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Abstract

In the last few years Machine Learning methods have been incorporated in various Natural

Language Processing systems. As a result, these methods have shown impressive results in a

variety of tasks across multiple domains, in particular, through supervised learning. However,

these methods usually rely on large amounts of labeled data, implying a strong presence of

human intervention in the modeling pipeline and a potential high cost for data annotation.

Graph-based Semi-supervised Learning (GSSL) is a framework that alleviates these issues

by exploiting the information provided by the unlabeled data. It takes as input a dataset and a

graph that represents pairwise connections between elements, both labeled and unlabeled.

A bottleneck in the use of GSSL in arbitrary datasets is that a graph is not always readily

available, and although there are heuristic techniques to build them, they usually fall short of

capturing the true topology of the data.

In this thesis we propose two original methods to deal with scenarios where labeled data is

scarce and where either no graph is available, or where thea-priori graph is considered a noisy

observation of an unknown true graph. Our �rst method combines Graph Learning and Metric

Learning to jointly learn a graph and a data transformation that we can subsequently plug

into a standard GSSL algorithm such as Label Spreading of Graph Convolutional Networks.

For our second method we adopt a probabilistic approach and use the tools from deep

generative models to build a framework where we jointly infer a graph and the parameters of

a semi-supervised classi�cation model in an end-to-end fashion. We empirically show that

our methods yield competitive results in text classi�cation. Furthermore, we are able to learn

task-speci�c graphs that capture interesting properties about the data. Finally, we identify

challenges and discuss potential directions to address them.





Resumé

Au cours des dernières années, les méthodes d'apprentissage automatique ont été intégrées

dans divers systèmes de traitement du langage naturel. Ces méthodes ont montré des résultats

impressionnants dans une variété de tâches dans de multiples domaines, en particulier

par l'apprentissage supervisé. Cependant, ces méthodes reposent généralement sur de

grandes quantités de données étiquetées, ce qui implique une forte intervention humaine

dans le pipeline de modélisation et un coût potentiel élevé pour l'annotation des données.

L'apprentissage semi-supervisé basé sur les graphes (GSSL) est un cadre théorique qui

atténue ces problèmes en exploitant les informations fournies par les données non étiquetées.

Il prend en entrée un ensemble de données et un graphe qui représente les connexions entre

les éléments, étiquetés et non étiquetés. Un obstacle dans l'utilisation de GSSL est qu'un

graphe n'est pas toujours disponible, et bien qu'il existe des techniques heuristiques pour

les construire, elles ne parviennent généralement pas à capturer la véritable topologie des

données.

Dans cette thèse, nous proposons deux méthodes originales pour traiter les scénarios où les

données étiquetées sont rares et où le graphe n'est disponible ou est seulement une observation

bruitée d'un vrai graphe inconnu. Notre première méthode combine l'apprentissage des

graphes et l'apprentissage des métriques pour apprendre conjointement un graphe et une

transformation de données que nous pouvons ensuite insérer dans un algorithme GSSL

standard, comme par exemple Label Spreading ou Graph Convolutional Networks. Pour

notre deuxième méthode, nous adoptons une approche probabiliste et utilisons les outils

des modèles génératifs pour construire un cadre dans lequel nous inférons conjointement

un graphe et les paramètres d'un modèle de classi�cation semi-supervisée "end-to-end".

Nous montrons empiriquement que nos méthodes donnent des résultats compétitifs dans

la classi�cation de textes. De plus, nous obtenons des graphes spéci�ques aux tâches qui

capturent des propriétés intéressantes sur les données. Finalement, nous identi�ons les dé�s

et discutons des directions potentielles pour les relever.
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Chapter 1

Introduction

In past few decades we have witnessed a dramatic improvement of Natural Language

Processing (NLP) systems thanks to the incorporation of Machine Learning (ML) tools in

problems so far addressed with symbolic methods. In particular, with the advent of automatic

differentiation, it became possible to design and deploy complex deep learning architectures,

and incorporate them in the NLP pipeline. For example, neural models for learning word

representations or "embeddings" [48, 53, 17] became a building block in many NLP systems.

As a result, many tasks such as part of speech (POS) tagging [2], document classi�cation [1],

and machine translation [10] saw unprecedented performance.

However, this new NLP paradigm brought along new challenges. Modern NLP systems

require large amounts of annotated data in order to train models, which represents a bottleneck

in practice. Moreover, one usually needs access to annotated data belonging to the domain

of interest for NLP systems to have a good performance. A paradigmatic example is the

performance gap between NLP models for resourceful languages like English, and low

resources languages where models are trained on relatively small corpora. Even in the case

where we have access to a large corpus of text, it is a known fact that the annotation process

can be very costly and time consuming [20]. On the other hand it is the case that unannotated

data is plentiful for many applications. A relevant question in this context is,can we build

systems that require less human intervention, and that exploit information from unannotated

data?In this thesis we argue that Graph-based Machine Learning is an adequate framework

to addressing both problems.

Graph-based ML [61] exploits prior knowledge that comes in the form of a graph that

encodes information about how the elements of interest interact. Nodes and edges in a graph

can represent many different things. For instance, citation networks can be deemed a graph

where nodes are scienti�c articles and edges connect two nodes when one article cites the

other. Other examples are social networks where nodes are people and edges represent
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whether two people are friends, or parsing trees where nodes are words in a sentence and

edges represent a syntactic relationship between them. In all these examples the graph is

naturally provided by the data, and informs about the data distribution. Exploiting this

information is known to improve the classi�cation performance of some tasks [77, 74, 39].

To illustrate this, let us take the citation network example we mentioned above and let us

imagine the following scenario. We have a set of scienti�c papers classi�ed into topics, and

a citation graph that connects two papers if one cites the other. We have a small training set

of labeled articles and the task is to �nd the labels of the unlabeled set. Since labeled data is

scarce, supervised methods will tend to quickly over�t. In contrast, citations between articles

convey relevant information that complement the textual content, and exploiting this can

improve over supervised models.

Graph-based Semi-supervised Learning (GSSL) is an area of Machine Learning that

studies semi-supervised learning algorithms where the structure of the data is represented by

a graph. This area has seen some recent successes. Notably, the method introduced by Kipf

and Welling[39] based on Graph Convolutional Networks achieved signi�cant performance

gains over its predecessors.

A problem arises when a graph is not readily available, or when it represents a noisy

observation of the true graph. Classical GSSL methods do not account for graph uncertainty

and therefore, it is not straightforward to use this framework in scenarios where we do not

have a graph or where we can not fully rely on the graph. When unavailable, we can use

heuristics to construct a graph using the data. For example, one can connect each element in

the training set with itsk nearest neighbors (kNN graph). Alternatively, one can create a graph

where edges are assigned a weight that is inversely proportional to the Euclidean distance

between the points. Although using GSSL with these heuristic structures can improve over

supervised methods, these graphs are usually not the optimal options.

There is a vast variety of approaches concerned with constructing a graph in a data-driven

manner. Some of these methods are unsupervised and thus disregard the label information,

and others take into account the supervised information but fail to fully capture the geometry

of the data. We will discuss many of these methods in the next chapter. In general,the

problem of performing GSSL in unavailable/unreliable graph scenarios is arguably under-

explored, and it is the purpose of this thesis to contribute to �lling that gap. We then propose

algorithms where the graph is built in a task-driven manner. We also explore the possibility

of tackling two problems simultaneously, that is, performing graph inference and GSSL at

the same time. In this work we present the following contributions.

(i) We introduce a method where we learn a good representation of the data and a graph

simultaneously. The data representation aims at pulling together data points that are
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likely to belong to the same class, while pushing apart those that are likely to have

different class memberships. Also, it guides the graph learning process towards graphs

that encode the geometry of the transformed data. This way we obtain a task-speci�c

graph and a data representation that we can plug into a GSSL algorithm. Through the

hyperparameters of the objective function we can control the sparsity of the resulting

graph.

(ii) Taking a step further, we propose an end-to-end pipeline where the graph is considered

to be a set of latent variables, and where we perform inference in the graph and the

parameters of a classi�cation model simultaneously. This model is more �exible than

the previous one in the sense that, by using a Bayesian framework, we have control

over the prior of the graph. In particular, we can assign a higher prior probability to

some edges, thus encoding a prior graph preference. We demonstrate that our method

outperforms supervised and semi-supervised baselines where the graph is heuristically

computed, and that reaches state-of-the-art results.

1.1 Published Work

The contributions of this thesis have resulted in two publications:

(i) Mariana Vargas Vieyra, Aurélien Bellet, Pascal Denis, 2020,Joint Learning of the

Graph and the Data Representation for Graph-Based Semi-Supervised Learning, Pro-

ceedings of the Graph-based Methods for Natural Language Processing (TextGraphs).

(ii) Mariana Vargas Vieyra, Aurélien Bellet, Pascal Denis, 2019,Probabilistic End-to-End

Graph-based Semi-Supervised Learning, contributed talk at NeurIPS Graph Represen-

tation Learning workshop, poster at NeurIPS Bayesian Deep Learning workshop.

1.2 Outline

We structure this thesis in �ve chapters.

Chapter 2: Background We provide details about the frameworks that are relevant to this

thesis. We discuss graphs and their importance in Machine Learning, some methods to

construct them, and a framework for dealing with unobserved random variables that is

useful for the unavailable/unreliable graph scenario we are interested in.
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Chapter 3: Joint Learning of the Graph and the Data RepresentationWe present our

�rst contribution. We describe an algorithm that learns a graph and a data repre-

sentation jointly. We present an optimization scheme where we alternate between two

subproblems: �xing the graph and optimizing the data representation, and keeping the

data representation �xed to optimize the graph. We provide empirical evidence that

shows that our graph and data representation outperform heuristic graphs.

Chapter 4: Graph Inference and SSL with Auto-Encoding Variational Bayes We take

a step further and describe an end-to-end system that performs inference in the graph

and GSSL simultaneously. We use a Bayesian approach to account for graph un-

certainty, and present a model where the graph is considered a set of independent

unobserved random variables. We describe an optimization procedure based on recent

advances in Variational Inference.

Chapter 5: Conclusion In this chapter we summarize our contributions and provide an

outlook for future directions.



Chapter 2

Background

In this chapter we describe the grounds upon which this work is built. Additionally, we

characterize the task of Graph-based Semi-supervised Learning in scenarios where the graph

is unavailable and motivate the use of speci�c frameworks and tools to address it.

We will start by providing an overview of graphs and Graph Signal Processing. We are

interested in how graphs can represent a domain of data that is non-Euclidean, allowing to

generalize notions from classic calculus to more complex and realistic domains. In particular,

graphs carry geometric information about the data they are associated with, which is very

helpful in applications where we have limited access to supervised information. In this

context, where regular supervised learning methods would generalize poorly to unseen data,

the graph can guide the learning process to solutions that do not over�t. Algorithms that

follow this principle are considered in the area of Graph-based Semi-Supervised Learning

(GSSL). The main question GSSL addresses is, given a graph where some of the nodes are

associated with observations from some unknown labeling function, how to �nd the missing

labels for the rest of the nodes?

Despite the success of GSSL, graphs are not always readily available. In fact, very often

one has to construct it following some heuristic that indicates "similarity" or "dissimilarity"

between points. These heuristics for graph construction can seem rather arbitrary, and in

fact may lead to suboptimal results. The reason for this is that it is no easy task to �nd the

graph that best �ts a dataset. For example, the Euclidean distance may not capture important

relationships between features. As a matter of fact, �nding a graph that captures the geometry

of the data is a research question on its own, studied in the �eld of Graph Learning.

Better graphs can be constructed if we have a more appropriate notion of similarity. More

speci�cally, one could learn a metric function, other than the Euclidean distance, that better

explains the underlying notion of similarity in the task of interest. The area of Machine

Learning that deals with �nding such metric functions in a data-driven fashion is Metric
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Learning. Roughly speaking, these methods will incorporate prior knowledge about the data

in the form of similar/dissimilar restrictions, and will exploit that information in order to

generalize to a metric function.

Another possibility when there is uncertainty about the graph is to adopt a Bayesian

approach. In this framework we can consider the graph to be an unobserved random variable,

or latent variable, with some distribution we choose. On the one hand, to pick a family of

distributions for the graph is a way of incorporating our prior knowledge about the structure

of the data, on the other hand, the uncertainty about the graph can be accounted for in

Bayesian inference.

We will review all the above concepts in the rest of this Chapter. In Section 2.1 we

will provide an overview of graphs and GSP, in Section 2.2 we present Graph-based Semi-

supervised Learning and some popular algorithms. Metric Learning will be discussed in

Section 2.3, and Latent Variable Models in Section 2.4. Finally, in Section 2.5 we introduce

Graph Learning and its role in GSSL.
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2.1 Graphs

In this section we are going to introduce one of the building blocks of this thesis: graphs.

Roughly speaking, graphs are a very expressive data structure that capture relationships

between arbitrary objects. They have been widely used in a vast variety of contexts and

applications, in particular, in Machine Learning and Statistics, where they can have an

interpretation in terms of the independence structure of a set of random variables, interaction

of dynamic systems, and knowledge graphs, just to name a few examples.

