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P R E A M B L E

Multi-agent systems are systems composed of multiple plants interacting among themselves,
typically, over a communication network. Essentially, in a multi-agent setting, an intercon-
nected agent receives information from a neighbor, e.g., the state of the latter, so that the
receiving system may compare the neighbor’s information against its own and take action
accordingly. Systems interacting in such manner are referred to as cooperative, since they
modify their behavior in function of that of their neighboring agents, in order to achieve a
common objective.

Multi-agent cooperative systems offer a great deal of advantages with respect to single-
agent systems in terms of versatility, reduced computational loads, robustness to failure,
etc. Moreover, from a robotics perspective, with the significant advances in computing capabil-
ities and the miniaturization of processing units and sensors, networks of autonomous robotic
systems have become increasingly pervasive. However, while they bring novel engineering-
based solutions to actual socio-economical problems, multi-agent systems are extremely
complex to design, to analyze, and, therefore, to make them achieve autonomously and
reliably their common mission. Indeed, their complexity imposes the intervention of spe-
cialists from a number of disciplines, ranging from computer science, electrical engineering,
telecommunications, signal processing, etc. In this thesis we address the coordination of
multi-agent systems from the perspective of automatic control.

From a control perspective, multi-agent systems are commonly modeled as a set of ordinary
differential equations, each of which represents the dynamics of a single agent (or system).
Each individual model is endowed with a so-called control input, which is represented by a
function of the actual system’s states and those of its neighbors. The network interconnections,
in turn, are modeled using a graph representation. Graph theory, which essentially relies on
tools of linear algebra to manipulate and analyze networks of systems, is particularly useful
to address different problems of control of multi-agent systems modeled by linear differential
equations. Yet, in many meaningful situations, where the interconnections between the
agents are nonlinear, the graph-theory and linear-algebra tools may prove insufficient for the
analysis of the multi-agent system.

One of the main theoretical contributions of this thesis is to provide a formal analysis
of stability and robustness for networks of systems interacting through nonlinear inter-
connections. For instance, in the context of cooperative autonomous vehicles evolving in
physically-constrained environments, the physical restrictions on the system such as collisions
to avoid, or network interconnections that are reliable within limited ranges, are modeled
via nonlinear interconnections between the agents.

We address and solve several concrete problems of control of multi-agent systems under
multiple constraints. Indeed, in realistic settings, multi-agent systems operate under multiple
restrictions that stymie the successful undertaking of the cooperative task. First, the access
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to the information of the system is limited. By means of the available communication or
measurement devices, each agent can only directly interact with a reduced portion of its
neighbors, generally determined by an interaction topology. In turn, such measurement and
communication devices, often have limited capabilities e.g., limited bandwidth, limited
range or quantization. The latter restrict further the inter-agent exchanges. Other relevant
physical limitations are those imposed by the actuators, such as input saturation or minimum
activation values, or those resulting from the interaction with the environment, such as
potential collisions and bounded workspaces. In addition, physical systems are constantly
subject to disturbances in the form of, e.g., external inputs, modeling uncertainties or delays.

From an automatic-control perspective, most of the interactions and coordination tasks of
multi-agent systems may be addressed as a problem of consensus. Roughly speaking, this
problem consists in the convergence of the state variables of all agents to a common value.
In the case of autonomous vehicles, this translates into all the agents converging to the same
position and, if pertinent, acquiring a common orientation.

The conditions to achieve (or not) consensus vary considerably in function of a number of
aspects, such as

(i) the nature of the individual systems’ dynamics, which is e.g., linear or nonlinear,
(ii) the nature of the interconnections, which may be perennial and static or may vary and

may be linear or nonlinear,
(iii) whether the interconnection topologies change,
(iv) and whether the flow of information is bidirectional or not, to mention a few.

The problem of consensus has been extensively studied in the literature under a number
of scenarios, academic or industrial. A review of the pertinent literature is presented in
a dedicated chapter, hence here we merely emphasize that the greater effort and bulk of
contributions address consensus problems for linear systems. On the other hand, many
relaxations are considered in regards to the network’s topologies, but considerably less
works address consensus for networks of nonlinear systems and even less, with nonlinear
interconnections.

We focus on problems of consensus in complex scenarios where the interconnection networks
are nonlinear, as such naturally arise due to the incorporation of constraints. In addition, we
consider networks both with bidirectional and unidirectional flow of information, that is,
modeled by undirected and directed graphs. On the other hand, our work focuses on static
interconnections only. Some of our contributions address problems of consensus for linear
systems (primarily integrators of any order) and others solve concrete relevant problems
involving nonlinear models, such as nonholonomic vehicles or thrust propelled underactuated
unmanned autonomous vehicles. Thus, the control problems that we address and their
formulation stem from the realm of robotics and more particularly, of control of cooperative
autonomous vehicles, both terrestrial and aerial.
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organization of this thesis

The dissertation is organized in four technical chapters, preceded by two introductory ones.
The first one gives a brief account of the state of the art prior to this thesis and in the second
one we recall some borrowed material that serves as foundation to our work. The contents
of the four technical chapters, which contain our original contributions are as follows (the
labels of the citations correspond to the list of publications presented in p. 4):

• Chapter 3: We address the problem of consensus with preserved connectivity for first-
and second-order integrators. Based on the edge-based representation of the interactions
between the agents, we propose a control law that achieves consensus with guaranteed
connectivity maintenance. This problem has been solved earlier in the literature with
similar controllers. Our contributions, however, consist in providing, for the first
time in the literature, strict Lyapunov functions for the consensus-with-connectivity-
maintenance problem as well as robustness properties in terms of input-to-state stability.
These results were originally presented in the following publications: [1], [2], [5]

• Chapter 4: In this chapter we address the problem of full-consensus (in position and
orientation) for nonholonomic vehicles. Our contributions consist in presenting novel
consensus controllers, based on a polar-coordinates-based model, that are smooth
and time-invariant and use only relative variables, making it more suited to practical
applications. Then, we extend the latter and solve the full-consensus problem with con-
nectivity maintenance in the case of limited range and limited field-of-view constraints,
for which we design a smooth and time-invariant controller based only on relative
measurements. In each case, we provide illustrative simulation and experimental results.
The results presented in this chapter were the object of the following publications: [3],
[4], [6]

• Chapter 5: In this chapter we propose a control methodology in order to solve the
problem of consensus under inter-agent constraints, mainly connectivity maintenance
and collision avoidance, and disturbances for high-order systems in normal form. To
this end we build upon the results of Chapter 2. We establish strong stability results:
asymptotic convergence of the multi-agent system to the consensus manifold and
robustness with respect to bounded disturbances in the sense of practical-input-to-state
stability.
These works correspond to the publication [ii].

• Chapter 6: Finally, in this chapter we solve the rendezvous problem under inter-agent
constraints for a group of multiple underactuated UAVs based on the methodology
presented in Chapter 5. In a similar way, our contribution is to provide a control
law, based on an input transformation and on the controllers designed in Chapter 5,
that solve the problem of rendezvous in formation with connectivity maintenance
and collision avoidance for multiple thrust-propelled UAVs. Moreover, we establish
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asymptotic convergence to the consensus manifold and robustness with respect to
bounded disturbances in the sense of practical-input-to-state stability. We provide
simulation and experimental results that illustrate the performance of the proposed
control algorithms.
The results were presented in the following publications: [ii], [iii]

Some technical appendices are also provided, for ease of reference.
For a detailed Table of contents see p. 11.

publications

The following is an exhaustive list of publications written during the past three years, that
are either published, accepted for publication, or still under review. The material of the
publications [i], [7], and [iv] is not included in this thesis but these references are listed since
they were produced during the three-year period of the PhD.
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with collision avoidance and connectivity maintenance,” 2022 American Control
Conference (ACC), 2022, Submitted for presentation.
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R É S U M É É T E N D U E N F R A N Ç A I S

Les systèmes multi-agents sont composés de plusieurs systèmes dynamiques qui interagissent
entre eux, généralement, à travers un réseau de communication. Essentiellement, dans un
cadre multi-agent, un agent interconnecté reçoit des informations d’un voisin, par exemple
l’état de ce dernier, de sorte à ce que le système récepteur puisse comparer les informations
du voisin aux siennes et agisse en conséquence. Les systèmes interagissant de cette manière
sont appelés coopératifs, car ils modifient leur comportement en fonction de celui de leurs
agents voisins, afin d’atteindre un objectif commun.

Les systèmes multi-agents coopératifs offrent de nombreux avantages par rapport aux
systèmes mono-agent en termes de polyvalence, d’une réduction des charges de calcul, de
robustesse en cas de défaillance, etc. En outre, d’un point de vue de la robotique, avec
l’accroissement de la puissance de calcul embarquée et la miniaturisation des capteurs et
des unités de traitement, les réseaux de systèmes robotiques autonomes gagnent de plus en
plus de terrain. Cependant, bien qu’ils apportent des nouvelles solutions à des problèmes
socio-économiques réels, les systèmes multi-agent sont extrêmement complexes à concevoir,
à analyser, et donc à les faire réaliser de manière autonome et fiable leur mission commune.
En effet, leur complexité exige l’intervention de spécialistes en plusieurs disciplines, allant
de l’informatique à la génie électrique, les télécommunications, le traitement du signal, etc.
Dans cette thèse, nous approchons la coordination des systèmes multi-agents du point de
vue de l’automatique.

Du point de vue de l’automatique, les systèmes multi-agents sont généralement modélisés
par un ensemble d’équations différentielles dont chacune représente la dynamique d’un seul
agent (ou système). Chaque modèle est doté d’une entrée dite de commande, représentée par
une fonction de l’état du système et de celui de ses voisins. Le réseau d’interconnexions, à
son tour, est modélisé à l’aide d’un graphe. La théorie des graphes, qui repose essentiellement
sur des outils de l’algèbre linéaire pour la manipulation et l’analyse des réseaux de systèmes,
est particulièrement utile pour traiter des problèmes de commande de systèmes multi-agents
modélisés par des équations différentielles linéaires. Pourtant, dans des nombreuses situations
les interconnexions entre les agents sont non linéaires et donc les outils de la théorie des
graphes et de l’algèbre linéaire peuvent s’avérer insuffisants pour l’analyse du système.

L’une des principales contributions de cette thèse est de fournir une analyse formelle de la
stabilité et de la robustesse des réseaux de systèmes avec des interconnexions non linéaires.
Par exemple, dans le contexte des véhicules autonomes coopératifs évoluant dans des environ-
nements contraints, les restrictions imposées sur les systèmes, telles que des interconnexions à
portée limitée ou des collisions à éviter, sont modélisées par des interconnexions non linéaires
entre les agents.

Nous abordons et résolvons plusieurs problèmes concrets de commande de systèmes multi-
agents sous des contraintes multiples. En effet, dans des scénarios réalistes, les systèmes
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multi-agents sont soumis à des multiples restrictions qui entravent l’accomplissement de la
tâche coopérative. D’abord l’accès à l’information est limité. Chaque agent ne peut interagir
directement qu’avec une partie réduite de ses voisins, généralement déterminée par une
topologie d’interaction, au moyen des dispositifs de communication ou de mesure disponibles.
Or, de tels dispositifs ont souvent des capacités limitées, par exemple une bande passante
limitée, une portée limitée ou des signaux quantifiés. Ces dernières restrictions restreignent
d’avantage les échanges inter-agents. D’autres limitations physiques viennent des actionneurs,
telles que des saturations des entrées et de seuils d’activation, ou de l’interaction entre
les agents et l’environnement, telles que des risques de collision et des espaces de travail
délimités. En outre, les systèmes physiques sont constamment soumis à des perturbations
sous la forme, par exemple, d’entrées externes, d’incertitudes des modèles ou de retards.

D’un point de vue de l’automatique, la plupart des interactions et des tâches de coordination
des systèmes multi-agents peuvent être abordées comme un problème de consensus. En gros,
ce problème consiste en la convergence des variables d’état de tous les agents vers une valeur
commune. Dans le cas des véhicules autonomes, cela se traduit par la convergence de tous
les agents vers la même position avec, le cas échéant, la même orientation.

Les conditions pour atteindre (ou non) consensus varient considérablement en fonction
d’un certain nombre d’aspects, tels que

(i) la nature de la dynamique de chaque système, qui peut être, par exemple, linéaire ou
non linéaire,

(ii) la nature des interconnexions, qui peut être pérenne et statique ou variable et peut
être linéaire ou non linéaire,

(iii) si les topologies d’interconnexion varient dans le temps
(iv) et si la flux d’information est bidirectionnel ou non, pour n’en citer que quelques-uns.

Le problème de consensus a été largement étudié dans la littérature pour un nombre
important de scénarios, académiques et industriels. Une revue de la littérature pertinente à
ce problème est présentée dans un chapitre dédié, c’est pourquoi nous nous limitions ici a
souligner que la plupart des contributions se concentrent sur des problèmes de consensus
pour des systèmes linéaires. Par ailleurs, des nombreuses simplifications sont faites en
ce qui concerne les topologies du réseau, mais beaucoup moins de travaux abordent le
problèmes de consensus pour des réseaux de systèmes non linéaires et encore moins, avec
des interconnexions non linéaires.

Nous nous concentrons sur les problèmes de consensus dans des scénarios complexes
où les interconnexion entre les agents sont non linéaires, ce qui survient naturellement en
présence de contraintes. De surcroît, nous considérons que le flux de l’information au sein
du réseau peut être unidirectionnel ou bidirectionnel, c’est-à-dire, il peut être modélisé par
des graphes orientés et non orientés. En revanche, nos travaux portent uniquement sur des
interconnexions statiques. Une partie des contributions consiste à résoudre des problèmes de
consensus pour des systèmes linéaires (principalement des intégrateurs de tout ordre) et une
autre partie pour des modèles non-linéaires, tels que des véhicules non-holonomes ou des
drones autonomes sous-actionnés, en considérant des interconnexions non-linéaires. Ainsi,
les problèmes de commande que nous abordons et leur formulation relèvent du domaine de
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la robotique et plus particulièrement de la commande des véhicules autonomes coopératifs
terrestres et aériens.

organisation de cette thèse

Ce mémoire est organisé en quatre chapitres techniques, précédés de deux chapitres introduc-
tifs. Le premier rend compte brièvement de l’état de l’art avant cette thèse et dans le second,
nous rappelons quelques concepts emprunté qui servent de base à notre travail. Les contenus
des quatre chapitres techniques, qui contiennent les contributions originales, sont présentés
ci-dessous (les libellés des citations correspondent à la liste des publications présentée en
page 4):

• Chapitre 3 : Nous traitons le problème de consensus avec maintien de la connectivité
pour des intégrateurs de premier et second ordre. Sur la base d’une représentation des
interactions entre les agents basée sur les arêtes, nous proposons une loi de commande
pour atteindre le consensus et garantir le maintien de la connectivité. Ce problème a
déjà été résolu dans la littérature avec des lois de commande similaires. Cependant, nos
contributions consistent à fournir, pour la première fois dans la littérature, des fonctions
de Lyapunov strictes pour le problème de consensus avec maintien de la connectivité
ainsi qu’à établir des propriétés de robustesse en termes de stabilité entrée-état.
Ces résultats ont été initialement présentés dans les publications suivantes : [1], [2], [5]

• Chapitre 4 : Dans ce chapitre, nous traitons le problème de consensus complet (en
position et en orientation) pour des véhicules non holonomes. Les contributions consis-
tent à concevoir des nouvelles lois de commande, basées sur un modèle en coordonnées
polaires, qui sont lisses et invariantes dans le temps et qui n’utilisent que des variables
relatives, ce qui les rend plus adaptées aux applications pratiques. Ensuite, ces résultats
sont étendus afin de résoudre le problème de consensus complet avec maintien de
la connectivité pour des véhicules avec des portées de communication limitées et de
champs de vue réduits, à l’aide de lois de commande lisses et invariantes dans le temps
basées sur des mesures relatives. Dans chaque cas, nous illustrons les résultats à l’aide
de simulations et d’essais expérimentaux.
Les résultats présentés dans ce chapitre ont fait l’objet des publications suivantes : [3],
[4], [6]

• Chapitre 5 : Dans ce chapitre nous proposons une méthodologie de commande qui
permet de résoudre le problème de consensus pour des systèmes d’ordre supérieur en
forme normale sous des contraintes inter-agents, particulièrement du maintien de la
connectivité et de l’évitement des collisions, et sous l’action des perturbations. A cette
fin, nous nous appuyons sur les résultats du Chapitre 2. Nous établissons des résultats
de stabilité forts : convergence asymptotique du système multi-agents vers la variété
de consensus et robustesse vis-à-vis des perturbations bornées au sens pratique de la
stabilité entrée-état.
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Ces travaux correspondent à la publication [ii].

• Chapitre 6 : Enfin, dans ce chapitre, nous résolvons le problème de rendez-vous sous
contraintes inter-agents pour un groupe de plusieurs drones sous-actionnés sur la base de
la méthodologie présentée dans le Chapitre 5. La contribution consiste à concevoir une
loi de commande, basée sur une transformation des entrées du systèmes et sur les lois de
commande conçues dans le Chapitre 5, afin de résoudre le problème de rendez-vous en
formation avec maintien de la connectivité et évitement des collisions pour un groupe de
drones sous-actionnés. De plus, nous établissons une convergence asymptotique vers la
variété de consensus et de la robustesse par rapport aux perturbations bornées au sens
pratique de la stabilité entrée-état. Les performances des algorithmes de commande
sont illustrées par des simulations numériques et des résultats expérimentaux.
Ces résultats ont été présentés dans les publications suivantes : [ii], [iii]

Des annexes techniques sont également fournies pour faciliter la consultation.
Pour une table des matières détaillée, voir la page 11.
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1
G E N E R A L OV E RV I E W A N D C O N T E X T

1.1 motivation

The recent advances in embedded computing and sensing as well as in telecommunication
technology with the popularization of the Internet of Things (IoT) are enabling the application
of a wide range of systems where large numbers of autonomous agents interact among
themselves, typically over a communication network, and work cooperatively towards a
common objective. Such multi-agent system is composed of autonomous interconnected
agents that, based on the information received or obtained from their local neighbors, e.g.,
the neighbors’ states, modify their behavior in order to achieve a global objective. Compared
to single agent systems, multi-agent systems offer a great deal of advantages in terms of
versatility, reduced computational loads, robustness to failure, etc. Such advantages have
encouraged the use of multi-agent systems in numerous relevant engineering applications such
as power systems, social networks, or multi-robot systems [1]. In this thesis we focus on the
cooperative coordination of multi-agent robotic systems from the perspective of automatic
control. Therefore, the objective consists in designing cooperative control strategies for such
systems.

In general, cooperative coordination control of multiple vehicle systems consists in designing
the control input for each agent in order to accomplish a particular common task. While they
enable to find novel solutions to actual engineering problems, cooperative control strategies
are extremely complex to design and to analyze. Arguably, the biggest challenge regarding
the cooperative control of multi-robot systems is to achieve the desired global behavior of
the system by means of local interaction rules. As a matter of fact, in many multi-vehicle
applications, an interconnected agent has access only to local information from a limited set
of neighbors, as determined by an interaction network modeled using a graph representation.
Therefore, centralized approaches, in which each vehicle receives global information consisting
in its reference behavior, are generally ruled out for the cooperative coordination setting.
Therefore, distributed approaches that exploit only the local knowledge available to each
agent have to be implemented.

Distributed cooperative control of multiple vehicle systems has known a rapid development
in recent years. However, there are still some major technical challenges that stymie the use
of such systems in realistic applications. Such relevant challenges, which have been accurately
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listed in [2], are presented hereafter loosely adapted to the problem of cooperative control of
multiple robotic vehicles.

• Nonlinear agent dynamics. Robotic vehicles, such as ground, aerial and underwater
vehicles, are usually modeled via nonlinear dynamic equations. Most existing coopera-
tive control methodologies, based on graph theory, are focused on single integrator or
simple linear dynamics, which are not adequate for realistic applications where the
performance of the designed control system can deviate greatly from the performance
suggested by these simpler system models.

• Nonlinear agent interconnections. In multiple scenarios the interconnections betwe of
dimension nen the agents are nonlinear. For example, in order to avoid collisions two
agents may need to apply a very large control input (approaching infinity) as they
get close to each other. Similarly, when the distance between them is greater than a
threshold, the capability of exchanging information with one another may either fail
or become very limited. Most existing cooperative control frameworks address linear
agent interactions, while in many real-world multi-agent scenarios such interactions
have to be modeled via nonlinear functions.

• Robustness. Due to disturbances and uncertainties in agent dynamics, communication
links, and operating environments, robustness has to be considered for a successful
system design. For example, aerial robotic vehicles are constantly subject to aerody-
namics disturbances. Such uncertainties and disturbances can lead to unexpected or
even unstable behaviors. Robustness consideration has been discussed in the existing
literature for the basic cooperative control problems, but general robust cooperative
control for complex systems with nonlinear interconnections has not been addressed.

• Diversity of real-world problems and application domains. Numerous problems of
cooperative control of autonomous vehicle systems have been successfully solved via a
variety of analysis methods and synthesis tools. Nonetheless, networked systems are
becoming increasingly ubiquitous and depending on the domain of applications, the
control objectives and constraints are inherently different. Hence, beyond the domain
of autonomous vehicles, new relevant problems and application domains pose new
challenges for nonlinear cooperative control design.

From an automatic-control perspective most of the interactions and coordination tasks
of multi-agent systems are based on the problem of consensus. Roughly speaking, this
problem consists in the state variables of all agents converging to a common value. In the
case of autonomous vehicles, this translates into all the agents converging to the same
state, that is, reaching the same position, acquiring the same velocity or, if pertinent,
achieving a common orientation. The problem of consensus has been extensively studied in
the literature under a number of scenarios, motivated by academic or industrial problems.
Yet, several open questions on consensus-based control are yet to be answered, specifically
when (simultaneously) considering the meaningful realistic challenges evoked above. Indeed,
the greater effort and bulk of contributions address consensus problems for linear systems,
but considerably less works address consensus considering the technical difficulties mentioned
above, that is nonlinear systems with nonlinear interconnections.
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In light of the above, we address and solve several concrete problems of control of multi-
agent systems under multiple constraints. In realistic settings, multi-agent systems operate
under multiple restrictions that stymie the successful undertaking of the cooperative task
and render the interconnections between the agents nonlinear. On one hand, the access
to the information of the system is limited. By means of the available communication
or measurement devices, each agent can only directly interact with a reduced portion of
its neighbors, generally determined by an interaction topology. Moreover, in sensor-based
approaches, the use of embedded measurement devices naturally leads to directed topologies
since information exchange among the agents is not possible. In turn, such devices, often
have limited capabilities e.g., limited bandwidth, limited range or quantization. The latter
restrict further the inter-agent exchanges. Other relevant physical limitations are those
imposed by the actuators, such as input saturation or minimum activation values, or those
resulting from the interaction with the environment, such as potential collisions and bounded
workspaces. On the other hand, physical systems are constantly subject to disturbances in
the form of, e.g., external inputs and modeling uncertainties. Therefore, with the purpose of
rendering our analytical contributions potentially useful, e.g., in robotics applications, our
work focuses on control of multi-agent systems under the constraints mentioned above.

Some preliminary, but original, contributions in Chapter 3 apply to relatively simple
systems, such as first- and second-order integrators, but they also serve as a building block
for the consensus-based control design and analysis of more complex systems. We consider
generalizations in two directions. The first consists in the control of robotic systems modeled
by nonlinear dynamic equations; in particular, of nonholonomic mobile terrestrial robots in
Chapter 4 and underactuated unmanned aerial vehicles (UAV) in Chapter 6. The second,
presented in Chapter 5, consists in exploring the consensus problem, under various meaningful
constraints, for systems in normal form (chains of integrators) of arbitrary relative degree.
Actually, it is this contribution that allows us to solve a pertinent problem of formation
control under connectivity and collision-avoidance constraints, for underactuated aerial
vehicles in Chapter 6.

In the remainder of this chapter we present a non-exhaustive review of some pertinent
works in the literature concerning the different problems of consensus-based control of
multi-agent systems addressed in this thesis.

1.2 on consensus control

Consensus control constitutes the basis of distributed cooperative interactions for multi-agent
systems [1]–[4]. Indeed, this consensus objective is fundamental to achieve complex formation
maneuvering tasks that are at the core of cooperative coordination applications [5] for
multi-agent systems.

The problem of consensus has been extensively studied in the literature for a variety of
dynamical systems, such as linear systems [4], [6], [7], relative-degree-one nonholonomic
vehicles [8], [9], or second-order Euler-Lagrange systems [10], [11], to mention a few. However,
we emphasize, again, that most of the existing contributions address this problem for linear
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systems with linear interconnections. Considerably less works address consensus for networks
of nonlinear systems with nonlinear interconnections.

In the study of large-scale interconnected dynamical systems, it is typical to turn to graph
theory for a mathematical representation of the neighbor-to-neighbor interactions. Such
graph-based abstraction plays a fundamental role in the design and analysis of consensus
control algorithms. Indeed, it has been well established in the literature that the convergence
of the consensus protocols depends greatly on the nature of the network topology describing
the information exchange between the agents [1], [3]. In consequence, the analysis of consensus
protocols is based on the algebraic properties of the graph encoding the interaction topology.

A common approach for the analysis of multi-agent systems under consensus-based
controllers is to consider the dynamic equations of each agent as the state of the system.
In terms of the graph representing the network topology, this translates into studying the
evolution of the nodes. In this setting, the control design and analysis of the multi-agent
system with linear interconnections heavily rely on linear algebra and other tools tailored for,
and limited to, linear time-invariant systems [3], [6], [12]–[15]. Moreover, when analyzing the
systems from a stability oriented perspective using Lyapunov’s method, the proofs of stability
are usually performed via non strict Lyapunov functions1 and the invariance principle [16].
Hence, only convergence to consensus can be established. Furthermore, in realistic settings,
the agents’ models and the interconnections are modeled via nonlinear equations. In these
situations, when analyzing the system in the nodes’ perspective, the common tools from
linear algebra used in the literature fail at ensuring strong stability and robustness properties,
such as e.g., uniform asymptotic stability or input-to-state statbility, which often rely on
the design of strict Lyapunov functions [17], [18]. Yet such stronger closed-loop properties
are needed for successful deployment in practical applications.

Besides the common node-based approach, some alternative representations of the net-
worked systems have been proposed in the literature to address the consensus problem.
Moreover, some works provide strict Lyapunov functions. In [19], so-called star and line
transformations are proposed in order to analyze the closed-loop system, and asymptotic
stability of the agreement set is established by means of a strict Lyapunov function for first-
and second-order systems over static and time-varying directed graphs containing a spanning
tree. These transformations, however, do not represent the real interconnections between the
agents as given by the graph topology. The approach presented in [20] uses synchronization
errors and emergent dynamics in order to establish asymptotic stability of the synchronization
manifold. A strict Lyapunov function is provided based on the eigenvectors of the Laplacian
matrix of a directed graph containing a spanning tree. However, the transformation into
the emergent dynamics requires the use of similar linear algebra tools as in the case of the
node-based analyses, and may prove limiting in certain scenarios.

Another alternative representation of the consensus problem for a multi-agent system is
the edge-based perspective introduced in [21] and further developed in [7], [22]–[26] and some
of the references therein. In this framework, the consensus problem is analyzed using the
dynamics of the relative state between neighboring agents, that is, the edges of the graph, as

1 See Appendix A.1 for a definition.
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opposed to analyzing the evolution of the nodes. This representation has the advantage of
using the real interconnections between the agents as the state of the multi-agent system,
which constitutes a more natural setting for the consideration of inter-agent constraints.
Moreover, in this framework the consensus problem is recast as one of stabilization of the
origin, making it well-suited for Lyapunov-based control and Lyapunov’s direct method of
analysis. Therefore, this thesis strongly relies on the edge-based framework. Remarkably,
using this framework, the analysis of consensus is reduced to that of a minimal configuration.
The latter allows to establish asymptotic stability of the consensus manifold via strict
Lyapunov functions [1], [27]. This property cannot be underestimated; it is stronger than
mere convergence, which is more commonly established in the literature —see, e.g., [13]–[15],
[28], [29]. Indeed, the property of asymptotic stability through strict Lyapunov functions
implies other strong results in terms of convergence rates and robustness, which cannot be
ascertained if it is only known that the consensus errors converge.

1.3 on connectivity maintenance

A necessary and sufficient condition to achieve consensus in a multi-agent system, and which is
recurrent in the literature, is that the graph topology representing the agents’ interconnections
must be connected [1], [3]. However, In many realistic settings, the interconnections between
the agents depend on their relative positions and on other environmental factors, and
are therefore nonlinear and dynamically changing. For instance, in the cases where the
measurement or communication capabilities of each agent are limited in range (as is the
case for autonomous vehicles), the link between any two interconnected agents may be lost
if they drift too far away from each other. Therefore, although necessary, the connectivity
property of the graph topology cannot be assumed but has to be ensured by the control law.

Several works in the literature address the problem of consensus with connectivity preserva-
tion. This problem is typically addressed using gradient-type consensus algorithms, relying on
so-called barrier functions. Loosely speaking, the control may be assimilated to a force field
that “explodes” near the connectivity limits. That is, the control input, as a function of the
state, grows unboundedly as the vehicle approaches a specified region. This technique is also
reminiscent of potential/navigation functions used in robot control [30], [31]. For undirected
graphs several works in the literature address the problem of connectivity maintenance. In
[32], barrier functions are used to guarantee that all agents remain inside a given region,
but considering an all-to-all communication topology. In [33] barrier functions, as well as
properties of the graph Laplacian matrix, are used to show consensus and preservation of
connectivity. A general framework for connectivity maintenance in the nodes’ perspective
is proposed in [34] for both static and dynamic graphs. In [35], [36] a potential function in
terms of the algebraic connectivity of the graph is used to guarantee global connectivity
maintenance. However, a distributed estimation algorithm has to be implemented so that all
the agents have access to the algebraic connectivity, which is a global parameter. Using a
nonlinear transformation of the consensus errors, in [37] connectivity is guaranteed via a
nonlinear interconnection protocol. Similar barrier-function-based protocols are proposed
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in [38]–[40], for second-order systems. A projection-based consensus protocol is designed in
[41] that achieves convergence to the consensus manifold while guaranteeing that each agent
remains inside a constraint set.

For systems interacting over directed graphs, however, there are far fewer works. In [42],
consensus is achieved while guaranteeing that each agent stays inside a given set; however
the results only apply to first-order integrators and the communication graph is required
to be strongly connected. In [36], [43], [44] connectivity is achieved, but under somewhat
conservative assumptions; it is assumed that the directed graph is strongly-connected and,
moreover, the controllers proposed therein also rely on the estimation of the algebraic
connectivity.

In all the works mentioned above, the consensus problem is studied relying on the node-
based representation. Therefore, in general, only convergence to the agreement manifold
is established by means of non-strict Lyapunov functions. As evoked above, however, the
alternative edge-based representation, in which the consensus problem is recast as a problem
of attractivity of the origin, has been used in the literature to establish some stronger stability
and robustness properties via strict Lyapunov functions.

Works on edge-based consensus include diverse scenarios and contributions: in [45] a
consensus controller in the presence of disturbances and uncertainties is designed –see
also [13] for an optimal controller design; in [46] finite-time agreement is achieved for
second order systems using edge-based notions and in [47] convergence rates are given
for edge-Laplacian-based consensus of first-order multi-agent systems with time-varying
interconnections. Notably, in the latter a strict Lyapunov function is constructed, which
leads to estimating the convergence rate. In [7] the edge agreement protocol is extended
to second-order systems over directed graphs and robustness with respect to edge-weight
disturbances is established. A strict Lyapunov function is provided in [24] for consensus over
directed graphs. However, the control is designed based on the small-gain theorem, which
greatly restricts the control and hence prevents the direct extension of this methodology
for connectivity maintenance. In [48] consensus is established for the elementary directed-
cycle topology, but under the assumption that it switches and the interconnections are
time-varying.

State-dependent constrained consensus, however, has received limited attention so far
using the edges’ framework. Indeed, none of the edge-based works mentioned above address
the connectivity-maintenance problem. A notable exception is [49] where connectivity
maintenance is guaranteed under state saturation constraints using an edge-based approach,
albeit only for first-order integrators interacting over undirected graphs.

1.4 on nonholonomic vehicles

For the cooperative coordination of multi-agent systems of nonholonomic vehicles, two main
consensus problems are addressed in the literature: position consensus [50], [51] and full
consensus [52], [53]. In the first case, all agents converge to the same position with an
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arbitrary or predetermined orientation. In the second case, agreement on both position and
orientation is sought.

For the consensus control of multiple nonholonomic vehicles, most of the works in the
literature use a Cartesian-coordinates-based model. However, for these kinds of nonlinear
systems the origin is not stabilizable via smooth invariant feedback. The latter is a well-known
result that stems from the seminal paper [54], where necessary conditions for asymptotic
stabilization of nonlinear systems via smooth time-invariant feedback are laid. Similar
conditions for set-point consensus of multi-agent nonholonomic systems are given in [55].
Therefore, considerable attention has been paid to the problem of designing time-varying or
non-smooth controllers for set-point stabilization of nonholonomic systems. For instance, the
controllers proposed in [51], [56] are time-varying and they guarantee position consensus.
Time-varying feedback is also used in [50], [52], [53], but for full-consensus-based formation
control. In [8], on the other hand, a time-invariant non-smooth feedback controller is reported
for position-consensus over undirected graphs.

These protocols are normally implemented using absolute position and orientation values.
In most practical scenarios, however, protocols using absolute measurements may not be
implementable since only the relative measurements from embedded sensing devices are
available to the vehicles. Moreover, time-varying and non-smooth controllers add a degree of
complexity to the control design problem and to the stability analysis. These drawbacks may
be overcome via an alternative representation based on a polar-coordinates transformation
[57], [58]. In this representation, the system is singular precisely at the origin, implying
that smooth time-invariant controllers may be designed without contradicting [54], [55].
Based on the polar-coordinates model, a smooth time-invariant controller is presented in [59]
for consensus of nonholonomic agents over a directed spanning tree, albeit for a linearized
system, hence, achieving only position consensus. In [60] a continuous time-invariant feedback
for position consensus is proposed for multi-agent systems over undirected graphs. However,
time delays have to be considered in order to avoid algebraic loops in the control. In [61] a
smooth time-invariant controller is designed to achieve consensus, albeit only in position, for
a system communicating over a directed graph containing a directed spanning tree.

Now, in these references, as in many other works, it is assumed that the communication
graph is connected at all times. Hence, each agent has permanent access to its neighbors’
data, either by transmission or by sensing. However, in realistic settings, as we mentioned
above, the communication or embedded sensing devices often have a limited range or a
limited field of view. Therefore, in such scenarios assuming that each agent has access to its
neighbors’ information at all times, although necessary from a theoretical viewpoint, might
be conservative in practice.

Consequently, considerable attention has been focused on the study of coordination
strategies of multi-agent systems subject to distance and/or field-of-view constraints. In
[62]–[64] coordination protocols with field-of-view-based connectivity are considered, albeit
for linear integrator models. In [65] using relative information, a navigation-function-based
controller with distance-based connectivity maintenance is proposed for multi-agent systems
interconnected over directed graphs; nevertheless, the controller is non-smooth and it presents
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some problems inherent to the navigation-function framework such as local minima and
the need to have a bounded workspace. In [66] distance constraints are considered for
leader-follower topologies based on barrier functions. However, only position consensus is
achieved and the controller requires the knowledge of absolute positions. In [67] distance
constraints are addressed and practical stability of a position-consensus-based formation
is achieved, but the estimation of global parameters is required. In [68], [69] the authors
develop time-varying control laws with prescribed performance considering both distance and
field-of-view constraints. Nevertheless, full consensus is not achieved and only the platooning
problem, with interaction topologies consisting of single directed chains, is addressed.

1.5 on underactuated unmanned aerial vehicles

The problem of rendezvous of underactuated thrust-propelled UAVs is an underlying part
of more complex maneuvering tasks in which, also, the vehicles may be required to move
in formation. This is a good example of a scenario of cooperative systems in which a
plethora of difficulties appear naturally. First, the systems’ dynamics are clearly nonlinear
and underactuated [70]. Therefore, the literature on consensus tailored for linear low-order
systems [3], [36] does not apply. Second, the measurements usually come from embedded
relative-measurement sensors, such as cameras, LiDAR, ultrasound, etc. The use of such
devices naturally imposes directed network topologies [63], which add difficulty to the
consensus-control design. Third, autonomous vehicles moving “freely” in the workspace are
prone to undesired collisions among themselves; therefore, guaranteeing the safety of the
system in the sense of inter-agent collision avoidance is a restriction that must be considered
as well. A fourth difficulty stems from the use of on-board relative-measurement devices,
which are reliable only if used within a limited range. This translates into guaranteeing
that the UAVs do not drift too far apart from their neighbors. Finally, UAVs are constantly
subject to external undesired forces and they may also be affected by modeling uncertainties,
etc. ; these constitute external disturbances at different levels in the dynamic model. Under
such constraints, the objective of rendezvous for thrust-propelled UAVs coins a relevant
problem in the aerospace industry motivated by the increasing interest for safety-aware fleet
deployment.

From the aforementionned difficulties, tackling the nonlinear and underactuated nature
of the UAVs model is particularly essential. Indeed, the UAVs have six degrees of freedom
(three-dimensional displacements and three rotations), but only four dimensions can be
directly actuated using the actual inputs of the vehicle. To address this difficulty, some
hierarchical approaches have been reported in the literature, using the natural cascaded
structure of the UAVs’ dynamics [70]–[73]. Such designs have been used to solve the formation
problem of swarms of UAVs interconnected through undirected and directed communication
topologies —cf. [71], [72], [74]–[77]. Nonetheless, none of these works address the problem
under inter-agent constraints.

In addition, only a handful of works in the literature consider the rendezvous problem of
UAVs under a set of realistic assumptions and constraints while not at the expense of formal



1.6 on high-order systems 29

analysis. A distributed controller is proposed in [78] based on prescribed-performance control
that achieves formation tracking with collision avoidance for multiple UAVs. Nonetheless,
the results therein apply only to undirected topologies. Based on the attitude and thrust
extraction algorithm, the authors in [79] solve the formation problem for multiple UAVs
subject to connectivity constraints, but only undirected topologies are considered and
collision-avoidance constraints are not addressed. In [10], [11], and [31], robust formation
controllers are proposed based on the prescribed-performance-control [80] and edge-agreement
frameworks [1], [21], guaranteeing, also, collision avoidance and connectivity maintenance.
However, in these references only fully-actuated Lagrangian systems interconnected over
undirected-tree topologies are considered.

1.6 on high-order systems

As it was mentioned previously, the literature is rife with works addressing diverse consensus
problems for different types of low-order systems, see e.g., [4], [6]–[11]. However, low-order
models may fall short at representing many meaningful and complex engineering problems in
which the input-output relationship imposes a high relative degree (with respect to an output
of interest) model. A good example of high-order systems is that of certain autonomous
vehicles —see [1]–[3], and Chapter 6 in this thesis.

Moreover, in realistic settings, physical systems operate under multiple restrictions in the
form of output or state constraints such as limited range measurements/communication. The
latter limitations are at the origin of connectivity constraints, as we explained above. Besides
such range constraints, the systems are subject to other physical limitations imposed by
the actuators or by the environment, such as input saturation or minimal safety distances.
In addition, such systems are constantly subject to disturbances such as external inputs,
modeling uncertainties, delays, etc. Thus, for consensus control laws to be of practical use,
multiple inter-agent constraints must be considered in the control design and robustness
with respect to disturbances must be guaranteed.

The difficulties described above coin a realistic scenario of automatic control of multi-agent
systems. Consensus under such conditions has been addressed in the literature, but to the
best of our knowledge never simultaneously.

Many works in the literature address the constrained consensus problem, mainly in the
nodes’ perspective, for low-order systems interconnected over, both, undirected and directed
topologies. Fewer works, however, address this problem for high-order systems. For instance,
consensus of high-order systems has been addressed in [81]–[84], albeit without considering
inter-agent constraints. In [85] a tracking consensus controller is proposed for networked
systems over undirected graphs, but the constraints are considered on the synchronization
error and not directly on the inter-agent relative states. This may prove conservative in some
situations and fail to capture relevant inter-agent constraints as safety minimal distances. In
[86] a synchronization control is designed using an adaptation of the prescribed performance
framework in order to achieve consensus over directed graphs with desired bounds on
the transient response. Nevertheless, as in [85], the prescribed-performance constraints are
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imposed on the consensus error and not on the inter-agent relative states. A consensus control
for high-order systems with constraints and interacting over strongly connected directed
graphs is presented in [28]. Yet, the constraints considered therein weigh on each individual
agent’s states (e.g., constraints on the velocity, the acceleration, etc. ) and, similarly, do
not reflect the inter-agent restrictions that stymie the cooperative coordination objectives in
multi-agent systems.



