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Abstract

0.1 Abstract in English

Phenylene-ethynylene dendrimers show astonishing properties and are systems to be likely used

in opto-electronic devices such as light emitting diodes and conductive molecular wires. They are

in the spotlight because they show excellent photostability and high excitation energy transfer

efficiency. The excitation energy transfer in phenylene-ethynylene dendrimers is ultrafast and

unidirectional. It occurs from the periphery of the molecular system to the core thanks to an

excitation energy gradient that extends along the system.

During this PhD, phenylene-ethynylene dendrimers have been studied through a pseudo-

fragmentation scheme in which the phenylene-ethynylene dendrimers is decomposed in various

subsystems (pseudofragments). The phenylene-ethynylene dendrimers behaves as if the pseudo-

fragments (oligophenylene-ethynylene) were weakly interacting together.

Two isomers (the single-trans isomer and the cumulenic isomer) of oligophenylene-ethynylene

co-exist in their first adiabatic electronic excited states.

Two diabatic excited states are then considered for each oligophenylene-ethynylene, the ones

which are associated to the Lewis structures of the isomers. The potential energy surfaces of

phenylene-ethynylene dendrimers and their conical intersections have been rationalised in terms

of diabatic states localised on the pseudoframgments.

I have used density-based descriptors that are built from the attachment and detachment

densities involved in the electronic transitions. Such descriptors are used to characterise the

electronic excited states that are involved in the pseudofragmentation scheme of phenylene-

ethynylene dendrimers .

This global strategy allowed us to suggest an alternative excitation energy transfer mech-

anism that involves both trans-bending and cumulenic-streching deformations on each of the

pseudofragments of a phenylene-ethynylene dendrimers .

Gabriel Breuil (ICGM-CPTM) vi
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0.2 Abstract in French

Les dendrimères de phénylène-ethynylène possèdent des propriétés photo-induites remarquables

et ils peuvent être utilisés en tant que composants opto-électroniques tels que les diodes électro-

luminescentes et les fils conducteurs moléculaires. Les dendrimères de phénylène-ethynylène

présentent une photo-stabilité importante et un transfert d’énergie d’excitation ultra-rapide et

unidirectionnel. Il va de la périphérie du système moléculaire vers son centre grâce à un gradient

d’énergie d’excitation qui s’étend le long du système.

Durant cette thèse, les dendrimères de phénylène-ethynylène ont été étudiés à l’aide d’un

schéma de pseudo-fragmentation dans lequel les dendrimères de phénylène-ethynylène sont dé-

composés en différents sous-systèmes (pseudofragments). Les dendrimères de phénylène-ethynylène

se comportent comme si les pseudofragments (oligophénylène-éthynylènes) étaient en faible in-

teraction.

Deux isomères (le simple-trans et le cumulénique) des oligophénylène-éthynylènes co-existent

dans leur premier état adiabatique électronique excité.

Deux états diabatiques excités sont alors considérés pour chaque oligophénylène-éthynylènes,

ceux qui sont associés à la structure de Lewis des isomères. Les surfaces d’énergie potentielle des

dendrimères de phénylène-ethynylène et leur intersections coniques ont été rationalisées à l’aide

des états diabatiques localisés sur les pseudofragments.

J’ai utilisé des descripteurs basés sur la densité électronique qui sont construits depuis

la densité d’attachement et de détachment impliqués dans les transitions électroniques. Ces

descripteurs sont utilisés pour caractériser les états électroniques excités qui sont impliqués dans

le schéma de pseudofragmentation des dendrimères de phénylène-ethynylène .

Cette stratégie globale nous a permis de suggérer un mécanisme alternatif du transfert

d’énergie d’excitation qui implique à la fois une déformation par un pliage trans et par un étire-

ment cumulénique sur chacun des pseudofragments d’un dendrimères de phénylène-ethynylène

.

Gabriel Breuil (ICGM-CPTM) vii
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Introduction

0.3 Introduction in English

Photoinduced processes in molecules play a crucial role in the case of biological and chemical

reactivity, and properties concerning either natural and synthetic systems. One can easily name

the natural photosynthesis that concerns living species (chlorophyll-bearing plants), chemical

reactions that are induced from a photoexcitation, and the use of artificial photosynthesis in

devices such that dye sensitized solar cells and organic light-emitting diodes [3–6].

Amongst various photoinduced processes, the light-harvesting (LH) properties of macro-

or supramolecular systems hold our attention in this work. Natural and synthetic systems may

show LH properties [7–22]. Studies have been made on the link between the structure of the sys-

tems and the excitation energy transfer (EET) process [23–29]. Concerning natural systems, one

can name the case of LH properties that arises from photosynthetic abilities of pigment-protein

complexes [7–11].

The systems mentioned in the previous refs [7–11] are pigment-protein complexes of the

purple bacteria. It is one of the first studied systems that show LH properties but it is not the

only one. The complexes have a crystal structure which are an assembly of proteins that surround

pigment molecules. The light energy is absorbed by protein-pigment pairs and the excitation

energy is transferred to the chemical reaction center of the bacteria which is the junction center

of the protein-pigment pairs. The global EET process that occurs through the entire system

lasts about 100 ps with a quantum yield (ratio of emitted photons over absorbed photons) of

95% while the EET from a unique protein-pigment pair to the chemical reaction center occurs

within the subpicosecond time range. [30,31].

The term of "LH complexes" has been chosen, for the latter exemple, to characterise the

complexes of purple bacteria as the excitation energy is captured on several specific locations

on the system (the pigment-protein pairs) and is driven to a unique point of the species (the

chemical reaction center).

Organic compounds that have such LH properties give rise to a significant set of applications
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to fig. 1, the EET for the class of compact dendrimers now also goes from the periphery to the

core of the system.

In this thesis we are focused on the study of extended phenylene-ethynylene dendrimers

(ePE-D) that are highly π-conjugated systems. The building blocks are oligo(phenylene-ethynylene)s

(oPE) of various sizes. One of the most famous ePE-D is the nanostar (see fig. 2).

Figure 2: The nanostar.

The nanostar shows astonishing EET properties. Around 99% of the excitation energy is tran-

ferred and the EET is unidirectional (from the peripherical branches to the perylene group) and

almost ultrafast (270 ps along the system). [39–41] The consecutive building blocks of 2, 3 and 4

phenylene rings give the peculiar structure of the nanostar and are responsible of the presence of

an energy gradient which allows the LH properties and the highly efficient intramolecular energy

funneling mechanism. The perylene group can eventually emit. [42]

It has been shown in [40] that steady-state absorption and emission spectra of the nanostar

are matching with the superposition of the steady-state spectra of the phenylene-ethynylene

building blocks that are the branches of the system. An LH dendritic molecule is then viewed as

an array of weakly coupled chromophores (in our case, phenylene-ethynylene building blocks of

various sizes). The system absorbs light at wavelengths that depend on the structural properties

of the branches. [42]

The meta-position of building blocks on common phenylene nodes breaks the π-conjugation

from one oPE to another. The electronic properties of the nanostar, and more generally of exten-

ded dendrimers, is governed by the electronic properties of its building blocks. The EET ability
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is defined by the properties of its chromophores.

Such a hierarchical description motivates us to apply a multiscale method that is based

on a pseudofragmentation scheme [43]. In such a method, all the pseudofragments are the oPE

branches of the PE dendrimers. The shared phenylene group between two oPE branches is then

taken into account twice and so it is not possible to consider the oPE branches as real fragments.

The ePE-D behave almost as if their pseudofragments were weakly interacting together.

Since an ePE-D has similar electronic properties as its pseudofragments, the potential energy

surfaces of ePE-D are studied in this thesis within the pseudofragmentation scheme, in which

the potential energy surfaces are rationalised with respect to the ones of the oPE branches.

This pseudofragmentation scheme, summarised below (fig. 4), has been explicitly explained for

1,3-bis(phenylethynyl)benzene (m-BPEB, see fig. 3) in ref. [43]

Figure 3: 1,3-bis(phenylethynyl)benzene (m-BPEB).

The energy minimum in the ground state ofm-BPEB belongs to the C2v point group. The Franck-

Condon (FC) point (the first optically active state at the ground state equilibrium geometry)

lies around 4 − 5 eV. The four frontier orbitals of m-BPEB at the FC point are gathered in the

middle of fig. 4.

The four frontier orbitals are delocalised over all the molecular system. The π orbitals

that lie on the two ethynylene groups and on the two peripherical phenylene groups are similar

up to a phase considering the HOMO-1/HOMO and LUMO/LUMO+1 pairs while the central

phenylene group of each four frontier orbital differs. The pairs of delocalised HOMO-1/HOMO

and LUMO/LUMO+1 are quasi degenerate. The "sum" combination of the two non-degenerate

HOMO-1/HOMO gives a localised HOMO orbital on the left branch of m-BPEB and the "sum"

combination of the two LUMO/LUMO+1 gives a localised LUMO orbital on the left branch of

m-BPEB as well. In contrast, the "difference" combination of the delocalised orbitals gives loc-

alised orbitals on the right banch of m-BPEB. The localised HOMO orbitals are degenerate and

so are the localised LUMO orbitals. The localised orbitals on the right and on the left branch of

m-BPEB involve a different set of atoms (left and right part) and share a common set of atoms

(the phenylene ring) and this is the actual reason why we called the branches of an ePE-D,
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HOMO -1

HOMO

LUMO

LUMO +1

LUMO LUMO

HOMO HOMO

Figure 4: Localised molecular orbitals resulting of the sum and the difference of the frontier
molecular orbitals m-BPEB.

pseudofragments. The four delocalised frontier orbitals of m-BPEB are then non-degenerate due

to the weak interactions between the two pseudofragments that is related to the overlap between

the two localised orbitals of the pseudofragment. In other words, the larger the overlap is, the

stronger would be the interaction between the pseudofragments. meta-diphenylethynylphenylene

behaves almost as two diphenylene-acetylene weakly interacting together.

Adiabatic and diabatic states are defined such that: the adiabatic electronic states are eigen-

vectors of the electronic Hamiltonian while the diabatic electronic states are not eigenvectors of

the electronic Hamiltonian and there is no nuclear kinetic coupling between them. The diabatic

states can be pictured as if they characterised some electronic properties of the system. More

details are given on the interpretation of adiabatic and diabatic electronic states in chapters 1

and 2. We define then, in this context, diabatic states that are related to the localised frontier

orbitals on the pseudofragments. The diabatic localised-on-the-pseudofragments states of an

ePE-D match then with the adiabatic delocalised states of the isolated pseudofragment.

Within this thesis, 1,3-bis(phenylethynyl)-3-(1,4-bis(phenylethynyl)benzene)benzene mb-

DPABPEB is studied and analysed within the framework of the pseudofragmentation scheme.

Three pseudofragmentation schemes are considered. They are (see fig. 5):
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+

Scheme 1

Scheme 2 Scheme 3

Figure 5: The pseudofragmentation scheme of mb-DPABPEB.
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• Scheme 1: Two diphenylene-acetylenes (DPA) and one 1,4-bis(phenylethynyl)benzene (BPEB)

weakly interacting together;

• Scheme 2: One m-BPEB and one BPEB weakly interacting together;

• Scheme 3: One 1-(phenylethynyl)-3-(1,4-bis(phenylethynyl)benzene)benzene (m-DPABPEB)

and one DPA.

Refs. [39–47] suggest that the EET within an ePE-D involves only the first optically active

electronic state (Sact) of each pseudofragment and streching modes that are localised on the

ethynylene groups. In figure 6 is represented an oPE that can be pseudofragmented in three

pseudofragments: DPA, BPEB and m-DPABPEB. The adiabatic potential energy of the oPE is

schematically represented in plain line and the diabatic localised-on-the-pseudofragments states

are represented in dashed colored lines (green: DPA, purple: BPEB, and yellow: m-DPABPEB).

If the wavepacket is initially localised on the localised-on-DPA diabatic state, some EET will

occur from the latter diabatic state toward the localised-on-BPEB diabatic state then to the

localised-on-m-DPABPEB diabatic state via internal conversion (IC) through conical intersec-

tions between electronic states.

In this thesis, a second EET mechanism is suggested. We proposed that the transfer mechanism

involve optically inactive states in addition to optically active states. Indeed, close in energy to

the first optically active state there is an optically inactive state which involves a trans-stilbene-

shape-like geometry for linear oPE on a unique ethynylene group. These two states for both

systems have been accurately studied for DPA and BPEB. [48–53] The ground state (GS) of

DPA and of BPEB belong to the D2h point group (PG). The equilibrium geometries are planar

and the phenyl groups are separated from each other by single-triple-single bonds (see fig. 5)

in the GS. In the D2h PG, the minimum in the first optically active state is characterised by a

cumulenic structure for both systems: the phenyl groups are quinoidal and are separated from

each other by three double bonds (see fig. 7).

The first optically active states for DPA and BPEB are of B1u symmetry (using Mulliken’s

convention with z along the long axis). C. Robertson and G. A. Worth [51] have shown that,

according to the level theory of the electronic structure calculations, Sact may not be the first

electronic excited state but it is among the first three. The cumulenic minimum is associated to
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Qstretching mode

Potential
energy

via I.C

via I.C

Figure 6: Schematic representation of the EET on a ePE-D branch along a stretching mode of
the ethynylene groups of the three pseudofragments: DPA, BPEB and DPABPEB.

Figure 7: cumulenic isomer of DPA (on the left) and of BPEB (on the right).

a ππ∗ single excitation.

The cumulenic structure is not a unique equilibrium geometry in the first excited adiabatic

electronic state. The optically inactive states which minima correspond to the trans structures

(see fig. 8) belong to the C2h PG and are of Au symmetry (for DPA) and to the Cs PG and are

of A′ symmetry (for BPEB). The trans structure is associated to a πσ∗ single excitation, the

antibonding orbital is localised on the acetylenic bond and corresponds to the in-plane π-system.

The trans isomer of DPA is lower in energy than the cumulenic one and the energy barrier

between them is of hundreds of cm−1 [48–51] while the trans isomer of BPEB is higher in energy

than the cumulenic one and the energy barrier is of 5 000 cm−1. [52, 53]

Figure 8: trans isomer of DPA (on the left) and trans isomer of BPEB (on the right)

No experimental information has been found on the trans isomer of BPEB but the trans
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isomer of DPA has been characterised experimentally [54–61]. A photoisomerization process that

involves the optically active and inactive states has been suggested and experimentally charac-

terised by Hirata et al. [54]

The photoinduced isomerization process is: S0
hν−→ X → Y → T1 according to Hirata et al..

notations. In this scheme, the state denoted S0 is the ground state. The state X is a transient

short-lived optically active state (τ = 8 ps and λtr = 500 nm, where τ is the species lifetime and

λtr is the transient wavelength). This optically active state intersects the optically inactive state

Y which equilibrium geometry is the trans isomer. The optically inactive state is a transient

long-lived state (τ = 200 ps and λtr = 435 nm and 700 nm). T1 is the lowest triplet state that

interacts with Y .

When the degeneracy between two adiabatic electronic states (i.e. they have the same en-

ergy) is lifted up, the crossing between both potential energy surfaces has the shape of a cone.

Such a topological feature is called a conical intersection (CoIn). In the case of a two-states

crossing, only two directions lift the degeneracy. They are called the Gradient Difference (GD)

and the Derivative Coupling (DC) and they constitute together a plane that is called the branch-

ing space (BS). They play a crucial role [39,62–68] in photoisomerisation processes. More details

are given on CoIn, the effect of crossing between two electronic states, and on the DC and GD

in chapter 2.

Hirata et al. [54] explain that the population transfer between the optically active and in-

active states is radiationless and so it includes at least a CoIn. Having access to the CoIn of

mb-DPABPEB that involve optically active and inactive localised-on-the-pseudofragments dia-

batic states and characterizing them is one of the major interests of this thesis.

Several methods exist to get access to the geometry of the system for which there is a CoIn

between two states [2, 69–74]. Many of them use algorithms that are based on Lagrange multi-

pliers. Refs. [70–73] use analytic gradient methods that are constrained by Lagrange multipliers

and ref. [74] uses an algorithm that needs to compute the Hessian of the Lagrange multipliers

which involves a second constraint.

The program developed by Harvey et al. in [2] based on the work of Bearpark et al in [69]

was used in this work. It is a method based on analytical energy gradients to determine the

locus of the minimum energy of the crossing seam of two adiabatic potential energy surfaces. In

our case the non-interacting surfaces correspond to two surfaces of states of different symmetry.

However, this method is not as accurate as it could be if one has to find a CoIn that involves two
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electronic states of same symmetry. To do so, an extension to this program has been developed

during this thesis which involves the numerical energy gradients in the branching space. The

numerical calculation of the two vectors of the branching space is determined by the use of the

approach developed by Gonon et al in [75].

The conical intersections that have been studied in this thesis occur among electronic ex-

cited states. Excited states for a molecular system can be characterised as a first approximation

by the occupied and virtual molecular orbitals involved in the transition: for exemple nπ∗ trans-

itions, ππ∗ transitions etc. However, the electronic excitation for periodic systems are viewed as

a quasi-particle, an exciton, which is often represented by the hole-electron model. ePE-D are

large π-conjugated molecular systems and so they can be described in between the "molecular"

picture and the "solid state" picture. Several studies have been performed to understand the LH

properties of dendrimers by the use of excitons [76–78] and by characterizing the electronic prop-

erties of the excited states by determining the local character of the electronic excitation. [39]

Two types of electronic excited states can be involved in the EET [39]: a charge-transfer

(CT) state and a locally-excited (LE) state. A CT state is a covalent state with apparent charges

that are created afer the photoexcitation. An LE state is characterised by a biradicaloid prop-

erty. [79–83] One needs to evaluate quantitatively and qualitatively the nature of the electronic

excited states that are involved in the EET. To do so, several methods have been developed in

the past decades to design computational tools in order to characterise the electronic properties

with "indices" taking characteristic values. Guido et al. have defined an index that is based on

the charge centroids of the natural transition orbital pairs. [84] Plasser et al. have generalized a

theory based on natural orbitals to characterise excited states. [85–88] Ciofini et al. have built

an index DCT that is calculated from the difference density matrix. This index provides the

spatial distance between the center of charges of the density distribution. [89–92] In this thesis,

descriptors that are derived from the attachement and detachment density matrices have been

used. They give a measure of the overlap between the attachement and detachment density

functions and the effective amount of net charge transferred in the electronic transition.

Such tools to characterise adiabatic electronic excited states (i.e. density based descriptors

and the software to determine conical intersections) are used to get a better understanding of

the EET in PE-D.

In the case of the wavepacket is localised onto the cumulenic localised-on-the-DPA pseudo-

fragment diabatic state of mb-DPABPEB, the cumulenic localised-on-the-BPEB pseudofragment
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diabatic state can be easily populated. However, we suggest in this thesis that the wavepacket

can be propagated at first from the the cumulenic localised-on-the-DPA pseudofragment dia-

batic state toward the trans localised-on-the-DPA pseudofragment diabatic state then from the

trans localised-on-the-DPA pseudofragment diabatic state toward the cumulenic localised-on-

the-BPEB pseudofragment diabatic state (see fig. 9). A specific study of the diabatic states of

the o-PE and of the diabatic states of PE-D is carried out.

Theoretical details are given in the first chapter on adiabatic electronic excited states and

Potential 

energy

R normal mode that 

    promote the EET

?

Figure 9: New pathway that could be used by the wavepacket during the EET in a PE-D after
a photo-excitation

on approximations that are made. Then the second chapter is addressing on conical intersections,

when two adiabatic electronic states are degenerate. The third chapter develops the concept of

the electron density and density-based descriptors that are used to characterise adiabatic elec-

tronic excited states and conical intersections. In the fourth chapter, the computational method

to determine the density-based descriptors is validated, the determination of a conical intersec-

tion and the behavior of the density-based descriptors in the vicinity of the conical intersection

is studied. Finally, in the last chapter, an alternative mechanism of EET is suggested. To do so,
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the first optically active and inactive electronic states of the pseudofragments of mb-DPABPEB

and of the molecule itself are studied by the use of peudofragmentation scheme. In the general

conclusion, an alternative excitation energy transfer mechanism, involving dark states, compared

to the received mechanism in the literature is suggested for the nanostar.
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0.4 Introduction in French

Dans les systèmes moléculaires naturels et artificiels, les processus photo-induits jouent un rôle

crucial en ce qui concernent leur réactivité chimique et biologique. On peut citer par exemple : les

réactions chimiques qui sont induites par une photo-excitation, la photo-synthèse dite "naturelle"

pour les végétaux chlorophylliens mais aussi la photo-synthèse dite "artificielle" dans le cas des

cellules solaires et des diodes organiques électro-luminescentes [3–6].

Parmi les divers processus photo-induits existant dans les systèmes supra- et macro-moléculaire.

Nous nous sommes intéressés aux propriétés collectrices de lumière dans ce travail. Les propriétés

collectrices de lumière sont présentes à la fois pour des sytèmes naturels et pour des systèmes

artificiels [7–22]. Des études ont montré le lien entre la structure des systèmes et le processus

de transfert d’énergie d’excitation (TEE) [23–29]. En ce qui concerne les propriétés collectrices

de lumière pour des systèmes naturels, on peut citer par exemple les complexes de pigments-

protéines [7–11].

Les systèmes présentés dans les références [7–11] sont des complexes pigments-protéines de

la bactérie pourpre. Il s’agit là d’un des premiers systèmes moléculaires qui a été étudié pour ses

propriétés collectrices de lumière. Cependant, ces complexes-ci ne sont pas un unique exemple

de systèmes moléculaires présentant de telles propriétés.

La lumière est absorbée par la paire pigment-protéine et l’énergie d’excitation est trans-

férée vers le centre de la bactérie où a lieu une réaction chimique. Ce lieu est la jonction entre

l’ensemble des paires de pigments-protéines. Le TEE global s’étend sur toute la bactérie durant

une période de 100 ps avec un rendement quantique de 95%, le rendement quantique étant défini

comme le rapport entre la quantité de photons émis et la quantité de photons absorbés. Le TEE

d’une unique paire pigment-protéine vers le centre de la bactérie est quant à lui en dessous de

l’échelle de temps de la picoseconde. [30,31].

Le terme de complexes "collecteurs de lumière" a été choisi, pour l’exemple précédent, afin

de caractériser les complexes de la bactérie pourpre. En effet, l’énergie d’excitation est capturée

sur différents sites spécifiques (les paires pigment-protéine) et est redirigée vers un point unique

du système moléculaire (le centre de réaction chimique).

Les composés organiques qui possèdent une telle propriété que de collecter la lumière puis

de la transférer ont permis de donner lieu à des applications telles que les thérapies photo-

dynamiques dans la biomédecine [32, 33] mais aussi dans les technologies photovoltaïques orga-
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plus, un dendrimère peut être fonctionnalisé à l’aide de groupes donneurs d’électrons (D, disque

bleu sur la figure 10) et de groupes accepteurs d’électrons (A, disque rouge sur la figure 10).

Les groupes donneurs sont fixés à la périphérie du système tandis que le groupe accepteur est

fixé au centre du dendrimère. Ainsi, la quantité d’énergie qui est absorbée puis transférée est

augmentée [34, 38]. D’après le schéma représentatif d’un dendrimère compact dans la figure 10,

le TEE est alors dirigé de la périphérie vers le centre.

Dans cette thèse, nous nous sommes intéressés à l’étude de dendrimères étendus de phénylène-

ethynylène (De-PE) qui sont des systèmes π conjugués. Les blocs de construction sont alors des

oligo(phénylène-ethynylène)s (oPE). L’un des dendrimères des plus connu de cette classe-ci est

la nanostar. Elle est représentée sur la figure 11.

Figure 11: La nanostar

La nanostar présente des propriétés de TEE remarquables. Environ 99% de l’énergie d’excitation

est transférée. Le TEE est unidirectionnel (de la périphérie de la nanostar vers le groupe pérylène

en son centre) et est quasi ultrarapide (270 ps le long du système) [39–41]. Le groupe pérylène

émet la lumière absorbée. Les blocs de construction de deux, trois et quatre phényles donnent une

structure particulière à la nanostar et sont responsables de la présence d’un gradient d’énergie

d’excitation qui donne lieu aux propriétés collectrices de lumière et au TEE. [42]

Il a été montré dans l’article [40] que les spectres stationnaires d’absorption et d’émission

de la nanostar correspondent à la superposition des spectres stationnaires de ses blocs de con-

struction. Une molécule dendritique collectrice de lumière présente alors les propriétés opto-

électroniques de chromophores faiblement couplés (dans notre cas, les blocs de construction de
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tailles différentes). Le système absorbe la lumière à des longueurs d’onde qui dépendent des

propriétés structurales de ses branches. [42]

La position en meta des blocs de construction sur un même phényle brise la conjugaison π

entre un oPE et le suivant. Les propriétés électroniques de la nanostar, et plus généralement des

dendrimères étendus, sont gouvernées par les propriétés électroniques des blocs de construction.

L’aptitude de transférer l’énergie d’excitation est donc définie par les propriétés des chromo-

phores, donc des blocs de constructions, d’un dendrimère.

Une telle description hiérarchisée nous a intéressés afin d’utiliser une méthode multi-échelle

qui est basée sur un schéma de pseudofragmentation [43]. Les pseudofragments de cette méthode

sont les blocs de construction d’un De-PE. Les phényles en commun entre les différents blocs de

construction sont pris en compte plusieurs fois puisqu’ils appartiennent aux différents blocs de

construction : c’est pourquoi il n’est pas possible de considérer les branches d’oPE, les blocs de

construction, comme de véritables fragments.

Les De-PE se comportent comme si les pseudofragments étaient faiblement interagissants. Dans

cette thèse, à l’aide de schémas de pseudofragmentation, les surfaces d’énergie potentielle de De-

PE sont rationnalisées à l’aide de l’étude de surfaces d’énergie potentielle des pseudofragments.

Un schéma de pseudofragmentation est détaillé ci-dessous (fig. 13). Il a été détaillé pour le

1,3-bis(phenylethynyl)benzene (m-BPEB, voir fig. 12) dans l’article [43].

Figure 12: 1,3-bis(phényléthynyl)benzène (m-BPEB).

Le minimum d’énergie de l’état fondamental du m-BPEB appartient au groupe d’espace C2v.

Le point Franck-Condon (FC, l’état optiquement actif à la géométrie d’équilibre de l’état fonda-

mental) est vers 4−5 eV. Les quatre orbitales frontières de m-BPEB au point FC sont rassemblées

au milieu de la figure 13.

Les quatre orbitales frontières sont délocalisées sur tout le système moléculaire. Les orbitales

π qui s’étendent sur les deux groupes éthynylènes et sur les deux phényles périphériques sont

similaires à une phase près. Les orbitales moléculaires qui s’étendent sur le phényle central en

commun sont toutes différentes. Les paires délocalisées HOMO-1/HOMO et LUMO/LUMO+1

sont ainsi quasiment dégénérées. La "somme" des deux non dégénérées HOMO-1/HOMO donne
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Figure 13: Le schéma de pseudofragmentation de m-BPEB.

une HOMO localisée sur la branche de gauche de m-BPEB et la "somme" des deux non dégénérées

LUMO/LUMO+1 donne une LUMO localisée sur la branche de gauche dem-BPEB, de même que

la "différence" des paires HOMO-1/HOMO (resp. LUMO/LUMO+1) donne une HOMO (resp.

LUMO) localisée sur la branche de droite. Les deux HOMO localisées à gauche ou à droite sont

dégénérées, il en est de même concernant les deux LUMO localisées. Les orbitales localisées à

gauche ou à droite de m-BPEB impliquent un jeu d’atomes différents (branche de gauche et de

droite) et partagent un jeu d’atomes en commun (le phénylène central). C’est justement pour

cette raison que l’on appelle les blocs de construction des pseudofragments. En d’autres ter-

mes, plus grand est le recouvrement entre les deux orbitales moléculaires localisées, plus grand

serait l’interaction entre les deux pseudofragments. m-BPEB se comporte alors comme deux

diphényle-acétylènes faiblement interagissant.

Les états électroniques adiabatiques sont définis tels qu’ils sont les vecteurs propres de

l’hamiltonien électronique. Les états diabatiques sont quant à eux définis comme n’étant pas

des vecteurs propres de l’hamiltonien électronique et comme ayant un couplage cinétique nuc-

léaire nul entre eux. Les états diabatiques peuvent être vus comme s’ils caractérisaient une

propriété électronique du système moléculaire. Plus de détails sont donnés sur l’interprétation

des états électroniques adiabatiques et diabatiques dans les chapitres 1 et 2. Dans cette thèse,
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on détermine un jeu d’états diabatiques tels qu’ils décrivent les orbitales frontières localisées sur

les pseudofragments d’un De-PE. Les états diabatiques localisés sur les pseudofragments d’un

De-PE correspondent aux états électroniques délocalisés adiabatiques des pseudofragments isolés.

Dans cette thèse, le système 1,3-bis(phényléthynyl)-3-(1,4-bis(phényléthynyl)benzène)benzène

mb-DPABPEB est étudié et est analysé à l’aide de divers schémas de pseudofragmentation. Trois

schémas de pseudofragmentation sont étudiés. Ils sont (voir fig. 14) :

• Schéma 1: Deux diphényle-acétylènes (DPA) et un 1,4-bis(phenylethynyl)benzene (BPEB)

faiblement interagissants ;

• Schéma 2: Un m-BPEB et un BPEB faiblement interagissants ;

• Schéma 3: Un 1-(phényléthynyl)-3-(1,4-bis(phényléthynyl)benzène)benzene (m-DPABPEB)

et un DPA faiblement interagissants.

Les articles [39–47] proposent que seulement le premier état électronique optiquement actif (Sact)

de chaque pseudofragment est impliqué dans le transfert de l’énergie dans un De-PE. De plus

ils suggèrent que le TEE se fasse principalement entre les modes de vibrations d’étirement des

groupes éthynylènes. Dans la figure 15 est représenté un oPE qui peut être pseudofragmenté en

trois pseudofragments : DPA, BPEB et m-DPABPEB. L’energie potentielle adiabatique de l’oPE

total est représentée schématiquement par une courbe pleine et les états diabatiques localisés sur

les pseudofragments sont représentés par une courbe en pointillés (vert: DPA, violet: BPEB et

jaune: m-DPABPEB). Si le paquet d’onde est initialement localisé sur l’état diabatique localisé

sur le pseudofragment DPA, un TEE va avoir lieu de cet état diabatique vers l’état diabatique

localisé sur le pseudofragment BPEB puis vers l’état diabatique localisé sur le pseudofragment

m-DPABPEB via conversion interne (CI) à travers des intersections coniques entre états élec-

troniques.

