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Abstract

High fidelity simulation of evaporating two-phase flows is a growing subject of interest with
the emergence of multiple solvers and various associated numerical methods.
This is a challenging subject because of the strong discontinuities of flow quantities at the
interface that require attention in numerical methods design.
For sharp Eulerian methods, several strategies have shown their capability to reproduce
the physics without phase change using Volume-of-fluid (VOF) or Level-set (LS).
With phase change, the interface jumps must account for the mass and heat transfers,
which requires far more attention numerical methods design. Few contributions can be
found, and dedicated studies are necessary to reach the same level of understanding as for
non-evaporating flows.
The objective of this work is to compare possible solutions for simulating such flows with
sharp Eulerian methods. To this end, they are all implemented in the same cartesian-grid
solver and share the same unified Low-Mach framework to allow fair comparisons.

First, the numerical representation of an interface is investigated for four popular interface
capturing methods with up-to-date numerics: the Volume-of-fluid (VOF), the standard
Level-Set (SLS), the accurate conservative Level-Set (ACLS), and the coupled Level-Set
and Volume-of-fluid (CLSVOF). The comparison is made on canonical cases with imposed
velocity fields.
In this configuration, even if all methods show consistent results with mesh refinement,
CLSVOF appears to be the most accurate method, and its versatility could be a strong
asset for more complex configurations.

Then, all methods are embedded into the unified low-Mach framework without phase
change. This framework includes a sharp transport of the interface, a well-balanced surface
tension discretization, and a consistent mass-momentum transport, which allows capillary-
driven simulations with high-density ratios.
Specific attention is given to surface-tension-driven cases. Then, complex test cases such
as droplet collision or shear-induced breakup are investigated.
All methods give comparable results for simple test cases if the numerical resolution is
sufficiently high. For the complex configurations, especially for the shear-induced breakup,
all methods give very different results, which call for new investigation for their ability to
capture the onset of instabilities.
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Finally, the unified framework is extended to phase change using a two-scalar approach for
energy and species equations for VOF and SLS methods. The associated challenges are
investigated through numerical experiments to justify the numerical choices made in the
unified framework.
Specific attention is devoted to analyzing of numerical errors in the reconstruction of inter-
face quantities, showing the importance of extrapolation methods and evaluating quantities
at the interface location.
A quantitative analysis is given on canonical evaporation problems for which analytical
solutions are available. Both VOF and SLS methods show mesh convergence, but with
opposite trends for the static evaporation case: while SLS overestimates the interface re-
gression, VOF underestimates it.

The last test case is a convected droplet in a quiescent flow, which implies convection,
interface deformation, and non-homogeneous vaporization. In this case, the importance of
the consistency between momentum and continuity is highlighted by considering different
literature techniques for the continuity equation. It is shown that non-consistent formula-
tions lead to an increase in the droplet velocity. The results for SLS suggest that the shared
framework is too constraining, and a dedicated framework must be used. Finally, as VOF
equations can be rigorously derived from the conservation equations, there is no ambiguity
in the discrete continuity equation. We then consider the results to be representative of the
physics.



Résumé

La simulation des écoulements diphasiques évaporant est un sujet en plein essor avec
l’émergence de multiples solveurs et méthodes numériques associés.
C’est un sujet difficile en raison des discontinuités de l’écoulement à l’interface qui nécessi-
tent des méthodes numériques adaptées.
Parmi les méthodes Eulériennes « sharp », plusieurs stratégies ont montré leur capacité à
reproduire la physique sans changement de phase, que ce soit en Volume-of-Fluid (VOF)
ou en Level-Set (LS).
Avec le changement de phase, les sauts d’interface doivent tenir compte des transferts de
masse et de chaleur. Peu de contributions existent, et des études spécifiques sont nécessaires
pour atteindre le même niveau de compréhension que pour les écoulements sans évapora-
tion.
L’objectif de ce travail est de comparer les solutions possibles pour simuler de tels écoule-
ments. Toutes les méthodes sont implémentées dans le même solveur et partagent le même
cadre unifié Low-Mach pour permettre des comparaisons équitables.

La simulation d’une interface est d’abord étudiée pour quatre méthodes : le VOF, la stan-
dard LS (SLS), l’accurate conservative LS (ACLS), et le coupled LS-VOF (CLSVOF). La
comparaison est effectuée sur des cas avec champ de vitesse imposé.
Dans ce cadre, même si toutes les méthodes présentent des résultats cohérents et conver-
gents en maillage, le CLSVOF semble être la méthode la plus précise, et sa polyvalence
pourrait être un atout important pour des cas plus complexes.

Ensuite, les méthodes sont intégrées dans le même cadre unifié, sans changement de phase.
Ce cadre comprend un transport précis de l’interface, une discrétisation équilibrée de la
tension de surface et un transport masse-quantité de mouvement cohérent qui permet des
simulations avec un rapport de densité élevé et des effets capillaires.
Une attention particulière est accordée aux cas avec tension superficielle. Puis, des cas tests
complexes de collision de gouttes ou de rupture induite par cisaillement sont étudiés.
Les méthodes donnent des résultats comparables pour les cas simples, si la résolution
numérique est suffisamment élevée. Pour les cas complexes, en particulier pour la rup-
ture induite par cisaillement, les méthodes donnent des résultats différents, ce qui nécessite
des études sur la capacité des méthodes à saisir le début des instabilités.

Enfin, le cadre unifié est étendu au changement de phase en utilisant une approche à deux
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scalaires pour les équations d’énergie et d’espèces, pour les méthodes VOF et SLS. Les
nouveaux défis associés sont étudiés numériquement afin de justifier les choix effectués.
Une attention particulière est consacrée aux erreurs numériques dans la reconstruction des
quantités d’interface, montrant l’importance des méthodes d’extrapolation et de l’évaluation
des quantités à la position de l’interface.
Une analyse quantitative est donnée sur les problèmes d’évaporation canoniques avec solu-
tions analytiques. Les méthodes VOF et SLS montrent une convergence en maillage, mais
avec des tendances opposées pour le cas d’évaporation statique : alors que la SLS surestime
la régression de l’interface, le VOF la sous-estime.

Le dernier cas test est une goutte convectée dans un écoulement au repos, qui implique une
convection, une déformation de l’interface et une vaporisation non-homogène. L’importance
de la cohérence entre l’équation de quantité de mouvement et de continuité est mise en év-
idence en considérant différentes techniques de la littérature pour l’équation de continuité.
Il est montré que les formulations incohérentes conduisent à une augmentation de la vitesse
de la goutte. Les résultats pour la SLS suggèrent que le cadre unifié est trop contraig-
nant, et qu’un cadre dédié doit être utilisé. Enfin, comme les équations VOF peuvent
être rigoureusement dérivées des équations de conservation, il n’y a aucune ambiguïté dans
l’équation de continuité discrète, et nous considérons que les résultats sont représentatifs
de la physique.
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Introduction

Spray combustion in engines

Evaporation is a natural phenomenon ubiquitous in industrial processes such as food drying
[43 ], spray cooling [99 ], or spray combustion [201 ]. This last application is a subject of
growing interest for transportation applications as liquid fuel results in a crucial gain in
energy density for storage purposes.
In an engine, the fuel is injected as a liquid jet in the combustion chamber and needs to
turn into its gas phase to initiate combustion, as shown in Fig. 1. To this end, it is first
atomized to increase the surface exchange between the liquid and the gas by breaking up
the jet into a spray of droplets of various sizes. These droplets are then transported into
the flow, interacting with turbulence, and finally evaporate to feed the combustion process.
The study of spray combustion thus implies a large variety of physical interactions and a
large range of scales, making both experiments and simulations very challenging.

Figure 1: Schematic representation of the different phases of the spray evolution (from [130 ]).
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Toward accurate droplet vaporization models

This work takes part in a research project which aims to improve the numerical simulations
of spray combustion. One aspect is the study of the coupling between the evaporation of
droplets with turbulence and combustion.
Because of the large size ratio between a combustor and a droplet, realistic simulations
of combustors are performed using large eddy simulations (LES). They model droplet-
flow interactions in the sub-cell by using correlations from experiments or one-dimensional
derivations under strong assumptions on the flow and the topology of the droplet. Recent
contributions have highlighted the sensitivity of such models to the different correlations
used to determine the heat and mass exchanges. For instance, Shashank et al. [96 ] showed
that the evaporation is strongly dependent on the gas composition used to evaluate the
heat capacity in the film region (see Fig. 2)

Figure 2: Sensitivity of heptane drop diameter to the gas composition used to evaluate Cp (from
[96 ]). Experiments (dots) are compared with model solutions for different evaluation of Cp (lines).

A strategy to improve these models is to acquire experimental data as in [132; 32 ]. However,
the studies are performed on simplified configurations where droplets are supported by a
fiber which is far from the conditions of a combustion chamber.

High-fidelity simulation of two-phase flows

To improve the vaporization models, another solution is to use high-fidelity simulations of
droplet vaporization. The growing capacities of massively parallel computations give access
to more and more possibilities in the numerical resolution of such problems.
In the literature, different methods can be employed to solve two-phase flows, which can
be classified into two main interface representations

1. The diffuse interface methods (DIM) define the interface as a region where quantity
variations are stiff but continuous. Then, they do not need to represent the interface
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location explicitly. They are often used to study compressible flows as they rely on
enriched thermodynamic treatments in the interfacial region where classical thermo-
dynamics is not valid.
A first class of DIM encompasses the multifluid methods [191 ] which describes the
interface as an artificially diffused region. They are based on an ensemble averaging of
the properties of the phases. The resulting sets of governing equations are hyperbolic,
provided that convex thermodynamic closures are used.
On the other hand, the phase-field methods [26 ] are based on an advanced thermo-
dynamic description of the interface. Physical properties of the interface (thickness,
surface tension) are naturally embedded within the governing equations and thermo-
dynamics. However, the resulting system of equations is generally complex to solve
numerically, especially for compressible flows.
An illustration of the simulation of a Diesel injection using a multifluid method is
given in Fig. 3 from the work of [164 ].

Figure 3: Simulation of Diesel injection in a high pressure chamber with AVBP solver using a
3-equation multifluid model [164 ].

2. The sharp interface method (SIM) uses an infinitely thin interface which is a moving
surface with a given position. With this representation, the fluid properties are dis-
continuous at the interface and the interface needs to be located accurately to apply
the correct jump conditions at the interface.
Front tracking methods [223 ] explicitly transport Lagrangian markers all belonging
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to the interface. This allows to be highly accurate in the interface topology, such as
interface normal and curvature but it requires special treatments in non-trivial cases
of coalescence or atomization [172; 222 ].
The other type of SIM is the interface capturing method relying on an Eulerian
representation of the interface through the transport of a color function. Volume-
of-fluid (VOF) methods [83 ] are based on the resolution of the volume fraction of
one phase in each numerical cell. This method has the advantage of being intrinsi-
cally mass-conserving. However, the interface is not explicitly known and must be
retrieved through a reconstruction strategy, such as the PLIC method [181 ]. More-
over, topology information requires dedicated attention, as differentiating the sharp
volume fraction field can lead to huge errors. Instead of solving for the volume frac-
tion, level set (LS) [153 ] methods transport a function that is related implicitly to
the interface. This function is chosen to be smoother than the volume fraction, thus
being easier to solve numerically and giving access to better topology information.
However, attention must be drawn to conservation properties.
An application on the simulation of a liquid jet in a crossflow using accurate conser-
vative LS is provided in Fig. 4 from the work of [110 ].

Figure 4: Simulation of a liquid jet in a crossflow simulated with the YALES2 solver using an
ACLS method [110 ]

As, the objective of this work is the study of low Mach evaporating two-phase flows, com-
pressible formulations are not needed. Moreover the DIM generally requires a large number
of points to properly resolve an interface and thus a droplet Moreover, the hypothesis of
infinitely thin interfaces is a reasonable assumption in the thermodynamic conditions of the
target applications. Thus, SIMs are preferred in this work.
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Accounting for phase change in two-phase flow simulations

When evaporation comes into place, the numerical methods based on SIM have to be
adapted to treat additional discontinuities, which constitutes challenging issues. In the
late ’90s, the pioneer works of Juric et al. [95 ] with an FT method, Welch et al. [227 ]
using VOF or Son et al. [204 ] with LS have paved the way for simulations with phase
change. These works only contained the boiling phenomenon as the set of equations and
the phase-change modelling was limited to mono-component mixtures.
Some years later, Tanguy et al. [218 ] proposed a LS solver for evaporation simulations
with a bi-component gas phase. The method was able to perform simulations of convected
droplets in 2D axisymmetric configurations. One year later, a solver based on VOF pro-
posed by Schlottke et al. [195 ] performed 3D simulations of evaporation of convected
droplets subject to high deformations.
Since these contributions, the domain of two-phase flow simulations has been very active
with a noticeable gain in interest for the simulation of evaporation [198; 183; 85; 29; 159;
192; 179 ]. This increasing research activity resulted in considerable improvements in the
robustness and accuracy of the methods in the last decade, which allowed to simulate more
complex configurations such as evaporation in turbulence [4; 52; 126 ], combustion [86 ] or
supersonic flows [101 ].
High-fidelity simulations of droplet evaporation represent a promising approach to improve
the understanding of the interaction between evaporation and turbulence as illustrated in
Fig. 5. In Fig. 5a a methodology based on LS proposed by [4 ] shows the capability to
simulate the evaporation of a group of droplets subject to a turbulent flow. In Fig. 5b, the
coupled LS-VOF methodology of [126 ] performs the simulation of a liquid evaporating in
Homogeneous Isotropic Turbulence (HIT).

The literature presented here shows a very large spectrum of numerical methods, indicating
that no consensus exist on the best methodology to achieve evaporation simulations. Based
on this observation, it is then not clear to choose for

• The sharp interface method between FT, VOF, and LS as they all seem to be well-
suited for evaporation simulations.

• The methodology to properly couple the interface transport with the mass and mo-
mentum equations.

• The integration of the phase-change modelling in the solver.
This is the main motivation for developing our own numerical framework in which it is
possible to implement and compare different approaches for the simulation of two-phase
flows with phase change.

A dedicated solver

In the light of the above observations from state-of-the-art, some clarifications are required
on the different methodologies which are available in the literature. Instead of choosing a
turnkey solution from an existing solver, the present work proposes to investigate and com-
pare different promising methodologies. The major contribution of such an approach is to
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(a) Simulation from the DIVA solver [4 ] (b) Simulation from the ARCHER solver [126 ]

Figure 5: Two simulations of droplet evaporating in a turbulent flow. The left figure represent a
simulation of a group of droplets with injected turbulence using a Level-Set methodology. The right
figure present the evaporation of liquid in HIT using a Coupled LS-VOF methodology.

give a better understanding of the numerical methods applied to phase-change simulations
based on thorough numerical experiments.
For this aim, a solver needs to be developed to embrace all these numerical methods.
The starting point is the "in-house" solver TITAN containing the basis for classic domain
decomposition and parallel computing on cartesian meshes. In addition, the solver dis-
cretization relies on the finite-volume method. Then, the numerical methods associated
with the resolution of the governing equations of two-phase flows remain to be determined
and implemented, which constitutes the central part of the PhD work.
While VOF and LS are Eulerian methods that can rely on classic domain decomposition
for parallel computation, FT is a Lagrangian class of methods that requires specific parallel
algorithms. Therefore, the manuscript focuses on VOF and LS class of methods to concur
with the target solver framework, which is only ready for cartesian domain decomposition.

Outline of the manuscript

The manuscript describes the pathway to set up an incompressible two-phase flow solver
with phase change.
Part I describes the mathematical formulation for the derivation of two-phase flows in Chap-
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ter 1 with the associated physical assumptions. In Chapter 2, a finite-volume derivation
of the resulting set of governing equations is provided, leading to the VOF two-fluid and
one-fluid formulations. The difficulty encountered when the same derivation is applied to
LS is also detailed.
Then Part II gives a state-of-the-art of interface capturing methods in Chapter 3. From the
literature, four methods are selected and compared in Chapter 4 based on shared metrics
for accuracy and mass conservation.
Part III details the numerical challenges of two-phase flows without phase change with
emphasis on the momentum conservation and the surface tension modelling in Chapter 5.
Based on these considerations, a unified framework is presented and coupled to the four
interface capturing methods evaluated before. For validation purposes, Chapter 6 presents
comparisons of this unified framework adapted to the four interface capturing methods
based on momentum conservation and curvature accuracy.
At this stage of the manuscript, the solver is able to simulate two-phase flows and Part IV
addresses its extension to evaporation simulations. First, a state-of-the-art of the numerical
challenges arising from the mass transfer at the interface is detailed in Chapter 7. The study
concentrates on handling a velocity jump in the mass and momentum equations and the
resolution of the energy and species mass fraction, which are crucial quantities to describe
the phase-change process. Chapter 8 focuses on the accurate reconstruction of the quanti-
ties at the interface. This encompasses the evaporation rate, the interface temperature, and
the species mass fraction at the interface. Finally, Chapter 9 presents an extension of the
unified framework to phase-change with applications on planar, cylindrical, and spherical
evaporation test cases.





Part I

Physical description of an interface





Chapter 1

Governing equations of two-phase
flows
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In the following, the governing equations of two-phase flows are presented essentially based
on the derivation of Ishii & Hibiki [87 ]. In Section 1.1 the governing equations are first
derived for a single-fluid particle illustrated in Fig. 1.1a leading to a local instantaneous
formulation. When the fluid particle contains both phases as in Fig. 1.1b, the governing
equations need to also include additional contributions due to the presence of the interface.
These contributions can be written in terms of jump conditions at the interface, which are
obtained from an interface balance. This derivation is provided in Section 1.2 based on
the infinitely-thin or sharp interface assumption. Finally, Section 1.3 presents the hypoth-
esis used in the present work leading to a simplified set of governing equations with the
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associated jump conditions. The thermodynamic closures used for phase change are also
derived.

Vp

Ap Ωp
(a) Single-phase

Vg

Ag

Ωl

AlΩg Vl
LΓ

AΓ
Γ
nΓ

(b) Two-phase

Figure 1.1: Illustration of fluid particles in the single-phase and two-phase cases. Ωp, Ωl and Ωg
are the sub-domain corresponding to a single-phase flow, the gas phase and the liquid phase of a
two-phase flow respectively. Vp, Vl and Vg are the material volumes delimited by material surfaces
Ap, Al and Ag corresponding to a general single-phase fluid particle, the liquid part and the gas part
of the two-phase particle respectively. AΓ, LΓ and nΓ are the surface, the length and the normal of
the interface Γ.

1.1 Local instantaneous formulation of single-phase flows

First, the governing equations are given for a fluid particle belonging to a single-phase flow.
For a fluid particle belonging to one fluid only, as in Fig. 1.1a, the general integral balance
of a quantity Φ in the material volume Vp delimited by its material surface Ap of the fluid
can be written as

d

dt

∫
Vp

ρΦdv = −
∮
Ap

n · Fda+

∫
Vp

ρSdv , (1.1)

with t the time, ρ the density of the fluid and F and S the fluxes and a volumetric source
associated to Φ respectively.
This equation means that the change of ρΦ in Vp is due to fluxes at the surface Ap and the
volumetric source.
By using the Green’s theorem and the Reynolds transport theorem, Eq. (1.1) can be rewrit-
ten into an instantaneous local balance of Φ

∂ρΦ

∂t
+∇ · (uρΦ) = −∇ · F + ρS , (1.2)

with u the fluid velocity.
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1.1.1 Continuity equation

The continuity equation is obtained by replacing Φ = 1, F = 0 and S = 0 in Eq. (1.2):

∂ρ

∂t
+∇ · (ρu) = 0 . (1.3)

1.1.2 Momentum equation

The momentum equation corresponds to Eq. (1.2) with

Φ = u , (1.4a)
F = −T = P I− 2µD , (1.4b)
S = fv . (1.4c)

T is the stress tensor, P is the pressure in fluid, I is the identity matrix, fv the body
force, µ is the dynamic viscosity of the fluid and D is the rate-of-deformation tensor:

D =
1

2
(∇u +∇ᵀu)− 1

3
(∇ · u) I . (1.5)

Note that in this definition of T , the fluid is considered Newtonian.
The local balance of momentum is then obtained

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇P +∇ · (2µD) + ρfv . (1.6)

1.1.3 Energy equation

The total energy equation is obtained by choosing:

Φ = ei +
1

2
‖u‖22 , (1.7a)

F = Q− T · u , (1.7b)

S = fv · u +
q̇

ρ
, (1.7c)

with ei the internal energy, Q the thermal fluxes and q̇
ρ the thermal source of the fluid.

‖·‖2 stands for the L2 norm.
This gives the following balance equation of total energy

∂ρ
(
ei + 1

2 ‖u‖
2
2

)
∂t

+∇ ·
(
ρ

(
ei +

1

2
‖u‖22

)
u

)
=−∇Q +∇ · (T · u) + ρfv · u + q̇ . (1.8)
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Now, an equation for the enthalpy is also provided as it corresponds to the energy-related
quantity of interest in our simplified two-phase flow equations. For this purpose, the
mechanical energy equation is given. It is obtained from multiplying Eq. (1.6) by u:

∂ρ1
2 ‖u‖

2
2

∂t
+∇ ·

(
ρ

1

2
‖u‖22 u

)
= −u · ∇P + (∇ · T ) + ρfv · u . (1.9)

Then, by subtracting Eq. (1.9) to Eq. (1.8), the internal energy equation is retrieved

∂ρei
∂t

+∇ · (ρeiu) = −∇Q− u · ∇P +∇u : T + q̇ . (1.10)

Finally, the enthalpy can be introduced as

ht = ei +
P

ρ
, (1.11)

which leads to the following enthalpy equation

∂ρht
∂t

+∇ · (ρhtu) = −∇Q− DP

Dt
+∇u : T + q̇ . (1.12)

with D
Dt the material derivative related to the fluid such that for a quantity Φ:

DΦ

Dt
=
∂Φ

∂t
+ u · ∇Φ . (1.13)

1.2 Interface balance

The balance equations presented in Section 1.1 can be applied to any fluid particle
belonging to one of the fluids of the two-phase flow system. However, if a fluid particle is
crossed by the interface as in Fig. 1.1b, additional terms appear in the balance equation
accounting for the discontinuities at the interface. They take the form of jump conditions
across the singular surface AΓ transcribing the exchange of mass, momentum and energy
at the interface.
The derivation of these jumps can be performed by considering the volume of interest VI
in Fig. 1.2. This volume is obtained by taking a slice of infinitesimal width δ = δ1 + δ2 of
the particle flow at the interface. Then VI is delimited by the area A1 and A2 respectively
in the gas and liquid phases with the outward pointing normals n1 and n2 and the surface
ΣI with the associated normal nΣ. The integral balance of Φ in the control volume VI is
then written as

d

dt

∫
VI

ρΦdv =

2∑
p=1

∫
Ap

np · ((up − uI) ρΦ + Fp) da+

∫
VI

ρSdv

−
∫
LΓ

∫ δ1

−δ2
nΓ · FΓdδdl , (1.14)



15

LΓ

A1

A2
AΓ

δ

n1
n2

ΣInΣ

VI

nΓ

tΓ

Figure 1.2: Illustration of the interface balance: VI is the volume of interest on which the balance
is derived. A1 and A2 correspond to the boundary surfaces of VI from the gas and liquid side
respectively with their associated outward pointing normals n1 and n2. ΣI is the other boundary
surface of VI sharing a liquid and a gas part of width δ = δ1 + δ2 with the associated outward
pointing normal nΣ. AΓ and LΓ is the interface and length of the interface with associated normal
and tangential vectors nΓ and tΓ respectively.

with uI the velocity of the control volume VI . Based on the sharp interface assumption of
our framework, δ tends to zero. Then

∫ δ1
−δ2 nΣ · FΓdδ simplifies to nΣ · FΓ and

∫
VI
dv is

reexpressed into the surface integral
∫
AΓ
da. This leads to the following surface balance on

AΓ

d

dt

∫
AΓ

ρΦda =
2∑
p=1

∫
Ap

np · ((up − uΓ) ρΦ + Fp) da+

∫
AΓ

ρSda

−
∫
LΓ

nΣ · FΓdl , (1.15)

By using the surface Green’s theorem, the surface transport theorem and by noticing that
A1, A2 and AΓ coincide if δ is small enough, Eq. (1.15) can be rewritten into an
instantaneous local balance

∂ρΓΦ

∂t
+ ρΓΦ∇ · uΓ =

2∑
p=1

(ρpΦpnp · (up − uΓ) + np · Fp)− nΣ · FΓ + ρΓS . (1.16)

Here, the mass density of interface ρΓ = ρδ is introduced. In the present study, the
interface is considered to be infinitely thin and massless with ρΓ = 0. This implies that
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momentum and energy in the interface can also be neglected. Furthermore, the flux along
the line LΓ is supposed to be negligible too. All these assumptions lead to the local
interface balance for a quantity Φ:

2∑
p=1

(ρpΦpnp · (up − uΓ) + np · Fp)− nΣ · FΓ = 0 , (1.17)

by introducing the jump operator [Φ]Γ such that

[Φ]Γ = Φl − Φg , (1.18)

and the interface normal nΓ defined by the outward pointing liquid normal

nΓ = nl = −ng , (1.19)

then Eq. (1.17) can be rewritten as

[ρΦ (u− uΓ) + F]Γ · nΓ = nΣ · FΓ . (1.20)

1.2.1 Mass balance

The mass balance is obtained by replacing Φ = 1, F = 0 and FΓ = 0 in Eq. (1.20):

[ρ (u− uΓ)]Γ · nΓ = 0 . (1.21)

This jump condition expresses the mass flux through the interface ṁ such that

ṁ = ρl (ul − uΓ) = ρg (ug − uΓ) . (1.22)

In the present work, ṁ is referred as the evaporation rate, and combining Eqs. (1.21)
and (1.22) leads to the following velocity jump:

[u]Γ · nΓ = ṁ

[
1

ρ

]
Γ

. (1.23)

1.2.2 Momentum balance

The momentum balance corresponds to Eq. (1.20) with the definitions in Eq. (1.4) and
FΓ = σκnΓ +∇sσ with ∇s the surface gradient. The momentum balance at the interface
is then obtained:

[ρu⊗ (u− uΓ)− P I + 2µD]Γ · nΓ = σκnΓ +∇sσ , (1.24)

which can be decomposed into the normal and tangential components

ṁ [u]Γ · nΓ − [P ]Γ + 2 [µD · nΓ]Γ · nΓ = σκ ,
ṁ [u]Γ · tΓ + 2 [µD · nΓ]Γ · tΓ = ∇sσ .

(1.25)
(1.26)



17

1.2.3 Energy balance

The total energy balance corresponds to Eq. (1.20) with the definitions in Eq. (1.7) and
FΓ = σκnΓ · uΓ[

ρ

(
ei +

1

2
‖u‖22

)
(u− uΓ)− Tp · u + Q

]
Γ

· nΓ = σκnΓ · uΓ . (1.27)

As for the momentum jump condition, it is possible to reformulate some terms using ṁ

ṁ

[
ei +

1

2
‖u‖22

]
Γ

+ [Q]Γ · nΓ − [Tp · u]Γ · nΓ = σκnΓ · uΓ . (1.28)

Finally, the enthalpy balance at the interface is obtained by first deriving the balance of
the mechanical energy equation:

ṁ

[
1

2
‖u‖22

]
Γ

− [Tp · u]Γ · nΓ = σκnΓ · uΓ . (1.29)

Then, by subtracting Eq. (1.29) to Eq. (1.28), the enthalpy jump is written as

ṁ

[
ht +

P

ρ

]
Γ

+ [Q]Γ · nΓ = 0 . (1.30)

1.2.4 Entropy production

Based on the work of Delhaye [44 ], the entropy variation at the interface is written as

∆sΓ =
2∑
p=1

ṁp

TΓ

(
gp +

‖up − uΓ‖22
2

− 2µpDp · np · np
ρp

)

−
2∑
p=1

2µpDp · np · tp
TΓ

(up · tp − uΓ · tp)

+
2∑
p=1

(np ·Qp + ṁpspTp)

(
1

TΓ
− 1

Tp

)
, (1.31)

with g the Gibbs free energy and s the entropy. Then, the entropy production at the
interface is assumed to be zero. Moreover, the three terms are considered to be
independently zero.

Chemical disequilibrium Cancellation of the first term leads to a chemical jump
condition stating that the chemical potential difference is due to a mechanical
disequilibrium at the interface

[g]Γ = −

[
‖u− uΓ‖22

2

]
Γ

+

[
2µpDp · nΓ · nΓ

ρ

]
Γ

. (1.32)
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No-slip condition The second term states that there is no-slip between the two fluids
at the interface

uΓ
l · tΓ = uΓ

g · tΓ = uΓ · tΓ , (1.33)

with uΓ
l and uΓ

g the liquid and gas velocities at the interface.

Thermal boundary condition Finally, the last term leads to continuity of the
temperature at the interface

TΓ
l = TΓ

g = TΓ , (1.34)

with TΓ
l and TΓ

g the liquid and gas temperatures at the interface.

1.3 Simplified two-phase flow equations

In the present work, the sharp interface representation is supplemented with several
hypotheses on the two-phase system composed of two fluids
(i) Both fluids are supposed to be incompressible as the system is considered

quasi-isobaric.
(ii) The first fluid is a pure mono-component liquid phase.
(iii) The other fluid consists of the vapour of the condensable species and inert gas.
(iv) The thermal exchanges are modelled with Fourier’s law.
(v) The species diffusion is modelled with Fick’s law.
(vi) All fluid properties are considered to be constant in the fluids. This includes ρ, µ, cp,

and k.
(vii) No Marangoni effects are considered here, hence σ is considered constant.
(viii) The specific latent heat of boiling Lvap does not vary with temperature.
By using this set of hypotheses, the governing equations used in this work are provided.

1.3.1 Mass conservation

In the incompressible form (i), the continuity equation Eq. (1.3) results in a simple
divergence-free condition

∇ · u = 0 , (1.35)

with the velocity jump normal to the interface

[u]Γ · nΓ = ṁ

[
1

ρ

]
Γ

. (1.36)
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1.3.2 Momentum conservation

From the conservation of momentum Eq. (1.6), by considering ρ and µ constant (vi), the
following equation is retrieved

ρ

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇P +∇ · (2µD) + ρfv . (1.37)

Furthermore, Eq. (1.35) can be injected in Eq. (1.5) to simplify the rate-of-deformation
tensor

D =
1

2
(∇u +∇ᵀu) , (1.38)

The associated momentum jump conditions, in absence of Marangoni effects (vii) are:

ṁ [u]Γ · nΓ − [P ]Γ + 2 [µD · nΓ]Γ · nΓ = σκ ,
ṁ [u]Γ · tΓ + 2 [µD · nΓ]Γ · tΓ = 0 .

(1.39)
(1.40)

1.3.3 Energy conservation

In an incompressible flow (i), the total energy of the system only depends on T and the
enthalpy defined in Eq. (1.11) can be simplified to

ht = cpT , (1.41)

with cp the specific heat at constant pressure assumed constant (vi).
Then, without source of heat, the energy conservation is expressed as

∂ρcpT

∂t
+∇ · (ρucpT ) = ∇u : (2µD)−∇ ·Q , (1.42)

with ∇u : (2µD) the viscous energy dissipation usually neglected and Q the heat flux
following a Fourier’s law (iv):

Q = −k∇T , (1.43)

with k the thermal conductivity.
Finally, the thermal energy Eq. (1.42) can be rewritten as

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) . (1.44)

Accordingly, the jump of enthalpy introduced in Eq. (1.30) can be written in term of a
temperature gradient jump using Eq. (1.43) and neglecting

[
P
ρ

]
Γ
:

[k∇T · nΓ]Γ = ṁ [ht]Γ , (1.45)
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with [ht]Γ the enthalpy jump which contains a term due to the specific latent heat of
boiling Lvap and another term due to the gap between the interface temperature TΓ and
the saturation temperature Tsat of the pure liquid (ii)

[ht]Γ = −Lvap + [cp]Γ (TΓ − Tsat) . (1.46)

1.3.4 Species mass fraction conservation

In the system, the gas is supposed to be bi-component with inert gas and the vapour of
the liquid fluid (iii). Then, an equation is required to describe the mixture in the gas
phase. The liquid vapour mass conservation can be deduced from Eq. (1.2) with Φp = Y ,
Fp = ρuvY and Sp = 0

∂ρY

∂t
+∇ · (ρuY ) = −∇ · (ρuvY ) , (1.47)

with uv the diffusion velocity of the pure liquid vapour in the gas phase. It can be written
in term of a diffusive flux for the vapour mass fraction as J = ρuvY . Equation (1.47) is
then rewritten as

∂ρY

∂t
+∇ · (ρuY ) = −∇ · J , (1.48)

with J modelled using a Fick’s law (v). In a bi-component mixture, it is written as

J = −ρDv∇Y , (1.49)

with Dv the vapour diffusivity in the gas.
Using Eq. (1.48) and the definition of J in Eq. (1.49) , the conservation of liquid vapour is
defined by the following equation

ρ

(
∂Y

∂t
+ u · ∇Y

)
= ∇ · (ρDv∇Y ) . (1.50)

Note that Eq. (1.50) is only defined in the gas phase as the liquid is mono-component (ii)
and the inert gas is insoluble in the liquid. This gives a simple relation for the inert gas
mass fraction Y0 = 1− Y .
Integration of Eq. (1.48) leads to the following jump at the interface

ṁ [Y ]Γ + [J · nΓ]Γ = 0 . (1.51)

As liquid is mono-component, Yl = 1 and ∇Y |l = 0, the jump can be rewritten in term of
vapour mass fraction gradient ∇Y |Γ and vapour mass fraction value YΓ at the interface:

ρgDv ∇Y |Γ nΓ = ṁ (1− YΓ) . (1.52)
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1.3.5 Thermodynamic closure at the interface

Based on the above hypotheses, the phase change at the interface can be described using
thermodynamic closures.
First, the evaporation rate ṁ can be defined either using the heat flux jump defined by
Eq. (1.45) or the mass flux jump defined by Eq. (1.52)

ṁ =
[k∇T · nΓ]Γ

[ht]Γ
,

ṁ =
ρgDv∇Y nΓ

YΓ − 1
,

(1.53)

(1.54)

both simultaneously true at the interface location.
The interface quantities at the interface TΓ and YΓ need to be defined. Assuming that the
interface is at thermodynamic equilibrium, pressure, temperature and chemical potential
are equal in the two phases. Any changes in chemical potential dµpp = vkdPs − spdT is
also equal along the interface. Here, Ps is the saturation vapour pressure at the interface
while vp and sp are the specific volume and entropy of the phase respectively. This
corresponds to the two equalities:

dµpl = dµpg , (1.55)

vldPs − sldT = vgdPs − sgdT , (1.56)

which gives a relation between Ps and T at the interface(
dPs
dT

)
=

[s]Γ
[v]Γ

, (1.57)

by noticing that vl is much lower than vg for a liquid-gas system, one can approximate
[v]Γ = −vg. Furthermore, the specific volume of gas can be related to temperature and
pressure by using the perfect gaz hypothesis Pvg = RT with R the universal gas constant.
Also, the jump in entropy at the interface is related to the specific latent heat of boiling
Lvap through TΓ [s]Γ = −Lvap. From those observations and Eq. (1.57), the
Clausius-Clayperon relation is obtained(

dPs
dT

)
=
PsLvap

RT 2
Γ

. (1.58)

Eq. (1.58) can be reexpressed by using dPs = Psd lnPs:(
d lnPs
dT

)
=

Lvap

RT 2
Γ

. (1.59)

Finally, the Rankine relation is obtained by integration of Eq. (1.59) from a reference
state, taken here as Tsat at a reference pressure Pref

Ps = Pref exp

(
−Lvap

R

(
1

TΓ
− 1

Tsat

))
. (1.60)
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In this integration, Lvap and R are supposed constant with temperature (viii), which is
not always true (see [98 ] for some extended studies). Note that some authors use different
relations such as in FS3D [195; 179 ] for which authors prefer the Wagner equation [177 ].
Dodd et al. [52 ] and Bures et al. [24 ] use the Antoine equation [6 ] instead. These other
formulations rely on empirical corrections to take into account dependencies of Lvap with
the temperature.
Now, a relation has to be established between the liquid vapour mass fraction Y and the
saturation vapour pressure Ps. This is done using the definition of Y in terms of mole
quantity n and molar mass M of both vapour and inert gas

Y =
nvMv

nvMv + n0M0
, (1.61)

using the perfect gas relation to the partial pressures PvV = nvRT this gives

Y =
PvMv

PvMv + P0M0
. (1.62)

In a perfect gas, the total pressure is the sum of partial pressures Pref = Pv + P0 which
leads to

Y =
PvMv

Pv (Mv −M0) + PrefM0
. (1.63)

Then applying Raoult’s law at the interface, the partial pressure is related to the
saturation vapour pressure and liquid molar fraction Xv through Pv = XvPs. In a
mono-component liquid, Xv = 1 and Raoult’s law is reduced to Pv = Ps. The final form
definition of YΓ is then

YΓ =
PsMv

PsMv + (Pref − Ps)M0
. (1.64)

Using Eqs. (1.60) and (1.64) gives a direct relation between TΓ and YΓ.

1.4 Conclusion

This first chapter presented the simplified two-phase flow equations considered in the
remainder of the manuscript. It contains the local instantaneous balance of mass,
momentum, energy and mass species fractions with associated jump conditions at the
interface, which have to be taken into account to correctly describe the two-phase system.
In Part III, a first investigation of two-phase flows is provided without including phase
change. The equation system is reduced to

∇ · u = 0 ,

ρ

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇P +∇ · (2µD) + ρfv ,

(1.65a)

(1.65b)
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with the associated jumps

[u]Γ · nΓ = 0 ,
[P ]Γ − 2 [µD · nΓ]Γ · nΓ = −σκ .

(1.66a)
(1.66b)

In Part IV, evaporation is included in the equation system leading to

∇ · u = 0 ,

ρ

(
∂u

∂t
+∇ · (u⊗ u)

)
= −∇P +∇ · (2µD) + ρfv ,

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) ,

ρ

(
∂Y

∂t
+ u · ∇Y

)
= ∇ · (ρDv∇Y ) ,

(1.67a)

(1.67b)

(1.67c)

(1.67d)

and

[u]Γ · nΓ = ṁ

[
1

ρ

]
Γ

,

ṁ [u]Γ · nΓ − [P ]Γ + 2 [µD · nΓ]Γ · nΓ = σκ ,
ṁ [u]Γ · tΓ + 2 [µD · nΓ]Γ · tΓ = 0 ,
[k∇T · nΓ]Γ = ṁ [ht]Γ ,
ρgDv ∇Y |Γ nΓ = ṁ (1− YΓ) .

(1.68a)

(1.68b)
(1.68c)
(1.68d)
(1.68e)

The next chapter covers the derivation of the system of equations resulting from the
combination of local balance and jump conditions at the interface.
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Now that the governing equations of incompressible two-phase flows have been provided,
further derivations are required to close the system of equations. More specifically, the
governing equations valid for the phases taken separately need to be bridged by imposing
the jump conditions correctly at the interface. For this purpose, a discrete set of equations
can be established from the derivation of one-fluid or two-fluid formulations, which both
rely on the explicit description of the interface position through an indicator function χp.
This chapter aims to derive these equations properly, either using Volume-Of-Fluid or Level-
Set representations of the interface.
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In Section 2.1, the definition of χp is provided with the associated manners to transport it.
Then, the derivation of one-fluid and two-fluid equations using a finite-volume discretization
is detailed, which naturally leads to the geometric VOF representation of the interface in
Section 2.3. The use of geometric VOF can be complex to solve numerically and Section 2.4
explores the alternative derivations which can be used to obtain one-fluid and two-fluid
formulations based on strong assumptions. Then, Section 2.5 contains an open discussion
on the general derivation of a one-fluid or two-fluid set of equations that could be applied to
Level-Set methods. Finally, some clarifications on the different formulations are provided
in light of the present framework in Section 2.6.

2.1 Indicator function and volume fraction

The indicator function χp is defined such that

χp(x) =

{
1 if x ∈ Ωp

0 otherwise , (2.1)

where Ωp is the domain containing the fluid p and x is the spatial coordinate. This function
evolves through the general transport equation

∂χp
∂t

+ uΓ · ∇χp = 0 , (2.2)

with uΓ the interface velocity (which needs a closure).
As χp is intrinsically discontinuous, solving Eq. (2.2) numerically is challenging ,and con-
ventional discretizations would lead to oscillations or smearing of the sharp discontinuity.
Four solutions can be envisaged to solve Eq. (2.2):

• Keeping the sharp nature of χp in the context of finite-volume discretizations: the
Geometric Volume-of-Fluid methods [148; 181; 168 ]

• Accepting to lose the sharp nature of χp, but using compressive and anti-diffusive
numerical schemes to keep maintain it as sharp as possible: the Algebraic Volume-
of-Fluid (VOF) methods [231; 84; 200 ]

• Replacing χp by a function which is regular enough to employ conventional discretiza-
tions for its transport: the Level-Set methods [153; 214; 150; 48 ]

• Averaging χp to smooth it enough such as multifluid [191; 37 ]: the Averaged methods.
Depending on the strategy, χp is replaced by another transported function, for which mean-
ing and origin have to be clearly stated to close the equations.

2.1.1 Geometric VOF procedure

Let us first consider the geometric VOF method. In this strategy, the volume fraction is
transported in each numerical cell and the average of finite-volume methods can be defined
in a control volume VC as

αp =
1

VC

∫
VC

χpdv =
VC,p
VC

, (2.3)
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with VC,p the control volume of the phase p contained in VC . In this sense, the VOF method
is a straight discretization of Eq. (2.2), and the semi-discrete equation is directly obtained
by integrating Eq. (2.2) over each computational cell:

∂αp
∂t

= − 1

VC

∫
VC

uΓ · ∇χpdv = − 1

VC

∫
VC

u · ∇χpdv +
1

VC

∫
VC

(u− uΓ) · ∇χpdv (2.4)

= − 1

VC

∫
VC

∇ · (uχp)dv +
1

VC

∫
VC

χp∇ · udv +
1

VC

∫
VC

(u− uΓ) · ∇χpdv . (2.5)

Considering that:

1

VC

∫
VC

(u− uΓ) · ∇χpdv =
1

VC

∫
AΓ

(
uΓ
p − uΓ

)
· npda , (2.6)

where uΓ
p is the local velocity of phase p next to the interface.

Under the divergence-free condition Eq. (1.35), the following transport equation is obtained:

∂αp
∂t

+
1

VC

∫
∂VC

χpu · nda =
1

VC

∫
AΓ

(
uΓ
p − uΓ

)
· npda . (2.7)

Therefore, there is no continuous VOF equation. It is by essence the discretized equation of
χp which still appears in Eq. (2.7) and is inherently defined from the explicit reconstruction
of the interface provided by the geometric VOF.

2.1.2 Level-Set procedure

For Level-Set, χp is often replaced by a distance function φ defined as

φ(x) =


− min
∀xΓ∈Γ

|xΓ − x| if x ∈ Ωg

min
∀xΓ∈Γ

|xΓ − x| if x ∈ Ωl

0 if x ∈ Γ

, (2.8)

where xΓ is the interface location.
The signed distance φ is transported as

∂φ

∂t
+ uΓ · ∇φ = 0 . (2.9)

This quantity is defined everywhere, and thus, the transport velocity uΓ must be extended
in the entire domain. The most important aspect is that a specific value (the isocontour)
of this function must represent the interface location and move at the interface velocity uΓ.
The Level-Set leads to a standard advection equation which is straightforward to solve at
the cost of losing the link with Eq. (2.2).
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2.1.3 Averaging procedure

Finally, an averaging procedure can be used on χp to get:

αp = 〈χp〉 . (2.10)

The volume fraction is thus directly linked to the choice of the averaging operator. For
example, an ensemble-averaging would lead to a volume fraction that is a probability of
having one phase or another, and not a coexistence of phases. If a filtering operator is
chosen, αp represents the volume fraction in the vicinity (the filter size) of the point of
interest. The averaging procedure (considering averaging operators that commute with
time and space derivatives) applied to the transport equation of χp leads to:

∂αp
∂t

+∇ · upαp = 〈(u− uΓ) · ∇χp〉+ 〈χp∇ · u〉 , (2.11)

where αpup = 〈χpu〉. The choice of the average operator is needed to close the term
〈(up − uΓ) · ∇χp〉 related to exchanges at the interface.
Note that giving up the sharp nature of VOF using an algebraic approach also results in
averaging the equations as Eq. (2.3) is not true anymore.

2.2 General two-fluid transport equation

The general methodology to obtain a complete set of equations for two-phase flows is as
follows. The two-fluid system of equations can be derived by following the work of Drew
[53 ] which was originally applied to dispersed two-phase flows from an Eulerian perspective.
For convenience, some mathematical operators are introduced:

• The time derivative

χp
∂ρΦ

∂t
=
∂χpρΦ

∂t
− ρΦ

∂χp
∂t

=
∂χpρΦ

∂t
+ ρΦuΓ · ∇χp , (2.12)

• The spatial derivative

χp∇ · (uρΦ) = ∇ · (χpuρΦ)− ρΦu · ∇χp , (2.13)

• The flux divergence

χp∇ · F = ∇ · (χpF)− F · ∇χp . (2.14)

Then the two-fluid version of the instantaneous local balance Eq. (1.2) can be written as

∂χpρΦ

∂t
+∇ · (χpuρΦ) = −∇ · (χpF) + χpS

+ (ρpΦ (up − uΓ) + F) · ∇χp . (2.15)

The additional terms appearing on the right-hand side are the interface contributions related
to the mass exchange and the flux of Φ between the phases, respectively.
This general equation can then be discretized or averaged to simplify its resolution.
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2.3 Finite-volume discretization: the Volume-of-Fluid method

In this section, the derivation of the two-fluid and one-fluid formulations are detailed when
using the finite-volume discretization described in Section 2.1.1.
Let us define the phase mass-averaged quantities:

ρpαpΦ
m
p =

1

VC

∫
VC

χpρΦdv . (2.16)

By integrating Eq. (2.15) over the cell volume, the two-fluid transport of a quantity Φ is
written as:

∂ρpαpΦ
m
p

∂t
+

1

VC

∫
∂VC

χpρΦu · nda = − 1

VC

∫
∂VC

χpF · nda+ ρpαpS
m
p

+
1

VC

∫
AΓ

(
ρΦ(uΓ

p − uΓ) + F
)
· npda , (2.17)

As a consequence of the presence of χp in the surface integrals, the local values of all
quantities are required to close the equations even if cell-averaged quantities are transported.
Thus, a formal continuous expression cannot be derived for the volume fraction and needs to
stay in this discretized form. Starting from the general expression Eq. (2.17), the two-fluid
and one-fluid VOF equations can be derived.

2.3.1 VOF two-fluid equations

The governing equations presented in Section 1.3 are derived by substituting Φm
p in Eq. (2.17)

with the appropriate quantities.

2.3.1.1 Two-fluid continuity equation

1

VC

∫
∂VC

χpu · nda =
1

VC

∫
AΓ

uΓ
p · npda . (2.18)
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2.3.1.2 Two-fluid momentum equation

∂ρpαpu
m
p

∂t
+

1

VC

∫
∂VC

χpρu⊗ u · nda = − 1

VC

∫
∂VC

χpP I · nda

+
1

VC

∫
∂VC

2χpµD · nda+ ρpαpf
m
v

+
1

VC

∫
AΓ

ρpup ⊗
(
uΓ
p − uΓ

)
· npda

+
1

VC

∫
AΓ

(−PpI + 2µpDp) · npda . (2.19)

2.3.1.3 Two-fluid energy equation

∂ρpαp(cpT )mp
∂t

+
1

VC

∫
∂VC

χpρcpTu · nda =
1

VC

∫
∂VC

χpk∇T · nda

+
1

VC

∫
AΓ

ρcp,pTp
(
uΓ
p − uΓ

)
· npda

− 1

VC

∫
AΓ

kp∇Tp · npda . (2.20)

2.3.1.4 Two-fluid species mass fraction equation

∂ρpαpY
m
p

∂t
+

1

VC

∫
∂VC

χpρY u · nda =
1

VC

∫
∂VC

χpDv∇Y · nda

+
1

VC

∫
AΓ

ρY (uΓ
p − uΓ) · npda

− 1

VC

∫
AΓ

D∇Y · npda . (2.21)

2.3.2 VOF one-fluid equations

The one-fluid derivation is obtained by summing the two-fluid formulation for each phase.
Summation leads to new averaged quantities ΦV , ΦM and ΦH the volume, mass and en-
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thalpy averages defined as in [122 ]

ΦV
p = αlΦl + αgΦg , (2.22a)

ΦM
p =

αlρlΦl + αgρgΦg

ρV
, (2.22b)

ΦH
p =

αlρlcp,lΦl + αgρgcp,gΦg

ρV cMp
. (2.22c)

By considering the VOF formulation, αl = f and αg = 1− f and the averages can be
rewritten as

ΦV
p = Φg + f [Φ]Γ , (2.23a)

ΦM
p =

ρgΦg + f [ρΦ]Γ
ρV

, (2.23b)

ΦH
p =

ρgcp,gΦg + f [ρcpΦ]Γ
ρV cMp

. (2.23c)

2.3.2.1 One-fluid continuity equation

By summing Eq. (2.18) for p = l, g, the following expression is obtained

1

VC

∫
∂VC

u · nda = − 1

VC

∫
AΓ

[u]Γ · nΓda . (2.24)

2.3.2.2 One-fluid momentum equation

By summing Eq. (2.19) for p = l, g the following equation is retrieved

∂ρV uM

∂t
+

1

VC

∫
∂VC

ρu⊗ u · nda = − 1

VC

∫
∂VC

P I · nda

+
1

VC

∫
∂VC

2µD · nda+ ρV fv

− 1

VC

∫
AΓ

[
ρu⊗ (uΓ

p − uΓ)
]
Γ
· nΓda

− 1

VC

∫
AΓ

(− [P ]Γ I + 2 [µD]Γ) · nΓda . (2.25)
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Finally, the interface contribution can be substituted by the surface tension using
Eq. (1.24)

∂ρV uM

∂t
+

1

VC

∫
∂VC

ρu⊗ u · nda = − 1

VC

∫
∂VC

P I · nda

+
1

VC

∫
∂VC

2µD · nda+ ρV fv

+
1

VC

∫
AΓ

σκ · nΓda . (2.26)

2.3.2.3 One-fluid energy equation

By summing Eq. (2.20) for p = l, g, the following expression is obtained:

∂ρV cMp T
H

∂t
+

1

VC

∫
∂VC

ρcpTu · nda =
1

VC

∫
∂VC

k∇T · nda

+
1

VC

∫
AΓ

[
ρcpT

(
uΓ
p − uΓ

)]
Γ
· npda

− 1

VC

∫
AΓ

[k∇T ]Γ · npda . (2.27)

Finally, by substituting the flux jump with the expression given in Eq. (1.45)

∂ρV cMp T
H

∂t
+

1

VC

∫
∂VC

ρcpTu · nda =
1

VC

∫
∂VC

k∇T · nda

− 1

VC

∫
AΓ

(
ṁ
(
Lvap + [cp]Γ Tsat

))
da . (2.28)
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2.3.2.4 One-fluid species mass fraction equation

By analogy to the energy equation, the sum Eq. (2.21) for p = l, g gives

∂ρV YM

∂t
+

1

VC

∫
∂VC

ρY u · nda =
1

VC

∫
∂VC

D∇Y · nda

+
1

VC

∫
AΓ

[
ρY
(
uΓ
p − uΓ

)]
Γ
· npda

− 1

VC

∫
AΓ

[D∇Y ]Γ · npda . (2.29)

By noticing that the interface contribution can be substituted by ṁ, the one-fluid species
mass fraction equation is retrieved

∂ρV YM

∂t
+

1

VC

∫
∂VC

ρY u · nda =
1

VC

∫
∂VC

D∇Y · nda

− 1

VC

∫
AΓ

ṁda . (2.30)

2.4 Avoiding the sharpness: the Level-set methods

The sharp transport of f is very challenging numerically (see Section 3.1 for a complete
discussion). Therefore, it can be replaced by the transport of φ, which is smooth and
regular in the vicinity of the interface. Then, the interface is located by the
zero-isocontour of φ, and the transport of this quantity is not related to the transport of χl
anymore. Moreover, it is not possible to replace χp directly by φ in Eq. (2.15) to correctly
derive the two-phase equations as these quantities do not share the same properties.
To mimic the definition of χp without transporting it, a Heaviside function HΓ can be
reconstructed from φ. It is important to notice that HΓ is not transported and is just an
intermediate quantity used to supplant χl in Eq. (2.15):

∂ρHΓΦ

∂t
+∇ · (uρHΓΦ) =−∇ ·HΓF + ρHΓS

+ (ρΦ(u− uΓ) + F) · ∇HΓ . (2.31)

By adding equation Eq. (2.31) for both phases, the following equation is obtained:

ρV
(
∂ΦM

∂t
+∇ ·

(
uMΦM

))
=−∇ · FV + ρVHΓS

V

+ ([ρΦ(u− uΓ)]Γ + [F]Γ) · ∇HΓ . (2.32)
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Then Eq. (2.31) or Eq. (2.32) can be applied to the governing equations in Section 1.3 to
obtain a one-fluid or two-fluid derivation. The averages defined with Eq. (2.23) are
adapted to this new representation and the interface closures are also derived accordingly

ΦV
p = Φg +HΓ [Φ]Γ , (2.33a)

ΦM
p =

ρgΦg +HΓ [ρΦ]Γ
ρV

, (2.33b)

ΦH
p =

ρgcp,gΦg +HΓ [ρcpΦ]Γ
ρV cMp

. (2.33c)

Note that in order to obtain Eq. (2.31), a strong assumption has been made on the
evolution of HΓ which is considered to be transported with the velocity uΓ. This
assumption is not exactly true as HΓ is a quantity obtained from the transport of φ at
velocity uΓ. While this choice leads to the loss of consistency between the interface
transport and the averaged equations, it constitutes a real interest for the numerical
resolution of the interface transport.
As HΓ is not transported, it can take arbitrary forms as long as they are comprised
between 0 and 1.

2.4.1 Sharp Heaviside formulation

In most modern Level-Set implementations of the governing two-phase flow equations, the
Heaviside is taken as the sharpest possible on a computational grid. It takes the following
form

H0
Γ(φ) =

{
1 if φ > 0
0 otherwise . (2.34)

With this choice of Heaviside, all the averages are equivalent and expressed as

Φ0 = ΦV = ΦM = ΦH =

{
Φl if if φ > 0
Φg if otherwise . (2.35)

Then this gives a system of equation where Φl, and Φg are solved separately in their
respective domain, and the coupling at the interface is done by ensuring either a jump
condition or a boundary condition. Then the discrete operators applied to Φl and Φg in
the interface neighbourhood ensure explicitly the jump condition or boundary condition
at the interface using Ghost Fluid Methods (GFM) or Ghost Cells Method (GCM)
detailed in Appendix A.1 and Section 8.3.2, respectively.

2.4.2 Smooth Heaviside formulation

Another classical choice for the Heaviside function Hε
Γ is based on the following

requirement

lim
ε→0

Hε
Γ→χl (2.36)
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In a discrete form, this means that if ε explicitly depends on the mesh size, then Hε
Γ

converges to χl with mesh resolution. This methodology has been employed in the early
LS incompressible two-phase flow solvers [214 ] to improve accuracy in the presence of
important density jumps, and is still used in LS solvers to treat the velocity jump for
evaporation simulations [107 ].
For this purpose, a smoothed Heaviside computed from φ is often used

Hε
Γ(φ) =


0 if φ < −ε
1 if φ > ε

1 + φ
2ε + 1

2π sin(πφε ) otherwise
, (2.37)

with ε an interface width often depending on the mesh size ∆x. This formulation is very
similar to the VOF one-fluid formulation presented in Section 2.3.2 although Hε

Γ(φ) is a
consequence of huge simplifications in the derivations.

2.4.3 Consistent transport of the Heaviside

As stated at the beginning of this section, if the Heaviside HΓ is not transported, no
closure naturally arises from the two-fluid derivation and the choices are made from
numerical considerations. However, it is possible to improve the consistency of the
two-fluid and one-fluid formulations by transporting HΓ. This has been done in the
literature by using the hyperbolic tangent HΓ = ψ such that

ψ =
1

2

(
tanh

(
φ

2ε

))
(2.38)

with φ the distance function and ε the interface thickness. This form of Heaviside derives
from two different methods:

• A method derived in a phase-field fashion with ψ used as a color function related to
a measure of phase [88; 209 ].

• The conservative LS, with ψ an alternative level-set used to improve conservation of
the interface mass [150; 38 ]

They both use ψ but with a different original meaning. In incompressible phase-field
methods, ψ is transported with a source term derived from Cahn-Hilliard equations.
However, it has been remodelled in [136 ] to the form:

S = ∇ ·
(
U
(
ε∇ψ − ψ (1− ψ)

∇ψ
|∇ψ|

))
(2.39)

with U a free parameter depending on the fluid velocity.
Recently, an improvement has been proposed in [136 ] where this source term appears as
an additional term in the one-fluid governing equations to be consistent with the
transport of ψ. By deriving the correct one-fluid equations, consistency and strict
conservation of mass, momentum and kinetic energy is retrieved in the case of two-phase
incompressible flows without phase-change.
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Another method proposed recently in [11 ] transports ψ and then apply a second step
called reinitialization [48 ] to enforce the correct interface width ε

∂ψ

∂τ
+∇ · (ψ(1− ψ)nΓ) = ∇ · (ε (∇ψ · nΓ) nΓ) (2.40)

To improve consistency, a reinitialization step is also required for the governing equations.
It appears as an additional evolution equation in the one-fluid and two-fluid equations
compared to the original VOF formulations. This new formulation has been applied to
the two-fluid energy equations to have consistent energy transfer at the interface and
enforce energy conservation in the respective phases.
These methods constitute a significant improvement toward the proper derivation of
two-phase equations for other representations than the sharp volume fraction. However,
they do not directly derive from the indicator function as they do not result from an
average procedure of Section 2.1.3 or from a discretization process such as finite-volume
methods in Section 2.3.

2.5 Toward non-sharp physically-grounded equations

This last section aims to detail the pathway to derive a non-sharp derivation of two-fluid
and one-fluid equations based on the averaging of the transport equation of χp and
Eq. (2.15) presented in Section 2.1.3. This can be done by averaging Eq. (2.15) with the
same average operator 〈·〉 used to derive Section 2.1.3:

∂αpρ
i
pΦ

m
p

∂t
+∇ ·

(
αpρ

i
pu

m
p Φm

p

)
= −∇ ·

(
αpF

i
p

)
+ αpS

i
p

+ 〈(ρpΦp (up − uΓ) + Fp) · ∇χp〉 . (2.41)

In these equations, two new averages are introduced as the intrinsic-averaged quantity Φi
p

and mass-averaged quantity Φm
p of Φ associated to phase p:

Φi
p =
〈χpΦ〉
αp

, (2.42)

Φm
p =

〈χpρΦ〉
αpρip

, (2.43)

Note that the present framework’s density is constant in a given phase p and Φi
p = Φm

p .
Moreover, as Φm

p , ump , Fi
p and Sip are always phase or mass-averaged in this process, the

superscript m and i are dropped for clarity.
Then, the interface contribution can be rewritten as γp(Φp) which consists of a convective
contribution from the mass transfer at the interface and a flux contribution related to Φp

at the interface. Thus, the two-fluid instantaneous local balance is

∂αpρpΦp

∂t
+∇ · (αpρpupΦp) = −∇ · (αpFp) + αpSp + γ̇p (Φp) . (2.44)
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In the derivation of two-fluid governing equations, the average 〈·〉 have to be defined in
order to close the interface contribution γ̇p (Φp). Moreover, Eq. (2.11) needs to be solved
to evolve αp which also contains contributions at the interface depending on the average
〈·〉.
By defining the correct average procedure 〈·〉ψ allowing to go from χl to ψ, then the
additional terms arising from this averaging would appear in γ̇p (Φp) and Eq. (2.11)
leading to a proper derivation of the two-phase equations. Unless this strict relation is
established, the direct replacement of χl by ψ in the equations neglects several interface
contributions due to the exchange of quantities at the interface. The same ideas can be
advanced for algebraic VOF.
This is a very challenging mathematical formulation for which no further details are
provided in this manuscript. However, it represents a promising lead to developing of
more consistent two-phase flow formulations prior to numerical discretization.

2.6 Definition of the formulations used in this work

The different frameworks presented in this chapter compose the basis of all the numerical
methods used in this work. More specifically, the formulations are divided into three
paradigms:

1. The Whole Domain Formulation (WDF) where the transported quantities are
naturally averaged with the general operators Eq. (2.33). Then the interface
contributions are embedded in source terms only located in the vicinity of the
interface.

2. The Jump Condition Formulation (JCF) where the transported quantities are
explicitly separated by choosing a sharp representation of the Heaviside in
Eq. (2.33). Then, the closures at the interface are performed using specific
numerical methods to impose jump conditions or boundary conditions.

3. The Two-fluid Formulation (TFF) which directly derives from the finite-volume
discretization of the equations. The quantities of both liquid and gas phases are
then simultaneously transported and available at the interface.

