

≥ 2n+ 1− (#IR + #IL + #Jc) .

Finally, remembering that # (Xk \K) ≥ #Xk −#K, we have

# (Xk \K) ≥ 2n+ 1− (#IR + #IL + #Jc + #K)

which concludes the last case and hence the proof as well. It follows that (2.11)
may be rewritten as

C(R2n+b) | A(R2n+b)I = a ∼ U
(

m′∑

i=1

S2n+b
X′i

(
ρi(a)

)
)

where the (X ′i)’s are the non-empty sets (Xi \ K)’s and the element of K. Note
that they form a partition of {1, . . . , 2n + b} because the Xi’s form a partition of
the same set.

Remember that the previous Lemma was associated to the insertion of the random
elements in algorithm 2 following the first alternative. Let us now prove a lemma
that is associated to the second alternative for the insertion of the random elements
(see step 20 of the Rn algorithm).

Lemma 2.2.2. The statement of Lemma 2.2.1 applies also when the design of
R2n+b from Rn and Rn+b is obtained by the construction :

C(R2n+b) = (C(Rn) +R,C(Rn+b)− φ?b(R))← R?
2n+b

where

φ?b =

{
R if b = 0

(0, R) if b = 1 .
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Proof. (Sketch). Define the two permutations πb for b ∈ {0, 1} such that πb◦φb =
φ?b , where φb is defined in Lemma 2.2.1. Note that π0 is the identity on Gn. Observe
that

(C(Rn) +R,C(Rn+b)− φ?b(R)) =
(
C(Rn) +R,C(Rn+b)− πb(φb(R))

)

=
(
C(Rn) +R, πb(π

−1
b (C(Rn+b))− φb(R))

)

= (Id, πb)
(
C(Rn) +R, π−1b (C(Rn+b))− φb(R)

)

= (Id, πb)
(
C(Rn) +R,C(π−1b (Rn+b))− φb(R)

)

where π−1b (Rn+b) denotes the composition of the permutation π−1b after the scheme
Rn+b. Note that if (Vi)i∈{1,...,l}+s is a partition of {1, . . . , n+b} then (π−1b (Vi))i∈{1,...,l}+s
is also a partition of the same set. Furthermore, the cardinality of any subset of
{1, . . . , n + b} is preserved under the permutation πb. It turns out that up to a
redefinition of some spaces, Rn+b satisfies the hypothesis of Lemma 2.2.1 if and
only if π−1b (Rn+b) does so. Therefore, Lemma 2.2.1 applies to the scheme defined
by (

C(Rn) +R,C(π−1b (Rn+b))− φb(R)
)

and provides the shape and constraints on the parameters of the above vector
conditional to the view. The above arguments on the invariance properties related
to a permutation extends the statement of Lemma 2.2.1 to

(Id, πb)
(
C(Rn) +R,C(π−1b (Rn+b))− φb(R)

)
.

The result follows.

Analysis of the complete execution of Rn.

The following proposition will be used to prove the main result regarding the
recursive Rn.

Proposition 8. For any n ∈ ]2k, 2k+1], there exist n0,m0 ∈ [2k−1, 2k] such that
n = m0 + n0 with m0 ≤ n0 ≤ m0 + 1 .

Proof. Consider n even. By hypothesis, n ∈ ]2k, 2k+1]. Equivalently, n ∈ [2k +
2, 2k+1]. Therefore n/2 ∈ [2k−1 + 1, 2k] or equivalently n/2 ∈ ]2k−1, 2k]. In that
case, n = n/2 + n/2 and n/2 ∈ [2k−1, 2k].

Consider n odd. By hypothesis, n ∈]2k, 2k+1]. Therefore, n ∈]2k, 2k+1−1] and n−
1 ∈ [2k, 2k+1−2]. It follows that (n−1)/2 ∈ [2k−1, 2k−1] and (n+1)/2 ∈ [2k−1, 2k].
Consequently, n = (n−1)/2+(n+1)/2 with (n−1)/2 ≤ (n+1)/2 ≤ (n−1)/2+1.
The result follows.
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Let us state our main theorem concerning the execution of Rn. Remember that
Rn (alg. 2) describes a class of algorithms. This is due to the degree of freedom
given by steps 18 and 20 of the algorithm, which allow two different ways to insert
random elements during the processing of any linear layer.

Theorem 2.2.3. Let n ≥ 2. For any set I such that #I < n/2 and any a ∈
Im
(
A(Rn)I

)
, there exists a partition V1, . . . , Vk of {1, . . . , n} and applications ρi :

Im
(
A(Rn)I

)
7→ G for any a ∈ Im(A(Rn)I) and

C(Rn) | A(Rn)
I

= a ∼ U
(

k∑

i=1

Sn
Vi

(
ρi(a)

)
)
,

with
maxi#Vi ≥ n−#I .

Proof. Let consider the case n = 2. By definition, C(R2) = (R,−R) with R ∼
U (G). The only set I such that #I < 2/2 is the empty set and we have

C(R2) | ∅ ∼ U
(
S2

{1,2}(0)
)

with #{1, 2} ≥ 2− 0 and {1, 2} is a partition of {1, 2}. Note that for any I with
#I > 0, A(R2)I is a function of R and we have for any r ∈ G

C(R2) | R = r ∼ U
(
S2

{1}(r) + S2

{2}(−r)
)

and {1}, {2} is a partition of {1, 2}.

Let consider the case n = 3. By definition, C(R3) = (R1, R2 − R1,−R2) with
(R1, R2) ∼ U (G×G) . For any set I such that #I < 3/2, the components of the
vector A(R3)I are elements of {∅, {R1}, {R2}, {R2−R1}} or bijective functions of
those variables. Now consider the case #I = 0. This means that A(R3)I = ∅ .
According to proposition 6,

C(R3) | ∅ ∼ U
(
S3

{1,2,3}(0)
)

and 3 = maxi #Vi ≥ 3− 0. Next, consider the case #I = 1. If A(R3)I = (R1) and
if A(R3)I = (R2) or a bijective function of this variable we have





C(R3) | R1 = r1 ∼ U
(
S3
{1}(r1) + S3

{2,3}(−r1)
)

C(R3) | R2 = r2 ∼ U
(
S3
{1,2}(r2) + S3

{3}(−r2)
)
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and 2 = maxi#Vi ≥ 3− 1. Also, if A(R3)I = (R2 −R1),

C(R3) | (R2 −R1) = r ∼ U
(
S3

{1,3}(−r) + S3

{2}(r)
)

and 2 = maxi#Vi ≥ 3 − 1 . Consider now the case #I > 1, then there exists a
bijection between A(R3)I and (R1, R2). We have

C(R3) | (R1 = r1 ; R2 = r2) ∼ U
(
S3

{1}(r1) + S3

{2}(r2 − r1) + S3

{3}(−r2)
)

and C(R3) | A(R3)I = a follows a similar distribution up to a change of variable
of r1 and r2. In summary,

C(R3) | A(R3)I = a ∼ U
(

k∑

i=1

S3

Vi

(
ρi(a)

)
)

for any I. Moreover maxi #Vi ≥ 3−#I if #I < 3/2 .

Applying lemma 2.2.1 to R2, we deduce that the result is correct for n = 4.
Let us now define P(k) as :

The result is correct for any n such that 2 ≤ n ≤ 2k .

As proved above, P(2) is correct. Suppose P(k) is correct (k ≥ 2) and let us prove
that P(k + 1) is then also correct. We still have to prove that the statement is
correct for n ∈ ]2k, 2k+1]. According to proposition 8, for any n ∈ ]2k, 2k+1], there
exist n0,m0 ∈ [2k−1, 2k] such that n = m0 + n0 with m0 ≤ n0 ≤ m0 + 1.

If n is an even integer of ]2k, 2k+1], then n = 2m0 and m0 ∈ [2k−1, 2k]. By the
recurrence hypothesis, the result is correct for m0. Applying lemma 2.2.1, we de-
duce that the statement extend to 2m0.

If n is an odd integer of ]2k, 2k+1], then n = m0 + (m0 + 1) and m0, (m0 + 1) ∈
[2k−1, 2k]. By the recurrence hypothesis, the result is correct for m0 and (m0 + 1).
Applying indifferently lemma 2.2.1 or lemma 2.2.2, we deduce that the statement
extends to 2m0 + 1. P(k + 1) is therefore proved and the result follows.

2.2.3 SNI Analysis of Our Refreshing Algorithm.

In the following, we address the second part of our analysis, i.e. the SNI property
of our recursive refreshing schemes in the serial case. This is the purpose of the
next theorem.
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x +

0 Rn C(Rn)

Refreshing

(xJ ,A(Rn)I , C(Refreshing)K) : vector of adversary observations

C(Refreshing)

C(Rn) : Uniform random vector encoding 0

x : Encoding of x before refreshing

C(Refreshing) : Uniform random vector encoding x after refreshing

Figure 2.1: Illustration of the adversary vectors of observations during the execu-
tion of the refreshing via the algorithm Rn.

The context. Consider the execution of the Refreshing algorithm (alg. 3) illus-
trated in the following figure.
Consider the different vectors displayed in the above figure. The input values,
i.e. the components of x, are considered to be fixed in what follows. Following
the SNI definition for a refreshing gadget given in section 2, in order to prove that
Refreshing(x) is SNI, we need to prove that the distribution of

(
A(Rn)

I
, x
J
,C(Refreshing)

K

)

depends on at most #I + #J components of x for any subset I, J,K such that
#I + #J + #K < n. Also, xJ being fixed and of size #J , the problem reduces to
prove that

(
A(Rn)I ,C(Refreshing)K

)
depends of at most #I components of x for

any subset I and K such that #I + #K < n−#J .

Theorem 2.2.4. Let x ∈ Gn be a (fixed) sharing of s, i.e.
∑n

i=1 xi = s. Denote by
Rn the probabilistic algorithm 2 and C(Rn) its output vector. Then, the algorithm
defined by

Refreshing(x) = x+ C(Rn)

is a refreshing algorithm and is SNI.

Proof. According to theorem 2.2.3, C(Rn) ∼ U
(
S n
{1,...,n}(0)

)
. For any fixed x ∈

Gn,
x+ C(Rn) ∼ U

(
Sn{1,...,n}

(∑n
i=1xi

))
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or equivalently Refreshing(x) is uniform over Sn{1,...,n}(s) . This in particular means
that Refreshing(x) is a refreshing algorithm. By definition C(Refreshing)K =
(x + C(Rn))K . Therefore, C(Refreshing)K depends algebraically on #K com-
ponents of x. It follows that the distribution of C(Refreshing)K depends of at
most #K components of x. Remembering that A(Rn)I is independent of x, we
have that the distribution of (A(Rn)I ,C(Refreshing)K) depends on at most #K
components of x.

If #I ≥ n/2, then according to the global constraint we have that

#K < n− (#I + #J) < n/2−#J ≤ n/2 ≤ #I .

Subsequently, Refreshing(x) is SNI in this case.

In what follows, we assume that #I < n/2. According to theorem 2.2.3, for any
I such that #I < n/2 and for any view a ∈ Im (A(Rn)I) , there exists a parti-
tion V1, . . . , Vk of {1, . . . , n} and applications ρi : Im(A(Rn)I) 7→ G such that∑k

i=1 ρi(a) = 0 for any a ∈ Im(A(Rn)I) and

C(Rn) | A(Rn)
I

= a ∼ U
(

k∑

i=1

Sn
Vi

(ρi(a))

)

and there exists t0 ∈ {1, . . . , k} such that

#Vt0 ≥ n−#I. (2.13)

According to the global constraint #K < n−#I −#J. Therefore, #K < n−#I.
Also #Vt0 ≥ n−#I according to (2.13). It follows that #K < #Vt0 .

Note that K = (Vt0 ∩K) ∪ (V c
t0
∩K). On one hand, we have that Vt0 ∩K ⊆

6=
Vt0

because #K < #Vt0 . It follows that

C(Rn)Vt0∩K | A(Rn)
I

= a ∼ U
(
G#(Vt0 ∩K)) .

Therefore,

x
Vt0∩K

+ C(Rn)Vt0∩K | A(Rn)
J

= a ∼ U
(
G#(Vt0∩K)

)

and is therefore independent of xK . On the other hand, (V c
t0
∩ K) ⊆ V c

t0
and

#V c
t0

= n−#Vt0 . Therefore according to (2.13),

#(V c
t0
∩K) ≤ n−#Vt0 ≤ #I .
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It follows that
x
V c
t0
∩K + C(Rn)V c

t0
∩K | A(Rn)

I
= a

depends on at most #I components of x. It turns out that C(Refreshing)K |
A(Rn)I = a depends on at most #I components of x. We deduce that

(
A(Rn)

I
,C(Refreshing)

K

)
| A(Rn)

I
= a

follows a distribution depending on at most #I components of x.

Finally, noting that A(Rn)I follows a distribution which does not depend of any
component of x, we deduce that (A(Rn)I ,C(Refreshing)K) follows a distribution
depending of at most #I components of x. The results follows.

2.3 Conversion into an SNI Iterative Refreshing.
In this section we address the iterative counterpart of our SNI recursive refreshing
algorithm. In particular, we are interested in deriving a method for converting our
recursive algorithm Rn into a security-wise equivalent iterative one. It is worth
mentioning that while such conversions are quite straighforward in the case the
size of input parameters are powers of two, it is however more challenging in the
general case without any additional memory. Because the security analysis of our
recursive approach depends on the sequence of internal computations during its
execution, if one manages to replicate the same sensitive computation history in a
different way, then the two approaches are security-wise equivalent. Consequently,
converting our recursive approach into an iterative one can be done by making
sure every sensitive computation is equivalent in both methods. In what follows,
we refer to the recursive Rn algorithm as rec_Rn and the iterative version of Rn

as ite_Rn. Before deriving the method to perform the actual conversion, we start
by a few important remarks that have to be taken into account for this conversion.

2.3.1 Preliminary Remarks.

For converting our SNI recursive approach into an iterative processing with same
security, note that we only have to convert the subroutine rec_Rn. The rest of the
computation of the refreshing algorithm only consists in summing up the output of
rec_Rn onto the input sensitive sharing that has to be refreshed (see steps 1 to 2
of algorithm 3. Therefore, the main problem we tackle in the following is to derive
a way to retrieve all the call parameters of the rec_Rn algorithm "on-the-fly",
i.e. without storing them.
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A generic method for converting recursive into iterative algorithms.
The method we propose in this section achieves the conversion of rec_Rn into
an iterative algorithm ite_Rn. However, our method can be applied to convert
any similar recursive algorithm into an iterative processing. Namely, any recursive
algorithm following a double recursion such as rec_Rn, which successively divides
the size of the input parameters by two, can be converted into an equivalent
iterative algorithm. In order to do so, it is important to determine the computation
history of the recursive algorithm. This can be done by analyzing the type of
traversal is actually performed by the algorithm on the associated recursion trees.

Computation history - Recursion trees of rec_Rn. As already mentioned,
rec_Rn follows a double recursion, i.e. , Rn successively calls Rbn/2c and Rdn/2e
until the final conditions n = 2 and n = 3 are reached. It also updates its input
data of size n by applying single linear layers of randomness (see steps 14 to 22)
only after the subroutines Rbn/2c and Rdn/2e have returned. Such a processing
corresponds to a depth-first post-order traversal of the recursion trees. In this
section, we will only consider linear layers for which the random elements are
inserted following step 18 of the algorithm.

It can be observed that walking the tree in the reverse level-order, i.e. , level by
level from the leaves to the root produces the same global computation history
than for a depth-first post-order traversal, even though some of the computations
may be performed in a different order. This is depicted in the following figure
which displays the recursion tree associated to rec_R9. The tree on the left side
corresponds to the post-order traversal of rec_Rn. We displayed the recursive calls
by dotted arrows. The numbers associated to the arrows indicate the order of the
recursive calls. The circled numbers refer to the order in which the different nodes
are processed. The tree on the right illustrates the reverse level-order traversal we
want to emulate during the processing of ite_Rn.

Computing the indexes of the labels. Note that the indexes of the labels of
such trees correspond to the size of the different call parameters we wish to retrieve.
As already explained, determining thee indexes dives the size of the linear layers
of randomness (see steps 14 to 22 of the Rn algorithm) that have to be computed
at execution.

Perfect binary recursion trees. Moreover, for any n ∈ [2k; 2k−1[, two cases
can be distinguished whether n ∈ [2k; 3 · 2k−1] or n ∈]3 · 2k−1; 2k+1[. In particular,
rec_Rn breaks the recursion further down in the case n ∈]3 · 2k−1; 2k+1[ and the
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Figure 2.2: Traversals of the recursion tree associated to R9.

corresponding recursion trees are not perfect binary trees. As an example, consider
the recursion trees produced for the executions of R9 and R13. Note that 23 ≤
9, 13 < 24 and 9 ∈]23; 3 · 22] while 13 ∈]3 · 22; 24[.

R9 R13

R4 R5 R6 R7

R2 R2 R2 R2 R3 R3 R3 R4

R2 R2

Figure 2.3: Recursion trees associated to R9 and R13.

In the following, it is more practical to consider perfect binary trees only, for any
2k ≤ n < 2k+1. Therefore, for any n ∈]3 · 2k−1; 2k+1[ we will consider the case R4

as a final condition, that integrates the two subsequent smaller cases R2.

On the architecture and associated features. The efficiency of our method
in practice is even better if one can reverse the bits of registers efficiently and also
determine the number of leading zeros within a register quickly. This can be done
on ARM-based 32-bit microcontrollers with the RBIT and CLZ instructions, in one
clock cycle. We therefore write our resulting iterative version of Rn for 32-bit ar-
chitectures and so that it can be easily implemented in assembly language. Also,
since we manipulate registers in what follows, we choose to represent them follow-
ing the little-endianness. For example, for n = 2k +

∑k−1
i=0 γi · 2i, it is represented
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by
(0, . . . , 0︸ ︷︷ ︸

32−k

, 1, γk−1, . . . , γ1, γ0) .

For the sake of clarity, we will often omit the leading zeros when they are not
necessary. The rest of the section is written according to this choice.

Based on the previous remarks, we now aim at determining the size of the recursion
call parameters for any execution of rec_Rn, for any n. Remember that they are
computed by computing successive Euclidean divisions by two from the size n of the
initial input parameter. In order to achieve this, we construct perfect binary trees
related to such sequences of Euclidean divisions by two. In particular, we associate
to the labels of our perfect binary trees the appropriate remainders computed from
a given sequence of Euclidean divisions by 2 of n. The goal is to derive a method
to understand how these remainders propagate from the root to the leafs. From
this, we are able to retrieve any call parameter our original SNI algorithm rec_Rn,
for any given initial parameter size n.

2.3.2 Euclidean-division-based Perfect Binary Trees.

Let us start by defining useful subspaces of Fk2 over which we index the nodes of the
trees at a given level. We consider that Fk2 is ordered according to the lexicographic
order in the rest of this section.

Ordering the indexes. Let e0, . . . , ek−1 be a canonical basis of the vector space
Fk2, i.e. , for any i = {0, . . . , k − 1}

ei = (0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0) .

For any i ∈ {0, . . . , k − 1}, let Vi be subspaces of Fk2 and define V0 = {0} and for
any i ∈ {1, . . . k − 1}

Vi = 〈e0, . . . , ei−1〉 .

Let k = blog2 nc and consider a perfect binary tree T of height k. In what follows,
a node is referred to as Ti(ω), for any i ∈ {0, . . . , k − 1} and any ω ∈ Vi, where i
is the level of the tree and ω is the index of the node at level i. Also, for any node
Ti(ω), its left child is Ti+1(ω) and its right child is Ti+1(ω + ei). The next figure
illustrate this on a small example, for a tree T of height k = 3.
Note that the indexes of the nodes at any level are ordered from left to right
according to the lexicographic order on Fk2. Namely, for i = 1 we have 0 < e0, for
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T0(0)

T1(e0)T1(0)

T2(e1 + e0)T2(e0)T2(e1)T2(0)

T3(e1 + e0)T3(e2 + e0)T3(e1)T3(0) T3(e2 + e1 + e0)T3(e0)T3(e2 + e1)T3(e2)

+e0

+e1+e1

+e2
+e2+e2

+e2

i = 2 we have 0 < e1 < e0 < e0 + e1 and for i = 3 we have 0 < e2 < e1 < e2 + e1 <
e0 < e2 + e0 < e1 + e0 < e2 + e1 + e0. Let us now derive relations associated to
successive Euclidean divisions of n by two.

Sequences of Euclidean divisions. Let n = 2k +
∑k−1

i=0 γi · 2i with k ≥ 1.
Observe that 2k ≤ n0 < 2k+1. We now define a list of ni’s such that nk = 1 and
for any i = {0, . . . , k − 1}

nk = 1 and ni = 2 · ni+1 + γi , for any i = {0, . . . , k − 1} . (2.14)

This relation can also be written

n0 = 2i · ni +
i−1∑

j=0

γj · 2j for i ∈ {0, . . . , k} . (2.15)

In what follows, we aim at relating the two above relations to our perfect binary
trees associated n. More precisely, we aim at constructing a perfect binary tree
of height k as above such that the sum of the value of all nodes at each level is∑i−1

j=0 γj · 2j and also each right child is greater or equal to the left child and this
by at most one. This is made accurate by the following theorem.

Theorem 2.3.1. Let n0 = 2k +
∑k−1

i=0 γi · 2i with k ≥ 1 and γi ∈ {0, 1} for any
i ∈ {0, . . . , k − 1}. Let T be a perfect binary tree of height k and associated with
n0. Consider that T0(ω) = 0 for ω ∈ V0. Also, if for any i = {0, . . . , k − 1} and
for any ω ∈ Vi we have

Ti+1(ω + γi · ei) = γi and Ti+1(ω + γi · ei) = Ti(ω) ,

then, for any i ∈ {0, . . . , k} we have

∑

ω∈Vi
Ti(ω) =

i−1∑

j=0

γj · 2j (2.16)
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and for any ω ∈ Vi, for any i ∈ {0, . . . , k − 1}, we also have

Ti+1(ω + ei) ≥ Ti+1(ω) . (2.17)

Also, for any l ∈ {1, . . . , k},

Tl

(
ω +

∑l−1
i=s γi · ei

)
= Ts(ω) , for any ω ∈ Vs, for any s ≤ l , (2.18)

and

Tl

(
ω + γs · es +

∑l−1
i=s+1 γi · ei

)
= γs , for any ω ∈ Vs and for any s < l . (2.19)

Finally,
Tl

(∑l−1
i=0 γi · ei

)
= 0. (2.20)

Proof. The affirmation (2.16) is true for i = 0. Indeed, by definition we have∑
ω∈V0 T0(ω) = 0. Now assume that

∑
ω∈Vi Ti(ω) =

∑i−1
j=0 γj · 2j for some i ∈

{0, . . . , k − 1} and let us evaluate
∑

ω∈Vi+1
Ti+1(ω). By definition,

Vi+1 = Vi ∪ (Vi + ei) .

Therefore, ∑

ω∈Vi+1

Ti+1(ω) =
∑

ω∈Vi
Ti+1(ω) +

∑

ω∈Vi
Ti+1(ω + ei) .

If γi = 1, by definition Ti+1(ω) = Ti(ω) and Ti+1(ω+ei) = 1 for any ω ∈ Vi. Hence,
∑

ω∈Vi+1

Ti+1(ω) =
∑

ω∈Vi
Ti(ω) + (#Vi) =

∑

ω∈Vi
Ti(ω) + 2i . (2.21)

Also, by assumption we have that
∑
ω∈Vi

Ti(ω) =
∑i−1

j=0 γj · 2j . Hence,

∑

ω∈Vi+1

Ti+1(ω) =
i−1∑

j=0

γj · 2j + 2i =
i∑

j=0

γj · 2j .

Now if γi = 0, similarly, Ti+1(ω) = 0 and Ti+1(ω + ei) = Ti(ω) for any ω ∈ Vi. By
assumption,

∑

ω∈Vi+1

Ti+1(ω) = 0 +
∑

ω∈Vi
Ti(ω) = 0 · 2i +

i−1∑

j=0

γj · 2j . (2.22)
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Therefore,
∑

ω∈Vi+1

Ti+1(ω) =
i∑

j=0

γj · 2j

and the result of affirmation (2.16) follows. Moreover, if γi = 1 (resp. γi = 0), we
can deduce from relation (2.13) (resp. (2.22)) that Ti+1(ω + ei) ≥ Ti+1(ω) for any
ω ∈ Vi. The result of affirmation (2.17) follows. Now, in order to prove affirmation
(2.18), let us define the following proposition

P(l) : Tl(ω +
∑l−1

i=s γi · ei) = Ts(ω) for any ω ∈ Vs and for any s ≤ l .