Dans cette thèse, un second mécanisme pour le TEE est proposé. On suggère que le mécanisme

de transfert implique des états optiquement inactifs en plus des états optiquement actifs. En

effet, proche du premier état optiquement actif des oPE, il existe un état optiquement inactif

qui implique une géometrie trans pour les oPE linéaires sur un groupe éthynylène. Ces deux

états ont été caractérisés pour DPA et BPEB. [48–53] L’état fondamental de DPA et BPEB

appartient au groupe de symétrie D2h. Dans l’état fondamental, les géométries d’équilibre sont

linéaires et les phényles sont séparés par une alternance de liaisons simple-triple-simple (voir
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Figure 14: Les schémas de pseudoframentation de mb-DPABPEB
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Figure 15: Représentation schématique du transfert d’énergie d’une branche d’un De-PE le long
d’un mode d’étirement des groupes éthynylènes des trois pseudofragments : DPA, BPEB, m-
DPABPEB.

figure 14). Dans le groupe de symétrie D2h le minimum du premier état optiquement actif est

défini par une structure cumulénique pour les deux systèmes : les phényles ont une structure

quinoidale et sont séparés par trois liaisons doubles (voir figure 16. Le premier état optiquement

Figure 16: Isomère cumulénique de DPA (à gauche) et de BPEB (à droite).

actif pour DPA et BPEB est 11B1u (en utilisant la convention de Muliken avec l’axe z selon le

plus grand axe de la molécule).

C. Robertson et G. A. Worth [51] ont montré que selon le niveau de théorie utilisé dans les

calculs de structure électronique, Sact peut ne pas être le premier état électronique excité mais il

fait cependant partie des premiers. Le minimum cumulénique est associé à une excitation ππ∗.

Le minimum à la géometrie cumulénique n’est pas un minimum unique. L’état optiquement

inactif dont le minimum est associé à une structure trans sur un unique groupe ethynylène d’un

oPE linéaire (voir fig. 17) appartient au groupe de symétrie C2h et est 11Au pour le DPA, et

appartient au groupe de symétrie Cs et est 11A′ pour le BPEB. Le minimum de cet état optique-

ment inactif est associé à une excitation πσ∗. L’orbitale anti-liante est localisée sur la liaison
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ethynylène et correspond à un système π dans le plan. L’isomère trans du DPA est plus bas

en énergie que son isomère cumulénique, avec une barrière énergétique de quelques centaines de

cm−1 [48–51] alors que l’isomère trans du BPEB est plus haut en énergie que l’isomère cumulé-

nique avec une barrière énergétique d’environ 5 000 cm−1. [52, 53]

Figure 17: Isomère trans de DPA (à gauche) et isomère trans de BPEB (à droite).

Aucune donnée expérimentale n’a été trouvée sur l’isomère trans de BPEB mais l’isomère

trans du DPA a été caractérisé expérimentalement [54–61]. Un processus de photoisomérisation

qui implique les états optiquement actif et inactif a été proposé et caractérisé expérimentalement

par Hirata et al. [54]

Le processus d’isomérisation photoinduit est : S0
hν−→ X → Y → T1 selon les notations de

Hirata et al. Selon ce processus, l’état S0 est l’état fondamental, l’état X est un état optique-

ment actif transitoire de faible durée de vie (τ = 8 ps et λtr = 500 nm, où τ est la durée de

vie de l’espèce et λtr est la longueur d’onde transitoire). Cet état optiquement actif croise l’état

optiquement inactif Y dont la géométrie d’équilibre est celle de l’isomère trans. L’état Y est un

état transitoire de longue durée de vie (τ = 200 ps et λtr = 435 nm et 700 nm). T1 est un état

triplet de plus basse énergie qui croise l’état Y dans le groupe de symétrie C2h

Quand la dégénérescence entre deux états adiabatiques (i.e. ils ont la même énergie) est

levée, les surfaces d’énergie potentielle des deux états presque dégénérés ont l’apparence d’un

cône. Une telle particularité topologique est appelée intersection conique (InCo). Seulement

deux directions lèvent la dégénérescence : elles sont la différence des gradients (DG) et le couplage

dérivatif (CD). Ces deux directions constituent un plan qui est appelé l’espace de branchement.

Ces deux directions jouent un rôle crucial [39, 62–68] dans les processus de photoisomérisation.

Plus de détails sont donnés sur les InCO, la raison de croisement entre deux états electroniques

et sur les directions DG et CD dans le chapitre 2.

Hirata et al. [54] expliquent que le transfert de population entre les états optiquement actif

et inactif est non radiatif et qu’il implique au moins une InCo. Avoir accès aux InCo de mb-

DPABPEB qui impliquent les états optiquement actif et inactif des états diabatiques localisés

sur les pseudofragments et les caractériser est l’un des intérêts majeurs de cette thèse.

Plusieurs méthodes existent pour avoir accès à la géometrie d’un système pour laquelle il y
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a une InCo entre deux états. [2, 69–74] Plusieurs d’entre elles utilisent des algorithmes qui sont

basés sur les multiplicateurs de Lagrange. Les articles [70–73] utilisent des méthodes de gradient

analytiques qui sont contraints par les multiplicateurs de Lagrange et l’article [74] utilise un

algorithme qui a besoin de calculer la hessienne de multiplicateurs de Lagrange, ce qui implique

une seconde contrainte.

Le programme développé par Harvey et al. dans l’article [2], qui est basé sur le travail de

Bearpark et al. [69], a été utilisé durant cette thèse. Cette méthode est basée sur l’obtention

d’énergies via le calcul de gradients analytiques afin de déterminer la géometrie de la couture

de plus basse énergie entre deux surfaces d’énergie potentielle non interagissants. Dans notre

cas, les surfaces non interagissantes correspondent à deux surfaces de deux états de symétrie

différente. Cependant, cette méthode n’est pas suffisament précise dans le cas d’un croisement

entre deux états électroniques de même symétrie. Une extension de ce programme impliquant

le calcul d’énergie de gradients numériques dans l’espace de branchement a été développée dans

cette thèse. Le calcul numérique des vecteurs de l’espace de branchement est déterminé par

l’utilisation d’une approche développée par Gonon et al dans [75].

Les InCo qui ont été étudiées dans cette thèse impliquent des états électroniques excités.

Les états électroniques excités d’un système moléculaire peuvent être caractérisés en première

approximation par les orbitales moléculaires occupées et virtuelles impliquées lors l’excitation

: par exemple une excitation nπ∗, une excitation ππ∗, etc. Cependant, les excitations électro-

niques pour les systèmes périodiques peuvent être vues comme une quasi-particule, un exciton,

qui est souvent représentées par le modèle trou-particule. De-PE sont de larges systèmes π-

conjugués et ils peuvent être donc décrit à la fois par une vision "moléculaire" et une vision

"périodique". Plusieurs études ont été faites pour comprendre les propriétés collectrices de lu-

mière des dendrimères avec un modèle excitonique [76–78] et en caractérisant les propriétés des

états excités en déterminant le caractère local de l’excitation électronique. [39]

Deux types d’états électroniques excités peuvent être impliqués dans le TEE [39] : un état

à transfert de charge et un état localement excité. Un état à transfert de charge est un état

covalent avec présence de charges apparentes qui sont crées durant la photoexcitation. Un état

localement excité est caractérisé par des propriétés biradicaloides. [79–83] Nous avons besoin

d’évaluer quantitativement et qualitativement la nature des états électroniques excités qui sont

impliqués dans le TEE. Ainsi, plusieurs méthodes ont été développées durant la dernière décén-

nie afin de développer des outils computationnels pour caractériser les propriétes électroniques
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avec des indices prenant des valeurs caractéristiques. Guido et al. ont défini un indice qui est

basé sur les centres de charges des paires d’orbitales naturelles de transitions. [84] Plasser et al.

ont généralisé une théorie basée sur les orbitales naturelles afin de caractériser les états élec-

troniques excités. [85–88] Ciofini et al. ont construit un indice DCT qui est calculé à partir de

la matrice différence de densité. Cet indice donne la distance entre les centres de charges de

la distribution de la densité. [89–92] Dans cette thèse, des descripteurs sont construits à l’aide

des matrices de densité d’attachement et de détachement. Ces descripteurs sont utilisés afin de

donner une mesure du recouvrement entre les fonctions densité d’attachement et de détachement

et la quantité de charge effective qui est transférée durant l’excitation électronique.

De tels outils sont utilisés afin de caractériser les états électroniques adiabatiques excités

(i.e. descripteurs basés sur la densité électronique et le logiciel de détermination d’intersections

coniques) et d’obtenir une meilleure compréhension du TEE dans les D-PE.

Dans le cas où le paquet d’onde est localisé dans l’état diabatique cumulénique localisé

sur le pseudoframent de DPA du mb-DPABPEB, l’état diabatique cumulénique localisé sur le

pseudofragment de BPEB est facilement peuplé. Cependant, nous proposons dans cette thèse

que le paquet d’onde peut se propager tout d’abord de l’état diabatique cumulénique localisé sur

le pseudoframent de DPA vers l’état diabatique trans localisé sur le pseudoframent de DPA puis

vers l’état diabatique cumulénique localisé sur le pseudofragment de BPEB (voir figure 18). Une

étude précise est donc portée sur les états diabatiques des o-PE and des D-PE.

Des détails théoriques sur les états électroniques excités adiabatiques sont donnés dans

le premier chapitre. Le second chapitre traite des intersections coniques lorsque deux états

adiabatiques sont dégénérés. Le troisième chapitre porte sur le concept de la densité électro-

nique et des descripteurs utilisés pour caractériser les états électroniques. Le quatrième chapitre

présente la validation de la méthode computationnelle qui a été utilisée afin de calculer les

descripteurs, la détermination d’intersections coniques et du comportement des descripteurs au

voisinage d’une intersection conique. Enfin le dernier chapitre suggère un second mécanisme

de TEE. Pour ce faire les états optiquement actifs et inactifs de systèmes dendritique et de ses

pseudoframgents ont été étudiés.
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Energie 
potentielle

R mode normal qui 

    favorise le TEE

?

Figure 18: Nouveau chemin potentiel pour le paquet d’onde durant le TEE dans un D-PE après
une photo-excitation.
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Chapter 1

Electronic states

1.1 Introduction

In quantum mechanics, any system is characterized by what is called a state. Its abstract

vectorial representation in the Hilbert space is named ket and is denoted: |Ψ(t)〉 at any time.

The evolution of a state from its knowledge at t = 0 |Ψ(t = 0)〉 (initial condition) is governed by

the time-dependent Schrödinger equation,

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 (1.1)

where Ĥ is the Hamiltonian and ~ the reduced Planck constant. The time-dependent Schrödinger

equation is useful to have access to ultra-fast phenomena such as non-adiabatic processes, pho-

toisomerizations, radiative and non-radiative processes etc. [93–96]

A quantum system is described both as a particle and as a wave. Due to the wave description,

when |Ψ(t)〉 is an eigenstate of eq. 1.1, the state can be stationary: |Ψ(t)〉 = e−iEt
~ |Ψ〉, and so

the time dependency of eq. 1.1 vanishes.

Considering a stationary state, one has the time-independent Schrödinger equation (TISE):

Ĥ |Ψ〉 = E |Ψ〉 (1.2)

The energy E is associated to the stationary state.

The two previous equations can only be solved explicitely for very small systems (e.g. H+
2 and

H). It is computationally challenging to get an approximate solution for systems made of many

particles. Many approximations have been developed to get approached solutions. [97] The three
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following chapters present approximations that are made to solve and to compute the TISE (eq.

1.2), the limits of the approximations, and how to analyse the results of the TISE.

1.2 From the molecular Hamiltonian to the electronic Hamilto-

nian

The systems that have been studied in this thesis are molecular systems that are composed of

Ne− electrons of mass me− (fermions) and of Nnu nuclei (either bosons or fermions), the mass of

the Ith nucleus is denoted MI .

The electronic coordinates are (r,σe−) = {ri, σi}i∈J1;N
e−K, where r denotes the electronic

spatial coordinates such that the ith element ri lies in R3 and σe− denotes the electronic spin

coordinates such that the ith element σi lies in Σe− = {α, β}, where α and β are the values

associated to a spin up |↑〉 and a spin down |↓〉, respectively.

The nuclear coordinates are (R,σnu) = {RI , σI}I∈J1;NnuK, where R denotes the total nuclear

spatial coordinates such as the Ith element RI lies in R3 and σnu denotes the total nuclear spin

coordinates.

It may seem difficult to understand the meaning of a ket due to its abstract definition. One

can project |Ψ〉 onto the Hilbert basis vectors related to the position and spin representation.

The coordinate representation is related to |r,σe− ,R,σnu〉. We have:

〈r,σe− ,R,σnu|Ψ〉 = Ψ(r,σe− ,R,σnu) (1.3)

|r,σe− ,R,σnu〉 and |Ψ〉 span the same "abstract" Hilbert space (kets). Ψ(r,σe− ,R,σnu) belongs

to the Hilbert space of wavefunctions that are square integrable (L2) when integration is per-

formed over the coordinates.

Equation 1.3 gives the spatial and spin representation of the state that is called a wave-

function Ψ(r,σe− ,R,σnu). In other words the wave-function is the coordinate representation,

which is the projection of the ket |Ψ〉 onto |r,σe− ,R,σnu〉. The meaning of this projection is

a probability amplitude and the square of its modulus means a probability density of being at

(r,σe− ,R,σnu). The TISE now reads

Ĥ(r,σe− ,R,σnu)Ψ(r,σe− ,R,σnu) = EΨ(r,σe− ,R,σnu) (1.4)
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Equation 1.4 is then the coordinate representation of the eigenvalue problem expressed in equa-

tion 1.2.

Hereafter, molecular systems will be considered isolated. The interaction between charges

is considered as being electrostatic, in other words they interact "instantaneously" together.

The particles are considered here as non-relativistic and the molecular Hamiltonian is spin non-

dependent. Then, one can solve the TISE within only the spatial coordinates representation

|R, r〉 (accounting implicitly for the total spin, in particular of the electrons). Equation 1.4

can be expressed with the total molecular Hamiltonian and the wave-function is then called the

molecular wave-function.

The molecular wave-function can then be expressed only with electronic and nuclear spatial

coordinates such that

〈r,R|Ψmol〉 = Ψmol(r,R) (1.5)

The total molecular Hamiltonian operator reads:

Ĥmol =
∑

i<j

e2

4πǫ0 ‖ ri − rj ‖ +
∑

I<J

e2ZIZJ
4πǫ0 ‖ RI − RJ ‖ −

∑

i,I

e2ZI
4πǫ0 ‖ RI − ri ‖

−
∑

i

~2
∇

2
ri

2me
−
∑

I

~2
∇

2
RI

2MI

(1.6)

The constitutive terms of the total molecular Hamiltonian are:

• The electrostatic repulsion between the electrons:

V̂e−−e− =
∑

i<j

e2

4πǫ0 ‖ ri − rj ‖ , (1.7)

• The electrostatic repulsion between the nuclei:

V̂nu−nu =
∑

I<J

e2ZIZJ
4πǫ0 ‖ RI − RJ ‖ , (1.8)

• The electrostatic attraction between the electrons and the nuclei

V̂nu−e− = −
∑

i

∑

I

e2ZI
4πǫ0 ‖ RI − ri ‖ , (1.9)
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• The kinetic energy term for the electrons:

T̂e− = −
∑

i

~2
∇

2
ri

2me
, (1.10)

• And the kinetic energy term for the nuclei:

T̂nu = −
∑

I

~2
∇

2
RI

2MI
(1.11)

respectively, where e is the elementary charge, ǫ0 the permittivity of vacuum, ri the position

operator associated to the ith electron spatial coordinate, ZI the atomic number of the Ith nuc-

leus, ~ the reduced Planck’s constant, and ∇ri the Nabla operator associated to the ith electron

spatial coordinate.

The expression of the different terms in the total molecular Hamiltonian operator are nuc-

lear coordinate dependent (V̂nu−nu, T̂nu), electronic coordinate dependent (V̂e−−e− , T̂e−) and

depending on both electronic and nuclear coordinates (V̂nu−e−).

The Hamiltonian cannot be explicitely separated into an electronic part and a nuclear part

because of V̂nu−e− . The total wave-function cannot be expressed then as a single product of a

nuclear wave-function and an electronic wave-function. One must find specific approximations

to breakdown this co-dependency.

It is possible to re-write the total molecular Hamiltonian operator as the sum of an elec-

tronic Hamiltonian operator and a nuclear kinetic operator:

Ĥmol = Ĥe− + T̂nu (1.12)

with, Ĥe− = V̂e−−e− + T̂e− + V̂nu−e− + V̂nu−nu (1.13)

Ĥe− denotes the electronic Hamiltonian. It is the sum of three local operators (V̂nu−nu, V̂nu−e− ,

V̂e−−e−) and of one differential operator (T̂e−) according to the electronic coordinates. From now
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on, the nuclear coordinates R are viewed as parameters for the electronic Hamiltonian. The

total molecular wave-function can be recast as:

Ψmol(r,R) =
∞∑

i

∞∑

I

C
i

I
φI (R)ψi(r; R)

=
∞∑

i

Φi(R)ψi(r; R)

(1.14)

where (ψi(r; R))i∈N is an infinite orthonormal basis set of electronic wave-functions which de-

pends parametrically of the spatial nuclear coordinates and (φI (R))I∈N is an infinite orthonor-

mal basis set of nuclear wave-functions and C
i

I
is the expansion coefficient on the ith electronic

wave-function of the Ith nuclear wave-function. The total molecular state can be represented

in the state space but |ψi〉 is known for a given set of nuclear spatial coordinates. The nuclear

wave-functions cannot be represented in the state space anymore, they are considered as nuclear

"factors".

|Ψmol〉 =
∞∑

i

∞∑

I

C
i

I
φI (R) |ψi〉

=
∞∑

i

Φi(R) |ψi〉

(1.15)

As |ψi〉 has a given value for each R, one should write |ψi; R〉 or |ψi(R)〉 but the generic expres-

sion |ψi〉 is kept for simplicity. Including eq. 1.15 in eq. 1.4, we get:

∞∑

i

ĤmolΦi(R) |ψi〉 = Emol

∞∑

i

Φi(R) |ψi〉 (1.16)

where Emol is the total molecular energy. By multipling on the left by 〈ψi| eq. 1.16 and since

(ψi(r; R))i∈N is an infinite orthonormal basis set, we have:

∞∑

j

〈ψi| Ĥmol |ψj〉 Φj (R) = δijEmolΦj (R) (1.17)

Eq. 1.16 describes the action of the molecular Hamiltonian onto the nuclear factors. To get a

better understanding of eq. 1.16 let us consider a system composed of only two electronic states

and two corresponding nuclear factors respectively labelled: |ψ1〉, |ψ2〉, and Φ
1
(R), Φ

2
(R) such
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that the molecular state reads:

|Ψmol〉 = Φ
1
(R) |ψ1〉 + Φ

2
(R) |ψ2〉 (1.18)

Then, one gets the coupled equations:





〈ψ1| Ĥmol |ψ1〉 Φ
1
(R) + 〈ψ1| Ĥmol |ψ2〉 Φ

2
(R) = EmolΦ1

(R)

〈ψ2| Ĥmol |ψ1〉 Φ
1
(R) + 〈ψ2| Ĥmol |ψ2〉 Φ

2
(R) = EmolΦ2

(R)

(1.19)

Eq. 1.19 expresses the action of the molecular Hamiltonian onto the first and the second electronic

states: 〈ψ1| Ĥmol |ψ1〉 and 〈ψ2| Ĥmol |ψ2〉, and the coupling between the two electronic states:

〈ψ1| Ĥmol |ψ2〉 and 〈ψ2| Ĥmol |ψ1〉.
The molecular Hamiltonian is the sum of the electronic Hamiltonian and the nuclear kinetic

operator, the action of the two operators onto the electronic kets can be expressed as follows:

Ĥij = 〈ψi| Ĥe− |ψj〉 and T̂ij = 〈ψi| T̂nu |ψj〉. The electronic wave-functions are often supposed to

be real and it is supposed that they are in this work. We have then, Ĥij = Ĥji for i 6= j. Ĥij

and T̂ij remain operators since they act on the nuclear coordinates.

The total molecular Hamiltonian expressed in the electronic basis set and acting on the

nuclear factors is equivalent to write the Hamiltonian operator matrix depending on the nuclear

coordinates. We then get the matrices of operators and the corresponding coupled equations as



Ĥ11 + T̂11 Ĥ21 + T̂21

Ĥ12 + T̂12 Ĥ22 + T̂22







Φ1(R)

Φ2(R)


 = Emol




Φ1(R)

Φ2(R)


 (1.20)

Until now, no approximation has been performed to separate the nuclear part from the electronic

part in the total molecular Hamiltonian. That is why eq. 1.19 gives us coupled equations and a

full matrix in eq. 1.20. To have decoupled equations, one should have:

Ĥ12 + T̂12 = Ĥ21 + T̂21 = 0̂ (1.21)

We are going to make several assumptions and approximations in the following sections and

discuss on the pros and the cons of the approximations which are not always valid.
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1.2.1 Adiabatic basis set

According to previous notations, the matrix representation of the electronic Hamiltonian operator

in the electronic basis set (|ψ1〉 , |ψ2〉) reads:

He−(R) =



H11(R) H21(R)

H12(R) H22(R)


 (1.22)

Here, the electronic potential elements of the matrix are multiplicative operators and not dif-

ferential operators as in eq. 1.20. Since the electronic matrix is Hermitian, it can be unitarily

diagonalized. Typically, for two real states, there is a unitary matrix (here, orthogonal) Θ such as:

Θ†(R)He−(R)Θ(R) =



V1(R) 0

0 V2(R)


 (1.23)

The unitary matrix Θ reads:

Θ =




cos
(
θ(R)

)
sin
(
θ(R)

)

− sin
(
θ(R)

)
cos

(
θ(R)

)


 , (1.24)

where the θ(R) angle satisfies:

tan
(
2θ(R)

)
= − 2 〈ψ1| Ĥe− |ψ2〉

〈ψ2| Ĥe− |ψ2〉 − 〈ψ1| Ĥmol |ψ1〉
(1.25)

tan
(
2θ(R)

)
is not defined when 〈ψ2| Ĥmol |ψ2〉 = 〈ψ1| Ĥmol |ψ1〉. We are going to see in the

following sections that it is not possible to define the angle θ(R) when two electronic states are

degenerate. Further details are given in the end of this chapter.

The two electronic states that are eigenvectors of He−(R) are commonly called adiabatic

electronic states
( ∣∣∣ψad

1

〉
,
∣∣∣ψad

2

〉 )
such that





∣∣∣ψad
1

〉
= cos

(
θ(R)

)
|ψ1〉 + sin

(
θ(R)

)
|ψ2〉

∣∣∣ψad
2

〉
= − sin

(
θ(R)

)
|ψ1〉 + cos

(
θ(R)

)
|ψ2〉

(1.26)
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The adiabatic electronic states are the eigenvectors of the eigenvalue problem of the electronic

Hamiltonian operator:

Ĥe−(R)
∣∣∣ψad

1,2

〉
= V

1, 2
(R)

∣∣∣ψad
1,2

〉
(1.27)

The "adiabatic" term is referred in the superscript "ad". The adiabatic word is used because in an

adiabatic transformation or during an adiabatic evolution, the transformation is considered infin-

itesimally slow. Here the nuclear spatial coordinates are viewed as parameters for the electronic

Hamiltonian and for the electronic wave-functions (i.e., the nuclei are moving infinitesimally

slowly) and so the electronic system adapts immediately. For each nuclear spatial coordinate,

one can determine distinct adiabatic electronic states with respect to the validity of eq. 1.25.

Even though the electronic potential coupling is zero for an adiabatic electronic basis, the

coupled equations in eq. 1.19 remain coupled through the adiabatic nuclear kinetic coupling

operator: T̂ ad
12 =

〈
ψad

1

∣∣∣ T̂nu

∣∣∣ψad
2

〉
6= 0 and T̂ ad

21 =
〈
ψad

2

∣∣∣ T̂nu

∣∣∣ψad
1

〉
6= 0.

The coupled equations give:





(
V̂

1
+ T̂ ad

11

)
Φ

1
(R) + T̂ ad

21 Φad
2

(R) = EmolΦad
1

(R)

T̂ ad
12 Φ

1
(R) +

(
V̂

2
+ T̂ ad

22

)
Φad

2
(R) = EmolΦad

2
(R)

(1.28)

The full operator matrix in eq. 1.20 written in an electronic adiabatic basis set reads now:



V̂

1
+ T̂ ad

11 T̂ ad
21

T̂ ad
12 V̂

2
+ T̂ ad

22







Φad
1 (R)

Φad
2 (R)


 = Emol




Φad
1 (R)

Φad
2 (R)


 (1.29)

In the next section, we are going to see under what circumstances one can neglect the

adiabatic nuclear kinetic coupling terms within the adiabatic point of view.

1.2.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation (BOA) is one of the most famous approximations used

in quantum chemistry calculations: we assume that the nuclear masses tend to infinity.

Such an approximation is consistent with the physical picture of an atom in a molecular

system which mass is almost equal to the mass of the nuclei. In this thesis we studied systems
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based on carbon and hydrogen and so we have me

Mnu(C) = 5.0 10−5 and me

Mnu(H) = 5.0 10−4. In this

subsection, we are going to study the effect of the BOA on the coupled equations in eq. 1.19.

The nuclear masses occur in the nuclear kinetic operator (see eq. 1.11). For a two-electronic-

state approximation, the effect of the nuclear kinetic operator over the total molecular ket ex-

pressed in an adiabatic electronic basis gives:

T̂nu |Ψmol〉 =
∑

I

− ~

2MI
∇̂2

RI

[
Φad

1 (R)
∣∣∣ψad

1

〉
+ Φad

2 (R)
∣∣∣Φad

2

〉 ]
(1.30)

The adiabatic picture is such that for each spatial nuclear coordinates Φad
1

(R)
∣∣∣ψad

1

〉
and Φad

2
(R)

∣∣∣ψad
2

〉

are continuous and vary smoothly, except around crossings.

Mathematically speaking the first and the second derivative terms of the nuclear factors

and of the adiabatic wave-function are significantly lower than the nuclear masses and so we

can approximate the action of the nuclear kinetic operator over the molecular wave-function as

acting only on the uncoupled nuclear factors (T̂nuΦad
i (R)).

Chemically speaking the nuclei are "viewed" as being static according to the electrons. For

each coordinate there is a unique electronic and nuclear state that characterizes a molecular

state.

The coupled equations (see eq. 1.28) become uncoupled and read:

〈
ψad,BOA

1

∣∣∣ Ĥmol

∣∣∣ψad,BOA
1

〉
Φad,BOA

1
(R) = EBOA

mol Φad,BOA
1

(R)

〈
ψad,BOA

2

∣∣∣ Ĥmol

∣∣∣ψad,BOA
2

〉
Φad,BOA

2
(R) = EBOA

mol Φad,BOA
2

(R)

(1.31)

Using the operator matrix in eq. 1.29 yields



T̂BOA

11
+ V̂ BOA

1
0

0 T̂BOA
22

+ V̂ BOA
2







Φad,BOA
1 (R)

Φad,BOA
2 (R)


 = EBOA

mol




Φad,BOA
1 (R)

Φad,BOA
2 (R)


 (1.32)

The uncoupled equations (eq. 1.31) allow us to determine two single-product molecular states

such that
∣∣∣ΨBOA

1

〉
= Φad,BOA

1 (R)
∣∣∣ψad,BOA

1

〉
(1.33)

and
∣∣∣ΨBOA

2

〉
= Φad,BOA

2 (R)
∣∣∣ψad,BOA

2

〉
(1.34)
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More generally, the total molecular ket is now reduced to a single product of an adiabatic nuclear

wave-function and an adiabatic electronic wave-function:

ΨBOA
mol (r,R) = Φad,BOA(R)ψad,BOA(r; R) (1.35)

which gives in ket representation:

∣∣∣Ψad,BOA
mol

〉
= Φad,BOA(R)

∣∣∣ψad,BOA
〉

(1.36)

Such an expression shows that the BOA is an adiabatic approximation.

Thus, within the BOA, V BOA
i (R) represents a potential energy for the nuclei associated to

the ith electronic adiabatic state. Even though the nuclear coordinate vector R spans in R3Nnu

but the potential energy is invariant along translation and rotation displacement. It maps then,

a 3Nnu − 6-dimensional hypersurface for a non-linear molecular system and a 3Nnu − 5 for a

linear molecular system. Such a hypersurface is called a potential energy surface (PES) for the

motion of the nuclei.

1.3 A vibrational point of view in the case of the Born-Oppenheimer

approximation

1.3.1 Study of a unique potential energy surface

In this section we consider the ith electronic state as a unique adiabatic electronic state and the

Born-Oppenheimer approximation being valid.

As it has been explained in the end of the previous section, the adiabatic electronic energy

V BOA
i (R) maps a hypersurface of 3Nnu −6 dimensions but the nuclear spatial coordinates belong

to a space of 3Nnu dimensions. In this thesis, we are focused on the exploration of PES and

on the characterization of it. In our case it is then useful to reduce the 3Nnu nuclear spatial

coordinates to a set of 3Nnu − 6 nuclear spatial coordinates that describes only the "vibrations".

The general nuclear spatial vectors (RI)R3Nnu are chosen without any specific assumption.

The reference frame in which the vectors are expressed is assumed to be Galilean and is called

laboratory fixed (LF). Within the LF frame, the molecular Hamiltonian is explicitly separated

within electronic and nuclear spatial coordinates. The first transformation that can be made

is to translate the origin of the LF frame at the total molecular center of mass. The center of
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mass is often approximated to the nuclear center of mass as the nuclei are much heavier than the

electrons. The deviation from the total molecular center of mass to the nuclear center of mass

is call the mass polarization.

The orientation of the axes of the LF frame is invariant along this transformation. The new

reference frame is called space− fixed (SF). The new nuclear spatial vectors are built such that

RISF
= RI − 1∑

J
MJ

∑

K

MKRK (1.37)

The coordinate transformation can be summarized as

(
R1SF , . . . ,RNnuSF

)
→
( 1∑
J
MJ

∑

K

MKRK ,R2, . . . ,RNnu

)
(1.38)

Thanks to the latter transformation, the translational kinetic energy can be separated from the

total LF kinetic energy. The molecular Hamiltonian of eq. 1.6 expressed in the SF reference

frame is called rovibronic Hamiltonian.

The molecular system is supposed to be in the rotational ground-state J = 0 and the elec-

trons are moving adiabatically with respect to the nuclear displacements; there is no Coriolis

effect. One can built a third reference frame such that the kinetic energies are invariant according

to any rotational displacement of the nuclei. Such a reference frame is called body− fixed (BF).

