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A B S T R A C T

RNA positive structural design problem attempts to find RNA sequences achieving
low free energy of the target secondary structure. Differently, in the negative design,
solution sequences should adopt the target structure as its folding preferentially to
any alternative structure, according to the given metric and energy model. Inverse
folding, a typical negative design, requires the target to be the solution sequence’s
Minimal Free Energy (MFE) folding. Other metrics, like the ensemble defect, are also
considered for design evaluation.

The additivity of the energy model suggests the existence of local properties for
the RNA design problem. It was discovered in several works that, due to the pres-
ence of specific local motifs, some secondary structures are undesignable, i.e., no
RNA sequence can fold into the target structure while satisfying the negative de-
sign objective. The sequence sampling approach is often used in the positive design.
Unwanted local structures, like base pairs, repeatedly form while folding sampled
sequences toward the negative design. In this thesis, we study the impact of such
local nature on the combinatorial aspect and on the development of negative design
methods.

We show that the proportion of designable secondary structures decreases expo-
nentially with the target structure length from the combinatorial aspect. Given a neg-
ative design metric, we propose an automated pipeline to identify all undesignable
motifs. Enumerating secondary structures avoiding such local obstructions followed
by asymptotic analysis yields an upper-bounds on the number of designable struc-
tures. In addition, we define a lower bound for the structural ensemble defect derived
from occurred local motifs. We show that the lower bound follows a Normal limiting
distribution with a closed-form expression, implying also an exponential decrease.

We then present InfraRed, a generic framework for efficient combinatorial sampling.
We formalize the RNA design problem as a Constraint Satisfaction Problem (CSP)
with design objectives described as a set of constraints and a set of weighted func-
tions. Assignments satisfying constraints are generated from a Boltzmann weighted
distribution using a dynamic programming algorithm followed by stochastic back-
tracking. The approach is Fixed-Parameter Trackable (FPT) for the treewidth of the
dependency graph induced from the problem. We show that the framework can be
easily employed for RNA positive design and flexible applications.

Finally, as an application of Infrared, we propose an original iterative sampling
approach that captures negative design principles implemented in RNA POsitive and
Negative Design (RNAPOND). A set of Disruptive Base Pairs (DBPs) is identified at each
round and subsequently prevented from pairing by introducing proper constraints
into the sampling framework. Despite the NP-hardness of the associated decision

v



problem, an efficient sequence sampling algorithm is ensured by the Infrared frame-
work. Our approach achieves a similar or better success rate than state-of-the-art
negative design tools while allowing for the generation of diverse, thermodynami-
cally efficient designs, i.e., positive design principles.

One of the research directions of the works presented in this thesis is the extension
to more complicated structures, such as pseudoknotted secondary structures. The
flexibility of the InfraRed framework opens a door for design tool development. For
example, the success of RNAPOND suggests a potential approach for RNA negative
structural design.
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R É S U M É S U B S TA N T I E L

Le problème de design structural positif de l’ARN tente de trouver des séquences
d’ARN réalisant une faible énergie libre de la structure secondaire cible. Par contre,
dans le problème de design négatif, les séquences de solution doivent adopter la
structure cible comme repliement préférentiellement à toute structure alternative. Le
problème du repliement d’inverse, un problème typique de design négatif, exige
que la cible soit la structure secondaire ayant l’énergie libre minimale (MFE) de la
solution. D’autres métriques, telles que le défaut d’ensemble, sont également prises
en compte pour l’évaluation de la séquence réalisée.

L’additivité du modèle d’énergie suggère l’existence de propriétés locales pour
le problème de design de l’ARN. Il a été découvert dans plusieurs travaux que, en
raison de la présence de certains motifs locaux, aucune séquence d’ARN ne peut
se replier dans la structure cible tout en satisfaisant l’objectif de design négatif.
L’approche d’échantillonnage de séquence est souvent utilisée dans le design positif.
Les structures locales irréalisables, comme les paires de bases, se forment de manière
répétée lors du repliement des séquences échantillonnées en considérant le design
négatif. Dans cette thèse, nous étudions l’impact de cette nature locale sur l’aspect
combinatoire et sur le développement de méthodes de design négatif.

Nous montrons que la proportion de structures secondaires réalisables diminue de
façon exponentiellement avec la longueur de la structure cible du point de vue com-
binatoire. Étant donné une métrique de design négatif, nous proposons un schéma
automatisé pour identifier tous les motifs non réalisables. L’énumération des struc-
tures secondaires évitant ces obstructions locales, suivie d’une analyse asymptotique,
permet d’obtenir une borne supérieure du nombre de structures réalisables. En outre,
nous définissons une borne inférieure pour le défaut d’ensemble structural dérivé
des motifs locaux apparus. Nous montrons que cette borne inférieure suit une dis-
tribution limite Gaussienne avec une expression explicite, ce qui implique aussi la
diminution exponentielle.

Nous présentons ensuite InfraRed, un système générique d’échantillonnage com-
binatoire efficace. Nous formalisons le problème de design de l’ARN comme un
problème de CSP avec des objectifs de design décrits comme un ensemble de con-
traintes et un ensemble de fonctions pondérées. Les évaluations des variables satis-
faisant les contraintes sont générées à partir d’une distribution pondérée de Boltz-
mann en utilisant un algorithme de programmation dynamique suivi d’un backtrack
stochastique. L’approche est en classe de FPT pour la largeur arborescente du graphe
de dépendance induit par le problème. Nous montrons que ce cadre peut être facile-
ment employé pour le design positif de l’ARN et les applications variées.

Enfin, en tant qu’application du système InfraRed, nous proposons une approche
originale d’échantillonnage itératif qui capture les principes de design négatif mis en
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œuvre dans RNAPOND. Un ensemble de paires de bases perturbatrices est identifié à
chaque tour et on les empêche ensuite de s’apparier en introduisant des contraintes
appropriées dans le cadre de l’échantillonnage. Malgré que le problème de décision
associé est NP-difficile, un algorithme d’échantillonnage de séquence efficace est
garanti par le système InfraRed. Notre approche atteint un taux de réussite similaire
ou supérieur aux états de l’art, tout en permettant la génération de séquences di-
verses et thermodynamiquement efficaces, c’est-à-dire des principes de design posi-
tif.

L’un des axes de recherche des travaux présentés dans cette thèse est l’extension
à des structures plus complexes, telles que les structures secondaires contenant
pseudonœuds. La flexibilité du système InfraRed ouvre une porte au développement
d’outils de design. Par exemple, le succès de RNAPOND suggère une approche po-
tentielle pour la design structural négatif d’ARN.
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1
I N T R O D U C T I O N

Ribonucleic Acids (RNAs) are biomolecules encoding genetic information. RNA viruses,
such as coronaviruses [91], store their genetic material in the form of RNAs. Messen-
ger RNAs (mRNAs) serve as intermediate molecules to transmit genetic messages
to protein synthesis. The discovery of non-coding RNAs (ncRNAs) shows that RNAs

go beyond a vehicle of genetic information and participate in numerous biological
processes. Transfer RNAs (tRNAs), cloverleaf-form RNAs, link amino acids and mR-
NAs in protein synthesis. Ribosomal RNAs (rRNAs) are large RNAs being part of
ribosomes, where protein synthesis takes place. RNAs are also involved in gene regu-
lation, such as microRNAs (miRNAs) and riboswitches. Due to the various functions
of RNAs, it is believed to be the biomaterial found at the origin of life, as stated by
the RNA world hypothesis and evidenced by a large body of work [40].

RNA sequence, also called primary structure, is composed of four types of nu-
cleotides, Adenine (A), Cytosine (C), Guanine (G), or Uracil (U). Each nucleotide con-
sists of a five-carbon sugar and a nucleobase attached to the first carbon. Nucleotides
are connected through a (ribose-phosphate) backbone formed between the third 3’
carbon of one nucleotide and the fifth 5’ carbon of another one, which brings the
sequence orientation from the 5’ end to the 3’ end.

An RNA sequence folds into the secondary structure, which determines the main
aspects of its conformation, by forming base pairs that are mediated by hydrogen
bonds. The function of an RNA depends on its structure, which is believed to be
assembled hierarchically [86]. From a sequence of A, C, G, and U, nucleotides form
canonical base pairs, including Waston-Crick base pairs A-U, C-G [88], and Wobble
base pair G-U [16] (Figure 1.1a). The C-G base pair is, in general, more solid than
others because of the additional hydrogen bond. Two consecutive base pairs form
a base pair stack, which stabilizes the secondary structure (Figure 1.2). A secondary
structure is said to be pseudoknotted if a base pair exists that one and only one of
its nucleotide locates within the region delimited by another base pair (Figure 1.1).
It is equivalent to two crossed base pairs in the linear representation (Figure 1.1c).
From now on, the secondary structure is referred to pseudoknot-free secondary struc-
ture. Then, unpaired regions left either remain unstructured, or form non-canonical,
relatively weaker, base pairs to stabilize and adopt complex 3D structures. Different
types of non-canonical base pairs were classified in the work of Leontis and West-
hof [52]. Identical small substructures, called RNA modules, are found in different
tertiary structures [70], which either occur in a loop, such as Kink-turns, or involve
two regions, like A-minor interactions.

In this thesis, we are interested in the secondary structure for the following reasons.
The secondary structure is key to determine RNA function, from which the evolution-
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Figure 1.1: A simplified chemical form of pseudoknotted secondary structure (a) and its ab-
stractions in a plane (b) and (c). Each nucleotide contains a nucleobase (colored)
and a five-carbon sugar (black), where carbons are labeled 1 ′ to 5 ′. The circled P
represents the (ribose-phosphate) backbone connecting 3 ′ and 5 ′, which defines
an orientation for RNA from the 5 ′ to 3 ′ end. Base pairs are mediated by hydro-
gen bonds (purple). The radial representation (b) captures the relative positions
of nucleotides, which are presented with letters. The G − C base pair at the bot-
tom right in (a) forms a pseudoknot since the nucleotide G locates in the region
delimited by the base pair G−U, corresponding to two crossed base pairs in the
linear representation (c), in which nucleotides are placed in a line.

ary pressure on RNA induced helps to identify novel RNA families [46]. It is also
an essential first step towards the prediction of accurate 3D structural models [62].
In theoretical evolutionary biology, secondary structure is used to understand phe-
notypes and genotypes relationship [45]. Furthermore, the secondary structure can
be seen as a combinatorial object [89], which facilitates computational approaches
development. Having a good secondary structure prediction is then essential for
designing an RNA.

rna folding prediction. One of the challenges of RNA bioinformatics, resides
in the prediction of RNA folding, focusing on anticipating the functional conforma-
tion adopted by an RNA. Thermodynamics is the origin of the popular nearest neigh-
bor models [80] for RNA prediction at the secondary structure level. Each secondary
structure is decomposed into smaller structures contributing additively based on
individual free-energy. The energy value can be determined through experiments,
Turner parameters [87], or learned from data [97]. The use of the nearest neighbor
model shows good accuracy of prediction, which can be further improved by co-
operating with different data sources, such as probing data [90]. Alternatively, a toy
energy model, sometimes referred to as the Nussinov-Jacobson model [65], associates
individual contributions to base pairs and can be useful for algorithmic design. The
nature of additive energy model allows to decompose of secondary structures into
several local components and solve them individually for the problem of interest.
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(a) Side view (b) Top view

Figure 1.2: Base pair stack in 3D view from the side (a) and the top (b). Base pairs AU and
GC position in two parallel planes to reduce the exposure to the aqueous envi-
ronment and nucleotides are overlapped as seen from the top view to increase
the interaction between two base pairs. Both figures are drawn from RNA tride-
camer [85] (PDB ID: 2R22) with PyMol [75].

In the first folding paradigm, called MFE paradigm, the most likely functional fold
for an RNA is assumed to be its stablest one, having Minimal Free Energy (MFE)
within a given energy model. The MFE structure is the structure having the lowest
energy among all valid structures that given an RNA sequence. This well-defined
algorithmic problem can be solved in time complexity O(n3), with O(n2) memory,
using a dynamic programming algorithm adapted from the grammar describing
secondary structures [65, 100]. Similar polynomial algorithms can also compute the
energy distance between the MFE and the second most stable structure [94]. However,
this energy energy difference can be very limited, or even null in the case of co-
optimal structures, implying a similar probability of being observed for the MFE

structure and suboptimal ones at the thermodynamic equilibrium. This drives the
introduction and study of the Boltzmann ensemble paradigm, in which structure is
associated with a Boltzmann probability related to its free-energy. Similar dynamic
programming algorithms can be adapted to sample structures [22, 60] and find the
most representative one(s) in the ensemble [55].

Until now, the folding prediction considers only at the thermodynamic equilib-
rium. However, folding is, in reality, a continuous process that passes through sev-
eral structures. It can be stuck in local minima in terms of free-energy [24] or be
degraded before arriving at the stationary phase [76]. This brings the studies of fold-
ing prediction in the kinetic paradigm. Another motivation is that some RNAs, notably,
riboswitches have more than one stable conformation in the presence or absence of
ligand. Thermodynamic-related paradigms and the kinetic paradigm are considered
two distinct problems in RNA bioinformatics. The former ones can be solved with
efficient approaches, while kinetic analyses are usually hard [56]. For this reason, es-
pecially problematic in the context of design, this thesis will focus on the secondary
structure prediction at the thermodynamic equilibrium, i.e., the MFE and Boltzmann
ensemble paradigms.

rna design. On the other hand, RNA design concerns building an RNA sequence
that performs a given set of biological functions [36]. Studying the design problem
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Figure 1.3: Both sequences w1 (a) and w2 (b) fold into the target structure (left-hand side). In
the context of positive design, we prefer w2 to w1 as the target design candidate
since the free energy is lower. However, unlike the sequence w1, the stablest
(Minimal Free Energy) folding of the sequence w2 is different than the target
one. Therefore, we prefer w1 to w2 in the context of negative design.

are motivated by its applications in various RNA domains, such as RNA synthetic
biology [81] and RNA therapeutics [93]. For example, designing artificial non-coding
RNAs to control gene expression [68]. In this thesis, we are interested in RNA struc-
tural design problem, in which the secondary structure is viewed as a model of
functions. More complex applications of design require the simultaneous consider-
ation of multiple structures, such as designing artificial riboswitches as a biosensor
targeting different conformations with or without ligand binding [28].

There exists two main design paradigms for design objectives (Figure 1.3). In the
positive design, we aim to optimize the sequence affinity to the set of biological func-
tions. One typical goal in the structural context is to design sequences to achieve
minimum free-energy of the target structure. Negative design requires the sequences
to be specific to the targets, i.e., to avoid undesired functions. For instance, in struc-
tural design, unwanted structures represent an exponential number of alternative
foldings different from the target ones [89].

For many types of negative objectives, this requires the well-defined adoption of a
precise target structure as its predicted secondary folding. It is easy to see that a brute
force method that folds all RNA sequences is unrealistic, as the expected number
of secondary structures compatible with a sequence of length n can be shown to
grow exponentially fast as n increases. Furthermore, the RNA design problem has
been proven NP-complete in the Nussinov-Jacobson model [8]. The recent mono-
structure design algorithms share similar strategy, random seed sequence sampling
followed by an optimization step to achieve, in different folding paradigms, the MFE,
high Boltzmann probability [41], or the minimum expected distance, called ensemble
defect [96].

enumerating designable structures . Beyond the design of a single active
RNA molecule, it is natural to ask the question, which we aim to answer in this
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thesis, How many designable secondary structures exist regarding different negative design
goals? Also, is the structural designability a local property? Such locality is expected
because of the additivity of energy model. Indeed, with the Turner nearest-neighbor
model [58], Aguirre-Hernández, Hoos, and Condon [1] discovered two undesignable
motifs such that, for any sequence, there exists an alternative folding with lower
free-energy. Similarly, Haleš et al. characterized two types of undesignable motifs
for the simpler Nussinov energy model [34]. However, the impact of undesignable
motifs on the structure space, and their combinatorial consequences have never been
systematically studied

Structures featuring these local obstructions are undesignable as an alternative
folding is always preferable locally. Enumerating secondary structures avoiding such
local obstructions sets an upper bound for designable structures as structures. The
infinite monkey theorem, a monkey can almost surely type any given text by ran-
domly typing for an unlimited time, suggests that local obstruction occurs with a
probability of one when the structure length is large enough. In other words, the
proportion of designable structures decreases and converges to zero, but how fast
is this decay? Can it be described asymptotically? To answer the question, we use the
classic analytic combinatorics methods [30], which have been adopted to study RNA

secondary structure properties [38, 53, 67, 79].

from positive to negative design. The main objective in the positive struc-
tural design is to design RNA sequence that optimizes the target structure free-energy.
As implemented in INFO-RNA [12], sequence minimizing target free-energy is ob-
tained via a dynamic programming approach. Such optimal sequence has been used
as an initialization strategy for negative design. IncaRNAtion [69] is the first method
to sample suboptimal sequences from a Boltzmann weighted distribution for single
target design. RNAblueprint [35] uniformly samples sequences that are compatible
with multiples target structures. Their successor, RNARedPrint [37], generalizes the
approach for multi-target design with a structural decomposition minimizing the
size of subproblem. However, alternative structures may still be adopted by the de-
signs due to the absence of explicit negative objectives. Those structures typically
differ from the target only on a local level, adopting unwanted local structures, usu-
ally base pairs, form while folding sampled sequences.

In this thesis, we investigate whether if the negative design objective can be accom-
plished by preventing these disruptive base pairs during sampling. A post-sampling se-
quence rejection step is inappropriate since the probability of a sequence to natu-
rally avoid every Disruptive Base Pair (DBP) appears empirically abysmal in many
cases. An alternative solution is to integrate the notion of DBPs into the framework of
RNARedPrint and formalize the sampling problem as a Constraint Satisfaction Prob-
lem (CSP). It raises the following questions: what is the proper strategy to select DBPs? Is
there an RNA sequence satisfying the target structure with the given DBP set?
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plan of this thesis . After this brief introduction, we present, in the first part,
the required notions and concepts from RNA bioinformatics to analytic combinatorics
to answer the questions posed above.

• In Chapter 2, we start by formally introducing the definition of RNA secondary
structure. Next, we present computational approaches to predict secondary
structure at the thermodynamic equilibrium, MFE and Boltzmann ensemble
paradigms. We illustrate the dynamic programming algorithms employed in
each method with a simple base pair energy model.

• We define in Chapter 3 the objectives of positive and negative structural design,
followed by stating the negative RNA design problem that we are focusing on
in this thesis. We also present some state-of-the-art methods for both positive
and negative design.

• Chapter 4 introduces the basic notions in language theory and analytic combi-
natorics. We present generating function as a means to describe combinatorial
class properties and then as a function for further analyses. We use RNA sec-
ondary structure as an example to illustrate the concept in this chapter.

In the second part of this thesis, we study the RNA design problem from the per-
spective of combinatorics. We present two approaches to estimate upper bounds for
designable secondary structures.

• In Chapter 5, we first introduce the notions related to the local motifs with
an extension of structural concepts. Then, we identify undesignable motifs for
different negative design goals. We also investigate identified local obstructions
in experimentally determined structures.

• Using the fact that a structure is not designable if one of its local decomposi-
tions is not, we propose a grammar to enumerate secondary structures avoid-
ing undesignable motifs in Chapter 6. We then show that the proportion of
designable secondary structures decreases exponentially with the number of
nucleotides

• Chapter 7 introduces another approach to compute the upper bound for des-
ignable structures. We introduce a lower bound on the ensemble defect which
is shown to follow a Normal limiting distribution with mean and variance
linear to the number of nucleotides. The upper bound is then the cumulative
distribution function evaluated at the value determined by the design objective.

Last but not least, in the third part of the thesis, we show the possibility of ex-
tending the state-of-art positive design algorithm into a promising solution to the
negative design.

• We present InfraRed, a generalization of the RNARedPrint framework in Chap-
ter 8. We describe the problem considered and present the approaches used in
this novel sampling framework. As a usage application, we show a reimplemen-
tation of the IncaRNAtion algorithm with our framework and the integration of
automata.
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• In Chapter 9, we introduce the notion of Disruptive Base Pairs (DBPs), and
their inclusion within the InfraRed framework. We show that determining if a
compatible sequence exists is an NP-hard problem, which can nevertheless be
solved in polynomial time on instances of bounded treewidth. Then, we present
RNAPOND, a negative design tool with an iterative sampling strategy using
InfraRed, which shows comparable performance with state-of-the-art methods.

Chapter 10 summarizes the works presented in this thesis. We also discuss possible
further research directions.





Part I

B A C K G R O U N D K N O W L E D G E





2
R N A 2 D S T R U C T U R E P R E D I C T I O N

2.1 notion related to rna bioinformatics

This section introduces the notions concerning RNA secondary structure that we will
use in this work.

An RNA a sequence of n nucleotides, Adenine (A), Cytosine (C), Guanine (G), or
Uracil (U).

Definition 2.1 (RNA sequence): An RNA sequence w of length n is a string
w1 · · ·wn, each wi taking value from Σ = {A,C,G,U} is the nucleotide, also
called base, at position i, i.e. w ∈ Σn. Its length is denoted by |w|.

Definition 2.2 (Base Pair): A base pair (i, j) with i 6= j is a pair of nucleotides at
positions i and j. The position j is said to be the partner of i.

In this work, we consider a base pair as a collection of nucleotides, i.e., (i, j) = (j, i).

Definition 2.3 (Secondary structure): A secondary structure of length n is a set S
of base pairs (i, j), 1 6 i < j 6 n such that,

1. Each position is involved in at most one base pair;

2. Base pairs are pairwise non-crossing, @(i, j), (k, l) ∈ S, i < k < j < l;

3. Minimal distance of θ is between paired positions, ∀(i, j) ∈ S, j− i > θ.

Figure 2.1 shows examples where three conditions are dissatisfied. Structures hav-
ing crossed base pairs, i.e., dissatisfying the second condition, are called pseudo-
knotted, which are not considered in this thesis. Furthermore, a region [i, j] delimited
by the base pair (i, j) is independent to the region outside [1, i− 1]∪ [j+ 1,n] of (i, j)
as no base pair are allowed to be formed across two regions. This property turns to
be a key component while adapting Dynamic Programming (DP) algorithm on sec-
ondary structure, where the delimited region [i, j] can be treated as a subproblem.

11
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X

(a)

X

(b)

X

(c)

Figure 2.1: Invalid secondary structures with minimum distance θ = 3 due to the presence of
base pair in red corresponding, respectively, to three conditions in Definition 2.3.
(a) Base at position 3 has two partners; (b) Base pairs in red and blue are crossing,
forming a pseudoknot; (c) For the classic θ = 3 parametrization, the red base pair
involves positions at insufficient base.

Definition 2.4 (Unpaired nucleotide): Unpaired nucleotides of a secondary struc-
ture S of length n is the set of positions {i ∈ [1,n]; ∀j 6= i, (i, j) /∈ S} that are not
involved in base pairs.

At the secondary level, the nucleotide contents of a valid base pair, called a canon-
ical base pair, is either in {(A,U), (C,G), (G,C), (U,A)} (a Waston-Crick base pair) or in
{(G,U), (U,G)} (a Wobble base pair).

Definition 2.5 (Compatible sequence and secondary structure): Letw be a sequence
of length n and S be a secondary structure of length n. We say w and S

are compatible if for all base pairs (i, j) ∈ S, nucleotides wi and wj form a
canonical base pair.

From now on, we use the following notations to denote different sets of secondary
structures

• Sθ for the set of secondary structures with minimum distance θ;

• Sθn the restriction on length n, Sθn := {S ∈ Sθ; |S| = n} ⊂ Sθ;

• Sθw ⊆ Sθ
|w|

for the set of secondary structures compatible with sequence w.

In the absence of ambiguity, θ is omitted from the notation.

A secondary structure can be presented in different ways, as shown in Figure 2.2.

• Radial representation. Structure is presented as a graph with vertices for nu-
cleotides and edges for backbones (black) or base pairs (blue). Consecutive
base pairs are drawn in a ladder-like shape while unpaired nucleotides are
positioned as a circle between paired regions.

• Tree representation. A secondary structure S can be unambiguously repre-
sented as a rooted ordered tree T = (V := Vi ∪ Vl,E), whose internal vertices
are intervals [i, j] ∈ Vi, i < j, representing base-paired positions (i, j) in S, and
leaves are singletons {i} ∈ Vl, representing an unpaired position i in S. Any
edge (u → v) ∈ E, i.e., v is the parent of u, connects intervals such that u ⊂ v
and @v ′ ∈ Vi such that u ⊂ v ′ ⊂ v.
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Figure 2.2: Representations of secondary structure, radial (a), tree (b), linear (c), and dot-
bracket notation (d). In radial representation, virtual lines in light gray are added
in the graph to show the parent-children relationship for tree representation.

• Linear representation. Nucleotides are positioned in a line, and each base pair
i, j is presented by an arc connected positions i and j in the upper half-plane.

• Dot-Bracket notation. Structures can be represented as a well-parenthesized
expression, i.e., a word of the language formed from three letters (, ) (paired
bases), and • (unpaired base), such that the number of ( and ) are equal, and
all prefixes have more ( than ).

Radial and linear representation can be drawn using VARNA [18], an RNA visualiza-
tion tool, with secondary structure in dot-bracket notation as input.

2.2 secondary structure prediction with energy minimization

Thermodynamics is, at the origin, a popular model for RNA prediction at the sec-
ondary structure level. At the thermodynamics equilibrium, the MFE structure is the
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most likely to be adopted by an RNA, and it is therefore a natural candidate for its
functional fold.

Definition 2.6 (Minimal Free Energy Structure): Given an energy model E and a
sequence w, the Minimal Free Energy (MFE) structure(s) MFE(w) of w is a set
of secondary structures such that

MFE(w) = {S ∈ Sw; E(w,S) = min
S ′∈Sw

E(w,S ′)}.

2.2.1 Base Pair Energy Model

The first non-exponential time MFE folding algorithm is proposed by Nussinov and
Jacobson [65] while considering a base pair energy model, or sometimes referred to
as the Nussinov-Jacobson model. The model assumes that the most stable structure is
the one having the most base pairs. This assumption is equivalent to considering that
structure energy is uniquely and equally contributed from base pairs, for example,
−1 kcal.mol−1 per valid base pair regardless of its nucleotides content. Given a
sequence w of length n, finding the with secondary structure while maximizing
base pairing is then identical to finding the MFE structure compatible with w.

The approach adopts a Dynamic Programming (DP) scheme based on the structure
decomposition [89], as shown in Figure 2.3. In the region between positions i and j,
the i-th nucleotide is either unpaired or paired with another nucleotide at position
k. For the former case, we define Mi,j to represent the minimum energy within the
region [i+ 1, j]. As for the later one, base pair (i,k) splits [i, j] into two independent
regions [i+ 1,k− 1] and [k+ 1, j] with minimum energy Mi+1,k−1 and Mk+1,j. Thus,
the minimum energy Mi,j between positions i and j is

Mi,j = min


Mi+1,j

min
i<k6j

∆G(i,k) +Mi+1,k−1 +Mk+1,j
(2.1)

where∆G(i,k) is the base pair free energy of (i,k), indicating whether nucleotides
wi and wk can form a base pair,

∆G(i,k) =

−1 if (wi,wk) ∈ {(A,U), (C,G), (G,C), (G,U), (U,A), (U,G)}

+∞ otherwise.

A DP algorithm is then used to compute M1,n, the minimum energy achieved given
sequence w, followed by backtracking to obtain the secondary structure whose en-
ergy is M1,n. At each region [i, j], the backtracking Backtrack decides whether i-th
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Figure 2.3: Classic secondary structure decomposition. The base i is either unpaired or paired
with a base k ∈ [i+ 1, j]. Notice that, in the original version used by Stein and
Waterman [77], the decomposition was started by the base j. These two decom-
positions are equivalent. Here, we start by the base i to be consistent with other
decompositions used. In addition, the decomposition is an unambiguous version
of the Nussinov decomposition [65].

nucleotide is unpaired or paired with a nucleotide at position k, which can be ex-
pressed recursively as

Backtrack(i, j) =


Backtrack(i+ 1, j) if Mi,j =Mi+1,j

{(i,k)}∪ Backtrack(i+ 1,k− 1)∪ Backtrack(k+ 1, j)

if Mi,j = ∆G(i,k) +Mi+1,k−1 +Mk+1,j, i < k 6 j

with the base case backtrack(i, j) = ∅ when i > j. The total algorithm complexity is
O(n3) in time and O(n2) in space.

The same algorithm can be used with a more general base pair energy model,
where different energy values are assigned to base pairs depending on nucleotides.
In fact, (C,G) and (G,C) base pairs are generally more stable than others.

2.2.2 Energy Model with Loop Decomposition

In a more realistic energy model, the structure energy is assumed to be the additive
energy contributions from basic units, called loops or shallow subtrees in tree represen-
tation, and their associated nucleotides.

A shallow subtree is a subtree of depth 1, i.e., an internal vertex with its first-
generation descendants. Note that the definition of a subtree in this section differs
from the usual one in graph theory, where a subtree includes all node descendants.
The base pair at the root of a subtree is called the closing base pair since it encloses
the loop, in which the enclosed base pairs are called open base pairs. Figure 2.4 shows
a decomposition of secondary structure into different types of loop determined by
the number of open base pairs k.

• Hairpin. An unpaired region delimited by a base pair, i.e., k = 0.

• Base pair stack. A loop consists of two consecutive base pairs (i, j) and (i+

1, j− 1). Several consecutive stacks form a helix. Starting from base pair (i, j), a
helix of length l is composed of base pairs (i, j), . . . , (i+ l− 1, j− l+ 1).

• Internal loop. The closing base pair encloses two strands of unpaired nu-
cleotides separated by an open base pair (k = 1). If the length of one strand is
null, the internal loop is also called a bulge.
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Hairpin
Stack / Helix
Internal loop
Multi-loop
Exterior loop

Figure 2.4: Loop decomposition of a secondary structure, including hairpins (orange), stacks
(green), an internal loop (blue), a multi-loop (red), and an exterior loop (gray).

• Multi-loop, or multibranch loop. A multi-loop contains more than one open
base pair (k > 2), or called branch in multi-loop. The open base pair amount is
also called the in multi-loop.

In addition, the region delimited by the virtual root is sometimes called the exterior
loop.

Now, we can formulate a formal definition for the energy model based on loop
decomposition.

Definition 2.7 (Energy Model): An energy model E taking a sequence w and a
secondary structure S of same length is a function E : Σ∗× S→ R∪ {+∞} such
that

E(w,S) =
∑

T= p

a b c · · ·
∈S

∆G ({p→ wp,a→ wa,b→ wb . . .}, T)

where ∆G (m, T) is the free-energy, expressed in kcal.mol−1 associated with
the assignment m of concrete nucleotides from w to the (pairs of) positions in
the subtree T .

One of the most used energy models is the Turner nearest-neighbor model or
Turner energy model [87]. The energy model offers a database of energy parameters
experimentally determined for small loops. For large loops, energy is extrapolated
using a closed-form expression relying on the type, the length of the loop, and the
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nucleotides nearby. Secondary structure energy is then the sum of loop energies
using provided parameters.

zuker algorithm Zuker and Stiegler [99] proposed a DP algorithm to compute
the MFE structure using loop decomposition based energy model. The algorithm uses
a DP scheme derived from an extension of the classic structure decomposition. In the
extended version, the existence of closing base pair is taken into account to determine
the loop type for further decomposition. More precisely, the loop delimited by base
pair (i,k) in the classic decomposition (Figure 2.4) has three possible loop types
depending on the decomposition on the region [i+ 1,k− 1].

1. A hairpin if [i+ 1,k− 1] is an unpaired region;

2. An internal loop if a base pair (i ′, j ′) forms in [i+ 1,k− 1]. Because of two novel
variables, the complexity of energy minimization is O(n4) in time. In practice,
it is reduced to O(n3) by restricting strand length;

3. A multi-loop if at least two base pairs form in [i+ 1,k− 1]. In principle, no effi-
cient decomposition exists for multi-loop due to the uncertain branch number.
To workaround, Turner model assumes the energy of a multi-loop grows lin-
early with branch number and average asymmetry, which allows decomposing
multi-loop by adding at most one open base pair each time.

Despite the exponential number of secondary structures, the energy minimization
is achieved in O(n3) with DP algorithm proposed by Zuker and Stiegler [99]. The
approach is further extended to compute all secondary structures with free-energy
within a range from MFE [94] and implemented in the library ViennaRNA.

Due to the complexity of Zuker structure decomposition, we will use the base
pair energy model with a minimum distance θ = 0 to illustrate other RNA-related
algorithms for the rest of this chapter. Similar algorithms can be extended for Turner
energy model by changing the structure decomposition.

