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Abstract
Sound source localization (SSL) is a subtask of audio scene analysis that has

challenged researchers for more than four decades. Traditional methods (e.g., MUSIC
or GCC-PHAT) impose strong assumptions on the sound propagation, number of
active sources and/or signal content, which makes them vulnerable to adverse acoustic
phenomena, such as reverberation and noise. Recently, data-driven models – and
particularly deep neural networks – have shown increased robustness in noisy and
reverberant environments. However, their performance is still seriously degraded in
the presence of multiple sound sources, especially when their number is unknown.
Moreover, source detection and localization in real-life use-cases, where the latency is
an important criterion, is still an open research problem.

In this thesis, we focus on speaker detection and localisation in office/domestic
indoor environments, using multichannel Ambisonics recordings, with the emphasis
on low-latency performance. First, we propose to use deep neural networks (DNNs)
to estimate the number of speakers (NoS) in a multichannel mixture. We propose a
model that is capable to count up to five speakers, with a relatively high accuracy, at
the short-term-frame resolution. We also provide a performance analysis of this model
depending on several hyperparameters, which gives interesting insights on its behav-
ior. Second, we explore the capabilities of a multichannel audio signal representation
called time-domain velocity vector (TDVV), akin to relative impulse response in the
present spherical harmonics domain, as a novel type of input features of DNNs for
detection/localization tasks. Next, we address multi-speaker localization, by first im-
proving upon a state-of-the-art convolutional recurrent neural network (CRNN) with
a substantial gain in accuracy. We also examine the potential of self-attention-based
neural networks for multi-speaker localization, as these models are known to be suit-
able for other audio processing tasks due to their capability to capture both short- and
long-term dependencies in the input signal. Furthermore, we investigate the use of
the estimated NoS, provided by our speaker counting neural network, to improve our
speaker localization CRNN. We show experimentally that using the estimated NoS
leads to more robust multi-speaker localization than the classical threshold-based di-
rection of arrival (DoA) estimation. Moreover, we show the interest of injecting the
NoS information as an additional input feature for the localization neural network. Fi-
nally, we explore multi-task neural architectures to estimate both the NoS and speaker
DoAs at the same time.
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Résumé
La localisation de sources sonores est une sous-tâche de l’analyse de scènes sonores

qui a défié les chercheurs pendant plus de quatre décennies. Les méthodes tradition-
nelles (e.g., MUSIC ou GCC-PHAT) imposent des hypothèses fortes sur la propagation
du son, le nombre de sources actives et/ou le contenu du signal, ce qui les rend vul-
nérables à des phénomènes acoustiques adverses tels que la réverbération ou le bruit.
Récemment, les méthodes basées sur les données – et particulièrement les réseaux de
neurones profonds – ont montré une plus grande robustesse dans les environnements
réverbérants et bruités. Cependant, leur performance est toujours sensiblement dé-
gradée en présence de plusieurs sources sonores, notamment quand leur nombre est
inconnu. De plus, la détection et la localisation de sources pour des usages pratiques,
où la latence joue un rôle important, est toujours un sujet de recherche ouvert.

Dans cette thèse, nous nous intéressons à la détection et à la localisation de lo-
cuteurs dans des environnements domestiques, en utilisant des enregistrements am-
bisoniques multicanaux, avec un accent sur une performance à basse latence. Tout
d’abord, nous proposons d’utiliser des réseaux de neurones profonds (DNN, pour deep
neural network) pour estimer le nombre de locuteurs (NoS, number of sources) dans
un mélange multicanal. Notre modèle est capable de compter jusqu’à cinq locuteurs,
avec une précision relativement grande, pour une résolution à la trame. Nous pro-
posons également une analyse de la performance du modèle en fonction de certains
hyperparamètres, ce qui fournit des informations intéressantes sur son comportement.
Ensuite, nous explorons les capacités d’une représentation d’un signal audio multi-
canal appelée vecteur vélocité dans le domaine temporel (TDVV, time-domain veloc-
ity vector), qui est analogue à la réponse impulsionnelle relative dans le domaine des
harmoniques sphériques, en tant que nouvelle représentation d’entrée de DNNs pour la
localisation/détection. Par la suite, nous nous penchons sur la localisation de plusieurs
locuteurs en commençant par améliorer un réseau de neurones convolutif et récurrent
(CRNN, convolutional recurrent neural network) de l’état de l’art avec un gain impor-
tant en précision. Puis nous examinons le potentiel des mécanismes de self-attention
pour la localisation de plusieurs locuteurs, alors que ces modèles sont connus pour être
adaptés à d’autres tâches de traitement audio étant donnée leur capacité à capter les
dépendances à court et long terme dans le signal d’entrée. En outre, nous investiguons
l’utilisation du NoS estimé, fourni par notre réseau de neurones de comptage, pour
améliorer le CRNN de localisation. Nous montrons expérimentalement qu’utiliser le
NoS estimé donne plus de robustesse à la localisation multi-locuteur que la méthode
de seuillage classiquement utilisée dans l’estimation de direction d’arrivée (DoA, di-
rection of arrival). De plus, nous montrons l’intérêt d’injecter l’information du NoS en
tant qu’entrée additionnelle pour le réseau de neurones de localisation. Finalement,
nous explorons les architectures neuronales multi-tâches pour estimer le NoS et la
DoA des locuteurs dans le même temps.
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Chapter 1

Introduction

1.1 General context

1.1.1 Human hearing

We, as humans, have been granted a couple of ears capable of reacting to sur-
rounding sound and processing the vibrations through our brain. From even

before our birth, we have learned to use them properly, and we have impressive capa-
bilities of dealing with a complex sound environment.

Imagine yourself at a friend’s party. Many guests are present, you are in the middle
of a discussion with two friends, surrounded with other small groups of chatting people.
A few meters from you, one of the guest performs an entertaining dub music DJ set,
while someone is ringing at the door. A lot of audio information arrive at the same
time to your ears. Yet, you are still able to understand what your two friends are
debating, and you can handle the conversation, maybe at the cost of speaking louder.
Also, you can shift your attention at any time by indiscreetly listening the next group’s
conversation, or enjoying the music coming from the DJ booth, while being aware that
a new guest is arriving at the door. This phenomenon is called the cocktail party effect
[Aro92]. It refers to the brain’s ability to let us focus on any sound stimulus among
many other stimuli. In other words, the fact that all sounds are mixed together when
incoming to our ears is not an obstacle for us to understand the surrounding sound
space.

The cocktail party effect is partially due to our great ability for sound source
localization. Because our ears do not receive the exact same sound signal at a given
instant, the brain can sense small differences in intensity, spectral content and timing
cues between the two signals in order to locate the sound sources [Bre94]. Except
if a sound source location is equidistant to both ears, the signals arrive time-shifted
from each other and this time difference is a localization cue. The shapes of our head,
torso and pinna cause diffraction which also helps to locate sound sources [Bla97].
Consequently, all human beings perceive sound differently, and we have learned to
hear based on the characteristics of the body parts around our ears. We are also
capable of estimating the source distance based on the loss of amplitude and the ratio
between the direct path and the reverberated part. Thus, our localization ability is
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greatly responsible for our capacity to extract meaningful information from a complex
sound environment.

1.1.2 What is sound ?

Sound is a vibration travelling through a medium. It propagates, as a wave, in any
medium allowing local oscillations: gases, fluids and solids. On Earth, silence almost
does not exist. Any vibrating object, like flowers, tree leaves, fleas, fish, wind, ice-
bergs, underwater volcanoes, loudspeaker, guitar string, emits a sound wave and acts
as a sound source. The resulting vibration then freely travels through the surround-
ing medium, if no obstacle is encountered, at a speed c depending on the medium
properties (in the air, c = 343 m s−1 at 20 °C). When a sound wave passes through a
fixed point in space, local pressure and velocity vary in time, a little shifted from the
equilibrium state. The changes are generally very small. On Earth, the average atmo-
spheric pressure at the surface is around 100 000 Pa, while the just audible pressure
deviation for human hearing is 0.00002 Pa (corresponding to 0 dB in sound pressure
level, SPL), and the threshold of pain is between 20 and 200 Pa (corresponding to
120-140 dB SPL).

In such a vibrating phenomenon, frequency is defined as the number of vibrations
per second, or Hertz (Hz). In nature, most sound waves are propagating vibrations
containing multiple frequencies, which characterize its aspect, commonly referred as
timbre. For example, a guitar bass sound is mainly made of low frequencies, whereas
a singing bird mostly emits high frequencies. We can describe a complex wave (i.e.,
containing many frequencies) in terms of a superposition of sinusoidal plane waves,
each one containing only one frequency. As a sound source vibration evolves with
time (for instance, it can attenuate), its frequency content also evolves. Thus, the
time and frequency dimensions are two important characteristics of a sound wave.

When a sound wave encounters an obstacle, several phenomena can occur. Specular
reflections happen when the wave arrives at a smooth surface, like a wall. In this case,
the incoming sound wave is reflected in the opposite direction from the wall, at an
angle equal to the incoming angle. When the irregularities of a surface are smaller
than the wavelength – the distance over which a wave’s shape is repeated - we witness
scattering, whose consequence is a propagation of the incoming wave into directions
deviated from a straight trajectory. Another phenomenon, diffraction, can occur when
the wave passes across a surface edge.

As sound waves cause local displacements of matter (vibrations) when travelling
through a medium, they obey the superposition principle. That is, when two sound
waves incoming from two separated sound sources pass through the same point in
space, the vibrations are added, resulting in a combination of the propagated informa-
tion, as illustrated in Fig. 1.1. This property makes the analysis of sound complicated:
when recording the surround sound scene with one or several microphones, it is not
straightforward to decompose the different incoming sound waves according to their
respective source.
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Figure 1.1: Superposition of two sound waves arriving simultaneously
at the same point in space. The signal in purple, recorded by the
microphone, is the sum of the two incoming sound signals, in blue and
red. The black arrows illustrate the propagation of the waves from the
sound sources to the microphone.

This phenomenon is even more accentuated when a sound wave propagates in
an environment with walls and furniture. As illustrated in Fig. 1.2, the sound wave
can reflect successively multiple times onto the walls, following a determined path.
Moreover, as most sound sources generate spherical waves, leading to a spherical
wavefront, the wave propagates in many directions at the same time (illustrated by
the multiple arrows coming from the loudspeaker in Fig. 1.2). Because of the many
resulting reflections, several delayed copies of the same wave arrive simultaneously
at the recording point. Due to the superposition principle, they are added together
to the direct path, which is the wavefront going directly from the sound source to
the receiver. The resulting recorded signal is thus not an exact copy of the original
source signal, but rather a combination of delayed and attenuated versions of the
original signal. The phenomenon of a signal coming to a receiver from several paths is
called multipath propagation. The first reflections form what is called early reflections,
which generally lasts a few milliseconds, until there are “too many” of them, which is
referred as reverberation. Reverberation happens in every closed space, and is more
or less accentuated depending on several parameters, such as wall materials or room
dimensions. Typically, high reverberation can be heard in churches and cathedrals,
while special rooms called anechoic chambers have been designed to minimize the
effect of reverberation.

As we can see, the superposition principle makes it difficult to retrieve a clean
version of the original sound source signal in a real-world environment. When several
sources occur, or when there are reflections in a room, the fact that different sound
waves arrive at the recording point makes it very difficult to retrieve the original
signals without prior information.



4 Chapter 1. Introduction

Figure 1.2: Illustration of a multipath propagation, which occurs
in the presence of walls where the wavefront of a single sound wave
reflects several times onto. The dark blue arrow exhibits the direct
path from the source to the receiver, and the two other arrows show
two different paths that do not arrive at the same time as the direct
path. The resulting recorded signal is a combination of all the received
waves, delayed from each other because of different path lengths.

1.1.3 Audio signal processing

For decades, researchers have been trying to reproduce the human hearing abilities
using machines. The general motivation of this research effort is to build systems
capable of understanding the surrounding sound scene. Such systems require one or
more microphones, mimicking the human ears, and signal processing algorithms re-
placing the brain activity. To accomplish certain goals, usually several algorithms are
interconnected into a processing chain, such that each one performs a specific sub-
task, in order to form a fully-working system. Let us take the example of a system
capable of decoding human speech, commonly named automatic speech recognition
(ASR) [Nas+19]. If one can record a perfectly clean speech signal, directly applying
an effective ASR algorithm might be sufficient. But in a real-world context, a lot of
interference makes the task more complicated. For example, in a domestic environ-
ment, other sources (dog barks, TV sound, vacuum cleaning, etc.) could interfere
with the target speech signal, as well as surrounding noise coming for example from
the outside of an open window. Reverberation is also an important factor that blurs
the original speech signal.

To cope with this challenging conditions, several audio signal processing algorithms
can be used to clean the recorded speech signal beforehand. As their names refer,
denoising and dereverberation algorithms, often encapsulated as speech enhancement
[VVG18], aim to remove or at least reduce noise interference and reverberant parts
of a signal, respectively. When several sound sources are captured, source separation
[WC18] aims to separate a mixture signal into several component signals, each one
containing the information coming from a single particular source. Source separation
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techniques can rely on frequency contents, or be obtained by spatial filtering when
multiple microphones are used. In the latter type of methods, assuming the knowledge
of the target source location, one can spatially filter out the unwanted part of the sound
field and extract the sound coming from the target location. However such methods
rely on the knowledge of the source location(s), which can be estimated using sound
source localization (SSL). To estimate the source(s) location, one needs at least two
microphones. SSL algorithms can estimate the directions of one or more overlapping
sound sources, and a source counting method might be handy to apply beforehand, to
ensure that the right number of sources are located in the analyzed signal. Note that
when we deal with speech signals, source counting (thus named speech counting) is a
subtask of speaker diarization [Ang+12; TR06; Par+21], which is the task aiming to
answer the question who speaks and when ? in a signal.

1.1.4 Thesis focus

Speaker counting and localization

In this thesis, we addressed two of the previously mentioned audio tasks: sound
source localization and source counting. More precisely, we deal with speech sources.
As stated above, knowing the number of speakers in a signal is a very useful piece of
information to extract beforehand. It could prevent the localization algorithm focus
onto more sources than the sound really contains, and thus avoid the inclusion of
interfering sources, such as noise. Part of this thesis work was thus to design an algo-
rithm capable of counting the number of speakers in challenging acoustic conditions,
i.e., in noisy and reverberant environments. The other focus of this thesis was to ex-
plore speaker localization in the same kind of challenging environments. Following our
interest in counting speakers, we aimed to localize several overlapping speech sources.
In order to design robust systems for counting and localizing multiple speakers, our
research exploited several tools.

Ambisonics format

Throughout this thesis, we took benefit of the Ambisonics format to represent the
sound signal. Such a format is obtained from a spherical microphone array, leading
to a multi-channel signal. This more and more adopted audio format presents several
great advantages. It is agnostic to the choice of microphone array, that is the encoded
signal does not depend on the arrangement of microphones within an array. The sound
scene can also be rendered given any disposition of loudspeakers from this format, but
this aspect was not of interest in this thesis. Also, it is an isotropic format, meaning
that the recording process does not favor any direction. We detail this format in
Chapter 2.
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Artificial neural networks

We explored the potential of artificial neural networks to design robust sound source
counting and localization systems. This family of models is part of deep learning
(DL) [GBC16], which is a class of algorithms behind most recent artificial intelligence
systems. Their success is due to the ability of neural networks to model complex
functions by adjusting their parameters through a learning phase based on a dataset
of many examples. They are more and more used today, due to the amount of available
data and the increasing computational power to train the algorithms. The basics of
artificial neural networks are presented in Chapter 3.

1.2 Problem formulation

In this section, we formulate the problems of counting and localizing sources (regard-
less whether they are speech or not) in a mathematical framework. The goal is to
formally describe the problem we address in this thesis, as well as set the notations
we use throughout the chapters.

1.2.1 Mixture model

We adopt the same mixture model formalization as in [VVG18]. Let us assume an
environment with J point sources, in which we place a microphone array consisting of
I microphones. Each microphone records the sound scene in terms of pressure change
from a different position in space, resulting in a multi-channel mixture signal x(t)

containing the recorded signal xi(t) from each microphone i:

x(t) =


x1(t)

x2(t)
...

xI(t)

 , (1.1)

where t denotes discrete time.
As multiple sound sources are present in the environment, according to the su-

perposition principle, each microphone signal is a sum of the signals arriving at the
microphone position from each sound source j:

xi(t) =
J∑
j=1

cij(t). (1.2)

Here, cij(t) is the signal arriving at microphone i resulting from the emission of
a signal sj(t) from sound source j. The propagation of the source signal and the
reverberation of the room has to be taken into account. This can be modeled using
a linear time-invariant filter aij(τ) if the sources and microphones are static. As all
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the microphones and sources are at different positions, all filters aij are distinct. The
signal arriving at microphone i can then be expressed as:

cij(t) =
+∞∑
τ=0

aij(τ)sj(t− τ), (1.3)

considering a causal filter (i.e., depending only on past and present inputs). The
filters aij(τ) are called room impulse responses (RIRs) and model the propagation of
the source signal from the sound source position to the microphone position, including
the reverberation phenomena. The reverberation components are dependent of the
source and microphone positions, as well as the room properties (geometry and dimen-
sions, material properties, etc.). Theoretically, a room impulse response is the signal
recorded by a perfect microphone (without any noise), coming from a point source
emitting an impulse (Dirac distribution), hence the name room impulse response.

In real-world environment, noise is an important component which has to be in-
cluded in the model of the multi-channel mixture signal. Two types of noise can
be present in such a recording. On the one hand, we have to take into account the
ambient noise which almost always exists in any sound scene. Such a noise is gen-
erally considered as a diffuse source, which is a source emitting from a whole region
in space, as if it was composed of an infinite number of point sources. Examples
of diffuse sources include surrounding musical ambience, outside construction works,
incomprehensible background conversations (usually referred to as babble noise), or
even small fluctuations of air. Such diffuse noise can be considered independent of
the position in the room, thus common to all microphones. On the other hand, noise
modelling the imperfection of each microphone also constitutes an important artifact.
Practically, the microphones do not record the world perfectly as it is, and they are
not rigorously identical to each other. Therefore, we can incorporate a noise signal
ni(t) for each microphone, including both diffuse noise and microphone-wise noise, to
complete the multi-channel mixture signal model:

xi(t) =
J∑
j=1

+∞∑
τ=−∞

aij(τ)sj(t− τ) + ni(t). (1.4)

1.2.2 Room impulse responses

The room impulse responses aij(τ) represent the acoustic behavior of the sound ac-
cording to the emitting and recording positions, as well as the propagation effects
induced by the presence of walls or furniture.

Fig. 1.3 shows an illustration of a typical RIR. The first and highest peak (in
red) represents the direct path, which is the straight propagation between the point
source and the microphone. The following peaks (in green) are referred to as early
echoes and encode the beginning of multipath propagation which includes the main
reflections from the obstacles. The last part features the reverberation phenomenon
and results from the superposition of the many late reflections.
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Figure 1.3: Illustration of an room impulse response. Three notice-
able parts in an RIR: the direct path (in red), the early echoes (in
green) and the reverberation (in blue). Borrowed from [VVG18].

The reverberation time (RT60) is a quantity measuring the duration for the impulse
response envelop to decrease by 60 dB. It depends on the room size and the obstacle
materials. Typical values of RT60 is between 0.2 and 0.8 s for small domestic rooms,
and can be higher that 1 s for larger rooms such as restaurant rooms.

1.2.3 Source counting

The number of sources (NoS) J ∈ N is an important piece of information which
can be useful for several audio processing tasks such as source separation or source
localization. For instance, knowing J can improve the performance of separation or
localization systems since it can help avoiding “unwanted” sound sources (interference).
However estimating the number of sources is not straightforward, mainly due to the
superposition principle. Fig. 1.4 illustrates the profile over time of the number of
active sources in a 3-source mixture.

Source counting refers to the problem of estimating the number of sources given
a single- or multi-channel mixture signal x(t). However this problem can be defined
according to different levels of temporal resolution. The following NoS quantities can
be estimated:

• the instantaneous number of sources J(t). The goal is to estimate the NoS at
each timestep t, depending on the considered temporal resolution (audio sample,
time frame). It is at most equal to the total NoS J , but it is often lower than J
since in general not all sources overlap at the same time;

• the maximum number of simultaneous sources J̄ . It is defined as J̄ = maxt J(t),
which is the maximum of number of sources which were simultaneously active
through the whole analyzed signal;

• the total number of sources J , which is, as previously defined, the total number
of sources involved in the mixture (i.e., they have been active at least once
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Figure 1.4: Time profile of the number of active sources in a 3-
source mixture. The activity of each individual source is represented
with rectangles (top). The instantaneous number of active sources
in the mixture J(t), resulting from the superposition of each source’s
activity, is depicted with the green line (bottom).

during the analysis). It can be retrieved from J(t) if we are able to identify the
sources.

In this thesis, we were interested in estimating the instantaneous number of sources.
The motivation was to provide a succeeding block in the processing chain (e.g., a lo-
calization or tracking algorithm) with an NoS estimate J̃(t) at any time index t.
In practice, this necessitates a source counting method operating at high temporal
resolution.

Note that when J = 1, source counting simplifies to the problem of source de-
tection, which is predicting whether a particular source is active (J(t) = 1) or not
(J(t) = 0) at any time t.

When the sources are human speakers (as it is the case in this thesis), source
counting is referred to as speaker counting, except for J = 1 for which it is commonly
named voice activity detection (VAD). When the speech sources need to be identified
in addition to counting, this problem is equivalent to speaker diarization.

1.2.4 Source localization

The goal of SSL is to derive the spatial positions of the target source(s) based on the
recorded multi-channel signal. While multiple microphone arrays can be employed to
localize sources, most systems assume the use of only one microphone array, as it is
a more practical solution. This problem is not trivial, notably due to the presence
of noise as well as reverberation in enclosed spaces. Looking back at Fig. 1.2, we
see that several signals originating from the same source arrive at the microphone
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from different directions. Thus, estimating the actual source direction, and even
interpreting the different incoming sound waves as coming from the same point source
is not a straightforward task.

Assuming an environment with J emitting sources, the goal of a SSL algorithm is
to estimate the position rj(t) of each source j, given a certain coordinate system, from
a multi-channel signal x(t). Using Euclidian coordinates, rj(t) = (xj(t), yj(t), zj(t)),
while in a spherical domain, rj(t) = (rj(t), θj(t), φj(t)), where rj is the distance, θj
the azimuth angle and φj the elevation angle. When only θj and φj are estimated, it is
referred to direction-of-arrival (DoA) estimation. Spherical coordinates are especially
handy when the microphone is taken as the origin. Cylindrical coordinates are used
less often.

Note that the source positions rj(t) are functions of time, as in a general frame-
work the source can be mobile in the surrounding area. In that case, sound source
localization can be done with the help of a target tracking system, whose goal is to
associate the multiple position estimates and the target sources over time.

1.3 Main contributions

During three thesis years, our research was focused on speaker counting and localiza-
tion. Through many experiments, we explored new ways of addressing these tasks in
order to improve the existing methods, and tried to analyze their behaviors. Several
of these methods led to published/submitted papers:

• P.-.A Grumiaux, S. Kitić, L. Girin, A. Guérin, High-resolution speaker counting
in reverberant rooms using CRNN with Ambisonics features, European Signal
Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2020.

• P.-.A Grumiaux, S. Kitić, L. Girin, A. Guérin, Multichannel CRNN for speaker
counting: an analysis of performance, Forum Acusticum (FA2020), Lyon, France,
2020.

• P.-.A Grumiaux, S. Kitić, L. Girin, A. Guérin, Improved feature extraction
for CRNN-based multiple sound source localization, European Signal Processing
Conference (EUSIPCO), Dublin, Ireland, 2021.

• P.-.A Grumiaux, S. Kitić, P. Srivastava, L. Girin, A. Guérin, SALADnet: Self-
Attentive multisource Localization in the Ambisonics Domain, IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mo-
honk Mountain House, New Paltz, NY, 2021.

• P.-.A Grumiaux, S. Kitić, L. Girin, A. Guérin, A survey of sound source local-
ization with deep learning methods, Submitted to the Journal of the Acoustical
Society of America, 2021.
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1.3.1 Speech counting

We explored several neural network architectures in order to improve existing meth-
ods for speech counting. We showed that relying on multi-channel features (in the
Ambisonics format) we could obtain improved speaker counting compared to using
single-channel signals. Our method showed great performance to count up to 5 simul-
taneous speakers in noisy and reverberant environments, at a short-term frame-wise
resolution. This work was presented at the European Conference on Signal Processing
in 2020 [Gru+20a]. We also conducted several analyses on the performance of neural
network architectures according to different hyperparameters, leading to a presenta-
tion [Gru+20b] at the conference Forum Acusticum 2020.

1.3.2 Sound source localization literature review

During our literature review on SSL, which was especially geared towards neural-
based methods, a great amount of interesting papers was gathered, annotated and
classified. We thoroughly kept collecting more and more deep-learning-based SSL
papers, as more and more methods were proposed throughout the years. We finally
decided to share this intensive literature review by writing a survey paper on SSL
techniques using deep learning [Gru+21c]. This paper proposes a classification of
neural-based SSL methods according to neural network architectures, types of input
features, output paradigms, and learning strategies. It also provides an overview of
datasets used for such systems, as well as two summary tables which allow to easily
find papers according to specific criteria.

1.3.3 Multi-source localization

We spent several months to address speaker localization with multiple sources in chal-
lenging conditions. Using a classification paradigm, we experimented several neural
network architectures to improve the localization performance. First, we managed to
notably improve the performance of a state-of-the-art system [Per+19] and extended it
up to 3 speakers, by rethinking the feature extraction1 part of the network. This work
was presented at the European Conference on Signal Processing in 2021 [Gru+21a].
We also improved this work by extending the Ambisonics order of the multi-channel
recording. We then explored the benefit of self-attention models for an attempt to
remove the recurrent layers, known to be computationally cumbersome. Not only
did we successfully manage to replace the recurrent part with self-attention, but we
also slightly improved the localization performance. This work has been accepted
for presentation at the Workshop on Applications of Signal Processing to Audio and
Acoustics [Gru+21b]. We finally assessed the benefit of using more microphones to
record the analyzed signal, i.e., increasing the Ambisonics order (see Chapter 2). The

1Note that throughout all this thesis, we refer as feature extraction the first network components
which allow to compute a more high-level representation of the input features for the remaining part
of the network.
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results clearly demonstrated the improvement of the localization performance in this
configuration, at the cost of more recorded data.

1.3.4 Exploration of a new type of input features for localization

Based on a pioneering work [DK20] introducing a new type of Ambisonics representa-
tion called time-domain velocity vector (TDVV), we carried out a lot of experiments
to take benefit of this new feature for SSL. As it was an exploratory idea, we lim-
ited our experiments to single-source configuration, with the intention to extend the
models to multi-source signals when reaching conclusive results. We tried many neu-
ral networks architectures, including dilated convolutions, residual connections, self-
attention mechanisms. We also explored several approaches to estimate the TDVV as
it is not a straightforward feature to derive.

While the models trained with this new representation were able to localize one
source at a fair precision, we never managed to demonstrate the superiority of this
new input feature for single-source localization compared to the use of intensity-based
features. Although this series of experiments was not conclusive, we nevertheless
present all our results in this document, and try to find out what was missing to take
the most out of this new idea.

1.3.5 Combination of speech counting and localization

After exploring new ideas regarding speaker counting and localization, we proposed
several systems combining both tasks, either sequentially or jointly. First, we showed
that estimating the number of speakers with a neural network allows better localiza-
tion performance than if it is derived solely from the localization output. We also
observed that the performance is still satisfactory compared to the use of a ground-
truth NoS. Next, we evaluated the benefit of using the estimated NoS as an additional
input feature for the localization network. Finally, we proved that it is possible to
train a neural network to jointly estimate the number of sources and their positions,
with high counting and localization accuracies.

1.4 Manuscript outline

The remainder of this document is organized as follows. Chapter 2 introduces the
concept of spherical harmonics and the Ambisonics representation. The intensity
features, frequency-domain and time-domain velocity vectors are also derived. In
Chapter 3, we quickly present the different neural network architectures used in our
experiments, with an emphasis on less common mechanisms, such as residual con-
nections or multi-head self-attention. We then provide a literature review on source
counting and sound source localization, focused on neural-based methods, in Chap-
ter 4. The following chapters detail the experiments conducted during the three years
of this thesis. Our models and their analyses for speaker counting are explained in
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Chapter 5. In Chapter 6 we present our attempts to improve single-source localization
using the TDVV, while in Chapter 7 we describe our work on multi-source localiza-
tion using more usual features. Next, Chapter 8 presents our investigations towards
a neural model for joint speaker counting and localization. Finally, we conclude this
thesis in Chapter 9.
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Chapter 2

Ambisonics

The Ambisonics format is an audio format capable of efficiently representing the
spatial aspect of a sound field. Hence, it has become a popular format for

3D spatial audio coding [PDMP18], as a de facto standard in both professional and
consumer domains [Her+14] (see also the Facebook 3601 and the Google3602 systems
available online). Ambisonics finds its roots in the 1930s, when Blumlein’s original
work [Blu31] on coincident stereo recordings proposed to place two figure-of-eight
microphones in a orthogonal manner. Gerzon [Ger73] extended this idea in the 1970s
by theorizing what we call the first-order Ambisonics (FOA) format, originally known
as B-format, which paved the path to high-order Ambisonics (HOA) [Dan01].

While the term Ambisonics arose from the design of the corresponding micro-
phones, we also often encounter terms related to the spherical harmonics theory in
the literature. In fact, the Ambisonics representation consists of the coefficient of the
spherical harmonics decomposition of the signal. In this thesis, we will use the term
Ambisonics because of the past of the laboratory we conducted our research in, but
in this chapter we show how both theories are linked together.

In this chapter, we establish the theoretical foundations of the Ambisonics format,
which we adopted to represent audio signals in this thesis. After briefly explaining
why this format is of interest, we derive the spherical harmonics decomposition of the
solution of the wave equation. This decomposition leads us to the definition of first-
order and higher-order Ambisonics. We finally discuss several representations derived
from the Ambisonics format, useful for sound scene analysis: the pseudointensity
vector, the frequency-domain velocity vector, and the time-domain velocity vector.

An interesting reader may find more in-depth details in diverse references, e.g.,
theses [Dan01; Mer06; Baq17; Mor06], or books [ZF19; Raf19; JHN17; WM00].

2.1 Interest of the Ambisonics format

One of the main benefits of the Ambisonics lies in its capability of compactly encoding
the surrounding sound scene in a format that is theoretically agnostic regarding the
configuration of the recording microphone array. Likewise, the Ambisonics format

1https://facebook360.fb.com/spatial-workstation/
2https://support.google.com/youtube/answer/6395969
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Figure 2.1: Examples of microphone arrays suitable for the encoding
of the recorded sound field into the Ambisonics format. Left: Zoom’s
H3-VR (4 capsules, Ambisonics format up to order 1); middle: Zylia’s
ZM-1 (19 capsules, up to order 3); right: mh acoustics’ EigenMike (32
capsules, up to order 4).

is flexible with respect to the setup of an audio system used for reproduction, as
its decoding can be adapted to match the given layout, e.g., to headphones, stereo
monitors, 5.1 audio systems, or even a setup with many loudspeakers [ZF19]. The
Ambisonics format is an isotropic representation of the sound field, i.e., the encoding
takes equally into account all spatial directions. It contains the directional information
of the sound sources, due to the microphones nature and orientation. A particularity
of this characteristics is that it becomes very handy to perform some transformations
of the encoded sound recording: for instance, one can easily rotate the sound field
by multiplying the multi-channel recording by the appropriate matrix. One typical
application of such a property is to take into account the movement of a robot’s head
when localizing surrounding sounds.

Due to these advantages, more and more commercial applications opt for this
sound representation to handle audio signals. As we have seen above, internet giants
such as Google or Facebook use the Ambisonics format for their spatial audio appli-
cations, especially in virtual reality (VR) environments. Recently, we have witnessed
an increase of available easy-to-use devices that can be used to record spatial audio
in the Ambisonics format (see Fig. 2.1): mh acoustics’ EigenMike,3 Zoom’s H3-VR
recorder,4 Zylia’s ZM-1.5 Decoding tools are also largely available nowadays, espe-
cially to be used in digital audio workstations (DAW): IEM plug-in suite,6 b<>com
plug-ins,7 IRCAM’s Panoramix,8 or Noise Makers’ Ambi Head HD9 to name a few.

3https://mhacoustics.com/products#eigenmike1
4https://zoomcorp.com/fr/fr/enregistreurs-portatifs/handheld-recorders/h3-vr-360-audio-

recorder/
5https://www.zylia.co/zylia-zm-1-microphone.html
6https://plugins.iem.at/
7https://b-com.com/en/process/spatial-audio-family
8https://forum.ircam.fr/projects/detail/panoramix/
9https://www.noisemakers.fr/ambi-head-hd/
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Figure 2.2: Spherical coordinate system. Any position in space can
be described with three numbers: the distance r, the azimuth angle
θ and the elevation angle (or polar angle) φ. The relation between
spherical coordinates r, θ, φ and cartesian coordinates x, y, z is given
by (2.2). Borrowed from Dmcq, CC BY-SA 3.0.

2.2 Wave equation and spherical harmonics decomposi-
tion

In this section, we derive the solution of the wave equation in the spherical domain
and exhibit the spherical harmonics decomposition of the sound signal, which will lead
to the definition of the Ambisonics format in the section 2.3.

2.2.1 Wave equation solution in the spherical domain

A sound signal is the evolution of the sound pressure p(r, t) with time t at the recording
point r, which is measured in Pascals (Pa). The recorded signal is due to the sound
source which produces a sound wave, i.e., the solution of the famous acoustic wave
equation :

∇2p(r, t)− 1

c2
∂2

∂t2
p(r, t) = 0, (2.1)

where ∇2 denotes the Laplacian operator and c is the speed of sound in the considered
fluid (in the air, c = 343 m s−1 at 20 °C).

We want to find the general solution of the wave equation in the three-dimensional
space. To do that, we represent the 3D space using spherical coordinates, i.e.,
r = (r, θ, φ), where θ is the azimuth angle and φ the elevation angle, as illustrated
in Fig. 2.2. The following equations describe the relationship between cartesian and
spherical coordinates: 

x = r cos θ cosφ

y = r sin θ cosφ.

z = r sinφ

(2.2)

https://commons.wikimedia.org/wiki/File:3D_Spherical_2.svg
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In three dimensions, using spherical coordinates, the Laplacian operator for a
function f(r, θ, φ) is given by:

∇2
rf =

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (2.3)

To derive a solution for the wave equation in the spherical domain, one can proceed
to a separation of variables, i.e., we assume that p takes the form:

p(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t). (2.4)

Then, by injecting (2.4) in (2.1) using (2.3), we obtain one separate partial equation
for each variable r, θ, φ and t [Raf19, p. 35]:

r2
d2

dr2
R+ 2r

d

dr
R+

[
(kr)2 − n(n+ 1)

]
R = 0, (2.5)

with k = ω
c being the wave number of the sound wave (ω = 2πf is the angular

frequency),
d

dµ

[
(1− µ2) d

dµ
Θ

]
+

[
n(n+ 1)− m2

1− µ2

]
Θ = 0, (2.6)

with µ = cos2 θ and |m| ≤ n,m ∈ Z, n ∈ N,

d2Φ

dφ2
+m2Φ = 0, (2.7)

and
d2T

dt2
+ ω2T = 0, ω ∈ R. (2.8)

(2.7) and (2.8) immediately lead to the following exponential solutions, valid for an
harmonic wave, i.e., with a single frequency ω :

T (t) = eiωt, (2.9)

and
Φ(φ) = eimφ, (2.10)

where i =
√
−1. Note that m is an integer because Φ is 2π-periodic. (2.6) is known as

the associated Legendre differential equation, whose non-singular solutions are given
by the associated Legendre functions of the first kind [AWH13, p. 715]:

Θ(θ) = Pmn (cos θ), m ∈ Z, n ∈ N. (2.11)

(2.5) is referred as the spherical Bessel equation, whose solutions are a weighted com-
bination of the spherical Bessel functions of the first kind jn(kr) and the spherical
Hankel functions of the first kind hn(kr):

R(r) = R1jn(kr) +R2hn(kr), (2.12)
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with R1, R2 ∈ R. In fact, in our case, we have necessarily R2 = 0 since the functions
hn diverge at r = 0 and we suppose that no infinite sound pressure occurs at the
recording point.