The choice has been made to include the VOF one-fluid formulation derived in
Section 2.3.2 in the WDF for simplicity. It is crucial to keep in mind that WDF is
notional and only means that the quantities transported using this formulation are
averaged either by Eq. (2.23c) with different definitions of Hε

Γ. In the case of LS, Hε
Γ will

be defined with Eq. (2.37) while in VOF it will be taken as f .
Another notation used for convenience to bridge all the formulations in the remaining of
the manuscript is the notational relation

1

VC

∫
AΓ

da = ∇HΓ · nΓ = δΓ , (2.45)

which can be applied to WDF, JCF or TTF.
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2.6.1 Clarifications on WDF, JCF and TFF

The illustration in Section 2.6.1 shows the difference between the three formulations
applied to a finite-volume discretization.

ΦM

(a) WDF with VOF

ΦM

(b) WDF with LS

Φl

Φgh
g

(c) JCF

Φl

Φg

(d) TFF

Figure 2.1: Illustration of the different formulations for a quantity Φ in a control volume. The
black point is the center of the cell while the grey point is the liquid phase barycenter and the white
point is the gas barycenter.

While WDF only provides the information of an averaged quantity at the interface (here,
the mass average is used, but it could be volume or enthaply average depending on the
considered equation), JCF provides the information of one phase only (and needs to
reconstruct the other one) and the TFF provides the quantity information in the two
phases. Moreover, WDF has been represented for both VOF in Fig. C.1a and LS in
Fig. C.1b to emphasise that they are not equivalent as VOF also contains the information
of the volume fraction in the cell while the LS does not.

2.6.2 Formulations applied to the governing equations

It is also important to remind that the formulations can be independently applied to any
of the governing equations in the system.
More specifically, the mass and momentum equations are always treated with WDF or
JCF in this work (and in almost every low Mach derivations of the literature). This choice
emerges from the representation of the pressure in the majority of the low Mach solvers.
As the pressure is not related to a thermodynamic quantity, it is often treated as a
quantity of arbitrary magnitude which only have a meaning for the gradient ∇P (this
point is detailed in Section 5.1). Then, the explicit value of P cannot be used in the
equations because it only holds a numerical meaning. This is not an issue for WDF and
JCF, as the interface contribution related to pressure is hidden in the surface tension term
of Eq. (2.26).
On the other hand, if momentum had to be treated with a TFF, then the value P appears
in the interface contributions and requires a correct definition. The evaluation of such a
value of pressure needs further closures which have to be determined.
In the case of energy or mass species fraction, WDF, JCF, or TFF can be applied without
distinction as every quantity appearing in the interface contributions can be closed from
the set of governing equations.
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In the remainder of the manuscript, a formulation will always refers to a specific equation
and not to the entire set of governing equations.

2.7 Conclusion

In this chapter, the governing equations have been derived for two-phase flows applying
the finite-volume method on the two-fluid equations. This derivation provides a natural
equation set in a geometric VOF framework where all interface contributions are closed
using the volume fraction f . In the LS framework, further assumptions need to be made
to obtain the governing equations of two-phase flows. However, recent advances have been
made in the derivation of the LS two-phase equations by transporting HΓ. This has been
done a source term or a two-step evolution of the equation, which need to be integrated
into the set of governing equations to keep the consistency of the system. Then, the
general derivation of the two-fluid equations has been provided to start a discussion on
how to proceed towards non-sharp physically-grounded equations for two-phase flows.
Finally, these formulations are presented in this specific work based on a finite-volume
discretization.
Now that the mathematical formulation is complete, the following parts detail the
numerical considerations concerning the resolution of the governing equations with
finite-volume methods on cartesian grid.
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The first part of this work considers the transport of the interface without considering the
coupling with the flow. The VOF and LS interface capturing methods evoked in Chapter 2
solve Eq. (2.2) with a discrete representation of χl, referred to as the color function c.
Regardless of the interface capturing method choice, it results in solving an advection
equation for c

∂c

∂t
+ uΓ · ∇c = 0 . (3.1)

Note that for geometric VOF, this is a purely notional form used for clarity.
In the context of a divergence-free flow without phase-change, interface velocity is equivalent
to the flow velocity. Eq. (3.1) can thus be rewritten as a conservation equation of c

∂c

∂t
+∇ · (uΓc) = 0 . (3.2)
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The color function can be defined in various ways ,which all require specific numerical
treatments. In the following, details are given about flux computation and eventual addi-
tional steps in the advection process. The goal of this study is to select promising interface
capturing methods from the literature for the simulation of two-phase flows. The potential
candidates are chosen using the following criteria:

• Up-to-date or still relevant in recent solvers;
• Adapted to a finite volume cartesian grid framework;
• Reasonable implementation effort;

In Section 3.1 and Section 3.2 are presented the VOF and Standard LS (SLS) methods
respectively. Then, two alternative methods are also described: another class of LS method,
the conservative LS (CLS) is detailed in Section 3.3 and finally, the coupling between LS
and VOF (CLSVOF) is introduced in Section 3.4 for completeness.

3.1 Volume-Of-Fluid method

The VOF method directly arises from the finite-volume method derivation presented in
Section 2.1.1. c is then the volume average of χ in a computational cell C

f =

∫
C χldv

VC
, (3.3)

where VC is the volume of C.
The volume fraction is governed by Eq. (2.7) which is rewritten such that αp = f and
phase-change does not occur:

∂f

∂t
+

1

VC

∫
∂VC

χlu · nda = 0 . (3.4)

In the following, the notional formulation of Eq. (3.2) with c = f is used instead for clarity

∂f

∂t
+∇ · (uΓf) = 0 . (3.5)

Two main approaches were developed to solve Eq. (3.5):
• Algebraic VOF [231 ] considers the resolution Eq. (3.5) using standard numerical

fluxes either from a finite-element, finite-difference or finite-volume framework. The
transport of volume fraction f requires flux limitation to remain bounded between 0
and 1 and suffers from numerical diffusion or dispersion. Major improvements have
been made in the past decade to improve the algebraic VOF algorithms, for instance,
with the multidimensional THINC method in both structured [84 ] and unstructured
mesh [232 ]. Other works based on diffuse interface were also improved by the use of
sharpening methods (see [200; 37 ] for details), which allow control on the interface
thickness.
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• Geometric VOF approach was first introduced by Hirt and Nichols [83 ]. The method
was developed to prevail the limitations of the Marker and Cell (MAC) method de-
veloped by Harlow and Welch [77 ] in 1965 in which velocity field transports marker
particles. The position of the interface is then deduced from the distribution of these
markers in the domain: a cell containing markers with empty neighbouring cells is
an interface cell. Moreover, the position of the marker particles gives a geometric
description of the interface in the cell. This method was found to use a lot of storage
resources and unnecessary huge computational time to move every single particle at
each timestep. As an alternative, Hirt and Nichols proposed a new approach in which
a color function is updated in the cell. The interface is reconstructed as a line and
the normal to the interface is deduced from the color function gradient. This method
requires only one variable per cell to fully describe the interface propagation, which
is a massive gain in computational time and storage.

Despite their increasing interest in two-phase flow simulations, the algebraic VOF methods
are incompatible with a sharp representation of the interface in the sense of the strict
derivation of Section 2.3. Therefore, our study focuses on geometric VOF, which requires
a reconstruction strategy to evaluate the fluxes of χl in Eq. (3.4). The methods used to
reconstruct the interface in the mixed cells (0 < f < 1) are presented in the next section.

3.1.1 Reconstruction

The most basic reconstruction is a line aligned with the mesh grid as in Fig. 3.1b. This
method is known as the Simple Line Interface Construction (SLIC) and was introduced
by Noh and Woodward [148 ]. Even if such a representation is first order, it has been
widely used in early two-phase flow solvers and has given reasonable results for a small
cost. Note that in this technique, the interface is not explicitly reconstructed. The line
direction is defined in the cell while computing the fluxes and then alternately modified at
each timestep in order to minimize the first-order error.
In modern codes, higher-order reconstructions are commonly used. The most popular
is the Piecewise Linear Interface Calculation (PLIC) which allows the line to have an
arbitrary direction as in Fig. 3.1c. For PLIC reconstruction, the following plane equation
is considered:

n · x = d , (3.6)

with n the normal to the interface pointing out of the dark fluid and d the line parameter.
In the following, details are provided on the strategies to obtain n and d from the VOF
representation.

3.1.1.1 Normal evaluation

In SLIC, Eq. (3.6) reduces to x = 0, y = 0 or z = 0 while a PLIC reconstruction requires
to compute n from f . PLIC reconstructions have an accuracy between first and second-
order. Second-order reconstruction is achieved if the algorithm represents any line (or
plane in 3D) exactly [181 ]. More details can be found in the Pilliod and Puckett’s review
of reconstruction algorithms [168 ].
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(a) Exact (b) SLIC (c) PLIC (d) PROST

Figure 3.1: Different reconstruction methods for an ellipse on a cartesian mesh. The grey part
represent the liquid phase while the white part is the gas phase.

Parker and Youngs The most straightforward computation is the Parker and Youngs
method [161 ] which uses the gradient of f to evaluate the normal components. In 2D, a
3x3 block is considered and f is interpolated at the 4 vertices, for the vertex

(
i+ 1

2 , j + 1
2

)
the normal components are

nx = −
f i+1,j+ 1

2
− f i,j+ 1

2

∆x
,

ny = −
f i+ 1

2
,j+1 − f i+ 1

2
,j

∆y
.

f i,j+ 1
2
is the vertex interpolation of f such that f i,j+ 1

2
= 1

2 (fi,j + fi,j+1).
The normal is finally evaluated by averaging the 4 vertex normals:

n =
1

4

(
ni− 1

2
,j− 1

2
+ ni+ 1

2
,j− 1

2
+ ni− 1

2
,j+ 1

2
+ ni+ 1

2
,j+ 1

2

)
. (3.7)

This normal computation is interesting for its simplicity and its straightforward extension
to 3D. Unfortunately, it does not achieve second-order accuracy.

Centered Columns For this method, the normal is computed from the centered differ-
ence of the height function over a direction in a 3x3 block. Height function is a crucial
notion first introduced in the SOLA-VOF program to treat complex topology with VOF
[146 ] and is widely used for normal and curvature computations (see [19 ] for details).
Height function can be computed from various stencil, and here the method is based on a
compact 3-stencil height function computed in all directions. It is the sum of the volume
fractions over a column as represented on Fig. 3.2

hxj =

1∑
k=−1

fi+k,j , hyi =

1∑
k=−1

fi,j+k , (3.8)
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(a) Height function in the y direction
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(b) Height function in the x direction

Figure 3.2: Height function in a 3 × 3 compact block. It is either reconstrcuted in the vertical
direction (left) or the horizontal direction (right).

For the y direction, CC method gives

nCC,yx =
1

2

(
hyi+1 − h

y
i−1

)
,

nCC,yy = sign(− (fi,j+1 − fi,j−1)) .

To select the best normal, the normal components are normalized such that |nx|+ |ny| = 1
and use the following criterion.

max
(∣∣nCC,xx

∣∣ , ∣∣nCC,yy

∣∣) . (3.9)

This approach remains relatively easy to implement and improve the accuracy of the normal
evaluation compared to PY. However, it still does not achieve second-order accuracy.

MYC The Mixed Youngs Centered is a good compromise between accuracy and efficiency
[135 ]. A first normal nPY is evaluated with the Parker and Youngs method, and the second
normal nCC is evaluated with the Center Columns method described previously. Then, the
normal that minimizes the component of the leading direction of the kept centered column
normal is chosen. For example, if nCC = nCC,x then the criterion is:

min
(
nCCx , nPYx

)
. (3.10)

Note that all the normal components are again normalized such that |nx|+ |ny|+ |nz| = 1
when applying the criterion. This is a further improvement of PY and CC methods which
improve the accuracy without reaching second-order reconstructions.
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WY Based on simple observations of the behaviour of height function regarding the cell
center value of the volume fraction fc, Weymouth and Yue introduced a second-order version
of the CC method. The following observations are given

• The middle height function of a 3 × 3 block is always estimated with second-order
accuracy.

• if fc > 0.5 the left height function is also estimated with second-order accuracy while
the right height function is under-estimated

• if fc < 0.5 the right height function is second-order accurate while the left one is
under-estimated.

The normal is then estimated using either forward or backward difference depending on
fc. In the case of Fig. 3.3, fc > 0.5 and using a forward difference allows to reconstruct
exactly the line. This method has the ability to reconstruct all lines/planes exactly and
then achieves second-order accuracy for all possible configurations.

ELVIRA Finally, another second-order reconstruction was derived by Pilliod in [167 ].
The Efficient Least squares VOF Interface Reconstruction Algorithm is an extension of
the LVIRA method, first introduced by Puckett in [174 ]. The LVIRA was an iterative
method whereas the efficient version reduces the cost of the method by minimizing the
error over only 6 (27 in 3D) normal candidates. The candidates are the forward, centered
and backward differences of the height value in both directions

nf,xx =
1∑

l=−1

(fi+1,j+l − fi,j+l) nf,xy = 1 ,

nc,xx =
1

2

1∑
l=−1

(fi+1,j+l − fi−1,j+l) nc,xy = 1 ,

nb,xx =

1∑
l=−1

(fi,j+l − fi−1,j+l) nb,xy = 1 ,

nf,yy =

1∑
k=−1

(fi+k,j+1 − fi+k,j) nf,yx = 1 ,

nc,yy =
1

2

1∑
k=−1

(fi+k,j+1 − fi+k,j−1) nc,yx = 1 ,

nb,yy =

1∑
k=−1

(fi+k,j − fi+k,j−1) nb,yx = 1 .

It can be shown that the ELVIRA algorithm reconstructs all linear interfaces exactly, and
it is then second-order accurate. This version of the algorithm is commonly used [156 ].
Unfortunately, a block of 5 × 5 × 5 cells is required to preserve the second-order accuracy
in 3D with 72 to 144 normal candidates [133 ].
Other algorithms have been introduced more recently to keep a compact block of 3× 3× 3
such as CVTNA [115 ], or a reduced version of ELVIRA in a 3× 3× 3 block [28 ].



49

hy
i−1 hy

i hy
i+1

(a) Height function on the compact 3× 3 block
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Figure 3.3: Height function error when fc > 0.5. The left configuration under-estimates the height
function hyi+1 with the missing part represented in dashed line on the right.

Moment of fluid Moment of fluid (MOF) method has been first introduced by Shashkov
et al. [55 ] in an unstructured mesh framework. It is an extension of VOF where the center
of mass of the fluid xcm is also used for interface reconstruction. The center of mass is a
new sub-cell information which allows compact and accurate interface normal computation.
This is of huge interest in under-resolved cases.
One can show that the f and xcm are directly related to the lower moments of the indicator
function χl. Suppose that we have fluid in a cell C, one can define the zeroth moment of
the fluid as

m0(χl) =

∫
C
χl(x)dv . (3.11)

Then the volume fraction f is directly deduced as f = m0(χl)
VC

.
Now, the first-order moments are defined as

m1(χl) =

∫
Ω

xχl(x)dv . (3.12)

Hence, the center of mass of the fluid is xcm = m1(χ)
m0(χ) .

In MOF, the reference center of mass xrefcm is transported with the volume fraction. The
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actual center of mass xactcm is the one obtained by the reconstruction that ensures mass
conservation, it is a function of d and n giving the error function to minimize:

E(d,n) =
∥∥∥xactcm (d,n)− xrefcm

∥∥∥
2

. (3.13)

The parametric notation of n is considered

n =

cos(Θ1) sin(Θ2)
sin(Θ1) sin(Θ2)

cos(Θ2)

 , (3.14)

with Θ1 and Θ2 the azimuthal and polar angles respectively.
The minimization can be done using the Gauss-Newton method as in [140 ] which only
uses first-order derivative of the objective functions (no improvement was found by using
the Newton minimization using second-order derivatives). This can also be done by using
Hailey’s method [35 ] or Broyden-Fletcher-Goldfarb-Shanno [237 ]. This development has
also been done in a slightly different way by Lemoine et al. [108 ] with an analytical
approach.

3.1.1.2 Plane parameter d

Once normal components are computed, the remaining unknown is the line parameter d. It
has been shown in [193 ] that an analytic expression for d exists such that the f -constraint
is enforced by using a cube-chopping algorithm. This process is able to give d or f in all
possible configurations analytically. It is a noticeable observation that avoids the use of an
iterative method leading to more computation time and truncation errors. Note that this
problem can also be solved with an iterative method [181 ].

3.1.1.3 Conclusion on reconstruction

Even if the PLIC reconstruction is widely used in two-phase flow simulations, it is limited
to second-order accuracy. Some works have been directed about parabolic reconstruction
such as PROST method of Renardy and Renardy [178 ] (see Fig. 3.1d) or QUASI [50 ]. The
first motivation of such a method is to have an inherent curvature in the reconstruction in
opposition to PLIC. It improves the accuracy of advection fluxes but requires significant
additional implementation efforts and computational cost. Extension to 3D is also not
straightforward and has not yet been presented in the literature.
From the above considerations, the most promising reconstructions are the ELVIRA and
MOF methods which provide a second-order evaluation of n. However, MOF does not
seem to provide substantial improvements compared to VOF-based methods for our target
applications. Indeed, this method seems to improve robustness in the case of atomization,
where most of the droplets are under-resolved. An appropriate choice is to use ELVIRA
for n evaluation while d is deduced analytically using the cube-chopping relations of [193 ]
to avoid additional computational cost and threshold errors of an iterative process.
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3.1.2 Flux computation

Classical advection schemes suffer from numerical diffusion or dispersion, which leads to
the smearing of the interface or overshoot and undershoot of the volume fraction. In both
cases, the sharpness and consistency of the interface is lost.
To avoid this problem, the transport of the interface is evaluated with geometrical meth-
ods. There are two types of geometric VOF advection schemes. The first is known as split
method, where the fluxes are computed in a direction-by-direction fashion. They are lim-
ited to cartesian grids and suffer from additional numerical errors due to the dimensional
splitting of the advection process. However, they keep a simple implementation and can
achieve second-order accuracy using a Strang splitting [206 ]. Even if the 3D extension
seems straightforward, keeping exact mass conservation is challenging using split method
as discussed in [13 ]. On the other hand, the unsplit type methods are more accurate, but
their implementation can become really complex involving simplex decomposition. These
methods are even more complex when dealing with 3D extension, and also need additional
treatments to ensure exact mass conservation in complex flows (see [118 ], [156 ] for details).
Accordingly, the choice has been made to use a split scheme in the present work to limit
the computational cost of the interface capturing. The dimensional-splitting of Eq. (3.5)
results in solving successive 1D advection problems

∂f

∂t
+
∂ (usf)

∂xs
= f

∂us
∂xs

, (3.15)

with s the sweep direction. ∇ ·u = 0 does not imply ∂us
∂xs

= 0 for a given splitting direction
and has to appear explicitly in the RHS of Eq. (3.15). After each directional splitting step,
a reconstruction is performed in order to avoid double fluxing problems [181 ].
The geometrical flux approximation can take different forms. Historically, Eulerian and
Lagrangian schemes were developed with comparable accuracy. For a directional-splitting
method, the challenge of geometrical flux approximation does not reside on the accuracy
but on the conservation and boundness properties. The following section describes in detail
the complexity to achieve conservation in such a framework.

3.1.2.1 EI-LE method

The Eulerian Implicit-Lagrangian Explicit method was first presented by Aulisa et al. [13 ].
It uses a combination of Eulerian and Lagrangian schemes leading to exact mass conserva-
tion in 2D. However, extension in 3D is not straightforward.

Eulerian implicit scheme The EI scheme was first introduced by Rider and Kothe in
[181 ]. The initial computational cell Ωn

i,j is mapped to Ω∗i,j (blue box in Fig. 3.4) and all
the interfaces lying into this area are then resized to the initial computational cell Ωn

i,j .

The Ω∗i,j limits are x ∈
[
xi− 1

2
,j − ui− 1

2
,j∆t, xi+ 1

2
,j − ui+ 1

2
,j∆t

]
and y ∈

[
yi,j− 1

2
, yi,j+ 1

2

]
.
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Figure 3.4: Illustration of EI flux computation. The computational cell Ωi,j is represented in blue
while the control volume related to the interface Γi,j is in red.

f∗i,j is then computed using

f∗i,j =
Ω∗i,j ∩ Γni−1,j + Ω∗i,j ∩ Γni,j + Ω∗i,j ∩ Γni+1,j(

1− ∆t
∆x

(
ui+ 1

2
,j − ui− 1

2
,j

))
∆x∆y

. (3.16)

In Fig. 3.4, one can see that for the dilatation case only Ω∗i,j ∩Γni,j is non-zero while for the
compression case all three intersections are non-zero. All the areas used in Eq. (3.16) can
be easily retrieved using the analytic expression between f and d given in [193 ].

Lagrangian explicit scheme The LE scheme is due to Li [113 ]. Velocities are consid-
ered constant at the faces of the cell, and the interface is propagated to the neighbouring
cells. This scheme takes implicitly into account ∂u

∂x when it is not zero. In this special case,
the interface propagation is not a simple translation but also a compression or dilatation
of the interface resulting in a modified line equation with new normal components [73 ].
The explicit mapping gives

xn =
x∗ − ui− 1

2
,j∆t

1 + ∆t
∆x

(
ui+ 1

2
,j − ui− 1

2
,j

) , (3.17)

with xn a point in cell Ωn
i,j at time n and x∗ the same point after the x-step. By introducing

Eq. (3.17) in the line equation

nnx

 x∗ − ui,j∆t

1 + ∆t
∆x

(
ui+ 1

2
,j − ui− 1

2
,j

)
+ nnyy = dn , (3.18)

resulting in a new line equation

n∗xx
∗ + n∗yy

∗ = d∗ , (3.19)



53

with the new line parameters

n∗x =
nnx

1 + ∆t
∆x

(
ui+ 1

2
,j − ui− 1

2
,j

) , (3.20)

d∗ = dn + n∗xui− 1
2
,j∆t . (3.21)

u
i− 12 , j u

i+ 12 , j

Γn
i, j

Ω*i, j

u
i− 12 , j

u
i+ 12 , j
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Ω*i, j

(a) Dilatation case

u
i− 12 , j u

i+ 12 , j
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u
i− 12 , j

u
i+ 12 , j

(b) Compression case

Figure 3.5: Illustration of LE flux computation. The computational cell Ωi,j is represented in blue
while the control volume related to the interface Γi,j is in red.

f∗i,j is computed using

f∗i,j =
Ω∗i,j ∩ Γ∗i−1,j + Ω∗i,j ∩ Γ∗i,j + Ω∗i,j ∩ Γ∗i+1,j

∆x∆y
. (3.22)

In Fig. 3.5, one can see that for the dilatation case only Ω∗i,j ∩Γ∗i,j is non-zero while for the
compression case all three intersections are non-zero. Again, analytical relations given in
[193 ] are used to compute the different intersections.

Linear mapping interpretation The two schemes presented above do not ensure mass
conservation when 1D dilatation or compression occurs [194 ]. This can be understood by
taking these two schemes as pure linear mapping. As described in [17 ], it is possible to go
back from the equation of motion dx

dt = u(x(t)). A first-order temporal integration gives
xn+1 = xn + u(x̃)∆t with x̃ = xn in the explicit scheme and x̃ = xn+1 in the implicit
scheme. u(x̃) is interpolated linearly between the face velocities ui− 1

2
,j and ui+ 1

2
,j :

u(x̃) = (1− x̃)ui− 1
2
,j + x̃ui+ 1

2
,j . (3.23)
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This leads to two linear mappings ΠE
x and ΠI

x for the explicit and implicit schemes respec-
tively

ΠE
x :

{
x∗i,j = cEx x

n
i,j + ui− 1

2
,j∆t

y∗i,j = yni,j
, (3.24)

ΠI
x :

{
x∗i,j = cIxx

n
i,j + cIxui− 1

2
,j∆t

y∗i,j = yni,j
, (3.25)

with cEx = 1 + ∆t/∆x
(
ui+ 1

2
,j − ui− 1

2
,j

)
and cIx = 1/1−∆t/∆x

(
ui+ 1

2
,j − ui− 1

2
,j

)
.

The linear mapping ΠE
x transforms the interface control volume Γni,j into the rectangle Γ∗i,j

in Fig. 3.5 while the linear mapping ΠI
x transforms the rectangular computational cell Ω∗i,j

into the square Ωn
i,j in Fig. 3.4. Note that for 1D uniform flow field both mappings are

equivalent as cEx = cIx.
For the EI-LE scheme, the EI step in x-direction can be written as

f∗i,j = cIx

(
fni,j −

(
Fi+ 1

2
,j − Fi− 1

2
,j

))
, (3.26)

followed by the LE step in y-direction

fn+1
i,j = cEy f

∗
i,j −

(
Fi,j+ 1

2
− Fi,j− 1

2

)
. (3.27)

One combines Eqs. (3.26) and (3.27)

fn+1
i,j = cEy c

I
xf

n
i,j − cEy cIx

(
Fi+ 1

2
,j − Fi− 1

2
,j

)
−
(
Fi,j+ 1

2
− Fi,j− 1

2

)
. (3.28)

By using the incompressibility condition vi,j+ 1
2
− vi,j− 1

2
= −

(
ui+ 1

2
,j − ui− 1

2
,j

)
:

cEy c
I
x =

1 + ∆t
(
vi,j+ 1

2
− vi,j− 1

2

)
1−∆t

(
ui+ 1

2
,j − ui− 1

2
,j

) = 1 . (3.29)

The update of f from Eq. (3.28) is then

fn+1
i,j = fni,j −

(
Fi+ 1

2
,j − Fi− 1

2
,j

)
−
(
Fi,j+ 1

2
− Fi,j− 1

2

)
. (3.30)

This last formulation is strictly conservative.
For the LE-EI scheme, the update is written as

fn+1
i,j = fni,j − cIy

(
Fi+ 1

2
,j − Fi− 1

2
,j

)
− cIy

(
Fi,j+ 1

2
− Fi,j− 1

2

)
, (3.31)

which is not mass conservative for all cIy values.
Such a relation can also been derived for EI-EI or LE-LE schemes leading to the same
conservation issues.
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Mass loss for the different schemes To illustrate the mass conservation errors result-
ing from wrong combination of EI and LE steps, four different schemes have been tested:
LE-LE, EI-EI, LE-EI and finally EI-LE.
Table 3.1 shows the mass error of these schemes for a 2D vortex-in-a-box test case (see
Section 4.3.2 for details) on a [64×64] mesh. In fact, all schemes but EI-LE introduce mass
errors even if the LE-EI approach is reducing drastically mass errors compared to LE-LE
or EI-EI schemes.

Advection scheme mass loss [%]
LE-LE 3.56
EI-EI 3.75
LE-EI 3.60e-6
EI-LE 4.71e-15

Table 3.1: Mass loss for different split VOF schemes

Unfortunately, there is no 3D combination providing exact mass conservation using EI and
LE steps. Indeed, several combinations have been tested in [229 ] such as LE-LE-LE or
EI-EI-LE, but all of them lead to mass error up to 1%. An attempt to a 3D extension
was done in [12 ] by decomposing the 3D incompressible flow into 2D incompressible flows,
but this technique requires to inverse a (6Nx) × (6Ny) matrix and cannot be applied to
arbitrary solenoidal flows.

3.1.2.2 Weymouth and Yue method

More recently, a scheme has been proposed by Weymouth and Yue [228 ] (WY) where exact
mass conservation is reached and 3D extension is straightforward. The method rely on EI
fluxes applied to a modified form of the 1D advection Eq. (3.15)

∂f

∂t
+
∂ (usf)

∂xs
= fc

∂us
∂xs

. (3.32)

In previous works, the compression/dilatation factor was taken as fc = f while this method-
ology consider fc as

fc = χ(xc) =

{
1 for f > 0.5
0 else , (3.33)

with f the volume fraction of liquid in the cell at the previous time step fn (and not the
previous directional splitting step !). fc is then computed once at the beginning of the time
step and remains constant until the next time step.
It can be shown that there are no undershoot or overshoot in any step of the directional
splitting method with a Courant restriction of the form [229 ]:

∆t

Ndim∑
i=1

∣∣∣∣ ui∆xi

∣∣∣∣ < 1

2
. (3.34)
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This ensures exact mass conservation of the transport for any velocity fields.
Note that another intent to provide exactly conservative method using directional splitting
has been made in a redistribution-based fashion where the undershoots and overshoots are
iteratively redistributed to the neighbouring cells [188 ]. This method was mainly developed
to prevail the CFL restriction of WY and gives encouraging results on highly stretching
test cases.
From the above considerations, the use of WY scheme seems to provide a robust method
for VOF advection.

3.2 Standard Level-Set method

This method was first presented by Osher and Sethian [153 ] where φ is a signed distance
transported in the whole domain, and the interface is located at the iso-contour φ−1(0).
Later, it was applied to the simulation of incompressible two-phase flows by Sussman et
al. [214 ] as an alternative to the already existing VOF and FT algorithm. The main
advantages of this formulation are its straightforward implementation in 2D and 3D, its
smoothness allowing high order treatments and the natural handling of topology changes.
The transport equation for the Level-Set is Eq. (3.2) with c = φ

∂φ

∂t
+∇ · (uΓφ) = 0 . (3.35)

3.2.1 Redistanciation

In the general case, uΓ is not uniform in the normal direction of the interface. This causes
severe deviations of φ from a signed distance leading to a decrease of the interface location
accuracy [214 ]. After evolving φ with Eq. (3.35), additional numerical treatments are
required to impose

|∇φ| = 1 . (3.36)

One way to do that is to enforce Eq. (3.36) solving a second equation for φ. The following
equation was first introduced in [214 ]

∂φ

∂τ
+ sign(φ0) (|∇φ| − 1) = 0 , (3.37)

with τ a pseudo-time.
This results in solving a Hamilton-Jacobi equation in pseudo-time with the correspond-
ing Hamiltonian H (φ,∇φ) = sign(φ0) (1− |∇φ|). Ideally, the redistanciation step would
retrieve the constraint Eq. (3.36) without moving the interface Γ (the zero iso-contour),
which is the constraint on the mass conservation.
In the 1D case illustrated in Fig. 3.6a, a trivial solution exists to reconstruct the signed
distance without moving Γ and with |∇φ| = 1 constraint. However, in a multidimensional
case represented in Fig. 3.6b, imposing |∇φ| = 1 on the closest nodes to the interface will
lead to a shift of Γ. Then, a choice has to be made between these two constraints:
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(a) 1D case

Γ

Γreinit

i − 1, j i, j

i − 1, j − 1 i, j − 1 i + 1, j − 1 i + 2, j − 1

i + 1, j i + 2, j

(b) 2D case

Figure 3.6: Illustration of interface displacement after redistanciation (straight line corresponds
to φ before redistanciation and dashed line corresponds to φ after redistanciation)

• Consider the closest nodes to the interface as exact values of the signed distance,
which are not updated in the redistanciation process. This will lead to conservation
of mass, but the loss of the |∇φ| = 1 property on these nodes.

• Apply the redistanciation over all nodes, including the closest to the interface. This
will lead to movements of the interface, but the |∇φ| = 1 property will be true
everywhere.

To reduce this discrepancy, some authors [185 ] tried to modify Eq. (3.35) by adding a
source term counter-balancing the distortion from velocity. However, a redistanciation pro-
cedure is still necessary to enforce Eq. (3.36) after some iterations.

3.2.1.1 Original PDE redistanciation

The first approach is to consider Eq. (3.37) and the Hamiltonian is discretized using an
upwind Godunov approach, such that the discrete Hamiltonian HG in 2D (3D extension is
straightforward) is defined as

HG =


√

max
(
|∂φ∂x
−|2+, |

∂φ
∂x

+|2−)
)

+ max
(
|∂φ∂y
−|2+, |

∂φ
∂y

+|2−)
)
− 1 if φ0 ≥ 0√

max
(
|∂φ∂x
−|2−, |

∂φ
∂x

+|2+)
)

+ max
(
|∂φ∂y
−|2−, |

∂φ
∂y

+|2+)
)
− 1 if φ0 < 0

, (3.38)

with |a|+ = max(a, 0) the positive part of a, |a|− = min(a, 0) the negative part of a, ∂a
∂x

+

the biased derivative of a to the left and ∂a
∂x

− the biased derivative of a to the right. Note
that other Hamiltonian discretizations are also possible, such as Lax Friedrichs or Roe [92 ].
Traditionally, the HJ-WENO5 approach of [92 ] is used for the gradient discretization with
an RK2 or RK3 scheme for temporal integration. It has been shown later that this dis-
cretization leads to a second-order distance function [67 ] and the displacement of the zero
iso-contour for φ. The reason of this low-order reinitialization compared to the high-order
gradient computation is explained in [184 ]: high-order upwind schemes are not truly up-
wind as they imply values in the wrong side of the domain near the interface (values in Ωg
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are updated using φ in Ωl and vice versa). Such an approach suffers from a limited order of
accuracy and a loss of mass conservation while it is fairly easy to implement. Moreover, the
value of the closest nodes to the interface can oscillate around φ = 0 switching sign multiple
times, preventing Eq. (3.37) from reaching a steady state. However, this behaviour can be
highly diminished by introducing a smooth version of the sign distance S(φ0), in [214 ] this
is defined as

S(φ0) =
φ0√

φ2
0 + ∆x2

. (3.39)

3.2.1.2 Subcell fix approach

To solve the above problems, a first and second-order subcell fix was first introduced in
[184 ], and a higher-order extension was proposed in [54 ]. The idea behind the subcell fix
is to consider a variable stencil in the cells belonging to ΩΓ such that they are not modified
during the iteration process. This lead to a modification of Eq. (3.37)

∂φ

∂τ
=

{
− 1

∆x (sign(φ0)|φ| − d) if C ∈ ΩΓ

−sign(φ0)HG(φ) else , (3.40)

with d the distance to the interface computed using the close nodes. Initially, this distance d
is computed as a linear interpolation from neighbouring cells. This method allows Eq. (3.37)
to reach a steady-state. Then, the accuracy of the method does not depend on the number
of iterations anymore but on the initial discretization of the nodes close to the interface.

3.2.1.3 Interface preserving method

Sussman and Fatemi [211 ] proposed to add a constraint term in Eq. (3.37) to enforce mass
conservation

∂φ

∂τ
= H (φ,∇φ) + λg(φ) , (3.41)

with

g(φ) = H ′(φ)|∇φ| , (3.42)

and

λ = −
∫

ΩH
′(φ)H (φ,∇φ)∫

ΩH
′(φ)g(φ)

. (3.43)

This term was derived to ensure
∂
∫

ΩH(φ)

∂τ
= 0 , (3.44)

which means that the volume included in the zero-isocontour does not vary in pseudo-
time of the redistanciation equation. The constraint term discretization requires spatial
numerical integration in computational cells and temporal derivatives. Hence the method
is not straightforward to implement. Moreover, it does not lead to significant improvements
in interface capturing accuracy even if it shows better conservation properties.
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3.2.1.4 Constrained reinitialization

A more recent approach proposed by Hartmann et al. [78 ] also add a source term in the
reinitialization step

∂φ

∂τ
= H (φ,∇φ) + βFφ , (3.45)

with β = 0.5 and F(φ0, φ) a forcing term constructed such that the displacement of interface
points is zero

Fi(φ0, φ) =
1

∆x

−φi +
φi,0∑

j∈IΓ
φ0,j

∑
j∈IΓ

φj

 , (3.46)

with IΓ the set of indices of neighbours cell belonging to the interface.
The constraint term allows to use the conventional HJ-WENO5 discretization for H (φ,∇φ)
while fixing the points close to the interface in a high order manner.

3.2.1.5 Fast Marching Method

The other class of redistanciation methods considers the static version of the Hamilton-
Jacobi equation. This leads to the stationary Eikonal equation with a unity normal speed
and boundary condition on the zero iso-contour{

|∇φ| = 1 x ∈ Ωl ∪ Ωg

φ = 0 x ∈ Γ
. (3.47)

Eq. (3.47) can be solved efficiently using a Fast Marching Method (FMM) [197 ]. FMM
relies on an upwind front evolving normal to the interface from Γ to Ωl and Ωg. Three list
of nodes are defined: accepted (A), close (C) and far (F) nodes (in black, white and red
respectively on Fig. 3.7). The accepted nodes are the one already behind the evolving front
Γ(t) while the close nodes are the direct neighbours of the accepted one and the far nodes
are all the other nodes.
For a node to be computed at cell C, one need to solve the following Godunov approximation
of ∇φ which leads to a quadratic equation in φC

max

(
∂φ

∂x

−
,−∂φ

∂x

+

, 0

)
+ max

(
∂φ

∂y

−
,−∂φ

∂y

+

, 0

)
− 1 = 0 , (3.48)

with ∂φ
∂x

−
and ∂φ

∂x

+
the left and right biased first-order approximation of the φ derivative

respectively. Note that higher-order upwind derivatives can also be used if accepted values
are available on the stencil (see [180 ] for details). It is essential to use only nodes in the A
list for the computation of the derivatives. To ensure it, nodes belonging to C and F lists
are set to ∞ so they do not participate in the computation of Eq. (3.48).
There are two roots for the above equation, and a value of φ has to be chosen between
them. In most of the case, one root will be smaller than the neighbour values and the other
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Γ(0)

(a) Nodes at t = 0

Γ(0)

Γ(t)
(b) Nodes at a time t

Figure 3.7: Illustration of the nodes definition in a FMM algorithm

higher. In this case, causality implies picking the largest value.
In the updating of the accepted list, one has to be very careful not to violate causality.
This is done by always taking the close node with the smallest value in the domain as the
candidate to become accepted. The crucial point for FMM efficiency is quick access to the
smallest value in the C list. This is done by the use of a heap sort approach.
The FMM algorithm can be sum up as:

1. Initialize the list of close and accepted node lists C and A
2. Perform a heap sort on C
3. Remove C(1) from the close list and add it in A
4. Add the adjacent nodes of C(1) belonging to F in C
5. Compute the new close values using Eq. (3.48)
6. Repeat step 2. to 5. until all nodes are accepted

As for the PDE-based approach, one can choose to conserve the iso-contour or to impose
Eq. (3.36) even between values of different domains. This is done in the initialization of
the close and accepted cells. If one want to conserve the zero iso-contour, then the closest
nodes at t = 0 in Fig. 3.7a are considered already accepted and will not be modified in the
FMM process. If one wants to recompute the nodes close to the interface in order to respect
Eq. (3.36), then this can be done by solving Eq. (3.48) considering only interface positions
as accepted points. These interface positions are computed from linear approximation.

3.2.1.6 Additional considerations on redistanciation

In order to choose a reinitialization method, some aspects have to be compared, such as
accuracy, conservation and implementation efforts.
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Accuracy One important aspect is the accuracy of the redistanciation as it can be lim-
iting to achieve high order accuracy. A redistanciation that is not accurate jeopardizes the
main advantage of SLS, which is to provide a high order representation of the interface for
topology computations.
A complete comparison of redistanciation schemes based on the Hamilton-Jacobi equation
is available in [203 ]. In fact, all the PDE methods but the subcell fix approach can lead
to comparable accuracy with improvement for the Interface preserving method. Moreover,
the use of a subcell fix is leading to higher parasitic currents, which could be due to the
low-order reconstruction close to the interface.
High order FMM approaches are not straightforward and would require more implementa-
tion and computational efforts. As FMM is employed only for its efficiency, it is then not
reasonable to consider higher-order implementations. Then, FMM can be considered as a
second-order method for redistancing.

Conservation For conservation, the study of [203 ] showed that the Constrained reini-
tialization and the Interface preserving method were improving the mass conservation com-
pared to the original method of [92 ]. However, the study focuses on evaluating sophisticated
redistanciation methods and the original discretization is not considered in most of the test
cases displayed. It is then not clear if the Constrained reinitialization and the Interface pre-
serving methods show substantial improvement in conservation compared to the original
discretization.

Implementation effort Finally, the implementation effort is noticeably unequal between
the above-presented method. Indeed, the parallel implementation of an FMM algorithm
is very tedious as it requires to respect causality. Several approaches has been proposed
for this: Herrmann [80 ] and later McCaslin et al. [127 ] proposed to advance each front
independently in each processor and use a rollback when a neighbour processor share a new
accepted value. This ensures that causality is preserved and allows the front to propagate
independently in each processor if they do not update shared values. In [233 ], the advance-
ment is performed on a narrow band with a free width parameter. If the width is set to 0,
the algorithm works as the serial one. When the width is set to ∞, all processors advance
the front independently. A proper width allows to be efficient and respect causality.
For the PDE-based implementations, the original high order discretization is straightfor-
ward, whereas additional efforts are required for the Interface preserving method, and even
more efforts are required for the Constrained reinitialization involving numerical integral
evaluations.

From the above considerations, the original PDE redistanciation of [92 ] seems to provide
a straightforward high order method in the vein of the SLS transport. Moreover, it is still
used in modern solvers for evaporation applications [183 ] proving its relevance.
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3.2.2 Flux computation

Classical advection schemes can be applied to φ as it is a fairly smooth function. However,
discretization has a significant impact on mass conservation as numerical diffusion leads to
artificial mass loss. This subject has been widely explored, and it has been shown multiple
times that Level-Set performs well with high-order schemes. A complete comparison of
ENO, WENO and HOUC schemes of different orders has been made in [149 ]. It is also
possible to improve the method by using high-order Discontinuous Galerkin methods [49 ]
or Gradient Augmented Level-Set approach [143 ]. Some semi-Lagrangian techniques have
been proposed to remove the stability constraints [134; 226 ].
This is also a relevant choice as it is the most popular in the literature to solve such an
equation. The most used scheme to compute the fluxes of φ is the WENO5 scheme of [93 ]
as it provides a straightforward and accurate transport of φ

3.3 Conservative Level-Set method

In order to solve the mass conservation problems of the standard Level-Set method, a
new formulation has been introduced by Olsson and Kreiss [150 ]. They started from the
Heaviside definition of Sussman et al. [214 ]

Hε
Γ =


0 if φ < −ε
1 if φ > ε

1 + φ
2ε + 1

2π sin(πφε ) otherwise
, (3.49)

with ε half the thickness of the interface.
By noticing that

V (Hε
Γ = 0.5) ≈

∫
Ω
Hε

Γ , (3.50)

with V (Hε
Γ = 0.5) the mass contained in the isocontour Hε

Γ = 0.5. In fact, in the limit
ε→ 0, V (Hε

Γ = 0.5) =
∫

ΩH
ε
Γ.

Olsson and Kreiss argued that transporting a function ψ = Hε instead of the standard
signed distance φ would highly increase the mass conservation properties. In the lastest
versions of the method, the definition of the function ψ is defined in a continuous manner
as

ψ =
1

2

(
tanh

(
φ

2ε

))
. (3.51)

The transport equation for this new function is then

∂ψ

∂t
+∇ · (uΓψ) = 0 . (3.52)
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3.3.1 Reinitialization

For the same reasons that φ cannot maintain the property |∇φ| = 1 during transport,
there are no guarantee that the hyperbolic tangent profile ψ will remain unchanged. This
takes the form of local modifications of the interface thickness ε which would lead to a bad
representation of the interface and topology computation from it.
An additional conservation equation has to be solved in pseudo time to overcome this
problem

∂ψ

∂τ
+∇ · F(ψ) = 0 . (3.53)

Note that it is imperative to write the reinitialization in a conservative way in order to keep
the exact conservation of ψ. The "conservative" aspect of the method is only true for the
transported variable ψ and not the mass itself. This is because the thickness ε cannot be
too small in order to be resolvable on the computational mesh. Usually, ε = 0.5∆x.
This flux F is composed of a compression flux and a diffusive flux which will tend to retrieve
a hyperbolic tangent with an interface thickness ε.
Therefore, Eq. (3.53) is purely artificial and only corresponds to a numerical need to main-
tain the interface thickness uniform and constant in time.

3.3.1.1 Original reinitialization

In the original paper, the compression flux is defined as

Fcomp = ψ(1− ψ)n , (3.54)

with n computed from ψ as

n =
∇ψ
|∇ψ|

. (3.55)

This flux acts as a resharpening in the normal direction of the interface in the regions where
0 < ψ < 1.
In order to keep the interface thickness into a resolvable thickness ε on the mesh, a small
diffusive flux is added

Fdiff = ε∇ψ , (3.56)

then Eq. (3.53) can be written as

∂ψ

∂τ
+∇ · (ψ(1− ψ)n) = ∇ · (ε∇ψ) . (3.57)

With these definitions, the compression flux acts in the normal direction while the diffusion
flux acts in both normal and tangential directions. The normal diffusion is expected to be
counter-balanced by the compression. However, the tangential diffusion does not have a
compression counterpart, which can lead to interface displacements.
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3.3.1.2 Diffusion in the reinitialization

This is why in the second part of their paper [151 ], Olsson et al. modified the diffusive flux
given in Eq. (3.56)

Fdiff = ε (∇ψ · n) n , (3.58)

leading to the reinitialization equation

∂ψ

∂τ
+∇ · (ψ(1− ψ)n) = ∇ · (ε (∇ψ · n) n) . (3.59)

It can be shown that Eq. (3.51) satisfies

∂ψ

∂φ
=
ψ (1− ψ)

ε
, (3.60)

which is compatible with the steady state of Eq. (3.59)

3.3.1.3 Normal computation in the reinitialization

As pointed out by Desjardins et al. in [48 ], even if the advection and reinitialization are
accurate and TVD, the ψ function can deviate locally from a hyperbolic tangent, which
can introduce spurious normal computation if Eq. (3.55) is used.
They proposed an Accurate Conservative Level Set (ACLS) method in which they recom-
pute a distance function φFMM from the isocontour ψ = 0.5 and compute the normal with

n =
∇φFMM

|∇φFMM |
. (3.61)

This new approach alleviates the TVD constraint on the advection scheme to solve Eq. (3.52).
This is why HOUC5 schemes can be employed in the ACLS method.

3.3.1.4 Interface displacement in the reinitialization

Even if the ACLS approach solves some issues of SLS, the reinitialization still suffers from
numerical errors tending to deform the interface. These errors do not show up when the
interface is in a highly dynamic flow. However, it can be predominant in regions of the
domain where the interface is still.

Localized reinitialization This problem has been widely investigated, and one solution
would be to apply reinitialization only in regions where it is required. This has been done
in [189 ] by rewriting Eq. (3.59) as

∂ψ

∂τ
+ α∇ · (ψ(1− ψ)n) = α∇ · (ε (∇ψ · n) n) . (3.62)
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Hence, if α = 0, no reinitialization is performed, while α = 1 corresponds to the original
method. This parameter is local and is defined based on numerical experiments.
McCaslin et al. [128 ] proposed another modification of the reinitialization equation

∂ψ

∂τ
+∇ · (αψ(1− ψ)n) = ∇ · (αε (∇ψ · n) n) . (3.63)

This time, the original reinitialization is retrieved if ∇α · n. The parameter α is based on
flow kinematics and the numerical diffusion of ψ when solving Eq. (3.52).
Other attempts to solve this problem has been proposed in [225 ].

A reinitialization reformulation In [38 ], Chiodi et al. proposed a new reformulation
of the reinitialization leading to a huge reduction of interface deformation due to reinitial-
ization.
The idea is to rewrite fluxes by using trigonometric identities (all the details can be found
in Sahut PhD thesis [186 ]) and a mapping of φ

Fcomp = ψ (1− ψ) n =
1

4 cosh2
(
φmap

2ε

)n , (3.64)

Fdiff = ε (∇ψ · n) n =

 1

4 cosh2
(
φmap

2ε

) |∇φ · n|
n , (3.65)

with the φmap the φ mapping defined as

φmap = ε log

(
ψ

1− ψ

)
. (3.66)

This new definition of the compression flux leads to the following reinitialization equation

∂ψ

∂τ
= ∇ ·

 1

4 cosh2
(
φmap

2ε

) (|∇φmap · n| − 1) n

 . (3.67)

The mapping of φmap does not remove potential oscillatory behaviour in the normal com-
ponents, this is why the normal are still computed from Eq. (3.61).
Note that is in order to compute φmap in Eq. (3.66), the value of ψ needs to be bounded
between ]ηc; 1− ηc[ with ηc an arbitrary small number. To avoid any important clipping
of ψ, the HOUC5 scheme and any other oscillating schemes cannot be used anymore, and
bounded schemes such as BQUICK or BHOUC is preferred [82 ].
This method has shown to be as accurate as the original ACLS method but with the
advantage of not moving the interface in still regions.

The locking fix Using the formulation of Eq. (3.67), some grid locking can occur when
two interface fronts are close to each other. This is explained looking at the term (|∇φmap · n| − 1).
When two fronts are close to each other, φmap is close to zero, and the flux is dominated by
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the compressive term (the 1 in the appearing in the flux). This flux is then tremendous and
not balanced anymore by the diffusion, which creates this locking phenomenon. In [89 ],
a new formulation is proposed, written as (∇φmap · n− n · n) with the normal computed
from n = ∇φFMM without normalization.

3.3.1.5 Comparison of the reinitialization methods

For the following test case, reinitialization is performed on a sphere with a resolution
D/∆x = 20 as in [38 ]. The goal is to compare the original reinitialization Eq. (3.57) with
the ACLS reinitialization Eq. (3.59) and the Chiodi reinitialization Eq. (3.67). Note that
the fix proposed in [89 ] has no impact on this test case as the terms are different only in
front merging configurations.
In Figs. 3.8 to 3.10 are compared three different states of the sphere: the initial shape, the
shape after 100 iterations of reinitialization steps and the shape after 1000 reinitialization
steps. It is clear that modifying the direction of the diffusion by introducing only diffusion
in the normal direction to the interface reduces the distortion of the droplet by comparing
Figs. 3.8 and 3.9. However, the reinitialization Eq. (3.59) still deforms the sphere by
flattening the edges.

(a) Initial shape (b) 100 iterations (c) 1000 iterations

Figure 3.8: Effect of the reinitialization from Eq. (3.57) on a static droplet

(a) Initial shape (b) 100 iterations (c) 1000 iterations

Figure 3.9: Effect of the reinitialization from Eq. (3.59) on a static droplet
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Finally, the modification of Chiodi allows to keep a perfect sphere even after 1000 iterations
as seen in Fig. 3.10. This last result is very convincing for applications such as isolated
droplets evaporating.

(a) Initial shape (b) 100 iterations (c) 1000 iterations

Figure 3.10: Effect of the reinitialization from Eq. (3.67) on a static droplet

This simple test case shows that the reinitialization taking into account both the Chiodi
modification and the locking fix of [89 ] is the most-suited method for accurate and robust
reinitialization of ψ. This takes the following form

∂ψ

∂τ
= ∇ ·

 1

4 cosh2
(
φmap

2ε

) (∇φmap · n− n · n) n

 , (3.68)

with the normal obtained with n = ∇φFMM .

3.3.2 Flux computation

As for the SLS, classical advection schemes can be applied to ψ.
In the original paper [150 ], Olsson and Kreiss investigated a large range of second-order
TVD methods based on upwind schemes with piecewise linear reconstruction and retained
a MUSCL scheme with superbee limiter (see [112 ] for more details).
In the second part of the article [151 ] they employed a finite element discretization to im-
prove the accuracy of the advection step.
Later, Desjardins et al. [48 ] proposed to use higher-order finite volume schemes and com-
pared HOUC5 [46 ] with WENO5. They concluded that using HOUC5 were giving more
accurate results.
A Discontinous Galerkin method has also been presented in [155 ] which improves accuracy
for the transport test cases shown in their work.
The flux reconstruction can be chosen using the following considerations:

• The transport and conservation properties are improved by high accuracy.
• The ψ field is allowed to be spurious as topological properties are computed from
φFMM .

• The ψ function needs to be bounded as explained in Section 3.3.1.4.
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A BHOUC5 reconstruction [82 ] seems to be the most-suited flux reconstruction to reach
all these requirements in a finite-volume framework. It is more dispersive compared to
a WENO5 scheme, however, it is less diffusive, which is expected to improve the trans-
port accuracy. Moreover, the scheme remains bounded as upwind fluxes are used when ψ
experiences undershoot or overshoot.

3.4 Coupled Level-Set Volume-of-Fluid method

The coupling between LS and VOF was first introduced by Sussman and Puckett [213 ] to
simulate microscale jetting devices. This application needs an accurate computation of the
curvature for surface tension contribution and enough mass conservation to capture jet’s tail
before break up. Based on SLS algorithm, they observed that the tail disappears because
of mass loss while VOF algorithm was introducing oscillatory behaviours because of the
inaccuracies in curvature computation from f . The idea is then is to transport both f and
φ and couple them through the PLIC reconstruction of the interface and the reinitialization
of φ. This results in solving Eq. (3.2) twice with c = f, φ

∂φ

∂t
+∇ · (uΓφ) = 0 , (3.69)

∂f

∂t
+∇ · (uΓf) = 0 . (3.70)

Note that another class of coupled LS-VOF method was also introduced with both algebraic
[3 ] or geometric [208 ] VOF where only f is transported while φ is deduced from the f−1(0.5)
iso-contour. However, this approach was mainly used to retrieve more accurate curvature
and are not considered here as there are not completely coupled methods, as φ does not
have an evolution equation and is not used in the PLIC reconstruction.

3.4.1 Coupling between Level-Set and Volume-Of-Fluid

3.4.1.1 Normal evaluation

In CLSVOF, the interface normal need to be retrieved as for a classical geometric VOF
algorithm. The idea is to use φ instead of f to compute this quantity in order to circumvent
the issues described in Section 3.1.1.1. Hereafter, three strategies are presented.

Plane fit The original approach of Sussman and Puckett [213 ] used a plane fit approach
written in the Least-Square sense. The plane is reconstructed such that the error between
the distance to the interface φ and the distance to the plane is minimized in a 3-stencil
around the considered cell. For a 2D mesh cell Ci,j , this gives the following expression for
the error Ei,j to minimize

Ei,j =

i+1∑
k=i−1

j+1∑
l=j−1

wk,l (φk,l − ni,j ·∆xk,l + di,j) , (3.71)
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with wk,l a weight designed to localize the system of equation around xi,j and ∆xk,l the
displacement from xk,l to xi,j .
In [91 ] the weights are computed using

wk,l =

{
10−3

(
1
22

)|k|+|l| if |φk,l| > ε(
1 + cos

(
πφk,l
ε

)
+ 10−3

) (
1
22

)|k|+|l| if |φk,l| ≤ ε
. (3.72)

The minimization requires to invert a 3×3 (4×4 in 3D) matrix and leads to a second-order
accurate computation of the normal. Note that the value of d computed from this linear
system does not ensure that the PLIC reconstruction respects the volume of the cell. It is
then recomputed based on ni,j and fi,j as described in Section 3.1.1.2.
In [218 ], authors noticed that using the full 3× 3 block of φ values could lead to numerical
errors when two interface fronts were crossing the stencil. In this case, they proposed to
use a variable stencil to consider only points with a φ value associated with the correct
interface piece.

Standard derivation The plane fit method gives an accurate method for normal com-
putation. However it requires to solve a linear system and dynamic stencil if the correction
of [218 ] is included. The interest of such a method is then arguable compared to algorithms
based on f presented in Section 3.1.1.1. This is why, several works [205; 238 ] use centered
finite differences to retrieve the normal from

n = − ∇φ
|∇φ|

. (3.73)

This expression leads to an efficient second-order accurate approximation of the interface.

CLSMOF As for the MOF algorithm, some CLSVOF algorithms [91; 139 ] also transport
the center of mass of the fluid and switch between a normal computation based on φ or on
MOF depending on an Interface Resolution Quality IRQ defined as

IRQ =
1

∆x|κ|
, (3.74)

with κ the local curvature. This methodology has been compared to standard CLSVOF
on airblast atomization [141 ] and a huge impact on the atomization process was observed.
While the CLSVOF method led to predominant sheet breakup, the CLSMOF was giving
predominant ligament breakup instead.

The main asset of using a CLSVOF approach instead of VOF is a simple and accurate
method to compute the normal. Then, the standard derivation of Eq. (3.73) constitutes
the most relevant choice here as it does not require solving a linear system or transport
additional information without a significant loss of accuracy in the target applications.
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3.4.1.2 Redistanciation

Another coupling is done through the redistanciation of φ after transport. Instead of solving
Eq. (3.37) or Eq. (3.47), the CLSVOF redistanciation step is based on f to enforce mass
conservation. The idea is to give a new zero iso-contour for the φ field corresponding to
the exact distance to the PLIC reconstruction. In the manuscript, the signed distance φ
obtained from the CLSVOF method will be renamed as φPLIC .

Reset approach In the original CLSVOF method [213 ], the LS was completely reset in
a narrow band of 5 cells around the interface to match exactly the distance to the PLIC
reconstruction. This was done by using the PLIC reconstruction of all neighbouring cells
and chose the shortest distance to one of the planes. One drawback of this approach is that
the high accuracy of φ is lost through the reconstruction process, φPLIC contains errors
from the linear reconstructions of the interface.

Mixed approach In [218 ], the reset is only applied in the mixed cells (where 0 < f < 1)
using the fact that the distance to the plane is simply φPLIC = d. However, in all other
cells, Eq. (3.37) was solved with the HJ-WENO5 scheme. This algorithm allows higher
accuracy while keeping the anchor of the PLIC reconstruction distance at interface cells.

Relaxation Finally, Le Chenadec and Pitsch [36 ] noticed that using the reset approach
at each timestep led to spurious behaviour of the interface evolution. They proposed to
introduce a relaxation to weaken the coupling between f and φ

φPLIC = ωφ+ (1− ω)d , (3.75)

with ω the relaxation weight. Their study led to the following definition of ω as a function
of the discrepancy between φ and d

ω = exp

(
−αmax

(
|φ− d|
η

− 1, 0

)2
)

, (3.76)

with α a relaxation speed set to 10, and η a cutoff scale below which the discrepancy is
considered negligible (taken as 0.01∆x).

A combination: HJ-relax To keep the simplicity of the redistanciation and mitigate
the errors induced in the φ function close to the interface, a combination of the mixed
approach [218 ] and the relaxation of [36 ] is proposed, referred as HJ-relax. Then, φ reset
is only performed in mixed cells, including the relaxation, while the HJ-WENO5 scheme is
used otherwise.

3.4.1.3 VOF truncation

Most of the CLSVOF approaches also alleviate the mass conservation constraint by cleaning
the field f using φ to avoid any jetsam or flotsam resulting from the transport step. In
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atomization processes, where a lot of under-resolved structures appear, the presence of
jetsam or flotsam can lead to robustness issues.
The VOF truncation is done either considering that if |φ| > ∆x then the cell cannot contain
an interface and f is set to 0 or 1 depending on the sign of φ [213; 205; 218 ]. Another way
to restrain the VOF proposed in [139 ], is to check if φ experiences any sign-change with
its neighbour. f is set to 0 or 1 if no sign-change is experienced in φ.

3.4.2 Flux computation

It is essential to use a geometric flux reconstruction for VOF to retrieve the desired proper-
ties discussed in Section 3.1.2. As φ is required for PLIC reconstruction, it is also important
to have consistency between the time integration of f and φ. A discrepancy between the
two quantities could lead to an inaccurate normal approximation which totally jeopardizes
one of the main advantages of coupling LS and VOF. Then, if a dimensional-splitting algo-
rithm is used for VOF, LS need also to be treated in the same way. As discussed previously,
the 1D equation to solve for φ should be of the form Eq. (3.15)

∂f

∂t
+
∂ (usf)

∂xs
= f

∂us
∂xs

, (3.77)

∂φ

∂t
+
∂ (usφ)

∂xs
= φ

∂us
∂xs

, (3.78)

with Eq. (3.78) solved using classical finite volume schemes.
In [36 ], an unsplit VOF scheme is used and the LS can be advanced as described in
Section 3.2.

3.5 Conclusion

In this chapter, a review of interface capturing methods was provided with a focus on the
four most popular methods of the literature. They all present strengths and weaknesses
for the study of two-phase flows. While the VOF method is mass conservative, it suffers
from limitations in accuracy because of the geometric nature of the flux. Another class of
methods based on an implicit representation of the interface led to the SLS method, which
provides an arbitrary accurate interface representation while it suffers from mass conserva-
tion. The CLS method was introduced to improve the mass conservation properties while
keeping an arbitrary accurate interface representation. Finally, the CLSVOF method uses
both the mass conservation property of VOF and the accuracy of the LS representation.

The next chapter aims to provide a fair comparison between an up-to-date version of each
method with the choices discussed in the different section and summarized in Table 3.2 to
expose their numerical properties on canonical test cases.



method VOF SLS ACLS CLSVOF
F (c) WY WENO5 BHOUC5 WY-WENO5
Reconstruction PLIC – – PLIC
Reinitialization – HJ-WENO5 Eq. (3.68) HJ-relax
n ELVIRA Eq. (3.73) Eq. (3.61) Eq. (3.73)

Table 3.2: Summary of computation choices for interface capturing methods
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As the research in interface capturing methods is highly active, updating comparison studies
is required to take advantage of the recent advances. The previous chapter provided an
overview of available methods and their associated algorithms. From the state-of-the-art,
four interface capturing methods were selected for their proven capabilities to transport an
interface in a sharp manner.
In this chapter, the implementation of these methods is given in Section 4.1 with details on
the temporal and spatial discretizations. Then, a complete study is pursued in Section 4.3
to compare the interface capturing methods in both 2D and 3D configurations with imposed
velocity fields. The comparison is based on shared metrics introduced in Section 4.2.
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4.1 Interface capturing methods choice

Based on the choices of Section 3.5, the numerical discretization is detailed for each interface
capturing method.