In what follows we are going to narrow down the topic of graphs to what is relevant for

this work. That is, �rst, we will formally de�ne what graphs are and describe some of their

main properties, then, we are going to discuss the notion ofgraph spectrum, and �nally, their

role in Signal Processing and how graphs can be used to reason about data generated from

domains that are non-Euclidean.
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2.1.1 Spectral Graph Theory

Graphs, in a broad sense, are mathematical objects that represent pairwise relationships

between elements in a set. They are usually associated with matrices that carry important

information about the task of interest. The �eld ofSpectral Graph Theoryis concerned with

the study of certain properties of the graph and its associated matrices. But before delving

into this concepts let us introduce some basic de�nitions.

De�nition 1. A graph is a tupleG= ( V;E) such thatV is a set of elements we call vertices

andE � V � V is a set that encodes pairwise relationships between elements inV. A pair

(vi ;v j ) 2 E is called an edge. A graphGis said to be a valued graph or weighted graph when

it is endowed with a weight functionw : V �V ! R+ such thatw(vi ;v j ) > 0 if (vi ;v j ) 2 E,

w(vi ;v j ) = 0 otherwise. We denote such a graph with the tripletG= ( V;E;w).

Observe that a non-weighted graph is a special case of a weighted graph with binary

values. In the following de�nition we introduce a compact notation for the weight function.

De�nition 2. LetG= ( V;E;w) be a graph. Letn = jVj be the size ofV. The functionw can

be represented by a weight matrix W2 Rn� n such that

Wi j =

8
<

:
w(vi ;v j ) (vi ;v j ) 2 E

0 otherwise.

We call such matrix the adjacency matrix ofG.

As a data structure graphs are very expressive and can naturally arise in many real-world

contexts. For example, in social networks users are nodes in a graph and an edge connects

two users when one befriends another. In circuit networks edges represent wires between

electronic components, which are nodes, or in biology, where graphs are used to encode

interactions between proteins [69]. Figure 2.1 shows an example of a graph that arises from

a random sensor network with100nodes and469edges generated with the PyGSP Python

package . A classical example in NLP is that of citation networks: we have a set of scienti�c

articles, each of which represents a node in a graph, and an edge will connect two articles if

one cites the other. Cora [58] and Citeseer [42] are two popular citation network datasets.

Figure 2.2 shows a visualization of these graphs.

We say the graph isundirectedif whenever(vi ;v j ) 2 E then(v j ;vi) 2 E, and ifw(vi ;v j ) =

w(v j ;vi). Otherwise, we say the graph isdirected. In the following, unless otherwise stated,

we will consider undirected graphs.

We can now introduce the notion ofgraph Laplacian, a concept that will be of crucial

importance throughout this work.
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Fig. 2.1 A random sensor graph generated with PyGSP Python package.

(a) Cora (b) Citeseer

Fig. 2.2 Cora and Citeseer citation networks. Each node represents a scienti�c article. These
are colored according to their class membership. There are seven different classes in Cora
and six in Citeseer. Two nodes are connected by an edge if one cites the other. These plots
were generated with PytorchGeometric library.
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De�nition 3. The unnormalized graph LaplacianL 2 Rn� n is de�ned asL = D � W, where

D 2 Rn� n is a diagonal matrix with elements Dii = å n
j= 1Wi j .

BecauseW is symmetric, so isL, and hence it admits a spectral decomposition of the

form L = FLF
T
, where the columns ofF are then eigenvectorsL is a diagonal matrix

whose entries are then real eigenvaluesl 1; : : : ; l n associated with the eigenvectorsu1; : : : ;un

that are the columns ofF . The eigenvalues ofL de�ne thespectrumof the graph and carry

information about many of its characteristics.

The following proposition summarizes some important properties of the graph Laplacian

[66? ].

Proposition 1. The following properties hold for the graph Laplacian L.

1. L is symmetric and positive semi-de�nite,

2. L has0 as the smallest eigenvalue, and its corresponding eigenvector is1.

3. L has n non-negative eigenvalues0 = l 1 � � � � � l n.

4. The multiplicity ofl 1 corresponds to the number of connected components in the

graph.

2.1.2 Graph Signal Processing

Although graphs are interesting on their own, very often they come with data associated with

their nodes. Going back to the citation network example, one could think of the graph as a

domain where each node is associated with a document, represented as a feature vector. We

are going to say such features aresignalscoming from a graph domain. We formalize this

notion in the following de�nition:

De�nition 4. Given a graphG= ( V;E), a graph signal is a functionf : V ! R. Letn = jVj,

then f can be represented as a vector inRn, ( f1; : : : ; fn).

Graph Signal Processing (GSP) [60, 6, 55] extends the concepts of classic Signal Process-

ing to data coming from graph domains and provides the necessary tools to perform calculus

on discrete structures. This �eld has served as a framework to formalize a vast variety of

problems. For instance, the task of node classi�cation can be addressed with the tools GSP

provides once we realize that node labels can be seen as a graph signal (see Figure 2.3).

A central actor in GSP is the graph Laplacian we introduced in De�nition 3. An important

thing to point out about the graph Laplacian is its nature as an operator that acts upon signals
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Fig. 2.3 A random sensor graph generated with PyGSP Python package where nodes belong
to one of two classes (colored yellow and purple). All the true labels are displayed. In a
classi�cation problem many of these labels are missing and we have to infer them.

in the graph measuring how much their steepness changes at each node. To see this, let

us �rst observe that the gradient of a graph signalf boils down to the partial differences

between nodes because it realizes in a discrete domain. That is,

(Ñ f ) i j = fi � f j :

Now, observe that

(L f ) i =
n

å
j= 1

Li j f j =
n

å
j= 1

Di j 1[ j= i] f j � Wi j f j

= Dii fi �
n

å
j= 1

Wi j f j =
n

å
j= 1

Wi j fi �
n

å
j= 1

Wi j f j

=
n

å
j= 1

Wi j ( fi � f j ) =
n

å
j= 1

Wi j (Ñ f ) i j

where1[:] is the indicator function. In other words, the Laplacian is a difference operator that

informs about the local variation of a graph signal.

Another important quantity associated with the Laplacian is theLaplacian quadratic

form that accounts for the total variability in the graph [66]:
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f
T
L f = f

T
D f � f

T
W f

=
n

å
i= 1

Dii f 2
i �

n

å
i; j= 1

Wi j fi f j

=
1
2

"
n

å
i= 1

Dii f 2
i � 2

n

å
i; j= 1

Wi j fi f j +
n

å
i= 1

Dii f 2
i

#

=
1
2

n

å
i; j= 1

Wi j ( fi � f j )2

(2.1)

We will say the graph signalf is smoothwith respect to the topology of the graphGwhen

the quantity of Equation(2.1) is small. To be precise, this quanti�es the global smoothness

of the graph signal with respect to the graph. Global smoothness has been widely used as a

criterion to decide whether the estimation of a partially observed signal �ts a graph. As such,

it has been incorporated in numerous formulations as a regularization term that penalizes

solutions for which Equation (2.1) is large. We will visit some examples in Section 2.2.

The spectrum ofL has an interpretation in terms of frequencies: small eigenvalues are

associated with low frequencies, and large eigenvalues with high frequencies. As a matter of

fact we know that thei-th eigenvalue ofL is such that

l i = min
x

x
T
Lx

s.t. x ? u0; : : : ;ui� 1

kxk = 1

(2.2)

and that theith eigenvectorui is the vector that minimizes that objective. In other words, the

eigenvectors minimize the Laplacian quadratic form subject to the restrictions of Equation

(2.2), providing a basis to span graph signals in the frequency domain. The �rst eigenvector

is constantly1 as stated in Proposition 1, the second eigenvalue corresponds to the lowest, or

smoothest frequency, and so on. This can be visualized in Figure 2.4.

Analogous to Signal Processing, we can decompose a graph signal in terms of the discrete

frequenciesl 1; : : : ; l n, as stated in the following de�nition.

De�nition 5. The Graph Fourier Transform (GFT)bf of a graph signal f is

bf (l i) = hf ;ui i :

The GFT is an important tool that extends certain notions of calculus to non-Euclidean

domains. In particular, it permits to generalize the notion ofconvolutionto non-Euclidean
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(a) Eigenvector corresponding tol 1 (b) Eigenvector corresponding tol 2

(c) Eigenvector corresponding tol 21

Fig. 2.4 Plot of eigenvectors corresponding to (a) the �rst eigenvaluel 1 = 0, (b) the second
eigenvaluel 2, and (c) the21st eigenvalue,l 21. We can see how eigenvectors associated with
bigger eigenvalues tend to oscillate more.

domains. Let us take a "detour" to recall some important concepts. The convolution operation

acts on two functions (in Euclidean domain) as follows:

De�nition 6. Given two functions h and g, the convolution is de�ned as

(h� g)(x) =
Z

h(t )g(x� t )¶ t : (2.3)

Let us observe that it is not straightforward to use the convolution de�ned in Equation

(2.3) in the context of graph domains. A workaround is to use theConvolutional Theoremto

rewrite the convolution operation in terms of the graph spectral domain [6].

Theorem 1. For functions f;g : V ! R it holds that

( f � g)(x) = å
i� 1

hf ;ui ihg;ui i ui(x): (2.4)

In graphs the summation in(2.4)becomes �nite, and can be expressed in matrix form as
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Gf = F diag(bg1; : : : ; bgn)F
T
f; (2.5)

wherebgi = bg(l i), andF is the matrix whose columns are the eigenvectors ofL. Put in simple

words, the recipe for convolving a signal in a graph domain is to get its GFT, apply the bank

of �lters bgi , and then compute the inverse GFT.

Note that in this context, a �lter is a function de�ned in the frequency domain of the

graph,bg(L ). We can think of �lters as functions that "manipulate" the spectrum of the graph,

maybe to attenuate some frequencies and to strengthen some others.

As a way of example, let us consider the heat diffusion �lter de�ned as

H(t ) = F e� t L F
T
:

Figure 2.5 shows the sensor graph de�ned above after applying the heat kernel for different

values oft .

Fig. 2.5 Heat diffusion �lter applied to the sensor graph fort = 5 (left), t = 25 (center) and
t = 70 (right).

The convolution operation is the centerpiece of theConvolutional Neural Network(CNN),

a powerful neural network model that is able to encode speci�c symmetries and constraints.

The tools described above allow to extend ideas from CNNs to graphs, leading to theGraph

Convolutional Network(GCN) model [7, 39].

In Section 2.2.2 we will discuss the role of GCNs in Graph-based Semi-supervised

Learning.
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2.2 Graph-based Semi-Supervised Learning

Semi-supervised Learning (SSL) is a learning paradigm that exploits both labeled and

unlabeled data. SSL algorithms have been successfully applied to problems where labeled

data is very scarce, and where there is access to relatively large amount of unlabeled data.

Formally, we assume we have access to a dataset of the formD = Dsup[D unsupwhere

Dsup = f (xi ;yi)gk
i= 1 is the supervised set andDunsup= f xign

i= k+ 1 is the unlabeled set. We

assume each observation(xi ;yi) comes from a distributionp(x;y) wherex 2 X andy 2 Y .

We also assume the supervised set is relatively small with respect to the unlabeled set. The

goal is to �nd a mappingg : X ! Y that �ts the observed data as best as possible. SSL

algorithms work by making some assumptions about the distribution of the input data so that

one can leverage the information provided by the unlabeled set. A few popular assumptions

are described below.

Smoothness assumptionThe smoothness or continuity assumption establishes that points

that lay in a dense region have outputs that are likely to be close.

Cluster assumption The cluster assumption is a discrete version of the smoothness assump-

tion: points form clusters, and if two elements belong to the same cluster then they are

likely to belong to the same class. For a classi�cation task this implies that an optimal

decision boundary will pass through a low density region.

Manifold assumption High-dimensional data lies in a low-dimensional manifold. This

assumption is key to avoid the "curse of dimensionality".

SSL methods can be classi�ed intoinductiveandtransductive. The former aims at

learning a classi�er that is able to handle data from the whole domainX . The latter is only

concerned with �nding the labels corresponding to the unlabeled elements of the training set.

Graph-based semi-supervised learning (GSSL) algorithms are a class of semi-supervised

methods that additionally rely on a graph structure associated with the data. In the taxonomy

describe above they are usually placed among the transductive methods. These methods

received a lot of attention in the last two decades for many reasons [61]. In the �rst place,

in many applications the data is naturally endowed with a graph. Such a graph is assumed

to represent the underlying topology of the data, and it thus provides grounds to develop

algorithms that comply with the three assumptions presented above. As a matter of fact, the

massive use of Internet results in graph-structured datasets to be more widespread. In the

second place, many problems can be formulated as convex programs in a straightforward

manner [61]. Finally, graphs are expressive objects and can encode rich information about

the data.
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At a high-level, GSSL algorithms can be classi�ed into methods that introduce an explicit

form of regularization to the objective based on the topology of the data, and more modern

methods based on graph neural networks. We will describe these different approaches

below. In what follows we will assume the data is endowed with a graphG= ( V;E;w) with

associated adjacency matrixW 2 Rn� n.