2.3 boltzmann distribution paradigm

At the thermodynamic equilibrium, secondary structure can be observed with the
probability related to its free-energy. The MFE structure has the highest probability
of being observed, while unstable structures are expected to have minimal probabil-
ities. In this paradigm, structures with free-energy closed to the MFE have a similar
probability to the MFE structure. It is then also interesting to obtain these suboptimal
structures.

Under the hypothesis of a Boltzmann equilibrium, the structure in the ensemble
follows the Boltzmann distribution.
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Definition 2.8 (Boltzmann Probability): For a given sequence w, the putative sec-
ondary structure S follows a Boltzmann distribution

P(S | w) =
B(w,S)
Zw

with

B(w,S) := e−
E(w,S)
RT is the Boltzmann factor of w and S

Zw :=
∑
S ′∈S|w|

B(w,S ′) is the partition function of w

where R is the Boltzmann constant and T is the temperature.

2.3.1 Partition Function Computation.

Computing partition function is the key to access these probabilities. The number
of secondary structures grows exponentially, so an explicit sum would be unfeasi-
ble beyond several dozen nucleotides. Fortunately, the partition function can also
be calculated in polynomial time on the length, using a DP algorithm [60]. Analog
with Equation 2.1, McCaskill algorithm uses the same DP scheme for energy mini-
mization with a change of algebra, operations (+,×) substitutes (min,+). The addi-
tivity of free-energy ensures that multiplying the contributions from smaller regions
gives the partition function.

More precisely, given a pair of positions (i, j), the goal is to compute the partition
function defined over the region [i, j],

Zi,j =
∑

S ′∈Sj−i+1

B(wi · · ·wj,S ′).

Replacing the energy by the Boltzmann factor, Equation 2.1 becomes,

Zi,j = Zi,j−1 +
∑
i<k6j

e−
∆G(k,j)
RT Zi,k−1Zk+1,j−1

with Zi,j = 1 if i > j for the base case. The total partition function Zw = Z1,n is
computed starting with the entire sequence with the complexity O(n3) in time and
O(n2) in space.

2.3.2 Structure Sampling

Ding and Lawrence [22] proposed an algorithm generating a valid structure from the
ensemble with respect to its Boltzmann probability. It performs stochastic backtrack-
ing after computing the partition function. Unlike the backtracking used for energy
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minimization, for the region [i, j], stochastic backtracking selects a partner k for nu-
cleotide i according to the probability of having base pair (i,k) within the region
[i, j].

More precisely, the probability of having base pair (i,k) in a random structure is
determined by the region inside [i+ 1,k− 1] and outside [k+ 1, j] of the base pair
(i,k),

P[i,j](i,k) =
e−

∆G(i,k)
RT Zi+1,k−1Zk+1,j

Zi,j

where partial partitions Zi,j, Zi+1,k−1, and Zk+1,j are precomputed while computing
the total partition function Z1,n. On the other hand, the probability of position i

being unpaired, or pairing to itself, is then

P[i,j](i, i) = 1−
∑
i<k6j

P[i,j](i,k).

Therefore, the partner k ∈ [i, j] for nucleotides i is selected according to the condi-
tional probability P[i,j](i,k).

In practice, the division by the total partition function is skipped since the denom-
inator is the same for all probabilities. Let Ni, . . . ,Nj be the nominators of probabili-
ties P[i,j](i, i), . . . , P[i,j](i, j) with Zi,j = Ni + · · ·+Nj. The partner k is then selected
such that

k∑
l=i

Nl 6 x <
k+1∑
l=i

Nl

with x is a random value uniformly chosen from [0,Zi,j[. It is achieved by subtracting
Nl from x for l from i to j until x becomes negative.

Sampling k sequences of length n needs O(kn2) time complexity for the worst case
and O(kn

√
n) for the average case, which can be improved to O(kn

√
n) for both with

Boustrophedon strategy [66]. For some applications, it requires preventing the sam-
pling of structures that have been seen. On top of stochastic backtracking, one can
achieve non-redundant sampling while keeping the same distribution by subtracting
from partial partition functions, the contribution of each sampled structure [63].

2.3.3 Base Pair Probability

McCaskill [60] also provided a method, called the inside-outside algorithm, to com-
pute the probability of observing a base pair in the ensemble with the same principle
of partition function computation.
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Definition 2.9 (Base Pair Probability): For a given sequence w, the probability of
a base pair (i, j) is defined as

pw(i, j) =
∑
S∈Sn
(i,j)∈S

P(S | w).

In the case of i = j, pw(i, i) represents the probability of i being left unpaired,
which is usually denoted by qi,

qi = pw(i, i) = 1−
∑
j6=i

pw(i, j).

Let w be a sequence and (i, j) be a base pair. As seen on the left-hand side of Fig-
ure 2.5, sequence is divided into two regions, the inside one [i + 1, j − 1] and the
outside one [1, i− 1]∪ [j+ 1,n]. The partition function with the base pair (i, j) is then
the product of contributions from outside and inside regions. The contribution from
the inside region to the partition function is exactly the partition function Zi+1,j−1

since the base pair delimit the region. On the other hand, the outside contribution is
not simply Z1,i−1 × Zj+1,n since a base in [1, i− 1] can form a base pair with a base
in [j+ 1,n]. Let Yi,j be the contribution from the region outside the base pair (i, j).
The base pair probability is

pw(i, j) =
e−

∆G(i,k)
RT Yi,jZi+1,j−1

Zw
.

To compute Yi,j, the decomposition starts from the inside of sequence to the out-
side. As presented in the right-hand side of Figure 2.5, there are three situations on
base i− 1.

• Base i− 1 is unpaired. The outside region is reduced to [1, i− 2]∪ [j+ 1,n];

• Base i − 1 paired to a base i ′ in [1, i − 2]. The outside region is reduced to
[1, i ′ − 1]∪ [j+ 1,n] while an independent region [i ′ + 1, i− 2] is introduced;

• Base i − 1 paired to a base j ′ in [j + 1,n]. The outside region is reduced to
[1, i− 1]∪ [j ′ + 1,n] while an independent region [j+ 1, j ′ − 1] is introduced.

Thus,

Yi,j = Yi−1,j+
∑

16i ′<i−1

e−
∆G(i ′ ,i−1)

RT Yi ′,jZi ′+1,i−1+
∑

j6j ′<n

e−
∆G(i−1,j ′)

RT Yi,j ′Zj+1,j ′−1

with Yi,j = 1 if i > j for the base case.
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Figure 2.5: Structure decomposition outside of base pair (i, j) from base i− 1. Outside region
is marked by red and the newly introduced inside region after the decomposition
is marked by green.

2.4 ensemble representatives and expected distance

Under the thermodynamic hypothesis, the MFE secondary structure is the most sta-
ble and achieves the highest Boltzmann probability. While considering the entire
structure ensemble, competitive structures with probability close to the MFE can be
far in the ensemble while surrounding structures have a poor probability. In such a
case, it is preferable to look for the representative structure(s) within the ensemble,
rather than the MFE.

2.4.1 Structure Distance

To define the concept of representative structure, we need to introduce a notion of
distance between two structures, dist : S× S→ R+.

An intuitive solution is to consider the Hamming distance, i.e., the number of dif-
fering positions, between the two representations of structures as well-parenthesized
strings. However, the Hamming distance does not take the paired partner into ac-
count, as shown in Table 2.1. Two alternative distances have been used. Let S1,S2 be
two secondary structures of equal length.

• Base Pair Distance (BPdist) is the number of base pairs in one structure but
not in the other,

BPdist(S1,S2) = |S1∆S2|

with ∆ denotes the symmetric difference between two sets of base pairs, S1,S2.
Base pair distance is also the minimum number of base pairs needed to ad-
d/delete from S1 to S2.
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S1 : ((••••••••)) S2 : (((••••••))) S3 : ((•••)(•••))

Hamming Dist. Base Pair Dist. Diff. Paired Dist.

S1 ((••••••••)) ((••••••••)) ((••••••••))
S2 (((••••••))) (((••••••))) (((••••••)))

Distance 2 0+ 1 = 1 2

S1 ((••••••••)) ((••••••••)) ((••••••••))
S3 ((•••)(•••)) ((•••)(•••)) ((•••)(•••))

Distance 2 1+ 2 = 3 4

Table 2.1: Different structure distances for S1,S2 and S1,S3 with nucleotides counted in the
distance are colored. Two colors are used for base pair distance since base pairs
of both structures contribute to the distance. In both case, the Hamming distance
between two structures is 2. However, it is clear that S1 is closer to S2 than to S3
from structural aspect. The difference is both captured using base pair distance
and difficulty paired distance.

• Differently Paired Distance (DPdist) is the number of nucleotides paired dif-
ferently in both structures. Let Tk be the partner sequence of Sk,k ∈ {1, 2},

Tk(i) =

j if base i paired with j in Sk

i if base i unpaired in Sk.

Then, the differently paired distance of S1 and S2 is the hamming distance of
T1 and T2.

The most representative structure, also called centroid solution, is the secondary
structure having the minimum expected distance to a random structure in Boltz-
mann distributed ensemble, i.e., structure at the center of the ensemble.

Definition 2.10 (Centroid Solution): Let w be a sequence of length n and

S = argmin
S∈Sn

∑
S ′∈Sn

P(S ′ | w) · dist(S ′,S).
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2.4.2 Maximum Expected Accuracy

Considering the differently paired distance, one has∑
S ′∈Sn

P(S ′ | w) ·DPdist(S ′,S) = n−
∑

(i,j)∈S

2pw(i, j) −
∑

i unpaired in S

qi.

The structure minimizing the expected distance is then the structure maximizing the
expected accuracy,∑

(i,j)∈S

2pw(i, j) +
∑

i unpaired in S

qi.

Lu, Gloor, and Mathews [55] proposed a DP algorithm to compute the MEA struc-
ture with an additional parameter γ for base pair probability.

EA(S) =
∑

(i,j)∈S

γ · 2pw(i, j) +
∑

i unpaired in S

qi.

Given a sequence w of length n, the MEA can be calculated using the same structure
decomposition. Let MEAi,j be the MEA between positions i and j. One has, similar
to Equation 2.1,

MEAi,j = max


qi +MEAi+1,j

max
i<k6j

(wi,wk)∈B

γ · 2pw(i,k) +MEAi+1,k−1 +MEAk+1,j

with MEAi,j = 0 if i > j. The MFE given a sequence is computed with region [1,n]
and the MFE structure is obtained via backtracking.





3
R N A S T R U C T U R A L D E S I G N

3.1 design objectives

There are two main design paradigms for RNA structural design based on the design
objectives. In the positive design, we aim to optimize the free-energy, used as a proxy
for the affinity, towards a limited number of structures. In the context of negative
design, it requires the sequence to be specific to the target(s), i.e., to avoid folding
into an exponential number of undesired structures. When more than one target
structure is given, the design problem is called multi-target design.

3.1.1 Positive Design

Let S∗ be a target secondary structure S∗ of length n. Under thermodynamic hy-
pothesis, the goal of positive design is to find sequence w∗ that minimizes the target
free-energy,

w∗ := argmin
w∈{A,C,G,U}n

E(w,S∗)

where E is an energy model, such as the Turner energy model. A particular energy
model is to assign −1 to sequence compatible with the target structure and +∞ to in-
compatible one. In this case, the goal becomes finding compatible design sequences.

Finding suboptimal sequences is often needed when several design sequences are
demanded. Similar to suboptimal structure sampling mentioned in Section 2.3, de-
sign sequence w is obtained with probability

P(w | S∗) ∝ eβE(w,S∗)

where E is an energy model and β is an arbitrary constant. If β = −1/RT , then
the sequence probability is proportional to the usual Boltzmann factor. In addition,
a compatible sequence is uniformly sampled when β = 0 regardless of the energy
model. It requires precomputing the dual partition function for sequence sampling.

Definition 3.1 (Dual Partition Function): Given a target structure S∗ of length n
and an energy model E, the dual partition function ZS∗ is defined as

ZS∗ =
∑
w∈Σn

eβE(w,S∗)

25
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where β is an arbitrary constant.

The dual partition function sums the Boltzmann factor over the sequence space
while the usual partition function is defined on structures.

In multi-targets design, the design sequence needs to be compatible with all targets
and minimize some combinations, such as linear function, of the target free-energies.
For suboptimal sequence sampling, sequence w is sampled from the Boltzmann-
weighted distribution such that

P(w | S∗1, . . . ,S∗k) ∝ eβE(w,S∗1) · · · eβE(w,S∗k)

where S∗1, . . . ,S∗k are target structures.

3.1.2 Negative Design

Given a target secondary structure S∗, the classic negative RNA design problem or
RNA inverse folding problem, consists in producing a sequences w that adopts S∗ as
its unique MFE structure.

Problem 1 (RNA Inverse Folding):
Input: Target structure S∗ of length n

Output: Sequence w ∈ Σn, such that

MFE(w) = {S∗}.

Despite of being the MFE structure, alternative structures can be competitive in
the ensemble, for example, structure with close Boltzmann probability. A notion of
defect captures the avoidance of alternative structures. The smaller the defect value
is, the harder it will be for the design sequence to adopt a (significantly) alternative
structure.

Definition 3.2 (Defect): Given an RNA sequence w ∈ Σ∗ and a target structure
S∗ ∈ S, a defect is a function

D : Σ∗ × S → R

w × S∗ 7→ D(w,S∗)

computing the hardness of folding w into S∗.

The meta-objective of negative RNA design can then be summarized as:
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Problem 2 (Negative RNA Design):
Input: Real-valued threshold ε, defect D, target structure S∗

Output: Sequence w ∈ Σ|S∗|, called a (negative) (D 6 ε)-design for S∗, such that

MFE(w) = {S∗} and D(w,S∗) 6 ε. (3.1)

The first objective requires the design to adapt the target structure as its stablest
conformation. The second one enforces the avoidance of competing structures in the
structure ensemble induced by the design. We call (D 6 ε)-designable a secondary
structure that does admit at least a valid design, and denote by DD6ε the set of
(D 6 ε)-designable secondary structures.

RNA design methods usually consider one of the three following defects, subopti-
mal defect, probability defect, and ensemble defect.

Definition 3.3 (Suboptimal Defect): The Suboptimal Defect DS of a sequence w is
defined as the energy difference to the first suboptimal, such that

DS(w,S∗) := min
S∈S|w|

S 6=S∗

E(w,S∗) − E(w,S) ∈ R

where E is an energy model.

In practice, the value of suboptimal defect DS is negative or null because of the
first design objective, which demands the target to be the MFE structure. Thus, the
design problem with objective DS 6 0 is equivalent to the classic inverse folding.

Definition 3.4 (Probability Defect): The Probability Defect DP represents the prob-
ability of folding into any other structure than S∗:

DP(w,S∗) :=
∑
S∈S|w|

S 6=S∗

P(S | w) = 1− P(S∗ | w) ∈ [0, 1].

With the probability defect, the target structure is designed by optimizing the
Boltzmann probability.

Definition 3.5 (Ensemble Defect): The Ensemble Defect DE is the expected
amount of bases differently paired between S∗ and a random structure, gener-
ated with respect to the Boltzmann probability distribution:

DE(w,S∗) :=
∑
S∈S|w|

P(S | w) ·DPdist(S,S∗)
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= |w|−
∑

(i,j)∈S

2pw(i, j) −
∑

i unpaired in S

qi ∈ R+

where pw(i, j) is the base pair probability of (i, j) and qi is the probability of
being unpaired for nucleotide i.

The use of ensemble defect requires the target structure to be the representative
structure in the ensemble induced by the design w.

3.1.3 Constraints

Additional constraints are also considered in RNA design, such as imposing or for-
bidding a certain sequence pattern in the design or aiming a specific GC content for
designed sequences. More formally, these goals can be seen as a set of constraints
imposed on sequences C = {c1, . . . , cl}. Each constraint ci : Σ∗ → {True,False} is
a function returning a boolean given a sequence. In general, constraint is defined
on partial sequence, i.e., the content of a selected subset of positions. Then, the se-
quence space for both positive and negative design is limited from Σ∗ to AC the set
of sequences compatible with C, AC := {w ∈ Σ∗; ∀c ∈ C, c(w) is True}. For example,
imposing a known aptamer sequence for better binding affinity [23].

3.2 state of the art

Given a secondary structure S∗ of length n with k base pairs. The amount of RNA

sequences compatible with S∗ is up to 6k4n−2k, i.e., exponentially growing on the
target length. It is unrealistic to find design sequences that adopt the target as MFE

structure and satisfy defect conditions with a simple brute force method. Moreover,
the classic inverse folding problem is shown to be NP-complete in the Nussinov-
Jacobson model [7]. Several heuristic methods have been proposed to work around
the hardness. Some approaches follow a similar workflow: an initial seed sequence
generation for positive design followed by a local search optimization for negative
design purposes.

3.2.1 RNAinverse

RNAinverse [41] is the first negative design approach for the inverse folding problem.
Let S∗ be the secondary target structure. Starting from an initial compatible sequence
w0, RNAinverse performs a random work starting in sequence space with optimiza-
tion toward the target. At step i, a sequencew is obtained from the previous one with
a mutation on an unpaired nucleotide or a base pair. The sequence w is accepted if
the distance of the MFE structure to the target decreases,

dist(MFE(w),S∗) < dist(MFE(wi),S∗) =⇒ wi+1 = w.
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The walk stops if a design is found. When there is no more available mutation to
improve the distance to the target, i.e., local minima, the local optimization restarts
with a new initial sequence.

To reduce the computation time on evaluating sequence, RNAinverse determines
the best sequence by block. Considering structure loop decomposition as a tree, in
which a node is a loop, the approach travels the tree in post-order to complete the
sequence. Starting with a hairpin, RNAinverse looks for the sequence that folds into
the current target as the MFE structure, then adds another loop into the current target.
One can also consider the probability defect as the design objective of RNAinverse,
despite the increase of time computation due to the defect evaluation on the entire
sequence.

3.2.2 Optimization for negative design

As a pioneer, RNAinverse established a workflow followed by its successors for the
RNA negative design problem: explore the sequence space with optimization. As
mentioned above, RNAinverse performs local optimization using random walk start-
ing from a seed sequence. However, local minima problem is sometimes observed
during the random walk. INFO-RNA [12] overcomes the issue using stochastic local
search, which accepts a worse sequence with a fixed probability. As for the design
objective, NUPACK [96] targets the optimal ensemble defect in the optimization step.

Other optimization approaches are also proposed for the RNA design problem:

• AntaRNA [47] uses a nature-inspired ant colony optimization algorithm. Ants
walk through a decision tree encoding the whole sequence space. The approach
returns the sequences with a higher score while controlling GC content.

• MODENA [82] considers sequence affinity and specificity as two objective func-
tions. It uses the Multi-objective optimization approach to search weak Pareto
optimal design solutions.

• RNAifold uses constraint programming to determine the optimal design se-
quence [32]. It explores a larger sequence space with the integration of large
neighborhood search.

• DSS-OPT [59] adopts simulated annealing to optimise design sequence within
the sequence space using the Newtonian dynamics.

• MCTS-RNA [95] uses a heuristic sequence sampling algorithm with Monte
Carlo Tree Search, a strategy initially developed for GO gaming [15].

3.2.3 Generating compatible sequences for target structure(s)

Andronescu et al. [2] showed that starting with initial sequences with a higher affinity
to the target structure, i.e., positive design objective, achieves a better performance af-
ter local search. Given a target structure, as implemented in RNA-SSD, the approach
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initializes the seed sequence with a different nucleotide probability toward a low free-
energy. It favors CG in helix and AU for unpaired nucleotides as (C,G) base pair stack
is energetically more stable. INFO-RNA [12] uses the Dynamic Programming (DP) al-
gorithm to find initial sequence in the sequence space with the minimum free-energy
for the target structure using the Turner energy model. A global sequence sampling
based on Boltzmann-weighted distribution is achieved by IncaRNAtion [69]. The ap-
proach considers a simplified energy model assuming that structure energy is an
additive contribution of base pairs stacks. Sequences are sampled with stochastic
backtracking after dual partition function computation from DP scheme.

Furthermore, IncaRNAtion adopts the strategy of multi-dimensional Boltzmann
sampling [5] to controls sequence GC content as a constrained design objective. Zhou
et al. [98] integrated automata in the framework to sample sequences for a given se-
quence pattern. For multiple hard constraints given, i.e., multiple target structures,
the complexity of finding compatible sequences increases as a nucleotide can have
more than one parter. It is then insufficient to assign paired nucleotides to base pair.

One can represent the hard constraints introduced by target structures as a de-
pendency graph, in which vertices are nucleotides, and two vertices are connected
if they form a base pair in one of the target structures. When only two target struc-
tures are concerned, the degree of a vertex is at most 2, meaning that each connected
component in the graph is either a path or a cycle. A compatible sequence is easily
obtained by alternatively assigning C and G in each connected component. Flamm
et al. [31] developed switch.pl to perform a uniform sequence sampling for two tar-
get structures. When there are more than two target structures, RNAblueprint [35]
uniformly samples compatible sequences using graph coloring strategy, assuming
each nucleotide is a color. The approach precomputes the number of compatible
sequences on each subgraph in a decomposition of the dependency graph. Count-
ing compatible sequences for multiple targets is later shown to be #P-hard prob-
lem [37]. A Fixed-Parameter Trackable (FPT) algorithm is proposed, as implemented
in RNARedPrint [37], to sample sequences based on each target energy with a pre-
computation of dual partition function using DP algorithm. Using the same strategy
as IncaRNAtion, RNARedPrint controls sequence GC content and targets specific target
energies in sampled sequences. The algorithmic detail is presented later in Chapter 8
while introducing an extension of the RNARedPrint framework.
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A N A LY T I C C O M B I N AT O R I C S

Analytic Combinatorics is a branch of discrete applied Mathematics combining com-
binatorics and complex analysis [30]. In enumerative combinatorics, the goal is to
study an object, or a family of objects, through is quantitative properties using a
variety of tools, including decompositions, bijections, formal languages, and gener-
ating functions. The latter is treated as a function in complex analysis, which gives
a different sight for the object of interest, such as property statistics. This chapter
presents examples using RNA secondary structure, definitions and results in analytic
combinatorics that are necessary to the exposition of the first part of this thesis.

4.1 formal language

Definition 4.1 (Alphabet): An alphabet Σ is a set with more than one element,
which is called a letter or a symbol.

A word over an alphabet Σ is a sequence of letters in Σ. The set of all words
over Σ, denoted by Σ∗, is the free monoid over Σ with the empty word ε as the
identity element and string concatenation, denoted by ·, as product operation such
that a,b ∈ Σ∗ =⇒ a · b ∈ Σ∗.

Definition 4.2 (Language): A language L over an alphabet Σ is a subset of Σ∗,
L ⊆ Σ∗.

Example (RNA sequence and Motzkin word):

• An RNA sequence is a word over the alphabet Σw = {A, C, G, U} in the context of
formal language.

• A Motzkin word is, similar to Dyck word, a well-parenthesized expression composed of
letters in alphabet ΣS = {(, ), •}.

Language is usually defined using a grammar, which contains a set of production
rules α→ β. The left-hand side α and the right-hand side β are sequences composed
of an alphabet Σ and a set of nonterminal symbols N, i.e., α,β ∈ (N ∪ Σ)∗. In a word
w, a nonterminal symbol points out the location where production rules can be
applied, i.e, w is not completed yet. A word consists only of letters in Σ is completed,
on which no production rule can be applied. In the Chomsky hierarchy, grammar is
classified depending on the rule type:

31
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• Type-0, Recursively enumerable γ→ α. No restriction is applied on both sides;

• Type-1, Context-sensitive αSβ→ αγβ. Nonterminal symbol S is substituted by
γ depending on the context upstream α and downstream β;

• Type-2, Context-free S → α. The left-hand side is restricted to a nonterminal
symbol;

• Type-3, Regular S → a or S → aT . Only one nonterminal symbol is allowed
on the left-hand side, while only a letter potentially followed by a nonterminal
symbol is allowed on the right-hand side.

where S is a nonterminal symbol, a is a letter, and α,β,γ are sequences in (N ∪ Σ)∗
such that γ is not empty. In this thesis, we only consider the class of grammars using
type-2 production rules, Context-Free Grammar.

Definition 4.3 (Context-Free Grammar): A Context-Free Grammar (CFG) is given by
G = (Σ,N,S0,R) such that

• Σ is an alphabet, the element is named terminal symbol;

• N is a finite set of nonterminal symbols;

• S0 ∈ N is the start symbol;

• R ⊂ N× (N ∪ Σ)∗ is a finite set of production rules.

A rule (S,w) ∈ R is usually denoted by S→ w. Rules having the same nonter-
minal symbol on the left-hand side, S → w1, . . . ,S → wn, are abbreviated by
S→ w1 | · · · | wn.

Definition 4.4 (Direct derivation): Let G = (Σ,N,S0,R) be a grammar and u, v
be two words of (N ∪ Σ)∗. We say v is directly derived from u, denoted by
u →G v, if there exists a production rule (α,β) ∈ R and two words w1,w2 of
(N ∪ Σ)∗ such that

u = w1 ·α ·w2 and v = w1 ·β ·w2.

Definition 4.5 (Derivation): Let G = (Σ,N,S0,R) be a grammar and w a word
over Σ. We say a wordw is derived from a nonterminal symbol S ∈ N, denoted
by S  G w, if there exists a finite sequence of words w1, . . . ,wk ∈ (N ∪ Σ)∗
with k ∈N∗ such that

S→G w1 →G · · · →G wk →G w.

A leftmost derivation is a derivation, where production rule is applied on the
leftmost nonterminal symbol every time.
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Definition 4.6 (Language of a grammar): The language LG,S generated from a
nonterminal symbol S in grammar G is the set of words derived from S,

LG,S := {w ∈ Σ∗; S G w}.

The language LG generated from a grammar G is the language generated
from the start symbol S0,

LG := LG,S0 = {w ∈ Σ∗; S0  G w}.

The index G is usually omitted when there is no ambiguity.

Example (Grammar for Motzkin words): Reminder that a Motzkin word is a well-
parenthesized expression over the alphabet ΣS = {(, ), •}. Motzkin words can be generated
from the grammar GbisS = (ΣS, {S},S,R) with the production rules

R1 : S→ •S
R2 : S→ S•
R3 : S→ (S)S

R4 : S→ ε

For example, the word •()• is derived from the start symbol via the following leftmost deriva-
tion

S
R1−−→ •S R2−−→ •S• R3−−→ •(S)S• R4−−→ •(ε)S• R4−−→ •(ε)ε• = •()•.

One may observe that the leftmost derivation is not unique, the following is another one for
•()• by switching the first two rules,

S
R2−−→ S• R1−−→ •S• R3−−→ •(S)S• R4−−→ •(ε)S• R4−−→ •(ε)ε• = •()•.

Definition 4.7 (Unambiguous Grammar): A grammar G is unambiguous if all
words w ∈ LG generated from grammar have a unique leftmost derivation.

Example (Unambiguous grammar for Motzkin words): One of the common used unam-
biguous grammars for Motzkin words is G0S = (ΣS, {S0},S0,R) with the production rules

S0 → (S0)S0 | •S0 | ε.
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4.2 analytic combinatorics

Definition 4.8 (Combinatorial Class): A combinatorial class A is a set associated
with a size function | · | : A → N such that the subset, denoted by An ⊂ A of
elements of any given size n is finite.

Example:

• Language LG derived from a grammar G is naturally a combinatorial class with the
size is the length of word.

• Secondary structures can be seen as a combinatorial class with the associated size func-
tion returns the amount of nucleotides given a secondary structure.

4.2.1 Ordinary Generating Function

Definition 4.9 (Ordinary Generating Function): Let A be a combinatorial class, the
Ordinary Generating Function (OGF) of A is the power series

A(z) =
∑
a∈A

z|a| =
∑
n

anz
n

where an := |An| is the number of elements of size n in A.

The use of OGF allows us to consider some basic operations on combinatorial
classes. Let A,B,C be three combinatorial classes and, for any positive integer n,
an := |An|,bn := |Bn|, cn := |Cn| be the cardinality of subsets restricted to size n.

• If A = B∪ C, one has an = bn + cn if sets Bn and Cn are disjoint for any n;

• Let × denote the Cartesian product. If A = B×C = {b · c; b ∈ B, c ∈ C} and the
size function is additive upon concatenating two elements, one has, for any n,

an =

n∑
i=0

bi · cn−i since An =

n⋃
i=0

{b · c; b ∈ Bi, c ∈ Cn−i}.

Proposition 4.1: Let A,B,C be three combinatorial classes and A(z),B(z),C(z) be
the OGF for each.

• If A = B∪ C and B∩ C = ∅, then A(z) = B(z) +C(z);

• If A = B× C, then A(z) = B(z) ·C(z).
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from grammar to generating function The Dyck-Schützenberger-Viennot
(DSV) method [10, 53], sometimes referred to as the symbolic method in the subse-
quent work of Flajolet and colleagues, is often used to find the OGF for a combinato-
rial class A. The method consists of three steps, describing the class with grammar,
transforming the production rules into a system of functional equations, and resolv-
ing the system to get the OGF.

1. Describe combinatorial class. Finding an unambiguous grammar forming lan-
guage L such that, for any size n, the set Ln has a bijection with the combina-
torial class An. It requires to prove

• Completeness. Any object in An matches to at least one word of length n
derived from the grammar;

• Correctness. Any word derived from the grammar corresponds to an ob-
ject in An.

With unambiguity, this shows a bijection between the words constructed by the
grammar and the objects of the combinatorial class of interest.

2. Construct a system of functional equations. Next, we transform the produc-
tion rules into a system of functional equations. Each nonterminal symbol
S ∈ N is transformed into S(z), the OGF of the language LS derived from S,
while each terminal symbol is transformed into z. Accordingly, the language
La of a letter a ∈ Σ consists of a itself, La = {a}. Thus, the associated OGF is
equal to z|a| = z.

Given a production rule S → β with β ∈ (N ∪ Σ)∗, the transformation to an
equation of OGF is a direct application of Proposition 4.1. Let β = x1 · · · xl with
xi ∈ N ∪ Σ is a (non)terminal symbol. Then, a word derived from S is a word
in Lx1 × · · · ×Lxl , which gives the equation below

S(z) =
∏
x∈β


1 if x = ε

z if x = a ∈ Σ
B(z) if x = B ∈ N.

(4.1)

For abbreviated production rules S→ β | γ, the language derived from S is the
union of languages derived from β and γ. Let β(z) (resp. γ(z)) be the OGF of
the language derived from β (resp. γ), computed using Equation 4.1. One has
S(z) = β(z) + γ(z). Note that the OGF S0(z) associated to the start symbol S0 is
the OGF of the combinatorial class of interest since the language derived from
grammar forms a bijection.

3. Solve the system of functional equations. It is possible to eliminate the OGF

for nonterminal symbols other than the start symbol S0 from the system and
compute an expression for S0(z), OGF of the language derived from S0, i.e.,
grammar. The complexity of resolving the system is determined by the degree
of the OGF in the system.
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Example (RNA secondary structure): We apply the DSV method on secondary structure
with minimum distance θ = 0.

• With () representing base pair and • standing for unpaired base, it is easy to see a
bijection between the set of secondary structures and the language derived from the
grammar G0S described in the previous example.

• Let S0(z) be the OGF for the start symbol S0. The transformation for the first rule
S0 → (S0)S0 is

S0(z) = ψ((S0)S0) = zψ(S0)S0) = zS0(z)Ψ()S0) = z
2S0(z)ψ(S0) = z

2S0(z)
2.

Same analogy for the entire production rules S0 → (S0)S0 | •S0 | ε yields a quadratic
equation of S0(z),

S0(z) = z
2S0(z)

2 + zS0(z) + 1.

• Resolving the equation gives two functions of z,

S+(z) =
1− z+

√
(1+ z)(1− 3z)

2z2
and S−(z) =

1− z−
√

(1+ z)(1− 3z)

2z2
.

We will see later that S0(z) = S−(z).

4.2.2 Asymptotic value for OGF coefficients

In this section, Ordinary Generating Function (OGF) is seen as a function of z as
found in the previous example.

Definition 4.10 (Coefficient of Generating Function): Let f(z) be the OGF of a com-
binatorial class A. We use [zn] f(z) to denote the coefficient of zn in f(z), i.e.,
[zn] f(z) = |An|.

It is, in general, hard to find an explicit expression for [zn] f(z). An alternative way
is to compute the asymptotic value with the help of singularity analysis [30], which
is summarized by two principles,

• First Principle of Coefficient Asymptotics. The location of singularities dic-
tates the exponential growth αn of coefficients, where α is the inverse of the
dominant singularity;

• Second Principle of Coefficient Asymptotics. The nature of singularities de-
termines the associate subexponential factor ϑ(n), limn→+∞ ϑ(n)1/n = 1.

These two suggests that the asymptotic value of coefficient [zn] f(z) is in the form of
αnϑ(n). Singularities of f(z) are the points in the complex plane where f(z) ceases
to be analytic. Pringsheim’s Theorem limits the singularities to be in real numbers R

for OGF.
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Theorem 4.2 (Pringsheim’s Theorem): If f(z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R ∈ R,
then the point z = R is a singularity of f(z).