Finally, combining these variable-wise equations leads to the set of fundamental
solutions for the wave equation in the spherical domain :

p(r, t) = R1jn(kr)Pmn (cos θ)eimφeiwt, (2.13)

with n ∈ N, m ∈ Z and |m| ≤ n. The general solution is a weighted sum of these
fundamental solutions. The products formed by the angular factors Pmn (cos θ) and
eimφ are known to be the (scaled) spherical harmonics, which brings us to the next
subsection.

2.2.2 Spherical harmonics

Complex spherical harmonics

The terms depending on θ and φ on the wave equation solutions (2.13) are grouped
together to define the complex spherical harmonics. This set of complex functions,
indexed by n and m, are defined on the unit sphere by [Raf19, p. 4]:

Y m
n (θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)eimφ, (2.14)

where n ∈ N is the order, and m ∈ {−n,−n + 1, ..., n − 1, n} is the degree of the
spherical harmonic. We recognize the associated Legendre functions as well as the
exponential function of the elevation φ.

An interesting property of these complex spherical harmonics is that they form
an orthonormal basis of the Hilbert space L2(S

2) (i.e., the set of all square-integrable
complex functions of the unit sphere), with the following inner product:

〈f | g〉 =
1

4π

∫ 2π

θ=0

∫ π
2

φ=−π
2

f(θ, φ)g(θ, φ)∗ cosφdφdθ, (2.15)

where ∗ denotes the complex conjugates. This property involves that any function
f(θ, φ) ∈ L2(S

2) can be decomposed as a weighted sum of spherical harmonics:

f(θ, φ) =

∞∑
n=0

n∑
m=−n

fnmY
m
n (θ, φ), (2.16)

with fnm denoting the coefficients of f(θ, φ) on this basis. This representation is
known as the spherical harmonics decomposition (SHD) of f(θ, φ). The coefficients
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fnm can be computed as:

fnm = 〈f(θ, φ) | Y m
n (θ, φ)〉

=

∫ 2π

θ=0

∫ π
2

φ=−π
2

f(θ, φ)Y m
n (θ, φ)∗ cosφdφdθ.

(2.17)

From (2.13), we can express the general solution (linear sum of fundamental solu-
tions) of the wave equation on the basis of spherical harmonics:

p(θ, φ, r, t) =
∞∑
n=0

n∑
m=−n

αnmjn(kr)Y m
n (θ, φ)eiωt, (2.18)

where αnm ∈ R are the weights of each fundamental solution.

Real spherical harmonics

Real spherical harmonics Ỹ m
n also exist and are defined by [JHN17, p. 28]:

Ỹ m
n (θ, φ) = (−1)|m|

√
2n+ 1

4π

(l − |m|)!
(l + |m|)!

P |m|n (cos θ)


√

2 sin(|m|φ), if m < 0

1, if m = 0.
√

2 cos(mφ), if m > 0

(2.19)

The real spherical harmonics Ỹ m
n can be derived from the complex spherical har-

monics by:

Ỹ m
n (θ, φ) =


√

2(−1)mI(Y −mn (θ, φ)), if m < 0

Y 0
n (θ, φ), if m = 0,
√

2(−1)mR(Y m
n (θ, φ)), if m > 0

(2.20)

where R(·) and I(·) denote the real and imaginary parts of the argument, respectively.
Inversely, the complex spherical harmonics Y m

n can be obtained from the real spherical
harmonics:

Y m
n (θ, φ) =


1√
2
(Ỹ −mn (θ, φ)− iỸ m

n (θ, φ)), if m < 0

Ỹ 0
n (θ, φ), if m = 0.

1√
2
(−1)m(Ỹ m

n (θ, φ) + iỸ −mn (θ, φ)), if m > 0

(2.21)

The real-valued spherical harmonics also form an orthogonal basis of the set of real
functions on the unit sphere, using the inner product [Dan01, p. 302]:

〈f | g〉 =
1

4π

∫ 2π

θ=0

∫ π
2

φ=−π
2

f(θ, φ)g(θ, φ) sinφdφdθ. (2.22)

An orthonormal basis can be defined by scaling each real spherical harmonic Ỹ m
n by

√
2n+ 1 [Dan01], and similarly to the complex spherical harmonics, we can decompose
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any real function f(θ, φ) on the unit sphere on this basis:

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fnmỸ
m
n (θ, φ), (2.23)

where fnm are the coefficients of the decomposition.

2.2.3 Wave equation solution for a single plane wave

To define the Ambisonics components from the wave equation solution, we focus on
deriving the solution for a single plane wave, and then we deduce the expression in
the general case. We consider a single-frequency plane wave arriving from direction
(θk, φk), with amplitude B and wave number k = ω

c , ω = 2πf where f is the frequency
of the wave. This plane wave also satisfies the general solution of the wave equation,
and it can be shown that in this case the solution can be written as [WM00, p. 227]:

p(r, θ, φ, t) = 4πBeiωt
∞∑
n=0

injn(kr)
n∑

m=−n
Y m
n (θ, φ)Y m

n (θk, φk)
∗. (2.24)

Using the relation between real and complex spherical harmonics in (2.21), we can
express the sum containing complex spherical harmonics in terms of real spherical
harmonics:

n∑
m=−n

Y m
n (θ, φ)Y m

n (θk, φk)
∗ =

n∑
m=−n

Ỹ m
n (θ, φ)Ỹ m

n (θk, φk), (2.25)

leading to the expression of the pressure for the single plane wave, using real spherical
harmonics:

p(r, θ, φ, t) = Beiωt
∞∑
n=0

injn(kr)

n∑
m=−n

Ỹ m
n (θ, φ)Ỹ m

n (θk, φk), (2.26)

where the constant term 4π has been incorporated in the amplitude term B. This
last expression for the solution of the wave equation in the spherical domain (for a
single plane wave) brings us to the definition of the Ambisonics coefficients.

2.3 First-order and higher-order Ambisonics

2.3.1 Definition of Ambisonics coefficients

(2.26) exhibits a solution of the wave equation for a single-frequency plane wave of
amplitude A, angular frequency ω and coming from direction (θk, φk). The Ambisonics
coefficients are defined as the coefficients of the decomposition of the pressure p on
the basis of real spherical harmonics [Dan01]:

Bm
n (t) = BeiωtỸ m

n (θk, φk). (2.27)
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As we can see, the propagation term injn(kr) is not taken into account when deriving
the Ambisonics components. In fact, this term can be computed for all r, so a sound
field can be completely recreated based on the Ambisonics coefficients only.

Finally, the definition of Ambisonics coefficients can be extended to the general
case of a composite point source signal s(t) with different frequencies (i.e., not only a
single-frequency wave):

Bm
n (t) = s(t)Ỹ m

n (θk, φk). (2.28)

(2.26) and (2.18) state that we can represent the sound field at any given point
in space using the infinite number of Ambisonics coefficients. In practice, the number
of available Ambisonics coefficients is limited (we explain why in subsection 2.3.4).
Hence, the infinite summation over n is truncated up to the Ambisonics order N :

p(r, θ, φ, t) ≈
N∑
n=0

injn(kr)
n∑

m=−n
Bm
n (t)Ỹ m

n (θ, φ). (2.29)

The truncation above restricts the set of functions p that can be faithfully represented
by such a reduced set of coefficients. Therefore, we assume that p is “order-limited”,
i.e., that its expansion coefficients for the orders higher than N are negligible [Raf19]
(this is analogous to band-limited functions in classical Fourier analysis). Such func-
tions can be spatially sampled, and perfectly reconstructed, from (N + 1)2 nearly-
uniform measurements on the sphere [JHN17].

2.3.2 First-order Ambisonics

When N = 1, the truncated representation of p is called first-order Ambisonics. It
has been originally proposed by Gerzon [Ger73] in the 1970s, who referred to it as
the B-format. This representation includes four components: B0

0 for n = 0, usually
written as W , and B1

1 , B
−1
1 and B0

1 for n = 1, usually written as X, Y and Z,
respectively. The choice of designation for X, Y and Z follows the directivity of the
spherical harmonics according to the usual axes x, y, z of an Euclidean space. For a
plane wave coming from (θk, φk) and carrying a signal s(t), the FOA representation
is obtained using (2.19):10

x(t) =


W (t)

X(t)

Y (t)

Z(t)

 =


s(t)Ỹ 0

0 (θk, φk)

s(t)Ỹ 1
1 (θk, φk)

s(t)Ỹ −11 (θk, φk)

s(t)Ỹ 0
1 (θk, φk)

 =


1√

3 cos θk cosφk√
3 sin θk cosφk√

3 sinφk

 s(t). (2.30)

The directivities of the FOA components are illustrated on Fig. 2.3. We can interpret
these four components as the recordings of four spatially coincident microphones: W
represents the recording of an omnidirectional microphone, and X, Y and Z represent
the recordings of three bidirectional microphones, each oriented on the corresponding

10In this thesis we use the N3D normalization standard [Dan01], which makes use of the real
spherical harmonics normalized with

√
2n+ 1 as introduced in Sec. 2.2.2.
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Figure 2.3: First-order Ambisonics directivities. Top: Ỹ 0
0 normal-

ized, corresponding to W . Bottom, from left to right: Ỹ 1
1 , Ỹ

−1
1 , Ỹ 0

1

normalized, corresponding to X, Y , Z, respectively. The red regions
correspond to positive values and the blue regions correspond to neg-
ative values.

axis. The channels X, Y and Z are assimilated to pressure gradients, which will be a
useful propriety later in this chapter.

As a consequence of its low number of channels, which is a practical advantage
here, the FOA format suffers from a low spatial resolution when representing the
sound field [Raf05]. One consequence is the reduction of the sweet spot size: it is the
spatial region between the loudspeakers in which the restitution of the original sound
field is the most accurate.

Note that the Ambisonics format can be transposed directly into the short-time
Fourier transform (STFT) domain, i.e., for each STFT time frame index t and fre-
quency bin f 11, we have:

x(t, f) =


W (t, f)

X(t, f)

Y (t, f)

Z(t, f)

 =


1√

3 cos θk cosφk√
3 sin θk cosφk√

3 sinφk

 s(t, f). (2.31)

2.3.3 Higher-order Ambisonics

To improve the spatial resolution of the Ambisonics representation, we can increase
the order N , leading to more components. When N > 1, we call it the higher-order

11Note that in this thesis we use the notations t and f for the frame index and frequency bin in
the STFT domain, as it is usually employed. Those notations are also used to express the physical
frequency f and time t only for some preliminary discussions as in this chapter.
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Ambisonics representation. For an order N , there are (N + 1)2 channels to represent
the original signal. Table 2.1 sums up the directivities of the HOA components up
to order 3, also illustrated in Fig 2.4. Using HOA components notably increases the
size of the sweet spot and the resolution of the spatial characteristics of the encoded
sound field, but at the cost of more channels to handle.

n m Ỹ m
n Ỹ m

n (θ, φ)

0 0 Ỹ 0
0 1

−1 Ỹ −11

√
3 cos θ cosφ

1 0 Ỹ 0
1

√
3 sin θ cosφ

1 Ỹ 1
1

√
3 sinφ

−2 Ỹ −22

√
15
2 sin 2θ cos2 φ

−1 Ỹ −12

√
15
2 sin θ sin 2φ

2 0 Ỹ 0
2

√
5
2 (3 sin2 φ− 1)

1 Ỹ 1
2

√
15
2 cos θ sin 2φ

2 Ỹ 2
2

√
15
2 cos 2θ cos2 φ

−3 Ỹ −33

√
35
8 sin 3θ cos3 φ

−2 Ỹ −23

√
105
2 sin 2θ sinφ cos2 φ

−1 Ỹ −13

√
21
8 sin θ cosφ(5 sin2 φ− 1)

3 0 Ỹ 0
3

1
2 sinφ(5 sin2 φ− 3)

1 Ỹ 1
3

√
21
8 cos θ cosφ(5 sin2 φ− 1)

2 Ỹ 2
3

√
105
2 cos 2θ sinφ cos2 φ

3 Ỹ 3
3

√
35
8 cos 3θ cos3 φ

Table 2.1: Directivities of HOA components up to order 3, with the
N3D normalization standard [Dan01].

2.3.4 Ambisonic encoding

In practice, Ambisonic signals (FOA or HOA respresentations) are computed from the
finite number of acoustic pressure observations {pi}i∈[1,I], measured by a microphone
array. Denoting by p ∈ RI and b ∈ C(N+1)2 the vectors of concatenated observations
p(r, θi, φi, t), i ∈ [1, I], and coefficients Bm

n , respectively, the expression (2.29) can be
compactly written as

p ≈ YWb, (2.32)

where Y ∈ RI×(N+1)2 is the matrix whose rows contain spherical harmonic functions
Ỹ m
n (θk, φk), evaluated at the directions (θi, φi), and W ∈ C(N+1)2×(N+1)2 is the di-

agonal weight matrix whose entries contain a sum of injn(kr) and a regularization
term [Nic10]. Without additional information, one would need a microphone array
containing I ≥ (N + 1)2 channels to obtain the coefficients b of the order N , which
imposes practical limitation for the design of an Ambisonics microphone.
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Figure 2.4: Higher-order Ambisonics directivities, with the spherical
harmonics degree n increasing from top to bottom and the order m
increasing from left to right. Red regions correspond to positive values
and blue regions correspond to negative values.

2.4 Sound intensity and velocity vector

In the section 2.3, we introduced the definition of the Ambisonics coefficients, which
are sufficient to entirely represent the sound field at any recording point. In this
section, we present several representations based on the Ambisonics format which will
be useful in the remainder of this thesis.

2.4.1 Sound intensity vector

Definition

Sound intensity is a fundamental acoustic quantity that is often used to characterize
the distribution of energy of a sound field [WM00]. Often expressed as a time-averaged
quantity over certain temporal segment, it describes the magnitude and direction of
the flow of sound energy per unit area [JJ13]. For narrowband signals, one can define
the complex “steady state” sound intensity vector as [Jac91; WM00]:

I = pu∗, (2.33)

where p is the sound pressure, u is the particle velocity vector, which is the physical
velocity of the particles in motion which transmit the wave [Kin00].

It can be shown that the sound pressure p and the particle velocity vector u are
related by the linearized fluid momentum equation [Mer06, p. 27]:

−∇p = ρ0
∂u

∂t
, (2.34)
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with ∇ being the gradient operator and ρ0 denoting the air density.
The omnidirectional channel W can be considered as an estimate of the acoustic

pressure at the microphone position, while the FOA channelsX, Y and Z approximate
the spatial derivatives of pressure p along the Cartesian coordinate axes [Mer06, p. 50].
Therefore, one can approximate the particle velocity vector relatively to these channels
with [PDMP18, p. 90] (the factor 1/

√
3 is due to the presumed N3D normalization

[Dan01]):

u(t) = − 1

ρ0c
√

3

X(t)

Y (t)

Z(t)

 . (2.35)

As we will see later, we are mainly interested in the direction of the vector u(t), hence,
by an abuse of notation, we also denote by u the normalized particle velocity vector.

Since the previous equation is an approximation, injecting it into (2.33) leads to an
approximation of the intensity vector, which we call the pseudointensity vector (PIV).
To simplify the notation, we use the same symbol I to refer to the pseudointensity
vector, which is now expressed using only the FOA components (in the STFT domain)
as:

I(t, f) = α

W (t, f)X∗(t, f)

W (t, f)Y ∗(t, f)

W (t, f)Z∗(t, f)

 , (2.36)

with α = − 1
ρ0c
√
3
a factor that will be dropped thereafter. As for the remaining of

this thesis, we will refer to the pseudointensity vector based on FOA components as
the first-order-pseudointensity vector (FO-PIV).

Active first-order-pseudointensity vector

We define the active first-order-pseudointensity vector as the real part of the complex
FO-PIV:

Ia =

R
(
W (t, f)X∗(t, f)

)
R
(
W (t, f)Y ∗(t, f)

)
R
(
W (t, f)Z∗(t, f)

)
 . (2.37)

This quantity physically represents the transport of sound energy in the fluid, and it
can be shown to be proportional to the gradient of the phase of sound pressure [JJ13].
In other words, assuming free-field propagation, active intensity is orthogonal to the
propagating wavefront.

Reactive first-order-pseudointensity vector

The reactive first-order-pseudointensity vector is defined as the imaginary part of the
complex FO-PIV:
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Ir =

I
(
W (t, f)X∗(t, f)

)
I
(
W (t, f)Y ∗(t, f)

)
I
(
W (t, f)Z∗(t, f)

)
 . (2.38)

Physically, the reactive FO-PIV represents the dissipative local energy transfers [Dan01],
and is orthogonal to the surfaces of equal energy of sound pressure [JJ13; Dan01].
While being negligible under the far/free field assumptions, reactive intensity becomes
important in reverberant conditions.

Higher-order pseudointensity vector

We extend the previously introduced FO-PIV by using HOA components. The general
expression for this higher-order-pseudointensity vector (HO-PIV) is, at order N :

IN (t, f) = B0
0(t, f)B∗1:N (t, f), (2.39)

where B1:N is the vector containing all HOA channels for n = 1 to N (there are
(N + 1)2 − 1 channels in total). We can see that I1 corresponds to the FO-PIV.

The definition of the active and reactive HO-PIV using HOA components (INa and
INr ) is similar to the first-order case, i.e., they correspond to the real and imaginary
part of the HO-PIV IN , respectively.

Pseudointensity vector normalization

A normalized version of the FO-PIV is obtained as follows:

Ī(t, f) =
I(t, f)

|W (t, f)|2 + 1
3

(
|X(t, f)|2 + |Y (t, f)|2 + |Z(t, f)|2

) . (2.40)

Note that the norm of Ī(t, f) is upper bounded by 1.
More generally, the normalized HO-PIV12 is given by:

ĪN (t, f) =
IN (t, f)∑N

n=0
1

2n+1

∑n
m=−n|Bm

n |2
. (2.41)

Assuming that the time-frequency bin (t, f) is dominated by a single source, the
normalized (FO-/HO-)PIV is independent of the source signal “content” s(t, f), and
mainly encodes the spatial footprint of sound propagation. This is easily observed
for the plane wave propagation, since (according to (2.27)), we have B0

0B
m
n
∗ ∝ |B|2.

The latter term cancels out in (2.41), and the remaining part depends only on the
corresponding spherical harmonics of different orders.

12Again, assuming the N3D normalization standard.
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2.4.2 Frequency-domain velocity vector

The sound PIV was defined as the product between the first Ambisonics channel
W := B0

0 and the other channels (X, Y and Z for FO-PIV, and all channels except
W for HO-PIV). We also showed a way to normalize the PIV to bound its values. A
related representation, termed Frequency-Domain Velocity vector (FDVV) in [Dan01],
is obtained by dividing the complex conjugate of FO-PIV by |W (t, f)|2:

V(t, f) =
I(t, f)∗

|W (t, f)|2
=

1

W (t, f)

X(t, f)

Y (t, f)

Z(t, f)

 . (2.42)

Analogously to Ī(t, f), due to the division by |W (t, f)|2, the FDVV has the advantage
of being less dependent on the energy and therefore on the content of the signal. As
for the complex PIV, we can separate the FDVV into the real and imaginary parts.

2.4.3 Time-domain velocity vector

In this section, we will define the time-domain velocity vector as the inverse Fourier
transform (IFT) of the FDVV13 [DK20], but we modify the expression of the FDVV
a bit beforehand.

We place ourselves in a single-source environment in which the Ambisonics record-
ing captures the multipath signal. For a single timestep, due to the superposition
principle (1.3), each recorded FOA channel will be a sum of delayed and attenuated
copies of the source signal s(t) (with an attenuation depending on the incoming wave-
front direction and channel directivity). Under the far field assumption, the nth such
wavefront xn(t) may be represented by a plane wave. According to (2.30), the FOA
components of the plane wave propagating from the direction (θn, φn), in frequency
domain, are compactly expressed by

xn(f) =

[
1√

3un,

]
s(f),

where un is the corresponding normalized particle velocity defined in (2.35).
The recorded signal, in the noiseless case, is then a sum of FOA-encoded plane

waves:
x(f) = s(f)

∑
n

an(f)xn(f),

with an(f) being the complex magnitude (incorporating both the common attenuation
factor and phase shift) of the sound wave at frequency f .

13Note that FDVV and TDVV are also known as Relative Transfer Function and Relative Impulse
Response (in the spherical harmonic domain), respectively [JHN17].
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Plugging these expressions into the definition of FDVV (2.42), we can now decom-
pose the FDVV at frequency f into the different reflections14:

V(f) '
∑

n an(f)un∑
n an(f)

=
u0 +

∑
n≥1 γn(f)un

1 +
∑

n≥1 γn(f)
, (2.43)

where γn(f) = an(f)
a0(f)

= gn(f)e−2iπfτn is the relative gain of the nth reflection with
respect to the direct path (without losing generality we assume that n follows the
order of reflections). Assuming that |

∑
n≥1 γn(f)| < 1, we can express V(f) using the

Taylor series of the function f(x) = 1
1+x :

V(f) =
(
u0 +

∑
n≥1

γn(f)un

) ∞∑
k=0

( ∞∑
n=1

−γn(f)
)k
, (2.44)

which we can rearrange by separating the terms from the primary reflections and the
terms coming from the interactions between reflections:

V(f) = u0 + u0

∞∑
k=1

( ∞∑
n=1

−gn(f)e−2iπfτn
)k

+
∞∑
k=0

∞∑
n=1

(
gn(f)e−2iπfτnun

)( ∞∑
n=1

−gn(f)e−2iπfτn
)k

= u0 + u0

∞∑
k=1

∞∑
n=1

(
− gn(f)e−2iπfτn

)k
+
∞∑
k=0

∞∑
n=1

−un

(
− gn(f)e−2iπfτn

)k
+ Λ(f),

(2.45)

where Λ(f) contains the cross terms of the interactions between reflections. Finally
we obtain:

V(f) = u0 +
∞∑
k=0

∞∑
n=1

(
u0 − un

)(
− gn(f)

)k
e−2iπfkτn + Λ(f). (2.46)

Assuming now that gn(f) = gn is frequency-independent, we now apply the IFT
of V to define the time-domain velocity vector (TDVV) :

V(t) = δ(t)u0 +

∞∑
k=0

∞∑
n=1

(
u0 − un

)
(−gn)kδ(t− kτn) + λ(t), (2.47)

with δ denoting the Dirac delta function and λ(t) the IFT of Λ(f).
14Here we use the symbol “'” instead of equality due to the N3D encoding factor

√
3 in the

denominator. Without loss of generality, we drop this value in the ensuing expressions.
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Figure 2.5: Theoretical time-domain velocity vector considering only
one reflection. The first orange peak at t = 0 contains the coordinates
of a vector colinear to the source DoA, representing the direct path
between the source and the microphone array. The other orange peaks
represent the contribution of the direct path to the value of the TDVV
for different timesteps, while the purple peaks represent the contribu-
tion of the first reflection. All the peaks are equally spaced by an
interval equal to τ1, and the peak amplitudes exponentially decay by
a factor −g1, with alternating sign.

In order to better appreciate the information contained in the TDVV, let us first
assume that there is only one reflection in the considered environment:

V(t) = δ(t)u0 +
∞∑
k=0

(
u0 − u1

)
(−g1)kδ(t− kτ1) + λ(t). (2.48)

Fig. 2.5 illustrates what the TDVV looks like when considering only one reflection.
As the TDVV is a vector with three coordinates (considering only the FOA domain),
the coordinate in y-axis actually encodes the vector coordinates (the x-axis represents
time). At t = 0, we have u(0) = u0 which is a vector colinear to the signal DoA. Then
when t increases we have a series of exponentially decaying peaks which are colinear
to u0−u1 at all time values which are multiples of τ1. Therefore we can theoretically
retrieve the DoA, the first reflection direction, delay and relative gain with the TDVV
under the assumptions of a single sound source with only one reflection and without
noise.

Now let us consider the general form of the TDVV with more than one reflection,
leading to interaction between them. On Fig. 2.6 we can see what the TDVV looks
like by illustrating the contributions of the direct path and the first two reflections,
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Figure 2.6: Theoretical time-domain velocity vector considering sev-
eral reflections. The contributions of the direct path is represented in
orange, those of the first reflection in purple and those of the second
reflection in green. As in the case of only one reflection, the contribu-
tions corresponding to one reflection are equally spaced by τn. In blue
are indicated times for which the peaks contain the contributions of
the interactions between the different reflections.

including the interactions (in blue in the figure). We can see that the peaks involving
the contribution of only one of the reflections are still equally spaced by τn. But
now we see the appearance of some of the cross terms which were included in λ(t) in
(2.47). Another phenomenon not represented in the figure can occur: theoretically,
the different contributions of the reflections alone or those of the interaction between
the reflections can overlap at the same time (related to the least common multiple of
τn) so it can be more difficult to separate the different contributions when analyzing
the TDVV.

The TDVV thus provides an interesting representation to retrace the multipath
propagation of a sound source. However, strong assumptions have been made to
obtain an analytical expression for the TDVV: a single-source configuration without
noise, frequency-independent gains, and the hypothesis that |

∑
n≥1 γn(f)| < 1,∀f

which is not fulfilled in practice. We do not push further the analysis of the TDVV
in this thesis, since it is a relatively new idea in the literature. However, a certain
number of experiments, discussed in Chapter 6, has been conducted to exploit such a
representation.
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2.5 Conclusion

In this chapter, we introduced the framework we relied on in this thesis, based on
the Ambisonics format. The main advantage of Ambisonics lies in the fact that it is
capable of encoding a sound scene independently of the microphone array configura-
tion, and without emphasizing any particular direction. We have shown the definition
of the Ambisonics coefficients based on the spherical harmonics decomposition of the
signal, which emerged from solving the wave equation in the spherical domain. These
coefficients, considered at order 1 (FOA) or higher (HOA), have been employed to
define several physical quantities such as the FO- and HO-PIV, and the frequency-
domain or time-domain velocity vector. All these sound representations have been
used in our thesis work, generally as an input feature for neural networks, which are
introduced in the next chapter.



33

Chapter 3

Artificial neural networks

Artificial neural networks (ANN) are a set of algorithms inspired by biological
neural networks. They are the core components of deep learning [GBC16],

which itself can be defined as a part of machine learning. Machine learning refers to
the capabilities of certain systems to learn how to perform a specific task, having been
provided with an appropriate data for training. At the time of this thesis writing, in
2021, more and more applications have proven how much deep learning has improved
the performance of machines in many various tasks, e.g., in image recognition [He+16],
machine translation [Vas+17], speech recognition [Hin+12], sound source separation
[Hen+20], board game playing [Sil+17], protein structure prediction [Jum+21], or
music generation [HPN17]. While it has been shown that any task can be learned
with a three-layer neural network [HSW89], neural systems generally consist of many
layers connected together, resulting in deep neural architectures, hence the term deep
learning.

Many neural network architectures have been proposed in the past, and many of
them were initially designed for a specific task, e.g., convolutional neural networks
(CNN) for image recognition [LeC+89] or attention mechanism for machine transla-
tion [He+16]. Due to their success, it is common to encounter adaptations of these
architectures to address problems other than the original ones: for example, CNNs
have been widely used for audio related tasks [Pur+19], while attention-based neural
networks are commonly applied for computer vision [Dos+21].

In this chapter, we provide a short overview of deep learning, and more precisely of
different types of neural networks which were used throughout this thesis. Although
the exploitation of artificial neural networks (ANN) is relatively new in the SSL liter-
ature (see Section 4.2), deep learning is widely established in the audio research com-
munity, so this section is written assuming that the reader has some basic background
on ANNs. We describe the different neural network architectures and mechanisms we
exploited in this thesis. We assume this short introduction will be sufficient to help
the reader to easily follow the experiments described in the next chapters. If needed,
more in-depth description of deep learning can be found in [GBC16].

This chapter is organized as follows. Section 3.1 introduces the basics of ANNs
and the multilayer perceptron. Section 3.2 explains the inner workings of a CNN,
while Section 3.3 deals with recurrent neural networks (RNNs). Section 3.4 proposes
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a quick summary of residual connections. Finally, Section 3.5 describes the attention
mechanism.

3.1 Multilayer perceptron and backpropagation algorithm

3.1.1 Multilayer perceptron or feedforward neural network

A multilayer perceptron (MLP) is a particular kind of artificial neural network in
which all the connections are made forward, hence its name. In this section, we
describe how an MLP can approximate a function using layers of artificial neurons
and activation functions. We also explain how such a neural network can be trained
with the backpropagation algorithm, with a review of loss functions and output units
used throughout this thesis.

Artificial neurons

The fundations of artificial neural networks have been proposed as early as 1943 when
McCulloch and Pitts [MP43] established a computational model of biological neurons.
An artificial neuron is the building block of an ANN, and is composed of two stages :

• A linear combination of its entries, using a set of weights specific to this neuron,
as in (3.1)

• The addition of a bias b

• An activation function σ applied after the linear combination

y = σ
( I∑
i=1

θixi + b
)
, (3.1)

where {θi}i and b form the parameters of the neuron, xi are the entries of the input
x and y is the (scalar) output. We often set b = θ0 and append 1 to the input vector
so that {θi}i is the entire set of weights.

Generally, multiple neurons are assembled to form a layer, in which all the neurons
are input with the same vector x, thus each neuron of the same layer contains the same
number of weights. An artificial neural network is then defined to be a succession of
H layers of artificial neurons (H is known as the depth of the network), each layer
being fed with the vector formed by the output of all neurons from the previous layer.
If the layer h is composed of Ih neurons with input xh−1 (with Ih−1 components),
then the entries of the output vector xh are:

xhj = σ

( Ih−1∑
i=1

θhj,ix
h−1
i + bhj

)
, (3.2)

for all j ∈ {1, ..., Ih}. This type of layer is called a fully-connected layer or a feedforward
(FF) layer. The layer at h = 1 is known as the input layer, which directly receives the
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input features to its entries, and the last layer at h = H is known as the output layer.
We generally name the output vector y. The other layers are termed hidden layers.

We can rewrite (3.2) in a more compact manner as:

xh = σ(bh + Whxh−1), (3.3)

where bh is the bias vector of layer h and Wh is the weight matrix in RIh×Ih−1 . This
computation is known as a forward pass.

The universal approximation theorem [HSW89] states that a MLP with two lay-
ers and a non-polynomial activation function at the first layer can approximate any
function f with an arbitrary accuracy.

Activation functions

There is a number of non-polynomial activation functions commonly used in the DL
literature, as well as in this thesis. Linear activation functions are mostly used at the
output layer, when the network is used in regression mode (see Section 4.2.2).

The rectified linear unit (ReLU) is one of the most used activation function:

σ(x) = max(0, x), ∀x ∈ R. (3.4)

This function has the advantage to preserving some of the properties that make linear
models generalize well [GBC16].

The sigmoid function is defined by:

σ(x) =
1

1 + e−x
, ∀x ∈ R. (3.5)

Its values are always in [0, 1], and it converts large negative values to 0 and large
positive values to 1. It is often used as an output activation function with its output
value seen as a probability, which is particularly suitable for binary classification
problems. Sometimes, the hard sigmoid is preferred for its sharper contour:

σ(x) = max
(

0,min
(
1,
x+ 1

2

))
, ∀x ∈ R. (3.6)

The hyperbolic tangent (tanh) function is defined by:

σ(x) =
e2x − 1

e2x + 1
, ∀x ∈ R. (3.7)

The shape of tanh ressembles the shape of the sigmoid but it takes values within
[−1, 1]. Finally, the softmax function is a generalization of the sigmoid function and
produces a set of values within [0, 1]:

σ(yi) =
exi∑I
i=0 e

xi
, (3.8)
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where xi and yi are the components of vectors x and y, respectively. This function
ensures that y can be seen as a probability distribution since its entries sum to 1,
which is particularly suitable for multi-class classification problems.

3.1.2 The backpropagation algorithm

During the training stage, a neural network can adjust its weights with an algorithm
called backpropagation – other algorithms exist - each time it is fed with a training
example. To do that, the neural network performs a forward pass with training
example x, which gives an output value ŷ. After choosing a loss (or cost) function
L, the knowledge of the target value y (which is known as the label or ground-truth
of data x) leads to the computation of the error made by the neural network for
input x, L(y, ŷ). The backpropagation algorithm uses this value L(y, ŷ) to adjust the
weights of the neurons with a gradient descent. If at iteration t of the backpropagation
algorithm the weights are wt (we drop the index h for better visualization), the new
value wt+1 at iteration t+ 1 is:

wt+1 = wt − η∂L(y, ŷ)

∂wt
, (3.9)

where η is known as the learning rate. This operation is done for all weights and for all
training examples, by the means of training batches (composed of a certain numbers
of these training examples), until some convergence criterion is met. In practice, the
neural network is fed with the whole training set (each training pass using the whole
training set is called an epoch) for a certain number of times.

Loss functions

The choice for the loss function L depends on the output strategy employed to learn
the considered task. The idea is to opt for a function that penalizes the difference
between the ground-truth y and the estimated value ŷ with a sufficiently large value
so that the change in weights due to gradient descent is significant. Moreover, loss
functions are generally applied “simultaneously” on subsets of training examples called
training batches. In the following, we define the loss functions only for one training
example, while for training batches the loss is obtained by summing the losses of all
batch examples. Throughout this thesis, several loss functions were exploited:

• Mean squared error (MSE) : L(y, ŷ) = 1
I

∑I
i (yi− ŷi)2. When computing the loss

for a training batch, the sum of all losses is divided by the number of examples
in the batch, hence the term mean. It is often used with a regression paradigm.

• Categorical cross-entropy : L(y, ŷ) = −
∑I

i=1 yilog(ŷi). This cross-entropy can
be used for a classification problem, for which y is a one-hot vector (all entries
are set to 0 except the one corresponding to the class which is set to 1). The
softmax activation function suits well to this loss function.
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• Binary cross-entropy : L(y, ŷ) = −ylog(ŷ) + (1 − y)log(ŷ), which a particular
case of the categorical cross-entropy when I = 1, i.e. the output is a scalar. It
is generally used when y has a binary value (0 or 1) and in conjonction with the
sigmoid function which bounds the values of ŷ in [0, 1]. If y and ŷ are vectors
with binary values, the loss is obtained by summing the binary cross-entropy
for each vector entry.

3.1.3 Avoiding overfitting

A major problem in neural networks is that the model can lack generalization when
it is applied on data unseen during the training stage. This phenomenon is called
overfitting, and part of deep learning research has been dedicated to avoid it and
make the neural network to generalize better on unseen data. One strategy to control
the learning of a neural network is to make use of a validation dataset, which does
not contain common data with the training dataset. During the training phase, the
performance of the neural network is evaluated on the validation dataset (hence unseen
data), and the training is stopped when the performance starts decreasing, meaning
that the model starts overfitting on the training data. This monitoring method is
known as early stopping.

Another common regularization method is dropout [Sri+14]. It relies on bypassing
random neurons (except for those in the output layer) based on a user-adjustable prob-
ability so that the output of these neurons are fixed to zero. This enforces the neural
network not to overuse some specific neurons, and consequently prevents overfitting.
This technique is employed only during training. Finally, batch normalization is a
technique which can make a neural network more stable by rescaling and recentering
the data in-between layers.