Its origin is also at the total molecular center of mass. The directions of the axes are "attached

to the nuclei" via some constraints. The new coordinates read

RIBF
= CRISF

(1.39)

where C(α, β, γ) is a rotation matrix that depends on three Euler angles (α, β, γ) and so it de-

pends on three parameters. The BF frame rotates then with the nuclei.

In the BF reference frame we have defined 3Nnu − 6 internal coordinates where the rotations

and translations have been removed. These internal coordinates can be viewed as vibrational

coordinates. Then, the associated vectors are called vibrational normal modes and they are

defined at an equilibrium geometry.
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1.3.2 Photoexcitations

The electronic and vibrational ground state of a molecular system (again, assuming J=0) is the

lowest solution of the eigenvalue problem associated to the molecular Hamiltonian. Within the

BOA the ground state is characterized by the molecular state:

∣∣∣ΨBOA
0

〉
= Φad,BOA

0

∣∣∣ψad,BOA
0

〉
(1.40)

and by the ground state adiabatic electronic energy: EBOA
0 (R).

Electronic excited states of a molecular system are then eigenvectors of the electronic

Hamiltonian for which the eigenvalues are higher than EBOA
0 (R). Eckart’s conditions are sup-

posed to be fulfilled so the nuclear factors can be written as the product of translational, ro-

tational and vibrational contributions. [98] The translational energy can be high compared to

the electronic energy but the system potential energy is invariant along a translational displace-

ment. The rotational energies are considered here to be too small to be taken into account. The

vibrational nuclear factor Φν(R) is then only described by 3Nnu − 6 vibrational wave-functions

within the harmonic approximation.

The excitation from the ground state (or an excited state) toward a higher excited state

is governed by the electric dipole moment operator which acts on the electronic and on the

vibrational wave-function. The transition dipole moment between |Ψ′〉 and |Ψ′′〉 is defined as

µtr =
〈
Ψ′∣∣ µ̂

∣∣Ψ′′〉 =
〈
Ψ′∣∣ µ̂nu + µ̂e−

∣∣Ψ′′〉 (1.41)

where µ̂ is the dipole operator, µ̂nu the nuclear dipole operator and µ̂e− the electronic dipole

operator such as:

µ̂ = µ̂nu + µ̂e− =
∑

I

eZIRI −
∑

i

eri (1.42)

Within the BOA, thanks to eqs. 1.36, 1.41 reads:

µtr =
〈
ΦBOA′

ψad,BOA′∣∣∣ µ̂nu + µ̂e−

∣∣∣ΦBOA′′
ψad,BOA′′〉

(1.43)
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The term
〈
ΦBOA′

ψad,BOA′∣∣∣ µ̂nu

∣∣∣ΦBOA′′
ψad,BOA′′〉

is equal to zero since two adiabatic electronic

states are orthogonal to each other. The second term
〈
ΦBOA′

ψad,BOA′∣∣∣ µ̂e−

∣∣∣ΦBOA′′
ψad,BOA′′〉

remains. The electronic transition dipole is defined such that:

µ
e−

tr =
〈
ψad,BOA′∣∣∣ µ̂e−

∣∣∣ψad,BOA′′〉
(1.44)

The total transition dipole moment can then be expressed as

〈
Ψ′∣∣ µ̂

∣∣Ψ′′〉 =
〈
ΦBOA′∣∣∣ µ̂e−

tr

∣∣∣ΦBOA′′〉
(1.45)

The analytic formula of µ
e−

tr (R) is still unkown. The next approximation is called the Franck−
Condon approximation (FC approximation). The motivation for introducing a new approxim-

ation is that the photoexcitation occurs in such a short time that the transition is "static" for

the nuclei. The first step of the FC approximation is to expand the electronic transition dipole

moment in a Taylor series, at the equilibrium geometry of the initial adiabatic electronic state:

µ
e−

tr (R
′

) = µ
e−

tr (R
′

eq) +
∑

I

(
∂µ

e
−

tr (R
′

)

∂R
′

I

)

R
′ =R

′

eq

(R
′

I − R
′

eq)

+1
2

∑

J

∑

K

(
∂2

µ
e
−

tr (R
′

)

∂R
′

J R
′

K

)

R
′ =R

′

eq

(R
′

J − R
′

eq)(R
′

K − R
′

eq)

+ . . .

(1.46)

The transition dipole moment can then be recast as:

〈Ψ′| µ̂ |Ψ′′〉 = µ
e−

tr (R
′

eq)
〈
φBOA
ν

′∣∣∣φBOA
ν

′′〉

+
∑

I

(
∂µ

e−

tr (R
′

)
∂R

′

I

)

R
′
=R

′

eq

〈
φBOA
ν

′∣∣∣ (R′

I − R
′

eq)
∣∣∣φBOA
ν

′′〉

+1
2

∑

J

∑

K

(
∂2

µe−tr(R
′

)
∂R

′

JR
′

K

)

R
′ =R

′

eq

〈
φBOA
ν

′∣∣∣ (R′

J − R
′

eq)(R
′

K − R
′

eq)
∣∣∣φBOA
ν

′′〉

+ . . .

(1.47)
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The FC approximation corresponds to an expansion of the transition dipole moment limited to

the zeroth order term of eq. 1.47. When a transition is said as being fully-allowed, the electronic

transition dipole µ
e−

tr (R
′

eq) is large. The main transition occurs from the initial vibrational

nuclear state to the final vibrational nuclear state which overlaps it the most. The overlap

between the two vibrational nuclear wave-functions is called the FC integral. The associated

FC factors are |
〈
φBOA
ν

′∣∣∣φBOA
ν

′′〉 |2. The transition is then "observed" for large FC factors, the

transition is termed allowed.

But if | µe−

tr (R
′

eq) |≈ 0 the transition is no longer "observed" anymore and is termed weakly-

allowed or even forbidden. For us, in practice, allowed and forbidden transitions, the oscillator

strength is actually computed by the software that performs electronic structure calculations.

For a zero or close to zero oscillator strength, the state is called an optically forbidden state or a

dark state. For a significantly non-zero oscillator strength value, the state is called an optically

active state or a bright state. The oscillator strength formula for a transition from the electronic

ground state |Ψ0〉 to the nth electronic excited state |Ψn〉 is

f =
8πν̃mec

3he
| 〈Ψ0| µ̂ |Ψn〉 |2 (1.48)

where c is the speed of light, ν̃ the excitation energy in wavenumber.

1.4 Polarisable continuum model

The polarisable continuum model is a computational method that allows to describe the solvent

effects on a molecular system. This method was used in this thesis due to its low computational

cost and its qualitative efficiency for non-specific solvant-solute interactions [99–102].

It is based on the determination of a cavity around the molecular system (see fig. 1.1). The

molecule is located inside the cavity while the solvent is considered as being continuous outside

the cavity and is represented by an external potential V (r).

To determine the external potential, let us consider two charge densities ρ and ρ′ of the

molecular system. The interaction energy of the two charge densities of the molecule inside the

cavity and surrounded by the continuum reads:

Eint(ρ, ρ′) =
∫

R3

ρ′(r)V (r)dr (1.49)
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continuum: V(r)

cavity

molecular system

Figure 1.1: Schematic representation of a molecule inside a cavity and surrounded by a solvent
that is associated to an external potential.

where Eint(ρ, ρ′) is the interaction energy.

The external potential V (r) is determined by Poisson’s equation:

− ∇
[
ǫ(r)∇V (r)

]
= 4πρ(r) (1.50)

where ǫ(r) is the dielectric constant and we have ǫ(r) = 1 inside the cavity and ǫ(r) = ǫs outside

the cavity and is equal to the dielectric constant of the solvant. Solving the Poisson equation we

obtain:

• Inside the cavity:

− ∇2V (r) = 4πρ(r) (1.51)

• Outside the cavity:

− ǫs∇2V (r) = 0 (1.52)

Since the solvent creates charge on the surface of the cavity, the electrostatic interaction between

Gabriel Breuil (ICGM-CPTM) Electronic states 41



Breuil - Time-dependent topology of the molecular electron density

the solvent and the molecule can be rewritten such that:

V (r) = Vs(r) + Vσ(r) (1.53)

where Vs(r) is the electrostatic potential generated by the charge distribution in the molecule

and Vσ(r) is the electrostatic potential generated by the polarisation of the continous solvent.

Vσ(r) reads:

Vσ(r) =
∫

R3

σ(r′)
| r − r′ |d

3r′ (1.54)

The polarisation continuum method consists in the determination of the surface σ(r′) which

defines the potential Vσ(r). The surface σ(r′) reads:

σ(r) =
ǫs − 1

4π
∂

∂n

[
Vs(r) + Vσ(r)

]
(1.55)

where n is a unit vector that is applied at the surface of the cavity.

1.5 The limits of the Born-Oppenheimer Approximation

Eq. 1.25 gives us a hint of a problem within the adiabatic representation. There is an issue when

two adiabatic electronic states are degenerate.

If we project T̂nu |Ψmol〉 onto the adiabatic electronic wave-function basis we get:

T̂ ad
ij Φad

j (R) =
∑

I

− ~2

2MI

[
δij∇̂2

RI
Φad
j (R)

+2
〈
ψad
i

∣∣∣∇̂
RI
ψad
j

〉
∇̂

RI
Φad
j (R)

+
〈
ψad
i

∣∣∣∇̂2
RI
ψad
j

〉
Φad
j (R)

]
(1.56)

From this general formula, the sum can be written as three terms:

The zeroth-order term, the kinetic energy that is acting on the nuclear factors:

Aij(R) = δij∇̂2
R

Φad
j (R) (1.57)
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The first-order term (first-order non-adiabatic coupling):

Fij(R) =
〈
ψad
i

∣∣∣∇̂
R
ψad
j

〉
(1.58)

The second-order term (second-order non-adiabatic coupling):

Gij(R) =
〈
ψad
i

∣∣∣∇̂2
R
ψad
j

〉
(1.59)

The first and second-order non-adiabatic couplings diverge when two adiabatic electronic states

become degenerate.

For the ith and the jth adiabatic electronic state we have:

〈
ψad
i

∣∣∣ Ĥe−

∣∣∣ψad
i

〉
= Vi(R), (1.60)

and
〈
ψad
j

∣∣∣ Ĥe−

∣∣∣ψad
i

〉
=
〈
ψad
i

∣∣∣ Ĥe−

∣∣∣ψad
j

〉
= 0 (1.61)

for i 6= j.

As the electronic coupling terms are equal to zero for every nuclear spatial coordinates, the

gradient of it ∇R

(〈
ψad
j

∣∣∣ Ĥe−

∣∣∣ψad
i

〉)
is equal to zero as well. We have:

〈
∇̂Rψ

ad
j

∣∣∣ Ĥe−

∣∣∣ψad
i

〉
+
〈
ψad
j

∣∣∣ ∇̂RĤe−

∣∣∣ψad
i

〉
+
〈
ψad
j

∣∣∣ Ĥe−

∣∣∣∇̂Rψ
ad
i

〉
= 0 (1.62)

Since
∣∣∣ψad
i

〉
and

∣∣∣ψad
j

〉
are eigenvectors of the electronic Hamiltonian, we get:

Vi(R)
〈
∇̂Rψ

ad
j

∣∣∣ψad
i

〉
+
〈
ψad
j

∣∣∣ ∇̂RĤe−

∣∣∣ψad
i

〉
+ Vj(R)

〈
ψad
j

∣∣∣∇̂Rψ
ad
i

〉
= 0 (1.63)

The adiabatic electronic wave-functions are orthonormal to each other, we can write that:

0 = ∇̂R

〈
ψad
j

∣∣∣ψad
i

〉
=
〈
∇̂Rψ

ad
j

∣∣∣ψad
i

〉
+
〈
ψad
j

∣∣∣∇̂Rψ
ad
i

〉
(1.64)

That is to say:

〈
∇̂Rψ

ad
j

∣∣∣ψad
i

〉
= −

〈
ψad
j

∣∣∣∇̂Rψ
ad
i

〉
(1.65)
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This allows us to write eq. 1.63 as:

(
Vj(R) − Vi(R)

) 〈
ψad
j

∣∣∣∇̂Rψ
ad
i

〉
+
〈
ψad
j

∣∣∣ ∇̂RĤe−

∣∣∣ψad
i

〉
= 0 (1.66)

We recognize the first-order non-adiabatic coupling in the previous equation (Fij(R) =
〈
ψad
j

∣∣∣∇̂Rψ
ad
i

〉
).

The latter equation provides the expression for the first-order non-adiabatic coupling which is

also called the Off − diagonal Hellmann− Feynman theorem:

Fij(R) =

〈
ψad
i

∣∣∣ ∇̂RĤe−

∣∣∣ψad
j

〉

Vj(R) − Vi(R)
(1.67)

As it can be deduced from the off-diagonal Hellmann-Feynman theorem, the first-order non-

adiabatic coupling diverges when two adiabatic electronic states are close to each other in terms

of energy. In conclusion, the BOA is valid and so the kinetic coupling terms can be neglected as

long as the adiabatic electronic states are "far from each other": as long as Vi(R) 6= Vj(R) signi-

ficantly. We get back to the adiabatic approximation which considers to describe the molecular

state with a single product of adiabatic electronic and nuclear states.

When two or more adiabatic states have the same electronic energies, they cross and are degener-

ate. The locus of a crossing is called a conical intersection. The behavior of adiabatic electronic

energies in the vicinity of a conical intersection will be explained in chapter 2.
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Chapter 2

Conical intersections

2.1 Introduction

The present chapter is based on materials presented in several books. [93, 103–105]

Within the Born Oppenheimer approximation (BOA), the nuclear spatial coordinates are

considered to be parameters of the molecular system. Minima on PES are associated to equilib-

rium molecular geometries while saddle points of various order are associated to unstable station-

ary geometries (a 1st-order saddle point is commonly called a transition state). From the adia-

batic representation arises transition state theory to describe reaction mechanisms in the ground

state. Transition state theory "allows us" to determine the pathway that connects reactants to

products passing by on transition states. Such reactions are called thermally activated: temper-

ature supplies enough kinetic energy to cross the energy barrier of the transition state. [106–108].

Transition state theory is valid in the study of adiabatic chemical processes, when a unique

adiabatic state is involved. However, non-adiabatic effects can be involved in a chemical process

and transition state theory is not valid. Non-adiabatic effects have to be taken into account

when the BOA reaches its limit. The limitations of the BOA have been noticed for fast chemical

reactions [109,110] but also for photoinduced processes such as photoisomerizations. [62]

In this thesis, we are focused on photoexcited molecular systems. They can de-excite by

emitting light toward the singlet ground state either by fluorescence if the excited electronic state

is a singlet or by phosphorescence if the excited state is not a singlet. The light-emitting response

from a photoexcitation can vanish if there has been some nuclear reorganization and electronic

such that the molecular wave-packet has relaxed radiationlessly to the ground state. Bright and

dark states can be involved in the relaxation of the molecular wave-packet. To relax efficiently

from one state to another, the adiabatic states have to be close in energy and to be degenerate
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− Specific case: The Abelian groups intersections where two electronic states of different

symmetry cross (in one-dimensional irreductible representation). For exemple in article [43]

the crossing 11A1/11B2 of meta-di(phenylethynyl)phenylene has been studied.

− General case: The accidental intersections. Two electronic states of same symmetry

can cross. For exemple, the crossing between two singlet states 11A”/21A” for H2S or the

crossing between two triplet states 23A”/33A” for CH2. [113]

2.2 Non-adiabatic couplings and conical intersections

For simplicity reasons, in this chapter the adiabatic electronic states are labelled, within the

two-state approximation |ψ1〉 and |ψ2〉, and their relatives energies are V1(R) and V2(R). We

suppose that V2(R) ≥ V1(R). In this chapter we are going to study the critical case when

V2(R) = V1(R). The two adiabatic electronic states are supposed to be singlet states. The case

in which two adiabatic electronic states have different spin multiplicities has not been studied in

this thesis.

With these new notations, the 1st order non-adiabatic coupling reads:

F12(R) = 〈ψ1|∇Rψ2〉 =
〈ψ1| ∇RĤe− |ψ2〉
V2(R) − V1(R)

(2.1)

Similarly as in chapter 1, the 1st-order non-adiabatic coupling diverges when V2(R) = V1(R).

The electronic Hamiltonian matrix in eq. 1.23 can be written as the sum of two diagonal

matrices such that:

He−(R) =




V1(R)+V2(R)
2 0

0 V1(R)+V2(R)
2


+




V1(R)−V2(R)
2 0

0 V2(R)−V1(R)
2


 (2.2)

To simplify the previous equation, we determine two functions of R, ∆ and Σ, such that:

∆(R) =
V2(R) − V1(R)

2
(2.3)

and

Σ(R) =
V1(R) + V2(R)

2
(2.4)
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Then eq. 2.2 reads:

He−(R) =




Σ(R) 0

0 Σ(R)


+




−∆(R) 0

0 ∆(R)


 (2.5)

The second term on the right-hand side of eq. 2.5 is traceless.

Let
∣∣∣ψ̃1

〉
and

∣∣∣ψ̃2

〉
be two non-adiabatic electronic states.

(
|ψ1〉 , |ψ2〉

)
and

( ∣∣∣ψ̃1

〉
,
∣∣∣ψ̃2

〉 )

span the same Hilbert space. The non-adiabatic electronic Hamiltonian matrix reads:

H̃e−(R) =



H̃11(R) H̃12(R)

H̃21(R) H̃22(R)


 (2.6)

(
|ψ1〉 , |ψ2〉

)
is the basis in which the electronic Hamiltonian matrix is diagonal. There exists a ro-

tation matrix Θ(R) (for real-valued states or unitary matrix in the more general case) such that:

He−(R) = ΘT(R)H̃e−(R)Θ(R) (2.7)

The analytic expression of the rotation matrix and of ϑ(R) is given in eqs. 1.24 and 1.25

in chapter 1. The rotation matrix allows us to rotate the electronic basis
( ∣∣∣ψ̃1

〉
,
∣∣∣ψ̃2

〉 )
to

(
|ψ1〉 , |ψ2〉

)
such that:

|ψ1〉 = cos
(
θ(R)

) ∣∣∣ψ̃1

〉
+ sin

(
θ(R)

) ∣∣∣ψ̃2

〉

|ψ2〉 = − sin
(
θ(R)

) ∣∣∣ψ̃1

〉
+ cos

(
θ(R)

) ∣∣∣ψ̃2

〉 (2.8)

As in eq. 2.5 one can write the Hamiltonian matrix of eq. 2.6 as the sum of two matrices:

H̃e−(R) =




Σ̃(R) 0

0 Σ̃(R)


+




−∆̃(R) H̃12(R)

H̃21(R) ∆̃(R)


 (2.9)

where ∆̃ and Σ̃ are:

∆̃(R) =
H̃22(R) − H̃11(R)

2
(2.10)

and

Σ̃(R) =
H̃11(R) + H̃22(R)

2
(2.11)
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Again, the second matrix on the right-hand side is traceless. The trace is conserved for a unitary

transformation, so we have:

H̃22(R) + H̃11(R) = V1(R) + V2(R) (2.12)

which leads to 


Σ(R) 0

0 Σ(R)


 =




Σ̃(R) 0

0 Σ̃(R)


 (2.13)

and 


∆(R) 0

0 ∆(R)


 = ΘT(R)




∆̃(R) H̃12(R)

H̃12(R) ∆̃(R)


Θ(R) (2.14)

Eq. 2.14 leads to the following coupled equations:





∆(R) = ∆̃(R) cos
(
2θ(R)

)
+ H̃12(R) sin

(
2θ(R)

)

0 = −∆̃(R) sin
(
2θ(R)

)
+ H̃12(R) cos

(
2θ(R)

) (2.15)

We can deduce analytic formulae of cos
(
2θ(R)

)
, sin

(
2θ(R)

)
, and tan

(
2θ(R)

)
such that:

• cos
(
2θ(R)

)
=

∆̃(R)

∆(R)

• sin
(
2θ(R)

)
= −H̃12(R)

∆(R)

• tan
(
2θ(R)

)
= −H̃12(R)

∆̃(R)

(2.16)

with signs consistent with assuming ∆(R) ≥ 0.

As the sum of the square of cos and of the square of sin is equal to 1 we have:

∆(R) =
√

∆̃(R)2 + H̃12(R)2 (2.17)

According to the definition of ∆(R) (see eq. 2.3), if two adiabatic electronic states are degener-

ate at R = RCoIn then ∆(RCoIn) = 0. The domain of the square root function is R+. ∆̃(R)
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and H̃12(R) are both real. To fulfill ∆(RCoIn) = 0, the only possibility is to have simultaneously:

H̃11(RCoIn) = H̃22(RCoIn)

H̃12(RCoIn) = 0
(2.18)

To first order, the function ∆(R) behaves as the generic function: f : (x, y) 7→
√

(ax)2 + (by)2,

where a, b, x, y are real numbers. The local derivatives are not continuous at x = 0 and y = 0:

lim
x→0+

f(x, 0) − f(0, 0)

x
= |a| (2.19)

lim
x→0−

f(x, 0) − f(0, 0)

x
= −|a| (2.20)

and

lim
y→0+

f(0, y) − f(0, 0)

y
= |b| (2.21)

lim
y→0−

f(0, y) − f(0, 0)

y
= −|b| (2.22)

Both local derivatives are ill-defined at (0,0), and so are the local derivatives of the function

∆(R) when the conditions in eq. 2.18 are fulfilled. However the functions Σ(R) and Σ̃(R) are

well defined and continuous, their first local derivatives are as well.

Due to the behavior of ∆(R) in the vicinity of RCoIn, the two PES are characterized by a

two-dimensional cusp (the apex of a double cone).

There are then two specific directions that characterize a CoIn: the direction that allows

H̃12(R) to have a non-zero value, the direction that couples the two adiabatic electronic states

and the direction that allows H̃11(R) − H̃22(R) 6= 0. As a PES is an hypersurface of 3Nnu − 6

dimensions, two PES can intersect along 3Nnu − 8 directions. It is call a seam. There are two

directions that lift the degeneracy to first order at R = RCoIn : the derivative coupling (DC)

and the gradient difference (GD).

−−→
GD =

1

2

( 〈
ψ̃2

∣∣∣ ∇̂R=RCoInH̃e−

∣∣∣ψ̃2

〉
− 〈ϕ̃1| ∇̂R=RCoInH̃e− |ϕ̃1〉

)
(2.23)

−−→
DC = 〈ϕ̃1| ∇̂R=RCoInH̃e− |ϕ̃2〉 (2.24)

The two vectors result from the action of the Nabla operator on ∆̃(R) and on H̃12(R) at

R = RCoIn thus the two vectors lift the degeneracy at the first-order only. They span a two-
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dimensional-space which is called the branching space.

The two vectors have been determined for an arbitrary pair of degenerate adiabatic elec-

tronic states
(

|ϕ̃1〉 , |ϕ̃2〉
)
. The two adiabatic states can be mixed together to form another pair

of degenerate adiabatic states
(

|ϕ̃mix,1〉 , |ϕ̃mix,2〉
)

with a mixing angle ϑ̃mix.



ϕ̃mix,1(RCoIn)

ϕ̃mix,2(RCoIn)


 =




cos ϑ̃mix sin ϑ̃mix

− sin ϑ̃mix cos ϑ̃mix






ϕ̃1(RCoIn)

ϕ̃2(RCoIn)


 (2.25)

The vectors of the branching space associated to the new pair of degenerate adiabatic electronic

states are: −−→
DCmix = cos 2ϑ̃mix

−−→
DC + sin 2ϑ̃mix

−−→
GD

−−→
GDmix = − sin 2ϑ̃mix

−−→
DC + cos 2ϑ̃mix

−−→
GD

(2.26)

One notices that the vectors of the branching space rotate twice faster than the electronic states.

If the mixing angle is ϑmix = π
4 [π], the derivative coupling vector

−−→
DCmix =

−−→
GD and the gradient

difference
−−→
GDmix =

−−→
DC.

Choosing the working basis of diabatic states can be tedious because one does not know the

diabatic states everywhere. We only get adiabatic electronic states from quantum calculations at

a conical intersection. Let us consider a pair of adiabatic electronic states
(

|ϕCoIn,1〉 , |ψCoIn,2〉
)

and a working basis of diabatic set
( ∣∣∣ψ̃CoIn,1

〉
,
∣∣∣ψ̃CoIn,2

〉 )
at R = RCoIn such that the condition

in eq. 2.18 are fulfilled then get:

∣∣∣ψ̃CoIn,1
〉

= |ϕCoIn,1〉 (2.27)

and
∣∣∣ψ̃CoIn,2

〉
= |ϕCoIn,2〉 (2.28)

The two diabatic electronic states are then eigenvectors at the apex of the conical intersection but

they are not necessarily eigenvectors for other values of R. But as they are diabatic states, they

vary smoothly around RCoIn. Around the apex at R = RCoIn+δR where δR is an infinitesimal

variation of the nuclear spatial coordinates we assume that the working basis of diabatic states

do not vary, so that:

|ϕ̃CoIn+δR,1〉 = |ϕ̃CoIn,1〉 (2.29)
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and

|ϕ̃CoIn+δR,2〉 = |ϕ̃CoIn,2〉 (2.30)

Such diabatic states are called crude adiabatic states, they are adiabatic states at the apex of

the cone and do not vary at first-order around it.
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Chapter 3

Electron density

The present chapter is based on a selection of seminal references [97, 114–118]. As it has been

explained in chapter 1, for a given geometry the adiabatic electronic wave-function within the

BOA holds information of an adiabatic electronic state. The adiabatic electronic properties can

be described by the use of adiabatic electronic wave-function. However, to have access to the

adiabatic electronic wave-functions is not an easy task. The Hartree Fock (HF) method is the

simplest quantum-chemical methods to find an approximate solution to the electronic problem.

This method is the basis of most of quantum wave-function based methods. In the HF method,

the electronic wave-function (depending on the number of electrons, Ne−) is approximated to an

antisymmetrized product of Ne− single-particle functions (spin-orbitals). Such a wave-function is

a single determinant (called a Slater determinant). The approximate wave-function is the exact

solution of a system composed of Ne− non-interacting particles (or interacting via mean fields).

As the total energy is not exact, the deviation between the exact energy Eexact and the energy

EHF is called the correlation energy Ecorr and is defined such that Ecorr = Eexact − EHF .

In order to calculate an approximate correlation energy, one can build a multi-determinantal

wave-function. Post-Hartree Fock methods are based on the results of the mono-determinantal

wave function from HF calculations and additionnal determinants are added to the initial mono-

determinantal wave-function. One can list configuration interaction methods, perturbative meth-

ods, coupled-cluster methods etc. In any case the electronic wave-function that is computed

depends on Ne− electrons and each electron is associated to three spatial coordinates and one

spin coordinate. [97, 118] The number of basis functions that are necessary to compute a multi-

determinantal wave-function to have good accuracy can become huge for large molecular system.

That is why we have studied our systems with density functional theory (DFT) and its time-

dependent extension (TDDFT) that are based on the one electron density function. It depends
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on only three spatial coordinates. Moreover the electronic wave-function is not an observable

while electron density profiles can be measured. [119–122]

The square modulus of the electronic wave-function is a probability distribution function.

Due to the laws of quantum physics, it is only possible to describe the system probabilistically.

The electron density is defined for Ne− electrons but it is computationally challenging to obtain

it because one does not know the analytical expression of the Ne− particle density and it de-

pends on too many variables. An alternative is too use the one particle reduced density, even if

the analytical formulation is not known, it depends on only two variables, the spatial and spin

coordinates of one electron. It contains enough information to describe the system adequately.

3.1 From the Ne−-particle density operators to the one-particle

density function

The words "density" or "electron density" are commonly used as generic terms for electron dens-

ity matrices, electron density functions, N -body density functions, the one-body reduced density

functions etc. In this subsection, an explanation will be given on the considerations used to

manipulate electron density entities and the link between them.

The system is treated under the same assumptions regarding the Nnu nuclei and Ne−

electrons as in chapter 1. The ket of the nth electronic adiabatic state denoted
∣∣∣ψad,BOA
n

〉
is

now abbreviated |ψn〉 unless otherwise stated. As in chapter 1, the electronic coordinates are

(r,σe−)={ri,σi}J1;N
e−K, where the ith coordinate of the ith electron is denoted qi = (ri,σi),

where ri is the spatial vector of the ith particle and σi its spin coordinate. Within the coordin-

ate representation, we have 〈ri|r′
i〉 = δ(ri − r′

i) where δ(ri − r′
i) is the Dirac distribution and

〈σi|σ′
i〉 = δσiσ′

i
where δσiσ′

i
is the Kronecker symbol.

The Ne−-particle electron density operator of the nth electronic adiabatic state is defined

as:

Γ̂
(N

e− )
n = |ψn〉 〈ψn| (3.1)
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The Ne−-dimensional kernel of the Ne−-particle electronic operator is defined as (in the case of

real values wave-functions):

Γ
(N

e− )
n (q | q′) = 〈r,σe− |ψn〉

〈
ψn
∣∣r′,σ′

e−

〉

= ψ(r,σe−)ψ(r′,σ′
e−)

(3.2)

The expectation value of an Ne−-particles operator Â acting on a Ne−-particle state is defined by :

〈Â〉n = 〈ψn| Â |ψn〉

=
∑

σ1···σN
e−

∫

[
ÂΓn

(N
e− )(r1,σ1 . . . rN

e−
,σN

e−
| r′

1,σ
′
1 . . . r

′
N

e−
,σ′

N
e−

)
]

r=r′,σ
e− =σ

′

e−

dr1−N
e−

(3.3)

Where dr1−N
e−

= dr1 · · · drN
e−

. The issue of computing eq. 3.3 is that the Ne−-particle density

matrix or the kernel of the Ne−-particle density operator is in general impossible to obtain due

to the large amount of variables. But the operators we are dealing with are the five operators

that compose the molecular Hamiltonian: Ĥmol = V̂e−−e− + T̂e− + V̂nu−nu + V̂nu−e− + T̂nu. Among

them, the operators V̂nu−nu and T̂nu do not depend on the electronic coordinates, they are called

zero-electron operators. The action of the operator V̂nu−nu on the electronic wave-function is

reduced to a simple product but it is not the case of the nuclear kinetic energy operator which

deserves a specific treatement within the nonadiabatic context, i.e., when we want to go beyond

the Born-Oppenheimer approximation. The operators T̂e− and V̂nu−e− depend on the coordinate

of one electron, they are called one-electron operators. The last operator is V̂e−−e− which depends

on the distances between any two electrons, is a two-electron operator.