Let us prove by induction that P(l) is true for any s and l such that 0 ≤ s ≤ l.
The base case P(1) results from the definition. Indeed, if s = l = 1 we trivially
have T1(ω) = T1(ω) and if s = 0, T1(ω+γ0 ·e0) = T0(ω) for ω ∈ V0 = {0} . Assume
that P(l) holds. Let us prove that P(l + 1) is true. By definition,

Tl+1(ω + γl · el) = Tl(ω) for any ω ∈ Vl . (2.23)

However ω +
∑l−1

i=s γi · ei ∈ Vl for any ω ∈ Vs. Therefore, for any ω ∈ Vs

Tl+1

(
ω +

∑l−1
i=s γi · ei + γl · el

)
= Tl

(
ω +

∑l−1
i=s γi · ei

)
.

By induction hypothesis, for any s ≤ l and any ω ∈ Vs we have

Tl+1

(
ω +

∑l−1
i=s γi · ei + γl · el

)
= Ts(ω)

or equivalently
Tl+1

(
ω +

∑l
i=s γi · ei

)
= Ts(ω) .

This proves P(l + 1) and therefore concludes the induction from which the result
of affirmation (2.18) follows. Let us now prove affirmation (2.19). By the previous
result, for any l ∈ {1, . . . , k} and for any s ≤ l − 1,

Tl

(
ω +

∑l−1
i=s+1 γi · ei

)
= Ts+1(ω) , for any ω ∈ Vs+1 .

Also, ω + γs · es ∈ Vs+1 for any ω ∈ Vs. Therefore,

Tl

(
ω + γs · es +

∑l−1
i=s+1 γi · ei

)
= Ts+1(ω + γs · es) , for any ω ∈ Vs .

Observe that Ts+1(ω + γs · es) = γs by definition. Hence, for any s < l,

Tl

(
ω + γs · es +

∑l−1
i=s+1 γi · ei

)
= γs , for any ω ∈ Vs .
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This proves the result of affirmation (2.19). Finally, by applying to s = 0 the
result of affirmation (2.18) we thus have

Tl

(
ω +

∑l−1
i=0 γi · ei

)
= T0(ω) = 0 , for any ω ∈ V0 = {0} ,

which implies the result of the last affirmation.

For the sake of clarity, let us now illustrate this theorem on a small example.
Let n0 = 5 and k = blog2 n0c = 2. Consider the binary representation of n0,
i.e. (γ1, γ0) = (0, 1). Let e0, e1 be a canonical basis of F2

2. Remember that F2
2 is

ordered according to the lexicographic order. Construct the list of ni’s according
to relation (2.14), i.e. (n0, n1, n2) = (5, 2, 1). According to relation (2.15), we can
write n0 = 1 · 5, n0 = 2 · 2 + γ0 and n0 = 4 · 1 + γ0 + 2 · γ1. Finally we have
V0 = {0}, V1 = {0, e0}, V2 = {0, e1, e0, e0 + e1}. Following the previous theorem,
the perfect binary tree of height k associated to n0 = 5 is therefore

T0(0) = 0

T1(r0 · e0) = 0 T1(r0 · e0) = r0

T2(r0 · e0 + r1 · e1) = r1 T2(r0 · e0 + r1 · e1) = 0 T2(r0 · e0 + r1 · e1) = r1 T2(r0 · e0 + r1 · e1) = r0

0

r0

︸ ︷︷ ︸
e0 + e1

︸ ︷︷ ︸
e0

︸ ︷︷ ︸
e1

︸ ︷︷ ︸
0

︸ ︷︷ ︸
0 ︸ ︷︷ ︸

e0

0

Levels

i = 0

i = 1

i = 2

It can be seen that for each level of the tree depicted in the previous picture the
relations (2.16) to (2.20) are satisfied. The following addresses a way to evaluate of
the nodes of our euclidean division based perfect binary trees efficiently. Namely,
we derive a method to determine the remainder that is associated to some given
node.

2.3.3 Efficient Evaluation of the Trees.

Remember that we chose to derive an efficient method for 32 − bit architectures
with respect to little-endianness. Let T be a perfect binary tree, associated with
n, that is built as in theorem 2.3.1. Remember that T is of height k. We aim at
evaluating all nodes of such trees, i.e. Tl(ω) for any ω ∈ Vl and any l ∈ {1, . . . , k}.
Note that the root T0(0) is always equal to 0. Our method enables to compute
any node from the binary representations of its index and n.
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Binary representations of the indexes. For any node Tl(ω), let us start by
discussing the binary representations of ω. Note that by definition, for any ω ∈ Vl
we have ω =

∑l−1
i=0 ωi · ei. From this, following the definition of the canonical basis

elements of Fk2 and with respect to a 32-bit architecture, any ω ∈ Vl over Fk2 is
represented by a vector of the form

ω =
(
0, . . . , 0︸ ︷︷ ︸

32−k

, ω0, . . . , ωk−1︸ ︷︷ ︸
k

)
= (0, . . . , 0, ω0, . . . , ωl−1, 0, . . . , 0)

where ωi ∈ {0, 1}. However, we can give more detailed representations of ω ∈ Vl
by first seeing Vl as the following union set

Vl =

(⋃

s<l

(
Vs + γs · es +

l−1∑

i=s+1

γi · ei
))
∪
{

l−1∑

i=0

γi · ei
}
. (2.24)

Let us prove this above formula by induction. The formula is valid for the base
case l = 1, i.e.

V1 =
⋃

s<1

(
Vs + γs · es +

0∑

i=1

γi · ei) ∪
0∑

i=0

γi · ei

= V0 + γ0 · e0 ∪ γ0 · e0
= {γ0 · e0, γ0 · e0}
= {0, e0} .

Assume now that relation (2.24) is valid parameter l. Let us prove that it is valid
for parameter l + 1, i.e.

Vl+1 =

( ⋃

s<l+1

(
Vs + γs · es +

l∑

i=s+1

γi · ei
))
∪
{

l∑

i=0

γi · ei
}
.

We have that

Vl+1 = (Vl + γl · el) ∪ (Vl + γl · el)

= (Vl + γl · el) ∪
(((⋃

s<l

(
Vs + γs · es +

l−1∑

i=s+1

γi · ei
))
∪
{

l−1∑

i=0

γi · ei
})

+ γl · el
)

= (Vl + γl · el) ∪
((⋃

s<l

(
Vs + γs · es +

l∑

i=s+1

γi · ei
))
∪
{

l∑

i=0

γi · ei
})

=

( ⋃

s<l+1

(
Vs + γs · es +

l∑

i=s+1

γi · ei
))
∪
{

l∑

i=0

γi · ei
}
.
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We know from relation (2.19) of theorem 2.3.1 that for any ω ∈ Vl \
∑l−1

i=0 γi · ei we
have

Tl(ω + γs · es +
∑l−1

i=s+1 γi · ei) = γs , for any ω ∈ Vs and any s < l .

Also, for ω =
∑l−1

i=0 γi · ei, we have Tl(ω) = 0 according to relation (2.20).

Therefore, for any ω ∈ Vl \
∑l−1

i=0 γi · ei, we have vectors of the form

ω = (0, . . . , 0, ω0, . . . , ωs−1, γs, γs+1, . . . , γl−1, 0, . . . , 0) . (2.25)

In the case ω =
∑l−1

i=0 γi · ei, ω = (0, . . . , 0, γ0, . . . , γl−1). The method we develop
hereafter allows to retrieve γs, if existing, from ω as in (2.25), the binary represen-
tation of n and some elementary operations that can be performed efficiently on
32-bit architectures.

Number of leading zeros of binary representations. The main idea is to
use the CLZ instruction to count the number of leading zeros of some well-chosen
vectors. From this, we can determine the value of any node Tl(ω), for any ω ∈ Vl
and any l ∈ {1, . . . , k} . The following is written according to the little-endianness.
Consider now the reversed representation of (2.25), i.e.

ω = (0, . . . , 0︸ ︷︷ ︸
k−l

, γl−1, . . . , γs+1, γs, ωs−1, . . . , ω0︸ ︷︷ ︸
l︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
32−k

) . (2.26)

From the binary representation of n, i.e. (0, . . . , 0, γk, γk−1, . . . , γ0), define an ad-
ditionnal vector a such that

a = (0, . . . , 0︸ ︷︷ ︸
k−l

, γl−1, . . . , γs+1, γs, γs−1, . . . γ0︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
32−k

) . (2.27)

Computing the bit-wise XOR between ω as in (2.26) and a as above produces

(0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
CLZ(ω⊕a)

, 1, ωs−1 ⊕ γs−1, . . . , ω0 ⊕ γ0︸ ︷︷ ︸
s+1︸ ︷︷ ︸

k

, 0, . . . , 0) (2.28)

where 1 = γs ⊕ γs. From this last vector, since CLZ(ω ⊕ a) = k − (s + 1), we
deduce that s = k − 1 − CLZ(ω ⊕ a) . Note that if s < 0, this means that γs
does not exist and therefore we are in the case ω =

∑l−1
i=0 γi · ei for which it holds

Tl(ω) = 0. If s ≥ 0, it means we are in the case ω ∈ Vl \
∑l−1

i=0 γi · ei for which it
holds Tl(ω) = γs and γs can be easily obtained from the binary representation of
n, i.e. (0, . . . , 0, γk, . . . , γs, . . . , γ0).
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2.3.4 Iterative Algorithm.

From theorem 2.3.1, we can determine any recursive call parameter of rec_Rn and
hence obtain the size of the linear layers that have to be computed at execution. As
already mentioned in the preliminary remarks of this section, remember that the
algorithm rec_Rn breaks down the recursion until the final conditions n = 2 and
n = 3 are reached. This means in particular that the corresponding sequence of
euclidean divisions as defined in (2.14) does not have to be computed until nk = 1.
The final divisions can be omitted. This result in deriving our perfect binary trees
only for a height equals to k − 1. The following figure illustrates an example for
rec_R9. The perfect binary tree of height k− 1 and that is associated to n = 9 is
displayed in dotted lines.

R⌊9/22⌋+T2(e0+e1)R⌊9/22⌋+T2(e1)
R⌊9/22⌋+T2(e0)R⌊9/22⌋+T2(0)

R⌊9/21⌋+T1(e0)R⌊9/21⌋+T1(0)

R9/20+T0(0)

R2R2R2R2

R5R4

R9i = 0

i = 1

i = 2

The sizes of the linear layers. It can be seen on the previous figure that we
obtain relation (2.15) by summing up all indexes of the nodes at any level of the
tree on the right side of the figure. This gives us the actual sizes of the different
linear layers of randomness. They are obtained by adding the quotient of the
division of 9 by a power of two. It is also worth mentioning that we do not need to
pre-compute the tree T for deriving the ite_Rn. We only emulate it by deriving
the indexes of the nodes only, for all different levels. Considering all that have
been previously discussed, we are now ready to derive our iterative version of Rn.

The linear layers. We start by describing a simple algorithm that is used in
ite_Rn for computing the linear layers of size n. This algorithm basically corre-
sponds to steps 14 to 22 of the rec_Rn algorithm. It is however useful for the sake
of clarity to separate this processing from the rest of the computation.

The iterative algorithm. Let us now derive the actual iterative algorithm.
Remember that the perfect tree of height k − 1 that is associated to n is actually
evaluated on-the-fly from its indexes only. No pre-computation is required. The
processing basically consists in evaluating every node of the perfect binary tree T ,
computing the size of the linear linear of randomness that is associated to a given
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Algorithm 4 Linear_layer
Require: A sharing y = (y1, . . . yn), the size n of the linear layer, an index j.
Ensure: The sharing y combined with random elements.
1: for i from j to j + bn/2c do
2: ri

$← G
3: yi ← yi + ri
4: yi+bn/2c ← yi+bn/2c − ri
5: end for
6: return y

node of T , and applying successively the different layers by calling algorithm 2.3.4
just described. The evaluation of the nodes is performed such that the processing
emulates a reverse level-order traversal of the recursion tree associated to rec_Rn.
It therefore iterates on the levels i from the leaves i = k − 1 to the root i = 0
and processes all the nodes indexed by ω ∈ Vi, with respect to the lexicographic
order on Fk−12 . Also, the algorithm is written such that for any n ∈]3 · 2k−1; 2k+1[
the execution of R4 integrates the two subsequent smaller executions of R2 (see
preliminary remarks).
As it was the case for rec_Rn, the actual refreshing is done by summing up the
output of ite_Rn onto the sensitive data that have to be refreshed (see algorithm
3). By doing so, the iterative processing also satisfies the SNI requirements.

2.4 Conversion Into a Parallel Bounded Moment
Algorithm.

In this section we address the conversion of our generic SNI refreshing scheme
into its parallel counterpart. Similarly than for the previous conversion, the main
problem we tackle now is to convert the execution of the Rn subroutine of our
refreshing scheme into a parallel processing, denoted by parallel_Rn in the rest of
the section. Thanks to theorem 1 of [8], converting an SNI algorithm that is proven
secure at any masking order into its parallel counterpart renders the latter secure at
any masking order under the bounded leakage model, which is relevant for parallel
implementations. Note that the authors of [24] pointed out that the bounded
moment model for parallel implementations may not offer the expected security.
However, the study of the security of parallel implementations is new and need to
be more studied. In this section, we start by giving some preliminary remarks that
are useful beforehand tackling the actual conversion which leads to parallel_Rn and
subsequently to our bounded moment secure parallel refreshing algorithm. Then,
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Algorithm 5 ite_Rn (for 32-bit architectures)
Require: A sharing y = (y1, . . . yn) of 0, the binary representation of n, i.e. n =

(0, . . . , 0, γk, γk−1, . . . , γ0), k − 1 = blog2 nc − 1.
Ensure: A random sharing y of 0.
1: for i from k − 1 down to 0 do . From the leaves to the root.
2: Compute a as in (2.27) for l = i.
3: j ← 1 . Points to a share of y
4: for every ω in Vi do . All nodes of a level

*** Computation of the size of the linear layers ***
5: ω ← reverse(ω) . See (2.26)
6: s← k − CLZ(a⊕ ω)− 1 . See (2.28)
7: ll_size← bn/2ic
8: if s ≥ 0 then
9: ll_size← ll_size+ ((n� s) & 1) . Updates size with γs
10: end if

*** Computation of the linear layers ***
11: if i = k − 1 then . For the leaves only
12: if ll_size = 3 then
13: y ← Linear_layer(y, ll_size, j + 1)
14: else if ll_size = 4 then
15: y ← Linear_layer

(
y, ll_size/2, j

)

16: y ← Linear_layer
(
y, ll_size/2, j + 2

)

17: end if
18: end if
19: y ← Linear_layer

(
y, ll_size, j

)

20: j ← j + ll_size
21: end for
22: end for
23: return y

we define some masks and vectors that are involved in parallel_Rn. Finally, we
give the algorithms.

2.4.1 Preliminary Remarks.

We follow an approach that is similar to the recursive to iterative conversion de-
scribed in the previous section. Namely, remembering that reverse level-order
traversals of the recursion trees are equivalent to the depth-first post-order traver-
sals corresponding to rec_Rn, parallel_Rn will emulate reverse level-order traver-
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sals. However, on the contrary to ite_Rn, i.e. the iterative version of Rn in the
serial setting for which each share is manipulated in different clock cycles at execu-
tion, parallel_Rn manipulates all shares of a sharing at once for each clock cycle.
It means that this time we aim at processing complete levels of the recursion trees
at once, from the leaves to the root. Also, by observing that the evaluation of a
complete level of a recursion tree updates all shares at once, this approach there-
fore requires to define a "packing" strategy for the shares. It simply consists in
taking into account the word size of the architecture to pack several shares into
a given register represented as a vector. By doing so, all packed shares can be
operated at once time by applying a single instruction on such a word. In this
section, we consider the word length to be big enough so that an entire sharing
fits inside one word. Also, and as it was the case for the recursive to iterative
conversion, a register is represented following the little-endianness. However, it
would have been possible to consider big-endianness. The algorithm we propose in
the parallel setting transposes to either choice, on condition (minor) modifications
are made. The following notations formalize this context.

Notations. Consider the group (Fα2 ,⊕), where α is the size of the architecture for
which we derive our parallel refreshing algorithm. The operator ⊕ is the bitwise
XOR on two words of size α. Also, the bitwise AND is denoted by & and A � i
(resp. A � i) stands for the word A that has to be shifted from i positions to
the left (resp. right). Moreover, ∼A denotes the bitwise complement of A. We
denote by R[v] the vector (r1, . . . , rv) of the values corresponding to v independent
random elements of Fβ2 . Finally, u[v] ∈ Fβ·v2 with β · v ≤ α a vector of length v
whose coordinates are u ∈ Fβ2 , i.e. , u[v] = (u, . . . , u︸ ︷︷ ︸

v

). In the following u will either

0 or 1, therefore denoting all-zero or all-one vectors respectively.

Packing strategy, little-endianness and consequences. Consider a sharing
x of x as defined until now, i.e. x = (x1, . . . , xn). From now on, we consider x over
Fβn2 with βn ≤ α and therefore each of the shares x1, . . . , xn is now considered
as an element of Fβ2 . Also, registers are of size α and are represented following
little-endianness. In the following we also choose to define the packing strategy
accordingly. Namely, a sharing x of n shares is now represented as

x = (0, . . . , 0︸ ︷︷ ︸
α−βn

, xn, . . . , x1)

where the xi’s are represented by vectors of the form (aβ−1, . . . , a0) with aj ∈ {0, 1}
for any j ∈ {0, . . . , β − 1}. By doing so, the smaller indexes correspond to the
coordinates on the right side of the vectors. For the sake of clarity, we will omit
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the α − βn leading zeros of sharings. We will therefore write vectors over Fβn2 ,
taking only into consideration the relevant shares.

Our parallel algorithm still relies on perfect binary trees that are associated to
n by considering the same sequences of Euclidean divisions by two as defined in
the previous section (see (2.14)). However, this time we do not only consider
the remainders of such sequences in the definition of the trees. We also change
the indexing of the nodes in a way that is more appropriate for the current con-
version. Additionally, we take into account the packing strategy just described,
which results in a slight change of the definition of the trees. This is made accurate
hereafter.

Euclidean division based trees associated to n. Consider n = 2k +
∑k−1

i=0 γi ·
2i with k ≥ 1. Let T be a perfect binary tree of height k− 1. A node of T will be
noted as Ti(j) where i is the level and j is the index of the node within level i. The
left child and the right child of Ti(j) are Ti+1(2j + 1) and Ti+1(2j) respectively.
The tree T of height k−1 is recursively defined as follows. The root T0(0) is equal
to n and for any i ∈ {1, . . . k − 2} we define

Ti+1(2j + 1) =

⌈
Ti(j)

2

⌉
and Ti+1(2j) =

⌊
Ti(j)

2

⌋
,

for any j ∈ Z2i where Z2i is identified to its smallest representatives, i.e. Z2i =
{0, . . . , 2i − 1}. Note that this time the elements at each level sums up to n,
i.e.

∑
j∈Z2i

Ti(j) = n. Note that the T associated to n gives the actual size of all
call parameters derived from an execution of Rn. We can therefore describe the
recursion tree associated to the execution of Rn from the perfect binary tree T of
height k − 1 that is associated to n. Namely, we can write Rn = RT0(0) and for
any i ∈ {1, . . . , k − 1},

RTi(j)

RTi+1(2j+1) RTi+1(2j)
Also, we define

mini , minj∈Z2i
Ti(j) and maxi , maxj∈Z2i

Ti(j) . (2.29)

According to the design of the trees T , we have mini ≤ maxi ≤ mini + 1 . As
an example consider the following figure. On the left side is displayed the perfect
binary tree T of height 2 that is associated to 9 and on the right side is displayed
the corresponding recursion tree with input parameters.
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T0(0) = 9

T1(0) = 4T1(1) = 5

T2(0) = 2T2(1) = 2T2(2) = 2T2(3) = 3

R9(y9, . . . , y1)

R5(y9, . . . , y5) R4(y4, . . . , y1)

R3(y9, y8, y7) R2(y6, y5) R2(y4, y3) R2(y2, y1)

⌈9/2⌉ ⌊9/2⌋

⌈5/2⌉ ⌈4/2⌉⌊5/2⌋ ⌊4/2⌋

min0 = 9 ; min1 = 4 ; min2 = 2
max0 = 9 ; max1 = 5 ; max2 = 3

⌈9/2⌉ ⌊9/2⌋

⌈5/2⌉ ⌊5/2⌋ ⌈4/2⌉ ⌊4/2⌋

The basic idea is to emulate a reverse level-order traversal of the recursion tree
displayed on the right side of the above figure from the perfect binary tree T
displayed on the left side. Also, in the parallel setting, we aim at processing
complete levels at once. Therefore, the parallel processing corresponding to the
above example would first update the input vector y = (y9, . . . , y1) by com-
puting

(
R3(y9, y8, y7),R2(y6, y5),R2(y4, y3),R2(y2, y1)

)
. Then, it would update

y by computing
(
R5(y9, . . . , y5),R4(y4, . . . , y1)

)
and finally it would output y =(

R9(y9, . . . , y1)
)
. This sequence of computations basically consists in applying at

once the different linear layers of randomness corresponding to the distinct Rn(·)
of a level. In what follows, we give more details about the parallel processing of
all the linear layers of randomness as described by an entire level of the recursion
trees.

Parallel processing of distinct linear layers. Each linear layer of algorithm
2 (Rn) pairs together coordinates of y by XORing the same (freshly generated)
single random element r on two distinct coordinates of the input vector y and
the offset depends of the level of recursion. The parallel processing of all the
linear layers at a level has to correspond to the serial processing. The difference
in the parallel setting is that we would manipulate (freshly generated) random
vectors of size α > βn. The parallel processing of all linear layers of a level is
performed as follows : we first extract some random elements from the freshly
generated random vector and then we position them into a register such that all
corresponding coordinates of the input vector y are paired at once time. We aim
at processing this step efficiently and also at optimizing the number of random
vectors that have to be globally used to perform all linear layers.

Constructing vectors of random elements. Consider the following exam-
ple. Assume that we want to execute R19 in a parallel way. The next figure
represents the values of each node of the Euclidean division based tree of height
3 that is associated to 19 and displays the vectors of random elements that we
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need to construct for computing the different linear layers in a parallel way. Re-
member that 0[v] = (0, . . . , 0) of length v where 0 is represented over Fβ2 and that
R[v] = (r1, . . . , rv) is a vector of the values corresponding to v independent random
elements of Fβ2 .

19

10 9

5 5 5 4

3 2 3 2 3 2 2 2

i = 0

i = 1

i = 2

i = 3

(
0[3],R[2],

(
0[1],R[2], 0[1],R[1],

R0 =

R1 =

R2 =

R3 =

R[9]
)

(
0[5],R[5],

(
0[10],

0[3],R[2],

0[1],R[2],

0[3],R[2],

0[5],R[4]
)

0[2],R[2]
)

Levels

0[1],R[1], 0[1],R[2], 0[1],R[1], 0[1],R[1], 0[1],R[1]
)

The vectors Ri described above are composed of all independent random elements
that are required for the computation of all linear layers of a given level i in parallel.
However, in order to actually perform the pairing of corresponding coordinates of
the input vector y as described above, such vectors Ri have to be shifted from a
certain offset which depends on the level i. This will position the random elements
correctly for the pairing. We do so by defining shifted vectors SRi as

SR0 = R0 ⊕ (R0 � 10 · β) ,

SR1 = R1 ⊕ (R1 � 5 · β) ,

SR2 = R2 ⊕ (R2 � 2 · β) ,

SR3 = R3 ⊕ (R3 � β) .

Parallel processing of Rn. We consider that we have access to a random gener-
ator of vectors of (Fβ2 )n. Our algorithm parallel_Rn works as follows : we generate
as many random vectors of (Fβ2 )n as there are levels of linear layers to compute,
i.e. , k for a tree T of height k−1. Then, the linear layers are computed successively
from the leaves i = k−1 to the root i = 0. This is done by considering successively
one of the k generated random vectors and by first constructing the vector Ri that
is associated to level i from the selected random vector. Then parallel_Rn simply
consists in updating y successively by computing y = y⊕SRi for i = k− 1, . . . , 0.