2.2.1 Algorithms based on Manifold Regularization

Algorithms under this category are characterized by an objective function that consists of a

supervised term and a graph regularization term [61]:

l (by) = å
(xi ;yi)2Dsup

lsup(by(xi);yi) + å
xi2Dunsup

lreg(by(xi)) : (2.6)

The �rst term is a regular supervised loss, while the second term ensures the solution will be

consistent with the topology of the data. A widely used criterion of graph regularization is

that of smoothness: the solution has to be as smooth as possible with respect to the graph in

the sense of Equation (2.1).

Some methods use the graph as a propagation operator that propagates labels according

to how elements are connected. Examples of these are Label Propagation [75] and Label

Spreading [72]. Considering binary labels for simplicity, Label Propagation takes the random

walk normalized LaplacianLrw = D� 1W, initializesby(0) = [ y1; : : : ;yl ;0; : : : ;0] and iteratively

updatesby as:

by(t+ 1) = Lrwby(t) (2.7)

by(t+ 1)
i = yi for i = 1; : : : ; l :

When normalized as such,Lrw can be deemed a random walk matrix, that is, a matrix whose

entries represent transition probabilities. Keeping that in mind, what Equation 2.7 does is

to iteratively visit the neighborhood of each node, and diffuse the labels according to the

strength of the edges.

Label Spreading differs mainly in two things. First it uses the symmetric normalized

Laplacian as propagation operator, that is, it usesLsym = D� 1=2WD� 1=2, and it allows

changes in the predicted labels corresponding to the training set:

by(t+ 1)
i = a Lsymby(t) + ( 1� a )by(0);
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wherea 2 [0;1) is an hyperparameter controlling to what extent the newly computed label

estimation differs from its initialization.

We brie�y mention here other approaches that address the same problem. Following

a different route, Joachims[32] proposed a cost criterion based on spectral clustering. He

formulated the problem as a constrained relaxation of the normalized min-cut of the graph,

and optimized a cost consisting of a smoothness term, and a supervised term that keeps the

solution close to the initial labeling.

At the same time, Zhu et al.[76] developed a method that share some similarities. The

authors choose a real-valued function as a relaxation of the hard labels, and minimize a

quadratic energy function that depends on the weight matrix associated with the graph.

Belkin et al.[4] extend the Tikhonov regularization with a smoothness term that penalizes

functions that oscillate with respect to the data manifold.

Methods based on random walks [63] de�ne transition probabilities in proportion with

the edge weights given byW. To label a pointxi, we start fromxi and transition to other

nodes fort steps. We then compute the probability of having started from a point with a label

yi and decide on the label accordingly.

2.2.2 Algorithms based on Graph Neural Networks

In the more recent literature the focus is on methods that use the Graph Neural Network

(GNN) architecture [56]. GNNs are neural network models that exploit a given graph struc-

ture. In a broad sense they compute node features by iteratively aggregating neighborhood

information.

A CNN can be deemed a particular case of a GNN where the data sits on a grid type of

graph. Given an dimensional inputf , a this model applies a series of convolutional layers

followed by a non linearity, that is, it produces an outputg(x) of the form

gl (x) = s
� n

å
i= 1

( fi � gl ;i)(x)
�

whereg1; : : : ;gL are learnable�lters . CNNs are well known for having been used in ground-

breaking work in the �eld of computer vision [23, 43, 24]. Its success is due to the fact that

they capture interesting spatial and temporal dependencies, rendering their output very good

feature maps.

As mentioned in Section 2.1.2 Graph Signal Processing provides the necessary tools to

generalize convolutional layers to any type of graph domain (not only grids). The Graph

Convolutional Network is a type of GNN, and it was �rst introduced by Kipf and Welling

[39] in the context of Semi-supervised classi�cation. Since the computation of �lters involves



2.2 Graph-based Semi-Supervised Learning 17

calculating the potentially costly spectral decomposition of the graph Laplacian (as explained

in section 2.1.2), the authors exploited the fact that a graph �lter can be approximated by

gq (L ) �
k

å
i= 0

qiTi(bL )

whereTi are (orthogonal) Chebyshev polynomials recursively de�ned as follows:

T0(l ) = 1

T1(l ) = l

Tj (l ) = 2l Tj � 1(l ) � Tj � 2(l )

and wherebL = 2
l max

L � In, l max the largest eigenvalue ofL. Taking j = 2 and applying further

simplifying assumptions they propose to approximate the graph convolution of Equation(2.5)

as

Gf � q eD� 1=2 eW eD� 1=2f; (2.8)

where eW = W + I and eDii = å j
eWi j are the "reparameterized" adjacency and degree matrices.

The GCN is considered a non-spectral model given that it avoids having to calculate the

eigenvalues and eigenvectors of the Laplacian matrix.

To perform semi-supervised learning the authors used the formulation in(2.8)to construct

a two-layered model of the form:

by = Softmax
�

bWReLU( bWXQ1)Q2
�

(2.9)

whereby is the estimation of the true labelingy, and bW = eD� 1=2 eW eD� 1=2. The model of

Equation 2.9 applies two layers of convolution, which means the model hops twice through

the neighborhood of each node. The ReLU activation that acts on the output of the �rst

layer prevents the model from collapsing (this is a standard practice in Deep Learning). The

Softmax function will normalize the output of the second layer into a categorical probability

distribution.

GCNs produced a performance leap over more traditional methods based on manifold

regularization, and are as of today a building block in state-of-the art models [11, 21, 71].
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2.2.3 Graph Construction

When the graph is not readily available we need to construct one in order to use a GSSL

method. Graph construction techniques can be classi�ed into those that are task independent

or task dependent [62].

Among the task independent graph construction methods the most popular are:

kNN graph We connect each node with itsk nearest neighbors in Euclidean distance. Be-

cause this graph is not symmetric one may want to further process this graph to keep

edges that connect nodes such that one is among the �rstk nearest neighbors of the

other and vice versa.

e graphs An edge connects two nodes if their distance is smaller than a thresholde.

Gaussian kernel graph This is a fully connected graph where an edge is assigned a weight

proportional to the similarity between two nodes as:Wi j = exp(�



 xi � x j




 2=(2s 2)) ,

wheres is a parameter that controls the variance of the neighborhoods.

Note that although all these methods follow different criteria they have something in

common: edges encode a notion of "similarity" between points. This results in graphs that

carry information about the neighborhoods of nodes. Intuitively, if we know something about

a node, we can extrapolate that knowledge to neighboring nodes. This "locality" of the graph

is closely related to the assumptions described above in Section 2.2.

However, using these heuristics on the original data involves making a strong assumption.

That is, assuming that the Euclidean distance does a good job at capturing all the information

we need about the relationships between features. Since this is often not the case one may

want to turn to task dependent construction methods. In the simplest case, one can use an

unsupervised graph learning method. Methods of this kind do not learn a transformation

of the data, but rather aim at �nding a structure that �ts the original data. Alternatively,

one could learn a transformation of the data such that heuristic graphs yield better results.

One of the �rst attempts along these lines is the algorithm proposed by [3], which consists

in training a supervised classi�er on labeled points and using the soft label predictions as

the representation to build the graph. If it is possible to construct a set of restrictions that

inform about similarities and dissimilarities of data points explicitly, one can use a Metric

Learning algorithm to learn an appropriate distance that generalizes to all the dataset. Metric

Learning algorithms can be framed in this category because they have a Representation

Learning interpretation. We will introduce Metric Learning and discuss some of its most

popular algorithms in the next section.
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2.3 Metric Learning

We humans (and some animals), have the capability of judging whether two events or objects

are "similar" [65, 28]. This notion helps to make decisions based on our experience, the

rationale being that, if a phenomenon produces a similar outcome to what we have previously

observed, we may respond in a similar manner. Metric Learning [5] is a �eld of Machine

Learning that aims at emulating this behavior mathematically, with the hope of incorporating

"similarity/distance judgments" into the automation of processes.

To attain that goal we �rst need to formalize the notion of "similarity" and "distance".

Roughly speaking, provided elements in an arbitrary set, we can measure how similar they

are through ametric.

De�nition 7. LetX be an arbitrary set. A metric is a function d: X �X ! R+ such that:

(i) d(x;y) = d(x;y) for all x;y 2 X ,

(ii) d(x;y) � d(x;z)+ d(z;y),

(iii) d (x;y) = 0 if and only if x= y.

An example is the Euclidean distance de�ned overRn asd(x;y) =
p

å n
i= 1(xi � yi)2.

Note that many machine learning methods that rely on some notion of similarity, like

nearest-neighbor classi�cation, clustering, and kernel methods, use the Euclidean distance

by default despite the fact that this choice may be a poor one. For example, let us consider

problems for which speci�c features are more important that others. Then, this hierarchy of

feature "relevance" is not re�ected in the chosen distance. For a task of interest, if one can

collect information about which elements are similar and which are dissimilar, then a Metric

Learning algorithm can �t an appropriate metric in a data-driven manner.

A typical input to a Metric Learning algorithm comes in the form of a datasetX � X

associated with a set of restrictions that indicate which elements inX are more similar. For

example, restrictions onX can have the form of two sets, namely, a set of similar pairs

S = f (x(i);x( j)) : x(i) is similar tox( j)g

and dissimilar pairs

D = f (x(i);x(k)) : x(i) is dissimilar tox(k)g;

or a set of triplets

R(X) = f (x(i);x( j);x(k)) : x(i) is more similar tox( j) than tox(k)g
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It is often cheaper and more straightforward to construct this kind of restriction set than to

annotate data with labels. For example, in a database of images of celebrities where only one

image per celebrity is annotated, it is perhaps easier to select a few pictures that correspond

to the same celebrity (similar items) and learn a metric that naturally clusters pictures by

celebrity, than to individually annotate each picture. This learning paradigm is often referred

to asweakly supervised learning.

Provided with that information one would then propose a parametric model that represents

the metric or similarity function of interest, and �nd the optimal parameters subject to the

constrains imposed by the set of restrictions.

A popular choice of model is that of Mahalanobis distance, which is de�ned as

dA(x;y) =
q

(x� y)T A(x� y)

whereA is a symmetric positive semi-de�nite matrix that parameterizes the metric1.

Let us note the Representation Learning aspect there is to Metric Learning. BecauseA

is positive semi-de�nite it admits a decomposition of the formA = L
T
L. Hence, one can

rewrite equation (2.3) as

dA(x;y) =
q

(x� y)T A(x� y) (2.10)

=
q

(x� y)T LT L(x� y) (2.11)

= kLx� Lyk2 ; (2.12)

which implies that learning a Mahalanobis distance is equivalent to the task of learning a

linear representation functionLx such that similar elements are grouped according to the

Euclidean distance.

The earliest approach to optimize a Mahalanobis distance was proposed by [68]. Their

objective function is de�ned as

A� = min
A2Sd

+
å

x(i) ;x( j)2D

dA(x(i);x( j))

s.t. å
x(i) ;x( j)2S

dA(x(i);x( j)) � 1

whereSd
+ is the cone ofd � d symmetric positive semi-de�nite matrices,S is a set of similar

items, andD is a set of dissimilar items. The intuition behind this algorithm is that we

1To be rigorous, note that this actually de�nes apseudo-metricbecause the property(iii ) in De�nition 7 is
true only in the( direction.
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want to push dissimilar objects apart as much as possible restricted to keeping similar items

close together. Another example of Mahalanobis distance learning is Large Margin Nearest

Neighbors [67]. This algorithm is supervised because it assumes access to a training set of

the formf (x(i);y(i))g wherey(i) is the label ofx(i). The main idea is to construct a set of

similar pairs and a set of triplets with the following criteria:

S = f (x(i);x( j)) : y(i) = y( j) andx( j) is among thek nearest neighbors ofx(i)g (2.13)

R = f (x(i);x( j);x(k)) : (x(i);x( j)) 2 S andy(i) 6= y(k)g (2.14)

Then, the following convex program is optimized:

min
A2Sd

+ ;x � 0
(1� m) å

(x(i) ;x( j))2S

d2
A(x(i);x( j)) + må

i; j ;k
xi jk

s.t. d2
A(x(i);x(k)) � d2

A(x(i);x( j)) � 1� xi jk 8(x(i);x( j);x(k)) 2 R

wheremis a coef�cient controlling the trade-off between bringing similar elements close

together and pushing dissimilar elements far apart, and wherex acts as a margin. These are

two methods among many others that learn linear metrics [8, 70, 27, 26, 57, 14].

The alternative parameterization presented in Equation(2.10)provides a natural way to

learn non-linear metrics. To see this let us note that we can write this equation in its more

general form

df (x;y) = kf (x) � f (y)k (2.15)

wheref is an arbitrary function with domain inX . In the case of the Mahalanobis distance

we havef (x) = Lx. This form permits to learn an Euclidean distance on a potentially non-

linear transformation of the data, a method often referred to as thekernel trick. That is, using

a kernel trick we can implicitly transform the initial data into a space that captures non linear

relationships between the elements, and �t a linear metric on that transformed space. Some

examples are the methods proposed by Davis et al. [14], Hoi et al. [29].