The dominant singularity ρ of f(z) is the smallest non-zero singularity of f(z) in
absolute value,

ρ := sup{r > 0; f analytic at all points of 0 6 z < r}.

Theorem 4.3 (Exponential Growth Formula): Let ρ ∈ R+ be the dominant sin-
gularity (in absolute value) of an Ordinary Generating Function f(z). One has

lim
n→+∞[zn] f(z) =

(
1

ρ

)n
.

The formula is referred to the First Principle of Coefficient Asymptotics.

The Second Principle of Coefficient Asymptotics is explained in Flajolet and Odlyzko
Theorem [29].

Theorem 4.4 (Flajolet and Odlyzko Theorem): Let α be a non-integer number,
ρ be a non-zero number and let f(z) and g(z) be two functions such that

f(z) = (1− z/ρ)−α and g(z) = o((1− z/ρ)−α).

The coefficient of zn in f(z) and g(z) are

[zn] f(z) =
ρ−nnα−1

Γ(α)

(
1+

α(α− 1)

2n
+ o(

1

n
)

)
[zn]g(z) = o(ρ−nnα−1)

where Γ is the Gamma function, Γ(z) =
∫∞
0 x

z−1e−xdx.

process of singularity analysis Let f(z) be an OGF. The process of singu-
larity analysis to determine the asymptotic coefficient is as follows,

1. Determine the dominant singularity of f(z);

2. Expand f(z) around the dominant singular;

3. Apply Flajolet and Odlyzko Theorem on each term in the expansion to obtain
asymptotic equivalent of [zn] f(z).
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Example (Asymptotic number for secondary structures): From previous example, the
OGF of secondary structures with θ = 0 is either S+(z) or S−(z)

S+(z) =
1− z+

√
(1+ z)(1− 3z)

2z2
and S−(z) =

1− z−
√
(1+ z)(1− 3z)

2z2
.

1. Both solutions have the dominant singularity ρ = 1/3 since the value in the square
root cannot be negative;

2. Singularity expansion of S−(z) on z = ρ = 1/3 gives

S−(z) = 3− 3
√
3(1−

z

ρ
)
1
2 + o((1−

z

ρ
)
1
2 );

3. Applying Flajolet and Odlyzko Theorem with α = −1/2 and Γ(−1/2) = −2
√
π, we

obtain

[zn]S−(z) =
3
√
3

2
√
π
(1+ o(1))× 3nn− 3

2 + o(3nn− 3
2 ).

Using the same process for S+(z), the value of [zn]S+(z) is negative when n is odd which
against the non-negative number of secondary structures. Thus, S−(z) is the only possible
OGF for secondary structures and the asymptotic amount for structures of length n is

[zn]S0(z) =
3
√
3

2
√
π
× 3nn− 3

2 + o(3nn− 3
2 ).

In the special case, where OGF is expressed in a recursive form f(z) = G(z, f(z)),
one can use Bender-Meir-Moon Theorem [61] to compute the subexponential factor.
The theorem is first proposed by Bender in 1974, then renewed by Meir and Moon.

Theorem 4.5 (Bender-Meir-Moon Theorem): Suppose that the generating func-
tion f(z) is analytic at z = 0, that fn > 0 for all n, and that f(z) = G(z, f(z)), where
G(z,y) =

∑
m,n>0 gm,nz

myn such that there exists three positive real numbers
δ, r, s satisfying

• G(z,y) is analytic in |z| < r+ δ and |y| < s+ δ

• G(r, s) = s, ∂
∂yG(r, s) = 1

• Gz(r, s) := ∂
∂zG(r, s) 6= 0 and Gy,y := ∂2

∂y2
G 6= 0

If gm,n is non-negative real number for all m,n, g0,0 = 0, g0,1 6= 1, and gm,n > 0

for some m and for some n > 2, then

fn = [zn]f(z) ∼

√
rGz(r, s)
2πGy,y(r, s)

r−nn− 3
2 .
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Example (Asymptotic number for secondary structures 2 [77]): Reminder that the OGF

S0(z) of secondary structures with minimum distance θ = 0 satisfies

S0(z) = z
2S0(z)

2 + zS0(z) + 1.

In other words, S0(z) is in a recursive form S0(z) = G(z,y) with G(z,y) = 1+ zy+ z2y2.
It is easy to verify that all conditions for Bender-Meir-Moon Theorem are fulfilled with r =
1/3, s = 3, and δ = 1/3. Computing the partial derivative of G gives Gz(r, s) = 9 and
Gy,y(r, s) = 2/9. Thus, the asymptotic amount for secondary structures of length n is

[zn]S0(z) ∼

√
1
3 · 9
2π · 29

× 3nn− 3
2 =

3
√
3

2
√
π
× 3nn− 3

2

which is exactly same as the one obtained in the previous example.

4.2.3 Bivariate Generating Function

Despite that the Ordinary Generating Function provides a good estimation for the
growth of the combinatorial class in the function of the size, it is not enough to study
others object properties in many cases, such as the expected value of a property in
the ensemble. The object property introduces an additional parameter, characterized
as a function, named feature, associating a value to each combinatorial object.

Definition 4.11 (Bivariate Generating Function): Let A be a combinatorial class
and F : A → R be a feature. Bivariate Generating Function (BGF) A(z,u) is
defined as

A(z,u) =
∑
a∈A

z|a|uF(a) =
∑

n60,k60

an,kz
nuk.

where an,k is the amount of objects of size n having value k for the feature F.
We say the variable u marks the feature F.

In order to use the DSV method to construct a system of functional equations from
a grammar, we consider a special type of feature of which the value is expressed as
the additive sum over production rules.

Definition 4.12 (Additive feature): Let A be a combinatorial class and G =

(Σ,N,S0,R) be a grammar such that a bijection exists for the derived lan-
guage LG and A. A feature F is additive if there exists a function f : R → R

defined on production rules such that for an object a ∈ A and its mapped
word w ∈ LG,

F(a) =
∑
r∈pw

f(r)
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where pw is the set of rules applied in the leftmost derivation S w of w.

Similar to Equation 4.1, the system of functional equation is constructed by trans-
forming each production rule r : A → β to an equation of BGF while introducing
variable u to mark feature value f(r),

A(z,u) = uf(r) ×β(z) = uf(r) ×
∏
x∈β


1 if x = ε

z if x ∈ Σ
B(z,u) if x = B ∈ N

where β(z) is the OGF of the set of words derived from β.

Example (Base pairs in secondary structure): Since base pair stabilizes RNA structure, it
is natural to ask the base pair number in a secondary structure. Secondary structure with the
minimum distance θ = 0 is generated with the rules

S0 → (S0)S0 | •S0 | ε.

Only the first rule S0 → (S0)S0 involves one base pair. The value of feature f is then 0 for
the first rule and 0 for the others. Let S0(z,u) be the BGF with z and u mark, respectively, the
size and the amount of base pairs. We obtain from production rules,

S0(z,u) = z2uS0(z,u)2 + zS0(z,u) + 1.

Thus,

S0(z,u) =
1− z−

√
(z− 1)2 − 4z2u

2z2u
.

Similar result has been shown on a more realistic secondary structure set with Knudsen-Hein
grammar [48, 67].

Let Xn be a random variable for the feature of object of size n. One can compute
the expected feature value E[Xn = k] from the BGF,

E[Xn = k] =

∑
a∈An F(a)

|An|
=

[zn]
∑
a∈An F(a)u

F(a)−1zn
∣∣
u=1

[zn]
∑
a∈An z

n
.

Thus,

E[Xn] =
[zn]

∂A(z,u)
∂u

∣∣∣
u=1

[zn]A(z, 1)
.

The expected value is also called the first moment. One can obtain other moments
similarly.
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Proposition 4.6 (Factorial Moment from BGF): The r-th factorial moment of
Xn, within the uniform distribution over objects of size n, is computed from the BGF

A(z,u) by r-fold differentiation followed by evaluation at 1,

E[X(X− 1) · · · (X− r+ 1)] =
[zn]

∂rA(z,u)
∂u

∣∣∣
u=1

[zn]A(z, 1)
.

In particular, for the second moment,

E[X2] = E[X] + E[X(X− 1)] =
[zn]

∂A(z,u)
∂u

∣∣∣
u=1

[zn]A(z, 1)
+

[zn]
∂2A(z,u)
∂u2

∣∣∣
u=1

[zn]A(z, 1)

=
[zn] ∂

∂u

(
u · ∂A(z,u)

∂u

)∣∣∣
u=1

[zn]A(z, 1)
.

The variance of feature value can then be computed with V[X] = E[X2] − E[X]2.

Example (Expected base pair number in secondary structure): The partial derivative
of S0(z,u) with respect to u is

∂S0(z,u)
∂u

=
1

u((1− z)2 − 4z2u)
1
2

+
−1+ z+ ((1− z)2 − 4z2u)

1
2

2z2u
.

With u = 1,

∂S0(z,u)
∂u

∣∣∣∣
u=1

=
1

(1+ z)
1
2 (1− 3z)

1
2

+
1− z+ (1+ z)

1
2 (1− 3z)

1
2

2z2

=
z− 1

2z2
+
1− 2z− z2

2z2(1+ z)
1
2

× (1− 3z)−
1
2

Expanding on the dominant singularity z = ρ = 1/3 gives

∂S0(z,u)
∂u

∣∣∣∣
u=1

= −3+

√
3

2
(1−

z

ρ
)−

1
2 + o((1−

z

ρ
)−

1
2 ).

The asymptotic value for n-th coefficient is obtained by applying Flajolet and Odlyzko Theorem
with α = 1/2 and Γ(1/2) =

√
π,

[zn]
∂S0(z,u)
∂u

∣∣∣∣
u=1

=

√
3

2
√
π
× 3nn− 1

2 + o(3nn− 1
2 ).

Since [zn]S0(z, 1) = [zn]S0(z) = 3
√
3

2
√
π
× 3nn− 3

2 + o(3nn− 3
2 ), taking the ratio gives the

expected base pair number in a random secondary structure of length n is n3 +O(1). In other
words, in average, two third of nucleotides are paired in a random structure.

As seen in the example, the expected feature value is linear to the object size.
In fact, Drmota–Lalley–Woods Theorem [25, 50, 92] shows that the variance is also
linear to the size and the feature value follows a Gaussian limiting distribution if the
system of equations is strongly connected.
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Theorem 4.7 (Drmota–Lalley–Woods Theorem): Let A be a combinatorial class
and G be a grammar for A. Considering an additive feature F, the BGF for the feature
is denoted by A(z,u) and let Xn be the random variable for feature value of an object
in An. If the system of functional equations for A(z,u) constructed from the grammar
G, then X has a Gaussian limiting distribution with mean E[Xn] and variance V[Xn]

linear to n,

E[Xn] = µn+O(1) and V[Xn] = σ
2n+O(1)

where µ and σ are two constants. In addition, let ρ(u) be the dominant singularity of
A(z,u) in the function of u. Then,

µ = −
ρ ′(1)

ρ(1)
and σ2 = −

ρ ′′(1)

ρ(1)
+ µ2 + µ.

Note that the theorem statement is adapted to the context of BGF and grammar.

Example (Expected base pair number in secondary structure 2): Reminder that the
system for the BGF S0(z,u) is

S0(z,u) = z2uS0(z,u)2 + zS0(z,u) + 1

which is strongly connected since it consists of only one BGF. Furthermore, we have

S0(z,u) =
1− z−

√
(z− 1)2 − 4z2u

2z2u

is not analytic when the value within the square root is negative. Thus, the dominant singu-
larity z = ρ(u) is a solution of (z− 1)2 − 4z2u = 0. Solving the equation and using the fact
that the dominant singularity is 1/3 when u = 0 yield

ρ(u) =
2
√
u− 1

4u− 1

ρ ′(u) =
4− u−

1
2 − 4u

1
2

(4u− 1)2

ρ ′′(u) =
(12u

− 3
2 − 2u)(4u− 1) − 8(4− u−

1
2 − 4u

1
2 )

(4u− 1)3

and ρ(1) = 1/3, ρ ′(1) = −1/9, ρ ′′(1) = 7/54.
In conclusion, the amount of base pairs in a random secondary structure of length n follows a
Gaussian limiting distribution N(1/3 ·n, 1/

√
18 · √n).
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5
U N D E S I G N A B L E M O T I F S

Haleš et al. [34] observed that if a secondary structure contains a multi-loop con-
sisting of more than three open base pairs or a multi-loop having at least one un-
paired position (Figure 5.1a), then the secondary structure is undesignable in the
simple base pair based energy models. Similarly, Aguirre-Hernández, Hoos, and
Condon [1] showed two motifs composed of two adjacent internal loops (Figure 5.1b)
are undesignable in the usual Turner energy model. Forming a larger internal loop
is thermodynamically more stable for any RNA sequence than folding into these two
undesignable motifs.

This chapter aims to formalize and identify undesignable motifs in the RNA design
problem with Turner energy model. We will start by introducing several definitions
related to motif.

1
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20
1
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15

(a)

1

10

15 1

10

20

26

(b)

Figure 5.1: Examples of undesignable motifs in base pair based energy model [34] (a) and
Turner energy model [1] (b).

5.1 motif definition

5.1.1 Basic definition

Definition 5.1 (Motif): A motif m is a rooted ordered tree such that the root and
nodes are base pairs, and a leaf represents either an unpaired base or an open
base pair, named open paired leaf. Its length, denoted by |m|, is the number of
bases involved, and the number of open paired leaves is denoted by δm.

We use M to denote the set of motifs and Mn for the subset where motif length
is restricted to n. Figure 5.2 shows an example of a motif. One can see a motif as

45
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an object composed of several adjacent loops, each corresponding to a node and its
children in the tree. In addition, one can notice that a primary loop is also a motif,
called a shallow motif.

Definition 5.2 (Shallow motif): A shallow motif is a motif of height 1.

(a) (b) (c)

Figure 5.2: A motif m of length 14 with 2 open paired leaves presented as a graph (a) and as
a tree (b). The motif is composed of a multi-loop and a stacking. (c) The shallow
motif ψ(m) returned by shallow operation.

Next, we define an operation ψ, named reduction operation, which returns a unique
shallow motif ψ(m) given a motif m. We show, in Figure 5.2c, the shallow motif
returned while applying the reduction operation on the motif in Figure 5.2b.

Definition 5.3 (Reduction operation): Taken a motif as input, the reduction oper-
ation ψ duplicates and returns motif m while removing all base pairs in the
motif that is not the root or the open paired leaves.

The obtained shallow motif has an equal length and the same open paired leaves
amount as the given motif m, |m| = |ψ(m)| and δm = δψ(m). In addition, the po-
sitions of open paired leaves remain the same in both motifs. Furthermore, based
on reduction operation, we can define an equivalence relation for motifs. Given two
motifs x and y, we say x is equivalent to y, denoted by x ∼ y, if ψ(x) = ψ(y). We
then obtain a partition for motifs, in which each subset (or equivalence class) is repre-
sented by one shallow motif. Given a motifm, we use [m] := {x ∈M|m|; ψ(x) = ψ(x)}
to denote its equivalence class.

Similarly as for a secondary structure, a motif m can also be written in the dot-
bracket notation. We use (*) to represent an open paired leaf. In addition, we use
m ′ to denote the partial motif delimited by the motif root, i.e., m = (m ′). It is easy
to modify the classic secondary structure grammar into a grammar that builds the
set of motifs with a given minimum distance.
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Proposition 5.1 (Motif grammar): Grammar below, starting with non-terminal
symbol M, generates all motifs with a minimum distance θ = 3,

M→ (U3)

T → (U3)T + (*)T + •T + ε
U3 → (U3)T + (*)T + •U2
U2 → (U3)T + (*)T + •U1
U1 → (U3)T + (*)T + •T

Here, the non-terminal symbol Ui records the amount of bases needed to fulfill
the minimum distance. The symbol ∗ is a letter of zero length, which represents any
valid structure that can be placed within the open base pair while extending the
motif.

Definition 5.4 (Motif extension): Given a motifm and a δm-tuple (t1, · · · , tδm) of
motifs (resp. structures), we define m ◦ (t1, · · · , tδm) the motif (resp. structure)
obtained by making the i-th open paired leaf of m the parent of ti for all i
from 1 to δm.

In other words, we replace the i-th ∗ by ti in the dot-bracket notation. We can then
define motif occurrence used in Steyaert and Flajolet work [78].

Definition 5.5 (Motif occurrence):

• Root occurrence. A motif m is said to occur at the root of a sec-
ondary structure S∗ (resp. a motif m∗) if there exists a δm-tuple of sec-
ondary structures (resp. motifs) t1, · · · , tδm such that S∗ (resp. m∗) is
m ◦ (t1, · · · , tδm).

• Occurrence. A motif m is said to occur in a secondary structure S∗ (resp.
motif m∗), denoted by m ∈ S∗ (resp. m ∈ m∗), if m occurs at the root of
a subtree of S∗ (resp. m∗).

Given a motif m and a secondary structure S (or a motif), one can find all occur-
rences of m in S in Θ(|m|× |S|) using a simple pattern matching recursive algorithm
as detailed in Algorithm 5.1.

As for string objects, two strings overlap if a suffix of one is a prefix of another, one
can introduce a similar concept of overlapping to the motif. Analogously, a suffix of a
string corresponds to a subtree of a motif, and a prefix is a smaller motif that occurs
at the root. However, unlike a string object, we need to take structures extending
from the motif into account because of open-paired leaves. Let Rm be the set of
secondary structures featuring a root occurrence of motif m,

Rm = {m ◦ (S1, . . . ,Sδm); (S1, . . . ,Sδm) ∈ Sδm}.
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Algorithm 5.1: Find motif occurrences in a secondary structure
Input : A motif m and a secondary structure S
Output :O a, possible empty, set of occurrence positions of m in S
Function FindAllOccurrences(m, S):

O← ∅;
forall subtree t of S do

if OccursAtRoot (m,t) then
O← O∪ {IndexOf(t)};

return O

Function OccursAtRoot(m, t):
rm ← root of m;
rt ← root of t;
if rm = rt = () then

Cm := (cm1, · · · , cmk)← children of rm;
Ct := (ct1, · · · , ctl)← children of rt;
if k 6= l then

return false
else

r← true;
foreach cmi in Cm and cti in Ct do

r← r∧ OccursAtRoot (cmi, cti);
return r

else if (rm, rt) = ((*), ()) or ((), (*)) then
return true

else
return rm = rt

We present in Figure 5.3 several examples to illustrate motif overlapping.

Definition 5.6 (Motif overlapping): Two motifs m1 and m2 overlap if

∀ subtree t1 of m1,Rt1 ∩Rm2
6= ∅∨ ∀ subtree t2 of m2,Rt2 ∩Rm1

6= ∅.

We say a motif set is overlap-free if any two motifs in the set are not overlapped.

5.1.2 Local defect

Consider a motif m∗ and a sequence w, we define the local defect DL(w,m∗) simi-
larly as the structure defect D, by restricting the ensemble to the equivalence class
of m∗. In other words, we replace Sn with the equivalence class [m∗] := {m ∈
M|m∗| ;ψ(m) = ψ(m∗)}.

Definition 5.7 (Local defect): Given a motif m∗ and a compatible sequence w,
we define each local defect as,
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Motif m1 Motif m2
(a)

Motif m1 Motif m2
(b)

Motif m1 Motif m2 Motif m3
(c)

x

Motif m1 Motif m2
(d)

Figure 5.3: Examples where motifs m1 and m2 overlap.In both (a) and (b), motif m1 strictly
contains motif m2.It is easy to see that, in (c), Rm1 ∩ Rm2 = {m3}.In (d), the
subtree of m1 at the x node occurs at the root of m2.

1. Local Suboptimal Defect

DL,S(w,m∗) := min
m∈[m∗]m 6=m∗

E(w,m∗) − E(w,m) ∈ R;

2. Local Probability Defect

DL,P(w,m∗) :=
∑

m∈[m∗]
m 6=m∗

P[m∗](m | w) = 1− P[m∗](m∗ | w) ∈ [0, 1];

3. Local Ensemble Defect

DL,E(w,m∗) :=
∑

m∈[m∗]

P[m∗](m | w) ·DPdist(m,m∗)

= |w|−
∑

(i,j)∈m∗
2p

[m∗]
w (i, j) −

∑
i unpaired in m∗

q
[m∗]
i ∈ R+.

Note that motif probability P[m∗](m|w), base pair probability p[m
∗]

w , unpaired prob-
ability q[m

∗]
i are also defined over the equivalence class of m∗. The following ob-

servation allows to extrapolate a family of undesignable structures from a (finite)
collection of motifs.

Proposition 5.2 (Monotonicity): For suboptimal or probability defect D ∈
{DS,DP}, sequence w, |w| = n, and structure S ∈ Sn, one has

∀m ∈ S, D(w,S) > DL(w[|m|],m)

where w[|m|] is the restriction of w to the positions in m.
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Proof. Let m ∈ S be a motif occurring in structure S. For each motif x in the equiva-
lence class [m] of m, we define the secondary structure Sx obtained by substituting
x for m in S. One has

E(w[|m|], x) − E(w[|m|],m) = E(w,Sx) − E(w,S),

meaning that

B(w[|m|], x)/B(w[|m|],m) = B(w,Sx)/B(w,S).

Since the set Sm is finite, there exists a motif m̃ such that

m̃ := argmin
x∈Sm
x 6=m

E(w[|m|], x) − E(w[|m|],m).

We have,

DL,S(w[|m|],m) = −(E(w[|m|], m̃) − E(w[|m|],m)) = −(E(w,Sm̃) − E(w,S)).

In addition, minx∈Sn E(w, x) − E(w,S) 6 E(w,Sm̃) − E(w,S), which implies the in-
equality DS(w,S) > DL,S(w[|m|],m).

For the case D = DP,

P(S | w) =
B(w,S)∑

S ′∈Sn B(w,S ′)

6
B(w,S)∑

x∈[m]B(w,Sx)
since the set {Sx; x ∈ [m]} is a subset of Sn

=
1∑

x∈[m](B(w,Sx)/B(w,S))
=

1∑
x∈[m](B(w[|m|], x)/B(w[|m|],m))

=
B(w[|m|],m)∑
x∈[m]B(w[|m|], x)

= P[m](m | w[|m|]).

Therefore, DP(w,S) = 1− P(S | w) > 1− P[m](m | w[|m|]) = D
L,P(w[|m|],m).

Intuitively, the same proposition should also be applicable for ensemble defects.
However, it is not trivial to demonstrate it or to find a counterexample since the
ensemble of interest changes while passing from motif to structure. We find out, for
now, that a slightly modified proposition holds for the local ensemble defect.

Proposition 5.3 (Monotonicity of Ensemble Defect): Given a sequencew, |w| =
n, and structure S ∈ Sn, one has

∀m ∈ S, D(w,S) > min(DL(w[|m|],m), 2)

where w[|m|] is the restriction of w to the positions in m.
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While computing the structure ensemble defect, the motif’s root and the open
base pairs are no longer guaranteed to be paired (for example, positions (i1, j1)
in Figure 5.4). We can separate structures into two sets depending on the presence
of these base pairs. In the set where the appearance is preserved (S1 in the proof,
Figure 5.4b), the region inside and outside the motif are independent. The structure
ensemble defect defined in S1 is then the sum of ensemble defects defined in each
region. The one for the inside region is exactly the local defect of motif. On the
other hand, in the set Sn \ S1 (Figure 5.4c), structures have a distance of at least 2
to the target one, but the relation to the local defect is unknown. Since the structure
probability defined in Sn \ S1 is not easy to determine, we cannot have a better lower
bound than two despite the structures with larger distance.

(a) S (b) S1 (c) S2

Figure 5.4: Let S be a secondary structure containing the motif m (a) with the root base pair
(i1, j1) and the open base pair (i2, j2). Alternative secondary structures having
the same length as S are classified into two groups. In the first one (b), both
(i1, j1) and (i2, j2) are paired. In the second one (c), at least one pair of bases are
not paired, (i1, j1) for example. In the later case, structure has a distance of at
least two to the structure S.

Proof. By definition, The structure esemble defect of S is

DE(w,S) =
∑
S ′∈Sn

P(S ′ | w)DPdist(S ′,S).

Letm ∈ S be a motif occurring in structure S, (a0,b0) be its root, and (a1,b1), . . . , (aδm ,bδm)
be its open paired leaves. In addition, let S1 be the set of secondary structures hav-
ing base pairs (a0,b0), . . . , (aδm ,bδm) with the associated partition function Z1 :=∑
S ′∈S1 B(w,S ′). We can then rewrite the structure ensemble defect

DE(w,S)

=
∑
S ′∈S1

P(S ′ | w)DPdist(S ′,S) +
∑

S ′∈Sn\S1

P(S ′ | w)DPdist(S ′,S)

=
Z1

Z

∑
S ′∈S1

P1(S
′ | w)DPdist(S ′,S) + (1−

Z1

Z
)
∑

S ′∈Sn\S1

P2(S
′ | w)DPdist(S ′,S)

where Z :=
∑
S ′∈Sn B(w,S ′) is the partition function over Sn and P1(S

′ | w) (resp.
P2(S

′ | w)) is the structure probability defined over S1 (resp. Sn \ S1). Since a struc-
ture S ′ in the set Sn \ S1 has at least two positions different to one of base pairs
{(ai,bi)}i∈{0,...,δm}, the distance to the target structure S is at least 2 in the second
term. Therefore,∑

S ′∈Sn\S1

P2(S
′ | w)DPdist(S ′,S) > 2

∑
S ′∈Sn\S1

P2(S
′ | w) = 2.
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Next, we will show that
∑
S ′∈S1 P1(S

′ | w) > DL,E(w[|m|],m). Let Sm, a subset of S1,
be the set of secondary structures containing motif m. Given a secondary structure
S ′ in Sm and a motif x in the equivalent class of m, we use S ′x to denote the structure
obtained by substituting m with x in S ′. We have,

S1 =
⋃

S ′∈Sm

{S ′x; x ∈ [m]}.

Thus,∑
S ′∈S1

P1(S
′ | w)DPdist(S ′,S) =

∑
S ′∈Sm

∑
x∈[m]

P1(S
′
x | w)DPdist(S ′x,S)

>
∑
S ′∈Sm

∑
x∈[m]

P1(S
′
x | w)DPdist(x,m)

=
∑
S ′∈Sm

ZS ′

Z1

∑
x∈[m]

PS ′(S
′
x | w)DPdist(x,m)

where ZS ′ and PS ′(S
′
x | w) are the partition function and the structure probability

defined over the set {S ′x; x ∈ [m]} given a structure S ′ in Sm. We have shown in the
previous proof that PS ′(S

′
x | w) = P(x | w[|m|]), which gives∑

S ′∈S1

P1(S
′ | w)DPdist(S ′,S) =

∑
S ′∈Sm

ZS ′

Z1

∑
x∈[m]

P[m](x | w[|m|])DPdist(x,m)

=
∑
S ′∈Sm

ZS ′

Z1
DL,E(w,m)

= DL,E(w[|m|],m).

Therefore,

DE(w,S) >
Z1

Z
×DL,E(w[|m|],m) + (1−

Z1

Z
)× 2 > min(DL,E(w[|m|],m), 2).

Corollary 5.4: If there exists a motif m ∈ S∗ such that

∀w ∈ Σ|m|, DL(w,m) > ε,

then S∗ cannot be D-designed. Note that ε is smaller than 2 for ensemble defect.

In other words the presence, in the target structure S∗, of a motif that cannot
be designed locally, named local obstruction, is sufficient to forbid the existence of a
sequence w that would constitute a design for S∗. Given a motif m, we use Dm to
denote its minimum possible defect,

Dm := min
w∈Σ|m|

DL(w,m).
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A local obstruction is then a motif with minimum possible defect surpasses the
tolerance ε.

Proposition 5.5: The minimum possible probability defect DPm and ensemble defect
DEm of a motif m is 0 if and only if m is shallow motif.

If motif m is not a shallow motif, there are at least two motifs in the ensemble for
any valid assignment, motif m and the shallow motif ψ(m). Thus, the probability
defect is not null and the ensemble defect neither. On the other hand, assigning the
same nucleotide to all unpaired bases in a shallow motif leads to an ensemble with
exactly one motif, the shallow one. The value of the defect is then zero.

Motifs not respecting the minimum distance θ are local obstructions. All such
motifs contain common motifs, called trivial motifs.

Definition 5.8 (Trivial motifs): Given a minimum distance θ, trivial motifs are
motifs composing a root base pair and unpaired bases such that the amount
of unpaired bases is less than θ.

For example, the trivial motifs introduced by the minimum distance θ = 3 in the
Turner energy model are (), ( · ), and ( · ·). The local suboptimal defect and local
probability defect of a trivial motif are, respectively, ∞ and 1. Since releasing the
root base pair is always preferable, the local ensemble defect of a trivial motif is two
bases. In this thesis, trivial motifs are not included in the motif set unless specifically
mentioned.

5.2 local obstructions

In this section, we present an algorithm to compute local obstructions for a prede-
fined design objective.

Problem 3:
Input: Size k, defect D, and tolerance ε

Output: Local obstructions of size k such that the minimum possible probabil-
ity defect Dm is larger than ε for each local obstruction m.

5.2.1 Emulating a local defect with constraints

The current RNA folding tool takes a valid secondary structure and a sequence as
input, meaning that we cannot directly compute the local defect DL(w,m) for a
given motif m and a sequence w. We address this issue with the help of constrained
folding.
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Minimal completion
↽−−−−−−−−−−−⇀

Trimming

ACCGCAACGUACGU ACCGAAACAACAAAGUACGU

Motif m Minimal completion of m

Figure 5.5: Minimal completion and trimming operation on a motif and its assignment.

Definition 5.9 (Folding constraint): Given a length k, a folding constraint C is a
set consisting of positions from [1,k] and pairs from [1,k]2, respectively repre-
senting positions forced to remain unpaired and paired to a specific partner.

The conformation space is limited to structures compatible with the constraint C,
denoted by SC during the constrained folding. The constrained defect DC(w,S) can
then be defined on the set SC, i.e., replacing Sn with SC in the original definition
of defect. Such constraints are supported by reference implementations of energy
minimization and partition function algorithms and can be easily enforced in simpler
energy models.

Constrained folding allows us to extend a motif to a structure where the newly
added part is constrained. In other words, only the bases involved in the motif are
allowed to fold alternatively.

Definition 5.10 (Minimal completion): The minimal completion of a motif m for a
nucleotide assignment w is a pair (Sm,wm) such that:

• Sm is the secondary structure obtained from m by adding θ unpaired
nodes (leaves) under each open paired leaf;

• wm is the sequence obtained by inserting θ occurrences of the letter A
under open paired leaves.

In the Turner model, the minimal completion is obtained by replacing each open
paired leaf by ,

Sm = m ◦ ( , · · · ,︸ ︷︷ ︸
δm

).

Figure 5.5 illustrates the application of the minimal completion to a motif. A trim-
ming operation is defined as the inverse of the completion and allows to recover a
motif/sequence pair from its completion.

Definition 5.11 (Induced minimal constraint): Considering a motif m, and its min-
imal completion (Sm,wm), we define the induced constraint Cm of m as con-
sisting of:
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• the root base pair of Sm;

• the base pairs in Sm stemming from the open paired leaves in m;

• the unpaired positions introduced by the completion.

Proposition 5.6: For every defect D ∈ {DS,DP,DE}, one has

DL(w,m) = DCm(wm,Sm).

Proof. The schema of proof is similar to the one of Proposition 5.2. Let SCm be the set
of secondary structures of length |Sm| that are compatible with the folding constraint
Cm. In fact, SCm = {Sx; x ∈ [m]}, which is the set of minimal completion structures
for motifs in the equivalent class of m. The energy of a structure Sx ∈ SCm is the sum
of the energy contributed by the motif x and the one of the constrained part. Given
a nucleotide assignment w for m, we have

E(wm,Sx) − E(wm,Sm) = E(w, x) − E(w,m)

for all x ∈ [m] since the energy of constrained part is same for Sx and Sm. This
proves the proposition for D = DS. Moreover, one has

B(wm,Sx)/B(wm,Sm) = B(w, x)/B(w,m).

Thus, the structure probability defined in the set SCm

PCm(Sm | wm) =
B(wm,Sm)∑

Sx∈SCm B(wm,Sx)

=
1∑

Sx∈SCm B(wm,Sx)/B(wm,Sm)
=

1∑
x∈[m] B(w, x)/B(w,m)

=
B(w,m)∑
x∈[m] B(w, x)

= P[m](m | w)

and DL,P(w,m) = 1− P[m](w|m) = 1− PCm(Sm|wm) = DPCm(wm,Sm).