These methods were regularly used all along the experiments in this thesis.

3.2 Convolutional neural networks

Convolutional neural networks (CNN) are neural networks including convolutional
layers which are specifically well-designed for processing data presented as a grid, for
instance images represented by pixels. It has been pioneered in the end of the 1980s
by LeCun et al. [LeC+89] to recognize handwritten digits in images. Since then,
other new ideas around convolutional layers have been proposed in the literature.
This section aims to provide a quick overview of CNNs, since they were used in our
experiments.

3.2.1 Convolutional layers

As its name indicates, a convolutional layer applies convolutions on its input to pro-
duce an output, using a series of convolution kernels (or filters) k which contain the
learnable weights. In the 1D discrete domain (e.g., discrete time), this convolution is
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Figure 3.1: 2D convolution operation with a 3×3 kernel. Each 3×3
region on the image is multiplied with the kernel (right matrix), which
is a 2D convolution operation, resulting in a scalar value associated
to the region in the output. Zero-padding can optionally be used for
regions on the edges. Note that the illustrated kernel is an example of
how we can detect vertical contours with convolutions.

expressed by:
y(n) = (x ∗ k)(n) =

∑
i

x(n− i)k(i), (3.10)

where x and y are the input and output, respectively, and n is the discrete sample
index. In practice, the kernel k is a vector with a fixed size, so the sum is in a finite
corresponding range.

In the 2D domain, the convolution is applied in both dimensions:

y(m,n) = (x ∗ k)(m,n) =
∑
i

∑
j

x(m− i,m− j)k(m,n). (3.11)

In this case, the kernel is a 2D matrix, and the same consideration applies regarding
the range of the summation. Fig. 3.1 illustrates how a single 2D kernel of size 3 × 3

would be applied for each pixel of an input image.
This convolution operation has also been extended to higher dimension, but this

will be not used in this thesis. Zero-padding, i.e., automatic completion of input
image edges with zeros, can be used so that the output dimension is exactly the same
as the input dimension. In contrast, one can use a stride, i.e., a shift of the kernel
operator in between two successive convolutions, greater than one so as to limit the
size of the output and somehow “compress” the data representation, at the price of
lower resolution.

During the training phase, the kernel matrix is learnt so that it provides the
most meaningful convolution operation for the neural network to perform a task.
In a convolutional layer, a bank of (possibly many) different kernels are generally
instantiated, so that each one can perform a specific operation, leading to different
higher-level outputs, which are commonly called feature maps. These outputs are then
stacked, as illustrated in Fig. 3.2, and can become the input for another convolutional
layer.

One major advantage of convolutional layers is that the operations are translation
equivariant [Bro+21]. In that way, each kernel can be learnt to highlight specific
contours in the input feature, which is why several kernels are assembled in each
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Figure 3.2: Application of multiple convolution kernels on a input
image. Each kernel has its own set of learnable weights, and results in
specific outputs, which are stacked in what is called feature maps.

Figure 3.3: Visualization of dilated convolutions with a dilation fac-
tor l = 2.

convolutional layer. The obtained feature maps provide a somehow higher-level rep-
resentation of the input signal, and stacking several convolutional layers one after
another is often employed to perform feature extractions in practice.

3.2.2 Dilated convolutions

A generalization of the convolution kernels presented above has been proposed in
[YK16], under the name dilated convolution. The idea is to apply the kernel on a
downsampled version of the data, so that the convolution operation span is increased
while keeping the same amount of learnable weights. This dilated convolution can be
expressed by [YK16]:

(x ∗ k)(n) =
∑
i

x(n− li)k(i), (3.12)

where l is the dilation factor. For l = 1, this operation is equivalent to the classical
convolution. The idea can be extended to higher dimensions. Fig. 3.3 illustrates
how these dilated convolutions operate on input data, showing how it increases the
convolution operation span. Dilated convolutions are also called atrous convolutions,
since we can see them as classical kernels with zeros inserted in between the actual
weights.
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Figure 3.4: Max-pooling operation. The operation is downsampling
the data by keeping only the highest value of a considered region., In
this example, the pooling size is 2× 2 and the stride is 2.

3.2.3 Pooling operation

Pooling layers are also very common when using convolutional layers in neural net-
works. The goal of these layers is to downsample the data to reduce its dimensionality.
The pooling size indicates the region shape in which only one value is extracted. If
max-pooling is used, the highest value is kept, while if average pooling is used, the
extracted value is the mean of all values in the corresponding region. As with con-
volutional layers, one can opt for a stride value, i.e., a shift that will skip data when
applying the pooling operation. Fig. 3.4 illustrates the max-pooling operation with a
pooling size of 2× 2 and a stride of 2.

3.3 Recurrent neural networks

Recurrent neural networks (RNN) are a family of neural networks that are suitable
for processing sequential data, in which the ordering of successive data vectors bears
importance. With MLPs or CNNs, data are processed one layer after another, without
memorizing the operations within the network. The idea behind RNNs is to keep in
memory some values (called states) that contain a summary of past data information
and which are used for further computation of the present output vector.

3.3.1 Basic recurrent neural networks

We consider a sequence of data vectors xt where t ∈ {1, ..., T} is analog to a time
index (although it could be any sequential index). In a basic recurrent layer, at each
timestep t, a hidden vector ht is considered in addition to the input vector xt. First,
the hidden vector ht is computed from the previous hidden vector ht−1 and the current
input vector xt:

ht = σh(Whh
t−1 + Wxx

t + b), (3.13)

where Wh and Wx are weight matrices and b is the bias weight vector. Then, the
output vector is computed as :

yt = σy(Wyh
t), (3.14)
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Figure 3.5: Compact (left) and unrolled (right) visualization of a
basic recurrent layer.

with Wy being the layer output weight matrix. Note that the activation functions σh
and σy are not necessarily the same. Fig. 3.5 illustrates how a basic recurrent layer
processes data.

Note that recurrent layers are often employed besides convolutional layers to form
a convolutional recurrent neural network (CRNN).

3.3.2 Backpropagation through time and vanishing gradient

With the way a recurrent neural network is defined, one has to turn the usual back-
propagation algorithm presented in Section 3.1.2 into what is referred as backprop-
agation through time (BPTT). Without giving all details which can be found, e.g.,
in [GBC16], the idea is to unfold the recurrent layer and consider the weights to be
shared by each step. BPTT first relies on computing the loss for all timesteps of all se-
quences in the training batch. Then the gradient of the total loss for a specific weight
is obtained as the sum of the gradients for each timestep. However the gradients for
timesteps t > 0 depends on the gradients for previous timesteps t′ < t, so one needs
to iterate backwards through time in order to compute all the gradients (hence the
name BPTT).

One well-known limitation of this algorithm is the so-called vanishing gradient
problem. As the gradients are computed in an iterative way, some gradient values
can become very small thus preventing the weight from changing its value. The more
iterations are considered the more pronounced is this phenomenon.

3.3.3 Long short-term memory

The long short-term memory (LSTM) is a recurrent architecture proposed in 1997 by
Hochreiter and Schmidhuber [HS97], as a means to cope with the vanishing gradient
problem, by keeping the error in the LSTM cells. Fig. 3.6 illustrates the mechanism
behind an LSTM cell. In addition to the input vector xt and the hidden vector ht,
this model introduces new vectors which are used as gates to control the flow of
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Figure 3.6: Long short-term memory cell mechanism. In this dia-
gram the activation functions are not shown for the sake of clarity.
The gates are displayed in yellow whereas the operations are in red,
with ◦ denoting the Hadamard (element-wise) product.

information inside the LSTM cell. The first four vectors, which are all computed in a
similar way with their own weights, are:

• a forget gate vector f t obtained by:

f t = σs(Wf,xx
t + Wf,hh

t−1 + bf ), (3.15)

• an input gate vector it computed with:

it = σs(Wi,xx
t + Wi,hh

t−1 + bi), (3.16)

• an output gate vector ot expressed by:

ot = σs(Wo,xx
t + Wo,hh

t−1 + bo), (3.17)

• a cell input activation vector ĉt calculated from

ĉt = σh(Wc,xx
t + Wc,hh

t−1 + bc), (3.18)

where σs and σh are the sigmoid and hyperbolic tangent activation functions, respec-
tively.

Using the xt, it, f t and ĉt, the cell state vector ct (acting like a memory cell), can
be obtained by:

ct = f ◦ ct−1 + it ◦ ĉt, (3.19)

where ◦ denotes the element-wise product. Finally, the hidden vector ht is computed
with:

ht = ot ◦ σh(ct). (3.20)
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Figure 3.7: Gated recurrent unit mechanism.

In an LSTM cell, the hidden vector ht actually acts as the output vector at each
timestep t.1

3.3.4 Gated recurrent units

In the same vein as LSTMs, gated recurrent units (GRU) [Cho+14] have an internal
mechanism which can circumvent the vanishing gradient problem as the error remains
in the GRU cells. A GRU is composed of two gate vectors, as illustrated in Fig. 3.7:

• an update gate vector zt obtained by:

zt = σs(Wz,xx
t + Wz,hh

t−1 + bz), (3.21)

• a reset gate vector rt computed with:

rt = σs(Wr,xx
t + Wr,hh

t−1 + br). (3.22)

A candidate activation vector is then calculated with:

ĥt = σh
(
Wh,xx

t + Wr,h(rt ◦ ht−1 + bh)
)
. (3.23)

Finally the hidden vector (also acting as the output vector) is obtained with:

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt. (3.24)

In summary, a GRU is similar to an LSTM, with the main difference that a single
gate performs both the forgetting and updating actions.

3.3.5 Bidirectional recurrent layers

The different types of recurrent mechanism presented above (basic recurrent layer,
LSTM and GRU) are capable of processing the sequential data in a causal way. How-
ever, depending on the learning task, it could be meaningful to process the data in the

1Although this seems to contrast with the definition of an RNN, it is actually the way the LSTMs
are implemented in most deep learning frameworks such as Tensorflow or PyTorch.



44 Chapter 3. Artificial neural networks

Figure 3.8: Bidirectional recurrent neural networks. A sequence is
processed in both directions: from past to future and from future to
past. This scheme can be applied for any recurrent mechanism, i.e.,
the green cells can be basic recurrent units, LSTMs or GRUs.

other direction as well, from future to current input (e.g., when looking for a music
tempo, or when a whole data sequence is analyzed to obtain an overall prediction).
In other words, it can be interesting to exploit information from both past and future
data when processing the data at the current timestep. Bidirectional recurrent neural
networks [SP97] have been introduced to address this problem. They combine recur-
rent layers processing the sequence from beginning to the end with recurrent layers
processing the sequence the other way around. Fig 3.8 illustrates how such a combi-
nation is done within the network. An input vector is fed separately into a forward
layer and a backward layer, each one producing an independent output internal state
vector. Thus, the next layer can benefit from two input vectors, one relying on the
past and another relying on the future. Such bidirectional layers can also be applied
with LSTMs or GRUs.

3.4 Residual neural networks

In this section we briefly present what residual neural networks consist of, and why
are they useful in deep learning models.

Residual neural networks have been proposed in 2016 by He et al. [He+16] to
address two common training problems encountered with very deep convolutional
neural networks: the vanishing gradient problem which we presented in Section 3.3,
and the loss of accuracy resulting from the large number of layers. Their idea actually
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Figure 3.9: Comparison of a residual block (right) and a classical
convolutional block (left). In a residual block, the input is added to
the output of the last convolutional layer, eventually after its shape is
adjusted using an additional convolutional layer to match the shapes.

improved the performance of convolutional neural networks because it allowed for
deeper architectures.

Residual neural networks are based on the desire of preserving the input features
of a given layer, in addition to the output of this layer. Indeed, numerous successive
transformations, applied by the multilayer structure of a deep neural network, can
result in the loss of meaningful information contained in the layer’s input features.
By adding residual connections between the input of a layer and its output, one can
make this input feature flow through this layer unaltered (or almost, as we will see)
so that it can be used further in the network.

Fig. 3.9 illustrates how a residual block, i.e., a series of layers including a residual
connection, differs from a similar neural network segment without such connections.
As we can see, the input of this block flows through the residual connection and is
added to the output of the residual block. This residual block transforms the input
using several layers, as a classical convolutional neural network usually does. However,
in order to be able to add the input with the residual block output, we need to make
sure to match their shapes. One trick to do this relies on inserting a convolutional
layer with kernels of size 1× 1 to adapt the dimensions of the input feature.

An extension of this idea has been proposed in [Hua+17], where the authors pro-
pose to concatenate the input of one block with its output, instead of adding them.
Their goal is to have every feature map propagated in each subsequent layer.
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Figure 3.10: Encoder-decoder scheme. The encoder processes the
entire input sequence and produces a context vector, which is then
used as input for the decoder part to generate the output sequence.
The input and output sequences are not necessarily of the same length.

3.5 Attention mechanisms

In this section we explain the attention and self-attention mechanisms. Attention
models were introduced by Badhanau et al. [BCB15] in 2014 and refined by Luong
et al. [LPM15] in 2015 to improve sequence-to-sequence models. It granted neural
networks with the capability to cope with long input sequences, especially in machine
translation. Another great leap in natural language processing (NLP) was made with
the Transformer architecture [Vas+17], which includes the concept of self-attention.
This neural network based on an encoder-decoder scheme is very powerful to exploit
the context of each word in a sentence, and has led to state-of-the-art language models
such as BERT [Dev+19] or GPT [Bro+20].

3.5.1 Encoder-decoder scheme

A sequence-to-sequence model is an architecture that takes a sequence of items (words,
frames, images, etc.) as input, and process it to output another sequence of items.
Such models are often constituted of two components: an encoder and a decoder.
As illustrated in Fig. 3.10, an encoder is a neural network which processes the entire
input sequence and computes an output vector called the context vector. This context
vector is then sent to the decoder, which is also a neural network, to output the final
sequence. Before the advent of attention models, encoder and decoder were usually
made of recurrent neural networks, where the context vector is actually the hidden
vector of the last recurrent layer of the encoder network. The output sequence is
generated item by item by the decoder, at each timestep, using the context vector to
initialize its first hidden vector.
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3.5.2 Concept of attention

As we have seen, the context vector contains all information available to the decoder
to generate the output sequence. This is an issue when dealing with long input
sequences, since it becomes more and more difficult to encode all relevant information
from such a sequence in a single vector. Attention has been conceived to circumvent
this limitation.

The first addition to the previously explained encoder-decoder scheme is that the
encoder hidden vectors for all steps are passed to the decoder, instead of passing only
the last hidden vector. In that way, information from each input sequence item is
available to the decoder. The second novelty is the so-called attention step. The
intuition is that, with regards to a particular output item, there are some items in the
input sequence which are more relevant than the others. Assuming the decoder is at
timestep t, meaning it has already output t− 1 items, and the current hidden vector
is ht−1, the attention mechanism works as follows:

• a so-called attention score is computed between all encoder hidden vectors and
the current decoder hidden vector ht−1, by the means of learnable weights ma-
trices;

• a softmax function is applied to all obtained attention scores so that their sum
is 1;

• a weighted sum of all encoder hidden vectors is calculated, using their respective
softmaxed attention scores, leading to the “current” context vector relevant to
ht−1.

This context vector thus contains all the information about the input sequence items
that is useful for the processing of the current timestep. In [BCB15], the attention
scores are obtained with a feedforward neural network, trained altogether with the
other neural network parts. After this attention stage, the context vector is concate-
nated with ht−1 and is fed into another feedforward neural network, whose output is
taken as the next output sequence item.

As we can see, the idea behind the attention mechanism is to provide a way for the
decoding neural network to emphasize some of the input sequence items, regarding
the current decoding timestep.

3.5.3 Self-attention in the Transformer architecture

The Transformer architecture is a model solely relying on the attention mechanisms,
whereas previously presented models were designed as a mix of RNNs and attention.
It has been proposed in 2017 by Vaswani et al. [Vas+17], outperforming the pre-
vious models, while being more parallelizable and requiring less training time. The
Transformer model is also made of encoding and decoding modules, but here each one
includes several (internal) encoders and decoders, respectively. All such encoders are
identical and process the input sequence items one after another.
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Figure 3.11: Transformer’s encoder components. A self-attention
module creates an intermediate vector zi for each vector xi of the input
sequence. Each vector zi then passed independently in a feedforward
layer which produces an output sequence of the same size as the input
sequence. The output sequence usually becomes the input sequence of
another encoder as several encoders are stacked one after another in a
typical Transformer architecture.

Fig. 3.11 shows the components included in one encoder. It is composed of a self-
attention module, which is an attention block that compares the input sequence with
itself, i.e., it compares each item xi with the other items in the same sequence, and
outputs a new corresponding vector zi. Then each vector zi is passed independently
through the same feedforward layer. The output of the encoder is therefore a new
sequence of the same size as the input sequence, which can then used as the input
sequence of the next encoder.

The self-attention module is illustrated in Fig. 3.12. First, a self-attention layer
actually performs the self-attention mechanism on the input sequence. For each item
of the sequence xi, three vectors usually named query, key, and value are computed.
They are obtained by multiplying xi with three independent weight matrices that are
learnt during the training:

qi = xTi WQ

ki = xTi WK .

vi = xTi WV

(3.25)

Then, when encoding the item xi, a score sij is computed with respect to every other
item xj as [Vas+17]:

sij = softmax

(
qi · kj√

G

)
, (3.26)
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Figure 3.12: Self-attention module. In a self-attention module, the
input sequence is first processed by a self-attention layer, of which
the output is added to the input (using a residual connection) and
the result is normalized. Then, each item of the obtained sequence
goes independently through the same feedfoward layer, and the new
sequence is again added to the forward layer’s input sequence using a
residual connection, then is normalized. Note that positional encoding,
which is usually used in such encoder architecture, is not shown here
as it was not used in this thesis work.

where G is the dimension of the key vectors. Finally, a new vector zi is calculated as
the weighted sum of the value vectors vj , using the computed scores as weights:

zi =
N∑
j=1

sijvj , (3.27)

with N being the sequence length. For each input sequence item xi we thus obtain
a new vector zi that takes into account the dependencies between xi and the other
items (past and future) in the sequence.

The remaining components of the self-attention module shown in Fig. 3.12 are the
following: a layer adds the input of the encoder to the output of the self-attention layer
(sequence-wise) using a residual connection, and then normalization is applied; then
each item of the obtained sequence goes independently through the same feedfoward
layer, is added with the corresponding input item of this layer, with another residual
connection, and is also normalized.

A last particularity for the encoder is proposed in the original paper [Vas+17],
and is called positional encoding. The authors propose to encode the position of each
input vector within the sequence using a vector pi (we do not detail such encoding
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Figure 3.13: Transformer’s decoder module at timestep i. After
a self-attention module followed by an add and normalize layer, a
encoder-decoder attention module is used, and followed by another
add and normalize layer. This encoder-decoder attention actually uses
the key and value vectors obtained from the last encoder. Then a
feedforward layer followed by an add and normalize layer is used as in
en encoder module. As for the encoders, several decoders are employed
and stacked one after another. As timestep i (i.e., when decoding item
i of the output sequence), the previous items 1, ..., i − 1 are already
decoded, and are used in the input sequence of the first decoder. The
other items i + 1, ..., N , not yet decoded, are masked in the input
sequence. The newly created output item i + 1 of the last decoder
is finally used through a final layer which projects it into the target
embedding space.

here, c.f., [Vas+17]), and append this position vector to the corresponding item xi,
before going through the encoder.

Let us now briefly detail how the Transformer decoder part works, without going
too much into details since in this thesis we only adopted the encoder in our exper-
iments. A decoder module, illustrated in Fig. 3.13, is made of a self-attention layer,
which receives the already encoded output items (the future items, not created yet,
are masked during the process), followed by an add and normalize layer with residual
connection. The obtained sequence is fed into another similar attention block called
encoder-decoder attention because its key and value vectors are those obtained from
the output sequence of the last encoder. Finally, as in a encoder module, each ob-
tained sequence item goes through the same feedforward layer, and then another add
and normalize layer with residual connection is used. At the end, each item of the
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output sequence of the last decoder is projected into the target embedding space using
a linear feedforward neural network, leading to the final output sequence.

3.5.4 Multi-head self-attention

In [Vas+17], the authors actually used an extended version of the self-attention mech-
anism presented above. In multi-head self-attention (MHSA), several instances of the
query, key and value vectors are computed in parallel, with corresponding weights
matrices WQ, WK and WV . This allows a self-attention module to learn several
representations for the three vectors of each item in the sequence, leading to more
flexibility. When considering H heads, for each item xi in the input sequence we
obtain H vectors zih (h ∈ [1, H]) which are concatenated along the head dimension
to give z̃i, and a new weight matrix WO is used to obtain the final output vector zi:

zi = z̃iW
O. (3.28)

In the original paper [Vas+17], the operations to compute the self-attention scores
consider the query and key vectors independently per head, i.e., the score for pair of
item (i, j) and for head h is obtained by :

sijh = softmax
(qih · kjh√

G

)
, (3.29)

where qih is the query vector of item xi for head h, and kjh is the key vector of item
xj for the same head h. A more general way of calculating the scores is to consider
the query and key vectors across different heads h and h′:

sijhh′ = softmax
(qih · kjh′√

G

)
. (3.30)

We call this more general computation cross multi-head self-attention (CMHSA),
however we did not find any literature reference considering such a mechanism. 2

Mathematically, we can interpret a cross-multi-head mechanism with H as a classi-
cal multi-head self-attention with H2 heads where the query and key matrices share
weights.

3.6 Conclusion

In this chapter, we provided a quick overview on different deep learning architectures
that were used for designing neural models in this thesis. After presenting the basics
of neuron mechanisms, we showed how feedforward neural networks, recurrent neural
networks and convolutional neural networks can perform some particular tasks. We

2As we will explain in a series of experiments in Sec. 7, we actually performed cross-multi-head
self-attention by accident while tuning our models. After investigations we understood that the scores
were computed as in (3.30) whereas we never encountered this in the literature. We nevertheless kept
these ideas since it gave interesting results
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also briefly explained how residual connections work and why they are of interest.
Finally, we described the basics of attention mechanism and Transformer architecture
with self-attention, which are quite recent neural methods in the audio literature.
Convolutional recurrent neural networks and attention mechanisms have been partic-
ularly considered in our experiments on sound source localization.
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Chapter 4

State-of-the-art on speaker
counting and localization

In this chapter, we provide a literature survey addressing speaker counting and
localization. We limit the scope of the survey to methods evaluated on speech

signals as it was the focus of this thesis. In the Section 4.1, we describe the relatively
scarce literature on speaker counting, including parametric, clustering and deep learn-
ing methods. In Section 4.2, we address the literature on sound source localization,
by first quickly presenting conventional1 methods, and then providing a short sur-
vey of SSL systems using deep learning techniques. As a more exhaustive survey of
these neural-based SSL methods has been submitted at the time of this thesis writing
[Gru+21c], in this section we limit our description on methods in relation with our
research.

4.1 Speaker counting

Speaker counting is the task of estimating the number of people that are speaking in
an audio signal. It can be seen as a subtask of speaker diarization, whose objective is
to detect which speaker is active at what moment. Most approaches actually focus on
predicting the total number of speakers in the analyzed signals, but we found some
works considering the instantaneous NoS or the maximum number of simultaneous
speakers (see Section 1.2.3 for a mathematical definition). Note that in a lot of system,
the total and maximum NoS are actually identical since they supposed a constant NoS
through the whoel analyzed signal.

Speaker counting has not often been addressed in the speech processing literature
as a separate task, although it is a useful information for other more complex speech-
related tasks such as speaker diarization or speech signals separation. Many such
systems actually assume the knowledge of the number of speakers, even though we do
not have it at hand in practice.

1We define as “conventional” the methods based on traditional signal processing techniques, with-
out deep learning.
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4.1.1 Parametric methods

Early methods for speaker counting attempted to correlate the number of speakers to
some features extracted from the audio signal. In [Ara03], the authors proposed to
exploit the modulation characteristics of the human voice to correlate the modulation
index calculated from the input signal, and the total number of speakers. They com-
puted a function of the modulation index which outputs the number of speakers based
on several multi-speaker signals constructed from TIMIT excerpts [Gar+93], contain-
ing up to 8 simultaneous speakers. Another parameter, derived from the statistics of
a particular mel filter coefficient, has been proposed in [SO10] to estimate the total
number of speakers in a single-channel mixture. The authors related these statis-
tics directly with the number of speakers via a polynomial function. In [Pas+17], a
parametric method has been derived for speaker counting, which relies on coherent-to-
diffuse ratio estimation over several time frames. The maximum number of speakers
J̄ is then estimated by thresholding this computed parameter.

4.1.2 Clustering methods

A few counting methods based on clustering algorithms have been proposed in the
literature to address source counting along with other tasks, such as source localiza-
tion or separation. In [AGB10], an algorithm named DEMIX is derived to jointly
count, locate and separate up to 6 sources in a multi-channel recording. This method
has been applied for speech signals and works in an underdetermined setting, but is
however limited to an anechoic environment. Another clustering scheme can be found
in [YLP17] in which the principal eigenvectors of the covariance matrix of a multi-
channel signal are extracted to estimate the total number of sources. It showed to be
quite robust for speech recordings with signal-to-noise ratios (SNR) between 0 and
20 dB, in environments with low reverberation (TR60 = 250 ms). In [Xu+13], the au-
thors use a clustering algorithm to aggregate the mel-frequency cepstrum coefficients
(MFCC) computed from successive speech segments extracted from a single-channel
audio mixture. Using a cosine similarity, the clustering algorithm compares pairs of
MFCC features to aggregate them into a certain number of classes, which corresponds
to the estimated total number of speakers.

4.1.3 Deep learning methods

Several recent works have used neural networks to estimate the number of speakers. To
the best of our knowledge, the first deep-learning-based method for speaking counting
has been proposed in [St18]. The authors aim to estimate the maximum number of
concurrent speakers J̄ in a 5-s single-channel audio mixture, containing at most 10

speakers. The classification paradigm and the regression paradigm (see Section 4.2.2
for more details) are compared, using a neural network consisting of bidirectional
LSTM layers. The article further evaluates the use of different input features. The
presented results indicate the superiority of classification over regression for speaker
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counting, and that STFT features yield the best performance. The authors extended
this work in [St19] by evaluating more neural network architectures, including CNN,
RNN and CRNN. They compare the use of usual 3 × 3 convolutional kernels with
full-band convolutional filters of size 1×F , with F the number of frequency bins. The
results indicate that a CRNN with 3× 3 filters leads to the best performance. Their
study also includes the use of different datasets, the evaluation of several reverberation
time values, and a comparison of their system against human capabilities.

In the same vein, a speaker counting CNN is proposed in [WK18], capable of cat-
egorizing the input signal as containing 1, 2 or 3 and more speakers. In [ACB19],
an interesting comparison on the human abilities for speaker counting and their ma-
chine counterpart is proposed. The authors show that machine algorithms can surpass
human level performance, especially when the analysis time is short. Temporal con-
volutional networks (TCN) have been applied in [Cor+20] to count the maximum
number of overlapping speakers in a single-channel mixture, as in [St18]. They show
that TCN improves the counting accuracy compared to CRNNs and LSTM-based net-
works on real data. In [Wan+20], a neural-based speaker counting system is trained
using transfer learning based on SincNet [RB18], a speaker recognition network. The
output of a truncated version of the already trained SincNet is used as an input fea-
ture of their speaker counting system, along with the zero-crossing rate, the spectral
spread and the spectral entropy of the input signal. All these features are fed in
a feedforward neural network to estimate up to 10 speakers. Peng et al. [PWQ20]
proposed to train a recurrent neural network to project the input features, composed
of log-spectra and interaural phase differences (IPDs), extracted from multi-channel
signals, into an embedding space. The number of speakers can be obtained as the
rank of the covariance matrix of the embedded vectors. An attention-based network
is explored in [YH21] for speaker counting. After a series of convolutional layers for
feature extraction, an attention mechanism is trained to aggregate temporal informa-
tion in a new feature vector. This vector is then fed into a feedforward layer for the
final estimation of the number of speakers.

As estimating the number of speakers is generally done to provide another speech-
related task with a precious piece of information, a few works has been proposed to
jointly tackle the considered speech processing task and the speaker counting prob-
lem. Several speaker diarization/separation systems are trained to simultaneously
count and separate speech signals [Neu+19; Kin+20]. These systems do not explicitly
estimate the number of speakers, but rather extract the speech signals in a recursive
manner. Another joint speaker counting and separation system is proposed in [XZ20],
relying on an encoder-decoder architecture. The vector obtained at the bottleneck
of the encoder-decoder network is projected into a embedding space, giving a set of
embedded vectors whose covariance matrix rank gives the number of sources in the
mixture, as in [PWQ20]. In [Ngu+20], the authors jointly estimate the number of
sources and their respective direction-of-arrivals (DoAs, see Section 4.2) by designing



56 Chapter 4. State-of-the-art on speaker counting and localization

a CNN which separates into two distinct branches after a series of convolutional lay-
ers: one branch is trained to output the number of sources and another estimate the
DoAs. They evaluate their system on speech signals and sound events showing better
counting accuracy than DoA-based methods.

4.1.4 Thesis position

All the above-mentioned and recently proposed DL-based counting methods have
shown promising results over conventional methods. Our research for estimating the
number of speakers followed this trend. When the present PhD research work was
carried out, in the beginning of 2019, the use of neural networks for speech source
counting was a pioneering idea and all the related works were limited to single-channel
signals. This motivated our effort to improve speaker counting with multi-channel sig-
nals in the hope of taking benefit of spatial information in addition to spectral content.
Moreover, most systems considered the estimation of the total number of sources J ,
sometimes over audio segments of several seconds, although the instantaneous NoS
J(t) often varies along the signal. In our research, we rather focused on this instanta-
neous NoS J(t). Another aspect that we address was the temporal resolution of the
counting system, as most of the speech/audio source counting literature, at the time
of our experiments, considered a quite large temporal context, which could be insuf-
ficient for online systems or for applications that require a good temporal resolution,
such as speech signals separation. Finally, we made use of Ambisonics features, as
for all the remaining of this thesis, which had never been proposed in the counting
literature. The interest of such signal representation has been discussed in Chapter 2
and we assumed that it would be also appropriate for the speaker counting task since
spatial information can help to detect spatially distinct speakers.

4.2 Sound source localization

The sound source localization problem has been thoroughly studied for decades, often
with a focus on speech signals. A large variety of methods have been designed to
address SSL in different scenarios, in anechoic and reverberant conditions, considering
one or more sources, static or moving in the environment. In this section, after first
presenting a short description of conventional SSL methods based on signal processing,
we focus on deep-learning-based SSL techniques, as these have recently become a hot
topic in the literature. We put an emphasis on neural SSL systems related to this
thesis research.

4.2.1 Traditional signal processing methods

Time difference of arrival

When multiple microphones are used to record a sound field, the signal incoming from
a point source arrives at different instants at each microphone. The time difference
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of arrival (TDoA), between pairs of microphones, contains information about the
direction of the source if the arrangement of the microphones is known. The TDoA can
be estimated as the time lag corresponding to the maximum of the cross-correlation
function between a pair of microphones. However, in real conditions it is blurred by
noise and reverberation. To improve the robustness of this technique, Knapp and
Carter [KC76] introduced in 1976 generalized cross-correlation with phase transform
(GCC-PHAT), which is computed by dividing the cross-correlation by its amplitude.
This can be computed using the signals of a microphone pair (i, i′), for a time frame
t and a lag τ , by summing over all frequencies f :

Ψii′(t, τ) =
1

F

F−1∑
f=0

xi(t, f)x∗i′(t, f)

| xi(t, f) || xi′(t, f) |
e2iπτ

f
F , (4.1)

where F is the total number of frequencies, and xi(t, f) and xi′(t, f) are the signals
in the STFT domain from microphones i and i′, respectively. Then the corresponding
TDoA ∆ii′(t) can be deduced as:

∆ii′(t) = arg max
τ

Ψii′(t, τ). (4.2)

Because of the demoninator in (4.1), the GCC-PHAT method is quite sensitive to
noise, and besides is poorly robust in the presence of multiple sources [BOV12].

Many neural-based SSL methods rely on GCC-PHAT features as input for a lo-
calization neural network [Xia+15; Ves+16; LZL18; Com+20; VDPMG21] (see Sec-
tion 4.2.2 for a more detailed survey of SSL with neural networks).

Acoustic maps

Another way to localize sound sources is to generate acoustic maps, which relate the
energy or power of acoustic signals to predefined search directions (e.g., on a discrete
grid). The steered response power (SRP) can be used to generate such maps, and
similarly to GCC-PHAT, it has also been adapted with the phase transform, resulting
into the SRP-PHAT algorithm [DBA07]. Such an acoustic map can be obtained by
scanning the whole space with a beamformer and computing the signal energy or
power for each considered direction.

Because of the amplitude normalization and the averaging across all microphone
pairs, this method is more robust to reverberation, however it has the undesired effect
of emphasizing time-frequency bins containing only noise.

Neural networks have been used to improve the robustness of the SRP-PHAT
algorithm. In [PC17], a CNN has been trained to estimate a time-frequency (TF) mask
for each microphone signal. These are applied to corresponding STFT representations,
prior to computing the GCC-PHAT quantity of each microphone pair. This method
shows to be more robust to strong interfering sources and reverberation. Another
system, proposed by Diaz-Guerra et al. [DGMB21], relies on a CNN to directly
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estimate the Cartesian coordinates of a sound source from an SRP-PHAT acoustic
map, again improving the performance in reverberant and noisy conditions.

Subspace methods

Subspace methods are based on the eigendecomposition of the spatial covariance ma-
trix (SCM) calculated from the observation vectors. In the narrowband multiple signal
classification (MUSIC) algorithm [Sch86], a subset of eigenvectors obtained from the
decomposition is attributed to the sources, while the complementary set of eigenvec-
tors is the basis of the noise subspace. The latter are used to compute an acoustic
map:

M(t, f, θ, φ) =
1

aHθ,φ(f)UN (t, f)UH
N (t, f)aθ,φ(f)

, (4.3)

where UN is a matrix that contains the noise-related eigenvectors, and aθ,φ(f) is
the steering vector in direction (θ, φ), which represents the delays of the different
captures of a plane wave recording at a microphone array. The estimated DoA is
obtained with the angles (θ, φ) that maximize this acoustic map, thus one needs to
probe all considered directions. This time-demanding search can be avoided with
another well-known subspace algorithm for source localization, called the estimation
of signal parameters via rotational invariance techniques (ESPRIT) [RK89], which
relies on the source subspace to directly estimate the DoA.

4.2.2 Deep learning techniques

In this subsection, we describe different systems that can be found in the DL-based
sound source localization literature. We categorize these systems with regards to
several aspects: number of sources to localize, network architecture, type of input
features, output scheme, learning strategies and training/test datasets. This part of
the manuscript is a shortened version of the comprehensive survey of the neural-based
literature that we have written and submitted for publication (a preprint version is
available [Gru+21c]).

Number of sources

Many neural-based SSL systems consider only one source to localize, as it is already
a very complex problem in real-world environments, due to the presence of noise and
reverberation. When the source activity is not controlled artificially, some methods
rely on a VAD system as a preprocessing step before localization. It is also pos-
sible to simultaneously estimate the source activity and perform localization, as in
[YNO17]. In this work, an additional neuron is appended to the network output, and
used to estimate whether the source is active or not. Another way of estimating the
NoS alongside localization is to adopt a thresholding method, notably when using a
classification paradigm (see Section 4.2.2).
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Localizing multiple sources is a much harder problem than single-source local-
ization, especially when the activity of the different sources overlaps in time, as we
illustrated in Chapter 1. Nowadays, more and more neural-based localization systems
attempt to improve multi-source SSL performance in noisy and reverberant environ-
ments. As in the single-source case, many of these multi-source methods assume
the NoS J (as described in Section 1.2.3) is known before estimating their locations
[Hir15; CH17; ML18; Per+19], which is then used to estimate the right number of
DoAs. In practice, J can be estimated by a dedicated source counting algorithm.
An alternative, proposed in a few articles, is to jointly estimate the total number of
sources J and their location, either from the localization output [HMO18b; Moi+20;
Sun+20], or by designing a multi-task network trained to also explicitly estimate the
NoS [Ngu+20]. Note that in all these works, the sources are supposed to be static
and the NoS is constant, i.e., J(t) = J, ∀t.