Recent works aim at learning a non-linear metric explicitly by parameterizing the function

f with a neural network. The seminal work of Chopra et al.[12] proposed a method along

this line. A more recent example is the work done by [31].

2.4 Latent Variable Models and Variational Inference

When studying a phenomenon, the practitioner will usually observe a set of features or

variablesthat produce a certain response. However it is often the case that the proposed
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model is partial or incomplete in the sense that the observed response is also affected by a

set ofunobservedor latent variables. A real-world example from the �eld of sociology is

racial prejudice: one sometimes cannot explicitly measure such attribute, but one can infer it

from other pieces of information such as political stances or whether the person approves of

a speci�c legislation [19].

Let us denote random variables in bold. In latent variable models we assume a phe-

nomenon that is observed through a set of known variablesX = [ X1; : : : ;Xd] can be explained

in terms of a set of latent variablesZ = [ Z1; : : : ;Zm]. Mathematically, letpq be the probability

distribution ofX with parametersq. Then,

pq (X) =
Z

pq (XjZ)p(Z)¶Z (2.16)

where p(Z) is some prior overZ. We are interested in learning the parameters of the

likelihood pq (XjZ), often referred to as thegenerative modelof X, and we will assume a

speci�c prior over the latent variables. Furthermore, we want to parameterize our models

with neural networks, something that quickly renders the inference problem intractable.

Fitting the parameters of the model in (2.16) amounts to maximizing the log-likelihood,

that is,maxq logpq (X). Provided we have access to a datasetD = f X(1); : : : ;X(m)g, we

would have to compute the posterior distributionpq (ZjX). The challenge is that in many

cases the true posterior is intractable. In fact, unless we pick very simple models for the prior

and likelihood, such as Gaussians or conjugate distributions, the Equation(2.16)will be very

hard or impossible to calculate analytically.

A well known method to alleviate this issue is Expectation-Maximization introduced

by Dempster et al.[15], an iterative algorithm that �nds the maximum likelihood solution

of Equation(2.16). This algorithm alternates between an "E step" and an "M step" until

convergence. In the E step we �x the parametersq and estimate the expected value of the

latent variables. In the M step we maximize the expectation function obtained in the E step

with respect toq.

Another widely used method is Variational Inference (VI), proposed by Jordan et al.[33].

Roughly speaking, VI approximates the true posteriorpq (ZjX) with a distributionqf (Z) by

maximizing theevidence lower bound(ELBO), a quantity that bounds the log-likelihood of
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the data as follows:

logpq (X) � Eqq (Z)

"

log
pq (X;Z)
qf (Z)

#

= Eqq (Z)

"

log
pq (XjZ)p(Z)

qf (Z)

#

= Eqq (Z)
�
logpq (XjZ)

�
� Eqq (Z)

"

log
p(Z)

qf (Z)

#

= Eqq (Z)
�
logpq (XjZ)

�
� KL(qf (Z)jj p(Z))

= ELBO(q; f );

(2.17)

whereKL(qjj p) is the Kullback–Leibler divergence between distributions de�ned as:

KL(qjj p) =
Z

p(x) log
p(x)
q(x)

¶x

Variational Inference can be seen as the Bayesian generalization of Expectation-Maximization

where the parameters of the distribution,q, are random variables that are not constrained to

being a point mass, and that can then be collapsed into the vector of latent variables. The

uncertainty overq is then accounted for in the predictive distribution. This �exibility we

get from being able to choose the distribution of the parameters can alleviate the issue of

intractability we may encounter in the EM algorithm.

More recently, Kingma and Welling[37] propose the Auto-Encoding Variational Bayes

(AEVB) method, an algorithm to scale Variational Inference to large datasets and arbi-

trary complicated choices of model, like models parameterized by deep neural networks.

The authors introduce a recognition modelqf (ZjX), normally parameterized by a Neural

Network, and they propose to approximate the expectationEqf (ZjX)
�
logpq (XjZ)

�
of Equa-

tion (2.17)with Monte Carlo samples. The goal of this method is to maximize the quantity of

Equation(2.17). In other words, the goal is to optimize the following loss for theith sample:

L (q; f ;X(i)) = � ELBO(q; f ;X(i))

= Eqq (ZjX(i))

�
� logpq (X(i) jZ)

�
� KL(qf (ZjX(i))jj p(Z))

(2.18)

with respect to the model parametersq andf . Note that it is not straightforward to obtain

gradients for that expectation. In fact, the likelihood is a function of the latent variable

Z, and for a functionf , it is in general dif�cult to express the gradient of the expectation

Ñf Eqf (ZjX)[ f (Z)] as the sum of the gradients. This is because we are taking expectation
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with respect to a distribution parameterized byf as well. To overcome this issue the authors

introduce thereparameterization trick, rewriting samplesZ � qf (ZjX) as

Z = gf (e;X)

wheregf is a differentiable function ande � p(e), p(e) an appropriate distribution. This

makes it possible to rewrite the gradients of the expectation for theith sample as follows:

Ñf Eqf (ZjX)[ f (Z(i))] �
1
L

L

å
l= 1

Ñf f (gf (e(l );X(i)))

In other words, the reparameterization trick allows us the express the gradient of the ex-

pectation as (approximately) an expectation of the gradient, thus providing an optimization

perspective of the inference problem we described. Using this trick and assuming a closed

form for theKLdivergence we can approximate equation (2.18) as:

L (q; f ;X(i)) �
1
L

L

å
l= 1

� logpq (X(i) jZ(il )) + KL(qf (ZjX(i))jj p(Z))

whereZ(il ) = g(e(il );X(i)) ande(il ) � p(e). In general we takeL = 1 to approximate the

likelihood function.

Later on in Chapter 4 we will use the AEVB framework to jointly model a graph and a

semi-supervised learning model.

2.5 Unsupervised Graph Learning

The goal of graph learning is to discover the graph structure that better �ts a given dataset.

That is, given a datasetD = f x1; : : : ;xng of observations from a graph signal with domain in

some graphG= ( V;E) with adjacency matrixW we do not know, what is the graph that best

explains the data under some criterion?

In the context of GSSL where we also observe a small set of labels associated with

some of the data points, we can use a graph learning algorithm to construct a graph that

can be later on plugged into a GSSL pipeline. This is a more sophisticated approach than

using an heuristic graph based on Euclidean distance where the graph construction step is

unsupervised. We discuss some of these approaches below.

In this section we present some algorithms for unsupervised graph learning, i. e., given a

datasetD �nd an appropriate structureGunder some criterion.
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A largely used criterion to decide whether a particular graph �ts a dataset or not is that of

global smoothness discussed in Section 2.1.2: we say a graph is a good �t for the dataset

of interest if the quantity described in Equation(2.1) is small up to speci�c constraints that

prevent the graph from being trivial, such as imposing a non-zero value for the trace of the

graph Laplacian or its Frobenius norm. That is, if we stack our datasetD into a design matrix

X = [ x
T

1 ; : : : ;x
T

n ]
T
, then we want to minimizetr(XLX

T
). The formulations we present here

are based on smoothness.

Daitch et al.[13] show that �tting a graph to a datasetD under the smoothness criterion

is equivalent to solving a quadratic program for a set of edges. The authors propose to

iteratively solve the quadratic program for a small set of edges until the graph no longer

changes.

Kalofolias [34] shows that a smoothness regularization is equivalent to enforcing the

solution to be sparse, and uses this fact to write a cost function onW that combines anL1

penalization, a log barrier term that enforces sparsity (thus smoothness) and that also prevents

the solution from being trivial, and aL2 regularization term. He de�nes a cost of the form

min
W2W

kW � Zk1 � a 1
T

log(W1)+
b
2

kWk2
2 (2.19)

whereW is the set of symmetric matrices with positive entries and zero diagonal,Z is

de�ned to have elementsZi j =



 xi � x j




 2, anda andb are two hyperparameters that allow

to control the trade-off between the sparsity of the graph and the strength of the edge weights.

Intuitively, the �rst term is the smoothness loss. We can think of the other two terms as a

regularization loss that acts as a trade-off between sparsity andL2 norm: the log-barrier is

also an entropy regularizer that favors sparse solutions while the squared norm is a shrinking

term that prevents the graph from having very large weights. A largeb hyperparameter leads

to a dense graph, and vice versa.

Dong et al.[18], Lake and Tenenbaum[41] take a different route and focus on the

equivalent problem of learning a graph Laplacian. Both methods exploit the fact that a graph

Laplacian can be seen as a precision matrix that parameterizes a Gaussian generative model

of the features [77]. Imposing a prior on the graph, they derive convex programs from the

posterior distribution of the graph.

We note that the problem of learning a graph Laplacian shares some similarities with

the problem of learning the covariance matrix of a Gaussian graphical model [22]: as we

said above, a graph Laplacian indeed corresponds to the precision matrix of a Gaussian

distribution. However these should not be mistaken, as the latter is not concerned about



26 Background

learning a valid Laplacian matrix (for example, we could learn a precision matrix with

positive off-diagonal values).



Chapter 3

Joint Learning of the Graph and the

Data Representation

In this chapter we propose a model to jointly learn a data representation and a graph from

both labeled and unlabeled data such that (i) the learned representation indirectly encodes

the label information injected into the graph, and (ii) the graph provides a smooth topology

with respect to the transformed data. Plugging the resulting graph and representation into

existing graph-based semi-supervised learning algorithms like label spreading and graph

convolutional networks, we show that our approach outperforms standard graph construction

methods on both synthetic data and real datasets.
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3.1 Introduction

As discussed in Chapter 1, an important bottleneck for the development of accurate Natural

Language Processing (NLP) tools for many applications and languages is the lack of an-

notated data. We are then interested in graph-based SSL as a means to annotate data in a

data-driven manner.

Recall that in graph-based SSL methods the graph is used as a propagation operator

to transfer labels from labeled to unlabeled points. Despite differences in the way this
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propagation is achieved, graph-based SSL approaches all rely on two assumptions: (i) the

graph representing the data provides a faithful approximation of the manifold on which the

data actually live, and (ii) the underlying labels are smooth with respect to this manifold.

The challenge is that very often there is noa priori-known graph, which raises the

question of how to best construct this graph over the dataset given some data representation.

In Section 2.2.3 we described methods to build graphs based on heuristics. Even though these

choices are straightforward to compute they may poorly adapt to the intrinsic structure of the

data manifold and hence violate assumption (i). We can decide to use a more sophisticated

graph construction method, as those we presented in Section 2.5, but all these approaches

heavily depend on the choice of data representation and disregard the label information,

making them unable to adapt to the prediction task and therefore potentially violating

assumption (ii). While supervised representation learning techniques such as metric learning

(Section 2.3) could be used to adapt the representation to the task of interest, for instance by

bringing closer points with the same label, the lack of labeled data in the semi-supervised

learning scenario makes them prone to over�tting.

In this chapter we will describe an original semi-supervised algorithm for graph con-

struction that adapts to both the data and the predictive task. Speci�cally, our approach

leverages the labeled and unlabeled data to jointly learn a graph and a data representation.

On the one hand, the graph is learned to provide a smooth topology with respect to the

learned representation. On the other hand, the representation should bring closer (labeled

and unlabeled) points that are neighbors in the graph as well as similarly labeled points,

while pulling away points of different labels. A key feature of our approach is that the

learned representation indirectly encodes and injects label information into the graph be-

yond the labeled points alone. We formulate our problem as a joint optimization problem

over the representation and the graph weights, with a hyperparameter to easily control the

sparsity of the resulting graph and thereby obtain a good approximation of the underlying

manifold. We discuss some appropriate parameterizations for learning the representation,

which revolve around adapting pre-trained embeddings so as to avoid over�tting. We then

propose to solve our joint problem by alternating optimization on the representation and the

graph. We validate our approach through several graph-based SSL experiments using label

spreading [73] and graph convolutional networks (GCN) [39], both on synthetic and real text

classi�cation datasets. Incidentally, note that our approach is generic and could in principle

be used in combination with any existing graph-based SSL framework. The results show that

our approach outperforms previous methods which rely on heuristic graphs, generally by a

considerable margin. Interestingly, we also observe that our approach effectively bridges
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the accuracy gap between a simple method like label spreading and a richer neural-based

approach like GCN.

The rest of this chapter is organized as follows. We describe our approach and algorithm

in Section 3.2, we present our experimental results in Section 3.3. We �nally conclude with

future work directions in Section 3.4.

3.2 Model

Our approach learns a graph and a data representation for use in downstream graph-based SSL

algorithms. In this section, we start by introducing our formulation as a joint optimization

problem over the representation and the graph. We then discuss some relevant choices

for the parameterization of the learned representation, and �nally present our alternating

optimization scheme.

Before delving into the method let us recall that we are in a semi-supervised setting like

the one we described in Section 2.2. That is, our dataset consists of a setDsup= f (xi ;yi)gk
i= 1

of labeled items and a setDsup= f xign
i= k+ 1 of unlabeled items,xi 2 X andyi 2 Y .