The one-particle reduced density kernel (1-RDK) γn(q1 | q′
1) is defined as:

γn(q1 | q′
1) = Ne−

∑

σ2···σN
e−

∫
ψn(r1,σ1 . . . rN

e−
,σN

e−
)ψn(r′

1,σ
′
1 . . . rNe−

,σN
e−

)dr2−N
e−

(3.4)

where dr2−N
e−

= dr2 · · · drN
e−

The 1-RDK of eq. 3.4 is defined for computing one electron properties/quantities. It has

been arbitrarily chosen that the 1-RDK (and later the one-particle reduced density matrix) have
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been built by fixing the coordinates to the electron labelled "1". One could have defined the

1-RDK such that γn : (ri, σi) → γn(ri, σi | r′
i, σ

′
i) for instance. Electrons are undistinguishable

so the 1-particle reduced density object are well-defined for every electron.

The 1-RDK is defined as the continuous trace over N − 1 particles of the Ne− dimensional

kernel of the Ne−-particle electronic operator.

One can define the one-particle reduced density matrix (1-RDM). Let (|ϕi〉)i∈N be a single-

particle real function basis. It is defined as: ϕi(qj) = χi(rj)ξi(σj) where χi is the ith spatial

orbital, ξi the spin function of the ith orbital such that ξi = α or β and qj refers to the coordinate

of the jth electron. If two spin-orbitals are said to be orthogonal to each other, they have to be

orthogonal according to the orbital and the spin function simultaneously: 〈ϕi|ϕj〉 = δχiχjδξiξj
.

The formula of ijth element of the 1-RDM:

(γn)ij =
∑

σ1

∫

R3

∫

R3

ϕi(r1)γn(r1,σ1 | r′
1,σ

′
1)ϕj(r

′
1)dr1dr′

1 (3.5)

In the previous equation the symbol ∗ is not written on the spin-orbital ϕj because the spin-

orbitals are real here. So the 1-RDK and the 1-RDM are symmetric: γn(q1 | q′
1) = γn(q′

1 | q1)

and (γn)ij = (γn)ji.

The elements of the 1-RDK and the 1-RDM have physical meanings. The diagonal elements

γnii means the probability of finding the particle within the ith spin-orbital when all of the other

particles occupy the remaining spin-orbitals and the product γn(q1 | q1) × dτ1 where dτ1 is an

elementary volume in R3 ×∑e− , where
∑

e− is the electron spin space, means the probability of

finding one electron within the elementary volume dτ in the vicinity of q1.

The spin-orbitals in which the matrix representation of the reduced density operator is

diagonal are called natural spin-orbitals. The density matrix is symmetric, so it is possible to

find an orthonormal single-particle function basis set {µi(q)} and an orthogonal matrix U such

that:

ϕi(q) =
∑

k

Uikµk(q)

µi(q) =
∑

k

Ukiϕk(q)
(3.6)

Let us write the ith eigenvalue of the 1-RDM: λi and Λ = diag(λ1, · · · , λN ). We have:
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UT
γU = Λ (3.7)

The new set of one-particle functions in which the matrix representation of the reduced

density operator is diagonal are then the natural one-particle functions. The eigenvalues

can be viewed as an occupation number and their sum is equal to the total number of electrons

in the system.

∑

σ1

∫

R3

γn(r1,σ1 | r1,σ1)dr1 =
N∑

i=1

γnii = Ne− (3.8)

Then the electron density function is defined such that:

n(r1) =
∑

σ1

γn(r1,σ1 | r1,σ1) (3.9)

3.1.1 The electronic transition density kernel

In the same way, it is possible to define the Ne−-particles transition density operator between

the nth and the mth electronic adiabatic state:

Γ̂
(N

e− )

(n→m) = |Ψm〉 〈Ψn| (3.10)

The 1-particle transition density kernel (1-TDK) reads:

γ(n→m)(q1 | q′
1) = Ne−

∑

σ2···σN
e−

∫
ψn(r1,σ1 . . . rN

e−
,σN

e−
)ψm(r′

1,σ
′
1 . . . rNe−

,σN
e−

)dr2−N
e−

(3.11)

The spin-orbitals in which the matrix representation of the reduced transition density op-

erator is diagonal are called the natural transition spin-orbitals.

3.1.2 Useful and direct applications of the reduced density kernel

In subsection 1.3.2, details are given on the transition dipole moment which depends in our case

on the electronic transition dipole moment µ
e−

(n) (see eq. 1.47). The electronic dipole moment
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operator is a local operator (see eq. 1.42 ). The permanent dipole moment can be expressed by

the use of the electron density function:

〈µ̂e−

(n)〉 = 〈ψn| µ̂e−

(n) |ψn〉

= 〈ψn| − e

N
e−∑

i=1

ri |ψn〉

= −e

∫

R3

r1n(r1)dr1

(3.12)

In the same way, it is possible to determine the formula of the transition dipole moment

between the nth and the mth electronic state:

〈µ̂e−〉(n→m) = 〈ψn| ˆµe− |ψm〉

= −e
∑

σ1

∫

R3

r1γn→m(r1,σ1 | r1,σ1)dr1

(3.13)

The expectation values of the contribution to the electronic Hamiltonian (see eq. 1.13) read:

〈V̂e−−nu〉 =

∫

R3

V̂e−−nun(r1)dr1 (3.14)

〈T̂e−〉 =
∑

σ1

∫

R3

[
T̂e−γ(r1,σ1 | r′

1,σ
′
1)
]

r1=r′

1
,σ1=σ

′

1

dr1 (3.15)

〈V̂e−e−〉 =
∑

σ1,σ2

∫

R3

V̂e−e−Γ(2)(r1,σ1, r2,σ2 | r1,σ1, r2,σ2)dr1dr2 (3.16)

3.2 Practical determination of adiabatic electronic energies

This section handles the theory that is used to solve the eigenvalue problem of the electronic

Hamiltonian within the Born-Oppenheimer approximation (BOA) by the use of electron density

functions. We are going to discuss how the ground state and excited states can be calculated.

Unfortunately excited states cannot be computed in the exact same way as the ground state has

been obtained. In this thesis, the determination of excited states depends on the accuracy of the
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determination of the ground state. The ground state is determined by DFT and excited states

by the TDDFT. In the two following subsections, these two methods are briefly described. The

reader is kindly referred to refs. [97,116,118] (DFT) and to refs. [123,124] (TDDFT) for further

details.

3.2.1 Density functional theory

The DFT principles are based on two theorems that have been proved by Hohenberg and

Kohn. [125]

The first theorem stipulates that the interacting many-particle density of the non-degenerate

ground state is determined by a unique external potential v induced by the nuclei. The ground

state density is a functional of v and v is a unique functional of the ground state density.

The second theorem stipulates that the exact energy of the non-degenerate ground state is

a unique functional E[n0] of the exact ground state density n0. Such an electron density is the

one that minimizes the energy functional E[n]. We have:

E[n0] = min
n
E[n] (3.17)

The energy of the non-degenerate ground state reads:

E[n0] = 〈ψ0| T̂e− + V̂nu−e− + V̂e−−e− |ψ0〉 (3.18)

T̂e− and V̂e−−e− are said "universal", they depend only on the electron coordinates. But V̂nu−e−

depends on the nuclear and on the electron coordinates, since it is a multiplicative and a local

operator, we have:

〈Vnu−e−〉[n0] =

∫

R3

v(r1)n(r1)dr1 (3.19)

where v̂ = V̂nu−e− The electronic energy reads:

E[n0] = F [n0] +

∫

R3

v(r1)n(r1)dr1 (3.20)
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where F [n0] is the universal functional such that F [n0] = 〈ψ0| T̂e− + V̂e−−e− |ψ0〉.
However, the problem is that the universal functional F [n0] is not know and so the difficulty

to find the electron density functions is such that of the electronic ground state is due to the

determination of F [n0].

3.2.2 The Kohn-Sham approach

To simplify the problem, Kohn and Sham proposed that instead of studying a system of Ne−

interacting electrons, one can study an auxiliary system of Ne− non-interacting electrons by

assuming the following hypothesis to be true: there exists an external potential v for an Ne−

non-interacting electron system such that the electron density function gives the same exact

energy as the one of a system of Ne− interacting electrons. The spin-orbitals, here, are called the

Kohn-Sham orbitals (KS spin-orbitals). The electronic wave-function is a Slater determinant of

KS spin-orbitals:
∣∣∣ΨKS

0

〉
=

1√
Ne− !

det
(
ϕKSi (rj ,σj)

)
(i,j)∈J1,N

e−K2
(3.21)

The electron density function then reads:

n(r1) = 2

N−

e
2∑

i=1

| χKSi (r1) |2 (3.22)

We have to keep in mind that the electronic kinetic energy TKSe− [n] is exact for a system of

Ne− non-interacting electrons and is not equal to the electronic kinetic energy Te− [n] which is

unkown.

The electronic repulsion potential energy Ve−−e− reads in the KS hypothesis:

V KS
e−−e− [n] =

∫
V̂e−−e−n(r1)

(
n(r2) + γxc(r1 | r2)

)
dr1dr2 (3.23)

where γxc(r1 | r2) is the exchange density function between two electrons. The electronic re-

pulsion potential energy can be written as the sum of a Coulomb and a exchange-correlation

functional, J [n] and K[n], such that:

J [n] =

∫
V̂e−−e−n(r1)n(r2)dr1dr2 (3.24)
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and

K[n] =

∫
V̂e−−e−n(r1)γxc(r1 | r2)dr1dr2 (3.25)

The total energy of a Kohn-Sham approximation remains a density functional:

EKS [n] =

∫
vKS(r1)n(r1)dr1 + TKSe− [n] + J [n] + Exc(n) (3.26)

where Exc[n] = Te− [n]−TKSe− [n]+K[n] is the exchange-correlation functional. This term embraces

the remaining kinetic term that is not obtained within TKSe− [n] and the exchange-correlation

term. EKS [n] is unfortunately not know and is approximated in DFT calculations. Minimizing

the exchange-correlation functional allows to get an electron density function close to the exact

density of a system of Ne− interacting particles.

As the electronic wave-function is written as a Slater determinant of KS spin-orbitals, one

can write a one-electron Hamiltonian ĥKS (the Kohn-Sham operator):

ĥKS = T̂e− + v̂KS (3.27)

with

v̂KS = v̂ + v̂H + v̂xc (3.28)

where v is the external potential, vH =

∫
e2n(r1)

4πǫ0|r1−r2|dr1 is the Hartree potential and vxc = δExc(n)
δn(r1)

is the exchange-correlation potential. One can solve the Kohn-Sham equation with a self-

consistent method to determine optimal KS spin-orbitals.

To approximate the exchange-correlation potential, various functionals have been developed. We

differenciate three type of functionals:

• The functionals obtain from the local density approximation (LDA) for which the electron

density is assumed to be uniform and is computed locally.

• The functionals obtain from the generalized gradient approximations (GGA). The electron

density is considered non-uniform. The functionals that are built over this approximation are

called exchange functionals.

• The last type of functionals are the hybrid exchange-correlation functionals. They are built
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such that there is an exchange-correlation part which result from GGA and there is an exchange

part which results from the Hartree-Fock method.

3.3 TDDFT

As explained before, the Hohenberg and Kohn theorems are valid only for the non-degenerate

ground state. The DFT method does not allow to compute excited state energies in its standard

form. This thesis is focused on the understanding of the photoexcitation in molecular systems.

Therefore, one needs to compute excited state energies and properties of molecular systems.

To compute excited state with a density-based method, the global idea is to understand how

the ground state density reacts when the system is perturbed (i.e. when the system is excited).

The response of the ground state to the perturbation has been studied in many ways. In our

case, we are focused on the linear response of the ground state to a time dependent perturbation.

The linear-response of the DFT is based on two theorems proved by Runge and Gross [126] and

by van Leeuwen [127].

Runge and Gross proved that if two external potentials differ only from a time dependent

constant there is a correspondence between these potentials and the electron density.

Van Leeuwen proved that if an external potential is applied to a system that is described

by a wave-function, there is another external potential applied to another system and that is

described by another wave-function such that these two systems have the same electron density.

Let us consider a system of Ne− electrons in its ground state from t = 0 to t = t0 described

by an electron density function n0(r1) and by an external potential v0(r1). At t = t0, an external

interaction is applied such that it leads to an electronic transition. The response of the external

potential and the electron density is studied at the first-order, hence, linear-response. We have:

v(r1, t) = v0(r1) + δv(r1, t) (3.29)

and

n(r1, t) = n0(r1) + δn(r1, t) (3.30)

where δv(r1, t) and δn(r1, t) are defined such that:

δv(r1, t) =

∫ ∫
δv(r1, t)

δn(r′
1, t

′)

∣∣∣∣∣
v=v0

δn(r′
1, t

′)dr′
1dt′ (3.31)
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and

δn(r1, t) =

∫ ∫
δn(r1, t)

δv(r′
1, t

′)

∣∣∣∣∣
n=n0

δv(r′
1, t

′)dr′
1dt′ (3.32)

The first-order response of the external potential within the Kohn-Sham approximation reads:

vKS(r1, t) = vKS0 (r1) + δvKS(r1, t) (3.33)

where vKS0 (r1) is expressed in eq. 3.28:

vKS0 (r1) = v0(r1) +

∫
e2n0(r′

1)

4πǫ0 | r1 − r′
1 |dr′

1 +
δExc[n0]

δn0(r1)
(3.34)

The first-order term in eq. 3.33 reads:

δvKS(r1, t) = δv(r1, t) + δvH(r1, t) + δvxc(r1, t) (3.35)

where δv(r1, t) is given in eq. 3.31,

δvH(r1, t) =

∫
e2δn(r1, t)

4πǫ0 | r1 − r′
1 |dr′

1 (3.36)

and

δvxc(r1, t) =

∫ ∫
e2

4πǫ0
fxc(r, r

′, t, t′)δn(r′, t′)dr′dt′ (3.37)

fxc(r, r
′, t, t′) is the exchange-correlation kernel and reads:

fxc(r, r
′, t, t′) =

δ2Exc[n]

δn(r, t)δn(r′, t′)

∣∣∣∣∣
n(r1,t)=n0(r1)

(3.38)

The Fourier transform of fxc(r, r′, t, t′) gives:

fxc(r, r
′, ω) =

δvKS(r1, ω)

δnKS(r1, ω)

∣∣∣∣∣
vKS(r1,ω)=vKS

0
(r1)

− δv(r1, ω)

δn(r1, ω)

∣∣∣∣∣
v(r1,ω)=v0(r1)

− 1

| r − r′ | (3.39)
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where ω is the angular frequency of the Fourier transform. The linear-response theory leads to

the following coupled equations that are known in the literature as Casida’s equations [124]:







A B

B∗ A∗


 −ω




1 0

0 −1










X

Y


 = 0 (3.40)

where

• The ijth element of the matrix A:

Aij = δij
εi − εj

~
+Ne−f ijxc (3.41)

with δij the Kronecker symbol, εi the eigenvalue associated to the ith KS spin-orbital and f ijxc =
∫
φ∗
i (r)φ∗

j (r
′)fxc(r, r′)φ∗

1(r)φ∗
1(r′)drdr′.

• The ijth element of the matrix B:

Bij = Ne−f ijxc (3.42)

• The ith element of the column matrix X:

Xi = − 〈φi| V̂ext |φ1〉
2(εi − ε0) − 2~ω

(3.43)

• The ith element of the column matrix Y:

Yi = − 〈φ1| V̂ext |φi〉
2(εi − ε0) + 2~ω

(3.44)

TDDFT calculations are then based on the resolution of Casida’s equations and the evalu-

ation of the elements of the matrices X and Y.The ijth element Xij corresponds to the coefficient

associated to the single excitation from the spin-orbital φi toward the spin-orbital φj and the

ijth element Yij correspond to the coefficient associated to the single deexcitation from the spin-

orbital φi to the spin-orbital φj .

3.4 Characterization of electronic adiabatic states

As it has been explained in the previous sections an electronic state can be characterized by

two kinds of representations. The adiabatic representation is based on electronic states that are
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eigensolutions of the electronic Schrödinger equation and the diabatic representation for which

electronic states are labelled according to their chemical "nature". If the electronic states are

energetically far from each other we might suppose that the adiabatic states match with the

diabatic ones. Finding diabatic states can then help to get a better description of the system.

The usual representation is the adiabatic one. It is labelled according to an energy classi-

fication. The adiabatic states are what one gets from quantum chemistry calculations. It is less

direct to get a diabatic picture of the system because it can be difficult to find an appropriate

electronic nature classification. One can use the symmetry, the oscillator strength, molecular

orbitals, natural transition orbitals etc. to sort diabatic states. However these characteristics

are not universal; the electronic states might have the same symmetry, they might have a null

oscillator strength, they might result from a strong mixing between molecular orbitals, they

might be coupled to each other and the natural transition orbitals can then differ. A diabatic

wave-function is almost constant with respect to variations of the geometry (nuclear coordinates)

and so is the electron density. Here, a method based on electron density based descriptors to

characterize electronic adiabatic states is explained.

3.4.1 Attachment and Detachment density matrices

Let {ϕi}i∈J1;NtK be a complete basis set of spin-orbitals. In the case of a single determinant, the

complete spin-orbital basis set can be decomposed into two subsets of spin-orbitals: one called

occupied and the other virtual. {ϕi}i∈J1;NoK being the occupied subset and {ϕl}l∈JNo+1;NtK being

the virtual subset.

As said in the previous subsection, the 1-RDM of the nth electronic adiabatic state is defined

as follows:

γnij =
∑
σ1

∫

R3

∫

R3

ϕi(r1,σ1)γn(r1,σ1 | r′
1,σ

′
1)ϕj(r

′
1,σ

′
1)dr1dr′

1 (3.45)

The one-particle reduced difference density matrix 1-RDDM is defined as being the difference of

the 1-RDM of the nth state and the 1-RDM of the ground state:

γ
∆ = γ

n − γ
0 (3.46)

The 1-RDDM is a symmetric matrix due to the fact that γ
n and γ

0 are symmetric. It is always

possible to find a orthogonal matrix U which diagonalizes the 1-RDDM. The basis set which
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diagonalizes γ
∆ is then made of natural difference orbitals. We have:

UT
γ

∆U = Λ (3.47)

where Λ=diag(λ1, · · · , λNt). We now define Λ− and Λ+:

Λ− = 1
2

(√
Λ2 − Λ

)

Λ+ = 1
2

(√
Λ2 + Λ

)
(3.48)

The two matrices Λ− and Λ+ are positive semi-definite and are associated to the negative

and the positive eigenvalues of the 1-RDDM, respectively.

These two diagonal matrices are backtransformed in the basis set of spin-orbitals in which

γ
∆ has been written, leading to two square matrices which are called attachment and detachment

matrices:
γ
d = UΛ−UT

γ
a = UΛ+UT

(3.49)

The previous equations can be expressed in terms of electron density functions,

n∆(r) =
∑

i

∑

j

(
γ

∆
)
ij
ϕi(r)ϕj(r)

=
∑

i

∑

j

(
γ
n − γ

0
)
ij
ϕi(r)ϕj(r)

= nn(r) − n0(r)

= na(r) − nd(r)

(3.50)

with

na(r) =
Nt∑

i

Nt∑

j

(
γ
a)
ij
ϕi(r)ϕj(r) (3.51)

nd(r) =
Nt∑

i

Nt∑

j

(
γ
d)
ij
ϕi(r)ϕj(r) (3.52)
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n∆(r) corresponds to the net change of density due to the photoexcitation between the density

of the excited state from the density of the ground state.

3.5 Density based descriptors

The attachment detachment picture can be viewed as the rearangment of electron density that

occurs dues to the photoexcitation. The attachment (resp. detachment) space is defined as being

the space built on the subset of spin-orbitals in which the Λ+ (resp. Λ−) matrix has non-zero

value. As there is conservation of the charge during the photoexcitation, one can thus write the

following equality:

ϑ =

∫

R3
na(r)dr =

∫

R3
nd(r)dr (3.53)

Two density-based numbers can then be defined to get information on the charge displace-

ment during the photoexcitation. The first one is labelled φS. It is the overlap between the

attachment and the detachment densities. The second one is labelled χ and characterizes the

amplitude of the charge transferred within the detachment-attachment space:

φS = ϑ−1
∫

R3

√
na(r)nd(r)dr (3.54)

χ =
1

2

∫

R3
| n∆(r) | dr (3.55)

The two descriptors are dimensionless and their values lie between zero and one. If φS is

close to one that means the detachment and the attachment densities are similar and so the

electronic excited adiabatic state is considered to be locally excited while a φS value close to zero

means the two densities do not overlap and so the electronic excited adiabatic state is considered

to be a charge transfer state. In the same way, if χ is close to one it means that a net charge is

moved in space during the photoexcitation.

3.5.1 Evaluation of the attachment and detachment density matrices in TD-

DFT calculations

In the case of TD-DFT calculations (as in this work), it is actually not necessary to diagonalize

the entire 1-DDM to obtain the attachment and the detachment density matrices. It is possible

to obtain the latter two density matrices by the use of elements of the transition density matrix.
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The TD-DFT method is a single reference method and thanks to Casida’s equations, one can

write the 1-TDM between the ground state and the nth electronic adiabatic excited state as:

γ0→n =




0o Y

XT 0v


 (3.56)

Grossly speaking, he X can be viewed as the coefficient matrix of single excitations where its

ilth element is seen as the single excitation from the ith spin-orbital toward the lth spin-orbital,

while the Y is the coefficient matrix of single deexcitations and so its ilth elements is the single

deexcitation from the lth spin-orbital toward the ith spin-orbital. Moreover X is a rectangular

matrix of size No × (Nt − No) and Y is a rectangular matrix of size (Nt − No) × No. γ0→n is

composed of two other blocks filled with zeros of size No×No (0o matrix) and (Nt−No)×(Nt−No)

(0v matrix). Reference [128] demonstrates how to link the difference density matrix to the two

rectangular matrices X and Y by the use of Wick’s theorem. Only the main result is written

here:

γ
∆ =




−
(
XXT + YYT

)
0ot

0to
(
XTX + YTY

)


 (3.57)

We know from before that:

γ
∆ = UΛUT = UΛ+UT − UΛ−UT = γ

a − γ
d (3.58)

The Λ+ matrix is built such as its diagonal elements are greater or equal to zero and the Λ−

matrix is built such as its diagonal elements are greater or equal to zero. Moreover, it is possible

to organize the eigenvectors such as the diagonal of Λ+ is at first filled with zeros and then

non-zero elements. If so, the diagonal of Λ− is at first filled with non-zero elements and then

zeros. The two matrices read:

Λ+ =
1

2

(√
Λ2 + Λ

)
(3.59)

and

Λ− =
1

2

(√
Λ2 − Λ

)
(3.60)
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The attachment and detachment density matrices have then the following shape:

γ
a =




0o 0ot

0to A


 γ

d =




D 0ot

0to 0t


 (3.61)

As γ
∆ = γ

a − γ
d we must have that:

γ
a =




0o 0ot

0to
(
XTX + YTY

)


 γ

d =



(
XXT + YYT

)
0ot

0to 0t


 (3.62)

Only the matrix elements of X and Y have to be calculated to obtain the attachment and

the detachment matrices.
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Chapter 4

Computational details

In this thesis, electronic structure calculation were performed with the functional CAM-B3LYP

which is a hybrid exchange-correlation functional [129]. Such a functionnal has been considered

because it takes into account the qualities of the functionnal B3LYP and long-range corrections

that allow to compute accurately Rydberg states and charge transfer excitations. The 6-31+G∗
basis was used. The choice of such a level of theory is based on previous articles [61,130] in which

vibrationnaly resolved absorption spectra of oligophenylene ethynylene have been computed and

compared to experimental absorption spectra. Theoretical absorption spectra are in good agree-

ment with the experimental ones and so one can assume that DFT and TDDFT calculation

with CAM-B3LYP/6-31+G∗ reproduce efficiently the experimental data. Electronic structure

calculations were performed with the Gaussian16 (revision A.03) package [131].

The vibrational normal modes have been determined in this thesis by the use of the software

Gaussian16 within the harmonic approximation at the equilibrium geometry of the ground state

and at all stationary points previously optimised.

Another aspect that deserves specific attention regarding computational settings is the cal-

culation of descriptors (see their definitions in chapter 3). Attachment and detachment densities

were computed with a numerical integration. That is to say, the space is discretised and the elec-

tron density are computed on a grid. The numerical integration was performed on a Cartesian

grid by the Cubegen utility from the Gaussian16 package. The thickness of the Cartesian grid

has been evaluated since the efficiency of the spatial discretisation depends of the latter thick-

ness. Then, the Cartesian grid was chosen built such that 6 points/bohr are considered.

The density-based descriptors were computed with the Mesra software that has been de-

veloped by T. Etienne [132].

In figure 4.1 is represented a flowchart of the hierarchy of the various calculations that were
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Chapter 5

Development of numerical tools

5.1 Evaluation of two computational methods for describing the

densities of electronic excited states

The analytic formulae of the two electron density-based descriptors that we have been focused

on (χ(R) and φS(R)) are given in eqs. 3.54 and 3.55. The nuclear spatial dependence is

explicitely written as we study in this section the variation of the two descriptors along R. Both

descriptors involve the integration of electron spatial coordinates over the Euclidean space. The

attachment and detachment matrix elements are known but we do not know the primitives of

the electron attachment and detachment functions nor the primitives of the electron density

functions. Unfortunately, the two descriptors are based on these functions. Two computational

approaches are compared in this section to calculate the two descriptors at any geometry: the

numerical integration (NI) and the population analysis (PA) methods.

The NI method, that is based on the projection of the 1-RDM in the Euclidean space by

using a Cartesian grid, is supposed to be exact in the condition that the grid is fine enough

in infinite dimensions. The issue of this method is that it is computationally expensive. An

alternative is then to use another method, the PA method. We want to know if this method, which

is less computationally expensive, is a good approximation and if the results are in adequation

with the chemical and physical properties of various molecular systems.

An extended set of various molecules is used (see fig. 5.1). The set of molecules have

not been chosen arbitrarily: We want to evaluate the influence of the size of the system (S1,

S2, S3, S10, S11), the nature of the excited state: long-range charge transfer or locally excited

(S1, S2, S9), the basis set (S1, S2, S3) and the functional (S3, S4, S5, S6, S7, S8, S9, S10)

on the descriptor values. In reference [134], the set of molecules S1 have already been used to

Gabriel Breuil (ICGM-CPTM) 73



Breuil - Time-dependent topology of the molecular electron density

characterize the efficiency of the computational methods used to calculate χ(R) and φS(R). The

set of molecules S2 to S10 have already been used in ref. [135] to calculate the overlap between the

modulus of occupied and the virtual orbitals and to evaluate the locality of the electronic photo-

excitation according to the choice of the basis set and the exchange-correlation functional. For

this wide set of molecules, the computational validity of the descriptors has been tested as well

on the oligo-phenylethynylene (oPE) studied in this thesis (set S11). In the first research paper
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S2: oligo-acetylene

S3: acenes

S5: �-dipeptide

S6: Tripeptide

S7: DMABN

S9: Pyridinium phenolate 

S8: N-phenylpyrrole
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m

S11: oligo-phenylethynylene
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R1 - R2 = NO2 - NO2, NMe2 - NMe2, NO2 - NMe2, H - H

Figure 5.1: Set of molecules used to validate the computational method of the electron density-
based descriptors in reference [1], the set written in red is studied in this section.

published in the context of this PhD [1], a precise evaluation of the descriptors according to the

previous criteria is explained. The PA method is efficient for medium and large sized molecules.

Usually, the values of φS are trustful if they range between 0.50 and 0.90. If they range under

the lower limit or above the higher limit, one needs to compute the descriptors by the use of

the NI method. Ref. [1] showed that the size of the basis set does not have an influence on the

efficiency on the PA method. The reasoning of this research paper is not developed in the present

manuscript and so the reader is kindly referred to this reference for a more exhaustive analysis on

the validity of the descriptors. The aim of this thesis holds on the understanding of the potential

energy surfaces and the excitation energy transfer within a phenylethynylene dendrimer. Many
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oligophenylene-ethynylenes of various size are studied in chapter 6 and their adiabatic electronic

excited states are characterized by the use of the density-based descriptors and the attachement

the detachment density matrices. Since the size of an oligophenylene-ethynylene can vary from

24 atoms (DPA) to 60 (bDPA-BPEB) the validity of the PA method according to the size of the

systems will be evaluated here.

5.1.1 The numerical integration

Numerical integration is the reference computational method for the set of molecules in fig. 5.1.

It is used to generate density cubes of the attachment and the detachment electron densities

na and nd. What is called a density cube is the space discretisation of the electron density on

a grid. A discrete sum is then performed to calculate the electron density-based descriptors as

approximate integrals.

5.1.2 The population analysis

Population analysis (PA) is based on the decomposition of the electronic density into atomic

contributions related to a set of atomic orbitals.

According to the notations in chapter 3, the electron density function for a single Slater determ-

inant reads over occupied spatial orbitals:

n(r1) = 2

N
e−/2∑

i

| χi(r1) |2 (5.1)

where χi(r1) is the ith spatial part of the jth canonical occupied spin-orbital. In the basis of

atomic orbitals such that φα(r) is the αth atomic orbital, we have:

n(r1) =

N
e−/2∑

i

[∑

α

(C)αiφα(r1)
]2

(5.2)

where (C)αi is the linear coefficient of the atomic orbital contribution. By integrating over the

space, we have: ∫

R3

n(r1)dr1 = tr(PS) (5.3)
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where

(P)αβ = 2

N
e−/2∑

i

(C)αi(C)βi (5.4)

and

(S)αβ = 〈φα|φβ〉 (5.5)

(P)αβ is 1-RDM element and (S)αβ is an overlap matrix element between the αth and the βth

atomic orbitals. The αth gross orbital population is defined such that

mα = (S1−xPSx)αα (5.6)

where x ∈ [0, 1]. In the case of x = 0 and x = 1 the PA is called the Mulliken PA and in the case

of x = 1
2 the PA is called the Löwdin PA and the αth Löwdin gross orbital population is defined

such that:

lα = (S1/2PS1/2)αα (5.7)

It has been demontrated in Appendix C of [1] that the Löwdin PA does not give unphysical

values of orbital populations. Other than 0.5 values of x, the gross orbital population can have

negative values. Only with Löwdin PA, we have lα ∈ [0, 2].

The Löwdin PA applied to the detachment (nd(r)) and the attachment (na(r)) electron

density functions expressed in eqs. 3.54 and 3.55 gives the following alternative expression to

the electron density-based descriptors:

φPAS = ϑ−1
∑

α

√(
S1/2γaS1/2

)
αα

(
S1/2γdS1/2

)
αα

(5.8)

and

χPA =
1

2

∑

α

|
(
S1/2γaS1/2)

αα
−
(
S1/2γdS1/2)

αα
| (5.9)

In practice, ϑ is always strictly greater than zero, γa and γd are positive definite. The contribution

of the attachment and detachment densities are decomposed on the atomic orbitals. The two

formulae look like the expression of the two descriptors in eqs. 3.54 and 3.55 which are suitable

for the NI method but here the contributions are taken into account differently.
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5.1.3 Results

The descriptor values are presented in tables 5.1, 5.2, 5.3, 5.4 where they are rounded to two

decimal places. The values of the two descriptors obtained with the PA method are shown (φPAS

and χPA) and the deviation of the two descriptors to the one obtained by the NI method are

labelled ∆φS and ∆χ. In the manner of ref. [134] the deviation of the two methods is tolerated

if it is lower than 0.05.