Input features

Many types of input features have been used in the neural SSL literature. Some sys-
tems are inspired by signal representations from conventional methods. For instance,
GCC-PHAT features have been employed in [Xia+15; Ves+16; HMO18a; Com+20],
while SRP-PHAT-based acoustic maps have been used in [SDF18; DGMB21]. Other
features based on cross-correlation functions have been proposed in [Gro+19; ML18].
Ideas from subspace methods have also been exploited in several works. For instance,
the eigenvectors of the SCM are fed into neural networks in [TK16; Tak+18], while in
[Ngu+20] the authors exploit the spatial pseudo-spectrum from the MUSIC algorithm.

Other classical types of features, usually employed in conventional methods, have
been reused as input for neural networks. In [Cha+19; BGG20], the authors proposed
to compute the relative transfer function (RTF) obtained from all microphone pairs
and fed it into the neural network. Other neural SSL systems were designed and used
in a binaural set-up, which is a two-microphone format designed to mimic human
listening conditions. They thus used classical binaural cues as input features of the
network: inter-aural level differences [YAZ13; Rod+15; Zer+16], inter-aural time dif-
ferences [YAZ13; Rod+15], and inter-aural phase differences [PS19; Ngu+18; SVF18;
Shi+20; Sub+21].

Low-level representations have also been investigated as neural network inputs,
letting the model learn to extract from them the relevant information for localiza-
tion during the training phase. A number of SSL neural networks proposed in the
literature rely on (multi-channel) STFT spectrograms. The network can use only
the STFT magnitude [YNO17; PC17], only the STFT phase [Sub+21; ZZQ19], or
both [Gui+21a; KPK21; Mar+19; Sch+21a]. Some systems use the decomposition
of complex-valued spectrograms into real and imaginary parts [HMO18b; Moi+20].
Finally, a few end-to-end neural networks have been designed to estimate the source
location directly from the raw multi-channel waveforms. In [SDZ18], the waveforms
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are fed into 1D convolutional layers, while in other systems [VDPMG18; Vec+19;
PBG21] 2D convolutional layers are preferred.

Finally, many authors chose to take benefit of the Ambisonics format (see Chap-
ter 2) for neural-based SSL. Some of them proposed to feed the network with an
Ambisonics spectrogram [APV19; Gui+21a; Sch+21b], while in [Com+19] such spec-
trogram is considered as quaternion-valued and the authors adapted the neural net-
work to operate on such features. The intensity vector is another Ambisonics-based
representation that has proven effective for neural-based SSL, according to several
articles [Per+18b; Per+19; Ngu+21]. Regarding the Ambisonics order, most of these
methods work with the FOA format, but we can find some systems based on the HOA
features [VGH20; Pos+21].

Architectures

Neural network architectures are probably the most explored aspect of DL-based
SSL systems. The early deep learning SSL approaches employed simple feedforward
neural networks [KL11; YAZ13; Xia+15; Ves+16; Rod+15]. CNNs have also been
applied early to SSL, having been proven very powerful for computer vision tasks.
The first use of a CNN for SSL can be found in [Hir15], with the model based on
2D convolutional layers. Many other works also employed convolutional layers [CH17;
CH19; HMO18b; VDPMG18]. An architecture with 1D convolutions layers has been
proposed in [BHM21], while 3D convolutions are used in [DGMB21]. Moreover, dilated
convolutions have also been explored in several papers [CH19; PBG21; Gui+21a]. In
[CH19] the authors interestingly show that using the dilated convolutional layers with
the increasingly larger dilation rates allows to reduce the total number of layers. A
comparison of several type of convolutional layers can be found in [KPK21].

While the architectures consisting only of recurrent layers are rare in the SSL
literature, we find a lot of works which consider CRNNs, whose convolutional part is
generally useful for feature extraction, and recurrent layers are employed for temporal
analysis. Examples of CRNN-based SSL systems can be found in [APV19; Per+18b;
Per+19; Mar+19; Com+19].

Inspired again by the architectures from the computer vision literature, some neu-
ral SSL models incorporate residual connections, such as the networks proposed in
[YNO17; SDZ18].

Attention mechanisms, which impressively improved NLP models, have also been
employed in a few SSL neural networks. In [Sch+21b; Pha+20], the authors added
attention layers to the end of a CRNN, resulting in a better use of temporal infor-
mation in DoA estimation. Self-attention has also been integrated after a series of
convolutional layers in [Cao+21; Sch+21a; Wan+21].

Finally, the use of encoder-decoder architecture for SSL has been explored in
several works, for example in [HWQ20; Moi+20; Wu+21].
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Output strategies

When addressing SSL with neural networks, two ways of designing the output layer
are essentially considered, corresponding to the two following formulations of the SSL
problem: classification and regression.

When considering SSL as a multi-label classification problem, the analyzed space
is divided into a grid with many subregions (corresponding to different classes), and
the network is actually trained to detect the presence of a source in each subregion, by
outputting a presence probability. Theoretically, a very large number of sources can
be detected, depending on the grid resolution. The main advantage of this approach is
that it is possible to localize any number of sources. By setting the coordinate system
origin as the microphone position, a suitable way of describing the surrounding space
is to use spherical coordinates (θ, φ, r), denoting the azimuth, elevation and distance
(range) of a sound source. In the literature we can find a lot of neural SSL systems
designed to estimate only the azimuth [Rod+15; Hir15; SDZ18; Vec+19; Xia+15;
Cha+19], only the elevation [TGT18], or both [Per+18b; Per+19; APV19], while only
few works addressed distance estimation [Rod+15; BHM21]. Cartesian coordinates
(x, y, z) have also been considered, though more rarely, using a classification paradigm,
however limited to the estimation of (x, y) only [Moi+20; ML18].

Regression is another paradigm with which the network is trained to directly esti-
mate the coordinates of a certain number of sources. To do so, each source coordinate
is represented by one neuron whose value directly encodes the considered coordinate.
One advantage of this approach is to not relying on a grid to represent the sound space.
However a limitation occurs when considering multiple sources because of the source
permutation problem [Sub+21], which deals with the ambiguity in the association
between target and actual output. Despite this drawback, regression has been widely
used in neural-based SSL. With spherical coordinates, some systems estimate only
the azimuth [Ngu+18; Opo+19], while others estimate both azimuth and elevation
[Mar+19; Sun+20]. However, most regression-based methods are trained to estimate
cartesian coordinates, for example in [VDPMG18; KPK21; APV19; Com+19].

Data

When dealing with deep learning methods, the choice for training and testing data
is very important. While the ideal case would be to train a neural network with a
large amount of real-world data, in practice only a few real-world datasets annotated
with the source locations are available, and the amount of such labelled data remains
limited. That is why simulated data are employed in most neural systems during the
training phase.

The most common approach to generate somewhat realistic multi-channel signals
is by using artificial room impulse responses. These take into account the room acous-
tics as well as the position of the sources and microphone array in the environment.
While several methods exist to simulate such IRs [SK02], the image source method
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(ISM) [AB79] is undoubtedly the most employed in the neural SSL literature. It
has been implemented in several publicly available frameworks, such as RIR gen-
erator [Hab06], SMIR generator [Jar+12], Pyroomacoustics [SBD18] and McRoom-
Sim [Wab+10]. Such frameworks have been employed in [CH17; Per+18b; Ngu+20;
VGH20; SDF18] to name a few. Other simulation methods have been explored, for
instance in [Hir15] in which a diffuse reverberation model is added to the ISM, or in
[Gel+21] where the authors compare several synthesis algorithms.

When an IR is simulated, it is then convolved with a “dry” speech signal (clean,
monophonic and obtained with close-mike recording in a low reverberation environ-
ment) in order to obtain a realistic signal which encodes the room acoustics and
the propagation between the signal source and the microphone array. Among the
speech signal datasets used in the SSL literature, one can cite TIMIT [Gar+93],
BREF [LGE91] or WSJ [Gar+07].

Regarding real-world data, a few datasets are available and are generally used to
evaluate the neural systems. Recorded IR datasets [Cri+14; Fra17; Had+14] have
been collected to further generate more realistic signals. A few other databases of
signals recorded in real environments along with the source locations are also publicly
available [Pol+21; Eve+20; Gui+21b].

Learning strategies

Another important aspect of DL-based methods which varies among the SSL litera-
ture is the choice of learning strategy. When a sufficient amount of labelled data is
available, a neural network can be trained with supervised learning. It is the most em-
ployed training strategy in the neural SSL literature, despite the fact that the amount
of labelled real-world recordings is limited, owing to the use of simulated data. Exam-
ples of SSL systems relying on supervised learning can be found in [Per+18b; YAZ13;
Hir15; Cha+19; CH19].

Semi-supervised learning has also drawn interest in a few works on neural SSL
systems. Such a learning scheme relies on an initial supervised training phase (using
a limited amount of labelled data), followed by another training phase using (a possibly
larger amount of) unlabelled data. For instance, in [Tak+18; Moi+21] the unlabelled
data are used to adapt a neural network, pre-trained with labelled data, to unseen
conditions.

Another learning strategy, termed weakly supervised training, aims to train a
neural network with weak labels, i.e., the labels that can be inaccurate, imprecise or
containing “coarse” meta-information. In [HMO19], the NoS is used as weak labels to
further train the network using an adapted loss function. Another example of weakly
supervised learning can be found in [Opo+19], in which the authors proposed to use a
triplet loss function, which relies on adding two other examples to an usual example:
a positive example which is close in the localization space to the usual example, and a
negative example which is far away in the space. The interest of this scheme is that it
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can be used with only a few labelled data, providing that we can control the proximity
of unlabelled data in the target space.

4.2.3 Thesis position

As for speaker counting, DL-based systems are more and more often employed in
the SSL literature, as they show to be more robust to challenging conditions, such
as noise, reverberation or the presence of multiple sources, than traditional methods.
This thesis work also focused on using neural networks for SSL, based on the research
initiated in the earlier PhD thesis [Per19]. At the time of our source localization
experiments, single-source localization using neural networks on real-world data was
already quite efficient. Using the versatility of the Ambisonics format, particularly the
intensity vector, in this thesis we focused on the multi-source localization problem,
which was still poorly addressed compared to the single-source configuration. We took
an interest in rethinking several architecture blocks, in order to improve the localiza-
tion performance. In the same vein as our effort to reduce the temporal resolution for
speaker counting models, we also focused on reducing the computation time of SSL
neural networks. Finally, in a series of exploratory experiments, we tried improving
single-source localization with a novel Ambisonics representation, which has never
been considered in the neural-based SSL literature.
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Chapter 5

Speaker counting

In this chapter, we present our speaker counting system and the experiments that
we carry out to demonstrate and improve its robustness. Inspired by a pioneering

work on speaker counting with neural networks [St19], we design a CRNN that is
capable of counting up to 5 speakers in a multi-channel mixture containing noise
and reverberation. We describe the input representation adopted to feed the neural
network and how we address speaker counting as a classification problem. We detail
the generation of the dataset used for training the network, as well as the testing
datasets, the baseline systems and the metrics employed for assessing speaker counting
performance. Finally, we present the different experiments we conduct with this
system, and report and comment the results. The first series of experiments focus on
assessing the use of multi-channel over single-channel signals, the second one compares
the use of different convolution kernel sizes, and the last one is a short analysis which
examines the network prediction accuracy depending on the considered frame in a
given input sequence.

5.1 Overall methodology

5.1.1 Input features

As one can intuit, spectral information is important to distinguish between several
overlapping speakers, and thus, for counting how many they are. This is why in [St19]
the authors chose to represent the single-channel input signal with a time-frequency
representation, in the STFT domain, leading to the use of the magnitude spectrogram.
In our case, we want to add spatial information to our representation, which we
conjecture to be useful for the network to better distinguish multiple speakers. This
is why we represent the input signal with the multi-channel Ambisonics format, limited
to order 1 (FOA). Recalling (2.31), an FOA signal in the STFT domain is encoded with
four (complex-valued) STFT representations, from which we extract the magnitude
information to obtain a 4-channel magnitude spectrogram. As it was done in [St19],
we discard the phase information, which is also justified by the use of the Ambisonics
format, which is theoretically obtained with coincident microphones.

Since a magnitude spectrogram is a TF representation, it is generally represented
in the form of 2D matrices of size T × F , where T is the number of frames and F
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Figure 5.1: Example of an input signal represented with a FOA
magnitude spectrogram. In this example, T = 20, and the number of
speakers (which is difficult to estimate visually) is 1 from 0 to 0.372 s
and 2 for the remaining frames. For a better visualization, we apply
a log function to these spectrograms, but in practice it is not done
during the experiments.

the number of frequency bins up to the Nyquist frequency. In our representation,
the four channels of the FOA magnitude spectrogram are stacked together in a third
dimension leading to a 3D input tensor X ∈ RT×F×4. Fig. 5.1 shows an example of
the 4-channel magnitude spectrogram obtained for an input signal.

As it is usual in deep learning, we normalize these spectrograms per frequency band
over the entire training dataset, so that the mean and variance for each frequency band
(including all frames and channels) are 0 and 1, respectively. The same mean and
variance values from the training dataset are used to normalize the test data.

5.1.2 Speaker counting as a classification problem

We consider speaker counting as a multi-class classification problem, as it was shown
to be more efficient than regression [St18]. Each class represents a number of speakers,
and the network is trained to evaluate the probability of the input feature to belong to
that class. More specifically, we limit our speaker counting system to count between
0 and 5 speakers, leading to 6 potential classes ci, i ∈ {0, 1, 2, 3, 4, 5}. Then, for each
input frame, the neural network is trained to estimate the probability P (t, ci | X) that
the t-frame belongs to class ci, and for i ∈ {0, 1, 2, 3, 4, 5} (i.e., it output 6 values in
[0, 1]), as illustrated in Fig. 5.2. As detailed further, we design the network output
layer so that all outputs sum to 1, acting as a discrete probability distribution. Finally,
the number of speakers for the considered frame is estimated by selecting the class
with the highest probability:

Ĵ(t) = arg max
i

P (t, ci | X). (5.1)
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Figure 5.2: Speaker counting as a classification problem. Each can-
didate number of speakers is considered as a class, and the neural
network is trained to estimate the probability that the input feature
belongs to each class. The neural network is forced to output the set
of probabilities for each frame in the input feature.

Note that in our method, a probability for each class is computed for each frame,
leading to a frame-wise resolution for our counting system. This is the main difference
with [St18], in which the authors proposed to calculate a single probability distribution
for the whole 5-s long input sequence.

5.1.3 Neural network global architecture

The neural network architecture we adopt for speaker counting is inspired by [St19],
and is illustrated on Fig. 5.3.

A first series of convolutional layers processes the input tensor of shape T × 513×
4 (the value 513, which is the number of frequency bins, comes from the chosen
STFT analysis window size, see Section 5.2.1), where T is an hyperparameter in
our experiments, and performs a feature extraction. This convolutional block first
consists of two 2D convolutional layers with 64 and 32 convolution kernels of size
K×K, respectively, applied on the temporal and frequency axes, where K is another
hyperparameter in our experiments. Then, a max-pooling layer with a pooling size
of 1 × 3 is used, in order to preserve the information along the temporal axis. Next,
two other 2D convolutional layers with respectively 128 and 64 convolution kernels
of size K × K are used, followed by another max-pooling layer of size 1 × 3. In all
convolutional layers, we use a stride of 1 as well as zero-padding in order to preserve
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the shape of the input tensor. The important change compared to [St19] is that we use
a max-pooling 1× 3 instead of 3× 3, allowing us to preserve the temporal dimension
for a prediction at a frame-wise resolution.

The new features extracted by the convolutional module consist of 64 feature maps
of size T × 57. In order to proceed to a temporal analysis with recurrent layers, we
reshape the obtained feature by stacking the feature maps along its second dimension,
leading to a reshaped feature of size T × 3648. In all convolutional layers, ReLU
activations are used. Batch normalization is also applied before each max-pooling
layer to make the neural network faster and more stable.

The temporal processing is then done using a single LSTM layer with a hidden
state vector size of 40. This LSTM layer is used in a sequence-to-sequence mode, i.e.,
the hidden state of the LSTM cell is output at each timestep, so that we obtain a
new vector for each item of the input sequence (which is of length T ). The activation
functions used in the LSTM cells are the same as described in Section 3.3.3, i.e., σh
is the hyperbolic tangent function and σs is the sigmoid function.

Finally, each vector from the output sequence of the LSTM layer is processed
independently by the 6-neuron output feedforward layer, whose activation is set to
the softmax function. This ensures that a probability distribution over the 6 classes
is produced for each timestep.

5.2 Experimental protocol

5.2.1 Audio parameters

In our experiments, the audio signals are sampled at 16 kHz, which is the frequency
range of the Eigenmike® array for which the FOA channels exhibit acceptable direc-
tivity distortion [Baq17]. The STFT is computed using a sinusoidal window of length
1 024 (64 ms) with an overlap of 50%, thus a frame is computed every 32 ms. The
FFT size is also 1 024, leading to 513 frequency bins.

5.2.2 Training parameters

The loss function used for training is the categorical cross-entropy. The Adam op-
timizer [KB14] is used with a starting learning rate of 10−3, β1 = 0.9, β2 = 0.999,
ε = 10−7. During the training phase, a dropout is used before the reshape layer,
with a dropout rate of 0.25. During training, we monitor the categorical accuracy on
the validation set, and we stop the training if the accuracy has not improved for 20

epochs, keeping the model with the best accuracy so far. The maximum number of
epochs is set to 300. When the validation accuracy has not improved for 10 epochs,
we divide the learning rate by a factor 2.
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Figure 5.3: Neural network architecture for speaker counting. It
is composed of a series of 2D convolutional layers, with max-pooling
layers in-between, followed by an LSTM layer and a feedforward layer
acting as the output layer. Max-pooling is applied only on the second
axis (corresponding to the frequency dimension) to preserve temporal
dimensionality and the LSTM is used in a sequence-to-sequence mode.
The convolution kernel size K×K and the number of frames T in the
input features are hyperparameters in our experiments.

5.2.3 Training data

Our speaker counting CRNN is trained on simulated data. The simulation can be
decomposed into two phases: the generation of RIRs and the generation of the training
signals.

The RIRs are simulated with the image-source method [AB79], by adapting an
existing framework [Hab06] to generate FOA RIRs. A large number of RIRs are gen-
erated in a variety of random conditions, such as the room dimensions and absorption
coefficients, the microphone and source positions. First, we randomly set the dimen-
sion of the room, which is simplified to be parallelepipedic (usually referred to as a
shoebox ), within [2, 10] m, [2, 10] m and [2, 3] m, for the length, width and height,
respectively. The room RT60 is randomly chosen between 200 and 800 ms. Next,
an ideal (open sphere) spherical microphone is randomly positioned in the room so
that it is at least at a distance of 0.5 m from the walls. Then, 5 source positions
are randomly picked within the room dimensions. The protocol is repeated for 10 000

rooms, so that we end up with 50 000 RIRs.



70 Chapter 5. Speaker counting

To generate the speech mixtures, we use 16-kHz speech excerpts from the TIMIT
dataset [Gar+93]. To match realistic conditions, we want to generate conversation-
like mixtures, with the instantaneous number of speakers (in between 0 and 5) varying
over time. The speech mixtures also need to be generated as if the speakers were in the
same room (hence the 5 generated RIRs per room). To create such a realistic signal,
we first fix a total number of speakers J which will participate in the current speech
mixture (between 1 and 5). To create the mixture, a single-speaker 15 s dry signal is
first generated by concatenating several sentences from a unique random speaker in the
TIMIT database (it is crucial in this step not to mix sentences from different speakers
to ensure the continuity of one speaker’s frequency content) and alternating actual
speech content with silence segments. More specifically, a preliminary silence with a
random length in [0.5, 1] s first initializes the signal. Then a random sentence from
the chosen speaker is concatenated with the signal, followed by a silence of random
length in [0.5, 2] s. This last step is repeated for random sentences until a 15 s signal
is obtained.1 The obtained single-speaker 15 s dry signal is then convolved with one
RIR of a randomly picked room to create a wet signal. This process is repeated for
the J speakers of the current mixture, using the J distinct RIRs from the same room.
Then, we mix all the single-speaker wet signals together to create a speech mixture
with an instantaneous number of speakers varying from 0 to J speakers. The signal-
to-interference ratios (SIR) used between the first single-speaker signal and the other
signals is randomly chosen in [0, 10] dB. The last step is to add a diffuse noise to this
mixture to make it a step further more realistic. We randomly choose a noise signal
among those in a noise database constituted from various signals from Freesound2

(including crowd, traffic, engine, nature sounds, etc.), which we convolve with a diffuse
field generated by averaging the diffuse parts of two random RIRs measured in a real
reverberant room. A random SNR is picked in [0, 20] dB with respect to the first
speech signal.

In the TIMIT dataset, each speech sentence is annotated with the pronounced
word timestamps, at a sample precision. We use these annotations to automatically
label voice activity vs silence for each speaker and thus label the 15 s mixtures with
the ground-truth number of speakers at the sample resolution. When these signals are
transformed into the STFT domain, we consider that a speaker is active in a frame if
it is active for more than half of the samples in that frame.

Fig. 5.4 illustrates three examples of a 15 s mixture with a varying number of
speakers. Because each speaker randomly starts and stops uttering small sentences,
the number of speakers varies several times along the sequence.

We recall that each (train or test) input feature to our network is a sequence of T
consecutive 4-channel FOA STFT magnitude frames, with T an hyperparameter that
we set experimentally. These sequences are extracted from these 15 s mixtures with
basic segmentation, without any overlap between the sequences. The first version of

1If the last concatenated sentence is too long so that the signal will be longer than 15 s, it is
cropped and faded out in the last 100 ms.

2https://freesound.org/
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Figure 5.4: Example of spectrograms (W channel only) of 15 s long
training signals with varying number of speakers. The white lines rep-
resent the varying (ground-truth) number of speakers in each mixture.
The maximum number of speakers in these mixture are 1 (top), 3
(middle) and 5 (bottom). As we can see, the instantaneous number
of speakers “continuously” varies along the 15 s of mixture, as each
speaker starts and stops uttering a small sentence all along the signal.

our training dataset consisted of 5 J-speaker 15-s mixtures, for J ∈ {1, 2, 3, 4, 5}, for
each room, leading to the same number of training/test sequences for each number of
speaker J . However this strategy actually raises the famous class imbalance problem
[BMM18], which happens when the number of examples is very different for each class.
As we can see in the plots on Fig. 5.4, in each mixture the instantaneous number of
speakers fluctuates around certain values and rarely reaches others. For example,
in the 3-speaker mixture, the number of speakers is most often 2 or 3, while in the
bottom plot we see that there barely are 5-speaker frames. Globally, generating the
exact same number of J-speaker mixtures for all values of J would unbalance the
cardinality of each class, with more training data towards the low-valued classes. To
avoid this problem, we decide not to systematically generate all 5 speech mixtures
for each room, but rather setting a probability that a J-speaker mixture will actually
be generated. Table 5.1 shows these probabilities, set empirically to attain a more
balanced training dataset. To illustrate this process, let us assume we already selected
a certain room configuration, which comes with 5 generated SRIRs. We first consider
a 1-speaker mixture, which probability of generation is 0.2 as indicated in Table 5.1.
Whether the draw leads to the actual mixture generation or not, we then consider the
generation of a 2-speaker mixture, this time with a probability of 0.3. We continue in
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J 1 2 3 4 5
Probability to generate
a J-speaker mixture 0.2 0.3 0.4 0.5 1

Table 5.1: Probabilities of generating a J-speaker mixture during the
creation of the training dataset.

this process until considering the generation of a 5-speaker mixture, which is actually
always done because of the probability 1. In that manner, we have actually generated
1-speaker mixtures using 1 SRIR from only 20% of the considered rooms, 2-speaker
mixtures using 2 SRIRs from only 30% of the rooms, etc.

The validation dataset, used to monitor the neural network training, is created
exactly with the same methodology. Only 100 rooms are considered for this dataset,
and we took care not to use generation data already used for the training dataset
(speech sentences, speaker identities, rooms, noise signals).

Finally, we end up with about 100 hours of training data and 1 hour of validation
data.

5.2.4 Testing data

The test dataset used to assess our models is a simulated dataset created in the same
manner as the training and validation datasets. For the test, we generated 500 RIRs
in 100 different rooms. Again, the speakers and noise signals used for the test signals
have not been used for the training and validation datasets. The obtained test dataset
contains 1 hour of data.

5.2.5 Baseline

As our speaker counting system is partly inspired by the classification-based CRNN
proposed in [St19], we consider this method as a baseline for the experiment in which
we compare the use of single- and multi-channel signals. We nevertheless adjust this
baseline to ensure having a fair comparison to our method. First, we employ the
recurrent layer in a sequence-to-sequence manner so that a prediction is made for
every frame in the input feature.3 This choice constraints us to use max-pooling of
size 1× 3 instead of 3× 3 to preserve the temporal dimension.

5.2.6 Evaluation metrics

To measure the performance of our speaker counting system we use several metrics.
The classification accuracy Aii for one class ci is defined by the percentage of frames
correctly classified with class ci, among all frames belonging to class ci. While it is
a usual metric in a classification problem, we also extend this metric to measure the
percentage of frames that are classified with class cj among all frames belonging to

3In [St19], the authors designed their network to produce only one prediction for the whole input
feature, as their goal was to predict the maximum number of speakers present in a 5-s single-channel
mixture.
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class ci. Hereafter, A is referred as the confusion matrix. Mathematically, by noting
Ti the set of all test frames indices with the ground-truth number of speakers equal
to i, Aij is expressed as:

Aij =
card({t ∈ Ti | Ĵ(t) = j})

card(Ti)
, (5.2)

where card(Ti) denotes the cardinality of the set Ti. This accuracy metric calculated
according to two indices (each representing a NoS) will be useful to assess how far the
estimated number of speakers deviates from the ground-truth value.

We also measure the mean absolute error Mi per class, which is defined as:

Mi =
1

card(Ti)

∑
t∈Ti

|Ĵ(t)− J(t)|. (5.3)

5.3 Experiments

In this section, we report and discuss the results of our speaker counting CRNN
evaluation. We conduct several experiments in which we assess the values of some
hyperparameters: the benefit of using multi-channel signals, the number of frames in
the input sequence, the convolution kernel sizes. We also propose an analysis of the
accuracy of the network depending on the frame position within the input sequence.

5.3.1 Single-channel against multi-channel features, with several se-
quence lengths

Experiment objective

The preliminary objective of our speaking counting CRNN is to assess the benefit
of using multi-channel signals over single-channel ones, such as the one proposed in
[St19]. As explained above, we adapt this baseline network to our problem of estimat-
ing the instantaneous number of speakers. Therefore, the baseline in this experiment
is the same speaker counting architecture we adopt, presented in Section 5.1.3, but we
limit the input features to only one channel. Instead of using the 4 channels obtained
from the FOA representation, only the W channel is considered for the baseline. The
W channel encodes the recorded signal as if it was recorded by an omnidirectional
microphone, which can be adequately considered as a single-channel representation.

The intuition behind using multi-channel features is to provide the neural network
with a means to better discriminate between spatially distinct sources. As it is done
in source localization (see Chapter 7), feeding multi-channel features to the neural
network supplies it with multiple transformed versions of the same signal (due to
the different microphone types and orientations). Depending on the source location,
the original signal is not transformed the same way, which should be reflected in
the magnitude spectrogram. We conjecture that the neural network can learn these
characteristics to better discriminate the different speech sources.
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(a)
Single-channel,

10 frames

(b)
Single-channel,

20 frames

(c)
Single-channel,

30 frames

(d)
Multi-channel,

10 frames

(e)
Multi-channel,

20 frames

(f)
Multi-channel,

30 frames

Figure 5.5: Confusion matrix Aij of the single-channel (top) and
multi-channel (bottom) speaker counting CRNNs on the test dataset
with simulated SRIRs, for T = 10, 20, 30 frames (left to right).

To compare the use of single- and multi-channel features in several conditions, we
also vary the length of the input sequence, i.e., the number of frames T in the input
features. We experimented with T = 10 (320 ms), T = 20 (640 ms), and T = 30

(≈ 1 s). In this experiment, the convolution kernel size is K = 3 (see Section 5.3.2 for
an experiment on this hyperparameter).

Results

We report the detailed accuracy results for all 6 experiments in the form of confusion
matrices, which display the percentage of j-speaker frames (on the x-axis) which are
estimated to contain j speakers (on the y-axis). These confusion matrices are shown
in Figure 5.5. We also report graphics of the mean absolute errors in Figure 5.6. We
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(a)
Single-channel,

10 frames

(b)
Single-channel,

20 frames

(c)
Single-channel,

30 frames

(d)
Multi-channel,

10 frames

(e)
Multi-channel,

20 frames

(f)
Multi-channel,

30 frames

Figure 5.6: Mean absolute errorsMi of the single-channel and multi-
channel speaker counting CRNNs on the test dataset with simulated
SRIRs, for T = 10, 20, 30 frames (left to right).

recall that we compare the use of single-channel features to multi-channel features,
for 3 values of T : 10, 20 and 30 frames.

First, we notice that both single- and multi-channel networks are very effective to
detect the absence of speech in the signal, with over 95% of correct silent detection
in all settings. It can therefore act as a robust VAD system. Then, the classifica-
tion accuracy gradually decreases when the number of speakers increases, which is
anticipated since the task becomes more complex. While the classification accuracy
for 1-speaker signals is around 85% for the single-channel network, it reaches around
44% accuracy when 5 speakers are present in the signal, which is still an acceptable
performance compared to a random guessing accuracy (16%).

While the mean absolute error is almost zero for zero-speaker signals in all config-
urations, it remains under 0.8 when one or more speakers are active, which means that
when the neural network predicts a wrong number of speakers, the error is ±1 speaker
in average. This behavior can be clearly noticed in the confusion matrices. When the
network’s prediction is wrong it is almost always done with an absolute error of 1,
which is visualized around the matrix diagonal. For example, in Fig. 5.5e, we see that
when the ground-truth number of speakers is 3, the neural network predicts wrongly
2 speakers 18.9% of the time and 4 speakers 25.2%, while it estimates 0, 1 or 5 only
3.1% of the time in total. Regarding the class J = 5 speakers, there seems to be an
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edge effect, so that the number of prediction for J − 1 speakers is surprisingly high
compared to the other values of J , but this can be explained because of the absence
of the class J = 6.

When comparing the effectiveness of the single- and multi-channel settings, we
clearly see an increase in accuracy when multiple channels are taken into account, for
all values of T . The gain in accuracy of the multi-channel network becomes larger
when the number of speakers increases. We see in Fig. 5.5 that, when T = 10, the
accuracy goes from 84.6% to 88.2% for 1-speaker signals (≈ 4% gain), from 46.0% to
49.7% for 3-speaker signals (≈ 8% gain) and from 42.4% to 49.7% for 5-speaker signals
(≈ 17% gain). When T = 30, the accuracy goes from 87.8% to 90.7% for 1-speaker
signals (≈ 3% gain), from 52.1% to 55.9% for 3-speaker signals (≈ 7% gain) and from
46.5% to 53.6% for 5-speaker signals (≈ 15% gain). These gains seem to confirm our
preliminary conjecture which stated that the neural network takes benefit of the spatial
characteristics present in the input multi-channel magnitude spectrogram, because
the source locations are distinct enough. When looking at Fig. 5.6, we also notice an
improvement in terms of mean absolute error for all multi-channel settings.

Regarding the input sequence length T , we notice that the more frames in the
spectrogram, the more accurate is the neural network. It also seems to confirm our
intuition that more temporal context is benefit for the neural network since it can
process more successive frames. Due to how we generated our dataset, with simulated
conversation-like signals, each frame has a number of speakers close to that of the
neighboring frames: it is often the same number of speakers, sometimes it is shifted
by ±1 speaker. As we will see in more details in Section 5.3.3, another important
factor to explain this gain in accuracy when T is larger is the nature of the LSTM
layer to process past data to improve its prediction.

Finally, we can conclude that the multi-channel CRNN surpasses the single-channel
model in all configurations, showing the usefulness of a multi-microphone inputs. The
multi-channel CRNN is able to predict the instantaneous number of speakers of sim-
ulated data with an accuracy of at least 50% for all NoS, even with a short signal
snapshot (320 ms), which is very interesting for online systems.

5.3.2 Convolution kernel sizes

Experiment objective

Now that we have demonstrated the benefit of the spatial information for speaker
counting, we explore how the neural network performance varies when we change
other parameters. In particular, in this experiment, we analyse the performance of
the neural network as a function of the size of the convolution kernels. We have
tested the increase of the kernel size from 3 × 3, as employed in the previous series
of experiments, to 5 × 5 and 7 × 7. The goal is to make the convolutions span over
more values during the feature extraction step, and see if it can provide the network
a more flexible way to process the temporal and frequency dimensions.
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Results

The confusion matrices and mean absolute error plots obtained from this new exper-
iment are shown in Fig. 5.7 and 5.8, respectively. The first remark is that the same
effect can be observed regarding the length of the input sequence, that is the speaker
counting accuracy increases when T gets larger.

Regarding the evolution of the performance according to the size of the convolution
kernels, it seems that the overall accuracy is higher when the kernel size increases,
although it decreases for some values. To give some numbers, for T = 10, A55 is 49.7%
for K = 3 whereas it reaches 58.6% for K = 7. However, for T = 20, A55 is equal
to 53.3% for K = 3, largely increases to 63.4% for K = 5 but falls down to 53.0%
for K = 7. Due to the fluctuations of the evolution of Aij it is not straightforward to
conclude with the confusion matrices. It is more apparent when looking at the mean
absolute error plots on Fig. 5.8, where we see that the mean absolute error decreases
in almost all cases when the kernel size expands. It is a bit more noticeable for higher
number of speakers.

It thus seems that the neural network benefits, to some extent, from a larger
span over the frames and frequency bins. Regarding the frequency dimension, one
can think that the feature extraction with larger kernels would help the network to
better gather the frequency content of distinct speakers. On the temporal axis, it can
be beneficial to have access to more past or future frames in order to integrate the
frequency content of several speakers with respect to time. This can be even more
advantageous due to the intermittent nature of speech, however it is not clear if this
has more to do with the LSTM layer than the other network’s components.

To conclude this experiment, we see that the expansion of the convolution kernel
helps increasing the accuracy of the counting network, although the gain is quite
limited. An explanation of this increase could be that the network is able to access
more frequency and temporal contents during the feature extraction, which can be
beneficial to better weight the respective contribution of each speaker in the input
features.
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(a) Kernels
3× 3,

10 frames

(b) Kernels
3× 3,
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(c) Kernels 3×3,
30 frames

(d) Kernels
5× 5,
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(e) Kernels
5× 5,
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(f) Kernels 5× 5,
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7× 7,
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(i) Kernels 7× 7,
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Figure 5.7: Confusion matrices of the accuracy Aij of the proposed
speaker counting multi-channel CRNN, evaluated on the test dataset,
for convolution kernels of size 3×3 (top), 5×5 (middle row), and 7×7
(bottom), and for an input sequence length T = 10 frames (left), 20
frames (middle column), and 30 frames (right).
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Figure 5.8: Mean absolute errors Mi of the multi-channel speaker
counting CRNN on the test dataset, for several values of (K ×K).
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5.3.3 Counting accuracy profile along the sequence

Experiment objective

After analyzing the effect of the sequence length T and noticing that the network per-
formance is better when T increases, we concluded that the LSTM layer makes better
predictions if it can rely on more past frames. Moreover, we recall the reader that we
use the LSTM in a sequence-to-sequence manner (i.e., the LSTM makes a prediction
at each timestep, using the processing of the previous timesteps). Therefore, one can
legitimately think that making a prediction in the beginning of the input sequence
will generally be less accurate than a prediction at the end of the sequence.