The processing of parallel_Rn just described and more precisely of its associated
sequence of parallel linear layers requires to construct the vectors Ri from freshly
generated random vectors of (Fβ2 )n. It also requires to construct the shifted vectors
SRi which only consists in applying the right offsets for the shifts. This is made
accurate in the following.
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2.4.2 Linear Layers.

Let us now compute the vectors Ri and SRi appearing during the execution of
Rn for n ≥ 2. Consider the binary expansion of n = 2k +

∑k−1
i=0 γi · 2i and its

associated Euclidean division tree T , i.e. T0(0) = n and for any i = 0, . . . , k − 2
and any j ∈ Z2i :

Ti(j)

Ti+1(2j + 1) Ti+1(2j)

Let us first define some masksMi’s in order to generate vector Ri’s from a random
vector of (Fβ2 )n, denoted by RGen in the following.

Vectors of extracted random elements. As it was the case for the recursive
to iterative conversion, we deal with the leaves separately from the other levels of
the trees. Also as explained in the preliminary remarks of section 2.3, the height
of recursion trees differs by 1 whether n ∈ [2k; 3 · 2k+1] or n ∈]3 · 2k+1; 2k+1[. Let us
start by defining the vectors Ri composed of extracted random elements as follows.
For any, i ∈ {0, . . . , k − 2},

Ri =
(

0[ dTi(j)/2e ],R[ bTi(j)/2c ] | j ∈ Z2i
)
,

where 0[dTi(j)/2e] follows the definition given in the notations of this section and
R[bTi(j)/2c denotes the concatenation of bTi(j)/2c independent random elements
of Fβ2 . The linear layers associated to the leaves of T are handled differently whether
n ∈ [2k; 3 · 2k+1] or n ∈]3 · 2k+1; 2k+1[. The difference is that if n ∈ [2k; 3 · 2k+1],
then we compute the linear layers associated to the leaves in one step while we do
it in two steps if n ∈]3 · 2k+1; 2k+1[. Consider the first case, i.e. n ∈ [2k; 3 · 2k−1].
In this case, the leaves of T are either 2 or 3 and we define

Rk−1 =
(
0[ bTk−1(j)/2c ],R[ dTk−1(j)/2e ] | j ∈ Z2k−1

)
(2.30)

If n ∈]3 · 2k−1; 2k+1[, we compute two vectors Rk−1 and R′k−1. This is illustrated
in the following example for n = 14 for which k = 3 and 14 ∈]3 · 22; 24[. We only
displayed the two last levels of the recursion tree associated to an execution of
R14. The tree on the right side of the figure illustrates how we deal with the case
n ∈]3 · 2k−1; 2k+1[. We first compute the linear layers associated to R2 and R3 and
in a second step, we only compute the linear layers associated to R4.

Remember that the trees T have height k − 1 and therefore we emulate the com-
putation of R4 and R3 from the leaves of T corresponding to level k − 1 of the
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i = k − 1

i = k

R4R3 R3

R2 R2

R4 R4

R3 R3

R4

R2 R2 R2 R2 R2 R2

... ...
... ...

latter. Let us define

R2,3[u] =

{
0[1],R[2] if u = 3

0[1],R[1], 0[1],R[1] if u = 4
and R4[u] =

{
0[3] if u = 3

0[2],R[2] if u = 4 .

From this, we define

Rk−1 =
(
R2,3[Tk−1(j)] | j ∈ Z2k−1

)
and R′k−1 =

(
R4[Tk−1(j)] | j ∈ Z2k−1

)
. (2.31)

Let us now derive the shifted vectors SRi from the Ri just defined. From the
definition of the tree T , it is not difficult to prove that for any i = 0, . . . , k− 2 and
any j ∈ Z2i ,

Ti+1(2j) = mini+1 if γi = 0 and Ti+1(2j + 1) = maxi+1 otherwise.

Therefore, if n ∈ [2k; 2k+1[, the vector SRi corresponding to level i of the tree and
for any i = 0, . . . , k − 2 is computed as

SRi = Ri ⊕
(
Ri � x · β

)

where x = mini+1 if γi = 0 and x = maxi+1 otherwise, by considering n =
2k +

∑k−1
i=0 γi · 2i. Also, if n ∈ [2k; 3 · 2k−1], the linear layers associated to the leaves

of the recursion tree are computed in one step from

SRk−1 = Rk−1 ⊕
(
Rk−1 � β

)
,

where Rk−1 is as in (2.30). Finally, if n ∈]3 ·2k−1; 2k+1[, the linear layers associated
to the leaves of the recursion tree are computed in two steps from

SRk = Rk ⊕
(
Rk � β

)
and SRk−1 = Rk−1 ⊕

(
Rk−1 � 2 · β

)
,

where Rk and Rk−1 are as in (2.31). In the following we explain how to extract
the appropriated random elements from random vectors RGen of (Fβ2 )n to actually
derive the vectors Ri.

Masks for extracting elements of random vectors. We define a list of masks,
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denoted byMi in what follows. Their definition follows the definition of the vectors
Ri. Namely, these masks only consists in replacing the chunks of random elements
R[v] in the definition of the vectors Ri by chunks of ones of same sizes, i.e. 1[u].
By doing so, we obtain the masks M0, . . . ,Mk−1 (and M ′

k−1 if n ∈]3 · 2k−1; 2k+1[)
and the vectors Ri can be constructed by simply computing

Ri , RGen & Mi ,

where RGen is some random vector freshly generated.

Remark. The above procedure extracts only half random elements of every vector
RGen in order to construct the Ri’s. With additional operations, it is also possible
to construct two consecutive Ri’s from the same RGen. This would allow to reduce
the number of generated random vectors RGen by a factor of about 2. However,
this would also lead to a very technical algorithm which we omitted in this article.

2.4.3 Parallel Algorithm.

In the following, we derive the actual parallel_Rn algorithm from which the bounded
moment secure refreshing algorithm can be derived straightforwardly. For the sake
of clarity we provide beforehand parallel_Rn an algorithm for computing linear
layers of randomness in parallel.

Algorithm 5 parallel_Linear_Layers
Require: A sharing y = (yn, . . . , y1), a mask M , an offset x.
Ensure: The sharing y updated with random elements.

1: RGen
$← Fβ·n2

2: R← RGen & M
3: SR← R⊕ (R � x · β)
4: y ← y ⊕ SR
5: return y

The following algorithm addresses the complete execution of parallel_Rn. It makes
use of the above parallel_Linear_Layers algorithm as a subroutine.
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Algorithm 7 parallel_Rn

Require: y = (yn, . . . , y1), n = (1, γk−1, . . . , γ0), the masks (Mi)0≤i≤k−1 andM ′
k−1

if n ∈]3 · 2k−1; 2k+1[, (mini)0≤i≤k−2, (maxi)0≤i≤k−2.
Ensure: A random sharing y of 0.
1: y ← parallel_Linear_Layers

(
y,Mk−1, 1

)

2: if n ∈]3 · 2k−1; 2k+1[ then
3: y ← parallel_Linear_Layers

(
y,M ′

k−1, 2
)

4: end if
5: for i from k − 2 down to 0 do
6: if γi = 0 then x← mini+1 . Corresponds to step 18 of alg. 2.
7: else x← maxi+1 . Corresponds to step 20 of alg. 2.
8: end if
9: y ← parallel_Linear_Layers

(
y,Mi, x

)

10: end for
11: return y

Finally, the next algorithm is the Bounded Moment secure parallel refreshing
scheme. It performs the actual refreshing of a sharing x = (xn, . . . , x1) of some
sensitive variable x.

Algorithm 5 Bounded Moment secure parallel refreshing scheme
Require: A sharing x = (xn, . . . , x1), the masking order n = (1, γk−1, . . . , γ0), the

masks (Mi)0≤i≤k−1 andM ′
k−1 if n ∈]3·2k−1; 2k+1[, (mini)0≤i≤k−2, (maxi)0≤i≤k−2.

Ensure: A refreshed sharing z of size n such that
∑n

i=1 zi =
∑n

i=1 xi
1: y ← 0

2: y ← Parallel_Rn

(
y, (Mi)0≤i≤k−1, (M ′

k−1if needed), (mini)1≤i≤k−2, (maxi)1≤i≤k−2
)

3: z ← x⊕ y
4: return z

Complexity. Our proposal requires blog2 nc iterations and dlog2 ne random vec-
tors while these values for the previous generic scheme [8] were both dn− 1e/3 .

2.5 Conclusion
This chapter addressed the secure design of refreshing schemes which are one of
the main primitives of masking countermeasures.

We provided a class of serial refreshing schemes over any finite Abelian group.
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We proved that its security satisfies the strong SNI security requirements of the
probing model for any masking order n. Our algorithm runs in O(n · log2 n) and
improves the time and randomness complexities of the best known method by a
factor of about two in this context.

We provided a generic method for converting recursive implementations such as our
recursive scheme into iterative ones and we applied this method on our recursive
refreshing scheme. The resulting iterative scheme is equivalent to the former and
therefore inherits its SNI property.

We proposed a parallel algorithm for a subset of the previous class, bounded
moment secure for any masking order. Our proposal requires a number of iterations
and random vectors which is logarithmic in the masking order while their number
was linear in this parameter for the best known method so far.
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Chapter 1

Introduction

Masking is a sound countermeasure to protect implementations of block-cipher
algorithms against Side Channel Analysis (SCA). Currently, the most efficient
masking schemes use Lagrange’s Interpolation Theorem in order to represent any
S-box by a polynomial function over a binary finite field. Masking the processing
of an S-box is then achieved by masking every operation involved in the evaluation
of its polynomial representation. While the common approach requires to use the
well-known Ishai-Sahai-Wagner (ISW) scheme in order to secure this processing,
there exist alternatives. In the particular case of power functions, Genelle, Prouff
and Quisquater proposed an efficient masking scheme (GPQ). However, no gener-
alization has been suggested for polynomial functions so far. In next chapter, we
solve the open problem of extending GPQ for polynomials, and we also solve the
open problem of proving that both the original scheme and its variants for polyno-
mials satisfy the t-SNI security definition. Our approach to extend GPQ is based
on the cyclotomic method and results in an alternate cyclotomic method which
is three times faster in practice than the original proposal in almost all scenarios
we address. The best-known method for polynomial evaluation is currently CRV
which requires to use the cyclotomic method for one of its step. We also show how
to plug our alternate cyclotomic approach into CRV and again provide an alternate
approach that outperforms the original in almost all scenarios. We consider the
masking of n-bit S-boxes for n ∈ [4; 8] and we get in practice 35% improvement of
efficiency for S-boxes with dimension n ∈ {5, 7, 8} and 25% for 6-bit S-boxes.

1.1 Related Works
In [56], Rivain and Prouff proposed the first efficient and provably secure masking
scheme in the probing model for AES whose S-box consists in computing inver-
sions in the finite field F28 . Their idea was to express the corresponding inverse
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function x 7→ x254 as a sequence of squares and nonlinear multiplications over F28 .
While squares are linear functions and are therefore easy to mask, they adapted
the ISW multiplication gadget over F2 to the desired extension field F28 in order to
mask the nonlinear multiplications. The proposed scheme was originally supposed
to achieve dth order security. However, the composition of their mask refreshing
procedure with the ISW multiplication gadget induced a security flaw in the over-
all scheme [20]. A solution proposed in the same article was to avoid the use of
the mask refreshing gadget by adapting the ISW scheme. The resulting secure
multiplications are referred to as bilinear multiplications in the literature. It was
only recently that the original scheme (without the bilinear multiplications) has
been fixed in [6]. Namely, they proved that the composition of the multiplication
gadget with a different mask refreshing procedure results in a safe construction
with d ≥ t + 1 shares by showing that both previous gadgets satisfy the t-SNI
security definition.

The approach followed by Rivain and Prouff was extended to any n-bit S-box by
Carlet, Goubin, Prouff, Quisquater and Rivain (CGPQR) in [14]. They showed that
any n-bit S-box can be expressed as a sequence of linear transformations and non-
linear multiplications over F2n , that is represented by a polynomial S(x) =

∑
i aix

i

over F2n using Lagrange’s interpolation theorem. Thus, the CGPQR masking
scheme consists in evaluating securely such polynomial over F2n by masking with
ISW every nonlinear multiplication involved in the corresponding sequence. How-
ever, as the masking order grows, the secure processing of nonlinear multiplications
quickly becomes expensive. Therefore, they also described two efficient heuristics
called cyclotomic and parity-split methods that optimize the number of nonlin-
ear multiplications required to evaluate the polynomial representation of generic
S-boxes. Several methods have also improved CGPQR by further optimizing this
number of nonlinear multiplications. Roy and Vivek [57] further reduced the com-
plexity of several well known S-boxes and the currently best-known method for
fast polynomial evaluation in F2n has been proposed by Coron, Roy and Vivek
in [21] and is referred to as the CRV method in the rest of the paper. Recently,
other constructions of multiplication circuits in finite fields than ISW have been
proposed [12]. However, ISW remains the most efficient t-SNI scheme for orders of
practical interest (i.e. orders 1, 2 and 3).

Different approaches can be used as alternatives to the higher-order CGPQR mask-
ing scheme [5, 15, 19, 29, 32, 40, 55]. Among them, the higher-order masking
scheme introduced by Genelle, Prouff and Quisquater (GPQ) in [29] is a more effi-
cient alternative for the AES than [56] (see [37]). The GPQ scheme is particularly
efficient to mask S-boxes which are power functions but no generalization to mask
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generic S-boxes has been proposed so far.

1.2 Contributions
In next chapter, we begin to prove the security of the GPQ masking scheme in the
probing model under the stronger t-SNI security definition. Then, we show how
to solve the open problem of extending GPQ to mask generic S-boxes (not only
power functions). Specifically, our approach is based on the generic cyclotomic
method proposed in [14], whose security so far relied on the ISW scheme. We
show how to refine the use of GPQ when combined with the cyclotomic method
so that it results in an alternate cyclotomic approach for polynomial evaluation
over F2n that no longer requires ISW. We provide a description of our construction
and prove that it satisfies the t-SNI requirements. We also provide an alternate
approach for CRV. The latter requires the cyclotomic method in order to build a
set of monomials in one of its steps. We show how to plug our alternate cyclotomic
method into CRV, in order to efficiently compute those power functions with our
previous construction. Moreover, our approach allows us to derive new parameters
for CRV considered as irrelevant with the original proposal, but which are well-
suited in our case. We then show that our alternate CRV construction is t-SNI.
In practice, we consider the same scenarios for both our alternate approaches.
We report the cost of polynomial evaluations with our approaches compared to
the original ones where S-boxes are of dimension n ∈ [4; 8]. We improve by a
factor 3 the efficiency of the original cyclotomic method in almost all scenarios
(for n ∈ {5, 6, 7, 8}) and we improve by 35% the efficiency of the original CRV for
S-boxes of dimension n ∈ {5, 7, 8} and 25% for 6-bit S-boxes.

Next chapter presents the results of our article [50] we presented at the Conference
on Cryptographic Hardware and Embedded Systems (CHES), in 2018.
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Chapter 2

Mixing Additive and Multiplicative
Masking for Secure Polynomial
Evaluation Methods

The chapter is organized as follows. Section 1 provides background notions on
masking and surrounding the probing model. We present GPQ in section 2 along
with our t-SNI security proof. In Section 3 we recall aspects of the cyclotomic
method, we address the extension of GPQ to the masking of generic S-boxes and
we give security proofs regarding our alternate cyclotomic construction. In
section 4, we describe the CRV method before showing how to derive an alternate
approach that also enables to consider new parameters, and we also provide
security proofs. Section 5 reports implementation results using our alternate
approaches compared to the originals for S-boxes of dimension n ∈ [4; 8].
Eventually section 6 concludes the chapter.
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2.1 Basics and Definitions
In this chapter, n denotes the bit-length of processed data. By default, variables
in this paper are assumed to be defined in the field F2n

∼= (F2[x]/(p(x)),⊕,⊗),
where p(x) is an irreducible polynomial of F2[x] of degree n, ⊕ is the bitwise
XOR operation and ⊗ denotes the polynomial multiplication modulo p(x). These
variables can also sometimes be viewed as elements of the vector space Fn2 defined
over the field (F2,⊕,�), where � is the AND operation. Some transformations may
involve n-bit operations XOR, AND which shall be referred to by ⊕n,�n. The inverse
of an element x ∈ F∗2n for the law ⊗ is x−1 where F∗2n denotes the set of invertible
elements of F2n .

2.1.1 Basics on Masking

As explained in the introduction, the masking countermeasure splits every sensitive
variable x into d = t+ 1 shares x0, . . . , xd in such a way that the following relation
is satisfied for a group operation ⊥. Namely,

x0 ⊥ x−11 ⊥ . . . ⊥ x−1d = x . (2.1)

where x−1i denotes the inverse of xi w.r.t ⊥. Usually, the d shares x1 . . . , xd are
randomly generated and x0 is processed so that (2.1) is satisfied. In this paper, ⊥
either denotes the field addition⊕ or the field multiplication⊗. When⊥= ⊕ (resp.
⊥= ⊗), the relation (2.1) induces an additive masking (resp. a multiplicative
masking) of x. A (d + 1)-tuple (x0, . . . , xd) satisfying (2.1) for ⊥= ⊕ (resp. for
⊥= ⊗) is called a dth order additive (resp. dth order multiplicative) sharing of x.

2.1.2 Useful t-SNI Gadgets

Several constructions in this article may involve gadgets whose security has already
been analyzed in the literature. We hereafter recall the secure multiplication algo-
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rithm as described in [56] and the mask refreshing procedure introduced by Duc,
Dziembowski and Faust in [23]. Furthermore, it has been shown in [6] that both
gadgets are t-SNI.

Algorithm 9 SecMult [56] (ISW)
Require: An order d, a (d+ 1)-sharing of x and a (d+ 1)-sharing of y.
Ensure: A (d+ 1)-sharing (z0, . . . , zd) of (x⊗ y).
1: for i = 0 to d do
2: zi ← xi ⊗ yi
3: end for
4: for i = 0 to d do
5: for j = i+ 1 to d do
6: r

$← F2n

7: zi ← zi ⊕ r
8: r ← xi ⊗ yj ⊕ r ⊕ xj ⊗ yi
9: zj ← zj ⊕ r
10: end for
11: end for
12: return (z0, . . . , zd)

Alg. 10 presents the multiplication-based refreshing algorithm of [23].

Algorithm 10 Multiplication-Based Mask Refreshing Algorithm
Require: An order d and a (d+ 1)-sharing (x0, . . . , xd) of x.
Ensure: A (d+ 1)-sharing (z0, . . . , zd) of x.
1: for i = 0 to d do
2: zi ← xi
3: end for
4: for i = 0 to d do
5: for j = i+ 1 to d do
6: r

$← F2n

7: zi ← zi ⊕ r
8: zj ← zj ⊕ r
9: end for
10: end for
11: return (z0, . . . , zd)
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2.2 GPQ Scheme
Introduced by Genelle, Prouff and Quisquater in [27, 28, 29], the GPQ scheme
securely evaluates power functions by mixing additive and multiplicative masking.
Namely, (2.1) holds alternatively for ⊥= ⊕ and ⊥= ⊗. The additive masking is
used to secure affine functions while multiplicative masking efficiently masks power
functions as illustrated in Fig. 2.2. Thus, special transformations are necessary to
convert an additive sharing into a multiplicative one and conversely. This strategy
was initially addressed by Akkar and Giraud [2] but turned out to be not secure
when a multiplicatively masked variable equals zero [31]. Genelle, Prouff and
Quisquater solved this issue by proposing a secure implementation of the Dirac
function that enables to multiplicatively mask the value zero [27, 28]. For the sake
of self-completeness, we recall some algorithms of [27, 28, 29] that constitute GPQ
and we also conduct a security analysis throughout this section to prove that the
scheme actually satisfies the t-SNI property and not only the t-NI definition (as
proven in the original paper).

Multiplicative masking

Affine functions Power function Affine functions

Additive masking Additive masking

Figure 2.1: GPQ mixes additive and multiplicative masking.

From the above discussion, an additively masked element of F2n is mapped into
F∗2n by adding it to its Dirac value so that the resulting non-zero element can be
multiplicatively masked. Further details are given below.

2.2.1 Dirac

The Dirac function δ is defined over F2n by δ(x) = 1 if x = 0 and δ(x) = 0 other-
wise. Hence for any x ∈ F2n , it results (x⊕ δ(x)) ∈ F∗2n . The computation of the
Dirac function of x ∈ F2n may be performed as follows.

Let x = (x0, . . . , xn−1) denote the bitwise complement of x = (x0, . . . , xn−1), we
have

δ(x) = x0 � x1 � · · · � xn−1 ,
where � denotes the AND operation.
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Computing one Dirac function at a time for several field elements may not be
interesting in terms of efficiency (due to AND operations that have to be secured
with ISW). However, bit-slicing enables to compute several Dirac functions simul-
taneously at a reasonable cost [28]. The latter approach is therefore preferred. In
a nutshell, it computes the Dirac function of n elements of F2n viewed as a (n×n)-
matrix whose lines are actually treated as elements of Fn2 . In the following, the
field elements involved in the Secure-Dirac procedure are referred to as x(k) with
k ∈ {0, 1, . . . , n−1}. We hereafter recall the resulting algorithm that we also used
in our implementations.

Algorithm 11 Secure-Dirac

Require: An order d, a length n and a (d+ 1)-sharing (M0, · · · ,Md) of a binary
(n× n)-matrix M whose lines are the x(k)’s.

Ensure: A (d + 1)-sharing (∆0, · · · ,∆d) of the n-bit vector ∆ =
(δ(x(0)), · · · , δ(x(n−1))).
** Compute the bitwise complement M0 of the (n× n)-matrix M0.

1: M0 ←−M0

** Transpose the (n× n) matrices Mi for every i ≤ d.
2: for i = 0 to d do
3: ti ←− (Mi)

ᵀ

4: end for

** Refresh the shares.
5: (t

(0)
0 , . . . , t

(0)
d )←− Refresh(t

(0)
0 , . . . , t

(0)
d )

6: (∆0, . . . ,∆d) ←− (t
(0)
0 , . . . , t

(0)
d )

** Process the Dirac computations.
7: for i = 1 to n− 1 do
8: (∆0, · · · ,∆d)←− (∆0, · · · ,∆d)�n (t

(i)
0 , . . . , t

(i)
d )

9: end for

10: return (∆0, · · · ,∆d)

The �n operation (Step 8 of Alg. 11) performs n secure multiplications over F2.

Remark 2. In order to prove the following Lemma, we had to add a refreshing
procedure (step 5) that was not originally required. In particular, this step requires
the use of Alg. 10.

Lemma 2.2.1. Secure-Dirac(·) is t-SNI. Let (Mi)0≤i≤d be the input and let (∆i)0≤i≤d
be the output of Alg. 11. For any adversary set of at most t probed wires Ω =
(I,O), with t ≤ d, there exists a set of input shares S such that |S| ≤ |I| and S
is sufficient to simulate the adversary observation set Ω.
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Proof. For the sake of clarity, we divide the bit-sliced Secure-Dirac procedure into
two stages as illustrated Fig. 2.2 and we give further details about the transfor-
mation before proving its security.

R
⊗⊙n

O

M0 ·̄

M1

Md

v(0)

Stage 2Stage 1

M T

M T

M T

t0

t1

td

v(1)

v(2)

v(n−1)

⊙n

⊙n

Figure 2.2: Gadget δ(·).

Stage 1 is composed of the steps 1 to 4 of Alg. 11 and stage 2 illustrates the steps
5 to 9. As mentionned previously, the Secure-Dirac procedure uses bit-slicing and
therefore processes simultaneously several elements of Fn2 . We consider the case
of n-bit architectures for which the transformation processes n elements of Fn2 at
a time. These n elements are represented by a matrix M ∈ Fn×n2 in such a way
that each line of M is one element of Fn2 . Since the procedure manipulates masked
data, stage 1 therefore takes as input a (d + 1)-sharing (M0, . . . ,Md) of M , with
Mj ∈ Fn×n2 for every j ∈ [0; d]. We hereafter exhibit the matrices involve in the
computation. Namely, we have

Mj =




(
π0
(
x(0)
))
j

(
π1
(
x(0)
))
j

. . .
(
πn−1

(
x(0)
))
j(

π0
(
x(1)
))
j

(
π1
(
x(1)
))
j

. . .
(
πn−1

(
x(1)
))
j

...
... . . . ...(

π0
(
x(n−1)

))
j

(
π1
(
x(n−1)

))
j
. . .