The influence of the size of the systems on the deviation between the NI and PA methods

is heterogeneous.

n E-S φPAS ∆φS φPAS ∆φS φPAS ∆φS φPAS ∆φS φPAS ∆φS

phenyl pyrrole furane thiophene selenophene

1
1 0.55 0.05 0.69 0.02 0.68 0.03 0.70 0.03 0.72 0.04
2 0.09 0.40 0.48 0.36 0.48 0.36 0.48 0.39 0.48 0.38
3 0.82 0.02 0.34 0.14 0.52 0.40 0.51 0.41 0.54 0.03

2
1 0.41 0.04 0.57 0.01 0.60 0.03 0.58 0.02 0.68 0.02
2 0.47 0.03 0.49 0.42 0.48 0.35 0.76 0.25 0.52 0.25
3 0.74 0.01 0.40 0.03 0.71 0.04 0.72 0.00 0.60 0.12

3
1 0.31 0.02 0.48 0.01 0.53 0.02 0.51 0.02 0.62 0.02
2 0.54 0.01 0.73 -0.01 0.78 -0.02 0.75 -0.01 0.79 -0.01
3 0.72 -0.02 0.63 0.01 0.69 0.00 0.70 -0.01 0.74 -0.01

4
1 0.31 0.02 0.39 0.00 0.47 0.02 0.52 0.01 0.57 0.01
2 0.54 0.01 0.60 0.00 0.77 -0.02 0.75 -0.02 0.78 -0.01
3 0.72 -0.02 0.71 -0.03 0.66 0.00 0.70 -0.01 0.74 -0.01

5
1 0.23 0.00 0.34 0.01 0.42 0.01 0.47 0.00 0.53 0.00
2 0.66 -0.03 0.52 0.00 0.75 -0.02 0.73 -0.02 0.76 -0.02
3 0.68 -0.03 0.71 -0.04 0.65 -0.01 0.68 -0.02 0.72 -0.02

Table 5.1: φPAS values from PA calculations and their deviations from NI calculations: ∆φS =
φNIS − φPAS , obtained for the first three electronic excited adiabatic states of the oligo-push-pull
series S1 with the level of theory PBE0/6-311++G(2d,p).

The first set of molecules is S1, the oligo-push-pull (oPP) molecules. The oPP systems have

a nitro-group and a dimethyl-amine group on each side, they are electron acceptor and donor

goups, respectively. Such functional groups have been chosen to ensure that a charge transfer
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n E-S φPAS ∆φS φPAS ∆φS φPAS ∆φS φPAS ∆φS

NO2-NO2 NMe2-NMe2 NO2-NMe2 H-H

1
1 0.04 0.37 0.29 0.06 0.14 0.34 0.01 0.31
2 0.04 0.48 0.31 0.01 0.60 0.05 0.16 0.18
3 0.05 0.49 0.33 -0.03 0.17 0.37 0.92 -0.11

2
1 0.08 0.41 0.28 0.09 0.60 0.07 0.94 -0.09
2 0.08 0.41 0.21 0.08 0.09 0.40 0.01 0.31
3 0.09 0.47 0.15 0.13 0.09 0.42 0.04 0.24

3
1 0.08 0.40 0.18 0.12 0.62 0.05 0.97 -0.10
2 0.08 0.39 0.53 0.02 0.13 0.33 0.01 0.31
3 0.84 -0.06 0.29 0.05 0.13 0.38 0.02 0.24

4
1 0.86 -0.06 0.84 -0.06 0.63 0.05 0.98 -0.11
2 0.07 0.39 0.20 0.10 0.06 0.39 0.98 -0.05
3 0.07 0.39 0.48 0.01 0.63 0.05 0.02 0.24

5
1 0.88 -0.08 0.91 -0.08 0.64 0.04 0.98 -0.12
2 0.07 0.38 0.27 0.07 0.12 0.33 0.98 -0.05
3 0.07 0.38 0.29 0.07 0.87 -0.01 0.02 0.24

Table 5.2: φPAS values from PA calculations and their deviations from NI calculations: ∆φS =
φNIS − φPAS , obtained for the first three electronic excited adiabatic states of the oligo-acetylene
series S2 with the level of theory PBE0/6-311++G(2d,p).

state is involved in the first three electronic excited states. The repetitive units on set S1 can

be a phenyl, a pyrrole, a furane, a thiophene and a selenophene group. We see on table 5.1

that for a same amount of repetitive unit the deviation is similar for each system. In the case

of n = 1 and n = 2 we note that the density-based descriptors are very sensitive to the compu-

tational method. The deviation is not acceptable if φS has value under 0.52. Considering the

selenophene (third electronic excited state) and thiophene (second electronic excited state) with

two repetitive units, we see that φPAS is equal to 0.60 and 0.76, respectively, and the deviation

is not acceptable. But for larger systems (n = 3 to n = 5) all of the deviations are acceptable.

The second set of molecules is S2, the oligo-acetylene (oA) molecules. The size of oA varies and

the two functional groups on each side of the oA thus it influences the locality of the excited

states (NO2 and NO2, NO2 and NMe2, NMe2 and NMe2, H and H). The results on this set

differ in some aspects to the results of set S1. The results are gathered in table 5.2. We see
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n E-S φPAS ∆φS χPA ∆χ

1
1 0.92 -0.06 0.13 0.14
2 0.98 0.00 0.15 0.00
3 0.88 -0.07 0.21 0.11

2
1 0.90 0.08 0.12 0.18
2 0.98 -0.01 0.13 0.02
3 0.91 -0.06 0.18 0.09

3
1 0.90 -0.09 0.10 0.18
2 0.97 -0.01 0.12 0.03
3 0.90 -0.06 0.24 0.07

4
1 0.90 0.10 0.09 0.19
2 0.89 -0.05 0.25 0.05
3 0.97 -0.01 0.12 0.03

5
1 0.90 -0.09 0.09 0.18
2 0.90 -0.06 0.27 0.06
3 0.89 -0.05 0.27 0.09

Table 5.3: Descriptor values from PA calculations and their deviations from NI calculations:
∆φS = φNIS −φPAS and ∆χ = χNI −χPA, obtained for the first three electronic excited adiabatic
states of the oligo-acenes series S3 with the level of theory B3LYP/cc-pVTZ.

that the deviation is acceptable for every system if the descriptor does not have extreme values:

close to one or close to zero. If the φPAS values lie between 0.3 and 0.8 the PA method is in

good agreement with the NI method. But in the case of a pure charge transfer state where an

effective charge is displaced from one site to another of the molecule, for example, considering

two repetitive units (n = 2) and for the second excited state (ES= 2) for NO2 and NMe2 as

functional groups, φPAS = 0.09 and the deviation is equal to 0.40. In the same way, in the case

of a pure locally excited state where the attachement and detachment densities are localised in

the exact same area, the deviation is not acceptable. Indeed in the case of n = 3, ES= 1 with

H and H as functional group we get φPAS = 0.97 and the deviation is −0.10. The third set of

molecules S3 is a series of oligo-acenes. Due to the high conjugation of the π-system, the excited

states are delocalized over the whole system. The results of the set S3 are gathered in table 5.3.

No trend is observed within the results of this set. The extreme values of the descriptors (close

to 0 or 1) lead to both acceptable and non-acceptable deviations. For example in the case of

n=4, φPAS = 0.90 and ∆φS = 0.10 for the first electronic excited state while φPAS = 0.97 and
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n E-S φPAS ∆φS χPA ∆χ

1 S1 0.98 -0.12 0.14 0.22
2 S1 0.99 -0.13 0.12 0.26
3 S1 0.99 -0.14 0.11 0.28

m-BPEB S1 0.98 -0.12 0.14 0.22

m-DPABPEB S1 0.99 -0.25 0.12 0.26
m-DPABPEB S2 0.98 -0.12 0.14 0.22

bm-DPABPEB S1 0.99 -0.13 0.12 0.26
bm-DPABPEB S2 0.98 -0.11 0.16 0.20

Table 5.4: Descriptor values from PA calculations and their deviations from NI calculations:
∆φS = φNIS −φPAS and ∆χ = χNI −χPA, obtained for the first electronic excited adiabatic states
of the oPE series S11 with the level of theory CAM-B3LYP/6-31+G(d).

∆φS = −0.01 for the third one. Here, the highest value of φPAS leads to the acceptable deviation

which is totally different than the study of the S2 set.

In addition to that, the PA method is characterized by similar efficiency on the χPA val-

ues and its deviation. If the deviation is acceptable (or not) for one of the two descriptors, it

is for the second. The last set of molecules is the set labelled S11. It is composed of oligo-

phenylene-ethynylenes (oPE) that have been studied in this thesis. The results are gathered in

table 5.4. The trend is obvious here: φPAS is overestimated and χPA is underestimated for to the

descriptors calculated by the NI method. The deviation for every system is non-acceptable as it is

higher than 0.05 and is around −0.12 for the φS descriptor and is around 0.22 for the χ descriptor.

The population analysis calculation method does not give enough similar qualitative and

quantitative results to the one of the numerical integration calculation method. Even though

the population analysis method gives acceptable results for the sets S1, S2, S3 if φPAS takes

values between 0.50 and 0.80, the population analysis method is not acceptable for the set of

oligo-phenylene-ethynylene S11. φS is over-estimated and χ is under-estimated. From now on,

the calculations of the descriptors will be perfomed with the numerical integration method.
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5.2 The behavior of the descriptors in the vicinity of a conical

intersection

The two descriptors χ and φS have been developed with the goal of characterizing the nature

of electronic excited states and precisely to get a systematic picture of the locality of electronic

excitations. Considering a chemical point of view, diabatic states are chosen to be conservative

according to electronic properties. It can be the symmetry of electronic excited states, the oscil-

lator strength and descriptors may also be used to characterize diabatic and adiabatic electronic

states. In this section, descriptors are then studied as functions of R.

A conical intersection (CoIn) is the locus where two adiabatic electronic states are degener-

ate and so where the BOA is not valid. The branching space (BS) is the two-dimensional space

in which the two adiabatic states are not degenerate to first order. The two BS vectors are the

gradient difference (GD) and the derivative coupling (DC) vectors.

Typically, according to an arbitrary choice of diabatic states based on the conservation of

an electronic property, the GD vector is the direction that swaps the diabatic assignment of the

adiabatic electronic states. The direction of the GD vector is the direction of the maximum pre-

servation of chemical nature. Along this direction there is a swapping of the electronic properties

of two states that cross. This is why it is also called the "tuning mode".

The DC vector is the direction along which the two adiabatic electronic states are the most

mixed with respect to the diabatic ones. It is also called the "coupling mode".

CoIn are then the locus around which an electronic property can vary significantly to first

order. Since χ and φS are functions that characterize the locality of an electronic excitation, we

study the variation of the two functions in the vicinity of CoIn.

The two descriptors are studied in the vicinity of two major types of CoIn of this thesis (see

fig. 5.2). They are labelled Qx
DP A

cu/tr
and Qx

m−BP EB

pf
. The first CoIn, Qx

DP A

cu/tr
is a CoIn for the first

two electronic adiabatic excited states of diphenylacetylene (DPA). It involves the first optically

active state 11Bu and the first optically inactive state 11Au in the C2h point group (PG). The

energy minimum of the optically active state is associated to the cumulenic isomer of DPA (see

fig. 5.3) and belongs to the D2h PG, the state is of B1u symmetry. The energy minimum of the

11Au state is associated to the trans isomer of DPA (see fig. 5.3) in the C2h PG.

A B3g deformation from the cumulenic isomer leads to the trans isomer (see fig. 5.3). The

direction of the GD vector has been chosen such that it conserves the PG and allows the sym-
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DC

Figure 5.4: Localized cumulenic isomers either on the left or on the right pseudrofragment (on
the left and on the right, respectively).

the two vectors of the branching space which have been determined above (see fig. 5.5 and 5.6).

Eventhough the CoIn Qx
m−BP EB

pf
involves only the first two electronic adiabatic excited states,

there are two avoided crossings between the second and the third electronic adiabatic excited

state and so the three electronic adiabatic excited states have been plotted for clarity. In the

plots, the abscissa is dimensionless. The unit x along the abscissa corresponds to a displacement

along x× a0 × 5.0 10−4 the branching space vectors to ensure the 1st order lifting of degeneracy.

a0 is the Bohr radius.

The GD vector of the CoIn Qx
DP A

cu/tr
have been chosen such that it is Ag and it allows the

first two singlet states to swap their symmetries. On fig. 5.5 we notice that the first singlet state

is 11Bu from −7 to 0 and is 11Au from 0 to 7 and the second singlet state is 11Au then 11Bu

along this coordinate. The 11Bu state (11B1u in the D2h point group) is known to be the first

bright singlet state and the 11Au state is known to be an optically forbidden state [51]. As the

GD vector is the direction that swaps the symmetry between these two states, we observe as well

the swapping of the oscillator strength on fig. 5.5.

The DC vector has the direction that mixes the first two electronic adiabatic excited states

such that they have the same symmetry along this direction, they are 11Au and 21Au. At 0, at

the apex, the adiabatic states are degenerate so undetermined which explains the brutal vari-

ation of the oscillator strength while on the right and on the left of the apex, the two states are

maximally mixed with each other (normalised sum and difference) and so the oscillator strengths

of both states are similar.

Along these two directions, the two density-based descriptors vary in the same way as the

oscillator strength according to the arbitrary choice of the diabatic states. Along the GD dir-

ection there are abrupt variations of φS and χ. The first electronic adiabatic excited state is

characterized by φS values around 0.85 and by a χ value around 0.35 when the first electronic

adiabatic excited state is of 11Bu symmetry and when it is of 11Au symmetry, it is characterized

by φS values around 0.55 and by a χ value around 0.70. At a CoIn, φS and χ are undetermined
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but they have been calculated in the vicinity of the CoIn along the DC vector: the descriptors

have values around 0.70 and 0.55 respectively.
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Figure 5.5: Relative energy in eV, oscillator strength, φS and φ are plotted along the two vectors
GD and DC in the vicinity of the CoIn Qx

DP A

cu/tr
for the first two electronic adiabatic excited states.

The first singlet is plotted with line in blue and the second singlet is plotted with line in orange.
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The GD direction of the second CoIn, Qx
m−BP EB

pf
, allows the symmetry swapping between

the first two diabatic states: 11B2 and 11A1. Both of these diabatic states are optically active

states. The 11B2 state is characterized by an oscillator strength which value is almost constant

at 1.70. The values of φS and χ vary from 0.72 to 0.76 and from 0.39 to 0.34 respectively. The

second diabatic state, the 11A1 state, is characterized by oscillator strength values around 0.37.

The values of the descriptors are almost constant such that φS ≈ 0.77 and χ ≈ 0.33. Along this

direction, we see that the two descriptors and the oscillator strength evolve in the same way.

There is a swapping of the oscillator strengths and descriptors values on the first and the second

adiabatic singlet states according to the swapping of the symmetries of the two states. The DC

direction is the one that mixes the two adiabatic singlet states 11A′ and 21A′ and on the left

and right of this CoIn the two adiabatic states have the same oscillator strength value (around

1.00). Moreover, there are two avoided crossings between the second and the third excited singlet

states around −18 and 18 (see fig. 5.6.). The way the oscillator strength varies when considering

the second and the third electronic singlet excited states, we observe a variation of its value

from 1.00 to 0.00 and so the direction of this DC vector is a direction that swap the oscillator

strength between 21A′ and 31A′. The variation of the two descriptors along this direction is

more complicated. The drastic variations of φS and χ from −20 to −10 and from 10 to 20 of the

second and third electronic adiabatic excited states match with the avoided crossing. However it

not possible to characterize this DC direction as a direction that mixes these two density-based

descriptors. Between −5 and 5 we see that the oscillator strength of the first and the second

electronic adiabatic excited states are equal to each other and the second electronic adiabatic

excited state does not interact significantly with the third electronic adiabatic excited state and

so we can consider that within this interval, only the first and the second electronic adiabatic

excited states interact with each other. On the right and on the left of the CoIn, φS of S1 and S2

have both similar values (around 0.74) and χ of both states have values around 0.36. They vary

as the oscillator strength and so it seems that this DC direction is a direction that mixes the

density-based descriptors. However, it is difficult to be certain since the third electronic adiabatic

excited state has a strong effect on the variation of the two density-based descriptors. In addition,

at the CoIn, along the DC direction the oscillator strength rises or falls drastically according to

the first or the second electronic adiabatic excited state. Similar variation is observed on fig. 5.5

on the study of the CoIn Qx
DP A

cu/tr
considering the oscillator strength, φS and χ but on the study

of the second CoIn Qx
m−BP EB

pf
, the two density-based descriptors do not vary in a similar way.
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They both rise drastically.
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Figure 5.6: The oscillator strength and the two electron density-based descriptors χ and φS are
plotted along the GD vector and the DC vector of the CoIn d22.
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To understand why the two density-based descriptors behave oddly in the vicinity of the

CoIn Qx
m−BP EB

pf
while they behave as the oscillator strength in the vicinity of the CoIn Qx

DP A

cu/tr
,

one needs to get a writing of the adiabatic descriptors and of the oscillator strength by taking

into account diabatic electronic excited states.

For simplicity we consider that the ground state does not cross at all the first adiabatic

electronic excited states and that the ground state is approximately diabatic. We supposed that

we are in the two-excited-state approximation where
∣∣∣ψad

1

〉
and

∣∣∣ψad
2

〉
are two adiabatic electronic

excited states and that there is two strictly diabatic states
∣∣∣ψdia

1

〉
and

∣∣∣ψdia
2

〉
. In the vicinity of

a conical intersections we can rotate from an adiabatic set to a diabatic set:

∣∣∣ψad
1

〉
= cos

(
θ(R)

) ∣∣∣ψdia
1

〉
+ sin

(
θ(R)

) ∣∣∣ψdia
2

〉

∣∣∣ψad
2

〉
= − sin

(
θ(R)

) ∣∣∣ψdia
1

〉
+ cos

(
θ(R)

) ∣∣∣ψdia
2

〉 (5.10)

The adiabatic Ne−-particle electron density operators of the first (Γ̂ad
1 ) and the second (Γ̂ad

2 )

adiabatic electronic excited states are defined as:

Γ̂ad
1 =

∣∣∣ψad
1

〉〈
ψad

1

∣∣∣

Γ̂ad
2 =

∣∣∣ψad
2

〉〈
ψad

2

∣∣∣
(5.11)

The diabatic Ne−-particle electron density operators are defined similarly. We would get

the same equations as 5.11 by substituting the upperscript "ad" by the upperscript "dia". The

adiabatic Ne−-particle transition density operators between the first and the second adiabatic

electronic excited states, and between the second and the first adiabatic electronic excited states

are defined such that:
Γ̂ad

12 =
∣∣∣ψad

1

〉〈
ψad

2

∣∣∣

Γ̂ad
21 =

∣∣∣ψad
2

〉〈
ψad

1

∣∣∣
(5.12)

The diabatic Ne−-particle transition density operators are defined similarly. We would get

the same equations as 5.12 by substituting the upperscript "ad" by the upperscript "dia". Eqs.

5.10, 5.11 and 5.12 give then:

Γ̂ad
1 =

(
cos

(
θ(R)

))2
Γ̂dia

1 +
(

sin
(
θ(R)

))2
Γ̂dia

2 + cos
(
θ(R)

)
sin
(
θ(R)

)(
Γ̂dia

12 + Γ̂dia
21

)
(5.13)
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and

Γ̂ad
2 =

(
sin
(
θ(R)

))2
Γ̂dia

1 +
(

cos
(
θ(R)

))2
Γ̂dia

2 − cos
(
θ(R)

)
sin
(
θ(R)

)(
Γ̂dia

12 + Γ̂dia
21

)
(5.14)

Since we are working with real wavefunctions, we have Γ̂dia
12 = Γ̂dia

21 then:

Γ̂ad
1 =

(
cos

(
θ(R)

))2
Γ̂dia

1 +
(

sin
(
θ(R)

))2
Γ̂dia

2 + 2 cos
(
θ(R)

)
sin
(
θ(R)

)
Γ̂dia

12 (5.15)

and

Γ̂ad
2 =

(
sin
(
θ(R)

))2
Γ̂dia

1 +
(

cos
(
θ(R)

))2
Γ̂dia

2 − 2 cos
(
θ(R)

)
sin
(
θ(R)

)
Γ̂dia

12 (5.16)

using trigonometric relations, the two previous equations read:

Γ̂ad
1 =

1

2

(
Γ̂dia

1 + Γ̂dia
2

)
+

1

2
cos

(
2θ(R)

)(
Γ̂dia

1 − Γ̂dia
2

)
+ sin

(
2θ(R)

)
Γ̂dia

12 (5.17)

and

Γ̂ad
2 =

1

2

(
Γ̂dia

1 + Γ̂dia
2

)
− 1

2
cos

(
2θ(R)

)(
Γ̂dia

1 − Γ̂dia
2

)
− sin

(
2θ(R)

)
Γ̂dia

12 (5.18)

The latter equations are written for the Ne−-electron densities however, they can be repres-

ented in the one-electron space coordinates. Thus it gives us access to the one-particle adiabatic

electronic density functions:

n(R)ad
1 =

1

2

(
n(R)dia

1 +n(R)dia
2

)
+

1

2
cos

(
2θ(R)

)(
n(R)dia

1 −n(R)dia
2

)
+sin

(
2θ(R)

)
γ(R)dia

12 (5.19)

and

n(R)ad
2 =

1

2

(
n(R)dia

1 +n(R)dia
2

)
− 1

2
cos

(
2θ(R)

)(
n(R)dia

1 −n(R)dia
2

)
−sin

(
2θ(R)

)
γ(R)dia

12 (5.20)

where n(R)ad
1 and n(R)ad

1 are the adiabatic electron density functions of the first and the second

adiabatic electronic excited states, n(R)dia
1 and n(R)dia

2 are the diabatic electron density func-

tions of the first and the second diabatic electronic excited states, and γ(R)dia
12 is the diabatic

transition density function between the first and the second diabatic electronic excited states.

The adiabatic density-based descriptors χ and ϕ depend explicitly of n(R)ad
1 or of n(R)ad

2 ,
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depending if they are obtained for the first or the second adiabatic electronic excited states, be-

cause of the difference density function. The adiabatic descriptor φS depends on the attachment

and detachment densities function which are obtained from the difference density matrix. The

three adiabatic descriptors depend then explicitly or implicitly on the diabatic electron density

function (n(R)dia
1 and n(R)dia

2 ) and on the diabatic transition density function (γ(R)dia
12 ) which

is related to the coupling between the two diabatic states.

Let us consider an observable that varies little with the nuclear coordinates, for example the

electric dipole µ̂. For simplicity, we consider a single vector component and we denote it µ̂. The

adiabatic transition dipole moments between the ground state and the first adiabatic electronic

excited state, and between the ground state and the second adiabatic electronic excited state are

defined as:

µad
01 = 〈ψ0| µ̂

∣∣∣ψad
1

〉
(5.21)

µad
02 = 〈ψ0| µ̂

∣∣∣ψad
2

〉
(5.22)

The oscillator strength fad is defined such that is proportional to the square modulus of the

adiabatic transition dipole moment. According to the rotation equations of eq. 5.10, we have:

µ
ad
01(R) = cos

(
θ(R)

)
µ

dia
01 + sin

(
θ(R)

)
µ

dia
02

µ
ad
02(R) = − sin

(
θ(R)

)
µ

dia
01 + cos

(
θ(R)

)
µ

dia
02

(5.23)

and

fad
01 (R) =

(
cos

(
θ(R)

))2
fdia

01 +
(

sin
(
θ(R)

)2)
fdia

02 + cos
(
θ(R)

)
sin
(
θ(R)

)(
µ

dia
01 µ

dia
02 + µ

dia
02 µ

dia
01

)

fad
02 (R) =

(
sin
(
θ(R)

))2
fdia

01 +
(

cos
(
θ(R)

)2)
fdia

02 − cos
(
θ(R)

)
sin
(
θ(R)

)(
µ

dia
01 µ

dia
02 + µ

dia
02 µ

dia
01

)

(5.24)

Since µ
dia
01 and µ

dia
02 are vectors that are here not along the same axes their product is equal

to zero. Then we get:

fad
01 (R) =

(
cos

(
θ(R)

))2
fdia

01 +
(

sin
(
θ(R)

))2
fdia

02

fad
02 (R) =

(
sin
(
θ(R)

))2
fdia

01 +
(

cos
(
θ(R)

))2
fdia

02

(5.25)
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Using trigonometric relations, we can get a simplifed writing of eq. 5.26 as we did for eq.

5.12:
fad

01 (R) = 1
2

(
fdia

01 + fdia
02

)
+ 1

2 cos
(
2θ(R)

)
1
2

(
fdia

01 − fdia
02

)

fad
02 (R) = 1

2

(
fdia

01 + fdia
02

)
− 1

2 cos
(
2θ(R)

)
1
2

(
fdia

01 − fdia
02

) (5.26)

5.2.1 In the vicinity of a conical intersection

Along the GD-type coordinate Ri
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Figure 5.7: Schematic representation of the mixing angle (θ), the adiabatic potential energies
(V ad

1 and V ad
2 ), the φS adiabatic descriptors (φad

S 1 and φad
S 2), and the ϕ adiabatic descriptors (ϕad

1

and ϕad) along the GD-type coordinate RGD.

The GD-direction is chosen to be the direction that swaps the diabatic electronic excited

states (see fig. 5.7) such that:

For all RGD < 0 we have θ = π
2 :

∣∣∣ψad
1

〉
=

∣∣∣ψdia
1

〉

∣∣∣ψad
2

〉
=

∣∣∣ψdia
2

〉 (5.27)
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and for all RGD > 0 we have θ = 0:

∣∣∣ψad
1

〉
=

∣∣∣ψdia
2

〉

∣∣∣ψad
2

〉
=

∣∣∣ψdia
1

〉 (5.28)

Along this direction, the adiabatic states are equal to a unique diabatic state, there is then no

mixing between diabatic states that could appear in the expression of the adiabatic states and

so the density-based descriptors are not affected by the values of the diabatic transition density

function.

Along the DC-type coordinate Ri

The DC-direction is chosen to be the direction that mixes the diabatic electronic excited states

with each other (see fig. 5.8) such that:

For all RDC < 0 we have θ = π
4 :

∣∣∣ψad
1

〉
=

|ψdia
1 〉+|ψdia

2 〉√
2∣∣∣ψad

2

〉
=

|ψdia
2 〉−|ψdia

1 〉√
2

(5.29)

and for all RDC > 0 we have θ = 3π
4 :

∣∣∣ψad
1

〉
=

|ψdia
2 〉−|ψdia

1 〉√
2∣∣∣ψad

2

〉
=

|ψdia
1 〉+|ψdia

2 〉√
2

(5.30)

Along this direction, since the diabatic states are mixed with each other and so the diabatic

transition density function can indeed affect the behavior of the density-based descriptors in the

vicinity of a conical intersection.
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Figure 5.8: Schematic representation of the mixing angle (θ), the adiabatic potential energies
(V ad

1 and V ad
2 ), the ψS adiabatic descriptors (φad

S 1 and ψad
S 2), and the ϕ adiabatic descriptors (ϕad

1

and ϕad) along the DC-type coordinate RDC.
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A sign study

The density-based descriptors are expressed with a square-root (φS) or with a modulus (ϕ and

χ). We can then defined six subdomains of R3: A1, B1, A2, B2, E1, E2 such that:

A1
⋃
B1
⋃
E1 = R3

A1
⋂
B1 = ∅

A1
⋂
E1 = ∅

B1
⋂
E1 = ∅

and

A2
⋃
Bm

⋃
E2 = R3

A2
⋂
Bm = ∅

A2
⋂
E2 = ∅

Bm
⋂
E2 = ∅

(5.31)

The adiabatic electronic densities are defined as follows in these sub-domains:

• ∀r ∈ A1, n
∆
1 (r; R) < 0

• ∀r ∈ A2, n
∆
2 (r; R) < 0

• ∀r ∈ B1, n
∆
1 (r; R) > 0

• ∀r ∈ Bm, n
∆
2 (r; R) > 0

• ∀r ∈ E1, n
∆
1 (r; R) = 0

• ∀r ∈ E2, n
∆
2 (r; R) = 0

Such domains actually depend on R and then are different for each coordinate values. E1

and E2 must be manifolds of dimension 2 at maximum because in these two domains we have

n∆
1 (r; R) = 0 and n∆

2 (r; R) = 0. Analytic functions cannot be constant over an open set.

In the subspaces: E1 and E2, the density differences n∆
1 (r; R) = 0 and n∆

2 (r; R) = 0.

The density differences cannot be equal to zero over an open set in R3. It would mean that

n∆
1 (r; R) = n0(r; R) and n∆

2 (r; R) = n0(r; R) for a finite interval of electronic coordinates. In
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other words, two states cannot have the same wave functions over a finite-size domain physically.

However it is possible that the difference density be equal to zero over manifolds of dimension

two or less. Thus the following sub-domains are sets of surfaces at most.: B1
⋂
E2, A1

⋂
E2.

In these subdomains, χ can be rewritten such that:

χ1(R) = 1
2

∫
R3

| n∆
1 (r; R) | dr

= 1
2

(
−
( ∫

A1

⋂
A2

n∆
1 (r; R)dr +

∫

A1

⋂
E2

n∆
1 (r; R)dr +

∫

A1

⋂
Bm

n∆
1 (r; R)dr

)

+
∫

B1

⋂
A2

n∆
1 (r; R)dr +

∫

B1

⋂
E2

n∆
1 (r; R)dr +

∫

B1

⋂
Bm

n∆
1 (r; R)dr

)

(5.32)

We see from eq. 5.32 that the signs of the density-based descriptor χ1 (and to some extent

ϕ, depend on subdomains that are associated to the nth and mth simultaneously. Moreover

the subdomains depend on the nuclear coordinates because they are defined according to the

positive, negative and null values of the difference density at a certain geometry. It must be

stressed out that even the domains A1, A2, B1, B2 depend on the nuclear coordinates. So it

seems quite impossible to establish any systematic relationship. If χ1 and χ2 are to be expressed

in terms of diabatic contributions, cosine and sine will have erratic signs. The reason why the

two density-based descriptors behave oddly in the vicinity of some CoIn is that the square-root

and the absolute-value functions somewhat remove the distinct roles of the signs of positive and

negative contributions of diabatic densities differences within the adiabatic ones. The diabatic

contributions in vicinity of CoIn are then difficult to consider in a systematic manner. Unlike the

electronic properties as the oscillator strength, the transformations (see eqs. 1.23, 2.7, 2.8, 2.25,

and 2.26) are not linear anymore with respect to expansion coefficients because of the square-root

and the absolute-value functions. To treat the descriptors adequately, one needs to study them

within various subspaces for each nuclear and electronic coordinates.
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In the case of CoIn where the two states have different symmetry, if the gradient of the

seam if totally symmetric, we have the
−−→
DC orthogonal to the

−−→
GD and to the

−→
GS (see fig. 5.10).