To verify this idea, we measure the overall categorical accuracy A regardless of
the class, for an estimate at each frame position in the sequence. This frame-wise
accuracy is defined by:

A(τ) =

∑6
i=0|Ti|Aii(τ)∑6

i=0|Ti|
, (5.4)

where Aii(τ) is the accuracy calculated only from the estimates for frames τ in a
sequence. That is, for all test sequences, we only keep the prediction for the frame
position τ to compute the accuracy A(τ). We do that for all τ ∈ [1, T ] and end
up with the accuracy A(τ) as a function of the frame position τ . To perform a fair
evaluation on all frames of all test sequences, instead of extracting non-overlapping
sequences of T frames from the 15 s test signals as we did in our previous experiment,
here we actually extract the input features with an overlap of T − 1 (i.e., we shift the
input sequence by one frame at a time).

The evaluation of A(τ) is done for several values of T ∈ {10, 20, 30, 50}. We also
vary the convolution kernel size, with values 3 × 3, 5 × 5 and 7 × 7, which has been
shown to be very interesting for the analysis.

Results

Fig. 5.9 displays the accuracy A(τ) as a function of the frame position τ in the
input sequence of size T , for several values of T ∈ {10, 20, 30, 50} (represented with
different colors) as well as three convolution kernel sizes K ∈ {3, 5, 7} (corresponding
to the three subplots). The overall accuracy, averaged over all frame positions, is also
represented with the horizontal dashed lines for the reference.

The first observation we can make is that all curves present a similar shape, with
first a rise of the accuracy A(τ) when τ increases from 0, then A(τ) reaches a max-
imum, and possibly a plateau in the middle values of τ , and finally A(τ) decreases
when τ gets close to T . Part of this shape can be explained as an expected behavior
from the LSTM layer. The increase in accuracy for the first values of τ can be in-
terpreted as the fact that the LSTM needs a certain amount of past information to
make a correct prediction. This rise is indeed quite important for the first values of τ .
When K = 3 and T = 10, the accuracy goes from 62.5% for τ = 0 to 70% for τ = 6.
For K = 5 and T = 50, A(τ) goes from 62.5% for τ = 0 to around 74% at τ = 20, and
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then we observe a plateau for the accuracy. This plateau is noticeable (and possibly
large) only for high values of T , and seems to indicate the convergence of the LSTM.
For small T , one can think that the LSTM does not reach this convergence when the
accuracy starts decreasing, due to another phenomenon, detailed below. To sum up,
we can conclude that the LSTM needs a certain amount of past information for a
good prediction, leading to a notable increase in prediction accuracy.

Whether the accuracy reaches a plateau (for large enough values of T ) or a local
maximum (for small T ), we always see an important decrease when τ gets close to T .
This means that the network predictions for the last frames of the input sequence are
less accurate that for the middle frames, however better than for the very first frames.
For instance, for K = 3, we notice that the accuracy starts decreasing for τ = T − 5

for all T , except for T = 10 where the accuracy starts decreasing at τ = T − 3. For
K = 5, the accuracy decrease happens for τ = T − 9 except for T = 10. For K = 7

the drop is less similar depending on T : we observe it for τ = T −10 when T = 30 and
for τ = T − 16 when T = 50. So it seems that the position where the accuracy starts
decreasing is correlated to the size of the convolution kernels. In fact, we conjecture
that it is due to the use of zero-padding in the convolutional layers. This technique,
used to preserve the shape of the input feature, adds frames of zeroes before and after
the input sequence (and zero-valued frequency bins also) so that the kernels can be
applied at the edge of the spectrogram. It results in a convolution operation done on
the edge regions where part of the processed data does not contain any information
(i.e., filled with zeroes), so the resulting vectors would contain less information for
the next layer. As this effect happens for all convolutional layers, the number of
zero-valued frames added at the beginning and end of the input features is related
to the number of convolutional layers and the corresponding kernel sizes K. In our
case, as there are 4 convolutional layers in our CRNN, 4× K−1

2 = 2K − 2 zero-valued
frames are added before and after the input feature. Thus we can expect a decrease
in accuracy, due the LSTM process on vectors with less information, starting from
the frame at position 2K − 2 before the end of the sequence.

Finally, due to the LSTM behavior and the use of zero-padding in all 4 convolu-
tional layers, an empirical formula can be draw to express the optimal position τopt
for a frame in the sequence, to obtain the best prediction (a sequence starts at τ = 0):

τopt = T − 2K + 1. (5.5)

This empirical optimal position is showed in darker color in Fig. 5.9.
To conclude, this simple performance analysis shows that the use of LSTM layers

and zero-padding in convolutional layers results in an asymmetrical prediction ac-
curacy depending on the position of the analyzed frame in the input sequence. We
notice that a gain of 10% in accuracy can be obtained by choosing the optimal frame
position, which we try to justify by inspecting the behavior of neural network com-
ponents. To illustrate the prediction power of our speaker counting system, we show
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in Fig. 5.10 the predicted and ground-truth NoS of three 15-s mixtures, with 1, 3

and 5 speakers, respectively. We use the neural network with K = 5, and a sequence
length T = 30. Using an overlap of T − 1, we successively extract the input features
from the 15-s mixtures and keep only the prediction for the frame τ = τopt.4 We
therefore estimate the NoS for all frames in the mixtures. In the top plot of Fig. 5.10,
(1-speaker signal), the prediction is almost perfect, but we notice that the network
failed to capture a short speech break around frame 300, and seems to be sometimes
a bit early or late by a few frames in its prediction (e.g., around frames 75 and 360).
In the middle plot (3-speaker signal), the predictions are less accurate than with 1

speaker but still relatively precise. We also notice a few predictions time-shifted from
the ground-truth (e.g., around frame 80 and sometimes the network does not detect
a new speaker (e.g., around frame 160). Moreover, in different frame regions (e.g.,
around frames 210 and 330), the network overestimates the number of speakers. In the
bottom plot (5-speaker signal), the prediction performance is degraded, as expected
due to the increasing complexity of the task. Still, we see that the predictions lie
around the ground-truth.

4As we do not use zero-padding, for the input feature extracted at the very beginning of the
mixture we keep all predictions for τ < τopt, and for the input feature extracted at the very end we
keep all predictions for τ > τopt.
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(a) K = 3

(b) K = 5

(c) K = 7

Figure 5.9: Overall accuracy according to the predicted frame posi-
tion in the input sequence, forK = 3 (top), K = 5 (middle) andK = 7
(bottom). On each plot we show the frame-wise accuracy for differ-
ent sequence length T , with a darker value representing the empirical
optimal frame position. In horizontal dashed lines are represented the
average accuracy on all frame positions.
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Figure 5.10: Spectrograms of the W channels of three test signals
(with 1, 3 and 5 speakers), with the ground-truth NoS (in white) and
the NoS predicted by the proposed multi-channel CRNN (in red). The
prediction is based on the result provided by the network at frame τopt
(see text).
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5.4 Conclusion and perspectives

In this chapter, we have introduced a CRNN which is capable of counting up to 5

speakers in a FOA signals, with a frame-wise resolution. This latter point is a notable
difference with the existing state-of-the-art at the time of the presented study. The
best speaker counting system available at that time [St19] was providing the maximum
NoS over 5s-mixtures.

Our CRNN, trained on FOA magnitude spectrogram is composed of several con-
volutional layers, which are designed to extract spectral and spatial information while
preserving the temporal dimension, followed by a sequence-to-sequence LSTM layer
and an output feedforward layer. The 6 softmax neurons of the output layer estimate
a probability distribution over the NoS (from 0 to 5) for each frame in the input spec-
trogram. The evaluation of this speaker counting CRNN on simulated data showed
that it can classify a multi-channel signal as being non-speech with almost perfect ac-
curacy, and is able to estimate the presence of 1 speaker around 90% precision. When
the number of speakers is greater or equal to 2, the accuracy is still greater than 50%.

We conducted several experiments in order to assess the benefit of certain hy-
perparameters. First, we showed the superiority of using multi-channel features over
single-channel ones, suggesting the benefit of spatial information for speaker counting.
We noticed that the network accuracy increased when the length of the input sequence
was larger, and it seemed that augmenting the convolution kernel sizes slightly helped
for better predictions but this was not fully conclusive. Finally, we carried out a per-
formance analysis which showed that the network prediction accuracy was uneven for
all frames in a given sequence, due to the LSTM behavior and the use of zero-padding
in the convolutional layers. Based on an empirical investigation, we concluded that
the best counting accuracy is obtained for the last frames in the sequence which are
not affected by zero-padding.

Although some design efforts have been made to improve the counting accuracy,
as well as an analysis to assess the network performance, there is still room for future
investigation in many aspects. While only a small number of convolutional layers
has been used here, we believe that the feature extraction stage could be easily im-
proved, based on one experiment we conducted for DoA estimation 7.3.2. Regarding
this, several aspect could be investigated, such as the number of convolutional layers,
the convolutional shapes (2D, 3D), the use of dilated kernels, or even the addition
of residual connections which might help if numerous layers are used. A better fea-
ture extraction could lead to a better discrimination between sources, thus leading
to a more accurate speaking counting. One may also think of bidirectional layers for
an improved temporal analysis. Regarding speaker discrimination, the use of phase
information, as well as considering HOA features could further improve the network
performance, which was already shown to benefit from spatial information. We think
that increasing the Ambisonics order and improving feature extraction are the most
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promising options for improving the speaker counting performance. Another per-
spective is to explore a more suitable loss function such as the earth-mover distance
[HYS16], as it could make a better benefit of the inter-class relationships.
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Chapter 6

Single-speaker localization

This exploratory chapter presents a series of experiments geared towards the use of
the time domain velocity vector (TDVV), which was presented in Section 2.4.3,

for single-source localization. As a novel representation, analyzed from a theoretical
point of view in a recent paper [DK20], the TDVV had never been applied to SSL
with neural networks. Due to its promising characteristics, we explore the benefit
of using the TDVV as the input feature for SSL, compared to using the FO-PIV,
which is a state-of-the-art representation for neural-based multi-source localization
[Per+18b]. Before addressing the multi-source scheme, we attempte to improve the
single-source localization performance by designing and evaluating a variety of neural
network architectures.

As in Chapter 5, we first explain how we employ the TDVV as a network input
feature, then we present the output paradigm we used for localization and the overall
network architecture. Then, we detail the audio and training parameters, the nature
of the training and test data, the baseline, and the metrics. In the first experiment,
we directly compare the TDVV input features against the FO-PIV, using the same
(baseline) neural network. Then we attempt to improve the network feature extraction
module, so that it can make better use of the TDVV, with dilated convolutional layers
and residual connections.

As the reader will realize throughout this chapter, this thesis part is very ex-
ploratory and experimental. The obtained results are not as good as excepted, and to
find a cause of it is not a trivial task, due to the lack of theoretical understanding of
the behavior of neural networks. Despite the somewhat disappointing results of the
many experiments we conduct, we think that presenting this research it still relevant.

6.1 Overall methodology

6.1.1 Input features

As mentioned earlier, in this chapter we explore the use of the TDVV as a novel input
features for a localization neural network. For a given frame of signal, we have seen
in Section 2.4.3 that it is computed as the IFT of the FDVV, which itself is derived
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Figure 6.1: Plot of a TDVV for one frame of a training example,
decomposed into the x-, y- and z- dimensions.

as the FO-PIV divided by the power of the channel W :

V(τ) = IFT (V(f)) = IFT

(
I(f)

|W (f)|2

)
= IFT

(
1

W (f)

X(f)

Y (f)

Z(f)

). (6.1)

For each τ , the quantity V(τ) is a vector with 3 coordinates x, y, z. The TDVV is
then computed for several frames, which leads to a 3D input tensor X ∈ RT×N×3,
where N is the IFT size.

When computing this quantity, we add a small value ε = 10−5 to |W (f)|2 in order
to avoid dividing by zero. An example of TDVV computed from the training dataset
(see Section 6.2.3 below) is shown in Fig. 6.1, with one subplot for each of its channel
dimensions. We see that this practical TDVV example does not fully resemble the
theoretical TDVV illustrated in Fig. 2.6 but rather seems to be a very noisy version
of it. We can still observe a few prominent peaks, theoretically corresponding to the
contributions of one or more reflections (or the direct path for τ = 0). This motivates
us to rely on neural networks which we hope to be robust enough to cope with the
noise.

6.1.2 Speaker localization as a classification problem

As for speaker counting, we consider speaker localization as a classification problem,
similarly to [Per+18b]. Fig. 6.2 illustrates the general classification approach we take
for speaker localization, with an arbitrary NoS. From the microphone array point
of view, and with the microphone array center taken as the origin of a spherical
coordinate system, the DoA space is represented as a unit sphere. This 2D sphere
is discretized into several regions, which will act as the classes, with the following
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Figure 6.2: Illustration of a speaker localization system addressed as
a classification problem.

discrete values for the source azimuth θ ∈ [−180◦, 180◦] and the source elevation
φ ∈ [−90◦, 90◦]: 

φp = −90◦ +
p

P
× 180◦, for p ∈ {0, ..., P}

θpq = −180◦ +
q

Qp + 1
× 360◦, for q ∈ {0, ..., Qp}

, (6.2)

where P = b180α c, Qp = b360α cosφpc and α is the grid resolution in degrees 1. In all
our experiments, we set α = 10°, so that we end up with 429 DoA regions, each one
represented as a class ci, i ∈ {1, ..., 429} for the network.

The neural network is trained to estimate a probability P (θpq , φp | Xt,:,:) that a
sound source is present in region (θpq , φp), for each region, and for each frame from
an input feature X. We then average the probability distributions over all frames in
the input sequence to obtain one final distribution P (θpq , φp | X). As we consider the
single-source scheme in this chapter, the peak-picking stage simplifies as extracting
the direction with the highest probability to be the estimated DoA:

(θ̂, φ̂) = arg max
(θpq ,φp)p∈[0,P ],q∈[0,Qp]

P (θpq , φp | X). (6.3)

6.1.3 Neural network architecture

Many neural network architectures are explored to improve the single-source local-
ization accuracy. An illustration of a generic architecture can be found in Fig. 6.3.
The input feature X presented above is fed into the input layer of the neural network.
After a feature extraction module which will change according to the experiment, a
recurrent module made of two bidirectional LSTM layers is used. These LSTM layers
are used in a sequence-to-sequence manner so that each input frame leads to a new vec-
tor. In these layers, we use the same activation functions as described in Section 3.3.3.
Then, each output vector of the second LSTM layer goes into a first feedforward layer

1Note that we also used the notation p to design the acoustic pressure and Q for the number of
Ambisonics channels, however we believe that it does not lead to confusion.
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Figure 6.3: General architecture of the neural network used for
single-speaker localization. The input feature is fed into a feature
extraction module whose components change according to the exper-
iment. A recurrent module with 2 bidirectional LSTM layers is then
used in a sequence-to-sequence manner, and the LSTM output vector
corresponding to each frame is fed into a block of two fully-connected
layers, the last one acting as the output layer. At the end, we end up
with a probability distribution over the discretized DoA space for each
input frame.

with 128 units and linear activation. Finally, another feedforward layer is used as
the output layer, with 429 units (one for each DoA region) and a sigmoid activation
function. The use of dropout justifies the idea of using two feedforward layers with
the first one using a linear activation.

6.2 Experimental protocol

6.2.1 Audio parameters

We use the same audio parameters as in Chapter 5. The audio signals are sampled at
16 kHz. Both STFT and inverse STFT are computed with a Tukey window (α = 0.5)
of length 1 024 samples and an overlap of 50%. The motivation for this choice of
the window function is to reduce the signal distortion within the frame, so that the
derived TDVV features remain accurate.
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6.2.2 Training parameters

The neural networks are trained using the binary cross-entropy as the loss function
and the Adam optimizer with a starting learning rate of 10−3, β1 = 0.9, β2 = 0.999,
and ε = 10−7. During training, a dropout layer is used between the feedforward layers,
with a dropout rate of 0.3. We also monitor the network accuracy on the validation
dataset during the training phase. If the accuracy does not improve for 10 epochs,
the learning rate is reduced by a factor 2, and if it does not improve for 20 epochs,
we stop the training and keep the best performing model. The maximum number of
epochs is set to 300.

6.2.3 Training data

The training dataset is generated in a similar way as for the speaker counting network,
presented in 5.2.3, except that we do not aim to generate conversation-like mixtures.
We instead create 1-s mixtures with a continuous speech coming from a static source.

We first generate a set a SRIRs with the image-source method [AB79] using an
adaptation of the RIR generator [Hab06] to the Ambisonics format. The SRIRs are
generated with the following protocol. In order be sure that every class is well repre-
sented, i.e., every DoA is present with the same amount in the training phase, we first
select a random DoA. Then, we pick random room dimensions in the range [2, 10] m,
[2, 10] m and [2, 3] m, for the width, length, and height, respectively, as well as the
reverberation time RT60 between 200 and 800 ms. Next, the microphone array is
randomly positioned somewhere in the room so that it is at least at 0.5 m from the
walls. The first source position is randomly picked at a distance between 1 and 3 m
from the microphone array with respect to the DoA selected at the beginning of the
procedure. If such a constraint is not applicable (i.e., it forces the first source to
be outside of the room), we restart the algorithm with new room dimensions. We
generate a total of 128 700 SRIRs.

To generate the speech signals, we use the TIMIT corpus [Gar+93], as in Chap-
ter 5. For each generated SRIR, we extract speech excerpts containing 1 s of contin-
uous speech, which we convolve with the SRIR to create a reverberant speech signal.
A diffuse noise is added to the convolved speech signal with a random SNR between
0 and 20 dB. The diffuse noise is created by first picking a random noise signal in the
same noise dataset as in Chapter 5, and convolving it with the average of the diffuse
parts of two random measured SRIRs.

The validation dataset is generated in the exact same way, based on 1 287 SRIRs.
We took care of using different speech and noise signals, as well as new random seeds
to unmatch from the random pick used in the generation of the training dataset.

The overall process results in a total of around 35 hours of training data and
22 minutes of validation data.
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Figure 6.4: Baseline localization CRNN adopted in [Per+19].

6.2.4 Testing data

To evaluate our neural networks, we use two testing datasets, one with simulated
SRIRs and another with recorded SRIRs.

The first one is created using the same procedure as the training and validation
sets. As we did for validation data, we take care of using new seeds for random
picking, new speech signals and new noise signals to generate the testing data. We
thus create a total of 22 minutes of testing data with simulated SRIRs. The speech
signals in the second dataset are created in the same way as the first one, but using
real SRIRs recorded with an EigenMike in a real reverberant room. The room is 4 m
long, 7 m wide and 2.5 m high, and the RT60 is around 500 ms. The microphone
array are placed in 36 positions, and for each one 16 loudspeakers emitted a sweep
signal to gather a total of 576 SRIRs.

6.2.5 Baseline

As a baseline, we use the CRNN proposed by Perotin et al. in [Per+18b], from which
we draw inspiration when designing several networks during the experiments. The
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Input features Accuracy (%) Angular error (°)
<10° <15° Mean Median

FO-PIV 95.3 99.2 5.0 4.5
TDVV 77.2 90.9 8.1 6.3

(a) Simulated SRIRs

Input features Accuracy (%) Angular error (°)
<10° <15° Mean Median

FO-PIV 67.1 83.9 11.5 7.3
TDVV 53.9 71.2 16.3 9.1

(b) Real SRIRs

Table 6.1: Results of the localization of a single speech source with
the baseline CRNN, for the FO-PIV vector and the TDVV as input
feature. Best results are shown in bold.

baseline architecture is illustrated in Fig. 6.4. The main difference with our approach
is that the input feature was composed of the real and imaginary parts of the FO-PIV
(see Section 2.4.1). The feature extraction module is composed of 3 convolutional
layers, with 64 convolution kernels of size 3 × 3, and each one is followed by a max-
pooling layer with pooling sizes 1 × 8, 1 × 8 and 1 × 4, respectively. Dropout layers
are used after each max-pooling layer during the training phase.

6.2.6 Evaluation metrics

We use two metrics to evaluate the localization performance. First, we compute the
mean and median angular error (which is the angular distance between the estimated
DoA and the ground-truth DoA) on the whole test dataset. On a sphere, the angular
distance is defined on the unit sphere between two points (θ1, φ1) and (θ2, φ2) by:

δ((θ1, φ1), (θ2, φ2)) = arccos
(

sinφ1 sinφ2 + cosφ1 cosφ2 cos(θ1 − θ2)
)
. (6.4)

We also measure the classification accuracy on the test set, which is the percentage
of test examples with an angular error below a certain tolerance threshold. Considering
that the minimum angle between two points in the grid defined in Section 6.1.2 is 7°,
we evaluate the classification accuracy for a tolerance threshold of 10° and 15°.

6.3 Experiments

6.3.1 TDVV against FO-PIV

Experiment objective

The first experiment we conduct is a direct comparison of the use of the TDVV and
FO-PIV as input features of the same neural network. For a fair comparison, we
train the baseline CRNN, one with the TDVV and with the FO-PIV as input feature.
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Figure 6.5: Distribution statistics on the angular error of the CRNN
with TDVV and the baseline on both testing datasets. Boxplots show
the first and third quartiles as well as the median value. Superposed
to each boxplot is shown the corresponding violin plot, which is an
estimation of the probability density function of the statistical distri-
bution.

We use the exact same training, validation and test datasets, as well as the training
parameters, so that only the input features differ between the two systems.

Results

The classification accuracy and the mean and median angular errors on the two test
datasets (with simulated SRIRs and real SRIRs) are shown in Table 6.1. The angular
error statistics are illustrated with boxplots and violin plots in Fig. 6.5.

On the dataset created with simulated SRIRs, we see that the CRNN using the
TDVV as input underperforms the baseline, with a notable decrease in performance.
The baseline proves to be very accurate for single-source localization [Per+18b] with
99.2% accuracy with an angular tolerance of 15°and 95% accuracy for a tolerance of
10°. The CRNN using the TDVV as input only achieves 90.9% and 77.2% in these
metrics, respectively. We also see on the boxplots and violin plots that the angular
errors for the TDVV are more scattered than for the FO-PIV.

Regarding the dataset with real SRIRs, the observations are similar, with a drop in
accuracy by around 13% for the TDVV in comparison to the FO-PIV, for both 10° and
15°tolerances. By using the TDVV as input feature, we increase the mean angular
error by almost 5°. The violin plots suggest that both CRNNs provide less consistent
results on data generated with the real SRIRs, compared to the data generated with
the simulated SRIRs.

All these results show that replacing the FO-PIV with the TDVV as neural network
input feature leads to a notable decrease in localization performance. Whereas this
new representation was shown to be meaningful on a theoretical point of view, it
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(a) Feature
extraction

module with
dilated

convolutions

(b)
Convolutional

block with
dilated

convolution
kernels

Figure 6.6: Feature extraction module with B convolutional blocks
consisting of a convolutional layer with increasing dilation factor fol-
lowed by a max-pooling layer.

seems that the CRNN has more difficulties to extract the relevant information for DoA
estimation than with the FO-PIV. This motivates us to conduct further experiments
to improve the architecture, in order to give the neural network more capability to
extract more relevant features.

6.3.2 CRNN with dilated convolutions

Experiment objective

The previous experiment showed us that the CRNN from [Per+18b] makes better use
of the FO-PIV than the TDVV as input feature. One reason might be because the
baseline architecture has been tuned for the use of FO-PIV and thus is not suitable
for feature extraction from the TDVV. We then might need a more adapted neural
network for this new representation. Recalling the theoretical derivation of the TDVV
in Section 2.4.3, we see that it contains information about certain reflections at some
specific delay τ . One idea is then to give the network more flexibility during the feature
extraction stage in order to process the relevant reflection components, indexed by
several τ which are sometimes far from each other in the TDVV.

Dilated convolutions seem to be good candidates for that purpose because they
can process data points which are not contained in a neighbouring area, without
taking the in-between points into account. For this reason, we decide to replace the
classical 3×3 convolution kernels with dilated kernels of size 1×3 so that the process
is done only along the TDVV delay axis, separately for each frame. In that way,
the TDVV information is not mixed across the frames in the convolutional layers,
the temporal analysis being reserved for the subsequent layers. Fig. 6.6a shows an
illustration of the network architecture we adopt. We replace all the convolution layers
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Model label B P C # parameters
Baseline / / / 578 927

Dil-B2-P0-C32*

4

0 32 17 155 951
Dil-B2-P2-C32 2 32 2 475 887
Dil-B2-P4-C32 4 32 640 879
Dil-B2-P4-C64 4 64 921 839
Dil-B3-P0-C32*

3

0 32 17 159 155
Dil-B3-P2-C32* 2 32 1 430 515
Dil-B3-P4-C32 4 32 447 475
Dil-B3-P4-C64 4 64 541 075
Dil-B4-P0-C32*

4

0 32 17 162 259
Dil-B4-P2-C32* 2 32 1 433 619
Dil-B4-P4-C32 4 32 450 579
Dil-B4-P4-C64 4 64 553 427

Table 6.2: Summary of all tested configurations of hyperparameter
values with the resulting number of parameters constituting the neural
network. Note that the baseline number of parameters is also given
whereas it is not based on dilated convolutional blocks. Model la-
bels marked with an asterisk are those which do not manage to train
properly, resulting in random predictions.

from the baseline architecture with a series of B dilated convolution blocks illustrated
in Fig. 6.6b where B is an hyperparameter in our experiments. These blocks are
made of one convolutional layer with C convolution kernels of size 1×3 and a dilation
factor which doubles at each additional block, starting with l = 1, and then followed
by a max-pooling layer of size 1× P . The idea behind this increasing dilation factor
is borrowed from the WaveNet architecture [Oor+16], whose authors showed that it
increases the receptive field of the convolutional layer. In our case the receptive field
spans the τ axis.

We train this neural network for several hyperparameter values. We stack up from
B = 2 (thus with dilation factors l = 1, 2) to B = 4 (l = 1, 2, 4, 8) convolutional blocks
with C = 32 kernels and pooling sizes P = 0, 2, 4 (when P = 0 we do not use any
max-pooling layers at all). For P = 4 (which gives the most conclusive results as we
will see below), we also try using C = 64 kernels. Table 6.2 summarizes the different
tested configurations with the resulting number of parameters constituting the neural
networks, along with the baseline for comparison.

Results

For reasons that are not yet well identified, several sets of hyperparameters lead to
an erratic network training (even after we retrain them again to make sure it is not a
bug). Fig. 6.7 shows the validation accuracy evolution during such a training, as an
example for model Dil-B2-P0-C32. Models that we are not able to train properly are
indicated with an asterisk after their label in Table 6.2. Looking at the number of
parameters of these wrongly trained model, there seems to be a correlation between a
high number of parameters and an erratic training. As these models do not employ a
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Figure 6.7: Training and validation accuracy evolution of the erratic
training of model Dil-B2-P0-C32. We clearly see that the network does
not learn, which leads to non-increasing accuracy on the validation set.
Note that the accuracy is bounded by 100%.

lot of pooling in the convolutional blocks, the second tensor dimension at the output
of the reshape layer is quite large, implying that most of the network parameters are
used to map this dimension to the BiLSTM dimension of size 64. For example, for
B = 2, C = 32, and no pooling, the shape at the output of the reshape layer is
(T, 32 768), resulting in 16 810 496 parameters only for the first BiLSTM layer. This
high number of parameters at one specific layer of the network could be the reason
why it is hard to train. However, this problem happens also for relatively small models
such as Dil-B3-P2-C32 and Dil-B4-P2-C32 (about 1.5 M parameters); we still miss
a fully satisfying explanation of this issue.

Due to these still open problems, we present only the results for a portion of our
experiments. We do not consider all the experiments leading to a functional network
training. Instead, we limit the results to a subset of all configurations which allows
us to rigorously compare several hyperparameter values. Therefore, since the pooling
size seems to be important for a successful training, we evaluate only the models with
P = 4, which allows us to compare the different numbers of convolutional blocks and
kernels.

As we can see in Table 6.3 and Fig. 6.8, the performance of the dilated CRNNs
is still far from the baseline. We even lose in performance compared to the baseline
architecture with the TDVV as input feature (see Table 6.1). Using simulated SRIRs,
the localization accuracy for this architecture was 90.9% for a tolerance of 15°, while it
drops between 70.5 and 87.7% .when considering the best-performing dilated CRNN.
With real SRIRs, the accuracy decrease is

a bit less pronounced, going from 71.2% with the baseline architecture to between
55.7% and 70.3%.

When comparing the dilated CRNNs with each other, we see that using C = 64

convolution kernels instead of C = 32 leads to better results in all cases. For instance
with real SRIRs, the mean angular error goes from 26.8° to 21.8° when B = 2, or
from 35.2° to 21.2° when B = 4. Moreover, there is a tendency that the performance
increases when B increases, i.e., using more convolutional blocks results in a more
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Model label Accuracy (%) Angular error (°)
<10° <15° Mean Median

Baseline CRNN with FO-PIV 95.3 99.2 5.0 4.5
Baseline CRNN with TDVV 77.2 90.9 8.1 6.3

Dil-B2-P4-C32 58.4 75.4 15.4 8.6
Dil-B2-P4-C64 69.3 85.2 10.3 7.3
Dil-B3-P4-C32 47.9 70.5 19.8 10.3
Dil-B3-P4-C64 70.9 87.1 9.6 7.1
Dil-B4-P4-C32 61.8 79.3 16.1 8.2
Dil-B4-P4-C64 68.1 85.5 10.5 7.3

(a) Simulated SRIRs

Model label Accuracy (%) Angular error (°)
<10° <15° Mean Median

Baseline 67.1 83.9 11.5 7.34
Dil-B2-P4-C32 42.4 61.4 26.8 11.9
Dil-B2-P4-C64 50.7 68.1 21.8 9.8
Dil-B3-P4-C32 35.8 55.7 35.2 13.2
Dil-B3-P4-C64 49.1 67.4 18.4 10.1
Dil-B4-P4-C32 47.0 62.9 28.6 10.7
Dil-B4-P4-C64 52.0 70.3 21.2 9.6

(b) Real SRIRs

Table 6.3: Accuracy and angular errors of the dilated CRNNs with
TDVV and the baseline on the testing datasets. Best results are in
bold.

accurate network.
It is not clear why we observe a drop in performance with this new feature extrac-

tion module. In the baseline architecture, only 3 convolutional layers with 64 kernels
are used, and the pooling size is larger. In our proposal, even with C = 64 and P = 4,
we witness a decrease in accuracy. One important change we made is the replacement
3 × 3 max-pooling block by 1 × 3 pooling, which could be the cause of this decline,
although it seems surprising to be the only explanation. It could be instructive to
evaluate these models with 3× 3 max-pooling to assess this idea, however we did not
have time to do it.

To conclude this experiment, the proposed feature extraction module does not
allow to improve over the baseline performance. It even further deteriorates compared
to using the baseline architecture with the TDVV as input feature. However, we
learn that using a relatively large max-pooling is necessary to avoid having too many
parameters and an untrainable network, and that using C = 64 kernels in the majority
of convolutional blocks leads to better results.



6.3. Experiments 99

Figure 6.8: Distribution statistics on the angular error of the dilated
CRNNs with TDVV and the baseline on both testing datasets.

6.3.3 CRNN with dilated convolutions and residual connections

Experiment objective

In order to improve the feature extraction module, we try adding residual connections
to the CRNN to help stabilising the training of a network. The idea is that each feature
map is reused in the next layers, to hopefully allow the network more flexibility in
producing an informative representation for the localization task. We use a similar
architecture as before, with the difference that each convolutional block contains two
convolutional layers with a residual connection, as illustrated in Fig. 6.9. As we can
see, the output of the first convolutional layer is concatenated with the output of the
second one, leading to a total of 2C feature maps. Again, the second dimension of the
resulting tensor is reduced using a max-pooling layer. We experimente with different
numbers of such blocks (B = 1, 2, 3, 4, 5). This results in more convolutional layers (10

when B = 5), therefore, we modify the dilation factor progression with all successive
integer values; that is, in the first block we have l = 1 for the first convolutional layer
and l = 2 for the second one, then for the second block we have l = 3 and l = 4, and
so forth. We set the remaining hyperparameter values to the values that produces
the best results in the previous experiment (C = 64, P = 4). Table 6.4 sums up the
tested configurations.

Results

The residual connections fail to stabilise training, since the models with too many
parameters (for B = 1, 2, 3) do not train properly, leading to random results. We thus
present the results for B = 4, 5 in Table 6.5 and Fig. 6.10.

As we can see, the results are even worst than all other experiments. While the
model labelled Res-B4-P4-C64 reaches a reasonable performance slightly below the
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Figure 6.9: Convolutional block with two convolutional layers and
with a residual connection propagating the output of the first block to
the output of the second one. They are both concatenated before fed
into a max-pooling layer.

dilated CRNNs with C = 64, the model Res-B4-P4-C64 results in poor performance,
with only 45.2% accuracy with a tolerance of 15° with simulated SRIRs.

Although we keep the best hyperparameter values found in the previous experi-
ment, we do not manage to improve the results by adding residual connections, and
we even surprisingly worsen the localization performance. Compared to the previous
models, we only change the design of the convolutional block by adding a second
convolutional layer with a residual connection. Intuitively, such a modification should
have a positive impact on localization performance, since it improves the flexibility of
feature extraction. Unfortunately, we fail to explain the outcome of this experiment.
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Model label B P C # parameters
Baseline / / / 578 927

Res-B1-P4-C64* 1 4 64 17 162 315
Res-B2-P4-C64* 2 4 64 4 616 595
Res-B3-P4-C64* 3 4 64 1 508 059
Res-B4-P4-C64 4 4 64 535 043
Res-B5-P4-C64 5 4 64 599 403

Table 6.4: Summary of all tested configurations of hyperparameter
values with the resulting number of parameters constituting the resid-
ual CRNN. Model architectures marked with an asterisk are those
which do not managed to train properly, resulting in random predic-
tions.

Model label Accuracy (%) Angular error (°)
<10° <15° Mean Median

Baseline 95.3 99.2 5.0 4.5
Res-B4-P4-C64 61.3 80.3 13.0 8.2
Res-B5-P4-C64 26.4 45.2 21.1 16.8

(a) Simulated SRIRs

Model label Accuracy (%) Angular error (°)
<10° <15° Mean Median

Baseline 67.1 83.8 11.5 7.3
Res-B4-P4-C64 47.5 65.4 23.2 10.3
Res-B5-P4-C64 22.7 40.4 29.8 17.8

(b) Real SRIRs

Table 6.5: Accuracy and angular errors of the residual CRNNs with
TDVV and the baseline on the testing datasets. Best results are in
bold.

Figure 6.10: Distribution statistics on the angular error of the resid-
ual CRNNs with TDVV and the baseline on both testing datasets.
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6.4 Conclusion and perspectives

In this chapter we presented a series of experiments to assess the capabilities of com-
bining neural networks with the TDVV. While many information including the DoA
can be extracted from the theoretical TDVV, we saw that, in practice, the extraction
of such a feature is very noisy, which motivated us to rely on the expressive power
of neural networks. Throughout numerous experiments, of whom we only presented
those giving interesting results, we attempted to improve single-source localization
with the TDVV as input feature, compared to the use of the FO-PIV. Although the
use of TDVV resulted in a fair localization accuracy, the baseline was never outper-
formed. We made a lot of efforts to redesign the network feature extraction module
to be adapted to this new kind of input feature, without success.