(
πn−1

(
x(n−1)

))
j




where
(
πk
(
x(i)
))
j
is the projection of the kth bit of the jth share of the element

x(i) with i in [0;n− 1], j in [0; d] and k in [0;n− 1].

Stage 1 transposes the matrices Mj for every j ∈ [0; d]. Note that the bit-wise
complement (step 1 of Alg. 11) is only performed over the elements of M0. The
transposed matrices are denoted by tj and we therefore have t0 =

(
M0

)ᵀ and
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tj = (Mj)
ᵀ for j ∈ [1; d]. Then, stage 1 outputs the d+ 1 binary (n× n)-matrices

t0, . . . , td such that

tj =




(
π0
(
x(0)
))
j

(
π0
(
x(1)
))
j

. . .
(
π0
(
x(n−1)

))
j(

π1
(
x(0)
))
j

(
π1
(
x(1)
))
j

. . .
(
π1
(
x(n−1)

))
j

...
... . . . ...(

πn−1
(
x(0)
))
j

(
πn−1

(
x(1)
))
j
. . .

(
πn−1

(
x(n−1)

))
j


 .

Finally, stage 2 takes as inputs n distinct vectors v(k) =
(
t
(k)
0 , . . . , t

(k)
d

)
where t(k)j

is the kth line of the matrix tj. In other words, t(k)j is a n-tuple composed of the
kth bits of the jth shares of all input elements and v(k) is therefore composed of the
kth bit of all the shares of every input elements. In the following proof, we assume
that if a single internal bit has to be simulated then the whole word corresponding
to this single bit is required.

As in [6], the proof is constructed by composition. Namely, we construct the simu-
lator for the whole circuit by simulating sequentially each inner gadget from right
to left. We begin our security analysis by stage 2 which we also divide into two
parts (see Fig. 2.3).

v(0)

v(1)

R

⊙n

v(i)
⊙n

OGi−1

OGi

OG1

Gi

G1

Ii

I1

Si
1

Si
2

S1
2

S1
1

I0

S0

G0

Figure 2.3: Stage 2 of Gadget δ(·).

Let Ω = (I,O) be an observation set made on stage 2 such that I =
⋃

0≤i≤n−1 I i
and such that the global constraint

∑n−1
i=0 |I i|+ |O| ≤ t is satisfied.

Let us first consider the right side of Fig. 2.3. For every i ∈ [2, n− 1], we want to
simulate the observation set Ωi = (I i,OGi) made on Gadget i. Since Gadget i is
t-SNI and |In−1 ∪O| ≤ t (by global constraint) and |I i ∪OGi | ≤ t for i ∈ [2, n− 2]
(by global constraint and simulation of Gadget i + 1), we know that there exists
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an observation set S i = (S i1,S i2) such that |S i1| ≤ |I i|, |S i2| ≤ |I i| and S i1 ∪ S i2
is sufficient to simulate Gadget i (i.e. simulate Ωi) for every i ∈ [2, n − 1]. As
illustrated Fig. 2.3 and by the t-SNI property of Gadget i for every i ∈ [2, n− 1],
the simulation of these Gadgets therefore requires at most |I i| shares of v(i), and
at most |I i| shares of the output of Gadget i− 1 for every i ∈ [2, n− 1].

Let us now also take into account the left side of Fig. 2.3. It has been shown
in [6] that such a composition of t-SNI gadgets is t-SNI thanks to the additional
t-SNI refreshing Gadget (Alg. 10). Thus, in order to simulate the observation
set Ω0,1 = ((I0 ∪ I1),OG1) and since |I0 ∪ I1 ∪ OG1| ≤ t (by global constraint
and simulation of Gadgets i for every i ∈ [2, n− 1]), the corresponding simulator
requires at most |I0| shares of v(0) and at most |I1| shares of v(1).

Altogether, the simulation of stage 2 requires at most |I i| shares of v(i) for every
i ∈ [0, n− 1].

Let us now take into account stage 1. As mentioned previously, v(i) =
(
t
(i)
0 , . . . , t

(i)
d

)

for every i ∈ [0, n− 1], which means that the v(i)’s are composed of the ith bit of
all the shares of every input elements. Let us also remind that we assume that
if a single internal bit has to be simulated then the whole word corresponding to
this single bit is required. For the sake of clarity, we illustrate in Fig. 2.4 the
propagation of a share v(i) throughout stage 1. As an example, we consider the
case where the simulation requires the first share t(i)0 of v(i) and show how it is
actually related to the first shares of each input elements.

The figure 2.4 below shows that if the simulation requires the jth share of v(i), then
the simulation actually requires the jth shares of all input elements. Moreover and
as discussed above, the simulation of the procedure requires |I i| shares of v(i) for
every i ∈ [0, n− 1]. Oberserve that the simulation may involve |I i| distinct shares
of v(i) for every i = [0, n− 1]. Therefore, at most

∑n−1
i=0 |I i| distinct shares of each

input element of the Secure-Dirac procedure are actually required. Also, by the
global constraint

∑n−1
i=0 |I i| ≤ t and consequently the t-SNI property is satisfied for

the whole circuit of the Secure-Dirac procedure.

Remark 3. In order to satisfy the t-SNI property, the shares of v(0) have to be
refreshed in stage 2 thanks to Algorithm 10. This mask refreshing was not required
in the original approach that only proves the security of Secure-Dirac under the less
stronger t-NI security definition.
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v(i) =
(
t
(i)
0 , . . . , t

(i)
d

)

t
(i)
0 =

((
πi(x

(0))
)
0
, . . . ,

(
πi(x

(n−1))
)
0

)

((
x(0)

)
0
, . . . ,

(
x(0)

)
d

)

(
x(n−1)

)
0
=

((
π0(x

(n−1))
)
0
, . . . ,

(
πn−1(x

(n−1))
)
0

)

x(0) =

x(n−1) =
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((
π0(x

(0))
)
0
, . . . ,

(
πn−1(x

(0))
)
0

)

((
x(n−1)

)
0
, . . . ,

(
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)
d

)
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(
x(0)

)
0
=

Figure 2.4: Linking the shares of the vi’s to the shares of the input elements.

For a given set of n additively masked field elements, their Dirac values can be
computed with Alg. 11 and have to be added to their corresponding elements
before converting them into multiplicative maskings. The complexity of the Secure-
Dirac procedure is given at the end of this section. We now address the conversion
transformations that enable to switch encodings for a non-zero masked element
between its additive and multiplicative sharing.

2.2.2 Conversions

The general strategy consists in replacing sequentially each additive (resp. multi-
plicative) mask of the (d+ 1)-additive (resp. multiplicative) sharing of an element
x ∈ F∗2n by a multiplicative (resp. additive) one. This strategy results in the fol-
lowing two algorithms. Alg. 12 describes the steps for an additive to multiplicative
masking conversion and Alg. 13 describes the multiplicative to additive masking
conversion. As in [29], these transformations are respectively called AMtoMM and
MMtoAM.

The conversion AMtoMM described in algorithm 12 has been proven in [29] to
satisfy the t-NI definition. We now prove the following theorem that states that
AMtoMM(·) actually satisfies the t-SNI requirements.

Theorem 2.2.2. AMtoMM(·) conversion is t-SNI. Let (xi)0≤i≤d be the input and
let (zi)0≤i≤d be the output of Alg. 12. For any adversary set of at most t probed
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Algorithm 12 AMtoMM

Require: A (d+ 1)-additive sharing (x0, . . . , xd) of x ∈ F∗2n
Ensure: A (d+ 1)-multiplicative sharing (z0, . . . , zd) of x ∈ F∗2n
1: z0 ← x0
2: for i = 1 to d do
3: zi

$← F∗2n
4: z0 ← z0

.
⊗ zi

5: for j = 1 to d− i do
6: U

$← F2n

7: xj ← zi
.
⊗ xj

8: ∗∗ Refreshing of the additive share
9: xj ← xj ⊕ U
10: z0 ← z0 ⊕ xj
11: xj ← U
12: end for
13: xd−i+1 ← zi

.
⊗ xd−i+1

14: z0 ← z0 ⊕ xd−i+1

15: end for
16: return (z0, z1, . . . , zd)

wires Ω = (I,O), with t ≤ d, there exists a set of input shares S such that |S| ≤ |I|
and S is sufficient to simulate the adversary observation set Ω.

The AMtoMM(·) transformation converts an additively masked element x ∈ F∗2n
into a multiplicative masking. Initially x is represented by a (d+ 1)-additive shar-
ing (X0, . . . , Xd) involving d additive masks (Xi)1≤i≤d such that

∑d
i=0Xi = x. A

sequence of transformations is carried out over the successive intermediate mask-
ings of x to finally produce a (d+ 1)-multiplicative sharing (Z0, . . . , Zd) of x such
that

∏d
i=0 Zi = x.

More precisely, Alg. 12 randomly generates multiplicative masks (Zi)0≤i≤d−1 and
computes the sequence X(i+1) = πi(X

(i), Zi) for i in [0; d − 1] where X(i) =

(X
(i)
0 , X

(i)
1 , . . . , X

(i)
d−i). Thus, X(0) is the input of Alg. 12, X(d) is the output and

the other X(i)’s are intermediate maskings of x. We illustrate the above discussion
in Fig. 2.5.
The I i’s are random vectors whose components are some intermediate variables
that appear during the corresponding transformation πi and may also be composed
of some of X(i)’s shares. The S i’s specify which components of X(i) are considered.
In the following we denote by X̃(i) vectors only composed of the shares of X(i) and
specified by S i. Also, O = X̃(d) ∪ Z|J where Z|J = (Zi)i∈J .
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Figure 2.5: Internal functioning of Gadget AMtoMM(·).

Our goal is to prove that Gadget AMtoMM(·) is t-SNI.

Proof. Let Ω = (I,O) be an adversary observation set constructed over Gadget
AMtoMM(·) with I = ∪d−1i=0 I i such that the global constraint |I∪O| ≤ t is satisfied.
In order to prove that Alg. 12 is t-SNI, we prove that Ω = (I,O) may be
simulated from a set of its input shares S0 with |S0| ≤ |I|. More precisely,
we prove that any adversary view Ω satisfying the global constraint may be
expressed as a function ρ of X̃(0) and a uniform random vector U such that
Ω = ρ(X̃(0),U), where X̃(0) ∈ F|S

0|
2n and |S0| ≤ |I|. This is achieved in two

steps. We first prove that the adversary view Ω may be expressed in terms of
a vector (X̃(0), X̃(1), . . . , X̃(d), z|J∪L) and a uniform random vector (Ud−2, · · · ,U0).
We then prove that (X̃(0), X̃(1), . . . , X̃(d), z|J∪L) may be expressed as h(X̃(0),U ′)
with |S0| ≤ |I| and U ′ is a uniform random vector.

Let us first build the sequence of S i’s.

If X(d) is a component of O, then Sd = 0 and thus |Sd| = 1, otherwise Sd = ∅
and |Sd| = 0. Then the other S i’s are defined according to the following discussion.

We start from the end of the evaluation of AMtoMM(·) and we therefore first
consider the transformation

πd−1(X
(d−1), Zd−1) −→ (X(d)) ,

where X(d−1) = (X
(d−1)
0 , X

(d−1)
1 ) and X(d) = X

(d)
0 .
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We list hereafter the variables computed during this transformation :

• W (d)
0 = X

(d−1)
0 · Zd−1

• W (d)
1 = X

(d−1)
1 · Zd−1

• X(d)
0 = W

(d)
0 +W

(d)
1

Let Id−1 be a subset of {X(d−1)
0 , X

(d−1)
1 ,W

(d)
0 ,W

(d)
1 } and

◦
Id−1 = Id−1\{X(d−1)

0 , X
(d−1)
1 }.

On the one hand, if
◦
Id−1 = ∅ then Id−1 is only composed of input variables

of πd−1, thus all variables of Id−1 may be expressed from X̃(d−1) ∈ F|S
d−1|

2n with

|Sd−1| = |Id−1|. On the other hand, if
◦
Id−1 6= ∅, noting that W (d)

0 (resp. W (d)
1 )

can be expressed from X
(d−1)
0 (resp. X(d−1)

1 ) and Zd−1, Id−1 may be expressed in
terms of X̃(d−1) with |Sd−1| ≤ |Id−1|. Consequently in any cases, all variables of
Id−1 may be expressed as a function of Zd−1 and X̃(d−1) ∈ F|S

d−1|
2n , i.e.

Id−1 = ρd−1(X̃
(d−1), Zd−1) with |Sd−1| ≤ |Id−1| . (2.2)

Let us define the sets Si = {0, . . . , d − i} and Ti = {1, . . . , d − i − 1} for i =
(d− 2) · · · 0.
Our goal is now to prove that for any i = (d − 2) · · · 0, for any I i with

◦
I i 6= ∅

and for any subset S i+1 ⊆ Si+1 there exists a subset S i ⊆ Si, a uniform vector Ui
stochastically independent of all other random vectors and an application ρi such
that

I i = ρi(X̃
(i), X̃(i+1), Zi,Ui) with |S i| ≤ |I i|+ |S i+1| . (2.3)

We list hereafter the variables involved in the πi transformation, with i ∈ {0, . . . , d−
2} :

• X(i+1)
j ∼ U(F2n) with j ∈ Ti

• W (i+1)
j = X

(i)
j · Zi with j ∈ Si

• Y (i+1)
j = W

(i+1)
j +X

(i+1)
j with j ∈ Ti

• H(i+1)
j = W

(i+1)
0 +

∑j
t=1 Y

(i+1)
t = H

(i+1)
j−1 + Y

(i+1)
j with j ∈ Ti. Note that

H
(i+1)
0 = W

(i+1)
0 .

• X(i+1)
0 = H

(i+1)
d−i−1 +W

(i+1)
d−i .
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We have
I i = (X

(i)
|Ii
,W

(i+1)
|Ki

, Y
(i+1)
|Li

, H
(i+1)
|Qi

) ,

with Ii ⊆ Si, Ki ⊆ Si, Li ⊆ Ti, Qi ⊆ Ti.

First note that X(i)
|Ii

and W
(i)
|Ki

may be expressed as a function of X(i)
|Ii∪Ki

and Zi.

Therefore, S i ⊇ Ii ∪Ki. For any j ∈ S i+1 ∩ Li, X̃(i+1) and X(i)
j are necessary to

simulate Y (i+1)
j . Therefore, S i ⊇ S i+1 ∩ Li. For any j ∈ Li \ S i+1, Y (i+1)

j may
be simulated from a uniform random variable stochastically independent from any
other random variables.

If Qi = ∅, I i may be expressed as a function of X̃(i+1), X̃(i) (with S i = Ii ∪Ki ∪
(S i+1 ∩ Li)), Zi and a uniform random vector Ui stochastically independent from
any other random variables. It follows that

|S i| ≤ |Ii|+ |Ki|+ |S i+1| ≤ |I i|+ |S i+1| .

The condition (2.3) is therefore satisfied in this case.

If Qi 6= ∅, i.e. Qi = {s1, · · · , st}. Applying a well determined invertible linear
application to H(i+1)

|Qi
, we observe that the simulation of H(i+1)

|Qi
is equivalent to the

simulation of the vector

X(i)

0 · Zi +

s1∑

j=1

Y
(i+1)
j ,

s2∑

j=s1+1

Y
(i+1)
j , . . . ,

st∑

j=st−1+1

Y
(i+1)
j


 .

If the interval [1; s1] ⊆ S i+1 then the first component of the above vector may
be expressed as a function of X̃(i+1), Zi and the random variables X(i)

j for j ∈
[1; s1] ∪ {0}. Otherwise, the first component may be simulated from a uniform
random variable stochastically independent from any other random variables. If
the interval [si; si+1] ⊆ S i+1 then the corresponding component of the vector may
be expressed as a function of X̃(i+1), Zi and the random variables X(i)

j for j ∈
[si; si+1]. Otherwise, this component may be simulated from a uniform random
variable stochastically independent from any other random variables. It follows
that I i may be expressed as a function of X̃(i) (with S i = Ii ∪Ki ∪ (S i+1 ∩ Li) ∪
S i+1 ∪ {0}), Zi and a uniform random vector Ui stochastically independent from
any other random variables. Since Qi 6= ∅ by assumption, it follows that

|S i| ≤ |Ii|+ |Ki|+ |Li|+ |S i+1|+ 1 ≤ |I i|+ |S i+1| .

The condition (2.3) is therefore satisfied in this case.

130



CHAPTER 2. MIXING ADDITIVE AND MULTIPLICATIVE MASKING FOR SECURE POLYNOMIAL EVALUATION
METHODS

Observe that for any I i with
◦
I i = ∅ we have I i = X̃(i) with S i = I i. In this case,

we have therefore |S i| = |I i|.
Define L = {i |

◦
I i 6= ∅} with

◦
I i = I i\X̃(i). Let us prove that (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L)

may be expressed as h(X̃(0),U ′) with |S0| ≤ |I|, U ′ is a uniform random variable
stochastically independent of X̃(0) and X̃(i) are vectors only composed of the shares
of X(i) which are specified by S i.

Suppose that there does not exist an indice k such that |Sk| = d − k + 1,
then none of the sets S i are Si = {0, . . . , d − i} and thus all the X̃(i)’s and
Z|J∪L are uniform stochastically independent random vectors. It follows that
(X̃(0), X̃(1), . . . , X̃(d), Z|J∪L) may clearly be expressed as h(X̃(0),U ′).

Define now k as the smallest index such that |Sk| = d− k+ 1. Note that k ≥ 1 by
the global constraint |I ∪ O| ≤ t.

For the case k = d, all the X̃(i) with i in [0; d − 1] are uniform stochastically
independent random vectors of F|S

i|
2n respectively. Also, (X̃(d), Z|J∪L) is a uniform

random vector of (F∗2n)1+|J∪L| with |J ∪ L| ≤ t − 1 according to the global con-
straint |I ∪ O| ≤ t. It follows that if k = d then (X̃(0), X̃(1), . . . , X̃(d), Z|J∪L) may
be expressed as h(X̃(0),U ′).

Let us now assume that 1 ≤ k ≤ d − 1. Gathering conditions (2.2) and (2.3), we
have |Sk| ≤∑d−1

i=k |I i| ≤ |I|. Also, |I|+ |O| ≤ |I ∪O| ≤ t by the global constraint.
It follows that |O| ≤ t− |Sk|. Note that

X(k) = (x ·
k−1∏

i=0

Zi +
d−i∑

j=1

X
(k)
j

︸ ︷︷ ︸
X

(k)
0

, X
(k)
1 , . . . , X

(k)
d−k).

Remembering that t ≤ d and that |Sk| = d − k + 1, we have |O| ≤ k − 1. It
follows that at most k − 1 Zi’s have to be simulated among the k Zi’s in the
expression of X(k)

0 , i.e. p∗ = x ·∏k−1
i=0 Zi is therefore a uniform random variable

of F∗2n stochastically independent of the random variables in the set O. All other
random variables X̃(i) with i > k and Z|(J∪L)∩{k,...,d−1} may be build from p∗, random

vectors of F|S
i|

2n and (F∗2n)|(J∪L)∩{k,...,d−1}|. From the above discussion, it follows that
(X̃(0), X̃(1), . . . , X̃(d), Z|J∪L) may be expressed as h(X̃(0),U ′) with |S0| ≤ |I| and
U ′ is a uniform random vector.
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Finally, from conditions (2.2) and (2.3) it follows that Ω = (I,O) may be expressed
as ρ(X̃(0),U) which means that AMtoMM(·) is t-SNI.

The other conversion that deals with getting an additive masking from a multi-
plicative one is described by Alg. 13. This conversion has only been proven to
satisfy the t-NI property. We prove similarly to the previous conversion that it
satisfies the stronger security definition.

Algorithm 13 MMtoAM

Require: A (d+ 1)-multiplicative sharing (z0, . . . , zd) of x ∈ F∗2n
Ensure: A (d+ 1)-additive sharing (x0, . . . , xd) of x ∈ F∗2n
1: x0 ← z0
2: for i = 1 to d do
3: xi

$← F2n

4: x0 ← x0 ⊕ xi
5: x0 ← x0

.
⊗ z−1i

6: for j = 1 to i do
7: xj ← xj

.
⊗ z−1i

8: U
$← F2n

9: ∗∗ Refreshing of the additive share
10: xj ← xj ⊕ U
11: z0 ← z0 ⊕ xj
12: xj ← U
13: end for
14: end for
15: return (x0, x1, . . . , xd)

Theorem 2.2.3. MMtoAM(·) conversion is t-SNI. Let (xi)0≤i≤d be the input and
let (zi)0≤i≤d be the output of Alg. 13. For any adversary set of at most t probed
wires Ω = (I,O), with t ≤ d, there exists a set of input shares S such that |S| ≤ |I|
and S is sufficient to simulate the adversary observation set Ω.

Proof. The proof concerning MMtoAM(·) is very similar to the one of AMtoMM(·).
It consists essentially in interchanging the role of the additive masks with the
multiplicative ones in the previous proof of AMtoMM(·).

The GPQ scheme involves Alg. 11, 12 and 13. We now give further details about
the evaluation of power functions with GPQ.
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2.2.3 Power Function Processing

We outline the processing of a power function as follows. Consider a power
α ∈ [0, 2n − 1] and an element x ∈ F2n that is initially additively masked. First,
the GPQ processing requires to compute the Dirac function of x and add the re-
sult to it in order to map the field element into F∗2n . Then, x is converted into a
multiplicative sharing in order to process the power function x 7→ xα. Afterwards,
xα is converted back into an additive sharing and the resulting element is mapped
from F∗2n back into F2n to be further processed by linear operations only. This
processing is illustrated Fig. 2.6.

x

xα

AMtoMM(·)

MMtoAM(·)

δ(·)

⊕

(·)α Multiplicatively masked

⊕

Figure 2.6: GPQ power function processing : x 7→ xα.

The classical approach to securely process a power function x 7→ xα consists in
expressing it in terms of squares and multiplications over F2n , the latter being
secured with the ISW multiplication gadget. This approach was first proposed
by Rivain and Prouff in [56] for AES whose S-box can be represented as a single
monomial over F2n (i.e. x 7→ x254). The study of masking power functions has
been generalized by the work of Carlet, Goubin, Prouff, Quisquater and Rivain
in [14]. They defined the notion of masking complexity for a n-bit S-box as the
minimal number of nonlinear multiplications required to evaluate its polynomial
representation over F2n , and they computed the masking complexity of all power
functions over F2n for n ≤ 11. Their approach involves the notion of cyclotomic
class and addition chain which are recalled hereafter.

Cyclotomic class. The cyclotomic class of α denoted by Cα, α ∈ [0; 2n − 2] is
defined by

Cα = {α · 2i mod 2n − 1 ; i ∈ [0;n− 1]} .

As the Frobenius map x 7→ x2 over F2n is linear, any αi ∈ Cα can be computed from
any αj ∈ Cα with αj 6= αi only using linear transformations. Hence, powers whose
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exponents lie in the same cyclotomic class have the same masking complexity. The
authors of [14] have related the problem of computing the masking complexity for
an element α whose cyclotomic class is Cα to finding the shortest addition chain
for α, Cα0 → Cα1 → . . . → Cαk , such that Cα0 = C1, Cαk = Cα, and for every
i ∈ [1; k], there exist j, l ≤ i such that αi = αj + αl where αj ∈ Cαj and αl ∈ Cαl .
The resulting chain decomposes any power xα in terms of linear operations (i.e.
squares) and nonlinear multiplications between powers whose exponents belong to
different cyclotomic classes. On the contrary to the classical approach, GPQ does
not require ISW to secure the sequence that decomposes a power function. More
precisely, multiplications which are nonlinear when an additive masking is involved
may be performed by element-wise field multiplications between the shares of the
multiplicatively masked values and hence ISW is no longer required. In fact, a
power function x 7→ xα can even be tabulated with GPQ leading to great efficiency
gains. Such an implementation choice costs 2n bytes of memory to store the table,
which is reasonable for a power function over F2n with n < 10.

In the following, when power functions cannot be tabulated, we use the procedure
Eval-Chain(·) that takes as inputs a multiplicatively masked element x and an
addition chain for α and that outputs the desired power xα multiplicatively masked.
Note that the cost of Eval-Chain(·) is negligible with GPQ. However, in order to
minimize the complexity of an evaluation, it is always better to find the shortest
possible addition chains.