The algorithm minimizes then the norm of
−−→
GD and of

−−→
DC. However in the general case of CoIn,

the accidental intersections, the two adiabatic electronic states of same symmetry can cross. The
−−→
GD and the

−−→
DC may or may not be orthogonal to each other but can always be made orthogonal

to each other if required. However, the
−−→
DC may or may not be orthogonal to the total gradient

but it is orthogonal to the gradient of the seam by definition. The
−→
TG is then the sum of the

three vectors (see fig. 5.11) such that

−→
TG = α

−−→
GD + β

−→
GS + γ

−−→
DC (5.37)

where α, β, γ are coefficients. The actual definition of the 1st-order non-adiabatic coupling

GD

TG

TG

DC

GS  dir:  

dir:  

GS  dir:  

GD dir:  

dir:  DC dir:  

Figure 5.11: Vectorial representation of the total gradient in the case of CoIn where the two
states have different symmetry (on the left) and in the case where the two states have the same
symmetry (on the right).

(1-NAC) between two states {|φ1〉 , |φ2〉} is

F12 =
〈
φ1

∣∣∣∇̂Rφ2

〉
(5.38)

and its Hellman-Feynman expression is

F12 =
〈φ1| ∇RĤ |φ2〉
V2(R) − V1(R)

(5.39)
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The expression of the gradient difference (eq. 5.33) and of the derivative coupling (eq. 5.39)

are valid for adiabatic states but they cannot be calculated exactly when we do not know the

exact expression of the wave-functions such as here. A numerical method is proposed in ref. [75]

to compute branching space vectors which are orthogonal to each other by the use of Hessians.

To tackle the fact that
−→
TG depends on the

−−→
DC, I have merged the algorithm from ref. [75] and

from ref. [2] in order to minimize the energy of the seam along the three directions that compose

the total gradient.

To evaluate the efficiency of the merged algorithm on seam minimisation, it has been com-

pared to the algorithm developed by Harvey et al [2]. The values obtained by the use of the

latter algorithm are considered as being the reference one because this algorithm has already

proven its efficiency.

We expect that the two algorithms would give the same relative energies for crossings that

involve states of different symmetry since it is not needed to include the
−−→
DC within the

−→
TG. For

crossings that involve states of same symmetry, we expect that the merged algorithm would give

lower relative energy values or at least same relative energy values than the algorithm developed

by Harvey et al. CoIn have been determined for systems of various size: diphenylacetylene

(DPA), 1,4-bis(phenylethynyl) benzene (BPEB), 1,3-bis(phenylethynyl) benzene (m-BPEB), and

1-(phenylethynyl)-3-(1,4-bis (phenylethynyl) benzene) benzene (DPABPEB) and are gathered in

table 5.5: CoIn of DPA, BPEB and m-BPEB gathered in table 5.5 involve for each crossing

DPA BPEB m-BPEB m-DPABPEB

11B1u/1
1A1u 11A′/11A” 11A′/11A” 11A′/11A” 11A1/1

1B2 11A′/21A′

∆(E) 0.001 -0.002 0.003 -0.005 0.002 0.002

Ealg.ref 4.444 4.187 4.440 4.437 4.289 4.291

Table 5.5: Values of the minimized energies from the algorithm from ref. [2] (Ealg.ref) and en-
ergy difference between the minimized energy with algorithm from ref. [2] and with the merged
algorithm (∆(E)). The energies and energy differences are expressed in eV.

two states of different symmetry. Since they are different symmetry crossings, the algorithm

of Harvey et al provides us the supposed-minimal energy of the seam according to the level of

theory. Since the
−−→
DC vector is orthogonal to the gradient of the seam, in this case, we should

not need to take into consideration the component of
−→
TG along

−−→
DC.
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As the merged algorithm needs to calculate numerically the Hessians of the two states that

cross at each step along the seam, it has a non-negligible computational cost, while the algorithm

from ref. [2] needs only to compute the gradient for each step.

CoIn of DPABPEB gathered in table 5.5 is a crossing that involves two adiabatic elec-

tronic states of same symmetry (11A′/21A′). Then the total gradient has three components

(see fig. 5.11) and the minimization energy algorithm should be more efficient with the merged

algorithm. However, the difference between the minimized energy of the two algorithms is low:

∆(E) = 0.002 eV. It is not possible to conclude on the efficiency of the merged algorithm with

only one result which shows that the two algorithms give the same value. We would expect that

the merged algorithm gives better results (i.e. minima of lower energy). DPABPEB is a molecule

of 48 atoms and so the gradient that is computed during an electronic structure calculation has

144 elements and the Hessian has 10 440 elements that have to be calculated. The algorithm

to compute numerically the coordinates of an orthogonal pair of vectors of the BS has been

tested on two smaller molecules: benzene (666 elements in the Hessian) and 3-hydroxychromone

(1 485 elements in the Hessian). The algorithm from ref. [2] has been tested on a smaller mo-

lecule as well: the phenyl cation (33 elements in the gradient). The minimization of the seam of

DPA-BPEB could have been miscalculated due to error accumulation as the amount of matrix

elements is higher than these calculated to validate the algorithm.

To conclude this chapter, the two density-based descriptors φS and χ are computed from

now on with the numerical integration method since the population analysis approximation is not

good enough to obtain reliable results according to the locality of the electronic photo-excitation

for the systems of interest in this study.

Conical intersections are determined with the merged algorithm since it gives similar results

than those obtained with the algorithm from ref. [2] and it should improve the energy minimiz-

ation in the case of a same-symmetry crossing.

Eventhough the two density-based descriptors behave oddly in the vicinity of a conical in-

tersection, this behavior has been rationalised and their use as electronic excited state descriptors

is not discarded but they have to be handled carefully.
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Chapter 6

Dendrimers and their building blocks

6.1 Introduction

The nanostar dendrimer (see fig. 2) has been tremendously studied in the past decades [40, 45,

46, 68, 78, 136–145]. Phenylene-ethynylene dendrimers (PE-D) show astonishing properties and

are systems to be likely used in opto-electronic devices such as organic light emitting diodes

(OLED) and conductive molecular wires. The nanostar seems to be one of the best candid-

ate for these devices. If PE-D, and so the nanostar, are in the spotlight for such devices it is

because they show an excellent photostability and high energy excitation transfer (EET) effi-

ciency. The EET in PE-D is ultrafast and unidirectional. It occurs from the periphery of the

molecular system to the core. Indeed, it is possible to locally excite the peripheral branches

of a PE-D and the EET occurs thanks to an excitation energy gradient that extends along the

system [41,45,46,68,78,136,138,139,142–145].

The EET in PE-D have been studied in various ways: A Förster model has been developed

but it has limitations since it neglects dynamical effects and it underestimates the rate of the

EET [40,136,137]; the local excitations on the various branches have been studied by an exciton

model that gives a description of the optical properties of the nanostar and information on the

energy transfer within various PE-D [140, 144]; non-adiabatic dynamics have been performed

on building blocks of the nanostar and the studies concluded to the fact that the EET implies

mainly the stretching of the triple bonds of diphenylacetylene (DPA) [45, 46, 68, 139, 142, 145];

Kirkwood et al [143] have studied the propagation of the exciton density matrix along PE-D,

and steady-state and time-resolved spectroscopy [41,78,141] have concluded that the EET occurs

from branch to branch and does not occur directly from the periphery of PE-D to the core of the

system. However, at low temperature (T = 10 K) the excitations are localised on the branches
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but at higher temperature there is an energy shift to the lower wavelengths which leads to a

superposition of the different contributions to the absorption spectra [41,68].

To supplement these studies, a pseudofragmentation scheme [43] is used in which the PE-D

is decomposed in various subsystems (pseudofragments). The PE-D behaves as if the pseudo-

fragments were weakly interacting together. The pseudofragmentation scheme explained in the

general introduction (see ch. ) and developed by Ho and Lasorne [43] allows to study a PE-D

as if its branches (oligophenylene ethynylene − oPE) were weakly interacting together. In this

chapter, we are going to see how we can build and characterise the potential energy surfaces

(PES) of a PE-D by studying the PES of the oPE that compose it.

The first section of this chapter will show chacterizations of the first adiabatic electronic

excited states of oPE by the use of the density-based descriptors, equilibrium geometries, saddle

points and conical intersections (CoIn). The second section will handle how two pseudofragments

are coupled with each other when they are actually linked together at a common phenylene ring in

meta-position. Two examples are studied: the case when the two pseudofragments are the same

(two DPA), and the case when two pseudofragments are different (one DPA and one BPEB).

The third section will explain how we can study and understand the PES of the smallest PE-D,

named d223.

6.2 oligophenylene ethynylenes

In this section, three oPE are studied as they are the main three branches of the nanostar:

DPA, BPEB and DPABPEB. The Lewis structure of the equilibrium geometry for each in their

ground state is represented in the left side of fig. 6.1. The three systems are highly π-conjugated,

the aromatic phenyl groups are spaced by an alternation of single-triple-single bonds that is an

ethynylene group. These three structures belong to the D2h point group. In this chapter, the

convention of Mulliken is used for D2h such that the z axis is fixed as being the major axis of

the molecules, most of atoms are invariant along the C2 axis, and the x axis is fixed as being

orthogonal to the molecular plane (see fig. 6.1). The ground state of the three systems is then

11Ag since they are closed shell.

6.2.1 Characteristics of the potential energy surfaces

The first optically active adiabatic electronic excited states of DPA have been experimentally

and theoretically characterised [48–51, 54, 58, 60, 61, 146–151]. It has been observed that at the
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DPA

BPEB

DPABPEB

z

y

x

Ground state Lewis structures
Excited-state Lewis structures 

of di�erent isomers

cDPA

t-DPA

c-BPEB

t-BPEB

c-DPABPEB

peri t-DPABPEB

mid t-DPABPEB

Figure 6.1: Lewis structures of DPA, BPEB and DPABPEB in the ground state and of their
isomers in the first adiabatic excited electronic states.

ground state equilibrium geometry (also called the Franck-Condon − FC − geometry), the first

optically active state is 11B1u. However, there is no consensus on the energy ordering of this

state [49,51,58,61,150,151]. This state lies around 4−5 eV but it might not be the first adiabatic

electronic excited state. Within this range of 4 − 5 eV, five adiabatic electronic excited states

have been noticed (11B1u, 11B2u, 11B3g, 11Au, and 21Ag).

The energy minimum of the 11B1u state is associated to a cumulenic structure: there are
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three double bonds instead of the ethynylene group and the two benzenes have a quinoidal struc-

ture (see fig. 6.1). The geometry of the system at the energy minimum of the 11B1u state is

named as the cumulenic isomer.

This optically active state is the precursor of an optically inactive state which energy min-

imum is associated to a trans structure (see fig. 6.1). One needs to differenciate equilibrium

geometries and Lewis structures: equilibrium geometries to which isomers are associated cor-

respond to the nuclei position while Lewis structures correspond to the bonding pattern of the

electrons.

From their experiments, Hirata et al. [54] have proposed a transfer mechanism that involves

the two previous adiabatic electronic excited states and is labelled S0 → X → Y → T1 in which

the state S0 is the singlet ground state, X is the optically active state, Y is the optically inactive

state, and T1 is the first triplet state.

The optically inactive state which belongs to the C2h point group has been characterised

theoretically as well [48–50,60,149]. This state is 11Au and its minimum is lower in energy than

the minimum of 11B1u in D2h. In the C2h point group the 11B1u state is labelled 11Bu. Accord-

ing to the literature [48–51, 60, 149] and depending on the level of theory, the optically inactive

state lies between the fifth and the ninth adiabatic electronic excited state at the ground state

geometry.

We used the CAM-B3LYP/6-31+G(d) level of theory for oPE in this work. The energy are

given relative to the energy minimum of the ground state. Considering DPA, the 11B1u is the

first adiabatic electronic excited state at the FC point and lies at 4.476 eV (see table 6.1). The

energy minimum of this optically active state is at 4.144 eV. The 11B1u state is characterised

by a non-zero oscillator strength value for these two structures: f = 0.93 (at the FC point) and

f = 0.96 (for the equilibrium geometry of the cumulenic structure), see table 6.2 while the min-

imum of the optically inactive state lies at 3.716 eV and so is lower in energy than the minimum

of the 11B1u state. Less information is given in the literature on the cumulenic and on the trans

isomers of BPEB [52,53]. Here we must differenciate two types of trans isomers: the single-trans

isomers that we label t-BPEB and which Lewis structure is represented on fig. 6.1, only a single

ethynylene group of BPEB is trans-bent and the double-trans isomer is the molecular system

such that the two ethynylene groups of BPEB are trans-bent. Moreover, there are two types

of double-trans isomers: both peripheral phenyls can be on the same side of the central axis of

the benzene in the middle of BPEB and the two peripheral phenyls can be on opposite sides.
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FC point cumulenic isomer trans isomer

DPA 11B1u : 4.476 11B1u : 4.144 11Au : 3.716
BPEB 11B1u : 3.896 11B1u : 3.624 11A” : 3.685

DPABPEB 11B1u : 3.626 11B1u : 3.376
11A” : 3.687: peri t-DPABPEB
11Au : 3.652: mid t-DPABPEB

Table 6.1: Relative energies (eV) of the Franck-Condon point, the cumulenic isomer and the
trans isomer according to the minimum of the ground state of DPA, BPEB and DPABPEB.

We are only focused on single-trans isomers because double-trans isomers can in fact be viewed

as isomers that arise from a doubly-excited electronic state which are not our focus here. Such

consideration on the double-trans isomer will be explained further in this section.

The cumulenic structure and the FC point belong to D2h and the single-trans structure be-

longs to Cs. Both references [52,53] have determined that the minimum of the optically inactive

state (11A”) is higher than the minimum of the optically active state (11B1u). Fujiwara et al. [52]

have found that the energy minimum of 11B1u state is at 3.25 eV and the energy minimum of the

11A” is at 3.51 eV while Hodecker et al. [53] have localised the two minima at 3.90 eV and 4.25

eV, respectively. Our level of theory places the energy minimum of the 11B1u state at 3.624 eV

and the energy minimum of the 11A” state at 3.685 eV (see table 6.1). Eventhough the energy

values differ, the three levels of theory (TD-BP86/cc-pVDZ [52], CAM-B3LYP/def2-TZVP [53],

and CAM-B3LYP/6-31+G(d) for us) give similar results according to the relative positions of

the two minima: the energy minimum of the 11A” state is higher than the energy minimum of

the 11B1u state.

The 11B1u is characterised by high oscillator strength values: f = 2.00 at its energy min-

imum, see table 6.1 while the 11A” energy minimum has a null-oscillator strength.

cumulenic structure trans-structure

DPA 0.96 0.00
BPEB 2.00 0.00

DPABPEB 2.94
0.00: pari t-DPABPEB
0.00: mid t-DPABPEB

Table 6.2: Oscillator strength (f) of the cumulenic and trans structures at their energy minima
in the first adiabatic electronic excited state.

No data have been found on the isomers within the first adiabatic electronic excited states
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of DPABPEB. The equilibrium geometry of the minimum of the ground state energy belongs to

D2h as well and the first singlet state is the optically active state 11B1u which lies at 3.626 eV.

The equilibrium geometry of the energy minimum to the 11B1u state belongs also to D2h and

lies at 3.376 eV. The Lewis structure at the latter equilibrium geometry is represented in fig. 6.1

and the cumulenic isomer is labeled c-DPABPEB.

Since there are three ethynylene groups, it may be considered that the single-trans, the

double-trans and the triple-trans structures could be associated to equilibrium geometries. How-

ever, single-transminima and so single-trans isomers exist in the first adiabatic electronic excited

states which is consistent with the fact that the double- and triple-trans structures correspond

in fact to multiple excitations. There are two different single-trans isomers: the peripheral-trans

isomer (peri t-DPABPEB) and the middle-trans isomer (mid t-DPABPEB). Their Lewis struc-

tures are gathered in figure 6.1. The geometry of the peri t-DPABPEB isomer belongs to the Cs

point group and is associated to an optically inactive state (see table 6.2) which is 11A”. The

geometry of the second single-trans isomer (mid t-DPABPEB) belongs to C2h point group. The

mid t-DPABPEB isomer is associated to the equilibrium geometry of the 11Au optically inactive

state and is lower in energy (3.652 eV) than the relative energy of the 11A” minimum (3.687 eV).

For each system, the first optically active state is associated to a cumulenic structure for which

the cumulenic isomers have been defined: c-DPA, c-BPEB and c-DPABPEB. We will refer to

the energy minimum of the optically active state as the cumulenic energy minimum and the

equilibrium geometry as the cumulenic geometry and the cumulenic isomer. The first optically

inactive state is associated to a trans structure on a single ethynylene group and so the single-

trans isomers have been defined: t-DPA, t-m-BPEB, peri t-DPABPEB and mid t-DPABPEB.

We will refer to the energy minimum of the optically inactive state as the single-trans energy

minimum and the equilibrium geometry as the single-trans geometry or the single-trans isomer.

In the following subsections we are going to define for each system diabatic states which are

consistant with the cumulenic structure and with the single-trans structure. The potential

energy surfaces of the first adiabatic electronic excited states will be investigated.

6.2.2 The bright cumulenic diabatic state

The three systems in the first adiabatic electronic excited state at the FC geometry and at the

cumulenic geometry are characterised by a large oscillator strength (see table 6.2). The first
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excited state at these two geometries is mainly described by a HOMO/LUMO transition, the

weight of the HOMO/LUMO transition is of 0.94. The molecular orbitals at these geometries are

much alike, the HOMO/LUMO from the cumulenic geometry of the three systems are gathered

in fig. 6.2. The cumulenic geometry is defined by an elongation of the benzenes which have

quinoidal shape compared to their shape in the ground state. The four carbons that are between

two benzenes are bound to each other by an alternation of single-triple-single bonds (ethynylene

group) in the ground state while the four carbons are bound to each other by a sequence of three

double bounds (cumulenic group). The geometry variation corresponds to the normal coordinates

of a totally symmetric mode and is represented in figure 6.3. Such a modification of the

HOMO

LUMO

HOMO

LUMO

HOMO

LUMO

Figure 6.2: HOMO and LUMO representation of DPA, BPEB, and DPABPEB.
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Figure 6.3: Dominant variation of the geometry from the FC geometry to the cumulenic geometry
of DPA.

geometry can be explained by the electronic transition within the π system of oPE. To understand
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the isomerisation of the ethynylene group into a cumulenic structure, the HOMO of DPA are

reduced to the molecular orbitals of the ethynylene groups which are defined by the πx system

which is represented in figure 6.4. The two px atomic orbitals localised on the triple bond, that

are out of the plane of the molecule, bind with each other while they anti-bind with the two px

atomic orbitals localised on the two benzenes due to an opposite phase. Such a configuration of

the px atomic orbitals on the carbons is the reason why the equilibrium geometry in the ground

state is characterised by an ethynylene group.

The electronic transition from the ground state toward the first optically active electronic

state in the D2h point group is a transition from the πx molecular orbitals toward the π∗
x molecular

orbital. The π∗
x molecular orbital results from a switch of the phase of two px atomic orbitals

localised on the carbons between two benzenes (see fig. 6.4). Such a switching on the atomic

orbital phases allows the molecular system to be characterised by a cumulenic group.

The πxπ∗
x transition includes in fact all the px orbitals of the carbons of the ethynylene

groups and also over the benzene rings thus the cumulenic conformation is delocalised over the

molecular systems. This leads to the fact that the cumulenic BPEB is lower in energy than the

cumulenic DPA and the cumulenic DPABPEB is lower in energy than the cumulenic BPEB (see

table 6.1) due to more extended π-conjugation.

On fig. 6.5 the attachment density (in blue) and the detachment density (in red) are gathered

z

y

x

CC

C

C C

C

CC

CC

C C
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*

Figure 6.4: Atomic orbitals representation of the πx and π∗
x molecular orbitals reduced to the

ethynylene group involved in the first optically active adiabatic electronic excited state.

for the three molecular systems at the cumulenic geometry in the first adiabatic electronic excited

states. First of all, the shape of the attachment and detachment densities are almost identical to

the HOMO/LUMO of each molecular system. This means that the electronic transition could

be pictured approximately as if an electron of the HOMO were excited to the LUMO. Since

the attachment and the detachment densities are delocalised over the system, and so are the
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HOMO/LUMO, the overlap descriptor φS, defined in chapter 3, is equal to 0.86 in the case of

DPA, 0.85 for BPEB and for DPABPEB. The three overlap descriptor values are thus almost

the same. This can be explained by the fact that the attachment and detachment densities are

similar and lie over the whole systems which leads to a high overlap. Finally the descriptor χ

gives similar values for the three systems. χ is approximately 0.4 for all case (see fig. 6.5) which

means than the net charge involved in the photoexcitation is low. This is due to the fact that

in this configuration, the displacement of charge density is delocalised over the system. The

attachment and the detachment densities lie on a similar region in space which is noted by a

high overlap and a low χ thus this electronic excited state is strongly locally excited.

To conclude this subsection, one can define one excited diabatic state of cumulenic type for

�s=0.85, �=0.39

�s=0.85, �=0.38�s=0.86, �=0.36

Figure 6.5: Attachment (in blue) and detachment (in red) densities obtained for the three cu-
mulenic isomers of DPA, BPEB and DPABPEB.

each molecular system (DPA, BPEB and DPABPEB). This diabatic state is labelled Sact as it

involves an electronic transition from the πx toward the π∗
x molecular orbital of the system. It is

a singlet, characterised by a significantly high oscillator strength and is of B1u symmetry in the

D2h point group. The two density based descriptors show that this diabatic state is delocalised

over the system. The equilibrium geometry of the energy minimum of this diabatic state implies

quinoidal shape for each benzene and cumulenic groups between those benzenes.
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oPE decrease if the size of the oPE increases, only the trans isomer of DPA is more stable, than

its cumulenic isomer while the trans isomers of BPEB and DPABPEB are higher in energy than

their cumulenic isomers.

The structure of the trans-isomers which are gathered in figure 6.1 shows one electron on

each side of the trans double bond which is slightly misleading. In fact, it is an orthogonal

bi-radical since the two unpaired electrons are in two orthogonal π orbitals. This state is nor a

locally excited state nor a charge transfer state, it is an orthogonal bi-radical.

HOMO

LUMO

HOMO

LUMO

HOMO

LUMO

HOMO

LUMO

Figure 6.7: HOMO and LUMO representation of DPA, BPEB, and DPABPEB associated to the
single-trans isomers.

On fig. 6.8 are gathered the attachment and the detachment densities at the single-

trans geometry. The shape of the attachment and detachment densities are similar to the

HOMO/LUMO pairs associated to each oPE. The attachment density does not change com-
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pared to the LUMOs but the detachment density is localised only on the ethynylene group that

is isomerised while the HOMOs are delocalised over the molecular system. Such shapes of the

two densities lead to the fact that the overlap descriptor values are lower than those of the

cumulenic isomers: φS(tDPA) = 0.54, φS(tBPEB) = 0.53, φS(p-tDPABPEB) = 0.53, and φS(m-

tDPABPEB) = 0.53 while the χ descriptor shows value around 0.73 which means that almost

one electron is transferred in the excitation. Low overlap values and high χ values are typical of

a charge-tranfert type state (for which the excitation occurs from one site to another in the same

plane) but in our case the excitation occurs from one plane to another and so it is not possible

to characterise this electronic excited state as a charge-tranfert state.

The minima associated to a single-trans isomer can be viewed as a single excitation toward

the π∗
y molecular orbital on an ethynylene group. Since the detachment densities "contract" them-

selves around the excitation site compared to the HOMOs, one can assume that the electronic

transition cannot be reduce to a simple HOMO/LUMO transition otherwise the attachment and

detachment densities would have been similar to the HOMOs and LUMOs.

To conclude this subsection, one can define a second diabatic state for each molecular

system. This state is a singlet, optically inactive, which results from a πxπ
∗
y single excitation,

localised on one ethynylene group of each oPE. These diabatic states are labelled Strans.

Strans is of Au symmetry for DPA and DPABPEB when the ethynylene group in the middle

has isomerised since they both belong to the C2h point group and is of A” symmetry for BPEB

and DPABPEB when the ethynylene group on the left or on the right has isomerised since they

both belong to the Cs point group.

6.2.4 Potential energy surfaces

In figure 6.9, four rigid scans are gathered. The scans are performed along a γ angle that has

been defined such that it is the bending angle on the middle of a cumulenic group. For the scans

a) and d), it is a B3g deformation (from D2h to C2h) and fo the scans b) and c), it is a B2u

deformation (from D2h to Cs) to get a single-trans conformation for each of the three oPE.

The energies have been sorted according to the state symmetry of the systems. The Sact

state for DPA and DPABPEB is of Bu symmetry in C2h and is of A′ symmetry for BPEB and

DPABPEB in Cs. Only the energies of the state 11B1u is plotted since it has been associated

to the Sact diabatic state. They are plotted in dashed lines. The optically inactive states of

each systems are plotted in plain lines. The color blue is associated to DPA, the color purple is
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�s=0.53, �=0.75

�s=0.53, �=0.74

�s=0.54, �=0.74 �s=0.53, �=0.74

Figure 6.8: Attachment (in blue) and detachment (in red) densities obtained for the four single-
trans isomers of DPA, BPEB and DPABPEB.

associated to BPEB and the color green is associated to DPABPEB.

We observe in fig. 6.9 that for each rigid scan, the potential energy surface of the first

adiabatic excited state actually shows three energy minima. For each oPE, at γ = 180◦, the

energy minimum is a global minimum and the associated equilibrium geometry is the cumulenic

geometry. On the left and on the right of the cumulenic minimum for each scan, there are two

minima: they are all located at γ = 133◦ and at γ = 227◦ while the optimisation calculations

which gave us the relaxed trans isomers are all defined by an angle of γ = 128◦ and γ = 232◦
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Figure 6.12: Schematic representation of the influence of the size of an oPE on the relative
position of the Sact diabatic states.

and the second adiabatic electronic excited states involves the optically inactive and active dia-

batic states in the C2h point group considering DPA and DPABPEB in the case of the mid

t-DPABPEB isomer and in the Cs point group considering BPEB and DPABPEB in the case of

the peri t-DPABPEB isomer.

The direction that goes from the cumulenic isomer toward the trans isomer of the three

systems is B3g from a D2h origin and A′ from a Cs origin. Within the C2h and the Cs point

group, this direction is totally symmetric. It is chosen as being the gradient difference direction

since the two adiabatic electronic excited states swap their symmetries along this direction. The

derivative coupling direction (
−−→
DC) is, due to symmetry reasons, orthogonal to the

−−→
GD vector.

For the two CoIn that belong to the C2h point group, the
−−→
DC is of Bg symmetry and for the

two CoIn that belong to the Cs point group, it is of A” symmetry. The
−−→
DC vector involves

out-of-plane movements such that the trans double bond rotates around the (Oz) axis. Along

the Bg or the A” directions, for each trans isomer, there are two equivalent transition states

that link the cumulenic and the trans minima since the trans double bond can rotate clockwise

or anti-clockwise. The transition states are in the first excited adiabatic state and so it can be

determined an adiabatic reaction path in S1. The transition state of DPA is represented in figure

6.13. Since BPEB, due to symmetry reasons, is characterised by four equivalent trans isomers,

there are eight transition states. Similarly, there are eight transition states associated to the four

equivalent peri t-DPABPEB isomers.

The transition state of DPA is characterised by a dihedral angle of âbde = 139◦ and a γ

value of 156◦ while the two phenylene groups are in the same molecular plane âbfg = 0◦ (see
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ence vector are the same order of magnitude. The coupling between the two adiabatic states is

strong such that it can be noticed when studying the coupling between the two adiabatic states

at the avoided crossing. We have previously seen that the 11A′ state at the equilibrium geo-

metry of its energy minimum is mainly described by a HOMO/LUMO transition. Their weight

of the HOMO/LUMO transition is 0.93. In this case, the first pair of right/left natural trans-

ition orbitals (NTO) are similar to the HOMO and to the LUMO. However at the equilibrium

geometry of the energy minimum of the 11B1u state, the 5th and the 6th excited adiabatic states

are described by various single electronic excitations and so these states cannot be reduced to a

HOMO/LUMO transition. To characterise the nature of these two electronic excited states, the

NTO have been computed. In figure 6.14 the first pair of NTO of DPA of the 5th and the 6th

singlet states and those associated to the minima of the two equivalent single-trans isomers are

depicted.

We see that the ethynylene group is characterised by the π∗
y molecular orbital when con-

sidering the left NTO of the 5th singlet state while it is characterised by a totally symmetric

Rydberg orbital when considering the left NTO of the 6th singlet state. In figure 6.15 a schematic

representation of the sum and of the difference of the molecular orbitals on the ethynylene group

of an oPE is depicted. We see that either the sum or the difference allows us to localise the mo-

lecular orbitals onto the ethynylene group that characterises the two equivalent trans isomers.

The two equivalent diabatic states Strans can be viewed as the result of a mixing between the

pair of right/left NTO of the 5th and the 6th adiabatic electronic excited states. This explains the

nature of the two optically inactive states on both sides and why they correspond to clockwise

and anticlockwise bent geometries at their minima (see fig. 6.14).

The adiabatic electronic excited states have different symmetries in the D2h point group,

they are the 21Au and the 11B3u states and they have very low oscillator strength values. Along

the B3g direction (the direction of
−−→
DC) the two states mix together and become both of Au

symmetry. In this case, the study of the density-based descriptors is well suited to understand

the coupling between the 5th and the 6th adiabatic electronic excited states since we cannot

differenciate them thanks to the symmetry nor their oscillator strength.

Along the derivative coupling and the gradient difference directions, the relative energies,
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Figure 6.14: Natural transition orbital (NTO) mixing between the 5th and the 6th singlet states
at the minimum of 11B1u of DPA along the trans B3g displacement γ.

the oscillator strength, χ and φS have been computed and gathered in figure 6.16. The 5th (blue),

6th (orange) and 7th (green) adiabatic electronic excited state energies are plotted in plain lines.