The most interesting, yet difficult part of these experiments, is to understand why
we did not manage to improve localization with these new features. Concerning the
models that we were not able to train properly, we speculated that this was due to
the too large number of parameters accumulated in one specific layer, resulting from
the network design. However, the reason why using dilated convolutions and residual
connections decreased the performance is not clear. While the inconclusiveness of
several attempts could allow to avoid repeating the same mistakes, we believe that
these ideas could lead to interesting future works due to the promising possibilities of
using the TDVV with neural networks.

As we were not able to successfully exploit the TDVV’s nature despite the effort of
finding an adapted feature extraction module, the issue could lie in the TDVV estima-
tion itself. In these experiments, we extracted the TDVV in a somehow naive manner,
by incorporating an epsilon value to avoid dividing by zero, which had the effect of
emphasizing noise in low SNR conditions. More elaborate estimation algorithms could
be employed beforehand to help the network for better feature extraction. For exam-
ple, as the TDVV is related to the relative transfer function, one could adapt RTF
estimation algorithms such as [SW96; Coh04; GBW01].

Furthermore, applying the self-attention mechanism across the delay dimension of
TDVV, could be a viable alternative to (dilated) convolutions. This raises concerns
with regards to computational complexity, hence an efficient implementation (e.g.,
[Kat+20]) is a prerequisite.

While the inconclusiveness of all the presented attempts could allow to avoid re-
peating the same mistakes, we believe that these ideas could lead to interesting future
works due to the promising possibilities of using the TDVV with neural networks. We
still think that these ideas could really benefit source localization and that the effort
should continue towards a robust TDVV estimation algorithm, as well as a neural
network design conceived with the theoretical TDVV properties in mind.
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Chapter 7

Multi-speaker localization

In Chapter 6, we explored single-speaker localization with a novel type of input fea-
ture called TDVV. We now focus on multi-speaker localization. However, TDVV

assumes a single sound source, hence we will rely on the pseudointensity vector (which
way, anyhow, shown to outperform the former even in the single-source scenario). We
base our research on the same baseline [Per+19] as in Chapter 6, and propose to im-
prove several components of this system. In the present chapter, the NoS is supposed
to be known by the localization system.

After describing the neural network input features, the output paradigm and over-
all architecture, we present different parameters used in our system, the employed
training and testing data, the baseline and evaluation metrics. Then, we detail the
various experiments we conduct to improve the multi-speaker localization performance
over the baseline. The first experiment aims at finding the best order of feeding the
training data to the network, considering that the training signals contains between
1 and 3 speakers. In the second experiment, we design a new feature extraction mod-
ule, and in the third, we consider replacing the recurrent layers with a self-attention
mechanism. In the last experiment, we assess the use of HOA features.

7.1 Overall methodology

7.1.1 Input features

As in [Per+19], we use the pseudointensity vector as input feature for the multi-
speaker localization neural network. This type of input features proved to be more
robust than spectrograms for FOA signals [Per+18b]. In [Per+19], the input feature
was obtained by computing the normalized active and reactive FO-PIV Īa(t, f) and
Īr(t, f) from (2.37) and (2.38) and stacking them into the third dimension to obtain
a 3D tensor of shape T × F × 6, with T the number of frames, F the number of
frequency bins.

Fig. 7.1 shows the input feature extracted from a training example. Here we have
T = 25 frames, and F = 512 frequency bins corresponding to the bandwidth 0−8 kHz.

An extension of this input feature is assessed in an experiment presented in Sec-
tion 7.3.4, in which we evaluate the benefit of using the HO-PIV over the FO-PIV.
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Figure 7.1: Plot of the 6 channels of a FO-PIV input feature ex-
tracted from a training example of 25 frames. From top to bottom:
the x, y, z coordinates. Left: active intensity. Right: reactive inten-
sity.

The HO-PIV feature is computed at order 2, leading to an input tensor of shape
T × F × 16.

7.1.2 Multi-speaker localization as classification

We consider the multi-speaker localization problem with the same classification ap-
proach as that described in Chapter 6 and illustrated in Fig. 6.2. The same unit
sphere discretization is used, leading to 429 possible DoA directions, considered as
classes. We extend SSL to the multi-speaker case by directly extracting the J highest
peaks in the output probability distribution, where J is the number of speakers. Note
that, after averaging the probability distribution over the T frames (which leads us to
consider the total NoS J instead of the instantaneous NoS J(t)), we do not smooth
this probability distribution within a neighborhood like in [Per+19], as we found out
it deteriorated the results.

When training and evaluating the network with generated data (using simulated
and real SRIRs), we consider that J is known. For the evaluation on real signals from
the LOCATA dataset [Eve+20], we use a thresholding method with a fixed threshold
β = 0.2 for peak extraction.
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When a certain number of DoAs are extracted from the localization network out-
put, we employ the Hungarian algorithm [Kuh55] to assign the estimated DoAs with
the ground-truth speaker positions. This algorithm minimizes the total assignment
cost, as a sum of the costs obtained by the different assigned pairs. In the present
case, it minimizes the total angular error obtained between all assigned pairs {pre-
dicted source DoA, ground-truth source DoA}.

7.1.3 Neural network architecture

Figure 7.2: General architecture of the multi-speaker localization
neural network. The design of the feature extraction and temporal
analysis modules are part of the experiments.

The general architecture for our multi-speaker localization system is shown in
Fig. 7.2. The input feature is first fed into a feature extraction module, whose design
is addressed in our the second experiment in Section 7.3.2 (in our first experiment in
Section 7.3.1, the feature extraction module architecture is the same as in the base-
line). Then, the new extracted feature is reshaped and sent through the temporal
analysis module. The temporal analysis module design is addressed in our third ex-
periment in Section 7.3.3. Then, each vector of the output sequence of this temporal
analysis module finally goes separately into the output feedforward layer, which pro-
duces a probability distribution over the DoA space. Note that throughout the whole
architecture, the temporal dimension is preserved, so that the output sequence is of
the same length as the input sequence.
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As the reader will understand further in this chapter, we successively focused on
different parts of this network architecture, i.e., the feature extraction module, the
temporal analysis module, and the input feature, and experimented several changes
to improve the localization performance over the baseline, which we detail below.

7.2 Experimental protocol

7.2.1 Audio and training parameters

The same audio parameters as in Chapter 6 are used, except that the STFT is com-
puted with a sinusoidal window, as in [Per+19]. The training parameters are exactly
the same. We consider T = 25 frames for each input sequence. To train the network,
we use the binary cross-entropy as in Chapter 6.

7.2.2 Training data

The training dataset is generated in the same manner as the training data for the
single-speaker localization system described in Chapter 6.2.3. The difference is that,
when a first random DoA is picked, and the room configuration and microphone
position are drawn, two other source DoAs are randomly picked so that the sources
are in the room and their positions are at least 10°apart from one another. We thus
obtain 3 SRIRs per room configuration and microphone position. This enables us
to create 3 distinct training datasets T1, T2, and T3, which contain training signals
with 1, 2, and 3 speakers, respectively. This method follows the same protocol as in
[Per+19], but is extended to 3 speakers instead of 2 as proposed by the authors of
this study. For the training datasets T2 and T3, 1-s single-speaker signals are first
generated as in Section 6.2.3, by picking a distinct random SRIRs in the same room.
They are then mixed together using random SIR in [0, 10] dB with respect to the first
source (of course, we mix 2 signals for T2, and we mix 3 signals for T3).

At the end of this dataset generation process, the training datasets T1, T2, and
T3 each contain 257 400 1s-long mixtures (with 1, 2 and 3 speakers, respectively),
resulting in a total of 772 200 training mixtures (about 172 hours of signals).

7.2.3 Test data

To evaluate our models, we use three sets of test data, each one of different nature.
The first set is made of three datasets, labelled ESim1 , ESim2 and ESim3 , which contain
1-, 2- and 3-speaker signals, respectively. These signals are generated using the same
simulated SRIRs as in Section 6.2.4, and are created in the same manner as for the
training data with several speakers. The second set is also made of three datasets,
named EReal1 , EReal2 and EReal3 , whose signals are generated using the same real SRIRs
as in Section 6.2.4 and the same process as the previously described multi-speaker
mixtures. The third test dataset consists of the datasets of four tasks of the LOCATA
Challenge [Eve+20]. These data are used to assess our model on real data. Focusing
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on the EigenMike signals of all these LOCATA datasets, we use 13 signals of task 1
(single static loudspeaker), 13 signals of task 2 (multiple static loudspeakers), 5 signals
of task 3 (single moving human talker) and 5 signals of task 4 (multiple moving human
talkers). Although we do not focus on moving speakers and our model is not trained
for this scenario, we still perform an evaluation on task 3 and 4 to assess the robustness
of our system to moving sources. These 4 test datasets are referred as ERec1 , ERec2 ,
ERec3 and ERec4 , for task 1, 2, 3 and 4, respectively.

7.2.4 Baseline

As a baseline, we use the same architecture as proposed in [Per+19], which is illus-
trated in Fig. 6.4. This baseline can be also described by Fig. 7.2 in which the feature
extraction module contains three convolutional layers, each followed by a max-pooling
layer, and the temporal analysis module is composed of two bidirectional LSTM lay-
ers. For fair comparison, we extend this model by training it with 3-speaker signals,
whereas the authors of [Per+19] limited the training to 2-speaker mixtures. For the
last experiments, which assess the benefit of using HOA features, we also compare our
system to an adaptation of a DL-free algorithm [KG18], called TRAMP, to the same
feature format. This method is based on the histogram of the DoAs derived from the
pseudointensity vector over all considered frames and frequencies in the sequence.

7.2.5 Evaluation metrics

We use the same metrics as in Chapter 6: the localization accuracy with an angular
tolerance of 10° and 15°, as well as a tolerance of 20° for the LOCATA dataset, and
the mean and median angular errors.

7.3 Experiments

7.3.1 Training scheme

Experiment objective

As mentioned above, in the baseline study [Per+19], the experiments are limited to
two speakers (thus, two training datasets), and during the training phase, the signals
are fed into the network in a random order, regardless the number of speakers. This
choice raises the question if there is an “optimal” order to present the training data to
the neural network. One could think that the network is flexible enough to learn with
all data mixed together, or on the contrary one could believe that it would be better
for the network to be trained in an increasing order of complexity; that is, starting
with signals with 1 speaker, then 2 speakers, and ending with 3 speakers, which can
be thought as fine-tuning. Another possibility is to train the network with 3-speaker
signals only (the most complex task), which may be enough to make the network
robust for the easier tasks, i.e., localizing 1 or 2 speakers. This idea is actually linked
to the concept of curriculum training [Ben+09; Jia+15].
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In the present experiment, we assess these ideas by training the baseline neural
network of [Per+19] multiple times, using several training schemes and evaluating the
obtained models on the test datasets ESimj and ERealj for j ∈ 1, 2, 3. The different
training schemes we evaluate are the following:

• The training is done with only one of the three training datasets T1, T2, or T3.
This enables us to determine how the neural network is able to adapt to simpler
situations (e.g., when training on T3 and evaluated on ESim1 ) or more complex
ones (e.g., when training on T1 and evaluated on ESim3 ). The models trained on
T1, T2, and T3 are labelled MT1 , MT2 , and MT3 , respectively.

• The training is done with several datasets mixed together, as in [Per+19]. In
that case, the training examples are drawn randomly from all datasets. More
specifically, we evaluate the model trained using T1 and T2, labelled asMT1

⋃
T2 ,

and the one trained with all three datasets, labelled as MT1
⋃
T2

⋃
T3 .

• The training is done in a sequential way, with the datasets presented one after
another. The model is first trained with T1 in a conventional manner (i.e., using
early stopping by monitoring the validation accuracy and using a decreasing
learning rate). When this first training is done, we refine the model by training
it on T2, starting with the weights from the training with T1 (in short, training
with T1 and fine-tuning with T2). Then, training is done with T3. This method
is intuited by the fact that the neural network is forced to learn the task from
the easier to the most complex one. The model trained with T1 then T2 is
labelledMT1→T2 , and the model trained with T1, then T2, and then T3 is labelled
MT1→T2→T3 .

Results

The results are displayed in Table 7.1 and Fig. 7.3. First, we see that all models
perform accurately and approximately the same on 1-speaker signals: We obtain at
least 90% and 98% accuracy on ESim1 for a tolerance of 10° and 15°, respectively, and
more than 72% and 88% on EReal1 . While this is not surprising for the models MT1 ,
MT1

⋃
T2 , MT1

⋃
T2

⋃
T3 , MT1→T2 and MT1→T2→T3 , which are trained with 1-speaker

signals, the good accuracy obtained by models MT2 and MT3 shows that we can train
the network only with 3-speaker signals (and thus less training examples than for
other models) and it will still be good at localizing 1 or 2 speakers. However, note
that in this experiment the NoS is assumed known, so we do not take an interest in
the network output variations depending on how it has been trained (e.g., a possible
observation is that a network trained only on 3-speakers signals may always output 3

prominent peaks even on 2-speaker mixtures). A last interesting observation is that
MT1 is the best performing model on ESim1 , which was somewhat expected, but is the
worst performing one on EReal1 , even if the metrics are still quite high.

Next, when looking at the results on 2-speaker signals for ESim2 and EReal2 , we
immediately notice that the model MT1 is less accurate in localizing 2 simultaneous
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Model label
ESim1 ESim2 ESim3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

MT1 95.2 99.1 5.0 4.5 29.5 40.1 41.4 23.1 16.4 26.3 45.2 34.0
MT2 91.8 98.6 5.8 5.2 76.3 87.0 12.0 6.4 45.9 60.3 25.6 11.2
MT3 89.9 98.1 6.1 5.4 77.3 87.9 11.8 6.4 61.5 75.6 18.5 8.0

MT1
⋃
T2 94.9 99.0 5.2 4.5 78.4 87.1 10.7 5.9 52.3 65.3 21.4 9.4

MT1
⋃
T2

⋃
T3 94.6 99.2 5.2 4.7 78.4 87.3 11.3 5.9 57.8 70.1 20.2 8.4

MT1→T2 93.3 98.7 5.5 4.9 73.4 84.8 12.7 6.6 43.4 56.6 27.5 12.1
MT1→T2→T3 92.9 98.4 5.5 4.9 71.5 84.0 13.2 6.7 46.5 59.8 25.4 11.0

(a) Simulated SRIRs

Model label
EReal1 EReal2 EReal3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

MT1 72.0 88.5 8.4 6.7 24.3 34.9 45.1 27.0 13.5 21.7 48.5 37.0
MT2 73.7 91.6 8.6 6.7 57.5 74.9 17.6 8.6 35.9 49.9 31.7 15.1
MT3 75.0 91.6 8.3 6.5 60.5 77.5 18.2 8.2 48.4 63.8 26.7 10.3

MT1
⋃
T2 74.6 90.9 8.3 6.3 57.2 74.0 16.5 8.6 39.1 53.4 26.4 13.5

MT1
⋃
T2

⋃
T3 75.2 91.9 8.3 6.3 59.8 75.2 16.7 8.3 44.2 58.4 26.2 11.9

MT1→T2 74.6 91.1 7.9 6.6 53.7 71.3 19.9 9.2 33.1 46.8 31.0 16.6
MT1→T2→T3 75.0 91.0 7.9 6.5 53.3 70.3 21.0 9.2 35.8 49.3 31.5 15.3

(b) Real SRIRs

Table 7.1: Accuracy and angular errors of the baseline CRNN for
different training schemes (different lines of the table), evaluated on
the test datasets ESim

1 , ESim
2 , and ESim

3 (top), and EReal
1 , EReal

2 , and
EReal

3 (bottom).

speakers than the models that have been purposely trained with 2- or 3-speaker mix-
tures. For simulated SRIRs, the angular error for MT1 is more than 23° while for
other models it is about 6–7°. This strengthens the intuition that the network cannot
perform well a task that is harder than what it encountered during training. We also
observe that the models MT1→T2 and MT1→T2→T3 are less accurate that the models
MT2 andMT1

⋃
T2 , andMT3 andMT1

⋃
T2

⋃
T3„ respectively, suggesting that fine-tuning

might not be optimal for multi-speaker localization, perhaps because the pretraining
on 1-speaker signals reaches local optimum from which it becomes difficult for fine-
tuning to generalize to 2- and 3- speaker conditions. The best performing models on
2-speaker mixtures are those trained without fine-tuning and including 2- or 3-speaker
signals during the training, i.e., models MT2 , MT3 , MT1

⋃
T2 and MT1

⋃
T2

⋃
T3 .

Finally, the results on the 3-speaker datasets confirm the analysis done in the
previous paragraph. We see that the models MT1 and MT2 struggle to localize 3

speakers as they never encounter such signals during their learning. Similarly, we
remark that the fine-tuned model MT1→T2→T3 is less accurate than models MT3 and
MT1

⋃
T2

⋃
T3 , probably for the same reasons as explained above. On these datasets,

the best performing model is MT3 .
To sum up, these results indicate that a network trained on signals with few

speakers is not able to localize many speakers, whereas, in contrast, a network trained
on signals with many speakers is also able to predict the DoAs of fewer speakers.
We also find out that fine-tuning is not the best option, presumably because the first
training has already reached a local optimum in the network capabilities. It seems
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(a) 1-speaker signals (b) 2-speaker signals (c) 3-speaker signals

Figure 7.3: Boxplots of the angular errors of the baseline CRNN
for different training schemes (different colors, see the legend) and
evaluated on the test datasets ESim

1 and EReal
1 (left), ESim

2 and EReal
2

(middle), and ESim
3 and EReal

3 (right).

that the best option is one of the two schemes: training the network on mixtures with
the highest NoS encountered in the test data, or training it with various mixtures,
containing all the different considered NoS. For the remaining of this chapter, we
choose the training scheme in which all the data are mixed together, as for model
MT1

⋃
T2

⋃
T3 and as in [Per+19], except for the experiment presented in Section 7.3.4

as we will explain later.

7.3.2 Design of the feature extraction module

Experiment objective

In this experiment we focus on the design of the feature extraction module, which
is directly fed with the input feature as illustrated in Fig. 7.2. In [Per+19], feature
extraction is done using three convolutional layers, each followed by a max-pooling
layer of size 1 × 8, 1 × 8 and 1 × 4, respectively (see Fig. 6.4). The relatively large
pooling size leads to an important loss of information between each pair of successive
convolutional layers. This choice might have been guided by the necessity to reduce
the second dimension before the reshape layer (possibly for the same reasons why
some networks did not train properly in Chapter 6). Losing such information could
be detrimental for a proper feature extraction. In parallel, we believe that increasing
the number of convolutional layers could help the network to find a better feature
representation before the reshape layer.

For these reasons, we explore two changes to the baseline architecture: more con-
volutional layers and smaller pooling sizes. The newly proposed feature extraction
module is illustrated in Fig. 7.4a. It is composed of B successive convolutional blocks,
where B is a hyperparameter in this experiment. Each convolutional block bi consists
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(a) Feature extraction
module

(b) Convo-
lutional
block

Figure 7.4: Architecture of the feature extraction module and of an
elementary convolutional block.

of 2 successive convolutional layers with 64 filters of size 3 × 3 followed by a max-
pooling layer of size 1 × Pi, where Pi is another hyperparameter of this experiment
and varies according to the convolutional block bi. In Fig. 7.4b, Qi denotes the second
dimension of the operated tensors and is computed as Qi = Qi−1

Pi
.

Whereas in [Per+19] the authors used a max-pooling layer after each convolutional
layer, in this new design, we use only one max-pooling layer after two successive convo-
lutional layers in each convolutional block, so that the network has more information
to extract useful features before downsampling the second dimension. In order to as-
sess this idea, we try several combinations of hyperparameters B and Pi, i ∈ 1, ..., B.
The max-pooling sizes Pi are chosen so that the second dimension just before the
reshape layer is 2, 4 or 8. Table 7.2 summarizes the tested configurations, along with
the resulting number of parameters in the network for fair comparison. We label the
models MB,QB , where B is the number of convolutional blocks and QB the second
dimension of the output of the last convolutional block.

Results

Table 7.3 shows the results of all models on the test datasets with simulated and real
SRIRs, as well as those from the various tasks of the LOCATA challenge. Fig. 7.5
and Fig. 7.6 display the corresponding boxplots and violin plots of the angular error
distributions on the simulated datasets and the LOCATA dataset, respectively.

When looking at the results in Table 7.3, we see that all models surpass the baseline
on the simulated datasets, and most of them lead to a better performance than the
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Model label # parameters P1 P2 P3 P4 P5 P6 P7

M4,2 700 259 8 4 4 2 - - -
M4,4 765 795 4 4 4 2 - - -
M4,8 896 867 4 4 2 2 - - -
M5,2 774 315 4 4 4 2 2 - -
M5,4 839 851 4 4 2 2 2 - -
M6,2 848 371 4 4 2 2 2 2 -
M6,4 913 907 4 2 2 2 2 2 -
M7,2 922 427 4 2 2 2 2 2 2
M7,4 987 963 2 2 2 2 2 2 2

Table 7.2: Max-pooling sizes of the successive convolutional blocks
bi of the proposed feature extraction module with the number of pa-
rameters in the corresponding neural network.

(a) 1-speaker signals (b) 2-speaker signals (c) 3-speaker signals

Figure 7.5: Distribution of the angular errors of the models with the
redesigned feature extraction module and the baseline, evaluated on
the test datasets ESim

1 and EReal
1 (left), ESim

2 and EReal
2 (middle) and

ESim
3 and EReal

3 (right).

baseline on real recordings. Regarding 1-speaker signals, the gain in performance is
small compared to the baseline, for the datasets with simulated and real SRIRs. For
the dataset ESim1 , the mean angular error for the baseline is 5.2° and at most 4.7° for
our models, while for the dataset EReal1 it reaches 8.3° and at most 8.1°, respectively.
Looking at the accuracy is not very demonstrative since on simulated SRIRs the
baseline already reached 99.2%. However, we see on the corresponding boxplots in
Fig 7.5a that the angular errors are slightly less dispersed for our proposed models
than for the baseline, which indicates that these models are less prone to large errors
than the baseline. When looking at the results on the LOCATA datasets of task 1
(single static speaker), our models are not always better than the baseline, although
some of them lead to a lower median. The baseline architecture thus seems quite
well designed for localizing a single static source. However, regarding LOCATA task
3 signals (single moving speaker) our proposed feature extraction module leads to a
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Figure 7.6: Distribution of the angular errors of the models with the
redesigned feature extraction module and the baseline, evaluated on
the test datasets ERec

1 (left), ERec
2 (middle left), ERec

3 (middle right)
and ERec

4 (right).

significantly improved performance, with an accuracy (< 15°) of at least 70.0% and
a mean error smaller than 13.7° (except for M7,2) for the new models compared to
66.9% and 14.1° for the baseline. This gain in performance is a bit surprising since
none of these models are trained for moving speakers. These results could indicate
that new models generalize better to unseen acoustic conditions than the baseline.

The results on 2- and 3-speaker signals clearly show that our proposed feature
extraction module enables the network to be much more accurate than the baseline,
in the multiple source scenario. With simulated SRIRs, the performance gain is con-
clusive: on ESim2 , the accuracy (< 15°) goes from 85.7% to at least 92.0% and the
mean angular error is reduced to at most 8.6°, compared to 15.3° for the baseline. On
ESim3 , the accuracy is increased from 68.1% for the baseline to at least 77.4% for the
new models, with a mean error decrease from 27.2°to at most 16.3°. This improve-
ment is slightly less notable on real SRIRs, where the gain in accuracy is between 8

and 11% for 2-speaker mixtures, and between 8 and 15% for 3-speaker mixtures. We
also notice on the boxplots of Fig. 7.5b and 7.5c that the error dispersion is greatly
reduced, which indicates a more robust model. When looking at the results on the
LOCATA datasets task 2 (multiple static speakers), the same observations as for task
1 can be made, i.e., the improvement is not really noticeable, and the models perfor-
mance is on par with the baseline. Regarding task 4 (multiple moving speakers), the
same conclusions as for task 3 can be drawn, which are that the new models seem to
be slightly more efficient on these recorded signals. In particular, with regards to the
< 10% accuracy metric, most models outperform baseline with a margin larger than
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20%.
Therefore, the results on all multi-speaker mixtures clearly demonstrate the su-

periority of the improved feature extraction over the one of the baseline architecture.
While the performance gain is small for 1-speaker signals, the improvement is substan-
tial for 2- and 3-speaker mixtures and prove that this new feature extraction module is
much more robust in multi-speaker environments. The results on LOCATA datasets
reinforce this remark, and also exhibit that our proposal interestingly leads to a more
robust localization performance for moving sources. It is noteworthy that the tasks
3 and 4 of the LOCATA challenge involve human talkers, as opposed to tasks 1 and
2 where loudspeakers are used as sound sources. The latter are less accurately repre-
sented by point sources, which is the type of sources the networks are trained on. As
intuited, using more convolutional layers and less drastic max-pooling provides more
flexibility to the neural network, while it does not increase the number of parameters
more than twice that of the baseline.

Now, when we compare the new models with each other, there is a little tendency
that the use of deeper architectures (more convolutional layers) leads to better perfor-
mance (the highest metrics are most often obtained with the model M7,4). However,
more investigation is needed to support this claim, since the observed results are insuf-
ficient to draw a firm conclusion on this aspect. Furthermore, when comparing models
with the same number of convolutional blocks B, we notice that the best results are
obtained by those with QB = 4, emphasizing the fact that downsampling information
degrades the performance, although it allows a smaller number of parameters.
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Model label
ESim1 ESim2 ESim3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

Baseline 94.6 99.2 5.2 4.7 77.6 85.7 15.3 6.0 57.1 68.1 27.2 8.3
M4,2 97.6 99.6 4.7 4.2 86.7 92.5 8.3 4.9 71.4 79.9 15.0 6.3
M4,4 98.3 99.7 4.5 4.1 87.9 92.7 8.5 4.8 71.2 79.5 15.4 6.2
M4,8 98.2 99.6 4.5 4.1 88.0 92.6 8.4 4.8 72.2 80.7 14.7 6.1
M5,2 98.3 99.7 4.6 4.1 87.9 92.8 8.0 4.7 72.5 80.5 14.6 6.1
M5,4 98.4 99.7 4.6 4.1 88.8 93.1 8.1 4.7 73.3 81.0 14.9 6.1
M6,2 98.4 99.5 4.7 4.1 88.7 93.2 8.1 4.8 72.2 80.7 14.4 6.1
M6,4 98.6 99.7 4.4 4.1 88.3 93.3 7.7 4.7 74.7 83.4 12.8 5.9
M7,2 97.8 99.5 4.7 4.1 86.3 92.0 8.6 4.8 68.6 77.4 16.3 6.5
M7,4 98.4 99.7 4.4 4.1 89.2 93.5 7.8 4.6 74.4 81.3 14.1 5.8

(a) Simulated SRIRs

Model label
EReal1 EReal2 EReal3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

Baseline 75.2 91.9 8.3 6.3 59.8 75.2 16.7 8.3 44.3 58.4 26.2 11.9
M4,2 77.7 92.9 8.1 6.1 67.5 83.6 12.9 7.4 53.3 67.5 21.3 9.2
M4,4 77.7 93.2 7.9 6.1 66.7 83.4 12.9 7.5 54.0 69.2 20.4 9.1
M4,8 77.8 92.7 8.1 6.1 69.2 84.1 12.5 7.2 54.8 69.7 20.5 9.1
M5,2 77.0 93.6 7.9 6.2 68.1 84.1 12.1 7.3 55.3 69.6 18.7 8.9
M5,4 78.7 93.8 7.6 6.2 70.2 86.0 12.0 7.0 55.4 70.9 19.7 8.9
M6,2 78.1 93.6 7.6 6.1 68.5 84.8 11.9 7.1 53.9 69.3 19.7 9.1
M6,4 79.0 93.7 7.6 6.1 68.2 84.7 11.9 7.2 56.8 73.3 17.3 8.7
M7,2 76.6 93.4 7.7 6.3 68.0 83.7 12.2 7.2 53.3 66.8 20.9 9.3
M7,4 79.8 93.6 7.7 6.1 68.6 86.2 11.7 7.2 56.9 70.7 19.6 8.6

(b) Real SRIRs

Model label
ERec1 ERec2 ERec3 ERec4

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median

Baseline 35.8 50.7 96.6 13.5 14.9 30.5 68.2 91.8 13.9 14.1 29.5 66.9 86.9 14.1 12.7 30.3 56.7 85.6 15.1 14.1
M4,2 40.0 51.7 99.2 13.0 13.0 26.9 71.7 91.9 14.0 12.9 36.0 71.2 88.5 13.4 12.0 55.2 73.1 89.9 12.5 8.6
M4,4 40.9 50.6 98.8 13.3 13.0 34.5 69.7 91.6 13.4 13.0 40.1 70.0 88.4 12.4 11.8 53.9 71.0 91.2 12.2 8.4
M4,8 36.4 51.5 91.0 13.5 14.9 29.1 73.3 91.5 14.0 13.0 41.3 72.3 91.7 12.0 11.5 52.2 70.9 90.8 11.9 9.3
M5,2 39.2 49.7 99.0 13.5 16.1 27.0 70.1 93.1 13.6 13.6 40.2 72.5 91.7 11.9 11.7 52.0 70.1 91.6 11.8 9.2
M5,4 46.5 51.2 98.4 12.4 12.0 32.8 73.4 92.5 13.4 12.5 45.3 77.7 91.3 11.8 10.8 56.2 73.6 91.7 11.7 8.1
M6,2 35.3 52.5 95.8 13.7 14.5 22.4 67.4 90.4 14.6 13.7 35.8 71.7 90.9 13.7 12.1 49.7 68.1 89.2 12.7 10.1
M6,4 23.5 49.4 98.3 14.4 15.8 19.1 66.5 92.4 14.5 13.7 28.7 62.6 88.4 13.7 13.3 38.2 59.8 88.3 13.8 13.6
M7,2 32.9 55.5 91.6 16.0 13.0 23.2 69.3 91.3 14.7 13.6 35.8 71.0 86.9 15.7 12.2 48.8 69.0 89.3 12.8 10.3
M7,4 43.6 49.4 99.4 12.7 16.1 32.0 71.5 93.8 13.0 13.0 45.6 75.3 92.5 11.3 10.8 58.8 74.0 92.0 11.1 7.6

(c) Real recordings

Table 7.3: Accuracy and angular errors of the models with the re-
designed feature extraction module and the baseline. Best results are
in bold.
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7.3.3 Self-attention mechanism

Experiment objective

In the previous experiment, we managed to greatly improve the capability of the
CRNN to localize multiple speakers in a multi-channel mixture based on the redesign
of the feature extraction module. Now, we focus on the temporal analysis module,
which is fed with the reshaped extracted feature as illustrated in Fig. 7.2. In most
neural network architectures proposed in the neural-based SSL literature, and par-
ticularly in [Per+19], such a temporal analysis module generally relies on recurrent
layers, generally implemented with LSTM or GRU units (see Section 3.3). The ad-
vantage of such layers is their capacity of processing relatively long sequences and in
the case of SSL, they can potentially learn the evolution of a speech sentence charac-
teristics in order to improve the localization performance. However, this comes with
the limitation of processing the temporal dimension in a sequential way, while some
crucial information for localization likely lie in specific and isolated frames anywhere
in the sequence, e.g., frames with transients as pointed out in [Per19]. Another lim-
itation of such recurrent layers, due to their processing following a temporal order,
is that it is not possible to parallelize the computation of the output sequence. This
computational cost can be an important constraint towards real-time devices.

We therefore propose to replace the BiLSTM layers, as used in the previous ex-
periments and the baseline, with multi-head self-attention encoders introduced in
[Vas+17]. In this new experiment, we employ the feature extraction module of the
model M6,4

1. Therefore, the model M6,4, which includes recurrent layers (as do all
models discussed in the previous sections), is the baseline in this new experiment.
As illustrated in Fig. 7.7, the temporal analysis module contains E Transformer en-
coders, as represented in Fig. 3.11, where E is an hyperparameter in this experiment.
In each encoder, we either employ multi-head or cross-multi-head self-attention, with
H heads, H being another hyperparameter.

Table 7.4 details the different values of hyperparameters we try in this experiment.
We first evaluate the benefit of using classical multi-head self-attention using 1 encoder
and H heads, with H ∈ {1, 2, 3, 10}. These models are labelled MH-1enc-HH. Then,
we compare the use of cross-multi-head self-attention over multi-head self-attention
for 1 encoder with H = 3 or 10 heads. Finally we assess the addition of another
encoder (E = 2), first with H = 10 to directly compare with E = 1, and also with
H = 5 to compare the performance of 2 encoders with 5 heads against 1 encoder with
10 heads.

Results

The results of this experiment are reported in Table 7.5 and Figures 7.8 and 7.9.
1Although Section 7.3.2 showed that this model does not give the best results, we chose to base

the current study on this model at a time when we did not collected all the evaluation data.
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Figure 7.7: Architecture of the temporal analysis module of the pro-
posed CNN including a series of self-attention encoders.

Model label # parameters SA type E H

MMH-1enc-1H 796 125 MH 1 1
MMH-1enc-2H 862 045 MH 1 2
MMH-1enc-3H 927 965 MH 1 3
MMH-1enc-10H 1 389 405 MH 1 10
MCMH-1enc-3H 927 965 CMH 1 3
MCMH-1enc-10H 1 389 405 CMH 1 10
MCMH-2enc-5H 1 653 341 CMH 2 5
MCMH-2enc-10H 2 312 541 CMH 2 10

Table 7.4: Values of hyperparameters experimented in each encoder
of the temporal analysis module using self-attention.

First, we can see that the performance of the self-attention-based neural networks
are on par with the CRNN performance, either on simulated data or real recordings.
This shows that it is possible to replace the BiLSTM layers with self-attention encoders
without losing in performance. Some models leads to a slightly lower performance,
while others outperform the baseline. On real recordings, the improvement over the
baseline is quite significant, which can be clearly observed in the boxplots in Fig. 7.9.
We see that the use of self-attention encoders globally reduces the median angular
error, but slightly increase the variance. Moreover, Table 7.6 shows that the inference
time of all self-attention-based models is significantly lower than the CRNN baseline,
i.e., 44% lower in real-time percentage when using 1 encoder (and 33% lower when
using 2 encoders). This inference time does not seem to be correlated to the number
of parameters but rather to the number of encoders. This was expected, since such
an architecture leads to the processing of each encoder one after another. In contrast,
increasing the number of heads does not increase the inference time since the matrix
operations can be done in parallel in the graphical processing units (GPU) that we
use in our experiments.

Second, when assessing the use of different number of heads H with classical MH
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Model 1 source 2 sources 3 sources
Acc. <10° Acc. <15° Mean Med. Acc. <10° Acc. <15° Mean Med. Acc. <10° Acc. <15° Mean Med.

Baseline (M6,4) 98.6 99.7 4.4 4.1 88.3 93.3 7.7 4.7 74.7 83.4 12.8 5.9
MMH-1enc-1H 98.3 99.7 4.5 4.2 87.9 93.6 7.9 4.9 71.6 81.5 13.5 6.5
MMH-1enc-2H 98.1 99.7 4.7 4.2 87.1 93.0 8.7 4.9 72.2 80.6 15.8 6.2
MMH-1enc-3H 98.1 99.6 4.7 4.2 87.7 92.7 8.8 4.8 72.9 80.7 16.2 6.0
MMH-1enc-10H 98.5 99.6 4.5 4.1 90.4 94.5 7.4 4.7 77.3 84.7 12.3 5.6
MCMH-1enc-3H 98.5 99.8 4.4 4.1 89.3 94.1 7.6 4.8 75.9 84.1 12.7 5.9
MCMH-1enc-10H 98.4 99.5 4.5 4.1 89.9 94.5 6.8 4.7 78.2 85.7 11.3 5.6
MCMH-2enc-5H 98.5 99.6 4.6 4.2 90.4 94.7 7.0 4.7 75.6 84.2 12.4 6.0
MCMH-2enc-10H 97.9 99.3 4.8 4.2 88.7 94.9 7.3 5.0 72.8 83.7 13.0 6.5

(a) Simulated SRIRs

Model 1 source 2 sources 3 sources
Acc. <10° Acc. <15° Mean Med. Acc. <10° Acc. <15° Mean Med. Acc. <10° Acc. <15° Mean Med.