2
C O N S E N S U S P RO T O C O L S FO R M U LT I - AG E N T S Y S T E M S

As explained earlier, the consensus objective constitutes the basis of most distributed
cooperative tasks for multi-agent systems. With the purpose of exposing its limitations, in
this chapter we revisit a classical consensus algorithm through simple examples, as well as its
analysis using linear algebra and Lyapunov stability tools, from the perspective of the nodes
composing the interaction topology. We show that physical restrictions encountered in realistic
settings usually impose nonlinearities to the agents’ models or to the interconnections. In
these situations, when analyzing the system in the nodes’ perspective, the common tools from
linear algebra used in the literature fail at ensuring strong stability and robustness results.
Yet such stronger results are needed for successful deployment in practical applications.

In light of the previous statement, we reformulate the consensus algorithm by recalling
the alternative edge-based representation. In this alternative representation, which is not an
original contribution of this thesis, the consensus problem is recast as the stabilization of
the origin, rather than the stability of a set as in the node-based perspective. Furthermore,
in the edges’ perspective, the evolution of the system may be studied via a reduced-order
representation. Both of these advantages make the edge-based representation more suited
to the problem at hand. The novelty of this work resides in demonstrating how stronger
stability properties can be established. The latter is a founding block for our contributions
in the context of consensus under constraints presented in the subsequent chapters.

2.1 elements of graph theory

In the analysis of multi-agent systems it is natural to consider that each agent has access
only to a part of the information of the complete system, normally via neighbor-to-neighbor
interactions. Therefore, it is typical to turn to graph theory for a representation of the
interaction topology of the network. As the graph representation of multi-agent networks
is fundamental for the control design and the analysis of multi-agent systems, we present
here some well-known notions and notations on graph theory, mostly taken from [1], [3] and
adapted for the purpose of this thesis.

A graph is a set-theoretic structure that describes the interaction between the elements of a
given set. For a group of N agents the graph abstraction is used to encode the communication
topology, that is, how the information is exchanged within the group.

31
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A graph is denoted by G = (V, E) where the set of nodes V = {1, 2, . . . , N}, corresponds
to the labels of the agents, and the set of edges E ⊆ V2 of cardinality M characterizes the
information exchange between pairs of agents. A subgraph H = (VH, EH) ⊂ G is a graph such
that VH ⊂ V and EH ⊂ E . A spanning subgraph is a subgraph containing all nodes V —see
Figure 2.1 for an example.

An edge ek := (i, j) ∈ E , k ≤ M is an ordered pair which indicates that a connection
exists “starting” at node i and “ending” at node j. In other words, the ith node provides
information to the node j or, more generally the behavior of the ith node influences that of
the jth node. Hence, given an agent i, we denote as Ni = {j ≤ N, j 6= i : (i, j) ∈ E} the set
of neighbors of i, i.e., the set of agents adjacent to agent i. Besides representing the nodes
that interact with each other, the edges of a graph also represent the direction of the flow
of information in the system. Indeed, if the information flow is bidirectional, that is, if the
edges in a graph have the property that (i, j) ∈ E implies (j, i) ∈ E , the graph is said to be
undirected and the edge can also be viewed as an unordered pair, i.e., ek = (i, j) = (j, i) —cf.
graph on the left in Figure 2.1. Otherwise, if the information flows in a single direction, the
graph is said to be directed —see e.g., the graph on the right in Figure 2.1. For an undirected
graph it is useful to define an orientation, consisting in the assignment of directions to its
edges.
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Figure 2.1: Example of a connected undirected graph (left) and a directed graph containing a spanning
tree (right). The edges of the spanning tree are colored in red.

A graph is said to be complete if there is an undirected edge joining every pair of agents
composing the system. A directed path is a sequence of edges in a directed graph of the form
(i1, i2), (i2, i3), . . . , (iN−1, iN ). An undirected path, or simply a path, in an undirected graph
is defined analogously. The distance d(i, j) between nodes i, j ∈ V is the number of edges in
the shortest path from i to j.

A directed graph is said to be strongly connected if there is a directed path from every node
to every other node. An undirected graph is said to be connected if there is an undirected path
between every pair of distinct nodes. A (directed) tree of a (directed) graph is a subgraph
in which every node has exactly one parent except for one node, called the root, which has
no parent and which has a (directed) path to every other node. A (directed) spanning tree
is a tree subgraph containing all nodes in V. Note that, by definition, an undirected graph
is connected if and only if it contains a spanning tree. The spanning trees in the graphs of
Figure 2.1 are colored in red. A (directed) cycle is a (directed) path where the initial and
final nodes are the same.
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2.2 the consensus control problem

In Chapter 1, it was suggested that the consensus problem constitutes the basis of cooperative
interaction for multi-agent systems [2], [3], [5]. Essentially, the consensus problem consists in
finding distributed control laws that make all the agents achieve convergence of a particular
variable to a common value using only information of a subset of agents. Both, the control
design and the analysis of the closed-loop system are normally carried out considering the
dynamics of each individual node (agent) composing the graph representation of the system.
Hereafter, to better put the contributions of this thesis inperspective, we revisit some classical
control designs for consensus of multi-agent systems. The elements presented in this section
are mostly adapted from [1], [3].

For illustration, let us consider first a two-agent system interacting via the graph in
Figure 2.2, and composed of two agents described by

ẋ1 =− a(x1 − x2), a > 0 (2.1a)
ẋ2 =− a(x2 − x1), (2.1b)

where, for i ∈ {1, 2}, xi ∈ Rn is the state of each agent. The equations in (2.1) can be
interpreted as two single-integrator agents with a proportional control law where, for each
agent, the reference is taken to be the state of its neighbor.

1 2
e1

Figure 2.2: Undirected graph for a two-agent system.

Now, rearranging (2.1) we have

ẋ1 =− a x1 + a x2 (2.2a)
ẋ2 =− a x2 + a x1. (2.2b)

We see from (2.2) that the system consists in an interconnection of two exponentially stable
systems. Indeed, the systems in (2.2) may be equivalently represented by first-order filters
as in the figure below with i = 1 and j = 2 for (2.2a), and i = 2 and j = 1 for (2.2b).

H(s)
xj xi

H(s) :=
1

s+ a

Figure 2.3: Bloc-diagram equivalence of Equations (2.2).

Therefore, for both subsystems in (2.2), the output xi of the first-order system, correspond-
ing to the state of the agents, tends to track the input xj (up to a DC-gain factor), which
corresponds to the state of its neighbor. Hence we have that x1(t) → x2(t) and x2(t) → x1(t).
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To see this more clearly let us define the Lyapunov function V (x1 − x2) = (x1 − x2)
2. Its

derivative along (2.1) gives

V̇ (x1 − x2) =2a [−a(x1 − x2) + a(x2 − x1)] (x1 − x2)

=− 4a2 (x1 − x2)
2 ≤ 0. (2.3)

Then, invoking LaSalle’s invariance principle [16], it is clear that the system converges to
the invariant set {x1, x2 ∈ Rn : V̇ = 0}, that is, {x1 = x2}, thus achieving consensus.

Consider now a three-agent system interconnected through a complete graph as in Fig-
ure 2.4. Following the same idea as for system (2.1), that is, to use a proportional term for

1
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Figure 2.4: Undirected graph for a three-agent system.

the difference between the state xi and that of each neighbor, we obtain the system

ẋ1 =− a12(x1 − x2)− a13(x1 − x3), aij > 0 (2.4a)
ẋ2 =− a21(x2 − x1)− a23(x2 − x3) (2.4b)
ẋ3 =− a31(x3 − x1)− a32(x3 − x2). (2.4c)

In a similar way as for the two-agent system, let us define the Lyapunov function

V (x) = (a12 + a21)(x1 − x2)
2 + (a13 + a31)(x1 − x3)

2 + (a23 + a32)(x2 − x3)
2. (2.5)

The time-derivative of V in this case is given by the cumbersome expression

V̇ (x) =− 2(a12 + a21)
2(x1 − x2)

2 − 2(a13 + a31)
2(x1 − x3)

2 − 2(a23 + a32)
2(x2 − x3)

2

− 2(2a12a13 + a13a21 + a12a31)(x1 − x2)(x1 − x3)

+ 2(2a23a21 + a21a32 + a23a12)(x1 − x2)(x2 − x3)

− 2(2a31a32 + a31a23 + a32a13)(x1 − x3)(x2 − x3), (2.6)

which is even more so for networked systems of dimension N > 3. Therefore, we shall use
the more compact notation that consists in setting x> :=

[
x>1 x

>
2 x

>
3

]
∈ R3n and, assuming

that aij = aji, we rewrite the system (2.4) in the compact form

ẋ = − [L⊗ In] x, (2.7)

where

L :=

a12 + a13 −a12 −a13
−a12 a12 + a23 −a23
−a13 −a23 a13 + a23

 . (2.8)
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The matrix L is called the Laplacian matrix associated to the graph representing the
interconnection between the agents [1]. The Laplacian matrix plays a fundamental role in
the analysis of the consensus problem. Indeed, note that, by construction, L has zero row
sums. Hence, the null space of L is span{1}. Consequently, we have that

[L⊗ In]x = 0 ⇐⇒ x1 = x2 = x3,

that is, [L⊗ In]x = 0 at consensus.
In this compact notation, the Lyapunov function defined in (2.5) may now be written as

V (x) = x> [L⊗ In]x (2.9)

and its derivative along the trajectories of (2.7) yields

V̇ (x) =− 2x>
[
L>L⊗ In

]
x

=− 2
∣∣ [L⊗ In] x

∣∣2 ≤ 0. (2.10)

Invoking, again, LaSalle’s invariance principle [16], we may also establish that, from (2.10)
the system converges to the invariant set {x ∈ R3n : [L⊗ In]x = 0}, that is, {x1 = x2 = x3}.

From the latter, we can see that in a more general case just driving the state of each agent
to follow that of its neighbors, as done for the two-agents system, might not be enough to
reach consensus. Indeed, it is clear that the structure of the Laplacian matrix, hence, of the
interconnections among the agents via the graph representation, plays a determinant role
in the achievement of consensus. For the three-agent example, the graph in Figure 2.4 is
complete. That is, every agent interacts with all the other agents in the system. In general,
however, this is not the case so, the achievement of consensus is determined by the structure
of the topology and the properties of the Laplacian, as we explain next.

Let us consider a network composed of N agents with an interaction topology described
by a graph G = (V, E). Consider that each agent is modeled by a first-order integrator given
by

ẋi = ui, i ≤ N, (2.11)

where xi ∈ Rn is the state of each agent and ui ∈ Rn is the control input. For this system
the consensus problem is formulated as follows.

Consensus problem. Consider a multi-agent system of N agents (2.11), interacting over a
graph G = (V, E). Under these conditions, find a distributed controller ui, i ≤ N , such that

lim
t→∞

xi(t)− xj(t) = 0, ∀i, j ∈ V (2.12)

is achieved. •
Now, following a similar reasoning as for the two-agent and three-agent networks, the

consensus protocol that solves the consensus problem formulated above is typically given by
the inputs —cf. [1], [3], [6] and references therein—

ui = −c
N∑
j=1

aij(xi − xj), c > 0, (2.13)
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where the coefficients aij > 0 if and only if (j, i) ∈ E and aij = 0 otherwise. The protocol
(2.13) drives the state of agent i towards the states of its neighbors j ∈ Ni, converging at
the so-called consensus point. In general, the consensus point is unspecified and depends on
the initial conditions of the system.

Let the matrix A = [aij ] ∈ RN×N denote the so-called adjacency matrix of the graph, and
let the diagonal matrix D ∈ RN×N with entries dii =

∑
j aij denote the so-called degree

matrix of a graph. Then, collecting the states of all the agents as x :=
[
x>1 · · · x>N

]> ∈ RnN

and replacing (2.13) into (2.11), the consensus problem boils down to study the behavior of
the closed-loop system

ẋ = −c [L⊗ In]x, (2.14)

where L ∈ RN×N is the Laplacian matrix associated with graph G, given by

L := D −A =


∑N

i=2 a1i −a12 · · · −a1N
−a21

∑N
i=1,i 6=2 a2i · · · −a2N

...
... . . . ...

−aN1 −aN2 · · ·
∑N−1

i=1 aNi

 . (2.15)

As for the three-agent system (2.4), the structure of the network’s topology, represented
by the Laplacian matrix, plays a fundamental role in establishing consensus for the system
(2.14). Indeed, as before, note that L has zero row sums by construction. Therefore, zero is
an eigenvalue of L with the associated eigenvector 1 and the eigenvalues of the Laplacian
matrix can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN ,

with λ1 = 0. Moreover, using well-known statements of linear algebra it follows that for an
undirected graph, L is a symmetric positive semi-definite matrix and 0 is a simple eigenvalue
of L if and only if the undirected graph is connected [87]. For a directed graph, all non-zero
eigenvalues of L have positive real parts and 0 is a simple eigenvalue if and only if the
directed graph contains a directed spanning tree [1].

Thus, for systems interconnected via static undirected graphs and with constant linear
interconnections, a necessary and sufficient condition for the consensus protocol (2.14) to
converge to agreement is that the graph is connected. Alternatively, in the case of directed
graphs consensus is achieved if the underlying graph contains a directed spanning tree. To
see this, akin to (2.5), consider the candidate Lyapunov function

V (x) = x> [L⊗ In]x. (2.16)

The time-derivative of V (2.16) along (2.14) is given by

V̇ (x) =− 2 c x>
[
L>L⊗ In

]
x

=− 2 c
∣∣ [L⊗ In] x

∣∣2 ≤ 0. (2.17)
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The function V is not a strict Lyapunov function1. However, if the graph G is undirected
and connected or directed containing a directed spanning tree, L is a positive semi-definite
matrix with a single zero eigenvalue associated to the eigenvector 1 [1]. Then, since the null
space of L is given by span{1}, the largest invariant set contained in the set

{x ∈ RnN : V̇ (x) = 0}

corresponds to the consensus manifold

S := {x1 = x2 = · · · = xN}. (2.18)

Thus, convergence to the consensus manifold (2.18) follows from LaSalle’s invariance principle
[16].

The previous development allows us to establish convergence to the consensus manifold
for networks of linear systems with linear time-invariant interconnections. In such cases,
the achievement of consensus depends exclusively on the nature of the network topology;
this, however, is no longer true in the case of networks with nonlinear interconnections or
systems with nonlinear dynamics. Moreover, note that, even in the cases of linear systems and
linear interconnections, the analysis of the consensus problem via Lyapunov’s first method
with a non-strict Lyapunov function poses considerable limitations. Indeed, in general when
considering the agreement agreement protocol in (2.13), using LaSalle’s invariance principle,
only convergence to the consensus manifold is established. In contrast, via the construction
of strict Lyapunov functions tailored for set-stability analysis and with the right properties,
stronger results such as (global) asymptotic stability or robustness of the agreement set may
be established —see Remark 2.1 on the next page.

Therefore, it is appealing to use an alternative representation based on the edges of the
graph, rather than the nodes, that is useful for a stability-based analysis of the consensus
problem via strict Lyapunov functions.

2.3 the edge-based formulation

In this thesis we choose to study the consensus problem using the alternative edge-based
representation of networked systems [7], [21]–[26]. As previously explained, this representation
uses the dynamics of the edges of the underlying graph, as opposed to that of the nodes.
Hence, the agreement problem is reformulated as one of stabilization of the origin, rendering
it well-suited for standard Lyapunov-based control and Lyapunov’s direct method of analysis.

The concepts of edge-based agreement, which are presented next, are mainly borrowed
from [7], [21], [22] and adapted here for the purpose of this thesis. They constitute the
mathematical basis for the contributions presented in the following chapters.

1 See Appendix A.1 for a definition.
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2.3.1 The edge transformation

The edge-based representation of a graph focuses on the difference between any two nodes’
states. For illustration, consider the two-agents system described by (2.1), but let us study
the dynamics of the edge e1 in Figure 2.2 rather than those of the nodes x1 and x2. To that
end, define the edge variable

z1 := x1 − x2, (2.19)

which literally stands for the difference between the states of the two interconnected systems.
That is, they are in consensus if z1 = 0. Now, differentiating with respect to time and using
(2.1), we obtain

ż1 =− a(x1 − x2) + a(x2 − x1)

=− 2 a z1. (2.20)

Hence, under the edge-based perspective, the consensus objective, that x1(t)− x2(t) → 0,
is transformed into z1(t) → 0. Moreover, the interconnected system (2.1) is transformed
into the single exponentially stable system (2.20). Indeed, taking the Lyapunov function
V (z1) = |z1|2, its total derivative reads

V̇ (z1) = −2 a |z1|2 < 0. (2.21)

From (2.21), V (z1) is a strict Lyapunov function for the system (2.20), implying exponential
stability at the origin {z1 = 0} and, equivalently, of the consensus manifold {x1 = x2}.

Remark 2.1. As evident as it may appear for this very simple example, exponential stability
of the origin {z1 = 0}, or equivalently of {x1 = x2}, is not the same as reaching consensus.
More precisely the former implies the latter, but not vice-versa. This is because consensus,
defined as the mere convergence of x1 → x2 is a much weaker property than asymptotic (let
alone exponential) stability. The difference becomes more important when the systems are
nonlinear or time-varying. In such cases, it is crucial to dispose of strict Lyapunov functions
to guarantee uniform (in the initial conditions) asymptotic stability, and in certain cases as
we shall see, robust stability in the sense of input-to-state stability. •

Now, in the case of the three-agent system described by the equations (2.4), akin to (2.19),
for the edges in Figure 2.4 the edge states are given by

z1 = x1 − x2, z2 = x1 − x3, z3 = x2 − x3. (2.22)

Note that, defining z> =
[
z>1 z

>
2 z

>
3

]
and x> =

[
x>1 x

>
2 x

>
3

]
, the edge states are given by

z =

1 −1 0
1 0 −1
0 1 −1

⊗ In

 x (2.23)
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which may also be written in the compact form

z =
[
E> ⊗ In

]
x, (2.24)

where the matrix E that we just introduced is the so-called incidence matrix of graph G.
Its rows are indexed by the nodes and its columns are indexed by the edges. The incidence
matrix represents the edges connected at each node. In general, for a network composed
of N agents, given an oriented undirected graph or a directed graph, the incidence matrix
E ∈ RN×M of the graph is defined such that its ikth element

[E]ik :=


+1, if i is the initial node of edge ek
−1, if i is the terminal node of edge ek
0, otherwise.

(2.25)

Now, let us again consider a system composed of N agents described by the first-order
integrator in compact form

ẋ = u, (2.26)

where x> =
[
x>1 · · · x>N

]
and u> =

[
u>1 · · · u>N

]
. Then, akin to (2.22), define the states of

the edges in the underlying graph as

zk := xi − xj ∀k ≤M, (i, j) ∈ E . (2.27)

From (2.25), similarly to (2.24), the edge states in compact form are obtained using the
transformation

z =
[
E> ⊗ In

]
x, z ∈ RnM . (2.28)

Then, in the edge coordinates the networked system’s dynamics (2.26) is transformed into

ż =
[
E> ⊗ In

]
u. (2.29)

Equation (2.29) is significant because it allows us to recast the consensus problem as one
of stabilization of an equilibrium point, exactly as we did for the system (2.1) —cf. (2.20).
To better see this, let us recall that the consensus problem consists in driving the states of
all the agents to a common value. Mathematically this translates into making xi − xj → 0
for all (i, j) ∈ V2. Equivalently, recalling (2.27), the consensus objective is to drive zk → 0
for all k ≤ M . More precisely, the control problem is transformed from rendering the
agreement manifold (2.18) attractive to the stabilization of the origin for system (2.29).
Hence, from a control-systems viewpoint this alternative edges’ perspective is well-suited for
Lyapunov-based control and Lyapunov’s direct method of analysis.
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Note, moreover, that the formulation in (2.29) is valid both for directed and undirected
graphs. In the edge coordinates, if the graph is undirected, the consensus protocol (2.13) for
a single agent becomes

ui = −c
M∑
k=1

[E]ikzk, c > 0, (2.30)

and, for the multi-agent system in compact form, we have

u = −c [E ⊗ In] z. (2.31)

Then, replacing (2.31) into (2.29), we obtain the closed-loop system

ż =− c
[
E>E ⊗ In

]
z

=− c [Le ⊗ In] z. (2.32)

The control law (2.31) is valid for undirected graphs. For directed graphs, however, aij 6= aji
and the control design is less direct. In this case note first that the incidence matrix may be
expressed as the sum of two matrices —cf. [22]—:

E = E� + E⊗ (2.33)

where E� ∈ RN×M corresponds to the so-called in-incidence matrix, whose elements are
defined as

[E�]ik :=

{
−1 if i is the terminal node of edge ek
0 otherwise

(2.34)

and E⊗ ∈ RN×M is the so-called out-incidence matrix, with elements are defined as

[E⊗]ik :=

{
1 if i is the initial node of edge ek
0 otherwise.

(2.35)

The in-incidence matrix E� represents the edges coming in to a node, whereas the out-
incidence matrix E⊗ represents the edges stemming out from a node. Then, if the graph is
directed, the consensus protocol (2.13), in compact form, is given by

u = −c [E� ⊗ In] z. (2.36)

Similarly, but with a slight abuse of notation, we obtain the closed-loop system

ż =− c
[
E>E� ⊗ In

]
z

=− c [Le ⊗ In] z. (2.37)
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Now, considering the closed-loop systems (2.32) and (2.37) let us define the matrix
Le ∈ RM×M , given by

Le = E>E, (2.38)

for undirected graphs and by

Le = E>E�, (2.39)

for directed graphs. The latter is named the edge Laplacian matrix of the graph. Indeed,
note that (2.32) and (2.37) have a similar structure to the equivalent system (2.14) in the
nodes’ perspective, albeit, with the matrix Le, instead of the graph Laplacian L.

In the nodes’ framework, for linear static interconnections, the properties of the graph,
and more precisely the properties of the matrix representation of the graph in the form of
the Laplacian L, play an important role in the stability analysis of the consensus protocol.
Moreover, note that, alluding to (2.14), the Laplacian matrix of an oriented undirected graph
can be alternatively defined in terms of the incidence matrix as

L = EE>. (2.40)

For directed graphs, the Laplacian can be defined in terms of the incidence and in-incidence
matrices as

L = E�E
>. (2.41)

Therefore, the edge Laplacian Le can be considered as an “edge dual” of the graph Laplacian
L. In that sense, in the edge framework, the properties of the edge Laplacian matrix play a
similar role as those of the graph Laplacian L in the nodes’ framework. Indeed, Le has the
following properties [7], [22]:

• the non-zero eigenvalues of Le are equal to the non-zero eigenvalues of L,
• rank(Le) = rank(L) = N − 1,
• for a (directed) graph containing a (directed) spanning tree, the algebraic multiplicity

of the zero eigenvalue of Le is equal to M −N + 1.

Remark 2.2. Note that as a direct consequence of the previous properties, if the graph is a
(directed) spanning tree, then all the eigenvalues of the edge Laplacian Le have positive real
parts. Indeed, any spanning tree is composed of exactly N − 1 edges. Therefore, since the
eigenvalues of Le are exactly the N − 1 non-zero eigenvalues of the graph Laplacian L and
rank(Le) = N − 1, the claim follows. •

From the properties of the edge Laplacian listed above, it is clear that the edge Laplacian,
as the graph Laplacian, is a positive semi-definite matrix. Hence, recalling the Lyapunov
analysis exposed in the previous section for the consensus algorithm in the node-based
representation, the same conclusions in terms of non-strict Lyapunov functions are obtained
for the edge-based systems (2.32) and (2.37).
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A particular case, however, is that of a graph that consists of a single spanning tree. To
see this, suppose that the network is interconnected over a (directed) spanning tree. Then,
as evoked in Remark 2.2, all the eigenvalues of the edge Laplacian Le ∈ R(N−1)×(N−1) of
a (directed) spanning tree have strictly positive real part. Hence, in this case, the matrix
−[Le ⊗ In] in (2.32) and (2.37) is Hurwitz. Consequently, from standard arguments from
linear systems’ theory, the origin {z = 0} for systems (2.32) and (2.37) is exponentially stable.
Consequently, consensus is achieved exponentially. Moreover, letting Γ ∈ R(N−1)×(N−1) be a
symmetric positive definite matrix satisfying the Lyapunov equation

ΓLe + L>
e Γ = Q,

with, Q ∈ R(N−1)×(N−1) a symmetric positive definite matrix, the Lyapunov function

V (z) = z>[Γ⊗ In]z (2.42)

is a strict Lyapunov function for systems (2.32) and (2.37).
Now, a well-known necessary and sufficient condition for consensus is that the (directed)

graph G representing the network topology contains at least one (directed) spanning tree [3].
The latter and the exponential stability of the consensus manifold in the case of a (directed)
spanning tree, suggests that the system dynamics may be studied by concentrating on that
of a reduced-order system, whose states, in the edges’ framework, correspond exclusively to
those of the edges in a tree. Indeed, using a particular labeling of the graph, it is possible
to obtain such a reduced-order representation as proposed in [7], [21]. This is explained
hereafter.

2.3.2 A reduced-order edge-based model

To better understand how one can obtain a reduced representation, it is convenient to remark
that if a graph contains a spanning tree it can be represented as the sum of two subgraphs:
one consisting of a spanning tree Gt = (V, Et) where Et ⊂ E and |Et| = N − 1, and one
containing the rest of the edges that complete the “cycles” Gc = (V, Ec) where Ec := E\Et
and |Ec| =M −N + 1 —see Figure 2.5.
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Figure 2.5: Partition of a graph into a spanning tree and the remaining edges.

Note that the graph in Figure 2.5 has been labeled. In the context of the edge-agreement
framework, the right labeling ensures that the incidence and Laplacian matrices associated to
the underlying (directed or oriented undirected) graph have certain properties and structures
which are fundamental for stability analysis of the consensus protocol. For this purpose, it is
convenient to follow the labeling algorithm proposed in [7]:
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1. Choose an arbitrary directed spanning tree contained in G and label the root as
node “1”.

2. For any two nodes i and j belonging to a branch of the tree, label them such that if
the path length from the root to i is smaller than the path length from the root to j,
then i < j.

3. Label the n− 1 edges belonging to the tree such that for any edge ek with terminal
node j, one has j > k.

4. Freely label the rest of the edges.

Remark 2.3. Although the edges that do not belong to the tree, Ec, may be freely labeled,
for consistency with the literature (and specially in the case of acyclic directed graphs) it is
recommended to follow the following labeling: for any two edges ef , eg ∈ Ec that have the same
terminal nodes as edges ei, ej ∈ Et respectively, label them such that if i < j, one has f < g.
Note that this rule is contradictory for edges completing directed cycles, in consequence, only
the edges in Ec that do not complete directed cycles (if they exist) should be labeled in such a
way, while the other edges can be labeled freely. •

Then, using the labeling of the edges described above, it is possible to partition the
incidence matrix into

E = [ Et Ec ] (2.43)

where Et ∈ RN×(N−1) denotes the full-column-rank incidence matrix corresponding to a
spanning tree Gt and Ec ∈ RN×(M−N+1) represents the incidence matrix corresponding to
the remaining edges not contained in Gt. Moreover, the columns of Ec are linearly dependent
on the columns of Et. The latter can be expressed in terms of the existence of a matrix T
such that

Ec = EtT. (2.44)

Left-multiplying both sides of (2.44) by E>
t , we have

E>
t Ec = E>

t EtT. (2.45)

Therefore, since Et has full column rank, its Moore-Penrose pseudo-inverse exists and we
can define

T :=
(
E>

t Et

)−1
E>

t Ec, (2.46)

so that (2.45) is satisfied. Now, defining

R := [ IN−1 T ] , (2.47)

and using (2.43), one obtains an alternative representation of the incidence matrix of the
graph in terms of the incidence matrix of a spanning tree. This is given by

E = EtR. (2.48)
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The identity (2.48) is useful to derive a reduced-order dynamic model —cf. [7], [21]. Indeed,
following the reasoning as for the incidence matrix, the edges’ states may be split as

z =
[
z>t z>c

]>
, zt ∈ Rn(N−1), zc ∈ Rn(M−N+1) (2.49)

where zt are the states corresponding to the edges of an arbitrary spanning tree Gt and zc
denote the states of the remaining edges in Gc. Then, after (2.28) and (2.48), we obtain the
following identity

z =
[
R> ⊗ In

]
zt. (2.50)

Now, for systems interacting over undirected connected graphs, using the identity (2.50) in
both sides of (2.32), we obtain[

R> ⊗ In

]
żt = −c

[
LeR

> ⊗ In

]
zt. (2.51)

Then, recalling (2.38) and using (2.48), we have[
R> ⊗ In

]
żt = −c

[
R>E>

t EtRR
> ⊗ In

]
zt, (2.52)

and since R is full-row-rank, we obtain the reduced-order system

żt = −c
[
E>

t EtRR
> ⊗ In

]
zt, (2.53)

by premultiplicating by
[(
R>)† ⊗ In

]
and using the properties of the Kronecker product.

Similarly, for systems interacting over directed graphs containing a spanning tree, from
(2.39), we obtain

żt = −c
[
E>

t E�R
> ⊗ In

]
zt. (2.54)

Equations (2.53) and (2.54) are remarkable because, even though they are of reduced
dimension (zt ∈ RN−1), they completely capture the synchronization behavior of the whole
system. In particular, consensus for (2.26) holds if and only if the origin {zt = 0} is attractive
for the solutions of (2.53) for undirected graphs or (2.54) for directed ones. Therefore, the
consensus problem becomes a problem of stabilization of the origin for a reduced-order
multi-agent system that represents the evolution of the edges in a (directed) spanning tree.

For the purpose of the stability analysis of the multi-agent system in the reduced-order
edge representation, let us first state the following Lemmata from [7], [23]:

Lemma 2.1 ([23]). The edge Laplacian Le associated to a connected undirected graph with
cycles is similar2 to the matrix[

E>
t EtRR

> 0(N−1)×(M−N+1)

0(M−N+1)×(N−1) 0(M−N+1)×(M−N+1)

]
. (2.55)

�

2 Recall that two matrices A, B ∈ Rn×n are similar if there exists an invertible matrix P ∈ Rn×n such that
B = P−1AP [88].
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Lemma 2.2 ([7]). The edge Laplacian Le associated to a directed graph containing a directed
spanning tree is similar to the matrix[

E>
t E�R

> E>
t E�Nt

0(M−N+1)×(N−1) 0(M−N+1)×(M−N+1)

]
, (2.56)

where the columns of the matrix Nt ∈ RM×(M−N+1) form the orthonormal basis for the null
space of R. �

Since the edge Laplacian Le of a connected undirected graph has exactly M −N + 1 zero
eigenvalues, a direct consequence of Lemma 2.1 is that the matrix E>

t EtRR
> is symmetric

positive definite, and its eigenvalues are precisely the non-zero eigenvalues of the graph
Laplacian L. In a similar way, it may be concluded from Lemma 2.2 that, all the eigenvalues
of the matrix E>

t E�R
> in (2.54) lie in the complex right half-plane.

In light of the previous facts, let us denote

LeR :=

E
>
t EtRR

> if the graph is undirected

E>
t E�R

> if the graph is directed.
(2.57)

Let Q ∈ R(N−1)×(N−1) be an arbitrarily given positive definite matrix. Then, there exists a
unique solution Γ ∈ R(N−1)×(N−1) to the Lyapunov equation

ΓLeR + L>
eRΓ = Q

such that Γ is positive definite and, therefore, the function V : Rn(N−1) → R≥0

V (zt) = z>t [Γ⊗ In] zt, (2.58)

is positive definite. Moreover, from (2.53) and (2.53), it follows that the time-derivative of
V (2.58) is given by

V̇ (zt) =− 2c z>t [ΓLeR ⊗ In] zt

=− c z>t

[
ΓLeR + L>

eRΓ⊗ In

]
zt

=− c z>t [Q⊗ In] zt < 0. (2.59)

Note that, contrary to the Lyapunov function (2.16) in the nodes’ perspective, V in (2.58)
is a strict Lyapunov function for (2.53) and (2.54). Therefore, from (2.59) and the fact that
V is quadratic, the origin {zt = 0} is exponentially stable. Furthermore, as we mentioned
above, recalling the identity (2.50), the latter implies that {z = 0} is exponentially stable.
The exponential stability of {zt = 0}, in turn, implies exponential stability of the agreement
manifold, which is a stronger result than mere convergence established with non-strict
Lyapunov functions and LaSalle’s invariance principle. Indeed, exponential stability and the
construction of a strict Lyapunov function directly imply other properties of robustness and
convergence rates that cannot be ascertained if only convergence is established.
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2.4 a glimpse on graphs with nonlinear interconnections

In anticipation of the main contributions of this thesis on consensus under constraints, we
emphasize that another important advantage of the edge-based representation, relative to
the more classical node-based approach is its direct applicability in the analysis of graphs
with nonlinear interconnections.

This is important to us because in this thesis we deal with the coordination of multi-agent
systems in realistic scenarios. In many meaningful cases, such as in the presence of inter-agent
constraints, or state- or time-dependent communication, the interconnections between the
agents become nonlinear or time-varying. This further motivates the choice to use the
edge-agreement approach of [21] to study consensus under constraints, which is the main
focus of this thesis.

The analysis provided in Section 2.2 to prove the achievement of consensus using inputs
of the form (2.13) in the nodes’ perspective is valid in the case of networks of linear systems
under linear interconnections. However, when the interconnections are nonlinear, the analysis
based on tools from linear algebra may fail to establish consensus.

To better see this let us consider that the interconnections between the agents are state or
time-dependent. Then, the consensus protocol (2.13) becomes

ui = −c
N∑
j=1

aij(t, x)(xi − xj), c > 0, (2.60)

where aij : R≥0 × RnN → R≥0 are functions denoting the interconnection through the arc
(i, j). Under (2.60), the closed-loop system becomes

ẋ = −c [L(t, x)⊗ In]x. (2.61)

Therefore, in this case, the linear-algebra-based argumentation that relies on the nature of
the eigenvalues of the Laplacian matrix, no longer holds.

In contrast to this, let us consider again the consensus protocol with state- or time-
dependent interconnections (2.60) analyzed through the edge-based perspective. To that end,
for each edge zk, k ≤M , let ρk(t, zk) denote the nonlinear “weight” of the edge. Then, in
the edge coordinates the protocol (2.60) is equivalent to

ui = −c
M∑
k=1

[E]ikρk(t, zk)zk, c > 0. (2.62)

Equation (2.62) highlights an important perk of using the edge-based representation when
considering nonlinear interconnections. Note that the closed-loop system is given by

ż = −c1
[
LeP (t, z)⊗ IN

]
z,

where P (t, z) := diag{ρk(t, zk)} ∈ RM×M , whereas, in the nodes’ representation, recalling
(2.40) and with an abuse of notation, the closed-loop system (2.61) is equivalent to

ẋ = −c1
[
EP (t, [E> ⊗ IN ]x)E> ⊗ IN

]
x,
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but, one cannot rely on the properties of the eigenvalues of the graph Laplacian L(t, x) =
EP (t, [E> ⊗ IN ]x)E> —for each fixed t and x— to assess the stability properties of {x1 =
· · · = xN} of {z = 0}. In contrast to this, using the edge-based representation it is possible
to dissociate the interaction topology, represented by the (unweighted) edge Laplacian Le

and the nonlinear interconnections given by the diagonal matrix P (t, z). Hence, despite the
nonlinear interconnections, it is possible to use the eigenvalue analysis of the edge Laplacian
in order to prove asymptotic stability of the consensus manifold for graphs with nonlinear
interconnections by means of a strict Lyapunov function. This will be explained in more
detail in subsequent chapters. In the context of limited-range interactions it is an original
contribution of this thesis and it is presented in Chapter 3. Furthermore, we show that
such strict Lyapunov functions are fundamental for the Lyapunov-based design developed in
Chapters 5 and 6.

2.5 conclusion

We presented a brief introduction to the fundamental agreement protocol that lies at the basis
of most interactions in a multi-agent coordination scenario. The achievement of consensus
is in general determined by the underlying graph representing the network’s topology. In
the nodes’ perspective the stability analysis relies on the algebraic properties of the graph
Laplacian. However, using Lyapunov’s direct method, only a non-strict Lyapunov function
is provided. The latter, besides complicating the robustness analysis, may prove limiting
when considering more complex (e.g., high-order, nonlinear, underactuated) systems with
(possibly) nonlinear interconnections between the agents.

In contrast, the alternative representation based on the edges of the graph poses some
advantages with respect to the node-based one: the state of the system is composed of
relative quantities (e.g., relative positions) which may prove convenient in actual application
scenarios; the behavior of the system may be studied via a reduced-order representation
in terms of the edges of a spanning tree contained in the graph; in the case of nonlinear
interconnections, the effects of the interaction topology and of the nonlinearities may be
decoupled, facilitating the stability analysis using the properties of the edge Laplacian and
Lyapunov’s first method.

In the succeeding chapters we build on the edge-based representation in order to establish
consensus of multi-agent systems subject to state restrictions and, therefore, nonlinear
interconnections. Although for first- and second-order systems, modulo a transformation to
the edge coordinates, some of the proposed controllers are reminiscent of others appearing
in the literature, our contributions lie in establishing stronger properties such as asymptotic
stability and robustness in terms of input-to-state (multi-)stability, which are possible since
we provide strict Lyapunov functions.





3
C O N S E N S U S W I T H C O N N E C T I V I T Y M A I N T E N A N C E

As we saw in Chapter 2, the existence of a rooted (directed) spanning tree is a necessary
and sufficient condition for consensus over (directed) graphs [89]. Yet, although necessary,
this condition may as well be conservative in various robotics applications. For instance,
for networks of autonomous multi-vehicle systems that (can) communicate only if they
are within range of each other at a given instant, the interconnections between the agents
depend on their relative positions and on other environmental factors and are therefore
nonlinear and dynamically changing. In such scenarios, the connectivity properties of the
underlying graph cannot be assumed in general. In consequence, the proofs of convergence
of the agreement protocol that rely on the assumption that the graph contains a spanning
tree at every time instant no longer hold. Moreover, the arguments of stability based on
the algebraic properties of the matrices modeling the network topology, tailored for linear
systems with linear interconnections, no longer hold either.

A primary goal of the present chapter is to establish strong stability and robustness
results for the consensus-with-preserved-connectivity algorithm for first- and second-order
integrators, presented respectively in Section 3.2 and Section 3.3. For this purpose in
Section 3.1.3, we first encode the constraints using so-called barrier Lyapunov functions
[90], [91]. These are functions that may be assimilated to a potential field with unbounded
maxima. Then, the distributed control laws are derived as a gradient of such functions and,
consequently, grow unboundedly as the state approaches the boundary of the set where the
constraints hold. In other words, the control input is such that an infinite control effort is
required to violate a constraint. We stress that neither the method nor the concept described
above are original of this thesis.

The original contributions presented in this chapter consist in providing, for the first time
in the literature, strict Lyapunov functions for the first- and second-order consensus-with-
preserved-connectivity problem when considering both undirected and directed interaction
topologies, in the edge-based representation framework. A significant byproduct is to establish
asymptotic stability of the consensus manifold and, more importantly, robustness in terms of
input-to-state stability, as presented in Sections 3.2.3 and 3.3.3. These properties are stronger
than the non-uniform convergence usually established in the literature —see, e.g., [13]–[15],
[28], [29]. Indeed, for the considered problem, input-to-state stability implies boundedness of
the systems’ state trajectories and the satisfaction of the constraints, even in the presence

49
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of external disturbances. The same cannot be ascertained if it is only known that, in the
absence of disturbances, the system converges to the consensus manifold.

Now, even though strict Lyapunov functions have been proposed earlier for consensus
problems of both first and second-order systems over undirected and directed network
topologies, this is done without addressing the connectivity-preservation requirement, or
vice-versa. For instance, in [92], a non-strict Lyapunov function is provided for first-order
systems with field-of-view constraints; however, only boundedness of the trajectories is
guaranteed. The difficulty of constructing a strict Lyapunov function is stressed therein.

3.1 problem formulation and mathematical preliminaries

3.1.1 Motivational case-study

As a means of illustration, we start with a simple case-study to motivate the problem
of connectivity maintenance. Consider a system composed of six agents described by a
single-integrator model

ẋi = ui, xi, ui ∈ Rn

and interconnected over the undirected graph presented in Figure 3.1. Moreover, suppose
that each agent can only exchange information with its neighbors if they are within a limited
circular region centered at each agent’s position —see Figure 3.2.
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Figure 3.1: Case-study: undirected connected graph.