The 7th adiabatic electronic excited state is 11Ag at the CoIn geometry.

Along the gradient difference direction, we notice in figure 6.16 where the relative energies

are plotted that the crossing between the 5th and the 6th singlet states are centered in 0 and there
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to the cut along this direction, we observe indeed that the 5th and the 6th couple with each

other at 0 and at -4 and 4. This direction is the one that swaps the electronic properties of the

descriptors and the oscillator strength. Eventhough the oscillator strength has very small values

(between 0.00 and 2.00 · 10−3) we observe the coupling at 0 and the swapping at -4 and 4.

In figure 6.17 the first left NTO of the 9th, 10th, 12th, and 14th states for BPEB and of the

12th and 14th for DPABPEB are shown. As it has been explained previously, BPEB is character-

ised by four equivalent Strans diabatic states and we can observe in fig. 6.9 for its rigid scan that

there is an avoided crossing between four adiabatic states which are the 31A′, 41A′, 51A′ and

the 61A′ states in the Cs point group. This avoided crossing couples the four adiabatic electronic

excited states at the cumulenic isomer geometry of BPEB (11B2g, 21B1g, 11B3u and 21Au) for

which the four left NTO are gathered in fig. 6.17. The four right NTO are not shown here as

they are similar to the HOMO of the one of c-BPEB while the four left NTOs can be related

to in-phase and out-of-phase combinations of NTOs shown in fig. 6.14. The four-state conical

intersection has not been searched because the program which minimizes the energy of a seam

has been developed only for two-state conical intersections. The NTO of the four diabatic states

Strans result in equivalent mixing of the first pair of the previous NTO.

Since there are two equivalent mid t-DPABPEB, we can notice as well an avoided crossing

at 180◦. The avoided crossing involves two adiabatic electronic excited states: the 12th and the

14th singlet states. Only the left NTO of these two singlet states are gathered in fig. 6.17 because

the right one are also similar to the HOMO of c-DPABPEB. We see that the distribution of the

NTO at the ethynylene group is similar as the left NTOs in fig. 6.14.

Considering the rigid scan of DPABPEB in which the trans bending is performed at one

peripheral ethynylene group (see fig. 6.9), it is not possible to determine exactly the adiabatic

electronic excited states involved in the avoided crossing at 180◦ because they are too high in

energy and so the adiabatic electronic excited states are too much mixed and entangled (high

density of states) with each other. However we still can notice the presence of the avoided cross-

ing.

To conclude this section, two diabatic electronic states have been defined for each oPE.

The Sact diabatic state results from the electronic transition from the πx to the π∗
x molecular

orbitals. It is characterised by a high oscillator strength value and its minimum is associated to
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Figure 6.16: Relative energies, oscillator strengths, χ and φS scans along the branching space
directions of the conical intersection S5/S6 of DPA.
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Figure 6.17: Natural transition orbital (NTO) mixing between the 9th, the 10th, the 12th and
the 14th singlet states at the minimum of 11B1u of BPEB and the NTO between the 12th and
the 14th singlet states at the minimum of 11B1u of DPABPEB.

the cumulenic isomer of each oPE. The second diabatic state is the Strans state. It is defined

by the transition between the πx and the π∗
y molecular orbitals. This state is characterised by

a zero oscillator strength and its minimum is associated to a single-trans isomer of each oPE.

This Strans state is not unique: there are actually as many Strans states as there are equivalent

single-trans isomers for an oPE and each ethynylene group allows to get two equivalent single-

trans isomers. They are mixed with each other and cross which is reflected by the presence of

a conical intersection high in energy. As the two states are of the same symmetry in the C2h

and in the Cs point group. They have very low oscillator strength values, one cannot use them
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6.3 Solvent effects and steady-state spectroscopy on oPE

In this section we now report on the influence of solvents on oPE. The polarisable continuum

model is used such that only the dielectric contribution is taken into account. We chose five

different environments defined by their relative dielectric constant εr: acetonitrile (εr = 35.69),

cyclohexane (εr = 2.02), dichloromethane (εr = 8.93), hexane (εr = 1.88) and in vacuo (εr = 1).

Results in vacuo are considered as being the reference. Table 6.4 gathers the relative energetic

positions of the ground-state minima according to those in vacuo, table 6.5 gathers the relative

energetic positions of the minima associated to the cumulenic isomer according to those in

vacuo, table 6.6 gathers the relative energetic positions of the minima associated to the trans

isomers according to those in vacuo and table 6.7 gathers the adiabatic transition energies (i.e.

the relative energies between the minimum in the ground-state and those of the first adiabatic

electronic excited states).

in vacuo acetonitrile dichloromethane cyclohexane hexane
DPA 0.000 -0.156 -0.133 -0.058 -0.052
BPEB 0.000 -0.223 -0.190 -0.083 -0.076
DPABPEB 0.000 -0.290 -0.247 -0.108 -0.098

Table 6.4: Energy shifts in eV between the energy minima of the ground states in vacuo and
with solvents.

in vacuo acetonitrile dichloromethane cyclohexane hexane
c-DPA 4.144 -0.303 -0.267 -0.133 -0.122
c-BPEB 3.624 -0.276 -0.245 -0.127 -0.116
c-DPABPEB 3.376 -0.227 -0.203 -0.107 -0.100

Table 6.5: Adiabatic transition energies in eV of oPE in vacuo between the ground state energy
minima and the first optically active state energy minima, and energy shifts of the adiabatic
energies between the ones in vacuo and the ones in solvent.

in vacuo acetonitrile dichloromethane cyclohexane hexane
t-DPA 3.716 +0.025 +0.021 +0.009 +0.007
t-m-BPEB 3.685 +0.042 +0.036 +0.015 +0.014
peri t-DPABPEB 3.687
mid t-DPABPEB 3.652 +0.056 +0.047 +0.020 +0.016

Table 6.6: Adiabatic transition energies in eV of oPE in vacuo between the ground state energy
minima and the first optically inactive state energy minima, and energy shifts of the adiabatic
energies between the ones in vacuo and the ones in solvent.

From tables 6.4, 6.5, and 6.6, we observe that the solvents lower the relative value of the
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in vacuo acetonitrile dichloromethane cyclohexane hexane
c-DPA 4.144 3.841 3.877 4.011 4.021
c-BPEB 3.624 3.348 3.379 3.497 3.508
c-DPABPEB 3.376 3.149 3.173 3.270 3.276

t-DPA 3.716 3.585 3.604 3.667 3.671
t-m-BPEB 3.685 3.727 3.721 3.700 3.699
peri t-DPABPEB 3.687
mid t-DPABPEB 3.652 3.708 3.699 3.671 3.668

Table 6.7: Adiabatic transition energies in eV of oPE in solvent and in vacuo between the ground
state energy minima and the first optically active state energy minima (c-DPA, c-BPEB and c-
DPABPEB), and between the ground state energy minima and the first optically inactive state
energy minima (t-DPA, t-m-BPEB, peri t-DPABPEB and m-ctDPABPEB).

ground state minimum energies and the more the size of the system increases the more the sys-

tem is stabilised. Acetonitrile and dichloromethane have similar stabilisation effect on the oPE

as they have both high relative dielectric constants and cyclohexane and hexane have as well

similar stabilisation effect on oPE.

Similarly, the relative energies of the cumulenic isomers is stabilised by the solvent but the

c-DPA seems to be more stabilised due to the solvent than longer oPE.

The relative energies of trans isomers in solvent are higher than those in vacuo. However,

the variation is small: the highest is of +0.056 eV (m-t-DPABPE in acetonitrile) and the lowest

is +0.007 eV (t-DPA in hexane). So we may conclude that the solvent has not significant effect

on the relative energy of the trans minima.

The adiabatic transition energies of each oPE that are gathered in table 6.7 show that the

relative energetic position of the minima of each diabatic states is conserved. Concerning DPA,

the minimum of Sact is always higher in energy than the one of Strans and concerning BPEB and

DPABPEB, the Sact is always lower in energy than the one of Strans.

The absorption and emission spectra are gathered in appendix in figures 8.1, 8.2, 8.3, 8.4,

8.5, and 8.6. They are the spectra for the three oPE in solvent and in vacuo. Only absorption

and emission spectra between the ground state and the minimum associated to the cumulenic

isomer have been computed since the cumulenic isomers belong to optically active states while

the trans isomers belong to optically inactive states. As the adiabatic energies for each oPE

are similar between cyclohexane and hexane and between acetonitrile and dichloromethane, the
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spectra are gathered in the same plot. Since there are solvent effects on the relative energy of

the minima, we note that the first absorption and emission peak is shifted to higher wavelength

for an increase of the relative dielectric constant.

vibrational mode in vacuo acetonitrile cyclohexane dichloromethane hexane
DPA n◦56 2 185 2 193 2 163 2 194 2 192

BPEB
n◦87 2 020 1 986 2 008 1 992 2 010
n◦88 2 268 2 245 2 260 2 249 2 260

DPABPEB
n◦118 2 155 2 128 2 145 2 132 2 146
n◦119 2 155 2 134 2 146 2 136 2 147
n◦120 2 290 2 270 2 282 2 273 2 282

Table 6.8: Frequencies in cm−1 associated to the stretching vibrational mode of the ethynylene
groups of DPA, BPEB and DPABPEB.

No solvent effects are noticed on the vibrational progression for each absorption and emission

spectrum and so the ground state and the diabatic state Sact are characterised by the same

vibrational description. In table 6.8 are gathered the frequencies associated to the stretching

vibrational modes on the ethynylene groups of oPE. The stretching vibrational modes on the

ethynylene groups are the ones that drive the geometric deformation from the FC geometry

toward the cumulenic geometry for the three systems. We are then focused on the vibrational

mode n◦56 for DPA, n◦87 and n◦88 for BPEB, and n◦118, n◦119 and n◦120 for DPABPEB,

they are represented in figure 6.19. We see that the frequencies of these vibrational modes are

of the same order of magnitude within the five different environments (in vacuo, acetonitrile,

cyclohexane, dichloromethane and hexane), see table 6.8.

In conclusion, solvents have indeed effect on the systems, the higher is the dielectric constant,

the more stabilised is the cumulenic isomer but solvents seem not to have strong effect on

the stabilisation of the trans isomers. Moreover, the solvent has no effect on the vibrational

progression either in the ground state or in the first electronic adiabatic electronic excited state.

In the next sections, theoretical calculations are given in vacuo.
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mode n°118

mode n°120

mode n°119

mode n°87

mode n°88

mode n°56

Figure 6.19: Schematic representation of the stretching vibrational modes of DPA, BPEB and
of DPABPEB.
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6.4 Association of two oligophenylene ethynylenes

In this section, we study how we can provide a rational understanding for the potential energy

surfaces of molecular systems that can be described within the pseudofragmentation scheme

in which pseudofragments are two similar oPE or two oPE of different size. We are focused

on m-BPEB and m-DPABPEB, their pseudofragments are two DPA, and one DPA and one

BPEB, respectively. The prefix "m" for m-BPEB and m-DPABPEB refered to the meta position

between the two oPE. In a molecular system with two similar pseudofragments, there is no

excitation energy transfer (EET) because there is no excitation energy gradient [43] but one

can understand how the "localised-on-the-pseudofragment" diabatic states mix with each other.

In a molecular system with two different pseudofragments, there are two, non-equivalent by

symmetry, equilibrium geometries that are associated to two minima of different energies and

belong to two different "localised-on-the-pseudofragment" diabatic states. Since the two diabatic

states are not equivalent and so they do not lie at the same energy, m-DPABPEB is the smallest

molecular entity in which EET can occur due to an excitation energy gradient.

Below, the potential energy surfaces of m-BPEB and of m-DPABPEB are characterised

and studied with the use of the information we have on the potential energy surfaces of DPA

and BPEB.

6.4.1 Association of two equivalent oPE: the case of m-BPEB

m-BPEB has been deeply studied in ref. [43] for which the pseudofragmentation scheme has been

explained. The information from ref. [43] on the pseudofragmentation scheme and the potential

energy surface are now recalled and expanded. The pseudofragment scheme of m-BPEB are

represented in figure 6.20

+

 

weak interactions

Pseudofragmentation scheme:

=

Figure 6.20: Pseudofragmentation scheme of m-BPEB into two DPA that are weakly intersecting
together.

The first two optically active states of m-BPEB in the C2v point group (11B2 and 11A1)
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m-BPEB DPA
min Sact 11A′ : 4.123 11B1u : 4.144

γ = 127.90◦ | γ = 232.02◦ γ = 127.89◦ | γ = 232.11◦

min Strans 11A” : 3.728 | 11A” : 3.726 11Au : 3.716

TS C2v
11A1 : 4.123 −
11B2 : 4.247 −

Qxm−BPEB
pf 11A1/1

1B2 : 4.288 −

Qxm−BPEB
cu/tr

γ = 151.80◦ | γ = 208.12◦ γ = 152.32◦

11A”/11A′ : 4.437 | 11A”/11A′ : 4.440 11Bu/1
1Au : 4.444

Table 6.9: Relative energies (in eV), state symmetries and γ values associated to minima (min),
1st-order saddle points (TS) and conical intersections (Qx) of m-BPEB and DPA.

are both delocalised states and they involve electronic excitations between the frontier orbitals

and the next pair (HOMO-1, HOMO, LUMO and LUMO+1). We will call them the four fron-

tier orbitals for simplicity. The four near-frontier orbitals are gathered in figure 6.21. At the

ground-state equilibrium geometry, 11B2 is the first optically active state and lies at 4.429 eV.

Its oscillator strength is f = 1.71 and this state is characterised by two electronic transitions (the

weight of the electronic excitations are given next within brackets): HOMO→LUMO+1 (0.43)

and HOMO-1→LUMO (0.51). The second optically active state (f = 0.37) is the 11A1 state

and lies at 4.473 eV. This state is mainly characterised by two electronic transitions such that

HOMO→LUMO (0.76) and HOMO-1→LUMO+1 (0.16), see figure 6.21. In the C2v point group,

the lowest energy-points of these two states are associated with two respective transition states.

The two transition states will be now referenced as TSA1
and TSB2

. They are localised at 4.123

eV and 4.247 eV, respectively (see table 6.9). It can then be defined two diabatic states that

match with the 11B2 and the 11A1 states, respectively. They are labelled SA1
and SB2

and they

cross at 4.288 eV minimum-energy CoIn in the C2v point group. The CoIn is labelled Qxm−BPEB
pf

(see table 6.9). Since these delocalised diabatic states are characteristics of m-BPEB, one cannot

find similar diabatic states for the system DPA then table 6.9 shows energy values in the rows

"TS C2v" and "Qxm−BPEB
pf " for the system m-BPEB only.

At TSA1
and TSB2

, the two density-based descriptors have been calculated, we get: φS(TSB2
) =

0.86, χ(TSB2
) = 0.36 and φS(TSA1

) = 0.87, χ(TSA1
) = 0.35. Since the two adiabatic electronic

excited states are combinations of single excitations among the four frontier orbitals that are
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delocalised over the whole system, the overlap density-based descriptor φS is close to 1 for both

states. The net charge density-based descriptor χ is low for both adiabatic electronic excited

state because the electronic excitation occurs on the whole system and so the displaced charge

is delocalised over the whole molecular system.

HOMO -1

HOMO

LUMO

LUMO +1

Figure 6.21: The four near-frontier orbitals at the ground state equililbrium geometry for m-
BPEB.

The conical intersection Qxm−BPEB
pf has been characterised in section 5.2. The branching

space is defined such that the
−−→
GD vector preserves the C2v point group. Since the

−−→
GD vector

conserves the group representation, it is totally symmetric (A1). The direction of the
−−→
GD vector

is the direction that swaps the symmetry between the two adiabatic electronic excited states

(11A1 and 11B2). In section 5.2, it has been observed that this direction swaps the oscillator

strength and the values of the density-based descriptors as well. The diabatic states SA1
and

SB2
conserve then the electronic properties that are associated to the oscillator strength and the

density-based descriptors. The
−−→
DC vector lies in the direction where the two adiabatic electronic

excited states couple the most. The derivative coupling direction is the one that breaks the in-

plane symmetry of the system and leads to the Cs point group. In this point group, the first two

adiabatic electronic excited states are 11A′ and 21A′. Due to the symmetry of the states, the
−−→
DC vector is B2. The first adiabatic electronic excited state is characterised by two equivalent

minima where each minimum is associated to locally excited states respectively on the right or

on the left of the system. The Lewis structure at the equilibrium geometry of the locally excited
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states are such that one of the two ethynylene group of the branches has cumulenic bonds and

the two phenyls have quinoidal shape while the ethynylene group on the other branch remains

unchanged. The equilibrium geometry of these two equivalent minima are labelled c-m-BPEB

(see figure 6.22).

m-BPEB c-m-BPEB

ot-m-BPEBit-m-BPEB

Figure 6.22: Lewis structures at the equilibrium geometry of the ground state (m-BPEB) and
of the first adiabatic electronic excited state (c-m-BPEB, it-m-BPEB and ot-m-BPEB).

The pseudofragmentation scheme for m-BPEB has been explained in ref. [43] and has been

developed in the general introduction (see chapter ). The sum and the difference of the HOMO-1

and HOMO (LUMO and LUMO+1 respectively) give localised molecular orbitals on either of the

two branches of m-BPEB. They are similar to the HOMO and LUMO associated to c-m-BPEB.

The attachment and detachment densities have been computed at the geometries associated

to TSB2
, TSA1

and c-m-BPEB. We see that both of the densities are very alike for the two trans-

ition states because they result from a combination of the four near-frontier orbitals that are

very similar for the two transition states. Computing the sum and the difference of the attach-

ment and detachment densities would not give us localised sum and difference densities since the

attachment and detachment densities are similar up to a phase so it would give an almost vanish-

ing density (for the difference) and a non-zero density (for the sum). However, the attachment

and detachment densities for c-m-BPEB are localised on the branch that has adopted the cu-

mulenic and quinoidal shape concerning the ethynylene group and the two phenyls (see fig. 6.23).

The similarities between the isomers c-m-BPEB and c-DPA are encountered with the shape

of the localised HOMO/LUMO on the left or right branch of m-BPEB and the HOMO/LUMO
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detachment TSB
2

attachment TSB
2

detachment c-mBPEB

attachment c-mBPEB

detachment TSA1

attachment TSA1

Figure 6.23: Attachment and detachment densities of the transition states TSB2
, TSA1

and of
the equilibrium geometry in the first adiabatic electronic excited state in the Cs point group.

of DPA and with the relative energy values as well. The relative energy of the two equivalent

minima lies at 4.123 eV and the cumulenic isomer of DPA is associated to a relative energy of

4.144 eV. m-BPEB behaves in fact in the region of the cumulenic equilibrium geometry much as

c-DPA. The two density-based descriptors computed for c-m-BPEB and c-DPA give the same

value as well: φS(cBPEB) = 0.86, χ(cBPEB) = 0.36 and φS(cDPA) = 0.86, χ(cDPA) = 0.36.

Since there are two equivalent cumulenic isomers, one can define two equivalent diabatic states

which minima correspond to the minima of the 11A′ state and are labelled Sact as it has been

done in subsection 6.2.2 for DPA, BPEB and DPABPEB. Eventhough m-BPEB is composed

of 36 atoms which form two ethynylene groups and three phenyls, its cumulenic isomer cannot

be compared to the cumulenic isomer of BPEB because the cumulenic bonds are delocalised

over the whole system (for BPEB) while it is limited to only one branch of m-BPEB due to

the meta position of the ethynylene group. Such a difference between the two systems leads to

the fact that the two cumulenic isomers are associated to the relative energy values: 4.123 eV

(c-m-BPEB) and 3.624 eV (c-BPEB). A schematic representation of the potential energy surface

of the first two adiabatic electronic excited states of m-BPEB and of the two diabatic states that

are localised on the pseudofragments in the Cs point group is given in figure 6.24.

In figure 6.25 are superimposed the absorption and emission spectra of m-BPEB and DPA

from the ground state toward the first optically active state. Eventhough there is a small shift

toward higher wavelengths according to the spectra of m-BPEB, we see that the vibrational

progression of the two spectra is conserved and that the first peak associated to the 0-0 transition

at 307 nm is present in both spectra. In ref. [152], Chu et al have shown that the experimental
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S1

E

Q

S2

Diabatic states associated 

to the Lewis structure

Diabatic states associated 

to the Lewis structure

Figure 6.24: Schematic representation of the first two singlet states (S1 and S2) and of the two
diabatic states localised on the pseudofragments of m-BPEB.

absorption and emission spectra do not overlap because the 0-0 transition seems almost forbidden

apparently. However the first most intense peak in the experimental absorption spectrum is

localised at 301 nm while the first most intense peak in the experimental emission spectrum is

at 327 nm. The first intense peak of the absorption spectrum seems to be very similar to the one

in our theoretical absorption spectrum which allow us to think that the 0-0 transition is allowed

according to the absorption but is forbidden or weakly allowed concerning the emission. Work

is in progress to explain such a Stokes-shift between the two spectra.
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Figure 6.25: Theoretical absorption and emission spectra of m-BPEB in vacuo within the Franck-
Condon and harmonic approximations.

Since c-m-BPEB behaves as c-DPA, there are equilibrium geometries in the first adiabatic

electronic excited state that are associated to single-trans isomers. Since the two ethynylene

groups are equivalent by symmetry, each of them can be trans-bent while the second ethynylene
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group remains unaltered. However, due to symmetry reasons, the four single-trans isomers are

not equivalent as it has been explained for BPEB.

An inward single-trans bending (leading to the isomer it-m-BPEB, see fig. 6.26) is different

from the outward single-trans bending (leading to the isomer ot-m-BPEB, see fig. 6.26). But

an inward (resp. outward) single-trans bending on the ethynylene group on the left or on the

right are equivalent.

The isomer ot-m-BPEB is located at 3.728 eV with a bending angle of γ = 127.90◦ and the

it-m-BPEB isomer is located at 3.726 eV with a bending angle of γ = 232.60◦. The trans isomer

of DPA, t-DPA, is defined by a relative energy of 3.716 eV and a bending angle of γ = 127.89◦

(see table 6.9). First of all we see that the relative energies of the three different isomers differ

from only thousandth of eV. Then the variation of the trans bending angle is such that:

• ot-m-BPEB: ∆γ =| γ(c-mBPEB) − γ(ot-mBPEB) |=| 180.00◦ − 127.90◦ |= 52.10◦

• it-m-BPEB: ∆γ =| γ(c-mBPEB) − γ(it-mBPEB) |=| 180.00◦ − 232.60◦ |= 52.60◦

• t-DPA: ∆γ =| γ(cDPA) − γ(tDPA) |=| 180.00◦ − 127.89◦ |= 52.11◦

The variation of the trans-bending angle from the cumulenic isomer differ from only tenth

of degrees. The density-based descriptors of the three single-trans isomers are gathered in table

6.10.

t-DPA ot-m-BPEB it-m-BPEB
χ 0.73 0.73 0.73
φS 0.54 0.54 0.54

Table 6.10: Density-based descriptors computed at the equilibrium geometries of the single-trans
isomers t-DPA, ot-m-BPEB and it-m-BPEB.

From table 6.10 we see that the three different isomers are described by the same value.

Such similarity between the single-trans isomers of DPA and m-BPEB allows us to define as we

did in subsection 6.2.3, diabatic states which minima are associated to the single-trans isomers

of m-BPEB. We define the two diabatic states itStrans and otStrans which respective minima

are associated to it-m-BPEB and ot-m-BPEB. One has to notice that there are actually two

equivalent itStrans and otStrans diabatic states because each of the two ethynylene groups on the

left and right branches can be trans-bent.
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Rigid scans have been performed on m-BPEB and are gathered in figure 6.26. Two rigid

scans have been performed along the single-trans bending angle at one ethynylene group of

m-BPEB and DPA at their equilibrium geometries in their ground state (scan a) and b) in fig.

6.26) and at their cumulenic equilibrium geometry in their first adiabatic electronic excited state

(scan c) and d) in fig. 6.26).

In the scans a) and c), only the 11Bu state energy is plotted in blue with dashed line while

the three first Au state energies are plotted in blue with plain line as in fig. 6.9. In the rigid

scan a), the geometry at γ = 180◦ corresponds to the equilibrium geometry in the ground state

and in the rigid scan c), the geometry at γ = 180◦ corresponds to the equilibrium geometry of

the cumulenic isomer c-DPA. Both of these geometries belong to D2h point group. The trans

bending coordinate γ involves a displacement of B3g symmetry and so all of the geometries

obtained, except the two at γ = 180◦, belong to C2h point group. The 11Bu state at γ = 180◦

is then obsviously of B1u symmetry and corresponds to the FC-point in scan a). We know from

subsection 6.2.1 that the FC-point of DPA lies at 4.476 eV and the minimum of the 11B1u state

lies at 4.144 eV. We see in figure 6.26 that the 11Au state crosses the 11Bu state at (γ = 152◦,

4.827 eV) in scan a) and at (150◦, 4.523 eV) in scan c). The two minima in the rigid scans are

located at γ = 133◦, 4.381 eV for scan a) and at (γ = 132◦, 4.155 eV) for scan c). These two

minima are actually apparent minima but not global minima associated to the trans isomer of

DPA, t-DPA (see table 6.9). Although the difference of reference geometries for these scans, they

look much alike and one can get a qualitative picture of the exact potential energy surface of

DPA along the trans bending coordinate.

In scans b) and d), the first two optically active states are plotted in brown with dashed line

(11A′ and 21A′ in the Cs point group and 11B2 and 11A1 in the C2v point group). The optically

inactive states of 1A” in the Cs point group are plotted in brown with plain line.

The rigid scan b) is performed with the ground state equilibrium geometry as a reference

geometry. The ground state equilibrium geometry belongs to C2v and so at γ = 180◦ the two

optically active states are 11B2 and 11A1. Along the trans bending displacement, it appears

that there is an avoided crossing between the 11B2 and 11A1 states at γ = 157◦. Since a trans

bending displacement lower than 180◦ or higher than 180◦ leads to two different by symmetry

geometries, that is why there is no avoided crossing between the two optically active states for

γ values higher than 180◦. However we see on the scan b) that there are two crossings between

the 11A′ and the 11A” states at γ = 152◦ and γ = 209◦ and the two apparent minima of scan b)
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6.4.2 Association of two different oPE: the case of m-DPABPEB

The pseudofragmentation scheme

At the ground state 
equilibrium geometry

At the 1st excited state 
equilibrium geometry

At the 2nd excited state 
equilibrium geometry

Figure 6.28: Lewis structures at the equilibrium geometries in the ground state, in the first and
in the second optically active electronic states.

The system labeled m-DPABPEB is an oPE and its Lewis structure in the ground state is

represented on the left of figure 6.28. This sytem can be pseudofragmented into two smaller

oPE. The two pseudofragments are DPA and BPEB (see fig. 6.29).

+

 

weak interactions

Pseudofragmentation scheme:

=

Figure 6.29: Pseudofragmentation scheme ofm-DPABPEB into DPA and BPEB that are weakly
interacting together.

m-DPABPEB BPEB DPA
min SDPAact 21A′ : 4.170 − 11B1u : 4.123

min SBPEBact 11A′ : 3.606 11B1u : 3.624 −

Qxpf 11A′/21A′ 4.293 − −

γ = 127.73◦ | γ = 232.20◦ −
min mid t-SBPEBtrans 11A” : 3.690 | 11A” : 3.693

γ = 127.97◦ −

γ = 127.98◦ | γ = 232.01◦ 11A” : 3.685 −
min peri t-SBPEBtrans 11A” : 3.690 | 11A” : 3.691 −

Table 6.11: Relative energies (in eV), state symmetries and γ values associated to minima (min),
1st-order saddle point (TS) and conical intersections (Qx) of m-DPABPEB and DPA.
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As it has been developed for m-BPEB, m-DPABBPEB possesses the same characteristics

as it pseudofragments. There is an equilibrium geometry in the first adiabatic electronic excited

state (11A′) which is characterised by the Lewis structure that is represented in the middle

of fig. 6.28. The system is then characterised by cumulenic groups and quinoidal phenyls on

the branch that is associated to the BPEB pseudofragment. This is an optically active state

and corresponds to an HOMO/LUMO excitation that is localised on the BPEB pseudofragment

(see fig. 6.30). The weight of the HOMO/LUMO excitation is 0.91. One can then define the

diabatic state SBPEBact and its minimum lies at 3.606 eV (see table 6.11). It is the same order of

magnitude as the minimum of the Sact of BPEB (3.624 eV, see table 6.11). The attachment and

the detachment densities are computed at the equilibrium geometry of this state and are shown

in figure 6.31. We see that the two densities are very alike as those that have been computed at

the equilibrium geometry of the Sact of BPEB (see fig. 6.5). The first optically active state of

m-DPABPEB shows not only similarities according to the transition energies, attachement and

detachment densities, HOMO/LUMO transition and Lewis structure with the optically active

electronic state of BPEB, it shows similar vibrational progressions according to the theoretical

absorption and emission spectra (see 6.32).

Similarly, we can define a second diabatic electronic state SDPAact that is associated to a local

excitation at the DPA pseudofragment of m-DPABPEB. The corresponding Lewis structure is

represented on the right of figure 6.28. It is characterised by a cumulenic group and two quinoidal

phenyls on the DPA pseudofragment branch. Its minimum lies at the same order of magnitude

as the one of the Sact of DPA (4.170 eV for m-DPABPEB and 4.123 eV for DPA, see table

6.11). However, the equilibrium geometry of a such cumulenic isomer does not exist in the first

adiabatic electronic state but it exists in the second adiabatic electronic excited state (21A′).

A schematic representation of the first two adiabatic electronic excited states and of the two

diabatic states that are localised on the pseudofragments are shown in figure 6.33.

The equilibrium geometry in the second adiabatic electronic excited states is characterised

by transitions between the four frontier orbitals (see fig 6.30): HOMO − 1 → LUMO (0.09),

HOMO → LUMO + 1 (0.10), HOMO − 1 → LUMO + 1 (0.30) and HOMO → LUMO (0.44).

Such mixing between the near orbitals frontiers shows that this state at this equilibrium geometry

cannot be characterised by a single HOMO/LUMO excitation onto the DPA pseudofragment

branch of m-DPABPEB. However, the NTO of the excitation have been computed and gathered
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HOMO -1

HOMO

LUMO

LUMO +1

HOMO

LUMO

1st singlet state 2nd singlet state

Figure 6.30: Frontier orbitals computed at the equilibrium geometry in the first and in the second
optically active electornic state of m-DPABPEB.

detachment

attachment

detachment

attachment

1st singlet state 2nd singlet state

Figure 6.31: Attachment and detachment densities of m-DPABPEB computed at the equilibrium
geometry of the SBPEBact diabatic state and the SDPAact diabatic state.

on figure 6.34. We see that the first pair of natural orbitals that characterise the electronic

excitation are similar to the HOMO/LUMO of DPA (see fig. 6.2). The singular value of the first

pair is 0.85 while the singular value of the second pair is 0.1 so we can assume that only the first
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Figure 6.32: Absorption and emission spectra of m-DPABPEB between the ground state min-
imum and the first optically active electronic state.
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Figure 6.33: Schematic reprensentation of the first two adiabatic electronic excited states (11A′

and 21A′) of m-DPABPEB and of the two diabatic states that are localised on the pseudofrag-
ments.

pair of NTO characterise mainly the electronic excitation. The shape of the NTO of the second

optically active state are almost identical to the shape of the attachment and the detachment

densities (see fig. 6.31).