4.1.1 VOF

A directional step of the Weymouth and Yue scheme can be written as

f∗i,j,k = fni,j,k −
∆t

∆x

(
F

(f)

i+ 1
2
,j,k
− F (f)

i− 1
2
,j,k

)
+ fc,i,j,k

∆t

∆x

(
un
i+ 1

2
,j,k
− un

i− 1
2
,j,k

)
, (4.1)

with F (f)

i+ 1
2
,j,k

a geometric flux computed using the Eulerian Implicit approach.
The normal computation of the PLIC reconstruction is performed using the ELVIRA
method keeping a compact 3×3×3 stencil in 3D. Thus, the normal n does not achieve sec-
ond order convergence for planes. However, it provides a good trade-off between accuracy,
compactness and efficiency. The plane parameter d is retrieved using analytical expressions
[193 ].
Finally, the f field is clipped after each directional advection. This step is required to avoid
the effects of floating-point round-off errors from the geometric flux computation. f is set to
0 if f < ηc and f is set to 1 if f > 1−ηc where ηc is a cut-off threshold. In our simulations,
it has been found that round of errors were superior in 3D due to the additional arithmetic
operations required to compute the fluxes. ηc is then set to 10−12 by default and increased
to 10−8 for 3D simulations.
The update of f is summarized in the following algorithm:

1. Set fs = fn

2. Compute the compression/dilatation factor fc using Eq. (3.33) from fn

3. Set s = 1 and repeat the following steps until s = Ndim

(i) Perform a PLIC reconstruction by computing n and d in all cells were 0 < fs < 1
(ii) Solve Eq. (4.1) in a given direction to find f s+1

(iii) Clip fs+1 using ηc
The direction order is alternately swapped at each timestep to mitigate the splitting error
and retrieve a second order time integration (alternate Lie splitting). The swap is done
using cyclic permutation.



75

4.1.2 SLS

The SLS algorithm retained in this manuscript has been chosen for its simplicity and
efficiency. The transport equation is discretized as follows

φn+1
i,j,k = φni,j,k −

∆t

∆x

(
F

(φ)

i+ 1
2
,j,k
− F (φ)

i− 1
2
,j,k

)
− ∆t

∆y

(
F

(φ)

i,j+ 1
2
,k
− F (φ)

i,j− 1
2
,k

)
− ∆t

∆z

(
F

(φ)

i,j,k+ 1
2

− F (φ)

i,j,k− 1
2

)
, (4.2)

with F (φ)

i+ 1
2
,j,k

= ui+ 1
2
,j,kφi+ 1

2
,j,k the numerical flux.

φ̄i+ 1
2
,j,k is a reconstruction of φ at the cell face ∂Ci+ 1

2
,j,k. A high-order WENO5 reconstruc-

tion [93 ] is performed. The time integration of Eq. (4.2) is performed using a SSP-RK2
scheme [199 ]

φ(1) = φn + ∆tL(φn)

φn+1 =
1

2
φn +

1

2
φ(1) +

1

2
∆tL(φ(1)) , (4.3)

with L(·) the spatial operator.
Higher-order temporal discretization could also be used. However, only few improvements
have been observed [216 ] compared to the corresponding computational time increase.
More generally, Osher and Fedwick argued [152 ] that the accuracy of the transport equation
was driven by the spatial discretization more than the time integration. The redistancing
needs to solve the following equation in pseudo-time

φn+1
i,j,k = φni,j,k −∆τSi,j,kHG(φn)i,j,k = 0 , (4.4)

with HG(φn)i,j,k the Hamilton-Jacobi operator discretized using Eq. (3.38). The sign func-
tion Si,j,k is computed using Eq. (3.39)

Si,j,k =
φi,j,k√

φ2
i,j,k + ∆x2

. (4.5)

In this operator, the first derivatives of φ are obtained with a WENO5 discretization pro-
posed in [92 ]. The integration in time is performed using the same SSP-RK2 scheme. The
pseudo-timestep is chosen to be ∆τ = 0.5∆x. Noticing that the interface displacement is
bounded by the cell size, only two timesteps of the redistancing step are required in order
to fix the signed distance [183 ] close to the interface.
The update of φ is summarized in the following algorithm:

1. Solve Eq. (4.2) to retrieve φ∗ the signed distance before redistancing.
2. Compute the smooth signed distance S using Eq. (4.5) from φ∗

3. Perform 2 iterations of Eq. (4.4) to find φn+1
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4.1.3 ACLS

The ACLS algorithm used in this work is based on the latest works of Janodet et al. [89 ], as
it is the most advanced and documented method available in the literature. The interface
width, ε is taken as 0.5∆x. The transport equation is discretized as follows

ψn+1
i,j,k = ψni,j,k −

∆t

∆x

(
F

(ψ)

i+ 1
2
,j,k
− F (ψ)

i− 1
2
,j,k

)
− ∆t

∆y

(
F

(ψ)

i,j+ 1
2
,k
− F (ψ)

i,j− 1
2
,k

)
− ∆t

∆z

(
F

(ψ)

i,j,k+ 1
2

− F (ψ)

i,j,k− 1
2

)
, (4.6)

with F (ψ)

i+ 1
2
,j,k

= ui+ 1
2
,j,kψi+ 1

2
,j,k the numerical flux.

ψ̄i+ 1
2
,j,k is a reconstruction of ψ at the cell face ∂Ci+ 1

2
,j,k. A bounded high-order BHOU5

reconstruction [82 ] is performed here. The procedure can be explained trough the following
algorithm:

1. Equation (4.6) is solved using ψHOUC5 reconstructions.
2. If ψn+1

i,j,k < 0 or ψn+1
i,j,k > 1 then

• All fluxes of cell Ci,j,k are updated using ψUW reconstructions
• If a neighbouring cell shares a face with Ci,j,k, then the flux is also updated with
ψ
UW reconstructions

3. Equation (4.6) is solved again using the updated fluxes.
It is crucial to update fluxes of the neighbouring cells to keep the strict conservation proper-
ties of the finite volume framework. The integration is performed using a SSP-RK3 scheme
[199 ] more suited for highly dispersive schemes such as HOUC5

φ(1) = φn + ∆tL(φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL(φ(1))

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL(φ(2)) . (4.7)

Then the reinitialization is written as

ψn+1
i,j,k = ψni,j,k +

∆τ
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(
F

(ψ)
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− F (ψ)

i,j,k− 1
2

)
, (4.8)
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with F (ψ)

i+ 1
2
,j,k

the reinitialization flux from [90 ] expressed as

F
(ψ)

i+ 1
2
,j,k

=

(
∇φmap|i+ 1

2
,j,k − n|i+ 1

2
,j,k

)
· n|i+ 1

2
,j,k

4 cosh2

(
φ
map,i+ 1

2 ,j,k

2ε

) nx,i+ 1
2
,j,k , (4.9)

where φmap,i+ 1
2
,j,k is simply defined as 1

2 (φmap,i,j,k + φmap,i,j,k) and n|i+ 1
2
,j,k = ∇φFMM |i+ 1

2
,j,k.

Gradients ∇φmap|i+ 1
2
,j,k and ∇φFMM |i+ 1

2
,j,k on the faces are computed using central dif-

ferences.
The mapping φmap is reconstructed following Eq. (3.66) with attention drawn to bounded-
ness of ψ. The expression is used with a modified ψ̃ such that it is defined in ]ηc; 1− ηc[
with ηc = 10−12. Note that we do not directly clip ψ but just use the clipped version ψ̃ in
Eq. (3.66).
The reconstruction of a signed distance φFMM from the isocontour ψ−1(0.5) is performed
using the FMM described in Section 3.2.1.5. The pseudo-timestep ∆τ is taken here as 0.5ε.
The update of ψ is summarized in the following algorithm:

1. Advance the interface by solving equation (3.1) to obtain ψ∗ before reinitialization
2. Compute the signed distance φFMM from the isocontour ψ∗ = 0.5 and φmap from ψ̃∗

3. Perform one iteration of Eq. (3.59) to obtain ψn+1

4.1.4 CLSVOF

Considering a cartesian-grid framework, the selected CLSVOF method is also based on
dimensional-splitting. f is advanced using the same procedure described in Section 4.1.1.
For the signed distance φ, a standard approach such as the one presented in Section 4.1.2
cannot be used as the time integration has to be consistent with the one used for f transport.
Instead, the following equation is solved

φ∗i,j,k = φni,j,k −
∆t

∆x

(
F

(φ)

i+ 1
2
,j,k
− F (φ)

i− 1
2
,j,k

)
+ φni,j,k

∆t

∆x

(
un
i+ 1

2
,j,k
− un

i− 1
2
,j,k

)
, (4.10)

with F (φ)

i+ 1
2
,j,k

= ui+ 1
2
,j,kφi+ 1

2
,j,k the numerical flux.

φ̄i+ 1
2
,j,k is a reconstruction of φ at the cell face ∂Ci+ 1

2
,j,k. The same high-order WENO5

reconstruction as for SLS is performed.
The PLIC normal evaluation is done using standard finite differences on φ. Finally, the f
field is clipped after each directional advection. However, the current implementation does
not modify f based on φ. This choice has been made to keep strict mass conservation of
the VOF scheme.
The φ reset is only performed in mixed cells, including the relaxation proposed by Le
Chenadec and Pitsch [36 ] while the HJ-WENO5 scheme is used otherwise as presented in
[218 ].
The f and φ updates are summarized in the following algorithm:

1. Set fs = fn
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2. Compute the compression/dilatation factor fc using Eq. (3.33) from fn

3. Perform a PLIC reconstruction by computing n from φs and d in all cells were 0 <
fs < 1

4. Solve Eq. (4.1) and Eq. (4.10) in a given direction to find fs+1 and φs+1

5. Clip fs+1 using ηc
6. Repeat step 2 to 4 for all directions to obtain fn+1 and φ∗

7. Perform the redistancing step on φ∗ to obtain φn+1

The direction order is also alternately swapped at each timestep using cyclic permutation.

4.1.5 Summary of the interface capturing methods

A summary of the four interface capturing methods compared in this chapter is provided
in Table 4.1. The timestep has a stability constraint based on the CFL:

∆t <
∆x

2‖u‖
(4.11)

method VOF SLS ACLS CLSVOF
Time int. RK1 RK2 RK3 RK1
F (c) WY WENO5 BHOUC5 WY-WENO5
Reconstruction PLIC – – PLIC
Reinit – HJ-WENO5 Eq. (3.68) HJ-relax
n ELVIRA Eq. (3.73) Eq. (3.61) Eq. (3.73)

Table 4.1: Summary of computation choices for interface capturing methods

4.2 Metrics of error

Error metrics have to be introduced in order to evaluate accuracy and conservation prop-
erties. This could be based directly on conventional norms applied on c. However, if one
wants to compare different interface tracking methods with a different color function c, it is
important to define shared metrics that can be comparable. For example, the comparison
between f field and φ field has to be done by either turning f into a distance function, or
φ into a volume fraction.
This section aims to detail a shared metric for accuracy assessment. A discussion on the
quantification of mass loss is also provided.

4.2.1 Shape errors

The shape metric can be based on the sharpest possible Heaviside H0 computed from the
color function which is defined as

H0
Γ(c) =

{
1 if φ > 0, ψ > 0.5 or f > 0.5
0 otherwise . (4.12)
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The use of H0
Γ results in testing if the cell center xC is in the liquid or the gas phase. An

error metric based on H0
Γ(c) can show spurious trends in the convergence rate because of

its sharp definition and will not be used for the present study.
To provide an equal base of comparison for accuracy, the shape error Eshape is based on the
regularized Heaviside function Hε

Γ(c) which is defined as Eq. (2.37) for SLS, ψ for CLS and
f for VOF and CLSVOF. They all are smooth versions of χ with an interface thickness of
2ε = ∆x such that Hε

Γ(c) −→
∆x→0

χ. Note that f is not exactly a regularized function, but it
does not impact the relevance of the comparison as it also has a width of ε. The accuracy
error is then defined as

Eshape =

NC∑
i=1

|Hε
Γ (ci,T )−Hε

Γ (ci,0)|Vi , (4.13)

with t = 0 the initial time of the simulation, t = T the final time, NC the number of cells
in the computational domain and Vi the volume of the cell Ci.

4.2.2 Mass error

Regarding mass conservation, VOF and CLSVOF achieve it at machine precision and will
not be displayed. The ACLS method conserves ψ up to machine precision but does not
correspond exactly to the volume enclosed in the 0.5 isocontour. This is why a simplex
decomposition is performed in each cell to find the intersections between the cell and the
interface and compute the related volume. This method leads to a second-order approxima-
tion of a volume enclosed in a given isocontour (more details are provided in Section 8.1.3.
This same approach is performed for enclosed volume in the zero-isocontour of SLS.
In the literature, the mass error is often defined as the difference between initial and final
enclosed volume V0 and VT

EV,T =
|V0 − VT |

V0
. (4.14)

This metric only gives insights into the change of mass at the end of the simulation, which
can hide compensation processes. To illustrate this, temporal evolution of the mass is
displayed in Fig. 4.1 for one of the following test cases. While SLS has spurious mass loss
oscillating around the V0 value, the ACLS method provides a symmetric behaviour with
respect to time.
If one chooses the standard error EV,T , the ACLS is highly superior to SLS as the mass
lost between 0 and T/2 is retrieved at T .
However, if one chooses another arbitrary time such as T/2 to compare the mass error,
then EV,T/2 is lower for SLS than ACLS, and the conclusion is totally different based on
this metric.
Another choice could be to compare the maximum error of mass during the simulation
EV,max. This metric also gives better mass conservation for SLS compared to ACLS.
In the current study, the choice is to compare the integrated loss of mass over time. This
metric gives more details on the mass variation to avoid misleading conclusions on the
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EV,T

EV,T/2

EV,max

(a) SLS

EV,T

EV,T/2
EV,max

(b) ACLS

Figure 4.1: Temporal evolution of mass for a sphere deformation problem

conservation property of the considered numerical schemes.
The mass error is then defined as

Emass =
1

V0T

∫ T

0
|∆V |dt , (4.15)

with ∆V = V (t + dt) − V (t) the variation of liquid volume computed from the simplex
decomposition method evaluated at time t and t+ dt.

4.3 Numerical results

Dynamic test cases are built to transport an interface until it retrieves its initial shape after
a period T . Here, VOF, SLS, ACLS and CLSVOF are compared with respect to the two
main features of an interface capturing method: transport accuracy and mass conservation
based on the metric introduced before. A quick discussion on the computational time is
also included.

4.3.1 Zalesak’s disk rotation

The Zalesak’s disk [234 ] test case consists in a notched circle of radius 0.15 initially centered
at (0.5, 0.75) in a [1 × 1] domain. The notched width is 0.05 and notched length is 0.25.
The velocity field is a solid rotation defined as

u =

(
2π(0.5− y)
2π(x− 0.5)

)
. (4.16)

The results are given for a full rotation of the disk corresponding to a simulation time T = 1
for a CFL number of 0.5.

The final shape is compared with the initial condition for all methods in Fig. 4.2. At the
lowest resolution 322, VOF keeps the notch while SLS is shifted. ACLS and CLSVOF merge
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Figure 4.2: Initial and final shape for the Zalesak’s disk rotation

the two sides of the notch. This shows the difference of normal computation between VOF
and CLSVOF: while ELVIRA is able to capture poorly-resolved structures, normals from
φ tend to merge fronts. From 642 resolution, all methods maintain the notch during the
whole computation.

(a) Eshape error (b) Emass error

Figure 4.3: Mesh error convergence for the zalesak’s disk rotation

In Fig. 4.3a, the error convergence is displayed for all methods. One can notice that VOF,
ACLS and CLSVOF perform well even at meagre resolution, while SLS and ACLS perform
better for high resolution with an asymptotic second-order behaviour. Regarding mass
conservation, ACLS is better than SLS for the low-resolution meshes while they both have
the same conservation properties for the highest resolution. As pictured in Fig. 4.3b.

4.3.2 Vortex in a box

Another classical test case is the vortex-in-a-box first used by Leveque to evaluate high-
order advection schemes in incompressibles flows [111 ]. A circle of radius 0.15 is initially
centered at (0.5, 0.75) in a [1 × 1] domain. The velocity field is deduced from the stream
function Ψ = 1

π sin2(πx) sin2(πy) cos
(
π t
T

)
such that it is reversed at t = T/2. The results

are given for the final time T = 8 for an initial CFL number of 0.32 (∆t is constant for the
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whole simulation).

Figure 4.4: Vortex in a box shape at t = 4 and t = 8 with the temporal mass evolution

In Fig. 4.4, VOF, CLSVOF, and ACLS tend to produce numerical atomization in the thinner
structures of the serpentine, while the SLS shows a more robust behaviour at the cost of
mass conservation. This numerical atomization is less predominant with mesh refinement.
In Fig. 4.5a, shape and mass errors are displayed as a function of initial disk resolution.
VOF and CLSVOF are performing better for all resolutions. This is expected as the
Nd = 153.6 case still implies a thin tail, which is not well-resolved. It is interesting to notice
that the CLSVOF does not improve the accuracy of the method significantly compared to
VOF. Surprisingly, SLS is better at conserving mass than ACLS based on our total volume
variation metric. However, the ACLS method is able to retrieve a final mass close to the
initial one, which is not the case for SLS.
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(a) Eshape error (b) Emass error

Figure 4.5: Mesh error convergence for the vortex in a box

4.3.3 Sphere deformation

A 3D test case is the sphere deformation, also presented in [111 ]. A sphere of radius 0.15
is initially centered at (0.35, 0.35, 0.35) in a [1 × 1 × 1] domain. It is then advected by a
velocity field which induces a combination of stretching in the x-y plane and the x-z plane
with an inversion at t = T/2.

ux = 2sin2(πx)sin(πy)sin(πz)cos
(
π
t

T

)
uy = −sin(πx)sin2(πy)sin(πz)cos

(
π
t

T

)
uz = −sin(πx)sin(πy)sin2(πz)cos

(
π
t

T

) . (4.17)

The results are given for the final time T = 3 for an initial CFL number of 0.32 (∆t is kept
constant for the whole simulation).

The same conclusions as for the vortex-in-a-box can be drawn from this 3D test case: VOF,
CLSVOF and ACLS produce some numerical atomization when the interface is under-
resolved, as shown in Fig. 4.6 for t = 1.5 at a low mesh resolution of ND = 9.6. This
numerical atomization disappears with mesh refinement. ACLS and SLS seem to lose a lot
of mass for ND = 9.6 even if ACLS is able to earn back the mass it has lost during the
reversed part of the simulation. All methods exhibit a thin tail on the sphere at t = T
representing less and less mass with mesh refinement even if it is still present for SLS and
ACLS at ND = 38.4. CLSVOF seems to handle this behaviour in the best way for the
smallest resolutions.
From Fig. 4.7a, VOF and CLSVOF are still the most accurate methods while ACLS and
SLS show similar mass conservation in Fig. 4.7b. Apparently, the transition from 2D to
3D does not affect the overall behaviour of the methods. One slight improvement can be
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Figure 4.6: Shape at t = 1.5 and t = 3 for the sphere deformation

noticed by using CLSVOF for normal computation in 3D. This can be explained by the
ELVIRA accuracy falling behind in 3D configuration if a compact stencil of 3 × 3 × 3 is
used. It has been shown that second-order accurate normal computation is only achieved
with a stencil of 5× 5× 5 [133 ].

4.3.4 Computational time

To complete the comparison, the computational cost is compared between the methods. In
Fig. 4.8, the Reduced Computation Time (RCT) is given

RCT =
WCT×NCPU

NC ×Nite
, (4.18)
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(a) Eshape error (b) Emass error

Figure 4.7: Mesh error convergence for the sphere deformation

with NC the number of cell, NCPU the number of cores, WCT the Wall Clock Time and
Nite the number of iterations .
The 2D vortex in a box case was run on 16 cores, while the 3D deformation case was run
on 64 cores. Cores used in this work are Intel Xeon Gold 6230 20C 2.1GHz.

(a) Vortex in a box (b) Sphere deformation

Figure 4.8: RCT for 2D and 3D cases

Here, the RCT decreases as the number of elements per cores increases. This is expected as
a very coarse mesh, loses a more important part of the simulation time in communications.
The cases with more elements show an asymptotic behaviour with a constant RCT.
In 2D configurations, the VOF method is more efficient than CLSVOF, SLS and ACLS
and seems to scale better with the number of elements. This is because VOF method only
requires to compute fluxes and reconstruction on the interface cells and their neighbours.
Hence the computational time does not scale in Nelem but in NΓ. Also, 2D computation of
geometric flux and PLIC reconstruction is fast in a split fashion. As expected, SLS is more
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efficient than ACLS because of the reinitialization, which is more demanding in the case of
ACLS. The CLSVOF method costs approximately VOF and SLS combined.
In 3D, geometry operations are more expensive, and VOF falls behind CLSVOF and SLS
regarding efficiency. CLSVOF is more effective than VOF because the normal computation
is far less expensive than ELVIRA in 3D.
It is important to remind that these conclusions only hold for the present solver where the
same optimization efforts have been given to implement the fourth compared methods.

4.4 Conclusion

A comparison of four popular methods of the literature has been presented focusing on
mass conservation and geometrical accuracy for dynamic test cases with imposed velocity.
While VOF and CLSVOF are exactly mass conservative, SLS provides a smoother repre-
sentation of the interface. ACLS shows minor improvements in the mass compared to SLS.
Overall, Coupling VOF with LS seems to be the most promising choice in a cartesian
finite-volume framework as the conservation properties of VOF are preserved interface rep-
resentation is more accurate. The versatility of such strategy, taking advantage of the
strengths of each method, is of particular interest when additional physics needs to be
modelled, such as surface tension or phase-change.
The next part investigates the impact of the interface capturing choice on the simulation
of incompressible two-phase flows. In such a case, the color function c is used to close some
terms in the resolution of the two-phase flow equations derived in Chapter 2. The conse-
quence is that the conservation and accuracy properties of the interface capturing method
directly impacts the accuracy of the velocity field.
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In addition to the interface capturing, two-phase flow simulations are also very challenging
because of the interface discontinuities, which must be treated carefully. This chapter aims
to provide an overview of the numerical challenges associated with the treatment of interface
discontinuities in incompressible two-phase flow solvers without phase change, which are:

1. The evaluation of the curvature κ, which is crucial for a robust and accurate surface
tension modelling.
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2. The density discontinuity treatment, which also implies momentum discontinuity at
the interface. A special treatment for the momentum transport is then required to
have a robust and consistent solver for high-density ratios.

3. The viscosity discontinuity, which also needs to be considered in the momentum
equation to correctly model the dissipation of kinetic energy close to the interface.

As the literature is mature on the subject, an extended review of these three challenges is
provided to motivate the choices made in this work.
In Section 5.1, the numerical framework of the two-phase flow solver is presented with the
definition of temporal and spatial operators. Then, Section 5.2 investigates the issues aris-
ing from inconsistencies between mass and momentum transport with different techniques
employed to solve it. Section 5.3 focuses on the correct discretization of the viscosity oper-
ator. As the timestep restriction coming from the diffusion is more restrictive than the one
related to the velocity in a majority of the configurations considered here, implicit schemes
feasibility is also discussed. Finally, emphasis is given on the surface tension modelling with
a complete study of the curvature computation using different interface representations in
Section 5.4.

5.1 Numerical framework: The projection method

This section aims to describe the main numerical tools used to solve Eq. (1.35) and Eq. (1.6).
It encompasses temporal and spatial operators with special treatments at the interface to
handle discontinuities.
First introduced by Chorin [39 ] for solving the Navier-Stokes equations, the projection
method is a class of fractional step methods where the pressure is interpreted as a projection
operator which forces a vector field to be divergence-free. The projection method is then
divided into two main steps:

• A prediction step to advance the velocity field un in time without taking into account
Eq. (1.35), this gives an intermediate velocity field u∗

• A correction step to project the intermediate velocity field u∗ to its divergence-free
solution un+1

The prediction step applied to the two-phase incompressible flow Navier-Stokes equation
gives

u∗ − un

∆t
+

1

ρ
∇P = Lconv + Lvisc + Lcap , (5.1)

with P a pressure approximation obtained from a pressure update, Lconv the convective
operator, Lvisc the viscous operator and Lcap the surface tension operator. Then, the
correction step is written as

un+1 − u∗

∆t
= −1

ρ
∇Π , (5.2)

with Πn+1 a potential constructed such that∇un+1 = 0 from the variable coefficient Poisson



91

equation

∇ ·
(

1

ρ
∇Πn+1

)
=

1

∆t
∇ · u∗ . (5.3)

The pressure update is then

Pn+1 = P + Lpres(Πn+1) , (5.4)

with Lpres an operator relating P and Π.
The choices of operator discretization, intermediate velocity evaluation and boundary con-
ditions treatment lead to either first or second-order accuracy in time for velocity and
pressure (see [23 ] for a complete analysis).
In the solver, we use a class of projection methods presented by Kim and Moin in [100 ]
as "pressure-free methods" (PFM) where P = 0. Then the pressure operator of Eq. (5.4)
is simply Lpres = Πn+1 and the update is written as Pn+1 = Πn+1. This implies that the
pressure in our simulations is just a relative pressure that cannot be used directly to a
thermodynamic pressure. One advantage of such an approach is the prohibition of pressure
gradient error in the momentum equation.
A Marker-and-Cell grid arrangement [77 ] is used: the pressure is defined at the center of a
cell while the velocity is located at the boundaries of the cell. In a two-phase flow, one can
consider that all scalars are collocated (located at the center of the cell) while the velocity
is staggered (located at the boundaries of the cell) as shown in Fig.5.1 for a 2D control
volume.
This grid arrangement allows definition of generic operators for staggered and collocated
variables. Moreover, the discrete divergence operator applied to velocity is inherently equal
to zero (or, more precisely, equal to the threshold of the elliptic solver used for Eq. (5.3)).
The general staggered operators and variables are mentioned with the subscript f = u, v or
w depending on their associated control volume. General collocated operators and variables
are mentioned with the subscript c. This gives the following generic operators:

• A staggered gradient operator ∇f for collocated variables Φc, the x-component ∇xu is
defined as

∇xuΦc|i− 1
2
,j =

Φc,i,j − Φc,i−1,j

∆x
. (5.5)

• A collocated gradient operator ∇c for staggered variable is also introduced with the
x-component ∇xc of a x-staggered variable defined as

∇xcΦf |i,j =
Φf,i+ 1

2
,j − Φf,i− 1

2
,j

∆x
, (5.6)

with Φf a staggered scalar.
• A divergence operator ∇c · (Φcu) applied on a control volume Σρ as in Fig. 5.1b

∇c · (Φcu)|i,j =
Φ̂c,i+ 1

2
,jui+ 1

2
,j − Φ̂c,i− 1

2
,jui− 1

2
,j

∆x

+
Φ̂c,i,j+ 1

2
vi,j+ 1

2
− Φ̂c,i,j− 1

2
vi,j− 1

2

∆y
, (5.7)
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Figure 5.1: Illustration of the MAC grid arrangement with the associated control volumes and
operators. The plain line is the collocated control volume Σρ while the dashed lines are the staggered
control volumes Σu and Σv. Variables Φ̂ are interpolated with arbitrary order at the faces while u
are linearly interpolated at the faces.

with Φ̂c an arbitrary interpolation of Φc to a face of the Σρ control volume.
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• A divergence operator ∇f · (Φfu) on a staggered volume control (for Σu in Fig. 5.1c)

∇u · (Φuu)|i− 1
2
,j =

Φ̂u,i,jui,j − Φ̂u,i−1,jui−1,j

∆x

+
Φ̂u,i− 1

2
,j+ 1

2
vi− 1

2
,j+ 1

2
− Φ̂u,i− 1

2
,j− 1

2
vi− 1

2
,j− 1

2

∆y
, (5.8)

with Φ̂u an arbitrary interpolation of Φu and u a linear interpolation of velocity to a
face of the Σu control volume.

The divergence operator is built such that ∇c · u = 0 discretely through the projection
method. It is also possible to show that ∇f · u = 0 discretely as demonstrated by Griffith
in [71 ]

∇f · u|i− 1
2
,j =

ui,j − ui−1,j

∆x
+
vi− 1

2
,j+ 1

2
− vi− 1

2
,j− 1

2

∆y

=
1

2

(
∇c · u|i,j + ∇c · u|i+1,j

)
= 0 . (5.9)

In the following, if a quantity is located at its natural definition in a MAC grid arrangement,
the subscript is discarded for clarity. For example, u is the staggered velocity with u defined
in Σu, and P is the collocated pressure.

5.2 Momentum transport

Previously, mass conservation has been investigated for the different interface capturing
approaches. It is also important to introduce the notion of momentum conservation which
is not straightforward in a two-phase flow solver.
Rewriting Eq. (5.1) without considering viscous, gravity and surface tension contribution
gives

u∗ − un

∆t
= −un · ∇un . (5.10)

Equation (5.10) applied to the first velocity component u in the control volume Σu gives

u∗ − un

∆t
= −∇u · (uu) , (5.11)

with ∇u· the staggered divergence operator described by Eq. (5.8). The prediction step
Eq. (5.1) directly derives from a one-phase incompressible flow formulation where both
velocity and momentum are continuous across the interface. This equation is written in
velocity form where the transported variable is u. Raessi et al. argued in [176 ] that
using this form allows a simple treatment of the non-linear convection operator Lconv =
−un·∇fun as u is continuous across the interface even for a two-phase flow. The transported
velocity û need to be interpolated to the faces of Σu. One needs to be careful about the
Total Variation Diminishing (TVD) and Total Variation Bounded (TVB) behaviours of the
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interpolation to avoid wiggles on the velocity field. The most popular interpolations are
using high-order upwind schemes such as ENO/WENO [93 ] or QUICK [109 ] which have
low dissipation and limited dispersion.
This method is particularly straightforward to implement and well-suited for low density
ratios. However, using a velocity form implies a lack of consistency between mass fluxes
F (ρ) and momentum fluxes F (ρu) as only F (u) fluxes are explicitly computed. It can lead
to huge errors in momentum conservation for high-density ratios.
A solution is to consider the conservative form Eq. (1.6) where the transported variable is
the momentum ρu:

ρn+1
f u∗ − ρnfun

∆t
= −∇ · (ρuu) . (5.12)

By rearranging the terms, the resulting time integration of the primitive variable u can be
written as

u∗ − un

∆t
= − 1

ρn+1
f

∇ · (ρuu)− un

ρn+1f

ρn+1
f − ρnf

∆t
. (5.13)

The update of u∗ is now a velocity transport with an additional term corresponding to a
flux correction.
The resolution of Eq. (5.13) leads to three numerical issues:
(1) There is a discontinuity of momentum at the interface because of the density jump.

The transport of ρu is more challenging than u and requires special treatments near
the discontinuity. The extension to high-order schemes is then non-trivial to apply in
this context.

(2) The MAC grid arrangement gives a different control volume definition for each vari-
able. In Fig. 5.1, a mass control volume Σρ is represented in plain line while mo-
mentum control volumes in Σu and Σv direction are represented in dashed lines.
respectively. The consistency between mass fluxes and momentum fluxes is then hard
to achieve.

(3) In a VOF context, fluxes of volume fraction F (f) are directly related to fluxes of mass
F (ρ) through the relation

F (ρ) = ρlF
(f) + ρgF

(1−f) . (5.14)

However, Level-Set does not provide such a direct link between F (φ) and F (ρ) from
the equation derivation as discussed in Chapter 2. It explains why Level-Set fails at
conserving strictly mass and, by extension, momentum.

A fully consistent method needs to reach the following requirements:
(i) The mass fluxes have to be discretely reused in the momentum fluxes.
(ii) The staggered mass fluxes have to be determined from the collocated mass fluxes used

to update c.
As described in [64 ], this requirement (i) is met if the momentum fluxes are computed
(here for u) as

F (ρu) = uF (ρ) . (5.15)
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(a) Collocated approach (b) Staggered approach (c) Dual grid approach

Figure 5.2: Different choice of control volume definition for consistent mass and momentum
configuration. The plain line represent the collocated control volume Σρ while the dashed line is the
momentum control volume Σu. The black arrows represents the fluxes in the collocated fluxes F (ρ)

while the white arrows are the staggered fluxes F (ρ)
u .

This relation is sufficient to provide consistency between mass and momentum for a given
momentum component and solve the robustness issues.
However, requirement (ii) is mandatory for discrete momentum conservation. Achieving
(ii) is non trivial and only possible in a VOF framework because of issue (3).
Another difficulty arises from issue (2). Velocity components need fluxes defined in the
staggered cells F (ρ)

f while the only mass fluxes available are defined for collocated cells

F
(ρ)
c . The challenge is then to establish a relation between F (ρ)

c and F (ρ)
f . There are several

ways to compute the staggered fluxes, but they are limited to a VOF framework in the
literature [182; 224 ]. These methods are presented hereafter.

5.2.1 Dual grid

To overcome the problem of grid arrangement, Rudman [182 ] proposed to use two different
grids in a VOF framework to meet requirements (i) and (ii). One primal grid for the
momentum solver (plain line on Fig. 5.2c) where pressure is collocated and velocity is
staggered, and one dual grid where f is transported (dashed on Fig. 5.2c) which is two
times finer. The main advantage of this method is the natural relation between collocated
mass fluxes F (ρ)

c of the dual grid and the staggered fluxes of the primal grid F (ρ)
f . Indeed,

the fluxes are defined in both collocated and staggered control volumes of the primal grid.
For example, the mass fluxes associated to the control volume Σu,i− 1

2
,j are pictured on

Fig. 5.3a.
Let us consider a mass balance between time tn and tn+1 in the control volume Σu,i− 1

2
,j
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4
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(5.16)

All the above fluxes are available from the dual grid VOF flux computation.
However, using a dual grid requires interpolating velocity on the dual grid and ensuring the
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(a) Fluxes computation in Σu,i− 1
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(b) Velocity definition in Σρ,i,j

Figure 5.3: Dual grid fluxes and velocity definition. The plain line represent the Σu,i− 1
2 ,j

control
volume while the dashed lines represent the dual grid where f is transported. The double arrows of
Fig. 5.3a are the mass fluxes. The plain and dashed arrows of Fig. 5.3a represents the velocity of
the primal and dual grid respectively.

divergence-free properties of the interpolated velocity field for a correct VOF advection. In
the original paper [182 ], a simple interpolation is proposed:

• External dual grid velocities ũi− 1
2
,j− 1

4
, ũi− 1

2
,j+ 1

4
, ũi+ 1

2
,j− 1

4
, ũi+ 1
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4
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4
,j− 1

2
, ṽi+ 1

4
,j− 1

2
,

ṽi− 1
4
,j+ 1

2
, ṽi+ 1

4
,j+ 1

2
are roughly taken as the values of their respective primitive cell

velocity. For the face at Ai− 1
2
,j this leads to

ũi− 1
2
,j− 1

4
= ũi− 1

2
,j+ 1

4
= ui− 1

2
,j , (5.17)

which is a first-order interpolation of the velocity.
• Internal dual grid velocities ũi,j− 1

4
, ũi,j+ 1

4
, ṽi− 1

4
,j , ṽi+ 1

4
,j are then deduced as a linear

interpolation of external dual grid velocities, for ũi,j− 1
4
this gives

ũi,j− 1
4

=
1

2

(
ũi− 1

2
,j− 1

4
+ ũi+ 1

2
,j− 1

4

)
. (5.18)

Note that this is still an overall first-order interpolation, as this gives ũi,j− 1
4

= ũi,j+ 1
4
.

It can be shown that this interpolation procedure leads to discrete divergence-free velocity
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field ũ. Let us write the discrete divergence operator for the dual grid cell C̃i− 1
4
,j− 1

4
:
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2
∇c · u|i,j . (5.19)

It follows that ∇ · ũ|i− 1
4
,j− 1

4
= 0 discretely. The same can be done for all the dual grid

cells.
Note that higher-order interpolation can be performed to improve the accuracy of the VOF
advection on the dual grid (see [221 ] and [18 ] for details), but they require to solve a small
linear system in all primal cells.
This dual grid approach has also been implemented in an unsplit VOF advection framework
by Owkes and Desjardins [158 ].
This strategy allows a straightforward definition of the staggered fluxes at the cost of a dual
grid transport of VOF, leading to a critical computational cost increase in 3D configurations
(number of elements multiplied by 8). In fact, using a dual grid is not necessary to find a
relation between staggered and collocated fluxes.

5.2.2 Single grid

In [224 ], Vaudor et al. proposed an alternative to the dual grid approach which is able
to respect requirements (i) and (ii). In fact, the PLIC reconstruction on the primal grid
already contains all the information required to compute the staggered mass fluxes. By
reconstructing the volume fraction at tn and tn+1 on half control volumes based on PLIC,
a painstaking mass balance can be performed to retrieve the staggered mass fluxes from
half volume fractions and collocated mass fluxes, as illustrated in Fig. 5.4c.
This mass balance between time tn and tn+1 in the control volume Σu,i+ 1

2
,j can be written

as

ρn+1
u,i− 1

2
,j
− ρn

u,i− 1
2
,j

∆t
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∆x

(
F

(ρ)
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(ρ)
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)
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1

∆y

(
F

(ρ)

i− 1
2
,j+ 1

2

− F (ρ)

i− 1
2
,j− 1

2

)
. (5.20)

The VOF fluxes are computed from the PLIC reconstruction as presented in Figs. 5.4a
and 5.4b. Fluxes are only available at the control volume faces Σρ using the VOF fluxes,
however, it is possible to deduce Σu fluxes from them.
The F (ρ) fluxes can be split into two half fluxes without any mass balance violation such
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Figure 5.4: Fluxes computation for the control volume Σu,i− 1
2 ,j

. The plain line represent the
Σu,i− 1

2 ,j
control volume while the dashed lines represent the collocated grid where f is transported.

The double arrows are the mass fluxes F (ρ). The plain and dashed arrows of Fig. 5.3a represents
the velocity of the primal and dual grid respectively
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and the same procedure can be performed to retrieve the bottom flux F (ρ)

i− 1
2
,j− 1

2

.

The computation of F (ρ) is more tricky as the fluxes F (ρ)
i,j and F

(ρ)
i−1,j are not directly

available. The idea here is to write the mass balance on half of the control volume Σu,i− 3
4
,j

as shown in Fig. 5.4c
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In this equation, the only unknown is the flux F (ρ)
i−1,j .

Indeed, the other fluxes are already available and
ρn+1

u,i− 3
4 ,j
−ρn

u,i− 3
4 ,j

∆t = ∆ρi− 3
4
,j is the variation

in the half control volume between tn and tn+1 which can be computed easily from the PLIC
reconstructions at these times (light grey area of Fig. 5.4c . Equation (5.22) can be then
rewritten as
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This whole procedure can be applied in the same manner for Σv or Σw control volumes and
3D extension is straightforward.
With this method, requirements (i) and (ii) are met by using only one grid. It is then a
very encouraging method to handle high-density ratios and conserve momentum.

5.2.3 Additional continuity equations

In a Level-Set framework, Moureau & Desjardins [47 ] proposed to solve an additional
continuity equation in each of the momentum control volumes Σu, Σv (and Σw in 3D) in
order to retrieve mass fluxes.
The new term in Eq. (5.13) requires to solve a new continuity equation

ρn+1
f −ρnf

∆t for each u
component.
First, the staggered density ρnf need to be computed from the interface color function. For
example, ρn

u,i− 1
2

is computed for the Σu,i− 1
2
control volume as

ρn
u,i− 1

2

= ρg + θi− 1
2

[ρ]Γ , (5.24)

with θi− 1
2
a staggered volume fraction as illustrated in Fig. 5.5a In the original paper based

on a LS formulation, θi− 1
2
is computed using φn:

θi− 1
2

=
|φni−1|+ + |φni |+
|φni−1|+ |φni |

. (5.25)

This results in a first-order reconstruction of the volume contained in Σu as illustrated in
Fig. 5.5c.
In a VOF framework, this value can be retrieved at second-order using the PLIC recon-
struction of right half cell Σρ,i−1 and the left half cell of Σρ,i as shown in Fig. 5.5b. This
method has been successfully applied in [159 ]. A recent method proposed in [238 ] is using
the same approach but the additional continuity equations are updated from geometric
fluxes.

Σρ,i

Σu,i− 1
2

Σρ,i−1

(a) Exact reconstruction

fi−1 fi

(b) PLIC reconstruction

ϕi

θi− 1
2
Δx

ϕi−1

(c) GFM reconstruction

Figure 5.5: Reconstruction of ρu,i− 1
2
on a 2D cartesian grid. The grey area represent the fraction

θi− 1
2
evaluated in the control volume Σu,i− 1

2
.

More generally, if a good reconstruction of the volume in a momentum control volume can
be achieved, then this method can be applied to ensure a tight coupling between mass and
momentum fluxes. It is only true if the same scheme is used to transport ρf and ρfuf . The
main consequence of using additional continuity equations is the loss of the requirement
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(ii). This flux correction avoids the potential discrepancy between mass and momentum
when ρn+1

f is computed as a simple average of ρn+1 computed from φn+1, ψn+1 or fn+1

because it meets requirement (i).

5.2.4 Other approaches

5.2.4.1 Collocated fluxes

In the collocated approach, the control volumes Σρ, Σu, Σv (and Σw in 3D) are the same
(see Fig. 5.2a). This method was first introduced by Bussmann in a VOF framework
[25 ] where two definitions of the velocity are provided: a collocated velocity uc which
is not divergence-free discretely and a staggered velocity uf which respects the discrete
divergence-free condition of Eq. (1.35).
The idea is to transport ρcuc using Eq. (5.15) with F (c) obtained from the VOF trans-
port. Then a staggered velocity is obtained from interpolation of uc and projected into a
divergence-free velocity. Then, the staggered velocity is remapped on the collocated points
to find the update of uc. This can be summed up into the following algorithm:

1. Compute F (ρ) from the PLIC reconstruction in a geometric fashion using the stag-
gered velocity unf .

2. Advance the collocated momentum equation to obtain u∗c by reusing F (ρ).
3. The predicted staggered velocity u∗f is computed by remapping u∗c .
4. Solve the classical Poisson equation Eq. (5.3) using ∇ · u∗f .
5. Correct the staggered velocity field from Eq. (5.2) to obtain un+1

f .
6. Finally, remap un+1

f to obtain the updated collocated velocity un+1
c .

Even if this method was applied first in the VOF framework by using the equivalence
between the continuity equation and the VOF transport equation, it is also possible to use
such an approach in the Level-Set framework. Ghods & Herrmann proposed a method in
[66 ] where the density at time n is computed from a smooth Heaviside Hε

Γ(φ).
In previous method F (ρ) is deduced from the VOF fluxes. Hence, ρc is totally defined
by the evolution equation of f and ρn+1

c can be directly reused in the next time-step as
ρnc . In a Level-Set framework, the continuity equation is explicitly solved in addition to
the φ transport and reinitialization and the predicted field ρn+1

c is used to update u∗c and
discarded hereafter. ρn+1 is then recomputed with HΓ(φn+1).
The collocated fluxes provide a natural way to transport mass and momentum consistently.
However, it requires additional velocity remapping, which can be tricky to handle when
surface tension is also included in the momentum equation. In [62; 81 ], the remapping is
treated carefully to avoid numerical issues for surface-tension driven flows. A comparison of
momentum-conserving method based on collocated velocity with a non-conserving method
can be found in [235 ]. The momentum fluxes constructed from the VOF fluxes show
convergence with a particular increase in accuracy for the coarse meshes when applied to a
rising-bubble test case.
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5.2.4.2 Jump condition formulation

In this last approach, the momentum discontinuity at the interface is handled by using a
liquid velocity and a gas velocity which are defined in their respective phase. The phase
velocities are then extrapolated from one phase to the other to have valid values in the
discretization of the different terms close to the interface. This method has been proposed
by 3 different research teams in 2007: [33 ] and [218 ] in the context of phase-change and
[215 ] in a classic two-phase flow solver. The philosophy is to avoid any mixing of liquid and
gas velocity by only using phase velocity in the convection operator stencil. If the stencil
crosses the interface, then ghost cells obtained from constant extrapolation are used instead
of the wrong phase velocities. Then both velocities are coupled through the velocity jump
condition prescribed in the Poisson equation Eq. (5.3).
The method can be summed up in the following steps

1. Advance liquid and gas velocities through the prediction step to get u∗l and u∗g
2. Solve the pressure Poisson equation Eq. (5.3) to obtain P with the classic GFM

presented in Appendix A.1.
3. Correct each phase velocity in their respective domain and definition to get un+1

l and
un+1
g

4. Extend the phase velocities in the other phase suing a methodology of Appendix B.1
to have available ghost values near the interface.

If a velocity node is in the liquid phase, it is then advanced from a liquid prediction step
and a liquid pressure correction, while if it is in the gas, it is advanced by the gas prediction
step and the gas pressure correction.

5.2.5 Discussion on the discretization limitations

The methods presented above were developed to provide robust schemes for high-density
ratios. They all solve the issue of stability by removing velocity spikes at the interface
because of inconsistency between mass and momentum transport. However, these methods
lead to inherent limitations in both spatial and temporal discretization of the momentum
transport. Moreover, all methods which do not rely on the VOF fluxes are not discretely
conservative in momentum.

5.2.5.1 Geometric fluxes limitation

First, all methods relying on the VOF fluxes are limited in the temporal integration scheme.
In fact, as pointed out in several works [224; 238 ], the geometric nature of the VOF fluxes
is not compatible with most of the higher-order temporal integration schemes such as RK.
Then, the momentum equation is only advanced at first-order using a forward Euler step.
An alternative proposed in [182 ] and reused in [224; 238 ] is to write a predictor-corrector
method where a first step is used to find a midpoint velocity at tn+ 1

2 and use it in a second
step to advance both mass and momentum. However, this method results in advancing mass
and momentum using a forward Euler step with a better approximation of the velocity used
in the fluxes. Such a first-order temporal integration can cause some stability issues if one
uses high-order flux reconstruction such as WENO5, which is not stable even in linear
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stability analysis [138 ].

5.2.5.2 Splitting fluxes limitation

Another limitation arising from VOF fluxes is their dimensional-splitting nature. This also
requires to treat the momentum equation in a dimensional-splitting fashion. If this is not
done correctly, then additional temporal splitting errors are introduced in the momentum
equation. This issue is discussed in [20 ] where VOF fluxes are used to transport scalars
accordingly. This scheme requires additional flux corrections applied to the transported
quantity based on the work of [40 ].

5.2.5.3 Boundness limitations

Finally, the last limitation discussed in [47 ] is the boundedness of ρ. As ρ is highly discon-
tinuous at the interface, it is complicated to provide bounded fluxes without decreasing the
accuracy of the flux approximation. In fact, in most of the approaches presented above [47;
224; 238 ], an upwind limiter is used close to the interface (when the stencil of the higher-
order reconstruction crosses the interface). Then, all spatial discretizations degenerate to
first-order in the narrow band close to the interface.

5.2.5.4 Choice in the solver

In the present solver, the goal is to have a well-suited method for all the interface repre-
sentations. It means that the momentum transport cannot rely on the VOF fluxes as they
are not available when using SLS or ACLS methods. The choice is then to drop the full
consistency between the transport of the interface, mass and momentum by supplanted
additional continuity equations in the prediction step as proposed in [47 ]. This method
is robust, easy to implement and applicable to SLS and ACLS. Moreover, it allows more
flexibility on the flux computation as discussed in Sections 5.2.5.1 and 5.2.5.2. Then, a
WENO5 reconstruction can be applied to velocity with an upwind limiter at the interface.
The overall method is referred to as WENO5-cons

5.3 Viscosity modelling

When viscosity is discontinuous across the interface ([µ]Γ 6= 0), a jump in the stress tensor
arises which can be expressed as a pressure jump [P ]Γ = [2µ (D · nΓ) · nΓ]Γ from the mo-
mentum equation. It can be treated in different ways, either considering WDF or JCF. This
distinction applied to the viscosity jump has been clarified in the recent work of Lalanne
et al. [105 ].

5.3.1 Whole domain formulation

The sharp treatment of such a discontinuity is not straightforward and has been addressed
using a WDF in most of the early works in VOF [104 ], SLS [214 ], ACLS [48 ] and CLSVOF
[213 ].
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This approach requires considering the complete stress tensor discretization with cross
derivatives implying the coupling of all velocity components. For clarity, only the 2D
formulation of the tensor is detailed here.
The stress tensor gives

D =

(
D11 D12

D21 D22

)
=

(
2∂u∂x

∂u
∂y + ∂v

∂x
∂u
∂y + ∂v

∂x 2∂v∂y

)
. (5.26)

Then, a discretization of 2∇· (µD) requires to determine ∂(2µD11)
∂x , ∂(2µD12)

∂y in Σu,i− 1
2
,j and

∂(2µD21)
∂x , ∂(2µD22)

∂y in Σv,i,j− 1
2

∂
(
2µD11

)
∂x

∣∣∣∣∣
i− 1

2
,j

= 2
µi,jD

11
i,j − µi−1,jD

11
i−1,j

∆x
, (5.27)

∂
(
µD12

)
∂y

∣∣∣∣∣
i− 1

2
,j

=
µi− 1

2
,j+ 1

2
D12
i− 1

2
,j+ 1

2

− µi− 1
2
,j− 1

2
D12
i− 1

2
,j− 1

2

∆y
, (5.28)

∂
(
µD21

)
∂x

∣∣∣∣∣
i,j− 1

2

=
µi+ 1

2
,j− 1

2
D21
i+ 1

2
,j− 1

2

− µi− 1
2
,j− 1

2
D21
i− 1

2
,j− 1

2

∆x
, (5.29)

∂
(
2µD22

)
∂y

∣∣∣∣∣
i,j− 1

2

= 2
µi,jD

22
i,j − µi,j−1D

22
i,j−1

∆y
. (5.30)

values of µ are needed at Σρ,i,j corners, which can be defined with simple average of the
neighbour collocated values [214 ]

µi− 1
2
,j− 1

2
=

1

4
(µi,j + µi−1,j + µi,j−1 + µi−1,j−1) (5.31)

other authors proposed more complex interpolations based on the signed distance φ as in
[215 ] where the µ values at the corners are computed from node fractions defined at the
corners θi− 1

2
,j− 1

2
such that

θi− 1
2
,j− 1

2
=
|φi,j |+ + |φi−1,j |+ + |φi,j−1|+ + |φi−1,j−1|+
|φi,j |+ |φi−1,j |+ |φi,j−1|+ |φi−1,j−1|

. (5.32)

The viscosity is then retrieved using the harmonic average

µi− 1
2
,j− 1

2
=

µlµg
µgθi− 1

2
,j− 1

2
+ µl(1− θi− 1

2
,j− 1

2
)

. (5.33)

In [106 ], the authors showed that in 1D, this average leads to the GFM discretization of
the gradient jump

[
µ∂u∂x

]
Γ

= 0. Indeed, expressions in Eqs. (5.33) and (A.15) are identical.
However, this is no longer true for multi-dimensional discretizations when the interface
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is not aligned with a mesh direction. Harmonic discretizations have been used in several
works to deal with viscosity [81; 61; 142 ]
Overall, this methodology allows handling the viscosity discontinuity sharply without fur-
ther treatments. The main drawback of this formulation is the difficulty to use an implicit
formulation for diffusion. Indeed, as the extra-diagonal terms of D imply coupling between
all components, the resulting implicit system is more complex to solve.

5.3.2 Jump condition formulation

Another way to handle this discontinuity is due to Kang et al. [97 ] where only the Laplacian
of velocity is considered in the prediction step using the JCF. This term comes from the
incompressible one-phase flow where µD reduces to µ∆u. However, gradients ∇u are
discontinuous at the interface, and discretization of the Laplacian using directly the second-
order derivative ∂2u

∂x2 , ∂2u
∂y2 , ∂2v

∂x2 and ∂2v
∂y2 is not appropriate. One way around is to rewrite

this operator as ∇ · (µ∇u) and apply the resulting viscous flux jumps

J =

[µ∂u∂x]Γ [
µ∂u∂y

]
Γ[

µ ∂v∂x
]
Γ

[
µ∂v∂y

]
Γ

 =

(
n
t

)ᵀ

[µ]Γ

(
∂un
∂n

∂un
∂t

−∂un
∂t

∂ut
∂t

)(
n
t

)
, (5.34)

with t the unit vector tangent to the interface. The notation ∂un
∂t stands for the (∇u · n,∇v · n)·

t. The idea behind this formulation is that all the derivatives in Eq. (5.34) in the orthonor-
mal coordinate system (n, t) are continuous across the interface if no phase-change occurs.
A complete description of this argument is detailed in 3D in [163 ] with an extension to
phase-change applications.
Then the GFM is applied to define the discretization of ∇ · (µ∇u) close to the interface
using Eq. (A.14) with Φ = u, β = µ, aΓ = 0 and bΓ = J11.
This leads to the following expression if Σu,i− 1

2
,j is liquid and Σu,i+ 1

2
,j is gas

µ∇u|i,j = µ̂
ui+ 1

2
,j − ui− 1

2
,j

∆x
− θµ̂

µl
J11 , (5.35)

with µ̂ the effective viscosity defined using Eq. (A.15). Finally, the jump in stress tensor is
taken into account in the pressure jump through Eq. (5.3) by imposing

[P ]Γ = [(D · nΓ) · nΓ]Γ = 2 [µ]Γ
∂un
∂n

. (5.36)

This is done using the GFM approach again.
The implicit treatment is easier using this approach as the velocity component are decoupled
and solved by independent linear systems.

5.3.3 Hybrid formulation

The last approach is due to Lalanne et al. [105 ] by combining the relations

∇HΓ = δΓnΓ , (5.37)
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and

µ = µg +Hε
Γ [µ]Γ , (5.38)

to obtain

∇µ = ∇ (µg + [µ]ΓHΓ) = [µ]Γ∇HΓ = [µ]Γ δΓnΓ . (5.39)

Then, the viscous operator can be written as

∇ · (µD) = ∇ · (µ (∇u +∇ᵀu))

= ∇ · (µ∇u) + µ∇ · ∇ᵀu +∇µ · ∇ᵀu

= ∇ · (µ∇u) + [µ]Γ
∂un
∂n

. (5.40)

This last result is used to create a new splitting, the viscous operator is taken as ∇· (µ∇u)
and the pressure jump [µ]Γ

∂un
∂n is imposed through Eq. (5.3).

The main advantage of such an approach is the straightforward implicit implementation
and application to flows with phase-change. However, a timestep limitation is still due to
viscosity because of the jump imposed in the Poisson equation. This new constraint still
scales in ∆x, but it depends on the jump in viscosity which is less restrictive.
This method is referred to as Hybrid Whole Domain Jump Condition Formulation (HWD-
JCF) in the following.

5.3.4 Continuous equivalence

In [105 ], a framework is described where equivalence between the three approaches de-
scribed above is proven. Let us write the splitting imposed by a projection method, only
considering the viscous contribution for clarity (it still holds if convection or gravity is
included), the following expression of the prediction can be expressed

u∗1 = un +
∇ · (µD)

ρ
, (5.41)

u∗2 = un +
µ∆u

ρ
, (5.42)

u∗3 = un +
∇ · (µ∇u)

ρ
, (5.43)

with u∗1 the WDF predicted velocity, u∗2 the JCF predicted velocity and u∗3 the HWDJCF
predicted velocity. Then the correction step is written as

un+1
1 = u∗1 −

∆t

ρ
∇Pn+1 , (5.44)

un+1
2 = u∗2 −

∆t

ρ

(
∇Pn+1 − 2 [µ]Γ

∂un
∂n

δΓnΓ

)
, (5.45)

un+1
3 = u∗3 −

∆t

ρ

(
∇Pn+1 − [µ]Γ

∂un
∂n

δΓnΓ

)
. (5.46)
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By noticing that ∇ · (µD) = µ∆u + 2 [µ]Γ
∂un
∂n δΓnΓ = ∇ · (µ∇u) + [µ]Γ

∂un
∂n , then un+1

1 =
un+1

2 = un+1
3 .

The three above approaches are then different choices of splitting the viscosity jump and the
viscous operator in the projection method. The complete comparison of these approaches
is provided in [105 ]. WDF and JCF were found to be more accurate than the hybrid
formulation.
In light of these conclusions, a WDF is used in the solver as it is easy to implement and leads
to accurate results. Moreover, the loss of the viscous timestep constraints using an implicit
formulation does not necessarily lead to a gain in efficiency as a restrictive constraint related
to surface tension prevails for coarse to medium meshes.

5.4 Surface tension effects

The pressure jump related to surface tension can be treated as a volumetric force fσ in the
momentum equation. This new term is expressed as

fσ = σκδΓnΓ . (5.47)

Note that only the volumetric formulation is presented here, but another class of methods
uses the integral form of the surface tension [222 ] and includes directly Marangoni stresses.
In [2 ], a momentum conservative well-balanced surface tension model is introduced in the
Level-Set framework using this method.
A surface tension modelling requires both an accurate curvature computation and a con-
sistent definition of δΓnΓ. These two numerical aspects are detailed hereafter.

5.4.1 General formulation of the surface tension

The literature often presents Continuum Surface Force (CSF) and Ghost Fluid Method
(GFM) as two different paradigms:

• CSF is relying on a WDF;
• GFM is based on a JCF;

The CSF was first introduced by Brackbill et al. [22 ] in a diffuse VOF framework where
the surface tension contribution is defined as

fσ = σκ∇f̃ , (5.48)

with f̃ a smoothed version of the volume fraction f . In their paper, they noticed that
smoothing of f was improving the results. This was partly due to the fact that curvature
was also deduced from differentiation of f̃ . As pointed out in Section 5.4.2.1, this is a strat-
egy that improves results for curvature. However, there are no clear evidence that using
f̃ instead of f in the gradient operator improves the results. This original paper does not
provide more information about this point as they use a global operator for Fσ including
both computation of κ and δΓnΓ.
The GFM presented in Appendix A.1 can be applied to the pressure equation. By identi-
fication of Eqs. (5.3) and (A.2), Φ = P , β = 1

ρ , a = [P ]Γ and b = 0.
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Then in the 1D example, a second-order pressure gradient computation at i − 1
2 with gas

at the left and liquid at the right leads to

∂P

∂x

∣∣∣∣
i− 1

2

=
Pi − Pi−1

∆x
−

[P ]Γ
∆x

. (5.49)

In the reverse case, with liquid at the left and gas at the right of the interface, the same
derivation leads to

∂P

∂x

∣∣∣∣
i− 1

2

=
Pi − Pi−1

∆x
+

[P ]Γ
∆x

. (5.50)

This method allows defining a sharp representation of the pressure jump and a direct way
to take into account surface tension.
Some authors tried to sharpen the CSF method in a VOF framework like in the Sharp
Surface Force (SSF) proposed in [62 ]. On the other hand, the first LS methods used
a Delta function approach relying on smoothed Heaviside from the regularization of a
distance function like in [56 ]. However, by rewriting the two above formulations, Popinet
[170 ] showed that the GFM method can be rewritten into a volumetric force formulation
just as CSF

fσ = σκ∇HΓ . (5.51)

5.4.1.1 Heaviside definitions

The only difference between the original CSF method and the GFM method is the choice
of δΓnΓ computation in Eq. (5.47). By using Eq. (5.37), it results in a choice of Heaviside
HΓ as already presented in Chapter 2.
For the original CSF method, identification in Eq. (5.48) gives HΓ = f̃ . For the GFM, the
equivalence in Eq. (A.22) leads to the sharp Heaviside related to JCF

H0
Γ =

{
0 if x ∈ Ωg

1 if x ∈ Ωl
. (5.52)

Note that the SSF method uses exactly the same definition in a VOF framework.
In a VOF framework, the natural Heaviside is the volume fraction Hε

Γ = f while in a
Level-Set framework, a Heaviside can be defined using the smooth Heaviside Hε

Γ defined
by Eq. (2.37). In the conservative Level-Set context, the natural choice is Hε

Γ = ψ. They
are then associated with a WDF.

5.4.1.2 Resolution

An interesting observation of Popinet in his review [170 ] is that there is no resolution
difference between the smooth and sharp Heaviside choices if the smoothing width is defined
such that the interface width ε ≤ ∆x.
Indeed, the Dirac definition in the case of a GFM formulation is insensitive to a shift of
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ε
2 to the left or the right. Thus, even if it is sharper in its representation, it produces a
method with the exact same resolution as the CSF formulation. An illustration of this is
shown in Fig. 5.6

(a) Heaviside function (b) Dirac distribution

Figure 5.6: Jump resolution for different Heaviside HΓ choices. The lines represent the continuous
values while the points are the mesh values.