We are interested in �nding a graph inW, the set of all then� n symmetric matrices

with zero diagonal, and �nding the missing labelsyk+ 1; : : : ;yn. It is important to point out at

this point that we are in atransductivesetting, meaning that we limit ourselves to �nd the

missing labels and not a function that can generalize to unseen data.

3.2.1 Problem Formulation

For the sake of generality, in this section we formulate our problem with respect to a

generic representation functionf Q : X ! IRk, parameterized byQ, which represents any

data pointx 2 X as ak-dimensional vectorf Q(x) 2 IRk. We discuss some relevant choices

of representation functions in Section 3.2.2.

We propose to learn a weighted adjacency matrixW� and a representation functionf Q�

by minimizing a joint objective functionf that involves both the labeled and unlabeled data

points:

W� ;Q� = argmin
W2W ;Q

f (W;Q):

Once the above optimization problem has been solved, the learned graphW� (which is based

on the learned representation functionf Q� ) and possibly the representationf Q� can then be

given as input to any graph-based SSL algorithm to obtain predictions for the unlabeled data.
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Our objective functionf (W;Q) decomposes into three terms:

f (W;Q) = f1(Q)+ a [ f2(W)+ f3(W;Q)] (3.1)

where f1(Q) and f2(W) are respectively the representation and graph speci�c terms, while

f3(W;Q) is the joint term. Hyperparametera � 0 controls the trade-off between the (super-

vised) representation learning termf1 and the unsupervised part (f2 and f3).

We now de�ne these three terms. For notational convenience, let us denote byZ 2 IRn� n

the matrix whose entries are the normalized squared Euclidean distances between data points

in the transformed space, i.e.

(ZQ) i j =
jj f Q(xi) � f Q(x j )jj2

å i< j jj f Q(xi) � f Q(x j )jj2 :

The normalization conveniently removes the dependency on the scale of the data andQ. The

representation termf1(Q) is de�ned on the labeled data points only and takes the following

form:

f1(Q) = å
xi ;x j ;xk2L

yi= y j ;yi6= yk

�
(ZQ) i j � (ZQ) ik + 1

�
+ ; (3.2)

where[�]+ = max(0; �). As discussed in Section 2.3, this is a large-margin triplet loss similar

to those used in metric learning [5]: it attempts to learn a representation functionf Q that

brings each pointxi closer to pointsx j with the same label than to differently labeled points

xk, with a safety margin of1. In practice, we can subsample instead of summing over all

possible triplets. We use the supervised information of the dataset to construct triplets in

a similar manner as in equation(2.13), except that we also force dissimilar elements to be

close so as to make it "hard" for the model to identify them as such. That is:

S= f (xi ;x j ) : yi = y j andx j is among thek nearest neighbors ofxig

D = f (xi ;x j ) : yi 6= y j andx j is among thek nearest neighbors ofxig

R= f (xi ;x j ;xk) : (xi ;x j ) 2 Sand(xi ;xk) 2 Dg

The graph termf2(W) is inspired from the (unsupervised) graph learning approach

proposed by Kalofolias [34] discussed in Section 2.5 (see Equation (2.19)):

f2(W) = b jjWjj2
F � 1> log(1> W); (3.3)
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The log-barrier term on the degrees prevents any node from being isolated in the graph, while

the Frobenius norm is a shrinkage term over the graph weights. Combined with our joint term

(3.5)de�ned below, hyperparameterb � 0 directly controls the sparsity of the learned graph:

the smallerb , the more concentrated the weights of each point on its nearest neighbors in

the learned representation (hence the sparser the graph). On the other hand, asb ! + ¥ ,

the graph becomes complete with uniform weights. Sparsity allows to enforce the locality

property (only close points are connected in the graph) which is necessary to obtain a good

approximation of the data manifold. It also reduces the computational cost in downstream

graph-based SSL algorithms, whose complexity typically depends on the number of edges in

the graph.

Other options are possible forf2(W) depending on the prior we want to have on the

structure of the graph. For instance, one may use

f2(W) = ( 1=g) å i; j Wi j [log(Wi j ) � 1]; (3.4)

whereg > 0 is a hyperparameter. This will force the graph to be fully connected.

Finally, we introduce the joint term bringing together the graph and the representation:

f3(W;Q) = tr(WZQ) = å i; j Wi j (ZQ) i j : (3.5)

This can be seen as a weightedL1 norm term onW (which is why it induces sparsity), and

equivalently written as a quadratic form of the Laplacian matrix of the graph encoded by the

symmetric matrixW. It is also used in approaches based on graph Laplacian regularization,

but in our case both the graph and the representation are learned in joint manner. This term

makes the graph and the representation as smooth as possible with respect to each other on

both labeled and unlabeled points.

Overall, our joint objective function(3.1) is designed to produce a sparse topology that

tends to be smooth with respect to the data manifold and the underlying labeling function

through an appropriate representation. We now discuss the choice of representation function

f Q.

3.2.2 Choices of Representation Functions

Many options are possible for the representation functionf Q depending on the nature of

the data and task at hand. However, it is important to keep in mind that the amount of

labeled information is scarce, hence learning complex text representations from scratch

is likely to lead to severe over�tting. We argue that it is preferable to adapt pre-trained
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representations, which generally requires to optimize much fewer parameters. We give some

concrete examples below.

Linear transformation. Pre-trained word embeddings [48, 52] are commonly used to

represent texts in a vectorial space, e.g. by averaging the embeddings of the words occurring

in a document. In order to adapt the representation to the task, we can learn a simple

linear mappingf Q(x) = Qx which transforms the initiald-dimensional representation into a

k-dimensional one, withQ 2 IRk� d andk � d. Such a strategy has been previously explored

in the supervised setting to “re-embed” words in a task-speci�c manner [16]. This is the

representation function that we use in our experiments (see Section 3.3).

Weighted combination. Recent work in learning deep contextualized word representations

such as ELMo [54] and BERT [17] allows to learn a task-speci�c combination of the token

representations obtained at theK layers of the model, which typically capture different

aspects of tokens (from syntax to semantics). In this case, we haveK initial d-dimensional

representationsx 2 IRK� d for each textx and we learn a weighted combinationf Q(x) = Qx 2

IRd whereQ 2 IRK is simply aK-dimensional parameter vector.

3.2.3 Optimization

We propose to optimize the cost functionf (W;Q) by alternating minimization overW and

Q, which is guaranteed to converge to a local optimum. This is a natural approach: one step

learns a smooth graph given the current representationQ, while the other learns a smooth

representation with respect to the current graph (this can be seen as a regularizer forQ based

on unlabeled data) and also tries to keep labeled points of the same class closer than points

of different class.

As the joint problem is nonconvex, initialization plays an important role. We propose to

initialize the graph weights to zero and to start by optimizingQ so that the initial representa-

tion focuses only on the (scarce) labeled data. The graph learned on this representation will

thus strongly connect together the labeled points as well as unlabeled points that are very

close to the labeled points and are thus likely to share the same label. At the next iteration,

these unlabeled points will then contribute in learning a better representation and in turn a

graph which strongly connects new unlabeled points. This process can be seen as a principled

version of self-training heuristics popular in traditional (non-graph-based) semi-supervised

learning [64].

The subproblem of optimizingW givenQ is convex regardless of whether we de�ne

f2(W) as(3.3)or (3.4). Using(3.4) is computationally convenient as the subproblem has
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a closed-form solution: the weights are exponentially decreasing with the distance in the

current representationf Q, as given by the radial kernelWi j = exp(� g(ZQ) i j ) [34]. Note that

unlike the classic radial kernel baseline construction method mentioned in Section 2.2.3, our

graph is computed based on the learned representationf Q by minimizing the joint objective

function with respect toW. One drawback of using(3.4) is that the resulting graphs are

always fully connected. Using(3.3) instead, we can obtain sparse graphs but the solution

must be computed with an iterative algorithm. We found that the primal-dual algorithm

introduced by [34] converges slowly in practice — we instead optimizeW by simple gradient

descent over the “effective”n(n� 1)=2 weights, adding a small positive constant inside the

log term in (3.3) to make the objective function smooth.

As f Q is typically differentiable inQ (as in the examples outlined in Section 3.2.2), we

also solve the subproblem inQ by (stochastic) gradient descent. Note that this subproblem is

generally nonconvex due to the distance difference inf1(Q).

Remark 1. UpdatingW requires to optimize overO(n2) variables, which was manageable

for the datasets used in our experiments. To scale to larger datasets, one can restrict the

optimization to the weights corresponding to pairs of points that are close enough in the

learned representation space1 (other weights are kept to0). This has a negligible impact on

the solution in sparse regimes (smallb ).

3.3 Experiments and Results

In this section, we study the practical behavior of our method by comparing the accuracy

of downstream graph-based SSL algorithms when the graph (along with the underlying

representation) is learned with our approach (ours) rather than constructed with the following

baseline strategies:

• radial : Complete graph with weightsWi j = exp(� gkxi � x jk2).

• knn: Wi j = 1 for xi in thek-neighborhood ofx j (or vice versa), andWi j = 0 otherwise.

• kalo: Unsupervised graph learning with the method of [34]. This corresponds to our

approach when using the graph term(3.3) and keeping the original representation

�xed.

In all cases the graph is constructed over the union of labeled (train set) and unlabeled

data (validation and test sets). For experiments with our method, the learned representation

is a linear transformation of the initial features as explained in Section 3.2.2.

1These can be identi�ed in near-linear time using approximate nearest-neighbor techniques [49].
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Fig. 3.1 Original 3-dimensional synthetic data. Semi-transparent points are unlabeled.

We perform experiments with two graph-based SSL approaches: Label Spreading

(LS) [73], discussed in Section 2.2.1, and the Graph Convolutional Network (GCN) method

of [39] discussed in Section 2.2.2. We used the scikit-learn [51] implementation of LS. For

GCN, we used the TensorFlow implementation provided by the authors2 and follow the

recommended architecture de�ned in equation(2.8). We set the number of hidden unitsh to

16 andl to 1 as done in [39].

To illustrate the behavior of our approach, we �rst present some experiments on synthetic

data. We then show some results on real text classi�cation datasets.

3.3.1 Synthetic Data

We generated a3-dimensional dataset consisting of100 points evenly distributed in two

classes (Figure 1). We have two clusters per class placed far from each other while keeping

clusters from different classes closer. We randomly picked60%of the points and removed

their labels.

We compare the classi�cation error of GCN and Label Spreading when the input graph

is given by our approach instead of using baseline graph construction methods. For GCN,

we also give as input the representation learned with our approach. For our approach, we

use the graph term(3.3) and for each labeled pointxi, we random sample2 pointsx j of

the same class and3 pointsxk of different class and construct all combinations(xi ;x j ;xk),

leading to6 triplets for eachxi in the triplet loss(3.2). The results given in Table 3.1

show that our approach clearly and consistently outperforms all methods in both GCN

and Label Spreading.3 The improvements are especially large for Label Spreading, as LS

makes predictions based on the graph only. In contrast, GCN learns its own (nonlinear)

2https://github.com/tkipf/gcn
3For this illustrating experiment, we picked the values of hyperparameters giving the best results for each

method.
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Label Spreading GCN

radial 50.7 93.3
knn 81.3 93.3
kalo 77.3 88.0
ours 96.0 96.0

Table 3.1 Classi�cation accuracy on the synthetic dataset.

(a) kalo on original data.
(b) ours after 1st itera-
tion.

(c) ours after 2nd itera-
tion. (d) ours at last iteration.

Fig. 3.2 Force-directed drawing (spring layout) of graphs learned withkalo, and with our
method at several iterations of our alternating optimization algorithm. Semi-transparent
points are unlabeled.

transformation of the representation given as input in an end-to-end manner. Still, our method

is able to provide some gains for GCN as well, by providing it with a better graph. Note

for instance the signi�cant improvement compared tokalo, which learns the graph on the

original representation.

To visualize this difference, Figure 3.2a shows the graph learned bykalo. Although the

graph is learned to minimize the smoothness criterion with respect to the data, it fails to

accurately capture the label distribution due to the limitations of the initial representation.

Our alternating optimization approach overcomes this issue by learning a task-speci�c graph

through an appropriate representation. In Figure 3.2b-3.2c-3.2d, we can see how label

information is gradually injected at each step: after the �rst iteration, the graph is already

signi�cantly more smooth with respect to the underlying labeling and the graph is also

sparser, but some edges between differently labeled points as well as an overly connected

point remain. The following iterations further improve the graph quality. This explains the

better performance obtained in downstream semi-supervised algorithms.
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3.3.2 Real Data

We now evaluate our method on three text classi�cation tasks derived from the 20NewsGroups

dataset,4 a collection of documents categorized into20topics, each one of which is partitioned

into sub-topics. We chose the topics ofcomputerswith classes IBM and Mac (n = 1945

documents),religion with classes atheism and Christian (n = 1796), andsportswith classes

baseball and hockey (n = 1993).