Algorithm 14 Secure Power Function Evaluation
Require: An order d, an addition chain A for α, and a (d+ 1)-additive sharing of x
Ensure: A (d+ 1)-additive sharing (y0, . . . , yd) of xα

** Mapping from F2n to F∗
2n .

1: (∆0, . . . ,∆d)← Secure-Dirac (x0, . . . , xd)
2: (x0, . . . , xd) ← (x0, . . . , xd)⊕ (∆0, . . . ,∆d)

** Convert into multiplicative masking
3: (z0, . . . , zd) ← AMtoMM (x0, . . . , xd)

** Evaluate the chain
4: (zα0 , . . . , z

α
d ) ← Eval-Chain ((z0, . . . , zd),A)

** Convert back into additive masking
5: (y0, . . . , yd) ← MMtoAM (zα0 , . . . , z

α
d )

** Mapping from F∗
2n to F2n .

6: (y0, . . . , yd) ← (y0, . . . , yd)⊕ (∆0, . . . ,∆d)

7: return (y0, . . . , yd)

Complexity. Let us denote by Cδ,CAMtoMM and CMMtoAM respectively the costs
of Alg. 11, 12 and 13 and by CGPQ the overall cost of a power function processing
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with GPQ (Alg. 14). For each algorithm, we express their cost in terms of the costs
of their elementary operations. To that end, let us also denote by Cᵀ,C⊕,C�,C⊗
respectively the costs of (n×n)-matrix transpositions, ⊕,� and ⊗ operations. At
last, C⊕n and C�n denote the cost of n-bit operations ⊕,�. We have,

Cδ =
(d+ 1)

n
× Cᵀ +

((2d (n− 1) + n)(d+ 1)

n
× C⊕n +

(n− 1)(d+ 1)2

n
× C�n ,

CAMtoMM = d2 × C⊕ +
d (3 + d)

2
× C⊗ ,

CMMtoAM = d (2 + d)× C⊕ +
d (3 + d)

2
× C⊗ ,

which gives,

CGPQ = Cδ + CAMtoMM + CMMtoAM .

Security We now prove that GPQ is t-SNI. This is made accurate in the following
theorem.

Theorem 2.2.4. GPQ is t-SNI. Let (xi)0≤i≤d be the input and let (yi)0≤i≤d be
the output of Alg. 14 (or equivalently of Fig. 2.7). For any adversary set of t
probed wires Ω = (I,O), with t ≤ d, there exists a set S of input shares such that
|S| ≤ |I| and S is sufficient to simulate the adversary observation set Ω.

x
O

G1

δ(·)
⊕

AMtoMM(·) MMtoAM(·)(·)α
⊕I5

G2G3G4

G5

G6

I6 I4 I3 I2

I1

Ŝ1
1

Ŝ5
2

S2Ŝ3S4S6 Ŝ5
1 Ŝ1

2

Figure 2.7: GPQ secure Gadget (·)α.

Proof. As in [6], the proof is constructed by composition. Namely, we construct
the simulator for the circuit of Fig. 2.7 by simulating sequentially each inner gad-
get from right to left.

Let Ω = (I,O) be an observation set that has to be simulated, made on the whole
circuit of Fig. 2.7 such that I =

⋃
1≤i≤6 I i and such that the global constraint
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∑6
i=1 |I i|+ |O| ≤ t is satisfied.

Gadget 1 - Let Ω1 = (I1,O) be an observation set made on Gadget 1. Since
G1 is affine-NI, we know that for every observation set Ω1, there exists a set of
input shares Ŝ1 = (Ŝ1

1 , Ŝ1
2 ) such that |Ŝ1| ≤ |I1 ∪O| and the set Ŝ1 is sufficient to

simulate Ω1.
Gadget 2 - Let Ω2 = (I2, Ŝ1

2 ) be an observation set made on Gadget 2. Since
MMtoAM(·) is t-SNI and |I2 ∪ Ŝ1

2 | ≤ |I2 ∪ I1 ∪O| ≤ t (by simulation of Gadget 1
and the global constraint), we know that for every observation set Ω2, there exists
a set of input shares S2 such that |S2| ≤ |I2| and the set S2 is sufficient to simulate
Ω2.
Gadget 3 - Let Ω3 = (I3,S2) be an observation set made on Gadget 3. Since G3

is affine-NI, we know that for every observation set Ω3, there exists an observation
set Ŝ3 such that |Ŝ3| ≤ |I3∪S2| ≤ |I3|+|I2| and the set Ŝ3 is sufficient to simulate
Ω3.
Gadget 4 - Let Ω4 = (I4, Ŝ3) be an observation set made on Gadget 4. Since
AMtoMM(·) is t-SNI and |I4 ∪ Ŝ3| ≤ t (by simulation of Gadget 3 and the global
constraint) , we know that for every observation set Ω4, there exists an observation
set S4 such that |S4| ≤ |I4| the set S4 is sufficient to simulate Ω4.
Gadget 5 - Let Ω5 = (I5,S4) be an observation set made on Gadget 5. Since G5

is affine-NI, we know that for every observation set Ω5 there exists an observation
set Ŝ5 such that |Ŝ5| ≤ |I5∪S4| ≤ |I5|+|I4| and the set Ŝ5 is sufficient to simulate
Ω5.
Gadget 6 - Let Ω6 = (I6, (Ŝ5 ∪ Ŝ1

1 )) be an observation set made on Gadget 6.
Since δ(·) is t-SNI and |I6∪Ŝ5∪Ŝ1

1 | ≤ |I6∪I5∪I4∪I1∪O| ≤ t (by simulation of
gadgets 5 and 1 and by the global constraint), we know that for every observation
set Ω6, there exists an observation set S6 such that |S6| ≤ |I6| and the set S6 is
sufficient to simulate Ω6.

To simulate the whole circuit, that is the observation set Ω = (
⋃

1≤i≤6 I i,O), the
simulator requires |S6 ∪ Ŝ5| shares of x. Since |S6| ≤ |I6|, and |Ŝ5| ≤ |I5| + |I4|,
we have that |S6 ∪ Ŝ5| ≤ ∑6

i=1 |I i| ≤ t and therefore GPQ satisfies the t-SNI
property.

2.3 Polynomial GPQ : Alternate Cyclotomic Method
In this section, we describe how to extend the GPQ scheme to the masking of
generic S-boxes. The main idea is outlined as follows. Since any n-bit S-box
can be represented by a polynomial S(x) =

∑
aix

i over F2n , a secure evaluation
of S(x) thus requires to securely process the corresponding sequence of linear
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operations and power functions. As mentioned in the previous section, the common
approach, referred to as the CGPQR method, would in turn decompose each power
function in terms of squares and nonlinear multiplications over F2n . Thereby,
this approach involves ISW in order to secure these nonlinear multiplications. We
propose to use GPQ to process the power functions in such manner that ISW is
no longer required. However, a naive evaluation of the above writing of S that
processes each power xi with GPQ is not recommended in terms of efficiency.
Indeed, such an evaluation would require the computation of a Dirac function
along with conversions from an additive masking to a multiplicative masking and
conversely for each monomial involved in the polynomial representation. Note
that those transformations are costly to process (asymptotically they have the
same complexity O(d2) as ISW multiplications), thus we seek to minimize their
number during a polynomial evaluation. A solution is provided by the cyclotomic
method of [14] which we briefly present hereafter. Our approach is then detailed
along with security proofs for the new proposed constructions.

2.3.1 Original Cyclotomic Method

Since the family of cyclotomic classes Cα is a partition of [0, 2n − 1], hence the
polynomial representation of any S-box can be written

S(x) = a0 +

(
q∑

i=1

Li(x
αi)

)
+ a2n−1x

2n−1 , (2.4)

where Li(x) denotes the linearized polynomial
∑

j ai,jx
2j and q is the number of

distinct cyclotomic classes of [0; 2n − 2]. The cyclotomic method simply consists
in deriving the powers xαi for each cyclotomic class as well as x2n−1 if a2n−1 6= 0
and in evaluating S(x). Following the CGPQR approach, it is required to find an
addition chain for the xαi ’s, Cα0 → Cα1 → . . . → Cαk such that Cα0 = C1 and
for every xαi , there exists j ∈ [1, k] such that Cαi = Cαj . The addition chain
decomposes the xαi ’s as a sequence of squares and nonlinear multiplications over
F2n . The rest of the powers can be derived with Frobenius maps. Using CGPQR,
ISW is involved to derive at least one power of each distinct cyclotomic classes of
[0; 2n − 2]. Therefore, the shorter the chain is, the better.

Complexity. Let us denote by CCyclo the cost of evaluating polynomials with the
CGPQR scheme and the cyclotomic method. Let us also denote by CSecMult the cost
of a finite field multiplication which is secured with ISW and let q be the number of
distinct cyclotomic classes of [0; 2n− 2]. Then the cost of masking generic S-boxes
is
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CCyclo = (q − 1)× CSecMult,

or CCyclo = (q− 2)×CSecMult if the S-box which is considered is balanced (see [14]).

We now propose a different writing of (2.4) adapted for an evaluation with GPQ.

2.3.2 Our Alternate Proposal

We have that xαi = (x + δ(x))αi + δ(x) which gives Li(xαi) = Li((x + δ(x))αi) +
Li(δ(x)) by linearity of Li. Thus, (2.4) can be written as

S(x) = a0 + L1(x
α1) +

q∑

i=2

(Li((x+ δ(x))αi) + Li(δ(x))) + a2n−1x
2n−1 ,

where Li(δ(x)) =
∑

j ai,jδ(x)2
j

=
∑

j ai,j(1)2
j
δ(x) = Li(1) · δ(x), which gives

S(x) = a0 + L1(x
α1) +

q∑

i=2

(Li((x+ δ(x))αi) + Li(1) · δ(x))) + a2n−1x
2n−1 .

According to the field equation, x2n−1 = 0 if x = 0 and x2
n−1 = 1 otherwise. It

follows that since δ(x) = 1 if x = 1 and δ(x) = 0 otherwise, we have x2n−1 =
δ(x) + 1. Finally,

S(x) = a0+a2n−1+L1(x
α1)+

q∑

i=2

Li((x+δ(x))αi)+

(
q∑

i=2

Li(1) + a2n−1

)
·δ(x) . (2.5)

The above writing of S(x) yields to a novel version of the cyclotomic method which
shall be referred to as the alternate cyclotomic method in the following and which
also extends GPQ to the evaluation of polynomials over F2n .

We outline the steps of such an evaluation in Alg. 15. Similarly to the processing
of a single power function (see Section 2.2.3), the procedure Eval-Chain(·) (Step 4 of
Alg. 15) takes as inputs an element (x+ δ(x)) ∈ F∗2n along with an addition chain
for all the xαi ’s, evaluates the latter without ISW and outputs the desired powers
(x + δ(x))αi still multiplicatively masked. Note that the sequence of operations
provided by the chain may lead to computing powers which are not one of the
(x + δ(x))αi ’s. However, only the (x + δ(x))αi ’s are converted back into additive
maskings at the end of the evaluation. Moreover, since Frobenius maps are less
costly than conversions, the linearized polynomial L1(x) of (2.5), whose monomials
are only powers of two, is always computed in additive masking.
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Algorithm 15 Alternate Cyclotomic
Require: An order d, an addition chain A, and a (d+ 1)-additive sharing of x
Ensure: A (d+ 1)-additive sharing (S0, . . . , Sd) of S(x)

Note : The (d+1)-additive sharing (x0, . . . , xd) of x is stored in memory

** Mapping from F2n to F∗2n.
1: (∆0, . . . ,∆d) ← Secure-Dirac(x0, . . . , xd)
2: (x0, . . . , xd) ← (∆0, . . . ,∆d)⊕ (x0, . . . , xd)

** Convert into multiplicative masking and evaluate the addition chain.
3: (z0, . . . , zd) ← AMtoMM(x0, . . . , xd)
4: (zα2 , . . . , zαk)← Eval-Chain((z0, . . . , zd),A)

** Compute the linearized polynomials.
5: (L0, . . . , Ld) ← Linearize-Poly(x0, . . . , xd)
6: for i = 2 to q do
7: (x

(i)
0 , . . . , x

(i)
d )← MMtoAM(zαi0 , . . . , z

αi
d )

8: (l
(i)
0 , . . . , l

(i)
d ) ← Linearize-Poly(x(i)0 , . . . , x

(i)
d )

9: (L0, . . . , Ld) ← (L0, . . . , Ld)⊕ (l
(i)
0 , . . . , l

(i)
d )

10: end for

** Mapping from F∗2n to F2n.
11: a← a0
12: for i = 1 to 2n − 1 do
13: a← a⊕ (ai · (∆0, . . . ,∆d))
14: (S0, . . . , Sd)← a0 ⊕ a2n−1 ⊕ (L0, . . . , Ld)
15: end for

16: return (S0, . . . , Sd)

Complexity. Let us denote by CAlt−cyclo the cost of evaluating polynomials using
the alternate cyclotomic method (Alg. 15). We do not take into account the
costs of Eval-Chain(·) and Linearize-Poly(·) procedures as they can be computed
with linear transformations. The cost of our alternate cyclotomic method for the
evaluation of polynomials is therefore

CAlt−cyclo = Cδ + CAMtoMM + (q − 2)× CMMtoAM ,

where q is the number of distinct cylotomic classes of [0; 2n − 2].

For the sake of clarity, Table 2.1 lists the complexities of our proposal and the
original method in terms of elementary operations as a function of the order d.
Also, as operations ⊕,⊕n,�,�n have the same complexity in practice (see Section
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2.5), we list them together. Operation Mᵀ denotes (n× n)-matrix transpositions.

In order to proceed to a fair comparison it should be noted that field multiplications
with our proposal do not have the same weight as the ones that are implemented
following the original method. Our approach allows to implement field multiplica-
tions more efficiently (see Section 2.5).

Table 2.1: Complexities of our proposal and the original method in terms of ele-
mentary operations.

Our proposal [14]
Operations

⊗ (q − 1) d2 + (3q − 3) d (q − 2) d2 + (2q − 4) d+ (q − 2)

⊕,⊕n,�,�n
(
q + 2− 3

n

)
d2 +

(
2q + 1− 4

n

)
d+

(
2− 1

n

)
(2q − 4) d2 + (2q − 4) d

Mᵀ d/n+ 1/n −

From Table 2.1 it is obvious that the complexities of both our proposal and the
original method mainly depend on the number of cyclotomic classes.

The end of the section is dedicated to prove the security of the resulting method
under the t-SNI security definition.

Security. In order to analyze the security of our alternate cyclotomic method
and for the sake of clarity, we divide the processing of the corresponding Gadget
Alt-Cy(·) into two parts as illustrated Fig. 2.8. The security of Gadgets Alt-Cy1(·)
and Alt-Cy2(·) is analyzed separately. Then the security of Alt-Cy(·) is induced by
the secure composition of Gadgets Alt-Cy1(·) and Alt-Cy2(·). Note that Gadget R
is a refreshing Gadget (Alg. 10).

Gadget Alt-Cy1(·) only involves affine gadgets. Indeed, Gadget Li(·) corresponds
to the procedure Linearize-Poly(·) (step 9) of Alg. 15 which only involves linear
operations (i.e. squares and additions) and Gadget C(·) corresponds to step 8
which involves scalar multiplications and additions. Since the composition of affine
gadgets is affine, hence Alt-Cy1(·) is affine-NI. Regarding Gadget Alt-Cy2(·) we
prove the following Lemma.

Lemma 2.3.1. Alt-Cy2(·) is t-SNI. Let (xi)0≤i≤d be the input and let (x′i)0≤i≤d, ((x+
δ(x))

αj
i )0≤i≤d with j ∈ [2; q] and (δ(x)i)0≤i≤d be the outputs of Gadget Alt-Cy2(·).

For any adversary set of t probed wires Ω = (I,O), with t ≤ d, there exists a set
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x ⊕ AMtoMM(·)δ(·)

Eval-Chain(·) O

⊕
a0
a2n−1

L1(·)

MMtoAM(·) L2(·)

Lq(·)

a0

a2n−1

⊕ ⊕ ⊕

C(·)

Alt-Cy2(·) Alt-Cy1(·)

MMtoAM(·)

R

MMtoAM(·) L3(·)

Figure 2.8: Gadget Alt-Cy(·) : circuit of the alternate cyclotomic processing.

S of input shares such that |S| ≤ |I| and S is sufficient to simulate the adversary
observation set Ω.

Proof. As previously, we build the simulator for the circuit Fig. 2.9 by simulating
sequentially each inner gadget from right to left.

AMtoMM(·)

Eval-Chain(·)

x

I2

Ŝ2
I3

G1
2

G2

G3

S3
δ(·) ⊕

Ox

Oδ(x)

I4

I6

G5

S4

S6

G6

R

G4

I5

Ŝ5 S1
2 O(x+δ(x))α2

I1
2

MMtoAM(·)

G1
q

S1
q O(x+δ(x))αq

I1
q

MMtoAM(·)

Figure 2.9: Gadget Alt-Cy2(·).

Let Ω = (I,O) be the adversary observation set that we want to simulate and
which is made on the whole circuit of Fig. 2.9, withO = (Ox,O(x+δ(x))α2 , . . . ,O(x+δ(x))αq ,Oδ(x))
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such that I =

(
q⋃
j=2

I1j

)
∪
(

6⋃
i=2

I i
)
and such that

(∑q
j=2 |I1j |+

∑6
i=2 |I i|

)
+|O| ≤ t.

Gadgets 1. For every j ∈ [2; q], let Ω1
j = (I1j ,O(x+δ(x))αj ) be an observation set

made on G1
j . Since G1

j is t-SNI and |I1j ∪O(x+δ(x))αj | ≤ t (by global constraint), we
know that for every observation set Ω1

j there exists an observation set S1
j for G1

j

such that |S1
j | ≤ |I1j | and S1

j is sufficient to simulate Ω1
j for every j ∈ [2, q].

Gadget 2. Let Ω2 = (I2, (S1
2 , . . . , S

1
q )). Since G2 is affine-NI, we know that

for every observation set Ω2 there exists an observation set Ŝ2 such that |Ŝ2| ≤
|I2 ∪

(⋃
2≤j≤q S

1
j

)
| ≤ |I2|+∑q

j=2 |I1j | and the set of input shares Ŝ2 is sufficient
to simulate the adversary observation set Ω2 made on Gadget 2.
Gadget 3. Let Ω3 = (I3, Ŝ2). Since G3 is t-SNI and |I3 ∪ Ŝ2| ≤ t (by simulation
of Gadget 2 and the global constraint), we know that for every observation set
Ω3 there exists an observation set S3 such that |S3| ≤ |I3| and S3 is sufficient to
simulate Ω3.
Gadget 4. Let Ω4 = (I4,Ox). Since G4 is t-SNI and |I4 ∪Ox| ≤ t (by the global
constraint), we know that for every observation set Ω4 there exists an observation
set S4 such that |S4| ≤ |I4| and S4 is sufficient to simulate Ω4.
Gadget 5. Let Ω5 = (I5,S3). Since G5 is affine-NI, we know that for every
observation set Ω5 there exists an observation set Ŝ5 such that |Ŝ5| ≤ |I5 ∪ S3| ≤
|I5| + |I3| and the set of input shares Ŝ5 is sufficient to simulate the adversary
observation set Ω5 made on Gadget 5.
Gadget 6. Let Ω6 = (I6, Ŝ5 ∪ Oδ(x)). Since G6 is t-SNI and |I6 ∪ Ŝ5 ∪ Oδ(x)| ≤
|I6|+ |I5|+ |I3|+ |Oδ(x)| ≤ t (by simulation of Gadget 5 and the global constraint),
we know that for every observation set Ω6 there exists an observation set S6 such
that |S6| ≤ |I6| and S6 is sufficient to simulate Ω6.

In order to simulate Gadget Alt-Cy2(·), the corresponding simulator requires the
shares S6 ∪ Ŝ5 ∪ S4 and |S6 ∪ Ŝ5 ∪ S4| ≤ |I6| + |I5| + |I4| + |I3| ≤ ∑q

j=2 |I1j | +∑6
i=2 |I i| ≤ t. Therefore, Gadget Alt-Cy2(·) is t-SNI.

Theorem 2.3.2. Alternate cyclotomic is t-SNI. Let (xi)0≤i≤d be the input and
let (Si)0≤i≤d be the output of Alg. 15 or equivalently of Gadget Alt-Cy(·) (see Fig.
2.8). For any adversary set of t probed wires Ω = (I,O), with t ≤ d, there exists
a set S of input shares such that |S| ≤ |I| and S is sufficient to simulate the
adversary observation set Ω.

We illustrate Fig. 2.10 the circuit corresponding to our alternate cyclotomic
method. We already analyzed Gadgets Alt-Cy1(·) and Alt-Cy2(·) and now we prove
the security of the full construction by composition.
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x O

I1I2

G1

Ŝ1
Alt-Cy2(·) Alt-Cy1(·)

G2

S2

Figure 2.10: Gadget Alt-Cy(·).

Proof. Let Ω = ((I1∪I2),O) be an observation set to simulate for the circuit rep-
resented Fig. 2.10, such that the global constraint |I1|+ |I2|+ |O| ≤ t is satisfied.

Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI, we know that there exists an
observation set Ŝ1 such that |Ŝ1| ≤ |I1| + |O| and the set of input shares Ŝ1 is
sufficient to simulate the adversary observation set Ω1 made on Gadget 1.
Gadget 2. Let Ω2 = (I2, Ŝ1). Since G2 is t-SNI (by Lemma 2) and |I2 ∪ Ŝ1| ≤ t
(by simulation of Gadget 1 and the global constraint), we know that there exists
an observation set S2 such that |S2| ≤ |I2| and S2 is sufficient to simulate Ω2.

In order to simulate Gadget Alt-Cy(·), the corresponding simulator requires the
shares S2 of its input x and |S2| ≤ |I2| ≤ ∑2

i=1 |I i| ≤ t. Therefore, Gadget
Alt-Cy(·) is t-SNI.

Gadgets Alt-Cy1(·) and Alt-Cy2(·) involved in our alternate cyclotomic method are
also used in the next section in which we describe how to combine them to propose
an alternate CRV method.

2.4 Alternate CRV Method
In this section we describe an alternate approach for the CRV method proposed
by Coron, Roy and Vivek in [21] which is currently the best known method for
polynomial evaluation over F2n . The idea is to plug our polynomial evaluation
method with GPQ (i.e our alternate cyclotomic method) into the CRV construction.
First, we recall the original method, then we describe our alternate approach and
we also show how it enables to derive new parameters more adapted to our case.
Finally, we prove that the resulting construction is t-SNI.

2.4.1 Original CRV Method

The CRV method first consists in choosing a collection S of l cyclotomic classes
among which C0 and C1 are always counted. Then it defines the union set L of
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all integers in those cyclotomic classes. The original approach states that the set
S has to be carefully chosen so that the monomials xL can be computed with
only l − 2 nonlinear multiplications. It is moreover required that every monomial
of [0, 2n−1] can be written as a product of some two monomials generated from L.

Denoting by P(xL) the set of all polynomials in F2n whose monomials belong to
the set xL, CRV generates randomly k− 1 polynomials qi(x) ∈ P and tries to find
k polynomials pi(x) ∈ P such that

S(x) =
k−1∑

i=1

pi(x) · qi(x) + pk(x) . (2.6)

From (2.6), CRV tries to solve a system of 2n linear equations with k · |L| unknowns
which are the coefficients of the pi’s. Such a system admits a solution for every
choice of S if it has rank 2n. To be of full rank, the necessary condition k · |L| ≥ 2n

has to be satisfied.

Complexity. Let us denote by CCRV the overall cost of CRV. As mentioned in the
above description, the set of monomials xL requires l− 2 nonlinear multiplications
to be built, and k−1 additional nonlinear multiplications are necessary to compute
(2.6). Following the CGPQR method, those nonlinear multiplications are secured
with ISW, which cost is denoted by CSecMult. Thus,

CCRV = (l + k − 3)× CSecMult .

2.4.2 Our Alternate Proposal

The original approach imposes a constraint on the choice of cyclotomic classes
that form the set S. Underlying this constraint is in fact the cyclotomic method.
The latter enables to evaluate polynomials composed of l cyclotomic classes with
l − 2 nonlinear multiplications, as long as each nonlinear multiplication allows to
reach a different cyclotomic class. Also, monomials that belong to C0 or C1 do not
require nonlinear multiplications to be derived (see Section 4.1 of [14]).