Baseline (M6,4) 79.0 93.7 7.6 6.1 68.2 84.7 11.9 7.2 56.8 73.3 17.3 8.7
MMH-1enc-1H 77.0 93.5 7.5 6.2 67.4 83.5 11.5 7.2 53.8 69.9 18.9 9.1
MMH-1enc-2H 76.8 93.4 7.6 6.3 67.9 83.8 12.7 7.5 53.6 68.5 22.5 9.1
MMH-1enc-3H 76.2 92.7 8.1 6.3 67.4 84.9 12.3 7.3 54.6 68.3 21.8 9.1
MMH-1enc-10H 77.3 93.0 8.3 6.2 68.2 86.3 11.2 7.3 57.8 74.0 16.9 8.5
MCMH-1enc-3H 77.5 92.6 8.0 6.3 68.6 85.6 10.7 7.3 56.4 72.3 18.2 8.9
MCMH-1enc-10H 77.0 92.6 8.0 6.2 68.6 85.8 10.5 7.3 58.2 74.8 15.2 8.5
MCMH-2enc-5H 75.7 92.6 8.4 6.3 70.0 87.1 10.4 7.2 57.7 74.2 16.3 8.6
MCMH-2enc-10H 75.7 91.1 8.8 6.2 69.0 86.9 10.6 7.2 56.3 73.3 17.1 8.9

(b) Real SRIRs

Model label
ERec1 ERec2 ERec3 ERec4

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median

Baseline (M6,4) 35.8 50.7 96.6 13.5 14.9 30.5 68.2 91.8 13.9 14.1 29.5 66.9 86.9 14.1 12.7 30.3 56.7 85.6 15.1 14.1
MMH-1enc-1H 29.3 55.4 96.2 13.4 14.5 27.3 69.9 88.4 13.7 12.9 42.5 73.2 90.6 12.5 11.3 41.7 64.7 87.7 13.8 12.3
MMH-1enc-2H 33.6 49.3 98.9 13.2 13.7 22.2 59.6 77.1 14.2 13.0 39.8 70.6 91.4 12.1 11.7 46.6 64.2 85.2 12.4 10.2
MMH-1enc-3H 29.5 57.7 98.9 13.2 13.7 19.0 59.2 80.2 14.6 13.7 34.5 69.4 90.6 13.0 12.3 48.8 67.0 87.6 11.7 9.7
MMH-1enc-10H 37.3 50.1 99.5 12.9 11.9 23.4 66.1 88.0 14.5 13.6 44.9 75.9 90.9 12.3 10.9 50.9 66.7 88.2 12.8 9.6
MCMH-1enc-3H 41.7 51.1 92.9 13.0 14.9 21.3 64.6 86.7 14.6 13.8 38.9 67.4 88.0 12.5 12.2 48.1 66.3 88.8 12.9 10.6
MCMH-1enc-10H 35.2 49.4 98.1 13.5 16.1 25.3 66.8 87.7 13.9 12.9 42.2 72.8 89.9 12.3 11.3 48.5 65.6 87.3 13.8 10.4
MCMH-2enc-5H 35.2 49.2 99.3 13.4 16.1 25.2 70.3 87.6 15.4 13.0 35.2 63.4 86.9 13.7 12.5 49.6 66.3 87.9 14.0 10.4
MCMH-2enc-10H 39.8 54.6 98.0 13.5 14.2 25.7 68.7 88.0 14.5 13.6 27.2 62.9 86.9 14.7 13.4 39.6 64.6 90.6 14.3 13.4

(c) Real recordings

Table 7.5: Accuracy and angular errors of the models with the tem-
poral analysis module based on self-attention and the baseline. Best
results are in bold.

self-attention, we see that using self-attention with H = 1, 2, 3 heads gives perfor-
mance that is slightly lower than the baseline. However, the model MMH-1enc-10H,
with H = 10 heads, is more accurate than the baseline. This improvement is also
more pronounced when there are many speakers in the analyzed signal. For instance,
on 3-speaker mixtures with synthetic SRIRs, the accuracy (< 10°) for this model is
77.3% while it is 74.7% for the baseline. Increasing the number of self-attention heads
may thus be beneficial for multi-source localization. We postulate that this is due to
multiple “views” of the same input sequence, i.e., the diversity provided by multiple
self-attention heads.

Next, when we compare the performance for multi-head against cross-multi-head
self-attention, we see that CMH leads to better results than MH, and even better
results than the baseline. For example, the mean average error on 3-speaker signals
with simulated SRIRs is lowered by 3.5° when using CMH with H = 3 heads, and
by 1.0° with H = 10. The same gain in performance can be observed on mixtures
generated with real SRIRs: on 2-speaker signals, the CMH-based model with 10 heads
leads to a mean average error of 10.5° vs. 11.2° for the MH-based model, whereas for
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(a) 1-speaker signals (b) 2-speaker signals (c) 3-speaker signals

Figure 7.8: Distribution of the angular errors of the models with
the temporal analysis module based on self-attention and the baseline,
evaluated on the test datasets ESim

1 , ESim
2 , ESim

3 , EReal
1 , EReal

2 and
EReal

3 .

Model real-time % # parameters
Baseline (M6,4) 437 913,907
MMH-1enc-1H 244 796,125
MMH-1enc-2H 244 862,045
MMH-1enc-3H 244 927,965
MMH-1enc-10H 244 1,389,405
MCMH-1enc-3H 244 927,965
MCMH-1enc-10H 244 1,389,405
MCMH-2enc-5H 281 1,653,341
MCMH-2enc-10H 281 2,312,541

Table 7.6: Real-time percentage for inference and number of param-
eters for the different tested models (in our experiments, frame length
= 0.032 s).

3-speaker mixtures it is lower by 1.7°. Regarding real recordings, the superiority of
CMH over MH is less visible, especially because the model MMH-1enc-10H is one of the
best performing models on real data.

Furthermore, the results when adding another self-attention encoder to the tem-
poral analysis module are less conclusive. Model MCMH-2enc-5H, which uses 5 heads,
is better than Model MCMH-2enc-10H with 10 heads for 2-speaker mixtures, but it loses
performance for 3-speaker mixtures. Also the first one shows a better performance
on real recordings with mobile sources but has worse results when the sources are
static. When comparing the use of 1 and 2 encoders with H = 10 heads, the results
are slightly lower for Model MCMH-2enc-10H. This shows that stacking more encoders
does not necessarily improve the performance. However, we believe that further ex-
periments are needed for a more convincing conclusion.

To conclude this experiment, we show that it is possible to replace BiLSTM layers
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Figure 7.9: Distribution of the angular errors of the models with
the temporal analysis module based on self-attention and the baseline,
evaluated on the test datasets ERec

1 , ERec
2 , ERec

3 and ERec
4 .

with self-attention encoders without losing in performance, which can greatly decrease
the network inference time. We see that using more attention heads seems to increase
the localization accuracy, but stacking encoders does not necessarily have the same
effect. However, we manage to improve the overall performance using cross-multi-head
self-attention, which is especially pronounced in a multi-speaker context.

7.3.4 HO-PIV v.s. FO-PIV

Experiment objective

In this last experiment, we propose to evaluate the use of higher-order Ambisonics for
the input signal. With higher Ambisonics orders, the spatial resolution is increased
and therefore it provides a suitable representation, especially when the sources are
spatially close to each other [ZF19]. With this property, one can expect to improve
the overall localization performance. For that matter, we use the extension of the
normalized pseudointensity vector to the higher-order Ambisonics, namely the HO-
PIV ĪN , as presented in Section 2.4.1. For practical reasons, this experiment is more
limited than the previous ones in terms of data. First, we only assess the use of
HO-PIV at order N = 2, i.e., with 9 Ambisonics channels, leading to input tensors
of shape 25 × 513 × 16 since we still stack the real and imaginary parts in the third
dimension. Also, we limit the training data to T3 only (i.e., we work with 3-speaker
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Model label
ESim1 ESim2 ESim3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

M6,4 95.3 99.1 5.2 4.7 85.3 92.9 9.0 5.3 71.0 81.5 14.6 6.2
MHO

6,4 98.8 99.7 4.5 4.2 91.5 95.0 7.2 4.5 82.4 87.3 11.6 4.8

(a) Simulated SRIRs

Model label
EReal1 EReal2 EReal3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

M6,4 74.3 92.4 8.0 7.0 61.5 80.3 16.0 8.3 48.9 66.2 22.9 10.1
MHO

6,4 76.1 93.5 7.9 6.3 67.1 84.6 13.4 7.3 56.2 72.4 20.0 9.0

(b) Real SRIRs

Model label
ERec1 ERec2 ERec3 ERec4

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median <10° <15° <20° Mean Median

Baseline (TRAMP) 39.9 58.3 99.8 12.5 13.0 31.4 57.6 69.4 13.4 10.5 35.7 70.2 87.0 12.4 12.1 29.1 50.1 70.6 16.3 14.1
Baseline (M6,4) 39.8 49.9 99.5 12.2 16.1 32.2 70.3 88.3 13.9 12.2 45.6 74.3 92.4 10.9 11.1 44.1 63.6 88.0 13.8 12.1

MHO
6,4 34.5 55.8 91.4 15.0 13.0 22.5 73.1 94.8 16.5 13.9 24.6 61.4 83.0 15.8 13.5 31.3 60.0 86.7 16.7 14.0

(c) Real recordings

Table 7.7: Accuracy and angular errors of the model with HOA
features and the baseline with FOA features. Best results are in bold.

mixtures) since this proved to be also quite robust on 1- and 2-speaker signals.2

As previously, we use odelM6,4 trained with FO-PIV input feature as the baseline
in this experiment. We then train the exact same neural network with HO-PIV input
features as described above, leading to a model labelled MHO

6,4 . As we showed in the
first experiment that limiting the training on 3-speaker signals still gives satisfying
results on 1- and 2-speaker mixtures, we evaluate this model on all testing datasets.

Results

The results of this experiment are reported in Table 7.7 and Fig. 7.10 and 7.11. We can
see that the model using HOA features surpasses the baseline with FOA features on
the simulated datasets, however on real recordings the improvement is not conclusive.
On the datasets ESimj and ERealj , the improvement is quite significant: the accuracy
(< 10°) is increased from 95.3% (FOA features) to 98.8% (HOA features) on ESim1 ,
from 85.3% to 91.5% on ESim2 and from 71.0% to 82.4% on ESim3 . On the datasets
with real SRIRs, the improvement is similar (with all scores that are of course worse
than on simulated data). We also observe that the gain in accuracy is better when
there are more speakers, partly because the performance was already very high on
1-speaker signals and quite good on 2-speaker signals, but surely thanks to the better
spatial resolution granted by the use of a HOA representation. This should give
the network more information to better spatially separate the sources, therefore the
benefit is emphasized when more sources are active. On real recordings, it is more

2To give some insights, each dataset Tn with FO-PIV is about 80 GB big, resulting in a total of
240 GB of training data. Such data quantity reaches 240× 16

6
= 640 GB at order 2 and 240× 30

6
=

1200 GB at order 3. The time necessary to process such an amount of data is prohibitively long.
Since we do not want to decrease the number of room configurations in the training dataset, we limit
the training to the dataset T3 with HO-PIV at order 2.
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(a) 1-speaker signals (b) 2-speaker signals (c) 3-speaker signals

Figure 7.10: Distribution of the angular error of the model with
HOA features and the baseline with FOA features, evaluated on the
test datasets ESim

1 , ESim
2 , ESim

3 , EReal
1 , EReal

2 and EReal
3 .

Scenario
ESim1 ESim2 ESim3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

FOA components only 6.4 13.6 50.9 36.0 6.2 13.1 49.7 38.2 6.1 12.3 49.2 38.8
HOA components only 40.8 48.5 87.8 18.8 31.7 41.5 57.9 36.7 27.0 36.8 52.0 34.8

(a) Simulated SRIRs

Scenario
EReal1 EReal2 EReal3

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median <10° <15° Mean Median

FOA components only 4.5 15.3 51.9 34.8 5.3 12.9 50.6 38.8 5.6 12.2 51.3 39.5
HOA components only 31.6 43.8 86.3 33.4 25.3 36.0 63.6 41.8 23.2 33.8 58.1 43.1

(b) Real SRIRs

Table 7.8: Accuracy and angular errors of the HOA model evaluated
on signals with FOA components only and HOA components only

difficult to assess the superiority of the HOA model. First, we see that the DNN-free
baseline is better on ERec1 , which is not surprising since it is known to be performant
on single-speaker signals. We observe a small improvement of the HOA model over the
FOA model on the dataset ERec2 , with an accuracy of 73.1% against 70.3%, although
the mean and median angular errors are higher. However, on the other multi-speaker
dataset ERec4 , the HOA network shows worse results worse than the DL-based baseline.

Fig. 7.12 shows an example of the outputs of the deep-learning-free baseline and
the HO model MHO

6,4 for one sequence of the test set ERec2 . We see that the baseline
method leads to more scattered peaks than the neural network model, which could
be detrimental to the localization performance if the sources are too close from each
other. We notice that the network model outputs much more sparse values, however
we notice a sort of ghost source, around θ = −100 and φ = −40, whose presence
leads us to think that training the network only on T3 forces it to output 3 prominent
peaks.

For further analysis, we evaluate the model MHO
6,4 on the test datasets for two
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Figure 7.11: Distribution of the angular error of the model with
HOA features and the baseline with FOA features, evaluated on the
test datasets ERec

1 , ERec
2 , ERec

3 and ERec
4 .

additional configurations: when only the FOA components of the HO-PIV are kept,
i.e., the other channels are forced to zero values, and when only the HOA components
(order 2 in our case) are kept, i.e., the FOA channels are forced to zero values. The
motivation for these experiments is to gain some insight in the way the network is
using the Ambisonic features. Indeed, under certain hypothesis, the components of
orders 1 and 2 can be used independently from one another to obtain an analytic
DoA estimate. The very low results in the first row of Table 7.8 first show that
the network is not capable of relying only on FOA components when it has been
trained with HOA features. This underlines that network characteristics of processing
the features in its own specific manner to perform the learnt task. Moreover, we
see that the results on the test datasets using only the HOA components are not
as low as with FOA components only, it seems that the network finds more useful
information in the components of order 2, than the FOA components. However, since
the performance is much worse than when using all components, it is evident that
the network has learnt how to efficiently combine features of all orders to perform the
DoA estimation. This impressive combination capacity, which is not easily feasible
analytically, underlines the general black box characteristics of the neural networks,
which we still have difficulties to fully understand today.

7.4 Conclusion and perspectives

In this chapter, we addressed source localization when several speakers overlap in a
noisy and reverberant mixture, and with the assumption of a known NoS. Based on
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(a) TRAMP output (b) MHO
6,4 output

Figure 7.12: Output DoA probability distributions of the TRAMP
baseline (left) and the HOA network (right) on a sequence of the
dataset ERec

2 . Low values are represented with blue colors and high
values with yellow colors.

the CRNN model proposed in [Per+19], we first questioned the optimal order in which
we need to present the training examples to the network, which are made of 1-, 2-
and 3-speaker signals, to obtain the best performance. We found out that relying
only on signals with 3 speakers makes the network robust enough to perform well
on mixtures with 1 and 2 speakers, whereas – not surprisingly – it is not capable of
performing multi-speaker localization when trained only on 1-speaker signals. Also, we
understood that pretraining a localization network, followed by fine-tuning manner,
i.e., with 1-speaker signals first, then with 2-speaker signals and finally with 3-speaker
signals, is not the best training scheme. We concluded that a good choice is to feed
all examples randomly during the training phase, as it is done in most neural-based
SSL systems.

Next, we proposed a redesign of the feature extraction module, made of convolu-
tional and max-pooling layers, in an attempt to improve the multi-source localization
performance of the baseline CRNN [Per+19]. To give the network more capacity to
extract its own meaningful features, we employed more convolutional layers and less
aggressive max-pooling, leading to significantly more layers in total. We tried many
models for a large set of hyperparameter values, and the results showed a signifi-
cant improvement for all these models over the baseline, especially on mixtures with
multiple speakers.

Then, we focused on replacing the recurrent layers usually employed in localization
CRNNs with multi-head self-attention mechanism. The motivation was to dispose of
recurrent layers, which are not parallelizable (and thus, e.g., limit the use of neural
networks on embedded devices), as well as providing more flexibility in the tempo-
ral analysis with the self-attention mechanism. Using classical MHSA encoders, we
managed to reach a similar localization performance as the CRNN baseline, with an
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inference time reduced by 44%. Furthermore, we improved the localization accuracy,
especially in a multi-speaker context, by proposing a more general way of using several
heads in the self-attention encoder.

Finally, we assessed the benefit of using a HO-PIV as an input feature for a CRNN.
We obtained a substantial improvement on simulated datasets over the use of FO-PIV
features, which was actually expected. However, on real recordings this improvement
has not been observed, for reasons we do not understand. We also showed that such a
network needs to use the components of all orders to successfully perform localization.

While significant improvements have been made over the baseline CRNN with
the redesign of several neural modules, many aspects have not been treated in this
research. First, the lack of in-depth analysis of our contributions makes it difficult to
fully understand the obtained results. Regarding the new feature extraction module,
although we intuit that more layers implies more network flexibility, it would be in-
sightful to apply visualization techniques to interpret the behavior of convolutional
layers. Among the available techniques to interpret the network computation, we can
think of visualizing convolutional filter responses [Cho17, p 167], intermediate feature
maps [Cho17, p. 160] or using more advanced methods such as layer-wise propagation
[Bac+15] as employed in [Per19]. In the same vein, analyzing the conduct of the self-
attention mechanism and comparing it to the BiLSTM layers could give interesting
insights on how the network processes a sequence in the temporal analysis module.
Regarding these self-attention layers, it would also be interesting to apply these mech-
anisms in the frequency dimension, with the intuition that the attention heads could
focus on the relation between specific frequency bins which contains the information
of a specific speaker. This might gives more flexibility to the neural network to dis-
criminate the different speakers using their spectral characteristics. Moreover, our
last experiment on HOA features could be carried on by first including all training
data as done in the other methods, which would probably lead to better results not
only on simulated data and but also on real recordings. Also, increasing the Am-
bisonics order, higher than 2 as experimented here, should lead to an improvement in
the localization performance, at the cost of much more data. Relying on a training
dataset with directive sources could also be of interest [Gel+21]. Again, an analysis
on the network process over HO-PIV features could be very interesting, since it seems
that the network has learnt some specific way of exploiting the first and second or-
der features, different from analytical approaches. Finally, an idea we did not have
time to experiment with is to think of a loss function which incorporates the NoS,
as it is supposed to be known in these methods, in order to encourage the network
to estimate the right number of DoAs. Practically, this could be done by forcing the
network to output a spatial spectrum with the right number of peaks by penalizing
it when additional high peaks are present in the output. This last idea is a first step
towards combining speaker counting and localization, bringing us to the next chapter,
which deals with this topic.
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Chapter 8

Hybrid methods for speaker
counting and localization

In Chapters 6 and 7, the number of speakers in the test mixtures was supposed
to be known. This is also the case in most neural-based SSL systems presented

in the literature, as explained in Section 4.2.2. When estimating the speakers DoA
with a classification paradigm, we knew the exact number of peaks to extract at the
output of the neural network, which allowed us to solely focus on the localization
performance. However, in real-life scenarii, the number of sources is unknown, and
practical methods must include a speaker counting system beforehand to extract the
right number of peaks, must apply a thresholding method to the peak distribution,
or do it jointly.

In this chapter, we explore several methods to circumvent the strong assumption
of the known NoS, using the results of our studies on speaker counting presented in
Chapter 5. The outline of this chapter differs from the previous ones in which all
experiments were grouped in the same section because of their common methodology.
Here, the explored solutions are relatively different from each other, therefore each
section of this chapter is dedicated to one considered method. In Section 8.1, we
assess the benefit of using our speaker counting network to estimate the NoS before
localization and employ it to extract the right number of DoAs. We compare this
method to the application of a classical thresholding method, and to the use of the
ground-truth NoS to evaluate its robustness. In Section 8.2, we investigate the contri-
bution of the NoS (both estimated and ground-truth) as an additional input feature
to a localization network to figure out if it can make use of this supplementary piece
of information. Finally, in Section 8.3, we study the possibility of jointly estimating
the NoS and the DoAs within the same multi-task network.

8.1 NoS estimation for speaker localization

As explained above, usual methods to estimate the DoA of several sources are based on
the assumption of a known NoS, or sometimes employ a thresholding method when
a classification paradigm is used. In this section, we propose to circumvent these
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Figure 8.1: Processing pipeline of an SSL system using the estimated
NoS of a counting network.

limitations by estimating the NoS using our counting system presented in Chapter 5,
before estimating the speakers locations with the localization network.

8.1.1 Method

System pipeline

The processing pipeline of the proposed system is illustrated in Fig. 8.1. An in-
put speech mixture is first transformed into the input features of the counting and
localization networks; that is, the FOA magnitude spectrograms and the FO-PIV,
respectively. Then each network processes its respective input feature to generate
the output: a NoS probability distribution from the counting network, and a DoA
probability distribution from the localization network. The estimated NoS is first
obtained as the class with the highest probability of the counting network output, as
in Chapter 5. This estimated NoS then determines the number of peaks to extract
from the localization network DoA distribution output. Note that for the evaluation
of the system, the estimated DoAs are associated with the ground-truth labels using
the Hungarian algorithm [Kuh55], as already done in Section 7.1.2.

Counting and localization networks

The counting network adopted in this experiment is the same as in Chapter 5, with
T = 20 (number of frames in the input sequence) and K = 3 (size of the convolution
kernels), and using the optimal frame position as derived in Section 5.3.3 to maximize
the counting accuracy. However, we retrain this network for a maximum number of
sources J = 3. The first reason for choosing this setting here is that we localize at
most 3 speakers simultaneously. We thus retrain the network to include the 3-source
constraint, as we conjecture that it would perform better than the 5-source variant.
The second reason is to provide a fair comparison of detection and counting metrics
with the multi-task networks described in Section 8.3 of this chapter.

For the localization network, we use Model M5,2 detailed in Section 7.3.2.1 We
recall that this model is composed a feature extraction module made of 5 convolutional
blocks, then 2 BiLSTM layers followed by 2 feedforward layers.

1We use here Model M5,2 instead of M6,4 as in Chapter 7 because the experiments on the feature
extraction module were not concluded yet at the time of the study presented in the present chapter.
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8.1.2 Experimental protocol

Training and testing data

As we consider here speaker counting in addition to localization, we employ a training
dataset that is similar to the one described in Section 5.2.3. Both networks are trained
using the same dataset. The generated signals are 15-s long reverberant and noisy
conversation-like mixtures, with a varying number of speakers. We limit the maximum
number of speakers to 3 (instead of 5 in Chapter 5) to be consistent with Chapter 7
on multi-speaker localization. Simulated SRIRs are used to create the mixtures, along
with TIMIT [Gar+93] excerpts.

We evaluate our model on generated test sets that are similar to the ones described
in Section 5.2.4 (i.e., with simulated SRIRs and real SRIRs, and up to 3 simultaneous
speakers).

Baselines

To assess the interest of using the estimated NoS provided by the counting network,
we compare it with the use of the ground-truth NoS (referred as the oracle method)
and the NoS estimated using a thresholding method (we test several threshold values
β = 0.1, 0.2, 0.5). To do that, we simply replace the estimated NoS from the counting
network with the other considered NoS estimates.

Metrics

To measure the performance of the proposed joint speaker counting and localization
system, we calculate counting, detection and localization metrics. Regarding counting
metrics, we compute the accuracy Aij and the mean absolute error Mi, as in Chap-
ter 5. We also consider the detection precision, which is defined as the percentage of
estimated DoAs which correspond to actual DoAs, and the detection recall, which is
as the percentage of actual DoAs that are estimated by the system. For the localiza-
tion metrics, we consider only the true positives, i.e., the DoA estimations actually
assigned to one label, and we calculate the localization accuracy (for angular error
tolerance of 10° and 15°) and the mean and median angular errors, as in Chapters 6
and 7.

8.1.3 Results

The counting metrics are showed in Table 8.1 and displayed in Fig. 8.2 and 8.3 as
confusion matrices andMi bar charts, respectively. The prediction precision and recall
are shown in Fig. 8.4. Note that these metrics are not provided for the oracle method
since they are all maximal. Table 8.2 presents the localization results (again, only for
correctly detected sources).

When we look at the counting metrics, we can see the benefit of using a neural-
based counting system over the traditional thresholding method. In the detection
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Counting method
Simulated SRIRs Real SRIRs

Detection Counting Detection Counting
Prec. Rec. Acc. (%) Mean abs. error Prec. Rec. Acc. (%) Mean abs. error

Network 0.96 0.92 82.5 0.2 0.96 0.82 70.3 0.3
Thres. (β = 0.1) 0.96 0.83 74.1 0.3 0.95 0.81 70.6 0.3
Thres. (β = 0.2) 0.98 0.75 68.2 0.4 0.97 0.71 64.3 0.5
Thres. (β = 0.5) 0.99 0.55 55.1 0.7 0.99 0.47 47.9 0.8

Table 8.1: Detection and counting results of the counting network
and the thresholding methods on test datasets with simulated and real
SRIRs. Best results are in bold.

Counting method
Simulated SRIRs Real SRIRs

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median

Oracle 75.2 81.5 15.5 5.2 56.2 72.9 18.3 9.3
Neural network 78.7 84.8 12.9 5.1 62.8 81.1 13.2 8.8

Threshold (β = 0.1) 86.2 92.1 8.4 4.5 66.2 85.2 10.5 8.4
Threshold (β = 0.2) 88.9 94.0 7.4 4.2 68.6 87.3 10.0 8.2
Threshold (β = 0.5) 93.3 96.4 6.0 3.9 72.9 90.0 9.2 7.9

Table 8.2: Localization accuracy and angular errors for several count-
ing methods. Best results are in bold.

and counting results of Table 8.1, we can first observe the quite high performance
of the counting network on the dataset with simulated SRIRs, with at least 0.90 of
detection precision and recall and a mean absolute error of 0.2 only. On the dataset
with real SRIRs, the results are less favorable, especially regarding the detection recall
with reaches 0.82 and the counting accuracy which is 70.3%, emphasizing that in real
conditions the counting network sometimes underestimates the NoS, thus missing to
localize occasional speakers. Regarding the detailed counting metrics in Fig. 8.2 while
the accuracy for classifying no-speech frames is almost perfect for all counting methods
(i.e., with more than 95% accuracy), for speech frames the counting network clearly
allows for a better speaker counting performance. On the dataset with simulated
SRIRs, 75.8% of the 2-speaker frames are correctly classified by the counting network
where using a thresholding method leads to an accuracy of about 62%; for 3-speaker
frames, the accuracy reaches more than 55% for the neural network against only
27.5% using a threshold. We observe the same tendencies on the dataset with real
SRIRs, except that the thresholding method with β = 0.1 is slightly more accurate
than the neural-based system for 1- and 3-speaker mixtures. The mean absolute
error Mi for every NoS is always lower for the network model than for the other
methods. For instance, the Mi for the counting network are lower than 0.5 on signals
with simulated SRIRs, meaning that the error committed by the network quite never
exceeds 1 source (confirmed by the confusion matrices). Thresholding methods are
less precise, especially when facing numerous simultaneous sources: for instance, M3

for β = 1 almost reaches 1. On signals with real SRIRs, the mean absolute error for
the thresholding method with β is closer to that of the neural network, but it is still
slightly higher. A reason why the thresholding method leads to close performance to
the network’s one could be because the localization network (on the output of which
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(a) Simulated SRIRs

(b) Real SRIRs

Figure 8.2: Confusion matrices of the accuracy Aij for several count-
ing methods: a neural network counting method and a thresholding
method for several values of the threshold β.

the thresholding method is applied) is more robust on signals with real SRIRs than
the counting network.

The detection metrics in Fig. 8.11 confirm the advantage of using a neural network
for speaker counting over a thresholding method. The detection recall of the network
on both test datasets clearly surpasses that of all thresholding methods, while the
precisions are about the same. By using a counting network, we miss only 10% and
20% of the sources, for the datasets with simulated and real SRIRs, respectively, while
for the thresholding methods almost 20% of the sources are missed on signals with
simulated SRIRs for β = 0.1, and we even miss more than half of the speakers for real
SRIRs when β = 0.5. This highlights the fact that the thresholding methods often fail
to detect some sources due to occasional too small peaks in the localization network
output, even if the consecutive precision is almost perfect.

Finally, let us take a look at the localization metrics in Table 8.6 and Fig. 8.12 while
recalling that they are calculated by taking into account only the true positives. The
thresholding method with the highest threshold value leads to the best localization
metrics, but this is obtained at the cost of not detecting a lot of sources that are
more difficult to localize, as shown by the detection results. On the contrary, we see
that using the counting network allows to correctly detect sources that are not well
localized, which leads to a two-digit mean angular error, whereas it remains under
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(a) Simulated SRIRs

(b) Real SRIRs

Figure 8.3: Mean absolute errorsMi for several counting methods: a
neural network counting method and a thresholding method for several
values of the threshold β.

10° with thresholding methods. The localization results with the counting network
are relatively close to those using the ground-truth NoS, which are, by definition,
optimal with respect to the source detection.

To conclude this study, the results show that using our speaker counting neural
network allows to relax the strong assumption of knowing the NoS in advance. This
counting network provides fairly accurate NoS estimations that can be used to localize
speakers. This method has shown better detection performance over a thresholding
method, which often leads to missing sources. Moreover, it can be observed that the
localization performance using a speaker counting network closely approaches the one
using the ground-truth NoS.

8.2 NoS injection in a localization neural network

8.2.1 Method

In this section, we present a series of experiments in which we attempt to improve the
localization network by injecting the NoS as an additional input information. The goal
is to provide the network with an additional information hoping that it can improve
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(a) Simulated SRIRs (b) Real SRIRs

Figure 8.4: Detection precision and recall for several counting meth-
ods: a neural network counting method and a thresholding method for
several thresholds β.

Figure 8.5: Processing pipeline of a localization system with NoS
injection.

the localization performance, with the intuition that it could help the network to
output a cleaner DoA peak distribution.

The proposed localization system with NoS injection is illustrated in Fig. 8.5. The
NoS is injected as an input feature into the localization network, in addition to the
FO-PIV features. At this stage, we name it the injection NoS. The NoS is also used
further for peak-picking on the localization network output. We refer to this second
use of the NoS as the prediction NoS. The need for a distinction between the injection
NoS and the prediction NoS will be made clear in the following.

We propose and test different ways to inject the NoS into the localization network,
as illustrated in Fig. 8.6 and commented below. As in Section 8.1, we opt for base
model M5,2 as proposed in Section 7.3.2. Note that, unlike in Chapter 6 and 7, here
we do not average the DoA distribution over all frames of a sequence in the network
output. Instead, we go back to a frame-wise prediction to demonstrate the usefulness
of the counting DNN at high temporal resolution. Throughout several experiments,
we try injecting the NoS in several positions in the neural network:

• alongside the input features;

• after the feature extraction (and reshape) module;

• after the temporal analysis module;

• both after the feature extraction module and after the temporal analysis module;
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Figure 8.6: Tested positions for the NoS injection in the localization
network.

• after the first feedforward layer.

The injection is done by concatenating the NoS feature with the feature tensor
present at the place of injection. For each frame t, the NoS feature corresponding to
the instantaneous NoS J(t) is represented as a one-hot encoded vector z(t) of size J+1

where J is the maximum number of speakers considered in the mixtures. This vector
encodes the NoS information by setting zi(t) = 1 if i = J(t) and zi(t) = 0 otherwise.
The injection is done for each frame in the considered tensor, which is possible since
the temporal dimension is preserved through all layers. The concatenation is carried
out on the second dimension (akin to the input frequency dimension) for all frames.
For instance, if the injection is done alongside the input feature of shape (25, 513, 6),
the tensor obtained after the concatenation is of shape (25, 513 + J + 1, 6); if the
injection is performed after the temporal analysis module, the new tensor shape is
(25, 128 + J + 1).

The different options for the injection position are motivated by different intu-
itions. Mixing the NoS feature with the FO-PIV feature seems strange since the
convolutional layers will treat all this data at once, but this practice has proved to be
beneficial in another audio task [Vog+17]. Concatenating the NoS to the extracted
feature after the convolutional layers seems a bit more reasonable since it can accom-
pany the data modelled by the feature extraction module to help during the temporal
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analysis process, as the instantaneous NoS can vary in each frame. In the same vein,
injecting the NoS feature just after the BiLSTM layers gives an additional cue for the
network classification task performed by the two feedforward layers. We also tried
adding the NoS feature just before the output, again with the idea of providing such
an information alongside higher-level features. Injecting the NoS both before and
after the temporal analysis module has been experimented afterwards based on the
obtained results, as detailed below.

8.2.2 Experimental protocol

Training and testing data

To train these neural networks, we used the same training and testing datasets as
in Section 8.1 (i.e., obtained by generating 15-s long reverberant and noisy speech
mixtures, with an instantaneous NoS varying from 0 to 3). Simulated SRIRs are
used to generate the training signals, while for testing, we used the datasets of both
simulated and recorded SRIRs.

During training, we use the ground-truth NoS both as the injection NoS and
the prediction NoS. However, during inference in a practical use-case, we use the
estimated NoS from the speaker counting network both for injection and prediction.
In that manner, we train the network in an optimal way hoping that it will be robust
enough when an imperfect NoS information is provided.

Baselines

To assess the benefit of NoS injection, we compare the proposed model with the base
model M5,2 (see Section 7.3.2 for more details) without injection. Moreover, to gauge
the robustness of such a network in real conditions, i.e., when the ground-truth NoS
is not available, we evaluate the networks on the test datasets for different versions of
the injection NoS and the prediction NoS independently:

• The injection and prediction NoS are both the ground-truth NoS. This allows
us to directly compare our proposed system with the oracle condition.

• The injection NoS is the ground-truth NoS and the prediction NoS is estimated
by the speaker counting network. We evaluate the robustness of using an esti-
mated NoS for the DoA prediction while the NoS input data is the ground-truth.

• The injection NoS is estimated by the neural network, and the prediction NoS
is the ground-truth NoS. This last configuration allows to assess the network
capacity to cope with the injection of an imperfect NoS, while being in an
optimal condition for peak picking.

In the following, using the ground-truth NoS for injection or for DoA peak-peaking
is referred to as oracle injection NoS and oracle prediction NoS, respectively. Using
the NoS provided by the counting neural network is referred to as estimated injection
NoS and estimated prediction NoS.
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Metrics

We use the same metrics as in Section 8.1. In this series of experiments, we either
use the ground-truth NoS, which leads perfect counting and detection scores, or the
estimated NoS using the counting network, whose performance have been shown in
Table 8.1 and discussed in Section 8.1. Besides, we show the localization results which
are the main interest in these experiments.

8.2.3 Results

Table 8.3 shows the localization results of the model with all considered injection
positions, and for the four different combinations of oracle/estimated NoS and injec-
tion/prediction.