As we recalled in Chapter 2, the connectivity of the network topology (i.e., the existence
of a spanning tree) is a necessary and sufficient condition for reaching consensus. In this
case-study the graph in Figure 3.1 is connected. However, despite the latter, since the
interactions between the agents are limited in range, the linear consensus algorithm (in the
edge-based representation)

ui = −
∑
k≤M

[E]ik zk, zk ∈ Rn (3.1)

does not guarantee that the agents converge to the consensus manifold. Indeed, under the
consensus control law (3.1), the trajectories of some of the agents may be so that they leave
the interaction zones of their neighbors, hence loosing connectivity. This is illustrated in
Figure 3.2 where two snapshots of a simulation are presented for an example in which the
inputs are defined as in the classical consensus protocol (2.13). Note that, at t = 0 s the
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interaction graph in connected, hence, were the graph to remain connected, the agents would
reach consensus. However, as evidenced by the right-hand side figure, at some time instant
t > 0, the graph becomes disconnected and consensus is not achieved.
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Figure 3.2: Example of connectivity loss under the classical agreement protocol for agents with limited
sensing ranges (dotted circles).

For the purpose of illustration, in this numerical example the initial conditions are set so
that the network becomes disconnected. However, in the case of autonomous vehicles this
may occur due to a number of reasons at non-predefined moments. Indeed, even though for
some initial conditions it is possible for the agents to reach consensus even with limited-range
interconnections, this is not true in general, e.g., if the agents are subject to disturbances.
Indeed, such disturbances may also drive an agent to leave the sensing zone of its neighbors,
thereby losing connectivity.

It is then evident that in order to reach consensus in a more realistic scenario where
agents have limited sensing zones and are subject to disturbances, a different agreement
protocol must be proposed; one that allows to guarantee connectivity maintenance, rather
than assuming it. For instance, in the case of autonomous vehicles with limited-range
interconnections ϕk may be defined as a function that grows non-linearly as the error zk
grows so that the agents do not steer too far away from each other and lose connectivity.
More generally, in such scenarios, the consensus algorithm has to be replaced by a control
law of the form

ui = −
∑
k≤M

[E]ikϕk(t, zk)

where ϕk is a function representing the nonlinear interconnections between the agents and
may be defined in various manners.

In the literature various approaches have been proposed that define ϕk as the gradient of a
nonlinear function. Indeed, note that in the linear consensus algorithm (3.1) we have ϕk = zk,
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which may be seen as the gradient of a quadratic function. Therefore, by constructing a
nonlinear function with some desired properties that encode the inter-agent constraints, ϕk

can be set as the gradient of such function in order to guarantee consensus with preserved
connectivity. For this purpose, multiple types of functions have been proposed including
barrier functions [93], potential functions [94], navigation functions [95] or a barrier Lyapunov
functions [32]. In this thesis we use the design based on the gradient of barrier Lyapunov
functions, as we shall explain in more detail farther below and in the subsequent chapters.

3.1.2 Problem formulation

For clarity of exposition, let us start with the consensus problem for first-order systems.
Although relatively simple, the results presented in this first part of the present chapter
are interesting on their own and are a foundation block for most of the results of this
thesis. Hence, let us consider a system composed of N agents evolving in an n-dimensional
workspace and described by a first-order integrator of the form

ṗi = ui (3.2)

where pi ∈ Rn is the position of agent i ≤ N , and ui ∈ Rn is the control input.

Remark 3.1. In the sequel we use the notation pi to denote the position, as opposed to a
more generic choice, to recall that autonomous vehicles take a special part in this work. •

In this chapter we consider that the graph G = (V, E) is either undirected or of one of
two classes of directed graphs: spanning-trees or cycles. Each of the two directed topologies
presents difficulties and practical interests of its own, notably in formation control of
autonomous vehicles using a leader-follower configuration [96], [97] and in the context of
cyclic pursuit [98]. Furthermore, to address the consensus problem under constraints we use
the edge-based representation presented in Chapter 2 —cf. [21]—, since it is fundamental
for establishing the desired stability and robustness properties via the construction of strict
Lyapunov functions.

Let the relative positions between two interconnected agents be denoted

zk := pi − pj ∀k ≤M, (i, j) ∈ E . (3.3)

Hence, akin to the edge transformation in (2.28), note that the relative positions (3.3)
correspond to the elements of the edge state of the underlying graph, and are given by

z =
[
E> ⊗ In

]
p, z ∈ RnM , (3.4)

where z :=
[
z>1 · · · z>M

]> ∈ RnM , p =
[
p>1 · · · p>N

]> ∈ RnN and E is the incidence matrix of
the graph, defined in (2.25). Denote u =

[
u>1 · · · u>N

]> ∈ RnN . Then, the multi-agent system
(3.2) is transformed into

ż =
[
E> ⊗ In

]
u. (3.5)
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The control goal is for the agents’ positions to satisfy pi − pj → 0 for all (i, j) ∈ V2 and
pi → pc for all i ∈ V with pc a non-predefined constant. Equivalently, in the edge coordinates
we want zk → 0 for all k ≤M . More precisely, the consensus objective is that

lim
t→∞

z(t) = 0. (3.6)

Furthermore, we consider that each agent can only sense or communicate with its neighbors
if they are within a limited range centered at their position. As we presented above, in
situations where the exchange of information is limited to a determined area, the linear
consensus protocol (2.13) does not guarantee that the graph remains connected, therefore
stymieing the achievement of consensus. Hence, the connectivity of the graph is a property
that has to be ensured via the control. Indeed, under these sensing-range limitations, the
topology of the network depends on the relative states of the agents at each time instant.

Multiple connectivity-maintenance strategies exist in the literature [99]. In general, these
strategies may be classified into two categories: those concerned with global connectivity
maintenance [100], [101] and those considering local connectivity preservation [33]. In essence,
global connectivity-maintenance strategies seek to guarantee that the algebraic connectivity
of the graph, denoted λ2(G(t)) and corresponding to the second smallest eigenvalue of the
graph Laplacian L1, has a positive real part, that is, that Re (λ2(G(t))) > 0 for all time2 t.
These strategies, however, require that the agents composing the system have knowledge of
the value of the algebraic connectivity, which is a global parameter. Therefore, additional
computations have to be implemented, such as a distributed estimation algorithm [100],
in order to successfully implement the control strategy in a distributed way. Moreover,
such distributed estimation algorithms often need the transmission of information among
agents, which is not possible when using sensor-based interactions. On the other hand, local
strategies, also known as edge-preservation strategies, consist in maintaining (and possibly
increasing) the individual existing edges in the graph G. Therefore, in these strategies, only
the local relative states are needed for the connectivity maintenance, which does not rely
neither on global knowledge of the network nor on estimations of the latter. The main
drawback of the local strategies with respect to the global ones is the lack of flexibility that
they impose on the system. Indeed, the necessity of maintaining all the initial edges of the
graph may prevent the achievement of the desired objective in certain cases where it would
be pertinent to add/remove edges, e.g., in cluttered environments. Nonetheless, with aims
at solving the consensus problem relying only on the available embedded sensors, that is,
without communication between the agents, in this thesis, we adopt a local strategy for the
connectivity maintenance.

For the purpose of defining the local connectivity maintenance objective, we refer to an
initial graph as the graph corresponding to the existing edges at t = t0, where t0 is the initial
time. Then, we assume the following:

1 Here we denote λ2(G(t)) to emphasize that the algebraic connectivity is dependent of the graph topology,
which may vary in the case of limited interactions between the agents.

2 Recall that for a connected undirected graph, or for a directed graph containing a directed spanning tree, the
Laplacian matrix L has a single zero eigenvalue denoted λ1 = 0 —see Chapter 2. Therefore, the condition
Re (λ2(G(t))) > 0 for all time t, guarantees that the graph remains connected.
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Assumption 3.1. The initial undirected graph contains a spanning tree.

In other words, Assumption 3.1 imposes that the graph contains a spanning tree only at
the initial time of the motion. Such initial graph is determined by the initial relative positions
of the agents. For directed graphs, we focus on two directed topologies with difficulties and
practical interests of their own: directed spanning trees and directed cycles. Indeed, each
of the two directed topologies are found, respectively, in formation control of autonomous
vehicles using a leader-follower configuration [96], [97] and in the context of cyclic pursuit
[98]. Therefore, when considering directed graphs, we assume the following:

Assumption 3.2. The initial directed graph is either a directed spanning tree or a directed
cycle.

Now, mathematically, the sensing-range limitations mean that (i, j) ∈ E if and only if
|pi − pj | < ∆k, where ∆k denotes the maximum distance between agents i and j such that the
communication/sensing through the arc ek is reliable, for each k ≤M . For the multi-agent
system in edge coordinates, the latter is encoded via an inter-agent constraints set defined
as

J :=
{
z ∈ RnM : |zk| < ∆k, ∀ k ≤M

}
. (3.7)

Then, the connectivity maintenance objective is to render the constraints set (3.7) forward
invariant, i.e., z(t0) ∈ J implies that z(t) ∈ J for all t ≥ t0. Since in this thesis we deal only
with autonomous systems, for simplicity in the rest of this document we assume, without
loss of generality, that t0 ≡ 0.

As we recalled previously, in the case of linear time-invariant interconnections, the consen-
sus objective (3.6) can be established in the node-based representation commonly used in
the literature by means of non-strict Lyapunov functions. Moreover, in the case of connec-
tivity constraints similar convergence results can be established as well in the node-based
perspective [33], [34]. However, the convergence result (3.6) established under the node-based
representation does not imply stronger results in terms of robustness and convergence rates.
Hence the importance of studying the consensus-with-connectivity-maintenance problem in
the edge-based framework. Indeed, as we highlighted in Chapter 2, when the interconnections
are linear and time-invariant, asymptotic stability of the consensus manifold is established
employing strict Lyapunov functions.

Therefore, beyond the convergence objective (3.6), a part of the contributions presented in
this chapter is to establish asymptotic stability of the consensus manifold while guaranteeing
the respect of the connectivity constraints (forward invariance of the set J in (3.7)), by means
of the construction of strict Lyapunov functions. This implies other important properties in
terms of uniformity and robustness, as we also show.

More precisely, recalling the reduced-order edge representation in Section 2.3.2, and using
the identities (2.48) and (2.50), the multi-agent system (3.5) may be transformed into the
reduced-order system

żt =
[
E>

t ⊗ In
]
u, (3.8)
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where zt denotes the spanning-tree edge states and Et is the corresponding incidence
matrix. Then, in these coordinates, the objective is to render the reduced-order system (3.8)
asymptotically stable at the origin and the constraints set (3.7) forward invariant, along the
closed-loop trajectories.

In order to account for the connectivity constraints, the design of the control law solving the
position consensus problem is based on the gradient of a so-called barrier Lyapunov function.
Therefore, before presenting our controllers for consensus with connectivity maintenance
for first-order systems (see Section 3.2), we first revisit the concept of barrier Lyapunov
functions.

3.1.3 Barrier Lyapunov functions in edge coordinates

Barrier Lyapunov functions are reminiscent of Lyapunov functions, so they are positive
definite, but their domain of definition is restricted by design to open subsets of the
Euclidean space [90], [91], [102]. Furthermore, they grow unbounded as the state approaches
the boundary of its domain —see Figure 3.3. The latter property is fundamental for the
control design when considering state constraints. Indeed, the stabilization problem under
state constraints may be addressed using gradient-type control laws, relying on the gradient
of such barrier Lyapunov functions. Loosely speaking, such gradient-based controllers may be
assimilated to a force field that “explodes” at the boundary of the constraints set (3.7). That
is, the control input as a function of the state grows unboundedly as the system approaches
a specified region. This technique is also reminiscent of potential/navigation functions used
in robot control [30], [103].
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Figure 3.3: Example of a barrier Lyapunov function for a 2-dimensional state x = [x1 x2]
> (left) and

its level curve for x2 = 0 (right).

The following definition is adapted from the one given in [90] for the purposes of this
thesis.
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Definition 3.1 (Barrier Lyapunov function). Consider the system ẋ = f(x) and let A be an
open set containing the origin. A Barrier Lyapunov function is a positive definite, function
V : A → R≥0, x 7→ V (x), that is C1, satisfies

∇V (x)>f(x) :=
∂V (x)

∂x

>
f(x) ≤ 0,

and has the property that V (x) → ∞ and |∇V (x)| → ∞ as x→ ∂A. �

Now, akin to (3.7), for each k ≤ M , the inter-agent constraints in terms of the edge
coordinates are given by the sets

Jk := {zk ∈ Rn : |zk| < ∆k}. (3.9)

Then, in this chapter3, for each k ≤M , we encode the limit-range constraints by a barrier
Lyapunov function candidate Wk : Jk → R≥0, of the form

Wk(zk) =
1

2

[
|zk|2 +Bk(zk)

]
, (3.10)

where Bk is a non-negative function that satisfies: Bk(0) = 0, ∇Bk(0) = 0, and Bk(zk) → ∞
as |zk| → ∆k. Therefore, the barrier Lyapunov function candidate (3.10) satisfies: Wk(0) = 0,
∇Wk(0) = 0, and Wk(zk) → ∞ as |zk| → ∆k. Moreover, we assume that the following holds.

Assumption 3.3. The barrier Lyapunov function zk 7→Wk(zk) in (3.10) satisfies
κ1
2
|zk|2 ≤Wk(zk) ≤ κ2|∇W (zk)|2 =: hk(|zk|), (3.11)

where κ1 and κ2 are positive constants and hk(·) is strictly increasing for all zk ∈ Jk and
satisfies hk(s) > s for all s > 0, h(0) = 0, and hk(s) → ∞ as s→ ∂Jk.

Remark 3.2. Modulo performing a change of coordinates to the node space, examples of
functions satisfying the properties of Bk (and of Wk) in (3.10) and Assumption 3.3 are the
so-called “edge tension” functions —cf. [33], [104]— defined as

Bk(zk) =
|zk|2

∆k − |zk|
. (3.12)

Other examples are the logarithmic and tangent functions used in [90] and [91] defined,
respectively, as

Bk(zk) = ln
(

∆2
k

∆2
k − |zk|2

)
, (3.13)

and

Bk(zk) =
∆k

π
tan2

(
πzk
2∆k

)
. (3.14)

•
3 The specific form of the barrier Lyapunov function changes depending on the problem of interest —cf.

Chapters 4 and 5.
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Now, a barrier Lyapunov function for the multi-agent system is defined as the sum of the
barrier Lyapunov functions (3.10) for each k ≤M , i.e.,

W (z) =
∑
k≤M

Wk(zk). (3.15)

The latter encodes the connectivity constraints in terms of the state of each edge present in
the initial graph, and is used to design gradient-based control laws, as we show next.

3.2 first-order systems

3.2.1 Undirected graphs

Consider a group of first-order systems interconnected over an undirected graph, as in (3.8).
In the absence of inter-agent constraints, we know that under a control law of the form

u := −
[
E ⊗ In

]
z,

which is equivalent to the classical consensus algorithm (2.13) in the node-based representa-
tion, the origin of the system (3.8) is asymptotically stable. However, since the system is
subject to the sensing-range limitations encoded by the set J in (3.7), the control law is
defined as

u := −c1
[
E ⊗ In

]
∇W (z), (3.16)

where c1 > 0 is a design gain and ∇W (z) is the gradient of the barrier Lyapunov function
in (3.15) encoding the state constraints. This is reminiscent of the potential-function-based
control used in robotics, where the control law is taken as the gradient of a potential function
encoding the constraints in the environment [30]. We emphasize that the gradient-based
control input as defined in (3.16) is distributed. Indeed, in the undirected case the columns
of E represent the edges at each node, that is, the available information to each agent as
defined by the graph.

The control law (3.16) is defined in terms of the edge states of the whole graph z. However,
recall that, from the identity (2.50), the edge states z are a function of the edges of a spanning
tree contained in the graph, i.e., z =

[
R> ⊗ In

]
zt. Therefore, W (z) =W

([
R> ⊗ In

]
zt
)
. In

what follows, and with a slight abuse of notation, we use the same symbol W to denote a
function zt 7→W (zt) , defined as

W (zt) :=W
([
R> ⊗ In

]
zt

)
. (3.17)

Note that W (zt) corresponds to the same quantity as W (z) defined in (3.15). Indeed, the
barrier Lyapunov function in (3.15) is defined as the sum of the functions (3.10) for all the
edges ek ∈ E , k ≤M . Furthermore, again with a slight abuse of notation, using the chain
rule, the derivative of the function defined in (3.17), with respect to zt, yields

∇W (zt) :=

[
∂z

∂zt

]> ∂W (z)

∂z
,
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from which we obtain the identity

∇W (zt) =
[
R⊗ In

]
∇W (z), ∇W (z) :=

[
∂W1

∂z1

>
· · · ∂WM

∂zM

>
]>

. (3.18)

Now, using (2.48), in the reduced-order edge coordinates the control (3.16) becomes

u = −c1
[
Et ⊗ In

]
∇W (zt). (3.19)

Then, replacing (3.19) into (3.8), the closed-loop system reads

żt = −c1
[
E>

t Et ⊗ In
]
∇W (zt), (3.20)

or in expanded form

żt = −c1
[
E>

t Et ⊗ In
][
R⊗ In

]
∇W (z), (3.21)

For this system we have the following.

Proposition 3.1 ([105]). Consider the system (3.20). Under Assumption 3.1, the controller
(3.19) guarantees consensus with connectivity maintenance, i.e., (3.6) holds and the constraints
set J defined in (3.7) is rendered forward invariant along closed-loop solutions. Furthermore
the function zt 7→W (zt) in (3.17) is a strict Lyapunov function for the closed-loop system
(3.20). �

Proof. For consistency in the notation, we redefine the constraint set (3.7) in terms of the
edges of the spanning tree zt as

Jt :=
{
zt ∈ Rn(N−1) :

∣∣∣ [r>k ⊗ In

]
zk

∣∣∣ ∈ [0,∆k) , ∀ k ≤M
}

(3.22)

where rk is the kth column of the matrix R in (2.47). Assume first that J (equivalently Jt)
is forward invariant; this hypothesis is relaxed below. Then, for all zt ∈ Jt, the derivative of
W (zt) satisfies

Ẇ (zt) = −c1∇W (zt)
>
[
E>

t Et ⊗ In

]
∇W (zt). (3.23)

The matrix E>
t Et corresponds to the edge Laplacian of a spanning tree Gt ⊂ G and, recalling

Remark 2.2, it is symmetric positive definite. Therefore, denoting c′1 = c1λmin(E
>
t Et) > 0,

we have

Ẇ (zt) ≤ −c′1|∇W (zt)|2. (3.24)

Thus, from the definition of (3.15) —see also (3.10)— Ẇ (zt) < 0 for all zt ∈ Jt\{0} and
zt 7→W (zt) is a strict Lyapunov function for the closed-loop system (3.20).

Now we establish connectivity maintenance, or equivalently forward invariance of the set
J . To that end, we remark that zt ∈ Jt implies that z ∈ J and we show that Jt is forward
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invariant. We proceed by contradiction. Assume that there exists T > 0 such that for all
t ∈ [0, T ), zt(t) ∈ Jt and zt(T ) /∈ Jt. More precisely, we have |zk(t)| → ∆k as t → T for
at least one k ≤M . From the definition of W , this implies that W (zt(t)) → ∞ as t → T .
However, the latter is in contradiction with (3.24) which implies that W (zt(t)) is bounded.
Therefore, we conclude that W (zt(t)) is bounded for all the trajectories starting inside Jt,
i.e.,W (zt(t)) ≤ W (zt(0)) < ∞ for all zt(0) ∈ Jt and all t ≥ 0. Connectivity preservation
follows.

It is left to show that the set J corresponds to the domain of attraction for the closed-loop
system. This follows by showing that all solutions of (3.20) starting in Jt converge to the
origin. To that end, for any ε ∈ (0,∆k), consider a subset Jεt ⊂ Jt defined as

Jεt :=
{
zt ∈ Rn(N−1) : |zk| < ∆k − ε, ∀ k ≤M

}
and let J̄εt, denote the closure of Jεt. From Definition 3.1, (3.10), and Assumption 3.3, W (zt)
is positive definite on J̄εt and it satisfies the bounds

κ1
2
|zt|2 ≤W (zt) ≤ h(|zt|),

where h(·) is defined and strictly increasing everywhere in J̄εt, h(s) > 0 for all s > 0, and
h(0) = 0. This means that W (zt) → 0 as zt → 0. Therefore, from (3.24), and standard
Lyapunov theory, e.g., [17, Chapter 3] it follows that all the trajectories of (3.20) starting
in Jεt converge to the origin. The previous arguments hold for any ε→ 0, so the origin is
attractive for all trajectories zt(t) starting in Jt, that is, for all trajectories z(t) starting in
J . �

Remark 3.3. Proposition 3.1 is an original contribution of this thesis. It was presented in
[105]. Similar statements may be found in [33], [34], but in the latter, only convergence is
showed and no strict Lyapunov functions are proposed. •

3.2.2 Directed graphs

In the case of directed topologies, the analysis of stability of the multi-agent systems in
closed-loop with the consensus protocol with connectivity maintenance is not as straight-
forward as in the previous case. The difficulty comes from the fact that for directed graphs
the edge Laplacian matrix Le = E>E� is non-symmetric. As we shall see, the interaction
topology and the properties of the edge Laplacian play fundamental roles in the stability
analysis.

Now, akin to (3.16), the gradient control law is given by

u := −c1
[
E� ⊗ In

]
∇W (z). (3.25)

Note that in this case E� represents the incoming edges on each node, which is, again, the
available information to each agent as defined by the directed graph. Then, replacing (3.25)
into (3.8), the closed-loop system reads

żt = −c1
[
E>

t E� ⊗ In
]
∇W (z) (3.26)
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and we have the following.

Proposition 3.2 ([106]). Consider the system (3.26). If the initial directed graph satisfies
Assumption 3.2, the controller (3.25) guarantees consensus with connectivity maintenance,
i.e., (3.6) holds and the constraints set J defined in (3.7) is rendered forward invariant along
closed-loop solutions. Furthermore the function W̃ : J → R≥0, defined as

W̃ (z) =
∑
k≤M

γkWk(zk), γk > 0, ∀k ≤M (3.27)

where Wk is defined in (3.10), is a strict Lyapunov function for the closed-loop system (3.26).
�

Proof. First, note that we defined the barrier Lyapunov function in (3.27) as a function
of z. Indeed, it encodes the connectivity constraints for all the edges present in the initial
graph. However, recalling the identity z =

[
R> ⊗ In

]
zt, akin to (3.17), with a slight abuse

of notation we use the same symbol W̃ to denote both functions z 7→ W̃ (z) in (3.27) and

W̃ (zt) := W̃
([
R> ⊗ In

]
zt

)
. (3.28)

Then, akin to (3.18), it holds that

∇W̃ (zt) = [R⊗ In]∇W̃ (z), ∇W̃ (z) :=

[
γ1
∂W1

∂z1

>
· · · γM

∂WM

∂zM

>
]>

. (3.29)

Furthermore, recalling the barrier Lyapunov function W defined in (3.15) and defining
Γ := diag{γk} ∈ RM×M , it holds that

∇W̃ (z) = [Γ⊗ In]∇W (z). (3.30)

Now, the derivative of W̃ , along the trajectories of (3.26), is given by

˙̃W (zt) =− c1∇W̃ (zt)
>[E>

t E� ⊗ In
]
∇W (z)

=− c1∇W̃ (z)>
[
R>E>

t E� ⊗ In
]
∇W (z)

=− c1∇W (z)>
[
ΓR>E>

t E� ⊗ In
]
∇W (z), (3.31)

and this equation holds regardless of the directed graph topology.
Next, we analyze separately the two considered cases: directed spanning trees and directed

cycles.
Case 1 (Directed spanning tree). In this case we have G = Gt. Therefore, z = zt, E = Et, and

E� = E�t, where E�t corresponds to the in-incidence matrix of a spanning tree —cf. (2.34).
In turn, from the latter and the identity E = EtR, we have R = IN−1. Now, akin to (2.39),
albeit with an abuse of notation, we denote the edge-Laplacian matrix of a directed spanning
tree as Let := E>

t E�t ∈ R(N−1)×(N−1). Hence, (3.31) becomes

˙̃W (zt) = −c1
2
∇W (zt)

>[ΓLet + L>
etΓ⊗ In

]
∇W (zt). (3.32)



3.2 first-order systems 61

Next, we show that the right hand side of (3.32) is negative definite. For that purpose,
recalling the labeling of the edges suggested in Chapter 2 borrowed from [7] —see Figure 2.5,
we have that the in-incidence matrix is given by

E�t =
[
0N−1×1 − IN−1

]>
. (3.33)

Then, using (2.33) and defining B := −E>
⊗tE�t, the edge Laplacian of a directed spanning

tree satisfies

Let = E>
t E�t = E>

�tE�t + E>
⊗tE�t = IN−1 −B. (3.34)

Note that (3.34) holds since E>
�tE�t = IN−1 from (3.33).

Now, since [E⊗t]ij = 1 implies that [E�t]ij = 0 and in view of the previously mentioned
labeling [E>

⊗t]ij = 0 for i < j, it follows that B is a lower triangular matrix with zero
diagonal and all other elements either equal to 0 or 1. Moreover, for a directed spanning tree,
rank(Let) = N − 1 and all the eigenvalues of Let lie on the open right-hand complex plane;
indeed, they coincide with the eigenvalues of the graph’s Laplacian L. Thus, from the latter
and (3.34), we conclude that Let is a non-singular M -matrix [107], that is, a real matrix with
positive diagonal, non-positive off-diagonal elements, and eigenvalues with strictly positive
real parts. Then, after [107], every non-singular M -matrix is diagonally stable, that is, for
any Q = Q> > 0, Let admits a diagonal solution Γ :=diag

[
γk
]
, to the Lyapunov inequality

ΓLet + L>
etΓ ≥ Q. (3.35)

Therefore, redefining γk in (3.27), if necessary, so that (3.35) holds, we have

˙̃W (zt) ≤ −c′1
∣∣∇W (zt)

∣∣2, (3.36)

where c′1 := c1 λmin(Q).
Case 2 (Directed cycle). Using the identity (2.48) in (3.31), and setting Γ = IM we have

˙̃W (zt) =− c1∇W (z)>
[
E>E� ⊗ In

]
∇W (z)

=− c1
2
∇W (z)>

[(
E>E� + E>

�E
)
⊗ In

]
∇W (z). (3.37)

Then, using again (2.33), we have that

E>E� + E>
�E = E>E + E>

�E� − E>
⊗E⊗ (3.38)

Now, note that, following the same labeling rules mentioned above, the in-incidence and
out-incidence matrices for a directed cycle are given by

E� =

[
01×N−1 −1
−IN−1 0N−1×1

]
, E⊗ = IN .
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Hence, we have E>
�E� = IN and E>

⊗E⊗ = IN . Consequently, using (3.38), (3.18) and (2.48),
again, (3.37) becomes

˙̃W (zt) = −c1 ∇W (zt)
>[E>

t Et ⊗ In
]
∇W (zt), (3.39)

where E>
t Et, corresponds to the edge Laplacian of an undirected tree, which is symmetric

positive definite —cf. Remark 2.2. Then, we have
˙̃W (zt) ≤ −c′1

∣∣∇W (zt)
∣∣2, (3.40)

where, with a slight abuse of notation, c′1 := c1 λmin(E
>
t Et).

Hence, we see from (3.36) and (3.40) that ˙̃W (zt) is negative definite on Jt\{0} for both
of the considered directed topologies. Therefore, W̃ in (3.27) is a strict Lyapunov function
for the closed-loop system (3.26).

Remark 3.4. Note that for generic connected directed graphs the symmetric part of the
directed edge Laplacian E>E� is not positive semi-definite. Indeed, in such cases, contrary
to the case of a directed cycle, the identity E>E� +E>

�E = E>E does not hold —cf. (3.38).
Moreover, for the in-incidence matrix of a general directed graph there does not exist an
equivalent identity to E = EtR (2.48). Hence, unlike for connected undirected graphs, the
directed edge Laplacian of a general directed graph cannot be transformed into the directed
edge Laplacian of a spanning tree E>

t E�t, which has a positive-definite symmetric part. Thus,
the analysis of the constrained-consensus problem in edge coordinates over general directed
graphs, via strict and input-to-state Lyapunov functions, is still an open problem. •

In order to establish forward invariance of the set Jt, and thus of J , we proceed using the
contradiction arguments as in the proof of Proposition 3.1. Assume that there exists T > 0
such that for all t ∈ [0, T ), zt(t) ∈ Jt and zt(T ) /∈ Jt. More precisely, we have |zk(t)| → ∆k

as t → T for at least one k ≤M . From the definition of W̃ and Wk, this implies that
W̃ (zt(t)) → ∞ as t→ T which is in contradiction with (3.36) and (3.40). We conclude that
W̃ (zt(t)) is bounded for all initial conditions in Jt, i.e., W̃ (zt(t)) ≤ W̃ (zt(0)) < ∞ for all
zt(0) ∈ Jt and all t ≥ 0. Connectivity preservation follows from the forward invariance of Jt.

It is left to show that the set J corresponds to the domain of attraction for the closed-
loop system. This follows by showing that all solutions of (3.26) starting in Jt converge
to the origin. To that end, for any ε ∈ (0,∆k), consider a subset Jεt ⊂ Jt defined as
Jεt := {zt ∈ Rn(N−1) : |zk| < ∆k − ε, ∀ k ≤M} and let J̄εt, denote the closure of Jεt. From
(3.27) and akin to (3.11), it follows that W̃ (zt) is positive definite on J̄εt and it satisfies the
bounds

κ1
2
|zt|2 ≤ W̃ (zt) ≤ h̃(|zt|),

where h̃(·) is defined and strictly increasing everywhere in J̄εt, h̃(s) > 0 for all s > 0, and
h̃(0) = 0. This means that W̃ (zt) → 0 as zt → 0. Therefore, from (3.36), (3.40), and standard
Lyapunov theory it follows that all trajectories of (3.26) starting in Jεt converge to the origin.
The previous arguments hold for any ε → 0, so the origin is attractive for all trajectories
zt(t) starting in Jt, that is, for all trajectories z(t) starting in J . �
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We stress that a direct consequence of the proof of Propositions 3.1 and 3.2, which rely
on the construction of strict Lyapunov functions, is that the origin {zt = 0} of (3.20) and
(3.26), respectively for the case of undirected and directed graphs, is asymptotically stable
with Jt as the domain of attraction. As we have explained, the importance of disposing of a
strict Lyapunov function as opposed to merely guaranteeing a convergence property is to
establish robustness of the system with respect to external disturbances, as we show next.
Even though in this section we only address consensus of single integrators, the stability
and robustness properties obtained for this case-study serve as basis for similar statements
concerning more complex systems, as we present in subsequent chapters and, to the best of
our knowledge are original contributions of [105], [106].

3.2.3 Robustness analysis

Using the explicit construction of the strict Lyapunov functions provided in Proposi-
tions 3.1 and 3.2, we are able to conduct a robustness analysis of the control laws (3.19)
and (3.25) for first-order integrators interconnected over undirected and directed topologies,
respectively.

Consider the case of a single-integrator system with an additive bounded disturbance
di ∈ Rn, that is,

ṗi = ui + di. (3.41)

Recalling the edge transformation (3.4) and the identity (2.50), the reduced-order system
reads

żt = −c1
[
E>

t ⊗ In
]
u+

[
E>

t ⊗ In
]
d (3.42)

where d :=
[
d>1 · · · d>N

]> ∈ RnN . Next, the robustness results are presented separately for
undirected and directed topologies.

3.2.3.1 Undirected topologies

Implementing the control law (3.19), the reduced order system (3.42) in closed loop becomes

żt = −c1
[
E>

t Et ⊗ In
]
∇W (zt) +

[
E>

t ⊗ In
]
d. (3.43)

The result is stated in the following Proposition.

Proposition 3.3 ([105]). The closed-loop multi-agent system (3.43), with a communication
topology given by an undirected graph satisfying Assumption 3.1, is input-to-state stable4

with respect to an essentially bounded, locally integrable external disturbance d. Furthermore,
the graph remains connected for all t ≥ 0. �

4 See Appendix A.1 for a definition.
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Proof. The proof uses the strict Lyapunov function defined in (3.15) and (3.10). Differenti-
ating (3.15) with respect to time and recalling (3.18) we obtain

Ẇ (zt) = −c1∇W (zt)
>[E>

t Et ⊗ In
]
∇W (zt) +∇W (zt)

>[E>
t ⊗ In

]
d. (3.44)

Now, given c1 let δ > 0 be such that c′1 :=
(
c1 − 1

2δ

)
λmin(E

>
t Et) > 0. Then, using Young’s

inequality on the second term of the right-hand side of (3.44) we have

Ẇ (zt) ≤ −c′1 |∇W (zt)|2 +
δ

2
|d|2 (3.45)

Thus, the system (3.43) is input-to-state stable with respect to bounded external input d.
In order to show connectivity maintenance it suffices to show that in the proximity of

the limits of the connectivity region, that is, as |zk| → ∆k for any k ≤M , the first term on
the right-hand side of Inequality (3.45) dominates over the second term, which is bounded
by assumption. More precisely, let d̄ := ||d(t)||∞ and ε ∈ (0,∆k) be an arbitrarily small
constant. Let zt be such that, there exists at least one k ≤M such that |zk| ≥ (∆k − ε).
Then, |zt| ≥ ∆k − ε. From (3.45), the definition of W (zt) in (3.15) and (3.11), we have

Ẇ (zt) ≤− c1 |∇Wk(zk)|2 +
δ

2
|d|2

≤− c1
κ2
hk(∆k − ε) +

δ

2
|d|2

In turn, from Definition 3.1 and Assumption 3.3 we have that hk(·) is continuous, non-
decreasing, and hk(s) → ∞ as |s| → ∆2

k for at least one k ≤M . Then, there exists ε∗(d̄) > 0
such that for all ε < ε∗, Ẇ (zt) ≤ 0. Hence, connectivity maintenance follows from the same
arguments used in the proof of Proposition 3.1. �

3.2.3.2 Directed topologies

Replacing the constrained-consensus protocol (3.25) into (3.42), the closed-loop reduced-order
edge system reads

żt = −c1
[
E>

t E� ⊗ In
]
∇W (z) +

[
E>

t ⊗ In
]
d. (3.46)

Proposition 3.4 ([106]). If the directed communication topology satisfies Assumption 3.2,
the closed-loop multi-agent system (3.46) is input-to-state stable with respect to a bounded
locally integrable disturbance d. Furthermore, the graph remains connected for all t ≥ 0. �

Proof. Consider the barrier Lyapunov function (3.27). Under the standing assumption that
the graph is either a directed spanning tree or a directed cycle, using (3.36) and (3.40), the
total derivative of (3.27) along (3.46) satisfies

˙̃W (zt) ≤ −c′′1 |∇W (zt)|2 +
δ

2
|d|2. (3.47)
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where we used Young’s inequality to obtain the right-hand side of (3.47) with δ > 0 and
c′′1 :=

(
c′1 −

γ2
min
2δ

)
> 0. Thus, the system (3.46) is input-to-state stable with respect to

bounded external input d.
Now, for the two considered classes of directed graphs, modulo a constant gain, the

bound (3.47) is equivalent to that obtained for undirected graphs in (3.44). Therefore,
the proof of connectivity maintenance follows after similar arguments as in the proof of
Proposition 3.3. �

3.3 second-order systems

We now extend the previous results for first-order systems to second-order systems. More
precisely we show how a gradient-based consensus control achieves position-consensus with
connectivity maintenance for second-order systems. For second-order systems, the position-
consensus problem under connectivity constraints, may be formulated as follows.

Consider that each agent composing the system is described by a second-order integrator
of the form

ṗi =vi (3.48a)
v̇i =ui (3.48b)

where pi ∈ Rn and vi ∈ Rn are respectively, the position and the velocity of agent i ≤ N ,
and ui ∈ Rn is the control input. Denoting v =

[
v>1 · · · v>N

]> ∈ RnN and using again the
edge transformation (3.4), the second-order multi-agent system (3.48), becomes

ż =
[
E> ⊗ In

]
v (3.49a)

v̇ = u. (3.49b)

In these coordinates, the position-consensus objective is that

lim
t→∞

z(t) = 0 (3.50a)

lim
t→∞

v(t) = 0. (3.50b)

Then, as for the first-order systems, in addition to (3.50), the connectivity maintenance
objective is to render the constraints set (3.7) forward invariant.

Now, recalling again the reduced-order edge representation in Section 2.3.2, we know that
the position-consensus objective (3.50) for second-order systems is achieved if it is achieved
for the reduced-order system given by

żt =
[
E>

t ⊗ In
]
v (3.51a)

v̇ = u, (3.51b)

Hence, the objective is to render the reduced-order system (3.51) asymptotically stable at
the origin and, in light of Assumptions 3.1 and 3.2, render the constraints set (3.7) forward
invariant, i.e., that z(t0) ∈ J implies that z(t) ∈ J for all t ≥ 0.
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As for the first-order systems, we start by studying the systems interconnected over
undirected topologies. Then, we present the results for directed graphs.

3.3.1 Undirected graphs

Let us consider the second-order system in the reduced-order edge representation (3.51).
Recalling the barrier Lyapunov function for the multi-agent systems defined in (3.15), akin
to (3.19), we introduce the control law

u := −c1
[
Et ⊗ In

]
∇W (zt)− c2 v, (3.52)

where c1, c2 > 0 are the control gains.
Replacing (3.52) into (3.51), the closed-loop system reads

żt =v (3.53a)
v̇ =− c1

[
E>

t Et ⊗ In
]
∇W (zt)− c2 v. (3.53b)

Then, we have the following.

Proposition 3.5 ([105]). Consider the closed-loop system (3.53). Under Assumption 3.1,
the controller (3.19) guarantees consensus with connectivity maintenance, i.e., (3.50) holds
and the constraints set J defined in (3.7) is rendered forward invariant. Furthermore, the
function

V (zt, v) = c1W (zt)+
1

2
|v|2+c3 z>t

[
(E>

t Et)
−1E>

t ⊗In
]
v+

c2c3
2
z>t
[
(E>

t Et)
−1⊗In

]
zt, (3.54)

where 0 < c3 < c2, is a strict Lyapunov function for the closed-loop system (3.53). �

Proof. First, note that V in (3.54) can also be written as

V (zt, v) = c1W (zt) +
1

2

[
zt
v

]> [ [
c2c3(E

>
t Et)

−1 c3(E
>
t Et)

−1E>
t

c3Et(E
>
t Et)

−1 IN

]
⊗ In

] [
zt
v

]
. (3.55)

Now, recall that under Assumption 3.1, the matrix E>
t Et is the edge Laplacian of a spanning

tree —see Remark 2.2. Hence, the matrix (E>
t Et)

−1 exists and is positive definite. Then,
positive-definiteness of V in zt and v follows after computing the Schur complement on the
second term of the right-hand side of (3.55).

Now, taking the time derivative of (3.55) we obtain

V̇ (zt, v) = c1∇W (zt)
>[E>

t ⊗ In
]
v − c1∇W (zt)

>[E>
t ⊗ In

]
v − c2v

>v

− c1c3z
>
t

[
(E>

t Et)
−1E>

t Et ⊗ In
]
∇W (zt)− c2c3z

>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
v

+ c3 v
>[Et(E

>
t Et)

−1E>
t ⊗ In

]
v + c2c3 z

>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
v

=− c1c3z
>
t W (zt)− v>

[
(c2I − c3Et(E

>
t Et)

−1E>
t )⊗ In

]
v.

(3.56)
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Remark 3.5. For the barrier Lyapunov function encoding the proximity constraints as
defined in (3.10) and satisfying Assumption 3.3, it holds that

∇Wk(zk) = ψk(zk)zk (3.57)

where ψk : Jk → R>0 is a non-decreasing function on Jk such that, there exists a positive
constant ψ0 such that ψk(zk) ≥ ψ0 > 0 for all zk ∈ Jk, and ψk(zk) → ∞ as |zk| → ∆k —cf.
[33], [34] and the so-called connectivity potential in [106]. Furthermore, from the definition
of W in (3.15) and using (3.57), it holds that

∇W (zt) = Ψ(zt)zt (3.58)

where Ψ(zt) := diag{ψk} ∈ R(N−1)×(N−1). •

Now, since the non-zero eigenvalues of L and of Let coincide, it holds that

λmax(Et(E
>
t Et)

−1E>
t ) = λmax(E

>
t Et(E

>
t Et)

−1) = 1.

Then, from Remark 3.5, letting c′1 := c1c3ψ0 and c′2 := (c2 − c3), we obtain

V̇ (zt, v) = −c′1|zt|2 − c′2|v|2. (3.59)

It follows that V̇ (zt, v) < 0 in Jt × RnN\{0, 0}. Therefore, V as defined in (3.54) is a strict
Lyapunov function for the system (3.53).