On the other hand, our alternate cyclotomic approach does not imply to secure
these l − 2 nonlinear multiplications with ISW and thus makes the previous con-
straint obsolete. It evaluates polynomials with GPQ instead. Therefore, we propose
to plug our alternate cyclotomic approach into the CRV construction only to build
the precomputed set xL. We emphasize that computing (2.6) still requires k − 1
ISW multiplications.
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New parameters. Our approach allows more freedom degree on the choice of
cyclotomic classes to build xL. Also, we can consider larger sets S. As an example,
let us consider the secure evaluation of 8-bit S-boxes. It has been shown in [21] that
choosing l = 7 and the set of cyclotomic classes L = C0∪C1∪C3∪C7∪C29∪C87∪C251

gives a full rank system for some random choice of the polynomials qi(x). The pre-
computed set from which the monomials of the qi’s are picked up can thus be
built with 5 nonlinear multiplications. Moreover, in order to satisfy the necessary
condition k · |L| ≥ 2n, such a choice for L (|L| = 49) implies that k = 6.

In our approach, we increase the size of S only to decrease the parameter k. To that
end, we chose l = 10 and L = C0∪C1∪C15∪C31∪C39∪C43∪C53∪C61∪C111∪C119

(|L| = 69) which implies that k = 4 and we have checked that the corresponding
system is of full rank. Such settings would require a total of 11 nonlinear multi-
plications following the original approach. However, they are better suited for our
alternate cyclotomic approach than those proposed in [21]. We also determined
new sets of parameters for the cases n ∈ {5, 7}, which are given along with imple-
mentation results Section 2.5.

Complexity. Let us recall that CSecMult denotes the cost of a finite field multi-
plication which is secured with ISW. The cost to build the precomputed set of
monomials is denoted by CSet and we denote by CAlt−CRV the overall cost of our
alternate CRV proposal. Note that CSet represents the cost of our alternate cyclo-
tomic proposal for polynomials that can be generated from l distinct cyclotomic
classes. Thus,

CSet = Cδ + CAMtoMM + (l − 2)× CMMtoAM ,

and
CAlt−CRV = CSet + (k − 1)× CSecMult .

For the sake of clarity, Table 2.2 below lists the complexities of our proposal and
the original method in terms of elementary operations as a function of the order d.
Also, as operations ⊕,⊕n,�,�n have the same complexity in practice (see Section
2.5), they are listed together. Operation Mᵀ denotes (n×n)-matrix transpositions.
As previously mentioned, in order to proceed to a fair comparison it should be
noted that field multiplications with our proposal do not have the same weight as
the ones that are implemented following the original method. Our approach allows
to implement field multiplications more efficiently (see Section 2.5).

Security. We now describe the resulting alternate CRV construction that incor-
porates our alternate cyclotomic approach to build the precomputed set of mono-
mials. Gadgets Alt-Cy1(·) and Alt-Cy2(·) of our alternate cyclotomic approach
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Table 2.2: Complexities of our proposal and the original method in terms of ele-
mentary operations.

Our proposal
Operation

⊗ (l + k − 2) d2 + (3l + 2k − 5) d+ (k − 1)

⊕,⊕n,�,�n (l + 2k − 3/n) d2 + (2l + 2k − 4/n− 1) d+ (2− 1/n)

Mᵀ d/n+ 1/n

[21]

⊗ (l + k − 1) d2 + (2l + 2k − 2) d+ (l + k − 1)

⊕ (2l + 2k − 2) d2 + (2l + 2k − 2) d+ (l + k − 1)

which have been analyzed in the previous section are thus involved in the full con-
struction as illustrated Fig. 2.11. Note that Alt-Cy2(·) enables to derive powers
of the precomputed set and each gadget Alt-Cy1(·) enables to generate distinct
linearized polynomials by affecting different coefficients to powers belonging to
the precomputed set. Therefore, each composition of a Gadget Alt-Cy2(·) with a
Gadget Alt-Cy1(·) generates a new polynomial. Note also that Gadgets CRV1

i (·)
correspond to the products of the pi(x)’s with the qi(x)’s of (2.6) for which we
prove the following Lemma.

⊗

Alt-Cy1q1(·)

O

Alt-Cy1p1(·)

R

CRV11(·)

⊕

Alt-Cy2(·)

Alt-Cy1pk−1
(·)

R

⊗

CRV1k−1(·)

⊕

Alt-Cy1qk−1
(·)

Alt-Cy1pk(·) ⊕

CRV2(·)

x

⊕

Figure 2.11: Gadget Alt-CRV(·) : circuit of the alternate CRV method.
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Lemma 2.4.1. Gadget CRV1
i (·) is t-SNI. Let (xi)0≤i≤d, (δ(x)i)0≤i≤d and also(

(x+ δ(x))
αj
i

)
0≤i≤d with j ∈ [2; q] be the inputs and let (yi)0≤i≤d be the output

of Gadget CRV1
i (·) represented Fig. 2.11. For any adversary set of t probed wires

Ω = (I,O), with t ≤ d, there exists a set S of input shares such that |S| ≤ |I|
from which Ω can be perfectly simulated.

Proof. Consider the following figure of Gadget CRV1
i (·).

Alt-Cy1qi(·)

⊗Alt-Cy1pi(·)

x

δ(x)

(x+ δ(x))α2

(x+ δ(x))αq

R

I1

I2

I4

I3

Ŝ4

Ŝ3

S1
1

S2

S1
2

Ŝ4 ∪ Ŝ3

G1

G2

G3

G4

O

Figure 2.12: Gadget CRV1
i (·).

Let Ω = (I,O) be an observation set that we want to simulate and which is made
on the whole circuit of Fig. 2.12, such that I =

⋃
1≤i≤4 I i and such that the global

constraint
∑4

i=1 |I i|+ |O| ≤ t is satisfied.

Gadget 1. Let Ω1 = (I1,O). Since G1 is t-SNI and |I1 ∪ O| ≤ t (by global
constraint), we know that there exists an observation set S1 = (S1

1 ,S1
2 ) such that

|S1
1 | ≤ |I1|, |S1

2 | ≤ |I1| and S1 is sufficient to simulate Ω1.
Gadget 2. Let Ω2 = (I2,S1

2 ). Since G2 is t-SNI and |I2 ∪ S1
2 | ≤ t (by simulation

of Gadget 1 and the global constraint), we know that there exists an observation
set S2 such that |S2| ≤ |I2| and S2 is sufficient to simulate Ω2.
Gadget 3. Let Ω3 = (I3,S1

1 ). Since G3 is affine-NI, we know that there exists
an observation set Ŝ3 such that |Ŝ3| ≤ |I3 ∪ S1

1 | ≤ |I3| + |I1| ≤ t and the set of
input shares Ŝ3 is sufficient to simulate the adversary observation set Ω3 made on
Gadget 3.
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Gadget 4. Let Ω4 = (I4,S2). Since G4 is affine-NI, we know that there exists an
observation set Ŝ4 such that |Ŝ4| ≤ |I4 ∪ S2| ≤ |I4| + |I2| and the set of input
shares Ŝ4 is sufficient to simulate the adversary observation set Ω4 made on Gadget
4.

In order to simulate Gadget CRV1
i (·), the corresponding simulator requires the

shares Ŝ4 ∪ Ŝ3 of each of its inputs and |Ŝ4 ∪ Ŝ3| ≤ |I4| + |I3| + |I2| + |I1| ≤∑4
i=1 |I i| ≤ t. Therefore, Gadget CRV1

i (·) is t-SNI.

Regarding Gadget CRV2(·) we prove the following Lemma.

Lemma 2.4.2. CRV2(·) is t-NI. Let (xi)0≤i≤d, (δ(x)i)0≤i≤d and
(
(x+ δ(x))

αj
i

)
0≤i≤d , j ∈

[2, q] be the inputs and let (yi)0≤i≤d be the output of Gadget CRV2(·) represented
Fig. 2.4.2. For any adversary set of t probed wires Ω = (I,O), with t ≤ d, there
exists a set S of input shares such that |S| ≤ t from which Ω can be perfectly
simulated.

Proof. Consider the following figure of Gadget CRV2(·)

Alt-Cyclo1k(·)

⊕

CRV11(·)

CRV1k−1(·)

⊕

x

(x+ δ(x))α2

(x+ δ(x))αq

δ(x)

O

S2′

Sk

Ik

Gk

I2′

G2′

G1′

I1′

Ŝ1′
Ŝ1

Ŝ2 I2

I1
G2

G1

Gk−1

⊕
Ik−1Ŝk−1

G3

⊕
Ŝ3 I3

CRV12(·)Sk−1′

Ik−1′

Gk−1′

Figure 2.13: Gadget CRV2(·).

Let Ω = (I,O) be an observation set to simulate, made on the whole circuit of
Fig. 2.4.2, such that I =

(⋃
1≤i≤k I i

)
∪
(⋃

1≤i≤k−1 I i
′) and such that the global

constraint
(∑k

i=1 |I i|+
∑k−1

i=1 |I i
′ |
)

+ |O| ≤ t is satisfied.
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Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI, we know that there exists
an observation set Ŝ1 such that |Ŝ1| ≤ |I1 ∪ O| ≤ |I1| + |O| and the set of input
shares Ŝ1 is sufficient to simulate Ω1.
Gadget 1’. Let Ω1′ = (I1′ , Ŝ1). Since Alt-Cy1t (·) is affine-NI, we know that there
exists an observation set Ŝ1′ such that |Ŝ1′ | ≤ |I1′ ∪ Ŝ1| ≤ |I1′| + |I1| + |O| and
the set of input shares Ŝ1′ is sufficient to simulate Ω1′ .
Gadget i, for every i ∈ [2; k − 1]. Let Ωi = (I i, Ŝ i−1). Since ⊕ is affine-NI, we
know that there exists an observation set Ŝ i for Gi such that |Ŝ i| ≤ |I i ∪ Ŝ i−1| ≤
|⋃1≤j≤i Ij∪O| ≤

∑i
j=1 |Ij|+ |O|. Moreover, the set of input shares Ŝ i is sufficient

to simulate the adversary observation set Ωi made on Gadget i.
Gadget i’, for every i ∈ [2; k − 1]. Let Ωi′ = (I i′ , Ŝ i). Since CRV1

i (·) is t-SNI
and |I i′ ∪ Ŝ i| ≤ t (by simulation of Gadgets j for every j ∈ [2, i] and the global
constraint), we know that there exists an observation set S i′ for Gi′ such that
|S i′ | ≤ |I i′ | and the set of input shares S i′ is sufficient to simulate the adversary
observation set Ωi′ made on Gadget i′.
Gadget k. Let Ωk = (Ik, Ŝk−1). Since CRV1

1(·) is t-SNI and |Ik ∪ Ŝk−1| ≤∑k
i=1 |I i| ∪ |O| ≤ t (by simulation of Gadget i for i ∈ [1, k − 1] and the global

constraint), we know that there exists an observation set Sk such that |Sk| ≤ |Ik|
and Sk is sufficient to simulate Ωk.

In order to simulate Gadget CRV2(·), the corresponding simulator requires the
shares

⋃
1≤i≤k−1 S i

′∪Sk and |⋃1≤i≤k−1 S i
′∪Sk| ≤ |Ik|+∑k−1

i=1 |I i
′ |+|I1|+|O| ≤ t.

Therefore Gadget CRV2(·) is affine-NI.

We now prove the following theorem regarding the full construction of our alternate
CRV approach.

Theorem 2.4.3. Alternate CRV is t-SNI. Let (xi)0≤i≤d be the input and let
(yi)0≤i≤d be the output of Gadget Alt-CRV(·) represented Fig. 2.11 and 2.14. For
any adversary set of t probed wires Ω = (I,O), with t ≤ d, there exists a set S of
input shares such that |S| ≤ |I| from which Ω can be perfectly simulated.

Proof. Let Ω = ((I1 ∪ I2),O) be an observation set we want to simulate, made
on the whole circuit represented Fig. 2.14 (or equivalently Fig. 2.11) such that
|I2|+ |I1|+ |O| ≤ t.

x O

I1I2

G1

Ŝ1

Alt-Cy2(·) CRV2(·)

G2

S2

Figure 2.14: Gadget Alt-CRV(·).
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Gadget 1. Let Ω1 = (I1,O). Since G1 is affine-NI (by Lemma 4) and |I1∪O| ≤ t
(by the global constraint), we know that there exists an observation set S1 such
that |S1| ≤ |I1| + |O| and the set of input shares S1 is sufficient to simulate the
adversary observation set Ω1 made on Gadget 1.
Gadget 2. Let Ω2 = (I2, Ŝ1). Since G2 is t-SNI (by Lemma 2) and |I2 ∪ Ŝ1| ≤
|I2|+|I1|+|O| ≤ t (by simulation of Gadget 1 and the global constraint), we know
that there exists an observation set S2 such that |S2| ≤ |I2| and S2 is sufficient to
simulate Ω2.

To simulate Gadget Alt-CRV(·), the simulator needs the shares S2 of x and |S2| ≤
|I2| ≤ |I1|+ |I2| ≤ t. Therefore Alt-CRV(·) is t-SNI.

2.5 Implementation Results
In this section we compare the efficiency of our alternate approach for the cy-
clotomic and the CRV methods with that of the original approach (CGPQR) for
orders d = 1, 2, 3. We wrote the codes in assembly language for an 8051 based
8-bit architecture with bit-addressable memory and we provide implementation
results for different settings related to S-boxes of size 4 to 8. For the sake of
clarity, we begin to explicit our implementation choices and provide timings (in
cycles) for several elementary operations. For elementary operations ⊕ and �, we
experienced C⊕ = C� = 1 cycle.

Finite field multiplications. We tabulated them for S-boxes of dimension n =
4 at the cost of 28 bytes of memory and we experienced C⊗ = 10 cycles. For larger
dimensions, the memory required to store such tables becomes prohibitive. In
cases n ∈ [5; 8], we implemented finite fields multiplications using exp/log tables.
This approach still requires to store two tables with 2n entries each, but offers a
good trade-off between execution time and memory cost. The most tricky part of
the exp/log multiplication is to manage the case where the inputs equal 0 while
avoiding any conditional branch. In our GPQ based alternate approaches, there
are always one non-zero input involved in field multiplications which yields to
slightly more efficient field multiplications than in the classical CGPQR approach.
A time constant field multiplication is executed in C⊗ = 38 cycles in the context
of CGPQR while it only takes C⊗ = 25 cycles in our alternate proposals.

(8×n)-matrix transposition. We recalled in Section 2.2.1 a bit-sliced approach
that computes n Dirac functions simultaneously over F2n . The procedure (Alg. 11)
involves (n×n)-matrix transpositions. However, on 8-bit architectures we are able
to simultaneously compute 8 Dirac functions at a time for any S-box dimension
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lower or equal to 8 which consequently requires (8×n)-matrix transpositions. We
experienced Cᵀ = 150 cycles to transpose (8×n)-matrices for 5 ≤ n ≤ 8. Note that
8-bit architectures allow us to fill each register with two elements of F24 in order
to faster the transformation in that particular case leading to a cost Cᵀ = 75 cycles.

We give costs of the transformations involve in GPQ along with the cost of a secure
multiplication using ISW (Alg. 9) in Table 2.3.

Table 2.3: Costs of Secure-Dirac (Alg. 11), AMtoMM (Alg. 12), MMtoAM (Alg.
13) and SecMult (Alg. 9).

Costs (in cycles)

Order (d) Cδ CAMtoMM CMMtoAM CSecMult

1 43 51 53 156
2 72 129 133 354
3 105 234 240 632

2.5.1 Cyclotomic Method

The cyclotomic method only consists in evaluating a polynomial whose monomials
may belong to any of the q distinct cyclotomic classes of [0, 2n − 2]. The classical
CGPQR scheme requires to secure each of the q− 1 nonlinear multiplications with
ISW (q − 2 if the S-box is balanced, see [14]). Considering our proposal, a secure
polynomial evaluation implies to process 1 Secure-Dirac(·), 1 AMtoMM(·) and q−1
MMtoAM(·) (q − 2 if the S-box is balanced). Table 2.4 lists the costs (in cycles)
to evaluate polynomials over F2n with n ∈ [4; 8].

When finite field multiplications can be tabulated (when n = 4), our proposal
does not lead to improvement of efficiency. In this case, the original approach is
preferred. In all other scenarios, our proposal is approximatively 3 times faster at
orders d = 1, 2, 3. Those results illustrates the efficiency of our extended version
of GPQ for polynomials.

2.5.2 CRV Method

Regarding the CRV method, its processing can be divided into two main stages.
First it requires to generate polynomials whose monomials are derived from a set
of l distinct cyclotomic classes. This stage requires l − 2 nonlinear multiplica-
tions with the classical approach or 1 Secure-Dirac(·), 1 AMtoMM(·) and l − 2
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Table 2.4: Costs of evaluating S-boxes of size 4 ≤ n ≤ 8 with the cyclotomic
method and our alternate proposal.

n

Method Order (d) 4 5 6 7 8

Our proposal 1 83 246 553 860 1677
[14] 132 780 1716 2652 5148

Our proposal 2 276 585 1362 2138 4205
[14] 174 1770 3894 6018 11682

Our proposal 3 477 1036 2445 3854 7603
[14] 293 3160 6952 10744 20856

MMtoAM(·) with ours. Then the evaluation is completed with k − 1 additional
nonlinear multiplications secured with ISW for both approaches.

New parameters. As mentioned in Section 2.4.2, our proposal enables to con-
sider new settings for parameters l,k and L. We list in Table 2.5 the settings
that led to better performances in practice. We were able to derive more efficient
parameters for S-boxes of dimension n with n ∈ {5, 7, 8}.

Table 2.5: New settings for parameters k and l of the CRV method.

n l k |L| L

5 5 2 21 C0 ∪ C1 ∪ C5 ∪ C7 ∪ C15

7 8 3 50 C0 ∪ C1 ∪ C3 ∪ C9 ∪ C11 ∪ C15 ∪ C21 ∪ C43

8 10 4 69 C0 ∪ C1 ∪ C15 ∪ C31 ∪ C39 ∪ C43 ∪ C53 ∪ C61 ∪ C111 ∪ C119

We report in Table 2.6 the cost (in cycles) of the CRV method with the original
approach compared to our proposal. Parameters l and k have been chosen accord-
ingly to [21] for the original approach, while our alternate proposal uses our new
settings for S-boxes of dimension n ∈ {5, 7, 8}.
Again in the particular case n = 4, the original approach is preferred since finite
field multiplications can be tabulated. However, our alternate proposal outper-
forms the original in every other scenario.
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Table 2.6: Costs of evaluating S-boxes of size 4 ≤ n ≤ 8 with the CRV method
and our alternate proposal.

n

Method Order (d) 4 5 6 7 8

Our proposal 1 127 402 559 713 972
[21] 88 624 780 1092 1560

Our proposal 2 276 939 1296 1685 2300
[21] 204 1416 1770 2478 3540

Our proposal 3 477 1668 2305 3012 4117
[21] 368 2528 3160 4424 6320

2.6 Conclusion
In this chapter, we have proven the security of the power function masking scheme
GPQ under the t-SNI definition. We have extended the GPQ scheme to the eval-
uation of polynomials over F2n and we have proven the security of the resulting
construction under the t-SNI definition. Our extension results in an alternate cy-
clotomic method which we have plugged into the CRV construction in order to
speed up polynomial evaluations. We have analyzed our alternate CRV construc-
tion and we have proven that it is t-SNI. Moreover, we have provided new sets
of parameters that improve even more the efficiency of our alternate approach for
CRV. We have given implementation results in several realistic scenarios where
S-boxes are of dimension n ∈ {4, 5, 6, 7, 8}. Given those results, we argue that
our t-SNI proposal for polynomial evaluation over F2n is a better alternative than
the original approach in all scenarios where finite field multiplications are not
tabulated.
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Chapter 1

Introduction

Lin, Chung and Han introduced in 2014 the LCH-basis in order to derive FFT-based
multipoint evaluation and interpolation algorithms with respect to this polynomial
basis. Considering an affine space of n = 2j points, their algorithms require
O(n · log2 n) operations in F2r . The LCH-basis has then been extended over finite
fields of characteristic p by Lin et al. in 2016 and an n-point evaluation algorithm
has been derived for n = pj with complexity O(n · logp n · p). However, the
problem of interpolating polynomials represented in such a basis over Fpr has not
been addressed.

In next chapter, we fill this gap and also derive a faster algorithm for evaluating
polynomials in the LCH-basis at multiple points over Fpr . We follow a different
approach where we represent the multipoint evaluation and interpolation maps by
well-defined matrices. We present factorizations of such matrices into the product
of sparse matrices which can be evaluated efficiently. These factorizations lead to
fast algorithms for both the multipoint evaluation and the interpolation of poly-
nomials represented in the LCH-basis at n = pj points with optimized complexity
O(n · log2 n · log2 p · log2 log2 p).

A particular attention is paid to provide in-place algorithms with high memory-
locality. Our implementations written in C confirm that our approach improves
the original transforms.

Remark 4. The motivation of this chapter was the improvement of the paper [35]
(and by extension [36]) which presents a design of a secure multiplication. This
last project is not joined to this thesis due to lack of time but will be made available
on ePrint very soon.

Let Fpr be the finite field with pr elements and let us denote the set of polynomials
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with respect to the monomial basis {1, x, x2, . . .} by Fpr [x]. Let M(n) denote the
number of field operations required to multiply two polynomials in Fpr [x] of degree
less than n, which may be taken to be in O(n log2 n log2 log2 n). The standard
multipoint evaluation and interpolation problems at n points of such polynomials
over Fpr can be solved with O(M(n) log2 n) operations in Fpr [26].

The multipoint evaluation and interpolation can be performed with even lower
algebraic complexities when applied to particular sets of evaluation points. The
so-called Fast Fourier transform (FFT) [18] based algorithms offer complexities as
low as O(n log2 n) [45, 47, 48, 58].

1.1 Related Works
The LCH-basis presented in [45] is based on subspace polynomials over F2r . It has
been shown that the resulting FFT-based multipoint evaluation and interpolation
on a affine space of n = 2j points of polynomials that are represented in that basis
can be done in O(n · log2 n) operations over F2r . The transforms have been mostly
employed in coding theory and in particular applied to Reed-Solomon codes [44,
45, 46, 47, 48]. Basis conversion algorithms are also proposed in [48]. Furthermore,
fast polynomial arithmetic in the LCH-basis are presented in [47]. In particular, a
fast polynomial division and a fast half-GCD algorithm are derived. Besides, fast
multiplications for long binary polynomials can be found in [17].

Regarding finite fields of characteristic p, [48] extends the LCH-basis over Fpr .
However, only a solution for the forward transform is presented. It leads to a
multipoint evaluation of polynomials in the LCH-basis of degree less than n = pj

in O(n · logp n · p) operations of Fpr . To the best of our knowledge, no solution has
been provided to solving the interpolation problem of such polynomials over Fpr .

1.2 Contributions
Next chapter presents another approach than the original solution presented in
[47] for solving the multipoint evaluation and interpolation problems. Namely, we
express the map of the multipoint evaluation of polynomials in the LCH-basis by
a matrix.

We then present a factorization of this matrix into the product of sparse matri-
ces and show how to perform the global computation efficiently. Our approach
relies on standard fast polynomial arithmetic over Fpr . It leads to a solution for
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multipoint evaluation at n = pj points of polynomials that are represented in the
LCH-basis over Fpr optimized from O(n · logp n ·p) to O(n · log2 n · log2 p · log2 log2 p).

We deduce the invertibility of the matrix corresponding to the evaluation map
from its factorization. As the inverse matrix corresponds to the interpolation
map, we therefore also provide a solution for fast interpolation of polynomials in
the LCH-basis over Fpr in O(n · log2 n · log2 p · log2 log2 p). To the best of our
knowledge, no solution was provided until now for the interpolation problem of
such polynomials over Fpr . Moreover our approach leads to in-place algorithms
with high memory-locality.

Next chapter presents the results of our article [51] we presented at the Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC), in 2020.
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Chapter 2

Fast Multipoint Evaluation and
Interpolation of Polynomials in the
LCH-basis over Fpr.