Since the constrained part is same for any motif, we haveDPdist(x,m) = DPdist(Sx,Sm).
Therefore, the equality for ensemble defect D = DE.

It means that, in practice, the local defect of a motif can be computed by executing
a constrained version of a global off-the-shelf algorithm (energy-minimization for
DS, base-pair probability for DP and DE) on the minimal completion of the motif.
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5.2.2 Computing local obstructions

A naive solution for Problem 3 is to enumerate all motifs of size k and all compatible
sequences for each, followed by a defect evaluation on their minimal completion. A
motif is considered as local obstruction if all assignments fail the design condition.
Let P(k) be the time complexity of computing defect of a length k motif, which is
usually polynomial. the time complexity of the naive approach is O(3k4kP(k)).

One can notice that motifs in the same equivalent class have compatible sequences
in common, implying that each sequence is folded and evaluated several times in
the previous approach. It is sufficient to fold each sequence once since only the MFE

conformation in each equivalent class is considered in the design problem. Since
each equivalence class is represented by one shallow motif, we can restrict the enu-
meration to shallow motifs. The complexity is reduced to O(φk−24kP(k)) where
φ = (1+

√
5)/2 ≈ 1.618 is the golden ratio, the exponential constant for Fibonacci

numbers. Indeed, one can observe that shallow motifs are in bijection with 1D tilings
using monominoes (unpaired bases) and dominoes (open base pairs), so that the
number of shallow motifs of size k+ 2 coincides with the k-th Fibonacci number.

Given a defect D restricted to a value ε, and a motif of length k, our algorithm
executes the following steps:

• Enumerate all shallow motifs (of depth 1) of length k;

• For any such motif m◦, consider any assignment w◦ consistent with the paired
nodes in m◦:

– Build the minimal completion (S◦m,w◦m) of (m◦,w◦), and execute on w◦m
a constrained MFE folding algorithm, using the induced constraint Cm◦ ;

– If the MFE computation returns a unique structure m?, consider the motif
m obtained by trimming m? (m ∈ [m◦] );

– Evaluate the local defect and, if DL(w◦,m) 6 ε, add m to the list Dk of
designable motifs;

• Return Mk, the set of all motifs of length k not in Dk.

A detailed version of the procedure is described in Algorithm 5.2 and illustrated
in Figure 5.6.

Proposition 5.7: All motifs returned by Algorithm 5.2 are local obstructions.

Proof. First, let us consider the properties of a motif m returned by the algorithm.
Since m /∈ M then, for each sequence w◦, either a lower constrained MFE fold was
found, or the local defect exceeded ε. In the latter case, Propositions 5.2 and 5.3
imply that any pair (S,w), where S features m, and sequence w having nucleotide
assignment w◦ on the motif positions, has defect greater than ε, thus w is not a
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Figure 5.6: Workflow for undesignable motif identification.

design for S. In the former case where an alternative motif ma is preferred to (or
equally stable as) m for w◦, then for any structure S containing m and sequence
w, having nucleotide assignment w◦ on the positions of m, a competitor to S for w
can be constructed by replacing m by ma in S. One concludes that, if m /∈ M, any
structure S, m ∈ S, and sequence w does not represent a (D, ε)-design.

5.2.3 Extracting an overlap-free subset of motifs

The analyses in the following chapters require motif set to be overlap-free, meaning
that some motifs obtained from Algorithm 5.2 should be discarded. Moreover, we
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Algorithm 5.2: Computing local obstructions of a given size
Input : A motif size k, an energy model E, a defect definition D, and a tolerance ε
Output : Mk a, possibly empty, set of local obstructions of length k
Dk ← ∅;
Qk ← Set of all shallow motifs of size k;
foreach m◦ ∈ Qk do

foreach w◦ ∈ Σk (compatible with m◦) do
Cm◦ ← Induced constraint of m◦;
(S◦m,w◦m)← Minimal completion of (m◦,w◦);
O← MFE(wm | Cm◦) w.r.t. energy model E;
if O = {S ′} then

if DCm◦ (w
◦,S ′) 6 ε then

m← trimming of S ′ ;
Dk ← Dk ∪ {m}

Ak ← Complete set of all motifs of size k;
return Mk = Ak −Dk

want to keep as many local obstructions as possible in the original set to have a
closer asymptotic estimation. Formally, given a motif set M and a list of overlapped
motif pairs P = {(m1,m2)} ∈ M2, i.e., motifs m1 and m2 overlap as defined in Def-
inition 5.6, we aim to extract a subset M∗ ⊆ M such that any two motifs in M∗ are
not in P while maximizing |M∗|. It is equivalent to obtain a Maximum Independent
Set (MIS) of the graph G = (M,P). However, finding MIS of a general graph is an
NP-hard problem [33], which implies the absence of an efficient solution for our
problem.

To work around the hardness, we used an O(|M|/(log(M))2)-approximation algo-
rithm to extract an overlap-free motif set [9]. In addition, we prefer a smaller motif or
a higher defect per length motif, depending on the demand. Therefore, our heuristic
approach applies a pre-processing on the motif set before calling the MIS algorithm,
which results in three steps,

1. Any motif that strictly contains another motif is removed;

2. For each pair of motifs in increasing lexicographic order, if two motifs are
overlap, then

• the larger one is removed in structure enumerating problem in Chapter 6;

• the one with lower defect per length is eliminated in structure defect esti-
mating in Chapter 7;

3. We build the graph G = (M,P) described above over the remaining motifs and
extract the MIS using Boppana and Halldórsson algorithm [9].
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Defect ε |MD,ε| |FD,ε|

DS 0 4 561 387

DS −1 7 000 573

DP 0.5 4 845 401

DP 0.1 7 305 611

DP 0.01 8 187 709

DE 1 5 012 411

Table 5.1: Collections of local obstructions of length up to 14.

5.2.4 Local obstruction database

We implemented Algorithm 5.2 in Python3 and executed with minimum distance
θ = 3 for motif length up to 14 bases and different design objectives. There are
10 886 motifs of length up to 14, in which 3 070 of them do not contain isolated
base pair, and 606 are shallow motifs. We computed local obstructions, denoted by
MD6ε, for a given defect D and a threshold ε. Then, we filtered MD6ε as described
in Section 5.2.3 to extract an overlap-free set, denoted by FD6ε. Table 5.1 summarizes
the size of each local obstruction collection.

obstructions to basic inverse folding (DS 6 0) In the classic RNA de-
sign setting, the inverse folding, one attempts to design a sequence that admits a
target structure as its unique MFE structure. The setting corresponds to choosing the
suboptimal defect DS with ε = 0.

Our analysis of motifs for a length up to 14 reveals 4 561 local obstructions out
of 10 886 motifs, meaning that almost half of motifs are not designable. The amount
of local obstructions grows exponentially with length, as can be seen in Figure 5.7.
Among these local obstructions, 60 of them are undesignable because of the exis-
tence of another MFE conformation. In addition, an overwhelming majority (4 490
out of 4 561) of which contain at least one isolated base pair. Figure 5.8 shows some
local obstructions identified without isolated base pair. The nearest-neighbor energy
model expects such motifs to be heavily penalized, yet not explicitly forbidden (un-
less specified). An overlap-free set of 387 local obstructions was obtained after motif
filtering.

Consecutive bulges, alternating on the 5’ and 3’ ends of a helix, also seem sys-
tematically suboptimal for the Turner energy model. A large interior loop being
systematically favored as a candidate for the MFE. Finally, hairpin/terminal loops di-
rectly stemming from multi-loops are systematically discriminated, and a structure
consisting of a larger unpaired stretch in the multi-loop will always be favored.
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Figure 5.7: Amount of motifs (blue) and local obstructions (orange) for different length.

obstructions with superoptimal design objective (DS 6 −1) We also
consider a more challenging design objective. The target structure must be the MFE

of a sequence and be superoptimal, i.e., achieve an energy distance to its first subop-
timal at least 1 kcal.mol−1. This objective corresponds to using the suboptimal defect
DS with ε = −1.

Under these more substantial constraints, with 2 439 newly determined obstruc-
tions, the number of local obstructions increases to 7 000 motifs and 573 for the
overlap-free set. The majority still contains at least one isolated base pair. Only 144
out of 7 000 obstructions do not feature isolated base pairs. Furthermore, most novel
obstructions have a suboptimal defect around −0.4 and −0.7 kcal.mol−1, as seen
in Figure 5.9.

obstructions with small equilibrium probabilities Being MFE confor-
mation may have a low Boltzmann probability. Next, we turn to the probability de-
fect DP, and investigate the impact of ε. We consider 3 values for the threshold
ε ∈ {0.5, 0.1, 0.01}, associated with targeted Boltzmann probabilities for the motifs
greater than 50%, 90% and 99% respectively, and show in Figure 5.10 some local
obstructions under these conditions. Figure 5.11 presents the defect distribution of
obstructions with local probability defect beyond 0.01. Most of the motif minimum
possible defects are around 0.01 and from 0.2 to 0.4.

For threshold ε = 0.5, the size of the obstruction set slightly increases from 4 561,
the one for the classic design, to 4 845 motifs, and we have MDS60 ⊂ MDP60.5. It
is not entirely unexpected since our definition of a valid design requires the target
motif to be the sole MFE for the sequence. We obtain a collection of 7 305 obstructions
for ε = 0.1 and 8 187 obstructions for ε = 0.01. Under extreme strict design objective
(ε = 0.01), about three forth of motifs are considered undesignable, and only 464
obstructions do not feature isolated base pairs, which confirms that the stacking
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Distance to subopts ∆ ≥ 0 kcal.mol−1 (DS ≤ 0).
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Distance to subopts ∆ ≥ 1 kcal.mol−1 (DS ≤ −1).

ID
Defect

1
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m140a00
-0.4

1

10
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m141ea0
-0.5

1

10

20

m502bc
-0.5

1

10

20

mcd40a
-0.5

1

10

18

m1d40a2
-0.8

Figure 5.8: Some local obstructions without isolated base pair for suboptimal defect DS with
tolerance ε ∈ {0,−1}. Each local obstruction is associated with an ID based on
64-based encoding and a defect value if any.
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Figure 5.9: Histogram of suboptimal defect of newly determined obstructions within design
objective (DS 6 −1).
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Undesignable motifs with probability defect DP ≤ 50%.

ID
Defect

1

10

18

m141ea0
0.63634

1

10

18

m150e82
0.63634

1

10

16

m143a0
0.61914

1

10

17

m503a0
0.50879

1

10

17

m50e80
0.50879

Probability defect DP ≤ 10%.

ID
Defect

1

10

20

m140af
0.35039

1
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16

m3140a
0.269

1

10

17

m502b
0.2429

1

10

17

m3140a
0.13785

1

10

20

m14fa
0.1287

Probability defect DP ≤ 1%.
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m143a0
0.61914

1
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m17ca
0.13781

1
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20

mc170a
0.08649

1

10

16

m170a0
0.03255

1

10

20

m51ee8
0.01023

Figure 5.10: Some local obstructions without isolated base pair for probability defect DP

with tolerance ε ∈ {0.5, 0.1, 0.01}. Each local obstruction is associated with an ID
based on 64-based encoding and its local probability defect value.

loop stabilizes the secondary structure. Upon filtering, we identify 401, 611, and 709
overlap-free local obstructions for ε = 0.5, 0.1, and 0.01 respectively.

obstructions having large expected equilibrium distance Last but
not least, we consider a design objective where the target structure should be cen-
tral at the thermodynamic equilibrium. To that purpose, we enforce that, within the
Boltzmann distribution, the expected base-pair distance to the target structure re-
mains smaller than one base pair. This corresponds to using the ensemble defect DE

with threshold ε = 1.

Following the same procedure as above, some undesignable motifs are identified,
with ensemble defects exceeding 1. It leads to a larger set of local obstructions (5 012
in total) than the classic inverse folding, with 122motifs devoid of isolated base pairs
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Figure 5.11: Distribution of motif minimum possible probability defects truncated at 0.01.

Undesignable motifs with expected distance ≤ 1 bp (DE ≤ 1).

ID
Defect

1

10

17

mLVwA
1.51621

1

10

16

m7+N-k
1.38023

1

10

20

mGr+g
1.3797

1

10

20

mHVwo
1.26794

1

10

14

mVr+g
1.02468

Figure 5.12: Some local obstructions without isolated base pair for ensemble defect DE with
tolerance ε = 1. Each local obstruction is associated with an ID based on 64-
based encoding and its local ensemble defect value.

that some of them are shown in Figure 5.12. The extracted overlap-free set contains
411 obstructions. Obstructions previously determined for the design objective (DP 6
0.5) are also undesignable for this one, i.e., MDP60.5 ⊂ MDE61. Designs for such
motifs have more than 50% chance of folding into alternative conformations other
than the target one. It gives an expected distance of more than one in the ensemble
since alternative conformation has at least two bases differently paired.

5.3 undesignable and hard motifs in experimentally-determined 3d
structures

In this section, we present an analysis of experimentally-determined RNA 3D struc-
tures, and investigate whether motifs considered as undesignable, or hard (defect-
inducing), with respect to the Turner energy model, can be found in existing struc-
tures.
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datasets description. The Protein Data Bank (PDB) [11] is a global repository
that collects 3D models of biological molecules derived from experiments. At the
date of our study (March 2021), it contained a total of 5 313 PDB entries containing
at least one RNA chain, which were downloaded. We then used the DSSR v2.2.1
software [54] to annotate the secondary structures, pseudoknots, intermolecular base
pairs, and non-canonical base pairs. We removed entries lacking base pairs, obtaining
a dataset of 4 543 PDB entries, including a total of 1 634 067 canonical base pairs.

method. For any given motif m and secondary structure S, we used a simple
pattern matching algorithm in Θ(|S| × |m|) to find all occurrences of m. Positions
involving tertiary base pairs (non-canonical base pairs + pseudoknots + intermolec-
ular base pairs) were treated as unpaired during the search, but their presence was
memorized. In addition, pattern matching is run independently on each RNA strand
in the same PDB entry.

5.3.1 Occurrences of undesignable motifs

Firstly, we investigate possible occurrences, within 3D structures, of undesignable
motifs for the classic inverse folding, i.e., suboptimal defect DS 6 0. We consider
a collection of 4 561 undesignable motifs FDS60 obtained in Section 5.2.4 of length
from 8 up to 14. The occurrence of such motifs would be surprising since, in the
Turner energy model, such motifs are expected to adopt alternative, more stable,
conformations at the thermodynamic equilibrium.

A systematic search for undesignable motifs in the PDB revealed a total of 16 986
occurrences of 221 distinct motifs. Those occurrences are concentrated in 1 332 PDB

entries out of the possible 4 543, meaning that 80% of the PDB entries avoid all un-
designable motifs. Given the total number of 10 886 motifs of size up to 14 and (very
roughly) assuming a uniform probability of occurrences for all motifs, one would
expect around 684 000 occurrences of undesignable motifs in our PDB dataset in the
absence of any negative bias. The significant difference to the expected occurrence
amount suggests a bias against occurrences of undesignable motifs, consistent with
their relative instability and negative selective pressure.

Moreover, among all 16 986 motif occurrences, 16 650 feature additional non-
canonical Base Pairs (ncBPs) involving at least one nucleotide in the occurrence, and
pseudoknots present in 43 of them. The overwhelming proportion of ncBPs within
occurrences of undesignable motifs supports the hypothesis that ncBPs stabilize un-
designable motifs, leading to their adoption in timescales that are compatible with
their observation in 3D structures.

Finally, we focused on the remaining occurrences of forbidden motifs, devoid of
ncBPs, pseudoknots or interactions. We were left with 336 occurrences, over 80 dis-
tinct motifs, which we further analyzed. We discarded motifs featuring less than 5
occurrences, and also those strictly extending another motif in the list. Five motifs
remained warranting further analysis.
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Motif ((...).) is the most observed motif with 38 occurrences, mainly found in
HIV-1 Trans-Activation Response (TAR), Iron response element, and the ribosome.
Instead of forming a hairpin loop of 6 unpaired bases, the base pair at position (2, 5)
separates the loop into a bulge and a hairpin loop of 3 nucleotides. In 36 out of 38
occurrences, the base pair (2, 5) is CG base pair, which has been shown experimen-
tally to stabilize the structure of HIV-1 TAR and help the promoter activation in the
presence of protein Tat [49].

The second most occurred motif ((...)..) with 11 occurrences has one unpaired
position more. Half of the occurrences were found in Cas12i2, a class two CRISPR,
complex. The bulge region has been recognized to interact with the WED domain
of Cas12i2 [44]. The remaining three motifs are largely found in the (mito)ribosome.
Motif (..((*).)) (10 occurrences) is mainly found in mitochondrially encoded 12S
ribosomal RNA (12s rRNA), 4 out 7 (.(...)) occurrences are in 23s rRNA, and
(.((*)..)) (6 occurrences) appears mostly in 18s rRNA.

5.3.2 Motifs defect correlates negatively with their number of occurrences

Next, we want to study the correlation between motif occurrences and motif design
hardness, i.e., defect. We consider the complete set of 10886 motifs of length up to
14, each associated with its lowest possible ensemble defect. The set includes 606
shallow motifs and 4 501 forbidden motifs, a motif that is not the MFE folding for
any compatible sequences (DS 6 0). The ensemble defect of a forbidden motif is
considered non-determined.

We found 2 083 different motifs in experimentally determined structures with at
least one occurrence, including 238 shallow motifs and 212 forbidden motifs. The
Spearman correlation between motif ensemble defect and occurrences omitting shal-
low and forbidden motifs is −0.29, which indicates a negative correlation between
the two variables. Figure 5.13 presents the motif occurrence distribution in boxen-
plot of different ranges of ensemble defects. Since most motifs have a small value of
ensemble defect, we used a varied and increasing bin size for the reason of visualiza-
tion. It is clear to see a decreasing tendency of occurrence number while increasing
the value of ensemble defect. In addition, setting the value of the forbidden motif
at 1 nt also matches such tendency, which validates the choice for further analysis
in Chapter 7.
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Figure 5.13: Boxenplot of motif occurrences for different range of ensemble defect. Starting
from the median, each level in boxenplot (letter-value plot) contains half of the
remaining data points [43].



6
E N U M E R AT I N G S E C O N D A RY S T R U C T U R E S AV O I D I N G L O C A L
O B S T R U C T I O N S

After identifying local obstructions, we wonder about the impact on designable sec-
ondary structures. In this section, we are interested in describing and enumerating
designable secondary structures D for a defect D and a tolerance ε. Let F be an
overlap-free set of local obstructions obtained using the previously described algo-
rithm and SF̄ be the set of secondary structures avoiding F,

SF̄ = {S ∈ S;∀m ∈ F, m /∈ S}.

Propositions 5.2 and 5.3 imply that its cardinality |SF̄ | sets up an upper bound for
the number of designable secondary structures, |D| 6 |SF̄ |. Therefore, this section
aims to answer the following problem.

Problem 4 (Designable Structures Counting):
Input: An overlap-free local obstruction set F for design objective D 6 ε

Output: Asymptotic value of sn, the number of secondary structures of length
n avoiding F with

sn := | {S ∈ SF̄; |S| = n} | .

Let P be a finite set of possibly-overlapping unlabelled trees, named patterns.
Chyzak et al. showed that the joint distribution of pattern occurrences in a rooted
labeled tree is a multivariate Gaussian limiting distribution [13]. The number of
trees avoiding P can be computed by setting the number of occurrences at 0 for each
pattern. The approach is based on establishing relations among all possible subtree
patterns from P and marking the root occurrence of pattern in P.

An algorithm is also proposed to mark and count pattern occurrences in an or-
dered tree by memorizing partial patterns seen [14]. The algorithm can be further
transformed into a system of functional equations for asymptotic analysis. Unfortu-
nately, in both cases, the system becomes complicated when the pattern set is huge.
For instance, an overlapped obstruction set contains more than 4 000 motifs. In ad-
dition, the notion of tree size is different in our case. The length of a secondary
structure differs to the number of nodes in its tree presentation since the length of
a paired node is 2. For these reasons, we limit our study to overlap-free obstruction
sets.

67



68 enumerating secondary structures avoiding local obstructions

6.1 grammar and generating function

We adopt the classic symbolic method as our approach [30]. First, we describe a
grammar that generates objects in the set SF̄. Next, we turn the grammar into a
system of functional equations, including the Ordinary Generating Function (OGF)
of the set,

SF̄(z) =
∑
S∈SF̄

z|S| =
∑
n>0

snz
n.

We start with the classic rule that generates all secondary structures with respect
to a minimal distance θ = 0. We introduce an additional rule while encountering
a base pair since the root base pair always encloses a local obstruction. The second
rule builds the set of structures TF̄ ⊂ SF̄ that are still in SF̄ while completing with
an external base pair,

TF̄ = {S ∈ SF̄; (S) ∈ SF̄}.

The difference between two sets, SF̄ and TF̄, is the set of structures containing a local
obstruction at the root in the presence of the external base pair,

SF̄ \ TF̄ =
⋃
m∈M

{m ′ ◦ (T1, · · · , Tδm); (T1, · · · , Tδm) ∈ Tδm
F̄

}

with m ′ denotes the part delimited by the root of a motif m. In other words, the
second rule subtracts structures having a root occurrence of m ′.

Proposition 6.1 (Grammar describing SF̄): Grammar below generates the set of
secondary structures SF̄ avoiding an overlap-free set F of local obstructions,

SF̄ → ( TF̄ )SF̄ + •SF̄ + ε

TF̄ → SF̄ −
∑
m∈T

Rm ′

with Rm ′ = m ′ ◦ (TF̄, . . . , TF̄) where each open paired leaf of m ′ is extended with a
non-terminal symbol TF̄.

Proof. For the sake of readability, we abuse the notation Sn in this proof. Denote by
Sn the real set of all secondary structures (not the generated ones) having length
n and avoiding local obstructions in F, and by Tn the ones of length n which are
surrounded by an extra pair of parentheses and also avoid local obstructions in F.
Denote by LS (resp. LT ) the language generated from SF̄ (resp. TF̄), and by LSn
(resp. LTn) its restriction to secondary structures of length n.

We are going to prove the proposition by showing that for all n > 0, we have

LSn = Sn and LTn = Tn. (6.1)
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This property immediately implies that

|LSn| = sn := |Sn| and |LTn| = tn := |Tn|.

First of all, Equation 6.1 holds for n = 0. It is easy to see that the empty structure ε
avoids local obstructions and is the only element in S0, S0 = {ε}. In addition, the only
word of length 0 generated from SF̄ is ε, via the rule SF̄ → ε. Thus, LS0 = {ε} = S0.
The case of TF̄ is very similar, but depends of the presence/absence, in F, of the local
obstruction mε = () that pairs two consecutive bases. One has T0 = ∅ if mε ∈ F, or
{ε} otherwise. As for the grammar, TF̄ → SF̄  ε produces a word of length 0, but is
subtracted by TF̄ → Rε  ε if mε ∈ F. Thus,

LT 0 =

{
{ε} if mε /∈ F

∅ otherwise

}
= T0.

Next, we assume that Equation 6.1 holds for any n < k, where k is a positive
integer. Let S∗ be a secondary structure of size k, i.e. S∗ ∈ Sk. Its first base is either
paired with a base at position l or unpaired. We are going to show that, in both cases,
S∗ is a word of LSk .

• In the paired case, S∗ is the form (T ′)S ′ with T ′ ∈ T ′l−2 and S ′ ∈ Sk−l. By
the induction condition, T ′ and S ′ can both be generated from the grammar. It
means that S∗ can be produced as follow, SF̄ → (TF̄)SF̄  (T ′)S ′ = S∗ with
T ′ ∈ LT l−2 and S ′ ∈ LSk−l. In addition, S∗ is a word in LSk since its length
|S∗| = 2+ |T ′|+ |S ′| = k.

• On the other hand, S∗ is the form •S ′′. It is easy to see that S ′′ ∈ Sk−1 and
S ′′ ∈ LSk−1 by the induction condition. Therefore, S∗ is a word of LSk that is
obtained via SF̄ → •SF̄  •S ′′ = S∗.

This proves the completeness of the first rule SF̄ → ( TF̄ )SF̄ + •SF̄ + ε.

Let S∗ ∈ LSk be a word generated from SF̄. We will prove the correctness by
showing that S∗ is a valid secondary structure in Sk, i.e. a structure of length k

avoiding local obstructions. The word S∗ is produced from the non-terminal symbol
SF̄ via one of the follows,

• SF̄ → (TF̄)SF̄  (T ′)S ′ = S∗, where T ′ ∈ LTnT ′ and S ′ ∈ LSnS ′ with nT ′ +
nS ′ = k− 2. By induction condition, T ′ and S ′ are valid secondary structures
in, respectively, TnT ′ and SnS ′ , which means that both (T ′) and S ′ avoid local
obstructions. S∗ = (T ′)S ′ avoids also local obstructions and is then a valid
secondary structure in Sk.

• SF̄ → •SF̄  •S ′′ = S∗ with S ′′ ∈ LSk−1. S ′′ is a valid secondary structures in
Sk−1 by induction condition that do not contain local obstructions. Therefore,
S∗ neither.

We have shown that the completeness and the correctness of the first rule, which
implies that Sn = LSn.
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Let T∗ be a secondary structure in Tk such that structure (T∗) avoids local obstruc-
tions, meaning that T∗ does not contain an inner local obstruction at root. Thus, T∗ is
not a structure in any Rm ′ and is then a word of LTk generated via TF̄ → SF̄  T∗.

Conversely, let T∗ ∈ LTk be a word produced from the non-terminal symbol TF̄.
We are going to proof that structure (T∗) does not contain a local obstruction. The
word T∗ is first generated using the rule T → S. In other words, T∗ does not contain
local obstruction. Next, there are two cases,

• None of inner local obstruction occurs at the root of T∗. The secondary struc-
ture (T∗) also avoids local obstruction. Thus, T∗ ∈ Tk.

• Otherwise, the rule TF̄ → Rm ′ = m ′ ◦ (TF̄, . . . , TF̄) is used to subtract T∗ since
(T∗) contains a local obstruction at root. It requires, in advance, a generation
of δ := δm words in LT , denoted (T1, . . . , Tδ). Each Ti is a word in the lan-
guage LTni , where ni := |Ti| < k and

∑δ
i=1 ni = k− |m ′|. By the induction

condition, Ti is a secondary structure in Tni for any i in {1, . . . , δ}. In addi-
tion, the overlap-free condition implies that such m ′ is unique and there is no
other local obstruction appears while constructing the word m ′ ◦ (T1, . . . , Tδ).
Therefore, the word T∗ subtracted once by the rule TF̄ → Rm ′ .

This shows the correctness of the second rule and we can conclude that Tn = LTn.

In conclusion, Equation 6.1 holds for any value of n.

Next, we transfer the grammar into a system of functional equationsSF̄(z) = z2 TF̄(z)SF̄(z) + z SF̄(z) + 1

TF̄(z) = SF̄(z) −
∑
m∈F z

|m ′| TF̄(z)
δm

(6.2)

where SF̄(z) and TF̄(z) are, respectively, the OGF of the set SF̄ and TF̄.

6.2 computing and estimating the dominant singularity

In general, Equation 6.2 can be solved using a symbolic calculus tool. However, this
approach works poorly due to the sizeable local obstruction and the maximum open
paired leaves number δ := maxm∈M δm. It requires solving an δ-degree equation of
TF̄(z). Thus, we use an alternative approach, including dominant singularity compu-
tation.

From the second equation of Equation 6.2, one has the equality SF̄(z) = TF̄(z) +∑
m∈F z

|m ′| TF̄(z)
δm . Replacing SF̄(z) in the first equation shows that TF̄(z) is a solu-

tion of G(z,y) = y with

G(z,y) = z2y2 + (z2R(z,y) + z)y+ (z− 1)R(z,y) + 1
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where R(z,y) =
∑
m∈F z

|m ′|yδm is the OGF of the local obstruction set when y =

TF̄(z). The polynomial G(z,y) satisfies the conditions of Bender-Meir-Moon Theo-
rem, which implies that

[zn] TF̄(z) := tn = Θ

(
ρ−n

n
√
n

)
with ρ is the dominant singularity of TF̄, which is the non-zero root of the resultant
of two polynomials in y,

P(z,y) = G(z,y) − y and Q(z,y) = ∂yP(z,y).

Proposition 6.2: The OGF SF̄(z) shares the same dominant singularity ρ as TF̄(z).
Thus, coefficients of SF̄(z) satisfy

[zn]SF̄(z) := sn = Θ

(
ρ−n

n
√
n

)
.

Proof. Let ρ be the dominant singularity of TF̄(z). Rewriting the first equation in Equa-
tion 6.2 gives SF̄(z) = 1/(1− z− z2TF̄(z)). The denominator is non-zero, otherwise
TF̄(z) = (1 − z)/z2. Therefore, SF̄(z) shares the same dominant singularity with
TF̄(z).

Unfortunately, symbolic calculus tools, such as SymPy, still cannot support the re-
sultant root finding in our case because of numerical instability issues. To workaround,
we estimate the dominant singularity based on the exact coefficient of SF̄(z). Given
a positive integer k, one has

ρ = lim
n→∞

(
sn

sn−k

) 1
k

where si is the i-th coefficient. In practice, ρ̂n := (sn/sn−k)
1/k is close enough to ρ

for a large n. We use n = 1 000 and k = 20 to estimate the dominant singularity in
this study. In addition, this allows us to compute the factor Kn := sn/ρ̂

−n
n for the

asymptotic expression,

[zn]SF̄(z) ≈ K1000
ρ̂−n1000
n
√
n
(1+O(1/n)) . (6.3)

It remains to us to determine the number of secondary structures of length n

avoiding local obstructions, i.e., sn. The value can be computed with a dynamic pro-
gramming algorithm based on recursive forms derived from the grammar in Propo-
sition 6.1. One has,

sn =


1 if n = 0

sn−1 +

n−2∑
i=0

t1i sn−i−2 otherwise
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where tkn with l > 0 is the cardinality of the set {(t1, · · · , tk) ∈ Tk; |t1|+ · · ·+ |tk| = n}

and t0n = 1 for any n. For k > 1, the value of tkn is simply obtained via the recursive
form below,

tkn =

n∑
i=0

t1n−it
k−1
i .

For k = 1, the second rule TF̄(z) = SF̄(z) −
∑
m∈M z|m

′| TF̄(z)
δm implies that

t1n = sn −
∑
m∈M

tδm
n−|m ′|.

example As a sanity test, we recompute the total number of secondary struc-
tures with a minimum distance θ = 3. Indeed, structures with respect to the min-
imum distance are those avoiding the trivial motifs (), ( · ), and ( · ·). The OGF of
local obstruction set is then R(z) = 1+ z+ z2. Followed by the numerical procedure
described above, the asymptotic number of secondary structures with a minimum
distance θ = 3 is

[zn]S(z) := sn = 0.71 · 2.289
n

n
√
n

(1+O(1/n)) . (6.4)

These asymptotic values match the ones reported by Hofacker, Schuster, and Stadler [42].

6.3 upper-bound for designable secondary structures

Next, we applied the approach on different local obstruction sets FD6ε obtained
in Section 5.2.4 to have a first-order estimation for designable structure count (Equa-
tion 6.3). Dividing by Equation 6.4 yields an exponentially decreasing proportion
of designable secondary structures, which we reported in Table 6.1. The base α of
proportion is computed by

α := lim
n→∞ n

√
#Secondary structures avoiding ({(), ( ), ( )}∪FD6ε)

#Secondary structures avoiding {(), ( ), ( )}
.

6.3.1 Designable structures in basic inverse folding and superoptimal structures

First, we consider the basic inverse folding settings, corresponding to suboptimal
defect DS with threshold ε = 0. We have obtained an overlap-free set FDS60 of 387
local obstructions. Proposition 5.2 shows that secondary structures containing one
of these obstructions are undesignable. Computing the dominant singularity gives
ρ = 0.4, which implies the following asymptotic upper bound for the designable
structure count in this model∣∣∣DDS60n

∣∣∣ 6 0.67 · 2.242n
n
√
n

(1+O(1/n)) . (6.5)
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Upper bound Proportion of designable structures (upper bound)

Defect ε ρ |Dn| α P50 P100 P200 P500 P1000

DS 0 0.4461 0.672.242n
n
√
n

0.9795 3.35 10−1 1.19 10−1 1.50 10−2 2.98 10−5 9.40 10−10

DS −1 0.4503 0.732.221n
n
√
n

0.9702 2.27 10−1 5.00 10−2 2.44 10−3 2.82 10−7 7.72 10−14

DP 0.5 0.4466 0.662.239n
n
√
n

0.9782 3.10 10−1 1.03 10−1 1.14 10−2 1.53 10−5 2.49 10−10

DP 0.1 0.4521 0.712.212n
n
√
n

0.9663 1.79 10−1 3.23 10−2 1.05 10−3 3.59 10−8 1.30 10−15

DP 0.01 0.4621 0.632.164n
n
√
n

0.9455 5.37 10−2 3.26 10−3 1.20 10−5 5.94 10−13 3.99 10−25

DE 1 0.4472 0.652.236n
n
√
n

0.9771 2.89 10−1 9.08 10−2 8.94 10−3 8.52 10−6 7.86 10−11

Table 6.1: Impact of local obstructions of length up to 14 on the proportion of actually des-
ignable secondary structures.