Forward invariance of J is inferred using the same arguments as in the proof of Proposition
3.1. Thus, connectivity is preserved for any initial conditions satisfying (z(0), v(0)) ∈ J ×RnN .
Finally, note that V (zt, v) is positive definite for all v ∈ RnN and all zt ∈ J̄εt and satisfies

κ1|zt|2 + κ′1|v|2 ≤ V (zt, v) ≤ h(|zt|) + κ′2|v|2, (3.60)

where κ1, κ′1, and κ′2 are positive constants and h(·) is a positive strictly increasing function
defined everywhere in J̄εt satisfying h(0) = 0. This means that V (zt, v) → 0 as (zt, v) → (0, 0).
Therefore, from (3.59) we have that for all trajectories of the closed-loop system starting in
Jεt ×RnN , the origin is asymptotically stable, i.e., vi(t) → 0 ∀i ≤ N and zk(t) → 0 ∀k ≤M .
Moreover, since ε can be chosen arbitrarily small, taking the limit ε→ 0, we establish
asymptotic stability of the origin of the closed-loop system for all trajectories starting in
Jt × RnN . Thus, consensus is achieved with preserved connectivity. �

3.3.2 Directed graphs

Relying on the strict Lyapunov function provided in Proposition 3.2, we use a backstepping
approach for our proposed control design for constrained consensus of second-order integrators
interconnected over directed graphs. This underlines another perk of the contribution in
Proposition 3.2. Indeed, the strict Lyapunov function W̃ is herein used in a Lyapunov-
based control design to achieve the position-consensus objective (3.50) with connectivity
maintenance.
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Let us consider the second-order system in the reduced-order edge representation (3.51). We
follow a standard backstepping procedure [108]. First we consider a virtual input z 7→ v∗(z),
satisfying v∗(0) = 0, that stabilizes the origin for the subsystem (3.51a). Next, the input u
is designed so that v(t) → v∗(z(t)) as t→ ∞.

Akin to (3.25), the virtual control v∗ is defined as

v∗(z) := −c1
[
E� ⊗ In

]
∇W (z). (3.61)

where W (z) is the barrier Lyapunov function defined in (3.15). Then, defining the error
variable ṽ := v − v∗ and using (3.61) and (3.51), the error system reads

żt =− c1
[
E>

t E� ⊗ In
]
∇W (z) +

[
E>

t ⊗ In
]
ṽ (3.62a)

˙̃v =u+ v̇∗. (3.62b)

Thus, using the feedback-linearizing control law

u := −c2ṽ + v̇∗ (3.63)

with c2 > 0, we obtain the closed-loop system:

żt =− c1
[
E>

t E� ⊗ In
]
∇W (z) +

[
E>

t ⊗ In
]
ṽ (3.64a)

˙̃v =− c2 ṽ, (3.64b)

and we obtain the following.

Proposition 3.6 ([106]). Consider the closed-loop system (3.64). If the initial directed
graph satisfies Assumption 3.2, the controller (3.63) guarantees consensus with connectivity
maintenance, i.e., (3.50) holds and the constraints set J defined in (3.7) is rendered forward
invariant along closed-loop solutions. Furthermore, the function

V (zt, ṽ) = W̃ (zt) +
c3
2
|ṽ|2, (3.65)

where c3 > 0 and W̃ is given in (3.27), is a strict Lyapunov function for the closed-loop
system (3.64). �

Proof. In view of (3.36) and (3.40), the total derivative of V along the trajectories of (3.64)
satisfies

V̇ (zt, ṽ) ≤− c′1
∣∣∇W (zt)

∣∣2 − c2c3|ṽ|2 +∇W̃ (zt)
>[E>

t ⊗ In
]
ṽ

≤− c′1
∣∣∇W (zt)

∣∣2 − c2c3|ṽ|2 +∇W (zt)
>[ΓE>

t ⊗ In
]
ṽ. (3.66)

Note that this bound holds indistinctly for directed-cycle topologies and for directed-spanning-
tree graphs.
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Now, given c′1, c3 and γmax := maxk≤M{γk}, let δ > 0 be such that c′′1 := c′1 −
1
2δγ

2
maxλmax(E

>
t Et) and c′2 := c2c3− 1

2δ are positive. Then, after applying Young’s inequality
to the third term in the right-hand side of (3.66), we obtain

V̇ (zt, ṽ) ≤ −c′′1
∣∣∇W (zt)

∣∣2 − c′2|ṽ|2. (3.67)

Thus, V̇ (zt, v) < 0 for all (zt, v) ∈ {Jt ×RnN}\{(0, 0)} and V in (3.65) is a strict Lyapunov
function for the closed-loop system (3.64).

Forward invariance of the set Jt, hence of J , follows from the same arguments as in the
proof of Proposition 3.2. Consequently, the connectivity of G is preserved for any z(0) ∈ J
and for any v(0). Finally, note that

κ1|zt|2 + κ′1|ṽ|2 ≤ V (zt, ṽ(t)) ≤ h̃(|zt|) + κ′2|ṽ|2 (3.68)

where κ1, κ′1, κ′2 are positive constants and h̃(·) is defined and strictly increasing everywhere
in J̄εt and satisfies h̃(0) = 0. Thus, following the same arguments as in the proof of
Proposition 3.5, we establish asymptotic stability of the origin for all trajectories of (3.64)
starting in J . �

3.3.3 Robustness analysis

As for the first-order systems in this section we use such strict Lyapunov functions provided
in order to establish robustness in the sense of input-to-state stability of the edge-based
consensus with connectivity preservation over undirected and directed graphs.

Consider a second-order system with an bounded external input, i.e.,

ṗi = vi (3.69a)
v̇i = ui + di, (3.69b)

where di : R≥0 → Rn is a locally integrable function. Akin to (3.51), recalling the edge
transformation (3.4) and the identity (2.50), the reduced-order edge system is given by

żt =
[
E>

t ⊗ In
]
v (3.70a)

v̇ = u+ d (3.70b)

where d :=
[
d>1 · · · d>N

]> ∈ RnN . Next, we present the robustness results for undirected and
directed topologies separately.

3.3.3.1 Undirected graphs

Applying control law (3.52), the reduced-order system (3.70) in closed loop becomes

żt =
[
E>

t ⊗ In
]
v (3.71a)

v̇ = −c1
[
Et ⊗ In

]
∇W (zt)− c2 v + d (3.71b)

Then, we have the following.
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Proposition 3.7 ([105]). The closed-loop multi-agent system (3.71) with a communication
topology given by an undirected graph satisfying Assumption 3.1, is input-to-state stable with
respect to an essentially bounded, locally integrable external disturbance d. Furthermore, the
graph remains connected for all t ≥ 0. �

Proof. Taking the Lyapunov function V (zt, v) defined in (3.54) and differentiating with
respect to time we obtain

V̇ (zt, v) = c1∇W (zt)
>[E>

t ⊗ In
]
v − c2 v

>v − c1∇W (zt)
>[E>

t ⊗ In
]
v

− c1c3z
>
t

[
(E>

t Et)
−1E>

t Et ⊗ In
]
∇W (zt)− c2c3z

>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
v + v>d

+ c3z
>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
d+ c3v

>[Et(E
>
t Et)

−1E>
t ⊗ In

]
v

+ c2c3z
>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
v

=− c1c3z
>
t ∇W (zt)− v>

[
(c2I − c3Et(E

>
t Et)

−1E>
t )⊗ In

]
v

+ v>d+ c3z
>
t

[
(E>

t Et)
−1E>

t ⊗ In
]
d,

(3.72)

where we recall again that, under Assumption 3.1, the matrix (E>
t Et)

−1 exists and is positive
definite.

Given c2 and c3 satisfying c2 > c3, let δ > 0 be such that c′2 :=
(
c2 − c3 − 1

2δ

)
> 0 and

using Young’s inequality on the third and fourth terms of the right-hand side of (3.72), we
obtain

V̇ (zt, v) ≤− c1c3z
>
t ∇W (zt)− v>

[((
c2 −

1

2δ

)
I − c3Et(E

>
t Et)

−1E>
t

)
⊗ In

]
v

+
c23
2δ
z>t
[
(E>

t Et)
−1 ⊗ In

]
zt + δ|d|2

≤− c1c3z
>
t ∇W (zt) +

c23
2δ
λmax((E

>
t Et)

−1)|zt|2 − c′2|v|2 + δ|d|2

(3.73)

Then, from Remark 3.5 and (3.73) we have

V̇ (zt, v) ≤ −c′1|zt|2 − c′2|v|2 + δ|d|2 (3.74)

where c′1 := c3

(
c1ψ0 −

c23
2δλmax

(
(E>

t Et)
−1
))

. Note that c′1 can be made positive by choosing

δ sufficiently large. Now, defining ζ :=
[
z>t v>

]>, the derivative of V becomes

V̇ (ζ) ≤ −c′|ζ|2 + δ|d|2 (3.75)

where c′ := min {c′1, c′2}. Thus, the system (3.71) is input-to-state stable with respect to the
bounded disturbance d.

Similarly to the case of first-order systems we need to show that as |zk| → ∆k for any
k ≤M , V̇ (zt, v) ≤ 0. More precisely, let d̄ := ||d(t)||∞ and ε ∈ (0,∆k) be an arbitrarily
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small constant. Let zt be such that, for at least one k ≤M such that |zk| ≥ (∆k − ε). Then,
|zt| ≥ (∆k − ε), so from Remark 3.5 and (3.73), it holds that

V̇ (zt, v) ≤ −c1c3ψk(∆k−ε)(∆k−ε)2+
c23
2δ
λmax((E

>
t Et)

−1)(∆k−ε)2−c′2|v|2+δ|d|2 (3.76)

Since ψk(·) is continuous, non-decreasing, and ψk(sk) → ∞ as |sk| → ∆2
k for at least one

k ≤ M , there exists ε∗(d̄) > 0 such that for all ε < ε∗, V̇ (zt, v) ≤ 0. Then, connectivity
maintenance follows from the same arguments as in Proposition 3.5. �

3.3.3.2 Directed graphs

Let a virtual control input v∗ be defined as in (3.61) and take u as (3.63). Akin to (3.64),
the closed-loop error system takes the form

żt = −c1
[
E>

t E� ⊗ In
]
∇W (z) +

[
E>

t ⊗ In
]
ṽ (3.77a)

˙̃v = −c2ṽ + d. (3.77b)

Proposition 3.8 ([106]). If the directed communication topology satisfies Assumption 3.2,
then the closed-loop multi-agent system (3.77) is input-to-state stable with respect to an
essentially bounded, locally integrable disturbance d. Furthermore, the graph remains connected
for all t ≥ 0. �

Proof. Consider the Lyapunov function defined in (3.65). Then, from (3.67) and (3.77),
under the standing assumption that the graph is either a directed spanning tree or a directed
cycle, the total derivative of (3.65) satisfies

V̇ (zt, ṽ) ≤ −c′′1
∣∣∇W (zt)

∣∣2 − c′2|ṽ|2 + c3ṽ
>d. (3.78)

Next, given c′2 and c3 let δ′ > 0 be such that c′′2 := c′2 − c3/(2δ
′) > 0. Applying Young’s

inequality to the third term on the right-hand side of (3.78), and using (3.11), we obtain

V̇ (zt, ṽ) ≤− c′′1
∣∣∇W (zt)

∣∣2 − c′′2|ṽ|2 +
c3δ

′

2
|d|2

≤− c′′1κ1
2κ2

|zt|2 − c′′2|ṽ|2 +
c3δ

′

2
|d|2 (3.79)

where κ1 and κ2 are positive constants. Thus, the system (3.77) is input-to-state stable.
To assert connectivity preservation in presence of additive disturbances, we show that

in the proximity of the limits of the connectivity region the first term on the right-hand
side of (3.79) dominates over the bounded disturbance. To that end, let d̄ := ||d(t)||∞ and
let ε ∈ (0,∆k) be a small constant to be determined. Let zt ∈ Rn(N−1) be such that for
some k ≤M we have |zk| ≥ ∆k − ε. Then, |zt| ≥ ∆k − ε, so from (3.79), Definition 3.1, and
Assumption 3.3, we have

V̇ (zt, ṽ) ≤− c′′1|∇Wk(zk)|2 − c′′2|ṽ|2 +
c3δ

′

2
d̄ 2

≤− c′′1κ1
κ2

hk(∆k − ε)− c′′2|ṽ|2 +
c3δ

′

2
d̄ 2
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Since hk(s) is continuous, non-decreasing, and hk(s) → ∞ as s→ ∆2
k it follows that there

exists ε∗(d̄) such that for all ε ≤ ε∗, V̇ (zt, ṽ) < 0. The latter holds along trajectories starting
from any initial conditions z(0) ∈ J which implies that z(t) cannot approach the boundary
of J so connectivity is preserved for all t ≥ 0. �

3.4 numerical example

In this section, we present a numerical example that demonstrates the performance of the
edge-based consensus algorithms with connectivity maintenance for multiple second-order
integrators interconnected over directed graphs. Concretely, in the simulation scenario we
consider a multi-agent system composed of six agents described by the double-integrator
model (3.48). The initial conditions as well as the radii of the connectivity regions for each
agent are presented in Table 3.1 —see also Figure 3.4.

Table 3.1: Initial conditions and range constraints
Index xi [m] yi [m] vx,i [m/s] vy,i [m/s] ∆i [m]

1 2.4 -0.5 -5.0 0.0 2.5
2 -0.58 -0.9 0.0 0.0 3.2
3 4.5 2.0 3.0 0.0 3.8
4 5.0 -2.0 2.0 0.0 3.5
5 -4.0 -0.45 0.0 0.0 3.7
6 -2.0 -4.2 0.0 0.0 4.0
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y i
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i
∈
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,6
]

t = 0 s

Figure 3.4: Initial configuration of the multi-agent system for the simulation scenario. The dotted
gray circles represent the communication zones of each agent.
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It is clear from Figure 3.4 that the initial proximity graph representing the available
information to the agents of the system is a directed spanning tree. Indeed, the initial graph
is represented in Figure 3.5.

1 2

3

4

5

6

e2

e3

e1
e4

e5

Figure 3.5: Example of a labeled directed spanning tree graph for six agents.

Note that the graph in Figure 3.5 has been labeled following the rules presented in
Section 2.3.2. Using this labeling the incidence, in-incidence, and edge Laplacian matrices of
the graph in Figure 3.5 are given by

Et =



1 1 1 0 0
−1 0 0 1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 E�t =

[
01×5

−I5

]
Let =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

 .

It is clear that Let is an M-matrix, i.e., [Let]ii > 0, [Let]ij ≤ 0 for i 6= j, and the
real parts of the eigenvalues of Let are strictly positive. Moreover, its symmetric part,
Les = (1/2)

[
Let + L>

et

]
is positive definite. In other words, the edge Laplacian, Let satisfies

(3.35) with Γ equal to the identity matrix.
As mentioned previously, one of the main advantages of providing a strict Lyapunov

function is the possibility of directly establishing robustness properties for the closed-loop
system. Therefore, in the simulation scenario we consider that systems are subject to a
locally integrable disturbance given by the smooth inverted-step-like vanishing function

di(t) =− σi(t) [1 1 0]>

σi(t) =


−2.4

[
tanh(2(t− 15))− 1

]
+ [t+ 10]−1 if i ∈ {3, 5}

2.4
[

tanh(2(t− 15))− 1
]
− [t+ 10]−1 if i = 2

0 if i ∈ {1, 4, 6}.

The disturbance di was designed so that it takes its maximal value at t = 0, when the
agents are closer to the boundaries of the sensing zones. Then, the disturbance smoothly
(but slowly) vanishes after t = 15s.

The barrier Lyapunov functions are defined as

Wk(zk) =
1

2

[
|zk|2 + ln

(
∆2

k

∆2
k − |zk|2

)]
. (3.80)



74 consensus with connectivity maintenance

Consequently, the gradient takes the form

∇Wk(zk) =

[
1 +

1

∆2
k − |zk|2

]
zk, (3.81)

and, akin to (3.63) and (3.61), the control input for each agent is given by

v∗i =− c1
∑
k≤M

[E�]ik∇Wk(zk)

ui =− c2ṽi + v̇∗i , (3.82)

with c1 = 3 and c2 = 2.5.
The simulation results of our proposed control law (3.63) with (3.61) are depicted in

Figures 3.6, 3.7 and 3.8. During the first 15s the perturbation d(t) stymies the achievement of
consensus; the systems reach a stable state with a steady-state error. However, the distance
constraints (dashed lines) for all initially existing edges are always preserved as can be seen
in Figure 3.7, implying that the initially connected (directed spanning tree) graph remains
so. In consequence, as the perturbation vanishes after 15 seconds, the trajectories move from
their previous steady state towards the consensus equilibrium.
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i
∈
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,6
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Figure 3.6: Paths described by the agents under the control law (3.82). The circles denote the initial
positions.

For comparison, a second scenario was studied considering the same initial conditions
satisfying z(0) ∈ J , and the same disturbances acting on the system. For this comparison
the controller is the standard linear consensus protocol —cf. (2.13). As it can be seen in
Figure 3.9, a linear consensus protocol does not guarantee the respect of the range constraints,
thus preventing the multi-agent system from reaching consensus.
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Figure 3.7: Trajectories of the norm of the edges’ states. Dashed lines: distance constraints.
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Figure 3.8: Trajectories of the norm of the nodes’ velocities.
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Figure 3.9: Trajectories of the norm of the edges’ states for a linear controller without guarantee of
connectivity. Dashed lines: distance constraints.
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3.5 conclusion

In this chapter we addressed the problem of consensus when the inter-agent information
exchange is only reliable within a limited range, therefore imposing the need of guaranteeing
the connectivity of the interaction topology via the control. For this purpose we designed the
controllers and analyzed the behavior of the interconnected systems using the edge-based
representation, rather than the more usual node-based approach, which has the technical
advantage of naturally recasting the problem as that of stability of the origin, as opposed to
a problem of stability of a manifold. This facilitates considerably the analysis and opens new
perspectives for consensus control.

Indeed, as the edge-based representation allows us to rely on Lyapunov theory, we es-
tablished asymptotic stability of the consensus manifold simultaneously with connectivity
maintenance for first and second-order integrators interconnected over connected undirected
graphs and two kinds of directed topologies, by means of the construction of strict Lyapunov
functions. The latter, in particular, serves as basis to the solution of more complex control
problems of nonlinear multi-agent systems and allows us to establish stronger properties in
terms of stability and robustness. For instance, in this chapter, using the strict Lyapunov
function for the first-order integrators intereconnected over directed graphs, we were able to
use a Lyapunov-based design for the case of second-order integrators. Furthermore, through
such strict Lyapunov functions we established robustness in the sense of input-to-state
stability in all the considered cases.

In Chapter 5, the importance of having a strict Lyapunov function and establishing
input-to-state stability for the constrained consensus protocols in the edge-based framework
is emphasized further as we extend the results herein to a more general constrained-consensus
problem, for systems of order higher than two.



4
L E A D E R - FO L L OW E R C O N S T R A I N E D F U L L C O N S E N S U S O F
N O N H O L O N O M I C V E H I C L E S

In Chapter 3 we addressed the constrained consensus problem for agents modeled by simple
first- or second-order integrators. In order to study a more representative model for vehicle
applications, we now address the full-consensus problem, that is, achieving consensus in
position and in orientation, in the case of directed leader-follower topologies, using a nonlinear
model.

Most often, autonomous vehicles are modeled using three variables, which correspond to
two Cartesian coordinates and one orientation. The nonholonomic velocity constraints are
captured by a non-integrable relation involving the orientation and the forward velocity.
As evoked in Chapter 1, nonholonomic systems in such a representation have been studied
abundantly in the control and robotics communities for several decades. However, a well-
known fact is that such systems may not be stabilized to a constant pose (position and
orientation) using smooth time-invariant feedback [54]. Consensus being inherently a set-point
stabilization problem, this impediment also applies [55].

In this chapter we adopt an alternative model expressed in polar coordinates [57], [58],
via a transformation that uses inter-agent distances and relative line-of-sight angles to
describe the motion of pairs of vehicles. This representation is not only better suited for
robotic applications since it uses only relative quantities, but it also transforms the consensus
objective to the problem of stabilization of the origin. However, in contrast to the model based
on Cartesian coordinates, the origin may be rendered attractive via smooth time-invariant
feedback. Moreover, in a multi-agent setting, it lends itself naturally to use the edge-based
representation of network graphs and Lyapunov-stability theory as described in previous
chapters, including the barrier-Lyapunov-functions method.

It appears pertinent to emphasize at this point two distinct problems that go hand in
hand with two control strategies for multiple autonomous vehicles. The first is the position
consensus control, in which case the vehicles are summoned to a rendezvous position assuming,
possibly, a formation pattern and, in the case of full consensus, a common orientation. The
second is formation-tracking control, in which case, the robots are required to move in
formation along a path. The former is a leaderless control problem while the second is a
leader-follower problem. For nonholonomic systems these problems are different; formation
tracking control laws, typically, are ineffective to achieve consensus. We acknowledge that
the breadth of the literature of control on autonomous vehicles covers very well, also, multi-

77
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agent settings. The leader-follower formation-tracking control problem is well-studied in the
literature on robot control, but the full-consensus problem relatively less. In this chapter we
address the latter.

We design smooth and time-invariant controllers that solve the leader-follower full-
consensus problem for multiple vehicles with nonholonomic restrictions while guaranteeing
connectivity maintenance. Using tools of cascade-systems theory, we establish asymptotic
stability and robustness of the proposed full-consensus algorithms. Furthermore, we illustrate
the results both in simulation and experimental setups.

4.1 problem formulation

4.1.1 The unicycle model in Cartesian coordinates

We address the problem of full consensus for a group of N autonomous vehicles. That is,
the objective is to design distributed control laws such that all agents converge to the same
position with an agreement on the orientation. We consider that the agents interact in a
leader-follower configuration, where each vehicle follows a single leader (except for one, which
is called the root) and has one or multiple followers. Moreover, we consider that each vehicle
is only able to measure or estimate information from its immediate leader. Therefore, the
graph representing the interaction topology of the leader-follower system is modeled by an
arbitrary directed spanning tree denoted G = (V, E) —see Figure 4.4 below.

Now, a single autonomous ground vehicle is commonly modeled as a point on the plane with
an orientation, with respect to a coordinate frame, that represents the direction of motion

—see Figure 4.1. Such model is normally represented using the equations of a nonholonomic
integrator, which, for an agent i, is given by

ẋi = vi cos θi (4.1a)
ẏi = vi sin θi (4.1b)
θ̇i =ωi, (4.1c)

where xi, yi ∈ R are the coordinates of the Cartesian position on the plane, θi ∈ (−π, π] is
the orientation of the vehicle with respect to the coordinate frame, vi ∈ R is the speed of
the robot in the direction of motion, and ωi ∈ R is the angular velocity.
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Figure 4.1: Diagram of a nonholonomic vehicle.

It is known from the seminal paper [54] that, for a system of the form (4.1), the origin
is not stabilizable via time-invariant differentiable controls. The dual of such result for the
problem of consensus, which is inherently a stabilization one, appeared in [55]. Indeed, for
a leader-follower pair, where the leader is labeled i and the follower is labeled j, the full
consensus objective is to drive the state of the follower (position and orientation) to that
of its leader, i.e., xj(t) → xi(t), yj(t) → yi(t), and θj(t) → θi(t). For that purpose, for the
leader-follower pair i, j, denote the relative positions and orientations as

zxk :=xi − xj (4.2a)
zyk := yi − yj (4.2b)
zθk := θi − θj , (4.2c)

where the index k ≤M denotes the edges of the spanning tree G. Then, we may transform
the error state (4.2) from the local coordinates frame to the global coordinates frame in
terms of the orientation of the follower asexkeyk

eθk

 :=

 cos(θj) sin(θj) 0
− sin(θj) cos(θj) 0

0 0 1

zxkzyk
zθk

 . (4.3)

Now, using (4.1), the new error coordinates (4.3) satisfy the dynamic equations

ėxk =ωjeyk − vj + vi cos(eθk) (4.4a)
ėyk = − ωjexk + vi sin(eθk) (4.4b)
ėθk =ωi − ωj , (4.4c)

in which we consider the velocities of the follower, vj and ωj , as inputs.
Note that the relative positions and orientations in (4.2) are similar to the edge trans-

formation (2.27) exposed in Chapter 2. Hence, as in the edge-based perspective, using
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the transformations (4.2) and (4.3), the leader-follower full-consensus problem (without
constraints) reduces to steering the error variables in (4.4) to zero, that is, making

lim
t→∞

exk(t) = 0 (4.5a)

lim
t→∞

eyk(t) = 0 (4.5b)

lim
t→∞

eθk(t) = 0, ∀k ≤M. (4.5c)

However, due to the nonlinear nature of the system and to the nonholonomic constraints,
some difficulties arise. Indeed, the error system (4.4), as the nonholonomic integrator (4.1),
is also of the class of systems studied in the seminal paper [54]. Therefore, the origin is not
reachable via smooth time-invariant controls from arbitrary initial conditions.

As an illustrative example consider the controller proposed in [109], which is given by

vj = vi cos eθk + c1 exk (4.6)
ωj =ωi + c2 eθk + c3F (t)

[
e2xk + e2yk

]
, (4.7)

where c1, c2, c3 > 0 and F : R≥0 → [Fm, FM ], with Fm > 0 is a smooth bounded function.
Then, replacing (4.6)-(4.7) into (4.4), we obtain that the closed-loop is given byėxkėyk

ėθk

 =

 −c1 φk(t, ezk) 0
−φk(t, ezk) 0 0
−c3F (t)exk −c3F (t)eyk −c2

exkeyk
eθk

+

 0
ωieyk

−ω1exk + vi cos eθk

 , (4.8)

where ezk := [exk eyk eθk]
> and

φk(t, ezk) := c2 eθk + c3F (t)
[
e2xk + e2yk

]
.

It is shown in [109] that, for the closed-loop system (4.8), the leader-follower full-consensus
objective (4.5) is achieved provided that the function F and its derivative Ḟ are persistently
exciting, i.e., that there exist T, µ > 0 such that Ḟ (t) satisfies∫ t+T

t
Ḟ (τ)2dτ ≥ µ ∀t ≥ 0.

This result is obtained using the concept of δ-persistency of excitation from [110].
The previous δ-persistently exciting condition on the function F , and thereby on the

angular velocities ωi(t), i ≤ N , is well-known in the literature of control of nonholonomic
vehicles, including consensus-based control —see [111]–[113]. However, although time-varying
controllers have been proved effective to stabilize nonholonomic systems and also to achieve
consensus, they add a degree of complexity to the control design problem and to the stability
analysis, and in the case of δ-persistency-of-excitation-based design, the controllers may
induce oscillatory motions, which are undesirable in practice.

Despite, the geometric obstructions to asymptotically stabilize (4.1) that are described
in [54], smooth time-invariant control of nonholonomic vehicles is not impossible. Indeed,
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using an alternative representation of nonholonomic vehicles in terms of polar coordinates,
as proposed in [57], the resulting dynamical system does not belong to the class of systems
studied in [54], hence a smooth time-invariant control is not prevented. Moreover, the
control design using the Cartesian-coordinates model (4.1) needs the knowledge of the
position and orientation of the vehicles in a global coordinate framework, which may not
be available in practice, e.g., in indoor applications. On the contrary, a model in polar
coordinates uses only distances and line-of-sight angles, which are easily obtained using
embedded sensors that provide relative measurements. Therefore, in order to address the
full-consensus problem with constraints for a group of nonholonomic vehicles, we use the
alternative polar-coordinates-based representation.

4.1.2 A polar-coordinates-based representation

In this representation the motion of a unicycle is determined by the dynamic equations of its
distance and its angular position with respect to a given goal, as well as those of the line-of-
sight angle with respect to the line joining the agent and the goal. In a multi-agent setting,
the definition of the polar variables is done for each pair of interconnected vehicles. Indeed,
recalling the algorithms exposed in Chapter 2, the idea behind the consensus objective is to
drive the state of each agent to that of its neighbors. In light of this, we may consider that
for each vehicle the “goal” corresponds to the position (and the orientation) of its neighbors.
Therefore, the multi-agent systems is described by the evolution of the inter-agent distances
and of the relative line-of-sight angles for each pair of connected vehicles.
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Figure 4.2: Polar coordinates representation for a pair of unicycles.

Then, after [57], for every pair of leader and follower vehicles, labeled i and j respectively,
let ρk denote the distance separating them, let βk denote the angle between the line of sight
and the leader’s direction of motion, and let αk denote the angle between the line of sight
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and the follower’s direction of motion —see Figure 4.2 for an illustration. More precisely, for
each i ≤ N denote p>i = [xi yi] and for each k ≤M let

ρk := |pi − pj | (4.9a)

βk := arctan
(
yi − yj
xi − xj

)
− θi, ∀ρk > 0 (4.9b)

αk := arctan
(
yi − yj
xi − xj

)
− θj , ∀ρk > 0. (4.9c)

The triple (ρk, βk, αk) corresponds to the state of an edge ek in the tree G.
Now, differentiating the polar-coordinates variables defined in (4.9), using the equations

of the nonholonomic integrator in (4.1), we have that the network of vehicles interacting in
a leader-follower configuration corresponds to M interconnected dynamical systems of first
order, but dimension three, defined as

ρ̇k = vi cosβk − vj cosαk (4.10a)

β̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωi (4.10b)

α̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωj . (4.10c)

Since we assume that a “follower” can measure/estimate the distance and line-of-sight angles
with respect to its leader but not the opposite, in the latter equations we consider that vj
and ωj are the control inputs, and vi and ωi, which are respectively the leader’s velocity and
angular rate, are external signals. Note that the system (4.10), being singular at the origin,
does not belong to the class of nonholonomic integrators characterized in [54], so, as evoked
above, convergence to the origin using smooth time-invariant controllers is not prevented.

From a dynamical systems viewpoint, the solutions to equations (4.10) correspond to the
leader-follower relative error trajectories for the pair of index k. Indeed, note that using the
transformation (4.9) the three-dimensional space of (xj , yj , θj) is mapped into another space
of dimension 3 (ρk, βk, αk) ∈ R≥0 × (−π, π]2. Moreover, ρk = 0 and βk = αk is equivalent to
qi = qj and θi = θj . Therefore, the full consensus control goal is reached if, for all k ≤M ,

lim
t→∞

ρk(t) = 0 (4.11a)

lim
t→∞

βk(t) = 0 (4.11b)

lim
t→∞

αk(t) = 0. (4.11c)

Thus, in these coordinates, the problem of full consensus is also recast into that of rendering
the origin for system (4.10) attractive. Furthermore, this model has the additional advantage
of naturally leading to the design of controllers that rely only on local relative measurements.

Remark 4.1. It is important to note, however, that neither the polar-coordinates transfor-
mation (4.9) nor the system (4.10) are defined at the origin (zero distance). Therefore, the
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regularity assumptions needed to apply Brockett’s result [54] do not hold. The latter means that
convergence to the origin is not prevented via smooth and time-invariant feedback laws. Indeed,
although the system’s variables are not defined at ρk = 0, the origin (ρk, βk, αk) = (0, 0, 0)
is a limiting point that is located at the frontier of the open set of validity of the system’s
equations (4.10) and can be reached using smooth time-invariant feedback [57]. •

As stated earlier we consider that the agents measure the relative variables with respect to
their leader via embedded measurement devices. In turn, we consider that such devices have
limited sensing capabilities in the form of a limited field-of-view, determined by an angle of
view, and a limited range determined by a maximal detection distance. The field-of-view
constraints are encoded by the set

Jα :=
{
αk ∈ (−π, π] : |αk| < ∆α,k, ∀ k ≤M

}
, (4.12)

where, for each k ≤M , ∆α,k > 0 denotes the maximum line-of-sight angle, corresponding
to half the angle of view, such that for the leader-follower pair (i, j), i.e., the edge ek, the
leader is inside the follower’s field of view. Similarly, the distance constraints are encoded by
the set

Jρ :=
{
ρk ∈ R≥0 : ρk < ∆ρ,k, ∀ k ≤M

}
, (4.13)

where, for each k ≤M , ∆ρ,k > 0 denotes the maximum distance between the leader-follower
pair (i, j), such that the measurements of the follower j are reliable.

Recall that, as we mentioned in Chapter 2, the existence of a directed spanning tree
is a necessary condition to achieve consensus [6]. Under the constraints (4.12) and (4.13),
however, the existence of the minimal tree topology cannot be assumed, but rather has to
be enforced by the control law.

Thus, in accordance with the problem addressed in the previous chapter on consensus
with connectivity maintenance, the problem considered herein is as follows.

Leader-follower full-consensus problem with connectivity maintenance. Define distributed
smooth time-invariant control laws vj and ωj , j ≤ N , such that, for all k ≤M , (4.11) holds
and that the sets Jα and Jρ in (4.12) and (4.13) respectively, are rendered forward invariant.
That is, αk(0) ∈ Jα implies αk(t) ∈ Jα and ρk(0) ∈ Jρ implies ρk(t) ∈ Jρ, for all t ≥ 0.

4.2 a smooth time-invariant controller

In order to solve the full-consensus problem with connectivity maintenance defined above we
follow a backstepping approach [17]. Hence, the control design exploits the natural cascaded
structure of the systems. To explain this more clearly, consider a two-agent system, with
a leader-follower interconnection denoted by the graph in Figure 4.3. For this system, the
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1 2
e1

Figure 4.3: Directed tree for a two-agent system.

dynamic equations in polar coordinates are

ρ̇1 = v1 cosβ1 − v2 cosα1 (4.14a)

β̇1 =
1

ρ1
[−v1 sinβ1 + v2 sinα1]− ω1 (4.14b)

α̇1 =
1

ρ1
[−v1 sinβ1 + v2 sinα1]− ω2. (4.14c)

Now, for clarity, let us consider that the leader, i.e., the agent labeled “1”, is static. That
is, we have v1 ≡ 0 and ω1 ≡ 0. Then, the system (4.14) becomes

ρ̇1 = −v2 cosα1 (4.15a)

β̇1 =
v2
ρ1

sinα1 (4.15b)

α̇1 =
v2
ρ1

sinα1 − ω2. (4.15c)

The system (4.15) may be considered to be in cascaded form, where v2 and α1 are the control
inputs for the subsystem (4.15a)-(4.15b), and ω2 is the input for the subsystem (4.15c).
Hence, we may apply a backstepping approach in which we first design the actual control
input v2 and a virtual control input α∗

1 : R≥0 ×R → (−π/2, π/2); (ρ1, β1) 7→ α∗
1(ρ1, β1) such

that α∗
1(0, 0) = 0, in order to make ρ1(t) → 0 and β1(t) → 0 asymptotically. Then, we design

ω2 so that α1 tracks the desired virtual input α∗
1, i.e., α1(t) → α∗

1(t).
With that in perspective, for the sake of argument, consider that the two agents of the

system in Figure 4.3 are not subject to the range and field-of-view constraints described
above. In this setting, we define the virtual input

α∗
1 := arctan(−c3β1), c3 > 0. (4.16)

Then, let us denote the error variable α̃1 := α1 − α∗
1, so that, using the identities

sin(arctan(s)) = s√
1 + s2

, cos(arctan(s)) = 1√
1 + s2

,

the dynamical system (4.15) can be rewritten as

ρ̇1 = − v2√
1 + (c3β1)2

− [cos(α1)− cos(α∗
1)] v2 (4.17a)

β̇1 = −c3
v2

ρ1
√
1 + (c3β1)2

β1 +
1

ρ1
[sin(α1)− sin(α∗

1)] v2 (4.17b)

˙̃α1 =
v2
ρ1

sinα1 − α̇∗
1 − ω2. (4.17c)



4.2 a smooth time-invariant controller 85

We show that the control inputs

v2 = c1
√
1 + (c3β1)2 ρ1 (4.18)

ω2 = c2α̃1 + ψ1 v2 +
v2
ρ1

sinα1 − α̇∗
1, (4.19)

where c1, c2 > 0 and

ψ1 = ρ1
[cos(α1)− cos(α∗

1)]

α̃1
+
β1
ρ1

[sin(α1)− sin(α∗
1)]

α̃1
, (4.20)

render the origin for (4.17) attractive, thereby guaranteeing that the follower robot reaches
the leader. To that end, let us define a quadratic Lyapunov function

V (ρ1, β1, α̃1) =
1

2

[
ρ21 + β21 + α̃2

1

]
. (4.21)

The total derivative of (4.21) along (4.17) reads

V̇ (ρ1, β1, α̃1) =− ρ1 v2√
1 + (c3β1)2

− ρ1 [cos(α1)− cos(α∗
1)] v2 − c3

v2

ρ1
√
1 + (c3β1)2

β21

+
β1
ρ1

[sin(α1)− sin(α∗
1)] v2 + α̃1

[
v2
ρ1

sinα1 − α̇∗
1 − ω2

]
. (4.22)

Now, replacing (4.18) and (4.19) into (4.23), we obtain

V̇ (ρ1, β1, α̃1) = −c1ρ21 − c3c1β
2
1 − c2α̃

2
1 < 0. (4.23)

Therefore, from (4.23), asymptotic convergence to the origin (ρ1, β1, α̃1) = (0, 0, 0) follows.
The previous control design is effective in stabilizing one robot to a point (static leader)

without considering neither proximity nor field-of-view constraints. For the purpose of leader-
follower consensus of multi-agent systems (4.10) we follow the previous ideas. However, as it
was exposed for linear systems in Chapter 3, in order to account for the range and field-of-view
constraints, for the solution to the full-consensus problem with connectivity maintenance
defined above, we use the concept of barrier Lyapunov functions —see Definition 3.1. Indeed,
the inputs vj and ωj shall not be simply chosen to be proportional to ρk and α̃k, respectively,
but as functions of the gradient of a barrier Lyapunov function.

Hence, akin to (3.10), we encode the range constraints represented by the set Jρ in (4.13)
into the barrier Lyapunov function

Wρ,k(ρk) =
1

2

[
ρ2k +Bρ,k(ρk)

]
, (4.24)

where Bρ,k is a non-negative function satisfying Bρ,k(0) = 0, ∇Bρ,k(0) = 0 and Bρ,k(ρk) → ∞
as ρk → ∆ρ,k.

Correspondingly, for the field-of-view constraints represented by the set Jα in (4.12) we
define a barrier Lyapunov function of the form

Wα,k(αk) =
1

2

[
α2
k +Bα,k(αk)

]
, (4.25)
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whereBα,k is a non-negative function satisfyingBα,k(0) = 0, ∇Bα,k(0) = 0 andBα,k(αk) → ∞
as |αk| → ∆α,k.

The functions (4.24) and (4.25) are barrier Lyapunov functions as per Definition 3.1.
Moreover, they satisfy Assumption 3.3, that is,

κ1
2
ρ2k ≤Wρ,k(ρk) ≤ κ2 [∇Wρ,k(ρk)]

2 , (4.26)
κ̄1
2
α2
k ≤Wα,k(αk) ≤ κ̄2 [∇Wα,k(αk)]

2 . (4.27)

From a control theory viewpoint, as in Chapter 3, we want to use the barrier Lyapunov
functions (4.24) and (4.25) for the analysis of the closed-loop system. However, in view of
the backstepping method described above, the closed-loop system depends on the error
variable α̃k rather than on the constrained variable αk. Therefore, in order to be able to use
the barrier function encoding the field-of-view constraints as a Lyapunov function, Wα,k in
(4.25) has to be modified so that it is made positive definite in terms of the error variable α̃k,
that is, Wα,k = 0 if α̃k = 0. For this purpose, we rely on the concept of gradient recentered
barrier function introduced in [114], and exploited for multi-robot coordination in [32] among
others. For consistency in the notation, let us redefine the field-of-view-constraints set as

J̃α :=
{
α̃k ∈ (−π, π] : |α̃k + α∗

k| < ∆α,k, ∀ k ≤M
}
, (4.28)

Then, the gradient recentered barrier function W̃α,k : J̃α → R≥0 is defined as

W̃α,k(α̃k) :=Wα,k(α̃k + α∗
k)−Wα,k(α

∗
k)−

∂Wα,k(s)

∂s

∣∣∣∣
α̃k=0

α̃k. (4.29)

The recentered barrier function W̃α,k is positive definite, that is, W̃α,k(α̃k) > 0 for all
α̃k 6= 0 and W̃α,k(0) = 0. Moreover, it tends to +∞ as |αk| → ∆α,k, or equivalently, as
|α̃k + α∗

k| → ∆α,k. Therefore it is a valid barrier Lyapunov function as per Definition 3.1.
Moreover, W̃α,k(α̃k) satisfies

κ̃1
2
α̃2
k ≤ W̃α,k(α̃k) ≤ κ̃2

[
∇W̃α,k(α̃k)

]2
. (4.30)

Now, based on the backstepping approach exposed above, we design the constrained
full-consensus control as follows. The virtual input is given by

α∗
k := arctan(−c3βk), (4.31)

with c3 a design constant1 satisfying

0 < c3 < min
k≤M

{
∆α,k

π

}
. (4.32)

1 For convenience we use a common gain c3 for all the agents. This would require that all robots have knowledge
of the upper bound (4.32), which is global parameter, albeit knwon a priori by design. However, it is important
to note that it is equally possible to define 0 < c3k <

∆α,k

π
, for all k ≤ M , so that the global bound (4.32) is

not needed for the design.
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Let the coefficients

ajk :=

{
1 if edge ek is incident on node j
0 otherwise (4.33)

represent the available information for each agent j based on the interaction topology G.
Then, based on the latter, the distributed control inputs vj and ωj are taken proportional to
the gradient of the barrier Lyapunov functions (4.24) and (4.29), respectively. More precisely,
the control inputs are given as follows:

vj := c1
∑
k≤M

ajkηk ∇Wρ,k(ρk), ηk :=
√

1 + (c3βk)2 (4.34)

ωj :=
∑
k≤M

ajk

c2∇W̃α,k(α̃k) +

[
ψk +

[
1 +

c3
η2k
ω̃k

]sin(αk)

ρk

]∑
i≤N

aikvi

 (4.35)

where c1, c2 > 0 are design constants. In turn, the term

ψk := −∇Wρ,k
[cos(αk)− cos(α∗

k)]

∇W̃α,k

+
βk
ρk

[sin(αk)− sin(α∗
k)]

∇W̃α,k

(4.36)

compensates for the error dynamics coming from the tracking problem of the backstepping
method. The term

c3
η2k
ω̃k

sin(αk)

ρk

∑
i≤N

aikvi,

where

ω̃k :=

[
∂2Wα,k(s)

∂s2

∣∣∣∣
α̃k=0

]
α̃k

∇W̃α,k

, (4.37)

is used to dominate the additional terms coming from the derivative of the recentered barrier
Lyapunov function (4.25), as we will see below.