For all datasets, we represent data points using the average token embedding based on

word2vec [48]. These embeddings are of dimensiond = 300and were trained on a 100B

word corpus of Google news data (vocabulary size is 3M).5

We experiment with different proportions of unlabeled points in the training set (90%,

75%, 60%and40%), while the rest of the data is evenly split into a validation and a test

set. As commonly done in semi-supervised learning, we train on the union of the (labeled)

training set and the (unlabeled) validation and test sets, select the values of hyperparameters

based on the accuracy on the validation set, and report the corresponding accuracy on the test

set.

To evaluate our approach we optimize the objective(3.1)as described in Section 3.2.3

with the graph term de�ned as in(3.3). To compute the representation term of our objective

de�ned in (3.2), we construct triplets as follows: for each pair(xi ;yi) in the labeled set we

obtain the closest points with labels other thanyi ("imposters"), and the closest points with

label yi ("targets"). We picked8 imposters and3 targets. We tune the hyperparameters

a from f 0:001;0:01;1g, b from f 0:00001;0:001;0:1;1g, the dimensionk of the learned

representation fromf 16;32;64g, and perform early stopping with respect to the number

of alternating steps between learning the graph and learning the representation (up to10

alternating steps). We also tuned the hyperparameters of each baseline method (g for radial ,

k for knn andb for kalo) and the trade-off hyperparameter of Label Spreading. Finally,

we computed the McNemar test of signi�cance [47] to compare the performance of our

method against the best baseline. Results marked with a dagger symbol† yield a statistically

signi�cant test for a signi�cance level of 0:05.

Label Spreading. Table 3.2a reports test classi�cation accuracies obtained on the test set

for each con�guration of dataset and proportion of unlabeled data. Our approach clearly

outperforms all baselines, most of the time by a large margin. Also, McNemar test indicates

that we tend to be signi�cantly better than the best baseline in the more challenging settings

where labeled data is the most scarce. The results also show that learning the representation

4http://qwone.com/~jason/20Newsgroups/
5https://code.google.com/archive/p/word2vec/
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dataset % radial knn kalo ours

comp 90 62:76 61:89 63:63 67.10†

comp 75 67:35 67:35 69:87 74.67
comp 60 70:92 67:76 72:84 75.58
comp 40 76:58 70:99 75:86 77.48

rel 90 80:47 79:53 80:59 83.88†

rel 75 84:74 85:05 84:66 85.18
rel 60 85:74 83:36 87:22 88.26
rel 40 84:60 85:77 86.74† 85:96

sports 90 84:11 81:78 86:55 95.66†

sports 75 89:81 90:87 89:93 96.02†

sports 60 92:77 91:43 92:64 97.19
sports 40 95:43 93:32 95:08 97.36

(a) Label spreading

dataset % radial knn kalo ours

comp 90 69:60 65:91 70.36† 67:97
comp 75 74:55 67:95 73:71 75.15
comp 60 77.78 68:86 74:21 76:82
comp 40 81.08 67:21 80:72 76:76

rel 90 83:06 82:35 81:53 83.41
rel 75 83:49 83:62 83:88 85.57†

rel 60 83:36 83:21 86.92 86:03
rel 40 88.30 82:65 87:33 86:16

sports 90 94:70 92:48 93:33 95.13†

sports 75 96.84 94:85 95:78 96:25
sports 60 98.80† 95:85 97:19 96:92
sports 40 98.77 97:01 97:72 97:89

(b) GCN

Table 3.2 Classi�cation accuracies of Label Spreading and GCN for different graph construc-
tion methods and proportions of unlabeled data. McNemar test to compareours vs. the best
baseline is statistically signi�cant for those results marked with a dagger symbol †.

along with the graph makes a clear difference compared to learning the graph only (as seen

by the superior performance ofours overkalo).

As LS only uses the graph to make predictions, these results provide strong evidence of

the superior quality of the graphs learned with our method.

Graph Convolutional Networks. We now turn to the more complex GCN prediction

model. We re-use the same setup as for LS and feed GCN with both the learned representation

and the learned graph.

Table 3.2b summarizes the results. The gains obtained with our approach are smaller than

those obtained in LS, which is to be expected since GCN has the ability to learn nonlinear

transformations of the data. Nevertheless, we do observe some performance gains, as our

approach generally improves upon or closely matches the performance of the best baseline.

An interesting �nding is that our method tends to close the gap of performance between LS

and the richer neural-based GCN model. This suggests that simple propagation approaches

may be suf�cient in practice for many datasets, if provided with the right graph.

Visualization. We provide visualizations of the representation and the graph learned with

our approach on therel dataset. Figure 3.3 shows 3D PCA visualizations of the original

representation and the representation learned with our approach. We see that the two



38 Joint Learning of the Graph and the Data Representation

(a) Original representation (b) Learned representation

Fig. 3.3 3D PCA visualization of the original representation (left) and the representation
learned with our approach (right) on therel dataset (%75 unlabeled). Transparent dots
represent unlabeled documents.

Fig. 3.4 Force-directed drawing (spring layout) of a random50-node subgraph of the graph
learned with our approach on therel dataset (%75 labeled).

classes are quite mixed up in the original representation while the learned representation is

much smoother with respect to the underlying labeling (even in this crude low-dimensional

summary). Figure 3.4 gives a snapshot of the graph learned with our approach by showing a

subgraph of50 randomly sampled nodes (subsampling helps to avoid clutter). The graph

is very smooth with respect to the underlying labeling, and suggests that the learned high-

dimensional representation has a nice manifold structure, with some regions of higher

densities.

3.4 Conclusion

In this chapter we presented a novel method that brings together graph learning, representation

learning and SSL by jointly inferring the graph and the data representation from semi-
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supervised data. The output of our approach can then be plugged into any graph-based SSL

algorithm instead of using common graph constructions. Our experimental results suggest

that the gains are especially signi�cant for graph-based SSL algorithms that are unable to

adapt the data representation (like label spreading and its variants), although we observe

some gains also for GCN.

It is important to stress the fact that the method here presented is not end-to-end in the

sense that we are not �tting a classi�cation model. A path to improving results for richer

models such as GCNs could be end-to-end systems that can backpropagate the classi�cation

error through the parameters of the classi�cation model (like a GCN)andthe graph. This is

precisely the topic of the next chapter. In what follows we present a end-to-end algorithm

where we use a latent variable models framework to account for topology uncertainty.





Chapter 4

Graph Inference and Semi-Supervised

Learning with Auto-Encoding

Variational Bayes

In this chapter we address the same problem as in Chapter 3, except that we take it a step

further: we propose a method to learn a graph structure and the parameters of a semi-

supervised modelsimultaneously. We use recent advances in Variational Inference that allow

us to model the graph as a latent variable, and to account for the uncertainty in the graph

when performing GSSL.
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4.1 Introduction

In the previous chapter we described an algorithm to jointly learn a graph and a data

representation in a way that the representation injects label information into the graph. As a

result we obtain a task-speci�c graph and a data representation that can be plugged in a GSSL

model. This method can be seen as an intermediate step in a pipeline where we transform the

data and learn graph that are better suited for a pre-de�ned GSSL algorithm.
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Fig. 4.1 An overview of our probabilistic encoder-decoder framework to jointly learn the
graph and the model parameters in graph-based semi-supervised learning.

In this chapter we take this a step forward: we learn the graph and the parameters of a

GSSL model simultaneously. We propose a generic probabilistic framework for performing

this joint estimation in an end-to-end fashion. Based on Auto-Encoding Variational Bayes,

our framework relies on a simple encoder-decoder architecture, as shown in Figure 4.1. First,

the encoder takes as input a set of points, along with label information for a subset of them,

and outputs a distribution over graphs from which we can sample. Crucially, graph learning

is here conditioned on both the input representations and some observed labels. Second,

the decoder predicts the unobserved labels from the data points and a graph sampled from

the generative model learned in the encoder. There are many possible ways that we could

instantiate this framework with speci�c encoders and decoders. In this chapter we propose

a �exible architecture in which the encoder is based on a message passing graph neural

network (GNN) [25] that is used to learn the parameters of the graph which de�ne Bernoulli

distributions associated with the graph edges. That is, edges are modeled as latent variables,

and we learn them by minimizing a reconstruction error over the predicted labels. The

decoder, on the other hand, is modeled as a categorical distribution parameterized by a Graph

Convolutional Network (GCN) [39]. Crucially, we show that the resulting encoder-decoder

model is trainable in an end-to-end fashion: in particular, we are able to back-propagate the

classi�cation errors through the parameters of the latent variable graph model. Furthermore,

once the parameters of our model have been trained, we can naturally predict the labels of

new points unseen at training time.

The probabilistic nature of our framework comes with clear advantages, including the

ability to incorporate prior knowledge about the graph or impose speci�c structures (such

as sparsity) upon the resulting topology. We call this method Probabilistic Graph-based
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Semi-supervised Learning (PGSSL). This is an important upside over the recent approaches

of [9] and [35], which altogether lack a probabilistic interpretation.

Through extensive experiments, we show that our approach delivers signi�cant perfor-

mance gains over strong baselines, and compares favorably to competitors that require more

training data [21].

4.2 Model

We consider a classic semi-supervised learning (SSL) scenario where the learner has access

to a dataset where only a small subset of elements are labeled. Formally speaking, we

assume the training set has the formD = f (xi ;yi)gl
i= 1 [ f xign

i= l+ 1, wherex1; : : : ;xn 2 Rd are

feature vectors andy1; : : : ;yl are (discrete or continuous) labels associated withx1; : : : ;xl ,

and typicallyl � n. We denote byX 2 Rn� d the design matrix formed by the feature vectors,

yL = [ y1; : : : ;yl ] the vector of observed labels andyU = [ yl+ 1; : : : ;yn] the vector of missing

labels.

Graph-based SSL algorithms rely on a graph whose nodes are the data points and (possibly

weighted) edges represent the underlying structure of the data. The graph can be described

by a weight matrixW 2 Rn� n. In the case of an unweighted graph,W 2 f 0;1gn� n simply

corresponds to the adjacency matrix. Graph-based SSL methods such as Graph Convolutional

Networks [39] typically operate in the transductive setting: they seek to infer the missing

labelsyU through a predictive modely = f (x;X;W), assuming that the graphW is observed.

In this work, we address the problem of performing inference on the missing labels when

the graphW is not known. We consider a probabilistic framework as described in Section 2.4

in which the unknown graph is represented by an unobserved latent variableW (we use bold

to denote random variables throughout the paper). In the following, we will denote byX and

y the random variables associated with the datasetX and labelsy. We propose to modely as

generated by a random process that depends onX andW, which factorizes as

p(y;X;W) = pq (yjX;W)p(WjX)p(X); (4.1)

where the conditional distribution ofyjX;W is parameterized byq. To perform inference on

the missing labelsyU , one would have to calculate the integral

p(yjD ) =
Z

pq (yjX;W)pq (WjX;yL)¶W;
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which involves the computation of the potentially intractable posterior distribution

pq (WjX;yL):

To alleviate this issue we formalize our problem using the Auto-encoding Variational

Bayes (AEVB) framework [37], and introduce the recognition modelqf (WjX;y) parame-

terized byf to approximate the true posterior distributionpq (WjX;y). In order to learn the

parameters[q; f ] of the model, we need to maximize the Evidence Lower Bound (ELBO).

The ELBO is a quantity that lower bounds the marginal likelihoodp(yLjX) as:

logp(yLjX) � Eqf (WjX;yL)

"

log
pq (yLjX;W)
qf (WjX;yL)

#

= ELBO(q; f ;X;yL):

(4.2)

As standard in the AEVB framework, we can decompose(4.2) into a reconstruction error

and a KL divergence between the recognition modelq and a prior distributionp(W) over the

latent graph:

ELBO(q; f ;X;yL) = Eqf (WjX;yL)[logpq (yLjX;W)]

� KL(qf (WjX;yL)jj p(W)) :

The prior acts as a regularizer to avoid degenerate solutions (e.g., a graph with no edge), but

can also be used to incorporate useful background knowledge about the graph. We will get

back to the choice of prior in Section 4.2.4.

In the nomenclature of Auto-Encoding Variational Bayes, the approximate posteriorqf is

called theencoderand the likelihood modelpq thedecoder. We can describe the generative

process(4.1) in terms of the encoder and decoder as follows: we feed the encoder with the

training dataD = ( X;yL) to computeqf (WjX;yL), we sample a graphW � qf (WjX;yL)

from the re-parameterized approximation of the recognition modelqf , and then we run

the decoderpq (yjX;W) to obtainby, the estimation of the true labelingy. We illustrate this

pipeline in Figure 4.1. An interesting consequence of this process is that it is not restricted to

the transductive setting, unlike most graph-based SSL approaches. Indeed, once parametersf

andq have been learned, we can naturally predict the labels of new points unseen at training

time.

Now that we have introduced our general variational auto-encoder formulation, we can

instantiate the different components (encoder/decoder) in various ways depending on the
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requirements and background knowledge of the task, the amount of labeled data, etc. The

next section presents a �exible architecture that is trainable in an end-to-end fashion.