First, let us clarify that the results when no injection is used are obtained with
a peak-picking of the DoA output distribution based on the ground-truth NoS for
Tables 8.3a and 8.3b, and on the estimated NoS for Tables 8.3c and 8.3d, for a fair
comparison with the models with NoS injection. Globally, we observe that most results
with NoS injection are better than without injection. In all four tables, we notice that
some injection positions almost always lead to better results than the model without
injection. Particularly, this is the case when the injection is done after the temporal
analysis module only, and both after the feature extraction and the temporal analysis
modules. To give some numbers, when the only estimated NoS is used (Table 8.3d),
the localization accuracy (< 10°) for simulated SRIRs is increased from 78.7% without
injection to 83.8% with injection after the temporal analysis module, and the median
angular error is decreased from 5.1° to 4.5°. On real SRIRs, the gain in performance
is less noticeable, with an accuracy increase of only 1.6% and a median error decrease
of 0.6° when injecting the NoS both after the feature extraction and temporal analysis
modules. We can hence conclude that estimated NoS injection actually helps the
localization network to achieve a better performance.

If we look at Table 8.3a, where only the ground-truth NoS is used for injection and
DoA extraction, which can be considered as the optimal configuration, we also observe
a gain in performance when injecting the NoS in several positions, such as after the
temporal analysis module or after the feature extraction module. This confirms the
interest of NoS injection. Now, when looking at Table 8.3b, whose difference with
Table 8.3a is that we inject an estimated (thus imperfect) NoS instead of the ground-
truth NoS (but still using the oracle prediction NoS), we observe than the results are
almost as good as in the fully optimal conditions of Table 8.3a. This suggests that
the counting network provides an estimated NoS with high enough accuracy, so that
the injection of the estimated NoS is beneficial for the localization network. The loss
in accuracy is around 1% when using an estimated injection NoS, while the median
angular error is almost unaffected.

Focusing on Table 8.3c for which the ground-truth NoS is injected and the esti-
mated NoS is used for DoA peak picking, we observe the common raise in localization
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performance due to the miss detection of certain sources, which surely corresponds
to the difficult cases, with a bad localization accuracy. This observation is identical
when comparing the results model without injection between Tables 8.3a, 8.3b and
Tables 8.3c, 8.3d. Then, as above, comparing Table 8.3d with Table 8.3c allows us
to assess the use of an estimated NoS for the injection instead of the ground-truth
NoS. Again, we can see that the results are almost the same, and are even closer than
when comparing the numbers of Tables 8.3a and 8.3b. This indicates that when an
estimated NoS is used for DoA peak extraction, using the same estimated NoS for
injection is almost as effective as using the ground-truth NoS. This also shows that
the use of inexact (estimated) NoS is more detrimental for peak-picking, than it is
when used for injection.

Finally, the boxplots and violin plots in Fig. 8.7 underline the interest of NoS
injection on data with simulated SRIRs, however the results are less convincing on real-
world data. On the dataset with simulated SRIRs, we clearly observe the advantage
of NoS injection as it allows to reduce the angular error variance, although the median
angular error almost remains unchanged. This figure confirms that the best injection
location seems to be both after the feature extraction and temporal analysis modules.
Regarding the dataset with real SRIRs, we notice that when the ground-truth NoS is
used for DoA extraction, the injection leads a higher error variance, especially with
an estimated NoS injection. With a DoA extraction based on an estimated NoS,
the boxplots indicate that the injection results are on par with the model without
injection.

To conclude this study, we observe a certain interest of injecting the NoS as an
additional input feature into the localization network. While injecting it directly
alongside the intensity-based input features, or just before the output layer, has not
been beneficial, we notice than NoS injection after the feature extraction module,
after the temporal analysis module or after both modules leads to a clear gain in lo-
calization performance on the dataset with simulated SRIRs. On the dataset with real
SRIRs, the interest of injection is slightly more moderate but several figures confirm
its usefulness. Throughout a careful analysis, we manage to show the robustness of
relying on an estimated NoS instead of the ground-truth NoS at both the injection
and the prediction levels.
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(a) Simulated SRIRs

(b) Real SRIRs

Figure 8.7: Boxplots of the angular errors of the localization network
for several injection positions, and considering several NoS derivation
configurations.



8.2. NoS injection in a localization neural network 139

Injection position
Simulated SRIRs Real SRIRs

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median

No injection 75.2 81.5 15.5 5.2 56.2 72.9 18.3 9.3
Input 75.9 81.9 15.7 5.1 52.7 70.4 19.8 9.5

After feature extraction 78.4 83.3 14.7 4.8 56.0 73.4 17.3 9.2
After temporal analysis 80.1 84.4 13.7 4.8 53.9 73.3 18.2 9.6

After feature extrac. & temp. analysis 78.4 83.4 14.2 4.8 57.9 74.3 16.9 9.0
After feedforward layer 76.1 82.3 14.9 5.2 55.5 71.4 19.7 9.1

(a) Oracle injection NoS, oracle prediction NoS

Injection position
Simulated SRIRs Real SRIRs

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median

No injection 75.2 81.5 15.5 5.2 56.2 72.9 18.3 9.3
Input 75.5 81.6 16.1 5.2 51.4 69.0 20.7 9.6

After feature extraction 77.6 82.2 15.4 4.8 54.9 71.4 18.9 9.3
After temporal analysis 79.5 83.9 14.2 4.8 52.7 71.9 19.5 9.6

After feature extrac. & temp. analysis 77.5 82.2 15.1 5.0 56.8 72.5 19.0 9.1
After feedforward layer 76.1 82.6 14.9 5.2 55.4 71.3 19.8 9.2

(b) Estimated injection NoS, oracle prediction NoS

Injection position
Simulated SRIRs Real SRIRs

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median

No injection 78.7 84.8 12.9 5.1 62.8 81.1 13.2 8.8
Input 79.6 85.4 13.3 4.8 59.0 78.4 14.8 8.6

After feature extraction 81.9 86.5 12.4 4.6 61.5 80.7 12.7 8.5
After temporal analysis 83.8 87.8 11.5 4.5 60.1 81.1 13.5 9.0

After feature extrac. & temp. analysis 82.3 86.7 11.9 4.6 63.9 82.1 12.8 8.3
After feedforward layer 79.6 85.9 12.6 4.8 61.6 79.4 14.5 8.3

(c) Oracle injection NoS, estimated prediction NoS

Injection position
Simulated SRIRs Real SRIRs

Accuracy (%) Angular error (°) Accuracy (%) Angular error (°)
<10° <15° Mean Median <10° <15° Mean Median

No injection 78.7 84.8 12.9 5.1 62.8 81.1 13.2 8.8
Input 79.5 85.5 13.3 4.8 59.0 78.7 14.6 8.7

After feature extraction 82.0 86.3 12.4 4.6 62.3 81.1 12.6 8.4
After temporal analysis 83.8 87.7 11.5 4.5 59.9 81.1 13.5 9.0

After feature extrac. & temp. analysis 82.3 86.5 12.1 4.6 64.4 82.4 12.7 8.2
After feedforward layer 79.7 86.0 12.6 4.8 61.7 79.4 14.5 8.3

(d) Estimated injection NoS, estimated prediction NoS

Table 8.3: Accuracy and angular errors of the localization network
with NoS injection, for different injection positions and the four com-
binations of oracle/estimated NoS for injection and prediction. Best
results are in bold.
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8.3 Multi-task speaker counting and localization network

In this last series of experiments, we propose to consider a multi-task neural network
scheme that directly estimates both the NoS and the speaker locations at the same
time. Multiple designs are tested, inspired by the architectures of the speaker counting
and localization networks.

8.3.1 Method

Input feature

In this new approach of the joint counting and localization system, we use as input
features a combination of both input features employed in the previously presented
separate counting and localization networks (i.e., the magnitude FOA spectrograms
and the FO-PIV feature).

As explained in Section 8.3.1 below, in a first design of multi-task network, we
combine both input features in the same input tensor. Using the same parameteriza-
tion as before, the magnitude FOA spectrograms consists of a tensor of size (25, 513, 4)

and the normalized FO-PIV feature size is (25, 513, 6). Therefore, the combined fea-
tures at the input of the multi-task network are obtained by concatenating these two
tensor features along the third dimension, leading to a new tensor of size (25, 513, 10).
Indeed, these features are of a very different nature, and simple concatenation may
seem ad-hoc. However, we deem that the network is capable of learning how to extract
the useful information from such an input.

We also designed a multi-task network in which the two input features are fed into
two separate input branches, corresponding to two similar feature extraction modules
(see Section 8.3.1). In this system, these input features are obtained identically as in
the separate counting and localization networks: normalization is employed across the
whole training dataset for the magnitude spectrograms, and the normalized version
of the FO-PIV is used.

Multi-task network architectures

During our experiments, we consider several multi-task network architectures, which
are illustrated in Fig. 8.8.

The first multi-task network we propose, shown in the left of Fig. 8.8, is made of
a common feature extraction module for both input features, which are concatenated
into a single feature tensor as explained in Section 8.3.1 above. The overall architecture
is still based on the model M5,2 presented in Section 7.3.2, except for the feedforward
layers. After the temporal analysis module, the output tensor is fed into two distinct
branches, one for the counting task and the other for the localization task. Each
branch contains the same number of feedforward layers D, which is a hyperparameter
in this experiment. In our counting network architecture presented in Chapter 5, a
single feedforward layer –which is also the output layer– is used after the LSTM layer,
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(a) Architecture with combined input
features

(b) Architecture with separated input
features

Figure 8.8: Architectures of the proposed multi-task counting and
localization neural networks.

whereas in Model M5,2 there are two feedforward layers after the temporal analysis
module. We therefore experiment with D = 1 and D = 2. For all D values, the
feedforward output layer of the counting branch consists of 4 neurons with a softmax
activation, and the feedforward output layer of the localization branch is made of 429

neurons with a sigmoid activation. When D = 2, the layer after the temporal analysis
module contains 429 neurons with a linear activation.

The second proposed multi-task network is similar to the first one explained above,
except than the input features are not combined into a single tensor before the feature
extraction module. Instead, each feature goes into a separate but identical feature
extraction module which is trained to find a suitable representation for each input
feature. The two extracted feature are then concatenated and reshaped before being
fed into a common temporal analysis module. The other parts of the network are
the same as above and we also experiment this second architecture with D = 1 and
D = 2.

The multi-task model with combined input features is referred to as MComb
D and

the one with separated input features is referred to asMSep
D , with D being the number

of feedforward layers. Table 8.4 sums up the trained models and indicates the resulting
number of parameters.

As we can see, parts of the neural network are shared for both tasks, which is
thought under the assumption that both counting and localization are two tasks that
are sufficiently tied to take benefit of a share representation learned by the neural
network.
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Model label Input features D # parameters
MComb

1 Combined 1 778 339
MComb

2 Combined 2 833 680
MSep

1 Separated 1 1 177 291
MSep

2 Separated 2 1 232 632

Table 8.4: Multi-task neural network configurations for joint speaker
counting and localization, and corresponding number of parameters.

Inference scheme

As we have seen above, counting and localization are handled with two separated
output layers. Each of these layers outputs a probability distribution over the task-
wise classes, i.e., the NoS (from 0 to 3) and the DoA regions (unit sphere discretized in
429 zones). During the inference, for each frame, the estimated NoS is first retrieved
from the counting branch output as the class with the highest probability, in the same
way as in Chapter 5. We then use this estimated NoS to extract the right number
of peaks from the localization branch output to estimate the speaker DoAs for each
frame.

8.3.2 Experimental protocol

Training and testing data

The training and testing datasets are the same as in the two previous subsections. As
before, we use the ground-truth NoS and DoAs during the training phase.

Training parameters

The loss function L used to train the multi-task network is a combination of the loss
functions used in the counting and localization networks: the categorical cross-entropy
Lcount and the binary cross-entropy Lloc. We define L = λLloc + (1− λ)Lcount, where
λ is the weight. Lcount is calculated only on the counting branch output and Lloc is
calculated only on the localization branch output. The weight λ can be tuned in order
to balance the performance between counting and localization, according to the user
needs. Several values of λ are tried to find a good trade-off: λ ∈ {0.9, 0.99, 0.995}.
This choice have been done empirically, by observing that the localization task leads
to much greater loss values than counting.

Baseline and metrics

We compare these multi-task models with model M5,2 evaluated only with the esti-
mated NoS from the counting network (see Section 8.1.3), to compare the different
approaches in a practical configuration without relying on the NoS knowledge assump-
tion. We also compare them with the best performing model with NoS injection, i.e.,
the injection is done after both the feature extraction and temporal analysis modules
(see Section 8.2.3). Recall that the counting network was retrained for a maximum
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Loss weight Counting Detection Localization

λ Accuracy (%) Mean abs. error Precision Recall Accuracy (%) Angular error (°)
<10° <15° Mean Median

0.9 94.3 0.1 0.97 0.99 45.3 56.3 28.6 11.9
0.99 91.7 0.1 0.95 0.99 82.1 85.1 14.2 4.2
0.995 90.0 0.1 0.94 0.99 81.1 85.2 12.8 4.6

(a) Simulated SRIRs

Loss weight Counting Detection Localization

λ Accuracy (%) Mean abs. error Precision Recall Accuracy (%) Angular error (°)
<10° <15° Mean Median

0.9 93.7 0.1 0.97 0.97 32.4 49.1 30.0 15.4
0.99 90.0 0.1 0.95 0.97 60.7 76.6 16.9 8.5
0.995 88.6 0.1 0.95 0.97 53.5 71.3 17.4 9.4

(b) Real SRIRs

Table 8.5: Counting, detection and localization results of the multi-
task network for several loss combination weight values and for the
datasets generated with simulated SRIRs (a) and real SRIRs (b). Best
results are in bold.

NoS of 3, so that we can directly compare the multi-task network counting perfor-
mance with the counting-only network.

In this new experiment, we measure the counting, detection and localization met-
rics, as described in Section 8.1.2.

8.3.3 Results

Loss combination weights assessment

Table 8.5 reports the counting, detection and localization results on the datasets with
simulated and real SRIRs. We clearly observe the contribution of the chosen values
for the weight λ: when λ = 0.9, the counting and precision metrics are the highest,
reaching 94.3% and 93.7% in counting accuracy for simulated and real SRIRs, respec-
tively, and almost perfect detection scores for both datasets. However the localization
performance is quite poor, attaining only 56.3% accuracy (< 15°) for simulated SRIRs
and 49.1% for real SRIRs. When setting λ = 0.99, the results become more satis-
factory: the counting accuracy is above or equal to 90% for both datasets, while the
localization accuracy (< 10°) is 82.1% and 60.7% on simulated and real SRIRs, re-
spectively. The localization mean and median angular errors are also almost divided
by two when using these weights values. When setting λ = 0.995, the counting per-
formance is further slightly decreased but the localization performance globally does
not increase significantly (it can even decrease, especially with the real SRIRs). This
seems to indicate a limit in the trade-off between the counting and localization loss
functions. In this experiment, λ = 0.99 clearly seems the best choice.

This study clearly highlights the importance of carefully choosing the weights
of the counting and localization loss functions when training the multi-task neural
network. A relatively small change in the weight values can have a large impact on
the network learning, whose ability will definitely be biased towards one of the two
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Model label
Counting Detection Localization

Accuracy (%) Mean abs. error Precision Recall Accuracy (%) Angular error (°)
<10° <15) Mean Median

M5,2 82.5 0.2 0.96 0.92 78.7 84.8 12.9 5.1
M5,2 with inj. 82.5 0.2 0.96 0.92 82.3 86.5 12.1 4.6

MComb
1 91.6 0.1 0.95 0.99 82.1 85.1 14.2 4.2

MComb
2 91.6 0.1 0.95 0.99 83.1 86.1 12.3 4.2
MSep

1 93.7 0.1 0.97 0.99 81.3 84.8 13.4 4.3
MSep

2 92.2 0.1 0.96 0.99 79.5 84.1 13.6 5.1
(a) Simulated SRIRs

Model label
Counting Detection Localization

Accuracy (%) Mean abs. error Precision Recall Accuracy (%) Angular error (°)
<10° <15) Mean Median

M5,2 70.3 0.3 0.96 0.82 62.8 81.1 13.2 8.8
M5,2 with inj. 70.3 0.3 0.96 0.82 64.4 82.4 12.7 8.2

MComb
1 90.0 0.1 0.95 0.97 60.8 76.6 16.9 8.5

MComb
2 91.0 0.1 0.96 0.97 57.7 72.4 17.9 9.1
MSep

1 91.3 0.1 0.96 0.97 56.4 73.4 16.7 9.1
MSep

2 90.9 0.1 0.96 0.97 54.8 74.3 17.1 9.2
(b) Real SRIRs

Table 8.6: Counting, detection and localization results of the multi-
task neural networks and the model M5,2 with and without injection,
for the datasets generated with simulated SRIRs (a) and real SRIRs
(b). Best results are in bold.

considered tasks. For the following experiment, we opt to keep the value λ = 0.99 to
compute the multi-task loss function, which seems a good trade-off between a good
counting and localization performance.

Multi-task architectures comparison

Table 8.6 reports the counting, detection and localization results of the multi-task
networks as well as the baseline modelM5,2 with and without NoS injection, evaluated
using the estimated NoS from the counting network (therefore, the counting and
detection performance reported in the two first lines of Table 8.6 (a) and (b) are the
ones of the counting network). Fig. 8.9 and 8.10 show the counting confusion matrices
and mean absolute error, respectively. Fig. 8.11 exhibits the detection metrics and
Fig. 8.12 displays the boxplots and violin plots of the localization angular errors.

Focusing on Table 8.6, we clearly see that the multi-task neural network provides
a substantial gain in counting accuracy, and therefore in detection performance, com-
pared to the counting network results. On simulated SRIRs, the counting accuracy
goes from 82.5% for the counting network to more than 90% for all configurations of
the multi-task network. On real SRIRs, the increase in performance is even larger:
70.3% for the counting network against, again, more than 90% for all multi-task net-
works. This important boost in counting performance leads to an great improvement
in terms of detection recall. On real SRIRs, it reaches 0.97 whereas it is only at 0.82

for Model M5,2. This means that the multi-task networks are capable of detecting
almost all localizable speakers, even in real-world conditions.
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(a) Simulated SRIRs

(b) Real SRIRs

Figure 8.9: Confusion matrices of the accuracy Aij for the multi-task
neural networks and the model M5,2 with and without NoS injection.
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(a) Simulated SRIRs

(b) Real SRIRs

Figure 8.10: Mean absolute errors Mi for the multi-task neural net-
works and the model M5,2 with and without NoS injection.

(a) Simulated SRIRs (b) Real SRIRs

Figure 8.11: Detection precision and recall for the multi-task neural
networks and the model M5,2 with and without NoS injection.
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Figure 8.12: Boxplots of the angular errors of the localization net-
work for the multi-task neural networks and the model M5,2 with and
without NoS injection.

When looking at the confusion matrices in Fig. 8.9, we can appreciate the ro-
bustness of the multi-task networks to count up to 3 speakers, with more than 80%
accuracy for all NoS on both simulated and real SRIRs. This approach also allows
to greatly reduce the mean absolute error, as showed in Fig. 8.10, especially for 2

and 3 speakers, which does not exceed 0.2 on both datasets. The detection metrics
(see Fig. 8.11) confirms the great performance of multi-task models over the baselines,
with a source detection rate (recall) greater than 95% on real SRIRs in parallel with
a relatively low false positive rate denoted by a precision of more than 95%, whereas
for the counting-only network these metrics reached 96% and 82%, for precision and
recall, respectively.

Regarding the localization results showed in Table 8.6 and Fig. 8.12, the multi-task
networks are below the modelM5,2 with NoS injection on simulated SRIRs but are on
par with the baseline M5,2. On real SRIRs, we see that the multi-task networks lead
to worse localization performance than the model M5,2 with and without injection.
However, recalling that the localization metrics are computed only for true positives,
the results for the multi-task networks are in fact quite impressive given the very
high detection recall. On simulated SRIRs, the multi-task networks are capable of
detecting more speakers with a localization precision that remains at the level of the
best baseline, although we can expect that some of the additional detected speakers are
difficult to localize. Regarding the results on real SRIRs, they are below the baselines.
Here, the effect of detecting more sources (and thus more sources that are difficult
to localize and that lead to a quite high angular error) is probably more important,
because of the larger difference in accuracy and recall with the baselines, compared
to simulated SRIRs. For a more fair assessment, we can compare the localization
results of the multi-task networks with those of the M5,2 model when the latter uses
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an oracle counting system, leading to a comparable detection performance, as shown
in Table 8.2. We see that the localization accuracy (< 10°) for the baselineM5,2 is here
56.2% for real SRIRs, whereas it reaches 60.8% for the model MComb

1 . Therefore, this
seems to indicate that, for a similar counting/detection performance, the multi-task
approach is performing better in localization compared with the baseline.

When comparing the different configurations of the multi-task neural network,
we notice that for models MSep, adding a second feedforward layer tends to reduce
the localization performance while not necessarily increasing the network counting
and detection capability. For separate input features, the multi-task network with
two feedforward layers performs 1.8% less in localization accuracy (< 10°) than the
same model with one feedforward layer, for simulated and real SRIRs, respectively.
However the inverse observation can be made for models MComb, where MComb

2 is
the one with the best localization results. Hence it is not straightforward to conclude
about the interest of adding a second feedforward layer. Furthermore, it is not clear
that separating the input features with a dedicating feature extraction module for
each of them presents an advantage in such a multi-task system. The results on all
multi-task networks are globally on par, whereas using two separate feature extraction
modules leads to an important increase in the number of parameters (around 51%
more). Finally when looking at the boxplots in Fig. 8.12, one can appreciate the fact
that the multi-task networks detect more sources at the cost of a higher localization
angular error variance, which seems to highlight the detection of sources more difficult
to localize.

To conclude, the multi-task networks present quite impressive results in terms of
counting and detection, compared to the use of a dedicated counting network as previ-
ously. The gain in counting performance is remarkable, especially on signals with real
SRIRs. Regarding the localization performance, we can say that they almost reach
the performance of the baseline model M5,2 using an estimated NoS, which is quite
impressive because of the high detection recall whereas the baseline’s localization ac-
curacy drastically drops when detecting more sources. It seems that the multi-task
neural networks are capable of extracting high-level features that are relevant for both
counting and localization. Feeding the input features separately in two different fea-
ture extraction modules or in combination in a single one has not provided convincing
differences in performance. It seems that the overall improvement is due to the use of
both input features and the network multi-task training.

8.4 Conclusion and perspectives

In this chapter, we have explored several ways of combining the counting and local-
ization networks. In a first study, we assessed the benefit of using a separate counting
network to estimate the NoS, before using this information to extract the right number
of DoAs from a localization network output. We concluded that the speaker counting
system is robust enough to be used in a practical use-case, as a replacement for the
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traditional NoS knowledge assumption that is made in research studies. Next, we in-
vestigated the interest of injecting the NoS information as an additional input feature
to the localization network, with the idea that this can help to shape a more accu-
rate DoA probability distribution output. By comparing the localization performance
with and without NoS injection, as well as evaluating the robustness of using an es-
timated NoS instead of the ground-truth NoS, we demonstrated that this additional
piece of information is valuable for the localization network, even if the performance
gain is not considerable. Finally, we proposed to combine the counting and localiza-
tion tasks into a single multi-task neural network, designed with two separate output
branches for each task. We appropriately tuned the combination of the counting and
localization loss functions with dedicated tests. Then, we showed the superiority of
this multi-task approach over the use of two separate task-wise networks. We were
able to largely improve the counting and detection performance, while the localization
performance were globally remaining at a level very close to the baseline. This is a
quite satisfactory result, considering the high detection accuracy and the fact that
sources that are difficult to detect (not detected by the baseline) may also be difficult
to localize. The experiments dealing with the order of the combination module and
the feature extraction module to combine the different input features have not been
conclusive, since the results obtained with the two solutions were on par.

The research work presented in this chapter leads to several questions and perspec-
tives. First, the proposal of injecting the NoS, based on the idea that a robust estimate
NoS could help the localization network for a better output distributions, has not led
to an important increase in localization accuracy, especially on real-world signals. A
first idea would be to use the NoS probability distribution, estimated by the counting
network, instead of a one-hot encoded vector which drops possibly precious informa-
tion. A general perspective to address the issue of real-world data performance lies in
the deep learning research effort to adapt neural network trained with simulated data
on real-world data. In the specific context of this work, we believe that there might be
a better manner to help the localization network with this precious NoS information.
As we pointed out in other chapters, analyzing in depth how the neural network uses
the NoS information could give some insights. Another intriguing interesting aspect
gravitates around the proposed (variants of the) multi-task neural network, especially
regarding the reason why the counting performance has been largely improved with
this system compared to the baseline. Analyzing where does this improvement come
from –which we did not have time to conduct– would help us understand what net-
work aspect is crucial for source counting. Is it the feature extraction module? (we
recall the proposed perspective at the end of Chapter 5), the combined input features?
the benefit of jointly learning counting and localization? Also, it would be great to
comprehend the way the multi-task network uses the same extracted feature –and the
contents of this feature– for two tied but distinct tasks.
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Chapter 9

Conclusion

9.1 Conclusion

In this thesis, we focused on estimating the number of speakers and their respective
locations from a multi-channel audio signal. We considered the challenging context
of domestic environments, where reverberation and noise are present. We addressed
these problems with deep neural networks, which were shown to be able to tackle
the speaker counting and localization problems efficiently, with an emphasis on low-
latency performance.

9.1.1 Speaker counting

In the first part, we trained a CRNN on simulated data to count the number of
speakers in multi-channel mixtures which are blurred by reverberation and diffuse
noise. We showed that this counting system was capable of counting up to 5 speakers,
at a frame-wise resolution, while the best speaker counting method at the time of this
research was able to provide the maximum NoS in a 5-s audio segment. Our method
proved to be quite robust, with a very high accuracy when estimating the NoS to
be 0 to 2, while this accuracy is still above 50% for greater NoS. After showing the
benefit of using multi-channel features over single-channel ones, we conducted several
experiments to analyze the performance according to several sets of hyperparameters.
Finally, we carried on an investigation to assess the importance of a frame position
within the input sequence to maximize the corresponding output accuracy. We derived
an empirical formula which gives the frame position in the input sequence having the
most accurate NoS estimate, leading to an overall accuracy of more than 75%. This
short analysis was not bound to our counting problem, but is rather generic, based
on the intuition behind the functioning of convolutional and LSTM layers.

9.1.2 Speaker localization

In the second part, we addressed the speaker localization problem, under the assump-
tion that the NoS is preliminary known. We first considered the simpler problem of
localizing one speaker, in order to assess the interest of the TDVV, a novel input fea-
ture with promising theoretical perspectives. In order to improve the single-speaker
localization performance over the use of the intensity-based input features, we explored
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a number of neural network architectures, such as CRNNs, CRNNs with dilated convo-
lutions and CRNNs with residual connections. Nevertheless, the results never showed
an improvement over the baseline, and yet it is quite difficult to analyze the neural
network to understand the reasons for this behavior. In spite of the efforts to derive
an adapted feature extraction module for the TDVV, we concluded that the problem
could lie into the TDVV estimation itself.

Then, we focused on estimating the DoAs of multiple overlapping speakers with
intensity-based features. These had already proven to be quite robust for single-
speaker localization, and are deemed promising for localizing multiple speakers as
well. After evaluating the best way to train the localization neural network for mul-
tiple speakers, we redesign the feature extraction module of a state-of-the-art model
in order to give more capacity to the network to derive effective representations. This
new design has greatly improved the localization performance, especially in a multi-
speaker context. Next, we proposed to replace the classical recurrent layers present in
the CRNN with self-attention mechanism. The objective was to reduce the inference
time while retaining similar localization performance, which was successfully accom-
plished. We further managed to improve the multi-speaker localization performance
by proposing a new way of computing attention scores with multiple heads. Finally,
we assessed the benefit of using the HOA-, instead of the FOA-based features. The
obtained results indicated that the network trained using higher-order pseudointen-
sity is performing better than its FOA counterpart, particularly in the presence of
multiple speakers.

9.1.3 Joint speaker counting and localization

In the last part, we proposed to relax the assumption that the NoS needs to be known
beforehand, by combining our speaker counting and speaker localization systems.
First, we evaluated the robustness of using the speaker counting network to estimate
the NoS instead of using the ground-truth. We demonstrated that the counting sys-
tem is accurate enough so that the localization network leads to an estimate of most
DoAs with sufficient efficiency. Then, we investigated the idea of injecting the NoS
information as an additional input feature into the localization network. We observed
that when the injection took place at specific layers, i.e., after the feature extraction
and temporal analysis modules, it helped the localization network to be more accu-
rate. Finally, we jointly addressed speaker counting and localization with a common
multi-task neural network. After evaluating the best way to combine the counting and
localization loss functions, we designed several multi-task neural network architectures
and compared them with the use of separate counting and localization systems. We
demonstrated that these multi-task networks are more robust in terms of counting
accuracy than our original speaker counting, and that the localization performance
remained high. These last experiments suggested that a neural model can simulta-
neously perform speaker counting and localization, without the strong assumption of
knowing the NoS in advance.
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9.2 Perspectives

In this thesis, we focused on speaker counting and localization from many angles,
especially regarding the design of several network modules with a goal of improving
the overall performance. However, our experiments and the subsequent results showed
some limitations which we did not have time to address. In the following paragraphs,
we discuss a few perspectives and ideas which would be interesting to develop in
order to improve the networks performance, and gain a better understanding of their
inherent behavior.

9.2.1 Real-world data adaptation

In all our experiments we noticed a drop in performance when the neural networks,
which had always been trained on simulated data, were tested against real-world sig-
nals. This effect is well-known in the deep learning research, and is quite usual in
many tasks due to the lack of realistic training data. In our research, all training
examples were generated using the “shoebox” acoustic simulations. Such geometry is
rarely encountered is real-world environments. Moreover, the microphone array was
allowed to be placed (almost) anywhere in the room, resulting in unrealistic positions
(e.g., floating in the air), whereas in reality a recording device is often positioned on a
table, leading to strong reflections. A first approach is to consider a more sophisticated
room acoustics simulator, capable of taking into account more complex room geome-
tries and acoustic phenomena, such as scattering or diffraction. Such an idea, however,
presents the limitation of a heavier computation cost, which should be balanced with
the amount of data to be generated. Another idea would be to progressively train the
network to more and more realistic signals, e.g., first with signals generated with sim-
ulated SRIRs, then fine-tuning the network with signals generated with real SRIRs,
then again fine-tuning it further using recorded data. Finally, one could lean towards
the research effort on domain adaptation, which provides interesting methods to im-
prove the performance of a network on a particular domain (e.g., real-world data in
our case) while it has been trained on another domain (e.g., simulated data).

9.2.2 Neural networks process analysis

Although some efforts were made in this thesis to analyze the networks behavior
and the influence of some hyperparameters, there is still room for in-depth analyses,
which would certainly be profitable to understand why some models perform better
than others, and how further improvements can be achieved. This analysis concern
is at the core of recent deep learning research, because of the neural network’s black
box nature, and we hereby propose a few targeted points to be analyzed regarding
our domain. A first perspective is to interpret the extracted features which allows the
networks to perform quite well in a multi-speaker context, for example based on filter
visualization techniques [Cho17; Bac+15]. Regarding the improvements obtained in
Section 7.3.2, one can wonder what are the differences between the extracted feature
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of the baseline and the one of the new module which leads to such a performance gain.
Also, the small variations in the results for the different proposed feature extraction
modules push us into looking into the networks behavior when another convolutional
block is added or less max-pooling is employed. In the same vein, it could be very
instructive to study the contents of the extracted feature in the multi-task networks,
since it proved to be suitable not only for localization but also for counting. While it is
obvious that these two tasks are bound in a certain way, the networks seem to extract
meaningful patterns in the input features which are somehow beneficial for counting
and localization altogether, which is not straightforward to do with our human-crafted
algorithms.

Furthermore, it could be quite insightful to understand how the attention mecha-
nism is able to make use of the inter-frame information. While the behaviors of LSTM
layers are a bit more instinctive to understand due to their recurrent processing, it
is more complicated to figure out how self-attention scores are computed, and why
the emphasis is put on certain frames. A thorough investigation regarding the scores
and the computed vectors could reveal interesting properties on the most informative
frames for speaker localization. We believe that an extensive analysis effort should be
pursued to definitely leverage the remarkable capabilities of neural networks. Not only
could it allow to notably improve the accuracy of counting and localization systems,
but it could more importantly provide us new considerations to progress in the audio
research field.

9.2.3 Moving sources

In some experiments, we evaluated our localization network on the LOCATA dataset,
which includes two sets of data with moving speakers. While we never consider this
particular context, we saw that our localization system was able to follow the DoAs
of several speakers with a fair accuracy, which is probably due to a relatively short
temporal analysis window. However, the localization performance could be greatly
improved with a dedicated tracking system. We could leverage our robust speaker
counting system to provide an information about the sources “birth” or “death”, along-
side a neural-based tracking network, to improve the localization of moving sources.
Furthermore, it could be interesting to incorporate speaker spectral signatures into a
tracking system for even better performance, which would bring us at the intersection
with speaker recognition and diarization.

9.2.4 Combination of deep learning and conventional signal process-
ing techniques

In this PhD work, the exploitation of the spatial information contained in the mixture
signal was done mostly “implicitly,” by inputing a multichannel (Ambisonic) represen-
tation of the signal in the DNNs. Another perspective that we have not considered
in this PhD work is in the “explicit” combination of deep learning with conventional
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multichannel signal processing techniques, inspired by what has been done for speech
enhancement and speech/audio source separation.

Deep-learning-based (single-channel) speech enhancement and separation are mostly
based on the masking approach in the TF domain. Binary masks or soft masks (remi-
niscent of the well-known single-channel Wiener filter) are estimated with DNNs from
the noisy signal and applied to it to obtain a cleaned version [WC17]. For multi-
channel speech enhancement and separation, it is possible to input the multichannel
signal in the mask estimation network. But, it can been noted that the masking
technique has also been combined with conventional (multichannel signal process-
ing) approaches such as beamforming [VVB88], see for example [Erd+16], [HDHU16]
and [Hig+17]. The authors of these three papers proposed a similar basic combina-
tion of DL-based single-channel speech enhancement (to extract/exploit the speech
spectral information) and beamforming techniques (to extract/exploit the spatial in-
formation). DNNs are used to estimate masks in the TF domain, which are used to
select speech-dominant against noise-dominant TF points. The speech-dominant and
noise-dominant points are then used to estimate speech and noise spatial covariance
matrices, respectively, which are then used to build beamforming filters. Those studies
report better ASR scores than with direct TF masking or basic beamforming applied
separately.1 This approach was extended in [Per+18a] with an additional first stage
of beamforming in the high-order ambisonics domain to improve the mask estimation.

In the same general idea, but an approach closer to source separation than to
beamforming, the authors of [NLV16] combined a DNN trained to estimate a clean
speech spectrogram from a noisy speech spectrogram with the source separation tech-
nique based on the spatial covariance matrix (SCM) model and Wiener filtering from
[DVG10]. An unsupervised multichannel speech enhancement system combining a
deep model (a variational autoencoder) for modeling the clean speech signal and the
SCM model from [DVG10] for modeling the spatial characteristics was proposed in
[LGH19].

All these work lead us to believe that there is room for combining DNNs and
conventional models (especially for the modeling of spatial information) for source
counting and localization, as well as for combining these tasks with speaker diariza-
tion, enhancement and separation. The connection between audio source separation
and SSL is strong, reciprocal (audio source separation can help SSL and SSL can help
audio source separation), and is already exploited in many studies [VVG18; Gan+17].
Obviously, a reliable NoS estimation is also useful for both SSL and separation. There-
fore, a straighforward extension of our work presented in Section 8.3 could be to add
the separation task at the output of the proposed speaker counting / speaker localiza-
tion multi-task network. And beyond that, future works may consider jointly source
counting, localization, diarization and separation/enhancement in an hybrid approach
combining deep learning and conventional signal processing techniques.

1Note that, in parallel, more direct and brute-force approaches were also considered, with joint
end-to-end optimization of the mask estimator, the beamformer, and possibly an ASR acoustic model,
in the TF domain [Men+17; Hey+17], and in the time domain [Li+16].
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