The probability for a secondary structure of length n with a minimum distance at 3,
taken uniformly at random, to be designable is upper-bounded by

Pn = 0.944 · 0.9795n.

One concludes that, while about 1/3 of the structures of length 50 can be designed,
this proportion quickly drops to less than 1.5% for RNAs of length 200, and reaches
infinitesimal proportions (9.4 · 10−10) for large RNAs of length 1 000.

Next, we turn to a harder design objective with the threshold set at −1. In other
words, the target structure should achieve an energy distance to its first suboptimal
at least 1 kcal.mol−1. With the obtained overlap-free obstruction set FDS6−1 consist-
ing of 573 motifs, the dominant singularity is found at ρ = 0.4503, leading to an
asymptotic upper bound∣∣∣DDS6−1

n

∣∣∣ 6 0.73 · 2.221n
n
√
n

(1+O(1/n)) .

This implies the proportion of designable structures with respect to (DS 6 −1)
bounded by

Pn = 1.028 · 0.9702n.

Unsurprisingly, the proportion decreases much faster under the harder design
condition. It drops to 5%, which is half of the one for classic inverse folding, for
RNAs of length 100 and reaches 7.7 · 10−14 for large RNAs of length 1 000, 10−4 less
than the designable structure proportion in the classic setting.

6.3.2 Structures with large equilibrium probabilities

Next, we aim to design secondary structure that is not only the MFE of a sequence, but
also has a large equilibrium probability. We set the design objective to the probability
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defect DP, and investigate the impact of ε on the proportion of designable secondary
structures. We consider three overlap-free obstruction sets, FDP60.5, FDP60.1, and
FDP60.01, for three thresholds ε ∈ {0.5, 0.1, 0.01}, associated with targeted Boltzmann
probabilities for the motifs greater than 50%, 90% and 99% respectively.

Interestingly, the ε = 50% case induces a dominant singularity of 0.4466, leading
to a slightly slower asymptotic growth∣∣∣DDP650%

n

∣∣∣ 6 0.66 · 2.239n
n
√
n

(1+O(1/n))

than for classic inverse folding. This is not entirely unexpected, since our definition
of a valid design requires the target structure to be the sole MFE for the sequence.
Thus, secondary structures satisfying some probability defect conditions must also
be solutions to the inverse folding problem. However, the observed divergence of
the two singularities suggests that an exponentially small proportion (albeit with a
growth factor very close to 1) of MFE designs have a Boltzmann probability greater
than 50%.

For defect thresholds of 0.1 and 0.01 on the probability, the departure from the
MFE design is much more pronounced, with respective singularities at z = 0.4521
and z = 0.4621 respectively, leading to upper bounds in∣∣∣DDP610%

n

∣∣∣ 6 0.71 · 2.212n
n
√
n

(1+O(1/n)) and
∣∣∣DDP61%
n

∣∣∣ 6 0.63 · 2.164n
n
√
n

(1+O(1/n)) .

We obtain proportions of designable structures respectively bounded by

Pn = 0.9663n and Pn = 0.887 · 0.9455n.

Those estimates support the notion of an extreme sparsity of designable structures
in the folding space, with only four out of 10−8 (resp. six out of 10−13) structures
of length 500 being designable for ε = 0.1 (resp. ε = 0.01). These abysmal propor-
tions are consistent with the popular belief, which can be rigorously proven in the
homopolymers model [26], that the Boltzmann probability of the MFE structure de-
creases exponentially with the sequence length in a random, uniformly distributed,
RNA sequence.

6.3.3 Designing structures having small expected equilibrium distance to their target struc-
ture

Last but not least, we consider a design objective where the target structure should be
central at the thermodynamic equilibrium. To that purpose, we enforce that, within
the Boltzmann distribution, the expected base pair distance to the target structure
remains smaller than one base pair. This corresponds to using the ensemble defect
DE with threshold ε = 1. Proposition 5.3 ensures that secondary structure containing
obstructions in the set FDE61 is not designable.
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We obtain a slightly larger dominant singularity at z = 0.4472 comparing to the
one for classic inverse folding. It leads to an asymptotic equivalent in∣∣∣DDE61n

∣∣∣ 6 0.65 · 2.236n
n
√
n

(1+O(1/n))

and the proportion of designable structures bounded by

Pn = 0.930 · 0.9771n.

This proportion decreases slightly faster with the structure length than in the classic
setting. At most 30% of all structures of length 50 are designable, and the proportion
drops to 7.9 · 10−11 for structures of length 1000.

However, this design objective is very stringent and not very realistic. By contrast,
the ensemble defect tolerance allowed by popular software, such as NUPack [96], typ-
ically grows linearly with n, matching the expectation of increased diversity within
the Boltzmann ensemble of larger RNAs. This emphasizes a shortcoming of the uni-
variate approach, as no single motif is likely to contribute large enough values to
the ensemble defect to exceed more realistic tolerances. Indeed, the most defective
motif, of length up to 14, only contributes an expected distance of 3.40 base pairs.
Thus, for higher tolerances, no local obstruction will be returned in reasonable time.
Furthermore, secondary structures may contain motifs with small defect value but
have a cumulated ensemble defect exceeding the threshold. This motivates the bi-
variate approach described in the next chapter, which exploits the (super)additivity
of ensemble defects induced by different occurrences of motifs to produced refined
bounds.





7
B O U N D I N G T H E A S Y M P T O T I C D I S T R I B U T I O N O F
S U P E R A D D I T I V E D E F E C T S

We have pointed out some drawbacks of the univariate analysis at the end of the
previous chapter. To address these issues, we are interested in estimating the dis-
tribution of structure ensemble defect for a given length n, then computing the
proportion of designable structures. Unfortunately, a polynomial-time algorithm to
compute structure defect does not exist. Otherwise, one can determine if a structure
is designable by comparing its defect and the tolerance in polynomial time. There-
fore, we aim to set up a lower bound D̂S for structure defects with the help of motifs
occurring in the structure.

motif collection. Instead of only using local obstructions for a certain toler-
ance ε as in Chapter 6, we consider all motifs with lengths up to 14, each associated
with its minimum possible ensemble defect. The set is obtained by modifying Al-
gorithm 5.2 such that the ensemble defect is returned at each folding and taking
the minimum value of defects associated with each motif gives. For a motif that is
not the MFE conformation adapted by any sequence, its minimum possible ensemble
defect is set at 1 nt. Indeed, any sequence has at least a 50% chance to fold into an al-
ternative motif with a distance of at least two nucleotides. Furthermore, motifs with
null defects are excluded from the set since their contribution to the structure defect
is null. We obtained a collection of 10 280 motifs with defects ranging from 1.7 · 10−5
to 3.4.

7.1 superadditive ensemble defect

More formally, we are interested in the following problem.

Problem 5: Give an overlap-free set of motifs, each associated with its mini-
mum possible local ensemble defect, and a target secondary structure S∗, the
goal is to find a lower bound for the minimum possible structure defect of S∗,
minwDE(w,S∗), in the function of the minimum possible local defect of non-
overlapping motifs occurring in the target, {minwm D

L,E(wm,m); m ∈ S∗}.

Intuitively, one would expect that the minimum possible structure defect to be at
least equal to the additive contribution of motifs occurring in the target structure,

min
w
DE(w,S∗) >

∑
m∈S∗

min
wm

DL,E(wm,m). (7.1)

77
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As seen in Proposition 5.3, it is not trivial to show the increase of ensemble defect
while releasing the constraint on the root and the open-paired leaves of a motif.
Moreover, suppose that the target structure contains two motifs sharing one base
pair. In that case, two motifs consecutively occur in the target. The lower bound for
the structure defect is then the minimum value between 2 and the sum of two motif
defects due to the existence of the alternative structure, in which positions for the
shared base pair are unpaired.

We are going to show that Equation 7.1 is valid for the restricted motif set, in
which motif minimum possible ensemble defect is bounded by 1.

Proposition 7.1 (Superadditivity): Let M be an overlap-free set of motifs, each as-
sociated with a minimum possible ensemble defect upper-bounded by 1 and S∗ be the
secondary structure. We have,

min
w
DE(w,S∗) >

∑
m∈S∗
m∈M

min
wm

DL,E(wm,m).

Proof. Let k be the number of motifs of M occurring in the target structure S∗. We
denote these kmotifs bym1, . . . ,mk. Given a secondary structure S ∈ S|S∗|, we define
ϕS the number of motifs, of which the root of at least one of open-paired leaves is
unpaired in S. Given an integer l ∈ [0,k], we define the set of secondary structures
Pl, a subset of S|S∗|, as {S ∈ S|S∗|; ϕS = l}. This creates a partition {Pl}l∈[0,k] for the
structure set S|S∗|.

Let w∗ be a sequence of {A,C,G,U}|S
∗| such that S∗ is the MFE conformation of w∗.

Let w∗[|mi|]
be the assignment on the positions of motifmi for i ∈ [1,k]. The ensemble

defect DE(w∗,S∗) is then

DE(w∗,S∗) =
∑
S∈S|S∗|

P(S | w∗)DPdist(S,S∗) =
k∑
l=0

pl
∑
S∈Pl

Pl(S | w∗)DPdist(S,S∗)

where pl :=
∑
S∈Pl P(S | w∗) is the total probability of the set Pl and Pl(S | w∗) is

the structure probability defined over Pl. Since the sum of pl is 1, we have

DE(w∗,S∗) > min
l

∑
S∈Pl

Pl(S | w∗)DPdist(S,S∗).

For l = 0, motifs m1, . . . ,mk occur in all structures in P0. In other words, the root
and the open-paired leaves of each motif are considered to be constrained. Thus,
within the set P0, we can compute independently the ensemble defect over positions
corresponding to each motif and obtain

∑
S∈P0

Pl(S | w∗)DPdist(S,S∗) >
k∑
i=1

DL,E(w∗[|mi|]
,mi) >

k∑
i=1

min
wmi

DL,E(wmi
,mi).
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For l ∈ [1,k], we further partition the set Pl based on motifs counted in ϕS. Without
loss of generality, we consider the subset of structures, denoted by P ′, such that
the root and the open-paired leaves of motifs ml+1, . . . ,mk remain paired. It means
that ensemble defect over these motifs can be computed independently. For motifs
m1, . . . ,ml, at least one base pair of each is unpaired. It involves, in total, at least
dl/2e base pairs since two motifs can share the same base pairs, i.e. the root of one
motif is an open-paired leaf of the other. Therefore, the distance to the target is at
least 2 · dl/2e for the region other than ml+1, . . . ,mk. We have, with P ′(S | w∗) be
the structure probability defined over P ′,

∑
S∈P ′

P ′(S | w∗)DPdist(S,S∗) > 2ḋ l
2
e+

k∑
i=l+1

DL,E(w∗[|mi|]
,mi)

> 2ḋ l
2
e+

k∑
i=l+1

min
wmi

DL,E(wmi
,mi)

>
k∑
i=1

min
wmi

DL,E(wmi
,mi)

since the minumum possible local defect is upper-bound by 1. The inequality is valid
for other subsets in Pl. Thus,

∑
S∈Pl

Pl(S | w∗)DPdist(S,S∗) >
k∑
i=1

min
wmi

DL,E(wmi
,mi).

In conclusion, the structure defectDE(w∗,S∗) is at least
∑k
i=1minwmi D

L,E(wmi
,mi)

as for the minimum possible structure defect minwDE(w,S∗).

7.2 bivariate analysis of ensemble defect with minimum distance
θ = 0

In order to estimate the structure defect distribution given a structure length, we
consider the bivariate generating function

S(z,u) =
∑
S∈S

z|S|uD̂S =
∑

sn,dz
nud (7.2)

where D̂S is the defect lower bound for structure S and sn,d is the number of sec-
ondary structures of length n, marked by z, with the defect at d, marked by u. One
could notice that S(z, 1) is the OGF of RNA secondary structures with a minimum
distance θ = 0. Let M be an overlap-free set of motifs. We assume, in this section,
that the minimum possible ensemble defect of each motif is less or equal to 1. Propo-
sition 7.1 shows that Equation 7.2 can be expressed with motif defect,

S(z,u) =
∑
S∈S

z|S|uD̂S =
∑
S∈S

(
z|S|u

∑
m∈SDm

)
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Like the previous problem (Proposition 6.1), we first describe a grammar that gen-
erates all secondary structures and increases the structure defect by motif defect
at each motif occurrence. Then, we transfer the grammar into a system of func-
tional equations, including S(z,u). We are going to show that the system satisfies
the condition of Drmota–Lalley–Woods Theorem, which implies that structure de-
fect, a random variable denoted by Dn, has a Gaussian limiting distribution with
the expected defect value and the variance of Dn linear to n, limn→∞E[Dn] = µn

and limn→∞V[Dn] = σ
2 n where µ and σ are constants.

7.2.1 Grammar describing lower bound for structure defect

Here we set up a grammar that generates secondary structure and spotlights each
motif occurrence where the defect is added. The first rule, the non-terminal symbol
S, builds the set of all secondary structures (θ = 0) while structures closed by a
base pair is noted by the non-terminal symbol T . The second rule, T , constructs
the set of structures within a base pair divided into two parts. The first one, T →∑
m∈Mm ′ ◦ (T , . . . , T), where each open paired leaf of m ′ becomes the parent of a

non-terminal symbol T . Recall thatm ′ is the part of motifmwithin the first base pair.
The rule constructs the set of secondary structures that feature the motif at the root
completing with a base pair. The second part, T → S̄, subtracts the contributions of
secondary structures of the first part. In other words, S̄ = S−

∑
m∈Mm ′ ◦ (T , . . . , T).

Proposition 7.2 (Bivariate defect-marking grammars and systems): Let M be
an overlap-free set of motif, each associated with a minimum possible defect bounded
by 1. The grammar below forms all secondary structures with respect to the minimum
distance θ = 0 while highlighting occurrences of motifs in M.

S→ ( T )S+ •S+ ε
T → S̄+

∑
m∈M

m ′ ◦ (T , . . . , T)

with S̄ = S−
∑
m∈Mm ′ ◦ (T , . . . , T) and m ′ is the part delimited by the root of the

motif m. The defect is a parameter that is initially defined on individual production
rules of the grammar, such that all rules have defect 0 except for those of the form
T → m ′ ◦ (T , . . . , T), which have defectDm. Then, the bivariate generating functions
S(z,u) =

∑
S∈S z

|S|uD̂S and T(z,u) =
∑
S∈T z

|S|uD̂S satisfy the following system
of functional equations,

S(z,u) = z2T(z,u)S(z,u) + zS(z,u) + 1

T(z,u) = S(z,u) +
∑
m∈M

T(z,u)δm(uDm − 1)z|m
′| (7.3)

Proof. The first part of proof is similar to the one for Proposition 6.1 showing that
the language generated by the grammar is indeed the real set of secondary structure
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wanted. Denote by Sn,k the real set of all secondary structures (not the generated
ones) having length n and defect k, and by Tn,k the ones of length n which, if
surrounded by an extra pair of parentheses, would have defect k. Denote by LS
(resp. LT ) the language generated from S (resp. T ), and by LSn,k (resp. LTn,k) its
restriction to secondary structures of length n and defect k. By construction, the
defect is additively extended over concatenations such that, given two words w and
w ′, having defect Dw and Dw ′ respectively, their concatenation w.w ′ has defect
Dw.w ′ = Dw +Dw ′ .

Lemma 7.3: For all n,k we have

LSn,k = Sn,k and LTn,k = Tn,k; (7.4)

This property, which we prove below, immediately implies that

|LSn,k| = sn,k := |Sn,k| and |LTn,k| = tn,k := |Tn,k|

The system of bivariate functional equations can be obtained by a direct application
of the symbolic method [20, 30]. More precisely, this requires the grammar to be
non-ambiguous. It is easy to see the non-ambiguity of the first rule, since S → (T)S

and S → •S construct two disjoint sets of words starting with two different letters
( and •. For the non-terminal symbol T , it is clear that sets produced from T → S̄

and T → ∑m∈Mm ′ ◦ (T , . . . , T) are disjoint. In addition, the overlap-free condition
implies the disjointedness among sets generated from each rule T → m ′ ◦ (T , . . . , T),
from which one obtains the non-ambiguity of the second rule.

Since the rule T → m ′ ◦ (T , . . . , T) has defect at Dm for each m in M, the rule
corresponds to the generating function uDmz|m

′|Tδm . Although the explicit form of
the rule T → S̄ is unknown, there is an alternative way to derive its generating
function using the fact that S̄ = S \

⋃
m∈Mm ′ ◦ (T, . . . ,T),

S̄(z,u) = S(z,u) −
∑
m∈M

z|m
′|Tδm

To sum up,

T(z,u) = S̄(z,u) +
∑
m∈M

Dmz
|m ′|Tδm

=

(
S(z,u) −

∑
m∈M

z|m
′|Tδm

)
+
∑
m∈M

Dmz
|m ′|Tδm

T(z,u) = S(z,u) +
∑
m∈M

T(z,u)δm(uDm − 1)z|m
′|

Proof of Lemma 7.3. First, Equation 7.4 holds for n = 0 and any value of k. Since the
set of secondary structures of size 0 is reduced to the empty structure ε, having
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defect Dε = 0, one has S0,0 = {ε}, and S0,k>0 = ∅. Moreover, the only word of length
0 generated from S is ε, via the rule S→ ε. Thus, LS0,0 = {ε} and LS0,k>0 = ∅, from
which we conclude that

∀k ∈N, LS0,k = S0,k.

The case of T is very similar, but depends on the presence/absence, in the motif list
M, of the motif mε that pairs two consecutive bases. Namely, one has T = {ε}, but
associated with a defect d := Dmε if mε ∈ M, or d := 0 otherwise. It follows that
T0,d = {ε} and T0,k6=d = ∅. As for the grammar, the only derivations likely to produce
a word of length 0 are either T → S̄  ε if mε /∈ M, or T → m ′ε ◦ (T , . . . , T)  ε if
mε ∈ M, associated with defects d = 0 and d = Dmε respectively, from which we
conclude that

LT 0,k =

{
{ε} if k = d

∅ otherwise

}
= T0,k, ∀k ∈N.

Next, let p be a positive integer. We assume that Equation 7.4 holds for any n < p,
and consider the sets of secondary structures Sp,k, Tp,k, LSp,k and LTp,k.

Consider a secondary structure S∗ of length p with defect k, i.e. S∗ ∈ Sp,k. The first
base is either paired with a base at position l or unpaired. We are going to show that,
in both cases, S∗ is also a word generated from the grammar and in the set LSp,k.

• In the paired case, S∗ is the form (T ′)S ′ with T ′ ∈ T ′l−2,kT ′ and S ′ ∈ Sp−l,kS ′ ,
where kT ′ and kS ′ are the defect of secondary structures (T ′) and S ′, respec-
tively. Since motifs occurring in S∗ are either entirely contained in (T ′), or in
S ′, one has kT ′ + kS ′ = k. By the induction condition, T ′ and S ′ could be gen-
erated from the grammar. Then, S∗ could be produced as follow, S → (T)S  
(T ′)S ′ = S∗ with T ′ ∈ LT l−2,kT ′ and S ′ ∈ LSp−l,kS ′ .

Because of the additivity of defect on concatenation, DS∗ = D(T ′).S ′ = D(T ′) +

DS ′ = kT ′ + kS ′ = k. It is easy to see that |S∗| = p. Thus S∗ ∈ LSp,k.

• In the unpaired case, S∗ is the form •S ′′. Since S ′′ contains the same motifs
as S∗, the defects of S ′′ and S∗ are equal. It implies that S ′′ ∈ Sp−1,k and
S ′′ ∈ LSp−1,k by the induction condition. Therefore, S∗ is a word of LSp,k that
could be generated via S → •S  •S ′′ = S∗. This proves the completeness of
the first rule.

Let S∗ ∈ LSp,k be a word generated from S. We will prove the correctness by
showing that S∗ is a valid secondary structure in Sp,k. Consider a word S∗, produced
from the non-terminal symbol S via one of the follows,

• S → (T)S  (T ′)S ′ = S∗, where T ′ ∈ LTpT ′ ,kT ′ and S ′ ∈ LSpS ′ ,kS ′ with
pT ′ + pS ′ = p − 2 and kT ′ + kS ′ = k. By induction condition, T ′ and S ′ are
valid secondary structures in, respectively, TpT ′ ,kT ′ and SpS ′ ,kS ′ . (T

′)S ′ is then
a valid secondary structure in SpT ′+2,kT ′ .
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• S → •S  •S ′′ = S∗ with S ′′ ∈ LSp−1,k. S ′′ is a valid secondary structures in
Sp−1,k by induction condition. Moreover, one may note that • is a secondary
structure in S1,0.

Since the concatenation of two secondary structures is also a secondary structure,
one could conclude that S∗ generated from S, either in the form (T ′).S ′ or •.S ′′, is
indeed a secondary structure in Sp,k. We have shown that Sp,k = LSp,k for any value
of k.

Let T∗ be a secondary structure in Tp,k. Depending on the existence of inner motif
at the root, T∗ is a secondary structure either in the set S̄ or

⋃
m∈Mm ′ ◦ (T, . . . ,T).

• If none of inner motif occurs in T∗ at root level, one has T∗ ∈ S̄p,k ⊆ Sp,k,
which implies that T∗ is a word in LSp,k using the result above. Thus, T∗ is
also a word in LTp,k that could be generated via T → S̄→ S T∗.

• On the other hand, let m ′ be the inner motif that occurs in T∗ at the root, i.e.
T∗ ∈ m ′ ◦ ((T), . . . , (T)). There exist a δ-tuple, (T1, . . . , Tδ) ∈ Tδ, with δ := δm
such that T∗ = m ′ ◦ ((T1), . . . , (Tδ)). Let ni := |Ti| and ki := D(Ti) for i in
{1, . . . , δ}. It is easy to see that

δ∑
i=1

ni =

δ∑
i=1

|Ti| = |T∗|− |m ′| = p− |m ′|.

The overlap-free condition implies that no motif occurs in m ′, i.e. Dm = 0 and
each motif occurring in T∗ is entirely contained in one of {(T1), . . . , (Tδ)}, from
which we derive that

δ∑
i=1

ki =

δ∑
i=1

D(Ti) = Dm +

δ∑
i=1

D(Ti) = DT∗ = D(T∗) −Dm = k−Dm.

Since Ti is a secondary structure in Tni,ki with ni < p and ki < k, Ti could
be produced from the non-terminal symbol T and is a word in LTni,ki by
the induction condition. This leads us to the follow conclusion, T∗ is a word
generated from T via T → m ′ ◦ (T , . . . , T)  m ′ ◦ ((T1), . . . , (Tδ)) = T∗. The
length of T∗ equals to |m ′| +

∑δ
i=0 ni = p. Furthermore, the rule T → m ′ ◦

(T , . . . , T) increases the defect by Dm, from which we could derive that DT∗ =
Dm +

∑δ
i=0 ki = k and then T∗ ∈ LTp,k. From this, we conclude that

∀T∗ ∈ Tp,k, T∗ ∈ LTp,k (7.5)

Conversely, let T∗ ∈ LTp,k be a word produced from the non-terminal symbol T .
The word T∗ is generated using either the rule T → S̄ or T → m ′ ◦ (T , . . . , T), where
m ∈M is one of inner motifs.

• In the first case, T∗ is a word of LS̄p,k, which is a subset of LSp,k. Thus, T∗

is a secondary structure of size p and defect k since LSp,k = Sp,k. In addition,
since none of inner motifs occur in T∗ at root by the definition of S̄, the defect
of (T∗) is equal to the one of T∗, which means that T∗ ∈ Tp,k;
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• Otherwise, the rule T → m ′ ◦ (T , . . . , T) is used to produce T∗. It requires, in
advance, a generation of δ := δm words in LT , denoted (T1, . . . , Tδ). Each Ti
is a word in the language LTni,ki , where ni := |Ti| < p and ki := D(Ti) <

k with
∑δ
i=1 ni = p − |m ′|. Since the rule T → m ′ ◦ (T , . . . , T) increases the

defect by Dm, one obtains
∑δ
i=0 ki = k−Dm. By the induction condition, Ti

is a secondary structure in Tni,ki for any i in {1, . . . , δ}. Therefore, T∗ = m ′ ◦
(T1, . . . , Tδ), where each Ti is added respectively to each paired leaf of m ′, is
also a valid secondary structure. It is easy to see that |T∗| = |m ′|+

∑δ
i=1 ni = p.

The overlap-free condition implies that motif in T∗ occurs entirely in one of
(Ti). Thus, DT∗ =

∑δ
i=1 ki. Since the inner motif m ′ occurs at the root level

of T∗, the secondary structure (T∗) contains the motif at the root, from which
one has D(T∗) = Dm +DT∗ = Dm +

∑δ
i=1 ki = k, then T∗ ∈ Tp,k. We obtain

∀T∗ ∈ LTp,k, T∗ ∈ Tp,k (7.6)

From Equation 7.5 and Equation 7.6, we have Tp,k = LTp,k for any value of k.

In conclusion, Equation 7.4 holds for any value of n and k.

7.2.2 Mean and variance computation

Equation 7.3 is strongly connected and aperiodic. Drmota–Lalley–Woods Theorem
implies that structure ensemble defect Dn has a Gaussian limiting distribution with
the expected defect value and the variance linear to n,

lim
n→∞E[Dn] = µn and lim

n→∞V[Dn] = σ
2 n

where µ and σ2 are two constants to determine. Let us start with a simple case where
the motif set consists of one motif.

example . Considering the trivial motif M = {()} introduced by the minimum
distance θ = 1 in the Nussinov energy model, motif () has an ensemble defect DE at
1 restricted by the hypothesis. In this example, one can easily rewrite Equation 7.3 to

z2S(z,u)2 − (1− z+ (1− u)z2)S(z,u) + 1 = 0.

Resolving this second degree equation of S(z,u) yields

S(z,u) =
(1− z+ (1− u)z2) −

√
(1+ z+ (1− u)z2)(1− 3z+ (1− u)z2)

2z2
.

The dominant singularity in the function of u is the root of 1− 3z+ (1− u)z2,

ρ(u) =

(3−
√
5+ 4u)/(2(1− u)) if u 6= 1

1/3 if u = 1
.
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We have also ρ ′(1) = 1/9 and ρ ′′(1) = 4/243. Drmota–Lalley–Woods Theorem shows
that constants µ and σ2 can be expressed with ρ(1), ρ ′(1) and ρ ′′(1),

µ = −ρ ′(1)/ρ(1) = 1/9 and σ2 = −ρ ′′(1)/ρ(1) + µ+ µ2 = 2/27.

Unfortunately, in general case, such method is not simpler than a direct computa-
tion due to high degree of T(z,u), i.e. the maximum number of motif open paired
leaves in the collections. By definition, the expected value is the total defect divided
by the number of secondary structures,

E[Dn] =

∑
S∈Sn

D̂S

|Sn|
=

[zn]
∂S(z,u)
∂u

∣∣∣∣
u=1

[zn]S(z, 1)

and the variance

V[Dn] = E[D2n] − E[Dn]
2 =

∑
S∈Sn

D̂2S

|Sn|
− E[Dn]

2

=

[zn] ∂
∂u(u

∂S(z,u)
∂u

)

∣∣∣∣
u=1

[zn]S(z, 1)
−

 [zn]
∂S(z,u)
∂u

∣∣∣∣
u=1

[zn]S(z, 1)


2

V[Dn] =

[zn] ∂
∂u(u

∂S(z,u)
∂u

)

∣∣∣∣
u=1

× [zn]S(z, 1) −
(
[zn]

∂S(z,u)
∂u

∣∣∣∣
u=1

)2
([zn]S(z, 1))2

.

Proposition 7.4 (Mean and variance of structure defect): Let M be an overlap-
free set of motif, each associated with a minimum possible defect bounded by 1. For
a positive integer n, the distribution of the ensemble defect Dn across unconstrained
(θ = 0) uniform secondary structures of length n follows a Normal limiting distribu-
tion of parameters:

lim
n→∞E[Dn] = µn and lim

n→∞V[Dn] = σ
2 n

where

µ =
∑
m∈M

Dm × 3−|m|+δm

and

σ2 =

( ∑
m∈M

Dm∆

)
− 2

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
+

( ∑
m∈M

∆

)2
+ 8

( ∑
m∈M

∆

)( ∑
m∈M

δm∆

)
−
3

2

( ∑
m∈M

δm∆

)2
with ∆ := Dm × 3−|m|+δm .
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Proof.
Expected value E[Dn]. From Lemma 7.5 and Lemma 7.6, we have

[zn]S(z, 1) =
3
√
3

2
√
π
3nn−

3
2 −

117
√
3

32
√
π
3nn−

5
2 + o(3nn−

5
2 )

[zn]
∂S(z,u)
∂u

∣∣∣∣
u=1

=
3
√
3

2
√
π

∑
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∆3nn−
1
2 +

3
√
3

4
√
π
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|m|∆3nn−
3
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69
√
3

32
√
π
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3
2
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3√
π
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δm∆3
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3
2 −

9
√
3

8
√
π

∑
m∈M

δ2m∆3
nn−

3
2 + o(3nn−

3
2 ).

Therefore,

E[Dn] =

[zn]
∂S(z,u)
∂u

∣∣∣∣
u=1

[zn] S(z, 1)
=

 ∑
m∈M

Dm3
−|m|+δm

×n+ o(n).

Variance V[Dn]. Recall that

V[Dn] =

[zn] ∂
∂u (u

∂S(z,u)
∂u

)

∣∣∣∣
u=1

× [zn] S(z, 1) −
(
[zn]

∂S(z,u)
∂u

∣∣∣∣
u=1

)2
([zn]S(z, 1))2

.

From the previous result, we have

([zn]S(z, 1))2 =
27

4π
32nn−3 + o(32nn−3)

(
[zn]

∂S(z,u)
∂u
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u=1

)2
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27

4π
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27
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)
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32π
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δ2m∆

)
32nn−2 + o(32nn−2).

In addition, from Lemma 7.7
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Then,

[zn]
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

× [zn]S(z, 1)

=
27

4π
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∆

)2
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∆
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−
81

8π

( ∑
m∈M

∆

)( ∑
m∈M

δ2m∆

)
32nn−2 −

81

8π
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(
u
∂S(z,u)
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× [zn]S(z, 1) −
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)2
=
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)( ∑
m∈M

|m|∆

)
32nn−2 +
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4π
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+
54

π
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δm∆
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32nn−2 −

81

8π

( ∑
m∈M

δm∆

)2
32nn−2 + o(32nn−2)

with ∆ := Dm3
−|m|+δm . Finally, we have V[Dn] = σ

2 ×n+ o(n) with

σ2 =

( ∑
m∈M

D(m)∆

)
− 2

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
+

( ∑
m∈M

∆

)2

+ 8
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m∈M

∆

)( ∑
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δm∆

)
−
3

2
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δm∆

)2
.

Lemma 7.5: We have T(z, 1) = S(z, 1) and

S(z, 1) =
1− z−

√
(1+ z)(1− 3z)

2z2

[zn]S(z, 1) =
3
√
3

2
√
π
3nn−

3
2 −

117
√
3

32
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π
3nn−

5
2 + o(3nn−

5
2 ).

Proof. Replacing u by 1 in the second equation of Equation 7.3 yields the first equality
and in the first equation gives

S(z, 1) = z2S(z, 1)2 + zS(z, 1) + 1

z2S(z, 1)2 − (1− z)S(z, 1) + 1 = 0.

Solving the quadratic equation gives two solutions

S+(z) =
1− z+

√
(1+ z)(1− 3z)

2z2
and S−(z) =

1− z−
√
(1+ z)(1− 3z)

2z2
.

Both solutions have the dominant singularity at z = ρ = 1/3. However, the value
of [zn]S+(z) is negative when n is odd which against the non-negative number of
secondary structures. Thus, S(z, 1) = S−(z). Singular expansion around z = ρ = 1/3
following by the application of Flajolet and Odlyzko Theorem gives

S(z, 1) = 3− 3
√
3(1−

z

ρ
)
1
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√
3(1−

z

ρ
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Lemma 7.6:
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with ∆ := Dm3
−|m|+δm .

Proof. The partial derivative of Equation 7.3 with respect to u is

∂S(z,u)
∂u

= z2
∂T(z,u)
∂u

S(z,u) + z2T(z,u)
∂S(z,u)
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Expansion on the dominant singularity z = ρ = 1/3 is
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with ∆ = Dm3
−|m|+δm . The asymptotic equivalent of n-th coefficient is then, from Fla-

jolet and Odlyzko Theorem,
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Lemma 7.7:
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with ∆ := Dm3
−|m|+δm .