Note that, modulo the gradients of the barrier Lyapunov functions Wρ,k and W̃α,k, defined
in (4.24) and (4.29), respectively, the control inputs (4.34)-(4.35) are defined in the same
form as those given previously in (4.18)-(4.19) for the two-agent system without constraints
considered above.

Remark 4.2. The bound on c3 in (4.32) comes from the design of the gradient recentered
barrier Lyapunov function (4.29). Indeed, in order for the term Wα,k(α

∗
k) to be well-defined,

we need to guarantee that the desired value of αk also remains within the imposed bounds, i.e.,
that |α∗

k(t)| < ∆α,k, for all t ≥ 0. Therefore, since |α∗
k| ≤ c3|βk| and βk ∈ (−π, π] by definition,

choosing c3 < mink≤M{∆α,k/π}, the terms Wα,k(α
∗
k) and ∂Wα,k/∂α

∗
k are well-defined and

upper bounded in norm by positive constants. •
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Remark 4.3. Note that the control law (4.35) is well posed for all ρk ∈ Jρ\{0} and all
α̃k ∈ J̃α. Indeed, note that using (4.26) and (4.30) in (4.37), we have

|ω̃k| ≤

∣∣∣∣∣ ∂2Wα,k(s)

∂s2

∣∣∣∣
α̃k=0

∣∣∣∣∣ |α̃k|
|∇W̃α,k|

≤2κ̃2
κ̃1

∣∣∣∣∣ ∂2Wα,k(s)

∂s2

∣∣∣∣
α̃k=0

∣∣∣∣∣ , (4.38)

and since α∗
k(t) ∈ ∆α,k for all t ≥ 0, the term in the right-hand side of inequality (4.38) is

well defined and bounded. Moreover

lim
|α̃k|→∆α,k

α̃k

∇W̃α,k

= 0. (4.39)

Furthermore, noting that | sin(α̃k+α
∗
k)− sin(α∗

k)| ≤ |α̃k| and | cos(α̃k+α
∗
k)− cos(α∗

k)| ≤ |α̃k|,
the previous statement holds also for (4.36). •

Remark 4.4. In order to address the inter-agent connectivity constraints, the full-consensus
control laws (4.34) and (4.35) are designed based on the gradients of the barrier Lyapunov
functions (4.24) and (4.29), respectively. Note, however, that redefining Wρ,k in (4.24) and
Wα,k in (4.25) to be quadratic Lyapunov functions, i.e., Bρ,k(ρk) = Bα,k(αk) ≡ 0, the
control inputs (4.34) and (4.35) are still valid to address the full-consensus problem without
constraints —cf. [115]. Indeed, considering quadratic Lyapunov functions, from (4.37) ω̃k = 1
and the control inputs (4.34)-(4.35) become

vj := c1
∑
k≤M

ajkηk ρk, ηk :=
√

1 + (c3βk)2 (4.40)

ωj :=
∑
k≤M

ajk

c2α̃k +

[
ψk +

[
1 +

c3
η2k

]sin(αk)

ρk

]∑
i≤N

aikvi

 . (4.41)

•

4.3 closed-loop analysis

So far, for the control design, we have considered the leader-follower pair (4.10) as an
individual system. Let us consider now a multi-agent system composed of N unicycles
communicating through an arbitrary directed spanning tree G represented in Figure 4.4.
Recall that in leader-follower configuration, each robot has only one leader, but may have
several followers. Hence, as it may be seen in Figure 4.4, we may divide the tree into h ≤ N−1
levels based on the distance of the edges to the root node.

In light of this, let Ep ⊂ E denote the set of edges such that the distance from its terminal
node to the root of the tree, labeled “1”, is equal to p ≤ h, i.e., Ep := {ek = (i, j) ∈ E :
d(1, j) = p}, where we recall that d(i, j) is the distance between nodes i and j, that is, the
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: : :

i

j
: : :
· · · · · ·

er elp−1

e1 e3

ek elp

em

(level 1)

(level p− 1)

(level p)

(level h)

Figure 4.4: Directed spanning tree G. Open directed chain illustrated in red.

number of edges in the shortest path from i to j. Without loss of generality, assume that
each level p of the tree contains an lp number of edges, such that 1 ≤ lp ≤M ,

∑h
p=1 lp =M

—see Figure 4.4. Then, we define a multi-variable model containing the three states of all
the edges belonging to a level of the tree. To that end, for each level p having lp arcs labeled
ek with k ∈ [lp−1 + 1, lp] we define the closed-loop state variables

ξp :=
[
ξ>p,1 · · · ξ>p,lp

]> ∈ R3lp , ξp,k := [ρk βk α̃k]
> ∈ R3. (4.42)

Using this notation, the equations corresponding to the closed-loop dynamics composed of
the systems (4.10) with the inputs (4.34)-(4.35), with k ≤M and for an arbitrary directed
tree, may be written in the compact cascaded-system form,

ξ̇p =fp(ξp) + gp(ξp, ξp−1), p ∈ [2, h] (4.43a)
ξ̇1 =f1(ξ1) (4.43b)

where, for each p ≤ h,

fp(ξp) :=
[
fp,1(ξp,1)

> . . . fp,lp(ξp,lp)
>]>,

gp(ξp, ξp−1) :=
[
gp,1(ξp,1, ξp−1)

> . . . gp,lp(ξp,lp , ξp−1)
>]>.

In these equations, the nominal systems, ξ̇p,k = fp,k(ξp,k), correspond to

ρ̇k =− c1∇Wρ,k

[
1 + [cos(αk)− cos(α∗

k)]ηk

]
(4.44a)

β̇k =− 2c1
∇Wρ,k(ρk)

ρk

[
c3βk − [ sin(αk)− sin(α∗

k)
]
ηk

]
(4.44b)

˙̃αk =− c2∇W̃α,k − c1

[
ψkηk − (1− ω̃k)

c3
ηk

sin(αk)

ρk

]
∇Wρ,k (4.44c)

where we recall that αk = α̃k + α∗
k.
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The interconnection terms gp(ξp, ξp−1) depend on states relative to the p-th level in the tree
and to the previous one in the following way. Fix k ∈ [lp−1+1, lp] and r ∈ [lp−2+1, lp−1] in a
manner that the edge er ∈ Ep−1 is incident on ek ∈ Ep, that is, so that the terminal node of er
is the initial node of ek —see the chain colored in red in Figure 4.4. Let ξp−1,r := [ρr βr α̃r]

>

be the state associated to er. Then,

gp,k (ξp,k, ξp−1) =

c1 cos(βk)ηr ∇Wρ,r

g̃β (ξp,k, ξp−1,r)
g̃α (ξp,k, ξp−1,r)

 , (4.45)

where ηr :=
√
1 + (c3βr)2,

g̃β := −c1ηr∇Wρ,r

[
sin(βk)
ρk

+
[
1 +

c3
η2r
ω̃r

]sin(αr)

ρr
+ ψr

]
− c2∇W̃α,r,

and

g̃α := −c2c3
η2k

∇W̃α,r − c1ηr∇Wρ,r

[(
1 +

c3
η2k

)sin(βk)
ρk

+
c3
η2k

[
ψr +

(
1 +

c3
η2r
ω̃r

)sin(αr)

ρr

]]
,

(4.46)

where αr = α̃r + α∗
r .

The cascaded form of the closed-loop system (4.43), which is derived from the leader-
follower structure of the interaction graph, is fundamental for the convergence and robustness
analysis of the multi-agent system under the controls (4.34)-(4.35). Indeed, for the analyses
presented below, we rely on standard arguments from cascaded-systems theory [116], [117],
where convergence to the origin for a system of the form (4.43) is concluded by establishing
asymptotic stability for each nominal system (4.44) and boundedness of the trajectories
under the interconnections (4.45).

In what follows, before presenting the statements that constitute the original contributions
of this chapter, with the purpose of clarity, we analyze a simple three-agent system under
the action of the proposed inputs (4.34)-(4.35).

4.3.1 Case-study

Consider a system composed of three unicycle vehicles with a leader-follower interaction
topology represented by the directed spanning tree in Figure 4.5. In polar coordinates, the
system is described by (4.10) with k ≤ 2.

1 2 3
e1 e2

Figure 4.5: Directed tree for a three-agent system.
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Recall the compact notation (4.42), where in this case lp = 1 for all p ≤ 2. Then, applying
the control inputs (4.34)-(4.35), the closed-loop system reads

ξ̇2 =f2(ξ2) + g2(ξ2, ξ1) (4.47a)
ξ̇1 =f1(ξ1), (4.47b)

where ξ1 = ξ1,1 = [ρ1 β1 α̃1]
> and ξ2 = ξ2,2 = [ρ2 β2 α̃2]

>. The nominal systems ξ̇p = fp(ξp),
p ≤ 2, are given in (4.44) and the interconnection term is

g2 (ξ2, ξ1) =

c1 cos(β2)η1 ∇Wρ,1

g̃β (ξ2, ξ1)
g̃α (ξ2, ξ1)

 , (4.48)

where η1 :=
√

1 + (c3β1)2,

g̃β := −c1η1∇Wρ,1

[
sin(β2)
ρ2

+
[
1 +

c3
η21
ω̃1

]sin(α1)

ρ1
+ ψ1

]
− c2∇W̃α,1,

and

g̃α := −c2c3
η22

∇W̃α,1 − c1η1∇Wρ,1

[(
1 +

c3
η22

)sin(β2)
ρ2

+
c3
η22

[
ψ1 +

(
1 +

c3
η21
ω̃1

)sin(α1)

ρ1

]]
.

(4.49)

The cascade structure of the system (4.47) captures well the fact that the dynamics of the
edge e1, with state ξ1, is autonomous whereas the dynamics of the edge e2, with state ξ2, is
driven by the former. Moreover, as we mentioned earlier, relying on well-known results for
cascaded systems, asymptotic stability of the origin of a nonlinear cascaded system follows if
the nominal systems ξ̇1 = f1(ξ1) and ξ̇2 = f2(ξ2) are asymptotically stable at their respective
origins and the solutions of (4.47) are bounded.

The first condition may be asserted, for each p ≤ 2 and for the edge ek ∈ Ep, using the
barrier Lyapunov function

Vp,k(ξp,k) =Wρ,k(ρk) + W̃α,k(α̃k) +
1

2
β2k, (4.50)

with Wρ,k(ρk) and W̃α,k(α̃k) given in (4.24) and (4.29), respectively. Assume, for the time-
being (this assumption will be relaxed, and shown to hold, later), that the solutions of
(4.47) are such that ρk(t) ∈ Jρ and α̃k(t) ∈ J̃α for all k ≤M and all t ≥ 0. Then, the total
derivative of (4.50) reads

V̇p,k(ξp,k) =

[
∂Wρ,k

∂ρk

]
ρ̇k +

[
∂W̃α,k

∂α̃k

]
˙̃αk +

 ∂W̃α,k(s)

∂s

∣∣∣∣∣
α̃k=0

 α̇∗
k + βkβ̇k. (4.51)



92 leader-follower constrained full consensus of nonholonomic vehicles

Now, notice that from (4.29), we have

∇W̃α,k =
∂W̃α,k

∂α̃k
=
∂Wα,k(α̃k + α∗

k)

∂α̃k
−
∂Wα,k(α

∗
k)

∂α∗
k

. (4.52)

Moreover, since αk = α̃k + α∗
k, from the definition of Wα,k in (4.25), the following holds

∂Wα,k(α̃k + α∗
k)

∂α̃k
=
∂Wα,k(α̃k + α∗

k)

∂α∗
k

.

Then, from (4.29), we have

∇α∗W̃α,k :=
∂W̃α,k

∂α∗
k

= ∇W̃α,k −

[
∂2Wα,ks

∂s∗

∣∣∣∣
α̃k=0

]
α̃k. (4.53)

Hence, along the trajectories of the nominal system (4.44), (4.51) becomes

V̇p,k(ξp,k) =− c1
[
∇Wρ,k

]2[
1 +

[
cos(αk)− cos(α∗

k)
]
ηk

]
− 2c1

∇Wρ,k

ρk

[
c3βk

−
[

sin(αk)− sin(α∗
k)
]]
βk − c2

[
∇W̃α,k

]2
− c1

[
∇W̃α,k

] [
ψkηk − (1− ω̃k)

c3
ηk

sin(αk)

ρk

]
∇Wρ,k

−∇α∗W̃α,k

[
c1c3
ηk

sin(αk)

ρk
∇Wρ,k

]
. (4.54)

Then, using (4.53), (4.36), (4.37), and the bounds (4.26) and (4.30), we have

V̇p,k(ξp,k) ≤− c1
[
∇Wρ,k

]2 − 4c1c3κ2
κ1

β2k − c2
[
∇W̃α,k

]2
≤− c′1ρ

2
k − c′2α̃

2
k − c′3β

2
k

≤− c|ξp,k|2, (4.55)

where c′1 := 2c1κ2/κ1, c′2 := 2c2κ̃2/κ̃1, c′3 := 4c1c3κ2/κ1, and c := min{c′1, c′2, c′3}. The
inequality (4.55) implies that the origin is asymptotically stable for the nominal systems
ξ̇1 = f1(ξ1) and ξ̇2 = f2(ξ2).

Next, we establish boundedness of the solutions of (4.47). For that purpose, we stress that
the elements of the term g2(ξ2, ξ1) in (4.48) may be upper-bounded as

g2(ξ2, ξ1) ≤


γρ(|ξ1,1|)

max
{
1, 1

ρ2

}
γβ(|ξ1,1|)

max
{
1, 1

ρ2

}
γα(|ξ1,1|)

 (4.56)
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where γρ(s), γβ(s), γα(s) ∈ K∞. Therefore, in view of (4.55) and (4.56), the total derivative
of the barrier Lyapunov function in (4.50), with p = k = 2, along the trajectories of (4.47a)
satisfies

V̇2,2(ξ2,2) ≤− c1
[
∇Wρ,2

]2 − c′3β
2
2 − c2

[
∇W̃α,2

]2
+ |∇Wρ,2|γρ(|ξ1,1|)

+ max
{
1,

1

ρ2

}[
|β2|γβ(|ξ1,1|) + 2|∇W̃α,2|γα(|ξ1,1|) +

∣∣∣∣∂2Wα,2(α
∗
2)

∂α∗2
2

∣∣∣∣ |α̃2|γα(|ξ1,1|)
]
.

(4.57)

Since α∗
k is bounded by definition —see (4.31), we have that

∣∣∂2Wα,2(s)/∂s
2
∣∣
α̃2=0

≤ µ, where
µ is a positive constant. Then, given a constant δ ∈ (0, 1), using the bound (4.30), (4.57) is
rewritten as

V̇2,2(ξ2,2) ≤− c1
[
∇Wρ,2

]2 − c′3β
2
2 − δc2

[
∇W̃α,2

]2 − (1− δ)
c2κ̃2
κ1

α̃2
2 + |∇Wρ,2|γρ(|ξ1,1|)

+ max
{
1,

1

ρ2

}[
|β2|γβ(|ξ1,1|) + 2|∇W̃α,2|γα(|ξ1,1|) + µ|α̃2|γα(|ξ1,1|)

]
.

(4.58)

Now, because of the max function in (4.58) we consider two scenarios. First, assume that
ρ2 � 1 so that max{1, 1/ρ2} = 1. Then, let λ1, λ2, λ3, λ4 > 0 be sufficiently large so that
c̃1 := c1 − 1

2λ1
> 0, c̃2 := δc2 − 1

λ2
> 0, c̃3 := c′3 − 1

2λ3
> 0, and c̃4 := (1− δ) c2κ̃2

κ1
− µ

2λ4
> 0.

Applying Young’s inequality to the last four terms of the right-hand side of (4.58) we obtain

V̇2,2(ξ2,2) ≤− c̃1
[
∇Wρ,2

]2 − c̃2
[
∇W̃α,2

]2 − c̃3β
2
2 − c̃4α̃

2
2 +

λ1
2
γρ(|ξ1,1|)2 + λ2γα(|ξ1,1|)2

+
λ3
2
γβ(|ξ1,1|)2 +

λ4µ

2
γα(|ξ1,1|)2

≤− c̃|ξ2,2|2 + γ1(|ξ1,1|)
(4.59)

where c̃ := min {2c̃1κ2/κ1, c̃4 + 2c̃2κ̃2/κ̃1, c̃3} and

γ1(|ξ1,1|) :=
λ1
2
γρ(|ξ1,1|)2 +

λ3
2
γβ(|ξ1,1|)2 +

(
λ3
2

+
λ4µ

2

)
γα(|ξ1,1|)2. (4.60)

Now, let max{1, 1/ρ2} = 1/ρ2. For any ε > 0 and for any ρk ≥ ε, we have max{1, 1/ρ2} ≤
1/ε. Then, let λ′1, λ′2, λ′3, λ′4 > 0 be defined so that, with an abuse of notation, c̃1 := c1− 1

2λ′
1
>

0, c̃2 := δc2 − 1
λ′
2
> 0, c̃3 := c′3 − 1

2λ′
3
> 0, and c̃4 := (1− δ) c2κ̃2

κ1
− µ

2λ′
4
> 0. Applying Young’s

inequality on (4.58), again, we obtain

V̇2,2(ξ2,2) ≤ −c̃|ξ2,2|2 +
1

ε
γ1(|ξ1,1|), ∀ ξ1,1, ξ2,2 ∈ R3. (4.61)
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From (4.59) and (4.61), we see that the function Vp,k in (4.51) with p = k = 2, satisfies

V̇2,2(ξ2,2) ≤ −c̃|ξ2,2|2 + γ̄1(|ξ1,1|) (4.62)

where γ̄(|ξ1,1|) := max{1, 1ε}γ1(|ξ1,1|). Assume now that the solutions t 7→ ξ2(t) grow un-
bounded. We know from (4.55) that the solutions t 7→ ξ1(t) are bounded. Hence, from the
bound (4.62), there exists a time t′ > 0 such that, as ξ2(t) grows, V̇2(ξ2(t)) ≤ 0 for all t ≥ t′,
which leads to a contradiction. That is, ξ2(t) is bounded. Furthermore, since we established
that ξ1(t) → 0, it follows that, also, ξ2(t) → 0.

So far we have assumed that ρk(t) ∈ Jρ and α̃k(t) ∈ J̃α for all t ≥ 0. We show next
that this holds under the assumption that ρk(0) ∈ Jρ\{0} and α̃k(0) ∈ J̃α. We proceed by
contradiction. Suppose that there exists T > 0 such that for all t ∈ [0, T ) and at least one
k ≤ M , α̃k(t) ∈ J̃α and α̃k(T ) /∈ J̃α. Then, from the definition of the barrier Lyapunov
function W̃α,k, we have that W̃α,k(α̃k(t)) → ∞ as t→ T . This, however, is in contradiction
with (4.55) and (4.62), which imply that W̃α,k(α̃k(t)) is bounded for all t ≥ 0 and all k ≤M .
The same analysis applies for the distance constraints, meaning that Wρ,k(ρk(t)) is also
bounded for all t ≥ 0 and all k ≤M . Therefore, the constraints sets Jρ and J̃α (equivalently
Jα) are forward invariant and connectivity maintenance follows.

Thus, the three-agent system in Figure 4.5, in closed loop with the control input (4.34)-(4.35),
achieves full consensus with connectivity maintenance.

4.3.2 Static leader: stabilization

Let us now return to N -agents system in closed loop (4.43). As in the case-study analyzed
above, based on cascaded-systems theory [117], one can assert that if for every p ∈ [2, h+ 1]
the solution of ξ̇p−1 = fp−1(ξp−1) converges to zero and if, for every p ∈ [2, h], the solutions
of ξ̇p = fp(ξp) + gp(ξp, ξp−1), denoted ξp(t), remain bounded, we also have ξp(t) → 0. This is
established in the following proposition which is an original contribution of this thesis and
was presented in [118].

Proposition 4.1 ([118]). Consider a multi-agent system composed of N unicycles, described
by the M interconnected systems (4.10), interacting over a directed spanning tree G and
subject to distance and field-of-view constraints as defined by the sets (4.12)-(4.13). Under
the smooth time-invariant controller (4.34)-(4.35) the system asymptotically achieves full
consensus with connectivity maintenance, i.e., (ρk, βk, αk) → (0, 0, 0), and ρk(t) ∈ Jρ and
αk(t) ∈ Jα, for all k ≤M , all t ≥ 0, and for all initial conditions (ρk(0), βk(0), αk(0)) such
that ρk(0) ∈ Jρ\{0} and αk(0) ∈ Jα. �

Proof. First, let k ≤M and p ≤ h be arbitrarily fixed and for the edge ek ∈ Ep, consider the
barrier Lyapunov function

Vp,k(ξp,k) =Wρ,k(ρk) + W̃α,k(α̃k) +
1

2
β2k, (4.63)

with Wρ,k(ρk) and W̃α,k(α̃k) given in (4.24) and (4.29), respectively. As before, assume for
now that the solutions of (4.43) are such that ρk(t) ∈ Jρ and α̃k(t) ∈ J̃α for all k ≤M and
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all t ≥ 0. Then, the total derivative of (4.63) along the trajectories of the nominal systems
(4.44) yields

V̇p,k(ξp,k) ≤− c1
[
∇Wρ,k

]2 − 4c1c3κ2
κ1

β2k − c2
[
∇W̃α,k

]2
≤− c′1ρ

2
k − c′2α̃

2
k − c′3β

2
k

≤− c|ξp,k|2, (4.64)

where we have used (4.53) and the bounds (4.26) and (4.30), and we defined c′1 := 2c1κ2/κ1,
c′2 := 2c2κ̃2/κ̃1, c′3 := 4c1c3κ2/κ1, and c := min{c′1, c′2, c′3}.

Now, consider the function

Vp(ξp) =

lp∑
k=1

Vp,k(ξp,k). (4.65)

In view of (4.64), we have

V̇p(ξp) ≤ −c|ξp|2 < 0. (4.66)

From (4.66) we establish asymptotic stability of the origin for the nominal systems (4.44).
Next, we establish boundedness of the solutions of (4.43). For that purpose, fix p ≤ h

arbitrarily and consider the (p− 1)-th and the p-th equations of the cascaded system (4.43).
In view of (4.45), for any r and k chosen above (such that the edge ek is incident on er),

the interconnection terms gp,k(ξp,k, ξp−1), p ∈ [2, h] satisfy, component-wise,

gp,k(ξp,k, ξp−1) ≤


γρ(|ξp−1,r|)

max
{
1, 1

ρk

}
γβ(|ξp−1,r|)

max
{
1, 1

ρk

}
γα(|ξp−1,r|)

 , (4.67)

where γρ(s), γβ(s), γα(s) ∈ K∞ and we recall that ξp−1,r = [ρr βr α̃r]
> is the r-th entry of

ξp−1.
Now, consider the Lyapunov function in (4.63) with p = 2, k ∈ [l1 + 1, l2], and r ∈ [1, l1].

From (4.64) and (4.45), we have that the total derivative of V2,k satisfies

V̇2,k(ξ2,k) ≤− c1
[
∇Wρ,k

]2 − c2
[
∇W̃α,k

]2 − c̃3β
2
k + |∇Wρ,k| γρ(|ξ1,r|)

+ max
{
1,

1

ρk

}[
|βk|γβ(|ξ1,r|) + 2

∣∣∣∇W̃α,k

∣∣∣ γα(|ξ1,r|)
+

∣∣∣∣∂2Wα,k(s)

∂s2

∣∣∣∣
α̃k=0

|α̃k| γα(|ξ1,r|)

]
. (4.68)

Let ε > 0 be an arbitrary positive constant. For any ε and any ρk ≥ ε, we have that
max{1, 1/ρk} ≤ max{1, 1/ε}. Then, after some algebraic manipulations as in (4.58) and
(4.59), we obtain

V̇2,k(ξ2,k) ≤ −c|ξ2,k|2 + max
{
1,

1

ε

}
γr(|ξ1,r|) (4.69)
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where c is a positive constant and γr is given as in (4.60), for each r ∈ [1, l1].
Now, considering again the function Vp in (4.65) with p = 2, we have

V̇2(ξ2) ≤ −c|ξ2|2 + γ̄(|ξ1|) (4.70)

where γ̄(|ξ1|) := max{1, 1ε}
∑l1

r=1 γr(|ξ1,r|), for any ρk > ε > 0. Assume now that the solutions
t 7→ ξ2(t) grow unbounded. Since ξ1(t) is bounded, there exists t′ > 0 such that V̇2(ξ2(t)) ≤ 0
for all t ≥ t′, which leads to a contradiction. Therefore, ξ2(t) is bounded. Furthermore, since
ξ1(t) → 0 it follows that, also, ξ2(t) → 0.

The previous arguments were stated for p = 2. However, given the cascaded nature of
the system (4.43), proceeding recursively up to p = h establishes the boundedness of ξp(t),
for each ε > 0 such that ρk ≥ ε, and for all 2 ≤ p ≤ h. Hence, from cascaded-systems
arguments, we conclude that the origin of the system (4.43) is attractive for all initial
conditions ρk(0) ∈ Jρ and αk(0) ∈ Jα, which implies that full consensus is achieved.

Finally, we show next that, under the Proposition’s assumption that ρk(0) ∈ Jρ\{0} and
αk(0) ∈ Jα the distance and field-of-view constraints are respected. As before, suppose
that there exists T > 0 such that for all t ∈ [0, T ) and at least one k ≤ M , αk(t) ∈ Jα

and αk(T ) /∈ Jα. Then, we have that W̃α,k(α̃k(t)) → ∞ as t → T . However, from (4.66)
and (4.70), it follows that W̃α,k(α̃k(t)) is bounded for all k ≤ M and for all t ≥ 0, which
is a contradiction. The same analysis applies for the distance constraints, meaning that
Wρ,k(ρk(t)) is also bounded for all t ≥ 0 and all k ≤M .

Thus, the control inputs (4.34)-(4.35) solve the leader-follower full-consensus problem with
connectivity maintenance for the M interconnected systems (4.10). �

4.3.3 Non-static leader: robustness analysis

Note that, after the definition of the coefficients aij (4.33) and the structure of the interaction
topology in Figure 4.4, under the control laws (4.34)-(4.35), for the root node (i = 1) we have
v1 = ω1 = 0. However, it is not unlikely that in certain application scenarios, the root node,
the “leader”, follows a predefined trajectory. The latter implies that the root of the directed
spanning tree, is subject to bounded non-zero velocities v1(t) and ω1(t). Since we consider
that there is no information exchange between the agents, the leader’s velocities are assumed
to be unknown to the followers. Therefore, v1(t) and ω1(t) are considered as disturbances
acting on the closed-loop system. Indeed, under such assumption, the multi-agent system
(4.10) in closed-loop with the inputs (4.34)-(4.35) can be written in the form

ξ̇p =fp(ξp) + gp(ξp, ξp−1), p ∈ [2, h] (4.71a)
ξ̇1 =f1(ξ1) + ϕ(ξ1, v1, ω1) (4.71b)

with

ϕ(ξ1, v1, ω1) :=
[
ϕ1(ξ1,1, v1, ω1)

> . . . ϕl1(ξ1,l1 , v1, ω1)
>
]>
, (4.72)
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where

ϕk (ξ1,k, v1, ω1) =

 v1 cos(βk)
−v1 sin(βk)

ρk
− ω1

−v1 sin(βk)
ρk

 , (4.73)

which comes from (4.10) when v1 6= 0 and ω1 6= 0.
For system (4.71) we state the following.

Proposition 4.2 ([118]). Consider a multi-agent system composed of N unicycles, described
by the M interconnected systems (4.10), interacting over a directed spanning tree G and
subject to distance and field-of-view constraints as defined by (4.13)-(4.12). Consider also
that the leader agent, that is, the root of the directed spanning tree (labeled i = 1), is subject
to bounded inputs v1(t) and ω1(t) satisfying |v1(t)| ≤ v̄1 and |ω1(t)| ≤ ω̄1, respectively with
v̄1 and ω̄1 some positive constants. Then, under the controller (4.34)-(4.35), for all initial
conditions (ρk(0), βk(0), αk(0)) such that ρk(0) ∈ Jρ\{0} and αk(0) ∈ Jα, connectivity is
maintained, i.e., ρk(t) ∈ Jρ and αk(t) ∈ Jα, for all k ≤M and t ≥ 0. �

Proof. The proof follows similar cascaded-systems’ arguments as in the proof of Proposi-
tion 4.1. Consider first the subsystem (4.71b) and the barrier Lyapunov function

V1,k(ξ1,k) =Wρ,k(ρk) + W̃α,k(α̃k) +
1

2
β2k, (4.74)

with k ≤ l1 and Wρ,k and W̃α,k given in (4.24) and (4.29), respectively. Differentiating V1,k
with respect to time, akin to (4.68), using (4.72) and |∂2Wα,k(s)/∂s

2|α̃k=0 ≤ µ, we have

V̇1,k(ξ1,k) ≤− c1
[
∇Wρ,k

]2 − c2
[
∇W̃α,k

]2 − c̃3β
2
k + |∇Wρ,k| |v1|+ |βk||ω1|

+
∣∣∣∇W̃α,k

∣∣∣ [(1 + c3)

ρk
|v1|+ c3|ω1|

]
+ |α̃k|

[
c3µ

ρk
|v1|+ c3µ|ω1|

]
. (4.75)

After some algebraic manipulations, as in (4.58) and (4.59), for any ε > 0 such that ρk ≥ ε,
we obtain

V̇1,k(ξ1,k) ≤ −c̃|ξ1,k|2 +
µ̃

δ

[
v̄21 + ω̄2

1

]
, (4.76)

where c̃ and µ̃ are positive constants. Next, for all the edges such that p = 1, we define the
function

V1(ξ1) =

l1∑
k=1

V1,k(ξ1,k). (4.77)

From (4.76), the total derivative of V1 satisfies

V̇1(ξ1) ≤ −c̃|ξ1|2 +
µ̃l1
δ

[
v̄21 + ω̄2

1

]
. (4.78)
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From (4.76) we conclude boundedness of the solutions ξ1(t) of (4.71b). The latter follows
by contradiction. Assume that the solutions t 7→ ξ1(t) grow unbounded. From (4.76), there
exists t′ such that V̇1(ξ1(t)) ≤ 0 for all t ≥ t′, which leads to a contradiction.

Finally, following recursively the same analysis as in the proof of Proposition 4.1 for the
subsystems (4.71a), under the Proposition’s assumption that ρk(0) ∈ Jρ\{0} and αk(0) ∈ Jα,
we may conclude boundedness of ξp(t), p ∈ [1, h] as well as connectivity maintenance, for all
k ≤M . �

4.4 numerical examples

To illustrate our theoretical results, the proposed control laws were validated in a realistic
simulation scenario using the Gazebo simulator and the Robot Operating System (ROS)
environment. Gazebo is an efficient 3D dynamic simulator of robotic systems in indoor and
outdoor environments. In contrast to pure numerical-integration-based solvers of differential
equations, in a Gazebo-ROS environment we can accurately emulate physical phenomena and
dynamics otherwise neglected, such as friction, contact forces, actuator dynamics, slipping,
etc. In addition, it offers high-fidelity robot and sensor models for simulation.

For the test scenario we employed the model of a velocity controlled Nexter Robotics’
Wifibot Lab V4 to represent the agents. The necessary relative variables of distance and
line-of-sight angles used in the controller are estimated from the ground truth data in Gazebo.

Concretely, in the simulation scenario we consider six Wifibots starting from an initial
configuration defined in the 2nd-4th columns of Table 4.1. Moreover, we consider that each
agent is equipped with a visual measurement device, fixed on the body of the robot, that has
a limited range and a limited field of view. These constraint parameters are presented in the
5th-6th columns in Table 4.1, where ∆ρ is the maximum distance so that the measurements
are reliable and ∆α is half of the maximum field-of-view angle.

Table 4.1: Initial conditions and constraint parameters
Index x [m] y [m] θ [rad] ∆ρ [m] ∆α [rad]

1 -4.0 0.0 1.57 – –
2 3.5 0.0 2.72 8.0 0.44
3 -11 5.0 -0.21 8.8 0.44
4 -11 -5.0 0.21 8.7 0.44
5 11 5.0 -2.16 9.3 0.44
6 11 -5.0 2.16 9.5 0.44

Under the initial conditions and the constraint parameters presented in Table 4.1, the
initial interaction graph of the system is represented by the leader-follower topology (the
directed spanning tree) illustrated in Figure 4.6.
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Figure 4.6: Initial leader-follower topology.

In order to test both the convergence and the robustness properties of the designed
algorithm, in this simulation, we consider that the leader is subject to bounded vanishing
inputs given by

v1(t) = 0.2(tanh(2(10− t)) + 1), ω1(t) = −0.1(tanh(2(10− t)) + 1) sin(0.5t),

satisfying |v1(t)| ≤ 0.4 m/s and |ω1(t)| ≤ 0.2 rad/s. Furthermore, for all the simulations, the
barrier Lyapunov functions Wρ,k and Wα,k, for each k ≤M , were taken as

Wρ,k(ρk) =
1

2

[
ρ2k + ln

(
∆2

ρ,k

∆2
ρ,k − ρ2k

)]
(4.79)

Wα,k(αk) =
1

2

[
α2
k + ln

(
∆2

α,k

∆2
α,k − α2

k

)]
. (4.80)

The controller gains are fixed to c1 = 0.2, c2 = 1 and c3 = 0.2. These values correspond
to magnitudes comparable with the real Wifibot Lab V4 robots used for the experimental
validation below.

The simulation results obtained in the Gazebo-ROS environment are presented in Figures
4.7-4.11. A video of the presented numerical simulations is also available at: https://
tinyurl.com/distfullMultiRobFOVrange. It is important to remark that in the simulated
scenario, in order to avoid collisions, the agents are forced to stop when the distance between
pairs of robots is lower than a defined threshold. Hence, since the inter-agent distances cannot
go to zero, full consensus is not achieved in this simulation —see Figure 4.7. The latter is the
main limitation of the proposed control algorithm, which has yet to be addressed. Indeed,
solving the full-consensus problem for nonholonomic vehicles under range and field-of-view
limitations and with collision-avoidance guarantees via smooth time-invariant controllers is
still an open problem.

For a more thorough numerical validation, the same scenario was simulated in MATLAB,
where it is clear that, in the absence of collisions, full-consensus is achieved for the group
of agents as soon as the leader’s velocity disturbances vanish —see Figure 4.8. However,
the interest of the Gazebo simulations is to show that in a realistic scenario, using the
proposed controller, both the distance and field-of-view constraints are always respected,
even when the leader has non-zero linear and angular velocities. The latter is evidenced on
Figures 4.9 and 4.10. Moreover, from Figure 4.11 it can be seen that the inputs are smooth
and time-invariant.

https://tinyurl.com/distfullMultiRobFOVrange
https://tinyurl.com/distfullMultiRobFOVrange
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Figure 4.7: Paths followed by the Wifibots up to the stopping instant to prevent collisions —Gazebo
simulation.
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Figure 4.8: Paths followed by the Wifibots up to full consensus —MATLAB simulation.
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Figure 4.9: Inter-agent distances. The dashed lines represent the range limitations.
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Figure 4.10: Line-of-sight angles. The dashed lines represent half of the maximal field-of-view limita-
tions.
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Figure 4.11: Smooth time-invariant inputs solving the full-consensus problem with connectivity
maintenance. In the top figure are plotted the linear velocities while in the bottom one
are plotted the angular rates.

As comparison, an additional Gazebo simulation was carried out using the full-consensus
protocol (4.40)-(4.41) proposed in [119] where neither the distance nor the field-of-view
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constraints were considered —see Remark 4.4. The results are presented in Figures 4.12 and
4.13, where it is clear that the constraints are not respected.
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Figure 4.12: Inter-agent distances under the action of control laws (4.40)-(4.41). The dashed lines
represent the range limitations.
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Figure 4.13: Line-of-sight angles under the action of control laws (4.40)-(4.41). The dashed lines
represent half of the maximal field-of-view limitations.

Finally, in Figure 4.14 is presented a snapshot at around 7.5 seconds of both Gazebo
simulations, visualized in Rviz. The Figure 4.14a corresponds to the controller without
connectivity and visibility maintenance and the Figure 4.14b corresponds to the case where
both constraints are considered in the control. The field of view of robot 2 is highlighted by
the yellow dashed lines. It is clear from Figure 4.14a that the leader (in blue) is no longer
inside the field of view of robot 2, whereas in Figure 4.14b the visibility constraint is satisfied.
The latter corresponds to the constraint violation shown in Figure 4.13.
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(a) Controller without connectivity maintenance
(4.40)-(4.41).

(b) Controller with connectivity maintenance
(4.34)-(4.35).

Figure 4.14: Snapshots of the Gazebo simulations. The field of view of robot 2 is highlighted by the
dashed yellow lines.

4.5 experimental validation

In addition to the numerical examples exposed above, some experiments were performed in
order to illustrate the performance of the proposed control methodology in a real application
setting. The experiments were performed using a group of four Nexter Robotics’ Wifibots

—see Figure 4.15. The latter correspond to the same models used in the Gazebo simulations.
The implementation of the control law was done under the ROS interface. Moreover, an
Optitrack motion capture system based on active IR cameras and markers was used which,
coupled with odometry sensors, allowed us to obtain the ground-truth values of the positions
and velocities of the robots. A video of the experimental test is also available at: https:
//tinyurl.com/SmoothConsensusUnicycles.

Figure 4.15: Snapshot of the experimental test using four Nexter Robotics’ Wifibots.

https://tinyurl.com/SmoothConsensusUnicycles
https://tinyurl.com/SmoothConsensusUnicycles
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In order to avoid potential collisions between the agents as they reach consensus, we
consider a leader-follower full-consensus-based formation scenario, rather than a generic
consensus one. For this purpose, instead of defining ρk as the distance between a pair of
agents i and j (4.9a), we define it as the distance from a follower to the desired relative
position with respect to its leader’s position, i.e.,

ρk := |pi − pj − zdk |, (4.81)

where zdk is the desired relative position determined by the formation. We stress that the
definition (4.81) does not affect the methodology developed in this chapter as the system
(4.10) remains unchanged for a constant zdk .

The initial configurations of the four Wifibots are defined in the 2nd-4th columns of
Table 4.2. We consider that each robot has a limited interaction range given by the maximum
distance ∆ρ in the 5th column of Table 4.2. Note, however, that because the quantity (4.81)
no longer represents the actual distances between agents, the values of ∆ρ in Table 4.2 are
the actual range limitations minus the distance between the desired position in the formation
and the leader, |zdk |. Moreover, due to practical limitations, no constraints are imposed on
the field of view. Therefore, for the control design we defined the barrier Lyapunov function
Wρ,k encoding the range constraints as in (4.79), whereas the function Wα,k was taken as a
quadratic function

Wα,k(αk) =
1

2
α2
k. (4.82)

We stress that, as evoked in Remark 4.4, using the function Wα,k in (4.82), the control
methodology proposed above still holds —see also [120].

Table 4.2: Initial conditions and constraint
parameters

Index x [m] y [m] θ [rad] ∆ρ [m]
1 1.5 2.2 0.0 –
2 -1.3 2.2 -1.9 2.7
3 -1.5 -0.5 1.6 3.4
4 1.2 0.3 -2.8 4.2

Under the initial conditions and the range limitations in Table 4.2 the initial graph
representing the interaction topology of the four robots is illustrated in Figure 4.16.

12 3 4
e2e1 e3

Figure 4.16: Initial leader-follower topology.