5.4.1.3 Well-balanced property

One important aspect of surface tension modelling is its capacity to maintain an equilib-
rium for the Laplace problem. Many numerical methods proposed in the literature suffer
from parasitic currents when simulating a static droplet at equilibrium. In the worst case,
spurious currents are amplified when iterating in time. This is the case for the original CSF
method [22 ].
In order to understand why this does happen, let us write the momentum equation for the
static droplet (zero velocity, constant curvature κ and surface tension σ)

−∇P + κσ∇HΓ = 0 . (5.53)

Renardy & Renardy noted in [178 ] that an exact balance can be achieved if one uses the
same face gradient operator ∇ for pressure and Heaviside. The discrete Laplace equilibrium
in a MAC grid arrangement leads to

∇ (κσHΓ − P ) = 0 . (5.54)

Integration of this last equation gives the classical Laplace pressure

P = σκHΓ + C , (5.55)

with C a constant. Such a strategy was not used in most early works on surface tension
modelling, especially in the CSF approaches.
In [97 ], authors noticed that GFM reduces the parasitic currents significantly in the case of
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the Laplace equilibrium. They argued that it comes from the sharper representation of the
pressure jump compared to a CSF approach. In fact, the smearing is not the direct cause of
parasitic currents. The difference lies in the well-balanced properties of the schemes. While
GFM is naturally well-balanced in its original formulation, CSF approaches was not.
Note that if κ is not constant discretely because of numerical errors, then Eq. (5.53) cannot
be simplified to Eq. (5.54) and exact balance is not expected anymore. This is discussed
further in Section 6.2.1.2.
Thus a consistent discretization of pressure and Heaviside leads to robust and well-balanced
surface tension modelling only with an accurate curvature computation.

5.4.2 Curvature computation

As mentioned before, the main aspect of surface tension modelling is the computation of the
curvature. It is done by using the interface information provided by the color function. The
two main approaches of the literature use either direct differentiation of the implicit function
representing the interface with standard operators or the explicit interface topology.

5.4.2.1 Curvature from implicit surfaces

A natural choice for curvature computation is the differentiation of the field c. In the context
of implicit surfaces, Goldman [70 ] provided an exhaustive list of formulas for curvature
computation. From c, the normal pointing outward the liquid phase can be computed as

nΓ = − ∇c
|∇c|

. (5.56)

The curvature is then deduced from one of the following expressions

κ = −∇ ·
(
∇c
|∇c|

)
, (5.57)

κ =
tr (∇∇c)− nΓ · ∇∇c · nᵀ

Γ

|∇c|
. (5.58)

Order requirement As curvature depends on second-order derivatives of the function
c, one needs to provide c at least at third order to retrieve a consistent curvature using
standard finite difference operators. More generally, a curvature of order m is obtained
using an implicit surface function of order m+ 2 [41 ]. This limitation is important to keep
in mind, as numerous strategies to reconstruct a distance function from an isocontour are
of second-order, which is not sufficient to ensure convergence of the curvature. This has
been observed in a VOF context [42 ] with curvature computed from a second-order Recon-
structed Distance Function (RDF). To deal with this issue, a least-square computation of
operators has been presented in the context of curvature computation from an unstructured
mesh [125 ] or a FMM reconstruction of a signed distance [38 ]. The idea is to reduce the
second-order errors of the distance function by adding more points in the stencil. By using
a Taylor expansion around a point of interest xC

c(x) = c(xC) + ∆xᵀ∇c(xC) + ∆xᵀ∇∇c(xC)∆x , (5.59)
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with ∆x = x − xC . This leads to a second-order gradient operator ∇c and a first-order
Hessian operator ∇∇c at xC . A box stencil of 3×3 or 5×5 is used to construct the following
least square linear system

1 ∆x1 ∆y1
1
2∆x2

1
1
2∆y2

1 ∆x1∆y1
...

...
...

...
...

...
1 ∆xN ∆yN

1
2∆x2

N
1
2∆y2

N ∆xN∆yN




c(xC)
∂c
∂x(xC)
∂c
∂y (xC)
∂2c
∂x2 (xC)
∂2c
∂y2 (xC)
∂2c
∂x∂y (xC)


=

 c(x1)
...

c(xN )

 . (5.60)

This linear system requires at least N = 6 (10 in 3D) to be well-posed. Note that a weight
matrix can also be introduced in order to restrain the least square to the point of interest

Wii = exp

(
−
(

2‖∆x‖
3∆m

)2
)

, (5.61)

with ∆m the mesh size. Even if the method leads to second-order convergence in a coarse
regime, however, it will be demonstrated from numerical results that the convergence is not
retrieved for high resolutions in Sec. 6.2.1.1.

Regularity requirement Another requirement is the smoothness of c to avoid spurious
higher-order derivatives. With LS, this is not a problem, as φ is already a smooth, well-
defined function in the entire domain. However, for VOF, the volume fraction is too sharp
to provide non-oscillating curvature computation. Using directly the volume fraction f
leads to non-converging curvature. To improve the behaviour, various convolution methods
were used to retrieve a smoother version f̃ (see [230 ]). For a given point xC , the general
convolution procedure can be written as

f̃(xC) = K ∗ f(xC) =

∫
K (x− xC) f(x)dx , (5.62)

with K a convolution Kernel that can be defined in various ways.
It has been shown that even with 8th order convolution Kernel, curvature cannot reach a
spatial convergence. However, results are improved with the method.

Large stencil Finally, it is not always interesting to look for higher stencils with stan-
dard finite difference operators in the case of fast varying c. It happens when two interfaces
are really close to each other, or when an interface topology is under-resolved. In such
cases, large stencils will amplify high frequencies errors and provide a poorer curvature
approximation. This issue is addressed in [57 ] where close interfaces are separated, and
local reconstruction of a signed distance belonging to only one of the front is performed
before computing the normal and curvature.
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Considering the above discussion, differentiation seems to be a straightforward method
for SLS, ACLS or CLSVOF. Simple second-order finite differences are sufficient in the
SLS case, while a least-square approach is mandatory for ACLS and CLSVOF to have
convergence. However, a more reliable method is needed for curvature from VOF, as f
cannot be reasonably differentiated twice.

5.4.2.2 Curvature from height function

Another alternative to computing curvature is the construction of height function (HF)
from the indicator function. This has been widely used in the VOF context as standard
operator fail to give a converging curvature. Height functions are based on the idea that if
an interface is described by a function ~ such that y = ~(x) in 2D (or z = ~(x, y) in 3D),
the curvature can be deduced from

κ =
~xx

(1 + ~2
x)

3
2

in 2D , (5.63)

κ =
~xx + ~yy + hxx~2

y + ~yy~2
x − 2~xy~x~y

(1 + ~2
x + ~2

y)
3
2

in 3D . (5.64)

If the height function is defined exactly, then κ can be computed at any order depending on
the gradient and Hessian operators. This method has the advantage of naturally comput-
ing the curvature at the interface location in opposition to the standard operator method.
However, it is important to remember that curvature at second-order accuracy can only be
achieved with an exact (or at least fourth order) volume fraction field. It is never the case
when dealing with dynamic interfaces, as the VOF geometric schemes are often limited to
second-order accuracy (see test case of Section 6.2.1.4).
Note that height functions can also be used to compute normal (see [60 ]), a complete pre-
sentation of the height function method and its application (with higher-order computation)
is presented in [19 ].

Fixed stencil An early method was proposed by Sussman et al. [210 ] in the context of
a height function computed from volume fraction. In a cell C, the dominant direction is
determined from the normal n. Let us take a 2D case where ny > nx then an exact average
height function hi can be derived by simply summing all volume fraction of a column in
the y direction

hi =

j=+∞∑
j=−∞

fi,j . (5.65)

In this method ∞ is obviously not possible and replaced by 3.
The operators hx and hxx are then computed with second-order accuracy using standard
finite differences hx|i = hi+1−hi−1

2∆x and hxx|i = hi+1−2hi+hi−1

∆x2 .
Finally, the curvature is retrieved with second-order accuracy using Eq. (5.64). This method
requires a 7 points stencil in the height function direction and 3 points in the other directions
leading to a 3× 7 (3× 3× 7 in 3D) stencil.
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Adaptive stencil The fixed stencil will not work in any interface configurations, this
issue is even more visible in under-resolved configurations.
In the first case represented in Fig. 5.7a the 3 × 7 would have been enough to retrieve
a second-order curvature approximation. Indeed all three height functions are consistent.
This means that the base of the cell at the bottom of the height is full (f = 1), and the
cell at the top is empty (f = 0).
In the second case, in Fig. 5.7b, a 9-stencil is needed to retrieve a consistent height function.
Another problem in this configuration is that the middle height function is lower than the
coordinate of the lower face of the cell in which the height function is computed. In this
type of configuration, Cumins et al. reported that a good approximation of the curvature
is not possible [42 ].
Finally, even in fairly resolved interfaces, it is not possible to have three consistent height
functions in a given direction as shown in Fig. 5.7c.
The use of an adaptive stencil can solve most of the above issues. This approach has been
presented in [79 ] where the stencil is uniform for the 3 (9 in 3D) height functions.
Another approach presented by Popinet in his solver [169 ] constructs each height indepen-
dently with a variable stencil.

Mesh decoupling An attempt to decouple height function from the mesh was first pro-
posed by Liovic et al. [114 ]. In order to deal with symptomatic configurations (such as
Fig. 5.7c), they introduced a reconstruction in the diagonal direction of an orthogonal mesh
in addition to the mesh directions using cell center as shown in Fig. 5.8a. It has been shown
in [119 ] that the maximum error in the curvature computation of a sphere occurs at 45◦.
The method reduces the maximum error, which then occurs at an angle of 22.5◦.
Later, Owkes and Desjardins [157 ] generalized this idea by computing height functions in
a coordinate system orthonormal to the interface normal with a column of parametrized
width and depth. In Fig. 5.8b, a height construction is shown with a width lower than ∆x.
This method is robust and does not fail in symptomatic configurations when the width is
higher than 2∆x.
Both approaches use geometric reconstructions based on simplex to retrieve the volume
fraction contained in each height function.

Level-Set Height function Even if height functions are mainly used and well-designed
for VOF representation of the interface, some attempts to apply it has been made in Level-
Set (see [212 ] or [119 ]). There are advantages of using height function approach instead of
the standard operator approach: the curvature is computed at the interface location, the
computation is more robust in the context of two close interfaces as it will adapt the stencil
to take it into account.
The algorithm is very similar to the one used for a volume fraction field. The height
functions are build by going through a given stencil below and above the cell of interest.
The stencil is adapted and stops when a new sign change occurs or the maximum stencil is
reached. It is shown that a maximum stencil of 3 is enough to have converging curvature.
In the context of Conservative Level-Set, Owkes et al. [155 ] proposed to apply height
function method to the function ψ. They manage to obtain curvature convergence by using
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.7: Different configurations of HF computation. The arrows represent the hight function
while the plane lines represent the adaptive stencil used to reconstruct them. The case of Fig. 5.7c
presents non-consistent HF reconstructions.

very high stencil of 3. The explanation of this stencil requirement is that the function ψ has
an interface thickness. If the interface thickness is ε = 0.5∆x then the interface is captured
over 4 cells. They then propose a formula to determine a sufficient stencil S = 7 + 8 ε

∆x .
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(a) Liovic et al. (b) Owkes et al.

Figure 5.8: Mesh decoupled HF. The arrows represent the hight function while the plane lines
represent the adaptive stencil used to reconstruct them.

The use of standard height function with a variable stencil instead of the mesh-decoupled
method proposed in [157 ] benefits from the Cartesian grid arrangement. It is then a
promising algorithm for curvature computation in a VOF framework. However, another
computation method is required for under-resolved configurations following the idea in [169 ]
detailed in the next section.

5.4.2.3 Curvature from interface positions

A last type of method, mainly used in Front Tracking methods, relies on marker positions
to reconstruct an interface surface using a least square approach [69 ].
For the general case of an interface with normal n and a set of points describing the interface
xΓ,i, one can fit a parabola P by using a least square regression.

P(x) = a0x
2 + a1x+ a2 in 2D , (5.66)

P(x) = a0x
2 + a1y

2 + a2xy + a3x+ a4y + a5 in 3D . (5.67)

First, the set of points xΓ,i is redefined as x′Γ,i in a new coordinate system [n, t1, t2] from
the Cartesian coordinate system [ex, ey, ez].
Then, the following least square minimization is performed

R2 =

N∑
i=1

Wi(x
′
Γ,i)
(
z′Γ,i − P(x′Γ,i)

)2 , (5.68)

with Wi an optional weight to restrain the region of interest.
This resulting linear system requires at least N = 3 (6 in 3D) to be well-posed.
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Even if this method seems expensive and complex to implement,this is a good alternative
to the mesh-decoupled method of [157 ] for robust under-resolved computations. It has
been used in a VOF context in [154 ] with positions from the PLIC reconstruction leading
to strong improvement in under-resolved configurations compared to methods based on
height function. As proposed in [169 ], this parabola fit can be coupled with height function
to improve under-resolved robustness while keeping a second-order convergence in high
resolution for a VOF framework.

5.4.2.4 Curvature interpolation to the face

Depending on the method, the curvature is computed either at the interface or at the cell
center as illustrated in Fig. 5.9a. κΓ,i,j is directly the curvature of the interface lying in Ci,j
while κi,j is the curvature of an interface defined by the isocontour c−1(ci,j) which is not
f−1(0.5), φ−1(0) or ψ−1(0.5).
In a MAC grid arrangement, these curvature values need to be interpolated to the face as
κf . The way to do it depends on the location of the computed curvature.

Δr

ϕ−1(0)

ϕ−1(ϕi,j)

κΓ,i,j

κi,j

(a) Curvature position

κi, j κi+1, j

κi, j+1

κv,i, j− 1
2

κu,i+ 1
2 , j

κu,i− 1
2 , j

κv,i, j+ 1
2

κi, j−1

κi−1, j

(b) Curvature interpolation

Figure 5.9: Position and interpolation of curvature computed from φ in a cell Ci,j with κi,j the
curvature defined at the cell center and κΓ,i,j the curvature of the interface contained in the cell.
The grey cells contain the interface while white cells are either liquid or gas cells. White points
(κi+ 1

2 ,j
and κi,j+ 1

2
) are the face curvature where an interface crosses the stencil of interpolation.

Black points (κi− 1
2 ,j

and κi,j− 1
2
) are face interpolation from two curvature points of the same phase.

Curvature defined at the cell center When curvature is defined at the center of a cell,
a value is contained in all domain cells (white and grey cells of Fig. 5.9b). The curvature
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interpolation can be expressed as

κu,i− 1
2
,j =

κi,j |φi−1,j |+ κi−1,j |φi,j |
|φi,j |+ |φi−1,j |

for linear interpolation, (5.69)

κu,i− 1
2
,j = κi,jκi−1,j

|φi,j |+ |φi−1,j |
κi,j |φi,j |+ κi−1,j |φi−1,j |

for harmonic interpolation. (5.70)

The first one is the linear interpolation of the curvature, while the second one is the linear
interpolation of the radius. This type of interpolation can be seen as the interpolation
of cell-centered curvature to the interface position lying between these cells which can be
different from the position of the face center (this is the case between xi,j and xi,j+1). If the
Heaviside is smoother than the GFM one, ∇H|i− 1

2
,j 6= 0, hence a value κf is also needed,

and can be computed as a simple average

κu,i− 1
2
,j =

κi−1,j + κi,j
2

. (5.71)

Note that this average leads to erroneous evaluations of curvature, inducing large errors.
This point will be detailed in Section 6.2.1.3.

Curvature defined at the interface For a curvature directly defined at the interface,
one needs to average the curvatures of 2 adjacent cells which are not necessarily containing
a curvature value .
The most simple way to do it is an average of values if they both contain an interface value
(grey cells of Fig. 5.9b) and keep the single available value if one of the two adjacent cells
does not contain the interface (white cells of Fig. 5.9b).

κu,i− 1
2
,j =

κΓ,i−1,j + κΓ,i,j

2
for two adjacent interfacial cells , (5.72)

κu,i− 1
2
,j = κΓ,i,j for one interfacial cell . (5.73)

Note that if both cells are empty, curvature cannot be computed with this approach, and
one needs to obtain it from normal extrapolation or cell to cell propagation. However, this
case never happens if one chooses a Heaviside HΓ = f or sharper.
In a more general way, one can define the curvature at a cell face by weight interpola-
tion [178 ]

κu,i− 1
2
,j =

Wi−1,jκΓ,i−1,j +Wi,jκΓ,i,j

Wi−1,j +Wi,j
, (5.74)

with Wi,j = Hε
Γ,i,j(1 −Hε

Γ,i,j). This gives importance to cell containing a large portion of
interface (Hε

Γ close to 0.5) and cancels quasi empty or full cells (Hε
Γ close to 0 or 1) which

are more prompt to curvature computation errors.

5.4.3 Key points of the surface tension modelling

The above state of the art shows the subtleties of treating surface tension in a two-phase
flow solver. Some key points arise from the above considerations:
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1. By using the same gradient operator for ∇P and ∇HΓ provides a natural well-
balanced method that limits spurious behaviours of the surface tension modelling.

2. Using φ allows accurate and straightforward evaluation of the curvature. However, it
is crucial to keep in mind that φ from ACLS or CLSVOF suffers from second-order
perturbations leading to significant curvature errors.

3. VOF needs to use more consuming methods based on geometry as HF or parabola fit
to retrieve acceptable curvature evaluations for all resolutions.

4. Direct differentiation of c provides a curvature defined at the cell center and needs a
particular interpolation step to be well-defined at the interface. This is not the case
for HF or parabola fit evaluations of the curvature, which are naturally defined at the
interface.

To conclude, a robust and accurate surface tension modelling can be derived for any in-
terface capturing method by defining a proper gradient operator, an adapted curvature
computation method and a correct interpolation procedure. It is important to remind that
the choice of this modelling is highly dependant on the choice of the interface capturing
method and will lead to different performances.

5.5 Conclusion

In this chapter, an overview of the different challenges inherent to the resolution of incom-
pressible two-phase flows have been presented. Emphasis has been put on:

• Momentum transport, which has to be consistent with the mass transport in order
to provide a robust solver for high-density ratios.

• Viscosity jump, which is not straightforward to treat implicitly.
• Surface tension modelling, which requires special attention for the description of the

Dirac operator and for the curvature computation.
In light of the state-of-the-art, the choices of operator discretization employed in this work
are summed up in Table 5.1.
The next chapter presents a unified framework where all challenging aspects of the two-
phase flow simulations are treated carefully. The framework relies on the methods presented
above, adapted to the four interface capturing methods in the scope of this work. Then
these four methods are compared on multiple test cases of the literature.

Operator Lpres Lconv Lvisc Lcap
Method PFM WENO5-cons (Sec. 5.2.5.4) WDF GFM

Table 5.1: Summary of computation choices for the operators used to solve the momentum equation
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The previous section presented a large variety of methods to treat interface discontinuities in
low Mach solvers. However, they are usually adapted to one particular interface capturing
method, and comparison to existing strategies are not systematically provided.
Detailed comparisons have been performed in the last decades, but they are still limited
to a particular interface capturing method [63; 149; 203 ] or to a specific test case such as
spurious currents [1 ] or rising bubbles [16 ]. Moreover, as the field of interface capturing
methods is highly active, updating comparisons studies is required to take advantage of the
recent advances. Finally, conclusions are sometimes only provided to 2D simulations [65; 1;
16 ]. This is a severe limitation when dealing with geometrical properties as the extension
to 3D is not always straightforward. Our work is thus motivated by this observation and
aims to provide a complete study of up-to-date methods in both 2D and 3D configurations.
To avoid potential misleading conclusions due to solver differences, they are adapted to the
same unified framework with the following specifications: a sharp transport of the interface,
a well-balanced description of the surface tension and a consistent mass and momentum
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transport.
In Section 6.1, the unified framework implementation in a finite-volume discretization on
cartesian grids is detailed. Then, numerical results are provided to evaluate the surface
tension modelling and the momentum conservation in Section 6.2. Finally, more realistic
test cases are presented in Section 6.3 to asses the methodology proposed in this work.

6.1 Presentation of the unified framework

The present two-phase low-Mach solver relies on the projection method [39 ] with a WDF
of the momentum equation. The properties are averaged such that:

ρ = ρg +Hε
Γ [ρ]Γ , (6.1)

µ = µg +Hε
Γ [µ]Γ , (6.2)

with Hε
Γ a regularized Heaviside of controlled width 2ε = ∆x. In a VOF and ACLS

framework, the natural choice is the color function (f and ψ respectively) while in a SLS
framework, an Heaviside can be defined using a regularization of the distance function such
as

Hε
Γ =


0 if φ < −ε
1 if φ > ε

1 + φ
2ε + 1

2π sin(πφε ) otherwise
. (6.3)

Note that this stands for the collocated values of ρ and µ, while staggered values or values
at the corners can be needed in the following operator definitions. In that case, the dis-
cretization can differ from the collocated definition given here, and further details on the
computation are provided.

6.1.1 Prediction step

The prediction step is written as follows

u∗ − un

∆t
= Lconv + Lvisc + Lcap . (6.4)

The three operators are defined through the following splitting

Lconv = −un · ∇fun , (6.5)

Lvisc =
1

ρn+1
f

∇f ·
(
µn+1Dn

)
, (6.6)

Lcap =
1

ρn+1
f

Fn+1
σ , (6.7)

where ρn+1
f , µn+1 and Fn+1

σ are computed using the advanced color function cn+1. Details
on the operators discretization are given hereafter.
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6.1.1.1 Convection term Lconv

The convection operator is treated using the consistent transport of mass and momen-
tum presented in Section 5.2.3 where additional continuity equations are advanced in the
prediction step. This leads to the following update (here given for u)

Lconv =
1

ρ∗u
∇f · (ρnuunun)− un

∆t

ρ∗u − ρnu
ρ∗u

. (6.8)

The additional term in the RHS is a correction of momentum due to the mass change in
the cell during the prediction step. The predicted staggered density ρ∗u is obtained from
the following continuity equation

ρ∗u − ρnu
∆t

= −∇f · (ρnuun) . (6.9)

Note that ρ∗u is only an intermediate evolution variable discarded just after prediction step.
In the general case, ρ∗u will differ from the reconstruction ρn+1

u . The staggered density at
tn is obtained from the following equation

ρn
u,i− 1

2

= ρg + θu,i− 1
2

[ρ]Γ , (6.10)

with θu,i− 1
2
a staggered volume fraction approximation.

For VOF and CLSVOF, the PLIC reconstruction is available and is used to reconstruct
θi− 1

2
as proposed in [159 ].

When using SLS, the distance function φ is directly used such that

θu,i− 1
2

=


0 if φni−1 < 0 and φni < 0
1 if φni−1 > 0 and φni > 0
max(0,φni−1)+max(0,φni )

|φni−1|+|φni |
otherwise

. (6.11)

In this work, it was found that using the regularized Heaviside Hε
Γ as in [81 ] was a better

choice for momentum conservation and solver robustness in the case of ACLS. Indeed,
Eq. (6.11) relies on geometric informations provided by a distance function. Because of the
errors in φFMM , this expression can lead to huge errors in density. Hence, a more robust
approximation of ρnu is performed by using the simple ψ average

θu,i− 1
2

=
1

2
(ψi−1 + ψi) . (6.12)

Finally, the fluxes F (ρ) and F (ρu) have to be evaluated with the same interpolation for
consistency. Moreover, the scheme have to be bounded to avoid any overshoot or undershoot
of density as discussed in Section 5.2.5.3. In the present solver, a WENO5 interpolation is
performed, which switches to an upwind evaluation when the stencil crosses the interface.
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6.1.1.2 Capillary term Lcap

As discussed in Section 5.4.1, it is not possible to represent the Heaviside function at the
exact interface location, and a numerical approximation is required leading to the following
definition of Fσ

Fσ = σκ∇Hnum
Γ (6.13)

with Hnum
Γ a discrete representation of the Heaviside.

A CSF approach would use a smooth Heaviside Hnum
Γ = Hε

Γ. The expression corresponding
to GFM is the sharp Heaviside defined at the cell center Hnum

Γ = H0
Γ = HΓ.

The GFM discretization of Lcap used in our solver can be written (here for u) as

Lcap =
1

ρn+1
u

σκn+1
u ∇xfH

0,n+1
Γ . (6.14)

From the discussion in Section 5.4.3, the following choices have been made for curvature
computation :

• For SLS, the curvature is retrieved by using second-order finite differences (FD) on
φ while the Least-Square minimization (LSQUAD) of [38 ] is used on φFMM and
φPLIC for ACLS and CLSVOF respectively. The curvature is then defined at the cell
center and the harmonic interpolation Eq. (5.70) is used to get face curvatures. For
robustness improvement, the interpolation switches to linear interpolation Eq. (5.69)
when curvature changes sign as in [38 ].

• For VOF, the curvature is computed from the general height function (HF) method
[169 ] and interpolated to the face using Eq. (5.74).

6.1.1.3 Viscous term Lvisc

Following the conclusions given in Section 5.3.4, an explicit WDF is used here for its
simplicity and good results. The viscous term Lvisc = 1

ρn+1∇f ·
(
µn+1Dn

)
is discretized as

(here for u)

Lvisc =
1

ρn+1
u

(
2∇xf

(
µn+1∇xcun

)
+∇yc

(
µn+1∇yfu

n
)

+ ∇yc
(
µn+1∇xfvn

))
. (6.15)

In this expression, some µn+1 values are needed at Σρ corners, they are defined with simple
average of the neighbour collocated values

µn+1
i− 1

2
,j− 1

2

=
1

4

(
µn+1
i,j + µn+1

i−1,j + µn+1
i,j−1 + µn+1

i−1,j−1

)
. (6.16)

Note that sharper choices of corner interpolation can be made based on a distance func-
tion [212 ] but no significant improvements have been observed in the test cases presented
in this work.
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6.1.2 Correction step

The correction step is written as

un+1 − u∗

∆t
= − 1

ρn+1
f

∇fPn+1 , (6.17)

where the pressure Pn+1 is obtained from the resolution of variable coefficient Poisson
equation (here using the linear solver library of PETSc[14 ])

∇c ·

(
1

ρn+1
f

∇fPn+1

)
=

1

∆t
∇c · u∗ , (6.18)

with ρn+1
f = ρn+1

u for the x-normal faces (ρn+1
v and ρn+1

w for y and z-normal faces).

6.1.3 Summary of the two-phase solver procedure

A summary of the adaptations introduced to unify all Eulerian methods in the same low
Mach solver is provided in Table 6.1 and the full algorithm for a timestep is given:

1. Compute ρnf from cn;
2. Advance interface following one of the algorithm of Section 4.1 to obtain cn+1;
3. Compute κn+1

f , H0,n+1
Γ , µn+1, ρn+1

f from cn+1;
4. Set uk = un and loop in a RK2-SSP time integration from k = 1 to k = 3

(i) Advance un and ρnf to ρ
∗
f and u∗ with the consistent mass and momentum scheme

of Section 6.1.1 and fluxes computed using uk;
(ii) Solve the Pressure from Eq. (6.18);
(iii) Correct the velocity to obtain uk+1 with Eq. (6.17);

The timestep has a stability constraint based on the CFL, the surface tension and the
viscosity :

∆t < min

(
∆x

2‖u‖
,

√
∆x3(ρl + ρg)

(2π)3σ
,

∆x2

4 max(νl, νg)

)
. (6.19)

In most of the application shown hereafter, the surface tension restriction is dominant.

method VOF SLS ACLS CLSVOF
κ HF FD LSQUAD LSQUAD
κf Eq. (5.74) Eq. (5.70) Eq. (5.70) Eq. (5.70)
Hε

Γ f Eq. (2.37) ψ f
θf From PLIC Eq. (6.11) Eq. (6.12) From PLIC

Table 6.1: Summary of computation choices for the four interface capturing methods
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6.2 Numerical results

6.2.1 Surface tension modelling

This section aims to assess the surface tension modelling implying both curvature compu-
tation and surface tension force discretization. In a first test, the curvature computation
accuracy is evaluated without taking into account the transport errors induced by the ve-
locity field. When an interface capturing method is coupled with a two-phase solver, the
curvature errors act as a vorticity source in the momentum equation scaling with ∇κ and
produce well-known parasitic currents [1 ]. To enlighten this behaviour, two additional
cases are considered and illustrated in Fig.6.1: a static test case where only curvature error
acts as a source of error and a dynamic case where the interface transport acts as a second
source of error.
Finally, the canonical damping wave test case is considered to assess the solver on capillary-
diven flows.

6.2.1.1 Curvature computation

First, the accuracy of the curvature is demonstrated for the different representations of the
interface. The choices of κ computation summed up in Tab.6.1 are considered. Note that
for ACLS, φFMM is used while for CLSVOF φPLIC is used instead of the exact distance
function φ.
The relative curvature errors are defined as in [38 ] :

L2(κ) =

√
1
NΓ

∑NΓ
i=1 (κexact − κf,i)2

κexact
, (6.20)

L∞(κ) =
max
i
|κexact − κf,i|

κexact
, (6.21)

with κexact the exact curvature and κf an interpolated curvature to the faces where ∇fH0
Γ

is non-zero. In practice, the values of κf are the only curvature values used for surface
tension modelling regardless of the interface capturing method.
For a range of cells per diameter ND = 3.2 to ND = 409.6, the errors are evaluated on 100
circles randomly located in the domain in order to meet as much configurations as possible.
The final metric is 〈L2(κ)〉 the mean of L2(κ) and max (L∞(κ)) the maximum of L∞(κ)
over all these configurations.
Figure 6.3a and Fig. 6.3b show convergence in L2 and L∞ for all methods but ACLS. The
ACLS method shows a saturation of the error convergence for high resolutions because
of the second-order nature of the φFMM distance function. Note that for completeness,
Fig. 6.4a and Fig. 6.4b illustrate the difference between LSQUAD and FD approach applied
on φFMM . It can be seen that the FD method does not show any convergent behaviour
while LSQUAD, the method used here for CLSVOF and ACLS, manages to decrease the
error until ND = 51.2.
This saturation is not observed for the CLSVOF approach because of the relaxation applied
on the φPLIC . This takes the form of φPLIC = ωφ + (1 − ω)d and ω is a function of the
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Figure 6.1: Test case set up for the spurious
currents quantification

λ
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A0 3λ

Ωl

Ωg

Figure 6.2: Planar damping wave simulation
set up

difference between φ and d. As observed in Fig. 6.4a and Fig. 6.4b, if no relaxation is
performed, the curvature computation does not converge at high resolution for the same
reasons as for ACLS. If the relaxation is activated, ω will tend to one for high resolution as
the local curvature in a given cell is closer to a plane, so the discrepancy between φ and d
is lower. This allows CLSVOF curvature to show convergence even for high resolutions.
Finally, HF method has a transient convergence regime in the lowest resolutions because
of the parabola fit switch as already pointed out in [169 ].
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(a) Mean of L2(κ) (b) Maximum of L∞(κ)

Figure 6.3: Mesh convergence of 〈L2(κ)〉 and max (L∞(κ)) for the 4 methods

(a) Mean of L2(κ) (b) Maximum of L∞(κ)

Figure 6.4: Mesh convergence of L2(κ) and L∞(κ) error for other choices of κ computation

6.2.1.2 Spurious currents analysis

The static droplet is a good test case to assess a surface tension model. A complete investi-
gation has been done by Abadie et al. in [1 ] where they compare various fσ discretizations
and κ computation in both VOF and SLS framework.
When a well-balanced discretization is used, the parasitic currents only depends on κ and
HΓ. Following [1 ], taking the curl of Eq. (5.53) leads to a new requirement for the Laplace
equilibrium

∇κ×∇HΓ = 0 . (6.22)

It is also possible to write the vorticity transport equation from Eq. (2.26) leading to

∂ω

∂t
+ (u · ∇)ω + (ω · ∇)u = ν∆ω − σ

ρ
∇κ×∇HΓ . (6.23)
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It appears clearly that an error in curvature will lead to a source term in vorticity.
In a viscosity dominant flow, considering a long enough time tν , the viscous contribution
will balance the vorticity source term to reach a steady state

ν∆ω =
σ

ρ
∇κ×∇HΓ . (6.24)

By dimensional consideration, one can argue that ν∆ω ∼ νUσ/D3 and σ∇κ×∇HΓ ∼ σ/D3

with Uσ a spurious velocity and D the droplet diameter. Thus, a characteristic spurious
velocity related to viscous flows can be determined

Uσ,ν =
σ

ρν
. (6.25)

In an inertia dominant flow, the vorticity source term is balanced by the first term of
Eq. (6.23)

(u · ∇)ω =
σ

ρ
∇κ×∇HΓ . (6.26)

By dimensional consideration, (u · ∇)ω ∼ ρU2
σ/D

2 and a characteristic spurious velocity
linked to inertial flows is defined as

Uσ,ρu =

√
σ

ρD
. (6.27)

The time scale related to viscosity can then be defined as

tν =
D2

ν
, (6.28)

and the time scale related to capillarity effects

tσ =

√
ρD3

σ
. (6.29)

From these two characteristic quantities, one can define the Capillarity number Ca such
that

Ca =
ρνUσ,ν
σ

, (6.30)

and a Laplace number La

La =

(
Uσ,ν
Uσ,ρu

)2

=

(
tν
tσ

)2

=
σD

ρν2
. (6.31)

Now that the source of spurious currents related to surface tension has been identified, dif-
ferent test cases are performed to describe the behaviour of the different interface capturing
methods on such problematic.



128 Chapter 6 - Simulation of two-phase flows with a unified framework

6.2.1.3 Static test case

An infinite cylinder of diameter D = 0.4 is centered in a [1 × 1] domain without gravity
force. Only a quarter of the domain is considered here where right and top boundary
conditions are no-slip walls and bottom and left boundary conditions are symmetry. The
cylinder is supposed to stay at rest as the pressure force is expected to balance exactly the
capillary forces.

Exact curvature The curvature κ is imposed constant with the exact value 2/D. The
pressure jump is then known analytically as ∆P = σκ = 2σ/D. The test case is performed
for 3 different Heaviside formulations all written in the well-balanced way : Hε

Γ(f), Hε
Γ(ψ)

and H0
Γ on a grid Nx = 51 in both directions. This choice of mesh size is made to have the

centreline in the y-direction matching exactly the location of the cell centers at i = 26.
This part aims to show the different pressure jump resolutions with respect to the choice
of HΓ in the fσ computation. Note that Hε

Γ(ψ) = Hε
Γ(φ) so the resolution is the same for

smooth Heaviside from SLS or ACLS framework.

Figure 6.5: Pressure resolution for different HΓ choices

The pressure profile on the centreline in the y-direction is showed in Fig. 6.5. One can
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notice that the pressure matches perfectly with the Heaviside profile as expected in a well-
balanced method (in light of Eq. (5.55)). Moreover, velocity is at zero machine in all three
cases.

Computed curvature For the same configuration but with a computed curvature, the
methods are not able to compute a constant κ and spurious currents are present in the
domain. This behaviour is quantified here with the maximum Capillary number Camax.
The fluid properties are the same in both phases such that La = 12000.

(a) Camax for a full run (b) L∞(κ) error at t/tσ = 20

Figure 6.6: Mesh convergence of Camax and L∞(κ) error for the static case

In Fig. 6.6a is displayed the mesh convergence of the maximum Camax during a static
simulation. All methods but ACLS converge with mesh resolution. This is because of the
non-converging behaviour of κ which has been demonstrated in Section 6.2.1.1 and from the
L∞(κ) error at the end of the simulation in Fig. 6.6b. This has been previously observed
in [38 ] in 3D where the Camax was closely the same for the 403 and 803 meshes.
The damping of the spurious currents in Fig. 6.7 can be explained by the numerical curva-
ture computation. The initial spurious currents are a direct consequence of the initial error
introduced by the curvature computation. VOF is able to reach an equilibrium close to
zero machine as shown in [169 ]. The other methods also reach a steady Camax value which
is not zero because of the reinitialization step introducing new errors at each iteration [1 ].
While this is very noticeable for ACLS, the magnitude decreases using SLS and decreases
even more with CLSVOF.

Effect of smoothing the Heaviside For the same configuration another choice of Heav-
iside is done for the methods. Instead of taking the GFM with the sharp Heaviside H0

Γ, the
CSF approach is taken with the smooth heaviside Hε

Γ summarized in Table 6.1. The aim
is to observe the impact of smoothing the Heaviside on the spurious currents.
In Fig. 6.8a is displayed the mesh convergence of the maximum Camax with the smooth
Heaviside Hε

Γ. One can see that VOF and SLS still converge at second-order and first-
order respectively and ACLS and CLSVOF do not converge anymore. The evolution of
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(a) ND = 12.8 (b) ND = 51.2

Figure 6.7: Temporal evolution of Camax for the static case

(a) Camax for a full run (b) L∞(κ) error at t/tσ = 20

Figure 6.8: Mesh convergence of Camax and L∞(κ) error for the static case with Hε
Γ

maximum Capillary number Camax is presented in Fig. 6.9. The VOF method is able to
damp the spurious currents up to zero machine even with a smoother Heaviside while all
other methods fail to damp the spurious currents. However, SLS is able to keep them at
a fairly low magnitude, which is an acceptable result compared to ACLS and CLSVOF.
Finally, comparing Fig. 6.8a and Fig. 6.6a, a difference in magnitude between Hε

Γ and H0
Γ

for CLSVOF, SLS and ACLS can be observed while it has not a significant impact on the
result using VOF.
The explanation of such differences in the results for different heaviside definitions reside
in the curvature computation. In VOF, the curvature is computed from height functions,
so it is located at the interface. Then, even for a smoother definition of the Heaviside,
the face interpolations of κ are made from good estimates κΓ and do not add additional
errors. For other methods, the curvature estimation is located at cell centers. It has been
shown that a pretty good estimation of κΓ can be obtained from either linear Eq. (5.69)
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(a) ND = 12.8 (b) ND = 51.2

Figure 6.9: Temporal evolution of Camax for the static case with Hε
Γ

or harmonic interpolations Eq. (5.70) when the interface lies between the cell centers (case
of κi,j+ 1

2
in Fig. 5.9b). However, when the face curvature is computed from two values of

a same fluid phase, the estimation is very bad because of the use of the average Eq. (5.71)
of two already erroneous κ values (case of κi,j− 1

2
in Fig. 5.9b). This results in a first-order

error on the curvature. When using H0
Γ, this is not a problem as only face curvature of cell

centers belonging to different phases will be used. This problem can be avoided by using a
height function approach for curvature computation as demonstrated in [1 ].
Finally the ACLS and CLSVOF approaches seem to have higher spurious currents than
SLS. This is also due to the curvature error which is higher for methods using a signed
distance more prompt to numerical errors to compute curvature.

Effect of reinitialization in the Level Set framework In Fig. 6.10, test cases without
reinitialization are included. If no reinitialization is performed, CLSVOF, SLS and ACLS
are able to retrieve the equilibrium observed in the VOF context. The reinitialization step
acts as an additional source of errors in the curvature as it creates small displacements of the
zero-isocontour. Then the curvature computation does not depends only on the velocity
field but also on the reinitialization step. This explains why the viscosity contribution
cannot balance the vorticity source in Eq. (6.23).

Laplace number effect on the result Finally, the same test case is performed with a
fixed grid size ND = 12.8.
The goal here is to observe the sensitivity of the spurious currents to the Laplace number
and give an understanding of the spurious currents using the analysis of Section 6.2.1.2.
Only the VOF method is considered here to reduce the number of simulations to perform.
Figure 6.11 shows the results of the different La. For all La, the method is able to damp
oscillations up to zero machine in a time tν. This is expected regarding the above dimen-
sionless analysis : at tν , the viscous contribution exactly balances the vorticity source term
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(a) ND = 12.8 (b) ND = 51.2

Figure 6.10: Temporal evolution of Camax for the static case without reinitialization

of Eq. (6.23).

Figure 6.11: Comparison of the Camax evolution in time for different La using the VOF algorithm

The damping of the spurious current can be explained by the numerical curvature compu-
tation. The initial spurious currents are a direct consequence of the initial error introduced
by the curvature computation. It is very important to notice that the important quantity
is not the curvature error itself but the standard deviation as the vorticity source comes
from a gradient of curvature ∇κ.
For a deeper comprehension of this phenomenon, the standard deviation of curvature SD(κ)
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(a) Standard deviation of curvature (b) Maximum curvature error

Figure 6.12: Standard deviation and maximum error of curvature for different La using the VOF
algorithm

and the maximum relative error in curvature L∞(κ) are introduced

SD(κ) =

√√√√ 1

NΓ

NΓ∑
i

(κ̄num − κnum,i)2 , (6.32)

L∞(κ) =
max
i
|κex − κnum,i|

κex
, (6.33)

with κ̄num the mean numerical curvature and NΓ the number of cells where the curvature
is computed (and used for surface tension force computation).
In Fig. 6.12a, the standard deviation of the computed κ is presented with respect to time.
It appears clearly that the reduction of the spurious currents are related to the reduction of
the standard deviation of κ. The moment when spurious currents are up to zero machine is
the moment when the droplet have reached its numerical equilibrium with a constant κnum
in all the interface cells. Note that κnum is different from κexact has shown in Fig. 6.12b :
the error is about 0.1%.
Finally, the same test case has been done for an inviscid droplet. The results are shown in
Fig. 6.13 where the time and velocity scales are taken as tσ and Uσ,ρu respectively. In this
zoomed figure, it is clear that all spurious currents are damped excepted the inviscid case.
This can be explained by the above investigation. In such case, there are no dissipation
process able to damp the initial disequilibrium induced by curvature computation. The
droplet will then oscillate around its numerical equilibrium without any damping effect.
Following this analogous description of the test case, Popinet defined in [169 ] an estimate of
the oscillation wavelength λ for an infinite cylinder prone to small amplitude perturbations.
The period can be defined as tλ which can be bluntly read on Fig. 6.13 as 0.4tσ :

tλ =

√
ρλ3

πσ
≈ 0.4tσ , (6.34)
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tλ ≈ 0.4tσ

Figure 6.13: Comparison of Umax evolution in time for different La

which leads to a wavelength

λ ≈ 0.8D ≈ πD

4
, (6.35)

which corresponds to the perimeter of our droplet quarter.
The only difference in the results of Popinet in [169 ] is that the inviscid case was damped
with time. This can be explained by the numerical scheme used for convection : Popinet is
using a second-order approach which is more numerically diffusive than the WENO5-RK2
scheme used in the present investigation. The damping of his inviscid droplet is then a
consequence of the small numerical diffusion of his convection scheme.

6.2.1.4 Dynamic test case

In order to quantify the impact of the flow dynamic on the spurious currents, the following
test case is considered. An infinite cylinder of diameter D = 0.4 is centered in a [1 × 1]
domain with a uniform horizontal velocity U0 where boundary conditions are periodic in the
velocity direction and free slip conditions are imposed on the top and bottom boundaries.
From the new velocity scale U0, a new time scale can be defined as tU = D

U0
and the Weber

numberWe =
ρU2

0D
σ . The fluid properties are the same as in the static case withWe = 0.4.

The mesh convergences of Camax and L∞(κ) after one revolution are illustrated in Fig. 6.14a
and 6.14b. As in [169 ] and [1 ], no convergence is observed for VOF because of the second-
order errors introduced by the transport step. This is also true for CLSVOF and ACLS.
However, SLS exhibits a huge reduction of spurious currents explained by the higher accu-
racy of curvature and transport.
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(a) Camax for a full run (b) L∞(κ) error at t/tU = 2.5

Figure 6.14: Mesh convergence of Camax and L∞(κ) error for the dynamic case

(a) ND = 12.8 (b) ND = 51.2

Figure 6.15: Temporal evolution of Camax for the dynamic case

Compared to the static case, no damping of spurious currents is observed in Fig. 6.15. This
observation puts in evidence the inability of numerical methods to retrieve an exact balance
between pressure and surface tension in a dynamic test case. The permanent introduction
of transport errors acts as an imbalance in the curvature computation. This shows the tight
coupling between the advection scheme and the surface tension contribution in a two-phase
solver.
For a more complete visualization, the velocity field in the reference of the translating
droplet is given for a medium resolution of ND = 12.8 in Fig. 6.16. CLSVOF is slightly
improving VOF curvature computation but it is not as accurate as SLS because of the
φPLIC perturbations introduced by the LS-VOF coupling. ACLS performs better than
VOF and CLSVOF in the medium resolution range while SLS maintains a fairly low amount
of spurious currents. The spurious intensity ‖u‖max represents about 1% of U0 for VOF,
CLSVOF and ACLS against 0.001% for SLS.
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0:02

(a) VOF

0:02

(b) CLSVOF

0:02

(c) SLS

0:02

(d) ACLS

Figure 6.16: Relative velocity field (U0 is subtracted for visualization) for the dynamic case at
ND = 12.8

6.2.1.5 Planar damping wave

The planar damping wave is an interesting test case as an analytical solution is available
in the literature. The test case has been widely investigated as a solver validation[172; 73;
65; 49; 169; 66; 90 ]. Here, a planar wave is initialized with a small harmonic perturbation
of amplitude A0 and both fluids are at rest with the same density and viscosity properties.
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The initial interface height can be described by

y0 = h0 +A0 cos

(
2πx

λ

)
, (6.36)

with λ the wavelength of the perturbation and h0 = 3λ/2 the vertical interface position. λ
is taken to unity and A0 = λ/100. In this problem, non dimensional time and viscosity are
defined as

τ = tω0, ξ = νλ2/ω0 , (6.37)

with the perturbation frequency ω0 =
√
σλ3/(ρl + ρg).

The perturbation amplitude is then deduced from the analytical solution derived by Pros-
peretti et al. [173 ]

A(τ) =A0
4(1− 4β)ξ2

8(1− 4β)ξ2 + 1
erfc

(√
ξτ
)

+
4∑
i=1

A0
zi
Zi

ω2
0

z2
i − ξω0

exp

((
z2
i − ξω0

)
τ

ω0

)
erfc

(
zi

√
τ

ω0

)
, (6.38)

with β = ρlρg/(ρl + ρg)
2, Zi =

∏
∀j 6=i

(zj − zi) and zi the four complex roots of the following

quartic equation in z

z4 − 4β (ξω0)1/2 z3 + 2(1− 6β)ξω0z
2

+ 4(1− 3β) (ξω0)3/2 z + (1− 4β) (ξω0)2 + ω2
0 = 0 . (6.39)

In the special case of same density, momentum and viscosity jumps at the interface cancel
and the numerical errors are only due to curvature computation and interface transport.
The densities are ρl = ρg = 1 which leads to La = 3000, ξ = 0.0647 and β = 0.25. The
solution holds for infinite domain in the y-direction while x is periodic. The box is taken
as [λ× 3λ] to limit boundary effects with wallslip imposed at the top and bottom as shown
in Fig. 6.2.
The error is defined as the RMS of relative amplitude error over time

L2(A) =

√
1

Tω0

∫ T

0

|(Aexact(τ)−A(τ)|
A0

dτ , (6.40)

with Tω0 = 25 which corresponds to approximately 4 oscillations.
The error L2(A) is displayed in Fig. 6.17d with a number of points in the wavelength Nλ

from 8 to 128. All methods converge at second-order with a better accuracy for VOF. A
convergence saturation is observed for SLS which is due to parasitic perturbations appearing
for the highest resolution. A temporal evolution of the amplitude for Nλ = 32 is also
presented in Fig. 6.17c, where VOF is already very accurate while SLS, CLSVOF and
ACLS are a little bit shifted. Finally, the CLSVOF method exhibits higher oscillation
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(a) Nλ = 8 (b) Nλ = 16

(c) Nλ = 32 (d) L2(A) error

Figure 6.17: Temporal evolution of A/A0 for different mesh resolutions and mesh error conver-
gence of L2(A)

amplitudes for the coarse meshes. To better understand this behaviour, another simulation
has been performed using HF with CLSVOF for curvature computation leading to results
equivalent to VOF results. We conclude that the higher amplitude is due to the curvature
computation. One explanation would be the initial perturbation of φ through the coupling
between LS and VOF : f and φ are not exactly matching at the initialization and the first
iterations introduce an amplification of the oscillation due to the coupling.
Note that this test case is specifically well suited for VOF as the HF method is the most
accurate in mesh-aligned configurations. This explains why it performs better than the
other methods on the damping wave.

6.2.2 Momentum conservation

Now that interface capturing methods have been compared on imposed velocity fields, the
coupling with the two-phase solver is explored. To assess the momentum conservation of our
solver, the classic density ball test case introduced in [25 ] is presented where a 2D droplet



139

of radius 0.1 and density 106 is translating at a velocity u = 1 m/s in a unity density field
at rest. The density is high enough to consider the transport as a pure solid translation.
The error Eshape of Section 4.2.1 is used here to quantify the interface transport. A new
error Etke is introduced to evaluate momentum conservation with the same formalism as
Emass

Etke =
1

K0T

∫ T

0
|∆K|dt , (6.41)

with ∆K = K(t+ dt)−K(t) the variation of kinetic energy computed at time t and t+ dt.
With K computed as in [238 ]

K =
1

2

NC∑
i=1

ρi‖ui‖2Vi , (6.42)

with ρi = ρg +Hε
Γ,i [ρ]Γ and ui components defined as average of face velocities.

Figure 6.18: Initial and final shape for the density ball translation, the first image at the left shows
a case without the consistent scheme while the other images are zoomed on the circle shape

Fig. 6.18 displays the shape for different meshes. A non-conservative form of the momentum
transport has been added for completeness where the shape is not conserved at all. For
all other simulations, using the momentum fix, the initial circular shape is well preserved
by the VOF and CLSVOF approaches even for very low resolution. This can be explained
by the density approximation based on PLIC which is more accurate and less diffusive
than Eq. (6.12). However, the circle is less distorted than the one presented in [47 ] where
Eq. (6.11) was used coupled with a ACLS approach.
When looking at more quantitative metrics, all methods display a convergence rate between
1 and 2 for Eshape in Fig. 6.19a with a better accuracy for VOF and CLSVOF. This shape
error is explained by the difference in momentum conservation. A huge difference of two
order of magnitude is observed between VOF and SLS for Etke in Fig. 6.19b. It is also
interesting to notice that ACLS is more conservative than SLS for momentum too. This
illustrates how momentum conservation is impacted by the choice of ρnu computation and
mass conservation.

6.3 Applications
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(a) Eshape error (b) Etke error

Figure 6.19: Mesh error convergence for the density ball translation

6.3.1 Droplet collision

A collision between two water droplets in quiescent air is presented. The solver have to
handle large density ratio and strong capillary effects accurately in order to retrieve the
correct collision regime. Indeed, a bad prediction of curvature or momentum will lead to
a modification of the Weber number We = ρDu2

σ and the Ohnesorge number Oh = µ
ρDσ

which drive the collision regime. Here, the head-on collision of two equal-sized droplet with
We = 40 and Oh = 0.0047 is considered. The expected outcome is a reflexive collision
with one satellite observed experimentally [8 ]. This regime includes coalescence and break
up which are the most challenging behaviour to capture as they will always happen in the
mesh resolution limit. Thus, this last test case is discriminating for interface capturing
methods as they behave differently in this limit cases. Special attention is drawn to the
topology transitions.
The set up is the same as in [61 ]: the two droplets are located in the body diagonal of of
[3D×3D×3D] cube with a distance of D/4 between each other as illustrated on Fig. 6.20a.
A resolution of ND = 40 is chosen and the boundary conditions are free-slip walls in all
directions. This diagonal droplet trajectory has two main interests: it avoids any favourable
alignments with the mesh and it allows to take a smaller domain to reduce computational
time.
In Fig. 6.21 are displayed the four topology changes :

• Coalescence of the droplets at t1 = 150 µs
• Film break up of the disk at t2 = 1250 µs
• Torus coalescence at t3 = 1850 µs
• Thin cylinder break up at t4 = 4700 µs

Each topology change is characterized by a mass change for SLS and ACLS and a peak of
‖u‖max for all methods (see Fig. 6.22). This is because of the bad curvature and normal
computations when the mesh limit is reached, which is always the case in topology changes.
The expected satellite is retrieved at the end of the simulation even if the size vary depending
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Figure 6.20: Numerical configuration for the head-on collision

on the method used.
The first coalescence at t1 introduces small bubbles at the stagnation point for VOF and
CLSVOF because of the normal computation. As the mass is conserved with VOF and
CLSVOF, these bubbles will be trapped in the liquid (see Fig. 6.23). It is also interesting
to notice that ACLS also creates bubbles as previously observed in [90 ]. However, they
represent less gas mass compared to VOF and CLSVOF. The presence of these bubbles
can cause numerical problem in the simulation as it is not well-resolved by the mesh and
produces very bad curvature evaluations. This effect can be related to the spurious ‖u‖max
behaviour for VOF in Fig. 6.22b and the use of CLSVOF seems to reduce this phenomenon.
In the case of SLS, these bubbles are rapidly turning to liquid as they go under mesh
resolution, this corresponds to the first mass creation at t1 in Fig. 6.22a.
At t2, the film is so thin that it goes under mesh resolution which creates break up. This
break up causes a loss of mass for ACLS while the SLS manage to maintain the film for
a longer time by creating even more liquid mass. VOF, CLSVOF and ACLS create small
under-resolved structures at the mesh limit when the film is too thin. This behaviour is
inherent to the methods and is the same as for the sphere deformation case of Sec. 4.3.3.
The torus coalescence at t3 implies the highest peak in ‖u‖max as a lot of small structures
created during the film break up are merging and creating multiple source of momentum
trough curvature contribution.
Finally all this event history of curvature computation failure and mass change has an
impact on the final outcome observed at t4. The satellite is of different size and for VOF,
not centred any more.
In Fig.6.24 are compared the satellite break up obtained with the different methods and an
experimental acquisition of [8 ]. The satellite mass is under-predicted while the two droplet
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Figure 6.21: Shape for the four topology changes during the head on collision, t1 and t4 are
represented on P1 while t2 and t3 are on P2 (see Fig. 6.20b for plane definition)

mass is over-predicted as observed in [217 ] using SLS. This can be caused by capillary
instabilities causing premature break-up compared to experiment. The SLS seems produces
the biggest satellite but this is partly due to the mass gain of around 1.5 % observed in
Fig.6.22a. The CLSVOF seems to provide a good trade off between conservation and
accuracy.

6.3.2 Shear layer

This last test case is a planar shear flow similar to [10 ] and reproduces critical aspects of
complex atomization configurations. Without regularizing effect such as viscosity or surface
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(a) V/V0 (b) ‖u‖max

Figure 6.22: Temporal evolution of V/V0 and ‖u‖max during the head on collision

(a) VOF (b) CLSVOF (c) SLS (d) ACLS

Figure 6.23: Collision outcome at t = 2500 µs represented here with Hε
Γ on P1

tension (We = ∞ and Oh = 0), the jet will break up in thin structures only impacted by
convection. Small errors in the computation of ρf lead to error in velocity which can cause
severe stability issues. In [64 ], some of the methods could not reach a long physical time
before the simulation breaks down. The set up is illustrated in Fig. 6.25 with the periodic
box length L = 1 mm and the liquid shear layer thickness δ = L/10. Here, the densities
are chosen such that ρl/ρg = 1000 and the initial divergence-free velocity is defined as

u = U0 − 0.04
L

2π

−4y

δ2
cos

(
2πx

L

)
exp

(
−2

(
y − h0

δ

)2
)
m/s , (6.43)

v = 0.04 sin

(
2πx

L

)
exp

(
−2

(
y − h0

δ

)2
)
m/s , (6.44)

with U0 is 2 m/s in the liquid and 30 m/s in the gas and h0 = L/5 the liquid shear center
position.
The simulation is performed until one of the methods fails. In our framework, all methods
seemed to be robust but the ACLS which breaks down after t = 1.65 ms, while the others
manage to reach the same physical time t = 2 ms as in [10 ]



144 Chapter 6 - Simulation of two-phase flows with a unified framework

(a) Ashgriz et al. (b) VOF (c) CLSVOF (d) SLS (e) ACLS

Figure 6.24: Satellite break up comparison with experiment

L

δ

Ωg

Ωg

Ωl

Figure 6.25: Shear layer simulation set up

In Fig. 6.26 are given isocontour of the four interface capturing methods at different times.
While VOF and CLSVOF are behaving similarly at the beginning, the discrepancy is in-
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(a) t = 0.5 ms (b) t = 1 ms

(c) t = 1.65 ms (d) Temporal V/V0

Figure 6.26: Liquid layer isocontour for (a) t = 0.5 ms, (b) t = 1 ms, (c) t = 1.65 ms for VOF
(red line), CLSVOF (orange line), SLS (blue line) and ACLS (green line) and (d) the temporal
evolution of mass for the shear layer test case

creasing with time. Moreover, SLS and ACLS are showing even more different behaviour
compared to VOF-based methods. In fact, SLS does not create under-resolved structured
while droplets of the mesh size are present for all other methods. This shows how interface
capturing methods impact the topology of a liquid jet under high convective effects when
the structure are not properly captured anymore. In this test case it is difficult to conclude
on what method is the best, even if the ACLS exhibits some stability problems. This issue
arises when very thin structures are created and density is approximated poorly, leading
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to very high velocities without any diffusive process to damp them. It is also important to
notice that SLS while robust has lost about 4% of mass during the whole simulation time
while ACLS managed to maintain a mass error above 1%. This last test case enlightens
that under-resolved structures behaviour which are present in atomization simulations will
be highly impacted by the interface capturing choice and totally driven by the mesh size.
The outcome at a large physical time is thus completely different.

6.4 Conclusion

The comparison of four popular methods of the literature has been presented focusing on
mass and momentum conservations, and geometrical accuracy. Overall, the interface cap-
turing methods presented here are able to provide a good physical description of two-phase
flows with high-density ratio and capillarity effects, with specific strengths and weaknesses.
While VOF and CLSVOF are exactly mass conservative and show good momentum conser-
vation, SLS provides a representation of the interface able to compute normal and curvature
easily and with more robustness even in dynamic cases thanks to the smoother representa-
tion of the interface. ACLS shows improvements in the mass and momentum conservation
compared to SLS at the cost of a loss of geometrical accuracy which can be very severe
at high resolution. For coarse to medium resolutions, ACLS accuracy is slightly better
than VOF or CLSVOF for dynamic cases. The head-on collision has demonstrated the
robustness of all methods, showing that they are all able to retrieve the satellite droplet.
However, the atomization case has also shown that the mesh resolution has a great impact
on the accuracy and the development of thin structures, all methods giving very different
results for long times of simulation. This calls for further in-depth statistical analysis in
such chaotic test cases.
Overall, Coupling VOF with LS seems to be the most promising choice in a cartesian finite-
volume framework as the conservation properties of VOF are preserved while curvature and
normal are easier to compute and more robust. The versatility of such strategy, will be
particularly of interest when additional physics is added, such as phase change. Our unified
framework is in that sense the adequate vessel for such developments.
It has to be reminded that our conclusions hold for this specific unified framework. Indeed,
the under-resolved problems met in the head-on collision could be better handled by using
local mesh refinement [169; 81; 90 ]. Moreover, our VOF and CLSVOF transport rely on
dimensional splitting and the geometrical operations are straightforward on a Cartesian
mesh. This is no longer true in unstructured meshes, and the ACLS method can be a good
alternative to keep good accuracy and conservation.
The next part investigate the inclusion of additional physics in the solver to take into
account the phase change. The aim is to verify if the conclusions still hold for an incom-
pressible two-phase flow solver with phase change.
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From now, the manuscript has presented the methodology to build an incompressible two-
phase flow solver without phase change. In such case, the main difficulty arisen from the
curvature computation and the momentum conservation. However, the final objective of the
work is to study evaporating droplets, requiring to include additional physics in the solver,
and so, additional numerical difficulties. The occurrence of phase change in a flow leads to
important modifications in the governing equations with the presence of new discontinuities
at the interface, as presented in Chapter 1. It is also important to keep in ind that some of
the equivalence between WDF and JCF presented in Chapter 5 are no longer true, because



150 Chapter 7 - Numerical challenges of simulations with phase change

of the difference in the averaging process discussed in Section 2.6.
The main challenges emerging from the integration of phase change in an incompressible
two-phase flow solver are the following:

1. The computation of the evaporation rate ṁ, which is the pillar of the phase-change
phenomenon: as for the evaluation of κ to obtain an appropriate surface tension
modelling, the evaluation of ṁ requires specific attention to properly describe phase
change. Moreover, it appears in numerous terms such as velocity jump, interface
regression or source term of energy or species mass which imply a very tight coupling
between the equations. Note that reconstruction of other interface quantities such as
the interface temperature TΓ or the species mass fraction at the interface YΓ could
also be required in some numerical approaches and need to be evaluated accurately.

2. The treatment of the velocity jump [u]Γ in all transport equations:
(i) The continuity equation cannot be reduced to a simple divergence-free condition
∇ · u = 0. As presented in Chapter 2, the jump in velocity appears in the
divergence of velocity located at the interface which needs to be numerically
prescribed in the projection method.

(ii) The momentum equation needs to be solved accordingly to include the jump
in velocity. This can require special treatments of the convective and diffusive
operators depending on the formulation used.

(iii) The transport of the interface is no longer performed with the velocity of the flow
as it differs from the velocity of the interface. In fact, the velocity of the interface
needs a reconstruction to include the regression caused by phase change.

(iv) Scalar equations need to treat the convective operator to handle the velocity
discontinuity at the interface.

3. The temperature T needs to be solved as it is used to close the system of equations.
The main difficulty arises in the heat flux jump at the interface due to phase change
which needs to be taken care of.

4. The species mass fraction Y also needs to be solved to close the system of equations.
In the case of pure liquid, it is only defined in the gas and needs proper definition of
the source of species mass at the interface.