Proof. Let us recall the first order partial derivatives of S(z,u) and T(z,u),
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∂u

)∣∣∣∣
u=1

=
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

+ 2
∑
m∈M

DmδmS(z, 1)δm−1 ∂T(z,u)
∂u

∣∣∣∣
u=1

z|m
′|

+
∑
m∈M

D2mS(z, 1)
δmuD(m)−1z|m.

We then rewrite the equation of
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

and note that z2z|m
′| = z|m|

for any motif m,

∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

= z2S(z, 1)
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

+ 2
∑
m∈M

DmδmS(z, 1)δm
∂T(z,u)
∂u

∣∣∣∣
u=1

z|m|

+
∑
m∈M

D2mS(z, 1)
δm+1z|m| + 2z2

∂T(z,u)
∂u

∣∣∣∣
u=1

∂S(z,u)
∂u

∣∣∣∣
u=1

+ z2S(z, 1)
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

+ z
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

(1− z− 2z2S(z, 1))
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

= 2
∑
m∈M

DmδmS(z, 1)δm
∂T(z,u)
∂u

∣∣∣∣
u=1

z|m|

+
∑
m∈M

D2mS(z, 1)
δm+1z|m|

+ 2z2
∂T(z,u)
∂u

∣∣∣∣
u=1

∂S(z,u)
∂u

∣∣∣∣
u=1

.

Since ∂T(z,u)
∂u

∣∣∣∣
u=1

=
∂S(z,u)
∂u

∣∣∣∣
u=1

+
∑
m∈MDmz

|m′|S(z, 1)δm and 1 − z − 2z2S(z, 1) =√
(1+ z)(1− 3z), the last equality is then,√

(1+ z)(1− 3z)
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1
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=
∑
m∈M

D2mS(z, 1)
δm+1z|m| + 2z2

(
∂S(z,u)
∂u

∣∣∣∣
u=1

+
∑
m∈M

Dmz
|m′|S(z, 1)δm

)
∂S(z,u)
∂u

∣∣∣∣
u=1

+ 2
∑
m∈M

DmδmS(z, 1)δmz|m|

(
∂S(z,u)
∂u

∣∣∣∣
u=1

+
∑
m∈M

Dmz
|m′|S(z, 1)δm

)

=
∑
m∈M

D2mS(z, 1)
δm+1z|m| + 2z2

(
∂S(z,u)
∂u

∣∣∣∣
u=1

)2
+ 2

∑
m∈M

Dm(δm + 1)S(z, 1)δmz|m| ∂S(z,u)
∂u

∣∣∣∣
u=1

+ 2

( ∑
m∈M

DmδmS(z, 1)δmz|m|

)( ∑
m∈M

Dmz
|m′|S(z, 1)δm

)
.

Let

A1(z) =
∑
m∈M

D2mz
|m|S(z, 1)δm+1

/√
(1+ z)(1− 3z)

A2(z) =

(
2z2
(
∂S(z,u)
∂u

∣∣∣∣
u=1

)2

+2

( ∑
m∈M

Dm(δm + 1)S(z, 1)δmz|m|

)
∂S(z,u)
∂u

∣∣∣∣
u=1

/√
(1+ z)(1− 3z)

A3(z) = 2

( ∑
m∈M

DmδmS(z, 1)δmz|m|

)( ∑
m∈M

Dmz
|m′|S(z, 1)δm

)/√
(1+ z)(1− 3z).

We have
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

= A1(z) +A2(z) +A3(z)

[zn]
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

= [zn]A1(z) + [zn]A2(z) + [zn]A3(z).

The asymptotic expression for the nth coefficient of each Ai is given by lemmata
below (Lemma 7.8, Lemma 7.9, and Lemma 7.10). Adding them yields

[zn]
∂

∂u

(
u
∂S(z,u)
∂u

)∣∣∣∣
u=1

=
3
√
3

2
√
π

( ∑
m∈M

∆

)2
3nn

1
2 +

3
√
3

2
√
π

( ∑
m∈M

Dm∆

)
3nn−

1
2 +

27
√
3

32
√
π

( ∑
m∈M

∆

)2
3nn−

1
2

−
3
√
3

2
√
π

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
3nn−

1
2 +

6
√
3√
π

( ∑
m∈M

∆

)( ∑
m∈M

δm∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

∆

)( ∑
m∈M

δ2m∆

)
3nn−

1
2 −

9
√
3

4
√
π

( ∑
m∈M

δm∆

)2
3nn−

1
2 + o(3nn−

1
2 )

with ∆ = Dm3
−|m|+δm .
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Lemma 7.8: Let

A1(z) =
∑
m∈M

D(m)2z|m|S(z, 1)δm+1

/√
(1+ z)(1− 3z) .

Then,

[zn]A1(z) =
3
√
3

2
√
π

( ∑
m∈M

D(m)∆
)
3nn− 1

2 + o(3nn− 1
2 )

with ∆ := Dm3
−|m|+δm .

Proof.

A1(z) =
∑
m∈M

D(m)2
z|m|

√
1+ z

(
(
1− z

2z2
)δm+1 + o(1)

)
(1− 3z)−

1
2

=
( ∑
m∈M

D(m)2
z|m|

√
1+ z

(
1− z

2z2
)δm+1

)
(1− 3z)−

1
2 + o((1− 3z)−

1
2 )

=
3
√
3

2

( ∑
m∈M

D(m)23−|m|+δm
)
(1−

z

ρ
)−

1
2 + o((1−

z

ρ
)−

1
2 )

[zn]A1(z) =
3
√
3

2
√
π

( ∑
m∈M

D(m)∆
)
3nn−

1
2 + o(3nn−

1
2 ).

Lemma 7.9: Let

A2(z) =

2z2
(
∂S(z,u)
∂u

∣∣∣∣
u=1

)2
+ 2

( ∑
m∈M

Dm(δm + 1)S(z, 1)δmz|m|

)
∂S(z,u)
∂u

∣∣∣∣
u=1√

(1+ z)(1− 3z)
.

We have

[zn]A2(z) =
3
√
3

2
√
π

( ∑
m∈M

∆

)2
3nn

1
2 +

27
√
3

32
√
π

( ∑
m∈M

∆

)2
3nn−

1
2

−
3
√
3

2
√
π

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
3nn−

1
2

−
3
√
3√
π

( ∑
m∈M

∆

)( ∑
m∈M

δm∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

∆

)( ∑
m∈M

δ2m∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

δm∆

)2
3nn−

1
2 + o(n−

1
2 )

with ∆ := Dm3
−|m|+δm .
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Proof. Note that, calculated in Lemma 7.6,

∂S(z,u)
∂u

∣∣∣∣
u=1

=
1

(1+ z)
1
2 (1− 3z)

1
2

∑
m∈M

Dmz
|m|S(z, 1)δm+1.

The first term of A2(z) is equal to

A21(z) =
2z2

(1+ z)
3
2 (1− 3z)

3
2

( ∑
m∈M

Dmz
|m|S(z, 1)δm+1

)2
.

Development of S(z, 1)δm+1 to the second order is needed to have a proper order of
(1− 3z). From Lemma 7.5, we have

S(z, 1)δm+1 =

(
1− z

2z2

)δm+1

−
(δm + 1)(1− z)δm

√
(1+ z)(1− 3z)

(2z2)δm+1

+
(δm + 1)δm(1− z)δm−1(1+ z)(1− 3z)

2(2z2)δm+1
+ o((1− 3z)).

A21(z) =
2z2

(1+ z)
3
2

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)2
(1− 3z)−

3
2

−
4z2

1+ z

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)
(1− 3z)−1

+
4z2√
1+ z

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
( ∑
m∈M

Dmz
|m| (δm + 1)δm(1− z)δm−1

2(2z2)δm+1

)
(1− 3z)−

1
2

+
2z2√
1+ z

( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)2
× (1− 3z)−

1
2 + o((1− 3z)−

1
2 )

= B1(z) +B2(z) +B3(z) +B4(z) + o((1− 3z)
− 1

2 )

with

B1(z) =
2z2

(1+ z)
3
2

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)2
(1− 3z)−

3
2

B2(z) = −
4z2

1+ z

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)
(1− 3z)−1

B3(z) =
4z2√
1+ z

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
( ∑
m∈M

Dmz
|m| (δm + 1)δm(1− z)δm−1

2(2z2)δm+1

)
(1− 3z)−

1
2

B4(z) =
2z2√
1+ z

( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)2
× (1− 3z)−

1
2 .

Similarly, the second term of A2(z) is

A22(z) =
2

(1+ z)(1− 3z)

( ∑
m∈M

Dm(δm + 1)z|m|S(z, 1)δm
)( ∑

m∈M
Dmz

|m|S(z, 1)δm+1

)

=
2

(1+ z)(1− 3z)

( ∑
m∈M

Dm(δm + 1)z|m|
(
(
1− z

2z2
)δm

−
δm(1− z)δm−1

√
(1+ z)(1− 3z)

(2z2)δm
+ o((1− 3z)

1
2 )
))
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( ∑
m∈M

Dmz
|m|
(
(
1− z

2z2
)δm+1 −

(δm + 1)(1− z)δm
√
(1+ z)(1− 3z)

(2z2)δm+1
+ o((1− 3z)

1
2 )
))

=
2

1+ z

( ∑
m∈M

Dm(δm + 1)z|m|(
1− z

2z2
)δm

)( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
(1− 3z)−1

−
2√
1+ z

( ∑
m∈M

Dm(δm + 1)z|m|(
1− z

2z2
)δm

)
( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)
(1− 3z)−

1
2

−
2√
1+ z

( ∑
m∈M

Dm(δm + 1)z|m| δm(1− z)δm−1

(2z2)δm

)
( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
(1− 3z)−

1
2 + o((1− 3z)−

1
2 )

= C1(z) +C2(z) +C3(z) + o((1− 3z)
− 1

2 )

with

C1(z) =
2

1+ z

( ∑
m∈M

Dm(δm + 1)z|m|(
1− z

2z2
)δm

)( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
(1− 3z)−1

C2(z) = −
2√
1+ z

( ∑
m∈M

Dm(δm + 1)z|m|(
1− z

2z2
)δm

)
( ∑
m∈M

Dmz
|m| (δm + 1)(1− z)δm

(2z2)δm+1

)
(1− 3z)−

1
2

C3(z) = −
2√
1+ z

( ∑
m∈M

Dm(δm + 1)z|m| δm(1− z)δm−1

(2z2)δm

)
( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)
(1− 3z)−

1
2 .

One can notice that B2(z)+C1(z) = 0, B3(z)+C3(z) = C3(z)/2, and B4(z)+C2(z) =
C2(z)/2. We have

A2(z) =
2z2

(1+ z)
3
2

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)2
× (1− 3z)−

3
2

−
1√
1+ z

( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm+1

)( ∑
m∈M

Dm(δm + 1)δmz
|m| (1− z)

δm−1

(2z2)δm

)
× (1− 3z)−

1
2

−
1√
1+ z

( ∑
m∈M

Dm(δm + 1)z|m|(
1− z

2z2
)δm

)( ∑
m∈M

Dm(δm + 1)z|m| (1− z)
δm

(2z2)δm+1

)
× (1− 3z)−

1
2 + o((1− 3z)−

1
2 ).

Furthermore, the singular expansion on z = ρ = 1/3 gives

A2(z) =
3
√
3

4

( ∑
m∈M

Dm3
−|m|+δm

)2
× (1−

z

ρ
)−

3
2 −

39
√
3

32

( ∑
m∈M

Dm3
−|m|+δm

)2
× (1−

z

ρ
)−

1
2

−
3
√
3

2

( ∑
m∈M

Dm3
−|m|+δm

)( ∑
m∈M

Dm|m|3−|m|+δm

)
× (1−

z

ρ
)−

1
2

+
15
√
3

4

( ∑
m∈M

Dm3
−|m|+δm

)( ∑
m∈M

Dm(δm + 1)3−|m|+δm

)
× (1−

z

ρ
)−

1
2
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−
9
√
3

4

( ∑
m∈M

Dm3
−|m|+δm

)( ∑
m∈M

Dm(δm + 1)δm3
−|m|+δm

)
× (1−

z

ρ
)−

1
2

−
9
√
3

4

( ∑
m∈M

Dm(δm + 1)3−|m|+δm

)2
× (1−

z

ρ
)−

1
2 + o((1−

z

ρ
)−

1
2 ).

Let ∆ := D(m)3−|m|+δm . Applying the theorem Flajolet and Odlyzko Theorem on
each term with α = 3/2 or α = 1/2 gives the asymptotic equivalence

[zn]A2(z) =
3
√
3

2
√
π

( ∑
m∈M

∆

)2
3nn

1
2 −

21
√
3

32
√
π

( ∑
m∈M

∆

)2
3nn−

1
2

−
3
√
3

2
√
π

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
3nn−

1
2

+
15
√
3

4
√
π

( ∑
m∈M

∆

)( ∑
m∈M

(δm + 1)∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

∆

)( ∑
m∈M

(δm + 1)δm∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

(δm + 1)∆

)2
3nn−

1
2 + o(3nn−

1
2 )

[zn]A2(z) =
3
√
3

2
√
π

( ∑
m∈M

∆

)2
3nn

1
2 +

27
√
3

32
√
π

( ∑
m∈M

∆

)2
3nn−

1
2

−
3
√
3

2
√
π

( ∑
m∈M

∆

)( ∑
m∈M

|m|∆

)
3nn−

1
2

−
3
√
3√
π

( ∑
m∈M

∆

)( ∑
m∈M

δm∆

)
3nn−

1
2 −

9
√
3

4
√
π

( ∑
m∈M

∆

)( ∑
m∈M

δ2m∆

)
3nn−

1
2

−
9
√
3

4
√
π

( ∑
m∈M

δm∆

)2
3nn−

1
2 + o(n−

1
2 ).

Lemma 7.10: Let

A3(z) = 2

( ∑
m∈M

DmδmS(z, 1)δmz|m|

)( ∑
m∈M

Dmz
|m′|S(z, 1)δm

)/√
(1+ z)(1− 3z).

We have

[zn]A3(z) =
9
√
3√
π

( ∑
m∈M

δm∆
)( ∑
m∈M

∆
)
3nn−

1
2 + o(3nn−

1
2 )

with ∆ := Dm3
−|m|+δm .

Proof.

A3(z) =
2√

(1+ z)(1− 3z)

( ∑
m∈M

Dmδmz
|m|
(
(
1− z

2z2
)δm + o(1)

))
( ∑
m∈M

Dmz
|m′|

(
(
1− z

2z2
)δm + o(1)

))
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=
2

z2
√
1+ z

( ∑
m∈M

Dmδmz
|m|(

1− z

2z2
)δm

)( ∑
m∈M

Dmz
|m|(

1− z

2z2
)δm

)
(1− 3z)−

1
2

+ o((1− 3z)−
1
2 )

=9
√
3
( ∑
m∈M

Dmδm3
−|m|+δm

)( ∑
m∈M

Dm3
−|m|+δm

)
(1−

z

ρ
)−

1
2 + o((1−

z

ρ
)−

1
2 ).

[zn]A3(z) =
9
√
3√
π

( ∑
m∈M

δm∆
)( ∑
m∈M

∆
)
3nn−

1
2 + o(3nn−

1
2 )

with ∆ = Dm3
−|m|+δm .

Proposition 7.4 presents a closed-form expression for the expected value and the
variance of structure defect. Applying on motif () with ensemble defect at 1 gives
µ = 3−2 and σ2 = 3−2− 4 · 3−4+ 3−4 = 2/27, which are same as the values obtained
using Drmota–Lalley–Woods Theorem.

Given a lower bound D̂E for structure ensemble defect DE and a tolerance ε > 0.
We consider in this study the distribution of D̂E under the uniform distribution
of secondary structures, so that, the proportion of designable structures D

DE6ε
n of

length n obeys
|D
DE6ε
n |

|Sn|
6 P

(
D̂E 6 ε

)
.

Since D̂E follows a normal limiting distribution of mean µn and standard deviation
σ
√
n, one has

P
(
D̂E 6 ε

)
= Φ(−x) = 1−Φ(x) = 1−

1√
2π

∫x
−∞ e−

t2

2 dt

where

x =
µn− ε

σ
√
n

and

Φ(z) =
1√
2π

∫z
−∞ e−

t2

2 dt

is the cumulative distribution function of the standard normal distribution. Using
integration by parts gives an asymptotic expansion,

P
(
D̂E 6 ε

)
=

√
2 e−

x2

2

x
√
π

∞∑
i=0

(−1)i
(2i− 1)!!
x2n

where (2i− 1)!! is the double factorial of 2i− 1. This implies an exponentially de-
creasing proportion of designable structures for any constant, sub-linear threshold ε,
or even for a linearly increased one ε = κ.n with κ < µ.
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Figure 7.1: Empirical distribution of ensemble defect lower bound D̂E with overlap-free mo-
tif over 10 000 uniformly sampled secondary structure with minimum distance
θ = 0. Curve in dashed style represents asymptotic distribution of D̂E computed
with Proposition 7.4.

7.2.3 The distribution of D̂E swiftly converges to its normal limiting distribution

We have shown in Proposition 7.4 that structure ensemble defect follows a limiting
normal distribution. However, this asymptotic approximation may represent poorly
the defect distribution for smaller structures. In order to test the convergence, we
compare the asymptotic and empirical distribution of this lower bound.

We add, in the collection of 10 280 motifs, three trivial motifs induced by the
minimum distance θ = 3, (), ( ·), and ( · ·), with defect at 2 nts since the base pair can
never be formed. To apply Proposition 7.4, we limit the defect value to 1 for motifs
having defects larger than 1 nt, including trivial motifs. An overlap-free set of 808
motifs was then extracted using the approach described in Section 5.2.3. We prefer
motif with higher defect per length in the second step to having a closed lower bound
for structure defect. Applying Proposition 7.4 gives the values of two parameters
µ = 0.1660 and σ2 = 0.0596. For instance, for a random uniformly distributed small
RNA of length 50, the expected defect is 8.30 with the variance at 2.98.

On the other hand, the empirical distributions were estimated from a set of 10 000
secondary structures uniformly generated using GenRGenS [20] for length ranging
from 50 to 2 000. Structure defect was computed by summing the defect of motifs
occurring in the structure of interest. As shown in Figure 7.1, empirical distributions
are virtually indistinguishable from their associated asymptotic distribution. In par-
ticular, the empirical distribution for structures of length 50 is estimated to have a
mean at 8.66 and a variance at 3.07, comparing against 8.30mean defect and 2.98 vari-
ance from limiting distribution. Moreover, for large RNA of length 2 000, the empirical
distribution has estimated parameter µ = 0.1663 and σ2 = 0.0589, which coincide to
the third digit with those of limiting distribution (µ = 0.1660 and σ2 = 0.0596).
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7.3 new ensemble defect lower bound with full motif set

Our approach in previous sections requires the motif set to be overlap-free, which
restricts the size of the motif set. Indeed, we have reduced the set from 10 280 to 808
motifs. In order to use the complete motif set, we introduce a novel lower bound for
structure ensemble defect defined as the maximum defect sum of non-overlapping
motifs occurring in the structure,

D̃S = max
P

∑
m∈P

Dm

where P is any set of motif occurrences in S such that any two occurrences do not
share common positions. Given a secondary structure S, the new lower bound is
computed using dynamic programming with naive pattern matching starting from
the structure root. Let u be a node of S in tree presentation, i.e., a base pair of S
and tr(u) be the subtree of S starting from u. The new ensemble defect lower bound
D̃tr(u) for a subtree tr(u) is expressed in the following recursive form,

D̃tr(u) = max


∑

c children of u

D̃tr(c)

max
m∈Mu

Dm +

δm∑
i=i

D̃tr(um,i)

where Mu is the set of motifs occurring at the root of tr(u), i.e. the node u, and um,i

is the node in subtree of u corresponding to the i-th open-paired leaf of motif m.

7.3.1 Overlap-free motif set has a sufficient impact on structure defect estimation

As in the previous section, we estimated the distribution of lower bound D̃ from a
randomly and uniformly sampled set of 10 000 secondary structures θ = 0 for differ-
ent lengths n ∈ {50, 100, 200, 500, 1000, 2000}. As shown in Figure 7.2, the empirical
distribution of this new lower bound D̃E is shifted to the right, compared to the
asymptotic of D̂E. The expected defect per length µ increases from 0.1660 to 0.1868.
This means that the 808 non-overlapping motifs selected in our analysis have a good
enough impact on the ensemble defect of random secondary structure, and therefore
on the combinatorics of designable structures.

7.3.2 Ensemble defect lower bound with a minimum distance θ = 3

Among those motifs, the presence of trivial motifs ((), (•), and (••)) is responsible
for most of the defect, already inducing a value of 0.1605 for µ. To study the impact
of non-trivial motifs, we imposed a minimal distance θ of 3 on secondary structures.
This corresponds to consider trivial motifs as local obstructions and avoid them in
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Figure 7.2: Empirical distribution of novel ensemble defect lower bound D̃E with overlap-
free motif over 10 000 uniformly sampled secondary structure with minimum
distance θ = 0. Curve in dashed style represents asymptotic distribution of the
former lower bound D̂E computed with Proposition 7.4 using an overlap-free
motif set.

the rule of non-terminal symbol T as in Proposition 6.1. The system of functional
equations (Equation 7.3) becomes then

S(z,u) = z2T(z,u)S(z,u) + zS(z,u) + 1

T(z,u) = S(z,u) − 1− z− z2 +
∑
m∈M

T(z,u)δm(uDm − 1)z|m
′| .

Putting u = 1 gives a quadratic equation of S(z, 1),

z2S(z, 1)2 − (1− z+ z2 + z3 + z4)S(z, 1) + 1 = 0.

Solving it gives,

S(z, 1) =
1− z+ z2 + z3 + z4 −

√
(1+ z+ z2 + z3 + z4)(1− 3z+ z2 + z3 + z4)

2z2
.

Unfortunately, it becomes too complicated to compute the partial derivation of S(z,u).

We estimated, as in Section 7.3, the empirical distribution of lower bound D̃E over
10 000 structures of different lengths and reported in Figure 7.3a. These empirical dis-
tributions suggest that the lower bound D̃E also follows a normal limiting distribu-
tion with mean and variance linear to the structure length. This is not overly surpris-
ing since the definition of the lower bound D̃E suggests, by nature, the existence of
a system of functional equations satisfying the conditions of Drmota–Lalley–Woods
Theorem [25]. In particular, the value of µ̃ and σ̃2 are, respectively, 0.064 and 0.02 for
n = 2000, showing that a large proportion of the ensemble defect in Figure 7.2 can
be attributed to the presence of trivial motifs.

We used these parameters to estimate in Figure 7.3b the proportion of designable
secondary structures. The proportion can be seen to decrease exponentially with
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Figure 7.3: Empirical distribution of ensemble defect lower bound D̃E using full set of mo-
tifs (a) and proportion of designable secondary structures (b) with minimal dis-
tance θ = 3.

three different types of tolerance, constant, sub-linear, and linear. For a widely used
tolerance in the popular design tool NUPack, ε = 0.01n, the proportion is around
1.3 · 10−6 for a moderate length n = 150 and is less than 10−33 for large secondary
structures of length 1000.
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I N F R A R E D

We have shown in the previous chapters that designing a random secondary struc-
ture is challenging in theory. We are then, in this chapter, interested in finding proper
RNA sequences. Hammer et al. presented a Fixed-Parameter Trackable (FPT) algo-
rithm, RNARedPrint, to sample RNA sequences from a multivariate Boltzmann distri-
bution for multiple target structures [37]. By adjusting the associated weights, sam-
pled sequences can have specific free energy for each target and a certain GC content.
In their work, the authors described a generic framework for multiple targets design
with other design objectives, although it is not implemented in RNARedPrint.

In this chapter, we extend the framework for a more general Constraint Satisfaction
Problem (CSP), and present InfraRed, an efficient and generic implementation of an
Fixed-Parameter Trackable (FPT) algorithm. Section 8.1 defines the main problem
and shows how a design problem is described as a CSP. We explain the mechanism
of InfraRed in Section 8.2. As an usage example, we reimplement IncaRNAtion [69]
in Section 8.3. In Section 8.4, we show that the framework is not only limited to RNA

sequence sampling.

8.1 design problem as constraint satisfaction problem

A constraint network is composed of variables and a set of constraints imposed on
variables. Given a constraint network, Constraint Satisfaction Problem (CSP) aims
to find an assignment of variables that satisfies each constraint. Each variable is
associated with a set of possible assignment values, named domain.

Definition 8.1 (Domain): The domain of a variable x, denoted by D(x), is the set
of possible assignments for x.

Example: Given a target secondary structure S of length n, we consider a set of n variables
X = {x1, . . . , xn}, each represents one position in the target. A possible assignment for each
variable xi takes value from four nucleobases, i.e. D(xi) = {A, C, G, U}.

Definition 8.2 (Constraint): A constraint c defines assignments allowed for a set
of variables {x1, . . . , xl}. It is seen as a funciton taking an assignment wi ∈
D(xi) for each variable xi and returning a boolean value,

103
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c : D(x1)× · · · ×D(xj) → {True,False}

(w1, . . . ,wl) 7→ c(w1, . . . ,wl).
The set {x1, . . . , xl} is called the dependency of constraint c, denoted by dep(c).

Example: Given a secondary structure, one of common used constraints is BPComp, which
forces the assignment of two positions can form a base pair. For each base pair (i, j) in the
target structure, we define the constraint

BPComp{xi,xj}(wi,wj) =

True if (wi,wj) ∈ B

False otherwise

with B = {(A, U), (C, G), (G, C), (G, U), (U, A), (U, G)}.

Definition 8.3 (Constraint Network): A constraint network (X,D,C) consists of

• A set of variables X = {x1, . . . , xn};

• A set of domains of X, D = D(x1)× · · · ×D(xn);

• A set of constraints C = {c1, . . . , cg}, each defined on a subset of X.

In the classic Constraint Satisfaction Problem (CSP), the goal is to find an assign-
ment for variables while respecting each constraint.

Problem 6 (Constraint Satisfaction Problem):
Input: Constraint network (X,D,C)

Output: Assignment w such that, for each constraint c ∈ C, the assignment
limited on the constraint dependency w[|dep(c)|] is allowed, i.e. c(w[|dep(c)|])

is True.

The set of all solutions for the CSP, denoted by DC, is a subset of D.

Example (Naive Positive Design): Given a secondary structure S of length n, we aim to
determine RNA sequences that are compatible with the target structure as the first step in
positive design. This is equivalent to the CSP with the constraint network (X,D,C) where

• Variables: X = {x1, . . . , xn};

• Domain: D = {A, C, G, U}n;

• Constraints: Constraint BPComp is defined for each base pair in the target structure.

C =
{

BPComp{xi,xj}; (i, j) ∈ S
}

.

A solution for the CSP is a sequence compatible with the target structure.
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Our framework InfraRed considers an extension of CSP, in which we introduce a
novel set of weighted functions F in the constraint network. A function returns a
value in real numbers given values for some variables. This gives the flexibility to
capture assignment properties and allows to sample assignments according to their
Boltzmann weight.

Definition 8.4 (Function): A function f is defined on a set of variables {x1, . . . , xl}
with a weight βf ∈ R. It takes an assignment wi ∈ D(xi) of each variable xi
and returns a value,

f : D(x1)× · · · ×D(xj) → R∪ {+∞}

(w1, . . . ,wl) 7→ f(w1, . . . ,wl).
Same as constraint, the set {x1, . . . , xl} is called the dependency of function f,
denoted by dep(f).

Example: In a simplified energy model, we assume structure free energy is the sum of ener-
gies contributed from base pair stacks. Thus, the target structure energy can be captured by
introducing energy function StackEnergy on each base pair stack (i, j) and (i+ 1, j− 1) in
the target,

StackEnergy{xi,xj,xi+1,xj−1}(wi,wj,wi+1,wj−1) = Estack(wi,wj,wi+1,wj−1)

with Estack is the energy table for base pair stacks from Turner model [87].

The extended problem considered in the framework InfraRed is then,

Problem 7 (Generalized Design):
Input: Constraint network (X,D,C,F)

Output: Assignment w ∈ DC compatible with constraints C such that

P(w) ∝
∏
βf,f∈F

eβf·f(w[|dep(f)|]).

This sampling problem can be seen as a subclass of valued CSP [74]. From now
on, we simply say Problem 7 is a CSP for the readability reason. One can notice that
constraint is a particular function with weight at 1, which returns only two values, 0
for True and −∞ for False. Indeed, if an assignment dissatisfies one of the constraints,
then the power of the base e is −∞, meaning that its probability of being sampled is
zero.

Example 1 (IncaRNAtion): Here, we show how to describe a positive design problem as a
CSP using IncaRNAtion [69] as an example. Given a target structure S of length n and a
parameter γ, IncaRNAtion aims to sample a sequence w based on its GC-weighted Boltzmann
probability

P(w) ∝ e−
E(w,S)
RT γ#GC(w)
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where R is the Boltzmann constant, T the temperature in Kelvin, E is structure energy using
stacking energy model, and #GC(w) =

∑n
i=1 Idwi∈{C,G} is the number of G or C in the

sequence w.
This is equivalent to the CSP with the constraint network (X,D,C,F) with

• Variables: X = {x1, . . . , xn};

• Domain: D = {A, C, G, U}n;

• Constraints: Constraint BPComp is imposed on each base pair in the target structure,

C =
{

BPComp{xi,xj}; (i, j) ∈ S
}

;

• Weighted Functions F = F1 ∪F2:
Structure energy is modeled using the function StackEnergy,

F1 =

{(
−
1

RT
, StackEnergy{xi,xj,xi+1,xj−1}

)
; (i, j) ∈ S if (i+ 1, j− 1) ∈ S

}
.

The GC-content of an assignment w is captured by introducing the function GCCont
on each variable xi,

F2 =
{(

lnγ, GCCont{xi}
)

; i ∈ {1, . . . ,n}
}

with

GCCont{xi}(wi) =

1 if wi ∈ {C, G}

0 otherwise.

8.2 infrared core engine

To solve Problem 7, one would need to compute the partition function,

ZX,D,C,F =
∑
w∈DC

∏
βf,f∈F

eβf·f(w[|dep(f)|]). (8.1)

In order to facilitate sequence sampling afterward, InfraRed precomputes the par-
tition function using dynamic programming on a tree-like object derived from a
constraint network. The approach is modified from the cluster tree elimination [19].
Stochastic backtracking is used to sample assignments on the same tree from the root
to the leaves. Each function or constraint is evaluated once in one of the nodes or
leaves to avoid redundancy during precomputation. Partial assignment dissatisfying
a constraint is discarded. Therefore, the complexity is determined by the complexity
of function/constraint evaluations in one node.
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8.2.1 Tree Decomposition

First, we define dependency graph, a hypergraph induced from the dependencies of
constraints and functions.

Definition 8.5 (Dependency graph): Given a constraint network (X,D,C,F), the
dependency graph is defined as G = (X,E). Each vertex is a variable in the set
X and each hyperedge in E is the dependency of a function or a constraint,

E := {dep(c); c ∈ C}∪ {dep(f); f ∈ F}.

Next, we decompose dependency graph into a tree such that each node is a subset
of X.

Definition 8.6 (Tree Decomposition): Given a dependency graph G = (X,E), a
tree decomposition T of G is a tree (or forest) whose node u is a subset of X,
named bag and denoted by bag(u) such that

1. Each variable x ∈ X is in at least one bag;

2. For all hyperedge e ∈ E, there is a node u ∈ T , such that e ⊆ bag(u);

3. For all variable x ∈ X, the set {u ∈ T ; x ∈ bag(u)} induces a connected
tree.

A pseudo root with an empty bag is added to ensure the tree is connected. A ran-
dom node of each connected component is selected to be a child of the pseudo root.
Figure 8.1 shows an example of tree decomposition computed from a dependency
graph. Tree decomposition captures necessary dependencies among variables from
a given dependency graph. It assigns variables into different bags appropriately to
divide the problem into several subproblems and resolve recursively. The first con-
dition ensures that all variables are considered at least once while walking the tree
T . Each function/constraint can be assigned to one node whose bag includes its de-
pendency because of the second condition. The last one can also be stated that if k
is a node in the path between two nodes u and v, then bag(u)∩ bag(v) ⊆ bag(k). It
guarantees that the minimum needed dependency information can be passed from
a node to another.

Definition 8.7 (Treewidth): The width of a tree decomposition is defined as
maxu∈T |bag(u)|− 1. The treewidth, denoted by tG, of a graph G is the min-
imum width among all possible tree decompositions.