In Figure 4.17 are presented the trajectories of the vehicles up to the desired formation.
The blue dot represents the position of the static leader and the red dots are the desired
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positions of each agent with respect to its respective leader, as defined by the interaction
graph showed in Figure 4.16. It is clear from Figures 4.18 and 4.19 that the group of agents
successfully achieve the desired formation with consensus on the orientation, as expected.
Additionally, in Figure 4.18 it can be appreciated that all distance constraints (dashed lines)
are respected, thus guaranteeing connectivity maintenance.
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Figure 4.17: Paths followed by the Wifibots up to the desired formation.
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Figure 4.18: Inter-agent distances. The dashed lines represent the range limitations.

In Figure 4.20 are presented the control inputs for the four robots. It is evident from
the figures that the control inputs are smooth, as claimed. We clarify that the apparent
“dripping” in the curves on Figure 4.11 is due to position-measurements noise coming from
the motion capture system of our experimental benchmark. The effect of such noise can also
be appreciated in Figures 4.17 and 4.18.
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Figure 4.19: Orientations of the vehicles with respect to the coordinate frame.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

v i
[m

/s
]

i
∈
[1
,4
]

0 10 20 30 40 50 60

−3

−2

−1

0

1

2

t [s]

ω
i

[ra
d/

s]
i
∈
[1
,4
]

Figure 4.20: Smooth time-invariant inputs solving the full-consensus problem with range limitations.
In the top figure are plotted the linear velocities while in the bottom one are plotted the
angular rates.
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4.6 conclusion

We solved the leader-follower full-consensus problem with connectivity maintenance for a
multi-vehicle nonholonomic system subject to range and field-of-view constraints, and inter-
connected through an arbitrary leader-follower (directed spanning tree) topology. Remarkably,
using a polar-coordinates-based model, the proposed control law is smooth time-invariant
and relies only on relative inter-agent variables. Our contributions are original in that most
of the existing results either address only position consensus or design non-smooth or time in-
variant feedback laws, adding a degree of complexity to the control design problem and to the
stability analysis. In contrast, smooth and time-invariant control laws are not prevented when
considering the polar-coordinates model, as we do here. This renders the proposed controller
more suited for practical implementation and facilitates the analysis through Lyapunov
and cascaded systems’ theory. Moreover, when considering the connectivity-maintenance
problem, it is usually required that the agents communicate with their neighbors, ruling
out the meaningful sensor-based coordination scenario. In such a scenario, we validated the
performance of the proposed controllers via numerical examples and experimental setups.

With respect to the results exposed in Chapter 3, the contributions presented in this
chapter are a natural next step for considering more realistic constrained-coordination
problems for multi-robot systems. Indeed, the nonholonomic integrator represents well the
motion of ground vehicles and of some types of aerial robots flying at constant altitudes.
However, several kinds of systems fail to be represented via the low-order linear or nonlinear
systems considered in this chapter and in the previous one. Therefore, in the next chapter
we extend our results on constrained consensus to more complex high-order systems.





5
C O N S E N S U S O F H I G H - O R D E R S Y S T E M S U N D E R O U T P U T
C O N S T R A I N T S

In Chapter 3 we presented how the analysis of the consensus protocol using the edge-based
representation is used to address scenarios where the (limited) interconnection between
the agents is modeled via nonlinear functions of the state, and to establish strong stability
and robustness properties. Then, in Chapter 4, the consensus problem with connectivity
maintenance was studied for vehicles with nonholonomic restrictions, for which similar
stability and robustness properties were also established. The previous results were established,
respectively, for systems modeled as first- and second-order integrators and for the first-order
nonholonomic integrator.

Although interesting on their own, such low-order models may fail to represent many
meaningful and complex systems with a high relative degree with respect to an output
of interest. Moreover, besides the connectivity problem addressed in previous chapters,
in realistic settings, multi-agent systems are subject to other limitations imposed by the
actuators or by the environment, such as input saturation or minimal safety distances. In
addition, physical systems are constantly subject to disturbances in the form of external
inputs, modeling uncertainties, delays, etc. Thus, in this chapter, we generalize the results
previously obtained for first- and second-order systems. Indeed, the contributions presented
hereafter pertain to the consensus-based formation control of high-order systems under
inter-agent constraints, mainly connectivity maintenance and collision avoidance, and with
robustness with respect to disturbances.

We propose a control-design methodology in order to solve partial- and full-state consensus
problems under inter-agent constraints and disturbances for high-order systems in normal
form, while guaranteeing strong stability and robustness properties. It applies to networks
with undirected and directed topologies. The inter-agent constraints that guarantee the
systems’ safety as well as the integrity of the (initial) topology through the maintenance
of connectivity, are encoded in the form of output constraints. Essentially, these take the
mathematical form of a lower and an upper bound on the norm of relative-error states, which
are more natural inter-agent constraints than those considered, e.g., in [85] and [86].

For the control design we build upon the results on constrained-consensus for low-order
integrators in Section 3.3 in order to propose a Lyapunov-based control design using the
concept of command filtered backstepping [121], [122] with the barrier-Lyapunov-functions-
based controllers for consensus of first-order systems. The command-filtered-backstepping

109
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approach, which is not an original contribution of this thesis, replaces the successive derivatives
of the gradient-based control law by approximations via linear strictly-positive-real filters,
facilitating the implementation of the actual controllers.

In regards to the formal analysis, it is important to stress that since the inter-agent
constraints may introduce undesired unstable equilibria within the edges’ perspective, the
closed-loop system is analyzed relying on the theory of multi-stable systems [123], [124]. Based
on the latter we establish stronger results than the mere convergence property, commonly
established in the literature —see, e.g., [13]–[15], [28], [29]. Indeed, we establish asymptotic
convergence of the multi-agent system to the consensus manifold, as well as robustness with
respect to bounded disturbances in the sense of practical-input-to-state stability.

5.1 the consensus-based formation problem

5.1.1 Problem formulation

We consider now multi-agent nonlinear systems in feedback form with high relative degree
with respect to an output of interest. The problem that we address here covers the one solved
in Chapter 3 in that not only the systems studied in this chapter are of order higher than 2,
but also in that we consider a broader class of constraints, beyond connectivity maintenance.
For simplicity and clarity of exposition, in the theoretical development presented hereafter
we consider that each agent is modeled as a high-order system in normal form subject to
additive disturbances. More precisely, we consider N multi-variable systems in normal form
and of relative degree % as follows:

ẋi,l = xi,l+1 + θi,l(t), l ≤ %− 1 (5.1a)
ẋi,% = ui + θi,%(t) (5.1b)

where xi,l ∈ Rn, l ≤ %, i ≤ N , denotes the components of the state of each agent, ui ∈ Rn

is the control input, θi,l : R≥0 → Rn is an essentially bounded function that represents a
disturbance, and xi,1 is considered an output of interest.

There is little loss of generality in restricting our study to systems modeled as in (5.1) since
many systems in feedback form can be transformed into (5.1) through different nonlinear
control approaches, such as feedback linearization, input transformation, etc. [17], [108].
Plants that fit in this category include fully feedback-linearizable systems, but also a number
of instances of physical systems, such as robot manipulators [125], spacecrafts [126], flexible-
joint manipulators [127], [128], and, more relevant to this thesis, flying vehicles [129]. An
extension to the case of underactuated UAVs is addressed in Chapter 6.

It is assumed that the local interaction between the agents is represented by a graph
G = (V, E). Similarly to Chapter 3 the topology is considered hereafter to be either an
undirected graph, or the two classes of directed graphs: spanning-trees or cycles. Hence, akin
to Assumptions 3.1 and 3.2, the following assumptions are used in this chapter.

Assumption 5.1. The initial undirected graph contains a spanning tree.
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Assumption 5.2. The initial directed graph is either a directed spanning tree or a directed
cycle.

As in Chapter 3, we consider that the inter-agent constraints are defined as a set of
restrictions on the system’s output. However, in this chapter we consider a more general set
of constraints by setting both an upper and a lower bound on the inter-agent distances. In
the case of autonomous vehicles, this apparently innocuous extension allows us to consider
simultaneously connectivity maintenance and inter-agent collision avoidance. Mathematically,
the constraints are defined as follows. For each k ≤ M , let ∆k and δk be, respectively,
the upper and minimal distances, satisfying 0 ≤ δk < ∆k. Then, akin to (3.7), the set of
inter-agent output constraints is defined as

D :=
{
z ∈ RnM : δk < |zk| < ∆k, ∀ k ≤M

}
. (5.2)

where

zk := xi,1 − xj,1 ∀k ≤M, (i, j) ∈ E , (5.3)

are the components of the edge states for the multi-agent system. Hence, let x>1 =[
x>1,1 · · · x>N,1

]
∈ RnN be the collection of the first states, i.e., l = 1, of all the agents

of the system and let z> = [z>1 · · · z>M ]> ∈ RnM . Then, recalling the edge transformation
(2.28), in compact form, the edge states are given by

z := [E> ⊗ In]x1, (5.4)

where E is the incidence matrix defined in (2.25).
In Chapters 3 and 4 we studied the (position) consensus problem in which the objective

consists in all the agents converging to the same point, or, in other words, making z → 0.
The latter, however, is not possible when considering physical systems and safety constraints.
In this chapter we generalize the previous results by setting the problem as one of consensus-
based formation. In this setting, the new control goal is for the agents to achieve output
consensus with a desired relative position, centered at a point of non-predefined coordinates
in the presence of output constraints as given by the set D in (5.2). Mathematically, the
consensus-based formation problem translates into making xi,1 − xj,1 → zdk , or equivalently,
zk → zdk in the relative coordinates, where zdk ∈ Rn denotes the desired relative state between
a pair of neighboring agents i and j.

Assumption 5.3. The formation determined by the desired relative state zdk between a pair
of neighbors i and j is compatible with the inter-agent constraints given by the set (5.2).
That is, zd ∈ D, where zd> = [zd>1 · · · zd>M ] ∈ RnM .

For brevity, in the rest of this chapter we refer to the consensus-based formation problem
as simply the consensus problem or the output-consensus problem according to the context.

Now, define the consensus error variable as

z̃ := z − zd. (5.5)
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Let each x>l =
[
x>1,l · · · x>N,l

]
∈ RnN , l ∈ {2, . . . , %}, be the collection of each state of all the

agents of the system. Then, in the error edge coordinates, the consensus objective is that

lim
t→∞

z̃(t) = 0 (5.6a)

lim
t→∞

xl(t) = 0, ∀l ∈ {2, . . . , %}. (5.6b)

Remark 5.1. Note that for % = 2 the objective in (5.6) corresponds to that of position
consensus of second-order integrators (3.50), addressed in Chapter 3. •

Now, recalling the identities (2.48) and (2.50), denoting zdt ∈ Rn(N−1) as the vector
of desired relative displacements corresponding to Gt, and collecting the inputs of the
multiple agents into the vector u> =

[
u>1 · · · u>N

]
∈ RnN and the disturbances into θ>1 =[

θ>1,1 · · · θ>N,1

]
∈ RnN and θ>l =

[
θ>1,l · · · θ>N,l

]
∈ RnN , for l ∈ {2, . . . , %}, the reduced-order

system’s equations read
˙̃zt =

[
E>

t ⊗ In
]
x2 +

[
E>

t ⊗ In
]
θ1(t) (5.7a)

ẋl = xl+1 + θl(t), l ∈ {2, . . . , %− 1} (5.7b)
ẋ% = u+ θ%(t), (5.7c)

where we recall that Et is the incidence matrix of an arbitrary spanning tree contained in
the graph. In these coordinates, output-consensus as defined in (5.6) is achieved if the origin
is asymptotically stabilized for the reduced-order system (5.7). More precisely, we consider
the following problem.

Robust consensus problem with output constraints. Consider a multi-agent system of agents
with high relative-degree dynamics given by (5.1), interacting over a connected undirected
graph, a directed spanning tree or a directed cycle. Assume, in addition, that the systems
are subject to inter-agent constraints that consist in the outputs being restricted to remain
in the set defined in (5.2). Under these conditions, find a distributed dynamic controller with
outputs ui, i ≤ N , which, in the absence of disturbances, i.e., θi,l ≡ 0, l ≤ %, i ≤ N , achieves
the objective (5.6) and renders the constraints set (5.2) forward invariant, i.e., z(0) ∈ D
implies that z(t) ∈ D for all t ≥ 0. Furthermore, in the presence of essentially bounded
disturbances, that is if θl 6≡ 0, ui renders the origin of (5.7) practically input-to-state stable
and the set D in (5.2) forward invariant. •

The solution to the robust consensus problem with output constraints stated above
is the main contribution of this thesis. It was presented in [130]. We acknowledge that
some works may be found in the literature that solve similar problems of consensus under
constraints [28], [85], [86]. However, in the latter, the considered constraints weigh either
on the synchronization errors or on the high-order variables, which may fail to capture
meaningful inter-agent constraints as we do here. Furthermore, in regards to the formal
analysis, as in Chapter 3, we establish stronger results than the mere convergence property,
commonly established in the literature —see, e.g., [13]–[15], [28], [29]. Indeed, we formally
establish asymptotic convergence of the multi-agent system to the consensus manifold, as well
as robustness with respect to bounded disturbances in the sense of practical-input-to-state
stability.
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5.1.2 Barrier Lyapunov function with multiple singular points

As in previous chapters, in order to account for the inter-agent constraints, the control
design is based on the gradient of a barrier Lyapunov function —cf. [90], [91], [102] and
Definition 3.1. Nonetheless, since in this chapter we address the problem of consensus-based
formation, some particular considerations have to be made. Indeed, the edge state of our
system (5.7) is the formation error z̃t, but the output constraints encoded by the set (5.2)
are in terms of the original edge states z. Therefore, with respect to the barrier Lyapunov
functions recalled in Section 3.1.3, some modifications have to be applied.

First we introduce the set

D̃k := {z̃k ∈ Rn : δk < |z̃k + zdk | < ∆k}, ∀k ≤M (5.8)

as the set of inter-agent constraints for each edge in the graph. Then, for each k ≤M , we
define a barrier Lyapunov function candidate Wk : D̃k → R≥0, of the form

Wk(z̃k) =
1

2

[
|z̃k|2 + B̃k(z̃k + zdk)

]
, (5.9)

where B̃k is a non-negative function such that B̃k(z
d
k) = 0 and ∇B̃k(z

d
k) = 0, while B̃k(z̃k +

zdk) → ∞ as either |z̃k+zdk | → ∆k or |z̃k+zdk | → δk. Therefore, the barrier Lyapunov function
candidate (5.9) satisfies: Wk(0) = 0, ∇Wk(0) = 0, and Wk(z̃k) → ∞ as either |z̃k+zdk | → ∆k

or |z̃k + zdk | → δk, or equivalently in the original edge coordinates, as either |zk| → ∆k or
|zk| → δk. See Figure 5.1 for an illustration.
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Figure 5.1: Example of a barrier Lyapunov function for a 2-dimensional state z̃k = [z̃k,1 z̃k,2]
> (left)

and its level curve for z̃k,2 = 0 (right).

Remark 5.2. The function (z̃k + zdk) 7→ B̃k(z̃k + zdk) in (5.9) may seem equivalent to the
function zk 7→ Bk(zk) in (3.10). Indeed, noting that zk ≡ z̃k + zdk, both functions satisfy
B̃k(z̃k + zdk) → ∞ and Bk(zk) → ∞ as |zk| → ∂D̃k and |zk| → ∂Jk, respectively, where D̃k

and Jk denote the respective inter-agent constraints, as defined in (5.8) and (3.9), respectively.
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However, under a close inspection we note that B̃k is defined such that B̃k(z
d
k) = 0 and

∇B̃k(z
d
k) = 0, whereas Bk in turn, is defined such that Bk(0) = 0 and ∇Bk(0) = 0.

The latter comes from the fact that the set D in (5.2) encodes the constraints on the
original edge coordinates zk (as does J in (3.7)) and not in terms of the error variable
z̃k. For the consensus-based formation problem addressed in this chapter, defining a barrier
Lyapunov function of the form (3.10) may lead to imposing conservative feasibility conditions
in terms of the initial conditions [131]. Therefore, in this chapter we define (5.9) where
(z̃k + zdk) 7→ B̃(z̃k + zdk) may be constructed as an integral barrier Lyapunov function [131] or
as a weight recentered barrier function [32], [132] —see also Appendix A.2—, in order to
satisfy the desired properties. •

Remark 5.3. The functions defined in (5.9) are reminiscent of scalar potential functions in
constrained environments. Hence, the appearance of multiple critical points is inevitable [30].
Indeed, the gradient of the barrier Lyapunov function of the form (5.9), ∇Wk(z̃k), vanishes
at the origin and at an isolated saddle point separated from the origin —see Appendix A.3
for an example. Therefore, when using the gradient of (5.9) for the control, the closed-loop
system has multiple equilibria. This prevents us from using the classical stability tools for the
analysis of the system, as used in Chapter 3. Such technical difficulty is addressed using tools
tailored for so-called multi-stable systems —see [123], [124], and Appendix A.4. •

Now, as in Chapter 3, we define a barrier Lyapunov function for the whole multi-agent
system as

W (z̃) =
∑
k≤M

Wk(z̃k) (5.10)

and, in light of Remark 5.3, let us denote by z̃∗ ∈ RnM the vector containing the saddle
points of the barrier Lyapunov function for each edge (5.9). Then, define the disjoint set

W := {0} ∪ {z̃∗}, (5.11)

which corresponds to the critical points of z̃ 7→ W (z̃) in (5.10). Then, we assume the
following.

Assumption 5.4. The gradient of the barrier Lyapunov function W in (5.10) satisfies the
bound

1

2
|z̃|2W ≤ κ|∇W (z̃)|2 (5.12)

where κ is a positive constant and |z̃|W := min
{
|z̃|, |z̃ − z̃∗|

}
.

5.2 output consensus

The robust consensus problem with output constraints previously formulated is solved using
a distributed dynamic nonlinear controller. Akin to the controller proposed in Section 3.3 for
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second-order integrators, the design follows a backstepping approach that naturally exploits
the normal form of the system.

It is well-known, however, that the backstepping approach may lead to an increase of
complexity of the control law due to the successive differentiation of the virtual controllers
[108]. Indeed, note that, e.g., in the constrained consensus control for second-order integrators
interconnected over directed graphs designed in Section 3.3, the time derivative of the virtual
input (3.61) is required. This problem is emphasized herein by the fact that we would need
the high order derivatives of the gradient of a barrier Lyapunov function, which is defined
only in open subsets of the state space and, in the context of this chapter, has multiple local
minima —see Remark 5.3 above. Therefore, in order to bypass these technical obstacles,
inspired by the command filtered backstepping approach [122], we approximate the virtual
inputs and their derivatives in each step of the backstepping design by means of command
filters. This is explained in detail farther below.

For simplicity, in the remainder of this chapter we only address the design in the case of
directed graphs. Nonetheless we stress that, with appropriate modifications, the results in
this section also hold for undirected connected topologies.

This backstepping-based control design is as follows. Consider, first, the edge subsystem
(5.7a) with x2 as an input. In order to cope with the output constraints, the control law is
based on the gradient of the barrier Lyapunov function (5.10) and is given by1

x∗2 := −c1 [E� ⊗ In]∇W (z̃), (5.13)

where c1 is a constant that is positive by design. Indeed, the right-hand side of (5.13) qualifies
as a control law that solves the constrained consensus problem for first-order multi-agent
systems interconnected over directed graphs —cf. Section 3.2. So, defining x̄2 := x2 − x∗2 and
using (5.13), Equation (5.7a) becomes

˙̃zt = −c1[E>
t E� ⊗ In]∇W (z̃) + [E>

t ⊗ In] [x̄2 + θ1] . (5.14)

For the purpose of making x̄2 → 0 in (5.13), following a backstepping-based design, we
rewrite the second equation in (5.7b), i.e., with l = 2, in error coordinates x̄2 and we consider
x3 as an input. We have

˙̄x2 = x3 − ẋ∗2 + θ2. (5.15)

Hence, the natural virtual control law at this stage is

x∗3 = −c2x̄2 + ẋ∗2, c2 > 0, (5.16)

since it leads to the perturbed, otherwise exponentially stable, system

˙̄x2 = −c2x̄2 + θ2. (5.17)

However, applying such control requires the derivative of the right-hand side of (5.13).
Furthermore, a recursive procedure requires up to %− 2 successive derivatives of x∗2, which

1 For undirected graphs this virtual control law takes the form x∗
2 = −c1[E ⊗ In]∇W (z̃) —cf. Chapter 3.
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poses significant technical and numerical difficulties. Thus, to avoid the use of successive
derivatives of ∇W (z̃) we approximate the derivatives of the virtual controls x∗l , with l ∈
{2, . . . , %− 1} by means of command filters. This modified form of backstepping control is
known as command-filtered backstepping —see [122]. For simplicity, we use second-order
systems defined as in the figure below:

H1(s)
x∗l xlf

H1(s) :=
ω2
n

s2 + 2ωns+ ω2
n

Figure 5.2: Command filter used for implementation. The dirty derivative of x∗l may be obtained
using ẋlf := sH1(s)x

∗
l which is equivalent to ẋlf = H1(s)ẋ

∗
l .

The virtual controls are considered as the inputs of a command filter, with the outputs
corresponding to the approximated signals and their derivatives, denoted xlf and ẋlf ,
respectively. The filters’ natural frequency, ωn > 0, is a control parameter which is chosen
large enough so that the approximation xlf converges to the desired virtual control x∗l in a
faster time-scale than that of the system’s dynamics —see Section 5.3.1 below for further
details. Similarly, ẋlf = H1(s)ẋ

∗
l approximates ẋ∗l .

Remark 5.4. For clarity, we use second-order command-filters as defined in Figures 5.2
above. However, the design is not restricted to this particular choice. Indeed, other possibilities
include first-order low-pass filters [133] —see also [134]— or high-order Levant differentiators
[79]. •

For the purpose of stability analysis, we write the command filters’ dynamics in state
form. To that end, let the filters’ variables be denoted as α>

l−1 :=
[
α>
l−1,1 α

>
l−1,2

]
∈ R2nN , for

l ∈ {2, . . . , %}. Then, in state-space representation, the command filters are written as

α̇l−1 = ωn [A⊗ InN ]αl−1 + ωn [B ⊗ InN ]x∗l (5.18a)[
x>lf ẋ

>
lf

]>
= [C ⊗ InN ]αl−1, l ∈ {2, . . . , %}, (5.18b)

A :=

[
0 1
−1 −2

]
, B :=

[
0
1

]
, C :=

[
1 0
0 ωn

]
(5.18c)

and the initial conditions are set to αl−1,1(0) = x∗l (0) and αl−1,2(0) = 0.

Remark 5.5. Note that the second-order filters are designed with unit DC gain and critically
damped so that the tracking of the virtual signals is guaranteed without overshoot. The latter,
together with the initial conditions αl−1,1(0) = x∗l (0) and αl−1,2(0) = 0 ensures that, in the
slower time-scale of the systems’ dynamics, the “filtered forms” act as the desired virtual
signals, corresponding to a classical backstepping control. •

Thus, the virtual control input, starting with (5.16), are redefined using the filter variables
as follows. First, we redefine

x∗3 := −c2x̃2 + ẋ2f , ẋ2f = ωnα1,2 (5.19)
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where x̃2 := x2 − x2f and ẋ2f = ωnα1,2. Hence, in contrast to (5.15), from

ẋ2 − ẋ2f = x3 − ẋ2f + θ2 + x∗3 − x∗3 + α2,1 − α2,1,

defining x̃3 := x3 − x3f and using (5.19) and α2,1 = x3f , we obtain

˙̃x2 = −c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2

— cf. Equation (5.17). Then, owing to the fact that the system is in feedback form, we
define

x∗l := −cl−1x̃l−1 + ωnαl−2,2 − x̃l−2, l ∈ {4, . . . , %}, (5.20)

where c2, cl−1 are positive constants, and the tracking errors are given by

x̃l := xl − xlf = xl − αl−1,1, l ∈ {2, . . . , %} (5.21)

—cf. Equation (5.19). That is, the virtual controls x∗l starting from l = 3 are redesigned to
steer xl−1 towards the filtered virtual input xl−1 f . Finally, the actual control input is set to

u = −c%x̃% + ωnα%−2,2 − x̃%−1. (5.22)

Remark 5.6. The system being in feedback form, the third term on the right-hand side of
(5.20) and (5.22) are feedback passivation terms —cf. [135]. These terms, that come from the
backstepping-as-recursive-feedback-passivation approach [136] are used to render the system
(5.7) passive with respect to the output y% := x% − x%f . •

Thus, taking the derivative of the backstepping error variables defined in (5.21) and using
the input (5.22), with (5.18)-(5.20), we obtain the closed-loop system

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + [E>

t ⊗ In] [x̃2 + (α1,1 − x∗2) + θ1] (5.23a)
˙̃x2 =− c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2 (5.23b)
˙̃xl =− clx̃l + x̃l+1−x̃l−1 + (αl,1 − x∗l+1) + θl, ∀ l ∈ {3, . . . , %− 1} (5.23c)
˙̃x% =− c%x̃%−x̃%−1 + θ% (5.23d)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1, ∀ l ∈ {1, . . . , %− 1}. (5.23e)

Now, denoting x̄> :=
[
x̃>2 · · · x̃>%

]
, θ̄> :=

[
θ>2 · · · θ>%

]
, ᾱ> :=

[
α>
2,1 · · · α>

%−1,1 0
>], and

x̄∗> :=
[
x∗>3 · · · x∗>% 0>

]
, the closed-loop system (5.23) may be rewritten in the compact

form

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + [E>

t ⊗ In] [x̃2 + (α1,1 − x∗2) + θ1] (5.24a)
˙̄x =− [H ⊗ InN ]x̄+ θ̄ + (ᾱ− x̄∗) , (5.24b)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1, ∀ l ∈ {1, . . . , %− 1}. (5.24c)
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where

H :=


c2 −1 0 · · · 0
1 c3 −1 · · · 0
... . . . . . . . . . ...
0 . . . 1 c%−1 −1
0 . . . 0 1 c%

 . (5.25)

Roughly speaking, Equation (5.24c) corresponds to that of a stable first-order linear
system (recall that A is Hurwitz) which tends to follow the input x∗l+1. Therefore, for each
l ∈ {1, . . . , %−1} we have αl → x∗l+1. In light of this, (5.24b) may be regarded as an ordinary
feedback-interconnected strictly-positive-real system (note that H is also Hurwitz —see
(5.25)) perturbed by the vanishing terms (ᾱ− x̄∗), and the non-vanishing disturbances θ̄(t).
Finally, (5.24a) corresponds to the reduced-order system (3.26), considered in Chapter 3,
also under the vanishing disturbance (α1,1 − x∗2) and the non-vanishing one θ1(t).

Consequently, solving the robust consensus problem with output constraints boils down to
guaranteeing that z̃t(t), as part of the solution to (5.24), tends to zero. More precisely, that
the control law (5.22), with (5.13) and (5.18)-(5.20), solves the robust consensus problem
with output constraints for system (5.1) is a fact established by the following statement.

Theorem 5.1 ([130]). Consider the system (5.1) in closed loop with the dynamic controller
defined by (5.22), together with (5.13) and (5.18)-(5.20). Then, there exists ε∗, such that,
for ε ∈ (0, ε∗] where ε := 1/ωn, if the directed graph satisfies Assumption 5.2, and if θi,l ≡ 0,
l ≤ %, i ≤ N , the objective (5.6) is achieved for almost all initial conditions satisfying
z(0) ∈ D. Otherwise, if θl 6≡ 0, the closed-loop system is almost-everywhere practically
input-to-state stable with respect to θ := [θ>1 · · · θ>% ]>. Moreover, the constraints set (5.2) is
rendered forward invariant along the closed-loop solutions. �

For clarity of exposition, the proof of Theorem 5.1 is presented in Section 5.3, but in
anticipation of the latter we underline the following. As mentioned earlier, part of the control
approach consists in choosing ωn sufficiently large, so that αl−1,1 → x∗l faster than the
dynamics of the system. To show this, we use singular-perturbation theory. Note that, setting
ε := 1/ωn as a singular parameter in (5.24c), the closed-loop system (5.24) may be separated
into two time scales, where the fast system corresponds to the command filters. Hence, when
αl−1,1 = x∗l and αl−1,2 = 0, the reduced slow system, corresponding to the actual system
with the backstepping control, effectively achieves consensus while respecting the output
constraints.

Here we remark that using the reduction of the edge system presented in Chapter 2,
we are able to analyze the system using Lyapunov and input-to-state stability. However,
because the function W in (5.24) has multiple critical points, we rely on refinements of the
latter, called multi-stability theory [123], [124]. The latter is significant since the reduced
slow system corresponds to a high-order system in closed-loop with a classical backstepping
controller solving the output-constrained consensus problem. On the other hand, the strict
Lyapunov functions provided in Chapter 3 and the robustness properties of the proposed
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constrained-consensus protocols are made relevant when considering the multi-stability
framework for singularly perturbed systems, as we do in this chapter.

5.3 qualitative analysis and proofs

The proof of Theorem 5.1 is organized in two main parts. In the first part, we show how
the closed-loop system (5.24) can be written as a singularly-perturbed system with singular
parameter ε := 1/ωn and in which the fast systems correspond to the dynamics of the
command filters and the slow system corresponds to the high-order dynamics of the original
multi-agent system. Second, we analyze the stability and the robustness of the singularly
perturbed system, using analysis tools from multi-stable systems theory [123], [124].

5.3.1 Analysis of the singular perturbation model

Define α> :=
[
α>
1 · · · α>

%−1

]
∈ R2nN(%−1), ξ> :=

[
z̃>t x̃>2 · · · x̃%

]> ∈ Rn(%N−1), and θ> :=

[θ1 · · · θ%] ∈ Rn%N . Then, the filter subsystem (5.23e) can be rewritten as

α̇ = ωnÃ
[
α− χ(ξ, α)

]
, Ã := blockdiag{[A⊗ InN ]}, (5.26)

χ(ξ, α) :=
[
x∗>2 0> x∗>3 0> · · · x∗>% 0>

]>
.

Now, as mentioned above, with ε := 1/ωn as the singular parameter, the closed-loop
system (5.23) may be written in the singular-perturbation form [17]

ξ̇ =f(ξ, α, θ, ε) (5.27a)
εα̇ =g(ξ, α, θ, ε). (5.27b)

Setting ε = 0 in (5.27) we obtain the so-called quasi-state model

ξ̇ =f(ξ, α, θ, 0) (5.28a)
0 =g(ξ, α, θ, 0) (5.28b)

in which (5.28b) becomes an algebraic equation. Hence, the analysis of the singular pertur-
bation model (5.27) is normally conducted studying its dynamic properties in different time
scales [17].

Denote αs = ϕ(ξ) the unique root of the algebraic equation (5.28b),

ϕ(ξ) =
[
(−c1[E� ⊗ In]∇W (z̃))> 0> − c2x̃

>
2 0> − (c3x̃

>
3 + x̃>2 ) 0> · · ·

−(c%−1x̃
>
%−1 + x̃>%−2) 0>

]>
. (5.29)

Then, defining the coordinate transformation

α̃ :=
[
α̃>
1,1 α̃>

1,2 · · · α̃>
%−1,1 α̃>

%−1,2

]>
= α− ϕ(ξ), (5.30)
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and using (5.23), we obtain the singularly perturbed system

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + [E>

t ⊗ In] [x̃2 + α̃1,1 + θ1] (5.31a)
˙̄x =− [H ⊗ InN ]x̄+ ˜̄α+ θ̄, (5.31b)

ε ˙̃α =Ãα̃− ε
∂ϕ(ξ)

∂ξ
ξ̇. (5.31c)

where, ˜̄α> :=
[
α̃>
2,1 · · · α̃>

%−1,1 0
>]. In turn, the reduced system ξ̇ = f(ξ, ϕ(ξ), θ, 0) takes the

form

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + [E>

t ⊗ In] [x̃2 + θ1] (5.32a)
˙̄x =− [H ⊗ InN ]x̄+ θ̄, (5.32b)

where H is defined in (5.25). On the other hand, the boundary layer system, (dα̃/dτ) =
g(ξ, α̃+ ϕ(ξ), θ, 0), with τ = t/ε and with ξ considered as fixed, is

dα̃

dτ
= Ãα̃, (5.33)

where Ã is Hurwitz —see Equations (5.26) and (5.18c).

5.3.2 Stability and robustness analysis

Even though the system (5.31) appears to be in the familiar form (5.27), its analysis is
stymied by the fact that the gradient ∇W vanishes at multiple separate equilibria. Therefore,
we rely on perturbation theory for multi-stable systems, taken from [124]. For convenience,
some definitions and statements from [123], [124] are recalled in Appendix A.4.

First, recall the set W defined in (5.11) that contains the critical points of the barrier
Lyapunov function in (5.10). From (5.31a), setting x̃2 = 0, α̃1,1 = 0, and θ1 = 0, the set W
corresponds to an invariant set of isolated equilibria in Euclidean space. Then, the set (5.11)
is an acyclic W-limit set of (5.31a) as per the definition stated in [124]. This means that
asymptotic stability of the origin of (5.31a) may be guaranteed, at best, almost everywhere
in D, that is, for all initial conditions in D except for a set of measure zero corresponding to
the domain of attraction of the unstable critical point.

In light of the above, we first analyze the stability of the closed-loop system (5.31) from a
multi-stability perspective. For this purpose we use Theorem A.1 in Appendix A.4, which
is essentially a reformulation of [124, Theorem 2] adapted to the contents of this thesis.
Theorem A.1 in Appendix A.4 establishes sufficient conditions for a practical input-to-state
multi-stability property to hold for a singularly perturbed system with respect to a bounded
external input θ, granted that the reduced system (5.32) is input-to-state stable with respect
to the input θ and the set

WΘ := W × {0}%−1 (5.34)
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which consists in the singular values of the barrier Lyapunov function W and the origin
for the subsystem (5.32b), and that the origin for (5.33) is globally asymptotically stable.
Therefore, the stability and robustness analysis is conducted in the following steps:

1) remark that the origin is asymptotically stable for the boundary layer system (5.33);
2) relying on the results on cascaded multi-stable systems in [123], we show that the

reduced system (5.32) is input-to-state stable with respect to the set WΘ and the input
θ;

3) using Theorem A.1 in Appendix A.4, we prove that, for a sufficiently small ε, the
singularly perturbed system (5.31) is practically input-to-state stable with respect to
the set (WΘ × {0}2nN(%−1))2 and a bounded external input θ; Moreover, using [124,
Theorem 3], in the absence of disturbances, we show convergence to the set of equilibria;

4) using the practical input-to-state multi-stability property, we establish almost-everywhere-
practical-input-to-state stability of (5.31). Similarly, if θ ≡ 0, we establish convergence
to the origin;

5) finally, we show that the output-constraints set defined in (5.2) is forward invariant.
Step 1) Since Ã is Hurwitz by design, the origin α̃ = 0 is exponentially stable for the
boundary-layer system (5.33).
Step 2) Consider the reduced system (5.32). Note that it has the form of a cascaded system,
in which (5.32b) is the “driving” system and the “driven” system

˙̃zt = −c1[E>
t E� ⊗ In]∇W (z̃)

has multiple equilibria given by the set W in (5.11). In order to prove input-to-state stability
of (5.32) with respect to set WΘ and input θ, as per in [123], we need to show that (5.32a)
is input-to-state stable with respect to the set W and the inputs x̃2 and θ1, whereas the
system (5.32b) is input-to-state stable with respect to θ̄. We start with the latter.

Input-to-state stability with respect to θ̄ for the system (5.32b) follows directly from
Lyapunov theory since (5.32b) is a linear time-invariant system and −[H ⊗ InN ] is Hurwitz,
since so is −H.

Consider, in turn, the reduced subsystem (5.32a). Note that this subsystem corresponds
to the first-order integrator with disturbances under a constrained-consensus protocol as
studied in Section 3.2.2 of Chapter 3. Therefore, akin to (3.27), for this system we use the
barrier Lyapunov function given by

W̃ (z̃) =
∑
k≤M

γkWk(z̃k), γk > 0 ∀k ≤M, (5.35)

where Wk(z̃k) is given in (5.9). Now, recall that the edges of the graph are linearly dependent
on the edges of a tree, that is, z =

[
R> ⊗ In

]
zt. Therefore, as in Chapter 3, akin to (3.28),

with an abuse of notation, we write

W̃
([
R> ⊗ In

]
z̃t

)
≡ W̃ (z̃t) (5.36)

2 The set WΘ × {0}2nN(%−1) corresponds to the equilibria of the closed-loop system (5.24)
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and we have

∇W̃ (zt) = [R⊗ In]∇W̃ (z). (5.37)

Moreover, defining Γ := diag{γk} ∈ RM×M , the following identity holds

∇W̃ (z̃) = [Γ⊗ In]∇W (z̃), (5.38)

where ∇W is the gradient of W defined in (5.10) and used in the control.
On the other hand, for consistency in the notation, we define the constraint set (5.2) in

terms of the edges of the spanning tree zt as

Dt :=
{
zt ∈ Rn(N−1) :

∣∣∣[r>k ⊗ In

]
zk

∣∣∣ ∈ (δk,∆k), ∀ k ≤M
}

where rk is the kth column of R in (2.47). Then, for all z̃t ∈ Dt, W̃ (z̃t) satisfies

γmin

2
|z̃t|2W ≤ W̃ (z̃t), (5.39)

where γmin := mink≤M{γk} and |z̃t|W = min{|z̃t|, |z̃t − z̃∗t |}, z̃∗t denoting the saddle points
of W̃ in terms of the edges of a spanning tree.

For the time-being, we assume that D (equivalently Dt) is forward invariant; this hypothesis
is relaxed below.

Now, the derivative of W̃ along the trajectories of the subsystem (5.32a) is given by

˙̃W =− c1∇W̃ (z̃t)
[
E>

t E� ⊗ In

]
∇W (z̃) +∇W̃ (z̃t)

>
[
E>

t ⊗ In

]
[x̃2 + θ1]

=− c1∇W (z̃)
[
ΓR>E>

t E� ⊗ In

]
∇W (z̃) +∇W (z̃t)

>
[
ΓR>E>

t ⊗ In

]
[x̃2 + θ1]

=− c1∇W (z̃)
[
ΓE>E� ⊗ In

]
∇W (z̃) +∇W (z̃t)

>
[
ΓE> ⊗ In

]
[x̃2 + θ1] , (5.40)

where we used the identities (5.37), (5.38), and (2.48). Recalling the proof of Proposition 3.4,
under Assumption 5.2, (5.40) satisfies

˙̃W ≤ −c′′1|∇W (z̃t)|2 +
δ

2

[
|x̃2|2 + |θ1|2

]
, (5.41)

where, for a sufficiently large δ > 0, c′′1 :=
(
c′1
2 − γ2

min
2δ

)
> 0 with c′1 := c1λmin(E

>
t Et) if the

graph is a directed cycle and c′1 := c1λmin(Q), for Q as in (3.35), if the graph is a directed
spanning tree.

Then, under Assumption 5.4, for either the spanning tree or the cycle case, the derivative
of W̃ (zt) satisfies

˙̃W ≤ − c′′1
2β1

|z̃t|2W +
δ

2

[
|x̃2|2 + |θ1|2

]
. (5.42)
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It follows from (5.39), (5.42), and Theorem A.2 in Appendix A.4, that the subsystem (5.32a)
is input-to-state stable with respect to the set of equilibria W, and the inputs x̃2 and θ1.

Thus, since (5.32b) is input-to-state stable with respect to θ̄ and (5.32a) is input-to-
state stable with respect to the set of equilibria W and the inputs x̃2 and θ1, after [123,
Theorem 3.1], the reduced system (5.32) is input-to-state stable with respect to WΘ, defined
in (5.34), and to the input θ. Furthermore, WΘ qualifies as a W-limit set for (5.32).
Step 3) Since the reduced system (5.32) is input-to-state stable with respect to WΘ and θ, and
the origin of (5.33) is asymptotically stable, it follows, after Theorem A.1 in Appendix A.4,
that the singularly perturbed system (5.31) is practically input-to-state stable with respect
to the set WΘ × {0}2nN(%−1) and the input θ. More precisely, for any pair of constants
d1, d2 > 0, there exists an ε∗ > 0 such that, for any ε ∈ (0, ε∗], the solutions of (5.31) satisfy

lim sup
t→∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2 (5.43a)

|α̃(t)| ≤βα

(
|α̃(0)|, t

ε

)
+ d2, ∀ t ≥ 0, (5.43b)

provided that
max{|ξ(0)|WΘ

, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞} ≤ d1.

Now consider the case in which the disturbance θ ≡ 0. From property (5.43a) we may
conclude that the origin of the reduced system (5.32) is multi-stable with respect to WΘ.
Therefore, from the latter and the exponential stability of the boundary layer system (5.33)
all the assumptions of [124, Theorem 3] are satisfied and the solutions of (5.31) satisfy

lim
t→∞

|ξ(t)|WΘ
=0 (5.44a)

lim
t→∞

|α̃(t)| =0. (5.44b)

Step 4) Since the critical point z̃∗t of the barrier function is a saddle point —see Appendix A.3,
after [137, Proposition 11], it follows that the region of attraction of the unstable equilibrium
z̃∗t has zero Lebesgue measure. Therefore, we conclude that the bound in (5.43a) and the
limit in (5.44a) are satisfied for the origin {ξ = 0}. More precisely, we have

lim sup
t→∞

|ξ(t)| ≤ ηθ(‖θ‖∞) + d2 (5.45)

and, for θ ≡ 0,

lim
t→∞

|ξ(t)| = 0. (5.46)

Step 5) Up to this point we have assumed that the inter-agent constraints are satisfied for
all time, that is, z(t) ∈ D for all t ≥ 0. Then, in order to prove the forward invariance of the
constraints set we proceed by contradiction as follows. Assume that the state constraints are
not respected. Therefore, from continuity of the solutions, there exists a time T > 0 such
that zt(T ) ∈ ∂Dt. Now, from the previous analysis of the singularly perturbed system, we
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have that in the interval [0, T ), condition (5.43b) holds. Moreover, since α̃(0) = 0 by design,
the solutions of the filter error satisfy α̃(t) ≤ d2, for t ∈ [0, T ). Consider the derivative of the
Lyapunov function (5.10) along the trajectories of (5.31a), which satisfies

˙̃W (z̃t) ≤ −c′′1|∇W̃ (z̃t)|2 +
δ

2

[
|x̃2|2 + |θ1|2 + |α̃|2

]
Therefore, since α̃(t) ≤ d2, θ1(t) is bounded and the system in (5.32b) is input-to-state

stable, x̃2(t) is bounded, for all t ∈ [0, T ). Then, we have

˙̃W (z̃t(t)) ≤ −c′′1|∇W̃ (z̃t(t))|2 + d, ∀t ∈ [0, T )

where d is a positive constant. By definition we know that |∇W̃ (z̃t(t))| → ∞ as zt(t)
approaches the border of the constraints set, ∂Dt. Therefore, if |z̃t(t)| grows, there exists
a time 0 < T ∗ < T such that ˙̃W (z̃t(T

∗)) ≤ 0. The latter, in turn means that W̃ (z̃t(t)) is
bounded for all t ∈ [0, T ), which contradicts the initial assumption that the constraints are
not respected. By resetting the initial conditions, the previous reasoning can be repeated for
t ≥ T . Therefore, the interval where W̃ (z̃t(t)) is bounded can be extended to infinity. The
boundedness of W̃ (z̃t(t)) means, based on the definition of the barrier Lyapunov function,
that the constraints are always respected or, equivalently, that the set Dt is forward invariant.

5.4 partial- and full-state consensus

The statement in Theorem 5.1 addresses the problem of robust output consensus under output
constraints for high-order systems. This problem is relevant in a number of applications. For
instance, the position-consensus problem under position constraints for autonomous aerial
vehicles may be solved using Theorem 5.1 —see Chapter 6. However, in some scenarios it
is required, that consensus be achieved for an additional number of high-order states. For
instance, in the context of flocking in formation, besides achieving the desired formation, it
is required that the velocities of all the agents converge to the same value.

Therefore, in this section we show how the control design methodology presented above
can be directly extended to consider consensus for a part or all of the high-order states xl.

Suppose that, besides achieving the output-consensus goal as defined in (5.6a), it is
additionally required to achieve consensus of a number of states r ≤ %. For convenience, and
without loss of generality, suppose that 3 < r < %. Then, akin to the edge transformation
(5.4), we define the edge states

zl := [E> ⊗ In]xl, l ∈ {2, . . . , r}. (5.47)

and, accordingly, let the objectives in (5.6) be replaced with

lim
t→∞

z̃(t) = 0 (5.48a)

lim
t→∞

zl(t) = 0, ∀l ∈ {2, . . . , r} (5.48b)

lim
t→∞

xl(t) = 0, ∀l ∈ {r + 1, . . . , %}. (5.48c)
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Now, recalling the identities (2.48) and (2.50), let zt,l ∈ Rn(N−1), l ∈ {2, . . . , r}, denote
the edge states of the spanning tree contained in G, satisfying zl =

[
R> ⊗ In

]
zt,l. Then, the

edge-based reduced-order system’s equations read
˙̃zt = zt,2 +

[
E>

t ⊗ In
]
θ1(t) (5.49a)

żt,l = zt,l+1 +
[
E>

t ⊗ In
]
θl(t), l ∈ {2, . . . , r − 1} (5.49b)

żt,r =
[
E>

t ⊗ In
]
xr+1 +

[
E>

t ⊗ In
]
θr(t) (5.49c)

ẋl = xl+1 + θl(t), l ∈ {r + 1, . . . , %− 1} (5.49d)
ẋ% = u+ θ%(t). (5.49e)

Then, the objective in (5.48) is achieved if the origin is asymptotically stabilized for the
system (5.49), via the control input u in (5.49e).

The control design follows the same command-filtered-backstepping-inspired method
described in Section 5.2. Let

z̃l :=zl − [E> ⊗ In]xlf ∀ l ∈ {2, . . . , r} (5.50)
x̃l :=xl − xlf ∀ l ∈ {r + 1, . . . , %} (5.51)

and recall that xlf = αl−1,1. Then, to achieve the new consensus objectives (5.48) we consider
the virtual control inputs x∗2 as in (5.13),

x∗3 :=− c2[E� ⊗ In]z̃2 + ωnα1,2, (5.52)
x∗l :=− cl−1[E� ⊗ In]z̃l−1 + ωnαl−2,2 − x̃l−2 (5.53)

for all l ∈ {4, . . . , r},

x∗r+1 := −cr[E� ⊗ In]z̃r + ωnαr−1,2 − [E� ⊗ In]z̃r−1, (5.54)

and

x∗l := −cl−1x̃l−1 + ωnαl−2,2 − x̃l−2, l ∈ {r + 2, . . . , %}. (5.55)

Finally, the actual control input is set to

u := −c%x̃% + ωnα%−2,2 − x̃%−1. (5.56)

Thus, taking the derivative of the error variables (5.50) and (5.51) and using the input
(5.56), with the command filters (5.18) and (5.52)-(5.55), we obtain the closed-loop system

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + z̃t,2 + [E>

t ⊗ In] [(α1,1 − x∗2) + θ1] (5.57a)
˙̃zt,2 =− c2[E

>
t E�R

> ⊗ In]z̃t,2 + z̃t,3 + [E>
t ⊗ In] [(α2,1 − x∗3) + θ2] (5.57b)

˙̃zt,l =− cl[E
>
t E�R

> ⊗ In]z̃t,l + z̃t,l+1 − z̃t,l−1 + [E>
t ⊗ In]

[
(αl,1 − x∗l+1) + θl

]
,

∀l ∈ {3, . . . , r − 1} (5.57c)
˙̃zt,r =− cr[E

>
t E�R

> ⊗ In]z̃t,r + [E>
t ⊗ In]

[
x̃r+1 − x̃r−1 + (αr,1 − x∗r+1) + θr

]
(5.57d)

˙̃xl =− clx̃l + x̃l+1−x̃l−1 + (αl,1 − x∗l+1) + θl, ∀ l ∈ {r + 1, . . . , %− 1} (5.57e)
˙̃x% =− c%x̃%−x̃%−1 + θ% (5.57f)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1, ∀ l ∈ {1, . . . , %− 1}. (5.57g)
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Now, denote z̄> :=
[
z̃>t,2 · · · z̃>t,r

]
, x̄> :=

[
x̃>r+1 · · · x̃>%

]
, θ̂> :=

[
θ>2 · · · θ>r

]
, θ̄> :=

[
θ>r+1 · · · θ>%

]
,

α̂> :=
[
α>
2,1 · · · α>

r,1

]
, ᾱ> :=

[
α>
r+1,1 · · · α>

%−1,1 0
>], x̂∗> :=

[
x∗>3 · · · x∗>r+1

]
, and x̄∗> :=[

x∗>r+2 · · · x∗>% 0>
]
, and define the matrices

Hz :=


c2E

>
t E�R

> −IN−1 0 · · · 0
IN−1 c3E

>
t E�R

> −IN−1 · · · 0
... . . . . . . . . . ...
0 . . . IN−1 cr−1E

>
t E�R

> −IN−1

0 . . . 0 IN−1 crE
>
t E�R

>

 , (5.58)

Hx :=


cr −1 0 · · · 0
1 cr+1 −1 · · · 0
... . . . . . . . . . ...
0 . . . 1 c%−1 −1
0 . . . 0 1 c%

 , F1 :=


0(N−1)×N 0(N−1)×N · · · 0(N−1)×N

...
... . . . ...

0(N−1)×N 0(N−1)×N · · · 0(N−1)×N

E>
t 0(N−1)×N · · · 0(N−1)×N


(5.59)

and

F2 :=

 E>
t · · · 0(N−1)×N
... . . . ...

0(N−1)×N . . . E>
t

 . (5.60)

Then, the closed-loop system (5.57) is rewritten in the compact form

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + z̃t,2 + [E>

t ⊗ In] [(α1,1 − x∗2) + θ1] (5.61a)

˙̄z =− [Hz ⊗ In]z̄ + [F1 ⊗ In]x̄+ [F2 ⊗ In]
[
(α̂− x̂∗) + θ̂

]
(5.61b)

˙̄x =− [Hx ⊗ InN ]x̄+ (ᾱ− x̄∗) + θ̄ (5.61c)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1, ∀ l ∈ {1, . . . , %− 1}. (5.61d)

which has similar structural properties as the closed-loop system (5.24). Then, we have the
following.

Theorem 5.2 ([130]). Consider the system (5.1) in closed loop with the dynamic controller
defined by (5.56), together with (5.53)-(5.55) and (5.18). Then, there exists ε∗, such that,
for ε ∈ (0, ε∗] where ε := 1/ωn, if the directed graph satisfies Assumption 5.2, and if θi,l ≡ 0,
l ≤ %, i ≤ N , the limits in (5.48) hold for almost all initial conditions satisfying z(0) ∈ D.
Otherwise, if θl 6≡ 0, the closed-loop system is almost-everywhere practically input-to-state
stable with respect to θ := [θ>1 · · · θ>% ]>. Moreover, the constraints set (5.2) is rendered forward
invariant along closed-loop solutions. �
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Proof. Modulo some consideration for the additional higher-order edge states, the proof is
identical to the proof of Theorem 5.1. Indeed, recalling that the command filters can be
represented by a system of the form (5.26), with (5.53)-(5.55), we can redefine

α̃ := α− ϕ̃(ξ),

where

ϕ̃(ξ) =
[
(−c1 [E� ⊗ In]∇W (z̃))> 0> (−c2 [E� ⊗ In] z̃2)

> 0> (−c3 [E� ⊗ In] z̃3 − z̃2)
> 0>

· · · (−cr [E� ⊗ In] z̃r − z̃r−1)
> 0> − (cr+1x̃

>
r+1 + x̃>r ) 0> · · ·

−(c%−1x̃
>
%−1 + x̃>%−2) 0>

]>
.

(5.62)

Then, the closed-loop system (5.61) may be rewritten in singular-perturbation form as

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + z̃t,2 + [E>

t ⊗ In] [α̃1,1 + θ1] (5.63a)

˙̄z =− [Hz ⊗ In]z̄ + [F1 ⊗ In]x̄+ [F2 ⊗ In]
[
˜̂α+ θ̂

]
(5.63b)

˙̄x =− [Hx ⊗ InN ]x̄+ ˜̄α+ θ̄ (5.63c)

ε ˙̃α =Ãα̃− ε
∂ϕ̃(ξ)

∂ξ
ξ̇, (5.63d)

where ˜̂α> :=
[
α̃>
2,1 · · · α̃>

r,1

]
and ˜̄α> :=

[
α̃>
r+1,1 · · · α̃>

%−1,1 0
>].

In turn, the reduced system ξ̇ = f(ξ, ϕ̃(ξ), θ, 0) takes the form

˙̃zt =− c1[E
>
t E� ⊗ In]∇W (z̃) + z̃t,2 + [E>

t ⊗ In]θ1 (5.64a)
˙̄z =− [Hz ⊗ In]z̄ + [F1 ⊗ In]x̄+ [F2 ⊗ In]θ̃ (5.64b)
˙̄x =− [Hx ⊗ InN ]x̄+ θ̄. (5.64c)

On the other hand, the boundary layer system, (dα̃/dτ) = g(ξ, α̃+ ϕ̃(ξ), θ, 0), with τ = t/ε
and with ξ considered as fixed, is

dα̃

dτ
= Ãα̃ (5.65)

where Ã is Hurwitz —see Equations (5.26) and (5.18c).
Now, we follow the same steps evoked in Section 5.3. In light of this, note that, as before,

the origin {α̃ = 0} of the boundary layer system (5.65) is exponentially stable since Ã is
Hurwitz by design.

Next, we need to show that the reduced system (5.64) is input-to-state multi-stable with
respect to θ. Note that, using the same arguments as in Section 5.3 and the Lyapunov
function given in (5.35), the subsystem (5.64a) is input-to-state stable with respect to the
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set W and the inputs θ1 and z̃t,2. Then, note that since the matrix −[Hz ⊗ In] is Hurwitz
—cf. Lemma 2.2—, using standard Lyapunov theory, the linear time-invariant subsystem
(5.64b) is input-to-state stable with respect to x̄, θ̄ and θ̃. Therefore, input-to-state stability
of the subsystem (5.64c) follows from Lyapunov theory since (5.64c) is a linear time-invariant
system and −[Hx ⊗ InN ] is Hurwitz by design.

Thus, after [123, Theorem 3.1], the reduced system (5.64) is input-to-state stable with
respect to the W-limit set WΘ and the input θ.

The rest of the proof follows from the same arguments as in the proof of Theorem 5.1
—see Section 5.3. �

Remark 5.7. It is important to observe that Theorems 5.1 and 5.2 only state the existence of
an upper bound ε∗ on ε, or equivalently a lower bound on ωn for almost all initial conditions
satisfying z(0) ∈ D. In order to obtain an approximate (albeit conservative) value of ε∗ based
on Lyapunov’s theory, one would need to establish exponential stability of the reduced slow
systems (5.7) and (5.49), which is still an open problem. •

5.5 conclusion

In this chapter we solved the consensus problem under output constraints (connectivity
maintenance and collision avoidance) for high-order systems in normal form. This original
contribution builds on our previous results presented in Chapter 3, where the consensus-with-
connectivity-maintenance problem is addressed using the edge-based perspective. Indeed, we
saw how input-to-state stability properties established in Chapter 3 via the provided strict
Lyapunov functions are fundamental in order to establish stability and robustness of the
consensus controller proposed in this chapter.

The practical-input-to-state stability property established in Theorems 5.1 and 5.2, re-
spectively for the output- and partial-state-consensus problem under output constraints,
cannot be underestimated; input-to-state stability implies boundedness of the systems’ state
trajectories and the satisfaction of the inter-agent output constraints may also be assessed,
even in the presence of external disturbances. The same cannot be ascertained if in the
absence of disturbances it is only known that the errors converge, as is more commonly
established in the literature.

The contributions presented in this chapter for high-order systems are the culmination of
all the theoretical results presented in this thesis. We believe that they represent a significant
step forward in the study of multi-agent systems since the proposed methodology may be
used for the control design of consensus protocols under multiple inter-agent constraints for
complex nonlinear systems. Moreover, by providing explicit robustness properties, we open
the way for its adaptation to more complex and meaningful scenarios of cooperative control
for multi-agent systems. For instance, the results of Theorems 5.1 and 5.2 may apply to a
number of relevant systems in engineering applications, such as the rendezvous problem of
underactuated UAVs subject to inter-agent constraints. A solution to this problem, consisting
in a non-trivial adaptation of the previous results is presented in the next chapter.
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R E N D E Z VO U S O F U N D E R AC T U AT E D U AV S U N D E R
I N T E R - AG E N T C O N S T R A I N T S

In this chapter we address the rendezvous problem for underactuated UAVs. In order to
study the rendezvous in a realistic application setting, we consider that the vehicles are
subject to inter-agent constraints and disturbances coming from the on-board measurement
devices and from the dynamic environment.

To address the rendezvous problem for UAVs a starting point is to use the nonholonomic
integrator model used in Chapter 4 which represents well, both, autonomous ground vehicles
and aerial vehicles flying at constant altitude. However, the motion of thrust propelled UAVs
is best represented by an underactuated nonlinear system with a strong coupling between
the translational and the rotational dynamics. Therefore, in order to study a more relevant
representation of aerial vehicles, we consider the motion of the UAV described by a second-
order Cartesian dynamics equation and a first-order attitude kinematics equation, where the
inputs correspond to the magnitude and the direction of the thrust force, highlighting the
coupling between the translational and the rotational dynamics. For systems modeled in
such a way, the controllers tailored for linear systems do not directly apply.

We also emphasize that, besides being highly nonlinear, the dynamic model that we employ
is underactuated. To deal with this difficulty, we apply a preliminary feedback that allows us
to transform the underactuated model into a third-order integrator. That is, the resulting
system is of relative degree three with respect to the output of interest (the position).
Therefore, the system is converted into a high-order multi-agent system under constraints,
which belongs to the class of systems addressed in Chapter 6. For such a system, modulo
some minor modifications, the methodology presented in the previous chapter can be used to
solve the problem at hand. Hence, employing a barrier-Lyapunov-functions-based consensus
protocol we establish asymptotic convergence to the consensus manifold and robustness
with respect to bounded disturbances in the sense of practical-input-to-state stability, while
guaranteeing the respect of the constraints. Furthermore, we illustrate the performance of
our controller via numerical simulations and we present experimental validation.

We stress that, in contrast to nonholonomic systems, relatively few works in the literature
consider the rendezvous problem for multiple thrust-propelled UAVs under inter-agent
constraints and disturbances. Moreover, in general, the existing results address only undirected
interaction topologies and provide weak stability results such as non-uniform convergence to
the consensus manifold. In light of this, our contributions are important in that we establish

129
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strong stability and robustness properties for the problem of rendezvous of multiple UAVs
interconnected over both undirected and directed topologies, and under realistic conditions,
mainly connectivity maintenance, collision avoidance and external disturbances.

6.1 problem formulation

We address the problem of position-consensus-based formation of multiple thrust-propelled
UAVs under a set of realistic assumptions. More precisely, for the multi-agent system
composed of N UAVs evolving in a 3-dimensional environment we study the rendezvous
problem under inter-agent constraints —see Figure 6.1. The control goal is for the robots,
interconnected over a graph G = (V, E), to achieve a predetermined three-dimensional
formation while guaranteeing the respect of inter-agent connectivity and collision-avoidance
constraints as well as robustness with respect to disturbances.

..
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ωx,1

ωy,1

ωz,1

.
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∆2
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Figure 6.1: Group of thrust propelled vehicles and Inertial frame.

Consider first a single UAV. We choose to represent each vehicle’s motion using a so-called
“mixed” model that consists in a second-order Cartesian dynamics equation on E(3) and
a first-order attitude kinematics equation on SO(3) —see, e.g., [70], [138], and [71]. This
underactuated model is justified by the fact that it describes well some commercial UAVs,
which accept only thrust and angular rates as control inputs. Moreover, given the fully-
actuated and passive nature of the attitude dynamics, angular torques can be easily defined
in order to track the angular rates proposed hereafter.

The model for the ith agent is given by the equations

ṗi = vi (6.1a)

v̇i = − Ti
mi

Rie3 + ge3 + θi(t) (6.1b)

Ṙi = RiS(ωi), (6.2)

where mi is the mass of the quadrotor, e3 = [0 0 1]> is the unitary vector in the vertical
direction of the inertial frame I, pi ∈ R3 and vi ∈ R3 are respectively the inertial position and



6.1 problem formulation 131

inertial velocity, Ri ∈ SO(3) is the rotation matrix of the body-fixed frame Bi with respect
to I, g is gravitational acceleration, θi : R≥0 → R3 is an essentially bounded disturbance,
and the matrix S(x) is a skew-symmetric matrix such that S(x)y = x× y for any vectors
x ∈ R3 and y ∈ R3. The inputs are the thrust force produced by the propellers, Ti ∈ R, and
the angular rate of the vehicle ωi = [ωxi ωyi ωzi]

> ∈ R3 in the body-fixed frame Bi —see
Figure 6.1 for an illustration.

Now, consider the N agents modeled by (6.1) interacting over the graph G. Recalling the
edge transformation (2.28), let the relative position between pairs of connected agents, in
compact form, be given by

z := [E> ⊗ I3]p, (6.3)

where p> = [p>1 · · · p>N ] ∈ R3N and E is the incidence matrix of the graph defined in
(2.25). Then, denoting zd> = [zd>1 · · · zd>M ] ∈ R3M the relative displacements of the desired
formation, the formation error is given by

z̃ = z − zd. (6.4)

Therefore, in these coordinates, the rendezvous objective is that

lim
t→∞

z̃k(t) = 0, ∀k ≤M (6.5a)

lim
t→∞

vi(t) = 0, ∀i ≤ N. (6.5b)

Now, considering the coordination of multiple vehicles in a realistic setting, it is assumed
that the interactions between robots are executed only via embedded relative-measurements
sensors. On the one hand, this naturally leads to considering directed-topology graphs.
Therefore, we assume that the following holds.

Assumption 6.1. The initial directed graph is either a directed spanning tree or a directed
cycle.

Hereafter, the controllers are designed only in the case of directed-spanning-tree and
directed-cycle topologies; we stress, however, that the following results also apply to connected
undirected graphs —cf. Chapter 5. Furthermore, we assume that the system is subject to
inter-agent constraints in the form of bounds on the distances between initially connected
agents. These constraints come, for one part, from the embedded measurements devices,
which are reliable only if used within a limited range. Hence, in order to maintain the
connectivity of the graph, the UAVs must remain within a limited distance from their
neighbors. On the other hand, in order to guarantee the safety of the systems, inter-agent
collision avoidance must also be ensured. Finally, we assume that the agents are subject to
bounded time-varying disturbances generated by, e.g., wind gusts, aerodynamic effects or
unmodeled dynamics, which are common in applications involving cooperative UAVs.

In light of this, let ∆k denote the maximal distance between the agents i and j, such that
the agent j has access to information from the agent i through the arc ek = (i, j). Similarly,
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let δk denote the minimal distance among neighbors such that collisions are avoided. Then,
the connectivity and collision-avoidance constraints are encoded by the constraints set D
introduced in (5.2). For the convenience of the reader we recall that the set D is defined as

D :=
{
z ∈ R3M : δk < |zk| < ∆k, ∀ k ≤M

}
. (6.6)

Under the constriants in (6.6), the problem that we address herein is defined as follows.
Robust rendezvous problem with output constraints. Consider a multi-agent system com-

posed of N quadrotor UAVs with underactuated dynamics described by (6.1)-(6.2). Let
the interactions of the vehicles be modeled by a directed graph satisfying Assumption 6.1.
Moreover, let the agents be subject to output inter-agent constraints given by the set (6.6).
Find distributed controllers Ti and ωi, with i ≤ N , such that, in the absence of disturbances
they achieve the objective (6.5), for a given desired formation zd, and render the constraints
set (6.6) forward invariant. That is, such that if θi,2 ≡ 0 for all i ≤ N the objective (6.5)
holds and we have that z(0) ∈ D implies that z(t) ∈ D for all t ≥ 0. Furthermore, in
the presence of disturbances, that is θi,2 6≡ 0, the control law must render the formation
practically input-to-state stable with respect to the disturbances and the set D in (6.6)
forward invariant. •

The robust rendezvous problem of UAVs subject to inter-agent constraints stated above is
a relevant problem to the aerospace industry that is motivated by the increasing interest
for safety-aware fleet deployment. The solution to this problem, presented hereafter, is an
original contribution of this thesis. It is fitting to mention that similar problems have been
studied in the literature, as for instance in [78], [79], but only for systems interconnected
over undirected graphs.

Beyond the proposed control laws for this particular problem of rendezvous for UAVs, the
importance of this contribution is also to show how the framework for output-constrained
consensus-based control developed in Chapter 5 may be adapted in a non-trivial way to
address more complex systems, demonstrating both the applicability and the versatility of
our results. This is presented hereafter.

6.2 control design and stability analysis

The controller that we propose to solve the robust formation problem with output constraints
defined above builds upon the recursive design for output-constrained consensus described
in the previous chapter. However, the dynamic model of a UAV (6.1) does not, a priori, fit
in the class of systems characterized by the equations (5.1), which correspond to a chain of
integrators. Therefore, the dynamic underactuated model first has to be transformed. To
this end, using a change of variables we design a preliminary control loop inspired by the
hierarchical backstepping approach of [71], so that the closed-loop system behaves as the
kind of high-order systems addressed in Chapter 5. Indeed, the underactuated dynamical
system is transformed into one with relative degree % = 3. Thus, modulo some minor
modifications explained further below, the control laws designed using the methodology
in the previous chapter, can be used to solve the robust rendezvous problem with output
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constraints considered in this chapter. A diagram of the control architecture is presented in
Figure 6.2.

Translational
dynamics

pj

j ∈ Ni

Gradient
control

v∗iFilter
H1(s)

vf,i, v̇f,iAcceleration
control

ζ∗iFilter
H1(s)

ζf,i, ζ̇f,iBackstepping
control

ui
Dynamic
feedback

transformation
ωi Rotational

kinematics

Ti

Ri

Eq. (6.8)
ζi +

+

⊗
θi

High-order output-constrained consensus control

Preliminary control loop
UAV attitude and thrust extraction

Figure 6.2: Block diagram of the control architecture for an underactuated UAV.

The first part of the control architecture follows a hierarchical approach that exploits the
natural cascaded interconnection between the translational dynamics (6.1) and the rotational
kinematics (6.2). We apply a dynamic feedback transformation to represent the system
(6.1) in the form (5.1). To that end, first note that the second-order system defined by
Equations (6.1) may be assimilated to a second-order integrator

ṗi = vi (6.7a)
v̇i = ζi + θi, (6.7b)

with

ζi := − Ti
mi

Rie3 + ge3. (6.8)

Nonetheless, the implementation of a virtual controller for (6.7), through the input ζi, is
subject to the possibility of solving (6.8) for Ti, which is the actual control input. Because of
the underactuation of (6.1), however, this is far from acquired. Indeed, note from (6.8) that
the virtual input ζi ∈ R3 cannot take an arbitrary value since Ti ∈ R and its direction is
determined by the vehicle’s attitude, Ri. In order to overcome the underactuation, we solve
equation (6.8) dynamically, inspired by the distributed-backstepping approach in [71]. More
precisely, we design the angular rates ωi and an update law for the thrust Ti, so that ζi in
(6.8) satisfies the dynamic equation

ζ̇i = ui, i ≤ N, (6.9)

where ui ∈ R3 is a new input. Note that, now, the system defined by (6.7) and (6.9) has the
form of a high-order system (5.1) with % = 3. Hence, the input ui in (6.9) can be taken as
the output-constrained consensus control law designed in Chapter 5.
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On the other hand, to obtain (6.9) from (6.8) we proceed as follows. First we differentiate
(6.8) with respect to time and use (6.2) to obtain

− Ṫi
mi

Rie3 −
Ti
mi

RiS(ωi)e3 = ζ̇i. (6.10)

That is, for (6.9) to hold, it is necessary and sufficient that

− Ṫi
mi

Rie3 −
Ti
mi

RiS(ωi)e3 = ui. (6.11)

That is, we must define Ti so that (6.11) holds. To that end, for a given ui, we define νi ∈ R3

as

νi := ui −
c3
mi
TiRie3, (6.12)

where c3 is a positive control gain. Next, replacing (6.12) into (6.11), we obtain

− 1

mi

[
ṪiRi + TiRiS(ωi)

]
e3 = νi +

c3
mi
TiRie3

⇐⇒
[
(Ṫi + c3 Ti)Ri + TiRiS(ωi)

]
e3 = −miνi. (6.13)

Left-multiplying by (the full-rank rotation matrix) R>
i and using the structure of the matrix

S(ωi), the dynamic equation (6.13) is equivalent to[
Tiωyi, −Tiωxi, Ṫi + c3 Ti

]>
= −miR

>
i νi. (6.14)

Now, let ν̃i := [ν̃i,x ν̃i,y ν̃i,z]
> = R>

i νi. Then, we see that (6.14) holds if the angular rates
are set to

ωi =

[
miν̃i,y
Ti

− miν̃i,x
Ti

ωzi

]>
, (6.15)

and the thrust is given by the update law

Ṫi = −c3 Ti −miν̃i,z. (6.16)

Remark 6.1. Note that by transforming the UAV model (6.1) using (6.8)-(6.9), only the
three translational dimensions are directly controlled. Therefore, only three of the four
available inputs are needed to solve the formation problem. Indeed, note that from equation
(6.14), the yaw component of the angular rate ωzi is not needed for control. Hence it may be
considered as an additional degree of freedom and may be designed so that the vehicle follows
independently a desired yaw trajectory. •
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Thus, using (6.15)-(6.16) in (6.1) we obtain that the underactuated system (6.1) may be
rewritten in the form (5.1), as desired, that is,

ṗi = vi (6.17a)
v̇i = ζi + θi (6.17b)
ζ̇i = ui. (6.17c)

Furthermore, denoting v> = [v>1 · · · v>N ] ∈ R3N , ζ> = [ζ>1 · · · ζ>N ] ∈ R3N , θ> =
[θ>1 · · · θ>N ] ∈ R3N , and using the edge transformation (6.4), the multi-agent system
in the reduced error-edge coordinates becomes

˙̃zt =
[
E>

t ⊗ I3

]
v (6.18a)

v̇ = ζ + θ (6.18b)
ζ̇ = u, (6.18c)

which corresponds to a system in the form of (5.1) with % = 3 as addressed in the previous
chapter. Hence, as mentioned above, the control approach presented in Chapter 5 may now
be applied to solve the rendezvous problem under output constraints for a nonlinear and
under-actuated multi-UAV system by designing ui as for a third-order system and using it
in (6.12) and (6.15)-(6.16) for the purpose of implementation. Thus, to apply the control
law (5.22), designed in the previous chapter for the output-consensus problem under output
constraints for high-order systems, we define the backstepping error variables

ṽ = v − vf and ζ̃ = ζ − ζf . (6.19)

The filtered signals vf and ζf are the outputs of command filters given, in state-space
representation, by

α̇1 = ωn [A⊗ I3N ]α1 + ωn [B ⊗ I3N ] v∗ (6.20a)[
v>f v̇>f

]>
= [C ⊗ I3N ]α1, (6.20b)

and

α̇2 = ωn [A⊗ I3N ]α2 + ωn [B ⊗ I3N ] ζ∗ (6.21a)[
ζ>f ζ̇>f

]>
= [C ⊗ I3N ]α2, (6.21b)

respectively, where

A :=

[
0 1
−1 −2

]
, B :=

[
0
1

]
, C :=

[
1 0
0 ωn

]
(6.22)

and the initial conditions are set to α1,1(0) = v∗(0), α2,1(0) = ζ∗(0), and α1,2(0) = α2,2(0) =
0. The inputs v∗ and ζ∗ in (6.20) and (6.21), correspond to the desired virtual controllers
given by

v∗ := −c1[E� ⊗ I3]∇W (z̃) (6.23)
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and

ζ∗ := −c2ṽ + ωnα1,2, (6.24)

respectively. The term ∇W (z̃) is the gradient of a barrier Lyapunov function encoding the
connectivity and collision avoidance constraints. It is defined as

W (z̃) =
∑
k≤M

Wk(z̃k), (6.25)

where

Wk(z̃k) =
1

2

[
|z̃k|2 + B̃k(z̃k + zdk)

]
, (6.26)

and a weight recentered barrier function —see Remark 5.2 and Appendix A.2— is given by

B̃k(z̃k + zdk) =κ1,k

[
ln
(

∆2
k

∆2
k − |z̃k + zdk |2

)
− ln

(
∆2

k

∆2
k − |z̃k + zdk |2

)]
+ κ2,k

[
ln
(

|z̃k + zdk |2

|z̃k + zdk |2 − δ2k

)
− ln

(
|zdk |2

|zdk |2 − δ2k

)]
, (6.27)

with

κ1,k :=
δ2k

|zdk |2(|zdk |2 − δ2k)
, κ2,k :=

1

∆2
k − |zdk |2

. (6.28)

Note that the recentered barrier function and its gradient are equal to zero at the desired
formation configuration, i.e., B̃k(z

d
k) = 0, ∇B̃k(z

d
k) = 0. Furthermore, it directly encodes the

constraints in terms of the original edge-state zk, i.e., B̃k(zk) → ∞ as either |zk| → ∆k or
|zk| → δk. Hence, the function (6.25) with (6.26) and (6.27) is a barrier Lyapunov function
as per Definition 3.1. Moreover, it satisfies Assumption 5.4 where the additional critical
point z̃∗k is an unstable saddle point —see Appendix A.3.

Thus, following the control design from Chapter 5 we may infer that the transformed
controller

u := −c3ζ̃ + ωnα2,2 − ṽ, (6.29)

with (6.20)-(6.21) and (6.23)-(6.24), solves the robust formation problem with output con-
straints for system (6.17). However, a closer inspection shows that there is one more technical
difficulty to circumvent. Indeed, note that from (6.15), the dynamic solution to the equation
(6.8) is valid if and only if Ti 6= 0. Therefore, in order to address this additional constraint,
we perform a control redesign which respects the control method and the stability analysis
proposed in Chapter 5.

Note that, from (6.8), the condition Ti 6= 0 is satisfied if the desired virtual control ζ∗i
satisfies ζ∗i 6= ge3, for all i ≤ N . Therefore, the virtual control input ζ∗ is modified to

ζ∗ := sat (−c2ṽ + ωnα1,2) , (6.30)
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where sat( · ) is a saturation function mapping RN → RN defined element-wise, i.e., sat(s) =[
σ(s1)

> · · · σ(sN )>
]>, where, e.g., σ(si) = sign(si)min{|si|, ζ̄M}, with ζ̄M < g, or any other

odd monotonic function, bounded in absolute value.

Remark 6.2. The virtual control ζ∗ is saturated to ensure that the physical input, the thrust,
Ti 6= 0. In addition, by a proper choice of the filters’ initial conditions, ζ ≈ ζ∗, so, in view of
(6.8) and (6.30), the control design also guarantees that ζ and the thrust Ti, i ≤ N , satisfy
pre-imposed bounds. This is significant because it implies that even though controllers based
on the gradient of a barrier Lyapunov functions are not primarily designed to guarantee
control-input constraints, the satisfaction of the latter may be accomplished using a dynamic
controller, as done above. •

Proposition 6.1 ([130]). Consider N UAVs modeled by the system (6.1) with the control law
(6.15)-(6.16) and (6.29), with (6.20)-(6.21), (6.23) and (6.30). Then, there exists ε∗, such
that, for ε ∈ (0, ε∗] where ε := 1/ωn, if the graph representing the communication topology
satisfies Assumption 6.1, and if θ ≡ 0 the rendezvous objective (6.5) is achieved for almost
any initial conditions satisfying z(0) ∈ D, except for a set of measure zero. Otherwise if θ 6≡ 0,
the closed-loop system is almost-everywhere practically input-to-state stable with respect to θ.
Moreover, the constraints set (6.6) is rendered forward invariant along closed-loop solutions.
�

Proof. The proof follows the same arguments as the proof of Theorem 5.1 in Chapter 5. First,
note that the system (6.18) in closed-loop with (6.29) may be written in singular-perturbation
form

˙̃zt =− c1[E
>
t E� ⊗ I3]∇W (z̃) + [E>

t ⊗ I3] [ṽ + α̃1,1] (6.31a)
˙̃v =sat(−c2ṽ + ωnα̃1,2) + ζ̃ + α̃2,1 − ωnα̃1,2 + θ2 (6.31b)
˙̃
ζ =− c3 ζ̃ − ṽ (6.31c)

ε ˙̃α =Ãα̃− ε
∂ϕ(ξ)

∂ξ
ξ̇, ξ> =

[
z̃>t ṽ> ζ̃>

]
. (6.31d)

where α̃ = α− ϕ(ξ), with

ϕ(ξ) =
[
(−c1[E� ⊗ I3]∇W (z̃))> 0> − sat(c2ṽ) 0>

]>
, (6.32)

and Ã := blockdiag{[A⊗ I3N ]}.
Note that by setting sat(s) = s we recover (5.31) with % = 3 so the analysis of the

trajectories for (6.31) follows similar guidelines as for the system (5.31). Therefore, as for
Theorem 5.1, first, we use the singular-perturbation theory for multi-stable systems; more
precisely [124, Theorem 2]. To that end, we need to show that the boundary layer system is
asymptotically stable and that the reduced slow system is input-to-state stable with respect
to the set W × {0}2 and input θi,2, i ≤ N .
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Exponential stability of the origin for the boundary-layer system

dα̃

dτ
= Ãα̃, τ =

t

ε
(6.33)

follows from the fact that Ã is Hurwitz by design.
Now, setting α̃ = 0 in (6.31a)-(6.31c), the reduced system reads

˙̃zt = − c1[E
>
t E� ⊗ I3]∇W (z̃) + [E>

t ⊗ I3]ṽ (6.34a)
˙̃v = − sat(c2ṽ) + ζ̃ + θ2 (6.34b)
˙̃
ζ = − c3 ζ̃ − ṽ. (6.34c)

Note that, the subsystem (6.34a) is equivalent to (5.32a) in the proof of Theorem 5.1 in
Chapter 5. Therefore, as before, we may conclude that under Assumption 6.1 it is input-to-
state stable with respect to the set W and to the input ṽ.

Next, consider the subsystem (6.34b)-(6.34c). Let εu ∈ (0, 1) and define the Lyapunov
function

V2(ṽ, ζ̃) =
(1 + c3 εu)

2
|ṽ|2 + 1

2
|ζ̃|2 + εu ζ̃

>ṽ, (6.35)

which is positive definite. Its derivative along (6.34b)-(6.34c) satisfies

V̇2(ṽ, ζ̃) ≤ −(1 + εuc3 − γv)|ṽ|sat(c2|ṽ|)−
(
c3 − εu − ε2u

1 + c3 εu

)
|ζ̃|2 + 2εu

1 + c3 εu
|θ|2. (6.36)

Hence, choosing δv > 0 and εu > 0 small enough so that

δ2 := c3 − εu − ε2u
1 + c3 εu

> 0

and δ1 := 1 + εuc3 − δv > 0, we have

V̇2(ṽ, ζ̃) ≤ −δ1|ṽ|sat(c2|ṽ|)− δ2|ζ̃|2 + δ3|θ2|2 (6.37)

where δ3 := 2εu/(1 + c3 εu). The inequality (6.37) implies that the subsystem (6.34b)-(6.34c)
is input-to-state stable with respect to θ2. Hence, invoking [123, Theorem 3.1] we conclude
that, for all initial conditions ξ(0) such that zt(0) ∈ Dt and all essentially bounded inputs
θ2, the reduced system (6.34) is input-to-state stable with respect to WΘ, defined in (5.34),
and to the input θ2. Furthermore, WΘ qualifies as a W-limit set for (6.34).

Now, since the boundary layer system is exponentially stable and the reduced system is
input-to-state stable with respect to WΘ and θ2, using Theorem 5.1, we conclude that the
controller (6.29), with (6.20)-(6.21), (6.23), and (6.30) solves the robust consensus problem
with output constraints for system (6.18). This, in turn, implies that the actual controllers
(6.15)-(6.16) solve the robust formation problem with output constraints for multi-agent
system (6.1). �
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6.3 numerical examples

To illustrate the performance of the controller proposed in this chapter, we present some
numerical examples consisting in the rendezvous of six quadrotors under limited-range
restrictions. More precisely, the objective is for the group of UAVs to reach a hexagonal
formation while maintaining the connectivity of the initial interaction graph and avoiding
potential collisions between connected agents. Two scenarios are considered. In the first, the
range limitations are considered to be equal for all the agents, so that the initial interaction
graph with seven edges is undirected. In the second scenario, each agent has a different range
of interaction, which naturally leads to a directed graph topology with five edges.

In both considered scenarios, the desired formation is determined by the desired rela-
tive position vector zdk = (zdk,x, zdk,y, zdk,z), for each k ≤ 7, set to (1, 0.5, 0), (−1, 1.5, 0),
(−1, 0.5, 0), (−2, 1, 0), (−1, 0.5, 0), (0,−1, 0), (1,−0.5, 0). The saturation limit for the desired
controller of the translational dynamics is set to ζ̄M = 7 m/s2, the controller gains to c1 = 1,
c2 = 0.8, c3 = 3, and the filter natural frequency is set to ωn = 350 rad/s. We consider the
mass of each drone to be mi = 0.4 kg. Furthermore, it is also assumed that the agents are
subject to a locally integrable and vanishing disturbance defined as follows:

θi(t) =− σ(t) [1 1 0]>

σ(t) =


−0.6

[
tanh(2(t− 15))− 1

]
, i ∈ {3, 5}

0.6
[

tanh(2(t− 15))− 1
]
, i = 2

0, i ∈ {1, 4, 6}.