The aim of this chapter is to give details on these challenges with a state-of-the-art of the
simulation of incompressible two-phase flows with phase change. The works are systemat-
ically related to the formulations derived in Chapter 2 to clarify the solver choices in the
literature.
In Section 7.1, general considerations on the possible reconstructions of phase-change quan-
tities at the interface are presented. Then, the velocity discontinuity handling is described
in Section 7.2 in both prediction step (momentum equation) and projection step (continuity
equation). Section 7.3 gives details about the integration of interface regression in the in-
terface capturing methods. Finally, Section 7.4 presents a state-of-the-art on the resolution
of energy and species mass fraction equations with special attention on the formulation
used to take into account the interface contributions.
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7.1 Reconstruction of phase-change quantities

The phase-change procedure needs a closure for the quantities at the interface which are
the evaporation rate ṁ, the interface temperature TΓ and the species mass fraction at the
interface YΓ. While ṁ appears in all jump conditions related to phase change, the interface
temperature and species mass fraction can be used explicitly in a phase-change solver at
different stages to:

• Impose boundary conditions or jump conditions at the interface;
• Compute accurate gradients in the interface neighbourhood for the computation of
ṁ.

A general system of equation can be written to determine these quantities by using the
jump conditions and the thermodynamic relation between TΓ and YΓ

ṁ =
[k∇T · nΓ]Γ

[h]Γ
,

ṁ =
ρgDv ∇Y |Γ nΓ

YΓ − 1
,

YΓ =
Ps (TΓ)Mv

Ps (TΓ)Mv + (Pref − Ps (TΓ))M0
.

(7.1a)

(7.1b)

(7.1c)

If [k∇T · nΓ]Γ and ∇Y |Γ include explicitly the values of TΓ and YΓ at the interface, then
the system is closed.
In the boiling regime, the gas only consists of the pure vapour. Then, YΓ = 1 and TΓ is
imposed at the pure liquid saturation temperature Tsat. Hence, the system Eq. (7.1)
reduces toṁ =

[k∇T · nΓ]Γ
[h]Γ

,

TΓ = Tsat .

(7.2a)

(7.2b)

For general vaporization problems, the system Eq. (7.1) needs to be solved. For clarity,
the relations for ṁ Eqs. (7.1a) and (7.1b) are defined asMT (TΓ) andMY (YΓ)
respectively. The Clausius-Clayperon relation Eq. (7.1c) is referred as R(TΓ) and
R−1(YΓ) for the reverse relation.
The system can be reformulated into an implicit equation on TΓ

TΓ = R
(
M−1

Y (MT (TΓ))
)

. (7.3)

Numerically,MT andMY contain also the normal gradients T (1)
l = ∇Tl · nΓ,

T
(1)
g = ∇Tg · nΓ and Y (1) = ∇Y · nΓ which are not known a priori and needs an explicit

reconstruction with TΓ and YΓ appearing in the stencil. This can be done by simple
differencing as in [205; 159 ] or by fitting an Erf function as in [122 ]. However, Palmore et
al. [159 ] pointed out the necessity to have accurate treatment of ṁ to obtain converging
methods. This is why, in most of the methodologies presented in the literature, ṁ is
obtained directly fromMT orMY by using more sophisticated normal gradient
evaluations.
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7.1.1 Evaporation rate closure

Letting aside the general phase-change system Eq. (7.1), one of the expressions of ṁ has
to be used arbitrarily. While this approach leads to the loss of the discrete equality
MT =MY it gives more degree of freedom on the computation of the normal gradients
required in the expressions of ṁ. More specifically, it does not have to contain the
interface value anymore. The reconstruction of accurate gradients at the interface is a
complex numerical problematic which will be detailed in Section 8.2.

7.1.1.1 Species mass fraction gradient based

The approach used in most of the evaporation solvers [218; 195; 205; 122; 192 ] is based on
MY . as it only requires one gradient computation and the knowledge of YΓ at the
interface.
While it gives a straightforward framework for the simulation of general unsteady
evaporation process, it suffers from ill-posedness when the interface conditions are close to
TΓ = Tsat and YΓ = 1. This has been first observed in [205 ] which motivated the
resolution of Eq. (7.1) to compute ṁ instead. They noticed that this problem arises in the
case of high evaporation rate only. This behaviour has been widely explored in [29 ] where
in the case of high evaporation rate, the use ofMY to compute ṁ is prompt to large
errors when YΓ > 0.9. This is explained by the amplification of numerical errors on Y (1)

v

as 1− YΓ is closer to zero. The error can be reduced by decreasing the timestep. However
this is not an acceptable solution for HPC evaporation computations and other
approaches need to be used to address this issue.

7.1.1.2 Temperature gradient based

A way around is to use the other expression of ṁ defined byMT . This is the starting
point of all the boiling solvers [204; 33; 219; 7; 236; 123; 187 ] and it can be generalized to
evaporation simulations as in [190; 183; 159 ] by considering an interface temperature
TΓ 6= Tsat. This allows to have a formulation which can handle both evaporation and
boiling without further considerations.
The only limitation of this approach is the accuracy of phase gradients evaluated at the
interface. When a WDF is used for the temperature, the temperature values in ΩΓ are
enthalpy-averaged as demonstrated in Chapter 2. In the vicinity of the interface, it is
then not straightforward to properly define both T (1)

l and T (1)
g at the same location from

an averaged information of temperature. This will be further detailed in the gradient
computation study presented in Section 8.2 and the two-fluid approach of Section 7.4.3.

7.1.1.3 Regime switch

Finally, in the work presented in [29 ], a switch between the two regimes is proposed to
benefit from both formulations and avoid the numerical issues previously encountered. If
TΓ is below a certain value Tc, the interface is supposed to be far enough from boiling and
MY is used for ṁ computation. When Tc is reached, the method switches to the boiling
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limit where ṁ is computed fromMT instead. From numerical investigations, Tc is defined
such that YΓ = 0.9, in other words, Tc = R−1(0.9).
Other authors also considered the use of both formulations in the same solver [198; 85 ].
But no switch is possible during a given simulation, the formulation is chosen with respect
to the test case simulated.

7.1.2 Temperature and species mass fraction at the interface

As discussed previously, TΓ and YΓ can be retrieved from solving the general system
Eq. (7.1). However, if ṁ is evaluated from a methodology of Section 7.1.1, the relevance
of solving iteratively Eq. (7.1) is limited as the system will not be verified (MT 6=MY ).
This is why most of the phase-change solvers use a reduced system of equation to obtain
TΓ and YΓ [195; 183; 218; 29; 192 ]. Therefore, the only constraint imposed on the
interface quantities is the relation Clausius-Clayperon relation YΓ = R (TΓ) and another
equation is required to close the system. This is done by either deducing TΓ from the
computed temperature field T or YΓ from the computed species mass fraction field Y
through an extrapolation operator E . The two possible systems of equations are then{

YΓ = R(TΓ)
TΓ = E(T )

, (7.4){
TΓ = R−1(YΓ)
YΓ = E(Y )

. (7.5)

In [195 ], the whole computational cell is considered at saturation and the interface
temperature is directly taken as TΓ = TH with TH the WDF temperature. A similar
approximation is used in [183 ] to obtain YΓ from Y . It results in the first-order
extrapolation E1. In [218; 29; 192 ], the liquid temperature is extrapolated linearly using
the subcell distance to the interface θ∆x to retrieve TΓ resulting in the second-order
extrapolation E2. Note that basing the extrapolation on the liquid temperature is an
ad-hoc choice and gas temperature could be used instead. More details are given on the
discretization of these extrapolations in Section 8.2.

7.1.3 Conclusion

From the above considerations, different methodologies seem to be relevant for building
an accurate phase change procedure. The critical aspect is the reconstruction of the
gradients at the interface required for computing ṁ. The choice of keeping the general
system Eq. (7.1) seems to be the most relevant from a physical perspective. However, it
implies more numerical constraints on the gradient reconstruction (the interface quantity
has to be in the stencil to close the system). Then, the accuracy of ṁ can be limited
leading to inconsistent phase-change procedures. All these aspects are treated in
Section 8.2 with a complete study of the gradient reconstruction which allows to conclude
on the best-suited methodology for the reconstruction of phase change quantities.
On the other hand, letting aside the general system alleviates the constraint on the
gradient reconstruction, allowing more accurate gradient reconstructions. However, the
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reduced system requires a numerical closure based on the scalar fields which leads to a
strong coupling of the interface quantities to either T or Y . It will be seen in
Section 9.2.1.3 that this can lead to limitations in the numerical behaviour for phase
change simulations.

7.2 Velocity discontinuity

Because of the phase change occurring at the interface, the velocity is no longer
continuous and the projection method procedure has to be adapted accordingly. First, the
jump in velocity needs to be prescribed for the updated velocity un+1 through the
pressure correction Eq. (5.3). Then, the discontinuity of the velocity also appears in the
momentum equation and have to be treated in the prediction step Eq. (5.1). As a
reminder, the jump in velocity is expressed as

[u · nΓ]Γ = ṁ

[
1

ρ

]
Γ

(7.6)

7.2.1 Velocity jump in the continuity equation

When velocity is discontinuous across the interface, a treatment is required to take this
into account in the continuity equation. This equation is not explicitly advanced in the
projection method, however, it appears indirectly in the Poisson equation for pressure.
Rewriting Eq. (5.3) without the simplification ∇ · un+1 = 0 leads to

∇ ·
(

1

ρ
∇P

)
=

1

∆t

(
∇ · u∗ −∇ · un+1

)
. (7.7)

The goal is then to evaluate ∇ · un+1 accounting for the velocity jump.

7.2.1.1 Whole domain formulation

The WDF for the continuity equation leads to a source term to model the velocity jump.
This formulation is used in several work with Front Tracking [58; 85; 116 ], Level Set [204;
121; 219 ] or VOF [227; 190; 236; 192; 159; 52 ]. This results in the following expression of
the divergence operator applied on un+1

∇ · un+1 = ṡρ = −ṁ
[

1

ρ

]
Γ

δΓ . (7.8)

Then the Dirac definition can take several forms depending on the authors. We recall that
the notation is notional when it comes to VOF, as the operator ∇ has to be integrated
over a cell volume.

Simple smooth approach Some VOF approaches [192; 52 ] rely on the definition

δΓ = |∇f | , (7.9)
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which is the analogous CSF treatment for velocity jump.
This method is straightforward to implement but tends to smear the velocity jump on
several cells and result in large errors in the velocity field [219; 107 ].

Sharp approach To produce more accurate results for the velocity field, other works
base their Dirac computation on geometric arguments [190; 236 ]. Based on the surface
area, the Dirac is then defined as

δΓ =
AΓ

VC
. (7.10)

This expression is homogeneous to [L]−1 and represent a very sharp source term only
located at the interface.
Another sharp approach was more recently proposed in [159 ]

δΓ =
Q

∆x
, (7.11)

where Q is one only in cells containing the interface. This expression is a first-order
representation of the Dirac which considers a constant interface area in all mixed cells.
The sharp Dirac distribution leads to accuracy improvement for the velocity field.
However, this formulation acts as a point source term in Eq. (7.7) and leads to a very stiff
problem which can suffer from instabilities [236 ]. In [107 ], large oscillations of pressure
are observed for the simulation of condensing bubbles by using similar formulations in a
Level Set framework.

Smoothing of the sharp Dirac In contrast to the sharp formulations described
before, Hardt and Wondra [76 ] propose to smooth ṡρ over few cells by solving a static
diffusion equation of the form

∇ ·
(
ε∇˜̇sρ) = ṡρ , (7.12)

with ε a controlled smearing width.
It has also been done in [236 ] with Eq. (7.10) to define the sharp source term

ṡρ = −ṁ
[

1

ρ

]
Γ

AΓ

VC
. (7.13)

Note that in this procedure, the whole source term is diffused instead of the Dirac only,
which creates also a diffusion of the term ṁ. By using such approach, the velocity jump
smearing is controlled and the total source of mass is conserved such that∫

Ω ṡρdΩ =
∫

Ω
˜̇sρdΩ. Numerical experiments in [236 ] showed cancellation of large pressure

oscillations without loss of accuracy.
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Mass-average correction For the problem of spurious pressure oscillations, another
explanation is provided based on the mathematical formulation of ṡρ arising from the
WDF of governing equations instead of the numerical considerations given in [236 ]. In
[195 ], an important point is raised about the use of the volume source ṡρ applied to the
divergence of a velocity which is mass averaged in the WDF as derived in Chapter 2.
An iterative algorithm is thus employed to apply a correction on the source term ṡρ to
take into account the mass averaged nature of the velocity. The use of this procedure
showed huge reduction in the pressure oscillations and a less spurious behaviour of the
Sherwood number in the case of evaporating droplet simulations. It has also been used in
the case of boiling bubbles [74 ].
Later, a more straightforward approach has been proposed in [122 ] by using simple
definitions. First, uM and uV are related through

uM = uV + [ρ]Γ
f(1− f)

ρV
[u]Γ , (7.14)

then the correct divergence is

∇ · uM = ∇ · uV + [ρ]Γ

[
1

ρ

]
Γ

∇ ·
(
f(1− f)

ρV
ṁnΓ

)
. (7.15)

This expression can be further simplified by using ∇ · nΓ = κ

∇ · uM = ∇ · uV + [ρ]Γ

[
1

ρ

]
Γ

f(1− f)

ρV
ṁκ . (7.16)

Then the corrected source term to impose is ṡρ = ṡVρ + ṡMρ with ṡV the source term due to

the volume source ṡVρ = ṁ
[

1
ρ

]
Γ

nΓ · ∇HΓ and the source term due to mass source

ṡMρ = [ρ]Γ

[
1
ρ

]
Γ

f(1−f)
ρV

ṁκ.
A last approximation of ṡρ is proposed in [179 ] where geometric considerations are used.
The expression relies on the wetted face areas Af instead of the volume fraction f . This
takes the form

ṡρ = ṡV
ρlρg
AΓ

[
(A−u −A+

u )nx

ρ−u ρ+
u

+
(A−v A

+
v )ny

ρ−v ρ+
v

]
, (7.17)

with superscript − and + corresponding to the left and right faces respectively.
This new treatment showed a better behaviour of the Sherwood number evolution for an
evaporating droplet compared to the iterative procedure of [195 ].
Note that this correction only needs to be done using a WDF, as the velocity has
implicitly the meaning of a mass averaged velocity. This is not the case when using a JCF.

7.2.1.2 Jump condition formulation

The GFM applied to the JCF of the continuity equation was first introduced by [145 ] for
the description of flame fronts and then applied by [218 ] for phase change computations.
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Sharp ghost fluid method In this approach, the problem is not written as Eq. (7.7),
instead of considering the velocity jump as a result of ∇ · un+1, it uses a different
definition of ∇ · u∗ which takes into account the velocity jump

∇ · u∗ =

{
∇ · u∗g if φ < 0

∇ · u∗l otherwise . (7.18)

ug and ul are defined in their respective domain and in a narrow band of ghost cell in the
other side of their domain.
Ghost values of these velocities take into account the velocity jump

ughl = ug + ṁ

[
1

ρ

]
Γ

nΓ , (7.19)

ughg = ul + ṁ

[
1

ρ

]
Γ

nΓ , (7.20)

with ughl the ghost liquid velocity defined in Ωg and ughg the ghost gas velocity defined in
Ωl.
This requires to define ṁ values at the velocity nodes usually done by linear interpolation.

Diffused ghost fluid method As discussed in Section 7.2.1.1, a sharp treatment can
lead to stability problems and oscillatory behaviour for the pressure. This issue is
addressed in [107 ] by modifying the ghost cell velocity definitions Eqs. (7.19) and (7.20).
Instead of the sharp jump

[
1
ρ

]
Γ
, a smooth jump based on an inverse density β defined by

β =
1

ρl
Hε

Γ +
1

ρg
(1−Hε

Γ) , (7.21)

with Hε
Γ a smooth Heaviside defined as in Eq. (2.37). For a given cell, ∇β provides a

smooth version of
[

1
ρ

]
Γ
with a direct dependency on the interface subcell location.

Also, the linear interpolation of ṁ to a velocity node is corrected by a curvature ratio

ṁi− 1
2

=
κΓ

κi− 1
2

ṁΓ , (7.22)

with ṁΓ the mass evaporation at the interface location obtained by extrapolation. In this
correction, the curvature ratio stands for the difference of effective surface considering a
curved interface located at xi− 1

2
instead of xΓ.

Then, the ghost value of the gas velocity x-component ugh
g,i− 1

2

is

ugh
g,i− 1

2

= ul,i− 1
2
− κΓ

κi− 1
2

ṁΓ

(
βi− 1

2
− βi

)
nΓ,i . (7.23)

Note that in this expression, the indices of β are not centred and depend of the node in
which the operator ∇ · u∗ is evaluated. Here, it is evaluated in Ci so the β values are
taken at xi− 1

2
and xi. For Ci−1, this would have been xi−1 and xi− 1

2
.
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7.2.1.3 General formulation of the velocity jump using WDF or JCF

In [107 ], authors pointed out that WDF and JCF belong to the same general framework
where ∇ · u∗ is computed from the predicted one-fluid velocity u∗ and ∇ · un+1 from

ṡρ = −ṁ
[

1

ρ

]
Γ

nΓ · ∇HΓ (7.24)

In a continuous sense, the equivalence is straightforward by taking the scalar product of
Eq. (5.37) and nΓ

nΓ · ∇HΓ = δΓ . (7.25)

Then Eq. (7.8) gives directly the relation of Eq. (7.24).
The choice of a velocity jump treatment in the continuity equation results in the choice of
the source term ṡρ discretization. In Section 8.1, a comparison of different ṡρ
discretizations is provided using the global metric of area error leading to the best-suited
choices for both VOF and SLS.
Furthermore, the choice has to be consistent with the velocity representation.
If the velocity comes from a WDF, additional correction has to be used to ensure a
mass-average divergence instead of the volume average difference presented here. This
point is illustrated in the results of Section 9.3.

7.2.2 Velocity jump in the momentum equation

Depending of the formulation based either on WDF or JCF, the prediction step Eq. (5.1)
has to take into account the velocity jump. In the derivation of the WDF presented in
Chapter 2, the velocity jump is contained in the surface tension and does not need to be
treated explicitly in Lconv or Ldiff. Thus, any of the schemes presented in Section 5.2 can
be reused in this framework to compute Lconv and the viscosity has to be treated with a
WDF accordingly.
However, some implementations [145; 218 ] uses a JCF which has to treat explicitly the
velocity jump in the convection term. The Lconv operator is split into a liquid
Lconv,l = ρlul · ∇ul and a gas operator Lconv,g = ρgug · ∇ug using only values ul or ug
respectively. When the stencil crosses the interface, a simple GFM is applied to define
ghost values from Eqs. (7.19) and (7.20). The Lconv is then defined as

Lconv =

{
ρgug · ∇ug if φ < 0
ρlul · ∇ul otherwise . (7.26)

For the discretization of Ldiff, GFM can be used to impose [u]Γ in the Laplacian
analogously to what is done for the pressure jump in the Poisson equation. It can be
treated as an explicit JCF as in [218 ] or HWDJCF as in [183 ]. A recent paper [163 ] also
proposes an extension of implicit JCF to phase change applications.
In the unified framework, the choice has been made to use a momentum correction in
Lconv and a WDF for Lvisc. Then, these choices are kept for the phase change solver as
they can be easily extended without further treatment for the velocity jump.
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7.3 Interface regression

The interface velocity needs to be modified to take into the phase change. This interface
velocity is not divergence-free ∇ · uΓ 6= 0 and the transport equation have to be
reformulated into its initial advection form

∂c

∂t
+ uΓ · ∇c = 0 , (7.27)

or as,

∂c

∂t
+∇ · (uΓc) = c∇ · uΓ . (7.28)

With Eq. (7.28), the natural form of the VOF transport arising from the WDF and
Eq. (7.27) the natural form of the SLS transport.
From mass conservation in presence of phase change, the interface velocity can be
expressed as

uΓ = ul −
ṁ

ρl
nΓ , (7.29)

uΓ = ug −
ṁ

ρg
nΓ . (7.30)

However, the interface velocity needs to be defined in the vicinity of the interface to
perform a proper transport of c in the whole domain and the expressions above are not
equivalent discretely at an arbitrary position. This is purely a numerical way around as
uΓ only have a definition at the interface position where Eqs. (7.29) and (7.30) are
simultaneously true.
A natural way to define the interface velocity numerically is to rely on the WDF of
velocity. In a Front Tracking framework [58 ] the interface velocity is retrieved by
averaging the two expressions in Eqs. (7.29) and (7.30):

uΓ =
1

2
(ul + ug)−

1

2

(
ṁ

ρl
+
ṁ

ρg

)
nΓ . (7.31)

This expression is also used in [51 ] with a VOF framework. As 1
2 (ul + ug) corresponds to

the volume average velocity uV with f = 0.5, Eq. (7.31) only holds at the isocontour
f−1(0.5). This is a natural definition for Front-Tracking where the velocity is defined at
the markers which all belongs to the interface. However, in a VOF framework, uΓ also
needs to be defined at the interface location. In the implementation of [51 ], 1

2 (ul + ug) is
computed as a linear interpolation of the one-fluid velocity u at the PLIC interface
centroid.
For the Level Set framework, Lee et al. [107 ] deduces the interface velocity from the
one-fluid velocity u as

uΓ = u + ṁβnΓ , (7.32)
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with β the diffused inverse density of Eq. (7.21). It can be seen as the generalization of
Eq. (7.31) using the same volume averaged velocity assumption with the node of velocity
located at an arbitrary isocontour value between 0 and 1. The general formulation is then

uΓ =

(
ul −

ṁ

ρl
nΓ

)
HΓ +

(
ug −

ṁ

ρg
nΓ

)
(1−HΓ) . (7.33)

In [7 ], the expressions Eqs. (7.29) and (7.30) are switched with respect to the domain in
which the velocity is defined. Thus it relies on the liquid velocity in Ωl and on the gas
velocity in Ωg which is equivalent to Eq. (7.33) with HΓ = H0

Γ. This corresponds to the
JCF formulation of the interface velocity.
Another approach considers only one of the two expressions. This reduces to Eq. (7.33)
with HΓ = 0 or HΓ = 1 everywhere. Most of the time, this ad-hoc choice depends on the
target application. While solvers for boiling applications [219; 236; 187 ] tend to rely on
the gas velocity Eq. (7.30), solvers for evaporation often use the liquid velocity Eq. (7.29)
instead [183; 192; 159 ]. As the interface velocity is needed in the whole domain (or at
least in a narrow band around the interface) to perform the correct transport of the color
function c, the phase velocity can be required everywhere depending on the choice of HΓ

in Eq. (7.33).

7.3.1 Phase velocities

In the above general expression of interface velocity Eq. (7.33), the velocity are separated
as liquid and gas velocities. Depending on the choice of HΓ, the phase velocity
reconstruction requires different numerical treatment.

7.3.1.1 Whole domain formulation

If HΓ is taken as Hε
Γ, then it is consistent with the WDF of the velocity. Then the phase

velocities are retrieved using the definition of Chapter 2 along with Eq. (7.6) as in the
VOF formulation provided in [122 ]

ul = uV + (1− f) [u]Γ , (7.34)

ug = uV − f [u]Γ , (7.35)

with [u]Γ = ṁ
[

1
ρ

]
Γ

nΓ.

7.3.1.2 Jump condition formulation

If H0
Γ is chosen, then the JCF of velocity is used and velocity can be picked safely as either

liquid or gas depending on the domain in which it is defined without further treatment.
The phase velocity can also be defined in the other phase using GFM proposed in [145;
218 ] through the use of Eqs. (7.19) and (7.20). It can be shown that GFM is discretely
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equivalent to the JCF used in [7 ]. Let us take the case of a liquid formulation

uΓ = ul −
ṁ

ρl
nΓ . (7.36)

In the liquid phase (HΓ = 1), this expression is totally defined while in the gas (HΓ = 0),
ul is not defined. Using Eq. (7.19) the interface velocity is written as

uΓ = ughl −
ṁ

ρl
nΓ = ug + ṁ

[
1

ρ

]
Γ

nΓ −
ṁ

ρl
nΓ

= ug +

(
ṁ

ρl
− ṁ

ρg

)
nΓ −

ṁ

ρl
nΓ

= ug −
ṁ

ρg
nΓ , (7.37)

which corresponds exactly to Eq. (7.33) with HΓ = H0
Γ. The same can be shown from a

gas definition of uΓ.

7.3.1.3 Velocity divergence-free extension

Finally, a phase velocity could be needed in the whole domain if HΓ is taken arbitrarily
equal to 0 or 1. It is then required to define extension of ul and ug in Ωg and Ωl

respectively for the velocity to be continuous in whole domain. This can be done with the
GFM extension presented above of using the PDE extrapolation presented in
Appendix B.1 as in [124; 159; 187 ]. While this approach is purely numerical and does not
prescribe the correct velocity jump between ghost and real cells, it ensures continuous
velocity profiles across the interface.
The above method provide a velocity definition in the whole domain. However, the
obtained velocity fields ul and ug are continuous but not divergence-free. This
divergence-free error can lead to erroneous transport of the interface which directly
impact the prediction of interface regression. The effect is more important in evaporation
configurations [218 ] compared to boiling simulations [219 ]. This issue has first been
addressed in [218 ] where successive projection steps are proposed to retrieve a
divergence-free velocity field:

1. Extend the predicted liquid velocity u∗l in the gas using Eq. (7.19).
2. Compute a ghost pressure P gh using the following Poisson equation

∇ ·
(

1

ρ
∇P gh

)
=

1

∆t
∇ · u∗l . (7.38)

3. Correct the velocity to obtain u∗∗l

u∗∗l =

{
ul in Ωl

u∗l −
∆t
ρ ∇P

gh in Ωg
. (7.39)
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4. u∗∗l is discontinuous at the interface and so is not divergence free at this location. A
second projection is then required to obtain the divergence-free liquid velocity ul.
This is done by defining a potential Ψ following the Poisson equation

∆Ψ = ∇ · u∗∗l . (7.40)

5. Finally retrieve ul by correction

ul = u∗∗l −∇Ψ . (7.41)

This procedure requires to extend the velocity field u∗l and then solve two additional
elliptic equations to retrieve a divergence-free velocity ul which is a huge increase in
computational time.
In [183 ] a modified algorithm is used where step 4 and 5 are skipped for efficiency
improvement and the liquid velocity is directly taken as ul = u∗∗l . This choice does not
have a huge impact on the interface transport as the divergence-free error is concentrated
at the interface location only.
Another method proposed in [159 ] take directly ul at a given time step and project it on
a divergence-free solution by using the following algorithm

1. Extend the liquid velocity ul in the gas using a constant PDE extrapolation to
retrieve u∗l .

2. Derive the potential Ψ by solving the Helmotz equation

∆Ψ + ωΨ = ∇ · u∗l , (7.42)

with ω a relaxation term which is zero in a narrow band around the interface and
ω = 1/∆t2 otherwise.

3. Finally retrieve ul by correcting it

ul = u∗l −∇Ψ . (7.43)

The relaxation term allows to converge more quickly by alleviating the condition∫
Ω (∇ · u∗l ) dΩ = 0. However, the divergence-free condition only holds in the cells where
ω = 0.

7.3.1.4 Stefan flow cancellation

Again based on the choice of HΓ equal to 0 or 1, another way to define a continuous and
divergence-free phase velocity field across the interface relies on the cancellation of the
Stefan flow produced by the velocity jump.
As presented in [218 ], the velocity field related to the Stefan flow derives from the
potential Ψ computed from the Poisson equation

∆Ψ = 0 , (7.44)
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Figure 7.1: Illustration of the Stefan flow potential domain Ωs (in light grey), boundaries ∂Ωs (in
dashed line), ∂Ω−s (in dashed line) and ∂Ω+

s (in solid line)

with the jump condition [∇Ψ · nΓ]Γ = ṁ
[

1
ρ

]
Γ
.

The Stefan flow velocity us is retrieved through the following projection in Ω{
∆Ψ = ṡρ
us = ∇Ψ

, (7.45)

with boundary conditions ∂Ωs taken as free outlet. However, in Eq. (7.45), the density is
not taken into account.

Malan et al. approach In [123 ], the following density variable projection is performed
only in the subdomain Ωs{

∇ ·
(

1
ρ∇Ψ

)
= ṡρ

us = 1
ρ∇Ψ

, (7.46)

where Ωs = Ω2
g ∪ ΩΓ with Ω2

g the two layers of gas cells adjacent to the interface (see
Fig. 7.1b). No-slip boundary conditions are applied to ∂Ω+

s = ΩΓ ∩ Ωl and free outlet
boundary conditions are applied to ∂Ω−s = Ω2

g ∩
(
Ωg \ Ω2

)
.

The method cancels the Stefan flow velocity from the one-fluid velocity u to remove the
velocity jump at the interface and obtain a velocity ul at the interface

ul = u− us . (7.47)

It is easy to show that using either Eq. (7.45) or Eq. (7.46) for retrieving us leads to
∇ · ul = 0 by noticing that

∇ · ul = ∇ · u−∇ · us = ṡρ − ṡρ = 0 . (7.48)

Then the outcome liquid velocity is defined in Ωl ∪ ΩΓ ∪ Ω2
g which is enough in the VOF

context for proper advection of f .
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Scapin et al. approach In [192 ], Eq. (7.45) is preferred as it allows the use of Fast
Fourier Transform (FFT) direct solvers which is not possible for variable coefficient
Poisson equation. The velocity ul is not really the liquid velocity but more a one-fluid
velocity without velocity jump. However, in an evaporation process, this can be used as
an extended liquid velocity because the removed Stefan flow is in the gas domain.

Bures et al. approach In [24 ], Eq. (7.45) is also used but only in the restricted
domain Ωs = Ω1

g ∪ ΩΓ ∪ Ω1
l illustrated in Fig. 7.1c with the same boundary conditions as

for the approach in [123 ]. With this new domain definition, liquid velocity at faces of a
mixed cells belonging to the liquid are recalculated because they are not enough reliable
from the one-fluid velocity u.
Note that in those elliptic problems, the use of free-outlet boundary conditions are
mandatory for well-posedness of the projection method in the context of incompressible
phase change as no dilatation is allowed in the gas.

7.3.1.5 Conclusion

While WDF and JCF relies on the derivation of the equations, the velocity
divergence-free extension and the Stefan flow cancellation are numerical tools which allow
to have the wanted properties of the velocity field for a robust transport of the interface.
The Stefan flow cancellation constitutes a straightforward and generic way to obtain a
divergence-free and continuous velocity field from any formulation used for velocity
transport. From this perspective, it is the retained method for the present solver.

7.3.2 Phase change term

Once the phase velocities are properly defined in the domain, the regression term due to
phase change −ṁ/ρp needs to be treated carefully. This can be done either by solving the
velocity form Eq. (7.28) with the interface velocity definition given by Eq. (7.33) or by
imposing the regression as a source term.

7.3.2.1 Velocity form

The velocity form

∂c

∂t
+ uΓ · ∇c = 0 , (7.49)

gives a straightforward approach and has been widely used in the literature for Level Set
framework [183; 7; 29 ] and more recently VOF framework [192; 159 ].
Using the velocity form, the interface velocity needs to be defined in the whole domain or
at least in a narrow band around the interface. This requires to extend ṁ away from the
interface.
In the VOF framework, this extension is only required in cells adjacent to the mixed cells
Ω1
l and Ω1

g while Level Set needs this in at least a narrow band around the interface.
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From extrapolated fields In the early Level Set approaches [218 ], the evaporation
rate was not extrapolated but directly computed fromMT orMY in the whole domain.
In [218 ], the field Y is extrapolated linearly using the PDE approach of Appendix B.1.1.
Then, the evaporation rate ṁ is retrieved usingMY with YΓ = Y the local species value.
Note that this method leads to non-physical values of ṁ far from the interface. In fact,
the accuracy of this term is not important because the Level Set is reinitialized after the
transport. However computing the evaporation rate in the whole domain provides a
continuous ṁ which is a very important feature for stable transport of φ.
In [159 ], the evaporation rate is computed in Ω1

l and Ω1
g (one layer around the interface)

by using the Least Square method based onMT and the fields Tl and Tg extrapolated
linearly with the PDE approach presented in Appendix B.1.1. The computation is close
enough to the interface to remain accurate as the stencil still implies interface cells.

From extrapolated gradients In [33 ], ṁ is defined in a narrow band across the
interface by computing the gradients ∇Tl only in Ωl ∩ ΩΓ and extrapolated in a constant
fashion in Ωg, the same is done for ∇Tg. This gives a natural definition of ṁ by using
MT . This approach as also been used in [7; 24 ].

From extrapolated evaporation rate In [219 ] proposed an improvement of the
above method by directly extrapolating the evaporation rate from Ωl ∩ΩΓ to Ωg \ΩΓ and
from Ωg ∩ ΩΓ to Ωl \ ΩΓ This is still done using the PDE approach of Appendix B.1.1.
Such approach allows to have a constant ṁ value in the normal direction to the interface
which is more accurate than computing it from extrapolated fields.
In [7 ] authors argue that the extrapolation of ṁ should be from Ωl ∩ ΩΓ to Ωl and from
Ωl ∩ΩΓ to Ωl instead of the initial procedure of [219 ]. If the temperature is maintained at
the interface temperature, both procedures are equivalent. However, when both ∇Tl and
∇Tg are non-zero, the evaluation of ṁ is only valid in its side of the interface.

7.3.2.2 Source term

The source term approach is based on the WDF applied to c leading to the following
equation

∂c

∂t
+∇ · (upc) =

ṁ

ρp
|∇c| , (7.50)

with the subscript p = l, g referring to a phase.
In the context of Level Set, this expression has been used in [187 ] as

∂c

∂t
+ ug · ∇φ =

ṁ

ρg
, (7.51)

with |∇φ| = 1 by definition. This method, as for the velocity form, needs an extension of
ṁ away from the interface. This is done using one of the approaches detailed in
Section 7.3.2.1.



166 Chapter 7 - Numerical challenges of simulations with phase change

In the VOF framework, several authors [195; 190; 236; 192; 123 ] proposed the following
formulation for c = f

∂c

∂t
+ ul · ∇φ =

m̈

ρl
, (7.52)

with m̈ the volumetric mass evaporation rate such that

m̈ = ṁ
AΓ

VC
. (7.53)

For geometric algorithms of VOF, this source term step is performed after the transport
step in order to avoid any overshoot or undershoot. Moreover, this source term does not
require extension of the evaporation rate as it is naturally located in mixed cells.

Algebraic approach In [195 ], the mass source m̈
ρl

is simply added to the volume
fraction field after advection f∗ and limited such that

m̈

ρl
≤ f∗

∆t
. (7.54)

This methodology is robust but can suffer from mass conservation if the clipped values are
not redistributed.

Geometric approach In [123 ], the source term is applied by using the PLIC
reconstruction. Instead of applying a mass source in the control volume, the source term
is reformulated into a shift of the plane parameter. The mass change is then evaluated by
evaluating the new PLIC reconstruction. The following algorithm is used for that purpose

1. Compute the plane parameter shift ∆d such that

∆d = −ṁ
ρl

∆t . (7.55)

2. Update the plane parameter as

dn+1 = d∗ + ∆d , (7.56)

with dn+1 the plane parameter of the PLIC reconstruction based on fn+1 and d∗

the plane parameter of the PLIC reconstruction based on the volume fraction after
advection f∗.

3. Check for potential overshoots/undershoots by computing dmin and dmax the plane
parameter corresponding to the PLIC reconstruction from f = 0 and n∗ and f = 1
and n∗ respectively.

• If dmin < dn+1 < dmax then simply compute the new volume fraction fn+1 from
dn+1 and n∗.

• If dn+1 ≤ dmin then there is undershoot, fn+1 = 0 and mark the cell a drain
cell D.
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• If dmax ≥ dn+1 then there is overshoot, fn+1 = 1 and mark the the cell as a
source cell S.

4. Loop over all cells to redistribute the overshoot of S cells to empty neighbouring
cells and undershoot of D cells to full neighbouring cells.

This method is fully conservative as it redistributes the volume to other cells in case of
clipping.
In [192 ], the use of a velocity form is found to be more accurate than the source term
approach described above for the interface regression even if the VOF geometric methods
are initially designed for divergence-free velocity field.

7.3.2.3 Conclusion

From the above state-of-the-art, the velocity form is employed here for both VOF and
SLS as it is extended naturally from the capturing method algorithms presented in
Chapter 5. Moreover, this equation form seems to provide the most accurate results in
light of literature results. Hence, a proper extension of ṁ is required in a narrow band
around the interface which is performed by directly extrapolating constantly in the
normal direction to the interface with the method of [7 ].

7.4 Scalar equations with flux jumps

Incompressible phase change simulations need to solve the energy equation

∂ρcpT

∂t
+∇ · (ρucpT ) = ∇ · (k∇T ) , (7.57)

with the associated flux jump

[k∇T · nΓ]Γ = ṁ [h]Γ , (7.58)

and the species mass fraction equation

∂ρY

∂t
+∇ · (ρuY ) = ∇ · (ρDv∇Y ) , (7.59)

with the flux jump

ρgDv∇Y · nΓ = ṁ (YΓ − 1) . (7.60)

In a more general way, they can be defined as general scalars Φ transported by the
velocity u and diffuse with a diffusion coefficient β:

∂ρΦ

∂t
+∇ · (ρuΦ) = ∇ · (β∇Φ) (7.61)

with the associated flux jump [β∇Φ · nΓ]Γ at the interface.
The transport of Φ has to be treated carefully to preserve accuracy of the solution even
close to the interface. Indeed, the accuracy of temperature and species fields is of high
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importance as it is used for the computation phase change quantities ṁ, TΓ and YΓ

defined in Section 7.1. The resolution of Eq. (7.61) can be done with the classic WDF
used for velocity with the same numerical tools presented for continuity and momentum
equations. However, this approach naturally smears the discontinuities over few cells at
the interface and quantities are then mass-averaged (or enthalpy-averaged in the case of
temperature in light of Eq. (2.28)). As the use of averages quantities is not suited for
accurate computation of phase change quantities at the interface, another approach is to
use the JCF or the TFF of Eq. (7.61) presented in Chapter 2. These approaches provide
well-defined quantities of each phase even at the interface vicinity but bring new
numerical challenges presented hereafter.

7.4.1 Whole domain formulation

This section briefly introduces the numerical implementation of a WDF for the energy
equation Eq. (7.57) with an associated jump Eq. (7.58) and the species mass fraction
Eq. (7.59) with the flux jump Eq. (7.60).

7.4.1.1 Convective and diffusive operators

The WDF, is mostly used with VOF [195; 103; 192; 52 ] or Front Tracking frameworks
[58; 85 ] where Lconv (ρΦ) is computed as

Lconv (ρΦ) = ∇ · (ρuΦ) . (7.62)

The algorithm proposed in [123 ] introduces an interesting feature for the fluxes F (ρΦ)

computation. They are computed using the geometric flux F (f) to keep consistency
between mass and scalar transport. This is analogous to the consistency between mass
and momentum transport presented in Section 5.2. For the energy, this gives

F (ρcpT ) =
(
ρlcp,lF

(f) + ρgcp,gF
(1−f)

)
T̃ , (7.63)

with T̃ the interpolated temperature at the cell face.
In [195; 122 ], Y is treated like a VOF variable Lconv (ρY ) is computed from geometric
fluxes. Then, the species mass fluxes are written as

F (ρY ) = ρgF
(1−f)Ỹ , (7.64)

with Ỹ an interpolation of Y at the cell face.
In [85; 236; 192 ], a non-conservative form is used for T

Lconv (ρcpT ) = uρcp · ∇T , (7.65)

where ρcp is considered as a quantity obtained through linear for [85 ] or harmonic [192 ]
average based on HΓ.

ρcp = ρlcp,lHΓ + ρgcp,g (1−HΓ) for linear interpolation , (7.66)

ρcp =
ρlcp,lρgcp,g

ρgcp,gHΓ + ρlcp,l (1−HΓ)
for harmonic interpolation . (7.67)
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While the linear average directly comes from the WDF of energy Eq. (2.28) where cp is
mass average, the harmonic average arises from a numerical choice.
The non-conservative form can also been used for Y :

Lconv (ρY ) = uρ · ∇Y , (7.68)

with ρ = ρg.
In [192 ], the conservative and non-conservative discretizations are compared on
psychrometric data for a general droplet evaporation process. As expected, the
conservative discretization provides better results for the coarse meshes while the
difference is less significant at higher resolution. However, this test case has been
performed with a density ratio of order 10 which is far from target applications of fuel
droplets. The discrepancy produced by using such non-conservative form is then expected
to be even more important for higher density ratios.
On the other hand, the diffusion operator Ldiff is often treated with classical second-order
operators.

7.4.1.2 Interface contribution

In the WDF, the interface contribution appears as a source term including the mass
change contribution and the flux jump. It is either done with the smooth Dirac
distribution Eq. (7.9) [192; 52 ], the sharp Dirac distribution Eq. (7.10) [195 ], or a
smoothing of the sharp Dirac [103 ]. It has also been introduced in the form
δΓ = nΓ · ∇HΓ for the Level Set approach in [205 ] with HΓ = H0

Γ.
For the species mass fraction Y , a mass source due to phase change is accounted for by
imposing the source term only in the gas part. Then, δΓ is discretized using Eq. (7.10) in
[195; 122 ] which ensures that no source term is applied in the liquid part of the domain
while an asymmetric Dirac distribution is used in [85 ].
Another approach proposed in [123 ] takes into account the flux jump by splitting the
energy into a gas part and a liquid part and imposing a boundary conditions TΓ in the
diffusion operator. This is inspired from the JCF formulation presented hereafter and
allows to take naturally the energy flux jump through the modification of Ldiff. The
methods to impose boundary conditions at the interface are numerically challenging and
are detailed in Section 8.3. In such case, only the flux jump is taken into account and the
contribution due to mass change needs to be included as an additional change in the
energy ∆f (cp,g − cp,l)TΓ with ∆f the change of volume fraction due to phase change.

7.4.2 Jump condition formulation

The JCF was presented in [68 ] for Stefan problems and then extended to evaporation and
boiling by several authors in Level Set framework [33; 219; 183; 107; 29; 7 ]. It has also
been done using the VOF framework in [190; 236 ]. This leads to the following equation of
temperature only defined in its respective phase p

ρpcp,p

(
∂Tp
∂t

+ up · ∇Tp
)

= ∇ · (kp∇Tp) in Ωp . (7.69)
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For the species mass fraction, the liquid part of Eq. (7.59) reduces to Yv,l = 1 while the
gas partYv,g (in the following the subscript g is dropped for clarity, then Yv,g = Y ) needs
to be deduced from

ρg

(
∂Y

∂t
+ ug · ∇Y

)
= ∇ · (Dv∇Y ) in Ωg . (7.70)

In these equations, no interface contribution appears explicitly and needs to be taken into
account in the discretization operators near the interface. This can take the form of a flux
jump or a boundary condition.
For the temperature

[k∇T · nΓ]Γ = ṁ [h]Γ at Γ , (7.71)
T = TΓ at Γ , (7.72)

or for the species

ρgDv∇Y · nΓ = ṁ (YΓ − 1) at Γ , (7.73)
Y = YΓ at Γ . (7.74)

7.4.2.1 Convective operator

Using the JCF allows to split the convective operator Lconv (ρΦ) into a liquid Lconv (ρlΦl)
and a gas operator Lconv (ρgΦg) only valid in there respective phase.
When the stencil crosses the interface, the scalar ghost cells Φgh

l and Φgh
g are computed

using linear [218 ] or quadratic [219; 183 ] normal extrapolation (see Appendix B.1 for
details). The use of quadratic extrapolation shows improvement in both boiling [219 ] and
evaporation [183 ] test cases as it provides more accurate ghost cells. Note that this
extrapolation procedure is employed instead of GFM because the temperature jump
[T ]Γ = 0 does not allow to define well-suited ghost cells.
The Lconv is then defined as

Lconv (ρΦ) =

{
ugρg · ∇Φg if φ < 0
ulρl · ∇Φl otherwise , (7.75)

with schemes of arbitrary order as ghost cells can be defined in a large stencil around the
interface.
For a direct imposition of Eq. (7.72) in the convective operator, Sato et al. [190 ] and later
Shaikh et al. [198 ] and Anumolu et al. [7 ] proposed to include TΓ in the stencil through
one-sided first-order finite differences instead of using ghost cell values. In the same idea,
an Aslam-Chiu method was used in [21; 126 ] to prescribe YΓ explicitly at the interface for
convective terms discretization.

7.4.2.2 Diffusive operator

For the diffusive operator, the GFM methodology of Appendix A.1 can be directly applied
to the diffusion term by taking aΓ = 0, bΓ = [β∇Φ]Γ and S = ∂ρΦ

∂t + Lconv (ρΦ) as
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proposed in [218; 198; 126 ]. Another approach is to use the ghost cell method presented
in Section 8.3.2 to impose boundary conditions at the interface instead of [β∇Φ]Γ. The
works in the literature [33; 218; 219; 183; 198; 107; 29; 123 ] often consider the
second-order discretization to impose a Dirichlet boundary conditon ΦΓ as it is
straightforward to implement and lead to symmetric matrices easier to inverse. It is also
possible to consider one-sided second-order differences for the discretization of Ldiff in
[190; 7 ] instead of the ghost cell method presented above. However, this requires larger
stencil which are more difficult to treat implicitly. For the species, some authors [160;
183 ] choose to apply the Robin boundary condition Eq. (7.73) instead of the Dirichlet
boundary condition Eq. (7.74) to prevent some numerical difficulties detailed in
Section 9.2.1.3.

7.4.3 Two-fluid formulation

Finally, a two-fluid approach can be derived in the VOF framework as in [122; 159 ]. The
set of equations is no longer Eq. (7.61) but

ρp

(
∂αpΦp

∂t
+∇ · (αpupΦp)

)
= ∇ · (αpβp∇Φp) + γ̇pδΓ in Ωp , (7.76)

with αp the volume fraction of a given phase p = l, g and γ̇p the interface contribution
related to phase p.

7.4.3.1 Convective and diffusive operator

The convective operator Lconv (αpρpΦp) also includes the volume fraction αp. By noticing
that αl = f and αg = 1− f , the fluxes F (αpρpΦp) are based on the fluxes F f and F 1−f in
[122 ].

F (αlρlΦl) = ρlF
f Φ̃l , (7.77)

with Φ̃l a face interpolation of Φl. This methodology ensures discrete consistency between
mass and scalar transport.
Another approach based on the momentum algorithm of Section 5.2.3 was used in [159 ]
where an additional continuity equation is solved for αp and the fluxes of αp are directly
used in the scalar fluxes

F (αpρpΦp) = ρpF
αpΦ̃p . (7.78)

In [122 ] the diffusive operator Ldiff is discretized with a standard second-order
discretization. When the stencil implies Φp in the other phase, ghost cells are used.

7.4.3.2 Interface contribution

The interface contribution γ̇p in the case the energy equation takes the form

γ̇p = λp ∇Tp|Γ · nΓ +
ṁ

ρp
TΓ (7.79)
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In [122 ], ∇Tp|Γ and TΓ are evaluated from a fitted temperature profile in the subcell
described in Section 7.1. Another approach is used in [159 ] with γ̇p imposed through the
Dirichlet boundary condition TΓ or YΓ depending on the considered equation. For this
aim, the cut-cell method with phase barycentre values of Section 8.3.1 is applied. As for
the JCF, this inherently includes the flux jump at the interface. However, the second
term due to mass transfer does not seem to be taken into account in this procedure.

7.4.4 Conclusion

In this section, the different ways to solve the energy and species equations in a two-phase
flow have been presented. The use of WDF can lead to unwanted mixing of values at the
interface which makes difficult the computation of the interface quantities ṁ, TΓ and YΓ.
However, strategies are presented in Section 8.2 to circumvent this issue. The JCF allows
to have a natural separation between phase quantities which is expected to improve the
reconstruction of interface quantities. For the same reasons, the TFF seems to be a
promising alternative which implies additional numerical challenges to transport both
phase quantities.
When using WDF or TFF, the convective term has to be consistent with the interface
transport in order to avoid any unphysical behaviours close to the interface. In the
present solver, the consistent scalar transport of [159 ] is used for its natural way to
handle this issue for any interface capturing method.
The handling of flux jumps at the interface have been presented can be treated either
with a source term or by imposing a jump condition or a boundary condition at the
interface. When jump or boundary conditions are imposed at the interface, the diffusion
operator has to be treated accordingly. From the literature, a proper choice of flux jump
handling is not clear as various approaches seem to provide encouraging results. Then it
requires further numerical investigations detailed in Section 8.3 with a comparison
between different methods.

7.5 Conclusion

This chapters details the different challenges associated with the integration of
phase-change physics in an incompressible two-phase flow solver. It encompasses :

• Subcell thermodynamic closure at the interface to defined accurate interface
quantities ṁ, TΓ and YΓ.

• Velocity discontinuity appearing in both the continuity and momentum equation
which needs careful implementation for stable computations.

• Interface regression due to phase change for accurate mass evolution.
• Sharp representation of temperature by solving the energy equation in presence of

heat flux jump at the interface.
• Mass species production through phase change.

An overview of the literature on the subject has been presented with specific efforts given
in the categorization of the different approaches of the literature and their link to WDF,
JCF or TFF.
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All these new challenges require very local reconstruction of quantities at the interface to
prescribe the correct jump and boundary conditions which still needs to be determined.
Th summary of choices made from this literature review are presented in Table 7.1 along
with the points that still need to be clarified in the next chapters.

Numerical challenge Choice in the solver
ṁ evaluation See Section 8.2
TΓ and YΓ Iterative process
Continuity See Section 9.3.2
Momentum WDF
Interface regression Velocity form with ul
ul construction Stefan flow cancellation
Scalars See Section 8.3

Table 7.1: Summary of computation choices for phase-change challenges.

The next chapter proposes a complete study of numerical methods associated to the
reconstructions at the interface as it is the key point of an accurate phase-change
procedure. Then, the reconstructed quantities are used to impose the correct interface
contributions using various methods presented in Section 7.4.
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In the previous chapter, the challenges of incompressible two-phase flow simulations with
phase change have been exposed. They imply the reconstruction of additional quantities at
the interface to handle the new discontinuities arising from the phase-change phenomenon.
In this chapter, the goal is to give details on the reconstruction of these quantities.
Some aspects have already been mentioned for the reconstruction of normal in Section 3.1.1.1
and curvature in Section 5.4.2 which are based on c. Here, the scope is enlarged to encom-
pass the reconstruction of the interface area and the evaporation rate at the interface as
illustrated in Fig. 8.1. These new quantities are required to impose the correct flux jumps
at the interface in presence of phase change.
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Figure 8.1: Illustration of the reconstruction of interface quantities for WDF, JCF and TFF
approaches. White points are the gas barycenters, grey points are the liquid barycenters and black
points are the cell centers. Grey quantities are available through transport while black quantities
have to be reconstructed.

A first interrogation resides in the use of the same methodologies in a VOF and SLS
framework to deal with the numerical challenges of phase-change simulations. It has been
demonstrated in Chapter 6 that it is not a relevant choice for the curvature computation
because of the difference of interface information provided by the interface capturing meth-
ods. Therefore, it is not straightforward to make a choice suited for all interface capturing
methods without jeopardizing accuracy or consistency.
Using TFF, the temperature and species mass fraction are available at the phase barycen-
ter (see Fig. 8.1c), which leads to a non-uniform discretization of operators while in a JCF
framework, cells only contain the information of one phase and need a reconstruction strat-
egy to obtain the other phase informations as illustrated in Fig. 8.1b. Finally, the WDF
presented in Fig. 8.1a provides averaged quantities at the interface, which need to be used
with care to avoid inaccuracies in the local reconstruction of phase gradients. This huge
difference in the numerical representation may lead to drastically different ways of recon-
structing ṁ.
Hence, this section tries to answer the following questions:

• Is it possible and relevant to apply exactly the same strategies to handle phase change
for VOF and SLS ?

• For each reconstruction quantity, what is the best balance between accuracy, efficiency
and implementation effort ?

• If each interface representation uses their most suited methods, which one provides
the most accurate phase-change modelling ?

In Section 8.1, the reconstruction of interface area and Dirac distributions is investigated
with an overview of the literature and a comparison of area accuracy for the different
strategies. Then, the reconstruction of ṁ, TΓ and YΓ is investigated in Section 8.2. The
main discussion is about the reconstruction of accurate gradients at the interface to compute
ṁ based on the available fields. Finally, Section 8.3 presents the methods to handle flux
jumps at the interface using either a VOF or a SLS representation. WDF, JCP and TFF
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applied to VOF and SLS are compared on a static diffusion problem analogous to the heat
or mass species fraction transfer equations.

8.1 Interface area and Dirac distribution

For phase-change simulations, the interface area is used to derive a collocated Dirac dis-
tribution for applying a local source term related to surface contributions. As presented
in Chapter 7, this source term appears in the continuity, energy and species mass fraction
equations if they are treated with a WDF. It is then really important to investigate the
accuracy of such Dirac distribution.
If instead, the TFF is used, an interface reconstruction is needed to apply embedded bound-
ary conditions using the cut-cell method presented in Section 8.3.1. This implies the knowl-
edge of the interface area AΓ, the wetted areas Af and the volume fraction f in a given
computational cell. In a VOF framework, the natural interface reconstruction is the PLIC
used for geometric advection. However, it is interesting to consider other reconstruction
procedures applied to a VOF framework for a potential accuracy improvement on the eval-
uation of AΓ. In a SLS framework, no reconstruction is inherently available whereas it is
needed if a cut-cell method is used to apply embedded boundaries.
In this section, different area reconstructions are presented and compared through numer-
ical experiments. The same 2D test case as in Section 6.2.1.1 is considered where area and
volume of a circle are computed. The related errors are defined as

Earea =
|Aexact −Areco|

Aexact
, (8.1)

Evolume =
|Vexact − Vreco|

Vexact
, (8.2)

with Aexact = 2πR and Vexact = πR2 the exact area and volume respectively. The area and
volume of the reconstruction are computed as

Areco =

NC∑
i=1

AΓ,i , (8.3)

Vreco =

NC∑
i=1

fiVi , (8.4)

with AΓ,i the area of the reconstructed interface and fi the fraction of liquid delimited by
the reconstructed interface.
For a range of ND = 3.2 to ND = 409.6, the errors are evaluated on 100 circles randomly
located in the domain in order to meet as much configurations as possible. The final metrics
are 〈Earea〉 and 〈Evolume〉 the mean of Earea and Evolume, respectively, over the 100 circles.

8.1.1 Algebraic formulae

In the VOF framework, direct differentiation of the volume fraction f can provide the
interface surface. The most popular formula [15; 207 ] was used in the context of algebraic
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VOF where a PLIC reconstruction is not available for topology calculation.

AΓ = |∇f |VC , (8.5)

with VC the cell volume. The issue of such approximation is that it is a global formulation
and can suffer from local inaccuracies. Moreover, it provides finite values of interface area
even in cells which does not contain the interface. This is not compatible with a sharp
representation of the interface and can lead to shape deformations through phase change
[202 ].
A more general formula was proposed in [75 ] to sharpen the interface. The idea is to
derive formulae of the form F (f)|∇f | such that

∫ 1
0 F (f)df = 1. Taking F (f) = 1 leads

to Eq. (8.5) while two other choices F (f) = 2f and F (f) = 6f(1 − f) provide sharper
formulations. This leads to three formulae:

• AF0 the formula |∇f |
• AF1 the formula 2f |∇f |
• AF2 the formula 6f(1− f)|∇f |

For clarity, the functions F (f) are plotted in Fig. 8.2a while the evaluation of AΓVC is
represented in Fig. 8.2b with respect to x/ε with ε the interface width ∆x in 1D. Both AF1
and AF2 provide sharper formulation. However AF1 is anisotropic and does not lead to a
sharpening in the liquid side (where f > 0).

(a) Representation of F (f) (b) Evaluation of εAΓ/VC

Figure 8.2: Illustration of different algebraic formulations for the interface area

Even if those formulae have been originally introduced in the VOF framework, it is also
possible to extend the algebraic method to any Heaviside HΓ. In this study, algebraic
formulae applied to both Hε

Γ(f) and Hε
Γ(φ) defined as

Hε
Γ(f) = f , Hε

Γ(φ) =
1

2

(
tanh

(
φ

2ε

))
, (8.6)

are investigated along with the alternative formula used in the GFM framework based on
H0

Γ:

AΓ = nΓ · ∇H0
ΓVC , (8.7)
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with H0
Γ defined at the faces using the faces values. This gives in 1D

AΓ,i =

(
H0

Γ

(
1

2
(ci+1 + ci)

)
−H0

Γ

(
1

2
(ci + ci−1)

))
nx,i
∆x

VC,i , (8.8)

with H0
Γ(c) = 1 in the liquid and H0

Γ(c) = 0 in the gas.

(a) From f (b) From φ

Figure 8.3: Mesh convergence of 〈Earea〉 for algebraic formulae applied to f and φ

In Fig. 8.3a, convergence of 〈Earea〉 is presented for the algebraic formulae applied to
the volume fraction Hε

Γ(f). The sharpest version AF2 provides highly erroneous area
estimations while AF1 shows convergence in the low resolution. In the high resolution limit,
AF0 and AF1 gives similar results. However, none of these formulae converges with mesh
refinement. On the other hand, the GFM formulation presents a second-order convergence
which is always more accurate than the algebraic formulae considered here.
For completeness, Fig. 8.3b shows 〈Earea〉 convergence of those formulae applied to Hε

Γ(φ)
which is a smoother version of Hε

Γ(f). The smoothing of HΓ leads to higher errors on AF0,
however it provides a convergent behaviour for AF1.
Overall, the conclusions are the same than in the literature: using algebraic formulae is
not suitable for accurate and sharp evaluation of the interface area. In [202 ], a complete
comparison of different interfacial area calculations was performed. It showed that the
PLIC reconstruction always provide a better approximation than the algebraic formulas
defined above. It was also observed that the spherical shape of an evaporating droplet was
preserved using F (f) = 6f(1− f) but with an under-predicted volume change.
Finally, an important observation can be done for the GFM formulation. Surprisingly, using
the sharpest Heaviside H0

Γ leads to a second-order evaluation of the interface area. This
explains why GFM applied to normal gradient jump converges. Indeed, a normal gradient
jump traduces a flux jump which is purely related to surface exchanges. Then, if the area
of this surface exchange is well reproduced, the method is then consistent and leads to
accurate results.
Even if the GFM method gives an accurate representation of the interface, it only provides
AΓ while other geometric properties such as wetted areas Af and phase fraction f are needed
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for applying embedded boundary conditions with a cut-cell method (see Section 8.3.1).
Then, explicit reconstructions are investigated which can provide all the interface topology
quantities required.

8.1.2 PLIC reconstruction

In the geometric VOF framework, a PLIC reconstruction of the interface is naturally avail-
able and can be used directly to compute AΓ, Af and f .
It is also possible to construct a mean plane from the φ−1(0) isocontour intersection with
the mesh and perform a PLIC reconstruction from this plane as proposed in the open source
solver Basilisk [171 ]. This method was originally used to initialise the VOF field from any
Level Set function, but it can be adapted to interface reconstruction in a SLS framework.
The algorithm for a 2D reconstruction is provided here for a given cell, knowing the cell-
centered values of φ:

1. The φ values are computed at the corners from simple linear interpolation.
2. Check if it is a mixed cell:

• The four corner values of φ have the same sign. Then the cell is pure and does
not need reconstruction. The algorithm is over.

• At least one φ value has a different sign (case of Fig. 8.4a where φ1 and φ2 are
positive and φ3 and φ4 are negative). The cell is mixed and requires a PLIC
reconstruction.

3. Find the intersection between the edges of the cell and the interface:
• The two vertices have the same sign (e12 is in the liquid while e34 is in the gas

in Fig. 8.4b). Then the edge is not cut by the interface.
• The two vertices have different sign (case of e14 and e23 in Fig. 8.4b). Then the

edge fraction fe and position of the interface xΓ are computed based on the φ
values at the vertices. Based on the example of Fig. 8.4b, the fraction fe23 for
edge e23 is computed as

fe23 =
φ2

φ2 − φ3
. (8.9)

4. Compute the average normal n based on the edge fractions

nx =
fe14 − fe23

∆x
, (8.10)

ny =
fe12 − fe34

∆y
. (8.11)

This average normal is then normalized.
5. Compute the average plane parameter d based on interface positions xΓ, for edge e23,

this gives

d23 = xΓ,23 · n . (8.12)

Then the average plane parameter d is retrieved by mean of all intersection evaluations
of d.
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Figure 8.4: PLIC reconstruction from a Level Set field φ on a 2D Cartesian grid

Once the PLIC reconstruction is available, it is simple to compute the surface AΓ and
volume fraction f on cartesian grids using analytic relations of [193 ]. Note that this
algorithm can be applied to any color function by considering the appropriate isocontour
c−1.
The investigations then focus on the PLIC reconstruction of an interface either from the
algorithm based on the isocontour c−1 or directly from the PLIC reconstruction obtained
from the algorithm of Section 3.1.1. While the approach from an isocontour is not exact
in volume, the inherent VOF-PLIC reconstruction has a natural constraint on volume
conservation and volume error 〈Evolume〉 is not represented.