Let T be a tree decomposition given a dependency graph G such that the width
of T is tG. Note that such a tree is not unique. The possible assignments in each bag
are the Cartesian product of each variable domain in the bag. If variables have equal



108 infrared

9

8

7

6

5

1

2

3

4

(a) Target Structure

9

8

7

6

5

1

2

3

4

(b) Dependency Graph

1 2 8 9

2 3 7 8 4 5 6

(c) Tree Decomposition

Figure 8.1: (a) Target secondary structure to design ((( · · · ))). (b) Associated dependency
graph (b) includes 3 hyperedges of 2 vertices (blue) introduced by the base pair
complementary constraints and 2 hyperedges of 4 vertices (red and green) intro-
duced by functions interpreting stack energy model. (c) A possible tree decompo-
sition of width 3.

domain size d, the assignment amount is bounded by dtG+1. Since function evalua-
tion generally takes a polynomial time, partition function computation’s complexity
is determined by the treewidth tG. Although determining whether a dependency
graph has treewidth at most a given value is an NP-complete problem [3], several
heuristic approaches have been proposed to limit the treewidth, such as LibTW [21],
libhtd [101], or min-fill-in provided by NetworkX [6] used in our framework.

8.2.2 Partition Function Computation and Stochastic Backtracking

Before partition function computation, we need to assign function in F and constraint
in C to the tree. To avoid the redundancy, each is assigned to one node only such that
its dependency is included in the bag. For simplicity reason, we treat each constraint
c ∈ C as a weighted function with a weight at 1 that returns 1 if the given assignment
satisfies the constraint and −∞ otherwise. The difference in the implementation is
explained in Section 8.3.

Definition 8.8 (Cluster Tree): Given a constraint network (X,D,C,F), a cluster
tree is a tree decomposition T obtained from the dependency graph with a
function/constraint assignment such that each function f ∈ F and constraint
c ∈ C is assigned to an unique node u ∈ T and def(f),def(c) ⊆ bag(u). We
use ζ(u) to denote the set of functions/constraints assigned to the node u.

Let u be a node of a cluster tree T , and v be its parent. We define two variable sets,

• sep(u) := bag(u)∩ bag(v) the set of variables in common in two bags;
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• diff(u) := bag(u) \ sep(u, v) the set of variables uniquely in the bag of child.

Furthermore, given a subset of variables Y := {y1, . . . ,yh} ⊆ X, we define the set of
partial assignments as D(Y) := D(y1)× · · · ×D(yh), the Cartesian product of variable
domains. Let f be a function whose dependency is a subset of Y, dep(f) ⊆ Y, and
w ∈ Y be a partial assignment of Y. The notation f(w) refers to function evaluation
on w limited to the dependency of f, i.e. f(w) := f(w[|dep(f)|]), for the readability
reason.

Our algorithm travels the cluster tree in postorder while evaluating functions as-
sociated at each node. At node u, we aim to compute the partition function of the
subtree Tr(u) of u for each partial assignment w1 ∈ D(sep(u)) that is shared with
the parent of u. In other words, the partition function is computed over the partial
assignment set Dw1 := {w ∈ D(bag(Tr(u))); w[|sep(u)|] = w1} with bag(Tr(u)) is all
variables in the subtree Tr(u),

Zu(w1) =
∑

w∈Dw1

∏
βf,f∈ζ(Tr(u))

eβf·f(w)

which is equivalent to

Zu(w1) =
∑

w2∈D(bag(Tr(u))\sep(u))

∏
βf,f∈ζ(Tr(u))

eβf·f(w1∪w2) (8.2)

where ζ(Tr(u)) is the assigned functions in the subtree Tr(u). Summing Equation 8.2
over all partial assignment w1 ∈ D(sep(u)) gives the total partition function of sub-
tree of u.

Proposition 8.1: Let {c1, . . . , ck} be children of node u. Equation 8.2 can be rewritten
in a recursive form,

Zu(w1) =
∑

w2∈D(diff(u))

 ∏
βf,f∈ζ(u)

eβf·f(w1∪w2) ·
k∏
i=1

Zci(w1 ∪w2)


where Zci(w1 ∪w2) := (Zci((w1 ∪w2)[|sep(ci)|]) is the partition function of the
subtree of ci for partial sequence in D(sep(ci)).

Proof. Let {c1, . . . , ck} be children of node u. Equation 8.2 can be rewritten as

Zu(w1) =
∑

w2∈D(bag(Tr(u))\sep(u))

 ∏
βf,f∈ζ(u)

eβf·f(w1∪w2) ·
k∏
i=1

∏
βf,f∈ζ(Tr(ci))

eβf·f(w1∪w2)


=

∑
w2∈D(diff(u))

 ∏
βf,f∈ζ(u)

eβf·f(w1∪w2)×

∑
w3∈D(bag(Tr(u))\bag(u))

k∏
i=1

∏
βf,f∈ζ(Tr(ci))

eβf·f(w1∪w2∪w3)
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Zu(w1)
∗
=

∑
w2∈D(diff(u))

 ∏
βf,f∈ζ(u)

eβf·f(w1∪w2)×

k∏
i=1

∑
w3∈D(bag(Tr(ci))\sep(ci))

∏
βf,f∈ζ(Tr(ci))

eβf·f(w1∪w2∪w3)


Zu(w1)

∗∗
=

∑
w2∈D(diff(u))

 ∏
βf,f∈ζ(u)

eβf·f(w1∪w2) ·
k∏
i=1

Zci(w1 ∪w2)



The third condition of tree decomposition definition (see Definition 8.6) ensures the
set {bag(Tr(ci))\ sep(ci)}i∈[1,k] is disjoint and bag(Tr(u))\bag(u) = ∪ki=1bag(Tr(ci))\
sep(ci), which valid the third equality (∗) above. The last equality (∗∗) sets up a re-
lation between the partition function of the subtree of u and the ones of its children.
Note that Zci(w1 ∪w2) is equivalent to Zci((w1 ∪w2)[|sep(ci)|]).

Algorithm 8.1 shows the detail of partition function computation using the recur-
sive form in Proposition 8.1. The total partition function Z is obtained at the root
when the tree traversal ends.

Algorithm 8.1: Compute partition function given a cluster tree
Input : Cluster tree T
Output : ZT := {Zu}u partition functions of each node u in T for all partial

assignments D(sep(u))

Function PartitionFunction(T):
ZT ← ∅;
forall node u of T in postorder do

forall partial assignment w1 ∈ D(sep(u)) do
x← 0;
forall partial assignment w2 ∈ D(diff(u)) do

p←product(e ˆ (βf · f(w1 ∪w2)); βf, f ∈ ζ(u))
· product(Zc(w1 ∪w2); child c of u);

x← x+ p ;

Zu(w1)← x;
ZT ← ZT ∪ {Zu};

return ZT

With stochastic backtracking, one achieves sequence sampling from Boltzmann
weighted distribution on cluster tree in the preorder tree traversal. At each node u,
we add the assignment for diff(u) into the partial assignment. The preorder guar-
antees that variables in sep(u) are assigned before reaching node u. In other words,
all variables bag(u) of node u are assigned to a value when tree traversal is at u.
Sampling assignment for diff(u) requires the precomputed partition functions of
children subtree. This is feasible since sep(c) is included in bag(u) for any child c
of u. Algorithm 8.2 samples an assignment for all variables X from the Boltzmann-
weighted distribution.
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Algorithm 8.2: Stochastic backtracking for assignment sampling
Input : Cluster tree T , ZT := {Zu}u partition functions of each node u in T for all

partial assignments D(sep(u))

Output : w a random assignment sampled from Boltzmann weighted distribution
Function AssignmentSampling(T ,ZT):

w← ∅;
forall node u of T in preorder do

x← uniform random number between 0 and Zu(w);
forall partial assignment w1 ∈ D(diff(u)) do

p←product(e ˆ βf · f(w∪w1); βf, f ∈ ζ(u))
· product(Zc(w∪w1); child c of u);

x← x− p ;
if x < 0 then

w← w∪w1;

return w

The time complexity of evaluating a function f is assumed to be polynomial to its
dependency size |dep(f)|. Indeed, most functions of interest are constant or linear
in time. For example, it takes a constant time to access the energy table for energy
functions. Let φ(n) be the maximum complexity among functions in F on an instance
of size n. In addition, to limit the computation during backtracking, we force diff(u)
to be a singleton for any node in the cluster tree. In other words, only one new
variable to assign at each time in preorder. Such tree is easily obtained by inserting
diff(u) − 1 nodes between node u and its parent in the original cluster tree.

Proposition 8.2 (Complexity of InfraRed): Let (X,D,C,F) be a constraint net-
work, t be the treewidth of the associated dependency graph, and T be a cluster
tree such that the width of T is t and diff(u) = 1 for each node u ∈ T . The
complexity of using InfraRed to generate k assignments with respect to Problem 7
is O((|X| + |F ∪ C|φ(t))dt + k|F ∪ C|φ(t)d) in time and O(|X|ds) in space with
s := maxu∈T sep(u) and d := maxx∈XD(x) is the maximum variable domain
size.

Proof. At each node u ∈ T , Algorithm 8.1 evaluates at most d|bag(u)| assignments
and requires dseq(u) in space to store the evaluation. For backtracking, Algorithm 8.2
computes d|diff(u)| evaluations at each node. Since each function in F (or constraint
in C) is assigned to one and only one node, each function or constraint is called
once in both algorithms. Evaluation takes in total O(|F ∪ C|φ(t)dt) in time for Algo-
rithm 8.1 and O(|F ∪ C|φ(t)d|diff(u)|) for Algorithm 8.2. Under the assumption of
diff(u) = 1 for each node u, there are |X|+ 1 nodes in the cluster tree T . Thus, the
total complexity to sample k assignments is O((|X|+ |F|φ(t))dt + k|F|φ(t)d) in time
and O(|X|ds) in space.
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Corollary 8.3: InfraRed algorithm is in the class of Fixed-Parameter Trackable (FPT).

8.2.3 Multidimensional Boltzmann Sampling

Recall the partition function of interest (Equation 8.1),

ZX,D,C,F =
∑
w∈DC

∏
βf,f∈F

eβf·f(w[|dep(f)|]).

The partition function can be seen as a multivariate generating function, where an
assignment is a combinatorial object, and function f is the feature marked by the vari-
able πf := eβf . Therefore, the expected value for a function among all assignments,
assuming other weights are fixed, is

E[f] = πf
Z ′(πf)

Z(πf)
.

It means that sampled assignments can have a specific value for function f with a
well-chosen weight. This can be extended to target specific values for different func-
tions during sampling with a post-sampling rejection step, called multidimensional
Boltzmann sampling [5]. InfraRed introduces a notion of feature contributed by sev-
eral functions with the same weight for a more flexible application.

Definition 8.9 (Feature): Given a constraint network (X,D,C,F), a feature is a
pair (F,FF), where F : D→ R is a function to evaluate an assignment of D and
FF ⊆ F is a group of functions having the same weight.

The value of feature function F given an assignmentw is usually, but not limited to,
the total values of grouped functions, F(w) =

∑
f∈FF f(w[|dep(f)|]). In some cases, a

feature is too complicated to describe in the constraint network. The alternative is to
decompose the feature into several simpler functions, each with a small dependency,
and evaluate the feature’s assignment after sampling. For example, a simpler energy
model, such as the stacking energy model, is usually used in the framework to avoid
large treewidth. The full Turner energy model is used in the post-sampling rejection
step to target a specific structure free-energy.

InfraRed uses an iterative heuristic method to estimate proper feature weights. Let
F1, . . . , Fl be the features of interest and µ1, . . . ,µl be, respectively, the target values.
Starting with initial weights β[0]

1 , . . . ,β[0]
l , at each step t, InfraRed does

1. Generate assignment samples A;

2. For i from 1 to l,

a) Estimate the expected value of each feature Fi, µ̂i :=
∑
w∈A Fi(w)/|A|;
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b) Update weights, β[t]
i = β

[t−1]
i + 0.01 ∗ (µi − µ̂i);

c) Set new weight β[t]
i to the function group FFi ;

3. Accept assignment in A if the value to the target one is within a tolerance for
each feature.

The iterations stops when enough good assignments are sampled.

8.3 implementation and usage

InfraRed is written in C++ and Python3. The source code is available at
https://gitlab.inria.fr/amibio/Infrared

and can be installed using conda
https://anaconda.org/conda-forge/infrared.

8.3.1 Implementation

InfraRed implementation consists of two parts, core engine in C++ and user inter-
face in Python3. The framework is designed so that users only need to describe their
design problem as a constraint network using the interface. The framework auto-
matically manages the approach described in Section 8.2. The core engine includes
the most time-consuming parts in the framework, partition function computation,
and stochastic backtrack, while the interface takes care of multidimensional Boltz-
mann sampling. The code object-oriented with a generic type for flexibility, and
maps classes between core and interface with pybind11.

function Function and constraint are the two most essential components for for-
malizing the design problem. As seen in their definitions (see Definitions 8.2 and 8.4),
the construction requires both a dependency and an evolution function for assign-
ment. Thus, in the core engine, a function is implemented as a virtual class Function
with a generic type for function value while assuming the default type is double.
Class Function is constructed given a variable list as its dependency, which is imple-
mented as the class Dependency, and its evaluation is a virtual function operator for
users to define.

template < c l a s s FunValue=double > c l a s s Function : publ ic Dependency {
publ ic :

using fun_value_t = FunValue ;
. . .
e x p l i c i t
Function ( const std : : vector <var_idx_t > &vars ) : Dependency ( vars ) { }

v i r t u a l fun_value_t operator ( ) ( const assignment_t &) const = 0 ;
. . .

}

https://gitlab.inria.fr/amibio/Infrared
https://anaconda.org/conda-forge/infrared
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Constraint is then the class Function with boolean.

using Constra int = Function <bool > ;

While computing the partition function, constraints and functions are separately eval-
uated at each node. The constraint satisfaction is then an essential boolean operation
checked at each node during the stochastic backtrack for the current partial assign-
ment. The partition function of the partial assignment is added only if it passes the
constraint satisfaction (Algorithm 8.2, second for loop). Furthermore, different func-
tions/constraints can have different dependencies but share the same assignment
evaluation function. A materialization is implemented to store the result after the
first assignment evaluation to avoid redundant computation.

8.3.2 InfraRed Usage

An interface of InfraRed in Python3 is offered to users to describe their design problem
as Constraint Satisfaction Problem (CSP). A reimplementation of IncaRNAtion [69]
is presented below to illustrate the usage of the framework. First, we start with
importing the package and declaring the target structure.

# incarnation.py

import i n f r a r e d as i r

4 t a r g e t = " ( ( ( ( . . . ) ) ) ) . ( ( ( . . . ) ) ) "
seqlen = len ( t a r g e t )
bps = i r . rna . parse ( t a r g e t ) # list of target base pairs

Then, we initialize the model for a constraint network with one variable per position.
The domain size of each variable is 4 with 0 for A, 1 for C, 2 for G, and 3 for U. One
can omit the variable name X in case of unambiguity.

model = i r . Model ( )
model . add_var iables ( seqlen , 4 , ’X ’ )
idx = model . idx # function to get named variable index

10 Xidx = idx ( [ ( ’X ’ , i ) f o r i in range ( seqlen ) ] ) # indices of positional

variables

Users-defined function/constraint is the class inherited from Function/Constraint. In
order to avoid code redundancy, we offer in the interface a Python function to create a
class, which takes two anonymous functions as input for dependency and evaluation.
As seen in Example 1, we need constraint BPComp, function StackEnergy, and func-
tion GCCont to describe the design problem. Despite these functions and constraints
are provided in the interface, we define them below as a demonstration.

# These are provided by InfraRed

_compltab = [ ( 0 , 3 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 3 , 0 ) , ( 3 , 2 ) ] # base pair

nucleotides

i r . d e f _ c o n s t r a i n t _ c l a s s ( ’ ComplConstraint ’ , lambda i , j : idx ( [ ( ’X ’ , i ) , (
’X ’ , j ) ] ) , lambda x , y : ( x , y ) in _compltab )
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15 i r . d e f _ f u n c t i o n _ c l a s s ( ’ GCControl ’ , lambda i : idx ( [ ( ’X ’ , i ) ] ) , lambda x :
1 i f x==1 or x==2 e l s e 0 )

i r . d e f _ f u n c t i o n _ c l a s s ( ’ StackEnergy ’ , lambda i , j : idx ( [ ( ’X ’ , i ) , ( ’X ’ , j )
, ( ’X ’ , i +1) , ( ’X ’ , j −1) ] ) , lambda x , y , x1 , y1 : i r . rna . _stackenergy ( x , y ,
x1 , y1 ) )

Next, we impose constraint BPComp on base pairs, add function StackEnergy on base
pair stacks, and function GCCont on each position. Functions are grouped according
to the given group name.

# Add Constraints and grouped Functions in constraint network

model . add_cons t ra in ts ( ComplConstraint ( i , j ) f o r ( i , j ) in bps )
model . add_functions ( [ StackEnergy ( i , j ) f o r ( i , j ) in bps i f ( i +1 , j −1)

in bps ] , group= ’ stackenergy ’ )
20 model . add_functions ( [ GCControl ( i ) f o r i in range ( seqlen ) ] , group= ’ gc ’ )

So far, a simple constraint network is defined. We can then construct a sampler to
sample sequences based on Boltzmann-weighted distribution.

# A pretty printer

def print_sample ( sample ) :
seq = i r . rna . values_to_seq ( sample . values ( ) )
p r i n t ( " { } GC= { : . 2 f } " . format ( seq , ( seq . count ( ’G ’ ) +seq . count ( ’C ’ ) ) /

seqlen ) )
25

sampler = i r . BoltzmannSampler ( model )
f o r i in range ( 5 ) :

sample = sampler . sample ( )
print_sample ( sample )

UAUAGGCUAUAUGGAGGUUCU GC=0.38

GGUCUGGGGUCCUUGAGGUGG GC=0.67

UGGUUGAGCCAAUGUUAGACG GC=0.48

GCCUUACAGGUGCGGGGGUUG GC=0.67

UGUUCGUGGUGUGCUUCAGGU GC=0.52

As seen above, GC content of sampled sequences varies from 38% to 67%, which
suggests a good sequence diversity generated using InfraRed.

IncaRNAtion uses the strategy of multidimensional Boltzmann sampling to target
predefined GC content of sampled sequences. By default, InfraRed creates a feature for
each function group with value is additive grouped functions values. For illustration
purpose, we define a new feature GC to control the proportion of GC content.

30 # By default , Infrared creates a feautre , named ’gc’, which sums up

Functions in the group ’gc’

model . add_feature ( ’GC’ , ’ gc ’ , lambda sample : sum ( [ ( c==1 or c ==2) f o r c
in [ sample . values ( ) [ i ] f o r i in Xidx ] ] ) /seqlen )

Finally, we create the sampler using Multidimensional Boltzmann sampling while
setting a target with tolerance for feature.
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# We aim to have 55-65% of GC in each sequence

sampler = i r . MultiDimensionalBoltzmannSampler ( model )
sampler . s e t _ t a r g e t ( 0 . 6 , 0 . 0 5 , ’GC’ )

35
f o r i in range ( 5 ) :

sample = sampler . targeted_sample ( )
print_sample ( sample )

GGGGUUUCUCCACUGGCACAG GC=0.62

UUGUACGACGGGGUGGUCCAC GC=0.62

CGAUCGUGUCGCAUUCCUGGU GC=0.57

GGCGUGAUGUUGUCACGUUGG GC=0.57

UGUUCACGACAGGUGACACGC GC=0.57

8.4 finite state automata in infrared

In some applications, it may be needed to impose or to forbid patterns in the sam-
pled sequences. Patterns can be a set of words or a regular expression. One possible
approach is adding a rejection step after sampling. However, it could be inefficient
when the number of patterns to accept (resp. forbid) is small (resp. large). Another
way is to encode as a Constraint Satisfaction Problem (CSP). Since there exists an
equivalent Deterministic Finite Automaton (DFA) accpeting the rational language
generated by given regular expression [34], we define the design problem as

Problem 8:
Input: DFA A = (Q,Σ, δ,q0,QF), length n

Output: Sequence of length n, w ∈ {A,C,G,U}n, such that w is accepted by A.

Definition 8.10 (Deterministic Finite Automaton): A Deterministic Finite Automa-
ton is a 5-tuple A = (Q,Σ, δ,q0,QF) composed of

• A finite set of states Q;

• A finite set of input symbols Σ;

• A transition function δ : Q× Σ→ Q;

• An initial state q0 ∈ Q;

• A set of final states QF ⊆ Q.

Let A be a DFA and w ∈ Σn be a word of length n. Starting from the initial state,
we move from one state to the next, at time t, according to the t-th letter of w and the
transition rule. We say w is accepted by A if we are at one of the final states at time
t = n. More formally, a word w = w1 . . . wn is accepted by a DFA if there exists a list
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Figure 8.2: Automaton accepting words that contain AAA or ACC.

of states Y = {y0, . . . ,yn} ∈ Qn+1 such that y0 = q0, yn ∈ QF, and δ(yi−1,wi) = yi
for any i ∈ [1,n].

The approach is to force InfraRed to sample such a list of states Y described above
for sampled sequence. We need n variables X = {x1, . . . , xn} for sequence, each for
one position and n+ 1 variables Y = {y0, . . . ,yn} for state list. The domain for vari-
able xi ∈ X is four nucleotides D(xi) = {A,C,G,U}. For variable set Y, the first one
should be the initial state D(y0) = {q0} and the last one should be in the final states
D(yn) = QF. Other variables can be any state in the automaton, D(yi) = Q for
i ∈ [1,n− 1]. Thus the domain set is,

D = {A,C,G,U}× · · · × {A,C,G,U}︸ ︷︷ ︸
n

×{q0}×Q× · · · ×Q︸ ︷︷ ︸
n−1

×QF.

The transition function is turned into the constraint Transition defined as

Transition[xi,yi,yi−1](wi,q,q ′) =

True if δ(q ′,wi) = q

False otherwise.

The constraint Transition is imposed on any two consecutive variables in Y,

C = {Transition[xi,yi,yi−1]; i ∈ [1,n]}.

Problem 8 is then a CSP with the constraint network (X ∪ Y,D,C,F = {}). Let w
be an assignment returned by InfraRed. The sequence w1 . . . wn is accepted by the
automaton A with the list of states {wn+1, . . . ,w2n+1}.

implementation As demonstration, we will show how to integrate automaton
in IncaRNAtion design problem. Assuming that patterns AAA or ACC should occur
at least once in sampled assignment. This is equivalent to generating sequences ac-
cepted by the DFA in Figure 8.2 with initial state q0, final state q4, and the transition
matrix as below.
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t r a n s i t i o n s = {
40 0 : { 0 : 1 , 1 : 0 , 2 : 0 , 3 : 0 } ,

1 : { 0 : 2 , 1 : 3 , 2 : 0 , 3 : 0 } ,
2 : { 0 : 4 , 1 : 3 , 2 : 0 , 3 : 0 } ,
3 : { 0 : 1 , 1 : 4 , 2 : 0 , 3 : 0 } ,
4 : { 0 : 4 , 1 : 4 , 2 : 4 , 3 : 4 } }

We need to introduce new set of n+ 1 variables Y to describe n sequence positions.
Each variable has 5 possible values as 5 automaton states.

45 model . add_var iables ( seqlen +1 , 5 , ’Y ’ )

Furthermore, we need constraints StartState on variable Y0 and FinalState on variable
Yn to ensure starting with the initial state and ending at the final state. Transition
matrix is encoded by the constraint Transition imposed on each state variable, which
describes the state transition given a value of proper positional variable. Notice that
state variable indices are slightly different than the ones described above since Python
is 0-indexed.

i r . d e f _ c o n s t r a i n t _ c l a s s ( ’ S t a r t S t a t e ’ , lambda i : idx ( [ ( ’Y ’ , i ) ] ) , lambda
y : y==0)

i r . d e f _ c o n s t r a i n t _ c l a s s ( ’ F i n a l S t a t e ’ , lambda i : idx ( [ ( ’Y ’ , i ) ] ) , lambda
y : y==4)

i r . d e f _ c o n s t r a i n t _ c l a s s ( ’ T r a n s i t i o n ’ , lambda i : idx ( [ ( ’X ’ , i ) , ( ’Y ’ , i ) , ( ’
Y ’ , i +1) ] ) , lambda x , y1 , y2 : t r a n s i t i o n s [ y1 ] [ x]==y2 )

50 model . add_cons t ra in ts ( [ S t a r t S t a t e ( 0 ) , F i n a l S t a t e ( seqlen ) ] )
model . add_cons t ra in ts ( [ T r a n s i t i o n ( i ) f o r i in range ( seqlen ) ] )

Now, we can sample RNA sequences including AAA or ACC and having a specific GC
content.

def new_print_sample ( sample , n=seqlen ) :
values = sample . values ( )
seq = i r . rna . values_to_seq ( values [ : n ] )

55 # model.eval_feature is used to compute feature value instead of

manual computation since the feature is added in model

p r i n t ( " { } GC= { : . 2 f } { } " . format ( seq , model . e v a l _ f e a t u r e ( sample , ’GC’ )
, ’ ’ . j o i n (map( s t r , values [ n : ] ) ) ) )

sampler = i r . MultiDimensionalBoltzmannSampler ( model )
sampler . s e t _ t a r g e t ( 0 . 6 , 0 . 0 5 , ’GC’ )

60 f o r i in range ( 5 ) :
sample = sampler . targeted_sample ( )
new_print_sample ( sample )

GUGCGCAGUACCGCUACCAGU GC=0.62 0000000100134444444444

GUCCAGUGGACCUCACGGUGA GC=0.62 0000010000134444444444

GCCUCAAAGGUUUGGCCCUUG GC=0.57 0000001244444444444444

UAGUGUCGUUACCGUCGCACG GC=0.57 0010000000013444444444

GCGGGAACUGUACCUAACAGG GC=0.57 0000001230001344444444

Each sampled sequence contains at least one AAA or ACC. The last element in each
row is the associated sequence of states sampled by InfraRed.
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R N A P O S I T I V E A N D N E G AT I V E D E S I G N ( R N A P O N D )

Despite its flexibility, positive design cannot ensure the absence of alternative stable
structures, often preventing the produced sequences to preferentially adopt the tar-
get at the thermodynamic equilibrium. By contrast, solutions in the negative design
problem must achieve better affinity toward the target than other alternative struc-
tures, i.e., possess a small structure defect. In this work, we are interested in the clas-
sic inverse folding problem corresponding to negative suboptimal defect (DS 6 0).
Inverse folding targets the production of a nucleotide sequence that adopts a tar-
geted structure as its unique MFE structure. Negative and positive design represent
distinct tasks, and there is currently no method that efficiently offers the fine level of
control enabled by positive design, and the structural specificity of negative design,
even though both are typically required in the context of synthetic biology [28, 71].

Our method, called RNAPOND (RNA POsitive and Negative Design), attempts to
reconcile positive and negative design, and stems from the following observation:
Upon MFE folding, positively-designed RNAs usually differ from their target struc-
ture due to the formation of very specific Disruptive Base Pairs (DBPs), that both
recurrently represented and reproducible across randomly generated set of design
sequences. Examples of such base pairs include helix extensions in both basal and
apical regions, or within interior loops, usually associated with a negative selective
pressure within RNA multiple sequence alignments [46], and are the object of explicit
countermeasures from practitioners of RNA design [36, 51]. This suggests a simple
automated strategy that iteratively samples design candidates using positive design
principles, identifies a set of dominant DBPs, and forbids them for future iterations
unless they induce some inconsistency.

We present in Section 9.1.1 a precise statement of our core computational prob-
lems. The problems are further described as Constraint Satisfaction Problem (CSP)
for generic sampling framework InfraRed in Section 9.1.2. In Section 9.1.3, we show
their integration within RNAPOND for inverse folding problem (DS 6 0). A proof
of NP-hardness for the core problems is presented in Section 9.2. In Section 9.3, we
perform an empirical assessment of RNAPOND in comparison with the current state
of the art.
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Figure 9.1: Graph representations for set B of compatible nucleotides pairs (1), and set B of
incompatible nucleotides (2). (3) Example of consistent secondary structure S =

{(1, 2)} and disruptive base pairs R = {(1, 3), (2, 3)}, inducing a partition function
value of 4 for β = 0, i.e. only 4 out of the 64 possible nucleotide assignments
satisfy the constraints induced by S and R. (4) Minimal example of inconsistent
instance, i.e. any RNA sequence violates at least one of the constraints.

9.1 method

9.1.1 Problem description

In this work, we identify and forbid Disruptive Base Pairs (DBPs) by forcing their
assignment to unpairable nucleotides in B := Σ2 \ B where Σ = {A,C,G,U} and
B = {(C,G), (G,C), (A,U), (U,A), (G,U), (U,G)} (see Figure 9.1). DBPs are base pairs that
are recurrent within the stable alternative folds of design candidates generated from
positive design principles. Preventing such DBPs from forming is key to satisfying
both positive and negative design constraints. A key component of our approach
is therefore an algorithm for sampling admissible sequences, defined as compatible
with a target input structure S, but also incompatible with a predefined set R of DBPs.
Let us denote by

WS,R,n := {w ∈ Σn | S ∈ Sw and ∀(i, j) ∈ R, (wi,wj) ∈ B}

the set of admissible sequences for S and D.

Our approach starts with a preprocessing step, the computation of an (extended
dual) partition function over WS,R,n, followed by a stochastic backtrack.

Problem 9 (Extended-Partition-Function):
Input: Secondary structure S, length n, set R of DBPs, β ∈ R+

Output: Extended (dual) partition function Z(S,R,n) ∈ R+ such that

Z(S,R,n) =
∑

w∈WS,R,n

e−β.E(w,S).

The decision version of this problem asks whether there exists a sequence compat-
ible with constraints induced by S and R, i.e. whether the admissible sequence set
is empty (|WS,R,n| > 0 ⇒ True, WS,R,n = ∅ ⇒ False). A solution for the problem is
used to determine whether a DBP can be added in the set R (see item 2). We show
that the associated decision problem is NP-hard in Section 9.2.
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9.1.2 Extended-Partition-Function as Constraint Satisfaction Problem

To work around the hardness, we describe the problem as an instance of our CSP

framework and use InfraRed to sample design candidates from WS,D,n. Let S be
the target structure of length n and R be the set of DBPs. The variable set is a set
of n variables, each for one position and associated with the domain set Σ, X =

{x1, . . . , xn} and D = Σn. The constraint set

C = {Complement[xi,xj]; (i, j) ∈ S}∪ {DisruptiveBP[xi,xj]; (i, j) ∈ R}

consists of two types of constraint, constraint Complement is imposed on each base
pair in the target and constraint DisruptiveBP for each DBP in R with

DisruptiveBP[xi,xj](wi,wj) =

True if (wi,wj) ∈ B

False otherwise.

A sequence satisfying all constraints in C is an element of WS,R,n. Figure 9.1 presents
examples where the induced dependency graph is consistent (resp. inconsistent), i.e.
|WS,R,n| > 0 (resp. WS,R,n = ∅).

As for function set, we consider a simple base pair energy model, which assumes
the energy contribution to the structure is come from base pairs. The model is in-
troduced in RNARedPrint [36] and has been shown to achieve a high correlation
(R = 0.95) with Turner energy model. Structure energy is captured by adding func-
tion BPEnergy[xi,xj] on each base pair,

FBP = {(−β,BPEnergy[xi,xj]); (i.j) ∈ S}.

In addition, we add function GCControl[xi] with a negative weight to disfavor C and
G in unpaired region,

FGC = {(−βGC,GCControl[xi]); unpaired position i ∈ S}.

Since GC base pair is favorable in terms of energy, this decreases the chance of form-
ing unwanted base pair between paired and unpaired region of target structure.
Thus, the function set is F = FBP ∪ FGC. Running InfraRed on the constraint network
(X,D,C,F) gives a FPT approach for Problem 9.

9.1.3 Approach for RNA inverse folding

Our method, named RNA Positive and Negative Design (RNAPOND), is inspired by
the manual refinement by humans when tackling the task in practice. Its foundation
is inspired by the observation that some base pairs and structural motifs, e.g. compet-
ing helices, more likely than others interfere with the folding of sequences generated
from positive design principles. The key idea of our method is to iteratively identify
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Figure 9.2: General strategy of RNAPOND for the inverse folding of RNA. From an input
target structure, an initial set of likely-Disruptive Base Pairs (DBPs) is inferred. At
each iteration, new candidate DBPs are inferred by a joint thermodynamic analysis
and, if consistent with existing constraints, are added to the list of DBPs. Once
some solutions are found, a deeper sampling produces independent and diverse
designs for the target.

such recurrent Disruptive Base Pairs (DBPs) and prevent them from occurring in the
MFEs of subsequent rounds by adding suitable constraints.