4.2.1 Architecture

We present an architecture in which we can infer the missing labels and the graph jointly

by end-to-end training, i.e., we can backpropagate the label prediction error through the

parameters of the latent variable model (encoder). In a nutshell, we instantiate the encoder

qf as Bernoulli distributions over edges parameterized by a Graph Neural Network (GNN),

and the decoderpq as a categorical distribution parameterized by a Graph Convolutional

Network (GCN).

In the following, we describe the encoder and decoder components in more details and

discuss possible choices for the prior distribution over the graph. We then present our

end-to-end training algorithm.

4.2.2 Encoder

We propose to modelW = f W i; jg as a collection of binary random variables drawn from

Bernoulli distributions. In other words,W is an adjacency matrix whose entry(i; j) is drawn

asWi; j � Ber(pi; j ), wherepi; j 2 [0;1] represents the probability that an edge connects points

xi andx j . We denote byp 2 [0;1]n� n the matrix of allpi; j 's. While each edge is drawn

independently, we modelp jointly as a function of the datasetX parameterized byf :

p = ff (X); or equivalently,Wi; j � Ber( ff (X) i; j ): (4.3)

Note thatW does not depend ony in this particular setting. We are thus approximating the

true posteriorp(WjX;yL) by an encoderqf (WjX) = Õi; j qf (W i; j jX).

To be able to model complex relationships between points of the dataset, we de�ne

ff (X) to be an instance of a message passing Graph Neural Network (GNN) [25]. Roughly

speaking, the role of the GNN is to construct edge embeddings and to process them into

Bernoulli parameters. The GNN operates over a neighborhood graph which is de�ned based

on distance in the original feature space: for each data pointxi, a set of “neighbors”N (i)

that the GNN will take into account when aggregating edge embeddings.1

Formally, the transformationff is de�ned recursively by a series of node and edge

embeddings. Denoting byh(1)
i = f (1)

node(xi) the initial node embedding of each pointxi, the

1N (i) should not be mistaken with the neighborhood ofxi in the graphW involved in the prediction ofyi in
the decoder step.
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recursion is then given by

h(k)
i; j = f (k)

edge

�
w(h(k)

i ;h(k)
j )

�
8i 2 [n]; j 2 N (i) (4.4)

h(k+ 1)
i = f (k+ 1)

node

�
å

j2N (i)

h(k)
i; j

�
8i 2 [n]: (4.5)

In the equations above,(4.4) produces an edge embedding for all pairs(i; j) such that

x j 2 N (i) from the combination of the current node embeddings ofxi andx j (w denotes a

�xed combination function, such as concatenation or difference), and(4.5)computes a new

node embedding from the aggregation of neighboring edge embeddings.

Finally, after a �xed number of hopsK, the edge probabilities are de�ned as a softmax

over the �nal edge embeddings:

pi; j = ff (X) i; j = Softmax(h(K)
i; j ): (4.6)

It is worth noting that the number of hopsK de�nes the extent of the local structure that

in�uences the presence or absence of edges. Choosing a largeK leads to a very expressive

model which may have large sample complexity and generalize poorly. We note that in a

different context (modeling physical systems), Kipf et al.[38] use a similar model withK = 2.

In our case, supervision comes from the prediction error on the labeled subset of the training

data. Keeping in mind that labeled data is often very scarce in semi-supervised learning,

in our experiments we keep the encoder simple so as to limit over�tting. In particular,

we setK = 1 (meaning that we only hop once, i.e. Eq. 4.5 is never executed) and set

N (i) = [ n] for all i 2 [n]. This corresponds to assuming that the probability of observing an

edge(i; j) depends only on the features(xi ;x j ) of its two endpoints, which is a common in

statistical graph learning [see for instance50]. We further set the initial node embedding to

the identity, i.e.,f (1)
node(x) = x, let f (1)

edgeto be a multi-layer feed-forward neural network and

de�ne w(h(1)
i ;h(1)

j ) = h(1)
i � h(1)

j as commonly done in the GNN literature.

4.2.3 Decoder

The purpose of the decoderpq (yjX;W) is to predict the labels[yl+ 1; : : : ;yl+ u] given a dataset

X and a graphW. We choose to instantiate the decoder as a Graph Convolutional Network

(GCN) with one hidden layer [39]. Focusing here on a classi�cation task withc discrete

labels, this corresponds to modeling the categorical distribution ofyjX;W as:

pq (yjX;W) = Softmax( eW ReLU( eW Xq1) q2); (4.7)
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whereq = [ q1;q2] are the parameters to be learned,q1 2 Rd� k, q2 2 Rk� c, c is the number of

classes,eW = eD� 1=2(W + I) eD� 1=2 is the normalized adjacency matrix, andeDii = 1+ å j Wi; j .

4.2.4 Choice of Prior

Given the choice of encoder in Section 4.2.2, the prior distribution decomposes asp(W) =

Õi; j p(W i; j ) where eachW i; j follows a Bernoulli distribution with parameterr i; j 2 [0;1]. We

denote byr = f r i; jg the collection of all prior parameters. Beyond its role as a regularizer,

the prior can be used to inject useful knowledge or structure into the model. We give some

concrete examples below.

Graph construction heuristics. When no graph is availablea priori, the classic approach

in graph-based SSL is to connect data points using a graph construction method as those

described in Section 2.2.3. Based on this idea, we can assign a higher prior probability to

edges(i; j) for whichkxi � x jk is small. For instance, building upon thek-nearest neighbor

graph heuristics, we can setr i; j = r 1 if x j belongs to thek-nearest neighbors ofxi and

r i; j = r 2 otherwise for somer 1 � r 2.

Incomplete/noisy graph. In some applications, a graph is available but may incomplete or

noisy (e.g., due to costly or error-prone data collection). We can use the prior to re�ect our

greater con�dence in the presence of some of the edges, for instance by settingr i; j = 1 for

known edges in the case of an incomplete graph. Crucially, by biasing the encoder towards

learning embeddings that give large posterior probability to these known edges, our model

can naturally discover some missing edges.

Controlling sparsity. The prior can also be used to control the graph sparsity. Indeed,

smaller values forr i; j will encourage smaller values forpi; j , and in turn sparser graphs.
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4.2.5 End-to-End Training Algorithm

Given the encoder and decoder and a choice of prior over the edgesr = p(W), our loss

function can be written as

L (q; f ) = � ELBO(q; f ;X;yL)

=
l

å
i= 1

W� qf (WjX)

� logpq (yi jX;W)

+ å
(i; j):x j2N (xi)

KL(qf (W i; j jX)jjBer(r i; j )) ;

(4.8)

where, with a slight abuse of notation,logpq (yi jX;W) denotes the likelihood of labelyi

under the model. Observe that the �rst term can be seen as the reconstruction error we obtain

from producing an estimation of the known labels through the encoder-decoder pipeline we

described. The second term enforces the encoder to remain as close to the prior as possible.

Note that the KL divergence between Bernoulli distribution has a simple closed-form.

We now explain how to train our model in an end-to-end fashion. At each epoch, we start

by running the encoder to obtain a distributionqf (W i; j jX) over all edges(xi ;x j ). The dif�-

culty then is thatqf is a discrete distribution over edges, so we cannot directly backpropagate

the error through its samples. To address this issue, we use the concrete distribution [46]

to get a continuous approximation ofqf and apply the reparameterization trick to compute

the gradients. More speci�cally, we �rst draw a vectorx from a Gumbel(0;1) distribution

and then computeWi; j = Softmax((h(K)
i; j + x)=t ), wheret is a parameter controlling the

smoothness of the resulting distribution (the biggert , the more it resembles a uniform

distribution). Finally, we feed the obtained graphW to the decoder to get a distribution over

labelspq (yjX;W), and backpropagate the loss(4.8) through the decoder and encoder to

update the parametersq andf .

We note that considering all possible edges(xi ;x j ) in each epoch entails a potentially

large complexity at training time. A possible way to alleviate this computational cost is by

sampling a subset of edges that the GNN will take into account at each epoch. Following

a similar approach to [45], we sample a set of “positive edges”, that is, edges that have a

high prior probability according to the prior distribution, and a set of “negative edges” from

a Bernoulli distribution with a small parameter.
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Table 4.1 Statistics of the datasets.

DATA SET # NODES DIM jyj TRAIN /VAL /TEST

20NEWS3 2756 229 3 20=40=2696
20NEWS4 3952 278 4 50=100=3802
DIGITS 1797 64 10 50=100=1647
CORA 2708 1433 7 140=500=1000
CITESEER 3327 3703 6 120=500=1000

4.3 Experiments and Results

We carried out some experiments to compare our approach against both supervised and

semi-supervised baselines on a variety of benchmark datasets and settings.

4.3.1 Datasets

We evaluate the methods on datasets that have been commonly used to benchmark semi-

supervised learning in recent work [39, 21, 11]. The main statistics and proportions of

labeled/unlabeled data for the datasets are summarized in Table 4.1.

Digits and 20NewsGroups are standard English text classi�cation datasets available in

scikit-learn [51] which do not come with any graph information. 20News3 and 20News4

are two subsets of 20NewsGroups corresponding respectively to three topics (i.e., "atheism",

"hardware" and "forsale") and four topics (i.e., "cryptography", "medicine", "electronics"

and "space"). Note that this is similar to how we constructed the datasets in Chapter 3, except

that now we are not focused only on binary classi�cation. The documents are represented by

t f -id f features (excluding stop words and bottom 5% of least frequent words).

Cora and Citeseer [59] are citation network datasets consisting of a set of scienti�c articles

represented as one hot word vector indicating the absence/presence of the corresponding

word from a list of unique terms, together with an adjacency matrix where an edge connects

two documents if one cites the other.

4.3.2 Competing Approaches and Setup

We compare our method (PGSSL) against supervised and semi-supervised competitors.

Supervised baselines include logistic regression (LogReg), linear support vector machines

(SVM) and feed-forward neural networks (FFNN). Note that the FFNNs boil down to a

GCN model that takes no adjacency matrix as input. Graph-based semi-supervised baselines

consist of GCNs fed with a graph computed with classic heuristics. We experiment with a
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symmetrick-nn graph (GCN+KNN) where two nodes are connected when one is among the

k closest neighbors of the other, and a Gaussian kernel graph (GCN+RBF). In both cases

we �x the number of layers of the GCN component to2, the dropout to0:5, and we tune

the hidden dimension fromf 8;16;64g. Finally, we also compare our approach to the more

competitive model proposed by Franceschi et al.[21] (kNN-LDS), see Section 4.4 for a

detailed description.2

In general, we follow the same experimental setting as proposed by Kipf and Welling

[39]. ForkNN-LDS we use the experimental setting as in the paper [21], which requires an

extra set of training data. That is, we split the citation network into a training, validation and

test set as by Kipf and Welling[39], and further split the validation set into two equal parts, a

"validation set" and an "early stop" set. In the context ofkNN-LDS, the "validation set" is

used to supervise the graph loss. This is the only method that requires an extra set of labeled

data.

The main hyperparameters of all approaches are �ne-tuned on the validation set. In the

case of supervised baselines, we tune the regularization parameterC from f 0:1;1;10;100g,

and the parameterg required for SVM fromf 0:01;0:1;1;10g. For the semi-supervised

baselines requiring thek-nn graph, we tunek from f 2;3; : : : ;20g, and for those that use the

Gaussian Kernel graph we tuneg from f 0:001;1;10g. The hyper-parameters ofkNN-LDS

were chosen with the same strategy as in the original paper Franceschi et al.[21], which is

based on a 2-way split of the validation set.

For our method, we use the simple architecture described in Section 4.2.1. In particular,

the encoder is based on a GNN withK = 1 hops. For all datasets, we de�ne the node

embedding to bef (1)
node(x) = x. The edge embeddingf (1)

edge is de�ned as a fully connected

feed-forward neural network with number of layers and hidden dimensions to be tuned as

hyperparameters (see below). Finally, the decoder consists of a two-layer GCN with hidden

dimension tuned fromf 16;64g and dropout �xed to 0:2.

For training, we optimize the objective(4.8)using Adam optimizer [36] with a dropout

rate of0:5 for both the encoder and decoder, and we sett = 1 for the Gumbel sample

approximation. To perform early stopping we monitor the reconstruction loss in the held

out validation set. Regarding hyperparameter tuning, we performed a grid search over the

encoder learning rate in {0:001, 0:005} and the decoder learning rate in {0:001;0:01}. We

�xed the patience of the encoder and decoder to200, and the decrease rate on the learning

rates to0:5. Preliminary experiments indicated that less parsimonious models tend to yield

better results on datasets with lower dimensional feature spaces. We then chose different

grids of hyperparameters depending on the dimensionality of the data to tune the architecture

2We use the code of the authors available athttps://github.com/lucfra/LDS-GNN
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of the encoder. For 20news3, 20news4 and digits, we tuned the number of hidden layers

from {2, 3} and the hidden dimension of the �rst hidden layer from {128, 64, 32}. For the

citation networks, we searched the number of layers in {3, 5} and the hidden dimension of

the �rst hidden layer in {512, 264, 128}. In all cases, the dimension of the following hidden

layers decreases by a factor of0:5. Finally, when the graph is completely missing, we de�ne

the prior using a symmetrick-NN graph with a number of neighbors inf 10;20g: we set

r i j = 0:999 if (xi ;x j ) is connected in the symmetrick-nn graph andr i j = 0:001 otherwise.