(a) Convergence of 〈Earea〉 (b) Convergence of 〈Evolume〉

Figure 8.5: Mesh convergence of 〈Earea〉 and 〈Evolume〉 for PLIC reconstruction from f−1, φ−1

and from the classic VOF-PLIC procedure

In Fig. 8.5a, the convergence of 〈Earea〉 is presented where the VOF-PLIC reconstruction
shows higher accuracy for all resolutions while the f−1 contour-based reconstruction does
not converge for the highest resolutions. Then, for VOF method, it is still better to rely
on the inherent PLIC reconstruction as it is already available after the transport step
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and remains more accurate. Moreover, Fig. 8.5b shows second-order accuracy of the f−1

contour-based reconstruction for volume evaluation while the inherent PLIC reconstruction
is exact.
The method converges to second-order for both 〈Earea〉 and 〈Evolume〉 in the SLS frame-
work.
Note that the final PLIC segment does not have to match exactly with the intersection
points. Some authors [5; 102 ] argued that the discontinuous nature of the PLIC recon-
struction could lead to error in the interface surface calculation even if it provides an exact
volume. Moreover, the discontinuous nature of such reconstruction leads to different wet-
ted areas Af at the same cell face, which can be problematic for cut-cell methods (see
Section 8.3.3.3 for a discussion).
To address this issue, the isocontour c−1 can be used to construct another interface which
is connected to the neighbouring pieces. Such geometric reconstruction based on the iso-
contour can be done with a cell decomposition method.

8.1.3 Cell decomposition

The different cell decompositions are defined as follows
• CD0 is the marching cube method
• CD1 is the simplex decomposition in two simplices
• CD2 is the simplex decomposition in four simplices

CD0 corresponds to a zero-level decomposition where the intersections are computed in the
computational cell. CD1 corresponds to a one-level decomposition where the computational
cell is decomposed into two simplices. CD2 corresponds to a two-level decomposition where
the two simplices obtain from CD1 are again decomposed into to simplices.

(a) CD0 (b) CD1 (c) CD2

Figure 8.6: Cell decomposition level illustration, the thick line represent a piece of interface

The difference between these three levels of decomposition is illustrated in Fig. 8.6. While
CD0 leads to a single linear reconstruction in the cell (Fig. 8.6a), CD1 allows two slopes
(Fig. 8.6b) and CD2 three slopes (Fig. 8.6c). Then, the level of decomposition can provide
a subcell representation of the interface curvature if a simplex decomposition is used. Now
that the cell decomposition concept is introduced, the different algorithms are detailed.
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8.1.3.1 Marching cube

From medical data processing [120 ], the Marching Cube (MC) uses a domain decomposition
into cubes with intersections to an isosurface. As for the previous method, the idea is to
find the intersections between the Cartesian mesh and the isosurface. Each vertex value φ is
either negative or positive which leads to 24 = 16 different triangulation in 2D or 28 = 256
in 3D.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 8.7: Marching Cubes configurations on a 2D Cartesian

However, by using primary geometric transformations such as rotation and symmetry, the
number of triangulations is only of 4 in 2D (see Fig. 8.7) and 15 in 3D. It is then straight-
forward to retrieve the surface and volume of the triangulation from a given configuration.
The algorithm of MC is the following:

1. The φ values are computed at the corners from simple linear interpolation
2. Perform rotation and symmetry in order to have all normal component positives with
nx < ny

3. Check the four corner values of φ and deduce the MC case
4. From the MC case and intersection points, compute the surface and volume of the

reconstruction
The example presented in Fig. 8.4 corresponds to the case 3 in Fig. 8.7c where two corners
are in liquid and two are in gas.
In [24 ], a Marching Cube algorithm applied to the f−1(0.5) isocontour shows improvements
in the area evaluation compared to a PLIC reconstruction. The same study is preformed
in the following. Note that PLIC and MC methods are limited to Cartesian grids.
For more general meshes, another decomposition can be performed using simplex decom-
position (SD).

8.1.3.2 Simplex decomposition

The simplex decomposition method, due to [134 ], decomposes the computational cell into
simplices. Then, the interface can be reconstructed from the intersections between φ−1(0)
isocontour and the simplices. The choice of using the simplex as a primitive shape is
attractive for its simple surface and volume evaluations.
The minimum number of simplices to build a square is 2, and this is the choice made in the
original decomposition as in Fig. 8.8. In fact, this decomposition allows to have two slopes
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in a single computational cell which is not captured in the case of a PLIC reconstruction
and MC method.
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Figure 8.8: Simplex decomposition from a Level Set field φ on a 2D Cartesian grid using 2
simplices

While this algorithm is only based on the corner values of φ, Alis [4 ] proposed to add the
center value of φ which allows a cell decomposition into four simplices instead of two (see
Fig. 8.9). This new decomposition allows three different slopes in a single computational
cell which is expected to be more accurate for curved interfaces.
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Figure 8.9: Simplex decomposition from a Level Set field φ on a 2D Cartesian grid using four
simplices

The algorithm for a 2D decomposition is provided here (3D version follows the same phi-
losophy).

1. The φ values are computed at the corners from simple linear interpolation
2. Cut the cell into two (or four) simplices
3. For each simplex, find the intersection between the edges and the interface using the

vertex values of φ
Then, the evaluation of geometric properties is straightforward for a simplex. The total
interface area of a cell is then the sum of all interface areas captured by the simplices. For
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the example given in Fig. 8.8c, the surface area is AΓ = SΓ,A + SΓ,B while for Fig. 8.9c the
surface area is AΓ = SΓ,A + SΓ,B + SΓ,C .

8.1.3.3 Comparison of different level of decomposition

As the above methods involve increasing implementation and computational effort with
the increasing level of decomposition, it is interesting to investigate the associated gain in
accuracy. Moreover, these decompositions can be applied to either f−1 or φ−1 which are
of different nature and are not expected to provide the same results.
The area and volume errors from these three decomposition levels is presented in Fig. 8.10.
In Fig. 8.10a, a second-order convergence of the area evaluation is observed for the use of
CD0 with small effects of the choice of c−1 on the results. However, f−1 seems to saturate
for the last resolution point displayed. This saturation is not observed for 〈Evolume〉 in
Fig. 8.10b where a second-order convergence of the volume is also obtained. The saturation
of 〈Earea〉 for evaluation from f−1 is happening for coarser meshes using CD1 and even
coarser meshes using CD2 as displayed in Figs. 8.10c and 8.10e. However, this saturation
is still not observed for the convergence of 〈Evolume〉 in Figs. 8.10d and 8.10f. On the other
hand, all the decompositions applied to φ−1 show a second-order convergence with accuracy
magnitude increased by the level of decomposition.
From this observations, a conclusion can be drawn: the evaluation of area seems to be more
prompt to errors compared to the volume and increasing the subcell degree of freedom
amplifies these errors for f−1. This can be explained by the following considerations:

• The area is indirectly related to the first-order derivatives of c while the volume
depends directly on c itself.

• Linear interpolations are used to find the intersections in the geometric reconstruction
process.

• Increasing the level of decomposition also increases the number of intersections needed
for the subcell linear reconstruction.

In practice, f is far from being linear as it is a discontinuous function with an intermediate
region width dependant of the mesh size. Then, the intersections are prompt to errors which
are accumulated by increasing the level of decomposition. These errors are not amplified
when computing the volume as it is related to c itself instead of the first derivative.

8.1.4 Method choice recap for interface reconstruction

After the above investigations, it is possible to choose the most accurate reconstruction
methodology for VOF and SLS. To compare the most promising methodologies applied to
a given capturing method, Fig. 8.11a compares GFM, PLIC-VOF and CD0 applied to VOF
while Fig. 8.11b compares GFM, PLIC from φ−1 and CD2 applied to SLS.
For VOF, using the inherent PLIC reconstruction leads to the most accurate area evaluation
and does not require additional reconstruction. Then, in the solver, embedded boundaries
will rely on the PLIC reconstruction and the collocated Dirac appearing in the continuity
equation will be computed as δΓ = AΓ/VC .
For SLS, the CD2 and GFM methods provide equivalent surface approximations. Then
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(a) Convergence of 〈Earea〉 for CD0 (b) Convergence of 〈Evolume〉 for CD0

(c) Convergence of 〈Earea〉 for CD1 (d) Convergence of 〈Evolume〉 for CD1

(e) Convergence of 〈Earea〉 for CD2 (f) Convergence of 〈Evolume〉 for CD2

Figure 8.10: Mesh convergence of 〈Earea〉 and 〈Evolume〉 for the different cell decomposition levels
CD0, CD1 and CD2

if a cut-cell method is used for embedded boundaries, the CD2 is used to reconstruct
the interface because GFM only provides the area while CD2 also provides all the other
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(a) VOF (b) SLS

Figure 8.11: Mesh convergence of 〈Earea〉 for different reconstruction methods applied to VOF
and SLS

geometric properties required for the cut-cell method. However, if a ghost-cell method is
used for embedded boundaries, the GFM approximation is used to avoid the expensive
simplex decomposition. The summary of choices for δΓ and AΓ

method VOF SLS
δΓ PLIC GFM
AΓ, Af and f PLIC CD2

Table 8.1: Computation choices for VOF and SLS reconstruction of δΓ, AΓ, Af and f

8.2 Quantities at the interface

An accurate approximation of the normal gradient at the interface is essential for phase-
change simulations as it is used for computation of ṁ. This numerical aspect has been
broadly investigated in the literature for phase-change simulations as it will directly impact
the accuracy of the predicted mass variation during a simulation. The main challenge of
this computation is to provide high-order accuracy without using averaged quantities close
to the interface. Several approaches can respond to these constraints such as one-sided
differences, ghost cell differences or functional fitting. In this section, these methods are
evaluated and improvements are proposed to obtain an accurate gradient computation for
VOF and SLS representation of the scalars.
Moreover, TΓ and YΓ have to be reconstructed at the interface for Dirichlet boundary con-
dition imposition. The ghost cell method and the functional fitting also have the capability
to provide the value of a quantity at the interface. The study is then extended to such
reconstruction.
For a quantitative investigation of the gradient reconstruction accuracy, a scalar Φ is defined
as in [7 ] with associated illustration in Fig. 8.12 in a domain Ω = Ωl ∩ Ωg of dimensions
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[1× 1] where Ωl is the interior and Ωg the exterior of the circle of radius R = 0.2 centered
at (0.5, 0.5)

Φ =

{
exp

(
−r2

)
exp−

(
−R2

)
if r > R

Φ = 10
(
R2 − r2

)
if r ≤ R , (8.13)

with r the reduced radius such that r =
√

(x− 0.5)2 + (y − 0.5)2).

Γ

(a) Surface contour of Φ with the interface Γ
represented in black.

(b) Evolution of Φ with respect to r (in blue)
with ghost values (in red and green).

Figure 8.12: Illustration of Φ with a surface contour (left) and a 2D plot with respect to r (right)

Then the value of Φ at the interface is ΦΓ = 0 and the normal gradients from the liquid
and gas phases are

Φ
(1)
Γ,l = −20R , (8.14)

Φ
(1)
Γ,g = −2R exp

(
−R2

)
. (8.15)

The errors for a phase normal gradient Φ
(1)
Γ,p with p = l, g at the interface is computed as

L2

(
Φ

(1)
Γ,p

)
=

√
1
NΓ

∑NΓ
i=1

(
Φ

(1)
Γ,p,exact − Φ

(1)
Γ,p,i

)2

Φ
(1)
Γ,p,exact

. (8.16)

Note that it is interesting to investigate both gas and liquid normal gradients as there
related fields are not of the same nature.

8.2.1 One-sided differences

The idea behind one-sided differences is to include the interface value ΦΓ in the stencil and
only consider values defined in a single phase. This implies the use of the interface location
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xΓ from either the PLIC reconstruction or the signed distance with the methods detailed
in Section 8.2.1.1. It is used as a direct method to approximate the normal gradient at the
interface. Note that in such case, the interface value ΦΓ needs to be deduced from one of
the methods presented below. However, this method can also be used to close the system
presented in Section 7.1. In such case, ΦΓ and its normal derivative Φ

(1)
Γ are obtained

through an iterative process.

Directional-splitting First, one-sided gradients can be evaluated with directional-splitting
from Φ

(1)
Γ = ∇Φ · nΓ. This has been proposed in the VOF framework [195 ] by using the

PLIC reconstruction for the interface location xΓ. In a 2D cell Ci, the first component
∂Φ
∂x

∣∣
Γ,i

is computed as

∂Φ

∂x

∣∣∣∣
Γ,i

=
Φi+1 − ΦΓ,i

∆x+ ∆xΓ
, (8.17)

with ∆xΓ the distance between xi and xΓ. In this expression, the computational point is
always chosen such that ∆x + ∆xΓ > ∆x to avoid any troublesome behavior when xC is
too close to xΓ. In the Level Set framework, the same type of one-sided differences can be
designed using the signed distance φ. A first discretization was presented by [205 ] where,
in a cell Ci with the interface lying between xi and xi+1, the gradient is computed as

∂Φ

∂x

∣∣∣∣
Γ,i

=
Φi+1 − ΦΓ,i

θ∆x
, (8.18)

with θ = |φi|/(|φi|+|φi+1|). The finite differences of Eqs. (8.17) and (8.18) are second-order
accurate but defined at xC . Analogously to the curvature computation, an evaporation rate
computed at cell centres contains an inherent first-order error as explained in Section 5.4.2.3,
this point is detailed hereafter in Section 8.2.2.2.
In [190 ], a higher-order finite difference defined in cell Ci is used if the interface lies between
xi and xi−1

∂Φ

∂x

∣∣∣∣
Γ,i

=
−∆x2

ΓΦi−1 +
(
∆x2

Γ −∆x2
)

Φi + ∆x2ΦΓ,i

∆x∆xΓ (∆x+ ∆xΓ)
. (8.19)

In [7 ], an improvement is proposed to handle the singular case ∆xΓ ≈ 0

∂Φ

∂x

∣∣∣∣
Γ,i

=

(
∆x2 −∆x2

Γ

)
Φi−2 +

(
−4∆x2 + ∆x2

Γ

)
Φi−1 + 3∆x2ΦΓ,i

∆x (∆x+ ∆xΓ) (2∆x+ ∆xΓ)
. (8.20)

This new stencil is used only when ∆xΓ < εc defined as εc = 10−3∆x. Actually, it is
possible to use any arbitrary order finite differences for this gradient computation. In [24 ]
fourth-order one-sided gradients are used.
As those expressions corresponds to Taylor expansions of ∂Φ

∂x

∣∣
Γ,i

around xΓ, the gradient is
then defined naturally at the interface location.
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Normal direction Other methods use an inherent normal-oriented gradient instead of
using a dimensional-splitting. With the TFF of [159 ], the authors make use of the location
of Φ at the phase barycenter xcm,i to compute a compact normal gradient as

Φ
(1)
Γ,i =

Φi − ΦΓ,i

‖xcm,i − xΓ‖2
. (8.21)

This expression leads to a first-order approximation of the interface not well-suited for
accurate phase-change procedure and was only used for discretization of interface fluxes
using cut-cell methods presented in Section 8.3.1. Moreover, ‖xcm,i−xΓ‖2 can be arbitrary
close to zero.
In the Front-Tracking framework, a method based on a fixed normal distance to the interface
is presented in [85 ] to prevent any singular behaviour for gradient discretizations. This takes
the form of a first-order one-sided difference

Φ
(1)
Γ,i =

Φ̃(δ)− ΦΓ,i

δ
, (8.22)

with Φ̃(δ) retrieved from linear interpolation of the cells adjacent to Ci at the point which
is located at a normal distance δ from the interface. δ can be chosen between ∆x and 2∆x
without noticeable impact on the accuracy. It has also been used in a VOF framework
relying on the PLIC reconstruction barycenter [236 ]. In [51 ], a second-order discretization
is proposed

Φ
(1)
Γ,i =

Φ̃(2δ)− 4Φ̃(δ) + 3ΦΓ,i

2δ
, (8.23)

with Φ̃(2δ) and Φ̃(δ) obtained from linear interpolation.
A last approach was presented in a WDF [102; 72; 123 ] to avoid using the mixed cells
quantities which are averaged. The normal gradient is computed in the set of cells Ω1

p (or
Ω2
p in [123 ]) by first-order derivatives using Eq. (8.22) with Φ̃(δ) = Φi for a given cell Ci.

Ω1
p is the set of points in the first narrow band of pure cell in phase p while Ω2

p includes
first and second narrow bands. The mixed cell used for the computation is chosen in the
mixed neighbour cells of Ci which maximizes collinearity defined as

ξ = nΓ ·∆x , (8.24)

with nΓ the normal of the PLIC reconstruction in the mixed cell and x the displacement
vector between the considered cell center xi and the cell center of the mixed cell. Then,
the gradients in the mixed cells are retrieved either using simple average of neighbour pure
cells [102; 72 ] or using a weighting [123 ]. The normal gradient is defined as

Φ
(1)
Γ,i =

∑
p∈Ω2

p

Wp
Tp − TΓ

δp
, (8.25)

with the weight Wp a function of the collinearity ξ of the neighbours.
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xΓ,i
xi

(a) VOF

xΓ,i xi

θΔx

(b) SLS

Figure 8.13: Definition of xΓ,i for VOF and SLS representations

8.2.1.1 Interface location

In a one-sided discretization, the interface location is explicitly used in the stencil.
It is then important to evaluate the interface location error associated to a PLIC represen-
tation or to the signed distance φ:

• For a VOF representation, the interface location in a given cell xΓ,i is defined by the
interface fragment barycenter as illustrated in Fig. 8.13a.

• For a SLS representation, the interface location is defined between two cell centres by
linear interpolation. If the interface lies between xi−1 and xi as in Fig. 8.13b then

xΓ,i = θxi−1 + (1− θ)xi , (8.26)

with θ = |φi|/(|φi−1|+ |φi|).
The error on the interface location is defined as in [7 ] : the exact signed distance at the
interface is zero by definition while the computed signed distance based on the numerical
interface location is

φ (xΓ,i) = R− r(xΓ,i) , (8.27)

with r defined as in Section 8.3.3. Then, the error is computed as

L2(xΓ) =

√√√√ 1

NΓ

NΓ∑
i=1

φ (xΓ,i)
2 , (8.28)

L∞(xΓ) = max
i
φ (xΓ,i) . (8.29)

The errors are evaluated on 100 circles randomly located in the domain to meet as much con-
figurations as possible. The final metric is 〈L2(xΓ)〉 the mean of L2(xΓ) and max (L∞(xΓ))
the maximum of L∞(xΓ) over all those configurations.
Both representations show a second-order accuracy in Fig. 8.14 which could lead to errors
on one-sided gradient as demonstrated hereafter.
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(a) Convergence of 〈L2(xΓ)〉 (b) Convergence of max (L∞(xΓ))

Figure 8.14: Mesh convergence of 〈L2(xΓ)〉 and max (L∞(xΓ)) based on VOF or SLS

8.2.1.2 Comparison of one-sided discretizations

In this comparison, four methodologies are presented, two based on the TFF and two based
on the JCF:

• Fixed normal distance with one probe point Eq. (8.22) (FND-OS1)
• Fixed normal distance with two probe points Eq. (8.23) (FND-OS2)
• Dimensional-splitting finite differences using a compact stencil Eq. (8.18) (SFD-OS1)
• Dimensional-splitting finite differences using an extended stencil Eq. (8.20) (SFD-

OS2)
For VOF, a natural discretization based on one-sided gradient makes use of the PLIC
barycenter to build a gradient stencil in the normal direction. The most suited method
using these information is the fixed distance FND-OS1 and FND-OS2.
For SLS, it is more natural to use the dimensional-splitting formulation of the gradient as
a position in the normal direction of the interface is not straightforward. Then, SFD-OS1
and SFD-OS2 are used.
In Fig. 8.15, all methods exhibit a first-order convergence on the gradient. This rate is
expected for FND-OS1 and SFD-OS1 while it is not trivial for FND-OS2 and SFD-OS2. In
fact, using the location of the interface in the stencil, which has been demonstrated to be
second-order accurate prevents any one-sided discretization to reach high-order accuracy.
This point was reported in [7 ] where a higher-order representation of the interface using
Gradient Augmented Level Set allowed to recover a second-order accuracy of the gradients.
Moreover, the interface value ΦΓ is not known a priori for general phase-change simulations.
The quantity is reconstructed with a limited order of accuracy which could induce even more
error in the gradient computation. This aspect is not discussed in most of the work using
the one-sided gradient method as it is mainly used in boiling applications where TΓ is
imposed at the saturation temperature of the pure liquid.
These limitations can be circumvented by keeping a uniform discretization based on a ghost
cell method. Then, neither the interface position nor the interface value are required.
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(a) Convergence of L2
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Figure 8.15: Mesh convergence of L2

(
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)
and L2
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)
for the different one-sided gradient

discretizations

8.2.2 Ghost cell method

The ghost cell method (GCM) can be applied to compute values and gradients using a
uniform discretization. In [218; 29; 192 ], ghost cells are defined in the unknown part of the
domain, and linear interpolation and central differences are used to retrieve the value and
the gradient respectively. This gives the second-order interpolation of ΦΓ at xΓ

ΦΓ = (1− θ)Φp,i + θΦgh
p,i+1 , (8.30)

with θ = |φi|/(|φi|+ |φi+1|).
In 2D or 3D configuration, a dimensional-splitting approach is used where Φx

Γ, Φy
Γ (and Φz

Γ)
are obtained from Eq. (8.30) and projected to the correct value ΦΓ with

ΦΓ = Φx
Γn

2
x + Φy

Γn
2
y . (8.31)

While liquid values are often used in the literature, it can also be done using the gas values
instead. By using the two approximations of ΦΓ from liquid and gas phases, an average
could be used to mitigate errors in the extrapolation.
The second-order difference located at the cell center is written as

∂Φ

∂x

∣∣∣∣
Γ,i

=
Φgh
i+1 − Φi−1

2∆x
. (8.32)

Note that in this expression, ∂Φ
∂x

∣∣
Γ,i

is not defined at the interface but at xi. In [198 ], the
gradient are upwind to give a gradient evaluation closer to the interface

∂Φ

∂x

∣∣∣∣
Γ,i

=
Φgh
i+1 − Φi

∆x
. (8.33)
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Even if this is still not providing ∇Φ exactly at the interface position, it reduces the
first-order error of a standard central difference located at the cell center by centering the
gradient at the closest cell face to the interface.
The gradient is also treated in a dimensional-splitting fashion for multidimensional cases
using Φ(1) = ∇Φ · n.

8.2.2.1 Extrapolation method

The main feature required for applying GCM is the extrapolation of scalars from one phase
to another. The method used here is the PDE extrapolation presented in Appendix B.1,
all the details in the implementation are provided in Appendix B.2. Here, only linear
extrapolation (LE) and quadratic extrapolation (QE) are investigated either using VOF or
SLS. The extrapolation is performed from Ωl to Ωg delimited by the circle of radius R = 0.2
centered at (0.5, 0.5) in a domain [1× 1]. The target scalar field Φ is defined as in [30 ] in
the whole domain

Φ = exp (4 (x− 0.5) (y − 0.5)) . (8.34)

The goal of this test case is to extrapolate the scalar in the unknown domain and compare
its values to the target scalar field.

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.16: Mesh convergence of L2(Φ) and L∞(Φ) for VOF and SLS using linear extrapolation
( ) or quadratic extrapolations ND = 16 ( ).

In Fig. 8.16 are presented L2(Φ) and L∞(Φ) for linear and quadratic extrapolations. It
is interesting to notice that the normal approximation has an impact on extrapolation
accuracy. The VOF representation provide less accurate normals compared to SLS which
impacts the accuracy of the extrapolated field in both L2(Φ) and L∞(Φ) metrics. This
discrepancy is increasing for quadratic extrapolation and can have impacts on the gradient
evaluation.
The interested reader can refer to Appendix B.1 for a more complete study of extrapolation
accuracy.
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8.2.2.2 Gradient location

A first-order trend is presented in Fig. 8.17 for gradients evaluated from both linear and
quadratic extrapolations.
This is an expected results for linear extrapolation as the extrapolated field is second-order
and the gradient computed using centered finite differences leads to a first-order gradient
approximation. On the other hand, the quadratic extrapolation improves accuracy while
maintaining a first-order convergence rate. From the same reasoning as for the linear
extrapolation, a second-order gradient would be expected from a centered finite difference
on a third order field.
In fact, the first-order trend is due to the location of the gradient evaluation. Analogous to
the curvature computation, the gradients computed from uniform discretization are defined
at the cell center and need an additional interpolation procedure to be correctly defined
at the interface location. If no interpolation is performed, an inherent first-order error
is introduced in the gradient evaluation and improving the accuracy of the field cannot
overcome this limitation.
For higher-order gradients, an interpolation is then required. Again, this can be done either
by linear or harmonic interpolation using the expression of Eqs. (5.69) and (5.70) applied
to Φ(1).
In practice, the gradient is first computed at the cell center xi. Then, the interface gradient
is only computed in cells where φ changes sign as (here for φi−1φi < 0)

Φ
(1)
Γ,i = θΦ

(1)
i−1 + (1− θ)Φ(1)

i . (8.35)

In a multi-dimensional case, φ can change sign in several directions, in this case, Φ
(1)
Γ is

retrieved by weight average of all the interpolated values based on squared normal compo-
nents. Note that this interpolation step is only required when using quadratic interpolation
or higher-order. In the case of linear interpolation, the ghost cells are already defined such
that the gradient is constant in the normal direction, then the evaluation of the gradient
between two cells apart from an interface cells are expected to be substantially equal.

8.2.2.3 Comparison of the normal gradient reconstruction

For the comparison, six combination of field extrapolation and gradient interpolation are
investigated in Fig. 8.17:

• No interpolation of the gradient with linear extrapolation of Φ (NI-LE)
• Linear interpolation of the gradient with linear extrapolation of Φ (LI-LE)
• Harmonic interpolation of the gradient with linear extrapolation of Φ (HI-LE)
• No interpolation of the gradient with quadratic extrapolation of Φ (NI-QE)
• Linear interpolation of the gradient with quadratic extrapolation of Φ (LI-QE)
• Harmonic interpolation of the gradient with quadratic extrapolation of Φ (HI-QE)

As expected, an interpolation process does not improve the accuracy of the interface gradi-
ent for linear extrapolations. Indeed, NI-LE, LI-LE and HI-LE collapse to the same error
trend.
For quadratic extrapolation, the gradient is not constant anymore in the normal direction
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(a) Convergence of L2
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Figure 8.17: Mesh convergence of L2
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for the different combination of field

extrapolation and gradient interpolation

and an interpolation is expected to improve the accuracy of the evaluation. In Fig. 8.17, it
is clear that both linear and harmonic interpolation improve drastically the accuracy and
rate of convergence of the normal gradient evaluation. Surprisingly, a super-convergence is
observed in Fig. 8.17a for the LI-QE with a normal gradient obtained between second and
third order. This can be explained by the quadratic nature of the Φl field which lead to an
exact extrapolation using the quadratic normal extrapolation, and an exact interpolation of
the gradients using linear interpolation. For the exponential functional of Φg, the expected
second-order convergence is retrieved in Fig. 8.17a.
As a conclusion, using a combination of quadratic extrapolation of Φ and linear or harmonic
interpolation of Φ

(1)
Γ leads to second-order normal gradients.

8.2.3 Functional fitting

For the TFF, the methodology presented in Section 8.2.2 is not well-suited as no distance
is available and the discretization close to the interface is inherently not uniform. This is
why another method is proposed to increase the order of accuracy of the normal gradient
by computing the value and normal gradient in mixed cells from a functional fitting based
on least-square minimization of the field.
This idea has already been used in [159 ] to fit a linear profile for T and Y . As for the
reconstruction of operators used in Section 5.4.2.1, this approach allows mitigation of nu-
merical errors by increasing the sample size of points in the stencil. Moreover it can be
applied to both uniform and non-uniform discretization without additional considerations.

8.2.3.1 Stencil definition

In the following, three different stencils are proposed to solve this problem either based on
linear or quadratic fit. The different systems are illustrated in Fig. 8.18.
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(a) Phase stencil (b) Uniform stencil

Figure 8.18: Illustration of the set of points used to build the least square minimization in the
mixed cell defined by the bold black line. The cells in grey are not included in the stencil. The
points in grey are the transported values defined in the phase. The points in white represent the
extrapolated values in the other phase. The black point is the interface value.

Phase and interface stencil The first method proposes to only consider the points
belonging to the considered phase with their values located at the phase barycenter (see
Fig. 8.18a). Then a cell located in the phase p has the following distance to the phase
barycenter ∆x = xcm,p − xΓ,i and the value Φ (xcm,p). An extension of this first system
can be build by adding the interface value in the stencil. Then the associated distance is
∆x = 0 and the corresponding value is Φ (xΓ,i) = ΦΓ.

Phase-restricted stencil It has been shown in Section 8.2.1 that errors on the interface
location could lead to important errors in the gradient evaluation when the interface value
was explicitly used in the stencil. To demonstrate this behaviour, another discretization
is also proposed without including the interface value in the least square minimization.
Moreover, the first stencil cannot be used for retrieving the interface value ΦΓ as it is
needed explicitly in the stencil.

Uniform stencil Finally, uniform discretization is also investigated. Then the distance
is just ∆x = xC − xΓ with values taken at the cell center Φ (xC). When the stencil implies
values of mixed cells or the other phase, the values are retrieved by normal extrapolation
(white points in Fig. 8.18b). The values in the mixed also needs this extrapolation to
maintain the uniform discretization.
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Weighting A weight is inspired from the one-sided gradients Eq. (8.25) giving more
importance to stencil points in the normal direction to the interface

W =
ξ

‖∆x‖2
, (8.36)

with ξ the collinearity defined by Eq. (8.24).

8.2.3.2 Functional definition

The least square minimization can be applied to different functional. In [159 ], the temper-
ature is fitted on a linear profile while another approach proposed in this manuscript uses
a quadratic fitting. The Taylor expansion around the interface location xΓ,i gives

Φ(x) = Φ(xΓ,i) + ∆xᵀ∇Φ(xC) + ∆xᵀ∇∇Φ(xΓ)∆x , (8.37)

with ∆x = x− xΓ.

Linear fit If only the first-order derivatives are kept while second-order derivative are
neglected, then the following linear system can be written1 ∆x1 ∆y1

...
...

...
1 ∆xN ∆yN


 Φ(xΓ,i)
∂Φ
∂x (xΓ,i)
∂Φ
∂y (xΓ,i)

 =

Φ(x1)
...

Φ(xN )

 . (8.38)

This approach is expected to be first-order at the point of interest.

Quadratic fit Based on the complete Taylor expansion up to second-order derivatives,
the following linear system is solved

1 ∆x1 ∆y1
1
2∆x2

1
1
2∆y2

1 ∆x1∆y1
...

...
...

...
...

...
1 ∆xN ∆yN

1
2∆x2

N
1
2∆y2

N ∆xN∆yN




Φ(xΓ,i)
∂Φ
∂x (xΓ,i)
∂Φ
∂y (xΓ,i)
∂2Φ
∂x2 (xΓ,i)
∂2Φ
∂y2 (xΓ,i)
∂2Φ
∂x∂y (xΓ,i)


=

Φ(x1)
...

Φ(xN )

 . (8.39)

This approach is expected to be second-order at the considered point of interest.

Erf function In [122 ], an Erf function is fitted at the interface vicinity following

Φ(x̃) =

{
C1 + C2 erf (C3x̃) if x̃ ∈ Ωl

C4 + C5 erf (C6x̃) if x̃ ∈ Ωg
, (8.40)

with x̃ the position coordinate in the normal direction to the interface such that the interface
is located at x̃Γ = 0. The six coefficients are determined using the following information:
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• Scalar evaluations Φ(−2∆x), Φ(−∆x), Φ(∆x), Φ(2∆x). Those points do not coincide
with the cell center and are construction by linear interpolation.

• Continuity of Φ at the interface leading to C1 = C4.
• Closure for ΦΓ (defined with Eq. (7.3) in the case of phase change with Φ = T ).

Finally, C1 = C4 directly give the value ΦΓ. This method is not investigated here but has
proven to give accurate approximations of gradients at the interface.

8.2.3.3 Comparison of of the normal gradient reconstruction

Finally, the different system presented above are referred as:
• The least square quadratic fit including phase and interface values (LSQ-PI)
• The least square quadratic fit only including phase values (LSQ-P)
• The least square quadratic fit using linear extrapolation (LSQ-LE)
• The least square quadratic fit using quadratic extrapolation (LSQ-QE)
• The least square linear fit using linear extrapolation (LSL-LE)
• The least square linear fit using quadratic extrapolation (LSL-QE)

(a) Convergence of L2
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Figure 8.19: Mesh convergence of L2

(
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)
and L2

(
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Γ,g

)
for the different least square ap-

proaches using the TFF

The results are presented in Fig. 8.19 where the LSL fit is first-order accurate while LSQ
fit is second-order unless for LSQ-LE and LSQ-PI. As for the results of NI-LE and NI-QE,
using LSL fit on the quadratic interpolation improves the accuracy magnitude. LSQ-LE
and LSL-LE errors collapse as the slope is already imposed by the linear extrapolation and
the second-order derivative is accordingly zero.
LSQ-PI and LSQ-P do not provide the same accuracy for high resolutions. Indeed, LSQ-PI
is second-order accurate for coarse to medium meshes while it decreases to first-order con-
vergence for high resolutions while LSQ-P is second-order for all resolutions. This is again
explained by the second-order error introduced by the interface location approximation.
Finally, using only one-sided values (LSQ-P) of Φ is more accurate than using the extrapo-
lated values (LSQ-QE) because the one-sided only implies exact values of Φ while LSQ-QE
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introduce a third order error on more than half of the values used in the least square
minimization.

8.2.4 Application to a second-order scalar field

For completeness, the same gradient methodologies are applied to a second-order scalar
field obtained from the static diffusion problem presented in Section 8.3.3. This last study
is relevant for evaporation problems where the scalar field is not exact and evolves in time
through diffusion and convection. As demonstrated in Section 8.3.3, the diffusion scheme
with embedded boundary conditions considered in the solver is second-order accurate at
best. Then, a first-order accuracy is expected on gradient evaluation. For a phase-change
solver, it means that ṁ is evaluated at first-order from the gradient reconstruction.
The most accurate gradient evaluations retained in the above study are directly applied
on the scalar field obtained from the static diffusion problem with Dirichlet boundary
conditions of Section 8.3.3. This problem is analogous to the resolution of the energy
equation with computation of the evaporation rate ṁ fromMT .

VOF normal gradient For the TFF, the scalar field Φ
diff is between first and second-

order. Then, the normal gradient is expected to be at most first-order accurate.

(a) Convergence of L2
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Figure 8.20: Mesh convergence of L2
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for the different least square ap-

proaches using TFF applied to Φ
diff

The results are presented in Fig. 8.20 for the LSL-LE, LSL-QE, LSQ-QE and LSQ-P meth-
ods. The accuracy of the normal computation is drastically decreased compared to the
results presented in Section 8.2.3.3. The LSQ-P method is not convergent anymore while
other methods show a convergent behaviour. Using the LSL fit provides a solid first-order
convergence of the normal with a more accurate computation using quadratic extrapolation.
However, the LSQ fit proposed above leads to error saturation for high resolution while it
is the most accurate method for low to medium meshes. In fact, trying to fit a quadratic
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functional is not the most suited method for its lack of monotonicity as discussed in [122 ]
where an Erf functional was fitted instead. Moreover, a second-order variation captured by
such functional from a first to second-order scalar field is not consistent.
From these considerations, a LSL fit will be used either based on linear or quadratic ex-
trapolations and will be referred as VOF-LE and VOF-QE respectively.

SLS normal gradient For the SLS framework, the scalar field Φ
diff is second-order

accurate with expected first-order normal gradients.
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Figure 8.21: Mesh convergence of L2
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for the different combination of field

extrapolation and gradient interpolation applied to Φ
2nd

In Fig. 8.21, the error convergence of NI-LE, NI-QE and LI-QE are represented. All methods
have an asymptotic first-order convergence rate while LI-QE is essentially second-order for
low to medium resolutions. The use of quadratic extrapolation improves gradient accuracy
while performing the additional linear interpolation improves it even more.
In the solver, the NI-QE or LI-QE method are used and will be referred as SLS-LE and
SLS-QE respectively.

8.3 Handling of flux jumps at the interface

In a WDF, the jump conditions at the interface are handled with a source terms which
require one of the δΓ discretizations studied in Section 8.1. When the JCF formulation
is used, the jump condition can be ensured either using GFM or by applying a boundary
condition at the interface as discussed in Section 7.4.2. Finally, for the TFF, a source term
can be imposed at the interface using a δΓ discretization or boundary conditions can be
applied at the interface.
In the literature, such strategies are usually defined as immersed boundary methods (IBM).
In his review, Mittal [137 ] proposed a distinction between continuous forcing approaches
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and discrete forcing approaches.
The continuous forcing approach is due to Peskin [166 ] for the coupling of elastic boundaries
with a flow. In the method, the boundary condition is represented by a set of Lagrangian
markers and the coupling is performed through forcing terms located at these makers lo-
cations (the analogy can be done with the Front Tracking method used for tracking an
interface). As the markers does not belong to the Cartesian grid on which the governing
equations are solved, a projection is required to impose the forcing terms to the flow nodes.
This procedure implies a smoothing of the forces on several cells through Dirac regulariza-
tion which removes the sharp nature of the strategy. Moreover, the governing equations
need to be solved in the whole domain including the immersed boundaries.
To maintain a sharp framework, the use of discrete forcing approach is necessary. The idea
is to modify the stencil near the immersed boundary to impose the associated boundary
conditions. In this section, two frameworks are presented to use the interface representation
for imposing boundary conditions in interface cells

• The cut-cell method uses explicitly the boundary defined by the interface reconstruc-
tion to impose the boundary condition.

• The ghost-cell method defines ghost values in the boundary which are interpolated
to implicitly impose the boundary condition at the interface.

While the cut-cell method is based on a finite volume framework more suited for VOF, the
ghost-cell method was developed in a finite difference method relying on the signed distance
provided by the Level Set for ghost-values interpolation.
This section will only describe the resolution of diffusion problems with boundary conditions
at the interface as it is analogous to impose the heat flux for the energy equation or a mass
flux for the species mass fraction equation. Given the general Poisson equation defined in
Appendix A.1

∇ · (β∇Φ) = S . (8.41)

This equation is solved separately in Ωl and Ωg with boundary conditions at the interface
instead of an equation solved in Ω with the jump conditions [Φ]Γ = aΓ, [β∇Φ · nΓ]Γ = bΓ.
In the following, the general boundary condition can be written as

aΦΓ + bΦ
(1)
Γ = c , (8.42)

with a, b and c defined such that
1. If a 6= 0 and b = 0, it reduces to a Dirichlet boundary condition
2. If a = 0 and b 6= 0, it reduces to a Neumann boundary condition
3. If a 6= 0 and b 6= 0, it corresponds to a Robin boundary condition

Note that a, b and c are not known a priori for a phase-change solver application and need
to be reconstructed using the methods presented in Section 8.2 for ΦΓ and Φ

(1)
Γ evaluation

respectively.

8.3.1 Cut-cell method

The method was first presented as the Cartesian grid method [175 ] in opposition to body-
fitted grids more popular at this time to treat complex geometry. The main advantage of
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this strategy is to maintain a uniform discretization in the computational domain while the
boundaries are treated with explicit reconstruction of the body crossing the computational
cells. It was first applied to the study of compressible flows [165 ] and then adapted to the
resolution of the Poisson equation in 2D [129 ] and later in 3D [196 ].
The work in [129 ] considers the resolution of the heat equation on irregular time-dependant
domains.
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(b) Fluxes definition

Figure 8.22: Illustration of the area and flux definitions for a pure cell

When the cell is not cut by the interface, as illustrated in Fig. 8.22, the following 2D finite
volume discretization is proposed for Eq. (8.41)

F
(Φ)

i+ 1
2
,j
Ai+ 1

2
,j − F

(Φ)

i− 1
2
,j
Ai− 1

2
,j

+F
(Φ)

i,j+ 1
2

Ai,j+ 1
2
− F (Φ)

i,j− 1
2

Ai,j− 1
2

= Si,jVi,j , (8.43)

with A the face area (length in 2D) and V the cell volume (area in 2D).
In the case of a cell containing the interface, an additional contribution is due to the
interface and the configuration of Fig. 8.23 can be discretized by

F
(Φ)

i+ 1
2
,j
Af,i+ 1

2
,j − F

(Φ)

i− 1
2
,j
Af,i− 1

2
,j

+F
(Φ)

i,j+ 1
2

Af,i,j+ 1
2
− F (Φ)

i,j− 1
2

Af,i,j− 1
2

+ F
(Φ)
Γ,i,jAΓ,i,j = Si,jfi,jVi,j , (8.44)

with Af the wetted areas, F (Φ)
Γ,i,j the interface flux, AΓ,i,j the interface area and fi,j the

volume fraction of the known part of the domain in the cell. In Eq. (8.44), the face and
interface fluxes need to be evaluated.
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(b) Fluxes definition

Figure 8.23: Illustration of the area and flux definitions for a mixed cell

8.3.1.1 Face flux evaluation

First, the fluxes have to be approximated at the faces F (Φ)
f where Af does not necessarily

correspond to the computational cell face. An illustration of different approximations is
given in Fig. 8.24.

Φi−1,j Φi,j

Φi−1,j−1 Φi,j−1

xcm,f

(a) McCorquodale et al.

Φi−1,j Φi,j

Φi−1,j−1 Φi,j−1

xcm,f

(b) Papac et al.

Φi−1,j
Φi,j

Φi−1,j−1
Φi,j−1

xcm,f

(c) Palmore et al.

Figure 8.24: Illustration of the flux approximation F (Φ)

i− 1
2 ,j

for different cut-cell approaches. Double-

arrows represent the flux F (Φ)

i− 1
2 ,j

while plain lines represent the associate stencil. Dotted lines rep-
resent the interpolation between fluxes.

McCorquodale et al. [129 ] use an interpolation of face fluxes F (Φ)
f at the wetted area
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barycenter xcm,f as shown in Fig. 8.24a:

F
(Φ)

i− 1
2
,j

= βi− 1
2
,j

(
1 + θf

2

Φi,j − Φi−1,j

∆x
+

1− θf
2

Φi,j−1 − Φi−1,j−1

∆x

)
, (8.45)

with θf = Af,i− 1
2
,j/Ai− 1

2
,j the edge fraction.

In [160 ], F (Φ)
f is expressed at the cell face barycenter (see Fig. 8.24b) using only neighbours

of Ci,j

F
(Φ)

i− 1
2
,j

= βi− 1
2
,j

Φi,j − Φi−1,j

∆x
. (8.46)

This is a first-order approximation of the flux F
(Φ)

i− 1
2
,j

where the edge fraction θf is ap-
proximated by θf = 1. However, the main motivation for such decrease in accuracy is to
maintain a symmetric definition of the outcome matrix which is interesting for efficient
resolution of the linear system associated.
Finally, a last definition of F (Φ)

f proposed by [159 ] and illustrated in Fig. 8.24c is the
following

F
(Φ)

i− 1
2
,j

= βi− 1
2
,j (Φi,j − Φi−1,j)

∆xcm
‖xcm,i,j − xcm,i−1,j‖22

, (8.47)

with Φi,j defined naturally at the cut-cell barycenter xcm,i,j and ∆xcm the distance in the
x direction of both cell barycenters. This last expression is still not at second-order, but
allows to keep a symmetric discretization of the gradient. Note that for a cell without
interface (as Ci,j−1 in Fig. 8.24c), xcm,i,j−1 = xi,j−1.
Also, if the cut-cell is defined from a PLIC reconstruction which is not continuous, Af,i− 1

2
,j

need to be defined from A−
f,i− 1

2

the wetted face area of the PLIC reconstruction from cell

Ci−1 and A+
f,i− 1

2

the wetted face area of the PLIC reconstruction from cell Ci. An illustration
of this discontinuity is presented in Fig. 8.25.
Several approximations of Af,i− 1

2
from A−

f,i− 1
2

and A+
f,i− 1

2

can be expressed such as the min,

max or an average operator 〈 〉 to be defined later
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Af,i− 1
2

=

〈
A+
f,i− 1

2

, A−
f,i− 1

2

〉
. (8.50)

In the work of [159 ], they found that using Eq. (8.48) was providing the most stable results.

8.3.1.2 Interface flux evaluation

Then, the definition of F (Φ)
Γ,i,j = βΓ,i,jΦ

(1)
Γ depends on the type of boundary condition that

needs to be prescribed at the interface.
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(b) Different approximation of Af,i− 1
2

Figure 8.25: Illustration of the wetted area approximation from discontinuous PLIC reconstruc-
tions at face Ai− 1

2

Dirichlet boundary condition To apply Dirichlet boundary condition ΦΓ, one need to
compute F (Φ)

Γ,i,j from an approximation. This can be done using quadratic interpolation as
initially proposed in [129 ] and used in [162 ] for contact lines in complex geometries

F
(Φ)
Γ,i,j = βΓ,i,j

1

δ2 − δ1

(
δ2

δ1

(
ΦΓ − Φ̃ (δ1)

)
− δ1

δ2

(
ΦΓ − Φ̃ (δ2)

))
, (8.51)

with δ1 = ∆x and δ2 = 2∆x the normal distance to the interface barycenter xΓ and Φ̃ a
quadratic reconstruction of Φ. This has been generalized to 3D in [196 ].
In [159 ], a first-order gradient approximation is built from xΓ and xcm

F
(Φ)
Γ,i,j = βΓ,i,j

Φi − ΦΓ

‖xcm − xΓ‖2
. (8.52)

This expression allows to handle the boundary condition fully implicitly while keeping a
symmetric matrix.

Neumann boundary condition For Neumann boundary condition, the choice is straight-
forward and has been used in several works [129; 196; 144; 131 ]. The flux is directly
prescribed by the Neumann condition

F
(Φ)
Γ,i,j = βΓ,i,j

ci,j
bi,j

. (8.53)

Robin boundary condition The Robin boundary condition is very interesting for evap-
oration applications and has been presented by [160 ] for the resolution of the Stefan prob-
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lem. This takes the form

F
(Φ)
Γ,i,j = βΓ,i,j

ci,j − ai,jΦΓ

bi,j
= βΓ,i,j

ci,j − ai,jΦi,j

bi,j
, (8.54)

with the first-order approximation ΦΓ = Φi,j .

8.3.2 Ghost cell method

In parallel to the Cut-cell method, another approach has been developed in the late 90’s to
handle Poisson equations on irregular domains.

8.3.2.1 Dimensional-splitting Dirichlet boundary condition

The first algorithm was proposed in [34 ] to apply Dirichlet boundary conditions at the in-
terface. Then, other works such as [68 ] proposed an extension of GFM to impose boundary
conditions instead of quantity jumps at the interface.
The following second-order finite difference discretization is proposed for the 1D version of
Eq. (8.41) where the interface lies between xi and xi+1

βi+ 1
2

Φghi+1−Φi
∆x − βi− 1

2

Φi−Φi−1

∆x

∆x
= Si , (8.55)

with Φgh
i+1 the ghost value of Φ in the unknown domain.

Then, Φgh
i+1 can be defined following different level of accuracy.

• A first-order approximation Φgh
i+1 = ΦΓ

• A second-order approximation Φgh
i+1 = ΦΓ+(θ−1)Φi

θ

• A third order approximation Φgh
i+1 = 2ΦΓ+(2θ2−2)Φi+(−2θ2+1)Φi−1

θ2+θ
• A fourth order approximation (details provided in [67 ])

corresponding respectively to the constant, linear, quadratic and cubic extrapolation of
Φ at xΓ only using values of the known domain with θ = |φi|/(|φi+1| + |φi+1|). The
quadratic extrapolation was already used for the resolution of Stefan problem in the Level
Set context [34 ] but leads to a non-symmetric linear system. This is also the case for the
cubic interpolation used in [67 ] to achieve fourth order accuracy of the Laplace and Heat
equations.
As for the cell volume in the cut-cell method, the expressions including θ are not well-
defined for arbitrary small values of θ. This issue can be handled by fixing a threshold
θc for which the interface xΓ is too close to xi and imposing Φi = ΦΓ does not alter the
overall accuracy and boundness of the method. Usually, the threshold is chosen as θc = ∆x.
Another way to handle such singularity is to use a new stencil which does not include Φi

in the discretization [7 ]. Then the denominator is bounded by ∆x.
The most popular choice is the linear extrapolation which leads to a second-order accurate
scheme

βi+ 1
2

ΦΓ−Φi
θ∆x − βi− 1

2

Φi−Φi−1

∆x

∆x
= Si . (8.56)
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The convergent behaviour was first observed numerically without any evidence from Taylor
expansion analysis, however in [94 ] a theoretical proof is provided.
This approach is easily extended to multidimensional Poisson equation by applying the
same methodology for the other directions as depicted in Fig. 8.26b. However, application
to other boundary conditions such as Neumann or Robin is not straightforward in the finite
difference framework and has been addressed only recently.

8.3.2.2 Normal Robin boundary condition

The main obstacle to develop Neumann and Robin boundary conditions is their normal
direction nature. In [30 ], authors demonstrated that using a dimensional-splitting is inher-
ently first-order and not even consistent for the gradient evaluation.

Ωg

Γ

Ωl

Φi, j

Φgh
i+1, j+1Φgh

i, j+1

Φgh
i+1, j

(a) Schematic of GCM

ΩgΓ

Ωl

Φi,j θxΔx

θyΔy

(b) Dimensional-splitting

ΩgΓ

Ωl

Φi,j
l̃i,j

n

(c) Normal direction

Figure 8.26: Illustration of the GCM applied to cell Ci,j in both dimensional-splitting and normal
direction implementations

They propose a new procedure for imposing a Robin boundary condition in the normal
direction to the interface using a ghost-cell method.
First, the extrapolation procedure described above for Dirichlet boundary condition is gen-
eralized for Robin boundary condition. The linear extrapolation functional Φ̃ can be rewrit-
ten as

Φ̃(x̃) = mx̃+ n , (8.57)

with x̃ the position coordinate in the normal direction to the interface such that the interface
is located at x̃Γ = 0. The unknown m and n are retrieved by using the following system

Φ̃(−θ∆x) = −mθ∆x+ n

Φ̃(0) = n

Φ̃(1)(0) = m

. (8.58)

This system is overdetermined and needs to be reduced to a system of only two equations.
This is done by plugging m and n in Eq. (8.42)

m =
c− an
b

(8.59)
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Instead of directly applying the values Φ(0) = n and Φ(1)(0) = m, the simple relation
Eq. (8.59) is used to obtain the following system{

Φ̃(−θ∆x) = −mθ∆x+ n
m = (c− an)/b

. (8.60)

Then the value at Φgh
i+1 does not depend explicitly on the quantities at the interface. Solving

Eq. (8.60) leads to

m =
c− aΦi

b+ aθ∆x
and n =

bΦi + cθ∆x

b+ aθ∆x
, (8.61)

the value Φgh
i+1 is then written as

Φgh
i+1 = Φ̃((1− θ)∆x) = Φi +

(c− aΦi)∆x

b+ aθ∆x
. (8.62)

The generalization to arbitrary order of accuracy is obtained by adding more points in the
stencil. For details on the implementation, see [30 ].
This above system can be generalized in multi-dimensional cases by splitting the boundary
condition Eq. (8.42) into two (or three) boundary equations projected on the Cartesian
directions. Then, each direction is treated separately. As pointed out before, such treatment
is inherently first-order.
To treat the problem directly in the normal direction, the linear system of Eq. (8.60) is
solved in the normal direction by introducing a normal distance l̃i,j between the interface
xΓ and the known point xi,j as illustrated in Fig. 8.26c. In most of the case l̃i,j 6= θx∆x

and l̃i,j 6= θy∆y.
The following algorithm is used to define the ghost values in a narrow band around the
boundary

1. In cells close to the interface, solve Eq. (8.60) to retrieve the normal derivative m =
Φ(1) while compute Φ(1) from standard second-order differences for the other cells in
the known domain.

2. Extrapolate the Φ(1) field using an extrapolation procedure of Appendix B.1
3. Extrapolate the Φ field by solving Eq. (B.3)

Then the standard discretization in Eq. (8.55) is used for the Laplacian with Φgh
i+1 defined

by the procedure above.

8.3.2.3 General boundary condition

Finally, the procedure to impose Robin boundary conditions has been extended to the
general boundary condition of Eq. (8.42) in [31 ]. It allows to impose boundary conditions
in the normal direction to the interface.
The algorithm step 1 can be adapted to Dirichlet boundary condition by fixing b = 0 in
Eq. (8.61), then the normal derivative is defined as

Φ(1) =
c− aΦi

al̃i,j
. (8.63)
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In this expression, the derivative is of arbitrary high magnitude when l̃i,j is close to zero.
In such case, Φ(1) is computed from second-order central differences.
For a Neumann boundary condition, a = 0 in Eq. (8.61) leading to

Φ(1) =
c

b
. (8.64)

8.3.3 Application to static diffusion problems with flux jump

In this section, a 2D static diffusion problem is considered to compare WDF, JCP and
TFF relying on VOF or SLS representation of the interface. For the WDF, a source term
is applied, while for the JCP and TFF, it is alos possible to impose boundary conditions
at the interface using either CCM or GCM (represented here in Fig. 8.27).

(a) VOF-CCM (b) JCF (c) SLS-CCM

Figure 8.27: Scalar definition for different representations of the interface. The white and grey
areas are the gas and liquid phase respectively. The white and grey points are the liquid and gas
scalar position respectively.

The study is based on the test case used for the quantities reconstruction in Section 8.2.
The associated static diffusion problem is written as

∇ · ∇Φ =

{ (
4r2 − 4

)
exp

(
−R2

)
if r > R

Φ = −40 if r ≤ R , (8.65)

with either a flux jump, a Dirichlet, Neumann or Robin boundary condition defined respec-
tively as

[∇Φ · nΓ]Γ = −20R+ 2R exp
(
−R2

)
, (8.66)

ΦΓ = 0 , (8.67)

Φ
(1)
Γ,l = −20R , (8.68)

Φ
(1)
Γ,g = −2R exp

(
−R2

)
. (8.69)

Note that the Robin boundary is considered imposing a = c and b = 1 for analogy with the
Robin boundary condition associated to Y given by Eq. (7.70).
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The error is then computed using

L2(Φ) =

√√√√ 1

NΩ

NΩ∑
i=1

(Φi,exact − Φi)
2 , (8.70)

L∞(Φ) = max
i
|Φi,exact − Φi| , (8.71)

with NΩ the number of points in the domain. Note that for the TFF, there are two points
in the mixed cells, one belonging to Ωl and one to Ωg.

8.3.3.1 WDF approach

This section considers the WDF where the static diffusion problem Eq. (8.65) is solved in the
whole domain by imposing Eq. (8.66). The problem is analogous to the resolution of T or P
with a flux jump at the interface [k∇T · nΓ]Γ = ṁ [h]Γ or

[
1
ρ∇P · nΓ

]
Γ

= [u · nΓ]Γ respec-
tively. As explained in Section 7.4.1.1, this jump condition can be treated using different
Dirac definitions. Here, the GFM, the algebraic formulae AF0 defined in Section 8.1.1 and
the VOF-PLIC surface approximations are used to define the Dirac distribution through
Eq. (7.10).

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.28: Mesh convergence of L2(Φ) and L∞(Φ) for the static diffusion problem using a WDF
approach

In Fig. 8.28, the convergence of L2(Φ) and L∞(Φ) for a WDF. The results show a first
to second-order convergence of the error for GFM and VOF-PLIC which are very sharp
while an approach using a smoothed source term instead does not lead to a convergent
methodology.
The next section aims to show the difference of accuracy obtained for a JCF.
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8.3.3.2 JCF approach

In the JCF approach based on GCM for embedded boundaries, the scalar is defined at the
cell center. Then, a node is considered to be in the liquid if φ > 0 and in the gas if φ ≤ 0
as illustrated in Fig. 8.27b. The original discretization of a Dirichlet boundary condition is
based on the work of [68 ] using a dimensional-splitting. For the Neumann or Robin bound-
ary condition, the boundary condition is inherently normal as discussed in Section 8.3.2
and the method presented in [160 ] is used instead relying on a finite-volume discretization
based on the explicit reconstruction of the interface. The methodology presented in [4 ]
is defined here as the original discretization for Neumann and Robin boundary conditions
with the interface reconstruction based on the CD2 method. However, this method needs
to reconstruct the interface explicitly, and the definition domain is not clear anymore as
some interface cells could lye in a different domain which is not compatible with the JCF
representation of the interface. In Fig. 8.27c, the two top cells need to be included in the
liquid linear system even if they actually lie in the gas phase. The domain of definition
then depends on the boundary condition that needs to be applied which is not necessarily
desirable.
To keep a JCF scalar definition for any boundary condition, the normal finite difference
discretization presented in [30 ] is investigated and compared to the original discretization.
Finally, all this boundary condition methodologies are compared to GFM to quantify the
gain or loss in accuracy associated to this method choice.

Original discretization As presented in the literature, all those methods achieve second-
order convergence for all type of boundary conditions as presented in Fig. 8.29. The dis-
cretization using the boundary conditions at the interface is more accurate than the original
GFM method. Hence, the use of boundary conditions have to be prioritized when the quan-
tities of ΦΓ or Φ(1) are available (this is not always the case).

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.29: Mesh convergence of L2(Φ) and L∞(Φ) for the static diffusion problem using the
original JCF approach
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Note that Neumann and Robin boundary conditions require the explicit reconstruction of
the interface using the CD2 method. This implies an important increase in computational
cost.

Ghost-cell method Another discretization is proposed where all boundary condition
types are treated using the general methodology presented in Section 8.3.2. In Fig. 8.30, the
mesh convergence of this alternative methodology is presented. Second-order convergence
is also met with comparable error magnitude as for the original discretization.

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.30: Mesh convergence of L2(Φ) and L∞(Φ) for the static diffusion problem using the
normal finite difference JCF

More specifically, the Dirichlet boundary condition is less accurate than the dimensional-
splitting approach while Neumann and Robin boundary conditions are as accurate as the
one obtained using the cut-cell method.
Then, it is more interesting to use the ghost-cell method for Neumann or Robin bound-
ary conditions as it does not require to reconstruct the interface while keeping a unique
representation of the scalars regardless the embedded boundary condition.

8.3.3.3 TFF approach

The TFF discretization considered here uses the PLIC reconstruction to localize the inter-
face position and defines the phase scalar at its phase barycenter as illustrated in Fig. 8.27a.
This means that mixed cells contain both the liquid and gas information without any nu-
merical mixing. The challenge then relies in a proper definition of the fluxes in a truncated
control volume when:

• The interface representation is not continuous
• The phase barycenter location is different from the cell center

A first discretization is investigated based on the work of [159 ]. Then, some adjustments
are proposed to enhanced the stability and accuracy of the method.
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Original discretization The method proposed in [159 ] uses the flux discretization of
Eq. (8.47) and the wetted areas are obtained with Eq. (8.48). Using such discretization
with either Dirichlet, Neumann or Robin lead to the following L2(Φ) and L∞(Φ) errors
convergence displayed in Fig. 8.31.

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.31: Mesh convergence of L2(Φ) and L∞(Φ) for the static diffusion problem using using
the original TFF method

The Dirichlet methodology leads to a first-order convergence which is due to the first-order
flux approximation at the interface from Eq. (8.52). When a Neumann boundary condition
is applied, the flux at the interface is exact and the method is between first and second-
order. second-order accuracy is still not achieved because of the face flux approximation
based on non-uniform evaluation points. The Robin boundary condition is slightly less
accurate than the Neumann boundary condition which is expected as at is a mixing between
Dirichlet and Neumann. However, some points leads to inconsistent results. After some
investigations, this is due to some mixed cells with all wetted face areas set to zero because of
the approximation Eq. (8.48), then the linear system lead to the simple expression aΦ = c.
As we set a = c, this reduces to Φ = 1 which is inconsistent in most of the cases.
To improve the accuracy and avoid any inconsistent linear systems, a modified discretization
is proposed in this work.

Improvement of the discretization Here, the wetted areas are defined from a weight
average of both PLIC reconstruction wetted areas

Af,i− 1
2

=
Wi−1,jA

−
f,i− 1

2

+Wi,jA
+
f,i− 1

2

Wi−1,j +Wi,j
, (8.72)

withWi,j = Hε
Γ,i,j(1−Hε

Γ,i,j). This interpolation is analogous to the curvature interpolation
of Eq. (5.74) and gives more importance on the wetted areas computed from interface cells
close to 0.5. These cells contain large interface areas which are expected to provide interface
reconstructions less prompt to errors.
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(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure 8.32: Mesh convergence of L2(Φ) and L∞(Φ) for the static diffusion problem using the
proposed improved TFF method

In Fig. 8.32 the L2(Φ) and L∞(Φ) errors convergence do not show the same inconsistency
for the Robin boundary condition. This is due to the new evaluation of wetted areas pro-
posed in Eq. (8.72) which avoids the symptomatic case met in the previous study.
Even with these improvements, the method for applying Dirichlet boundary conditions is
still first-order while the Neumann and Robin boundary conditions provide an accuracy
between first and second-order. To reach second-order, the fluxes close to the interface
would require additional interpolations. However, this would lead to non-symmetric dis-
cretizations with extended stencils which are not ideal for an implicit treatment.
For all these considerations, the improved discretization is used for the VOF framework.