As illustrated in Figure 9.2, RNAPOND takes as input a secondary structure S
in dot-bracket notation and, considering a set R of DBPs that is initialized to helix
extensions. We set R to include base pairs, extending the basal and apical regions of
each helix. Then RNAPOND iterates the following steps:

1. Sampling: Generate k RNA sequences w := w1, . . . ,wk, from the Boltzmann
distribution over sequences that are compatible with the secondary structure
(S) and DBPs (R). In practice, k = 200 sequences per iteration.;

2. Inference of DBPs: Identify and add to R the d (3 in practice) most Disruptive
Base Pairs, having highest expected Boltzmann probability within the sample
w, such that: a) DBP (i, j) is not in the target structure S; and b) the new con-
straint network induced by S and R∪ {(i, j)} remains consistent;

3. Evaluation of candidates: Compute the MFE structure S?i of each sequence wi,
and report its base-pair distance to S.

These steps are repeated until a solution is found, or the tree width of the depen-
dency graph induced by S and R exceeds a predefined threshold. Finally, if a solu-
tion is found, the method executes a final round of upsampling/evaluation using
K� k, to allow the generation of several (diverse) solutions.

9.2 complexity aspects

In the absence of DBPs (R = ∅), the compatibility constraints induced by a target
structure can always be satisfied [31]. If the target is the open chain (S = ∅), con-
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strained to avoid a set R of DBPs, then any mononucleotidic sequence will satisfy
R, so the problem is again trivially solved by returning True. Combining those two
types of constraints constitutes an open problem Consistency, and turns out to
induce substantial computational difficulties.

Problem 10 (Consistency):
Input: Secondary structure S, length n, set R of Disruptive Base Pairs

Output: True if there exists a sequence w ∈ {A,C,G,U}n such that

∀(i, j) ∈ S, (wi,wj) ∈ B and ∀(i, j) ∈ R, (wi,wj) ∈ B̄,

False otherwise.

Consistency is the decision version of Extended-Partition-Function. The prob-
lem is closely related to the linear-time solvable Realizability of extended shapes,
considered by Hellmuth, Merkle, and Middendorf [39]. Realizability considers a
set T of target secondary structures, completed with pseudo base pairs P, and asks if
there exists a nucleotide assignment that is compatible with all structures in T, and
assigns to one of {(A,A), (C,C), (G,G), (U,U)} the content of each pseudo base pair
in P. This problem can be solved in linear time by simply testing that the graph,
obtained by contracting each pair in P, is bipartite.

Strikingly, Consistency only differs from Realizability, restricted to a single
target, in the sense that the positions in DBPs are additionally allowed to take values
in {(A,G), (G,A), (A,C), (C,A), (U,C), (C,U)}. However, this minor difference turns out
to be sufficient to greatly increase the computational hardness of the problem.

Theorem 9.1 (NP-hardness of Consistency): Consistency is NP-hard.

Proof. The NP-hardness is shown by a polynomial-time reduction from 3-Sat to Con-
sistency. Namely, we show that an efficient algorithm for Consistency would imply
that 3-Sat can be solved efficiently, a fact that is highly unlikely as it would imply
that P = NP.

Problem 11 (3-Sat):
Input: Boolean formula Φ in 3-Conjunctive Normal Form over variables
x1, . . . , xn
Output: True if a satisfying assignment exists, False otherwise.

Any instance (S,R) of Consistency can be represented as a dependency graph
over positions in [1,n], with edges induced by the target (blue) and disruptive base
pairs (red). For a graph or subgraph, an admissible sequence corresponds to an
assignment µ : VΦ → Σ of nucleotides to the vertices VΦ, which satisfies the con-
straints induced by the edges. For any formula Φ, we construct a graph GΦ, defined
as follows:
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Figure 9.3: (a) Gadget G for the Boolean clause (x1∨ x̄2∨ x3). Vertices representing literals of
the clause are drawn in green. (b) Design converted from a satisfying assignment
of (l1 ∨ l2 ∨ l3), where l1 (u1) is assumed to be True (C). Bases u2 and u3 are
either C or G based on its value l2 and l3 in the assignment. (c) Gadget of formula
(x1 ∨ x2 ∨ x3)∧ (x2 ∨ x4 ∨ x̄5)∧ (x̄3 ∨ x6 ∨ x̄7).

• For each variable xi occurring in Φ, GΦ contains two special variables vertices
vi and wi, connected with a blue base pair (from S);

• Each clause ck in Φ translates within GΦ into a gadget Gk, as shown in. Fig-
ure 9.3a. Gk is a subgraph of an instance graph, where 3 vertices (u1,u2,u3) are
distinguished to represent the 3 literals in ck = (l1 ∨ l2 ∨ l3), each identified
with a suitable variable vertex (ui = vi if li = xi, and ui = wi for li = x̄i)

Figure 9.3c shows the graph GΦ obtained for the formula Φ = (x1∨ x2∨ x3)∧ (x2∨

x4 ∨ x̄5)∧ (x̄3 ∨ x6 ∨ x̄7).

Lemma 9.2: Let Gk be one of the gadgets, involving variable vertices (u1,u2,u3).
Then an admissible assignment µ exists for Gk if and only if at least one of
(µ(u1),µ(u2),µ(u3)) is in {A,C}.

Proof. Consider an assignment to Gk. Suppose that the vertices (u1,u2,u3) are all
assigned to {G,U}. Without loss of generality, we assume that u1 is G (by symmetry
of the roles played by G and U).

First, the base pair (1, 6) in the same pentagon as u1 is either (C,G) or (G,C).
Otherwise, one of the bases 1 or 6 must be U; since each nucleotide can pair with
G or U, there is no valid value for vertex 8 or 7, and thus no admissible assignment.
Next, the outer ring composed by six disruptive base pairs implies that vertices u2
and u3 are also G. Therefore, the three base pairs (1, 2), (3, 4), and (5, 6) in the center
hexagon are all either (C,G) or (G,C). Without loss of generality, we assume that
(1, 2) is (C,G), then (3, 4) and (5, 6) are both (G,C), due to the disruptive base pairs
(2, 3) and (1, 6). This yields a contradiction, since the base pair (4, 5) is disruptive,
but the nucleotides assigned to 4 and 5 are C and G which can form a base pair.
Thus, at least one of the variable vertices must be in {C,A}.
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To conclude, we need to show that assigning one of the variable vertex to {A,C}
is sufficient to ensure the existence of an admissible assignment. Figure 9.3b shows
that assigning A (resp. C) to one of the variable vertices allows the two others to take
value G/A/C while maintaining admissibility.

It can be shown that (u1,u2,u3) can be further restricted to C and G: if there exists
an admissible assignment µ for a given triplet (µ(u1),µ(u2),µ(u3)), then there also
exists µ ′ that is both admissible, and features the triplet obtained by substituting
A→ C and U→ G.

Turning to GΦ, note that any admissible µ induces an admissible assignment for
each Gk. It must also feature coherent values on variable nodes, so that µ(vi) ∈ {A,C}
implies that µ(wi) ∈ {G,U} and vice versa. Interpreting µ(vi) ∈ {A,C} as xi = True
(and {G,U} as False) we get an assignment that satisfies each clause (Lemma 9.2), and
thus satisfies Φ.

Conversely, from a Boolean assignment (x1, . . . , xn) that satisfies Φ, we obtain an
assignment µ for GΦ by setting (µ(vi),µ(wi)) := (C,G) (resp. (G,C)) if xi = False
(resp. True). For each gadget Gk, at least one of the variable vertices is True → C,
otherwise ck would be falsified, and an admissible assignment can be found for the
other positions as per Figure 9.3b. Finally, each vertex in GΦ is connected with at
most one blue edge, so there exists an instance (SΦ,RΦ) that induces GΦ (ordering
vertices so that blue base pairs in SΦ do not cross).

We conclude that a solution exists for Φ if and only if there is an admissible se-
quence for (SΦ,RΦ), so that solving Consistency provides an answer to 3-Sat. Since
(SΦ,RΦ) has size linear on the number of clauses in Φ, this implies the hardness of
Consistency.

Moreover, setting β = 0 leads to Z(S,D,n) = |WS,D,n|, so solving Extended-
Partition-Function provides an immediate answer to Consistency.

Corollary 9.3: Extended-Partition-Function is NP-hard.

Now, given an instance (S,R,n) we define its dependency graph as:

G := ([1,n],S∪R).

As been seen above, InfraRed provides a solution in time polynomial in |S| and |R| as
long as t, the treewidth of G, is bounded by some constant.

Proposition 9.4: Extended-Partition-Function is FPT for the tree width.

Consistency can be solved by setting β = 0 in the extended problem.

Corollary 9.5: Consistency is FPT for the tree width of G.
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9.3 validation and comparison to state of the art

9.3.1 Preparation and settings

datasets . We focused our validation effort on two recent collections of target
structures:

• The AntaRNA/RFAM dataset [47] consists of a selection of targets extrapolated
from RFAM [46] consensuses. For each of the selected family, the consensus
structure was mapped onto the smallest sequence of the family, avoiding the
artificial insertion of long unpaired regions. We further removed isolated base
pairs from those 63 realistic structures, having length range from 36 to 274 nts
and showing a typical proportion of paired positions (35% to 80%, median=53%).

• The EteRNA dataset [51] is a collection of 100 artificial puzzles, designed to chal-
lenge participants of a crowdsourced initiative/gaming. While arguably patho-
logical and not representative of typical design tasks – with certain targets
featuring long unpaired regions, very limited structure or even an overwhelm-
ing proportion of isolated pairs and stackings – those challenging targets are
nevertheless informative as a stress test for our approach, as will be further
shown.

benchmark execution. We considered RNAPOND and selected competitors,
including AntaRNA [47], MCTS-RNA [95], MODENA [83], RNAinverse [41], INFO-RNA [12],
NUPACK [96], and DSS-OPT [59], invoked with default parameters. Candidate se-
quences were then validated, computing their MFE structure with the ViennaRNA
package 2.4.14, and reporting their base-pair distance to the target.

For the AntaRNA/RFAM dataset, we used the Turner 2004 nearest neighbor model
for the tool configuration and verification of candidates. We compared RNAPOND to
the state of the art AntaRNA and MCTS-RNA, which both support Turner 2004.

Since the EteRNA game and dataset were designed explicitly for the Turner 1999
model, we used this model for optimization and validation. Some approaches, such
as MCTS-RNA and a recent reinforcement learning approach [27], do not currently
support the Turner 1999 model, thus we left out of the benchmark. Each software
was executed with a time limit of 5 min per instance on a notebook with i7-7500U
CPU.

Tools AntaRNA, RNAinverse, INFO-RNA, and NUPACK allow to provide the corre-
sponding parameter file rna_turner1999.par from the ViennaRNA package, or pro-
vide an explicit option (NUPACK); Others come with compiled-in Turner 1999 param-
eters (INFO-RNA, DSS-OPT).

In Table 9.1, we show the concrete commands executed for each tool in the bench-
mark on EteRNA dataset. In particular, we made the following individual choices:
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• AntaRNA was executed asking for a single solution for the target structure at
the default GC-content.

• RNAinverse was run in a specific mode, where it only returns one solution,
when the objective of base pair distance 0 between MFE and target is met per-
fectly. The target structure is read from the standard input.

• For INFO-RNA, we chose settings analogous to RNAinverse. However, due to an
additional termination criterion, it sometimes returns sub-optimal solutions.

• MODENA uses RNAfold in the search path, but does not allow to parametrize
it; to utilize Turner 1999 parameters, we run it in combination with ViennaRNA
package 1.8.5. Since MODENA returns a set of pareto-optimized solutions, we
chose the best one (according to MFE–target distance) as its single solution for
the purpose of this benchmark.

• All other tools were run with their default settings.

Tool Command

AntaRNA python2 antaRNA.py -Cstr TARGET -n 1 -P rna_turner1999.par

RNAinverse echo TARGET | RNAinverse -R-1 -P rna_turner1999.par

INFO-RNA echo TARGET | INFO-RNA-2.1.2 -R -1

MODENA echo TARGET >target.in ; modena -f target.in

DSS-OPT opt-md TARGET

RNAPOND RNAPOND.py -n 1 -turner1999 TARGET

NUPACK complexdesign -material rna1999 TARGET

Table 9.1: Command line calls for the EteRNA dataset benchmark

9.3.2 Analysis of AntaRNA/RFAM results.

In terms of success, we observe excellent performances for both RNAPOND, AntaRNA
and MCTS-RNA (Figure 9.4). All methods solve all targets, except RF01241, RF00906
and RF00446. For those 3 instances, the best MFE distances to the target are of 1, 1
and 2 respectively for all three tools, suggesting that a solution may simply not exist.
Despite the stochastic aspects of RNAPOND, we observed a good level of robustness
of our method, with three independent runs showing successful on the exact same
instances, and achieving same distance to target otherwise.

A closer look reveals further differences in performance with respect to negative
design metrics, including Ensemble Defect [96] (Figure 9.5a) and the Boltzmann prob-
ability [60] of the target structure (Figure 9.5b). Interestingly, RNAPOND shows an
average normalized ensemble defect of 0.076 and Boltzmann probability of 22.2%,
and dominates AntaRNA (0.085/17.8%) with respect to those two metrics, demon-
strating its capacity to embrace negative design principles, although MCTS-RNA
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(0.056/28.7%) remains superior to both. This trend is inverted when considering
the diversity of sequences generated by each tool, as measured by the Positional
(Shannon) Entropy, reported in Figure 9.5c. Here RNAPOND (avg 1.6 bits/nt), in its
current state, does not match the excellent diversity of AntaRNA (1.95 bits/nt), but
greatly exceeds that of MCTS-RNA (1.38 bits/nt).

Figure 9.4: Success matrix of RNAPOND and competitors on AntaRNA/RFAM dataset. Dark
squares indicate success, i.e. at least one solution for the given target/puzzle, and
white squares show failure. Lighted shades of blue indicate near success (MFE

within 1 or 2 base pairs distance of target). Note that MCTS-RNA does not return
any solution in case of failure.
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Figure 9.5: Results of RNAPOND and competitors on AntaRNA/RFAM targets. Analysis of (a)
ensemble distance, (b) equilibrium probability and (c) sequence diversity of solu-
tions produced for the AntaRNA/RFAM dataset.

9.3.3 Analysis of EteRNA results.

On the challenging EteRNA dataset, RNAPOND solves 46 of the 100 instances exactly
(MFE structure matching the target). For 5 further instances, we find near-solutions
that are close to the target (MFE within 2 BPs of target). For comparison, we report
in Figure 9.6 the success, and near-success if available, of several competitors.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Modena (56+1)RNAinverse (53)RNAPOND (46+5)INFO-RNA (46+1)DSS-Opt (42+20)NUPACK (25+20)AntaRNA (14+10)

Figure 9.6: Success matrix of RNAPOND and competitors on EteRNA dataset. Green squares
indicate success, i.e. at least one solution for the given puzzle. Orange squares
indicate near success (MFE within 2 BPs of target).

case study a – eterna 37 . We considered this, relatively easy, puzzle to inves-
tigate the effect of DBPs on the distribution of distance to the target. Using RNAPOND,
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we generated 50 000 samples for the sets of DBPs introduced by the first 5 iterations
of RNAPOND (d = 3 DBPs added per round), considering no DBP as a control. As
shown in Figure 9.7a, the introduction of DBPs successfully shifts the probability dis-
tribution towards solutions, and the probability of sampling a solution appears to
increase exponentially (Figure 9.7b), from 0 out of 50 000 in the absence of DBPs to
155 after 5 rounds (init + 15 DBPs). The final set of constraints (DBPs of Figure 9.7c)
is sparse, and appears to essentially delimit helices, forbidding their bi-directional
extension. Interestingly, this strategy typical of manual design practitioners, and is
recovered by RNAPOND despite not being one of its design choice.
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Figure 9.7: Illustrating the behavior of RNAPOND on EteRNA puzzle 37 – “Water Strider”. (a)
Impact of added DBPs on the distribution of distances to target within 50 · 103
sampled sequences; (b) Number of solutions per iteration; (c) Target structure
and final set of DBPs.

case study b – eterna 58 . On this example, RNAPOND finds a first solution
after generating 9 initial DBPs, supplemented by 30 more DBPs introduced over 10
rounds (Figure 9.8). Remarkably, DBPs are not only introduced to avoid helix exten-
sions, but also unwanted interactions within the large multi-loop. This is achieved
through the introduction of key local stack-like DBPs which appear sufficient to
break the symmetries presented by the multiloop.

case study c – eterna 22 . This challenging target (see Figure 9.9) consists of
400 unpaired nucleotides, and could not be solved within the time limit. It is easy
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Figure 9.8: EteRNA puzzle 58 – “Multiloop...”. Target structure and final set of DBPs after 10
rounds.

to solve manually by only using unpairable nucleotides, but we decided to ignore
such an ad hoc rule, both to ensure maximal sequence diversity and to preserve the
level of generality of RNAPOND. Interestingly, lifting the time limit, yields a solu-
tion after four hours and 154 rounds, introducing 462 DBPs (see Figure 9.9a). Those
incompatibility constraints are surprisingly local, with the except of DBPs connect-
ing the 5’ and 3’ ends, and suggests that forbidding hairpins of moderate span may
be sufficient to design large loops within challenging RNAs. Figure 9.9b shows the
sequence logo for ten solutions sampled with the set of 462 DBPs after 154 rounds.
Although adenine (in green) highly presents in solution sequences, a good sequence
diversity is observed. Indeed, about one forth positions of each solution are different
from adenine. It shows the abaility of RNAPOND to generate diverse sequence even
for such challenging instance.
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Figure 9.9: EteRNA puzzle 22 – “This is ACTUALLY Small And Easy”. (a) Target structure and
final set of DBPs after 154 rounds. (b) Sequence logo for 10 designs returned by
RNAPOND. The logo is generated using Logomaker [84] with green for A, blue for
C, yellow for G, and red for U.
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C O N C L U S I O N A N D P E R S P E C T I V E S

10.1 conclusion

In this thesis, we tackled the RNA design problem from two different angles. We
examined the impact of local structural motifs on the negative designability of sec-
ondary structures for the first part of the work. Since a structure is locally undes-
ignable, globally, the structure is also undesignable. We attempted to estimate an
upper bound for designable structures given local obstructions. For the second part,
we studied an application of tree decomposition in the RNA design problem. We
attempted to generalize a framework for positive multi-targets design and studied
an application for the negative design.

We began by describing a procedure for computing a set of local obstructions. The
presence of such a local motif implies obstruction of designability for a secondary
structure. It holds for any negative design objective expressed as a monotonic de-
fect over loops. We obtained, using the Turner energy model, a local obstruction
database with a length up to 14 for different defects and tolerances, representing
different secondary structure prediction paradigms. The exponential growth of the
local obstruction set with the length of investigated motifs indicates the exponen-
tial nature may be intrinsic to the problem. We also showed preliminary results on
searching hard or undesignable motifs in experimentally determined structures. It
suggests a possible negative selective pressure on these motifs.

As a first approach for estimating the number of designable structures, we enumer-
ated secondary structures, avoiding a local obstruction set up an upper bound. We
constructed a grammar integrated with the subtraction of structures having a root
occurrence of local obstruction. With the classic analytic combinatorics techniques,
we computed the asymptotic upper bound in an automated process. It reveals an
overall sparsity within the entire structure space for the designable structures. The
number of designable structures increases exponentially with the structure length
but much slower than initially anticipated.

Next, we were interested in estimating the structure ensemble defect distribution.
We have obtained a closed-form expression for a minimum distance of 0, given an
overlap-free motif set. In a more realistic case with a minimum distance of 3, we have
proposed an estimation from the empirical distribution given the complete motif set.
In both cases, we have shown that the ensemble defect follows a Gaussian limiting
distribution with the mean linear to structure length n. Therefore, with a commonly
used ensemble defect tolerance 0.01n, the proportion of designable secondary struc-
ture is even less than the upper bound obtained using the first approach with a
tolerance of 1.

133
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For the second part of this thesis, we attempted to find RNA sequences for both
positive and negative design objectives. We have developed InfraRed, a generic frame-
work of Fixed-Parameter Trackable Boltzmann-weighted sampling. The framework
is designed for the extended Constraint Satisfaction Problem, a generalization of the
design problem, to enable flexible design goals. We have provided an interface writ-
ten in Python to give users easy access to define their design problems. One can
realize the positive design by introducing energy functions into the problem. We
have also shown that the sampling is not limited to sequence with an example of
automaton integration.

Finally, we have presented an application of Infrared. As implemented in RNAPOND,
we have proposed a global sampling approach to reconcile positive and negative
design. The approach achieves the negative design without altering the Boltzmann-
weighted distribution by preventing two assigned nucleotides from forming a base
pair in a disruptive base pair. Even though the essential problem of finding compati-
ble sequence is NP-hard, RNAPOND obtains good designs with an efficient iterative
sequence sampling using InfraRed.

Testing on two different benchmarks, we have shown that our method, RNAPOND,
has a comparable performance with state-of-the-art. Overall, these results support
the notion that RNAPOND achieves an excellent trade-off between exploration, the
optimization of negative design criteria, and exploitation, witnessed by a sizable se-
quence diversity. The success of RNAPOND in designing complex RNA architectures
suggests that a local selective pressure may often be sufficient to implement negative
design principles, allowing the evolution of complex RNA architectures.

10.2 perspectives

10.2.1 Extensions of local obstruction study

Since NUPACK [96] considers the ensemble defect as the objective function to mini-
mize for local search, an upper bound of ensemble defect can be computed as shown
in Figure 10.1. The difference between the lower and upper bound distribution sug-
gests further improvement in estimation. One of the possible directions is to take
motif overlap into account while constructing the grammar. In addition, it requires
a solution to calculate the ensemble defect for overlapped motifs.

Another potential extension is about computational approach for design problem.
Algorithm 5.2, which enumerates local obstruction, can easily be modified to keep
the suitable candidate design sequences for each designable motif. These precom-
puted candidate sequences greatly restrict classic design algorithms’ search space
and suggest a strategy for hard design instances. As an illustration, while investi-
gating our database of local obstructions, we discovered that lonely base pairs ap-
pear in a few designable motifs, usually considered unstable in the Turner model
and challenging to design. For example, the structure (((.(....).))) is the MFE
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Figure 10.1: Empirical distribution of ensemble defect computed by NUPACK. For each
length, the distribution is computed over 10 000 secondary structures with θ = 3

uniformly genarated by GenRGenS. Dashed curves are defect lower bound D̃

estimated in Section 7.3.2 (µ = 0.065 and σ2 = 0.02).

Figure 10.2: Example of secondary structure with isolated base pairs (red) in its MFE struc-
ture, obtained by connecting local solutions.

structure of the RNA sequence UCAGCUUAUGGUGA. We also found that the motif
((..(*)..)) could be designable for some collection of sequences. Combining se-
quences adopting these two motifs, as presented in Figure 10.2, we could verify that
the RNA sequence

GGGACAAUCAGCUUAUGGUGAAAGGACC

is predicted by RNAfold to adopt its unique MFE structure of

((..(..(((.(....).)))..)..))

featuring two isolated base pairs, and a free-energy of −6.4kcal.mol−1, a stability
unmatched across several runs of RNAinverse [41] and NUPACK [96]. While this ob-
servation remains anecdotal, it is supported by the success of recent approaches
using (partial) libraries of local motifs [4].
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10.2.2 Towards pseudoknotted and tertiary structure

Our study on enumerating designable secondary structures is easy to apply to pseu-
doknotted structures. Several grammars exist to describe different algebraic types of
pseudoknots and to enable the characterization with generating functions [64]. To
design a pseudoknot using Infrared, one can add new constraints for pseudoknotted
base pairs into the framework.

While folding RNA tertiary structure, non-canonical base pairs are formed and sta-
bilize loops. These non-canonical base pairs with associated secondary loops, called
RNA 3D modules, have thus been considered as significant components for RNA struc-
ture. Unlike the secondary level, currently, we lack a well-described energy model.
An alternative way is needed to integrate RNA module messages into the design
framework.

One of the means to recognize modules in a given sequence is treating a module
as a Bayesian network [17, 72]. Each node, also called a variable, represents a base
of a module. The probability of observing a nucleotide at a base is computed with
a conditional dependencies probability estimated from sequence data. A naive way
is to add a function for each base in the InfraRed framework to encode the associ-
ated conditional dependencies probability table. However, the number of dependent
nucleotides in a module is usually large, implying large treewidth. In the recent
work for module identification [73], in collaboration with R. Sarrazin-Gendron, we
decreased greatly the module dependency using tree decomposition. Such reduc-
tion suggests a potential application of InfraRed to sample RNA sequences towards
the tertiary structure.

10.2.3 Extension of InfraRed

Our framework, InfraRed, follows the same policy for secondary structure sampling,
as introduced in Section 2.3, but uses a more complicated decomposition, i.e., tree de-
composition. Indeed, both rely on dynamic programming to calculate the (dual) par-
tition function and stochastic backtrack to sample sequences/structures. Therefore,
one of the further developments is implementing RNA secondary structure-related
approaches presented in Chapter 2 in the framework for sequence, such as finding
sequence minimizing target free-energy, returning all suboptimal sequences within
a range from the MFE, and non-redundant sequence sampling.

In Section 8.4, we presented the integration of automata in the InfraRed frame-
work. This allows us to consider more flexible design problems related to sequence
patterns. For example, we can use new variables to record the pattern (overlapped)
occurrences in the sampled sequence with a slight modification. One of the applica-
tions is then designing sequences containing a low number of a given k-mer.
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10.2.4 Extension of RNAPOND

One of the possible extensions of RNAPOND is to explore the assignment neigh-
borhood for further refinement. Combining with local search heuristics makes the
method a glocal approach [69]. The critical point is to maintain the compatibility
of mutated assignments. Indeed, randomly changing a nucleotide may produce a
chain of nucleotide modifications concerning several (disruptive) base pairs. It can
also lead to inconsistency with target structure and disruptive base pairs.

The choice of disruptive base pairs is sometimes decisive. Other ad hoc initialization
strategies may improve the performance, such as restricting undesired interactions
within a multi-loop, as seen in Figure 9.8. Furthermore, a poor choice of disruptive
base pairs during the iteration can end up with large treewidth. A simple solution
is to restart the iteration. Recently, an approach for treewidth reduction has been
published [57]. Authors showed, as a proof-of-concept, a decrease of treewidth from
9 to 7 by removing only 3 out of 183 Disruptive Base Pairs (DBPs) produced by
RNAPOND for the puzzle EteRNA 77. This preliminary result suggests a strategy to
overcome the hardness by partially restarting the iteration with a reduced DBP list.
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Titre : Décomposition Locale dans le Design Structural de l’ARN

Mots clés : Design négatif d’ARN, Complexité paramétrée, Motif d’ARN

Résumé : Le problème de design structural positif de l’ARN tente de
trouver des séquences d’ARN réalisant une faible énergie libre de la struc-
ture secondaire cible. Par contre, dans le problème de design négatif, les
séquences de solution doivent adopter la structure cible comme repliement
préférentiellement à toute structure alternative. Le problème du repliement
d’inverse, un problème typique de design négatif, exige que la cible soit
la structure secondaire ayant l’énergie libre minimale (MFE) de la solution.
D’autres métriques, telles que le défaut d’ensemble, sont également prises
en compte pour l’évaluation de la séquence réalisée.
L’additivité du modèle d’énergie suggère l’existence de propriétés locales
pour le problème de design de l’ARN. Il a été découvert dans plusieurs
travaux que, en raison de la présence de certains motifs locaux, aucune
séquence d’ARN ne peut se replier dans la structure cible tout en satisfai-
sant l’objectif de design négatif. L’approche d’échantillonnage de séquence
est souvent utilisée dans le design positif. Les structures locales irréalisables,
comme les paires de bases, se forment de manière répétée lors du replie-
ment des séquences échantillonnées en considérant le design négatif. Dans
cette thèse, nous étudions l’impact de cette nature locale sur l’aspect combi-
natoire et sur le développement de méthodes de design négatif.
Nous montrons que la proportion de structures secondaires réalisables dimi-
nue de façon exponentiellement avec la longueur de la structure cible du
point de vue combinatoire. Étant donné une métrique de design négatif,
nous proposons un schéma automatisé pour identifier tous les motifs non
réalisables. L’énumération des structures secondaires évitant ces obstruc-
tions locales, suivie d’une analyse asymptotique, permet d’obtenir une borne
supérieure du nombre de structures réalisables. En outre, nous définissons
une borne inférieure pour le défaut d’ensemble structural dérivé des motifs
locaux apparus. Nous montrons que cette borne inférieure suit une distribu-

tion limite Gaussienne avec une expression explicite, ce qui implique aussi la
diminution exponentielle.
Nous présentons ensuite Infrared, un système générique d’échantillonnage
combinatoire efficace. Nous formalisons le problème de design de l’ARN
comme un problème de CSP avec des objectifs de design décrits comme
un ensemble de contraintes et un ensemble de fonctions pondérées. Les
évaluations des variables satisfaisant les contraintes sont générées à partir
d’une distribution pondérée de Boltzmann en utilisant un algorithme de pro-
grammation dynamique suivi d’un backtrack stochastique. L’approche est en
classe de FPT pour la largeur arborescente du graphe de dépendance induit
par le problème. Nous montrons que ce cadre peut être facilement employé
pour le design positif de l’ARN et les applications variées.
Enfin, en tant qu’application du système Infrared, nous proposons une ap-
proche originale d’échantillonnage itératif qui capture les principes de de-
sign négatif mis en œuvre dans RNAPOND. Un ensemble de paires de
bases perturbatrices est identifié à chaque tour et on les empêche ensuite
de s’apparier en introduisant des contraintes appropriées dans le cadre
de l’échantillonnage. Malgré que le problème de décision associé est NP-
difficile, un algorithme d’échantillonnage de séquence efficace est garanti par
le système Infrared. Notre approche atteint un taux de réussite similaire ou
supérieur aux états de l’art, tout en permettant la génération de séquences
diverses et thermodynamiquement efficaces, c’est-à-dire des principes de
design positif.
L’un des axes de recherche des travaux présentés dans cette thèse est l’ex-
tension à des structures plus complexes, telles que les structures secon-
daires contenant pseudonœuds. La flexibilité du système Infrared ouvre une
porte au développement d’outils de design. Par exemple, le succès de RNA-
POND suggère une approche potentielle pour la design structural négatif
d’ARN.

Title : Local Decomposition in RNA Structural Design

Keywords : Negative RNA Design, Parametric Complexity, RNA motif

Abstract : RNA positive structural design problem attempts to find RNA
sequences achieving low free energy of the target secondary structure. Dif-
ferently, in the negative design, solution sequences should adopt the target
structure as its folding preferentially to any alternative structure, according to
the given metric and energy model. Inverse folding, a typical negative design,
requires the target to be the solution sequence’s MFE folding. Other metrics,
like the ensemble defect, are also considered for design evaluation.
The additivity of the energy model suggests the existence of local properties
for the RNA design problem. It was discovered in several works that, due
to the presence of specific local motifs, some secondary structures are un-
designable, i.e., no RNA sequence can fold into the target structure while
satisfying the negative design objective. The sequence sampling approach is
often used in the positive design. Unwanted local structures, like base pairs,
repeatedly form while folding sampled sequences toward the negative de-
sign. In this thesis, we study the impact of such local nature on the combina-
torial aspect and on the development of negative design methods.
We show that the proportion of designable secondary structures decreases
exponentially with the target structure length from the combinatorial aspect.
Given a negative design metric, we propose an automated pipeline to iden-
tify all undesignable motifs. Enumerating secondary structures avoiding such
local obstructions followed by asymptotic analysis yields an upper-bounds on
the number of designable structures. In addition, we define a lower bound for
the structural ensemble defect derived from occurred local motifs. We show
that the lower bound follows a Normal limiting distribution with a closed-form

expression, implying also an exponential decrease.
We then present Infrared, a generic framework for efficient combinatorial
sampling. We formalize the RNA design problem as a CSP with design ob-
jectives described as a set of constraints and a set of weighted functions.
Assignments satisfying constraints are generated from a Boltzmann weigh-
ted distribution using a dynamic programming algorithm followed by stochas-
tic backtracking. The approach is FPT for the treewidth of the dependency
graph induced from the problem. We show that the framework can be easily
employed for RNA positive design and flexible applications.
Finally, as an application of Infrared, we propose an original iterative sam-
pling approach that captures negative design principles implemented in RNA
POsitive and Negative Design (RNAPOND). A set of DBPs is identified
at each round and subsequently prevented from pairing by introducing pro-
per constraints into the sampling framework. Despite the NP-hardness of the
associated decision problem, an efficient sequence sampling algorithm is en-
sured by the Infrared framework. Our approach achieves a similar or better
success rate than state-of-the-art negative design tools while allowing for the
generation of diverse, thermodynamically efficient designs, i.e., positive de-
sign principles.
One of the research directions of the works presented in this thesis is the ex-
tension to more complicated structures, such as pseudoknotted secondary
structures. The flexibility of the Infrared framework opens a door for design
tool development. For example, the success of RNAPOND suggests a po-
tential approach for RNA negative structural design.
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