This chapter is organized as follows. Section 1 expresses the problem of
evaluating and interpolating polynomials the LCH-basis over Fpr . Section 2 gives
useful prerequisites. Then, section 3 expresses the evaluation map by a matrix
and presents our factorization into the product of sparse matrices. The matrix of
the inverse map is also exhibited. Section 4 shows how to derive fast algorithms
for multipoint evaluation and interpolation of polynomials in the LCH-basis over
Fpr . Experimental results are given in section 5 and finally section 6 concludes
the chapter.
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2.1 Description of the Problem
The first three paragraphs present material introduced in [45, 48]. Let v0, . . . , vr−1
be a basis of Fpr over Fp, i.e. 〈v0, . . . , vr−1〉 = Fpr and let e0, . . . , er−1 be the canon-
ical basis of Frp, i.e. , 〈e0, . . . , er−1〉 = Frp where any basis element ek is a vector
(e0,k, . . . , er−1,k) with ei,k = 1 if k = i and 0 otherwise.

The LCH-basis over Fpr . For any i, j ≥ 0 such that i+ j ≤ r, let U j
i and V j

i be
respectively subspaces of Fpr and Frp defined as

U j
i = 〈vi, . . . , vi+j−1〉, V j

i = 〈ei, . . . , ei+j−1〉 .

Observe that they form stricly ascending chains. Namely,

U0
0 ⊂ U1

0 ⊂ . . . ⊂ U r
0 = Fpr and V 0

0 ⊂ V 1
0 ⊂ . . . ⊂ V r

0 = Frp ,

with U0
0 = V 0

0 = {0}. Now let LUk0 be linearized polynomials defined over Fpr
and of degree pk such that ker

(
LUk0

)
= Uk

0 . They can be recursively defined from
LU0

0
(x) = x by the following relation

LUk+1
0

(x) = LUk0 (x)p − LUk0 (vk)
p−1 · LUk0 (x) . (2.1)

and they are linear (see [13]). Note that LUk0 is invariant over the cosets of Uk
0 in Fpr .

Namely, for any x ∈ Uk
0 = 〈v0, . . . , vk−1〉 and for any y ∈ U r−k

k = 〈vk, . . . , vr−1〉,

LUk0 (x+ y) = LUk0 (y) .

For any x ∈ Fpr and for any ω = (ω0, . . . , ωr−1) ∈ Frp define

χω(x) =
r−1∏

k=0

LUk0 (x)ωk .

Identifying ωj ∈ Fp to its minimal representative over N, the degree of χω(x) is
therefore

∑r−1
j=0 ωj · pj.

Invariance of χω. From the invariance property of LUk0 and the fact that Uk
0 ⊂

Uk+1
0 for any k ∈ {0, . . . , r − 1}, it follows that LUk0 is invariant over the cosets

of U s
0 with s ≤ k. Also, for any ω = (ω0, . . . , ωr−1) ∈ V j

i , we have ωk = 0 for
any k < i. Therefore, χω(x) =

∏r−1
k=0 LUk0 (x)ωk =

∏r−1
k=i LUk0 (x)ωk . It turns out

that χω is invariant over the intersection of the set of cosets of U s
0 with s ≤ k for

k ∈ {i, . . . , r − 1}. This last intersection are the cosets of U t
0 with t ≤ i.
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Polynomials in the LCH-basis over Fpr . Any polynomial of Fpr [x]/(xp
r − x)

can be written in the LCH-basis as

P (x) =
∑

ω∈Frp

αω · χω(x) , (2.2)

with αω ∈ Fpr for any ω ∈ Frp . The classical multipoint evaluation problem consists
in evaluating P (x) for any x ∈ Fpr . The classical interpolation problem consists in
recovering the coefficients αω with ω ∈ Frp from the values P (x) for any x ∈ Fpr .

In [48], the authors consider a variation of the problem where the polynomials are
of the shape ∑

ω∈V
αω · χω(x) (2.3)

and the set of evaluation is U + µ with µ ∈ Fpr , U and V being respectively sub-
spaces of Fpr and Frp with same cardinalities. A divide-and-conquer approach was
first proposed in [45] for solving this multipoint evaluation problem over F2r . By
backtracking their method, the same authors derived an algorithm for the inter-
polation problem. The forward approach was then generalized to characteristic p
in [48]. However, no method was provided for solving the interpolation problem
over Fpr .

2.2 Prerequisites
In this section, we first define an ordering over the subspaces that are involved
in the evaluation of some polynomial represented in the LCH-basis . Then, we
remind some definitions about matrices and we state two results about them that
are based on the chosen order.

Ordering. Consider a finite totally ordered set (S,≤) such that #S = n, i.e.
S = {s0, s1, . . . , sn−1} such that si ≤ sj ⇔ i ≤ j. We define the index application
ind : S 7→ N defined by ind(si) = i for any i = 0, . . . , n− 1.

Also for any arbitrary total order on Fp, in the rest of the paper we consider the
lexicographic order denoted by ≤ on Frp. We may also define a total order on Fpr
by requiring that

φ(x)
def
≤ φ(y)⇔ x ≤ y for any x, y ∈ Frp .

The symbol ≤ is used indifferently to refer to the total order on (subsets) of Frp
and Fpr .
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Matrices. Consider two finite totally ordered subsets, i.e. S1 = {x0, . . . , xn−1}
and S2 = {y0, . . . , ym−1} where the elements are respectively written from the
smallest to the largest. In what follows we handle matrices over Fpr . The matrix
A is defined by

(
(A(x, y)

)
x∈S1,y∈S2

,




ax0,y0 ax0,y1 · · · ax0,ym−1

ax1,y0 ax1,y1 · · · ax1,ym−1

...
... . . . ...

axn−1,y0 axn−1,y1 · · · axn−1,ym−1


 .

The symbol ⊗ denotes the Kronecker product of matrices. The product of several
matrices

∏n
i=0Ai stands for A0 · A1 · . . . · An. Finally, ⊕i∈SAi denotes the block

diagonal matrix diag(As0 , . . . , Asn−1). These notations can be found in [39]. The
following well-known lemma can be found in [22].

Lemma 2.2.1. For any two totally ordered sets (S1,≤1) and (S2,≤2), consider
the sets S1 × S2 and S2 × S1 together with their respective lexicographic orders.
Consider the matrix P defined by

P = (P (x, y))x∈S2×S1,y∈S1×S2
with P (x, y) =

{
1 if π(y) = x

0 otherwise

where π : S1 × S2 → S2 × S1 : (s1, s2) → (s2, s1). Also, for any matrix A =
(A(x, y))x,y∈S2×S1

, we have

Pᵀ · A · P = (A(π(x), π(y)))x,y∈S1×S2
. (2.4)

Also, note that for any (s1, s2), (s3, s4) ∈ S1 × S2 and A such that

A =
(
A((s1, s2), (s3, s4))

)
(s1,s2),(s3,s4)∈S1×S2

,

we then have
A =

((
A((s1, s2), (s3, s4))

)
s2,s4∈S2

)
s1,s3∈S1

. (2.5)

Proof. Let us begin by proving relation (2.4). For any z ∈ S2 × S1 and for any
y ∈ S1 × S2,

(A · P)(z, y) =
∑

u∈S2×S1

A(z, u) · P(u, y) = A(z, π(y)) .

Therefore, for any x, y ∈ S1 × S2,

(Pᵀ · A · P)(x, y) =
∑

z∈S2×S1

A(z, π(y)) · P(z, x) = A(π(x), π(y)) .
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Let us now prove relation (2.5). For any two totally ordered sets (S1,≤1), (S2,≤2)
with #S1 = n1,#S2 = n2 and the lexicographic order on S1 × S2, the index of
(s1, s2) ∈ S1 × S2 is given by

ind(s1, s2) = ind(s1) ·#S2 + ind(s2) . (2.6)

Therefore, A =
(
A((s1, s2), (s3, s4))

)
(s1,s2),(s3,s4)∈S1×S2

is composed of n1×n1 blocks
each of size #S2 ×#S2. Therefore,

A =
((

A((s1, s2), (s3, s4))
)
s2,s4∈S2

)
s1,s3∈S1

.

Now, consider the map

π1,j : Fp × Fj−1p 7→ Fj−1p × Fp : (s, t) 7→ π(s, t) = (t, s) .

Identify the spaces Fp×Fj−1p ,Fj−1p ×Fp and Fjp. Define π0 as the identity map and

πk,j =





π1,j ◦ π1,j ◦ . . . ◦ π1,j︸ ︷︷ ︸
k

if k > 0 ,

(π−k,j)−1 if k < 0 .

For any k ∈ Z, define Pk,j = (Pk,j(x, y))x,y∈Fjp where

Pk,j(x, y) =

{
1 if πk,j(y) = x

0 otherwise.

The second part of the following corollary can be found in [22].

Corollary 2.2.1.1. We have Pj,j = Ipj and Pk,j = Pkmod j
1,j for any k ∈ Z. More-

over, if A = (A(x, y))x,y∈Fkp and B = (B(x, y))x,y∈Fj−kp
, then

Pᵀ
k,j · (B⊗ A) · Pk,j = A⊗ B .

where Fkp × Fj−kp ,Fj−kp × Fkp and Fjp are identified.

Proof. By definition of Pk,j and π0,j, we have P0,j = Ipj . Also, for any x, y ∈ Fpj
and any k ≥ 1

(Pk−1,j · P1,j) (x, y) =
∑

v∈Fjp

Pk−1,j(x, v) · P1,j(v, y)

=

{
1 if πk,j(y) = x ,

0 otherwise.

162



CHAPTER 2. FAST MULTIPOINT EVALUATION AND INTERPOLATION OF POLYNOMIALS IN THE LCH-BASIS OVER
Fpr .

Therefore, Pk,j = Pk−1,j · P1,j. It follows that Pk,j = Pk1,j for any k ≥ 0. Observing
that πj,j = π1,j ◦ . . . ◦ π1,j︸ ︷︷ ︸

j

=id, we have Pj,j = Ipj . Therefore, Pk,j = Pk mod j
1,j for any

k ≥ 0. According to the definition of Pk,j and πk,j, for any k < 0,Pk,j = (P−k,j)
−1 .

The element −k being positive, we have P−k,j = P−k1,j . Therefore, Pk,j =
(
P−k1,j

)−1
=(

P−11,j

)−k
. Also, Pj,j = Pj1,j = Ipj . It follows that P−11,j = Pj−11,j . It turns out that

Pk,j =
(
Pj−11,j

)−k
= P(j−1)·(−k)

1,j = P(j−1)·(−k) mod j
1,j = Pk mod j

1,j .

The second part of the corollary follows immediately from Lemma 2.2.1.

2.3 A Factorization of Two Matrices
In this section, we start by reducing the multipoint evaluation and interpolation
problems expressed in Section 2.1 to a canonical form. Then we associate a matrix
to the multipoint evaluation map. We give a factorization of this matrix into the
product of sparse matrices. This factorization allows us to derive its inverse matrix
which corresponds to the inverse map. Finally, we show that the inverse matrix
also factorizes into the product of sparse matrices.

Canonical form. Consider fixed integers i and j such that i, j ≥ 0 and i+ j ≤ r.
Remember that U j

i = 〈vi, . . . , vi+j−1〉 and V j
i = 〈ei, . . . , ei+j−1〉. In what follows

U i
0, U

j
i , U

r−(i+j)
i+j and V j

i will be denoted respectively by UL, U, UR and V for the
sake of clarity. Note that Fpr = UL ⊕U ⊕UR. Consider the multipoint evaluation
and interpolation problems on a subset of polynomials of the shape

PV (x) =
∑

ω∈V
αω · χω(x) for any x ∈ U + µ . (2.7)

Note that because the vector basis (vi)i of Fpr may be freely chosen, the space U
may be any vector space of Fpr with dimension j.

Let us show that these problems may be reduced to a canonical form. Without
loss of generality, we may assume that µ ∈ UL ⊕ UR. For any x ∈ U

PV (x+ µ) =
∑

ω∈V
αω · χω(x+ µ) .

Writting µ as µL + µR where µL ∈ UL and µR ∈ UR, we have for any ω ∈ V and
any x ∈ U that

χω(x+ µL + µR) = χω(x+ µR)
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because χω is invariant on the cosets of UL. Hence for any x ∈ U

PV (x+ µ) =
∑

ω∈V
αω · χω(x+ µR) .

We deduce that evaluating PV (x) over U + µ reduces to the evaluation of PV over
U + µR.

Matrices of evaluation and interpolation maps. Given n = pj points x ∈
U + µR, we define the linear evaluation map E : Fnpr 7→ Fnpr by E ((αω)ω∈V ) =
(PV (x))x∈U+µR

. This linear map can be represented by the matrix

X ,
(
χω(x)

)
x∈U+µR,ω∈V . (2.8)

A factorization of X for fast evaluation. Let us present a factorization of X
into the product of sparse matrices. Let us first introduce descending chains of
U +µR and V . More precisely, for any k ∈ {0, . . . , j−1}, Uk = 〈vi+k, . . . , vi+j−1〉+
µR and Vk = 〈ei+k, . . . , ei+j−1〉. Let Uj = {µR} and Vj = (0, . . . , 0). We have
Us ⊂ Ut and Vs ⊂ Vt if s > t, also U0 = U +µR and V0 = V . Also, let us define the
increasing chain of sets UL,k = U i+k

0 for k ∈ {0, . . . , j − 1}. These sets are related
by the invariant UL,k ⊕ Uk = UL ⊕ U0 = U i+j

0 + µR for any k which expresses
different ways to decompose the affine space U i+j

0 + µR. Finally, these sets are
totally ordered according to Section 2.2.

Remark. Relation (2.9) in the following theorem gives essentially a matrix expres-
sion of the recurrence relation behind the divide-and-conquer approach developed
in [48]. Its proof also relies on the invariance property of the LCH-basis .

Theorem 2.3.1. Consider the linearized polynomials Lk = LUL,k defined such that
ker(Lk) = UL,k for k = 0, . . . , j − 1. The matrices Xk defined by (χω(x))x∈Uk,ω∈Vk
satisfy the recursion

Xk =

( ⊕
x∈Uk+1

Vk(x)
)
· P1,j−k · (Ip ⊗ Xk+1) · Pᵀ

1,j−k . (2.9)

for any k = 0, . . . , j − 1 where Vk is the Vandermonde matrix defined as

Vk(x) =
(
Lk(x+ c · vi+k)d

)
c,d∈Fp

for any x ∈ Uk+1 and P1,j−k is defined in Section 2.2. Also, X = X0 and we have
that

X =

j−1∏

k=0

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk

)
, (2.10)
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or equivalently

X =

j−1∏

k=0

(( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Bk
)

(2.11)

where

Bk =

{
Ipj−(k+2) ⊗

(
(Ip ⊗ P1,k+1) · Pᵀ

1,k+2

)
if 0 ≤ k < j − 1 ,

P1,j if k = j − 1 .
(2.12)

and P1,j, P1,k+1, P1,k+2 are defined in Section 2.2.

Proof. Let us prove relation (2.9) by first showing that

Xk =

( ⊕
x∈Uk+1

Vk(x)
)
· (Xk+1 ⊗ Ip) . (2.13)

In what follows δb(d) denotes the Kronecker delta function, i.e. δb(d) = 1 if b = d
and 0 otherwise. On the one hand we have

( ⊕
x∈Uk+1

Vk(x)
)

=

(
δx(z) ·

((
Lk(x+ c · vi+k)

)b)
c,b∈Fp

)

x,z∈Uk+1

.

Also, applying Lemma 2.2.1 on the right-hand side gives
(
δx(z) · (Lk(x+ c · vi+k))b

)
(x,c),(z,b)∈Uk+1×Fp

.

Therefore for any (x, c), (z, b) ∈ Uk+1 × Fp,
( ⊕
x∈Uk+1

Vk(x)
)

(x,c),(z,b)

= δx(z) · (Lk(x+ c · vi+k))b . (2.14)

On the other hand we have

Xk+1 ⊗ Ip =
(
χω(z) · Ip

)
z∈Uk+1,ω∈Vk+1

=
(
χφk+1(ω)(z) · Ip

)
z,ω∈Uk+1

where

φk : Vk 7→ Uk : ω =

i+j−1∑

s=i+k

ωs · es 7→ x =

(
i+j−1∑

s=i+k

ωs · vs
)

+ µR .

We stress that this bijection preserves the order of all elements. Also, for any
z, ω ∈ Uk+1 we have

(
χφk+1(ω)(z) · Ip

)
z,ω

=
(
χφk+1(ω)(z) ·

(
δb(d)

)
b,d∈Fp

)
z,ω

,
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Also, by Lemma 2.2.1, the right-hand side gives
(
χφk+1(ω)(z) · δb(d)

)
(z,b),(ω,d)∈Uk+1×Fp

It turns out that for any (z, b) ∈ Uk+1 × Fp, for any (ω, d) ∈ Vk+1 × Fp,
(
Xk+1 ⊗ Ip

)
(z,b),(ω,d)

= χω(z) · δb(d) . (2.15)

For any (x, c), (z, b) ∈ Uk+1 × Fp, for any (ω, d) ∈ Vk+1 × Fp we have that
(( ⊕

x∈Uk+1

Vk(x)
)
·
(
Xk+1 ⊗ Ip

))

(x,c),(ω,d)

=

∑

z,b

(
⊕

x∈Uk+1

Vk(x)

)

(x,c), (z,b)

·
(
Xk+1 ⊗ Ip

)
(z,b), (ω,d)

and from (2.15) and (2.14), the right-hand side reduces to
∑

z,b

δx(z) · (Lk(x+ c · vi+k))b · χω(z) · δb(d) .

Therefore,
(( ⊕

x∈Uk+1

Vk(x)
)
·
(
Xk+1 ⊗ Ip

))

(x,c),(ω,d)

= Lk(x+ c · vi+k)d · χω(x) . (2.16)

Observe that for any ω ∈ Vk+1, χω(x) is invariant over the cosets of UL,k+1. Also,
vi+k ∈ UL,k+1 = 〈v0, . . . , vi+k〉. Thus,

Lk(x+ c · vi+k)d · χω(x) = Lk(x+ c · vi+k)d · χω(x+ c · vi+k) .

Note that Lk(x+ c · vi+k)d = χd·ei+k(x+ c · vi+k) and therefore we have that

Lk(x+ c · vi+k)d · χω(x) = χd·ei+k(x+ c · vi+k) · χω(x+ c · vi+k)
= χω+d·ei+k(x+ c · vi+k)

where χω+d·ei+k(x+ c · vi+k) = (Xk)(x,c), (ω,d). Hence,

Lk(x+ c · vi+k)d · χω(x) = (Xk)(x,c), (ω,d) .

This proves (2.13). Finally, by gathering relation (2.16) with the above relation
and applying corollary 2.2.1.1

Xk+1 ⊗ Ip = P1,j−k ·
(
Ip ⊗ Xk+1

)
· Pᵀ

1,j−k
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which concludes the proof of relation (2.9).

Let us now prove relation (2.10) by induction. Consider the base case k = j. By
definition, Xj =

(
χω(x)

)
x∈Uj ,ω∈Vj with Uj = {µR} and Vj = {(0, 0, . . . , 0)}. Hence

Xj =
∏r−1

k=0

(
LUL,k(µR)

)0
= 1. Also, Xj =

∏
∅ = 1. Now, assume it holds that

Xn =

j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n

)
.

Starting by applying relation (2.13), we have

Xn−1 =
( ⊕
x∈Un

Vn−1(x)
)
· (Xn ⊗ Ip) .

Then, using the induction hypothesis we can write

Xn−1 =
( ⊕
x∈Un

Vn−1(x)
)
·
(
j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n

)
⊗ Ip

)
.

Noting that Ip =
∏j−1

k=n Ip and
∏

i Ai ⊗
∏

i Bi =
∏

i(Ai ⊗ Bi),

j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗Ipk−n

)
⊗ Ip

=

j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n ⊗ Ip

)
.

Also Ipk−n ⊗ Ip = Ipk−n+1 , therefore

Xn−1 =
( ⊕
x∈Un

Vn−1(x)
)
·
(
j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n+1

))
.

Since for any matrix A,A⊗ I1 = A and I1 = Ip0 , then

Xn−1 =
(( ⊕

x∈Un
Vn−1(x)

)
⊗ Ip0

)
·
(
j−1∏

k=n

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n+1

))
,

or equivalently

Xn−1 =

j−1∏

k=n−1

(( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk−n+1

)
.
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Let us now prove relation (2.11). Observe that

X =

j−1∏

k=0

( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk =

j−1∏

k=0

( ⊕
x∈Uk+1

(
Vk(x)⊗ Ipk

))
.

Also, according to corollary 2.2.1.1,

Vk(x)⊗ Ipk = Pᵀ
1,k+1 ·

(
Ipk ⊗ Vk(x)

)
· P1,k+1 .

Therefore,

X =

j−1∏

k=0

( ⊕
x∈Uk+1

(
Pᵀ
1,k+1

(
Ipk ⊗ Vk(x)

)
· P1,k+1

))
.

Noting that

⊕
x∈Uk+1

(
Pᵀ
1,k+1

(
Ipk ⊗ Vk(x)

)
· P1,k+1

)

= Cᵀ
k ·
( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Ck

where Ck =
(
Ipj−(k+1) ⊗ P1,k+1

)
and Cᵀ

k =
(
Ipj−(k+1) ⊗ Pᵀ

1,k+1

)
, we have

X =

j−1∏

k=0

(
Cᵀ
k ·
( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Ck
)
.

Let us write this last formula in another way by combining successive factors. Let
us evaluate CT0 . We have

Ipj−(0+1) ⊗ Pᵀ
1,0+1 = Ipj−1 ⊗ Pᵀ

1,1 = Ipj−1 ⊗ Ip = Ipj .

Also Cj−1 is
Ipj−j ⊗ P1,j = I1 ⊗ P1,j = P1,j .

Finally, for any k such that 0 ≤ k < j − 1, we have

Ck · Cᵀ
k+1 =

(
Ipj−(k+1) ⊗ P1,k+1

)
·
(
Ipj−(k+2) ⊗ Pᵀ

1,k+2

)

=
(
Ipj−(k+2) ⊗ Ip ⊗ P1,k+1

)
·
(
Ipj−(k+2) ⊗ Pᵀ

1,k+2

)

= Ipj−(k+2) ⊗
(
(Ip ⊗ P1,k+1) · Pᵀ

1,k+2

)
.

The result follows.

A factorization of X−1 for fast interpolation. As explained previously, X−1

is the matrix of the interpolation map for which the following corollary gives a
factorization into the product of sparse matrices.
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Corollary 2.3.1.1. The matrix X as defined in theorem 2.3.1 is invertible and the
inverse matrix X−1 is given by

X−1 =

j−1∏

k=0

( ⊕
x∈Uj−k

V−1j−k−1(x)
)
⊗ Ipj−k−1

1 (2.17)

or equivalently

X−1 =

j−1∏

k=0

(
B−1j−k−1 ·

( ⊕
x∈Uj−k

(
Ipj−k−1 ⊗ V−1j−k−1(x)

)))
(2.18)

where

B−1k =

{
Ipj−(k+2) ⊗

(
P1,k+2 ·

(
Ip ⊗ Pᵀ

1,k+1

))
if 0 ≤ k < j − 1 ,

Pᵀ
1,j if k = j − 1 .

(2.19)

and P1,j, P1,k+1, P1,k+2 are defined in Section 2.2.

Proof. By theorem 2.3.1, we have

X =

j−1∏

k=0

( ⊕
x∈Uk+1

Vk(x)
)
⊗ Ipk .

Therefore, we have

X−1 =

j−1∏

k=0

( ⊕
x∈Uj−k

V−1j−k−1(x)
)
⊗ Ipj−k−1 .

Let us now prove relation (2.18). According to theorem 2.3.1,

X =

j−1∏

k=0

(( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Bk
)

where

Bk =

{
Ipj−(k+2) ⊗

(
(Ip ⊗ P1,k+1) · Pᵀ

1,k+2

)
if 0 ≤ k < j − 1 ,

P1,j if k = j − 1 .

Therefore

X−1 =

(
j−1∏

k=0

(( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Bk
))−1

.

1There was a typo in the published version [51]. The exponent should be j−k−1 as corrected
here.
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Remembering that (A · B)−1 = B−1 · A−1 and (A⊗ B)−1 = A−1 ⊗ B−1 we have

X−1 =

j−1∏

k=0

(
B−1j−k−1 ·

( ⊕
x∈Uj−k

(
Ipj−k−1 ⊗ V−1j−k−1(x)

)))
.

Let us compute B−1k for 0 ≤ k ≤ j−1. For any k such that 0 ≤ k < j−1, we have

(Bk)
−1 =

(
Ipj−(k+2) ⊗

(
(Ip ⊗ P1,k+1) · Pᵀ

1,k+2

))−1
.