8.3.3.4 Method choice recap for IBM prescription

For SLS methods, the GFM leads to less accurate evaluation of Φ compared to applying
embedded boundaries. Moreover, there are no relevant differences between CCM and GCM
applied to Neumann or Robin boundary conditions. Then, the choice to use the ghost-cell
method for SLS avoids reconstructing explicitly an interface, which is significantly more
expensive. It also allows to keep the JCF for all scalars when applying different boundary
conditions.
For a Dirichlet boundary condition, applying the original dimensional-splitting discretiza-
tion of [68 ] leads to more accurate results and is used in this work.
For VOF methods, the WDF leads to less accurate evaluation of Φ even if the convergence
rate is higher. It is also important to notice that a WDF does not provide information of
both phases in the mixed cells while the TFF considered here for VOF does. Then, the
cut-cell method is used for VOF in the solver with a TFF.
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8.4 Conclusion

In this chapter, the reconstructions of interface quantities used in phase-change simulations
are meticulously investigated through a wide range of numerical experiments. This numer-
ical study leads to important conclusions on the choice of numerical methods to treat the
energy and species equations along with the computation of the evaporation rate:

• VOF and SLS can provide equivalent accuracy by using different numerical strategies.
However, SLS seems to provide the most accurate quantity reconstruction at the
interface.

• The evaporation rate needs to be defined carefully at the position of the interface.
The least-square fit employed in VOF needs to be centered on the interface while an
additional interpolation procedure is required for SLS.

• The resolution of diffusion with embedded boundaries is limited to a one to second-
order accuracy for VOF and to second-order for SLS. This is the limiting accuracy
for the evaporation rate reconstruction which can achieve first-order accuracy at best.

The resulting choices are summed up in Table 8.2

method VOF SLS
δΓ PLIC GFM
ṁ LSL GCM
IBM CCM GCM

Table 8.2: Summary of computation choices for VOF and SLS

In the next chapter, the unified framework presented in Chapter 5 is extended to phase
change accordingly to the above remarks. The phase-change solver feasibility is then demon-
strated on various evaporation test cases from canonical planar Stefan problem to 3D con-
vected droplet.
In the manuscript, the study is restricted to VOF and SLS interface capturing methods
even if most of the points raised in this chapter can be transposed to adapt the unified
framework to ACLS and CLSVOF.
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This final chapter aims to demonstrate the feasibility of accurate evaporation simulations
by using all the conclusions from the literature and the numerical experiments of Chapter 8.
First, the extension of the unified framework to phase change is presented in Section 9.1
with details on the discretization of the different integrations. Then, numerical results are
presented in Section 9.2. They first rely on planar Stefan flow problems, which remove the
numerical errors due to topological sources. This set of numerical experiments is presented
to evaluate the computation accuracy on TΓ, YΓ and ṁ, the coupling with the energy and
species mass fraction equations. Then, a spherical Stefan flow problem is presented on
the 3D cartesian grid to quantify the effects of topology inaccuracies on the phase-change
results. Finally, Section 9.3 presents the convection of an evaporating droplet. This last test
case allows validating the solver on a fully-coupled configuration where convection, surface
tension, diffusion and phase change occurs simultaneously, which is quite challenging.
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9.1 Extension of the unified framework to phase change

The unified framework presented in Section 6.1 is now augmented to take into account phase
change. The method choices are discussed based on the state-of-the-art presented in Chap-
ter 7 and the preliminary numerical experiments presented in Chapter 8. As for the unified
framework without phase change, efforts have been made to keep similar discretizations
for VOF and SLS as much as possible. However, some quantities are computed differently
depending on the interface capturing method, when using the same approximations is a too
important sacrifice in accuracy.

9.1.1 Pressure equation

The pressure equation needs to include the source term due to the continuity equation, this
is done using a WDF for VOF with the following discretization of Eq. (7.7)

∇c ·

(
1

ρn+1
f

∇fPn+1

)
=

1

∆t

(
∇c · u∗ − ṡn+1

ρ

)
, (9.1)

with ṡn+1
ρ defined as

ṡn+1
ρ = −ṁn+1

[
1

ρ

]
Γ

An+1
Γ

VC
(9.2)

with both ṁn+1 and An+1
Γ evaluated using the advanced energy and interface. For SLS,

the information An+1
Γ is not available unless an explicit reconstruction is performed. Here,

a GFM approach is prefered to discretize the velocity jump which leads to a comparable
area approximation as demonstrated in Section 8.1.4. Then, ṡn+1

ρ is obtained with

ṡn+1
ρ = −

[
1

ρ

]
Γ

nΓ · ∇c
(
H0,n+1

Γ,f ṁn+1
f

)
. (9.3)

H0,n+1
Γ,f computation is based on the linear face mapping φf presented in Section 8.1.1

and ṁn+1
f is also mapped to the face using linear interpolation. Note that the mapping

type of ṁn+1
f does not have a huge impact on the results as it is already defined at the

interface when computed from the methodology presented in Section 9.1.4.1. Then a more
sophisticated mapping such as Eq. (7.22) is unnecessary.

9.1.2 Interface transport

Following the discussion of Section 7.3, the interface is transported using the interface
velocity directly to keep a straightforward implementation of the transport algorithm. The
algorithms defined in Section 4.1.1 and Section 4.1.2 are used for VOF and SLS respectively.
However, a slight modification of the SLS algorithm is given to take into account the
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divergence of uΓ. The following equation is solved instead of Eq. (4.2)

φn+1
i,j,k = φni,j,k −

∆t

∆x

(
F

(φ)

i+ 1
2
,j,k
− F (φ)

i− 1
2
,j,k

)
(9.4)

− ∆t

∆y

(
F

(φ)

i,j+ 1
2
,k
− F (φ)

i,j− 1
2
,k

)
(9.5)

− ∆t

∆z

(
F

(φ)

i,j,k+ 1
2

− F (φ)

i,j,k− 1
2

)
(9.6)

+ φni,j,k ∇c · unΓ|i,j,k . (9.7)

The interface velocity is computed from the liquid velocity as

unΓ = unl −
ṁn

ρl
nΓ . (9.8)

According to Section 7.3.1, the computation of unl needs special attention to be divergence-
free. This aspects is crucial in our unified framework based on finite-volume methods
where divergence errors are even more visible. Here, the Stefan flow cancellation presented
in Section 7.3.1.4 is used by solving the following Poisson equation

∇c ·

(
1

ρnf
∇fΨ

)
= −ṡnρ , (9.9)

with ṡnρ discretized either using Eq. (9.2) or Eq. (9.3) depending on the interface capturing
method. Then, the liquid velocity used in the construction of uΓ is retrieved with

unl = un − 1

ρnf
∇fΨ (9.10)

9.1.3 Energy and species

As demonstrated in Section 8.3.3, the use of a WDF for scalars leads to less accurate results
for the diffusion operator. Then, the TFF is used to solve the energy and species equations
based on the CCM of Section 8.3.3.3, while the JCF based on the GCM of Section 8.3.3.2 for
VOF and SLS respectively. This allows to simplify the equations by considering constant ρ,
k, cp and Dv in a given phase. The energy and species equations are accordingly simplified
into three scalars Tl, Tg and Y transported in their respective phase and coupled through
the boundary condition at the interface. The general transport equation for a scalar Φ
belonging to a phase p = l, g is given by

Φn+1
p − Φn

p

∆t
= Lnconv (Φp) + Ln+1

diff (Φp) . (9.11)

In this discretization, Lnconv (Φp) is treated explicitly while Ln+1
diff (Φp) is treated implicitly

to alleviate numerical issues due to the stiff terms arising from interface conditions at the
interface. Moreover, no additional operator is required for the phase change as it is directly
taken into account when solving Eq. (9.11) with prescribed boundary conditions at the
interface.
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9.1.3.1 Convection term Lconv (Φp)

The convection operator is treated using a methodology analogous to Section 5.2.3 proposed
in [159 ]. The idea is to keep consistency between mass and scalar transport. This choice is
made for simplicity of implementation and adaptability to any interface capturing method.
This leads to the following convection operator:

Lnconv (Φp) =
1

α∗p
∇c ·

(
αnpΦn

pu
n
p

)
−

Φn
p

∆t

α∗p − αnp
α∗p

. (9.12)

The additional term in the RHS is a correction of scalar due to the mass change in the cell
during the timestep. The predicted staggered phase volume fraction α∗p is obtained from
the following continuity equation

α∗p − αnp
∆t

= −∇c ·
(
αnpu

n
p

)
. (9.13)

Note that α∗p is only an intermediate evolution variable discarded after applying the con-
vection operator. The initial phase volume fraction αnp needs to be deduced from αnp =
Hε

Γ,p(c
n).

Hε
Γ(f) = f , (9.14)

Hε
Γ(φ) =

1

2

(
tanh

(
φ

2ε

))
. (9.15)

This leads to a smoother version of the effective volume fraction f in the case of SLS,
while it is exactly the volume fraction of fluid in the case of VOF. For the same reasons
as for the momentum conservation presented in Section 6.2.2, it is expected to have better
conservation properties for VOF than for SLS.
The fluxes F (αp) and F (αpΦp) have to be evaluated with the same interpolation for consis-
tency. Moreover, the schemes have to be bounded to avoid any overshoot or undershoot of
phase volume fraction. In the solver, a BHOUC5 interpolation is performed, which switches
to an upwind evaluation when the stencil crosses the interface.

9.1.3.2 Diffusion term Ldiff (Φp)

In the VOF framework, the use of VOF-PLIC reconstruction with a CCM is between first
and second-order accuracy while the GCM exhibits a second-order accuracy for SLS as
presented in Section 8.3.3.
The discretization is reminded for both VOF and SLS frameworks:

• The diffusion operator for VOF based on CCM can be written as

Ln+1
diff (Φp) =

1

αn+1
k

(
∇xc

(
βp
An+1
f,p

Af
∇xf,pΦn+1

p

)

+∇yc

(
βp
An+1
f,p

Af
∇yf,pΦ

n+1
p

)
+
AΓ

VC
F

(Φp)
Γ

)
, (9.16)
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with An+1
f,p the wetted area defined with the modified average of Eq. (8.72), Af the

cell face area, AΓ the interface area and VC the cell volume. βp is the diffusion related
to the phase scalar Φp. F

(Φp)
Γ is the interface flux associated to the embedded bound-

ary condition prescribed at the interface. ∇xf,p and ∇yf,p the non-uniform gradient

operators defined at the wetted face barycenter as (here for ∇xf,pΦ
∣∣∣
i− 1

2
,j
)

∇xf,pΦp

∣∣
i− 1

2
,j

= (Φp,i,j − Φp,i−1,j)
∆xp

‖xp,i,j − xp,i−1,j‖22
, (9.17)

with xp the phase barycenter and ∆xp the displacement in the x-direction between
Ci−1,j and Ci,j .

• The diffusion operator for SLS based on GCM can be written as

Ln+1
diff (Φp) =∇xc

(
βp∇xf,ghΦn+1

p

)
+∇yc

(
βp∇yf,ghΦn+1

p

)
, (9.18)

with ∇xf,gh and ∇yf,gh the ghost gradient operators defined such that ghost values are

used when the stencil crosses the interface. This gives (here for ∇xf,ghΦ
∣∣∣
i− 1

2
,j

with

Ci−1 in the other phase)

∇xf,ghΦp

∣∣
i− 1

2
,j

=
Φp,i,j − Φgh

p,i−1,j

∆x
. (9.19)

Then the ghost values are defined using the methodology detailed in Section 8.3.3.4.
For the energy equation, the interface temperature TΓ is prescribed, while the Robin
boundary condition YΓ

ṁ
ρgDv + Y (1) = ṁ

ρgDv is prescribed for the species mass fraction.
A table to sum up the different terms depending on the scalar is given in Table 9.1 with
θ = |xp − xΓ| /∆x.

Φp Tl Tg Y

βp
kl

ρlcp,l

kg
ρgcp,g

Dv

F
(Φp)
Γ

kl
ρlcp,l

Tn+1
l −TnΓ
‖xl−xΓ‖2

kg
ρgcp,g

Tn+1
g −TnΓ
‖xg−xΓ‖2

ṁn

ρg

(
1− Y n+1

)
Φgh
p

TnΓ +(θ−1)Tn+1
l

θ
TnΓ +(θ−1)Tn+1

g

θ Eq. (B.3) on Y n

Table 9.1: Summary of term definitions for the three scalar equations

Note that only the Robin condition applied on Y using the general normal direction dis-
cretization of Section 8.3.2 is expressed explicitly while all other boundary conditions in-
cludes quantities at tn+1. In the above two-scalar procedure, the value of TnΓ and ṁn are
required and need a closure at the interface.
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9.1.4 Phase change procedure

9.1.4.1 Evaporation rate

The most important quantity in a phase change solver is the evaporation rate ṁ. From
Section 7.1.1, it is clear that using Eq. (1.53) is the most promising approach to handle
general vaporization problems with arbitrarily high evaporation rate as it is always definedd
even when YΓ is close to one.
In this work, the evaporation rate is then defined by

ṁ =
kgT

(1)
Γ,g − klT

(1)
Γ,l

Lvap − [cp]Γ (TΓ − Tsat)
. (9.20)

The normal gradients of temperature T (1)
Γ,l and T (1)

Γ,g are computed using LE or QE extrap-
olation. The numerical test cases presented in Section 9.2 are dedicated to compare them
for evaporation simulations.
Both procedures need the extrapolation of Tnl and Tng in the other phase following the
procedure of Appendix B.1.1. It has been explained in Section 9.1.2 that ṁ is needed in a
narrow band around the interface to properly define the interface velocity uΓ from Eq. (9.8).
Therefore, a constant extension of ṁ from interface cells ΩΓ to a narrow band around the
interface is done using the strategy presented in Appendix B.2.5 with m = 1. After this
step, ṁ is completely defined in the narrow band. The details on the discretization of these
PDE extrapolation can be found in Appendix B.3.

9.1.4.2 Interface temperature and species mass fraction

In the solver, an iterative procedure is employed to obtain simultaneously TΓ and YΓ. This
is done by using the procedure of [159 ] and [205 ] for VOF and SLS respectively which
allows a robust manner to reconstruct the quantities at the interface and does not require
more than 5 iterations to converge using a regula falsi method.
The two methods only differ in the manner to evaluate the gradients to close the system.
They both rely on the discretization of F (Φp)

Γ reported in Table 9.1 for a Dirichlet boundary
condition.

9.1.4.3 Coupling with energy and species equations

The overall phase change procedure needs the combination of three important features:
1. The computation of ṁ;
2. The computation of TΓ and YΓ;
3. The boundary condition at the interface for Tl, Tg and Y ;

The choice of applying a Robin boundary condition on the species instead of a classic
Dirichlet boundary condition YΓ is not innocuous. The reason for that is the tight coupling
between the scalars and the computation of ṁ, TΓ and YΓ. This point is discussed in details
on a planar Stefan flow problem in Section 9.2.1.3 where multiple combinations are tested
to bring out the complexity of choosing a combination which provides a limited coupling
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between the three features. However, the combination given here (and used in the literature
[183; 159 ]) provides a viable phase change procedure for general vaporization problems.
Here, the coupling of ṁ with pressure and interface regression is not discussed as it is
expected to be a fairly low coupling compared to energy and species equations.

9.1.5 Summary of the phase change solver procedure

A summary of the adaptations introduced to use VOF and SLS methods in the same low
Mach solver is provided in Table 9.2 and the full algorithm for a time step is given:

1. Compute ρnf , α
n
l and αng from cn;

2. Compute unΓ following the procedure of Section 9.1.2;
3. Advance interface following one of the algorithm of Section 4.1 to obtain cn+1;
4. Compute nn+1, κn+1

f , H0,n+1
Γ , δn+1

Γ , µn+1, ρn+1
f , αn+1

l and αn+1
g from cn+1;

5. Set uk = un and loop in a RK2-SSP time integration from k = 1 to k = 3
(i) Extrapolate constantly ukl and ukg from uk

(ii) Advance αnl and αng to α∗l and α∗g
(iii) Advance Tnl , T

n
g and Y n to T k+1

l , T k+1
g and Y k+1

(iv) Extrapolate T k+1
l , T k+1

g and Y k+1 following procedure in Section 9.1.4.1
(v) Update ṁk+1, T k+1

Γ and Y k+1
Γ from T k+1

l , T k+1
g and Y k+1;

(vi) Advance un and ρnf to ρ
∗
f and u∗ with the consistent mass and momentum scheme

of Section 6.1.1 and fluxes computed using uk;
(vii) Solve the Pressure from Eq. (9.1);
(viii) Correct the velocity to obtain uk+1 with Eq. (6.17);

The timestep has a stability constraint based on the velocity, the surface tension and the
viscosity :

∆t < min

(
∆x

2‖u‖
,

√
∆x3(ρl + ρg)

(2π)3σ
,

∆x2

4 max(νl, νg)

)
. (9.21)

In most of the application shown hereafter, the surface tension restriction is dominant. The
absence of stability constraint related to energy and species diffusivity is due to the implicit
scheme employed in the unified framework.

method VOF SLS
n VOF-P SLS-D
κ HF FD
κf Eq. (5.74) Eq. (5.70)
Hε

Γ, αp f Eq. (9.15)
θf PLIC Eq. (6.11)
δΓ PLIC GFM
ṁ LSL GCM
IBM CCM GCM

Table 9.2: Summary of computation choices for VOF and SLS
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9.2 Numerical results

In this section, the goal is to investigate the use of linear and quadratic extrapolations for
gradient reconstructions at the interface and the combination choices in the phase-change
procedure presented in Section 9.1.4.3. The relevance of quadratic extrapolation needs to
be clarified as it implies additional PDEs to solve and then more computational time.
For this purpose, planar Stefan flow and spherical Stefan flow problems are investigated.
The planar solutions allow to consider 1D simulations where the interface topology does
not affect the results. Then, the quantity reconstruction at the interface are not prompt to
geometric errors which can be prevalent as demonstrated in Section 8.2.1.1. In the 3D test
case, topology errors are also included and allows to conclude on the extrapolation choice
for the relevant applications implying topology deformations.
In Section 8.2.4, the methods using the functional fitting either based on linear or quadratic
extrapolations SL-LE and LSL-QE have been retained for VOF whereas the ghost-cell
method with or without interpolation of the gradients based on either linear or quadratic
extrapolations NI-LE and LI-QE have been retained for SLS. These methods are inves-
tigated for all test cases and are referred as VOF-LE, VOF-QE, SLS-LE and SLS-QE
respectively.

9.2.1 Planar Stefan problems

The planar Stefan flow problems considered here are successively introduced with different
levels of coupling between mass, momentum, energy and species given in Table 9.3. This
allows a step-by-step validation of the solver along with the impact of the solver choices for
different degree of complexity in the test case investigated.

Case Frank sphere Planar boiling Planar evaporation
c on on on
ṁ on on on
Tl on off on
Tg off on on
u off on on
Y off off on
TΓ, YΓ off off on

Table 9.3: Activated equations of the solver for the planar Stefan problems

All the presented planar Stefan flow problems consist of the same domain of length L, with
wall boundaries at the left Tw, Yw and outflow boundaries at the right T∞, Y∞ as illustrated
in Fig. 9.1. The gas phase is located between the wall and the interface while the liquid
domain is supposed infinite starting from the interface position.
Phase change occurs because of the jump in energy flux or species flux at the interface and
creates the motion of the interface through [67; 76; 7; 159 ]

xΓ = 2γ
√
λt , (9.22)
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Tw
Yw

T∞
Y∞

L

xΓ

Ωg Ωl
TΓ
YΓ

Figure 9.1: Illustration of the planar Stefan problem

with γ a diffusion layer and the thermal diffusivity such that λ = k/(ρcp).
The interface velocity is then deduced from Eq. (9.22):

uΓ = γ

√
λ

t
. (9.23)

By using the fact that ug = 0, the liquid velocity can be computed analytically as

ul = γ

√
λ

t

(
1− ρg

ρl

)
. (9.24)

The analytical solution of temperature and species depends on the Stefan problem and is
given in the corresponding sections. The fluid properties and physical set-up used in these
problems are given in Table 9.4 and Table 9.5 respectively.

Case Frank sphere Planar boiling Planar evaporation
Phase Liquid Gas Liquid Gas Liquid Gas
ρ (kg/m3) 1 1 1000 1 1000 1
µ (Pa · s) 1 1 1 · 10−2 1 · 10−5 1 · 10−2 1 · 10−5

k (W/m/K) 1 1 1 · 10−1 1 · 10−2 1 · 10−1 1 · 10−2

cp (J/kg/K) 1 1 1000 1000 1000 1000
λ (m2/s) 1 1 1 · 10−7 1 · 10−5 1 · 10−7 1 · 10−5

M (kg/mol) – – – – – 0.018
Lvap (J/kg) 1 – 1 · 106 – 1 · 106 –
Dv (m2/s) – – – – – 1 · 10−5

Tsat (K) 0 – 373.15 – 373.15 –
σ (N/m) 1 – 0.01 – 0.01 –

Table 9.4: Physical properties of fluids considered in the planar Stefan problems

In the following, metrics are defined to quantify the errors associated to the 1D test cases.
The L1(Φp) and L∞(Φp) errors of the phase scalars with p = l, g are defined as

L1 (Φp) =

1
Np

∑Np
i=1 |Φp,i,exact − Φp,i,num|

Φ∞
, (9.25)

L∞ (Φp) = max
i

|Φp,i,exact − Φp,i,num|
Φ∞

. (9.26)
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Case Frank sphere Planar boiling Planar evaporation
L (m) 10 1 · 10−3 1 · 10−3

t0 (s) 1 0.1 1 · 10−2

tf (s) 1.5 0.2 0.1
xΓ (m) 0.86 1.4119 · 10−4 7.3204 · 10−5

TΓ (K) 0 373.15 296.12
T∞ (K) 0.5 373.15 323.15
Tw (K) 0 383.15 296.12
YΓ – – 0.22106
Yw – – 0.2
Y∞ – – 1
γ 0.43 0.0706 0.11575

Table 9.5: Physical set-up for the planar Stefan problems

Np corresponds to the number of cells belonging to the phase p. Φp,i,exact is provided by
the analytical solution while Φp,i,num is the numerical value provided by the solver at the
end of the simulation.
The mass error can be expressed in term of the error in the interface position E(xΓ) as

E(xΓ) =
|xΓ,exact − xΓ,num|

L
, (9.27)

with L the domain length xΓ,exact the exact interface position and xΓ,num the numerical
value at the end of the simulation.
Finally, the phase velocity up with p = l, g,Γ error can be expressed as

E(up) =
max
i
|up,exact − up,i,num|

up,exact
, (9.28)

with up,exact the exact phase velocity and up,i,num the numerical value in Ci at the end of
the simulation.
It is very important that the different quantities of the physical set-up given Table 9.5
are taken with a large number of significant digits to retrieve convergent behaviours. In
fact, the errors are already very low in 1D test cases and then become very sensitive to
initialization errors.

9.2.1.1 Planar Frank sphere

The first test case aims to evaluate the accuracy of both ṁ and the diffusion problem with
a moving boundary condition. The planar Frank Sphere is a class of problem where two
fluids of same properties (see Table 9.4) are separated by an interface. It has been used in
[67 ] to assess a fourth order accurate scheme for the heat equation. In this mathematical
problem, the momentum equation is not relevant as [ρ]Γ = 0, the velocity is set to zero and
does not evolve with time. Moreover, the species mass fraction equation is not considered
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neither because both fluids have the same properties, thus Y = 1 in the domain. Then the
temperature at the interface is at saturation and is fixed to TΓ = Tsat given in Table 9.4.
As the wall temperature Tw is also set to Tsat, the gas temperature is not solved neither
and is simply set to Tg = Tsat. The evolution of liquid temperature is then given by the
expression

Tl = Tw +
T∞ − TΓ

erfc (γ)

(
erfc (γ)− erfc

(
x

2
√
λlt

))
, (9.29)

with the values of Tw, T∞ and TΓ given in Table 9.5 and λl given in Table 9.4. Therefore,
phase change occurs because of the jump in energy flux at the interface and is driven by
∂Tl
∂x

∣∣∣
Γ
. The simulation starts with the analytical temperature of Tl at t0 = 1 s with the

initial position of the interface xΓ = 0.86 m and stops at tf = 1.5 s.

(a) Convergence of L1(Tl) (b) Convergence of L∞(Tl)

(c) Convergence of E(xΓ) (d) Convergence of E(uΓ)

Figure 9.2: Mesh convergence of errors for the planar Frank sphere problem

In Fig. 9.2, the errors associated to the planar Frank sphere problem are provided. First,
L1(Tl) and L∞(Tl) exhibits a second-order trend for the coarse meshes in Fig. 9.2a and
Fig. 9.2b while it saturates from Nx = 160 when using quadratic extrapolations (VOF-QE
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and SLS-QE). In fact, using a quadratic extrapolation on a second-order field at most does
not lead to second-order accuracy as illustrated in Section 8.2.4 which could explain this
saturation. On the other hand, the gradient reconstructions based on linear extrapolation
(VOF-LE and SLS-LE) converge between first and second-order. It can be observed that
no convergence is retrieved for E(xΓ) and E(uΓ) in Fig. 9.2c and Fig. 9.2d when using
quadratic extrapolations. This lack of convergence can be explained by looking at the
interface position evolution with time represented in Fig. 9.3. In fact, the first mesh Nx

already provide a position evolution which is very close to the exact solution. Therefore, the
error related to linear extrapolation is predominant for the LE-based cases which allows the
first-order convergence. For the quadratic extrapolation, as the error related to gradient
reconstruction is drastically reduced, another source of error could become predominant
with mesh resolution leading to the non-convergent behaviour. This source of error could
come from the boundary condition applied to liquid temperature which is not at infinity or
the time integration.

(a) VOF-LE (b) VOF-QE

(c) SLS-LE (d) SLS-QE

Figure 9.3: Interface position evolution xΓ(t) for the planar Frank sphere problem

Overall, even if the QE-based gradient reconstructions do not converge in the high resolution
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limit, it provides more accurate quantities compared to LE-based gradient reconstructions
for low resolutions. Also, SLS is globally more accurate than VOF for all metrics.
From these observations, the choice of extrapolation is not clear, on the one hand, linear
extrapolation provides a convergent behaviour but on the other hand, quadratic extrapo-
lation is more accurate for all meshes considered here. However, for a test case with more
source of errors as the planar boiling, it is not clear if the quadratic extrapolation still
provides more accurate results. At this stage, no conclusion on the best choice can be made
and both extrapolations are still compared in the next study about planar boiling.

9.2.1.2 Planar boiling

A step further to general vaporization is to consider a physical problem with a density
jump between both phases. Then, the momentum equation is solved with a velocity jump
caused by phase change at the interface. The planar boiling problem was first considered
in [76 ] and investigated in [7; 159 ] where liquid ans gas are considered to be the fluid
and its vapour with fluid properties of Table 9.4. Then, the interface is at the saturation
conditions of the pure liquid and the species equation is not relevant to solve. The interface
temperature is fixed to TΓ = Tsat. The temperature at infinity is set such that T∞ = Tsat,
therefore, the liquid temperature is set to Tl = Tsat and does not require to be solved in
opposition to the Frank sphere problem. The evolution of gas temperature is then given by
the expression

Tg = Tw +
TΓ − Tw
erf (γ)

erf

(
x

2
√
λgt

)
, (9.30)

with the values of Tw and TΓ given in Table 9.5 and λg given in Table 9.4. Phase change still
occurs because of the jump in energy flux at the interface and is driven by the evaluation
of ∂Tg

∂x

∣∣∣
Γ
. The simulation starts with the analytical temperature of Tg at t0 = 0.1 s with

the initial position of the interface xΓ = 1.4119 · 10−4 m and stops at tf = 0.2 s.
In Fig. 9.4, the errors associated to the planar boiling problem are provided. As opposed
to the Frank sphere problem, a clear second-order convergence is observed in Fig. 9.4a ,
Fig. 9.4b and Fig. 9.2c for L1(Tl), L∞(Tl) and E(xΓ) when using quadratic extrapolations
unless for theNx = 640 simulation using SLS-QE. For the linear extrapolation, the expected
first-order convergence is observed. The order of convergence is not clear for E(ul) in
Fig. 9.4d even if a second-order tendency can also been observed for quadratic extrapolations
whereas it is first-order for linear extrapolations.
For that test case, the use of quadratic extrapolation leads to a serious improvement in
accuracy. It is quite surprising as the system of equations induces more sources of error due
to the mass and momentum equations and quadratic extrapolations are not expected to
improve the order of convergence as demonstrated in Section 8.2.4. Now, it is interesting to
pursue the same study for evaporation where all equations and closures have to be explicitly
solved.
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(a) Convergence of L1(Tg) (b) Convergence of L∞(Tg)

(c) Convergence of E(xΓ) (d) Convergence of E(ul)

Figure 9.4: Mesh convergence of errors for the planar boiling problem

9.2.1.3 Planar evaporation

Finally, the general evaporation problem of [159 ] is presented where the gas part of the
domain is a mix of inert gas and liquid vapour. It means that the species mass fraction
equation evolves in time and needs to be solved in the gas. The analytical solution for
species mass fraction evolution is

Y = Yw +
YΓ − Yw
erf (γ)

erf

(
x

2
√
Dvt

)
, (9.31)

with Yw and YΓ given in Table 9.5 and Dv given in Table 9.4. Note that γ is the same layer
for species and temperature as the Lewis number Le = λg/Dv = 1 in this case.
In such case, the quantities at the interface are not imposed explicitly and need to be
retrieved from the phase-change procedure. The exact value of TΓ and YΓ can be derived
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analytically with the additional relation from Eqs. (1.53) and (1.54) as in [159 ]:

TΓ = Tw +
Lvap

cp,g

√
Dv
λg

YΓ − Yw
YΓ − 1

, (9.32)

and using Clausius-Clayperon to close the system. This leads to TΓ = 296.12 K and
YΓ = 0.22106.
As TΓ is computed numerically, it does not match exactly the initial liquid temperature
Tl = T∞. Then the liquid temperature also needs to be solved to take into account the
potential derivations of TΓ from T∞.
The evolution of gas temperature is still

Tg = Tw +
TΓ − Tw
erf (γ)

erf

(
x

2
√
λgt

)
, (9.33)

with the values of Tw and TΓ given in Table 9.5 and λg given in Table 9.4. Phase change still
occurs because of the jump in energy flux at the interface and is driven by the evaluation
of ∂Tg

∂x

∣∣∣
Γ
. The simulation starts with the analytical temperature of Tg at t0 = 0.01 s with

the initial position of the interface xΓ = 7.3204 · 10−5 m and stops at tf = 0.1 s.

Full phase change procedure study As the interface quantities TΓ and YΓ are not
imposed anymore and needs an explicit reconstruction at the interface, this last test case
allows to investigate the phase-change procedure. The aim of this study is to bring out the
impact of the different combinations of phase change procedure discussed in Section 9.1.4.3.
Some key points of the following discussion are already notified in [159 ].
First, the Dirichlet boundary condition applied to Y is investigated by trying different
quantity reconstruction at the interface. Then, the same study is performed with Robin
boundary condition applied to Y for comparison.
Different reconstructions of YΓ and TΓ are investigated for this choice of embedded boundary
conditions at the interface:

• A first-order extrapolation E1(Y ) presented in Section 7.1.2 leading to method Q1(Y )
• A second-order extrapolation E2(Y ) presented in Section 7.1.2 leading to method
Q2(Y )

• An iterative process based on the general system presented in Section 7.1.1 with the
gradient reconstruction of [159 ] and [205 ] for VOF and SLS respectively. This leads
to method Q3(Tl, Tg, Y )

In the results shown here, the evaporation rate is computed either from the temperature
M1(Tl, Tg) or the species mass fractionM2(Y ).
All the analysis rely on the interface position error E(xΓ) as it is sufficient to detect incon-
sistent behaviour of the phase-change procedure.
First, the phase change procedure is designed to impose Dirichlet boundary conditions for
all scalars Tl, Tg and Y . The boundary conditions are then direct functions of the quantities
at the interface Q, this is expressed as Tl|∂Ω (Q), Tg|∂Ω (Q) and Y |∂Ω (Q).
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(a) M1(Tl, Tg) (b) M2(Y )

Figure 9.5: Mesh convergence of E (xΓ) for the planar evaporation problem with different Q and
M for Dirichlet boundary conditions applied to Y

In Fig. 9.5, the mesh convergence of E (xΓ) is given. As expected, the reconstruction based
on Q1(Y ) leads to an inconsistent scheme both withM1(Tl, Tg) andM2(Y ) (see Fig. 9.5a
Fig. 9.5a respectively). This is due to the strong coupling between Q1(Y ) and Y |∂Ω (Q)
as YΓ is directly set to the closest point to the interface. Then the diffusion operator of Y
is inconsistent in the case where the cell center belongs to the gas phase: in such case, the
interface flux is always F (Y )

Γ = 0.
However, the extrapolation procedure allows to retrieve convergent behaviours. For SLS,
using Q2(Y ) relaxes the coupling but can lead to inconsistent fluxes too in the limit cases
where the interface is close to a cell center. For VOF, analysis on Q2(Y ) is not as simple
because of the least square system solved to extrapolated the values, however relaxation of
the coupling is observed usingM2(Y ) while it is inconsistent usingM1(Tl, Tg).
Finally, the use of Q3(Tl, Tg, Y ) drastically lowers the coupling as the quantities depend on
all scalar fields and not only on Y . Then the results are improved and retrieve a convergent
behaviour.
The same phase change procedure is used but with a Robin boundary condition for Y with
the mesh convergence of E (xΓ) given in Fig. 9.6.
This new choice of boundary condition creates a dependency on the evaporation rate com-
puted withM instead of the quantities at the interface. The boundary condition applied
to Y is then a function of Y |∂Ω (M) either computed from M1(Tl, Tg) or M2(Y ). As
illustrated in Fig. 9.6a, this modification of the boundary condition allows to be consistent
using any of the quantity methodologies for both VOF and SLS if the evaporation rate
is retrieve from M1(Tl, Tg). This is explained by the low coupling between the boundary
condition obtained from the temperature fields and the quantity reconstruction obtained
from extrapolation of Y . However, whenM2(Y ) is used instead, a tight coupling is created
between the boundary condition applied on Y and the field Y itself. This only leads to
inconsistent schemes as shown in Fig. 9.6b.
The above study is summarized in Table 9.6 where all well-suited procedures for phase
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(a) M1(Tl, Tg) (b) M2(Y )

Figure 9.6: Mesh convergence of E (xΓ) for the planar evaporation problem with different Q and
M for Robin boundary conditions applied to Y

change are represented with X while inconsistent procedures are tagged by X.

Dirichlet Robin
M1(Tl, Tg) M2(Y ) M1(Tl, Tg) M2(Y )

VOF
Q1(Y ) X X X X
Q2(Y ) X X X X
Q3(Tl, Tg, Y ) X X X X

SLS
Q1(Y ) X X X X
Q2(Y ) X X X X
Q3(Tl, Tg, Y ) X X X X

Table 9.6: Sum-up of well-suited (X) and inconsistent (X) procedures for phase change.

Note that a well-suited method leads to convergent behaviour but with huge disparity in
the accuracy. Therefore, they need to be compared to pick the most accurate one. In the
present solver, the choice has been to useM1(Tl, Tg) by default, because it gives a natural
way to handle both boiling and evaporation without problems. Then, some additional
phase-change procedures does not need to be considered. The choice has been made to
compare four methods for both SLS and VOF: Dirichlet boundaries with Q3(Tl, Tg, Y ) and
Robin boundaries with all Q methods.
Looking at mesh convergence of the different metrics in Fig. 9.7, it is clear that Q1 provides
the less accurate results. Then, depending of the metrics, Robin boundaries with either
Q2 or Q3 give the most accurate results for both VOF and SLS. One exception is the
liquid temperature in the case of a VOF with Dirichlet boundary conditions: the liquid
temperature is almost exact. In fact, the phase change procedure in that case is designed
to have discrete consistence between the reconstructed values TΓ, YΓ and the embedded
Dirichlet boundaries.
As for the boiling, the convergence of E(ul) is not clear even if it shows a global first-order
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(a) Convergence of L1(Tg) (b) Convergence of L∞(Tg)

(c) Convergence of L1(Y ) (d) Convergence of L∞(Y )

(e) Convergence of L1(Tl) (f) Convergence of L∞(Tl)

(g) Convergence of E(xΓ) (h) Convergence of E(ul)

Figure 9.7: Mesh convergence of errors for the planar evaporation problem with different phase-
change procedures
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trend.
Finally, regarding implementation and computational efforts, Q2 is better than Q3 for a
comparable accuracy. From the above considerations, using Robin boundary conditions for
species with the Q2 reconstruction seem to be the best trade off between implementation
complexity, efficiency and accuracy.

Gradient reconstruction study Now that the phase change procedure as been chosen,
the study of Section 9.2.1.1 and Section 9.2.1.2 can be performed to compare linear and
quadratic extrapolations.
Again, the use of quadratic extrapolation for the VOF procedure leads to a second-order
convergence for all error metrics as shown in Fig. 9.8. However, this is not the case for the
SLS which is between first and second-order accuracy. By looking at Figs. 9.8c and 9.8d, the
SLS-QE method is less accurate than SLS-LE which can explain the lack of second-order
convergence for the other quantities as they are all coupled.
On the other hand, the linear extrapolation leads to an expected first-order convergence of
the quantities as already presented in [159 ].
Overall, the same conclusions can be drawn for the general evaporation test case: using
quadratic extrapolation to reconstruct the gradient at the interface drastically improves the
results and provides a better convergence rate.

9.2.1.4 Conclusion

The investigation of 1D test cases raised the key points of a well-suited procedure for phase
change with accurate gradient reconstructions:

1. A phase change procedure has to be composed carefully to limit the coupling between
the scalars: some combinations have been demonstrated to be inconsistent.

2. The way to compute TΓ and YΓ have an important impact on the evaporation solver
accuracy.

3. The gradient reconstruction based on quadratic extrapolations is always more accu-
rate compared to linear extrapolation. While it can suffer from lack of convergence
in the high resolution limit for the Frank sphere, it is increasing the convergence rate
for boiling and general evaporation which constitutes a serious improvement.

The evaporation solver has shown convergent behaviour for all test cases investigated here
demonstrating its feasibility for controlled and accurate 1D phase-change simulations.
Now, a spherical Stefan problem is studied to quantify the multidimensional effects on
phase change accuracy. The use of linear and quadratic extrapolations is still investigated
as it could lead to different conclusions.
Note that in the multidimensional test cases presented, Dirichlet boundary conditions are
used instead of Robin for the species mass fraction as it seemed to provide more robust
phase-change simulations.
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(a) Convergence of L1(Tg) (b) Convergence of L∞(Tg)

(c) Convergence of L1(Y ) (d) Convergence of L∞(Y )

(e) Convergence of L1(Tl) (f) Convergence of L∞(Tl)

(g) Convergence of E(xΓ) (h) Convergence of E(ul)

Figure 9.8: Mesh convergence of errors for the planar evaporation problem with different gradient
reconstructions
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9.2.2 Static droplet evaporation

The static droplet evaporation is a spherical Stefan problem where topology evaluation
takes an important role in the gradient and quantities reconstruction. The test case is also
expected to be impacted by the ability of the interface tracking method to regress through
transport. In 1D, the transport was almost exact, while in multidimensional test cases the
interface capturing method has a huge impact. Here the goal is to assess the VOF and SLS
solvers in a general multidimensional evaporation problem with convection effects limited
to the Stefan flow induced by the evaporation process.

symmetry

sy
m
m
et
ry

L

D
2

Tbc
Ybc

TΓ YΓ

Figure 9.9: Illustration of the static
droplet evaporation

Case Stefan spherical
Phase Liquid Gas
ρ (kg/m3) 700 1
µ (Pa · s) 3.26 · 10−4 1 · 10−5

k (W/m/K) 1.61 · 10−1 5.2 · 10−2

cp (J/kg/K) 2000 1000
M (kg/mol) 0.058 0.029
Lvap (J/kg) – 2.3 · 106

Dm (m2/s) – 5.2 · 10−5

Tsat (K) 329 –
σ (N/m) 0 –

Table 9.7: Physical properties of fluids in the
static droplet evaporation

An acetone droplet of diameter D = 0.1 mm is placed in quiescent air and experience
evaporation due to the gas conditions at infinity T∞ = 700 K and Y∞ = 0 with the fluid
properties reported in Table 9.7. The problem of an isolated droplet evaporating in a
gas at rest has been widely investigated in he literature. By assuming a quasi-steady gas
phase consisting of the vapour and an inert gas, a pure liquid phase with uniform and
stationary temperature, an analytical solution can be derived for temperature and species
mass fraction fields along with droplet diameter evolution. The derivation of the solution
can be found in [183; 4 ] and leads to the analytical solutions

Tg = T∞ +
Lvap

cp,g

(
1− (1−BT )

(
1− d

DΓ

))
(9.34)

Y = 1 + (Y∞ + 1)

(
1− (1 +BM )

(
1− d

DΓ

))
, (9.35)

with d = (x− x0)2+(y − y0)2+(z − z0)2 the diameter coordinate, DΓ the droplet diameter,
BT and BM the Spalding numbers related to heat and mass transfer respectively such that

BT =
cp,g (T∞ − TΓ)

Lvap
, BM =

Y∞ − YΓ

YΓ − 1
. (9.36)
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The temperature Tl is expected to be equal to the interface temperature Tl = TΓ.
As for the planar Stefan flow, the value of TΓ and YΓ can be derived analytically with the
additional relation from Eqs. (1.53) and (1.54):

TΓ = T∞ −
Lvap

cp,g

(
1−

(
Y∞ − 1

YΓ − 1

)Le)
, (9.37)

with Le = λg/Dv the Lewis number. By using and Clausius-Clayperon to close the system,
TΓ = 294.94 K and YΓ = 0.43993. The Spalding numbers can be deduced accordingly:
BT = BM = 0.7819.
Finally, the diameter evolution is

DΓ =

√
D2

0 −
4ρgDm

ρl
ln (1 +BM ) t , (9.38)

and the evaporation rate

ṁ =
2ρgDv ln (1 +BM )

DΓ
. (9.39)

The corresponding evaporation time for this test case with an initial diameter D0 = 1 ·10−4

m is then τe = 0.029126 s.
As the test case is performed in 3D on a cartesian grid, only a eighth of the domain is
consider by using symmetries as illustrated in Fig. 9.9 to allow a convergence study with
reasonable computational time. Moreover, the domain size is reduced to [0, 4D0]3 such that
boundary conditions are not far enough from the droplet to be considered at infinity. Then,
the boundary condition for temperature and species mass fraction are imposed by using
the exact solution evolving in time Tbc(t,x) and Ybc(t,x) as in [183 ] instead of forcing T∞
and Y∞ which would lead to erroneous results. At these boundaries, the flow is allowed to
exit freely by imposing zero pressure boundaries.
The simulation is performed during tf/τe = 2.5× 10−3 for four different meshes leading to
ND = 4 to ND = 32 cells in the diameter for the different methods studied in the planar
Stefan flow problem.
The error metrics used here are based on the slope of the d2 law Se = 1/τe and the error
on ṁ defined as

E (Se) =

∣∣∣∣∣∣∣1−
1−

(
Dnum
D0

)2

Setf

∣∣∣∣∣∣∣ (9.40)

E (ṁ) =
|ṁexact − ṁnum|

ṁexact
(9.41)

with Dnum and ṁnum the diameter obtained numerically at tf with the simulation and
ṁexact the exact evaporation rate at tf .
As the study aims to quantify the accuracy of the phase-change procedure in a multi-
dimensional configuration, the potential perturbations caused by the spurious behaviour of
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the liquid velocity close to the interface is mitigated by imposing κ = 0 and uΓ = −ṁ/ρlnΓ.
However, the true value of ul is still used in the transport of Tl. This simplification alleviate
potential numerical issues arising from errors in the ul reconstruction.

(a) Convergence of E (ṁ) (b) Convergence of E (Se)

Figure 9.10: Mesh convergence of E (ṁ) and E (Se) for the static droplet evaporation with different
extrapolations

The convergence of E (ṁ) and E (Se) are given in Fig. 9.10. The VOF-LE method converge
to first-order for both metrics while VOF-QE loses accuracy for the finest grid ND = 32.
Otherwise, VOF-QE leads to a slight improvement in accuracy for the coarse meshes which
is not important compared to the gain in the simulation of planar Stefan problems of
Section 9.2.1.3. Then multidimensional effects are predominant for the VOF methodology
and quadratic extrapolations do not seem to substantially improve results. This observation
can explain the choice of linear extrapolation in the work of [159 ].
For SLS, Fig. 9.10a exhibits higher accuracy compared to VOF. Again, the conclusions are
different from the planar test cases where VOF showed the most accurate results. This gives
insight in the ability of Level Set to build more accurate reconstructions in multidimensional
test cases as it was already the case for the normal and curvature. Moreover, the use
of quadratic extrapolations lead to a significant gain in accuracy compared to the linear
extrapolations as already observed in [183 ] using the same methodology.
However, the first two points in Fig. 9.10b exhibits errors higher than 100% of the expected
slope Se which can be considered as inconsistent solutions. This can be explained by looking
at the temporal evolution of the d2 law in Fig. 9.11. The slopes are always under-predicted
for VOF as shown in Fig. 9.11a while in SLS the slope is drastically over-predicted for
ND = 4 and ND = 8 in Fig. 9.11b. Then SLS approach is unable to predict the regression
correctly for low resolutions. This is explained by the reinitialization step which implies a
mass loss which is more important than the regression due to phase change. For complete-
ness, a plot without evaporation has been added in Fig. 9.12 to show mass conservation
convergence of the SLS method. It is obvious that the test cases with N/D = 4 and 8
cells in the diameter have a regression driven by the reinitialization. However, for better
resolutions, the slope is very close to the expected regression when the reinitialization does
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(a) VOF (b) SLS

Figure 9.11: d2-law for VOF and SLS methods for ND = 4 ( ), ND = 8 ( ), ND = 16 ( )
and ND = 32 ( ).

Figure 9.12: Effect of reinitialization for ND = 4 ( ), ND = 8 ( ), ND = 16 ( ) and
ND = 32 ( ).

not lead to significant mass loss.
To conclude, the multidimensional effects are more visible for VOF than SLS in term of
accuracy of ṁ. This fact was well-known for the reconstruction of n and κ whereas it was
not clear for ṁ without this type of comparisons. However, the mass loss induced by reini-
tialization completely jeopardizes a good prediction of phase change through evaporation
when using low resolutions while VOF can still produce reasonable results even if the error
is still very large. From all these considerations, the quadratic extrapolations will be used
in the application cases as it gives the most accurate predictions of phase change for the
range of resolutions used here.
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9.3 Convected droplet

Now that canonical test cases of evaporation processes have been explored in 1D and 3D,
a 2D application is presented implying convection effects. A similar test case has already
been presented in [29 ], where a water droplet with D0 = 5 · 10−4 m is placed at the top
(2.5D0, 19D0) of a domain [0, 5D0]× [0, 20D0] with an initial velocity of 1 m/s. The setup
is represented in Fig. 9.13 with the associated fluid properties for water and air reported
in Table 9.8.
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Figure 9.13:
Configuration of
the static droplet
evaporation

Case Stefan spherical
Phase Liquid Gas
ρ (kg/m3) 1000 1.226
µ (Pa · s) 1.137 · 10−2 1.78 · 10−5

k (W/m/K) 6 · 10−1 4.6 · 10−2

cp (J/kg/K) 1000 4180
M (kg/mol) 0.029 0.018
Lvap (J/kg) 2.3 · 106 –
Dm (m2/s) – 2 · 10−5

Tsat (K) 373.15 –
σ (N/m) 0.0728 –

Table 9.8: Physical properties of fluids in the static droplet evapora-
tion

The left and top boundary conditions are taken as a slipping wall and noslip wall respectively
with Tw = 873 K and Yw = 0 while the lower boundary is a free outlet. The right boundary
is a symmetry to reduce the computational time.
The initial solution is a uniform temperature in the liquid Tl = 350 K while Tg and Y
are initialized by imposing the spherical Stefan flow solution presented in Section 9.2.2
adapted to the boundary conditions of the present problem. This initial solution is not
totally consistent with the physical solution of a cylindrical static droplet evaporating but
it provides a decent initial solution for starting the simulation.
Hence, this last case shows the capability of the solver to handle convection effects leading
to non-uniform vaporization process and more interactions with the flow. The test case is
performed on a low, medium and high resolution mesh corresponding to ND = 10, 20 and
40 respectively.
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The mass, kinetic energy and evaporation rate of the droplet are defined as

Ml =

NΩl∑
i=1

αl,iρlVi (9.42)

Kl =
1

2

NΩl∑
i=1

αl,iρl‖ul,i‖2Vi (9.43)

ṁ =

∑NΓ
i=1 ṁiAΓ,iVi∑NΓ
i=1AΓ,iVi

(9.44)

with αl,i the volume fraction of liquid and AΓ the interface area obtained from the PLIC
reconstruction in the case of VOF or from a simplex decomposition for SLS and ul,i com-
ponents defined as average of face velocities ul.

9.3.1 Kinetic energy analysis

In a first attempt, the simulation is performed with the choices presented in Section 9.1.1
for VOF and SLS with special attention given on the conservation properties of mass and
kinetic energy.
In Fig. 9.14d, the normalized massMl/Ml,0, normalized kinetic energy divided by the mass
KlMl,0/Kl,0Ml and ṁ are represented with respect to time until the droplet is about to
exit the domain. As demonstrated in Section 9.2.2, the SLS observes mass loss which re-
mains important for the high resolution mesh with about 5% of mass loss at the end of the
simulation in Fig. 9.14b. This mass loss is not due to phase change but transport errors.
This has also been observed for the same test case in [29 ] where an ACLS method is em-
ployed to improve this behaviour. Hence, it makes difficult to quantify phase change in a
dynamic simulation using SLS if the mesh is not resolved enough. For the VOF method,
in Fig. 9.14a, the mass loss is driven by evaporation and seems to converge with the mesh.
As for the static evaporation test case of Section 9.2.2, the evaporation is under-predicted
for the coarse meshes. At this point of the analysis, the results agree with the test cases of
Section 9.2.
On the other hand, the kinetic energy contained in the droplet is increasing for all the
meshes excepted the high resolution mesh of VOF where it is almost constant. In fact, the
kinetic energy is expected to decrease because of the drag force applied by the ambient air.
The first rise of kinetic energy observed in Fig. 9.14c could be explained by the rise of
ṁ showed in Fig. 9.14d due to the initialization which is not exactly corresponding to a
cylindrical Stefan flow. However, this initial rise decreases quickly and cannot be the cause
of the constant rise in kinetic energy in the droplet.
Another source of kinetic energy could come from the interaction of the boundary condi-
tions with the induced Stefan flow which can propel the droplet in the opposite side of the
upper wall as demonstrated in [218 ]. However, this source of kinetic energy is negligible
compared to the initial kinetic energy corresponding to a droplet translating at 1 m/s. It is
also expected to be less present when the droplet move away from the wall. Thus it cannot



243

(a) VOF Ml/Ml,0 (b) SLS Ml/Ml,0

(c) KlMl,0/Kl,0Ml (d) ṁ

Figure 9.14: M/M0, KlMl,0/Kl,0Ml and ṁ temporal evolution for VOF and SLS for the convected
droplet evaporation using the standard treatment of velocity in the imposition of ∇·un+1. The three
meshes ND = 10 ( ), ND = 20 ( ) and ND = 40 ( ) are represented.

explain this constant gain in kinetic energy through the simulation.
To make sure about this, the same test case has been performed without initial velocity in
the droplet where the propulsion due to the Stefan flow was observed. However, the phys-
ical time required for enough transfer of momentum in the droplet to induce a significant
displacement is reached far after the end of the present simulation.
This kinetic energy behaviour is then due to a source of error in the numerical treatment
of the momentum.

9.3.2 Velocity jump treatment

In fact, the poor behaviour observed in this first simulation could arise from the effect of
the velocity jump treatment for the imposition of ∇ · un+1. In Section 7.2.1.1, a point
is made about the importance of velocity average when the momentum is solved with a
WDF. In several works [195; 74; 122; 179 ], emphasis is put on the proper derivation of the



244 Chapter 9 - Simulation of droplet evaporation

one-fluid equations of Chapter 2 where the velocity is mass-averaged uM in the momentum
equation while the divergence condition is written as a volume average ∇ · uV . Ensuring
∇·uV,n+1 in the Poisson equation where ∇·uM,∗ is obtained from mass-averaged velocities
is not completely correct and can lead to inconsistent results.
In the unified framework, the momentum is treated with a WDF for both VOF and SLS
leading to uM while the treatment of ∇ · un+1 is done without any consideration on the
average nature of the quantities. It is then interesting to implement a mass-averaged
reformulation of ∇ · un+1 consistent with the prediction step to see the impact on the
simulation results.
Two discretizations are proposed to solve this problem, the first comes from [179 ] presented
in Section 7.2.1.1. The expression relies on the wetted face areas Af and takes the form

ṡρ = −ṁ
[

1

ρ

]
Γ

ρlρg

[
(A−u −A+

u )nx

ρ−u ρ+
u

+
(A−v −A+

v )ny

ρ−v ρ+
v

]
, (9.45)

with superscript − and + corresponding to the left and right faces respectively and ρ−f and
ρ+
f the wetted densities obtained from an average with the wetted areas. Then the wetted

areas need to be retrieved from the simplex decomposition in the case of SLS while it is
available in VOF from the PLIC reconstruction. In order to avoid such reconstruction and
to be more consistent with the projection scheme, the correction Eq. (9.45) is reformulated
in term of staggered density ρn+1

f and volume fractions θn+1
f summed up in Table 9.2 instead

of the wetted densities and the wetted areas

ṡρ = −ṁ
[

1

ρ

]
Γ

ρlρg

[
(θ−u − θ+

u )nx

ρ−u ρ+
u

+
(θ−v − θ+

v )ny

ρ−v ρ+
v

]
. (9.46)

The use of ρn+1
f densities is consistent with the choice in the Poisson equation Eq. (9.1)

where it appears as the variable coefficient.
Then all the formulations are compared on the convected droplet test case in Fig. 9.15:

• The initial velocity jump treatment which is volume averaged (VA)
• The expression of Eq. (9.45) used in [179 ] (MA1)
• The expression of Eq. (9.46) proposed in this work (MA2)

It turns out that the reformulations MA1 and MA2 have an important impact on the
momentum transfers at the interface. While the MA1 seems to already fix the problem
in VOF in Fig. 9.15a, it reduces the spurious kinetic energy increase in the case of SLS
in Fig. 9.15b even if the tendency is still not the one expected. On the other hand, the
new formulation MA2 consistent with the Poisson equation allows the SLS method to lose
kinetic energy instead of artificially gaining. This last formulation is then the one used for
a deeper study of this test case.

9.3.3 Final methodology

First, snapshots for different times are presented in Fig. 9.16 for the medium mesh. The
temperature remains very high at the head of the droplet leading to a strong vaporization
rate while at the trail, a smoother evolution is observed leading to a vaporization rate
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(a) VOF KlMl,0/Kl,0Ml (b) SLS KlMl,0/Kl,0Ml

Figure 9.15: KlMl,0/Kl,0Ml temporal evolution for VOF (left) and SLS (right) for the convected
droplet evaporation using three different methodology in the imposition of ∇·un+1. The three meshes
ND = 10 ( ), ND = 20 ( ) and ND = 40 ( ) are represented.

Figure 9.16: Snapshots of the convected droplets at different times (interval of 0.002 s) with the
medium mesh. The VOF method is at the left while SLS is at the right.

closer to a static evaporation problem. Note that the main difference observed here is the
velocity of the droplet which is faster for VOF than for SLS. This can be explained by the
difference of conservation properties of the capturing methods demonstrated in Chapter 4
and Chapter 6.
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(a) VOF (b) SLS

Figure 9.17: Zoom on the droplet for the highest mesh ND = 40.

Then, a zoom is performed in the droplet to observe the recirculation and the liquid temper-
ature in Fig. 9.17. As in [183 ], a recirculation is observed for the VOF droplet in Fig. 9.17a
which is expected to produce a lower temperature at the center of the vortex. This is not
clearly observed here but the temperature difference is under 0.1% and variations might not
be well-captured with this mesh size. However, the SLS shows two vortices in Fig. 9.17b
which might arise from spurious transfers of kinetic energy at the interface.
For a closer look at the mass and momentum conservation, the same temporal evolutions
as for the first attempt are plotted in Fig. 9.18
The modification in the velocity jump treatment does not seem to impact drastically the
other metrics. Indeed, the mass loss is still driven by the transport errors in the case of SLS
in Fig. 9.18b while it shows a convergence behaviour for VOF in Fig. 9.18a. In Fig. 9.18d,
the evaporation rate shows similar values to the one obtained with the VA method. Hence,
the issue of using a proper velocity jump formulation would not have been detected without
looking at the kinetic energy metric in this specific test case.
Finally, some metrics are provided about the evaporation rate spatial distribution. As
the convection effect blow the vapour from the head of the droplet, the temperature and
species field are non-uniform leading to a heterogeneous evaporation rate along the droplet
azimuthal angle. The azimuthal profile of ṁ is plotted in Fig. 9.19 for the medium mesh
at different times corresponding to the snapshot times of Fig. 9.16. It is clear that the
phase-change procedure is able to represent non-uniform evaporation starting from a static
Stefan flow problem. Both VOF and SLS shows similar tendency with a slightly supe-
rior evaporation rate for SLS. Moreover SLS is able to provide a perfectly uniform initial
azimuthal profile of ṁ while VOF shows a little slope because of gradient reconstruction
errors.

9.3.4 Conclusion

This last test case enlightens the importance of using numerical schemes consistent with
the initial two-phase flow derivation used. The ambiguity is more critical when using a
WDF as the quantities have a different meaning depending on the equation considered. As
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(a) VOF Ml/Ml,0 (b) SLS Ml/Ml,0

(c) KlMl,0/Kl,0Ml (d) ṁ

Figure 9.18: M/M0, KlMl,0/Kl,0Ml and ṁ temporal evolution for VOF and SLS for the convected
droplet evaporation using MA2. The three meshes ND = 10 ( ), ND = 20 ( ) and ND = 40
( ) are represented.

the projection method implies a tight coupling between the continuity equation and the
momentum equation through the Poisson equation, it is then crucial to make sure that all
operators and quantities are written using the same averages. The correct derivation of
∇ · un+1 has shown to have a huge impact on the momentum transfer at the interface.
Finally, the use of WDF applied to SLS seems to be inappropriate for accurate simulations
of two-phase flow with phase change as it cannot correctly reproduce the physics of the
flow in the droplet. This was not observed in the study of Chapter 6 as the WDF and
JCF are almost equivalent when velocity is continuous across the interface. In the case of
phase change, the velocity jump implies additional averaging of quantities when using a
WDF, which are not straightforward to handle using SLS. One explanation arises from the
derivation itself in Chapter 2 where it has been shown that the transport of φ is not related
to the transport of the indicator function. Then, the terms at the interface are closed
through ad-hoc considerations. Thus, the JCF seems to be the most-suited choice for SLS
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(a) VOF (b) SLS

Figure 9.19: Azimuthal profile of ṁ for different time. 0◦ corresponds to the trail of the droplet
while 180◦ is the head of the droplet.

as it does not require closures but only the accurate imposition of jump and boundary
conditions at the interface. This is in agreement with the literature where WDF and JCF
applied to SLS have been compared in [219 ] for boiling where JCF showed superior results.

9.4 Conclusion

To conclude this last chapter, the extension of the uniform framework has been presented,
evaluated on canonical test cases and demonstrated on a convected droplet. The different
elements of the phase-change solver have been chosen with special attention given on the
reconstruction of ṁ and coupling of the governing equations. The numerical results pre-
sented here lead to interesting key points on the phase-change procedure.
First, the use of quadratic extrapolation seems to substantially improve the accuracy of the
solver even if the scalar fields are at most second-order accurate. This allows to making
systematic choice for phase-change simulations using the unified framework. Nevertheless,
in multidimensional configurations, the errors arising from topological representations of
the interface can become predominant in the computation of ṁ, and in such a case, the
use of linear extrapolation seems to provide more accurate results for VOF. It can be ex-
plained by analogy to the curvature considerations made in Chapter 6. As SLS provides a
more accurate topology representation compared to VOF, it is less prompt to errors in the
reconstruction of ṁ.
The second point raised in the numerical results is the importance to reduce as much as
possible the coupling between the different scalar equations to obtain a robust and consis-
tent phase-change procedure. More specifically, it has been demonstrated that some choice
combinations do not lead to convergent simulations of phase change even in 1D.
Finally, the mass loss through reinitialization is prohibitive for correct evaporation estima-
tions. Luckily, this mass loss is not predominant when a sufficient resolution is used. But
this implies a serious constraint on the mesh size if several droplets are to be investigated
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in a finite domain.
From all these considerations, an application to a convected droplet has been presented
with mesh convergence where the mass loss is more severe than for a static case. Again,
this shows the limits of SLS for evaporation simulations when the resolution is not impor-
tant enough. In this test case, the momentum conservation has also shown discrepancies in
the results of VOF and SLS. While VOF conserves momentum, SLS cannot maintain the
droplet velocity and a shift between VOF and SLS droplet position increases with time.
This last test case also brought out the issues related to a WDF applied to SLS. Even using
a correction on the velocity jump treatment that is consistent with the WDF of velocity, the
results are still not in agreement with the expected physical behaviour of the velocity field.
It is then clear that JCF is the most-suited method for two-phase simulations with phase
change in light of the numerical experiments presented in this chapter and the literature.
To circumvent the issue of accuracy loss in the evaluation of ṁ for VOF and the mass and
momentum conservation issues for the SLS, a next step could be to adapt the CLSVOF
method to the extended unified framework.