(6.38)

The results of the first scenario are presented in Figures 6.4-6.8. The maximal and minimal
distances of the inter-agent constraint set (6.6) are, respectively, ∆k = 4.3 m and δ = 0.2
m, ∀k ≤ M . The initial positions and velocities of the vehicles are presented in Table 6.1.
Moreover, the initial poses are Ri = I3 for all i ≤ 6. In light of the initial conditions and the
range limits ∆k, at the initial time, the interconnections between the vehicles are represented
by an initial undirected connected graph as in Figure 6.3.

Table 6.1: Initial conditions for the simu-
lation in the undirected-graph
scenario

Index px py pz vx vy vz

1 1.9 0 -1 0.6 -0.8 0
2 -2 0 0 -0.3 0 0
3 5.2 2 0 1.3 0.3 0
4 5.2 -2 0 0.1 0 0
5 -5.5 2 0 0 0 0
6 -4.5 2 2 -0.8 0 0

In Figure 6.4 are illustrated the paths of each agent as well as the final desired formation
for the multi-agent system. Individual vehicles are represented by coordinate axes to illustrate
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Figure 6.3: Undirected connected graph at the initial time.
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Figure 6.4: Paths of the agents in the undirected scenario.

their orientation as well —cf. Figure 6.1. In Figures 6.5 and 6.6 are depicted, respectively,
the inter-agent distances and the velocities in the inertial frame. At first, under the action of
the disturbances, the agents converge to a steady state. Then, as soon as the disturbances
vanish, after 15 seconds, the agents converge to the desired static formation, as expected.
Moreover, note that both connectivity and collision avoidance constraints, represented by the
dashed lines in Figure 6.5, are respected, even in the presence of the additive disturbance.

The thrust and angular-rate control inputs are shown in Figures 6.7 and 6.8, respectively.
One may appreciate that the non-crossing of zero condition for the thrust is respected.

The results of the second scenario are presented in Figures 6.10-6.14. The initial positions
and velocities of the vehicles, as well as the range limits and the safety distances are presented
in Table 6.1. The initial poses are Ri = I3 for all i ≤ 6. Since in this scenario the range
limits ∆k are different for each agent, with the given initial conditions, the initial graph is
given by a directed spanning tree as in Figure 6.9.
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Figure 6.5: Distances between neighbor UAVs in the undirected case. The dashed lines represent the
connectivity and collision avoidance constraints.
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Figure 6.6: Inertial velocities of the UAVs in the undirected case.
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Figure 6.7: Thrusts of the UAVs in the undirected scenario.

Table 6.2: Initial conditions and constraint parameters
for the directed scenario

Index px py pz vx vy vz ∆k δk

1 2.4 0 -1 0.6 -0.8 0 2.5 0.2
2 -0.58 -0.9 0 -0.3 0 0 3.4 0.2
3 4 1.8 0 1.1 0.3 0 3.8 0.2
4 5 -2 0 0.1 0 0 3.5 0.2
5 -4.2 -0.45 0 0 0 0 3.7 0.2
6 -2 -4.2 2 -0.8 0 0 4.2 0.2
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Figure 6.8: Angular rates of the UAVs in the undirected scenario.
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Figure 6.9: Directed-spanning-tree graph at the initial time.

The paths of each agent are shown in Figure 6.10. In Figures 6.11 and 6.12 are depicted,
respectively, the inter-agent distances and the velocities in the inertial frame. As in the
undirected case, it can be seen from Figures 6.11 and 6.12 that the connectivity and collision
avoidance constraints are respected and, as soon as the disturbances vanish, the agents
converge to the desired static formation. The thrust and angular-rate control inputs are
shown in Figures 6.13 and 6.14, respectively.
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Figure 6.10: Paths of the agents in the directed scenario.
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Figure 6.11: Distances between neighbor UAVs in the directed case. The dashed lines represent the
connectivity and collision avoidance constraints.
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Figure 6.12: Inertial velocities of the UAVs in the directed case.
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Figure 6.13: Thrusts of the UAVs in the directed scenario.
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Figure 6.14: Angular rates of the UAVs in the directed scenario.
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6.4 experimental validation

In this section we illustrate the performance of the proposed controller via an experimental
setup. The experiments were performed using a group of five DJI Tello EDU® drones

—see Figures 6.15 and 6.16. The control law and the interactions among the agents were
implemented via the Robot Operating System (ROS) interface. The ground truth of the
positions, poses, and velocities of each robot was obtained using an Optitrack motion-capture
system, based on active IR cameras and markers. However, we stress that each agent has
access only to the relative positions of its neighbors, as given by an initial graph. Indeed, it
is also assumed that the information of the neighbors’ positions are only available within
a limited range determined by a circle of radius ∆k centered at each agent. The latter
represents the scenario where the agents are not able to communicate with each other and
rely solely on the measurements obtained using the embedded sensors.

Specifications
Mass (g) 80
Length (mm) 98
Width (mm) 92.5
Height (mm) 41
Max. velocity (m/s) 8

Figure 6.15: DJI Tello EDU®. Source: adapted from [139]

The control objective in the experimental setup is for the group of drones to distributedly
achieve a desired formation. Furthermore, since the information exchange among agents is
range-limited, as we have mentioned earlier the connectedness of the initial topology is not
guaranteed a priori and must be preserved by the controller. Finally, collision avoidance
among neighboring agents, determined by a minimal safety distance δ, must be guaranteed.

Figure 6.16: Snapshot of the experimental test using five DJI Tello EDU® drones.
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It is important to remark, however, that due to technical constraints in this setup only
the “high-order output-constrained consensus control” corresponding to the outer-loop of
the proposed methodology —cf. Figure 6.2— is experimentally validated. Indeed, the DJI
Tello EDU® drones used in the experiments have an internal attitude controller which is not
directly accessible to modification. Therefore, in practice, the drones are only controllable in
the Cartesian coordinates. In other words, each agent may be assimilated to a second-order
integrator system of the form

ṗi = vi (6.39a)
v̇i = ζi + θi(t) (6.39b)

where ζi is the effective control input and θi represents additive disturbances.
In light of this, for the experiments, the rendezvous control law was set to ζ>f =[
ζ>f,1 · · · ζ>f,5

]
, corresponding to the output of the command filter (6.21) with input

ζ∗ = sat (−c2ṽ + ωnα1,2) , (6.40)

together with (6.23), (6.19), and (6.20).
Four different scenarios are presented. In Section 6.4.1, the initial interconnection topology

is given by a directed spanning tree. Next, a connected undirected graph and a complete
graph are considered in Sections 6.4.2 and 6.4.3, respectively. Finally, in Section 6.4.4 we
consider that the agent labeled as “1” has access to information from a virtual leader with a
given trajectory; this desired trajectory of the virtual leader is regarded as a disturbance
affecting the group of agents. A video of the four experimental scenarios is available at:
https://tinyurl.com/rdvUAVsConnectivity.

6.4.1 Directed spanning tree

For this setup, the initial conditions and the maximal and minimal inter-agent distances,
∆ and δ respectively, representing the constraints, are presented in Table 6.3. Under these
conditions and constraints, it is assumed that the initial interaction graph of the system is
given by the directed spanning tree shown in Figure 6.17. The desired formation corresponds to
a pentagon and is determined by the desired relative position vector zdk = (zdk,x, zdk,y, zdk,z),
for each k ≤ 4, set to (0.9, 0.66, 0), (−0.6, 1.7, 0), (−0.3,−1.04, 0), (1.2, 0, 0). The control
gains were set to c1 = 0.8, c2 = 0.4, the natural frequency of the command filters was set to
ωn = 350 rad/s, and the saturation limit was set to ζ̄M = 3 m/s2.

Table 6.3: Initial conditions and constraint parameter
Index px [m] py [m] pz [m] vx [m/s] vy [m/s] vz [m/s] ∆ [m] δ [m]

1 -0.5 2.0 1.3 0.0 0.0 0.0 2.1 0.3
2 -0.9 3.0 1.8 0.0 0.0 0.0 2.1 0.3
3 0.9 1.5 1.8 0.0 0.0 0.0 2.1 0.3
4 2.1 2.2 1.8 0.0 0.0 0.0 2.1 0.3
5 2.1 0.8 1.5 0.0 0.0 0.0 2.1 0.3

https://tinyurl.com/rdvUAVsConnectivity
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Figure 6.17: Initial interaction topology: directed spanning tree.

The experimental results are presented in Figures 6.18-6.22. As evidenced in Figure 6.18,
the agents appear to reach the desired static formation. Moreover, from Figure 6.19 we see
that the distances between the initially interconnected agents remains within the imposed
bounds guaranteeing the maintenance of the connectivity and the avoidance of collisions.
In Figure 6.22 are presented the control inputs ζf,i, i ≤ 5, which are the outputs of the
command filters with input (6.40).
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Figure 6.18: Paths followed by the DJI Tello drones up to the desired pentagonal formation.

In Figure 6.20 one can appreciate that the formation errors do not actually converge to
zero but to a steady-state error. This, however is not in contradiction with the theoretical
results. Indeed, in Proposition 6.1 we stated that, in the presence of disturbances, the desired
formation is practically-input-to-state stable. The latter means that the trajectories of the
state of the system satisfy the bound (5.45), which is determined by the supremum norm of
the disturbances. So, since in practice the drones are constantly subject to, e.g., aerodynamic
disturbances, the formation errors do not converge exactly to zero, but satisfy the bound
(5.45). Moreover, it seems fitting to say at this point that the results of Proposition 6.1 apply
for drones controlled in thrust and angular rates, given by (6.16) and (6.15), respectively.
Yet, as we mentioned earlier, neither the thrust nor the attitude dynamics are accessible for
control. Therefore, part of the steady-state error may also be induced from the latter.
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Figure 6.19: Inter-agent distances. The dashed lines represent the maximal and minimal distances
guaranteeing connectivity maintenance and collision avoidance.
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Figure 6.20: Norms of the formation errors.
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Figure 6.21: Norms of the velocities in the inertial frame.
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Figure 6.22: Control inputs.

6.4.2 Undirected graph

The initial conditions and the parameters ∆ and δ denoting the inter-agent distance con-
straints are presented in Table 6.4. In this setting, the initial graph is given by the undirected
connected graph in Figure 6.23. The desired relative position vector zdk = (zdk,x, zdk,y, zdk,z),
for each k ≤ 5, is set to (0.9, 0.66, 0), (−0.6, 1.7, 0), (−0.3,−1.04, 0), (1.2, 0, 0), (1.5, 1.04, 0).
The latter determines a pentagonal formation. The control gains were set to c1 = 0.6,
c2 = 0.3, the natural frequency of the command filters was set to ωn = 350 rad/s, and the
saturation limit was set to ζ̄M = 3 m/s2.
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Table 6.4: Initial conditions and constraint parameters
Index px [m] py [m] pz [m] vx [m/s] vy [m/s] vz [m/s] ∆ [m] δ [m]

1 -0.3 1.5 1.5 0.0 0.0 0.0 2.6 0.3
2 -0.7 2.8 2.0 0.0 0.0 0.0 2.6 0.3
3 0.9 1.5 1.8 0.0 0.0 0.0 2.6 0.3
4 2.1 2.2 1.8 0.0 0.0 0.0 2.6 0.3
5 2 1.2 1.5 0.0 0.0 0.0 2.6 0.3
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Figure 6.23: Interaction topology: undirected graph

The results are presented in Figures 6.24-6.28. As in the directed-topology case, it can
be seen in Figure 6.24 that the agents reach the desired static formation. Moreover, the
connectivity and inter-agent collision-avoidance constraints are satisfied —see Figure 6.25.
Note, however, that as in the directed case, due to the disturbances encountered in practice,
the desired formation is reached in a practical sense. In Figure 6.28 are presented the control
inputs. It is clear from Figure 6.28 that the controllers stay within the desired saturation
limits.
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Figure 6.24: Paths followed by the DJI Tello drones up to the desired pentagonal formation.
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Figure 6.25: Inter-agent distances. The dashed lines represent the maximal and minimal distances
guaranteeing connectivity maintenance and collision avoidance.
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Figure 6.26: Norms of the formation errors.
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Figure 6.27: Norms of the velocities in the inertial frame.
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Figure 6.28: Control inputs.

6.4.3 Complete graph

For this setting, we assume that the radius ∆ of the sensing zone of each agent is large enough
so that it can interact with all the other agents in the systems. Therefore, the initial interaction
topology is represented by the complete undirected graph in Figure 6.29. The radius of the
sensing zones, as well as the minimal safety distances and the initial conditions are presented
in Table 6.5. The desired pentagonal formation is described by the relative position vector
zdk = (zdk,x, zdk,y, zdk,z), for each k ≤ 10, set to (0.9, 0.66, 0), (−0.6, 1.7, 0), (−0.3,−1.04, 0),
(1.2, 0, 0), (1.5, 1.04, 0), (−0.9, 0.66, 0), (0.6, 1.7, 0), (−0.3, 1.04, 0), (−1.8, 0, 0), (−1.5, 1.04, 0).
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The control gains were set to c1 = 0.8, c2 = 0.4, the natural frequency of the command
filters was set to ωn = 350 rad/s, and the saturation limit was set to ζ̄M = 3 m/s2.

1

2

3 4

5

Figure 6.29: Interaction topology: complete undirected graph

Table 6.5: Initial conditions and constraint parameters
Index px [m] py [m] pz [m] vx [m/s] vy [m/s] vz [m/s] ∆ [m] δ [m]

1 -0.5 1.5 1.3 0.0 0.0 0.0 4.0 0.3
2 -0.9 2.8 1.8 0.0 0.0 0.0 4.0 0.3
3 0.9 1.5 1.8 0.0 0.0 0.0 4.0 0.3
4 2.1 2.2 1.8 0.0 0.0 0.0 4.0 0.3
5 2.1 1.2 1.5 0.0 0.0 0.0 4.0 0.3

The results of this experimental setup are presented in Figures 6.30-6.34. As in the previous
two cases, the agents (practically) reach the desired static formation, while guaranteeing the
respect of the connectivity and inter-agent collision-avoidance constraints —see Figures 6.30,
6.31 and 6.32. The control inputs, shown in Figure 6.34, also remain within the imposed
saturation limits.
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Figure 6.30: Paths followed by the DJI Tello drones up to the desired pentagonal formation.



154 rendezvous of underactuated uavs under inter-agent constraints

0 3 6 9 12 15 18
0

1

2

3

4

t [s]

|z
k
|[

m
]

Figure 6.31: Inter-agent distances. The dashed lines represent the maximal and minimal distances
guaranteeing connectivity maintenance and collision avoidance.
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Figure 6.32: Norms of the formation errors.
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Figure 6.33: Norms of the velocities in the inertial frame.
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Figure 6.34: Control inputs.

6.4.4 Virtual leader

We now consider a three-agent system where an agent of the group, labeled ”1” (the root of
a spanning tree), follows a virtual agent, labelled ”0”, describing a predefined trajectory. The
initial conditions are given in Table 6.6 and the initial topology is represented by the directed
spanning tree in Figure 6.35. The virtual agent follows an inclined 8-shaped trajectory
described by the equations

x(t) = 0.5 sin(0.25 t), y(t) = 2 + cos(0.5 t), z(t) = 1.8 + 0.5 cos(0.25 t). (6.41)



156 rendezvous of underactuated uavs under inter-agent constraints

The control gains were set to c1 = 0.6, c2 = 0.3, the natural frequency of the command
filters was set to ωn = 350 rad/s, and the saturation limit was set to ζ̄M = 3 m/s2.

Table 6.6: Initial conditions and constraint parameters
Index px [m] py [m] pz [m] vx [m/s] vy [m/s] vz [m/s] ∆ [m] δ [m]

1 -0.3 1.5 1.5 0.0 0.0 0.0 2.1 0.3
2 -0.9 2.8 1.8 0.0 0.0 0.0 2.1 0.3
3 0.9 1.5 1.8 0.0 0.0 0.0 2.1 0.3

0

1 32
e2e1

Figure 6.35: Interaction topology: directed spanning tree with virtual agent.

In this setting, the velocities of this virtual leader may be considered as additive distur-
bances for the other UAVs of the system. Since the proposed controllers deal only with the
problem of consensus-based formation, and not target tracking, it is evident that the multi-
agent system will not achieve the desired formation in this case. However, the importance of
this experiment is to illustrate the performance of the proposed control law, and especially
the respect of the inter-agent constraints, when the agents follow a virtual leader. Indeed,
although the desired formation is not achieved, the connectivity and collision-avoidance
constraints are always guaranteed.
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Figure 6.36: 8-shaped paths followed by the DJI Tello drones under the influence of the virtual agent.

These results are presented in Figures 6.36-6.38. It can be seen in Figure 6.37 that despite
being subject to an important additive disturbance, both the connectivity and the collision-
avoidance constraints are respected. The latter is in accordance to the theoretical results.
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Indeed, since the desired formation is practically-input-to-state stable and the constraints
set is forward invariant, the trajectories of the system remain bounded and the constraints
are satisfied even in the presence of disturbances. Under these properties, some well-known
results such as, e.g., passivity-based [140] or disturbance rejection [141] strategies, may be
used in order to modify the rendezvous control laws proposed in this chapter, so that the
multi-agent system exactly follows a desired trajectory.
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Figure 6.37: Inter-agent distances. The dashed lines represent the maximal and minimal distances
guaranteeing connectivity maintenance and collision avoidance.
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Figure 6.38: Norms of the velocities in the inertial frame.

6.5 conclusion

The original contribution presented in this chapter consists in solving a relevant problem
to the aerospace industry that is motivated by the increasing interest for safety-aware fleet
deployment. In particular, we presented a solution to the robust rendezvous control problem
of cooperative thrust-propelled UAVs under a set of realistic assumptions and not at the
expense of formal analysis.
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Building upon the contributions presented in Chapter 5 and based on a feedback transfor-
mation design, we proposed a distributed controller, using the gradient of a barrier Lyapunov
function and the framework of command-filtered backstepping, that achieves the desired
formation with guaranteed connectivity maintenance and inter-agent collision avoidance
even in the presence of disturbances. From a theoretical point of view, we established
almost-everywhere practical input-to-state stability of the desired formation with respect to
bounded disturbances. Moreover, the results apply for networks interacting over undirected
and some directed topologies. From a practical point of view, we validated the performance
of the proposed controllers via numerical examples and experimental setups. We believe that
the control methodology presented in this chapter constitutes an important step towards
addressing more complex consensus-based tasks for groups of UAVs in realistic settings from
the perspective of automatic control.



C O N C L U S I O N S A N D F U RT H E R R E S E A RC H

In this work we have addressed the robust consensus-based control of multi-agent systems
under constraints. To this end, we have proposed multiple contributions in terms of control
design and stability analysis for a variety of relevant systems. These contributions are
summarized as follows.

On consensus with connectivity maintenance. We first address the problem of
consensus for first- and second-order systems where the inter-agent information exchange
is only reliable within a limited range, therefore imposing the need of guaranteeing the
connectivity of the interaction topology via the control. The control design and the analysis
of the closed-loop system is carried out relying on the edge-based representation recalled in
Chapter 2. The original contribution is to establish strong stability and robustness properties,
in terms of asymptotic stability and input-to-state stability, respectively, by providing strict
(barrier) Lyapunov functions for the problem of consensus with preserved connectivity of
low-order multi-agent systems over undirected and directed graphs. These properties are
stronger than the mere convergence usually established in the literature for consensus with
nonlinear interconnections relying on the dynamics of the nodes. Indeed, we show that on top
of achieving asymptotic stability of the consensus manifold, in the presence of disturbances,
the trajectories of the system remain bounded and converge to a neighborhood of the origin
while maintaining connectivity. The latter cannot be ascertained if only convergence with a
non-strict Lyapunov function is established.

Although the systems considered in this first part are seemingly simple low-order linear
systems, we believe that the results obtained in Chapter 3 are of great importance. Indeed,
they constitute the basis for the consensus control design of more complex systems, as
presented in the subsequent chapters.

On nonholonomic systems. Based on a polar-coordinates transformation which, simi-
larly to the edge transformation, uses relative quantities instead of the global states of the
nodes, we address the full consensus problem under connectivity constraints for multiple
nonholonomic vehicles in a leader-follower configuration. This is a step towards a more
representative model for sensor-based vehicle applications. Although there is a vast literature
addressing the problem of consensus of nonholonomic vehicles, even considering inter-agent
constraints, the contributions presented in this thesis are original in that, compared to most
of the existing results which either address only position consensus or design non-smooth or
time invariant feedback laws, we provide smooth time-invariant feedback laws that achieve
full consensus under distance and field-of-view connectivity constraints. All these results are
illustrated via numerical simulations and experimental setups.

On high-order systems. We solve the consensus problem under connectivity and
collision-avoidance constraints for high-order systems in normal form interconnected over
undirected and directed graphs. For the control design we build upon the gradient-based

159
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control in the edge-based perspective used for the consensus with connectivity maintenance
for low-order linear systems. By using a command-filtered-backstepping methodology we are
able to extend our results to the output- and partial-state-consensus problem under output
constraints of high-order systems. The latter is made possible by the strong robustness
properties and the strict Lyapunov functions provided in previous chapters for the consensus
under inter-agent constraints of first-order systems. Hence, the importance of the latter.
In terms of the stability analysis, we establish for the first-time in the literature practical-
input-to-state stability for the consensus problem under output constraints. We believe that
by providing explicit robustness properties, the proposed methodology may be used for
the control design of consensus protocols for more complex and meaningful scenarios of
cooperative multi-agent systems, such as the rendezvous problem of underactuated UAVs
with inter-agent constraints.

On underactuated UAVs. Relying on the solution to the robust consensus problem under
output constraints of high-order systems, we address a relevant problem to the aerospace
industry, the robust rendezvous control problem of cooperative thrust-propelled UAVs. Much
as in the cases of low- and high-order systems, the originality of our contributions is to
establish strong stability and robustness properties for the problem of rendezvous of multiple
UAVs interconnected over both undirected and directed topologies, and under realistic
conditions, mainly external disturbances, connectivity maintenance, and collision avoidance.
The latter conditions are more representative of the constraints most often encountered
in realistic applications than those considered in the literature, where most of the works
consider only undirected topologies or constraints in terms of the consensus errors and not in
terms of the individual inter-agent distances. We validated the performance of the proposed
controllers via numerical examples and experimental setups.

further research

The contributions presented in this thesis successfully addressed some of the most relevant
technical challenges in the cooperative control of multi-agent systems, mainly nonlinear
agent dynamics and interconnections as well as robustness of the systems under the action
of the proposed control algorithms. Nonetheless, there are still numerous open problems
yet to be addressed that constitute directions in which further research may be carried out.
Some of these problems that arise directly from the contributions presented in this thesis
are as follows.

General directed topologies. One of the original contributions of our work, for some
of the studied systems such as the underactuated UAVs, is to solve the consensus problem
under constraints for systems interacting over directed topologies. However, we stress that
the results obtained in this thesis only apply to two directed topologies: directed spanning
trees and directed cycles —cf. Remark 3.4. Both of these directed topologies are interesting
on their own since they represent, respectively, the relevant leader-follower and cyclic-pursuit
problems encountered in practice. Nonetheless, in sensor-based applications, other more
general topologies may naturally arise. Therefore, an interesting direction of research is to
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study the consensus problem under inter-agent constraints in the edge-based perspective
for general directed topologies. Although strong stability and robustness properties for
consensus over general directed graphs have already been obtained in the literature —see
[7] and Chapter 2— the same cannot be said in the case of nonlinear interconnections
and inter-agent constraints. A possible start point for considering more general directed
topologies may be the work of [7] where it is shown that the in-incidence matrix of an acyclic
directed graph may be expressed using the in-incidence matrix of a directed spanning tree,
as is the case for the incidence matrix —see the identity (2.48) in Chapter 2.

All-to-all collision and obstacle avoidance. We mentioned in Chapter 4 that for
nonholonomic vehicles, the full consensus problem under range and field-of-view constraints
with collision-avoidance guarantees via smooth time-invariant feedback is still an open
problem. On the contrary, in the case of high-order systems and underactuated UAVs, in
Chapters 5 and 6, respectively, we addressed consensus-based problems with inter-agent
collision avoidance. However, since we adopt a local strategy for dealing with the inter-
agent constraints, only the potential collisions with connected agents are avoided. Yet, in
realistic scenarios collisions have to be avoided with all the agents composing the system
in order to guarantee its safety. Moreover, the system may evolve in cluttered or dynamic
environments, where the agents have to successfully avoid collisions with static and dynamic,
uncooperative or even antagonistic, obstacles. There is a vast amount of literature addressing
the problem of navigation with obstacle avoidance for robotic systems, however few works
solve this problem in the multi-agent setting and even less considering, simultaneously, other
constraints, nonlinear dynamics, or external disturbances. An interesting tool that may help
to extend the results of this thesis to include obstacle avoidance and take advantage of the
edge-based perspective is bipartite consensus over signed networks encoding antagonistic
interactions —see e.g., [142], [143]. Moreover, the multi-stability properties established in
this thesis may be used ensure obstacle avoidance using strategies based on limit cycles
as in [144]. From another perspective, instead of considering the non-connected agents as
non-collaborative obstacles to avoid, the all-to-all collision-avoidance problem may be solved
cooperatively using global strategies based on the algebraic properties of the graph —see
e.g., [101]— or using local approaches coupled with an edge-addition/removal strategy.

Impulsive topologies and open networks. In a sensor-based approach, where it is
considered that the agents have no way of communicating with their neighbors but rely
exclusively on the embedded sensors in order to interact with each other and achieve the
cooperative tasks, it is natural to imagine that interconnections may be created or deleted
as the agents enter or leave, respectively, the sensing zones of their neighbors. Moreover,
in some cases, agents may leave the systems or new agents may be added to the topology,
resulting, again, in the creation or deletion of interconnections. Such edge addition and
removal, in the edge coordinates, leads to a switched system where the dimension of the state
may vary at every switching instant. Hence, the system has to be studied from the approach
of hybrid and impulsive systems. In this context, the edge-based perspective is well suited
to the control of such hybrid systems where the stability analysis requires strict Lyapunov
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functions for the continuous-time dynamics —see, e.g., [145]. Hence, the importance of our
contributions.

Tracking. Another meaningful extension of the work presented in this thesis is to address
the problem of collaborative tracking in formation under inter-agent constraints. Indeed, it
is natural to imagine that besides the rendezvous objective, the agents may need to follow a
predetermined trajectory that may come, e.g., from a planning algorithm, an optimization
strategy, or the motion of a target of interest. In the case of nonholonomic vehicles, the
set-point stabilization and the tracking problems are fundamentally different. Therefore,
exploring the adaptation of the polar-coordinates-based system and of the proposed controllers
to the problem of tracking in formation is an interesting research direction, based on the
input-to-state stability properties established in Chapter 4. In the case of underactuated
UAVs, the practical-input-to-state stability properties established in Chapter 6, coupled with
some well-known results such as, e.g., passivity-based [140] or disturbance rejection [141]
strategies, may be used so that the multi-agent system exactly follows a desired trajectory.
A preliminary result in this direction is presented in [146] where, based on the stability and
robustness properties established in Chapter 3 for the constrained-consensus problem and
on a disturbance rejection strategy, we solve the tracking-in-formation problem applied to a
system of multiple underactuated Unmanned Marine Vehicles.



A
M AT H E M AT I C A L A P P E N D I C E S

a.1 lyapunov functions and lyapunov characterization

Definition A.1. Let x = 0 be an equilibrium point for ẋ = f(x), where f : Rn → Rn,
and A ∈ Rn be a domain containing x = 0. Then, a continuously differentiable function
V : A → R≥0, such that

V (0) =0 and V (x) > 0 in A\{0} (A.1)
V̇ (x) ≤0 in A (A.2)

is called a Lyapunov function for the system ẋ = f(x). Moreover, if
V̇ (x) < 0 in A (A.3)

we say that V is a strict Lyapunov function for the system ẋ = f(x). �

Consider the general nonlinear system with inputs:
ẋ = f(x, u) (A.4)

where f : Rn × Rm → Rn is continuously differentiable and satisfies f(0, 0) = 0.
Definition A.2 ([147]). The system (A.4) is input-to-state-stable if there exist a class
KL function β and a class K function γ such that, for each input u ∈ L∞ and each
x0 := x(0) ∈ Rn, it holds that

|x(t, x0, u)| ≤ β(|x0|, t) + γ(||u||) (A.5)
for each t ≥ 0. �

Definition A.3 ([147]). A smooth function V : Rn → R≥0 is called an ISS-Lyapunov
function for system (A.4) if there exists class K∞ functions α1, α2, and class K functions
α3 and χ, such that

α1(|x|) ≤V (x) ≤ α2(|x|) (A.6)
∂V (x)

∂x

>
f(x, u) ≤− α3(|x|) (A.7)

for any x ∈ Rn and any u ∈ Rm so that |x| ≥ χ(|u|). �

Lemma A.1 ([147]). If system (A.4) admits an ISS-Lyapunov function, then it is input-to-
state stable. �
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a.2 weight recentered barrier function

Definition A.4. Let B : P → R, x 7→ B, be a convex function on an open convex set P.
The function B is called a barrier function if it holds that

B(x) → ∞ as x→ ∂P, (A.8)

where ∂P denotes the boundary of P. �

Definition A.5. Let Bi : P → R, x 7→ Bi, be a convex barrier function on an open convex

set Pi with 0 ∈ Pi, i ≤ q. Let P :=
q⋂

i=1
Pi. Then, the strictly convex function B̃ : P → R≥0

given as

B̃(x) =

q∑
i=1

κi [Bi(x)−Bi(0)] (A.9)

with κi > 0 such that ∇B̃(0) =
∑q

i=1 κi∇Bi(0) = 0 defines a weight recentered barrier
function around the origin. �

a.3 critical points of the recentered barrier lyapunov function

The gradient of the barrier Lyapunov function (6.27) may be written as

∇Wk(z̃k) :=
∂Wk(z̃k)

∂z̃k
= φk(z̃k + zdk)

[
z̃k + zdk

]
− zdk , (A.10)

where

φk(sk) = 1 +
κ1,k

∆2
k − |sk|2

−
κ2,kδ

2
k

|sk|2(|sk|2 − δ2k)
. (A.11)

Then the Hessian of the barrier Lyapunov function reads

Hk(z̃k) :=
∂

∂z̃k

[
∇Wk(z̃k)

]
=φk(z̃k + zdk)IN + 2φ̃k(z̃k + zdk)

[
z̃k + zdk

][
z̃k + zdk

]> (A.12)

where

φ̃k(sk) :=
κ1,k(

∆2
k − |sk|2

)2 +
κ2,k(

|sk|2 − δ2k
)2 −

κ2,k
|sk|4

. (A.13)

From a straightforward computation, we see that the eigenvalues of Hk(z̃k) are

λi,k(z̃k) =φk(z̃k + zdk), i ∈ {1, . . . , n− 1} (A.14a)
λn,k(z̃k) =φk(z̃k + zdk) + 2φ̃k(z̃k + zdk)|z̃k + zdk |2. (A.14b)



A.4 stability of multiple invariant sets 165

To show that z̃∗k is a saddle point it suffices to prove that at least one of these eigenvalues is
negative. From (A.11), (A.13), and (6.28), it follows that for all δk < |z̃k + zdk | < ∆k,

φk(sk) + 2φ̃k(sk)|sk|2 = 1 +
κ1,k(∆

2
k + |sk|2)

(∆2
k − |sk|2)2

+
κ2,kδ

2
k(3|sk|2 − δ2k)

|sk|2(|sk|2 − δ2k)
2
> 1. (A.15)

Hence, we show that λi,k(z̃∗k) = φk(z̃
∗
k + zdk) < 0. To that end, note that from (A.10), since

z̃∗k is a singular point of Wk,

φk(z̃
∗
k + zdk)

[
z̃∗k + zdk

]
= zdk . (A.16)

Now, since δk < |z̃∗k+zdk | < ∆k, we have
[
z̃∗k + zdk

]
6= 0. Also, zdk 6= 0. Therefore, %k(z̃∗k+zdk) 6=

0. It follows that
[
z̃∗k + zdk

]
=: z∗k, which is the critical point expressed in the original relative-

position coordinates, is aligned with zdk . Furthermore, for each k ≤M the barrier-Lyapunov
function Wk may possess only two singular points belonging to {zk ∈ Rn : δk < |zk| < ∆k},
but these must have opposite sign. Consequently, there exists a > 0 such that z∗k = −a zdk or,
equivalently,

φk(z
∗
k) = −1

a
< 0, (A.17)

as required.
On the other hand, we have from (A.11) that φk(zdk) = 1, so from (A.14), we can conclude

that zdk is a minimum.

a.4 stability of multiple invariant sets

The following result on practical input-to-state stability of multi-stable systems is adapted
from [124, Theorem 2] to the notation used in this thesis.

Theorem A.1. Consider a singularly perturbed system of the form (5.31). Assume that:

1. the reduced system (5.32) is input-to-state stable with respect to an acyclic W-limit set
WΘ and an input θ;

2. the equilibrium α̃ = 0 of the boundary layer system (5.33) is globally asymptotically
stable.

Then, there exist a class KL function βα and a class K∞ function ηθ and, for any pair d1, d2 >
0, there exists an ε∗ > 0 such that, for any ε ∈ (0, ε∗], any essentially bounded function θ(t),
and any initial condition ξ(0) ∈ Dt×RnN(ρ−1), and max{|ξ(0)|WΘ

, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞} ≤ d1,
it holds that

lim sup
t→+∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2 (A.18a)

|α̃(t)| ≤βα

(
|α̃(0)|, t

ε

)
+ d2. ∀t ≥ 0 (A.18b)

�



166 mathematical appendices

For completeness we include the following elements on input-to-state multi-stability
adapted, respectively, from [123, Definition 2.7] and [123, Theorem 2.8].

Definition A.6. A C1 function V : M → R≥0 is a practical ISS-Lyapunov function for a
system ẋ = f(x, θ) if there exist K∞ functions η1, η, γ and q ≥ 0 such that, for all x ∈ M
and all θ, the following holds:

η1(|x|W) ≤V (x)

∇V (x)>f(x, θ) ≤− η(|x|W) + γ(|θ|) + q.
(A.19)

If (A.19) holds with q = 0, then V is said to be an ISS-Lyapunov function. �

Theorem A.2. Consider a system ẋ = f(x, θ) and an acyclic W-limit set W. Then, system
ẋ = f(x, θ) is input-to-state stable with respect to input θ and to the set W if and only if it
admits an ISS-Lyapunov function. �
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Titre : Commande en coordination de systèmes multi-agents robotiques autonomes sous contraintes

Mots clés : Fonctions de Lyapunov strictes, systèmes multi-agent, consensus, véhicules autonomes,

consensus basé sur les arêtes, contraintes inter-agents

Résumé : Dans cette thèse, nous abordons

et résolvons plusieurs problèmes de commande

de systèmes multi-agents sous des contraintes

multiples. Une partie des contributions consiste

à résoudre des problèmes de consensus pour des

systèmes linéaires (principalement des intégrateurs

de tout ordre) et une autre partie pour des

modèles non-linéaires, tels que des véhicules

non-holonomes ou des drones autonomes sous-

actionnés, en considérant des interconnexions non-

linéaires. Ainsi, les problèmes de commande que

nous abordons et leur formulation relèvent du

domaine de la robotique et plus particulièrement de

la commande des véhicules autonomes coopératifs

terrestres et aériens.

Concernant les intégrateurs de premier et de

second ordre, l'originalité de ce travail consiste

à développer une nouvelle analyse de stabilité

pour des systèmes multi-agents sous l'action des

lois de commande de consensus et avec des

contraintes de proximité et des perturbations. En

utilisant une représentation basée sur les arêtes

nous établissons des propriétés fortes de stabilité

et de robustesse, dans le sens de stabilité entrée-

sortie, en construisant des fonctions de Lyapunov

strictes. Ensuite, nous généralisons les résultats

dans deux directions. D'abord, nous développons

une méthodologie de commande qui résout le

problème de consensus pour des systèmes multi-

agents d'ordre élevé sous des contraintes non-

linéaires et des perturbations. D'autre part, nous

considérons des systèmes robotiques modélisés par

des équations dynamiques non-linéaires, soumis à

des multiples contraintes et à des perturbations.

Dans les deux cas, la stabilité et la robustesse

des systèmes en boucle fermée sont établies en

utilisant des arguments de l'automatique comme

les interconnexions en cascade, les perturbations

singulières et la multi-stabilité.

Title : Coordination control of autonomous robotic multi-agent systems under constraints

Keywords : Strict Lyapunov functions, multi-agent systems, consensus, autonomous vehicles, edge-

agreement, inter-agent constraints

Abstract : In this thesis we address and

solve several concrete problems of control of

multi-agent systems under multiple inter-agent

constraints. Some of our contributions address

problems of consensus for linear systems (primarily

integrators of any order) and others solve concrete

relevant problems involving nonlinear models,

such as nonholonomic vehicles or thrust-propelled

underactuated unmanned autonomous vehicles,

and considering nonlinear interconnections. Thus,

the control problems that we address and their

formulation stem from the realm of robotics

and more particularly, of control of cooperative

autonomous vehicles, both terrestrial and aerial.

Concerning �rst- and second-order integrators,

the originality of this work consists in developing

a new stability analysis for multi-agent systems

under the action of consensus control algorithms

and with proximity constraints and disturbances.

Using an edge-based representation of the multi-

agent system we establish strong stability and

robustness properties, in the sense of asymptotic

and input-to-state stability, via the construction

of strict Lyapunov functions. Then, we consider

generalize these results in two directions. First,

we develop a control methodology that solves the

consensus problem for multi-agent systems of high-

order systems under nonlinear interconnections

and disturbances. On the other hand, we consider

robotic systems modeled by nonlinear dynamic

equations and subject to multiple inter-agent

constraints and disturbances. In both cases we

establish stability and robustness of the closed-loop

systems using arguments from control systems'

theory on cascaded interconnections, singular

perturbations, and multi-stability.


	Acknowledgments
	Preamble
	Résumé étendu en français
	Contents
	List of Figures
	List of Tables
	1 General overview and context
	1.1 Motivation
	1.2 On consensus control
	1.3 On connectivity maintenance
	1.4 On nonholonomic vehicles
	1.5 On underactuated unmanned aerial vehicles
	1.6 On high-order systems

	2 Consensus protocols for multi-agent systems
	2.1 Elements of graph theory
	2.2 The consensus control problem
	2.3 The edge-based formulation
	2.3.1 The edge transformation
	2.3.2 A reduced-order edge-based model

	2.4 A glimpse on graphs with nonlinear interconnections
	2.5 Conclusion

	3 Consensus with connectivity maintenance
	3.1 Problem formulation and mathematical preliminaries
	3.1.1 Motivational case-study
	3.1.2 Problem formulation
	3.1.3 Barrier Lyapunov functions in edge coordinates

	3.2 First-order systems
	3.2.1 Undirected graphs
	3.2.2 Directed graphs
	3.2.3 Robustness analysis

	3.3 Second-order systems
	3.3.1 Undirected graphs
	3.3.2 Directed graphs
	3.3.3 Robustness analysis

	3.4 Numerical example
	3.5 Conclusion

	4 Leader-follower constrained full consensus of nonholonomic vehicles
	4.1 Problem formulation
	4.1.1 The unicycle model in Cartesian coordinates
	4.1.2 A polar-coordinates-based representation

	4.2 A smooth time-invariant controller
	4.3 Closed-loop analysis
	4.3.1 Case-study
	4.3.2 Static leader: stabilization
	4.3.3 Non-static leader: robustness analysis

	4.4 Numerical examples
	4.5 Experimental validation
	4.6 Conclusion

	5 Consensus of high-order systems under output constraints
	5.1 The consensus-based formation problem
	5.1.1 Problem formulation
	5.1.2 Barrier Lyapunov function with multiple singular points

	5.2 Output consensus
	5.3 Qualitative analysis and proofs
	5.3.1 Analysis of the singular perturbation model
	5.3.2 Stability and robustness analysis

	5.4 Partial- and full-state consensus
	5.5 Conclusion

	6 Rendezvous of underactuated UAVs under inter-agent constraints
	6.1 Problem formulation
	6.2 Control design and stability analysis
	6.3 Numerical examples
	6.4 Experimental validation
	6.4.1 Directed spanning tree
	6.4.2 Undirected graph
	6.4.3 Complete graph
	6.4.4 Virtual leader

	6.5 Conclusion

	Conclusions and further research
	Conclusions and further research

	A Mathematical appendices
	A.1 Lyapunov functions and Lyapunov characterization
	A.2 Weight recentered barrier function
	A.3 Critical points of the recentered barrier Lyapunov function
	A.4 Stability of multiple invariant sets

	 Bibliography