Figure 6.34: Natural transition orbitals computed at the equilibrium geometry of the second
optically active state.
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Finaly, we see that the vibrational progression of the second optically active state is similar

as well to the vibrational progression of the first optically active state of DPA (see fig. 6.35).

However, we see that some transitions are less significant for m-DPABPEB than they are for

DPA. For instance, the transition at 380 nm for m-DPABPEB that corresponds to the transition

1191
0 and at 387 nm for DPA and it corresponds to the transition 561

0. The normal mode n◦119

for m-DPABPEB and n◦56 correspond to a stretching onto the ethynylene groups. They are

shown in figure 6.36. Such a decrease of the intensity can be explained by the fact that the

second adiabatic electronic excited states is defined by more thant one electronic excitation and

so it cannot be explicitly defined as a HOMO/LUMO excitation.
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Figure 6.35: Absorption and emission spectra of m-DPABPEB between the ground state min-
imum and the second optically active electronic state.

mode n°56

mode n°119

Figure 6.36: Normal mode n◦56 of DPA and n◦119 of m-DPABPEB.

The second adiabatic electronic excited state of m-DPABPEB is not described by a single elec-

tronic excitation onto the DPA pseudofragment branch but the NTO, the attachment and de-

tachment densities show that contributions onto the DPA pseudofragment branch remain the

most significant.

We can then assume that the first two optically active states of m-DPABPEB can be defined as
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two localised transitions on the BPEB pseudofragment branch and on the DPA pseudofragment

branch respectively. We have defined then two diabatic states: SBPEBact and SDPAact . The CoIn

between the first and the second adiabatic states lies at 4.293 eV (see table 6.11). Since the 21A′

state results of a mixing of single excitations, we can assume that the two diabatic states are

strongly mixed with each other. It is due to the fact that the energy minimum in the 21A′ (at

4.170 eV) state is close to the conical intersection between the two states (see table 6.11).

Single-trans isomers of m-DPABPEB

According to the pseudofragmentation scheme m-DPABPEB behaves as a DPA and a BPEB

that are weakly interacting together. We know that there are two equivalent DPA trans isomers

and four equivalent BPEB single-trans isomers. All of the single-trans isomers of m-DPABPEB

are not equivalent by symmetry. m-DPABPEB possesses three ethynylene group and so there are

six non-equivalent single-trans isomers. The Lewis structure associated to the six single-trans

isomers are gathered in figure 6.37.

No equilibrium geometry has been found in the first and in the second adiabatic elec-

tronic excited states associated to trans isomer which the DPA pseudofragment branch is trans-

bent. This may be due to the fact that the diabatic state SDPAact that is localised on the DPA

pseudofragment branch does not correspond to a single HOMO/LUMO excitation onto the DPA

pseudofragment branch so it is difficult to obtain an equilibrium geometry for which the DPA

pseudofragment branch is trans-bent. However we still consider two non-equivalent diabatic

state SDPAtrans which are optically inactive and are defined by the two Lewis structures on the top

of figure 6.37.

Four equilibrium geometries associated to the four non-equivalent single-trans for which

one of the two ethynylene groups of the BPEB pseudofragment branch has been trans-bent,

have been found. Since the four single-trans isomers are non-equivalent the γ trans-angle and

the relative energies are not the same but yet they are very similar (see table 6.11 and figure

6.37). Four non-equivalent diabatic states are considered SBPEBtrans , they are optically inactive and

correspond to the four Lewis structures that are in the bottom of figure 6.37.
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Non-equivalent single-trans isomers

on the BPEB pseudofragment branch

Non-equivalent single-trans isomers 

on the DPA pseudofragment branch

�=127.73°, 3.690 eV �=232.20°, 3.693 eV

�=127.98°, 3.690 eV �=232.01°, 3.691 eV

Figure 6.37: Non-equivalent single-trans isomers of m-DPABPEB
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four equivalent trans minima of the rigid scan a) in fig. 6.39 which are localised at 133◦, 4.276 eV.

We see that for the rigid scans of m-DPABPEB, in both cases of a local excitation on the

DPA pseudofragment branch or on the BPEB pseudofragment branch, the diabatic state SDPAact

is always higher in energy than the SBPEBact diabatic state. In addition to that we see that both

diabatic states (SBPEBact and SDPAact ) are crossing the first optically inactive state which minima

are associated to the single-trans isomers. In the case of a rigid scan which reference geometry

is the equilibrium geometry at the 21A” state (the DPA pseudofragment branch is characterised

by its cumulenic isomer Lewis structure), the optically inactive diabatic states are SDPAtrans. In the

case of the two rigid scans which reference geometry is the equilibrium geometry at the 11A′ state

(the BPEB pseudofragment branch is characterised by its cumulenic isomer Lewis structure), the

optically inactive diabatic states are SBPEBtrans .

6.5 Association of three oligophenylene ethynylene

The pseudofragmentation of mb-DPABPEB

Thanks to the C2v symmetry this case will be, in fact, simpler than the previous one despite a

larger size. In the introduction (chapter ), details on the pseudofragmentation scheme of mb-

DPABPEB are given in fig. 5. For simplicity, this figure is put again in this section (see fig.

6.40). In section 6.4, one has compared the relative energies, the geometries and the potential

energy surfaces of oPE with their pseudofragments. Here, we are going first to validate the dif-

ferent pseudofragmentation schemes in fig. 6.40, and then an EET mechanism will be suggested.
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mb-DPABPEB m-DPABPEB m-BPEB BPEB DPA
SDPAact 11A′: 4.142 21A′: 4.170 11A′: 4.123 - 11B1u: 4.144

SDPAtrans
11A”: 3.737

-
11A”: 3.726

- 11Au: 3.716
11A”: 3.736 11A”: 3.728

SBPEBact 11A1: 3.591 11A′: 3.606 - 11B1u: 3.624 -

SBPEBtrans

11A” : 3.699
11A” : 3.690

- 11A” : 3.685 -
11A” : 3.693

11A” : 3.694
11A” : 3.690
11A” : 3.691

Table 6.12: Relative energies (in eV) and state symmetries of significant features of the potential
energy surfaces of mb-DPABPEB, m-DPABPEB, m-BPEB, BPEB and DPA.
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DPA DPA

BPEB

mb-DPADPEB

m-DPABPEB

m-BPEB

Scheme 1

Scheme 2 Scheme 3

Figure 6.40: The pseudofragmentation schemes of mb-DPABPEB.
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The ground state equilibrium geometry of mb-DPABPEB belongs to the C2v point group.

The equilibrium geometry is associated to the Lewis structure that is represented on the left in

figure 6.41.

At the ground state
equilibrium geometry

At the 1st excited state
equilibrium geometry

At the 2nd excited state
equilibrium geometry

Figure 6.41: Lewis structures at the equilibrium geometries of the ground state, the first and the
second optically active electronic states for the molecular system mb-DPABPEB.

The first optically active state which minimum exists in the C2v point group belongs to the

11A1 state and lies at 3.591 eV. This energy minimum is at the same order of magnitude than

the energy minima of the first optically active states of m-DPABPEB and BPEB: they lie at

3.606 eV and 3.624 eV (see table 6.12). The Lewis structure of the equilibrium geometry at this

energy minimum is represented in the middle in figure 6.41. We see that this Lewis structure is

composed of two cumulenic groups and three quinoidal phenyls that lie onto the BPEB pseudo-

fragment branch while the structure of the two DPA pseudofragment branches remain similar

to their strucures when mb-DPABPEB is at the ground state equilibrium geometry. Moreover

the two molecular orbitals HOMO/LUMO have been computed at the minimum of the first

three optically active states of mb-DPABPEB, m-DPABPEB and BPEB. They are gathered in

figure 6.42. The weight of the HOMO/LUMO excitation are the numbers on the top of each

LUMO. We see that the weight of the excitation is high for the three systems and so they are

characterised by a HOMO→LUMO excitation that is localised only the BPEB pseudofragment

branch (mb-DPABPEB and m-DPABPEB) and on the whole system (BPEB). As before, we

can then define a diabatic state SBPEBact that is associated to a local excitation on the BPEB

pseudofragment branch of mb-DPABPEB.

Gabriel Breuil (ICGM-CPTM) Dendrimers and their building blocks 152



Breuil - Time-dependent topology of the molecular electron density

LUMO

HOMO

0.83 0.91 0.95

Figure 6.42: HOMO/LUMO of mb-DPABPEB (on the left), m-DPABPEB (in the middle), and
BPEB (on the right) computed at the equilibrium geometry in the first optically active state.

In the Cs point ground, the second optically active state of mb-DPABPEB has an energy

minimum that lies at 4.142 eV and belongs to the 11A′ electronic excited state. This energy min-

imum is at the same order of magnitude as the energy minima of the 21A′ state of m-DPABPEB

(4.170 eV), the 11A′ state of m-BPEB (4.123 eV) and the 11Au state of DPA (4.144 eV), see

table 6.12. The Lewis structure associated to the equilibrium geometry of the energy minimum

of the 11A′ state of mb-DPABPEB is represented on the right in figure 6.41. We see that the

structure is defined by a cumulenic group and two quinoidal phenyls on a single DPA pseudo-

fragment branch while the other DPA and the BPEB pseudfragment branches remain similar

to their structure at the ground state. The 11A′ state at this equilibrium geometry is charac-

terised by many excitations between the four frontier orbitals (HOMO-1, HOMO, LUMO and

HOMO+1). They are gathered on figure 6.43. The main excitations are HOMO → LUMO

(0.44), HOMO − 1 → LUMO + 1 (0.19) and HOMO − 1 → LUMO (0.16). The number into

the brackets are the weight of the excitation. The four frontier orbitals are delocalised over the

molecular system but if we compute the NTO (see fig. 6.43), we observe that only the first pair

is dominant with a singular value of 0.85. The two NTO are localised only onto the DPA pseudo-

fragment branch which is defined by a cumulenic Lewis structure. In addition to that we see that

the detachment and attachment densities are localised only on the same DPA pseudofragment

branch. So even if this state cannot be characterised by a single HOMO/LUMO excitation, we

still can define as before a second diabatic state SDPAact that is associated to a local excitation on

the DPA pseudofragment branch of mb-DPABPEB.
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Figure 6.43: The four frontier orbitals (HOMO-1, HOMO, LUMO and LUMO+1), the first pair of
NTO, and attachment and detachment densities of mb-DPABPEB computed at the equilibrium
geometry of the 21A′ state.

A schematic representation of the 11A1, 21A′ and the 31A′ states and the associated diabatic

states SDPAact and SBPEBact is shown in figure 6.44. There is a charge transfer state between the

second and the fifth adiabatic electronic states in the Cs and in the C2v point group. Since charge

transfer states are not well described in TDDFT calculations, we have not characterised this

charge transfer state.

Scheme 2 shows the possibility to consider mb-DPABPEB as BPEB and m-BPEB weakly

interacting together. In the previous paragraph, we have discussed the fact that mb-DPABPEB

and m-BPEB are both characterised by a diabatic state that is associated to a localised transition

onto the DPA pseudofragment branch. However we have studied in subsection 6.4.1 that the

first two optically active states in the C2v point group of m-BPEB are two delocalised states and
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Figure 6.44: Schematic representation of the first adiabatic potential energy surfaces of mb-
DPABPEB and the diabatic excited states SDPAact and SBPEBact .

are of B2 and A1 symmetry. They are characterised by two transition states TSA1
and TSB2

at 4.289 eV and 4.247 eV. Like m-BPEB, there are two delocalised adiabatic electronic excited

states for mb-DPABPEB that correspond to a combinaison of virtual and right NTO that have

similar shape than the four orbital frontier of m-BPEB (see fig. 6.45). There are the third

and the fourth adiabatic electronic excited states and they are of B2 and A1 symmetry. As for

m-BPEB, the B2 state of mb-DPABPEB possesses a transition state that lies at 4.222 eV while

the A1 state possesses an energy minimum at 4.319 eV but it lies at the same order of magnitude

than TSA1
of m-BPEB.

The schemes are not only valid on the optically active states. Indeed, the various single-

trans isomers of mb-DPABPEB have been investigated. The Lewis structure that characterises

the various single-trans isomers of mb-DPABPEB are gathered in figure 6.46.

There are two non equivalent single-trans isomers for which the ethynylene group at the
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left

right

left

right

LUMO+1 LUMO

HOMO HOMO-1

Figure 6.45: The four frontier orbitals of m-BPEB and the first two pairs of natural transition
orbitals of mb-DPABPEB computed at the ground state equilibrium geometry.

DPA pseudofragment branch has been trans-bent. We see in table 6.12 that relative energy

associated to these two isomers is similar to the one of the isomers of m-BPEB and of DPA. and

so we can define once again the diabatic states SDPAtrans for the system mb-DPABPEB.

Considering the single-trans isomers for which one ethynylene group of the BEPB pseudo-

fragment branch has been trans-bent, there exist two pairs of equivalent single-trans isomers.

We see in table 6.12 that relative energies associated to these two pairs of equivalent isomers are

similar to the one of the isomers of m-DPABPEB and of BPEB. and so we can define once again

the diabatic states SBPEBtrans for the system mb-DPABPEB.

To conclude this first part, the three pseudofragmentation schemes in figure 6.40 have been

confirmed and so one can expect to detect similar topography between the potential energy

surfaces of mb-DPABPEB and those of m-DPABPEB, BPEB and DPA. We can then draw a

Jablonsky diagram of mb-DPABPEB which is built with the localised-on-the-pseudofragment

diabatic states (see fig. 6.47).
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eq. by sym.

eq. by sym.

Figure 6.46: Lewis structures at the equilibrium geometries of the first optically inactive elec-
tronic states for the molecular system mb-DPABPEB.
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Figure 6.47: Jablonsky diagram of mb-DPABPEB that involves the localised-on-the-
pseudofragments diabatic states
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Rigid scans on mb-DPABPEB

The rigid scans in figure 6.48 have been performed from the reference geometries that are the

equilibrium geometries of the diabatic states SDPAact . They correspond to a localised excitation on

the DPA pseudofragment branch which is defined by a cumulenic structure. The Lewis structures

associated to the reference geometries are gathered in the same figure as the rigid scans. The ri-

gid scans a), b) and c) have been already studied in detail in previous subsections 6.2.4, 6.4.1 and

6.4.2. As a reminder: the dotted blue line corresponds for each of the rigid scans to the diabatic

states that are associated to the local excitation on the DPA pseudofragment branch. The plain

blue lines are optically inactive states for every systems. The two energy minima of the first

optically inactive state match with the single-trans diabatic states that are local single-trans-

excitation on the DPA pseudofragment branch. In the case of a oPE that can be pseudofragment

into at least two DPA (the case of m-BPEB and mb-DPABPEB) and if the electronic excitation

is localised onto one of the two DPA pseudofragment branches, the second optically active state

corresponds to a local excitation onto the other DPA pseudofragment branch. This electronic

state is labelled in dotted brown line for scan b) and d). The dotted red lines correspond to

local excitation onto the BPEB pseudofragment branch. The plain brown, green and dark lines

correspond to forbidden states of m-BPEB, m-DPABPEB and mb-DPABPEB, respectively.

We see on the scans a) to d) in fig. 6.48 that each state SDPAact crosses the first optically

inactive electronic state. The crossings are actually crossings between the SDPAact state and the

SDPAtrans state. The γ values of these crossings are gathered on table 6.14. For the systems DPA

and m-BPEB, the crossings involve the states 11A′ and 11A” while for the systems m-DPABPEB

and mb-DPABPEB they involve the states 21A′ and 11A”. We see that the crossings are localised

at the same order of magnitude. In the case of the scan c) and d), the state SBPEBact is the first

optically active state for both scans and then lie under the SDPAact state. So it crosses the first

optically inactive state for smaller γ values (in the case of γ > 180◦) and for higher γ values (in

the case of γ < 180◦).

The energy-minimised conical intersections between the SDPAact and the SDPAtrans states are

gathered in table 6.13.

To evaluate the mixing between the states Sact and Strans, the magnitude of the derivative

coupling vector is calculated and compared to the magnitude of the gradient difference vector.

In both tables 6.14 and 6.13, the magnitudes of the derivative coupling vector (|| −−→
DC ||) and of
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the gradient difference vector (|| −−→
GD ||) for each crossing are gathered in both tables. From the

results of the rigid scans and so from table 6.14 we see that for conical intersections between

the SDPAact state and the SDPAtrans state the magnitude || −−→
GD || is 0.09 Eha

−1
0 and 0.08 Eha

−1
0 , and

the magnitude || −−→
DC || is 0.04 Eha

−1
0 and 0.03 Eha

−1
0 which give a ratio ||−−→GD||

||−−→DC||
approximatively

equal to 2. Eventhough the magnitude of both vectors are different for the minimised crossings

11A′/11A” for DPA and m-BPEB in table 6.13, the ratio remains close to 2.

However from the ref. [43], we know that the two states 11B2/11A1 are strongly coupled

with each other and that is proved by the fact that || −−→
GD ||= 0.03 and || −−→

DC ||= 0.14, where the

ratio is equal to 0.2.

The coupling between the SDPAact state and the SDPAtrans state may be then interpreted such

that it is ten times weaker than the coupling between the 11B2 and the 11A1 states. Eventhough

it is a weaker coupling, it is a non-zero coupling. Such a weak coupling between these two states

can then explain why the cumulenic structure is observed predominantly after a photoexcitation

and few picoseconds after, the trans structure is observed predominantly in DPA studies [54].

The magnitude of the branching space vectors have been computed as well for the crossings

between the SDPAtrans and the SBPEBact states (see table 6.14). The magnitude of || −−→
GD || increases

and the magnitude of || −−→
DC || decreases which means that the coupling between the two states

decreases. It can be explained by the fact that the two states are associated to two localised

states onto two different pseudofragment branches.

Syst. γ || −−→
GD || || −−→

DC ||
DPA 11A′/11A” 152.00◦ 0.15 0.08

BPEB 11A′/11A” 148.00◦ 0.18 0.07

m-BPEB

11B2/11A1 - 0.03 0.14

11A′/11A”
151.88◦ 0.15 0.08
208.20◦ 0.15 0.08

Table 6.13: γ values and magnitudes of the branching space vectors in Eha
−1
0 at the conical

intersections between the SDPAact state and the SDPAtrans that have been minimised in energy by the
use of the merged algorithm.

The rigid scans a) to e) in figure 6.49 have been performed for the systems BPEB, m-

DPABPEB and mb-DPABPEB. The reference geometries are the equilibrium geometries in
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Syst. γ || −−→
GD || || −−→

DC ||
DPA 11A′/11A” 150.00◦ 0.09 0.04

m-BPEB 11A′/11A”
149.72◦ 0.08 0.04
210.73◦ 0.08 0.04

m-DPABPEB
11A′/11A”

150.83◦ 0.09 0.03
210.48◦ 0.09 0.03

21A′/11A”
148.92◦ 0.13 0.01
212.96◦ 0.13 0.02

11A′/11A”
150.83◦ 0.09 0.03

mb-DPABPEB
21A′/11A”

150.62◦ 0.09 0.04
210.91◦ 0.09 0.02

11A′/11A”
148.50◦ 0.13 0.01
213.18◦ 0.13 0.02

Table 6.14: γ values and magnitudes of the branching space vectors in Eha
−1
0 at the conical

intersections between the SDPAact state and the SDPAtrans on the rigid scans in figure 6.48.

DPABPEB. The plain red line in the scan a) correspond to optically inactive states of BPEB

while in scan b) and c) it corresponds to the first optically inactive states of m-DPABPEB where

the minima are associated to the rigid equilibrium geometries where the BPEB pseudofragment

branch has adopted a single-trans structure. The diabatic states associated to the single-trans

structure is labelled SBPEBtrans . The two dotted purple lines in the scans d) and e) are B2 and

the A1 singlet states in both cases that correspond to delocalised excitation onto the m-BPEB

pseudofragment branch on the mb-DPABPEB system. Else, the same caption as the one used

in the scans 6.48 is applied.

We see that in the five rigid scans the state SBPEBact is clearly the lowest optically active state for

any γ values and cross the SBPEBtrans states around γ = 142◦ and γ = 218◦.

The magnitude of the branching space vectors from the conical intersection of the rigid scans

are gathered in table 6.15. We see that the magnitude of || −−→
GD || is constant for every systems

(0.11 Eha
−1
0 ) and the magnitude of || −−→

DC || lie between 0.03 Eha
−1
0 and 0.04 Eha

−1
0 which leads

to a ratio equal approximatively to 4. According to the previous study, such value is equivalent

to a weak coupling between the SBPEBtrans and the SBPEBact states. Due to the weak coupling, since

the reference geometry is associated to a cumulenic structure onto the BPEB pseudofragment

branch and since the energy associated to these structures are lower than the minimum energy

of the single-trans structure, one can conclude that if the excitation is localised onto the BPEB
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Syst. γ || −−→
GD || || −−→

DC ||
BPEB 11A′/11A” 142.06◦ 0.11 0.03

Closest ethynylene to the shared phenyl

m-DPABPEB 11A′/11A”
141.61◦ 0.11 0.03
218.12◦ 0.11 0.03

mb-DPABPEB 11A′/11A” 141.49◦ 0.11 0.03

Furthest ethynylene to the shared phenyl

m-DPABPEB 11A′/11A”
141.69◦ 0.11 0.03
218.34◦ 0.11 0.04

mb-DPABPEB 11A′/11A” 141.33◦ 0.11 0.04

Table 6.15: γ values and magnitudes of the branching space vectors in Eha
−1
0 at the conical

intersections between the SDPAact state and the SBPEBtrans on the rigid scans in figure 6.49.

Since the coupling between the states SDPAact −SDPAtrans and between the states SDPAact −SBPEBtrans

is non zero, we can suggest a supplementary mechanism to the one that has been already sugges-

ted. Indeed, refs. [39–47] suggested that the EET along a PE-D is driven by stretching vibrations

on the ethynylene groups of the various pseudofragment of a PE-D. We suggest here that the

EET can also be driven by a trans-bending motion thanks to the wavepacket that is localised

onto the SDPAact diabatic state and can be transferred to the SDPAtrans diabatic state. Since the

SDPAtrans state is optically inactive there cannot be de-excitation through fluorescence. Then the

wavepacket can be transferred to the SBPEBact state since it is coupled with the previous optically

inactive state.

We thus propose a perhaps more complicated but richer de-activation mechanism involving

bright/bright and bright/dark crossings (see fig. 6.50). This awaits confirmation from dynamics

calulations.
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Excitation energy transfert

Figure 6.50: New de-activation mechanism that is involved in the TEE of mb-DPABPEB.
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Chapter 7

Conclusions and outlooks

The opto-electronic properties of phenylene ethynylene dendrimers have raised our attention.

The dendritic shape of these systems induces an excitation energy gradient which leads to an

excitation energy transfer from the periphery toward its core. A transfer mechanism has been

already suggested that would involve stretching of the ethynylene groups of PE-D. Within this

thesis, we tried to answer to the questions that are: "Is the stretching motion of the ethynylene

groups, the only motion that is involved in the EET?" and "how should we characterise the

adiabatic electronic excited states that are involved in the excitation energy transfer ?".

The smallest threefold phenylene ethynylene dendrimer is mbDPABPEB. It is the smallest

system with a node in which there is an excitation energy gradient. Thus it is an efficient model

to determine how the EET can occur along PE-D.

Ho et al [43] have suggested a pseudofragmentation scheme for mBPEB such that this sys-

tem behaves as two DPA which are weakly interacting. In the manner of this pseudofragment-

ation scheme we have studied mbDPABPEB according to three pseudofragmentation schemes:

mbDPABPEB behaves as two DPA and one BPEB which are weakly interacting, one mBPEB

and one BPEB which are weakly interacting, and one DPA and one mDPABPEB which are

weakly interacting.

To study mbDPABPEB we needed then to study first small oligophenylene ethynylenes and

association in meta position of two such oligophenylene ethynylenes to determine the validity of

the three pseudofragmentation schemes.

Computational tools have been defined to compare oligophenylene ethynylenes with each

other and to validate the pseudofragmentation schemes. Two density-based descriptors have

been used to characterise the adiabatic electronic excited states of oligophenylene ethynylenes.

The two descriptors inform us on the locality of the photoexcitation; there is the density-based
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descriptor φS which determines the overlap between the attachment and the detachment densit-

ies and there is the density-based descriptor χ which determines the net charge transferred in the

photoexcitation. For conical intersections, a merged algorithm has been written: It combines a

seam-energy optimisation algorithm and a software which computes a numerical branching space

along the seam. Such a merged algorithm had to be written because conical intersections of some

oligophenylene ethynylene involve electronic excited states of same symmetry and we needed to

find the geometry of lowest-in-energy conical intersections.

The latter computational tools were used in addition to natural transition orbital determin-

ation, oscillator strength determination and symmetry sorting of electronic states. These various

tools allow us to define diabatic states for each oligophenylene ethynylene. The Sπxπ∗

x
diabatic

state which describe a πxπ
∗
x transition onto the ethynylene groups is an optically active state

and the energy minimum of this diabatic state is associated to the equilibrium geometry of a

cumulenic isomer of oligophenylene ethynylene. The second diabatic state that has been defined

is an optically inactive state and is referred to as the Sπxπ∗

y
diabatic state. It corresponds to

a πxπ
∗
y transition onto a single ethynylene group and its energy minimum is associated to the

equilibrium geometry of a trans isomer such that the ethynylene group is trans-bent. The longer

is the oligophenylene ethynylene, the more ethynylene groups there are and so the more possibil-

ities there are to determine trans isomers where only one ethynylene group is trans-bent, either

clockwise or anticlockwise.

We found out that the energy minimum of the Sπxπ∗

x
state is lower than the energy minimum

of the Sπxπ∗

y
state only for DPA. It is the contrary for longer oligophenylene ethynylenes. The

ordering of these diabatic states in systems that can be pseudofragmented is conserved according

to the pseudofragment, i.e. the ordering of the diabatic states in oligophenylene ethynylenes.

So we suggested that in a case where the wave-packet is initially localised onto the diabatic

state Sπxπ∗

x
that describes the DPA pseudofragment branch of mbDPABPEB, a trans-bending

on the ethynylene group of this branch can occur thanks to a population transfer from the state

Sπxπ∗

x
toward the state Sπxπ∗

y
of the DPA pseudofragment branch. Then a population transfer

can occur from this previous Sπxπ∗

y
state toward the Sπxπ∗

x
state that describes the BPEB pseudo-

fragment branch. Such a population transfer is possible because the magnitude of the derivative

coupling vectors are non zero.

Very preliminary adiabatic (only on the first singlet state) quantum dynamics have been

performed but they were not very conclusive, they are not presented here in this thesis. However,
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non-adiabatic quantum dynamics have not been done to validate the excitation energy transfer

mechanism. Dynamical studies could be performed in the case of reduced-systems and would be

helpful to validate the suggested mechanism above in further studies.

In the very beginning of the general introduction, we have explained that one of the most

promising candidates in opto-electronic devices within the phenylene ethynylene dendrimers is

the nanostar. mbDPABPEB is only a pseudofragment among others in the pseudofragmentation

scheme of the nanostar but it is the first with a threefold node. The complete pseudofragmenta-

tion scheme of the nanostar is proposed in figure 7.1. The nanostar can be indeed pseudoframen-

ted into: tertiobutyl-DPA, DPA, BPEB, DPABPEB and a perylene group that are all weakly

interacting together. However, in this thesis we do not have taken into account the tertiobutyl-

DPA that are considered as the antenna of the nanostar and the perylene group that is the

energy trap of the nanostar. We expect the tertiobutyl group to have very weak effect on optical

properties. Three calculations have been performed in addition the whole study of this thesis to

determine the energy minima and the associated equilibrium geometries of the tertiobutyl-DPA

and the perylene. At the equilibrium geometry of the ground state of the tertiobutyl-DPA, the en-

ergy of the first optically active state lies at 4.482 eV and the minimum energy at the equilibrium

geometry in the first optically active state of the perylene group (to which an ethynylene group

and a benzene have been added, see fig. 7.1) lies at 2.716 eV. It allows us to draw the schematic

representation of a suggested excitation energy transfer mechanism within the nanostar in fig-

ure 7.2. We suggest that sixteen tertiobutyl-DPA are locally photo-excited thanks to a specific

wavelength that is energetically adequate to such an excitation. The tertiobutyl-DPA are likely

to be isomerised into cumulenic isomers and then a population transfer occurs from the Sπxπ∗

x

state toward the Sπxπ∗

y
state of the antenna. Then the population transfer occur from the previ-

ous Sπxπ∗

y
state toward the Sπxπ∗

x
state of the DPA pseudofragment branch and toward its Sπxπ∗

y
.

After that the DPA can trans-bent, the population transfer occurs only between the Sπxπ∗

x
states

of the various oligophenylene ethynylene pseudofragment branches to reach the lowest diabatic

state that is associated to a local excitation onto the perylene group which will then emit. The

population transfer that occurs between different diabatic states is done via internal conversion.
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Figure 7.2: Mechanism suggestion of the EET in the nanostar.
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Chapter 8

Appendix

8.1 Absorption and emission spectra of oPE
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Figure 8.1: Theoretical absorption spectra of DPA in acetonitrile (blue), cyclohexane (orange),
dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon and
harmonic approximation.
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Figure 8.2: Theoretical emission spectra of DPA in acetonitrile (blue), cyclohexane (orange),
dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon and
harmonic approximation.
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Figure 8.3: Theoretical absorption spectra of BPEB in acetonitrile (blue), cyclohexane (orange),
dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon and
harmonic approximation.
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Figure 8.4: Theoretical emission spectra of BPEB in acetonitrile (blue), cyclohexane (orange),
dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon and
harmonic approximation.
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Figure 8.5: Theoretical absorption spectra of DPABPEB in acetonitrile (blue), cyclohexane (or-
ange), dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon
and harmonic approximation.
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Figure 8.6: Theoretical emission spectra of DPABPEB in acetonitrile (blue), cyclohexane (or-
ange), dichloromethane (green), hexane (red), and in vacuo (purple) within the Franck-Condon
and harmonic approximation.
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