Noting that (A⊗B)−1 = A−1⊗B−1, and (A ·B)−1 = B−1 ·A−1, P−11,k+2 = Pᵀ
1,k+2 this

gives
(Bk)

−1 = Ipj−(k+2) ⊗
(
P1,k+2 ·

(
Ip ⊗ Pᵀ

1,k+1

))
.

Finally,
B−1j−1 = (P1,j)

−1 .

The result follows

2.4 Fast Multipoint Evaluation and Interpolation
in the LCH-basis

In this section we present algorithms for fast multipoint evaluation and interpola-
tion of polynomials represented in the LCH-basis over Fpr . These algorithms are
respectively given in theorem 2.3.1 and corollary 2.3.1.1.
We use an algebraic complexity model, where the running time of an algorithm is
measured in terms of the number of operations in Fpr . As customary, we use the O-
notation to neglect constant factors. We denote by M : N→ N a function such that
polynomials in Fpr [X] of degree at most n can be multiplied in M(n) operations
in Fpr . Using FFT multiplication, we can take M(n) ∈ O(n log2 n log2 log2n). Our
algorithms rely on fast interpolation and multipoint evaluation of polynomials
written in the monomial basis. Using algorithms of [26, Ch. 10], both p-point
evaluation and interpolation can be done in O(M(p) · log2 p).

2.4.1 Fast Multipoint Evaluation Algorithm in the LCH-
basis over Fpr

In what follows, we show that any sparse matrix involved in the factorized ex-
pression of the matrix X can be processed efficiently by evaluations at p points of
well-defined polynomials in the monomial basis with the standard fast algorithm
described above.
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Consider a polynomial represented in the LCH-basis , i.e. PV (x) =
∑

ω∈V αω ·χω(x)
and recall that the evaluation map at the points x ∈ U + µR is represented by the
matrix X = (χω(x))x∈U+µR,ω∈V where U and V are totally ordered. The multipoint
evaluation of PV (x) at the pj points x ∈ U + µR therefore amounts to compute

(PV (x))x∈U+µR = X · (αω)ω∈V . (2.20)

From theorem 2.3.1, X factorizes into the product of sparse matrices which are
bloc diagonal matrices for which each bloc is a Vandermonde matrix of order p.
This gives

(PV (x))x∈U+µR =

(
j−1∏

k=0

(( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Bk
))
· (αω)ω∈V

where Bk is defined as in (2.12).

Now by letting ν(j) = (αω)ω∈V , for any k = j − 1 . . . 0 we have

ν(k) =

(( ⊕
x∈Uk+1

(
Ipk ⊗ Vk(x)

))
· Bk
)
· ν(k + 1) , (2.21)

which gives ν(0) = (PV (x))x∈U+µR . Note that the bloc diagonal matrix in (2.21)
is composed of #Uk+1 groups of pk identical Vandermonde matrices of order p.

Fast processing of the sparse matrices. Let us denote by ν(k+ 1, x) the part
of the vector Bk · ν(k + 1) that will be multiplied by Ipk ⊗ Vk(x). This vector may
be further divided into pk vectors of length p that will be denoted by ν(k+ 1, x, l)
for 0 ≤ l < pk. Thus

ν(k, x, l) = Vk(x) · ν(k + 1, x, l) (2.22)

for any iteration j > k ≥ 0, for any x ∈ Uk+1 and for any 0 ≤ l < pk. Observe
now that (2.22) corresponds to p-point evaluations of well-defined polynomials of
degree less than p over Fpr [X]. Namely, let f ∈ Fpr [X] be polynomials of degree
less than p defined as

f(X) =
∑

d∈Fp
ν(k + 1, x, l)d ·Xd. (2.23)

Therefore, evaluating f at the p points of the set Sx,k = {Lk(x+ c · vi+k) | c ∈ Fp}
corresponds indeed to the matrix-vector product of (2.22). Also, for any x ∈ Uk+1

there is by definition an (cj)j such that x =
∑r−1

j=i+k cj · vj and therefore for any
k = 0, . . . , j − 1 we have according to the linearity of the polynomial Lk that

Sx,k =
{ r−1∑

j=i+k

cj · Lk(vj) + c · Lk(vi+k) | c ∈ Fp
}
. (2.24)
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We have the following algorithm for the multipoint evaluation of PV at the n = pj

points x ∈ U + µR.

Algorithm 16 Fast multipoint evaluation of a polynomial represented in the LCH-
basis over Fpr
Require: PV (x) =

∑
ω∈V αω · χω(x) where V = V j

i and the set U + µR where
U = U j

i . The vector basis (vi)i of Fpr .
Ensure: ν(0) = (PV (x))x∈U+µR .
1: Let ν(j) = (αω)ω∈V .
2: for k from j − 1 down to 0 do
3: Compute ν(k + 1) = Bk · ν(k + 1).
4: for any x ∈ Uk+1 do
5: Compute Sx,k as in (2.24).
6: for l from 0 to pk − 1 do
7: Let f(X) =

∑
d∈Fp ν(k + 1, x, l)d ·Xd.

8: Call "Standard fast multipoint evaluation" of [26, Ch. 10].
9: Input : f , the set of evaluation points Sx,k.
10: Output : A vector

(
f
(
s
))
s∈Sx,k .

11: Set νk = νk ||
(
f
(
s
))
s∈Sx,k .

12: end for
13: end for
14: end for
15: return ν(0) = (PV (x))x∈U+µR .

Complexity. In what follows, n = pj represents the size of the data in terms
of elements of Fpr . The sets Sx,k of step 5 are computed recursively thanks the
recursive definition (2.1) of the linearized polynomials. Computing all the sets
Sk,x costs at most O(j · pj) = O(log2 n · n) operations in Fpr . Also, noting that
#Uk+1 = pj−k−1, it can be seen that algorithm 16 calls the subroutine Standard
fast multipoint evaluation (step 8) j · pj−1 times in total. Remembering that this
subroutine is in O(M(p) log2 p), therefore step 8 requires

c · j · pj−1(M(p) · log2 p) ∈ O(j · pj−1 · (M(p) log2 p))

operations in Fpr where c is a constant. Also, by taking M(p) ∈ O(p log2 p log2 log2 p)
and considering the cost of step 5, we have that Algorithm 16 is in

O(j · pj · log2
2 p · log2 log2 p) = O(n · logp n · log2

2 p · log2 log2 p) ,

or equivalently in
O(n · log2 n · log2 p · log2 log2 p) .
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Remark 5. The algorithm we just described evaluates a polynomial PV (x) of degree
strictly less than p, where V = V j

i at the points of the affine space U + µR with
µR ∈ Fpr . Each point of this affine space can be written as α · x + β, β ∈ Fpr
and x ∈ Fp and which aim at evaluating PV (α · x+ β). The multipoint evaluation
of PV (x) we presented can be efficiently performed by computing several standard
multi-evaluations of some well-defined univariate polynomials of degree strictly less
than p. It is worth mentioning that this can be done differently. In the following,
we describe another method for solving the multipoint evaluation/interpolation. We
wish to thank the anonymous reviewer who gave us some references at the rebuttal
of the submission process of ISSAC 2020 in order to improve the efficiency of the
evaluation of the Vandermonde matrix/vector product.

The first thing to do is to compute the polynomial Q(x) = PV (x + β). This can
be done using the algorithm that can be found in [1]. It directly reduces such
evaluations to a simple convolution which can be evaluated by computing a product
of polynomials. Then, the polynomial T (x) = Q(α · x) is computed as follows. If
Q(x) =

∑
i qi · xi, then

Q(α · x) =
∑

i

qi · (α · x)i =
∑

i

qi · αi · xi .

Also, since ∑

i

qi · αi · xi =
∑

i

(qi · αi) · xi ,

therefore ti = αi · qi. It can also be observed that T (x) = Q(α · x) = P (α · x+ β).

From this, we now wish to evaluate T (x) for any x ∈ Fp. This can be done by first
converting T (x) into a Newton basis, i.e. , T (x) =

∑
i tni · Nbi(x) where Nbi(x)

is the ith element of the Newton basis. We only need to compute the coefficients
tni, which can be done with a single (transposed) polynomial multiplication. The
Newton basis does not have to be computed.

The evaluation of T (x) considered to be represented in a Newton basis can be
performed as follows. First, we compute T (0) = t0 = tn0. The evaluation of T (x)
over F∗p can then be easily done with an additional polynomial multiplication. This
is due to the fact that F∗p is cyclic and therefore F∗p = {γi | i = 0, . . . , p− 2}. This
concludes the method.

This approach reduces to performing efficiently a few polynomial multiplications for
which we have fast algorithms. The overall complexity of the method is expected
to reduce the complexity of our original approach by a log2(p) factor, from O(n ·
log2 n · log2 p · log2 log2 p) to O(n · log2 n · log2 log2 p)
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2.4.2 Fast Interpolation Algorithm in the LCH-basis over
Fpr

In what follows we show that the sparse matrices involved in the factorized expres-
sions of the matrix representing the interpolation map can be processed efficiently
by applying the standard algorithm for fast interpolation of [26, Ch. 10].

Consider the coefficients (αω)ω∈V of PV (x) =
∑

ω∈V αω · χω(x) from the set of
evaluations (PV (x))x∈U+µR with µR ∈ UR. By (2.20), we have

(PV (x))x∈U+µR = X · (αω)ω∈V .

Since X is invertible by corollary 2.3.1.1, and

X−1 =

j−1∏

k=0

(
B−1j−k−1 ·

( ⊕
x∈Uj−k

(
Ipj−k−1 ⊗ V−1j−k−1(x)

)))

where B−1j−k−1 is defined as in (2.19), clearly

(αω)ω∈V = X−1 · (PV (x))x∈U+µR .

Remembering that ν(j) = (αω)ω∈V and that ν(0) = (PV (x))x∈U+µR , therefore for
any k = 0 . . . j − 1 we have

ν(k + 1) =

(
B−1j−k−1 ·

( ⊕
x∈Uj−k

(
Ipj−k−1 ⊗ V−1j−k−1(x)

)))
· ν(k) (2.25)

which inverses (2.21). In this case, the elementary operation is

V−1k (x) · ν(k, x, l)

where ν(k, x, l) denotes the p elements of ν(k) that have to be multiplied with
V−1j−k−1(x) with respect to (2.25).

Fast processing of the sparse matrices. The above elementary operation
corresponds to a standard fast polynomial interpolation. More precisely, by inter-
polating from the evaluations ν(k, x, l) and the p points of the set {Lk(x+c ·vi+k) |
c ∈ Fp}, we retrieve the polynomial f as in (2.23) from which we extract the coef-
ficients ν(k+ 1, x, l). By doing so for any 0 ≤ k < j, for any x ∈ Uk+1 and for any
0 ≤ l < pk, we successively retrieve all the ν(k) and in particular ν(j) = (αω)ω∈V .
The algorithm is given below.

Remark. Step 5 would normally require to evaluate the formal derivative M(X)′
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Algorithm 17 Fast interpolation of polynomials represented in the LCH-basis over
Fpr
Require: ν(0) = (PV (x))x∈U+µR , the set U + µR (where U = U j

i ) and V = V j
i .

The vector basis (vi)i of Fpr .
Ensure: ν(j) = (αω)ω∈V .
1: for k from 0 to j − 1 do
2: for any x ∈ Uk+1 do
3: Compute Sx,k as in (2.24).
4: for l from 0 to pk − 1 do
5: Call "Standard fast interpolation" of [26, Ch. 10].
6: Input : ν(k, x, l), the set of evaluation points Sx,k.
7: Output: f(X) =

∑
d∈Fp ν(k + 1, x, l)d ·Xd.

8: Set ν(k + 1) = ν(k + 1) || ν(k + 1, x, l).
9: end for
10: end for
11: Compute ν(k + 1) = B−1j−k−1 · ν(k + 1).
12: end for
13: return ν(j) = (αω)ω∈V .

of M(X) =
∏

k∈Fp(X − Sx,k). Noting that Sx,k is an affine set, M(X) is T (X) −
T (Lk(x)) where T (X) = Xp − Lk(vi+k)

p−1 · X. Therefore M ′(X) = T ′(X) =
−Lk(vi+k)p−1 which is a constant. Consequently M ′(X) does not need to be eval-
uated at the different points as it would be required normally.

Complexity. In what follows, n = pj represents the size of the data in terms of
elements of Fpr . The cost of algorithm 17 is mainly given by its steps 3 and 5. As
previously explained, the cost of step 3 is at most O(j · pj) = O(logp n · n). Step
5 consists of multiple calls to the subroutine Standard fast interpolation. This
subroutine is in O(M(p) log2 p) and is called as many times as the subroutine of
algorithm 16. Therefore step 5 and more globally algorithm 17 are in

O(n · log2 n · log2 p · log2 log2 p) .

In-place algorithms. The multipoint evaluation (resp. interpolation) of a poly-
nomial expressed in the LCH-basis is a combination of permutations and calls to the
subroutine Standard fast multipoint evaluation (resp. Standard fast interpolation)
on p points. Permutations are based on perfect shuffle permutations. As explained
in [59], a perfect shuffle can be expressed as the composition of two involutions
and can therefore be implemented by simply swapping elements, which are in-place
operations. The subroutines of fast multipoint evaluation and interpolation on p
points can also be performed in-place following [30].
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2.5 Experimental Results
We implemented and ran our algorithms on an Intel Core i5 CPU at 3, 2 Ghz. Our
implementations are written in C using the FLINT library [38]. We compared the
timings of our algorithm for fast multipoint evaluation of polynomials over Fpr
with the original method proposed in [48].
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Figure 2.1: Timings for pr-point evaluation over F2
p (left) and F3

p (right). Abscissa
is characteristic p.

Algorithm 16 suboptimal consists in implementing formula (2.10) where the operands
of the Kronecker product are commuted using a well-defined permutation. In this
case, the sequence of Vandermonde matrices Vk(x), x ∈ Uk+1 is repeated pk times.
This lead to unnecessary memory transfers and/or recomputation of polynomials.
Algorithm 16 based on formula (2.12) remedies this problem. In this case, each
successive Vandermonde matrix is used pk times in a row. Both algorithm 16 sub-
optimal and algorithm 16 were implemented following the classical (not in-place)
version of the Standard fast multipoint evaluation and interpolation. In the state
of the art [48], each single evaluation requires O(p) operations while our approach
performs p-point evaluations inO (M(p) · log2(p)) = O

(
p · log2

2 p · log2 log2 p
)
. This

explains the improvement of total complexity for n-point evaluation of polynomi-
als in the LCH-basis from O(n · logp n · p) to O(n · log2 n · log2 p · log2 log2 p) as
confirmed in Figure 2.1.

2.6 Conclusion
In this chapter, we tackled the problems of fast multipoint evaluation and inter-
polation of polynomials represented in the LCH-basis over Fpr .

We provided a fast algorithm for the multipoint evaluation problem. We reduced
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such an evaluation to the problem of computing multiple multipoint evaluation of
(standard) polynomials with respect to the monomial basis at p points over Fpr . By
doing so, we optimized the complexity of the original method from O(n · logp n · p)
to O(n · log2 n · log2 p · log2 log2 p).

We also provided an algorithm for the fast interpolation problem which was left
unsolved in [48] for finite fields of characteristic p. We reduced this problem to
the one of computing multiple fast interpolation of (standard) polynomials with
respect to the monomial basis at p points over Fpr . Our method is in O(n · log2 n ·
log2 p · log2 log2 p). We implemented both methods using the FLINT library and
we showed that the improvement is confirmed in practice. Using permutations of
the data, which are explicitely given, our algorithms satisfy high memory-locality.
They can also be performed in-place.
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General Conclusion and
Perspectives
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In this thesis, we provided new building blocks that can be used in the masking
countermeasure, at any masking order. First, we provided refreshing schemes, for
both the serial and the parallel cases in the revelant probing model and in the
bounded moment leakage model respectively. Our serial schemes were proved to
be SNI secure, the strongest security property in the probing model, for any finite
Abelian group, at any masking order. In the two different contexts, our schemes
improve the performances of the existing related schemes of the state of the art.
Our constructions can be used for the masking at small masking orders but also
for the masking at high masking orders.

Secondly, we proved the SNI property of the original GPQ masking scheme, ded-
icated to the masking of the AES block cipher. We extended the GPQ masking
scheme to the masking of the implementations of any block ciphers. Our approach
is based on existing polynomial evaluation methods over binary finite fields. The
resulting extended version of GPQ we provide describes the first polynomial evalu-
ation mixing Boolean and multiplicative masking. We also proved that it satisfies
the SNI requirements. We also provided an alternate approach for the CRV polyno-
mial evaluation method mixing our extended GPQ scheme and the commonly used
ISW multiplications. The security of our alternate approach based on CRV was
proved to be SNI at any masking order. We also derived new parameters for our
alternate CRV polynomial evaluations, improving even more the performances in
practice. This was verified for implementations in assembly language for an 8051
based 8-bit architecture at small masking orders 1, 2 and 3. Interestingly, even if
the complexity of our constructions are dominated by the quadratic complexities
of the conversions, they were the fastest constructions in practice at the time for
the masking orders that were implemented.

Thirdly, we improved a transform for evaluating/interpolating polynomials in the
LCH-basis over finite fields of characteristic p and we also solved the interpolation
problem for such a characteristic. The latter problem was left unsolved in the
original works. We implemented our methods in C using the FLINT library and
published the source codes on GitHub.

The following addresses different possible axes for future research.

Perspectives
Let us start with two short terms perspectives which are almost finalized. Firstly,
we are writing a journal version of the work initiated in [51]. This journal version
will take into account Remark 5 of Part IV, chapter 2. According to this remark,
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we expect to improve the complexity of [51] by a logarithmic factor.

Secondly, we are building a secure multiplication based on [51]. This project is
also being finalized.

The following presents longer terms perspectives of the work initiated by this thesis.
Parallel software implementations are of interest. They offer great possibilities of
efficiency improvements. However, the masking countermeasure for the parallel
setting is still young. Interestingly, coupling effects due to micro-architectural
features were reported in practice in a recent work [25]. These effects can lead
to security issues. It would therefore be interesting to investigate these effects for
specific processors and search for new ways to enhance the security of masking
schemes in the parallel setting.

Also, hardware implementations are of great interest in the context of masking.
Such implementations are typically masked differently than the standard masking
countermeasure for software implementations. The masking schemes are usually
called threshold implementations are were initiated in [53]. These constructions
deal with additionnal physical effects called glitches [49] that occur in practice.
Glitches greatly contribute to the overall power consumption of a running device
and can also lead to a reduction of the masking order by leaving a sensitive vari-
able not protected by its masks. It would also be interesting to investigate such
constructions and conduct actual analysis in practice of the resulting masking
schemes with the adequate equipments, i.e. an oscilloscope and FPGA or ASIC
based implementations.

In any case, software and hardware implementations at small specific orders can
sometimes also be improved, due to specific features of some well-chosen mask-
ing orders such as powers of two. Also, it is sometimes convenient to conduct
analyses on a small range of well-chosen masking orders, for which one can derive
specific and efficient methods. Namely, for small masking orders, it might be more
interesting to derive quadratic countermeasures with small constants rather than
quali-linear methods with large constants.

Finally, some of the implementations we did during this thesis can also be extended
from 8-bit architectures to 32-bit architectures. The latter provide a large set of
instructions that can lead to even better performances in practice.
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Résumé : De nos jours, les systèmes embarqués sont omniprésents et leurs ap-
plications sont de plus en plus nombreuses. La plupart des domaines industriels
d’aujourd’hui dépendent des systèmes embarqués pour l’accomplissement de tâches
spécifiques, parfois hautement sensibles. Actuellement, l’usage de systèmes embar-
qués est encore davantage accentué par la mise en place de "l’Internet des Objets",
véritable révolution digitale. Un système embarqué est un système électronique et
informatique contrôlant une partie spécifique d’un système plus large. De nom-
breuses contraintes, notamment liées à sa taille, doivent être prises en compte lors
de sa conception. Il en résulte qu’un système embarqué est généralement à bas
coûts, consomme peu de courant et dispose la plupart du temps d’une puissance de
calculs relativement restreinte. Pour l’accomplissement de ses tâches spécifiques,
un système embarqué collecte, manipule et échange des données parfois sensibles.
Par ailleurs, un tel système est souvent directement accessible physiquement. Cette
particularité peut alors être exploitée par une personne malintentionnée pour con-
trôler, extraire ou encore altérer les données sensibles manipulées par de tels sys-
tèmes. Dans un tel contexte, la mise en place de mécanismes de sécurité adaptés
est primordiale. En particulier, il est crucial de sécuriser l’accès physique à un sys-
tème embarqué, mais également de protéger les données sensibles manipulées ou
stockées par le matériel. La cryptographie ou science du secret offre de nombreuses
possibilités pour parvenir à sécuriser les données manipulées par un système em-
barqué. Cependant, dans ce contexte précis, certaines caractéristiques physiques
liées à l’électronique des systèmes embarqués varient à l’exécution des implémenta-
tions d’algorithmes cryptographiques, garants de la sécurité de l’information. En
particulier, la consommation de courant de l’appareil ou encore ses émanations
électromagnétiques dépendent des données manipulées ainsi que des choix faits à
l’implémentation. Ces caractéristiques physiques peuvent en outre être mesurées
si l’accès physique à l’appareil est possible. L’exploitation de ces mesures a mené
à des attaques dévastatrices communément appelées « attaques par canaux aux-
iliaires ». La mise en œuvre de ce type d’attaque permet d’extraire les données
secrètes stockées ou manipulées par un appareil électronique, souvent sans grands
efforts. Des contre-mesures particulières doivent donc être mises en place pour
garantir la sécurité des implémentations d’algorithmes cryptographiques sans trop
dégrader leurs performances à l’exécution. Le masquage est une solution large-
ment déployée de nos jours, mais sa mise en œuvre correcte et efficace nécessite
une analyse fine des solutions



Titre: Sécurisation des implémentations d’algorithmes cryptographiques pour les sys-
tèmes embarqués

Mots clés: Masquage, Implémentations logicielles, Chiffrements par blocs, Systèmes embar-
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Résumé: De nos jours, les systèmes embar-
qués sont omniprésents. Ils trouvent des ap-
plications dans tous les domaines industriels et
leur déploiement est encore davantage accen-
tué par la mise en place de "l’Internet des Ob-
jets", véritable révolution digitale. Ces systèmes
collectent, manipulent et échangent des don-
nées, parfois sensibles, opèrent souvent dans des
environnements à risques et sont généralement
physiquement accessibles par une personne ma-
lintentionnée, ce qui nécessite la mise en place
de mécanismes de sécurité adaptés garantissant
la protection de l’information. La cryptogra-
phie, ou science du secret, offre de nombreuses
possibilités pour parvenir à securiser des ap-

pareils éléctroniques contrôlés par des systèmes
embarqués. Cependant, ce contexte précis à une
particularité. L’exécution d’implémentations
d’algorithmes cryptographiques est fortement
liée à l’électronique embarquée, menant à
des attaques dévastatrices, exploitant un ac-
cès physique direct au matériel, permettant de
retrouver facilement les données secrètes manip-
ulées par le système. Des contre-mesures parti-
culières doivent être mises en place pour pallier
à ces problèmes. Le masquage est une solution
largement déployée de nos jours, mais sa mise
en œuvre correcte nécessite une analyse fine des
solutions algorithmiques qu’elle propose, parti-
culièrement dans un contexte où les ressources
matérielles sont limitées.

Title: Securisation of implementations of cryptographic algorithms in the context of em-
bedded systems
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Abstract: Embedded systems are ubiqui-
tous. They find applications in all industrial
fields and their deployment is even more accel-
erated by the birth of the "Internet of Things",
which is expected to revolutionize our digital
world. These systems collect, manipulate and
exchange information, sometimes sensitive, in
highly critical environments and are usually
physically accessible by an unauthorized entity.
This requires to develop and implement well-
suited security mecanisms, guaranteing the se-
curity of information. Cryptography is the sci-
ence of secrets and offers numerous ways to mit-

igate the risks that face electronic devices con-
trolled by embedded systems. However, in such
a context, the execution of the implementations
of cryptographic algorithms is tied to the em-
bedded electronics, leading to devastating at-
tacks exploiting a direct physical access to the
device, allowing the disclosure of the secret in-
formation manipulated by the system. Special
countermeasures have to be implemented to mit-
igate these issues. Masking is a well-known so-
lution, but its correct implementation requires
a thorough analysis of algorithmic solutions it
provides, especially in a context where devices
have limited resources.
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