Conclusion and perspectives

Conclusions on the present work

The work presented in this manuscript proposes a step-by-step methodology to build an
incompressible two-phase flow solver with phase change based on a sharp interface method.
The solver is built sequentially by first transporting the interface, then coupling it to an in-
compressible solver without phase change and finally adding the phase change in the solver.

First, the general governing equations of fluid mechanics were applied to evaporating in-
compressible two-phase flows using an infinitely thin and massless interface representation
in Chapter 1.
Then, Chapter 2 showed the derivation of the two-phase flow equations applied to a finite-
volume framework with emphasis on the closure of the different contribution terms at the
interface. The VOF method naturally arises from the finite-volume average of the two-fluid
equations, while the LS method results in numerical closures introduced to avoid issues
with the transport of the volume fraction. The LS method then constitutes a framework
with much degree of freedom on the numerical closures at the interface with the disad-
vantage of losing conservation properties on the mass, momentum and energy. While this
observation directly comes from the proper derivation of the equations, it has been widely
investigated through numerical experiments with increasing complexity at different stages
of the manuscript. At this point in the manuscript, the choice of an interface capturing
method to solve the set of equations was unclear and needed to be investigated.

For this aim, Chapter 3, a thoroughgoing review of interface capturing methods was pro-
vided, resulting in the choice of four interface capturing methods that are worth comparing:
VOF, SLS, ACLS and CLSVOF. They all expose advantages and drawbacks regarding con-
servation properties, topology accuracy, efficiency and implementation complexity.
Chapter 4 presented a comparison of these four interface capturing methods on imposed
velocity fields. The VOF and CLSVOF methods showed the best results in shape accuracy
and mass conservation as they are inherently conservative, while SLS provided comparable
results with ACLS. Moreover, the use of SLS implies a significant decrease in computational
time and implementation complexity compared to ACLS. At this stage, VOF and CLSVOF
seemed to be the most promising methods for two-phase flow simulations. However, they
needed to be evaluated in more relevant flow configurations where the interface is coupled
to the flow.
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To this aim, the methodology to couple the interface to an incompressible solver without
phase change was detailed in Chapter 5. It focused on the conservation of momentum and
the modelling of surface tension. At the end of this chapter, a unified framework was pre-
sented to adapt the four interface capturing methods to a robust and consistent two-phase
flow solver. This framework includes a sharp transport of the interface, a well-balanced
surface tension discretization and a consistent mass and momentum transport, which al-
lows capillary-driven simulations with high-density ratios.
This solver was evaluated using the four interface capturing methods in Chapter 6. The
analysis was separated into multiple test cases devoted to the different points of attention
disclosed in Chapter 5. First, the magnitude of spurious currents for both static and dy-
namic test cases was quantified. It led to interesting results regarding the accuracy of the
curvature computation for the different methods. SLS provided the most accurate curva-
ture, and is able to keep very low spurious currents even in a dynamic configuration, while
all other methods provided non-convergent behaviours in this challenging test case. Then
the momentum conservation was evaluated with the density ball translation. VOF and
CLSVOF showed momentum conservation of about one order of magnitude better than
SLS. On the other hand, ACLS improved conservation compared to SLS but still remained
less conservative than VOF and CLSVOF. Finally, a droplet collision and a shear layer
were presented to demonstrate the feasibility of the solver on complex configurations. In
these applications, the most promising capturing method was the CLSVOF, as it was able
to conserve mass and provide robust computation of the curvature.

Finally, the last part of this manuscript was dedicated to the incorporation of phase change
in the solver. In Chapter 7, the different challenges related to phase-change simulations
were presented based on a state-of-the-art. In fact, phase change implies solving the en-
ergy equation and the species mass fraction of vapour in the gas with associated flux
jumps. Moreover, the velocity is discontinuous at the interface and requires special numeri-
cal treatments. Finally, the interface capturing method needs to take correctly into account
the regression due to phase change in its numerical methods. All these challenges led to
investigate the reconstruction of the evaporation rate and other quantities at the interface.
This was the topic of Chapter 8 where scrupulous numerical experiments were performed to
analyze and choose well-suited reconstruction methods for the quantities at the interface.
Using an SLS method, the most accurate way to reconstruct gradients at the interface relies
on a ghost cell method, while VOF methods provide accurate gradients by using functional
fitting through least-square minimization. Both methods can either base their reconstruc-
tion on linear or quadratic extrapolated fields. The numerical experiments did not allow to
conclude on the most-suited type of extrapolation when applied to fields that are already
entailed with numerical errors.
The study of planar and spherical Stefan flow problems in Chapter 9 allowed to show that
in most of the cases, the quadratic extrapolation provided the most accurate results. In
this same chapter, a numerical study showed that the coupling between energy and species
equations had to be done with care to obtain a consistent phase-change procedure. From
all these considerations, a solver based on VOF and SLS has been built and tested on the
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convection of an evaporating droplet. This last test case exposed momentum conservation
issues when the velocity jump was ensured numerically. The source of this problem was
detected and arisen from the two-phase derivation used in this work based on a whole do-
main formulation. It also showed that a whole domain formulation applied on SLS did not
constitute an adapted methodology for accurate phase-change simulations.

Overall, the work of this manuscript leads to a better understanding of numerical meth-
ods applied to the two-phase flow governing equations. The numerical experiments have
demonstrated the complexity and subtlety in the manipulation of numerical methods to
solve two-phase flows with phase change. The constraint imposed by this framework ex-
poses the intimate relation between the choice of an interface representation (the interface
capturing method) and the equation formulation (the closure of the contributions at the
interface).
As VOF naturally derives from the two-fluid and one-fluid formulations applied to a finite-
volume framework, the closure of the interface contribution in the governing equations can
be written directly. The derivation of the same one-fluid and two-fluid equations for LS is
way more challenging and has not been presented yet in the literature. Instead, LS makes
use of assumptions to close the system of equations that are based on numerical consider-
ations. This gives the illusion that the closure of interface contributions comprises a large
degree of freedom when using LS. This idea is even confirmed by the test cases presented
without phase change where all interface capturing methods were performing well and pro-
vided the same physical results.
However, this manuscript have exposed the numerical issues arising from the use of the
unified framework with LS when phase change occurs. Indeed, when the same framework
is applied to VOF and LS, the results highly depends on the handling of the velocity jump
in the continuity equation and it is then difficult to close this term when LS is using a
whole domain formulation. It comes to the conclusion that the addition of phase change
introduces implicitly more numerical constraints than it seems. VOF can use already well-
known derivations of one-fluid and two-fluid formulations, while LS relies better on a jump
condition formulation with appropriate numerical closures.

Perspectives

The first perspectives of this manuscript revolve around the improvement of the numerical
methods applied to two-phase simulations with phase change. This can come from two
different lines of attack:

• A better understanding of the mathematical derivation of the governing equations for
two-phase flows using the Level-Set class of methods.

• An improvement of interface transport and reconstruction of interface quantities from
numerical considerations.

Indeed, the conclusions of the manuscript encourage to clarifying the derivations of the equa-
tions using LS. With a proper derivation of two-fluid and one-fluid formulations adapted
to the transport of LS, the ambiguity on interface contribution closures is removed. Then,
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the numerical issues arising from these inconsistencies could be avoided, which significantly
improves the robustness and accuracy of the numerical methods associated.
Then, the solver presented in this manuscript could take into account further adjustments
of the literature to improve the behaviour of interface capturing methods in the mesh limit.
For example, the works on the redistanciation presented in Chapter 3 could be integrated
into the solver to limit the mass loss induced by numerical errors when using SLS. Moreover,
SLS could make use of a jump condition formulation to alleviate the closure issues related
to the mass transfer at the interface as in [183 ]. On the other hand, CLSVOF has been
promising in the study of two-phase flows without phase change and its extension to phase
change could lead to a powerful methodology able to provide the best of the two worlds:
VOF conservation properties and SLS accurate reconstructions. This idea is not new and
has already been done for boiling applications in [220; 147 ] and for evaporation processes
in [126 ] with encouraging results.

From the perspective of studying droplet evaporation in turbulent flows, the present method-
ology finds some limits because of the incompressibility assumption. It is seriously limiting
as it requires to have open boundaries for the well-posedness of the physical problem. This
can be treated by injecting turbulence from an inlet as performed in the PhD thesis of Alis
[4 ] or modifying the global gas density as proposed in [159 ]. However, to widen the range
of possibilities for the physical configurations, the low Mach formulation of the equations
could be used instead of the incompressible system considered here. The inclusion of com-
pressibility in the low Mach solvers showed a recent growth of interest with different works
such as the simulation of evaporation droplets in HIT in [52 ] where the gas is supposed
to be compressible. Other works also take into account the compressibility of the liquid,
which allows for bubble inclusions in [126 ]. Finally, a pressure-based all-Mach solver has
been developed recently to perform simulations of supersonic jets [101 ].

Finally, another perspective arises directly from the framework of this research project which
encompasses both sharp and diffused interface methods for the study of two-phase flows.
The derivation of VOF two-fluid has a lot of similarities with the multifluid models, and
ideas from the sharp interface methods to reconstruct accurate quantities at the interface
could be used for the closure of the multifluid equations. Some developments in this vein
have been presented in [45 ] where a low-Mach multifluid model is derived and applied to
two-phase flow simulations with mass transfer.
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Ghost Fluid Method

A.1 General ghost fluid method

The Ghost Fluid Method (GFM) was first introduced by Fedwik et al. [59 ] for treating multi
material flows. It has been generalized later to the variable coefficient Poisson equation with
jump conditions in [117 ]. Let us consider a quantity Φ with a variable coefficient β in a
domain Ω = Ωl ∪ Ωg with jump at the interface Γ in the zeroth and first order normal
derivatives aΓ and bΓ respectively. β can be discontinuous at the interface. However it is
supposed continuous in Ωl and Ωg. For the present work, it is supposed piecewise constant
with a value in the liquid βl and a value in the gas βg. Then, the Poisson equation applied
to Φ reads

∇ · (β∇Φ) = S in Ω , (A.1)
[Φ]Γ = aΓ at Γ , (A.2)
[β∇Φ · nΓ]Γ = bΓ at Γ , (A.3)

with nΓ the normal pointing outside the interface (from the liquid to the gas phase) and S
a source term.
If aΓ = bΓ = 0, then a classical second order discretization of Eq. (A.2) for a given compu-
tational cell Ci leads to
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In the presence of jump at the interface, GFM introduces the notion of ghost values Φgh

such that at each point in the domain

Φgh
i,l = Φi,g + ai if Ci ∈ Ωg . (A.5)

Φgh
i,g = Φi,l − ai if Ci ∈ Ωl . (A.6)
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with ai the interface jump defined at the cell center xi. A Taylor series expansion of [Φ]Γ
around xΓ at an arbitrary point x leads to

[Φ](x) = [Φ]Γ + (x− xΓ) · [∇Φ]Γ +O
(
(x− xΓ)2

)
. (A.7)

Then, rewriting the first derivative jump

[β∇Φ]Γ = βl ∇Φl|Γ − βg ∇Φg|Γ = βl [∇Φ]Γ + [β]Γ ∇Φg|Γ . (A.8)

The same decomposition can be written in term of βg and ∇Φl which leads to 2 different
definitions for [∇Φ]Γ:
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=
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∇Φl|Γ . (A.10)

Let us consider now that Ci ∈ Ωl and Ci+1 ∈ Ωg. In this case, the face flux from the gas
perspective is written as
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, (A.11)

and Eqs. (A.7) and (A.9) in that configuration yields:
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with θ = xΓ−xi
∆x .

By using this last expression in Eq. (A.11), one can write
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This last equation can be rearranged to obtain an expression for the face flux
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with β̂ an effective β value defined as

β̂ =
βgβl

βgθ + βl(1− θ)
(A.15)

The same relation can be written from the liquid perspective
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It is interesting to show that differencing Eqs. (A.14) and (A.16) yields exactly the correct
jump in the first derivative bΓ
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)
bΓ = bΓ . (A.17)

A.2 Discrete equivalence between WDF and JCF for surface
tension
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Figure A.1: Ghost fluid representation of pressure

Let us show that WDF and the JCF are equivalent for surface tension modelling if no
phase-change occurs.
Rewriting Eq. (5.3) at xi for the 1D case represented in Fig. A.1 gives

1
ρ
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2

∂P
∂x

∣∣
i+ 1

2
− 1

ρ
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∂P
∂x

∣∣
i− 1

2

∆x
=

1

∆t

∂u∗
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∣∣∣∣
i

. (A.18)

The interface lies between Pi and Pi+1 with liquid to the left, hence, one can inject Eq. (5.50)
into Eq. (A.18) leading to

1
ρ
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2

Pi+1−Pi
∆x − 1

ρ
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Pi−Pi−1
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ρi+ 1
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[P ]Γ
∆x2

=
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∆t

u∗
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2

− u∗
i− 1

2

∆x
. (A.19)

By rewriting the jump term and noticing that the first term corresponds to the Laplacian
operator in a WDF

∇ ·
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, (A.20)

it follows
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Finally, one can show that u∗
i+ 1
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− ∆t
ρ
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[P ]Γ
∆x = u∗,WDF
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2
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It is the proof that
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B.1 Overview of the methods

When dealing with phase-change simulations, some quantities are very local to the interface.
Most of the time, their accurate computation is only possible in ΩΓ. However they can be
needed in a narrow band around the interface to avoid numerical issues.
It is also useful to define ghost values in the other phase from extrapolation instead of
using the original GFM approach. For example, the temperature field T cannot rely on the
temperature jump at the interface to define ghost values as [T ]Γ = 0. Then, extrapolation
is needed to define ghost values in the other phase.
This extrapolation is usually performed normal to the interface as it is the natural direction
of propagation of an information from the interface.

B.1.1 PDE approach

Aslam [9 ] introduced a multi-dimensional extrapolation approach relying on the resolution
of successive PDEs. The idea is to extrapolate quantities of a known region (here the liquid)
Ωl to an unknown region (here the gas region) Ωg separated by an interface Γ.

Constant extrapolation The constant extrapolation of a quantity Φ from Ωl to Ωg can
be achieved solving the following PDE in pseudo time τ

∂Φ

∂τ
+ χgn · ∇Φ = 0 (B.1)
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this results in the propagation of the quantity Φ at the speed of the normal n only in Ωg.
The indicator function χg is defined as

χg(x) =

{
0 if x ∈ Ωl

1 if x ∈ Ωg
(B.2)

Φ is preserved in the known region and information is only propagated in the unknown
region.

Linear extrapolation In the previous paragraph, the constant extrapolation has been
presented where a PDE had to be solved in pseudo-time. Now, the procedure for a linear
extrapolation is presented where the normal slope of Φ is also taken into account for the
propagation in the normal direction. The PDE described by Eq. (B.1) is slightly modified
to force the propagation with a slope instead of a constant propagation

∂Φ

∂τ
+ χg

(
n · ∇Φ− Φ(1)

)
= 0 (B.3)

with Φ(1) the first derivative in the normal direction ∂Φ
∂n . The source term Φ(1) is a forcing

term such that the steady state of Eq. (B.3) respects n · ∇Φ = Φ(1).
As Φ(1) is not initially available in Ωg, it is also deduced from Ωl through Eq. (B.1) but
applied to Φ(1)

∂Φ(1)

∂τ
+ χgn∇Φ(1) = 0 (B.4)

this results in the propagation of the quantity Φ(1) at the speed of the normal n only in Ωg.

Arbitrary order extrapolation The same procedure can be applied to an arbitrary
high order extrapolation of Φ. One need to solve the successive PDEs defined by

∂Φ(q)

∂τ
+ χg

(
n · ∇Φ(q) − Φ(q+1)

)
= 0 (B.5)

with q the order of the derivative. To obtain a m order extrapolation, m successive PDEs
need to be solved. The first PDE is solved for Φ(m) imposing Φ(m+1) = 0 leading to a
constant extrapolation of the mth order derivative of Φ.

Numerical discretization This method requires to define a normal n in the whole
domain or at least in a narrow band where the quantity is needed in the unknown domain.
In a Level Set framework, the normal is naturally defined everywhere through differentiation
of φ from Eq. (5.56). However, for a VOF framework, the normal nΓ is only defined in
ΩΓ and has to be retrieved in pure cells to apply such PDE approach. This can be done
by constructing a signed distance function from the isocontour f−1(0.5) as in [192; 27 ].
Another approach presented in the PhD Thesis of Kunkelmann [102 ] passes the data from
the mixed cells to the neighbouring cells by simple average iteratively. The algorithm is



Appendix B - Normal extrapolation 261

presented hereafter in Appendix B.1.3.
Then, the normal derivatives are retrieved successively using centred finite differences

Φ(q+1) = n · ∇Φ(q) (B.6)

In this expression, only known values of Φ(q) are used. It means that the numerical rep-
resentation of χg varies with q. To illustrate this, a quadratic extrapolation of Φ in Ωg is
represented in Fig. B.1. The function Φ is available at the left of Γ from Ci−3 to Ci.

Γ

Γ

Γ

Φi−2 Φi

Φ(1)
i−1Φ(1)

i−3

Φ(2)
i−2Φ(2)

i−3

Φ(1)
i−2

Φi−1Φi−3H(0)
g

H(1)
g

H(2)
g

Φ(1)
i−1 = Φi − Φi−2

2Δx

Φ(2)
i−2 = Φ(1)

i−1 − Φ(1)
i−3

2Δx

Figure B.1: Definition of the successive H(q)
g for a quadratic extrapolation

The computation of Φ(1) requires only available values of Φ in the centred difference stencil.
Φ(1) is then only defined in the cells from Ci−3 to Ci−1.
For the second order derivative Φ(2) requires only available values of Φ(1) and can be com-
puted from Ci−3 to Ci−2.
Overall, this means that the domain size in which a derivative is defined decreases for
ascending order q. The discrete Heaviside H(q)

g can be defined as follows

H(q)
g (x) =


0 if ‖x− xΓ‖2 ≥ q∆m and x ∈ Ωl

1 if ‖x− xΓ‖2 < q∆m and x ∈ Ωl

1 if x ∈ Ωg

(B.7)

Another way around proposed in [198 ] for quadratic extrapolation is the use of H(0)
g for the

3 PDEs. The second order normal derivative Φ(2) is retrieved using full tensor-projection
formulation instead of Eq. (B.6) which only implies Φ values

Φ(2) = n · ∇ (n∇Φ) (B.8)



262 Appendix B - Overview of the methods

one-sided second order finite differences are used for first and second order derivatives.
This form has also been discussed in [127 ]. Both formulations Eqs. (B.6) and (B.8) are
equivalent in the continuous sense. However, authors argued that the use of the full tensor-
projection formulation avoids additional errors in the case where normal n is obtained from
numerical differentiation of c.
Finally, the spatial discretization of Eq. (B.5) uses an upwind scheme based on the direction
of the normal. The initial work of Aslam [9 ] used a first order upwind scheme while in
other works such as [127 ] second order upwind scheme is used. Note that this choice can
affect the overall accuracy of the procedure. In deed, McCaslin et al. [127 ] noticed that
using a first order upwind discretization prevents a third order convergence rate with the
mesh size for quadratic and higher extrapolation order. For the same reason, a second order
upwind discretization does not allow fourth order accuracy using a cubic extrapolation.
For the temporal discretization one can use Euler or RK schemes for higher order temporal
integration. This choice will impact the convergence speed of the method to the steady
state without modifying the accuracy of the final extrapolated field.
∆τ can be chosen as for the reinitiailization step of Eq. (3.37).
Finally, the equations could be solved until a threshold is reached for the steady state, but
most of the time, the quantity is only needed in a narrow band around the interface, and
only few timesteps are required. This allows to enhance efficiency without losing accuracy
close to the interface.

B.1.2 FMM approach

The PDE approach can suffer from efficiency issues if the number of iterations to perform
is high to reach the steady state. Another way around which was constructed for efficient
computation of signed distance is the FMM.
As for the distance computation presented in Section 3.2.1, it is also possible to consider
the static form of the Eikonal equation with a speed ∇s

∇s · ∇φ = 0 (B.9)

The equation Eq. (B.9) was first solved in [197 ] to build an extension velocity defined
initially at the front for the transport of the signed distance. This methodology was built
to avoid the reinitialization step for SLS by transporting the signed distance directly with
the extension velocity field well-defined everywhere in the domain.
The idea has been extended to constant extrapolation of quantities only defined at the
interface in [80 ] by solving Eq. (B.9). This procedure is called "redistribution" of the given
quantity.
In [127 ], Eq. (B.9) is extended to higher order extrapolation by considering the static form
of Eq. (B.5) which is the Eikonal equation with a speed ∇s = ∇Φ(q)/Φ(q+1)

∇Φ(q) · ∇φ = Φ(q+1) (B.10)

this equation can be solved using the same front propagation methodology originally de-
veloped to solve Eq. (3.47). Note that the phase indicator χg is taken into account by only
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distributing the quantity Φ(q) in the gas domain from the front.
The discrete form of Eq. (B.10) gives the following equation in 2D

S−x

(
∂Φ(q)

∂x

−
∂φ

∂x

−
)

+ S+
x

(
∂Φ(q)

∂x

+
∂φ

∂x

+
)

+ S−y

(
∂Φ(q)

∂y

−
∂φ

∂y

−
)

+ S+
y

(
∂Φ(q)

∂y

+
∂φ

∂y

+
)

= Φ(q+1) (B.11)

with the switches terms S±x defined as

S+
x =

{
1 if max

(
∂φ
∂x

−
,−∂φ

∂x

+
, 0
)

= −∂φ
∂x

+

0 otherwise
(B.12)

S−x =

{
1 if max

(
∂φ
∂x

−
,−∂φ

∂x

+
, 0
)

= ∂φ
∂x

−

0 otherwise
(B.13)

again, the derivatives ∂
∂x

− and ∂
∂x

+ are approximated with left and right biased first order
finite differences.
A complete study of both PDE and FMM based extrapolations is provided in [127 ] where
FMM shows huge efficiency improvements compared to the PDE approach even in parallel
implementations. However, the computation is limited to second order accuracy because
of the first order accuracy of the derivatives used to solve Eq. (B.11).

B.1.3 Neighbour propagation approach

A last approach, used by Kunkelmann [102 ] to pass data (here temperature gradients) from
pure cells of a given phase to the interface cells in a VOF framework.
First, a narrow band is defined by tagging the closest cells to the interface. An example is
given in Fig. B.2 where the number in each cell represents the band layer.
If the cell belongs to Ωg, then the band layer tag is a negative integer while it is positive
in Ωl. For a VOF representation, the index can be zero in the case of mixed cells. This is
because in such case, the cell does not belong to any phase.
From this tagging, an interface cell with nb = 0 is a receiving cell which requires passing
informations. This is done by a simple average of data from any surrounding cells with
nb = 1 for the case of liquid quantities. For a given cell Ci, this gives

Φi =

∑
j∈I1

Ωl

Φj∑
j∈I1

Ωl

1
(B.14)

with I1
Ωl

the set of indices of neighbours cells belonging to the liquid first band (nb = 1).
In [123 ], the receiving cell retrieves the quantity using weighted average of neighbouring
cells from a 5× 5 stencil. For a given receiving cell Ci, this gives

Φi =
∑
j∈I2

Ωl

WjΦj (B.15)
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Figure B.2: Narrow band tagging for VOF and LS representation. The numbers correspond to
the cell narrow band layer. The cell colours correspond to the different narrow band layers. Dark
grey cells belong to ΩΓ.

with I1
Ωl

the set of indices of cells belonging to the liquid first and second bands (nb = 1 or
nb = 2) of the 5× 5 stencil and the weights Wj a function of the distance between Ci and
Cj and the collinearity between the normal in Cj and the direction of the displacement line
between Ci and Cj . This gives higher importance to collinear cells with the lowest distance
to the receiving cell.
Finally, a quite similar approach is used in an unstructured LS framework [187 ] where the
passing of data from cells with nb = 2 to cells with nb = 1 is performed using a second
order Taylor expansion.

B.2 Study of PDE approach accuracy

One important feature of a phase-change solver is the extension of phase information in
the other phase through normal extrapolation. This is done either by using a VOF or a
SLS representation. As the method requires to solve successive PDEs, the temporal and
spatial discretization are investigated. Then the impact of the normal computation on
the normal extrapolation accuracy is discussed as VOF and SLS does not provide the same
normal accuracy. Finally, linear extrapolation with imposed boundary conditions presented
in Section 8.3.2 are compared to the general linear extrapolation.
The extrapolation is performed from Ωl to Ωg delimited by the circle of radius R = 0.2
centered at (0.5, 0.5) in a domain [1× 1]. The target scalar field Φ is defined as in [30 ]

Φ = exp (4 (x− 0.5) (y − 0.5)) . (B.16)

In the following, only the extrapolation in a narrowband of five cells in the interface vicinity
is considered as it is the only relevant values in a solver implementation. Indeed, scalar
values are not needed everywhere and are just used as ghost cells close to the interface to
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avoid using erroneous values on the other side of the interface.
The error is then computed only in the narrow band as

L2(Φ) =

√√√√ 1

NB

NB∑
i=1

(Φi,exact − Φi)
2 , (B.17)

L∞(Φ) = max
i
|Φi,exact − Φi| , (B.18)

with NB the number of points in the narrow band.

B.2.1 Time integration

For the time integration of Eq. (B.5), the pseudo-time step ∆τ and number of iteration
Nite is required in order to obtain a steady state in the narrow band around the interface.
The pseudo-time step has to respect the CFL condition

∆τ <
∆x

Ndim∑
i
ni

. (B.19)

For safety, it is simply taken as

∆τ =
∆x

Ndim
, (B.20)

with this time step restriction, the information propagating to a narrow band of length
5∆x requires approximately 10∆τ to reach the steady state. In practice, depending on
the threshold, the residual requires more than 10 iterations to converge to a reasonable
threshold.
The time integration is performed with a SSP-RK2 scheme.
In Fig. B.3, the residual of r(Φ) = L1

(
Φn+1 − Φn

)
in the narrow band is computed with

respect to the number of iterations and stops at r(Φ) = 10−12. It can be observed that
for Nite = 20, the residual is already very low. However, for very meticulous convergence
studies such as 1D test cases, the choice is to reach the threshold r(Φ) = 10−12. In the
more complete test cases, Nite = 20 is used as it has no impact on the results.

B.2.2 Spatial discretization of the PDE

Now that the time integration has been defined, the discretization of Eq. (B.5) is evaluated
as it could have an impact on the accuracy of the results. In this study, three discretizations
of the gradient are considered:

• A first order upwind scheme for all successive (UW1)
• A second order upwind scheme for all successive (UW2)
• A first order upwind scheme for q = m and a second order upwind scheme for all

order derivatives q < m. (UWH)
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Figure B.3: Residual convergence of Φ in a narrow band around the interface

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure B.4: Mesh convergence of L2(Φ) and L∞(Φ) for the different gradient approximations
using m = 1 ( ), m = 2 ( ) and m = 3 ( ).
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The convergence of L2(Φ) and L∞(Φ) is presented in Fig. B.4. The use of UW1 and UW2
does not seem to affect them = 1 andm = 2 extrapolation even if just a small improvement
is observed for UWH and UW2. However, for m = 3, the use of UW1 does not lead to the
expected third order convergence of the error. In [127 ], it has already been noticed that
using a first order upwind discretization prevents a third order convergence rate with the
mesh size for quadratic and higher extrapolation order.
A reason for using UWH instead of UW2 is to prevent any extrema creation on Φ(m). For
example, a constant field subject to some spurious errors close to the interface could lead
to a non-uniform field in the extrapolated area because of the larger stencil.
For the following studies and in the solver, the UWH is used in order to have both accuracy
and robustness of the extrapolation method.

B.2.3 Normal computation impact

The normal is not evaluated in the same manner using VOF or SLS representation of the
interface. For SLS, this is obtained by simple differentiation of φ, however, for VOF, the
normal is only available at the interface using ELVIRA. The normal used in the PDE
procedure needs to be defined in the narrow band and for VOF two different methods are
considered. In total, the three following methods are compared:

• The simple neighbour propagation presented in Appendix B.1.3 (VOF-P)
• The differentiation of the signed distance φ (SLS-D)
• The differentiation of a signed distance function reconstructed from the isocontour
f−1(0.5) as in [192; 27 ]. (VOF-D)

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure B.5: Mesh convergence of L2(Φ) and L∞(Φ) for the different normal approximations using
m = 1 ( ), m = 2 ( ) and m = 3 ( ).

In Fig. B.5 are presented L2(Φ) and L∞(Φ) for different normal approximations for m = 1
to m = 3. It is interesting to notice that the normal approximation has an impact on
extrapolation accuracy. The very basic method VOF-P does not lead to a very accurate
normal field and then the accuracy of the extrapolated field is also reduced both in L2(Φ)
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and L∞(Φ). This discrepancy is increasing with the order m. This normal computation
can be improved by using the VOF-D procedure. It is able to retrieve the same results
as the SLS normal for the coarse meshes. However this is not the case for m = 3 where
the convergence rate is decreasing. This convergence saturation can be explained by the
dependence on the mesh of the DVOF procedure which prevents convergence for high
resolution.
In the following, the VOF-D procedure will not be used as it does not lead to a significant
accuracy improvement regarding the additional computational cost of computing the signed
distance.

B.2.4 Constrained extrapolation

In Section 8.3.2, a variant of the normal extrapolation is proposed to take into account
a boundary condition at the interface between the liquid and the gas. It is interesting
to compare the accuracy of such constrained extrapolation with the linear extrapolation
considered before. Here, it is possible to apply either Dirichlet, Neumann or Robin boundary
conditions by using Eq. (8.42) with

ΦΓ = exp (4 (xΓ − 0.5) (yΓ − 0.5)) , (B.21)

Φ
(1)
Γ = 4 ((xΓ − 0.5)nx + (yΓ − 0.5)ny) exp (4 (xΓ − 0.5) (yΓ − 0.5)) . (B.22)

This study is limited to the linear version of the algorithm which remains straightforward
to implement, higher order implementations requires additional interpolation steps in the
liquid domain.

(a) Convergence of L2(Φ) (b) Convergence of L∞(Φ)

Figure B.6: Mesh convergence of L2(Φ) and L∞(Φ) for the different constraint at the boundary

From the results shown in Fig. B.6, the constrained extrapolation is more accurate than
the standard procedure (error divided by two) with only few differences between the nature
of the boundary condition. This is expected as the computation of the gradient at the
interface is computed with higher accuracy and then the forcing term in the q = 1 PDE is
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leading to a better linear approximation of Φ.
However, constrained extrapolation is limited to second order (for reasonable implementa-
tion effort) and requires computation of boundary conditions, which is not always available.
Moreover, the implementation is not straightforward in a VOF fashion.
In the solver, the standard procedure is used to keep a general way of extrapolating quanti-
ties regardless the interface capturing method or the boundary conditions at the interface.

B.2.5 Method choice recap for extrapolation

Table B.1 summarizes the different numerical choices for the extrapolation procedure. This
work uses the UWH method for spatial discretization as it is accurate and stable. The time
integration is performed with a SSP-RK2 scheme with the constraint Eq. (B.20) on the
pseudo-timestep. Only 20 iterations are performed instead of reaching a target convergence
threshold.
Even if the VOF-D method provides more accurate extrapolated quantities, a good trade-
off between accuracy and efficiency is achieved by using the VOF-P method instead.

Interface capturing method VOF SLS
Time integration RK2-SSP RK2-SSP
Number of iteration 20 20
Spatial discretization UWH UWH
Normal computation VOF-P SLS-D

Table B.1: Summary of computation choices for the extrapolation procedure

In order to use standard finite differences using uniform stencils, the scalar need to be
defined everywhere. This is done by the normal extrapolation investigated in Appendix B.2.
The normal gradient is then simply evaluated using Eq. (8.32). In the present study, the
constant extrapolation is not suitable for gradient computation as it is not a consistent
choice leading to zero normal gradient. Then, only linear and quadratic extrapolations are
considered.

B.3 Solver discretization details

In the solver, the PDEs are discretized as follows

Φ
(2),n+1
l − Φ

(2),n
l

∆τ
= −H(2)

g

(
nx∇xc,UW1Φ

(2),n
l + ny∇yc,UW1Φ

(2),n
l − Φ

(3)
l

)
Φ

(1),n+1
l − Φ

(1),n
l

∆τ
= −H(1)

g

(
nx∇xc,UW2Φ

(1),n
l + ny∇yc,UW2Φ

(1),n
l − Φ

(2)
l

)
Φn+1
l − Φn

l

∆τ
= −H(0)

g

(
nx∇xc,UW2Φn

l + ny∇yc,UW2Φn
l − Φ

(1)
l

)
, (B.23)
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and
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, (B.24)

with ∆τ defined by Eq. (B.20), H(q)
l and H(q)

g defined by Eq. (B.7).
The first order upwind gradient operators∇xc,UW1,∇

y
c,UW1 are defined (here for ∇xc,UW1Φ

∣∣∣
i− 1

2
,j
)

∇xc,UW1Φ
∣∣
i− 1

2
,j

=

{
Φi−Φi−1

∆x if nx > 0
Φi+1−Φi

∆x otherwise
, (B.25)

and the second order upwind gradient operators ∇xc,UW2 and ∇yc,UW2 are defined (here for

∇xc,UW2Φ
∣∣∣
i− 1

2
,j
)

∇xc,UW2Φ
∣∣
i− 1

2
,j

=

{
3Φi−4Φi−1+Φi−2

2∆x if nx > 0
Φi+2−4Φi+1+3Φi

2∆x otherwise
. (B.26)

Note that the sign of the normal used in Eq. (B.24) is also the liquid to gas normal and
some signs have been modified accordingly to extrapolate from gas to liquid. For LE, only
the equations for T (1),n+1

l and Tn+1
l need to be solved.

As normal gradients T (1)
Γ,l and T (1)

Γ,g are only available in interface cells ΩΓ, the evaporation
ṁ is only defined in ΩΓ.
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Introduction

La simulation des écoulements diphasiques évaporants est un sujet en plein essor avec
l’émergence de multiples solveurs et méthodes numériques associées. C’est un sujet com-
plexe en raison des discontinuités de l’écoulement à l’interface qui nécessitent des méthodes
numériques adaptées.

Dans la littérature, les méthodes employées pour résoudre les écoulements diphasiques
peuvent être classifiées en deux manières de représenter l’interface:

1. Les méthodes d’interface diffuse (DIM) qui définissent l’interface comme une région
où la variation des propriétés fluides est rapide mais reste continue.
Dans ce cas, l’interface n’a pas de position explicitement définie. Ces méthodes
sont généralement utilisées pour étudier des écoulements compressibles puisqu’elles se
basent sur une thermodynamique enrichie pour prendre en compte la nature diphasique
de l’écoulement.

2. Les méthodes d’interface raide (SIM) qui utilisent un interface infiniment fin. Cet
interface est donc une surface mobile avec une position bien définie. Les propriétés
fluides sont alors purement discontinues à l’interface et l’interface nécessite d’être
localisé précisément pour y imposer correctement les sauts.

Dans ce travail, l’écoulement est considéré incompressible. Il est intéressant d’utiliser une
approche SIM dans ce contexte puisqu’elle requiert généralement moins de points pour
représenter l’interface. De plus l’hypothèse d’interface infiniment fin est pertinent dans les
configurations ciblées.
Dans ces approches SIM, les méthodes Lagrangiennes de type Front-Tracking ne sont pas
considérées dans ce travail pour des raisons pratiques d’intégration de ce type d’algorithme
dans le solveur développé au laboratoire EM2C.

Parmi les méthodes Eulériennes raides, plusieurs stratégies ont montré leur capacité à re-
produire la physique des écoulements diphasiques sans changement de phase, que ce soit en
Volume-of-Fluid (VOF) ou en Level-Set (LS). Dans ce contexte, la littérature est abondante
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et les méthodes numériques associées relativement matures.
Les problématiques liées à la reconstruction précise de la courbure, essentielle à la prise
en compte des forces de tension de surface ont été explorées en détails et permettent la
simulation numérique précise d’écoulement capillaires. De plus, le manque de robustesse
lié au fort rapport de masse volumique entre le liquide et le gaz peut être comblé par un
transport cohérent entre la masse et la quantité de mouvement qui rend possible la sim-
ulation numérique de configurations extrêmement exigeantes comme des sprays atomisants.

Avec le changement de phase, les méthodes numériques gagnent encore en complexité pour
prendre en considération les échanges de masse et de chaleur entre les phases. Dans ce
cadre, peu de contributions existent et aucun consensus ne ressort de la littérature sur la
meilleure stratégie à adopter.
Des études spécifiques sont alors nécessaires pour atteindre le même niveau de compréhen-
sion que pour les écoulements sans évaporation.

Ainsi, ce travail propose de clarifier les méthodes numériques existantes pour répondre aux
difficultés de la simulation numérique d’écoulement diphasique à changement de phase. Cela
implique d’étudier les méthodes Eulériennes raides pour la capture d’interface, le couplage
entre le transport de l’interface et l’écoulement, ainsi que l’intégration du changement de
phase dans le solveur. Cette étude est menée dans un solveur basé sur une discrétisation de
type volumes finis sur des maillages cartésiens dans lequel les méthodes sont implémentées
et comparées.

Partie I

La première partie du manuscrit traite de la dérivation rigoureuse des équations de conser-
vation dans le cas d’écoulements diphasiques à changement de phase.

Tout d’abord, le modèle physique utilisé dans ce travail pour les fluides ainsi que la dy-
namique de l’interface sont détaillés. Les équations obtenues s’appuient sur les principes
généraux de conservation de masse, quantité de mouvement et d’énergie appliqués à des
écoulements incompressibles, avec des propriétés fluides constantes pour chaque phase prise
séparément.
Pour la modélisation du changement de phase, l’écoulement diphasique est composé d’une
phase liquide mono-composant pure et d’une phase gazeuse bi-composant comprenant la
vapeur de l’espèce condensable et un gaz inerte. Il est donc nécessaire de résoudre une
équation supplémentaire correspondant au transport de fraction massique de l’espèce con-
densable pour compléter le système.
Ces hypothèses de travail mènent à un système d’équations de conservation valable dans
les fluides pris séparément ainsi qu’à des conditions de saut découlant directement d’un
équilibre entre les phases dans un volume de contrôle contenant l’interface.

Ces discontinuités impliquent des quantités à fermer : la force de tension de surface ainsi
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que le taux d’évaporation. Alors que la force de tension de surface peut se calculer à partir
des propriétés topologiques de l’interface, le taux d’évaporation s’obtient avec la disconti-
nuité de flux d’énergie ou de fraction d’espèce à l’interface.
Ces équations de conservation ne sont pas suffisantes pour décrire l’écoulement diphasique
puisqu’elles ne s’appliquent qu’aux fluides pris séparément en laissant de côté les contribu-
tions liées à la présence de l’interface et aux échanges entre ces deux fluides.

De manière à obtenir des équations capables de décrire l’écoulement diphasique dans sa
globalité, une représentation explicite de l’interface à travers une fonction indicatrice peut
être utilisée. La fonction indicatrice est associée à un fluide et donne sa position pour tous
points de l’espace en tout temps. Elle est intrinsèquement discontinue et son transport
devient alors extrêmement difficile numériquement.
C’est pourquoi l’utilisation de discrétisations conventionnelles pour transporter cette grandeur
mènerait à la diffusion ou la dispersion de la discontinuité ce qui met en péril la représen-
tation raide et précise de l’interface.

De ce constat, une première approche est proposée en se basant sur une discrétisation
volumes finis de la fonction indicatrice et de son transport. Ce choix de représentation
numérique de la fonction indicatrice s’apparente aux méthodes VOF dans lesquelles la frac-
tion volumique de liquide est transportée. En partant de ce formalisme, la dérivation des
formulations VOF "two-fluid" puis "one-fluid" est obtenue par intégration des équations
de conservation.
Ces formulations impliquent le transport de la fraction volumique et comportent encore la
fonction indicatrice dans l’évaluation des flux. De manière à évaluer précisément ces flux,
une représentation explicite de l’interface est nécessaire, ce qui constitue une contrainte
importante sur les méthodes numériques associées au transport des quantités fluides.

Pour contourner ce problème, une autre méthodologie est proposée, pour laquelle la fonc-
tion indicatrice est substituée par une fonction Level-Set régulière. Cette substitution retire
une partie de la cohérence entre les équations de conservation et le transport de l’interface
mais permet de gagner des degrés de liberté sur les méthodes numériques associées.
La raison de la perte de cohérence entre fonction indicatrice et formulation LS est détaillée
et des solutions de la littérature sont proposées pour remédier au problème sans le résoudre
totalement.
Ensuite, la méthodologie à suivre pour une cohérence complète dans la formulation Level-
Set est proposée en se basant sur la définition d’un opérateur de moyenne plutôt que sur
une substitution des fonctions transportées. Bien que peu explorée, cette méthodologie
représente une réelle piste de recherche pour la dérivation mathématique des écoulements
diphasiques.

À partir de ces deux formalismes, trois descriptions des quantités diphasiques sont retenues
pour la suite des travaux, illustrées en figure C.1

• La Whole Domain Formulation (WDF) basée sur les formulations one-fluid VOF ou
LS pour lesquelles une seule équation décrit le transport d’une quantité diphasique
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moyennée par la phase dans un volume de contrôle.
• La Jump Condition Formulation (JCF) découlant de la formulation one-fluid LS pour

laquelle la quantité diphasique est associé à une seule phase dans un volume de con-
trôle.

• La Two-Fluid Formulation (TFF) qui transporte simultanément la quantité liquide
et gazeuse dans un volume de contrôle.

ΦM

(a) WDF avec VOF

ΦM

(b) WDF avec LS

Φl

Φgh
g

(c) JCF

Φl

Φg

(d) TFF

Figure C.1: Illustration des différentes formulations pour un scalaire Φ dans un volume de con-
trôle. Le point noir correspond au centre de la cellule alors que les point gris et blancs sont les
barycentres de la phase liquide et gazeuse respectivement.

Alors que la WDF et la JCF nécessitent une reconstruction supplémentaire pour retrou-
ver les quantités liées aux phases, la TFF transporte toutes les informations nécessaires
directement.
Ces descriptions de l’écoulement sont réutilisées tout au long du manuscrit pour expliquer et
clarifier les méthodes numériques associées à la résolution d’écoulements diphasiques. Cette
étape, bien que fastidieuse, est indispensable au développement de méthodes numériques
cohérentes puisqu’elle conditionne le sens des quantités transportées.

Partie II

Une fois le cadre physique et mathématique clairement posé, la deuxième partie détaille les
méthodes numériques associées à la capture de l’interface.

Pour commencer, un état de l’art étendu des méthodes VOF et Level-Set est présenté de
manière à sélectionner les méthodes les plus prometteuses pour représenter des écoulements
évaporant.

Les challenges d’une méthode VOF résident dans la reconstruction explicite de l’interface
dans un volume de contrôle. Si une représentation PLIC est considérée, la précision de la
reconstruction dépendra directement du calcul de la normale à l’interface et sera au mieux
à l’ordre 2.
L’autre point d’attention d’une méthode VOF réside dans l’évaluation des flux à partir de
la géométrie de l’interface qui nécessite des algorithmes particuliers pour conserver discrète-
ment la masse et éviter les undershoots ou overshoots de fraction volumique.
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Pour la Level-Set, un premier choix de fonction régulière est la distance minimale signée à
l’interface menant à une méthode standard LS (SLS). Le transport associé à cette fonction
peut utiliser des méthodes d’ordre élevé telles que les schémas WENO5, plus précis que les
flux géométriques utilisés en VOF.
Cependant, la nature de l’écoulement transportant cette fonction peut entraîner de sévères
déviations par rapport à une fonction distance. Il est alors très compliqué de calculer des
grandeurs topologiques précises en se basant sur cette fonction distance bruitée.
La principale particularité cette méthode est la nécessité de résoudre une équation supplé-
mentaire au transport pour retrouver une fonction distance correcte à la fin de l’intégration
temporelle. De plus, cette méthode souffre de problèmes de conservation de la masse in-
trinsèque à sa formulation et son manque de cohérence avec la fonction indicatrice décrite
dans le deuxième chapitre.

Pour remédier à ce problème de conservation, une autre classe de méthode LS se basant
sur une fonction Heaviside étalée est également détaillée, nommée l’accurate conservative
LS (ACLS). Cette méthode permet de conserver exactement la fonction Heaviside, ce qui
ne garantit pas la conservation de la masse mais l’améliore.
Pour les mêmes raisons qui bruitent la fonction distance dans le cas de la SLS, une étape
de réinitialisation est également nécessaire après le transport pour contrôler l’épaisseur
d’étalement de l’Heaviside transporté. Différentes méthodes de réinitialisation sont alors
comparées pour définir la plus adaptée à la description d’écoulements diphasiques évapo-
rants.

Enfin, une dernière méthode consiste à coupler une méthode LS et une méthode VOF de
manière à avoir les propriétés de conservation du VOF tout en gardant une représentation
plus précise de l’interface. En réalité, cette dernière méthode résulte en un équilibre entre
propriétés de conservation et précision de transport suivant la façon de coupler LS et VOF.
Les différents types de couplage ainsi que leurs intérêts et limites sont détaillés résultant
en un choix de méthode CLSVOF pour la suite du travail.

Une fois que ces quatre méthodes ont été sélectionnées en se basant sur l’état de l’art
étendu, leur implémentation est détaillée. Ces méthodes sont ensuite comparées sur des
cas de transport avec champ de vitesse imposé. Les critères principaux sont les propriétés
de conservation de masse, la précision du transport ainsi que le temps de calcul.
En guise d’exemple, le cas du vortex-in-a-box est fourni en figure C.2 où le transport d’un
interface dans un champ de vitesse déformant est étudié pour les quatre méthodes de capture
sélectionnées.
Dans ce cadre, même si toutes les méthodes présentent des résultats cohérents et convergents
en maillage, le CLSVOF semble être la méthode la plus précise grâce à ses propriétés de
conservation. De plus, sa polyvalence pourrait être un véritable atout pour des cas plus
complexes.
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Figure C.2: Forme du vortex-in-a-box à t = 4 et t = 8 avec l’évolution temporelle de la masse.

Partie III

La troisième partie du manuscrit s’intéresse au couplage entre une méthode de capture
d’interface et un solveur d’écoulement incompressible.

Dans un premier temps, les problèmatiques associées au couplage d’une méthode de capture
d’interface avec un solveur incompressible sont détaillées.
Plus spécifiquement, le traitement des discontinuités à l’interface nécessite des méthodes
numériques appropriées pour :

1. Le calcul de la courbure, essentielle à la prise en compte des forces de tension de
surface.

2. La gestion du saut de masse volumique entre les deux phases, qui peut poser des
problèmes de robustesse et de conservation de la quantité de mouvement pour des
rapports de masse volumique élevés.

3. La prise en compte du saut de viscosité qui joue un rôle important dans la dissipation
d’énergie cinétique proche de l’interface.
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Ces problématiques numériques ont été largement explorées pendant ces dernières décen-
nies et le choix des méthodes associées se base sur un état de l’art étendu des solutions
disponibles dans la littérature.

L’étude présentée dans ce manuscrit se base sur une approche one-field de la vitesse qui
est définie de manière continue partout dans le domaine (cela correspond aux formulations
WDF et JCF présentées sur la figure C.1).
Avec cette approche, les équations de conservation de masse et de quantité de mouvement
sont résolues simultanément par le biais d’une méthode de projection : la vitesse est tout
d’abord prédite sans prendre en considération les effets de pression, puis corrigée par une
pression obtenue en imposant la condition de divergence nulle propre aux écoulements in-
compressibles.
Une autre particularité de l’approche considérée dans ce travail est l’arrangement "stag-
gered" des quantités : la masse volumique, la viscosité et la pression sont définis au centre
d’un volume de contrôle alors que les composantes de vitesse sont définies aux faces.

Enfin, l’originalité du travail présenté ici réside dans la définition d’un cadre unifié pouvant
accueillir toutes les méthodes de capture d’interface présentées dans la partie II. Ce cadre
comprend un transport précis de l’interface, une discrétisation équilibrée de la tension de
surface et un transport masse-quantité de mouvement cohérent qui permet des simulations
avec un rapport de densité élevé et des effets capillaires.
Ce cadre unifié, bien que contraignant sur les choix numériques, permet de construire une
base solide pour des comparaisons équitables des méthodes de capture d’interface en enle-
vant tous les biais liés aux différences de résolution de l’écoulement.
Une description détaillée de l’implémentation des méthodes numériques adaptées au solveur
unifié est ensuite fournie avec une attention particulière portée sur l’évaluation de la cour-
bure et de la masse volumique qui diffère en fonction de la méthode de capture d’interface
utilisée. En effet, les méthodes de capture d’interface ne fournissant pas les mêmes infor-
mations intrinsèques liées à l’interface, il est indispensable d’utiliser des méthodes adaptées
à ces dernières pour obtenir des résultats de bonne qualité.

Les quatre méthodes de capture d’interface présentées précédemment sont alors comparées
de nouveau sur des cas faisant intervenir tous les aspects d’un écoulement diphasique sans
changement de phase : la modélisation des forces de tension de surface, la conservation de
la masse et la conservation de la quantité de mouvement.
Il est important de rappeler que cette comparaison se base sur des méthodes actuelles de
la littérature, dans un cadre unifié éliminant tous les biais associés à la discrétisation des
équations de conservation sur des cas 2D canoniques mais aussi sur des cas 3D complexes.
Ce travail permet donc de faire un état des lieux des méthodes actuellement disponibles et
des les évaluer sur des cas tests appropriés.

Dans cette étude, une attention particulière est accordée aux cas avec tension superficielle
qui font intervenir l’évaluation précise de la courbure. Cette étude augmente graduellement
la complexité des configurations, en partant de la reconstruction de la courbure sur un cer-
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cle statique jusqu’à la convection d’une goutte soumise à des forces de tension de surface.
Ce dernier cas met en évidence la problématique principale des solveurs diphasiques actuels
: aucune méthode de reconstruction de courbure n’est capable de converger en maillage sur
un cas dynamique.

Ensuite un cas de conservation de quantité de mouvement est présenté mettant encore un
fois en évidence les propriétés de conservation bien supérieures pour les méthodes VOF et
CLSVOF par rapport aux méthode SLS et ACLS.

(a) Ashgriz et al. (b) VOF (c) CLSVOF (d) SLS (e) ACLS

Figure C.3: Comparaison de la simulation de la collision de deux gouttes d’eau avec l’expérience

Puis, des cas tests complexes de collision de gouttes ou de rupture induite par cisaille-
ment sont étudiés. Les méthodes donnent des résultats qualitativement comparables avec
l’expérience pour la collision de goutte (voir la figure C.3). Pour la rupture induite par
cisaillement, les méthodes donnent des résultats différents, ce qui nécessite des études sur
la capacité des méthodes à saisir le début des instabilités lorsqu’elle intervient en limite de
maillage.

En résumé, l’étude menée dans cette troisième partie a permis de tirer plusieurs conclusions
concernant les capacités des méthodes de capture d’interface actuelles :

• De manière générale, les quatre méthodes utilisées dans ce travail permettent de
retrouver les bons comportements physiques pour des écoulements diphasiques sans
changement de phase.
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• Les méthodes VOF et CLSVOF conservent exactement la masse et permettent de
retrouver des bonnes propriétés de conservation de quantité de mouvement.

• La méthode SLS donne facilement accès à des reconstructions de normales et de
courbures robustes.

• Toutes les méthodes présentent des comportement différents en limite de maillage.

Partie IV

La dernière partie du manuscrit détaille l’intégration du changement de phase dans un
solveur diphasique en utilisant la méthode VOF ou SLS.

Avec le changement de phase, les sauts d’interface doivent tenir compte des transferts de
masse et de chaleur. Ces spécificités supplémentaires impactent la résolution des écoule-
ments à plusieurs niveaux :

1. Les algorithmes développés précédemment pour résoudre l’équation de masse, de
quantité de mouvement ainsi que la capture d’interface doivent prendre en compte le
saut de vitesse induit par l’évaporation.

2. Le transport de nouvelles quantités est nécessaire de manière à décrire le changement
de phase : l’énergie et la fraction d’espèce massique de la vapeur dans le gaz. Ces
équations de transport doivent également inclure les discontinuités de flux molécu-
laires à l’interface.

3. Les transferts de masse et de chaleur nécessitent la connaissance du taux d’évaporation
local qui doit être évalué précisément pour obtenir des simulations qui convergent en
maillage.

Dans un premier temps, ces spécificités liées au changement de phase font l’objet d’un état
de l’art étendu dans lequel les différentes méthodologies employées dans la littérature sont
comparées dans leur paradigme et reliées au cadre unifié présenté précédemment.

Ces nouveaux défis sont ensuite étudiés numériquement afin de justifier les choix effectués
dans le solveur. Une attention particulière est consacrée aux erreurs numériques dans la re-
construction des quantités d’interface, montrant l’importance des méthodes d’extrapolation
et de l’évaluation des quantités à la position de l’interface. La question du choix de la
fomulation choisie pour transporter les nouvelles quantités est également abordée en sélec-
tionnant une approche TFF pour le VOF et JCF pour la SLS.

Le cadre unifié peut alors être étendu au changement de phase et les détails de discrétisation
et d’implémentation des méthodes sont donnés.
Une analyse quantitative est menée sur des problèmes d’évaporation canoniques avec solu-
tions analytiques. Les méthodes VOF et SLS montrent une convergence en maillage, mais
avec des tendances opposées pour le cas d’évaporation statique : alors que la SLS surestime
la régression de l’interface, le VOF la sous-estime.
Cela s’explique par les problèmes de conservation intrinsèques à la SLS qui font varier la
masse numériquement alors que le VOF, donnant accès à des reconstructions moins pré-
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cises, commet des erreurs plus importantes sur l’approximation du taux d’évaporation. Ces
erreurs disparaissent avec le raffinement du maillage mais restent très importantes pour les
maillages les plus grossiers.
Une conclusion émerge alors de ces observations : en utilisant les stratégies numériques
actuelles pour la simulation d’écoulement diphasique à changement de phase, il est néces-
saire d’avoir un maillage très raffiné pour obtenir des résultats exploitables. Cela constitue
une limitation sérieuse de l’applicabilité de ces méthodes à des cas plus complexes tels que
des distributions de gouttes.

Figure C.4: Imagesd’une goutte convectée à plusieurstemps physiques (intervalles de 0.002 s). La
simulation VOF est à droite et la simulation SLS est à gauche.

Finalement, le dernier cas test est une goutte convectée dans un écoulement au repos, qui
implique une convection, une déformation de l’interface et une vaporisation non-homogène
(voir la figure C.4). L’importance de la cohérence entre l’équation de quantité de mou-
vement et de continuité est mise en évidence en considérant différentes techniques de la
littérature pour l’équation de continuité. Il est montré que les formulations incohérentes
conduisent à une augmentation de la vitesse de la goutte. Les résultats pour la SLS sug-
gèrent que le cadre unifié est trop contraignant, et qu’un cadre dédié doit être utilisé. Enfin,
comme les équations VOF peuvent être rigoureusement dérivées des équations de conserva-
tion, il n’y a aucune ambiguïté dans l’équation de continuité discrète, et nous considérons
que les résultats sont représentatifs de la physique.
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Conclusion

Ce travail de thèse mène à une meilleure compréhension des méthodes numériques ap-
pliquées à la résolution des équations de conservation d’écoulements diphasiques. À travers
les différentes expériences numériques menées, la complexité et la subtilité des méthodes
numériques associées à la simulation d’écoulements diphasiques avec changement de phase
ont été mise en évidence.
La contrainte d’un cadre unifié imposée dans ces travaux a démontré l’intime relation entre
le choix de représentation de l’interface (la méthode de capture d’interface) et la formula-
tion des équations diphasiques utilisée (la fermeture des contributions à l’interface).
Comme les méthodes VOF dérivent naturellement des formulations "two-fluid" et "one-
fluid" appliquées à un cadre volumes finis, la fermeture des contributions à l’interface s’écrit
directement à partir des équations de conservation.

Les mêmes dérivations "two-fluid" et "one-fluid" à partir d’une méthode Level-Set sont
bien plus compliquées à obtenir et n’ont pas encore été présentées dans la littérature. À la
place, des hypothèses fortes sont utilisées pour fermer les contributions à l’interface qui se
basent sur des considérations numériques plus que mathématiques.
Cela donne l’illusion que les méthodes Level-Set comportent un nombre important de degrés
de liberté sur les fermetures des contributions à l’interface. Cette idée est même confirmée
par les cas tests conduits sans changement de phase pour lesquels toutes les méthodes de
capture d’interface sont performantes et donnent des résultats des résultats physiques sim-
ilaires.

Cependant, ce travail met évidence les problèmes numériques émergeant de la prise en
compte du changement de phase en utilisant la formulation Level-Set. En effet, en appli-
quant le même cadre unifié aux méthodes VOF et SLS, les résultats dépendent fortement
de la façon dont le saut de vitesse, inhérent au changement de phase, est traité dans la
méthode de projection. Dans le cas de la SLS, le cadre unifié basé sur la formulation WDF
ne permet pas de retrouver des résultats physiques acceptables à cause des fermetures util-
isées pour les contributions à l’interface.
Il est alors clair que l’ajout du changement de phase dans un solveur diphasique intro-
duit implicitement des contraintes numériques supplémentaires. Alors que les méthodes
VOF utilisent les dérivations naturellement obtenues dans un cadre volumes finis WDF et
TTF, la méthode Level-Set est plus adaptée à une formulation JCF avec des fermetures
numériques adaptées.

Enfin, il est important de rappeler que les méthodes actuelles, bien que sophistiquées et
rigoureusement appliquées à un solveur d’écoulement diphasique avec changement de phase,
requièrent des maillages très raffinés pour obtenir des résultats exploitables. De manière
générale, il a été observé que pour des maillages avec moins de 16 cellules dans le diamètre
de la goutte, les estimations d’évaporation comportent des erreurs de plus de 50%, ce qui
n’est pas acceptable pour des calculs haute-fidélité.
Il est alors important de continuer à travailler sur la compréhension et le développement
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de méthodes capables d’obtenir des résultats précis avec un nombre de mailles raisonnable.
Cela passe par un travail plus important sur les problèmes de conservation dans le cas des
méthodes Level-Set ou dans l’amélioration de la précision des transports scalaires pour les
méthodes VOF.
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Titre : Simulation numérique d’écoulements diphasiques évaporants par des méthodes de capture
d’interface raides
Mots clés : Écoulements diphasiques, Interface raide, Évaporation, Méthodes numérique

Résumé : La simulation des écoulements dipha-
siques évaporant est un sujet en plein essor avec
l’émergence de multiples solveurs et méthodes nu-
mériques associés.
C’est un sujet difficile en raison des discontinuités
de l’écoulement à l’interface qui nécessitent des
méthodes numériques adaptées.
Parmi les méthodes Eulériennes « sharp », plu-
sieurs stratégies ont montré leur capacité à repro-
duire la physique sans changement de phase, que
ce soit en Volume-of-Fluid (VOF) ou en Level-Set
(LS).

Avec le changement de phase, les sauts d’interface
doivent tenir compte des transferts de masse et
de chaleur. Peu de contributions existent, et des
études spécifiques sont nécessaires pour atteindre
le même niveau de compréhension que pour les
écoulements sans évaporation.
L’objectif de ce travail est de comparer les solu-
tions possibles pour simuler de tels écoulements.
Toutes les méthodes sont implémentées dans le
même solveur et partagent le même cadre unifié
Low-Mach pour permettre des comparaisons équi-
tables.

Title : On the numerical simulation of evaporating two-phase flows using sharp interface capturing
methods
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Abstract : High fidelity simulation of evaporating
two-phase flows is a growing subject of interest
with the emergence of multiple solvers and various
associated numerical methods.
This is a challenging subject because of the strong
discontinuities of flow quantities at the interface
that require attention in numerical methods de-
sign.
For sharp Eulerian methods, several strategies have
shown their capability to reproduce the physics wi-
thout phase change using Volume-of-fluid (VOF)
or Level-set (LS).

With phase change, the interface jumps must ac-
count for the mass and heat transfers, which re-
quires far more attention numerical methods de-
sign. Few contributions can be found, and dedica-
ted studies are necessary to reach the same level
of understanding as for non-evaporating flows.
The objective of this work is to compare possible
solutions for simulating such flows with sharp Eu-
lerian methods. To this end, they are all implemen-
ted in the same cartesian-grid solver and share the
same unified Low-Mach framework to allow fair
comparisons.
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