4.3.3 Results in Transductive Setting

Table 4.2 Classi�cation accuracy means and standard deviations on the held-out setXtest for
5 random seeds. We used the paired t-test with a signi�cance level ofa = 0:05 to compare
our results with the competitive baselines. The best results are in bold.

BASELINE 20NEWS3 20NEWS4 DIGITS CORA CITESEER

LOGREG 76.42(0.2) 60.13(1.8) 89.56(2.0) 61.05(0.0) 63.44(0.3)
SVM 75.76(0.6) 58.20(2.0) 89.53(1.5) 61.99(0.0) 60.20(0.0)
FFNN 76.10(2.0) 58.79(2.2) 90.65(1.5) 61.12(0.3) 59.64(1.0)

GCN+RBF 76.97(1.3) 57.74(2.7)91.24(1.5) 58.84(0.5) 55.94(2.9)
GCN+KNN 77.82(2.5) 61.57(1.6) 92.64(0.4) 66.46(0.9) 62.58(0.8)

kNN-LDS 80.25(1.7) 66.18(1.3) 91.25(1.5) 69.40(1.8) 69.07(0.4)

PGSSL 79.42(1.2) 62.84(3.7) 92.01(1.5) 66.76(0.7) 54.46(6.25)

Table 4.2 summarizes the accuracy results for the setting where the graph is completely

missing. We compare our method with the closest competitors in terms of accuracy using

the paired t-test with a signi�cance level ofa = 0:05. We highlight in bold results that were

signi�cant.

We �rst note that our approach tends to compare favorably to GCN+KNN, the best

baseline involving heuristically computed graphs, in20NEWS3 and20NEWS4. This indicates

that in those cases we obtain a graph that can improve the classi�cation performance over its

heuristic counterpart. While PGSSL and thekNN-LDS algorithm proposed by Franceschi

et al.[21] are on a par with20NEWS3 andDIGITS, the latter signi�cantly outperforms the

former in three datasets, namely20NEWS4, CORA andCITESEER. A possible reason for this

difference is thatkNN-LDS uses an extra set of labeled data that doubles or even triples the

amount of available training data. This extra training data is used to tune the graph using

a classi�cation loss. In contrast, PGSSL uses the same training set to tune both the graph

and the parameters of the classi�cation model, potentially leading to more over�tting. Also,
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PGSSL depends on the computation of edge embeddings to obtain a distribution of edges

(Equation(4.4)), as opposed tokNN-LDS that performs a sophisticated hyperparameter

search in the space of graphs directly. We observe that the classi�cation performance of

PGSSL tends to degrade on datasets with a high dimensional feature space (which implies a

high dimensional embedding space) likeCORA andCITESEER, suggesting a dimensionality

reduction pre-processing step might be necessary to increase accuracy.

We also conduct some analysis to understand the properties of the graphs learned by

PGSSL, and how they differ from those learned bykNN-LDS. Figure 4.2 depicts the evolution

of the mean edge probability among edges depending on whether they connect points with

the same or different label and whether these points are in the training, validation or test set.

Notably, we see that our algorithm is able to place higher probabilities in edges connecting

elements that are likely to have the same label and vice versa. This holds also in validation

and test, showing that our parametric encoder is able to generalize to new edges and data

points. We then look at the �nal distribution of edges according to whether or not they connect

elements with the same label, comparing our model (Figure 4.3) andkNN-LDS (Figure 4.4).

We see that our approach is generally better at assigning large edge probabilities to pairs of

points with the same label, and again this holds both in training and in validation/test.

4.3.4 Discussion

Results in Table 4.2 show that even though our method generally improves over the supervised

baselines and the SSL baselines involving heuristically computed graphs, it is still behind

kNN-LDS. Also, we note that results inCITESEERare poor in comparison with the baselines.

In this section we try to understand the reasons for this and to get insights on how to improve.

Size of training set. An important difference between our method andkNN-LDS is that

in the PGSSL framework both the graph and the parameters of the classi�cation model are

�tted on the same training set, whilekNN-LDS requires access to an extra set of training data

in order to �t the graph separately. This is due to the nature of their algorithm: it consists of

two loops, an outer loop that �ts the graph and an inner loop that samples from the graph

distribution and �ts the parameters of a GCN model. Following this setting, the authors split

the validation set in two equal parts and use one of them to supervise the graph [21]. As a

way of example, in the case of the Cora dataset, the original training set has size140, and the

extra labeled setkNN-LDS has access to has250elements, resulting in a big advantage with

respect to the other methods. One could train PGSSL with the same amount of labeled data

for a more fair comparison.
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Dimensionality of the data. PGSSL does not improve the results inCORA andCITESEER

with respect to the baselines, and in the latter they are far behind the rest of the datasets. We

argue that a possible reason is that its features space is high-dimensional. By design, our

encoder (Equation 4.6) combines individual node embeddings into edge representations that

are then fed to a neural network that computes the edge probabilities. By observing Table 4.1

and Table 4.2 we note that the more high-dimensional the feature space is, the less accurate

the model results. Also, from Figure 4.2 and Figure 4.3 we note that the encoder does place

more mass in edges that connect elements with the same label but with less success that in

the other datasets. This suggests that a dimensionality reduction pre-processing step could

improve results.

4.4 Concurrent Work in Joint Models for GSSL

In parallel with the development of the methods described in this thesis there has been an

emergence of models that try to jointly learn the graph structure along with the parameters of

the graph-based SSL model, typically a GCN. Closest to our work is [21], who propose a

bilevel programming formulation, consisting of an inner training error minimization objective

for the classi�cation parameters based on a sampled graph and an outer validation error

minimization objective that optimizes the graph edge distribution parameters. This requires

the computation of an hyper-gradient of the loss with respect to the graph, thus allowing

backpropagation through its corresponding parameters. While this model is probabilistic

like ours, it is not strictly end-to-end as edge parameters are treated as hyperparameters,

and it is inherently transductive. Following a different route, Kazi et al.[35] introduce

Differentiable Graph Module (DGM), a graph generation unit that takes as input a set of

node embeddings and a set of edges (when available), and produces a new set of edges. The

proposed architecture consists in a pipeline of GCN and DGM layers such that (i) the GCN

layer produces node embeddings, (ii) a graph is obtained over the node embeddings using

the Gaussian Kernel function with some temperature parameter to be �tted, and (iii) the node

embeddings and graph are fed into the following GCN layer. The classi�er is trained using

the node embeddings from the �nal layer, while the graph parameters are updated according

to a heuristics rather than in an end-to-end fashion. Finally, Chen et al.[11] propose an

iterative algorithm where they simultaneously learn a graph and a data representation. The

authors combine a metric learning loss, a prediction loss and a graph regularization term

to �t the parameters of the graph structure and the classi�er. Both of these latter models

can cope with transductive and inductive regimes, but they are not probabilistic and as such
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they cannot incorporate prior beliefs about the graph structure (e.g., sparsity) in a principled

manner.

4.5 Conclusion

In this work, we presented a framework based on variational auto-encoders that simultane-

ously learns the parameters of a semi-supervised model and the underlying graph structure

of the data. Our framework is probabilistic and can be trained in an end-to-end fashion.

Our experiments show that our method achieve signi�cant performance gains over the

supervised baselines and semi-supervised methods based on heuristic graphs.kNN-LDS is a

more competitive baseline based on bilevel optimization that requires an extra set of labeled

data. We note that even thoughkNN-LDS achieves better performance inCORA, CITESEER

and20NEWS4, PGSSL is on a par withkNN-LDS in 20NEWS3 andDIGITS with a smaller

training set.
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(a) CORA

(b) CITESEER

(c) 20NEWS3

(d) 20NEWS4

(e) DIGITS

Fig. 4.2 Evolution of the mean edge probabilities for train (left), validation (center) and test
(right) nodes inCORA, CITESEER, 20NEWS3, 20NEWS4 andDIGITS, shuf�ed with seed
0. For each node, we selected edges connecting to nodes belonging to the same class, and
nodes belonging to a different class.
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(a) CORA

(b) CITESEER

(c) 20NEWS3

(d) 20NEWS4

(e) DIGITS

Fig. 4.3 Histograms of edge probabilities obtained with our method for train (left), validation
(center) and test (right) nodes inCORA, CITESEER, 20NEWS3, 20NEWS4 and DIGITS

shuf�ed with seed 0.
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(a) CORA

(b) CITESEER

(c) 20NEWS3

(d) 20NEWS4

(e) DIGITS

Fig. 4.4 Histograms of edge probabilities obtained withkNN-LDS for train (left), validation
(center) and test (right) nodes inCORA, CITESEER, 20NEWS3, 20NEWS4 and DIGITS

shuf�ed with seed 0.





Chapter 5

Conclusion

5.1 Summary

The problem of Graph-based Semi-supervised Learning in contexts where no a-priori graph

is readily available is an open question in the Machine Learning community that is currently

gaining a lot of attention. In this thesis we studied methods to improve the classi�cation

performance of GSSL algorithms while accounting for graph uncertainty. We addressed this

question from two different perspectives.

In Chapter 3 we propose an algorithm that combines notions from Graph Learning

and Metric Learning. Its main goal is to jointly infer a graph and a data representation

that improves over heuristic graphs and the original data in an arbitrary GSSL algorithm.

Intuitively, the data representation will cluster elements according to their class membership,

and the graph will adapt to this representation. As a result, we can inject label information

to the graph, thus obtaining a task-speci�c graph. Our experimental results suggest that the

gains are especially signi�cant for graph-based SSL algorithms that are unable to adapt the

data representation (like label spreading and its variants), although we observe some gains

also for GCN. We note that with our method we reduce the performance gap between more

classical methods such as Label Spreading and state-of-the-art models like GCN.

In Chapter 4 we adopt a probabilistic approach based on the framework of Auto-encoding

Variational Bayes proposed by [37]. The main idea is to treat the graph as a set of unobserved

random variables or "latent" variables, whose distribution is to be inferred simultaneously

with the parameters of a GSSL model. The learning pipeline involves taking a sample

from the graph distribution, feeding it to a GSSL classi�cation model (usually a GCN), and

backpropagating the classi�cation error through the parameters of the classi�cation model

and the graph. This model can be learned end-to-end, as opposed to what we introduced in

the previous chapter. Our experiments showed mixed results. On the one hand our method



60 Conclusion

compares favorably to baselines based on heuristic graphs in two datasets, indicating the

learned graph captures important information that improves the classi�cation performance.

Notably, we observe that the edge probabilities evolve to a distribution that places a high

mass in edges connecting nodes belonging to the same class and vice versa. On the other

hand, the more recent method proposed by [21] (kNN-LDS) outperforms our method in two

datasets. A possible reason is thatkNN-LDS relies on an extra set of training data whose

size is non negligible (usually half of the validation set). This way the authors supervise the

graph loss with a separate training set, as opposed to our method that supervises both the

graph and the classi�cation model with the same training set.

5.2 Future directions

Although we successfully tackled some of the research questions that motivated this work,

some others remain open.

Other graph parameterizations. In Chapter 4 we modeled the graph as a set of indepen-

dent Bernoulli random variables. Furthermore, we adopted a Stochastic Block Model [30]

where an edge only depends on the nodes it connects. Other choices of model involve a less

strong assumption about the edge distribution, for example, an assortative mixed membership

stochastic block model [44], where two nodes not only can belong to more than one class,

but edges can also depend on the class memberships of the nodes they are connecting. As we

mentioned in Chapter 4, the graph parameterization we chose corresponds to a very simple

Graph Neural Network where we only visit the one-hop neighborhood of each node. An

alternative, more expressive graph model could involve edge embeddings that are computed

based on then-hop neighborhood of each node, withn > 1.

Dealing with high-dimensional data. As discussed in Section 4.3.4, our experiments in

Chapter 4 suggest that the performance of the graph model degrades with high-dimensional

data. A straightforward solution we did not explore is to perform a dimensionality reduction

on the input data as a pre-processing step. For example, Kazi et al.[35] apply a dimensionality

reduction technique called Recursive Feature Elimination to reduce the input dimension of all

the datasets, keeping only30 features. Alternatively, we could de�ne an encoder architecture

that computes a low-dimensional embedding of the data before combining elements into

edges.
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Closed form formulations. A path we left unexplored is that of using the tools of convex

optimization to formulate and address the problem of GSSL in noisy/unavailable graph

scenarios. One of the main challenges this poses is that valid graph Laplacians belongs

to a small subset of Positive Semi-de�nite matrices, and hence they are almost impossible

to �nd with tools like Graphical Lasso1 [22]. Nevertheless, there exist methods in recent

literature that are able to recover valid graph Laplacians from data under spectral constraints

[41, 18, 40]. An interesting line of research is to extend these methods to GSSL, which could

be seen as graph signal denoising in noisy/unavailable graph scenarios.

1Actually, �nding a graph Laplacian inRn is equivalent to �nding a vector in the negative quadrant of
Rn(n� 1)=2. The probability of doing that exponentially decreases asn increases.
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